
RISC MICROPROCESSORS:

INTEL 80960 1
 MOTOROLA

MC88 100 AND POWERPC

This chapter provides an overview of the hardware, software, and interfacing fcatures associ-

ated with three popular RISC microprocessors namely, the Intel 8060 SA/SR, the Motorola

MC88 100, and the Powerl'C. liiially, the basic features of typical 64-bit RISC inircoproceSSors

are discussed.

8.1 Basics of RISC

RISC is an acronym for Reduced L nstructioo Set Computer. This type of microprocessor

emphasizes simplicity and efficiency. RISC designs start with a neccssa and sufficient
speed by reducing clock

in-

struction set. The purpose of using RISC architecture is to maximize
cycles per instruction. Almost all computations can be obtained from a few simple operations.

The goal of RISC architecture is to maximize the effective speed of a design by performing

infrequent operations ill
and frequent functions ill thus obtaining a net

performance gain.
'l'he following summarizes the typical features of a RISC microprocessor:

I. The microprocessor is designed using hardwired control with little or no microcode.

Note that variable length instruction lormnats generally require microcode design. All

RISC instructions have fixed lrmats, and therefore microcode design is not necessary.

2.
A RISC microprocessor executes most instructions ill a single cycle.

3. The instruction set ofa RISC m i croprocessor typically includes only rcgister-to-regiSter

load, and store. All im>struCtions i nvolving arithmetic operatiol)s use registers, while load

and store operations are utilized to access memory.

4. The instructions have simple fixed format with few addressing modes.

5.
A RISC microprocessor has several general-purpose registers and large cache memories.

6.
A RISC microprocessor processes several instruCtioOS simuLtaneously and thus includes

pipe1 i in ng.

7. Software can take advantage of more concurrency	
occur after. For example, I umnips

executiOil of the instruction that follows. This allows fetchi tig of the next instruction

during execution of the current instruction.

RISC m i croprocessors arc suitable for embedded applications. An embedded application is

one in which the processor monitors and noalyzes signals from one segment of the system and

515

516	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

produces output required by another segment of tile system; thus, it behaves as a controller that

bridges various parts of the entire system. It performs all its functions without any user input.

RISC microprocessors are well suited for applications such as image processing, robbtics,

graphics, and instrumentation. The key features of tile RISC microprocessors that make them

ideal for these applications arc their relatively low level of integration in the chip and instruc-

tion pipeline architecture. These characteristics result in low power consumption, fast instruc-

tion execution, and fast recognition of interrupts.

The state-of-the-art 61-bit RISC microprocessors include Digital Equipment Corporation's

Alpha 21164, Motorola/IBM/Apple PowerPC 620 and Sun Microsystems Ultrasparc. Among these

processors, the Alpha 21 164 is the fastest with a inaximum clock frequency of 300 MHz, four-way

superscalar design, and 128-bit data bus. These processors are compared later in this chapter.

8.2 Intel 80960

'ftc Intel 80960 limily includes two types of 16-bit RISC microprocessors, These are tue
$0960SA and 80960S3 processors. The 80960SA is designed as all 	 communication
(lAG) microprocessor. IAC messages call 	 sent for execution into the bus interface of a
80960SA processor from software executing on another processor.

The 80960513, oil 	 other hand, is designed as a floating-point RISC microprocessor and
includes on-chip floating-point hardware.

The 80960SA contains 32 32-bit registers while the 80960S11 includes an additional four
floating-point registers with a total of 36 32-bit registers.

The 80960SA/SB comes in two speeds: tOMI-Iz and 161% ,11-1z. The clock input is divided by
2 internally to generate the internal processor clock.

8.2.1 Introduction

This section covers the basic architecture of the chip, its instruction set, typical 80960 based
system design utilizing a burst controller with burst and non-burst memories.

8.2.2 Key Performance Features

ftc loliowing sLimillarizes the main features of the 80960SA/SB:

8.2,2.a Load and Store Model

Most opeiatlons- are performed oil in CPU registers rather than in ilicinory. All of
the arithmetic, comparison, branching, and bit operations are performed with registers and

literals (5-bit and floating-point). Only LOAD & STORE are memory reference instructions.

8.2.2.b Large Internal Register Sets

Large internal register sets featuring 32 32-bit general purpose and specific function registers

are divided into two types: global and local. Both of these types call used for general storage

of operands. The only difference between global and local registers is the global registers retain

their contents across procedure boundaries, whereas the processor allocates a new set of local
registers each time a procedure is called.

8.2.2.c Oh-Chip Code and Data Caching

To reduce memory accesses, two features are added: an instruction cache and multiple sets of
local registers. The former allows pre-fetching of blocks ofinstructions from the main memory

while the latter allows the processor to perform most procedure calls without having to write
the local registers out to the stack in memory.

RISC Micmprot:cssor.: I;iiI S0)60, Mnlorolii MCSS 100 and Powcr/'C	 517

8.2.2.d Overlapped Instruction Execution
This is accolliplislicd through a regi.cter seoreboarding scheme which enhances program
execution speed. Register serehoardirig ernilts iiistrLictiOrl eXecutiOn to coritirrli(' while data
are being fetched from rirernorv, \Vhcri a load instruction is executed, the processor sets one
or more scorchoard hits to indicate the target registers to he loaded. Alter the target registers
are loaded, the scoreboard hits an e clearcd While the target registcrs are being loaded, the
processor is allowed to execute other instructions, called indcpendent instructions, that do not
USC these rcgistcrs. The net result of using this technique is that code can otten be optimized

in such a way as to allow sonic instructions to be executed inn parallel.

8.2.2,e Single Clock Instructions
Most ol the commonl y used instructions are executed ill minimum number ol cluck cycles
(usually one clock).

For example, instructions, either 32 or (it-bits long, are aligned oil 	 boundaries
allowing instructions to he decoded in one clock cycle. This eliminates the need br air
itrstruction-alignnient stage ill the pipeline resulting ill 	 50 instructions that can be
executed ill 	 single clock cycle.

8.2.2.1 Interrupt Mode'
To handle interrupts, the processor IllililltilillS an interrupt table ut 235 iiterrtipt vectors, of
which 2'10 are available lr reineral use. When art interrupt is u;cnierated, the processor uses a
pointer from tIre interrupt table to pet furin an i I uplicit call to ann interrupt handler procedure.

The processor autounatically saves the state ot tIre processor prior to receiving the interrupt,
performs the interrupt routine, arid their restores its previous state. A separate interrupt stack
is also provided to segregate inlarlipt handling from application programs. Interrupt hair-
dung facilities teature l)rorit7ilig pending interrupts.

8.2.2.g Procedure Call Mechanism
Each time a call instruction is issued, the processor autouraticall y saves (Ile cnrrent set ollocal
rcgistcrs and allocates a new set of local registers fur the called procedure. Likewise, on the
rcturn from in procedure, IIIC current set un local registers is deallocated arid tire local registers

for the procedure being returned to are restored. Ilius, oil a procedure call, the program never
has to explicitl y save arid restore those local variables.

8.2.2.11 Instruction Set and Addressing
lhe processor offcr-s a kill set ol load, store, move, arithmetic, comparison, and branch instruc-
tions, with operations on both integer and ordinal data types. It also provides a eonllplete set of
Rooleari arid hit-field instructions, to sirnplily operatiorns on bits and hit strings. The addressing
triodes are efficient ntrd straiilrtborivard, while at the same time providing tire necessary indexing
and Scaling n nodes required to addre's's corn plcx array and records.

The 32 address lines provide 3-gigabytes of address space for programs and data.
lable 8.1 lists the 80960SA1SIt inrstnunctiorr set, The 50960SA does not include the bloating-

point instructions.

8.2.2.1 Floating Point Unit (Available with S0960SI only)
'l'Iie on-chip iloating point until inclurdesa full set of floating point Operations nnicludrnrg add,
subtract, multipl y, divide, trigonometric functionis, and log.rrithnuc functions. These operations
arc performed urn single precision (3-2 -bit), double precision (6-1-bit), and extended precision

($0-bit) data. Four SO-bit tlontitng-point registers are provided to mold extended pi-ecisioil values.

8.2.3 80960 SA/SB Registers
Figure 5.1 shows the 50960S11 registers. Ihe processor provides three t y pes of data registers:
global, floating-point, and local. As their names imply, the global registers constitute a set of
general-purpose registers whose contents are retained across procedure boundaries. The

10(11

(,ludual

r15

tO
1,,15

518	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

TABLE 8.1 30960SA/Slt lttstruct on Set

Data Movement	 Arihiittj
	

lognil

Load, Store, 10 ''''c, Load	 Add, Subtract, tslultiply, 	 And, Not And, And Not, Or,
Address	 Divide, Shift, Rensa oder,	 Xor, Not Or, Or Not, Nor,

Mudulo, Extended
	

Exclusive Nor, Not, Nand,
Multiply,ply, ExLcnded Divide 	 Rotate

Comparison	 Branch	 Ca ill Ret u ii

Compare, Conditional 	 Unconditional Branch, 	 Call, Call cxtcndcd, Call
Compare, Compare and	 Conditional Branch, 	 systcnl, Return, Branch and
Increment, Compare and 	 Compare and Branch	 link
Decrement

Debu1',	 t5tisce11a11euos	 l)r'cimu,mi	 -	 -	 -

Modify Trace Controls,	 Atomic Add, Atomic Modify, Move, Add with Carry,
Mark, lioce Mark	 Flush local Register, Modify 	 Subtract with Carry

Acilmituc Cot uok, Modify
Process Con nil, Scan Ilvt e
For Equal, lest Croudition
Cole

RI and Bit Field

Set Bit, Clear Bit, Not hit,
Click Bit, Alter Bit, Scan
for Bit, Scan Over lilt,
Lxtraet, Modify

Fault

Conditional Fault,
Svitchronoiis Fault

Conversion

Convert Real to huttccr,
Convert Integer to Real

Floa Ii ur- Pm n	 Synchronous

Move Real, Add, Subtract, Multiply, Divide, Remainder, 	 Synchronous Move, Synchronous Load
Scale, Round, Squire Root, Sine, Cosine, Tangent,
Arctmngcnt, Log, log Binary, lot; Natural. Lxpnnent,
Classify, Copy Real Extended, Couipu re

Floating Point	
i (p3

IlpO

FiGURE 8.1 Local and global registers sets.

RISC Microprocessors: Intel 80960, Motorola MC88100 and PoWcrI'C 	 519

4 floating point registers are for extended precision floating point operations and are available

only with the 80960SB. Their contents are also preserved across procedure calls. The 16 local

registers are to hold local variables. For each procedure that is called, the processor allocates

a separate set of local registers.
It should be noted that the global register g IS is rcscrved to hold the current frame pointer

FP, while the others are available for general use. The local register r() is used to hok i the

previous frame pointer (PFP), r I is the stack pointer, r2 is used as aReturn Instruction I' 	 :cr

which is saved oil 	 stack later and r3-rl 5 are available for general use.

	

Sonic special features of the 80960S11 registers are provided
ill 	 following:

8.2.3.a Register Scoreboarding

The main purpose is to permit instructions to he executed concurrently provided that they arc

independent instructions.

8.2.3.b Instruction Pointer

The 32-bit ri holds the address of the instruction currently being executed. Since the instruc-

tions are required to be aligned oil word boundar y , the least sign i flea nt 2 hits oil P are always

0. IP can not be read directl y . I lowever, H , can be used asan offset into address space. This

addressing mode can be used with the load address (Ida) instruction to read the current value

of IP. When a break in instruction stream occurs due to an interrupt or procedure call, the I P

contents will be stored in r2, and later saved on the slack.

8.2.3.c Process Control Register

The processor's process control register is made up of a set of 32 hits, as :,hiown below:

16	 i:t	 10
	 To

Bit 0
Bit 1
Bit 10
Bit 13

Bit 20-16

Trace Enable
Execution Mode, 0 = User, 1 =
Trace Fault Pending
State Flag, 0 = Execution Mode,
Mode

Priority

Supervisor

1 = Interrupted

8.2.3.d Arithmetic Control

The arithmetic control bits include the condition code, arithmetic status, integer overflow flag

and mask, floating point overflow, underfiow, zero divide, invalid-op, inexact flags, masks,

and faults. The processor sets or clears these bits to show the results of certain operations. For

example, the processor modifies the condition code flags after each fault. These bits are set by

the currently running program to tell the processor how to respond to certain fault conditions.

11	 I.

uuuiflhl liii.. I. . U 1111111
Bit 0-2	 : Condition Code
Bit 3-6	 : Arithmetic Status

52()	 Microprocessors and MicrC)COiflplitL'r . IhisCd System Design, 2nd Edition

Bit 8	 Integer Overflow Flag
Bit 12	 : Integer Overflow Mask
Bit 15-20	 Floating Point Condition Flags
Bit 24-29 : Floating Point Condition Masks
Bit 30-31	 Floating Point Normalizing and

8.2.4 Data Types and Addresses

Rounding Mode

III order to be couisisteitt With the dat,i tpcS included in the Intel 8096() ittaitual, new
terminologies such as ordinal and literals are nitroduced ill 	 section.

8.2.4.a Data Types
The processor detine and operates on the to lowing data types:

• Integer ($, 16, 32, and 61 hits)
Ordinal (8, 16, 32, and 64 hits)

• Real (32, 61, and 80 bits)
(Iloating-poin

Bit/Bu Field
I)ceiin.il (ASCII digits)

• Triple-Word (96 hits)
• Quad-Word (12$ hits)

8.2.4.b Literils

signed whole nit lnl)ers
general-purpose, nnsigned whole no tubers
conforms to I ElI single (32-hit), double (64-bits),
;ill(] extended precision (80-hit) float rig point
representations

spait of I or more bits within register boundary
decimal values in ASCI I format.
consecutive bytes
conseCutive bytes

The processor recoiIlizes two types of 'literals- ordinal and floating-point, which can he used
as operands in some instructions. An ordinal literal can range from 0 to 31 (5 bits). When an
ordinal literal is used as aim operand, the processor expands it to 32 bits by adding leading zeros.
ll'an ordinal literal is used in an instruction that requires integer operands, the processor treats
the literal as a positive integer value.

For Iloati hg-point, the processor recognizes two literals: -t0.0 and -t 1.0. 'Iliese Iloating point
literals can only he used with Iloating point instructions. Ordinal literals can also he used in
converting integer to real to get none values.

8.2.4.c Register Addressing
A register may he used as an operand ill instruct j olt by giving the register number (cg., go,
15, 1p3). Both floating-point and non-floating-point instructionscan refereiiccglolml and local
registers ill this way. 11 owever, floating-porn t registers can only he referenced in Conjunction
with a floating-point instruction.

If the instruct oh requires more than one word, the reference is to the lowest number, which
must he even when 2 words are required, must be multiples of four when 3 or 4 words are
required. This is called "Register Alignment."

8.2.4.d Memory Addressing Modes
table 8.2 lists the $0960 memory addressing modes.

8.2.4.d.i Absolute Of,/ei. Absolute offset is used to reference a neittoty location directly. An example
is st i2, START which stores the word from register g2 into memory location STAR'['.

8.2.4.d.ii Rct,'isicr liitlireci/Rcjsicr Indirect with Offset. This node permits an address to be specified
with an ordinal value (32 bits) in a register or a displacement added to a value in a register. The
register value is called the address base (ahase). An exantple of register indirect is the Idob (r I),
r2 which loads ;ill 	 byte fm-omit memory location addressed by rI into r2. An example of

RISC Microprocessors: Intel $0960, Motorola MC88 100 and Powerl'C
	

521

TABLE 8.2 80960 Mcjiiors Addressing Modes

Mode

Absol tiLe oflset
Register indireet
Register indirccl with ollcet
Register i di Ccl with index
Register indirect with inklex

and di placenic It
Index sell Ii ii ispt.icine iii
It' (instruction pointer) wiih

di)I.ICCTI1C Ii

I)csc ript ion

(1IISCL

abase5 C

.,lusc -f offset

.ili.ise i (index	 scale)
abase + (ir i dex*scaIe) +

d isptacenirn t
j Ii(1cx scale) -e displacement
I' -e displacement 1 S

Assembler Syntax

CXp

(reg)
exp(reg)
(reg)l regscalcl
cxp(rcg) I rcg seak)

cxp[regscak]
rxp(lI')

register indirect with offset is stl g4, BEGIN(g2) which stores double word from g4, g5 stored

at memory location addressed by BEG] N+(g2).

8.2.4.eLiii Register Indirect with lndexlRcgislcr. 'ibis mode allows a scaled index value in another

register to be added to the value in a register. The scale factor can be 1, 2, 4, 8, or 16. A

displacemetit may also he added to the abase value and scaled index. Ail is ld(l (r])

[r24J, r4 which loads a quad-word starting at the memory location addressed by (rI)--(r2

scaled by 4) into register rt through r7.

Ail 	 of register indirect with index and displacement is st gi, VALUE(g3) [g4'11

which loads word in gl into memory location addressed by (g3) +VALUE+(g44).

8.2.4.d.it' index with Displtccincnt. This mode allows a scaled index to he used with a displacement.

The index is contained in a register and is multiplied by a sealing constant before the displace-

ment is added to it. Ail is Idis VALUE, I r8 2], HO which loads short integer at memory

location addressed by VALUl+(r8*2) into rIO.

8.2.4.d.v IP with Displacement. This mode is often used with load and store instructions to make

them IP relative. With this mode the displacement Plus a constant of 8 is added to the II I of

the instruction. An example is st rl , VALUE (IP) which stores words in rt at memory location

addressed by 8+IP+VA1,UI'.

8.2.5 80960SA/SB Instruction Set

The 80960 includes 182 instructions. An assembly-language statement consists of an instruc-

tion mnemonic, followed by from 0 to 3 operands, separated by commas. The following

example illustrates the assembly-language statement for the addo instruction:

addo gi, g3, g5

adds the ordinal operands in global register gI and g3 and stores the result in g5.

The instructions can be classified into four categories:

1. Data Movement

2. Conversion

3. Arithmetic and Logic Operations

4. Comparison and Control

The following provides a list of operands used in the instructions:

reg	 - global (go, g t ,...g 15) or local (A r I.....r IS) registers

freg	 global (gO, gt ,...,g 15) or local (rO, r I.....rt 5) registers or floating-point (fpO

thru 1p3) registers

lit	 - integer or ordinal literal of the range 0. . .31

flit	 - floa t ing-po i n t literal of value 1.0 or 0.0

522	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

disp - signed displacement of range 2 11 to +211-1
mein - address defined with the full range of addressing modes
addr - address
efa	 - effective address

8.2.5.a Data Movement

The data movement instructions move data between the global and local registers, and
between these registers and memory.

8.2.5.a.i Load Instructions.

Load integer byte, Idib
(8-bit)

Load integer short, Idis

	

(16-bit)	
mein, rcg

Load ordinal byte, Idob
(8-bit)

Load ordinal short, Idos
(16-bit)

The above instructions load a byte or half word (2 bytes) and convert it into a full 32-bit word.
Integers are sign-extended, ordinals and zero-extended automatically. For example, Idib (ri),
rO loads the 8-bit integer in memory addressed by ri into register rO.

Load - id
Load long - idi
Load triple - ldt	

inem, reg

Load quad - ldq

The Id, IdI, ldt and ldq instructions COPY 4, 8, 12, and 16 bytes, respectively, from memory
into successive registers.

Idl mern, reg must specify an even numbered register (eg. gO, g2,..., giG).
Idt mem, reg and ldq mem, reg must specify a register that is a multiple of four (eg. gO, g4,

g8, . . ., rO, r4, r8,. . .) For example, consider ldq 1254(n), r4 loads the contents of memory
location starting at address r1 + 1254 into register r4 thru r7.

8.2.5.a.ii Store Instructions. Each load instruction has a corresponding store instruction which stores
bytes or words from registers to memory.

