Computer Number Systems, Codes,
and Digital Devices

Before starting our discussion of microprocessors and
microcomputers, we need to make sure that some key
concepts of the number systems, codes, and digital
devices used in microcomputers are fresh in your mind.
If the short summaries of these concepts in this chapter
are not enough to refresh your memory, then you may
want to consult some of the chapters in Digital Circuits

" and Systems, McGraw-Hill, 1989, before going on in
this book.

OBJECTIVES

At the conclusion of this chapter you should be able to:

1. Convert numbers between the following codes: bi-
nary. hexadecimal, and BCD.

2. Define the terms bit, nibble, byte, word, most sig-
nificant bit, and least significant bit.

3. Use a table to find the ASCII or EBCDIC code for a
given alphanumeric character.

4. Perform addition and subtraction of binary, hexa-
decimal, and BCD numbers.

5. Describe the operation of gates, flip-flops, latches,
registers. ROMs, PALs, dynamic RAMs, static RAMs,
and buses.

6. Describe how an arithmetic logic unit can be in-
structed to perform arithmetic or logical operations
on binary words.

COMPUTER NUMBER SYSTEMS
AND CODES

Review of Decimal System

To understand the structure of the binary number
system. the first step is to review the familiar decimal
or base-10 number systein Here is a decimal number
with the value of each place holder or digit expressed as
a power of 10.

5 3 4 6 . 7 2
10° 10?7 10' 10° 10! 1072

The digits in the decimal number 5346.72 thus tell you
that you have 5 thousands, 3 hundreds, 4 tens, 6 ones,
7 tenths, and 2 hundredths. The number of symbols
needed in any number system is equal to the base
number, In the decimal number system, then, there are
10 symbols, 0 through 9. When the count in any digit
position passes that of the highest-value symbol! the
digit rolls back to O and the next higher digit is incre-
.nented by 1. A car odometer is a good example of this.

A number system can be built using powers of any
number as place holders or digits, but some bases are
more useful than others. It is difficult to build electronic
circuits which can store and manipulate 10 different
voltage levels but relatively easy to build circuits which
can handle two levels. Therefore, a binary. or base-2,
number system is used to represent numbers in digital
systems.

The Binary Number System

Figure 1-l1a. p. 2. shows the value of each digit in a
binary number. Each binary digit represents a power of
2. A binary digit is often called a bif. Note that digits to
the ri—ght of the binary point represent fractions used
for numbers less than 1. The binary system uses only
two symbols, zero (0) and one (1), so in binary you count
as follows: 0, 1, 10, 11, 100, 101, 110, 111, 1000, etc.
For reference, Figure 1-1b shows the powers of 2 from
2! to 21,

Binary numbers are often called binary words or just
words. Binary words with certain numbers of bits have
also acquired special names. A 4-bit binary word Is
called a nibble. and an 8-bit binary word is called a byte.
A 16-bit binary word is often referred to just as a word,
and a 32-bit binary word is referred to as a doubleword.
The rightmost or least significant bit of a binary word
is usually referred to as the LSB. The leftmost or most
significant bit of a binary word is usually called the
MSB.

To convert a binary number to its equivalent decimal
number, multiply each digit times the decimal value of
the digit and just add these up. The binary number 101,
for example. represents: (1 x 22) + (0 x 2') + (1 x 29),

1

2‘->
22 - 3
2= 8
2= 18

10110.1 1 2% = 32
2% = 64

(] 5 4 41 Aa2A1 A0 -1 n9=2

20 2 2 2PV 73 5 = 3%

1286432168421 5 1 2% = 256
()

FIGURE 1-1 () Digit values in binary. (b) Powers of 2.

or4 + 0 + 1 = decimal 5. For the binary number
10110.11, you have:

(1 X249+ (0x2%+(1x%x2%)+(1x2')+(0x 29
HIx2)+(1x2°%)=
16+0+4+2+0+0.5 + 0.25 = decimal 22.75

To convert a decimal number to binary. there are two
common methods. The first (Figure 1-2a) is simply a
reverse of the binary-to-decimal method. For example,
to convert the decimal number 21 (sometimes written
as 21,¢) to binary, first subtract the largest power of 2
that will fit in the number. For 21, the largest power of
2 that will fit Is 16 or 2*. Subtracting 16 from 21 gives
a remainder of 5. Put a 1 in the 2* digit position and
see if the next lower power of 2 will fit in the remainder.
Since 2° is 8 and 8 will not fit in the remainder of 5, put
a 0 in the 2° digit position. Then try the next lower
power of 2. In this case the next is 22 or 4, which will
fit in the remainder of 5. A 1 is therefore put in the 22
digit position. When 2? or 4 is subtracted from the old
remainder of 5, a new remainder of 1 is left. Since 2! or
2 will not fit into this remainder, a 0 is put in that
position. A 1 is put In the 2° position because 2° is equal
to 1 and this fits exactly into the remainder of 1. The
result shows that 21,, is equal to 10101 in binary. This
conversion process is somewhat messy to describe but
easy to do. Try converting 46, to binary. You should get
101110. '

Another method of converting a decimal number to
binary Is shown in Figure 1-2b. Divide the decimal
number by 2 and write the quotient and remainder as
shown. Divide this quotient and following quotients by
2 until the quotient reaches 0. The column of remainders
will be the binary equivalent of the given decimal num-
ber. Note that the MSD is on the bottom of the column
and the LSD is on the top of the column if you perform
the divisions in order from the top to the bottom of the
page. You can demonstrate that the binary number is
correct by reconverting from binary to decimal, as shown
in the right-hand side of Figure 1-2b

You can convert decimal numbers less than 1 to binary
by successive multiplication by 2. recording carries until
the quantity to the right of the decimal point becomes
zero. as shown in Figure 1-2c. The carries represent the
binary equivalent of the decimal number, with the most
significant bit at the top of the column. Decimal 0.625
equals 0.101 in binary. For decimal values that do not
convert exactly the way this one did (the quantity to the

2 CHAPTER ONE

2 = 512 27 = 131,012 2% = 33584432
29 = 1,024 2'® = 262,144 2% = §7,108,864
2" = 2,048 2" = 524,288 27 = 134,217,728
2'7 = 4,086 2% = 1,048,576 2% = 268,435,456
29 = B,192 22 = 2,007,152 2® = 536,870,912
2" = 18,384 22 = 4,194,304 2% = 1,073,741,824
2'% = 32,768 22 = 8,388,608 2" = 2,147,483,648
2'® = §5,536 2% = 16,777,216 2% = 4,294,967,296
(b)

right of the decimal never becomes zero), you can
continue the conversion process until you get the num-
ber of binary digits desired.

At this point it Is interesting to compare the number
of digits required to express numbers in decimal with
the number required to express them in binary. In

25 24 23 2 21 20
3216 8 4 2 1
21.,0 =0 1 0 1 0 1,

(a)
22710 ko _’._ Binary

Least Significant

Binary Digit
!
2227 = _113 Rl x 1 = 1
2113 = _ 56 Rl x 2 = 2
2 56<= 28 RO x 4 = 0
2)28«= 14 M x B = 0
2)_1':.=/7 RO x 16 = 0
2r—7/3 R1 x 32 = 32
2) 3= 1 Rl x 64 = 64
2 1w 0 Rl x128 = 128
t 227 Check
Most Significant
Binary Digit
2227, = 11100011,
(b)
Check
2 % 1 x 5
2 % 0 x .25
2 x 1 x 125
625

LSB
(c)

FIGURE 12 Converting decimal to binary. (a) Digit
value method. (b) Divide by 2 method. (c) Decimal
fraction conversion.

. decimal, one digit can represent 10' numbers, O through
9; two digits can represent 10? or 100 numbers, 0
through 99:'and three digits can represent 10° or 1000
numbers, 0 through 999. In binary, a similar pattern
exists. One binary digit can represent 2 numbers, 0 and
1; two binary digits can represent 2* or 4 numbers, 0
through 11: and three binary digits can represent 2° or
8 numbers, 0 through 111. The pattern, then, is that N
decimal digits can represent 10" numbers and N binary
digits can represent 2" numbers. Eight binary digits
can represent 2° or 256 numbers, O through 255 in
decimal.

Hexadecimal

Binary is not a very compact code. This means that it
requires many more digits to express a number than
does, for example, decimal. Twelve binary digits can only
describe a number up to 4095,,, Computers require
binary data, but people working with computers have
trouble remembering long binary words. One solution
to the problem is to use the hexadecimal or base-16
number system.

Figure 1-3a shows the digit values for hexadecimal,
which is often just called hex. Since hex is base 16, you
have to have 16 possible symbols, one for each digit.
The table of Figure 1-3b shows the symbols for hex code.

16° 16216'16°.167' 1672 167°
4096256 16 1 & 5% %
(a)

Dec Hex Dec Hex
0=20 8 = 8
1 =1 g9 = 9
2 = 2 10 = A
3= 3 11 = 8
4 = 4 12 = C
5 =65 13 =D
6 =6 14 =E
17 =1 15 = F

(b)

27,= ? .. LSD

16)227 = 14 R3 x 1 = 3
16W‘=/0 RE x16 =224

MSD 227
320, = €3,y |

|
(c)

FIGURE 1-3 -Hexadecimal numbers. (a) Value of place
holders. (b) Symbols. (c) Decimal-to-hexadecimal
conversion.

-3

After the declma.y symbols O through 9 are used up. you
use the letters A'through F for values 10 through 15.

As mentioned above, each hex digit is equal to four
binary digits. To convert the binary number 11010110
to hex, mark off the binary bits in groups of 4, moving
to the left from the binary point. Then write the hex
symbol for the value of each group of 4.

Binary 1101 0110
Hex D 6

The 0110 group is equal to 6 and the 1101 group is
equal to 13. Since 13 is D in hex, 11010110 binary is
equal to D6 in hex. “H" is usually used after a number
to indicate that it is a hexadecimal number. For example,
D6 hex is usually written D6H. As you can see, 8 bits
can be represented with only 2 hex digits.

If you want to convert a number from decimal to
hexadecimal, Figure 1-3¢ shows a familiar trick for doing
this. The result shows that 227, is equal to E3H. As
you can see, hex is an even more compact code than
decimal. Two hexadecimal digits can represent a decimal
number up to 255. Four hex digits can represent a
decimal number up to 65,535.

To illustrate how hexadecimal numbers are used in
digital logic, a service manual tells you that the 8-bit-
wide data bus of an 8088A microprocessor should
contain 3FH during a certain operation. Converting 3FH
to binary gives the pattern of 1's and 0’s (0011 1111)
you would expect to find with your oscilloscope or logic
analyzer on the parallel lines. The 3FH is simply a
shorthand which is easier to remember and less prone
to errors than the binary equivalent.

BCD Codes

STANDARD BCD

In applications such as frequency counters, digital volt-
meters, or calculators, where the output is a decimal
display, a binary-coded decimal or BCD code is often
used. BCD uses a 4-bit binary code to individually
represent each decimal digit in a number. As you can
see in Table 1-1, p. 4, the slLaplest BCD code uses the
first 10 numbers of standard binary code for the BCD
numbers O through 9. The hex codes A through F are
invalid BCD codes. To convert a decimal number to its
BCD equivalent, just represent each decimal digit by its
4-bit binary equivalent, as shown here.

Decimal 5 2 9
BCD 0101 0010 1001

To convert a BCD number to its decimal equivalent,
reverse the process.

GRAY CODE

Gray code is another important binary code: it is often
used for encoding shaft position data from machines
such as computer-controlled lathes. This code has the
same possible combinations as standard binary. but as
you can see in the 4-bit example in Table 1-1. they are

COMPUTER NUMBER SYSTEMS, CODES, AND DIGITAL DEVICES 3

TABLE 1-1
COMMON NUMBER CODES

Binary-Coded Decimal Reflected 7-Segment Display (1 = on)
Decimal_ | Binary | Octal | Hex "opy BeD | Excsss g;;’; abcdefg | Display

0 0000 0 0 0000 0011 0011 0000 1111110 0

1 0001 1 1 0001 0011 0100 0001 0110000 -4

2 0010 2 2 0010 0011 0101 0011 1101101 -

3 | oom 3 3 0011 0011 0110 0010 1111001 3

4 0100 4 4 0100 0011 0111 0110 0110011 4

5 0101 5 5 0101 0011 1000 011 1011011 5
"6 0110 6 6 0110 0011 1001 0101 1011111 6

7 0111 7 7 0111 0011 1010 0100 1110000 7

8 1000 10 8 1000 0011 1011 1100 1111111 8

9 1001 1 9 1001 0011 1100 1101 1110011 9
10 1010 12 A 0001 0000 0100 0011 1M 1111101 A
1 1011 13 B 0001 0001 0100 0100 1110 0011111 B
12 1100 14 C 0001 0010 0100 0101 1010 0001101 c
13 1101 15 D 0001 0011 0100 0110 1011 0111101 D
14 1110 16 E 0001 0100 0100 0111 1001 1101111 E
15 1111 17 F 0001 0101 0100 1000 1000 1000111 F

arranged in a different order. Notice that orfly one binary
digit changes at a time as you count up in this code.

If you need to construct a Gray-code table larger than
that in Table 1-1, a handy way to do so is to observe the
pattern of 1's and O's and just extend it. The least
significant digit column starts with one 0 and then has
alternating groups of two 1's and two 0's as you go down
the column. The second most significant digit column
starts with two 0's and then has alternating groups of
four 1's and four 0's. The third column starts with four
0's, then has alternating groups of eight 1's and eight
0's. By now you should see the pattern. Try to figure out
the Gray code for the decimal number 16. You should
get 11000.

7-Segment Display Code

Figure 1-4a shows the segment identifiers for a 7-
segment display such as those commonly used in digital
instruments. Table 1-1 shows the logic levels required
to display O to 9 and A to F on a common-cathode LED
display such as that shown in Figure 1-4b. For a
common-anode LED display such as that in Figure 1-4c¢,
simply invert the segment codes shown in Table 1-1.

Alphanumeric Codes
: ~

When communicating with or between computers, you
need a binary-based code which can represent letters of
the alphabet as well as numbers. Common codes used
for this have 7 or 8 bits per word and are referred to as
alphanumeric codes. To detect possible errors in these
codes, an additional bit, called a parity bit. is often
added as the most significant bit.

Parity is a term used to identify whether a data word
has an odd or even number of 1's. If a data word contains

4 CHAPTER ONE

an odd number of 1's, the word is said to have odd
parity. The binary word 0110111 with five 1's has odd
parity. The binary word 0110000 has an even number
of 1's (two), so it has even parity.

In practice the parity bit is used as follows. The system
that is sending a data word checks the parity of the
word. If the parity of the data word is odd, the system
wiil set the parity bit to a 1. This makes the parity of
the data word plus parity bit even. If the parity of the
data word is even, the sending system will reset the
parity bit to a 0. This again mak=s the parity of the data
word plus parity even. The receiving system checks the

& 2232

Lt

(a)

+V

(c)

FIGURE 14 7-segment LED display. (a) Segment labels.
(b) Schematic of common-cathode type. (c) Schematic of
common-anode type.

parity of the data word plus parity bit that it receives.
If the receiving system detects odd parity in the received
data word plus parity, it assumes an error has occurred
and tells the sending system to send the data again. The
system is then said to be using even parity. The system
could have been set up to use (maintain) odd parity in
a similar manner.

ASCII

Table 1-2 shows several alphanumeric codes. The first
of these is ASCII, or American Standard Code for Infor-
mation Interchange. This is shown in the table as a 7-
bit code. With 7 bits you can code up to 128 characters,
which is enough for the full upper- and lowercase

TABLE 1-2
COMMON ALPHANUMERIC CODES
ASCIl | HEX Code|EBCDIC|HEX Code|| ASCHl |HEX Code|EBCDIC|HEX Code|| ASCHl |HEX Code|EBCDIC|HEX Code
Symbol | for 7-Bit | Symbol Jor Symbol| for 7-Bit | Symbol Jor Symbol| for 7-Bit | Symbol Jor
7 Ascl | - EBCDIC AScIl EBCDIC ASCll EBCDIC
NUL 00 NUL| 00 . 2A . 5C T 54 T E3
SOH 01 SOH o1 + 2B + 4E u 55 u E4
STX 02 'STX| 02 . 2c . 6B v 56 v ES
ETX 03 ETX| 03 - 2D - 60 w 57 w E6
EOT 04 EOT 37 ; 2E 4B X 58 X E7
ENg| 05 ENg| 2D / 2F Ay 61 Y 59 Y E8
ACK 06 ACK| 2E 0 30 0 FO z SA z E9
BEL 07 BEL 2F 1 31 1 F1 [5B l AD
BS 08 BS 16 2 32 2 F2 X 5C NL 15
HT 09 HT 05 3 33 3 F3] SD i DD
LF 0A LF 25 4 34 4 F4 . SE - SF
VT 0B vr| OB 5 35 5 F5 - 5F - 6D
FF oC FF| 0OC 6 36 6 F6 . 60 RES 14
CR oD CR| oD 7 37 7 F7 a 61 a 81
S0 OE " s0| OE 8 38 8 F8 b 62 b 82
s1 OF s1| oF 9 39 9 F9 c 63 c 83
DLE 10 DLE 10 : 3A : 7A d 64 d 84
. DC1 11 DC1 11 : 3B : SE e 65 e 85
DC2 12 DC2 12 = 3C - 4C f 66 f 86
DC3 13 DC3 13 = 3D = 7E g 67 g 87
DC4 14 DC4 35 \ 3E \ 6E h 68 h 88
NAK 15 NAK| 3D ? 3F ? 6F i 69 1 89
SYN 16 SYN 32 @ 40 @ 7C j 6A j 91
ETB 17 EOB 26 A 41 A c1 k 6B k 92
CAN 18 CAN 18 B 42 B c2 1 6C 1 93
EM 19 EM 19 c 43 c c3 m 6D m 94
SUB 1A SUB 3F D 44 D c4 n 6E n 95
ESC 1B BYP 24 E 45 E c5 ° 6F o 96
FS 1C FLS 1C F 46 F c6 p 70 p 97
GS 1D GS 1D G 47 G c7 q 71 q 98
RS 1E RDS 1E H 48 H c8 r 72 r 99
us IF us IF 1 49 1 c9 s 73 s A2
SP 20 Sp 40 J 4A J Dl t 74 t A3
! 21 1| sA K 4B K D2 u 75 u Ad
' 22 . 7F L 4C L D3 v 76 v AS
23 # 7B M 4D M D4 w 77 w A6
S 24 .8 5B N 4E N D5 x 78 x AT
% 25 % 6C o] 4F 6] D6 y 79 y A8
& 26 & 50 P 50 P D7 z 7A z A9
i 27 : 7D Q 51 Q D8 { 7B { 8B
(28 (4D R 52 R D9 | 7C | 4F
) 29)| 5D S 53 s E2 } 7D } 9B
= 7E ¢ 4A
DEL 7F DEL 07
COMPUTER NUMBER SYSTEMS, CODES, AND DIGITAL DEVICES 5

TABLE 1-3
DEFINITIONS OF CONTROL CHARACTERS

NULL Null DC1 Direct control 1
SOH Start of heading DC2 Direct control 2

. STX Start text DC3 Direct control 3
ETX End text DC4 Direct control 4
EOT Endof NAK Negative

transmission acknowledge

ENQ Enquiry SYN Synchronous idle
ACK Acknowledge ETB End transmission
BEL BS . block
BS Backspace CAN Cancel
HT Horizontal tab EM End of medium
LF Line feed SUB Substitute
vT Vertical tab ESC Escape
FF Form feed FS Form separator
CR Carriage return GS Group separator
SO Shift out RS .Record separator
SI Shift in us Unit separator
DLE Data link escape

alphabet, numbers, punctuation marks, and control
characters. The code is arranged so that if only uppercase
letters, numbers, and a few control characters are
needed, the lower 6 bits are all that are required. If a
parity check is wanted, a parity bit is added to the basic
7-bit code in the MSB position. The binary word 1100
0100, for example, is the ASCII code for uppercase D
with odd parity. Table 1-3 gives the meanings of the
control character symbols used in the ASCII code table.

EBCDIC

Another alphanumeric code commonly encountered in
IBM equipment is the Extended Binary-Coded Decimal
Interchange Code or EBCDIC. This is an 8-bit code
without parity. A ninth bit can be added for parity. To
save space in Table 1-2, the eight binary digits of
EBCDIC are represented by their 2-digit hex equivalent.

ARITHMETIC OPERATIONS ON BINARY,
HEX, AND BCD NUMBERS.

Binary Arithmetic
ADDITION

Figure 1-5a shows the truth table for addition of two
binary digits and a carry in (Cy) from addition of
previous digits. Figure 1-5b shows the result of adding
two 8-bit binary numbers together using these rules.
Assuming thatCyy = 1.1 + 0 + Cyy = a sum of 0 and
a carry into the next digit, and 1 + 1 + Cy = a sum of
1 and a carry into the next digit because the result in
any digit position can onlybe a 1 or a 0.

2'S-COMPLEMENT SIGNS-AND-MAGNITUDE

BINARY

When you handwrite a number that represents some
physical quantity such as temperature, you can simply
put a + sign in front of the number to indicate that the

6 CHAPTER ONE

OUTPUTS
COUT

]
a

O
2

S=A®BAC,
Cour = A+ B+Cq (ADB)

- - ——_-00O0O|>»

- 00 -0 = =0|0n

- -0 0= —=00|m

-0 =0 =-=-0=-=0
- — O =00

(a)

10011010
+ 11011100
[01110110
1‘—Carry

(b)

FIGURE 1-5 Binary addition. (a) Truth table for 2 bits
plus carry. (b) Addition of two B-bit words.

number is positive, or you can write a — sign to indicate
that the number is negative. However, If you want to
store values such as temperatures, which can be positive
or negative, in a computer memory, there is a problem:
Since the computer memory can store only 1's and 0's,
some way must be established to represent the sign of
the number with a 1 or a 0.

A common way to represent signed numbers is to
reserve the most significant bit of the data word as a
sign bit and to use the rest of the bits of the data word
to represent the size (magnitude) of the quantity. A
computer that works with 8-bit words will use the MSB
(bit 7) as the sign bit and the lower 7 bits to represent
the magnitude of the numbers. The usual convention
Is to represent a positive number with a 0 sign bit and
a negative number with a 1 sign bit.

To make computations with signed numbers easier.
the magnitude of negative numbers is represented in a
special form called 2's complement. The 2's complement
of a binary number is formed by inverting each bit of
the data word and adding 1 to the result. Some examples
should help clarify all of this.

The number +7,, is represented in 8-bit sign-and-
magnitude form as 00000111. The sign bit is 0, which
indicates a positive number. The magnitude of positive
numbers is represented in straight binary, so 00000111
in the least significant bits represents 7,,.

To represent —7,, in 8-bit 2's-complement sign-
and-magnitude form, start with the 8-bit code for
+7, 0000 0111. Invert each bit, including the MSB, to
get 1111 1000. Then add 1 toget 11111001. This result
is the correct representation of —7,,. Figure 1-6 shows
some more e~amples of positive and negative numbers
expressed in 8-bit sign-and-magnitude form. For prac-
tice, try generating each of these yourself to see if you
get the same result.

To reverse this procedure and find the magnitude
of a number expressed in sign-and-magnitude form,
proceed as follows. If the number is positive, as indicated

Sign bit

0’1 0000111 Sy F e

+ 1

+ 46 00101110

+105 01 1101001

- 12 1? 1110100

- 54 111001010 ¢ Sign and

-117 1 5,0001011 Lvﬂzgzaﬂ:mem
— 46 11010010 oo

FIGURE 1-6 Positive and negative numbers represented
with a sign bit and 2's complement.

by the sign bit being a 0, then the least significant 7
bits represent the magnitude directly in binary. If the
number {is negative, as indicated by the sign bit being
a 1, then the magnitude is expressed in 2's complement.
To get the magnitude of this negative number expressed
in standard binary, invert each bit of the data word,
including the sign bit, and add 1 to the result. For
example, given the word 11101011, invert each bit to
get 00010100. Thenadd 1 to get 00010101. This equals
21,,. so you know that the original numbers represent
—21,,. Again, try reconverting a few of the numbers in
Figure 1-6 for practice.

Figure 1-7 shows some exadmples of addition of signed
binary numbers of this type. Sign bits are added together

- just as the other bits are. Figure 1-7a shows the results -

of adding two positive numbers. The sign bit of the
result is zero, so.the result is positive. The second
example, in Figure 1-7b, adds a -9 to a +13 or, in
effect, subtracts 9 from 13. As indicated by the zero sign
bit, the result of 4 is positive and in true binary form.

Figure 1-7c shows the result of adding a —13 to a
smaller positive number, +9. The sign bit of the resuit
is a 1. This indicates that the result is negative and the
magnitude is in 2's-complement form. To reconvert a
2’s complement result to a signed number in true binary
form:

1. Invert each bit to produce the 1's complement.
2. Add 1.

3. Puta minus sign in front to indicate that the result
is negative.

The final example, in Figure 1-7d, shows thé result of
adding two negative numbers. The sign bit of the result
is a 1, so the result is negative and in 2's-complement

form. Again, inverting each bit, adding 1, and prefixing -

a minus sign will put the result in a more recognizable
form.

Now let's consider the range of numbers that ¢an be
represented with 8 bits in sign-and-magnitude form.-

Eight bits can represent a maximum of 2% or 256
numbers. Since we are representing both positive and
negative numbers, half of this range will be positive and

half negative. Therefore, the range is —128 to +127.
Here are the sign-and-magnitude binary represerntations
for these values: '

01111111 +]127

00000001 #*1

00000000 zero

11111111 -1 :

10000001 | —127
10000000 - 128

If you like number patterns, you might notice that this
scheme shifts the normal codes for 128 to 255 downward
to represent —128 to —1.

If a computer is storing signed numbers as 16-bit
words, then a much larger range of numbers can be
represented. Since 16 bits gives 2'® or 65,536 possible
values, the range for 16-bit sign-and-magnitude num--
bers is —32,768 to +32,767. Operations with 16-bit
sign-and-magnitude numbers are done the same way as
operations with B-blt_ sign-and-magnitude numbers.

+13 00001101
+9 . 00001001
422 00010110

T—Sign bitis 0
J so result is positive
o o (a)
+13 00001101
=9 11110111 2's complement for.- -9 with sign bit
+ 4 1] 00000100
L sign bitis 0
so result is positive
Ignore carry
“(b)
+9 .- 00001001
-13 11110011 2's complement for —13 with sign bit

-4 11111100 Sign bitis 1 -
00000011 So invert each bit
equals O iy
—00000100 Prefix with minus sign =5
- (9
-9 11i1o111}2's complement,
-13 11110011 sign-and-magnitude fonn
-22 11101010 Sign bit is 1
00010101 So invert each bit
i + 1 Add 1
equals ————
—=00010110 Prefix with mmus slgn
; (d)

FIGURE 1-7 Addition of signed binary numbers. (a) +9
and +13. (b) -9 and +13. (c) +9 and —13. (d) -9 and
=13 g :

COMPUTER NUMBER SYSTEMS, CODES, AND DIGITAL DEVICES 7

10101010

INPUTS OUTPUTS
2aTele.loTe -01100100
N ouT
ojejojJo] o 01000110
0 [1 1 1 - (b)
o |4] o} 1
U e e TR
T la et sl 8 91, 01011011 01011011
1 0 1 g‘ 0 —46,, —00101110 Invert +11010010
1 11]o (] 3 e
R ANES ENE 45, each bit (1] 00101101 =45,
DIFFERENCE = A©B®B, One’s comp 11010001 t—Indicates_ _
BORRQW = A - B + (A®B) * By Add 1 4 1 result positive
(a) e and in true
Two's comp - 11010010 binary form
. Carry
; (c)
77, 01001101 01001101
—88,, 01011000 \'c’omphmm +10101000 RO
- ' g~ ——> 00001010
L} S 10100111 [o] 1110101
P e Add one + 1
¥ 1 Indicates _
. = result negative = 1011 =11,
Two's comp 10101000 and in two's
Carry complement form

(d)

FIGURE 1-8 Binary subtraction. (a) Truth table for 2 bits and borrow. (b) Pencil
method. (c) 2‘s-complement positive result. (d) 2's-complement negative result.

SUBTRACTION

There are two common methods for doing binary sub-
traction. These are the pencil method and the 2's-
complement add method. Figure 1-8a shows the truth
table for binary subtraction of two binary digits A and
B. Also included in the truth table is the effect of a
borrow-in, By, from subtracting previous digits. Figure

1-8b shows an example of the “pencil” method of sub-
tracting two 8-bit numbers. Using the truth table, this
method 1s done the same way that you do decimal
subtraction.

‘A second method of performing binary subtraction is
by adding the 2's-complement representation of the
bottom number (subtrahend) to the top number (minu-
end). Figure 1-8c shows how'this is done. First represent
the top number in sign-and-magnitude form. Then form
the 2's-complement sign-and-magnitude representation
for the negative of the bottom number. Finally, add the
two parts formed. For the example in Figure 1-8¢, the
sign of the result is a 0, which Indicates that the result
is positive and in true form. The final carry produced by
the addition can be ignored. Figure 1-8d shows another
example of this method of subtraction. In this case the
bottom number is larger than the top number. Again,
represent the top number in sign-and-magnitude form,
produce the 2's-complement sign-and-magnitude form

for the negative o the bottom number, and add the two -

together. The sign bit of the result is a 1 for this
example. This inaicates that the result is negattve and its
magnitude is reprcsented {n 2's-complement form. To

8 CHAPTER ONt

get the result into a form that is more recognizable to

_you, invert each bit of the result, add 1'to it, and put a

minus sign in front of it as shown in Figure 1-8d.
Problems that may occur when doing signed addition
or subtraction are overflow and underflow. If the magni-
tude of the number produced by adding two signed
numbers is larger than the number of bits available to
represent the magnitude, the result will* ‘overflow” into
the sign bit position and give an incorrect result. For
example, if the signed positive number 01001001 is
added to the signed positive number 01101101, the
result is 10110110. The 1 In the MSB of this result
indicates that it is negative; which is obviously incorrect
for the sum of two positive numbers. In a similar
manner, doing an 8-bit signed subtraction that produccs
a magnitude greater than — 128 will cause an “under-
flow™ into the sign bit and produce an incorrect result.
For simplicity the examples shown use 8 bits, but the
method works for any number of bits. This method may
seem awkward, but it is easy to do in a computer or
microprocessor because It requires only the simple

~ operations of inverting and adding.

MULTIPLICATION

There are several methods of doing binary multlplica
tion. Figure 1-9 shows what is called the pencil method
because it is the same way you learned to multiply
dectrmal numbers. The top number, or multiplicand, is
multiplied by the least significant digit of the bottom
number, or multiplier. The partial product is written

1n 1011 MULTIPLICAND
X 9 X 1001 MULTIPLIER
101
0000
RTIAL PRODUCTS

0000 PA RODUC
1011
1100011 PRODUCT

FIGURE 1-9 Binary multiplication.

down. The top number is then multiplied by the next
digit of the multiplier. The resultant partial product is
written down under the last, but shifted one place to
the left. Adding all the partial products gives the total
product. This method works well when doing multiplica-
tion by hand, but it is not practical for a computer
because the type of shifts required makes it awkward to
implement.

One of the multiplication methods used by computers
is repeated addition. To multiply 7 X 55, for example,
the computer can just add up seven 55's. For large
numbers, however, this method is slow. To multiply
786 x 253, for example, requires 252 add operations.

Most computers use an add-and-shift-right method.

This method takes advantage of the fact that for binary

multiplication, the partial product can only be either

the top number exactly if the multiplier digitisa 1 ora

0 if the multiplier digit is a 0. The method does the
same thing as the pencil method, except that the partial
products are added as they are produced and the sum
of the partial products is shifted right rather than each
partial product being shifted left.

A point to note about multiplyilng numbers is the
number of bits the product requires. For example,
multiplying two 4-bit numbers can give a product with
as many as 8 bits, and two 8-bit numbers can give a 16-
bit product.

DIVISION

Binary division can also be performed in several ways.
Figure 1-10 shows two examples of the pencil method.
This is the same process as decimal long division.
However, it ts much simpler than decimal long division

01100 QUOTIENT

DIVISOR 110;1001000 DIVIDEND 12

-110 6)72
110
-110
0
(a)
110.01 6.25
100)11001.00 425
-100
100
-100
0100

(b)

FIGURE 1-10 Binary division.

. COMPUTER NUMBER SYSTEMS, CODES, AND DICITAL DEVICES

because the digits of the result (quotient) can only be 0
or 1. A division is attempted on part of the dividend. If-
this is not possible because the divisor is larger than
that part of the dividend, a O is entered in the quotient.

" Another attempt is then made to divide using one more

digit of the dividend. When a division is possible, a 1 is
entered in the quotient. The divisor is then subtracted
from the portion of the dividend used. AS with standard
long division, the process is continued until all the
dividend is used. As shown in Figure 1-10b, 0's can be
added to the right of the binary point and division
continued to convert a remainder to a binary equivalent.

Another method of division that is easier for com-
puters and microprocessors to perform uses successive
subtractions. The divisor is subtracted from the divi-
dend and from each successive remainder until a borrow
is produced. The desired quotient is 1 less than the
number of subtractions needed to produce a borrow.
This method is simple, but for large numbers it is slow.

For faster division of large numbers, computers use a
subtract-and-shift-left method that is essentially the
same process you go through with a penctllong division.

Hexadecimal Addition and Subtraction

People working with computers or microprocessors often
use hexadecimal as a shorthand way of representing
long binary numbers such as memory addresses. It
is therefore useful to be able to add and subtract
hexadecimal numbers. '

ADDITION

As showri in Figure 1-11a, one way to add two hexadecl-
mal numbers is to.convert each hexadecimal number to
its binary equivalent, add the two binary numbers, and ‘
convert the binary result back to its hex equivalent. For
converting to binary, remember that each hex digit
represents 4 binary digits. 0 N)

A second method, shown in Figure 1-11b, works
directly with the hex numbers. When adding hex digits,
a carry is produced whenever the sum is 16 decimal or
greater. Another way of saying this is that the value of
a carry in hex is 16 decimal. For the least significant
digits in Figure 1-11b, an A in hex is 10 in decimal and
an F is 15 in dectmal. These add to give 25 decimal.
This s greater than 16, so mentally subtract 16 from
the 25 to give a carry and a remainder of 9. The 9 is
written down and the carry is added to the next digit
column. In this column 7 plus 3 plus a carry gives a
decimal 11, or B in hex.

Carry

1
7A 0111 1010 1Y Ay
+3F +0011 1111 + 3 F,
B9 1011 1001 T 25
B 9 B, i

(a) (b}

FIGURE 1-11 Hexadecimal addition.

17, = - 19,
-38, = - 59,
3C,, 60,0

FIGURE 1-12 Hexadecimal subtraction.

You may use whichever method seems easier to you
and gives you consistently right answers. If you are
doing a great deal of hexadecimal arithmetic, you might
‘buy an electronic’calculator specifically designed to do
decimal, binary, and hexadecimal arithmetic.

SUBTRACTION

. Hexadecimal subtraction is similar tp decimal subtrac-
tion except that when a borrow 1s needed, 16 is borrowed

from the next most significant digit. Figure 1-12 shows -

an example of this. It may help you to follow the example
if you do partial conversions to decimal in your head.
For example, 7 plus a borrowed 16 is 23, Suhtracting B
or 11 leaves 12 or C in hexadecimal. Then 3 from the 6
left after a borrow leaves 3, so the result is 3CH.

BCD Addition and Subtraction

In systems where the final result of a calculation is to
be displayed, such as a calculator, it may be easier to
work with numbers in a BCD format. These codes, as
shown in Table 1-1, represent each decimal digit. O
through 9, by its 4-bit binary equivalent.

ADDITION

" BCD can have no digit-word with a value greater than
9. Therefore, a carry must be generated if the result of
a BCD addition is greater than 1001 or 9. Figure 1-13

g : BCD
35 00110101
+23 +0010 0011
58 0101 1000
(a)
) BCD
7 0111
+5 + 0101 \
12 1100 INCORRECT BCD
+ 0110 ADDS6
0001 0010 CORRECT BCD 12
o)
8CD
9 1001
+8 + 1000
17 0001 0001 INCORRECT BCD
0000 0110 ADD6
0001 0111 CORRECTBCD 17

(c)

FIGURE 1-13 BCD addition. (a) No correction needed.
(b) Correction needed because of illegal BCD result. (c)
Correction needed because of carry-out of BCD digit.

10 CHAPTER ONE

17 0001 0111

- 9. 0000 1001
8 0000 1110 ILLEGAL BCD

' -0110 SUBTRACT 6
0000 1000 CORRECT BCD

FIGURE 1-14 BCD subtraction.

shows three examples of BCD addition. The first, in
Figure 1-13a, Is very straightforward because the sum
for each BCD digit is less than 9. The result is the same
as it would be for adding standard binary.

For the second example, in Figure 1-13b, adding BCD
7 to BCD 5 produces 1100. This is a correct binary
result of 12, but it is an illegal BCD code. To convert the
result to BCD format, a correction factor of 6 is added.
The result of adding 6 is 0001 0010, which is the legal

‘BCD code for 12.

Figure 1-13c shows another case where a correction
factor must be added. The initial addition of 9 and 8

“ produces 0001 0001. Even though the lower four digits

are less than 9, this is an incorrect BCD result because
a carry out of bit 3 of the BCD digit-word was produced.
This carry out of bit 3 is often called an auxiliary carry.
Adding the correction factor of 6 gives the correct BCD
result of 0001 0111 or 17.

To summarize, a correction factor of 6 must be added
if the result in the lower 4 bits is greater than 9 or if
the initial addition produces a carry out of bit 3 of any
BCD digit-word. This correction is sometimes called a
dectmal adjust operation.

The reason for the correction factor of 6 is that in
BCD we want a carry into the next digit after 1001 or
9, but in binary a carry out of the lower 4 bits does not
occur until after 1111 or 15. The difference between the
two carry points is 6, so you have to add 6 to produc.:
the desired carry if the re« ult of an addition ‘n any BCN
digit is more than 1001.

SUBTRACTION

Figure 1-14 shows a subtraction, BCD 17 (0001 0111}
minus BCD 9 (0000 1001). The initial result, 0000 1110,
is not a legal BCD number. Whenever this occurs in
BCD subtraction, 6 must be subtracted from the initial
result to produce the correct BCD result. For the example
shown in Figure 1-14, subtracting 6 gives a correct BCD
result of 0000 1000 or 8.

The correction factor of 6 must be subtracted from
any BCD digit-word if that digit-word is greater than
1001, or if a borrow from the next higher digit was
required to do the subtraction.

BASIC DIGITAL DEVICES

Microcomputers such as those we discuss throughout
this book often contain basic logic gates as “glue”
between LSI (large-scale integration) devices. For trou-
bleshooting these systems, it is important to be able to
predict logic levels at any point directly from the sche-
matic rather than having to work your way through a

truth table for each gate. This section should help
refresh your memory of basic logic functions and help
you remember how to quickly analyze logic gate circuits.

Inverting and Noninverting Buffers

Figure 1-15 shows the schematic symbols and truth
tables for simple buffers and logic gates. The first thing
to remember about these symbols is that the shape of
the symbol indicates the logic function performed by
the device. The second thing to remember about these
symbols Is that a bubble or no bubble indicates the
assertion level for an input or output signal. Let's review
how modern logic designers use these symbols.

The first symbol for a buffer in Figure 1-15a has no
bubbles on the input or output. Therefore, the input is
active high and the output is active high. We read this
symbol as follows: If the input A is asserted high, then
the output Y will be asserted high. The rest of the truth
table is covered by the assumption that if the A input is

not asserted high, then the Y output will not be asserted.

high.
The next two symbols for a buffer each contain a
bubble. The bubble on the output of the first of these

X=A Y=A
A—-—D——X A—Do—v A X v
0 0 1
Y=A 110
A—«D—v
(a)
X=A-B X=A+B
A " A B X Y
BZD_x - a:Do_x 0 0 0 1
= o 1 0 1
Y=A-8 Y=A+B 10 0 1
B B

>
]
> o >
I"
|
x
- - O Oo|»
- o = o|®
- - - Oo|Xx
o o0 o =|<

- o - o|lm
o - = o|x
- 0o o =|=x

=
@ P
<
- = o O|»

(d)

FIGURE 1-15 Buffers and logic gates. (a) Buffers. (b
AND-NAND. (c) OR-NOR. (d) Exclusive OR.

-4

indicates that the output is active low. The input has
no bubble, so it is active high. You can read the function
of the device directly from the schematic symbol as
follows. If the A input is asserted high, then the Y output
will be asserted low. This device simply changes the
assertion level of a signal. The output Y will always have
a logic state which is the complement or inverse of that
on the input, so t.hc device is usually referred to as an
tnverter.

1 The second schematic symbol for an inverter in Figure
1-15a has the bubble on the input. We draw the symbol
this way when we want to indicate that we are using
the device to change an asserted-low signal to an assert-
ed-high signal. For example, If we pass the signal cs
through this device, it becomes CS. The symbol tells you
directly that if the input is asserted low, then the output
will be asserted high. Now let’s review how you express
the functions of logic gates using this approach.

Logic Gates

Figure 1-15b shows the symbols and truth tables for
simple logic gates. A symbol with a flat back and a round
front indicates that the device performs the logical AND
function. This means that the output will be asserted if
the A input is asserted and the B input is asserted.
Again, bubbles or no bubbles are used to indicate the
assertion level of each input and output. The first AND
symbol in Figure 1-15b has no bubbles, so the inputs
and the output are active high. The output then will be
asserted high if the A input is asserted high and the B
input is asserted high. The bubble on the output of the
second AND symbol in Figure 1-15b indicates that this
device, commonly called a NAND gate, has an active low
output. If the A input is asserted high and the B input
is asserted high, then the Y output will be asserted low.
Look at the truth table in Figure 1-15b to see if you
agree with this.

Figure 1-15¢ shows the other two possible cases for
the AND symbol. The first of these has bubbles on the
inputs and on the output. If you see this symbol in a
schematic, you should immediately see that the output
will be asserted low if the A input is asserted low and
the B input is asserted low. The second AND symbol in
Figure 1-15¢ has no bubble on the output, so the output
will be asserted high if the A and B inputs are both
asserted low.

A logic symbol with a curved back indicates that the
output of the device will be asserted if the A input is
asserted or the B input of the device iIs asserted. Again,
bubbles or no bubbles are used to indicate the assertion
level for inputs and outputs. Note in Figure 1-15b and
¢ that each of the AND symbol forms has an equivalent
OR symbol form. An AND symbol with active high inputs
and an active high output, for example, represents the
same device (a 74LS08 perhaps) as an OR symbol with
active low inputs and an active low output. Use the truth
table in Figure 1-15b to convince yourself of this. The
bubbled-OR representation tells you that if one input Is
asserted low. the output will be low, regardless of the
state of the other input. As we will show later in this
chapter, this is often a useful way to think of the
operation of an AND gate.

COMPUTER NUMBER SYSTEMS, CODES, AND DIGITAL DEVICES 11

B8 PLA

‘Jv-r’ ‘# FUSIBLE OR

R+

a8 .

D - AB
FUSIBLE AND 67 CJ

F1=AB+AB=A®B

F2=A+8B
F3=AB
Fa=A
(a)
A B PROM
) v’ PROGRAMMABLE OR
M)- |— AB
1) AB
1 AB
AB

HARDWIRED (‘
AND

F1=AB+AB=A®B
F2=AB+AB+AB=A+B

F3=AB

F4=AB+AB=A

()
A B PAL
HARDWIRED
R
.
L) A
o
AB
-
1, A
8
——T—. AB
] AB

PROGRAMMABLE c t?
AND
F1=AB+AB=A®SB
F2=A+8B

F3=AB

F4=A
(c)

FIGURE 1-16 FPLA, PROM, and PAL programmed to
implement some simple logic functions. (a) FPLA. (b)
PROM. (c) PAL.

12 CHAPTER ONE

Figure 1-15d shows the symbol and truth table for an
exclustve OR gate and for an exclustve NOR gate. The
output of an exclusive OR gate will be high if the logic
levels on the two inputs are different. The output of an
exclusive NOR gate will be high if the logic levels on the
two inputs are the same.

You need to be familiar with all these symbols, because
most logic designers will use the symbol that best
describes the function they want a device to perform in
a particular circuit.

Programmable Logic Devices

Instead of using discrete gates, modern microcomputer
systems usually use programmable logic devices such
as PLAs, PROMs, or PALs to implement the “glue” logic
between LSI devices. To refresh your memory, Figure 1-
16 shows the Internal structure of each of these devices.
As you can see, they all consist of a programmable AND-
OR matrix, so they can easily implement any sum-of-
products logic expression. Each AND gate in these
figures has up to four inputs, but to simplify the drawing
only a single input line is shown. Likewise. the OR gates
have several inputs, but are shown with a single input
line to simplify the drawing. These devices are pro-
grammed by blowing out fuses, which are represented
in the figure by Xs. An X in the figure indicates that the
fuse is intact and makes a connection between, for
example, the output of an AND gate and one of the
inputs of an OR gate. A dot at the intersection of two
wires indicates a hard-wired connection implemented
during manufacture.

In a programmable logic array (PLA) or field program-
mable logtc array (FPLA), both the AND matrix and the
OR matrix are programmable by leaving in fuses or
blowing them out. The two programmable matrixes
make FPLAs very flexible, but difficu’t to program.

In a programmable read-only memory or PROM,
the AND matrix is fixed and just the OR matrix is
programmable by leaving in fuses or blowing them out.
PROMSs implement all the possible product terms for the
input variables, so they are useful as code converters.

In a programmable array logic device or PAL, the
connections in the OR matrix are fixed and the AND
matrix connections are programmable. PALs are often
used to implement combinational logic and address
decoders in microcomputer systems.

A computer program is usually used to develop the
fuse map for an FPLA, PROM, or PAL. Once developed,
the fuse-map file is downloaded to a programmer which
blows fuses or stores charges to actually program the
device.

Latches, Flip-Flops, Registers, and Counters

THE D LATCH

A latch is a digital device that stores a 1 or a 0 on Iits
output. Figure 1-17a shows the schematic symbol and
truth table for a D latch. The device functions as follows.
If the enable input CK is low. the logic level present on
the D input will have no effect on the Q and Q outputs.

—{p a}— D CK Q a
-t X 0 Qy Gy
o 1 o0 1
Q 1.1 1 0
(a)
J. S R D CK Q @
T 9 1 t 10
S ———
o a 1 1. 0 t 0 1
—pCK 1 1 x 0 aq Q
ab— 11 X 1 Qy Gy
i 01 X x 1.0
T 10 X X 0 1
0 0 X X 5 &

(b)

FIGURE 1-17 Latches and flip-flops. (a) D latch. (b) D
flip-flop.

This is indicated in the truth table by an X in the D
column. If the enable input is high, a high or a low on
the D input will be passed to the Q output. In other
words, the Q output will follow the D input as long as
the enable input is high. The Q output will contain the
complement of the logic state on Q.. When the enable
input is made low again, the state on Q at that time will
be latched there. Any changes on D will have no effect
on @ until the enable input is made high again. When
the enable input goes low, then, the state present on D
just before the enable goes low will be stored on the Q
output. Keep this operation in mind as you read about
the D flip-flop in the next section.

THE D FLIP-FLOP

Figure 1-17b shows the schematic symbol and the truth
table for a typical D flip-flop. The small triangle next to
the CK input of this device tells you that the Q and Q
outputs are updated when a rising signal edge is applied
to the CK input. The up arrows in the clock column of
the truth table also indicate that a 1 or O on the D input
will be copied to the Q output when the clock input goes
from low to high. In other words, the D [lip-flop takes a
snapshot of whatever state is on the D input when the
clock goes high, and displays the “photo” on the Q
output. If the clock input is low, a change on D will have
no effect on the output. Likewise, if the clock input is
high. a change on D will have no effect on the Q output.
Contrast this operation with that of the D latch to make
sure you understand the difference between the two
devices.

The D flip-flop In Figure 1-17b also has direct set (S)
and reset (R) inputs. A flip-flop is considered set if its Q
output is a 1. It is reset if its Q output is a 0. The
bubbles on the set and reset inputs tell you that these
inputs are active low. The truth table for the D flip-flop
in Figure 1-17b indicates that the set and reset inputs
are asynchronous. This means that if the set input is
asserted low. the output will be set, regardless of the

states on the D and the clock inputs. Likewise, if the
reset input is asserted low, the Q output will be reset,
regardless of the state of the D and clock inputs. The Xs
in the D and CK columns of the truth table remind you
that these inputs are “don't cares” if set or reset is
asserted. The condition indicated by the asterisks (°) is
a nonstable condition; that is, it will not persist when
reset or clear inputs return to their inactive (high) level.

REGISTERS

Flip-flops can be used individually or in groups to store
binary data. A register is a group of D flip-flops connected
in parallel, as shown in Figure 1-18a. A binary word
applied to the data inputs of this register will be trans-
ferred to the Q outputs when the clock input is made
high. The binary word will remain stored on the Q
outputs until a new binary word is applied to the D
inputs and a low-to-high signal is applied to the clock
input. Other circuitry can read the stored binary word
from the Q outputs at any time without changing its
value.

If the Q output of each flip-flop in the register is
connected to the D input of the next as shown in Figure
1-18b, then the register will function as a shift regtster.
A 1 applied to the first D input will be shifted to the first
Q output by a clock pulse. The next clock pulse will
shift this 1 to the output of the second flip-flop. Each
additional clock pulse will shift the 1 to the next flip-
flop in the register. Some shift registers’allow you to
load a binary word into the register and shift the loaded
word left or right when the register is clocked. As we
will show later, the ability to shift binary numbers is
very useful.

COUNTERS

Flip-flops can also be connected to make devices whose
outputs step through a binary or other count sequence

DSQB—J D2 OZr——r D1 0“—I —--DOC!()-—J

bCK b CK bCK b CK
CK>—# ’ :

(a)

SET
.
n o—JpSa oSa o Sa oSop—08TA
—bck Al —peke| —peke] —PCKD
al al af- Q
CLR CLR CLR CLR
CLEAR i j

CLOCK
(o)

FIGURE 1-18 Registers. (a) Simple data storage. (b) Shift
register.

COMPUTER NUMBER SYSTEMS, CODES, AND DICITAL DEVICES 13

Q3 Q2 a1 Qo
0 0 0 ©
9 O 0 A
o o 1 0
=D CLOCK 4 o 1 i
————={ 00 Qo ——e 0O 1 0 o0
—=1 D1 Q1 p——— 0 ¥ 0 13
D2 Q2 o 1 1 [}
e .1 T i
—e{D3 Q3 pt——
1 0 0 @
—{LOAD i 6 6 4
———~|RESET 10 4 0
CARRY }—— L9
1 1 0 0o
1 1 0 1
1 1 1 0
1 1 1 1
(a) (b)

FIGURE 1-19 Four-bit, presettable binary counter. (a)
Schematic symbol. (b) Count sequence.

when they are clocked. Figure 1-19a shows a schematic
symbol and count sequence for a presettable 4-bit binary
counter. The main point we want to review niere is how
a presettable counter functions, so there is no need to
go into the internal circuitry of the device. If the reset
input is asserted, the Q outputs will all be made O's.
After the reset signal is unasserted, each clock pulse will
cause the binary count on the outputs to be incremented
by 1. As shown in Figure 1-19b, the count sequence will
go from 0000 to 1111. If the outputs are at 1111, then
the next clock pulse will cause the outputs to “roll over”
to 0000 and a carry pulse to be sent out the carry output.

This carry pulse can be used as the clock input for
another counter. Counters can be cascaded to produce
as large a count sequence as is needed for a particular
application. The maximum count for a binary counter
is 2¥ — 1, where N is the number of flip-flops.

Now, suppose that we want the counter to start
counting from some number other than 0000. We can
do this by applying the desired number to the four data
inputs and asserting the load input. For example, if we
apply a binary 6, 0110, to the data ({nputs and assert
the load tnput, this value will be transferred to the Q
outputs. After the load signal is unasserted, the next
clock signal will increment the Q outputs to 0111 or 7.

ROMs, RAMs, and Buses

The next topics we need to review are the devices that
store large numbers of binary words and how several of
these devices can be connected on common data lines.

ROMS

The term ROM stands for read-only memory. There are
several types of ROM that can be written to, read, erased,
and written to with new data, but the main feature of
ROMs is that they are nonvolatile. This means that the
information stored in them is not lost when the power
is removed from them.

Figure 1-20a shows the schematic symbol of a com-
mon ROM. As indicated by the eight data outputs, DO
to D7, this ROM stores 8-bit data words. The data
outputs are three-state outputs. This means that each
output can be at a logic low state, a logic high state, or
a high-impedance floating state. In the high-impedance
state an output is essentially disconnected from any-
thing connected to it. If the CE input of the ROM is not
asserted, then all the outputs will be in the high-

ADDRESS DATA A0
INPUTS QUTPUTS
E A0 DO f—
A1l o1 p—
ADDRESS
— A2 02 p—m BUS
A3 03—
— A4 D4 ——
A5 S
D6 Al4
— a6 D6 f—— I 1
A7 o7 b——o A0 Al4 AO A4
e ROM CE CE CE
A9 y —9 CE CE
—A10 D7 D6 DS D4 D3 D2 D1 DO D7 D6 D5 D4 D3 D2 D1 DO
—_— Al =
— A12 ks
— a3 L
— A4 _ DATA
CE BUS
U | 07

(@)

b)

FIGURE 1-20 ROMEs. (a) Schematic symbol. (b) Connection in parallel.

14 CHAPTER ONE

impedance state. Most ROMs also switch to a lower-
power-consumption standby mode if CE is not asserted.
If the CE input is asserted, the dévice will be powered
up. and the output buffers will be enabled. Therefore,
the outputs will be at a normal logic low or logic high
state. If you don’t happen to remember, -you will soon
see why this is important.

You can think of the binary words stored in the ROM
as being in a long. numbered list. The number that
identifies the location of each stored word in the list is
called its address. You can tell the number of binary
words stored in the ROM by the number of address
inputs. The number of words is equal to 2", where N is
the number of address lines. The device in Figure 1-20a
has 15 address lines, AO to A14, so the number of words
is 2! or 32,768. In a data sheet this device would be
referred to hs a 32K X 8 ROM. This means it has 32K
addresses with 8 bits per address.

In order to get a particular word onto the outputs of
the ROM, you have to do two things. You have to apply
the address of that word to the address inputs, AO to
Al4, and you have to assert the CE input to power up
the device and to enable the three-state outputs.

Now. let's see why we want three-state outputs on this
ROM. Suppose that we want to store more than 32K
data words. We can do this by connecting two or more
ROMs in parallel, as shown in Figure 1-20b. The address
lines connect to each device in parallel, so we can address
one of the 32,768 words in each. A set of parallel lines
used to send addresses or data to several devices in this
way is called a bus. The data outputs of the ROMs are
likewise connected in parallel so that any one of the
ROMs can output data on the common data bus. If
these ROMs had standard two-state outputs, a serious
problem would occur when both ROMs tried to output
data words on the bus. The resulting argument between
data outputs would probably destroy some of the outputs
and give meaningless information on the databus. Since
the ROMs have three-state outputs, however, we can
use external circultry to make sure that only one ROM
at a time has its outputs enabled. The very important
principle here is that whenever several outputs are
connected on a bus, the outputs should all be three-
state. and only one set of outputs should be enabled at
a time.

At the beginning of this section we mentioned that
some ROMs can be erased and rewritten or repro-
grammed with new data. Here's a summary of the
different types of ROMs.

Mask-programmed ROM—Programmed during manufac-
ture; cannot be altered.

PROM—User programs by blowing fuses: cannot be
altered except to blow additional fuses.

EPROM—Electrically programmable by user; erased by
shining ultraviolet light on quartz window in package.

EEPROM—Electrically programmable by user: erased
with electrical signals, so it can be reprogrammed in
circuit.

Flash EPROM—Electrically programmable by user: erased
electrically. so it can be reprogrammed in circult.

STATIC AND DYNAMIC RAMS

The name RAM stands for random-access memory, but
since ROMs are also random access, the name probably
should be read-write memory. RAMs are also used to
store binary words. A static RAM is essentially a matrix
of flip-flops. Therefore, we can write a new data word in
a RAM location at any time by applying the word to the
flip-flop data inputs and clocking the flip-flops. The
stored data word will remain on the flip-flop outputs as
long as the power is left on. This type of memory is
volatile because data is lost when the power Is turned
off.

Figure 1-21 shows the schematic symbol for a common
RAM. This RAM has 12 address lines. AO to All, so it
stores 2!? (4096) binary wards. The eight data lines tell
you that the RAM stores 8-bit words. When we are
reading a word from the RAM. these lines function as
outputs. When we are writing a word to the RAM, these
lines function as inputs. The chip enable input, CE, is
used to enable the device for a read or for a write. The
R/W tnput will be asserted high if we want to read from
the RAM or asserte” low If we want to write a word to
the RAM. Here's how all these lines work for reading
from and writing to the device.

To write to the RAM, we apply the desired address to
the address inputs, assert the CE input low to turn on
the device, and assert the R/W input low to tell the RAM
we want to write to it. We then apply the data word we
want to store to the data lines of the RAM for a specified
time. To read a word from the RAM, we address the
desired word. assert CE low to turn on the device, and
assert R'W high to tell the RAM we want to read from it.
For a read operation the output buffers on the data lines
will be enabled and the addressed data word will be
present on the outputs.

The static RAMs we have just reviewed store binary
words in a matrix of flip-flops. In dynamic RAMs
(DRAMs). binary 1's and O's are stored as an electric
charge or no charge on a tiny capacitor. Since these tiny
capacitors take up less space on a chip than a flip-flop

AQ 00 p—
— a1 01—
—q a2 D2p—
—y A3 D3 pb— DATA
— laa 04— OUTPUTS
ADDRESS —|A% 05—
INPUTS ——] A6 D6 —
—d AT 07—
—aq A8
——{A9
—JA10
—4an
R/W CE
READ/WRITE ——T I
CHIP ENABLE
FIGURE 1-21 RAM schematic symbol.

COMPUTER NUMBER SYSTEMS, CODES, AND DIGITAL DEVICES 15

would, a dynamic RAM chip can' store many more bits
than the same size static RAM chip. The disadvantage
of dynamic RAMs is that the charge leaks off the tiny
capacitors. The logic state stored in each capacitor must
be refreshed every 2 milliseconds (mns) or so. A device
called a dynamic RAM refresh controller can be used to
refresh a large number of dynamic RAMs in a system.
Some newer dynamic RAM devices contain built-in
refresh circuitry, so they appear static to external cir-
cultry.

Arithmetic Logic Units

An arithmetic logic unit, or ALU, is a device that can
AND, OR, add, subtract, and perform a variety of other
operations on binary words. Figure 1-22a shows a block
diagram for the 74LS181, which is a 4-bit ALU. This
device can perform any one of 16 logic functions or any
one of 16 arithmetic functions on two 4-bit binary
words. The function performed on the two words is
determined by the logic level applied to the mode input
M and by the 4-bit binary code applied to the select
inputs SO to S3.

Figure 1-22b shows the truth table for the 74LS181.
In this truth table, A represents the 4-bit binary word
applied to the AO to A3 inputs, and B represents the 4-
bit binary word applied to the BO to B3 inputs. F
represents the 4-bit binary word that will be produced
on the FO to F3 outputs. If the mode input M is high,

the device will perform one of 16 logic functions on the
two words applied to the A and B inputs. For example,
if M is high and we make S3 high, S2 low, S1 high, and
SO high, the 4-bit word on the A inputs will be ANDed
with the 4-bit word on the B Inputs. The result of this
ANDIng will appear on the F outputs. Each bit of the A
word is ANDed with the corresponding bit of the B word
to produce the result on F. Figure 1-22¢ shows an
example of ANDing two words with this device. As you
can see in this example, an output bit is high only if the
corresponding bit is high in both the A word and the B
word.

For another example of the operation of the 74LS181,
suppose that the M input Is high. S3 is high, S2 is high,
S1 is high, and SO is low. According to the truth table,
the device will now OR each bit in the A word with the
corresponding bit in the B word and give the result on
the corresponding F output. Figure 1-22¢ shows the
result that will be produced by ORIng two 4-bit words.
Figure 1-22c also shows for your reference the result
that would be produced by exclusive ORIng these two 4-
bit words together.

If the M input of the 74LS181 is low, then the device
will perform one of 16 arithmetic functions on the A and
B words. Again, the result of the operation will be put
on the F outputs. Several 74LS181s can be cascaded to
operate on words longer than 4 bits. The ripple-carry
input, Cy, allows a carry from an operation on previous
words to be included in the current operation. If the Cy

{c}

74L5181 ACTIVE-HIGH DATA
A0 SELECTION
M=H M= L; ARITHMETIC OPERATIONS
—Al LOGIC = =
A2 S3 S2 S1 S0 FUNCTIONS Cy = H (NO CARRY) Cy = L (WITH CARRY)
—iA3 FO p—— L & e L F=A F=A F=APLUS1
eib—— |t L L F=A+B F=A+B F={A+B)PLUS
L L H L F=AB F=A+B F=(A+B)PLUS 1
B0 & L L H H F=0 F = MINUS 1 (2's COMPL) F=0
B1 F¥—— 0. @ i F=AB F=APLUS AB F=APLUSABPLUS1
B2 P L H L H F=B F = (A +B)PLUS AB F=(4+8)PLUS ABPLUS 1
— g3 Cisaf—— L H H L F=A@B F = A MINUS 8 MINUS 1 F = AMINUS B
g, A=B L H H H F=AB F = ABMINUS 1 F=AB
H L L L F=A+8 F=APLUSAB F=APLUS ABPLUS 1
B H L L H F=A®8 F=APLUSB F=APLUSBPLUS1
S3 S2 S1 SO H L H L F=8 F=(A+B)PLUS AB F = (A +B)PLUS AB PLUS 1
H L H H F=AB F = ABMINUS 1 F=AB
[H H L L F=1 F=APLUSA* F=APLUSAPLUS 1
H H L H F=A+B F=(A+B)PLUSA F=(A+B)PLUS APLUS 1
H H H L F=A+B F=(A+B)PLUSA F=(A+B)PLUS APLUS1
H H H H F=A F = AMINUS 1 F=A
fal “EACH BIT IS SHIFTED TO THE NEXT MORE SIGNIFICANT BIT POSITION
(b)
A= A3 A2 Al AD A=1010 A=1010 A=101 0
8= 83 B2 B! BO B=0110 B=01140 8=0110
F=F3 F2. F1 FO F=A+B =1110 F=A-B=0010 F=A®B=1100

FIGURE 1-22 Arithmetic logic unit (ALU). (a) Schematic symbol. (b) Truth

table. (c) Sample AND, OR, and XOR operations.

