8.1

RISC MICROPROCESSORS:
INTEL 80960, MOTOROLA
MC88100 AND POWERPC

This chapter provides an overview of the hardware, software, and interfacing features associ-
ated with three popular RISC microprocessors namely, the Intel 80960 SA/SB, the Motorola
MC88100, and the PowerPC. Finally, the basic features of typical 64-bit RISC mircoprocessors
are discussed.

Basics of RIVSC

RISC is an acronym for Reduced Instruction Set Computer. This type of microprocessor
emphasizes simplicity and efficiency. RISC designs start with a necessary and sufficient in-
struction sct. The purpose of using RISC architecture is to maximize speed by reducing clock
cycles per instruction. Almost all computations can be obtained from a few simple operations.
The goal of RISC architecture is 1o maximize the effective speed of a design by performing
infrequent operations in software and frequent functions in hardware, thus obtaining a net
performance gain.
The following summarizes the typical features of a RISC MICTOProcessor:

1. The microprocessor is designed using hardwired control with little or no microcode.
Note that variable length instruction formats generally require microcode design. All
RISC instructions have fixed formats, and {hercefore microcode design is not necessary.

. A RISC microprocessor executes most instructions in a single cycle.

3. The instruction set of a RISC microprocessor typically includes only register-to-register,
load, and store. All instructions involving arithmetic opcerations use registers, while load
and store operations arc utilized to access memory.

4. The instructions have simple fixed format with few addressing modes.

5. A RISC microprocessor has several general-purpose registers and large cache memories.

6. A RISC microproccssor processes several instructions simultancously and thus includes
pipelining.

7. Software can take advantage of more concurrency. For example, Jumps occur after
execution of the instruction that follows. This allows fetching of the next instruction
during exccution of the current instruction.

o]

RISC microprocessors are suitable for embedded applications. An embedded application is
one in which the processor monitors and analyzes signals from one segment of the system and
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produces output required by another segment of the system; thus, it behaves as a controller that
bridges various parts of the entire system. It performs all its functions without any user input.

RISC microprocessors are well suited for applications such as image processing, robbtics,
graphics, and instrumentation. The key features of the RISC microprocessors that make them
ideal for these applications are their relatively low level of integration in the chip and instruc-
tion pipeline architecture. These characteristics result in low power consumption, fast instruc-
tion execution, and fast recognition of interrupts.

The statc-of-the-art 64-bit RISC microprocessors include Digital Equipment Corporation’s
Alpha 21164, Motorola/IBM/Apple PowerPC 620 and Sun Microsystems Ultrasparc. Among these
processors, the Alpha 21164 is the fastest with a maximum clock frequency of 300 MHz, four-way
superscalar design, and 128-bit data bus. These processors are compared later in this chapter.

Intel 80960

The Intel 80960 family includes two types of 16-bit RISC microprocessors, These arce the
80960SA and 80960SB processors. The 80960SA is designed as an Intra-agent communication
(IAC) microprocessor. IAC messages can be sent for execution into the bus interface of a
80960SA processor from software executing on another processor.

The 80960SB, on the other hand, is designed as a floating-point RISC microprocessor and
includes on-chip floating-point hardware.

The 80960SA contains 32 32-bit registers while the 80960SB includes an additional four
floating-point registers with a total of 36 32-bit registers.

The 80960SA/SB comes in two speeds: 10MHz and 16MHz, The clock input is divided by
2 internally to generate the internal processor clock.

Introduction

This section covers the basic architecture of the chip, its instruction set, typical 80960 based
system design utilizing a burst controller with burst and non-burst memories.

Key Performance Features

The following summarizes the main features of the 80960SA/SB:

Load and Store Model

Most operations are performed on operands in CPU registers rather than in memory. All of
the arithmetic, comparison, branching, and bit operations are performed with registers and
literals (5-bit and floating-point). Only LOAD & STORE are memory reference instructions.

Large Internal Register Sets

Large internal register sets featuring 32 32-bit general purpose and specific function registers
are divided into two types: global and local. Both of these types can be used for general storage
of operands. The only difference between global and local registers is the global registers retain
their contents across procedure boundaries, whereas the processor allocates a new set of local
registers each time a procedure is called.

On-Chip Code and Data Caching

To reduce memory accesses, two features are added: an instruction cache and multiple sets of
local registers. The former allows pre-fetching of blocks of instructions from the main memory
while the latter allows the processor to perform most procedure calls without having to write
the local registers out to the stack in memory.
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Overlapped Instruction Execution

This is accomplished through a register scorcboarding scheme which enhances program
execution speed. Register scorcboarding permits instruction exccution to continue while data
are being fetched from memory. When a load instruction is executed, the processor scts one
or more scorchoard bits to indicate the target registers to be loaded. After the target registers
are loaded, the scoreboard bits are cleared. While the target registers are being loaded, the
processor is allowed Lo execute other instructions, called independent instructions, that do not
use these registers. The net result of using this technique is that code can often be optimized
in such a way as to allow some instructions to be executed in parallel. '

Single Clock Instructions
Most of the commonly used instructions are exceuted in a minimum number of clock cycles
(usually onc clock).

For example, instructions, cither 32 or 64-bils long, are aligned on 32-bit boundaries
allowing instructions to be decoded in one clock cycle. This climinates the need for an
instruction-alignment stage in the pipeline resulting in over 50 instructions that can be
executed in a single clock cycle.

Interrupt Model

To handle interrupts, the processor maintains an interrupt table of 248 interrupt vectors, of
which 240 are available for general use. When an interrupt is generated, the processor uses a
pointer from the interrupt table to perform an implicit call to an interrupt handler procedure.
The processor automatically saves the state of the processor prior to receiving the interrupt,
performs the interrupt routing, and then restores its previous state. A separate interrupt stack
is also provided to segregate interrupt handling from application programs. Interrupt han-
dling facilities feature prioritizing pending interrupts,

Procedure Call Mechanism

Each time a call instruction is issued, the processor automatically saves the current set of local
registers and allocates a new set of local registers for the called procedure. Likewise, on the
return from a procedure, the current set of local registers is deallocated and the local registers
for the procedure being returned to are restored. Thus, on a procedure call, the program never
has to explicitly save and restore those local variables.

Instruction Set and Addressing
The processor offers a [ull set of load, store, move, arithmetic, comparison, and branch instruc-
tions, with operations on both integer and ordinal data types. It also provides a complete set of
Boolcan and bit-ficld instructions, to simplily operations on bits and bit strings. The addressing
modes are efficient and straightforward, while at the same time providing the necessary indexing
and scaling modes required 1o address complex array and records.

The 32 address lines provide 4-gigabytes of address space for programs and data.

Table 8.1 lists the 80960SA/SE instruction set, The 80960SA does not include the floating-
point instructions.

Floating Point Unit (Available with 80960SB only)

The on-chip floating point unit includes a full set of floating point operations including add,
subtract, multiply, divide, trigonometric functions, and logarithmic functions. These operations
are performed on single precision (32-bit), double precision (64-bit), and extended precision
(80-bit) data. Four 80-bit loating-point registers arc provided to hold extended precision values.

80960 SA/SB Registers

Figure 8.1 shows the 809608B registers. The processor provides three types of data registers:
global, floating-point, and local. As their names imply, the global registers constitute a set of
general-purpose registers whose contents are retained across procedure boundaries. The



518

TABLE 8.1

80960SA/SB Instruction Sct

Microprocessors and Microcomputer-Based System Design, 2nd Edition

Data Movement

Arithmetic

Logical

Bit and Bit Field

Load, Store, Move, Load
Address

Add, Subtract, Multiply,
Divide, Shilt, Remainder,
Modulo, Extended
Multiply, Extended Divide

And, Not And, And Not, Or,
Xor, Not Or, Or Nol, Nor,
Exclusive Nor, Not, Nand,
Rotate

Set Bit, Clear Bit, Not Bit,
Check Bit, Alter Bit, Scan
for Bit, Scan Over Bit,
Extract, Modify

Comparison

Branch

Call/Return

Fault

Compare, Conditional
Compare, Compare and
Increment, Compare and
Decrement

Unconditional Branch,
Conditional Branch,
Compare and Branch

Call, Call extended, Call
system, Return, Branch and
Link

Conditional Fault,
Synchronous Fault

Debug

Miscellancous

Modify Trace Controls,
Mark, Torce Mark

Decimal

Conversion

Atomic Add, Atomic Maodify,
Flush Local Register, Modify
Arithmetic Controls, Modily
I'rocess Control, Scan Byte

For Equal, Test Condition
Code

Move, Add with Carry,
Subtract with Carry

Convert Real to Integer,
Convert Integer to Real

Floating-Point

Synchronous

Move Real, Add, Subtract, Multiply, Divide, Remainder,
Scale, Round, Square Root, Sine, Cosine, Tangent,
Arctangent, Log, Log Binary, Log Natural, Exponent,
Classify, Copy Real Extended, Compare

Synchronous Move, Synchronous Load

Floating Point

Local

r15

Global

0
Bg15

g0

fp3

fp0

FIGURE 8.1 Local and global registers sets.
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4 floating point registers are for extended precision floating point operations and are available
only with the 80960SB. Their contents are also preserved across procedure calls. The 16 local
registers arc to hold local variables. For cach procedure that is called, the processor allocates
a separate set of local registers.

It should be noted that the global register g15 is reserved to hold the current frame pointer
EP, while the others are available for general use. The local register r0 is used to hold the
previous frame pointer (PFP), 1 is the stack pointer, r2 is used as a Return Instruction Poositer
which is saved on the stack later and r3-r15 are available for general use.

Some special features of the 80960SB registers are provided in the following;:

Register Scoreboarding
The main purpose is to permit instructions to be executed concurrently provided that they are
independent instructions,

Instruction Pointer

The 32-bit r1 holds the address of the instruction currently being executed. Since the instruc-
tions are required to be aligned on a word boundary, the least significant 2 bits of [P are always
0. IP can not be read directly. However, 1P can be used as an offsct into address space. This
addressing mode can be used with the load address (Ida) instruction to read the current value
of IP. When a break in instruction stream occurs due to an interrupt or procedure call, the IP
contents will be stored in r2, and later saved on the stack.

Process Control Register

The processor’s process control register is made up of a sct of 32 bits, as shown below:

Bit 0 : Trace Enable

Bit. 1 : Execution Mode, 0 = User, 1 = Supervisor

Bit 10 : Trace Fault Pending

Bit 13 : State Flag, 0 = Execution Mode, 1 = Interrupted
Mode

Bit 20-16 : Priority

Arithmetic Control

The arithmetic control bits include the condition code, arithmetic status, integer overflow flag
and mask, floating point overflow, underflow, zero divide, invalid-op, inexact flags, masks,
and faults. The processor scts or clears these bits to show the results of certain operations. For
example, the processor modifics the condition code flags after cach fault. These bits are set by
the currently running program to tell the processor how to respond to certain fault conditions.

31 24 20 15 12 8 b 0
Bit 0-2 : Condition Code

Bit 3-6 : Arithmetic Status
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Bit 8 : Integer Overflow Flag

Bit 12 : Integer Overflow Mask

Bit 15-20 Floating Point Condition Flags

Bit 24-29 : Floating Point Condition Masks

Bit 30-31 : Floating Point Normalizing and Rounding Mode

Data Types and Addresses
In order to be consistent with the data types included inm {dhe Intel 80960 manual, new
terminologies such as ordinal and literals are introduced in this section.
Data Types
The processor defines and operates on the following data types:
* Integer (8, 16, 32, and 64 bits) signed whole numbers
* Ordinal (8, 16, 32, and 64 bits)  gencral-purpose, unsigned whole numbers
» Real (32, 64, and 80 bits) conforms to IEEE single (32-bit), double (64-bits),
(floating-point) and extended precision (80-bit) floating point
TLPI’LNLH[J“UH&
+ Bit/Bit Field span of 1 or more bits within register hound.lry
+ Decimal (ASCII digits) decimal values in ASCII formal.
 Triple-Word (96 bits) consecutive bytes
« Quad-Word (128 bits) consecutive byles
Literals

The processor recognizes two types of literals: ordinal and floating-point, which can be used
as operands in some instructions. An ordinal literal can range from 0 to 31 (5 bits). When an
ordinal literal is used as an operand, the processor expands it to 32 bits by adding leading zeros.
[fan ordinal literal is used in an instruction that requires integer operands, the processor treats
the literal as a positive integer value.

For floating-point, the processor recognizes two literals: 0.0 and +1.0. These floating point
literals can only be used with floating point instructions. Ordinal literals can also be used in
converting integer to real to get more values.

Register Addressing

A register may be used as an operand in an instruction by giving the register number (c.g., g0,
5, Ip3). Both floating-point and non-floating-point instructions can reference global and local
registers in this way. However, floating-point registers can only be referenced in conjunction
with a floating-point instruction.

If the instruction requires more than one word, the reference is to the lowest number, which
must be even when 2 words are required, must be multiples of four when 3 or 4 words are
required. This is called “Register Alignment.”

Memory Addressing Modes ,
Table 8.2 lists the 80960 memory addressing modes.

Absolute Offsct.  Absolute offsct is-used to reference a memory location directly. An example
is st g2, START which stores the word from register g2 into memory location START.

8.2.4.d.ii Register Indircct/Register Indirect with Offset.  This mode permits an address to be specified

with an ordinal value (32 bits) in a register or a displacement added (o a value in a register. The
register value is called the address base (abase). An example of register indirect is the Idob (r1),
r2 which loads an ordinal byte from memory location addressed by rl into r2. An example of
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TABLE 8.2 80960 Mcmory Addressing Modes

Mode Description Assembler Syntax

Absolute offset offset exp

Register indirect abase (reg)

Register indircet with offset abase + offset exp(reg)

Register indirect with index abase + (index * scale) (reg)|reg*scale]

Register indirect with index abase + (index*scale) + exp(reg)[reg*scale)
angd displacement displacement

Index with displacement (index"scale) + displacement  exp|regscale)

IP (instruction pointer) with [P + displacement + 8 exp(IP)
displacement

register indirect with offsct is stl g4, BEGIN(g2) which stores double word from g4, g5 stored
at memory location addressed by BEGIN+(g2).

8.2.4.d.iii Register Indircct with Index/Register. 'This mode allows a scaled index value in another

register to be added to the value in a register. The scale factor can be 1, 2, 4, 8, or 16. A
displacement may also be added to the abase value and scaled index. An example is Idq (r1)
(r2*4), r4 which loads a quad-word starting at the memory location addressed by (r1)+(r2
scaled by 4) into register r4 through r7.

An example of register indirect with index and displacement is st gl, VALUE(g3) (g4 4]
which loads word in gl into memory location addressed by (g3) +VALUE+(g4"4).

8.24.d.iv Index with Displacement. This mode allows a scaled index to be used with a displacement.

The index is contained in a register and is multiplied by a scaling constant before the displace-
ment is added to it. An example is Idis VALUE [r8*2], r10 which loads short integer at memory
location addressed by VALUE+(r8*2) into rl0.

8.2.4.d.v IP with Displacement. This mode is often used with load and store instructions to make

8.2.5

them IP relative. With this mode the displacement plus a constant of 8 is added to the IP of
the instruction. An example is st r1, VALUE (IP) which stores words in r1 at memory location
addressed by 8+I1P+VALUE.

80960SA/SB Instruction Set

The 80960 includes 182 instructions. An assembly-language statement consists of an instruc-
tion mnemonic, followed by from 0 to 3 operands, separated by commas. The following
example illustrates the assembly-language statement for the addo instruction:

addo gl, g3, g5

adds the ordinal operands in global register gl and g3 and stores the result in g5.
The instructions can be classified into four categories:

1. Data Movement

2. Conversion

3. Arithmetic and Logic Operations
4. Comparison and Control

The following provides a list of operands used in the instructions:

reg  — global (g0, gl, ..., gl5) orlocal (rO, rl, ..., r15) registers

freg — global (g0, g1, ..., gl5) or local (r0, rl, ..., r15) registers or floating-point (fpo
thru fp3) registers

lit  — integer or ordinal literal of the range 0. .31

flit  — floating-point literal of value 1.0 or 0.0
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disp — signed displacement of range -222 to +22-]

mem — address defined with the full range of addressing modes

addr — address '

efa  — effective address

Data Movement

The data movement instructions move data between the global and local registers, and
between these registers and memory.

Load Instructions.

Load integer byte, Idib )
(8-bit)
Load integer short, Idis
(16-bit)
Load ordinal byte, ldob [ " "8
(8-bit)
Load ordinal short, ldos
(16-bit) J

The above instructions load a byte or half word (2 bytes) and convert it into a full 32-bit word.
Integers are sign-extended, ordinals and zero-extended automatically. For example, Idib (r1),
r0 loads the 8-bit integer in memory addressed by rl into register r0.

Load - 1d

Load long - 141
Load triple - 1ldt
Load quad - 1ldg

mem, reg

The Id, 1dl, Idt and Idq instructions copy 4, 8, 12, and 16 bytes, respectively, from memory
into successive registers.

ldl mem, reg must specify an even numbered register (eg. g0, g2, . . ., gl6).

ldt mem, reg and Idq mem, reg must specify a register that is a multiple of four (eg, g0, g4,
88, ..., 10, r4, 18,. . .) For example, consider ldq 1254(r1), r4 loads the contents of memory
location starting at address r1+1254 into register r4 thru 7.

Store Instructions.  Each load instruction has a corresponding store instruction which stores
bytes or words from registers to memory.
The store instructions are listed below:

st
stob
stos
stib
stis
stl
stt
stg

L reg, mem

The stob and stib, and stos and stis instructions store a byte and half-word (16-bit), respec-
tively, from the low orfler bytes of the specified source register. The st, stl, stt, and stq
instructions store 4, 8, 12, and 16 bytes, respectively, from successive registers to memory.

For the stl instruction, the specified source register must specify an even numbered register
(e.g.80,82,...,816). For the st and stq instructions, the specified source register number must
be a multiple of four such as g0, g4, g8. . ., gl6.
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As an example, the instruction st g4, 2478(g8) stores the word in register g4 into memory
location starting at offsct 2478+(§8).

8.2.5.a.iii MOVE. 'The move instructions copy data from a register or group of registers to another
register or group of registers. These are listed below:

move word - mov
move longword - movl )
i 1it
move triple word - movt reg/lit, reg
move quad word - movg

The movl, movt, and movq instructions specify the source and destination registers as the first
(lowest numbered) register of several successive registers. For the movl, these registers must
be even numbered such as g0, g2, .., 10, r2, .. . while for the movt and movq instructions, these
registers must be an integral multiple of four such as g0, g4. . ., 10, r4, ...

As an example, the instruction movt r4, g8 moves a triple word (three 32-bit) from registers
rd, 15, 16 into g8, g9, gl0.

8.2.5.a.iv Load Address. 1da mem, reg computes an effective address specified with mem or cfa and
stores it in the destination, reg. Note that cfa represents an effective address based on an
addressing mode. This instruction loads a constant longer than 5 bits into a register. To load
a register with a constant of 5 bits or less, the move instructiorf (mov) can be used with a literal
as the source operand. ‘
As an example, the instruction, Ida 40(g7), g0 computes the effective address specified with
40+(g7) and stores it in g0.
1da 0x845, r4 loads the constant 845H into r4. Note that Ox indicates data in hexadecimal.

8.2.5.a.v Floating-Point Move (Available with 80960SB Only).  The following move-real instructions
(movr, movrl and movre) are provided for moving real number values between the global and
local registers and the floating-point registers:

move real - movr
move longreal - movrl freg/flit, freg
move extended real - movre

As an example, the following instruction sequence converts a real value in gl to a long real
value, which is stored in g8, g9.

movr gl, f£fp0
movrl fp0, g8

The two instructions cpysre and cpyrsre for real extended numbers are explained in the
following:

cpysre srcl, src2, dst
or
cpyrsre freg/flit freg/flit freg

copies the absolute value of srcl into dst based on the sign of src2.

For cpysre: If‘srcz is positive then dst « abs(srcl); else dst abs(srcl).
For cpyrsre: If src2 is negative then dst « abs(srcl); else dst <— abs(srcl)
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If the srcl, src2, or dst operand specifies one of g0 thru gl5 or r0 thru r15, this register (lowest)
is the first of three successive registers. Also, this register number must be a multiple of 4 (e.g.
g0, g4, g8, .. ). :

As an example, the instruction, cpysre g0, fp1, r4 means that the absolute value from g0glg2
is copied to rdr5r6; the sign from fpl is copied to rdr5r6.

Conversion (Available With 80960SB Only)

As mentioned before, data can be converted from one length to another by means of the load
and store instructions. For example, the Idis instruction loads a short integer from memory to
a register and automatically converts the integer from a half word to a full word.

The 80960SB extended instruction set provides instructions to perform conversions be-
tween integer and real data types. These instructions are listed below:

Convert integer to real , cvtir
Convert long integer to real, cvtilr
Convert real to integer, cvtri
Convert real to long integer, cvtril
Convert truncated real to integer, cvtzri
Convert truncated real to long integer, cvtzril

reg/lit, freg

} freq/flit, reg

For the cvtilr instruction, the source operand specifies the first (lowest numbered) of two
successive registers. This register must be even numbered (e.g. g0, g2, g4, . . .).
Converting an integer to long real format requires two instructions as follows:

1. cvtir or evtilr can be used to convert the integer to extended real.
2. movrl can then be used to move the value from freg to two global or local registers.

For example the instruction sequence:

cvtir g2, f£fp0
movrl f£p0, g4

converts an integer in g2g3 to real and stores it in fp0; movrl then converts the real value in
fp0 to a long real value and stores the result in gdg5.

The cvtril and cvtzril instructions specify the destination operand as the first (lowest
numbered) of two successive registers. This register must be even numbered. Also, the
nontruncated version of evtzri and cvtzril instructions round according to the current rounding
mode in the Arithmetic Control register. The truncated version always rounds towards zero.

As an example, the following instruction sequence converts a long real value in g8g9 to a
long integer in g2g3:

long real source in g8g9% is converted to
extended-real format in £p0

extended real value in fp0 is converted
to long

; integer in g2g3.

movrl g8, £p0

e Se we

cvtril f£p0, g2

Synchronous Load and Move

Both the 80960SA and 80960SB include these instructions.

The 80960SA/SB executes the store instructions asynchronously with the memory control-
ler. Once the processor outputs data for storing in main memory, it continues with execution
of the next instruction in the program, and assumes that its bus control logic hardware will
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complete the operation. The 80960SA/SB includes four spécial instructions for performing
memory operations that perform store and move operations synchronously with memory.

The synchronous load instruction, synld reg/addr, reg copies a word from the source into
a register. When this instruction is performed, the processor waits until a condition code bit
is set in the arithmetic control register indicating that the operation has been completed,
before it begins exccuting the next instruction. The synld instruction is primarily used to read
the contents of the interrupt-control register.

The following instructions

Synmov
Synmovl 1
Synmovg

reg/addr, reg/addr

copies one (synmov), two (synmovl) or four (synmovq) words from memory lncation(s)
specified by the source to the destination and waits for completion, including those operations
initialed prior to this instruction. The primary function of these instructions is for sending IAC
(Inter-agent communication) messages. The primary function of an IAC mechanism is to
provide alternative to the external interrupt mechanism to communicate with the processor,
Also, certain processor functions such as purging the instruction cache and setting breakpoint
registers can only be done with the IAC mechanism. IAC messages are defined in such a way
that processors can send them amongst themsclves on the bus in a multiprocessor system. For
example, a program on processor A can send a message to processor B telling it to flush its
instruction cache. Without this facility, processor A would need to generate an interrupt to
processor B to tell a program in processor B to flush the cache.

Since IAC messages carry out specific control functions that are not included in instruc-
tions, they are uscful in single-processor systems. The 80960SA/SB can send an IAC message
by writing the message to a special memory-mapped location. The memory mapping only
occurs if one of the synchronous load/move instructions is used. A memory write (o its specific
memory-mapped location using one of these instructions does not cause a bus operation to
oceur; instead the data are interpreted by the processor as an IAC message and the message
causes the same function to be performed by the processor. The function is performed
synchronously (i.c. immediately after the synchronous load/move) instruction.

Arithmetic and Logic Operations
Table 8.3 lists $0960SA/SB add, subtract, multiply, divide, and shift instructions.

TABLE 8.3 80960SA/S1 Add/Subtract/Multiply/Divide/Shifi

Instructions and data types

Qperations : Alflicgcr Ordinal ~ Real Ln]ﬁi&iil

add* srcl, sre2, dst addi addo addr addrl
reg/lit reg/lit reg,

dst ¢ sre2 + srcl

‘=joroorrortd

sub® srcl, sre2, dst subi subo subr subrl
reg/lit reg/lit reg

dst & sre - srel

*=joroorrorrl

mul*srel, sre2, dst muli mulo mulr mulrl
freg/Mit freg/1it freg
dst ¢ sre2 * srel

*=joroorrorrl
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TABLE 8.3 80960SA/SB Add/Subtract/Multiply/Divide/Shift (continued)

Instructions and data types
Operations ‘ Integer Ordinal ~ Real Long Real

div*  srcl, sre2, dst divi divo divr divrl
dst ¢ src2 / srel
reg/lit reg/lit reg
*=ioroorrortl
No remainder is provided after div*, dst contain quotient.

rem®srcl, src2, dst remi remo remr remrl
freg/flit freg/Mlit freg
Performs src2 / srcl and stores the remainder in dst. The sign of
the result (if nonzera) is the same as the sign of src2. Calculation
of the remainder is done by repeated subtraction.
*=joroorrorrl

signed integer modulo: modi - -— -
modi srcl, src2, dut
reg/lit reg/lit reg
dst = src2 - (sre2 + srcl)*srcl

Shift left shli shlo — —_
shl* Len, sre, dst
reg/lit reg/lit reg
Shilts src left by the number of bits specified in the Len operand
and stores result in dst. For values greater than 32, the processor
interprets the value as 32,

*=ioro
Shift right shri shro —_ —
shr* len, src, dst shrdi

reg/lit reg/lit reg
shifts src right by the number of bits indicated with the len
operand and stores the result in dst. For values of len greater
than 32, the processor interprets the value as 32.
*=iordioro

Details of Table 8.3

Note the instructions addr/addrl, subr/subrl, roundr/roundrl and sqrtr/sqrtrl are only avail-
able with the 80960SB.

. For addrl, subrl, mulrl, divrl and remrl instructions, if srcl, sgc2, or dst operand specifies
one of the registers from g0 thru gl5 or 10 thru rl5, the register is the first (lowest numbered)
of two successive registers. Also, this register must be even numbered (eg. go, g2, g4, .. .).

The binary results from subi and subo are identical except that subi can signal an integer
overflow.

For the divi instruction, an integer overflow can be signaled.

The shlo instruction shifts zeros into the least-significant bit and the shro instruction shifts
zeros into the most-significant bit.

The shli instruction shifts zeras into the least-significant bit; if the bits shifted out arenot
the same as the sign bit, an overflow is generated. If overflow occurs, the sign of the result is
the same as the sign of the src operand.

The shri instruction performs an arithmetic shift operation by shifting the sign bit in from
the most-significant bit,

The shrdi instruction is provided for dividing an integer by a power of 2. With shrdi, one
is added to the result if the bits shifted out are non-zero and the operand is negative, which
produces the correct result for negative operands.

Remi and modi differ when there is a negative operand: the result of remi has the same sign
as the dividend; that of modi has the same sign as the divisor. For example, if r3 = 3, 14 = (=7):
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“remi r3, r4, r5” stores (1) to 15, (=7) = -2 * 3 + (-1)
“modir3, r4, 15" stores 1 to 15, (-7) =-2%3 -1

shrdi adds 1 to the result if bits shifted out are non-zero and operand is negative, which
produces the correct result for negative operands (if division is desired).

8.2.5.c.ii Rotate Instruction. The operation of the rotate instruction is provided below:

Instruction Operation

rotate len, src, dst dst « rotate (len mod 32 (src))
reg/lit reg/lit reg  copies sre to'dst and rotates the bits in the dst as follows:

L*1;: xE ;Jj"J

The len operand specifics the number that the dst operand
is rotated. The len operand can be from 0 to 31.
The instruction can also be used to rotate bits to right.

8.2.5.c.iii Extended Arithmetic. There arc four instructions for double precision integer arithmetic.
Theése are described below: ' '

1. Add ordinal with carry,
addc srcl, src2, dst
reg/lit reg/lit reg
Operation: dst ¢« src2 + srcl + carry
Flags affected: carry (c) and overflow (v)
2. Subtract ordinal with carry,
subc srcl, src2, dst
reg/lit reg/lit reg
Operation: dst ¢ src2 — srcl = carry
Flags affected: carry, overflow.
3. Extended multiply,
emul srcl, sre2, dst
reg/lit reg/lit reg
Operation: dst + 1, dst «— srcl * src2
The result is 64 bits and is stored in two adjacent registers. The dst operand specifies the
lower numbered register, which reccives the least significant bits of the result. The dst
operand must be an even numbered register (ro, r2, r4, .. ., or g0, g2, .. .).
4. Extended Divide
ediv srcl, src2, dst
reg/lit reg/lit reg
Operation: dst «— Remainder of src2/srcl
dst + 1 < Quotient of src2/srcl
Scr2 isa long ordinal (64 bits) which is contained in two adjacent registers. Src2 specifies
the lower numbered register which contains the least significant bits of the operand.
Src2 operand must be an even numbered register. Srcl value is a normal ordinal 32 bits.
dst operand must be an even numbered register.

8.2.5.c.iv Floating-Point Arithmetic Instructions (Available with 80960SB Only). In addition to float-
ing-point add (addr/addrl), subtract (subr/subrl), multiply (mulr/mulrl) and divide (divr/divrl)
which were already explained, additional floating-point instructions are listed in Table 8.4.
Note that in Table 8.4,
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For roundrl,

sqrrl,

sinrl, If the src or dst operand references a global or local register, this
cosrl, —> register is the first (lowest numbered) of two successive registers.
tanrl This register must be even numbered (g0, g2.. . ., 10, r2.. ).
logbnrl,

exprl.

e ﬂmm;' If the srcl, sre2, or dst references a global or local register, this
iogr‘ ’ —> register is the first (lowest numbered) of two successive registers.
:E;’cl:_{]‘ This register must be even numbered (g0, g2, ..., 10,12, .. .).
scalerl,

TABLE 8.4 809608 Floating-Point Arithmetic Instructions Beyond Add/Subtract/Multiply/Divide

Instructions and

Data Types
Operation Real Long Real
Basic: round* src, dst roundr roundr|
freg/lit freg
rounds src;to the nearest integral
value depending on the rounding
mode and stores the result in dst.
*=roril
sqrt* sre, dst sqrtr sqrtrl
frep/tit freg
caleulates the square root of sre and
stores it in dst
*=rorrl
Trigonometric Operation
Calculate the specified trigonometric function Sin* sre, dst sinr sinrl
of src and stores the result in dst. The src freg/flit [reg
value is in radians. The resulting dst value is *=rord
in the range -1 to +1 inclusive for sinc and cos* src, dst cosr cosrl
cosine freg/flit freg
*=rorrl
For tangent, the source value is a finite real tan*® sre, dst tanr tanrl
number between —oo to 4eo freg/lit freg
“=rorrl
atan calculates arctangent of src2/srcl and atan* srcl, src2, dst atanr atanrl
stores result in dst. The result is in radians freg/lit freg/lit freg '
and lies between —a to 1 inclusive. The sign *=rorrl
of the result is same as the sign of src2,
Operation (Logarithmic, Exponential, and Scale)
Logbn calculates the log,(src) and stores the loghn* sre, dst logbnr logbnrl
intcgral part of this value as real number in freg/Mit freg
dst. ‘=rorrl
Log" calculates src2*log,(srcl) and stores result log*srcl, src2, dst logr logrl
in dst, Compute y*log,(x). freg/flit freg/Qit freg
*=rorrl
logep* calculates re2*log,(srcl + 1) and stores logep*srcl, src2, dst logepr logeprl
result in dst. Compute y*log,(x + 1). freg/Mit freg/flit freg
‘ *=rorrl
exp® performs dst ¢ (24 — [). The source exp* sre, dst expr exprl

value must be within 0.5 to +0.5 inclusive.
Compute 2% - 1.

freg/Mit freg
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TABLE 8.4 80960SB Floating-Point Arithmetic Instructions Beyond Add/Subtract/Multiply/Divide

(continued)
Instructions and
Data Types
Operation (Logarithmic, Exponential and Scalc) Real Long Real

scale* performs dst & sre2*(2¢!), srcl is
integer, src2 and dst are reals. Multiply a

scale*srcl, src2, dst ) scaler scalerl

reg/lit freg/Mit (reg

floating-point value by a power of 2.

8.2.5.c.v Logical, Bit/Bit Ficld Operations. 'Table 8.5 lists these instructions:

TABLE 8.5 Logical Instructions

Instruction Operation Performed

and srel, sre2, dst dst «— sre2 A srel
reg/lit reg/lit reg
andnot srcl, src2, dst
reg/lit eeg/lit reg
nand srcl, src2, dst
reg/lit reg/lit reg
notand srcl, sre2, dst
reg/lit reg/lit reg
or srcl, src2, dst dst ¢ src2 v srcl
reg/lit reg/lit reg .
arnot sr¢l, src2, dst dst ¢ src2 v (srcl)’
reg/lit reg/lit reg
nor srcl, src2, dst
reg/lit reg/lit reg
nolor srcl, src2, dst
reg/lit reg/lit reg
xor srcl, src2, dst
reg/lit reg/lit reg
xnor srcl, sre2, dst
reg/lit reg/lit reg

dst ¢ src2 A (src)
dst ¢ (src2 A srcl)’

dst & (src2) * A srcl

dst « (src2 v srel)’
dst & (src2) ’ v srel
dst ¢ src2 @ srcl

dst « (sr2 @ s;cl}'

Note that in the above, A =and, v =or, ® =
exclusive or, " = NOT '

Table 8.6 lists bit/Dit ficld instructions.