The store instructions are listed below:

St
st ob
stos
st ib

	

stis	
reg, mem

sti
stt
stq

The stob and stib, and stos and stis instructions store a byte and half-word (16-bit), respec-
tively, from the low order bytes of the specified source register. The st, stl, stt, and stq
instructions store 4, 8, 12, and 16 bytes, respectively, from successive registers to memory.

For the sti instruction, the specified source register must specify an even numbered register
(e.g. gO, g2,. . ., g16). For the stt and stq instructions, the specitled source register number must
be a multiple of four such as gO, g4, g8. . ., g16.

RISC Microprocessors. Intel 80960, Motorola MCS8 100 and PowerPC 	 523

As an cxampk, the instruction st g4, 2478(g8) stores the word in register g4 into memory

location starting at offset 2478+(g8).

8,25.a.i1iMOVE. The move instructions copy data from a register or group of registers to another

register or group of registers. These are listed below:

move word - mov
move longword - movi

}

regllit, reg
move triple word - movt
move quad word - movq

The movi, movt, and niovq instructions specify the source and destination registers as the first

(Lowest numbered) register of several successive registers. For the movi, these registers must

be even numbered such as go, g2, . . , rO, r2, . . . while for the movt and inovq instructions, these

registers must be an integral multiple of four such as gO, g4. . . , rO, r4,

As an example, the instruction movt r4, g8 moves a triple word (three 32-bit) from registers

r4, r5, r6 into g8, g9, glO.

8.2.5.a.iv Load Address. Ida mciii, reg computes an effective address specified with mcm or cfa and

stores it in the destination, reg. Note that efa represents an effective address based on an

addressing mode. This instruction loads a constant longer than 5 bits into a register. To load

a register with a constant of bits or less, the move instructioI (niov) can be used with a literal

as the source operand.
As an example, the instruction, Ida 40(g7), gO computes the effective address specified with

40+(g7) and stores it in gO.
Ida 0x845, r4 loads the constant 8151-I into M. Note that Ox indicates data in hexadecimal.

8.2.5,a.v Floating-Point Move(Available with 80960SB Only). The following move -real instructions

(movr, movrl and movre) are provided for moving real number values between the global and

local registers and the floating-point registers:

move real - movr
move longreal - movrl	 freg/'f lit, freg

move extended real - movre

As an example, the following instruction sequence converts a real value in g I to a long real

value, which is stored in gS, g9.

movr	 gi, fpO
movrl	 fpO, g8

The two instructions cpysre and cpyrsrc for real extended numbers are explained in the

following:

cpysre	 srcl, src2, dst
or

cpyrsre freg/f lit f req/f lit freg

copies the absolute value of srcl into dst based on the sign of src2.

For cpysre: If src2 is positive then dst *— ahs(srcl); else dst — abs(srcl).

For cpyrsrc: If src2 is negative then dsi - abs(srcl); else dst - abs(srcl)

524	 Microprocessors and Microcoinjwzcr-Based System Desi'n, 2nd &iit ion

lithe srcl, src2, or dst operand specifics one Of go thru g15 or rO thru ri5, this register (lowest)
IS the first of three successive registers. Also, this register number must be a multiple of (e.g.
gO, g4, g8, . .).

As an example, the instruction, cpysre gO, ipi, r4 means that the absolute value from g0g1g2

is copied to r4r5r6; the sign from (p l. is copied to r4r5r6.

8.2.5.b Conversion (Available With 80960SB Only)

As mentioned before, data can be converted from one length to another by means of the load

and store instructions. For example, the Idis instruction loads a short integer from memory to

a register and automatically converts the integer from a half word to a lull word.

The 80960S11 extended instruction set provides instructions to perform conversions be-

tween integer and real data types. These instructions are listed below:

Convert integer to real , cvtir	
1Convert long integer to real, cvtilr

Convert real to integer, cvtri 	 reg/lit, freg

Convert real to long integer, cvtriJ.
Convert truncated real to integer, cvtzri
Convert truncated real to long integer, cvtzrji}eqt,reg

For the cvt i 1 r instruction, the source operand specifies the first (lowest numbered) of two

successive registers. This register must be even l)LlIllbered (e.g. gO, g2, g4, . .

Converting an integer to long real format requires two instructions as follows:

I. cvtir or cvtilr Can be used to convert the integer to extended real.

2. movrl can then be used to move the value Iron) freg to two global or local registers.

For example the instruction sequence:

cvtir g2, fpO
movrl fpO, g4

converts all integer ill g2g3 to real and stores it in fpO; n)ovrl then converts the real value in
ipO to a long real value and stores the result in g4g5.

ftc cvtril and cvtzril instructions specify the destination operand as the first (lowest

numbered) of two successive tegisters, '['his register imist be even nunbercd. Also, tile

nontruncated version ofcvtzri and cvtzril instructions round according to the current rounding

mode in the Arithmetic Control register. The truncated version always rounds towards zero.

As an example, the following instruction sequence converts a long real value in g8g9 to a
long integer in g2g3:

movrl g8, fpO	 long real source in g8g9 is converted to
extended-real format in fpO

cvtril fpO, g2 ; extended real value in fpO is converted
to long

integer in g2g3.

Synchronous Load and Move

Both the 80960SA and 80960Slt include these instructions.

The 80960SA/SB executes the store instructions asynchronously with the memory control-

ler. Once the processor outputs data for storing in main memory, it continues with execution

of the next instruction in the program, and assumes that its bus control logic hardware will

RISC Microprocessors: Intel 80960, Motorolo MC88100 and PowerPC 	 525

complete the operation. The 80960SAISB includes four special instructions for performing

memory operations that perforiii store and IOOVC operations synchronously with memory.

The sy nchronous toad instruction, synld rcg/addr, mg, copies a word frOwl the source into

a register. When this instruction is performed, the processor waits until a condition code hit

G set in the arithmetic control rcc,istcr indicating that the operation has been completed,

betore it begins executing the next instrlictioi). '[he synid instruction isprimarily used to read

the contents of the interrupt-control register.

The following instruct ions

Syninov

Synniovl L	 rcgI'.ddr, rcg/addr

Syn uovq

copies one (svuniov), two (synniovt) or tour (synmow) words from memory location(s)

specified b y he source to the dest uiat ion and wails br completion, i icluidi ug those Operations

initialed prior to this instruction. [lie primary function oithesc instructions is br sending lAG

(Inter-agent communication) messages. The primary function of an lAG mechanism is to

provide alternative to the external interrupt mechanism to communicate with the processor.

Also, certain processor functions such as purging the instruction We and setting breakpoiit

registers can only be done with the li\G mechanism. IAC messages are defined in such a way

that processors can send them amongst themselves oil bus in -,I multiprocessor system. [or

example, a progriun oil I)I-OCessor A can send a message to processor B telling it to flush its

instruction cache. Without tins facility, processor A would need to generate an interrupt to

processor 13 to tell a program iii processor B to flush the cache.

Since I AC niessames carry out specific control functions that are not included in instruc-

tions, they are useful in single-processor systems. the 80960SAISB can send an lAG message

by writing the message to a special memory- mapped location. The memory mapping only

occurs done of the synchronous load/move instructions is used. A memory write to its spcciflc

umeniory-mapped location using one of these instructions (hoes not cause a bus operation to

occur; instead the data are interpreted by the processor as an li\C message and the message

causes the same function to he performed by the l)rocor. '[he function is perlornied

Synchronously (i.e. immediately alter the synchronous loa(1/move) instruction.

8.2.5.c Arithmetic and Logic Operations

8.2.5. c.i'l'able 8,3 lists 50960S1\/Slt add, subtract, multipl y , divide, and OR instructions.

'lAill.t $.3	 S0900S\ISIm ,\dd/Siihtrici/luliipIy/t)ivide/Stiitt

,ukt' sic 1, src2. dst
roll ii rt'iIt ii I

ds(- src2 i sic

• = i or 0 Oi r or

suti	 srcl, src2, ,.tsi

rcsJlii rcg/ti ri'g
itsi - src - src I

= i or o or r or rI

111U1 src I, src2, do
I retl1iI ircu;111Im	 1

ito - src2 sicI

= i or o or r or rt

I Isi rilci sills ,iiitl diii I yt'
t iiicgcr	 ()rdiii.it	 ttc.it	 I.OiiI I.il

.Iddi	 addo	 addr	 addli

siilii
	 suhr	 sutirt

IT!TII
	

liluir	 11111111

526	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

TABLE 8.3 80960SA/S[[Add/Suhtract/tvl ult ply/I)ividc/Sititt (continued)

Instructions and data types
Operations	 Integer	 Ordinal	 Real	 Long Real
dlv'	 srct, src2, d't	 dlvi	 (Ijvo	 divr	 dirri

- src2 I srcl
reg/lit reg/ht reg

= i or a or r or ri
No remainder is provided alter die' tIst con lain [hot ien t.

rcna'srcl, src2, List	 rend	 NEW	 rcrnr	 renirl
freg/flit freg/tlit frcg

Performs src2 / srcl and stores the remainder ill 	 The sign of
the result (if non/ero) is the same its the sign of src2. Calculation
of the remainder is done by repealed subtraction.

* = I or o or r or ri

signed integer nuohiulo:
modi arc!, src2, dst

regl!it reg/hit reg
dat = src2 - (src2 + srch)'arcl

Shift left	 shhi	 shlo	 -	 -
sh!' Len, src, dst

reg/hit rcg/!it reg
Shifts arc left by the number of bits specitied in the hen operand

and stores result in dat. For values greater 1han 32, the processor
interprets the value as 32.
= i or 0

Shift right	 slid	 shro	 -	 -
shr' [cii, arc, dat 	 shrili

reg/hit reg/lit reg
shifts arc right by the number of bits indicated with the hen

operand a id stores the result in dal. For vs I ties of len greater
this n 32, the processor i nl erprets the value as 32.
= i or di or o

Details of Table 8.3

Note the inst t'uctions addrfaddrl, subr/subrl, roundr/roundrl and sqrtr/sqrtrl are only avail-
able with the 80960S11.

For addrl, subrl, nulrl, divrl and remrl instructions, if src I, src2, or dst operand specifies
one of the registers from gO tltrtt gI 5 or rO thru r1 5, the register i the first (lowest numbered)
of two successive registers. Also, this register must be even numbered (eg, go, g2, g4, . .

The binary results from subi and subo are identical except that subi can signal all
overflow.

For the divi instruction, an integer overflow can be signaled.

The shlo instruction shits zeros into the least-significant bit and the shro instruction shifts
zeros into the most-significant bit.

The shli instruction shifts zeros into the least-significant bit; if the bits shifted out ire not

the same as the sign bit, an overflow is generated. II overflow occurs, the sign of the result is
the same as the sign of the src operand.

The shri instruction performs an arithmetic shift operation by shifting the sign bit in from
the most-significant bit.

The shrdi instruction is provided for dividing all by a power of 2. With shrdi, one

is added to the result if' the bits shifted out are non-zero and the operand is negative, which
Produces the correct result for negative operands.

Remi and modi differ when there is a negative operand: the result of remi has the same sign

as the dividend; that of modi has the same sign as the divisor. For example, if 0 = 3, r4 = (-7):

RISC Microprocessors: Intel 80960, Motorola MC88 100 and PowerPC 	 527

"remi r3, r4, r5" stores (-1) to r5, (-7) = —2 * 3 + (-1)

"modi r3, r4, r5" stores 1 to r5, (-7) = —2 * 3 - 1

shrdi adds 1 to the result if bits shifted out are non-zero and operand is negative, which
produces the correct result for negative operands (if division is desired).

8.2.5.c.ii Rotate Instruction. The operation of the rotate instruction is provided below:

Instruction	 Operation

rotate lcn, arc, dst	 dat - rotate (kit mod 32 (src))
reg/lit reg/lit rcg	 copies arc todst and rotates the bits in the dst as follows:

L 31	 0

EE.: i^'
The Icn operand specifies the number that the dst operand
is rotated. The len operand can be from 0 to 31.
The instruction can also be used to rotate bits to right.

8.2.5.c.iii Extended Arithmetic. There are four instructions for double precision integer arithmetic.
Thsc are described below:

1. Add ordinal with carry,
addc srcl, src2, dst

reg/lit reg/lit reg
Operation: dst i— src2 + srcl + carry
Flags affected: carry (c) and overflow (v)

2. Subtract ordinal with carry,
subc srcl, src2, dst

reg/lit reg/lit reg
Operation: dst f— src2 - srcl - carry
Flags affected: carry, overflow.

3. Extended multiply,
emul srcl, src2, dst

reg/lit regllit reg
Operation: dst + 1, dst *— srcl src2
The result is 64 bits and is stored in two adjacent registers. The dst operand specifics the
lower numbered register, which receives the least significant bits of the result. The dst
operand must be alleven numbered register (ro, r2, r4, . . ., or gO, g2, . .

4. Extended Divide
ediv srcl, src2, dst

reg/lit reg/lit reg
Operation: dst — Remainder of src2/srcl
dst + 1 *— Quotient of src2/srcl
Scr2 is a long ordinal (61 bits) which is contained in two adjacent registers. Src2 specifics
the lower numbered register which contains the least significant bits of the operand.
Src2 operand must be an even numbered register. Srcl value is a normal ordinal 32 bits.
dst operand must be an even numbered register.

8,2.5.c.iv Floating-Point Arithmetic Instructions (Available with 80960SB Only). In addition to float-
ing-point add (addr/addrl), subtract (subr/subrl), multiply (mulr/muirl) and divide (divr/divrl)
which were already explained, additional floating-point instructions are listed in Table 8.4.

Note that in Table 8.4,

Sits' crc, do
frcglfiit freg
= r or

cos' arc, dst
freg/Ilit freg

= r or ri

tail' arc, dst
freg/lis freg

r or ri

atait' arc I src2, dat
ficgIlit Ireg/lit fret;

= r or

loghis' arc, dst
frcglflit freg

r or rl

log/sec I src2, dat
freg/flit frcg/Ilit frcg

= r or rI

logcp'srel, src2, dat
frcglulit freg/tlit freg

= r or ri

exp' cr, cict
freg/Ilit freg

sin r	 sits rI

cosr	 cosrl

tatsr	 lanrl

atanr	 atilsit I

logbnsr	 logbnri

logr	 logrl

logcpr	 logeprl

capr	 CXprI

528	 Microprocessors and Microcomputer-Based Syscm Design, 2nd Edition

For roundri,

•s Cf 1 rI

sill] 1,
cosrl,
tattrl

]oqbnr],

cx p rI.
For a tanri,

logri,

logeprl,

sea Ic il,

If the src (IF <li operand references a global or local register, this
—> register is the first (lowest numbered) of two successive registers.

This register must be even numbered (go, g2.....rO, r2.

If the src 1, src2, or dst references a global or local register, this
—) register is the first (lowest numbered) of two successive registers.

This register must be even numbered (gO, g2,..., rO, r2, . .

1/c ItLE 8.4	 80960S It lltt ing- l'wtit Ant htitctic Instructions Itcyotid Add/Subtract/N-I ultiply/Dividc

Instructions and
- l),ila Types

Operat bit 	— 	 Real	 Long Real

Basic:	 round* src do	 rou sd r	 round rI
lrcg/Iit freg

rounds arc, to [tic nearest integral
value depending on the rounding
istitcic and Stoics the result iii tlst.
= t or it

sqt t src, dat	 qrtr	 sqi ri
frct'J tl iL freg

calctil.itcs the square toot of src and
Stoles it in tlst

r or ii

ri ipnonict,ic Operation

Calculate t tic specified trigonometric function
of crc and stores the result in dst. The src
value is in radians. The resulting dat value is
in the range -1 to f- I md Sl cc for sine and
CiSsitiC

For tangent, the source value is a finite real
number between - to

ata n calculates arctangent of src2lsrc 1 and
stores result in cist. The rcsult is in s,idi.ist
and lies bet wren —n to it inclusive. The sign
of the result is same as the sign of src2,

Oper.t hun (Logarithmic, Exponential, and Scale)

Login calculates t lie log.(src) and stores the
integral part of thisis cal tie as real titi tnbcr in
<1st.

Log' calculates src2'log.(arct) and stores result
in dst. Compute y • log2 (x).

Iogep calculates rc2 log. (crc I -t- I) and stores
result iii dat. Compute y' log 2 (x + I).

exp' performs dat 4— (2 1" — I). The soutce
value must be within —0.5 to 40.5 inclusive
Compute 2' — I.

RISC Microprocc.sors: Intel 80960, Motorola MC88100 and PowerPC	 529

TABLE 8.4 80960St3 Floating-Point Arithitsetic Instructions Beyond Add/Subtract/Multiply/Divide

(Confirmed)

Instructions .iii&I
Data Types

Operation (I.ogzi ri hinic, Exponential and Scale)	 Real	 Long Real

scale' performs dst	 src2 (2"°). srcl is	 sealesrc 1, 5rc2 dst 	 sealer	 sealed
integer, src2 and dst are reals. Multiply a 	 reg/lit frcgiulit fret;
iloating- point value by it power of 2.

8.2.5.c.v Logical, Bit/Bit Fielil Operations. 'lablc 8.5 lists these instructions:

TABLE 8.5 Logical I 051 ru ct ions

Instruct ion	 Operation l'erfornscd

and arc I stc2, dat 	 dat	 sr2 A wet
reglli ice/lit reg

andnot arc I, src2, ctst 	 dst - src2 A (src)'
reg/lit reg/lit reg

nand ste I, src2, (141	 dst - (src2 A src I)'
rcg/Iit regllit reg

notand src I, src2, dst 	 dst c— (src2) ' A src I
-eg/lit reg/lit reg

or sw I, src2, dst	 dst *— src2 v src 1
reg/lit reg./lit rcg

ornot srcl , src2, clst 	 dst f— src2 v (src I)'
reg/lit reg/lit rcg

nor src I, src2, dat 	 clst - (src2 v src I)'
regllit reg/lit reg

nolor arc I, .crc2, cist 	 dst - (src2) ' V srcl
reg/lit reg/lit rcg

xor srcl, src2, clst	 dst — src2 ® srel
reg/lit reg/lit reg

xnnr src I sr2, dst	 dst - (sr2	 src I)'
rei'JIit rey./lit rcg

	

Note that in the abovc, A = and, v = or,	 =

exclusive or, ' = NOT

Table 8.6 lists bit/bit Iteki instructions.

'['ALtER 8.6	 Bit/flit Field Instructions

Instruct on	 - -	 - Operation

altcrbit bitpos, ire, dat
reg/lit rcgilit reg

chkbit bitpos, src
icg/ liI reg/lit

clrbit bitpos, sre, dii
reg/lit reg/lit reg

notbit bitpos, src, dst
reg/lit reg/lit reg

scanbit sw LIst
rcgilit reg

setbit bitpos, src, dat
reg/lit reg/lit reg

copies the arc to dii wit Ii one bit altered. The hitpos specifies the bit to be changed
and the condition code determines the value the bit is to be changed to. If the

conhtion code is 0102 . the selected bit is set to one; ii the condition code is 000,
the bit is cleared to zero.

checks tile bit in ste specified by bitpos and sets the condition code according to
the v,,l,w found. If the bit is one, the condition code is set to 010,; if the bit is
zero, the condition code is cleared to 000,

copies we to that with the bit specified by bitpos cleared to zero.

copies arc to dat with the bit specified by bit1'os ones complemented.

searches arc for most-significati t set-bit. If the set-bit is found, its bit itunibcr
is stored in dat and the condition code is set to 010. Ifsrc is zero, all ones are
stored in dst and the condition code is cleared to 000,.

Copies src to clst with the biv specified by bitpos Set to one.