16 CHAPTER ONE

input is asserted low, then a carry will be added to the
results of the operation on A and B. For example, if the
M input is low, S3 is high, S2 is low, S1 is low, SO is
high, and Cy is low, the F outputs will have the sum of
A plus B plus a carry.

The real importance of an ALU such as the 74LS181
is that it can be programmed with a binary instruction
applied to its mode and select inputs to perform many
different functions on two binary words applied to its
data inputs. In other words, instead of having to build
a different circuit to perform each of these functions,
we have one programmable device. We can perform any
of the operations that we want in a computer with a
sequence of simple operations such as those of the
74LS181. Therefore, an ALU is a very important part
of the microprocessors and microcomputers that we
discuss in the ner* chapter.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms or concepts in
this list, use the index to find them in the chapter.

Binary, bit, nibble, byte, word, doubleword
LSB, MSB, LSD. MSD
Hexadecimal, standard BCD. Gray code

7-segment display code

Alphanumeric codes: ASCII, EBCDIC

Parity bit, odd parity. even parity

Converting between binary, decimal, hexadecimal, BCD
Arithmetic with binary, hexadecimal, BCD

BCD decimal adjust operation

Signed numbers, sign bit

2's complement sign-and-magnitude form

Signal assertion level

Inverting and noninverting buffers

Symbols and truth tables for AND, NAND, OR, NOR,
XOR logic gates

FPLA, PROM, PAL
D latch, D flip-flop
Register, shift register, binary counter

ROM: address lines, data lines, bus lines, three-state
outputs and enable input

PROM, EPROM, EEPROM, flash EPROM
RAM: static, dynamic
ALU

REVIEW QUESTIONS AND PROBLEMS

1. Write the decimal equivalent for each integral power
of 2 from 2° to 2%°,

2. Convert the following decimal numbers to binary:
a. 22
b. 76
c. 500

3. Convert the following binary numbers to decimal:
a. 1011
b. 11010001
c. 1110111001011001

4. Convert to hexadecimal:
a. 53 decimal
b. 756 decimal
c. 01101100010 binary
d. 11000010111 binary

5. Convert to decimal:
a. D3H
b. 3FEH
c. 44H

6. Convert the following decimal numbers to BCD:
a. 86
b. 62
¢ 33

7. The L key is depressed on an ASCIl-encoded key-
board. What pattern of 1's and 0's would you expect

to find on the seven parallel data lines coming
from the keyboard? What pattern would a carriage
return, CR, give?

8. Define parity and describe how it is used to detect
an error in transmitted data.

9. Show addition of:
a. 10011, and 1011, in binary
b. 37, and 25,, in BCD
c. 4AH and 77H

10. Express the following deciinal numbers in 8-bit
sign-and-magnitude form:

a. +26
b. -7

c. —26
d =125

11. Show the subtraction, in binary, of the following
decimal numbers using both the pencil method
and the 2's-complement addition method:

a 7 -4
b. 37 - 26
c. 125 - 93

12. Show the multiplication of 1001 and 011 by the
pencil method. Do the same for 11010 and 101.

13. Show the division of 1100100 by 1010 using the
pencil method.

CGMPUTER NUMBER SYSTEMS, CODES, AND DIGITAL DEVICES 17

14.

15.

16.

17.

18

Perform the indicated operations on the following
numbers:
a. 3AH + 94H .
b. 17AH - 4CH
c. 0101 1001 BCD
+ 0100 0010 BCD

d. 0111 1001 BCD
+ 0100 1001 BCD

e. 0101 1001 BCD
— 00100110 BCD

J 01100111 BCD
- 0011 1001 BCD

For the circuit in Figure 1-23:

a. Is the Y output active high or active low?

b. Is the C signal active high or active low?

c. What input conditions on A, B, and C will cause
the Y output to be asserted?

Describe how a D latch responds to a positive pulse
on its CK input and how a D flip-flop responds to
a positive pulse on its CK input. -

The National Semiconductor INS8298 is a 65,536-
bit ROM organized as 8192 words or bytes of 8 bits.
How many address lines are required to address
one of the 8192 bytes?

Why do most ROMs and RAMs have three-state
outputs?

CHAPTER ONE

A

FIGURE 1-23 Circuit for problem 15.

19.

Using Figure 1 22b, show the programming of the
select and mode inputs the 74181 requires to
perform the following arithmetic functtons:

a. A+ B

b. A-B~-1

c. AB+ A

Show the output word produced when the following
binary words are ANDed with each other and when
they are ORed with each other:

1010 and 0111

1011 and 1100

11010111 and 111000

ANDing an 8-bit binary number with 1111
0000 is sometimes referred to as “masking” the
lower 4 bits. Why?

RO TR

Computers, Microcomputers, and
Microprocessors—An Introduction

We live in a computer-oriented society. and we are
constantly bombarded with a multitude of terms relating
to computers. Before getting started with the main flow
of the book. we will try to clarify some of these terms
and to give an overview of computers and computer
systems.

OBJECTIVES

At the conclusion of this chapter, you should be able to:

1. Define the terms microcomputer, microproces-
sor, hardware, software, firmware, timesharing.
multitasking. distributed processing. and multi-
processing.

2. Describe how a microcomputer fetches and executes
an instruction.

3. List the registers and other parts in the 8086/8088
execution unit and bus interface unit.

4. Describe the function of the 8086/8088 queue.

5. Demonstrate how the 8086/8088 calculates memory
addresses.

TYPES OF COMPUTERS
Mainframes

Computers come in a wide variety of sizes and capabili-
ties. The largest and most powerful are often called
mainframes. Mainframe computers may fill an entire
room. They are designed to work at very high speeds
with large data words. typically 64 bits or greater. and
they have massive amounts of memory. Computers of
this type are used for military defense control. for
business data processing (in an insurance company, for
example), and for creating computer graphics displays
for science fiction movies. Examples of this type of
computer are the IBM 4381, the Honeywell DPS8, and
the Cray Y-MP/832. The fastest and most powerful
mainframes are called supercomputers. Figure 2-la.
p- 20, shows a photograph of a Cray Y-MP/832 supercom-

-5

r

puter, which contains eight central processors and 32
million 64-bit words of memory.

Minicomputers

Scaled-down versions of mainframe computers are often
called minicomputers. The main unit of a minicomputer
usually fits in a single rack or box. A minicomputer runs
more slowly, works directly with smaller data words
(often 32-bit words), and does not have as much memory
as a mainframe. Computers of this type are used for
business data processing, industrial control (for an oil
refinery. for example). and scientific research. Examples
of this type of computer are the Digital Equipment
Corporation VAX 6360 and the Data General MV/8000II.
Figure 2-1b shows a photograph of a Digital Equipment
Corporation’s VAX 6360 minicomputer.

Microcomputers

As the name implies, microcomputers are small com-
puters. They range from small controllers that work
directly with 4-bit words and can address a few thousand
bytes of memory to larger units that work directly with
32-bit words and can address billions of bytes of memory.
Some of the more powerful microcomputers have all or
most of the features of earlier minicomputers. Therefore,
it has become very hard to draw a sharp line between
these two types. One distinguishing feature of a micro-
computer Is that the CPU is usually a single integrated
circuit called a microprocessor. Older books often used
the terms microprocessor and microcomputer Inter-
changeably. but actually «he microprocessor is the CPU
to which you add &M, RAM, and ports to make a
microcomputer. - later section in this chapter discusses
the evolution o1 different types of microprocessors. Mi-
crocomputers are used in everything from smart sewing
machines to commputer-aided design systems. Examples
of microccmputers are the Intel 8051 single-chip control-
ler: the SDK-86. a single-board computer design kit: the
IBM Personal Computer (PC): and the Apple Macintosh
computer. The Intel 8051 microcontroller is contained
in a single 40-pin chip. Figure 2-2a. p. 21. shows the
SDK-86 board. and Figure 2-2b shows the Compaq 386/
25 system.

19

(a)

(b)

FIGURE 2-1 (a) Photograph of Cray Y-MP/832 computer.
(Courtesy Cray Research, Inc., and photographer, Paul
Shambroom.) (b) Photograph of VAX 6360
minicomputer. (Courtesy Digital Equipment Corp.)

HOW COMPUTERS AND
MICROCOMPUTERS ARE
USED—AN EXAMPLE

The following sections are intended to give you an
overview of how computers are interfaced with users
to do useful work. These sections should help you
understand many of the features designed into current
microprocessors and where this book is heading.

20 CHAPTER TWO

Computerizing an Electronics Factory—Problem

Now, suppose that we want to "computerize” an electron-
lcs company. By this we mean that we want to make
computer use available to as many people in the company
as possible as cheaply as possible. We want the engineers
to have access to a computer which can help them design
circuits. People in the drafting department should have
access to a comnputer which can be used for computer-
aided drafting. The accounting department should have
access toa computer for doing all the financial bookkeep-
ing. The warehouse should have access to a computer
to help with inventory control. The manufacturing de-
partment should have access to a computer for control-
ling machines and testing finished products. The presi-
dent. vice presidents, and supervisors should have
access o a computer to help them with long-range
planning. Secretaries should have access to a computer
for word processing. Salespeople should have access to
a computer to help them keep track of current pricing,
product availability, and commissions. There are several
ways to provide all the needed computer power. One
solution is to simply give everyone an individual personal
computer. The problem with this approach is that it
makes it difficult for different people to access commonly
needed data. In the next sections we show you two ways
to provide computer power and common data to many
users.

TIMESHARING AND MULTITASKING SYSTEMS

One common method of providing computer access is a
timesharing system such as shown in Figure 2-3, p. 22.
Several video terminals are connected to the computer
through direct wires or through telephone lines. The
terminal can be on the user's desk or even in the user's
home. The rate at which a user usually enters data is
very slow compared with the rate at which a computer
can process the data. Therefore, the computer can serve
many users by dividing its time among them in small
increments. In other words, the computer works on user
I's program for perhaps 20 milliseconds (ms), then
works on user 2's program for 20 ms. then works on
user 3's program for 20 ms, and so on, until all the users
have had a turn. In a few milliseconds the computer will
get back to user 1 again and repeat the cycle. To each
user it will appear as if he or she has exclusive use of
the computer because the computer processes data as
fast as the user enters it. A timesharing system such as
this allows several users to interact with the computer
at the same time. Each user can get information from
or store information in the large memory attached to
the computer. Each user can have an inexpensive printer
attached to the terminal or can direct program or data
output to a high-speed printer attached directly to the
computer.

An airline ticket reservation computer might use a
timesharing system such as this to allow users from all
over the country to access flight information and make
reservations. A time-multiplexed or time-sliced system
such as this can also allow a computer to control many
machines or processes in a factory. A computer is much
faster than the machines or processes. Therefore, it can

ACDRESS
DECUDERS

ROMs

PARALLEL
PORTS

(a)

FIGURE 2-2

(a) Photograph of Intel SDK-86 board. (Intel
Corp.) (b) Photograph of Compaq 386725, (Compaq
Corp.)

check and adjust many pressures. temperatures. motor
speeds. ete., before it needs to get back and recheck
the first one. A system such as this is often called a
multitasking system because it appears to be doing
many tasks at the same time.

COMPUTERS., MICROCOMPUTERS

KEYBOARD
DISPLAY
CONTROLLER

Now let's take another look at our problem of computer-
izing the electronics company. We could put a powerful
computer in some central location and run wires from
it to video display terminals on users’ desks. Each user
could then run the program needed to do a particular
task. The accountant could run a ledger program, the
sccretary could run a word processing program, etc.
Each user could access the computer’s large data mem-
ory. Incidentally, a large collection of data stored in a
computer's memory is often referred to as a data base.
For a small company a system such as this might be
adequate. However, there are at least two potential
problems.

The first potential problem is, “What happens if the
computer is not working?" The answer to this question
is that everything grinds to a halt. In a situation where
people have become dependent on the computer, not
much gets done until the computer is up and running
again. The old saying about putting all your eggs in one
basket comes to mind here.

The second potential problem of the simple timeshar-
ing system is saturation. As the number of users in-
creases, the time it takes the computer to do each user’s
task increases also. Eventually the computer’s response
time to each user becomes unreasonably long. People
get very upset about the time they have to wait.

DISTRIBUTED PROCESSING OR
MULTIPROCESSING

A partial solution for the two potential problems of

a simple timesharing system is to use a distributed

_AN INTRODUCTION 21

AND MICROPROCESSORS

MASS COMPUTER
DATA (MAINFRAME L
STORAGE OR MINI)

DIRECT

HIGH-SPEED
PRINTER

WIRE OR TELEPHONE LINE CONNECTION

PRINTER VIDEO

VIDEO
TERMINAL

TERMINAL

VIDEO
TERMINAL

LOW-COST
PRINTER

VIDEO
TERMINAL

FIGURE 2-3 Block diagram of a computer timesharing system.

processing system. Figure 2-4 shows a block diagram
for such a systemn. The system has a powerful central
computer with a large memory and a high-speed printer,
as does the simple timesharing system described previ-
ously. However, in this system each user has a microcom-
puter instead of simply a video dispiay terminal. In other
words, each user station is an independently functioning
microcomputer with a CPU, ROM, RAM, and probably
magnetic or optical disk memory. This means that a
person can do many tasks locally on the microcomputer

without having to use the large computer at all. Since
the microcomputers are connected to the large computer
through a network., however. a user can access the
computing power, memory, or other resources of the
large computer when needed.

Distributing the processing to multiple computers or
processors In a system has several advantages. First, if
the large computer goes down, the local microcomputers
can continue working until they need to access the large
computer for something. Second. the burden on the

MASS DATA MAINFRAME HIGH-SPEED
STORAGE COMPUTER PRINTER
CONNECTION TO
PHONE LINE
MICROCOMPUTER : MICROCOMPUTER
MINICOMPUTER LOCAL
AREA
NETWORK

FLOPPY DISK
HARD DRIVE
DISK DRIVE

MICROCOMPUTER

VIDEO TERMINAL VIDEO TERMINAL VIDEO TERMINAL

FIGURE 24 Block diagram of a distributed processing computer system.

22 CHAPTER TWO

large computer is reduced greatly, ‘because much of the
computing is done by the local microcomputers. Finally.
the distributed processing approach allows the system
designer to use a local microcomputer that is best suited
to the task it has to do.

COMPUTERIZED ELECTRONICS
COMPANY OVERVIEW

Distributed processing seems to be the best way to go
about computerizing our electronics factory. Engineers
can have personal computers or engineering work-
stations on their desks. With these they can use available
programs to design and test circuits. They can access
the large computer if they need data from its memory.
Through the telephone lines, the engineer with a per-
sonal computer can access data in the memory of other
computers all over the world. The drafting people can
have personal computers for simple work, or large
computer-aided design systems for more complex work.
Completed work can be stored in the memory of the
large computer. The production department can have
networked computers to keep track of product flow
and to control the machines which actually mount
components on circuit boards, etc. The accounting
department can use personal computers with spread-
sheet programs to work with financial data kept in
the memory of the large computer. The warchouse
supervisor can likewise use a personal computer with
an inventory program to keep personal records and
those in the large computer's memory updated. Corpo-
rate officers can have personal computers tied into the
network. They then can interact with any of the other
systems on the network. Salespeople can have portable
personal computers that they can carry with them in
the field. They can communicate with the main computer
over the telephone lines using a modem. Secretaries
doing word processing can use individual word pro-
cessing units or personal computers. Users can also
send messages to one another over the network. The
specifics of a computer system such as this will obviously
depend on the needs of the tndividual company for
which the system is designed.

SUMMARY AND DIRECTION FROM HERE

The main concepts that you should take with you
from this section are timesharing or multitasking and
distributed processing or multiprocessing. As you work
your way through the rest of this book. keep an overview

of the computerized electronics company in the back of
your mind. The goal of this book is to teach you how
the microcomputers and other parts of a system such
as this work. how the parts are connected together, and
how the system is programmed at different levels.

OVERVIEW OF MICROCOMPUTER
STRUCTURE AND OPERATION

Figure 2-5 shows a block diagram for a simple microcom-
puter. The major parts are the central processing unit
or CPU, memory, and the input and output circuitry or
JO. Connecting these parts are three sets of parallel
lines called buses. The three buses are the address bus,
the data bus, and the control bus. Let's take a brief look
at each of these parts.

Memory

The memory section usually consists of a mixture of
RAM and ROM. It may also have magnetic floppy disks,
magnetic hard disks, or optical disks. Memecry has two
purposes. The first purpose Is to store the binary codes
for the sequences of instructions you want the computer
to carry out. When you write a computer program, what
you are really doing s writing a sequential list of
instructions for the computer. The second purpose of
the memory is to store the binary-coded data with which
the computer is going to be working. This data might
be the inventory records of a supermarket, for example.

Input/Output

The input/output or VO section allows the computer to
take In data from the outside world or send data to the
outside world. Peripherals s'ch as keyboards, video
display terminals, printers. and modems are connected
to the /O section. These allow the user and the computer
to communicate with each other. The actual physical
devices used to interface the computer buses to external
systems are often called ports. Ports In a computer
function just as shipping ports do-for a country. An
input port allows data from a keyboard, an A/D converter,
or some other source to be read into the computer under
control of the CPU. An output port is used to send data
from the computer to some peripheral, such as a video
display terminal, a printer, or a D/A converter. Physically,

DATA BUS
INPUT
DEVICE conTROL [CENTRAL | CONTROL
10 BUS PROCESSING BUS MEMORY:
PORTS UNIT (RAM AND
OUTPUT icrt) Row
DEVICE

FIGURE 2-5 Block diagram of a simple microcomputer.

ADDRESS BUS

, COMPUTERS, MICROCOMPUTERS, AND MICROPROCESSORS—AN INTRODUCTION 23

the simplest type of input or output port is just a set of
parallel D flip-flops. If they are being used as an input
port, the D inputs are connected to the external device,
and the Q outputs are connected to the data bus which
runs to the CPU. Data will then be transferred through
the latches when they are enabled by a control signal
from the CPU. In a system where they are being used as
an output port, the D inputs of the latches are connected
to the data bus, and the Q outputs are connected to
some external device. Data sent out on the data bus by
the CPU will be transferred to the external device when
the latches are enabled by a control signal from the CPU.

Central Processing Unit

The central processing unit or CPU controls the opera-
tion of the computer. In a microcomputer the CPU is a
microprocessor, as we discussed in an earlier section of
the chapter. The CPU fetches binary-coded instructions
from memory, decodes the instructions into a series of
simple actions, and carries out these actions in a
sequehce of steps.

The CPU also contains an address counter or {nstruc-
tion potnter register, which holds the address of the
next Instruction or data item to be fetched from memory;
general-purpose registers, which are used for temporary
storage of binary data; and circuitry, which generates
the control bus signals.

Address Bus

The address bus consists of. 16, 20, 24, or 32 parallel
signal lines. On these lines the CPU sends out the
address of the memory location that is to be written to
or read from. The number of memory locations that the
CPU can address is determined by the number of address
lines. If the CPU has N address lines, then it can directly
address 2N memory locations. For example, a CPU with
16 address lines can address 2'® or 65,536 memory
locations, a CPU with 20 address lines can address 22°
or 1,048,576 locations, and a CPU with 24 address lines
can address 2* or 16,777,216 locations. When the CPU
reads data from or writes data to a port, it sends the
port address out on the address bus.

Data Bus

The data bus consists of 8, 16, or 32 parallel signal
lines. As Indicated by the double-ended arrows on the
data bus line in Figure 2-5, the data bus lines are
btdirectional. This means. that the CPU can read data
in from memory or from a port on these lines, or it can
send data out to memory or to a port on these lines. Many
devices in a system will have their outputs connected to
the data bus. but only one device at a time will have its
outputs enabled. Any device connected on the data bus
must have three-state outputs so that its outputs can
be disabled when it is not being used to put data on the
bus. - '

24 CHAPTER TWO

Control Bus

The control bus consists of 4 to 10 parallel signal lines.
The CPU sends out signals on the control bus to enable
the outputs of addressed memory devices or port devices.
Typical control bus signals are Memony Read, Memory
Write. I/O Read. and I/O Write. To read a byte of data
from a memory location, for example, the CPU sends out
the memory address of the desired byte on the address
bus and then sends out a Memory Read signal on
the control bus. The Memory Read signal enables the
addressed memory device to output a data word onto
the data bus. The data word from memory travels along
the data bus to the CPU.

Hardware, Software, and Firmware

When working around computers, you hear the terms
hardware, software, and firmware almost constantly.
Hardware is the name given to the physical devices
and circuitry of the computer. Software refers to the
programs written for the computer. Firmware is the
term given to programs stored in ROMs or in other
devices which permanently keep their stored infor-
mation.

Summary of Important Points So Far

® A computer or microcomputer consists of memory,
a CPU, and some input/output circuitry.

® These three parts are connected by the address bus,
the data bus, and the control bus.

® The sequence of instructions or program for a com-
puter s stored as binary numbers in successive
memory locations.

® The CPU fetches an instruction from memory. de-
codes the instruction to determine what actions
must be done for the instruction, and carries out
these actions.

EXECUTION OF A
THREE-INSTRUCTION PROGRAM

To give you a better idea of how the parts of a microcom-
puter function together, we will now describe the actions
a simple microcomputer might go through to carry out
(execute) a simple program. The three instructions of
the program are

1. Input a value from a keyboard connected to the port
at address O5H.
2. Add 7 to the value read in.

3. Output the result to a display connected to the port
at address 02H.

Figure 2-6 shows in dlagram form and sequential list
form the actions that the computer will perform to
execute these three instructions.

MEMORY

BAS5A4A3A2A1A

tT1td
1B 28 38 48 5868
L1111

1C 2C 3C4C5C6C

CPU

ADDRESS BUS

CONTROL BUS

CONTROL BUS

DATA BUS

I

|
26 6F

1/0

/

[PORT DS—I

PROGRAM

B
2.
3.

INPUT A VALUE FROM PORT 05.
ADD 7 TO THIS VALUE.
OUTPUT THE RESULT TO PORT 02.

SEQUENCE

1A
18
1c
2A
28
2C
20
2E
2F
3A
38
3C
4A
48
4ac
5A
5B
5C
6A
68
6C

CPU SENDS OUT ADDRESS OF FIRST INSTRUCTION TO MEMORY,

CPU SENDS OUT MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY.
INSTRUCTION BYTE SENT FROM MEMORY TO CPU ON DATA BUS.
ADDRESS NEXT MEMORY LOCATION TO GET REST OF INSTRUCTION.
SEND MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY,

PORT ADDRESS BYTE SENT FROM MEMORY TO CPU ON DATA BUS.

CPU SENDS OUT PORT ADDRESS ON ADDRESS BUS.

CPU SENDS OUT INPUT READ CONTROL SIGNAL TO ENABLE PORT.
DATA FROM PORT SENT TO CPU ON DATA BUS.

CPU SENDS ADDRESS OF NEXT INSTRUCTION TO MEMORY,

CPU SENDS MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY.
INSTRUCTION BYTE FROM MEMORY SENT TO CPU ON DATA BUS.

CPU SENDS NEXT ADDRESS TO MEMORY TO GET REST OF INSTRUCTION.
CPU SENDS MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY.
NUMBER O07H SENT FROM MEMORY TO CPU ON DATA BUS,

CPU SENDS ADDRESS OF NEXT INSTRUCTION TO MEMORY.,

CPU SENDS MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY.
INSTRUCTION BYTE FROM MEMORY SENT TO CPU ON DATA BUS.

CPU SENDS OUT NEXT ADDRESS TO GET REST OF INSTRUCTION.

CPU SENDS OUT MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY.
PORT ADDRESS BYTE SENT FROM MEMORY TO CPU ON DATA BUS.

| 6D
6E

6F

5
nuon el

KEYBOARD DISPLAY

{
1
o]i]2]3
6

MEMORY
ADDRESS

CONTENTS
(BINARY)

00100H
00101H
00102H
00103H
00104H
00105H

11100100
00000101
00000100
00000111
11100110
00000010

FIGURE 2-6 (a) Execution of a three-step computer program.
addresses and memory contents for a three-step program.

For this example, assume that the CPU fetches instruc-
tions and data from memory 1 byte at a time, as is done
in the original IBM PC and its clones. Also assume that
the binary codes for the instructions are In sequential
memory locations starting at address 00100H. Figure
2-6b shows the actual binary codes that would be
required in successive memory locations to execute this
program on an IBM PC-type microcomputer.

The CPU needs an instruction before it can do any-
thing. so its first action is to fetch an instruction byte
from memory. To do this, the CPU sends out the address
of the first instruction byte, in this case 00100H, to
memory on the address bus. This action is represented
by line 1A in Figure 2-6a. The CPU then sends out a
Memory Read signal on the control bus (line 1B in the
figure). The Memory Read signal enables the memory to
output the addressed byte on the data bus. This action
is represented by line 1C in the figure. The CPU reads
in this first instruction byte (E4H) from the data bus
and decodes it. By decode we mean that the CPU
determines from the binary code read in what actions
it s supposed to take. If the CPU is a microprocessor,
it selects the sequence of microinstructions needed to

COMPUTERS, MICROCOMPUTERS, AND MICROPROCESSORS-—AN INTRODUCTION

CPU SENDS OUT PORT ADDRESS ON ADDRESS BUS.
CPU SENDS OUT DATA TO PORT ON DATA BUS.
CPU SENDS OUT OUTPUT WRITE SIGNAL TO ENABLE PORT.

(a)

CONTENTS OPERATION
(HEX)

E4
05
04
07
E6
02

(b)

INPUT FROM
PORT 05H
ADD

07H
QUTPUT TO
PORT 02

(b) Memory

carry out the instiuction read from memory. For the
example instruction here, the CPU determines that the
code read in represents an Input instruction. From
decoding this instruction byte, the CPU also determines
that it needs more information before it can carry out
the instruction. The additional information the CPU
needs is the address of the port that the data is to be
input from. This port address part of the instruction is
stored in the next memory location after the code for
the Input instruction.

To fetch this second byte of the instruction. the CPU
sends out the next sequential address (00101H) to
memory, as shown by line 2A in the figure. To enable
the addressed memory device, the CPU also sends out
another Memory Read signal on the control bus (line
2B). The memory then outputs the addressed byte on
the data bus (line 2C). When the CPU has read tn this
second byte, 05H in this case. it has all the information
it needs to execute the instruction.

To execute the Input instruction, the CPU sends out
the port address (05H) on the address bus (line 2D) and
sends out an VO Read signal on the control bus (line
2E). The O Read signal enables the addressed port

25

device to put a byte of data on the data bus (line 2F).
The CPU reads in the byte of data and stores it in
an internal register. This completes the fetching and
execution of the first instruction.

Having completed the first instruction. the CPU must
now fetch its next instruction from memory. To do this,
it sends out the next sequential address (00102H) on
the address bus (line 3A) and sends out a Memory Read
signal on the control bus (line 3B). The Memory Read
signal enables the memory device to put the addressed
byte (04H) on the data bus (line 3C). The CPU reads in
this instruction byte from the data bus and decodes it.
From this instruction byte the CPU determines that it
is supposed to add some number to the number stored
in the internal register. The CPU also determines from
decoding this instruction byte that it must go to memory
again to get the next byte of the Instruction. which
contains the number that it is supposed to add. To get
the required byte, the CPU will send out the next
sequential address (00103H) on the address bus (line
4A) and another Memory Read signal on the control bus
(line 4B)."The memory will then output the contents of
the addressed byte (the number 07H) on the data bus
(line 4C). When the CPU receives this number, it will
add it to the contents of the internal register. The result
of the addition will be left in the internal register. This
compietes the fetching and executing of the second
instruction.

The CPU must now fetch the third instruction. To do
this, it sends out the next sequential address (00104H)
on the address bus (line 5A) and sends out a Memory
Read signal on the control bus (line 5B). The memory
then outputs the addressed byte (E6H) on the data bus
(line 5C). From decoding this byte, the CPU determines
that it is now supposed to do an Output operation to a
port. The CPU also determines from decoding this byte
that it must go to memory again to get the address of
the output port. To do this, it sends out the next
sequential address (00105H) on the address bus (line
6A), sends out a Memory Read signal on the control bus
(line 6B). and reads in the byte (02H) put on the data
bus by the memory (line 6C). The CPU now has all
the information that it needs to execute the Output
instruction.

To output a data byte to a port, the CPU first sends
out the address of the desired port on the address bus
(line 6D). Next it outputs the data byte from the internal
register on the data bus (line 6E). The CPU then sends
out an VO Write signal on the control bus (line 6F). This
signal enables the addressed output port device so that
the data from the data bus lines can pass through it to
the LED displays. When the CPU removes the VO Write
signal to proceed with the next instruction, the data will
remain latched on the output pins of the port device.
The data will remain latched on the port until the power
is turned off or until a new data word is output to the
port. This is important because it means that the
computer does not have to keep outputting a value over
and over in order for it to remain on the output.

All the steps described above may seem like a great
deal of work just to input a value from a kevboard. add
7 toit, and output the result to a display. Even a simple

26 CHAPTER TWO

microcomputer, however, can run through all these
steps in a few microseconds.

Summary of Simple Microcomputer
Bus Operation

1. A microcomputer fetches each program instruction
in sequence, decodes the instruction, and executes
it.

2. The CPU in a microcomputer fetches instructions
or reads data from memory by sending out an
address on the address bus and a Memory Read
signal on the control bus. The memory outputs the
addressed instruction or data word to the CPU on
the data bus.

3. The CPU writes a data word to memory by sending
out an address on the address bus, sending out the
data word on the data bus. and sending a Memory
Write signal to memory on the control bus.

4. Toread data from a port, the CPU sends out the port
address on the address bus and sends an /O Read
signal to the port device on the control bus. Data
from the port comes into the CPU on the data bus.

S. To write data to a port, the CPU sends out the port
address on the address bus, sends out the data to
be written to the port on the data bus. and sends
an VO Write signal to the port device on the control
bus.

MICROPROCESSOR EVOLUTION
AND TYPES

As we told you in the preceding section, a microprocessor
is used as the CPU in a microcomputer. There are now
many different microprocessors available, so before we
dig into the details of a specific device. we will give you
a short microprocessor history lesson and an overview
of the different types.

Microprocessor Evolution

A common way of categorizing microprocessors is by
the number of bits that their ALU can work with at a
time. In other words. a microprocessor with a 4-bit ALU
will be referred to as a 4-bit microprocessor, regardless
of the number of address lines or the number of data
bus lines that it has. The first commercially available
microprocessor was the Intel 4004, produced in 1971.
It contained 2300 PMOS transistors. The 4004 was a 4-
bit device intended to be used with some other devices
in making a calculator. Some logic designers, however,
saw that this device could be used to replace PC boards
full of combinational and sequential logic devices. Also,
the ability to change the function of a system by just
changing the programming. rather than redesigning
the hardware, is very appealing. It was these factors that
pushed the evolution of microprocessors.

In 1972 Intel came out with the 8008, which was
capable of working with 8-bit words. The 8008, however.

required 20 or more additional devices to form a func-
tional CPU. In 1974 Intel announced the 8080, which
had a much larger instruction set than the 8008 and
required only two additional devices to form a functional
CPU. Also, the 8080 used NMOS transistors, so it
operated much faster than the 8008. The 8080 is
referred to as a second-generation microprocessor.
Soon after Intel produced the 8080, Motorola came
out with the MC6800, another 8-bit general-purpose
CPU. The 6800 had the advantage that it required only
a +5-V supply rather than the -5-V, +5-V, and +12-
V supplies required by the 8080. For several years the
8080 and the 6800 were the top-selling 8-bit micropro-
cessors. Some of their competitors were the MOS Tech-
nology 6502, used as the CPU in the Apple Il microcom-
puter, and the Zilog Z80, used as the CPU in the Radio
Shack TRS*80 microcomputer.
As designers found more and more applications for
microprocessors, they pressured microprocessor manu-
'facturers to develop devices with architectures and
features optimized for doing certain types of tasks. In
response to the expressed needs, microprocessors have
evolved in three major directions during the last 15

years.

'Dedicated or Embedded Controllers

One direction has been dedicated or embedded control-
lers. These devices are used to control “smart” machines,
such as microwave ovens, clothes washers, sewing ma-
chines, auto ignition systems, and metal lathes. Texas
Instruments has produced millions of their TMS-1000
family of 4-bit microprocessors for this type of applica-
tion. In 1976 Intel introduced the 8048, which contains
an 8-bit CPU, RAM, ROM, and some /O ports all in one
40-pin package. Other manufacturers have followed with
similar products. These devices are often referred to as
microcontrollers. Some currently available devices in
this category—the Intel 8051 and the Motorola MC6801,
for example—contain programmable counters and a
serial port (UART) as well as a CPU, ROM, RAM, and
parallel VO ports. A more recently introduced single-
chip microcontroller, the Intel 8096, contains a 16-bit
CPU. ROM, RAM, a UART, ports, timers, and a 10-bit
analog-to-digital converter.

Bit-Slice Processors

A second direction of microprocessor evolution has been
bit-slice processors. For some applications. general-
purpose CPUs such as the 8080 and 6800 are not fast
enough or do not have suitable instruction sets. For
these applications, several manufacturers produce de-
vices which can be used to build a custom CPU. An
example is the Advanced Micro Devices 2900 family of
devices. This family includes 4-bit ALUs. multiplexers.
sequencers, and other parts needed for custom-building
a CPU. The term slice comes from the fact that these
parts can be connected in parallel to work with 8-bit
words, 16-bit words, or 32-bit words. In other words. a
designer can add as many slices as needed for a particu-

lar application. The designer not only custom-designs
the hardware of the CPU, but also custom-makes the
instruction set for it using “microcode.”

General-Purpose CPUs

The third major direction of microprocessor evolution
has been toward general-purpose CPUs which give a
microcomputer most or all of the computing power of
earlier minicomputers. After Motorola came out with
the MC6800, Intel produced the 8085, an upgrade of
the 8080 that required only a +5-V supply. Motorola
then produced the MC6809, which has a few 16-bit
instructions, but is still basically an 8-bit processor. In
1978 Intel came out with the 8086, which is a full 16-
bit processor. Some 16-bit microprocessors, such as the
National PACE and the Texas Instruments 9900 family
of devices, had been available previously. but the market
apparently wasn't ready. Soon after Intel came out with
the 8086, Motorola came out with the 16-bit MC68000,
and the 16-bit race was off and running. The 8086 and
the 68000 work directly with 16-bit words instead of
with 8-bit words, they can address a million or more
bytes of memory instead of the 64 Kbytes addressable
by the 8-bit processors, and they execute instructions
much faster than the 8-bit processors. Also, these 16-
bit processors have single instructions for functions
such as multiply and divide, which required a lengthy
sequence of instructions on the 8-bit processors. '

The evolution along this last path has continued on
to 32-bit processors that work with gigabytes (10° bytes)
or terabytes (10'2 bytes) of memory. Examples of these
devices are the Intel 80386, the Motorola MC68020, and
the National 32032.

Since we could not possibly describe in this book the
operation and programming of even a few of the available
processors, we confine our discussions primarily to one
group of related microprocessors. The family we have
chosen is the Intel 8086, 8088, 80186, 80188, 80286.
80386. 80486 family. Members of this family are very
widely used in personal computers, business computer
systems, and industrial control systems. Our experience
has shown that learning the programming and operation
of one family of microcomputers very thoroughly is
much more useful than looking at many processors
superficially. If you learn one processor family well, you
will most likely find it quite easy to learn another when
you have to.

THE 8086 MICROPROCESSOR
FAMILY—OVERVIEW

The Intel 8086 is a 16-bit microprocessor that is in-
tended to be used as the CPU in a microcomputer. The
term 16-bit means that its arithmetic logic unit. its
internal registers, and most of its instructions are
designed to work with 16-bit binary words. The 8086
has a 16-bit data bus, so it can read data from or write
data to memory and ports either 16 bits or 8 bits at a
time. The 8086 has a 20-bit address bus. so it can
address any one of 22°, or 1,048,576, memory locations.

COMPUTERS, MICROCOMPUTERS, AND MICROPROCESSORS—AN INTRODUCTION 27

— 6 |

N

Each of the 1,048,576 memory addresses of the 8086
represents a byte-wide location. Sixteen-bit words will
be stored in two consecutive memory locations. If the
first byte of a word is at an even address, the 8086 can
read the entire word in one operation. If the first byte
of the word is at an odd address, the 8086 will read the
first byte with one bus operation and the second byte
with another bus operation. Later we will discuss this
in detail. The main point here Is that if the first byte of
a 16-bit word Is at an even address, the 8086 can read
the entire word In one operation.

The Intel 8088 has the same arithmetic logic unit. the
same registers, and the same instruction set as the
8086, The 8088 also has a 20-bit address bus, so it can
address any one of 1,048,576 bytes in memory. The
8088, however, has an 8-bit data bus, so it can only
read data from or write data to memory and ports 8 bits
at a time. The 8086, remember, can read or write either
8 or 16 bits at a time. To read a 16-bit word from two
successive memory locations, the 8088 will always have
to do two read operations. Since the 8086 and the 8088
are almost Identical, any reference we make to the 8086

-In the rest of the book will also pertain to the 8088
unless we specifically indicate otherwise. This is done
to make reading easier. The Intel 8088, incidentally, is
used as the CPU in the original IBM Personal Computer,
the IBM PC/XT, and several compatible persona! com-
puters. -

The Intel 80186 is an improved version of the 8086,
and the 80188 is an improved version of the 8088. In
addition to a 16-bit CPU, the 80186 and 80188 each
have programmable peripheral devices integrated in the
same package. In a later chapter we will discuss these
integrated peripherals. The instruction set of the 80186
and 80188 is a superset of the instruction set of the
8086. The term superset means that all the 8086 and
8088 instructions will execute properly on an 80186 or
an 80188, but the 80186 and the 80188 have a few
additional instructions. In other words, a program writ-
ten for an 8086 or an 8088 is upward-compatible to an
80186 or an 80188, but a program written for an 80186
or an 80188 may not execute correctly on an 8086 or an
8088. In the instruction set descriptions in Chapter 6,
we specifically indicate which instructions work only
with the 80186 or 80188.

The Intel 80286 is a 16-bit, advanced version of the
8086 which was specifically designed for use as the CPU
In a multiuser or multitasking microcomputer. When
operating in its real address mode, the 80286 functions
mostly as a fast 8086. Most programs written for an
8086 can be run on an 80286 operating in its real
address mode. When operating in its virtual address
mode, an 80286 has features which make it easy to
keep users’ programs separate from one another and to
protect the system program from destruction by users’
programs. In Chapter 15 we discuss the operation and
use of the 80286. The 80286 is the CPU used in the IBM
PC/AT personal computer.

The Intel 80386 is a 32-bit microprocessor which can
directly address up to 4 gigabytes of memory. The 80386
contains more sophisticated features than the 80286
for use in multiuser and multitasking microcomputer

28 CHAPTER TWO

systems. In Chapter 15 we discuss the features of the
80386 and the 80486, which s an evolutionary step up
from the 80386. d

8086 INTERNAL ARCHITECTURE

Before .we can talk about how to write programs for the
8086, we need to discuss its specific Internal features,
such as its ALU, flags, registers, instruction byte queue,
and segment registers.

As shown by the block diagram in Figure 2-7, the
8086 CPU is divided into two independent functional
parts, the bus interface unit or BIU, and the execution
unit or EU. Dividing the work between these two units
speeds up processing.

The BIU sends out addresses, fetches instructions
from memory, reads data from ports and memory, and
writes data to ports and memory. In other words, the
BIU handles all transfers of data and addresses on the
buses for the execution unit.

The execution unit of the 8086 tells the BIU where to
fetch instructions or data from, decodes instructions,
and executes instructions. Let’s take a look at some of
the parts of the execution unit.

The Execution Unit

CONTROL CIRCUITRY, INSTRUCTION
DECODER, AND ALU

As shown in Figure 2-7, the EU contains control circuitry
which directs internal operations. A decoder in the EU
translates instructions fetched from memory Into a
series of actions which the EU carries out. The EU has
a 16-bit arithmetic logic unit which can add, subtract,
AND, OR, XOR, increment, d=crement, complement, or
shift binary numbers.

FLAG REGISTER

A flag is a flip-flop which indicates some condition
produced by the execution of an instruction or controls
certain operations of the EU. A 16-bit flag register in
the EU contains nine active flags. Figure 2-8 shows the
location of the nine flags in the flag register. Six of the
nine flags are used to indicate some condition produced
by an instruction. For example, a flip-flop called the
carry flag will be set to a 1 if the addition of two 16-
bit binary numbers produces a carry out of the most
significant bit position. If no carry out of the MSB is
produced by the addition, then the carry flag will be a
0. The EU thus effectively-runs up a "flag” to tell you
that a carry was produced.

The six conditional flags in this group are the carry
Nag (CF), the parity flag (PF). the auxiliary carry flag
(AF), the zero flag (ZF), the sign flag (SF), and the
overflow flag (OF). The names of these flags should give
you hints as to what conditions affect them. Certain
8086 instructions check these flags to determine which
of two alternative actions should be done in executing
the instruction.

MEMORY
INTERFACE

h]

|

C-BUS |
|

ry 1
s INSTRUCTION 1
STREAM |

4 BYTE |
3 QUEUE I
2 i
|

CONTROL
SYSTEM

=
|

[

|

|

|

|

|

|

EU \/ A-BUS }
|

|

|

|

AH AL |
BH BL 1
CH cL ARITHMETIC !
DH DL _ LOGIC UNIT }
sP T I |

3 |) |

|

B 2 9 I
OPERANDS L |

FLAGS | 14 |

FIGURE 2-7 8086 internal block diagram. (Intel Corp.)

The three remaining flags in the flag register are used
to control certain operations of the processor. These
flags are different from the six conditional flags described
above in the way they are set or reset. The six conditional
flags are set or reset by the EU on the basts of the results
of some arithmetic or logic operation. The control flags
are deliberately set or reset with specific instructions
you put in your program. The three control flags are the
trap flag (TF). which is used for single stepping through
a program: the interrupt flag (IF), which is used to allow
or prohibit the interruption of a program: and the
direction flag (DF), which is used with string instruc-
tions.

BIT 15 14 13 12 1

10 9 8 5

8085 COMPATIBLE FLAGS

Later we will discuss in detail the operation and use
of the nine flags.

GENERAL-PURPOSE REGISTERS

Observe in Figure 2-7 that the EU has elght general-
purpose regtsters, labeled AH, AL, BH, BL, CH, CL, DH,
and DL. These registers can be used individually for
temporary storage of 8-bit data. The AL register is also
called the accumulator. It has some features that the
other general-purpose registers do not have.

Certain pairs of these general-purpose registers can be
used together to store 16-bit data words. The acceptable

lelele ool sl el U|AF|U|pF|u]cT|

—_——
U = UNDEFINED

CARRY FLAG — SET BY CARRY OUT OF MSB
PARITY FLAG — SET IF RESULT HAS EVEN PARITY
AUXILIARY CARRY FLAG FOR BCD

| Lt

ZERO FLAG - SET IF RESULT =0

L=

SIGN FLAG = MSB OF RESULT

SINGLE STEP TRAP FLAG

INTERRUPT ENABLE FLAG

STRING DIRECTION FLAG

FIGURE 2-8 8086 flag register format. (Intel Corp.)

COMPUTERS, MICROCOMPUTERS, AND MICROPROCESSORS—AN INTRODUCTION

OVERFLOW FLAG

29

register pairs are AH and AL, BH and BL. CH and CL,
and DH and DL. The AH-AL pair is referred to as the
AX register, the BH-BL pair Is referred to as the BX
register, the CH-CL pair is referred to as the CX register,
and the DH-DL pair is referred to as the DX register.

The 8086 general-purpose register set is very similar
to those of the earlier-generation 8080 and 8085 micro-
processors. It was designed this way so that the many
programs written for the 8080 and 8085 could easily be
translated to run on the 8086 or the 8088. The advantage
of using internal registers for the temporary storage of
data is that, since the data is already in the EU, it can
be accessed much more quickly than it could be accessed
in external memory. Now let’s look at the features of the
BIU.

The BIU

THE QUEUE

While the EU is decoding an instruction or executing
an instruction which does not require use of the buses,
the BIU fetches up to six instruction bytes for the
following instructions. The BIU stores these prefetched
bytes in a first-in—first-out register set called a queue.
When the EU is ready for its next instruction, it simply
reads the instruction byte(s) for the instruction from
the queue in the BIU. This is much faster than sending
out an address to the system memory and waiting for
memory to send back the next instruction byte or bytes.
The process Is analogous to the way a bricklayer's
assistant fetches bricks ahead of time and keeps a queue
of bricks lined up so that the bricklayer can just reach
out and grab a brick when necessary. Except in the
cases of JMP and CALL instructions, where the queue
must be dumped and then reloaded starting from a new
address, this prefetch-and-queue scheme greatly speeds
up processing. Fetching the next instruction while the
current instruction executes is called pipelining.

SEGMENT REGISTERS

The 8086 BIU sends out 20-bit addresses, so it can
address any of 2% or 1,048,576 bytes in memory.
However, at any given time the 8086 works with only four
65,536-byte (64-Kbyte) segments within this 1,048,576-
byte (1-Mbyte) range. Four segment registers in the BIU
are used to hold the upper 16 bits of the starting
addresses of four memory segments that the 8086 is
working with at a particular time. The four segment
registers are the code segment (CS) register, the stack
segment (SS) register, the extra segment (ES) register,
and the data segment (DS) register.

Figure 2-9 shows how these four segments might be
positioned in memory at a given time. The four segments
can be separated as shown, or, for small programs which
do not need all 64 Kbytes in each segment, they can
overlap.

To repeat, then. a segment register is used to hold the
upper 16 bits of the starting address for each of the
segments. The code segment register, for example, holds

" the upper 16 bits of the starting address for the segment
from which the BIU is currently fetching instruction
code bytes. The BIU always inserts zeros for the lowest

30 CHAPTER TWO

PHYSICAL

ADDRESS
MEMORY
FEFFFH — ~——— HIGHEST ADDRESS
TFFFFH —— «—— TOP OF EXTRA SEGMENT
64 K
70000H —1— +—— EXTRA SEGMENT BASE
ES = 7000H
SFFFFH —— ~—— TOP OF STACK SEGMENT
64 K

50000H <+ STACK SEGMENT BASE

SS = 5000H

4489FH «—— TOP OF CODE SEGMENT

348A0H ~—— CODE SEGMENT BASE

CS = 348AH

2FFFFH -—— TOP OF DATA SEGMENT

— i

®

K

20000H —-l—

FIGURE 2-9 One way four 64-Kbyte segments might be
positioned within the 1-Mbyte address space of an 8086.

-—— BOTTOM OF DATA SEGMENT

4 bits (nibble) of the 20-bit starting address for a
segment. If the code segment register contains 348AH,
for example, then the code segment will start at address
348A0H. In other words. a 64-Kbyte segment can be
located anywhere within the 1-Mbyte address space, but
the segment will always start at an address with zeros
in the lowest 4 bits. This constraint was put on the
location of segments so that it is only necessary to store
and manipulate 16-bit numbers when working with the
starting address of a segment. The part of a segment
starting address stored in a segment register s often
called the segment base.

A stack is a section of memory set aside to store
addresses and data while a subprogram executes. The
stack segment register is used to hold the upper 16 bits
of the starting address for the program stack. We will
discuss the use and operation of a stack in detail later.

The extra segment register and the data segment
register are used to hold the upper 16 bits of the starting
addresses of two memory segments that are used for
data.

INSTRUCTION POINTER

The next feature to look at in the BIU is the instruction
pointer (IP) register. As discussed previously, the code

PHYSICAL
ADDRESS MEMORY
[y &
4489FH— |- +~—— TOP OF CODE SEGMENT
38ABAH ~—— CODE BYTE
IP = 4214H
34BAOH <~ START OF CODE SEGMENT
CS = 348AH
L~J
(a)
cs 3[a]8]Aa]| 0 ~—HarOWIRED ZERO
w o+ [a]2]1]4
pHvsicaL aoDress [3[s]a[B]4

(b)

FIGURE 2-10 Addition of IP to CS to produce the
physical address of the code byte. (a) Diagram.
(b) Computation.

segment register holds the upper 16 bits of the starting
address of the segment from which the BIU is currently
fetching instruction code bytes. The instruction pointer
register holds the 16-bit address, or offset. of the next
code byte within this code segment. The value contained
in the IP is referred to as an offset because this value
must be offset from (added to) the segment base address
in CS to produce the required 20-bit physical address
sent out by the BIU. Figure 2-10a shows in diagram
form how this works. The CS register points to the base
or start of the current code segment. The IP contains
the distance or offset from this base address to the next
instruction byte to be fetched. Figure 2-10b shows how
the 16-bit offset in IP is added to the 16-bit segment
base address in CS to produce the 20-bit physical
address. Notice that the two 16-bit numbers are not
added directly in line, because the CS register contains
only the upper 16 bits of the base address for the code
segment. As we said before, the BIU automatically inserts
zeros for the lowest 4 bits of the segment base address.

If the CS register, for example, contains 348AH. you
know that the starting address for the code segment is
348A0H. When the BIU adds the offset of 4214H in the
IP to this segment base address, the result is a 20-bit
physical address of 38AB4H.

An alternative way of representing a 20-bit physical
address is the segment base:offset form. For the address
of a code byte, the format for this alternative form will
be CS:IP. As an example of this. the address constructed
in the preceding paragraph, 38AB4H, can also be repre-
sented as 348A:4214.

To summarize. then. the CS register contains the
upper 16 bits of the starting address of the code segment
in the 1-Mbyte address range of the 8086. The instruc-
tion pointer register contains. a 16-bit offset which

tells where in that 64-Kbyte code segment the next
instruction byte is to be fetched from. The actual physical
address sent to memory is produced by adding the
offset contained in the IP register to the segment base
represented by the upper 16 bits in the CS register.

Any time the 8086 accesses memory. the BIU produces
the required 20-bit physical address by adding an offset
to a segment base value represented by the contents of
one of the segment registers. As another example of this,
let's look at how the 8086 uses the contents of the stack
segment register and the contents of the stack pointer
register to produce a physical address.

STACK SEGMENT REGISTER AND
STACK POINTER REGISTER

A stack, remember, is a section of memory set aside
to store addresses and data while a subprogram is
executing. The 8086 allows you to set aside an entire
64-Kbyte segment as a stack. The upper 16 bits of the
starting address for this segment are kept in the stack
segment register. The stack pointer (SP) register in the
execution unit holds the 16-bit offset from the start of
the segment to the memory location where a word was
most recently stored on the stack. The memory location
where a word was most recently stored is called the top
of stack. Figure 2-11a shows this in diagram form.

The physical address for a stack read or a stack write
is produced by adding the contents of the stack pointer
register to the segment base address represented by the
upper 16 bits of the base address in SS. Figure 2-11b
shows an example. The 5000H in SS reépresents a
segment base address of 50000H. When the FFEOH in
the SP is added to this, the resultant physical address
for the top of the stack will be 5FFEOH. The physical
address can be represented either as a single number,
S5FFEOH, or in SS:SP form as 5000:FFEOH.

PHYSICAL MEMORY
ADDRESSES s
SFFFFH — -—— END OF STACK SEGMENT
S5FFEQH -—— TOP OF STACK
SP = FFEOH
50000H ~——START OF STACK SEGMENT
L e SS = 5000H
(a)
HARDWIRED
ZERO

ss [s]ofofo]o

SP+ ElF|E]O

PHYSICAL ADDRESS [5[F|F[E| O
(TOP OF STACK)

(b)

FIGURE 2-11 Addition of SS and SP to produce the
physical address of the top of the stack. (a) Diagram.
(b) Computation.

COMPUTERS., MICROCOMPUTERS, AND MICROPROCESSORS—AN INTRODUCTION 31

The operation and use of the stack will be discussed
in detall later as need arises.

POINTER AND INDEX REGISTERS IN THE
EXECUTION UNIT

In addition to the stack pointer register (SP), the EU
contains a 16-bit base pointer (BP) register. It also
contains a 16-bit source index (SI) register and a 16-bit
destination index (DI) register. These three registers
can be used for temporary storage of data just as
the general-purpose registers described above. However,
their main use (s to hold the 16-bit offset of a data word
in one of the segments. SI, for example, can be used to
hold the offset of a data word in the data segment. The
physical address of the data in memory will be generated
in this case by adding the contents of SI to the segment
base address represented by the 16-bit number in the
DS register. After we give you an overview of the different
levels of languages used to program a microcomputer,
we will show you some examples of how we tell the 8086

to read data from or write data to a desired memory

location.

INTRODUCTION TO PROGRAMMING
THE 8086

Programming Languages

Now that you have an overview of the 8086 CPU, it is
time to start thinking about how it is programmed. To
run a program, a microcomputer must have the program
stored in binary form in successive memory locations,
as shown in Figure 2-12. There are three language levels
that can be used to write a program for a microcomputer.

MACHINE LANGUAGE

You can write programs as simply a sequence of the
binary codes for the instructions you want the micro-
computer to execute. The three-instruction program in
Figure 2-6b is an example. This binary form of the
program is referred to as machine language because it
is the form required by the machine. However, it is
difficult, if not impossible, for a programmer to memo-
rize the thousands of binary instruction codes for a CPU
such as the 8086. Also, it is very easy for an error to
occur when working with long series of 1's and 0's.
Using hexadecimal representation for the binary codes
might help some, but there are still thousands of instruc-
tion codes to cope with.

ASSEMBLY LANCUAGE

To make programming easier, many programmers write
programs in assembly language. They then translate

LABEL | OP CODE | OPERAND COMMENT
FIELD FIELD FIELD FIELD
NEXT: ADD AL, 07H . ADD CORRECTION FACTOR

FIGURE 2-12 Assembly language program statement
format.

32 CHAPTER TWO

the assembly language program to machine language so
that it can be loaded into memory and run. Assembly
language uses two-, three-, or four-letter mnemonics to
represent each instruction type. A mnemonic is just a
device to help you remember something. The letters in
an assembly language mnemonic are usually initials or
ashortened form of the English word(s) for the operation
performed by the instruction. For example, the mne-
monic for subtract is SUB, the mnemonic for Exclusive
OR is XOR, and the mnemonic for the instruction to
copy data from one location to another is MOV.

Assembly language statements are usually written in
a standard form that has four fields, as shown in Figure
2-12. The first field in an assembly language statement
is the label field. A label is a symbol or group of symbols
used to represent an address which is not specifically
known at the time the statement {s written. Labels are
usually followed by a colon. Labels are not required in a
statement, they are just inserted where they are needed.
We will show later many uses of labels.

The opcode field of the instruction contains the
mnemonic for the instruction to be performed. Instruc-
tion mnemonics are sometimes called operation codes,
or opcodes. The ADD mnemonic in the example state-
ment in Figure 2-12 indicates that we want the instruc-
tion to do an addition.

The operand field of the statement contains the data,
the memory address, the port address, or the name of
the register on which the instruction is to be performed.
Operand is just another name for the data item(s) acted
on by an instruction. In the example instruction in
Figure 2-12, there are two operands, AL and O7H,
specified in the operand field. AL represents the AL
register, and O7H represents the number 07H. This
assembly language statement thus says, "Add the num-
ber O7H to the contents of the AL register.” By Intel
convention, the result of the addition will be put in the
register or the memory location specified before the
comma in the operand field. For the example statement
in Figure 2-12, then, the result will be left in the AL
register. As another example, the assembly language
statement ADD BH, AL, when converted to machine
language and run, will add the contents of the AL register
to the contents of the BH register. The results will be
left in the BH register.

The final field in an assembly language statement such
as that in Figure 2-12 is the comment field. which starts
with a semicolon. Comments do not become part of the
machine language program, but they are very important.
You write comments in a program to remind you of the
function that an instruction or group of instructions
performs in the program.

To summarize why assembly language is easier to use
than machine language, let's look a little more closely at
the assembly language ADD statement. The general
format of the 8086 ADD instruction is

ADD destination, source

The source can be a number written in the instruction,
the contents of a specified register, or the contents of a
memory location. The destination can be a specified
régister or a specified memory location. However, the

source and the destination in an instruction cannot
both be memory locations.

A later section on 8086 addressing modes will show
all the ways in which the source of an operand and the
destination of the result can be specified. The point here
is that the single mnemonic ADD. together with a
specified source and a specified destination, can repre-
sent a great many 8086 instructions in an easily under-
standable form.

The question that may occur to you at this point {s,
“If I write a program In assembly language, how do I get
it translated into machine language which can be loaded
into the microcomputer and executed?” There are two
answers to this question. The first method of doing the
translation is to work out the binary code for each
instruction a bit at a time using the templates given in
the manufacturer's data books. We will show you how
to do this in the next chapter, but it is a tedious
and error-prone task. The second method of doing the
translation is with an assembler. An assembler is a
program which can be run on a personal computer or
microcomputer development system. It reads the file of
assembly language instructions you write and generates
the correct binary code for each. For developing all but
the simplest assembly language programs, an assembler
and other program development tools are essential. We
will introduce you to these program development tools
in the next chapter and describe their use throughout
the rest of this book.

HIGH-LEVEL LANGUAGES

Another way of writing a program for a microcomputer
is with a high-level language, such as BASIC, Pascal,
or C. These languages use program statements which
are even more English-like than those of assembly
language. Each high-level statement may represent
many machine code instructions. An interpreter pro-
gram or a compiler program is used to translate higher-
level language statements to machine codes which can
be loaded into memory and executed. Programs can
usually be written faster in high-level languages than
in assembly language because the high-level language
works with bigger building blocks. However, programs
written in a high-level language and interpreted or
compiled almost always execute more slowly and require
more memory than the same programs written in assem-
bly language. Programs that involve a lot of hardware
control, such as robots and factory control systems. or
programs that must run as quickly as possible are
usually best written in assembly language. Complex data
processing programs that manipulate massive amounts
of data, such as insurance company records, are usually
best written in a high-level language. The decision
concerning which language to use has recently been
made more difficult by the fact that current assemblers
allow the use of many high-level language features. and
the fact that some current high-level languages provide
assembly language features.

OUR CHOICE

For most of this book we work very closely with hardware,
so assembly language is the best choice. In later chap-

ters, however, we do show you how to write programs
which contain modules written in assembly language
and modules written in the high-level language C. In the
next chapter we introduce you to assembly language
programming techniques. Before we go on to that,
however, we will use a few simple 8086 instructions to
show you more about accessing data in registers and
memory locations.

How the 8086 Accesses Immediate
and Register Data

In a previous discussion of the 8086 BIU, we described
how the 8086 accesses code bytes using the contents of
the CS and IP registers. We also described how the 8086
accesses the stack using the contents of the S5 and SP
registers. Before we can teach you assembly language
programming techniques, we need to discuss some of
the different ways in which an 8086 can access the data
that it operates on. The different ways in which a
processor can access data are referred to as its ad-
dressing modes. In assembly language statements, the
addressing mode is indicated in the instruction. We will
use the 8086 MOV instruction to illustrate some of the
8086 addressing modes.
The MOV instruction has the format

MOV destination, source

When executed, this instruction copies a word or a
byte from the specified source focation to the specified
destination location. The source can be 3 number writ-
ten directly in the instruction, a specifi d register, or a
memory location specified in 1 of 24 different ways. The
desttnation can be a specified register or a memory
location specified in any 1 of 24 different ways. The
source and the destination cannot both be memory
locations in an instruction.

IMMEDIATE ADDRESSING MODE

Suppose that in a program you need to put the number
437BH in the CX register. The MOV CX, 437BH instruc-
tion can be used to do this. When it executes, this
instruction will put the immediate hexadecimal number
437BH in the 16-bit CX register. This is referred to as
immediate addressing mode because the number to be
loaded into the CX register will be put in the two memory
locations immediately following the code for the MOV
instruction. This is similar to the way the port address
was put in memory immediately after the code for the
input instruction in the three-instruction program in
Figure 2-6b. .

A similar instruction, MOV CL, 48H. could be used to
load the 8-bit immediaté number 48H into the 8-bit CL
register. You can also write instructions to load an 8-
bit immediate number into an 8-bit memory location or
to load a 16-bit number into two consecutive memory
locations, but we are not yet ready to show you how to
specify these.

REGISTER ADDRESSING MODE

Register addressing mode means that a register is the
source of an operand for an instruction. The instruction

COMPUTERS, MICROCOMPUTERS, AND MICROPROCESSORS—AN INTRODUCTION 33

MOV CX. AX. for example, copies the contents of the 16-
bit AX register into the 16-bit CX register. Remember
that the destination location is specified in the instruc-

tion before the comma, and the source is specified after
the comma. Also note that the contents of AX are just
copted to CX, not actually moved. In other words.
the previous contents of CX are written over, but the
contents of AX are not changed. For example, if CX
contains 2A84H and AX contains 497 1H before the MOV
CX, AX Instruction executes, then after the instruction
executes, CX will contain 497 1H and AX will still contain
4971H. You can MOV any 16-bit register to any 16-bit
register, or you can MOV any 8-bit register to any 8-bit
register. However, you cannot use an instruction such
as MOV CX, AL because this is an attempt to copy a
byte-type operand (AL) into a word-type destination
(CX). The byte in AL would fit in CX, but the 8086 would
not know which half of CX to put it in. If you try to write
an instruction like this and you are using a good
assembler, the assembler will tell you that the instruc-
tion contains a type error. To copy the byte from AL to
the high byte of CX. you can use the instruction MOV
CH, AL. To copy the byte from AL to the low byte of CX,
you can use the instruction MOV CL. AL.