TABLE 8.6 Bit/Bit Field Instructions

Instruction

Operation

alterbit bitpos, src, dst
reg/lit reg/lit reg

chkbit bitpos, sr¢

reg/lit reg/lit

clrbit bitpos, sre, dst
reg/lit reg/lit reg

notbit bitpos, src, dst
reg/lit reg/lit reg

scanbit src, dst
reg/lit reg

sctbit bitpos, src, dst
reg/lit reg/lit reg

copies the sre to dst with one bit altered. The bitpos specifics the bit to be changed
aid the condition code determines the value the bit is to be changed to. If the
condition code is 010,, the selected bit is set to one; if the condition cade is 000,
the bit is cleared to zero.

checks the bit in sre specified by bitpos and sets the condition code according to
the value found. If the bit is one, the condition code is sct 1o 010, if the bit is
zero, the condition code is cleared to 000,

copies src 10 dst with the bit specified by bitpos cleared 1o zero.

copies src to dst with the bit specified by bitpos ones complemented.

scarches src for most-significant set-bit. If the set-bit is found, its bit number
is stored in dst and the condition code is set to 010,. If src is zero, all ones are
stored in dst and the condition code is cleared to 000,

copics src to dst with the bit specified by bitpos set o one.
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TABLE 8.6 Bit/Bit Ficld Instructions (comtinued)

Instruction Operation
sparobit src, dst searches src for the most-significant clear-bit, If the clear-bit is found, its number
reg/lit reg is stored in dst and the condition code is set to 010, If the sre value is all ones

then all ones are stored in dst and the condition code is cleared to 000,.
extract bitpos, len, src/dst — shifts a specified bit field in src/dst right and fills the bits to the left of the shifted

reg/lit reg/lit reg bit ficld with zeros. The bitpos value specifies the least significant bit of the bit
field to be shifted and the len value specifics the length of the bit ficld.
modify mask, src, src/dst modifies selected bits in sre/dst with bits from src. The mask operand selects the
reg/lit reg/lit reg bits to be modified: Only the bits sct in the mask operand are modified in src/dst.

src/dst «= (src A mask) v (src/dst A (mask)’)

8.2.5.c.vi Byte Operations. The scanbyte instruction performs a bytc-by-Bytc comparison of tvio
ordinals to determinc if two cortesponding bytes are equal.
The format of the scanbyte is as follows:

scanbyte srcl, src2
reg/lit reg/lit

The scanbyte performs a byte-by-byte comparison of srcl and sre2 and sets the condition code
to 010, if any two corresponding bytes are equal. If no corresponding bytes are equal, the
condition code is cleared to 000,.

The scanbyte operation is detailed below:

If (srcl A 000000FF,) = (src2 A 000000FF,,)

or
(srcl A 0000FFO00,,) = (src2 A 0000FF00,,)
or
(srcl A 00FF0000,,) = (src2 A 00FF0000,,)
or

(srcl A FF000000,,) = (src2 A FFO00000,,)
then condition code = 010, clse condition code = 000,.

8.2.5.c.vii Decimal Arithmetic (Available with 80960SB Only).  These instructions operate on 32-bit
decimal operands that contain an 8-bit ASClI-coded decimal in the least-significant byte.

dmovt src, dst copies src to dst. The least significant byte of src is tested to find whether
reg reg . ornot it is a valid ASCII digit (30,4 thru 39,,). If the value is a valid
ASCII decimal, the condition code is cleared to 000,; otherwise, it is
sct to 010,. This instruction is normally used iteratively to validate
decimal strings.
daddc srcl, src2, dst  adds bits 0 thru 3 of src2 and srcl (with bit 1 of condition code used
reg reg reg here as carry bit). The result is stored in bits 0 thru 3 of dst. If there
is a carry after addition, bit 1 of condition code is set to one.Bits 4 thru
31 of scr2 are copied to dst unchanged. The instruction assumes that
the least significant 4 bits of srcl and src2 are valid BCD digits.

The daddc is intended to be used iteratively to add BCD values in which the least significant
four bits of the operands represent valid BCD numbers from 0 to 9.

dsubc srcl, src2, dst  subtracts bits 0 thru 3 of srcl and src2 as follows:
reg reg reg dst ¢ src2 —srcl — 1 + C.
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Bit 1 of condition code is used as C (carry bit). The other character-
istics of dsubc are same as the daddc instruction.

The dsubc is intended to be used iteratively to subtract BCD values in which the least
significant four bits of the operands represent valid BCD numbers from 0 to 9.

8.2.5.c.viii Atomic Instructions, In multiprocessor systems, a mechanism is required to allow pro-

8.2.5.d

grams to manipulate shared data in an indivisible manner so that when such an operation is
underway, another processor cannot perform the same operation. The 80960 includes two
instructions called atomic instructions to implement higher-level synchronization mecha-
nisms, such as locks and semaphores.

The atmod src, mask, src/dst

reg reg/lit reg
addr

instruction copies the src/dst value into the memory location specified in src. The src is a
register containing the address and thus the name reg addr in the instruction. The bits set in
the mask operand sclect the bits to be modified in memory. The initial value from memory is
stored in src/dst.

For example, atmod gl, g3, g6 performs the following:

gl « gl ANDed by g3 where gl contains the address of a word in memory.
g6 « Initial valuc stored at address gl in memory.

The read and write of memory are done atomically (i.c. other processors are prevented from
accessing the word of memory specified with the src/dst operand until the operation has been
completed).

The memory location in src is the address of the first byte (least significant byte) of the word
to be modified.

The atadd src/dst, sre, dst

reg reg/lit reg
addr

adds the src value (full word) to the value in memory specified by src/dst. The initial value
from memory is stored in dst.

The read and write of memory arc done atomically. The memory location in src/dst is the
address of the first byte (least significant byte) of the word.

The atadd instruction, therefore, adds a value of a word in memory and returns the original
value of the word. For example, atadd r2, r4, r9 performs the following:

12 « r4 + (r2) where r2 specifics the address of a word in memory;
r9 « initial value stored at address r2 in memory.

The atomic read operation waits until the LOCK linc on the external bus is not asserted and
then asserts the LOCK line and performs the read. The atomic write operation performs a write
operation and deasserts the LOCK line. This ensures that another processor cannot perform
an atomic read operation between read and write to the word in memory specified with the
src/dst operand until the operation has been completed.

Comparison and Control

Though this 80960SA/SB RISC processor has a condition code register, it is not affected by
most arithmetic and movement instructions. An explicit comparison instruction is needed for
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conditional branches. This feature has its advantage. Between the instruction that sets condi-
tion code and the instruction that performs conditional branching, many independent arith-
metic operations can be inserted. That will increase the pipeline efficiency. Arithmetic instruc-
tions that change condition codes are: addc, subc, dmovt, daddc, dsubc.

8.2.5.d.i Comparison. These instructions compare integer (signed numbers) and ordinals (unsigned
numbers):

Compare Integer (¢cmpi)/Ordinal (cmpo)
cmpi  srcl, src2

or reg/lit reg/lit
cmpo

compares src2 and srcl valucs and sets the condition code according to the following:

Condition Code Comparison
100 srel < src2
010 srcl = src2
001 srcl > src2

Compare and Increment Integer(cmpinci)/Ordinal (cmpinco)
cmpinci  srcl, src2, dst

or reg/lit reg/lit reg
cmpinco :

compares src2 and srcl values and sets the condition code according to the results of the
comparison. Src2 is then incremented by one and the result is stored in dst.

The condition codes are affected by the comparison result in cxactly the same way as the
cmpi/cmpo.

Conditional Compare Integer (conempi)/Ordinal (concmpo)
concmpi  srcl, src2

or reg/lit reg/lit
concmpo

compares src2 and srcl value if bit 2 of the condition code is not set. If the comparison is
performed, the condition code-is set according to the comparison results in the same way as
cmpi/cmpo.

Compare and Decrement Integer (cmpdeci)/Ordinal (cmpdeco)
cmpdeci  rcl, src2, dst

or ‘reg/lit reg/lit reg
cmpdeco

compares src2 and srcl values and sets the condition code according to the comparison results
in the same way as cmpi/cmpo. The src2 is then decremented by onc and the result is stored
in dst. '
The following instructions are for real and long real floating-point numbers (available with
only 80960SB microprocessor):

Compare real (cmpr/longreal (cmprl))
compr srcl, src

or freg/flit freg/flit
comprl
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compares src2 with srcl and sets the condition code according to the result as follows:

Condition Code Comparison
100 srel < sre2
010 srcl = src2
0ol srcl > sre2
000 il cither srcl or scr2 is a NaN

cmpr/emprl clears the condition code flags 1o 000, for the unordered condition. Note that the
unordered relationship+s true when at least one of the two values compared is a NaN.

Compare Ordered Real (ecmpor)/Ordered Long Real (cmporl)
cmpor  srcl, src2
or  freg/flit freg/flit

cmporl

compares src2 and srcl and sets the condition code in the same way as ecmpr/emprl.

Compor/comporl clears the condition code to 000, and an invalid-operation exception is
signaled for the unordered condition. Note that the unordered condition is true when at least
one of the two values being compared is a NaN.

Classify Real (cassr)/Long Real (classrl)
classr  src

or  freg/Nit
classrl

checks classification of real number in sre and stores the class in arithmetic-status bits
(3 through 6) of the arithmetic controls as follows:

A Status Classification
S000 Zero
5001 Denormalized number
S010 Normal finite number
S011 Infinity
S100 Quict NaN
S101 Signaling NaN
S110 Reserved operand

The S bit is st to the sign of the src operand.

For cmprl and cmporl and classrl instructions, il srcl or src2 for cmprl/cmporl or sre for
calssrl specifies a global or local register, this register is the first (lowest numbered) of two
successive registers. Also, this register must be even numbered.

Control Instructions. "T'he 80960SA/SB include the following unconditional branch instructions:

Branch (b)/Branch Extended (bx)
b targ or bx targ
disp mem

branches to the instruction specified with the targ operand.
For the b instruction the range of targ operand is from =2 to (2 —4) bytes from the current
IP. For bx, the targ can be farther than =22 to (2** — 4) bytes for the current 1P, Also, since the
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targ operand for bx is a memory type, full range of addressing words including register indirect
mode can be used.

Branch and Link (bal)/Link Extended (balx)
bal targ or balx targ, dst
disp mem reg

stores the address of the next instruction (next IP value) in a register and branches to the.
instruction specified with the targ operand. These instructions are intended for calling leaf
procedures (procedures that do not call other procedures). Using the b or bx instruction, the
leaf procedure can branch to the IP saved by bal or balx. . '

For bal, the address of the next instruction is saved in g14. The range of targ is from 22 to
28 -4,

The balx performs the same operation as the bal except that the address of the next
instruction is stored in dst, allowing it to be stored in any available register, The range of targ
can be farther 2% to (2% - 4) bytes from the current IP,

Compare and Branch
These instructions compare two operands, then branch (or not) according to the result:

Compare
Branch If Integer (Signed) Ordinal (Unsigned)
Equal empibe srcl, sre2, targ cmpobe srcl, src2, targ
Not Equal cmpibne srcl, sre2, targ  cmnabne srel, src2, targ
Less cmpibl srcl, src2, targ . cmpobl si121, sre2, targ
Less or Equal empible srcl, src2, targ cmpoble srcl, sre, targ
Greater cmpibg srcl, src2, targ cmpobg srcl, src2, targ
Greater or Equal cmpibge srel, src2, larg cmpobge srcl, sre2, targ
Ordered cmpibo srel, src2, targ cmpobo srcl, src2, larg
Unordered cmpibno srcl, src2, targ cmpobno srcl, sre2, targ

In the above instructions, srcl = reg/lit, src2 = reg, and targ = disp. These instructions compare
srcl and src2, and set the condition code based on the result. If the AND of the condition code
and the mask part of the instruction is not zero, the processor branches to targ; otherwise, the
processor goes to the next instruction. Note that the condition code 000, indicates no condi-
tion and is the unordered condition while condition code = 111, is the ‘ordered’ condition.
The terms ‘ordered’ and ‘unordered’ are used when comparing two floating-point numbers.
If, when comparing two floating-point valucs, one of the values is a NaN (Not a number), the
relationship is said to be ‘unordered’; otherwise, the releationship is ‘ordered”.

Bit Instructions:
Check Bit and Branch if SET, bbs bitpos, src, targ
Check Bit and Branch if Clear, bbe reg/lit reg disp

bbs and bbc instructions check the bit in src-specified by bitpos and set the condition code
according to the value. The processor then branches to targ according to the condition.

Test Condition Codes

These instructions cause a TRUE (1) to be stored in a destination register if the condition code
matches. Otherwise, a FALSE (0) is stored.

teste dst Test if Equal testne dst Test if Not Equal
testl dst Test if Less testg dst Test if Greater
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testle dst Test if Less or Equal  testge dst Test if Greater or Equal
testo dst Test Ordered testno dst Test if Unordered

In the above, dst = reg.

Conditional Fault

These instructions permit a fault to be gencrated explicitly according to the state of the
condition-code bits: '

faulte  Fault if Equal faultne  Fault if Not Equal

faultl  TFault if Less faultg  Fault if Greater

faultle  Fault if Less or Equal faultge  Fault if Greater or Equal
faulto  Tault Ordered faultno  Fault if Unordered

Call and Return

The processor offers an on-chip call return mechanism for making procedure calls to local
procedures and kernel procedures. These instructions support that mechanism:

call targ  Calls where targ = disp

callx targ  Calls Extended where targ = mem
calls targ  Calls System where targ = reg/lit
ret Return

The call and callx instructions call local procedures. They differ only in addressing mode. The
processor will allocate a new set of local registers and a new stack frame for the called
procedure, The calls instruction operates similarly, except that it gets its target procedure
address from the system procedure table. Depending on the type of entry being pointed to in
the procedure table, the calls instruction can cause a supervisor procedure call to be executed.

The ret instruction performs a return from a called procedure to a calling procedure. The
same instruction is used to return from local and supervisor calls and from implicit calls to
interrupt and fault handlers. The processor takes care of all the details.

Decbug
The processor supports debugging and program tracing. These are the debugging tools:

modte  Modify Trace Control

mark  Mark — gencrates a breakpoint trace event if breakpoint trace mode flag is enabled.

fmark  Force Mark — generates a breakpoint trace event regardless of the breakpoint trace
mode flag,

Processor Management
The processor provides several instructions for use in controlling processor-related functions.

modpcsre, mask, src/dst  stores the contents of src/dst in the process control register, with
reg/lit reg/lit reg  the bits set in the mask modified. The src/dst then contains the
initial valuc of the process control register. The src/dst is a dummy
operand and must be set equal to the mask operand. The proces-
sor must be in the supervisor mode for executing this instruction.
flushreg copies cach local register st except the current st to its associated
stack-frame in memory and marks them as invalid, meaning that
they will be reloaded from memory if and when they become the
current local register set.
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modac mask, src, dst places the contents of sr¢ in the Arithmetic control register with
the bits set in the mask modified register. The dst then contains
reg/lit reg/lit reg the initial value of the Arithmetic controls.

Conditional Branches: o

be  Branch if Equal bne  Branch if Not Equal

bl Branch if Less bg  Branch if Greater

ble  Branch if Less or Equal bge  Branch if Greater or Equal
bo  Branch if Ordered bno  Branch if Unordered

These instructions are single-operand with the operand “targ” or “disp” defined in the same
way as bal.

Valucof &t

The 80960SA/SB uscs the value 11490FDA,, for m. The details of this computation arc given
in Intel i960SA/SB Microprocessor SA/SB reference manual. As an example, 7 can be located
into a register such as r4 by using lda 0X41490fda, r4 where ox is used to represent hexadecimal
number by the 80960SA/SB assembler.

80960 Assembler

The 80960 assembler uscs the first operand of a two operand instruction as the source operand
and the second operand as the destination. The assembler directive # is used before a com-
ment. 0X before an immediate number is used to represent a hex number.

Example 8.1

Identify the addressing modes for the following 80960 instructions:
i) 1dl 4816(r3),g4
it) st r3,34(r8)[r4*4]

Solution
i) source destination-
register indirect  register
ii) source destination
register register indirect with

scaled index and displacement.

Example 8.2

Determine whether the following 80960 instructions are valid or invalid. Comment.

i) Idq (g8) [g9], r2
ii) stl 46, 52(r5)

Solution

i) Not valid since for Idq instruction, the destination must specify a register number that
is multiple of 4 such as r0, 4, 18, . . ., g0, g4, g8, . . . . Since register r2 is not a multiple
of 4, the instruction is invalid.

ii) Valid since for stl, the source must be an even numbered register which is r6 in this case.
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Example 8.3

Write an 80960 instruction sequence to read 32-bit clements 5, 6, and 7 from a table stored in
memory into register rl, r2, and r3 respectively. Assume that register r5 points to the starting
address containing clement 0 (32-bit data) of the table.

Solution
Idt 5(r5), 18  #r8 « ((r5+5))
#19 « ((r5+6))
#r10 & ((r5+7))
mov r8, rl #rl <18
mov 19, r2 #r2 «r9
movrl0, r3  #r3 «rl0.

Example 8.4

Write an assembly language program in 80960 assembly language to add two 64-bit numbers.
Assume that the two 64-bit numbers are stored in rl, r0 and 3, r2 respectively. Store the 64-
bit result in r0, rl.

Solution

clears bit 1(carry bit)

of the condition code register
r0 ¢« r2+r0+carry bit

rl ¢« r3+rl+carry bit

halt

cmpo 1, O

addec r0,r2,rx0
adde rl,r3,rl
finigsh b finish

EBE - R -

Example 8.5

Write an 80960 assembly language program to perform the following operation:
(AMB)+C*D

where A, B, C, D are stored in 0, rl, r2, r3 as 32-bit integers. Assume C*D generates 32-bit
product. Discard remainder of A/B. Store the 32-bit result in rd.

Solution

rd & r0/rl
r5 ¢« r2*r3
rd <« rd + x5
stop

divli rl, x0, x4

mali 2, 3, =5

addi r5, r4
finish b finish

EE ]

Example 8.6

Write a program in 80960 assembly language that copies bits 3-6 of register rl into bits 31-28
of register r2.

Solution

extract 3, 4, rl # r1L = 000. . . 0OOQaaaa
shlo 28, ril, rl # rl = aaaa000. . . 000
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shlo 28, 15, r3 # r3 = 1111000. . . 000
modify r3, rl, r2 # xr2 = aaaabbb. . . bbb
finish b finish # halt

Example 8.7

Writc a program in 80960 assembly languagc to branch to a label ‘start’ if the 32-bit bperand
in register g2 is not a finite number.

Solution

classr g2

modac 0, 0, gl place condition code in gl

arithmetic status in bits
3-6 of gl

move arith status in bits
0-3 of gl

gl = bits 0-2 of arith status

branch if status not egual

to 8000, 8001, or s010.

halt

shro 3, gl, gl

and 7, gl, gl
cmpobge gl, 3, 'start

3 3k 3 3 o E N R

finish b £finish

Example 8.8

Write an 80960 instruction to add four 32-bit words of additional space to the stack.
Solution
addo sp, 16, sp # 8p ¢« sp + 16

Note that the 80960 Intel assembler uses ‘sp’ to represent the stack pointer, rl. Also, sp in the
above instruction is incremented in one-byte increments by the addo instruction so that sp
must be incremented by 16.

Example 8.9

Write a program in 80960 assembly language to convert a long-real value in 10 to long-integer
value in 8.

Solution

long-real value in

ro is converted to
extended-real in £p0
extended real-value

in fpo is converted to
long integer

halt

movre ro, f£fp0

cvtril £po0, ~::'8

B R R

finish b finish

Example 8.10

Write a program in 80960 assembly language to compute the arca of a circle by using A = nr?
where ‘A’ is the area in 32-bit real to be stored in register rl and ‘r’ is the radius of the circle
stored in r0 as 32-bit real.
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Solution

mulr ro, ro, gl0 # calculate x*

lda 0x41490fda,rl # Load T

mulr gl0, rl, rl # rl contains the area
finish b £finish # halt

Example 8.11

Write an 80960 assembly language program to convert from polar coordinates to rectangular
coordinates as follows:

x = rcos0, y = rsin@

where 10, r1 contain r and 0 (in radians) of the polar coordinates and r2, r3 contain x, y of the
rectangular coordinates respectively.

Solution

gd = cos(rl)
g5 = sin(rl)
r2 = r*cos(rl)
r3l = r*gin(rl)
halt

cosr rl, gd
sinr rl, g5
mulr r0, g4, r2
mulr r0, g5, r3
finish b finish

ETSEETRE T

8.2.6 80960SA/SB Pins and Signals
Figure 8.2 shows the 80960SA/SB pins and signals.

Al16:31) AD(0:15) A1:3) LOCK
A

N

RESET ——» ———— Ve (+5V)
CLK2 ————>» ————» ALE
INTO ————> |———> AS
INTT ————> ———> W/R
INT2INTR —————>] ‘ ——» HLDA
INT3/INTA <€———> 80960 «——— HOLD
SA/SB A » 5
Vs ———— |————— READY
, > DTR
CLK ————— > BLAST/FAIL
———> BEO - BET

FIGURE 8.2 80960SA/SB pins and signals.
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Ready*Burst

Request
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Request
Pending

No
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sacdv* N :
Retjiies! Ready*No Burst

FIGURE 8.3 Basic L-bus states.

Some of the main features of the 80960SA/SB bus include the following:

* 32-bit addressing

* 16-bit multiplexed low 16-bit address/data bus.

* Two byte enables and an cight-word burst capability that allows transfers from 1 to 16
bytes in length.

* Basic bus states.

8.2.6.a Basic Bus States

There are five basic bus states: idle Ti, address Ta, data Td, recover Tr, and wait Tw as shown
in Figure 8.3 assuming only one bus master resides on the bus.

Ti:  the processor enters this state when no address or data transfer is in progress.

Ta: when processor receives a new request and starts transmitting address.

Td: following Ta, the processor transmits or receives data if READY input is asserted. If
not the processor enters wait state Tw and remains there until data is ready. Tw may
be repeated allowing sufficient time for 1/0 devices to respond.

Tr: following Td, the processor enters recovery state and comes back to Ti. In case of burst
transactions, it exits Tw or T'r to transfer next data word. When done, it enters recovery
state.

8.2.6.b Signals Groups
Address and Data Lines
The address/data signal consists of 35 lines.

Al6-A31:  ADDRESS BUS carrics upper 16-bit of 32-bit addresses to memory. No latch
is required. ‘ .
AD (0-15): 16-bit LOW ADDRESS/DATA BUS represents addresses in Ta and data in Td.
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A{1-3):

ADDRESS BUS carries the burst addresses to memory. They are incremented

during burst cycle indicating the next byte address of burst mode. They are
duplicated with AD(1-3) during the address cycle.

Control Lines

Consists of 12 signals that permit the transfer of data.

ALE:

AS:

DT / R

DEN:

READY:

LOCK:

BEl - BEO:

W/ R:

HOLD, HLDA:

BLAST / FAIL:

CLK2/CLK:

ADDRESS LATCH ENABLE, active high, is asserted during Ta and
deasscrted before the beginning of the Td state. It floats when processor
is not-a bus master.

ADDRESS STATUS indicates an address state is asserted cvery address
state and deasserted during the following Td and driven HIGH during
RESET.

DATA TRANSMIT/RECEIVE indicates the flow of data. During READ
operation at TA, 'Td, and “I'r, it remains LOW. [tis HIGH during Write
operations. .

DATA ENABLLE enables data transecivers and is asserted during T'd and
Tw.

INPU'T from other devices indicates data on the bus ready to be read or
wrilten. If not asserted during a Td eycle, the Td cycle is extended for the
next cycle by inserting a wait state, Tw.

BUS LOCK, prevents other devices from gaining the control of the bus.
Asserted when processor performs READ MODIFIED WRITE or IN-
TERRUPT ACKNOWLEDGLE, WAITS if LOCK is asserted by other
devices.

BYE ENABLE indicates which data bytes (up to two) on the bus take part

in the current bus cycle. BEI corresponds to AD15-A8 and BEO corre-
sponds to AD7-ADO.

Instructs memory or [/O devices to write or read data on the bus. It is
asserted during Ta and remains valid during subsequent Td cycles.
Used for DMA.

Indicates that an error occurred during the initialization. The failure
statc is indicated by a combination of BLAST asserted and both BE
signals not asserted. FAIL is asserted while the processor performs a
self-test. If the self test is successful, the FAIL is deasserted.

The 80960SA/SB uses two clock signals (CLK2 and CLK). CLK2 pro-
vides the input clock to the 80960 and is double the specified processor
frequency. CLK is the clock input signal for the peripheral devices and
is the operating frequency of the processor.

T'he four interrupt pins of the 80960SA/SB are INTO, INTI, INT2/INTR, and INT3/INTA.
The on-chip control register determines how these interrupts are used by the processor. The
80960SA/SB can be interrupted using any of the two methods as follows:

1. Receipt of a signal on any or all of the four dircct interrupts (INTO, INTI1, INT2, and

INT3).

2. Receipt of asignal on the interrupt request (INTR) utilizes INTA to obtain an interrupt
vector from an external device such as the 8259. The setting of the on-chip Interrupt
Control Register selects one of the methods.

The RESET pin must be asserted for at least 41 CLK2 cycles. Upon hardware resct, the 80960
performs a sclf test if INTO INT1 INT3 LOCK = Ix11. If the self test fails, the 80960SA/SB
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enters the stopped state. Otherwise, the 80960 performs a checksum test of 16 words fetched
from memory at physical address 00000000,,. After a successful checksum test, the 80960SA/
SB uses some of the previously fetched words as addresses to initial data structures.

8.2.7 Basic READ and WRITE
READ:

I.

During Ta state:
* The processor places address on the address and address/data lincs.

« Itasserts ALE used to latch address.

+ Itasscrts AS.

© W/R is low indicating read operation.

* DT/R is low and used as direction input to data transceivers.

. During Td state:

* The processor reads data on the AD(0-15) pins.

+ Itasserts DEN which is used to enable data transceivers.

* The processor asserts BEI - BEQ to specify which bytes the processor uses when
rcading the data word.

* READY is asserted by external logic to indicate data is ready to be read. If not
asserted, Tw is generated and repeated until READY is asserted.

. The recovery states follow the data state allowing adequate ime for external devices to

remove their data from the bus before the 80960SA/SB generates the next address on the
bus. W/R, DT/R, and DEN become inactive.

WRITE:

L

During Ta state:
* The processor places address on address and address/data lines.

« It asserts ALE used to latch address.
« It then asserts AS.

'« W/R is HIGH indicating WRITE operation.

* DT/R is HIGH and used as direction input to data transceivers.

During Td state:

* The processor places data on the AD(0-15) pins.

* The processor asserts BLI BEO to spcc1fy which bytes the processor is writing in the
word.

« Itasserts DEN used to enable data transceivers.

* READY is asserted by external logic to indicate data written. If not asserted, Tw is
generated and repeated until READY is asserted. Data is held on the bus.

. During Tw READY remains asserted and data is written into memory or storage

device.
The recovery states follow the data state. W/R, DT/R, and DEN become inactive.

Burst READ and WRITE

This is an enhancement feature of the 80960SA/SB processor. It supports burst transactions
that read or write up to cight 16-bit words at a maximum rate of one word per processor cycle.
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Processor Module Mcemory Module
EPROM
Memory
80960 SA/SB Controller
Processor

I/O Module
1/O Interface
I/O Device I/O Device
(Slave) (Bus Masler)

FIGURE 8.4 Basic80960SA/SB system configuration.

80960SA/SB-Based Microcomputer

Figure 8.4 depicts a typical 80960SA/SB system block diagram. The various components are
described in the following.

The 80960SA/SB processor performs bus operations using multiplexed address and data
signals and provides all the necessary control signals. For example standard control signals,
such as Address Latch Enable ( ALL ), Address Status ( AS) Write/Read command ( W /R),

Data Transmit/Receive ( DT/R), and Data Enable ( DEN) are provided by the 80960SA/SB
processor. The 80960SA/SB processor also generates byte enable signals that specify which
bytes on the data lines are valid for the transfer.

To transfer control of the bus to an external bus master, the 80960SA/SB processor provides
two arbitration signals: hold request (HOLD) and hold acknowledge (HLDA). After receiving
HOLD, the processor grants control of the bus to an external bus master by asserting HLDA.

A memory module can consist of the memory controller, Erasable Programmable Read
Only Memory (EPROM), and static or dynamic Random Access Memory (RAM). The memory
controller first conditions the bus signals for memory operation. It demultiplexes the address
and data lines, generates the chip select signals from the address and BE signals, detects the

start of the cycle for burst mode operation, and latches the byte enable signals.
The memory controller generates the control signals for EPROM, SRAM, and DRAM. In

particular, it provides the control signals, multiplexed row/column address, and refresh con-
trol for dynantic RAMs. The controller can be designed to accommodate the burst transaction
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of the 80960SA/SB processor. In addition to supplying the operation signals, the controller
generates the READY signal to indicate that data has been transferred to or from the 80960SA/
SB processor., '

The 80960SA/SB proccssor directly addresses up to 4G bytes of physical memory.

The I/O module consists of the I/O components and the interface circuit. 1/0 components
can be used to allow-the 80960SA/SB processor to use most of its clock cycles for computa-
tional and system management activitics. ,

The interface circuit performs several functions. It demultiplexes the address and data lines,
generates the chip sclect signals from the address, produces the I/0 read or 1/0 write command
from the processor’s W/ R signal, latches the byte enable signals, and generates the READY
signal. Because these functions are the same as some of the functions of the memory controller,
the same logic can be used for both interfaces, )

The 80960SA/SB processor uses memory-mapped addresses to access /O devices. This
allows the CPU to use many of the same instructions to exchange information for both
memory and peripheral devices.

Typical 1/O chips such as Intel 82C64 timer and %8536 parallel port/timer can be used with
the 80960SA/SB

Motorola MC88100 RISC Microprocessor

MC88100 is a 32-bit RISC microprocessor designed using HCMOS technology. The 88100
includes the following;

* Hardwired control design with no microcodes

* 20- or 25-Mhz internal clock frequency

* Packaged in 17x17 (180 pins used) PGA (Pin Grid Array) with a maximum size of
1.78" x 1.78” .

* Includes 51 instructions

* Contains four fully parallel on-chip execution units (pipelined)

Unlike the 80960SA/SB, the 88100 docs not support 80-bit extended floating-point

format

Unlike the 80960SA/SB, the 88100 does not include instructions for computing trigo-

nometric and logarithmic functions

User and supervisor modes
* 32-bit on-chip combinational multiplier

Separate data and instruction buses that include 32-bit data bus, 32-bit instruction
address bus, 32-bit data address bus, and 32-bit instruction bus (fixed instruction length
of 32 bits)

* Dircetly interfaces to memory or to 88200 cache/memory management unit

* 4 gigabytes of dircctly addressable memory

The 88100 performs register-to-register operations for all data manipulation instructions.
Source operands are contained in source registers or are included as an immediate value
inherent in the instruction. A separate destination register stores the results of an instruction.
This means that source operand registers can’ be reused in the subsequent instructions.
Register contents can be read from or written to memory only with Id (load) and st (storc)
instructions. A xmem (memory exchange) instruction is included for semaphore testing and
multiprocessor application.

The 88100 contains 51 instructions. All instructions are executed in one cycle. The instruc-
tions requiring more than one cycle are executed in effectively one cycle via pipelining. All
instructions are decoded by hardware and no microcode is used.
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The 88100 includes all data manipulation instructions as register-to-register or register plus
immediate value instructions. This climinates memory access delays in data manipulation.
Only 10 memory addressing modes are provided: three modes for data memory, four modes
for instruction memory, and three modes for registers.

All 88100 instructions are 32 bits wide. This fixed instruction format minimizes instruction
decode time and climinates the need for alignment. All instructions are fetched in a single
memory access. The 88100 implements delayed branching to minimize pipeline delay. For
pipelined architecture, branching instructions can slow down execution speed due to the time
required to flush and refill the pipeline. The 88100 delayed branching feature allows fetching
of the next instruction before the branch instruction is executed.

The 88100 provides two modes: supervisor and user, The supervisor mode is used by the
operating system, while the application programs arc executed in user mode,

The 88100 includes four exccution units which operate independently and concurrently.
The 88100 can perform up to five operations in parallel,

Scoreboard bits are associated with each of the general-purpose registers. When an instruc-
tion is executed or dispatched, the scoreboard bit of the destination register is set, reserving
that register for that instruction. Other instructions are exccuted or dispatched as long as their
source and destination operands have clear scoreboard bits, When an instruction completes
execution, the scoreboard bit of the destination is cleared, thus freeing that register to be used
by other instructions.

The 88100 memory devices can interface directly to memory. Most 88100 designs imple-
ment at least two 88200 CMMUs (one for data memory and one for instruction memory). The
P-bus provides the interface to the 88200/memory system. The 88200 is an optional external
chip that provides paged virtual memory support and data/instruction cache memory.

Conditional test results are provided to any specified, general-purpose register instead of a
dedicated condition code register. Conditions are computed at the explicit request of the
programmer using compare instructions. This climinates contention between concurrent
execution units accessing a dedicated condition code register.

88100/88200 Interface

Figure 8.5 shows typical 88100 interfaces to several 88200s. The PBUS (processor bus) contains
logical addresses, while MBUS (memory bus) contains all physical addresses. Up to 4 88200s
can reside on cach PBUS. Note that in the figure, the MC88000 includes the entire RISC
microprocessor family, with 88100 being the first microprocessor.

Figure 8.6 shows the 88100/88200 block diagram. Each unit in the 88100 can operate
independently and simultancously. Each unit may be pipelined.

The integer unit performs 32-bit arithmetic, logic, bit ficid, and address operations. All
operations are performed in one clock cycle. The integer unit includes 21 control registers.
The floating-point unit supports IEEL 754-1985 floating-point arithmetic, Mteger multiply,
and divide. This unit contains 11 control registers with a five-stage.add pipeline and a six-
stage multiply pipcline. Six optional SFUs (special function units) are reserved in the
architecture. The SFUs can be added to or removed from a given system with no impact on
the architecture.

The data unit performs address caleulation and data access and includes a three-stage
pipeline.

The instruction unit fetches instruction codes and contains a two-stage pipeline.

The register file includes 32 32-bit general-purpose registers.

The sequencer uses a scorcboard to control register reads/writes. It dispatches instructions
and recognizes exceptions.

