
ter Number
ita1 Devices

Systems,

Before starting our discussion of microprocessors and
microcomputers, we need to make sure that some key
concepts of the number systems, codes, and dtgital
devices used in microcomputers arc fresh In your mind.
If the short summaries of these concepts in this chapter
are not enough to refresh your memory, then you may
want to consult some of the chapters in Digital Circuits
and Systems. McGraw-Hill, 1989, before going on In
this book.

OBJECTIVES

At the conclusion of this chapter you should be able to:

I. Convert numbers between the following codes: bi-
nary, hexadecimal, and BCD.

2. Define the terms bit, nibble, byte, word, most sig-
niji cant btt. and least signtficant btt.

3. Use a table to find the ASCII or EBCDIC code for a
given alphanumeric character.

4. Perform addition and subtraction of binary, hexa-
decimal. and BCD numbers.

5. Describe the operation of gates. flip-flops. latches
registers, ROMs. PAI.s, dynamic RAMs, static RAMs
and buses.

6. Describe how an arithmetic logic unit can be in-
structed to perform arithmetic or logical operations
on binary words.

COMPUTER NUMBER SYSTEMS
AND CODES

Review of Decimal System

To understand the structure ul the binary number
system. the first step : '. t he familiar dcci mal
or base- 10 number sv.te:li I cue ,, a decimal number
with the value of each place holder or digit expressed as
a power of 10.

5	 3	 4	 6.	 7	 2
10	 I0	 10	 100	101 102

The digits in the decimal number 534672 thus tell you
that you have 5 thousands, 3 hundreds, 4 tens. 6 ones.
7 tenths, and 2 hundredths. The number of symbols
needed in any number system is equal to the base
number, in the decimal number system, then, there are
10 symbols. 0 through 9. When the Count in any digit
position passes that of the highest-value symbol the
digit rolls back to 0 and the next higher digit is mere-
.irented by 1. A car odometer is a good example of this.

A number system can be built using powers of any
number as place holders or digits, but some bases are
more useful than others. It is difficult to build electronic
circuits which can store and manipulate 10 different
voltage levels but relatively easy to build circuits which
can handle two levels. Therefore, a binary, or base-2.
number system is used to represent numbers in digital
systems.

The Binary Number System

Figure 1-la. p. 2. shows the value of each digit 1n a
binary number. Each binary digit represents a power of
2. A binary digit is often called a bit. Note that digits to
the right of the binary point represent fractions used
for numbers less than I - The binary system uses only
two symbols, zero (0) and one (I), so in binary you count
as follows: 0. 1, 10, 11. 100, 101, 110. Ill. 1000. etc.
For reference. Figure 1-lb shows the powers of 2 from
2 1 to

Binary numbers are often called binary words or just
words. Binary words with certain numbers of bits have
also acquired special names. A 4-bit binary word is
called a nibble, and an 8-bit binary word is caUed a byte.
A 16-bit binary word is often referred to just as a word.
and a 32-bit binary word Is referred to as a doubleword.
The rightmost or least stgoficant bit of a binary word
is usually referred to as the LSB. The leftmost or most
significant bit of a binary word is usually called the
MSII.

To convert a binary number to its equivalent decimal
number, multiply each digit times the decimal value of
the digit and just add these up. The binary number 101.
for example. represents: (I X 2) + (0 x 2) + (I X 21).

2' -	 512
2 10 • 1,024
2" - 2.048
2°	 4,096
2° - 8.192
2' - 18,384
2" - 32.768
216 - 65,536

2" •	 131.072
2" -	 262,144
2 0 -	 524,288
2" - 1,048.576
2 2 • 2,097.152

4,194,304
- 8.388.608
- 16,777,216

(b)

225 -	 •.554.432
2" •	 67.109,8e.a
2"	 134.217,728
2" - 268,436.458
2" • 536,870,912
2" • 1,073,741,824
2" - 2.147,483.648
2" • 4294 967 296

4

2' •	 2
2 2 •	 4
2	 8

16
10110.1	 1	 2'- 32

2'	 642' 2' 2' 2' 2'2'2'2° 2'2'
2'	 128

128 6432 16842 1	 2'- 256
(a)

FIGURE 1•1 (a) Digit values in binary. (b) Powers of 2.

or 4 + 0 + 1	 decimal 5. For the binary number
10110.11. you have:

(Ix 2) + (0 x 2') + (lx 22) + (lx 21) + (0 x 20)
+ (1 x 2 - ') + (1 x 2 -2') =

16 + 0 + 4 + 2 + 0 + 0.5 + 0.25 = decimal 22.75

To convert a decimal number to binary, there are two
common methods. The first (Figure 1-2a) is simply a
reverse of the binary-to-decimal method. For example.
to convert the decimal number 21 (sometimes written
as 21 ,) to binary, first subtract the largest power of 2
that will fit in the number. For 21, 0 the largest power of
2 that will fit Is 16 or 2. Subtracting 16 from 21 gives
a remainder of 5. Put a 1 in the 2 digit position and
see if the next lower power of 2 will fit in the remainder.
Since 2' is8 and 8 wIll not fit in the remainder of 5. put
a 0 in the 2' digit position. Then try the next lower
power of 2. In this case the next is 22 or 4. which will
fit in the remainder of 5. A I is therefore put in the 22
digit position. When 22 or 4 is subtracted from the old
remainder of 5, a new remainder of I is left. Since 2' or
2 will not fit into this remainder, a 0 is put In that
position. A 1 is put in the 2° position because 2° is equal
to I and this fits exactly into the remainder of 1. The
result shows that 21, 0 is equal to 10101 in binary. This
conversion process is somewhat messy to describe but
easy to do. Iry converting 46, to binary. You should get
101110.

Another method of converting a decimal number to
binary is shown In Figure 1-2b. Divide the decimal
number by 2 and write the quotient and remainder as
shown. Divide this quotient and following quotients by
2 until the quotient reaches 0. The column of remainders
will be the binary equivalent of the given decimal num-
ber. Note that the MSD is on the bottom of the column
and the LSD Is on the lop of the column ii you perform
the divisions in order from the top to the bottom of the
page. You can demonstrate that the binary number is
correct by reconverting from binary to decimal, as shown
in the right-hand side of Figure I -2b.

You can convert decimal numbers less than I to binarj
by successive multiplication by 2. recording carries until
the quantity to the right of the decimal point becomes
zero, as shown in Figure 1-2c. The carries represent the
binary equivalent of the decimal number, with the most
sign(ficant bit at the top of the column. Decimal 0.625
equals 0.101 in binary. For decimal values that do not
convert exactly the way this one did (the quantity to the

2	 CHAPTER ONE

right of the decimal never becomes zero), you can
continue the conversion process untii you get the num-
ber of binary digits desired.

At this point it Is interesting to compare the number
of digits required to express numbers in decimal with
the number required to express them in binary. In

2 2 2 22 2 1 2
32168 4 2 1

2110 = 0 1	 0 1	 0	 12

(a)

227, =	 •,.,•,,

Least Significant
Binary Digit

1.

2)7 ",,113
	

Ri	 >(1	 1

2i56
	

Al	 x 2	 2

21i28
	

HO x 4	 0

2)"< ,_ 14	 x 8	 0

2fli	 7
	

HO x 16 = 0

2[Y	 3
	

Al	 x 32	 32

2[-i
	

Al	 x 64 = 64

2f	 0
	

Al	 x128

1	 227 Check
Most Significant
Binary Digit

Check

1 x 5

0 x .25

1	 x	 .125

.625
LSB

(Cl

FIGURE 1-2 Converting decimal to binary. (a) Digit
value method. (b) Divide by 2 method. (c) Decimal
fraction Conversion.

:. 227,, = 111000)1,

MSB

2 x 625 = 125

2 x 25 = 050

2 x 50 = 100

decimal, one digit can represent 101 numbers, 0 through
9; two digits can represent 102 or 100 numbers. 0
through 99;and three digits can represent l0 or 1000
numbers. 0 through 999. In blnazy. a similar pattern
exists. One binary digit can represent 2.numbers. 0 and
1; two binary digits can represent 22 or 4 numbers. 0
through 11; and three binary digits can represent 2 or
8 numbers. 0 through 111. The pattern, then, Is that N
decimal digits can represent 10' numbers and N binary
digits can represent 2 numbers. Eight binary digits
can represent 28 or 256 numbers. 0 through 255 in
decimal.

Hexadecimal

Binary is not a very compact code. This means that it
requires mny more digits to express a number than
does, for example. decimal. Twelve binary digits can only
describe a number up to 4O95,. Computers require
binary data, but people working with computers have
trouble remembering long binary words. One solution
to the problem is to use the hexadeclm& or base-16
number system.

Figure 1-3a shows the digit values for hexadecimal.
which Is often Just called hex. Since hex is base 16, you
have to have 16 possible symbols, one for each digit.
The table of Figure 1-3b shows the symbols for hex code.

16' 162 16' 160. 16' 16_2 16'

4096256 16 1 Ti	 258	 5i1

(a)

D.c His D.c His

After the decIma symbols 0 through 9 are used up. you
use the letters A through F for values 10 through 15.

As mentioned above, each hex digit Is equal to four
binary dIgits. To convert the binary number 11010110
to hex, mark off the binary bits in groups of 4. movIng
to the left from the binary point. Then write the hex
symbol for the value of each group of 4.

Binary 1101 0110
Hex	 D	 6

The 0110 gioup is equal to 6 and the 1101 group Is
equal to 13. SInce 13 is I) in hex. 11010110 binary Is
equal to 1)6 in hex. "H' Is usually used after a number
to Indicate that it isa hexadecimal number. For example,
1)6 hex is usually written D6H. As you can see. 8 bIts
can be represented with only 2 hex digits.

If you want to convert a number from decimal to
hexadecimal, Figure 1 -3c shows a familiar trick for doing
this. The result shows that 227 is equal to E3H. As
you can see, hex Is an even more compact code than
decimal. Two hexadecimal digits can represent a decimal
number up to 255. Four hex digIts can represent a
decimal number up to 65.535.

To illustrate how hexadecimal numbers are used in
digital logic, a service manual tells you that the 8-bit-
wide data bus of an 8088A microprocessor should
contain 3FH during a certain operation. Converting 3FF!
to binary gives the pattern of l's and 0's (0011 1111)
you would expect to find with your oscilloscope or logic
analyzer on the parallel lines. The 3FH is simply a
shorthand which is easier to remember and less prone
to errors than the binary equivalent.

BCD Codes
8=8

9=9

10 = A

11 = B

12 = C

13	 D

14 = E

15 = F

LSD

R3 x 1 = 3

RE x16 =224
MSD	 227

STANDARD BCD

In applications such as frequency counters. digital volt-
meters. or calculators, where the output Is a decimal
display, a binary-coded decimal or BCD code is often
used. BCD uses a 4-bit binary code to Individually
represent each decimal digit in a number. As you can
see in Table 1-1, p. 4. the shIplest BCD code uses the
fIrst 10 numbers of standard binary code for the BCD
numbers 0 through 9. The hex codes A through F are
invalid BCD codes. To Convert a decimal number to Its
BCD equivalent. Just represent each decimal digit by its
4blt binary equivalent, as shown here.

DecImal	 5	 2	 9
BCD	 O101 0010 1001

To convert a BCD number to its decimal equivalent.
reverse the process.

0=0

1=1

2=2

3 = 3

4=4
5=5

6=6

7=1

(b)

227 =

14

16r

227, = E3,1

IC)

FIGURE 1-3 Hexadecimal numbers. (a) Value of place
holders. (b) Symbols. (C) Decimal-to-hexadecimal
conversion

GRAY CODE

Gray code is another important binary code: it is often
used for encoding shaft positIon data from machines
such as computer-controlled lathes. This code has the
same possible combinations as standard binary, but as
you can see in the 4-bit example In Table 1-I. they are

- 3	 COMPUTER NUMBER SYSTEMS, CODES, AND DIGITAL DEVICES	 3

TABLE 1-1
COMMON NUMBER CODES

Binary.Coded Decimal	 Reflected I
Decimal	 Binary	 Octal	 Hex I 8421 BCD

7-Segment Display (1 = on)

0	 0000	 0	 0	 0000
1	 000i	 1	 i	 0001
2	 0010	 2	 2	 0010
3	 0011	 3	 3	 0011

4	 0100	 4	 4	 0100
5	 0101	 5	 5	 0101
6	 0110	 6	 6	 0110
7	 0111	 7	 7	 0111

8	 1000	 10	 8	 1000
9	 1001	 11	 9	 1001

10	 1010	 12	 A	 0101 0000
11	 1011	 13	 8	 0001 0001

12	 1100	 14	 C	 0001 0010
13	 1101	 15	 D	 0001 0011
14	 1110	 16	 E	 0001 0100
15	 1111	 17	 F	 0001 0101

00110011	 0000	 1111110	 0
0011 0100	 0001	 011 0000	 1
00110101	 0011	 1101101	 2
00110110	 0010	 1111001 -	 3

0011 0111	 0110	 011 0011	 4
0011 1000	 0111	 1 0 11 011	 5
0011 1001	 0101	 1 0 11111	 6
0011 1010	 0100	 111 0 000	 7

0011 1011	 1100	 1111111	 8
0011 1100	 1101	 111 00 1 1	 9
01000011	 1111	 1111101	 A
01000100	 1110	 0011111	 B

01000101	 1010	 0001101	 C
0100 0110	 1011	 01111 01	 D
01000111	 1001	 1101111	 E
01001000	 1000	 1000111	 F

arranged in a different order. Notice that only one binary
digit changes at a time as you Count U in this code.

if you need to construct a Gray-code table larger than
that in Table 1-1. a handy way to do so is to observe the
pattern of l's and 0's and Just extend it. The least
significant digit column starts with one 0 and then has
alternating groups of two 1 'sand two 0's as you go down
the column. The second most significant digit column
starts with two 0's and then has alternating groups of
four l's and four 0's. The third column starts with four
0's. then has alternating groups of eight l's and eight
0s. By now you should see the pattern. Try to figure out
the Gray code for the decimal number 16. You should
get 11000.

7-Segment Display Code

Figure 1-4a shows the segment Identifiers for a 7-
segment display such as those commonly used in digital
Instruments. Table 1-1 shows the logic levels required
to display 0 to 9 and A to F on a common-cathode LED
display such as that shown in Figure 1 -4b. For a
common-anode LED display such as that in Figure 1 -4c,
simply Invert the segment codes shown in Table I-i.

Alphanumeric Codes

When communicating with or between computers. you
need a binary-based code which can represent letters of
the alphabet as well as numbers. Common codes used
for this have 7 or S bits per word and are referred to as
alphanumeric codes. To detect possible errors in these
codes, art additional bit, called a parity bit. is often
added as the most significant bit.

Parity is a term used to identify whether a data word
has an odd or even number oft's. II a data word contains

an odd number of l's, the word is said to have odd
parity. The binary word 0110111 with five l's has odd
parity. The binary word 0110000 has an even number
of l's (two), so it has euea parity.

In practice the parity bit is used as foUows. The system
that is sending a data word checks the parity of the
word, If the parity of the data word is odd, the system
will set the parity bit to a 1. This makes the parity of
the data word plus parity bit even. if the parity of the
data word is even, the sending system will reset the
parity bit to a 0. This again maks the parity of the data
word plus parity even, The receiving system checks the

o	 b	 C	 d	 e	 I	 g	 DP

IdI•
Op

(a)	 (1,)

FIGURE 1-4 7-segment LED display. (a) Segment labels.
)b) Schematic of common-cathode type. (c) Schematic of
common-anode type.

4	 CHAPTER ONE

parity of the data word plus parity bit that It receives.
If the receiving system detects odd parity in the received
data word plus parity. It assumes an error has occurred
and tells the sending system to send the data again. The
system Is then said to be using even parity. The system
could have been set up to use (maintain) odd parity in
a similar manner.

ASCII

Table 1-2 shows several alphanumeric codes. The first
of these Is ASCII. or American Standard Code for Infor-
mation Interchange. This Is shown In the table as a 7-
bit code, with 7 bIts you can code up to 128 characters.
which is enough for the full upper- and lowercase

TABLE 1-2
COMMON ALPHANUMERIC CODES

ASCII HEX Code EBCDIC HEX Code ASCII HEX Code EBCDIC HEX Code ASCII HEX Code EBCDIC HEX Code
Symbol for 7'BLt Symbol	 for	 Symbol for 7-Bit Symbol 	 for	 Symbol for 7•Btt Symbol	 for

ASC1I	 EBCDIC	 ASCII	 EBCDIC	 -__ASCII	 EBCDIC

NUL
SOB
STX
ETX
EOT
ENQ
ACK
BEL

BS
Err
LF
yr
F?
CR
So
SI

OLE
DCI
DC2
DC3
DC4
NAK
SYN
ETS
CAN

EM
SUB
ESC

F'S
OS
RS

US
sP

S

&

00
0%
02
03
04
05
06
07
08
09
OA
OB
OC
00
OE
OF
10
ii
l2
13
14
15
16
17
18
19
IA
lB
IC
10
IE
IF'
20
21
22
23
24
25
26
27
28
29

NUL
SOH
.STx
rrx
EOT
ENQ
ACK
BEt

BS

yr
F?
CR
So
Si

DLE
DCI
DC2
DC3
DC4
NAK
Sm
EOB
CAN

EM
SUB
BY?
FLS
OS

RDS
US

4'
S

&

00
01
02
03
37
2D
2E
2F
16
05
25
08
OC
00
OE
OF
10
ii
12
13
35
30
32
26
18
19
3F
24
IC
ID
IE
IF
40
5A
7F
7B
58
6C
50
7D
40
50

+

I

0

2
3
4
5
6
7
8
9

A
B
C
0
E
F
0
H

K
L
M
N
0
P
Q
R
S

2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
38
3C
3D
SE
SF
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
SI
52
53

+

0
I
2
3
4
5
6
7
8
9

A
B
C
1)
E
F
G
H

J
K
L
M
N
0
P
Q
R
S

Sc
4E
68
60
48
61
FO
Fl
F2
F3
F4
F'S
F6
F7
F8
F9
7A
SE
4C
7E
6E
6F
7C
CI
C2
C3
C4
C5
C6
C7
C8
C9
Dl
02
03
04
D5
06
07
08
D9
E2

T
U
V
w
x
Y
z

a
b
C

ci
e
I
g
h

k

m
n
0

p
q
r
S

U

V

w

x

V

z

DEL

54
55
56
57
58
59
5A
5B
SC
5')
SE
5?
60
61
62
63
64
65
66
67
68
69
6A
613
6C
60
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
70
7E
7F

T
U
V
w
x
Y
z

Nt

RES
a
b
C

d
C

f
g
h

k

m
n
0

p
q
r
S

U

V

w
x
y
z

DEL

E3
E4
E5
E6
El
E8
E9
AD
15

DU
5?
6D
14
81
82
83
84
85
86
87
88
89
91
92
93
94
95
96
97
98
99
A2
A3
A4
AS
A6
A7
A8
A9
88
4F
98
4A
07

COMPUTER NUMBER SYSTEMS, CODES. AND DIGITAL DEVICES	 5

TABLE 1-3
DEFINITIONS OF CONTROL CHARACTERS

NULL Null	 DCI Direct control I
SOIl start of heading DC2 Direct control 2
STX	 Start text	 DC3 Direct control 3
ETX End text	 DC4 Direct control 4
EOT End of	 NAK Negative

transmission	 acknowledge
ENQ Enquiry	 SYN Synchronous idle
ACK Acknowledge	 ETB End transmission
BEL BS	 block
BS	 Backspace	 CAN Cancel
lIT	 HorizontaJ tab	 EM End of medium
LF	 Line feed	 SUB Substitute
VT	 Vertical tab	 ESC Escape
FF	 Form feed	 FS	 Form separator
CR	 Carriage return GS	 Group separator
SO	 Shift Out	 RS .Record separator
SI	 Shift in	 US	 Unit separator
DLE Data link escape

alphabet, numbers, punctuation marks, and control
characters. The code is arranged so that if only uppercase
letters, numbers, and a few control characters are
needed, the lower 6 bIts are all that are required. If a
parity check Is wanted, a parity bit is added to the basic
7-bit code in the MSB position. The binary word 1100
0100. for example, is the ASCII code for uppercase D
with odd parity. Table 1-3 gives the meanings of the
control character symbols used in the ASCII code table.

EBCDIC

Another alphanumeric code commonly encountered in
IBM equipment is the Extended Binary-Coded Decimal
Interchange Code or EBCDIC. This is an 8-bit code
without parity. A ninth bit can be added for parity. To
save space In Table 1-2, the eight binary digits of
EBCDIC are represented by their 2-digit hex equivalent.

ARITHMETIC OPERATIONS ON BINARY,
HEX, AND BCD NUMBERS.

Binary Arithmetic

ADDITION

Figure l-5a shows the truth table for addition of two
binary digits and a carry in (C IN) from addition of
previous digits. Figure 1 -5b shows the result of adding
two 8-bit binary numbers together using these rules.
Assuming that C!N - l I + 0 + C15 = a sum ofO and
a carry into the next digit, and 1 + 1 + CIN a sum of
I and a carry into the next digit because the result in
any digit position can only be a I or a 0.

2'S-COMPLEMENT SIGNS-AND-MAGNITUDE
BINARY

When you handwrite a number that represents some
physical quantity such as temperature, you can simply
put a + sign in front of the number to indicate that the

INPUTS - ou1
A	 B c, s c0,
o	 o	 0	 0	 0
o	 0	 I	 1	 0
o	 t	 0	 1	 0
o	 1	 0	 1
I	 0	 0	 I	 0

	 S - AJB®C
CO3, - A B • C,, A®B)

1	 0	 1	 0	 1
1	 1	 0	 0	 1

'i'

10011010
+ 11011100
U oilioiio

Carry

b)

FIGURE 1-5 Binary addition. (a) Truth table for 2 bits
plus carry. (b) Addition of two 8-bit words.

number is positive, or you can write a - sign to indicate
that the number is negative. However, if you want to
store values such as temperatures, which can be positive
or negative, in a computer memory, there is a problem
Since the computer memory can store only l's and 0's,
some way must be established to represent the sign of
the number with a I or a 0.

A common way to represent signed numbers is to
reserve the most significant bit of the data word as a
sign bit and to use the rest of the bits of the data word
to represent the size (magnitude) of the quantity. A
computer that works with 8-bit words will use the MSB
(bit 7) as the sign bit and the lower 7 bits to represent
the magnitude of the numbers. The usual convention
is to represent a positive number with a 0 sign bit and
a negative number with a 1 sign bit.

To make computations with signed numbers easier.
the magnitude of negative numbers is represented in a
special form called 2's complement, The 2's complement
of a binary number is formed by inverting each bit of
the data word and adding Ito the result. Some examples
should help clarify all of this.

The number + 7, is represented in 8-bit sign-and.
magnitude form as 00000111. The sign bit isO, which
indicates a positive number. The magnitude of positive
numbers is represented in straight binary, so 00000111
in the least significant bits represents

To represent in 8-bit 2's-complement sign-
and-magnitude form, start with the 8-bit code for
+ 7. 0000 0111. Invert each bit, including the MSB, to
get 1111 1000. Then add I toget 11111001. This result
is the correct representation of - 7. Figure 1-6 shows
some more e'-.amples of positive and negative numbers
expressed in 8-bit sign-and-magnitude form. For prac-
tice. try generating each of these yourself to see if you
get the same result.

To reverse this procedure and find the magnitude
of a number expressed in sign-and-magnitude form.
proceed as follows. If the number is positive, as indicated

CHAPTER ONE

Sign bit

+7
	

0 0000111

+ 46
	

00101110

+105	 0 1101001

- 12	 1 11l0100)

- 54	 1:1001010	 Sign and
twp's complement

-117	 1 1.0001011	 of magnitude
-46	 11010010 J

FIGURE 1-6 Positive and negative numbers represented
with a sign bit and 2's complement.

by the sign bit being a 0. then the least significant 7
bits represent the magnitude directly in binary. If the
number is negative, as indicated by the sign bit being
a 1, then the magnitude is expressed in 2's complement.
To get the magnitude of this negative number expressed
in standard binary, invert each , bit of the data word.
including the sign bit, and add I to the result. For
example, given the word 11101011. invert each bit to
get000101OO.Thenadd 1 toget00010101.Thlsequals
21 . so you know that the original numbers represent
-21 . Again, try reconverting a few of the numbers in
Figure 1-6 for practice.

Figure 1-7 shows some examples of addition of signed
binary numbers of this type. Sign bits are added together
Just aS the other bits are. Figure 1-7a shows the results
of adding two positive numbers. The sign bit of the
result is zero. sothe result is positive. The second
example, in Figure i-7b, adds a -9 to a + 13 or.. in
effect, subtracts 9 from 13. As indicated by the zero sign
bit, the result of 4 is positive and in true binary form.

Figure 1-7c shows the result of adding a - 13 to a
smaller positive number, + 9. The sign bit of the result
is a 1. This indicates that the result is negative and the
magnitude is in 2's-complement form. To reconvert a
2's complement result to a signed number in true binary
form:

I. Invert each bit to produce the l's complement.

2. Add 1.

3. Put a minus sign in front to indicate that the result
is negative.

The final example, in Figure l-7d, shows the result of
adding two negative numbers. The sign bit of the result
is a 1. so the result is negative and in 2's-complement
form. Again, inverting each bit, adding 1. and prefixing
a minus sign will put the result in a more recognizable
form.

Now lets consider the range of numbers that can be
represented with 8 bits in sign-and-magnitude form.
Eight bits can represent a maximum of 28 or 256
numbers. Since we are representing both positive and
negative numbers, half of this range will be positive and

half negative. Therefore, the range is - 128 to + 127.
Here are the sign-and-magnitude binary representations
for these values:

0 111 jill	 +127

00Of0001	 +1
00000000 zero
1111111.1	 •-I

10000001	 -127
10000000	 -128

If you like number patterns, you might notice that this
scheme shifts the normal codes for 128 to 255 downward
to represent -128 to -.1.

If a computer is storing signed numbers as 16-bit
words, then a much larger range of numbers can be
represented, Since 16 bits gtves 216 or 65,536 possible
values, the range for 16-bit sign-and-magnitude num-
bers is -32,768 to + 3,767. Operations with 16.bit
sign-and-magnitude numbers are done the same way as
operations with 8-bit sign-and-magititude 'numbers.

+13	 00001101
,00001001

+22	 00010110
t—Slgnb4tIsO

so result Is positive
(a)

+13	 00001101
-9	 11110111 2's complement tor--9 with sign bit

+ 4 ..jj00000ioo

I tSignbitisQ
so result is positive

Ignore carry
(b)

+ 9 -. 00001001
-13	 11110011 2's complement for -13 with sign bit

-4	 11111100 Sign bit isi

1	 00000011 So invert each bit
+	 lAddi

equals
Prefix with minus sign-1

- 9	 1111011112's complement,
-13	 11110011 J sign-and-magnitude form

-22	 ll10101OSignbitisl
00010101 So invert each bit

+	 lAddi

equals -00010110 Prefix with minus sign
(d)

FiGURE 1-7 Addition of signed binary numbers, (a) +.9
and +13. (b) -9 and +13, (C) +9 and -13. (-9 and
-13.

COMPUTER NUMBER SYSTEMS, CODES, AND DIGITAL DEVICES 	 7

INPUTS	 OUIPUTS
A	 B B, 0 O
o	 o	 0	 0	 0
o	 a	 1	 1	 1
o	 i	 0	 I	 I
o	 i	 1	 0	 I
1	 0	 0	 1	 0
I	 0	 1	 0	 0
1	 1	 0	 0	 0

• 1	 1	 1	 1	 1

DIFFERENCE A€1BQBh
BORSOW • A B +

(a)

91,0

,0

10101010
—01100100

0)000110

(0)

01011011	 01011011

00101110' \ Invert	 +11010010

Ones comp ¼* 11010001 	 t_frJcate$

each bit	 j"]ooioiio1	 =45.

Add 1	 +	 1	 result positive
and in true

Two's comp	 11010010
Carry	

binary form

(C)

11, 0 01001101

_____ ________ Complement ,'

—11,0

—88,	 01011000	

s

Two's comp	 10101000

Carry

01001101

+ 10101000
ComPlement,

11110101

Add one
•	 Indicates

result negative
and in two's
complement form

00001010

1011	 = —11,0

(d)

FIGURE 1-8 Binary subtraction. (a) Truth table for 2 bits and borrow. (b) Pencil

method. (C) 2's-complement positive result. (2's-complement negative result.

SUBTRACTION

There are two common methods for doing binary sub-
traction. These are the pencil method and the 2's-
complement add method. Figure 1-8a shows the truth
table for binary subtraction of two binary digits A and
B. Also included in the truth table is the effect of a
borrow-in, B, from subtracting previous digits. Figure
1-Sb shows an example of the "pencii' method of sub-
tracting two. 8-bit numbers. Using the truth table, this
method is done the same way that you do decimal
subtraction.

•A second method of performing binary subtraction is
by adding the 2's-complement representation of the
bottom number (subtrahend) to the top number (minu-
end). Figure 1-8c shows how'this is done. FirstTepresent
the top number in sign-and-magnitude form. Then form
the 2s-complement sign-and-magnitude representation
for the negative of the bottom number. Finally, add the
two parts formed. For the example in Figure 1 -Sc. the
sign of the result is a 0. which indicates that the result
is positive and in true form. The final carry produced by
the addition can be ignored. Figure 1 -Sd shows another
example of this method of subtraction. in this case the
bottom number is larger than the top number. Again.
represent the top number in sign-and-magnitude form,
produce the 2's . complement sign-and-magnitude form
for the negative o. the bottom number, and add the two
together. The sign bit of the result Is a I for this
example. This indicates that the result is negative and its
magnitude is represented in 2's-complement form. To

CHAPTER ONt

get the result into a form that is more recognizable to
you, invert each bit of the result, add l'to it, and put a
minus sign, in front of it as shown in Figure 1-Sd.

Problems that may occur when doing signed addition
or subtraction are oueflow and urtde(flow. If the rnagni-
tude of the number produced by adding two signed
numbers is larger than the number of bits available to
represent the magnitude, the result will"overflow" Into
the sign bit position and give an incorrect result. For
example, if the signed positive number 01001001 is
added to the signed positive number 01101101. the
result is 10110110. The I in the MSB of this result
indicates that it is negative which is obviously incorrect
for the sum of two positive numbers. In a similar
manner, doing an 8-bit signed subtraction that produces
a magnitude greater than - 128 will cause an "under-
flow" into the sign bit and produce an incorrect result.

For simplicity the examples shown use 8 bits, but the
method works for any tumber of bits. This method may
seem awkward, but it l easy to do in a computer or
microprocessor because It requires only the simple
operations of inverting and adding.

MULTIPLICATION

There are several methods of doing binary multiplica-
tion. FIgure 1-9 shows what is called the pencil method
because it is the same way you learned to multiply
decimal numbers. The top number, or multiplicand. is
multiplied by the least significant digit of the bottom
number, or multiplier. The partial product is written

	

11	 1011	 MULTIPLICANO

	

X.9	 X 1001	 MULTIPLIER

10111
0000 L, PARTIAL PRODUCTS

0000
loll

	

1100011	 PRODUCT

FIGURE 1-9 Binary multiplication.

down. The top number is then multiplied by the next
digit of the multiplier. The resultant partial product is
written down under the last, but shifted one place to
the left. Adding all the partial products gives the total
product. This method works well when doing multiplica-
tion by hand, but it is. not practical for a computer
because the type of shifts required makes it awkward to
implement.

One of the multiplication methods used by computers
is repeated addition. To multiply 7 x 55, for example,
the computer can just add up seven 55's. For large
numbers, however, this method is slow. To multiply
786 x 253. for example, requires 252 add operations.

Most computers use an add-and-shift-right method.
This method takes advantage of the fact that for binary-
multiplication, the partial product can only be either
the top number exactly if the multiplier digit is a 1 or a
o ir the multiplier digit is a 0. The method does the
same thing as the pencil method, except that the partial
products are added as they are produced and the sum
of the partial products is shifted right rather than each
partial product being shifted left.

A point to note about multiplying numbers is the
number of bits the product requires. For example.
multiplying two 4-bit numbers can give a product with
as many asS bits, and two 8-bit numbers can give a 16-
bit product.

DIVISION
Binary division can also be performed in several ways.
Figure 1-10 shows two examples of the pencil method.
This is the same process as decimal long division.
However, it is much simpler than decimal long division

01100 QUOTIENT

DIVISOR 110) 1001000 DIVIDEND 	 12
-110

110
-110

0

	

110.01	 6,25

	

ioo)iooi.00	 41
-100

100
-100

0100

because the digits of the result (quotient) can only be 0
or 1. A division is attempted on part of the dividend. If
this is not possible because the divisor Is larger than
that part of the dividend, a 0 is entered In the quotient.
Aiother attempt is then made to divide using one more
digit of the dividend. When a division is possible, a 1 is
entered in the quotient. The divisor is then subtracted
from the portion of the dividend used. As with standard
long division, the process Is continued until all the
dividend is used. As shown in Figure 1-lOb, 0's can be
added to the right of the binary point and division
continued to convert a remainder to a binary equivalent.

Another method of division that is easier for com-
puters and microprocessors to perform uses successive
subtractions. The divisor is subtracted from the divi-
dend and from each successive remainder until a borrow
is produced. The desired quotient is 1 less than the
number of subttactions needed to produce a borrow.
This method is simple, but for large numbers it is slow.

For faster division of large numbers, computers use a
subtract-and-shift-left method that is essentially the
same process you go through with a pencil long division,

Hexadecimal Addition and Subtraction

People working with computers or microprocessors often
use hexadecimal as a shorthand way of representing
long binary numbers such as memory addresses. It
is therefore useful to be able to add and subtract
hexadecimal numbers.

ADDITION
As shown in Figure 1-1 la. one way to add two hexadeci-
mal numbers is to-convert each hexadectmai number to
its binary equivalent, add the two binary numbers, and
convert the binary result back to fts hex equivalent. For
converting to binary, remember that each hex digit

	

represents 4 binary digits.	 .
A second method, shown in Figure 1-lib. works

directly with the hex numbers. When adding hex digits,
a carry is produc ed whenever the sum is 16 decimal or
greater. Another way of saying this is that . the value of
a carry in hex is 16 decimal. For the least significant
digits in Figure l-llb, anA in hex is 10 in decimal and
an F is 15 in decimal. These add to give 25 decimal.
This is greater than' 16, so mentally subtract 16 from
the 25 to give a carry and a remainder of 9. The 9 is
written down and the carry is 'added to the next digit
column. In this column 7 pius 3 plus a carry gives a
decimal 11. orB in hex. 	 -

Carry
1

7A	 0111 1010	 I A,,
+3F	 ^0011 1111	 + 3	 F,,

89	 1011	 1001	 11,0	 25,

	

8,,	 9,,
lb I
	 IbI

FIGURE 1-10 Binary division;
	 FIGURE 1-11 Hexadecimal addition.

COMPUTER NUMBER SYSTEMS, CODES. AND DIGITAL DEVICES

17, 1	 =	 119,

- 3B, 1	- 59,

3C, 1	60,

FIGURE 1-12 Hexadecimal subtraction.

You may use whichever method seems easier to you
and gives you consistently right answers. If you are
doing a great deal of hexadecimal arithmetic. you might
buy an electronic' calculator specifIcally designed to do
decimal, binary, and hexadecimal arithmetic.

SUBTRACTION

Hexadecimal subtraction is similar tç decimal subti-ac-
tion except that when a boo-row s needed, 16 is borrowed
from the next most significant digit, Figure 1-12 shows
an example of this. It may help you to follow the example
if you do partial conversions to decimal in your head.
For example, 7 plus a borrowed 16 is 23. Subtracting B
or 11 leaves 12 or C in hexadecimal, Then 3 from the 6
left after a borrow leaves 3, so the result is 3CH.

BCD Addition and Subtraction

In systems where the final result of a calculation is to
be displayed, such as a , calculator, it may be easier to
work with numbers in a BCD format. These codes, as
shown In Table 1-1, represent each decimal digit. 0
through 9. by its 4-bit binary equivalent.

ADDITION

BCD can have no digit-word with a value greater than
1 herèfore. a carry must be generated if the result of

a CD addition is greater than 1001 or 9. FIgure 1-13

8CD
35-	 00110101

*0010 0011

58	 0101 1000

i.I

sco
7	 0111

*5	 *0101

12	 1100	 INCORRECTBCD
*0110 ADD6

0001 0010 CORAECTBCD12

O)

aco
9	 1o0l

+8	 *1000

17	 0001 0001	 INCORRECT8CQ
0000 OflO ADD6

0001 0111 CORRECTBCD17

(C)

FIGURE 1-13 BCD addition. (a) No correction needed,
(b) Correction needed because of illegal BCD result. (C)

Correction needed because of carry-out of BCO digit.

07	 0001 0111
- 9 ,	 0000 1001

8	 0000 1110 ILLEGALBCD
-0110 SUBTRACT6

0000 1000 CORRECT BCO

FIGURE 1-14 BCD subtraction.

shows three examples of BCD addition, The flist. In
Figure l-13a. is very straightforward because the sum
for each BCD digit is less than 9. The result Is the same
as it would be for adding standard binary.

For the second example, in Figure 1-I 3b. adding BCD
7 to BCD 5 produces 1100. This is a correct binary
result of 12, but it Is an illegal BCD code. To convert the
result to BCD format, a correction factor of 6 is added,
The result of adding 6 is 0001 0010, which is the legal
BCD code for 12.

Figure l-13c shows another case where a correction
factor must be added. The initial addition of 9 and 8
produces 0001 0001. Even though the lower four digits
are less than 9, this is an incorrect BCD result because
a carry out of bit 3. of the BCD digit-word was produced.
This carry Out of bit 3 is often called an auxiliary carry.
Adding the correction factor of 6 gives the correct BCD
result oI000l 0111 or 17.

To summarize, a correction factor of 6 must be added
if the result in the lower 4 bits is greater than 9 or if
the initial addition produces a carry out of bit 3 of any
UCD digit-word. This correction is sometimes called a
decimal adjust operation.

The reason for the correction factor of 6 is that in
BCD we want a carry into the next digit after 1001 Or
9, but in binary a carry Out of the lower 4 bits does not
occur until after Ill I or 15. The difference between the
two early points is ô. so you have to add 6 to pi-oduc.
the desired carry if the re' ult of an addition n any BCJ1
digit Is more than 1001.

SUBTRACTION

Figure 1-14 shows a subtraction. BCD 17(0001 0111)
minus BCD 9(0000 100!), The initial result, 0000 1110,
is not a legal BCD number. Whenever this occurs in
BCD subtraction. 6 must be subtracted from the initial
result to produce the correct BCD result. For the example
shown In Figure 1-14. subtracting 6 gives a correct BCD
result of 0000 1000 or 8.

The correction factor of 6 must be subtracted from
any BCU digit .word if that digit-word is greater than
100!, or if a borrow from the next higher digit was
required to do the subtraction.

BASIC DICITA DEVICES

Microcomputers such as those we discuss throughout
this book often contain basic logic gates as "glue"
between LSI (large-scale integrationl devices. For trou-
bleshooting these systems, it is important to be able to
predict logic levels at any point directly from the sche'
matic rather than having to work your way through a

10	 Cl-f frPTER ONE

X"A'B

TDx :Dox

-

(b)

X.A*B

Y.AB

IDov -

A B X V

0001

0101

1001

1	 1	 1	 0

A B XV

0001

0110

1	 01	 0

1	 1	 1	 0

truth table for each gate. This section should help
refresh your memory of basic logic functions and help
you remember how to quIckly analyze logic gate circuits.

Inverting and Noninverting Buffers

Figure 1-15 shows the schematic symbols and truth
tables for simple buffers and logic gates. The first thing
to remember about these symbols is that the shape of
the symbol Indicates the logic function performed by
the device. The second thing to remember about these
symbols is that a bubble or no bubble Indicates the
assertion level for an input or output signal. Let's review
how modern logic designers use these symbols.

The first symbol for a buffer in Figure 1-ISa has no
bubbles on the input or output. Therefore, the input is
active high and the output Is active high. We read this
symbol as follows: If the input A is asserted high, then
the output Y will be asserted high. The rest of the truth
table is covered by the assumption that if the A Input is
not asserted high. then theYoutput will not be asserted
high.

The next two symbols for a buffer each contain a
bubble. The bubble on the output of the first of these

A ___f)r_. X	
A '—>°'---

v	 A XV

001

1	 1	 0

A—V

()

A B X V

XA'+A'8	 y.A-*A•8	 0	 0 0	 1

:ID__x
Ao_y	 0 1 1 0

Cd)

FIGURE 1-15 Buffers and logic gates. (a) Buffers. (b)
AND-NAND. (C) OR-NOR, (d) Exclusive OR.

indicates that the output is active low. The input has
no bubble, so it is active high. You can read the function
of the device directly from the schematic symbol as
follows. If the A input is asserted high, then the Y output
will be asserted low. This device simply changes the
assertion level of a signal. The output Y will always have
a logic state which is the complement or inverse of that
on the input, so the device is usually referred to as an
tnverter.

The second schematic symbol for an Inverter in Figure
II 5a has the bubble on the Input. We draw the symbol
this way when we want to indicate that we are using
the device to change an asserted-low signal to an assert.
ed-high signal. For example, if we pass the signal CS
through this device, it becomes CS. The symbol tells you
directly that if the input is asserted low, then the output
will be asserted high. Now let's review how you express
the functions of logic gates using this approach.

Logic Gates
Figure 1-1 5b shows the symbols and truth tables for
simple logic gates. A symbol with a flat back and a round
front indicates that the device performs the logical AND
function, This means that the output will be asserted if
the A input is asserted and the B Input is asserted.
Again, bubbles or no bubbles are used to indicate the
assertion level of each input and output. The first AND
symbol in Figure 1-l5b has no bubbles. so the inputs
and the output are active high. The output then will be
asserted high if the A input is asserted high arid the B
Input is asserted high. The bubble on the output of the
second AND symbol in Figure 1-15b indicates that this
device, commonly called a NAND gate. has an active low
output. If the A input is asserted high and the B input
is asserted high, then theY output will be asserted low.
Look at the truth table in Figure 1-15b to see if you
agree with this.

Figure l-15c shows the other two possible cases for
the AND symbol. The first of these has bubbles on the
inputs and on the output. If you see this symbol in a
schematic, you should immediately see that the output
will be asserted low if the A input is asserted low and
the B input is asserted low. The second AND symbol in
Figure 1-1 5c has no bubble on the output, so the output
will be asserted high if the A and B inputs are both
asserted low.

A logic symbol with a curved back indicates that the
output of the device will be asserted if the A input is
asserted or the B input of the device is asserted. Again,
bubbles or no bubbles are used to Indicate the assertion
level for inputs and outputs. Note in Figure l-15b and
c that each of the AND symbol forms has an equivalent
OR symbol form. An AND symbol with active high Inputs
and an active high output, for example, represents the
same device (a 74LSC)8 perhaps) as an OR symbol with
active low inputs and an active low output. Use the truth
table in Figure l-15b to convince yourself of this. The
bubbled-OR representation tells you that If one input is
asserted low, the output will be low, regardless of the
state of the other input. As we will show later in this
chapter, this Is often a useful way to think of the
operation of an AND gate.

4	 COMPUTER NUMBER SYSTEMS. CODES. AND DIGITAL DEVICES	 11

A	 8 PtA

§ FUSIBLE OR	

A
__________ _______________ A

______	 I
AR

FUSIBLE AND

P2 A +

F3 AS

F4 A

A	 B	 PROM

	

''	 PROGRAMMABLE OR

ItI
4! i+ D
fJJ D

HAROWIRED	

AS

Fl AB * AS A®B

	

AND	

F2-+A+ABA,

'F3.A8

F4 A AR A

Ib)

A	 B
	

PAL

HAROWIRED
OR

A

AB

"O'•

A
B

AB
AS

PROGRAMMABLE
AND

Fl A8 + AS A®B

F2=A+B

F3 AR
F4 A

191

FIGURE 1-16 FPLA, PROM, and PAL programmed to
Implement some simple logic functions. (a) FPLA. (b)
PROM. Ic) PAL.

Figure l-15d shows the symbol and truth table for an
exclusive OR gate and for an exclusive NOR gate. The
output of an exclusive OR gate will be high lithe logic
levels on the two inputs are different. The output of an
exclusive NOR gate will be high lithe logic levels on the
two inputs are the same.

You need to be familiar with all these symbols, because
most logfr designers wUl use the symbol that best
describes the function they want a device to perform in
a particular circuit.

Programmable Logic Devices

Instead of using discrete gates, modem microcomputer
systems usually use programmable logic devices such
as PLAs. PROMs, or PALs to Implement the "glue" logic
between LSI devices. To refresh your memory, Figure I-
16 shows the Internal structure of each of these devices.
As you cart see, they all consist of a programmable AND-
OR matrix, so they can easily implement any sum-of-
products logic expression. Each AND gate in these
figures has up to four inputs, but to simplify the drawing
only a single input line is shown. Likewise, the OR gates
have several inputs, but are shown with a single input
line to simptt' the drawing. These devices are pro-
grammed by blowing out fuses, which are represented
in the figure by Xs. An X in the figure indicates that the
fuse Is intact and makes a connection between, for
example, the output of an AND gate and one of the
inputs of an OR gate. A dot at the intersection of two
wires indicates a hard-wired connection implemented
during manufacture,

In aprograrnmable logic array (PM) orfield program-
mable logic array (FPLA), both the AND matrix and the
OR matrix are programmable by leaving In fuses or
blowing them Out, The two programmable matrixes
make FPLAs very flexible, but dlfficut to program.

In a programmable read-only memory or PROM.
the AND matrix is fixed and just the OR matrix Is
programmable by leaving in fuses or blowing them out.
PROMs implement all the possible product terms for the
input variables, so they are useful as code converters.

In a programmable array logic device or PAL, the
connections in the OR matrix are fixed and the AND
matrix connections are programmable. PALs are often
used to implement combinational logic and address
decoders in microcomputer systems.

A computer program is usually used to develop the
fuse map for an FPLA. PROM, or PAL. Once developed.
the fuse-map file is downloaded to a programmer which
blows fuses or Stores charges to actually program the
device.

Latches, Flip-Flops, Registers, and Counters

THE D LATCH
A latch is a digital device that stores a I or a 0 on its
output. Figure l-)7a shows the schematic symbol and
truth table for aD latch. The device functions as follows.
If the enable input CK is low, the logic level present on
the D input will have no effect on the Q and Q outputs.

12	 CHAPTER ONE

'fl
Fo cK o

CK	
IX 0 0
1	 1 0 H

Ô	 1	 1	 ol

(a)

b	 Ii	 LA	 LI'.	 U	 U
1	 1	 I	 t	 1	 0

1	 1	 0	 t	 0

I	 1	 X	 0	 QI °I'
1	 1	 X	 1	 0	 Q

0	 X X	 1 0

	

i Ox x	 0 1

00 XX

(b)

FIGURE 1-17 Latches and flip-flops. (a> D latch. (b) ID
flip-flop.

This is indicated in the truth table by an X in the D
column. if the enable input is high. a high or a low on
the D input will be passed to the Q output. In other
words, the 9 output will follow the D input as long as
the enable input is high. The 9 output will contain the
complement of the logic state on 9. When the enable
input is made low again, the state on 9 at that tIme will
be latched there. Any changes on D will have no effect
on 9 until the enable input is maae high again. When
the enable input goes low, then, the state present on D
just before the enable goes low will be stored on the 9
output. Keep this operation In mind as you read about
the D flip-flop in the next section.

THE D FLIP-FLOP

Figure l-17b shows the schematic symbol and the truth
table for a typical D flip-flop. The small triangle next to
the CK input of this device tells you that the 9 and 9
outputs are updated when a rising signal edge is applied
to the CK input. The up arrows In the clock column of
the truth table also Indicate that a 1 or 0 on the ID input
will be copied to the 9 output when the clock input goes
from low to high. In other words, the D flip-flop takes a
snapshot of whatever state is on the D input when the
clock goes high, and displays the 'photo' on the 9
output. If the clock input (slow, a change on ID will have
no eflect on the output. Likewise, if the clock input is
high. a change on D will have no effect on the 9 output.
Contrast this operation with that of the D latch to make
sure you understand the difference between the two
dcv Ices.

The U flip-flop in Figure l-17b also has direct set (S)
and reset (RI inputs. A flip-flop is considered set (fits 9
output is a I It is reset if its 9 output is a 0. The
bubbles on the set and reset inputs tell you that these
inputs are active low. The truth table [or the ID flip-flop
in Figure 1-1 7b indicates that the set and reset inputs
are asynchronous. This means that if the set input is
asserted low, the output will be set, regardless of the

states on the ID and the clock inputs. Likewise, if the
reset input is asserted low, the 9 output will be reset.
regardless of the state of the D and clock inputs. The Xs
in the ID and CK columns of the truth table remind you
that these inputs are "don't cares" if set or reset is
asserted. The condition indicated by the asterisks () is
a nonstable conditton that is. it will not persist when
reset or clear inputs return to their inactive (high) level,

REGISTERS

Flip-flops can be used individually or in groups to store
binary data. A register is a group of 1) flip-flops connected
in parallel, as shown in Figure l-18a. A binary word
applied to the data inputs of this register will be trans-
ferred to the 9 outputs when the clock input is made
high. The binary word will remain stored on the 9
outputs until a new binary word is applied to the ID
inputs and a low-to-high signal is applied to the clock
input. Other circuitry can read the stored binary word
from the 9 outputs at any time without changing its
value.

If the 9 output of each flip-flop in the register is
connected to the ID input of the next as shown in Figure
I-18b. then the register will function as a sh(ft register.
A 1 applied to the first ID input will be shifted to the first

9 output by a clock pulse. The next clock pulse will
shift this I to the output of the second flip-flop. Each
additional clock pulse will shift the 1 to the next flip-
flop in the register. Some shift. registers allow you to
load a binary word into the register and shift the loaded
word left or right when the register is clocked. As we
will show later, the ability to shift binary numbers is
very useful.

COUNTERS

Flip-flops can also be connected to make devices whose
outputs step through a binary or other Count sequence

ri'
CK	 CK	 CI<

CK> I
Ia)

DATA
OUT

CLEA

C LOC
(b)

FIGURE 1-18 Registers. (a) Simple data storage. (b) Shift
register.

DAT,
IN

COMPUTER NUMBER SYSTEMS, CODES, AND DIGITAL DEVICES 	 13

This carry pulse can be used as the clock input for
another counter. Counters can be cascaded to produce
as large a count sequence as is needed for a particular
application. The maximum count for a binary counter
is 2 - 1, where N is the number of flip-flops.

Now. suppose that we want the counter to start
counting from some numbe other than 0000. We can
do this by applying the desired number to the four data
inputs and asserting the load input. For example, if we
apply a binary 6, 0110, to the data inputs and assert
the load input, this value will be transferred to the Q
outputs. After the load signal is unasserted. the next
clock signal will increment the Q outputs to 0111 or 7.

ROMs, RAMs, and Buses

The next topics we need to review are the devices that
Store large numbers of binary words and how several of
these devices can be connected on common data lines.

03 02 01 00

0000

000	 I

00	 ¶	 0
CLOCK

00	 1	 I
00
	

00	 o i 00
Dl
	

01
	

01	 01

02
	

Q2
	 0	 1	 1	 0

0	 l	 l•	 1
03
	

03
1	 000

LOAD	 1 00 1

RESET
	

1	 01	 0

	

CARRY
	 1	 0	 1	 1

1	 1	 00

1	 I	 0	 1

1	 1	 1	 0

1	 1	 1	 1

(bi

FIGURE 1-19 Four-bit, presettable binary counter. (a)
Schematic symbol. (b) Count sequence.

when they are clocked. Figure l-19a shows a schematic
symbol and count sequence for a presettable 4-bit binary
Counter. The main point we want to review here is how
a presettable counter functions, so there is no need to
go into the Internal circuitry of the device. If the reset
input is asserted, the Q outputs will all be made 0's.
After the reset signal is unasserted, each clock pulse will
cause the binary count on the outputs to be Incremented
by 1. As shown In Figure l-19b, the Count sequence will
go from 0000 to 1111. If the outputs are at 1111, then
the next clock pulse will cause the outputs to "roll over"
to 0000 and a carry pulse to be sent out the carry output.

ROMS

The term ROM stands for read-only memory. There are
several types of ROM that can be written to. read, erased.
and written to with new data, but the main feature of
ROMs is that they are nonvolatile. This means that the
information stored in them is not lost when the power
is removed from them.

Figure 1-20a shows the schematic symbol of a com-
mon ROM. As indicated by the eight data outputs. DO
to D7, this ROM stores 8-bit data words. The data
outputs are three-state outputs. This means that each
output can be at a logic low state, a logic high state, or
a high-impedance floating state. In the high-Impedance
state an output is essentialiLdisconnected from any-
thing connected to It. If the CE input of the ROM is not
asserted, then all the outputs will be in the high.

ADDRESS	 DATA
INPUTS	 OUTPUTS

AD	 DO

Al	 Dl
AD DRA2	 02	 BUS

A3	 03

A4	 04

AS	 05

A6	 D6

A7	 07

AS	 -
ROM	 CE,

A9

AiD

All

Al2	 cT

A13

A14	 DATA
BUS

IbI

FIGURE 1-20 ROMs. (a) Schematic symbol. (b) Connection in parallel.

14	 CHAPTER ONE

At the beginning of this section we mentioned that
me ROMs can be erased and rewritten or repro-

grammed with new data. Here's a summary of the
different types of ROMs.

Mask-programmed ROM—.Programmed during manufac-
ture; cannot be altered.

PROM—User programs by blowing fuses; cannot be
altered except to blow additional fuses.

EPROM—Electrically programmable by user; erased by
shining ultraviolet light on quartz window in package.

EEPROM—Electrically programmable by user; erased
with electrical signals. so it can be reprogrammed in
circuit.

Flash EPROM—Electrically programmable by user; erased
electrically, so it can be reprogrammed In circuit.

so

Impedance state. Most ROMs also switch to a lower-
power-consumption standby mode lICE is not asserted.
If the CE Input Is asserted, the device will be powered
up. and the output buffers will be enabled. Therefore.
the outputs will be at a normal logic low or logic high
state. If you don't happen to remember, you will soon
see why this is important.

You can think of the binary words stored in the ROM
as being In a long, numbered list. The number that
identifies the location of each stored word in the list is
called its address. You can tell the number of binary
words stored in the ROM by the number of address
inputs. The number of words is equal to 2. where N is
the number of address lines. The device in Figure 1-20a
has 15 address lines, A0 to A14. so the number of words
Is 2' or 32.768. In a data sheet this device would be
referred to hs a 32K x 8 ROM. This means it has 32K
addresses with 8 bIts per address.

In order to get a particular word onto the outputs of
the ROM, you have to do two things. You have to apply
the address of that word to the address Inputs. A0 to
Al4, and you have to assert the CE input to power up
the device and to enable the three-state outputs.

Now, let's see why we want three-state outputs on this
ROM. Suppose that we want to Store more than 32K
data words. We can do this by connecting two or more
ROMs in parallel, as shown in Figure 1-20b. The address
lines connect to each device in parallel, so we can address
one of the 32,768 words in each. A set of parallel lines
used to send addresses or data to several devices in this
way is called a bus. The data outputs of the ROMs are
likewise connected in parallel so that any one of the
ROMs can output data on the common data bus. If
these ROMs had standard two-state outputs, a serious
problem would occur when both ROMs tried to output
data words on the bus, The resulting argument between
data outputs would probably destroy some of the outputs
and give meaningless information on the data bus. Since
the ROMs have three-state outputs. however, we can
use external circuitry to make sure that only one ROM
at a time has its outputs enabled. The very important
principle here is that whenever several outputs are
connected on a bus, the outputs should all be three-
state, and only one set of outputs should be enabled at
a time.

STATIC AND DYNAMIC RAMS

The name RAM stands for random-access memortj.but
since ROMs are also random access, the name probably
should be read-wrtte memory. RAMs are also used to
Store binary words. A static RAM is essentially a matrix
of flip-flops. Therefore, we can write a new data word in
a RAM location at any time by applying the word to the
flip-flop data inputs and clocking the flip-flops. The
stored data word will remain on the flip-flop outputs as
long as the power is left on. This type of memory is
volatile because data is lost when the power is turned
off.

Figure 1-21 shows the schematic symbol for a common
RAM. This RAM has 12 address lines, A0 to All. so it
stores 2° (4096) binary words. The eight data tines tell
you that the RAM stores 8-bit words. When we are
reading a word from the RAM. these lines function as
outputs. When we are writing a word to the RAM. these
lines function as inputs. The chip enable input. CE, is
used to enable the device for a read or for a write. The
R/W input will be asserted high if we want to read from
the RAM or asserte' low if we want to write a word to
the RAM. Here's how all these lines work for reading
from and writing to the device.

To write to the RAM. we applhe desired address to
the address inputs, assert the CE input low to turn on
the device, and assert the R/W input low to tell the RAM
we want to write to it. We then apply the data word we
want to store to the data lines of the RAM for a specified
time. To read a word from the RAM. we address the
desired word, assert CE low to turn on the device, and
assert R/W high to tell the RAM we want to read from it.
For a read operation the output buffers on the data lines
will be enabled and the addressed data word will be
present on the outputs.

The static RAMs we have Just reviewed store binary
words in a matrix of flip-flops. In dynamic RAMS
(DRAMs). binary Is and 0's are stored as an electric
charge or no charge on a tiny capacitor. Since these tiny
capacitors take up less space on a chip than a flip-flop

AD	 00
At	 Dl

A2	 02
A3	 03	 DATA
A4	 D4	 OUTPUTS

ADDRESS	 AS	 05
INPUTS	 A6	 D6

A?	 07
AS

A9
AlO
Alt

RIW	 CE

RE A D(WR ITt

CHIP ENABLE

FIGURE 1-21 RAM schematic symbol.

COMPUTER NUMBER SYSTEMS, CODES, AND DIGITAL DEVICES 	 15

74LS181

would, a dynamic RAM chip can ' store many more bits
than the same size static RAJFI chip. The disadvantage
of dynamic RAMs is that the charge leaks off the tiny
capacitors. The logic state stored in each capacitor must
be refreshed evely 2 milliseconds linsl or so. A device
called a dynamic RAM refresh controller can be used to
refresh a large number of dynamic RAMs in a system.
Some newer dynamic RAM devices contain built-in
refresh circuitry, so they appear static to external cir-
cuit!)!.

Arithmetic Logic Units
An arithmetic logic unit, or ALU. is a device that can
AND. OR. add, subtract, and perform a variety of other
operations on binary words. Figure I -22a shows a block
diagram for the 74LS181, which is a 4-bit ALU. This
device can perform any one of 16 logic functions or any
one of 16 arithmetic functions on two 4-bit binary
words. The function performed on the two words ts
determined by the logic level applied to the mode input
M and by the 4-bit binary code applied to the select
inputs SO to S3.

Figure 1-22b shows the truth table for the 74LS181.
In this truth table, A represents the 4-bit binary word
applied to the AO to A3 inputs, and B represents the 4-
bit binary word applied to the BO to B3 inputs. F
represents the 4-bit binary word that will be produced
on the FO to F3 outputs. If the mode input M is high.

the device will perform one of 16 logic functions on the
two words applied to the A and B inputs. For example.
if M is high and we make S3 high, S2 low, SI high, and
SO high, the 4-bit word on the A inputs will be ANDed
with the 4-bit word on the B inputs. The result of this
ANDing will appear on the F outputs. Each bit of the A
word is ANDed with the corresponding bit of the B word
to produce th result on F. Figure 1 -22c shows an
example of ANDing two words with this device. As you
can see in this example, an output bit is high only if the
corresponding bit is high in both the A word and the B
word.

For another example of the operation of the 74LS 181,
suppose that the M input is high, S3 is high, S2 is high,
SI is high, and SO is low. According to the truth table.
the device will now OR each bit in the A word with the
corresponding bit in the B word and give the result on
the corresponding F output, Figure I-22c shows the
result that will be produced by ORing two 4-bit words.
Figure I-22c also shows for your reference the result
that would be produced by exclusive ORing these two 4-
bit words together.

If the M input of the 74LS181 is low, then the device
will perform one of 16 arithmetic functions on the A and
B words, Again, the result of the operation will be put
on the F outputs. Several 74LSl8Is can be cascaded to
operate on words longer than 4 bits. The ripple-carry
input. CN, allows a early from an operation on previous
words to be included in the current operation. If the C5

I	 ACTIVE-HIGH DATA
SELECTION

M H	 M L; ARITHMETIC OPERATIONS
LOGIC_____________________

S3 S2 SI SO	 FUNCTIONS	 C, - H (NO CARRY)	 C, L (WITH CARRY)
L L L L	 F-A	 F-A	 F-APLUS1
L L L H	 F-AT5	 F-A+B	 F=(A.B)PLUS1
L L H L	 F-AS	 F=A+l	 F-)A+hPLUS1
I L H H	 F 0	 F = MINUS 1 (2 COMPL(F = 0
L H L L	 FA8	 F=APLU5A	 E-APLUSAPLUS1
L	 H	 I H	 F-S	 F(A+8(PLUSAB	 F(+B)PLU5A8PLLJS1
L H H L	 F - AGS	 F - A MINUS B MINUS I	 F A MINUS B
L H H H	 FAB	 FABMINUS1	 FAB
H L I I	 F = A+B	 F A PLUS AS	 F - A PLUS AS PLUS 1
H L L H	 F-AeB	 F=APLUSB	 F=APLUSBPLUS1
H	 I,	 H	 L	 F-B	 F=)A+)PLUSAB	 F=IAS)PLUSA8PLUS1
H I H H	 F-AS	 F-ABMINUS1	 F-AS
H H I.	 I	 F1	 F-APLIJSA	 F=APLUSAPLUS1
H H	 L	 H	 FA+B	 F-IA.BIPLIJSA	 F=IA8)PLUSAPLUS1
H H H I.	 FAB	 F=)A+A)PLUSA	 F=IA)PLUSAPLUSI
H H H H	 F-A	 F-AM)NUSI	 F-A

EACH SIT IS SHIFTED TO THE NEXT MORE SIGNIFICANT SIT POSITION

WI

AA3A2AIAO	 A-lOb	 A1010B-8382 8180	 8=0110	
B-Ui 10

F-Fl F2.F1 FO	 F-A5=i 110	 F-A'B=OO 10

(I

FIGURE 1-22 Arithmetic logic unit (ALU). (a) Schematic symbol. (b Truth
table. (c) Sample AND, OR, and XOR operations.

A- I 0 1 0
8 = 0 1 I 0

F = AGB 1 1 00

16	 CHAPTER ONE

input is asserted low, then a carry will be added to the
results of the operation on A and B. For example, if the
M Input Is low. S3 is high, S2 Is low. SI is low. SO is
high. and C N is low, the F outputs will have the sum of
A plus B plus a carly.

The real importance of an ALJJ such as the 74LS181
is that it can be programmed with a binary instruction
applied to its mode and select inputs to perform many
different functions on two binary words applied to its
data inputs. In other words. Instead of having to build
a different circuit to perform each of these functions.
we have one programmable device. We carl perform any
of the operations that we want In a computer with a
sequence of simple operations such as those of the
74LS181. Therefore, an ALU is a very important part
of the microprocessors and microcomputers that we
discuss in te neT' chapter.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms or concepts in
this list, use the Index to find them in the chapter.