Accessing Data in Memory

OVERVIEW OF MEMORY ADDRESSING MODES

The addressing modes described in the following sec-
tions are used to specify the location of an operand in
memory. To access data in memory, the 8086 must also
produce a 20-bit physical address. It does this by adding
a 16-bit value called the effective address to a segment
base address represented by the 16-bit number in one
of the four segment registers. The effective address (EA)
represents the displacement or offset of the desired
operand from the segment base. In most cases, any of
the segment bases can be specified, but the data segment
is the one most often used. Figure 2-13a shows in
graphic form how the EA is added to the data segment
base to point to an operand in memory. Figure 2-13b
shows how the 20-bit physical address is generated by
the BIU. The starting address for the data segment in
Figure 2-13b is 20000H, so the data segment register

will contain 2000H. The BIU adds the effective address, -

437AH, to the dafa segment base address of 20000H to
produce the physical address sent out to memory. The
20-bit physical address sent out to memory by the BIU
will then be 2437AH. The physical address can be
represented either as a single number 2437AH or in the
segment base:offset form as 2000:437AH.

The execution unit cdiculates the cffective address
for an operand using information you specify in the
instruction. You can tell the EU to use a number in the
instruction as the effective address. to use the contents
of a specified register as the effective address. or to
compute the effective address by adding a number in
the instruction to the contents of one or two specified
registers. The following section describes one way you
can tell the execution unit to calculate an effective
address. In later chapters we show other ways of speci-
fying the effective address. Later we also show how the

34 CHAPTER TWO

PHYSICAL

ADDRESSES
MEMORY
e Ve
2FFFFH— «——END OF DATA SEGMENT
BX REGISTER
ev]eL]
2437BH . __l '
2437AH MOV BX, [437AH]
EA = 437AH
20000H -———START OF DATA SEGMENT
= 2000H
2 a e N bs
(a)
HARDWIRED
ZERO

EA 4
PHYSICAL ADDRESS [2]4]3

w
~
>

~
>

(b)

FIGURE 2-13 Addition of data segment register and
effective address to produce the physical address of the
data byte. (a) Diagram. (b) Computation.

addressing modes this provides are used to solve some
common programming problems.

DIRECT ADDRESSING MODE

For the simplest memory addressing mode. the effective
address is just a 16-bit number written directly in the
instruction. The instruction MOV BL, [437AH] is an
example. The square brackets around the 437AH are
shorthanc for "tne contents of the memory locaticn(s)
at a displacement from the segment base of.” When
executed, this instruction will copy “the contents of
the memory location at a displacement from the data
segment base of " 437AH into the BL register, as shown
by the rightmost arrow in Figure 2-13a. The BIU calcu-
lates the 20-bit physical memory address by adding the
effective address 437AH to the data segment base, as
shown in Figure 2-13b. This addressing mode is called
direct because the displacement of the operand from the.
segment base is specified directly in the instruction.
The displacement in the instruction will be added to the
data segment base in DS unless you tell the BIU to add
it to some other segment base. Later we will show you

. how to do this.

Another example of the direct addressing mode is the
instruction MOV BX. [437AH]. When executed. this
instruction copies a 16-bit word from memory into the
BX register. Since each memory address of the 8086
represents a byte oi storage. the word must come from
two memory locations. The byte at a displacement of
437AH from the data segment base will be copied into
BL. as shown by the right arrow in Figure 2-13a.
The contents of the next higher address. displacement
437BH. will be copicd into the BH register, as shown by
the left arrow in Figure 2-13a. From the instruction

coding, the 8086 will automatically determine the num-
ber of bytes that It must access in memory.

An important point here Is that an 8086 always stores
the low byte of a word in the lower of the two addresses
and stores the high byte of a word in the higher address.
To stick this in your mind, remember:

Low byte—low address, high byte~high address

The previous two examples showed how the direct
addressing mode can be used to specify the source of
an operand. Direct addressing can also be used to
specify the destination of an operand in memory. The
instruction MOV [437AH]|. BX, for example, will copy the
contents of the BX register to two memory locations in
the data segment. The contents of BL will be copied to
the memory location at a displacement of 437AH. The
contents of BH will be copied to the memory location at
a displacement of 437BH. This operation is represented
by simply reversing the direction of the arrows in Figure
2-13a.

NOTE: When you are hand-coding programs us-
Ing direct addressing of the form shown above,
make sure to put in the square brackets to remind
you how to code the instruction. If you leave the
brackets out of an instruction such as MOV BX,
[437AH]. you will code it as if it were the instruction
MOV BX. 437AH. This second instruction will load
the immediate number 437AH into BX, rather than
loading a word from memory at a displacement of
437AH into BX. Also note that' if you are writing
an instruction using direct addressing such as this
for an assembler, you must write the instruction in
the form MOV BL. DS:BYTE PTR [437AH] to give
the assembler all the information it needs. As we
will show you in the next chapter. when you are
using an assembler. you usually use a name to
represent the direct address rather than the actual
numerical value.

A FEW WORDS ABOUT SEGMENTATION

At this point you may be wondering why Intel designed
the 8086 family devices to access memory using the
segment:offset approach rather than accessing memory
directly with 20-bit addresses. The segmentoffset
scheme requires only a 16-bit number to represent the
base address for a scgment, and only a 16-bit offsct to
access any location in a segment. This means that the
8086 has to manipulate and store only 16-bit quantities
instead of 20-bit quantities. This makes for an easicr
interface with 8- and 16-bit-wide memory boards and
with the 16-bit registers in the BO86.

The second reason for segmentation has to do with
the tvpe of microcomputer in which an 8086-family CPU
is likely to be used. A previous section of this chapter
described brictly the operation of a timesharing micro-
computer system. Ina timesharing system. several users
share a CPU. The CPU works on one user's program for
perhaps 20 ms. then works on the next user’s program
for 20 ms. Alter working 20 ms for each of the other
users the CPU comes back to the first user’s program

CONPUTERS AHCROC OMPUTERS. AND MICROPROCESSORS

-7

again. Each time the CPU switches from one user’s
program to the next, it must access a new section of
code and new sections of data. Segmentation makes
this switching quite easy. Each user's program can be
assigned a separate set of logical segments for its code
and data. The user's program will contain offsets or
displacements from these segment bases. To change
from one user's program to a second user's program, all
that the CPU has to do is to reload the four segment
registers with the segment base addresses assigned to
the second user’s program. In other words, segmentation
makes it easy to keep users’ programs and data separate
from one another. and segmentation makes it easy
to switch from one user's program to another user’s
program. In Chapter 15 we tell you much more about
the use of segmentation in multiuser systems.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms or concepts in
the following list, use the index to find them in the
chapter.

Microcomputer, microprocessor

Hardware, software, firmware

Timesharing computer system

Multitasking computer system

Distributed processing system

Multiprocessing

CcPU

Memory, RAM, ROM

IO ports

- Address. data, and control buses

Control bus signals
ALU
Segmentation

Bus interface unit (BIU)
Instruction byte queue, pipelining,
ES. CS. SS. DS registers. IP register

Execution unit (EU)
AX. BX. CX. DX registers. flag register.
ALU. SP. BP, SI. DI registers

Machine language, assembly language. high-level lan-
guage
Mnemonic. oprode. operand. label. comment

Assembler, comprler

immediate address mode, register address mode. direct
address mode

Effective address

AN INTRODUCTION 35

10.

36

REVIEW QUESTIONS AND PROBLEMS

Describe the main advantages of a distributed
processing computer system over a simple time-
sharing system.

Describe the sequence of signals that occurs on the
address bus, the control bus, and the data bus when
a simple microcomputer fetches an {nstruction.

What determines whether a microprocessor is con-
sidered an 8-bit. a 16-bit, or a 32-bit device?

a. How many address lines does an 8086 have?

b. How many memory addresses does this number
of address lines allow the 8086 to access di-
rectly?

c. At any given time, the 8086 works with four
segments in this address space. How many
bytes are contained in each segment?

What is the main difference between the 8086 and
the 80882

a. Describe the function of the 8086 queue.
b. How does the queue speed up processing?

a. If the code segment for an 8086 program starts
at address 70400H, what number will be in the
CS register?

b. Assuming this same code segment base, what
physical address will a code byte be fetched from
if the instruction pointer contains 539CH?

What physical address is represented by:
a. 4370:561EH
b. 7A32:0028H

What {s the advantage of using a CPU register
for temporary data storage over using a memory
location?

If the stack segment register contains 3000H and

CHAPTER T\

11.

12.

13.

14.

15.

16.

17.

18.

the stack polnter register contains 8434H, what is
the physical address of the top of the stack?

a. What is the advantage of using assembly lan-
guage instead of writing a program directly in
machine language?

b. Describe the operation an 8086 will perform
when it executes ADD AX, BX.

What types of programs are usually written in
assembly language?

Describe the operation that an 8086 will perform
when it executes each of the following instructions:
a. MOV BX, 03FFH

b. MOV AL. ODBH

c. MOV DH, CL

d. MOV BX, AX

Write the 8086 assembly language statement which

will perform the following operations:

a. Load the number 7986H into the BP register.

b. Copy the BP register contents to the SP register.

c. Copy the contents of the AX register to the DS
register.

d. Load the number F3H into the AL register.

If the 8086 execution unit calculates an effective
address of 14A3H and DS contains 7000H, what
physical address will the BIU produce?

If the data segment register (DS) contains 4000H,
what physical address will the instruction MOV AL,
[234BH] read?

If the 8086 data segment register contains 7000H,
write the instruction that will copy the contents of
DL to address 74B2CH.

Describe the difference between the instructions
MOV AX, 2437H and MOV AX. [2437H).

8086 Family Assembly Language
Programming — Introduction

The last chapter showed you the format for assembly
language Instructions and introduced you to a few 8086
instructions. Developing a program, however. requires
more than just writing down a series of instructions.
When you want to bulld a house, it is a good idea to first
develop a complete set of plans for the house. From the
plans you can see whether the house has the rooms you
need, whether the rooms are efficiently placed, and
whether the house Is structured so that you can easily
add on to it if you have more kids. You have probably
seen examples of what happens when someone attempts
to build a house by just putting pieces together without
a plan.

Likewise, when you write a computer program. it is a
good idea to start by developing a detailed plan or outline
for the entire program. A good outline helps you to break
down a large and seemingly overwhelming programming
job into small.modules which can easily be written.
tested. and debugged. The more time you spend organiz-
ing your programs. the less time it will take you to write
and debug them. You should never start writing an
assembly language program by just writing down In-
structions! In this chapter we show you how to develop
assembly language programs in a systematic way.

OBJECTIVES

At the conclusion of this chapter. you should be able to:
1. Write a task list, flowchart, or pseudocode for a
simple programming problem.

2. Write, code or assemble, and run a very simple
assembly language program.

3. Describe the use of program development tools such
as editors, assemblers, linkers. locators, debuggers.
and emulators.

4. Properly document assembly language programs.

PROGRAM DEVELOPMENT STEPS
Defining the Problem

The first step in writing a program is to think very
carefully about the problem that you want the program

to solve. In other words, ask yourself many times, “What
do I really want this program to do?” If you don’t do this,
you may write a program that works great but does not
do what you need it to do. As you think about the
problem, it is a good idea to write down exactly what
you want the program to do and the order in which you
want the program to do it. At this point you do not write
down program statements, you just write the operations
you want in general terms. An example for a simple
programming problem might be

1. Read temperature from sensor.
2. Add correction factor of +7.

3. Save result in a memory location.

For a program as simple as this, the three actions
desired are very close to the eventual assembly language
statements. For more complex problems, however, we
develop a more extensive outline before writing the
assembly language statements. The next section shows
you some of the common ways of representing program
operations in a program outline.

Representing Program Operations

The formula or sequence of operations used to solve a
programming problem is often called the algorithm of
the program. The following sections show you two
common ways of representing the algorithm for a pro-
gram or program segment.

FLOWCHARTS

If you have done any previous programming in BASIC or
in FORTRAN., you are probably familiar with flowcharts.
Flowcharts use graphic shapes to represent different
types of program operations. The specific operation
desired is written in the graphic symbol. Figure 3-1.p. 38,
shows some of the common flowchart symbols. Plastic
templates are avallable to help you draw these symbols
if you decide to use them for your programs.

Figure 3-2, p. 38, shows a flowchart for a program to
read in 24 data samples from a temperature sensor at
1-hour intervals. add 7 to each, and store each result
in a memory location. A racetrack- or circular-shaped
symbol labeled START is used to indicate the beginning

37

{ OFF .PAGE CONNECTOR
|
|
1

CONNECTOR

Flowchart symbols.

a2

SuB '
ROUTINE

FIGURE 3-1

of the program. A parallelogram is used to represent an
{nput or an output operation. In the example, we use it
to indicate reading data from the temperature sensor.
A rectangular box symbol is used to represent simple
operations other than input and output operations. The
box containing “add 7" in Figure 3-2 is an example.

A rectangular box with double lines at each end is
often used to represent a subroutine or procedure that
will be written separately from the main program. When
a set of operations must be done several times during a
program, it is usually more efficient to write the series
of operations once as a separate subprogram, then just
“call” this subprogram each time it is needed. For
example, suppose that there are several places in a
program where you need to compute the square root of
a number. Instead of writing the series of instructions
for computing a square root each time you need it in

‘ START '

READ VALUE
FROM SENSOR

ADD7

l

STORE RESULT
IN MEMORY

l

WAIT 1 HOUR

YES

FIGURE 3-2 Flowchart for program to read in 24 data
samples trom a port, correct each value, and store each
in'a. memory location.

38 CHAPTER THREE

the program, you can write the Instruction sequence
once as a separate procedure and put it in memory after
the main program. A special instruction allows you to
call this procedure each time you need to compute a
square root. Another special instruction at the end of
the procedure program returns execution to the main
program. In the flowchart in Figure 3-2, we use the
double-ended box to indicate that the *wait 1 hour”
operation will be programmed as a procedure. Inciden-
tally, the terms subprogram, subroutine, and procedure
all have the same meaning. Chapter 5 shows how
procedures are written and used.

A diamond-shaped box is used in flowcharts to repre-
sent a decision point or crossroad. Usually it indicates
that some condition is to be checked at this point in the
program. If the condition is found to be true, one set of
actions is to be done; if the condition is found to be
Jalse, another set of actions is to be done. In the example
flowchart in Figure 3-2, the condition to be checked is
whether 24 samples have been read in and processed.
If 24 samples have not been read in and processed, the
arrow labeled NO in the flowchart indicates that we want
the computer to jump back and execute the read, add,
store, and wait steps again. If 24 samples have been
read in. the arrow labeled YES in the flowchart of Figure
3-2 indicates that all the desired operations have been
done. The racetrack-shaped symbol at the bottom of the
flowchart indicates the end of the program.

The two additional flowchart symbols in Figure 3-1
are connectors. If a flowchart column gets to the bottom
of the paper, but not all the program has been repre-
sented, you can put a small circle with a letter in it at
the bottom of the column. You then start the next
column at the top of the same paper with a small circle
containing the same letter. If you need to continue a
flowchart to another page. you can end the flowchart on
the first page with the five-sided off-page connector
symbol containing a letter or number. You then start
the flowchart on the next page with an off-page connector
symbol containing the same letter or number.

Forsimple programs and program scctions. {lowcharts
are a graphic way of showing the operational flow of the
program. We will show flowcharts for many of the
program cxamples throughout this book. Flowcharts,
however, have several disadvantages. First, you can't
write much Information in the little boxes. Second.
flowcharts do not present information in a very compact
form. For more complex problems, flowcharts tend to
spread out over many pages. They are very hard to
follow back and forth between pages. Third, and most
Important. with flowcharts the overall structure of the
program tends to get lost in the details The following
section describes a more clearly structurcd and compact
method of representing the algorithm o: 4 program or
program segment.

STRUCTURED PROGRAMMINC, AND
PSEUDOCODE OVERVIEW

In the early days of computers, a single brilliant person
might write even a large programn single-handedly. The
main concerns in this case were. “Does the program
work?” and "What do we do if this person leaves the

company?” As the number of computers increased and
the complexity of the programs being written Increased.
large programming jobs were usually turned over to a
team of programmers. In this case the compatibility
of parts written by different programmers became an
important concern. During the 1970s it became obvious
to many professional programmers that in order for
team programming to work, a systematic approach and
standardized tools were absolutely necessary.

One suggested systematic approach is called top-down
design. In this approach, a large programming problem
is first divided into major modules. The top level of the
outline shows the relationship and function of these
modules. This top level then presents a one-page over-
view of the entire program. Each of the major modules
is broken down into still smaller modules on following
pages. The division is continued until the steps in each
module are clearly understandable. Each programmer
can then be assigned a module or set of modules to write
for the program. Another advantage of this approach is
that people who later want to learn about the program
can start with the overview and work their way down to
the level of detail they need. This approach is the same
as drawing the complete plans for a house before starting
to build it.

The opposite of top-down design is bottom-up design.
In this approach, each programmer starts writing low-
level modules and hopes that all the pieces will eventually
fit together. When completed. the result should be
similar to that produced by the top-down design. Most
modern programming teams use a combination of the
two techniques. They do the top-down design first. then
build. test. and link modules starting from the smallest
and working upward.

The development of standard programming methods
was helped by the discovery that any desired program
operation could be represented by three basic types of
operation. The first type of operation is sequence. which
means simply doing a series of actions. The second basic
type of operation is decision, or selection, which means
choosing between two alternative actions. The third
basic type of operation is repetition, or iteration, which
means repeating a series of actions until some condition
is or is not present.

On the basis of this observation, the suggestion was
made that programmers use a set of three to seven
standard structures to represent all the operations in
their programs. Actually, only three structures, SE-
QUENCE, IF-THEN-ELSE, and WHILE-DO, are required
to represent any desired program action, but three or
four more structures derived from these often make
programs clearer. If you have previously written pro-
grams in a structured language such as Pascal. then
these structures are probably already familiar to you.
Figure 3-3. p. 40, uses flowchart symbols to represent
the commonly used structures so that you can more
easily visualize their operation. In actual program docu-
mentation, however, English-like statements called
pseudocode are used rather than the space-consuming
flowchart symbols. Figure 3-3 also shows the pseudocode
format and an example for each structure.

Each structure has only one entry point and one exit
point. As you will see later, this feature makes debugging

the final program much easier. The output of one
structure is connected to the input of the next structure.
Program execution then proceeds through a series of
these structures.

Any structure can be used within another. An IF-
THEN-ELSE structure, for example, can contain a se-
quence of statements. Any place that the term state-
ment(s) appears in Figure 3-3, one of the:other struc-
tures could be substituted for it. The term statement(s)
can also represent a subprogram or procedure that is
called to do a series of actions. Now. let's look more
closely at these structures.

STANDARD PROGRAMMING STRUCTURES

The structure shown in Figure 3-3a is an example of a
simple sequence. In this structure, the actions are
simply written down in the desired order. An example
is

Read temperature from sensor.
Add correction factor of +7.

Store corrected value in memory.

Figure 3-3b shows an IF-THEN-ELSE example of the
decision operation. This structure is used to direct
operation to one of two different actions based on some
condition. An example is

IF temperature less than 70 degrees THEN
Turn on heater

ELSE
Turn off heater

The example says that if the temperature is below the
thermostat setting. we want to turn the heater on. If the
temperature is equal to or above the thermostat setting,
we want to turn the heater off.

The IF-THEN structure shown in Figure 3-3c is the
same as the IF-THEN-ELSE except that one of the paths
contains no action. An example of this is

IF hungry THEN
Get food

The assumption for this example is that if you are not
hungry. you will just continue on with your next task.

To represent a situation in which you want to select
onc of several actions based on some condition. you can
use a nested IF-THEN-ELSE structure such as that
shown in Figure 3-3d. This everyday example describes
the thinking a soup cook might go through. Note that
in this example the last IF-THEN has no ELSE after it
because all the possible days have been checked. You
can, if you want, add the final ELSE to the IF-THEN-
ELSE chain to send an error message if the data does
not match any of the choices.

The CASE structure shown in Figure 3-3e is really
just a compact way to represent a complex IF-THEN-
ELSE structure. The choice of action is determined by
testing some quantity. The cook or the computer checks
the value of the variable called "day™ and selects the

8086 FAMILY ASSEMBLY LANGUAGE PROGRAMMING—INTRODUCTION 39

SIMPLE SEQUENCE FLOWCHART IF-THEN-ELSE FLOWCHART IF-THEN FLOWCHART

YES NO NO
STATEMENT(S)1
[
STATEMENT(S)2 STATEMENT(S)1 STATEMENT(S)2 STATEMENT(S)

| | ' |

PSEUDOCODE PSEVUDOQCODE CQD
STATEMENTI(S)1 IF CONDITION THEN IF CONDITION THEN
STATEMENTIS)2 STATEMENT(S)1 STATEMENT(S)

LSE
STATEMENT(S)2

EXAMPLE EXAMPLE EXAMPLE
GET DATA SAMPLE IF ROOM TEMPERATURE LESS THAN SET POINT THEN IF HUNGRY THEN
ADD 7 TURN ON FURNACE GET FOOD
STORE IN MEMORY LOCATION ELSE

TURN OFF FURNACE
(a) 1) e}
CASE EXPRESSED AS MULTIPLE IF-THEN-ELSE FLOWCHART CASE FLOWCHART

|

I SELECTING EXPRESSION]

MAKE CELERY YES «Tuespay
SOUP ? = STATEMENT(S)1 STATEMENT(S)2 | * * * | STATEMENT(SIN
YES L |
MAKE
MINESTRONE
SOuP MAKE
MUSHROOM R =
SoUP EXPRESSION O
1: STATEMENT(S)1
] 2: STATEMENTI(S)2
' N: STATEMENTI(SIN
EXAMPLE
CASE DAY OF
IF MONDAY THEN MONDAY:
MAKE CELERY SOUP MAKE CELERY SOUP
ELSE IF TUESDAY THEN TUESDAY:
MAKE MINESTRONE SOUP MAKE MINESTRONE SOUP
ELSE IF WEDNESDAY THEN WEDNESDAY:
MAKE ONION SOUP MAKE ONION SOUP
ELSE IF SUNDAY THEN SUNDAY:
MAKE MUSHROOM SOUP MAKE MUSHROOM SOUP
(o) te)
WHILE-DO LOOP FLOWCHART REPEAT-UNTIL FLOWCHART
STATEMENT
ConDITION SN
STATEMENT(S) ? EXAMPLE
REPEAT
YES GET DATA SAMPLE
ADD 7
¢ STORE RESULT IN MEMORY
PSEUDOCOQDE) EXAMPLE PSEUDOCODE WAIT 1 HR
WHILE CONDITION DO WHILE MONEY LASTS DO REPEAT UNTIL 24 SAMPLES TAKEN
STATEMENT(S) EAT SUPPER OUT STATEMENTI(S)
GO TO MOVIE UNTIL CONDITION
TAKE TAXI HOME
(1 (@

FIGURE 3-3 Standard program structures. (a) Sequence. (b) IF-THEN-ELSE.
(c) IF-THEN. (d) CASE expressed as nested IF-THEN-ELSE. (e) CASE. (f) WHILE-DO.

(g) REPEAT-UNTIL.

40 CHAPTER THREF

appropriate actions for that day. Each of the indicated
actions, such as "Make celery soup,” is itself a sequence
of actions which could be represented by the structures
we have described. Note that the CASE structure does
not contain the final ELSE for an error.

The CASE form is more compact for documentation
purposes, and some high-level languages such as Pascal
allow vou to implement it directly. However. the nested
IF-THEN-ELSE structure gives you a much better idea
of how you write an assembly language program section
to choose between several alternative actions.

The WHILE-DO structure in Figure 3-3f is one form
of repetition. It is used to indicate that you want to do
some action or sequence of actions as long as some
condition is present. This structure represents a pro-
gram loop. The example in Figure 3-3f is

WHILE money lasts DO
Eat supper out.
Go to movie.
Take a taxi home.

This example shows a sequence of actions you might do
each evening until you ran out of money. Note that in
this structure, the condition is checked before the action
is done the first time. You certainly want to check how
much money you have before eating out.

Another useful repetition structure is the REPEAT-
UNTIL structure shown in Figure 3-3g. You use this
structure to indicate that you want the program to
repeat some action or series of actions until some
condition is present. A good example of the use of this
structure is the programming problem we used in the
discussion of flowcharts. The example is

REPEAT
Get data sample from sensor.
Add correction of +7.
Store result in a memory location.
Wait 1 hour.
UNTIL 24 samples taken.

Note that in a REPEAT-UNTIL structure, the action(s)
is done once before the condition is checked. If you want
the condition to be checked before any action is done.
then you can write the algorithm with a WHILE-DO
structure as follows:

WHILE NOT 24 samples DO
Read data sample from temperature scnsor.
Add correction factor of +7.
Store result in memory location.
Wait 1 hour.

Remember, a REPEAT-UNTIL structure indicates that
the condition is first checked after the statement(s) is
performed. so the action or series of actions will always
be done at least once. If you don't want this to happen.
then use the WHILE-DO, which indicates that the condi-
tion is checked before any action is taken. As we will
show later. the structure you use makes a difference in
the actual assembly language program you write to
implement it

The WHILE-DO and REPEAT-UNTIL structures con-
tain a simple IF-THEN-ELSE decision operation. How-
ever, since this decision is an implied part of these two
structures, we don't indicate the decision separately in
them.

Another form of the repetition operation that you
might see in high-level language programs is the FOR-
DO loop. This structure has the form

FOR count = 1 TO n DO
statement

statement

This FOR-DO loop. as it is often called, simply repeats
the sequence ofactions n times, so for assembly language
algorithms we usually implement this type of operation
with a REPEAT-UNTIL structure.

Incidentally, if you compare the space required by the
pseudocode representation for a program structure with
the space required by the flowchart representation for
the same structure, the space advantage of pseudocode
should be obvious.

Throughout the rest of this book, we show you how
to use these structures to represent program actions
and how to implement these structures in assembly
language.

SUMMARY OF PROGRAM STRUCTURE
REPRESENTATION FORMS

Writing a successful program does not consist of just
writing down a series of instructions. You must first
think carefully about what you want the program to do
and how you want the program to do it. Then you must
represent the structure of the program in some way that
is very clear both to you and to anyone else who might
have to work on the program.

One way of representing program operations s with
flowcharts. Flowcharts are a very graphic representation,
and they are useful for short program segments, espe-
cially those that deal directly with hardware. However,
flowcharts use a great deal of space. Consequently, the
flowchart for even a moderately complex program may
take up several pages. It often becomes difficult to follow
program flow back and forth between pages. Also, since
there are no agreed-upon structures. a poor programmer
can write a flowchart which jumps all over the place
and is even more difficult to follow. The term “logical
spaghetti” comes to mind here.

A second way of representing the operations you want
in a program is with a top-down design approach
and standard program structures. The overall program
problem s first broken down into major functional
modules. Each of these modules is broken down into
smaller and smaller modules until the steps in each
module are obvious. The algorithms for the whole pro-
gram and for each module are expressed with a standard
structure. Only three basic structures, SEQUENCE, IF-
THEN-ELSE, and WHILE-DO. are needed to represent
any needed program action or series of actions. However,
other usecful structures such as [F-THEN. REPEAT-
UNTIL. FOR-DO. and CASE can be derived from these
basic three. A structure can contain another structure

8086 FANMILY ASSEMBLY LANGUAGE PROGRAMMING—INTRODUCTION 41

of the same type or one of the other types. Each structure
has only onc entry point and one exit point. These
programming structures may seem restrictive, but using
them usually results in algorithms which are easy to
follow. Also. as we will show you soon. if you write the
algorithm for a program carefully with these standard
structures, it is relatively easy to translate the algorithm
to the equivalent assembly language instructions.

Finding the Right Instruction

After you get the structure of a program worked out
and written down. the next step is to determine the
instruction statements required to do each part of the
program. Since the examples in this book are based on
the 8086 family of microprocessors, now is a good time
to give you an overview of the instructions the 8086 has
for you to use. First, however, is a hint about how to
approach these instructions.

You do not usually learn a new language by memoriz-
ing an entire dictionary of the language. A better way is
to learn a few useful words and practice putting these
words together in simple sentences. You can then learn
more words as you need them to express more complex
thoughts. Likewise, you should not try to memorize all
the instructions for a microprocessor at once.

For future reference, Chapter 6 contains a dictionary
of all the 8086 instructions with detailed descriptions
and examples of each. As an introduction, however, the
few pages here contain a list of all the 8086 instructions
with a short explanation of each. Skim through the list
and pick out a dozen or so instructions that seem useful
and understandable. As a start, look for move, input.
output, logical, and arithmetic instructions. Then look
through the list again to see if you can find the instruc-
tions that you might use to do the “read temperature
sensor value from a port, add +7, and store result in
memory” example program.

You ¢an use Chapter 6 as a reference as you write
programs. Here we simply list the 8086 instructions in

Jfunctional groups with single-sentence descriptions so

that you can see the types of instructions that are
available to you. As you read through this section, do
not expect to understand all the instructions. When you
start writing programs, you will probably use this section
to determine the type of instruction and Chapter 6 to
get the instruction details as you need them. After you
have written a few programs, you will remember most
of the basic instruction types and will be able to simply
look up an instruction in Chapter 6 to get any additional
details you need. Chapter 4 shows you in detail how to
use the move, arithmetic, logical, jump, and string
instructions. Chapter 5 shows how to use the call
instructions and the stack.

DATA TRANSFER INSTRUCTIONS
General-purpose byte or word transfer instructions:
MNEMONIC DESCRIPTION

MOV Copy byte or word from specified source

to spec:fied destination.

42 CHAPTER THREE

PUSH Copy specified word to top of stack.

poOP Copy word from top of stack to specified
location.

PUSHA (80186/80188 only) Copy all registers to
stack.

POPA (80186/80188 only) Copy words from
stack to all registers.

XCHG Exchange bytes or exchange words.

XLAT Translate a byte in AL using a table in

memory.
Simple input and output port transfer instructions:

IN Copy a byte or word from specified port
to accumulator.

ouT Copy a._byte or word from accumulator to

specified port.
Special address transfer instructions:

LEA Load effective address of operand into
specified register.

LDS Load DS register and other specified regis-
ter from memory.

LES Load ES register and other specified register
from memory. A e

Flag transfer instructions:

LAHF Load (copy to) AH with the low byte of
the flag register.

SAHF Store (copy) AH register to low byte of flag
register.

PUSHF Cepv flag register to top of stack.

POPF Copy word at top of stack to flag register.

ARITHMETIC INSTRUCTIONS

Addition instructions:

ADD Add specified byte to byte or specified
word to word.)

ADC Add byte + byte + carry flag or word +
word + carry flag.

INC Increment specified byte or specified word
by 1.

AAA ASCIl adjust aiter addition. ‘

DAA Decimal (BCD) adjust after addition.

Subtraction instructions:

SUB Subtract byte from byte or word from
word.

SBB Subtract byte and carry flag from byte or
word ard carry flag from word.

DEC Decrement specified byte or specified
word by 1.

NEG Negate — invert each bit of a specified
byte or word and add 1 (form 2's com-

plement).

CMP Compare two specified bytes or two spec-
ified words.

AAS ASCII adjust after subtraction.

DAS Decimal (BCD) adjust after subtraction.

Multiplication instructions:

aUL Multiply unsigned byte by byte or unsigned
word by word.

IMUL Multiply signed byte by byte or signed
word by word.

AAM ASCII adjust after multiplication.

Divislon instructions:

DIv Divide unsigned word by byte or unsigned
double word by word.
DIV Divide signed word by byte or signed

double word by word.

AAD ASCII adjust before division.

CBW Fill upper byte of word with copies of sign
bit of lower byte.

CWD Fill upper word of double word with sign

bit of lower word.

BIT MANIPULATION INSTRUCTIONS
Logical instructions:

NOT Invert each bit of a byte or word.

AND AND each bit in a byte or word with the
corresponding bit in another byte or
word.

OR OR each bit in a byte or word with the
corresponding bit in another byte or
word.

XOR Exclusive OR each bit in a byte or word
with the corresponding bit in another
byte or word.

TEST AND operands to update flags, but don’t

change operands.
Shift instructtons:

|
;

ROR Rotate bits of byte or word right, LSB to
MSB and to CF.

RCL Rotate bits of byte or word left, MSB to CF
and CF to LSB.

RCR Rotate bits of byte or word right, LSB to

CF and CF to MSB.

STRING INSTRUCTIONS

A string 1s a series of bytes or a series of words in
sequential memory locations. A string often consists of
ASCII character codes. In the list, a %/~ is used to
separate different mnemonics for the same instruction.
Use the mnemonic which most clearly describes the
function of the instruction in a specific application. A
“B” in a mnemonic is used to specifically indicate that
a string of bytes is to be acted upon. A “W" in the
mnemonic is used to indicate that a string of words is
to be acted upon.

REP An instruction prefix. Repeat
following instruction until
CX = 0.

REPE/REPZ An instruction prefix. Repeat

instruction until CX = 0 or
zero flag ZF # 1.

REPNE/REPNZ An instruction prefix. Repeat
until CX = Qor ZF = 1.

MOVS/MOVSB/MOVSW Move byte or word from one
string to another.

COMPS/COMPSB/COMPSW Compare two string bytes or

two string words.

(80186/80188) Input string byte
or word from port.

(80186/80188) Output string
byte or word to port.

INS/INSB/INSW

OUTS/OUTSB/OUTSW

SCAS/SCASB/SCASW Scan a string. Compare a string
byte with a byte in AL or a
string word with a word in

AX.

Load string byte into AL or
string word into AX.

LODS/LODSB/LODSW

STOS/STOSB/STOSW Store byte from AL or word

from AX into string.

PROGRAM EXECUTION TRANSFER INSTRUCTIONS
These instructions are used to tell the 8086 to start

SHUSAL Shift bits of word or byte left, put zerols) fetching Instructions from some new address. rather
in LSB(s). than continuing in sequence.
SHR Shift bits of word or byte right, put zero(s) Unconditional transfer instructions:
in MSB(s). CALL Call a procedure (subprogram),
SAR Shift bits of word or byte right, copy old save return address on stack.
MSB into new MSB. RET Return from procedure to call-
Rotate instructions: ing program.
ROL Rotate bits of byte or word left, MSB to JMP Go to specified address to get
LSB and to CF. next instruction.
8086 FAMILY ASSEMBLY LANGUAGE PROGRAMMING—INTRODUCTION 43

=8

Conditional transfer (nstructions:

A"/ "is used to separate two mnemonics which represent
the same instruction. Use the mnemonic which most
clearly describes the decision condition in a specific
program. These instructions are often used after a
compare instruction. The terms below and above refer
to unsigned binary numbers. Above means larger in
magnitude. The terms greater than or less than refer
to signed binary numbers. Greater than means more

positive.

JA/JNBE Jump if above/Jump if not below
or equal.

JAE/INB Jump if above or equal/Jump if
not below.

JB/INAE Jump if below/Jump if not above
or equal.

JBE/JNA Jump if below or equal/Jump if
not above.

c Jump if carry flag CF = 1.

J&NZ Jump if equal/Jump if zero flag

; ZF = 1.

JG/INLE Jump if greater/Jump if not less
than or equal.

JGE/JNL Jump if greater than or equal/
Jump if not less than.

JUINGE Jump if less than/jJump if not
greater than or equal.

JLE/ING Jump if less than or equal/jJump
if not greater than.

JNC Jump if no carry (CF = 0).

INE/NZ Jump if not equal/Jump if not
zero (ZF = 0).

JNO Jump if no overflow (overflow
flag OF = Q).

JNP/JPO Jump if not parity/Jump if parity
odd (PF = 0).

JNS 4 Jump if not sign (sign flag SF =
0).

10 Jump if overflow flag OF = 1.

JP/)PE Jump if parity/Jump if parity
even (PF = 1),

5 Jump if sign (SF = 1).

Iteration control tnstructions:

These instructions can be used to execute a series of

instructions some number of times. Here mnemonics

Separated by a */ " represent the same Instruction. Use

the one that best fits the specific application.

LOOP Loop through a sequence of
instructions until CX = 0.

44 CHAPTER THREE

LOOPE/LOOPZ Loop through a sequence of
instructions while ZF = 1
and CX # 0.

LOOPNE/LOOPNZ Loop through a sequence of
instructions while ZF = 0
and CX # 0.

| (& ¥4 Jump to specified address if
CX = 0.

If you aren't tired of instructions, continue skimming
through the rest of the list. Don't worry if the explanation
is not clear to you because we will explain these instruc-
tions in detail in later chapters.

Interrupt instructions:

INT Interrupt program execution,
call service procedure.

INTO Interrupt program execution if
OF = 1.
- IRET Return from interrupt service

procedure to main program.

High-level language interface instructions:

ENTER (80186/80188 only) Enter pro- -
cedure.

LEAVE (80186/80188 only) Leave p
cedure. s

BOUND (80186/80188 only) Check if

effective address within spec-
ified array bounds.

PROCESSOR CONTROL INSTRUCTIONS
Flag set/clear instructions:

STC Set carry flag CF to 1.

CLC Clear carry flag CF to 0.

CMC Complement the state of the
carry flag CF.

STD Setdirection flag DF to 1 (decre-
ment string pointers).

CLD Clear direction flag DF to 0.

STI Set interrupt enable flag to 1

(enable INTR input).

Cul Clear interrupt enable flag to 0
: (disable INTR input).

External hardware synchronization nstructlons:

HLT Halt (do nothing) until interrupt
-~ or reset.
WAIT Wait (do nothing) until signal

on the TEST pin is low.

ESC Escape to external coprocessor
such as 8087 or 8089.

LOCK An instruction prefix. Prevents
another processor from tak-
ing the bus while the adja-

cent instruction executes.
No operation (nstruction:

NOP No action except fetch and

decode.

Now that you have skimmed through an overview of the
8086 instruction set, let's see whether you found the
instructions needed to implement tiie “read sensor, add
+7, and store result in memory” example program. The
IN instruction can be used to read the temperature value
from an A/D converter connected to a port. The ADD
instruction can be used to add the correction factor of
+7 to the value read in. Finally, the MOV instruction
can be used to copy the result of the addtion to a memory
location. A major point here is that breaking down the
programming problem into a sequence of steps makes it
easy to find the instruction or small group of instructions
that will perform each step. The next section shows
you how to write the actual program using the 8086
instructions.

Writing a Program

INITIALIZATION INSTRUCTIONS

After finding the instructions you need to do the main
part of your program, there are a few additional instruc-
tictis that you need to determine before you actually
write your program. The purpose of these additional
instructions is to initialize various parts of the system,
such as segment registers, flags, and programmable
port devices. Segment registers, for example, must be
loaded with the upper 16 bits of the address in memory
where you want the segment to begin. For our “read
temperature sensor, add +7, and strre result in mem-
ory” example program, the only part we need to initialize
is the data segment register. The data segment register
must be initialized so that we can copy the result of the
addition to a location in memory. If, for example, we
want to store data in memory starting at address
00100H. then we want the data segment register to
contain the upper 16 bits of this address. 0010H. The
8086 does not have an instructior to move a number
directly into a segment register. Therefore, we move the
desired number 1nto one of the 16-bit general-purpose
registers, then copy it to the desired segment register.
Two MOV instructions will do this.

If you are using the stack In your program, then you
must include Instructions to load the stack segment
register and an Instruction to load the stack pointer
register with the offset of the top of the stack. Most
microcomputer systems contain several programmable
peripheral devices, such as ports, timers. and control-
lers. You must include instructions which send control
words to these devices to tell them the function you
want them to perform. Also, you usually want to include
instructions which set or clear the control flags. such
as the interrupt enable flag and the direction flag.

The best way to approach the initialization task is to
make a checklist of all the registers, programmable
devices, and flags in the system you are working on.
Then you can mark the ones you need for a specific
program and determine the instructions needed to
initialize each part. An initialization list for an 8086-
based system, such as the SDK-86 prototyping board,
might look like the following.

INITIALIZATION LIST

Data segment register DS

Stack segment register SS

Extra segment register ES

Stack pointer register SP

8255 programmable parallel port
8259A priority interrupt controller
8254 programmable counter
8251A programmable serial port
Initialize data variables

Set interrupt enable flag

As you can see, the list can become quite lengthy even
though we have not included all the devices a system
might commonly have. Note that initializing the code
segment register CS Is absent from this list. The code
segment register is loaded with the correct starting value
by the system command you use to run the program.
Now let's see how you put all these parts together to
make a program.

A STANDARD PROGRAM FORMAT

In this section we show you how to format your programs
if you are going to construct the machine codes for each
Instruction by hand. A later section of this chapter will
show you the additional parts you need to add to the
program if you are going to use a computer program
called an assembler to produce the binary codes for the
instructions.

To help you write your programs in the correct format,
assembly language coding sheets such as that shown
in Figure 3-4 are available. The ADDRESS column is
used for the address or the offset of a code byte or data
byte. The actual code bytes or data bytes are put in the
DATA/CODE column. A label is a name which represents
an address referred to in a jump or call instruction;
labels are put in the LABELS column. A label is followed
by a colon (:) if it is used by a jump or call instruction
in the same code segment. The MNEM column contains
the opcode mnemonics for the instructions. The OP-
ERAND(S) column contains the registers, memory loca-
tions, or data acted upon by the instructions. A COM-
MENTS column gives you space to describe the function
of the instruction for future reference.

Figure 3-4, p. 46, shows how instructions for the
“read temperature, add +7, store result in memory”
program can be written In sequence on a coding sheet.
We will discuss here the operation of these instructions

8086 FAMILY ASSEMBLY LANGUAGE PROCRAMMING—INTRODUCTION 45

PROGRAMMER D U HALL SHEET / OF /

PROGRAM TITLE /3&425 TEMPERATURE & CORRE T DATE: H11XX
ABSTRACT reads in a lemperalure aaMhamaWMx&dbMOﬂ adds a covection
:7 7biﬁeua&¢emdmudﬂwmﬂewdlmamuedwfaca&w

PROCEDUXS:
REGISTERS USED: ,4;
GLAGS AGGECTED: Al conditional

PORTS: Uses 05 as inpud port
MEMORY, 00/00H~DAH: 002004 -0020CH, CODE
DATA '
ADDRESS | or LABELS MNEM. OPERAND(S) COMMENTS
CODE
00700 Xx Reserve memory location lo 1tre
00/ nesudl. This location will be loaded
00102 with a data byle at read in
00/03 & comecled by the program.
00104 XX means "don? care” about
00105 condenls of localion.
007106
00107
00708 *
00109
0010A
00708
0010C
0070D
00/0E Code starts here
00/0F Nole bneak in address
200 Bs MOy AX, 00r0H4 Iniiclize DS to point to slart of
o1 10 memory sel aside for sloring data
02 00
03 &€ MOY 28 Ax
04 28
05 C4 W AL 05H Read lemperature jrom
06 05 pord O5H
07 04 ADD AL OTH Add comeclion facton
08 07 of +07
09 A2 MO Joo00/. AL Stre resull in reserved
0A 00 memory
08B 00
oc e INT 3 Stop, wail for command
0D from wier
OF
OF

FIGURE 34 Assembly language program on standard coding form.

46 CHAPTER THREE

-

to the extent needed. If you want more {nformation,
detailed descriptions of the syntax (assembly language
grammar) and operation of each of these instructions
can be found in Chapter 6.

The first line at the top of the coding form in Figure
3-4 does not represent an instruction. It simply indicates
that we want to set aside a memory location to store the
result. This location must be in available RAM so that
we can write to it. Address 00100H is an available RAM
location on an SDK-86 prototyping board. so we chose
it for this example. Next. we decide where in memory
we want to start putting the code bytes for the instruc-
tions of the program. Again, on an SDK-86 prototyping
board, address 00200H and above is available RAM. so
we chose to start the program at address 00200He

The first operation we want to do in the program is
to initialize the data segment register. As discussed
previously., two MOV instructions are used to do this.
The MOV AX, 0010H instruction, when executed, will
load the upper 16 bits of the address we chose for data
storage into the AX register. The MOV DS, AX instruction
will copy this number from the AX register to the data
segment register. Now we get to the instructions that
do the input, add. and store operations. The IN AL, O5H
instruction will copy a data byte from the port 05H to
the AL register. The ADD AL, 07 instruction will add
07H to the AL register and leave the result in the AL
register. The MOV [0000], AL instruction will copy the
byte in AL to a memory location at a displacement of
0000H from the data segment base. In other words. AL
- will be copied to a physical address computed by adding
0000 to the segment base address represented by the
0010H in the DS register. The result of this addition is
a physical address of 00100H. so the result in AL will
be copied to physical address 00100H in memory. This
is an example of the direct addressing mode described
near the end of the previous chapter.

The INT 3 instruction at the end of the program
functions as a breakpoint. When the 8086 on an SDK-
86 board executes this instruction. it will cause the
8086 to stop executing the instructions of your program
and return control to the monitor or system prograrn.
You can then use system commands to look at the
contents of registers and memory locations, or you can
run another program. Without an instruction such as
this at the end of the program, the 8086 would fetch
and execute the code bytes for your program. then go
on fetching meaningless bytes from memory and trying
to execute them as if they were code bytes.

The next major section of this chapter will show you
how to construct the binary codes for these and other
8086 instructions so that you can assemble and run the
programs on a development board such as the SDK-86.
First, however, we want to use Figure 3-4 to make
an important point about writing assembly language
programs.

DOCUMENTATION

In a previous section of this chapter. we stressed the
point that you should do a lot of thinking and carefully
write down the algorithm for a program before vou
start writing instruction statements. You should also

document the program itself so that its operation is
clear to you and to anyone else who needs to understand
it.

Each page of the program should contain the name
of the program, the page number, the name of the
programmer, and perhaps a version number. Each
program or procedure should have a heading block
containing an abstract describing what the program is
supposed to do, which procedures it calls, which regis-
ters it uses, which ports it uses, which flags it affects.
the memory used, and any other information which will
make it easier for another programmer to interface with
the program.

Comments should be used generously to describe
the specific function of an instruction or group of
instructions in this particular program. Comments
should not be just an expansion of the instruction
mnemonic. A comment of “;add 7 to AL" after the
instruction ADD AL. O7H, for example, would not tell
you much about the function of the instruction in a
particular program. A more enlightening comment
might be “;Add altitude correction factor to tempera-
ture.” Incidentally. not every statement needs an individ-
‘ual comment. It is often more useful to write a comment
which explains the function of a group of instructiops. °

We cannot overemphasize the importance of clear,
concise documentation in your programs. Experience
has shown that even a short program you wrote without
comments a month ago may not be at all understandable
to you nrow.

CONSTRUCTING THE MACHINE CODES
FOR 8086 INSTRUCTIONS

This section shows you how to construct the binary
codes for 8086 instructions. Most of the time you will

probably use an assembler program to do this for you,

but it is useful to understand how the codes are con-

structed. If you have an 8086-based prototyping board

such as the Intel SDK-86 available, knowing how to

hand code instructions will enable you to code, enter,

and run simple programs.

Instruction Templates

To code the instructions for 8-bit processors such as
the 8085, all you have to do is look up the hexadecimal
code for each instruction on a one-page chart. For the
8086. the process is not quite as simple. Here's why.
There are 32 ways to specify the source of the operand
in an instruction such as MOV CX. source. The source
of the operand can be any one of eight 16-bit registers.
or a memory location specified by any one of 24 memory
addressing modes. Each of the 32 possible instructions
requires a different binary code. If CX is made the source
rather than the destination, then there are 32 ways of
specifying the destination. Each of these 32 possible
instructions requires a different binary code. There are
thus 64 different codes for MOV instructions using CX
as a source or as a destination. Likewise. another 64
codes are required to specify all the possible MOVs using

BUB6 FANMILY ASSEMBLY LANGUAGE PROGRAMMING—INTRODUCTION 47

Ll fole oW TTTTTTT]

o oren v
OP CODE FOR "IN" PORT ADDRESS
W="0BYTE
W =1WORD

(a)

o]o[ololclo]1lo[

[l vjaja{wio] ']

g — v
OP CODE FOR "IN’ L PORT 05H
INPUT ABYTE
()
ADDRESS CONTENTS
00205H E4H
00206H 05H

(c)

FIGURE 3-5 Coding template for 8086 IN (fixed port)
instruction. (a) Template. (b) Example. (c) Hex codes in
sequential memory locations.

CL as a source or a destination, and 64 more are required
- to specify all the possible MOVs using CH as a source or
a destination. The point here is that, because there is
such a large number of possible codes for the 8086
Instructions, it is impractical to list them all in a
simple table. Instead, we use a template for each basic
instruction type and fill in bits within this template to
indicate the desired addressing mode, data type, etc. In
other words, we build up the instruction codes on a bit-
by-bit basis.

Different Intel literature shows two slightly different
formats for coding 8086 instructions. One format is
shown at the end of the 8086 data sheet in Appendix
A. The second format is shown along with the 8086
Instruction timings in Appendix B. We will start by
showing you how to use the templates shown in the
8086 data sheet.

As a first example of how to use these templates, we
will build the code for the IN AL. 05H instruction from
our example program. To start, look at the template for
this instruction in Figure 3-5a. Note that two bytes are

required for the instruction. The upper 7 bits of the first
byte tell the 8086 that this is an “input from a fixed
port” instruction. The bit labeled “W" ini the template {s
used to tell the 8086 whether it should input a byte to
AL or a word to AX. If you want the 8086 to input a byte
from an 8-bit port to AL, then make the W bit a 0. If you
want the 8086 to input a word from a 16-bit port to the
AX register, then make the W bit a 1. The 8-bit port
address, O5H or 00000101 binary, s put in the second
byte of the instruction. When the program is loaded into
memory to be run, the first instruction byte will be put
in one memory location, and the second instruction byte
will be put in the next. Figure 3-5c shows this in
hexadecimal form as E4H, O5H.

To further {llustrate how these templates are used, we
will show here several examples with the simple MOV
instruction. We will then show you how to construct the
rest of the codes for the example program in Figure
3-4. Other examples will be shown as needed in the
following chapters.

MOV Instruction Coding Format and Examples

FORMAT

Figure 3-6 shows the coding template or format for 8086
instructions which MOV data from a register to a
register, from a register to a memory location, or from
a memory location to a register. Note that at least two
code bytes are required for the instruction.

The upper 6 bits of the first byte are an opcode which
indicates the general type of instruction. Look in the
table in Appendix A to find the 6-bit opcode for this
MOV register/memory to/from register instruction. You
should find it to be 100010.

The W bit in the first word is used to indicate whether
a byte or a word is being moved. If you are moving a
byte, make W = 0. If you are moving a word, make
W= 1.

In this instruction, one operand must always be a
register, so 3 bits in the second byte are used to indicate
which register is involved. The 3-bit codes for each
register are shown in the table at the end of Appendix
A and in Figure 3-7. Look in one of these places to find
the code for the CL register. You should get 001.

REGISTER SELECT (SEE FIGURE 3-7)

BYTE 1 | BYTE 3 BYTE 4
_________ Tm———————n
1{o]o 1
[o] o] [0 | [| l LOW DISPLACEMENT | HIGH DISPLACEMENT !
OP CODE p|w[moD| REG R/M H 1

r
DIRECT ADDRESS I

LOWBYTE :

DIRECT ADDRESS
HIGH BYTE

(5 BITS) ADDRESSING MODE (SEE FIGURE 3-8)
BYTE/WORD DATA 0=BYTE 1=WORD
DIRECTION TO/FROM REG 0=FROM 1=T0
OPERATION CODE

FIGURE 3-6 Coding template for 8086 instructions which MOV data between

registers or between a register and a memory location.

48 CHAPTER THREE

REGISTER €0DE

=1 w=0
AL AX 000
BL BX 011
CL cX 001
DL DX 010
AH SP 100
BH DI m
CH BP 101
DH SI 110
SEGREG CODE
cS 01
DS 1"
ES 00
SS 10

FIGURE 3-7 Instruction codes for 8086 registers.

The D bit in the first byte of the instruction code is
used to indicate whether the data is being moved to the
register identified in the REG field of the second byte or

from that register. If the instruction is moving data to
the register identified in the REG field, make D = 1. If
the instruction is moving data from that register, make
D = 0.

Now remember that in a MOV instruction, one operand
must be a register and the other operand may be a
register or a memory location. The 2-bit field labeled
MOD and the 3-bit field labeled R/M in the second byte
of the instruction ccde are used to specify the desired
addressing mode for the other operand. Figure 3-8
shows the MOD and R/M bit patterns for each of the 32

possible addressing modes. Here's an overview of how
you use this table.

If the other operand in the instruction is also one of

the eight registers, then put in 11 for the MOD bits
in the instruction code. In the R/M bit positions in
the instruction code, put the 3-bit code for the other
register.

If the other operand is a memory location, there are
24 ways of specifying how the execution unit should
compute the effective address of the operand in
memory. Remember from Chapter 2 that the effective
address can be specified directly in the instruction,
it can be contained in a register, or it can be the
sum of one or two registers and a displacement. The
MOD bits are used to indicate whether the address
specification in the instruction contains a displace-
ment. The R'M code indicates which register(s)
contain part(s) of the effective address. Here's how
it works:

If the specified effective address contains no dis-
placement, as in the instruction MOV CX, [BX] or in
the instruction MOV [BX[SI], DX, then make the
MOD bits 00 and choose the R/M bits which corre-
spond to the register(s) containing the effective
address. For example, if an instruction contains just
[BX]. the 3-bit,®/M code is 111. For an instruction
which contains [BXISI]. the R/M code is 000. Note
that for direct addressing, where the displacement
of the operand from the segment base is specified
directly in the instruction, MOD is 00 and R/M is

MOD
R/M 00 01 10 1
W=0 W=1
000 [BX] + [SI] (BX] + [SI] + d8 [BX] + [SI] + d16 AL AX
001 (BX] + (DI [BX] + (D1} + d8 [BX] + [DI] + d16 CL CX
010 (BP] + [S1) [BP) + [SI] + d8 [BP| + [SI] + d16 DL DX
on (BP] + [DI] [BP] + [DI] + d8 [BP] + DI +d16 |- BL BX
100~ (1] (S1) + d8 s + d16 AH SP
101 (ol DI + d8 (DI} + dl6 CH B8P
110 dié [BP] + d8 [BP] + d16 DH I
(direct address)

11 [BX] [BX] + d8 BX] + dl6 BH DI

— ~

MEMORY MODE
d8 = 8-bit displacement d16 = 16-bit displacement

REGISTER MODE

FIGURE 3-8 MOD and R/M bit patterns for 8086 instructions. The effective
address (EA) produced by these addressing modes will be added to the data
segment base to form the physical address, except for those cases where BP is
used as part of the EA. In that case the EA will be added to the stack segment
base to form the physical address. You can use a segment-override prefix to
indicate that you want the EA to be added to some other segment basg.

8086 FAN;ILY ASSEMBLY LANGUAGE PROGRAMMING—INTRODUCTION 49

110. For an instruction using direct addressing, the
low byte of the direct address is put in as a third
instruction code byte of the instruction, and the
high byte of the direct address is put in as a fourth
Instruction code byte.

3. If the effective address specified in the instruction
contains a displacement less than 256 along with a
reference to the contents of a register, as in the
instruction MOV CX. 43HIBX]. then code in MOD as
01 and choose the R/M bits which correspond to the
register(s) which contain the part(s) for the effective
address. For the instruction MOV CX, 43H|BX], MOD
will be 01 and R/M will be 111. Put the 8-bit value
of the displacement in as the third byte of the
instruction.

4. If the expression for the effective address contains
a displacement which is too large to fit in 8 bits. as
in the instruction MOV DX, 4527H[BX]. then put in
10 for MOD and choose the R/M bits which corre-
spond to the register(s) which contain the part(s)
for the effective address. For the instruction MOV
DX, 4527H|BX], the R/M bits are 111. The low byte
of the displacement is put in as a third byte of the
instruction. The high byte of the displacement is
put in as a fourth byte of the instruction. The
examples which follow should help clarify all this for
you.

MOV Instruction Coding Examples

All the examples in this section use the MOV instruction
template in Figure 3-6. As you read through these
examples, it is a good idea to keep track of the bit-by-
bit development on a separate piece of paper for practice.

CODING MOV SP, BX

This instruction will copy a word from the BX register
to the SP register. Consulting the table in Appendix A,
you find that the 6-bit opcode for this instruction is
100010. Because you are moving a word, W = 1. The D
bit for this instruction may be somewhat confusing,
however. Since two registers are involved, you can think
of the move as either to SP or from BX. It actually
does not matter which you assume as long as you are
consistent in coding the rest of the instruction. If you
think of the instruction as moving a word to SP. then
make D = 1 and put 100 in the REG field to represent
the SP register. The MOD field will be 11 to represent

| BYTE 1 BYTE 2 |

L fofofo] 0[[J [a [ojo[o[_l_]movspax

OP CODE FOR MO R /M = BX)
‘TO" HEG REG SP
MOV WORD REGISTER TO REGISTER

register addressing mode. Make the R/M field 011 to
represent the other register, BX. The resultant code for
the instruction MOV SP, BX willbe 10001011 11100011,
Figure 3-9a shows the meaning of all these bits.

If you change the D bit to a 0 and swap the codes in the
REG and R/M fields. you will get 10001001 11011100,
which is another equally valid code for the instruction.
Figure 3-9b shows the meaning of the bits in this form.
This second form, incidentally, is the form that the Intel
8086 Macroassembler produces.

CODING MOV CL, [BX]

This instruction will copy a byte to CL from the memory
location whose effective address is contained in BX. The
cffective address will be added to the data segment base
in DS to produce the physical address.

To find the 6-bit opcode for byte 1 of the instruction,
consult the table in Appendix A. You should find that
this code is 100010. Make D = 1 because data Is
being moved to register CL. Make W = 0 because the
Instruction is moving a byte into CL. Next you need to
put the 3-bit code which represents register CL in the
REG field of the second byte of the instruction code. The
codes for each register are shown in Figurc 3-7. In this
figure you should find that the code for CL is 001. Now,
all you need to determine is the bit patterns for the MOD
and R/M fields. Again use the table in Figure 3-8 to do
this. In the table, first find the box containing the
desired addressing mode. The box containing [BX], for
example, is in the lower left corner of the table. Read
the required MOD-bit pattern from the top of the column.
In this case, MOD is 00. Then read the required R/M-
bit pattern at the left of the box. For this instruction
you should find R/M tn he 111. Assembling all these bits
together should give yuu 10001010 00001111 as the
binary code for the instruction MOV CL, [BX]. Figure
3-10 summarizes the meaning of all the bits in this
result.

CODING MOV 43H[SI], DH

This instruction will copy a byte from the DH register
to a memory location. The BIU will compute the effective
address of the memory location by adding the indicated
displacement of 43H to the contents of the SI register.
As we showed you in the last chapter, the BIU then
produces the actual physical address by adding this
effective address to the data segment base represented
by the 16-bit number in the DS register.

BYTE 1 | BYTE 2 |
[_]0[0] of1Jofoh i To[i 11 To]0] movse ex
o ae—— b ks e

OP CODE (MOV) J [__ sp
‘FROM' REG REG BX
MOV WORD REGISTER TO REGISTER

(o)

FIGURE 3-9 MOV instruction coding examples. (a) MOV SP, BX. (b1 MOV SP,

BX alternative.

50 CHAPTER THREE

| BYTE 1 | BYTE2 |

[_LOIOIOI IOI [o TOIOTIOI J1]1f1] movee iex)

OP CODE [BX]
- T REG REG CcL
MOV BYTE MEMORY,

NO DISPLACEMENT

FIGURE 3-10 MOV CL, [BX].

The 6-bit opcode for this instruction is again 100010.
Put 110 in the REG field to represent the DH register.
D = Obecause you are moving data from the DH register.
W = 0 because you are moving a byte. The R/M field will
be 100 because Sl contains part of the effective address.
The MOD field will be 01 because the displacement
contained in the instruction, 43H, will fit in 1 byte. If
the specified displacement had been a number larger
than FFH, then MOD would be 10. Putting all these
pleces together gives 10001000 01110100 for the first
two bytes of the instruction code. The specified displace-
ment, 43H or 01000011 binary. is put after these two
as a third instruction byte. Figure 3-11 shows this. If
an instruction specifies a 16-bit displacement, then the
low byte of the displacement is put in as byte 3 of the
instruction code, and the high byte of the displacement
is put in as byte 4 of the instruction code.

| BYTE 1 | BYTE 2 |
| To[oTo]] -1 [olo[1 [[Jo] o] o] Movesrision
\._,_J_Y_A_ﬂ_/
opcoue R/M = [SI]
"FROM’ aec ngm DH
MOV BYTE MEMORY, ONE BYTE
DISPLACEMENT
| BYTE3

LoftfoJofofo]r I_I
DISPLACEMENT = 43H

FIGURE 311 MOV 43H[SI], DH.

CODING MOV CX, [437AH]

This instruction copies the contents of two memory
locations into the CX register. The direct address or
displacement of the first memory location from the start
of the data segment is 437AH. As we showed you in the
last chapter, the BIU will produce the physical memory
address by adding this displacement to the data segment
base represented by the 16-bit number in the DS reg-
ister.

The 6-bit opcode for this instruction is again 100010.
Make D = 1 because you are moving data to the CX
register, and make W = 1 because the data being moved
is a word. Put 001 in the REG field to represent the CX
register, then consult Figure 3-8 to find the MOD and
R/M codes. In the first column of the figure, you should
find a box labeled “direct address,” which is the name
given to the addressing mode used in this instruction.
For direct addressing, you should find MOD to be 00

-9

I BYTE 1 f | BYTE 2 |

CTelele [ST [Tololo o]+]3]0}
°"“:‘::..EGJ L o

ADDRESSING
MOV WORD REG CX
BYTE3 BYTE 4 |

[01 [1]i]rbol IOITI°l°l°I°lJ luovcx eaTA]

DIRECT ADDRESS DIRECT ADDRESS
LOWBYTE HIGH BYTE
7AH 43H

FIGURE 3-12 MOV CX, [437AH].

and R/M to be 110. The first two code bytes for the
instruction, then, are 10001011 00001110. These two
bytes will be followed by the low byte of the direct
address, 7AH (01111010 binary), and the high byte
of the direct address, 43H (01000011 bjinary). The
instruction will be coded into four successive memory
addresses as 8BH, OEH, 7AH, and 43H. Figure 3-12
spells this out in detalil.