Figure 8.7 shows the 88200 internal block diagram.
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Instruction Data

Instruclion Data
MC88100
RISC
Processor

MCB8200
CMMU

MC88200
CMMU

MCB88100 32-Bit RISC Microprocessor

¢ 1.5 Micron HCMOS, 180 pins

« Highly pipelined

* Separate instruclion and data buses (Harvard architecture)

MC88200 32-Bit Cache/Memory Managemenl Unit
« 1.5 Micron HCMQS, 180 pins

56 entry Page Address Traslation Cache (PATC)
10 entry Block Address Translation Cache (BATC)
16 Khyle codefdata cache

MB8000 Processor BUS

« Synchronous, non-multiplexed, pipelined .
« 33-bit logical addresses, 32-bit data path

« 1 word cach clock cycle, maximum transfer rate

M88000 Memory BUS

* Synchronous, multiplexed

« 32-bit physical addresses, 32-bit data path

« N words cach N + 1 clock cycle maximum transfer rale

FIGURE 8.5 Typical 88100 interface to 85200s. Note that MC88000 represents the 88000 family which
includes 88100, 88200, and all future products.

The block address translation cache (BATC) contains 10 entries and is fully associative with
software replacement.

The page address translation cache (PATC) includes 56 entries and is fully associative with
hardware replacement. The SRAM (static RAM) array contains 16K bytes of static RAM and
is sct associative.

88100 Registers

Figure 8.8 shows the 88100 registers. All registers are 32 bits wide.
Three types of registers are included:

+ 32 32-bit registers, r0-r31, containing program data (source operand and instruction
results). All of these registers except r0 (constant 0) have read/write access.

- Internal registers control instruction execution and data transfer

- Control registers in the various exccution units containing status, execution control,
and exception processing information

The internal registers cannot be directly accessible in software, while most control registers
can be accessed in supervisor mode. The internal registers can only be modified and used
indirectly.

The control registers include shadow registers and exception time registers, integer-unit
control registers, and floating-point unit control registers.

The shadow registers arc associated with several internal registers. Shadowing is utilized by
the 88100 to keep track of the internal pipeline registers at cach stage of the instruction
execution.
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” . MC8B8100
Floating-Point
Unit
Add Multiply
Npe s S
Integer Pipe Pipe
Unil % %
A A AA
Source 1 Bus
Source 2 Bus /
Destination Bus 4
A
Y Y
Data Unit Risistor Instruction Unil
<« tll“illt' < » Instruclion
Data Access Fetch
Pipe Pipe
% Sequencer %
2 i 3 78
%3 i Instruction % 2| pata
S B i PBus | a1
Z us < P Bus

MBUS

P Bus Control P Bus Contral
Memory Memory
CD{NI‘:' Managemenl Cr::lh}‘. Management
ache Unil : Unil
M Bus Control M Bus Contral

FIGURE 8.6 MC88100/MC88200 block diagram,

There are 21 32-bit control registers (cr0 through cr20) in the integer unit. Fourteen of these
registers provide exception information for integer unit or data unit exceptions. The other
seven registers include status information, the base address of the exception vector table, and
general-purpose storage.

The floating point includes 11 control registers (fcr0-fer8, fer62, and fcr63). ferO through
fcr8 contain exception information such as the exception type, source operands and results,
and the instruction in progress. Thesc registers can only be accessed in supervisor mode.
Registers fcr62 and fcr63 are not privileged. These two registers can be used to enable user-
supplied exception handler software and to report exception causes in user mode.

The supervisor programmer’s model contains all general-purpose and control registers. The
general-purpose registers provide data and address information, while the control registers
provide exception recovery and status information for the integer unit.

In user mode, all general-purpose registers can be accessed. Two control registers (ﬂmlmg-
point control and status) can be accessed in the user mode.

Among the 32 gencral-purposc registers, r0 always contains the value 0, rl is loaded with the
subroutine return address, and r2 through r31 are general-purpose.

Figure 8.9 shows the 88000 register data formats. The 88100 supports two types of data
formats, namely, integer (signed or unsigned) and floating-point real numbers. The integers
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PBUS
PBUS Interface Logic
MMU Data Cache
Block
Address Tag
Translation . Array
Cache age
Address SRAM
Translation Array
Cache
MMU Cache
Control Control
Conlrol
Repister MBUS Interface Logic
File
MBUS

Cache Accesses in parallel with Address Translation.
Two Level Page Address Translation Tables for Supervisor and User Programs

FIGURE 8.7 88200 internal block diagram.

can be byte, half-word (16-bit), and word (32-bit). All operations affect all 32 bits of a general-
purpose register. The half-word or byte pads the sign bit.

The floating-point data can be single precision (32-bit) and double precision (64-bit).

Figure 8.10 shows formats for Fer62 and Fer63. ,

The reserved bits in fcr62 and fcr03 are always read as zero. The FPer defines the desired
rounding mode and which exceptions are handled by user exception handles. The FPSR
indicates which floating-point exceptions have occurred but were not processed by a user
exception handler.

The 88100 general-purpose register convention is shown in Figure 8.11. r31 addresses the
top of the stack. r30 contains the address of the current data frame in the stack.

Figure 8.12 shows the 88100 stack operation. The SP must always be 32-bit aligned. The
stack grows from high memory to low memory addresses.

Next, consider the supervisor: programmer model:

* The VBR contains the base address of the exception vector table,

* The 88100 does not automatically use SR0-SR3. They are reserved for operating system
usc.

Figure 8.13 shows the 88100 processor status register format. In Figure 8.13, Big Endian
means the most significant byte at the highest byte address. Serial instruction is to complete
before the next one begins. Note that not all adds/subtracts affect C. The SFDI bit enables or
disables the floating-point unit. When SFDI = 1, attempted execution of any floating-point or
integer multiply/divide instructions causes a floating-point precise exception.
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31 876 0
N[ 555555555555555555555S |5 | Byte | Signed Byte
31 8706 0
rN [000000000000000000000000] Byte | Unsigned Byte
31 1615 14 0
N [ $555555555555555 | S | Halfword | Signed Halfword
31 1615 0
rN [0000000000000000] Haliword | Unsigned Halfword
3130 0
N [S ] Word I Signed Word
31 0
N | Word | Unsigned Word

Floating-Point Formats

3130 23 22 8 0
N I 5 ]Exponem] Fraction ] Single Precision
3130 2019 4 0
™N Sl Exponent I Fraction Double Precision
™N+1 . Fraction (conlinued) LY

FIGURE 8.9 88100 register data formats. An “S”™ in the diagram above indicatzs a sign bit,

31 16151413 5 43 210
E|ElE|E]E
FIEIF|FLF
fcr63 Reserved RM Reserved I {D{U[O] I [FPCR
NIVIN[V[N
VIZ|F|F|X
RM: Floating Point Rounding Mode
= 00 Round to rearest 7
=01 Round to zcro
=10 Round to negative infinity
= 11 Round to positive infinity
CFINV: - Enable Invalid Operation User Exception Handler
EFDVZ: Enable Divide By Zero User Exception Handler
CFUNF: Enable Underflow User Exception Handler
- EFOVF: Enable Overflow User Exceplion Handler
EFINX: Enable Inexact User Exception Mandler
31 : 54 3 B0
AlAIAIA[A
FIF|F[F|F
fero2 Reserved 1{DJU|O| I | FPSR
NIVIN|V|N
V| Z| FE X

AFINV: Accumulated Invalid Operation Flag
AFDVF: Accumulated Divide By Zero Flag
AFUNF: Accumulated Underflow Flag
AFOVF: Accumulated Overflow Flag

AFINX: Accumulated Inexact Flag

FIGURE 8.10 88100 fcr 62 and fer 63 lformats.
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0 [ 0 | (hardware)
rl [ Subroutine Return Pointer ] (hardware)
r2
f Called Procedure L fiwvars
Parameter Registers (software)
9 T T
r10
L Called Procedure L (sof
‘[' Temporary Registers ]‘ software]
i 12
rid L .
Called Procedure L .
'A Reserved Repisters (software)
r25 T T
r26 L L
Linker Repisters : (soltware)
129 T T
30 | - Frame Poinler | (software)
r3l [ Stack I'omter ] (software)

FIGURE 8,11 88100 register convention.

8.3.3 88100 Data Types, Addressing Modes, and Instructions

Tables 8.7a and 8.7D list the data types and addressing modes supported by the 88100. Table
8.8 summarizes the 88100 instructions.
The 51 instructions listed in Table 8.8 of the MC88100 can be divided into 6 classes: integer
arithmetic, floating-point arithmetic, logical, bit field, load/store/exchange, and flow control.
These simple instructions must be used to obtain complex operations. Shift and rotate
operations are special cases of bit field instructions. Only Id, st, and xmem can access memory.

23 0

: T ; Stack
i~ ' \ IE 4. Growth
s ] ! 4 =~

: %4 i

[} -4 L8

! 1 :
L : E : L

; i T | FEFRFITE,

FIGURE 8.12 88100 stack operation.
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9o
31 30 29 28 27 26 1) 0 4 3 5T 0
?}1 als :? ;’ M1 ;.’
ECT G Reserved Reservedd X |IN
DO R X D] Mmln R
L (5 | Vs

MODE =0

Processor is in user mogde,

= | Processor is in supervisar male,
BO =0 Bigy Endian byte order in memory,
=] Little Enclian byte order in memuory,
SER = () Concurrent inslruction execution,
= Serial instruction execution,
C=0 No earry £ borrow penerated,
= | Carry / botrow penerated,

DEXC =0

Jata memary exeeption not pending.

=] [3ata memory exception pending.
S0 =0 STUT enabledd,
=] SEUT dlisabled,
*MXM =0 Misaligned memory accesses penerale oxeeptions,
=] Misaligned memory aceess truneate,
Misaligned addeess o nest lower aligned addiess,
IND =0 Interrupt enabled,
=] Interrupt disabled.
SFRZ =0 Shadow repisters enablod.
= Shadow repisters frozen.

* BB100 can address cach byte, For halfword, aligned address include all
addresses in multiples of 2, for word in multiples of 4 and for
doubileword in multiple of 8,

FIGURE 8.13 88100 processor status register format,

TABLE 8.7a

Data Types

Data type

Represented as

Bit fields
Integer

Floating-paint

Signed and unsigned bit ficlds from 1 10 32 bits
Signed and unsigned byte (8 bits)

Signed and unsigned half-word (16 bits)
Signed and unsigned word (32 bits)

TEEE P754 single precision (32 bits)
1EEE P754 double precision (64 bits)

TABLE 8.7b  Addressing Modes ia
Data addressing mode Syntax
Register indirect with unsigned immediate  rD,rS1,imm16
Register indirect with index rD,r81,r82
Register indircet with scaled index rD,rS1[rS2]
Instruction addressing mode Syntax
Register with 9-bit vector number m3,rS1,vecy
Register with 16-bit signed displacement m5,r81,d16
Instruction pointer relative d26

(26-bit signed displacement)
Register direct 152
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TABLE 8.8

Instruction Set Summary-

Mnemonic

Description

add
addu
cmp
div
divu
mul
sub
subu

fadd
femp
fdiv
fider
flt
fmul
[ster
fsub
fxcr
int
nint
trnc

and
mask
or
xor

cir
ext
extu

ff1
mak
rot
sel

Id

Ida
Ider

st

stcr
xcr
xmem

bbo
bbl
bend
br
bsr
jmp
jsr
rte
th0
thl
tbnd
tend

Integer Arithmetic Instructions

Add

Add unsigned
Compare

Divide

Divide unsigned
Multiply

Subtract

Subtract unsigned

Floating-Point Arithmetic Instructions

Floating-point add
Floating-point compare
Floating-point divide
Load from floating-point control register
Convert integer to floating point
Floating-point multiply
Store to floating-point control register
Floating-point subtract
Exchange floating-point control register
Round floating point to integer
Floating-point round to ncarest integer
Truncate floating point to integer
Logical Instructions
AND i
Logical mask immediate
OR
Exclusive OR
Bit-Field Instructions
Clear bit field
Extract signed bit ficld
Extract unsigned bit field
Find first bit clear
Find first bit sct
Make bit ficld
Rotate register
Set bit field

Load/Store/Exchange Instructions

Load register from memory
Load address

Loa#} from control register
Stoft register Lo memory
Store to contml register
Exchange confrol register
Exchange register with memory
Flow Control Instructions
Branch on bit clear

Branch on bit set
Conditional branch
Unconditional branch
Branch to subroutine,
Unconditional jump

Jump to subroutine

Return from exception
Trap on bit clear

Trap on bit set

Trap on bounds check
Conditional trap

553
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Also, only compare instructions affect condition codes. Most MC88100 instructions can have
one of the thrge formats:

i

Triadic register instructions (three operands). The general format is

mnemonic .opt o sl rs2

T P

option destination source 1 source 2
register  register register

An example is add.ci r2, 7, r4. Note that Motorola’s assembler expects the 88100
instructions in lower case. In the example, the mnemonic is add and the option is ci,
meaning usc ‘carry in’ in the operation. The source registers r7 and r4 remain un-
changed unless one of them is used as destination. This add instruction adds [r7] and
[r4] with carry and stores the result in r2.

Triadic register instructions with 16-bit field instruction. The gencral format is
mnemonic.opt rD, rs1, imm16. Consider

add.Co r2, r4, 0XAl25

0X before data A125 means that A125 is in hex. Thm notation is used by the Motorola
assembler.

- Dyadic register instructions (two operands). The general format is mnemonic . opt rd,

rs2. An cxamplc is flt.sw 5, 16 — which converts the integer source word in r6 into
floating-point in r5.

Table 8.9 lists the 88100 load, store, and exchange instructions.

TABLE 8.9 MC88100 LOAD, STORE, Exchange Instructions

Instructions Exceptions

Id[.<opts>] rD,rS1,<imml6>
ld[.<opts>][.<space>] rD,rS1,rS2
Id[.<opts>][.<space>] rD,RS1 [rS2]

st[.<size>] rS,eS1,<imml6> Data access
st|.<size>|[.<space>]  rS,rS1,r52 Misaligned access
st[.<size>|[.<space>]  rS5,rS1(rS2] Privilege violation
xmem|.bu] rS,rS1,<imml 6>

xmem[.bul[.<space>] r$,r81,182
xmem[.bu][.<space>| rS,rS1(rS2]

Ider rD,crCRS
ster rS,crCRD
xcr r,eS1,erCRS/D
Privilege violation
flder rD,crFCRS
fster rS,crFCRD
fxcr rD,rS1,crFCRS/D
<opls> For 1d <size>  For st
b - Signed byte b — Byte
.bu — Unsigned byte h — Halfword
h - Signed halfword none = — Word
hu — Unsigned halfword d — Doubleword
none — Word

d — Doubleword
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TABLE 8.9 MC88100 LOAD, STORE, Exchange Instructions
(continued) :

<space>  For  ldst,xmem

.usr — Access user space regardless of mode bit in PSR
none - Access space indicated by PSR MODE bit

* s = Source register.

+ ¢rCRS = Source control register.

+ ¢rCRD = Destination control register.

+ crCRS/D = Source/destination control register.

+ crFCRS = Source floating-point control register.

+ ¢rFCRD = Destination floating-point control register.

+ ¢rFCRS/D = Source/destination floating-point control register.
+ Memory accesses for xmem are indivisible.

- 1d loads a general-purpose register from data memory. There are three operands with
this instruction. Two source operands are used to calculate the address. Three forms of
Id use the three addressing modes available. The (.opt) for 1d specifies the size of data
read from memory.

- The st instructions are similar to Id instructions, except they are used to store source
data.

» The exchange instructions (xmem, xcr, fxcr) swap the contents of a general-purpose
register with data memory or with a control register.

« Consider 1d r47, r31, 0X4. The mode used here is register indirect with unsigned
immediate. If [r31] = 00005000,,, the effective address is computed by adding rsl (r31)
with unsigned 16-bit immediate data. Therefore, the 88100 loads the register r47 with
32-bit data from a memory location addressed by 00005004, r31 is the SP. Therefore,
the access occurs within the stack. Since the immediate data are unsigned, the accessed
address cannot be less than r31. This means that the stack grows toward the lower
address.

« Consider st.b rs, rs1, rs2. This instruction has register indirect with index mode.

The access address is (rs1) + (rs2) where rsl is the base register and rs2 is the index register.
For example, consider st.b r1, 10, r5. If [r5] = 00010200, then since r0 is always 0, the low 8-
bit content of r1 is stored at address 00010200,,. The 88100 ignores any carry generated during
address calculation. Note that in the above 10 is the base address and r5 is the index register.

Finally, consider st.hu rs, rs1 [rs2]. The mode is register indirect with index. The access
address is (rs1) + (rs2)* (operand size). The scaling is specified by surrounding the index
register rs2 by square brackets. Operand size is 1 for byte, 2 for halfword, 4 for word, and 8 for
double word.

As an example, consider st. r5, r31 (r1]. If [r1] = 00000003, [r31] = 00005000, then the
effective address is

00005000 + 4 * 00000003 = 0000500C 4

scaled by 4 for word since the instruction without any option specified means 32-bit word.
Therefore, the above store instruction stores the 32-bit contents of r5 into a memory
location addressed by 0000500C,,.
Table 8.10 shows the integer arithmetic instructions.
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TABLE 8.10 MCB88100 Integer Arithmetic

Instructions

Instructions Exceptions
add[.<opt>]  rD,rS1,rS2 Integer overflow
add rD,rS1,<immi6>

addu[.<opt>] rD,rS1,rS2 None

addu rD,rS1,<immlé6>

subl.<opt>] = rD,rS1,rS2 Integer overflow
sub rD,rS1,<imml6>

subu[.<opt>] rD,rS1,r52 None

subu rD,rS1,<imml6>

mul rD,rS1,r52 None

mul rD,rS1,<imml6>

div rD,rS1,r82

div rD,rS1,<imm16>  Integer divide
divu rD,rS1,r52

divu tD,rS1,<imml6>

Ida [.<size>]  rDaS1,<imm16>

Ida [.<size>]  rD,rS1,r52 None

Ida [.<size>] rD,r51,[r52]
<opt> FOR add/addu/sub/subu

none No carry

.ci Use carry in

.co Propagate carry out

.cio Use carry in and propagate carry out

<size> FOR Ida

b Scale rS2 by 1
Scale rS2 by 2
none Scale r52 by 4
d Scale 152 by 8

i

mul yields correct signed and unsigned results.

Division by zero signals the integer divide exception,

An integer divide exception occurs when cither source operand is negative for div.
Unscaled Ida is functionally equivalent to addu.

Consider add [.<opt>] rd, rsl, rs2. Three options can be used with this instruction as

follows: _ '

* add.CirD, rsl, rs2 adds the 32-bit contents of rs1 with rs2 and the C-bit in processor
status register, and stores the 32-bit result in rD without providing any carry-out, and
thus the C-bit in PSR is unchanged.

* add.Co rD, rs1, rs2 adds the 32-bit contents of sl with rs2 without any carry-in and
stores the result in rD and reflects the carry-out in the C-bit of PSR.

* add.Cio rD, rsl, rs2 adds the 32-bit contents of sl with rs2 and the C-bit from the
PSR and stores the result in rD and reflects any carry-out in the C-bit in the PSR.

Consider add.Cio r2, rl, r5. If the C-bit in the PSR is 0, [r1] = 8000 F102,, [r5] =

F1101100,, then after this add [r2) = 711 10202, and the C-bit in the PSR is set to one.

If no option is specified in an instruction such as add or addu, the carry-in is not

included in addition and also no carry-out from the addition is provided. For example,

consider addu rl, r5, 0XF112. The 16-bit immediate data F1 12,4 is converted to an
unsigned 32-bit number 0000-F112,, and is added with the 32-bit contents of r5. The
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32-bitresultis stored in rl. The carry-out is not provided. The add instruction performs
signed arithmetic. If the result cannot be accommodated in a 32-bit integer, an integer
overflow exception occurs. The immediate 46-bit data in an add instruction are sign-
extended to 32 bits before addition.

The sub instructions are similar to the add instructions. The content of rs2 is subtracted
from the content of rs1 with the C-bit in the PSR as borrow if .Ci is used for <opt>.
mul instructions multiply a 32-bit number (signed or unsigned) in rs2 by a 32-bit
number (signed or unsigned) in rsl and store the low 32-bit result in rD and discard the
upper 32 bits of the result.

div instructions perform signed division while divu carries out unsigned division. divu
(unsigned division) instructions divide the 32-bit content of rs1 by the 32-bit content
of rs2 or a 16-bit immediate value. The 32-bit quotient is stored in rD and the remainder
is discarded. If the divisor is zero, an integer divide exception is taken and rD is
unaffected. div (signed division) operates similarly except that the integer divide excep-
tion is taken if cither the dividend (rsl) or the divisor (rs2) has a negative valuc. The
exception handler must convert the negative value to positive, perform the signed
integer divide, and convert the sign of the result.

Ida is the load address instruction. lda calculates the access address using one of three
indirect addressing modes. Ida loads rD with the access address. Unscaled Ida is func-
tionally equivalent to addu with the same operands.

Table 8.11 lists the 88100 floating-point arithmetic instructions.

The MC88100 permits a mixture of single and double precision source and destination
operands. '
trnc performs “round to zero” rounding.

nint performs “round to nearest” rounding.

int performs rounding specified by the RM field of the FPCR.

fadd adds the contents of rs1 with rs2 and stores the result in rD.

fsub subtracts the contents of rs2 from rs1 and stores the result in rD.

fmul multiplies the contents of rs1 by rs2 and stores the result in rD.

fdiv divides the contents of rsl by rs2 and stores the quotient in rD.

TABLE 8.11  MC88100 Floating-Point Arithmetic Instructions

Instructions Exceptions

fadd.<sizes> rD,rS1,rS2 Floating point reserved operand
fsub.<sizes> rD,rS1,rS2 Floating point overflow

Floating point underflow
(mul.<sizes> rD,rS1,rS2  Floating point inexact
fdiv.<sizes> rD,rS1,r52  Floating point divide by zero
trnc.<sizes>  rD,rS2

nint.<sizes> rD,rS2 Floating point integer conversion overflow
int.<sizes>  rD,rS$2 Floaling point reserved operand
Mt.<sizes> rD,rS2 Floating point inexact

<sizes> FOR fadd/fsub/fmul/fdiv
sss, ssd, sds, sdd, dss, dsd, dds, ddd
<sizes> FOR trnc/nint/int
ss, sd
<sizes> FOR Mt
ss, ds
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TABLE 8,12 MCB88100 Logical Instructions

Instructions _ Exceplions
and [.¢) r,rS1,r82

and [.u] rD,rS1,<imm16>

mask [.u] 1S L<imm16>

or [.c] 11),151,r52 None

or [.u] DS, <imml6>

xor [.c| tD,rS1,r52

xor [.u] DS, <imml6>

* Option .c ones-complements the contents of
152 before performing the operation,

* Option .u performs the specified logical op-
eration between 16-bit immediate data <imm16>
and the high 16 bits of rsl.

The 88100 utilizes hardware to perform these IEEE floating-point computations.

* The 88100 allows single and double precision operands. <sizes> specify the operand
sizes of rD, 51, and rs2 as single or double precision. For example, .ssd means that rD
and rsl are single precision, while rs2 is double precision.

* trng, nint, int, and flt provide conversions between integer and floating-point values, These -
instructions have two operands with one operand having a floating point value and the other
having an integer value. trnc, nint, and int convert a floating-point format to equivalent
format. The difference between them is the type of rounding performed. trne rounds toward
zero, and nint rounds to the nearest value, int rounds as specified by the RM field in FPCR.

* Two exceptions are provided for floating-point instructions. An integer conversion
overflow exception occurs when the operand valuc cannot be expressed as a high word.
A reserved operand exception occurs with certain floating-point values.

+ flt converts a signed 32-bit number into a floating-point format. The integer operand
size is always specified by <sizes> indicating signed word size. A ‘d’ for double or ‘s’ for
single defines the floating-point operand’s precision.

Table 8.12 lists the MC88100 logical instructions.
If the option .u is omitted, the specified logical operation is performed between the 16-bit
immediate data <imm16> and the low-order 16 bits of rsl.

* The mask always affects all 32 bits of rD. The mask logically ANDS the 16-bit immediate
value with the low 16 bits or highest 16 bits of rs1 and clears the other 16 bits to zero.
If the .u optioz: is omitted, the AND is performed with the low-order 16 bits of rs1 and
if .u is included, the AND is performed with the high-order 16 bits of rsl.

* When both operands are registers (rsl and rs2) for AND, OR, and XOR, the 32-bit
logical operation is performed. When the .c option is used, the MC88100 ones-comple-
ments the contents of rs2 before performing the operation.- The MC88100 only per-
forms a 16-bit operation when the second source operand is a 16-bit immediate. The .u
option, when present in AND, OR, and XOR, performs the logical operation between
the high 16-bit value of rs1 and the 16-bit immediate data and then stores the result in
the high 16 bits of rD. The low 16 bits of rs1 are copied into the low 16 bits of rD. If the
.u option is not present, only the low 16 bits of rsl are used in the operation.

Table 8.13 lists the 88100 bit field instructions.

* W5 is five bit width and <05> is a five bit offset.

* The number of bits in a bit field is called width. Width can be from 1 to 32. The least
significant bit in bit field is called the offset. When the sum of width and offset is greater than
32, the bit field may be imagined to extend beyond the most significant bit of the register.
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TABLE 8.13 MC88100 Bit Ficld Instructions

Instructions Exceptions

clr rD,rS1,w5 <05>
clr tD,rS1,r52

set rD,rS1,w5 <05>
set tD,rS1,182

ext rD,rS1,w5 <05>
ext rD,r51,r52

extu rD,rS1,w5 <05> None
extu rD,rS1,rS2

mak - D, rS1w5 <05>
mak rD,r51,152

rot rD,rS1, <05>
rot rD,rS1,r52

ffl rD,rS2 '

o rD,rS2

+ ext and extu affect all 32 bits of rD.

+ ext and extu perform shift right operations
when the width cquals 32,

+ mak clears rD before inserting the bit field.

+ mak performs shift left operations when the
width equals 32. £

+ rot rotales the bit field to the right.

An isolated bit field ends in the least significant bit of a register with an implicit offset of
zero. Bit fields may contain signed and unsigned values. For unsigned isolated bit fields, the
high-order bits in a register are all zero and for signed isolated bit field, they are the 2’s
complement sign bit. In cither case, the entire register contains the word value equivalent to
the isolated bit field value. The 88100 includes instructions to isolate embedded bit field for
arithmetic manipulation. The 88100 instruction moves an isolated bit field back into an
embedded bit field. This is illustrated in the following:

width
31 < »€— offsct —»0
Embedded Bit
bit ficld ficld
31 l 0
Isolated Bit
bit field ficld

Two bit field formats are used. These are literal width with offset and register width with
offsct. The literal width with offset uses immediate width and offset values. An example is set
15, rl, 3 <7>. The destination register is r3; the source bit ficld is 3 bits wide with an offset of
7 in rl. With the Motorola assembler, the offsct must be included in angle brackets < >.

The register width with offset uses threc operands. An example is clr rl, r3, r4. The source
bit field is in r3 with offset and width determined from r4. The MC88100 obtains the offset
from bits 0-4 of r4 and the width from bits 5-9 of r4. The upper 22 bits of r4 are don’t cares.
Both formats use an offset of 0 to 31 and width of 1 to 32 with 32 encoded as 0. The destination
register (rl in this case) stores the final result. The content of the source register (r3) does not
change after the operation. -

ext (signed) and extu (unsigned) instructions extract the register value from rsl and
convert it to an isolated bit ficld in rD. For a bit ficld width of 32 (encoded as 0), ext and
extu perform a shift right operation. The content of rsl is shifted to the right by the
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TABLE 8.14  MC88100 Integer Compare

Instructions  Exceptions

cmp DS, <imml6>
canp rD,rS1,r52
cmp

emp Predicate Bit String

313029 28 27 26 25 242322212019 18 17 16 15 14 131211 109876543
® [o[o[ofe[e[o[e[e[o[o]e[o[e]oe[o]o[o oo [* LA
siofsfijefteft]e

210
S
q

Predicate Bils Bit Set If And Only If;

oq 151 == 152

ne rS1 2152

nt 51 > 1S2

le Sl <=r52| X

I 151 < 152 Signed Evaluation
re 151 >=152

hi 151 > 152

Is 151 <=182 |

lo 151 <52 | Unsigned Evaluation
hs 151 >=152

number of bits specified in the offset and the result is stored in rD. extu performs a
logical shift, while ext performs an arithmetic shift. )

* mak creates an imbedded bit field in rD with an offset specified by an immediate value
or by the content of rs2, The MC88100 stores the least significant bits of rsl in the
imbedded bit ficld. The bits outside the imbedded bit field in rD are cleared to zero. The
mak is the inverse operation of ext and extu.

* The shift left operation may be performed by a bit field width of 32. The offset specifies
the number of positions to be shifted. ‘

* rotreads rsl and rotates it to the right by the number of bits specified in <05> or in bits

0-4 of rs2. The result is stored in rD.

ff1 finds the most significant set bit in rs2 and stores the bit number in tD.

* Ifall bits are cleared, the 88100 loads 32 into rD. fi0 operates similarly but finds the most
significant clear bit. A

Table 8.14 summarizes the 88100 Integer Compare instructions.

* cmp provides integer data comparison. The 88100 compares the rsl contents with either
an unsigned 16-bit immediate number or the content of rs2. The 16-bit immediate data
are converted to a 32-bit value with zeros in the high 16 bits before comparison. The
result of the comparison is stored in rD.

Table 8.15 shows the 88100 floating-point compare instructions. Table 8.16 lists the 88100
conditional branch instructions.

.Aninstruction using the .n option must not be followed by another flow control instruction.
(Error undetected by the MC88100.)

<cond> for bend/tend
eql
nel
gto
1to
gel
le0
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TABLE 8.15 MC88100 Floating-Point Compare

[nstructions Exceptions

femp.sss rD,rS1,r52
femp.ssd rD,r51,r52 Floating point reserved operand
femp.sds rD,r51,r52
femp.sdd rD,r51,r52

femp Predicate Bit String

1130292827 26252423222120191817 161514131211 109876543210

o[o[e[o ofele[o]ele[o[o[ole]o[o]o]o]o]o]ofa aJubel elele]

Predicate Bils Bit Sct If Anel Only If:

i
n

nc operands are not comparable
cp  operands are comparable
o 151 ==152
ne 151 #1152
Bt 151 > 152
le r$1 <=1r52
I 151 < 152
ne 151 >=152
ou (51> 152 0RS1 <0)AND 152> 0
i rS1 <= 152 AND rS1 >= 0 and 152 > 0
in 151 <152 AND 151 > O AND 152 > 0
ob (r51 5= 152 OR 151 <= D) AND 152 > 0

<d16> | signed 16-bit displacement.

<vec9> || 9-bit vector number (0-511).

<b5> || 5-bit bit number (0-31).

The .n option indicates “execute next”. The next instruction executes whether or not the
branch takes cffect.

tbnd traps if the value in rS1 is greater than the value in rS2 or <imm16>, or if rS1 is
negative.

bend tests the content of sl for = 0, # 0, >0, <0, <0, and 20 and branches with 16-bit
signed displacement if the condition is truc. The 16-bit signed displacement is sign-
extended to 32 bits, shifted twice to the left, and adds to addtess of bend to branch with
a displacement of (2-'®) to (2'* - 4) bytes. .n indicates ‘execute next’. If .n is present and
the condition is true, the bend executes the next instruction before taking the branch.
The ‘execute next’ allows the 88100 to branch without (lushing the execution pipeline
and thus provides faster execution.

TABLE 8.16 MC88100 Conditional Flow Control
Instructions

[nstructions Exceptions

bend [.n]  <cond>,rS1,<d16> Hone

Trap vec?
Privilege violation
bbl [.n] <b5>,151,<d 16> None
bboO [.n] <b5>,151,<d 16>
thl <b5>,151,<vecd> T'rap vec9
tho <b52,r81,<vecd> Privilege violation
thnd 51,652

tbnd rSl,<immlé>
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TABLE 8.17 MC88100 Unconditional
Flow Control Instructions

Instructions [ixceptions
br [.n] <d26>
bsr [.n] <d16> None
jmp [.n] rS2
jsr[.n] 152
re Privilege violation

+ <d26> || signed 26-bit displacement.

.0 || “execute next”.

+ bsrand jsr save the return addressin rl.

«“jmp rl” performs return from subrou-
tine,

+"I'he last instruction of typical exception
handlers is rte.

tend also tests the content of rs1 for the condition but traps if the condition is true.
The 88100 includes 512 vectors in the vector table. <vec9> specifies a 9-bit vector
number from 0 to 511. .bb1 (branch on bit set) tests the content of sl for a set bit,
If it is set, the 88100 takes a branch. <b5> specifies a bit number from 0 to 31. bbl
usually follows cmp and femp instructions. tbbl is similar to bb1 except a trap is taken
if the bit is set. bb0 (branch on bit clear) is similar to bb1 except a branch is taken if
the specified bit is 0. tbO is similar to tb1 except a trap is taken if the specified bit is
0.

tbnd (trap on bound check) generates bound check violation if rs1 contents are out
of bounds; 0 is the implicit lower bound. The upper bound is cither unsigned 16 bits
or is contained in rs2. The value of the upper bound is treated as an unsigned
number.

Table 8.17 lists the unconditional jump instructions.

br always unconditionally branches with signed 26-bit displacement with a range of
(27%) to (2*2¢ — 4) bytes.

bsr is an unconditional subroutine call and saves the return address in r1. When [.n] is
specified, the return address is the address of bsr plus 8.

jmp branches to the address specified by the contents of rs2, The 88100 rounds the least
2 bits of rs2 to 00 before branching for alignment. However, the contents of rs2 are
unchanged by the instruction. .jsr is similar to jmp except it is a subroutine jump to an
address specified by the contents of rs2 and also saves the return address in rl.

The 88100 does not provide any return from subroutine instruction. jump rl fetches the
next instruction from the return address saved by bsr or jsr.

rte provides an orderly termination of an exception handler. It uses the shadow registers
to restore the state that existed before the exception. rte can only clear the mode bit in
the PSR and cnsures that the instruction is executed in user mode.