Binary, bit, nibble. byte. word, doubleword

LSB. MSB. LSD. MSD

Hexadecimal, standard BCD. Gray code

7-segment display code

Alphanumeric codes: ASCII, EBCDIC

Parity bit, odd parity, even parity

Converting between binary, decimal, hexadecimal. BCD

Arithmetic with binary, hexadecimal. BCD

BCD decimal adjust operation

Signed numbers, sign bit

2's complement sign-and-magnitude form

Signal assertion level

Inverting and noninverting buffers

Symbols and truth tables for AND. NAND. OR, NOR.
XOR logic gates

FPLA. PROM, PAL

D latch, 0 flIp-flop

Register, shift register, binary counter

ROM: address lines, data lines, bus lines, three-state
outputs and enable input

PROM. EPROM. EEPROM. flash EPROM

RAM: static, dynamic

ALU

REVIEW QUESTIONS AND PROBLEMS

1. WrIte the decimal equivalent for each integral power
of 2 from 2° to 220,

2. Convert the following decimal numbers to binary:
a. 22
b. 76
C. 500

3. Convert the following binary numbers to decimal:
a. 1011
b. 11010001
c. ll101iiOO1011OOl

4. Convert to hexadecimal:
a. 53 decimal
b. 756 decimal
C. 01101t000lobinary
ci. 11000010111 binary

5. Convert to decimal:
a. D3H
b. 3FEH
c. 44H

6. Convert the following decimal numbers to BCD:
a. 86
b. 62
c. 33

to find on the seven parallel data lines coming
from the keyboard? What pattern would a carriage
return. CR. give?

8. Define parity and describe how it Is used to detect
an error in transmitted data.

Show addition of:
a. 1001 l and 101 1 in binary
b. 37 and 25 in BCD
C. 4AH and 77H

Express the following decinial numbers in 8-bit
sign-and-magnitude form:
a. +26
b. -7
C. -26
d. -125

II. Show the subtraction, in binary, of the following
decimal numbers using both the pencil method
and the 2's-complement addition method:
a. 7 - 4
b. 37 - 26
C. 125-93

12. Show the multiplication of 1001 and 011 by the
pencil method. Do the same for 11010 and 101.

	

7. The L key is depressed on an ASCII-encoded key- 	 13, Show the division of 1100100 by 1010 using the

	

board, What pattern of l's and Os would you expect 	 pencil method.

COMPUTER NUMBER SYSTEMS, CODES, AND DIGITAL DEViCES 	 17

y

14. Perform the indicated operations on the following
numbers:
a. 3AH + 94H
b. I7AH - 4C1-i
c. 0101 1001 BCD

+ 0100 0010 BCD

d. 0111 1001 BCD
+ 0100 1001 BCD

e. 0101 1001 BCD
- 0010 01 10 BCD

J.	 OLIOOIIIBCD
- 0011 1001 BCD

15. For the Circuit in Figure 1-23:
a. is the Y output active high or active low?
b. Is the C signal active high or active low?
c. What input conditions on A. B. and C will cause

the Y output to be asserted?

i6. Describe how a D latch responds to a positive pulse
on its CK input and how a D flip-flop responds to
a pc.sitive pulse on its CK input.

17. The National Semiconductor 1NS8298 is a 65,536-
bit ROM organized as 8192 words or bytes of 8 bits.
How many address lines are required to address
one of the 8192 bytes?

is. Why do most ROMs and RAMs have three-state
outputs?

A

a

C

FIGURE 1-23 Circuit or problem 15.

19. Using Figure 1 22b, show the programming of the
select and mode Inputs the 74181 requires to
perform the following arithmetic functions:
a. A -t- B
I,. A - B - I
C. AB+A

20. Show the output word produced when the following
binary words are ANDed with each other and when
they are ORed with each other:
a. 101Oand011i
b. 1011 and 1100
C. I101011landlll000
d. ANDing an 8-bit binary number with 1111

0000 is sometimes referred to as "masking' the
lower 4 bits. Why?

18	 Ci-IAPTtR ONE

£

We live in a computer-oriented society, and we are
constantly bombarded with a multitude of terms relating
to computers. Before getting started with the main flow
of the book, we will try to clarify some of these terms
and to give an overview of computers and computer
systems.

OBJECTIVES
At the conclusion of this chapter, you should be able to:

I. Define the terms microcomputer. microproces-
sor, hardware, software, firmware, timesharing.
multitasking, distributed processing, and multi-
processing.

2. Describe how a microcomputer fetches and executes
an instruction.

3. List the registers and other parts in the 8086/8088
execution unit and bus interface unit.

4. Describe the function of the 8086/8088 queue.

5. Demonstrate how the 8086/8088 calculates memory
addresses.

TYPES OF COMPUTERS

Mainframes

Computers come in a wide variety of sizes and capabili-
ties. The largest and most powerful are often called
mainframes. Mainframe computers may fill an entire
room. They are designed to work at very high speeds
with large data words, typically 64 bits or greater. and
they have massive amounts of memory. Computers of
this type are used for military defense control, for
business data processing (in an insurance company, for
example), and for creating computer graphics displays
for science fiction movies. Examples of this type of
computer are the IBM 4381, the Hone ywell DPS8, and
the Cray Y-MP1832. The fastest and most powerful
mainframes are called supercomputers. Figure 2-la,
p. 20, shows a photograph ola Cray Y-MP/832 supercom.

puter. which contains eight central processors and 32
million 64-bit words of memory.

Minicomputers

Scaled-down versions of mainframe computers are often
called minicomputers. The main unit of a minicomputer
usually fits in a single rack or box. A minicomputer runs
more slowly, works directly with smaller data words
loften 32-bit words), and does not have as much memory
as a mainframe. Computers of this type are used for
business data processing, industrial control (for an oil
refinery, for example), and scientific researc1. Examples
of this type of computer are th Digital Equipment
Corporation VAX 6360 and the Data General MV/8000l1.
Figure 2-lb shows a photograph of a Digital Equipment
Corporation's VAX 6360 minicomputer.

Microcomputers

As the name implies, microcomputers are small com-
puters. They range from small controllers that work
directly with 4-bit words and can address a few thousand
bytes of memory to larger units that work directly with
32-bit words and can address billions of bytes of memory.
Some of the more powerful microcomputers have all or
most of the features of earlier minicomputers. Therefore.
it has become very hard to draw a sharp line between
these two types. One distinguishing feature of a micro-
computer is that the CPU is usually a single integrated
circuit called a microprocessor. Older books often used
the terms microprocessor dnd microcomputer Inter-
changeabl y . but actually he microprocessor is the CPU
to which you add IOM. RAM. and ports to make a
microcomputer . later section in this chapter discusses
the evolution ii different types of microprocessors. Mi-
crocomputers are used In evetything from smart sewing
machines to colr2uter-aided design systems. Examples
ofmlcroccmputersarethelntei8o5l slngle-chipcontrol'
(cr: the SDK-86. a single-board computer design kit: the
IBM Personal Computer (PC(: and the Apple Macintosh
computer. The lntei 8051 microcontroller is contained
In a single 40-pin chip. Figure 2-2a. p. 21, shows the
SDK86 board, and Figure 2-2b shows the Compaq 386/
25 system.

—5	 19

I b)

FIGURE 2-1 (a) Photograph of Cray 'r-MP/632 computer
(Courtesy Cray Research, Inc., and photographer, Paul
Shambroom.) (b) Photograph of VAX 6360
m)nlcomputer. (Courtesy Digital Equipment Corp.)

HOW COMPUTERS AND
MICROCOMPUTERS ARE
USED—AN EXAMPLE

The following sections are intended to give you an
overview of how computers are Interfaced with users
to do useful work. These sections should help you
understand many of the features designed Into current
microprocessors and where this book is heading.

Computerizing an Electronics Factory—Problem

Now, suppose Lliat we want to"computcrlze"an electron-
ics company. By this we mean that we want to make
computer use available to as many people In the company
as possible as cheaply as possible. We want the engineers
to have access to a computer which can help them design
circuits. People In the drafting department should have
access to a computer which can be used for computer-
aided drafting. The accounting department should have
access to a computer [or doing all the financial bookkeep-
ing. The warehouse should have access to a computer
to help with inventory control. The manufacturing de-
partment should have access to a computer for control-
Ing machines and testing finished products. The presi.

'lent, vice presidents, and supervisors should have
iccess to a computer to help them with long-range
planning. Secretaries should have access to a computer
for word processing. Salespeople should have access to
a computer to help them keep track of current pricing.
product availability, and commissions. There are several
ways to provide all the needed computer power. One
"olution Is to simply give everyone an individual personal
computer. The problem with this approach is that it
makes It difficult for different people to access commonly
needed data. In the next sections we show you two ways
to provide computer power and common data to many
users.

TIMESHARING AND MULTITASKING SYSTEMS

One common method of providing computer access Is a
timesharing system such as shown in Figure 2-3. p. 22.
Several video terminals are connected to the computer
through direct wires or through telephone lines. The
terminal can be on the user's desk or even in the user's
home. The rate at which a user usually enters data is
very slow compared with the rate at which a computer
can process the data. Therefore, the computer can serve
many users by dividing its time among them in small
increments. In other words, the computer works on user
Is program for perhaps 20 milliseconds (ms). then
works on user 2s program for 20 ms. then works on
user 3's program for 20 ms. and soon, until all the users
have had a turn, In a few milliseconds the computer will
get back to user I again and repeat the cycle. To each
user it will appear as if he or she has exclusive use of
the computer because the computer processes data as
fast as the user enters it. A timesharing system such as
tills allows several users to interact with the computer
at the same time. Each user can get information from
or store Information in the large memory attached to
the computer. Each user can havean inexpensive printer
attached to the terminal or can direct program or data
output to a high-speed printer attached directly to the
computer.

An airline ticket reservation computer might use a
timesharing system such as this to allow users from all
over the country to access flight informafion and make
reservations. A time-multiplexed or time-sliced system
such as this can also allow a computer to control many
machines or processes in a factory. A computer is much
faster than the machines or processes. Therefore, it can

20	 CHAPTER TWfl

AlDRESS	 <EYBOARD
DtCJpEiS	 ADDt.S	 DISPLAY

PORTS
a)

)b)

FIGL'RE 2-2 Ia) Photograph ot Intel SDK-b6 board, lintel
Corp.) (bI Photograph of Compaq 3)1625. (Compaq
(.'orp.)

Now lets take another look at our problem of computer-
izing the electronics company. We could put a powerful
computer in some central location and run wires from
it to video display terminals on users desks. Each user
could then run the, program needed to do a particular
task. The accountant could run a ledger program, the
secretary could run a word processing program, etc.
Each uset' could access the computer's large data mem-
ory'. Incidentally, a large collection of data stored in a
computer's memory is often referred to as a data base.
For a small company a system such as this might be
adequate. However, there arc at least two potential
problems.

The first potential problem is. 'What happens if the
computer is not working'?' The answer to this question
is that everything grinds to a halt. In a situation where
people have become dependent on the computer, not
much gets done until the computer is up and running
again. The old saying about putting all your eggs in one
basket comes to mind here.

The second potential problem of the simple timeshar-
ing system is saturation, As the number of users In-
creases. the time it takes the computer to do each users
task increases also. Eventually the computer's response
time to each user becomes unreasonably long. People
get very upset about the time they have to wait.

clici.k and adjust many pressurts. tcntpc'rati's. nine
DISTRIBUTED PROCESSING ORspeeds. etc . before Ii needs to get back and recheck
MU U I PROCESS INCthe first One. A system such as this is often called a

flu ul(tiask TI)) sqsti'm because it appears to be doing	 A partial solution for the two potent at problems ol
many tasks at the saint time,	 a simple timesharing system is to nsc a distributed

COMPUTERS. M)CROCOMF'UTERS. AN)) Mt(ROPROC tSSORS--AN tNJRTDI UTION	 21

MASS	 I	 -	 COMPUTER
DATA	 IMAINrRAME

STORAGE I________	 OR MINI)

H -SPE ED
PRINTER

DIRECT WIRE OR TELEPHONE LINE CONNECTION

VIDEO	 PRINTER	 VIDEO
TERMINAL	 TERMINAL

VIDEO	 LOW-COST	 VIDEO
TERMINAL	 PRINTER	 TERMINAL

FIGURE 2-3 Block diagram of a computer timesharing system.

processing system. Figure 2-4 shows a block diagram
for such a system. The system has a powerful central
computer with a large memory and a high-speed printer.
as does the Simple timesharing system described previ-
ously. However, in this system each user has a microcom-
puter instead of simply a video dispy terminal. In other
words, each user station is an independently functioning
microcomputer with a CPU. ROM. RAM. and probably
magnetic nr optical disk memory. This means that a
person ran do many tasks locally on the microcomputer

without having to use the large computer at all. Since
the microcomputers are connected to the large computer
through a network, however, a user can access the
computing power, memory, or other resources of the
large computer when needed.

Distributing the processing to multiple computers or
processors in a system has several advantages. First, if
the large computer goes down, the local microcomputers
can continue working until they need to access the large
computer for something. Second, the burden on the

MASS DATA
	

MAINFRAME	 HIGH-SPEED
STORAGE
	

COMPUTER
	

PRINTER

CONNECTION TO
PHONE LINE

MICROCOMPUTER
	

MICROCOMPUTER

MINICOMPUTER	 LOCAL
AREA

NETWORK

FLOPPY DISK
DRIVEHARO

DISK DRIVE	 /

MICROCOMPUTER
PRINTER

VIDEO TERMINAL VIDEO TERMINAL VIDEO TERMINAL

FIGURE 2-4 Block diagram of a distributed processing computer system.

22	 CHAPTER TWO

large computer is reduced greatly. because much of the
computing is done by the local microcomputers. Finally.
the distributed processing approach allows the system
designer to use a local microcomputer that is best suited
to the task it has to do.

COMPUTERIZED ELECTRONICS
COMPANY OVERVIEW
Distributed processing seems to be the best way to go
about computerizing our electronics factory. Engineers
can have personal computers or engineering work-
stations on their desks. With these they can use available
programs to design and test circuitS. They can access
the large computer if they need data from its memory.
Through the telephone lines, the engineer with a per-
sonal computer can access data in the memory of other
computers all over the world. The drafting people can
have personal computers for simple work, or large
computer .aided design systems for more complex work.
Completed work can be stored In the memory of the
large computer. The production department can have
networked computers to keep track of product flow
and to control the machines which actually mount
components on circuit boards, etc. The accounting
department can use personal computers with spread.
sheet programs to work with financial data kept in
the memory of the large computer. The warehouse
supervisor can likewise use a personal computer with
an inventory program to keep personal records and
those in the large computer's memory updated. Corpo-
rate officers can have personal computers tied into the
network. They then can interact with any of the other
systems on the network. Salespeople can have portable
personal computers that they can carry with them in
the field. They can communicate with the main computer
over the telephone lines using a modem. Secretaries
doing word processing can use individual word pro-
cessing units or personal computers. Users can also
send messages to one another over the network. The
specifics of a computer system such as this will obviously
depend on the needs of the individual company for
which the system is designed.

SUMMARY AND DIRECTION FROM HERE

The main concepts that you should take with you
from this section are timesharing or multitasking and
distributed processing or multiprocessing. As you work
your way through the rest of this book, keep an overview

of the computerized electronics company in the back of
your mind. The goal of this book is to teach you how
the microcomputers and other parts of a system such
as this work, how the parts are connected together. and
how the system is programmed at different levels.

OVERVIEW OF MICROCOMPUTER
STRUCTURE AND OPERATION

Figure 2-5 shows a block diagram for a simple microcom-
puter. The major parts are the central processIng unit

or CPU. memory. and the input and output circuitry or
110. Connecting these parts are three sets of parallel
lines called buses. The three buses are the address bus,
the data bus, and the control bus. Let's take a brief look
at each of these parts.

Memory
The memory section usually consists of a mixture of
RAM and ROM. It may also have magnetic floppy disks,
magnetic hard disks, or optical disks. Memory has two
purposes. The first purpose is to store the binary codes
for the sequences of instructions you want the computer
to carry out. When you write a computer program. what
you are really doing is writing a sequential list of
Instructions for the computer. The second purpose of
the memory is to store the binary-coded data with which
the computer is going to be working. This data might
be the inventory records of a supermarket. for example.

Input/Output
The inputioutput or 110 section allows the computer to
take in data from the outside world or send data to the
outside world. Peripherals s'ich as keyboards. video
display terminals, printers, and modems are connected
to the 110 section. These allow the user and the computer
to communicate with each other. The actual physical
devices used to interface the computer buses to external
systems are often called ports. Ports in a computer
function just as shipping ports do for a country. An
input port allows data from a keyboard. an A/D converter.
or some other source to be read into the computer under
control of the CPU. An output port Is used to send data
from the computer to some peripheral, such as a video
display terminal, a printer, or a D.'A converter. Physically.

DATA BUS

I CONTROL	 CENTRAL	 II/O	 I	 Bus	
I PROCESSING I	

BUS	
I	

MEMORY
PORTS	 UNIT	

.	
RAM AND

CPUI	 ROMI

ADDRESS BUS

FIGURE 2-5 Block diagram of a simple microcomputer.

INPUT
DEVICE

OUTPUT
DEVICE

COMPUTERS, MICROCOMPUTERS. AND MICROPROCESSORS—AN INTRODUCTION 	 23

the simplest type of input or output port is Just a set of
parallel D flip-flops. II they are being used as an input
port, the D inputs are connected to the external device.
and the Q outputs are connected to the data bus which
runs to the CPU. Data will then be transferred through
the latches when they are enabled by a control signal
from the CPU. In a system where they are being used as
an output port, the D inputs of the latches are connected
to the data bus, and the Q outputs are connected to
some external device. Data sent out on the data bus by
the CPU will be transferred to the external device when
the latches are enabled by a control signal from the CPU.

Central Processing Unit

The central processing unit or CPU Controls the opera-
tion of the computer. In a microcomputer the CPU is a
microprocessor as we discussed in an earlier section of
the chapter. The CPU fetches binary-coded instructions
from memory, decodes the instructions into a series of
simple actions, and carries out these actions in a
sequdce of steps.

The CPU also contains an address counter or instruc-
tion pointer register, which holds the address of the
next instruction or data item to be fetched from memory;
general-purpose registers, which are used for temporary
storage of binary data; and circuitry, which generates
the control bus signals.

Address Bus

The address bus consists of. 16. 20, 24, or 32 parallel
signal lines. On these lines the CPU sends out the
address of the memory location that is to be written to
or read from. The number of memory locations that the
CPU can address is determined by the number of address
lines, If the CPU has N address lines, then it can directly
address 2 memory locations. For example, a CPU with
16 address lines can address 2 16 or 65.536 memory
locations, a CPU with 20 address lines can address 2°
or 1,048,576 locations, and a CPU with 24 address lines
can address 22 or 16,777,216 locations. When the CPU
reads data from or writes data to a port, it sends the
port address out on the address bus.

Data Bus

The data bus consists of 8. 16, or 32 parallel signal
lines. As indicated by the double-ended arrows on the
data bus line in Figure 2-5, the data bus lines are
bidirectionaL This means, that the CPU can read data
in from memory or from a port on these lines, or it can
send data out to memory or to a port on these lines. Many
devices in a system will have their outputs connected to
the data bus, but only one device at a time will have Its
outputs enabled. Any device connected on the data bus
must have three-state outputs so that its outputs can
be disabled when it is not being used to put data on the
bus.	 -

Control Bus

The control bus consists of 4 to 10 parallel signal lines,
The CPU sends Out signals on the control bus to enable
the outputs of addressed memory devices or port devices.
Typical control bus signals are Memory Read. Memory
Write, I/O Read, and I/O Write. To read a byte of data
from a memory location, for example, the CPU sends out
the memory address of the desired byte on the address
bus and then sends out a Memory Read signal on
the control bus. The Memory Read signal enables the
addressed memory device to output a data word onto
the data bus. The data word from memory travels along
the data bus to the CPU.

Hardware, Software, and Firmware

When working around computers, you hear the terms
hardware, software, and firmware almost constantly.
Hardware is the name given to the physical devices
and circuitry of the computer. Software refers to the
programs written for the computer. Firmware is the
term given to programs stored in ROMs or in other
devices which permanently keep their stored infor-
mation.

Summary of Important Points So Far

• A computer or microcomputer consists of memory.
a CPU, and some input/output circuitry.

• These three parts are connected by the address bus,
the data bus, and the control bus.

• The sequence of instructions or program for a com-
puter is stored as binary numbers in successive
memory locations.

• The CPU fetches an Instruction from memory, de-
codes the instruction to determine what actions
must be done for the instruction, and carries out
these actions.

EXECUTION OF A
THREE-INSTRUCTION PROGRAM

To give you a better idea of how the parts ola microcom-
puter function together, we will now describe the actions
a simple microcomputer might go through to carry out
(execute) a simple program. The three instructions of
the program are

1. Input a value from a keyboard connected to the port
at address 05Ff.

2. Add 7 to the value read in.

3. Output the result to a display connected to the port
at address 02Ff.

Figure 2-6 shows in diagram form and sequential list
form the actions that the computer will perform to
execute these three Instructions.

24	 CHAPTER iWO

MEMORY

68

CONTROL BUS
Cd,

CPU

CONTROL BUS

60
	

2E6F

PORT 05 I	 I PORT 02

1U1111 131

l4I5I67I	 188I8J9II-1	 ________
KEYBOARD	 DISPLAY

PROGRAM

1. INPUTAVALUE FROM PORTO5.
2. ADD 7 TO THIS VALUE.
3. OUTPUTTHE RESULT TO PORT 02.

SEQUENCE

1A CPU SENDS OUT ADDRESS OF FIRST INSTRUCTION TO MEMORY.
18 CPU SENDS OUT MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY.
ic INSTRUCTION BYTE SENT FROM MEMORY TO CPU ON DATA BUS.
2A ADDRESS NEXT MEMORY LOCATION TO GET REST OF INSTRUCTION.
28 SEND MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY.
2C PORT ADDRESS BYTE SENT FROM MEMORY TO CPU ON DATA BUS.
20 CPU SENDS OUT PORT ADDRESS ON ADDRESS BUS.
2E CPU SENDS OUT INPUT READ CONTROL SIGNAL TO ENABLE PORT.
2F DATA F ROM PORT SENT TO CPU ON DATA BUS.
3A CPU SENDS ADDRESS OF NEXT INSTRUCTION TO MEMORY.

CPU SENDS MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY.
3C INSTRUCTION BYTE FROM MEMORY SENT TO CPU ON DATA BUS.
4A CPU SENDS NEXT ADDRESS TO MEMORY TO GET REST OF INSTRUCTION.
48 CPU SENDS MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY.
4C NUMBER 0711 SENT FRDM MEMORY TO CPU ON DATA BUS.
5A CPU SENDS ADDRESS OF NEXT INSTRUCTION TO MEMORY.
5B CPU SENDS MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY.
5C INSTRUCTION BYTE FROM MEMORY SENT TO CPU ON DATA BUS.
6A CPU SENDS OUT NEXT ADDRESS TO GET REST OF INSTRUCTION.
6B CPU SENDS OUT MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY.
6C PORT ADDRESS BYTE SENT FROM MEMORY TO CPU ON DATA BUS.
6D CPU SENDS OUT PORT ADDRESS ON ADDRESS BUS.
6E CPU SENDS OUT DATA TO PORT ON DATA BUS.
6F CPU SENDS OUT OUTPUT WRITE SIGNAL TO ENABLE PORT.

MEMORY CONTENTS CONTENTS OPERATION
ADORESS	 (BINARY)	 (HEX)

OO100H	 11100100
0010111	 00000101
00102H	 00000100
00103H	 00000111
0010411	 11100110
0010511	 00000010

E4	 INPUT FROM
05	 PORTO5H
04	 ADD
07	 0711
E6	 OUTPUT TO
02	 PORT 02

(hI

FIGURE 2-6 (a) Execution of a three-step computer program. (b) Memory
addresses and memory contents for a three-step program.

For Ehis example, assume that the CPU fetches instruc-
tions and data from memory I byte at a time, as Is done
in the original IBM PC and Its clones. Also assume that
the binary codes for the instructions are in sequential
memory locations starting at address OOlOOH. Figure
2-6b shows the actual binary codes that would be
required in successive memory locations to execute this
program on an IBM PC-type microcorilputer.

The CPU needs an instruction before it can do any-
thing. so its first action is to fetch an instruction byte
from memory . To do this, the CPU sends Out the address
of the first instruction byte, in this case OOIOOH, to
memory on the address bus. This action Is represented
by line IA in Figure 2-6a. The CPU then sends out a
Memory Read signal on the control bus (line lB in the
figure). The Memory Read signal enables the memory to
output the addressed byte on the data bus, This action
is represenled by line IC in the figure. The CPU reads
in this first instruction byte (E4H(from the data bus
and decodes it. By decode we mean that the CPU
determines from the binary code read in what actions
it Is supposed to take. If the CPU is a microprocessor.
it selects the sequence of microinstructions needed to

carry out the instiuction read from memory. For the
example instruction here, the CPU determines that the
code read in represents an Input instruction. From
decoding this Instruction byte, the CPU also determines
that it needs more Information before it can carry out
the instruction. The additional Information the CPU
needs is the address of the port that the data is to be
input from. This port address part of the instruction is
stored In the next memory location after the code for
the Input instruction.

To fetch this second byte of the instruction, the CPU
sends out the next sequential address (OOIOIH) to
memory, as shown by line 2A in the figure. To enable
the addressed memory device, the CPU also sends out
another Memory Read signal on the control bus (line
2B). The memory then outputs the addressed byte on
the data bus (line 2C). When the CPU has read in this
second byte. 05H in this case, it has all the information
it needs to execute the instruction.

To execute the Input instruction, the CPU sends out
the port address (05)1) on the address bus (line 2D) and
sends out an I/O Read signal on the control bus (line
2E). The 1/0 Read signal enables the addressed port

CO\IPUTERS. \UCROCOMPUTFRS, AND MICROPROCESSORS—AN INTRODUCTION	 25

device to put a byte of data on the data bus (line 2F).
The CPU reads in the byte of data arid stores it Ln
art Internal register. This completes the fetching and
execution of the first instruction.

Having completed the first instruction, the CPU must
now fetch its next instruction from memoty. To do this.
it sends out the next sequential address (00102H) on
the address bus (line 3A) and sends out a Memory Read
signal on the control bus (line 3B). The Memory Read
signal enables the memory device to put the addressed
byte (04H1 on the data bus (line 3C). The CPU reads in
this instruction byte from the data bus and decodes it.
From this instruction byte the CPU determines that it
is supposed to add some number to the number stored
in the internal register. The CPU also determines from
decoding this instruction byte that it must go o memory
again to get the next byte of the instruction, which
Contains the number that It is supposed to add. To get
the required byte, the CPU will send out the next
sequential address (0010313) on the address bus (line
4A) and another Memory Read signal on the control bus
(line 48). The memory will then output the contents of
the addressed byte (the number 07H) on the data bus
(line 4C). When the CPU receives this number, it will
add it to the contents of the internal register. The result
of the addition will be left in the internal register. This
compietes the fetching and executing of the second
instruction,

The CPU must now fetch the third instruction. To do
this, it sends out the next sequential address (00104H1
on the address bus (line 5A) and sends out a Memory
Read signal on the control bus (line 513). The memory
then outputs the addressed byte (E6H) on the data bus
(line 5C). From decoding this byte, the CPU determines
that It is now supposed to do an Output operation to a
port. The CPU also determines from decoding this byte
that it must go to memory again to get the address of
the output port. To do this, it sends out the next
sequential address (0010513) on the address bus (line
6A). sends out a Memory Read signal on the control bus
(line 613). and reads tn the byte (0213) put on the data
bus by the memory (line 6C). The CPU now has all
the information that it needs to execute the Output
instruction.

To output a data byte to a port, the CPU first sends
out the address of the desired port on the address bus
(line 6D(. Next it outputs the data byte from the internal
register on the data bus (line 6E). The CPU then sends
out an I'O Write signal on the control bus (line 6F). This
signal enables the addressed output port device so that
the data from the data bus lines can pass through it to
the LED displays. When (he CPU removes the 110 Write
signal to proceed with the next instruction, the data will
remain latched on the output pins of the port device.
The data will remain latched on the port until the power
is turned off or until a new data word is output to the
port. This is important because it means that the
computer does not have to keep outputting a value over
and over in order for it to remain on the output.

All the steps described above ma y seem like a great
deal of work just to input a value from a keyboard. add
7 to it, and output the result to a displa y . Even a simple

microcomputer, however, can run through all these
steps in a few microseconds.

Summary of Simple Microcomputer
Bus Operation

I. A microcomputer fetches each program instruction
in sequence, decodes (he instruction, and executes
it.

2. The CPU in a microcomputer fetches instructions
or reads data from memory by sending out an
address on the address bus ar,d a Memory Read
signal on the control bus. The memory outputs the
addressed instruction or data word to the CPU on
the data bus.

3. The CPU writes a data word to memory by sending
out an address on the address bus, sending out the
data word on the data bus, and sending a Memory
Write signal to memory on the control bus.

4. To read data from a port, the CPU sends out the port
address on the address bus and sends an t/O Read
signal to the port device on the control bus. Data
from the port comes into the CPU on the data bus.

5. To write data to a port, the CPU sends out the port
address on the address bus, sends out the data to
be written to the port on the data bus. and sends
an 110 Write signal to the port device on the control
bus.

MICROPROCESSOR EVOLUTION
AND TYPES

As we told you in the prer'Uirif section. a microprocessor
is used as the CPU in a microcomputer. There are now
man y different microprocessors available. so before we
dig nb the details of a specific device, we will give you
a short microprocessor history lesson and an overview
of the different types.

Microprocessor Evolution

A common way of categorizing microprocessors is by
the number of bits that their ALU can work with at a
time, In other words, a microprocessor with a 4-bit ALU
will be referred to as a 4'bit microprocessor, regardless
01' the number of address lines or the number of data
bus lines that it has. The first commercially available
microprocessor was the Intel 4004, produced in 1971.
It contained 2300 PMOS transistors. The 4004 was a 4-
bit device intended to be used with some other devices
in making a calculator. Some logic designers, however.
saw that this device could be used to replace PC boards
full of combinational and sequential logic devices. Also.
the ability to change the function of a system by just
changing the programming. rather than redesigning
the hardware, Is very appealing. It was these factors that
pushed the evolution of microprocessors.

In 1972 I rite) came out wi h the H008, which was
capable of working with 8-hd words. The 8008, however.

26	 CHAPTER TWO

required 20 or more additional devices to form a func-
tional CPU. In 1974 Intel announced the 8080. which
had a much larger instruction set than the 8008 and
required Only two additional devices to form a functional
CPU. Also, the 8080 used NMOS transistors, so it
operated much faster than the 8008. The 8080 is
referred to as a second-generation microprocessor.

Soon after Intel produced the 8080. Motorola came
out with the MC6800, another 8-bit general-purpose
CPU. The 6800 had the advantage that it required only
a + 5-V supply rather than the - 5-V. + 5-V. and + 12-
V supplies required by the 8080. For several years the
8080 and the 6800 were the top-selling 8-bit micropro-
cessors. Some of their competitors were the MOS Tech-
nology 6502. used as the CPU in the Apple II microcom-
puter, and the Zilog Z80. used as the CPU in the Radio
Shack TRS'80 microcomputer.

As designers found more and more applications for
microprocessors, they pressured microprocessor manu-
facturers to develop devices with architectures and
features optimized for doing certain types of tasks. In
response to the expressed needs, microprocessors have
evolved in three major directions during the last 15
years.

Dedicated or Embedded Controllers

One direction has been dedicated or em bedded control-
lers. These devices are used to control "smart" machines,
such as microwave ovens. clothes washers, sewing ma-
chines. auto ignition systems, and metal lathes. Texas
Instruments has produced millions of their TMS-1000
family of 4-bit microprocessors for this type of applica-
tion. In 1976 Intel introduced the 8048. which contains
an 8-bit CPU, RAM. ROM. and some I/O ports all in one
40-pin package. Other manufacturers have followed with
similar prod'Jcts. These devices are often referred to as
mtcrocontrol(ers. Some currently available devices in
this category—the Intel 8051 and the Motorola MC6801.
for example—contain programmable counters and a
serial port (UART) as well as a CPU. ROM. RAM. and
parallel I/O ports. A more recently Introduced single-
chip microcontroller, the Intel 8096. contains a 16-bit
CPU. ROM. RAM. a UART. ports, timers, and a 10-bit
analog-to-digital converter.

Bit-Slice Processors

A second direction of microprocessor evolution has been
bit-slice processors. For some applications, general-
purpose CPUs such as (he 8080 and 6800 are not fast
enough or do not have suitable instruction sets. For
these applications, several manufacturers produce de-
vices which can be used to build a custom CPU. An
example is the Advanced Micro Devices 2900 family of
devices. This family includes 4-bit ALUs. multiplexers.
sequencers. and other parts needed for custom-building
a CPU. The term slice comes from the fact that these
parts can be connected In parallel to work with 8-bit
words. 16-bit words, or 32-bit words. In other words, a
designer can add as many slices as needed for a particu-

lar application. The designer not only custom-designs
the hardware of the CPU, but also custom-makes the
instruction set for it using "microcode."

General-Purpose CPUs

The third major direction of microprocessor evolution
has been toward gtnera1-purpose CPUs which give a
microcomputer mosk or all of the computing power of
earlier minicomputers. After Motorola came Out with
the MC6800. Intel produced the 8085. an upgrade of
the 8080 that required Only a + 5-V supply. Motorola
then produced the MC6809. which has a few 16-bit
instructions, but is still basically an 8-bit processor. In
1978 Intel came Out with the 8086. which isa full 16-
bit processor. Some 16-bit microprocessors, such as the
National PACE and the Texas Instruments 9900 family
of devices. had been available previously, but the market
apparently wasn't ready. Soon after Intel came out with
the 8086. Motoi'ola came out with the 16-bit MC68000.
and the 16-bit race was off and running. The 8086 and
the 68000 work directly with 16-bit words instead of
with 8-bit words, they can address a million or more
bytes of memory instead of the 64 Kbytes addressable
by the 8-bit processors, and they execute instructions
much faster than the 8-bit processors. Also, these 16-
bit processors have single instructions for functions
such as multiply and divide, which required a lengthy
sequence of instructions on the 8-bit processors.

The evolution along this last path has continued on
to 32-bit processors that work with gigabytes (10 bytes)
or terabytes (l02 bytes) of memory. Examples of these
devices are the Intel 80386. the Motorola MC68020. and
the National 32032.

Since we could not possibly describe in this book the
operation and programming of even a few of the available
processors. we confine our discussions primarily to one
group ol related microprocessors. The family we have
chosen is the Intel 8086. 8088, 80186. 80188, 80286.
80386. 80486 family. Members of this family are very
widely used in personal computers, business computer
systems, and industrial control systems. Our experience
has shown that learning the programmingand operation
of one family of microcomputers very thoroughly is
much more useful than looking at many processors
superficially. If you learn one processor family well, you
will most likely find It quite easy to learn another when
you have to.

THE 8086 MICROPROCESSOR
FAMILY—OVERVIEW

The Intel 8086 is a 16-bit microprocessor that is in-
tended to be used as the CPU in a microcomputer. The
term 16-bit means that its arithmetic logic unit. Its
internal registers. and most of its instructions are
designed to work with 16-bit binary words. The 8086
has a 16-bit data bus, so it can read data from or write
data to memory and ports either 16 bits or 8 bits at a
time. The 8086 has a 20-bit address bus. so it can

address any one of 220. or 1.048.576. memory locations.

COMPUTERS, MICROCOMPUT[RS, AND MICROPROCESSORS—AN INTRODUCTION 	 27
–6

Each of the 1,048.576 memory addresses of the 8086
represents a byte-wide location. Sixteen-bit words will
be stored in two consecutive memory locations. II the
first byte of a word is at an even address, the 8086 can
read the entire word in one operation. If the first byte
of the word is at an odd address, the 8086 will read the
first byte with one bus operation and the second byte
with another bus operation. Later we will discuss this
in detail. The main point here Is that if the first byte of
a 16-bit word is at an even address, the 8086 can read
the entire word in one operation.

The intel 8088 has the same arithmetic logic unit, the
same registers, and the same instruction set as the
8086 he 8088 also has a 20-bit address bus, so it can
address any one of 1.048.576 bytes in memory. The
8088. however, has an 8-bit data bus, so it can only
read data from or write data to memory and ports 8 bits
at a time. The 8086, remember, can read or write either
8 or 16 bits at a time. To read a 16-bit word from two
successive memory locations, the 8088 will always have
to do two read operations. Since the 8086 and the 8088
are almost identical, any reference we make to the 8086

- in the rest of the book will also pertain to the 8088
unless we specifically indicate otherwise. This is done
to make reading easier. The Intel 8088, Incidentally, is
used as the CPU in the original IBM Personal Computer,
the IBM PC/XT, and several compatIble personal com-
puters.

The Intel 80186 is an Improved version of the 8086.
and the 80188 is an Improved version of the 8088. In
addition to a 16-bit CPU. the 80186 and 80188 each
have programmable peripheral devices integrated in the
same package. In a later Chapter we will discuss these
integrated peripherals. The instruction Set of the 80186
and 80188 Is a superset of the instruction set of the
8086. The term superset means that all the 8086 and
8088 lnstructtons will execute properly on an 80186 or
an 80188, but the 80186 and the 80188 have a few
additional instructions. In other words, a program writ-
ten for an 8086 or an 8088 is upward-compatible to an
80186 or an 80188, but a program wrItten for an 80186
or an 80188 may not execute correctly on an 8086 or an
8088. In the instruction set descriptions In Chapter 6.
we specifically indicate which instructions work only
with the 80186 or 80188.

The Intel 80286 is a 16-bit, advanced version of the
8086 which was specifically designed for use as the CPU
in a multiuser or multitasking microcomputer. When
operating in its real address mode, the 80286 functions
mostly as a fast 8086. Most programs written for an
8086 can be run on an 80286 operating in its real
address mode. When operating in its virtual address
mode, an 80286 has features which make it easy to
keep users' programs separate from one another and t.o
protect the system program from destruction by users'
programs. In Chapter 15 we discuss the operation and
use of the 80286. The 80286 is the CPU used in the IBM
PC/AT personal computer.

The Intel 80386 is a 32-bit microprocessor which can
directly address upto 4 gigabytes of memory. The 80386
contains more sophisticated features than the 80286
for use in multiuser and multitasking microcomputer

systems. In Chapter 15 we discuss the features of the
80386 and the 80486, which is an evolutionary step up
from thc 80386.	 -

8086 INTERNAL ARCHITECTURE
Belore we can talk about how to write programs for the
8086, we need to discuss its specific internal features.
such as its ALU. flags, registers, instruction byte queue.
and segment registers.

As shown by the block diagram in Figure 2-7. the
8086 CPU Is divided into two independent functional
parts, the bus intetface unit or BIU, and the execution
unit or EU. Dividing the work between these two units
speeds up processing.

The BIU sends out addresses, fetches instructions
from memory, reads data from ports and memory, and
writes data to ports and memory. In other words, the
BIU handles all transfers of data and addresses on the
buses for the execution unit.

The execution unit of the 8086 tells the BIU where to
fetch instructions or data from, decodes instructions,
and executes instructions. Let's take a look at some of
the parts of the execution unit.

The Execution Unit

CONTROL CIRCUITRY, INSTRUCTION
DECODER, AND ALU

As shown in Figure 2-7. the EU contains control circuitry
which directs internal operations. A decoder in the EU
translates instructions fetched from memory into a
series of actions which the EU carries out. The EU has
a 16-bit arithmetic logic untt which can add, subtract,
AND. OR, XOR, increment, thcrement, complement, or
shift binary numbers.

FLAG REGISTER

A flag is a flip-flop which indicates some condition
produced by the execution of an instruction or controls
certain operations of the EU. A 16-bit flag register in
the EU contains nine active flags. Figure 2-8 shows the
location of the nine flags in the flag register. Six of the
nine flags are used to indicate some condition produced
by an Instruction. For example, a flip-flop called the
carry flag will be set to a I if the addition of two 16-
bit binary numbers produces a carry out of the most
significant bit position. If no carry out of the MSB is
produced by the addition, then the carry flag will be a
0. The EU thus effectively-runs up a "flag" to tell you
that a carry was produced.

The six conditional flags in this group are the carry
flag (CF). the parity flag IPF). the auxiliary carry flag
(AF), the zero flag (ZF). the sign flag (SF), and the
ove rJlowflag (OFf. The names of these flags should give
you hints as to what conditions affect them. Certain
8086 instructions check these flags to determine which
of two alternative actions should be done in executing
the instruction.

28	 CHAPTER TWO

AUCTION
IAM

UE

--I

---.---J

I-----

EU

IGURE 2-7 8086 internal block diagram. (Intel Corp.)

The three remaining flags In the flag register are used
to control certain operations of the processor. These
flags are different from the six conditional flags described
above in the way they are set or reset. The six conditional
flags are set or reset by the EU on the basis of the results
of some arithmetic or logic operation. The controlflags
are deliberately set or reset with specific instructions
you put in your program. The three control flags are the
trap flag (TF). which is used for single stepping through
a program: the tnterruptflag (IF), which is used to allow
or prohibit the interruption of a program; and the
dtrectionflag IDE). which is used with string instruc-
tions.

Later we will discuss in detail the operation and use
of the nine flags.

GENERAL-PURPOSE REGISTERS

Observe in Figure 2-7 that the EU has eight general-
purpose registers, labeled AH. AL. BFI. BL. CH , CL. DH.
and DL. These registers can be used individually for
temporary storage of 8-bit data. The AL register is also
called the accumulator. It has some features that the
other general-purpose registers do not have.

Certain pairs of these general .purpose registers can be
used together to store 16-bit data words. The acceptable

8085 COMPATIBLE LAGS

BIT IS 14 13 12 11 10 9 8	 7	 6	 5 4	 3	 2	 1	 0

Iu Jul u U 10F10F1 IF lTFlsFlI U AFJ U	 u Icri

UDEFINEOWJILL

FIGURE 2-8 8086 flag register format. (Intel Corp.)

CARRY FLAG - SET BY CARRY OUT OF MSB
PARITY FLAG - SET IF RESULT HAS EVEN PARITY
AUXILIARY CARRY FLAG FOR BCD
ZERO FLAG - SET IF RESULT 0
SIGN FLAG - MSB OF RESULT
SINGLE STEP TRAP FLAG
INTERRUPT ENABLE FLAG
STRING DIRECTION FLAG
OVERFLOW FLAG

COMPUTERS, MICROCOMPUTERS, AND MICROPROCESSORS—AN INTRODUCTION 	 29

5FFFFH

50000H

II
4489FH

-i--

3AON I
2FFFFI-4

2OOH I

register pairs are AH and AL. BH and BL. CH and CL,
and DH and DL. The AH—AL pair is referred to as the
AX register, the Bl-1—BL pair is referred to as the BX
register, the CH—CL pair s relerred to as the CX register,
and the Dl-I—DL pair is referred to as the DX register.

The 8086 general-purpose register set is very similar
to those of the earlier-generation 8080 and 8085 micro-
processors. It was designed this way so that the many
programs written for the 8080 and 8085 could easily be
translated to run on the 8086 or the 8088. The advantage
of using internal registers for the temporary storage of
data Is that, since the data is already In the EU. it can
be accessed much more quickly than it could be accessed
in external memory. Now let's look at the features of the
flU.

The BIIJ

THE QUEUE

While the EU is decoding an instruction or executing
an Instruction which does not require use of the buses.
the BIU fetches up to six instruction bytes for the
fouowlng instructions. The flU stores these prefetched
bytes in a first-In—first-out register set called a queue.
When the EU is ready for its next Instruction, it simply
reads the instruction byte(s) for the instruction from
the queue in the BIU. This is much faster than sending
out an address to the system memory and waiting for
memory to send back the next instruction byte or bytes.
The process Is analogous to the way a bricklayer's
assistant fetches bricks ahead of time and keeps a queue
of bricks lined up so that the bricklayer can just reach
out and grab a brick when necessary. Except in the
cases of JMP and CALL instructions, where the queue
must be dumped and then reloaded starting from a new
address, this prefetch-and-queue scheme greatly speeds
up processing. Fetching the next instruction while the
current instruction executes is called ptpellnlng.

SEGMENT REGISTERS

The 8086 BIU sends out 20-bit addresses, so it can
address any of 220 or 1.048.576 bytes in memory.
However, at anygiven time the 8086 works with only four
65.536-byte (64-Kbyte) segments within this L048.576-
byte (1-Mbyte) range. Four segment registers in the BIU
are used to hold the upper 16 bits of the starting
addresses of four memory segments that the 8086 is
working with at a particular time. The four segment
registers are the code segment (CS) register. the stack
segment (SS) register. the extra segment (ES) register.
and the data segment (DS) register.

Figure 2-9 shows how these four segments might be
positioned in memory at a given time. The four segments
can be separated as shown, or, for small programs which
do not need all 64 Kbytes in each segment. they can
overlap.

To repeat, then, a segment register is used to hold the
upper 16 bits of the starting address for each of the
segments. The code segment register. for example, holds
the upper 16 bits of the starting address for the segment
from which the BLU Is currently fetching instruction
code bytes. The BIU always inserts zeros for the lowest

PNYSCA L
ADDRESS

FFFFFH -
	 HGNEST ADDRESS

7FFFFH
	

- TOP OF EXTRA SEGMENT

7H I	 - EXTRA SEGMENT BASE
ES 1000H

-TOP OF STACK SEGMENT

- STACK SEGMENT BASE
SS 5cX5R

- TOP OF CODE SEGMENT

CODE SEGMENT BASE
CS - 348AH

TOP OF DATA SEGMENT

- BOTTOM OF DATA SEGMENT

FIGURE 2-9 One way four 64-Kbyte segments might be
positioned within the 1-Mbyte address space of an 8086.

4 bits (nibble) of the 20-bit starting address for a
segment. If the code segment register contains 348AH.
for example, then the code segment will start at address
348A0H. In other words, a 64-Kbyte segment can be
located anywhere within the 1-Mbyte address space, but
the segment will always start at an address with zeros
in the lowest 4 bits. This constraint was put on the
location of segments so that it is only necessary to store
and manipulate 16-bit numbers when working with the
starting address of a segment. The part of a segment
starting address stored in a segment register is often
called the segment base.

A stack is a section of memory set aside to store
addresses and data while a subprogram executes. The
stack segment register is used to hold the upper 16 bits
of the starting address for the program stack. We will
discuss the use and operation of a stack In detail later.

The extra segment register and the data segment
register are used to hold the upper 16 bits of the starting
addresses of two memory segments that are used for
data.

INSTRUCTION POINTER

The next feature to look at in the BIU is the Inst ruction
pointer li p) register. As discussed previously, the code

30	 (HA PIER TWO

PHYSICAL
ADDRESS	 MEMORY

4489FH— _____	 TOPOF CODE SEGMENT

38A84Hj .	—CODE BYTE

IF 4214H

348AOH —'	 START OF CODE SEGMENT
CS - 348AH

()

	

CS	 []4 8 A O-'---HARDWIAEOZERO

	

IF	 4 2 1 4

	

PHYSICAL ADDRESS 	 3 8 A B

FIGURE 2-10 Addition of IF to CS to produce the
physical address of the code byte. (a) Diagram.
(b) Computation.

segment register holds the upper 16 bits of the starting
address of the segment from which the BIU is currently
fetching instruction code bytes. The Instruction pointer
register holds the 16-bit address, or offset, of the next
code byte within this code segment. The value contained
in the IP is referred to as an offset because this value
must be offset from (added to) the segment base address
in CS to produce the required 20-bit physical address
sent out by the BIU. Figure 2-lOa shows in diagram
form how this works. The CS register points to the base
or start of the current code segment. The IP contains
the distance or offset from this base address to the next
instruction byte to be fetched. Figure 2-lOb shows how
the 16-bit offset in IF is added to the 16-bit segment
base address irs CS to produce the 20-bit physical
address. Notice that the two 16-bit numbers are not
added directly In line, because the CS register contains
only the upper 16 bits of the base address for the code
segment. As we said beforç. the BIU automatically inserts
zeros for the lowest 4 bits of the segment base address.

If the CS register. for example, contains 348A1-l. you
know that the starting address for the code segment is
348A0H. When the BIU adds the offset of 4214H in the
IP to this segment base address, the result is a 20-bit
physical address of 38A134H.

An alternative way of representing a 20-bit physical
address is the segment base:offsetform. For the address
of a code byte. the formal for this alternative form will
be CSlP. As an example of this. the address constructed
in the preceding paragraph. 38AB4H, can also be repre-
sented as 348A42l4.

To summarize, then, the CS register contains the
upper 16 bIts of the starling address of the code segment
in the l . Mbyte address range of the 8086. The inst rue-
lion pointer register contains a 16'bit oliset which

tells where in that 64-Kbyte code segmeni the next
Instruction byte Is to be fetched from. The actual physical
address sent to memory Is produced by adding the
offset contained in the IP register to the segment base
represented by the upper 16 bits in the CS register.

Any time the 8086 accesses memory, the BIU produces
the required 20-bit physical address by adding an offset
to a segment base value represented by the contents of
one of the segment registers. As another example of this.
let's look at how the 8086 uses the contents of the stack
segment register and the contents of the stack pointer
register to produce a physical address,

STACK SEGMENT REGISTER AND
STACK POINTER REGISTER

A stack, remember, is a section of memory set aside
to store addresses and data while a subprogram is
executing. The 8086 allows you to set aside an entire
64-Kbyte segment as a stack. The upper 16 bits of the
starting address for this segment are kept in the stack
segment register. The stack pot nter (SP) register in the
execution unit holds the 16-bit offset from the start of
the segment to the memory location where a word was
mot recently stored on the stack. The memory location
wbere a word was most recently stored is called the top
of stack. Figure 2-1 Ia shows this in diagram form.

The physical address for a stack read or a stack write
is produced by adding the contents of the stack pointer
register to the segment base address represented by the
upper 16 bits of the base address in SS. Figure 2-1 lb
shows an example. The 50001-I In SS represents a
segment base address of 50000H. When the FFEOI-i in
the SF is added to this. the resultant physical address
for the top of the stack will be 5FFEOI-I. The physical
address can be represented either as a single number.
5FFEOH. or in SS:SP form as 5000:FFEOH.

PHYSICAL	 MEMORY
ADDRESSES

5FFFFH - _______ - END OF STACK SEGMENT
5FFEOH_[.	-TOPOFSTACK

SF FFEOH

5ORi _______ - START OF STACK SEGMENT
SS - 50001-I

HAROWIRED
/ ZERO

	

SS	 5 0 0 0 0

	

SP	 F F E 0

	

PHYSICAL ADDRESS	 Is F F E 0
ITO P OF STACKI

lb I

FIGURE 2-11 Addition of 55 and SF to produce the
physical address of the top of the stack. (a) Diagram.
(b) Computation.

(O,\IPI;T[RS. MI(ROCOMPUTERS AND MICROPROCES,ORS— AN INTRODUC1 ION 	 31

The operauon and use of the stack will be discussed
in detail later as need arises.

POINTER AND INDEX REGISTERS IN THE
fXECUTION UNIT
in addition to the stack pointer register ISP), the EU
contains a 16-bit bo..se pointer (BP) register. It also
contains a 16-bit source Index (SI) register and a 16-bit
destination index (DI) register. These three registers
can be used for temporary storage ol data just as
the general-purpose registers described above. However.
their main use is to hold the 16-bit offset of a data word
in one of the segments. SI, for example, can be used to
hold the offset of a data word In the data segment. The
physical address of the data in memory will be generated
in this case by adding the contents of SI to the segment
base address represented by the 16-bit number in the
DS register. After we give you an overview of the different
levels of languages used to program a microcomputer,
we will show you some examples of how we tell the 8086
to read data from or write data to a desired memory
location.

INTRODUCTION TO PROGRAMMING
THE 8086

Programming Languages

Now that you have an overview of the 8086 CPU. it Is
time to start thinking about how it is programmed. To
run a program, a microcomputer must have the program
stored in binary form in successive memory locations,
as shown in Figure 2-12. There are three language levels
that can be used to write a program for a microcomputer.

MACHINE LANGUAGE
You can wiite programs as simply a sequence of the
binary codes for the instructions you want the micro-
computer to execute. The three-instruction program in
Figure 2-6b is an example. This binary form of the
program is referred to as machine language because it
is the form required by the machine. However, it is
difficult, if not impossible, for a programmer to memo-
rize the thousands of binary instruction codes for a CPU
such as the 8086. Also. it is very easy for an error to
occur When working with long series of is and 0's.
Using hexadecimal representation for the binary codes
might help some, but there are still thousands of Instruc-
tion codes to cope with.

ASSEMBLY LANGUAGE
To make programming easier, many programmers write
programs in assembly language. They then translate

LABEL OP CODE OPERAND 	 COMMENT
[FIELD	 FIELD	 FIELD	 FIELD

L T :	 ADD	 AL. 07H	 ADD CORRECTION FACTOR

FIGURE 2-12 Assembly language program statement
format.

the assembly language program to machine language so
that it can be loaded into memory and run. Assembly
language uses two-, three-, or four-letter mnemonics to
represent each instruction type. A mnemonic is Just a
device to help you remember something. The letters in
an assembly language mnemonic are usually initials or
a shortened form of the English word(s) for the operation
performed by the instruction. For example, the mne-
monic for subtract is SUB, the mnemonic for Exclusive
OR is XOR. and the mnemonic for the instruction to
copy data from one location to another is MOV.

Assembly language statements are usually written in
a standard form that has fourfields. as shown in Figure
2-12. The first field in an assembly language statement
Is the labeljietd. A label isa symbol or group of symbols
used to represent an address which is not specifically
known at the time the statement is written. Labels are
usually followed by a colon. Labels are not required in a
statement. theyarejust Inserted where they are needed.
We will show later many uses of labels.

The opcode field of the instruction contains the
mnemonic for the Instruction to be performed. Instruc-
tion mnemonics are sometimes called operation codes,
or opcodes. The ADD mnemonic in the example State-
ment in Figure 2-12 Indicates that we want the instruc-
tion to do an addition.

The operand field of the statement contains the data.
the memory address, the port address, or the name of
the register on which the instruction is to be performed.
Operand is Just another name for the data item(s) acted
on by an instruction. In the example instruction in
Figure 2-12, there are two operands. AL and 07H,
specified in the operand field, AL represents the AL
register, and 07H represents the number 07H. This
assembly language statement thus says, 'Add the num-
ber 07H to the contents of the AL register.' By Intel
convention, the result of the addition will be put In the
register or the memory location specified before the
comma in the operand field. For the example statement
in Figure 2-12. then. the result will be left in the AL
register. As another example, the assembly language
statement ADD BH. AL, when converted to machine
language and run, will add the contents of the AL register
to the contents of the BH register. The results will be
left in the BH register.

The final field In an assembly language statement such
as that in Figure 2-12 is the corn rnentfleld, which starts
with a semicolon. Comments do not become part of the
machine language program; but they are very important.
You write comments in a program to remind you of the
function that an instruction or group of instructions
performs in the program.

To summarize why assembly language is easier to use
than machine language, let's look a little mor€ closely at
the assembly language ADD statement. The general
format of the 8086 ADD instruction is

ADD destination, source

The source can be a number written in the Instruction.
the contents of a specified register, or the contents of a
memory location. The destination can be a specified
register or a specified memory location. However, the

32	 CHAPTER iWO

source and the destination in an instruction cannot
both be memory locations.

A later Section on 8086 addressing modes will show
all the ways in which the source of an operand and the
destination of the result can be specified. The point here
is that the single mnemonic ADD, together with a
specified source and a specified destination, can repre-
sent a great many 8086 instructions in an easily under-
standable form.

The question that may occur to you at this point is.
"If! write a program in assembly language. how do I get
it translated into machine language which can be loaded
into the microcomputer and executed?' There are two
answers to this question. The first method of doing the
translation is to work out the binary code for each
instruction a bit at a time using the templates given in
the manufturer's data books. We will show you how
to do this in the next chapter, but it is a tedious
and error.prone task. The second method of doing the
translation is with an assembler. An assembler is a
program which can be run on a personal computer or
micrccomputer development system. It reads the file of
assembly language instructions you write and generates
the correct binary code for each. For developing all but
the simplest assembly language programs. an assembler
and other program development tools are essential. We
will introduce you to these program development tools
in the next chapter and describe their use throughout
the rest of this book.

HlGH-LEVE IANGUAGES

Another way of writing a program for a microcomputer
is with a high-level language, such as BASIC. Pascal,
or C. These languages use program statements which
are even more English-like than those of assembly
language. Each high . level statement may represent
many machine code instructions. An interpreter pro-
gram or a compiler program is used to translate higher-
level language statements to machine codes which can
be loaded Into memory and executed. Programs can
usually be written faster In high-level languages than
in assembly language because the high-level language
works with bigger building blocks. However, programs
written in a high-level language and interpreted or
compiled almost always execute more slowly and require
more memory than the same programs written in assem-
bly language. Programs that Involve a lot of hardware
control, such as robots and factory control systems, or
programs that must run as quickly as possible are
usually best written in assembly language. Complex data
processing programs that manipulate massive amounts
of data. such as insurance company records, are usually
best written in a high-level language. The decision
concerning which language to use has recently been
made more difficult by the fact that current assemblers
allow the use of many high-level language features, and
the fact that some current high . level languages provide
assembly language features.

OUR CHOICE

For most of this book we work very closely with hardware.
so assembly language is the best choice. In later chap-

ters, however, we do show you how to write programs
which contain modules written In assembly language
and modules written in the high-level language C. In the
next chapter we introduce you to assembly language
programming techniques. Before we go on to that,
however, we will use a few simple 8086 instructions to
show you more about accessing data in registers and
memory locations.

I-low the 8086 Accesses Immediate
and Registe r Data

In a previous discussion of the 8086 13W. we described
how the 8086 accesses code bytes using the contents of
the CS and lP registers. We also described how the 8086
accesses the stack using the contents of the SS and SP
registers. Before we can teach you assembly language
programming techniques, we need to discuss some of
the different ways in which an 8086 can access the data
that it operates on. The different ways in which a
processor can access data are referred to as its ad-
dressing modes. In assembly language statements, the
addressing mode is indicated in the instruction. We will
use the 8086 MOV Instruction to illustrate some of the
8086 addressIng modes.

The MOV instruction has the format

MOV destination, source

When executed, this instruction copies a word or a
byte from the specified source location to the specified
destination location. The source can be number writ-
ten directly in the instruction, a specifid register, or a
memory location specified In 1 of 24 different ways. The
destination can be a specified register or a memory
location specified In any 1 of 24 different ways. The
source and the destination cannot both be memory
locations in an instruction.

IMMEDIATE ADDRESSING MODE

Suppose that in a program you need to put the number
437BH in the CX register. The MOV CX. 437131-I Instruc-
tion can be used to do this. When it executes, this
instruction will put the immediate hexadecimal number
437BH in the 16-bit CX register. This is referred to as
immediate addressing mode because the number to be
loaded into the CX register will be put in the two memory
locations immediately following the code for the MOV
instruction. This is similar to the way the port address
was put in memory immediately after the code for the
input instruction in the three-instruction program In
Figure 2-fib.

A similar instruction. MOV CL, 48H, could be used to
load the 8-bit immediate number 48H into the 8-bit CL
register. You can also write instructions to load art 8-
bit immediate number into an 8-bit memory location or
to load a 16-bit number into two consecutive memory
locations, but we are not yet ready to show you how to
specify these.

REGISTER ADDRESSING MODE

Register addressing mode means that a register is the
source of an operand for an instruction. The Instruction

COMPUTERS, MICROCOMPUTERS, AND MICROPROCESSORS—AN INTRODUCTION 	 33

MOV CX. AX. for example, copies the contents of the 16-
bit AX register into the lb-bit CX register. Reineriibe
that the destination location is specified in the instruc. -
tion before the comma, and the source is specified after
the comma. Also note that the Contents of AX are Just
copied to CX. not actually moved. In other words.
the previous contents of CX are written over, but the
contents of AX are not changed. For example, if CX
contains 2A84H and AX contains 4971 H before the MOV
CX, AX instruction executes, then after the instruction
executes, CX will contain 4971 H and AX will still contain
4971Ff. You can May any 16-bit register to any 16-bit
register. or you can MOV any 8-bit register to any 8-bit
register. However, you cannot use an instruction such
as MOV CX. AL because this is an attempt to copy a
byte-type operand (AL) Into a word-type destination
(CX). The byte In AL would fit In CX. but the 8086 would
not know which half of CX to put it in. If you try to write
an instruction like this and you are using a good
assembler, the assembler will tell you that the instruc-
tion contains a type error. To copy the byte from AL to
the high byte of CX. you can use the instruction MOV
CH. AL. To copy the byte from AL to the low byte of CX.
you can use the Instruction MOV CL. AL.

Accessing Data in Memory

OVERVIEW OF MEMORY ADDRESSING MODES

The addressing modes described In the following sec-
tions are used to specify the location of an operand in
memory. To access data in memory, the 8086 must also
produce a 20-bit physical address. It does this by adding
a 16-bit value called the effective address to a segment
base address represented by the 16-bit number in one
of the four segment registers. The effective address (EA)
represents the displacement or offset of the desired
operand from the segment base. In most cases, any of
the segment bases can be specified, but the data segment
is the one most often used. Figure 2-13a shows in
graphic form how the EA is added to the data segment
base to point to an operand In memory. Figure 2-13b
shows how the 20-bit physical address is generated by
the BIU. The starting address for the data segment in
Figure 2-13b Is 2000011. so the data segment register
will contain 2000Ff. The BIU adds the effective address.
437AH. to the da('a segment base address of 2000011 to
produce the physical address sent Out to memory. The
20-bit physical address Sent out to memory by the BIU
will then be 2437AH. The physical address can be
represented either as a single number 2437AH or in the
segment baseoffset form as 2000:437AH.

The execution unit calculates the effective address
for an operand using information you specify in the
instruction. You can tell the EU to use a number in the
instruction as the effective address, to use the Contents
of a specified register as the effective address, or to
compute the effective address by adding a number in
the instruction to the contents of one or two specitied
registers. The following section descnbcs one way you
cart tell the execution unit to calculate an effective
address. In later chapters we show other wa ys of speci-
fying the effective address. Later we also show how the

PHYSICAL
ADDRESSES

MEMORY

F DATA SEGMENT2FFFFH-

EX REGISTER

ELBH	

MOV BX, (437AH1
24378H
2437AH

EA 437AH

2OOOOH-1-..	 —START OF DATA SEGMENT
OS 2000H

	

it	
HAROWIRED
ZERO

	

OS	 12 0 0 0 0

	

EA	 4 3 7 A

	

PHYSICAL ADDRESS	 2 4 3 7 A

(hi

FIGURE 2-13 Addition of data segment register and
effective address to produce the physical address of the
data byte. (a) Diagram. (b) Computation.

addressing modes this provides are used to solve some
common programming problems.