530	 Microprocessors and Microcompu ter- Based System Design, 2nd Edition

TABLE 8.6 Bit/Bit Field Instructions (continue(j)

Instruction	 Operation

sparobit see, dst	 searches arc for the most-significant clear-bit. If the clear-bit is found Is number
reg/lit rcg	 is stored in dst and the condition code is set to 010 2. lithe src value is all ones

then all ones arc stored in dst and the condition code is cleared to 000,
extract bitpos, len, src/dst	 shifts a specified bit field iii src/dst right and tills the hits to the left of the shifted

reg/lit regllit reg	 bit field with zeros. The bilpos value specifies the least significant bit of the bit
field to be shifted and the ten value specifics the length of the bit field.

modify mask, src srcidst 	 modifies selected bits in src/dst with bits from nrc. TIle mask operand selects the
reg/lit regllit rcg	 bits to be modified Only the bits set in the mask operand are modified in arc/dat.

src/dst 4 — (arc A mask) v (arc/dat A (mask)')

8.2.5.c.vi Byte Operations. The scanbytc instruction performs a byte-by-byte comparison of t.to
ordinals to determine if two cort-esponding bytes are equal.

The format of the scanbytc is as follows:

scarsbyte srcl, src2
reg/lit reg/lit

The scanbytc performs a byte-by-byte comparison ofsrcl and src2 and sets the condition code
to 0102 if any two corresponding bytes are equal. If no corresponding bytes are equal, the
condition code is cleared to 000,.

The scanbyte operation is detailed below:

If (srcl A 000000FF 1) (src2 A 000000FF16)
or

(arc! A 0000FF00 () = (src2 A 000011170016)
or

(srcl A 00FP0000 1) = (src2 A 00FF000016)
or

(srcl A PF000000 1(,) = (src2 A FF0O000016)

then condition code = 0102 ; else condition code = 000,.

8.2.5.c.viiDecimal Arithmetic (Available with 80960SB Only). These instructions operate oil
decimal operands that contain an 8-bit ASCII-coded decimal in the least-significant byte.

dmovt src, dst
reg reg

daddc srcl, src2, dst
reg reg reg

copies src to dst. The least significant byte ofsrc is tested to find whether
or not it is a valid ASCII digit (30 thru 3 6) . If the value is a valid
ASCII decimal, the condition code is cleared to 000 2 ; otherwise, it is
set to 010. This instruction is normally used iteratively to validate
decimal strings.
adds bits 0 thru 3 ofsrc2 and srcl (with bit 1 of condition code used
here as carry hit). The result is stored in bits 0 thru 3 ofdst. If there
is a carry after addition, bit I of condition code is set to one.-Bits 4 thru
31 of scr2 are copied to dst unchanged. The instruction assumes that
the least significant 4 bits ofsrcl and src2 are valid BCD digits.

The daddc is intended to be used iteratively to add BCD values in which the least significant
four bits of the operands represent valid BCD numbers from 0 to 9.

dsubc srcl, src2, dst subtracts bits 0 thru 3 ofsrcl and src2 as follows:
reg reg rcg	 dst i— src2 - srcl - I + C.

RISC Microprocessors: Intel 80960, Motorola MC88100 and PowerPC	 531

Bit 1 of condition code is used as C (carry bit). The other character-
istics of dsubc are same as the daddc instruction.

Thc dsubc is intended to be used iteratively to subtract BCD values in which the least
significant four bits of the operands represent valid BCD numbers from 0 to 9.

8,2,5.c.viii Atomic Inst ruclious. In multiprocessor systems, a mechanism is required to allow pro-
grams to manipulate shared data in an indivisible manner so that when such an operation is
underway, another processor cannot perform the same operation. The 80960 includes two
instructions called atomic instructions to implement higher-level synchronization mecha-
nisms, such as locks and semaphores.

The atmod src, mask, src/dst
rcg reg/lit reg
add r

instruction copies the src/dst value into the memory location specified in src. The src is a
register containing the address and thus the name rcg addr in the instruction. The bits set in
the mask operand select the bits to be modified in memory. The initial value from memory i
stored in src/dst.

For example, atmod gi, g3, g6 performs the following:

gi - gi ANDcd by g3 where gi contains the address of a word in memory.
g6 - Initial value stored at address gi in memory.

The read and write of memory are done atomically (i.e. other processors are prevented from
accessing the word of memory specified with the src/dst operand until the operation has been
completed).

The memory location in src is the address of the first byte (least significant byte) of the word
to be modified.

Ihe atadd src/dst, src, dst
rcg rcgllit reg
add r

adds the src value (full word) to the value in memory specified by src/dst. The initial value
from memory is stored in dst.

The read and write of memory are done atomically. The memory location in src/dst is the
address of the first byte ([cast significant byte) of the word.

The atadd instruction, therefore, adds a value of word in memory and returns the original
value of the word. For example, atadd r2, ri, r9 performs the following:

r2 - r4+ (r2) where r2 specifics the address of a word in memory;
r9 - initial value stored at address r2 in memory.

The atomic read operation waits until the LOCK line oil external bus is not asserted and
then asserts the LOCK line and performs the read. The atomic write operation performs a write
operation and deasserts the LOCK line. This ensures that another processor cannot perform
an atomic read operation between read and write to the word in memory specified with the
src/dst operand until the operation has been completed.

8.2.5.d Comparison and Control

Though this 30960SA/SR RISC processor basa condition code register, it is not affected by
most arithmetic and movement instructions. An explicit comparison instruction is needed for

532	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

conditional branches. This feature has its advantage. Between the instruction that sets condi-
tion code and the instruction that performs conditional branching, many independent arith-
nictic operations can be inserted. That will increase the pipeline efficiency. Arithmetic instruc-
tions that change condition codes arc: addc, subc, dmovt, daddc, dsubc.

8.2.5.d.i Comparison. These instructions compare integer (signed numbers) and ordinals (unsigned
numbers):

Compare Integer (cmpi)/Ordinal (cmpo)
cmpi srcl, src2

or	 reg/lit reg/lit
crnpo

compares src2 and srcl values aid sets the condition code according to the following:

Condition Code	 Comparison

	

100	 srcl < src2

	

010	 srct = src2

	

001	 src! >src2

Compare and Increment lntegcr(cmpinci)/Ordinal (cnipinco)
cmpinci srcl, src2, (1st

or	 reg/lit rcg/lit reg
cmpinco

compares src2 and srcl values and sets the condition code according. to the results of the
comparison. Src2 is then incremented by one and the result is stared in dst.

The condition codes are affected by the comparison result in exactly the same way as the
cnhl)i/cnlpo.

Conditional Compare Integer (concmpi)/Ordinal (concmpo)
concmpi srcl, src2

or	 reg/lit reg/lit
concmpo

compares src2 and srcl value if bit 2 of the condition code is not set. If the comparison is
performed, the condition code-is set according to the comparison results in the same way as
cmpi/cmpo.

Compare and Decrement Integer (cmpdcci)/Ordinal (cmpdcco)
cmpdeci rcl, src2, dst

or	 rcg/lit rcg/lit rcg
cmpdcco

compares src2 and srcl values and sets the condition code according to the comparison results
in the same way as cmpi/crnpo. The src2 is then decremcntcd by one and the result is stored
in dst.

The following instructions are for real and long real floating-point numbers (available with
only 80960SB microprocessor):

Compare real (cmpr/longreal (cmprl))
cornpr srcl,src

or	 freg/flit freg/flit
comprl

RISC Microprocessors: Intel 80960, Motorola MC88 100 and PowerPC 	 533

compares src2 with srcl and sets the condition code according to the result as follows:

Condition (.octc 	 Comparison

tOO	 srct < src2
010	 srcl = src2
001	 srcl > src2
000	 i 1 cit her srct or scr2 is a NaN

cmpr/cmprl clears the condition code flags to 000 2 for the unordcred condition. Note that the
unordered relationship is true when at least one of the two values compared is a NaN.

Compare Ordered Real (cmpor)/Ordcrcd Long Real (cmporl)
mpor src I, src2

or	 freg/Ilit freg/flut
ciuporl

compares src2 and srcl and sets the condition code in the same way as cmpr/cniprl.
Compor/comporl clears the condition code to 000 2 and an invalid-operation exception is

signaled for the unordered condition. Note that the unordered condition is true when at least
one of the two values being compared is a NaN.

Classify Real (cassr)Il.ong Real (classrl)
classr src

or	 freglflit
classrl

checks classification of real number in src and stores the class in arithmetic-status bits
(3 through 6) of the arithmetic controls as follows:

A Status	 CIt',siticji Wi

5000	 Zero
SOOt	 1)cn rmalizcd nu iihcr
SOt ()	 Normal licuic numbci
Slit I	 t iitiiuty
StOO	 Quiet NaN
St 01	 Signaling NaN
Sit()	 Reserved operand

The S bit is set to the sign of the src operand.
l:or crnprl and cmporl and classrl instructions, if src I or src2 for cm)rl/ciiiporl or src for

calssrl specifies a global or local register, this register is the first (lowest numbered) of two
successive registers. Also, this register must he even numbered.

825.Lii Control Instructions. The 80960SAISB include the following unconditional branch instructions:

Branch (b)/Branch Extended (bx)
h targ or bX targ
disp	 nicni

branches to the instruction specified with the targ operand.
For the b instruction the range of targ operand is from —2 21 to (22 —4) bytes from the current

IP. For bx, the targ can be farther than _223 to (2' —4) bytes for the current 11). Also, since the

534	 Microprocessors and Microcompu icr-Based System Design, 2nd Edition

targ operand for bx is a memory type, full range of addressing words including register indirect
mode can be used.

Branch and Link (bal)/Link Extended (baix)
bal targ or baix targ, dst

disp	 mem reg

stores the address of the next instruction (next II I value) in a register and branches to the.
instruction specified with the targ operand. These instructions are intended for calling leaf
procedures (procedures that do not call other procedures). Using the b or bx instruction, the
leaf procedure can branch to the IP saved by bal or balx.

For bal, the address of the next instruction is saved in g14. The range of targ is from _2 23 to
211-4.

The balx performs the same operation as the bat except that the address of the next
instruction is stored in dst, allowing it to be stored in any available register. The range of targ
can be farther —2 21 to (2 2 - 4) bytes from the current Ill.

Compare and Branch

These instructions compare two operands, then branch (or not) according to the result:

Compare
Branch If	 Integer (Signed)	 Ordinal (Unsigned)

Equal	 cmp;hc src I, src2, tars	 crnpobe srcl, src2, targ
Not Equal	 cmpibnc src I, src2, targ	 rnwtme src I, src2, targ
Less	 cmpibl src I, src2, targ 	 cmpobl si :1, 5rc2, targ
Less or Equal	 cmpiblc src src2, targ	 cmpoblc src I, src2, targ
Greater	 cnipibg srcl, src2, targ 	 cmpobg arc I, src2, targ
Greater or Equal 	 cmpibge srcl, src2, targ	 cmpobgc srcl, src2, targ
Ordered	 cmpibo srcl, src2, targ 	 cmpobo srcl, src2, targ
Unordered	 cmpibno srcl, src2, targ 	 cmpobno arc I, src2, targ

In the above instructions, srcl = reg/lit, src2 = reg, and targ = disp. These instructions compare
srcl and src2, and set the condition code based oil result, lithe AND of the condition code
and the mask part of the instruction is not zero, the processor branches to targ; otherwise, the
processor goes to the next instruction. Note that the condition code 000 2 indicates no condi-
tion and is the unordered condition while condition code = 111 2 is the 'ordered' condition.
The terms 'ordered' and 'unordered' are used when comparing two floating-point numbers.
If, when comparing two floating-point values, one of the values is a NaN (Not a number), the
relationship is said to be 'unordered'; otherwise, the relcationship is 'ordered'.

Bit Instructions:
Check Bit and Branch if SE'!', bbs bitpos, src, larg
Check 131t and Branch if Clear, bbc reg/lit reg disp

bbs and bbc instructions check the bit in src-speciIied by bilpos and set the condition code
according to the value. The processor then branches to targ according to the condition.

Test Condition Codes

These instructions cause a I'RUE (1) to he stored in a destination register if the condition code
matches. Otherwise, a FALSE (0) is stored,

tcste dst Test if Equal	 tcstnc dst Test if Not Equal
testi dst Test if Less 	 tcstg dst Test if Greater

RISC Microprocessors: Intel 80960, Motorola MC88 100 and Powerl'C
	

535

testle dst Test if Less or Equal 	 testgc dst Test if Greater or Equal
testo dst Test Ordered	 tcstno dst Test if Unordered

In the above, dst 	 reg.

Conditional Fault

These instructions permit a fault to be generated explicitly according to the state of the
condition-code bits:

faulte
faulti
faultie
fa ulto

Call and Return

Fault if Equal
Fault if Less
Fault if Less or Equal
Fault Ordered

faultnc	 Fault if Not Equal
faultg	 Fault if Greater
faultge	 Fault if Greater or Equal
faultno	 Fault if Unordered

The processor offers an on-chip call return mechanism for making procedure calls to local
procedures and kernel procedures. These instructions support that mechanism:

call targ	 Calls where targ = disp
caflx targ	 Calls Extended where targ mcm
calls targ	 Calls System where targ = reg/lit
ret	 Return

The call and calix instructions call local procedures. They differ only in addressing mode. The
processor will allocate a new set of local registers and a new stack frame for the called
procedure. The calls instruction operates similarly, except that it gets its target procedure
address from the system procedure table. Depending oil type of entry being pointed to in
the procedure table, the calls instruction can cause a supervisor procedure call to be executed.

The ret instruction performs a return from a called procedure to a calling procedure. The
same instruction is used to return from local and supervisor calls and from implicit calls to
interrupt and fault handlers. The processor takes care of all the details.

Debug

The processor supports debugging and program tracing. These are the debugging tools:

modtc Modify Trace Control
mark	 Mark - generates a breakpoint trace event if breakpoint trace mode flag is enabled.
fmark

	

	 Force Mark - generates a breakpoint trace event regardless of the breakpoint trace
mode flag.

Processor Management

The processor provides several instructions for use in controlling processor-related functions.

modpc src, mask, src/dst	 stores the contents of src/dst in the process control register, with
reg/lit regllit reg the bits set in the mask modified. The src/dst then contains the

initial value of the process control register. The src/dst is a dummy
operand and must be set equal to the mask operand. The proces-
sor must be iii the supervisor mode for executing this instruction.

flushrcg copies each local register set except the current set to its associated
stack-Iraine in memory and marks them as invalid, meaning that
they will he reloaded from memory if and when they become the
current local register set.

536	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

modac mask, src, dst 	 places the contents of sre in the Arithmetic control register with
the bits set in the mask modified register. The dst then contains

rcgllit rcgllit reg	 the initial value of the Arithmetic controls.

Conditional Branches:

be	 Branch if Equal
hi	 Branch if Less
ble	 Branch if Less or Equal
bo	 Branch if Ordered

bile	 Branch if Not Equal
bg	 Branch if Greater
bgc	 Branch if Greater or Equal
bno Branch if Unordered

These instructions are single-operand with the operand "targ" or "disp" defined in the same
way as bal.

Value of it

The 80960SA/SB uses the value 4 14901-DA 16 for it. The details of this computation arc given
in Intel 1960Sf/SB Microprocessor Sf/SB reference manual. As an example, it can be located
into a register such as r4 by using Ida 0X4 1 49Ofda, r4 where ox is used to represent hexadecimal
number by the 80960Sf/SB assembler.

80960 Assembler

The 80960 assembler uses the first operand of two operand instruction as the source operand
and the second operand as the destination. The assembler directive # is used before a com-
ment. OX before all 	 number is used to represent a hex number.

Example 8.1

Identify the addressing modes for the following 80960 instructions:
i) Idi 4816(r3),g4

ii) st r3,34(r8)[r4*41

Solution
i) source

register indirect
ii) source

register

Example 8.2

destination
register
destination
register indirect with
scaled index and displacement.

Determine whether the following 80960 instructions are valid or invalid. Comment.

i) Idq (g8)	 r2
ii) stl 46, 52(r5)

Solution

i) Not valid since for ldq instruction, the destination must specify a register number that
is multiple of such as rO, r4, r8,. . . , gO, g4, g8,.... Since register r2 is not a multiple
of 4, the instruction is invalid.

ii) Valid since for sil, the source must be all 	 numbered register which is r6 in this case.

RISC Microprocessors: Intel 80960, Motorola MC88100 and PowerPC
	

537

Example 8.3

Write an 80960 instruction sequence to read 32-bit elements 5, 6, and 7 from a table stored in
memory into register ri, r2, and r3 respectively. Assume that register r5 points to the starting
address containing element 0 (32-bit data) of the table.

Solution
ldt 5(r5), r8

mov r8, rl
mov r9, r2
mov HO, r3

Example 8.4

r8 - ((r5+5))
r9 <- ((r5+6))
rl0 f- ((r5+7))

#rl E— r8
#r2 - r9
#r3 +- riG.

Write an assembly language program in 80960 assembly language to add two 64-bit numbers.
Assume that the two 64-bit numbers are stored in ri, rO and r3, r2 respectively. Store the 64-
bit result in rO, ri.

Solution
C3PO 1, 0

addc rO,r2,rO
addc rl,r3,rl

finish b finish

* clears bit i.(carry bit)
* of the condition coda register
* rO f— r2+rO+carry bit
* ri - r3+rl+carry bit
halt

Example 8.5
Write an 80960 assembly language program to perform the following operation:

(AIB) + C * D

where A, B, C, D are stored in rO, ri, r2, r3 as 32-bit integers. Assume CD generates 32-bit
product. Discard remainder of A/B. Store the 32-bit result in r4.

S01116011

divi ri, rO, r4 * r4 - rO/ri
muli r2, r3, r5 * r5 - r2*r3
addi r5, r4
	

* r4 <- r4 + r5
finish b finish
	

* stop

Example 8.6
Write a program in 80960 assembly language that copies bits 3-6 of register rl into bits 31-28
of register r2.

Solution

extract 3, 4, ri	 $# ri = 000. . . 000aaaa
shlo 28, ri, ri	 ri = aaaa000. . . 000

538	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

shlo 28, 15, r3	 # r3 = 1111000. . . 000
modify r3, ri, r2 # r2 = aaaabbb. . . bbb

finish b finish	 # halt

Example 8.7

Write a program in 80960 assembly language to branch to a label 'start' if the 32-bit bperand
in register g2 is not a finite number.

Solution
classr g2
modac 0, 0, g-1	 * place condition code in g].

* arithmetic status in bits
*	 3-6ofg].

shro 3, gi, gl	 * move arith status in bits
*	 0-3ofgl

and 7, gl, gi.	 * gi bits 0-2 of arith status
cmpobge gl, 3, 'start it branch if status not equal

it, to s000, sOOl, or sOlO.
finish b finish	 it halt

Example 8.8

Write in 80960 instruction to add four 32-bit words of additional space to the stack.

Solution

addo ap, 16, sp # sp - sp + 16

Note that the 80960 Intel assembler uses 'sp' to represent the stack pointer, ri. Also, sp in the
ibove instruction is iiicrementcd in one-byte increments by the addo instruction so that sp
must be incremented by 16.

Example 8.9

Write a program in 80960 assembly language to convert a long-real value in rO to long-integer
value in r8.

Solution
movre ro, fpo * long-real value in

* ro is converted to
* extended-real in fp0

cvtril fpO, r8 * extended real-value
* in fpo is converted to
* long integer

finish b finish	 * halt

Example 8.10

Write a program in 80960 assembly language to compute the area of a circle by using A = 7Cr2
where 'A' is the area in 32-bit real to be stored in register ri and 'r' is the radius of the circle
stored in rO as 32-bit real.