Example 8.12

Show the contents of registers and memory after the 88100 exccutes the following instructions:

i)

ii)

sthii2,13; £5
xmem r2, r2[r3]
Assume the following data:
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(r2] = 0000000,
[r3] = 00002000,

[r51= 00000002,

Solution

Memory

2000 | FEF | 25| 71 | O
2004 | 00 | 01 | 02
2008 | A2 | 71 | 36 | 25

[=]
W b

8000 [ 01 |02 | A2 | 71
8004 [ Bl | 11 | 26 | 05

i) [r3] + [r5] = 2002,,. Consider st.h r2, r3, r5 where .h stands for half-word (16 bits). The
low 16 bits of r2 is stored in 2002, and 2003,,. Therefore

2000 [FF[25]00]04

ii) xmem r2, r2[r3]. This is a 32-bit word operation. Hence, the scale factor is 4. The

effective address

|}

[r2] + 4 * [x3]
0000 0004, + 4 * 00002000,
0000 8004,

Therefore, after the xmem, [r2] = B111 2605,; and [00008004] = 0000 0004 .

Example 8.13

Write an instruction to logically shift right by 3 bits the value of r2 into r5.

Solution

Since r2 is 32 bits wide, extu performs logical right shift and the width 32 is encoded as 0.

extu r5, r2, 0<3>.

Example 8.14

Write an MC88100 instruction sequence to logically AND the 32-bit contents of 17 with

F2710562,, and store the result in r5.

Solution

The instruction “and” logically ANDs 16-bit operands.

and r5, r7, 0x0562 ;

r

’

and.id ©5, ©7; O0xE271 ;

and logically ANDs 0562
with low 16 bits of

r7 and stores result in
low 16 bits of 5

and.u logically ANDs
F271,, with high 16 Dbits
of r7 and stores result
in high 16 bits of x5



564 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Example 8.15

Find an MC88100 instruction to load register r5 with the constant value 9.

Solution
add r5, r0, 9.

Example 8.16

Find an MC88100 instruction to branch to the instruction with label START if the value in r5
is equal to zero.

Solution
bend eqo, 15, START.

Example 8.17

Write an 88100 assembly language program to add two 64-bit numbers in registers r2 r3 and
r4 r5. Store result in r4 r5, ‘

Solution

add r5, r3, r5 ; add low 32-bits
add.cio r4, r2, rd4 ; add next 32 bits with carry

finish br finish

Example 8.18

Write an 88100 assembly language program to perform the following operation:
(A/B) +C* D

where A, B, C, D are stored in r2, r3, r4, r5 as signed 32-bit integers. Assume C*D generates
a 32-bit product. Discard the remainder of A/B. Store the 32-bit result in rG.

Solution

div r8, r2, r3 ; r8 ¢« r2/r3

mul r7, r4, r5 ;X7 ¢ r4*r5

add.co r6, r7, r8 ; store result in r6
finish br finish ; halt

Example 8.19 .

Write a program in 88100 assembly language to compute the area of a circle by using A = r?
where A is the area in 32-bit single-precision to be stored in register r4 and r is the radius of
the circle stored in r2 as a 32-bit floating-point number.

Solution

fmul.sss r4, r2, r2 ; calculate r2
add r5, x0, 7 ; move 7 into r5
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DA2-DA31 < Data Address Code Address » CA2-CA31
DO0-D31 ( Data > < Code C0-C31
DS/ < " Data Supervisor/User ] ) Code Supervisor/User csiU

DRAW < Data Read/Write Code Fetch > CFETCH
BLOCK < Data Bus Lock 2 Code Reply CRO - CRI
\ 4
DED - DE3 < Data By:;: Enable
Data reply - 3
DRO - DR1 J MC88100
Error > ERR
¢ Clock C!_K_
2 Phase Lock Enable PLLEN
< Reset RST
Viei +5V 18 ” Interrupt INT
18 > ;
GND Ground s < PBus Checker Enable PCE

FIGURE 8.14 MCS88100 signal functional diagram,

£lt

.88 -6, b

fdiv.sss 8,

add
£fit

x?, x0,

.ss r9, r7

fmul.sss r4,

finish br

finish

88100 Pins and Signals

Figure 8.14 shows the 88100 pins by functional group. Table 8.18 provides a brief description

of the functions

of these pins.

TABLE 8.18  Signal Index

; convert 22 to floating-point

r4, r5 ; compute r?/7

; move 22 into 7
; convert 22 into floating-point

r8, r9 ; compute nr?

halt

-~

Signal name

Mnemonic

Function

Data address bus

Data bus

Data supervisor/uscr

Data read/write

Data bus lock

DAZ-DA3I

D0-D31

DS/U

DR/W

DLOCK

Provides the 30-bit word address to the data memory space; an entire
data word (32 bits) is always addressed; individual bytes or hall words
are selected using the data byte strobe signals

32-bit bidirectional data bus interfacing the MC88100 to the data
memory space i

This signal selects between the supervisor select data address space and
the user data address space; DS/ U is determined by the value of the
MODE bit in the processor status register, or by the .usr option of the
1d and st instructions

Indicates whether the memory transaction is a read (DT0 = 1) ora
write (DT0O = 0)

The memory lock pin is used by the xmem instruction in conjunction
with the CMMU; when asserted, the CMMU maintains control of the
memory bus during the two xmem accesses; data are guaranteed to be
unaccessed between the read and write accesses of the xmem
instruction
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Signal name

Mnemonic

Function

Data byte enable

Data reply
Code address bus

Code bus

Code supervisor/user
select

Code fetch

Code reply

Error

Clock

Phasc lock enable

Reset

Interrupt

I” bus checker enable

Power supply
Ground

DBE0-DBE3

DRO-DRI
CA2-CA3I

C0-C31

cs/U

CEETCH
CRO-CR1
ERR

CLK

PLLEN

RST

INT

PCE

Vee
GND

Used during memory accesses, these signals indicate which bytes are
accessed at the addressed location; DEBO-DEB3 are always valid
during memory wrile cycles; a memory read is always 4 bytes wide,
and the processor uses the enables to extract the valid data; that is,
during an Id instruction, the memory system should drive all 32 data
signals, regardless of whether 1, 2, or 4 bytes enables are asserted;
when DEBO-DEB3 are negated, the transaction is a null; otherwise,
the transaction is a valid load or store operation

Indicates the status of the data memory transaction

Provides the 30-bit word address to the instruction memory space; all
instructions are 32 bits wide and are aligned on 4-byte boundaries;
therefore, the lower two bits of the address space are not required and
are implied to be zero

This read-only, 32-bit data bus interfaces the MCB8100 to the
instruction memory space; instructions are always 32 bits wide

Sclects between the user and supervisor instruction memory spaces;
when asserted, selects supervisor memory and when negated, user
memory; this signal is determined by the value of the MODE bit in
the processor status register

When asserted, signals that an instruction fetch is in progress; when
negated, the transaction is a null transaction (code P bus idle)

Signals the status of the instruction memory transaction

Asserted when a bus comparator error occurs, ERR indicates that the
desired signal level was not driven on the output pin; ERR is used in
systems implemerting a master/checker configuration of MC88100s

Internal clock normally phase rockcd to minimize skew between the
external and internal signals; since CLK is applied 1o peripherals (such
as CMMU devices), exact timing of internal signals is required 1o
properly synchronize the device to the P bus

Asserted during reset to select phase locking, PLLEN controls the
internal phase lock circuit that synchronizes the internal clocks 1o CLK

Used to perform an orderly restart of the processor; when asserted, the
instruction pipeline is cleared and certain internal registers are cleared
or initialized; when negated, the reset vector is fetched from memory,
with cxecution beginning in supervisor mode

Indicates that an interrupt request is in progress; when asserted, the
processor saves the execution context and begins exccution at the
interrupt exception vector; software is responsible for handling all
recognized interrupts (those between instructions when no higher
priority exception occurs)

Used in systems incorporating two or more MC88100s redundantly;
when negated, the processor operates normally and when asserted, the
processor monitors (but does not drive) all of its outpults except
ERR as inputs

+ 5-volt power supply

Ground connections

The 88100 uses memory-mapped 1/0. The 88100 can readily be interfaced to memory and
I/O chips using its bus control signals.

88100 Exception Processing

The 88100 includes the following exceptions:

* Resct the hardware interrupts which are activated externally via the respective input pins
+ Externally activated errors such as a memory access fault

+ Internally generated errors such as divide by zero

» Trap instructions
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RST asserts Resel requested externally

Y

Since resel initializes the 88100,
RST negates the prior context is not saved. New
context is built.

y

) Supervisor mode, SFU1
PSR <€— 800003FF16 disabled, interrupt masked,
shadow registers frozen

4

Invalidate pipes
clear scorchoard

Discard executing instructions

4
VIR €——0 Vector table at address 0
Y
FIP ¢——0 TFetch instruction from the reset veclor

’

Normal instruction execution begins
1 o i g z 1 3

Pipeline advances with the instruction fetched from the
instruction P-bus address 0

FIGURE 8.15 88100 reset exception flowchart.

Exceptions are processed by the 88100 after completion of the current instructions. When
an exception is acknowledged, the 88100 freezes the contents of shadow and exception time
control registers, disables interrupts and all SUs, and enters the supervisor mode.

Figure 8.15 shows the 88100 reset flowchart. When the 88100 RST pin is asserted, all
outputs go into high impedance state except ERR which indicates no error. Upon hardware
reset, the 88100 initializes the PSR with appropriate data (800003FF, for supervisor mode
operation, SFU1 disabled, interrupt masked, and shadow registers frozen), VBR with zero
value, and fetches two 32-bit instructions from the reset vector 0.

VBR contains the address of the 88100 vector table. The vector table contains 512 vectors.
Each vector corresponds to an exception. Each vector address contains the first two instruc-
tions of its exception routine. The instruction stored in the first vector is usually a branch
instruction such as * br.n START (delayed branch) where START is the starting address of the
exception routine. The second vector is normally used to save the current SP, and therefore the
instruction such as ster r31, ¢rl7 is stored at the second vector. The first instruction of the
exception routine should load the new SP to be used in the exception routine by using an
instruction such as Ider r31, cr18. The last instruction of the exception handling routine should
be rte which returns control to the interrupting routine.

IBM/Motorola/Apple PowerPC 601

This scction provides an overview of the basic features of PowerPC microprocessor. The
PowerPC 601 is jointly developed by Apple, 1BM, and Motorola. Itis available from IBM as
PP 601 and from Motorola as MP’C 601.

The PowerPC 601 is the first implementation of the PowerPC family of Reduced Instruction
Set Computer (RISC) microprocessors. There are two types of PowerPC implementations:
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32-bit and 64-bit. The PowerPC 601 implements the 32-bit portion of the IBM PowerPC
architectures and Motorola 88100 bus control logic. It includes 32-bit effective (logical)
addresscs, integer data types of 8, 16, and 32 bits, and floating-point data types of 32 and 64
bits. For 64-bit PowerPC implementations, the PowerPC architecture provides 64-bit integer
data types, 64-bit addressing, and other features necessary to complete the 64-bit architecture.

The 601 is a pipelined superscalar processor and is capable of executing three instructions
per clock cycle. A pipelined processor is one in which the processing of an instruction is broken
down into discrete stages, such as decode, execute, and writeback (result of the operation is
written back in the register file).

Because the tasks required to process an instruction are broken into a series of tasks, an
instruction does not require the entire resources of an execution unit, For example, after an.
instruction completes the decode stage, it can pass on to the next stage, while the subsequent
instruction can advance into the decode stage. This improves the throughput of the instruction
flow. For example, it may take three cycles for an integer instruction to complete, but it there
are no stalls in the integer pipeline, a series of integer instructions can have a throughput of
one instruction per-cycle. Each unit is kept busy in cach cycle.

A superscalar processor is one in which multiple pipelines are provided to allow instruction
to exccute in parallel. The PowerPC 601 includes three execution units. These are a 32-bit
integer unit (1U), a branch processing unit (BPU), and a pipelined floating-point unit (FPU).

The PowerPC 601 contains an on-chip, 32-Kbyte unified cache (combined instruction and
data cache) and an on-chip memory management unit (MMU), It has a 64-bit data bus and 32-
bit address bus. The 601 supports single-beat and four-beat burst data transfer for memory
accesses. Note that a single-beat transaction indicates data transfer of up to 64 bits. The
PowerPC 601 uses memory-mapped 1/0. Input/Output devices can also be interfaced to the
PowerPC 601 by using 1/0 controller. The 601 is designed by using an advanced, CMOS process
technology and maintains full compatibility with T'TL devices.

The main features of the PowerPC 601 arc compared with a similar pipelined superscaler
RISC microprocessor manufactured by Digital Equipment Corporation, the Alpha 21064.
Finally, typical 64-bit RISC microprocessors are discussed.

PowerPC 601 Block Diagram

Figure 8.16 shows the functional block diagram of the PowerPC 601,
The 601 contains the following on-chip hardware:

RTC (Real Time Clock)

Instruction Unit

Execution Unit

Memory Management Unit (MMU)
Cache Unit

Memory Unit

System Interface

R =0 En oo

RTC (Real Time Clock)

The RTC has normally been an 1/O device completely outside the CPU in the most carlier
microcomputers. While the RTC appearing inside the microcomputer chip is common in
single chip microcomputers, this is the first time the RTC is implemented inside a top-of-the
line microprocessor such as the PowerPC. The implication is that modern multi-tasking
operating systems require time keeping for task switching as well as keeping the calendar date,
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{Instruction Fetch)

RTC Instruction Unit
RTCU Instruction
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Read  Wrile Queue | 4 Words Data
Queuc 78 Words
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, Data 4
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System Interface

569

64-Bit Data Bus (2 Words)
32-Bit Data Bus (1 Word)

FIGURE 8.16 PowerPC 601 microprocessor block diagram.

The 601 real-time clock (RTC) on-chip hardware provides a measure of real-time in terms
of time of day and data with a calendar range of 136.19 years. The RTC contains two registers.
These are the RTC upper (RTCU) reigster and the RTC lower (RTCL) register. The RTCU
register maintains the number of seconds from a point in time specified by software. The
RTCL register counts nanoscconds. The contents of these registers can be copied to any 601

gencral purpose reigster.
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Instruction Unit

The 601 instruction unit computes the address of the next instruction to be fetched. The
instruction unit includes an instruction queuc and a Branch Processing Unit (BPU).

The instruction queue holds up to cight instructions and can be filled from the cache during
a single cycle. :

The BPU searches through the instruction queue for a conditional branch instruction and
tries to resolve it carly in order to achieve zero-cycle branch in nwny instances.

Exccution Unit

The 601 execution unit includes three on-chip hardware components. Theseare floating-point
unit (FPU), integer unit.(U), and branch processing unit (BPU). These units operate indepen-
dently and in parallel.

The FPU includes a single-precision multiply-add (combinatorial) array, the floating-point
status and control register (FPSCR), and thirty-two 64-bit floatin g-pointregisters. The PowerPC
FPU is a cominatorial unit that provides a complete product followed by a sum (with previ-
ously accumulated products) in a single clock cycle. Note that this is the heart of a DSP (Digital
Signal Processor) chip. The implication is that the power PC chip can replace a DSP. IBM has
intentions along these lines for multimedia work in PowerPC based PC’s. It is expected that
while the machine ‘may’ be fast enough, the software and timing complexity will be so great
that distributing the tasks to other processors (like DSPs) can be more likely to result in an
error {ree product. The PowerPC is pipelined so that most floating-point instructions can be
issued back to back. The FPU has no feed-forwarding capabilities. In other words, as a floating
point operation completes, another floating-point instruction that may be waiting for those
results must wait for the data to be written into the register file before decode can begin. The
multiply-add array allows the 601 to implement floating-point opcrations such as multiply,
add, divide, and multiply-add. The 601 FPU supports all 1EEE754 floating-point data types
(normalized, denormalized, NaN, Zero, and infinity) in hardware,

The Integer Unit (1U) executes all integer fnstructions (computational and logical instruc-
tions). Most integer instructions are single-cycle instructions. The [U interfaces with the cache
and MMU for all instructions that access memory. The 1U executes one integer instruction at
a time by utilizing its arithmetic logic unit (ALU), multiplicr, divider, integer exception
register (XER), and the general purpose register (GPR) file.

The branch processing unit (BPU) is used for prediction of 601 conditional march instruc-
tions carly in order to achieve zero-cycle branch. The BPU contains an adder to compute
branch target addresses and three special-purpose, user-control registers namely, the link
register (LR), the count register (CT'R), and the condition register (CR). The LR is used 1o save
the return pointer (computed by the BPU) for subroutine calls. The LR also contains the
branch target address for certain types of branch instructions such as branch conditional to
link register instruction (belrx). The CTR, on the other hand, contains the branch target
address for some other instructions such as branch conditional to count register (beetrx)
instruction. The CR reflects the result of certain operations and provides a mechanism for
testing and branching,

Memory Management Unit (MMU)
The memory management unit (MMU) of the PowerPC 601 supports up to 4 peta byles
(2*752) of virtual memory and 4 Gigabytes of physical memory.
The main functions of the 601 on-chip MMU hardware are to:
* Translate Logical (cffective) addresses to physical addresses for MEIMOry accesscs.
* Translate I/O accesses (most 1/0 accesses are assumed to be memory mapped).
* Translate I/O controller interface accesses.
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« Provides access protection on blocks and pages of memory by the operating system in
relation to the supervisor/user privilege level of the access and in relation to whether the
access is load or store.

The 601 generates three types of accesses that require address translation. These are instuction
accesses, data accesses to memory generated by load and store instructions, and I/O controller
interface accesses generated by load and store instructions,

The 601 MMU supports demand-paged virtual memory. Virtual memory management
allows exccution of programs larger than the size of the physical memory. Demand-paged
means that individual pages arc loaded into physical memory from system memory only when
they are first accessed by an execuling program.

To accomplish the above functions, the 601 MMU hardware contains three components.
These are UTLB (Unified Translation Lookaside Buffer), 1TLB (Instruction Translation
Lookaside Buffer) and BAT (Block Address Translation) array.

For instruction accesses, the 601 MMU first performs a lookup in the four entries of the
I'TLB for both block- and page-based physical address translations. Instruction accesses that
miss in the I'TLB and all data accesses cause a lookup in the UTLB and BAT array for the
physical address translation. In most cases, the physical address translation resides in one of
the TLBs and the physical address bits are readily available to the on-chip cache. However, if
the physical address translation misses in the TLBs, the 601 automatically performs a search
of the translation tables in memory using the information in the table scarch descriptor register
(SDR1) and the corresponding segment register.

Cache Unit

The PowerPC 601 includes a 32-Kbyle, cight-way set associative, unified (instruction and
data) cache. The cache line size is 64 bytes, divided into two cight-word sectors, cach of which
can be snooped, loaded, cached out, or invalidated independently. Note that snooping means
monitoring addresses driven by a bus master to detect the need for coherency actions. The 601
controls cacheability, write policy, and memory coherency. The cache uses a lcast recently used
(LRU) replacement policy.

The instruction unit provides the cache with the address of the next instruction to be
fetched. In the case of a cache hit, the cache returns the instruction and as many of the
instructions following it as can be placed in the cight-word instruction queuc up to the cache
scctor boundary.

The cache tag directory has one address port dedicated to the instruction fetch and load/
store accesses and one port dedicated to snooping transactions on the system interface.

Mecmory Unit

The 601's on-chip memory unit consists of read and write queues that buffer operations
between the external interface and the cache. These operations are comprised of operations
resulting from load and store instructions that are cache misses, read and write operations
required to maintain cache coherency, and table search operations. The read queue contains
two clements and write queuc contains three elements. The read queue receives requests from
the cache unit for arbitration onto the 601 bus interface. Each clement of the write queue can
contain up to cight words (one sector) of data. One clement of the write queue marked snoop
is dedicated to writing cache sectors to system memory aftera modificd sector is hit by a snoop
from another processor or snooping device on the system bus. The other two clements in the
write queuc are used for storing operations and writing back modified scctors that have been
deallocated by updating the queuc. That is, when a cache location is full, the least-recently used
cache scctor is deallocated by first being copied into the write queuc and from there to system
memory.
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System Interface
The 601 system interface includes a 32-bit address bus, a 64-bit data bus, and 52 control and
information signals.

The 601 control and information signals allow for functions such as address arbitration,
address start, address termination, address transfer, data arbitration, data start, and data
termination.

In a multiprocessor system, the system interface supports bus pipclining. The 601 supports
split bus transactions for systems with potential multiple bus masters. Allowing multiple bus
transactions to occur simultancously increases the available bus bandwidth for other activity
and as a result, improves performance.

Byte and Bit Ordering

The'PowerPC 601 supports both big- and little-endian byte ordering. The default byte and bit
ordering is big-endian is shown below:

Most Significant Bit Bit N (MAX)

. Y ’
LIERED el N ]

Big-Endian Bit Ordering

Most Significant Byte

L4
? 2

@m olﬂym 1 l ,Byte N (MAX)

—$ 3

For example, to spccify the ordering of four bytes (ABCD) within 32 bits, the 601 can use
cither the ABCD (big-endian) or DCBA (little-endian) ordering. The 601 big- or little-cndian
modes can be selected by setting the LM bit (bit 28) in the HIDO register.

Note that big-endian ordering (ABCD) assigns the lowest address to the highest-order cight
bits of the multibyte data. On the other hand, little-endian byte ordering (DCBA) assigns the
lowest address to the lowest order (rightmost) 8 bits of the multibyte data.

Note that Motorola 68XXX supports big-endian byte ordering while Intel 80XXX supports
little-endian byte ordering. :

PowerPC 601 Registers and Programming Model

Figure 8.17 shows the register of the PowerPC 601 32-bit implementation. For 64-bit imple-
mentation, most registers are 64-bit wide. :

These registers can be accessed depending on the program’s access privilege level (supervi-
sor or user mode). The privilege level is determined by the privilege level (PR) bit in the
machine status register (MSR). The supervisor mode of operation is typically used by the
operating system while the user mode is used by the application software.

The PowerPC 601 programming model contains user- and supervisor-level registers as
follows:

User-Level Registers
The user-level register can be accessed by all software with either user or su pervisor privileges.
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601-only registers. These registers are not necessarily supported by ather PowerPC processors.

These repisters may be implemented differently on other Power!'C pracessors. The Power'C architecture defines two
I

sets of BAT repisters—cight IBATs and eight DBATs. The 601 implements the IBATs and treats them as unified BATs,
+ RTCU and RTCL repisters can be written only in supervisor mode, in which case different SPR numbers are nsed.
DEC register can be read by user programs by specifying SPR6 in the mispr instruetion (for POWER compatibility).

FIGURE 8.17

PowerPC 601 microprocessor programming model-registers.

The 32 32-bit GPRs (General Purpose registers, GPRO-GPR31) can be used as the data
source or destination for all integer instructions. They can also provide data for generating

addresses.

The 32 32-bit FPRs (Floaling-l’oi'nl registers, FPRO through FPR31) can be used as data
source and destination for all floating point instructions.

The Floating-point status and control register (FPCSR) is a user-control register in the
Floating-Point Unit (FPU). It contains floating-point status and control bits such as floating-
point exception signal bits, exception summary bits, and exception enable bits.
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The condition register (CR) is a 32-bit register, divided into cight 4-bit ficlds, CR0O-CR7.
These fields reflect the results of certain arithmetic operations and provide mechanisms for
testing and branching,.

The remaining uscr-level registers are 32-bit special purpose registers, SPRO, SPR1, SPR4,
SPR5, SPR8, and SPR9.

SPRO is known as the MQ register and is used as a register extension to hold the product for
the multiplication instructions and the dividend for the divide instructions. The MQ register
is also used as an operand of long shift and rotate instructions.

SPR1 is called the Integer exception register (XER). The XER is a 32-bit register that
indicates carries and overflow bits for ir'eger operations. It also contains two ficlds for load
string and compare byte indexed instruction.

SPR4 and SPRS5 respectively represent two 32-bit read -only register and hold the upper
(RTCU) and lower (RTCL) portions of the Real Time Clock (RTC). The RTCU register
maintain the number of second from a time specified by software. The RTCL register main-
tains the fraction of the current second in nanoseconds.

SPR8 is the 32-bit link register (LR). The link register can be used to provide the branch
target address and to hold the return address after branch and link instructions.

SPR9 represents the 32-bit count register (CTR). The CTR can be uscd to hold a loop count
that can be decremented during execution of certain branch instructions. The CTR can also
be used to hold the target address for the branch conditional to count register instruction.

Supervisor-Level Registers

The supervision-level registers can only be accessed by the programs cxecuted with supervisor
privileges. These include the following:

Machine State Register (MSR).  The MSR is a 32-bit register that defines the state of the processor.
When an exception occurs, the bits in MSR are changed according to the exception. The bits in the
MSR indicate processor information such as privilege level and single step trace enable,
The privilege level (PR bit, bit 17 of MSR) indicates whether the 601 can exccute both user
and supervisor level instructions (PR = 0) or can only execute user level instructions (PR = 1),
The single-step trace enable (SE bit, bit 21 of MSR) indicates whether the processor cxecutes
instructions normally (SE = 0) or executes instructions in single step mode (SE = 1).

Segment Registers. The 601 includes sixteen 32-bit registers (SR0-SR15). The bits in the
segment register arc interpreted differently depending on the value of the T-bit (bit 0). For
example, if T= 0 in the sclected segment register, the effective address is a reference to an
ordinary memory segment. On the other hand, if T=1, in the sclected scgment register, the
effective address is a reference to an /0 controller interface segment.

Supervisor-Lever SPRs.  Many of the SPRs can be accessed only by supervisor-level instructions.
Any attempt to access these SPRs with user-level instructions will result in a “privilege exception”.
These registers consist of the following;

* The 32-bit data access exception (DAE)/source instruction service register (DSISR)
defines the cause of data access and alignment exceptions.

* Real-Time clock (RTC) register includes two 32-bit registers namely, RTC upper (RTCU)
and RTC lower (RTCL). The registers can be read from by user-lever software, but can
be written to only by supervisor-level software.

* Decrement register (DEC) is a 32-bit decrementing counter that provides a mechanism
for causing a decrementer exception after a programmable delay. The 601 implements
a separate clock input rather than the processor clock that serves both the DEC and the
RTC facilities.

* The 32-bit Table scarch description register 1 (SDR1) specifics the page table format
used in logical-to-physical address translation for pages.
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The 32-bit machine status save/restore register 0 (SPRO) is used by the 601 for saving
the address of the instruction that caused the exception, and the address to return to
when a return from Interrupt (rfi) instruction is exccuted.

General SPRs, SPRG0-SPRG3, are 32-bit registers provided for operating system use.
‘The 32-bit external access register (EAR) control facility through the External Control
Input Word Indexed (cciwx) and External Control Output Word Indexed (ecowx)
instructions.

The 32-bit processor version register (PVR) is a read-only register that identifies the
version (model) and revision level of the PowerPC processor.

The cight 32-bit block address translation (BAT) register are grouped into four pairs of
BATs (BATOU-BAT3U and BATOL-BAT3L).

The block address translation mechanism in the 601 is implemented as a software

controlled BAT array. The BAT array maintains the address translation information for
four blocks of memory. The BAT array in the 601 is maintained by the system software
and is implemented as a set of cight special-purpose registers (SPRs). Each block is
defined by a pair of SPRs called wpper and lower BAT registers.
* Five 32-bit hardware implementation registers (HID0-HID2, HIDS, and HIDI5) are
provided primarily for implementing debugging features such as break point and single
stepping. HID15 holds the four-bit processor identification tag (PID) that is useful for
differentiating processor in multiprocessor system designs.

8.4.4 PowerPC 601 Memory Addressing: Effective Address (EA) Calculation

The effective address (EA) is the 32-bit address computed by the processor when exccuting a
memory access or branch instruction or when fetching the next sequential instruction.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. If the sum of the effective address and the operand length exceeds the
maximum effective address, a carry from bit is ignored. Arithmetic and logic instructions do
not read or modify memory. To use the contents of a memory location in a computation, and
then modify the same or another memory location, the memory contents must be loaded into
a register, modified, and then written back to the target location using load or store instruc-
tions. This is a consequence of a RISC architecture, Note that the RISC ideology caused the lack
of capability for instructions such as ADD instruction to directly modify memory. ADDs are
register/register operations in a RISC while ADDs are memory operations in a CISC. The
concept of alignment is also applicd more generally to data in memory. For example, 12 bytes
of data arc said to be word-aligned if its address is a multiple of 4. The operand of a single-
register memory access instruction has a natural boundary equal to the operand length. That
is, the “natural” address of an operand is an integral multiple of the operand length.

A memory operand is said to be aligned if it is aligned at its natural boundary, otherwise it
is misaligned. The PowerPC can transfer both aligned and misaligned data between the
processor and memory. However, the placement (location and alignment) of operands in
memory affects the relative performance of memory accesses. Best performance is guaranteed
if memory operands are aligned on natural boundaries

Operands for single-register memory access instructions have the characteristics shown
below:
Memory Operand Address
(if aligned) Length (28-31)
Byte 8 bits XXXX
Half word 2 bytes XXX0
Word 4 bytes XX00

Double word 8 byles X000
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In the above, an “X” indicates that the bit can be 0 or 1 independence of the state of the bits
in the address.
Load and store operations have two types of effective address gencration :

Register Indirect with Immediate Index Mode

Instructions using this mode contain a signed 16-bit index (d operand in the 32-bit instruction)
which is sign extended to 32 bits, and added to the contents of a general purpose register specified
by five bits in the 32-bit instruction (rA operand) to generate the effective address. A zero in the
rA operand causes a zero to be added to the immediate index (d operand). The option to specify
rA or 0 is shown in the instruction descriptions of the 601 user's manual as the notation (rAl0).

Anexample is Ibz rD, d (rA) where rA specifies a general purpose register (GPR) containing
an address, d is the 16-bit immediate index and rD specifies a general purpose register as
destination. Consider Ibz 1, 20 (r3). The effective address (EA) is the sum r(3]0) + 20. The byte
in memory addressed by the EA is loaded into bits 31 through 24 of register 1. The remaining
bits in rl are cleared to zero. Note that registers rl and r3 represent GPR1 and GPR3
respectively.

Register Indirect with Index Mode

Instructions using this addressing mode add the contents of two gencral purpose registers (one
GPRholds an address and the other GPR holds the index). An exampleis Ibzx rD, rA, rB where
rD specifies a GPR as destination, rA specifies a GPR as the index, and rB specifies a GPR
holding an address. Consider [bzx rl, r4, 6. The effective address (EA) is the sum (r4]0) + (r6).
The byte in memory addressed by the EA is loaded into register r1 (24-31). The remaining bits
in register rD are cleared to 0.

PowerPC 601 conditional and unconditional Branch instructions compute the effective
address (EA) or the next instruction address using various addressing modes. A few of them
are described below:

Branch Relative.  Branch instructions (32-bit wide) using the relative mode generate the
address of the next instruction by adding an offset and the current program counter contents.
An example of this mode is an instruction “be start” unconditionally jumps to the address
PC + start.

8.4.4.b.ii Branch Absolute. Branch instructions using this mode include the address of the next

instruction to be excctuted. For example, the instruction ba begin unconditionally branches
to the absolute address “begin” specified in the instruction,

8.4.4.b.iii Branch to Link Register.  Branch instructions using this mode branch to the address com-

puted as the sum of the immediate offset and the address of the current instruction. The
instruction address following the instruction is placed into the link register. For example, the
instruction bl start unconditionally jumps to the address computed from current PC contents
plus start. This return address is also placed in the link register,

8.4.4.b.iv Branch to Count Register.  Instructions using this mode branch to the address contained in

the current register. Consider beetr BO,BI means branch conditional to count register. This
instruction branches conditionally to the address specified in the count register.

The Bl operand specifies the bit in the condition register to be used as the condition of the
branch. The BO operand specifics how the branch is affected by or affects condition or count
registers. Numerical values specifying Bl and BO can be obtained from the 601 manual,
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Note that some instructions combine the link register and count register modes. An ex-
ample is beetr] BO, BI. This instruction first performs the same operation as the bectr and then
places the instruction address following the instruction into the link register. This instruction
is a form of “conditional call” as the return address is saved in the link register.

PowerPC 601 Typical Instructions
The 601 instructions are divided into the following categorics:

Integer Instructions
Floating-point Instructions
Load/store Instructions

Flow control Instructions
Processor control Instructions

= T

Integer instructions operatc on byte (8-bit), half-word (16-bit), and word (32-bit) operands.
Floating-point instructions operate on single-precision and double precision floating-point operands.

Since the PowerPC is based on the RISC as opposed to the CISC architecture, arithmetic and
Logical instructions do not read or modify memory.

Integer Instructions

The integer instructions include integer arithmetic, integer compare, integer rotate and shift,
and integer logical instructions.

The integer arithmetic instructions always sct integer exception register bit, CA, to reflect
the carry out of bit 7. Integer instructions with the overflow enable (OE) bit set will cause the
XER bits SO (summary overflow — overflow bit set due to exception) and OV (overflow bit
set due to instruction execution) to be set to reflect overflow of the 32-bit result.

Some examples of integer instructions are provided in the following.

Note that rS, rD, rA, and B in the following examples are 32-bit general purpose registers
(GPR) of the 601 and SIMM is 16-bit signed immediate define:

+ add D, rA, SIMM |
Performs the following immediate operation: rD ¢ (rA|0) + SIMM; (rA|0) can be cither
(rA) or 0.
+ add D, rA, 1B performs rD < rA + 1B
« add.rD, rA, rB adds with CR update as follows: rD < rA + 1B
The dot suffix enables the update of the condition register.
- SubfrD, rA, rB performs rD ¢ B —rA
- SubfirD, rA, rB performs the same operation-as Subf but updates the condition code
register. : i
« addme rD, rA performs the (add to minus one extended)
Operation: 1D « (rA) + FFFF FFFFH + CA bit in XER
+ Subfme rD, rA performs the (subtract from minus one extended)
Operation: rD ¢ (rA)” -+ FFFF FFFFH + CA bit in XER where (rA)’ represents the ones
complement of the contents of rA.
+ mulhwu D, rA, rB performs an unsigned multiplication of two 32-bit numbers in rA
and rB. The high-order 32 bits of the 64-bit product are placed in rD.
mulhw D, rA, rB performs the same operation as the mulhwu except that the multi-
plication is for signed numbers.
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« mullw rD, rA, rB places the low-order 32 bits of the 64-bit product (rA) * (rB) into rD.