DIRECT ADDRESSING MODE

For the simplest memory addressing mode, the effective
address is Just a 16-bit number written directly in the
instruction. The instruction MOV BL, 1437AH1 is an
example. The square brackets around the 137.'J4 are
shorthanc. for LE,C cc atents of the memory !ocatk.n(s)
at a displacement from the segment base of." When
executed, this Instruction will copy "the contents of
the memory location at a displacement from the data
segment base of "437AH into the 13L register, as shown
by the rightmost arrow in Figure 2-13a. The BIU calcu-
lates the 20-bit physical memory address by adding the
effective address 437AH to the data segment base, as
shown in Figure 2-13b. This addressing mode is called
direct because the displacement of the operand from the,
segment base is specified directly in the instruction.
The displacement iii the instruction will be added to the
data segment base in DS unless you tell the BIU to add
it to some other segment base. Later we will show you
how to do this.

Another example of the direct addressing mode is the
instruction MOV BX. 1437AH1. When executed, this
instruction copies a 16-bit word from memory into the
BX register. Since each memory address of the 8086
represents a byte ol storage. the word must come from
two memory locations. The byte at a displacement of
437AH from the data segment base will be copied into
13L. as shown by the right arrow in Figure 2-l3a.
The contents of the next higher address, displacement
43713H. will be copied into the RH register. as shown by
the left arrow tn Figure 2-13a. Front the Instruction

34	 CHAPTER IWO

coding, the 8086 will automatically determine the num-
ber of bytes that it must access In memory.

An important point here is that an 8086 always stores
the low byte of a word in the lower of the two addresses
and stores the high byte of a word in the higher address.
To stick this In your mind, remember:

Low byte—low address, high byte—high address

The previous two examples showed how the direct
addressing mode can be used to specify the source of
an operand. Direct addressing can also be used to
specify the destination of an operand in memory. The
instruction MOVE437AHI. BX. for example. will copy the
contents of the BX register to two memory locations in
the data segment. The contents of BL will be copied to
the memory location at a displacement of 437AH. The
Contents of Bi I will be copied to the memory location at
a displacement of 437BH. This operation is represented
by simply reversing the direction of the arrows in Figure
2-13a.

NOTE: When you are hand -coding programs us-
ing direct addressing of the form shown above.
make sure to put in the square brackets to remind
you how to code the instruction. If you leave the
brackets out of an instruction such as MOV BX,
1437AF11. you will code it as ifit were the Instruction
MOV BX, 437AH. This second instruction will load
the immediate number437AH into RX. rather than
loading a word from memory at a displacement of
437AH into FIX. Also note that if you are writing
an instructiQn usingdirect addressing such as this
for an assembler, you must write the instruction In
the form MOV BL, DS:BYTE PTh l437A1-II to give
the assembler all the information It needs. As we
will show you in the next chapter. when you are
using art assembler, you usually use a name to
represent the direct address rather than the actual
numerical value.

A FEW WORDS ABOUT SEGMENTATION

At this point you may be wondering why Intel designed
the 8086 family devices to access memory using the
segmentofiset approach rather ihan accessing memory
directly with 20-bit addresses. The segment:oufset
scheme requires only a IS-bit number to represent the
base address for a segment, and only a 16-bit offset to
access any location In a segment. This means that the
8086 has to manipulate and store onl y 16-bit quantities
instead of 20-bit (luafli it ics. l'hts rn,rkes for an easier
interlace with 8- and 16-hit-wide merliorv boards and
with the 16-hit registers iii the 8086.

The second reason fur sign ten tat Ion has to do with
the t ype of miirocolnputer in which an 8086-faniilv (PU
is likel y to be used. A previous sel-ii&in of this chapter
described briullv the uper,u 00 ul .1 timesharing titero-
corliputer svsteIlI o a I irtiesharirig s ystem, several users
share ,i The ('I'U works ott c,ne users program for
pr-rh,ij,s 20 ins. ilati works on the next user's program
t'or 20 tts. Alter working 20 nis for catch of the other
users the (lb conies ho-k to liii' lirsi users prni4rant

again. Each time the CPU switches from one user's
program to the next. it must access a new section of
code and new sections of data. Segmentation makes
this switching quite easy. Each user's program can be
assigned a separate set of logical segments for its code
and data. The user's program will contain offsets or
displacements from these segment bases. To change
from one user's program to a second user's program. all
that the CPU has to do is to reload the four segment
registers with the segment base addresses assigned to
the second user's program. In other words, segmentation
makes it easy to keep users' programs and data separate
from one another, and segmentation makes it easy
to switch from one user's program to another user's
program. In Chapter 15 we tell you much more about
the use of segmentation in multiuser systems.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

II you do not remember any of the terms or concepts in
the following list, use the index to find them in the
chapter.

Microcomputer, microprocessor

Hardware, software, firmware

Timesharing computer system

Multitasking computer system

Distributed processing system

Multiprocessing

CPU

Memory, RAM. ROM

t/O ports

Address, data, and control buses

Con trol bus signals

A1.0

Segmentation

Bus interface unit (EliUl
Instruciton byte queue, pipciiiting,
ES. CS. SS, OS registers. IP register

Execution unit (EUI
AX. HX, CX. DX registers. flag register.
Ai.U. SI'. BP. SI. Di registers

Machine language, asscaiablv language. high . level Ian'
guagi'

.Itietuuiiie. oI)esli- upertiid. label. comment

Assembler. coot pi kr

Iinanediatc address ioode, register ,iddress mode direct
ad (tress I node

[flee II t address

ii k'	 \iIt ki)(I)\ii tIks. A\i) lI(R(iPkM(s5OR5	 N \tNOt)U(tlO	 35
'-7

REVIEW QUESTIONS AND PROBLEMS

I. Describe the main advantages of a distributed
processing computer system over a simple time-
sharing system.

2. Describe the sequence of signals that occurs on the
address bus, the control bus, and the data bus when
a simple microcomputer fetches an instruction.

3. What determines whether a mIcroprocessor is con-
sidered an 8-bit, a 16-bit, or a 32-bit device?

4. a. How many address lines does an 8086 have?
b. How many memory addresses does this number

of address lines allow the 8086 to access di-
rectly?

C. At any given time, the 8086 works with four
segments in this address space. How many
bytes are contained in each segment?

5. What is the main difference between the 8086 and
the 8088?

6. a. Describe the function of the 8086 queue.
b. How does the queue speed up processing?

7. a If the code segment for an 8086 program starts
at address 7040011, what number will be in the
CS register?

b. Assuming this same code segment base, what
physical address will a code byte be fetched from
if the instruction pointer contains 539CH?

N. What physical address is represented by:
a. 4370:56IEH
b. 7A32:0028H

9. What is the advantage of using a CPU register
for temporary data storage over using a memory
location?

10. If the stack segment register contains 3000H and

the stack puinter reglstcr contains 843411. what is
the physical address of the top of the stack?

ii. a. What is the advantage of using assembly lan-
guage instead of writing a program directly in
machine language?

b. Describe the operation an 8086 wIll perform
when it executes ADD AX. BX.

12. What types of programs are usually written in
assembiy language?

13. Describe the operation that an 8086 will perform
when it executes each of the following instructions:
a. MOV BX, O3FFH
b. MOVAL,ODBI-1
C. MOVDH.CL
d. MOVBX.AX

14. Write the 8086 assembly language statement which
will perform the following operations:
a. Load the number 798611 into the BP register.
b. Copy the lIP register contents to the SP register.
c. Copy the contents of the AX register to the DS

register.
ci. Load the number F3H into the AL register.

IS. If the 8086 execution unit calculates an effective
address of I4A3H and DS contains 7000H, whal
physical address will the BIU produce?

16. If the data segment register (DS) contains 4000H,
what physical address will the instruction MOVAL,
1234B111 read?

i7. If the 8086 data segment register contains 70001-i,
write the instruction that will copy the contents of
DL to address 74B2CF{.

18. Describe the difference between the instructions
MOV AX, 2437H and MOV AX, [2437111.

36	 CHAPTF

8086 Family Assembly Language
Programming - Introduction

The last chapter showed you the format for assembly
language Instructions and Introduced you to a few 8086
instructions. Developing a program. however, requires
more than Just writing down a series of Instructions.
When you want to build a house, It isa good Idea to first
develop a complete set of plans for the house. From the
plans you can see whether the house has the rooms you
need, whether the rooms are efficiently placed, and
whether the house is structured so that you can easily
add on to it If you have more kids. You have probably
seen examples of what happens when someone attempts
to build a house by just putting pieces together without
a plan.

Likewise, when you write a computer program. It Is a
good idea to start by developing a detailed plan or outline
for the entire program. A good outline helps you to break
down a large and seemingly overwhelming programming
job Into small . modules which can easily be written.
tested, and debugged. The more time you spend organlz'
Ing your programs. the less time It will take you to write
and debug them. You should never start writing an
assembly language program by Just writing down in-
structions! in this chapter we show you how to develop
assembly language programs In a systematic way.

OBJECTIVES
At the conclusion of this chapter. you should be able to:

I. Write a task list, flowchart, or pseudocode for a
simple programming problem.

2. Write. code or assemble, and run a very simple
assembly language program.

3. Describe the use of program development tools such
as editors, assemblers, linkers, locators, debuggers.
and emulators.

4. Properly document assembly language programs.

PROGRAM DEVELOPMENT STEPS

Defining the Problem

The first step In writing a program is to think very
carefully about the problem that you want the program

to solve. In other words, ask yourself many times. What
do I really want this program to do? If you don't do this,
you may write a program that works great but does not
do what you need it to do. As you think about the
problem. It is a good Idea to write down exactly what
you want the program to do and the order in which you
want the program to do it. At this point you do not write
down program statements, you just write the operations
you want in general terms. An example for a simple
programming problem might be

1. Read temperature from sensor.

2. Add correction factor of + 7.

3. Save result in a memory location.

For a program as simple as this, the three actions
desired are very close to the eventual assembly language
statements. l'or more complex problems. however, we
develop a more extensive outline before writing the
assembly language statements. The next section shows
you some of the common ways of representing program
operations in a program outline.

Representing Program Operations

The formula or sequence of operations used to solve a
programming problem is often called the algorithm of
the program. The following sections show you two
common wa ys of representing the algorithm for a pro-
gram or program segment.

FLOWCHARTS

If you have done any previous programming In BASIC or
in FORTRAN. you are probably familiar withflowcharts.
Flowcharts use graphic shapes to represent different
types of program operations. The specific operation
desired Iswritten in thegraphicsymbol. Figure 3-1. p.38.
shows some of the common flowchart symbols. Plastic
templates are available to help you draw these symbols
if you decide to use them for your programs.

Figure 3-2. p. 38. shows a flowchart for a program to
read in 24 data samples from a temperature sensor at
1-hour Intervals, add 7 to each, and store each result
in a memory location. A racetrack- or circular.shaped
symbol labeled START Is used to indicate the beginning

37

'T 7H & S
OF •AGICCNPi(CtOq

co,o

FIGURE 3-1 Flowchart symbols.

of the program. A parallelogram is used to represent an
input or an output operation. In the example, we use it
to indicate reading data from the temperature sensor.
A rectangular box symbol is used to represent simple
operations other than input and output operations. The
box containing 'add 7 in Figure 3-2 is an example.

A rectangular box with double lines at each end Is
often used to represent a subroutine or procedure that
will be written separately from the main program. When
a Set of operations must be done several times during a
program, it is usually more efficient to write the series
of operations once as a separate subprogram, then Just
cail" this subprogram each time it is needed. For

example, suppose that there are several places in a
program where you need to compute the square root of
a number. Instead of writing the series of instructions
for computing a square root each rime you need it In

ART

(READ VALUE
FROM SENSOR

ADD 7

STORE RESULT
IN MEMORY

WAIT 1 HOUR

24
SAMPL,,)

sfl
FIGURE 3-2 Flowchart (or program to read in 24 data
samples Irom a port, Correct each value, and store each
in a. memory location.

the program, you can write the instruction sequence
once as a separate procedure and put it in memoly after
the main program. A special instruction allows you to
call this procedure each time you need to compute a
square root. Another special instruction at the end of
the procedure program returns execution to the main
program. In the flowchart in Figure 3-2, we use the
double-ended box to indicate that the wait 1 hour"
operation will be programmed as a procedure. Inciden-
tally. the terms subprogram, subroutine, and procedure
all have the same meaning. Chapter 5 shows how
procedures are written and used.

A diamond-shaped box is used In flowcharts to repre-
sent a decision point or crossroad. Usuaily it indicates
that some condition is to be checked at this point in the
program. lithe condition is found to be true, one set of
actions is to be done: if the Condition is found to be
false, another set of actions is to be done. in the example
flowchart in Figure 3-2. the condition to be checked is
whether 24 samples have been read in and processed.
1124 Samples have not been read in and processed, the
arrow labeled NO in the flowchart indicates that we want
the computer to jump back and execute the read, add.
store, and wait steps again. If 24 samples have been
read in. the arrow labeled YES in the flowchart of Figure
3-2 indicates that all the desired operations have been
done. The racetrack-shaped symbol at the bottom of the
flowchart Indicates the end of the program.

The two additional flowchart symbols in Figure 3-I
are connectors. If a flowchart column gets to the bottom
of the paper, but not all the program has been repre-
sented. you can put a small circle with a letter in it at
the bottom of the column, You then start the next
Column at the top of the same paper with a small circle
containing the same letter, If you need to continue a
flowchart to another page. you can end the flowchart on
the first page with the five-sided off .page connector
symbol containing a letter or number. You then start
the flowchart on the next page with an off-page connector
symbol containing the same letter or number.

Forsimple programs and program sections, flowcharts
are a graphic way of showing the operational flow of the
program. We will show flowcharts for many of the
program examples throughout ihis book. Flowcharts,
however, have several disadvantages. First, you can't
write much information in the little boxes. Second,
flowcharts do not present information in a very compact
form. For more complex problems, flowcharts tend to
spread out over many pages. l'hev are very hard to
follow back and forth between pages. Third, and most
important, with flowcharts the overall structure of the
program tends to get lost in the details l'hc following
Section describes a more clearly structur,'iI .111(1 coqipaci
incthod of representing the algorithm : , prigram or
program segment.

STRUCTURED PROGRAMMI,\c, '\ND
PSEUDOCOEJE OVERVIEW

In the early days of computers, a single brilliant person
might write even a large program single-handedly. The
main concerns in this case were. "Does th program
work?" and "What do we do if this person leaves the

38	 CHAPTER THREE

company? As the number of computers increased and
the complexity of the programs being written increased.
large programming jobs were usually turned over to a
team of programmers. In this case the compatibility
of parts written by different programmers became an
important concern. During the 1970s it became obvious
to many professional programmers that in order for
team programming to work, a systematic approach and
standardiLed tools were absolutely necessary.

One sug,gested systematic approach is called lop-down
design. In this approach. a large programming problem
is first divided into major modules. The top level of the
outline shows the relationship and function of these
modules. This top ievel then presents a one-page over-
view of the entire program. Each of the major modules
is broken down into still smaller modules on following
pages. The division is continued until the steps in each
module are Clearly understandable. Each programmer
can then be assigned a module or set of modules to write
for the program. Another advantage of this approach is
that people who later want to learn about the program
can start with the overview and work their way down to
the level of detail they need. This approach is the same
as drawing the complete plans for a house before starting
to build it,

The opposite of top-down design is bottom . up design.
In this approach, each programmer starts writing low-
level modules and hopes that all the pieces will eventually
fit together. When completed, the result should be
similar to that produced by the top-down design. Most
modern programming teams use a combination of the
two techniques. They do the top-down design first, then
build, test, and link modules starting from the smallest
and working upward.

The development of standard programming methods
was helped by the discovery that any desired program
operation could be represented by three basic types of
operation, The first type of operation is sequence, which
means simply doing a series of actions. The second basic
type of operation is decision, or selection, which means
choosing between two alternative actions. The third
basic type of operation is repetition, or iteration, which
means repeating a series of actions until some condition
is or is not present.

On the basis of this observation, the suggestion was
made that programmers use a set of three to seven
standard structures to represent all the operations in
their programs. Actually, only three structures. SE-
QUENCE. IF-THEN-ELSE, and WHILE-DO, are required
to represent any desired program action, but three or
four more structures derived from these often make
programs clearer. If you have previously written pro-
grams in a structured language such as Pascal. then
these structures are probably already familiar to you.
FIgure 3-3. p. 40, uses flowchart symbols to represent
the commonly used structures so that you can more
easily visualize their operation. In actual program docu-
mentation. however, English-like statements called
pseudocode are used rather than the space-consuming
flowchart symbols. Figure 3-3 also shows the pseudocode
format and an example for each structure.

Each structure has Only one entry point and one exU
point. Asyou will see later, this feature make', debugging

the final program much easier. The output of one
Structure is connected to the input of the next structure.
Program execution then pr,oceeds through a series of
these structures.

Any structure can be used within another. An IF-
THEN-ELSE structure, for example, can contain a se-
quence of statements. Any place that the term state-
ment(s) appears in Figure 3-3. one of the other struc-
tures could be substituted for it. The term statement(s)
can also represent a subprogram or procedure that is
called to do a series of actions. Now, let's look more
closely at these structures.

STANDARD PROGRAMMING STRUCTURES

The structure shown in Figure 3-3a is an example of a
simple sequence. In this structure, the actions are
simply written down in the desired order, An example
is

Read temperature from sensor.

Add correction factor of + 7.

Store corrected value in memory.

Figure 3-3b shows an IF-THEN-ELSE example of the
decision operation. This structure is used to direct
operation to one of two different actions based on some
condition. An example is

IF temperature less than 70 degrees THEN
Turn on heater

ELSE
Turn off heater

The example says that if the temperature is below the
thermostat setting. we want to turn the heater on. lithe
temperature is equal to or above the thermostat setting.
we want to turn the heater off.

The IF-THEN Structure shown in Figure 3-3c is the
same as the IF-THEN-ELSE except that one of the paths
contains no action. An example of this is

IF hungry THEN
Get food

The assumption for this example Is that if you are not
hungry. you will just continue on with your next task.

To represent a situation in which you want to select
one of several actions based on some condition, you can
use a nested IF-THEN-ELSE structure such as that
shown in Figure 3-3d. This everyday example describes
the thinking a soup cook might go through. Note that
in this example the last IF-THEN has no ELSE after it
because all the possible days have been checked. You
can. if you want, add the final ELSE to the IF-THEN-
ELSE chain to send an error message if the data does
not match any of the choices.

The CASE structure shown in Figure 3-3e is really
just a compact way to represent a complex IF-THEN-
ELSE structure. The choice of action is determined by
testing some quantity. The cook or the computer checks
the value of the variable called day and selects the

O8 FAMILY ASSEMBLY LANGUAGE PROGRAMMING—INTROOUCTION 	 39

SIMPLE SEQUENCE FLOWCHART	 IF-THEN-ELSE FLOWCHART
	 IF-THEN FIUW(HART

ST AT EME NT) SI I
	 YOiTIONN2

	
CONDITION NO

YES	 -

STATEMENT(S12
	

STATEHENT(S)I I 	 I STATEMENTISI2
	 STATEMENT(S)

PS U OC CD
	

PSEUDOCODE
STATEMENTIS)1	 IF cOFDI1IO THEN
STATEMENT(S)2
	

STATEMENT(S) I
ELSE

STATE ME NT (S(2
EXAMPLE
	

EXAMPLE
GET DATA SAMPLE
	 IF ROOM TEMPERATURE LESS THAN SET POINT THEN

ADD 7
	

TURN ON FURNACE
STORE IN MEMORY LOCATION

	
ELSE

TURN OFF FURNACE

(b)

CASE EXPRESSEO AS MULTIPLE IF-THEN-ELSE FLOWCHART

PSEUDOCODE
IF CONOITION THEN

STATEMENT(S)

EXAMPLE
IF HUNGRY THEN

GET FOOD

Id
CASE FLOWCHART

SELECTING EXPRESSION

PSEUDOCODE
IF MONDAY THEN

MAKE CELERY SOUP
ELSE IF TUESDAY THEN

MAKE MINESTRONE SOUP
ELSE IF WEDNESDAY THEN

MAKE ONION SOUP

ELSE IF SUNDAY THEN
MAKE MUSHROOM SOUP

Id)

WHILE-DO LOOP FLOWCHART

CONOITIO2

STATEMENT(S)

PSEUDOCODE	 EPLE
WHILE CONDITION DO	 WHILE MONEY LASTS DO

STATEMENT(S)	 EAT SUPPER OUT
GO TO MOVIE
TAKE TAXI (IOME

STATEMENT(S)) I I STATEMENT(S12 I • I STATEMENTISIN

PSEUDOCODE
CASE EXPRESSION OF

1: STATEMENTISI1
2: STATEMENT(S12

N; STATEMENTISIN
EXAMPLE

CASE DAY OF
MONDAY:

MAKE CELERY SOUP
TUESDAY;

MAKE MINESTRONE SOUP
WEDNESDAY:

MAKE ONION SOUP

SUNDAY
MAKE MUSHROOM SOUP

REPEAT-UNTIL FLOWCHART

MENT

CONDITION
EXAMPLE

REPEAT
GET DATA SAMPLE
ADD 7
STORE RESULT IN MEMORY

	

PSEUDOCODE	 WAIT I HR

	

REPEAT	 UNTIL 24 SAMPLES TAKEN
STAT EM E NT (SI

UNTIL CONDITION

If)	 (9)

FIGURE 3-3 Standard program structUres. (a) Sequence. (b) IF-THEN-ELSE.
(c) IF-THEN. (d) CASE expressed as nested IF-THEN-ELSE. (e) CASE. (1) WHILE-DO.
(g) REPEAT-UNTIL

40	 CHAPTER THREF

appropriate actions for that day. Each of the indicated
actions, such as "Make celery soup." Is itself a sequence
of actions which could be represented by the structures
we have described. Note that the CASE structure does
not contain the final ELSE for an error.

The CASE form is more compact for documentation
purposes, and some high-level languages such as Pascal
allow you to implement it directly. However, the nested
IF-THEN-ELSE structure gives you a much better idea
of how you write an assembly language program section
to choose between several alternative actions.

The WHILE-DO structure in Figure 3-3J Is one form
of repetition. It is used to indicate that you want to do
some action or sequence of actions as long as some
condition is present. This structure represents a pro-
gram loop. The example in Figure 3-3f is

WHILE money lasts DO
Eat supper out.
Go to movie.
Take a taxi home.

This example shows a sequence of actions you might do
each evening until you ran out of money. Note that in
this structure, the condition is checked before theactlon
is done the first time. You certainly want to check how
much money you have before eating out.

Another useful repetition structure is the REPEAT-
UNTIL structure shown In FIgure 3-3g. You use this
structure to indicate that you want the program to
repeat some action or series of actions until some
condition is present. A good example of the use of this
structure Is the programming problem we used in the
discussion of flowcharts. The example Is

REPEAT
Get data sample from sensor.
Add correction of + 7.
Store result in a memory location.
Wait 1 hour.

UNTIL 24 samples taken.

Note that in a REPEAT-UNTIL structure, the action(s)
is done once before the condition is checked. If you want
the condition to be checked before any action is done.
then you can write the algorithm with a WHILE-DO
structure as follows:

WHILE NOT 24 samples DO
Read data sample from temperature sensor
Add correction factor of -i- 7.
Store result in memory location.
Wait I hour,

Remember, a REPEAT-UNTIL structure indicates that
the condition is fIrst checked alter the statement(s) is
performed, so the action or scries of actions will always
be done at least once. If you dont want this to happen,
then use the WlllI,E . 1)O, which indicates that the condi-
ion is checked before an y act ion is taken - As will

show later, the structure you use makes a difference in
the actual assembl y language program You Write to
implctnertt it.

The WHILE-DO and REPEAT-UNTIL Structures con-
tain a simple IF-THEN-ELSE decision operation. How-
ever, since this decision is an Implied part of these two
structures, we don't Indicate the decision separately in
them,

Another form of the repetition operation that you
might see in high-level language programs Is the FOR-
DO loop. This structure has the form

FOR Count = 1 TO n DO
statement
statement

This FOR-DO loop, as it is often called, simply repeats
the sequence of actions n times, so for assembly language
algorithms we usually implement this type of operation
with a REPEAT-UNTIL structure.

Incidentally, if you compare the space required by the
pseudocode representation for a program structure with
the space required by the flowchart representation for
the same structure, the space advantage of pseudocode
should be obvious,

Throughout the rest of this book, we show you how
to use these structures to represent program actions
and how to implement these structures in assembly
language.

SUMMARY OF PROGRAM STRUCTURE
REPRESENTATION FORMS

Writing a successful program does not Consist of just
writing down a series of Instructions. You must first
think carefully about what you want the program to do
and how you want the program to do it. Then you must
represent the structure of the program in some way that
Is very clear both to you and to anyone else who might
have to work on the program,

One way of representing program operations Is with
flowcharts. Flowcharts are a very graphic representation.
and they are useful for short program segments, espe-
cially those that deal directly with hardware. However,
flowcharts use a great deal of space. Consequently, the
flowchart for even a moderately complex program may
take up several pages. It often becomes difficult to follow
program flow back and forth between pages. Also, since
there are no agreed-upon structures, a poor programmer
can write a flowchart which jumps all over the place
and is even more difficult to follow. The term logical
spaghetti" comes to mind here.

A second way of representing the operations you want
in a program is with a top-down design approach
and standard program structures. The overall program
problem is first broken down into major functional
modules. Each of these modules is broken down Into
smaller and sttialler modules until the steps In each
module are obvious. The algorithms for the whole pro-
gram and for each module are expressed with a standard
structure. Onl y three basic structures, SEgUENCE. IF-
THEN-ELSE, and WHILE-DO, are needed to represent
any needed program action or series of actions. However.
other useful structures such as IF- -rIIEN, REPEAT-
UN1'IL, FOR-DO, and CASE can be derived from these
basic three. A structure can contain another structure

8O85 FA.\titY ASS[MBLS LA-.(t)A(.E PR O(RAM si i \CiN1RODLCTi(c-	 41

of the same type or one of the other types. Each structure
has only one entry point and one exit point. These
programming structures mayseem restrictive, but using
them usually results in algorithms which are easy to
follow. Also, as we will show you soon, if you write the
algorithm for a program carefully with these standard
structures, It Is relatively easy to translate the algorithm
to the equivalent assembly language Instructions.

Finding the Right Instruction

After you get the structure of a program worked out
and written down, the next step Is to determine the
Instruction statements required to do each part of the
program. Since the examples in this book are based on
the 8086 family of microprocessors, now is a good time
to give you an overview of the InstructIons the 8086 has
for you to use. First, however, is a hint about how to
approach these instructions.

You do not usually learn a new language by memoriz-
ing an entire dictionary of the language. A better way is
to learn a few useful words and practice putting these
words together in simple sentences. You can then learn
more words as you need them to express more complex
thoughts. Likewise, you should not try to memorize all
the Instructions for a microprocessor at once.

For future reference. Chapter 6 contains a dictionary
of all the 8086 instructions with detailed descriptions
and examples of each. As an introduction, however, the
few pages here Contain a list of all the 8086 InstructIons
with a short explanation of each. Skim through the list
and pick out a dozen or so Instructions that seem useful
and understandable. As a start, look for move, input.
output, logical, and arithmetic instructions. Then look
through the list again to see If you can find the instruc-
tions that you might use to do the read temperature
sensor value from a port, add + 7, and store result In
memory" example program.

You can use Chapter 6 as a reference as you write
programs. Here we simply list the 8086 instructions in
functional groups with single-sentence descriptions so
that you can see the types of instructions that are
available to you. As you read through this section. do
not expect to understand all the instructions. When you
start writing programs, you will probably use this section
to determine the type of instruction and Chapter 6 to
get the Instruction details as you need them. After you
have written a few programs. you will remember most
of the basic instruction types and will be able to simply
look up an instruction In Chapter 6 to get any additional
details you need. Chapter 4 shows you In detail how to
use the move, arithmetic, logical. jump, and string
Instructions. Chapter 5 shows how to use the call
InstructIons and the stack.

DATA TRANSFER INSTRUCTIONS

Gerteral .purpose byte or word transfer instructions:

MNEMONIC	 DESCRIPTION

MOV	 Copy byte or word from specified source
to speciied destination.

PUSH
	

Copy specified word to lop of slack.

POP	 Copy word from top of stack to specified
location.

PUSHA
	

(80186/80188 only) Copy all registers to
slack.

POPA
	

(80186/80188 only) Copy words from
stack to all registers.

XCHC
	

Exchange bytes or exchange words.

XLAT
	

Translate a byte in AL using a table in
memory.

Simple input and output port transfer instructions:
IN	 Copy a byte or word from specified port

to accumulator.

OUT	 Copy hvte or word from accumulator to
spec1ed port.

Special address transfer instructions:
LEA
	

Load effective address of operand into
specified register.

LDS
	

Load OS register and other specified regis-
ter from memory.

LES
	

Load ES register and other seci1ied register
from memory.

Flag transfer Instructions:
LAFIF	 Load (copy to) AH with the low byte of

the flag register.

SAHF
	

Store (copy) AH register to low byte of flag
register.

PUSH F
	

Copy f)., p reg ister to top of stack.

POPF
	

Copy word a lop of stack to flag register.

ARITHMETIC INSTRUCTIONS

Addition instructions:

ADD	 Add specified byte to byte or specified
word to word.

ADC
	

Add byte + byte + carry flag nr word +
word + carry flag.

INC
	

tncrement specified byte or specified word
by 1,

AAA
	

ASCII adjust after addition.

DAA
	

Decimal IBCDI adjust alter addition.

Subtraction instructions:

SUB	 Subtract byte from byte or word from
word.

SBB
	

Subtract byte and carry flag from byte or
word and carry flag from word.

DEC
	

Decrement specified byte or specified
word by I.

42	 CHAPTER THREE

NEC Negate - invert each bit of a specified
byte or word and add 1 (Form 2's com-
plement).

CMP	 Compare two specified bytes or two spec-
ified words.

AAS	 ASCII adjust after subtraction.

DAS	 Decimal (BCD) adjust after subtraction.

Multipilcatton instructions:

UL	 Multiply unsigned byte by byteor unsigned
word by word.

IMUL	 Multiply signed byte by byte or signed
word by word.

AAM	 ASCII adjust after multiplication.

Division instructions:

DIV	 Divide unsigned word by byte or unsigned
double word by word.

IDly 	Divide signed word by byte or signed
double word by word.

AAD	 ASCII adjust before division.

CBW	 Fill upper byte of word with copies of sign
bit of lower byte.

CWD	 Fill upper word of double word with sign
bit of lower word.

BIT MANIPULATION INSTRUCTIONS

Logical instructions:
NOT	 Invert each bit of a byte or word.

AND AND each bit in a byte or word with the
corresponding bit in another byte or
word.

OR OR each bit in a byte or word with the
corresponding bit in another byte or
word.

XOR Exclusive OR each bit in a byte or word
with the corresponding bit in another
byte or word.

TEST	 AND operands to update flags, but don't
change operands.

Shfft Instructions:
SHUSAL	 Shift bits of word or byte left, put zerolsi

in LSB(s).

SHR	 Shift bits of word or byte right, put zeros)
in MSB(s).

SAR	 Shift bits of word or byte right, copy old
MSB into new MSB.

Rotate instructIons:

ROL	 Rotate bits of byte or word left, MSB to
LSB and to CF.

ROR	 Rotate bits of byte or word right, LSB to
MSB and to CF.

RCI.	 Rotate bits of byte or word left, MSB to CF
and CF to LSB.

RCR	 Rotate bits of byte or word right, LSB to
CF and CF to MSB.

STRING INSTRUCTIONS

A string is a series of bytes or a series of words in
sequentia' memory locations. A string often consists of
ASCII character codes. In the list, a / is used to
separate different mnemonics for the same instruction.
Use the mnemonic which most clearly describes the
function of the instruction in a specific application. A
• B in a mnemonic is used to specifically indicate that
a string of bytes is to be acted upon. A W In the
mnemonic Is used to indicate that a string of words is
to be acted upon.

REP	 An instruction prefix. Repeat
following instruction until
CX 0.

REPE/REPZ	 An instruction prefix. Repeat
instruction until CX - 0 or
zero flag ZF	 1.

REPNjE/REPNZ	 An instruction prefix. Repeat
until CX	 OorZF = 1.

MOVS/MOVSB/MOVSW	 Move byte or word from one
string to another.

COMPS/COMPSB/COMPSW Compare two string bytes or
two string words.

INS/INSB/INSW	 (80186/80188) Input string byte
or word from port.

OUTS/OUTSB/OUTSW	 (80186/80188) Output string
byte or word to port.

SCASISCASB/SCASW Scan a string. Compare a string
byte with a byte in AL or a
string word with a word in
AX.

LODS/LODSB/LODSW	 Load string byte into AL or
string word into AX.

STOS/STOSB/STOSW	 Store byte from AL or word
from AX into string.

PROGRAM EXECUTION TRANSFER INSTRUCTIONS

These Instructions are used to tell the 8086 to start
fetchIng instructions from some new address, rather
than continuing in sequence.

Unconditional transfer instructions:

CALL	 Call a procedure (subprogram),
save return address on stack.

RET	 Return from procedure to call-
ing program.

IMP	 Go to spectfied address to get
next instruction.

- 8	
8086 FAMtLY ASSEMBLY LANGUAGE pROGRAMMiNG—INTRODUCTION 	 43

Condittonal transfer Lnst,ucttoas:

A / - Is used to separate two mnemonics which represent
the same instruction. Use the mnemonic which most
clearly describes the decision condition in a specific
program. These Instructions are often used after a
compare Instruction. The terms below and above refer
to unsigned binaxy numbers. Above means larger in
magnitude. The terms greater than or less than refer
to signed binary numbers. Greater than means more
positive.

IAIJNBE	 Jump if above/Jump ilnot below
or equal.

JAE/INB	 Jump it above or equal/jump if
not below.

JB/JNAE	 Jump if below/Jump if not above
or equal.

JBEJJNA	 jump if below or equal/Jump if
not above.

IC	 Jump if carry flag CF = 1.

11hZ	 jump if equal/jump if zero flag
ZF = 1.

JGIjNLE	 Jump it greater/Jump if not less
than or equal.

JGEIJNL	 Jump if greater than or equal/
Jump if not less than.

1L/JNGE	 jump if less than/Jump if not
greater than or equal.

JIE/ING	 jump if less than or equal/jump
if not greater than.

INC	 jump if no carry (CF = 0).

INE/JNZ	 Jump if not equal/jump if not
zero (ZF = 0).

jNO	 Jump if no overflow (overflow
flag OF = 0).

JNP/JPO	 Jump if not parity/jump ii parity
odd (PF = 0).

JNS	 Jump if not sign (sign flag SF =
0).

JO	 Jump if overflow flag OF = 1.

JP/JPE	 lump if parity/Jump if parity
even (PF = 1).

IS	 lump if sign (SF	 1).

Iteration contrbt instructions:

These instructions can be used to execute a series of
instructionS some number of times. Here mnemonics
separated by a 1 represent the same Instruction. Use
the one that best fits the specific application.

LOOP	 LOOp through a sequence of
instructions until CX = 0.

LOOPE/LOOPZ	 Loop through a sequence of
instructions while iF	 1
and CX ^ 0.

I.00PNE/LOOPNZ ioop through a sequence of
instructions while ZF = 0
and CX 0.

JCXZ	 jump to specified address if
Cx = 0.

If you aren't tired of instructions, continue skimming
through the rest of the list. Don't worry If the explanation
Is not clear to you because we will explain these instruc-
tions in detail in later chapters.

Interrupt instructions:

tNT	 Interrupt program execution,
call service procedure.

INTO	 Interrupt program execution if
OF	 1.

IRET	 Return from interrupt service
procedure to main program.

High-level language lntefface instructions:

ENTER	 (80186/80188 only) Enter pro-.
cedure.

LEAVE	 (80186/80188 only) Leave pro-
cedure.

BOUND (80186/80188 only) Check if
effective address within spec-
ified array bounds.

PROCESSOR CONTROL INSTRUCTIONS

Flag seticlear Instructions:
SIC	 Set carry flag CF to 1.

CLC	 Clear carry flag CF to 0.

CMC	 Complement the state of the
carry flag CF.

STO	 Set direction flag OF to 1 (decre-
ment string pointers).

CLD	 Clear direction flag OF to 0.

511	 Set interrupt enable flag to I
(enable INTR input).

CLI	 Clear interrupt enable flag toO
(disable INTR input).

External hardware synchronization Instructions:
HLT	 Halt (do nothing) until interrupt

or reset.

WAIT	 Wait (do nothing) until signal
on the TEST pin is low.

[SC	 Escape to external coprocessor
such as 8087 or 8089.

44	 CHAPTER THREE

LOCK An instruction prefix. Prevents
another processor from tak-
ing the bus while the adja-
cent instruction executes.

No operation instruction:

NOP	 No action except fetch and
decode.

Now that you have skimmed through an overview of the
8086 instruction set, let's see whether you found the
instructions needed to implement tue read sensor, add
+ 7. and store result in memoiy example program. The
IN instruction can be used to read the temperature value
from an A/D converter connected to a port. The ADD
Instruction can be used to add the correction factor of
+ 7 to the value read in. Finally, the MOV instruction
can be used to copy the result of the addtion to a memory
location. A major point here is that breaking down the
programming problem into a sequence of steps makes it
easy to find the instruction or small group of instructions
that will perform each step. The next section shows
you how to write the actual program using the 8086
instructions.

Writing a Program

INITIALIZATION INSTRUCTIONS
After finding the instructions you need to do the main
part of your program. there are a few additional instruc-
tic'&s that you need to determine before you actually
write your program. The purpose of these additional
instructions is to initialize various parts of the system,
such as segment registers, flags, and programmable
port devices. Segment registers, for example, must be
loaded with the upper 16 bits of the address in memory
where you want the segment to begin. For our read
temperature sensor, add + 7, and st re result in mem-
oIy example program, the only part we need to initialize
is the data segment register. The data segment register
must be initialized so that we can copy the result of the
addition to a location in memory. If, for example, we
want to store data in memory starting at address
OO100H. then we want the data segment register to
contain the upper 16 bits of this address. OO1OH. The
8086 does not have an instructior to move a number
directly into a segment register. Therefore, we move the
desired number iRto one of the 16-bit general-purpose
registers, then copy it to the desired segment register.
Two MOV instructions will do this.

If you are using the stack in your program. then you
must include instructions to load the stack segment
register and an instruction to load the stack pointer
register with the offset of the top of the stack. Most
microcomputer systems contain several programmable
peripheral devices, such as ports, timers, and control-
lers, You must include Instructions which send control
words to these devices to tell them the function you
want them to perform. Also, you usually want to include
instrurtions which set or clear the control flags, such
as the interrupt enable flag and the direction flag.

The best way to approach the initialization task is to
make a checklist of all the registers. programmable
devices, and flags in the system you are working on.
Then you can mark the ones you need for a specific
program and determine the instrucdons needed to
initialize each part. An initialization list (or an 8086-
based system, such as the SDK-86 prototyping board.
might look like the following.

INITIALIZATION LIST

Data segment register DS

Stack segment register SS

Extra Segment register ES

Stack pointer register SF'

8255 programmable parallel port

8259A priority Interrupt controller

8254 programmable Counter

825 IA programmable serial port

Initialize data variables

Set interrupt enable flag

As you can see, the list can become quite lengthy even
though we have not included all the devices a system
might commonly have, Note that initiauzing the code
segment register CS is absent from this list. The code
segment register is loaded with the correct starting value
by the system command you use to run the program.
Now let's see how you put all these parts together to
make a program.

A STANDARD PROGRAM FORMAT
In this section we show you how to format your programs
if you are going to construct the machine codes for each
Instruction by hand. A later section of this chapter will
show you the additional parts you need to add to the
program if you are going to use a computer program
called an assembler to produce the binary codes for the
instructions.

To help you write your programs In the correct format,
assembly language coding sheets such as that shown
in Figure 3-4 are available. The ADDRESS column is
used for the address or the offset of a code byte or data
byte. The actual code bytes or data bytes are put in the
DATA/CODE column. A label isa name which represents
an address referred to in a Jump or call instruction:
labels are put in the LABELS column. A label is followed
by a colon I:) if it is used by a Jump or call Instruction
in the same code segment. The MNEM column contains
the opcode mnemonics for the instructions. The OP-
ERAND(S) column contains the registers. memory loca-
tions, or data acted upon by the instructions. A COM-
MENTS column gives you space to describe the function
of the instruction for future reference.

Figure 3-4, p. 46. shows how instructions for the
"read temperature, add + 7, store result in memoly
program can be written in sequence on a coding sheet.
We will discuss here the operation of these instructions

80&, FAMILY ASSFMBLV LANGUAGE PROGRAMMING—INTRODUCTION 	 45

PROGRAMMER - 	 SHEET /	 OF	 /
PROGRAM_TITLE	 M7	 //''	 ____
4S74QC7	 7h pan 'zead d6 a 1epeaL.e tah4e /om a e#so ewacled /s po4I 05s1. ad4 a aecho

Ae ca&4
ICQ9S7C 1S: 4
'9J34QS 42ee7e: /1/I cwddio.aI

1&i.O5asnpdpoI
ooioJ?74• oa2oo/-oo2oi/ eôe

DATA
ADDRESS	 or	 LABELS	 MN[M.	 OPERAND(S) 	 COMMENTS

CODE
00/00 X' __________ ______ _____________ 	 mem Iocdi,.i / a

	

00101	 _______	 ses4I. 7hjje1oaded

	

00/02	 a dIz 4k as ead n

	

00103	 _____________	 coeckd 4 Ihe pzo9'iase.

	

00/04	 __________ ______	 1 ca4e a1d

	

00/05	 _________ _____ ___________	 1,caho.
00106
00107
00108
00109
OO/OA
00/08
OOIOC
00/OD

	

OOIOE	 ___________	 Cede s/aat he'ie

	

00/OF	 _________	 iVa/ hea a&ess

	

20U	 L?8 _________	 4 00/O.J	 9Iie S /. poI.eI / sI
01

	

02	 00

	

03	 5e	 M'YlJ	 4X

	

04	 8

	

- 05	 C4 _________	 9A'	 4 oM	 '&ad Iempe'ah4e jos
	06	 05 ____________ ________ ________________ O4I 05J

	

07	 01/ _________ _____	 /ZL 071/	 414 ecIio.. jad

	

08	 07

	

09	 42 _________ MC'	 /0000j, 4t?	 SE	 d1
OA00 ____________ ________ ________________ mem

	

08	 00

	

OC	 CC __________ 9A7	 3	 Slop. wail
OD
OE
OF

FIGURE 3-4 Assembly language program on standard coding form.
46	 CHAPTER THREE

to the extent needed. If you want more information,
detailed descriptions of the syntax (assembly language
grammar) and operation of each of these instructions
can be found in Chapter 6.

The first line at the top of the coding form in Figure
3-4 does not represent an Instruction. It simply indicates
that we want to set aside a memory location to store the
result. This location must be In available RAM so that
we can write to it. Address OOIOOH is an available RAM
location on an SDK-86 prototyping board, so we chose
it for this example. Next, we decide where in memory
we want to start putting the code bytes for the iostruc-
tior.5,of the program. Again, on an SDK-86 prototyping
board, address 00200H and above is available RAM. so
we chose to start the program at address 00200H,

The first operation we want to do in the program is
to initialize the data segment register. As discussed
previously, two MOV instructions are used to do this.
The MOV AX, OO1OH instruction, when executed, will
load the upper 16 bits of the address we chose for data
storage into the AX register. The MOV DS, AX instruction
will copy this number from the AX register to the data
segment register. Now we get to the instructions that
do the input, add, and store operations. The IN AL. 0511
instruction will copy a data byte from the port 05H to
the AL register. The ADD AL. 07 instruction will add
0711 to the AL register and leave the result In the AL
register. The MOV 10000). AL instruction will copy the
byte In AL to a memory location at a displacement of
0000H from the data segment base. In other words. AL
will be copied to a physical address computed by adding
0000 to the segment base address represented by the
OO1OH in the DS register. The result of this addition is
a physical address of OOlOOH. so the result in AL will
be copied to physical address 0010011 in memory. This
Is an example of the direct addressing mode described
near the end of the previous chapter.

The INT 3 instruction at the end of the program
functions as a breakpoint. When the 8086 on an SDK-
86 board executes this instruction, it will cause the
8086 to stop executing the instructions of your program
and return control to the monitor or system program.
You can then use system commands to look at the
contents of registers and memory locations, or you can
run another program. Without an instruction such as
this at the end of the program. the 8086 would fetch
and execute the code bytes for your program, then go
on fetching meaningless bytes from memory and trying
to execute them as if they were code bytes.

The next major section of this chapter will show you
how to construct the binary codes for these and other
8086 instructions so that you can assemble and run the
programs on a development board such as the SDK-86.
First, however, we want to use Figure 3-4 to make
an important point about writing assembly language
programs.

DOCUMENTATION

In a previous section of this chapter. we stressed the
point that you should do a lot of thinking and carefully
write down the algorithm for a program before you
start writing instruction statements. You shiiuld also

document the program Itself so that its operation is
clear to you and to anyone else who needs to understand
it.

Each page of the program should contain the name
of the program. the page number, the name of the
programmer, and perhaps a version number. Each
program or procedure should have a heading block
containing an abstract describing what the program is
supposed to do. which procedures it calls, which regis-
ters it uses, which ports it uses, which flags it affects.
the memory used, and any other information which will
make It easier for another programmer to Interface with
the program.

Comments should be used genrously to describe
the specific Junction of an instruction or group of
instructions in (his particular program. Comments
should not be just an expansion of the instruction
mnemonic. A comment of ":add 7 to AL after the
instruction ADD AL. 0711, for example, would not tell
you much about the function of the instruction in a
particular program. A more enlightening comment
might be ":Add altitude correction factor to tempera-
ture. Incidentally. nDt every statement needs an Individ-
ual comment. It is often more useful to write a comment
which explains the [unction ola group of instructiops.

We cannot overemphasize the importance of clear,
concise documentation in your programs. Experience
has shown that even a short program you wrote without
comments a month ago may not be at all understandable
to you row.

CONSTRUCTING THE MACHINE CODES
FOR 8086 INSTRUCTIONS

This section shows you how to construct the binary
codes for 8086 Instructions. Most of the time you will
probably use an assembler program to do this for you.
but it is useful to understand how the codes are con-
structed. If you have an 8086-based prototyping board
such as the Intel SDK-86 available, knowing how to
hand code instructions will enable you to code, enter,
and run simple programs.

Instruct ion Templates

To code the instructions for 8-bit processors such as
the 8085, all you have to do is look up the hexadecimal
code for each instruction on a one-page chart. For the
8086, the process is not quite as simple. Heres why.
There are 32 ways to specify the source of the operand
in an instruction such as MOV CX, source. The source
of the operand can be an y one of eight 16-bit registers.
or a memory loation specified b' any one of 24 memory
addressing modes. Each of the 32 possible instructions
requires a dilferent binary code. IfCX is made the source
rather than the destination, then there are 32 wa ys of
specify ing the destination. Each of these 32 possible
instructions requires a different binary code. There are
thus 64 different codes for MOV instructions using CX
as a source or as a destination. Likewise, another 64
codes are required to specif y all the possible MOVs using

tu&, FA\tILS ASSE\ttlLY LANGUAC;E PROGRAMMING-.INTRODLJCTION 	 47

OPCODEFOR"IN"	 POATAUDRESS
L_ WO BYTEW I WORD

I_L[h 1 h 1 0 1 0 1 h 1 0 1 0 1 0 1 0 1 0 1 0 1 o 1 110111
______________________________________I 	

'OPCOOEFOR"IN" 	 j	 POATO5II
INPUT A B YTE

(b)

ADDRESS 	 CONTENTS00205)4	 E4H00206)4	 05)4
Id

FIGURE 3-5 Coding template for 8086 IN (fixed port)
instruction. (a) Template. Ib) Example. (C) Hex codes in
sequential memory locations.

CL as a source or a destination, and 64 more are required
to speci all the possible MOVs using CH as a source or
a destination. The point here is that, because there Is
such a large number of possible codes for the 8086
instructions. it is impractical to list them all In a
simple table. Instead, we use a template (or each basic
instruction type and fill in bits within this template to
indicate the desired addressing mode, data type, etc. in
other words, we build up the instruction codes on a bit-
by-bit basis.

Different Intel literature shows two slightly different
formats for coding 8086 instructions. One format is
shown at the end of the 8086 data sheet in Appendix
A. The second format is shown along with the 8086
instruction timings in Appendix B. We will start by
showing you how to use the templates shown in the
8086 data sheet.

As a first example of how to use these templates, we
will build the code for the !N AL. 05H instruction from
our example program. To start, look at the template for
this Instruction in Figure 3-5a. Note that two bytes are

required for the tnstructioi%. The upper 7 bits of the first
byt. tell the 8086 that this is an input from a fixed
port instruction. The bit labeled W In thc template is
used to tell the 8086 whether it should input a byte to
AL or a word to AX. If you want the 8086 to input a byte
from an 8-bit port to AL. then make the W bit a 0. If you
want the 8086 to input a word from a 16-bit port to the
AX register, then make the W bit a I. The 8-bit port
address. 05H or 00000101 bInary, is put in the second
byte of the instruction. When the program is loaded intj
memory to be run, the first instruction byte will be put
in one memory location, and the second instruction byte
will be put in the next. Figure 3-Sc shows this in
hexadecimal form as E4H. 05H.

To further illustrate how these templates are used, we
will show here several examples with the simple MOV
instruction. We will then show you how to construct the
rest of the codes for the example program in Figure
34. Other examples will be shown as needed in the
following chapters.

MOV Instruction Coding Format and Examples

FORMAT

Figure 3-6 shows the coding template or format for 8086
instructions which MOV data from a register to a
register, from a register to a memory location, or from
a memory location to a register. Note that at least two
code bytes are required for the instruction,

The upper 6 bits of the first byte arc an opeode which
indicates the general type of instruction. Look in the
table In Appendix A to find the 6-bit opcode for this
MOV register/memory to/from register instruction. You
should find it to be 100010.

The \V bit In the first word is used to indicate whether
a byte or a word is being moved. If you are moving a
byte, make W = 0. If you are moving a word, make
W	 1.

In this instruction, one operand must always be a
register, so 3 hits in the second byte are used to indicate
which register is involved. The 3-bit codes for each
register are shown in the table at the end of Appendix
A and in Figure 3-7. Look in one of these places to find
the code for the CL register. You should get 001.

REGISTER SELECT (SEE FIGURE 3-7)
BYTE 1	 BYTE 3 	 BYTE 41 0 I Opop l i e	 I I	 I------T' ----------LOW DISPLACEMENT	 HIGH DISPLACEMENTOPCODE	 0 W MOD	 REG	 R'M

	

LL	 J
LDRESS	 DIRECT ADDRESfl
(5 81151 ADDRESSING MODE (SEE FIGURE 3-8)

I	 BYTE.'WORDDATA 0-BYTE lWORDDIRECTION TO/FROM PEG 0 FROM 1 - TOOPERATION CODE
FIGURE 3-6 Coding template for 8086 instructions which MOV data between
regi5trs or between a register and a memory location.

48	 CHAPTER THREE

REGISTER
	

CODE

	

w=1
	

wO
AL	 AX
	

000
BL
	

011
C1_	 CX
	

001
DL	 DX
	

010
AH	 Sp
	

100
BH	 DI
	

111
CK	 BP
	

101
OH	 SI
	

110

	

SEGREG	 CODE

	

CS	 01

	

OS	 11

	

ES	 00

	

SS	 10

FIGURE 3-7 instruction codes for 8086 registers.

The 0 bit In the first byte of the instruction code is
used to indicate whether the data is being moved to the
register identified In the REG field of the second byte or

from that register. If the instruction is moving data to
the register identified in the REG field, make 0 = I. if
the instruction is moving datafrom that register, make
O = 0.

Now remember that In a MOV instruction, one operand
must be a register and the other operand may be a
register or a memory location. The 2-bit field labeled
MOD and the 3-bit field labeled R/M in the second byte
of the instruction code are used to specify the desired
addressing mode for the other operand. Figure 3-8
shows the MOD and R/M bit patterns for each of the 32

possible addressing modes. Heres an overview of how
you use this table.

if the other operand in the Instruction is also one of
the eight regisfrrs, then put in 11 for the MOD bits
in the instruction code, in the R/M bit positions in
the instruction code, put the 3-bit code for the other
register.

2. If the other operand is a memory location, there are
24 ways of specifying how the execution unit should
compute the effective address of the operand in
memory. Remember from Chapter 2 that the effective
address can be specified directly in the instruction,
it can be contained in a register, or it can be the
sum of one or two registers and a displacement. The
MOD bits are used to indicate whether the address
specification .in the instruction contains a displace.
ment. The R/M code indicates which register(s)
Contain part(s) 01 the effective address. Here's how
It works:

If the specified effective address contains no dis-
placement, as in the instruction MOV CX, IBXI or in
the instruction MOV [BXJSIi, DX, then make the
MOD bits 00 and choose the R/M bits which corre-
spond to the register(s) containing the effective
address. For example. if an instruction containsjust
(BXI. the 3-bttjR/M code is ill. For an instruction
which contains IBXISII. the R/M code is 000. Note
that for direct addressing. where the displacement
of the operand from the segment base is specified
directly in the instruction. MOD is 00 and R/M is

MOD
RIM	 00	 01	 10	 11

w=O w=1

000	 IBX(+	 ISa)	 (BXI + (SI) + d8	 IBXI + (611 + d16	 AL	 AX

001)BX(+	 (Dl)	 IBXI + (DII + d8	 IBX(+ (Dl) + d16	 CL	 CX

010)BPJ +	 (SI)	 (BP1 + (SI) + d8	 BPI + 1511 + d16	 DL	 DX

Oil	 -	 IBP(+	 (DII	 IBP) + (DI) + d8)BPI + (Dl) + d16	 BL	 BX

i00	 (SI)	 (SI) + d8	 Sli + d16	 AH	 SI'

101	 (DI)	 (DI) + d8	 (Dli + dI6	 CH	 BP

110

	

	 d16	 (BPI +d8	 (BE') +d16	 OH	 SI
(direct address)

111	 IBX((BXI + d8)BXJ + dl I,	 BH	 Dl

MEMORY MODE
d8 = 8-bit displacement 	 d16	 16-bit displacement

FIGURE 3-8 MOD and RiM bit patterns for 8086 instructions. The effective
address ([A) produced by these addressing modes will be added to the data
segment base to form the physical address, except for those eases where BE' is
used as part of the EA. In that case the EA will be added to the slack segment
base to form the physical address. You can use a segment-override prefix to
indicate that you want the [A to be added to some other segment basç.

REGISTER MODE

8086 FAMItY ASSEMBLY LANGUAGE PROGRAMMING—INTRODUCTION 	 49

I 10. For an instruction using direct addressing. the
low byte of the direct address Is put in as a third
instruction code byte of the Instruction, and the
high byte of the direct address is put in as a fourth
instruction code byte.

3. If the effective address specified in the instruction
contains a displacement less than 256 along with a
reference to the contents of a register, as in the
instruction MOV CX, 43HLBX), then code in MOD as
01 and choose the R'M bits which correspond to the
register(s) which contain the part(s) for the effective
address. For the instruction MOVCX. 43H(BXJ, MOD
will be 01 and RIM will be III. Put the 8-bit value
of the displacement in as the third byte of the
instruction.

4. If the expression for the effective address contains
a displacement which is too large to fit in 8 bIts, as
in the instruction MOV DX. 4527H[BX(, then put in
10 for MOD and choose the RiM bits which corre-
sporid to the register(s) which contain the part(s)
for the effective address. For the instruction MOV
DX. 4527H{BXI, the RIM bits are Ill. The low byte
of the displacement is put in as a third byte of the
instruction. The high byte of the displacement is
put in as a fourth byte of the instruction. The
examples which follow should help clarify all this for
you.

MOV Instruction Coding Examples

All the examples in this section use the MOV instruction
template in Figure 3-6. As you read through these
examples, it is a good idea to keep track of the bit-by-
bit development on a separate piece of paper for practice.

CODING MOV SP, BX

This instruction will copy a word from the BX register
to the SP register. Consulting the table in Appendix A.
you find that the 6-bit opcode for this instruction is
100010. Because you are moving a word. W = 1. The D
bit for this instruction may be somewhat confusing.
however. Since two registers are involved, you can think
of the move as either to SP or from BX. It actually
does not matter which you assume as long as you are
consistent in coding the rest of the instruction, If you
thtnk of the instruction as moving a word to SF. then
make I) I and put 100 in the REG field to represent
the SF' register, The MOD field will be II to represent

register addressing mode. Make the R/M field OIl to
represent the other register. BX. The resultant code for
the instruction MOVSP. BX will be 11)00101111 100011.
Figure 3-9a shows the meaning of all these bits.

If you change the D bit ba 0 and swap the codes in the
REG and R/M fields, you will get 10001001 11011100.
which is another equally valid code for the Instruction,
Figure 3-9b shows the meaning of the bits in this form.
This second form, incidentally. is the form that the Intel
8086 Macroassembler produces.

CODING MOV CL, EBX

This Instruction will copy a byte to CL from the memory
location whose effective address is contained in BX. The
effective address will be added to the data segment base
in DS to produce the physical address.

To find the 6-bit opcode for byte 1 of the Instruction.
consult the table in Appendix A. You should find that
this code is 100010. Make D = I because data is
being moved to register CL. Make W = 0 because the
instruction is moving a byte into CL. Next you need to
put the 3-bit code which represents register CL in the
REG field of the second byte of the instruction code. The
codes for each register are shown in Figurt 3-7. In this
figure you should find that the code for CL Is 001. Now.
all you need to determine is the bit patterns for the MOD
and RIM fields. Again use the table in Figure 3-8 to do
this. In the table, first find the box containing the
desired addressing mode. The box containing EBXI. for
example, is in the lower left corner of the (able, Read
the required MOD-bit pattern from the top of the column.
In this case. MOD is 00. Then read the required R/M-
bit pattern at the left of the box. For this instruction
you should find R/M t" he Ill. Assembling all these bits
together should gi 000l0l0 0000llIl as the
binary code for the instruction MOV CL, IBXI. Figure
310 summarizes the meaning of ail the bits in this
result.

CODING MOV 43H [S I J, OH

This Instruction will copy a byte from tbe DH register
to a memory location. The BIU wiJI compute the effective
address of the methory location by adding the indicated
displacement of 43H to the contents of the SI register.
As we showed you in the last chapter. the FilU then
produces the actual physical address b y adding this
effective address to the data segment base represented
by the 16-bit number in the DS register.

I	 BYTE 1	 BYTE 2	 J	 I	 BYTE I	 J	 ByTE 2

I 1jOIOIOI1OIlJ1!lI1Ii!O101oIlI1IMOv5pBx	 OjOI1IOtOI1IlI1OIIII1QjO]MOvSpBX
I	 .

OP CODE FOR MOV	 a;M	 '	 OP CODE MOVI j	 SP
'TO' REG —i	 1... REG SP	 FROM' REG -	 j	 - REG EX

MDV WORD	 REGISTER TO REGISTER	 MOV WORD	 '-REGI5TtR TO REGISTER

b

FIGURE 3-9 MOV iOstruction codng esamples. (at MOV SF, BX. lb MOV SP.
BX alternative.

50	 CHAPTER THREE

BYTEI	 BYTE2

1 0 1 0 I o h joji 1010 ho loloht Ii I i I l l MOVCL.IBX)

OP CODE	 IBX]

TO'REG—J	L_REGCI.

MOV BYTE	 _______ MEMORY.
NO DISPLACEMENT

FIGURE 3-10 MOV CL, IBXI.

The 6-bit opcode for this instruction is again 100010.
Put 110 in the REG field to represent the OH register.
D = 0 because you are moving datafmm the DI-I register.
W = 0 because you are moving a byte. The R/M field will
be 100 because SI Contains part of the effective address.
The MOO field will be 01 because the displacement
contained in the instruction. 43H, will fit in 1 byte. if
the specified displacement had been a number larger
than FFH, then MOD would be 10. Putting all these
pieces together gives 10001000 01110100 for the first
two bytes of the instruction code. The specified displace-
ment. 43H or 01000011 binary, is put after these two
as a third instruction byte. Figure 3-11 shows this. If
an instruction specifies a 16-bit displacement, then the
low byte of the displacement is put in as byte 3 of the
instruction code, and the high byte of the displacement
is put in as byte 4 of the instruction code.

BYTE1	 BYTE2

Ii 1010 ho 1 oj oh 01011 Il I 1 lo II 1 0 1 0 1 MOV43HISII.DH

-v--- , t _v_=__v__ '-V'
OP CODE	 J	 A/M ISI)

'FROM'REG-	 LREG.,DH

MOV BYTE	 ________ MEMORY, ONE BYTE
DISPLACEMENT

BYTE3	 I

lolilolololohlhil

DISPLACEMENT 4311

FIGURE 3-11 MOV 43H(SIJ, OH.

CODING MOV CX, 1437AH1

This instruction copies the contents of two memory
locations into the CX register. The direct address or
displacement of the first memory location from the start
of the data segment is 437AH. As we showed you In the
last chapter. the BIU will produce the physical memory
address by adding this displacement to the data segment
base represented by the 16-bit number in the OS reg-
ister.

The 6-bit opcode for this instruction is again 100010.
Make D = I because you are moving data to the CX
register, and make W = 1 because the data being moved
Is a word. Put 001 in the REG field to represent the CX
register, then consut Figure 3-8 to find the MOD and
R/M codes. In the firt column of the figure. you should
find a box labeled direct address, which is the name
given to the addressing mode used in this instruction.
For direct addressing. you should find MOD to be 00

	

BYIE1J	 I	 BYTE2

liIoloIohiloliItIololololihiliIoI

	

-	 t '—v—,'---v-----.---_---.,
OP CODE	

]	 I DIRECT

	

'TO' PEG	 I	 ADDRESSING

	

M0VWORD-1	REGCX

	

BYTE3	 I	 BYTE4

l o l l j1 1 1 1 1 1. 01 iI o I o IiI o I o_1_o I o l l I 1 IM0VCx.1437A11)

DIRECT ADDRESS	 DIRECT ADDRESS

	

LOW BYTE	 HIGH BYTE

	

lAN	 4311

FIGURE 3-12 MOV CX, 1437AH].

and R/M to be 110. The first two code bytes for the
instruction, then, are 10001011 00001110, These two
bytes will be followed by the low byte of the direct
address, 7AH (01111010 binary), and the high byte
of the direct address, 43H (01000011 blnaiy). The
instruction will be coded Into four successive memory
addresses as 8BH. OEH, 7AH, and 43H. Figure 3-12
spells this out in detail,

CODING MOV CS:LBX], DL

This instruction copies a byte from the DL register to a
memory location - The effective address for the memory
location is contained in the BX register. Normally an
effective address in BX will be added to the data segment
base in DS to produce the physical memory address. In
this instruction, the CS: in front of IBXI indicates that
we want the BIU to add the effective address to the code
segment base in CS to produce the physical address.
The CS: is called a segment override prefix.

'n instruction containing a segment override
prefix is coded, an 8-bit code for the segment override
prefix is put in memory before the code for the rest of
the instruction. The code byte for the segment override
prefix has the format OOIXXI 10. You insert a 2-bit code
in place of the X's to indicate which segment base you
want the effective address to be added to. As shown in
Figure 3-7. the codes for these 2 bits are as follows:
ES = 00.CS =01.SS = 10.andDS = 1I.Thcsegment
override prefix byte [or CS. then, is 00101110. For
practice, code out the rest of this instruction. Figure
3-13 shows the result you should get and how the code

SEGMENT OVERRIDE PREFIX
BYTE1

loIohlohihiIiIol

CS REGISTER

	

BYTE2	 BYTE3

Ji 0 1 0 1 D li I O I O I O I O I O I O I I loll i Iii MOV CS: iBX). DL

	

FM PEG	 LLREGDL

	

NOV BYTE	 MEMORY. NO DISPLACEMENT

FIGURE 3-13 MOV CS:)BXI, DL.