Vcc (+SV)

ALE

AS

W/R

HLDA

HOLD

DEN

READY

DT/R

BEO -R-1

RESET

CLK2

INTO

I NT 1

I NT2/I NTR

N T3/I N TA

Vss

CLK

RISC Microprocessors: Intel 80960, Motorola MC88 100 and PowerPC
	

539

Solution

muir ro, ro, glO # calculate r2
ida 0x41490fda,rl * Load it
muir glO, ri, ri * ri contains the area

finish b finish	 * hai

Example 8.11

Write an 80960 assembly language program to convert from polar coordinates to rectangular
coordinates as follows:

x = rcosO,	 y = rsin0

where rO, ri contain r and 0 (iii radians) of the polar coordinates and r2, r3 contain x, y of the
rectangular coordinates respectively. 	 -

Solution

cosr ri, g4	 * g4 = cos(rl)
sinr ri, g5	 * g5 = sin(rl)
muir rO, g4, r2 * r2 = r*cos(ri)
muir rO, g5, r3 # r3 = r*sin(ri)

finish b finish	 # halt

8.2.6 80960SA/SB Pins and Signals

Figure 8.2 shows the 80960SA/SB pins and signals.

A(16:31) AD(D:15) A(1:3)	 LOCK

FIGURE 8.2 80960SAJSB pins and signals.

NotRequest
Pending	

/1 ReadyIrstj

Burst

\ Ready! Read

Tw

Request
Pending

No
ReqUeSt

Not
Ready

No
Request Ready*N () Burst

540	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Ready Burst

Ta	 Td

FIGURE 8.3 Basic I.-bus stairs.

Some of the main features of the 80960SAISB bus include the following:

• 32-bit addressing

16-1)it multiplexed low 16-bit address/data bus.
• Two byte enables and all 	 (-word burst capability that allows transfers from I to 16

bytes in length.

• Basic bus states.

8.2.6.a Basic Bus States

There arc five basic bus states: idle Ti, address Ta, data Td, recover Tr, and wait Tw as shown
in Figure 8.3 assuming only one [)us master resides on the bus.

Ti: the processor enters this state when no address or data transfer is in progress.
Ta: when processor receives a new request and starts transmitting_address.
'I'd: following Ta, the processor transmits or receives data if READY input is asserted. If

not the processor enters wait state Tw and remains there until data is ready. Tw may
be repeated allowing sufficient time for I/O devices to respond.

Tr: following 'I'd, the processor enters recovery slate and conies back to Ti. In case of burst
transactions, it exits Tw or 'Fr to transfer next data word. When done, it enters recovery
state.

8.2.6.15 Signals Groups
Address and Data Lines
The address/data signal consists of 35 lines.

A16—A31:	 ADDRESS BUS carries upper 16-bit of 32-bit addresses to memory. No latch
is required.

AD (0-15): 16-bit LOW ADDRESS/DATA BUS represents addresses in Ta and data in Td.

RISC Microprocessors: Intel 80960, Motorola MC88100 and PowerPC	 541

A(1-3): A1)1)RIiSS BUS carrics the burst addresses to memory. They are incremented

during burst cycle indicating the next byte address of burst mode. They are

duplicated wit ii Al)(1-3) (luring the address cycle.

Control Lines

Consists 0112 signals that permit the transfer of data.

ALE ADDRESS LATCH ENABLE, active high, is asserted during Ta and

deasserted before the beginning ofilie I'd state. It floats when processor

is not-a bus master.

AS ADDRESS STATUS indicates all state is asserted every address

state and deasserted (luring the following 'I'd and driven HIGH during

RI.SE]'.

DT / : DiVI'A 'IRA NSM Il/RECEI V E indicates the how of data, During REA D

operation at 'IA, 'I'd, and Tr, it remains 1,0W. It is IIIGI-I during Write

operations.

DEN:	 l)A'l'A ENARI,E enables data transceivers and is asserLed during 'I'd and

'1".'.

INPUT from other devices indicates data on the bus read y to be read or

written. If riot asserted during a 'I'd cycle, the 'I'd cycle is extended for the

next cycle by inserting a wait state, 'lw.

LOCK: BUS LOCK, prevents other devices from gaining the control of the bus.

Asserted when processor performs READ MODIFIED WRITE or IN-

TERRUPT ACKNOWLEDGE. WAITS if LOCK is asserted by other

BE1 - BEO:

W / R:

HOLD, HLDA:

BLAST / FAIL

CLK2 /CLK:

devices.

BYE ENABLE indicates which data bytes (up to two) on the bus take part

in the current bus cycle. B1.I corresponds to Al) 15-AS and ILEO corre-

sponds to AD7-AD0.
Instructs nicinory or I/O devices to write or read data on the bus. It is

asserted during Ta and remains valid during subsequent 'I'd cycles.

Used for DMA.
Indicates that an error occurred during the uiitialization. The failure

state is indicated by acombiniation of lhl,AS...asserted and both BE

signals not asserted. FAI I. is asserted while the processor performs a

self-test. It' the self test is successful, the FAIl, is deasserted.

The 80960SA/Slt uses two clock signals (CI,K2 and CLK). CI.K2 pro-

'ides the input cluck to the 80960 and is double tire speci fled processor

frequency. C1.K is the clock input signal fur the peripheral devices and

is the operating frequency of tile processor.

The flur interrupt i'' of the 30960SA/SR are INTO, INT I, I N'I'2/l N'l'R, and JNT3/ IN'l'A.

The on-chip control register determines how these interrupts are used by the processor. The

80960SA/SR call 	 interrupted using any of the two methods as follows:

1. Receipt of a signal on any or all of the tour direct interrupts (INTO, IN] 1, I NT2, and

INI'3).
2. Receipt of signal oil 	 inrterrnnpt request (INTR) utilizes INTA to obtain an interrupt

vector from an external device such as the 8259. The setting of the on-chip Interrupt

Control Register selects one of the methods.

The RESET pin must he asserted for at lcastdl C1.K2 cvcic. Upon hardware reset, the 80960

performs a self test if INTO I NIL INT3 LOCK = Lx It, 11 the self test fails, the 80960SA/SB

542	 Microprocessors and Microcomputer- Based System Design, 2nd Edition

enters the stopped state. Otherwise, the 80960 performs a checksum test of 16 words fetched
from memory at physical address 00000000. After a successful checksum test, the 80960SA/
SB uses some of the previously fetched words as addresses to initial data structures.

8.2.7 Basic READ and WRITE

READ:

1. During Ta state:
• The processor places address on the address and address/data lines.
• It asserts ALE used to latch address.
• It asserts AS.

• W / It is low indicating read operation.

DT/ R is low and used as direction input to data transceivers.
2. During 'I'd state:

• The processor reads data oil 	 AL)(O- 15) pins.
• It asserts DEN which is used to enable data transceivers.

• The processor asserts BEI - BEO to specify which bytes the processor uses when
reading the data word.

• READY is asserted by external logic to indicate data is ready to be read. If not
asserted, Tw is generated and repeated until READY is asserted.

3. The recovery states follow the data state allowing adequate LY))e for external devices to
remove their data from the bus before the 80960SA/SB gcneratcs the next address on the
bus. W / R, DT/ It, and DEN become inactive.

WRITE:

1. During Ti state:
• The processor places address oil 	 and address/data iincs.

It asserts ALE used to latch address.
• It then asserts AS.

• W / It is HIGH indicating WRITE operation.

• D'I'/R is HIGH and used as direction input to data transceivers.
2. During 'I'd state:

• The processor places data oil 	 Al)(O- 15) pins.

• The processor asserts DEl -l3Eo to specify which bytes the processor is writing in the
word.

• It asserts DEN used to enable data transceivers.

• READY is asserted by external logic to indicate data written. If not asserted, Tw is
generated and repeated until READY is asserted. Data is held oil 	 bus.

3. During Tw READY remains asserted and data is written into memory or storage
device.

4. The recovery states follow the data slate. W /R, DT/ R, and DEN become inactive.

Burst READ and WRITE

This is an enhancement feature of the 80960SA/SB processor. It supports burst transactions
that read or write up to eight 16-bit words at a maximum rate of one word per processor cycle.

RISC Microprocessors: Intel 80960, Motorola MC88 100 and PowerPC 	 543

Processor Module	 I	 I Memory Module

EPROM I	 I RAM

Memory
80960 SiVSI3	 Controller

Processor

I/O Module

I/O Interlace

I/O Device I/O DeviceI
(Slave)	 j	 (Bus Master)

FIGURE 8.4 Basic80960S,VSI3 system configuration.

8.2.8 80960SA/SB-Based Microcomputer

Figure 8.4 depicts it 	 80960SA/SB system block diagram. The various components are

described in the following.
The 80960SA1S13 processor performs bus operations using multiplexed address and data

signals and provides all the necessary control signals. For example standard control signals,

such as Address Latch Enable(ALE), Address
Status

(AS), Write/Read command (W/ R),

Data lransniit/Reccivc (DT/ 10 , and Data Enable (DEN) are provided by the 80960SA/SB

processor. The 80960SA/SB processor also generates byte enable signals that specify which

bytes on the data lines are valid for the transfer.

To transfer control of the bus to an external bus master, the 80960SA/SE processor provides

two arbitration signals: hold request (HOLD) and hold acknowledge (HLDA). After receiving

HOLD, the processor grants control of the bus to an external bus master by asserting HLDA.

A memory module can consist of the memory controller, Erasable Programmable Read

Only Memory (EPROM), and static or dynamic Random Access Memory (RAM). The memory

controller first conditions the bus signals for memory operation. It demultiplexes the address

and data lines, generates the chip select signals from the address and BE signals, detects the

start of the cycle for burst mode operation, and latches the byte enable signals.

The memory controller generates the control signals for EPROM, SRAM, and DRAM. In

particular, it provides the control signals, multiplexed row/column address, and refresh con-

trol for dynamic RAMs. The controller can be designed to accommodate the burst transaction

544	 Microprocessors (1:1(1 Microcomputer-Based System Design, 2nd Edition

of the 80960SAISB_i'ocsor. Ill to supplying the operation signals, the controller

generates the READY signal to indicate that data has been transferred to or from the 80960SA/
SB processor.

The 80960SA/SB procCssor directly addresses up to 4G bytes of physical memory.

The I/O module consists of the I/O components and the interface circuit. I/O components

call used to allow-the 80960SA/SB processor to use most of its clock cycles for computa-

tional and system management activities.

The interface circuit performs several functions. It dcm tilt iplcxes the address and data lines,

generates the chip select signals from the address,produces the I/O read or II 0 write command
from the processor's WI R signal, latches the byte enable signals, and generates the READY

signal. Because these functions are the same as some of the functions of the memory controller,
the same logic call 	 used for boll) interfaces,

'l'lie 80960SA/Sl3 processor uses memory-mapped addresses to access 1/0 devices. This
allows the CP U to use many of the same instructions to exchange information for both
memory and peripheral devices.

Typical 1/0 chips such as Intel 82C6 ,I timer and 7.8536 parallel port/timer call 	 used with
the 80960SA/SB

8.3 Motorola MC88100 RISC Microprocessor

MC88 100 is a 32-bit RISC microprocessor designed using HCMOS technology. The 88100
includes the following:

• Hardwired control design with no microcodes

• 20- or 25-Mhz internal clock frequency

• Packaged ill 7x 17 (180 pins used) PGA (]'ill 	 Array) with a maximum size of
1.78" x 1.78"

• Includes SI instructions

• Contains four ii1iy parallel on -cli p execution units (pipelined)

• Unlike the 80960SA/SR, the 83100 does not support 80-bit extended floating-point
format

• Unlike the 80960SA/SB, the 83100 does not include instructions for computing trigo-
noinet nc and logarithmic functions

• User and supervisor modes

• 32-bit on-chip combinational multiplier

• Separate data and instruct ion buses that include 32-bit data bus, 32-bit instruction

address bus, 32-bit data address bus, and 32-hit instruction bus (fixed instruction length
of 32 bits)

Directly interfaces to memory or to $3200 cache/memory management unit

• 4 gigabytes of directly addressable memory

flme 88100 performs register- to- register operations for all data manipulation instructions.
Source operands are contained ill 	 registers or are included as all 	 value
inherent ill 	 instruction. A separate destination register stores the results ofall instruction.

This means that source operand registers call reused in the subsequent instructions.

Register contents can be read from or written to memory only with Id (load) and st (store)

instructions. A xmcm (memory exchange) instruction is included for semaphore testing and
multiprocessor application.

The 88100 Contains 5! instructions. All instructions arc executed ill cycle The instruc-
tions requiring more than one cycle are executed in effecti vely one cycle via pipclining. All
instructions are decoded b y hardware and no microcode is use(].

RISC Microprocessors: Intel 80960, Motorola MC88100 and PowerPC	 545

The 88100 includes all data ruanipi:lation instructions as register-to-register or register plus
immediate value instructions. This eliminates memory access delays in data manipulation.
Only 10 memory addressing modes are provided: three modes for data memory, four modes
for instruction memory, and three modes for registers.

All 88100 instructions arc 32 bits wide. This fixed instruction format minimizes instruction
dccodc time and eliminates the need for alignment. All instructions are fetched in a single
memory access. The 88100 implements delayed branching to minimize pipeline delay. For
pipclincd architecture, branching instructions call down execution speed due to the time
required to flush and refill the pipeline. The 88100 delayed branching feature allows fetching
of the next instruction before the branch instruction is executed,

The 88100 provides two modes: supervisor and user. The supervisor mode is used by the
operating system, while the application programs are executed in user mode.

The 88100 includes four execution units which operate independently and concurrently.
The 88100 Can perlorm up to five operations in parallel.

Scoreboard bits arc associated with each oft he general-purpose registers. When all

 is executed or dispatched, the scoreboard bit of the destination register is set, reserving
that register for that instruction. Other instructions arc executed or dispatched as long as their
source and 'Jest i nation opertiids have clear scoreboard bits. When itt instruction completes
execution, the scoreboard bit oft he 'Jest mat ion is cleared, thus freeing that register to be used
by other instructions.

The 88100 memory devices call directly to memory. Most 88100 designs imple-
ment at least two 88200 CMM Us (one for data memory and one for instruction memory). The
P-bus provides the interface to the 88200/memory system. The 88200 is an optional external
chip that provides paged virtual memory support and data/instruction cache memory.

Conditional test results are provided to any specified, general-purpose register instead of a
dedicated condition code register. Conditions are computed at the explicit request of the
programmer using compare instructions. This eliminates contention between concurrent
execution units accessing a dedicated condition code register.

8.3.1 88100/88200 Interface

Figure 8.5 shows typical 58100 interfaces to several 88200s. The PI3US (processor bus) contains
logical addresses, while MBUS (memory bus) contains all physical addresses. Up to 4 88200s
can reside on each PRUS. Note that in the figure, the MC88000 includes the entire RISC
microprocessor family, with 88100 being the first microprocessor.

Figure 8.6 shows the 58100/88200 block diagram. Each unit in the 88100 call
independently and _siinultancotrsly. Each unit nay be pipelined.

']'Ile integer unit performs 32-bit aritlirrictic, logic, hit flJd, and address operations. All
operations are performed in one clock cycle. The integer Unit includes 21 control registers.
The floating-point unit supports llll 751-985 floating-point arithmetic, .atcger multiply,
and divide. This unit contains 11 control registers with a ulvc-stage.add pipeline and a six-
stage multiply pipeline. Six optional SPUs (special function units) are reserved in the
architecture. The SPUs call added to or removed from a given system with no impact on
the architect tire.

The data unit performs address calculation and data access and includes a three-stage
pipeline.

The instruction unit fetches instruction code.; and contains a two-stage pipeline.
The register file includes 32 32-bit general-purpose registers.
The sequencer uses a scoreboard to control register reads/writes. It dispatches instructions

and recogn iies exceptions.
Figure 8.7 shows the 88200 internal block diagram.

546	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Instruction
	 Data

InstructionDala
MCtI8200	 —i-	 MC1JIjI OO 	MCUB200

CMMU	 RISC	 CMMU
11	 '	 Processor

MCUOI 00 32-11it RISC Microprocessor
• 1.5 Micron FICMOS, 180 pins
• Highly pipchncd
• Separate instruction and data buses (Harvard irchitccture)

MC88200 32-UiI Cache/Memory Management Unit
• 1.5 Micron I ICMOS, 180 pins
• 56 entry Page Address Traslatioii C,iclic (PATC)
• It) entry Block Address Translation Cache ((tAlC)
• lb KhyLL code/dali (.1UIIC

Mu8000 Processor BUS
• Synchronous, non- urn I)Icxc(I, pipel i ned
• 33-bit logical addresses, 32-bit data path
• 1 word each clock cycle, maxiniuni transfer rate

M88000 Memory 1IUS
• Synchronous. multiplexed
• 32-bit pliys i cal add esses, 32-b it data pa Ili
• N words each N + 1 clock cycle maximum transfer rate

FIGURE 8.5 Typical 83100 interface to 88200i- Note that MCIS8000 rcprcscllts the 88000 family which

includes 88100, 88200, and all future products.

The block address translation cache (BATC) contains 10 entries and is fully associative with

software replacement.

The page address translation cache (PATC) includes 56 entries and is fully associative with

hardware replacement. The SRAM (static RAM) array contains 16K bytes of static RAM and

is set associative.

8.3.2 88100 Registers

Figure 8.8 shows the 88100 registers. All registers are 32 hits wide.

Three types of registers are included:

• 32 32-hit registers, rO-r3 I, containing program data (source operand and instruction

results). All of these registers except rO (constant 0) have read/write access.

• Internal registers control instruction execution and data transfer

• Control registers in the various execution units containing status, execution control,

and exception processing information

The internal registers cannot be directly accessible in software, while most control registers

can be accessed in supervisor mode. The internal registers can only be modified and used

indirectly.
The control registers include shadow registers and exception time registers, integer-unit

control registers, and floating-point unit control registers.

The shadow registers arc associated with several internal registers. Shadowing is utilized by

the 88100 to keep track of the internal pipeline registers at each stage of the instruction

execution.

RISC Microprocessors: liii ci 80960, Motorola M C8$ 100 and PowerPC
	

547

MC1J1II0O

Integer
Unit[

tt
Source I Bus

Source 2 Bus
Ir	 Destination Bus

Data bit	 r

Data Access
Pipe

P Bus Control

DaLi	
Skinory

Cache	
511 15011011

M Bus CoriIrot

FIo'iting- 'ojirt
1_Jolt

Add	 Multiply
Pipe	 Pipe

Instruction Unit
Irisiruc lion

Fetch
Pipe

InstriiCi	

DataBus	 -F Bus

I IMBUS
P Bus Control

Mcrrior
DatalSt,InlgtnlcIllI(:ichc	

I	 L'ni	 I

NI Bus Control

Register
I He

Sequencer

FIGURE 8.6 MC8$I00/MC8200 block (tiigran).

There are 21 32-bit control registers (cr0 through cr20) ill integer unit. Fourteen of these

registers provide exception information for integer unit or data unit exceptions. The other

seven registers include status inlurination, the base address of the exception vector table, and

general-purpose storage.

The floating point includes 11 control registers (hr040r8, fcr62, and fcr63). fcr0 through

lrS contain exception information such as the exception t ype, source operands and results,

and the instruction in progress. These registers can only he accessed ill 	 mode.

Registers fcr62 and fcr63 are not privileged. These two registers call 	 used to enable user-

supplied exception handler software and to report exception causes in user mode.

The supervisor programmer's mode[contains all general-purpose and control registers. The

general-purpose registers provide data and address information, while the control registers

provide exception recovery and status information for the integer unit.
Ill

	 mode, all general-purpose registers
call

	 accessed. Two control registers (floating-

point control and status) can he accessed in the user Illodc.

Among the 32 general-purpose registers, rO always contains the value D, ri is loaded with the

subroutine return address, and r2 through 01 are general-purpose.

Figure 8.9 shows the 88000 register data formats. The 88100 supports two types of data

formats, namely, integer (signed or unsigned) and floating-point real numbers. The integers

548	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

PBUS

I'ItUS Interface Logic

V%MU	 [Jala Cache

Block

	

Address	 Tag

	

Translation	 Array

	

Cache	 Page
Address	 SRAM

Translation	 Array

MMU
Cache

ECacI,,.o,
Control

Control
MIIUS Interface Logic

I i le

MBUS

Cache Accesses in parallel with Address Translation.
Two Level Page Address Translation Tables for Supervisor and User Programs

FIGURE 8.7 88200 internal block diagram.

can be byte, half-word (16-bit), and word (32-bit). All operations affect all 32 bits of general-

purpose register. The half-word or byte pads the sign bit.