The low-order 32-bit products are independent whether the operands are treated as

signed or unsigned integers. ’

mulli rD, rA, SIMM places the low-order 32 bits of the 48-bit product (rA) * SIMMI16

into rD. The low-order bits of the 32-bit product are independent of whether the

operands are treated as signed or unsigned integers.

« divw D, rA, rB divides the 32-bit signed dividend in rA by the 32-bit signed divisor in
rB. The 32-bit quotient is placed in rD and the remainder is discarded.

« divwu rD, rA, rB is same as the divw instruction except that the division is for unsigned
numbers.

- cmpi crfD, L, rA, SIMM compares 32 bits in rA with immediate value SIMM treating
operands as signed integer. The result of comparison is placed in crfd field (0 for CRO,
1 for CR1 and so on) of the condition register. L = 0 indicates 32-bit operands while L=1
represents 64-bit operands. For example, cmpi 0, 0, rA, 200 compares 32-bits in register
rA with immediate value 200 and CRO is affected according to the comparison.

« xor, rA, 18, rB performs exclusive-or operation between the contents of rS and rB. The
result is placed into register rA.

« extsb rA, rS places bits 21-31 of r$ into bits 2131 of rA. Bit 24 of rS is the sign extended
through bits 0-23 of rA.

« slw rA, rS, rl shifts the contents or 15 left the shift count specified by B [27-31]. Bits
shifted out of position 0 are lost. Zeros are placed in the vacated positions on the right.
The 32-bit result is placed into rA.

« Srw rA, 1S, rB is similar to slw rA, rS, rB except that the operation is for right shift.

8.4.5.b Floating-Point Instructions
Some of the 601 floating-point instructions are provided below:

« fadd frD, frA, frB adds the contents of the floating-point register, frA to the contents of
the floating-point register frB. If the most significant bit of the resultant significand is not
a one, the result is normalized. The result is rounded to the specified precision under
control of the FPSCR register. The result is then placed in frD.

Note that this ‘fadd’ instruction requires one cycle in execute stage, assuming normal opera-
tions; however, there is an exccute stage delay of three cycles if next instruction is dependent.

The 601 floating-point addition is based on “exponent comparison and add by one” for each
bit shifted, until the two exponents arc equal. The two significants are then added algebraically
to form an intermediate sum. If a carry occur, the sum’s significand is shifted right on bit
position and the exponent is increased by one.

- fsub frD, frA, frB performs frA — frB, normalization and rounding of the result are
performed in the same way as the fadd.

« fmul frD, frA, frC performs frD « frA * fiC.

Normalization and rounding of the result are performed in the same way as the fadd.
Floating-point multiplication is based on exponent addition and multiplication of the
significands.

« fdiv frD, frA, frB performs the floating-point division {rD « frA/frB. No remainder is
provided. Normalization and rounding of the result are performed in the same way as
the fadd instruction.

« fmsub frD, frA, frC, frB performs frD « frA * rC - frB. Normalization and rounding

- of the result are performed in the same way as the fadd instruction.
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Load/Store Instructions
Some examples of the 601 load and store instructions are listed below:

« lhzx D, rA, B loads the half word (16- bit) in memory addressed by the sum (rA[0) +
(rB0) into bits 16 through 31 of rD. The remaining bits of rD are cleared to zero.

« sthux S, rA, B stores the 16-bit half word from bits 16-31 of register rS in memory
addressed by the sum (rA|0) + (rB). The value (rA|0) + rB is placed into register rA.

Imw rD, d(rA) loads n (where n = 32-D and D = 0 through 31) consecutive words
starting at memory location addressed by the sum (rA[0) + d into the general purpose
register specified by rD through r31.

« stmu rS, d(rA) is similar to Imw except that the stmw stores n consecutive words.

Flow Control Instructions

Flow control instructions include conditional and unconditional branch instructions. An
example of one of these instructions is provided below:

« be (branch conditional) BO, BI, target branch with offset target if the condition bit in
CR specified by bit number Bl is true (The condition ‘true’ is specified by a value in BO).

For example, be 12, 0, target means that branch with offset ta rget if the condition specified
by bit 0 in CR (BI = 0 indicated result is negative) is true (specified by the value BO = 12
according to Motorola PowerPC 601 manual).

Processor Control Instructions

Processor control instructions are used to read from and write to the machine state register
(MSR), condition register (CR), and special status register (SPRs). Some examples of these
instructions are provided below: ‘

« mifcr rD places the contents of the condition register into rD.
« mtmsr 1S places the contents of rS into the MSR. This is a supervisor-level instruction.
+ mfmsr rD places the contents of MSR into rD. This is a supervisor-level instruction.

PowerPC 601 Exception Model

All 601 exceptions can be described as cither precise or imprecise and cither synchronous or
asynchronous. Asynchronous exceptions are caused by events external to the processor’s
execution. Synchronous exceptions, on the other hand, are handled preciscly by the 601 and
are caused by instructions; precise exception means that the machine state at the time the
exception occurs is known and can be completely restored. That is, the instructions that invoke
trap and system call exceptions complete execution before the exception is taken. When
exception processing completes, execution resumes at the address of the next instruction.
An example of a maskable asynchronous, precise exception is the external interrupt. When an
asynchronous, precise exception such as the external interrupt occurs, the 601 postpones its
handling until all instructions and any exceptions associated those instructions complete execution.
System reset and machine check exceptions are two nonmaskable exceptions that are
asynchronous and imprecise. These exceptions may not be recoverable or may provide a
limited degree of recoverability for diagnostic purpose.
Asynchronous, imprecise exceptions have the highest priority with the synchronous, precise
exceptions the next priority and the asynchronous, precise exceptions have the lowest priority.
The 601 exception mechanism allows the processor to change automatically to supervisor
state as a result of exceptions. When exceptions occur, information about the state of the
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FIGURE 8.18 System interface.

processor is saved to certain registers rather than in memory as is usually done with other
processors in order to achieve high speed. The processor then begins execution at an address
(exception vector) predetermined for each exception. The exception handler at the specified
vector is then processed with processor in supervisor mode.

601 System Interface

Figure 8.18 shows the system. interface signals of the PowerPC 601,

The pins and signals of the PowerPC 601 include a 32-bit address bus, a 64-bit data bus, and
52 control and information signals.

The 601 control and information signals include the address arbitration, address start,
address transfer, transfer attribute, address termination, data arbitration, data transfer, and
data signals. Test and control signals provide diagnostics for selected internal circuitry.

The processor supports multiple master through a bus arbitration scheme that allows
various devices to compete for the shared resource. The arbitration logic can implement
priority protocols and can park masters to avoid arbitration overhead. ,

The following scctions describe the 601 bus support for memory and /O controller inter-
face operations.

Memory Accesses

Memory accesses allow transfer sizes of 8, 16, 24, 32, 40, 48, 56, or 64 bits in one bus clock cycle.
Data transfers occur in either single-beat transactions or four-beat burst transactions. A single-
beat transaction transfers as much as 64 bits. Single-beat transactions are caused by non cached
accesses that access memory directly. An example is reading and writing when the cache is
disabled. Burst transactions, which always transfer an entire cache sector (32 bytes), are
initiated when a sector in the cache is read from or written to memory.

I/0 Controller Interface Operations

Both memory and [/O accesses can use the same bus transfer protocols. The 601 also has the
ability to define memory areas as /O controller interface arcas.

The 601 uses TS pin for memory-mapped accesses and XATS pin for I/O controller
interface accesses.

601 Signals
The 601 signals are grouped as follows:
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1. Address arbitration signals — these signals provide arbitration for address bus master-
ship.

2. Address transfer start signals — these signals indicate that a bus master has begun a
transaction on the address bus.

3. Address transfer signals — these signals consisting of the address bus, address parity,
and address parity signals, are used to transfer the integrity of the transfer.

4, Transfer attribute signals — these signals provide information about the type of trans-
fer, such as the transfer size, and whether the transaction is bursted or cache-inhibited.

5. Address transfer termination signals — these signals are used to acknowledge the end
of the address phasc of transaction. They also indicate whether a condition exists that
requires the address phase to be replaced.

6. Data arbitration signals —.these signals arc used to arbitrate for data bus mastership.
7. Data transfer signals — these signals consisting of the data bus, data parity, and data parity
error signals, are used to transfer the data and to ensure the integrity of the transfer.

8. Data transfer termination signals — In a single-beat transaction, these signals indicate
the end of the tenure, while in burst access, the data termination signals apply to
individual beats and indicate the end of the tenure only after the final data beat.

9. System status signals — these signals include the interrupt signal and reset signals.

10. Clock signals — these signals determine the system clock frequency. These
signals can also be used to synchronize multiprocessor systems.

11. Processor state signals — these signals are used to set the reservation coherency bit. The
601 uses this bit for atomic memory updating by using its atomic instructions. Note that
in multiprocessor systems, a mechanism is required to allow programs to manipulate
shared data in an indivisible manner so that when such an operation is underway,
another processor cannot perform the same operation. In order to implement higher-
level synchronization mechanisms, such as locks and semaphores, atomic instructions
are included in the 601. Memory can be updated atomically by setting a reservation on
the load instructions (lwarx) and checking that the reservation is still valid (stwex) is
executed.

The reservation (RSRV) output signal is always driven by bus clock cycle and reflects the
status of the reservation coherency bit in the reservation address register.

PowerPC 601 Vs. Alpha 21064

Both Motorola/IBM{Apple PowerPC 601 and Digital Equipment Corporation’s Alpha 21064
are RISC-based superscalar microprocessors. That is, they can execute two or more instruc-
tions per cycle.

The PowerPC 601 contains powerful instructions while the Alpha 21064 includes a simpli-
fied instruction set with a very fast clock.

Both the PowerPC 601 and the Alpha are based on load/store architectures. This means that
all instructions that access memory are either loads or stores, and all operate instructions are
from register to register. They both have 32-bit fixed-length instructions along with 32 integer
and 32 floating-point registers.

The PowerPC 601 includes two primary addressing modes. These are register plus displace-
ment and register plus register. In addition, the 601 load and store instructions perform the
load or store operation and also modify the index register by placing the just-computed
effective address in it. The Alpha 21064, on the other hand, has only one primary addressing
mode called register plus displacement. In Alpha, load and store instructions do not update the
index register.

There are significant differences in the way the two microprocessors handle branching. In
both architectures, branch target addresses are normally determined by using program counter
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TABLE 8.19  Summary of Implementation Characteristics

Characteristic PowerC 601 Alpha 21064
Technology 0.6-micron CMOS  0.75-micron CMOS
Dice size 1.09 ¢m square 2.33 cm square
Transistor count 2.8 million 1.68 million

Total cache (instruction + data) 32 Kbyte 16 Kbyte
Package 304-in QFP 431-pin PGA
Clock frequency 50 and 66 Mhz 150 to 200 Mhz

relative mode. That is, the branch target address is determined by adding a displacement to the
program counter. However, as mentioned before, conditional branches in the 601 may test
ficlds in the condition code register and the contents of a.special register called the count
register (CTR), A single 601 branch instruction can implement a loop-closing branch by
decrementing the CTR, testing its value, and branching if it is nonzero.

In the Alpha 21064, on the other hand, conditional branches test a general-purpose register
relative to zero or by low-order bit (a 1 or 0 in low order bit respectively mean odd or even)
odd/even register contents. Thus, results of most instructions can be used directly by condi-
tional branch instructions, as long as they are tested against zero or odd/even.

There are also differences in the way the return address is saved by certain control transfer
instructions such as the subroutine call. For example, special jump instructions are used to
save the return address in a general-purpose register. The 601, on the other hand, does this in
any branch by sctting the link (LK) bit to one. The return address is saved in the link register.

Next, the implantation characteristics of the 601 and 21064 are considered. Table 8.19
summarizes these differences.

Both the PowerPC 601 and Alpha 21064 utilize soplict*=ated pipelines. The 601 uses
relatively short independent pipelines with more buffering while the 21064 includes longer
pipelines with less internal buffering. The 601 does a lot of computation in each pipe stage.
Furthermore, the clock of the Alpha is approximately three times faster than the 601.

The two microprocessors utilize different cache memory designs. For example, the 601 has
a unified (combined) 32-Kbyte cache. That is, instructions and data reside in the same cache
in the 601. The 21064, on the other hand, has scparate data and instruction caches of 8 Kbytes
each. Therefore, the 601 is expected to have a higher hit rate than the 21064.

Finally, the 601 offers high performance by utilizing sophisticated design tricks. The 21064
gains performance by design simplicity. For example, the 601 includes powerful instructions
such as floating-point multiply-add and update load/store that perform more tasks with fewer
instructions. The 21064 architecture’s simplicity, on the other hand, lends itself better to very
high clock rate implementations.

64-Bit RISC Microprocessors’

Typical 64-bit RISC microprocessors include the Alpha 21164 (Digital Equipment Corpo-
ration), the PowerPC 620 (Motorola/IBM/Apple) and the Ultrasparc (Sun Microsystems).
These 64-bit processors are ideal candidates for data crunching machines and high-perfor-
mance desktop systems/workstations.

The number of instructions issued per cycle has been increasing steadily. For example, the
PowerPC 601 can issue instructions to the integer, floating-point, and branch-processing units
in one and the same cycle. The 64-bit RISC microprocessors can typical issue four instructions
to six independent units or more.

These 64-bit processors include multiple integer units which allow multiple integer opera-
tions in each cycle. For example, the PowerPC 620 contains three integer units — two for
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single cycle and one for multiple cycle operations. Some 64-bit RISC processors such as the
Ultrasparc include multiple floating-point units.

The clock frequencies of the 64-bit RISC microprocessors vary from 133 MHz to 300 MHz.
These processors can issue a maximum of four instructions per cycle. In order to keep the data
and instructions flowing, many 64-bit RISC processors such as the Alpha 21164 are provided
with 128-bit data bus. The Alpha 21164 is the fastest microprocessor available tod:v with a
maximum of 300 MHz clock. The Alpha 21164 is a four-way superscalar proces:o..

Table 8.20 compares the various features of typical 64-bit RISC microprocessors.

TABLE 8.20 Comparison of Various Features of Typical 64-bit RISC Microprocessors

Digital Equipment Motorola/IBM/Apple  Sun Microsystems
Fealures Corp. Alpha 21164 PowerPC 620 Ultraspare
Clock speed 300 MHz 133 MHz 167 MHz
Millions of transistors 9.3 7 38
On-chip data/instruction  8/8 Primary 32/32 16/16
cache, K Byte 96 Unilied sccondary
Power, W 50 30 30
Data bus size 128-bit 128-bit : 128-bit
Address bus size 40-bit 40-bit 41-bit
Maximum number of 4 4 4
instructions per cycle
Number of independent 4 0O 9

units (integer, floating-
point, ctc.)

Questions and Problems

8.1 Summarize the basic features of RISC microprocessors. Identify how some of these
features are implemented in the 80960SA/SE and 88100.

8.2 What operations are controlled by the 80960SA/SB and 88100 register scorcboard?

8.3 Compare the main on-chip features of the 80960SA/SB with those of the 88100. Com-
ment on the floating-point and real data types.

8.4 Identify the 80960SA/SB and 88100 stack pointers.

8.5 Compare 80960SA/SB cache with the 88200 cache.

8.6 Assume a 80960SA/SB with the condition code 010. Write an instruction to sct bit 20 to
one in register g8 and store the result in g8.

8.7 What happens after exccution of the following instructions:
i) cmpo oxl10, r7
ii) cmpinco ri2, g4, g7

8.8 Find the contents of 18 with (r2) > (r4) after the following 80960SA/SB instruction
sequence is executed:

compo r2, r4

testg r8
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8.9 TFind 80960 single instructions which are equivalent to the following instruction se-
quences:
i) cmpi 0,g0
ble begin
ii) chkbit 1, g8
be start

8.10  For the following 80960 instruction, what will be the size of the result: addr ro, r1, fpl.

8.11 Assume 80960. Find the operation performed along with the register in which the result
is stored after execution of cach of the following instructions:
i) logbnrl 8, fp0
ii) logepr 10, r4, fp0
iii) modirl, r2, r3
iv) notand g3, g4, g6
v) sqrtrl r2, fpl

8.12 What functions are performed by the following 80960SA/SB pins: BE-BE;, BLAST/
FAIL, A(1:3).

8.13 Discuss the 80960SA/SB interrupts.

8.14 Describe briefly the functional blocks included in the 88200. What does the 88200
provide to an 88100 system?

8.15 What is the maximum number of 88200s that can be present in one 88000 processing
mode?

8.16 How many pipelines are in the 881007

8.17 Since there is no return from subroutine instruction, how does the 88100 return from
subroutine?

8.18 What 88100 floating-point control registers can be accessed by user mode programs?

8.19 Show the contents of registers and memory locations after the 88100 executes the
following instructions:
1) sthrl; 2.0
ii) Id.hrl, r2, 0X0A
Assume [r1] = 0000 0020,,, [030A] = 2018,
[r2] = 0000 0300,
All numbers arc in hexadecimal.

8.20 Find the contents of r5 after exccution of the following 88100 instructions:
i) mask.u r5, r2, OXFFFF
ii) mask 5, r2, 16
Assume [r5] = AAAA 0100,
[r2] = 0020 05FF 4
[r6] = 7777 7777

prior to execution of the above instructions.
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All numbers are in hexadecimal.

8.21 What is the effect of the 88100 tb1 10, r1, 200 instruction?

8.22  What are the functions of the 88100 CS/U, BE0-BE3, C0, and C2 pins?

8.23 What 88100 registers arc affected by hardware reset?

8.24 Discuss briefly the 88100 exceptions.

8.25 Write an 80960 or 88100 assembly language instruction sequence to logically shift the
content of r2 into rl to the right by 8 bits.

8.26 Write an assembly language program in 80960 or 88100 assembly language to subtract
2 64-bit number in r4 r5 from another 64-bit number in r0 rl. Store result in 10 rl.

8.27 Write a program :n 80960 or 88100 assembly language to compute the volume of a
sphere V = 4/3 mur® where 1 is the 32-bit radius stored in register r2.

8.28 Write a program in 80960 assembly language to perform the following: A + (B/C) where
A is an 80-bit floating-point number contained in a floating-point register. B and C are
respectively 64-bit floating-point numbers stored in r2 r3 and r4 15 respectively. Store 80-bit
result in a floating-point register. Discard the remainder of B/C.

8.29 Repeat 8.28 for the 88100 except that A, B, and C arc 64-bit floating-point numbers.
Assume that the number A is in fpl. Store the result in fp2.

8.30 Write program in 80960 or 88100 assembly language to compute the roots of the
quadratic equation ax? + bx + ¢ = 0 by using

_—bi«fbl— dac

X=
2a

Usc registers of your choice.

8.31 Discuss the types of PowerPC architectures.

8.32 How many exccution units arc included in the PowerPC 6017 Comment.
8.33 How docs the PowerPC 601 achieve zero-cycle branch?

8.34 What do you mean by the unified cache of the 6012 What is its size?
8.35 What is meant by the snoop controller of the 6012 What is its purpose?
8.36 List the user-level and supervisor-level registers of the 6017

8.37 How does the 601 MSR indicate the following:

i) The 601 executes both the user- and supervisor-level instructions.
ii) The 601 executes only the user-level instructions.



586 Microprocessors and Microcomputer-Based System Design, 2nd Edition

8.38  Explain the operation performed by cach of the following 601 instruction:
i) bz r2,30(r4)
i) Ibzxrl,r2
i) add.r1,r2,r3
iv) divwu r2,r3,r4
v) extsbrl,r2
vi) fsub fr2,(r3,Mr4

8.39  Repeat Examples 8.13 through 8.19 using the 601 assembly language instructions of the
PowerPC.

8.40 Discuss bricfly the exceptions included in the PowerPC 601.
' 8.41 What is the purpose of the reservation coherency bit of the 6012
8.42  Compare the basic features of the 601 with the Alpha 21064.

8.43  Compare the basic features of the' Alpha 21164, the PowerPC620, and the Ultrasparc.
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2.1.1

PERIPHERAL
INTERFACING

This chapter describes interfacing characteristics of a microcomputer with typical peripheral
devices such as a hexadecimal keyboard, display, DMA controller, printer, CRT (Cathode Ray
tube) terminal, and coprocessor.

Keyboard Interface

Basics of Keyboard and Display Interface to a Microprocessor

A common method of entering programs into a microcomputer is via a keyboard. A popular
way of displaying results by the microcomputer is by using seven segment displays. The main
functions to be performed for interfacing a keyboard are

1. Sense a key actuation.
2. Debounce the key.
3. Decode the key.

Let us now elaborate on the keyboard interfacing concepts. A keyboard is arranged in rows
and columns. Figure 9.1 shows a 2 x 2 keyboard interfaced to a typical microcomputer. In
Figure 9.1, the columns are normally at a HIGH level. A key actuation is sensed by sending a
LOW to each row one at a time via PAO and PAL of port A. The two columns can then be input
via PB2 and PB3 of port B to see whether any of the normally HIGH columns are pulled LOW
by a key actuation. If so, the rows can be checked individually to determine the row in which
the key is down. The row and column code in which the key is pressed can thus be found.

The next step is to debounce the key. Key bounce occurs when a key is pressed or released
— it bounces for a short time before making the contact. When this bounce occurs, it may
appear to the microcomputer that the same key has been actuated several times instead of just
once. This problem can be climinated by reading the keyboard after 20 ms and then verifying
to sce if it is still down. If it is, then the key actuation is valid.

The next step is to translate the row and column code into a more popular code such as
hexadecimal or ASCIL This can casily be accomplished by a program.

There are certain characteristics associated with keyboard actuations which must be consid-
cred while interfacing to a microcomputer. Typically, these are two-key lockout and N-key
rollover. The two-key lockout takes into account only one key pressed. An additional key

587
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FIGURE 9.1 A 2 x 2 keyboard interfaced to a microcomputer.

pressed and released does not generate any codes. The system is simple to implement and most
often used. However, it might slow down the typing since each key must be fully released
before the next one is pressed down. On the other hang, the N-key rollover will ignore all keys
pressed until only one remains down. '

Now let us elaborate on the interfacing characteristics of typical displays. The following
functions are to be typically performed for displays:

1. Output the appropriate display code.
2. OQutput the code via right entry or left entry into the displays if there is more than one

display.

The above functions can casily be realized by a microcomputer program. If there is more
than one display, they are typically arranged in rows. A row of four displays is shown in Figure
9.2. In the figure, one has the option of outputting the display code via right entry or left entry.
If it is entered via right entry, then the code for the most significant digit of the four-digit
display should be output first, then the next digit code, and so on. Note that the first digit will
be shifted three times, the next digit twice, the next digit once, and the last digit (least
significant digit in this case) does not need to be shifted. The shifting operations are so fast that
visually all four digits will appear on the display simultancously. If the displays are entered via
left entry, then the least significant digit must be output first and the rest of the sequence is
similar to the right entry.

Right Left
entry — ] < entry

FIGURE 9.2 A row of four displays.
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FIGURE 9.3 Nonmultiplexed hexadecimal displays.

‘Two techniques are typically used to interface a hexadecimal display to the microcomputer.
These are nonmultiplexed and multiplexed. In nonmultiplexed methods, cach hexadecimal
display digit is interfaced to the microcomputer via an I/O port. Figure 9.3 illustrates this
method.

BCD to seven-segment conversion is done in software. The nricrocomputer can be pro-
grammed to output to the two display digits in sequence. However, the microcomputer
executes the display instruction sequence so fast that the displays appear to the human eyce at
the same time.

Figure 9.4 illustrates the multiplexing method of interfacing the two hexadecimal displays
to the microcomputer.

In the multiplexing scheme, seven-segment code is sent to all displays simultancously.
However, the segment to be illuminated is grounded.

0 b L
‘ L
Port A ==
7
i ; GND
GND
1 'a
Port B
Microcompuler 7

FIGURE 9.4 Multiplexed displays.
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The keyboard and display interfacing concepts described here can be realized by either
software or hardware. In order to relieve the microprocessor of these functions, microproces-
sor manufacturers have developed a number of keyboard/display controller chips such as the
Intel 8279, These chips are typically initialized by the microprocessor. The keyboard/display
functions are then performed by the chip independent of the microprocessor. '

The amount of keyboard/display functions performed by the controller chip varies from -
one manufacturer to another. However, these functions are usually shared between the con-
troller chip and the microprocessor.

8086 Keyboard Interface

In this section, an 8086-based microprocomputer is designed to display 4 hexidecimal digits
entered via a keypad (16 keys). Figure 9.5 shows the hardware schematic. '

Hardware

The 8086/8255 microcomputer is designed using standard 1/0. For simplicity, only seven
address lines are used to directly access the system memory. Therefore, only 128 bytes of
system memory can be accessed by the microcomputer. Furthermore, RAM is not available in
the system, although RAM should have been used in the design for interrupts and subroutines.
However, a small system like this will work without any RAM. Finally, only 8-bit even
addressed 1/0 ports are available in the system. The ports are configured as follows:

I. Port A is configured as an input port to receive the row-column code
2. Port B is configured as an output port to display th key(s) pressed
3. Port Cis configured as an output port to control the row-column code

Table 9.1 shows memory and I/O maps.

The system is designed to run at 2 Mhz Debouncing is provided to avoid unwanted
oscillation caused by the opening and closing of the key contacts. In order to ensure stability
of the input signal, a delay of 20 msec is used for debouncing the input.

The following diagram shows the internal layout of the keypad used:
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9.1.2.b Software

The program begins by performing all necessary initializations. Next, it makes sure that all the
keys are opened (not pressed). A delay loop of 20 msec is included for debouncing. The initial
loop counter values is calculated as follows:

mov  reg/imm (4 cycles)
loop  label (19/5 cycles)
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TABLE 9.1 Memory and I/O Maps

Memory Map:

Aw Aw Ay A A Ay Ay Ay Ay Ay AL A A A A AL A A A A,
Iow % o1 % 1 ¥ @11 % 1 o d 8 o o 0 @ o
L oL 1 % I o1 o® F 1 @ § oW o9 0 @ @ ¢ @ .i
O I L L+ L I o 0 6 20 o o & @
B g S O S S VRN I S I 1 12 3 f 1 &' ®©
b B [ i W 1 L1 1 S S| R O T
/O Map:

Ay A A A A A A A Port Sclected Hex

1 I 1 1 1 0 0 0 PortA F8

1 1 1 1 1 0 1 0 PonBb FA

1 1L 1 1 1 1 0 0 rencC FC

o1 4 1 4 ¥ 00 CSR BE

\

20 msec * (2,000,000 cycle/msec) = 40,000 cycles
4+ 19* (count = 1) + 5 = 40,000

— count = 38D2,,

The next three lines detect for a key closure. If a key closure is detected, it is first debounced.
It is necessary to determine exactly which key is pressed. To do this, a sequence of row-control
codes (OFH, OEH, 0DH, 07H) are output via Port C. The row-column code is input via Port
A to determe if the column code changes corresponding to cach different row code. If the
column code is not OFH (changed), the input key is identified. The program then indexes
through a look-up table to determine the row-column code. If the code is found, the corre-
sponding index value which equals to the input key’s face value (a single hexidecimal digit) is
buffered. Since the microcomputer does not have access to any RAM, the input key's face value
along with three previously entered values are saved into register bx. The upper 4 bits of bh
correspond to the most significant digit (least current input), while the lower 4 bits correspond
to the next significant digit. The upper 4 bits of bl correspond to the second to the least
significant digit. Finally, the lower 4 bits of bl correspond to the least significant digit (most
current input). All four digits arc output via Port B (one digit at a time). In other words, the
displays (four TIL311’s) are refreshed for every key input. The program is written such that it
will continuously scan for input key and update the display for cach new input. Note that
lower-casc letters are used to represent the 8086 registers in the program. For example, al, ah,
and ax in the program represent the 8086 AL, AH, and AX registers, respectively.
A listing of the 8086 asscmbly language program is given in the following:

.MODEL SMALL

.8086 ; restrict to BOB6
instructions only!!!
0000 .CODE ; ASSUME CS:CODE, DS:DATA
0000 main PROC
= 00F8 PORTA EQU OF8h ; hex keyboard input (row/
coln)
= 00FA PORTB EQU OFAh ; LED displays/controls
(c3=-c0)
= 00FC PORTC EQU OFCh ; hex keyboard row controls
0O0FE CSR EQU OFEh ; control status register
= 00FO OPEN EQU O0FOh ;i row/coln codes if all

keys are opened
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0000

0000 BO
0002 E6
0004 2A
0006 E6
0008 2B

000A
000A 2A
000C E6
000E
000E E4
0010 3C
0012 75
0014 B9
0017 E2
0019
0019 EA4
001B 3C
001D 74
001F B9
0022 E2
0024 BO
0026 F8
0027
0027 DO
0029 BA
002B E6
002D E4
002F 8A
cl

0031 24
0033 3C
0035 75
0037 BA
0039 F9
003A EB
003C
003C BE
003F Bl
0041
0041 46

0042 2E:

0075 R
0047 EO
0049 Bl

004B D3
004D 03
004F 8A
0051 24
0053 D2

start:
90 mov al, 90h
FE out CSR, al
co sub al, al
FA out PORTB, al
DB sub bx, bx
scan-key:
co sub al, al
FC out PORTC, al
key-close:
F8 in al, PORTA
FO cmp al, OPEN
FA jnz key-close
38D2 mov cx, 38d2h
FE delayl: loop delay 1
key-open:
F8 in al, PORTA
FO cmp al, OPEN
FA jz key-open
38D2 mov cx, 38d2h
FE delay2: loop delay2
FF mov al, OFFh
clc
next-row:
DO rel al, 1
c8 mov cl, al
FC out PORTC, al
F8 in al, PORTA
DO mov dl, al
OF and al, OFh
OF cmp al, OFh
05 jnz decode
a8 mov al, cl
stc
EB jmp next-row
decode:
FFFF mov si, -1
0F mov cl, OFh
search:
inc si
3A 94 cmp dl,
[TABLE+si]
F8 loopne search
04 mov cl, 04h
E3 shl bx, cl
DE add bx, si
c? mov al, bh
FO and al, OFOh
ES8 shr al, cl

593

config PorthA,B,C as i/o/o

clear al

enable/initialize displays

clear bx (content for
displays) '

clear al
set row controls to zero

read PORTA

Are all keys opened?
repeat if closed
delay of 20 msec
debounce key opened

read PORTA .

Are all keys closed?
repeat if opened
delay of 20 msec
debounce key closed
set al to all one's

clear carry

set up row mask

save row mask in al
set a row to zero
read PORTA

save row/coln codes in

mask row code

Is coln code affected?
if yes, decode coln code
restore row mask to al
if no, set carry

check next row

initialize index register
set up counter

increment index

index thru table of
codes

loop if not found

amount to be shifted (1
digit)

advanced [bx] by 1 digit

append current digit

extract 1lst/2nd digits

mask 2nd digit

move digit to a3-al
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0055 0cCc 70 or al, 70h ; enable /L3 (set low)
0057 E6 FA out PORTB, al ; display 1st digit (MSD)
0059 8A C7 mov al, bh ; extract 1st/2nd digits
005B 24 OF and al, OFh ; mask 1st digit
005D 0OC BO or al, OBOh ;{ enable /L2 (set low)
005F E6 FA : out PORTB, al ; display 2nd digit
0061 8a C3 mov al, bl ; extract 3rd/4th digits
0063 24 FO and al, OFOh ;. mask 4th digit
0065 D2 EB8 shr al, cl ; move digit to a3-al
0067 0OC DO or al, O0DOh ; enable /L1 (set low)
0069 E6 FA out PORTB, al ; display 3rd digit
006B BA C3 mov al, bl ; extract 3rd/4th digits
006D 24 OF ' and al, OFh ; mask 3rd digit
006F 0OC EO or al, OEOh ; enable /L0 (set low)
0071 E6 FA out PORTEB, al ; display 4th digit (LSD)
0073 EB 95 . Jmp scan-key ; return to scan another
; key input
0075 E7 TABLE DB OE7h ; code for 0
0076 EB DB 0EBh ; code for 1
0077 ED DB 0EDh ; code for 2
0078 EE : DB OEEh ; code for 3
0079 D7 DB 0D7h ; code for 4
007A DB DB O0ODBh ; code for 5
0078 DD DB 0DDh ; code for 6
007C DE DE ODEh ; code for 7
007D B7 DB 0B7h ; code for 8
O07E BB DB 0OBBh ; code for 9
007F BD DB O0BDh ;. code for A
0080 RBE DB OBEh ; code for B
o081 77 " DB 77h ; code for C
0082 7B DB 7Bh i code for D
0083 7D DB 7Dh ; code for E
0084 7E DB 7Eh ; code for F
0085 B8 4C00 mov ax, 4C00h ; these two lines are
3 required

0088 CD 15 int 21 ; to exit DOS
008A main ENDP ; end of procedure

END main ; end of program

9.2 DMA Controllers

As mentioned before, direct memory access (DMA) is a type of data transfer between the
microcomputer’s main memory and an external device such as disk without involving the
microprocessor. The DMA controller is an LSI (Large-Scale Integration) chip in a microcom-
puter system which supports DMA-type data transfers. The DMA controller can control the
memory in the same way as the microprocessor, and, therefore, the DMA controller can be
considered as a second microprocessor in the system, except that its function is to perform I/0
transfers. DMA controllers perform data transfers at a very high rate. This is because several
functions for accomplishing the transfer are implemented in hardware, The DMA controller
is provided with a number of 1/O ports. A typical microcomputer system with a DMA
controller is shown in Figure 9.6.
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FIGURE 9.6 A microcomputer system with a DMA controller.

The DMA controller in the figure connects one or more ports directly to memory so that
data can be transferred between these ports and memory without going through the micropro-
cessor. Therefore, the microprocessor is not involved in the data transfer.

The DMA controller in the figure has two channels (Channel 0 and 1). Each channel
contains an address register, a control register, and a counter for block length. The purpose of
the DMA controller is to move a string of data between the memory and an external device.
In order to accomplish this, the microprocessor writes the starting address of memory where
transfer is to take place in the address register, and controls information such as the direction
of transfer in the control register and the length of data to be transferred in the counter.

The DMA controller then completes the transfer independent of the microprocessor. How-
ever, in order to carry out the transfer, the DMA controller must not start the transfer until
the microprocessor relinquishes the system bus and the external device is ready. .