CODING MOV Cs:[BX], DL

This instruction copies a byte from the DL register to a
memory location. The effective address for the memory
location is contained in the BX reglstcr Normally an
effective address in BX will be added to the data segment
base in DS to produce the physical memory address. In
this instruction, the CS: in front of [BX] indicates that
we want the BIU to add the effective address to the code
segment base in CS to produce the physical address.
The CS: is called a segment override prefix,

V" ~n jnstruction containing a segment override
prefix is coded, an 8-bit code for the segment override
prefix is put in memory before the code for the rest of
the instruction. The code byte for the segment override
prefix has the format 001XX110. You insert a 2-bit code
in place of the X's to indicate which segment base you
want the effective address to be added to. As shown in
Figure 3-7, the codes for these 2 bits are as follows:
ES = 00.CS = 01, SS = 10, and DS = 11. The segment
override prefix byte for CS, then, is 00101110. For
practice, code out the rest of this instruction. Figure
3-13 shows the result you should get and how the code

SEGMENT OVERRIDE PREFIX
| BYTE 1 |

(ofofrfofr]1]1]o]
S
CS REGISTER

| BYTE2 | BYTE3 |
[1lo]o]o]s [o]o]o[o[olo[1[o[]1]1]moves: 1ex1. oL

ov CODE (BXI
‘FROM’ REG I REG oL
MOV BYTE MEMORY, NO DISPLACEMENT

FIGURE 3-13 MOV CS:(BX], DL.

8086 FAMILY ASSEMBLY LANGUAGE PROGRAMMING—INTRODUCTION 51

A QRLOH

for the segment override prefix is'put before the other
code bytes for the instruction. ’

Coding the Example Program in Figure 3-4

Again, as you read through this section, follow the bit-
by-bit development of the instruction codes on a separate
piece of paper for practice.

MOV AX, 0010H

_This instruction will load the immediate word 0010H
into the AX register. The simplest code template to use
for this instruction is listed in the table in Appendix A
under the "MOV — Immediate to register” heading. The
format for this Instruction is 1011 W REG, data byte
low, data byte high. W = 1 because you are moving a
word. Consult Figure 3-7 to find the code for the AX
register. You shouid find this to be 000. Put this 3-bit
code in the REG field of the Instruction code. The
completed instruction code byte is 10111000. Put the
low byte of the immediate number, 10H, in as the second
code byte. Then put the high byte of the immediate data,
OOH, in as the third code byte. The resultant sequence
of code bytes, then, will be BSH, 10H, O0H.

MOV DS, AX

This instruction coples the contents of the AX register
into the data segment register. The template to use for
coding this instruction is found In the table in Appendix
A under the heading “MOV — Register/memory to seg-
ment register.” The format for this template is 10001110
MOD 0 segreg R/M. Segreg represents the 2-bit code for
the desired segment register, as shown in Figure 3-7.
These codes are also found in the table at the end of
Appendix A. The segreg code for the DS register is 11.
Since the other operand is a register, MOD should be
11. Put the 3-bit code for the AX register, 000. in the
RM field. The resultant codes for the two code bytes
should then be 10001110 11011000, or 8EH D8H.

IN AL, O5H

This tnstruction copies a byte of data from port 05}! to
the AL register. The coding for this instruction was
described in a previous section. The code for the instruc-
tion is 11100100 00000101 or E4H 05H.

ADD AL, 07H

This instruction adds the immediate number 07H to
the AL register and puts the result in the AL register.
The simplest template to use for coding this Instruction
is found in the table in Appendix A under the heading
“ADD — Immediate to accumulator.” The format fis
0000010 W, data byte, data byte. Since you are adding
a byte, W = 0. The immediate data byte you are adding
will be put in the second code byte. The third code byte
will not be needed because you are adding only a byte.
The resultant codes, then, are 00000100 00000111 or
04H O7H.

52 CHAPTER THREE

MOV [0000], AL

This instruction copies the contents of the AL register
toa memory location. The direct address or displacement
of the memory location from the start of the data segment
is OO00OH. The code template for this instruction is found
in the table in Appendix A under the heading “MOV —
Accumulator to memory.” The format for the instruction
is 1010001 W, address low byte, address high byte.
Since the Instruction moves a byte, W = 0. The low
byte of the direct address is written in as the second
instruction code byte, and the high byte of the direct
address is written in as the third instruction code byte.
The codes for these 3 bytes. then, will be 10100010
00000000 00000000 or A2H 00H OOH.

INT 3

In some 8086 systems this instruction causes the 8086
to stop executing your program instructions, return to
the monitor program, and walit for your next command.
According to the format table in Appendix A, the code
for a type 3 Interrupt is the single byte 11001100 or
CCH.

SUMMARY OF HAND CODING
THE EXAMPLE PROGRAM

Figure 3-4 shows the example program with all the
tnstruction codes in sequential order as you would write
them so that you could load the program into memory
and run it. Codes are in HEX to save space.

A Look at Another Coding Template Format

As we mentioned previously, Intel literature shows the
8086 instruction coding templates in two different
forms. The preceding sections have shown you how to
use the templates found at the end of the 8086 data
sheet in Appendix A. Now let's take a brief look at the
second form, which is shown along with the instruction
clock cycles in Appendix B.

The only difference between the second form for the
templates and the form we discussed previously is that
the D and W bits are not individually identified. Instead,
the complete rzcode bytes are shown for each version
of an instruction. For example, in Appendix B, the
opcode byte for the MOV memory 8, register 8 instruction
is shown as 88H, and the opcode byte for the MOV
memory 16, register 16 tnstruction is shown as 89H.
If you compare these codes with those derived from
Appendix A, you will see that the only difference between
the two codes is the W bit. For the 8-bit move, W = 0,
and for the 16-bit move, W = 1. ;

One important point to make about using the tem-
plates in Appendix B is that for operations involving two
registers, the register identified in the REG field is not
consistent from instruction to Instruction. For the MOV
instructions, the templates in Appendix B assume that
the 3-bit code for the source register is put in the REG
field of the MOD/RM instruction byte, and the 3-bit code
for the destination register is put in the R’'M field of the
MOD/RM instruction byte. According to Appendix B, the

template for a 16-bit register-to-register move is 89H
followed by the MOD reg R/M byte. In this template,

D = 0, so the 3-bit code for the source register willbe put . -

in the reg field. Using this template. then. the instruc-
tion MOV BX, CX is coded as 10001001 11001011 or
89H CBH.

For the ADD, ADC, SUB, SBB, AND, OR, and XOR
instructions which involve two registers, the templates
in Appendix B show D = 1. To be consistent with these
templates, then, you have to put the 3-bit code for the
destination register in the reg field in the instruction.

It really doesn’'t matter whether you use the templates
in Appendix A or those in Appendix B, as long as you
are consistent in coding each instruction.

A Few Words about Hand Coding

If you have to hand code 8086 assembly language
programs, here are a few tips to make your life easier.
First, check your aigorithm very carefully to make sure
that it really does what it is supposed to do. Second,
initially write down just the assembly language state-
ments and comments for your program. You can check

the table in the appendix to determine how many bytes’

each instruction takes so that you know how many
blank lines to leave between instruction statements.
You may find it helpful to insert three or four NOP
instructions after every nine or ten instructions. The
NOP instruction doesn't do anything but kill time.
However, if you accidentally leave out an instruction in
your program, you can replace the NOPs with the needed
instruction(s). This way you don't. have to rewrite the
entire program after the missing instruction.

After you have written down the Instruction state-
ments, recheck very carefully to make sure you have the
right instructions to implement your algorithm. Then
work out the binary codes for each instruction and write
them in the appropriate places on the coding form,

Hand coding is laborious for long programs. When
writing long programs, it is much more efficient to use
an assembler. The next section of this chapter shows
you how to write your programs so that you can use
an assembler to produce the machine codes for the
instructions.

WRITING PROGRAMS FOR USE
WITH AN ASSEMBLER

If you have an 8086 assembler available, you should
learn to use it as soon as possible. Besides doing the
tedious task of producing the binary codes for your
instruction statements, an assembler also allows you to
refer to data items by name rather than by their numeri-
cal offsets. As you should soon see, this greatly reduces
the work you have to do and makes your programs much
more readable. in this section we show you how to write
your programs so that you can use an assembler on
them.

NOTE: The assembly language programs in the
rest of this book were assembled with TASM 1.0
from Borland International or MASM 5.1 from
Microsoft Corp. TASM is faster, but the program
format for these two assemblers is essentially the
same. If you are using some other assembler, check
the manual for it to determine any differences in
syntax from the examples in this book.

Program Format

The best way to approach this section seems to be to
show you a simple, but complete, program written for
an assembler and explain the function of the various
tp}larts of the program. By now you are probably tired of
e “read temperature, add +7, and store result in .
memory~ program, so we will use another example.
Figure 3-14, p. 54, shows an 8086 assembly language

. program which multiplies two 16-bit binary numbers to

give a 32-bit binary result. If you have a microcomputer
development system or a microcomputer with an 8086
assembler to work on, this is a good program for you to
key in, assemble, and run to become familiar with the
operation of your system. (A sequence of exercises in
the accompanying lab manual explains how to do this.)
In any case, you can use the structure of this example
program as a model for your own programs.

In addition to program instructions, the example
program in Figure 3-14 contains direction$ to the assem-
bler. These directions to the assembler are commonly
called assembler directives or pseudo operations. A
section at the end of Chapter 6 lists and describes for
your reference a large number of the available assembler .
directives. Here we will discuss the basic assembler
directives you need to get started writing programs. We
will introduce more of these directives as we need them
in the next two chapters.

SEGMENT and ENDS Directives

The SEGMENT and ENDS directives are used to identify
a group of data items or a group of instructions that
you want to be put together in a particular segment.
These directives are used in the same way that parenthe- -
ses are used to group like terms in algebra. A group of
data statements or a group of instruction statements .
contained between SEGMENT and ENDS directives is
called a logical segment. When you' set up a logical
segment, you give it a name of your choosing. In the
example program, the statements DATA_HERE SEG-
MENT and DATA_HERE ENDS set up a logical segment
named DATA_HERE. There is nothing sacred about the
name DATA_HERE. We simply chose this name to help
us remember that this logical segment contains data
statements. The statements CODE_HERE SEGMENT
and CODE_HERE ENDS in the example program set up
a logical segment named CODE_HERE which contains
instruction statements. Most 8086 assemblers, inciden-
tally, allow you to use names and labels of up to 31
characters. You can't use spaces in a name, but you can

8086 FAMILY ASSEMBLY LANGUAGE PROGRAMMING—INTRODUCTION 53

: ; 8086 PROGRAM F3-14.ASM
;ABSTRACT

: This program multiplies the two 16-bit words in the memory
; locations called MULTIPLICAND and MULTIPLIER. The result
i is stored in the memory location, PRODUCT
JREGISTERS : Uses CS, DS, AX, Dx
;PORTS : None used
DATA_HERE SEGMENT
MULTIPLICAND OW 204AH ; First word here
MULTIPLIER DW 3B2AH ; Second word here
PRODUCT DW 2 pupP(0)

DATA_HERE ENDS
CODE_HERE SEGMENT
ASSUME
START: MOV AX, DATA_HERE
MOV DS, AX
MOV AX, MULTIPLICAND
MUL MULTIPLIER
MOV PRODUCT, AX
MOV PRODUCT+2, DX
INT 3
CODE_HERE ENDS
END START

Se S me me wa

i Result of multiplication here

CS:CODE_HERE, DS:DATA_HERE
i Initialize DS register

Get one word

Multiply by second word
Store low word of result
Store high word of result
Wait for command from user

: Programs to be ruh using a debugger in DOS must include the START: label and the
i START after the END fatjowed by a carriage return. Programs to be downloaded and run need
; only the END directiva ol lowed by a carriage return.

FIGURE 3-14 Assembly language source program to multiply two 16-bit binary

numbers to give a 32-bit result.

use an underscore as shown to sepaette. words in a
name. Also, you can't use ifistruction mnemonics as
segment names or labels. Throughout the rest of the
program you will refer to a logical segment by the name
that you give it when you define it.

A logical segment is not usually given a physical
starting address when it Is declared. After the program
is assembled and perhaps linked with other assembled
program modules, it is then assigned the physical
address where it will be loaded in memory to be run.

Naming Data and Addresses — EQU, DB, DW,
and DD Directives

Programs work with three general categories of data:
constants, variables, and addresses. The value of a
constant does not change during the execution of the
program. The number 7 is an example of a constant you
might use in a program. A variable is the name given to
a data item which can change during the execution of
a prograin. The current temperature of an oyen is an
example of a variable. Addresses are referred to in many
instructions. You may, for example, load an address into
a register or jump to an address. 3

Constants, varfables, and addresses used. in your
programs can be given names. This allows you to refer
to them by name rather than having to remember or
calculate their value each time you refer to them in
an instruction. In other words, if you give names to
constants, variables, and addresses, the assembler can

54 CHAPTER THREE

use these names to find a desired data item or address
when you refer to it in an instruction. Specific directives
are used to give names to constants and variables in your
programs. Labels are used to give names to addresses in
your programs.

THE EQU DIRECTIVE

The EQU, or equate, directive is used to assign names
to constants used in your programs. The statement
CORRECTION_FACTOR EQU 07H, in a program such
as our previous example, would tell the assembler to
insert the value 07H every time it finds the name
CORRECTION_FACTOR in a program statement. In
other words, when the assembler reads the statement
ADD AL, CORRECTION_FACTOR, it will automatically
code the instruction as if you had written it ADD AL,
O7H. Here's the advantage of using an EQU directive to
declare constants at the start of your program. Suppose
you use the correction factor of +07H 23 times in your
program. Now the company you work for changes the
brand of temperature sensor it buys, and the new
correction factor is +O09H. If you used the number
O7H directly in the 23 instructions which contain this
correction factor. then you have to go through the entire
program, find each.instruction that uses the correction
factor, and update the value. Murphy’s law being what
It is, you are likely to miss one or two of these. and the
Program won't work correctly. If you used an EQU at the
start of your program and then referred to CORREC-
TION_FACTOR By aame in the 23 instructions. then all

v
you do is change the value in the EQU statement from
07H to 09H and reassemble the program. The assembler
automatically inserts the new value of O9H in all 23
instructions.

DB, DW, AND DD DIRECTIVES

The DB, DW, and DD directives are used to assign names
to variables in your programs. The DB, directive after a
name specifies that the data is of type byte. The program
statement OVEN_TEMPERATURE DB 27H, for example,
declares a variable of type byte, gives it the name
OVEN_TEMPERATURE, and gives it an initial value of
27H. When the binary code for the program is loaded
into memory to be run, the value 27H will-be loaded into
the memory location identified by the name OVEN_
TEMPERATURE DB 27H.

As another example, the statement CONVER-
SION_FACTORS DB 27H, 48H, 32H, 69H will declare a
data structure (array) of 4 bytes and initialize the 4 bytes
with the specified 4 values. If you don't care what value
a data item is initialized to, then you can indicate this
with a “?,” as in the statement TARE_WEIGHT DB ?.

NOTE: Variables which are changed during the
operation of a program should also be initialized
with program instructions so that the program
can be rerun from the start without reloading it
to initialize the variables.

DW is used to specify that the data is of type word
(16 bits), and DD is used to specify that the data is of
type doubleword (32 bits). The example program in
Figure 3-14 shows three examples of naming and initial-
izing word-type data items.

The first example, MULTIPLICAND DW 204AH, de-
clares a data word named MULTIPLICAND and initializes
that data word with the value 204AH. What this means
is that the assembler will set aside two successive
memory locations and assign the name MULTIPLICAND
to the first location. As you will see, this allows us to
access the data in these memory locations by name. The,
MULTIPLICAND DW 204AH statement also indicates
that when the final program is loaded into memory to
be run, these memory locations will be loaded with
(initialized to) 204AH. Actually. since this is an Intel

microprocessor, the first address in memory will contain -

the low byte of the word, 4AH. and the second memory
address will contain the high byte of the word, 20H.

The second data declaration example in Figure 3-14,
MULTIPLIER DW 3B2AH, sets aside storage for a word
in memory and gives the starting address of this word
the name MULTIPLIER. When the program is loaded,
the first memory address will be initialized with 2AH,
and the second memory location with 3BH.

The third data declaration example in Figure 3-14,
PRODUCT DW 2 DUP(0), sets aside storage for two words
in memory and gives the starting address of the first
word the name PRODUCT. The DUP(0) part of the
statement tells the assembler to initialize the two words
to all zeros. When we multiply two 16-bit binary num-
bers, the product can be as large as 32 bits. so we must
set aside this much space to store the product. We could

have used the DD directive to declare PRODUCT a
doubleword, but since in the program we move the result
to PRODUCT one word at a time, it is more convenient
to declaré PRODUCT 2 words.

Figure 3-15 shows how the data for MULTIPLICAND,
MULTIPLIER. and PRODUCT will actually be arranged
in memory starting from the base of the DATA_HERE
segment. The first byte of MULTIPLICAND. 4AH, will be
at a displacement of zero from the segment base. because
MULTIPLICAND is the first data item declared in the
logical segment DATA_HERE. The displacement of the
second byte of MULTIPLICAND is 0001. The displace-
ment of the first byte of MULTIPLIER from the segment
base is 0002H, and the displacement of the second byte
of MULTIPLIER is 0003H. These are the displacements '
that we would have to figure out for each data item if
we were not using names to refer to them.

If the logical segment DATA_HERE is eventually put
in ROM or EPROM, then MULTIPLICAND will function
as a constant, because it cannot be changed during
program execution. However, if DATA_HERE is eventu-
ally put in RAM, then MULTIPLICAND can function as
a variable because a new value could be written in those
memory locations during program execution.

MEMORY
AN
]
00
HIGH WORD
00
LOW WORD - %0
00 | = START OF PRODUCT
38
2A | = START OF MULTIPLIER
= ;
SEGMENTBASE ____ [44 | <—— START OF MULTIPLICAND
DATA_HERE ‘
bAAAAA]

FIGURE 3-15 Data arrangement in memory for multipl'y
program.

Types of Numbers Used in Data Statements

All the previous examples of DB, DW, and DD declara-
tions use hexadecimal numbers, as indicated by an "H”
after the number. You can, however, put in a number
in any one of several other forms. For each form you
must tell the assembler which form you are using.

BINARY

For example. when you use a binary number in a
statement, you put a “B" after the string of 1's and O’'s
to let the assembler know that you want the number to
be treated as a binary number. The statement TEMP_
MAX DB 01111001B is an example. If you want to put
in a negative binary number. write the number in its
2's complement sign-and-magnitude form.

8086 FAMILY ASSEMBLY LANGUAGE PROGRAMMING—INTRODUCTION 55

DECIMAL

The assembler treats a number with no identifying
letter after it as a decimal number. The assembler
automatically converts a decimal number In a statement
to binary so that the value can be loaded into memory.
Given the statement TEMP_MAX DB 49, for example,
the assembler will automatically convert the 49 decimal
to its binary equivalent, 00110001. If you indicate a
negative number in a data declaration statement. the
assembler will convert the number to its 2's complement
sign-and-magnitude form. For example, given the state-
ment TEMP_MIN DB - 20, the assembler will insert the
value 11101100, which is the 2's complement represen-
tation for —20 decimal.

NOTE: If you forget to put an H after a number
that you want the assembler to treat as hexadeci-
mal, the assembler will treat it as a decimal num-
ber. You can put a D after thé decimal values if
you want to indicate more clearly that the value is
decimal.

HEXADECIMAL

As shown in several previous examples, a hexadecimal
number is indicated by an H after the hexadecimal
-digits. The statement MULTIPLIER DW 3B2AH is an
example. A zero must be placed in front of a hex number
that starts with a letter: for example, the number AH
must be written 0AH. s

BCD

Remember from Chapter 1 that in BCD each decimal
digit is represented by its 4-bit binary equivalent. The
decimal number 37, for example, is represented in BCD
as 00110111. As you can see, this number is equal to
37H. The only way you can tell whether the number
00110111 represents BCD 37 or hexadecimal 37 is by
how it is used in the program! The point here is that if
you want the assembler to initialize a variable with the
value 37 BCD, you put an H after the number. The
statement SECONDS DB 59H, for example, will initialize
the variable SECONDS with 01011001, the BCD repre-
sentation of 59.

.

ASCII

You can declare a data structure (array) containing a
sequence of ASCII codes by enclosing the letters or
numbers after a DB In single quotation marks. The
statement BOY1 DB 'ALBERT'. for example, tells the
assembler to declare a data item named BOY]1 that has
Six memory locations. It also tells the assembler to put
®he ASCII code for A in the first memory location. the
ASCII code for L in the second, the ASCII code for B in
the third, etc. The assembler will automatically deter-
mine the ASCII codes for the letters or numbers within
- the quotes. Note that this ASCII trick can be used only
with the DB directive.

56 CHAPTER THREE

Accessing Named Data

with Program Instructions

Now that we have shown you how a data structure can
be set up. let's look at how program instructions access
this data. Temporarily skipping over the first two in-
structions in the CODE_HERE section of the program
in Figure 3-16, find the instruction MOV AX, MULTIPLI-
CAND. This instruction, when executed, will copy a
word from the memory location named MULTIPLICAND
to the AX register. Here's how this works.

When the assembler reads through this program the
first time, it automatically calculates the offset of each
of the named data items from the segment base DATA_
HERE. In Figure 3-15 you can see that the displacement
of MULTIPLICAND from the segment base is 0000. This
is because MULTIPLICAND is the first data item declared
in the segment. The assembler, then, will find that the
displacement of MULTIPLICAND is OOOOH. When the
assembler reads the program the second time to produce
the binary codes for the instructions, it will insert
this displacement as part of the binary code for the
instruction MOV AX, MULTIPLICAND. Since we know
that the displacement of MULTIPLICAND is 0000, we
could have written the instruction as MOV AX, [0000).
However, there would be a problem if we later changed
the program by adding another data item before MULTI-
PLICAND in DATA_HERE. The displacement of MULTI-
PLICAND would be changed. Therefore, we would have
to remember to go through the entire program and
correct the displacement in all instructions that access
MULTIPLICAND. If you use a name to refer to each data
item as shown, the assembler will automatically calculate
the correct displacement of that data item for you and
Insert this displacement each time you refer to it in an
instruction.

To summarize how this works, then, the instruction
MOV AX, MULTIPLICAND is an example of direct ad-
dressing where the direct address or displacement of
the desired data word in the data segment is represented
by the name MULTIPLICAND. For instructions such
as this, the assembler will automatically calculate the
displacement of the named data item from the start of
the segment and insert this value as part of the binary
code for the instruction. This can be seen on line 18 of
the assembler listing shown in Figure 3-16. When the’
instruction executes, the BIU will add the displacement
contained in the instruction to the data segment base
in DS to produce the 20-bit physical address of the data
word named MULTIPLICAND.

The next Instruction In the program in Figure 3-16is
another example of direct addressing using a named
data item. The instruction MUL MULTIPLIER multiplies
the word from the memory location named MULTIPLIER
in DATA_HERE by the word in the AX register. When
the assembler reads through this program the first time,
it will find that the displacement of MULTIPLIER in
DATA_HERE is 0002H. When it reads through the
program the second time. it inserts this displacement
as part of the binary code for the MUL instruction,
as shown on line 19 in Figure 3-16. When the MUL
MULTIPLIER instruction executes, the BIU will add the
displacement contained In the instruction to the data

Turbo Assembler Version 1.0

Page 1

1 ; 8086 PROGRAM F3-14.ASM
2 sABSTRACT : This program multiplies the two 16-bit words in the memory
3 : locations called MULTIPLICAND and MULTIPLIER. The result
4 ; is stored in the memory location, PROOUCT
5 sREGISTERS : Uses CS, DS, AX, DX
é ;PORTS : None used
7
8 0000) DATA_HERE SEGMENT
9 0000 204A , MULTIPLICAND DW 204AH ; First word here
10 0002 3B2A MULTIPLIER DW 382AH : Second word here
11 0004 02*(0000) PRODUCT OW 2 DUP(0) _; Result of multiplication here
12 0008 DATA_HERE ENDS
13
14 0000 CODE_HERE SEGMENT
15 ASSUME CS:CODE_HERE, DS:DATA_HERE
16 0000 B8 0000s START: MOV AX, DATA_HERE ; Initialize DS register
17 0003 8¢ D8 MOV DS, AX
18 0005 A1 0000r MOV AX, MULTIPLICAND ; Get one word
19 0008 F7 26 0002r MUL MULTIPLIER s Multiply by second word
20 000C A3 0004r MOV PRODUCT, AX ; Store low word of result
21 000F 89 16 0006r MOV PRODUCT+2, DX ; Store high word of result
22 0013 cC INT 3 ; Wait for command from user
23 0014 CODE_HERE ENDS
24 END START
Turbo Assembler Version 1.0 Page 2
Symbol Table
Symbol Name Type Value
27DATE Text “04-06-89"
22FILENAME Text "F3-14 "
27TIME Text "07:41:58
2?VERSION Number 0100
"acpPy Text 0107H
ACURSEG Text CODE_HERE
QF ILENAME Text F3-14
AWORDS 1 2E Text 2
MULTIPLICAND word DATA_HERE:0000
MULTIPLIER Word DATA_HERE:0002
PRODUCT Word DATA_HERE:0004
START Near CODE_HERE :0000

Groups & Segments

CODE_HERE
DATA_HERE

16 0014 Para
16 0008 Para

none
none

Bit Size Align Combine Class

FIGURE 3-16 Assembler listing for example program in Figure 3-14.

segment base in DS to address MULTIPLIER in memory.
After the multiplication, the low word of the result is
left in the AX register, and the high word of the resuit
is left in the DX register.

The next instruction, MOV PRODUCT. AX. in the
program in Figure 3-16 copies the low word of the result
from AX to memory. The low byte of AX will be copied
to a memory location named PRODUCT. The high byte
of AX will be copied to the next higher address. which
we can refer to as PRODUCT + 1. As you can see on line

8086 FAMILY ASSEMBLY LANGUAGE PROGRAMMING—INTRODUCTION

20 in Figure 3-16. the displacement of PRODUCT.
0004H. is inserted in the code for the MOV PRODUCT.
AX instruction.

The following instruction in the program. MOV PROD-
UCT + 2, DX, copies the high word of the multiplication
result from DX to memory. When the assembler reads
this instruction, it will add the indicated “2" to the
displacement it calculated for PRODUCT and insert the
result as part of the binarytode for the nstruction. as
shown on line 21 in Figure 3-16. Therefore, when the

57

Instruction executes, the low byte of DX will be copied
to memory at a displacement of PRODUCT + 2. The
high byte of DX will be copied to a memory location
which we can refer to as PRODUCT + 3. F igure 3-15
shows how the two words of the product are put in
memory. Note that the lower byte of a word is always
put in the lower memory address.

This example program should show you that if you
are using an assembler, names are a very convenient
way of specifying the direct address of data in memory.
In the next section we show you how to refer to addresses
by name. E

Naming Addresses — Labels

One type of name used to represent addresses is called
a label. Labels are written in the label field of an
Instruction statement or a directive statement. ‘One
major use of labels is to represent the destination for
Jjump and call instructions. &. ppose, for example, we
want the 8086 to jump back to some previous instruction
over and over. Instead of computing the numerical
address that we want the 8086 to jump to, we put a
_label in front of the destination instruction and write
the jump instruction as JMP label:. Here is a specific
example. '

NEXT: INAL, O5H ; Get data sample from port 05H
. : Process data value read in

JMP NEXT ; Get next data value and
process

If you use a label to represent an address, as shown in
this example, the assembler will automatically calculate
the address that needs to be put in the code for the
Jump instruction. The next two chapters show many
examples of the use of labels with jump and call instruc-
tions.

Another gxample of using a name to represent an
address Is irr the SEGMENT directive statement. The
name DATA_HERE in the statement DATA_HERE SEG-
MENT., for example, represents the starting address of
a segment named DATA_HERE. Later we show you how
we use this name to initialize the data segment register,

but first we will discuss some other Pparts you need to -

know about in the example program in Figure 3-14.

0y

The ASSUME Directive

An 8086 program may have several logical segments that
contain code and several that contain data. However. at
any given time the 8086 works directly with only four
physical segments: a code segment. a data segment, a
stack segment, and an extra segment. The ASSUME
directive tells the assembler which logical segment to
use for each of these physical segments at a given time.

In Figure 3-14. for example. the statement ASSUME
CS:CODE_HERE, DS:DATA_HERE tells the assembler
that the logical segment named CODE_HERE contains
the instruction statements for the program and should
be treated as a code segment. It also teils the assembler

58 CHAPTER THREE

that it should treat the logical segment DATA_HERE as
the data segment for this program. In other words,
the DS:DATA_HERE part of the statement tells the
assembler that for any instruction which refers to data
in the data segment, data will be found in the logical
segment DATA_HERE. The ASSUME ... DS:DATA_
HERE, for example, tells the assembler that a named
data item such as MULTIPLICAND is contained in the
logical segment called DATA_HERE. Given this informa-
tion, the assembler can construct the binary codes for
the instruction. As we explained before, the displace-
ment of MULTIPLICAND from the start of the DATA_
HERE segment will be inserted as part of the instruction
by the assembler.

If you are using the stack segment and the extra
segment in your program, you must include terms in
the ASSUME statement to tell the assembler which
logical segments to use for each of these. To do this, you
might add terms such as SS:STACK_HERE, ES:EX-
TRA_HERE. As we will show later, you can put another
ASSUME directive later in the program to tell the assem-
bler to use different logical segments from that point
on.

If the ASSUME directive is not completely clear to you
at this point, don’t worry. We show many more examples
of its use throughout the rest of the book. We introduced
the ASSUME directive here because you need to put it

In your programs for most 8086 assemblers. You can

use the ASSUME statement in Figure 3-14 as a model
of how to write this directive for your programs.

Initializing Segment Registers

The ASSUME directive tells the assembler the names of
the logical segments to use as the code segment, data
segment, stack segment, and extra segment. The assem-
bler uses displacements from the start of the specified
logical segment to code out instructions. When the
Instructions are executed, the displacements in the
instructions will be added to the segment base addresses
represented by the 16-bit numbers in the segment
registers to produce the actual physical addresses. The
assembler, however, cannot directly load the segment
registers with the upper 16 bits of the segment starting
addresses as needed.

The segment registers other than the code segment
register must be initialized by program instructions
before they can be used to access data. The first two
instructions of the example program in Figure 3-14
show how you injtialize the data segment register. The
name DATA_HERE in the first instruction represents
the upper 16 bits of the starting address you give the
segment DATA_HERE. Since the 8086 does not allow
us to move this immediate number directly into the data
segment register, we must first load it into one of the
general-purpose registers, then copy it into the data
segment register. MOV AX. DATA_HERE loads the upper
16 bits of the segment starting address into the AX
register. MOV DS, AX copies this value from AX to the
data segment register. This is the same operation we
described for hand coding the example program in
Figure 3-4. except that here we use the segment name

instead of a number to refer to the segment base address.
In this example we used the AX register to pass the
value, but any 16-bit register other than a segment
register can be used. If you are hand coding your
program, you can just insert the upper 16 bits of the
20-bit segment starting address in place of DATA_HERE
in the instruction. For example, if in your particular
systein you decide to locate DATA_HERE at address
00300H, DS should be loaded with 0030H. If you are
using an assembler, you can use the segment name to
refer to the segment base address, as shown in the
example.

If you use the stack segment and the extra segment
in a program, the stack segment register and the extra
segment register must be initialized by program instruc-
tions in the same way.

When the assembler reads through your assembly
language program, it calculates the displacement of each
named variable from the start of the logical segment
that contains it. The assembler also keeps track of the
displacement of each instruction code byte from the
start of a logical segment. The CS:CODE_HERE part of
the ASSUME statement in Figure 3-14 tells the assembler
to calculate the displacements of the following instruc-
tions from the start of the logical segment CODE_HERE.
In other words, it tells the assembler that when this
program is run, the code segment register will contain
the upper 16 bits of the address where the logical
segment CODE_HERE was located in memory. The
instruction byte displacements that the assembler is
keeping track of are the values that the 8086 will put in
the instruction pointer (IP) to fetch each instruction
byte.

There are several ways in which the CS register can
be loaded with the code segment base address and the
instruction pointer can be loaded with the offset of the
instruction byte to be fetched next. The first way is with
the command you give your system to execute a program
starting at a given address. A typical command of this
sort is G = 0010:0000 <CR>. (<CR> means “press the
return key.”) This command will load CS with 0010 and
load IP with 0000. The 8086 will then fetch and execute
instructions starting from address 00100, the address
produced when the BIU adds IP to the code segment
base in the CS register.

As we will show you in the next two chapters, jump
and call instructions load new values in IP, and in some
cases they load new values in the CS register.

The END Directive

The END directive, as the name implies. tells the assem-
bler to stop reading. Any instructions or statements that
you write after an END directive will be ignored.

ASSEMBLY LANGUAGE PROGRAM
DEVELOPMENT TOOLS

Introduction

For all but the very simplest assembly language pro-
grams, you will probably want to use some type of

- 10

FIGURE 3-17 Apphed Microsystems ES 1800 16-bit
emulator. (Applied Microsystems Corp.)

microcomputer development system and program de-
velopment tools to make your work easier. A typical
system might consist of an IBM PC-type microcomputer
with at least several hundred kilobytes of RAM, a key-

" board and video display. floppy and/or hard disk drives,

aprinter, and an emulator. Figure 3-17 shows an Applied
Microsystems ES 1800 16-bit emulator which can be
added to an IBM PC/AT or compatible computer to
produce a complete 8086/80186/80286 development
system.

The following sections give you an introduction to
several common program development tools which you
use with a system such as this. Most of these tools are
p'rogram‘s which you run to perform some function on
the program you are writing. You will have to consult
the manuals for your system to get the specific details,
but this section should give you an overview of the steps
involved in developing an assembly language program.
An accompanying lab manual takes you through the use
of all these tools with the SDK-86 board and an IBM PC-
type computer. '

Editor

An editor is a program which allows you to create a file
containing the assembly language statements for your
program. 'Examples of suitable editors are PC Write,
Wordstar, and the editor that comes with some assem-
blers.

Figure 3-14 shows an example of the format you
should use when typing in your program. The actual
position of each field on a line is not important, but you
must put the fields 8F éach statement in the correct
order, and you must leave at least one blank between
fields. Whenever possible, we like to line the fields up in
columns so that it is easier to read the program.

As you type in your program. the editor stores the
ASCII codes for the letters and numbers in successive
RAM locations. If you make a typing error. the editor

_will let you back up and correct it. If you leave out a

program statement, the editor will let you move every-
thing down and insert the line. This is much easier
than working with pencil and paper, even if you type as
slowly as I do.

8086 FAMILY ASSEMBLY LANGUAGE PROGRAMMING—INTRODUCTION 59

‘When you have typed in all of your program, you then
save the file on a floppy or hard disk. This file is called
a source file. The next step is to process the source file
with an assembler. Incidentally, if you are going to use
the TASM or MASM assembler, you should give your
source file name the extension .ASM. You might, for
instance, give the example source program in Figure
3-14 a name such as MULTIPLY.ASM.

Assembler

As we told you earlier in the chapter., an assembler
program is used to translate the assembly language
mnemonics for instructions to the corresponding binary
codes. When you run the assembler, it reads the source
file of your program from the disk where you saved it
after editing. On the first pass through the source
program, the assembler determines the displacement of
named data items. the offset of labels, etc., and puts
this information in a symbol table. On the second pass
through the source program, the assembler proGuces
the binary code for each instruction and inserts the
offsets, etc., that it calculated during the first pass.

The assembler generates two files on the floppy or
hard disk. The first file, called the object file, is given
the extension .OBJ. The object file contains the binary
codes for the instructions and information about the
addresses of the instructions. After further processing,
the contents of this file will be loaded into memory and
run. The second file generated by the assembler is called
the assembler list file and is given the extension .LST.
Figure 3-16 shows the assembler list file for the source
program in Figure 3-14. The list file contains your
assembly language statements, the binary codes for each
instruction, and the offset for each instruction. You
usually send this file to a printer so that you will have
a printout of the entire program to work with when
you are testing and troubleshooting the program. The
assembler listing will also indicate any typing or syntax
(assembly language grammar) errors you made in your
source program.

To correct the errors indicated on the listing, you use
the editor to reedit your source program and save the
corrected source program on disk. You then reassemble
the corrected source program. It may take several times
through the edit-assemble loop before you get all the
syntax errors out of your source program.

NOTE: The assembler only finds syntax errors; it
will not teli you whether your program does what
it 1s supposed to do. To determine whether your
program works, you have to run the program and
test it.

~ Now let's take a closer look at some of the information
given on the assembler listing in Figure 3-16. The
leftmost column in the listing gives the offsets of data
items from the start of the data segment and the offsets
of code bytes from the start of the code segment. Note
that the assembler generates only offsets, not absolute
hysical addresses. A linker or locator will be used to
assign the physical starting addresses for the segments.

60 CHAPTER THREE

As evidence of this, note that the MOV AX, DATA_HERE
statement is assembled with some blanks after the basic
instruction code because the start of DS Is not known
at the time the program is assembled.

The trailer section of the listing in Figure 3-16 gives
some additional information about the segments and
names used in the program. The statement CODE_
HERE 16 0014 Para none, for example, tells you that the
segment CODE_HERE is 14H bytes long. The statement
MULTIPLIER Word DATA_HERE:0002 tells you that
MULTIPLIER is a variable of type word and that it is
located at an offset of 0002 in the segment DATA_HERE.

Linker

A linker is a program used to join several object files
into one large object file. When writing large programs,
it 1s usually much more efficient to divide the large
program into smaller modules. Each module can be
individually written, tested, and debugged. Then, when
all the modules work, their object modules can be linked
together to form a large, functioning program. Also, the
object modules for useful programs — a square root
program, for example — can be kept in a library fileand .
linked into other programs as needed.

NOTE: On IBM PC-type computers, you must run
the LINK program on your .OBJ file, even ff it
contains only one assembly module.

The linker produces a link file which contains the
binary codes for all the combined modules. The linker
also produces a link map file which contains the address
information about the linked files. The linker, however,
does not assign absolute addresses to the program; it
assigns only relative addresse:s starting from zero. This
form of the program is said to be relocatable because it
can be put anywhere in memory to be run. The linkers
which come with the TASM or MASM assemblers pro-
duce link files with the .EXE extension.

If your program does not require any external hard-
ware, you can use a program called a debugger to load
and run the .EXE file. We will tell you more about
debuggers later. The debugger program which loads your
program into memory automatjcally assigns physical
starting addresses to the segments.

If you are going to run your program on a system such
as an SDK-86 board, then you must use a locator
program to assign physical addresses to the segments .
in the .EXE file.

Locator

A locator 1s a program used to assign the specific
addresses of where the segments of object code are
to be loaded into mémory. A locator program- called
EXE2BIN comes with the IBM PC Disk Operating System
(DOS). EXE2BIN converts a .EXE file to a .BIN file which
has physical addresses. You can then use the SDKCOM1
program from Chapter 13 to download the .BIN file to
the SDK-86 board. The SDKCOM1 program can also be

"used to run the program and debug it on the SDK-86

board.

Debugger

If your program requires no external hardware or re-
quires only hardware accessible directly from your micro-
computer, then you can use a debugger to run and
debug your program. A debugger Is a program which
allows you to loud your object code program into system
memory, execute the program, and troubleshoot or
“debug” it. The debugger allows you to look at the
contents of registers and memory locations after your
program runs. It allows you to change the contents of
registers and memory locations and rerun the program.
Some debuggers allow you to stop execution after each
instruction so that you can check or alter memory and
register contents. A debugger also allows you to set a
breakpoint at any point in your program. If you insert
a breakpoint, the debugger will run the program up to
the instruction where you put the breakpoint and then
stop execution. You can then examine register and
memory contents to see whether the results are correct
at that point. If the results are correct, you can move
the breakpoint to a later point in the program. If the
results are not correct, you can check the program up
to that point to find out why they are not correct.

The point here is that the debugger commands help

you to quickly find the source of a problem in your
program. Once you find the problem, you can then cycle
back and correct the algorithm If necessary, use the
editor to correct your source program, reassemble the
corrected source program, relink, and run the program
again.

A basic debugger comes with the DOS for most IBM
PC-type computers, but more powerful debuggers such
as Borland's Turbo Debugger and Microsoft's Codeview
debugger make debugging much easier because they
allow you to directly see the contents of registers and
memory locations change as a program executes. In a
later chapter we show you how to use one of these
debuggers.

Microprocessor prototyping boards such as the SDK-
86 contain a debugger program in ROM. On boards
such as this, the debugger ts commonly called a monitor
program because it lets you monitor program activity.
The SDK-86 monitor program, for example, lets you
enter and run programs, single-step through programs,
examine register and memory contents, and insert
breakpoints.

Emulator

Another way to run your program is with an emulator,
such as that shown in Figure 3-17. An emulator is a
mixture of hardware and,software. It is usually used to
test and debug the hardware and software of an external
system, such as the prototype of a microprocessor-based
instrument. Part of the hardware of an emulator is a
multiwire cable which connects the host system to the
system being developed. A plug at the end of the cable
is plugged into the prototype system in place of its
microprocessor. Through this connection the software
of the emulator allows you to download your object code
program into RAM in the system being tested and run

START

DEFINE
PROBLEM
o) DEVELOP
EXTENSION OF
ALGORITHM |) rc GENERATED
BY PC-BASED
TOOLS:
\ CREATE
\ SOURCE FILE | -Asm
WITH EDITOR
-08J
ASSEMBLE
-LST
ASSEMBLY
ERRORS
-EXE
LINK
“MAP
LOCATE -BIN
NO YES
LOAD LOAD
DEBUGGER EMULATOR
LOAD LOAD
PROGRAM PROGRAM
RUN AND TEST RUN AND TEST
PROGRAM PROGRAM
ERRORS NO NO ERRORS
? . ?
YES YES
USE DEBUGGER USE EMULATOR
TOOLS TO TOOLS TO FIND
FIND ERRORS ERRORS

G

FIGURE 3-18 Program development algorithm
(see p. 62).

8086 FAMILY ASSEMBLY LANGUAGE PROGRAMMING—INTRODUCTION 61

it. Like a debugger, an emulator allows you to load and
run programs, examine and change the contents of
registers, examine and change the contents of memory
locations, and insert breakpoints in the program. The
emulator also takes a “snapshot” of the contents of
registers, activity on the address and data bus, and the
state of the flags as each instruction executes. The
emulator stores this trace data, as it Is called, in a large
RAM. You can do a printout of the trace data to see the
results that your program produced on a step-by-step
basis.

Another powerful feature of an emulator is the ability
to use either system memory or the memory on the
prototype for the program you are debugging. In a later
chapter we discuss in detail the use of an emulator in
developing a microprocessor-based product.

Summary of the Use of Program

Development Tools

Figure 3-18 (p. 61) summarizes the steps in developing a

working program. This may seem complicated, but if

you use the accompanying lab manual to go through the
. processacouple of times, you will find that it is quite easy.

The first and most important step is to think out very
carefully what you want the program to do and how you
want the program to do it. Next, use an editor to create
the source file for your program. Assemble the source
file. If the assembler list file indicates any errors in your
program, use the editor to correct these errors. Cycle
through the edit-assemble loop until the assembler tells
youon the listing that it found no errors. If your program
consists of several modules, then use the linker to join
their object modules into one large object module. If
your system requires it, use a locate program to specify
where you want your program to be put in memory.
Your program is now ready to be loaded into memory
and run. Note that Figure 3-18 also shows the extensions
for the files produced by each of the development pro-
grams.

If your program does not interact with any external
hardware other than that connected directly to the
system, then you can use the system debugger to run
and debug your program. If your program is intended
to work with external hardware, such as the prototype
of a microprocessor-based instrument, then you will
probably use an emulator to run and debug your pro-

gram. We will be discussing and showing the use of
these program development tools throughout the rest of
this book.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms or concepts in
the following list, use the index to find them in the
chapter.

Algorithm

Flowcharts and flowchart symbols

Structured programming

Pseudocode

Top-down and bottom-up design methods

Sequence, repetition, and decision operations

SEQUENCE, IF-THEN-ELSE, IF-THEN, nested IF-THEN-
ELSE, CASE, WHILE-DO, REPEAT-UNTIL pro-
gramming structures

8086 instructions: MOV, IN, OUT, ADD, ADC, SUB.
SBB. AND, OR, XOR, MUL, DIV

Instruction mnemonics

Initialization list

Assembly language program format
Instruction template: W bit, MOD, R/M, D bit
Segment-override prefix

Assembler directives: SEGMENT, ENDS, END, DB, DW,
DD, EQU, ASSUME

Accessing named data items

Editor

Assembler

Linker: library file, link files. link map, relocatable
Locator

Debugger, monitor progl;am

Emulator, trace data

 REVIEW QUESTIONS AND PROBLEMS

1. List the major steps in developing an assembly
language program.

2. What is the main advantage of a top-down design
approach to solving a programming problem?

3. Why should you develop a detailed algorithm fdr a
program before writing down any assembly lan-
guage instructions? '

4. a.
to write the algorithm for a program?

62 CHAPTER THREE

“What are the three basic structure types used

b. What is the advantage of using only these
structures when writing the algorithm for a

program?

5. A program Is like a recipe. Use a ﬂowcharl or
) pwudocode to show the algorithm for the following

i+ " recipe. The operations in it are sequence and

i repetition. Instead of implementing the resulting

~ algorithm in assembly language. implement it in

' your microwave and use the result to help you get
through the rest of the book.

Peanut Brittle:

1 cup sugar

0.5 cup white corn syrup
1 cup unsalted peanuts

1 teaspoon butter
1 teaspoon vanilla
1 teaspoon baking soda

{. Put sugar and syrup in' 1.5-quart casserole
{with handle) and stir until thoroughly mixed.
{i. Microwave at HIGH setting for 4 minutes.
tii. Add peanuts and stir until thoroughly mixed.
{v. Microwave at HIGH setting for 4 minutes. Add
butter and varilla, stir until well mixed, and
microwave at HIGH setting for 2 more minutes.
v. Add baking soda and gently stir until light and
foamy. Pour mixture onto nonstick cookie
sheet and let cool for 1 hour. When cool, break
into pieces. Makes 1 pound.

Use a flowchart or pseudocode to show the algo-
rithm for a program which gets a number from a
memory location, subtracts 20H from it, and out-
puts O1H to port 3AH if the result of the subtraction
is greater than 25H.

Given the register contents in Figure 3-19, answer

the following questions:

a. What physical address will the next instruction
be fetched from?

b. What is the physical address for the top of the

stack?
DATA SEGMENT
ES 6000 5000CH ©7
CS 4000 5000cH 9A
SS 7000 SO000AH 7C
DS 5000 S0009H ©B
IP 43E8 S0008H (€3
sp 0000 50007H B2
BP 2468 S0006H 49
SI 4C00 50004 21
oI 7000 50004H 89
50003H 71
500024 22
S0001H 4A
500004 3B
AH AL BH BL
AX 42 35 BX 07 SA
CH CL DH DL
cx 00 04 DX 33 02

FIGURE 3-19 8086 register and memory contents for
Problems 7, 8, and 10.

Describe the operation and results of each of the
following instructions, given the register contents
shown in Figure 3-19. Include in your answer the
physical address or register that each instruction
will get its operands from and the physical address
or register in which each instruction will put the
result. Use the instruction descriptions in Chapter
6 to help you. Assume that the following instruc-
tions are independent. not sequential. unless listed
together under a letter.

10.

12.

a. MOV AX, BX k. ORCL.BL

b. MOV CL. 37H . NOT AH

c. INC BX m. ROL BX, 1

d. MOV CX.[246BH] n. AND AL, CH

‘e. MOV CX.246BH o. MOV DS, AX

f. ADD AL, DH p. ROR BX, CL

g. MUL BX q. AND AL, OFH

h. DEC BP r. MOV. AX, [BX]

i. DIVBL s. MOV [BX][SI], CL
j. SUBAX.DX

See if you can spot the grammatical (syntax) errors
in the following instructions (use Chapter 6 to help

you):
a. MOV BH, AX d. MOV 7632H, CX
b MOV DX, CL e. INBL, 04H

¢. ADD AL. 2073H

Show the results that willbe in the affected registers
or memory locations after each of the following
groups of instructions executes. Assume that each
group of instructions starts with the register and
memory contents shown in Figure 3-19. (Use Chap-
ter 6.)

a. ADD BL Al d. MOV BX. 000AH"

MOV jO0u4t 14 MOV AL, |BX]
b. MOV CL. SUB AL. CL
ROR DI. €1 INC BX
c. ADD AL. BH MOV [BX). AL
DAA

Write the 8086 instruction which will perform the

indicated operation. Use the instruction overview

in this chapter and the detailed descriptions in

Chapter 6 to help you.

a. Copy Al 1o BL.

b. Load 458 into CL.

c. Increment the contents of CX by 1

d. Copy SP e 1P

e, Add O7H w0 DL,

f. Multipiv AL times BL

g. Copy AX to a memory location at offset 245AH
in the data segment

h. Decrement SP by 1.

i. Rotate the most significant bit of AL into the
least significant bit position

J. Copy DL to a memory location whose offsct is
in BX.

k. Mask the lower 4 bits of BL.

[Set the most significant bit of AX to a 1, but
do not affect the other bits

m. Invert the lower 4 bits of BL. but do not affect
the other bits.

Construct the binary code for each of the following
8086 instructions

a. MOV BL. AL [RORAX. 1

b. MOV [BX]. CX g. OUT DX. AL
c. ADD BX. 59HI[DI| h. AND AL. OFH
d. SUB (2048]. DH i. NOP

e. XCHG CH. ES:BX] j. INAL. DX

8086 FAMILY ASSEMBLY LANGUAGE PROGRAMMING—INTRODUCTION 63

13. Describe the function of each assembler directive 14.

and instruction statement in the short program
shown in Figure 3-20.

;PRESSURE READ PROGRAM 15.

DATA_HERE SEGMENT
PRESSURE DB 0
DATA_HERE ENDS

;storage for pressure

PRESSURE_PORT EQU 04H ;Pressure sensor connected
; to port O4H
;Current correction factor

; of 07

CORRECTION_FACTOR EQU O7H

CODE_HERE SEGMENT
ASSUME CS:CODE_HERE, DS:DATA_HERE
MOV _AX, DATA_HERE
MOV DS, AX
IN AL, PRESSURE_PORT
ADD AL, CORRECTION_FACTOR
MOV PRESSURE, AL
CODE_HERE ENDS
END

FIGURE 3-20 Program for Problem 13.

64 CHAPTER THREE

Describe how an assembly language program is
developed and debugged using system tools such
as editors, assemblers, linkers, locators. emulators,
and debuggers.

Write the pseudocode representation for the flow-
chart in Figure 3-18, p. 61.

Implementing Standard Program
Structures in 8086 Assembly Language

In Chapter 3 we worked very hard to convince you that
you should not try to write programs directly in assembly
language. The analogy of building a house without a
plan should come to mind here. When faced with a
programming problem, you should solve the problem
and write the algorithm for the solution using the
standard program structures we described. Then you
simply translate each step in the flowchart or pseudocode
to a group of one to four assembly language instructions
which will implement that step. The comments in the
assembly language program should describe the func-
tions of each instruction or group of instructions, so
you essentially write the comments for the program,
then write the assembly language instructions which
implement those comments. Once you learn how to
implement each of the standard programming struc-
tures, you should find it quite easy to translate algo-
rithms to assembly language. Also. as we will show
you. the standard structure approach makes debugging
relatively easy.

The purposes of this chapter are to show you how to
write the algorithms for some common programming
problems. how to implement these algorithms in 8086
assembly language, and how to systematically debug
assembly language programs. In the process you will
also learn more about how some of the 8086 instructions
work.

OBJECTIVES

At the conclusion of this chapter, you should be able to:

1. Write flowcharts or pseudocode for simple program-
ming problems.

2. Implement SEQUENCE., IF-THEN-ELSE. WHILE-
DO. and REREAT-UNTIL program structures in 8086
assembly language.

3. Describe the operation of seclected data transfer,
arithmetic. logical, jump. and loop instructions.

4. Use based and indexed addressing modes to access
data in your programs.

5. Describe a systematic approach to debugging a
simple assembly language program using debugger.
monitor, or emulator tools.

6. Write a delay loop which produces a desired amount
of delay on a specific 8086 system.

SIMPLE SEQUENCE PROGRAMS
Finding the Average of Two Numbers

DEFINING THE PROBLEM AND WRITING
THE ALGORITHM

A common need in programming is to find the average
of two numbers. Suppose, for example, we know the
maximum temperature and the minimum temperature
for a given day. and we want to determine the average
temperature. The sequence of steps we go through to
do this might iook something like the following.

Add maximum temperature and minimum temperature.

Divide sum by 2 to get average temperature.

This sequence doesn't look much like an assembly
language program. and it shouldn't. The algorithm at
this point should be general enough that it could be
implemented in any programming language, or on any
machine. Once you are reasonably sure of your algo-
rithm, then you can start thinking about the architec-
ture and instructions of the specific microcomputer on
which you plan to run the program. Now let’s show you
how we get from the algorithm to the assembly language
program for it.

SETTING UP THE DATA STRUCTURE

One of the first things for you to think about In this
process is the data that the program will be working
with. You need to ask yourself questions such as:

Will the data be in memory or in registers?

2. Is the data of type byte, type word, or perhaps type
doubleword?

3. How many data items are there?

4. Does the data represent only positive numbers, or
does it represent positive and negative (signed)
numbers?

65

5. For more complex problems, you might ask how the
data is structured. For example, is the data in an
array or In a record?

Let's assume for this example that the data is all in
memory, that the data is of type byte, and that the data
represents only positive numbers in the range 0 to OFFH.
The top part of Figure 4-1, between the DATA SEGMENT
and the DATA ENDS directives, shows how you might
set up the data structure for this program. It is very
similar to the data structure for the multiplication
example in the last chapter. In the logical segment called
DATA. HI_TEMP is declared as a variable of type byte
and initialized with a value of 92H. In an actual applica-
tion. the value in HI_TEMP would probably be put there
by another program which reads the output from a
temperature sensor. The statement LO_TEMP DB 52H
declares a variable of type byte and initializes it with the
value 52H. The statement AV_TEMP DB ? sets aside a
byte location to store the average temperature, but does
not initialize the location to any value. When the program
executes, it will write a value to this location.

INITIALIZATION CHECKLIST

Although it does not show in the algorithm, you know
from the discussion in Chapter 3 that most programs
start with a series of initialization instructions. For this
example program, all you have to initialize is the data
segment register. The MOV AX,DATA and MOV DS.AX
instructions at the start of the program in Figure 4-1
do this. .

These instructions load the DS register with the upper
16 bits of the starting address for the data segment. If

'

/i

FIGURE 4-1

66

CHAPTER FOUR

8086 program to average two temperatures.

you are using an assembler, you can use the name DATA
in the instruction to refer to this adaress. If you are not
using an assembler, then just put the hex for the upper
16 bits of the address in the MOV AX,DATA instruction
in place of the name.

CHOOSING INSTRUCTIONS TO IMPLEMENT
THE ALGORITHM

The next step is to look at the algorithm to determine
the major actions that you want the program to perform.
If you have written the algorithm correctly. then all you
should have to do is translate each step in the algorithm
to one to four assembly language instructions which
will implement that step.

You want the program to add two byte-type numbers
together. so scan through the instruction groups in
Chapter 3 to determine which 8086 instruction will do
this for you. The ADD instruction is the obvious choice
in this case.

Next, find and read the detailed discussion of the ADD
instruction in Chapter 6. From the discussion there,
you can determine how the instruction works and see
if it will do the necessary job. From the discussion of
the ADD instruction, you should find that the ADD
instruction has the format ADD destination,source. A
byte from the specified source is added to a byte in the
specified destination, or a word from the specified source
is added to a word in the specified destination. (Note
that you cannot directly add a byte to a word.) The result
in either case is put in the specified destination. The
source can be an immediate number, a register, or a
memory location. The destination can be a register or a

1 ; 8085 PROGRAM F4-01_ASM
L 2. JABSTRACT : This program averages two temperatures

3 ; named HI_TEMP and LO_TEMP and puts the

3 ~ ; result in the memory location AV_TEMP,

5 JREGISTERS : Uses DS, CS, AX, BL

é ;PORTS : None used

7

8 0000 DATA SEGMENT

9 0000 92 HI_TEMP DB 92H ; Max temp storage

10 0001 52 LO_TEMP DB 52H ; Low temp storage

11 0002 ?7? AV_TEMP DB 7 ; Store average here

12 0003 DATA ENDS

13

7 14 0000 CODE SEGMENT

15 ASSUME CS:CODE, DS:DATA .

16 0000 B8 0000s START: MOV AX, DATA ; Initialize data segment
17 0003 8t 08 MOV DS, AX

18 0005 AOC 0000r MOV AL, HI_TEMP ; Get first temperature
19 0008 02 06 0001r ADD AL, LO_TEMP ; Add second to it

20 000C B4 QO MOV AH, OOH ; Clear all of AH register
21 000E 80 D4 00 ADC AH, OOH ; Put carry in LSB of AH
22 0011 83 02 MOV BL, 02H ; Load divisor in BL register
23 0013 F6 F3 DIV BL ; Divide AX by BL. Quotient in AL,
24 ; and remainder in AW

25 0015 A2 0002r MOV AV_TEMP, AL ; Copy result to memory
26 0018 COOE ENDS ’

27 END

START

memory location. However, in a single instruction the
source and the destination cannot both be memory
locations. This means that you have to move one of the
operands from memory to a register before you can do
the ADD.

Another point to consider here is that if you add two
8-bit numbers, the sum can be larger than 8 bits.
Adding FOH and 40H, for example, gives 130H. The 8-bit
destination will contain 30H, and the carry will be held
in the carry flag. This means that to have the complete
sum. you must collect the parts of the result in a location
large enough to hold all 9 bits. A 16-bit register is a good
choice. 5

To summarize, then, you need to move one of the
numbers you want to add into a register, such as AL,
add the other number from memory to it. and move any
carry produced by the addition to the upper half of the
16-bit register which contains the sum in its lower 8
bits. Now let's take another look at Figure 4-1 to see how
you implement this step in the algorithm with 8086
instructions.

The instruction MOV AL.HI_TEMP copies one of the
temperatures from a memory location to the AL register.
The name HI_TEMP in the instruction represents the
direct address or displacement of the variable in the
logical segment DATA. The ADD AL,LO_TEMP instruc-
tion adds the specified byte from memory to the contents
of the AL register. The lower 8 bits of the sum are left
in the AL register. If the addition produces a result
greater than FFH, the carry flag will be set to a 1. If the
addition produces a result less than or equal to FFH,
the carry flag will be a 0. In either case, we want to get
the contents of the carry flag into the least significant
bit of the AH register. so that the entire sum is in the
AX register.

The MOV AH,00H instruction clears all the bits of AH
to 0's. The ADC AH,00H instruction adds the immediate
number OOH plus the contents of the carry flag to the
contents of the AH register. The result will be left in the
AH register. Since we cleared AH to all O's before
the add, what we are really adding is OOH + OOH + CF.
The result of all this is that the carry bit ends up in the
least significant bit of AH, which is what we set out to
do.

The next major action in our algorithm is to divide
the sum of the two temperatures by 2. To determine
how this step can be translated to assembly language
instructions, look at the instruction groups in the last
chapter to see If the 8086 has a Divide instruction. You
should find that it has two Divide instructions, DiV and
IDIV. DIV is for dividing unsigned numbers, and DIV
is used for dividing signed binary numbers. Since in
this example we are dividing unsigned binary numbers,
look up the DIV instruction in Chapter 6 to find out how
it works.

The DIV instruction can be used to divide a 16-bit
number in AX by a specified byte in a register or in a
memory location. After the division. an 8-bit quotient
is left in the AL register. and an 8-bit remainder is left
in the AH register. The DIV instruction can also be used
to divide a 32-bit number in the DX and AX registers by
a 16-bit number [rom a specified register or memory

-11

location. In this case, a 16-bit quotient is left in the AX
register, and a 16-bit remainder is left in the DX register.
In either case. there is a problem if the quotient is too
large to fit in AX for a 32-bit divide ur AL for a 16-bit
divide. Fortunately. the data in the example here is such
that the problem will not arise. In a later chapter we
discuss what to do about this problem. A

Remember from the previous discussion that the sum
of the two temperatures is already positioned in the AX
register as required by the DIV operation. Before we can
do the DIV operation, however. we have to get the divisor,
02H. into a register or memory location to satisfy the
requirements of the DIV instruction. A simple way to do
this is with the MOV BL.02H instruction. which loads
the immediate number O2H into the BL register. Now
you can do the divide operation with the instruction
DIV BL. The 8-bit quotient from the division will be left
in the AL register.

The algorithm doesn’t show it. but in our discussion
of the data structurc we said that the minimum, maxi-
mum, and average temperatures were all in memory
locations. Therefore, to complete the program, you have
to copy the quotient in AL to the memory location we
set aside for the average temperature. As shown in
Figure 4-1, the instruction MOV AV_TEMP,AL will copy
AL to this memory location.

NOTE: We could have used the remainder from
the division in AH to round off the average tempera-
ture to the nearest degree, but that would have
made the program more complex than we wanted
for this example.

SUMMARY OF CONVERTING AN ALGORITHM
TO ASSEMBLY LANCUAGE

Tk- first <tep in converting an algorithm to assembly
languuge is to set up the data structure that the algo-
rithm will be working with. The next step is to write at
the start of the code segment any instructions required
to initialize variables, segment registers, peripheral de-
vices, etc. Then determine the Instructions required to
implement each of the major actions in the algorithm,
and decide how the data must be positioned for these
instructions. Finally. insert the MOV or other instruc-
tions required to get the data into the correct position
for these instructions.

A Few Comments about the 8086
Arithmetic Instructions

The 8086 has instructions to add. subtract. multiply.
and divide. It can operate on signed or unsigned binary
numbers, BCD numbers. or numbers represented in
ASCII. Rather than put a lot of arithmetic examples at
this point in the book. we show arithmetic examples
with each arithmetic instruction description in Chapter
6. The description of the MUL instruction in Chapter 6.
for example, shows how unsigned binary numbers are
multiplied. Also we show other arithmetic cxamples as
needed throughout the rest of the book. If you need to
do some arithmetic operations with an 8086. there are
a few instructions in addition to the basic add. subtract.