—9
518086 FAMILY ASSEMBLY LANGUAGE PROGRAMMING—INTRODUCTION

A — 2-9O

for the segment override prefix isput before the other 	 MOV 100001, AL
code bytes (or the Instruction.	 '

Coding the Example Program in Figure 3-4

Again, as you read through this section. follow the bit-
by-bit development of the Instruction codes on a separate
piece of paper for practIce.

MOV AX. OO1OH

This Instruction will load the immediate word 0010Ff
into the AX register. The simplest code template to use
for thIs instruction is listed in the table in Appendix A
under the MOV - Immediate to register heading. The
format for this instruction Is loll W REG. data byte
low, data byte high. W I because you are moving a
word. Consult Figure 3-7 to fInd the code for the AX
register. You should find this to be 000. Put this 3-bit
code in the REG field of the instruction code. The
completed instruction code byte is 10111000. Put the
low byte of the immediate number. 1 OH, in as the second
code byte. Then put the high byte of the Immediate data.
00Ff. in as the third code byte. The resultant sequence
of code bytes, then, will be B8H, 10Ff. 00Ff.

MOV DS, AX

This instruction copies the contents of the AX register
into the data segment register. The template to use for
coding this instruction is found in the table in Appendix
A under the heading MOV - Register/memory to seg-
ment register The format for this template Is 100011 It)
MOD 0 segreg RIM. Segreg represents the 2-bit code for
the desired segment register, as shown in Figure 3-7.
These codes are also found in the table at the end of
Appendix A. The segreg code for the DS register is 11.
Since the other operand is a register. MOD should be
11. Put the 3-bit code for the AX register, 000. in the
R/M field. The resultant codes for the two code bytes
should then be 10001110 11011000. or 8EH D8H.

IN AL 05H

This instruction copies a byte of data from port 051! to
the AL register. The coding for this instruction was
described in a previous section. The code for the instruc-
tion Is 11100100 00000101 or E4FI 05Ff.

ADD AL, 07H

This instruction adds the immediate number 07H to
the AL register and puts the result in the AL register.
The simplest template to use for coding this Instruction
is found in the table in Appendix A under the heading
ADD - Immediate to accumulator. - The format is

0000010W, data byte, data byte. Since you are adding
a byte. W = 0. Tbe immediate data byte you are adding
will be put in the second code byte. The third code byte
will not be needed because you are adding only a byte.
The resultant codes, then, are 00000100 00000111 or
04Ff 07H.

i nis Instruction copies the contents of the AL register
to a memory location. The direct address or displacement
of the memory location from the start of the data segment
is 0000H. The code template for this instruction is found
in the table in Appendix A under the heading "MOV -
Accumulator to memory. The format for the instruction
is 1010001 W. address low byte, address high byte.
Since the instruction moves a byte, W = 0. The low
byte of the direct address is written in as the second
instruction code byte, and the high byte of the direct
address Is written in as the third instruction code byte.
The codes for these 3 bytes, then, will be 10100010
00000000 00000000 or A2Ff 00Ff 00Ff.

INT 3

In some 8086 systems this instruction causes the 8086
to stop executing your program instructions, return to
the monitor program, and wait for your next command.
According to the format table in Appendix A, the code
for a type 3 interrupt is the single byte 11001100 or
CCH.

SUMMARY OF HAND CODING
THE EXAMPLE PROGRAM

Figure 3-4 shows the example program with all the
Instruction codes in sequential order as you would write
them so that you could load the program into memory
and run it. Codes are in HEX to save space.

A Look at Another Coding Template Format

As we mentioned previously, Intel literature shows the
8086 instruction coding templates in two different
forms. The preceding sections have shown you how to
use the templates found at the end of the 8086 data
sheet in Appendix A. Now let's take a brief look at the
second form, which is shown along with the instruction
clock cycles in Appendix B.

The only difference between the second form for the
templates and the form we discussed previously is that
the D and W bits are not individually identified. Instead.
the complete o2code bytes are shown for each version
of an 'nstruction. For example, in Appendix B. the
opcode byte for the MOV memory 8, regIster 8 instruction
is shown as 88Ff. and the opcode byte for the MOV
memory 16, register 16 instruction is shown as 89Ff.
If you compare these codes with those derived from
Appendix A. you will see that the only difference between
the two codes is the W bit. For the 8-bit move, W = 0.
and for the 16-bit move, W	 1.

One important point t make about using the tem-
plates in Appendix B Is that for operations Involving two
registers, the register identified in the kEG field is not
consistent from instruction to instruction. For the MOV
instructions, the templates in Appendix B assume that
the 3-bit code for the source register is put In the kEG
field of the MOD/RM instruction byte, and the 3-bit code
for the destination register is put In the RIM field of the
MOD/RM instruction byte. According to Appendix B. the

52	 CHAPTER THREE

template for a 16-bit register-to-register move is 89H
followed by the MOD reg R/M byte. In this template.
D = 0. so the 3-bit code for the source register will be put
in the reg field. Using this template. then, the Instruc-
tion MOV BX. CX is coded as 10001001 11001011 or
89H CBH.

For the ADD, ADC. SUB. SBB. AND, OR. and XOR
instruCtiOns which involve two registers. the templates
In Appendix B show 1) 1. To be consistent with these
templates. then, you have to put the 3-bit code for the
destination register in the reg field in the instruction,

It really doesn't matter whether you use the templates
in Appendix A or those in Appendix B. as long as you
are consistent in coding each instruction.

A Few Words about Hand Coding
If you have to hand code 8086 assembly language
programs. here are a few tips to make your life easier,
First, check jour algorithm very carefully to make sure
that it really does what it is supposed to do, Second.
initially write dowp Just the assembly language state-
ments and comments for pour program. You can check
the table in the appendix to determine how many bytes
each instruction takes so that you know how many
blank lines to leave between instruction statements.
You may find it helpful to insert three or four NOP
instructions after every nine or ten instructions, The
NOP instruction doesn't do anything but kill time.
However, if you accidentally leave out an instruction in
your program, you can replace the NOPs with the needed
instruction(s). This way you don't have to rewrite the
entire program after the missing instruction.

After you have written down the instruction state-
ments, recheck very carefully to make sure you have the
right Instructions to implement your algorithm. Then
work out the binary codes for each instruction and write
them in the appropriate places on the coding form.

Hand coding is laborious for long programs, When
writing long programs, it is much more efficient to use
an assembler. The next section of this chapter shows
you how to write your programs so that you can use
an assembler to produce the machine codes for the
instructions.

WRITING PROGRAMS FOR USE
WITH AN ASSEMBLER
If you have an 8086 , assembler available, you should
learn to use It as soon as possible. Besides doing the
tedious task of producing the binary codes for your
instruction statements, an assembler also allows you to
refer to data items by name rather than by their numeri-
cal offsets. As you should soon see, this greatly reduces
the work you have to do and makes your programs much
more readable. In this section we show you how to write
your programs so that you can use an assembler on
them.

NOTE: The assembly language programs in the
rest of this book were assembled with TASM 1.0
from Borland International or MASM 5,1 from
Microsoft Corp. TASM is faster, but the program
format for these two assemblers is essentially the
same. If you are using some other assembler, check
the manual for it to determine any differences In
syntax from the examples in this book.

Program Format
The best way to approach this section seems to be to
show you a simple, but complete, program written for
an assembler and explain the function of the various
parts of the program. By now you are probably tired of
the read temperature, add + 7. and store result in -
memozy program, so we will use another example,

FIgure 3-14. p. 54. shows an 8086 assembly language
program which multiplies two 16-bit binary numbers to
give *32-bit binary result. If you have a microcomputer
development system or a microcomputer with an 8086
assembler to work on, this is a good program for you to
key in. assemble, and run to become familiar with the
operation of your system, (A sequence of exercises in
the accompanying lab manual explains how to do this.)
In any case, you can use the structure of this example
program as a model for your own programs,

In addition to program instructions, the example
program In Figure 3-14 contains dlrection to the assem-
bler. These directions to the assembler are commonly
called assembler directives or pseudo operations. A
section at the end of Chapter 6 lIsts and describes for
your reference a large number of the available assembler
directives. Here we will discuss the basic assembler
directives you need to get started writing programs. We
will introduce more of these directives as we need them
in the next two chapters.

SEGMENT and ENDS Directives
The SEGMENT and ENDS directives are used to Identi'
a group of data items or a group of instructions that
you want to be put . together In a particular segment.
These directives are used in the same way that parenthe-
ses are used to group like terms in algebra. A group of
data statements or a group of instruction statements
containedbetween SEGMENT and ENDS directives Is
called a logical segment. When you Set up a logical
segment, you give it a name of your choosing. In the
example program, the statements DATA.J4ERE SEG-
MENT and DATA_HERE ENDS set up a logical segment
named DATA_HERE. There is nothing sacred about the
name DATA_1-IERE. We simply chose this name to help
us remember that this logical segment contains data
statements. The statements CODE_HERE SEGMENT
and CODE_HERE ENDS In the example program set up
a logical segment named CODE_HERE which contains
instruction statements. Most 8086 assemblers. inciden-
tally. allow you to use names and labels of up to 31
characters. You cant use spaces in a name, but you can

8086 FAMItY ASSEMBIY LANGUAGE PROGRAMMING_INTRODUCTION 	 53

8086 PROGRAM F3-14.ASM
;ABSTRACT : This program TeiltipLies the two 16-bit words in the memory

locations called MULTIPLICAND and MULTIPLIER. The result
Is stored in the memory location, PRUCT

;REGISIERS : Uses CS, OS, AX, DX
;PORTS	 : Noiie used

DATA HERE

DATA_HERE

SEGMENT
MULTIPLICAND OW 204AM 	 First word here
MULTIPLIER	 OW 3B2A11	 Second word here
PROGUCT	 OW 2 DUP(0)	 Result of n5ittip(ication hereENDS

CCCE_HERE	 SEGMENT
ASSUME	 CS:C)E_HERE, DS:DATAIIERE

START:

	

	 NOV AX, DATA_HERE	 InitiaL ize Os register
NOV OS, AX
NOV AX, MULTLICANO	 Get one word
liii MULTIPLIER	 Multiply by second word
NOV PROGUCT, AX 	 Store low word of result
NOV PRUCT,2, DX	 Store high word of result
INT 3	 Wait for coeleand from userCCOE_HERE	 ENDS
END START

Programs to be rI.& using a debugger in DOS eust include the START: Label and the
START after the END fajwed by a carriage return. Programs to be downloaded and run need
only the END directivi oltowed by a carriage return.

FIGURE 3-14 Assembly language source program to multiply two 16-bit binary
numbers to give a 32-bit result.

use an underscore as shown to sepMt. words in a
name. Also, you can't use Instruction Itinemonics as
segment names or labels. Throughout the rest of the
program you will refer to a logical segment by the name
that you give it when you define It.

A logical segment is not usually given a physical
starting address when Ills declared. After the program
is assembled and perhaps linked with other assembled
program modules, it is then assigned the physical
address where it wiU be loaded in memory to be run.

Naming Data and Addresses - QU, DB, DW,
and DD Directives

Programs work with three general categories of data:
constants, variables, and addresses. The value of a
constant does not change during the execution of the
program. The number 7 Is an example of a constant you
might use In a program. A variable Is the name given to
a data item which can change during the execution of
a program. The Current temperature of an oven is an
example of a variable. Addresses are referred to in many
Instructions. You may. for example, load an address into
a register or Jump to an, address.

Constants, variables, and addresses used In your
programs can be given names. This allows you to refer
to them by name rather than having to remember or
iTcuIate their -value each time you refer to them in

an instruction, In other words, if you give names to
constants, variables, and addresses, the assembler can

use these names to find a desired data item or address
when you refer to it in an instruction. Specific directives
are used to give names to constants and variables in your
programs. Labels are used to give names to addresses In
your programs.

THE EQU DIRECTIVE
The EQU, or equate, directive is used to assign names
to constants used In your programs. The statement
CORRECTION_FACTOR EQU 07H. in a program such
as our previous example, would tell the assembler to
Insert the value 07H every time it finds the name
CORRECTION_yACT in a program statement. In
other Words, when the assembler reads the statement
AD!) AL, CORRECTION_FACTOR it will automatically
Code the Instruction as if you had written it ADD AL.
0711. Here's the advantage of using an EQU directive to
declare constants at the start of your program. Suppose
you use the correction factor of +07H 23 times In your
program. Now the company you work for changes the
brand of temperature sensor It buys, and the new
correction factor is +09H. If you used the number
0711 directly in the 23 instructions which contain this
correction factor. then you have to go through the entire
program, find each instruction that uses the Correction
factor, and update the value. Murphy's law being what
It is. you are likely to miss one or two of these, and the
program won't work correctly. If you used an EQU at the
Start of your program and then referred to CORREC-TION_FAC'FOR ; iame In the 23 instructIons, then all

54	 CHAPTER ThREE

you do is change the value in the EQU statement from
07H to 09H and reassemble the program. The assembler
automatIcally inserts the new value of 09H In all 23
instructions.

DB, DW, AND DD DIRECTIVES

The 1DB. DW. and DD directives are used to assign names
to variables In your programs. The DB, directive after a
name specifies that the data is of type byte. The program
statement OVEN_TEMPERATURE 1DB 271-1. for example.
declares a variable of type byte, gives It the name
OVEN_TEMPERATURE, and gives it an initial value of
27H. When the binary code for the program is loaded
into memory to be run, the value 27H will be loaded into
the memory location identified by the name OVEN_
TEMPERATURE 1DB 2711.

As another example, the statement CONVER-
SiON_FACTORS 1DB 27H, 48H, 32H, 69H will declare a
data structure (array) of 4 bytes and inittalize the 4 bytes
with the specified 4 values. If you don't care what value
a data item Is initialized to. then you can indicate this
with a "?," as in the statement TARE_WEIGHT 1DB?.

NOTE: Variables which are changed during the
operation of a program should also be initialized
with program instructions so that the program
can be rerun from the start without reloading It
to initialize the variables.

DW is used to specify that the data is of type word
16 bits), and DID is used to specify that the data is of

type doubleword (32 bits). The example program in
Figure 3-14 shows three examples of naming and initial-
izing word-type data items.

The first example. MULTIPLICAND DW 204AH. de-
clares a data word named MULTIPLICAND and initializes
that data word with the value 204AH. What this means
Is that the assembler will set aside two successive
memory locations and assign the name MULTIPLICAND
to the first location. As you will see, this allows us to
access the data in these memory locations by name. Th&
MULTIPLICAND DW 204AM statement also indicates
that when the final program is loaded into memory to
be run, these memory locations will be loaded with
(initialized to) 204AM. Actually, since this is an Intel
microprocessor, the first address in memory will contain
the low byte of the word. 4AM. and the second memory
address will contain the high byte of the word. 2011.

The second data declaration example in Figure 3-14.
MULTIPLIER L1W 3B2AH. Sets aside storage for a word
in memory and gives the starting address of this word
the name MULTIPLIER. When the program is loaded.
the first memory address wIll be initialized with 2AM.
and the second memory location with 3BH.

The third data declaration example in Figure 3-14.
PRODUCT DW 2 DUP(0). sets aside storage for two words
in memory and gives the starting address of the first
word the name PRODUCT. The DUP(0) part of the
statement tells the assembler to initialize the two words
to all zeros. When we multiply two 16-bit binary num-
bers. the product can be as large as 32 bIts, so we must
set aside this much space to store the product. We could

have used the DD directive to declare PRODUCT a
doubleword, but since in the program we move the result
to PRODUCT one word at a time, It is more convenient
to declare PRODUCT 2 words.

Figure 3-15 shows how the data for MULTIPLICAND,
MULTIPLIER, and PRODUCT will actually be arranged
in memory starting from the base ol the DATA_HERE
segment. The' first byte of MULTIPLICAND. 4AM, will be
at a displacement of zero from the segment base, because
MULTIPLICAND is the first data item declared in the
logical segment DATA_HERE. The displacement of the
second byte of MULTIPLICAND is 0001. The displace-
ment of the first byte of MULTIPLIER from the segment
base is 0002H. and the displacement of the second byte
of MULTIPLIER is 0003H. These are the displacements
that we would have to figure Out for each data item if
we were not using names to refer to them,

If the logical segment DATA_HERE is eventually put
in ROM oi EPROM, then MULTIPLICAND will function
as a constant, because it cannot be changed during
program execution. However, if DATA_HERE is eventu-
ally put in RAM, then MULTIPLICAND can function as
a variable because a new value could be written in those
memory locations during program execution.

MEMORY

HIGHWORD{	
I

LOW WORD-f
I	 I
I	 I - START OF PRODUCTI 38 II 2A I -P- START OF MULTIPLIER

1201

DATAHERE
SEGMENT BASE -

L_..._I	
START OF MULTIPLICAND

FIGURE 3-15 Data arrangement in memory for multipfy
program.

Types of Numbers Used in Data Statements

All the previous examples of DB. DW. and DID declara-
tions use hexadecimal numbers, as indicated by an 'H'
after the number. You can, however, put in a number
In any one of several other forms. For each form you
must tell the assembler which form you are using.

BINARY

For example. when you use a binary number in a
statement, you put a 'B' after the string of l's and Os
to let the assembler know that you want the number to
be treated as a binary number. The statement TEMP_
MAX 1DB 0111 100IB is an example. If you want to put
In a negative binary number. write the number in its
2's complement sign-and-magnitude form.

8086 FAMIlY ASSEMBLY LANGUAGE PROGRAMMING_INTRODUCTION 	 55

DECIMAL

The assembler treats a number with no identifying
letter after it as a decjmaj number. The assembler
automatically converts a decimal number in a statement
to binary so that the value can be loaded Into memory.
Given the statement TEMP._MAX DB 49, for example.
the assembler will automatically convert the 49 decimal
to Its binary equivalent, 00110001. If you Indicate a
negative number in a data declaration statement, the
assembler will Convert the number to its 2's complement
sign-and-magnitude form. For example, given the state-
ment TEMP_MIN DB -20. the assembler will insert the
value 11101100. which is the 2's complement represen-
tation for -20 decimal.

NOTE: If you forget to put an H after a number
that you want the assembler to treat as hexadeci-
mal, the assembler will treat it as a decimal num-
ber. You can put a D after tbe decimal values if
you want to indicate more clearly that the value is
decimal.

HEXADECIMAL

As shown In several previous examples, a hexadecimal
number is indicated by an H after the hexadecimal
digits. The statement MULTIPLIER DW 3B2AH is an
example. A zero must be placed In front of a hex number
that starts with a letter; for example, the number Al-I
must be written OAE.

BCD

Remember from Chapter 1 that In BCD each decimal
digit Is represented by its 4.bit binary equivalent. The
decimal number 37, for example, Is represented in BCD
as 00110111. As you can see, this number is equal to
37H. The only way you can tell whether the number
00110111 represents BCD 37 or hexadecimal 37 is by
how it is used in the program! The point here Is that if
you want the assembler to initialize a variable with the
value 37 BCE), you put an H after the number. The
statement SECONDS DB59H. forexample, will initialize
the variable SECONDS with 01011001. the BCE) repre-
sentation of 59.

ASCII

You can declare a data structure (array) containing a
sequence of ASCII codes by enclosing the letters or
numbers after a DB in single quotation marks. The
statement BOY1 DB 'ALBERT'. for example, tells the
assembler to declare a data item named BOYI that has
Six memory locations. It also tells the assembler to put

•he ASCII code for A in the first memory location, the
ASCII code for L in the second the ASCII code for B in
the third, etc. The assembler will automalically deter-
mine the ASCII codes for the letters or numbers within
the quotes. Note that this ASCII trick can be used only
with the DB directive.

Au.essing N4med Data
with Program Instructions
Now that we have shown you how a data structure can
be set up. let's look at how program iistructions access
this data. Temporarily skipping over the first two in-
structions In the CODE._HERE section of the program
in Figure 3-16. find the instruction MOVAX. MULTIPLI-
CAND, This instruction, when executed, will copy a
word from the memory location named MULTIPLICAND
to the AX register. Here's how this works.

When the assembler reads through this program the
first time, it automatically calculates the offset of each
of the named data items from the segment base DATA_
HERE, In Figure 3-15 you can see that the displacement
of MULTIPLICAND from the segment base is 0000. This
is because MULTIPLICAND Is the first data Item declared
in the segment. The assembler, then, will find that the
displacement of MULTIPLICAI.Jj) Is 0000H. When the
assembler reads the program the second time to produce
the binary codes for the Instructions. it will Insert
this displacement as part of the binary code for the
instruction MOV AX, MULTIPLICAND. Since we know
that the displacement of MULTIPLICAND is 0000. we
could have written the Instruction as MOV AX, 100001.
However, there would be a problem If we later changed
the program by adding another data item before MULTI-
PLICAND in DATA_HERE. The displacement of MULTI-
PLICAND would be changed. Therefore, we would have
to remember to go through the entire program and
correct the displacement in all instructions that access
MULTIPLICAND. If you use a name to refer to each data
item as shown, the assembler will automatically calculate
the correct displacement of that data item for you and
insert this displacement each time you refer to it in an
Instruction.

To summarize how this works, then, the instruction
MOV AX, MULTIPLICAND is an example of direct ad-
dressing where the direct address or displacement of
the desired data word in the data segment Is represented
by the name MULTIPLICAND, For Instructions such
as this, the assembler will automatically calculate the
displacement of the named data item from the start of
the segment and Insert this value as part of the binary
code for the instruction. This can be seen on line 18 of
the assembler lIsting shown in Figure 3-16. When the
instruction executes, the Blu will add the displacement
contained in the Instruction to the data segment base
in DS to produce the 20-bit physical address of the data
word named MULTIPLICAND.

The next instruction in the program in Figure 3-16 is
another example of direct addressing using a named
data item. The instruction MUL MULTIPLIER multiplies
the word from the memory location named MULTIPLIER
in DATA_HERE by the word In the AX register. When
the assembler reads through this program the first time,
it will find that the displacement of MULTIPLIER In
DATA_.HERE is 0002H. When it reads through the
program the second time, it inserts this displacement
as part of the binary code for the MUL instruction,
as shown on line 19 In Figure 3-16. When the MUL
MULTIPLIER instruction executes, the BIU will add the
-displacement contained in the instruction to the data

56	 CHAPTER THREE

2
3
4
5
6
7
8 0000
9 0000

10 0002
11 0004
12 0008
13
14 0000
15
16 0000
17 0003
18 0005
19 0008
20 000C
21 000F
22 0013
23 0014
24

204A
3B2A
02*(0000)

B8 0000s
8€ 08
Al 0000r
F7 26 0002r
*3 0004r
89 16 0006r
Cc

Turbo Assefitler VersIon 1.0
	 Page 1

8086 PROGRAM F3-14.ASM
;ABSTRACT : This progrms ia.iLtipties the two 16-bit words in the meery

Locations called MULTIPLICAND and MULTIPLIER. The result
is stored in the meiry Location, PROGUCI

;REGISTERS : Uses CS, OS, AX, DX
;PORTS	 : None used

DATA_HERE	 SEGMEN1
MULTIPLICAND OW 204AH	 First word here
MULTIPLIER	 OW 382A14	 Second word here
PRcOUCT	 DV 2 DUP(0)	 Result of mjltiptication here

DATA_HERE	 ENDS

COGE_HERE
	 SEGMENT

ASSUME	 CS:COGE_HERE, DS:DATA_HERE
START:	 NOV AX, DATA_HERE	 initialize OS register

NOV OS, AX
NOV AX, MULTIPLICAND	 Get one word
MUL MULTIPLIER	 ; Multiply by second word
NOV PROGUCT, AX	 ; Store tow word of result
NOV PROGUCI+2, DX	 ; Store high word of result
INT 3	 Wait for ccm'nuand from user

COG E_HERE
	 ENDS

END START

Turbo Assethter Versmn 1.0
S 'itho(Table

Syeto(I1

??DATE
fl Fit ENAJIE
1? TINE
??VERSION
acPu
OCURSEG
OF I LEHAME
aoRDSIZE
MULTIPLICAND
MULTIPLIER
PR00UCT
START

Groups & SegmentS

CboE_HERE
DATA_HERE

Page 2

Type Value

Text	 "04-06-8'?"
Text	 "F3-14
Text	 "07:41 :58"
Nsrer 0100
Text	 0101K
Text COGE_HERE
Text	 F3-14
text	 2
Word OATA_HERE:0000
Word DATA KENt :0002
Word DATA_HERE :0004
Near COGE_HERE :0000

Bi.t Size Align Coetint Class

16 0014 Para none
16 0008 Para none

FIGURE 3-16 Assembler listing for example program in Figure 3-14.

segment base in DS to address MULTIPLIER in memory.
After the multiplication, the low word of the result Is
left In the AX register. and the high word of the result
Is left in the DX register.

The next instruction. MOV PRODUCT. AX, in the
program in Figure 3-16 copies the low word of the result
from AX to memory. The low byte of AX wilt be copied
to a memory location named PRODUCT. The high byte
of AX will be copied to the next higher address, which
we can refer to as PRODUCT + I. As you can see on line

20 In Figure 3-16. the displacement of PRODUCT.
0004H. is Inserted in the code for the MOV PRODUCT.
AX instructIon.

The following Instruction In the program. MOV PROD-
UCT + 2. DX. copies the high word of the multiplication
result from DX to memory. When the assembler reads
this instruction, it will add the Indicated 2 to the
displacement it calculated for PRODUCT and Insert the
result as part of the binary tode for the nstructt0fl. as
shown on line 21 in Figure 3-16. Therefore, when the

8086 FAMILY ASSEMBLY LANGUAGE PROGRAMMING_INTRODUCTION 	 57

instruction executes, the low byte of DX will be copied
to memory at a dispIacment of PRODUCT + 2. The
high byte of DX will be copied to a memoly location
which we can refer to as PRODUCT + 3. Figure 3-15
shows how the two words of the product are put in
memory. Note that the lower byte of a word Is always
put in the lower memory address.

This example program should show you that if you
are using art assembler, names are a very convenient
way of specifying the direct address of data in memory.
In the next section we show you how to refer to addresses
by name.

Naming Addresses - Labels

One type of name used to represent addresses Is called
a label. Labels are written In the label field of an
instruction statement or a directive statement, One
major use of labels is to represent the destination for
jump 2nd call instructions. C ppose, for example, we
want the 8086 toJump back to some previous instruction
over and over. Instead of computing the numerical
address that we want the 8086 to jump to, we put a
label in front of the destination instruction and write
the jump Instruction as JMP label:. Here is a specific
example.

NEXT: IN AL. 05H : Get data sample from port 051-1
Process data value read in

JMP NEXT	 Get next data value and
process

If you use a label to represent an address, as shown in
this example, the assembler will automatically calculate
the address that needs to be put in the code for the
jump instruction, The next two chapters show many
examples of the use of labels with Jump and call instruc-
tions,

Another ample of using a name to represent an
address is in the SEGMENT directive statement. The
name DATA_HERE in the statement DATA_HERE SEG-
MENT, for example, represents the starting address of
a segment named DATA_HERE. Later we show you how
we use this name to initialize the data segment register,
but first we will discuss some other parts you need to
know about In the example program n Figure 3-14.

The ASSUME Directive

An 8086 program may have several logical segments that
contain code and several that contain data. However, at
any given time the 8086 works directly with only four
physical segments: a code segment, a data segment, a
stack segment, and an extra segment. The ASSUME
directive tells the assembler which logical segment to
use for each of these physical segments at a given time.

In Figure 3-14, for example, the statement ASSUME
CS:CODE_}IERE DS:DATA_HERE tells the assembler
that the logical segment named CODE_HERE contains
the Instruction statements for the program and should
be treated as a code segment. It also tejis the assembler

that it should treat the logical segment DATA_HERE as
the data segment for this program. In other words.
the DS:DATA_HERE part of the statement tells the
assembler that for any instruction which refers to data
in the data segment, data will be found in the logical
segment DATA_HERE. The ASSUME. . . DS:DATA_
HERE, for example, tells the assembler that a named
data item such as MULTIPLICM4D is contained in the
logical segment called DATA...HERE. Given this informa-
tion, the assembler can construct the binary codes for
the instruction. As we explained before, the displace-
ment of MULTIPLICAND from the start of the DATA_
HERE segment will be inserted as part of the instruction
by the assembler.

If you are using the stack segment and the extra
segment In your program. you must include terms in
the ASSUME statement to tell the assembler which
logical segments to use for each of these. To do this, you
might add terms such as SS:STACK_FIERE, ES:EX-
TRA_1-IERE. As we will show later, you can put another
ASSUME directive later in the program to tell the assem-
bler to use different logical segments from that point
on.

If the ASSUME directive is not completely clear to you
at this point, don't worry. We show many more examples
of its use throughout the rest of the book. We introduced
the ASSUME directive here because you need to put it
in your programs for most 8086 assemblers. You can
use th ASSUME statement in Figure 314 as a model
ol how to write this directive for your programs.

Initializing Segment Registers

The ASSUME directive tells the assembler the names of
the logical segments to use as the code segment, data
segment, stack segment, and extra segment. The assem-
bler uses displacements from the start of the specified
logical segment to code out instructions. When the
instructions are executed, the displacements in the
instructions will be added to the segment base addresses
represented by the 16-bit numbers in the segment
registers to produce the actual physical addresses. The
assembler, however, cannot directly load the segment
registers with the upper 16 bits of the segment starting
addresses as needed.

The segment registers other than the code segment
register must be Initialized by program Instructions
before they can be used to access data. The first two
instructions of the example program in Figure 3-14
show how you inItialize the data segment register. The
name DATA._f-IERE in the first instruction represents
the upper 16 bits of the starting address you give the
segment DATA_HERE. Since the 8086 does riot allow
us to move this immediate number directly into the data
segment register. we must first load it into one of the
general-purpose registers, then copy it into the data
segment register. MOVAX, DATA_HERE loads the upper
16 bits of the segment .stai ting address into the AX
register. -MOV DS. AX copies this value from AX to the
data segment register. This is the same operation we
described for hand coding the example program in
Figure 3-4. except that here we use the segment name

58	 CHAPTER THREE

Instead of a number to refer to the segment base address.
In this example we used the AX register to pass the
value, but any 16-bit register other than a segment
register can be used. II you are hand coding your
program, you can just Insert the upper 16 bits of the
20-bit segment starting address in place of DATA_HERE
In the Instruction. For example, if In your particular
systeth you decide to locate DATkJ'1ERE at address
00300H. DS should be loaded with 0030H. If you are
using an assembler, you can use the segment name to
reler to the segment base address, as shown in the
example.

If you use the stack segment and the extra segment
in a program, the stack segment register and the extra
segment register must be initialized by program instruc-
tions in the same way.

When the assembler reads through your assemblr
language program. it calculates the displacement of each
named variable from the start of the logical segment
that contains it. The assembler also keeps track of the
displacement of each Instruction code byte from the
start of a logical segment. The CS:CODE_FIERE part of
the ASSUME statement in Figure 3-14 tells the assembler
to calculate the displacements of the following Instruc-
tions from the start of the logical segment CODE_HERE.
In other words, it tells the assembler that when this
program is run, the code segment register will contain
the upper 16 bits of the address where the logical
segment CODE_HERE was located in memory. The
instruction byte displacements that the assembler is
keeping track of are the values that the 8086 will put In
the Instruction pointer UP) to fetch each instruction
byte.

There are several ways in which the CS register can
be loaded with the code segment base address and the
instruction pointer can be loaded with the offset of the
instruction byte to be fetched next. The first way is with
the command you give your system to execute a program
starting at a given address, A typical command of this
sort is G = 0010:0000 <CR>. (<CR> means "press the
return key.") This command will load CS with 0010 and
load IP with 0000. The 8086 will then fetch and execute
instructions starting from address 00100. the address
produced when the BIU adds IP to the code segment
base in the CS register.

As we will show you in the next two chapters, Jump
and call instructions load new values in IP, and in some
cases they load new values in the CS register.

The [ND Directive

The END directive, as the name implies. tells the assem-
bler to stop reading. Any Instructions or statements that
you write after an END directive will be Ignored.

ASSEMBLY LANGUAGE PROGRAM
DEVELOPMENT TOOLS

Introduction

For all but the very simplest assembly language pro-
grams. you will probably want to use some type of

FIGURE 3-17 Applied Microsystems ES 1800 16-bit
emulator. (Applied Microsystems Coip.)

microcomputer development system and program de-
velopment tools to make your work easier. A typical
system might consist of an IBM PC-type microcomputer
with at least several hundred kilobytes of RAM. a key-
board and video display, floppy an&or hard disk drives.
a printer, and an emulator. Figure 3-17 shows anApplied
Microsystems ES 1800 16-bIt emulator which an be
added to an IBM PC/AT or compatible computer to
produce a Complete 8086S0 186/80286 development
system.

The following sections give you an tqtroductton to
several common program development tools which you
use with a system such as this. Most of these tools are
programs which you run to perform some function on
the program you are writing. You will have to consult
the manuals for your system to get the specific details.
but this section should give you an overview of the steps
involved in developing an assembly language program.
An accompanying lab manual takes you through the use
of all these tools with the SDK-86 board and an IBM PC-
type computer.

Editor

An editor is a program which allows you to create a file
containing the assembly language statements for your
program. -Examples of suitable editors are PC Write.
Wordstar, and the editor that comes with some assem-
blers.

Ftgure 3-14 shows an example of the format you
should use when typing in your program. The actual
position of each field on a line is not important, but you
must put the fields b each statement in the correct
order, and you must leave at least one blank between
fields. Whenever possible. we like to line the fields up In
columns so that it is easier to read the program.

As you type in your program. the editor stores the
ASCII codes for the letters and numbers in successive
RAM locations, If you make a typing error, the editor
will let you back up and correct it. If you leave out a
program statement, the editor will let you move every-
thing down and Insert the line. This is much easier
than working with pencil and paper, even If you type as
slowly as I do.

- 10	 8086 FAMILY ASSEMSIY LANGUAGE PROGRAMMING_iNTRODUCTION 	 59

When you have typed in all of your program. you then
save the the on a floppy or hard disk. This file Is called
a source file. The next step Is to process the source fIle
with an assembler. Incidentally. if you are going to use
the TASM or MASM assembler, you should give your
source file name the extension .ASM. You might. for
Inst5nce, give the example source program in Figure
3-14 a name such as MULTIPLY.ASM.

Assembler

As we told you earlier in the chapter. an assembler
program Is used to translate the assembly language
mnemonics for Instructions to the corresponding binary
codes. When you run the assembler, it reads the source
tIle of your program from the disk where you saved It
after edittng. On the first pass through the source
program. the assembler determines the displacement of
named data items, the offset of labels. etc., arid puts
this information in a symbol table. On the second pass
through the source program. the assembler prouces
the binary code for each instruction and inserts the
offsets, etc.. that it calculated during the first pass.

The assembler generates two flies on the floppy or
hard disk. The first fIle, called the object file. is given
the extension .OBJ. The object file contains the binary
codes for the Instructions and Information about the
addresses of the instructions. After further processing,
the contents of this file will be loaded into memory and
run. The second the generated by the assembler is called
the assembler list file and is given the extension [ST.
Figure 3-16 shows the assembler lIst file for the source
program in Figure 3-14. The list file contains your
assembly language statements, the binary codes for each
instruction, and the offset for each instruction. You
usually send this file to a printer so that you will have
a printout of the entire program to work with when
you are testing and troubleshooting the program. The
assembler listing will also indicate any typing or syntax
(assembly language grammar) errors you made in your
source program.

To correct the errors indicated on the listing, you use
the editor to reedit your source program and save the
corrected source program on disk. You then reassemble
the corrected source program. it may take several times
through the edit-assemble loop before you get all the
syntax errors out of your source program.

NOTE: The assembler only finds syntax errors: it
will not tell you whether your program does what
itis supposed to do. To determine whether your
program works, you have to run the program and
test it.

Now let's take a closer look at some of the tnforrnation
given on the assembler listing in FIgure 3-16. The
leftmost column In the listing gives the offsets of data
items from the start of the data segment and the of(sets
of code bytes from the start of the code segment. Note
that the assembler generates only offsets, not absolute
physical addresses. A linker or locator will be used to

stgn the physical itãi-ting addresses for the segments.

As evidence of this, note that the MOV AX, DATA_HERE
statement is assembled with some blanks after the basic
instruction code because the start of DS is not known
at the time the program is assembled.

The trailer section of the listing in Figure 3-16 gives
some additional information about the segments and
names used in the program. The statement CODE_
HERE 160014 Para none, for example. tells you that the
segment CODE_HERE is 14H bytes long. The statement
MULTIPLIER Word DATA_.HERE:0002 tells you that
MULTIPLIER is a variable of type word and that it is
located at an offset of 0002 in the segment DATA_HERE.

Linker

A Linker is a program used to join several object flies
into one large object file. When writing large programs.
it Is usually much more efficient to divide the large
program into smaller modules. Each module can be
Individually written, tested, and debugged. Then, when
all the modules work, their object modules can be linked
together to form a large. functioning program. Als,. the
object modules for useful programs - a square root
program. for example -. can be kept in a ltbraryJile and
linked into other programs as needed.

NOTE: On IBM PC-type computers, you must run
the LINK program on your .OBJ tile, even if it
contains only one assembly module.

The linker produces a link file which contains the
binary codes for all the combined modules. The linker
also produces a link map the which contains the address
information about the linked files. The linker, however,
does not assign absolute addresses to the program: it
assigns only relative addressis starting from zero. This
form of the program Is said to be relocatable because it
can be iut anywhere in memory to be run. The linkers
which come with the TASM or MASM assemblers pro-
duce link files with the .EXE extension.

If your program does not require any external hard-
ware, you can use a program called a debugger to load
and run the .EXE file. We will tell you more about
debuggers later. The debugger program which loads your
program into memory automatically assigns physical
starting addresses to the segments.

If you are going to run your program on a system such
as an SDK-86 board, then you must use a locator
program to assign physical addresses to the segments.
In the .EXE the.

Locator

A locator Is a program used to assign the specific
addresses of where tht segments of object code are
to be loaded into memory. A locator program called
EXE2BIN comes with the IBM PC Disk Operating System
(DOS). EXE2BIN converts a .EXE file to a BIN file which
has physical addresses. You can then use the SDKCOM I
program from Chapter 13 to download the BIN file in
the SDK.8 board. The SDKCOM 1 program can also be
used to run the program and debug it on the SDK-86
board.

60	 CHAPTER THRFE

_STJ

DEFINE
PROBLEM

DEVELOP
ALGORITHM

H
CREATE

SOURCE FILE
WITH EDITOR

ASSEMBLE

LINK

LOCATE

EXTENSION OF
FILES GENERATED
BY PC-BASED
TOO LS

-ASM

OBJ

L.ST

•EXE

'MAP

'BIN

XTERNAL
<YSTE>

LOAD
OEBUGGJ

LOAD
PROGRAM

RUN AND TEST
PROGRAM

USE DEBUGGER
TOOLS TO

FIND ERRORS

(ST0D

LOAD
EMULATOR

LOAD
PROGRAM

RUN AND TEST
PROGRAM

ERRORS

YES

USE EMULATOR
TOOLS TO FIND

ERRORS

FIGURE 3-18 Program development algorithm
(see p. 62).

Debugger

If your program requires no external hardware or re-
quires only hardware accessible directly from your micro-
computer. then you can use a debugger to run and
debug your program. A debugger is a program which
allows you to 1od your object code program into system
memory, execute the program, and troubleshoot or
debug it. The debugger allows you to look at the

contents of registers and memory locations after your
program runs. it allows you to change the contents of
registers and memory locations and rerun the program.
Some debuggers allow you to stop execution after each
Instruction so that you can check or alter memory and
register contents. A debugger also allows you to set a
breakpoint at any point in your program. if you insert
a breakpoint, the debugger will run the program up to
the instruction where you put the breakpoint and then
stop execution. You can then examine register and
memory contents to see whether the results are correct
at that point. lithe results are correct, you can move
the breakpoint to a later point in the program. If the
results are not correct, you can check the program up
to that point to find out why they are not correct.

The point here is that the debugger commands help
you to quickly find the source of a problem in your
program. Once you find the problem, you can then cycle
back and correct the algorithm if necessary, use the
editor to correct your source program, reassemble the
corrected source program. relink, arid run the program
again.

A basic debugger comes with the DOS for most IBM
PC-type computers, but more powerful debuggers such
as Borland's Turbo Debugger and Microsoft's Codeview
debugger make debugging much easier because they
allow you to directly see the contents of registers and
memory locations change as a program executes. In a
later chapter we show you how to use one of these
debuggers.

Microprocessor prototyping boards such as the SDK-
86 contain a debugger program in ROM. On boards
such as this, the debugger is commonly called a monitor
program because it lets you monitor program activity.
The SDK-86 monitor program, for example, lets you
enter and run programs, single-step through programs,
examine register and memory contents, and insert
breakpoints.

Emulator

Another way to run your program is with an emulator.
such as that shown .in Figure 3-17. An emulator is a
mixture of hardware andsoftware. It is usually used to
test and debug the hardware and software of an external
system, such as the prototype of a microprocessor-based
instrument. Part of the hardware of an emulator is a
multiwire cable which connects the host system to the
system being developed. A plug at the end of the cable
Is plugged into the prototype system in place of its
microprocessor. Through this connection the software
of the emulator allows you to download your object code
program into RAM in the system being tested and run

8O8t FAMILY ASSEMBLY LANGUAGE PROGRAMMING- ,INT'OOUCTION	 61

it. Like a debugger. an emulator allows you to load and
run programs, examine and change the contents of
registers, examine and change the contents of memory
locations, and insert breakpoints in the program. The
emulator also takes a snapshot of the contents of
registers, activity on the address and data bus, and the
state of the flags as each instruction executes. The
emulator stores this trace data, as it is calkd. iA a large
RAM. You can do a printout of the trace data to see the
results that your program produced on a step-by-step
basis.

Another powerful feature of an emulator is the ability
to use either system memory or the memory on the
prototype for the program you are debugging. In a later
chapter we discuss in detail the use of an emulator in
developing a microprocessor-based product.

Summary of the Use of Program
Development Tools

Figure 3-18(p. 61) summarIzes the steps in developing a
working program. This may seem complicated, but if
you use the accompanying lab manual to go through the
processacoupleoftimes. youwlll find that it is quite easy.

The first and most important step is to think out very
carefully what you want the program to do and how you
want the program to do it. Next, use an editor to create
the source tile for your program. Assemble the source
file. If the assembler list tile indicates any errors in your
program, use the editor to correct these errors. Cycle
through the edit-assemble loop until the assembler tells
you on the listing that it found no errors. If your program
consists of several modules, then use the linker to join
their object modules Into one large object module. If
your system requires it. use a locate program to specify
where you want your program to be put in memory.
Your program is now ready to be loaded into memory
and run. Note that Figure 3-18 also shows the extensions
for the files produced by each of the development pro-
grams.

If your program does not Interact with any external
hardware other than that connected directly to the
system, then you can use the system debugger to run
and debug your program. If your program is intended
to work with external hardware, such as the prototype
of a microprocessor-based Instrument, then you will
probably use an emulator to run and debug your pro-

gram. We will be discussing and showing the use of
these program development tools throughout the rest of
this book.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms or concepts in
the following list, use the index to find them in the
chapter.

Algorithm

Flowcharts and flowchart symbols

Structured programming

Pseudocode

Top-down and bottom-up design methods

Sequence, repetition, and decision operations

SEQUENCE. IF-THEN-ELSE. IF-THEN, nested IF-THEN-
ELSE. CASE, WHILE-DO. REPEAT-UNTIL pro-
gramming structures

8086 instructions: MOV, IN, OUT. ADD, ADC. SUB.
SBB. AND. OR. XOR, MUL. DIV

Instruction mnemonics

InitialIzation list

Assembly language program format

Instruction template: W bit. MOD. RIM. D bit

Segment-override prefix

Assembler directives: SEGMENT. ENDS. END. DB, OW,
DD. EQU. ASSUME

Accessing named data items

Editor

Assembler

Linker: library file, link files, link map, relocatable

Locator

Debugger, monitor program

Emulator, trace data

REVIEW QUESTIONS AND PROBLEMS

I. List the major steps in developing an assembly	 b. What is the advantage of using only these
language program.	 structures when writing the algorithm for a

program?2. What is the main advantage of a top-down design
approach to solving a programming problem? 	 s. .A program is like a recipe. Use a flowchart or

3. Why should you develop a detailed algorithm for a 	 psedocode to show the algorithm for the following
program before writing down any assembly Ian 	 recipe. The operations in It are sequence and
guage Instructions?

	

	 repetition. Instead of implementing the resulting
algorithm in assembly language. Implement Ii In

4. a. What are the three basic structure types used	 your microwave and use the result to help you get
to write the algorithm for a program? 	 through the rest of the book.

62	 CHAPTER THREE

Peanut Brl.ttle:
1 cup sugar
	 1 teaspoon butter

0.5 cup white corn syrup
	 1 teaspOOn vanilla

1 cup unsalted peanuts
	 1 teaspoon baking soda

I. Put sugar and syrup In 1.5-quart caserole
(wiih handle) and stir until thoroughly mixed.

It. Microwave at HIGH setting for 4 mInutes.
III. Add peanuts and stir until thoroughly mixed.
lv. Microwave at HIGH setting for 4 minutes. Add

butter and var.lIla. Stir until well mixed, and
microwave at HIGH setting for 2 more minutes.

v. Add baking soda and gently stir until light and
loamy. Pour mixture Onto nonstick cookie
sheet and let cool for I hour. When cool, break
into pieces. Makes 1 pound.

6. Use a flowchart or pseudocodc to Dhow the algo.
rithm for a program which gets a number from a
memory location. subtracts 20H from it. and out-
puts 01 H to port 3AH if the result olthe subtraction
is greater than 25H.

7. Given the register Contents in Figure 3-19. answer
the following questions:
a. What physical address will the next instrileto.

be fetched from?
b. What Is the physical address for the top ol to

stack?

DATA SEGMENT

ES 6000
	

5000CH 07
CS 4000
	 5000H 9A

SS 7000
	 5000AH 7C

OS 5000
	 50009K 08

IP 43E8
	 50008K C3

SP 0000
	 50007K B2

BP 2468
	 50006H 49

SI 4C00
	 5000it 21

DI 7000 50004H 89
50003K 71
50002H 22
50001K 4A
50000K 30

AK AL	 BK DL
AX 42 35	 BX	 07 5A

CH CL	 OH DL
CX 00 04	 DX	 33 02

FIGURE 3-19 8086 register and memory contents (or
Problems 7, 8, and 10.

S. Describe the operation and results of each of the
following Instructions, given the register contents
shown In Figure 3-19. Include In your answer the
physical address or register that each instruction
will get its operands from and the physical address
or register in which each instruction will put the
result. Use the instruction descriptions in Chapier
6 to help you. Assume that the following instruc-
(tons are independent, not sequential. unless listed
together under a letter.

a. MOV AX. BX	 k. OR CL, OL
b. MOV CL. 37H	 I. NOT AH
c. INC BX	 m. ROL BX. 1
d. MOV CX. (246BH1 n. AND AL. CI-!
e. MOV CX. 246BH	 0. MOV OS, AX

J. ADD AL. OH	 p. ROR BX, CL

g. MUL BX	 q. AND AL. OFH
h. DEC BP	 r. MOV. AX. lBXl
I. DIV BL	 s. MOV IBXI ISil. CL
j. SUBAX.DX

9. See if you can spot the grammatical (syntax) errors
in the following instructions (use Chapter 6 to help
you I:
a. MOV BH. AX	 d. MOV 7632H. CX
b MO' DX, CL	 e. IN BL, 04H

ADo AL. 2073H

10. Show the results that will be in the affected registers
or memory locations after each of the following
groups of instructions executes. Assume that each
group of instructions starts with the register and
memory coni-nis shown in Figure 3-19. (Use Chap-
ter 6.)
u. AI)DIl!. ..\.	 d. MOVBX.000AII

MDV jo..;)[.	 MOVAL. IBXI
h. MOV (I. .1	 SUB AL. ('L

ROR LI. LI	 INC BX
c. AD!) AL. HI	 MDV IPX). AL

DAA

II. \Vri C liii' 5156 instruct ion eh ich will perform the
iii(il-1)pira to. Use the instruction overview
iii i!'. liapice itid the- det t ied descriptions in
t 'Iin 1 ,ti't 1	 !(Iii')	 \k.iI.
o	 (iip'. .'\I. Ii 131..
I,.	 t.,,tit 4 ••.I	 0	 (l..

Ito rio I:: . '	 oiitcnt , '1 C.X be I.
(I	 (.ii' St

J\j 0711 '. DL.

I	 ltilt pR ,'\l. times OIl..
q. Cop AX to 1 intilorv neaT an .11 offset 245AH

iii the d.t I.
ft. Dec rernent SI he I

Rotate tIle most iitIl tilt bit ot Al. into the
least signiliciril bit p0511100.

j. Copy 1)1. ti ii ttliillilrV location whose offset is
itt LIX.

k. Mask the lower 4 hits of IlL.
I.	 Set the 10051 si i.)utiiiailt bit ol AX to a 1. but

do not affect the other bits.
m. Invert the lower 4 bits of IlL, but do not affect

the other bits.

12. Cortst ruct the 1) ittarv code (or each of the following
R086 instructiotis
a. MOV [IL, Al.	 I	 ROR AX. I
b. MO' LIX). (:X	 g OUT DX. AL
C. ADD [IX. 59IUD1!	 ft. AND AL. OFH
d. SUB (2048). DII	 . NOP
e. XCHG CH. ES:IBXJ j . IN AL. DX

8086 FAettL As'[\tBi V [ANGI.JAC,[PROCRA.\l5iING_t ..TRODUCTlO N	 63

14. Describe how an assembly language program Is
developed and debugged using system tools such
as editors, assemblers, linkers, locators, emulators.
and debuggers.

IS. Write the pseudocode representation for the flow-
chart inFlgure 3-18. p. 61.

I). Decribe the function r(each assembler directive
and instruction statement in the short program
shown in Figure 3-20.

;PRESSURE READ PROGRAII

DATA_HERE SEGMENT
PRESSURE 08 0

DATA_HERE ENDS

PRESSURE_PORT	 EQIJ 0.H

CORRECT ION ACTOR EQIJ 0714

;storage for pressure

;Pressure sensor connected
to port 0414

;Current correction factor
of 07

CE_HERE SEGMENT
ASSUME CS:CE_HERE, DS:DATA_HERE
NOV AX, DATA_HERE
NOV OS, AX
IN	 AL, PRESSURE_PORT
ADD AL. CORRECTION_FACTOR
NOV PRESSURE, AL

CE_HERE ENDS
END

FIGURE 3-20 Program for Problem 13.

64	 CHAPTER THREE

Implementing Standard Program
Structures in 8086 Assembly Language

In Chapter 3 we worked very hard to convince you that
you should not try to write programs directly in assembly
language. The analogy of building a house without a
plan should come to mind here. When faced with a
programming problem. you should solve the problem
and write the algorithm for the solution using the
standard program structures we described. Then you
simply translate each step in the flowchart or pseudocode
to a group of one to four assembly language Instructions
which will implement that step. The comments in the
assembly language program should describe the func-
tions of each instruction or group of instructions, so
you essentially write the comments for the program.
then write the assembly language instructions which
implement those comments Once you learn how to
implement each of the standard programming struc-
tures. you should find it quite easy to translate algo-
rithms to assembly language. Also, as we will show
you, the standard structure approach makes debugging
relatively easy.

The purposes of this chapter are to show you how to
write the algorithms for some common programming
problems, how to implement these algorithms in 8086
assembly language, and how to systematically debug
assembly language programs. in the process you will
also leain more about how some of the 8086 instructions
work.

OBJECTIVES
At the conclusion of this chapter. you should be able to

I. Write flowcharts or pseudocode for simple program.
ming problems.

2. Implement SEQUENCE. IF-THEN-ELSE. WHILE-
DO, and RlPE,AT-UNTlL program structures in 8086
assembly language.

3. Describe the operation of selected data transfer.
arithmetic, logical. jump, and loop instructions.

4. Use based and indexed addressing mod's to access
data in your programs.

5. DescrIbe a systematic approach to debugging a
simple assembly language program using debugger,
monitor, Or emulator tools.

6. Write a delay loop which produces a desired amount
of delay on a specific 8086 system.

SIMPLE SEQUENCE PROGRAMS

Finding the Average of Two Numbers

DEFINING THE PROBLEM AND WRITING
THE ALGORITHM

A common need in programming is to find the average
of two numbers. Suppose. for example, we know the
maximum temperature and the thintmum temperature
for a given day, and we want to determine the average
temperature. The sequence of steps we go through to
do this might iook something like the following.

Add maximum temperature and minimum temperature.

Divide sum by 2 to get average temperature.

This sequence doesnt look much like an assembly
language program. and it shouldn't. The algorithm at
this point shouid be general enough that it could be
implemented in any programming language. or on any
machine. Once you are reasonably sure of your algo-
rithm, then you can start thinking about the architec-
ture and intructions of the specific microcomputer on
which you plan to run the program. Now let's show you
how we get from the algorithm to the assembly language
program for It.

SETEING UP THE DATA STRUCTURE

One of the first things for you to think about in this
process is the data that the program will be working
with. You need to ask yourself questions such as:

I. Will the data be In memory or in registers?

2. Is the data of type byle, type word, or perhaps type
doublewd'rd?

3. How many data Items are there?

4. Does the data represent only positive numbers, or
does it represent positive and negative (signed)
numbers?

65

5. For more complex problems, you might ask how the
data is structured. For example, is the data in an
array or in a record?

Let's assume for this example that the data is all in
memory, that the data Is of type byte, and that the data
represents only positive numbers in the range 0 to OFFH.
The top part of Figure 4-I. between the DATA SEGMENT
and the DATA ENDS directives, shows how you might
set up the data structure for this program. it is very
similar to the data structure for the multiplication
example in the last chapter. In the logical segment called
DATA. i-Il_TEMP is declared as a variable of type byte
and initialized with a value of 92H. In an actual applica-
tion, the value in HI_TEMP would probably be put there
by another program which reads the output from a
temperature sensor. The statement LO_TEMP DB 52H
declares a variable of type byte and initializes it with the
value 52H. The statement AV_TEMP DB ? sets aside a
byte location to store the average temperature, but does
not initialize thelocation to any value. When the program
executes, I will write a value to this location.

INITIALIZATION CHECKLIST

Although it does not show in the algorithm, you know
from the discussion in Chapter 3 that most programs
start with a series of initialization instructions. For this
example program, all you have to initialize is the data
segment register. The MOV AX.DATA and MOV DS.AX
instructions at the start of the program in Figure 41
do this..

These instructions load the DS register with the upper
16 bits of the starting address for the data segment. If

you are using an assembler, you can use the name DATA
in the Instruction to refer to this adaress. If you are not
using an assembler, then just put the hex for the upper
16 bits of the address In the MOV AX,DATA instruction
In place of the name.

CHOOSING INSTRUCTIONS TO IMPLEMENT
THE ALGORITHM

The next step is to look at the algorithm to determine
the major actions that you want the program to perform.
II you have written the algorithm correctly, then all you
should have to do is translate each step in the algorithm
to one to four assembly language instructions which
wilt implement that step.

You want the program to add two byte . type numbers
together, so scan through the instruction groups in
Chapter 3 to determine which 8086 instruction will do
this for you. The ADD instruction is the obvious choice
in this case.

Next, find and read the detailed discussion of the ADD
instruction in Chapter 6. From the discussion there.
you can determine how the instruction works and see
if it will do the necessary Job. From the discussion of
the ADD tnstruction. you should find that the ADD
instruction has the format ADD destination.source, A
byte from the specified source is added to a byte in the
specified destination, or a word from the specified source
is added to a word in the specified destination. (Note
that you cannot directly add a byte to a word.) The result
in either case is put iii the specified destination, The
source can be an Immediate number, a register, or a
memory location. The destination can be a register or a

2.
3
4
5
6
7
80000
9 0000 92

10 0001 52
11 0002 7?
12 0003
13
140000
15
16 0000 B8 0000a
17 0003 BE 08
18 0005 *0 0000r
19 0008 02 06 000lr
20 000C B4 90
21 000€ 80 04 00
22 0011 B3 02
23 0013 F6 F3
24
25 0015 *2 0002r
26 0018
27

8086 PROGRAM	 F4C'tTl1
;ABSTRACT This program averages two temperatures

named HI_TEMP and 10 TEMP and pots the
result in the memory Location AV_TEMP.

;REGISTERS	 Uses OS. CS, AX, BL
;PORTS	 : None used

DATA
	

SEGMENT
HI_tEMP OB 9211	 Max ter, storage
10_TEMP DB 5211	 low temp storage
AVTEMP D8 7	 Store average here

DATA
	

ENDS

COOE	 SEGMENT
ASSUME CS:C00t, OS:DATA

START: NOV AX, DATA	 Initialize data segment
MOY DS, AX
NOV AL, HI_TEMP	 Get first temperature
ADD AL. 10_TEMP	 Add second to it
MOV All, OOH	 Clear atL of AN register
ADC All, OOH	 Put carry in LSB of AN
NOV BI, 0211	 Load divisor in BL register
DIV BL	 Divide AX by BL. Ouotient in AL,

and remainder in AM
MOV AV_TEMP, AL	 Copy result to e?mory

C00E	 ENDS
END START

FIGURE 4-1 8086 program to average two temperatures.

66	 CHAPTER FOUR

memory location. However, in a single instruction the
source and the destination cannot both be memory
locations. This means that you have to move one of the
operands from memory to a register before you can do
the ADD.

Another point to consider here is that if you add two
8-bit numbers, the sum can be larger than 8 bits.
Adding FOH and 40H. for example, gives I 30H. The 8-bit
destination will contain 30H. and the carry will be held
in the carry flag. This means that to have the complete
sum, you must collect the parts of the result in a location
large enough to hold all 9 bits. A 16-bit register isa good
choice.

To summarize, then, you need to move one of the
numbers you want to add into a register. such as AL.
add the other number from memory to it. and move any
carry produced by the addition to the upper half of the
16-bit register which contains the sum in its lower 8
bits. Now let's take another look at Figure 4-ito see how
you implement this step in the algorithm with 8086
instructions.

The instruction MOV AL.l-Il_TEMP copies one of the
temperatures from a memory location to the AL register.
The name HI_TEMP in the instruction represents the
direct address or displacement of the variable in the
logical segment DATA. The ADD AL.LO_TEMP instruc-
tion adds the specified byte from memory to the contents
of the AL register. The lower 8 bits of the sum are left
in the AL register. If the addition produces a result
greater than FFH, the carry flag will be set to a I. If the
addition produces a result less than or equal to FF11.
the carry flag will be a 0. In either case, we want to get
the contents of the carry flag into the least significant
bit of the AH register. so that the entire sum is in the
AX register.

The MOV Al-I.00H instruction clears all the bits of AH
to 0's. The ADC AH,00H instruction adds the immediate
number 0011 plus the Contents of the carry flag to the
contents of the Al-I register. The result will be left in the
Al-I register. Since we cleared Al-I to all 0's before
the add, what we are really adding is OOH + OOH + CF.
The result of all this is that the carry bit ends up in the
least significant bit of AH. which is what we set out to
do.

The next major action In our algorithm is to divide
the sum of the two temperatures by 2. To determine
how this step can be translated to assembly language
instructions, look at the instruction groups in the last
chapter to see if the 8086 has a Divide instruction. You
should find that it has two Divide instructions, DIV and
IDEV. DIV Is for dividing unsigned numbers, and IDIV
is used for dividing , signed binary numbers. Since in
this example we are dividing unsigned binary numbers.
look up the DIV instruction in Chapter 6 to find out how
it works.

The DIV instruction can be used to divide a 16-bit
number In AX by a spccified byte in a register or in a
memory location. After the division, an 8-bit quotient
is left in the AL register. and an 8-bit remainder is left
in the Al-I register. The DIV instruction can also be used
to divide a 32-bit number in the DX and AX registers by
a 16-bit number from a specified register or memory

location. In this case, a 16-bit quotient is left in the AX
register. and a l6-bt remainder is left in the DX register.
In either case, there is a problem if the quotient is too
large to fit in AX for a 32-btt divide or AL for a 16-bit
divide. Fortunately, the data in the example here is such
that the problem will not arise. In a later chapter we
discuss what to do about this problem.

Remember from the previous discussion that the sum
of the two temperatures is already positioned in the AX
registel' as required by the DIV operation. Before we can
do the blv operation, however, we have to get the divisor.
02H. into a register or memory location to satisfy the
requirements of the DIV instruction. A simple way to do
this is with the MOV BL.02H instruction, which loads
the immediate number 0211 into the BL register. Now
you can do the divide operation with the instruction
DIV EL. The 8-bit quotient from the division will be left
in the AL register.

The algorithm doesn't show it. but in our discussion
of the data structure we said that the minimum, maxi-
mum, and average temperatures were all in memory
locations. Therefore, to complete the program, you have
to copy the quotient in AL to the memory location we
set aside for the average temperature. As shown in
Figure 4-1. the instruction MOV AV_TEMP.AL will copy
AL to this memory location.

NOTE: We could have used the remainder from
the division in Al-I to round off the average tempera-
ture to the nearest degree. but that would have
made the program more complex than we wanted
for this example.

SUMMARY OF CONVERTING AN ALGORITHM
TO ASSEMBLY LANGUAGE

Ti-? firs t in converting an algorithm to assembly
Ianguge is to set up the data Structure that the algo-
rithm will be working with. The next step is to write at
the start of the code segment any instructions required
to initialize variables, segment registers. peripheral de-
vices, etc. Then determine the instructions required to
implement each of the major actions in the algorithm.
and decide how the data must be positioned for these
instructions. Finally, insert the MOV or other instruc-
tions required to get the data into the correct position
for these instructions.

A Few Comments about the 8086
Arithmetic Instructions

The 8086 has instructions to add, subtract, multiply.
and divide. It can operate on signed or unsigned binary
numbers. BCD numbers, or numbers represented In
ASCII. Rather than put a lot of arithmetic examples at
this point in the book, we show arithmetic examples
with each arithmetic Instruction description in Chapter
6. The description of the MUL instruction in Chapter 6.
for example, shows how unsigned binary numbers are
multiplied. Also we show other arithmetic examples as
needed throughout the rest of the book. If you need to
do some arilhmetic operations with an 8086. there are
a few instructions in addition to the basic add, subtract.

- 11	 IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8081, ASSEMBLY LANGUAGE 	 67

multiply, and divide Instructions that you need to look
up In Chapter 6.

If you are adding BCD numbers, you need to also look
up the Decimal Adjust for Addition (DAA) instruction,
If you are subtracting BCD numbers, then you need
to look up the Decimal Adjust for Subtraction (DASI
Instruction. If you are working with ASCII numbers.
then you need to look up the ASCI Adjust after Addition
(AAA) instruction. the ASCII Adjust after Subtraction
(AASI Instruction, the ASCII Adjust after Multiply (AAM)
instruction, and the ASC!l Adjust before Division IAAD)
instruction,

5,

Debugging Assembly Language Programs

By now you should be writing some programs of your
own, so we need to give you a few hints on how to debug
them If they don't work correctly the first time you try
to run them.