The interface between an /0O port and cach channel has typically a number of control
signals which include DMAREQ, DMACK, and 1/O read/write signals. When the I/O port is
ready with an available buffer to receive data or has data ready to write into memory location,
it activates the DMAREQ linc of the DMA controller. In order to accomplish the transfer, the
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DMA controller sends the DMACK to the port, telling the port that it can receive data from
memory or send data to memory.

DMACK is similar to a chip sclect. 'I'hls is because when the DMACK signal on the port is
activated by the DMA controller, the port is sclected to transfer data between the I/O device
and memory. The main difference between a normal and DMA transfer is that the read or
write operations have opposite meanings — that is, if the DMA controller activates the read
line of the port, then data are read from a memory location to the port. However, this is a write
operation as far as the port is concerned. This means that a read from a memory location is
a write to the port, Similarly, a write to a memory location is equivalent to a read from the port.
The figure shows two types of R/ W signals. These are the usual memory R/W signal and
the /O R/W for external devices. The DMA controller activates both of these lines at the
same time in opposite directions. That is, for reading data from memory and writing into a
port, the DMA controller activates the memory R/ W HIGH and I/O R/ W LOW. The [/O
ports are available with two modes of operation: non-DMA and DMA.

For non-DMA (microprocessor-controlled transfers), the ports operate in a normal mode.
For DMA mode, the microprocessor first configures the port in the DMA mode and then
signals the DMA controller to perform the transfer. The R/ W line is complemented for
providing proper direction of the data transfer during DMA transfer.

The DMA controller has a HOLD output signal and a HOLD ACK input signal. The port,
when ready, generates the DMAREQ's signal for the DMA controller. The DMA controller
then activates the HOLD input signal of the microprocessor, requesting the microprocessor to
relinquish the bus, and waits for a HOLD ACK back from the micraprocessor.

After a few cycles, the microprocessor activates the HOLD acknowledge and tristates the output
drivers to the system bus. The DMA controller then takes over the bus. The DMA controller:

Oulputs the starting address in the system bus
. Sends DMACK to the I/O port requesting DMA
3 Outputs normal R/ W to memory and complemented R/ W to the I/O port

The I/0 port and memory then complete the transfer. After the transfer, the DMA control-
ler disables all the signals including the HHOLD on the system bus and tristates all its bus drivers.
The microprocessor then takes over the bus and continues with its normal operation.

For efficient operation, the DMA controller is usually provided with a burst mode in which
it has control over the bus until the entire block of data is transferred.

In addition to the usual address, control, and counter registers, some DMA controllers are
also provided with data-chain registers which contain an address register, a control register, a
counter, and a channel identification. These data-chain registers store the information for a
specific channel for the next transfer. When the specified channel completes a DMA transfer,
its registers arc reloaded from the data-chain registers and the next transfer continues without
any interruption from the microprocessor. In order to reload the data-chain registers for
another transfer, the microprocessor can check the status register of the DMA controller to
determine whether the DMA controller has alrcady used the contents of the data-chain
registers. In case it has, the microprocessor reinitializes the data-chain registers with appropri-

-ate information for the next block transfer and the process continucs.

In order to illustrate the functions of a typical DMA controller just described, Motorola’s
MC68440 dual channel DMA controller is described.

The MC68440 is designed for the MC68000 family microprocessors to move blocks of data
between memory and peripherals using DMA.

The MC68440 includes two independent DMA channels with built-in prioritics lhqt are
programmable. The MC68440 can perform two types of DMA: cycle stealing and burst. In
addition, it can provide noncontinuous block transfer (continue mode) and block transfer
restart operation (reload mode).

Figure 9.7 shows a typical block diagram of the MC68000/68440/68230 interface to a disk.
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FIGURE 9.8 Data block format.

Data transfer between the disk and the memory takes place via port A of the MC68230, using
handshaking signals H1-H4.

The A8/D0 through A23/D15 lines are multiplexed. The MC68440 multiplex control signals
OWN, UAS (upper address strobe), DBEN (data buffer enable), and DDIR (data direction)
are used to control external demultiplexing devices such as 7415245 bi-directional buffer and
74L8373 latch to separate address and data information on the A8/D0-A23/D15 lines. The
MC68440 has 17 registers plus a gencral control register for each of the two channels and is
sclected by the lower address lines (A1-A7) in the MPU mode. A1-A7 also provides the lower
7 address outputs in the DMA mode.

A1-A7 lines can sclect 128 (27) registers; however, with A1-A7 lines, only seventeen registers
with addresses are defined in the range from 00, through FF,, and some addresses are not
used. As an example, the addresses of the channel status register and the channel priority

register are, respectively, 00,, and 2D,
The MC68440 registers contain information about the data transfer such as:

1. Source and destination addresses along with function codes

2. Transfer count

3. Operand size and device port size

4. Channel priority .

5. Status and error information on channel activity

The processor service request register (PSRR) of the MC68230 defines how the DMAREQ
pin should be used and how the DMA transfer should take place, whether via handshaking or

ports.
A data block contains a sequence of bytes or words starting at a particular address with the

block length defined by the transfer count register. Figure 9.8 shows the data block format.
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There are three phases of a DMA transfer. These are channel initialization, data transfer, and
block termination. During channel initialization, the MC68000 loads the MC68440 registers
with control information, address pointers, and transfer counts, and then starts the channel.

During the transfer phase, the MC68440 acknowledges data transfer requests and performs
addressing and bus controls for the transfer. Finally, the block termination phase takes place
when the transfer is complete. During this phase, the 68440 informs the 68000 of the comple-
tion of data transfer via a status register. During the three phases of a data transfer operation,
the MC68440 will be in one of the three modes of operation. These are idle, MPU, and DMA.
"The MC68440 goes into the idle mode when it is reset by an external device and waits for
initialization by the MCG68000 or an operand transfer request from a peripheral.

The MPU mode is assumed by the MC68440 when its CS (chip select) is enabled by the
MC68000. In this mode, the MC68440 internal registers can be read or written for controlling
channel operation and for checking the status of a block transfer.

The MC68440 assumes the DMA mode when it takes over the bus to perform an operand

- transfer.

In Figure 9.7, upon reset, the MC68440 goes into idle mode. In order to initialize the
MC68440 registers, the MC68000 outputs appropriate register addresses on the bus. This will
enable the MC68440 CS line and places the MC68440 in the MPU mode. The MC68000
initializes the MC68440 registers in this mode. The MC68000 then executes the RESET
instruction to place the MC68440 back to the idle mode.

The MC68000 now wailts for a transfer request from the 68230. When the 68000 desires a
DMA transfer between the disk and memory, it cnables the CS linc of the 68230. The 68230,
when ready, activates the DMAREQ line low, which in turn drives the REQO line of the
MC68440 to low. The MC68440 then outputs low on its BR line requesting the MC68000 to
relinquish the bus. The MC68000, when ready, sends a low on its BG pin. This tells the
MC68440 to take over the bus. The MC68440 then enters the DMA mode and sends a low on
its BGACK pin to inform the MC68000 of its taking over the bus. The MC68440 transfers data
between the disk and memory via the MC68230. Each time a byte is transferred, the MCG68440
decrements the transfer counter register and increments the address register. When the
transfer is completed, the MC68440 updates a bit in the status register to indicate this. It also
asserts the DTC (data transfer complete) to indicate completion of the transfer.

The MC68440 DTC pin can be connected to the MC68230 PIRQ pin. The MC68230 then
outputs high to the MC68440 REQO pin, which in turn places a HIGH on the MC68000 BR,
and the MC68000 takes over the bus and goes back to normal operation.

Printer Interface

Microprocessors are typically interfaced to two types of printers: serial and parallel.

Serial printers print one character at a time, while parallel printers print a number of
characters on a single line so fast that they appear to be printed simultancously. Depending on
the character generation technique used, printers can be classified as impact or nonimpact. In
impact printers, the print head strikes the printing medium, such as paper, directly, in order
to print a character. In nonimpact printers, thermal or clectrostatic methods are used to print
a character.

Printers can also be classified based on the character formation technique used. For ex-
ample, character printers use completely formed characters for character generation, while
matrix printers use dots or lines to create characters.

The inexpensive serial dot matrix impact printer is very popular with microcomputers. An
example of such a printer is the LRC7040 manufactured by LRC, Inc. of Riverton, Wyoming.
The LRC7040 can print up to 40 columns of alphanumeric characters. The printer includes
four major parts. These are the frame, the printhead, the main drive, and the paper handling
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FIGURE 9.9 5 x 7 Dot matrix pattern for generating the character *¢’,

components. The LRC7040 provides 8 inputs in the basic configuration. One input turns the
main drive motor ON or OFF, while the other seven inputs control the print solenoids for the
printhead, using T'T'L drivers. .

The LRC7040 utilizes a 5 % 7 matrix of dots to generate characters. The columns are labeled
TO through T4 and rows are labeled SO through $6. Each row corresponds to one of the
solenoids. The entire printhead assembly is moved from left to right across the paper so that
at some time the printhead is over the column T0, then it’s over column T1, and so on.

A character is generated by energizing the proper solenoids at cach one of the columns T0O
through T4. Figure 9.9 shows how the character C is formed.

AtTO, solenoids SO through $6 are ON and at T'1 through T4 solenoids S0 and S6 are active
to form the character C. A number of characters can be formed by the microcomputer by
sending appropriate data to the printhead to generate the correct pattern of active solenoids
for cach of the five instants of time. The code for the character C consists of 5 bytes of data in
the sequence 78, 41,5 41,, 41, 41, as follows:

S6 S5 0S4 83 82 Sl s0

Column ‘10 | |
Column T1 1 |
Column 12 1 0 0 0 0 0 1 =41,
Column T3 | 1
gl | 1

Column’”

Note that in the above, it is assumed that a I will turn a solenoid ON and a 0 will turn it OFF,
Also it is assumed that §7 is zero.

The interface signals to the printer include a pair of wires for cach solenoid, a pair of wires
for cach motor (main drive motor and line feed motor), a pair of wires indicating the state of
‘the HOME microswitch, and a pair of wires indicating the state of the LINEFEED microswitch.

Raper feed is accomplished by activating the line feed motor. The LINEFEED microswitch
is activated by the print logic when the actual paper feed takes place. The control logic can use
the trailing edge of the signal generated by the LINEFEED microswitch to turn the line feed
motor OFF. The LRC7040 also has an automatic line feed version.

The HOME microswitch is activated HIGH when the printhead is at the left-hand edge of
the paper. When the printhead is over the print area and moves from left to right, the HOME
microswitch is deactivated to zero.

The solenoids must be driven from 40 =+ 4 volts with a peak current of 3.6 A. An interface
circuit is required at the microcomputer’s output to provide this drive capability.
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There arc two ways of interfacing the printer to a microcomputer. These are

1. Direct microcomputer control
2. Indirect microcomputer control using a special chip called the Printer Controller

The direct microcomputer control interfaces the printer via its I/O ports and utilizes mostly
software. The microcomputer performs all the functions required for printing the alphanu-
meric characters. ' :

Indirect microcomputer control, on the other hand, utilizes a printer control chip such as
the Intel 8295 Dot Matrix Printer Controller. The benefits of each technique depend on the
specific application.

The direct microcomputer approach provides an inexpensive interface and can be appro-
priate when the microcomputer has a light load. The indirect microcomputer approach, on the
other hand, may be useful when the microcomputer has a heavy load and cost is not a major
concern,

LRC7040 Printer Interface Using Direct Microcomputer Control
The steps involved in starting a printing sequence by the microcomputer are provided below:

I. The microcomputer must turn the Main Drive motor (MDM) ON by sending a HIGH
output to the MDM,

2. The microcomputer is required to detect a HIGH at the HOME microswitch. This will
ensure that the printhead is at the left-hand margin of the print arca.

3. The microcomputer is then required to send five bytes of data for an alphanumeric
character in sequence to energize the solenoids. Each solenoid requires a pulse of about
400 ms to generate a dot on the paper. A pause of about 900 ms is required between
these pulses to provide a space between dots.

Figure 9.10 shows a block diagram interfacing the LRC7040 printer to an MC68000/6821/
6116/2716-based microcomputer.

Using the hardware of Figure 9.10, an MC68000 assembly program can be written to send
the start pulse for the main drive motor, detect the HOME microswitch, and then, by utilizing
the timing requirements of 400 s and 900 pis of the printer, a hexadecimal digit (0 to F) stored
in a RAM location can be printed. An MC68000 assembly language program for printing the
character C is shown in Figure 9.11 assuming the 68000 user mode so that USP can be initialized.

The program assumes a look-up table which stores the 5-byte code for the character C
starting at $003000. Furthermore, the program assumes that the delay routines DELAY400 for
400 ps and DELAY900 for 900 pis are available. The program prints only one character C and
then stops. The program is provided for illustrating the direct microcomputer control tech-
nique for printing.

LRC7040 Printer Interface to a Microcomputer Using the 8295 Printer
Controller Chip*

With direct microcomputer control, the microcomputer spends time in a “wait” loop for
polling the status of the HOME signal from the LRC7040 printer. In order to unload the
microcomputer of polling the printer status and other functions, typical LSI printer controller
chips such as the Intel 8295 can be used.

The 8295 is a dot matrix printer controller. It provides an interface for microprocessors such
as the 8085 and 8086 to dot matrix impact printers such as the LRC7040. The 8295 is packaged
in a 40-pin DIP and can operate in a serial or parallel communication mode with the 8085 or
8086. In parallel mode, command and data transfers to the printer by the processor occur via
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FIGURE 9.10 MC68000-based microcomputer interface to the printer.

polling, interrupts, or DMA using commands. The processor specifies the format of the
printed character and controls all printer functions such as linefeed and carriage return.
The 8295 includes a 40-character buffer. When the buffer is full or a carriage return is received,
a line is printed automatically. The 8295 has the buffering capability of up to 40 characters and
contains a 7 X 7 matrix character generator, which includes 64 ASCII characters. The mode
selection (serial or parallel) is not software programmable and is inherent in system hardware.
For example, by connecting the:8295 IRQ/SER pin to ground, the serial mode is enabled;
otherwise the parallel mode is enabled. The two modes cannot be mixed in a single application.
Note that the IRQ/SER pin is also the 8295 interrupt request to the processor in the parallel mode.

9.3.2.a 8295 Parallel Interface

Two 8295 registers (one for input and the other for output) can be accessed by the processor
in the parallel mode. The registers are sclected as follows:

I
0

Input data register

RD WR CS Register Selected
0 0
1 0 Qutput status register

Two types of data can be written in the input data register by the processor:

1. A command to be exccuted. The command can be 0XH or 1XH. For example, the
command 08H will enable DMA mode. On the other hand, the command 11,6 will
enable normal left-to-right printing for printers whose printhead home is on the right.

2. A character data (defined in the 8295 data sheet) such as 37H for ‘7’ or 41H for ‘A’ to
be stored in the character buffer for printing.

The 8295 status is available in the output status register at all times. Typical status bits
indicate whether the input buffer is full or DMA is enabled. For example, the IBF (Input buffer
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full; bit 1 of the status register) is set to one whenever data are written to the input data register.
When IBF = 1, no data should be written to the 8295. The DE bit (DMA Enabled; bit 4 of the
status register) is set to one whenever the 8295 is in DMA mode. Upon completion of the DMA
transfer, the DE is cleared to zero. .

The 8295 IRQ/SER pin is used for interrupt driven systems. This output is activated HIGH
when the 8295 is ready to receive data. Using polling in parallel mode, the 8295 IRQ/SER pin
can be input via the processor I/O port and data can be sent to the 8295 input data register.

Using interrupt in parallel mode, the 8295 IRQ/SER pin can be connected to a processor’s

interrupt pin to provide an interrupt-driven system.

Using polled or interrupt techniques in parallel mode, the processor typically communi-
cates with the 8295 by performing the following sequence of operations in the main program
(polled) or service routine (interrupt):
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FIGURE 9.12 8295 DMA transfer,

* The processor reads the 8295 status register and checks the IBF flag for HIGH.

* IFIBF = 1, the processor waits in a wait loop until IBF = 0. The processor writes data
to be printed to the 8295 input data register. The IBF flag is then set to one indicating
no data should be written.

Data can also be transferred from the main memory to the 8295 via the DMA method using
a DMA controller such as 8257. '

The processor initializes the 8257 by sending a starting address and a block length. The
processor also enables the 8295 DMA channel by sending it the “ENABLE DMA” command
(08H) followed by two bytes specifying the block length to be transferred (low byte first). The
8295 will then activate the DMA request line of the 8257 without any further involvement by
the main processor. The DMA enable (DE) flag in the status register will be HIGH until the
data transfer is completed. As soon as the data transfer is completed, the DE flag is cleared to
zero and IRQ/SER is set to HIGH. The 8295 then goes back to the non-DMA mode of
operation, :

Figure 9.12 shows a block diagram of the 8295 DMA transfer. L

Typical control signals between the 8257 and the processor iEIudLHO_IQ, HLDA, RD,
and WR. The 8295 control signals for the processor include CS, RD, WR, RESET, and
IRQ/SER. CS, RD, and” WR pins are used to select cither 8295 input or output registers.
The 8295 control signals for the printer include MOT, PFM, STB, PFEED, and HOME.

The 8295 MOT output pin, when LOW, drives the motor. The MOT output is automati-
cally in LOW on power-up. This will make the 8295 HOME input pin HIGH, indicating that
the printhead of the printer is in HOME position.

The PFM signal, when LOW, drives the paper feed motor, and shis is LOW on power-up.
The PFEED is an 8295 input and indicates status of paper feed. A LOW on the PEM indicates
that the paper feed mechanism is ‘disabled’ and a one indicates that the S1 through S7 signals,
when LOW, drive the seven solenqids of the printer. Each character datum, when written into
the 8295 input data register, is automatically converted to the five-byte code by the 8295 and
provides the proper ON/OFF sequence for the solenoids. Thét STB output is used to determine
the duration of solenoid activation and is automatically provided by the 8295,

8295 Serial Mode

The 8295 serial mode is enabled by connecting the IRQ/SER pin to LOW. The serial mode
is enabled immediately upon power-up. The serial baud rate is programmed by the D2, D1,
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DO data lines. For example, D2 D1 DO = 001 means 150 baud (bits/sec) and is used to set the
serial transfer data rate. In this mode, RD must be tied to high and CS and WR must be tied
to ground. The processor needs a UART (Universal asynchronous receiver transmitter) such
as the 8251. The 8295 DACK/SIN signal (data input for serial mode) must be connected to
the 8251 TXD output (8251 transmit data output bit). Also, the 8295 DRQ/CTS (clear to send
in serial mode) must be connected to the 8251 CTS output. Note that a UART chip converts
parallel to serial data and vice versa. The processor must wait for 8295 CTS to go LOW before
sending data via TXD.

CRT (Cathode R:iy Tube) Controller and Graphics
Controller Chips

The CRT terminal is extensively used in microcomputer systems as an efficient man-machine
interface. The users communicate with the microcomputer system via the CRT terminal. It
basically consists of a typewriter keyboard and a CRT display. In order to relieve the micro-
processor from performing the tedious tasks of CRT control, manufacturers have designed an
LSI chip called the CRT Controller. This chip simplifies and minimizes the cost of interfacing
the CRT terminal to a microcomputer.

The CRT controller supports all the functions required for interfacing a CRT terminal to a
microprocessor. The microprocessor and the CRT controller usually communicate via a
shared RAM. The microprocessor writes the characters to be displayed in this RAM; the CRT
controller reads this memory using DMA and then generates the characters on the video
display. The CRT controller provides functions such as clocking and timing, cursor placement,
and scrolling. The CRT controller chip includes several registers that can be programmed to
generate timing signals and video interface signals required by a terminal. The display func-
tions are driven by clock pulses generated from a master clock. The CRT controller chip
normally produces a special symbol such as a blinking signal or an underline on the CRT. This
signal is commonly called the ‘cursor’. It can be moved on the screen to a specific location
where data need to be modified. The scrolling function implemented in the CRT controller
moves currently displayed data to the top of the screen as new data are entered at the bottom.

In this section, fundamentals of CRT, character gencration techniques, and graphics con-
trollers are discussed.

A typical CRT controller such as the Intel 8275 is then considered to illustrate its basic
functions. Finali,, the graphics functions provided by Intel 82786 are covered.

CRT Fundamentals

A CRT consists of an evacuated glass tube, a screen with an inner fluorescent coating, and an
clectron gun for producing electron beams. When the clectrons generated by the gun are
focused on the fluorescent inner coating of the screen, an illuminated phosphor dot is
produced.

The position of the dot can be controlled by deflecting the clectron beam by using an
clectromagnetic deflection technique, A complete display is produced by moving the beam
horizontally and vertically across the entire surface of the screen and at the same time by
changing its intensity.

Most modern CRT terminals generate the display by using horizontal and vertical scans. In
the horizontal scan, the beam moves from the upper left-hand corner to the extreme right-
hand of the line and thus travels across the screen. The beam then goes off and starts at the left
of the next lower line for another scan. After several horizontal scans, the beam reaches the
bottom of the screen to complete one vertical scan. The beam then disappears from the screen
and begins another vertical scan from the top. This type of scan is also called ‘raster’ scan. This
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FIGURE 9.13  Generation of ‘0" using 5 x 7 dot matrix.

is because the display is produced on the screen by continuously scanning the beam across the
screen for obtaining a regular pattern of closely spaced horizontal lines, or raster covering the
entire screen. One of the most common examples of a raster display is the home TV set. The
typical bandwidth used in these TV sets is 4.5 MHz. The raster displays used with microcom-
puters include a wider bandwidth from 10 MHz to 20 MHz for displaying detailed informa-
tion. In most modern CRT terminals, cach sweep field contains the entire picture or text to be
displayed.

In order to display characters, the screen is divided by horizontal and vertical lines into a dot
matrix. A rhatrix of 5x 7 or 7 x 9 dots is popular for representing a character. For example,
a 5 x 7 dot matrix can be used to represent the number ‘0° as shown in Figure 9.13.

To provide space around the character, one top, one left, one right, and one bottom line are
left blank. Each character is generated using 5 x 7 dot matrix. Therefore, cach character
requires 35 dots, which can be turned ON or OFF depending on the dot pattern requlred by
the character. The pattern of dots is usually stored in ROM. A ROM pattern for ‘0’ is shown
in Figure 9.14.

One character requires a 35-bit word. Each row is addressed by three bits. After reading each
row data, it is transferred to a parallel to serial shift register. These data are then shifted serially
by a clock to the CRT. For a standard 64-character set with each character represented by a5 x 7
dot matrix, a total of 2240-bit (64 x 7 x 5) ROM is required. Each character in the 64 (26)-
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FIGURE 9.14 ROM pattern for ‘0
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character set can be addressed using 6 address lines and three row select or scan lines (row select
counter typically used) are required to identify the dot row of the character. The ROM, address-
ing logic, and parallel to serial shift register are referred to as a character generator. Also, a
memory known as display memory is required in the CRT to store the character data to be
displayed. When a character is entered via the CRT keyboard, it is stored in the display memory.

Graphics can display any figure on the CRT screen. An example of such a VLSI chip is the
Intel 82786. In this chip, linked lists are used to update the display and can thus generate
displays at a high speed.

Most modern graphics use the bit mapping technique rather than character generation. In
order to understand bit mapping, consider a CRT screen as divided into 512 by 128 dots. Each
dot is called a Pixel, or picture clement, which can be illuminated by an electron beam. Each
dot is a single bit in a 64K (512 x 128 = 65,536) by 1 RAM and is called a bit plane. Ifa ‘1" is
stored in a specific bit location, the associated Pixel is turned ON (white). On the other hand,
if a ‘0" is stored, the corresponding Pixel is turned OFF (black). The video refresh circuitry
implemented in the VLSI chip converts the ones and zeros in the bit planc to whites and blacks
on the CRT screen.

Resolution is an important factor to be considered in graphics. In order to provide various
colors and intensity, more than one bit is utilized in representing a Pixel. For example, Apple’s
68000-based LISA microcomputer uses four bits per Pixel on a 364 x 720 Pixel screen.
Therefore, a high speed RAM of over 1 megabit (364 x 720 x 4 = 1,048,320) is required to
support such a resolution.

Therefore, graphics gencration requires a bit-mapped RAM array and the LSI video inter-
face chip. The software involves determining the information written to the bit plane array to
generate the desired graphic display. Most graphics systems generate figures by combinations
of straight-line segments. The software is required to generate a straight line by identifying
each Pixel and writing information to its corresponding bit-map positions.

The concepts associated with CRT controllers and graphics described above are illustrated
by using the Intel 8275 and Intel 82786 in the following.

Intel 8275 CRT Controller

The INTEL 8275 is a single chip (40-pin) CRT controller. It provides the functions required
to interface CRT raster scan displays with Intel microcomputer systems using the 8051, 8085,
8086, and 8088. It refreshes the display by storing (buffering) the information to be displayed
from memory and controls the display position on the screen. The 8275 provides raster timing,
display row buffering, visual attribute decoding, cursor timing, and light pen detection. The
8275 can be interfaced with the Intel 8257 DMA controller and character generator ROM for
dot matrix decoding,

Figure 9.15 shows the 8275’s interface to a microcomputer system and the 8257.

The 8275 obtains display characters from memory and displays them on a row-by-row basis.
There are two row buffers in the 8275. It uses one row for display, and at the same time fills
the other row with the next row of characters to be displayed. The number of display characters
per row and the number of character rows are software programmable,

The 8275 utilizes the 8257 DMA controller to fill the row buffer that is not being used for
display. It displays character rows one line at a time.

The 8275 controller provides visual attribute codes such as graphics symbols, without the
use of the character generator, and blinking, highlighting, and underlining of characters. The
raster timing is controlled by the 8275. This is done by generating the horizontal retrace and
vertical retrace signals on the HRTC and the VRTC pins.

The 8275 provides the light pen input and associated registers. The light pen input is used to
read the registers. A command can be used to read the light pen registers. The light pen consists
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FIGURE 9.15 Microcomputer/8275/8257 interface.

of a microswitch and a tiny light sensor. When the light pen is pressed against the CRT screen,
the microswitch cnables the light sensor. When the raster sweep reaches the light sensor, it
enables the light pen output. If the output of the light pen is presented to the 8275 LPEN pin,
the row and character position coordinates are stored in a pair of registers. These registers can
be read by a command. A bit in the status register in the 8275 is set, indicating detection of the
light pen signal. The 8275 can generate a cursor. The cursor location is determined by a cursor
row register and a character position register which are added by a command to the controller.
The cursor can be programmed to appear on the display in many forms such as a blinking
underline and a nonblinking underline. The 8275 does not provide a scrolling function.
The 8275 outputs the line count (LC0-LC3) and character code (CC0-CC6) signals for the
character generation, The LC0-LC3 signals are contents of the 8275 line counter which are used to
address the character generator for the line positions on the screen. The CC0-CC6 outputs of the
8275 are the contents of the row bulfers used for character selection in the character generator.
The 8275 video control signals typically include line attribute codes, highlight, and video
suppression. The two line attribute codes (LAO and LA1 pin outputs) must be decoded by the
dot timing logic to produce the horizontal and vertical line combinations for the graphic
displays defined by the character attribute codes. The video suppress (VSP pins) output signal
is used to blank the video signal to the CRT. The highlighted (HLGT) output signal is used to
intensify the display at a specific position on the screen, as defined by the attribute codes.
The dot timing and interface logic must provide the character clock (CCLK pin) input of
the 8275 for proper timing,. .

Intel 82786 Graphics Controller

The Intel 82786 is a single VLSI chip providing bitmapped graphics. It is designed for
microcomputer graphics applications, including personal computers, engineering worksta-



Peripheral Interfacing 609

System Bus

(SR I

] Bus Interface Unit
80186 (BIV)
UOTB( Display Processor —<—» Display
L00 .
i Syslem Video
80386 Mcn]ory DRAM / VRAM Gmphics Interface
¥ Controller Processor
y 82786
Y
Graphics
L»] DRAM / VRAM
Memory

FIGURE 9.16 80186/80286/80386 interface to 80786.

tions, terminals, and laser printers. The 82786 is designed using Intel’s CHMOS 111 process. It
is capable of both drawing and refreshing raster displays. It supports high resolution displays
with a 25-MHz Pixel clock and can display up to 256 colors simultancously. It can be interfaced
to all Intel microcomputers such as 80186, 80286, and 80386. Figure 9.16 shows a block
diagram of the 80186/80286/80386 interfaces to the 82786.

The 82786 includes three basic components. These are a display processor (DP), a graphics
processor (GP), and a bus interface unit (B1U), with a DRAM/VRAM controller.

The display processor controls the CRT timing and provides the serial video data stream for
the display. It can assemble several windows (pg rtions of bitmaps) on the screen from different
bitmaps scattered across the memory accessiple to it.

The graphics processor executes commands from a graphics command block placed in
memory by the 80186/80286/80386 and updates the bitmap memory for the display processor.
The graphics processor has high level vidco display interface-like commands and can draw
graphical objects and text at high speeds.

The BIU controls all communication between the 82786, 80186/80286/80386, and memary.
The BIU contains a DRAM/VRAM controller that can perform block transfers. The display
processor and graphics processor use the BIU to access the bitmaps in memory.

The system bus connects the 80186/80286/80386 and system memory to the 82786. The
video interface connects the 82786 to the CRT or other display. The video interface is con-
trolled dircctly by the display processor. The 82786 can be programmed to gencrate all the CRT
signals for up to 8 bits/Pixel (256 colors) displays. The other interfaces are controlled by the
BIU. The BIU interfaces the graphics and display processors to the 80186/80286/80386 and
system memory as well as the graphics memory via the internal DRAM/VRAM controller.

The dedicated graphics DRAM/VRAM memory provides the 82786 with fast access to
memory without contention with the microprocessor and system memory.

Usually, the bitmaps to be drawn and displayed, the characters, and commands for the
82786 are all stored in this memory. The 82786 DRAM/VRAM controller interfaces dircctly
with a number of dynamic RAMS without external logic.

Figure 9.15 shows the most common configuration. The microprocessor can access the
system memory, while the 82786 accesscs its dedicated graphics memory simultancously.
However, when the microprocessor accesses the graphics memory, the 82786 cannot access the
system memory. Also, when the 82786 accesses the system memory, the microprocessor
cannot access the graphics memory.
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If DMA capability is provided, the 82786 can operate in cither slave or master mode. In the
slave mode, the microprocessor or DMA controller can access the 82786 internal registers or
dedicated graphics memory through the 82786. In the master mode, the 82786 can access the
system memory.

The microprocessor software can access both system and graphics memory in the same way.
When the microprocessor accesses the 82786, the 82786 runs in slave mode.

In slave mode, the 82786 appears like an intelligent DRAM/VRAM controller to the micro-
processor. The microprocessor can chip-select the 82786 and the 82786 will acknowledge
when the cycle is completed by asserting a READY signal for the microprocessor.

The 82786 graphics and display processor accesses both system memory and graphics
memory in the same way, When the 82786 accesses system memory, the 82786 must run in
master mode.

In the master mode, the 82786 acts as a second microprocessor controlling the system bus.
The 82786 activates the HOLD linc to take control of the system bus. When the microproces-
sor asserts HLDA line, the 82786 takes aver the bus. When the 82786 is finished with the bus,
it will disable the HOLD line and the microprocessor can remove HLDA and take over the bus.

The 82786 provides two different video interfaces when using standard DRAMS. The 82786
reads the video data from memory and internally serializes the video data to generate the serial
video data stream. When using VRAMS, the 82786 loads the VRAM shift register. Periodically,
the shift register and external logic then generate the serial video data stream.

Coprocessors

In Chapters 1 and 7, the basics of coprocessors, along with the functions provided by Motorola
coprocessors such as the MC68851 and MCG68881, are covered. In this section, a brief overview
of the Intel coprocessors will be provided.

Intel offers a number of coprocessors which include numeric coprocessors such as 8087/
80287/80387, DMA coprocessors such as the 82258, and graphic coprocessors such as the
82786. In the following, a bricf overview of Intel’s numeric coprocessors, which include the
8087, 80287, and 80387, is given.

Intel 8087

Intel 8087 numeric data coprocessor is designed using HMOS 11T technology and is packaged
in a 40-pin DIP. When an 8087 is present in a microcomputer system, it adds 68 numeric
processing instructions and cight 80-bit registers to the microprocessor’s register set. The 8087
can be interfaced to Intel microprocessors such as the 8086/8088 and 80186/80188.

The 8087 supports seven data types which include 16-, 32-, and 64-bit integers, 32-, 64-, and
80-bit floating point, and 18-digit BCD operands. The 8087 is compatible with the IEEE
floating-point format. It includes several arithmetic, trigonometric, exponential, and logarith-
mic instructions.

The 8087 is treated as an extension to the microprocessor, providing additional register data
types, instructions, and control at the hardware level. At the programmer’s level, the micro-
processor and the 8087 are viewed as a single processor. For the 8086/8088, the microprocessor’s
status (50-52) and queue status lines (QS0-QS1) cnable the 8087 to monitor and decode
instructions in synchronization. For 80186/80188 systems, the queuc status signals of the
80186/80188 are synchronized to the 8087 by the 8288 bus controller. The 8087 can operate
in parallel with and independent of the microprocessor. For resynchronization, the 8087’s
BUSY pin tells the microprocessor that the 8087 is exccuting an instruction and the
microprocessor’s WAIT instruction tests this signal to ensure that the 8087 is ready to execute
subsequent instructions. The 8087 can interrupt the microprocessor when it detects an error
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or exception. The 8087’s interrupt register line is typically connected to the microprocessor
through an 8259 programmable mlerupt controller for 8086/8088 systems and INT for
80186/80188 systems.

The 8087 uses the request/grant lines of the microprocessor to gain contro[ of the system bus
for data transfer.

The microprocessor controls overall program execution while the 8087 utilizes the coprocessor
interface to recognize and perform numeric operations.

Intel 80287

Intel 80287 is an enhanced 8087 that extends the 80286 microprocessor. The 80287 adds over
50 instructions to the 80286 instruction set. The 80287 is designed using HMOS technology
and is housed in a 40-pin special package called ‘CERDIP".

The 80287 supports the IEEE floating-point format. The 80287 cxpands the 80286 data
types to include 32-bit, 64-bit, and 80-bit floating point, 32-bit and 64-bit integers, and 18-
digit BCD operands. It extends the 80286 instruction set to trigonometric, logarithmic, expo-
nential, and arithmetic instructions for all data types.