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE 67

multiply, and divide instructions that you need to look
up in Chapter 6.

If you are adding BCD numbers. you need to also look
up the Decimal Adjust for Addition (DAA) instruction,
If you are subtracting BCD numbers, then you need
to look up the Decimal Adjust for Subtraction (DAS)
Instruction. If you are working with ASCIl numbers,
then you need to look up the ASCII Adjust after Addition
(AAA) instruction, the ASCII Adjust after Subtraction
(AAS) instruction, the ASCII Adjust after Multiply (AAM)
insfruction, and the ASCII Adjust before Division (AAD)
instruction.

Debugging Assembly Language Programs

By now you should be writing some programs of your
own. 5o we need to give you a few hints on how to debug
them if they don't work correctly the first time you try
to run them.

The first technique you use when you hit a difficult-
to-find problem in either hardware or software is the 5-
minute rule. This rule says, “You get 5 minutes to freak
out and mumble about changing vocations, then you
have to cope with the problem in a systematic manner."
What this means Is step back from the problem, collect
your wits, and think out a systematic series of steps to
find the soluticn. Random poking and probing wastes
a lot of valuable time and seldom finds the problem.
Here is a list of additional techniques you may find
useful in writing and debugging your programs.

1. Very carefully define the problem you are trying to
solve with the program and work out the best
algorithm you can.

2. Write and test each section of a program as you go,
instead of writing a large program all at once.

3. Ifa program or program section does not work, first
recheck the algorithm to make sure it really does
what you want it to. You might have someone else
look at it also. Another person may quickly spot an
error you have overlooked 17 times.

4. If the algorithm seems correct, check to make sure
that you have used the correct instructions to imple-
ment the algorithm. It is very easy to accidentally
switch the operands in an instruction. You might.
for example, write down the instruction MOV AX . DX
when the instruction you really want is MOV DX.AX_
Sometimes it helps to work out on paper the effect
thata series of instructions will have on some sample
numbers. These predictions can later be compared
with the actual results produced when the program
section runs.

5. If you are hand coding your programs. this is the
next place to check. It is very easy to get a bit wrong
when you construct the 8086 instruction codes. Also
remember, when constructing instruction codes
which contain addresses or displacements. that the
low byte of the address or displacement is coded in
before the high byte.

68 CHAPTER FOUR

6. Ifyoudon't find a problem in the algorithin, jrstruc-
tions, or coding. now is the time to use debugger,
monitor, or emulator tools to help you localize the
problem. You could use these tools right froin the
start, but il you do. it is easy to get lost in chasing
bits and not see the bigger picture of what is causing
the program to fail. When debugging shert program
sections on an SDK-86 board, for example. you
might use the single-step command to help you
determine why the program is not doing what
you want it to do. The SDK-86 board's single-step
command executes cne instruction and then stops
execution. You can then use the Examine Register
and Examine Memory commands to see if registers
and memory contain the correct data. If the results
are correct at that point, you can use the single-step
command to execute the next instruction. You keep
stepping through the program until you reach a
point where the results are not what you predicted
they should be at that point. Once you have localized
the problem to one or two instructions, it is usually
not too hard to find the error. An exercise in the
accompanying lab manual shows you how to use the
single-step command on an SDK-86 board.

7. For longer programs, the single-step approach can
be somewhat tedious. Breakpoints are often a faster
technique to narrow the source of a problem down
to a small region. Most debuggers, monitors, and
emulators allow you to specily both a starting ad-
dress and an ending address in their GO command.
The SDK-86 monitor GO command, for example,
has the format GO address,breakpoint address.
When you enter one of these commands, execution
will start al the address specified first in the com-
mand and stop when it reaches the address specified
in the second pesition in the command. After the
program runs to a hreakpoint, you can use the
Examine Register and E.xamine Memory commands
to check the results at that point.

Here's how you use breakpoints. Instead of running
the entire program, specify a breakpoint so that execu-
tion stops some distance into the program. You can
then check to see if the results are correct at this point.
If they are, y~.. can run the program again with the
breakpniit at a later address and check the results at
that point. If the results are not correct, you can move
the breakpoint to an earlier point in the program, run
it again. and check whether the results in registers and
memory are correct.

Suppose, for example, you write a program such as
the averaging program in Figure 4-1. and it does not
give the correct results. The first place to put a
breakpoint might be at the address of the MOV AH.00
instruction. Incidentally, in most systems the instruc-
tion at the address where you put the breakpoint does
not get executed. After the program runs to this
breakpoint. you check to see if the data segment register
was initialized correctly and if the basic addition was
performed correctly. If the program works correctly to
this point, you can run it again with the breakpoint at
the address of the MOV AV_TEMP.AL instruction. After

the program executes to this breakpoint, you can check
AL to see if the division produced the results you
predicted. If the 8086 s working at all,. it will almost
always do operations such as this correctly, so recheck
your predictions if you disagree with it.

It helps your frustration level if you make a game of
thinking where to put breakpoints to track down the
little bug that is messing up your program. With a little
practice you should soon develop an efficient debugging
algorithm of your own using the specific tools available
on your system. In the next chapter we show you how
to use a more powerful debugger to run and debug
programs in an IBM PC-type computer.

Converting Two ASCII Codes to Packed BCD

DEFINING THE PROBLEM AND WRITING
THE ALGORITHM

Computer data is often transferred as a series of 8-bit
ASCII codes. If, for example, you have a microcomputer
connected to an SDK-86 board and you type a 9 on an
ASCll-encoded computer terminal keyboard, the 8-bit
ASCII code sent to the SDK-86 will be 00111001 binary,
or 39H. If you type a 5 on the keyboard, the code sent
to the computer will be 00110101 binary or 35H, the
ASCII code for 5. As shown in Table 1-2, the ASCII codes
for the numbers 0 through 9 are 30H through 39H. The
lower nibbte of the ASCII codes contains the 4-bit BCD
code for the decimal number represented by the ASCII
code.

For many applications, we want to convert the ASCII
code to its simple BCD equivalent. We can do this by
simply replacing the 3 in the upper nibble of the byte
with four O's. For example, suppose we read in 00111001
binary or 39H. the ASCII code for 9. If we replace the
upper 4 bits with O’s, we are left with 00001001 binary
or O9H. The lower 4 bits then contain 1001 binary, the
BCD code for 9. Numbers represented as one BCD digit
per byte are called unpacked BCD.

For applications in which we are going to perform
mathematical operations on the BCD numbers, we
usually combine two BCD digits in a single byte. This
form is called packed BCD. Figure 4-2 shows examples
of ASCII, unpacked BCD. and packed BCD. The problem
we are going to work on here is how to convert two
numbers from ASCII code form to unpacked BCD form
and then pack the two BCD digits into one byte. Figure
4-2 shows in numerical form the sieps we want the
program to perform. When you are writing a program

ASCII 9 0011 0101 = 35H
ASCII 9 0011 1001 = 39H
UNPACKED BCD 5 0000 G101 = OSH
UNPACKED BCD 9 0000 1001 = Q9H
UNPACKED BCD 5 0101 0000 = S0H
MOVED TO UPPER NIBBLE
PACKED BCD 59 0101 1001 = 594
FIGURE 42 ASCII, unpacked BCD, and packed BCD
examples.

which manipulates data such as this, a numerical
example will help you visualize the algorithm.

The algorithm for this problem can be stated simply
as

Convert first ASCII number to unpacked BCD.
Convert second ASCII number to unpacked BCD.

- Move first BCD nibble to upper nibble position in byte.

Pack two BCD nibbles in one byte.

Now let's see how you can implement this algorithm in
8086 assembly language.

THE DATA STRUCTURE AND INITIALIZATION LIST

For this example program, let's assume that the ASCII
code for 5 was received and put in the BL register, and
the second ASCII code was received and left in the AL
register, Since we are not using memory for data in this
program, we do not need to declare a data segment or
initialize the data segment register. Incidentally, in
a real application this program would probably be a
procedure or a part of a larger program.

MASKING WITH THE AND INSTRUCTION

The first operation in the algorithm is to convert a
number in ASCII form to its unpacked BCD equivalent.
This is done by replacing the upper 4 bits of the ASCH
byte with four O's. The 8086 AND instruction can be
used to do this operation. Remember from basic logic
or from the review in Chapter 1 that whena loraOis
ANDed with a 0, the result is always a zero. ANDing a
bit with a O is called masking that bit because the
previous state of the bit is hidden-or masked. To mask
4 bits in a word, then, all you do is AND each bit you
want to mask with a 0. A bit ANDed with a 1, remember,
is not changed.

According to the description of the AND instruction
in Chapter 6, the instruction has the format AND
destination,source. The instruction ANDs each bit of
the specified source with the corresponding bit of the
specified destination and puts the result in the specified
destination. The source can be an immediate number,
aregister, or a memory location specified in one of those
24 different ways. The destination can be a register or
amemory location. The source and the destination must
both be bytes, or they must both be words. The source
and the destination cannot both be memory locations
in an instruction.

For this example the first ASCII number is in the BL
register. so we can just AND an immediate number with
this register to mask the desired bits. The upper 4 bits
of the immediate number should be O's because these
correspond to the bits we want to mask in BL. The lower
4 bits of the immediate number should be 1's because
we want te leave these bits unchanged. The immediate
number, then, should be 00001111 binary or OFH. The
instruction to convert the first ASCIl number is AND
BL.OFH. When this instruction executes, it will leave the
desired unpacked BCD in BL. Figure 4-3 shows how
this will work for an ASCII number of 35H Initially in
BL.

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE 69

ASCII 5 0011 0101
MASK 0000 1111
RESULT 0000 0101

FIGURE 4-3 Effects of ANDing with 1's and 0's.

For the next action in the algorithm. we want to
perform the same operation on a second ASCIl number
in the AL register. The instruction AND AL OFH will do
this for us. After this Instruction executes, AL will
contain the unpacked BCD for the second ASCII number.

MOVING A NIBBLE WITH THE
ROTATE INSTRUCTION

The next action in the algorithm is to move the 4 BCD
bits in the first unpacked BCD byte to the upper nibble
position in the byte. We need to do this so that the 4
BCD bits are in the correct position for packing with
the second BCD nibble. Take another look at Figure
4-2 to help you visualize this. What we are effectively
doing here is swapping or exchanging the top nibble
with the bottom nibble of the byte. If you check the
instruction groups in Chapter 3, you will find that the
8086 has an Exchange Instruction, XCHG, which can
be used to swap two bytes or to swap two words. The
8086 does not have a specific instruction to swap the
nibbles in a byte. However, if you think of the operation
that we need to do as shifting or rotating the BCD bits
4 bit positions to the left, this will give you a good idea
which instruction will do the job for you. The 8086 has
a wide variety of rotate and shift instructions. For now,
let's look at the rotate instructions. There are two
Instructions, ROL and RCL, which rotate the bits of a
specified operand to the left. Figure 4-4 shows in diagram
form how these two instructions work. For ROL, each
bit in the specified register or memory location is rotated
1 bit position to the left. The bit that was the MSB is
rotated around into the LSB position, The old MSB is
also copied to the carry flag. For the RCL instruction,
each bit of the specified register or memory location is
also rotated 1 bit position to the left. However, the bit
that was in the MSB position Is moved to the carry flag,
and the bit that was In the carry flag is moved into the
LSB position. The C in the middle of the mnemonic

rnoooono
éTElIIILJ“I
Mo Inlulninininlm

[IFII[IIJ

FIGURE 44 ROL instruction and RCL instruction
operations for byte operands.

70 CHAPTER FOUR

should help you remember that the carry flag is included
in the rotaied loop when the RCL instruction executes.

In the example program we really don't want the
contents of the carry flag rotated into the operand. so
the ROL instruction seems to be the one we want. If you
consult the ROL instruction description in Chapter 6,
you will find that the instruction has the format ROL
destination.count. The destination can be a register or
a memory location. It can be a byte location or a word
location. The count can be the immediate number 1
specified directly in the instruction, or it can be a
number previously loaded into the CL register. The
instruction ROL AL.1. for example, will rotate the con-
tents of AL 1 bit position to the left. We could repeat
this instruction four times to produce the shift of 4 bit
positions that we need for our BCD packing problem.
However, there Is an easier way to do it. We first load
the CL register with the number of times we want to
rotate AL. The instruction MOV CL.04H will do this.
Then we use the instruction ROL BL.CL to do the
rotation. When it executes, this instruction willautomat-
ically rotate BL the number of bit positions loaded into
CL. Note that for the 80186 you can write the single
instruction ROL BL,04!H to do this job.

Now that we have determined the instructions needed
to mask the upper nibbles and the instructions needed
ta move the first BCD digit into position. the only thing
left is to pack the upper nibble from BL and the lower
nibble from AL into a single byte.

COMBINING BYTES OR WORDS WITH THE ADD
OR THE OR INSTRUCTION

You can't use a standard MOV instruction to combine
two bytes into one as we need to do here. The reason is
that the MOV instruction copies an operand from a
specified source to a specified destination. The previous
contents of the destination are lost. You can, however,
use an ADD or an OR instruction to pack the two BCD
nibbles.

As described in the previous program example, the
ADD instruction adds the contents of a specified source
to the contents of a specified destination and leaves the
result in the specified destination. For the example
program here, the instruction ADD AL.BL can be used
to combine the two BCD nibbles. Take a look at Figure
4-2 to help you visualize this addition.

Another way to combine the two nibbles is with the
OR instruction. If you look up the OR instruction in
Chapter 6. you will find that it has the format OR
destination,.source. This instruction ORs each bit in
the specified source with the corresponding bit in the
specified destination. The result of the ORing is left in
the specified destination. Remember from basic logic or
the review in Chapter 1 that ORing a bit with a 1 always
produces a result of 1. ORing a bit with a 0 leaves the
bit unchanged. To set a bit in a word to a 1. then. all
you have to do is OR that bit with a word which has a
1 in that bit position and O’s in all the other bit positions.
This is similar to the way the AND instruction is used
to clear bits in a word to O's. See the OR instruction
description in Chapter 6 for examples of this.

1 "’

2 ;ABSTRACT :

3 §

4

5 H

6 ;REGISTERS ;

4 ;PORTS : None used
8

9 0000 CODE SEGMENT

10 ASSUME CS:CODE
11 0000 B3 35 START: MOV BL, 'S'
12 0002 BO.39 MOV AL, '9'
13 0004 80 E3 OF AND BL, OFH
14 0007 24 OF AND AL, OFH
15 0009 B1 04 MOV CL, OGH
16 0008 D2 €3 ROL BL, CL
17 000D OA €3 OR AL, BL
18 00OF CODE ENDS -

19 END START

.
.
’
.
’

.

; 8086 PROGRAM Fi-05.ASM

Program produces a packed BCD byte from 2 ASCII-encoded digits
The first ASCI1 digit (5) is loaded in BL.

; The second ASCII digit (9) is loaded in AL.

The result (packed BCD) is left in AL

Uses CS, AL, BL, CL

Load first ASCII digit into BL

; Load second ASCII digit into AL

Mask upper 4 bits of first digit
Mask upper &4 bits of second digit

; Load CL for & rotates required
; Rotate BL 4 bit positions
; Combine nibbles, result in AL

FIGURE 4-5 List file of 8086 assembly language program to produce packed

BCD from two ASCII characters.

For the example program here, we use the instruction
OR AL.BL to pack the two BCD nibbles. Bits ORed with
G's will not be changed. Bits ORed with 1's will become
or stay 1's. Again look at Figure 4-2 to help you visualize
this operation.

SUMMARY OF BCD PACKING PROGRAM

If you compare the algorithm for this program with the
finished program in Figure 4-5, you should see that each
step in the algorithm translates to one or two assembly
language instructions. As we told you before, developing
the assembly language program from a good algorithm
is really quite easy because you are simply translating
.one step at a time to its equivalent assembly language
instructions. Also, debugging a program developed in
this way is quite easy because you simply single-step or
breakpoint your way through it and check the results
after each step. In the next section we discuss the 8086
JMP instructions and flags so we can show you how you
implement some of the other programming structures
in assembly language.

JUMPS, FLAGS, AND
CONDITIONAL JUMPS

Introduction

The real power of a computer comes from its ability to
choose between two or more sequences of actions based
on some condition. repeat a sequence of instructions as
long as some condition exists, or repeat a sequence of
instructions until some condition exists. Flags indicate
whether some condition is present or not. Jump instruc-
tions are used to tell the computer the address to fetch
its next instruction from. Figure 4-6 shows in diagram
form the different ways a Jump instruction can direct

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE

the 8086 to fetch its next instruction from some place
in memory other than the next sequential location.

The 8086 has two types of Jump instructions, condi-
tional and unconditional. When the 8086 fetches and
decodes an Unconditional Jump instruction, it always
goes to the specified jump destination. You might use
this type of Jump instruction at the end of a program
so that the entire program runs over and over, as shown
in Figure 4-6.

When the 8086 fetches and decodes a Conditional
Jump instruction, it evaluates the state of a specified
flag to determine whether to fetch its next instruction
from the jump destination location or to fetch its next
instruction from the next sequential memory location.

START
JUMP
MAIN
PROGRAM Jump
SEQUENCE
JUMP TO
START

‘ sTOP ’

FIGURE4-6 Change in program flow that can be caused
by jump instructions.

71

Let's start by taking a look at how the 8086 Uncondi-
tional Jump instruction works.

The 8086 Unconditional Jump Instruction

INTRODUCTION

As we said before. Jump instructions can be used to tell
the BO86 to start fetching its instructions from some
new location rather than from the next sequential
location. The 8086 JMP instruction always causes a
jump to occur. so this is referred to as an unconditional
jump.

Remember from previous discussions that the 8086 .

computes the physical address from which to fetch its
next code byte by adding the offset in the instruction
pointer register to the code segment base represented
by the 16-bit number in the CS register. When the 8086
executes a JMP instruction, it loads a new number into
the instruction pointer register. and in some cases it
also loads a new number into the code segment register.

If the JMP destination is in the same code segment, the
8086 only has to change the contents of the instruction
pointer. This type of jump is referred to as a near, or
intrasegment, jump.

If the JMP destination is in a code segment which has
a different name from the segment in which the JMP
instruction is located. the 8086 has to change the
contents of both CS and IP to make the jump. This type
of jump is referred to as a far, or intersegment, jump.

Near and far jumps are further described as either
direct or indirect. If the destination address for the jump
is specified directly as part of the instruction, then the
jump is described as direct. You can have a direct near
jump or a direct far jump. If the destination address for
the jump is contained in a register or memory location,
the jump is referred to as indirect, because the 8086
has to go to the specified register or memory location to
get the required destination address. You can have an
indirect near jump or an indirect far jump.

Figure 4-7 shows the coding templates for the four
basic types of unconditional jumps. As you can see, for
the direct types, the destination offset, and, if necessary,
the segmentbase are included directly in the instruction.
The indirect types of jumps use the second byte of the
instruction to tell the 8086 whether the destination
offset (and segment base. if necessary) is contained in
a register or in memory locations specified with one of
the 24 address modes we introduced you to in the last
chapter.

The JMP instruction description in Chapter 6 shows

examples of each type of jump instruction, but in most

of your programs you will use a direct near-type JMP
instruction. so in the next section we will discuss in
detail how this type works.

UNCONDITIONAL JUMP INSTRUCTION
TYPES—OVERVIEW

The 8086 Unconditional Jump instruction. JMP. has
five different types. Figure 4-7 shows the names and
instruction coding templates for these five types. We will
first summarize how these five types work to give you

72 CHAPTER FOUR

JMP = jump

Within segment or group, IP relative—near and short

DispH

[_—ED(ode l Displ [

Opcode Clocks Operation
£9 15 IP P + Disple
1 15 P« IP + Disp8

(D1sp8 sign-extended)

Within segment or group. Indirect

BTN T T T T

Clocks

Opcode Operation

FF 8]
FF 18+EA

IP — Regl6
IP +— Meml6

Inter-segment or group, Direct

f p -
Opcode [offset-low [offset-high] seg-low seg-hngh—]
Opcode Clocks Operation
EA 15 CS + segbase
IP « offset

Inter-segment or group, Indirect

{7 7(3p(ude I mod 101 rim] . j
Opcade Clocks Operation
FF 24+EA CS « segbase
IP « offset

FIGURE 4-7 8086 Unconditional Jump instructicns.
(Intel Corporation)

an overview; then we will describe in detail the two types
you need for your programs at this point. The JMP
instruction description in Chapter 6 shows examples of
each of the five types

THE DIRECT NEAR- AND SHORT-TYPE
JMP INSTRUCTIONS

As we described previously, a near-type jumnp instruction
can cause the next instruction to be fetched from
anywhere in the current code segment. To produce the
new instruction fetch address. this instruction adds a
16-bit signed displacement contained in the instruction
to the contents of the instruction pointer register. A 16-
bit signed displacement means that the Jjump can be to
a location anywhere from +32,767 to —32.768 bytes
from the current instruction pointer location. A positive
dis'placcmcm usually means you are jumping ahead in
the program, and a negative displacement usually means
that you are jumping “"backward" in the program.

A special case of the direct near-type jump instruction
is the direct short-type jump. If the destination for the
jump is within a displacement range of +127 to - 128
bytes from the current instruction pointer location, the

destination can be reached with just an 8-bit displace-
ment. The coding for this type of jump is shown on the
second line of the coding template for the direct near
JMP in Figure 4-7. Only one byte is reqv.red for the
displacement in this case. Again the 8086 produces the
new instruction fetch address by adding the signed 8-
bit displacement, contained in the instruction. to the
contents of the instruction pointer register. Here are
some examples of how you use these JMP instructions
in programs.

DIRECT WITHIN-SEGMENT NEAR AND DIRECT
WITHIN-SEGMENT SHORT JMP EXAMPLES

Suppose that we want an 8086 to execute the instruc-
tions in a program over and over. Figure 4-8 shows how
the JMP instruction can be used to do this. In this
program, the label BACK followed by a colon is used to
give a name to the address we want to jump back to.
When the assembler reads this label, it will make an
entry in its symbo! table indicating where it found
the label. Then, when the assembler reads the JMP
instruction and finds the name BACK in the instruction,
it will be able to calculate the displacement from the
jump instruction to the label. This displacement will be
inserted as part of the code for the instruction. Even if
you are not using an assembler, you should use labels
to indicate jump destinations so that you can easily see
them. The NOP instructions used in the program in
Figure 4-8 do nothing except fill space. We used them
in this example to represent the instructions that we
want to loop through over and over. Once the 8086 gets
into the JMP-BACK loop, the only ways it can get out
are if the power is turned off, an interrupt occurs, or
the system is reset.

Now let's e=e how the binary code for the JMP instruc-
tion in Figure 4-8 is constructed. The jump is to a label
in the same segment. so this narrows our choices down
to the first three types of JMP instruction shown in
Figure 4-7. For several reasons, it is best to use the
direct-type JMP instruction whenever possible. This
narrows our cholices down to the first two types In Figure
4-7. The choice between these two is determined by
whether you need a 1-byte or a 2-byte displacement to
reach the JMP destination address. Since for our exam-
ple program the destination address is within the range
of —128 to +127 bytes from the instruction after the

JMP instruction, we can use the direct within-segment
short type of JMP. According to Figure 4-7, the instruc-
tion template for this instruction is 11101011 (EBH)
followed by a displacement. Here's how you calculate the
displacement to put in the instruction.

NOTE: An assembler does this for you automati-
cally, but you should still learn how it is done to
help you in troubleshooting.

The numbers in the left column of Figure 4-8 represent
the offset of each code byte from the code segment base.
These are the numbers that will be in the instruction
pointer as the program executes. After the 8086 fetches
an instruction byte, it automatically increments the
instruction pointer to point to the next instruction byte.
The displacement in the JMP instruction will then be
added to the offset of the next in-line instruction after
the JMP instruction. For the example program in Figure
4-8, the displacement in the JMP instruction will be
added to offset 0006H, which is in the instruction
pointer after the JMP instruction executes. What this
means is that when you are counting the number of
bytes of displacement, you always start counting from
the address of the instruction immediately after the JMP
instruction. For the example program, we want to jump
{from offset 0006H back to offset 0000H. This is a
displacement of —6H.

You can't, however, write the displacement in the
instruction as —-6H. Negative displacements must be
expressed in 2's complement, sign-and-magnitude form.
We showed how to do this in Chapter 1. First, write the
number as an 8-bit positive binary number. In this case,
that is 00000110. Then, invert each bit of this, including
the sign bit. to give 11111001. Finally, add 1 to that
result to give 11111010 binary or FAH, which is the
correct 2's complement representation for - 6H. As
shownonline 11 in the assembler listing for the program
inFigure 4-8, the two code bytes for this JMP instruction
then are EBH and FAH.

To summarize this example, then. a label is used to
give a name to the destination address for the jump.
This name is used to refer to the destination address in
the JMP instruction. Since the destination in this
example is within the range of - 128 to +127 bytes
from the address after the JMP instruction, the instruc-
tion can be coded as a direct within-segment short-type

1 ; 8086 PROGRAM F4-08.ASM

2 JABSTRACT : This program illustrates a "backwards" jump

3 ;REGISTERS : Uses CS, AL

4 ;PORTS : None used

5

6 0000 CODE SEGMENT

7 ASSUME CS:CO0E

8 0000 04 03 BACK: ADD AL, 034 ; Add 3 to total

9 0002 90 NOP ; Dummy instructions to represent those
10 0003 90 NOP ; Instructions jumped back over

11 0004 EB FA JMP BACK i Jump back over instructions to BACK label
12 0006 CODE ENDS

13 END

FIGURE 4-8 List file of program demonstrating “‘backward” JMP.

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE 73

1 ; 8085 PROGRAM
2 ;ABSTRACT

3 ;REGISTERS : Uses CS, AX
4 ;PORTS : None used
5

6 0000 CODE SEGMENT

7 ASSUME CS:CODE

8 0000 EB 03 90 JMP THERE 3

9 0003 90 NCP 3
10 0004 90 NOP 3
11 0005 88 0000 THERE: MOV AX, OOOOH ;
12 0008 90 NOP 3
13 0009 CODE ENDS

14 END

F&-09.ASM

: This program illustrates a "forwards" jump

Skip over a series of instructions

Dummy instructions tc represent those

Instructions skipped over

Zero accumulator before addition instructions

Dummy instruction to represent continuation of execution

FIGURE 4-9 List file of program demonstrating “forward" JMP.

JMP. The displacement is calculated by counting the
number of bytes from the next address after the JMP
instruction to the destination. If the displacement is
negative (backward in the program). then it must be
expressed in 2's complement form before it can be
written in the instruction code template.

Now let’s look at another simple example program, in
Figure 4-9, to see how you can jump ahead over a group
of instructions in a program. Here again we use a label
to give a name to the address that we want to JMP to.
We also use NOP instructions to represent the instruc-
tions that we want to skip over and the instructions
that continue after the JMP. Let's see how this JMP
instruction is coded.

When the assembler reads through the source file for
this program, it will find the label “THERE" after the
JMP mnemonic. At this point the assembler has no way
of knowing whether it will need 1 or 2 bytes to represent
the displacement to the destination address. The assem-
bler plays it safe by reserving 2 bytes for the displace-
ment. Then the assembler reads on through the rest of
the program. When the assembler finds the specified
label. it calculates the displacement from the instruction
after the JMP instruction to the label. If the assembler
finds the displacement to be outside the range of — 128
bytes to + 127 bytes, then it will code the instruction as
a direct within-segment near JMP with 2 bytes of
displacement. If the assembler finds the displacement
to be within the — 128- to + 127- byte range, then it will
code the instruction as a direct within-segment short-
type JMP with a 1-byte displacement. In the latier case,
the assembler will put the code for a NOP instruction,
90H, in the third byte it had reserved for the JMP
instruction. The instruction codes for the JMP THERE
instruction on line 8 of Figure 4-9 demonstrate this. As
shown in the instruction template in Figure 4-7, EBH
is the basic opcode for the direct within-segment short
JMP. The 03H represents the displacement to the JMP
destination. Since we are jumping forward in this case.
the displacement is a positive number. The 90H in the
next memory byte is the code for a NOP instruction. The
displacement is calculated from the olfset of this NOP
instruction, 0002H. to the offset of the destination label,
0005H. The difference of 03H between these two is the
displacement you see coded in the instruction.

If you are hand coding a program such as this. you

74 CHAPTER FOQUR

will probably know how far it is to the label. and you
can leave just 1 byte for the displacement if that is
enough. If you are using an assembler and you don't
want to waste the byte of memory or the time it takes
to fetch the extra NOP instruction, you can write the
instruction as JMP SHORT label. The SHORT operator
is a promise to the assembler that the destination will
not be outside the range of —128 to +127 bytes.
Trusting your promise. the assembler then reserves only
1 byte for the displacement.

Note that if you are making a JMP from an address
near the start of a 64-Kbyte segment to an address near
the end of the segment. you may not be able to gét there
with a jump of +32,767. The way you get there is
to JMP backward around to the desired destination
address. An assembler will automatically do this for you.

Onc advantage of the direct near- and short-type JMPs
is that the destination address is specified relative to
the address of the instruction after the JMP instruction.
Since the JMP instruction in this case does not contain
an absolute address or offset, the program can be loaded
anywhere in memory and still run correctly. A program
which can be loaded anywhere in memory to be run is
said to be relocatable. You should try to write your
programs so that they are relocatable.

Now that you know about unconditional JMP instruc-
tions. we will discuss the 8086 flags. so that we can
show how the 8086 Conditional Jump instructions are
used to implement the rest of the standard programming
structures.

The 8086 Conditional Flags

The 8086 has six conditional flags. They are the carry
flag (CF), the parity flag (PF). the auxiliary carry flag
(AF). the zero flag (ZF). the sign flag (SF). and the
overflow flag (OF). Chapter | shows numerical examples
of some of the conditions indicated by these flags. Here
we review these conditions and show how some of the
important 8086 instructions affect these flags.

THE CARRY FLAG WITH ADD, SUBTRACT, AND
COMPARE INSTRUCTIONS

If the addition of two 8-bit numbers produces a sum
greater than 8 bits. the carry flag will be set to a 1 to
indicate a carry into the next bit position. Likewise. if

the addition of two 16-bit numbers produces a sum
greater than 16 bits, then the carry flag will be set to a
1 to indicate that a final carry was produced by the
addition.

During subtraction, the carry flag functions as a

borrow flag. If the bottom number in a subtraction is -

larger than the top number, then the carry/borrow flag
will be set to indicate that a borrow was needed to
perform the subtraction.

The 8086 compare instruction has the format CMP
destination.source. The source can be an immediate
number, a register, or a memory location. The destina-
tion can be a register or a memory location. The compari-
son is done by subtracting the contents of the specified
source from the contents of the specified destination.
Flags are updated to reflect the result of the comparison.
but neither the source nor the destination is changed.
If the source operand is greater than the specified
destination operand, then the carry/borrow flag will be
set to indicate that a borrow was needed to do the
comparison (subtraction). If the source operand is the
same size as or smaller than the specified destination
operand, then the carry/borrow flag will not be set after
the compare. If the two operands are equal, the zero flag
will be set to a 1 to indicate that the result of the
compare (subtraction) was all 0's. Here's an example and
summary of this for your reference.

CMP BX, CX:
condition CF Z2ZF
CX > BX 1 0
CX < BX 0 0
CX = BX 0 1

The compare instruction is very important because it
allows you to easily determine whether one operand is
greater than, less than, or the same size as another
operand.

THE PARITY FLAG

Parity is a term used to indicate whether a binary word
has an even number of 1's or an odd number of 1's. A
binary number with an even number of 1's is said to
have even parity. The 8086 parity flag will be set toa 1
after an instruction if the lower 8 bits of the destination
operand has an even number of 1's. Probably the most
common use of the parity flag is to determine whether
ASCII data sent to a computer over phone lines or some
other communications link contains any errors. In
Chapter 14-we describe this use of parity.

THE AUXILIARY CARRY FLAG

This flag has significance in BCD addition or BCD
subtraction. If a carry is produced when the least
significant nibbles of 2 bytes are added. the auxiliary
carry flag will be set. In olhkr words. a carry out of bit
3 sets the auxiliary carry flag. Likewise. if the subtraction
of the least significant nibbles' requires a borrow. the
auxiliary carry/borrow flag will be set. The auxiliary
carry/borrow flag is used omly by the DAA and DAS
instructions. Consult the DAA and DAS instruction
descriptions in Chapter 6 and the BCD operation exam-

-12

ples section’ of Chapter 1 for further discussion of
addition and subtraction of BCD numbers.

THE ZERO FLAG WITH INCREMENT, DECREMENT,
AND COMPARE INSTRUCTIONS

As the name implies, this flag will be set to a 1 if the
result of an arithmetic or logic operation is zero. For
example, if you subtract two numbers which are equal,
the zero flag will be set to indicate that the result of the
subtraction is zero. If you AND two words together and
the result contains no 1's, the zero flag will be set to
indicate that the result is all 0's.

Bestdes the more obvious arithmetic and logic instruc-
tions, there are a few other very useful instructions
which also affect the zero flag. One of these is the
compare instruction CMP, which we discussed previ-
ously with the carry flag. As shown there, the zero flag
will be set to a 1 if the two operands compared are equal,

Another important instruction which affects the zero
flag is the decrement instruction, DEC. This instruction
will decrement (or, in other words, subtract 1 from) a
number in a specified register or memory location. If,
after decrementing, the contents of the register or
memory location are zero, the zero flag will be set. Here's
a preview of how this is used. Suppose that we want to
repeat a sequence of actions nine times. To do this, we
first load a register with the number 09H and execute
the sequence of actions. We then decrement the register
and look at the zero flag to see if the register is down to
zero yet. If the zero flag is not set, then we know that
the register is not yet down to zero, so we tell the 8086,
with a Jump instruction, to go back and execute the
sequence of instructions again. The following sections
will show many specific examples of how this is done."

The increment instruction, INC destination, also af-
fects the zero flag. If an 8-bit destination containing
FFH or a 16-bit destination containing FFFFH is incre-
mented, the result in the destination will be all 0's. The
zero flag will be set to indicate this.

THE SIGN FLAG—POSITIVE AND
NEGATIVE NUMBERS

When you need to represent both positive and negative
numbers for an 8086, you use 2's complement sign-and-
magnitude form as described in Chapter 1. In this form,
the most significant bit of the byte or word is used as a
sign bit. A 0 in this bit Indicates that the number is
positive. A 1 in this bit indicates that the number is
negative. The remaining 7 bits of a byte or the remaining
15 bits of a word are used to represent the magnitude
of the number. For a positive number, the magnitude
will be in standard binary form. For a negative number.
the magnitude will be in 2's complement form. After an
arithmetic or logic instruction executes, the sign flag
will be a copy of the most significant bit of the destination
byte or the destination word. In addition to its use with
signed arithmetic operations. the sign flag can be used
to determine whether an operand has been decremented
beyond zero. Decrementing OOH, for example. will give
FFH. Since the MSB of FFH is a 1. the sign flag will be
set.

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANCUAGE 75
< I

THE OVERFLOW FLAG

This flag will be set if the result of a signed operation is
too large to fit in the number of bits available to represent
it. To remind you of what overflow means, here is an
example. Suppose you add the 8-bit signed number
01110101 (+ 117 decimal) and the 8-bit signed number
00110111 (+55 décimal). The result will be 10101100
(+172 decimal), which is the correct binary result in
this case, Qut is too large to fit in the 7 bits allowed for
the magnitude in an 8-bit signed number. For an 8-bit
signed number, a 1 In the most significant bit indicates
a negative number. The overflow flag will be set after
this operation to indicate that the result of the addition
has overflowed into the sign bit.

The 8086 Conditional Jump Instructions

As we stated previously, much of the-real power of a
computer comes from its ability to choose between two
courses of action depending on whether some condition
is present or not. In the 8086 the six conditional
flags indicate the conditions that are present after an
instruction. The 8086 Conditional Jump instructions
look at the state of a specified flag(s) to determine
whether the jump should be made or not.

Figure 4-10 shows the mnemonics for the 8086 Condi-
tional Jump instructions. Next to each mnemonic is a
brief explanation of the mnemonic. Note that the terms
above and below are used when you are working with
unsigned binary numbers. The 8-bit unsigned number
11000110 is above the 8-bit unsigned number
00111001, for example. The terms greater and less are
used when you are working with signed binary numbers.
The 8-bit signed number 00111001 is greater (more

positive) than the 8-bit signed number 11000110, which
represents a negative number. Also shown in Figure 4-
10 is an indication of the flag conditions that will cause
the 8086 to do the jump. If the specified flag conditions
are not present, the 8086 will just continue on to the
next instruction in sequence. In other words, if the
jump condition is not met, the Conditional Jump in-
struction will effectively function as a NOP. Suppose, for
example, we have the instruction JC SAVE, where SAVE
is the label at the destination address. If the carry flag
is set, this instruction will cause the 8086 to jump to
the instruction at the SAVE: label. If the carry flag is
not set, the instruction will have no effect other than
taking up a little processor time.

All conditional jumps are short-type jumpa This
means that the destination label must be in the same
code segment as the jump instruétion. Also, the destina-
tion address must be in the range of —128 bytes to
+ 127 bytes from the address of the instruction after
the Jump instruction. As we show in later examples, it
is important to be aware of this limit on the range of
conditional jumps as you write your programs.

The Conditional Jump instructions are usually used
after arithmetic or logic instructions. They are very
commonly used after Compare instructions. For this
case, the Compare instruction syntax and the Condi-
tional Jump instruction syntax are such that a little
trick makes it very easy to see what will cause a jump
to occur. Here's the trick. Suppose that you see the
instruction sequence

CMP BL, DH
JAE HEATER_OFF

in a program, and you want to determine what these
instructions do. The CMP instruction compares the byte

MNEMONIC CONDITION TESTED JUMPIF .
JA/INBE - (CF or ZF)=0 above/not below nor equal
JAE/INB CF=0 above or equal/not below
JB/INAE CF=1 below/not above nor equal

_JBE/JNA (CF or ZF)=1 > -below -or-equal/not above
il CF=1 carry
JENZ ZF=1 equal/zero
JG/NLE ((SF xor OF) or ZF)=0 greater/not less nor equal
JGE/INL (SF xor OF)= greater or equal/not less
JUINGE (SF xor OF) =1 less/not greater nor equal
JLEANG ((SF xor OF) or ZF)=1 less or equal/not greater
INC CF=0 not carry
INE/INZ ZF=0 not equal/not zero
INO OF=0 not overflow
JNPAIPO ~ PF=0 not parity/parity odd
INS SF=0 not sign
JOo - OF=1 overflow
JP/JPE PF=1 parity/parity equal
IS SF=1 sign

Note: “above” and “below’ refer to the relationship of two unsigned values;
“greater”” and “less” refer to the relationship of two signed values.

FIGURE 4-10 8086 Conditional jump instructions.

76 CHAPTER FOUR

in the DH register with the byte in the BL register and
sets flags according to the result. A previous section
showed you how the carry and zero flags are affected by
a Compare instruction. According to Figure 4-10, the
JAE instruction says, “Jump if above or equal” to the
label HEATER_OFF. The question now is, will it jump
if BL is above DH, or will it jump if DH is above BL? You
could determine how the flags will be affected by the
comparison and use Figure 4-10 to answer the question,
but an easier way is to mentally read parts of the
Compare instruction between parts of the Jump instruc-
tion. If you read the example sequence as “Jump if BL
is above or equal to DH," the meaning of the sequence
is immediately clear. As you write your own programs,
thinking of a conditional sequence in this way should
help you to choose the right Conditional Jump instruc-
tion. The next sections show you how we use Conditional
and Unconditional Jump instructions to implement
some of the standard program structures and solve some
common programming problems.

‘)
IF-THEN, IF-THEN-ELSE, AND MULTIPLE
IF-THEN-ELSE PROGRAMS
IF-THEN Programs - \

Remember from Chapter 2 that the IF-THEN structure
has the format

IF condition THEN
action
action

This structure says that IF the stated condition is

found to be true, the series of actions following THEN- --

will be executed. If the condition is false, execution will
skip over the actions after the THEN and proceed with
the next mainline instruction.

The simple IF-THEN is implemented with a Condi-
tional Jump instruction. In some cases an instruction
to set flags is needed before the Conditional Jump
instruction. Figure 4-11a shows, with a program frag-

CMP AX, BX ; Compare to set _flags
JE THERE ; If equal then skip correction
ADD AX, 0002H ; Add correction factor

THERE: MOV CL, O7H ; Load count

(a)

CMP AX, BX ; Compare to set flags

JNE FIX ; If not equal do correction
JMP THERE ; If equal-then skip correction
FIX: ADD AX, 0002H ; Add correction factor

THERE: MOV CL, O7H ; Load count

(b)

FIGURE 4-11 Programming conditional jumps. (a)
Destinations closer than =128 bytes. (b) Destinations
further than +128 bytes.

ment, one way to implement the simple IF-THEN struc- .
ture. In this program we first compare BX with AX to
set the required flags. If the zero flag is set after the
comparison, indicating that AX = BX, the JE instruc-
tion will cause execution to jump to the MOV CL.,07H
instruction labeled THERE. If AX # BX, then the ADD
AX,0002H instruction after the JE instruction will be
executed before the MOV CL.07H instruction.

The implementation in Figure 4-1 1a will work well for
a short sequence of instructions after the Conditional
Jump instruction. However, if the sequence of instruc-
tions is lengthy, there is a potential problem. Remember
from the discussion of conditional jumps in the last
section that a conditional jump can only be to a location
in the range of —128 bytes to +127 bytes from the
address after the Conditional Jump instruction. A long
sequence of instructions after the Conditional Jump
instruction may put the label out of range of the instruc-
tion, If you are absolutely sure that the destination label
will not be out of range, then use the instruction
sequence shown in Figure 4-11a to implement an IF-
THEN structure. If you are not sure whether the destina-
tion will be in range, the instruction sequence shown
in Figure 4-11b will always work. In this sequence, the
Conditional Jump instruction only has to jump over the
JMP instruction. The JMP instruction used to get to the
lahel THERE can jump to anywhere in the code segment,
or even to another code segment. Note that you have to
change the Conditional Jump instruction from JE to.
JNE for this second version. The price you pay for not
having to worry whether the destination is in range is
an extra jump instruction. Incidentally, some assem-
blers now automatically code Conditional Jump lz}s truc-
tions in this way if necessary.

IF-THEN-ELSE Programs

OVERVIEW

The IF-THEN-ELSE structure is used to indicate a choice
between two alternative courses of action. Figure 3-3b
shows the flowchart and pseudocode for this structure.
Basically the structure has the format

IF condition THEN
action

ELSE
action

This is a different situation from the simiple I[F-THEN,
because here either one series of actions or another
series of actions is done before the program goes on
with the next mainline instruction. An example will
show how we implement this structure.

Suppose that in the computerized factory we discussed
in Chapter 2, we have an 8086 microcomputer which
controls a printed-circuit-board-making machine. Part
of the job of this 8086 is to check a temperature sensor
and turn on a green lamp or a yellow lamp depending
on the value of the temperature it reads in. If the
temperature is below 30°C, we want to turn on a yellow
lamp to tell the operator that the solution is not up to
temperature. If the temperature is greater than or equal

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY‘U\NGUAGE 77

to 30°C, we want to light a green lamp. With a system
such as this, the operator can visually scan all the lamps
on the control panel until all the green lamps are lit.
When all the lamps are green. the operator can push the
GO button to start making boards. The reason that we
have the yellow lamp is to let the operator know that
this part of the machine is working, but that the
temperature is not yet up to 30°C.

Figure 4-12 shows with flowcharts and with pseudo-
code two ways we can represent the algorithm for this
problem. The difference between the two is simply a
matter of whether we make the decision based on
the temperature being below 30°C or based on the
temperature being above or equal! to 30°C. The two
approaches are equally valid, but your choice determines
which Conditional Jump instruction you use to imple-
ment the algorithm. Since this program involves reading
data in from a port and writing data out to a port,
we need to talk briefly about the 8086 IN and OUT
instructions before we discuss the details of how these
two algorithms can be implemented in assembly lan-

guage.

THE 8086 IN AND OUT INSTRUCTIONS

‘The 8086 has two types of input instruction, fixed-port
and variable-port. The fixed-port instruction has the
format IN AL.port or IN AX,port. The term port in these
instructions represents an 8-bit port address to be put
directly in the instruction. The instruction IN AX,04H,
for example, will copy a word from port 04H to the AX
register. The 8-bit port address in this type of IN

instruction allows you to address any one of 256 possible
input ports, but the port address is fixed. The program
cannot change the port address as it executes. Keep this
in mind as we discuss the variable-port IN instruction.
The variable-port input instruction has the format IN
AL,DX or IN AX,DX. When using the variable-port input
instruction, you must first put the address of the desired
port in the DX register. If, for example, you load DX with
FFF8H and then do an IN AL.DX. the 8086 will copy a
byte of data from port FFF8H to the AL register. The
variable-port input instruction has two major advan-
tages. First, up to 65,536 different input ports can be
specified with the 16-bit port address in DX. Second,
the port address can be changed as a program executes
by simply putting a difierent number in DX. This is
handy in a case where you want the computer to be able
to input from 15 different terminals, for example. Instead
of writing 15 different input programs, you can write
one input program which simply changes the contents
of DX to input from each of the different terminals.
The 8086 also has a fixed-port output instruction and
avariable-port output instruction. The fixed-port output
instruction has the form OUT port.AL or OUT port,AX.
Here again the term port represents an 8-bit port address
written in the instruction. OUT OAH.AL, for example,
will copy the contents of the AL register to port OAH.
The format for thé variable-port output instruction is’
OUT DX.AL or OUT DX,AX. To use this type of instruc-
tion, you have to first put the 16-bit port address in the
DX register. If, for example, you load DX with FFFAH
and then do an OUT DX.AL instruction, the 8086 will
copy the contents of the AL register to port FFFAH.

READ
TEMPERATURE
YES NO
LIGHT LIGHT
YELLOW GREEN
READ pH
SENSOR

READ TEMPERATURE
IF TEMPERATURE < 30° THEN
LIGHT YELLOW LAMP
ELSE
LIGHT GREEN LAMP
READ pH SENSOR

(a)

READ
TEMPERATURE
YES 0 NO
LIGHT LIGHT
GREEN YELLOW
READ pH
SENSOR
READ TEMPERATURE

IF TEMPERATURE = 30° THEN
LIGHT GREEN LAMP
ELSE
LIGHT YELLOW LAMP
READ pH SENSOR

b)

FIGURE 4-12 Flowcharts and pseudocode for two ways of expressiﬁg algorithm
for printed-circuit-board-making machine. (2) Temperature below 30° test.

(b) Temperature above 30° test.

78 CHAPTER FOUR

8255A

s
[

4
—==_JRESET (0 —
___sq R—Q y'l ..g_...._._
Aq WR 22—
—84 Py L
8 | a1 P2Aﬁ 4|40
—81a0 5432
6|28
[——D7 7L
3 [T
—D6 r op—
—os e
5 . |8
DATA | —04 -
BUS W —D3 ’ 3
&y 2c¢ ,[13
N P 52
—40D0 6
- o L
r 18
D, 0
D, 1 e
CONTROL D 20
REGISTER 0, i P e
D; P2B<¢ s 22
Dg M EX]
D 24
6
| 25

FIGURE 4-13 Block diagram of SDK-86 board's 8255A
port.

The device used for parallel input and output ports
on the SDK-86 board and in many microcomputers is
the Intel 8255. As shown in the block diagram in Figure
4-13, the 8255 basically contains three 8-bit ports and
a control register. Each of the ports and the control
register will have a separate address, so you can write
to them or read from them. The addresses for the ports
and control registers for the two 8255s on an SDK-86
board, for example, are as follows:

PORT 2A FFF8H PORT 1A FFFOH
PORT 2B FFFAH PORT 1B FFFBH
PORT 2C FFFCH PORT IC FFFDH
CONTROL2 FFFEH CONTROL1 FFFFH

The ports in an 8255 can be individually programmed
to operate as input or output ports. When the power is
first applied to an 8255. the ports are all configured as
input ports. If you want to use any of the ports as an
output port, you must write a control word to the control
register to initialize that port for operation as an output.
Chapter 9 and later chapters describe in detail how to
Initialize an 8255 for a variety of applications. but we
show you here how to initialize one of the ports in an
8255 device on an SDK-86 microcomputer for use as an
output port.

You initialize an 8255 by sending a control word to
the control register address for that device. As we showed
above, the control register address for one of the 8255s
on an SDK-86 board is FFFEH. In order to write a control

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE

word to this address. you first point DX at the address
with the instruction MOV DX.OFFFEH.

The control word needed to make port P2B of this
8255 an output, and P2A and P2C inputs, is 99H. (In
Chapter 9 we show how we determined this control
word.) You load this control word into AL with MOV
AL.99H and send it to the 8255 control register with
OUT DX,AL. Now that port 2B is initialized as an output,
you can output a byte to that port of the device any time
you need to in the program.

IF-THEN-ELSE ASSEMBLY LANGUAGE
PROGRAM EXAMPLE

Figure 4-14a, p. 80, shows the list file of the 8086
assembly language implementation of the algorithm in
Figure 4-12a. The first three instructions in this pro-
gram initialize port 2B at address FFFAH as an output
port, so we can output values to it to turn on LEDs. As-
sume that the driver for the yellow lamp is connected to
bit O of port FFFAH, and the driver for the green lamp is
connected tobit 1 of port FFFAH. A 1 sent toa bit position
of port FFFAH turns on the lamp connected to that line.
The next two instructions in the example program
read the temperature in from an analog-to-digital gon-
verter connected to input port FFF8H. '
After we read the data in from the port, we compare
it with our set-point value of 30°C. If the input value is
below 30°C, then we jump to the instructions which
turn on the yellow lamp. If the temperature is above or
equal to 30°C, we jump to the instructions which turn
on the green lamp. Note that we have implemented this

-algorithm in such a way that the JB instruction will-

always be able to reach the label YELLOW.

To actually turn on a lamp, we load a 1 in the
appropriate bit of the AL register witiaa MOV instruction
and send the byte to the lamp control port. FFFAH. The
instruction sequence MOV AL.,Q1H—OUT DX.AL, for
example, will light the yellow lamp by sending a 1 to bit
0 of port FFFAH.

The instruction sequence MOV AL,02H—OUT DX.AL
will light the green lamp by sending a 1 to bit 1 of port
FFFAH. Note that control words are sent to the control
register address in an 8255 and Jata words are read
from or written to the individual port addresses. Here's
another way to implement this program in assembly
language.

Figure 4-14b shows another equally valid assembly
language program segment to solve our problem. This
one uses a Jump if Above or Equal instruction, JAE, at
the decision point and switches the order of the actions.
This program more closely follows the second algorithm
statement in Figure '4-12b. Perhaps you can see from
these examples why two programmers may write very
different programs to solve even very simple program-
ming problems.

Multiple IF-THEN-ELSE Assembly
Language Programs

In the preceding section we showed how to imple-
ment and use the IF-THEN-ELSE structure. which
chooses between two alternative .courses of action. In

79

1 ; BOBS PROGRAM Fé-14A.ASM

2 ;ABSTRACT : Program section for PC board making machine.

3 ; This program section reads the temperature of a cleaning bath
4 ; solution and lights one of two lamps according to the
5 ; temperature read. [f the temp <30°C, a yellow lamp will be
) ; turned on. If the temp is 230°C, a green lamp will be turned on.
7 JREGISTERS: Uses CS, AL, DX

8 ;PORTS : Uses FFFBH - temperature input

9 ; FFFAN - lamp control output (yellow=bit 0, green=bit 1)
10

11 0000 CODE SEGMENT

12 * ASSUME CS:CODE

13 ;inftialize SDK-86 port FFFAH as output port, FFFBH as input port
14 0000 BA FFFE MOV DX, OFFFEM ; Point DX to port control register

15 0003 BO 99 MOV AL, 99H ; Load control word to initialize ports

~. 16 0005 EE OUT DX, AL ; Send control word to port control register

17]

18 0006 BA FFF8 MOV DX, OFFF8H ; Point DX at input port

19 0009 EC IN AL, DX ; Read temp from sensor on input port
20 000A 3cC 1E CMP AL, 30 ; Compare temp with 30°C -

21 000Cc 72 03 JB YELLOW ; IF temp <30 THEN light yellow lamp
22 000E EB OA 90 JMP GREEN - ; ELSE light green lamp

23 0011 BO 01 YELLOW: MOV AL, O1H ; Load code to light yellow lamp

24 0013 BA FFFA MOV DX, OFFFAH ; Point DX at output port

25 0016 EE OUT DX, AL ; Send code to light yellow Lamp

26 0017 EB 07 90 JMP EXIT ; Go to next mainline instruction

27 001A 80 02 GREEN: MOV AL, 02H ; Load code to light green lamp

28 001C BA FFFA MOV DX, OFFFAH " ; Point DX at output port

29 001F EE OUT DX, AL ; Send code to light green lamp
30 0020 BA FFFC EXIT: MOV DX, OFFFCH ; Next mainline instruction
31 0023 EC IN AL, DX ° ; Read ph sensor
32 0024 CODE ENDS
33 END

(a)

20 000A 3C 1E CMP AL, 30 ; Compare temp with 30°C

21 000C 73 03 JAE GREEN ; IF temp 230 THEN light green lamp

22 000E EB OA 90 JMP YELLOW ; ELSE light yellow lLamp

23 0011 BO 02 GREEN: MOV AL, O2H ; Load code to light green lamp

24 0013 BA FFFA MOV DX, OFFFAH ; Point DX at output port

25 0014 EE OouUT DX, AL ; Send code to light green lamp

26 0017 EB 07 90 JMP EXIT ; Go to next mainline instruction

27 001A BO O1 YELLOW: MOV AL, O1H ; Load code to lLight yellow lamp*

28 001C BA FFFA MOV DX, OFFFAH ; Point DX at output port

29 001F EE OUT DX, AL ; Send code to light yellow Lamp

30 0020 BA FFFC EXIT: MOV DX, OFFFCH ; Next mainline instruction

31 0023 EC IN AL, DX ; Read ph sensor

32 0024 . COOE ENDS

33 : END

b)

FIGURE 4-14 List file for printed-circuit-board-making machine program.
(a) Below 30° version. (b) Program section for above 30° version.

many situations we want a computer to choose one IF condition THEN

of several alternative ‘actions based on the value of action

some variable read in or on a command code entered ELSE IF condition THEN
by a user. To choose one alternative from several, we - action ’
can nest IF-THEN-ELSE structures. The result has ELSE

the form action

80 CHAPTER FOUR

It is important to note that in this structure the last
ELSE is part of the IF-THEN just before it. Figure 3-3d
showed a flowchart and psi e for a “soup cook”
example using this structure, but the soup cook example
is too messy to implement here. Therefore, while the
printed-circuit-board-making machine from the last sec-
tion is still fresh {n your mind, we will expand that
example to show you how a multiple IF-THEN-ELSE is
implemented.

Suppose that we want to have three lamps on our
printed-circuit-board-making machine. We want a yel-
low lamp to indicate that the temperature is below 30°C,
a green lamp to indicate that the temperature is above
or equal to 30°C but below 40°C, and a red lamp to
indicate that the temperature is at or above 40°C. Figure
4-15 shows three ways to indicate what we want to do
here. The first way, in Figure 4-15a, stmply indicates
‘the desired action next to each temperature range. You
may find this form very useful in visualizing problems
where the alternatives are based on the range of a
variable. Don’t miss the ASCII-to-hexadecimal problem
at'the end of the chapter for some practice with this,

Once you get a problem such as this defined in
list form, you can easily convert it to a flowchart or
pseudocode. When writing the flowchart or the pseudo-
code, it is best to start at one end of the overall range

TEMPERATURE
}YELLOW
LAMP
29
30 READ TEMPERATURE
GREEN IF TEMPERATURE < 30° THEN
LAMP LIGHT YELLOW LAMP
39 ELSE IF TEMPERATURE < 40° THEN
40 LIGHT GREEN LAMP

RED
}LAMP ELSE LIGHT RED LAMP
READ pH SENSOR

(a) b)

READ
TEMPERATURE

LIGHT LIGHT RED
GREEN
LAMP LAMP
READ pH
SENSOR

FIGURE 4-15 Algarithm for three-lamp printed-circuit-
board-making machine. (a) Condition list.
(b) Pseudocode. (c) Flowchart.

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE

and work your way to the other. For example, in the
flowchart in Figure 4-15¢c, start by checking whether
the temperature is below 30°. If the temperature is not
below 30° then it must be above or equal to 30°, and
you do not have to do another test to determine -this.
You then check whether the temperature is below 40°.
If the temperature is above or equal to 30°, but below
40°, then you know that the temperature is in the green
lamp range. If the temperature is not below 40°, then
you know that the temperature must be above or equal
to 40°. In other words, two carefully chosen tests will
direct execution to one of the three alternatives.
Figure 4-16, p. 82, shows how we can write a program
for this algorithm in 8086 assembly language. In the
program, we first initialize port FFFAH as an output
port. We then read in the temperatur= from an A/D
converter connected to port FFF8H. We compare the
temperature read in with the first set-point value, 30°.
If the temperature is below 30°, the Jump if Below
instruction, JB, will cause a jump to the label YELLOW.
If the jump is not taken, we know the temperature is
above or equal to 30°, $0 we go on to the/CMP AL.40
Instruction to see whether the temperature is below the
second set point, 40°. The JB GREEN instruction will
cause a jump to the label GREEN if the temperature is
less than 40° If the jump is not taken, we know that

" the temperature must be at or above 40°C, so we just go

ahead and turn on the red lamp.

For this program, we assume that the lines which
control the three lamps are connected to"pon FFFAH.
The yellow lamp is connected to bit 0, the green is
connected to bit 1, and the red is connected to bit 2.
We turn on a lamp by outputting a 1 to the appropriate
bit of port FFFAH. The instruction sequence MOV
AL,04H—OUT DX.AL. for example, will turn on the
red lamp by sending a 1 to bit 2 of port FFFAH.

Summary of IF-THEN-ELSE Implementation

From the preceding examples, you should see that
you can implement IF-THEN-ELSE structures in your
programs by using Compare or other instructions to set
the appropriate flag(s) and’ Conditional Jump instruc-
tions to go to the desired sequence of actions.

A single IF-THEN-ELSE structure is used to choose
one of two alternative series of actions. IF-THEN-ELSE
structures can be linked to choose one of three or more
alternative series of actions. As shown in Figure
3-3d. linked IF-THEN-ELSE structures are one way to
implement the CASE structure. The algorithm for the
printed-circuit-board-making machine lamps program
in the preceding section's example could have been
expressed as

CASE temperature OF

< 30 light yellow lamp
= 30 and <40 light green lamp -
= 40 light red lamp

This CASE structure would be implemented in the same
way as the program in Figure 4-16. However, expressing

8

; 8086 PROGRAM F4-16.ASM

1

2 JABSTRACT : This program section reads the temperature of a cleaning bath
3 ; solution and Lights one of three lamps according to the

4 ; temperature read. If the temp < 30°C, a yellow Lamp will be
5 ; turned on. If the temp 2 30* and < 40°, a green lamp will be
(] ; turned on. Temperatures 2 40° will turn on a red lamp.

7 ;REGISTERS : Uses CS, AL, DX

8 ;PORTS : Uses FFFBH - temperature input .
9 2 FFFAH - lamp control output, yellow=bit 0, green=zbit 1, redsbit 2
10 0000 CODE SEGMENT

" ’ ASSUME CS:CODE

12 ;initialize port FFFAH for output and port FFFBN for input

13 0000 BA FFFE MOV DX, OFFFEH ; Point DX to port control register

14 0003 B8O 99 MOV AL, 99 ; Load control word to set up output port

15 0005 EE OUT DX, AL ; Send control word to control register

16

17 0006 BA FFF8 MOV DX, OFFFBH ; Point DX at input port

18 0009 EC IN AL, DX ; Read temp from sensor on input port

19 000A BA FFFA " MOV DX, OFFFAH ; Point DX at output port

20 0000 3C 1E CMP AL, 30 ; Compare temp with 30°C

21 000F 72 OA JB YELLOW ; IF temp < 30 THEN light yellow lamp

22 0011 3c 28 CMP AL, 40 ; ELSE compare with 40°

23 0013 72 OC JB GREEN ; IF temp < 40 THEN light green lamp

24 0015 BO 04 RED: MOV AL, O4H ; ELSE temp 2 40 so light red lamp

25 0017 EE ouT DX, AL ; Send code to light red lamp

26 0018 EB 0A 90 . JMP EXIT ; Go to next mainline instruction

27 0018 B0 01 YELLOW: MOV AL, O1H ; Load code to light yellow lamp

28 001D EE OUT DX, AL ; Send code to light yellow lLamp

29 001E EB 04 90 JMP EXIT ; Go to next mainline instruction

30 0021 B8O 02 GREEN: MOV AL, O2H ; Load code to light green lamp

31 0023 EE OUT DX, AL ; Send code to light green lamp

32 0026‘_“ FFFC EXIT: MOV DX, OFFFCH ; Next mainline instruction

33 0027 EC IN AL, DX ; Read ph sensor

34 0028 CODE ENDS

35 END

FIGURE 4-16 List file for three-lamp printed-circuit-board-making machine

program. .
the algorithm for the problem as linked IF-THEN-ELSE
structures makes it much easier to see how to implement
the algorithm in assembly language. In Chapter 10 we
show you another way to implement a CASE situation
using a jump table ; :

' |

WHILE-DO PROGRAMS

. X
Overview L

Remember from the discussion in Chapter 3 that the
WHILE-DO structure “as the form

WHILE some conditior. is present DO
’ action
action

An important point about this structure is that the
condition is checked before any action is done. In
industrial control applications of microprocessors. there
are many cases where we want to do this. The following
very simple example will show you how to implement
this structure in 8086 assembly Janguage.