The first technique you use when you hit a difficult-
to-find problem in either hardware or software is the 5-
minute rule. This rule says. "You get 5 minutes to freak
out and mumble about changing vocations, then you
have to cope with the problem in a systematic manner."
What this means Is step back from the problem, collect
your wits, and think out a systematic Series of steps to
find the solution. Random poking and probing wastes
a lot of valuable time and seldom finds the problem.
Here Is a lIst of additional techniques you may find
useful In writing and debuggIng your programs.

1. Very carefully define the problem you are trying to
solve with the program and work cut the hst
algorithm you can.

2. Write and test each Section of a program as you go,
Instead of writing a large program all at once.

3. If a program or program section does not work, first
recheck the algorithm to make sure it really does
what you want it to, You might have someone else
look at It also. Another person may quickly spot an
error you have overlooked 17 times.

4. If the algorithm seems correct, check to make sure
that you have used the correct instructions to iniple-
ment the algorithm. It is very easy to accidentally
switch the operands in an instruction. You might.
for example, write down the instruction MOVAX.DX
when the instruction you really want is MOV DX.AX
Sometimes it helps to work out on paper the effect
that a series of instructions will have on some sample
numbers. These predictions can later be compared
with the actual results produced when the program
section runs.

If you are hand coding your programs, this Is the
next place to check, It Is very eas y to get a hit wrong
when you construct the 8086 instruction c-ides. Ako
remember, when constructing insti oct ion COdeS
which contain addresses or displacemenis , hint the
lbw byte of the address or displacement Is 'odrd in
before the high byte.

6. hfyou don't find a problem in the a1gorl1hi i , i..struc.
tions. or coding, now is the time to rise debugger,
monitor, or emulator tools to help you localize the
problem. You could use these tools righ' from the
Start, but II you do. it is easy to get lost In chasing
bits and not see the bigger picture of what is causing
the program to fail. When debugging short [rograni
Sections on an SDK-86 board, for example, you
might use the single-step command to help you
determine why the program Is not doing what
you want it to do. The SDK-86 hoards singie.step
comniarid executes cne instruction and then stops
execution. You can then use the Examine Register
and Examine Memory commands to see if registers
and memory contain the correct data If the results
are correct at that point, you can use the single-step
command to execute the next instruction, You keep
stepping through the program until you reach a
point where the results arc not what you predicted
they should be at that point. Once you have localized
the problem to one or two instructions, it is usually
not too hard to find the error. An exercise in the
accompanying lab manual shows you how to use the
single .step command on an SDK-86 board.

7. For longer programs, the single .slep approach can
be somewhat tedious, Breakpoints are often a faster
technique to narrow the source of a problem down
to a small region. Most debuggers, monitors, and
emulators allow you to specify both a starting ad-
dress and an ending address in their GO command.
The SDK-86 monitor GO command, for example,
has the format GO address.brcakpoint address.
When you enter one of these commands, execution
will Start at the address spccific'd first In the corn.
mnand and stop when it i caches the address specitled
in the second position in the command. After the
program runs to a breakpoint, you can use the
Examine Reg' ter and Examine Memory commands
to check tire results at that point.

Here's how you use breakpoints. Instead of running
the entire program, specify a breakpoint so that execu-
tion stop.s sonic distance into the program, You ('an
then check to set' if the result are correct at this point.
'r they are. y''. can n.m the protram again wiih the
)reakpiiat at a later address and check the results at
that point. if the results are riot correct. you can move
the breakpoint to an earlier oSini in the program, run
It again, and check whether the results In registers arid
memory are correct,

Suppose, for example. you write a program such as
the averaging program In Figure 4-! and it (fOeS riot
give the correct results. The first place to put a
breakpoint might be at the address of the MOV AH,00
instruction lrit'idr'ntallv in most s y tems the instruc-
tion at the address where you put the breakpoint does
not get executed. After the program runs to this
breakpoint, you check to see if the data segment register
was Initialized correctl y and if the basic addition was
perfurnir'd correctl y . If the program works correctly to
this pcnI, von can nor it again with the breakpoint at
Iii, actd i ess of the MQ\•' A\',TEMP,AL instruction After

68	 CHAPTfR FOUR

the program executes to this breakpoint, you can check
AL to see if the dwision produced the results you
predicted. If the 8086 is working at all, it will almost
always do operations such as this correctly, so recheck
your predictions if you disagree with it.

It helps your frustration level if you make a game of
thinking where to put breakpoints to track down the
little bug that is messing up your program. With a little
practice you should soon develop an efficient debugging
algorithm of your own using the specific tools available
on your system. In the next chapter we show you how
to use a more powerful debugger to run and debug
programs in an IBM PC-t ype computer.

Converting Two ASCII Codes to Packed BCD

DEFINING THE PROBLEM AND WRITING
THE ALGORITHM

Computer data is often traisferred as a series of 8-bit
ASCII codes. If, or example, you have a microcomputer
connected to an SDK-86 board and you type a 9 on an
ASCII-encoded computer terminal keyboard, the 8-bit
ASCII code sent to the SDK-86 will be 00111001 binary,
or 39H. If you type a 5 on the keyboard, the code Sent
to the computer will be 00110101 binary or 35H, the
ASCII code for 5. As shown in Table 1-2. the ASCII codes
for the numbers 0 through 9 are 30H through 39H. The
lower nibble of the ASCII codes contains the 4-bit BC!)
code for the decimal number represented by the ASCII
code.

For many applications, we want to convert the ASCII
code to its simple BC!) equivalent. We can do this by
Simply replacing the 3 in the upper nibble of the byte
with four 0's. For example, suppose we read in 001 ii 001
binary or 39H, the ASCII code for 9. If we replace the
upper 4 bits with Os. we are left with 00001001 binary
or 09H. The lower 4 bits then contain 1001 binary, the
BCD code for 9. Numbers represented as one BCD digit
per byte are called unpacked BCD.

For applications in which we are going to perform
mathematical operations on the BC!) numbers, we
usually combine two BCD digits in a single byte. This
form is called pocked BCD, Figure 4-2 shows examples
of ASCII. unpacked BCD. and packed BC!). The problem
wc are going to work on here Is how to convert two
numbers from ASCII code form to unpacked BCD form
and then pack the two BCD digits into one byte. Figure
4-2 shows in numerical form the sieps we want the
program to pci form. When you are writing a program

ASCII	 5	 0011 0101 = 35H
ASCII	 9	 0011 1001 = 39H

UNPACKED BCD	 5	 0000 6101 = aSH
UNPACKED OCI	 9	 0000 1001	 09H

UNPACKED BCD 5	 0101 0000 = SOH
MOVED TO UPPER NIBBLE

PACKED BOB	 59	 0101 1001	 59H

FIGURE 42 ASCII, unpacked BC!), and packed BCD
examples.

which manipulates data such as this, a numerical
example will help you visualize the algorithm.

The algorithm for this problem can be stated simply
as

Convert first ASCII number to unpacked BC!).

Convert second ASCII number to unpacked BC!).

Move fix-st BC!) nibble to upper nibble position in byte.

Pack two BC!) nibbles in one byte.

Now let's see how you can implement this algorithm in
8086 assembly language.

THE DATA STRUCTURE AND INITIALIZATION LIST

For this example program, let's assume that the ASCII
code for 5 was received and put In the BL register, and
the second ASCII code was received and left in the AL
register, Since we are not using memory for data in this
program. we do not need to declare a data segment or
initialize the data segment register. incidentally, in
a real application this program would probably be a
procedure or a part of a larger program.

MASKING WITH THE AND INSTRUCTION

The first operation In the algorithm is to convert a
number in ASCII form to Its unpacked BCD equivalent.
This is done by replacing the upper 4 bits of the ASCII
byte with four 0's. The 8086 AND instruction can be
used to do this operation. Remember from basic logic
or from the review in Chapter 1 that when a I or a 0 is
ANDed with a 0, the result is always a zero. ANDing a
bit with a 0 is called masking that bit because the
previous state of the bit is hidden or masked. To mask
4 bits in a word, then, all you do is AND each bit you
want to mask with a 0. A bit ANDed with a I, remember.
is not changed.

According to the description of the AND instruction
In Chapter 6, the instruction has the format AND
destinatlon,source. The instruction ANDs each bit of
the specified source with the corresponding bit of the
Specified destination and puts the result In the specified
destination. The source can be an immediate number.
a register, or a memory location specified in one of those
24 different ways. The destination can be a register or
a memory location. The source and the destination must
both be bytes, or they must both be words. The source
and the destination cannot both be memory locations
in an instruction.

For this example the first ASCII number Is in the BL
register. so we can just AND an immediate number with
this register to mask the desired bits. The upper 4 bits
of the immediate number should be 0's because these
correspond to the bits we want to mask in BL. The lower
4 bits of the immediate number should be Is because
we want tc leave these bits unchanged. The immediate
number, then, should be 00001111 binary or OFH. The
instruction to convert the first ASCII number is AND
BL.OFH. When this instruction executes, it will leave the
desired unpacked BCD in BL. Figure 4-3 shows how
this wW work for an ASCII number of 3SF-I initIally in
BL.

IMPiEMINJING STANDARD PROGRAM STRUCTURES IN 8U8 ASSEMBLY LANGUAGE 	 69

ASCII 5	 0011 0101
MASK	 0000 1111
RESULT	 0000 0101

FIGURE 4-3 Effects of ANDing with l's and 0's.

For the next action In the algorithm, we want to
perform the same operation on a second ASCII number
in the AL register. The Instruction AND AL,PFH will do
this for us. After this Instruction executes. AL will
contain the unpacked BCD for the second ASCII number.

MOVING A NIBBLE WITH THE
ROTATE INSTRUCTION

The next action In the algorithm is to move the 4 BCD
bits in the first unpacked BCD byte to the upper nibble
position in the byte. We need to do this so that the 4
BCD bits are in the correct position for packing with
the second BCD nibble. Take another look at Figure
4-2 to help you visualize this. What we are effectively
doing here is swapping or exchanging the top nibble
with the bottom nibble of the byte. If you check the
instruction groups in Chapter 3, you will find that the
8086 has an Exchange instruction. XCHG. which can
be used to swap two bytes or to swap two words. The
8086 does not have a specific instruction to swap the
nibbles in a byte. However, if you think of the operation
that we need to do as shifting or rotating the BCD bits
4 bit positions to the left, this will give you a good idea
which instruction will do the Job for you. The 8086 has
a wide variety of rotate an4 shift instructions, For now.
let's look at the rotate instructions, There are two
Instructions, ROL and RCL, which rotate the bits of a
specified Operand to the left, Figure 4-4 shows in diagram
form how these two instructions work. For ROL. each
bit in the specified register or memory location is rotated
I bit position to the left. The bit that was the MSB is
rotated around into the LSB position, The old MSB is
also copied to the carry flag. For the RCL Instruction.
each bit of the specified register or memory location is
also rotated 1 bit position to the left, However, the bit
that was in the MSB position is moved to the carry flag.
and the bit that was in the carry flag is moved into the
LSI3 position. The C in the middle of the mnemonic

.u..

wi

FIGURE 4-4 ROt instruction and RCL instruction
operations for byte operands.

should help you remember that the carry flag is Included
in the rotated luop when the RCL instruction cxecutcs.

In the example program we really don't want the
contents of the carry flag rotated Into the operand, so
the ROL instruction seems to be the one we want. If you
consult the ROL instruction description in Chapter 6.
you will find that the instruction has the format ROL
destination.count. The destination can be a register or
a memory location. It can be a byte location or a word
location. The count can be the immediate number I
specified directly in the instruction, or it can be a
number previously loaded Into the CL register. The
instruction ROL AL, 1, for example, will rotate the con-
tents of AL 1 bit position to the left. We could repeat
this instruction four times to produce the shift of 4 bit
positions that we need for our BCD packing problem.
However, there is an easier way to do it. We first load
the CL register with the number of times we want to
rotate AL. The instruction MOV CL.04H will do this.
Then we use the instruction ROL. BL.CL to do the
rotation. When It executes, this instruction will automat-
ically rotate BL the number of bit positions loaded into
CL. Note that for the 80186 you can write the single
instruction ROL BL.04H to do this Job.

Now that we have determined the instructions needed
to mask the upper nibbles and the instructions needed
to move the first BCD digit into position, the Only thing
left is to pack the upper nibble from BL and the lower
nibble from AL into a single byte.

COMBINING BYTES OR WORDS WITH THE ADD
OR THE OR INSTRUCTION

You Can't use a standard MOV instruction to combine
two bytes into one as we need to do here. The reason Is
that the MOV instruction copies an operand from a
Specified source to a specified destination. The previous
Contents of the destination are lost. You can, however,
use an ADD or an OR instruction to pack the two BCD
nibbles.

As described in the previous program example, the
ADD instruction adds the Contents of a specified sc,tirce
to the contents of a specified destination and leaves the
result in the specified destination. For the example
program here, the instruction ADD AL,BL can be used
to combine the two HCD nibbles. Take a look at Figure
4-2 to help you visualize this addition.

Another way to combine the two nibbles is with the
OR instruction. II you look up the OR instruction in
Chapter 6. you will find that It has the format OR
destination,source. This instruction ORs each bit in
the specified source with the corresponding bit in the
specified destination. The result of the ORing is left in
the specified destination. Remember from basic logic or
the review in Chapter I that ORing a bit with a I always
produces a result of I. ORing a bit with a 0 leaves the
bit unchanged. To set a bit in a word to a I. then, all
you have to do is OR that bit with a word which has a
I in that bit position and 0's in all the otherbit positions.
This is similar to the way the AND instruction is used
to clear bits in a word to Os. See the OR instruction
description in Chapter 6 for examples of this.

70	 CHAPTER FOUR

SEGMENT
ASSUME CS:CCOE
NOV DL. '5'
NOV AL. '9'
AND DL, Ofli
AND AL, OFK
NOV çL. 04K
ROL BL. CL
OR Al, DL
ENDS
END START

Load first ASCII digit into 81
Load second ASCII digit into AL
Mask .çper 4 bits of first digit
Mask upper 4 bits of second digit
Load CL for 4 rotates required
Rotate 81 4 bit positions
Coiitine nibbles, result in AL

2
3
4
5
6
7
8
9 0000

10
11 0000 83 35
12 0002 80 39
13 0004 80 E3 OF
14 0007 24 OF
15 0009 81 04
16 0008 02 C3
17 0000 OA C3
18 000F
19

8086 PROGRAM F4-05.ASN
;ABSTRACT : Program produces a packed BCD byte from 2 ASCII-encoded digits

The first ASCII digit (5) is Loaded in DL.
The second ASCII digit (9) is loaded in AL.
The resuLt (packed BCD) is Left in AL

;REGISTERS	 Uses CS, AL, DL, CL
;PORTS	 : None used

CE

START:

CE

FIGURE 4-5 List file of 8086 assembly language program to produce packed
BCD from two ASCII characters.

For the example program here, we use the instruction
OR AL,BL to pack the two BCD nibbles. Bits ORd with
Os will not be changed. Bits ORed with l's will become
or stay is. Again look at Figure 4-2 to help you visualize
this operation.

SUMMARY OF BCD PACKING PROGRAM

If you compare the algorithm for this program with the
fInished program In Figure 4-5. you should see that each
step in the algorithm translates to one or two assembly
language instructions. As we told you before, developing
the assembly language program from a good algorithm
is really quite easy because you are simply translating
one step at a time to its equivalent assembly language
instructions. Also, debugging a program developed In
this way is quite easy because you simply single-step or
breakpoint your way through it and check the results
after each step. In the next section we discuss the 8086
JMP instructions and flags so we can show you how you
implement some of the other programming structures
In assembly language.

the 8086 to fetch its next instruction from some place
in memory other than the next sequential location,

The 8086 has two types of Jump Instructions, condi-
tional and unconditional. When the 8086 fetches and
decodes an Unconditional Jump instruction, it always
goes to the specified jump destination. You might use
this type of Jump Instruction at the end of a program
so that the entire program runs over and over, as shown
In Figure 4-6.

When the 8086 fetches and decodes a Conditional
Jump instruction, It evaluates the -state of a specified
flag to determine whether to fetch its next tnstruction
from the jump destination location or to fetch its next
InstructIon from the next sequential memory location.

START

JUMPS, FLAGS, AND
CONDITIONAL JUMPS

Introduction

The real power of a computer comes from Its ability to
choose between two or more sequences of actions based
on some condition, repeat a sequence of Instructions as
long as some condition exists, or repeat a sequence of
instructions until some condition exists. Flags indicate
whether some condition is present or not. Jump IflstruC-
Lions are used to tell the computer the address to fetch
its next instruction from. Figure 4-6 shows in diagram
form the different ways a Jump instruction can direct

MAIN
PROGRAM
SEQUENCE

JUMP ro
START

STOP

FIGURE -4-6 Change in program flow that can be caused
by jump instructions.

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8084, ASSEMBLY LANGUAGE 	 71

I ." i start by taking a look at how the BORG Uncoiidi
tiunal Jump instruction works.

The 8086 Unconditional Jump Instruction

INTRODUCTION

As we said before. Jump instruct!ons can be used to tell
the 8086 to start fetching its instructions from some
new location rallier than from the next sequential
location. The 8086 JMP instruction always causes a
jump to occur, so this is referred to as a unconditional
jump.

1ememher from previous discussions that the 8086
computes the physical address froni which to fetch its
next code byte b y adding the offset in the Instruction
pointer register to the code segment base represented
by the 16-bit number in the CS register. When the 8086
executes a JMP instruction, it loads a new number into
the instruction pointer register, and in some eases it
also loads a new number into the code segment register.

lftheJMPdestination Is in the same codesegment. the
8086 only has to change the contents of the instruction
pointer. This type of jump is referred to as a near, or
intrasegment, jump.

If the JMP destination is in a code segment which has
a different name from the segment in which the JMP
instruction is located, the 8086 has to change the
contents of both CS and IP to make the jump. This type
of jump Is referred to as ajar, or intersegment, jump.

Near and far jumps are further described as either
direct or indirect. If the destination address for thejump
is specified directly as part of the instruction, then the
jump is described as direct. You can have a direct near
jump or a direct far jump. If the destination address for
the jump is contained in a register or memory location.
the jump Is referred to as indirect, because the 8086
has to go to the specified register or memory location to
get the required destination address. You can have an
indirect near jump or an indirect far jump.

Figure 4-7 shows the coding templates for the four
basic ty'pes of unconditional jumps. As you can see, for
the direct types, the destination offset, and. if necessary.
the segment base are includcddirectly in the instruction.
l'he Indirect types of jumps use the second byte of the
instruction to tell the 8086 whether the destination
offset (and segment base, if necessary) is contained in
a register or in memory locations specified with one of
the 24 address modes we Introduced you to in the last
chapter.

The JMP instruction description in Chapter 6 shows
examples of each type of jump instruction, but in most
of your programs you will use a direet near-type JMt'
instruction so in the next section we will discuss in
detail how this type works.

UNCONDITIONAL JUMP INSTRUCTION
TYPE S—OV[RVI EW

i'hc 8086 Unconditional Jump instruction. JMI'. has
five cii fleren t types Figure 4-7 shows the names and
instruction coding templates for these five types. We will
first siimntari,.e how tbese five t ypes work to give you

JMP Jump

Within segment or group. IP relative—near and shortLLLL
Opcod	 CIod	 Opiio.,

[9	 5	 iF.- IF * O'SpIb
(8	 5	 P.- IP Dsp8

D,sp8 sign.eIendcd

Within segment or group, Indirect

Lrn

Oprd	 Ciod.	 Op.iio.

U	 II	 IF.- RegI6
ES	 6.1*	 IF.- MqmIb

Inter-segment or group. Direct

Op.od	 Clodu	 Opflon

5*	 IS	 C5—*[b
IF .- 0Usd

Inter-segment or group. Indirect

I oo	 Fmoi_[i	 liE	 liii
Op*d	 Ciok

SF	 2s1A	 CS —
P — o(IsdI

FIGURE 4-7 8086 Unconditional lump instructions.
(Intel Corporation)

an overview then wr will describe in detail the two types
you need for your programs at this point. The JMP
Instruction description its Chapter 6 shows examples of
each of the five types

THE DIRECT NEAR . AND SHO I<1 f'PE
IMP INSTRUCTIONS

As WI' described previously, a near- typejcnp truction
can cause the next instrtictjroj to Is' li'tchecl from
anywhere in the current code segment. To produce the
new instruction fetch address, this instruction adds a
16-hit signed displacement contained In the instruction
to the contents of the instruction pointer register. A 16-
bit signed displacement means that the jump can be to
a location anywhere from + 32.7f7 to 32.768 bytes
from the current instruction pointer location. A positive
displacement usually means you arc jumping ahead in
the program, and a negative displacement usuall y means
that you are Jumping 'backward iu the program.

A special case of the direct near -t ype jump instruction
is the direct short-type jump. If the destination for the
jump is within a displacement range of -- 127 to -128
bytes from the current Instruction pointer location. th

72	 CHAPTER fOUR

destination can be reached with just an 8-bit displace-
ment. The coding for this type of jump is shown on the
second line of the coding template for the direct near
JMP in Figure 4-7. Only one byte Is req ed for the
displacement in this case. Again the 8086 produces the
new Instruction fetch address by addin, the signed 8-
bit displacement, contained In the instruction, to the
contents of the instruction pointer register. Here are
some examples of how you use these JMP instruct!ons
in programs.

DIRECT WI1HIN-SEGMENT NEAR AND DIRECT
WITHIN-SEGMENT SHORI IMP EXAMPLES

Suppose that we \"ant an 8086 to execute the Instruc-
(ions in a program over and over. Figure 4-8 shows how
the JMP instruction can be used to do this. In this
program, the tebel BACK followed by a colon is used to
give a name to the address we want to jump back Ia.
When the assembler reads this label, It will make an
entry in its syrnb-' l table indicating where it found
the label. Then, when the assembler reads thr JMP
instruction and finds the name BACK in the instruction.
it wilt be able to calculate the displacement from the
jump instruction to the label. This displacement will he
inserted as part of the code for the instruction. Even if
you are not using an assembler, you should use labels
to indicate jump destinations so that you can easily see
them. The NOP instructions used in the program in
Figure 4-8 do nothing except fill space. We used them
in this example to represent the instructions that we
want to loop through over and over. Once the 8086 gets
into the JM1'-BACK loop, the only ways It can get out
are If the power is turned off, an interrupt occurs, or
the system is reset.

Now let's r'e how the binary code for the JMP instruc-
tion in Figurc 4-8 is constructed. The jump is to a label
In the same segment. so this narrows our choices down
to the first three types of JMP instruction shown in
Figure 4-7. For several reasons, It Is best to use the
direct-type JMP instruction whenever possible. l'his
narrows our cholces down to the first two types In Figure
4-7. The choice between these two is determined by
whether you need a 1-byte or a 2-byte dispacement to
reach the JMP destination address. Sini-e for our exam-
ple program the destination address is within the range
of - 128 to + 127 bytes from the instruction after the

JMP instruction, we can use the direct within-segment
short type of JMP. According to Figure 4-7. the instruc-
tion template for this instruction Is 11101011 (EBH)
followed by a displacement. Here's how you calculate the
disojacement to put in the instruction.

NOTE: An assembler does this for you automati-
cally. but you should still learn how it is done to
help you in troubleshooting.

The numbers in the left Column of Figure 4-8 represent
the offset of each code byte from the code segment base,
These are the numbers that will be in the instruction
pointer as the program executes. After the 8086 fetches
an Instruction byte, it automatically increments the
Instruction pointer to point to the next !nstruction byte.
The displacement in the JMP Instruction will then be
added to the offset of the next In-tine instruction after
the JMP instruction. For the example program In Figure
4-8, the displacement In the JMP instruction will be
added to offset 0006H, which is in the instruction
pointer after the JMP Instruction executes. What this
means is that when you are counting the number of
bytes of displacement, you always start counting from
the address of the instruction immediately after the JMP
instruction. For the example program, we want to jump
from offset 0006H back to offset 0000FI. This Is a
displacement of —GH.

You cant, however, write the displacement in the
instruction as —GH. Negative displacerrients must be
expressed in 2's complement, sign-and-magnitude form.
We showed how todo this in Chapter!. First, write the
number as an 8-bit positivebinary number. In this case,
that is 000001 10. Then, invert each bit of this, including
the sign bit, to give 11111001. Finally, add I to that
result to give 11111010 binary or FAI-I. which Is the
correct 2s complement representation for - GB. As
shown online 11 in the assembler listing for the program
in Figure 4-8. the two code bytes for this JMP instruction
then are EBB and FAFI.

i'o summarize this example, then, a label is used to
give a name to the destination address for the jump.
This name Is used to refer to the destination address in
(tie JMP Instruction, Since the destination in this
example Is within the range of - 128 to + 127 bytes
from the address after the JMP Instruction, the instruc-
tion can be coded as a direct within-segment short-type

2
3
4
5
6 0000
7
8 0000 04 03
9 0002 90

10 0003 90
11 0004 ER FA
12 0006
13

8086 PROGRAM	 F4'08,ASM
;ABSTRACT	 This pro9rain iltusrr-ates a "backards' juiip
;REGISTERS : Uses CS, AL
;PORTS	 Mone used

CcBI E
	

SE GME S I
ASSUME CS:C0O(

BACK	 ADO AL, 03H	 Add 3 to total
MOP	 Dc.miy instructions to repr-esent those
MOP	 lristrurt ions jsaeped back over
iMP BACK	 J,jr back over instructions to BACK label

CE
	

twos
END

FIGURE 4-8 List ide ot program demonstrating 'backward' IMP.

IMPEEMENTING STANDARD PROGRAM STRL(: TUR[5 IN si, SEBLY LAN(,t)At .t	 73

5086 PROGRAM	 F4 09.ASH

;A8STRACT : This prograel ittustrateC a "forwards" j.m

;REGISTERS : Uses CS. AX

;PORTS	 : tione used

2

3
4
5
6 0000
	 CE	 SEGMENT

7
	 ASSUME CS:CmE

8 0000 EB 03 90	 JMP THERE
9 0003 90	 HOP
10 0004 90	 HOP
11 0005 88 0000	 THERE: MOV AX, 0000H
12 0008 90	 HOP
13 0009
	

CE	 ENDS

14
	 END

Skip over a series of instructions

Di.srvTTy instructions to represent those

Instructions skipped over
Zero accumjiator before addition instructions

Dtniiy instruction to represent continuation of execution

FIGURE 4 -9 List file of program demonstrating 'forward" JMI'.

JMP. The displacement is calculated by counting the
number of bytes from the next address after the JMP
instruction to the destination. if the displacement is
negative (backward in the progr?m). then it must be
expressed In 2's complement form before it can be
written in the instruction code template.

Now let's look at another simple example program, in
Figure 4-9. to see how you can Jump ahead over a group
of Instructions in a program. Here again we use a label
to give a name to the address that we want to JMP to.
We also use NOP instructions to represent the instruc-
tions that we want to skip over and the instructions
that continue after the JMP. Let's see how this JMP
instruction is coded,

When the assembler reads through the source file for
this program. It will find the label "THERE" after the
JMP mnemonic. At this point the assembler has no way
of knowing whether it will need 1 or 2 bytes to represent
the displacement to the destination address. The assem-
bler plays it sale by resetving 2 bytes for the displace-
ment, Then the assembler reads on through the rest of
the program. When the assembler finds the specified
label, it calculates the displacement from the instruction
after the JMP instruction to the label, If the assembler
finds the displacement to be outside the range of - 128
bytes to + 127 bytes, then it will code the instruction as
a direct within-segment near JMP with 2 bytes of
displacement. lIthe assembler finds the displacement
lobe within the - 128- to + 127- byte range, then It will
code the instruction as a direct within-segment short-
type JMP with a 1-byte displacement. In the latter case,
the assembler will put the code for a NOP instruction.
9011. in the third byte it had reserved for the JMP
Instruction. The instruction codes for the JMP THERE
instruction on line 8 of Figure 4-9 demonstrate this. As
shown in the instruction template in Figure 4-7, EBH
is the basic opcode for the direct within-segment short
JMP. The 03H represents the displacement to the JMP
destination. Since we arc jumping forward In this case.
the displacement is a positive number. The 9011 in the
next memory byte Is the code for a NOP instruction. The
displacement is calculated from the offset of this NOP
instruction. 00021-I, to the offset of the destination label,
00051-I. The dillerence of 03H between these two is the
displacement you see coded in the instruction.

If you arc hand coding a program such as this, you

will probably know how far it is to the label, and you
can leave just I byte for the displacement ii that Is
enough. If you are using an assembler and you dont
want to waste the byte of memory or the time it takes
to fetch the extra NOP instruction, you can write the
instruction as JMP SHOR1 label. The SHORT operator
is a promise to the assembler that the destination will
not be outside the range of - 128 to + 127 bytes.
Trusting your promise. the assembler then reserves only
I byte for the displacement.

Note that if you are making a JMP from an address
near the start of a 64-Kbyte segment to an address near
the end of the segment. you may not be able to get there
with a jump of ^32.767. The wa y you get there is
to JMP backward around to the desired destination
address. An assembler will automatically do this for you.

One advantage of the direct near- and short-type JMPs
is that the destination address is specified relative to
the address of the instruction after the JMP instruction.
Since the JMP instruction in this case does not contain
an absolute address or offset, the program can be loaded
anywhere in memory and still run correctl y . A program
which can be loaded anywhere in memon' to be run is
said to be relocatable. You should try to write your
programs so that they are relocatable.

Now that you know about unconditional JMP Instruc-
tions, we will discuss the 8086 flags. so that we can
show how the 8086 Conditional Jump instructions are
used to implement the rest ol the standard programming
structures.

The 8086 Conditional Flags

The 8086 has six cortdiiionia(flags. They are the carnj
flag (CF). the paruy flag (PF'). the auxiliary ccsrnj flag
IAF). the zero flag (ZF1. the sign flag (SF). and the
overflow flag (OF). Chapter I shows numerical examples
of some of the conditions indicated by these ilags. Here
we review these conditions and show how some of the
Important 8086 Instructions affect these Ilags.

THE CARRY FLAG WITH ADD, SUBTRACT, AND
COMPARE INSTRUCTIONS

If the addition of two 8-bit numbers produces a sum
greater than 8 bits, the care',' flag will be set to a I to
indicate a carry into the next bit position. Likewise, if

74	 CI-IAPTER FOUR

the addition of two 16-bit numbers produces a sum
greater than 16 bits, then the carry flag will be set to a
I to indicate that a finai carry was produced by the
addition.

During subtraction, the carry flag functions as a
borrow flag. if the bottom number in a subtraction Is
larger than the top number, then the carry/borrow flag
will be set to indicate that a borrow was needed to
perform the subtraction.

The 8086 compare instruction has the format CMP
destination.source. The source can be an immediate
number, a register, or a memory location. The destina-
tion can be a register or a memory location. The compari-
son is done by subtracting the contents of the specified
source from the contents of the specified destination.
Flags are updated to reflect the result of the comparison.
but neither the source nor the destination is changed.
if the source operand is greater than the specified
destination operand, then the carry/borrow flag will be
set to indicate that a borrow was needed to do the
comparison (subtraction). if the source operand, is the
same size as or smaller than the specified destination
operand, then the carry/borrow flag will not be set after
the compare. lithe two operands are equal, the zero flag
will be set to a 1 to indicate that the result of the
compare (subtraction) was all 0's. Here's an example and
summary of this for your reference.

CMP BX. CX
condition CF ZF
CX>BX	 I	 0
CX<BX	 0 0
CX=BX	 0	 1

The compare instruction Is very important because it
allows you to easily determine whether one operand is
greater than, less than, or the same size as another
operand.

THE PARITY FLAG
Parity is a term used to indicate whether a binary word
has an even number oil's or an odd number of l's. A
binary number with an even number of l's Is said to
have even parity. The 8086 parity flag will be set to a 1
after an instruction if the lower 8 bits of the destination
operand has an even number of l's, Probably the most
common use of the parity flag Is to determine whether
ASCII data sent to a computer over phone lines or some
other communications link contains any errors, In
Chapter i4we describe this use of parity.

THE AUXILIARY CARRY FLAG

This flag has significance In BCD addition or BCD
subtraction. If a carry is produced when the least
significant nibbles of 2 bytes are added, the auxiliary
carry flag will be set. in othr words, a carry out of bit
3 sets theauxiliary carry flag. Likewise. if the subtraction
of the least significant nlbbles requires a borrow, the
auxiliary carry/borrow flagwilI be set. The auxiliary
carry/borrow flag is used oay by the DAA and DAS
Instructions. Consult the DAA and DAS instruction
descriptions In Chapter 6 and the BCD operation exam-

pies section of Chapter 1 for further discussion of
addition and subtraction of BCD numbers.

THE ZERO FLAG WITH INCREMENT, DECREMENT,
AND COMPARE INSTRUCTIONS
As the name implies, this flag will be set to a I if the
result of an arithmetic or logic operation is zero. For
example. if you subtract two numbers which are equal,
the zero flag will be set to indicate that the result of the
subtraction is zero. If you AND two words together and
the result contains no l's, the zero flag will be set to
indicate that the result Is all 0's.

Besides the more obvious arithmetic and logic instruc-
tions, there are a few other very useful instructions
which also affect the zero flag. One of these is the
compare Instruction CMP. which we discussed previ-
ously with the early flag. As shown there, the zero flag
will be set to a 1 if the two operands compared are equal,

Another lmportan instruction which affects the zero
flag is the decrement InstructIon, DEC. This instruction
will decrement (or. in other words, subtract 1 from) a
number in a specified regIster or memory location, If.
after decrementing, the contents of the register or
memory location are zero, the zero flag will be set. Here's
a preview of how this is used. Suppose that we want to
repeat a sequence of actions nine times. To do this, we
first load a register with the number 09H and execute
the sequence of actions. We then decremept the register
and look at the zero flag to see if the register is down to
zero yet. If the zero flag Is not set, then we know that
the register is not yet down to zero, so we tell the 8086.
with a Jump instruction, to go back and execute the
sequence of instructions again. The following sections
will show many specific examples of how this Is done.

The increment Instruction. INC destination, also af-
fects the zero flag. If an 8-bit destination containing
FFH or a 16-bit destination containing FFFFI-I is incre-
mented. the result In the destination will be all 0's. The
zero flag will be set to indicate this.

THE SIGN FLAG—POSITIVE AND
NEGATIVE NUMBERS
When you need to represent both positive and negative
numbers for an 8086. you use 2's complement sign .and-
magnitude form as ctescribed in Chapter 1. in this form.
the most significant bit of the byte or word is used as a
sign bit. A 0 in this bit indicates that the number is
positive. A I in this bit indicates that the number Is
negative. The remaining 7 bits of a byte or the remaining
15 bits of a word are used to represent the magnitude
of the number. For a positive number, the magnitude
will be In standard binary form. For a negative number.
the magnitude will be in 2's complement form. After an
arithmetic or logic instruction executes, the sign flag
will be a copyof the most significant bit of the destination
byte or the destination word. in addition to its use with
signed arithmetic operations, the sign flag can be used
to determine whether an operand has been decremented
beyond zero. Decrementing OOH, for example, will give
FFH. Since the MSB of FFH is a 1, the sign flag will be
set.

- 12	 IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE	 75

THE OVERFLOW FLAG

This flag will be set if the result of a signed operation is
too large to fit in the number of bits available to represent
it. To remind you of what ovefiow means, here is an
example. Suppose you add the 8-bit signed number
011101011+ 117 decimal) and the 8-bit signed number
OO1IOI11 (+55 déctmaJ). The resultwillbe 10101100
1+ 172 decimal), which is the correct binary result in
this case. t?ut is too large to fit in the 7 bIts allowed for
the magnitude in an 8-bit signed number. For an S-bit
signed number, a 1 in the most significant bit indIcates
a negative number. The overflow flag will be set after
this operation to indicate that the result of the addition
has overflowed into the sign bit.

The 8086 Conditional Jump Instrudions

As we stated previously, much of the' reai power of a
computer comes from its ability to choose between two
courses of action depending on whether some condition
is present or not. In the 8086 the six conditional
flags indicate the conditions that are present after an
instruction. The 8086 Conditional Jump instructions
look at the state of a specified flag(s) to determine
whether the Jump should be made or not.

Figure 4-10 shows the mnemonica for the 8086 Condi-
tional Jump instructions. Next to each mnemonic is a
brief explanation of the mnemonic. Note that the terms
above and below are used when you are working with
unsigned binary numbers. The 8-bit unsigned number
11000110 is above the 8-bit unsigned number
00111001. for example. The terms greater and less are
used when you are working with signed binary numbers.
The 8-bit signed number 00111001 is greater (more

positive) than the S-bit signed number 11000110, which
represents a negative number. Also shown in Figure 4-
lOis an indication of the flag conditions that will cause
the 8086 to do the Jump. If the specified flag Conditions
are not present, the 8086 will Just continue on to the
next instruction in sequence. In other words, if the
jump condition is not met, the Conditional Jump in-
struction will effectively function as a NOP. Suppose, for
example. we have the instruction JC SAVE, where SAVE
is the label at the destination address. If the carry flag
Is set, this instruction will cause the 8086 to jump to
the instruction at the SAVE: label. If the carry flag is
not set, the instruction will have no effect other than
taking up a little processor time.

All conditional Jumps are short-type jumps. This
means that the destination label must be in the same
code segment as thejump instruôtion. Also, the destina-
tion address must he in the range of - 128 bytes to
+ 127 bytes from the address of the Instruction after
the Jump instruction. As we show In later examples, it
is important to be aware of this limit on the range of
conditional Jumps as you write your programs.

The Conditional Jump instructions are usually used
after arithmetic or logic instructions, They are very
commonly used after Compare Instructions, For this
case, the Compare instruction syntax and the Condi-
tional Jump instruction syntax are such that a little
trick makes it very easy to see what will cause a jump
to occur. Here's the trick. Suppose that you see the
instruction sequence

CMP BL, DH
JAE HEATER...OFF

in a program, and you want to determine what these
instructions do. The CMP instruction compares the byte

MNEMONIC	 CONDITION TESTED	 "JUMP IF.

JA/JNRE	 (CF or ZF)=0	 above/not below nor equal
JAEJJNB	 CF=0	 above or equal/not below
JBIJNAE	 CF = I	 below/not above nor equal
JSE1JNA	 (CForZF)=1	 -	 -belowor.equal/notabove
JC	 CF1	 carry
JE/JZ	 ZE 1	 equal/zero
IG/JNLE	 ((SF xor OF) or ZF)0 	 greater/not less nor equal
JGEIJNL	 (SF xor OF)=0	 greater or equal/not less
JIJJNGE	 (SF xor OF) 1	 less/not greater nor equal
JLE/JNG	 ((SF xor OF) or ZF) 1	 less or equal/not greater
INC	 CF=0	 not carry
JNE/JNZ	 ZF = 0	 fbi equal/not zero
INO	 OF = 0	 not overflow
JNP/JPO	 PF =0	 not parity/parity odd
INS	 SF0	 not sign
JO -	 OF = I	 overflow
JP/JPE	 PF I	 parity/parity equal
IS	 SF= 1	 sign

Note: "above" and "below" refer to the relationship of twc unsigned values;
"greater" and "less" refer to the relationship of two signed values.

FIGURE 4-10 5086 Conditional Jump instructions.

76	 CHAPTER FOUR

In the DII register with the byte In the BL register and
sets flags according to the result. A previous section
showed you how the cany and zero flags are affected by
a Compare Instruction. According to Figure 4-10. the
JAE instruction says. "Jump If above or equal" to the
label HEATER_OFF. The question now Is. will it jump
ii BL is above DH, or will it Jump if DH is above BL? You
could determine how the flags will be affected by the
comparison and use FIgure 4-10 to answer the question.
but an easier way is to mentally read parts of the
Compare instruction between parts of the Jump instruc-
tion, if you read the example sequence as "Jump if BL
is above or equal to DH,' the meaning of the sequence
is immediately clear. As you write your own programs,
thinking of a conditional sequence in this way should
help you to choose the right Conditional Jump InStruc-
tion. The next sections show you how we use Conditional
and Unconditional Jump instructions to implement
some of the standard program structures and solve some
common programming problems.

IF-THEN, IF-THEN-ELSE, AND MULTIPLE -
IF-THEN-ELSE PROGRAMS

IF-THEN Programs

Remember from Chapter 2 that the IF-THEN structure
has the format

IF condition THEN
action
action

This structure says that IF the stated condition is
found to be true, the series of actions following THEN-
will be executed, If the condition is false, execution will
skip over the actions after the THEN and proceed with
the next mainline instruction.

The Simple IF-THEN is Implemented with a Condi-
tional Jump instruction. In some cases an instruction
to set flags is needed before the Conditional Jump
instruction. Figure 4-110 shows, with a program frag-

CJ4P AX, Bit	 Comçere to set usgs
JE THERE	 If equal then skip correction
ADO AX, 0002K Add correction factor

THERE: NOV CL, 07K	 Load cotrit

(a)

CMP AX, BX	 Coirpare to set flags
JNE FIX	 if not equal do correction
JMP THERE	 If equat . thefl skip correction

FIX:	 ADO AX. 0002K	 Add correction factor

THERE: NOV CL, 07K : Load coerit

(6)

FIGURE 4-11 Programming conditional jumps. (a)
Destinations closer than ±128 bytes. (b) Destinations
further than ±128 bytes.

ment. one way to Implement the simple IF-THEN struc-
ture. In this program we first compare BX with AX to
set the required flags. If the zerà flag Is set after the
comparison. indicating that AX BX. the JE instruc-
tion will cause execution to Jump to the MOV CLO7H
instruction labeled THERE. If AX ^ BX, then the ADD
AX,0002H instruction after the JE instruction will be
executed before the MOV CL,07H instruction.

The implementation in Figure 4-1 Ia will work well for
a short sequence of instructions after the Conditional
Jump Instruction. However, if the sequence of instruc-
tions is lengthy, there is a potential problem. Remember
from the discussion of conditional jumps in the last
section that a conditional jump can only be to a location
in the range of — 128 bytes to + 127 bytes from the
address after the Conditional Jump instruction. A long
sequence tf instructions after the Conditional Jump
instruction may put the label out of range of the instruc-
tion. if you are absolutely sure that the destination label
will not be out of range, then use the instruction
sequence shown In Figure 4-1 la to implement an IF-
THEN structure. II you are not sure whether the destina-
tion will be In range, the Instruction sequence shown
in Figure 4-1 lb will always work. In this sequence. the
Conditional Jump instruction only has tojump over the
JMP instruction. The JMP Instruction used to get to the
label THERE canjump to anywhere in the code segment.
or even to another code segment. Note that you have to
change the Conditional Jump instruction from JE to.
JNE for this second version. The price you pay for not
having to wony whether the destination is in range is
an extra Jump instruction. Incidentally, some assem-
blers now automatically code Conditional Jump instruc-
tions in this way ii necessary.

IF-THEN-ELSE Programs

OVERVIEW

The IF-THEN-ELSE structure is used to indicate a choice
between two alternative courses of action. Figure 3-3b
shows the flowchart and pseudocode for this structure.
Basically the structure has the format

IF condition THEN
action

ELSE
action

This is a different situation from the simple IF-THEN.

because here either one series of actiOns or another
series of actions is done before the program goes on

with the next mainline instruction. An example will

show how we implement this structure.

Suppose that in the computerized factory we discussed
in Chapter 2. we have an 8086 microcomputer which
controls a prtnted-circuit-board . making machine. Part
of the Job of this 8086 Is to check a temperature sensor
and turn on a green lamp or a yellow lamp depending
on the value of the temperature it reads in. If the
temperature is below 30C. we want to turn on a yellow
lamp to tell the operator that the solution is not up to
temperature. If the temperature is greater than or equal

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE	 77

to 30°C. we want to light a green lamp. With a system
such as this, the operator can visually scan all the lamps
on the control panel until all the green lamps are lit.
When all the lamps are green. the operator can push the
GO button to start making boards. The reason that we
have the yellow lamp is to let the operator know that
this part of the machine is working, but that the
temperature is not yet up to 30°C.

Figure 4-12 shows with flowcharts and with pseudo-
code two ways we can represent the algorithm for this
problem. The difference between the two is simply a
matter of whether we make the decision based on
the temperature being below 30°C or based on the
temperature being above or equal to 30°C. The two
approaches are equally valid, but your choice determines
which Conditional Jump instruction you use to Imple-
ment the algorithm. Since this program involves reading
data in from a port and writing data out to a port.
we need to talk briefly about the 8086 IN and 0151'
instructions before we discuss the details of how these
two algorithms can be implemented in assembly lan-
guage.

THE 8086 IN AND OUT INSTRUCTIONS
The 8086 has two types of input instruction.fixed-port
and variable-port. The fixed-port instruction has the
format IN AL.port or IN AX.port. The term port in these
Instructions represents an 8-bit port address to be put
directly In the instruction. The instruction IN AX.04H.
for example, will copy a word from port 04H to the AX
register. The 8-bit port address in this type of IN

READ
TEMPERATURE

i YESO

LIGHT	 LIGHT
YELLOW	 GREEN

READ pH
SENSOR

instruction allows you to address any one of 256 possible
Input ports, but the port address Is fixed. The program
cannot change the port address as It executes. Keep this
In mind as we discuss the variable-port IN instruction.

The variable-port Input Instruction has the format IN
AL.DX or IN AX.DX. When using the variable-port Input
Instruction, you must first put the address of the desired
port In the DX register. If. for example, you load DX with
FFF8H and then do an IN AL.DX. the 8086 will copy a
byte of data from port FFF8H to the AL register. The
variable-port input instruction has two major advan-
tages. First, up to 65.536 different Input ports can be
specified with the 16-bit port address In DX. Second.
the port address can be changed as a program executes
by simply putting a different number In DX. This is
handy in a case where you want the computer to be able
to input from 15 different terminals, for example. Instead
of writing IS different Input programs, you can write
one input program which simply changes the contents
of DX to input from each of the different terminals.

The 8086 also has a fixed-port output Instruction and
a variable-port output instruction. The fixed-port output
instruction has the form OUT port.AL or OUT port.AX.
Here again the term port represents sri 8-bit port address
written in the instruction, OUT OAH.AL, for example.
wiU copy the contents of the AL register to port GAl-I.

The format for the variable-port output instruction is
OUT DX.AL or OUT DX.AX. To use this type of instruc-
tion, you have to first put the 16-bit port address in the
DX register. If. for example, you load DX with FFFA}I
and then do an OUT DX.AL instruction, the 8086 will
copy the contents of the AL register to port FFFA}I.

READ
TEMPERATURE

LIGHT	 I	 I	 LIGHT
GREEN	 I	 I YELLOW

READ pH
SENSOR

READ TEMPERATURE 	 READ TEMPERATURE
IF TEMPERATURE <30° THEN

	
IF TEMPERATURE 30° THEN

LIGHT YELLOW LAMP
	

LIGHT GREEN LAMP
ELSE
	

ELSE
EIGHT GREEN LAMP
	

LIGHT YELLOW LAMP
READ pH SENSOR	 READ pH SENSOR

(a)	 Ibl

FIGURE 4-12 Flowcharts and pseudocode for Iwo ways of expressing algorithm
for printed-circuit-board-making machine. (a) Temperature below 30° test.
(b) Temperature above 30° test.

78	 CHAPTER FOUR

DATA
BUS

8255A	 word to this address, you first point DX at the address
with the instruction MOV DX.OFFFEH.

i	 The control word needed to make port P2B of this
2	 8255 an output, and P2A and P2C inputs, is 99H. (In
I	 Chapter 9 we show how we determined this control

Al	
P2A	 40	 word.) You load this control word into AL with MOV

A0	 5	 AL.99H and send it to the 8255 control register with

6 38	 OUT DX.AL. Now that port 2B Is initialized as an output.

7 37	
you can output a byte to that port of the device any time

06	 0 14	 you need to in the program.

IF-THEN-ELSE ASSEMBLY LANGUAGE
PROGRAM EXAMPLE

03	 3
02	

P2C	 13	 Figure 4-14a. p. 80. shows the list file of the 8086
12	 assembly language implementation of the algorithm In

00	 6	 Figure 4-1 2a. The first three Instructions in this pro-
io	 gram initialize port 2B at address FFFA}1 as an output

Os	 I 1I
04	 I2I

	

0 is
	 port, so we can output values to It to turn on LEDS. !as-

	

1 19	
sume that the driver for the yellow lamp is connected to

	

2 20
	 bit 0 of port FFFAH. and the driver for the green lamp is

	

21	 connected to bit I ofportFFFAH. A 1 sent to a bit position

	

22	 of port FFFAH turns on the lamp connected to that line,

	

23	 The next two Instructions in the example program

1100
i'10,

CONTROL	 01
REGISTER	 D3

Os

0,

FIGURE 4-13 Block diagram of SDK-86 board's 8255A
port.

The device used for parallel input and output ports
on the SDK-86 board and in many microcomputers Is
the Intel 8255. As shown in the block diagram In Figure
4-13. the 8255 basically contains three 8-bit ports and
a control register. Each of the ports and the control
register will have a separate address, so you can write
to them or read from them. The addresses for the ports
and control registers for the two 8255s on an SDK-86
board, for example, are as follows:

PORT 2A	 FFF8H	 PORT IA	 FFF9II
PORT 2B	 FFFAI-1	 PORT lB	 FFFI3I'I
PORT 2C	 FFFCH	 PORT IC	 FFFDH
CONTROL2 FFFEH	 CONTROL I FE'FFH

The ports In an 8255 can be Individually programmed
to operate as input or output ports. When the power Is
first applied to an 8255. the ports are all configured as
input ports. If you want to use any of the ports as an
output port, you must write a control word to the control
register to initialize that port for, operation as an output.
Chapter 9 and later chapters describe in detail how to
initialize an 8255 for a varIety of applications, but we
show you here how to initialize one of the ports In an
8255 devIce on an SDK-86 microcomputer for use as an
output port.

You Initialize an 8255 by sending a control word to
the control register address for that device. As we showed
above, the control register address for one of the 8255s
on an SDK-86 board Is FFFEH. In order to write a control

read the temperature in from an analog-to-digital con-
verter connected to input port FFFSH.

After we read the data in from the port, we compare
it with our set-point value of 30°C. lIthe Input value is
below 30°C, then we jump to the instructions which
turn on the yellow lamp. If the temperature is above or
equal to 30°C. we jump to the instructions which turn
on the green lamp. Note that we have implemented this
algorithm in such a way that the JB instruction will'
always be able to reach the label YELLOW.

To actually turn on a lamp, we load a i in the
appropriate bit of the AL register with a MOV Instruction
and send the byte to the lamp control port. FFFAJ-i. The
Instruction sequence MOV AL,O1H—OUT DX,AL. for
example, will light the yellow lamp by sending a I to bit
0 of port FFFAI-1.

The Instruction sequence MOV AL.02H—OUT DX.AL
will light the green lamp by sendipg a ito bit I of port
FFFAH. Note that control words are sent to the control
register address In an 8255 and data words are read
from or written to the individual port addresses. Here's
another way to implement this program in assembly
language.

Figure 4-i4b shows another equally valid assembly
language program segment to solve our problem. This
one uses a Jump If Above or Equal instruction, JAE, at
the decision point and switches the order of the actions.
This pcogram more closely follows the second algorithm
statement in Figure 4-l2b. Perhaps you can see from
these examples why two programmers may write very
different programs to solve even very simple program-
ming problems.

Multiple IF-THEN-ELSE Assembly
Language Programs

In the preceding section we showed how to imple-
ment and use the IF-THEN-ELSE structure, which
chooses between two alternative courses of action. In

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE 	 79

2
3
4
5
6
7
8
9

10
11 0000
12
13
14 0000
15 0003
16 0005
17
18 0006
19 0009
20 000A
21 000C
22 000E
23 0011
24 0013
25 0016
26 0017
27 OO1A
28 OO1C
29 OO1F
30 0020
31 0023
32 0024
33

8086 PROGRAJ4 F4-14A.ASM
;ABSTRACT : Program section for PC board aiking machine.

This program section reads the teerature of a cleaning bath
solution and tights on of two laa,s according to the
teuperature read. If the teeç '30C, a yet low talup will be
turned on. If the te	 is 30C, a green laup will be turned on.

;REGISTERS: Uses CS, AL, DX _
;PORTS	 : Uses FFF8I$ - teuperatur. irçut

FFFAH - lp control output (yellow=bit 0, green°bit 1)

CE	 SEIEN1
ASSIJHE CS:CCOE

;InEtiatize SOK-66 port EFFAN as output port, FFF8H as input port
BA FFFE	 NOV OX, OFI'FEH	 Point DX to port control register
BO 99	 NOV AL. 99H	 Load control word to initialize ports
EE	 001 DX, AL	 Send control word to port control register

BA FFFB
	

NOV DX, OFFF8H	 Point DX at input port
EC	 IN AL, DX	 Read tee from sensor on input port
3C 1E	 CUP Al, 30

	
Colupare te with 30C

72 03
	

JB Y°.LlOW
	

IF tC4Tp 30 THEN tight yellow lamp
EB OA 90	 JMP GREEN.	 ELSE light green lamp
BO 01
	

YELLOW: NOV AL, 0111 	 Load code to light yellow laup
BA FFFA	 NOV DX, QFFFAH	 Point DX at oUtit port
EE	 001 DX, AL	 Send code to light yellow Letup
EB 07 90	 JMP EXIT	 Go to next mainline instruction
BO 02
	

GREEN: NOV AL, 0214	 Load code to tight green tarp
BA FFFA	 NOV DX, OFFFAH	 Point DX at output port
EE	 001 DX, Al.	 Send code to light green laep
BA FFFC	 EXIT:	 NOV DX, OFFFCH	 Next mainline instruction
EC
	

IN AL, DX	 Read ph sensor
C00E ENDS

END

(a)

20 000A
21 000C
22 000E
23 0011
24 0013
25 0016
26 0017
27 OO1A
28 001C
29 OOIF
30 0020
31 0023
32 0024
33

3C 1E
73 03
ES OA 90
BO 02
BA FFFA
EE
EB 07 90
80 01
BA EFFA
EE
BA FFFC
(C

CMP AL, 30
.IAE GREEN
JNP YELLOW

GREEN: NOV AL, 02H
NOV DX, OFFFAII
001 DX, AL
JUP EXIT

YELLOW: NOV AL, 0111
NOV DX, OFFFAH
EXIT DX, AL

EXIT:	 NOV DX, OFFFCH
IN Al, DX

C00E ENDS
END

Compare teup with 30°C
IF teep e30 THEN light green lamp
ELSE light yellow tarp
Load code to light green lamp
Point DX at output port
Send code to light green lamp
Go to next mainline instruction
Load code to light yellow Iaiip
Point DX at output port
Send code to light yellow tarp
Next mainline instruction
Read ph sensor

lb)

FIGURE 4-14 List file for printed-circuit-board-making machine program.
(a) Below 30° version. (b) Program section for above 30° version.

many situations we want a computer to choose one 	 IF condition THEN
of several alternative ' actions based on the value of 	 action
some variable read in or on a command code entered 	 ELSE IF condition THEN
by a user. To choose one alternative from several, we 	 action
can nest IF-THEN-ELSE structures. The result has 	 ELSE
the form	 action

80	 CHAPTER FOUR

It is important to note that in this structure the last
ELSE is part of the IF-THEN just before it. Figure 3-3d
showed a flowchart and pseudocode for a "soup cook"
example using this structure, but the soup cook example
is too messy to implement here. Therefore, while the
printed-drcult-board .maklog machine from the last sec
tion is still fresh in your mind, we will expand that
example to show you how a multiple IF-THEN-ELSE is
implemented.

Suppose that we want to have three lamps on our
printed-circuit-board-making machine. We want a ye!-
low lamp to indicate that the temperature is below 30°C.
a green lamp to indicate that the temperature is above
or equal to 30°C but below 40°C, and a red lamp to
indicate that the temperature is at or above 40°C. Figure
4-15 shows three ways to indicate what we want to do
here. The first way, in Figure 4-15a. simply Indicates
the desired action next to each temperature range. You
may find this form very useful in visualizing problems
where the alternatives are based on the range of a
variable, Don't miss the ASCII-to-hexadecimal problem
at the end of the chapter for some practice with this.

Once you get a problem such as this defined in
list form, you can easily convert it to a flowchart or
pseudocode. When writing the flowchart or the pseudo-
code. It is best to start at one end of the overall range

TEMPERATURE

1YELLOW
(LAMP

29)

1. GREEN
CLAMP

39J
40	 RED

fLAMP

(I

READ
TEMPERATURE

YES

LIGHT
YELLOW	 YESLAMP

LIGHT
GREEN
LAMP

READ pH
SENSOR

FIGURE 4-15 Algorithm for three-lamp printed-circuit-
board-making machine. (a) Condition list.
(6) Pseudocode. (C) Flowchart.

and work your way to the other, For example, in the
flowchart in Figure 4-15c. start by checking whether
the temperature is below 30°. If the temperature is not
below 30°. then it must be above or equal to 30°. and
you do not have to do another test to determine this,
You then check whether the temperature is below 40°.
If the temperature is above or equal to 30°, but below
40°. then you know that the temperature is in the green
lamp range. if the temperature is not below 40°. then
you know that the temperature must be above or equal
to 40°. In other words, two carefully chosen tests will
direct execution to one of the three alternatives.

Figure 4-16. p. 82. shows how we can write a program
for this algorithm in 8086 assembly language. In the
program, we first initialize port FFFAH as an output
port. We then read in the temperatur- from an A/D
converter connected to port FFF8H. We compare the
temperature read in with the first set-point value. 30°.
If the temperature is below 30°. the Jump If Below
Instruction, JB, will cause a Jump to the label YELLOW.
If the jump is not taken, we know the temperature is
above or equal to 30°. so we go on to the'OMP AL,40
instruction to see whether the temperature is below the
second set point, 40°. The JB GREEN instruction will
cause a Jump to the label GREEN If the temperature is
less than 40°. If the Jump is not taken, we know that
the temperature must be at or above 40°C. so wejust go
ahead and turn on the red lamp.

For this program, we assume that the lines which
control the three lamps are connected t0 port FFFAH.
The yellow lamp is connected to bit 0, the green is
Connected to bit 1. and the red is connected to bit 2.
We turn on a lamp by outputting a 1 to the appropriate
bit of port FEFAI-!. The instruction seuence MOV
AL,04H—OUT DX.AL. for example, will turn on the
red lamp by sending a I to bit 2 of port FFFAH.

Summary of IF-THEN-ELSE Implementation
From the preceding examples, you should see that
you can implement IF-THEN-ELSE structures in your
programs ti using Compare or other instructions to set
the appropriate flag(s) andCond1tIonal Jump instruc-
tions to go to the desired sequence of actions.

A single IF-THEN-ELSE structure is used to choose
one of two alternative series of actions. IF-THEN-ELSE
structures can be linked to choose one of three or more
alternative series of actions. As shown in Figure
3-3d, linked IF-THEN-ELSE structures are one way to
implement the CASE structure. The algorithm for the
printed-circuit-board-making machine lamps program
in the preceding section's example could have been
expressed as

CASE temperature OF
<30	 :	 light yellow lamp
^ 30 and <40	 light green lamp

40	 :	 light red lamp

This CASE structure would be Implemented In the same
way as the program In Figure 4-16. However, expressing

READ TEMPERATURE
IE TEMPERATURE < 30' THEN

LIGHT YELLOW LAMP
ELSE IF TEMPERATURE <40° THEN

LIGHT GREEN LAMP
ELSE LIGHT RED LAMP

READ pH SENSOR

(0)

40 >2±2

RED
LAMP

IMPtEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASS(MBLY LANGUAGE 	 81

2
3
4
5
6
7
8
9

10 0000
11
12
13 0000 BA FFFE
14 0003 80 99
15 0005 U
16
17 0006 8* FFF8
18 0009 EC
19 000* BA FFFA
20 0000 3C 1E
21 00Cr 72 0*
22 0911 3C 28
23 0013 72 Oc
24 0015 80 04
25 0017 U
26 0018 EB OA 90
27 OO1B 80 01
28 0010 U
29001E EB 04 90
30 0021 80 02
31 0023 U
32 0024_BA FFFC
33 0027 EC
34 0028
35

8086 PROGRAM F416.A*M
;ABSTRAC1 : This progr.0 sectiUn ruids the II*rat.r. of a cleaning bath

soLution and lights one of three (. .ccording to the
teirçerature read. If the tei 30°C, a yellow lisp wilt be
turnedon. If the tepE3O ande4O', agreentwitt be
turned on. Tsiçeratures t 40 wilt turn on a red tslç.

;REGISTERS : Uses CS, AL, DX
;PORTS	 : Uses FFFBH - teiiçurature input

FFFAH - lae control output, yeltow'bit 0, green'bit 1, redublt 2
C00E SEGi1ENT

ASSIME CS:C00E
;initialize port FFFAH for output and port FFF8H for irçut

NOV DX, OFFFEK	 Point Dx to port control register
NOV *1, 99K	 load control word to set up output port
001 DX, AL	 Send control word to control register

NOV DX, OFFF8N	 Point DX at input port
IN AL, DX	 Read terp from sensor on input port
NOV DX, OFFFAII 	 Point OX at output port
CMP AL, 30	 Cospare teep with 30°C
JB YELL00	 IF teap 30 ThEN tight yellow lisp
CNP AL, 40	 ELSE cicare with 40'
JB GREEN	 IF terç	 40 111th light green laii

RED:	 NOV AL, 04K	 ELSE teli, 40 so light red lasp
(Xii OX, AL	 Send code to light red laip
iMP EXIT	 Go to next mainline instruction

YELL00: NOV AL, 01K 	 Load code to tight yellow lisp
(XJT DX, AL	 Send code to light yellow lisp
JMP EXIT	 Go to next mainline instruction

GREEN: NOV AL, 02K 	 Load code to light green lisp
(Xii DX, Al	 Send code to tight green lisp

EXIT:	 NOV DX, OFFFCH 	 Next mainline instruction
IN Al, DX	 Read ph sensor

C00E ENDS
END

FIGURE 4-16 List file for three-lamp printed-circuit-board-making machine
program.

the algorithm for the problem as linked IF-THEN-ELSE
structures makes It much easier to see how to implement
the algorithm In assembly language. In Chapter 10 we
show you another way to implement a CA$E situation
using a jump table.

WHILE-DO PROGRAMS

Overview

Remember from the discussIon In Chapter 3 that the
WHILE-DO structure "as the form

WHILE some conditlor. Is present DO
action
action

An Important poInt about this structure is that the
condition Is checked before any action is done. in
Industrial control applications of mIcroprocessors, there
are many cases where we want to do this. The following
very simple example will show you how to implement
this structure in 8086 assemblyJanguage.

Defining the Problem and Writing the Algorithm

Suppose that, in controlling a chemical process. we
want to bring the temperature of a solution up to 100°C
before going on to the next step In the process. If the
solution temperature is below 100°. we want to turn on
a heater and wait for the temperature to reach 100°. If
the solution temperature is at or above 100°. then we
want to go on with the next step In the process. The
WHILE-DO structure fits this problem because we want
to check the condition (temperature) before we turn on
the heater. We don't want to turn on the heater lithe
temperature is already high enough because we might
overheat the solution.