The 80287 executes instructions in parallel with an 80286. The 80287 has two operating
modes like the 80286. Upon resct, the 80287 operates in real address mode. It can be placed
in the protected virtual address mode by executing an instruction on the 80286. The 80287

* cannot be placed back to the real address mode unless reset. Once in protected mode, all

memory references for numeric data or status information follow the 80286 memory manage-
ment and protection rules and thus the 80287 extends the 80286 protected mode.

The 80287 reccives instructions and data via the data channel control signals ( PEREQ —
Processor Extension Data Channel Operand Transfer Request); PEACK — Processor Exten-
sion Data Channel Operand Transfer Acknowledge; BUSY; NPRD — Numeric Processor
RD; NPWR — Numeric Processor WR ). When in protected mode, all information received
by the 80287 is validated by the 80286 memory management and protection unit. When the
80287 detects an exception, it will indicate this to the 80286 by asserting the ERROR signal.

The 80286/80287 is programmed as a single processor. All memory addressing modes,
physical memory, and virtual memory of the 80286 are available in the 80287.

Intel 80387

Intel 80387 is a numeric coprocessor that extends the 80386 processor with floating-point,
extended integer, and BCD data types. It is compatible with IEEE floating point. The 80387
includes 32-, 64-, and 80-bit floating point, 32- and 64-bit integers, and 18-digit BCD oper-
ands. It extends the 80386 instruction set to include trigonometric, logarithmic, exponential,
and arithmetic instructions of all data types. The 80387 can operate in the real, protected, or
virtual 8086 modes of the 80386. It is designed using CHMOS I technology and is packaged
in a 68-pin PGA (Pin Grid Array).

The 80387 operates in the same manner whether the 80386 is executing in real address
mode, protected mode, or virtual 86 mode. All memory access is handled by the 80386; the
80387 operates on instructions and values passed to it by the 80386. Therefore, the 80387 is
independent of the 80386 mode.

The 80387 includes three functional units that can operate in parallel. The 80386 can be
transferring commands and data to the 80387 bus control logic for the next instruction while
the 80387 floating-point unit is performing the current numeric instruction. This parallelism
improves system performance.

The 80387 adds to an 80386 system additional data types, registers. instructions, and
interrupts. All communication between the 80386 and 80387 is transparent to application
software. Thus, the 80387 greatly enhances the 80386 capabilities.
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Questions and Problems

9.1 Interface a hexadecimal matrix keyboard and four LED displays to an 8086/8255-based

microcomputer.
i) Draw a hardware schematic of the design. Show only the pertinent signals.
i)~ ‘Write an 8086 assembly language program to display the hex digit on the display
from 0-F cach time a digit is pressed on the keyboard.

9.2 Describe the basic functions of a DMA Controller. How does it control the /O R/ w
and memory R/ W signals? Why is the DMA Controller faster than the microprocessor for

data transfer?
9.3 Describe briefly the main features of Motorola’s MC68440 DMA controller.

9.4 Draw a functional block diagram showing the pertinent signals of the MC68020/68230/
68440 interface.

9.5 Define the MC68440 modes of operation.

9.6 Which mode and which address lines are required by the MC68440 to decode the register
addresses? Why does the MC68440 require more address lines than it requires for register
address decoding?

9.7 Draw a functional block diagram of the MC68440/68008 interface.

9.8 What is the difference between the following?
i) Serial and Parallel printers
ii)  Impact and Nonimpact printers
iii)  Character and Matrix printers

9.9 Assume an LRC7040 printer. Draw a functional block diagram of the LRC7040 printer
to an 8086-based microcomputer. Write an 8086 assembly language program to print the
hexadecimal digit ‘0’ on the printer.

9.10 Draw a functional block diagram of the 8295 printer controller interface to an 8085-
based microcomputer.

9.11 How are the 8295 input data register and output status registers accessed? What are the
functions of these registers?

9.12 How are the 8295 sertal and parallel modes of aperation selected?

9.13 In the 8295 parallel mode, describe bricfly how printers are interfaced for polled,
interrupt, or DMA operation.

9.14 Summarize the basics of a CRT. What is the main difference between character genera-
tion displays and graphics displays?

9.15 What are the typical functions of a CRT controller? Relate these typical functions to the
Intel 8275.
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9.16 Draw a functional block diagram showing an 8086-based microcomputer interface to
an 8275. Show only pertinent signals.

9.17 What is meant by bitmapping? How docs it apply to graphics?
9.18 Describe bricfly the functions provided by the Intel 82786 graphics controller.

9.19 Draw a functional block diagram showing an 80386/82786 interface. Show only perti-
nent signals. N

9.20 Summarize the basic differences between the Intel 8087, the 80287, and the 80387
numeric coprocessors. Why are these three separate chips for the same coprocessor family
provided by Intel?
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10.1

10.1.1

10.1.2

10.1.3

10

DESIGN PROBLEMS

This chapter includes a number of design problems that utilize external hardware. The systems
are based on typical microprocessors such as the 8085, 8086, and 68000.
The concepts presented can be extended to other microprocessors.

Design Problem No. 1

Problem Statement

An 8085-based digital voltmeter is designed which will measure a maximum ot 5V DC via an
A/D converter and then display the voltage on two BCD displays. The upper display is the
integer part (0 to 5V DC) and the lower display is the fractional part (0.0 to 0.9 VvV DQC).

Objective

A digital voltmeter capable of measuring DC voltage up to and including 5V will be built and
tested. The voltmeter is to be implemented using the Intel 8085 microprocessor and an analog-
to-digital converter of the designer’s choice. The measured voltage is to be displayed on two
seven-segment LEDs.

Operation

Figure 10.1 shows a block diagram of the digital voltmeter. It is composed of the micropro-
cessor, 2K bytes of EPROM, 256 bytes of RAM with /O, the A/D converter, and the display
section.

The Intel 8085 microprocessor provides control over all address, data, and control informa-
tion involved in program execution. It also provides for manipulation of data as taken from
the A/D and sent to the display section.

The EPROM is a memory unit which stores the instructions necessary for system operation.
The RAM and I/O section is a memory unit which provides for data storage as well as data
transfers to and from the A/D and display. The A/D converter takes the voltage measured
across Vin(+) and Vin(=) pins and converts it to an 8-bit binary value. The binary information
is taken into the microprocessor via the I/O and converted to its decimal cquivalent. The
display section takes the converted binary information from the processor so that it may be
read on two seven-segment LED displays. The leftmost display provides the integer portion of
the measured voltage, while the rightmost provides the decimal portion.

615
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FIGURE 10.1 Voltmeter block diagram.

Hardware

Figure 10.2 shows the detailed hardware schematic. The system uses standard 1/O with RAM
memory mapped at 0800H-08FFH. The I/O ports of the 8155 are all used and are I/O mapped
starting at 08H. Configured as an input port, port Bis connected to the output of the 0804 A/D
chip. Configured as an output port, port C is.connected to the TIL311 displays. Bits 0-3 are
the data outputs while bits4 and 5 are connected to the latches of the TIL311. Only three bits.
of port A are used, configured as an output port, to control the select, read, and write lines of
the A/D chip.

Using the fully decoded memory addressing, the 74L5318 decoder is used to select either the

“RAM or the EPROM: Also, a 74LS373 is used to latch the address lines for the EPROM. The

RAM does not require such a chip because the 8155 RAM has its own internal latches. The ALE
line of the 8085 microprocessor controls the latches.as seen in the schematic.

The EPROM contains the instructions for converting-the binary representation of the
analog voltage (applied to the A/D converter) back to decimal representation. The instructions
are used to control the system operation. The algorithm uses repeated subtraction to obtain
the correct voltage in decimal form. The left dlsplny is the integer part and lhe‘nght display is
the decimal part.

The displays, as stated before, are TIL311 hexadecimal d;splayq In addition, the dlsphys
have their own latches which are active low. In the 8085 microprocessor, the interrupt RST 6.5
is used to jump to the address with the algorithm to.convert and display the voltage. The INTR
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FIGURE 10.2 Digital voltmeter detailed schematic.

pin of the A/D is connected dircctly to the RST 6.5 pin of the microprocessor. First, an active
low is sent to the chip select pin, and then the write pin of the A/D converter is toggled.

Upon completion of the A/D conversion, the 8085 is interrupted. The service routine
outputs an active low onto the read pin of the A/D, which latches the data. After inputting the
data via the port, the read pin is toggled which then tristates the A/D output.

10.1.5 Software

An important part of the software is to convert the A/D’s 8-bit binary data into its decimal
cquivalent for the display. The decimal data will have two digits: one integer part and onc
fractional part. Two approaches can be used to accomplish this as follows.




vio AVIILIUPIUCLoOUT O diddd IVIILIULUIL P WLCE = Ddobld U )Y ol ULl LAValsgid, &i200 Simd iaeid

GND o cP\J'r:c:
10K
-
I150pf
+5V
20| 19| 4 6| ¥ 1] 5 3| 2 10| 9| 11| 12| 13| 14
Vee mﬁx CIIFIK Vin{+) Vin() CSINTR WR RD
0804 Cable
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO &
11] 12] 13] 14| 15{ 16| 17| 18 - 8l10 1| 2[3[4|5|6| 7|8

FIGURE 10.2 Continued.

Approach 1

Since the maximum decimal value that can be accommodated in 8 bits is 255,, (FF ), the

maximum voltage of 5 V will be equivalent to 255,,. This means that the display in decimal is
given by:
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o
|

= 5% (Input/255)
Input/51
Quotient + (Remainder/51)

Integer part
The fractional part in decimal is

F (Remainder/51) *10

= Remainder/5

Approach 2

In the second approach, the equivalent of 1 V (255/5 V = 51, = 33,4) is subtracted from the
input data. If the input data are greater than 1 V, a counter initially cleared to zero is
incremented by one. This process continues until the data are less than 1 V. The register keeps
count of how many subtractions take place with a remainder greater than 1 'V and thus
contains the integer portion of the measured voltage in decimal.

The decimal portion of the fractional part is obtained in the same way except that if the
input data are less than 1 V, then they are compared with the decimal cquivalent (51/10 = 5)
of 0.1 V. If the measured data are greater than 0.1 V, a counter initially cleared to zero is
incremented by one and the process continues until the input data are less than 0.1 V. The
counter contains the fractional part of the display.

Approach 2 is used as a solution to this problem. A complete listing of the 8085 assembly
language program to control the digital voltmeter is given below. The program is uscd to begin
and end the A/D conversion process as well as to manipulate the binary data into their decimal
form so that they can be displayed in an casily readable format.

FILE: LIST1;RAT001 HEWLETT-PACKARD: 8085 Assembler
LOCATION OBJECT
CODE LINE SOURCE LINE
1 “8085”
<09A0> 2 STACKP EQU 09A0H
<0009> 3 PORTA EQU 0009H
<000A> 4 PORTB EQU 000AH
<000B> 5 PORTC EQU O000BH
<0008> 6 CSR EQU 0008H
<0034> 7 INTR EQU 0034H
<0000> 8 PROG EQU 0000H
9
10 ORG PROG
0000 3109A0 11 LXI SP,STACKP ; INIT, STACK
0003 3EOD 12 START MVI A, ODH ; SET INTERRUPT MASK
0005 30 13 SIM ; SET INTERRUPT MASK 6.5
0006 FB 14 EI ; ENABLE INTERRUPT
0007 D308 15 OUT CSR ; DEFINE PORTS A,B,C
0009 3E30 16 MVI A, 30H ; SET DISPLAY ENABLES
000B D30B 17 OUT PORTIC ;
000D 3EFF 18 MVI A,OFFH ;
000F D309 19 .\ OUT PORTA ; SET /CS,/WR/RD HIGH
0011 3EFE 20 MVI A,OFEH ;
0013 D309 21 OUT PORTA ; SEND /CS LOW
0015 3EFC 22 MVI A,OFCH ;
0017 D309 23 OUT PORTA g
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FILE: LIST1;RAT001 HEWLETT-PACKARD: 8085 Assembler (continued)

LOCATION OBJECT
CODE - LINE SOURCE LINE
0019 3EFE 24 MVI A, OFEH ;
001B D309 25 OUT PORTA ; TOGGLE /WR
001D 9B 26 WAIT JMP  WAIT ; WAIT FOR INTERRUPT

: 27 ;

28 ;
29 ORG INTR ; INTERRUPT VECTOR
ADDRESS

0034 210900 30 LXI H,0900H ; INIT, MEM. POINTER
0037 1600 31 MVI D,00H ; INIT, INTEGER COUNTER
0039 O0E33 32 MVI C,33H ;
003B 3EFA 33 MVI A, OFAH ; SEND /RD LOW
003D D309 34 OUT PORTA 7
003F 00 35 NOP
0040 DBOA 36 IN PORTB ; INPUT DATA
0042 47 37 MOV B,A ; MOVE DATA TEMP. TO B
0043 3EFE 38 MVI A, OFEH ;
0045 D309 39 ouT PORTA H TOGGLE /RD
0047 70 40 MOV M,B
0048 78 41 MOV A,B ; MOVE DATA TO 0900H
0049 91 42 sSUB1: SUB C z
-004A DA0052 43 Jc CONT1 h
004D 14 . 44 INR D 8
004E 77 45 MOV M,A ;
004F C30049 46 JMP  SUB1 ;
0052 7Aa 47 CONT1: MOV A,D ;
0053 D30B ' 48 OUT PORTC ;
0055 E63F = 49 ANI 3FH P
0057 D30B 50 OUT PORTC ;
0059 1600 51 MVI D, 00H ;
005B OEO05 52 MVI C,05H :
005D 7E 53 MOV A,M :
005E 91 54 SUB2: SUB C ;
005F DAO066 55 JC CONT2 :
0062 14 56 INR D. ;
0063 C3005E 57 JMP  SUB2 :
0066 Ja 58 CONT2: MOV A,D ;
0067 F610 59 ORI 10H :
0069 D30B 60 OUT PORTC ;
006B E63F 61 ANI 3FH :
006D D30B 62 OUT PORTC :
006F 3EFC 63 MVI A, OFCH ;
0071 D309 64 OUT PORTA :
0073 3EFE 65 MVI A, OFEH ;
0075 D309 66 OUT PORTA F
0077 CB 67 RET ;
Exrrors = 0

Lines 2-8 arc assembler directives which equate a recognizable label with a hex value. This
is useful for values which are to be used throughout the program,

Line 10 is another assembler dircctive which sets the beginning of the program at address
0000H.
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Line 11 initializes the stack pointer at address 09A0H. This is necessary if we are to return
to a current program after an interrupt has been serviced.

Lines 12-14 sct the mask bits and enable interrupt RST6.5.

Line 15 defines port A as output, port B as input, and port C as output. Note that the data
to configure the ports were alrcady in the accumulator as per line 12.

Lines 16-17 send an active high to each display’s data latch enable pin. This insures that the
displays will output the correct data on the next high-to-low transition at the latch enable pins.

Lines 18-19 send a high to the chip’s select ( CS), write 'WR), and read (RD) pins of the
A/D converter. This insures proper start-up of the converter.

_Lines 20-21 first send an active low to the converter's CS pin. Next, lines 22-25 toggle the
'WR pin so that conversion starts. The combination of CS and WR active low rescts the A/D
internally and sets it up for the start of the conversion. By sending WR high, the conversion
starts. Figure 10.3 shows the timing diagram for the A/D.

Line 26 1s a “WAI'T LOOP™ which is provided as a delay to wait for the interrupt request.
This is necessary since it may take as long as 127 ps for the interrupt to be asserted. This is
equivalent to approximately 380 clock cycles for the 8085 operating at 3 MHz.

Line 29 continues the program at the interrupt vector for interrupt RST6.5.

Line 30 loads the HL register pair with a memory address to be used later in the program.

Lines 31-32 initialize the D and C registers. D register is to hold the integer portion of the
measured voltage, while C register holds a hex value equivalent to 1 V for this system.

Lines 33-34 send an active low to the RD pin of the A/D converter so that the binary
information corresponding to the measured voltage may be read by the microprocessor.

Lines 36-37 take the data from the A/D converter and store it into register B.

Lines 38-39 toggle the RD pin back to active high.

Lines 40-41 move the 8-bit data into memory location 0900H and then into the accumulator.

Lines 42—-46 convert the binary data into their decimal equivalent so that the integer portion
may be displayed. First the equivalent of 1 Vis subtracted from the input data. If the measured
voltage is less than 1V, the program jumps to line 47. If the voltage is greater than one, the
program continues at line 44 where register D is incremented by one. The remainder from the
subtraction is temporarily stored in memory. The program then unconditionally jumps back
to line 42 so that another subtraction takes place. This loop occurs until the remainder from
the subtraction is less than 1 V. Register D keeps count of how many subtractions took place
with a remainder greater than 1 'V and thus counts the integer number of volts measured.

Lines 47-50 send the contents of register D to the leftmost display. The AND operation
unlatches the data at the display.

Lines 51-52 again initialize registers D and C, but this time register D will be counlmb the
fractional portion of the measured voltage and register C will hold the hex equivalent of 0.1 V.

Line 53 moves the last positive remainder from memory into the accumulator.

Lines 54-57 perform the same function as lines 42—46 but with the fractional portion of the
measured data,

__The remaining lines output the contents of register D into the rightmost display, toggle
WR, and returns to the main program.

10.2 Design Problem No. 2

10.2.1 Display Scroller Using the Intel 8086

10.2.1.a Introduction and Problem Statement
The objective of this project is to design and build an 8086-based system as shown in the block
diagram of Figure 10.4. The system scans a 16-key keyboard and drives three seven-segment
displays. The keyboard is scanned in a4 x 4 X-Y matrix. The system will take each key pressed
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Timing diagram
start conversion
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FIGURE 10.3  A/D timing diagram.

and scroll them in from the right side of the displays and keep scrolling as each key is pressed.
The leftmost digit is discarded. The system continues indefinitely.

10.2.1.b Hardware Description

Figure 10.5 shows the hardware schematic. The microcomputer is designed using the 8086,
8255 1/0 port chip and two 2716 EPROMs. The system does not contain any RAM since no
stack is required.
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PROG SEGMENT
ASSUME CS:PROG, DS:PROG
.8086

PORTA' equ O0O0Oh

PORTB equ 02h

PORTC equ 04h

CSR equ 06h
start: mov CX, OFFFh
LPl: loop LP1 ; Delay test.
mov AL, 90h ; set ports A input, B & C output
out CSR, AL
xor BL, BL ; c¢lear BL
xor AX, AX ; clear AX
out PORTB, AL ; clear Displays
out PORTC, AL ‘
mov CL, 04h ; set CL to 04
over: wait ; wait for TEST pin to go low.
in AL, PORTA ; Get data
out PORTC, AL ; Out first number and
shl AL, CL ; rotate into place for
shl AX, CL ; 2nd and 3rd position.
mov AL, BL ; Move old inputed nibbles
out PORTB, AL ; to be outputed.
mov .BL, AH ; Copy AH new to BL.
mov CX, OFFFh ; Delay so D.A. signal
LP2; loop LP2 ; can return to low.
‘mov CL, 04h ; Reset CL to 04h
jmp over
PROG ENDS
END start

FIGURE 10.6a 8086 Assembly language program for the keyboard scroller.

Keyboard encoding is accomplished via hardware. The 74C922 chip is used for this purpose.
This chip inputs a key pressed from a hexadecimal keypad and outputs the corresponding
binary equivalent on its data lines. In order to indicate that a key has been pressed, the 74C922
sends a HIGH on its Data Available (DA) output pin. This signal is inverted and then
connected to the TEST pin of the 8086. This means that the key actuation is indicated by a
LOW on the 8086 TEST pin.

The displays are three TIL311s. The rightmost TIL311 is connected to bits 0-3 of port C.
This display outputs the most recent key pressed. The middle and the leftmost displays are
connected to port B. These two displays show the previous two keys pressed.

10.2.1.c Software Development

Figure 10.6a shows the 8086 assembly language program.

The program first initializes the ports and then waits in a loop for a key to be pressed. In this
loop, the 8086 WAIT instruction checks the TEST pin for a LOW. As soon as a key is pressed,
the DA pin of the 74C922 goes to a HIGH. This, in turn, drives the TEST pin of the 8086 to
a LOW indicating that the data is available.

The 4-bit equivalent of the hex key pressed is input into the 8086 AL register and output to
port C. The last two keys pressed are saved in BL. This data is moved to AL and then output
to port B. The program loops back to the WAIT instruction and waits for the next key.

Figure 10.6b shows how the contents of the 8086 registers change as the keys are pressed on
the keyboard.
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Increment Decrement Mode Change
Key Key Key

FIGURE 10.7 Block diagram for design problem no. 3.

10.3 Design Problem No. 3

10.3.1 Problem Statement

A 68000-based system is designed to drive three seven-segment displays and monitor three key
switches. The system starts by displaying 000. If the increment key is pressed, it will increment
the display by one. Similarly, if the decrement key is pressed, it will decrement the display by
one. The display goes from 00-FF in the hex mode and from 000-255 in the BCD mode. The
system will count correctly in either mode. The change mode key will cause the display to
change from hex to decimal or vice versa, depending on its present mode. Figure 10.7 depicts
the block diagram.

Two solutions are provided for this problem. Solution one uses programmed /O ‘with no
interrupts, while solution two utilizes interrupt I/O but no programmed 1/0.

10.3.2 Solution No. 1

The simplest and the most straightforward system possible is built to obtain the required
results. This means that there will be no RAM in the system; therefore, no subroutine will be
used in the software and only programmed 1/0 (no interrupt) is used.

10.3.2.a Hardware

Figure 10.8 shows the detailed hardware schematic. The circuit is divided into the following
sections.

10.3.2.a.i Reset Circuit.  The reset circuit for the system is basically the same as the one used for the
8085. The circuit has a 0.1-uF capacitor and 1K resistor to provide an RC time constant of
10~ s for power on reset. The RESET and HALT pins of the 68000 and the RESET pin of the
6821 are tied together for complete and total reset of the system.

10.3.2.a.ii Clock Signal. ~ An external pulse-gencrator is used to generate the clock signal for the system.
The system is driven up to 3 MHz, the limit of the generator, without any problems.

10.3.2.a.iii Address Mapping. The system has two 2K EPROM (2716s) and one 6800’s peripheral /O
chip (6821). The 68000 address lincs Al through A1l are needed to address the EPROMs. So
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FIGURE 10.8 Detailed hardware schematic.

A12 is used to select between the 2716s and the 6821 (0 for 2716s and 1 for 6821). Memory
access for the EPROMs is asynchronous, while the 6821 is synchronized with the E-clock. A12
is inverted, through the buffer, so the output of the inverter goes to CS2 of the 6821 and also
to VPA of the 68000 for synchronization. The 68000 VMA pin is also bulffered and inverted
and it goes to CS0 of the 6821. The 6821 is chosen to be odd, so CSI is activated by the
inverted LDS linc. Finally, address lines A1 and A2 are connected to RS0 and RS, respectively.

The CE for the two 2716s comes from two WAND gates. They are the results of the inverted
Al12 NANDed with the inverted LDS or the inverted uDS, depending on whether the
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EPROM is odd or even. The DTACK pin of the 68000 and the OE pins of the 27165 are
activated by the signal of R/ W inverted. When the 68000 wants to read the EPROMs this
signal will be high, so its inverted signal will provide a low to DTACK. This does not cause
any problem because when the 68000 accesses the 6821, VPA is activated and so the 68000
will not look for DTACK .

The configuration above causes the memory map to be as follows:

A23..A13 Al2 Al1 A10 A9 A8 A7 AG A5 A4 A3 A2 Al HEX

4K of Ol 0 0 00 0O OOUOOTU OO OO 000000,

EPROM THROUGH to
Memory .o PN | R | (A PR A Y () VI AR (1 [ | 000FFF,
PA/DDRA 10....0 1 0 0 0 0 0 0 0 0 0 0 1| 001001,
CRA 0weeO 1 0 0 0 0 0000 0 1 1 [ 001003,

PB/DDRB | 0.0 1 0 0 0 0 0 0 0 0 1 0 1| 001005,
CRB ) - 06 1 0 DW0GoC 000 o 31Dl 001007

10.3.2.a.iv I/O.. There are 3 seven-segments displays in the system (TI311), an LED, and 3 swiiches.
The 3 displays have internal latches and hex decoders. So the two least significant displays are
connected directly to port B of the 6821 chip, and the most significant display is connected to
the upper 4 bits of port A. The latches are tied to grecund so s to enable the displays at all times.
The LED, when ON, will indicate that the display is in the BCD mode. Each of the three
switches, double-pole single throw type, with LED indicator are connected to the lowest 3 bits
of port A.

10.3.2.a.v Unused-Input Pins Connection.  For the 68000 there are 6 unused, active-low, input pins
which must be disabled by connecting them to 5 V. Theseare IPLO, IPLI, IPL2, BERR, BR,
and BGACK. Two of the 6821 unused pins (IRQA and IRQB) are also disabled this way,
while CAl and CBI are disabled by connecting them to ground.

10.3.2.b Microcomputer Development System

Hewlett-Packard (HP) 64000 is used to design, develop, debug, and emulate the 68000-based
system. Some details are given in this section.

The emulator is a very important part of the development of the software and hardware of
the system. The 68000 emulator has most of the functions for emulation such as display
memory or registers, modify memory or registers. But there is no single-step function. The HP
64000 emulator is divided into three modes of operations: initialization, emulation, and
EPROM programming.

10.3.2.b.i Initialization

Edit. The edit function is used to create the application program in mnemonic form. The
first line of the program must be “68000” to indjcate that the program is to be assembled by
the 68000 assembler, and that a 68000 microprocessor is to be used for emulation.

Assemble. When the application program has been completed and properly edited, the file
is then assembled into a relocatable object code file. All errors indicated by the assembler
should be corrected at this point.
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In order to use the 68000 emulator special functions, a special monitor program is required.
This can be copied as follows:

COPY Mon_68K:HP:source to MON_68K

Note upper and lower case. Once this monitor is copied, it must be assembled for no errors.
Assume MON_68K as user file name.

Linking. The two relocatable files must be linked together to create an absolute file for the
emulation process. The files can be linked as follows:

Link <cr>

Object files? Mon_68K

Library file? <cr>

Prog, Data, Comm = 000100H, 000000H, 000000H
More £files? yes '

Object file? (name of application program file)
Library £file? <cr>

Prog, Data, Comm = 001100H, 000000H, O000000H
More files? no .
Absolute file? (name of absolute file)

There are reasons why the two files were linked this way. The monitor program must be
stored at 0100H through OFFFH, and since this I/O port is mapped starting at 1001H, the
application program must be stored starting at a different address, so 1100H was used. Also,
address 000H through OFFF is used for exception vectors by the 68000 microprocessor.

ii Emulation. The emulator was used as a replacement for the actual 68000 chip to test the
software logic and hardware before it was actually installed into the circuit.
To start the emulation process the following soft-key parameters were entered:

EMULATELOAD (absolute file name)
Processor clock? external

Restrict to real time? no

Memory block size? 256

Significant bits? 20

Break on write to ROM? yes

Memory map:

0000H thru OFFFH emulation RAM (monitor & exception vector)
1000H thru 10FFH user RAM (I/O PORT addresses)

1100E thru 1FFFH emulation ROM (application program)

Modify simulated I/O? no
Reconfigure pod? no
Command file name? (name of emulation command £ile)

Note:  Usually external clock requires external DTACK ; however, since the system only has
EPROMs and for the purpose of emulation these EPROMs are not used, the external

DTACK is not required.

Once the required files and memory maps are loaded, the system is ready for emulation. The
monitor program must be running before the application program is exccuted. To run the
monitor program, the following is used:
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Then the application program is run using:

run from 1100H <cr>

Another important part that the user should keep in mind is the processor status. There are
three messages for the processor status which indicate that the emulator is not generating any
bus cycles. They are

1. Reset — Indicates that the uscr’s hardware is asserting the Resct input. The condition
can only be terminated by releasing the user’s hardware.

2. Wait — Indicates that the 68000 is waiting for a DTACK or other memory response.
The condition can be terminated by asserting DTACK, BERR, VPA, or entering
“reset” from the keyboard. :

3. No memory cycle — Indicates that the 68000 has executed a STOP instruction. The
condition can be terminated by asserting “break” or “reset” from the keyboard.

10.3.2.b.iii EPROM Programming.  After the software and hardware have been emulated and they
work properly, the final step is to program the EPROM and put the final circuit together. But
before this, the program must be changed to include the addresses for the stack pointer and
the initial PC. This is done by using the “ORG” and “DC” assembler directives. Then this new
program is assembled and linked again. The EPROM is then programmed with the contents
of this final “absolute file”.
Programming EPROMs with the HP 64000 for 68000 is done by odd and even EPROMs. To
program the lower 8 bits of data (odd ROM), the option bit 0 is selected, and bit 8 for the upper
8 bits (even ROM) is chosen as follows:

Prom Prog <cr>
2716 <cr>
Program from (filename: absolute: bit 0 or 8)

Also, to check if the EPROM is clear, the command “check_sum” is used and if the result is
F800H then the EPROM is clear.

10.3.2.c Software

The program consists of three major functions: initialize I/O ports and data registers, monitor
and debounce key switches, and increment, decrement, or change mode. The program con-
figures port B of the 6821 as an output port which will be used to display the two lower
significant nibbles of data. The higher 4 bits of port A are configured as output to display the
most significant nibble of the data. Bit 3 is also an output bit which turns ON and OFF the
* LED. The lowest 3 bits of port A are configured as inputs to detect the positions of three key
switches. Register D3 is used to store the data in hex. Registers D4 and D7 are used to store
the data in BCD mode with the low order byte in D4 and the high order byte in D7. Bit 3 of
DO contains a logic 1 representing BCD mode and logic 0 representing hex mode. Register D5
contains a 1 which will be used for incrementing BCD data, since ABCD doesn’t have
immediate mode. Register D6 contains 999 which is used for decrementing BCD.

The program monitors the three switches and stores the three input bits into register DO if
any of the keys is pressed. The processor then waits until the depressed key is released and then
checks the input data one by one. The processor then branches to the increment, decrement,
or mode change routine according to the depressed key. After execution, the processor will
display the result on the three seven-segment displays.

Figure 10.9 shows the software flowchart. Note that the flowchart and the corresponding
software does not include ‘Mode LED’ on/off feature.
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The assembly language program is listed below:

FILE: LAB2:KHOA22 HEWLETT-PACKARD: 68000 Assembler

1 “68000”
2 *t********'k***t************t*************t*****************
3 *THIS PROGRAM STARTS DISPLAYING 000 AND MONITORS THREE KEY *
4 *SWITCHES THEN INCREMENT, DECREMENT, OR CONVERT HEX TO BCD *
S5 *OR VICE VERSA, DEPENDING ON WHICH KEY IS DEPRESSED, THE *
6 *DISPLAY GOES FROM 00-FF IN HEX MODE OR 00-255 IN BCD MODE *
'7 *t****************t**********************t***************t*
LOCATION OBJECT
CODE LINE SOURCE LINE
<1001> 8 PA EQU 001001H
<1001> 9 DDRA EQU 001001H
<1003> 10 CRA EQU 001003H
<1005> 11 pB EQU 001005H
<1005> 12 DDRB EQU 001005H
<1007> 13 CRB EQU 001007H
' 14 “ ORG 00000000H
000000 FFFF FFFF 15 DC.L OFFFFFFFFH
000004 0000 0008 16 PEL START
17 *
18 * CONFIGURE THE INPUT AND OUTPUT PORTS,
19 * DISPLAY 000 ON THE 7-SEGMENT DISPLAYS,
20 * AND INITIALIZE ALL THE DATA REGISTERS.
21 * THE HEX MODE IS STORED IN D3 AND THE
22 * BCD MODE IS STORED IN D7 AND D4.
000008 4238 1003 23 START CLR.B CRA
00000C 11FC OOFB 24 MOVE.B° #0F8H,DDRA ;BIT 0-2 OF
;PORT A AS
; INPUT
000012 OBF8 0002 25 BSET.B #02H,CRA ;BIT 3-7 OF
;PORT AS OUT-
:PUT
000018 4238 1007 26 CLR.B CRB
00001C 11FC OOFF 27 MOVE.B #0FFH,DDRB ;ALL 8 BITS OF
;PORT B AS
; OUTPUT
000022 0BFB8 0002 28 BSET.B #02H,CRB
000028 4200 29 CLR.B DO
00002A 11C0 1001 30 MOVE.B DO,PA ;DISPLAY 000
00002E 11CO 1005 31 MOVE.B DO,PB
000032 4203 32 CLR.B D3
000034 4244 33 CLR.W D4
000036 7A01 34 MOVEQ.W #01H,D5
000038 3C3C 0999 35 MOVE.W #999H,D6
00003C 4207 36 CLR.B D7
37 *
38 * DEBOUNCE THE KEY SWITCHES
39 =*
00003E 1238 1001 40 SCAN MOVE.B PA,D1 ;MONITOR THE
- ;KEYS
000042 0201 0007 41 ANDI.B #07H,D1 ;MASK OUT THE

;OUTPUT PINS
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68000 Assembler (continued)

CODE LINE SOURCE LINE
000046 67F6 42 BEQ SCAN ;IF NO KEY IS
;DEPRESSED GO TO
; SCAN
000048 1438 1001 43 MOVE.B PA,D2 ;READ THE DATA
AGAIN
00004C 0202 0007 44 ANDI.B #07H,D2
000050 B401 45 CMP.B D1,D2 ;CHECK TO SEE IF
;THE DATA REMAIN
; UNCHANGED ‘
000052 66EA 46 BNE SCAN ;IF IT CHANGES GO
;TO SCAN
47 =*
48 * CHECK TO MAKE SURE THAT THE KEY IS
49 * RELEASED BEFORE THE NEXT KEY CAN BE
50 * ENTERED.
000054 1438 1001 51 KEYRL MOVE.B PA,D2
000058 0202 0007 52 ANDI.B #07H,D2
00005C 66F6 53 BNE KEYRL
54 * CHECK TO SEE WHICH KEY HAS BEEN EN-
55 * TERED. BITS 0,1, AND 2 OF D1 REPRESENT
56 * INCREMENT, DECREMENT, AND MODE EX-
57 * CHANGE RESPECTIVELY.
00005E 0801 0000 58 BTST.B #0H,D1
000062 6600 003C 59 BNE INCR ;IF BIT-0 OF D1
;IS 1 GOTO INCR
000066 0801 0001 60 BTST.B §#1H,D1
00006A 6700 0044 61 BEQ _ MODE ;IF BIT-1 IS:-1
; DECREMENT, OTHER-
;WISE GOTO MODE
62 *
63 DECREMENT BOTH HEX AND BCD AT THE SAME
64 * TIME.
00006E 0C03 0000 65 CMPI.B #00H,D3
000072 67CA 66 BEQ SCAN ;IF THE NUMBER IS
;0 NO DECREMENT,
;GOTO SCAN
000074 5303 67 SUBQ.B #1H,D3 ;DECREMENT HEX BY 1
000076 C603 68 AND.B D3,D3 ;CLEAR THE CARRY
000078 C906 69 ABCD.B D6,D4 _, ;DECREMENT BCD BY
;1 BY ADDING IT
JWITH 999
00007A CFO06 70 ABCD.B D6,D7
71 *
72 * DISPLAY THE NUMBER IN HEX IF BIT-3 OF
73 * DO IS 0, OTHERWISE DISPLAY IN BCD.
74 *
00007c 0800 0003 75 DISPLAY BTST.B #3H,DO
000080 6700 0014 76 BEQ HEX ;IF BIT-3 OF DO
;IS 0, GOTO HEX
000084 11C4 1005 77 MOVE.B D4,PB ;OUTPUT THE LSB
;TO PORT B
000088 E94F 78 LSL.W #4H,D7 ;SHIFT LEFT 4

; TIMES
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FILE: LAB2:KHOA22 HEWLETT-PACKARD: 68000 Assembler (continued)
LOCATION OBJECT

CODE LINE SOURCE LINE
00008A 0BC7 0003 79 BSET.B #3H,D7 ;TURN OFF THE LED
00008E 11C7 1001 80 MOVE.B D7,PA ;OUTPUT THE MSB
;TO UPPER 4 BITS
;OF PORT A
000092 EB4F 81 LSR.W  #4,D7
000094 60A8 82 BRA SCAN
000096 11C0 1001 83 HEX MOVE.B DO,PA ;OUTPUT 0 TO PORT A
00009A 11C3 1005 84 MOVE.B D3,PB ;OUTPUT THE HEX
i ;NUMBER TO PORT B
00009E 609E ‘85 BRA SCAN
86 *
87 * INCREMENT BOTH HEX AND BCD.
88 *
0000A0 0CO3 OOFF 89 INCR CMPI.B #0FFH,D3
0000A4 6798 90 BEQ SCAN ;IF THE NUMBER
;IS FF NO
; INCREMENT
0000A6 5203 91 ADDQ.B  #1H,D3  ;INCREMENT HEX
;NUMBER BY 1
0000AB 4202 92 CLR.B D2
0000AA C905 93 ABCD.B D5,D4 ; INCREMENT LSB OF
;BCD BY 1
0000AC CF02 94 ABCD D2,D7 ; INCREMENT MSB OF
;BCD BY 1 IF CARRY
;IS 1
0000AE 60CC 95 BRA DISPLAY
96 *

97 * EXCHANGE THE MODE THEN DISPLAY THE
98 * NUMBER.