The floating-point data call 	 single precision (32-bit) and double precision (64-bit).
Figure 8.10 shows formats for Fcr62 and Fer63.

The reserved hits in fcr62 and fcr03 are always read as zero. The FPcr defines the desired

rounding mode and which exceptions are handled by user exception handles. The FPSR

indicates which floating-point exceptions have occurred but were not processed by a user
exception handler.

The 88100 general-purpose register convention is shown in Figure 8.11. r3 1 addresses the

top of the stack. 1-30 contains the address of the current data frame in the stack.

Figure 8.12 shows the 88100 stack opclation, The SP must always be 32-bit aligned. The

stack grows from high memory to low memory addresses.

Next consider the supervisor programtrter model:

The VBR contains the base address of the exception vector table.

The 88100 does not automatically use SRO-SR3. They are reserved for operating system
USC.

Figure 8.13 shows the 88100 processor status register format. In Figure 8.13, Big Endian

means the most significant byte at the highest byte address. Serial instruction is to complete

before the next one begins. Note that not all adds/subtracts affect C. The SFDI bit enables or

disables the floating-point unit. When SFDI = l attempted executiott of any floating-point or

integer multiply/divide instructions causes a floating-point precise exception.

00

o 0	 C)	 O
0 CL
Li	 0
o	 -. ce

Li Li	 C)

2-	 rL)
.5 o 2<

8	 -
C)	 0 C.0
X	 qi Li	 L)

Ln

CL-. --c0	 Li)L Li. LI)

RISC Microprocessors: liii ci 80960, Alotorola A'ICSS 100 and Powcrl'C 	 549

CD

-

C .- c-i In -j- c- (N. LID C COC-irn-Cn0I-.00C-'	 --.- IN
Li Li Li U Li Li Li Li Li Li Li Li Li Li U Li Li Li U U Li

r

C)
C)

2.

C) CZ

CO

C) C)

:J1

LA_ U-

•,
ce
 U
Li.

ri -n0
Li Li

U)	i)Qli)))
C) C)

U— Li.
O — r'i In 1 in i.0 I-.. CO
Li Li U Li U Li Li U Li

Iii	 It	 11
Le

LAII o	 5,5.51.5	 2

I	 Li	 Li	 n .0 F, Cc (C -
-	 C .-	 ri ri ri IN IN In In

0

o
C(i
0

C)-c
C)
	 0

-c
Ii)
0
	

(C
(C

CC
	

0

0
	 CI)

0
CL
0

CL
	

C)-
0
	 Cc

C)-
	 0
	 LI)

D

	 C)

LI)

550	 Microprocessors (111(1 Microcomputer-Based System Design, 2nd Edition

31	 876	 0
rN	 SSSSSSSSSSSSSSSSSSSSSS 	 S	 Byte	 Signed Byte

31	 876	 0
rN 1 000000000000000000000000 1 	 f3ylc	 Unsigned Byte

31	 1615 1 . 1	 0
rN SSSSSSSSSSSSSSSS I S I	 I I.ilIwurd	 I Signed I II(word

31	 1615	 0
rN	 I I.lIIWord IUnsigned I-Il1word

3130	 0
rN [j	 Word	 J Signed Word

ii	 0
iN 	 Word	 J Unsigned Word

loitiog-Point Forio.il

3130	 2322	 11	 0
rN S F \)Or)eCCl	 FractionUfl	 Single Precision

31 30	 20 19	 8	 0
rN S	 Exponent I	 Fraction	 Double Precision

rN + I	 Fr,i ct inn (Continued)

FIGURE 8.9 88101) rcgkIe data to, 	 An "S" in the di.cg.iiu above iudkat:s .i sign bit.

31 I615 14 13 5 4 3 2 1 0

FLEFE
F F F F F

1cr63	 Reserved	 RM	 Reserved	 I D U 0 I 1: PC
N V N V N
V Z F F

Rf1: Floating Point ROdJ1)dIinS Mode

00 Rourrcl to rearest
= 01 Round IC) ,.ero
= 10 Round to negative infinity
= 11 Round to positive infinity

EIINV: t.iuut;le Invalid 0pc.iIioiu User Exception I landlcr
EH)Vt:t:ir,uhle Divilc' By Zero User Exception I landler
[F UhF : : Enable IJnderil ow User Except ion F Iandter
[lOVE: Enable Overflow User Exception Handler
JINX: Enable tncxuc I User I. xcept ion I Iaruller

:11	 5 4 3 2 1 0
A A A A A
I F F F F

1u62	 Reserved	 I 1) U 0 I FPSR
NVNVN
VZF IX

AIINV: Accumulated Invalid Operation Flag
A! D\'F : Accucuc ulated Divide Ily Zero Flag
AF U Ni: Accun C U I,uted U uuderilow 171 ,11;

AFOVF: Accumulated Ovecilow Flag
Al IN X	 Acconuu l,u I 'u I I rre act F1.111,

FIGURE 8.10 88100 1r 62 and icr 63 lornuts.

r1 --)

Stack
Growth

	

RISC Microproccssors: hue1 50960, Motorola MC88I00 and PowerPC 	 551

rO	 U	 (hardware)

I	 Subroutine Return Pointer 	 (hardware)

Q	
Calleil Procedure (so(tvare)

r9	
Parametermeter Registers

rID	
Called I'rocciture

1 cmii rora ry Registers 	 (soliwa rd

Called Pr i icethire	 -	 (software)
Resci cud Registers

r25
r26

limii-.er Registers 	 (sollw.ire)

r291

r30	 ('rimime Pointer	 I	 (sutLvrc)

r:t 1	 Stack	 mu mter	 (SUItW,1tC)

FIGURE 8,11 88100 register convention.

8.3.3 88100 Data Types, Addressing Modes, and Instructions

Tables 8.7a and 8.7b list the data types and addressing modes supported by the 88100. Table

8.8 summarizes the 88100 instructions.

The 51 instructions listed in Table 8.8 of the MC88 100
call 	 divided into 6 classes: integer

arithmetic, floating-point arithmetic, logical, bit field, load/store!cxcliange, and flow control.

These simple instructions must be used to obtain complex operations. Shift and rotate

operations are special cases olbit held instruCtions. Only Id, sI, atid xmcm can access memory.

FIGURE 8.12	 t'tttIOO stack iijrci.mtiriir,

552	 Microprocessors and Microcomputer-Based Systcn? Design, 211d Edition

I	 10 21 20 27 :1.	 10 ')	 4	 1	 2	 I	 I)

LJ o	 R:wrvt'd	 I('MIvcd

	

'tO1)1 —o	 Ircx c',sjr ik ill IJl(rn5J.
	I 	 I'mcvssor IS ill SLlJ (((ViS(I(1111111L.,

	

lIC) = LI	 IIiA fiidi,,ii IIytL' 1,11111 in r11I'I1I1>ry.
-	 L ill Ic CnII,ln Ijyic 11111cr ill 	 cml ny.

	

SIR = ()	 Concurrent Il iSirII(ilon cXCCLliUlfI
	I 	 Serial iIiStrIICtiflh(('SVC(lii(lll,

	C 	 II	 No arry / I1IIt(05V ltCIl('r.Iit'll

	

=I	 Corry / lsirrosv lt('Ii('r.IIc(I.

	

I)l.XC	 Ii	 t),ii,i F li c i lloly I's(II I IiIIII 111,!
	= I 	 I),I1,1 IIi('Ii(I Iry l'XC(1 fliIII(lIvIlding.

	

SIlt I	 ii	 SI Li I (I1.11)lI11,
Sit)! Ili',,IlIICIl,

	

' 1IIXi	 I)	 '.tJsaIi))III'cJ Ilicri Or)' II c(scs flI'Iicraic P5&L'I I1 ions,
(tiSIIi I:IIVIi iII'IllIIry II (1"., irIIi)(',ltO.

i5)i,IlIJIl('Il III 11I',', Ii	 lilsi 11115(1 .Ili)1II('(j il(l(lI('S%,

	

NI) = (I	 tiilc'rrupt ('Il.lhi('CI.

	

= I	 IIIicrrtIpI Ili(,Ii)I('li.

	

S1l/.	 (I	 SL.lios registers ('II.ILIIIfiI.
Shadow rCgisk'rs frozen.

• LIII 100 (.111 .1IiIli(_55 (.1(i) l)yit. I 111 Ii.II1svorIl, .1Il)II-ci IIIIlICS 1I1CI Ill IC .iLl
1IIIIII'SSL'S III III(IItIiI)('S of 2, for SVIII(.l in IIrIII i i i)lc c of 'I 11111 for
11(11(1 II(5'OrlI ill IIIII)iilli(' I If II.

FIGURE, 8.13 88100 processor status register format,

TABLE 87a I).ita 'Fyi'c

Data type	 Represented as

Bit tlekk	 Sigii'd Mid unsigned bit fields itoiti I 10 32 bits
Integer	 Si1ttcd .111(1 tiiisigned byte ($ bits)

Signed and tiiisigned half-word (16 bits)
Sigiied .irt1 itiisigiiesl word (32 hits)

lii IIIII)-I I I I IIIL 	 II.E1 l'75I single prcesiiii ($2 biI)
Iill I75_I double i'in ((,1 lOIS)

'I .AIlI.E 8.7b Addressing Modes

Data addressing IllOdC	 Syntax

Register indirect ss'ith unsigned immediate 	 rl)rSI,itttjitlb
Register indirect with index 	 rF),rSl ,rS2
Register indirect wit It scaled index 	 rl),rS 11 rS2 I

Instruction addressing mode 	 Syntax

Register with 9-bit. vector nunil,cr 	 tii5,rS! ,vcc9
Register with 16-bit signed displacement	 m5,rS I .d 16
Instruction pointer relative 	 c126

(26-1'11 sigiied olrspIacctitcin)

	

Register direct	 rS2

RISC Microprocessors: Intel 80960, Motorola MC88100 and PowerPC
	

553

TABLE 8.3 Instruction Set Summary

Mnemonic	 Description

Integer Arithmetic Instructions

Add

Add unsigned

Compare

Divide
Divide unsigned

Multiply

Subtract

Subtract unsigned

Floating-Point Arithmetic Instructions

Floating-point add

Floating-point compare

Float i mg- point divide

Load from floating-point control register

Convert integer to floating point

Floating-point multiply

Store to floating-point control register

Floating-point subtract

Exchange floating-point control register

Round floating point to integer

Floating-point round to nearest integer

Truncate floating point to integer

Logical Instructions

AND	 -

Logical mask immediate

OR

Exclusive OR

Bit-Ficid Instructions

Clear bit field

Extract signed bit field

Extract unsigned bit field

Find first bit clear

Find first bit set

Make bit field

Rotate register

Set bit field

Load/StoreiExcharsgc Instructions

Load register from memory

Load address

Loald from control register

Stot register to memory

Store to contl register

Exchange con(rol register

Exchange register with memory

Flow Control Instructions

Branch on hit clear

Branch on bit set

Conditional br ucli

Uncomidilional branch

Branch to subroutine

Unconditional jump

Jump to subroutine

Return from exception

Trap oil 	 clear

Trap on hit set

Trap on bounds check

Co ndit in mial impp

add

addu

cniP

div

divti

mul

sub

suhu

fadd

fcnii

Idiv

fldci-

fit

Ito iii

ktcr

Isult

fxcr

hit

flint

trmtc

and

mask

or

xor

cir

ext

extu

110

111

mak

rot

set

Id

Ida

ldcr

St

stcr

xcr

xiiicm

bb0

bb I

bend

hr

hsr

jmp

jsr

rte

thO

th I

thnd

tcnd

554	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Also, only compare instructions affect condition codes. Most MC88 100 instructions can have
one of the thrçe formats:

1. Triadic register instructions (three operands). The general format is

lflflCfliOfliC	 Opt	 ro	 rsl	 rs2

t	 't	 f	 t
option destination source I 	 source 2

register	 register	 register

An example is add.ci r2, r7, M. Note that Motorola's assembler expects the 88100
instructions in lower case. In the example, the mnemonic is add and the option is ci,
meaning use carry in' in the operation. The source registers 0 and r4 remain un-
changed unlessone of them is used as destination. This add instruction adds [r7] and
[r4] with carry and stores the result in r2.

2. Triadic register instructions with 16-bit field instruction. The general format is
mncmonic.opt rD, rsl , intm 16. Consider

add.Co r2, r4, 0XAl25

OX before data Al25 means that A]25 is in hex. This notation is used by the Motorola
assembler.

3. Dyadic register instructions (two operands). The general format is mnemonic opt rd,
rs2. An example is flt,sw r5, r6 - which converts the integer source word in r6 into
floating-point in r5.

Table 8.9 lists the 88100 load, store, and exchange instructions.

TABLE 8.9 MC88 100 LOAD, sroRE, Exchange Instructions

Instructions	 Exceptions

kl[.<opts>]	 rD,rSl,<inmilô>
!d[.<opts>) l.<space>] rD,rS 1,62
Id] <opts>] [<space> I rI),RS I JrS21
51 [.<size>J	 rS,rS ,<imnl I >	 Data access
sti <size>] [<space>]	 rS,rSI ,rS2	 Misaligned access
51] <size>] [<space>]	 rS,rS I [rS2]	 Privilege violation
X 10Cm] .bu)	 rS,rS I <ills 1116>
xlIlells[.bu]] <space>	 6,6 1,62,rS2
X 11cm] .110]] <SpaCe>	 rS,rS I] rS2 J
Idcr	 rD,crCItS
51cr	 rS,crCP.t)
xcr	 rI),rSl ,rCRSII)

Privilege violation
IIdcr	 r[),crPCltS
fstcr	 rS,crPCRD
(5cr	 rI),rS I crICltSfl)

<opts>	 For	 Id	 <siCc>	 Fur	 St

.1)	 -	 Signed byte	 .b	 -	 Byte

.hu	 -	 Unsigned byte	 .11	 -	 Halfword

.11	 -	 Signed hallword	 none	 -	 Word
,ltti	 -	 Unsigned hallword	 •d	 -	 Doubleword
11011C	 -	 Word

-	 Uouble,id

RISC Microprocessors: Intel 80960, Motorola MC88 100 and PowerPC 	 555

TABLE 8.9 MC$3 100 LOAD, STORE, Exchange Instructions

(Coll tinucl)

<spaLc>	 For	 Id,st,x local

.usr	 -	 Access user space regardless of mode bit in I'SR
nOOC	 -	 Access space indicated by I'SR MODE bit

• rs	 Source register.

• crCRS = Source control register.

crCRD = Destination control register.

• crCRS/D = Source/destination control register.

• crFCRS = Source floating-point control register.

• crFCRI) = Destination floating-point control register.

• crFCRS/D = Source/destination floating-point control register.

• Memory accesses for xmem are indivisible.

Id loads it register from data memory. There are three operands with

this instruction. Two source operands arc used to calculate the address, 'l'hrcc forms of

Id use the three addressing modes available. The (.opt) for Id specifies the size of data

read from memory.

The st instructions are similar to Id instructions, except they are used to store source

data.

• The exchange instructions (xmem, xcr, fxcr) swap the contents of a general-purpose

register with data memory or with a control register.

• Consider Id r47, r3 I, 0X4. The mode used here is register indirect with unsigned

immediate. If [611j = 00005000, the effective address is computed by adding rsl (r3 1)

with unsigned 16-bit immediate data. Therefore, the 88100 loads the register r47 with

32-bit data from it memory location addressed by 00005004 16; r31 is the SP. Therefore,

the access occurs within the stack. Since the immediate data are unsigned, the accessed

address cannot be less than r3 I. This means that the stack grows toward the lower

address.

• Consider stb rs, rs] rs2. 'Ibis instruction has register indirect with index mode.

The access address is (rs 1) + (rs2) where rs I is the base register and rs2 is the index register.

For example, consider st.b rI , rO, r5. If I r5j = 00010200; then since rO is always 0, the low 8-

bit content ofri isstored at address 000l0200 The 88100 ignores anycarry generated during

address calculation. Note that in the above rU is the base address and rS is the index register.

Finally, consider st.hu rs, rs I [rs2]. The node is register indirect with index. The access

address is (rsl) + (rs2)' (operand size). The scaling is specified by surrounding the index

register rs2 by square brackets. Operand size is 1 for byte, 2 for halfword, 4 for word, and 8 for

double word.

As an example, consider st. r5, r3 I [r]] . If Irl J = 00000003 16 , (61] = 00005000 16, then the

effective address is

00005000 + 4 00000003 = 0000500C16

scaled by 4 for word since the instruction without any option specified means 32-bit word.

Therefore, the above store instruction stores the 32-hit contents of r5 into a memory

location addressed by 0000500C1,,.

Table 8.10 shows the integer arithmetic instructions.

556	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

TABLE 8.10 MC88l00 Integer Arithmetic
Instructions

Instructions	 Exceptions
add [.<op i > l	 rD,rS I ,rS2	 Integer overflow
add	 rD,rSl,<immló>
addu l .<opt>l rD,rSI,rS2	 None
addu	 rD,rSl,ejmrnl6>
subl.<opt>J	 rD,61,62	 Integer overflow
sub	 rD,rSI,<insmj6>
subu l . <opt>J rD,rSl,rS2	 None
subu	 rD,rSl,<imrnl6>
mul	 rD,rSl,r52	 None
mul	 rD,rSl,<jnsrnt6>
div	 rD,61,62
div	 rD,rS I ,<imm 16>	 Integer divide
divu	 rD,6I42
divu	 tD,rSl,<imgn 16>
Ida [.<sizc>]	 rD,rSI ,<itnmIó>
Ida [<sizc>J rD.rS1,rS2 	 None
Ida [.<size>J	 rD,rSI,lrS2l

<opt> FOR add/addu/sub/subu
none	 No carry
.ci	 Use carry in
.co	 Propagate carry out
.cio	 Use carry in and propagate carry out

<size> FOR Ida

Scale rS2 by I
Scale r52 by 2

none	 Scale rS2 by 4
Scale rS2by8

• mul yields correct signed and unsigned results.

• Division by zero signals the integer divide exception.

• An integer divide exception occurs when either source operand is negative for div.
• Unscaled Ida is functionally equivalent to addu.

• Consider add [.<opt>] rd, rsl, rs2. Three options can be used with this instruction as
follows:

• add.Ci rD, rsl, rs2 adds the 32-bit contents ofrs! with rs2 and the C-bit in processor
Status register, and Stores the 32-bit result in rD without providing any carry-out, and
thus the C-bit in PSR is unchanged.

• add.Co rD, rs!, rs2 adds the 32-bit contents of rsl with rs2 without any carry-in and
stores the result in rD and reflects the carry-out in the C-bit of PSR.

• add.Cio rD, rsl, rs2 adds the 32-bit contents of rsl with rs2 and the C-bit from the
PSR and stores the result in rD and reflects any carry-out in the C-bit in the PSR.

Consider add.Cjo r2, r!, r5. If the C-bit in the PSR is 0, In] = 8000 F102 6, [r5] =
F1101100,, then after this add [r2] = 711 10202 16 and the C-bit in the PSR is set to one.
If no option is specified in an instruction such as add or addu, the carry-in is not
included in addition and also no carry-out from the addition is provided. For example,
consider addu ri, r5, OXFI12. The 16-bit immediate data 1`112 16 is converted to an
unsigned 32-bit number 0000-F! 12 16 and is added with the 32-bit contents of r5. The

RISC Microprocessors: Intel 80960, Motorola MC88100 and l'owcrPC 	 557

32-bit result is stored in rt. The carry-out is not provided. The add instruction performs

signed arihiuctic. If the result cannot be accommodated in a 32-bit integer, an integer

overflow exception occurs. The immediate 46-bit data in an add instruction are sign-

extended to 32 bits before addition.