82 CHAPTER FOUR

Defining the Problem and Writing the Algorithm

Suppose that, in controlling a chemical process, we
want to bring the temperature of a solution up to 100°C
before going on to the next step in the process. If the
solution temperature is below 100°, we want to turn on
a heater and wait for the temperature to reach 100°. If
the solution temperature is at or above 100°, then we
want to go on with the next step in the process. The
WHILE-DO structure fits this problem because we want
to check the condition (temperature) before we turn on
the heater. We don't want to turn on the heater if the
temperature is already high enough because we might
overheat the solution.

Figure 4-17 shows a flowchart and the pseudocode of
an algorithm for this problem. The first step in the
algorithm is to read in the temperature from'a sensor
connected to a port. The temperature read in is then
compared with 100°. These two parts represent the
condition-checking part of the structure. If the tempera-
ture is at or above 100°, execution will exit the structure
and do the next mainline action, turn off the heater. If

_the temperature is less than 100°, the heater Is turned

on and the temperature rechecked. Execution will stay
in this loop while the temperature is below 100°. Inciden-

READ
TEMPERATURE

YES

NO

TURN ON
HEATER

TURN OFF
HEATER

FLOWCHART
(a)

‘READ TEMPERATURE

WHILE TEMPERATURE < 100° DO
TURN HEATER ON

TURN HEATER OFF -

PSEUDOCODE
- o
)

FIGURE 4-17 Flowchart and pseudocode for heater
control program.

tally, it will not do any harm to turn the heater on if it
is already on.

When the temperature reaches 100°, execution will
exit the structure and go on to the next mainline action,
turn off the heater.

Implementing the Algorithm
in Assembly Language

We have assumed for this example that the temperature
sensor inputs an 8-bit binary value for the Celsius
temperature to port FFF8H. We have also assumed that
the heater control output is connected to the most
significant bit of port FFFAH. As we showed previously,
the actual address of port P2B on the SDK-86 board is
FFFAH. It is to this address that we will output a byte
to turn the heater on or off.

Figure 4-18a, p. 84, shows one way to implement out
algorithm. After initializing the heater control port for
output, we read in the temperature, and compare the

- 13

value read with 100. The JAE instruction after the
compare can be read as “jump to the label HEATER_OFF
if }AL is above or equal to 100.” Note that we used the
Jump if Above or Equal instruction rather than a Jump
if Equal instruction. Can you see why? To see the
answer, visualize what would happen if we had used a
JE instruction and the temperature of the solution were
101°. On the first check, the temperature would not be
equal to 100°, so the 8086 would turn on the heater.
The heater would not get turned off until meltdown.

If the heater temperature is below 100°, we turn on
the heater by loading a 1 in the most significant bit of
AL and outputting this value to the most significant bit
of port FFFAH. Then we do an unconditional JMP to
loop back and check the temperature again.

When the temperature Is at or above 100°, we load a
0 in the most significant bit of AL and output this to
port FFFAH to turn off the heater. Note that the action
of turning off the heater is outside the basic WHILE-DO
structure. The WHILE-DO structure is shown by the
dotted box in the flowchart in Figure 4-17a and by the
indentation in the pseudocode in Figure 4-17b.

Solving a Potential Problem of Conditional
Jump Instructions

In the example program in Figure 4-18a, we used the
Conditional Jump instruction JAE to implement the
WHILE-DO structure. Remember that all the Conditional
Jump instructions are short-type jump§. This means
that a conditional jump can only be to a location within
the range of — 128 to + 127 bytes from the instruction
after the Conditional Jump instruction. This limit on
the range of the jump posed no problem for the example
program in Figure 4-18a because we were only jumping
to a location 8 bytes ahead in the program. Suppose,
however, that the instructions for turning on the heater
required 220 bytes of memory. The HEATER_OFF label
would then be outside the range of the JAE instruction.

We showed you how to solve this problem in Figure
4-11. To refresh your memory. Figure 4-18b shows how
you can change the instructions in this program slightly
to solve the problem without changing the basic WHILE-
DO overall structure. In this example, we read the
temperature in as before and compare it to 100. We then
use the Jump if Below instruction to jump to the
program section which turns on the heater. This instruc-
tion, together with the CMP instruction, says, “Jump
to the label HEATER_ON if AL Is below 100.” If the
temperature Is at or above 100. the JB instruction will |
act like a NOP, and the 8086 will go on to the JMP
HEATER_OFF instruction. Changing the Conditional
Jump instruction and writing the program in this way
means that the destination for the Conditional Jump
instruction is always just two instructions away. There-
fore, you know that the destination will always be
reachable. Except for very time-critical program sec-
tions, you should always write Conditional Jump in-
struction sequences in this way so that you don’t have
to worry about the potential problem. The disadvantages
of this approach are the time and memory space required
by the extra JMP instruction.

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE 83

F4-18BA.ASM

1 ; 8086 PROGRAM
2 ;ABSTRACT : Program turns heater off if temperature > 100°C
3 ; and turns heater on if temperature < 100°C.
4 ;REGISTERS : Uses CS, DX, AL
5 ;PORTS : Uses FFFBH - temperature data input
] H FFFAH - MSB for heater control output, 0=off, 1=on
7 0000 CODE SEGMENT
8 ASSUME CS:CODE
9 ; Initialize port FFFAH for output, and port FFF8H for input
10 0000 BA FFFE MOV DX, OFFFEH ; Point DX to port control register
11 0003 B0 99 MOV AL, 99H ; Control word to set up output port
12 0005 EE OuUT DX, AL ; Send control word to port
13
14 0006 BA FFF8 TEMP_IN: MOV DX, OFFFB8H ; Point at input port
15 0009 EC IN AL, DX ; Input temperature data
16 000A 3C 64 CMP AL, 100 : 1f temp > 100 then
17 000C 73 08 JAE HEATER_OFF ; turn heater off
18 000E 80 80 MOV AL, BOH ; else load code for heater on
19 0010 BA FFFA MOV DX, OFFFAH ; Point DX to output port
20 0013 EE OUT DX, AL ; Turn heater on
21 0014 EB FO JMP TEMP_IN 5 WHILE temp < 100 read temp again
22°0016 BO 00 HEATER_OFF:MOV AL, 00 ; Load code for heater off
23 0018 BA FFFA MOV DX, OFFFAH ; Point DX to output port
24 0018 EE OuT DX, AL ; Turn heater off
25 001C CODE ENDS
26 END
(a)
14 0006 BA FFF8 TEMP_IN: MOV DX, OFFF8H ; Point DX at input port
1S 0009 EC IN AL, DX ; Read in temperature data
16 000A 3C 64 CMP AL, 100 ; 1f temp < 100° then
17 000C 72 03 JB HEATER_ON ; turn heater on
18 000e EB 09 90 JMP HEATER_OFF ; else temp 2100 so turn heater off
19 0011 BO 80 HEATER_ON: MOV AL, BOH ; Load code for heater on
20 0013 BA FFFA MOV DX, OFFFAH ; Point DX at output port
21 0016 EE OUT DX, AL ; Turn heater on
22 0017 EB ED JMP TEMP_IN ; WHILE temp < 100° read temp again
23 0019 BO 00 HEATER_OFF:MOV AL, 00 ; Load code for heater off
24 0018 BA FFFA MOV DX, OFFFAH ; Point DX at output port
25 001E EE OuT DX, AL ; Turn heater off
26 001F CODE ENDS
27 END
(b)

FIGURE 4-18 List file for heater control program. (a) First approach. (b)

Improved version of WHILE-DO section of program.

REPEAT-UNTIL PROGRAMS
Overview

Remember from the discussion in Chapter 3 that the
REPEAT-UNTIL structure has the form

REPEAT
action

. A
UNTIL some condition is present

An important polﬁt about this structure is that the
action or series of actions is done once before the

L d
84 CHAPTER FOUR

condition is checked. This is different from the WHILE-
DO structure, where the condition is checked before any
action(s).-

The following examples will show you how you can
implement the REPEAT-UNTIL with 8086 assembly lan-
guage and introduce you to some more assembly lan-
guage programming techniques.

Defining the Problem and Writing the Algorithm

Many systems that interface with a microcomputer
output data on parallel-signal lines and then output a
separate signal to indicate that valid data is on the
parallel lines. The data-ready signal is often called a

DATA BUS TO 8086
0o Do
D1 D1
D2 D2
D3 D3 pORT
D4 +]p4 FFFBH
Ds [»1]
D6 D6 8255
D7 D7 P2A
ASCII
KEYBOARD
STROBE Do i
—q{D1
—o2
—103 PpoRT
—1pa FFFAH
— D5
‘—4D6 8255
—07 P28

FIGURE 4-19 ASCll-encoded keyboard with strobe
connected to microcomputer port.

strobe. An example of a strobed data system such
as this is an ASCll-encoded computer-type keyboard.
Figure 4-19 shows how the parallel data lines and the
strobe line from such a keyboard are connected to ports
of a microcomputer. When a key is pressed on the
keyboard, circuitry in the keyboard detects which key
is pressed and sends the ASCII code for that key out on
the eight data lines connected to port FFF8H. After the
data has had time to settle on these lines, the circuitry
in the keyboard sends out a key-pressed strobe, which
lets you know that the data on the eight lines is valid.
A strobe can be an active high signal or an active low
signal. For the example here, assume that the strobe
signal goes high when a valid ASCII code is on the
parallel data lines. As you can see in Figure 4-19, we
have connected this strobe line to the least significant
bit of port FFFAH so that we can input the strobe signal.
If we want to read the data from this keyboard, we can't
do it at just any time. We must wait for the strobe to go
high so that we know that the data we read will be valid.
Basically, what we have to do is look at the strobe signal
and test it over and over until it goes high. Figure 4-20a,
P- 86. shows how we can represent this operation with a
flowchart, and Figure 4-20b shows the pseudocode. We
want to repeat the read-strobe-and-test loop until the
strobe is found to be high. Then we want to exit the loop
and read in the ASCII code byte. The basic REPEAT-
UNTIL structure is shown by the indentation in the
pseudocode. Note that the read ASCII data action is not
part of this structure and is therefore not indented.

Implementing the Algorithm
with Assembly Language

Figure 4-20c shows the 8086 assembly language to
implement this algorithm. To read in the key-pressed
strobe signal, we first load the address of the port to

which it is connected into the DX register. Then we use
the variable-port input instruction, IN.AL,DX, to read
the strobe data to AL. This input instruction copies a
byte of data from port FFFAH to the AL register. We care
about only the least significant bit of the byte read in
from the port, however, because that is where the
strobe is connected. To determine whether the strobe is
present, we need to check just this bit and determine
whether it is a 1. Here are three different ways you can
do this.

The first way. shown in Figure 4-20c, is to AND the
byte in AL with the immediate number O1H. Remember
that a bit ANDed with a 0 becomes a O (is masked). A
bit ANDed with a 1 Is not changed. If the least significant
bit is a 0, then the result of the ANDing will be all O's.
The zero flag ZF will be set to a 1 to indicate this. If the
least significant.bit is a 1, the zero flag will not be set
to a 1 because the result of the ANDing will still have a
1 in the least significant bit. The Jump if Zero instruc-
tion, JZ, will check the state of the zero flag: if it finds
the zero flag set, it will jump to the label LOOK_AGAIN.
If the JZ instruction finds the zero flag not set (indicating
that the LSB was a 1), it passes execution on to the
instructions which read in the ASCII data.

Another way to check the least significant bit ol the
strobe word is with the TEST instruction instead of
the AND instruction. The 8086 TEST instruction has the
format TEST destination,source. The TEST instruction
ANDs the contents of the specified source with the
contents of the specified destination and sets flags
according to the result. However, the TEST instruction
does not change the contents of either the source or the
destination. The AND instruction, remember, puts the
result of the ANDing in the specified destination.
The TEST instruction is useful if you want to set flags
without changing the operands. In the example program
in Figure 4-20c. the AND AL.O1H instruction could be
replaced with the TEST AL,01H instruction.

Still another way to check the least significant bit of
the strobe byte Is with a Rotate instruction. If you rotate
the least significant bit into the carry flag. you can use
a Jump if Carry or Jump if Not Carry instruction to
control the loop. For this example’ program, you could
use elther the ROR instruction or the RCR instruction.
To verify this, take a look at the discussions of these
instructions in Chapter 6. Assuming that you use .the
ROR instruction, the check and jump instruction se-
quence would look like this:

LOOK_AGAIN:IN AL, DX
ROR AL, 1 : Rotate LSB into carry
JNC LOOK_AGAIN; If LSB = 0, keep looking

For your programs you can use the way of checking a
bit that seems easiest in a particular situation.

To read the ASCII data, we first have to load the port
address, FFF8H, into the DX register. We then use the
variable-port input Instruction IN AL,DX to copy the
ASCII data byte from the port to the AL register.

The main purpose of the preceding section was to show
you how you can use a Conditional Jump instruction to
make the 8086 REPEAT a series of actions UNTIL

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE 85

the flags indicate that some condition is present. The
following section shows another example of implement-
ing the REPEAT-UNTIL structure. This example also
shows you how a register-based addressing mode is used
to access data in memory.

t START }

READ STROBE

STROBE =1
?

READ
ASCII CODE

FLOWCHART
(a) .

REPEAT

READ KEYPRESSED STROBE
UNTIL STROBE = 1
READ ASCII CODE FOR KEY PRESSED

Operating on a Series of Data Items in
Memory—Another REPEAT-UNTIL Example

In many programming situations we want to perform
some operation on a series of data items stored in
successive memory locations. We might, for example,
want to read in a series of data values from a port and
put the values in succsssive memory locations. A series
of data values of the same type stored in successive
memory locations is often called an array. Each value
in the array is referred to as an element of the array.
For our example program here, we want to add an
inflation factor of O3H to each price in an eight-element
array of prices. Each price is stored In a byte location
as packed BCD (two BCD digits per byte). The prices
then are in the range of 1 cent to 99 cents. Figure
4-21a shows a flowchart and Figure 4-21b shows a
pseudocode algorithm for the operations that we want
to perform. Follow through whichever form you feel more
comfortable with.

We read one of the BCD prices from memory, add the
inflation factor to it, and adjust the result to keep it in
BCD format. The new value is then copied back to the
array, replacing the old value. After that, a check is
made to see whether all the prices have been operated
on. If they haven't, then we loop back and operate on
the next price. The two questions that may occur to you
at this point are, “How are we going to indicate in the
program which price we want to operate on, and how
are we going to know when we have operated on all of
the prices?” To indicate which price we are operating
on at a particular time, we use a register as a pointer.
To keep track of how many prices we have operated on,
we use another register as a counter. The example
program in Figure 4-21c¢ shows one way in which the
algorithm for this problem can be implemented in
assembly language.

PSEUDOCODE The example program in Figure 4-21c¢ uses several
) assembler directives. Let's review the function of these
d ;. 8086 PROGRAM F4-20C.ASM
2 ;ABSTRACT : Program to read ASCIl code after a strobe signal
3 ; is sent from a keyboard
4 JREGISTERS : Uses CS, DX, AL
5 ;PORTS : Uses FFFAH - strobe signal input on LSB
6 : FFF8H - ASCII data input port
T
8 0000 CODE SEGMENT
9 ASSUME CS:CODE
10 0000 BA FFFA MOV DX, OFFFAH ; Point DX at strobe port
11 0003 EC LOOK_AGAIN: IN AL, DX ; Read keyboard strobe
1_2 0004 24 01 AND AL, 01 ; Mask extra bits and set flags
13 0006 74 FB JZ LOOK_AGAIN ; If strobe is low then keep looking
14 0008 BA FFF8 MOV DX, OFFF8H ; else point DX at data port
15 0008 EC IN AL, DX ; Read in ASCI! code
16 000C CODE ENDS
17 ' END

FIGURE 4-20 Flowchart, pseudocode, and assembly language for reading
ASCIl code when a strobe is present. (a) Flowchart. (b) Pseudocode. (c) List file

of program.

86

CHAPTER FOUR

< START ’

GET A PRICE

|

ADD INFLATION
FACTOR

l

ADJUST RESULT
TO BCD

|

PUT RESULT
BACK IN ARRAY

YES

FLOWCHART
(a)

0000
0000 20

VO ~NOWV S WD =

10 0008 36
1" 39
12 0010

14 0000

16 0000 B8
17 0003 Bt
18 0005 80
19 0009 B9
20 000C 8A
21 000E 04
22 0010 27
23 0011 88
24 0013 43
25 0014 49
26 0015 75
27 0017

28

REPEAT

GET A PRICE FROM ARRAY
ADD INFLATION FACTOR
ADJUST RESULT TO CORRECT BCD
PUT RESULT BACK IN ARRAY
UNTIL ALL PRICES ARE INFLATED

PSEUDOCODE
()

;ABSTRACT :
5

;REGISTERS
;PORTS H

b

before describing the operation of the program instruc-
tions. The ARRAYS SEGMENT and ARRAYS ENDS direc-
tives are used to set up a logical segment containing the
data definitions. The CODE SEGMENT and CODE ENDS
directives are used to set up a logical segment which
contains the program Instructions. The ASSUME
CS:CODE,DS:ARRAYS directive tells the assembler to
use CODE as the code segment and use ARRAYS for all
references to the data segment. The END directive lets
the assembler know that it has reached the end of the
program. Now let's discuss the data structure for the
program.

The statement COST DB 20H,28H, 15H,26H,19H,27H.
16H.29H in the program tells the assembler to set aside
successive memory locations for an eight-element array
of bytes. The array is given the name COST. When the
assembled program is loaded into memory to be run,
the eight memory locations will be loaded with the eight
values specified in the DB statement. The statement
PRICES DB 36H,55H.27H.42H,38H.41H,29H,39H sets
up another eight-element array of bytes and gives it the
name PRICES. The eight memory locations will be loaded
with the specified values when the assembled program
is loaded into memory. Figure 4-22, p. 88, shows how
these two arrays will be arranged in memory. Note that
the name of the array represents the displacement or
offset of the first element of the array from the start of
the data segment. ' '

The first two instructions, MOV AX,ARRAYS and MOV
DS.AX, initialize the data segment register as was

8086 PROGRAM : F4-21C.ASM
Program adds an inflation factor to a series of prices
in memory. It copies the new price over the old price.

: Uses DS, CS, AX, BX, CX

None used

ARRAYS SEGMENT
28 15 26 19 27 16 + cost

55 27 42 38 41 29 + PRICES

0000s

o8

1€ 0008r
0008

07

03.

07

ARRAYS ENDS

DB 20H, 2BH, 15H, 26H, 19H, 27H, 16H, 294

08 36H, 55H, 27H, 42H, 3BH, 41H, 29K, 39H

CODE SEGMENT
ASSUME CS:CODE, DS:ARRAYS
START: MOV AX, ARRAYS ; Initialize data segment
MOV DS, AX ; register
LEA BX, PRICES ; Initialize pointer
MOV Cx, 0008H ; Initialize counter
DO_NEXT: MOV AL, [BX] ; Copy a price to AL
ADD AL, O3H ; Add inflation factor
DAA ; Make sure result is BCD
MOV [BX], AL ; Copy result back to memory
INC BX ; Point to next price
DEC CX ; Decrement counter
JNZ DO_NEXT ; If not last, go get next
CODE ENDS
END START

(e)

FIGURE 4-21 Addiﬁg a constant to a series of values in memory. (a) Flowchart.
(b) Pseudocode. (c) List file of program.

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE 87

MEMORY

39

29

41

n -

42

27 BX = OFFSET OF DESIRED

ELEMENT IN PRICES

36 =~ START OF ARRAY PRICES

29

16

27

19 DISPLACEMENT OF START

OF ARRAY PRICES

26

15
ARRAYS__HERE 2
SEGMENT BASE —— 20 <~——— START OF ARRAY COST
DS = 3400H

LA

FIGURE 4-22 Data arréngemem in memory for “inflate
prices” program.

described for the example program in Figure 3-14. The
LEA mnemonic in the next instruction stands for Load
Effective Address. An effective address, remember, is
the number of bytes from the start of a segment to the
desired data item. The instruction LEA BX.PRICES
loads the displacement of the first element of PRICES
into the BX register. A displacement contained in a
register is usually referred to as an offset. If you take
another look at the data structure for this program in
Figure 4-22, you should see that the offset of PRICES is
0008H. Therefore, the LEA BX,PRICES instruction will
load BX with O008H. We are using BX as a pointer to
an element in PRICES. We will soon show you how this
pointer is used to indicate which price we want to
operate on at a given time in the program.

The next instruction, MOV CX,0008H, loads the CX
register with the number of prices in the array. We use
this register as a counter to keep track of how many
prices we have operated on. After we operate on each
price, we decrement the counter by 1. When the counter
reaches 0, we know that we have operated on all the
prices.

The MOV AL [BX] instruction copies one of the prices
from memory to the AL register. Here's how it works.
Remember, the 8086 produces the physical address for
accessing data in memory by adding an effective address
to the segment base represented by the 16-bit number
in a segment register. A section in Chapter 3 showed
you how the effective address could be specified direttly
in the instruction with either a name or a number.
The instructions MOV AX MULTIPLICAND and MOV
AX.DS:WORD PTR|O000H| are examples of this ad-
dressing mode. We also showed you that the effective
address can be contained in a register. The square
brackets around BX in the instruction MOV AL.[BX]
indicate that the effective address is contained in the
BX register. In our example program. we used the LEA
BX.PRICES instruction to load the BX register with the

88 CHAPTER FOUR

offset of the first element in the array PRICES. The first
time the MOV AL,[BX] instruction executes, BX will
contain 0008H, the effective address or offset of the first
price in the array. Therefore, the first price will be copied
into AL.

The next instruction, ADD AL,03H, adds the immedi-
ate number O3H to the contents of the AL register. The
binary result of the addition will be left in AL. We want
the prices in the array to be in BCD form, so we have to
make sure the result is adjusted to be a legal BCD
number. For example, if we add 03 to 29, the result in
AL will be 2C. Most people would not understand this
as a price, so we have to adjust the result to the
desired BCD number. The Decimal Adjust after Addition
instruction DAA will automatically make this adjust-
ment for us. DAA will adjust the 2CH by adding 6 to the
lower nibble and the carry produced to the upper nibble.
The result of this in AL will be 32H, which is the result
we want from adding 03 to 29. Note that the DAA
instruction works only on the AL register. For further
examples of DAA operation, consult the DAA Instruction
description in Chapter 6.

The INC BX instruction adds 1 to the number in BX.
BX now contains the effective address or offset of the
next price in the array. We like to say that BX now points
to the next element in the array.

The DEC CX instruction decrements the count we set
up in the CX register by 1. If CX contains 0 after this
decrement, the zero flag will be set to a 1. The JNZ
DO_NEXT checks the zero flag. If it finds the zero flag
set, it just passes execution out of the structure to the
next mainline instruction. If it finds the zero flag not
set, the JNZ instruction will cause a jump to the label
DO_NEXT. In other words. the 8086 will repeat the
sequence of instructions between the label and the JNZ
instruction until CX is counted down to zero. Each time
through the loop, BX will be incremented to point to the
next price in the array.

Still Another REPEAT-UNTIL Example

Using a pointer to access data items in memory is a
powerful technique that you will want to use in many
of your programs, so Figure 4-23 shows still another
example. In this example; we want to add a profit of 15
cents to each element of an array called COST and put
the result in the corresponding element of an array
called PRICES. The algorithm for this example is

REPEAT
Get an item from cost array
Add profit factor
Adjust result to correct BECD
Put result into price array
UNTIL all prices are calculated

The assembly language implementation of this algo-
rithm is very similar to that for the last example, except

for the way we use the polnters. In this example we need

to point to the same element in two different arrays. To
do this, we use the BX register to keep track of which
element we are currently accessing in the arrays. At the

1 ; 8086 PROGRAM F&-23.ASM

2 ;ABSTRACT : Program adds a profit factor to each element in a
3 ; COST array and puts the result in an PRICES array.
4 ;REGISTERS : Uses DS, CS, AX, BX, CX

5 ;PORTS : None used

6

7 = 0015 PROFIT EQU 15H ; profit = 15 cents

8 0000 ARRAYS SEGMENT

9 0000 20-28 15 26 19 27 16 + CosT DB 20H, 28H, 15H, 26H, 19H, 27H, 16H, 29H
10 29

1 0008 08*(00) PRICES DB 8 DUP(0)

12 0010 ARRAYS ENDS

13

14 0000 CODE SEGMENT .

15 ASSUME CS:CODE, DS:ARRAYS

16 0000 B8 0000s START: MOV AX, ARRAYS ; Initialize data segment

17 0003 8t D38 MOV DS, AX ; register

18 0005 B9 0008 MOV CX, 0008d ; Initialize counter

19 0008 88 0000 MOV BX, 0OOOH ; Initialize pointer

20 0008 8A 87 0000r DO_NEXT: MOV AL, COST([BX] ; Get element [BX] from COST

21 000F 04 15 ADD AL, PROFIT ; Add the profit to value

22 0011 27 DAA ; Decimal adjust result

23 0012 8& 87 0008r MOV PRICES(BX], AL ; Store result in PRICES at (BX]
24 0016 43 INC BX ; Point to next element in arrays
25 0017 49 DEC CX ; Decrement the counter

26 0018 75 F1 JNZ DO_NEXT ; 1f not last element, do again
27 001A CODE ENDS

28 END START

FIGURE 4-23 List file of “price-calculating” program.

start of the program, then, we initialize BX as a pointer
to the first element of each array with MOV BX,0000H.
The instruction MOV AL,COSTIBX] then will copy the
first value from the array COST into AL. The effective
address for this instruction will be produced by adding
the displacement represented by the name COST to the
contents of BX.

- After the Addition and Decimal Adjust instructions,
the instruction MOV PRICES|BX].AL copies the result
of the addition to the first element of PRICES. The 8086
computes the effective address for this instruction by
adding the contents of BX to the displacement repre-
sented by the name PRICES.

The BX register Is incremented. so that if CX has not
been decremented to zero, COSTIBX] and PRICES|BX]
will each access the next element in the array when
execution goes through the DO_NEXT loop again. A
programmer familiar with higher-level languages wauld
probably say that BX is being used as an array index in
this example.

Another Look at 8086 Addressing Modes

The preceding examples showed you how a register can
be used as a pointer or index to access a sequence of
data items in memory. While these examples are fresh
in your mind, we want to show you more about the 8086
addressing modes we introduced you to in Chapter 3.
Figure 4-24, p. 90, summarizes all the ways you can
tell the 8086 to calculate an effective address and a
physical address for accessing data in memory. In all

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE

{

ﬂr

cases, the physical address is generated by adding an
effective address to one of the segment bases, CS,
SS, DS, or ES. The effective address can be a direct
displacement specified directly in the instruction, as,
for example, MOV AX,MULTIPLIER. The effective address
or offset can be specified to be in a register, as in the
instruction MOV AL,[BX]. Also, the effective address can
be specified to be the contents of a register plus a
displacement included in the instruction. The instruc-
tion MOV AX,PRICES(BX| is an example of this ad-
dressing mode. For this example, PRICES represents
thedisplacementofthestartof thearray from the segment
base, and BX represents the number of the element in the
array that we want to access. The effective address of the
desired element, then, is the sum of these two.

For working with more complex data structures such
as the array of records shown in Figure 4-25, p. 90, you
can tell the 8086 to compute an effective address by
adding the contents of BX or BP plus the contents of SI
or DI plus an 8-bit or a 16-bit displacement contained in
the instruction. You can, for example, use an instruction
such as MOV AL. PATIENTS(BXSI] to access the balance
due field in the array of medical records shown in Figure
4-25. The name PATIENTS in this instrugtion represents
the displacement of the array PATIENTS from the start
of the data segment. The BX register holds the offset of
the start of the desired record in the array. The SI
register holds the offset of the start of the desired field
in the record. To access the next record in the array.
you simply add a number equal to the length of the
record to the BX register. To access another field in a
record. you just change the value in the Sl register.

L]

89

S .

SINGLE INDEX
OR
ENwOED
IN THE 1 OR
INSTRUCTION

i

OR

V) Ill

EXPLICIT
IN THE {
INSTRUCTION

ASSUMED
UNLESS Y
OVERRIDDEN
BY PREFIX

FIGURE 4-24 Summary of 8086 addressing modes.

When BX, Sl or DI is used to contain all or part
of the effective address, the physical address will be
produced by adding the effective address to the data
segment base in DS. When BP is used to contain all or
part of the effective address, the physical address will
be produced by adding the effective address to the stack
segment base in SS. For any of these four, you can use
a segment override prefix to tell the 8086 to.add the
effective address to some other segment base. The
instruction MOV AL,CS:BX] tells the 8086 to produce
a physical memory address by adding the offset in BX
to the code segment base instead of adding it to the data
segment base. An exception to this is that with a special
group of instructions called string instructions, an offset

SEGMENT BASE \
Name PATIENTS represents displacement of
start of array of records from segment base

4

PATIENTS ; array of patient records start here

RECORD 1

TV N. BEER
\ 1324 Down Street
' PORTLAND, OR 97219
4 2/15/45

247 b

$327.56

BX holds affset of -------- » RECORD 2
desired record in array IM A. RUNNER

: 17197 Hatton Road
Oregon City, OR 97045
6/30/41
SI holds offset of -------- » 145 b
desired field in record $0.00

RECORD 3

FIGURE 4-25 Use of double indexed addressing mode.

90 CHAPTER FOUR

[ex | [s |
OR OR
[e] [o1 |
s EU

. -z-m 0
. "o-

DOUBLE INDEX

EFFECTIVE

BIU

in DI will always be added to the extra segment base in
ES to produce the physical address.)

The 8086 LOOP Instructions

In the second REPEAT-UNTIL example, we showed you
how to make a program repeat a sequence of instructions
a specific number of times. To do this, you load the
desired number of repeats in a register or memory
location. Each time the sequence of instructions exe-
cutes, the count value in the register or memory location
is decremented by 1 When the count is decremented to
zero, the zero fiag will Ye set. You use a Conditional
Jump instruction to check this flag and to decide
whether to repeat the instruction sequence in the loop
again. .

The need to perform a sequence of actions a specified
number of times in a program is so common that some
programming languages use a specific structure to
express it. This structure, derived from the basic WHILE-.
DO, is called the FOR-DO loop. It has the form

FOR count = 1 to count = n DO
action
action

where n is the number of times we want to do the
sequence of actions.

The common need to repeat a sequence of actions a
specified number of times led the designers of the 8086
t6 give it a group of instructions which make this easier
for you. These instructions are the LOOP instructions.

INSTRUCTION OPERATION

The LOOP instructions are basically Conditional Jump
instructions which have the format LOOP label. LOOP
instructions, however. combine two operations in-each
instruction. The first operation is to decrement the CX

LOOP Loop until CX =0

LOOPE/LOOPZ Loop if zero flag set
and CX # 0

LOOPNE/LOOPNZ | Loop if zero flag not set
and CX # 0

JCXZ jump if CX =0

FIGURE 4-26 8086 LOOP instructions.

register by 1. The second operation is to check the CX
register and, in some cases, also the zero flag to decide
whether to do a jump to the specified label. The simple
LOOP label instruction then can be used in place of the
DEC CX—JNZ label instruction sequence we used in
Figure 4-21c.

As with, the previously described Conditional Jump
instructions, the LOOP instructions can do only short
jumps: This means that the destination label must be
in the range of —128 bytes to + 127 bytes from the
instruction after the LOOP instruction.

As shown in Figure 4-26, there are two additional
forms of LOOP instructions. These instructions check
the state of the zero flag as well as the value in the CX
register to determine whether to take the jump or not.
Shown in Figure 4-26 are the condition(s) checked by
each instruction to determine whether it should do the
jump. NE in the mnemonics stands for “not equal,” and
NZ in the mnemonics stands for “not zero.” Instruction
mnemonics separated by a “/" in Figure 4-26 represent
the same instruction.

The LOOP instructions decrement the CX register but
do not affect the zero flag. This leaves the zero flag
available for other tests. The LOOPE/LOOPZ label in-
struction will decrement the CX register by 1 and jump
to the specified label if CX # O and ZF = 1. In other
words, program execution will exit from the repeat loop
if CX has been decremented to zero or the zero flag is
not set. This instruction might be f1sed after a Compare
instruction, for example, to continue a sequence of
operations for a specified number of times or until
compared values were no longer equal.

The LOOPNE/LOOPNZ label instruction decrements -

the CX register by 1. If CX # 0 and ZF = 0, this
instruction will cause a jump to the specified label. In
other words, execution will exit from the loop if CX is
equal to zero or the zero flag is set. This instruction
is useful when you want to execute a sequence of
instructions a fixed number of times or until two values
are equal. An example might be a program to read data
from a disk. We typically write this type of program so
that it attempts to read the data until the checksums
are equal or until 10 unsuccessful attempts have been
made to read the disk. Consult the descriptions for these
.instructions in Chapter 6 for specific examples of how
the LOOPE and LOOPNE instructions are used.

In summary, then, the LOOP instructions are useful
for implementing the REPEAT-UNTIL structure for those
special cases where we want to do a series of actions a
fixed number of times or until the zero flag changes
state. LOOP instructions incorporate two operations in

each instruction: therefore. they are somewhat more .

- 14

IMPLCMENT:NG STANDARD PROGRAM STRUCTURES IN 8066 ASSEMBLY LANGUAGE

efficient than single instructions to do the same job. In
the next section we introduce you to instruction timing
and show you how the LOOP instruction can be used to
produce a delay between the execution of two instruc-
tions.

INSTRUCTION TIMING
AND DELAY LOOPS

The rate at which 8086 instructions are executed is
determined by a crystal-controlled clock with a frequency
of a few megahertz. Each instruction takes a certain
number of clock cycles to execute. The MOV register,
register instruction, for example, requires 2 clock cycles
to execute, and the DAA instruction requires 4 clock
cycles. The JNZ instruction requires 16 clock cycles if
it does the jump. but it requires only 4 clock cycles if it
doesn't do the jump. A table in Appendix B shows the
number of clock cycles required by each instruction.
Using the numbers in this table, you can calculate how
long it takes to execute an instruction or series of
instructions. For example, if you are running an 8086
with a 5-MHz clock, then each clock cycle takes 1/(5
MHz) or 0.2 ps. An instruction which takes 4 cleck
cycles, then, will take 4 clock cycles x 0.2 ps/clock cycle
or 0.8 ps to execute.)

A common programming problem is the need to
introduce a delay between the execution of two instruc-
tions. For example, we might want to read a data value
from a port, wait 1 ms, and then read the port again. A
later chapter will show how you can use interrupts to
mark off time intervals such as this, but for now we will
show you how to use a program loop to do it.

The basic principle is to execute an instruction or
series of Instructions over and over until the desired
time has elapsed. Figure 4-27a shows a program we
mug .t use w do this. The MOV CX.N instruction loads
the CX register with the number of times we want to
repeat the delay loop. The NOP instructions next in the
program are not required: the KILL_TIME label could
be right in front of the LOOP instruction. In this case,
only the LOOP instruction would be repeated. However.,
we put the NOPs in to show you how you can get more
delay by extending the time it takes to execute the loop.

¥ Clock Cycles
MOV CX, N ; 4 = C,
KILL _TIME: NOP - 3
NOP ; 3 = CL
- LOOP KILL _TIME ; 17 or 5
(a)
CT = CO +N (CL) =12
CT—-CO+ 12 5000 — 4 + 12
N = = = 218 = ODAH
C 23 2 0DAl
15
(b)

FIGURE 4-27 Delay loop program and calculations. (a)
Program. (b) Calculations.

~

The LOOP KILL_TIME instruction will decrement CX
and, if CX is not down to zero yet, do a jump to the label
KILL_TIME. The program then will cause the 8086
to execute the two NOP instructions and the LOOP
instruction over and over until CX is counted down to
zero. The number in CX will determine how long this
takes. Here's how you determine the value to put in CX
for a given amount of delay.

First you calculate the number of clock cycles needed
to produce the desired delay. If you are running your
8086 with a 5-MHz clock. then the time for each clock
cycle is 1/(5 MHz) or 0.2 ps. Now, suppose that you want
to create a delay of 1 ms or 1000 ps with a delay loop.

If you divide the 1000 ps desired by the 0.2 ps per clock -

cycle, you get the number of clock cycles required to
produce the desired delay. For this example you need a
total of 1000/0.2 or 5000 processor clock cycles to
produce the desired delay. We will call this number C;
for future reference.

The next step is to write the number of clock cycles
required for each instruction next to that instruction,
as shown in Figure 4-27a. Then you look at the program
fo determine which instructions get executed only once.
The number of clock cycles for the instructions which
execute only once will only contribute to the total once.
Instructions which only enter. the calculation once are
often called cverhead. We will represent the number of
cycles of overhead with the symbol C,. In Figure 4-27a,
the only instruction which executes just once is MOV
CX,N, which takes 4 clock cycles. For this example, then,
C, = 4.

Next you determine how many clock cycics 22 required
for the loop. The two NOPs in the loop require a total of
6 clock cycles. The LOOP instruction requires 17 clock
cycles If it does the jump back to KILL_TIME, but it
requires only 5 clock cycles when it exits the loop. The
jump takes longer because the instruction byte queue
has to be reloaded starting from the new address. For
all but the very last time through the loop, it will require
17 clock cycles for the LOOP instruction. Therefore, you
can use 17 as the number of cycles for the LOOP
instruction and compensate later for the fact that the
last time it takes 12 cycles less. For the example program,
the number of cycles per loop C, = 6 + 17 or 23.

The total number of clock cycles delayed by the loun
Is equal to the number of times the luop executes
multiplied by the time per loop. To be somewhat more
accurate, you can subtract the 12 cycles that were not
used when the last LOOP instruction executed. The total._
number ofelock cycles required for the example program
to execute is

Cr=C, + NIC) - 12

To find the value for N for a desired amount of delay,
put in the required C;, 5000 for this example, and solve
the result for N. Figuré 4-27b shows how this is done.
The resultant value for N is 218 decimal or ODAH. This
is the number of times you want the loop to repeat, so.
this is the value of N that you will load into CX before
entering the loop. g

With the simple relationship shown in Figure 4-27b,

92 .CHAPTER FOUR

you can determine the value of N to put in a delay loop
you write, or you can determine the time a delay loop
written by someone else will take to execute.

If you can't get a long enough delay by counting down
a single register or memory location. you can nest delay
loops. An example of-this nesting is

: number of states
MOV BX. COUNTI: 4
CNTDN1:MOV CX. COUNT2: 4COUNT1)

CNTDN2:LOOP CNTDN2 ; ({17 x COUNTZ2) — 12)COUNT1
DEX BX © 12(COUNT1)
JNZ CNTDN1 ; 16(COUNT1)-12

The principle here is to load CX with COUNT2 and count
CX down COUNTI times. To determine the number of
states that-this program section will take to execute,
observe that the LOOP instruction will execute COUNT2
times for each time CX is loaded with COUNT1. The
total number of states., then, is COUNT1 times the
number of states for the last four instructions plus 4,
for the MOV BX,COUNT]I instruction. The best way to
approach getting values for the two unknowns, COUNT1
and COUNTZ2, is to choose a value such as FFFFH for
COUNT2 and then solve for the value of COUNT1. A
couple of tries should get reasonable values for both
COUNT1 and COUNT2.

Notes about Using Delay Loops for Timing

There are several additional factors you have to take intc
account when determining the time that a sequence of
instructions will require to execute.

1. The BIU and the EU are asynchronous. so for some
instruction sequences an extra clock cycle may be
required. For a given sequence of instructions the
added cycles are always the same, but obviously
these cycles are not included in the numbers given
in Appendix B.] .

The number of clock cycles required to read a word
from memory or write a word to memory depends
on whether the first byte of the word is at an even
address or at an odd address. The 8086 will require
4 additional elock cycles to read or write a word -
located on an odd address.

The number of clock cycles required to read a byte
from memory or write a byte to memory depends on
the addressing mode used to access that byte. A
table at the start of Appendix B shows the numher of
clock cycles that must be added for each addressing
mode. According to Appendix B, the basic mem 8 to
reg 8 instruction requires 8 + EA clock cycles. The
[BX] addressing mode requires 5 clock cycles, so the
instruction MOV AL,[BX] requires 8 + 5 or 13 clock
cycles to execute.

4. If a glven microcomputer system is designed to
insert WAIT states during each memory access, this
will increase the number of clock cycles required for
each memory access. In Chapter 7 we discuss the
use of WAIT states.

In summary, the calculations we showed you how to
do in the preceding section give you the approximate
time it will take a sequence of instructions to execute.

If you really need to know the precise time a sequence

of instructions requires to execute, the only way to
determine it is to use a logic analyzer or emulator to
measure the actual number of clock cycles.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms or concepts in
the following list, use the index to find them in the
chapter.

Defining a problem *

Setting up a data structure

Making an initialization checklist

Masking using the AND instruction
Packed and unpacked BCD numbers
Debugging—breakpoints, trace, single step
Conditional flags: CF, PF, AF, ZF, SF, OF

Unconditional JMP instructions
Direct and indirect near (intrasegment) jumps
Direct and indirect far (intersegment) jumps
Short jumps

Conditional jumps

Fixed- and variable-port input/output instructions
Based and indexed addressing modes)
Poop instruction

Processor clock cycles

Delay loops

REVIEW QUESTIONS AND PROBLEMS

1. Describe the operation and results of each of the:

following instructions, given the register contents
shown in Figure 4-28 (below question 3). Include
in your answer the physical address or register that
each instruction will get its operands from and the
physical address or register that each instruction
will put the result in. Use the instruction descrip-
tions in Chapter 6 to help you. Assume that the
instructions below are independent, not sequential,
unless listed together under a letter.

a. ROL AX.CL d. ADD AX,[BXI]SI|
b. IN AL,DXP e. JMPO23AH
c. MOV CX,BX] J. JMP BX

2. Construct the binary codes for the instructions of
Questions la through 1f.

3. Predict the state of the six 8086 conditional flags
after each of the following instructions or group of
instructions executes. Use the register contents
shown in Figure 4-28. Assume that all flags are reset
before the instructions execute. Use the detailed
instruction descriptions in Chapter 6 to help you.

a. MOV AL.AH c. ADD CL.DH
b. ADD BL.CL d. OR CX,BX

€s = 2000 AX = A4O7

bS = 3000 BX = 2483

$S = 4000 CX = 0002

ES = 3000 DX = FFFA

SP = FFFF

8P = 0009

SI = 4200

OI = 4300

FIGURE 4-28 Figure for Chapter 4 problems.

4. See if you can find any errors in the following
instructions or groups of instructiens.

a. CNTDOWN: MOV BL, 72H
DEC BL
JNZ CNTDOWN
ADD CX.AL
JMP BL
JNZ [BX]

po

Write an algorithm for a program which adds

a byte number from one memory location to a

byte from the next memory location, puts the

sum in a third memory lo¢ation, and saves the
state of the carry flag in the least significant bit

of a fourth memory location. Mask the upper 7

bits of the memory location where the carry is

stored.

b. Write an 8086 assembly language program for
this algorithm. Hints: Set up data declarations
similar to those in Figure 3-14. Use a Rotate
instruction to get the carry flag state into the
LSB of a register or memory location.

c. What additional Instructions would you have

to add to this program so that it correctly adds’

2 BCD bytes?

For each of the following programming problems, draw
a flowchart or write the pseudocode for an algorithm to
solve the problem. Then write an 8086 assembly lan-
guage program to implement the algorithm. If you have
an 8086 system avallable, enter and assemble your
source program, then load the object code for the pro-
gram into memory so that you can'run and test it. If the
program does not work correctly, use the single-step or
breakpoint approaches described earlier in this chapter
to help you debug it.

6. Convert a packed BCD byte to two ASCII characters
for the two BCD digits in the byte. For example,
given a BCD byte containing 57H (01010111 bi-
nary), produce the two ASCI! codes 35H and 37H.

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE 93

7.

8.

In order to avoid hand keying programs into an
SDK-86 board, we wrote a program to send machine
code programs from an IBM PC to an SDK-86 board
through a serial link. As part of this program, we
had to convert each byte of the machine code
program to ASCII codes for the two nibbles in the
byte. In other words, a byte of 7AH has to be sent
as 37H. the ASCII code for 7, and 41H. the ASCII
code for A. Once you separate the nibbles of the
byte, this conversion is a simple IF-THEN-ELSE
situation. Write an algorithm and assembly lan-
guage program section which does the needed
conversion.

A common problem when reading a series of ASCII
characters from a keyboard is the need to filter out

‘those codes which represent the hex digits O to 9

and A to F, and convert these ASCII codes to the
hex digits they represent. For example, if we read

. in 34H, the ASCII code for 4, we want to mask the

upper 4 bits to leave 04, the 8-bit hex code for 4. If
we read in 42H, the ASCII code for B, we want to
add 09 and mask the upper 4 bits to leave 0B, the
8-bit code for hex B. If we read in an ASCII code
that is not in the range of 30H to 39H or 41H to
46H, then we want to load an error code of FFH
instead of the hex value of the entered character.
Figure 4-29 shows the desired action next to each
range of ASCII values. Write an algorithm and
an assembly language program which implements
these actions. Hint: A nested IF-THEN-ELSE struc-
ture might be useful.

ASCII

00H

:]—— ERROR
2FH

30H

4]—- HEX 0-9
39H g
3AH -

:]— ERROR
40H

41H

8]— HEX A-F
46H

47H

5]— ERROR
7FH

FIGURE 4-29 ASCII chart for Problem 8.

94

CHAPTER FOUR

9. Compute the average of 4 bytes stored in an array

10.

12.

B

14.

in memory.

Compute the average of any number of bytes in an

array in memory. The number of bytes to be added
is in the first byte of the array.

Add a 5-byte number in one array to a 5-byte
number in another array. Put the sum in another
array. Put the state of the carry flag in byte 6 of the
array that contains the sum. The first value in each
array is the least significant byte of that number.
Hint: See Figure 4-23.

An B086-based process control system outputs a
measured Fahrenheit temperature to a display on
its front panel. You need to write a short program
which converts the Fahrenheit temperature to Cel-
sius so that the system can be sold in Europe. The
relationship between Fahrenheit and Celsius is
C = (F - 32)5/9. The Fahrenheit temperature will
always be in the range of 50° to 250°. Round the
Celsius value to the nearest degree.

An ASCII keyboard outputs parallel ASCII + parity
to port FFF8H of an SDK-86 board. The keyboard
also outputs a strobe to the least significant bit
(DO) of port FFFAH. (See Figure 4-19.) When you
press a key, the keyboard outputs the ASCII code
for the pressed key on the eight parallel lines and
outputs a strobe pulse high for 1 ms. You want to
poll the strobe over and over until you find it high.
Then you want to read in the ASCII code, mask the
parity bit (D7), and store the ASCII code in an array
in memory. Next, you, want to poll the strobe over
and over again until you find it low. When you find
the strobe has gone low, check to see if you have
read in 10 characters yet. If not, then go back and
wait for the strobe to go high again. If 10 characters
have been read in, stop.

a. Write a delay loop which produces a delay of
500 ps on an 8086 with a 5-MHz clock.

b. Write a short program which outputs a 1-kHz
square wave on DO of port FFFAH. The basic
principle here is to output a high, wait 500 ps
(0.5 ms), output a low, wait 500 us, output a
high, etc. Remember that, before you can out-
put te a port device, you must first initialize it
as in Figure 4-18a. If you connect a buffer such
as that shown in Figure 8-23 and a speaker to
DO of the port, you will be able to hear the tone
produced.

Strings, Procedures,

and Macros

The last chapter showed you how quite a few of the 8086
instructions work and how jump instructions are used
to implement IF-THEN-ELSE. WHILE-DO, and REPEAT-
UNTIL program structures. The first section of this
chapter introduces you to the 8086 string instructions,
which can be used to repeat some operations on a
sequence of data words in memory. The major point of
this chapter, however, is to show you how to write and
use subprograms called procedures. A final section of
the chapter shows you how to write and use assembler
macros. :

OBJECTIVES

At the conclusion of this chapter, you should be able to:

1. Use the 8086 string instructions to perform a variety
of operations on a sequence of data words in memory.

2. Describe how a stack is initialized and used in 8086
assembly language programs which call procedures.

3. Write an 8086 assembly language program which
calls a near procedure.

4. Write an 8086 assembly language program which
calls a far procedure.

5. Write, assemble, link, and run a program which
consists of more than one assembly module.

6. Write and use an assembler macro.

THE 8086 STRING INSTRUCTIONS
Introduction and Operation

A string is a series of bytes or words stored in successive
memory locations. Often a string consists of a series ol
ASCII character codes. When you usc a word processor
or text editor program, you are actually creating a string
of this sort as you type in a series of characters. One
important feature of a word processor is the ahi'ity to
move a sentence or group of sentences from one place
in the text to another. Doing this involves moving a
string of ASCII characters from onc place in memory to
another. The 8086 Move String instruction. MOVS,
allows you to do operations such as this very easily.

Another important feature of most word processors is
the ability to search through the text looking for a given
word or phrase. The 8086 Compare String instruction.
CMPS, can be used to do operations of this type. In a
similar manner, the 8086 SCAS instruction can be used
to search a string to see whether it contains a specified
character. A couple of examples should help you see how
these instructions work.

MOVING A STRING

Suppose that you have a string of ASCII characters in
successive memory locations in the data segment, and
you want to move the string to some new sequence of
locations in the data segment. To help you visualize
this, take a look at the strings we set up in the data
segment in Figure 5-1b, p. 96, to test our program.

The statement TEST_MESS DB ‘TIS TIME FOR A
NEW HOME' sets aside 23 bytes of memory and gives
the first memory location the name TEST_MESS. This
statement will also cause the ASCII codes for the letters
enclosed in the single quotes to be written in the reserved
memory locations when the program is loaded in memory
to be run. This array or string then will contain 54H,
49H, 53H, 20H. etc. The statement DB 100 DUP(?) will
set aside 100 memory locations, but the DUP(?) in the
statement tells the assembler not to initialize these 100
locations. We put these bytes in to represent the block
of text that we are going to move our string over.
The statement NEW_LOC DB 23 DUP(0) sets aside 23
memory locations and gives the first byte the name
NEW_LOC. When this program is loaded in memory to
be run. the 23 locations will be loaded with 00 as
specified by the DUP(0) in the statement. To help you
visualize this, Figure 5-1a shows a memory map for
this data segment. Now that you understand the data
structure for the problem, the next step is to write an
algorithm for the program.

The basic pseudocode algorithm shown here for the
operations you want to perform doesn't really help you
see how you might implement the algorithm in assembly
language.

REPEAT

MOVE BYTE FROM SOURCE STRING
TO DESTINATION STRING

UNTIL ALL BYTES MOVED

95

In Chapter 3 we introduced you to the use of pointers
to access data in sequential memory locations, so your
next thought might be to expand the algorithm as shown
next:

INITIALIZE SOURCE POINTER, SI
INITIALIZE DESTINATION POINTER, DI
INITIALIZE COUNTER, CX

23 bytes initialized| 00
to zero
Start of NEW_LOC --» 00
??
Start of undefined
data block " 27
-
53 ASCII S
49 ASCII I
Start of
TEST_MESS --»| 54 ASCII T
(a)
1 H
2 sABSTRACT
3
4 ;REGISTERS ;
5 ;PORTS ; None used
[}
7 9900 DATA SEGMENT
8 0000 56 49 53 20 54 49 4D +
9 45 20 46 4F 52 20 41 +
10 20 4E 45 57 20 48 4F +
1 4D 45
12 0017 64%(27) 08
13 0078 17%(00) NEW_LOC
14 0092 DATA ENDS
15
16 0000 CODE SEGMENT
17
18
19 0000 B8 0000s START:MOV AX, DATA
20 0003 8t D8 MOV DS, AX
21 0005 8¢ CO MOV ES, AX
22 0007 8D 36 0000r LEA SI, TEST_MESS
23 0008 8D 3E 0078r LEA DI, NEW_LOC
24 000F B89 0017 MOV Cx, 23
25 0012 FC CcLD
26
27 0013 F3> A4 REP MOVSB
28
29 0015 CODE ENDS
30 END START

100 DUP(?)
DB 23, DUP(0)

(b)

REPEAT "
COPY BYTE FROM SOURCE TO DESTINATION
INCREMENT SOURCE POINTER
INCREMENT DESTINATION POINTER
DECREMENT COUNTER

UNTIL COUNTER = O

We often describe an algorithm in general terms at first
and then expand sections as needed to help us see how
the aigorithm is implemented in a specific language. In
the expanded algorithm you can see that as part of the
initialization list you need to initialize the two pointers
and a counter. The REPEAT-UNTIL loop then consists
of moving a byte, incrementing the pointers to point
to the source and destination for the next byte, and
decrementing the counter to determine whether all the
bytes have been moved.

As it turns out, the single 8086 string instruction,
MOQOVSB, will perform all the actions in the REPEAT-
UNTIL loop. The MOVSB instruction will copy a byte
from the location pointed to by the SI register to a
location pointed to by the DI register. It will then
automatically increment SI to point to the next source
location, and increment DI to point to the next destina-
tion location. Actually, as we will show you soon, we can
specify whether we want SI and DI to increment or
decrement. If you add a special prefix called the repeat

8086 PROGRAM F5-01.ASM
: Program moves a string from the location TEST_MESS
; to the location NEW_LOC.
Uses CS, DS, ES, SI, DI,

AX, CX

TEST_MESS DB 'TIS TIME FOR A NEW HOME' ; String to move

; Stationary block of text
; String destination

ASSUME CS:CODE, DS:DATA, ES:DATA

; Initialize data segment register

Initialize extra segment register

Point SI at source string

Point DI at destination location

Use CX register as counter

Clear direction flag so pointers autoinc.ement
after each string element is moved

; Move string bytes until all moved

FIGURE 5-1 Program for moving a string from one location to another in
memory. (a) Memory map. (b) Assembly language program.

96 CHAPTER FIVE

prefix in front of the MOVSB instruction, the MOVSB
instruction will be repeated and CX decremented until
CX is counted down to zero. In other words, the REP
MOVSB instruction will move the entire string from the
source location to the destination locaticn if the pointers
are properly initialized.

In order for the MOVSB instruction to work correctly,
the source index register, SI, must contain the offset of
the start of the source string, and the destination index
register, DI, must contain the offset of the start cf the
destination location. Also, the number of string elements
to be moved must be loaded into the CX register.

As we said previously, the string instructions will
automatically increment or decrement the pointers after
each operation. depending on the state of the direction
flag DF. If the direction flag is cleared with a CLD
instruction, then the pointers in SI and DI will automati-
cally be incremented after each string operation. If the
direction flag is set with an STD instruction, then the
pointers in SI and DI will be automatically decremented
after each string operation. For this example, it is easier
to initialize the pointers to the starting offsets of each
string and increment the pointers after each operation,
so you will include the CLD instruction as part of the
initialization.

Figure 5-1b shows how this algorithm can be imple-
mented in assembly language. The first two MOV instruc-
tions in the program initialize the data segment register.
The next instruction initializes the extra segment regis-
ter. This is necessary because for string instructions,
an offset in DI is added to the segment base represented
by the number in the ES register to produce a physical
address. If DS and ES are initialized with the same
value,.as we did with the first three instructions in this
program, then Sl and DI will point to locations in the
same segment. ')

The next step in the program Is to load SI with the
effective address or offset of the first element in the
source string. In the example we used the LEA instruc-
tion, but an alternative way to do this is with the
instruction MOV SI,OFFSET TEST_MESS. The DI regis-
ter is then initialized to contain the effective address or
offset of the first destination location.

Next we load the CX register with the number of bytes
in the string. Remember, CX functions as a counter to
keep track of how many string bytes have been moved
at any given time. Finally, we make the direction flag a
zero with the Clear Direction Flag instruction, CLD.
This will cause both SI and DI to be automatically

‘incremented after a string byte is moved.

When the Move String Byte instruction. MOVSB,
executes, a byte pointed to by Si will be copied to the
location pointed to by DI. Sl and DI will be automatically
incremented to point to the next source and the next
destination locations. The count register will be auto-
matically decremented. The MOVSB instruction by itself
will just copy one byte and update SI and DI to point to
the next locations. However, as we said before, the repeat
prefix, REP, will cause the MOVSB to be executed and
the CX to be decremented over and over again until the
CX register is counted down to zero. Incidentally, when
the program is coded, the 8-bit code for the REP prefix.

11110011, is put in the memory location before the code
for the MOVSB instruction.

After the MOVSB instruction is finished, SI will be
pointing to the location after the last source string
byte, DI will be pointing to the location after the last
destination address, and CX will be zero.

The MOVSW instruction can be used to move a string
of words. Depending on the state of the direction flag,
Sl and DI will automatically be incremented or decre-
mented by 2 after each word move. If the REP prefix is
used, CX will be decremented by 1 after each word move,
so0 CX should be initialized with the number of words
in the string.

As you can see from this example, a single MOVSB
instruction can cause the 8086 to move up to 65,536
bytes from one location in memory to another. The
string instruction is much more efficient than using a
sequence of standard instructions, because the 8086
only has to fetch and decode the REP MOVSB instruction
once! A standard instruction sequence such as MOV,
MOV, INC, INC, LOOP, etc., would have to be fetched
and decoded each time around the loop.

USING THE COMPARE STRING BYTE
TO CHECK A PASSWORD

For this program example, suppose that we want to
compare a user-entered password with the correct pass-
word stored in memory. If the passwords do not match,
we want to sound an alarm. If the passworgs match, we
want to allow the user access to the computer and
continue with the mainline program. Figure 5-2, p. 98,
shows how we might represent the algorithm for this
with a flowchart and with pseudocode. Note that we
want to terminate the REPEAT-UNTIL when either the
compared bytes do not match or we are at the end of
the string. We then use an IF-THEN-ELSE structure to
sound the alarm if the compared strings were not equal
at any point. If the strings match, the IF-THEN-ELSE
just directs execution on to the main program.

To implement this algorithm in assembly language.
we probably would first expand the basic structures as
shown in Figure 5-2c. The first action in the expanded
algorithm is to initialize the port device for output. We
need to have an output port because we will turn on the
alarm by outputting a 1 to the alarm control circuit.
Next we need to initialize a pointer to each string and a
counter to keep track of how many string elements have
®en compared. The REPEAT-UNTIL shows how we will
use the pointer afhd counter to do the compare.

Figure 5-3, p. 99, shows how the Compare String in-
strnuction, CMPS, can be used to help translate this algo-
rithm to assembly language. As a review, first let's look at
the data structure for this program. The statement PASS-
WORD DBFAIL-SAFE' sets aside 8 bytes ¢cf memory and
gives the first memory location the name PASSWORD.
Thisstatement alsoinitializes theeight memorylocations
with the ASCII codes for the letters FAILSAFE. The ASCII
codes will be 46H. 41H. 49H, 4CH. 53H, 41H. 46H, 45H.

When an assembler reads through the source code for
a program, it uses a location counter to keep track of
the offset of each item in a segment. A 8 is used to
symbolically represent the current value of the locatio

STRINGS, PROCEDURES, AND MACROS 97

‘ START ’

COMPARE
BYTES

NO BYTES

EQUAL

NEXT MAINLINE
INSTRUCTION

(a)

REPEAT

COMPARE SOURCE BYTE WITH DESTINATION BYTE
UNTIL (BYTES NOT EQUAL) OR (END OF STRING) '
IF BYTES NOT EQUAL THEN '

S?UND ALARM

sToP

ELSE DO NEXT MAINLINE INSTRUCTION

()

INITIALIZE PORT DEVICE FOR OUTPUT
INITIALIZE SOURCE POINTER — Sl |
INITIALIZE DESTINATION POINTER — DI
INITIALIZE COUNTER — CX N
REPEAT)
COMPARE SOURCE BYTE WITH DESTINATION BYTE
INCREMENT SOURCE POINTER
INCREMENT DESTINATION POINTER
DECREMENT,COUNTER
UNTIL (STRING BYTES NOT EQUAL) OR (CX = 0)
IF STRING BYTES NOT EQUAL THEN
" SOUND ALARM'
STOP : .
ELSE DO NEXT MAINLINE INSTRUCTION
{c)

FIGURE S-AZ Flowchart and pseudocode for comparing
strings program. (a) Flowchart. (b) Initial pseudocode.
(c) Expanded pseudocode.

g CHAPTER FIVE

counter at any point. The statement STR_LENGTH

'EQU (8-PASSWORD) In the data segment then tells the

assembler to compute the value for a constant called
STR_LENGTH by subtracting the offset of PASSWORD
from the current value in the location counter. The
value of STR_LENGTH will be the length of the string
PASSWORD. Note that the EQU statement must be in
the data segment immediately after the password array
so that the location counter contains the desired value.
As you will see later. this trick with the S sign allows you
to load the number of string elements in CX symbolically.
rather than having to manually count the number. This
trick has the further advantage that if the password is
changed and the program reassembled, the instruction
that loads CX with the string length will automatically
use the new value.

The statement INPUT_WORD DB 8 DUP(0) will set
aside eight memory locations and assign the name
INPUT_WORD to the first location. The DUP(0) in the
statement tells the assembler to put OOH in each of these
locations. We assume that a keyboard interface program
section will load these locations with ASCII codes read
from the keyboard as a user enters a password. We like
to initialize locations such as this with zeros, so that
during debugging we can more easily tell if the keyboard
section correctly loaded the ASCII codes for the pressed
keys in these locations.

Now let's look at the code segment section of the
program. The ASSUME statement tells the assembler
that the instructions will be in the segment CODE. It
also iells the assembler that any references to the data
segment or to the extra segment will mean the segment
DATA. Remember that when you are using string in-
structions, you have to tell the assembler what to assume
about the extra segment, because with string instruc-
tions an offset in DI is added to the extra segment base
to produce the physical address.

The first three MOV statements in the program initial-
ize the data and extra segment registers. Since we
initialize DS and ES with the same values, both SI and
DI will point to locations in the segment DATA. The next
three instructions Initialize port P2B of an SDK-86
board as an output port. '

LEA SI,PASSWORD loads the effective address or offset
of the start of the FAILSAFE string into the SI register.
Since PASSWORD is the first data item in the segment
DATA, SI will be loaded with O000H. LEA DILIN-
PUT_WORD loads the effective address or offset of the
start of the INPUT_WORD string into the DI register.
Since the offset of INPUT_WORD is 0008H, DI will be
loaded with this value. The MOV CX STR_LENGTH
statement uses the EQU we defined previously to initial-
ize CX with the number of bytes in the string. The Clear
Direction flag instruction tells the 8086 to automatically
increment Sl and DI after two string bytes are compared.