0000BO 0840 0003 99 MODE BCHG #3H,D0 ;EXCHANGE MODE BY
;CHANGING BIT-3
; ;OF DO
0000B4 60C6 100 BERA DISPLAY
Errors = 0

LINE# SYMBOL TYPE REFERENCES

*HW B U 23,24,25,26,27,28,29,30,31,32,36,40,41, 43, 44,
- 45,51,52, 58, 60,65,67,68,69,70,75,77, 79, 80,
83,84,89,91,92

10 CRA A 23,25

13 CRB A 26,28

9 DDRA A 24

12 DDRB A 27

75 DISPLAY A 95,100

83 HEX A 76 :

89 INCR A 59

51 KEYRL A 53

* kK L U 15,16

99 MODE A 61

8 PA A 30,40,43,51,80,83
11 PB A 31,77, 84

40 SCaN A 42,46,66,82,85, 90
23 START A 16

* Kk W U 33,34, 35,78,81
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TABLE 10.1  Memory Map

$000000-$000F ) EPROM
$003000-$003FI'F RAM
$005000-$005FFF DISPLAYS
$009000-$009FFF SWITCHES

10.3.3 Solution No. 2

The second solution approach uses interrupt I/O but no /O ports.

10.3.3.aHardware k

.

The system includes a 3-digit display and threec momentary function switches (increment,
decrement, and mode sclect). In order to minimize the complexity of the project, no 1/0 chips
arc used. Instcad, a buffer and some latches are used as the 1/O ports. The buffer is used to
input the status of the momentary switches and the latches arc used to input the information
coming from the data bus. To further the design, three TIL311 displays are used because they
contain internal data latches. Because the 68000 has 23 address lines (not including A0), the
memory is linearly decoded. The even and odd memory chips are enabled by decoding pins
uDS, LDS, and AS.

To display the three-digit number, the data lines are conncected to the inputs of the three
TIL311 displays (D0-D3 = LSD, D4-D7 = middle digit, D§-D11 = MSD). The address strobe
(AS) is NANDed with the address line Al4 to latch the data onto the three displays. The
memory map for the displays is given in Table 10.1. Becausc of lincar decoding, the problem
of foldback exists.

Two 2716s are used for the EPROM and two 6116s are used for the RAM. Both the RAM
and the EPROM chips are divided into even and odd memory. The configuration enables the
68000 to access an even or an odd data bytes or a complete word in one bus cycle. The even
and odd sclect lines are generated by ANDing the UDS and AS pins and the LDS and AS
pins, respectively. To access a word, both the even and the odd cnable signals arc asserted.
These signals are then NANDed with address lines A12 and A13 to select the EPROM and the
RAM, respectively (sce Figure 10.10). The odd memory chip data lines are connected to DO-
D7 of the 68000. The even memory chip data lines are connected to D8-D15. Table 10.1 shows
the memory map.

In the system, the interrupt pins are implemented by ANDing the status of the momentary
switches and connecting the output of the gate to 1PL2. To achieve alevel 5 interrupt, IPL1
and IPLO pins arc connected to Vee and ground, respectively (see Figure 10.10). To reduce
the number of components, the 68000 is instructed to generate an internal autovector to
service the interrupt. This is accomplished by asserting VPA and IPL2 at the same time. If
an interrupt occurs (switch pressed), the 68000 will compute the autovector number $1D and
the vector address $74. The processor will then go to a service routine that will find the switch
that was pressed.

A 4-MHz crystal oscillator is used to clock the processor. Since the 68000 is operating at
4 MHz, AS is directly connected to DT DTACK . This gave the EPROMs (450 ns access time) about
500 ns to provide valid data. A reset circuit similar to the one used in the 8085 system is used
for the 68000-based microcomputer. However, on the 68000, both the RESET and HALT
pins are tied together (sce Figure 10.10). Figure 10.11 shows the board layout of all the chips.

10.3.3.b Software

The first major feature of the software is the inclusion of a start-up routinc. The advantage of
the start-up routine is to visibly verify the system performance. For example, if one of the
displays malfunctions, the fault will not be known unless the user is able to sce the display
patterns. This requirement leads to the development of a start-up routine in which all three
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FIGURE 10.10  68000-based system for design problem no, 2.

displays count F down to 0 (in parallel). This routine uses a DBF loop in which the counter’s

value is duplicated to the two higher hex digits. The following is the actual st

implemented in the program.

MOVEQ #0FH, DO
LOOP MOVE.W DO,D1
ASL.W #4,D1
ADD DO, D1
ASL.W #4,D1

art-

up routine

; INITIALIZE LOOP COUNTER

TO $0000000F

; COPY DO TO D1
; SHIFT D1 LEFT 4 TIMES
; ADD DO TO D1
; SHIFT D1 LEFT 4 TIMES
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ADD.W
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MOVE.L
JSR
DBF .W

CLR.L
CLR.L
MOVE.W
MOVE.W

WAIT ERA.B

ROM Conncclions

EVEN 18
Al2

From the
68000 A7

OoDD 8
A2

From the =
68000 Ao

639

A +5

_ 24

= 21

Ot

19 17 D15
22 2716 :G D14
}’3 (EVEN) 13‘ 8}3
2 13 DN
3 3] D10
4 10 D9
5 9 Do
(]

7

8 12

A+5

e 24

P 21

Ot

3 i

2716 D6

3 (ooD) 3 L]
2 13| D3
3 1} D2
{ 4 10 D1
5 9 Do
| &

7
{ 1.2

nued.

DO,D1

D1, DISPADDR
#VISIBLE,D6
DELAY

DO, LOOP

DO
D7
DO, DISPADDR
# INTRMASK, SR

WAIT

I

ADD DO TO D1

SEND RESULT TO DISPLAY
LOAD DELAY TIME

CALL DELAY SUBROUTINE

DEC BRANCH IF DO # -1, NOT
TO THE LOOP '
INITIALIZE COUNTER TO ZERO
INITIALIZE MODE TO DECIMAL
INITIALIZE DISPLAYS TO ZERO
SET INTR AT LEVEL 5 AND
SUPERVISOR MODE

WAIT FOR INTERRUPT

Upon successful completion of the start-up routine, the software directs the 68000 to enter
an infinite wait loop. The wait loop serves to occupy the 68000 until a level 5 interrupt signals
the processor. Upon interrupt, SR is pushed and the PC is also stacked. The 68000 accesses the
long word located at address $74 and jumps to that service routine. The service routine exists
at location $500. In response to the interrupt, the software directs the 68000 to move in the
status switches to the low word of D0. A “C”-type priority case statement exccutes.
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FIGURE 10.10  continued.

The case statement has the priority of up, down, then mode. Implementation of the case
statement climinates uncertainties when multiple keys are depressed. In the following, the case

statement is shown.

NOP

MOVE . W
BTST.W
BEQ.W
BTST.W
BEQ.W

RESPONSE

BTST.W
BEQ.B

BRA.B

STATUS, D1
#UPBIT, D1
INCREASE

#DOWNBIT, D1

DECREASE

#MODEBIT, D1

CHMODE, D1

RESPONSE

.
r

ENTRY NO OPERATION
MOVE IN BUTTON STATUS WORD
TEST INCREMENT BIT

IF UPBIT=0 BRANCH TO INCREASE
TEST DECREMENT BIT

IF DOWNBIT=0 BRANCH TO
DECREASE

TEST MODEBIT

IF MODEBIT=0 BRANCH TO CHANGE
MODE _

NO RESPONSE, THEN SEARCH AGAIN

This segment utilizes the test bit facilitics of the 68000. The algorithm first loads the
switches. The switch word is then tested by the BTST instruction. The first bit test is the upbit.
If the bit is found to be 0, the program branches to an increase-update routine. If the downbit
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FIGURE 10.11  Board layout.

is found to be low, then the program reacts to decrement the displays. If the mode bit is found
low, then the response is the base conversion of the displayed output.

“Ulhie user may be tempted to indelinitely press a button or press multiple buttons. The habit
is permissible. The program implements a 0.4-second wait loop at the end of any press of a key.
This is a post-debounce. Without this feature, the 68000 will cither count or change modes at
speeds beyond recognition. The debounce routine also contains a priority. If the user con-
stantly depresses multiple keys, the 68000 will service the input with the highest priority.

At this point, a deviation of the problem was made. The deviation was for case of checking
out the project. During checkout, when one wants to see a rollover, the increment or decre-
ment key must be pressed 255 times. This is futile. At the end of the service routine, the
software will not lock out a key entry, but rather the 68000 will immediately go to the wait state
where the next interrupt nuay take place. To the user, it will appear that the 68000 is either
autoincrementing, autodecrementing, or automatically chanbmg modecs. The post-debounce
scgment is displayed below.

VIEWER NOP ; ENTRY NO OPERATION
MOVE.1 #VISIBLE,D6 ; PLACE DELAY INTO D6
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JSR DELAY ; JUMP TO DELAY SUBROUTINE

RTE ; RETURN FROM EXCEPTION
DELAY NOP ; ENTRY NO OPERATION

DBF.W D6, DELAY ; DECREMENT FOR WAIT

RTS ; RETURN FROM SUBROUTINE

The debounce routine implements a dummy loop that utilizes a large loop count. The
routine is initialized by an immediate move long to D6. The debounce routine is called via the
jump subroutine command. The delay loop contains a no-operation to increase loop time.
After the NOP, the DBF.W will decrement D6 and branch if D6 is not equal to negative 1.

The software uses a hex base for counting; that is, all numbers whether decimal or hex will
originate from a hex byte in data register 0 (D0). The display status exists in data register 7
(D7). 1f the contents of D7 are zero, this informs the program to display a decimal number on
the next update. Otherwise, the program will send a hex value to the display. A.typical
decision-making segment (below) uses the 68000's ability to update flags on a move operation.

MOVE., D7,D7 ; MOVE TO UPDATE FLAGS
BNE.B HEX ; IF Z=0 THEN SEND HEX TO DISPLAYS
BRA.B DECIMAL ; OTHERWISE, DECIMAL TO DISPLAYS

To convert a hex number to decimal format, the program uses the division/modulo algo-
rithm shown in the following.

DECIMAL NOP ; ENTRY NO OPERATION
CLR,IL D2 ; INITIALIZE D2 TO ZERO
CLR.L D1 ; INITIALIZE D1 TQ ZERO
MOVE.B DO,D1 ; COPY COUNT
DIVU #10,D1 ; DIVIDE D1 BY 10 MSD HEX —
; DECIMAL
SHAP D1 ; PLACE REMAINDER IN LOW WORD
; D1
MOVE.W D1,D2 ; MOVE REMAINDER TO D2
CLR.W D1 ; CLEAR REMAINDER :
SWAPD D1 ; REPLACE REMAINDER
DIVU #10,D1 ; DIVIDE D1 BY 10
SWAP. D1 ; REMAINDER TO LOW WORD D1
ASL.W  #4,D1 ; SHIFT REMAINDER UP ONE DIGIT
ADD.W D1,D2 ; ADD IN SECOND SIG FIG
SWAP D1 ; REPLACE QUOTIENT
ASL.W  #4,D1 ; SHIFT QUOTIENT UP ONE DIGIT
ASL.W  #4,D1 ; SHIFT QUOTIENT ANOTHER DIGIT
ADD p1,D2 ; ADD IN LSD HEX E DECIMAL
MOVE.W D2,DISPADDR ; SEND DECIMAL RESULTS TO
; DISPLAY
BRA.W  VIEWER ; GO TO DISPLAY BRANCH

The algorithm exploits the DIVU (unsigned division) facilities of the 68000. The hex byte
is moved to a long word register with zero-extend (assumed by CLR.L followed by a MOVE.B
operation). The number is then divided by 10. The quotient remains in the low word of the
destination register (D1); the remainder lies in the high word. With the use of SWAP, the
remainder and quotient words arc swapped. The remainder is moved (MOVE.W D1,D2) to
another register D2 (initialized to zero). At this point, the remainder is cleared in D1, and swap
is used to replace the quotient in the fow word of D1, The next lower significant digit is
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extracted. Again, DIVU uses an immediate source of 10. The remainder in D1 is swapped into
the low word, shifted up four times, then added to D2. The quotient is swapped back to the
low word, shifted left eight times, then added to D2. The result of this routine is (at most) a
three-digit BCD number which is suitable to send to the displays.

After the update of the displays, a time delay subroutine allows execution delays from
the order of microseconds to the order of seconds. The time delay subroutine is shown
below.

DELAY NOP ; ENRTRY NO OPERATIOCN
DBF.W D6,DELAY ; DECREMENT FOR WAIT
RTS ; RETURN FROM SUBROUTINE

The NOP serves to increase the delay time of the loop. The NOP takes 4 clock cycles. DBE.W
{decrement and branch on false) takes 10 clocks on a branch and 14 on a skip. JSR (jump
subroutine) to the delay takes 23 cycles. The time analysis is simplified when consideration is
taken only of the duration of the delay loop. A suitable delay for this project is about 0.4 5. This
equates to (4-MHz clock) 1.6 million clock cycles! Because of the high number of cycies
required, the “calls” and “returns” can be avoided because of their insignificance when
compared to the massive number of clock delays required. A delay of about 0.4 s is used, which
requires about 100,000 loops in the delay routine.

Some mention should be made of the mode features of the software. The change mode
allows the user to liberally change the viewing format from hex to BCD or vice versa. The
activation of this software feature simply complements D7 and then updates the displays via
the previously mentioned methods. The increment facility increments DO and updates the
displays. Similarly, the decrement facility decrements D0 and updates the displays.

Expansion of the system is possible. Maybe for user entertainment, an uptone or downtone
can be implemented. The tone can be generated through a variable delay routine. Onc of th:
address lines may be tied in series to a small speaker and every time the address is accessed, the
speaker will “tick”. Otherwisc, the software, as it is, is suitable for the project. A listing of the
assembly language program is provided below:

“68000"

; Microcomputer Applications
; M. Rafiquzzaman
; November 9, 1987

; This is the software routine for Design Problem
; No.2

; THE BCD<>HEX COUNTER

; Language is 68000 MACROC

NAME  BCD<>HEX_COUNTER

AUTO6 EQU 00000074H ; SERVICE ROUTINE
;ADDRESS LOCCATION
TSTACK EQU 000037FCH ;STACK INITIALIZE
RESPONSE EQU 000005004 ; INTERRUPT VECTOR
; ADDRESS
DISPADDR EQU 00005000H ;ADDRESS OF DISPLAY

PCINIT EQU 00000400H ;PC STARTUP ADDRESS
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VISIBLE EQU
UPBIT EQU
DOWNBIT EQU
MODEBIT EQU
STATUS EQU
INSTRMSK EQU
; location
ORG
DC.L
DC.L
ORG
DL,
DC.L
DC.L

‘
; Startup routine
;

ORG

NOP
MOVEQ

MOVE.W
ASL.W

LOOP

ADD . W
ASL.W

ADD.W
MOVE.W
MOVE.L
JSR
DBF

CLR.L
CLR.L
MOVE.W
MOVE.W

WAIT BRA.B

; INTERRUPT ROUTINE
ORG
NoP
MOVE.W

RESPONSE

00100000H

OFH

OEH

ODH
0000S000H
2500H

Top of the stack, program origin,

00000000H
TSTACK
PCINIT
AUTO6
RESPONSE
RESPONSE

RESPONSE

PCINIT

#0FH, DO

DO, D1
#4,D1

DO,D1
#4,D1

DO,D1

D1, DISPADDR
#VISIBLE, D6
DELAY

DO, LOOP

Do

D7

DO, DISPADDR
#fINTRMASK, SR

WAIT

RESPONSE

STATUS, D1

-;ADDRESS
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;DELAY TIME APPROX. 0.4
; SECONDS

; INCREMENT BIT LOCATION
;DECREMENT BIT LOCATION
/MODE BIT LOCATION
;STATUS WORD LOCATION
; INTERRUPT HASK! LEVEL 7

and interrupt service

; STARTUP

;INITIAL SUPERVISOR
;FIRST PROGRAM INSTR
; LOC

; LOCATION OF AUTOVECTOR
; RESPONSE

;ADDRESS OF SERVICE
;ROUTINE 5

OF SERVICE
;ROUTINE 6

;ADDRESS OF SERVICE
;ROUTINE NMI

;BOOTUP AND TEST

; ROUTINE

;ENTRY NO OPERATION
;INITIALIZE LOOP
;COUNTER TO $0000000F
;COPY DO TO D1

;SHIFT D1 LEFT FOUR
;TIMES

;ADD DO TO D1

;SHIFT D1 LEFT FOUR

; TIMES

;ADD DO TO D1

; SEND RESULT TO DISPLAY
; LOAD DELAY TIME

;CALL DELAY SUBROUTINE
;DEC BRANCH IF DO !=
;=1, NOT TO LOOP

; INITIALIZE COUNTER TO
; ZERO

;INITIALIZE MODE TO

; ZERO .
;INITIALIZE DISPLAYS TO
; ZERO

;SET INTR AT 5 AND

; SUPER MODE

;WAIT FOR INTERRUPT

;ENTRY NO OPERATION
;MOVE IN BUTTON STATUS
; WORD
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BTST.W #UPBIT,D1
BEQ.W INCREASE

BTST.W #DOWNBIT, D1
BEQ.W DECREASE

BTST.W #MODEBIT,D1
BEQ.B  CHMODE,D1

BRA.B RESPONSE

. -
’

; Change mode and update displays

CHMODE NOP
EORI.B §#O0FFH,D7
BNE.B HEX

BRA.B DECIMAL

’

; Increment display count

INCREASE NOF
ADDQ.B #1,D0
MOVE.B D7,D7
BNE.B HEX

BRA.B DECIMAL

]

; Decrement display count

DECREASE NOP ‘
SUBQ.B #1,D0
MOVE.B D7,D7
BNE.B  HEX

BRA.B DECIMAL

645

; TEST INCREMENT BIT

; IF UPBIT=0 THEN BRANCH
; TO INCREASE

; TEST DECREMENT BIT

; IF DOWNBIT=0 BRANCH TO
; DECREASE

; TEST MODEBIT -

; IF MODEBIT=0 THEN

;BRANCH TO CHANGE MODE

;NO RESPONSE, THEN
SEARCH AGAIN

;ENTRY NO OPERATION

; COMPLEMENT MODE ‘MASK
;IF EORI IS NOT ZERO
;THEN HEX OUT

;EORI IS ZERO, THEN
;DECIMAL OUT

;ENTRY NO OPERATION

; INCREMENT THE COUNT DO
;MOVE TO UPDATE FLAGS
;IF Z=0 THEN SEND HEX
;TO DISFLAXYS
;OTHERWISE, DECIMAL TO
;DISPLAYS

;ENTRY NO OPERATION
;DECREMENT COUNT

;MOVE TO UPDATE ELAGS
;IF Z=0 THEN SEND HEX
;TO DISPLAYS
;OTHERWISE, DECIMAL
;DISPLAYS

; This routine sends hex contents of DO to the displays

HEX NOP
MOVE.W DO,DISPADDR

BRA.W VIEWER

; HEX — Decimal converter

DECIMAL NOF

CLR.L D2
CLR.L D1l

MOVE.B DO,Dl
DIVU #10,D1

SWAP D1

MOVE.W D1,D2
CLR.W D1

;ENTRY NO OPERATION
;BEX DATA IS SENT TO
;DISPLAYS

;GO TO DELAY BRANCH

;ENTRY NO OPERATION

; INITIALIZE D2 TO ZERO
; INITIALIZE D1 TO ZERO
;COPY COUNT

;DIVIDE D1 BY 10 MSD
;HEX — DECIMAL

;PLACE REMAINDER IN LOW
;WORD D1

;MOVE REMAINDER TO D2
;CLEAR REMAINDER
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SWAP D1
DIVU #10,D1
SWAP D1

ASL.W 4,01

ADD.W D1,D2

SWAP D1l

ASL.W  #4,D1
ASL.W #4,D1

ADD D1,D2
MOVE.W D2,DISPADDR

BRA.W VIEWER

’

;REPLACE REMAINDER
;DIVIDE D1 BY 10
;REMAINDER TO LOW WORD
Dl

;SHIFT REMAINDER UP ONE
; DIGIT

;ADD IN SECOND SIG FIG
;REPLACE QUOTIENT

; SHIFT QUOTIENT UP ONE
;DIGIT

;SHIFT QUOTIENT ANOTHER
;DIGIT

JADD IN LSD HEX —
;DECIMATL

;SEND DECIMAL RESULTS
;TO DISPLAY

;GO TO DISPLAY BRANCH

i This sends output to displays and implements delay of 0.7

; seconds

VIEWER NOP

MOVE.L #VISIBLE,DG
JSR DELAY
RTE

; Delay subroutine

DELAY NOP
DBF .B D6, DELAY
RTS

The following shows 68000 Delay Analysis:

MOVE.L #VISIBLE,D6

JSR DELAY
DELAY NOP
DBF D6, DELAY
RTS
Execution Time:
MOVE.L H#REG
JSR ADDR
NOP
DBF REG, ADDR
RTS
First Pass: t1 = 12 + 20+ 4 + 14 = 50 CLOCKS
Middle Pass: t(n-2) = (n - 2) (4 -+ 14) CLOCKS

Last Pass: tn = 4 - 10 + 16 = 30 CLOCKS

;ENTRY NO OPERATION
;PLACE ENTRY INTO D6
;JUMP TO DELAY

; SUBROUTINE

;RETURN FRCM EXCEPTION

;ENTRY NO OPERATION
; DECREMENT FOR WAIT
;RETURN FROM

; SUBROUTINE

;MOVE IN DELAY LOOP

; COUNT

;CALL SUBROUTINE TO
;DELAY LOOP

;TIME DELAY INCREASE

; LOOP

; DECREMENT BRANCH FALSE
;RETURN SUBROUTINE

12 CLOCKS
10 CLOCKS

CLOCKS

14/10 CLOCKS
i6 CLOCKS
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General Pass: (forn > 3)

Typical Pass: (for large n)

647

For 0.45-s delay with a 4-MHz clock, 1.8 million clock cycles are required (0.45 s was chosen

for easc of calculations).

Therefore,

1,800,000
100,000

Figure 10.12 shows the flowchart for the start-up routine.

FIGURE 10.12  Start-up routinc flowchart.

Initialization on
startup PC and
SSP loaded

A

Initialization for
Startup routine DO
init. to count

4

Copy counter to
lower three
nibbles of D1

Send D1 to
displays

Decrement
DO =-17

yes

>

Y

Startup completed.
Wail for interrupt
Ibl bra.b Ibl
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From Interrupt 6 Autovector

» Move in status word

addq.l #1, DO
increment

subg.l #1, DO
decrement

Downbit = 07

eori.b #$0FF, D7

Modebit = 07

complement
no yes
f 4 ‘
Display HEX Display decimal

FIGURL 10.12  contined.

Questions and Problems

Design and develop the software and hardware for the following using a particular micropro-
cessor (unless mentioned) and its support chips with a microcomputer development system
of your choice. '

10.1 Design and develop the hardware and software for a microprocessor-based system that
would measure, compute, and display the Root-Mean-Square (RMS) value of a sinusoidal
voltage. The system is required to: ;
1. Sample a 60-Hz sinusoidal voltage 128 times.
2. Digitize the sampled value through a microprocessor-controlled analog-to-digital
converter.
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3. Input the digitized value to the microprocessor using an interrupt.
4. Compute the RMS value of the waveform using the equation

Xi*
RMS value= \/EN

where Xi’s are the samples and N is the total number of samples.
5. Display the RMS value using two digits.

10.2  Design a microcomputer-based capacitanct meter using the following RC circuit:

Volo

The voltage across the capacitor is VO(t) = ke /*C, In one time constant RC, this voltage
is discharged to the value k/e. For a specific value of R, the value of the capacitor C = t/R,
where t is the time constant that can be counted by the microcomputer. Design the hardware
and software for a microprocessor to charge a capacitor by using a pulse to a voltage of up
to 10 V peak voltage via an amplificr. The microcomputer will then stop charging the
‘capacitor, measure the discharge time for one time constant, and compute the capacitor
value.

10.3 Design and develop the hardware and software for a microprocessor-based system to
drive a four-digit seven-segment display for displaying a number from 0000H to FFFFH.

10.4 Design a microprocessor-based digital clock to display time in hours, minutes, and
seconds on six-digit seven-segment displays in decimal.

10.5 Design a microcomputer-based temperature sensor. The microcomputer will measure
the temperature of a thermistor. The thermistor controls the timing pulse duration of a
monostable multivibrator. By using a counter to convert the timing pulse to a decimal count,
the microcomputer will display the temperature in degrees Celsius.

10.6  Design a microprocessor-based system to test five different types of IC, namely, OR,
NOR, AND, NAND, and XOR. The system will apply inputs to cach chip and read the output.
It will then compare the output with the truth table stored inside the memory. If the compari-
son passes, a red LED will be turned OFF. If the comparison fails, the red LED will be turned
ON.

10.7 Design a microprocessor-based system that rcads a thermistor via an A/D converter and
then displays the temperature in degrees Celsius on three seven-segment displays.

10:8 Design a microprocessor-based system to measure the power absorbed by a 1K resistor.
The system will input the voltage V across the 1K resistor and then compute the power using
VIR,
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™
10sin377

10.9 It is desired to design a priority vectored interrupt system using a daisy-chain structure
for a microcomputer. Assume that the system includes four interrupt devices DEVO, DEV1,
... DEV3, which, during the interrupt sequence, place the respective instructions RST0, RST1,
..., RST3 on the data bus. Also assume that DEVO, ..., DEV3 are Teledync 8703 A/D
converters (DEV3 highest, DEVO lowest priority) or equivalent.

i) Flowchart the problem to provide service routines for inputting the A/D converters’

outputs.
ii) Design and develop the hardware and software.

10.10 It is desired to drive a six-digit display through six output lines of a microcomputer
system. Use six Texas Instruments TIL311, 14-pin MSI hexadecimal displays or equivalent:
i) Design the interface with minimum hardware.
ii) Flowchart the software.
iii) Convert the flowchart to the assembly language program.
iv) Implement the hardware and software.

10.11 Design a microcomputer-based combinational lock which has a combination of five
digits. The five digits are entered from a hexadecimal keyboard and they arc to be entered
within 10 s. If the right combination is entered within the same limit, the lock will open. If after
10 s either all five digits are not entered or a wrong combination is entered, then the display
will show an error signal by displaying “E”. The system will then allow 5 s for the first digit to
be entered the second time. If after this time the digit is not entered, the system will turn ON
the alarm. If the second try fails, the alarm is also turned ON. When the alarm is ON, in order
to reset the system, power has to be turned OFF.

10.12  Design a microcomputer-based stopwatch. The stopwatch will operate in the follow-
ing way: the operator enters three digits (two digits for minutes and onc digit for tenths of
minutes) from a keyboard and then presses the GO key. The system counts down the remain-
ing time on three seven-segment LED displays.

10.13  Design a microcomputer-based system as shown in the following diagram. The system
scans a 16-key keyboard and drives three seven-segment displays. The keyboard is a 4 x 4
matrix. The system will take cach key pressed and scroll them in from the right side of the displays
and keep scrolling as each key is pressed. The leftmost digit is just discarded. The system
continues indefinitely. Do not use any keyboard encoder chip. Use the 68000 microprecessor.

microcomputer
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10.14 Design a microcomputer-based smart scale. The scale will measure the weight of an
object in the range of 0-5 Ib. The scale will use a load cell as a sensor such as the one
manufactured by transducer, Inc. (Model # c462-10#-10p] strain-gage load cell), This load cell
converts a weight in the range of 0-10 Ib to an analog electrical voltage in the range 0-20 mV.
The weight in Ibs. and tenths should be displayed onto two BCD disgl?ys.

v '
10.15 Design a microcomputer-based EPROM programmer to program a 2716.

10.16 Design a microcomputer-based system to control a stepper motor.
10.17 Design a microcomputer-based sprinkler control system.

10.18 Design a phone call controller. The controller will allow the user to pass only ten
random phone numbers chosen by the user. The controller will use the touch-tone frequencies
to encode the user information code numbers. A device will be used to decode the touch-tone
signals and convert cach into a seven-bit word. A microprocessor will then interpret this word
and see if it is a match with one of the ten different numbers chosen by the user. The ten
numbers are inputted by the user via the * button from the touch-tone system. The controller
will have a manual override via the # button from the touch-tone system.

10.19 Design a microprocessor-based appointment reminder system with a clock. The sys-
tem will alert the user before the present appointment time. The user has to set the appoint-
ments into fixed slots; for example: 9 AM or 2 PM. The system will deliver a voice message such
as “Your next appointment is five minutes away” five minutes before the appointment time.
A real time clock is to be included in the system to display the current time and will show the
appointment time slots. You may use the Radio Shack SP0256 narrator speech processor.

10.20 Design a microcomputer-based autoranged ohmmeter with a range of 1 ohm to 999
kohm as follows: the microcomputer generates a pulse to charge a capacitor up to 10 V peak
voltage through an amplifier and then stops charging the capacitor. The microcomputer
measures the discharge time of the capacitor for one time constant and then computes the
value of the resistor.

10.21 Interface two microcomputers to a pair 2K x 8 dual-ported RAMs (IDT7132) without
using any bus locking mechanism. Two seven-segment displays will serve as an indicator. A
program will be written to verily the dual-ported RAM contents. One processor will write
some known data to the dual-ported RAM and the other processor will read and verify this
data against the known data.

10.22  Design a microcomputer-based low frequency (1 Hz to 10 kHz) sine waveform
gencrator. One cycle of a sine wave will be divided into a certain number of equal intervals.
Each interval is defined as a phase increment. The precalculated sine values corresponding to
the intervals are stored in ROM. The frequency of the signal will be set up by switches, When
the system is started, the microprocessor will read the switches and will determine the time
delay corresponding to the phase increment. The microprocessor will follow the time incre-
ments to send data to a D/A converter to convert the digital signal to an analog signal.

10.23  Design a microcomputer-based automobile alarm system. The purpose of this system
is to prevent intruders from stealing a car or having cnough time to steal a sterco or other
valuable items in a car.

10.24  Design a microcomputer-based threc-axis robot arm controller. The microcomputer
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will receive destination data from an external source and perform coordinate transformations
and boundary checking on the external data. It will then provide motor commands to the
motor controllers to move the arm to the desired position.

10.25 Design a microcomputer-based home controller system. The system will simulta-
neously control six sprinkler stations, a heater, an air conditioner, and a burglar alarm. The
system will contain a 12-hour clock and a temperature sensor. The user will program the
system through a keypad. The time and temperature will be entered to control the sprinklers,
the heater, and the A/C. The alarm will be armed or disarmed by entering a 4-digit code.

10.26 Design a microcomputer-based FM modulator. The microcomputer will read an
analog input, convert the signal to digital, and perform several data manipulations to gencrate
a digital representation of the FM signal. Finally, the microcomputer will convert the FM value
to an analog signal,

10.27 Design and develop a microcomputer-based system for FFT (Fast Fourier Transform)
computation. The microcomputer will sample cight data points using an A/D converter and -
compute the time-decimation FFT. After computation of the FFT, the result will be stored in
system RAM where it can be used by another program for signal processing.