The sub instructions are similar to the add instructions. The content olrs2 is subtracted

from the content of rsl with the C-bit in the PSR as borrow if .Ci is used for <opt>.

mul instructions multiply a 32-bit number (signed or unsigned) in rs2 by a 32-bit

number (signed or unsigned) in rs I and store the low 32-bit result in rD and discard the

upper 32 bits of the result.

div instructions perform signed division while divu carries out unsigned division. clivu

(unsigned division) instructions divide the 32-bit content of rsl by the 32-bit content

ofrs2 or a 16-bit immediate value. The 32-bit quotient is stored in rD and the remainder

is discarded. If the divisor is zero, an integer divide exception is taken and ri) is

unaffected. div (signed division) operates similarly except that the integer divide excep-

tion is taken if either the dividend (rs 1) or the divisor (rs2) has a negative value. The

exception handler must Convert the negative value to positive, perform the signed

integer divide, and convert the sign of the result.

Ida is the load address instruction. Ida calculates the access address using one of three

indirect addressing modes. Ida loads ri) with the access address. Unsealed Ida is func-

tionally equivalent to addu with the same operands.

Table 8.11 lists the 88100 floating-point arithmetic instructions.

• The MC88 100 permits a mixture of single and double precision source and destination

operands.

• trnc performs "round to zero rounding.

• nint performs "round to nearest" rounding.

• mt performs rounding specified by the RM field of the PPCR.

• fadd adds the contents of rsl with rs2 and stores the result in rD.

• fsub subtracts the contents of rs2 from rs I and stores the result in rD.

• Imul multiplies the contents of rs I by rs2 and stores the result in rD.

• fdiv divides the contents of rsl by rs2 and stores the quotient in rD.

l'A]tl.F 8.1 I	 MC3$ ioU Floating-Point Arithmetic instructions

Instructions

1aid.<izcs> dJ41,62
rsub,<sis> rl),rS I ,rS2

IinuI.<sic.cs> rt),6I42
fdiv.<sizcs> rl)41,62
trnlc.<sizcs>	 ri),rS2

Fxccption

Floating point rcscrved operand
Floating p111111 ovcrIlow
Float jig point undcrtiow
iIO .I t j n ig point inexact
Floating point divide by zero

nrinrt.<siz.cs> rl),rS2	 Floating point integer conversion ovcrtiow
inl.<sizcs>	 ri),rS2	 Floating point reserved operand
llt<si-cs>	 rt).rS2	 Floating point inexact

<sites> FOR frndd/Isub/friiul/fdiv
sss, ssd, sds, sdd, dss, dsd, dds, ddd

<sizes> FOR trncininnt/int
ss, sd

<sizes> FOR tim
ss, Its

558	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

TABLE 8,12 MC8SIOO Logical Instructions

lust 1- 11 C! ions	 Exceptions

and	 J	 rl),rS I,rS2
and 1.111	 rD,rS 1 ,<imml6>
mask lu]	 rI) ,i SI ,<inim 16>
or f.c]	 ili,rSI,rS2	 None
or 1.u]	 r l),rS I ,< ituni 16>
xor fe]	 rD,6I,iS2
xor J.uj	 rI),rS I <mInt 16>

• Option .c ones-complements tlte contents of
rs2 before performing the operation.

• Option .0 performs the specified logical op.
erat ott between 16-bit im media c data <imilli) 16>
and the high 16 bits of rat

• The 88100 utilizes hardware to perform these IEEE floating-point computations.

• The 88100 allows single and double precision operands. <sizes> specify the operand

sizes of rD, rs 1, and rs2 as single or double precision- For example, .ssd Nicans that rD

and rsl are single precision, while rs2 is double precision.

• trnc, nint, Hit, and fit provide conversions between integer and floating-point values. These

instructions have two operands with one operand having a floating point value and the other

having an integer value. trnc, nint, and mt convert a floating-point format to equivalent

format. The difference between them is the type f rounding performed. trnc rounds toward

zero, and flint rounds to the nearest value, mt rounds as spt 4ied by the RIvl field in FPCR.

• Two exceptions are provided for floating-point instructions. At) integer conversion

overflow exception occurs when the operand value cannot be expressed as a high word.
A reserved operand exception occurs with certain floating-point values.

• fit converts a signed 32-bit number into a floating-point format. The integer operand

size is always specified by <sizes> indicating signed word size. AV for double or 's' for

single defines the floating-point operand's precision.

Table 8.12 lists the MC88 100 logical instructions.

If the option .0 is omitted, the specified logical operation is performed between the 16-bit

immediate data <imm 16> and the low-order 16 bits of rsl

The mask always affects all 32 bits of rD. The mask logically ANDS the 16-bit immediate

value with the low 16 bits or highest 16 bits of rsl and clears the other 16 bits to zero.
If the .0 optio: is omitted, the AND is performed with the low-order 16 bits of rsl and
if .0 is included, the AND is performed with the high-order 16 bits of rsl.

When both operands are registers (rsl and rs2) for AND, OR, and XOR, the 32-bit

logical operation is performed. When the .c option is used, the MC88 100 ones-comple-

ments the contents of rs2 before performing the operation.. The MC88 100 only per-

forms a 16-bit operation when the second source operand is a 16-bit immediate. Them

option, when present in AND, OR, and XOR, performs the logical operation between

the high 16-bit value of rsl and the 16-bit immediate data and then stores the result in

the high 16 bits of rD. The low 16 bits ofrsl are copied into the low 16 bits of rD. If the
.0 option is not present, only the low 16 bits of rsl are used in the operation.

Table 8.13 lists the 88100 bit field instructions.

• W5 is five bit width and <05> is a five bit offset,

• The number of hits in a bit field is called width. Width can be from 1 to 32. The least

significant bit in bit field is called the offset. When the sum of width and offset is greater than

32, the bit field maybe imagined to extend beyond the most significant bit of the register.

RISC Microprocessors : Intel 80960, Motorola MC88100 and PowerPC	 559

TABLE 8.13 MC88100 Bit Field Instructions

Instructions	 --Exceptions

dr	 rD,rSI,w5 <05>
cli	 rl),rSl,r2
Set	 rD,rSI,w5 <05>
set	 rD,rSt,rS2
ext	 rD,rSl,w5 <05>
cxt	 rD,rSl,rS2
CXLU	 rD,rSI.w5 <05>

	
None

cxlii	 rI),rSl.rS2
m.sk	 rD,rSlw5 <05>
niak	 rD,rS 1,62
rot	 rD,rS I <05>
rot	 rI),rSI,rS2
ff1	 rDrS2
ff0	 rI),rS2

• ext and extu affect all 32 hits of ri).
• cxi 011d cxlii perform shill right operations

when the width equals 32,
mak clears ri) before inserting the hE field.

• mak performs shift left operations when the
Width equals 32.

• rot rotates the bit field to the right.

Ail bit field ends itt the least significant bit of a register with an implicit offset of

zero. Bit fields may contain signed and unsigned values. For unsigned isolated bit fields, the

high-order bits in a register are all zero and for signed isolated bit field, they are the 2's

complement sign bit. In either case, the entire register contains the word value equivalent to

the isolated bit field value. The 88100 includes instructions to isolate embedded bit field for

arithmetic manipulation. The 88100 instruction moves an isolated bit field back into an

embedded bit field. This is illustrated in the following:

svidtls
oftsct--0

1;mbcddcd	 Bit
bit field	 Field

4
31

lsol.ocd	 Bit
bit held L	 l'ii'ld

Two hit field formats are used. These are literal width with offset and register width with

offset. The literal width with offset uses immediate width and offset values. Ail is set

r5, rI, 3 <7>. The destination register is r5; the source hit field is 3 bits wide with an offset of

7 in ri. With the Motorola assembler, the offset must he included in angle brackets < >.

The register width with offset uses three operands. Ail is dr ri, r3, r4. The source

bit field is in r3 with offset and width determined from r4. The MC88 100 obtains the offset

from bits 0-4 of r4 and the width from bits 5-9 of 1-4. The upper 22 bits of r4 are don't cares.

Both formats use ail of to 31 and width of I to 32 with 32 encoded as 0. The destination

register (ri in this case) stores the final result. The content of the source register (r3) does not

change after the operation.

ext (signed) and extu (unsigned) instructions extract the register value from rsl and

convert it to an isolated bit field in ri). For a hit field width of 32 (encoded as 0), ext and

extu perform a shift right operation. 'I'he content of rsl is shifted to the right by the

560	 Microprocessors and Microcomputer- Based System Design, 2nd Edition

TABLE 8.14 MC8$ 100 lnrcgcr Cotiiparc

Instructions	 Exceptions

C1111)	 rD,rS I ,<iiit,n 16>
C1111)	 rt),rS ,rS2
crop

eniji Predicate Bit Siring

11 3029 211 2 7 26252-12122212(, 2521232221 2019 1817 U 1S 14 13 12 Ii 098 (.54 32 I
r11 Io!01 0 00000000000000000 hi

S	 ii	 I	 I e I r'q

	

I'rciiicati.i Bits	 iIt Sd (And Only If:

	

Cii	 151 =t52

	

iii ,	' rSI , t52

	

i	 rSi	 r52

	

h'	 'Si <= ;S2

	

It	 • rS I < r52	 Stied lvi Iii,ii ion

	

tC	 rSl >= rS2

	

Ili	 rSl .. 62

	

is	 :51 <= rS2

	

I,:	 ,SI C :S2	 Uiist1t:ciJ tv,ilii,it,oti

	

its	 iSI > r52

number of bits specific (] in the offset and thc result is stored in rD. cxtu performs a
logical shift, while ext performs all 	 shift.

• inak creates all 	 bit field in rD with all 	 specified by all 	 value
or by the content of rs2. The MC88 100 Stores the least significant bits of rsl in the
imbeddcd bit field. The bits outside the imbedded bit field in rI) arc cleared to zero. The
mak is the inverse operation of ext and extu.

• The shift left operation may be performed by a bit field width of 32. The offset specifies
the number of positions to be shifted.

• rot reads rs I and rotates it to the right by the number of bits specified in <05> or in bits
0-4 of rs2. The result is stored in rD.

• ff1 finds the most significant set bit in rs2 and stores the bit number in rD.

• Ifall bits arc cleared, the 88100 loads 32 into rD. ff0 operates similarly but finds the most
significant clear bit.

Table 8.14 summarizes the 88100 Integer Compare instructions.

• Cm l) provides integer data comparison. 'l'hc 88100 compares the rs I contents wit Ii either
an unsigned 16-bit immediate number or the content of rs2. 'Ihe 16-bit immediate data

are converted to a 32-bit value with zeros in the high 16 bits before comparison. The
result of the comparison is stored in ri)

Table 8.15 shows the 88100 floating-point compare instructions. Table 8.16 lists the 88100
conditional branch instructions.

An instruction using 111C. 11 option must not be followed by another flow control instruction.
(Error undetected by the MC88 100.)

<cond> for bcnd/tcnd

eqO

nc0

gtO

110

gcO

leO

RISC Microprocessors: Intel 80960, Motorola MC88 100 and l'owcrPC	 561

TABLE 8.15 MC88100 Floating-Point Compare

instructions	 Exceptions

fcinpsss rD,rS .rS2

fcmp.ssd rI),rSi ,rS2	 Floating po in t reserved operand

fcmp.sds rD,6I,62
fern p.sdd rD,rS I ,rS2

fern p l'rcdicatc 117 St ring

37 3029211272(2524212227 20 7'I 18 77 U. 574 13 12 17 109777 6 5432 I C)

'o0 0000001) 0 1 011 00000Iflj000°	
io1II1necn

I) fl t U e I C' I n C 77<:

)'rcdcate lids	 lid So If And Only if:

nc	 olwrands are no) comparable

cp	 operands are comparable

eq	 SI	 rS2

ne	 rS I i rS2

IV	 rSl >vS2

Ic	 rSI <=:S2

It	 rSI <rS2

<SI >= I S2

ou	 IrSI > ,S2 OR rSI < D) AND r52 >0

ii,	 rSl = rS) AND rSl > 0 and 62 >0

in	 rSl < rS2 AND <SI > OAND rS2 >0

ot,	 pSi >= r S208 rSI z= 01 AND iS2 >0

• <d16> signed 16-bit displacement.

• <vcc9> 9-bit vector number (0-511).

• <b5> 1 1 5-bit bit number (0-31).

The .n option indicates "execute next". The next instruction executes whether or not the

branch takes effect.

• tbnd traps if the value in rS I is greater than the value in rS2 or <imnil 6>, or if rS I is

negative.

bcnd tests the content of rsl for = 0, ;,, 0, >0, <0, 0, and ^:0 and branches with 16-bit

signed displacement if the condition is true. The 16-bit signed displacement is sign-

extended to 32 bits, shifted twice to the left, and adds to address of bcnd to branch with

a displacement of (2) to (24) bytes. .7) indicates 'execute next ' . lf.n is present and

the condition is trite, the bend executes the next instruction before taking the branch.

The 'execute next' allows the 83100 to branch without flushing the execution pipeline

and thus provides faster execution.

FABLE 8.16 MC83 100 Conditional Flow Control

instructions

Instruct 0715	 Exceptions

bend j.0j	 <cond>rSI,<d16>	 None

Trap vcc9

P rivilege violation

bbl 1.111	 <bS>,rSI,<dlG>	 None

bbu .71)	 IS1,<&lI6>

tEl	 <1)5>,rSI.<vcc9>	 trap vcc9

thO	 <h5>rSl ,<vec9>	 Privilege violation

tEnd	 rS I ,rS2

tEnd	 rS I <i107116>

562	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

TA tILE &17 MCS$ 100 U neondit iona I

Flow Cont rol Instructions

Instruct ions	 - Exceptions

hr 1.111	 <d26>

bsr In]	 <(!'o>	 None
jmp 1.111	 iS2

jsr J.nj	 iS2

rte	 Privilege violation

• i126> ii SIIpICLI 26-hit displacement.
• .11	 exeCute flCXt.
• bsr and jsr save the return address in r I,
"pop ri performs return from subrou-

line.

lie last instruction of typical exception
handlers is ne,

tend also tests the content of rsl For the condition but traps if the condition is true.
The 88100 includes 512 vectors itt the vector table. <vec9> specifies a 9-bit vector

number from 0 to 511. .bb I (branch oil set) tests the content of rs I for a set bit.
If it is set, the 88100 takes a branch. <1)5> specifies a bit number from 0 to 31. bbl
usually follows Cmi) and fcrnji instructions. tbbt is similar to bbl except a trap is taken
if the bit is set. bb0 (branch oil 	 clear) is similar to bbl except a branch is taken if
the specified bit is 0. 11)0 is similar to 11)1 except a trap is taken if the specified bit is
0.
tiMid (trap oil check) generates bound check violation if isi contents are out
of bounds; 0 is the implicit lower bound. The upper bound is cither unsigned 16 bits
or is contained in rs2. The value of' the upper l,ottuid is treated as an unsigned
number.

'Fable 8.17 lists the unconditional j ump inst ructiorts.

• br always unconditionally branches with signed 26-bit displacement with a range of
(2') to (2 26 - 4) bytes.

• bsr is an unconditional subroutine cal] and saves the return address in ri . When [.n] is
Specified, the return address is the address of bsr plus 8.

• jnlp branches to the address specified by the contents of rs2, The 88100 rounds the least
2 bits of rs2 to 00 before branching for alignment. However, the contents of rs2 are
unchanged by the instruction. .jsr is similar to imp except it is a subroutine jump to an
address specified by the contents of rs2 and also saves the return address in ri.

• The 88100 does not provide any return from suI)routilie instruction, jump ri fetches the

next instruction from the return address saved by bsr or jsr.
• rte provides an orderly termination of an exception handler. It uses the shadow registers

to restore the state that existed before the exception. rtc can only clear the mode bit in
the PSR and ensures that the instruction is executed in user mode.

Example 8.12

Show the contents of registers and memory after the 88100 executes the following instructions:

i) sth r2, r3, r5
ii) xmem r2, r2 [r3

A"sunic the following data:

RISC Microprocessors: Intel 80960, Motorola MC88100 and PowcrPC	 563

.\ 1 cni >rv

2000 IT 25 71	 02
[r2] 00000004	 I	 I	 I2004 00 01	 02 03

[r3] 000020006	 200 11; 	 71	 SO	 25

[rS I - 00000002 (,	 SOOt) I 01 1 02 I i\2_11±
i004	 Ill	 Ii 126105

Solution
i) [r3[+ [r5] = 2002. Consider st.h r2, r3, r5 where .h stands for half-word (16 bits). The

low 16 bits of r2 is stored in 2002 6 and 2003. Therefore

2000 F1 25 00 04

ii) xrncm r2, r2 [r3]. This is a 32-bit word operation. Hence the scale factor is 4. The

effective address

= [r2] + 4 * [r3]
= 0000 0004 16 + 4 • 00002000

= 0000 800416

Therefore, after the xmein, [r21 = 8111 2605 1(: and [00008004] = 0000 00046.

Example 8.13

Write an instruction to logically shift right by 3 bitsthe value of r2 into r5.

Solution
Since r2 is 32 bits wide, cxtu periorms logical right shift and the width 32 is encoded as 0,

cxtu r5, r2, 0<3>.

Example 8.14

Write an MC8S 100 instruction sequence to logically AND the 32-bit contents of r7 with

F2710562 16 and store the result in r5.

So In Lion

The instruct ion "and" loicallv ANUs 16-bit operands.

and r5, r7, 0x0562	 ; and logically ANDs 056216
with low 16 bits of
r7 and stores result in
low 16 bits of r5

and.0 rS, r7, 0xF271 ; arid.0 logically AND5
F271 16 with high 16 bits
of r7 and stores result
in high 16 bits of r5

564	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Example 8.15

Find an MC88 100 instruction to load register r5 with the constant value 9.

Solution
add r5, rO, 9.

Example 8.16

Find an MC88 100 instruction to branch to the instruction with label START if the value in r5
is equal to zero.

Solution
bcnd eqO, r5, START.

Example 8.17

Write an 88100 assembly language program to add two 64-bit numbers in registers r2 r3 and
M r5. Store result in r4 r5.

Solution

add r5, r3, r5	 ; add low 32-bits
add.cjo r4, r2, r4 ; add next 32 bits with carry

finish br finish

Example 8.18

Write an 88100 assembly language program to perform the following operation:

(A/B) + C D

where A, B, C, D are stored in r2, r3, r4, r5 as signed 32-bit integers. Assume C D generates
a 32-bit product. Discard tile remainder of A/B. Store the 32-bit result in r6.

Solution

div rB, r2, r3	 ; r8 - r2/r3
mul r7, r4, r5	 ; r7 4— r4*r5
addco r6, r7, rB ; store result in r6

finish br finish	 ; halt

Example 8.19

Write a program in 88100 assembly language to compute the area of a circle by using A = itr
where A is the area in 32-bit single-precision to be stored in register r4 and r is the radius of
the circle stored in r2 as a 32-bit floating-point number.

Solution

fmul.sss r4, r2, r2 ; calculate r2
add r5, rO, 7	 ; move 7 into r5

RISC Microproccssors: Intcl 80960, Motorola MC88 100 and I'owcrPC
	

565

DA2-DA3 I (Data Address
	

Code Address
	

CA2-CA3I

DO-D31

DS/0

DRAW

DLOCK

DEO - DE3

DRO- DRI

Data

Data Supervisor/1

Data Rcnlfsvriie

Data Bus lock

Data Byte Enable

Data rep l y -

Code

Code Supervisor/User

Code letch

2 Code Reply

C0-C31

CS/U

Cf ETCH

CR0 -CR1

P/tC00 1 00

Error	
ERR

Clock
	

CLK

t>hase lock Enable	
['LIEN

Reset	
RS I'

Vcc
	 +5V
	

lEt
	

Interrupt	
tNT

GND

	 Ground
	

lEt
	

I' Bus Checker Enable	
OCE

FIGURE 8.14 MCSS 100 signal functional diagram.

flt.ss r6, r5	 convert 22 to floating-point

fdiv.sss r8, r4, r5 ; compute r2/7
add r7, rO, 22	 ; move 22 into r7
f].t.ss r9, r7	 convert 22 into floating-point
fmul.sss r4, rB, r9 ; compute 7tr2

finish br finish	 ; halt

8.3.4 88100 Pius and Signals

Figure 8.14 shows the 88100 pin.s by functional group. 'I able 8. 18 provides a brief description

of the functions of these pins.