Figure 4-17 shows a flowchart and the pseudocode of
an algorithm for this problem. The first step In the
algorithm is to read In the temperature from'a sensor
connected to a port. The temperature read in is then
compared with 100°. These two parts represent the
condition .checking part of the structure. If the tempera-
ture is at or above 100°, execution will exit the structure
and do the next mainline action, turn off the heater. if
the temperature Is less than 100°. the heater is turned
on and the temperature rechecked. Execution will stay
in this loop while the temperature is below 100°. Inclden.

82	 CHAPTER FOUR

START

I	 [Ii
I	 TEMPERATURE

I	 YES	 Talrff

I	 NO

I	 TURNON
HEATER

L -----------

TURN OFF
HEATER

FLOWCHART

I.)

READ TEMPERATURE
WHILE TEMPERATURE < 1OO DO

TURN HEATER ON
TURN HEATER OFF

PSEUDOCODE

(5)

FIGURE 4-17 Flowchart and pseudocode for heater
control program.

tally, it will not do any harm to turn the heater on if it
is already on.

When the temperature reaches 1000, execution will
exit the structure and go on to the next mainline action.
turn off the heater.

Implementing the Algorithm
in Assembly Language
We have assumed for this example that the temperature
sensor inputs an 8-bit binary value for the Celsius
temperature to port FFF8H. We have also assumed that
the heater control output is connected to the most
significant bit of port FFFAH. As we showed previously.
the actual address of port P2B on the SDK-86 board is
FFFAJ-{. It is to this address that we wili output a byte
to turn tle heater on or off.

Figure 4-18a. p. 84, shows one way to implement out
algorithm. After Initializing the heater control port for
output, we read in the temperature, and compare the

value read with 100. The JAE instruction after the
compare can be read as "Jump to the label HEATER_OFF
lf)AL is above or equal to 100." Note that we used the
Jump If Above or Equal instruction rather than a Jump
If Equal Instruction. Can you see why? To see the
answer, visualize what would happen If we had used a
JE instruction and the temperature of the solution were
101 0. On the first check, the temperature would not be
equal to 1000, so the 8086 would turn on the heater.
The heater would not get turned off until meltdown.

If the heater temperature is below 1OO, we turn on
the heater by loading a I in the most significant bit of
AL and outputting this value to the most significant bit
of port FFFAI-1. Then we do an unconditional JMP to
loop back and check the temperature again.

When the temperature is at or above 1000. we load a
O in the most significant bit of AL and output this to
port FFFAH to turn off the heater. Note that the action
of turning off the heater is outside the basic WHILE-DO
structure. The WHILE-DO structure is shown by the
dotted box in the flowchart in Figure 4-17a and by the
Indentation in the pseudocode in Figure 4-17b.

Solving a Potential Problem of Conditional
Jump Instructions
In the example program in Figure 4-l8a, we used the
Conditional Jump instruction JAE to implement the
WHILE-DO structure. Remember that all the Conditional
Jump instructions are short-type jumps. This means
that a conditional jump can Only be to a location within
the range of - 128 to + 127 bytes from the instruction
after the Conditional Jump instruction. This limit on
the range of the jump posed no problem for the example
program in Figure 4-18a because we were only jumping
to a location 8 bytes ahead in the program. Suppose.
however, that the instructions for turning on the heater
required 220 bytes of memory, The HEATER_OFF label
would then be outside the range of the JAE instruction.

We showed you how to solve this problem in Figure
4-11. To refresh your memory. Figure 4-1 8b shows how
you can change the instructions in this program slightly
to solve the problem without changing the basic WHILE-
DO overall structure. In this exampie, we read the
temperature in as before and compare it to 100. We then
use the Jump if Below instructton to jump to the
program section which turns on the heater. This instruc-
tion, together with the CMP Instruction, says. "Jump
to the label HEATER_ON if AL Is below 100." If the
temperature is at or above 100. the JB instruction will
act like a NOP. and the 8086 will go on to the JMP
HEATER_OFF instruction. Changing the Conditional
Jump instruction and writing the program in this way
means that the destination for the Conditional Jump
instruction is always Just two instructions away. There-
fore, you know that the destination will always be
reachable. Except for very time-critical program sec-
tions. you should always write Conditional Jump in-
struction sequences in this way so that you doni have
to worry about the potential problem. 'rhe disadvantages
of this approach are the time and memory space required
by the extra JMP instruction.

- 13	 IMPI.EMENTINC STANDARD PROGRAM STRUCTURES IN 8085 ASStMBLY LANCUAGE 	 83

8086 PROGRAM	 F4-18A.ASN
;ABSTRACT : Program turns Feater off if teeçerature S 100C

and turns heater on if teeerature	 100C.
;REGISTERS : Uses CS, OX, AL
;PORTS	 Uses FFF8H - teaerature data inp.t

FFFAH - NSB for heater control output, Ooff. l'on
CE	 SEGMENT

ASSUME CS:C00E
Initialize port FFFAH for output, and port FFF8H for input

BA FFFE	 NOV OX, OFFFEH	 Point Dx tO port control register
80 99	 NOV AL, 9911	 Control word to st up output port
EE	 007 DX, At.	 ; Send control word to port

BA FFF8
	 TEMP_IN:	 NOV DX, OFFF8H	 Point at input port

EC
	 IN	 Al, DX	 Input teferature date

3C 64
	 CMP AL, 100	 If tee 5 100 then

73 08
	 JAE HEATER_OFF	 turn heater off

HO 80
	 NOV Al, 80H	 else load code for heater on

BA FFFA	 NOV DX, OFFFAH	 Point DX to output port
EE
	 DX, AL	 Turn heater on

EB FO
	 JMP TEMP_IN	 WHILE tee	 100 read te1t again

80 00
	 HEATER_OF F : NOV AL, 00 	 load code for heater off

BA FEFA
	 NOV DX, OFFFAH	 Point DX to output port

OUT DX, AL	 Turn heater off
C00E	 ENDS

END

Ia)

BA FFF8
	 TEMP_IN:	 NOV DX, OFFF8H	 ; Point DX at input port

CC
	 IN	 AL, -DX	 Read in teITçerature data

3C 64
	

CMP AL, 100	 If teirç	 100' then
72 03
	

JB	 HEATER_ON	 ; turn heater on
EB 09 90
	

iMP HEATER OFF	 else teirç 5100 so turn heater off
80 80
	

HEATER_OW: NOV AL, 80H 	 Load code for heater on
BA FFFA	 NOV DX, OFFFAH	 ; Point DX at output port
EE
	 OUT DX, AL	 Turn heater on

EB ED
	 iMP TEMP IN	 WHILE te1Tç < 100' read ten again

BC 00
	

HEATER_OFF :NOV AL, 00	 Load code for heater off
BA FFEA	 NOV DX, OFFFAH	 ; Point DX at output port
CE
	

OUT DX, AL	 Turn heater off
COGE	 ENDS

END

2
3
4
5
6
7 0000
8
9

10 0000
11 0003
12 0005
13
14 0006
15 0009
16 000A
17 000c
18 000E
19 0010
20 0013
21 0014
220016
23 0018
24 OO1B
25 OO1C
26

14 0006
15 0009
16 000A
17 000C
18 000E
19 0011
20 0013
21 0016
22 0017
23 D01
24 0018
25 OO1E
26 OO1F
27

lb)

FIGURE 4-18 List file for heater control program. (a) First approach. (b)
tmp'oved version of WHILE-DO section of program.

REPEAT-UNTIL PROGRAMS	 condition is checked. This Is different from the WHILE-
DO structure, where the condition is checked before any

Overview	 action(s).-
The following examples will show you how you can

Remember from the discussion in Chapter 3 that the 	 implement the REPEAT-UN'FIL with 8086 assembly tan-
REPEAT-UNTIL structure has the form	 guage and introduce you to some more assembly Ian-

guage programming techniques.
REPEAT

action

UNTIL some condition is present

An important point about this structure is that the
action or series of actions is done once before the

Defining the Problem and Writing the Algorithm

Many systems that interface with a microcomputer
output data on parallel-signal lines and then output a
separate signal to indicate that valid data is on the
parallel lines. The data-ready signal is often called a

84	 CHAPTER FOUR

which it is connected Into the DX register. Then we use
00	 DO the variable-port input instruction, IN . AL,DX. to read
Dl	 Dl the strobe data to AL. This input instruction copies a

byte of data from port FFFAH to the AL register. We care

-lusTo
03 PORT about only the least significant bit of the byte read In

from the port, however, because that is where the04	 04 FcFBI4
strobe Is connected. To determine whether the strobe is05	 05

	

p - p	_____ -- —
ASCII

KEYBOARD
STROBE	 DO

01
02

03 PORT
04 FFFAN
05
06 8255
07 P28

FIGURE 4-19 ASCII-encoded keyboard with strobe
connected to microcomputer port.

strobe. An example of a strobed data system such
as this is an ASCII-encoded computer-type keyboard.
Figure 4-19 shows how the parallel data lines and the
strobe line from such a keyboard are connected to ports
of a microcomputer. When a key Is pressed on the
keyboard, circuitry in the keyboard detects which key
is pressed and sends the ASCII code for that key out on
the eight data lines connected to port FFF8H. After the
data has had time to settle on these lines, the circuitry
in the keyboard sends out a key-pressed strobe, which
lets you know that the data on the eight tines is valid.
A strobe can be an active high signal or an active low
signal. For the example here, assume that the strobe
signal goes high when a valid ASCII code is on the
parallel data lines. As you can see In FIgure 4-19, we
have connected this strobe line to the least significant
bit of port FFFAH so that we can Input the strobe signal.

If we want to read the data from this keyboard, we Can't
do it at Just any time, We must wait for the strobe to go
high so that we know that the data we read will be valid,
Basically, what we have to do is look at the strobe signal
and test it over and over until it goes high. Figure 4-20a,

p. 86. shows how we can represent this operation with a
flowchart, and Figure 4-20b shows the pseudocode. We
want to repeat the read-strobe-and-test loop until the
strobe Is found to be high. Then we want to exit the loop
and read In the ASCII code byte. The basic REPEAT-
UNTIL structure is shown by the Indentation in the
pseudocode. Note that the read ASCII data action is not
part of this structure and is therefore not indented.

Implementing the Algorithm
with Assembly Language

Figure 4-20c shows the 8086 assembly language to
implement this algorithm. To read in the key.pressed
strobe signal. we first load the address of the port to

present, we need to check just this bit and determine
whether it is a I. Here are three different ways you can
do this.

The first way, shown in Figure 4-20c. is to AND the
byte in AL with the immediate number 01 H. Remember
that a bit ANDed with a 0 becomes a 0 (is masked). A
bit ANDed with a I is not changed. If the least significant
bit is a 0. then the result of the ANDing will be all 0's.
The zero flag ZF will be set to a I to indicate this. If the
least significant bit is a I. the zero flag will not be set
to a I because the result of the ANDing will still have a
1 in the least significant bit. The Jump If Zero Instruc-
tion, JZ, will check the state of the zero flag: if it finds
the zero flag set, It will jump to the label LOOK_AGAIN.
If the JZ instruction finds the zero flag not set (indicating
that the LSB was a 11, it passes execution on to the
instructions which read in the ASCII data.

Another way to check the least significant bit of. the
strobe word is with the TEST instruction instead of
the AND instruction. The 8086 TEST instruction has the
format TEST destination,source. The TEST instruction
ANDs the contents of the specified source with the
contents of the specified destination and sets flags
according to the result. However, the TEST instruction
does not change the contents of either the source or the
destination. The AND instruction, remember, puts the
result of the ANDIng In the specified destination.
The TEST instruction is useful if you want to set flags
without changing the operands. In the example program
in Figure 4-20c. the AND AL.O 11-I instruction could be
replaced with the TEST AL.OIH instruction.

Still another way to check the least significant bit of
the strobe byte is with a Rotate instruction. If you rotate
the least significant bit into the carry flag. you can use
a Jump if Carry or Jump if Not Carry instruction to
control the loop. For this example' program, you could
use either the ROR instruction or the RCR instruction,
To verify this, take a look at the discussions of these
instructions In Chapter 6. Assuming that you use the
ROR instruction, the check and jump instruction se-
quence would look like this:

LOOK...AGAIN:IN AL, DX
RORAL. I	 ;RotateLSBtntocarly
JNC LOOK_AGAIN: If 1,58 = 0. keep looking

For your programs you can use the way of checking a
bit that seems easiest in a particular situation.

To read the ASCII data. we first have to load the port
address. FFF8I-I. into the DX register. We then use the
variable .port input instruction IN AL.DX to copy the
ASCII data byte from the port to the AL register.

The main purpose of the preceding section was to show
you how you can use a Conditional Jump Instruction to
make the 8086 REPEAT a series of actions IJNTIL

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE 	 85

C00E	 SEGMENT
ASSUME CS:CcOE
MOV WI, OFFFAH

100K_AGAIN: IN AL, OX
AND AL, 01
JZ LOOK AGAIN
MOV DX, OFFF8II
IN AL, DX

COOE	 ENDS
END

(C)

Point DX at strobe port
Read keyboard strobe
Mask estra bits and set flags
If strobe is low then keep looking
else point DX at data port
Read in ASCII code

the flags Indicate that some condition is present. The
following section shows another example of Implement-
ing the REPEAT-UNTIL structure. This example also
shows you how a register-based addressing mode is used
to access data in memory.

START

READ STROBE

ROBE

READ
ASCII CODE

FLOWCHART

(a)

REPEAT
READ KEYPRESSED STROBE

UNTIL STROBE 1
READ ASCII CODE FOR KEY PRESSED

PSEUDOCOOE

(6)

Operating on a Series of Data Items in
Memory—Another REPEAT-UNTIL Example

In many programming situations we want to perform
some operation on a series of data items stored in
successive memory locations. We might, for example.
want to read In a series of data values from a port and
put the values in successive memory locations. A series
of data values of the same type stored In successive
memory locations is often called an array. Each value
In the array Is referred to as an element of the array.
For our example program here, we want to add an
inflation factor of 031-I to each price in an eight-element
array of prices. Each price is stored In a byte location
as packed BCD (two BCD digits per byte). The prices
then are in the range of 1 cent to 99 cents. Figure
4-21 a shows a flowchart and Figure 4-2 lb shows a
pseudocode algorithm for the operations that we want
to perform. Follow through whichever form you feel more
comfortable with.

We read one of the BCD prices from memory, add the
Inflation factor to it, and adjust the result to keep it in
BCD format. The new value is then copied back to the
array, replacing the old value. After that, a check is
made to see whether all the prices have been operated
on. If they haven't, then we loop back and operate on
the next price. The two questions that may occur to you
at this point are, "How are we going to indicate In the
program which price we want to operate on. and how
are we going to know when we have operated on all of
the prices?" To indicate which price we are operating
on at a particular time, we use a register as a pointer.
To keep track of how many prices we have operated on,
we use another register as a counter. The example
program in Figure 4-21c shows one way in which the
algorithm for this problem can be implemented in
assembly language.

The example program in Figure 4-21c uses several
assembler directives, Let's review the function of these

2
3
4

6
7
8 0000
9

10 0000 BA FEFA
11 0003 EC
12 0004 26 01
1 •3 0006 74 FB
14 0008 BA FFF8
15 000B CC
16 000C
17

8086 PROGRAM F4-20C.ASH
;ABSTRACT	 Progroc to read ASCII code after a strobe signal

is sent from a keyboard
;REGISTERS	 Uses CS, DX, Al
;PORTS	 : Uses FFFAH - strobe signal input on ISB

FFF8I4 - ASCII data input port

FIGURE 4-20 Flowchart, pseudocode, and assembly language for reading
ASCII code when a strobe is present. (a) Flowchart. (b) Pseudocode, Cc) List file
of program.

86	 CHAPTER FOUR

(,STARJJ

GET A PRICE

[ADD INFLATION
FACTOR

[ADJUST RESULT
TOBCO

PUT RESULT
BACK IN ARRAY

FLOWCHART

(a)

REPEAT
GET A PRICE FROM ARRAY
ADD INFLATION FACTOR
ADJUST RESULT TO CORRECT BCD
PUT RESULT BACK IN ARRAY

UNTIL ALL PRICES ARE INFLATED
PSEUDOCODE

fbI

before describing the operation of the program instruc-
tions. The ARRAYS SEGMENT and ARRAYS ENDS direc-
tives are used to set up a logical segment containing the
data definitions. The CODE SEGMENT and CODE ENDS
directives are used to set up a logical segment which
contains the program instructions. The ASSUME
CS:CODE.DS:ARRAYS directive tells the assembler to
use CODE as the code segment and use ARRAYS for all
references to the data segment. The END directive lets
the assembler know that it has reached the end of the
program. Now let's discuss the data structure for the
program.

ThcstatementCOSTDB 20H.28H, 15H,26H,19F1.27H.
1 6H.29H in the program tells the assembler to set aside
successive memory locations for an eight-element array
of bytes. The array is given the name COST. When the
assembled program is loaded into memory to be run,
the eight memory locations will be loaded with the eight
values specified in the DB statement. The statement
PRICES DB 36H,55H,27H,42H.38H.41H,29ft39H sets
up another eight-element array of bytes and gives it the
name PRICES. The eight memory locations will be loaded
with the specified values when the assembled program
is loaded into memory. Figure 4-22, p. 88. shows how
these two arrays will be arranged in memory. Note that
the name of the array represents the displacement or
offset of the first element of the array from the start of

the data segment.
• The fIrst two instructidns. MOV AX.ARRAYS and MOV
DS,AX. initialize the data segment register as was

2
3
4
5
6
7 0000
8 0000
9

10 0008
11
12 0010
13
14 0000
15
¶6 0000
17 0003
18 0005
19 0009
20 000C
21 000E
22 0010
23 0011
24 0013
25 0014
26 0015
27 0017
28

SEGMENT
ASS(IIE CS:CODE, DS:ARRAYS
NOV AX, ARRAYS	 initialize data segment
NOV OS, AX	 register
LEA 8)1, PRICES)nitiaiize pointer
NOV CX, 000811	 Initialize counter
NOV AL, (8)1)	 Copy a price to AL
ADD AL, 0311	 Add inflation factor
DAA	 Make sure result is 8C0
NOV (8)11, AL	 Copy result back to neoory
iNC 8)1	 Point to nest price
DEC CX	 Decresent counter
JNZ DO_NEXT	 If not last, go get nest
ENDS
END START

Ic)

8086 PROGRAM	 F4-21C.ASII
;ABSTRACT : Program adds an inflation factor to a series of prices

in memory. It copies the new price over the old price.
;REGISTERS : Uses DS, CS, AX, 8)1, CX
;PORTS	 : None used

ARRAYS SEGMENT
20 28 15 26 19 27' 1, +
	 COST	 D8	 2011, 2811, 1511, 2611, 1911. 2711, 1611, 2911

29
36 55 27 42 38 41 29 +
	 PRICES	 D8	 3611, 5511, 2711, 4211, 3811, 4111. 2911, 3911

39
ARRAYS ENDS

CODE

88 0000s
	 START:

8E D8
80 it 0008r
89 0008
8A 07
	 D0_NETT

04 03
27
88 07
43
49
75 F5

CODE

FIGURE 4-21 Adding a constant to a series of values in memory. (a) Flowchart.
(b) Pseudocode. (C) List file of program.

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE 	 87

MEMORY

42 I-j 8XOFFSETOFOESIRED

	

27	 EL MENT IN PRICES

1
___f_STARTOFARRAYPRICES

I DISPLACEMENT OF START

	

19	 OF ARRAY PRICES

15

ARRAYS_HERE

	

SEGMENT8ASE — 20	 STARTOFARRAYCOST
OS • 3400H

FIGURE 4-22 Data arrangement in memory for "inflate
prices" program.

described for the example program in Ftgure 3-14. The
LEA mnemonic in the next Instruction stands for Load
Effective Address. An effective address, remember, is
the number of bytes from the start of a segment to the
desired data Item. The instruction LEA BX.PRICES
loads the displacement of the first element of PRICES
into the BX register. A displacement contained In a
register is usually referred to as an offset. If you take
another look at the data structure for this program in
FIgure 4-22. you should see that the offset of PRICES is
0008H. Therefore, the LEA BX,PRICES instruction will
load BX with 0008H. We are using BX as a pointer to
an element In PRICES. We will soon show you how this
pointer is used to Indicate which price we want to
operate on at a gIven time in the program.

The next instruction, MOV CX,0008H. loads the CX
register with the number of prices in the array. We use
this register as a counter to keep track of how many
prices we have operated on. After we operate on each
price, we decrement the counter by I. When the counter
reaches 0. we know that we have operated on all the
prices.

The MOV AL.IBXI instruction copies one of the prices
from memory to the AL register. Here's how it works.
Remember, the 8086 produces the physical address for
accessing data In memory by adding an effective address
to the segment base represented by the 16-bit number
in a segment register. A section in Chapter 3 showed
you how the effective address could be specified dlretly
In the Instruction with either a name or a number.
The Instructions MOV AX.MULTIPLICAND and MOV
AX.DSWORD PTR000OH: are examples •of this ad-
dresing mode. We also showed you that the effective
address can be contained In a register. The square
brackets around BX In the Instruction MOV AL.IBXI
Indicate that the effective address Is contained in the
BX register. In our example program, we used the LEA
BX.PRICES instruction to load tile BX register with the

offset of the first element in the array PRICES. The first
time the MOV AL,(BXI instruction executes, BX will
contain 0008H. the effective address or offset of the first
price in the array. Therefore, the first price will be Copied
Into AL.

The next instruction, ADD AL,03H. adds the immedi-
ate number 03H to the contents of the AL register. The
binary result of the addition will be left in AL. We want
the prices in the array to be in BCD form, so we have to
make sure the result Is adjusted to be a legal BCD
number. For example, if we add 03 to 29. the result In
AL will be 2C. Most people would not understand this
as a price, so we have to adjust the result to the
desired BCD number. The Decimal Adjust after Addition
Instruction DAA will automatically make this adjust-
ment for us. DAA will adjust the 2CH by adding 6 to the
lower nibble and the carry produced to the upper nibble.
The result of this in AL will be 32H. which is the result
we want from adding 03 to 29. Note that the DAA
Instruction works only on the AL register. For further
examples of DAA operation. consult the DAA Instruction
description in Chapter 6.

The INC BX Instruction adds 1 to the number in BX.
BX flOW Contains the effective address or offset of the
next price in the array. We like to say that }3X now points
to the next element in the array.

The DEC CX instruction decrements the Count we set
up in the CX register by 1. If CX contaIns 0 after this
decrement, the zero flag will be set to a 1. The JNZ
DO_NEXT checks the zero flag. If it finds the zero flag
set, it just passes execution Out of the structure to the
next mainline instruction. If it finds the zero flag not
set, the JNZ instruction will cause a jump to the labei
DO_NEXT. In other words, the 8086 will repeat the
sequence of instructions between the label and the JNZ
instruction until CX is counted down to zero. Each time
through the loop. BX will be incremented to point to the
next price in the array.

Still Another REPEAT-U Nil I Example

Using a pointer to access data items in memory is a
powerful technique that you will want to use in many
of your programs, so Figure 4-23 shows still another
example. In this example, we want to add a profit of 15
cents to each element of an array called COST and put
the result in the corresponding element of an array
called PRICES. The algorIthm for this example is

REPEAT
et an item from cost array

Add profit factor
Adjust result to correct BCD
Put result into price array

UNTIL all prices are calculated

The assembly language tmplementation of this algo-
rIthm Is very similar to that for the last example, except
for the way we use the pointers. In this example we need
to point to the same element In two different arrays. To
do this, we use the HX register to keep track of which
element we are currently accessing in the arrays. At the

88	 CHAPTER FOUR

2
3
4.
5
6
7
8 0000
9 0000

10
11 0008
12 0010
13
14 0000
15
16 0000
17 0003
18 0005
19 0008
20 0008
21 000F
22 0011
23 0012
24 0016
25 0017
26 0016
27 OO1A
28

8086 PROGRAII F4-23.ASl
;ASSTRACT : Program adds a profit factor to each element in a

COST array and puts the result in an PRICES array.
;REGISTERS	 Uses OS, CS. AX, BX, CX
;PORTS	 : None used

0015
	 PROFIT	 EQU	 15K	 profit = 15 cents

ARRAYS	 SEG$ENT
20 28 15 26 19 27 16
	

COST	 08 20K, 28H, 15K, 26K, 1911, 2711, 1614, 29K
29
08* (00)
	 PRICES 08 8 OUP(0)

ARRAYS	 ENDS

C00E	 SEG1ENT
ASS1)IE CS:CCCE, DS:ARRAYS

88 0000s	 START:	 NOV AX, ARRAYS	 InitiaLize data segment
8E D8	 NOV 05, AX	 ; register
89 0008	 NOV CX, 000811	 Initialize cotaiter
BR 0000	 NOV 8*, 0000K	 Initialize pointer
8A 87 0000r	 DO_NEXT: NOV AL, COST(BXI	 Get element (8*1 from COST
04 15	 ADD AL, PROFIT	 Add the profit to value
27	 DAA	 Decimal adjust result
88 87 0008r	 NOV PRICES(BXI, AL	 Store result in PRICES at (8*1
43	 INC 8*	 Point to next element in arrays
49	 DEC CX	 Decrement the counter
75 Fl	 JNZ DO_NEXT	 If not Last element, do again

C00E	 (lIDS
END START

FIGURE 4-23 List file of "price-calculating" program.

start of the program, then, we initialize BX as a pointer
to the first element of each array with MOV BX.0000H.
The instruction MOV AL.COSTIBXI then will copy the
first value from the array COST Into AL. The effective
address for this instruction will be produced by adding
the displacement represented by the name COST to the
contents of BX.

After the Addition and Decimal Adjust Instructions.
the Instruction MOV PRICESBXI,AL copies the result
of the addition to the first element of PRICES. The 8086
computes the effective address for this instruction by
adding the Contents of BX to the displacement repre-
sented by the name PRICES.

The L1X register Is Incremented, so that if CX has not
been decren-tented to zero. COSTTBXI and PRICESIBXI
will each access the next element ix the array when
execution goes through the DO_.NEXT loop again. A
programmer familiar with higher-level languages wuld
probably say that fiX is being used as an array index in
this example.

Another Look at 8086 Addressing Modes

The preceding examples showed you how a register can
be used as a pointer or index to access a sequence of
data Items in memory. While these examples are fresh
in your mind, we want to show you more about the 8086
addressing modes we Introduced you to in Chapter 3.

Figure 4-24. p. 90. Summarizes all the wa ys you can
tell the 8088 to calculate an effective address and a
physical address for accessing data in memory. In all

If,

cases, the physical address Is generated by adding an
effective address to one of the segment bases. CS.
SS, PS, or ES. The effective address can be a direct
displacement specified directly in the instruction, as.
for example, MOV AX.MULTIPLIER. The effective address
or offset can be specified to be in a register. as in the
Instruction MOV AL,IBXI. Also, the effective address can
be specified to be the contents of a register plus a
displacement included in the instruction. The instruc-
tion MOV AX,PRICESIBXI Is an example of this ad-
dressing mode. For this example. PRICES represents
the displacement of thestart of the arrayfrorn the segment
base, and fix represents the number of the element in the
array that we want to access. The effective address of the
desired element, then, is the sum of these two.

For working with more complex data structures such
as the array of records shown in Figure 4-25. p. 90. you
can tell the 8086 to compute an effective address by
adding The contents of BX or BP plus the contents of SI
or Dl plus an 8-bit or a 16-bit displacement contained in
the instruction. You can, forexample, use an instruction
such as MOVAL. PATIENTSIBXISII to access the balance
due field in the array of medical records shown in Figure
425. The name PATIENTS in this instruçliion represents
the displacement of the array PATIENTS from the start
of the data segment. The BX register holds the offset of
the start of the desired record in the array. The SI
register holds the offset of the Start of the desired field
in the record. To access the next record In the array.
you simply add a number equal to the length of the
record to the BX register. To access another field in a
record, you just change the value In the SI register.

I\IPLEMENTJNG STANDARD PROGRAM STRUCTURES IN 81Jl3t, ASSEMBLY LANGUAGE 	 89

SINGLE INDEX	 DOUBLE INDEX

	

BX	 '95	 SI'l

	

OR	 OR	 OR

	

BP	 BP	 01
ENCODED	 I

INSTRUCTION I	 *
IN THE	 OR

	

I	 SI	 EU

OR

	

LDI	 EFFECTIVE

IN THE	
{	

'OISPLACEMENT	
ADDRESS

EXPLICIT

INSTRUCTION
CS

OR

ASSUMED	 I	 55	 O
ORUNLESS

OVERRIDDEN I

OR
BY PREFIX	

[

DS	 BIU

ES

PHYSICAL ADOR

FIGURE 4-24 Summary of 8086 addressing modes.

When ,BX, St. or Dl Is used to contain all or part
of the effective address, the physical address will be
produced by adding the effective address to the data
segment base in DS. When HP is used to contain all or
part ol the effective address, the physical address will
be produced by adding the effective address to the stack
segment base in SS. For any of these four, you can use
a segment override prefix to tell the 8086 to add the
effective address to some other segment base. The
instruction MOV AL,CS:lBXl tells the 8086 to produce
a physical memory address by adding the offset In HX
to the code segment base instead of adding it to the data
segment base. An exception to this is that with a special
group of instructions called string instructIons, an offset

SEGMENT BASE
Name PATIENTS represents displacement of

/ .	 start of array of records from segment base

PATIENTS	 array of patient records start here

RECORD 1
TV N. BEER
1324 Down Street
PORTLAND, OR 97219
2/15/45
247 lb
S327.56

BX holds g ffset of ---------RECORD 2
desired record in array 	 iN A. RUNNER

17197 Hatton Road
Oregon City, OR 97045
6/ 30/4 1

SI holds offset of ---------145 lb
desired field in record	 50.00

RECORD 3

FIGURE 4-25 Use of double indexed addressing mode

in Dl will always be added to the extra segment base in
ES to produce the physical address.

The 8086 LOOP Instructions

In the second REPEAT-UNTIL example, we showed you
how to make a program repeat a sequence olinstructions
a specific number of times. To do this, you load the
desired number of repeats in a register or memory
location. Each time the sequence of instructions exe-
cutes. the count value in the register or memory location
is decremented by I When the count is decremented to
zero, the zeio flag 'sill 'e Set. You use a Conditional
Jump instruction to cneck this flag and to decide
whether to repeat the instruction sequence In the loop
again.

The need to perform a sequence of actions a specified
number of times in a program is so common that some
programming languages use a specific structure to
express it. This structure, derived from the basic WHILE-
DO, is called the FOR-DO loop. It has the form

FOR count = I to count = n DO
action
action

where rI is the number of times we want to do the
sequence of actions.

Ttie common need to repeat a sequence of actions a
specified number of times led the de'signers of the 8086
tO give it a group of Instructions which make this easier
for you. These instructions are the LOOP instructions.

INSTRUCTION OPERATION

The LOOP Instructions are basically Conditional Jump
instructions which have the format LOOP label. LOOP
instructions, however, combine two operations in each
instruction. The first operation is to decrement the CX

90	 CHAPTER FOUR

efficient than single instructions to do the same Job. In
LOOP	 Loop until CX = 0	 the next section we introduce you to instruction timing
LOOPE/LOOPZ	 loop if zero flag set 	 and show you how the LOOP instruction can be used to

and CX	 0	 produce a delay between the execution of two instruc-
LOOPNE/LOOPNZ Loop if zero flag not set 	 tions.

and CX * 0
)CXZ	 jump lf CX 0

FrGURE 4-26 8086 LOOP instructions.

register by 1. The second operation is to chec4c the CX
register and, in some cases, also the zero flag to decide
whether to do a Jump to the specified label. The simple
LOOP label instruction then can be used in place of the
DEC CX—JNZ label instructidn sequence we used In
Figure 4-2 Ic.

As with, the previously described Conditional Jump
instructions, the LOOP instructions can do only short
jumps. This means that the destination label must be
in the range of –128 bytes to + 127 bytes from the
instruction after the LOOP instruction.

As shown in Figure 4-26. there are two additional
forms of LOOP instructions. These Instructions check
the state of the zero flag as well as the value in the CX
register to determine whether to take the jump or not.
Shown in Figure 4-26 are the condition(s) checked by
each instruction to determine whether it should do the
jump. NE in the mnemonics stands for "not equal." and
NZ in the mnemonics stands for "not zero." Instruction
mnemonics separated by a "I" in Figure 4-26 represent
the same instruction.

The LOOP Instructions decrement the CX register but
do not affect the zero flag. This leaves the zero flag
available for other tests. The LOOPE/LOOPZ label in-
stnjction will decrement the CX register by I and jump
to the specified label If CX 0 and ZF = I. In other
words, program execution will exit from the repeat loop
if CX has been decremented to zero or the zero flag is
not set. This instruction might be used after a Compare
instruction, for example, to continue a sequence of
operations for a specified number of times or until
compared values were no longer equal.

The LOOPNE/LOOPNZ label instruction decrements
the CX register by 1. if CX 0 and ZF = 0, this
instruction will cause a jump to the specified label. In
other words, execution will exit from the loop if CX Is
equal to zero or the zero flag is set. This instruction
is useful when you want to execute a sequence of
instructions a fixed number of times or until two values
are equal. An example might be a program to read data
from a disk. We typically write this type of program so
that it attempts to read the data until the checksums
are equal or until 10 unsuccessful attempts have been
made to read the disk. Consult the descriptions for these
instructions in Chapter 6 for specific examples of hw
the LOOPE and LOOPNE instructions are used.

In summary, then. the LOOP instructions are useful
for implementing the REPEAT-UNTIL structure for those
special cases where we want to do a series of actions a
fixed number of times or until the zero flag changes

INSTRUCTION TIMING
AND DELAY LOOPS
The rate at which 8086 instructions are executed is
determined by a crystal-controlled clock with a frequency
of a few megahertz. Each instruction takes a certain
number of clock cycles to execute. The MOV register.
register instruction, for example, requires 2 clock cycles
to execu.te. and the DAA instruction requires 4 clock
cycles. The JNZ instruction requires 16 clock cycles if
it does the Jump, but it requires only 4 clock cycles tilt
doesn't do the Jump. A table in Appendix B shows the
number of clock cycles required by each instruction.
Using the numbers in this table, you can calculate how
long it takes to execute an instruction or series of
instructions. For example. if you are running an 8086
with a 5-MHz clock, then each clock cycle takes 11(5
MHz) or 0.2 p.s. An instruction which takes 4 deck
cycles, then, will take 4 clock cycles x 0.2 p.s/clock cycle
or 0.8 p.s to execute.

A common programming problem is the need to
introduce a delay between the execution of two instruC
ttons. For example, we might want to read a data value
from a port, wait 1 ms. and then read the port again. A
later chapter will show how you can use interrupts to
mark off time intervals such as this, but for now we will
show you how to use a program 1oop to do it.

The basic principle is to execute an instruction or
series of instructions over and over until the desired
time hr. elapsed. Figure 4-27a shows a program we
n,.a use to do this. The MOV CX.N instruction loads
the CX regIster with the number of times we want to
repeat the delay loop. The NOP instructions next in the
program are not required the KILL_TIME label could
be right in front of the LOOP instruction. In this case.
only the LOOP Instruction would be repeated. However.
we put the NOPs in to show you how you can get more
delay by extending the time it takes to execute the loop.

	

;	 Clock Cycles
MOVCX,N	 ;	 4

KILL_TIME: NOP	 ;	 3
NOP	 ;	 3
LOOP KILL_TIME	 ;	 17 or 5

()

C 1 =	 + N (CL) –12

C –C +1	 5000-4+12
1 0

=218=ODAH
CL	 23

lb)

state. LOOP instructions incorporate two operations in 	 FIGURE 4-27 Delay loop program and calculations. (a)

each instruction; therefore, they are somewhat more 	 Program. (b) Calculations.

- 14	 IMPLIMENTNG STANDARD PROGRAM STRUCTURES IN 8&t ASSEMBlY LANGUAGE

The LOOP KILLTIME instruction will decrement CX
an4, If CX is not down to zero yet, do a Jump to the label
KILL.TIME. The program then will cause the 8086
to execute the two NOP instructions and the LOOP
instruction over and over until CX is counted down to
zero. The number in CX will determine how long this
takes. Here's how you determine the value to put In CX
for a given amount of delay.

First you calculate the number of clock cycles needed
to produce the desired delay. if you are running your
8086 wIth a 5-MHz clock, then the time for each clock
cycle is 1/(5 MHz) or 0.2 p.s. Now, suppose that you want
to create a delay of I ms or 1000 p.s with a delay loop.
If you divide the 1000 p.s desired by the 0.2 p.s per clock
cycle, you get the number of clock cycles required to
produce the desired delay. For this example you need a
total of 1000/0.2 or 5000 processor clock cycles to
produce the desired delay. We will call this number CT
for future reference.

The next step Is to write the number of clock cycles
required for each instruction next to that instruction.
as shown in Figure 4-27a. Then you look at the program
to determine which instructions get executed only once.
The number of clock cycles for the instructions which
execute Only Once will only contribute to the total once.
Instructions which only enter, the calculation once are
often called overhead. We will represent the number of
cycles of overhead with the symbol C0 . In Figure 4-27a.
the only instruction which executes Just once 10 MOV
CX.N. which takes 4 clock cycles. For this example, then.
C, = 4.

Next you determine how many clock cyck required
for the loop. The two NOPs In the loop require a total of
6 clock cycles. The LOOP instruction requires 17 clock
cycles If it does the Jump back to KILL..TIME, but it
requires only 5 clock cycles when it exits the loop. The
jump takes longer because the instruction byte queue
has to be reloaded starting from the new address. For
all but the very last time through the loop, it will require
17 clock cycles for the LOOP Instruction. Therefore, you
can use 17 as the number of cycles for the LOOP
instruction and compensate later for the fact that the
last time it takes 12 cycles less. For the example program.
the number of cycles per loop C L = 6 + 17 or 23.

The total number of clock cycles delayed by the Ioo
is equal to the number of times the loop executes
multiplied by the time per loop. To be somewhat more
accurate, you can subtract the 12 cycles that were not
used when the last LOOP instruction executed. The total.
number ofclock cycles required for the example program
to execute is

CT = C0 + N(C L) - 12

To find the value for N for a desired amount of delay.
put in the r'equired CT . 5000 for this example, and solve
the result for N. Figure 4-27b shows how this is done.
The resultant value for N is 218 decimal or ODAH. This
is the number of times you want the loop to repeat, so
this is the value of N that you will load Into CX before
entering the loop.

With the simple relationship show!) In Figure 4-27b.

you can determine the value of N to put in a delay loop
you write, or you can determine the time a delay loop
written by someone else will take to execute.

If you can't get a long enough delay by counting down
a single register or memory location, you can nest delay
loops. An example of this nesting is

number of states
MOV BX. COUNTI; 4

CN'lDNl MOV CX. COUt; 4COUNTl)
CNTDN2:LOOP CNTDN2 ((17 x cOUNP2) - 12)COUNTI

DEXBX	 ;2{COUNTI)
JNZ CNTDNI	 16(COUNTI)— 12

The principle here is to load CX with COUNT2 and count
CX down COUNT! times. To determine the number of
states that this program section will take to execute.
observe that the LOOP instruction will execute COUNT2
times for each time CX is loaded with COUNT!. The
total number of states, then, is COUNT! times the
number of States for the last four Instructions plus 4,
for the MOV BX.COUNTI instruction. The best way to
approach getting vahtes for the two unknowns. COUNT!
and COUNT2. is to choose a value such as FFFFH for
COUNT2 and then solve for the value of COUNT1. A
couple of tries should get reasonable values for both
COUNT 1 and COUNT2.

Notes about Using Delay Loops for Timing

There are several additIonal factors you have to take into
account when determining the time that a sequence of
instructions will require to execute.

1. The BIU and the EU arc asynchronous. so for some
instruction sequences an extra clock cycle may be
required. For a given sequence of instructions the
added cycles are always the same, but Obviously
these cycles are not included in the numbers given
In Appendix B.

2. The number of clock cycles required to read a word
from memory or write a word to memory depends
on whether the first byte of the word is at an even
address or at an odd address. The 8086 will require
4 addItional clock cycles to read or write a word
located on an odd address.

3. The number of clock cycles required to read a byte
from memory or write a byte to memory depends on
the addressing mode used to access that byte. A
table at the start of Appendix B shws the number of
clock cycles that must be added kr each addressing
mode. According to Appendix B. the basic mem 8 to
reg 8 instruction requires 8 + iA clock cycles. The
IBXI addressing mode requires .i clock cycles, so the
instruction MOVAL.[BXI requires 8 + 5 or 13 clock
cycles to execute.

If a given microcomputer system is designed to
insert WAIT States during each memory access, this
will increase the number of clock cycles required for
each memory access, in Chapter 1 we discuss the
use of WAIT states.

92	 CHAPTER FOUR

in summaly, the calculations we showed you how to
do In the preceding section give you the approximate
time it will take a sequence of instructions to execute.
If you really need to know the precise time a sequence
of instructions requires to execute, the only way to
determine it is to use a logic analyzer or emulator to
measure the actual number of dock cycles.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms or concepts in
the following list, use the index to find them in the
chapter.

Defining a problem

Setting up a data structure

Making an initialization checklist

Masking using the AND instnction

Packed and unpacked BCD numbers

Debugging—breakpoints, trace, single step

Conditional (lags: CF. PF. AF. ZF. SF. OF

Unconditional JMP instructions
Direct and indirect near (intrasegment).jumps
Direct and Indirect far (intersegment) jumps
Short jumps

Conditional Jumps

Fixed- and variable-port Input/output instructions

Based and indexed addressing modes

1oop instruction

Processor clock cycles

Delay loops

REVIEW QUESTIONS AND PROBIEMS

1. DescrIbe the operation and results of each of the
following instructions, given the register contents
shown in Figure 4-28 (below question 3). include
in your answer the physical address or register that
each instruction will get its operands from and the
physical address or register that each instruction
will put the result in. Use the instruction descrip-
tions in Chapter 6 to help you. Assume that the
instructions below are independent, not sequential.
unless listed together under a letter.
a. ROL AX.CL	 d. ADD AX.IBXISI)
b. IN AL, DX?	 e. JMP 023A1-1
c. MOV CX.IBXI	 f. JMP BX

2. Construct the binary codes for the Instructions of
Questions Ia through if.

3. Predict the state of the six 8086 conditional flags
after each of the following instructions or group of
instructions executes. Use the register contents
shown in Figure 4-28. Assume that all flags are reset
before the instructions execute. Use the detailed
instruction descriptions in Chapter 6 to help you.
a. MOV AL,AH	 C. ADD CL.DH
b. ADD BL,CL	 d. OR CX,BX

	

CS 2000	 AX A407

	

DS 3000	 OX 2403

	

SS=4000	 CX 0002
ES	 3000	 D.X	 FFFA
SP FFFF
BP 0009
St = 4200
DI	 4300

FIGURE 4-28 Figure for Chapter 4 problems.

See ii you can find any errors in the following
instructions or groups of instructions.

a. CNTDOWN: MOV BL. 72H
DEC BL
JNZ CNTDOWN

b. ADD CX.AL
C. JMP BL
d. JNZIBX)

a. Write an algorithm for a program which adds
a byte number from one memory location to a
byte from the next memory location, puts the
sum in a third memory location, and saves the
state of the carry flag in the least significant bit
of a fourth memory location. Mask the upper 7
bits of the memory location where the carry is
stored.

b. Write an 8086 assembly language program for
this algorithm. Hints: Set up data declarations
similar to those in Figure 3-14. Use a Rotate
instruction to get the carry flag state into the.
LSB of a register or memory location.

c. What additional instructions would you have
to add to this program so that it correctly adds
2BCD bytes?

For each of the following programming problems, draw
a flowchart or write the pseudocode for an algorithm to
solve the problem. Then write an 8086 assembly lan-
guage program to implement the algorithm. If you have
an 8086 system available, enter and assemble your
source program, then load the object code for the pro-
gram into memory so that you canrun and test it. If the
program does not work correctly, use the single .step or
breakpoint approaches described earlier in this chapter
to help you debug it.

6. Convert a packed BCD byte to two ASCII characters
for the two BCD digits in the byte. For example.
given a BCD byte containing 57H (01010111 bi.
nary), produce the two ASCII codes 35H and 37H.

IMPLEMENTING STANDARO PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE 	 93

7. In order to avoid hand keying programs into an
SDK-86 board, we wrote a program to send machine
code programs from an IBM PC to an SDK-86 board
through a serial link. As part of this program, we
had to convert each byte of the machine code
program to ASCII codes for the two nibbles in the
byte. In other words, a byte of 7AH has to be sent
as 37H, the ASCII code for 7, and 41H. the ASCII
code for A. Once you separate the nibbles of the
byte, this conversion Is a simple IF-THEN-ELSE
situation. Write an algorithm and assembly lan-
guage program section which does the needed
Conversion.

8. A common problem when reading a series of ASCII
characters from a keyboard is the need to ifiter out
those codes which represent the hex digits 0 to 9
and A to F. and convert these ASCII codes to the
hex digits they represent. For example, if we read
,in 34H. the ASCII code for 4. we want to mask the
upper 4 bIts to leave 04. the 8-bit hex code for 4. If
we read In 42H, the ASCII code for B, we want to
add 09 and mask the upper 4 bits to leave OB. the
8-bit code for hex B. If we read In an ASCII code
that is not in the range of 30H to 39H or 41H to
46H, then we want to load an error code of FFH
instead of the hex value of the entered character.
Figure 4-29 shows the desired action next to each
range of ASCII values. Write an algorithm and
an assembly language program which implements
these actions. Hint: A nested IF-THEN-ELSE struc-
ture might be useful.

ASCII

OOH-,
J-	 ERROR

2FH -

30H -
k	 HEX 0-9

39H

3*41 -
i-	 ERROR

40H J

41H -
i-	 HEX A-F

46H -

47H -
j—	 ERROR

7FH J

FIGURE 4-29 ASCII chart for Problem 8.

9. Compute the average of 4 bytes stored in an array
in memory.

10. Compute the average of any number of bytes in an
array in memory. The number of bytes to be added
is in the first byte of the array.

II. Add a 5-byte number in one array to a 5-byte
number in another array. Put the sum in another
array. Put the state of the carry flag in byte 6 of the
array that contains the sum. The first value in each
array is the least significant byte of that number.
Hint: See Figure 4-23.

12. An 8086-based process control system outputs a
measured Fahrenheit temperature to a display on
its front panel. You need to write a short program
which converts the Fahrenheit temperature to Cel-
sius so that the system can be sold in Europe. The
relationship between Fahrenheit and Celsius is
C = (F - 32)5/9. The. Fahrenheit temperature will
always be in the range of 50 to 250. Round the
Celsius value to the nearest degree.

13. An ASCII keyboard outputs parallel ASCII + parity
to port FFF8H of an SDK-86 board. The keyboard
also outputs a strobe to the least significant bit
(DO) of port FFFAH. (See Figure 4 . 19.) When you
press a key, the keyboard outputs the ASCII code
for the pressed key on the eight parallel lines and
outputs a strobe pulse high for 1 ms. You want to
poll the strobe over and over until you find I t high.
Then you want to read in the ASCII code, mask the
parity bit (D7), and store the ASCII code In an array
in memory. Next, you, want to poll the strobe over
and over again until you find it low. When you find
the strobe has gone low, check to see if you have
read in 10 characters yet. If not, then go back and
wait for the strobe to go high again. If 10 characters
have been read in, stop.

14. a Write a delay loop which produces a dehy of
500 .s on an 8086 with a 5-MHz clock.

b. Write a short program which outputs a 1-kHz
square wave on DO of port FF'FAH. The basic
principle here Is to output a high. wait 500 p.s
(0.5 ms). output a low, wait 500 p.s. output a
high. etc. Remember that, before you can Out-
put to a port device, you must first initialize it
as in Figure 4-1 8a. If you connect a buffer such
as that shown in Figure 8-23 and a speaker to
DO of the port, you will be able to hear the tone
produced.

94	 CHAPTER FOUR

Procedures,

The last chapter showed you how quite a few of the 8086
instruction6 work and how jump instructions are used
to implement IF-THEN-ELSE. WHILE-DO, and REPEAT-
UNTIL program structures. The first section of this
chapter Introduces you to the 8086 string Instructions,
which can be used to repeat some operations on a
sequence of data words In memory. The major point of
this chapter. however, is to show you how to write and
use subprograms called procedures. A final section of
the chapter shows you how to write and use assembler
macros.

OBJECTIVES
At the conclusion of this chapter, you should be able to:

I. Use the 8086 string instructions to perform a variety
of operations on a sequence ofdata words In memory.

2. Describe how a stack is initialized and used in 8086
assembly language programs which call procedures.

3. Write an 8086 assembly language program which
calls a near procedure.

4. Write an 8086 assembly language program which
calls a far procedure.

5. Write, assemble, link, and run a program which
consists of more than one assembly module.

6. Write and use an assembler macro.

THE 8086 STRING INSTRUCTIONS

Introduction and Operation

A senrtg isa series of bytes or words stored in successive
memory locations. Often a string consists of a series oi
ASCII character codes. When you use a word processor
or text editor program, you are actually creating a string
of this sort as you type in a series of characters. One
important feature of a word processor is the' aJ.i 1 ity to
move a sentence or group of sentences from one place
In the text to another. Doing this involves moving a
siring of ASCII characters from one place in memory to
another. The 8086 Move String instruction. MOVS.
allows you to do operations such as this very easily.

Another important feature of most word processors is
the ability to search through the text looking for a given
word or phrase: The 8086 Compare String instruction.
CMPS. can be used to do operations of this type. In a
similar manner, the 8086 SCAS instruction can be used
to search a sUing to see whether it contains a specified
character. A couple of examples should help you see how
these instructions work.

MOVING A STRING

Suppose that you have a string of ASCII characters In
successiv memory locations in the data segment. and
you want to move the string to some new sequence ol
locations in the data segment. To help you visualize
this, take a look at the strings we Set U in the data

segment in Figure 5 . lb, p. 96. to test our program.
The statement TEST_MESS DB 'TIS TIME FOR A

NEW HOME' sets slde 23 bytes of memory and gives
the first memory location the name TEST_MESS. This
statement will also cause the ASCII codes for the letters
enclosed In the single quotes tobe written in the reserved
memory locations when the program Is loaded in memory
to be run. This array or string then will contain 54H.
49H, 53H, 20H. etc. The statement DB 100 DUP(?l will
set aside 100 memory locations, but the DUP(?) in the
statement tells the assembler not to initialize these 100
locations. We put these bytes in to represent the block
of text that we are going to move our string over.
The statement NEW_LOC DB 23 DUP(0) sets aside 23
memory locations and gives the first byte the name
NEW_LOC. When this program is loaded In memory to
be run, the 23 locatIons will be loaded with 00 as
specified by the DUPIO) in the statement. To help you
visualize this. Figure 5-la shows a memory map for
this data segment. Now that you understand the data
structure for the problem. the next step is to write an
algorithm for the program.

The basic pseudocode algorithm shown here for the
operations you want to performdoesn't really help you
see how you might implement the algorithm In assembly
language.

RE PEA F
MOVE BYTE FROM SOURCE STRING

TO DESTINATION STRING
UNTIL ALL BYTES MOVED

95

In Chapter 3 we introduced you to the use of pointers
to access data in sequential memory locations, so your
next thought might be to expand the algorithm as shown
next

INrnALIZE SOURC POINTER, SI
INITIALIZE DESTINATION POINTER. DI
INITIALIZE COUNTER. CX

23 bytes initiaLized	 00
to zero
Start of NEW_LOC --. 00

Start of undefined
data block	 --

53	 ASCII S

49	 ASCII I
Start of
TEST_MESS	 --	 54	 ASCII T

I')

REPEAT .
COPY BYTE FROM SOURCE TO DESTINATION
INCREMENT SOURCE POINTER
INCREMENT DESTINATION POiNTER
DECREMENT COUNTER

UNTIL COUNTER 0

We often describe an algorithm in general terms at first
and then expand sections as needed to help us see how
the algorithm Is implemented In a specific lsnguage. In
the expanded algorithm you can see that as part of the
Initialization list you need to initialize the two pointers
and a counter. The REPEAT-UNTIL loop then consists
of moving a byte, incrementing the pointers to point
to the source and destination for the next byte, and
decrementing the counter to determine whether all the
bytes have been moved.

As it turns out, the single 8086 string instruction.
MOVSB. will perform all the actions in the REPEAT-
UNTIL ioop. The MOVSB instruction will copy a byte
from the location pointed to by the SI register to a
location pointed to by the DI register. It will then
automatically increment St to point to the next source
location, and increment DI to poInt to the next destina-
tion location. Actually, as we will show you soon, we can
specify whether we want SI and Dl to increment or
decrement. If you add a special prefix called the repeal

2
3
4
5
6
7 0000
8 0000
9

10
11
12 0017
13 0078
14 0092
15
16 0000
17
18
19 0000
20 0003
21 0005
22 0007
23 0008
24 000F
25 0012
26
27 0013
28
29 0015
30

8086 PROGRAM F5-01.ASM
;ABSTRACT : Program ves a string from the Location TEST_HESS

to the location NEW bC.
;REGISTERS	 Uses CS, OS, ES, SI, DI, AX, CX
;PORTS	 None used

DATA SEGMENT
54 49 53 20 54 49 40 * 	 TEST_MESS DR TIS TIME FOR A NEW H4E' 	 String to move
45 20 46 4F 52 20 41 *
20 4E 45 57 20 48 4F •
40 45
64(?')	 08 100 DUP(?)	 Stationary block of text
17*(00)	 NEW LOC	 DR 23. DUP(0)	 String destination

DATA ENDS

C00E SEGMENT
ASSISIE CS:COGE, DS:DATA, ES:OATA

88 0000s	 START:MOV AX, DATA	 Initialize data segment register
8E08	 MOVDS, AX
8E CO	 MOV ES, AX	 Initialize extra segment register
80 36 0000r	 LEA Si. TEST_MESS	 Point SI at source string
80 3E 0078r	 LEA DI, NEW_bC	 Point DI at destination Location
89 0017	 MOV CX, 23	 Use CX register as counter
FC	 CLO	 Clear direction flag so pointers autoincement

after each string element is moved
F3' A4	 REP MOVSB	 Move string bytes until all moved

COGE ENDS
END START

lbl
FIGURE 5-1 Program for moving a string from one location to another in
memory. (a) Memory map. (b) Assembly language program.

96	 CHAPTER FIVE

prefix in front of the MOVSB instruction, the MOVSB
instruction will be repeated and CX decremented until
CX is counted down to zero. In other words, the REP
MOVSB Instruction will move the entire string from the
source location to the destination location If the pointers
are properly initialized.

In order for the MOVSB instruction to work correctly.
the source Index register. SI. must contain the offset of
the start of the source string, and the destination index
register. Dl. must contain the offset of the start Cf the
destination location. Also, the number of string elements
to be moved must be loaded Into the CX register.

As we said previously, the string instructions will
automatically increment or decrement the pointers after
each operation, depending on the State of the direction
flag DF. If the direction flag is cleared with a CLI)
instruotion, then the pointers in SI and DI will automati-
cally bç incremented after each string operation. If the
direction flag is set with an STD instruction, then the
pointers in SI and DI will be automatically decremented
after each string operation. For this example, it is easier
to initialize the pointers to the starting offsets of each
string and increment the pointers after each operation.
so you will include the CLI) Instruction as part of the
initialization.

Figure 5-lb shows how this algorithm can be imple-
mented in assembly language. The first two MOV instruc-
tions in the program initialize the data segment register.
The next instruction initializes the extra segment regis-
ter. This is necessary because for string instructions.
an offset In Dl is added to the segment base represented
by the number in the ES register to produce a physical
address, If DS and ES are initialized with the same
value, as we did with the first three instructions in this
program, then SI and DI will point *0 locations in the
same segment.

The next step in the program is to load SI with the
effective address or offset of the first element in the
source string. In the example we used the LEA Instruc-
tion, but an alternative way to do this Is with the
instruction MOV SI,OFFSET TEST_MESS. The DI regis-
ter is then initialized to contain the effective address or
offset of the first destination location.

Next we load the CX register with the number of bytes
in the string. Remember. CX functions as a counter to
keep track of how many string bytes have been moved
at any given time. Finally, we make the direction flag a
zero with the Clear Direction Flag instruction. CLI).
This will cause both SI and DI to be automatically
incremented after a string byte Is moved.

When the Move String Byte instruction. MOVSB,
executes, a byte pointed to by SI will be copied to the
location pointed to by DI. SI and Dl will be automatically
incremented to point to the next source and the next
destination locations. The count register will be auto-
matically decremented. The MOVSB instruction by itself
will Just copy one byte and update SI and DI to point to
the next locations. However, as we said before, the repeat
prefix. REP, will cause the MOVSB to be executed and
the CX to be decremented over and over again until the
CX register is counted down to zero. Incidentally, when
the program is coded, the 8-bit code for the REP prefix.

11110011. is put In the memory location before the code
for the MOVSB instruction.

After the MOVSB instruction is finished, SI will be
pointing to the location after the last source string
byte. DI will be pointing to the location after the last
destination address, and CX will be zero.

The MOVSW instruction can be used to move a string
of words. Depending on the State of the direction flag.
SI and DI will automatically be incremented or decre-
mented by 2 after each word move. If the REP prefix is
used. CX will be decremented by I after each word move.
so CX should be initialized with the number of words
in the string.

As you can see from this example. a single MOVSB
instruction can cause the 8086 to move up to 65.536
bytes from one location in memory to another. The
string instruction Is much more efficient than using a
sequence of standard instructions, because the 8086
only has to fetch and decode the REP MOVSB instruction
once! A standard instruction sequence such as MOV.
MOV. INC. INC. LOOP. etc., would have to be fetched
and decoded each time around the loop.

USING THE COMPARE STRING BYTE
TO CHECK A PASSWORD

For this program example, suppose that we want to
compare a user-entered password1with the correct pass-
word stored in memory. If the passwords zlo not match,
we want to sound an alarm. If the passwoqts match, we
want to allow the user access to the computer and
continue with the mainline program. Figure 5-2. p. 98.
shows how we might represent the algorithm for this
with a flowchart and with pseudocode. Note that we
want to terminate the REPEAT-UNTIL when either the
compared bytes do not match or we are at the end of
the string. We then use an Il'-THEN-ELSE structure to
sound the alarm if the compared strings were not equal
at any point. If the strings match, the IF-THEN-ELSE
Just directs execution on to the main program.

To implement this algorithm in assembly language.
we probably would first expand the basic structures as
shown in Figure 5-2c. The first action in the expanded
algorithm is to initialize the port device for output. We
need to have an output port because we will turn on the
alarm by dutputting a 1 to the alarm control Circuit.
Next we need to initialize a pointer to each string and a
counter to keep track of how many string elements have
ten compared. The REPEAT-UNTIL shows how we will
use the pointer and counter to do the compare.

Figure 5-3. p. 99. shows how the Compare String in-
struction. CMPS. can be used to help translate this algo-
rithm to assembly language. As a review, first lets look at
the data structure for this program. The statement PASS-
WORD DBThIL-SAFE sets aside S bytes cf memoey and
gives the first memory location the name PASSWORD.
Thisstatementalsoinitializestheeight memorylocations
with the ASCII codes for the letters FAILSAFE. The ASCII
codes will be 4611.4111.4911. 4C11, 53H, 4111. 46H, 4511.

When an assembler reads through the source code for
a program, it uses a location counter to keep track of
the offset of each item in a segment. A S is used to
symbolically represent the current value of the locatio

STRINGS, PROCEDURES, AND MACROS	 97

START

COMPARE
BYTES

NO	 BYTES
EQUAL

YES

LAST	 NO

YES

BYTES	 YES
EOU'-

NO

SOUND
ALARM

STOP

NEXT MAINLINE
INSTRUCTION

('I

REPEAT
COMPARE SOURCE BYTE WITH DESTINATON BYTE

UNTIL (BYTES NOT EQUAL) OR (END OF STRING)
IF BYTES NOT EQUAL THEN

SQUND ALARM
si-op

ELSE 00 NEXT MAINLINE INSTRUCTION

(b(

INITIALIZE PORT DEVICE FOR OUTPUT
INITIALIZ SOURCE POINTER —SI
INITIALIZE DESTINATION POINTER - DI
INITIALIZE COUNTER - CX
REPEAT

COMPARE SOURCE BYTE WITH DESTINATION BYTE
INCREMENT SOURCE POINTER
INCREMENT DESTINATION POINTER
DECREMENT, COUNTER

UNTIL (STRING B'TES NOT EQUAL) OR (CX 0)
IF STRING BYTES NOT EQUAL THEN

SOUND A LARM
STOP

ELSE 00 NEXT MAINLINE INSTRUCTION

(ci

FIGURE 5-2 Flowchart and pseudocode for comparing
strings program. (a) Flowchart, (6) Inilial pseudocode.
(c) Expanded pseudocode.

counter at any point. The statement STR_LENGTH
EQU (8-PASSWORD) in the data segment then tells the
assembler to compute the value for a constant called
STRJ..ENOTH by subtracting the offset of PASSWORD
from the current value in the location counter. The
value of STR.J..ENGTH will be the length of the string
PASSWORD. Note that the EQU statement must be in
the data segment immediately after the password array
so that the location counter contains the desired value.
As you will see later, this trick with the S sign allows you
to load the number of string elements in (X symbolically.
rather than having to manually count the number. This
trick has the further advantage that if the password Is
changed and the program reassembled, the instruction
that loads CX with the string length will automatically
Use the new value.

The statement INPUT_WORD DB 8 DUP(0) will set
aside eight memory locations and assign the name
INPUT_WORD to the first location. The DUP(0) n the
statement tells the assembler to put OOH In each of these
locations. We assume that a keyboard Interface program
section will load these locations with ASCII codes read
from the keyboard as a user enters a password. We like
to initialize locations such as this with zeros, so that
during debugging we can more easily tell If the keyboard
section correctly loaded the ASCII codes for the pressed
keys in these locations.

Now let's look at the code segm.ent section of the
program. The ASSUME statement tells the assembler
that the instructions will be in the segment CODE. It
also tells the assembler that any references to the data
segment or to the extra segment will mean the segment
DATA. Remember that when you are using string in-
structions, you have to tell the assembler what to assume
about the extra segment. because with string instruc-
tions an offset in DI Is added to the extra segment base
to produce . the physical address.

The first three MOV statements In the program initial-
ize the data and extra segment registers. Since we
initialize DS and ES with the same values, both SI and
DI will point to locations n the segment DATA. The next
three instructions Initialize port P25 of an SDK-86
board as an output port.

LEA SI.PASSWORD loads the effective address or offset
of the start of the FAILSAFE string Into the SI register.
Since PASSWORD is the first data Item in the segment
DATA. SI will be loaded with 0000H. LEA DI.IN-
PUT_WORD loads the effective address or offset of the
start of the INPUT_WORD string into the DI register.
Since the offset of INPUT_WORD is 0008H. Dl will be
loaded with this value. The MOV CX.STR_LENGTH
Statement uses the EQU we defined previously to initial-
ize CX with the number of bytes in the string. The Clear
Direction flag instruction tells the 8086 to automatically
increment SI and Dl after two string bytes are compared.