The CMPSB instruction will compare the byte pointed
to by SI with the byte pointed to by DI and set the
flags according to the result. It will also increment the
pointers, SI and DI, to point to the next string elements.
The REPE prefix in front of this instruction tells the
8086 to decrement the CX register after each compare,
and repeat the CMPSB instruction if the compared bytes

; 8086 PROGRAM F5-03.ASM

JABSTRACT : This program inputs a password and sounds an alarm
; if the password is incorrect

;REGISTERS : Uses CS, DS, ES, AX, DX, CX, SI, DI

;PORTS ¢ Uses FFFAH - Port 2B on SDK-86 for alarm output

0000 DATA SEGMENT
0000 46 41 49 4C 53 41 46 + PASSWORD DB 'FAILSAFE' ; Password
45

10 = 0008 STR_LENGTH EQU ($ - PASSWORD) ; Compute length of string
11 0008 08*(00) INPUT_WORD DB 8 DUP(0) ; Space for user password input
12 D010 DATA ENDS
13
14 0000 CODE SEGMENT
15 ASSUME CS:CODE, DS:DATA, ES:DATA
16 0000 B8 0000s MOV AX, DATA
17 0003 Bt D8 MOV DS, AX ; Initialize data segment register
18 0005 8E cO MOV ES, AX ; Initialize extra segment register
19 0007 BA FFFE MOV DX, OFFFEH ; These next three instructions
20 000A BO 99 MOV AL, 99H ; set up an output port on
21 000C EE ouT DX, AL ; the SDK-86 board
22 0000 80 36 0000r LEA SI, PASSWORD ; Load source pointer
23 0011 80 3E 0008r LEA DI, INPUT_WORD ; Load destination pointer
24 0015 B9 0008 MOV CX, STR_LENGTH ; Load counter with password length
25 0018 FC CLD ; Increment DI & SI
26 0019 F3> A6 REPE CHPSB ; Compare the two string bytes
27 0018 75 03 JNE SOUND_ALARM ; 1f not equal, sound alarm
28 001D EB 08 90 JHP 0K ; else continue
29 0020 BO 01 SOUND_ALARM:MOV AL, 01 ; To sound alarm, send a 1
30 0022 BA FFFA MOV DX, OFFFAH ; to the output port whose
31 0025 EE OUT DX, AL ; address is in DX
32 0026 F4 HLT ; and HALT.
33 0027 90 oK: NOP ; Program continues if password is OK
34 0028 CODE ENDS
35 END

FIGURE 5-3 Assembly language program for comparing strings.

were equal ard CX is not yet decremented down to zero.
As we mentioned before, when this instruction is coded,
the code for the prefix will be put in memory before the
code for the CMPSB instruction.

If the zero flag is not set when execution leaves the
repeat loop. then we know that the two strings are not
equal. This means that the password entered was not
valid. so we want to sound an alarm. The JNE SOUND_
ALARM will check the zero flag and. if 1t is not set. do a
jump to the specified label. If the zero flag is set,
indicating a valid password. then execution falls through
to the JMP OK instruction. This JMP instruction simply
jumps over the instructions which sound the alarm and
stop the computer.

For this example. we assume that the alarm control
is connected to the least significant bit of port FFFAH
and that a 1 output to this bit turns on the alarm. The
MOV AL.01 instructio), loads a 1 in the LSB of AL. The
MOV DX.OFFFAH instruction points DX at the port
that the alarm is connected to. and;the OUT DX.AL
instruction copies this byte to port FFFAH. Finally. the
HLT instruction stops the computer. An interrupt or
reset will be required to get it started again.

As the preceding examples show. the string instruc-
tions make it very easy to implement some commonly

-15

needed REPEAT-UNTIL algorithms. Some of the pro-
gramming problems at the end of the chapter will give
you practice with MOVS, CMPS, and SCAS instructions.

WRITING AND USING PROCEDURES
Introduction

Often when writing programs you will find that you need
to use a particular sequence of instructions at several
different points in a program. To avoid writing the
sequence of instructions in the program each time you
nced them. you can write the sequence as a separate
“subprogram” called a procedure. Each time you need
to execute the sequence of instructions contained in the
- procedure, you use the CALL instruction to send the
8086 to the starting address of the procedure in memory.
Figure 5-4a, p. 100. shows in diagram form how a CALL
instruction causes execution to go from the mainline
program to a procedure. A RET instruction at the
end of the procedure returns execution to the next
instruction in the mainline. As shown in Figure 5-4b,
procedures can even be “nested.” This means that
one procedure calls another procedure as part of its
instruction sequence. Follow the arrows in Figure 5-4b

STRINGS, PROCEDURES, AND MACROS ~ ~ 99

MAINLINE OR
CALLING PROGRAM

PROCEDURE
INSTRUCTIONS

CALL

NEXT MAINLINE
INSTRUCTION

MAINLINE
INSTRUCTIONS

LOWER LEVEL
PROCEDURE PROCEDURE

CALL CALL
NEXT MAINLINE
INSTRUCTION
RET * RET
b)

FIGURE 54 Program flow to and from procedures. (a)
Single procedures. (b) Nested procedures.

to see how this works. Now, before we get into the details
of how to write and use procedures, we need to discuss
another reason we use procedures in programs.

Recall from Chapter 2 the top-down design approach
to solving a programming problem. In this approach,
the problem is carefully defined, and then the overall job
is broken down into modules. Each of these modules is
broken down into smaller modules. The division process
is continued until the algorithm for each module is
clearly obvious. Figure 5-5 shows an example of how
this modular structure can be represen.ed in diagram
form. A diagram such as this is often called a hierarchi-
cal chart. The point of all this is to break a large
problem down into manageable-size pieces which can be
individually written, tested, and debugged. The individ-
ual modules are usually written as proceduresand called
from a mainline program which implements the highest

level of the hierarchy. This approach has the added
advantage that a person can read the mainline program
to get an overview of what the program does and then
work down into the procedures to see the amount of
detail needed at a particular point. Also, tested and
debugged procedures can be used in writing new pro-
grams. Now that you know what procedures are used
for, we will discuss the 8086 CALL and RET.

The 8086 CALL and RET Instructions

As shown in Figure 5-4, a CALL instruction in the
mainline program loads the instruction pointer and in
some cases also the code segment register with the
starting address of the procedure. The next instruction
fetched will be the first instruction of the procedure. At
the end of the procedure, a RET instruction sends
execution back to the next instruction after the CALL
in the mainline program. The RET instruction does this
by loading the instruction pointer and, if necessary, the
code segment register with the address of the next
instruction after the CALL instruction.

The question that may occur to you at this point is,
“If a procedure can be called from anywhere in a program,
how does the RET instruction know where to return
execution to?” The answer to this question is that when
a CALL instruction executes, it automatically stores the
return address in a special section of memory called the
stack. A later section will introduce you to how the 8086
stack works. For now, let’s take a closer 100k at the 8086
CALL and RET instructions.

THE CALL INSTRUCTION OVERVIEW

As we said previously, the 8086 CALL instruction per-
forms two operations when it executes. First, it stores
the address of the instruction after the CALL instruction
on the stack. This address is calied the return address
because it is the address that execution will return to
after the procedure executes. If the CALL is to a proce-
dure in the same code segment, then the call is near,
and only the instruction pointer contents will be saved
on the stack. If the CALL is to a procedure in another
code segment, the call is far. In this case, both the
instruction pointer and the code segment register con-
tents will be saved on the stack.

UPDATE
MAIN INVENTORY
(VRS READ SALES T OUTPUT
- RECORDS Byl] RESULTS
PRINT PRINT
LEVEL 2 gl Ry DEPARTMENT PARTS TO
INVENTORIES ORDER LIST

A

FIGURE 5-5 - Hierarchical chart for inventory update program.

100 CHAPTER FIVE

The second operation of the CALL instruction is to
change the contents of the instruction pointer and, in
some cases. the contents of the code segment register
to contain the starting address of the procedure. This
second function of the CALL instruction is very similar
to the operation of the JMP instructions we discussed
in Chapter 4.

For most of your programs, you will simply call proce-
dures by name with an instruction such as CALL DELAY.
The DELAY in this instruction represents a label you
put next to the first instruction of the procedure. This
form of CALL instruction is referred to as direct because
the destination address is specified directly in the in-
struction. As with the JMP instructions, however, the
destination address for a CALL can be specified in several
different ways. For reference, Figure 5-6a shows the
coding formats for the four forms of the 8086 CALL
instruction. The differences among these four forms are
in the way they tell the 8086 to get the starting address
for the procedure.

DIRECT WITHIN-SEGMENT NEAR CALL

The first form, direct within-segment near call, tells the
8086 to produce the starting address of the procedure
by adding a 16-bit signed displacement contained in the
instruction to the contents of the instruction pointer.
This is the same process as we described for the direct
within-segment near JMP instruction in Chapter 4.
With this Instruction, the starting address of the proce-
dure can be anywhere in the range of —32.768 bytes to
+32,767 bytes from the address of the instruction after
the CALL. If you are hand coding a program, you
calculate the displacement by counting from the address
of the instruction after the CALL to the starting address
of the procedure. If the procedure is in memory before
the CALL instruction. then the displacement will be
negative. In this case you represent the displacement in
16-bit. 2's complement sign-and-magnitude form just
as you do for backward JMP instructions. If you are
using an assembler, the assembler will automatically
calculate the displacement from the instruction after
the CALL to a label you put at the start of the procedure.

THE INDIRECT WITHIN-SEGMENT NEAR CALL

The indirect within-segment CALL instruction is also a
near call. When this form of CALL executes, the instruc-
tion pointer is replaced with a 16-bit value from a
specified register or memory location. As indicated by
the MOD-R/M byte in the coding template. the source of
the value can be any of the eight 16-bit registers or a
memory location specified by any one of the 24 ad-
dressing modes shown in Figure 3-8. This form of
CALL instruction can be used to choose one of several
procedures based on a computed value. The instruction
CALL BP. for example. will do a near call to the offset
contained in BP. In other words, the value in BP will be
put in the instruction pointer. The instruction CALL
WORD PTR [BX] will get the new value for the instruction
. pointer from a memory location pointed to by BX.

CALL = Call

Within segment or group. IP relative

[oo | oOwlow | Ouoin |

Opcode
E8 19

Clocks Operation

IP « IP+Disp16—(SP) + return
link

Within segment or group, Indirect

T T i B

Opcode

FF 16
FF 21+EA

Clocks Operation

IP +— Reg16—(5P) +~ return link
1P — Mem16—(SP) + return link

Inter-segment or group, Direct

[Opcode | ofisetiow [ofterhign | senlow seg-high
Opcode Clocks Operation
9A 28 CS « seghase
IP + offset

Inter-segment or group, Indirect

[Opcode | mod0i1 im T memiow | memhigh_,

Opcode Clocks Operation
FF I7+EA CS « segbase
IP « olffset
(a)

RET = Return from Subroutine

(o]

Opcode Clocks Operation
(e8] 8 intra-segment return
[a:3 18 inter-segment return

Return and add constant to SP

OalaH4]

[Omode [oaut]

Opcode Clocks Operation
C2 12 intra-segment ret and add
CA 7 inter-segment ret and add

(b)

FIGURE 5-6 8086 CALL and RET instruction formats. (a)
CALL. (b) RET. (Intel Corporation)

THE DIRECT INTERSEGMENT FAR CALL

- The direct intersegment far call is used when the proce-

dure is in a segment with a different name from that
where the CALL is located. If the procedure is in another

segment. you have to change both the instruction

STRINGS, PROCEDURES, AND MACROS 101

pointer and the code segment register to get to it. For
this form of the CALL instruction, the new value for the
Instruction pointer is written in as bytes 2 and 3 of the
instruction code. Note that the low byte of the new IP
value is written before the high byte. The new value for
the code segment register is written in as bytes 4 and 5
of the instruction code. Again the low byte is written
before the high byte. A program example later in this
chapter shows you how to write your programs so that
an assembler can find a procedure label in another
segment.

THE INDIRECT INTERSEGMENT FAR CALL

This form of the CALL instruction replaces the instruc-
tion pointer and the code segment register contents
with two 16-bit values from memory. Since two 16-bit
values are needed. the values cannot come from a
register. The MOD-R/M byte in the instruction is used
to specify the addressjng mode for the memory location
where the 8086 goes to get the new values. The first
word from memory is put in the instruction pointer,
and the second word from memory is put in the code
segment register. The instruction CALL DWORD PTR
[BX]. for example, will get a new value for [P from [BX]
and [BX + 1]in the data segment and a new value for
CS from offsets [BX + 2] and [BX + 3] in the data
segment.

THE 8086 RET INSTRUCTION

When the 8086 does a near call, it saves the instruction
pointer value for the instruction after the CALL on the
stack. A RET at the end of the procedure copies this
value from the stack back to the instruction pointer to
return execution to the calling program. This then
returns execution to the mainline program. When the
8086 does a far call. it saves the contents of both the
instruction pointer and the code segment register on
the stack. A RET instruction at the end of the procedure
copies these values from the stack back into the IP
and CS registers to return execution to the mainline
program. Obviously we need one form of the RET instruc-
tion to handle returns from near procedures and another
form of the instruction to handle returns from far
procedures. Actually, the 8086 has four forms of the RET
instruction Figure 5-6b shows the coding templates for
these four.

The simple within-segment form of RET copies a word
from the top of the stack to the instruction pointer
register. This is the instruction form you will usually
use to return from a near procedure. The within-segment
adding immediate to SP form is also used to return from
a near procedure. When this form executes. however, it
will copy the word at the top of the stack to the
instruction pointer and also add an immediate number
contained in the instruction to the contents of SP. Later.,
we show you what this form is used for.

The intersegment form of the RET instruction is used
to return from far procedures. When this form of the
RET instruction executes, it will copy the word from the
top of the stack to the instruction pointer. It will then
Increment the stack pointer by 2 and copy the next

102 CHAPTER FIVE

word from the stack to the code segment register.
The intersegment adding immediate to SP form of the
instruction also copies a new value for IP and a new
value for CS from the stack. However, it also adds a 16-
bit immediate number contained in the instruction code
to SP.

NOTE: If you are using an assembler, the assem-
bler will automatically code a near RET for a near
procedure and a far RET for a far procedure.

The 8086 Stack

Throughout the preceding discussions of the CALL and
RET instructions, we have talked about writing words
to the stack and copying these words back to the
instruction pointer and/or code segment register. Now
we will show you how to set up a stack in your programs
and how the stack is used.

The stack is a section of memory you set aside for
storing return addresses. The stack is also used to save
the contents of registers for the calling program while a
procedure executes. A third use of the stack is to hold
data or addresses that will be acted upon by a procedure.

The 8086 lets you set aside up to an entire 64-Kbyte
segment of memory as a stack. Remember from the
block diagram in Figure 2-7 that the 8086 contains a
stack segment register and a stack pointer register. The
stack segment register is used to hold the upper 16 bits
of the starting address you give to the stack segment. If
you decide to start the stack segment at 70000H, for
example, the stack segment register will contain 7000H.
The stack pointer register is used to hold the offset of
the last word written on the stack. The 8086 produces
the physical address for a stack location by adding the
offset contained in the SP register to the stack segment
base address represented by the 16-bit number in the
SS register. :

An important point about the operation of the stack
is that the SP register is automatically decremented by
2 before a word is written to the stack. This means that
at the start of your program you must initialize the SP
register to point to the top of the memory you set aside
as a stack, rather than initializing it to point to the
boitom location. To help you visuglize this. Figure 5-7
shows how we set up the stack in memory for this
example program.

Before a CALL instruction, assume that the SS register
contains 7000H and the SP register contains 0050H.
The physical address of the current top of the stack,
then, will be 70050H. If the 8086 executes a near
CALL instruction, the SP register will automatically be
decremented by 2 and the contents of the IP register will
be written to the stack as shown.

When a near RET instruction executes, the IP value
stored In the stack will be copied back to the IP register,
and the SP register will be automatically incremented
by 2. After a CALL—RET sequence, then, the SP register
Is again pointing to the initial top-of-stack location.

From the preceding discussion you should see that if
you are going to call procedures or use the stack in some
other way in your program, you need to declare a stack

MEMORY
\
70050H —— ——— {NITIAL TOP OF STACK
h
ok} o= \ 'AND TOS AFTER RET
7004EH —— | L | «—|— TOP OF STACK
AFTER CALL
L sTACK
70000H —— ~—|— START OF STACK
SEGMENT

FIGURE 5-7 Stack diagram showing how the return
address is pushed onto the stack by CALL.

segment at the start of your program. You also need to
initialize the SS register with the base address of the
stack segment and initialize the SP register with the
offset of the top of the stack. Figure 5-8 shows the pieces
you need to add to your programs to declare a stack
segment and to initialize SS and SP.

The STACK_SEG SEGMENT STACK and STACK_SEG
ENDS statements in Figure 5-8 are used to declare a
logical segment that will be used for the stack. The
STACK directive tells the assembler that this segment
will be used as a last-in—first-out stack.

NOTE: If you are going to use the IBM program '
EXE2BIN on your programs so that you can down-
load them to an SDK-86. omit the STACK directive
here. The linker will then give you an error mes-
sage, WARNING—NO STACK SEGMENT, but you
can ignore this warning.

You don't need all 64,000 bytes of the logical segment
in your programs, so you tell the assembler to set aside
40 decimal or 28H words of storage in this logical

; 8086 PROGRAM fragment showing the initialization
; of stack segment register and stack pointer register

STACK_SEG SEGMENT STACK

DW 40 DUP(0)
STACK_TOP LABEL WORD
STACK_SEG ENDS

CODE SEGMENT

ASSUME CS:CODE, SS:STACK_SEG

MOV AX, STACK_SEG ; Initialize stack

MOV SS, AX ; segment register

LEA SP, STACK_TOP ; Initialize stack pointer
H : Continue with progam

CODE ENDS
' END

FIGURE 5-8 Required program additions when using a
stack.

segment with the DW 40 DUP(0) statement. If the
actual stack is limited to approximately the size actually
needed, this segment can be overlapped with other
logical segments to save on the amount of physical
memiory required for a program.

Since words are written to the stack starting from the
highest location, it is convenient to have a name attached
to this location so that you can initialize the SP register
with a name instead of a number. The statement
STACK_TOP LABEL WORD in Figure 5-8 gives the name
STACK_TOP to the next even address after the 40 words
you set aside for the stack.

We arbitrarily choose to start the stack segment at
address 70000H for this example, and we set a stack
length of 40 words with the DW 40 DUP(0) statement.
Since each memory address represents a byte, these 40
words will occupy the 80 addresses 70000H to 7004FH,
as shown in Figure 5-7. The label STACK_TOP is associ-
ated with address 70050H, the next address after the
stack. We will explain later why you want the name at
the address after the actual stack.

The next program addition you need to look at is in
the ASSUME statement. Note that we have added the
term SS:STACK_SEG to tell the assembler that any
reference in the program to the stack means the segment
STACK_SEG. This term tells the assembler that SS will
contain the starting address of STACK_SEG, but it does
not load this value into the SS register. Loading the SS
register must be done with program instructions, just
as you initialize the data segment register and the extra
segment register with program instructions. Remember,
you can't load an immediate number directly into a
segment register. so you load the starting address of
the segment into a register and then copy it into the
stack segment register. The MOV AX,STACK_SEG and
MOV SS.AX instructions do this. Now all you have to do
is initialize the stack pointer.

You want to initialize SP so that the first word written
to the stack goes to the highest location in the memory
you set aside for the stack. All the instructions which
write a word to the stack-decrement the stack pointer
by 2 before writing the word. Therefore, you want the
stack pointer to be initially loaded with the next even
address above the actual stack. We gave this location
the name STACK_TOP, so you can use the LEA
SP.STACK_TOP instruction to initialize the stack
pointer with the desired offset. You could also have
used the instruction MOV SP,OFFSET STACK_TOP to
initialize the stack pointer.

Now that you know the initialization steps required
in a program that uses procedures. we will show
you how to write and call a procedure. We will also
take another look at how the stack functions during a
CALL—RET sequence.

A Near Procedure Call and Return Example

DEFINING THE PROBLEM AND WRITING
THE ALGORITHM

Delay loops such as that shown in Figure 4-20 are often
written as procedures so that they can be called from -
anywhere in a program. Suppose that you want to write

STRINGS, PROCEDURES, AND MACROS 103

©

READ VALUE
FROM PORT

el

MASK UPPER
4 BITS

|

PUT IN
‘ARRAY

!

I WAIT 1 MS |

100
SAMPLES
?

YES

(a)

Initialize
REPEAT
Get data sample from port
Mask upper 4 bits
Put in array
Wait 1 ms
" UNTIL 100 samples taken

(b)

DATA SAMPLES PROGRAM
Initialize pointer to array, SI
Initialize counter, BX
REPEAT

Read port

Mask upper & bits

Put in array

Wait 1 ms procedure

Increment pointer, SI

Decrement counter, BX
UNTIL counter = 0

WAIT—1MS PROCEDURE
Load count value
REPEAT
Decrement count value
UNTIL count = 0

(3]

FIGURE 5-9 Algorithm for data samples at 1-ms intervals
program. (a) Flowchart. (b) Pseudocode. (c) Pseudocode
expanded. E

a program which reads 100 data words from a port at
1-ms intervals, masks the upper 4 bits of each word,
and puts each result in an array in memory. Before you
read on, see if you can write a flowchart or pseudocode
for this problem. Then compare your results with those
in Figure 5-9a or b. We hope you recognized this problem
as a REPEAT-UNTIL situation.

i04 CHAPTER FIVE

The next step is to expand the algorithm to take into
account the specific architectural features of the 8086
that you can use to implement the algorithm. Figure
5-9¢ shows one way to do this expansion.

At the start you initialize a pointer to the array and a
counter to keep track of how many values have been put
in the array. After each value Is read in and put in the
array, the delay procedure is called to produce the desired
interval between samples. When execution returns to
the mainline, the pointer is incremented so that it points
to the next location in the array. Finally, the counter is
decremented to determine whether the desired number
of samples have been taken. If not, the read, store, and
delay series of instructions is repeated.

Note that the algorithm for the procedure is done
separately from that for the main program. As we
discussed in the introduction to procedures, the flow of
the mainline program is clearer if much of the detail is
put in separate procedures. For the delay procedure,
you simply load a number in a register or memory
location and decrement the number until it is zero.

Note that even the expanded algorithm in Figure 5-9¢
is general enough that it could be implemented on
almost any microprocessor. Let's see how it can be
translated to run on an 8086.

THE 8086 ASSEMBLY LANGUAGE PROGRAM

Figure 5-10 shows the assembly language program for
the expanded algorithm in Figure 5-9c. Read through
this program and see how much of it you can remember
and/or figure out before you read our explanations
in the following paragraphs. Deciphering a program
written by someone else is an important skill to develop.

At the start of the program, we declare a logical
segment for data with the DATA SEGMENT—DATA
ENDS statements. The statement PRESSURES DW 100
DUP(0) in this segment sets aside 100 words of memory
to store the values read in from a pressure sensor. This
statement also initializes these 100 words to all O's. It
really doesn't matter what values are initially in these
locations because the program is going to write values
in them. However, as we mentioned in an earlier exam-
ple. we like to initialize arrays such as this to all O's so
that during debugging we can tell whether the program
wrote any values to these locations,

Next, we declare a logical segment to be used for the
stack with the STACK_SEG SEGMENT and STACK-
_SEG ENDS statements. As described previously, the
statement DW 40 DUP(0) sets up a stack length of 40
words and initializes these words to all O's. Again we
really don't care what value these words have initially
because the 8086 will be writing values there as we call
procedures. The statement STACK_TOP LABEL WORD
gives a name to the next even address after the highest

- address in the stack we set up.

Now let's work our way through the main program
and the procedure in the céde segment. We have to tdll
the assembler which logical segments are being used for
code, data, and stack in the program. The ASSUME
CS:CODE. DS:DATA. SS:STACK_SEG statement does
this. The ASSUME statement, however, does not actually
initialize the segment registers. We have to do this with

1 ; 8086 PROGRAM FS5-10.ASM

2 ;ABSTRACT : This program takes in data samples from a port at 1 ms

3 ; intervals, masks the upper 4 bits of each sample, and

4 ; puts each masked sample in successive locations in an array.
5 ;REGISTERS : Uses CS, SS, DS, AX, BX, CX, DX, SI, SP

6 ;PORTS : Uses OFFFBH - data samples input from port P2A on SDK-86
7. ;PROCEDURES: Uses WAIT_1MS

8

9 = FFF8 PRESSURE_PORT EQU OFFFB8H

10

11 0000 DATA SEGMENT

12 0000 64*(0000) PRESSURES DW 100 DUP(0) ; Set up array of 100 words
13 = 0064 NBR_OF_SAMPLES EQU (($-PRESSURES)/2)

14 00C8 DATA ENDS

15

16 OOQO STACK_SEG SEGMENT

17 0000 28*(0000) DW 40 DUP(0) ; set stack length of 40 words

18 = STACK_TOP LABEL WORD

19 0050 STACK_SEG ENDS

20

21 0000 CODE SEGMENT

22 . ASSUME CS:CODE, DS:DATA, SS:STACK_SEG

23 0000 B8 0000s START: MOV AX, DATA ; Initialize data segment register
24 0003 8€ D8 MOV DS, AX

25 0005 B8 0000s MOV AX, STACK_SEG ; Initialize stack segment register
26 0008 8t DO MOV SS, AX

27 000A BC 0050r MOV SP, OFFSET STACK_TOP ; Intialize stack pointer to top of stack
28

29 0000 80 36 0000r LEA SI, PRESSURES ; Point SI to start of array

30 0011 BB 0064 MOV BX, NBR_OF_SAMPLES ; Load BX with number of samples
31 0014 BA FFF8 MOV DX, PRESSURE_PORT ; Point DX at input port

32 0017 ED NEXT_VALUE:IN AX, DX ; Read data from port

33 0018 25 OFFF AND AX, OFFFH ; Mask upper &4 bits

34 0018 89 04 ‘ MOV [S1],AX ; Store data word in array

35 001D €8 0006 CALL WAIT_1MS : Delay 1 ms

36 0020 46 INC SI ; Point SI at next location in array
37 0021 46 INC SI

38 0022 4B) DEC BX ; Decrement sample counter

39 0023 75 F2 JNZ NEXT_VALUE ; Repeat until 100 samples done

40 0025 90 STOP: NOP

41

42 0026 WAIT_1IMS PROC NEAR

43 0026 B9 23F2 MOV CX, 23F2H ; Load delay constant into CX

44 0029 E2 FE HERE : LOOP HERE ; Loop until CX = 0

45 0028 C3 RET

46 002C WAIT_1MS ENDP

4“7

48 002C CODE ENDS

49 END

49 END

FIGURE 5-10 Assembly language program to read in 100 samples of data at

1-ms intervals.

program instructions. The MOV AX.DATA and MOV
DS.AX instructions initialize the data segment register.
The MOV AX . STACK_SEG and MOV SS.AX instructions
initialize the stack segment register. The MOV SP OFF-
SET STACK_TOP statement initializes the stack pointer
register. The program to this point is essentially just
housekeeping chores. After a few more initialization
instructions. you will finally see some action.

The statement LEA SI PRESSURES initializes the SI
register as a pointer to the first location in the array

PRESSURES. It loads the effective address or offset of
the first word in PRESSURES into SI. For our example
here, PRESSURES is the first data item in the segment,
so the value loaded into SI will be 0000H. We chose to
use the BX register as a sample counter, so we use the
statement MOV BX, NBR_SAMPLES to initialize BX with
the number of samples we want to take and store. We
could have just used the instruction MOV BX,100 to
initialize BX with the number of words in the array.
However. representing the number of samples symboli-

STRINGS, PROCEDURES, AND MACROS 105

cally ensures that this number will get updated if we
increase the length of PRESSURES. To represent the
length of PRESSURES symbolically, we used the
NBR_SAMPLES EQU ((S-PRESSURES)/2) statement in
the data segment. The (S-PRESSURES) in this statement
tells the assembler to subtract the offset of PRESSURES
from the value in the location counter. This value then
represents the number of bytes in the array. The /2 in
the expression tells the assembler to divide the number
of bytes by 2 to give the number of words. which is the
number we want to load into BX. Finally, we are going
to get to some action. '

The final initialization instruction is to point DX at
the port that we will read to get the data value from the
pressure sensor. As indicated by the PRESSURE_PORT
EQU OFFF8H statement at the top of the program. the
pressure sensor is connected to port FFF8H. Since this
port address is larger than FFH, we have to use the
variable-port input instruction. For this input instruc-
tion, we first load the port address in the DX register
with the MOV DX,PRESSURE_PORT instruction, then
read the data word in with the IN AX,DX instruction.
Notice how much more understandable it makes a
program when we use a name such as PRESSURE_PORT
in an instruction rather than OFFF8H, the numerical
port address. If you are working with an assembler, EQU
statements are a handy way to give names to constants
in your program.

When we get the pressure value into AX, we mask out
the upper 4 bits with the AND AX,0FFFH instruction.
The reason why we want to do this is that the analog-
to-digital converter that the pressure sensor is connected
to is a 12-bit unit. The upper four bits of the 16-bit port
are not connected to anything and may pick up random
noise signals. To prevent noise signals on the upper 4
bits from getting put in memory with our data, we mask
these bits out by ANDing them with O’s. The instruction
MOV [SI].AX then copies Lhe/ data word from the AX
register to the memory locatton pointed to by Sl in the
data segment.

To produce the desired delay between samples, we
CALL the WAIT_1MS procedure. This is a direct within-
segment CALL because the procedure is contained in
the same code segment as the CALL instruction.

We use the PROC and ENDP directives to “bracket”
the assembly language statements of the procedure.
Putting a name in front of these directives allows us to
call the procedure by name. For the example in Figure
5-10, we gave the procedure the name WAIT_IMS to
remind us of the function of the procedure. To produce
the desired delay. we load a number into the CX register
with the MOV CX.23F2H instruction and count the
number down to O with the LOOP HERE instruction.
The LOOP instruction, remember, decrements CX by 1
and jumps to the specified label if CX is not yet down to
0. Since we put the label HERE directly on the LOOP
instruction. the LOOP instruction will simply execute
over and over until CX reaches 0. When CX gets counted
down to zero, the RET instruction at the end of the
procedure will return execution to the next instruction
after the CALL in the mainline program.

106 CHAPTER FIVE

Since this procedure is in the same code segment as

‘the mainline program, only the instruction pointer has

to be changed to get back to the mainline. This is an
example of a near procedure return. If you are hand
coding a program such as this, make sure to use the
correct form of the RET instruction.

Now. back in the mainline program, we need to get
ready to read the next data value. First, we want to get
SI pointed to the location where we want to put the next
data word. Since each address represents a byte, and
we are storing words, we have to increment the pointer
by 2 to point to the next storage location. We used two
INC SI instructions to do this, but you could use the
single instruction ADD SI,02H to do the same job. After
updating the pointer, we decrement the sample counter
in BX with the DEC BX instruction. If BX is not yet
counted down to 0, the JNZ NEXT_VALUE instruction
will cause the 8086 to read in and process another value
from the port. If BX is 0, indicating that all 100 samples
have been taken, execution goes on to the mext mainline
instruction after JNZ. Now let's take another look at
what happens to the stack and the stack pointer as this
example program executes.

Another Look at Stack Operation
During a CALL and RET

For the example program in the last section, we started
the stack at address 70000H. so the stack segment
register was initialized with 7000H. We set a stack
length of 40 decimal or 28H words with the DW 40
DUP(0) statement. These 40 words will occupy the 80
(50H) memory locations from 70000H to 7004FH. as
shown in Figure 5-11a. Initially we want the stack
pointer to point at the next address above the stack.
Therefore, we ini‘iciized the stack pointer to offset
0050H. the next even adaress above our actual stack,
with the MOV SP,OFFSET STACK_TOP instruction.
After the 8086 fetches the CALL instruction from
the instruction-byte queue in the BIU. it automatically
increments the instruction pointer to 0020H. the offset
of the next instruction after the CALL. You can see this
if you look at line 36 in the program listing in Figure
5-10. The instruction pointer then contains the address
we want execution to return to after the procedure is
completed. When the near CALL instruction in our
example program executes, the 8086 first decrements
the stack pointer by 2. Then it copies the return address
in the instruction pointer to the memory location now
pointed to by the stack pointer. If the stack pointer
contained 0050H before being decremented, then after
being decremented by 2 it contains 004EH. The physical
address pointed to by the stack pointer and the stack
segment register will be 7004EH. The low byte of the
instruction pointer will be copied to address 7004EH,
and the high byte of the in<'ruction pointer will be
copied to address 7004FH. as shown in Figure 5-11a.
This follows the intel convention of putting the lower
byte of a word at the lower address in memory. After the
CALL instruction executes. the stack pointer is left

STACK IN MEMORY

P
70050H —— «—— SP INITIALIZED
HERE —~ SP = 0050H
7004FH —— | 1P HIGH a
7004EH —— | 1P LOW | = SPPOINTS HERE
AFTER NEAR CALL
70040H —— ST
7004CH ——
W
~—— STACK SEGMENT
BASE 70000H
SS = 7000H :
L\M
ta)
STACK IN MEMORY
Sy
70050H —— +——— SPINITIALIZED
7004FH—— | cs niGH TO HERE — SP = 0050H
7004EH —— | CSLOW
7004DH —— | 1P HIGH
7004CH —— | IPLOW | =——— SP POINTS HERE
AFTER FAR CALL
R
70000H —— ~—— STACK SEGMENT
BASE — SS = 7000H
P e

(b)

FIGURE 5-11 Stack diagram for program in Figure 5-10.
(a) For near CALL. (b) For far CALL.

pointing to offset 004EH. This location is now the top
of the stack, or TOS.

When the RET instruction at the end of the procedure
in the example program executes, the 8086 copies
the return address from the top of the stack .to the
instruction pointer. Since the top of the stack was at
offset O04EH. the word from addresses 7004EH and
7004FH will be copied to the instruction pointer. After
it copies the word from the top of the stack to the
instruction pointer, the 8086 increments the stack
pointer by 2. For our example here, it will increment the
stack pointer from 004EH to 0050H. The stack pointer
is now back where it was before the CALL instruction
executed. Note that the return address is still present
in memory because the RET instruction simply copied
it to the instruction pointer and incremented the stack
pointer over it. ’

When the 8086 executes a far CALL instruction. it
decrements the stack pointer by 2 and copies the con-

|
|

— 16

tents of the code segment register to the stack. It then
decrements the stack pointer by 2 again and copies
the offset of the next mainline instruction from the
instruction pointer to the stack. To help you visualize
this, Figure 5-11b shows how these would be written to
the stack, assuming the same stack starting addresses
that we used for the previous example. As you can see
from this figure, after a far CALL the top of the stack
will be four addresses lower than it was before the CALL.

A far RET used at the end of a far procedure will copy
the word from the top of the stack to the instruction
pointer and increment the stack pointer by 2. It will
then copy the word from the new top of the stack to the
code segment register. The next instruction will then be
fetched from the physical address after the far CALL
instruction. The top of the stack will be back to where
it was before the CALL and RET.

As we mentioned previously, the stack is also used to
save the contents of registers while a procedure executes
and to hold data that the procedure is to act on. The
next section shows you how we do this.

Using PUSH and POP to Save Register Contents

In the example program in Figure 5-10, we used the BX
register to keep track of how many data samples we had
taken in. After each data sample was taken in, we
decremented the BX register and used the JNZ instruc-
tion to determine whether to take another sample or to
exit. We would like to have used the CX register to keep
track of the number of samples taken so that we could
have used a single LOOP instruction instead of the DEC
BX and JNZ label instructions. The reason that we
couldn't use CX for this in the program is because CX
is used in the procedure. Any value we put in CX in the
mainline program would be written over by the MOV
CX,23F2H instruction in the procedure. It is very com-
mon to want to use registers both in the mainline
program and in a procedure without the two uses
interfering with each other. The PUSH and POP instruc-
tions make this very easy to do.

The PUSH register/memory instruction decrements
the stack pointer by 2 and copies the contents of the
specified 16-bit register or memory location to memory
at the new top-of-stack location. The PUSH CX instruc-
tion, for example, will decrement the stack pointer by 2
and copy the contents of the CX register to the stack
where the stack pointer now points. This instruction,
then, can be used to save the contents of CX while a
procedure executes. The next question is, how do we
get the saved value back when we want it?

The POP register/memory instruction copies a word
from the top of the stack to the specified 16-bit register
or memory location and increments the stack pointer
by 2. The POP CX instruction, for example. will copy a
word from the top of the stack to the CX register and
increment the stack pointer by 2. After a POP, the stack
pointer will point to the next word on the stack.

You can PUSH any of the 16-bit general-purpose
registers AX, BX. CX., and DX; any of the base or pointer
registers BP, SP, SI. and DI: any of the segment registers

STRINGS, PROCEDURES, AND MACROS 107

CS. DS. SS. and ES; or even a word from a memory
location specified by one of those 24 memory addressing
modes in Figure 3-8. A separate instruction, PUSHF,
decrements the stack pointer by 2 and copies the flag
word to the stack. The 80186, 80286, and 80386,
incidentally, have a single instruction, PUSHA, which
pushes AX, CX, DX, BX, SP, BP, SI, and DI on the stack.

You can POP a word from the'stack to any of the
registers except CS, and you can POP a word from the
stack to a memory location specified in any one of those
24 ways. The POPF instruction copies a word from the
stack to the flag register and increments the stack
pointer by 2. The 80186, 80286, and 80386 POPA
instruction copies words from the stack to the DI, SI,
BP, BX, DX, CX, and AX registers. Note that the POPA
instruction does not return a value to the SP register.

When you PUSH several registers on the stack, you

have to remember to POP them off in the reverse order
that you pushed them on. This is because the stack
functions in a last-in—first-out manner. An everyday
example of this type of operation is the spring-loaded
plate stacks seen in some restaurants. The last plate
pushed onto the stack is the first one popped off. Figure
5-12a should help you visualize how this works for the
8086.
The first four instructions show a sequence of PUSH
instructions you might use to save registers and flags
at the start of a near procedure called MULTO. Figure
5-12b shows the contents of the stack after the CALL
and PUSH instructions execute. The first entry in the
stack is the copy of the instruction pointer put there
by the CALL instruction that called the procedure.
Following this are the flag word and the words from
registers AX, BX, and CX. After all of these are pushed
on the stack, the stack pointer is left pointing at the
location in the stack where CX was pushed.

At the end of the procedure, you want to restore the
saved values to the registers and flags. You first POP CX
because it was the last register pushed on the stack.
After CX is popped, the stack pointer will be left pointing
at the location where BX is stored. Therefore, you POP

MULTO PROC NEAR

BX next. You continue popping until all the registers
and flags are restored. The RET instruction then copies
the return address from the stack to the instruction
pointer to return execution to the main program. It is
very important to keep the number of pushes equal to
the number of pops or in some other way keep the stack
balanced so that the RET instruction finds the correct
word to put in the instruction pointer.

Some programmers like to push and pop registers in
the mainline or calling program rather than in the
procedure as we did in Figure 5-12a. This approach has
the advantage that you can push only those registers
that you care about saving each time you call the
procedure. The disadvantages of this approach are that
the pushes and pops clutter up the mainline program,
and that you may decide to use another register at some
point in the program and forget to add a push for it. We
like to push the flags and any registers used in a
procedure directly in the procedure. This way we always
know that the procedure can be called from anywhere
in the program without losing the contents of any
registers. Another advantage of this approach is that
you only have to write the pushes and pops once. A
disadvantage is that in a situation in which not all the
pushes are needed, the procedure may take a little longer
to run. }

Passing Parameters to and from Procedures

Often when we call a procedure, we want to make some
data values or addresses available to the procedure.
Likewise, we often want a procedure to make some
processed data values or addresses available to the main
program. These addresses or data values passed back
and forth between the mainline and the procedure are
commonly called parameters. The four major ways of
passing parameters to and from a procedure are:

1. In registers

2. In dedicated memory locations accessed by name

STACK IN MEMORY

PUSHF : s s,
PUSH AX BEFORE CALL 0050H —— ~—— AFTER RET 0050H
e B
p AFTER CALL 004EH —= P LOW ~——— AFTERPOPF OOdEH
PO; cX FLAG HIGH
POP BX AFTER PUSHF 004CH —— | FLAG LOW | ——— AFTER POP AX 0O4CH
POP AX A AR
POPF ~ AFTER PUSH AX 004AH — AL —— AFTER POPBX 004AH
RET BH
MULTO ENDP AFTER PUSH BX O048H —— 8L ~—— AFTERPOPCX 0048H
CH
AFTER PUSHCX 0046H — cL ~—— BEFORE POP CX
L~

(a)

(b)

FIGURE 5-12 . Using PUSH and POP instructions. (a) Instruction sequence. (b)

Effect on stack and stack pointer.

108 CHAPTER FIVE

4596 = (4 x 1000) + (5 x 100) + (9 x 10) + (6 x 1)
1 = 0001H therefore 6 = 6 x 0001H = DOO6H
10 = O00AH therefore 90 = 9 x 000AH = DO5AH
100 = 0064H therefore 500 = 5 x 0064H = D1F4H
1000 = 03e8H therefore 4000 = 4 x 03E8H = OFAOH
4596 = 11F4H

FIGURE 5-13 BCD-to-binary algorithm.

3. With pointers passed in registers
4. With the stack

In the following sections we use a simple program to
show you how each of these methods works.

DEFINING THE PROGRAMMING PROBLEM

A common programming need is to convert a packed
BCD number to its binary equivalent. You might, for
example, want to convert a packed BCD such as 0100
0101 1001 0110, which represents 4596 decimal, to
0001000111110100 binary, or 11F4H. There are several

ways to do this conversion, but to us the easiest is based

on using the value of each placeholder in the BCD
number.

Figure 5-13 shows the names and values for each digit
in a four-digit BCD number such as 4596. When you
write a number such as this, it means that you have a
total of 4 thousands + 5 hundreds + 9 tens + 6 units.
To determine the value of this number in binary, you
just multiply the number in each digit position by the
value of that digit position in binary and add up the
results. The right-hand side of Figure 5-13 shows how
this works. A microprocessor, of course, uses the binary
equivalents, but to make it c:asier for you to see what is
going on here, we have represented the binary values
with their hexadecimal equivalents.

The units position has a value of 1 in hex, so multi-
plying this by 6 units gives 0006H. The tens position
has a value of 1010 binary, or OAH. Multiplying this
value by 9, the number of tens., gives 005AH. The
value of the hundreds position in the BCD number is
01100100 binary, or 64H. When you multiply this value
by 5, the number of hundreds, you get 01F4H. When
you multiply the hex value of the thousands position,
03E8H, by 4 (the number of thousands), you get OFAOH.
Adding up the results for the four digits gives 11F4H or
0001000111110100, which is the binary equivalent of
4596 BCD. You can use this method to convert a
BCD number with any number of digits to its binary
equivalent, but to save space here we will show the
program for just a two-digit BCD number.

From the example in Figure 5-13, perhaps you can
see that the algorithm for this program is the simple
sequence of operations

Separate nibbles
Save lower nibble (don't need to multiply by 1)
Multiply upper nibble by 0AH

Add lower nibble to result of multiplication

We want to implement this program as a procedure
which can be called from anywhere in a mainline pro-
gram. For our first version, we pass the BCD number to
the procedure in a register.

PASSING PARAMETERS IN REGISTERS

Figure 5-14, p. 110, shows our first version of a proce-
dure to convert a two-digit packed BCD number to its
binary equivalent. The BCD number is copied from
memory to the AL register and then passed to the
procedure in the AL register. We start the procedure by
pushing the flag gegister and the other registers we use
in the procedure. Notice that we don't push the AX
register because we are using it to pass a value to
the procedure and expecting the procedure to pass a
different value back o the calling program in it.

The functiori of the,rest of the instructions in the
procedure should be reasonably clear from the comments
with them. We first make a copy of the BCD number in
AL to BL so that we have two copies to work on. We
then mask the upper nibble of the copy in BL. Since
multiplying this nibble by 1 would not change its value,
we are done with it for now. Next, we mask the lower
nibble of the other copy of the BCD number and rotate
this nibble into the lower nibble position of the byte so
that we can multiply it correctly. When we multiply this
nibble by the digit weight of OAH, the result is left in
the AX register. However, since the result can never be
greater than 8 bits, we can disregard the contents of
AH. Finally, we add the lower nibble we saved in BL to
the result in AL to get the binary total. The desired result
is left in AL. Before returning to the main program, we
pop the registers we pushed at the start of the procedure.
Since we did not push AX, the binary value in AX at the
end of the procedure will be there when execution
returns to the calling program.

The disadvantage of using registers to pass parameters
is that the number of registers limits the number of
nararneters you can pass. You can't, for example, pass
an array of 100 elements to a procedure in registers,

PASSING PARAMETERS IN GENERALAMEMORY

Asyouread through the preceding example, the question
that may have occurred to you is. “Why didn’t you simply
access the BCD_INPUT value and the BIN_VALUE by
name from the procedure?” The answer to the question
is that we can directly access the parameters by name
from the procedure, but in some cases there are problems
with doing it this way. Figure 5-15, p. 111, shows a proce-
dure that accesses the parameters directly by name.

In this procedure we first push the flags and all the
registers used in the procedure. We then copy the
BCD number into AL with the MOV AL.BCD_INPUT
Instruction. From here on, the procedure is the same
as the previous version until we reach the point where
we want to pass the binary result back to the calling
program. Here we use the MOV BIN_VALUE AL instruc-
tion to copy the result directly to the dedicated memory
location we set aside for it. To complete the procedure,
we pop the flags and registers. and return to the main
program.

STRINGS, PROCEDURES, AND MACROS 109

NV WN -

[T S G T Sy
NO WS W - 00

18
19
20
21
22
23
24
25
26
27
28
29
30
3
32
33
34
35
36
37
38
39
40
41
42
43
L4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

0000
0000

oocs
0000

0000
0003

0008
000A

0010
0013
0016
0017

oo18
0018
0019
001A

001
001D
0020
0022
0024
0026
0028

0024

oo02c
0020
002€
002F
0030

0030

; BOBA PROGRAM F5-14.ASM

JABSTRACT : BCD to BINARY conversion program that uses a
; procedure to convert BCD numbers to binary.
; Program uses the AL register to pass parameters
; to the procedure
;REGISTERS : Uses CS, DS, SS, SP, AX
;PORTS : None Used
;PROCEDURES: BCD_BIN
DATA SEGMENT
17 BCD_INPUT DB 17H ; storage for BCD value
77 BIN_VALUE DB ? ; storage for binary value
DATA ENDS
STACK_SEG ~ SEGMENT STACK
64*(0000) DW 100 DUP(0) ; stack of 100 words
TOP_STACK LABEL WORD
STACK_SEG ENDS
% CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:STACK_SEG
B8 0000s START: MOV AX, DATA ; Initialize data segment
BE D8 MOV DS, AX ; register
B8 0000s MOV AX, STACK_SEG ; Initialize stack segment
'8E DO MOV S5, AX ; register
BC 00C8r MOV SP, OFFSET TOP_STACK ; Initialize stack pointer
A0 0000r MOV AL, BCD_INPUT
E8 0005 CALL BCD_BIN ; Do the conversion
A2 0001r MOV BIN_VALUE, AL ; Store the result
90 NOP ; Continue with program here
90 NOP ;
;PROCEDURE: BCD_BIN - Converts BCD humbers to binary.
1 INPUT AL with BCD value
;OUTPUT AL with binary value
;DESTROYS : AX
BCD_BIN PROC NEAR
9C PUSHF ; Save flags :
53 PUSH BX ; and registers used in procedure
51 PUSH CX ; before starting the conversion
;Do the conversion
8A D8 MOV BL, AL ; Save copy of BCD in BL
80 E3 OF AND BL, OFH ; and mask
24 FO AND AL, OFOH ; Separate upper nibble
B1 04 MOV CL, 04 ; Move upper BCD digit to low
D2 c8 ROR AL, CL ; nibble position for miltiply
B7 0A MOV BH, OAHM ; Load conversion factor in BH
Fé E7 MUL BH ; Multiply upper BCD digit in AL
; by OAH in BH, leave result in AL
02 c3 ADD AL, BL ; Add lower BCD digit to MUL result
;End of conversion, binary result in AL
59 POP CX ; Restore registers
58 POP BX
9 POPF
c3 RET ; and return to mainline
BCD_BIN ENDP
CODE ENDS
END START

FIGURE 5-14 Example program passing parameters in registers.

110

CHAPTER FIVE

1 ; BOB6 PROGRAM F5-15.ASM)

2 sABSTRACT : BCD to BINARY conversion program that uses a
3 ; procedure to convert BCD numbers to binary.
4 ; Program uses dedicated memory locations to
5 ; pass parameters to the procedure.

é ;REGISTERS : Uses CS, DS, SS, SP, AX

7 ;PORTS : None used

8 ;PROCEDURES: Uses BCD_BIN

SAME DATA STRUCTURE AND INITIALIZATION AS FIGURE 5-14 LINES 9 THROUGH 27

28 000D E8 0002 CALL BCD_BIN ; Do the conversion

29 0010 90 NOP ; Continue with program here
30 0011 90 NOP ;

3

32

33

34 ;PROCEDURE: BCD_BIN - Converts BCD numbers to binary.

35 " INPUT : Data from dedicated memory location BCD_INPUT

36 ;OUTPUT : Data to dedicated memory location BIN_VALUE

37 ;DESTROYS : Nothing

5

39 0012 BCD_BIN PROC NEAR

40 0012 9cC PUSHF ; Save flags

41 0013 S0 PUSH AX ; and registers

42 0014 53 PUSH BX

43 0015 51 PUSH CX .

44 0016 AO 0000r MOV AL, BCD_INPUT ; Get BCD value from memory

45 : ;Do the conversion : !

46 0019 8A DB MOV BL, AL ; Save copy of BED in BL

47 0018 80 E3 OF AND BL, OFH ; and mask

48 001E 24 FO AND AL, OFOH ; Separate upper nibble

49 0020 B1 04 MOV CL, 04 ; Move upper BCD digit to low
50 0022 D2 C8 ROR AL, CL ; nibble position for multiply
51 0024 B7 0A MOV BH, OAH ; Load conversion factor in BH
52 0026 F6 E7 MUL BH ; Multiply upper BCD digit in AL
53 ; by DAH in BH, leave result in AL
54 0028 02 C3 ADD AL, BL ; Add lower BCD digit to MUL result’
55 ;End of conversion, binary value in AL

56 002A A2 0001r MOV . BIN_VALUE, AL ; Store binary value in memory
57 0020 59 POP CX ; Restore flags and

58 002E 5B POP BX ; registers

59 002F S8 POP AX

60 0030 90 POPF

61 0031 3 RET

62 0032 BCO_BIN ENDP

63

64 0032 CODE ENDS

65 END START

FIGURE 5-15 Example program passing parameters in named memory

locations.

The approach used in Figure 5-15 works in this case.
but it has a severe limitation. Can you see what it is?
The limitation is that this procedure will always look to
the memory location named BCD_INPUT to get its data
and will always put its result in the memory location
called BIN_VALUE. In other words. the way it is written,
we can't easily use this procedure to convert a BCD
number in some other memory location. As we explain
in detail later, this method has the further problem that
it makes the procedure nonreentrant.

PASSING PARAMETERS USING POINTERS

A parameter-passing method which overcomes the dis-
advantage of using data item names directly in a proce-
dure is to use registers to pass the procedure pointers
to the desired data. Figure 5-16, p. 112, shows one wayto
do this. In the main program, before we call the proce-
dure, we use the MOV SI,OFFSET BCD_INPUT instruc-
tion to set up the SI register as a pointer to the memory
location BCD_INPUT. We also use the MOV DI.OFFSET
m

STRINGS, PROCEDURES AND MACKOS

1 ; 8086 PROGRAM F5-16.ASM

2 ;ABSTRACT : BCD to BINARY conversion program that uses a
3 ; procedure to convert BCD numbers to binary.
4 . ; Program shows how to use pointers to pass

5 ; parameters to a procedure.

6 JREGISTERS : Uses CS, DS, SS, SP, AX, SI, DI

7 ;PORTS : Uses none

8 ;PROCEDURES: Uses BCD_BIN

SAME DATA STRUCTURE AND INITIALIZATION AS FIGURE 5-14 LINES 9 THROUGH 27

28 ;Put pointer to BCD storage in S! and pointer to binary storage in DI
29 0000 BE 0000r MOV SI, OFFSET BCD_INPUT ; Create pointers to BCD and
30 0010 BF 0001r MOV DI, OFFSET BIN_VALUE ; binary storage

31 0013 E8 0001 CALL BCD_BIN ; Do the conversion

32 0016 90) NOP ; Continue with program here
33

34 ;PROCEDURE: BCD_BIN - Converts BCD numbers to binary.

35 5 INPUT : SI, points to location in memory of data

36 ;OUTPUT : DI, points to location in memory for result

37 ;DESTROYS : Nothing

38

39 0017 BCD_BIN PROC NEAR

40 0017 9cC PUSHF ; Save flags

41 0018 50 PUSH AX ; and registers

42 0019 53 PUSH BX

43 0014 51 PUSH CX

44 0018 8A 04 MOV AL, ([SI] ; Get BCD value from memory

45 ;Do the conversion

46 001D 8A D8 MOV BL, AL ; Save copy of BCD in BL

47 001F 80 E3 OF AND BL, OFH ; and mask

48 0022 24 FO AND AL, OFOM ; Separate upper nibble

49 0024 B1 04 MOV CL, 04 . ; Move upper BCD digit to low

50 0026 D2 C8 ROR AL, CL ; nibble position for multiply

51 0028 B7 0A MOV BH, OAH ; Load conversion factor in BH

52 002A F6 E7 . MUL BH ; Multiply upper BCD digit in AL
53 ; by OAH in BH, leave result in AL
54 002Cc 02 c3 ADD AL, BL ; Add lower BCD digit to MUL result
55 ;End of conversion, binary value in AL

56 002e 88 05 MOV [DI], AL ; Store binary value in memory

57 0030 59 POP CX ; Restore flags and

58 0031 5B POP BX ; registers

59 0032 58 POP AX

60 0033 90 POPF

61 0034 3 RET

62 0035 BCD_BIN ENDP

63

64 0035 CODE ENDS

65 END START

FIGURE 5-16 Example program passing parameters using pointers to named

memory locations.

BIN_VALUE instruction to set up the DI register as a-
pointer to the memory location named BIN_VALUE.

In the procedure, the MOV AL,[SI] instruction will
copy the byte pointed to by SI into AL. Likewise, the
MOV [D]].AL instruction later in the procedure will copy
the byte from AL to the memory location pointed to by
DI

This pointer approach is more versatile because you
can pass the procedure pointers to data anywhere in
memory. You can pass pointers to individual values or
pointers to arrays or strings. To access complex data

112 CHAPTER FIVE

structures, you can use regiéters to pass the segment
base and the offset of a table of pointers in memory. The
procedure then can read in a pointer from the table and
use the pointer to access the desired data.

For many of your programs, you will probably use
registers to pass data parameters or pointers to proce-
dures. As we show you in Chapter 8, this is the method

_ you usc when you call procedures in the Basic Input/
Output System or BIOS of a computer. However, as we
show you in later chapters, for programs which allow
several users to timeshare a system or those which

consist of a mixture of high-level languages and assembly
language, we usually use the stack to pass parameters
to and from procedures.

PASSING PARAMETERS USING THE STACK

To pass parameters to a procedure using the stack, we
push the parameters on the stack somewhere in the
mainline program before we call the procedure. Instruc-
tions in the procedure then read the parameters from
the stack as needed. Likewise, parameters to be passed
back to the calling program are written te the stack by
instructions in the procedure and read off the stack by
instructions in the mainline program. A simple example
will-best show you how this works.

Figure 5-17, p. 114, shows a version of our BCD_BIN
procedure which uses the stack for passing the BCD
number to the procedure and for passing the binary
value back to the calling program. To save space here,
we assume that previous instructions in the mainline
program set up a stack segment, initialized the stack
segment register, and initialized the stack pointer. Now
in the mainline fragment in Figure 5-17, we copy the
BCD number into AL. We then copy AX to the stack with
the PUSH AX instruction. In a more complex example,
the BCD number or a pointer to it would probably be
put on the stack by a different mechanism, but the
important point for now is that the BCD value is on the
stack for the procedure to access.

The CALL instruction in the mainline program decre-
ments the stack pointer by 2, copies the return address
onto the stack, and-loads the instruction pointer with
the starting address of the procedure. PUSH instructions
at the start of the procedure save the flags and all the
registers used in the procedure on the stack. Before
discussing any more instructions, let's take a look at
the contents of the stack after these pushes.

Figure 5-18, p. 115, shows how the values pushed on
the stack will be arranged. Note that the BCD value is
in the stack at a higher address than the return address.
After the registers are pushed onto the stack, the stack
pointer is left pointing to the stack location where BP is
stored. Now, the question is, how can we easily access
the parameter that seems buried In the stack? One way
is to add 12 to the stack pointer with an ADD SP,12
instruction so that the stack pointer points to the word
we want from the stack. A POP AX imstruction could
then be used to copy the desired word from the stack to
AX. However, for a variety of reasons, which we will
explain later, we would like to be able to access the
parameter without changing the contents of $he stack
pointer.

An alternative to using the SP reglster is to use the
BP register to access the parameters in the stack.
Remember from Chapter 2 that an offset in the BP
register will be added to the stack segment register to

produce a physical memory address. This means that.

the BP register can easily be used as a second pointer
to a location in the stack. Here's how we use it this way
in our example program.

After pushing all the registers at the start of the
procedure, we copy the contents of the stack pointer
register to the BP register with the MOV BP,SP instruc-

tion: BP then points to the same location as the stack
pointer. Then we use the MOV AX,[BP + 12] instruction
to copy the desired word from the stack to AX. The 8086
will produce the effective address for this instruction
by adding the displacement of 12, specified in the
instruction, to the contents of the BP register. As you
can see in Figure 5-18, the effective address produced
by adding 12 to the contents of BP will be that of the
desired parameter. Note that the MOV AX,[BP + 12]
instruction does not change the contents of BP. BP can
then be used to access other parameters on the stack
by simply specifying a different displacement in the
instruction used to access the parameter.

Once we have the BCD number copied from the stack
into AL. the instructions which convert it to binary are
the same as those in the previous versions. When we
want to put the binary value back in the stack to return
it to the calling program. we again use BP as a pointer
to the stack. The instruction MOV [BP + 12],AX will
copy AX to a stack location 12 addresses higher than
that to which BP is pointing. This, of course, is the
same location we used to pass the BCD number to the
procedure. After we pop the registers and return to
the calling program, the registers will all have the values
they had before the CALL instruction executed. AX will
contain the original BCD number, and the stack pointer
will be pointing to the binary value, now at the top of
the stack. In the mainline program we can now pop this
hex value into a Igegister with an instruction such as -
POP CX. d

Whenever you are using the stack to pass parameters,
it is very important to keep track of what you have
pushed on the stack and where the stack pointer is at
each point in a program. We have found that diagrams
such as the one in Figure 5-18 are very helpful in doing
this. One potential problem to watch for when using
the stack to pass parameters is stack overflow. Stack
overflow means that the stack fills up and overflows the
memory space you set aside for it. To see how this can
easily happen if you don't watch for it, consider the
following. Suppose that we use the stack to pass four
word parameters to a procedure, but that we pass only
one word parameter back to the calling program on the
stack. Figure 5-19, p. 115, shows a stack diagram for this
situation. Before a CALL instruction, the four parameters
to be passed to the procedure are pushed on the stack.
During the procedure, the parameter to be returned is -
put in the stack location previously occupied by the
fourth input parameter. After the RET Instruction at
the end of the procedure executes, the stack’pointer will
be left pointing at this value. Now assume that we pop
this value into a register. The POP instruction will copy
the value to a register and increment the stack pointer
by 2. The stack pointer now points to the third word we
pushed to pass to the procedure. In other words the
stack pointer is six addresses lower than it was when
we started this process. Now suppose that we call this
procedure many times in the course of the mainline
program. Each time we push four words on the stack
but only pop one word off, the stack pointer will be left
six addresses lower than it was before the process. The
top of the stack will keep moving downward. When the

STRINGS, PROCEDURES, AND MACROS 113

?

;ABSTRACT

;REGISTERS
;PORTS
;PROCEDURES :

O N W R W -

: B0BS PROGRAM F5-17.ASM

: BCD to BINARY conversion program that uses a
procedure to convert BCD numbers to binary.
Program shows how to use the stack to pass
parameters to a procedure.

: Uses CS, DS, SS, SP, AX

: Uses none

Uses BCD_BIN

SAME DATA STRUCTURE AND INITIALIZATION AS FIGURE 5-14 LINES 9 THROUGH 27

28 0000 AO 0000r MOV AL, BCD_INPUT ; Move BCD value into AL
29 0010 50 PUSH AX ; and push it onto onto stack
30 0011 E8 0005 CALL BCD_BIN ; Do the conversion

31 0014 58 POP AX ; Get the binary value
32 0015 A2 0001r MOV BIN_VALUE, AL ; and save it

33 0018 90 NOP ; Continue with program here
34

35 ;PROCEDURE: BCD_BIN - Converts BCD numbers to binary.