Data read/write	 1)0 / W

Data bus lock	 DI.00K

Pu netion

Provides the 30-bit word address to tile data ncinorv space; iii ciii ire

data word (32 bits) is always addressed; individual bytes or half words

are selected using the data byte St rube signals

32-bit bidirectional data bus interfacing the MCSttIOO to the tt.iL,i

memory space

Iltissignil selects between the sil t i e rsiso l selcct stai;i address space and

the user data address space; US / U is determined by die value of the

MODE bit in thc processor Status register, or by tic usr option of the

Id in(h st Instructions

Indicates whether tile memory transaction is a read (1)10 - I) or a

write (1))0 =

Time nicinory lock pin is used by the xmncm instruction in conjunction

with the CM MU; when asserted, the CM NIt) maintains control of the

memory bus during the two xmcm accesses; data are guaranteed to lie

unaccessed between the read and write accesses of the xmcni

instruction

TABLE 8.18 Signal Index

Signal name	 Mnemonic

Data address bus	 DA2-1)A3

Data bus	 DO-t)31

Data supervisor/user	 US / U

566	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

TABLE 8.18 Signal Index (co,ttiuucd)

I name	 Mnciiionic	 Function

Data byte enable 	 DBEO-I)11E3

Data reply	 DR0-DR1
Code address bus	 CA2-CA3 I

Code bus	 CO-C31

Code supervisor/user 	 Cs, U
select

Code fetch
	

CEETCI I

Code reply	 CR0-CR
Error	 ERR

Clock
	

CLK

Phase lock enable	 I'LLI:N

Reset	 RST

Interrupt
	

I NT

P bus checker enable	 PCE

p
ower supply	 We

Ground	 GNI)

Used during memory accesses, these signals indicate which bytes are
accessed at the addressed location; DEIt0-DEI33 arc always valid
during memory write cycles;a ineniory read is always 1 bytes wide,
aisil the processor uses the enables to extract the valid data; that is,
during all 	 histruction, the memory syst ens should d riveye .iIl 32 data
signals, regardless of whether I, 2, or .1 bytes enables are asserted;
when DEttO-DEI33 are negated, the transaction is a itoh; otherwise,
the transaetion is a valid load or store operation

Indicates the status of the data memory transaction
Provides the 30-hit word address to the instruction memory space; all

instructions are 32 bits wide and are aligiscd oil 	 boundaries;
therefore, the lower two [,its of the address	 are not required and
are implied to be 'ecro

This read-only, 32-bit data bus interfaces the MC83 100 to the
instruction memory space; iiisirLICtiOlIS are always 32 bits wide

Selects between the user and supervisor instruct in uiicitlury
when asserted, selects supervisor memory and when liegatcd. LISCr
memory; thisis signal is determined by die value of the MOW :Ii hit us
the processor status register

When asserted, signals that an lust ruct 10 ii fetch is ill 	 when
ulegu tcsl, the transaction is a null transaction (code P bus idle)

Signals the status of the instruction memory transaction
Asserted when it

	 comparator error occurs, ERR indicates that the
desired Signal level w's not driven oil 	 output pin; ERR is used its
Systems inplemcr.iiig ;I 	 cotiliguration of MC88 lOOs

Internal clock msrusiahhy phase uocJ to minimize skew between the
external and iii t emil signals; since CLK is applied to peripherals (such
as CMMU devices), exact timing of inicrn.il signals is required to
Properly Synchronize the device to the P bus

Asserted during reset to select phase hocking, PLLEN controls the
internal phase lock circuit that Synchronizes the internal clocks to CLK

Used to perform -.ill orderly restart of the processor; wlicti asserted, the
instruction pipeline is cleared and certain internal registers are cleared
or initialized; when negated, the reset vector is fetched from memory.
with execution beginning ill 	 mode

indicates that all request is ill when asserted, the
processor saves the execution context and begins execution at the
interrupt exception vector; software is responsible for handling all
recognized interrupts (those between instructions when no highte
jsuionty exception occur,,.)

Used ill Systems incorporating two or more NICS8100s red und.i lit I
ss'Iscn negated, the processor operates normally and when asserted, the
processor monitors (hut does tiot drive) all Of its outputs except
ERR as inputs

+ 5-volt pour Supply
Groundtill con n ect 0 Its

The 88100 uses memory-mapped 110. The 88100 can readily be interfaced to memory and
I/O chips using its bus control signals.

8.3.5 88100 Exception Processing

The 88100 includes the following exceptions:

• Reset the hardware interrupts which are activated externally via the respective input pins
• Externally activated errors such as a tncniory access iattlt

• Internally generated errors such as divide by zero
• Trap instructions

RISC Microprocessors: intel 80960. Motorola MCSS 100 and l'owcrPC	 567

,OS('rIS	 I	 Reset requested externally

Since reset initializes the 88100,
RSi netes	 the prior context is not saved. New

I	 CurlIest is built.

Supervisor mode, SlUt

	

'SR 4— 8000031 .l 	 disabled, interrupt masked,
shadow registers frozen

	

Invalidate pipes	 Di,lrll (s(Cutfll' InstructiOns
Hear ccnrelro,lO

\/cclor tal,lci at address 0

Fetch instruction from the reset vector

Nrrrrr,l rrrstriiction L'\eClItIOfl I>c'giis
with the instruction fetched frill Ihe.
instruction 1 1 -bus address 0

FIGURE 8.15 88100 reset exception flowdiart.

Exceptions are processed by the 83100 alter completion of the current instructions. When
all is acknowledged, the 8810() freezes the contents of shadow and exception time
control registers, disables interrupts and all SFUs, and enters the supervisor mode.

Figure 8.15 shows the 33100 reset flowchart. \Vhen the 88100 RST pi ll asserted, all
outputs go into high impedance state except ERR which indicates no error. Upon hardware
reset, the 88100 initializes the 1 >SR with appropriate data (8000031F 11, for supervisor mode
operation, SPU 1 disabled, interrupt masked, and shadow registers frozen), VBR with zero
value, and fetches two 32-bit instructions from the reset vector 0.

VBR contains the address of the 38100 vector table. The vector table contains 512 vectors.
Each vector corresponds to ;ill 	 Each vector address contains the first two instruc-
tions of its exception routine. The instruction stored ill first vector is usually a branch
instruction such as' br.n SiART' (delayed branch) where START is the starting address of the
exception routine. The second vector is normally used to save the current S1, and therefore the
instruction such as stcr 1-31, cr17 is stored at the second vector. The first instruction of the
exception routine should load the new SP to be used in the exception routine by using an
instruction such as ldcr r3 I ,crlS. 'the last instruction olihe exception handling routine should
be rte which returns control to the interrupting routine.

8.4 IBM/Motorola/Apple PowerPC 601

This section provides ;ill of the basic features of PowerPC microprocessor. The
PowerPC 601 is jointly developed by Apple, IBM, and Motorola. it is available from IBM as
PP 601 and from Motorola as M l'C 601.

The Powerl'C 601 is the first in plemetita lion of the PowerPC fimi1y of Reduced instruction
Set Computer (RISC) microprocessors. '['here are two types of' PowerPC implementations:

568	 Microprocessors and MICTOCOUipUtCF-&,SCd System Design, 2nd Edition

32-bit and 64-bit. 'l'he PowcrPC 601 implements the 32-bit portion of the IBM PowerPC

architectures and Motorola 88100 bus control logic. It includes 32-bit effective (logical)

addresses, integer data types of 8, 16, and 32 bits, and floating-point data types of 32 and 64

bits. For 64-bit Powcrl'C implementations, the PowerPC architecture provides 64-bit integer

data types, 64-bit addressing, and other features necessary to complete the 64-bit architecture.

The 601 is a pipelined superscalar processor and is capable of executing three instructions

per clock cycle. A pipelincd processor is one in which the processing ofan instruction is broken

down into discrete stages, such as decode, execute, and writeback (result of the operation is
written back in the register tile).

Because the tasks required to process an instruction are broken into a series of tasks, an

instruction does not require the entire resources of an execution unit. For example, after an

instruction completes the decode stage, it can pass on to the next stage, while the subsequent

instruction can advance into the decode stage. This improves the throughput of the instruction
flow. For example, it may take three cycles for an integer instruction to complete, but it there
are no stalls in the integer pipeline, a series of integer instructions can have a throughput of

one instruction per cycle. Each unit is kept busy in each cycle.

A superscalar processor is one in which multiple pipelines are provided to allow instruction

to execute in parallel. The 1'wcrPC 601 includes three execution units. These are a 32-bit
integer unit (IU), a branch processing unit (I3PU), and a pipelined floating-point unit (FPU).

The PowerPC 601 contains an on-chip, 32-Kbyte unified cache (combined instruction and

data cache) and all memory management unit (MMU). It has a 64-bit data bus and 32-
bit address bus. The 601 supports single-beat and four-beat burst data transfer for memory

accesses. Note that a single-beat transaction indicates data transfer of up to 64 bits. The

PowerPC 601 uses memory-mapped I/O, Input/Output devices can also be interfaced to the

l'owcrPC 601 by using I/O controller. 'l'he 601 is designed by using an advanced, CMOS process

technology and maintains full compatibility with fl'E. devices.

'l'h e main features of the I'owcrPC 601 are compared with a similarlar p pcI in cd superscal Cr
RISC microprocessor manufactured by Digital Equipment Corporation, the Alpha 21064.

Finally, typical 64-bit RISC microprocessors are discussed.

8.4,1 PowerPC 601 Block Diagram

Figure 8.16 shows the functional block diagram of the PowerPC 601.

The 601 contains the following on-chip hardware:

I. RTC (Real Time Clock)

b. Instruction Unit

C. Execution Unit

d. Memory Management Unit (MM U)
C. Cache Unit

L Memory Unit

g. System Interlace

8.4.1.a RTC (Real Time Clock)

'I'lie RTC has normally been an I/O device completely outside the CPU in the most earlier

microcomputers. While the RTC appearing inside the microcomputer chip is common in

single chip microcomputers, this is the first time the R1C is implemented inside a top-of-the

line microprocessor such as the PowerPC. The implication is that modern multi-tasking

operating systems require time keeping for task switching as well as keeping the calendar date.

RISC Microprocessors: Intel 80960, Motorola MC88100 and PowerPC

(Instruction let

RTC	 Instruction Unit

[Tcu	 Instruction
Queue

IRTCLI
(3 Words

569

Instruction—	 Issu^

1-8,c
BFU

lu

[CTR
(>R	 C 	

1[xcRIfile LR

IWord

Address

Instruction

F1'U

lI'R	 ______

File	 [IPSC
_

R

2 Words

+ mmu +
turin I (_ITLI3J

I3 AT I
L' Llay

Address

Memory Unit
Read	 Write Queue

Queue r

32-Kbyte
Physical Address	 Tags	 Cache

(Instruction
and Data)

Data
Data

a

SNOOP
jAddress

Address
Data

Is

System Interlace

(,t -I) it Data Bus (2 Words)

32-13it Data Itus (I Word)

FIGURE 8.16 PowerPC 60 1 microprocessor block diagram.

The 601 real-time clock (RTC) on-chip hardware provides a measure of real-time in terms

ofiimc of day and data with a calendar range of 136.19 years. The RTC contains two registers.

These are the RTC upper (RTCU) reigstcr and the RTC Jower (RTCL) register. The RTCU

register maintains the tiutnbcr of seconds from a point in time specified by software. The
RTCL register counts nanoseconds. The contents of these registers can be copied to any 601
general purpose rcigster.

01V microprocessors ana Microcomputer-Based System Design, 2nd Edition

8.4J.b Instruction Unit

The 601 instruction unit computes the address of the next instruction to be fctchcd. The

instruction unit includes an instruction queue and a Branch Processing Unit (BIT).

The instruction qUCUC holds up to eight instructions and can be filled from the cchc during
a single cycle.

Thc J3PU searches through the instruction queue for a conditional branch instruction and

tries to resolve it early in order to achieve zero-cycle branclt in nmny instances.

8.4.1.c Execution Unit

The 601 execution unit includes threcvn-chip hardware components. Theseire floating-point

unit (FPU), integer unit (I U), and branch-processing unit (I3PU). These units operate indepen-
dently and in parallel.

The FPU includes a single-pcecis(on niultiply-adtl (combinatorial) array, the floating-point

status and control register (PPSCR), and thirty-two 64-bit floating-point registers. The PowerPC

FPU is a cominatorial unit that provides a complete Product followed by a sum (with previ-

ously accumulated products) in a single clock cycle. Note that this is the heart ofa DSI > (Digital
Signal Processor) chip. The implication is that the power PC chip can replace a DSP. IBM has

intentions along these lines for multimedia work in PowerPC based PC's. It is expected that

while the machine 'may' be fast enough, the software and timing complexity will be so great

that distributing the tasks to other processors (like DSPs) can be more likely to result in an

error free product. ']'Ile PowerPC is pipelined so that most floating-point instructions can be

issued back to back. The PPU has no feed-forwarding capabilities. Ii other words, as a floating

point operation completes, another floating-point instruction that may be waiting for those

results must wait for the data to be written into the register file before decode can bcgin. The

multiply-add array allows the 601 to mi plenient floating-point operations such as multiply,
add, divide, and multiply-add. The 601 FI'L1 supports all I PEE754 floating-point data types
(normalized, denormalized, NaN, Zero, and infinity) in hardware.

The Integer Unit (IU) executes all integer instructions (computational and logical instruc-

tions). Most integer instructions are single-cycle instructions. The LU interfaces with the cache
and MMU for all instructions that access memory. The I U executes one integer instruction at

a time by utilizing its arithmetic logic unit (A1.U), multiplier, divider, integer exception
register (XER), and the general purpose register (GPR) file.

The branch processing unit (I31 , U) is used for prediction oIóOl conditional march instruc-
tions early in order to achieve zero-cycle branch. The BIT contains an adder to compute

branch target addresses and three special-purpose, user-control registers namely, the link

register (LIZ), the count register (CUR), and the condition register (CR). The LR is used to save

the return pointer (computed by the B1'U) for subroutine calls. The LR also contains the

branch target address for certain types of branch instructions such as branch conditional to

link register instruction (bclrx). The CUR, on t le other hand, contains the branch target

address for some other instructions such as branch conditional to count register (bcctrx)
instruction. The CR retleets the result of certain operations and provides a mechanism for
testing and branching.

8.4.1.d Memory Management Unit (MMU)

The memory nlaliai;enient unit (MMU) of the l'owcrPC 601 supports up to 4 peta bytes
(2 52) of virtual memory and 4 Gigabytes of physical memory.

The main functions of the 601 on-chip MM U hardware are to:

• Translate Logical (effective) addresses to physical addresses for memory accesses.

• Translate I/O accesses (most 1/0 accesses are assumed to he memory mapped).

• Translate I/O controller inlet f.icc accesses.

RISC Microprocessors: Intel 80960, Motorola MC88I00 cind PowerPC 	 571

Provides access protection oil and pages of memory by the operating system in

relation to the supervisor/user privilege level of the access and in relation to whether the

access is load or store.

The 601 generates three types of accesses that require address translation. Thcsc are instuction

accesses, data accesses to memory generated by load and store instructions, and 1/0 controller

interface accesses generated by load and store instructions.

The 601 MMU supports demand-paged virtual memory. Virtual memory management

allows execution of programs larger than the size of the physical memory. Demand-paged

means that individual pages are loaded into physical memory from system memory only when

they are first accessed by ail 	 program.

To accomplish the above functions, the 601 MMU hardware contains three components.

These arc UTLB (Unified Translation Lookaside Buffer), ITLB (Instruction Translation

Lookaside Buffer) and BAT (Block Address Translation) array.

For instruction accesses, the 601 MMU first performs a lookup in the four entries of the

ITLI3 for both block- and page-based physical addrcss translations. Instruction accesses that

miss in the FlLlt and all data accesses cause a lookup in the UTLB and BAT array for the

physical address translation. In most cases, the physical address translation resides in one of

the TLBs and the physical address bits are readily available to the on-chip cache. I lowever, if

the physical address translation misses ill TLBs, the 601 automatically performs a search

of the translation tables in memory using the inkrniation in the table search descriptor register

(SDR I) and the corresponding segment register.

8.4.1.e Cache Unit

The PowerPC 601 includes a 32-Kb y te, eight-way set associative, unified (instruction and

data) cache. The cache line size is 61 bytes, divided into two eight-word sectors, each of which

call snooped, loaded, cached out, or invalidated independently. Note that snooping means

monitoring addresses drivel) by a bus master to detect the need for coherency actions. The 601

controls cachcability, write policy, and niemoiy coherency. The cache uses a least recently used

(LRU) replacement policy.
The instruction unit provides the cache with the address of the next instruction to be

fetched.
ill 	 case of a cache hit, the cache returns the instruction and as many of the

instructions following it as call 	 placed in the eight-word instruction queue up to the cache

sector boundary.
The cache tag directory has one address port dedicated to the instruction fetch and load/

store accesses and one port dedicated to snooping transactions on the system interface.

8.4.1.f Memory Unit
The 601's on-chip memory unit consists of read and write queues that buffer operations

between the external interlace and the cache. These operations arc comprised of operations

resulting from load and store instructions that are cache misses, read and write operations

required to maintain cache coherency, and table search operations. The read queue contains

two elements and write queue contains three elements. The read queue receives requests from

the cache unit for arbitration onto the 601 bus interlace. Each element of the write queue can

contain up to eight words (one sector) of data. One element of the write queue marked snoop

is dedicated to writing cache sectors to system memory alter a modified sector is hit by a snoop

from another processor or snooping device o il system bus. The other two elements in the

write queue are used for storing operations and writing back modified sectors that have been

deallocated by updating the queue. That is, when a cache location is full, the least-recently used

cache sector is deallocated by first being copied into the Write queue and from there to system

memory.

572	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

8.4.1.g System Interface

The 601 system interface includes a 32-bit address bus, a 64-bit data bus, and 52 control and
information signals.

The 601 control and information signals allow for functions such as address arbitration,
address start, address termination, address transfer, data arbitration, data start, and data
termination.

In a multiprocessor system, the system interface supports bus pipelining. The 601 supports
split bus transactions for systems with potential multiple bus masters. Allowing multiple bus
transactions to occur simultaneously increases the available bus bandwidth for other activity
and as a result, improves performance.

8.4.2. Byte and Bit Ordering

The PowerPC 601 supports both big- and little-endian byte ordering. The default byte and bit
ordering is big-endian is shown below:

Most Significant Bit 	 Bit N (MAX)

L°1 1121	 J	
N

Big-[ndian Bit Ordering

Most Significant Byte

oityte I I F^W N (MAX)l

For example, to specify the ordering of four bytes (ABCD) within 32 bits, the 601 C30 Use
either the ABCD (big-cndian) or DCBi\ (little-endian) ordering. The 601 big- or little-endian
modes call 	 selected by setting the LM bit (bit 28) in the 1-ILDO register.

Note that big-endian ordering (ABCD) assigns the lowest address to the highest-order eight
bits of the multibyte data. Oil other hand, little-endian byte ordering (DCBA) assigns the
lowest address to the lowest order (rightmost) 8 bits of the niultibytc data.

Note that Motorola 68XXX supports big-endian byte ordering while Intel 8OXXX supports
little-endian byte ordering.