The CMPSB Instruction will compare the byte pointed
to by SI with the byte pointed to by Dl and set the
flags according to the result. It wtll also Increment the
pointers. SI and DI. to point to the net string elements.
The REPE prefix in front of this instruction tells the
8086 to decrement the CX register after each compare,
and repeat the CMPSB instruction If the compared bytes

18	 CHAPTER FIVE

2
3
4
5
6
7 0000
8 0000
9

10
11 0008
12 0010
13
14 0000
15
16 0000
17 0003
18 0005
19 0007
20 000A
21 000C
22 0000
23 0011
24 0015
25 0018
26 0019
27 0018
28 0010
29 0020
30 0022
31 0025
32 0026
33 0027
34 0028
35

46 41 49 4C 53 41 46
45

0008
08* (00)

88 0000s
8E 08
8E CO
BA FFFE
BO 99
EE
80 36 0000r
81) 3E 0008r
B9 0008

F3 *6
75 03
EB 08 90
80 01
BA FFFA
EE
F4
90

6086 PROGRAM F5-03.ASM
;ABSTRACT : This progra inputs a password arid sot,,ds an alarm

if the password Is incorrect
;REGISTERS	 Uses CS, DS, ES, AX, DX, CX, SI, DI
;PORTS	 Uses FFFAH - Port 2B on SDK-86,for aLarm output

DATA SEGMENT
PASSWORD	 08	 'FAILSAFE'	 Password

SIR_LENGTH EQU (S PASSWORD) Coeçute Length of string
INPUT_WORD 08 8 DUP(0) 	 Space for user password input

DATA ENDS

CE SEGMENT
ASSI,54E CS:C(X)E, DS:DATA, ES:DATA

NOV AX, DATA
NOV DS, AX	 Initialize data segment register
NOV ES, AX	 Initialize extra segment register
NOV DX, OFFFEN	 ; These next three instructions
NOV AL, 99H	 set up an output port on
CUT DX, AL	 the SDK-86 board
LEA SI, PASSWORD	 Load source pointer
LEA Dl, INPUT_WORD	 Load destination pointer
NOV CX, SIR_LENGTH 	 Load counter with password Length
CLD	 Increment DI & SI

REPE	 CNPSB	 Ccmpare the two string bytes
JNE SCUND_ALARM	 If not equal, sound alarm
JNP O	 else continue

SIXJND_ALARM:MOV AL, 01 	 To sound alarm, send a 1
NOV DX, OFFFAH	 to the output port whose
CUT DX, AL	 address is in DX
lILT	 ; arid HALT.

OX:	 NOP	 Program continues if password is OK
C00E	 ENDS

END

1IGUR 5-3 Assembly language program br comparing strings.

were equal ar'.d CX is not yet decremented down to zero.
As we mentioned before, when this Instruction is coded.
the code for the prefix will be put In memory before the
code for the CMPSB instruction.

If the zero flag Is not set when execution leaves the
repeat loop, then we know that the two strings are not
equal. This means that the password entered was not
valid, so we want to sound an alarm. The JNE SOUND_
ALARM will check the zero flag and. ifit is not set, do a
jump to the specified label. If the zero flag is set.
indicating a valid password, then execution falls through
to the JMP OK instruction. This JMP instruction simply
jumps over the instructions which sound the alarm and
stop the computer.

For this example. we assume that the alarm control
is connected to the least significant bit of port FFFAI-1
and that a I output to this bit turns on the alarm. The
MOVAL,Ol instructio; loads a I in the L513 of AL. The
MOV DX.OFFFAH instruction points DX at the port
that the alarm is connected to. and, the OUT DX.AL
instruction copic's this byte to port FFFAFI. Finattv. the
LILT instruction stops the computer. An interrupt or
reset will he required to get it started again.

As the preceding examples show, the string instruc-
ions make it cciv eas y to implement sonic corn itonly

needed REPEAT-UNTIL algorithms. Some of the pro-
gramming problems at the end of the chapter will give
you practice with MOVS, CMPS, and SCAS Instructions.

WRITING AND USING PROCEDURES

Introduction

Often when writing programsyou will find that you need
to use a particular sequence of instructions at several
different points in a program. To avoid writing the
sequence ol instructions in the program each time you
need them, you can write the sequence as a separate
"subprogram called a procedure. Each time you need
to execute the sequence of instructions contained in the
procedure, you use the CALL instruction to send the
8086 to the starting address of the procedure in memory.
Figure 5-4a. p. 100. shows in diagram form how a CALL.
instruction causes execution to go from the mainline
program to a procedure. A RET instruction at the
end of the procedure returns execution to the next
instruction in the mainline. As shown in Figure 5-4b.
procedures can even be "nested.' This means that
one procedure calls another procedure as part of Its
instruction sequence. Follow the arrows in Figure 54b

- 15	 STRINGS, PROCEDURES, AND MACROS 	 '99

MAIN

LEVEL 1

LEVEL 2

MAINLINE OR
CALLING PROGRAM

PROCEDURE
TRUCTIONS

CALL

NEXT MAINLtNE
INST AUCTION

level of the hierarchy. This approach has the added
advantage that a person caji read the mainline pluglalli
to get an overview of what the program does and then
work down into the procedures to see the amount of
detail needed at a particular point. Also, tested and
debugged procedures can be used in writing new pro.
grams. Now that you know what procedures are used
for, we will discuss the 8086 CALL and RET.

MAINLINE
INSTRUCTIONS

LOWER LEVEL
PROCEDURE !ROCEDURE

CALL ' CALL
NEXT MAINLINE

INSTRUCTION

RET	 RET

(hi

FIGURE 5-4 Program flow to and from procedures. (a)
Single procedures. (b> Nested procedures.

to see how this works. Now, before we get into the details
of how to write and use procedures, we need to discuss
another reason we use procedures In programs.

Recall from Chapter 2 the top-down desla approach
to solving a programming problem. In this approach.
the problem is carefully defined, and then the overall job
is broken down into modules. Each of these modules Is
broken down into smaller modules. The division process
is continued until the algorithm for each module is
clearly obvious. Figure 5-5 shows an example of how
this modular structure can be represented in diagram
form. A diagram such as this Is often called a hierarchi-
cal chart. The point of all this is to break a large
problem down into manageable-size pieces which can be
Individually written, tested, and debugged. The individ-
uai modules are usually written as procedures-and called
from a mainline program which implements the highest

The 3086 CALL and RET Instructions

As shown In Figure 5-4, a CALL Instruction in the
mainline program loads the instruction pointer and in
some cases also the code segment register with the
starting address of the procedure, The next instruction
fetched will be the first instruction of the procedure. At
the end of the procedure, a RET instruction sends
execution back to the next instruction after the CALL
in the mainline program. The RET instruction does this
by loading the Instruction pointer and. If necessary, the
code segment register with the address of the next
instruction after the CALL instruction.

The question that may occur to you at this point Is,
"If a procedure can be called from anywhere In a program.
how does the RET instruction know where to return
execution to?" The answer to this question is that when
a CALL instruction executes, it automatically stores the
return address In a special section of memory called the
stack. A later section will introduce you to how the 8086
stack works. For now, let's take a closer iook at the 8086
CALL and RET instructions.

THE CALL INSTRUCTION OVERVIEW

As we said previously, the 8086 CALL Instruction per-
forms two operations when it executes. First, it stores
the address of the Instruction after the CALL instruction
on the stack. This address is called the return address
because it is the address that execution will return to
after the procedure executes. If the CALL is to a proce-
dure in the same code segment, then the call is near,
and only the Instruction pointer contents will be saved
on the stack. If the CALL is to a procedure in another
code segment, the call Is far. Iii this case, both the
instruction pointer and the code segment register con-
tents will be saved on the stack.

FIGURE 5-5 Hierarchical chart for inventory update program.

100	 CHAPTER FIVE

The second operation of the CALL instructiOn Es to
change the contents of the instruction pointer and, in
some cases, the contents of the code segment register
to contain the starting address of the procedure. This
second function of the CALL instruction ts very similar
to the operation of the JMP instructions we discussed
in Chapter 4.

For most of your programs. you will simply call proce-
dures by name with an instruction such as CALL DELAY.
The DELAY in this instruction represents a label you
put next to the first instruction of the procedure. This
form of CALL instruction is referred to as direct because
the destination address is specified directly in the in-
struction. As with the JMP instructions, however, the
destination address for a CALL can be specified in several
different ways. For reference. Figure 5-6u shows the
coding formats for the four forms of the 8086 CALL
instruction. The differences among these four forms are
in the way they tell the 8086 to get the starting address
for the procedure.

DIRECT WITHIN-SEGMENT NEAR CALL

The first form, direct within-segment near call, tells the
8086 to produce the starting address of the procedure
by adding a 16-bit signed displacement contained in the
instruction to the contents of the instruction pointer.
This is the same process as we described for the direct
within-segment near JMP instruction in Chapter 4.
With this Instruction, the starting address of the proce-
dure can be anywhere In the range of -. 32,768 bytes to
+ 32.767 bytes from the address of the instruction after
the CALL. If you are hand coding a program. you
calculate the displacement by counting from the address
of the instruction after the CALL to the starting address
of the procedure. If the procedure is in memory before
the CALL instruction, then the displacement will be
negative. In this case you represent the displacement in
16-bit. 2's complement sign-and-magnitude form just
as you do for backward JMP Instructions. If you are
using an assembler, the assembler will automatically
calculate the displacement from the instruction after
the CALL to a label you put at the start of the procedure.

THE INDIRECT WITHIN-SEGMENT NEAR CALL

The Indirect within-segment CALL instruction is also a
near call. When this form of CALL executes. the instruc-
tion pointer is replaced with a 16-bit value from a
specified register or memory location. As indicated by
the MOD-RIM byte in the coding template. the source of
the value can be any of the eight 16-bit registers or a
memory location specified by any one of the 24 ad-
dressing modes shown in Figure 3-8. This form of-
CALL instruction can be used to choose one of several
procedures based on a computed value. The instruction
CALL BP. for example. will do a near call to the offset
contained In BP In other words, the value in BP will be
put in the instruction pointer. The instruction CALL
WORD PTR 13X1 will get the new value for the Instruction
pointer from a memory location pointed to by BX.

CALL = Call

Within segment or group. IP relative

OHi

o_ C	 O

(8	 19	 UP'— IP+Dtnpi6.—ISP) .-
Iin6

Within segment or group. Indirect

III_

	

Op.od.	 Ciokn	 Oçenauio..

Ff	 16	 P — Rnllb—USP) — return Irnk
PP	 21 -.(A	 UP .- Mnrrri6—USP) — return link

Inter-segment or group. Direct

Opo	 (IndUn	 OpenMio

9A	 28	 CS.—ue'ar

Inter-segment or group. Indirect

____	 o "a' L0I&I1t
Opod	 CIodt	 Openailo.

	

PP	 37-tEA	 cS—ue8barn
IP .-

(.al

RET = Return from Subroutine

Opunde	 CIokt	 Op.nailo.0

	

Cs	 B	 inlra'SeVfleflt return

	

CB	 18	 inter-wgmnnrl return

Return and add constant to SP

nde Joarai

Opeode	 Ciorko	 Optio.r

	

C 2	 11	 Inr,ase5rneflt ret and add

	

CA	 17	 nrer.sflrfleflr ret and add

Ib)

FIGURE 5-6 8086 CAI.L and RET instruction formats. (a)

CALL. (b) RET. (Intel Corporation)

THE DIRECT fNTERSCMENT FAR CALL

The direct intersegment far call is used when the proce-
dure is in a segment with a different name from that
where the CALL is located. If the procedure is in another
segment. you have to change both the instruction

STRINGS, PROCEDURES, AND MACROS 	 101

pointer and the code segment register to get to it. For
this form of the CALL instruction, the new value for the
instruction pointer is written in as bytes 2 and 3 of the
instruction code. Note that the low byte of the new IF'
value is written beforc the high byte. The new value for
the code segment register is written in as bytes 4 and 5
of the instruction code. Again the low byte is written
before the high byte. A program example later in this
chapter shows you how to write your programs so that
an assembler can find a procedure label in another
segment.

THE INDIRECT INTERSEGMENT FAR CALL.

This form of the CALL instruction replaces the instruc-
tion pointer and the code segment register Contents
with two 16-bit values from memory. Since two 16-bit
values are needed, the values Cannot come from a
register. The MOD-RIM byte in the instruction is used
to speci the addressing mode for the memory location
where the 8086 goes to get the new values. The first
word from memory is put in the instruction pointer.
and the second word from memory is put in the code
segment register. The instruction CALL IJWORD PTR
LBXI. for example, will get a new value for IF' from [BXI
and IBX + ii in the data segment and a new value for
CS from offsets IBX + 21 and [BX + 3] in the data
segment,

THE 8086 RET INSTRUCTION

When the 8086 does a near call, it saves the instruction
pointer value for the instruction after the CALL on the
stack. A RET at the end of the procedure copies this
value from the stack back to' the instruction pointer to
return execution to the calling program. This then
returns execution to the mainline program. When the
8086 does a far call, it saves the contents of both the
instruction pointer and the code segment register on
the stack. A RET instruction at the end of the procedure
copies these values from the stack back into the IP
and CS registers to return execution to the mainline
program. Obviously we need one form of the RET instruc-
tion to handle returns from near procedures and another
form of the instruction to handle returns from far
procedures. Actually, the 8086 has four forms of the RET
instruction Figure 5-6b shows the coding templates for
these four.

The simple within-segment form of RET copies a word
from the top of the stack to the instruction pointer
register. This is the instruction form you will Usually
use to return from a near procedure. The wlthirr.segment
adding immediate to SP form Is also used to return from
a near procedure, When this form executes, however, It
will copy the word at the top of the stack to the
instruction pointer and also add an Immediate number
contained In the instruction to the contents of SP. Later.
we show you what this form is used for.

The intersegment form of the RET instruction is used
to return from far procedures. When this form of the
RET instruction executes, it will copy the word from the
top of the stack to the instruction pointer. It will then
increment the stack pointer by 2 and copy the next

word from the stack to the code segment register.
The Intersegment adding Immediate to SF' form of the
instruction also copies a new value for IP and a new
value for CS from the stack. However, it also adds a 16-
bit immediate number contained in the instruction code
to SP.

NOTE: If you are using an assembler, the assem-
bler will automatically code a near RET for a near
procedure and a far RET for a far procedure.

The 8086 Stack

Throughout the preceding discussions of the CALL and
RET instructions, we have talked about writing words
to the stack and copying these words back to the
instruction pointer and/or code segment register. Now
we will show you how to Set up a stack In your programs
and how the stack Is used.

The stack is a section of memory you set aside for
storing return addresses. The stack is also used to save
the contents of registers for the calling program while a
procedure executes. A third use of the stack is to hold
data or addresses that will be acted upon by a procedure.

The 8086 lets you Set aside up to an entire 64-Kbyte
segment of memory as a stack. Remember from the
block diagram in Figure 2•7 that the 8086 contains a
stack segment register and a stack pointer register. The
stack segment register is used to hold the upper 16 bits
of the starting address you give to the stack segment. If
you decide to start the stack segment at 70000H, for
example, the stack segment register will Contain 7000H.
The stack pointer register is used to hold the offset of
the last word written on the stack. The 8086 produces
the physical address for a stack location by adding the
offset contained in the SP register to the stack segment
base address represented by the 16-bit number in the
SS register.

An Important point about the operation of the stack
is that the SP register is automatically decremented by
2 before a word is written to the stack. This means that
at the start of your program you must initialize the SP
register to point to the top of the memory you set aside
as a stack, rather than initializing it to point to the
bottom location. To help you visualize this, Figure 57
shows how WC set up the stark in memory for this
example program.

Before a CALL instruction, assume that the SS register
contains 7000H and the SP register contains 0050H.
The physical address of the current top of the stack.
then. will be 70050H. If the 8086 executes a near
CALL instruction, the SP register will automatically be
decremented by 2 and the Contents of the IP register will
be written to the stack as shown.

When a near RET instruction executes. the IF' value
stored in the stack will be copied back to the lP register,
and the SF' register will be automatically incremented
by 2. After a CALL—RET sequence. then, the SP register
is again pointing to the initial top-of-stack location.

From the preceding discussion you should see that if
you are going to call procedures or use the stack in some
other way in your program, you need to declare a stack

102	 CHAPTER FIVE

MEMORY

75OI.f -	 - .I'NTIAL TOP OF STACK
7004FH	 AND TOS AFTER RET

7004E1'f -	 FL	 - TOP OF STACK
AFTER CALL

ST AC K

7%H -	 - - START OF STACK
SEGMENT

FIGURE 5-7 Stack diagram showing how the return
address is pushed onto the stack by CALL.

segment at the start of your program. You aiso need to
initialize the SS register with the base address of the
stack segment and initialize the SP register with the
offset of the top of the stack. Figure 5-8 shows the pieces
you need to add to your programs to declare a stack
segment and to initialize SS and SP.

The STACK_SEG SEGMENT STACK and STACK_SEG
ENDS statements in Figure 5-8 are used to declare a
logical segment that will be used for the stack. The
STACK directive tells the assembler that this segment
will be used as a last-in—first-out stack.

NOTE: If you are going t use the IBM program
EXE2BIN on your programs so that you can down-
load them to an SDK-86, omit the STACK directive
here. The linker will then give you an error mes-
sage, WARNING—NO STACK SEGMENT, but you
can ignore this warning.

You don't need all 64.000 bytes of the logical segment
in your programs, so you tell the assembler to set aside
40 decimal or 28H words of storage in this logica'

8086 PROGRAM fragment showing the 1nitialjatton
of stack segment register and stack pointer register

STACK SEG SEGMENT STACK

DW	 40 DUP(U)

STACK lOP LABEL WORD

STACK SEG ENDS

CODE	 SEGMENT

ASSUME CS:CODE, SS:STACKSEG

NOV AX, STACK_SEG	 tnit j alie stack
MOV SS, AX	 ; segment register
LEA SP, STACK_TOP	 InitiaLize stack pointer

Continue with pro'an,

CODE	 ENDS

END

FIGURE 5-8 Required program additions when using a
stack.

segment with the DW 40 DUP(0) statement. If the
actual stack is limited to approximately the size actually
needed, this segment can be overlapped with other
logical segments to save on the amount of physical
memory required for a program.

Since words are written to the stack starting from the
highest location, it is convenient to have a name attached
to this location so that you can Initialize the SP register
with a name instead of a number. The statement
STACK_TOP LABEL WORD in Figure 5-8 gives the name
STACK_TOP to the next even address after the 40 words
you set aside for the stack.

We arbitrarily choose to start the stack segment at
address 70000H for this example, and we set a stack
length of 40 words with the DW 40 DUP(0) statement.
Since each memory address represents a byte, these 40
words will occupy the 80 addresses 70000H to 7004FH,
as shown in Figure 57. The label STACK_TOP is associ-
ated with address 70050Ff. the next address after the
stack. We will explain later Why you want the name at
the address after the actual stack.

The next program addition you need to look at is in
the ASSUME statement, Note that we have added the
term SS:STACK_SEG to tell the assembler that any
reference in the program to the stack means the segment
STACK_.sEG. This term tells the assembler that SS will
contain the starting address of STACK_SEG. but it does
not load this value into the SS register. Loading the SS
register must be done with program instructions, just
as you initialize the data segment register and the extra
segment registerwith program instructions. Remember.
you can't load an immediate number directly into a
segment register. so you load the starting address of
the segment Into a register and then copy it Into the
stack segment register. The MOV AX,STACI(_SEG and
MOV SS.AX Instructions do this. Now all you have to do
Is initialize the stack pointer.

You want to initialize SP so that the first word written
to the stack goes to the highest location in the memory
you set aside for the stack. All the instructions which
write a word to the stack-decrement the stack pointer
by 2 before writing the word. Therefore, you want the
stack pointer to be initially loaded with the next even
address above the actual stack. We gave this location
the name STACK_TOP, so you can use the LEA
SP.STACK_TOP instruction to initialize the stack
pointer with the desired offset. You could also have
used the instruction MOV SP,OFFSET STACK_TOP to
initialize the stack pointer,

Now that you know the initialization steps required
in a program that uses procedures, we will show
you how to write and call a procedure. We will also
take another look at how the stack functions during a
CALL—RET sequence,

A Near Procedure Call and Return Example

DEFINING THE PROBLEM AND WRITING
THE ALGORITHM

Delay loops such as that shown in Figure 4-20 are often
written as procedures so that they can be cailed from
anywhere in a program. Suppose that you want to write

STRINGS, PROCEDURES, AND MACROS	 '103

READ VALUE
FROM PORT

MASK UPPER
4 BITS

PUT IN
ARRAY

WAIT1MS

I,)

Initialize
REPEAT

Get data sample from port
Mask Upper 4 bits
Put in array
Wait 1 ms

UNTIL 100 samples taken

Ib)

DATA SAMPLES PROGRAM
InitiaLize pointer to array, SI
Initialize counter, BX
REPEAT

Read port
Mask Upper 4 bits
Put in array
Wait 1 ms procedure
Increment pointer, SI
Decrement coUnter, OX

UNTIL counter = 0

WAIT—IrIS PROCEDURE
Load count value
REPEAT

Decrement count value
UNTIL Count	 0

(C)

FIGURE 5-9 Algorithm for data samples at 1-ms intervals
program. (a) Flowchart. (b) Pseudocode. (c) Pseudocode
expanded.

a program which reads 100 data words from a port at
1-ms intervals, masks the upper 4 bits of each word.
and puts each result in an array in memory. Before you
read on, see if.you can write a flowchart or pseudocode
for this problem. Then compare your results with those
in Figure 5-9a orb. We hope you recognized this problem
as a REPEAT-UNTIL situation.

The next step Is to expand the algot ithin to takv ioto
account the specific architectural features of the 8086
that you can use to implement the algorithm. Figure
5-9c shows one way to do this expansion.

At the start you initialize a pointer to the array and a
Counter to keep track of how many values have been put
in the array. After each value is read In and put in the
array, the delay procedure Is called to produce the desired
interval between samples. When execution returns to
the mainline, the pointer Is incremented so that It points
to the next location in the array. Finally, the counter is
decremented to determine whether the desired number
of samples have been taken. If not, the read, store, and
delay series of instructions is repeated.

Note that the algorithm for the procedure is done
separately from that for the main program. As we
discussed in the introduction to procedures, the flow of
the mainline program is clearer if much of the detail is
put in separate procedures. For the delay procedure.
you simply load a number In a register or memory
location and decrement the number until it is zero.

Note that even the expanded algorithm in Figure 5-9c
is general enough that it could be implemented on
almost any microprocessor. Let's see how it can be
translated to run on an 8086.

THE 8086 ASSEMBlY LANGUAGE PROGRAM
Figure 5-10 shows the assembly language program for
the expanded algorithm in Figure 5-9c. Read through
this program and see how much of it you can remember
and/or figure out before you read our explanations
in the following paragraphs. Deciphering a program
written by someone else is an important skill to develop.

At the start of the program. we declare a logical
segment for data with the DATA SEGMENT—DATA
ENDS statements. The statement PRESSURES DW 100
DUP(0) in this segment sets aside 100 words of memory
to store the values read in from a pressure sensor. This
statement also initializes these 100 words to all Os. It
really doesn't matter what values are initially in these
locations because the program is going to write values
in them. However, as we mentioned in an earlier exam-
ple, we like to initialize arrays such as this to all U's so
that during debugging we can tell whether the program
wrote any values to these locations,

Next, we declare a logical segment to be used for the
stack with the STACK_.SEG SEGMENT and STACK-
_SEG ENDS statements. As described previously, the
statement DW 40 DUP(O(sets up a stack length of 40
words and initializes these words to all 0's. Again we
really don't care what value these words have initially
because the 8086 will be writing values there as we call
procedures. The statement STACIC.TOP LABEL WORD
gives a name to the next even address after the highest
address in the stack we set up.

Now let's work our way through the main program
and the procedure In the cOde segment. We have to till
the assembler which logical segments are being used for
code, data, and stack in the program. The ASSUME
CSCODE. DS:DATA. SS:STACK....SEG statement does
this. The ASSUME statement, however, does not actually
initialize the segment registers. We have to do this with

104	 ('HAPTFR FIVE

2
3
4
5
6
7
8
9

10
11 0000
12 0000
13
14 0008
15
16 0000
17 0000
18
19 0050
20
21 0000
22
23 0000
24 0003
25 0005
26 0008
27 000A
28
29 0000
30 0011
31 0014
32 0017
33 0018
34 0018
35 OO1D
36 0020
37 0021
38 0022
39 0023
40 0025
41
42 0026
43 0026
44 0029
45 0028
46 002C
47
48 002C
49
49

8086 PROGRM F5-10.ASN
;ABSTRACT : This program takes in data sanples from a port at 1 ms

intervaLs, masks the upper 4 bits of each sanple, and
puts each masked saeçle in successive locations in an array.

;REGISTERS : Uses CS, SS, DS. AX, BX, CX, DX, SI, SP
;PORTS	 : Uses OFFF8H - data sanptes input from port P2A on SDK-86
;PROCEDURES: Uses WAIT iNS

PRESSURE_PORT	 EQU OFFF8H

DATA	 SEGMENT
PRESSURES	 DU	 100 DUP(0)	 Set up array of ¶00 words
NBR_OF_SAMPLES EQU ((S-PRESSURES)/2)

DATA
	

ENDS

STACK_SEC SEGMENT
28*(0000)	 OW 40 DUP(0)	 set stack Length of 40 words

STACK_TOP LABEL	 WORD
STACK_SEC ENDS

COOE	 SEGMENT
ASSUME CS:COOE, DS:DATA, SS:STACK_SEG

88 0000s	 START:	 NOV AX, DATA	 initiaLize data segment register
8E 08	 NOV OS, AX
88 0000s	 NOV AX, STACK_SEG	 Initialize stack segment register
8E DO	 NOV SS, AX
BC 0050r	 NOV SP, OFFSET STACK_TOP 	 intiatize stack pointer to top of stack

LEA Si. PRESSURES 	 Point SI to start of array
NOV BX, NBR_OF_SANPLES 	 Load BX with ntsther of sairptes
NOV DX, PRESSURE_PORT	 Point DX at input port

NEXT VALUE:1N AX, DX	 Read data from port
AND AX, OFFFH	 Mask upper 4 bits
NOV (SI1,AX	 Store data word in array
CALL WAIT_iNS	 Delay 1 ma
INC SI	 Point SI at next Location n array
INC Si
DEC BX	 Decrement sairpLe counter
JNZ NEXT_VALUE	 Repeat until 100 sarrpLes done

STOP:	 NOP

PROC	 NEAR
NOV CX, 23F2H	 Load delay constant into CX
LOOP HERE	 Loop until CX 0
RET
E NDP

ENDS
END
END

FFF8

64(0000)
0064

80 36 0000r
88 0064
BA FFF8
ED
25 OFFF
89 04
E8 0006
46
46
48
75 F2
90

89 23F2
E2 FE
C3

WAIT_iNS

HERE:

WAIT_iNS

COOt

FIGURE 5-10 Assembly language program to read in 100 samples of data at
1-ms intervals.

program Instructions. The MOV AX,DATA and MOV
DS,AX Instructions initialize the data segment regIster.
The MOV AX.STACK_.SEG and MOV SS.AX Instructions
Initialize the stack segment register. The MOV SP.OFF-
SET STACK_TOP statement Initializes the stack pointer
register. The program to this point Is essentially just
housekeeping chores. After a few more initialization
Instructions, you will finally see some action.

The statement LEA SI.PRESSVRES lnItialIzs the SI
register as a pointer to the first location in the array

PRESSURES. It loads the effective address or offset of
the first word In PRESSURES Into SI. For our example
here. PRESSURES Is the first data Item in the segment.
so the value loaded into SI will be 0000H. We chose to
use the BX register as a sample Counter, so we use the
statement MOV BX.NBR_SAMPLES to Initialize BX with
the number of samples we want to take and store. We
could have just used the Instruction MOV X.lOO to
initialize BX with the number of words in the array.
However, representing the number of samples symboll'

STRINGS, PROCEDURES, AND MACROS 	 105

cally en.iires that this number will get updated if we
increase the length of PRESSURES. To represent the
length of PRESSURES symbolically, we used the
NBR_SAMPLES EQU ((S-PRESSURESV2) statement tn
the data segment. The (S . PRESSURES) In this statement
tells the assembler to subtract the offset of PRESSURES
from the value In the location counter. This value then
represents the number of bytes in the array. The /2 In
the expression tells the assembler to divide the number
of bytes by 2 to give the number of words, which Is the
number we want to load into BX. Finally, we are going
to get to some action.

The final Initialization Instruction Is to point DX at
the port that we will read to get the data value from the
pressure sensor. As Indicated by the PRESSURE_PORT
EQU OFFF8FI statement at the top of the program. the
pressure sensor is connected to port FFF8H. Since this
port address Is larger than FFFI, we have to use the
variable-port input instruction. For this input instruc-
tion, we first load the port address in the DX register
with the MOV DX.PRESSURE_PORT Instruction, then
read the data word in with the IN AX,DX instruction.
Notice how much more tinderstadable It makes a
program when we use a name such as PRESSURE_PORT
in an Instruction rather than OFFF'8H. the numerical
port address. If you are working with an assembler, EQU
statements are a handy way to give names to constants
in your program.

When we get the pressure value into AX. we mask out
the upper 4 bits with the AND AX.OFFFH instruction.
The reason why we want to do this is that the analog-
to-digital converter that the pressure sensor is connected
tois a 12-bit unit. The upper four bits of the 16-bit port
are not connected to anything and may pick up random
noise signals. To prevent noise signals on the upper 4
bits from getting put in memory with our data, we mask
these bits out by ANDing them with Os. The instruction
MOV SU.AX then copies the/ daL word from the AX
register to the memory location pointed to by SI in the
data segment.

To produce the desired delay between samples, we
CALL the WAIT_IMS procedure. This is a direct within-
segment CALL because the procedure Is contained in
the same code segment as the CALL instruction.

We use the PROC and ENDP directives to "bracket"
the assembly language statements of the procedure.
rutting a name In front of these directives allows us to
call the procedure by name. For the example in Figure
5-10. we gave the procedure the name WAIT_1MS to
remind us of the function of the procedure. To produce
the desired delay, we load a number Into the CX register
with the MOV CX.23F211 instruction and count the
number down to 0 wIth the LOOP HERE instruction.
The LOOP instruction, remember, decrements CX by 1
and jumps to the specified label if CX is not yet down to
0. Since we put the label HERE directly on the LOOP
Instruction, the LoOP Instruction will simply execute
over and over until CX reaches 0. When CX gets counted
down to zero, the RET instruction at the end of the
procedure will return execution to the next instruction
after the CALL in the mainline program.

Since this procedure is in the same code segment as
the mainline prograilt. only the instruction pointer has
to be changed to get back to the mainline. This Is an
example of a near procedure return. If you are hand
coding a program such as this, make sure to use the
correct form of the RET instruction.

Now, back In the mainline program. we need to get
ready to read the next data value. First, we want to get
SI pointed to the location where we want input the next
data word. Since each address represents a byte, and
we are storing words, we have to Increment the pointer
by 2 to point to the next storage location. We used two
INC SI instructions to do this, but you could use the
single instruction ADD Sl.02H to do the same job. After
updating the pointer, we decrement the sample counter
in BX with the DEC BX instruction. If BX is not yet
counted down to 0, the JNZ NEXT_VALUE Instruction
will cause the 8086 to read in and process another value
from the port. If BX isO, IndIcating that all tOO samples
have been taken, execution goes on to the next mainline
instruction after JNZ. Now let's take another look at
what happens to the stack and the stack pointer as this
example program executes.

Another Look at Stack Operation
During a CALl and RET
For the example program in the last section. we started
the stack at address 70000H. so the stack segment
register was initialized with 7000H. We Set a stack
length of 40 decimal or 28H words with the DW 40
DUP(0) statement. These 40 words will occupy the 80
(50H) memory locations from 70000H to 7004FF1. as
shown In Figure 5-1 Ia. Initially we want the stack
pointer to point at the next address above the stack.
Therefore, we ii L:..eJ the stack pointer to offset
0050H, the next even aduress above our actual stack.
with the MOV SP,OFFSET STACK_TOP instruction.

After the 8086 fetches the CALL instruction from
the instruction-byte queue in the BIU, it automatically
Increments the instruction pointer to 00201-I. the offset
of the next instruction after the CALL. You can see this
if you look at line 36 in the program listing in Figure
5-10. The instruction pointer then contains the address
we want execution to return to after the procedure Is
completed. When the near CALL instruction in our
example program executes. the 8086 first decrements
the stack pointer by 2. Then it copies the return address
In the instruction pointer to the memory location now
pointed to by the stack pointer. If the stack pointer
contained 0050H before being decremented. then after
being decremented by 2 it contains OO4EH. The physical
address pointed to by the stack pointer and the stack
segment register will be 70J4EH. The low byte of the
instruction pointer will be copied to address 7004EH,
and the high byte of the '-'ruction pointer will be
copied to address 7004FH. as shown in Figure 51 In.
This follows the intel convention of putting the lower
byte of a word at the lower address n memory. After the
CALL instruction executes, the stack pointer Is left

106	 CHAPTER lIVE

- SP INITIALIZED
TO HERE - SP 0050H

SP POINTS HERE
AFTER NEAR CALL
SP - OO4EH

STACK IN MEMORY

70050H -

700tFH -

71X34EH

7m4DH -

7t54CH -

BASE 7OH
—STACK SEGMENT

SS- ltXXlH

STACK IN MEMORY

tents of the code segment register to the stack. It then
decrements the stack pointer by 2 again and copies
the offset of the next mainline instruction from the
instruction pointer to the stack. To help you visualize
this. Figure 5-1 lb shows how these would be written to
the stack, assuming the same stack starting addresses
that we used for the previous . example. As you can see
from this figure. after a far CALL the top of the stack
will be four addresses lower than It was before the CALL.

A far RET used at the end of a far procedure will copy
the word from the top of the stack to the instruction
pointer and increment the stack pointer by 2. it will
then copy the word from the new top of the stack to the
code segment register. The next instruction will then be
fetched from the physical address after the far CALL
instruction. The top of the stack will be back to where
it was before the CALL and RET.

As we mentioned previously, the stack is also used to
save the contents of registers while a procedure executes
and to hold data that the procedure is to act on. The
next section shows you how we do this.

________	 Using PUSH and POP to Save Register Contents
In the example program in Figure 5-10. we used the BX
register to keep track of how many data samples we had

________	 taken in. After each data sample was taken in, we
________ decremented the BX register and used the JNZ instruc-

tion to determine whether to take another sample or to
exit. We would like to have used the CX register to keep
track of the number of samples taken so that we could

_________ have used a single LOOP Instruction Instead of the DEC
BX and JNZ label instructions. The reason that we
couldn't use CX for this in the program is because CX
is used In the procedure. Any ,value we put in CX In the
mainline program would be written over by the MOV
CX.23F2H instruction In the procedure. It is very com-
mon to want to use registers both in the mainline
program and in a procedure without the two uses
Interfering with each other. The PUSH and POP instruc-
tions make this very easy to do.

The PUSH register/memory Instruction decrements
the stack pointer by 2 and copies the contents of the
specified 16-bit register or memory location to memory
at the new top-of-stack location. The PUSH CX instruc-
tion, for example, will decrement the stack pointer by 2
and copy the Contents of the CX register to the stack
where the stack pointer now points. This Instruction.
then. Can be used to save the contents of CX while a

	

pointer. After	 procedure executes. The next question is. how do we

	

it copies the word from the top of the stack to the 	 get the saved value back when we want it?

7t5OH -	 - SP INITIALIZED

7004FH
	

CS HIGH
	 TO HERE - SP - 5OH

74EH - CS LOW

74DH —'i-'	 IP HIGH

7IX4CH - IP LOW
	

SI' POINTS HERE
AFTER FAR CALL

7mOOH
	 STACK SEGMENT

BASE - SS = 7000H

(b)

FIGURE 5-11 Stack diagram for program in Figure 5-10.
(a) For near CALL. (b) F.or far CALL.

pointing to offset OO4EH. This location is now the top
of the stack, or TOS.

When the RET instuction at the end of the procedure
in the example program executes, the 8086 copIes
the return address from the top of the stack to the
Instruction pointer. Since the top of the
offset OO4EH, the word from addresses
7004FH will be copied to the Instruction

stack was at
7004EH and

instruction pointer, the 8086 increments the stack..
pointer by 2. For our example here, it will increment the
stack pointer from OO4EH to 00501-I. The stack pointer
is now back where ii was before the CALL instruction
executed. Note that the return address is still present
in memory because the RET instruction simply copied
it to the instruction pointer and incremented the stack
pointer over it.

When the h086 executes a far CALL Instruction, it
decrements the stack pointer b y 2 and copies the con-

The POP register/memory instruction copies a word
from the top of the stack to the specified 16-bit register
or memory location and increments the stack pointer
by 2. The POP CX instruction, for example, will copy a
word from the top of the stack to the CX register and
increment the stack pointer by 2. After a POP. the stack
pointer will point to the next word on the stack.

You can PUSH any of the 16-bit general-purpose
registers AX, BX. Cx, and DX: any ol the base or pointer
registers BP. SP, SI. and DI: any of the segment registers

- 16	 STRINGS, PROCEDL'RES. AND MACROS 	 1 O

CS, DS, SS. and ES: or even a word from a memory
location specified by one of those 24 memory addressing
modes In Figure 3-8. A separate instruction. PUSHF,
decrements the stack pointer by 2 and copies the flag
word to the stack. The 80186, 80286. and 80386.
incidentally, have a single instruction. PUSHA. which
pushes AX. CX. DX. BX, SP. BP, Si, and DI on the stack.

You can POP a word from the stack to any of the
registers except CS. and you can POP a word from the
stack to a memory location specified in any one of those
24 ways. The POPF instruction copies a word from the
stack to the flag register and increments the stack
pointer by 2. The 80186, 80286. and 80386 POPA
instruction copies words from the stack to the Dl. St.
BP, BX, DX, CX. and AX registers. Note that the POPA
Instruction does not return a value to the SP register.

When you PUSH several registers on the stack, you
have to remember to POP them off in the reverse order
that you pushed them on. This Is because the stack
functions in a hzst-tn—first-out manner. An everyday
example ol this type of operation Is the spring-loaded
plate stacks seen In some restaurants. The last plate
pushed onto the stack is the first one popped off. Figure
5-12a should help you visualize how this works for the
8086.

The first four instructions show a sequence of PUSH
instructions you might use to save registers and flags
at the Start of a near procedure called MULTO. Figure
5-I 2b shows the contents of the stack after the CALL
and PUSH instructions execute. The first entry In the
stack is the copy of the Instruction pointer put there
by the CALL instruction that called the procedure.
Following this are the flag word and the words from
registers AX. BX. and CX. After all of these are pushed
on the stack, the stack pointer is left pointing at the
location in the stack where CX was pushed.

At the end of the procedure, you want to restore the
saved values to the registers and (lags. You first POP CX
because it was the last register pushed on the stack.
After CX is popped, the stack pointer will be left pointing
at the location where BX is stored. Therefore, you POP

BX next You Continue popping until all the registers
and flags are restored. The RET instruction then copies
the return address from the stack to the instruction
pointer to return execution to the main program. It is
very Important to keep the number of pushes equal to
the number of pops or in some other way keep the stack
balanced so that the RET instruction finds the correct
word to put in the instruction pointer.

Some programmers like to push and pop registers in
the mainline or calling program rather than in the
procedure as we did in Figure 5-12a. This approach has
the advantage that you can push only those registers
that you care about saving each time you call the
procedure. The disadvantages of this approach are that
the pushes and pops clutter up the mainline program.
and that you may decide to use another register at some
point in the program and forget to add a push for it. We
like to push the flags and any registers used in a
procedure directly in the procedure. This way we always
know that the procedure can be called from anywhere
in the program without losing the contents of any
registers. Another advantage of this approach is that
you only have to write the pushes and pops once. A
disadvantage is that in a situation in which not all the
pushes are needed, the procedure may take a little longer
to run.

Passing Parameters to and from Procedures

OFten when we call a procedure, we want to make some
data values or addresses available to the procedure.
Likewise, we often want a procedure to make some
processed data values or addresses available to the main
program. These addresses or data values passed back
and forth between the mainline and the procedure are
commonly called parameters. The four major ways of
passing parameters to and from a procedure are:

I. In registers

2. In dedicated memory locations accessed by name

BEFORE CALL

AFTER CALL

AFTER FUSUF

AFTER PUSH AX

AFTER PUSH BX

AFTER PUSH CX

MUITO PROC NEAR
PUSH F
PUSH AX
PUSH BX
PUSH CX

POP CX
POP OX
POP AX
POP F
RET

MULTO CNDP

SF

5OH -

P FIlCH
004EU	 FLOW

FLAG FIlCH
OO4CH - FLAG LOW

-	 AU
OO4AH -	 AL

BH
0048U --	 EL

CU
OOFI6H- ____

SP

	

AFTER RET	 0050H

	

-. AFTER POPF	 0048FF

- AFTERPOPAX 00401

- AFTER POPDX 004411

- AFTER POP CX 004811

BEFORE POP CX

STACK IN MEMORY

Is)

FIGURE 5-12 . Using PUSH and POP instructions. (a) Instruction sequence. (hI
Et(ect on stack and stack pointer.

108	 CHAPTER FIVE

4596 = (4 x 1000) + (5 x 100) + (9 x 10) + (6 x 1)

1 = 0001H therefore	 6 = 6 x 0001K 0006K
10 000AII therefore 90 = 9 x 000AH OO5AH

100 = 0064K therefore 500 = 5 x 0064K O1F4H
1000 03E811 therefore 4000 = 4 x 03E8H OFA0H

4596	 1IF4H

FIGURE 5-13 BCD-to-binary algonthm.

3. With pointers passed in registers

4. With the stack

In the following sections we use a simple program to
show you how each of these methods works.

DEFINING THE PROGRAMMING PROBLEM

A common programming need is to Convert a packed
BCE) number to Its binary equivalent. You might, for
example, want to convert a packed BCE) such as 0100
0101 1001 0110. which represents 4596 decimal, to
000I000llll 10100 binary, or I 1F4H. There are several
ways to do this conversion, but to us the easiest is based
on using the value of each placeholder in the BCE)
number.

Figure 5-13 shows the names and values for each digit
in a four-digit BCE) number such as 4596. When you
write a number such as this, it means that you have a
total of 4 thousands + 5 hundreds + 9 tens + 6 units.
To determine the value of this number in binary, you
just multiply the number In each digit position by the
value of that digit position in binary and add up the
results. The right-hand side of Figure 5-13 shows how
this works. A microprocessor, of course, uses the binary
equivalents, but to make it ':asier for you to see what is
going on here, we have represented the binary values
with their hexadecimal equivalents.

The units position has a value of I in hex, so multi-
plying this by 6 units gives 0006H. The tens position
has a value of 1010 binary. or OAI-l. Multiplying this
value by 9. the number of tens, gives 005A1-l. The
value of the hundreds position in the BCE) number is
01100100 binary, or 64H. When you multiply this value
by 5, the number pf hundreds, you get OIF4H. When
you multiply the hex value of the thousands position.
O3ESH. by 4 (the number of thousands), you get OFAOH.
Adding up the results for the four digits gives I IF4H or
00010001ll1t0 100, which is the binary equivalent of
4596 BCD. You can use this method to convert a
BCE) number with any number of digits to its binary
equivalent, but to save space here we will show the
program for just a two-digit BCE) number.

From the example in Figure. 5-13. perhaps you Can
see that the algorithm for this program is the simple
sequence of operations

Separate nibbles

Save lower nibble (don't need to multiply by 1)

Multiply upper nibble by OAH

Add lower nibble to result of multiplication

We want to implement this program as a procedure
which can be called from anywhere in a mainline pro-
gram. For our first version. we pass the BCD number to
the procedure in a register.

PASSING PARAMETERS IN REGISTERS

Figure 5-14, p. 110, shows our first version of a proce-
dure to Convert a two-digit packed BCE) number to its
binary equivalent. The BCE) number is copied from
memory to the AL register and then passed to the
procedure in the AL register. We start the procedure by
pushing the flag gIster and the other registers we use
in the procedure. Notice that we don't push the AX
register because we are using it to pass a value to
the procedure and expecting the procedure to pass a
different value back to the calling program in it.

The function of tht\ rest of the instructions in the
procedure should be reasonably clear from the comments
with them. We first make a copy of the BCE) number in
AL to BL so that we have two copies to work on. We
then mask the upper nibble of the copy in BL. Since
multiplying this nibble by 1 would not change its value.
we are done with it for now. Next, we mask the lower
nibble of the other copy of the BCD number and rotate
this nibble into the lower nibble position of the bgte so
that we can multiply it correctly. When we multiply this
nibble by the digit weight of OAH. the result is left in
the AX register. However, since the result can never be
greater than 8 bits, we can disregard the contents of
AH. Finally, we add the lower nibble we saved in BE. to
the result in AL to gel the binary total. The desired result
is left in AL. Before returning to the main program, we
pop the registers we pushed at the start of the procedure.
Since we did not push AX, the binary value in AX at the
end of the procedure will be there when execution
returns to the calling program.

The disadvantage of using registers to pass parameters
is that the number of registers limits the number of
parameters you can pass. You can't, for example, pass
an array of 100 elements to a procedure in registers..

PASSING PARAMETERS IN GENERAL MEMORY

As you read through the preceding example, the question
that may have occurred to you is. "Why didn't you simply
access the BCD_INPUT value and the BIN_VALUE by
name from the procedure?" The answer to the question
is that we can directly access the parameters by name
from the procedure, but in some cases there are problems
wtth doing it this way. Figure 5-15. p. 111. shows a proce-
dure 'that accesses the parameters directly by name,

In this procedure we first push the flags and all the
registers used in the procedure. We then copy the
BCD number into AL with the MOV AL.BCDINPUT
Instruction. From here on, the procedure is the same
as the previous version until we reach the point where
we want to pass the binary result back to the calling
program. Here we use the MOV BINVALUE.AL instruc-
tion to copy the result directly to the dedicated memory
location we set aside for it. To complete the procedure.
we pop the flags and registers. and return to the main
program.

STRINGS, PROCEDURES, AND MACROS	 1 09

2
3
4
5
6
7
8
9

10 0000
11 0000 17
12 0001 '?
13 0002
14
15 0000
16 0000 64*(0000)
17
18 0008
19
200000
21
22 0000 88 0000s
23 0003 6€ 08
24 0005 88 0000s
25 0008 8€ DO
26 000A BC OOC8r
27
28 0000 AO 0000r
29 0010 E8 0005
30 0013 *2 000lr
31 0016 90
32 0017 90
33
34
35
36
37
38
39 0018
40 0018 9C
41 0019 53
42 001* 51
43
44 0018 8A D8
45 0010 80 E3 0
46 0020 24 FO
47 0022 81 04
48 0024 02 C8
49 0026 87 GA
50 0028 F6 E7
51
52 00,2A 02 C3
53
54 002C 59
550020 58
56 OO2E 90
57 002F C3
58 0030
59
60 0030
61

8086 PROGRAM FS-14.ASM
;ABSTRACT : BCD to BINARY conversion progra that uses a

procedure to convert BCD nuters to binary.
Program uses the AL register to pass parters
to the procedure

;REGISTERS	 Uses CS, DS, SS, SP, AX
P0RTS	 : None Used

;PROCEOURES: BcD_BIN

DATA
	

SEGMENT
BCO_INPUT	 D8 1711	 storage for BCD value
BIN_VALUE	 08 7	 ; storage for binary value

DATA
	

ENDS

STACK_SEG	 SEGMENT	 STACK
OW 100 DUP(0)	 ; stack of 100 words

TOP_STACK	 LABEL	 5R0
STACK_SEG	 ENDS

CODE	 SEGMENT
ASSI$4E CS:CODE, DS:DATA, SS:STACK_SEG

START:	 NOV AX, DATA	 Initialize data segment
NOV OS, AX	 register
NOV AX, STACK SEC	 Initialize stack segment
NOV 55, AX	 register
NOV SP, OFFSET TOP_STACK	 Initialize Stack pointer

NOV AL, BCD_IWPIJT
CALL BCD_BIN	 Do the conversion
NOV BIN_VALUE, AL	 Store the result
HOP	 Continue with program here
Nap

PR0CEDURE: BCD_BIN - Converts BCO fluTters to binary.
;INPUT	 : Al with BCD value
;00TPUT	 : AL with binary value
;DESTROYS : AX

BCD_BIN	 PROC HEAR
PUSHF	 ; Save flags
PtiSlI BX	 and registers used in procedure
PUSH CX	 before starting the conversion

;Do the conversion
NOV 81, AL	 Save copy of BCD in BL
AND 61., OFH	 and mask
AND AL, OFOil	 Separate upper nibble
NOV CL, 04	 Hove upper BCD digit to low
ROR AL, CL	 nibble position for nai1tiply
NOV BH, DAM	 Load conversion factor in BH
PHJL BH	 Multiply upper BCD digit in AL

by OAM in BH, leave result in AL
ADD AL, BL	 Add lower BCD digit to HU1 result

;End of conversion; binary result in AL
POP CX	 Restore registers
POP BX
POPF
RET	 and return to mainline

BCD_81N	 ENDP

CODE	 ENDS
END	 START

FIGURE 5-14 Example program passing parameters in registers.

1 10	 CHAPTER FIVE

28 0000
29 0010
30 0011
31
32
33
34
35
36
37
38
39 0012
40 0012
41 0013
42 0014
43 0015
44 0016
45
46 0019
47 OO1B
48 DOlE
49 0020
50 0022
51 0024
52 0026
53
54 0028
55
56 002A
57 0020
58 002E
59 002F
60 0030
61 0031
62 0032
63
64 0032
65

E8 0002
90
90

9C
50
53
51
AD 0000r

8A 08
80 53 OF
24 FO
Bi 04
D2 C8
87 OA
F6 57

02 C3

*2 0001r
59
55
58
90
C3

8086 PROGRAI F5-1S.AS$
2
	 ;ABSTRACT : BCO to BINARY conversion program that uses a

3
	 procedure to convert BCD nuthers to binary.

4
	 Program uses dedicated memory Locations to

S
	 pass parameters to the procedure.

6
	 ;REGISTERS	 Uses •CS, DS, SS, SP, AX

7
	 ;9ORTS	 : None used

8
	 ;PROCEDIiRES: Uses BCO BIN

SAJIE DATA STRUCTURE AND INITIALIZATION AS FIGURE 5-14 LINES 9 THRGUGH 27

CALL BCD BIN	 Do the conversion
NOP	 Continue with program here
MOP

;PROCEDURE: BCO_BIN - Converts BCD nuTters to binary.
;IMPUT	 Data from dedicated memory Location BCO_IMPUT
;IXITPUT	 : Data to dedicated memory Location BIN VALUE
;DESTROYS : Nothing

BCO_BIN	 PROC	 NEAR
PUSHF	 Save fLags
PUSH AX	 and registers
PUSH SN
PUSH CX
NOV AL. BCD_INPUT Get BCD vaLue from memory

;Oo the conversion 	 -
NOV BL, AL	 Save copy of BtD in BL
AND BL, OFH	 and mask
AND AL, OFOK	 Separate upper nibble
NOV CL, 04	 ; Move upper BCO digit to Low
RON AL, CL	 nibbLe position for rmLtiply
NOV BH, OAH	 Load conversion factor in SM
MUL SM	 MultipLy upper BCD digit in AL

by DAN in BH, Leave result in AL
ADD AL, BL	 Add Lower BCO digit to MUL result

;End of conversion, binary value in AL
MDV BIN_VALUE, AL Store binary value in memory
POP CX	 Restore flags and
POP SN	 registers
POP AX
POP F
RET

BCD_BIN	 ENDP

C00E	 ENDS
END	 START

FIGURE 5-15 Example program passing parameters in named memory
locations.

The approach used in Figure 5-15 works in (his case,
but it has a severe limitation. Can you see what Ills?
The limitation is that this procedure will always look to
the memory location named BCD_INPUT to get its data
and will always put its result in the memory location
called BIN_VALUE. in other words, the way it is written.
we can't easily use this procedure to convert a BCD
number in some other memory location. As we explain
in detail later, this method has the further problem that
it makes the procedure nonreentrarit.

PASSING PARAMETERS USING POINTERS

A parameter-passing method which overcomes the dis-
advantage of using data item names directly in a proce-
dure is to use registers to pass the procedure pointers
to the desired data. Figure 5-16. p. 112, shows one waytO
do this. In the main program, before we call the proce-
dure, we use the MOV SI.OFFSET BCD_INPUT instruc-
tion to set up the SI register as a pointer to the memory
location BCD_INPUT. We also use the MOV DI.OFFSET

STRINGS, PROCEDUREt AND MACKOS	 111

28
29 0000
30 0010
31 0013
32 0016
33
34
35
36
37
38
39 0017
40 0017
41 0018
42 0019
43 OO1A
44 0018
45
46 0010
47 OO1F
48 0022
49 0024
50 0026
51 0028
52 002A
53
54 002C
55
56 OOZE
57 0030
58 0031
59 0032
60 0033
61 0034
62 0035
63
64 0035
65

BE 0000r
BF 000lr
E8 0001
90

9C
50
53
51
8A 04

8A D8
80 E3 OF
24 FO
81 04
02 C8
87 OA
F6E7

02 C3

88 05
59
5B
58
90
C3

8086 PROGRAI4 F5-16.ASIt
2
	

A8STRACT : B0 to BINARY conversion program that uses a
3	 procedure to convert BCD ntaTters to binary.
4
	

Program shows how to use pointers to pass
5	 parameters to a procedure.
6	 ;REGISTERS	 Uses CS, OS, SS, SP, AX, SI, DI
7	 ;PORTS	 Uses none
8	 ;PROCEDURES: Uses BCD_BIN

SAI4E DATA STRUCTURE AND INITIALIZATI4 AS FIGURE 5-14 LINES 9 THRGUGH 27

Put pointer to BCD storage in SI end pointer to binary storage ir DI
NOV SI, OFFSET SCO_INPUT 	 Create pointers to 8C0 and
NOV Dl, OFFSET BIN_VALUE	 binary storage
CALL BCD_BIN	 Do the conversion

Continue with program here

;PROCEOURE: BCD_BIN - Converts BCO n(aTers to binary.
;INPUT	 SI, points to Location in memory of data
;GUIPUT	 01, points to Location in memory for result
;OESTROYS	 Nothing

BCD_BIN	 PROC	 NEAR
PUSHF	 Save f Lags
PUSH AX	 and registers
PUSH 8X
PUSH CX
NOV AL, (Sf1	 Get BCD value from memory

;Do the conversion
NOV BL, Al.	 Save copy of BCD in BL
AND 81, OFH	 and mask
AND AL, OFOK	 Separate upper nibble
NOV CL, 04	 Hove upper BCD digit to Low
ROR AL, CL	 nibble position for Tuttiply
NOV Bit, OAK	 Load conversion factor in BK
1401 BK	 MultipLy upper BCD digit in AL

by OAK in BK, Leave result in AL
ADD AL, 81	 Add Lower BCD digit to MUL result

;End of conversion, binary value in AL
NOV (DII, AL	 Store binary value in memory
POP CX	 Restore flags and
POP BX	 registers
POP AX
POPF
RET

BCD_8IN	 ENDP

CCOE	 ENDS
END	 START

FIGURE 5-16 Example program passing parameters using pointers to named
memory locations.

BIN_VALUE Instruction to set up the DI register as a
pointer to the memory location named BIN_VALUE.

In the procedure, the MOV AL.(SIJ Instruction will
copy the byte pointed to by SI Into AL. Ltkewlse. the
MOV IDJI.AL Instruction later In the procedure will copy
the byte from AL to the memory location pointed to by
Dl.

This pointer approach is more versatile because you
can pass the procedure pointers to data anywhere in
memory. You can pass pointers to individual values or
pointers to arrays or strings. To access complex data

structures, you can use registers to pass the segment
base and the offset of a table of pointers in memory. The
procedure then can read in a pointer from the table and
use the pointer to access the desired data.

For many of your programs, you will probably use
registers to pass data parameters or pointers to proce-
dures. As we show you in Chapter 8, this is the method
you use when you call procedures in the Basic Input)
Output System or BIOS of a computer. However, as we
show you In later chapters. for programs whIch allow
several users to timeshare a system or those which

112	 CHAPTER FIVE

consist of a mixture of high-level languages and assembly
language, we usually use the stack to pass parameters
to and from procedures.

PASSING PARAMETERS USING THE STACK

To pass parameters to a procedure using the stack, we
push the parameters on the stack somewhere In the
mainline program before we call the procedure. Instruc-
tions in the procedure then read the parameters from
the stack as needed. Likewise, parameters to be passed
back to the calling program are written to the stack by
instructions in the procedure and read off the stack by
instructions In the mainline program. A simple example
will best show you how this works.

Figure 5-17, p. 114, shows a version of our BCD._.BIN
procedure which uses the stack for passing the BCD
number to the procedure and for passing the binary
value back to the calling program. To save space here,
we assume that previous instructions in the mainline
program set up a stack segment. Initialized the stack
segment register, and initialized the stack pointer. Now
in the mainline fragment In Figure 5-17, we copy the
BCD number into AL. We then éopy AX to the stack with
the PUSH AX instruction. In .a more complex example,
the BCD number or a pointer to it would probably be
put on the stack bya different mechanism, but the
important point for now is that the BCD value is on the
stack for the procedure to access.

The CALL instruction In the mainline program decre-
ments the stack pointer by 2, copies the return address
onto the stack, and loads the instruction pointer with
the starting address of the procedure. PUSH instructions
at the start of the procedure save the flags and all the
registers used in the procedure on the stack. Before
discussing any more instructiotis, let's take a look at
the contents of the stack after these pushes.

Figure 5-18. p. 115, shows how the values pushed on
the stack will be arranged. Note that the BCD value is
in the stack at a higher address than the return address.
After the registers are pushed Onto the stack, the stack
pointer is left pointing to the stack location where BP Is
stored. Now, the question is, how can we easily access
the parameter that seems buried in the stack? One way
is to add 12 to the stack pointer with an ADD SP,l2
instruction so that the stack pointer points to the word
we want from the stack. A POP AX instruction could
then be used to copy the desired word from the stack to
AX. However, for a variety of reasons, which we will
explain later. we would like to be able to access the
parameter without changing the contents oIhe stack
pointer.

An alternative to using the SP register is to use the
BP register to access the parameters in the stack.
Remember from Chapter 2 that an offset in the BP
register will be added to the stack segment register to
produce a physical memory address. This means that.
the BP register can easily be used as a second pointer
to a location in the stack. Here's how we use it this way
in Our example program.

After pushing all the registers at the start of the
procedure, we copy the contents of the stack pointer
register to the BP register with the MOV BP.SP instruc-

tion. BP then points to the same location as the stack
pointer, Then we use the MOVAX,IBP + 12) instruction
to copy the desired word from the stack to AX, The 8086
will produce the effective address for this Instruction
by adding the displacement of 12. specified In the -
instruction, to the Contents of the BP register. As you
can see in Figure 5-18, the effective address produced
by adding 12 to the Contents of B? will be that of the
desired parameter. Note that the MOV AX.IBP + 121
instruction does not Change the contents of B?. B? can
then be used to access other parameters on the stack
by simply specifying a different displacement in the
instruction used to access the parameter.

Once we have the BCD number copied from the stack
into AL. the instructions which convert it to binary are
the same as those in the previous versions. When we
want to put the binary value back in the stack to return
it to th calling program, we again use B? as a pointer
to the stack. The instruction MOV (B? + 12!,AX will
copy AX to a stack location 12 addresses higher than
that to which BP is pointing. This, of course. is the
same location we used to pass the BCD number to the
procedure. After we pop the registers and return to
the calling program, the registers will all have the values
they had before the CALL instruction executed. AX will
contain the original BCD number, and the stack pointer
will be pointing to the binary value, now at the top of
the stack, In the mainline program we can now pop this
hex value into a 5eglster with an instruction such as
PoPCX.

Whenever you are using the stack to pass parameters,
it is very important to keep track of what you have
pushed on the stack and where the stack pointer is at
each point in a program. We have found that diagrams
such as the one in Figure 5-18 are very helpful in doing
this. One potential problem to watch for when using
the stack to pass parameters is stack ovedlow. Stack
overflow means that the stack fills up and overflows the
memory space you set aside for it. To see how this can
easily happen if you don't watch for it, consider the
following. Suppose that w€ use the stack to pass four
word parameters to a procedure, but that we pass Only
one word parameter back to the calling program on the
stack. Figure 5-19, p. 115, shows a stack diagram for this
situation. Before a CALL instruction, the fourparameters
to be passed to the procedure are pushed on the stack.
During the procedure, the parameter to be returned is
put in the stack location previously occupied by the
fourth input parameter. After the RET Instruction at
the end of the procedure executes, the stack'pointcr will
bele(t pointing at this value. Now assume that we pop
this value into a register. The POP instruction will copy
the value to a register and increment the stack pointer
by 2. The stack pointer now points to the third word we
pushed to pass to the procedure. In other words the
stack pointer is six addresses low,er than it was when
we started this process. Now suppose that we call this
procedure many times in the course of the mainline
program. Each time we push four words on the stack
but only pop one word off, the stack pointer will be left
six addresses lower than it was before the process. The
top of the stack will keep moving downward. When the

TRINCS, PROCEDURES,	 MACROS	 113

28 0000
29 0010
30 0011
31 0014
32 0015
33 0018
34
35
36
37
38
39
40 0019
41 0019
42 OO1A
43 0018
44 OO1C
45 0010
46 DOlE
47 0020
48
49 0023
50 0025
51 0028
52 002A
53 002C
54 002E
55 0030
56
57 0032
58
59 0034
60 0037
61 0038
62 0039
63 003A
64 0038
65 003C
66 0030
67
68 0030
69

AO 0000r
50
E8 0005
58
A2 000lr
90

9C
50
53
51
55
88 EC
88 46 DC

BA 08
80 E3 OF
24 FO
81 04
02 C8
87 OA
F6 E7

02 C3

89 46 OC
50
59
58
58
90
C3

8086 PROGRAM F5-17.ASN
2
	 ;ABSTRACT : BCD to BINARY con'ersion program that uses a

3
	 procedure to convert BCD nssvt,ers to binary.

4.	 Program shows how to use the stack to pass
5
	 parameters to a procedure.

6
	 ;REGISTERS : Uses CS, OS, SS, SP, AX

7	 ;PORTS	 Uses none
8
	 ;PROCEDURES: Uses BCD_BIN

YAI4E DATA STRUCTURE AND INITIALIZATION AS FIGURE 5-14 LINES 9 THRJGH 27

NOV AL, BCD_INPUT	 Move BCD value into AL
PUSH AX	 and push it onto onto stack
CALL BCD_81N	 Do the conversion
POP AX	 Get the binary value
NOV BIN_VALUE, AL 	 and save it
HOP	 ; Continue with program here

;PROCEDURE	 BCD_BIN - Converts BCD n&sthers to binary.
;INPUT	 : None BCD value ass.ne to be on stack before call
;JTPUT	 None - Binary value on top of stack after return
DESTROYS : Nothing

BCO BIN	 PROC	 NEAR
PUSHY	 Save flags
PUSH AX	 and registers
PUSH BX
PUSH CX
PUSH BP
NOV BP. SP	 Make a copy of the stack pointer
NOV AX, (BP+12) 	 Get BCD ns.mber from stack

;Do the conversion
MOV BL, AL	 Save copy of BCD in BL
AND BL, OFH	 and mask
AND AL, OFOH	 Separate upper nibble
NOV CL, 04	 Move upper BCD digit to low
ROR AL, CL	 nibble position for multiply
NOV BK, OAK	 Load conversion factor in BK
MUL BK	 Multiply upper SCO digit in AL

by OAK in BK, leave result in Al
ADD AL, BL	 Add lower BCD digit to MUL result

;End of conversion, binary value in AL
NOV EBP*12i, AX	 Put binary value on stack
POP BP	 Restore flags and
POP CX	 registers
POP BX
POP AX
POP F
RET

BCO_BIN	 ENDP

CE	 ENDS
END	 START

FIGURE 5-17 Example program passing parameters on the stack.

stack poinler gets down to 00001-1. the next push will
roll It around to FFFEH and write a word at the very
top of the 64-Kbyte stack segment. If you overlapped
segments as you usually do In a small system, the word
may get written In a memory location that you are using
for data or your program code, and your data or code
will be lost! This is what we mean by the term stack
overflow.