36 ; INPUT None - BCD value assumed to be on stack before call
37 ;OUTPUT None - Binary value on top of stack after return

38 ;DESTROYS : Nothing

39

40 0019 BCD_BIN PROC NEAR

41 0019 9cC PUSHF ; Save flags

42 001A 50 PUSH AX ; and registers

43 0018 53 PUSH BX

44 001C 51 PUSH CX

45 0010 55 PUSH BP ‘

46 001E 8B EC MOV B8P, SP ; Make a copy of the stack pointer
47 0020 8B 46 0OC MOV AX, [BP+12) ; Get BCD number from stack

48 { ;Do the conversion

49 0023 8A D8 MOV BL, AL ; Save copy of BCD in BL

50 0025 80 E3 OF AND BL, OFH ; and mask

51 0028 24 FO AND AL, OFOH ; Separate upper nibble

52 002A B1 04 MOV CL, 04 ; Move upper BCD digit to low

53 002C D2 c8 ROR AL, CL ; nibble position for multiply

54 002E B7 OA MOV BH, OAH ; Load conversion factor in BH

55 0030 F6 E7 MUL BH ; Multiply upper BCD digit in AL
56 ; by OAH in BH, leave result in AL
57 0032 02 C3 ADD AL, BL ; Add lower BCD digit to MUL result
58 ;End of conversion, binary value in AL

59 0034 89 46 OC MOV [BP+12], AX ; Put binary value on stack

60 0037 5D POP B8P ; Restore flags and

61 0038 59 POP CX ; registers

62 0039 58 POP BX

63 003A 58 POP AX

64 0038 9D POPF

65 003Cc C3 RET

66 003D BCD_BIN ENDP

67

68 0030 £ CODE ENDS

69 END START

1

FIGURE 5-17 Example program passing parameters on the stack.

stack pointer gets down to O000H, the next push will
roll it around to FFFEH and write a word at the very.
top of the 64-Kbyte stack segment. If you overlapped
segments as you usually do in a small system. the word
may get written in a memory location that you are using
for data or your program code, and your data or code
will be lost! This is what we mean by the term stack
overflow.

114 CHAPTER FIVE

The cure for this potential problem is to use stack
diagrams to help you keep the stack balanced. You need
to keep the number of pops equal to the number of
pushes or in some other way make sure the stack pointer
gets back to its initial location.

For this example, we could use an ADD SP.06H
instruction after the POP instruction to get the stack
pointer back up the additional six addresses to where it

STACK IN MEMORY
sP

BEFORE PUSH AX — 0050H —= X .
AH
004EH — AL
IP HIGH
IP LOW
FLAG H
FLAG L
AH
AL
BH
BL
CH
CL
BP HIGH
BP LOW

AFTER PUSH AX —

AFTER PUSH 8P — 0042H ——

m

© STACK SEGMENT BASE — 7000H —>

PN SSVN

FIGURE 5-18 Stack diagram for program in Figure 5-17.

was before we pushed the four parameters onto the
stack. _

For other cases such as this, the 8086 RET instruction
has two forms which help you to keep the stack balanced.
Remember from a previous section of this chapter that
the 8086 has four forms of the RET instruction. The
regular near RET instruction copies the return address
from the stack to the instruction pointer and increments
the stack pointer by 2. The regular far RET instruction
copies the return IP and CS values from the stack to IP
and CS, and increments the stack pointer by 4. The
other two forms of RET instruction perform the same
functions, but they also add a number specified in
the instruction to the stack pointer. The near RET 6

STACK IN MEMORY
R4
0050H ——

BEFORE PUSH

‘AFTERPUSH 1 OO4EH —

AFTERPUSH 2 004CH —=

sP
AFTERPUSH 3 004AH — -——— AFTER POP OF
RETURNED VALUE O004AH
AFTERPUSH 4 0048H — «—— AFTER RET 0048H
AFTER CALL 0046H —
LN

FIGURE 5-19 Stack diagram showing cause of stack
overflow.

|
|

-17

instruction, for example, will first copy a word from the
stack to the instruction pointer and increment the stack
pointer by 2. It will then add 6 more to the stack pointer.
This is a quick way to skip the stack pointer up over
some old parameters on the stack.

SUL\MARY OF PASSING PARAMETERS
TO AND FROM PROCEDURES

You can pass parameters between a calling program
and a procedure using registers, dedicated memory
locations, or the stack. The method you choose dépends
largely on the specific program. There are no hard rules,
but here are a few guidelines. For simple programs with
just a few parameters to pass, registers are usually
the easiest to use. For passing arrays or other data
structures to and from procedures, you can use registers

, to pass pointers to the start of these data structures.
As we explained previously, passing pointers to the
procedure is a much more versatile method than having -
the procedure access the data structure directly by
name.

For procedures in a multiuser-system program, proce-
dures that will be called from a high-level language
program, or procedures that call themselves, parameters
should be passed on the stack. When writing programs
which pass parameters on the stack, you should use
stack diagrams such as the one in Figure 5-18 to help
you keep track of where everything is in the stack at a
particular time. The following section will give you some
additional guidance as to when to use the stack to pass
parameters, and it will give you some additional practice
following the stack and stack pointer as a pr’ogram
executes.

Writing and Debu

ing Programs
Cortaining Proc

ures

The most important point in writing a program con-
taining procedures is to approach the overall job very
systematically. You carefully work out the overall struc-
ture of the program and break it down into modules
which can easily be written as procedures. You then set
up the data structures and write the mainline program
so that you know what each procedure has to do and
how parameters can be most easily passed to each
procedure.

To test this mainline program, you can simulate each
procedure with a few instructions which simply pass
test values back to the mainline program. Some pro-
grammers refer to these “"dummy"” procedures as stubs. If
the structure of the mainline program seems reasonable,
you then develop each procedure and replace the dummy
with if. The advantage of this approach is that you have
a structure to hang the procedures on. If you write the
procedures first, you have the messy problem of trying
to write a mainline program to connect all the pieces
together.

Now, suppose that you have approached a program as
we suggested, and the program doesn’t work. After you
have checked the algorithm and instructions. you should
check that the number of PUSH and POP instructions

STRINGS, PROCEDURES, AND MACROS 115

are equal In cach procedure. If none of the checks turns
up anything, you can use the system debugging tools to
track down the problem. Probably the best tools to help
you localize a problem to a small area are breakpoints.
Run the program to a breakpoint just before a CALL
instruction to see whether the correct parameters are
being passed to the procedure. Put a breakpoint at the
start of the procedure to see if execution ever gets to the
procedure. If execution gets to the procedure, meve
the breakpoint to a later point in the procedure to
determine whether the procedure found the parameters

passed from the mainline. Use a breakpoint just before

the RET instruction to see whether the procedure pro-

duced the correct results and put these results in' the

correct locations to pass them back to the mainline

program. Inserting breakpoints at key points in your

program and checking the results at those points is

much more effective in locating a problem than random
~ poking and experimenting.

Reentrant and Recursive Procedures

The terms reentrant and recursive are often used in
microprocessor manufacturers’ literature, but seldom
{llustrated with examples. Here we try to give these terms
some meaning for you. You should make almost all the
procedures you write reentrant, so read that section
carefully. You will seldom have to write a recursive
procedure, so the main points to look for in that section
are the definition of the term and the operation of the
stack as a recursive procedure operaices.

REENTRANT PROCEDURES .

The 8086 has a signal input which allows a signal from
_some external device to interrupt the normal program
execution sequence and call a specified procedure. In our
electronics factory, for example, a temperature sensor in
a flow-solder machine could be connected to the inter-
rupt input. If the temperature gets too high, the sensor
sends an interrupting signal to the 8086. The 8086 will

then stop whatever it is doing and go to a procedure

which takes whatever steps are necessary to cool down
the solder bath. This procedure is called an tnte.rupt
service procedure. Chapter 8 discusses 8086 interruj.ts
and interrupt service procedures in great detall, but it
is appropriate to introduce the concept here.

Now. suppose that the 8086 was in the middle of
executing a multiply procedure when the interrupt
signal occurred, and that we also need to use the multiply
procedure in the interrupt service subroutine. Figure
5-20 shows the program execution flow we want for this
situation. When the interrupt occurs, execution goes to
the interrupt service procedure. The interrupt service
procedure then calls the muitiply procedure when it
needs it. The RET instruction at the end of the multiply
procedure returns execution to the interrupt service
procedure. A special return {nstruction at the end of the
Interrupt service procedure returns execution to the
multiply procedure where it was executing when
thetaterrupt occurred.

In order for the program flow in Figure 5-20 to wark

116 CHAPTER n've

MAINLINE /

MUI T'PLY
PRC “DURE

INTERRUPT
PROCEDURE

CALL CALL
MULTIPLY \NTERRUPT MULTIPLY
NEXT MAINLINE g OCCURS HERE RETURN TO 4
INSTRUCTION INTERRUPTED
AFTER CALL PROGRAM

RETURN TO
CALLING PROGRAM

FIGURE 5-20 Program execution flow for reentrant
procedure.

correctly, the multiply procedure must be written in such
a way that it can be interrupted, used, and “reentered”
without losing or writing over anything. A procedure
which can function in this way is said to be reentrant.

To be reentrant, a procedure must first of all push the
flags and all registers used in the procedure. Also, to be
reentrant, a program should use only registers or the
stack to pass parameters. To see why this second point

1s necessary, let's take another look at the program in

Figure 5-15. This program uses the named variables
BCD_INPUT and BIN_VALUE. The procedure BCD_BIN
accesses these two directly by name.

Now, suppose that the 8086 is in the middle of
executing the BCD_BIN procedure and an interrupt
occurs. Further supposc that the interrupt service proce-
dure loads some new value in the memory location
named BCD_INPUT, and calls the BCD_BIN procedure
again. The initial value in BCD_INPUT has now been
written over. If the interrupt occurred before the first
execution of the procedure had a chance to read this
value in, the value will be lost forever. When exccution
returns tc BCD_BIN after the interrupt service, proce-
dure, the value used for BCD_INPUT will be that put
there by the interrupt service routine instead of the
desired initial value. There are several ways we can
handle the parameters so that the procedure BCD_BIN
is reentrant. i

The first Is to simply pass the parameters in registers,
as we did in the program in Figure 5-14. If the interrupt
procedure and the BCD_BIN procedure each push and
pop all the registers they use. all the parameters from
the interrupted execution will be saved and restored.
When execution returns to BCD_BIN again, the registers
will contain the same data they did when the interrupt

. occurred. The, interrupted execution will then complete

correctly.

A second method of making the BCD_BIN procedure
reentrant is to pass pointers to the data items in
registers,-as we did in the program in Figure 5-16.

Again, if the interrupt procedure and the BCD_BIN
procedure each push and pop the registers they use,
execution will return to the interrupted procedure with
data intact.

The third way to make the BCD_BIN procedure reen-
trant is by passing parameters or pointers on the stack,
as we did in the version in Figure 5-17. In this version,
the mainline program pushes the BCD number onto the
stack and then calls the procedure. The procedure
pushes registers on the stack and uses BP to access the
BCD number relative to where the stack pointer ended
up. If an interrupt occurs, the interrupt service proce-
dure will push on the stack the BCD number it wishes
to convert and call BCD_BIN. This second BCD number
will be pushed on the stack at a different location from
the first BCD number that was pushed.

The BCD_BIN procedure will use BP to access the new
BCD value and pass the binary value back on the stack.
If the BCD_BIN and interrupt procedure each save and
restore the registers they use, the first execution of

the procedure will produce correct results when it is .

reentered.

If you are writing a procedure that you may want to
call from a program written in a high-level language
such as Pascal or C. then you should definitely use the
stack for passing parameters because that is how these
languages do it. In a later chapter we show you how to
pass parameters between C programs and assembly

language programs.

RECURSIVE PROCEDURES

A recursive procedure is a procedure which calls itself,
This seems simple enough, but the question you may
be thinking is, “Why would we want a procedure to call
itself?” The answer fs that certain types of problems,
such as choosing the next move in a computer chess
program, can best be solved with a recursive procedure.
Recursive procedures are often used to work with com-
plex data structures called trees.

We usually write recursive procedures in a high-level
language such as C or Pascal, except in those cases
where we need the speed gained by writing in assembly
language. However, the assembly language example in
the following sections should help you understand how
‘recursion works and how the stack is used by recursive
and other nested procedures. :

Recursive Procedure Example

ALGORITHM

Most of the examples of recursive procedures that we
. could think of are too complex to show here. Therefore,
we have chosen a simple problem which could be solved
without recursion.

The problem we have chosen to solve is to compute
the factorial of a given number in the range of 1 to 8.
"The factorial of a number is the product of the number
and all the positive integers less than the number. For
example, 5 factorfal is equal to 5 x 4 x 3 x 2 x 1.

The word “factorial” is often represented with “!.” For
example, 5! is another way to represent 5 factorial.

What we want here is a recursive procedure which will
compute the factorial of a number N which we pass to
it on the stack, then pass the factorial back to the calling
program on the stack. The basic algorithm can be
expressed very simply as

IF N = 1 THEN factorial = 1,
ELSE factgrlal = N X (factorial of N - 1)

This says that if the number we pass to the procedure
Is 1. the procedure should return the factorial of 1,
which is 1. If the number we pass is not 1, then the
procedure should\multiply this number by the factorial
of the number mi 1.

Now here’s where the recursion comes in, Suppose we
pass a 3 to the procedure. When the procedure is first
called, it has the value of 3 for N, but it does not have
the value for the factorial of N — 1 that it needs to
do the multiplication Indicated in the algorithm. The
procedure solves this problem by calling itself to compute
the needed factorial of N — 1. It calls itself over and over
until the factorial of N — 1 that it has to compute is the
factorial of 1. :

Figure 5-21, p. 118, shows sgveral ways in which we
can represent this process. In the program flow diagram
in Figure 5-21a, you can see that if the value of N passed
to the procedure is 1, then the procedure simply loads
1 into the stack location reserved for N! and returns to
the calling program. Figure 5-21b shows the program
flow that will occur when the number passed to the
procedure is some number other than 1. If we call the
procedure with N = 3, the procedure will call itself to
compute (N — 1)! or 2!. It will then call itself again to
compute the value of the next (N — 1)! or 1!. Since
1! = 1, the procedure will return this value to the
program that called it. In this case the program that
called it was a previous execution of the same procedure
that needed this value to compute 2!. Given this value,
it will compute 2! and return the value to the program
that called it. Here again. the program that called it was
a previous execution of the same procedure that needed
2! to compute the factorial of 3. Given the factorial of 2,
this call of the procedure can now compute 3! and return
to the program that called it. For the example here, the
return now will be to the mainline program.

Figure 5-21c shows how we can represent this algo-
rithm in slightly expanded pseudocode. Use the program
flow diagram in Figure 5-21b to help you sece how
execution continues after the return when N = 1 and
N = 3. Can you see that if N is initially 1, the first return
will return execution to the instruction following CALL
FACTO in the mainline program? If the initial N was 3,
for example, this return will return execution to the
instruction after the call in the procedure. Likewise, the
return after the multiply can send execution back to the
next instruction after the call or back to the mainline
program |f the final result has been computed.

Figure 5-21d shows a flowchart for this algorithm.
Note that the flowchart shows the same ambiguity about
where the return operations send execution to.

STRINGS, PROCEDURES, AND MACROS 117

MAINLINE

PROCEDURE
FACTO
CALL FACTO
RET GETN
WITH 11
(a)
YES
MAINLINE .
PROCEDURE PROCEDURE PROCEDURE NO
FACTO FACTO FACTO FACTORIAL
=1
DECREMENT
CALL FACTO CALL CALL N l
NEXT MAINLINE ¢ :
INSTRUCTION RETURN
RET RET RET CALL
WITH 3! WITH 21 WITH 11 FACTO
(b) l
MULTIPLY
PROCEDURE FACTO W =1
IFN=1 X PREVIOUS N
FACTORIAL =1
RET l
ELSE
REPEAT
DECREMENT N RETURN
CALL FACTO
UNTILN=1
MULTIPLY (N — 1)1 X PREVIOUS N
RET
(c) ()

FIGURE 5-21 Algorithm for program to compute factorial for a number N
between 1 and 8. () Flow diagram for N = 1. (b) Flow diagram for N = 3.

(c) Pseudocode. (d) Flowchart.

ASSEMBLY LANGUAGE RECURSIVE
FACTORIAL PROCEDURE

Figure 5-22 shows an 8086 assembly language procedure
which computes the factorial of a number in the range
of 1 to 8. To save space, we have not included instruc-
tions to return an error message if the number passed
to the procedure is out of this range. Figure 5-23,
p. 120, shows, with a stack diagram, how the stack will
be affected if this procedure is called with N = 3. When
working your way through a recursive procedure or any
procedure which uses the stack extensively, a stack
diagram .such as this is absolutely necessary to keep
track of everything.

The first parts of the program are housekeeping
chores. We start the mainline program by declaring a
stack segment and setting aside a stack of 200 words
with a label at the top of the stack. The first three
instructions In the code segment of the mainline pro-
gram initialize the stack segment register and the stack
pointer register. The SUB SP,04 instruction after this

118 CHAPTER FIVE

will decrement the stack pointer register by 4. in other
words, we skip the stack pointer down over 2 words in
the stack. These two word locations will be used to pass’
the computed factorial from the procedure back to the
mainline program. Next we load the number whose
factorial we want into AX and push the value on the
stack where the procedure will access it. Now we are
ready to call the procedure. The procedure is near
because it is in the same code segment as the instruction
which calls it.

At the start of the procedure, we save the flags and all
the registers used in the procedure on the stack. Let's
take a look at Figure 5-23 to see what Is on the stack at
this point. As you can see, the stack now has the space
for the result, the passed value, the return address, and
the pushed registers. Unfortunately, the value of N is
buried 10 addresses up the stack from where the stack
pointer was left after BP was pushed. To access this
buried value, we first copy SP to BP with the MOV BP,SP
instruction so that BP points to the top of the stack.
Then we use the MOV AX.[BP + 10] instruction to copy

OO NOWV SN -

37

60

65

0000
0000

0190

0000

0000
0003
0005

0008
000E
000F
0012
0015
0016
0017
0018

0018
oo18
001c
0010
001E
001F
0021
0024
0027
0029
002€
0033
0036

0039
003a
0038
003€
0040
0043
0046
0049
004C
004F
0050
0051
0052
0053
0054
0054
0055

€8*(0000)

= 0008

88 0000s
8E DO

BC 0190r
83 EC 04
B8 0008
50

E8 0009
83 c4 02
58

5A

90

EB 3A 90

88 EC
88 46 OA
30 0001
75 00
C7 46 OC
C7 46 OE
EB 1A 90
83 EC 04

48

50

E8 FFDD
88 EC
88 46 02
F7 66 10
89 46 12
89 56 14
83 C4 06

0001
0000

;ABSTRACT
;REGISTERS
;PORTS

s s ss we

;PROCEDURES :

STACK_SEG

STACK_TOP
STACK_SEG

NUMBER

‘8086 PROGRAM F5-22.ASM

Program computes the factorial of a number between 1 and 8
Uses CS, SS, SP, ‘AX, DX .

None used

Uses FACTO

" SEGMENT STACK

oW 200 DUP(0) ; Set aside 200 words for stack
LABEL WORD : Assign name to word above stack top
ENDS

EQU 08 ; 8! = 40320 = 9080H

CODE SEGMENT
ASSUME CS:CODE, SS:STACK_SEG

START: MOV AX, STACK_SEG ; Initialize stack segment register
MOV SS, AX
MOV SP, OFFSET STACK_TOP ; Initialize stack pointer
SUB SP, 0004H ; Make space in stack for factorial
MOV AX, NUMBER ; to be returned and put number
PUSH AX ; to be passed on stack
CALL FACTO ; Compute factorial of number
ADD SP, 2 ; Get over original number in stack
POP AX : Get low word of the result
POP DX ; Get high word of the result
NOP :; Simulate next mainline instruction
JMP FIN X ; Or EXIT program
|
;PROCEDURE: FACTO: Recursive procedure that computes the factorial of a number
; INPUT : Takes data (number = N) from the stack
;OUTPUT : Returns With result on stack above original data
;DESTROYS : Nothing -

FACTO PROC NEAR

PUSHF ; Save flags and registers
PUSH AX ; on the stack

PUSH DX

PUSH BP

MOV BP, SP ; Point BP at top of stack
MOV AX, [BP+10] Copy number from stack to AX

CMP AX, O001H

JNE

If N not = 1 THEN

GO_CN compute factorial

MOV WORD PTR [BP+12), 0001H ; ELSE load 1! on stack
MOV WORD PTR (BP+14), 0000H ; and return to calling program

JMP EXIT
GO_ON: SUB SP, 0004H " ; Make space in stack for
; preliminary factorial
DEC AX ; Decrement number now in AX
PUSH AX ; Save N-1 on stack
CALL FACTO ; Compute factorial of N-1
MOV BP, SP ; Point BP at top of stack
MOV AX, [BP+2) ; Last (N-1)! from stack to AX
MUL WORD PTR [BP+16]) : Multiply by previous N
MOV [BP+18), AX ; Copy new factorial to stack
MOV (BP+20], DX
ADD SP, 0006H ; Point SP at pushed register
EXIT: POP BP ; Restore registers
POP DX
POP AX
POPF
RET
FACTO ENOP i
FIN: NOP
CODE ENDS
END START

FIGURE 5-22 Program which uses a recursive procedure to calculate the factorial of a number between 1 and 8.

119

ACK IN MEMORY
AL . P‘IOTE: EACH BOX IN THIS

sP etk STACK DIAGRAM
REPRESENTS A WORD
OUBOH ——
007EH M HIGH WORD } 4-BYTE SPACE RESERVED
007CH M LOWWOQRD FOR FINAL FACTORIAL
007AH N ~—— SP AFTER FINAL RET
0078H P
0076H FLAGS
0074H AX
0072H DX
0070H 8P -—— SP AFTER +6 BALANCE
e } 4-BYTE SPACE FOR (N — 1)1
006CH
O0BAH N-1 ~——— SP AFTER SECOND RET
0068H P
0066H FLAGS
0084H AX
0062H DX
0060H BP <—— SP AFTER +6 BALANCE
e } 4-BYTE SPACE FOR (N - 1)1
005CH
005AH (N=1)=1 ~—— SP AFTER FIRST RET
0068H 1
0056H FLAGS
0064H AX
0052H DX
0050H BP <—— SP AFTER LAST CALL
004EH AND PUSHES
/\—MIJ

FIGURE 5-23 Stack diagram for program in Figure 5-22
showing contents of stack for N = 3.

N from the stack to AX. Now that the procedure has the
value of N, let's work through how it gets processed.

If the value of N read in is 1, then the factorial is 1.
We want to put 00000001H in the stack locations we
reserved for the result, restore the registers, and return
to the mainline program. Follow this path through the
program in Figure 5-22. Note how the MOV WORD PTR
[BP + 12],0001H instruction is used to load a value to
alocation buried in the stack. The WORD PTR directives
tell the assembler that you want to move a word to the
specified memory location. Without these directives, the

- assembler will not know whether to code the instruction
for moving a byte or for moving a word. The MOV WORD
PTR [BP + 14),0000H instruction is likewise used to
move a word value to the stack location reserved for the
high word of the factorial.

Now let's see what happens if the number passed to
FACTO is a 3. The CMP AX,0001H instruction and the
JNE GO_ON Instructions determine that N is not 1
and send execution to the SUB SP,04H instruction.
According to the algorithm, we are. going to find the
value of N! by multiplying N times the value of (N — 1),
We will be calling FACTO again to find the value of (N -
1)!. The SUB SP,04H instruction skips the stack pointer

120 CHAPTER FIVE

down over four addresses in the stack (o offset 006CH
for our example. The value of (3 = 1)! will be returned
in these locations.

The next step in the program is to decrement N by 1
and push the value of N — 1 on the stack at offset
006AH, where it can be accessed during the next call of
FACTO.

Next we call FACTO again to compute the value of
(N — 1)I. The IP flags and registers will again be pushed
on the stack. As shown in Figure 5-23, the stack pointer
is now pointing at offset 0060H, and the value of N — |
1 that we need is again buried 10 addresses up in the
stack. This is no problem, because the MOV BP,SP and
MOV AX,[BP + 10] instructions will allow us to access
the value. We started with N = 3 for this example, so
the value of N - 1 that we read in at this point is equal
to 2. Since this value is not 1, execution will again go
to the label GO_ON. The SUB SP,04 instruction will
again skip the stack pointer down over four addresses
to offset 005CH. This leaves space for (2 — 1)!, which
will be returned by the next call of FACTO. We decrement
N — 1 by 1 to give a result of 1 and then push this value
on the stack at offset 005AH. We then call FACTO to
compute the factorial of 1.

After calling FACTO again and pushing all the registers
on the stack, the stack pointer, now points to offset
0050H. FACTO then reads N = 1 from the stack with
the MOV AX,[BP + 10] instruction. When the CMP
AX,0001H instruction in FACTO finds that the number
passed to it is 1, FACTO loads a factorial value of 1 into
the four memory locations we most recently set aside
for a returned factorial at offsets 005CH to 005FH. The
MOV WORD PTR [BP + 12],0001 and MOV WORD PTR
[BP + 14],0000 instructions do this. Since Nwas a 1,
execution will go to the EXIT label. The registers will
then be popped and execution returned to the next
instruction after the CALL instruction that last called
FACTO.

Now in this case FACTO was called from a previous
execution of FACTO, so the return will be to the MOV
BP.SP instruction after CALL FACTO. The MOV BP,SP
instruction points BP at the top of the stack at 005AH,
so that we can access data on the stack without affecting
the stack pointer. The MOV AX,[BP + 2] instruction
after this copies the low word of (N ~ 1 = 1)! or 1 from
the stack to AX so that we can muitiply it by N — 1. We
need only the lower word of the two we set aside for the
factorial, because for an N of 8 or less, only the lower
word will contain data. Restricting the allowed range of
N for this example means that we only have to do a 16-
bit by 16-bit multiplication. We could increase the
allowed range of N by simply setting aside larger spaces
in: the stack for factorials and including instructions to
multiply larger numbers.

In this example, the MUL WORD PTR [BP + 16]
instruction multiplies the (N'~ 1 - 1)! in AX by the

“previous N from the stack. The low word of the product

isi left in AX, and the high word of the product is left in
DX. The MOV (BP + 18].AX and the MOV [BP + 20],DX
instructions.copy these two words to the stack locations
we reserved for the next factorial result at offsets 005CH
to O06FH.

The next operation we would like to do in the program
is pop the registers and return. As you can see from
Figure 5-23, however, the stack pointer is now pointing
at some old data on the stack at offset 005AH, not at
the first register we want to pop. To get the stack pointer
pointing where we want it, we add 6 to it with the ADD
SP,06H instruction. Then we pop the registers and
return. i

After the pops and return,’ the stack pointer will be
pointing at N — 1 at offset 006AH. and the value for 2!
will be In the stack at offsets 006AH to O06FH in the
stack. We still have one more computation to produce
the desired 3!. Therefore, the return is again to the
MOV BP,SP instruction after CALL in FACTO. The
instructions after this will multiply 2! times 3 to produce
the desired 3!, and copy 3! to the stack as described in
the preceding paragraph. The ADD SP,06H Instruction
will again adjust the stack pointer so that we can pop
the registers and return. Since we have done all the
required computations, this time the return will be to
the mainline program. The desired result, 3!, will be in
the memory locations we reserved for it in the stack at
offsets 007AH to O07FH.

After the final return, the stack pointer will be pointing
at offset 007AH in the stack. We add 2 to the stack
pointer so that it points to the factorial result and pop
the result into the DX and AX registers. This brings the
stack pointer back to its initial value.

If you work your way through the flow of the stack
and the stack peinter in this example. program, you
should have a good understanding of how the stack
functions during nested procedures.

Writing and Calling Far Procedures

INTRODUCTION AND OVERVIEW

A far procedure is one that is located in a segment which
has adifferent riame from the segment containing the
CALL instruction. To get to the starting address of a far
procedure, the 8086 must change the contents of both
the code segment register and the instruction pointer.

CODE SEGMENT
" ASSUME CS:CODE, DS:DATA, SS:STACK_SEG

CALL MULTIPLY_32

CODE ENDS ' : .

PROCEDURES SEGMENT
MULTIPLY_32 PROC FAR
ASSUME CS:PROCEDURES

MULTIPLY_32 ENDP
PROCEDURES ENDS

FIGURE 5-24 Program additions needed for a far
procedure.

Therefore, if you are hand coding a program which calls

afar procedure, make sure to use one of the intersegment

forms of the CALL instruction shown in Figure 5-6.
Likewise, at the end of a far procedure, both the contents
of the code segment register and the contents of the
instruction pointer must be popped off the stack to
return to the calling program, so make sure to use one
of the intersegment forms of the RET instruction to'do
this.

If you are using an assembler to assemble a program
containing a far procedure, there are a few additional
directives you have to give the assembler. The following
sections show you how to put these needed additions
into your programs. The first case we will describe is
one in which the procedure is in the same assembly
module, but it is in a segment with a different name
from the segment that contains the CALL instruction.

ACCESSING A PROCEDURE
IN ANOTHER SEGMENT

Suppose that in a program you want to put all of the
mainline program in one logical segment and you want
to put several procedures in another logical segment to
keep them separate from the mainline program. Figyre
5-24 shows some program fragments which illustrate
this situation. For this example, our mainline instruc-
tions are in a segment named CODE. A procedure called
MULTIPLY_32 is in a segment named PROCEDURES.
Since the procedure is in a different segment from the
CALL instruction, the #086 must change the contents
of the code segment register to access it. Therefore, the
procedure is far.

You let the assembler know that the procedure is far
by using the word FAR in the MULTIPLY_32 PROC FAR
statement. When the assembler finds that the procedure
ts declared as far, it will automatically code the CALL
instruction as an intersegment call and the RET instruc-
tion as an intersegment return. .

Now the remaining thing you have to do, so that the
program gets assembled carrectly, is to make sure that
the assembler uses the right code segment for each part
of the program. You use the ASSUME directive to do
this. At the start of the mainline program, you use the
statement ASSUME CS:CODE to tell the assembler to
compute the offsets of the following instructions from
the segment base named CODE. At the start of the
procedure, you use the ASSUME CS:PROCEDURES
statement to tell the assembler to compute the offsets
for the Instructions in the procedure starting from the
segment base named PROCEDURES.

When the assembler finally codes the CALL instruc-
tion, 1t will put the value of PROCEDURES tn for CS in
the Instruction. It will put the offset of the first instruc-
tion of the procedure in PROCEDURES as the IP value
in the instruction.

To summarize. then, if a procedure is 4n a different
segment from the CALL instruction, yot must declare
it far with the FAR directive. Also, you must put an
ASSUME statement in the procedure to tell the assembler
what segment base to use when calculating the offsets
of the instructions in the procedure.

STRINGS, PROCEDURES, AND MACROS 121

lASM MODULE] ‘ ASM MODULE I i l ASM MODULEJ

l ASSEMBLEJ [ASSEMBLE]

|
l 0BJ mq
]

|
l ASSEMBLEJ
|

I (OBJ FILE]

I \0BJ FILE I

.LNK or EXE.
FILE

LOCATE (if necessary)

.BIN FILE

FIGURE 5-25 Chart showing the steps needed to run a
program that has been written in modular form.

ACCESSING A PROCEDURE AND DATA IN A
SEPARATE ASSEMBLY MODULE

As we have discussed previously, the best way to write
a large program is to divide it into a series of modules.
Each module can be individually written, assembled,
tested, and debugged as shown in Figure 5-25. The
object code files for the modules can then be linked
. together. Finally, the resulting link file can be located,
run, and tested.

As we said earlier in this chapter, the individual
modules of a large program are often written as proce-
dures and called from a mainline or executive program.
In the preceding section we showed you how to access
a procedure in a different segment from the CALL
instruction. Here we show you how to access a procedure
or data in a different assemnbly module.

In order for a linker to be able to access data or a
procedure In another assembly module correctly, there
are two directives that you must use in your modules.
We will give.you an overview of these two and then show
with an example how they are used in a program.

1. In the module where a variable or procedure is
declared, you must use the PUBLIC directive to let
the linker know that the variable or procedure can
be accessed from other modules. The statement

122 CHAPTER FIVE

PUBLIC DISPLAY, for example, tells the linker that
a procedure or variable named DISPLAY can be
legally accessed from another assembly module.

2. In a module which calls a procedure or accesses a
variable in another module, you must use the EXTRN
directive to let the assembler know that the proce-
dure or variable is not in this module. The EXTRN
statement also gives the linker some needed informa-
tion about the procedure or variable. As an example
of this, the statement EXTRN DISPLAY:FAR, SEC-
ONDS:BYTE tells the linker that DISPLAY is a far
procedure and SECONDS.is a variable of type byte
located in another assembly module.

To summarize, a procedure or variable declared PUB-
LIC in one module will be declared EXTRN in modules
which access the procedure or variable. Now let's see
how these directives are used in an actual program.

PROBLEM DEFINITION AND
ALGORITHM DISCUSSION

The procedure in the following example program, was
written to solve a small problem we encountered when
writing the program for a microprocessor-controlled
medical instrument. Here's the problem.

In the program we add up a series of values read in
from an A/D converter. The sum is an unsigned number
of between 24 and 32 bits. We needed to scale this value
by dividing it by 10. This seems easy because the 8086
DIV instruction will divide a 32-bit unsigned binary
number by a 16-bit binary number. The quotient from
the division, remember, is put in AX, and the remainder
is put in DX. However, if the quotient is larger than 16
bits, as it will often be for our scaling, the quotient will
not fit in AX. In this case the 8086 will automatically
respond in the same way that it would if you tried to
divide a number by zero. We will discuss the details of
this response in Chapter 8. For now, it is enough to say
that we don't want the 8086 to make this response. The
simple solution we came up with is to do the division
in two steps in such a way that we get a 32-bit quotient
and a 16-bit remainder. i

Our algorithm is a simple sequence »of actions very
similar to the way you were probably taught to do long
division. We will first describe how this works with
decimal numbers. and then we will show how it works
with 32-bit and 16-bit binary numbers.

Figure 5-26a shows an example of long division of the
decimal number 433 by the decimal number 9. The 9
won't divide into the 4, so we put a O or nothing into
this digit position of the quotient. We then see if 9
divides into 43. It fits 4 times, so we put a 4 in this digit
position of the quotient and subtract 4 x 9 from the
43. The remainder of 7 now becomes the high digit of
the 73, the next number we try to divide the 9 into.
After we find that the 9 fits 8 times and subtract 9 x 8
from the 73, we are ieft with a final remainder of 1. Now
let’s see how we do this with large binary numbers.

As shown in Figure 5-26b, we first divide the 16-bit
divisor into a 32-bit number made up of a word of all
0's and the high word of the dividend. This division

048 R1
9) 433
36
73
12
1
(a)
QUOTIENT QUOTIENT
HIGHWORD | | Low woRD
DIVISOR 16 BITS DIVIDEND DIVIDEND
16 BITS 0000H HIGH WORD | | LOW wWORD
REMAINDER DIVIDEND
FIRSTDIV | ™ WoRD LOW WORD
REMAINDER
SECOND DIV WORD
(FINAL
(b}

FIGURE 5-26 Algorithm for smart divide procedure. (a)
Decimal analogy. (b) 8086 approach.

gives us the high word of the quotient and a remainder.
The remainder becomes the high word of the dividend
for the next division, just as it did for the decimal
division. We move the low word of the original dividend
in as the low word of this dividend and divide by the 16-
bit divisor again. The 16-bit quotient from this division
is the low word of the 32-bit quotient we want. The 16-
bit final remainder can be used to round off the quotient
or be discarded. depending on the application.

THE ASSEMBLY LANGUAGE PROGRAM

Figure 5-27a. pp. 124-5, shows the mainline of a pro-
gram which calls the procedure shown In Figure 5-27b,
p. 126. which implements our division algorithm. We
wrote these two as separate assembly modules to show
you how to add PUBLIC and EXTRN statements so that
the modules are linkable. Let’s look closely at these added
parts before we discuss the actual division procedure.

The first added part of the program to look at Is in the
statement DATA SEGMENT WORD PUBLIC. The word
PUBLIC in this statement tells the linker that this
segment can be combined (concatenated) with seg-
ment(s) that have the same name but are located in
other modules. In other words. if two or more assembly
modules have PUBLIC segments named DATA. their
contents will be pulled together in successive memory
locations when the program modules are linked. You
should then declare a segment PUBLIC anytime you
want it to be linked with other segments of the same
name in other modules.

The next addition to look at is the statement PUBLIC
DIVISOR in the mainline module in Figure 5-27a. This

-18

statement is necessary to tell the assembler and the
linker that it is legal for the data item named DIVISOR
to be accessed from other assembly modules. Essentially
what we are doing here is telling the assembler to put
the offset of DIVISOR in a special table where it can
be accessed when the program modules are linked.
Whenever you want a named data item or a label to be
accessible from another assembly module, you must
declare it as PUBLIC

The other side of this coin is that, when you need to
access a label, procedure, or variable in another module,
you mugt use the EXTRN directive to tell the assembler
that the label or data item is not in the present module.
If you don’t do this, the assembler will give you an érror
message because it can’t find the label or variable in the
current module. In the example program, the statement
EXTRN SMART_DIVIDE FAR tells the assembler that
we will be accessing a label or procedure of type FAR in
some other assembly module. For this example, we will
be accessing our procedure, SMART_DIVIDE. We enclose
the EXTRN statement with the PROCEDURES SEG-
MENT PUBLIC and the PROCEDURES ENDS statements
to tell the assembler and linker. that the procedure
SMART_DIVIDE is located in the segment PROCE-
DURES. There are some cases in which these statements
are not needed, but we have found that bracketing the
EXTRN statement with SEGMENT-ENDS directives in
this way is the best way to make sure that the linker
can find everything when it links modul‘es. As you can
see in the table at the end of the assembler listing
in Figure 5-27a, SMART_DIVIDE is identified as an
external label of type FAR, found in a segment named
PROCEDURES.

Now let's see how we handle EXTRN and PUBLIC in
the procedure module in Figure 5-27b. The procedure
accesses the data itern named DIVISOR, which is defined
in the mainline module. Therefore, we must use the
statement EXTRN DIVISOR:WORD to tell the assombler
that DIVISOR, a data item of type word, will be found
in some other module. Furthermore, we enclose the
EXTRN statement with the DATA SEGMENT PUBLIC
and DATA ENDS statements to tell the assembler that
DIVISOR will be found in a segment named DATA.

The procedure SMART_DIVIDE must be accessible
from other modules, so we declare it public with the
PUBLIC SMART_DIVIDE statement in the procedure
module. If we needed to make other labels or data items
public, we could have listed them separated by commas
after PUBLIC SMART_DIVIDE. An example is PUBLIC
SMART_DIVIDE, EXIT.

NOTES:

1. If we had needed to access DIVIDEND also, we
could have written the EXTRN statement as
EXTRN DIVISOR:WORD,DIVIDEND:WORD. To
add more terms, just separate them with a
comma.

2. Constants defined with an EQU directive in
one module can be imported to another module
by identifying them as EXTRN of type ABS. For
example, if you declare CORRECTION_FAC-

STRINGS, PROCEDURES, AND MACROS 123

Jurbo Assembler Version 1.0 X 05-05-89 13:09:06 Page 1

1 ; 8086 PROGRAM F5-27A.ASM

2 ;ABSTRACT : Program divides a 32-bit number by a 16-bit number

3 ; to give a 32-bit quotient and a 16-bit remainder.

4 ;REGISTERS : Uses CS, DS, SS, AX, SP, BX, CX

S ;PORTS : None used

6 ;PROCEDURES: Far procedure SMART DIVIDE

7

8 0000 DATA SEGMENT WORD PUBLIC

9 0000 4038 8C72 DIVIDEND oW 403BH, BC72H ; Dividend = 8C72403BH
10 0004 5692 DIVISOR DW S692H ; 16-bit divisor

11 0006 DATA ENDS

12

13 0000 MORE_DATA SEGMENT WORD

14 0000 02*(0000) QUOTIENT Dy 2 DUP(0)

15 0004 0000 REMAINDER DW 0

16 0006 MORE_DATA ENDS

17

18 0000 STACK_SEG SEGMENT STACK

19 0000 64*(0000) oW 100 DUP(0) ; Stack of 100 words

20 TOP_STACK LABEL WORD ; Name pointer to top of stack
21 00c8 STACK_SEG ENDS

22

23 PUBLIC DIVISOR

24

25 0000 PROCEDURES SEGMENT PUBLIC ; Let assembler know that SMART_DIVIDE
26 EXTRN SMART_DIVIDE : FAR ; is a label of type FAR and is located
27 0000 PROCEDURES ENDS ; in the segment PROCEDURES
28

29 0000 CODE SEGMENT WORD PUBLIC

30 ASSUME CS:CODE, DS:DATA, SS:STACK_SEG

31 0000 88 0000s START: MOV AX, DATA ; Initialize data segment

32 0003 8t D8 MOV DS, AX ; register

33 0005 88 0000s MOV AX, STACK_SEG ; Initialize stack segment
34 0008 B8€ DO MOV SS, AX ; register

35 000A BC 00C8r MOV SP, OFFSET TOP_STACK ; Initialize stack pointer
36 0000 A1 0000r MOV AX, DIVIDEND ; Load low word of dividend
37 0010 88 16 0002r MOV DX, DIVIDEND + 2 ; Load high word of div 'dend
38 0014 88 OE 0004r MOV CX, DIVISOR ; Load divisor

39 0018 9A 00000000se CALL SMART_DIVIDE ; Quotient returned in DX:AX
40 ; Remainder returned in CX, carry set if result invalid

41 0010 73 03 JNC SAVE_ALL ; IF carry = 0, result valid
42 001F EB 13 90 JMP STOP ; ELSE carry set, don't save result
43 ASSUME DS:MORE_DATA ; Change data segment

44 0022 1E SAVE_ALL: PUSH DS ; Save old DS

45 0023 BB 0000s MOV BX, MORE_DATA ; Load new data segment

46 0026 B8E DB MOV DS, BX ; register

47 0028 A3 0000r MOV QUOTIENT, AX ; Store low word of quotient
48 0028 89 16 0002r MOV QUOTIENT + 2, DX ; Store high word of quotient
49 002F 89 OE 0004r MOV REMAINDER, CX ; Store remainder

50 ASSUME DS:DATA

51 0033 1F POP DS ; Restore initial DS

52 0034 90 STOP: NOP

53 0035 CODE ENDS

54 END START

FIGURE 5-27 Assembly language program to divide a 32-bit number by a 16-bit
number and return a 32-bit quotient. (a) Mainline program module (continued
on p. 125). (b) Procedure module (p. 126).

124 CHAPTER FIVE

Turbo Assembler Version 1.0
Symbol Table

Symbol Name

270ATE
27FILENAME
2?TIME
77VERSION
acPy
ACURSEG

AF ILENAME
SWORDS1ZE
DIVIDEND
DIVISOR
QUOTIENT
REMAINDER
SAVE_ALL
SMART_DIVIDE
START

STOP
TOP_STACK

Groups & Segments

CODE

DATA
MORE_DATA
PROCEDURES
STACK_SEG

FIGURE 5-27 (continued)

TOR EQU 07 in one module, you can import
CORRECTION_FACTOR to another module
with the statement

EXTRN CORRECTION_FACTOR:ABS.

Now that we have explained the use of PUBLIC and
EXTRN., let's work our way through the rest of the
program. At the start of the mainline, the ASSUME
statement tells the assembler which logical segments to
use as code, data, and stack. We then initialize the data
segment, stack segment, and stack pointer registers as
described in previous example programs. Now, before
calling the SMART_DIVIDE procedure, we copy the
dividend and divisor from memory to some registers.
The dividend and the divisor are passed to the procedure
in these registers. As we explained in a previous section,
if we pass paramcters to a procedure in registers, the
procedure does not have to refer to specific named
memory locations. The procedure is then more general
and can more easily be called from any place in the
mainline program. However, in this example we refer-
enced the named memory location. DIVISOR, from the
procedure just to show you how it can be done using
the EXTRN and PUBLIC directives. The procedure is of
type FAR, so when we call it. both the code segment
register and the instruction pointer contents will be
changed.

In the procedure shown in Figure 5-27b. we first check

(a)

05-05-89 13:09:06 Page 2
Type Value
Text "05-05-89"
Text "F5-27A
Text "13:09:05"
Number 0100
Text 0101H
Text COOE
Text F5-27A
Text 2
Word DATA:0000
Word DATA:0004
Word MORE_DATA:0000
Word MORE_DATA:0004
Near CODE:0022
Far PROCEDURES:---- Extern
Near CODE:0000
Near CODE:0034
Word STACK_SEG:00C8
Bit Size Align Combine Class
16 0035 Word Public
16 0006 Word Public
16 0006 Word none
16 0000 Para Public
16 00c8 Para Stack

to see if the divisor is zero with a CMP DIVISOR.0
instruction. If the divisor is zero, the JE instruction will
send execution to the label ERROR_EXIT. There we set
the carry flag with STC as an error indicator and return
to the mainline program. If the divisor is not zero, then
we go on with the division. To understand how we do
the division, remember that the 8086 DIV instruction
divides the 32-bit number in DX and AX by the 16-bit
number In a specified register or memory location. It
puts a 16-bit quotient in AX and a 16-bit remainder in
DX. Now, according to our algorithm in Figure 5-26b,
we want to put 0000H in DX and the high word of the
dividend in AX for our first DIV operation. MOV BX,AX
saves a copy of the low word of the dividend for future
reference. MOV AX.DX coples the high word of the
dividend into AX where we want it, and MOV DX,0000H
puts all O's in DX. After the first DIV instruction executes,
AX will contain the high word of the 32-bit quotient we
want as our final answer. We save this in BP with the
MOV BP.AX instruction so. that we can use AX for the
second DIV operation.

The remainder from the first DIV operation was left
in the DX register. As shown by the diagram in Figure
5-26b. this is right where we want it for the second DIV
operation. All we have to do now. before we do the second
DIV operation. is to get the low word of the original
dividend back into AX with the MOV AX,BX instruction.
After the second DIV instruction executes, the 16-bit
quotient will be in AX. This word is the low word of our

125

STRINGS, PROCEDURES, AND MACROS

Turbo Assembler Version 1.0 05-05-89 13:09:20 Page 1

1 ; 8086 PROCEDURE F5-27B.ASM called by program F5-27A.ASM
2 ;ABSTRACT : PROCEDURE SMART_DIVIDE.
3 ; This procedure divides a 32-bit number by a 16-bit number
4 ; to give a 32-bit quotient and a 16-bit remainder.
5 s INPUT : Dividend - low word in AX, high word in DX, Divisor in CX
6 JOUTPUT : Quotient - low word in AX, high word in DX. Remainder in CX
7 ; Carry - carry flag set if try to divide by zero
8 ;DESTROYS : AX, BX, CX, DX, BP, FLAGS
9 ;PORTS : None used
10
11 0000 DATA SEGMENT PUBLIC ; This block tells the assembler that
12 EXTRN DIVISOR:WORD ; the divisor is a word variable found
13 0000 DATA ENDS ; in the external segment named DATA
14
15 PUBLIC SMART_DIVIDE ; Make SMART DIVIDE available to other modules
16
17 0000 PROCEDURES SEGMENT PUBLIC
18 0000 SMART_DIVIDE PROC FAR
19 ASSUME CS:PROCEDURES, DS:DATA
20 0000 83 3e 0000e 00 CMP DIVISOR, O ; Check for illegal divide
21 0005 74 17 JE ERROR_EXIT ; IF divisor = 0, exit procedure
22 0007 88 D8 MOV BX, AX ; Save low order of dividend
23 0009 88 C2 MOV AX, DX ; Position high word for 1st divide
24 000B BA 0000 MOV DX, O0O00OH ; Zero DX
25 000E F7 F1 DIV CX ; DX:AX/CX, quotient in AX, remainder in DX
26 0010 88 E8 MOV BP, AX ; Save high order of final result
27 0012 88 C3 MOV AX, BX ; Get back low order of <ividend
28 0014 F7 F1 DIV CX ; DX:AX/CX, quotient in AX, .remainder in DX
29 0016 8B CA MOV CX, DX ; Pass remainder back in CX
30 0018 88 05 MOV DX, BP ; Pass high order result back in DX
31 001A F8 cLc ; Clear carry to indicate valid result
32 0018 EB 02 90 JMP EXIT ; Finished
33 001E F9 . ERROR_EXIT: STC ; Set carry to indicate divide by zero
34 001F CB EXIT: RET
35 0020 SMART_DIVIDE ENDP
36 0020 PROCEDURES ENDS
37 END
Turbo Assembler Version 1.0 05-05-89 13:09:20 Page 2
SymBol Table
Symbol Name Type Value
?70ATE Text "05-05-89"
2?FILENAME Text WF5-278 ¢
27TIME Text "13:09:19"
??VERSION Number 0100
ackPu Text 0101H
ACURSEG Text PROCEDURES
AF ILENAME Text F5-278
AWORDS I 2E Text 2
DIVISOR Word DATA:---- Extern
ERROR_EXIT Near PROCEDURES:001E
EXIT g Near PROCEDURES:001F
SMART_DIVIDE Far PROCEDURES : 0000
Groups & Segments Bit Size Align Combine Class
DATA 16 0000 Para Public
PROCEDURES 16 0020 Para Public

(b)
FIGURE 5-27 (continued)

126 CHAPTER FIVE

desired 32-bit quotient. We just leave this word in AX
to be passed back to the mainline program. The DX
register was left with the final remainder. We copy this
remainder to CX with the MOV CX,DX instruction-to be
passed back to the mainline program. After the first DIV

operation, we saved the high word of our 32-bit quotient
in BP. We now use the MOV DX,BP instruction to copy

this word back to DX, where we want it to be when we
return to the mainline program. You really don't have
to shuffle the results around the way we did with these
last three instructions, but we like to pass parameters
to and from procedures in as systematic a way as possible
so that we can more easily keep track of everything.
After the shuffling, we clear the carry flag with CLC
before returning to indicate that the result in DX and
AX {s valid.

Back in the mainline program, we check the carry flag
with the JNC instruction. If the carry flag is set, we
know that the divisor was 0, no division was done, and
there is no result to put in memory. If the carry flag is
not set, then we know that a valid 32-bit quotient was
returned in DX and AX and a 16-bit remainder was
returned in CX. We now want to copy this quotient and
this remainder to some named memory locations we set
aside for them.)

If you look at some earlier lines in the program, you
will see that the memory locations called QUOTIENT and
REMAINDER are in a segment called MORE_DATA. At
the start of the mainline program, we tell the assembler
to ASSUME that we will be using DATA as the data
segment. Now, however, we want to access some data
items in MORE_DATA using DS. To do this, we have to
do two things. First, we have to tell the assembler to
ASSUME DS:MORE_DATA. Second, we have to load the
segment base of MORE_DATA into DS. In our program
we save the old valuc of DS by pushing it on the stack.
We do this so that we can easily reload DS with the
base address of DATA later in the program. The MOV
BX.MORE_DATA and MOV DS,BX instructions load the
base address of MORE_DATA into DS. The three MOV
instructions after this copy the quotient and the remain-
der into the named memory locations.

Finally, in the program we point DS back at DATA so
that later instructions can access data items in the
DATA segment. To do this, we first tell the assembler to
ASSUME DS:DATA. Then we pop the-base address of
DATA off the stack into DS. As you write more complex
programs, you will often want to access different seg-
ments at different times in the program, so we wrote
this example to show you how to do it. Remember, when
you change segments, you have to do a new ASSUME
statement and include instructions which initialize the
segment register to the base address of the new segment.

WRITING AND USING
ASSEMBLER MACROS

Macros and Procedures Compared

Whenever we need to use a group of instructions several
times throughout a program, there are two ways we can
avoid having to write the group of instructions each

time we want to use it. One way is to write the group of
instructions as a separate procedure. We can then just
call the procedure whenever we need to execute that
group of instructions. A big advantage of using a proce- .
dure.is that the machine codes for the group of instruc-
tions in the procedure only have to be put in memory
once. Disadvantages of using a procedure are the need
for a stack. and the d¥erhead time required to call the
procedure and return to the calling program.

When the repeated group of instructions is too short
or not appropriate to be written as a procedure, we use
a macro. A macro is a group of instructions we bracket
and give a name to at the start of our program. Each
time we "call” the macro in our program, the assembler
will insert the defined group of instructions in place of
the “call.” In other words, the macro call is ltke a
shorthand expression which tells the assembler, “Every
time you see a macro name in the program, replace it
with the group of instructions defined as that macro at
the start of the program.” An important point here is
that the assembler generates machine codes for the
group of instructions each time the macro is called.
Replacing the macro with the instructions it represents
is commonly called “expanding” the macro. Since the
generated machine codes are right in-line with the rest
of the program, the processor does not have to go off to
a procedure and return. Therefore, using a macro avoids
the overhead time involved in calling and returning from
a procedure. A disadvantage of generating in-line code
each time a macro is called is that this will make the
program take up more memory than using a procedure.

The examples which follow should help you see how
to define and call macros. For these examples we use
the syntax of MASM and TASM. If you are developing
your programs on some other machine, consult the
assembly language programming manual for your ma-
chine to find the macro definition and calling formats
for it.

Defining and Calling a Macro
Without Parameters

For our first example, suppose that we are writing an
8086 program which has many complex procedures. At
the start of each procedure, we want to save the flags
and all the registers by pushing them on the stack. At
the end of each procedure, we want to restore the flags
and all the registers by popping them off the stack. Each
procedure would normally contain a long series of PUSH
instructions at the start and a long series of POP
instructions at the end. Typing in these lists of PUSH
and POP instructions is tedious and prone to errors. We
could write a procedure to do the pushing and another
procedure to do the popping. However, this adds more
complexity to the program and is therefore not appro-
priate. Two simple macros will solve the problem for us.

Here's how we write a macro to save all the registers.

PUSH_ALL MACRO
PUSHF
PUSH AX
PUSH BX

STRINGS, PROCEDURES, AND MACROS 127

PUSH CX
PUSH DX
PUSH BP
PUSH SI
PUSH DI
PUSH DS
PUSH ES
PUSH SS
ENDM

The PUSH_ALL MACRO statement identifies the start
of tiie macro and gives the macro a name, The ENDM
identifies the end of the macro.

Now, to call the macro in one of our procedures, we
simply put in the name of the macro just as we would
an instruction mnemonic. The start of the procedure
which does this might look like this:

BREATH__RATE PROC FAR

ASSUME CS:PROCEDURES, DS:PATIENT_PARAMETERS
PUSH_ALL : Macro call
MOV AX, PATIENT_PARAMETERS : Initialize data
MOVE DS, AX : segment reg

When the assembler assembles this program section,
it will replace PUSH_ALL with the instructions that it
represents and insert the machine codes for these
instructions in the object code version of the program.
The assembler listing tells you which lines were inserted
by a macro call by putting a + in each program line
inserted by a macro call. As you can see from the example
here, using a macro makes the source program much
more readable because the source program does not
have the long series of push instructions cluttering it
up.

The preceding example showed how a macro can be
used as simple shorthand for a series of instructions.
The real power of macros, however, comes from being
able to pass parameters to them when you call them.
The next section shows you how and why this is done.

Passing Parameters to Macros

Most of us have received computer printed letters of the
form:

Dear MR. HALL,

We are pleased to inform you that you may have
won up to $1,000,000 in the Reader's Weekly
sweepstakes. To find out if you are a winner, MR.
HALL, return the gold card to Reader's Weekly in
the enclosed envelope before OCTOBER 22, 1991.
You can take advantage of our special offer of
three years of Reader’s Weekly for only $24.95 by
putting an X in the YES box on the gold card. If
you do not wish to take advantage of this offer,
which is one third off the newsstand price, mark
the no box on the gold card.

Thank you.,

128 CHAPTER FIVE

s

A letter such as this 1s an everyday example of the
macro with parameters concept. The basic letter “macro”
is written with dummy words in place of the addressee’s
name, the reply date, and the cost of a three-year
subscription. Each time the macro which prints the
letter is called. new values for these parameters are
passed to the macro. The result is a “personal™looking
letter.

In assembly language programs, we likewise can write
a generalized macro with dummy parameters. Then,
when we call the macro, we can pass it the actual
parameters needed for the specific application. Suppose,
for example, we are writing a word processing program.
A frequent need in a word processing program is to
move strings of ASCII characters from one place In
memory to another. The 8086 MOVS instruction is
intended to do this. Remember from the discussion of
the string instructions at the beginning of this chapter.
however, that in order for the MOVS instruction to
work correctly, you first have to load SI with the offset
of the source start, DI with the offset of the destination
start, and CX with the number of bytes or words to be
moved. We can define a macro to do all of this as
follows:

MOVE_ASCIl MACRO NUMBER, SOURCE, DESTINATION
MOV CX. NUMBER : Number of characters to be moved in CX
LEA SI, SOURCE . Point SI at ASCIl source
LEA DI. DESTINATION : Point DI at ASCI destination

CLD ¢ Autoincrement pointers after move
REP MOVSB : Copy ASCI string to new location
ENDM

The words NUMBER, SOURCE, and DESTINATION in
this macro are called dummy variables. When we call
the macro, values from the calling statement will be put
in the instructions in place of the dummies. If, for exam-
ple, we call this macro with the statement MOVE_
ASCII 03DH,BLOCK_START.BLOCK_DEST, the assem-
bler will expand the macro as follows.

MOV CX. 03DH : Number of characters to be moved in CX
LEA SI. BLOCK_START : Point Sl at ASCII destination
LEA DI.'BLOCK_DEST : Point DI at ASCII destination
CLD : Autolncrement pointers after move
REP MOVSB : Copy ASCII string to new location

We do not have space here to show you very much of what
you can do with macros. Read through the assembly
language programming manual for your system to find
more details about working with macros. To help stick
in your mind the differences between procedures and
macros, here is a comparison between the two.

Summary of Procedures Versus Macros

PROCEDURE

Accessed by CALL and RET mechanism during program
execution. Machine code for instructions only put in
memory once. Parameters passed in registers, memory
locations. or stack.

MACRO

Accessed during assembly with name given to macro
when defined. Machine code generated for instructions
each time called. Parameters passed as part of statement
which calls macro.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms in the following
list, use the index to help you find them in the chapter
for review.

Indirect intersegment far call

Direct intrasegment near call

Indirect intrasegment near call

Stack: top of stack, stack pointer
PUSH and POP instructions

Parameter, parameter passing methods
Stack overflow

Reentrant and recursive procedures
Strings and 8086 string instructions Interrupt
Procedures and nested procedures lntcr.rupt service procedure
CALL and RET instructions Separate assembly modules
PUBLIC and EXTRN directives

Macro

Near and far procedures

Direct intersegment far call

REVIEW QUESTIONS AND PROBLEMS

1. a. Given the following data structure, use the MOV SP,4000H
8086 string instructions to help you write a PUSH AX
program. which moves the string “Charlie T. CALL MULTO
Tuna” from OLD_HOME to NEW_HOME, POP AX
which is just above the initial location. MULTO PROC NEAR

. PUSHF
NAMES_HERE SEGMENT PUSH BX
OLD_HOME DB ‘CHARLIE T. TUNA’ :
NEW_HOME DB 15 DUP(0)
NAMES_HERE ENDS .
POP BX
POPF

b. Use the string instructions to write a simple
program to move the string “Charlie T. Tuna” RET
up four addresses in memory. Consider MULTO ENDP
whether the pointers should be incremented or

decremented after each byte is moved in order
to keep any needed byte from being written
over. Hint: Initialize DI with the value of SI + 4.

b. What effect would it have on the execution.of
this program if the POPF instruction in the
procedure was accidentally left out? Describe
the steps you would take in tracking down this

2. Use the 8086 string instructions to write a program
which scans a string of 80 characters Iooklnggl‘or a ﬁ“:lb et yomielid AtHatY IR prograng
carriage return (ODH). If a carriage return is found, sting.
put the length of the string up to the carriage Show the binary codes for the following instruc-
return in AL. If no carriage return is found, put tions.
S50H (80 decimal) in AL. ® a. The instruction which will call a procedure
3. Show the 8086 Instruction or group of instructions - WL O dumssen BB Innemany i
which will: the instruction after a call instruction.
a. Initialize the stack segment register to 4000H b. Anr lnstruct(ljon w:nch rcu:n;'s Ssmnan fror:
and the stack pointer register to 8000H. e ondks BBkl il p b
b. Call a near procedure named FIXIT. increments the stack pointer by 4.
c. Save BX and BP at the start of a procedure and a. List three methods of passing parameters to a
restore them at the end of the procedure. procedure and give the advantages and disad-
d. Return from a procedure and automatically vantages of each method.
increment the stack pointer by 8. b. Define the term reentrant and explain how you
4. a. Use a stack map to show the effect of each of st pasa panamicters fo & procedure so that it

the following instructions on the stack pointer
and on the contents of the stack.

is reentrant.

a. Write a procedure which produces a delay of

STRINGS, PROCEDURES, AND MACROS 129

3.33 ms when run on an 8086 with a 5-MHz
clock. i

b. Write a mainline program which uses this
procedure to output a square wave on bit DO
of port FFFAH.

Write a procedure which converts a four-digit BCD
number passed in AX to its binary equivalent. Use
the algorithm in Figure 5-13.

The 8086 MUL instruction allows you to multiply
a 16-bit number by a 16-bit binary number to give
a 32-bit result. In some cases. however, you may
need to multiply a 32-bit number by a 32-bit
number to give a 64-bit result. With the MUL
instruction and a little adding, you can easily do
this. Figure 5-28 shows in diagram form how to do

M [4]

[#]

X

Z X X | 32BITS

+

+
32BITS
+
32BITS

32 BITS

RESULT
64 BITS

H

FIGURE 5-28 32-bit by 32-bit multiply method for
Problem 9.

130

CHAPTER FIVE

11.

12.

it. Each letter in the diagram represents a 16-bit
number. The principle is to use MUL to form partial
products and add these partial products together
as shown. Write an algorithm for this multiplication
and then write the 8086 assembly language pro-
gram for the algorithm.

Calculating the factorial of a number, which we did
with arecursive procedure in Figure 5-22, can easily
be done with a simple REPEAT-UNTIL structure of
the form

IFN = 1 THEN
FACTORIAL
ELSE
FACTORIAL
REPEAT
FACTORIAL = FACTORIAL x N
DECREMENT N
UNTILN =0

1

]

1

i

Write an 8086 procedure which implements this
algorithm for an N between 1 and 8.

a. Show the statement you would use to tell the
assembler to make the label BINADD available
to other assembly modules.

b. Show how you would tell the assembler to look
for a byte type data item named CONVER-
SION_FACTOR in a segment named FIXUPS.

a. Write an assembler macro which will restore,
in the correct order, the registers saved by the
macro PUSH_ALL in this chapter.

b. Write the statement you would use to call the
macro you wrote in part a.