The cure for this potential problem is to use stack
diagrams to help you keep the stack balanced. You need
to keep the number of pops equal to the number of
pushes or in some other way make sure the stack pointer
gets back 10 Its initial location.

For this example, we could use an ADD SP.06H
instruction after the POP instruction to get the stack
pointer back up the additional six addresses to where It

114	 CHAPTER FIVE

BEFORE PUSH

AFTER PUSH I

AFTER PUSH?

AFTER PUSH 3

AFTER PUSH 4

AFTER CALL

STACK IN MEMORY

SE

OOSOH -

OO4EH

4CH -

______	 SE
4AH-	 -AFTERPOPOF

RETURNED VALUE	 4AI-I

48H -.-	 - AFTER RET	 4SH

46H -

FIGURE 5-19 Stack diagram showing cause of stack
overflow.

STACK IN MEMORY

BEFOIRE PUSH AX - w fl5OH -

AFTER PUSH AX -	 OO4EH -I AL I

AFTER PUSH EP - 	 0042H

STACK SEGMENT BASE - 7000H -

FIGURE 5-18 Stack diagram for program in Figure 5-17

was before we pushed the four parameters onto the
stack.

For other cases such as this, the 8086 RET instruction
has two forms which help you to keep the stack balanced.
Remember from a previous section of this chapter that
the 8086 has four forms of the RET Instruction. The
regular near RET instruction copies the return address
from the stack to the instruction pointer and increments
the stack pointer by 2. The regular far RET instruction
copies the return IP and CS values from the stack to Ii'
and CS, and increments the stack pointer by 4. The
otheE two forms of RET instruction perform the same
functions, but they also add a number specified in
the instruction to the stack pointer. The near RET 6

instruction, for example, will first copy a word from the
stack to the instruction pointer and increment the stack
pointer by 2. It will then add 6 more to the stack pointer.
This is a quick way to skip the stack pointer up over
some old parameters on the stack.

SUI4MARY OF PASSING PARAMETERS
TO AND FROM PROCEDURES

You can pass parameters between a calling program
and a procedure using registers, dedicated ritemoly
locations, or the stack. The method you choose depends
largely on the specific program. There are no hard rules.
but here are a few guidelines. For simple programs with
Just a few parameters to pass. registers are usually
the easiest to use. For passing arrays or other data
structures to and from procedures, you can use registers
to pass pointers to the start of- these data structures.
As we explained previously, passing pointers to the
procedure is a much more versatile method th,an having
the procedure access the data structure directly by
name.

For procedures in a multiuser-system program, proce-
dures that will be called from a high-level language
program, or procedures that call themselves, parameters
should be passed on the stack. When writing programs
which pass parameters on the stack. you should use
stack diagrams such as the one in Figure 5-18 to help
you keep track of where everything is in the stack at a
particular time. The following section wIll GIve you some
additional guidance as to when o use the stack to pass
parameters, and it will give you some additional practice
following the stack and stack pointer as a pl4gram
executes.

Writing and Debugging Programs
Containing Procedures
The most important point in writing a program con-
taining procedures is to approach the overall Job very
systematically. You Carefully work out the overall struc-
ture of the program and break It down into modules
which can easily be written as procedures. You then set
up the data structures and write the mainlIne program
so that you know what each procedure has to do and
how parameters can be most easily passed to each
procedure.

To test this mainline program. you can simulate each
procedure with a few instructions which simply pass
test values back to the mainline program. Some pro-
grammers refer to these 'dummy procedures as stubs. If
the structure of the mainline program seems reasonable.
you then develop each procedure and replace the dummy
with it. The advantage of this approach is that you have
a structure to hang the procedures on. If you write the
procedures first, you have the messy problem of tr ing
to write a mainline program to connect all the pieces
together.

Now, suppose that you have approached a program as
we suggested. and the program doesn't work. After you
have checked the algorithm and instructions, you should
check that the number of PUSH and POP Instructions

- 17	 '	 STRINGS, PROCtDURES, AND MACROS	 115

ate equal in each procedure. II none of the checks turns
up anythlng. you can use the sys tem debugging tools to
track down the problem. Probably the best tools to help
you localIze a problem to a small area are breakpoints.
Run the program to a breakpoint Just before a CALL
Instruction to see whether the correct parameters are
being passed to the procedure. Put a breakpoint at the
start of the procedure to see ((execution ever gets to the
procedure. If execution gets to the procedure. move
the breakpoint to a later point in the procedure to
determine whether the procedure found the parameters
passed from the mainline. Use a breakpoint Just before
the RET instruction to see whether the procedure pro-
duced the correct results and put these results in the
correct locations to pass them back to the mainline
program. Inserting breakpoints at key points in your
program and checking the results at those points is
much more effective in locating a problem than random
poking and experimenting.

Reentrant and Recursive Procedures

The terms reentrant and recurstue are often used In
microprocessor manufacturers' literature, but seldom
illustrated with examples. Here we try to give these terms
some meaning for you. You should make almost all the
procedures you write reentrant, so read that section
carefully. You will seldom have to write a recursive
procedure. so the main points to look for in that section
are the definition of the term and the operation of the
stack as a recursive procedure operaLc.

REENTRANT PROCEDURES.
The 8086 has a signal Input which allows a signal from
some external device to interrupt the normal program
execution sequence and call a specified procedure. In our
electronics factory, for example. a temperature sensor in
a flow-solder machine could be connected to the inter-
rupt input. If the temperature gets too high. the sensor
sends an interrupting signal to the 8086. The 8086 wIll
then stop whatever it is doing and go to a procedure
which takes whatever steps are necessary to cool down
the solder bath. This procedure is called an Lnte. rupt
service procedure. Chapter 8 discusses 8086 interrui.Ls
and interrupt service procedures in great detail, but it
is appropriate to Introduce the concept here.

Now, suppose that the 8086 was in the middle of
executing a multiply procedure when the interrupt
signal occurred, and that we also need to use the multiply
procedure In the interrupt service subroutine. Figure
5-20 shows the program execution flow we want for this
situation. When the interrupt occurs, execution goes to
the Interrupt service procedure. The interrupt service
procedure then calls the multiply procedure when it
needs it. The RET Instruction at the end of the multiply
procedure returns execution to the interrupt service
procedure. A special return instruction at the end of the
interrupt service procedure returns execution to the
multiply procedure where it was executing when
the-interrupt occurred.

In order for the program flow in Figure 5-20 to work

MAINLINE	 /	 INTERRUPT
I	 MUI PLY	 PROCEDURE
I	 PR	 URE

CALLCALL
MULTIP.Y L	 RRUPT_..L""	 MULTIPLY

RETURN TONEXT MAINLINE
INTERRUPTEDINSTRUCTION ocCU

Ct.JRHERE 1"..PROGRAMAFTER CALL

RETURN TO
CALLING PROGRAM

FIGURE 5-20 Program execution flow for reentrant
procedure.

correctly. the multiply procedure must be written in such
a way that It can be Interrupted, used, and "reentered"
without losing or writing over anything. A procedure
which can function In this way is said to be reentrant.

To be reentrant, a procedure must first of all push the
flags and all registers used in the procedure. Also, to be
reentrant, a program should use only registers or the
"tack to pass parameters. To see why this second point
is necessary, let's take another look at- the program in
Figure 5-15. This program uses the named variables
BCD_INPUT and BIN_VALUE. The procedure BCD_BIN
accesses these two directly by name.

Now, suppose that the 8086 is in the middle of
executing the BCD_BIN procedure and an interrupt
occurs. Further supposc that the interrupt service proce-
dure loads some new value in the memory location
named BCD_INPUT. and calls the BCD_BIN procedure
again. The initial value in BCD_JNPUT has now been
written over. If the interrupt occurred before the first
execution of the procedure had a chance to read this
value in, the value will be lost forever. When execution
returns te BCD_BIN after the interrupt service,proce-
dure, the value used for BCD_INPUT will be that put
there by the Interrupt service routine Instead of the
desired Initial value. There are several ways we can
handle the parameters so that the procedure BCD_BIN
Is reentrant.

The fIrst is to simply pass the parameters in registers.
as we did In the program in Figure 5-14. If the interrupt
procedure-and the BCD_BIN procedure each push and
pop all the registers they use, all the parameters from
the interrupted execution will be saved and restored.
When execution returns to BCD_BIN again, the registers
will contain the same data they did when the interrupt
occurred. The, interrupted execution will then complete
correctly.

A second method of making the BCD._BIN procedure.
reentrant is to pass pointers to the data Items in
registers. as we did in the program in Figure 5-16.

116	 CHAPTER FIVE

Again. if the interrupt procedure and the BCD_..BIN
procedure each push and pop the registers they use.
execution will return to the interrupted procedure with
data intact.

The third way to make the BCD_BIN procedure reen-
trant is by passing parameters or pointers on the stack.
as we did in the version in Figure 5-17. In this version.
the mainline program pushes the BCD number onto the
stack and then calls the procedure. The procedure
pushes registers on the stack and uses BP to access the
BCD number relative to where the stack pointer ended
up. If an interrupt occurs, the interrupt service proce-
dure will push on the stack the BCD number it wishes
to convert and cafi BCD_BIN, This second UCD number
will be pushed on the stack at a different location from
the first BCD number that was pushed.

The BCD_.BIN procedure will use BP to access the new
BCD value and pass the binary value back on the stack.
If the BCIL.BIN and interrupt procedure each save and
restore the registers they use, the first execution of
the procedure will produce correct results when it is
reentered.

If you are writing a procedure that you may want to
call from a program written in a high-level language
such as Pascal or C, then you should definitely use the
stack for passing parameters because that is how these
languages do it. In a later chapter we show you how to
pass parameters between C programs and assembly
language programs.

RECURSIVE PROCEDURES
A recursive procedure is a procedure which calls itself.
This seems simple enough, but the question you may
be thinking is, "Why would we want a procedure to call
itself?' The answer is that certain types of problems.
such as choosing the next move in a computer chess
program, can best be solved with a recursive procedure.
Recursive procedures are often used to work with com-
plex data structures called trees.

We usually write recursive procedures In a high-level
language such as C or Pascal. except in those cases
where we need the speed gained by writing in assembly
language. However, the assembly language example in
the following sections should help you understand how
recursion works and how the stack is used by recursive
and other nested procedures.

Recursive Procedure Example

ALGORITHM
Most of the examples of recursive procedures that we
could think of are too complex to show here. Therefore,
we have chosen a simple problem which could be solved
without recursion.

The problem we have chosen to solve is to compute
the factorial of a given number in the range of I to 8.
The factorial of a number is the product of the number
and all the positive Integers less than the number. For
example. 5 factorIal Is equal to 5 x 4 x 3 X 2 x 1.

The word "factorial" is often represented with '!.' For
example, 5! is another way to represent 5 factorial,

What we want here is a recursive procedure which will
compute the factorial of a number N which we pass to
it on the stack, then pass the factorial back to the calling
program on the stack. The basic algorithm can be
expressed very simply as

IFN = 1 THEN factorial	 1,
ELSE factorial = N x (factorial of N - 1)

This says that if the number we pass to the procedure
is I. the procedure should return the factorial of 1,
which is 1. If the number we pass is not 1, then the
procedure shoul4 muluply this number by the factorial
of the number mIus 1.

Now here's where the recursion comes in. Suppose we
pass a 3 to the procedure. When the procedure Is first
called, it has the value of 3 (or N, but it does not have
the value for the factorial of N - 1 that it needs to
do the multiplication indicated in the algorithm. The
procedure solves this problem bycalling itself to compute
the needed factorial of N - 1. It calls itself over and over
until the factorial of N - 1 that it has to compute is the
factorial of!.

Figure 5-2!, p. 118. shows sçveral ways in which we
can represent thisprocess. In the program flow diagram
in Figure 5-21a. you can see that if the value ofN passed
to the procedure is 1. then the proceduie simply loads
1 into the stack location reserved for N! and returns to
the calling program. Figure 5-2!b shows the program
flow that will occur when the number passed to the
procedure is some number other than 1. If we call the
procedure with N 3. the procedure will call itself to
compute (N - 1)! or 2!. It will then call itself again to
compute the value of the , next (N - 1)! or II. Since
1! 1. the procedure will return this value to the
program that called it. In this case the program that
called it was a previous execution of the same procedure
that needed this value to compute 2!. Given this value.
it will compute 2! and return the value to the program
that called it. Here again, the program that called it was
a previous execution of the same procedure that needed
2! to compute the factorial of 3. Given the factorial of 2.
this call of the procedure can now compute 3! and return
to the program that called it. For the example here, the
return now will be to the mainline program.

Figure 5-21c shows how we can represent this algo-
rithm in slightly expanded pseudocode. Use the program
flow diagram in Figure 5-2!b to help you see how
execution continues after the return when N = 1 and
N = 3. Can you see that ifN Is initially I, the first return
will return execution to the instruction following CALL
FACTO in the mainline program? If the initial N was 3.
for example, this return will return execution to the
Instruction after the call in the procedure. Likewise, the
return after the multiply can send execution back to the
next Instruction after the call or back to the mainline
program if the final result has been computed.

Figure 5-2 Id shows a flowchart for this algorithm.
Note that the flowchart shows the same ambiguity about
where the return operations send execution to.

STRINGS, PROCEDURES, AND MACROS 	 117

Id)

MAINLINE

ROCE OUR E
FACTO

CALL FACTO

WITH ii

(a)

MAINLINE

PROCEDURE PROCEDURE PROCEDURE

	

FACTO	 FACTO	 FACTO

CALL FACTO

	

LALL1

NEXT MAIN'IINE
INSTRUCTION

	

RET	 RET
	 RET

	

WITH 31	 WITH 21
	 WITH 11

(b)

PROCEDURE FACTO
IF N -

FACTORIAL-i
RET

ELSE
REPEAT

DECREMENT N
CALL FACTO

UNTIL N-i
MULTIPLY (N - ill X PREVIOUS N
RET

(c)

FIGURE 5-21 Algorithm for program to compute factorial for a number N
between 1 and 8. (a) Flow diagram for N = 1. (b) Flow diagram for N = 3
(C) Pseudocode. (ci) Flowchart.

ASSEMBLY LANGUAGE RECURSIVE
FACTORIAL PROCEDURE

Figure 5-22 shows an 8086 assembly language procedure
which computes the factorial of a number in the range
of 1 to 8. To save space, we have not included Instruc-
tions to return an error message if the number passed
to thc procedure is out of this range. Figure 5-23.
p. 120. shows, with a stack diagram. how the stack will
be affected If this procedure Is called with N 3. When
working your way through a recursive procedure or any
procedure which uses the stack extensively, a stack
diagram such as this is absolutely necessaly to keep
track of everything.

The first parts of the program are housekeeping
chores. We start the mainline program by declaring a
stack segment and setting aside a stack of 200 words
with a label at the top of the stack. The first three
Instructions in the code segment of the mainline pro-
gram InItialize the stack segment register and the stack
pointer register. The SUB SP.04 instruction after this

will decrement the stack pointer register by 4. in other
words, we skip the stack pointer down over 2 words In
the stack. These two word locations will be used to pass
the computed factorial from the procedure back to the
mainline program. Next we load the number whose
factorial we want into AX and push the value on the
stack where the procedure will access it. Now we are
ready to call the procedure. The procedure is near
because it is In the same code segment as the instruct'ion
which calls it.

At the start of the procedure, we save the flags and all
the registers used In the procedure on the stack. Let's
take a look at Figure 5 .23 to see what Is on the stack at
this point. As you can see, the stack now has the space
for the result, the passed value, the return address, and
the pushed registers. Unfortunately, the value of N is
buried 10 addresses up the stack from where the stack
pointer was left after BP was pushed. To access this
buried value, we first copy SP to BP with the MOV BP.SP
instruction so that BP points to the top of the stack.
Then we use the MOV AX.IBP + 10) instruction to copy

118	 CHAPTER FIVE

2
3
4
5
6
7 0000
8 0000 C8(0000)
9

100190
II
12	 0OO8
13
14 0000
15
16 0000 58 0000s
17 0003 8E DO
18 0005 BC 0190r
19 0008 83 EC 04
20 0005 88 0008
21 000E 50
22 000F E8 0009
23 0012 83 C4 02
24 0015 58
25 0016 SA
26 0017 90
27 0018 ES 3A 90
28
29
30
31
32
33
34 0018
35 001B 9C
36 OO1C 50
37 0010 52
38 DOlE 55
39 OO1F 88 EC
40 0021 88 46 QA
41 0024 3D 0001
42 0027 75 00
43 0029 C? 46 OC 0001
44 002E C7 46 OE 0000
45 0033 ES 1* 90
46 0036 83 EC 04
47
48 0039
49 003*
50 0035
51 003E
52 0040
53 0043
54 0046
55 0049
56 004C
57 004F
58 0050
59 0051
60 0052
61 0053
62 0054
63 0054
64 0055
65

FIGURE 5-2:

48
50
E8 FF00
88 EC
88 46 02
FT 66 10
89 46 12
89 56 14
83 C4 06
50
5*
58
90
C3

90

8086 PROGRAM F5-22ASM
;ABSTRACT : Progr cJtes the factorial of a nuer between 1 aM 8
;REGISTERS : Uses CS, SS, SP, AX. DX
;PORTS	 : None used
;PROCEDURES: Uses FACTO

STACK_SEG	 SEGMENT	 STACK
OW	 200 OUP(0)

STACK_TOP	 LABEL WORD
STACK_SEG	 ENDS

NLRI8ER	 EQU	 08

CCOE	 SEGMENT
ASSIME CS:C00E, SS:STACK_SEG

START:	 NOV AX, STACK_SEG	 Intia1ize stack segment register
NOV 55, AX
NOV SP, OFFSET STACK_TOP	 Initialize stack pointer
SUB SP, 0004K	 Make space in stack for factorial
NOV AX, NUMBER	 to be returned and put raster
PUSH AX	 to be passed on stack
CALL FACTO	 Coopute factorial of nuiter
ADD SI', 2	 Get over original nurter in stack
POP AX	 Get low word of the result
POP DX	 Get high word of the result
MOP	 Siimalate next mainline instruction
JNP FIN	 Or EXIT p-ogram

;PROCEDURE: FACTO: Recursive proce&re that coep.ites the factorial of a nurter

	

INPUT	 : Takes data (nuTter 	 N) from the stack
;JTPUT	 : Returns wtth result on stack above original data
;OESTROYS : Nothing

FACTO
	 PROC	 WEAR

PUSH F
	 Save flags and registers

PUSH AX	 on the stack
PUSH DX
PUSH BP
NOV BP, SP
	 Point BP at top of stack

NOV AX, (BP10I
	 Copy ramter from stack to AX

CMI' AX, 0001K
	 If N not	 1 THEN

JME 00014	 coeç,ute factorial
NOV WORD PTR (BP12), 0001H ELSE load 1! on stack
NOV WORD PIR (BP.14), 0000H and return to calling progrs
,JNP EXIT

GO_OW
	 SUB SP. 000414
	 Make space in stack for

preliminary factorial
DEC AX
	 Decrement nuiter now in AX

PUSH AX. 	 Save N-I on stack
CALL FACTO
	 Conçute factorial of N-I

NOV SI', SP
	 Point SI' at top of stack

NOV AX, (BP21
	 Last (N-i)' from stack to AX

KIlL WORD PTR (BP+163
	 Multiply by previous N

NOV (BP*181, AX
	 Copy new factorial to stack

MOW (IIP.20), DX
ADD SP, 000614
	 Point SI' at pushed register

POP BP
	 Restore registers	 -

POP DX
POP AX
POP F
RET

	

FACTO
	 ENOP

	

FIN:	 HOP

	

C00E
	 ENDS

Set aside 200 words for stack
Assign nai to word above stack top

8	 40320 9080K

EXIT:

END	 START
Program which uses a recursive procedure to calculate the factorial of a number between 1 and 8.

119

STACK IN MEMORY
NOTE EACH BOX IN THIS

	

SF
	

STACK DIAGRAM

cXOH -
	 REPRESENTS A WORD

	

)7CH	 M LOW WORD I 3' FOR FINAL FACTORIAL

	

7EH	 NI HIGH WORD I) 4-BYTE SPACE RESERVED

m7AH	 N	 I - SF AFTER FINAL RET

	

W78H	 IF

	

I76H	 FLAC

	

74H	 AX

	

72H	 DX

	

7OI'I	 BP	 SF AFTER +6 BALANCE

	

OEH	
___________ 4-BYTE SPACE FOR (N- ill

6CH ____

	

OO6AH	 N-i	 —SPAFTERSECONDRET

	

68H	 UP

	

OOBBH	 F LAC

	

MH	 AX

	

1X162H	 DX

	

OOBOH	 BP	 —SPAFTER+SBALANCE

	

(X$EH	 ____________
l'4-BYTE SPACE FOR (N - 1)!

CH ____

	

I5AH	 (N-i) - I	 - SF AFTER FIRST RET

	

58H	 IF

	

XBBH	 FLAGS

	

0064H	 AX

	

mS2H	 DX

	

COSOH	 P	 - SF AFTER LAST CALL

	

004EH	 AND PUSHES

FIGURE 5-23 Stack diagram for program in Figure 5-22
showing contents of stack for N = 3.

N from the stack to AX. Now that the procedure has the
value of N. let's work through how It gets processed.

If the value of N read in is 1, then the factorial Is 1.
We want to put 0000000lH in the stack locations we
reserved for the result, restore the registers, and return
to the mainline program. Follow this path through the
program in Figure 5-2 2. Note how the MOV WORD F'TR
IBP + 12l.0001H instruction is used to load a value to
a location buried in the stack. The WORD PTR directives
tell the assembler that you want to move a word to the
specified memory location. Without these directives, the
assembler will not know whether to code the instruction
for moving a byte or for moving a word. The MOV WORD
PTR (B? + 14),0000H Instruction is iikewiseused to
move a word value to the stack location reserved for the
high word of the factorial.

Now let's see what happens if the number passed to
FACTO is a 3. The CM? AX,000IH Instruction and the
JNE Go_ON instructions determine that N is not 1
and send execution to the SUB SP.04H instruction.
According to the algorithm, we are. going to find the
value of N! by multiplying N times the value of(N - 11!.
We will be calling FACTO again to find the value of (N -
1)!. The SUB SP,04H instruction skips the stack pointer

duw over fuur addrse lii the stack to offset OO6CH
for our example. The value of(3 - 1)! will be returned
in these locations.

The next step in the program is to decrement N by 1
and push the value of N - I on the stack at offset
OO6Ali. where it can be accessed during the next call of
FACTO.

Next we call FACTO again to compute the value of
(N - 1)!. The I? flags and registers will again be pushed
on the stack. As shown in FIgure 5-23. the stack pointer
is now pointing at offset 0060H. and he value of N -
1 that we need is again buried 10 addresses up in the
stack. This is no problem, because the MOV BP,SP and
MOV AX.IBP + 101 instructions will allow us to access
the value. We started with N 3 for this example, so
thevalueofN - I thatwereadlnatthlspointisequal
to 2. Since this value Is not 1. execution will again go
to the label GO_ON, The SUB SP.04 Instruction will
again skip the stack pointer down over four addresses
to offset OO5CH. This leaves space for (2 - I)!. which
will be returned by the next call of FACTO. We decrement
N - 1byItogivearesultof1andthenpushthisue
on the stack at offset OO5AH. We then call FACTO to
compute the factorial of 1.

After calling FACTO again and pushing all the registers
on the stack, the stack pointer, now points to offset
0050H. FACTO then reads N = 1 from the stack with
the MOV AX.(BP + 101 Instruction. When the CM?
AX,0001H instruction in FACTO finds that the number
pased to it Is 1, FACTO loads a factorial value of 1 into
the four memory locations we most recently set aside
for a returned factorial at offsets OO5CH to OO5FH. The
MOV WORD PTR IB? + 121.0001 and MOV WORD PTR
IBP + 141,0000 Instructions do this. Since N was a 1,
execution will go to the EXIT label. The registers will
then be popped and execution returned to the next
instruction after the CALL instruction that last called
FACTO.

Now in this case FACTO was called from a previous
execution of FACTO, so the return will be to the MOV
BP,SP Instruction after CALL FACTO. The MOV BP.SP
instruction points BP at the top of the stack at 005A}l.
so that we can access data on the stack without affecting
the stack pointer. The MOV AXJflP + 21 instruction
after this copies the low word of (N -. I - I)! or I from
the stack to AX so that we can mUltiply it by N - 1. We
need only the lower word of the two we set aside for the
factorial, because for an N of 8 or less, only the lower
word will contaIn data. Restricting the allowed range of
N (or this example means that we Only have to do a 16-
bit by 16-bit multiplicatIon. We could increase the
al towed range of N by simply setting aside larger spaces
hit the stack for factorials and including Instructions to
muliiply larger numbers.

In this example, the MUL WORD PTR IBP + 16]
in structidn multiplies the (N - 1 - II! in AX by the
previous N from the stack. The low word of the product
is left in AX, and the high word of the product Is left In
DX. The MOV IBP + 18(.AX and the MOV IBP + 20l,DX
instructions copy these two words to the stack locations
we reserved for the next factorial result at offsets OO6CH
to 006FF!.

1 20	 CHAPTER FIVE

The next operation we would like to do in the program
is pop the registers and return. As you can see from
Figure 5-23, however, the stack pointer Is flow pointing
at some old data on the stack at offset 005A1-I. not at
the first register we want to pop. To get the stack pointer
pointing where we want It. we add 8 to It with the ADD
SP,06H instruction. Then we pop the registers and
return.

After the pops and return. the stack pointer will be
pointing at N - I at offset 006A14. and the value for 2!
will be in the stack at offsets OO6AH to OO6FH in the
stack. We still have one more computation to produce
the desired 3?. Therefore, the return Is again to the
MOV BP.SP instruction after CALL In FACTO. The
instructions after this will multIply 2! times 3 to produce
the desired 3!. and copy 3! to the stack as described in
the preceding paragraph. The ADD SP,06H instruction
will again adjust the stack pointer so that we can pop
the registers and return. Since we have done all the
required computations, this time the return will be to
the mainline program. The desired result. 3!. will be in
the memoiy locations we reserved for it in the stack at
offsets OO7AH to OO7FH.

After the final return, the stack pointer will be pointing
at offset OO7AH in the stack. We add 2 to the stack
pointer so that It points to the factorial result and pop
the result into the DX and AX registers. This brings the
stack pointer back to Its initial value.

If you work your way through the flow of the stack
and the stack pointer in this example program, you
should have a good understanding of how the stack
functions during nested procedures.

•Writin? and Calling Far Procedures

INTRODUCTION AND OVERVIEW
Afar procedure is one that is located in a segment which
has adiuferent name from the segment containing the
CALL Instruction. To get to the starting address of a far
procedure. the 8086 must change the contents of both
the code segment register and the Instruction pointer.

CE SEONT
ASSIJE CS:CE, DS:DATA, SS:STACK_SEG

CALL *JLTIPLY..,32

CXE ENDS

PROCEDURES SEGMENT
Mut.T!PLY_32 PROC FAR

ASSIJE CS:PROCEDURES

MULl IPLY ,_32 ENOP
PROCEDURES	 ENDS

FIGURE 5-24 Program additions needed for a far
procedure.

Therefore, if you are hand coding a program which calls
a far procedure. make sure to use one of the intersegment
forms of the CALL instruction shown in Figure 5-6.
Likewise, at the end of a far procedure. both the contents
of the code segment register and the contents of the
Instruction pointer must be popped off the stack to
return to the calling program, so make sure to use one
of the Intersegment forms of the RET instruction to do
this.

If you are using an assembler to assemble a program
containing a far procedure. there are a few additional
directives you have to give the assembler. The following
sections show you how to put these needed additions
into your programs. The first case we will describe is
one in which the procedure is in the same assembly
module, but it Is in a segment with a different name
from the segment that contains the CALL instruction.

ACCESSING A PROCEDURE
IN ANOTHER SEGMENT
Suppose that In a program you want to put all of the
mainline program in one logical segment and you want
to put several procedures in another logical segment to
keep them separate from the mainline program. Figyre
5-24 shows some program fragments which illustrate
this situation. For this example, our mainline instruc-
tions are in a segment named CODE. A procedure called
MIJLTIPLY_.32 is in a segment named PROCEDURES.
Since the procedure is in a different segment from the
CALL instruction, the)86 must change the contents
of the code segment register to access it. Therefore, the
procedure is far.

You let the assembler know that the procedure is far
by using the word FAR in the MULTiPLY_32 PROC FAR
statement. When the assembler finds that the procedure
is declared as far. It will automatically code the CALL
instruction as an Intersegment call and the RET instruc-
tion as an intersegment return.

Now the remaining thing you have to do, so that the
program gets assembled correctly. is to make sure thai
the assembler uses the right code segment for each part
of the program You use the ASSUME directive to do
this. At the start of the mainline program. you use the
statement ASSUME CS:CODE to tell the assembler to
compute the offsets of the following instructions from
the segment base named CODE. At the start of the
procedure. you use the ASSUME CS:PROCEDURES
statement to tell the assembler to compute the offsets
for the instructions in the procedure starting from the
segment base named PROCEDURES.

When the assembler finally codes the CALL instruc-
tion, It will put the value of PROCEDURES In for CS In
the instruction. It will put the offset of the first instruc-
tion of the procedure In PROCEDURES as the lP value
in the instruction.

To summarize, then, if a procedure Is b a different
segment from the CALL Instruction. yó((must declare
it far with the FAR directive. Also, you must put an
ASSUME statement in the procedure to tell the assembler
what segment base to use when calculating the offsets
of the instructions In the procedure.

STRINGS, PROCEDURES, AND MACROS	 121

	

AcM MODULE	 ASM MODULE .
	

ASM MODULE

	

___	 1	 1

ASSEMBLE	 ASSEMBLE	 ASSEMBLE

	

___	 1	 1

.OBJ FILE	
J	

.OBJ FILE	
(

.OBJ FILE

L	
I.	 I

LINK

.LNK or .EXE.
FILE

LOCATE	 (itrvI

BIN FILE_J

LOAD

RUN

TEST

FIGURE 5-25 Chart showing the steps needed to run a
program that has been written in modular form.

ACCESSING A PROCEDURE AND DATA IN A
SEPARATE ASSEMBLY MODULE

As we have discussed previously, the best way to write
a large program is to divide it into a series of modules.
Each module can be individually written, assembled,
tested, and debugged as shown in Figure 5-25. The
object code files for the modules can then be linked
t9gether. Finally, the resulting link file can be located,
run, and tested.

As we said earlier in this chapter, the individual
modules of a large program are often written as proce-
dures and called from a mainline or executive program.
In the preceding section we showed you how to access
a procedure in a different segment from the CALL
instruction. Here we show you how to access a procedure
or data in a different assethbly module.

In order for a linker to be able to access data or a
procedure in another assembly module correctly, there
are two directives that you must use in your modules.
We will give.you an overview of these two and then show
with an example how they are used in a program.

I. In the module where a variable or procedure is
declared, you must use the PUBLIC directive to let
the linker know that the variable or procedure can
be accessed from other modules. The statement

PUBLIC DISPLAY, for example. tells the linker that
a procedure or variable named DISPLAY can be
legally accessed from another assembly module.

2. In a module which calls a procedure or accesses a
variable in another module, you must use the EXTRN
directive to let the assembler know that the proce.
dure or variable is not in this module. The EXTRN
statement also gives the linker some needed informa-
tion about the procedure or variable. As an example
of this, the statement EXTRN DISPLAY:FAR. SEC-
ONDS:BYFE tells the linker that DISPLAY is a far
procedure and SECONDS. is a variable of type byte
located in another assembly module.

To summarize, a procedure or variable declared PUB-
LIC In one module will be declared EXTRN in modules
which access the procedure or variable. Now let's see
how these directives are used in an actual program.

PROBLEM DEFINITION AND
ALGORITHM DISCUSSION

The procedure in the following example program, was
written to solve a small problem we encountered when
wilting the program for a microprocessor-controlled
medical instrument. Here's the problem.

in the program we add up a series of values read in
from an A/D converter. The sum is an unsigned number
of between 24 and 32 bits. We needed to scale this value
by dividing it by 10. This seems easy because the 8086
DIV instruction will divide a 32-bit unsigned binary
number by a 16-bit binary number. The quotient from
the division, remember, is put in AX, and the remainder
is put in DX. However, if the quotient is larger than 16
bits, as it will often be for our scaling, the quotient will
not fit In AX. In this case the 8086 will automatically
respond in the same way that it would If you tried to
divide a number by zero. We will discuss the details of
this response in Chapter 8. For now, it is enough to say
that we don't want the 8086 to make this response. The
simple solution we came up with is to do the division
in two steps in such a way that we get a 32-bit quotient
and a 16-bit remainder.

Our algorithm is a simple sequence of actions very
similar to the way you were probably taught to do long
division, We will first describe how this works with
decimal numbers, and then we will show how it works
with 32-bit and 16-bit binary numbers.

Figure 5-26a shows an example of long division of the
decimal number 433 by the decimal number 9. The 9
won't divide into the 4, so we put a 0 or nothing into
this digit position of the quotient. We then see if 9
divides into 43. It fits 4 times. so we put a 4 in this digit
position of the quotient and subtract 4 x 9 from the
43. The remainder of 7 now becomes the high digit of
the 73. the next number we try to divide the 9 into.
After we find that the 9 fits 8 times and subtract 9 x 8
from the 73. we are left with a final remainder of I. Now
lets see how we do this with large binary numbers.

As shown In Figure 5-26b, we first divide the 16-bit
divisor into a 32-bit number made up of a word of all
0's and the high word of the dividend. This division

122	 CHAPTER FIVE

048 Ri

9) 433
36

73
72

QUOTIENT I QUOTIENT
HIGH WORD [WWORD

DIVISOR])

J
t6B] DIVIDEND	 DIVIDEND

16 BITS	 H	 HIGH WORD
I LOW WORD I

______________________ 	 I

I
REMAIND' DIVIDENDFIRST DIV	

WORD I [LOW WORD 1

REMAINDER
SECOND DIV	 WORD

(FINAL

WI

FIGURE 5-26 Algorithm for smart divide procedure. (a)
Decimal analogy. (b) 8086 approach.

gives us the high word of the quotient and a remainder.
The remainder becomes the high word of the dividend
for the next division, just as it did for the decimal
division. We move the low word of the original dividend
in as the low word of this dividend and divide by the 16-
bit divisor again. The 16-bit quotient from this division
is the low word of the 32-bit quotient we want. The 16-
bit final remainder can be used to round off the quotient
or be discarded, depending on the application.

THE ASSEMBLY LANGUAGE PROGRAM

Figure 5-27a. pp. 124-5. shows the mainline of a pro-
gram which calls the procedure shown in Figure 5-27b,
p. 126, whIch Implements our division algorithm. We
wrote these two as separate assembly modules to show
you how to add PUBLIC and EXTRN statements so that
the modules are linkable. Let's look closely at these added
parts before we discuss the actual division procedure.

The first added part of the program to took at is in the
statement DATA SEGMENT WORD PUBLIC. The word
PUBLIC in this statement tells the linker that this
segment can be combined (concatenated) with seg-
ment(s) that have the same name but are located in
other modules. In other words, if two or more assembly
modules have PUBLIC segments named DATA, their
contents will be pulled together in successive memory
locations when the program modules are linked. You
should then declare a segment PUBLIC anytime you
want It to be linked with other segments of the same
name in other modules.

The next addition to look at is the statement PUBLIC
DIVISOR in the mainline module in Figure 5-27a. This

statement is necessary to tell the assembler and the
linker that it is legal for the data Item named DMSOR
to be accessed from other assembly modules. Essentially
what we are doing here is telling the assembler to put
the offset of DIVISOR in a special table where It can
be accessed when the program modules are linked.
Whenever you want a named data item or a label to be
accessible from another assembly module, you must
declare it as PUBLIC

The other side of this coin is that, when you need to
access atabel, procedure, or variable in another module.
you mut use the EXTRN directive to tell the assembler
that the label or data item is not in the present module.
If you don't do this, the assembler will give you an error
message because it can't find the label or variable In the
current module. In the example program, the statement
EXTRN SMART_Dfl/IDE:FAR tells the assembler that
we will be accessing a label or procedure of type FAR in
some other assembly module. For this example, we will
be accessing our procedure, SMART_DIVIDE. We enclose
the EXTRN statement with the PROCEDURES SEG-
MENT PUBLIC and the PROCEDURES ENDS statements
hi tell the assembler and linker, that the procedure
SMART_DIVIDE is located In the segment PROCE-
DURES. There are some cases in which these statements
are not needed, but we have found that bracketing the
EXTRN statement with SEGMENT-ENDS directives In
this way is the best way to make sure .that the linker
can find everything when It links modules. As you can
see In the table at the end of the assembler listing
in Figure 5-27a. SMART_DIVIDE Is identified as an
external label of type FAR, found in a segment named
PROCEDURES.

Now let's see how we handle EXTRN and PUBLIC in
the procedure module in Figure 5-27b. The procedure
accesses the data item named DIVISOR, which is defined
in the mainline module. Therefore, we must use the
statement EXTRN DIVISOR:WORD to tell the assembler
that DIVISOR, a data item of type word, will be found
in some other module. Furthermore, we enclose the
EXTRN statement with the DATA SEGMENT PUBLIC
and DATA ENDS statements to tell the assembler that
DIVISOR will be found in a segment named DATA.

The procedure SMART_DIVIDE must be accessible
from other modules, so we declare it public with the
PUBLIC SMART._DIVIDE statement in the procedure
module. If we needed to make other labels or data items
public, we could have listed them separated by commas
alter PUBLIC SMART_DIVIDE. An example Is PUBLIC
SMART_DIVIDE, EXIT.

NOTES:

I. If we had needed to access DMDEND also, we
could have written the EXTRN statement as
EXTRN DMsOR:WORD.DMDEND:WORD. To
add more terms, just separate them with a
comma.

2. Constants defined with an EQU directive in
one module can be imported to another module
by identifying them as EXTRN of type ABS. For
example, If you declare CORRECTION....FAC.

- 18	 STRINGS, PROCEDURES, AND MACROS 	 123

Iurbo AsseLer Version 1.0
	

05-05-89 13:09:06	 Page 1

8086 PROGRAM F5-27A.ASM
;ABSTRACT : Progre divides a 32-bit nuther by a 16-bit nuTer

to give a 32-bit quotielt and a 16-bit rema:nder.
;REGISTERS	 Uses CS. OS, 5$, AX, SP, OX, CX
;PORTS	 : None used
;PROCEDURES: Far procedure SMART_DIVIDE

DATA
	

SEGMENT	 WORO PU8LIC
DIVIDEND	 OW	 403811, 8C72H	 ; Dividend	 8C724039K

DIVISOR	 CU	 569214	 16-bit divisor

DATA
	

ENDS

MORE_DATA SEGMENT	 WORD
QUOTIENT	 OW	 2 DUP(0)
REMAINDER DV	 0

MORE_DATA ENDS

STACK_SEG SEGMENT	 STACK
OW	 100 DUP(0)

	
Stack of 100 words

TOP_STACK	 LABEL WORD
	

Name pointer to top of stack

STACK_SEG ENDS

PUBLIC	 DIVISOR

PROCEDURES SEGMENT 	 PUBLIC	 Let asseatter know that SMART_DIVIDE
EXTRN SMART_DIVIDE : FAR	 is a label of type FAR and is located

PROCEDURES ENDS	 in the segment PROCEDURES

C00E	 SEGMENT	 WORD	 PUBLIC
ASSUME	 CS:C00E, OS:DATA, SS:STACK_SEG

START:	 NOV AX, DATA	 Initialize data segment
NOV OS, AX	 register
NOV AX, STACK_SEG	 Initialize stack segment

NOV SS, AX	 register
NOV SP, OFFSET TOP_STACK	 Initialize stack pointer
NOV AX, DIVIDEND	 Load tow word of divderid
NOV DX, DIVIDEND • 2	 Load high word of div dend
NOV CX. DIVISOR	 Load divisor
CALL SMART_DIVIDE	 Quotient returned in DX:AX

Remainder returned in CX, carry set if result invalid
JNC SAVE_ALL	 IF carry = 0. result valid
JMP STOP	 ; ELSE carry set, dont save result

	

ASSUME OS:MORE_OATA 	 Change data segment
SAVE ALL: PUSH DS	 ; Save oLd OS

NOV DX, MORE_DATA	 Load new data segment
NOV OS, DX	 register
NOV QUOTIENT, AX	 Store tow word of quotient
MOV QUOTIENT • 2, DX	 Store high word of quotient
MOV REMAINDER, CX	 Store remainder

ASSUME DS:DATA
POP CS	 ; Restore initial OS

STOP:	 MOP
C00E	 ENDS

END	 START

FIGURE 5-27 Assembly language program to divide a 32-bt number by a 16-bit
number and return a 32-bit quotient. (a) Mainline program module (continued
on p. 125). (b) Procedure module (p. 126).

2
3
4
5
6
7
8 0000
9 0000 403B 8C72

10 0004 5692
11 0006
12
13 0000
14 0000 02*(0000)
15 0004 0000
16 0006
17
18 0000
19 0000 64*(0000)
20
21 0008
22
23
24
25 0000
26
27 0000
28
29 0000
30
31 0000 88 0000s
32 0003 8€ 08
33 0005 88 0000s
34 0008 8€ DO
35 000A BC OOC8r
36 0000 Al 0000r
37 0010 88 16 0002r
38 0014 88 OE 0004r
39 0018 9A 00000000se
40
41 0010 73 03
42 OO1F (0 13 90
43
44 0022 1E
45 0023 88 0000s
46 0026 8€ 08
47 0028 A3 0000r
48 0028 89 16 0002r
49 002F 89 OE 0004r
50
51 0033 iF
52 0034 90
53 0035
S4

124	 CHAPTER FIVE

Turbo Asse,itter Versoo 1.0
SyTitot Table

SyiTtot Name

??DATE
'?FILEPIAME
?' TIME
7 ?VERS ION
&IcPU

ICURSEG
FII.EWAME

RDSIZE
DIVIDEND
DIV I 5CR
QUOTIENT
RENA I NOER
SAVE_ALL
SMART_DIVIDE
START
STOP

TOP_STACK

Groups & SegiDents

CcOE
DATA
MORE_DATA
PROCEDURES
STACK_SEC

05-05-89 13:09:06 Page 2

Type Value

Text	 'O5-O5-89'
Text	 "F5-27A
Text	 13:09:05"
Nuther 0100
Text	 01011$
Text	 CE
Text	 F5'27A
Text	 2
Word DATA:0000
Word DATA:0004
Word MORE_DATA:0000
Word MORE_DATA:0004
Mer CE:0022
Far	 PROCEDURES.Extern
Near CcOE:0000
Wear CE:0034
Word STACK_SEG:00C8

Bit Size Align Cthine Class

16 0035 Word Public
16 0006 Word Public
16 0006 Word noc.e
16 0000 Pars Public
16 OOC8 Pars Stack

(a)

FIGURE 5-27 (continued)

TOR EQU 07 In one module, you can import
CORRECTION_FACTOR to another module
with the Statement
EXTRN CORRECTION,_FACTOR:ABS.

Now that we have explained the use of PUBLIC and
EXTRN, let's work our way through the rest of the
program. At the start of the mainline, the ASSUME
statement tells the assembler which logical segments to
use as code, data, and stack. We then Initialize the data
segment, stack segment, and stack pointer registers as
described In previous example programs. Now, before
calling the SMARL_DIVIDE procedure, we copy the
dividend and divisor from memory to some registers.
The dividend and the divisor are passed to the procedure
in these registers. As we explained in a previous section.
if we pass parameters to a procedure in registers. the
procedure does not have to refer to specific named
memory locations. The procedure is then more general
and can more easily be called from any place in the
mainline program. However, in this example we refer-
enced the named memory location. DIViSOR, from the
procedure just to show you how It can be done using
the EXTRN and PUBLIC directives. The procedure is of
type FAR, so when we call It. both the code segment
register and the instruction pointer contents will be
changed.

In the procedure shown In Figure 5-27b. we first check

to see if the divisor is zero with a CMP DIVISOR.0
instruction. If the divisor is zero, the JE Instruction will
send execution to the label ERROR_EXIT. There we set
the carry flag with STC as an error indicator and return
to the mainline program. If the divisor is not zero, then
we go on with the division. To understand how we do
the division, remember that the 8086 DIV Instruction
divides the 32-bit number In DX and AX by the 16-bit
number in a specified register or memory location. It
puts a 16-bit quotient in AX and a 16-bit remainder in
DX. Now, according to our algorithm In Figure 5-26b.
we want to put 0000H in DX and the hIgh word of the
dividend In AX for our first DIV ope'ation. MOV BX.AX
saves a copy of the low word of the dividend for future
reference. MOV AX,DX copies the high word of the
dividend into AX where we want It, and MOV DX.0000H
puts all 0's in DX. After the first DIV Instruction executes.
AX will contain the high word of the 32-bit quotient we
want as our final answer. We save this in BP with the
MOV BPAX instruction so that we can use AX for the
second DIV operation.

The remainder from the first DIV operation was left
in the DX register. As shown by the diagram in Figure
5-26b. this is right where we want it for the second DIV
operation. All we have to do now, before we do the second
DIV operation. is to get the low word of the original
dividend back into AX with the MOV AX,BX instruction.
After the second DIV Instruction executes, the 16-bit
quotient will be in AX. This word is the low word of our

STRINGS, PROCEDURES, AND MACROS	 125

PROCEDURES SEGMENT PUBLIC
SMART DIVIDE PROC	 FAR

ASSUME CS:PROCEDURES, DS:DATA
F.MP DIVISOR, 0
JE	 ERROR_EXFT
NOV BX, AX
NOV AX, DX
NOV DX, 000011
DIV CX
NOV BP, AX
NOV AX, BX.
DIV CX
NOV CX, DX
NOV DX, BP
dC
JNP EXIT

ERROR_EXIT: STC
EXIT:	 RET
SMART_DIVIDE ENDP
PROCEDURES ENDS

END

Check for illegal divide
IF divisor = 0, exit procedure
Save low order of dividend
Position high word for 1st divide
Zero DX
DX:AX/CX, quotient in AX, remainder in DX
Save high order of final result
Get back Low order of ''vidend
DX:AX/CX, quotient in AX, remainder in DX
Pass remainder back in CX
Pass high order result back in DX
Clear carry to indicate valid result
Finished
Set carry to indicate divide by zero

turbo Asseler Version 1.0

2
3
4
5
6
7
8
9

10
1.1 0000
12
13 0000
14
15
16
17 0000
18 0000
19
20 0000 83 3E 0000e 00
21 0005 74 17
22 0007 88 08
23 0009 88 C2
24 0008 BA 0000
25 000E F? Fl
26 0010 88 E8
27 0012 88 C3
28 0014 F7 Fl
29 0016 88 CA
30 0018 88 05
31 OO1A F8
32 0018 EB 02 90
33 OO1E F9
34 OO1F CB
35 0020
36 0020
37

Turbo Assetter VersTon 1.0
Systot Table

S1TtO1 Naa

?'OATE
'?F I LENAME
?'TIME
'?VERS ION
CPu

ICURSEG
FILENA14E

IW0QDSIZE
Dlvi SOR
ERROR_EXIT
EXIT
SMART_DIVIDE

Groups & Segments

DATA
PROCEDURES

FIGURE 5-27 (continued)

05-05-89 13:09:20	 Page 1

8086 PROCEDURE F5-278.ASM catted by program F5-27AASM
;ABSTRACT : PROCEDURE SMART_DIVIDE.

This procedure divides a 32-bit ntsrCer by a 16-bit narer
to give a 32-bit quotient and a 16-bit remainder

;INPUT	 : Dividend - low word in AX, high word in DX, Divisor in CX
;CJTPUT	 : Quotient - tow word in AX, high word in DX. Remainder in CX

Carry	 - carry flag set if try to divide by zero
;DESTROYS : AX, BX, CX, DX, BP, FLAGS
;PORTS	 : None used

DATA	 SEGMENT PUBLIC	 This block tells the assen*,ler that
EXTRN DIVISOR:WORD	 the divisor is a word variable found

DATA	 ENDS	 in the external segment named DATA

PUBLIC SMART_DIVIDE	 Make SMART_DIVIDE available to other modules

05-05-89 13:09:20	 Page 2

Type Value

Text	 "05-05-89"
Text	 "F5-27B
Text	 "13:09: 19'
NuTer 0100
Text	 010111
Text PROCEDURES
Text	 F5-27B
Text	 2
Word	 DATA:---- Extern
Near	 PROCEDURES:OO1E
Near	 PROCEDURES:001F
Far	 PROCEDURES:0000

Bit Size Align Coi,ine Class

16 0000 Para	 Public
16 0020 Par8	 Ptlic

(b)

126	 CHAPTER FIVE

desired 32-bit quotient. We Just leave this word In AX
to be passed back to the mainline program. The DX
register was left with the fInal remainder. We copy this
remainder to CX with the MOV CX,DX instruction-to be
passed back to the mainline program. After the first DIV
operation, we saved the high word of our 32-bit quotient
In BP. We now use the MOV DX,BP instruction to copy
this word back to DX, where we want it to be when we
return to the mainline program. You really don't have
to shuffle the results around the way we did with these
last three instructions, but we like to pass parameters
to and from procedures in as systematic a way as possible
so that we can more easily keep track of everything.
After the shuffling, we clear the carry flag with CLC
before returning to indicate that the result in DX and
AX is valid.

Back in the mainline program, we check the carry flag
with the JNC Instruction. If the carry flag is set, we
know that the divisor was 0, no division was done, and
there is no result to put in memory. lithe carry flag is
not set, then we know that a valid 32-bit quotient was
returned in DX and AX and a 16-bit remainder was
returned in CX. We now want to copy this quotient and
this remainder to some named memory locations we set
aside for theM.

If you look at some earlier lines in the program. you
will see that the memory locations called QUOTIENT and
REMAINDER are in a segment called MORE_DATA. At
the start of the mainline program, we tell the assembler
to ASSUME that we will be using DATA as the data
segment. Now, however, we want to access some data
items in MORE_DATA using DS. To do this, we have to
do two things. First, we have to tell the assembler to
ASSUME DS:MORE_DATA. Second, we have to load the
segment base of MORE_DATA into DS. In our program
we save the old value of DS by pushing it on the stack.
We do this so that we can easily reload DS with the
base address of DATA later in the program. The MOV
BX.MORE_DATA and MOV DS.BX instructions load the
base address of MORE_DATA into DS. The three MOV
instructions after this copy the quotient and the remain-
der into the named memory locations.

Finally, in the program we point DS back at DATA so
that later Instructions can access data items In the
DATA segment. To do this, we first tell the assembler to
ASSUME DS:DATA. Then we pop the-base address of
DATA off the stack into DS. As you write more complex
programs. you will often want to access different seg-
ments at different times In the program, so we wrote
this example to show you how to do it. Remember, when
you change segments, you have to do a new ASSUME
statement and include instructions which initialize the
segment register to the base address of the new segment.

WRITING AND USING
ASSEMBLER MACROS

Macros and Procedures Compared

Whenever we need to use a group of instructions several
times throughout a program. there are two ways we can
avoid having to write the group of instructions each

time we want to use it. One way is to write the group of
Instructions as a separate procedure. We can then just
call the procedure whenever we need to execute that
group of instructions. A big advantage of using a proce-
dureis that the machine codes for the group of instruc-
tions in the procedure only have to be put in memory
once, Disadvantages of using a procedure are the need
for a stack, and the derhead time required to call the
procedure and return to the calling program.

When the repeated group of instructions is too short
or not appropriate to be written as a procedure, we use
a macro. A macro is a group of instructions we bracket
and give a name to at the start of our program. Each
time we "call" the macro in our program, the assembler
will insert the defined group of instructions In place of
the "call." In other words, the macro call is like a
shorthand expression which tells the assembler. "Every
time you see a macro name in the program, replace it
with the group of instructions defined as that macro at
the start of the program." An important point here is
that the assembler generates machine codes for the
group of instructions each time the macro is called.
Replacing the macro with the instructions it represents
is commonly called "expanding" the macro. Since the
generated machine codes are right (n-line with the rest
of the program. the processor does not have to go oft to
a procedure and return. Therefore, using a macro avoids
the overhead time involved in calling and returning from
a procedure. A disadvantage of generating in-line code
each time a macro is called is that this will make the
program take up more memory than using a procedure.

The examples which follow should help you see how
to define and call macros. For these examples we use
the syntax of MASM and TASM. If you are developing
your programs on some other machine, consult the
assembly language programming manual for your ma-
chine to find the macro definition and calling formats
for it.

Defining and Calling a Macro
Without Parameters

For our first example, suppose that we are writing an
8086 program which has many complex procedures. At
the start of each procedure, we want to save the flags
and all the registers by pushing them on the stack. At
the end of each procedure, we want to restore the flags
and all th registers by popping them off the stack. Each
procedure would normally contain a long series of PUSH
instructions at the start and a long series of POP
instructions at the end. Typing in these lists of PUSH
and POP instructions is tedious and prone to errors. We
could write a procedure to do the pushing and another
procedure to do the popping. However, this adds more
complexity to the program and is therefore not appro-
priate. Two simple macros will solve the problem for us.

Here's how we write a macro to save all the registers.

PUSH_ALL MACRO
PUSHF
PUSH AX
PUSH BX

STRINGS, PROCEDURES. AND MACROS	 127

PUSH CX
PUSH Dx
PUSH BP
PUSH SI
PUSH DI
PUSH DS
PUSH ES
PUSH SS

The PUSILALL MACRO statement identifies the start
or the macro and gives the macro a name. The ENDM
identifies the end of the macro.

Now, to call the macro In one of our procedures, we
simply put in the name of the macro just as we would
an instruction mnemonic. The start of the procedure
which does this might look like this:

BREATH....RATE	 PROC FAR
ASSUME CS:PROCEDURES. DS:PATIENT_PAJW!ETER5

PtiSl-LALI.	 Maoro call
MOV AX, PATIEN'L..PARAMETERS InitialIze data
MOVE DS. AX	 aegment reg

When the assembler assembles this program section.
it will replace PUSI-L.ALL with the Instructions that it
represents and insert the machine codes for these
instructions in the object code version of the program.
The assembler listing tells you which lines were inserted
by a macro call by putting a + in each program line
Inserted by a macro call. As you can see from the example
here, using a macro makes the source program much
more readable because the source program does not
have the long series of push instructions cluttering it
up.

The preceding example showed how a macro can be
used as simple shorthand for a series of instructions.
The real power of macros, however, comes from being
able to pass parameters to them when you call them.
The next section shows you how and why this is done.

Passing Parameters to Macros

Most of us have received computer printed letters of the
form:

Dear MR. HALL.
We are pleased to inform you that you may have

won up to $1,000,000 in the Readers Weekly
sweepstakes. To find out if you are a winner. MR.
HALL, return the gold card to Reader's Weekly in
the enclosed envelope before OCTOBER 22. 1991.
You can take advantage of our special offer of
three years of Readers Weekly for only S24.95 by
putting an X in the YES box on the gold card. II
you do not wish to take advantage of this offer.
which is one third off the newsstand price, mark
the no box on the gold card.

Thank you.

A letter such as this Is an everyday example of the
macro with parameters concept. The basic letter "macro"
is written with dummy words in place of the addressee's
name, the reply date, and the cost of a three-year
subscription. Each time the macro which prints the
letter Is called, new values for these parameters are
passed to the macro. The result is a 'personal"-looking
letter.

In assembly language programs, we likewise can write
a generalized macro with dummy parameters. Then,
when we call the macro, we can pass it the actual
parameters needed for the specific application. Suppose,
for example, we are writing a word processing program.
A frequent need tn a word processing program is to
move strings of ASCII characters from one place in
memory to another. The 8086 MOVS Instruction is
intended to do this. Remember from the discussion of
the string instructions at the beginntng of this chapter.
however, that In order for the MOVS Instruction to
work correctly, you first have to load SI with the offset
of the source start. DI with the offset of the destination
start, and Cx with the number of bytes or words to be
moved, We can define a macro to do all of this as
follows:

MOVE.ASC!I CRO NUMBER. SOURCE. DESTINAI1ON
MOV CX, NUMBER	 Nombeo of tharactere to be n,oaed to CX
LEA SI, SOURCE	 Point SI at ASCII souret
LEA DI. DESTINATION	 Ik,int DI at ASCII dealloation
CU)	 Autolncrement pointen after move

REP MOB	 Copy ASCII atrthg to new kxatlon
ENDM

The words NUMBER. SOURCE, and DESTINATION In
this macro are called dummy uarfabtes. When we call
the macro, values from the calling statement will be put
in the instructions In place of the dummies. If. for exam-
ple, we call this macro with the statement MOVE_
ASCII O3DH.BLOCK_START.BLOCKDEST the assem-
bler will expand the macro as follows.

MOV CX. 03011	 Number of ehararters to be moved In CX
LEA SI. BLOCI(..STAET	 Point SI at ASCII deslinatlon
LEA DI. BLOCKJIE,SF 	 Point DI at ASCII devtlnation
CLI)	 Autoincrnnent pointers after mow

REP MOVSB	 Copy ASCII airing to new location

We do not have space here to show you very much of what
you can do with macros. Read through the assembly
language programming manual for your system to find
more details about working with macros. To help stick
in your mind the differences between procedures and
macros, here is a comparison between the two.

Summary of Procedures Versus Macros

PROCEDURE

Accessed by CALL and RET mechanism during program
execution. Machine code for Instructions only put in
memory once. Parameters passed In registers, memory
locations, or stack.

128	 CHAPTER FIVE

MACRO
Accessed during assembly with name given to macro
when defined. Machine code generated for instructions
each time called. Parameters passed as part of statement
which calls macro.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER
If you do not remember any of the terms in the following
list, use the index to help you find them in the chapter
for review.

Strings and 8086 string instructions

Procedures and nested procedures

CALL and RET instructions

Near and far procedures

Direct intersegment far call

Indirect Intersegment far call

Direct Intrasegment near call

Indirect intrasegment near call

Stack: top of stack, stack pointer

PUSH and POP instructions

Parameter, parameter passing methods

Stack overflow

Reentrant and recursive procedures

Interrupt

Interrupt service procedure

Separate assembly modules

PUBLIC and EXTRN directives

Macro

REVIEW QUESTIONS AND PROBLEMS

1. a. Given the following data structure. use the
8086 string instructions to help you write a
program. which moves the string "Charlie T.
Tuna' from OLD_HOME to NEW_HOME.
which is Just above the initial location.

NAMES_HERE SEGMENT
OLD_HOME	 UB 'CHARLIE T. TUNA'
NEW_HOME	 DB 15 DUP(0)

NAMES_HERE ENDS

b. Use the string instructions to write a simple
program to move the string "Charlie T. Tuna"
up four addresses in memory. Consider
whether the pointers should be incremented or
decremented after each byte is moved in order
to keep any needed byte from being written
over. Hint: Initialize Dl with the value of SI + 4,

2, Use the 8086 string instructions to write a program
which scans a string of 80 characters looking for a
carriage return (ODH). If a carria'ge return is found,
put the length of the string up to the carriage
return In AL. If no carriage return is found, put
50H (80 decimal) In AL.

3. Show the 8086 in3truction or group of instructions
which will:
a. Initialize the stack segment register to 4000H

and the stack pointer register to 8000H.
b. Call a near procedure named FI,XIT.
c. Save BX and BP at the start of a procedure and

restore them at the end of the procedure.
d. Return from a procedure and automatically

Increment the stack pointer by 8.

4, a. Use a stack map to show the effect of each of
the following Instructions on the stack pointer
and on the contents of the stack.

MOV SP,4000H
PUSH AX
CALL MULTO
POP AX

MULTO PROC NEAR
PUSHF
PUSH BX

POP BX
POPE'
RET

MULTO ENDP

b. What effect would it have on the executionøf
this program if the POPF instruction in the
procedure was accidentally left Out? Describe
the steps you would take in tracking down this
problem if you did not notice it in the program
listing.

5. Show the binary codes for the following instruc-
tions.
a. The Instruction which will call a procedure

which is 97H addresses higher in memory than
the instructton alter a call Instruction.

b. An instruction which returns execution Irom
a far procedure to a mainline program and
increments the stack pointer by 4.

6. a. List three methods of passing parameters to a
procedure and give the advantages and disad-
vantages of each method.

b. Define the term reentrant and explain how you
must pass parameters to a procedure so that it
Is reentrant.

7. a. Write a procedure which produces a delay of

STNGS, PROCEDURES, AND MACROS	 129

3.33 ma when run on an 8086 with a 5-MHz
clock.

b. Write a mainline program which uses this
procedure to output a square wave on bit DO
of port FFFAH.

8. Write a procedure which converts a four-digit BCD
number passed in AX to its binary equivalent. Use
the algorithm in Figure 5-13.

9. The 8086 MUL instruction allows you to multiply
a 16-bit number by a 16-bit binary number to give
a 32-bit result. in some cases, however, you may
need to multiply a 32-bit number by a 32-bit
number to give a 64-bit result. With the MUL
instruction and a little adding. you can easily do
this. Figure 5-28 shows In diagram form how to do

Iwixi

xIvIzI

Z xx

:	
W 32 BITS

V XX 32BITS

* I	 32 BITS

RESULT
_______________ 64 BITS

FIGURE 5-28 32-bit by 32-bit multiply method for
Problem 9.

it. Each lettcr in thc diagram represents a 16-bit
number. The principle is to use MUL to form partial
products and add these partial products together
asshown. Write an algorithm for this multiplication
and then write the 8086 assembly language pro-
gram for the algorithm.

10. Calculating the factorial of a number, which we did
with a recursive procedure in Figure 5-22, can easily
be done with a simple REPEAT-UNTIL structure of
the form

IF N = I THEN
FACTORIAL = 1

ELSE
FACTORIAL =
REPEAT

FACTORIAL = FACTORIAL x N
DECREMENT N

UNTIL N = 0

Write an 8086 procedure which implements this
algorithm for an N between 1 and 8.

II. a. Show the statement you would use to tell the
assembler to make the label BINADD available
to other assembly modules.

b. Show how you would tell the assembler to look
for a byte type data item named CONVER-
SION.YACTOR in a segment named FIXUPS.

12. a. Write an assembler macro which will restore.
in the correct order, the registers saved by tle
macro PUSFL.ALL in this chapter.

b. Write the statement you would use to call the
macro you wrote in part a.

130	 CHAPTER FIVE