8.4.3 PowerPC 601 Registers and Programming Model

Figure 8.17 shows the register of the PowerPC 601 32-bit implementation. For 64-bit imple-
mentation, most registers are 64-bit wide.

These registers call 	 accessed depending oil 	 program's access privilege level (supervi-
sor or user mode). The privilege level is determined by the privilege level (PR) bit in the
machine status register (MSR). The supervisor mode of operation is typically used by the
operating system while the user mode is used by the application software.

The PowerPC 601 programming model contains user- and supervisor-level registers as
follows:

8.4.3.a User-Level Registers
The user-level register call 	 accessed by all software with either user or supervisor privileges.

RISC Microprocessors: Intel 50960, Motorola MC88 100 and PowerPC 	 573

User Programming Model	 User-level SPRc

SI'RO	 MQ Register
PRO	

5'R I	 X[R - Integer fxceiion Regisler
FPR 1	 St'R4	 RI CU - R IC Upper Register (or reading ny1

SPRS	 RI CI - R1C Lower Ri'gisti'r (tor wailing only)1 ••

SI 'RU	 I. R - Link Reister

1PR3 1	 SI'R9	 CTR - Count Is'c')isIer

0	 31	 0	 31

Condition	 Sui)erv,sor- Feet' I SI 'R
GI'RO 7	 Register	 SIT ill	 I)SISR -. l)A1/Soiiri t' Inclrtu lion Service kh'gisli'r
GF'RI	 CR	 SIT l 9	 DAR - Dma Adrlrt-ss Rt'gisl('r

0	 31	 SI 'R 20	 RICO RI C l)p j ii -r Register (for wril in); only)

I	 1-baling Point 	 SI'R21	 RICI - RTC Iiiv,-'r Ri'grslc'r Ifor wriliog tinily)1'3

C FR 3	
Slabs arid	 SI'R 22	 DI C - Dec rt'inienri'r Registcrt
Control

O	 31	 Regisler	
SIR_S	 SI)R I - Table Seanli)es eniplirn K'r'gisti'r I

FI'SCRj	
SPR26	 SRRII - .ive and R,'stori' R('L; I s I(' r 0

O	 31	
SRI- I - Sic,' intl t<esltirc' Register I

SI'R272	 5l'RGO - Sl'li G,'ir,'r,it (I

	Supervisor Programming Model	 SI'R273 sl'Rc; I - Sl'R Ci'nr'r,il I

SlR274 SPR 2 - SI'R Cener,il 2

Segment	 St'R275 Sl'14C1 - SIR General I

Registers	 SPR282 FAR - 1-s1ernal Ac, iss Regkjer

SRO	 5I'R21I7	 'yR - l'roc,'ssor Version Rr'gisli'r

SRI	 SI'fi520 MAIM) - hAL II Uj'1xr I

S IT 52') IltAlOt - RAT I) I ower
Machine Slate	 •	 S FR 530 I tAT Ill - IIAF I Up 1, 2

kegi 51cr2

MSR]	 SR 15	
SI'R53 I	 hllAl II - IIAI I I ow,r 2

0	 31	 0	 31	 SI'R532 IIIAT2j - IIAI 2 Upper 2

SI'R533	 IIIAT21- - lIAr 2 I ,nv(-r 2

SI'R5 34	 IIIAF3IJ - lA) 3 1 lhiPi'r 2

Sl'R535 IIIAT3I - BAT I lower 2

SI'Rl 000 1111)0'

SIT lOO'i 1111)11

SI'R 1010 111112 (IAIIRI
SIT 10 131 I oos IDAIIR>'
SIT 10235 nT)i (I'IR)'

601-only registers. 1 rcse registers are not nert'ss.irily Sti)ihs)ntci.l by other I'owert'C processors.
These registers may be implenienled tli I lerenl ly tin oilier I ower IC Fi7oceorc 1 lii I 'over PC .1 u 1111c(two , clines two

1
	 of BAr registers—eight IIIATs and eight l)IIATs. 1 ho 60 irrlplenu'rtls flic RATs and treats Ilieni is t:ni(iiil llAlc.

RICO md RTCL registers can be written only in srlpc-is'isttr rr,ixli', in which disc different SIR ntsiril icrs . 	 -iced.
DEC register can be read I iy user prol)r,iflls by specifying Sl'R6 in lid illislir i iistflit Iii ii (for I'OWF R oiiil ,,ilii i lily).

FI G URE 8.17 I'owcrFC (if) I microprocessor p rogra to iii it i ooitct - registers.

The 32 32-bit GPRs (General l'itrposc registers, GPRO-GPR3 I) cati be used as the data

source or destination for all integer instructions. They can also provido data for generating
addresses.

The 32 32-bit FPRs (Floating-Point registers, PPRO through FP10 I) can be used as data
source and destination for all floating point instructions.

The Floating-point status and control register (Pl'CSR) is a user-control register ill the

Floating-Point Unit (FPU), It Contains floating-point status and control hits such as floating-

point exception signal bits, exception summary hits, and exception enable bits.

574	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

The condition register (CR) is a 32-bit register, divided into eight 4-hit fields, CRO-CR7.

These fields reflect the results of certain arithmetic operations and provide mechanisms for
testing and branching.

The remaining uscr-lcvcl registers are 32-hit Special purpose registers, SIR0, SPR1, SPRI,
SPR5, SPR8, and SPR9.

SPRO is known as the MQ register and is used as a register extension to hold the product for

the multiplication instructions and the dividend for the divide instructions, The MQ register

is also used as an operand of long shift and rotate instructions.

SPRI is called the Integer exception register (XER). The XER is a 32-bit register that

indicates carries and overflow bits for h:'egcr operations. It also contains two fields for load
string and compare byte indexed instruction.

SPR4 and SPR5 respectively represent two 32-bit read -only register and hold the upper

(RTCU) and lower (RTCL) portions of the Real Time (-'lock (RTC). The RTCU register
maintain the number of second from a tinie specified by software. The RTCL register main-
tains the fraction of the current second in nanoseconds.

SPR8 is the 32-bit link register (LP.). The link register call 	 used to provide the branch
target address and to hold the return address after branch and link instructions.

SPR9 represents the 32-bit count register (CTR). The CTR call 	 used to hold a loop count
that call 	 decremcntcd during execution of certain branch instructions. The CTR can also
be used to hold the target address for the branch conditional to count register instruction.

8.4.3.b Supervisor-Level Registers

The supervision-level registers call 	 he accessed by the programs executed with supervisor
privileges. These include the following:

8.4.3.b.j Mac/sine Stale Register (MSR). The MSR is a 32-hit register that defines the state of the processor.

When an exception occurs, the bits in MSR are changed according to the exception. The bits in the

MSR indicate processor inforniation such as privilege level and single step trace enable.
The privilege level (PR bit, bit 17 of MSR) indicates whether the 601 can execute both user

and supervisor level instructions (PR = 0) or can only execute user level instructions (PR = 1).

The single-step trace enable (SE bit, hit 21 ofMSR) indicates whether the processor executes

instructions normally (SE = 0) or executes instructions in single step mode (SE = 1).

8.4.3.b.ii Segment Registers. The 601 includes sixteen 32-bit registers (SRO-SRI5). The hits in the

segment register are interpreted differently depending oil value of the '1-bit (bit 0). For

example, if 'l'= 0 in the selected segment register, the effective address is a reference to an
ordinary memory segment. O il 	 other hand, if 1=1, in the selected segment register, the
effective address is a reference to all 	 controller interface segment.

8.4.3.b.iii Super'isor-L ever SPRs. Many of the SPRs call 	 accessed only by supervisor-level instructions.
Any attempt to access these SPRs with user-level instructions will result in a "privilege exception".

These registers consist of the following:

• The 32-bit data access exception (l)AE)/source instruction service register (DSISR)
defines the cause of data access and alignment exceptions.

• Real-Time clock (RTC) register includes two 32-bit registers namely, RTC upper (RTCU)

and RTC lower (Ri'CL). The registers call read from by user-lever software, but can

be written to only by supervisor-level software.

• Decrement register (DEC) is a 32-hit decrementing counter that provides a mechanism

for causing a decrementer exception after a programmable delay. The 601 implements

a separate dock input rather than the processor dock that serves both the DEC and the
RTC facilities.

• The 32-bit Table search description register I (SDR1) specifics the page table format
used in logical-to-physical address translation for pages.

RISC Microprocessors: Intel 80960, Motorola MC88100 (111(1 PowerPC	 575

• The 32-bit machine status save/restore register 0 (SPRO) is used by the 601 for saving

thc address of the instruction that caused the exception, and the address to return to

when a return from Interrupt (rh) instruction is executed.

• General SPRs, SPRGO-SPRG3, arc 32-bit registers provided for operating system use.

• The 32-bit external access register (EAR) control facility through the External Control

Input Word Indexed (eciwx) and External Control Output Word Indexed (ccowx)

instructions.

• The 32-bit processor version register (PVR) is a read-only register that identifies the

version (model) and revision level of the PowerPC processor.

• The eight 32-bit block address translation (BAT) register are grouped into four pairs of

BATs (BA'FOU-I3AT3V and BATOL-BAT31,).

The block address translation mechanism in the 601 is implemented as a software

controlled BAT array. The BAT array maintains the address translation information for

four blocks of memory. The BAT array in the 601 is maintained by the system software

and is implemented as a set of eight special-purpose registers (SPRs). Each block is

defined by a pair of SPRs called ipper and lower BAT registers.

• Five 32-bit hardware implementation registers (HIDO-HID2, HID5, and HIDI5) are

provided primarily for implementing debugging features such as break point and single

stepping. I-Il 015 holds the four-bit processor identification tag (PlO) that is useful for

Ulfcrentiating processor in multiprocessor system designs.

8.4.4 PowerPC 601 Memory Addressing: Effective Address (EA) Calculation

The effective address (EA) is the 32-bit address computed by the processor when executing a

memory access or branch instruction or when fetching the next sequential instruction.

Effective address computations for both data and instruction accesses use 32-bit unsigned

binary arithmetic, lithe sum of the effective address and the operand length exceeds the

maximum effective address, a carry from bit is ignored. Arithmetic and logic instructions do

not read or modify memory. To use the contents of a memory location in a computation, and

then modify the same or another memor y location, the memory contents must be loaded into

a register, modified, and then written back to the target location using load or Store instruc-

tions. This is a consequence ofa RISC architecture. Note that the RISC ideology caused the lack

of capability for instructions such as ADD instruction to directly modify memory. ADDs are

register/register operations in a RISC while i\DDs are memory operations in a CISC. The

concept of alignment is also applied more generally to data in memory. For example, 12 bytes

of data are said to be wot'd-aligned if its address is a multiple of 'I. The operand of a single-

register memory access instruction has a natural boundary equal to the operand length. That

is, the "natural" address of an operand is an integral multiple of the operand length.

A memory operand is said to be aligned if it is aligned at its natural boundary, otherwise it

is misaligned. The l'owerPC can transfer both aligned and misaligned data between the

processor and memory. I lowever, the placement (location and alignment) of operands in

memory affects the relative performance of memory accesses. Best. performance is guaranteed

if memory operands are aligned oil 	 boundaries

Operands for single-register nicinory access instructions have the characteristics shown

below:

tcIn)r) Op'r,tnd	 Add rcs

(if aligned)	 Iciigth	 (23-3

ttyte	 S bils	 XXXX
I t.itt word	 2 t,vtcs	 XX XO
Ward	 4 hy tcs	 XXOO

wold	 s I %1 C,	 X000

576	 Microprocessors mu! Microconiputer-l3ascc! System Design, 211(1 Edition

In the above, all"X" indicates that the bit call
	 0 or I independence of the state of the bits

in the address.

Load and store operations have two types of effective address generation

8.4.4.a Register Izidirect with Immediate Index Mode

Instructions using this mode contain a signed 16-bit index (d operand in the 32-bit instruction)

which is sign extended to 32 bits, and added to the contents ofa general purpose register specified

by five bits in the 32-bit instruction (rA operand) to generate the effcctve address. A zero in the

mA operand causes a zero to be added to the immediate index (d operand). The option to specify
rA or 0 is shown in the instruction descriptions of the 601 user's manual as the notation (rAJO).

An example is lbz rD, d (rA) where rA specifies a general purpose register (GPR) containing
all d is the 1 6-bit immediate index and ri) specifies a general purpose register as
destination. Consider 1hz r I, 20 (r3). The effective address (EA) is the sum r (3 1 0) + 20. The byte
iii memory addressed by the EA is loaded into bits 31 through 24 of register rI. The remaining

bits in r 1 are cleared to zero. Note that registers ri and r3 represent Gl'R 1 and GPR3
respectively.

8.4.4.b Register Indirect with Index Mode

Instructions using this addressing mode add the contents of two general purpose registers (one

GPR holds all and the other GPR holds the index). An example is lbzx rD, rA, rB where

ri) specifies a GPR as destination, ri\ specifies a Gt'R as the index, and nt specifies a GPR

holding all Consider lbzx r], ri, 1-6. The effective address (EA) is the sum (1-1I0) + (1-6).
The byte in memory addressed by the hA is loaded into register r1 (24-31). The remaining bits
in register rD are cleared to 0.

l'owcrPC 601 conditional and unconditional Branch instructions compute the effective

address (EA) or the next instruction address using various addressing modes. A few of them
are described below:

8.4.4.b.i Brunch Relative. Branch instructions (32-bit wide) using the relative mode generate the
address of the next instruction by adding all and the current program counter contents.

An example of this mode is an instruction "be start" unconditionally jumps to the address
PC	 start.

8.4.4.b.iiBrw,cI, Absolute. Branch instructions using this mode include the address of the next

instruction to be exect ii ted. For example, the instruction ba begin unconditionally branches

to (lie absolute address "begin" specified in the instruction.

8.4.4.b.iii Brunch to Link Register. Branch instructions using this mode branch to the address corn-

pmted as the sum of the immediate offset and the address of the current instruction. The

instruction address following the instruction is placed into the link register. For example, the

instruction b1 start unconditionally jumps to the address computed from current PC contents

plus start. This return address is also placed in the link register.

8.4.4.b.iv Branch to Coitus Register- Instructions using this mode branch to the address contained in

the current register. Consider hcctr 110,131 means branch conditional to count register. This

instruction I)ranclles conditionally to time address specified in the count register.

The 131 operand specifies the bit in the condition register to be used as the condition of the

branch. the ItO operand specifics how the branch is affected by or affects condition or count

registers. Numerical values specifying BI and BO call 	 obtained from the 601 manual.

RISC Microprocessors: Intel 80960, Motorola MC88100 and PowerPC	 577

Note that some instructions combine the link register and count register modes. An ex-

ample is bcctrl 00, 111. This instruction first performs the same operation as the bcctr and then

places the instruction address following the instruction into the link register. This instruction

is a form of "conditional call' as the return address is saved in the link register.

8.4.5 PowerPC 601 Typical Instructions

The 601 instructions are divided into the following categories:

a. Integer Instructions

b. Floating-point Instructions

c. Load/store Instructions

d. Flow control Instructions

c. Processor control Instructions

Integer instructions operate on byte (8-bit), half-word (16-hit), and word (32-bit) operands.

Floating-point instructions operate on single-precision and double precision floating-point operands.

Since the PowerPC is based oil 	 RISC as opposed to the CISC architecture, arithmetic and

Logical instructions do not read or modify memory.

8.4.5.a Integer Instructions

The integer instructions include integer arithmetic, integer compare, integer rotate and shift,

and integer logical instructions.
The integer arithmetic instructions always set integer exception register bit, CA, to reflect

the carry out of bit 7. Integer instructions with the overflow enable (OE) bit set will cause the

XER bits SO (summary overflow - overflow bit set due to exception) and OV (overflow bit

set due to instruction execution) to be set to reflect overflow of the 32-bit result.

Sonic examples of integer instructions are provided in the following.

Note that rS, ri), rA, and rO in the following examples are 32-bit general purpose registers

(GPR) of the 601 and S[MM is 16-bit signed immediate define:

• add rD, rA, SIMM

Perfornis the following immediate operation: rD - (rA0) + SiMM; (rAlO) can be either

(rA) or 0.

add rD, rA, rB performs rD — rA + rB

• add,rD, rA, rB adds with CR update as follows: rD +— rA + rB

The dot suffix enables the update of the condition register.

• Subf rD, rA, r13 performs rD - rO — rA

Subf.r[), rA, rB performs the same operation as Subf but updates the condition code

register.

addme rD, rA performs the (add to minus Inc extended)

Operation: rL) - (rA) FFFF FFFFH + CA bit in XER

• Subfme rD, rA performs ihc (subtract Ironi minus one extended)

Operation: rD - (rA)' ± FFFF FF1-1 : I-1 + CA bit in XER where (rA)' represents the ones

complement of the contents of rA.

mulhwu rD, rA, rB performs an unsigned multiplication of two 32-bit numbers in rA

and rO. The high-order 32 bits of the 64-bit product are placed in rD

niulhw rD, rA, rB performs the same operation as the mulhwu except that the multi-

plication is for aned numbers.

578	 Microprocessors (111(1 Microcomputer-Based System Design, 2nd Edition

• mullw rD, i-A, nt places the low-order 32 bits of the 64-hit product (rA) (nil) into rD.

The low-order 32-bit products are independcnt whether the operands are treated as

signed or unsigned integers.	 -

• mulli rD, i-A, SIMM places the low-order 32 bits ofthe 48-bit product (rA) SIMM 16

into rD. The low-order bits of the 32-bit product are independent of whether the

operands are treated as signed or unsigned integers.

* divw rD, rA, i-B divides the 32-hit signed dividend in ri\ by the 32-bit signed divisor in

nil. The 32-bit quotient is placed in rD and the remainder is discarded.

• divwu rD, rA, r13 is same as the divw instruction except that the division is for unsigned

numbers.

• crnpi cr11), L, rA, SIMM compares 32 bits in rA with immediate value SIMM treating

operands as signed integer. The result of comparison is placed in crid field (0 for CR0,

1 for CR! and so on) of the condition register. L = 0 indicates 32-bit operands while L= 1

represents 6'1-bit operands. For example, clnpi 0, 0, rA, 200 compares 32-bits in register

rA with iniinediatc value 200 and CR0 is affected according to the comparison.

xor, rA, rS, nt performs exclusive-or operation between the coitc:t of rS and i-B. The

result is placed into register rA.

• extsb rA, rS places bits 21-31 ofrS into bits 21-31 ofrA. Bit 24 of rS is the sign extended

through bits 11-23 of i-A.

slw rA, rS, nt shifts the contents or rS left the shill count specified by nil [27-31]. Bits

shifted out of position 0 are lost. Zeros are placed in the vacated positions oil right.

The 32-bit result is placed into rA.

• Srw rA, rS, nit is similar to siw rA, rS, nil except that the operation is for right shift.

8.4.5.b Floating-Point Instructions
Some of the 601 floating-point instructions arc provided below:

• fadd frD, frA, fril adds the contents of the floating-point register, frA to the contents of

the floating-point register frll. if the most significant bit of the resultant significand is not

a one, the result is normalized. The result is rounded to the specified precision under

control of the FPSCR register. The result is then placed in frD.

Note that this 'fadd' instruction requires one cycle in execute stage, assuming normal opera-

tions; however, there is
all 	 stage delay of three cycles if next instruction is dependent.

The 601 floating-point addition is based on "exponent comparison and add by one" for each

bit shifted, until the two exponents are equal. The two significants are then added algebraically

to form all 	 sum. If a carry occur, the sum's significand is shifted right oil

position and the exponent is increased by one.

• fsub fri), IrA, fril performs frA - fril, normalization and rounding of the result arc

performed in the same way as the fadd.

• fmul frD, IrA, frC performs fri) - IrA • frC.

Normalization and rounding of the result arc performed ill 	 same way as the fidd.

Floating-point multiplication is based oil 	 addition and multiplication of the

signiulcands.

fdiv frD, frA, fril performs the floating-point division frD - frA/fril. No remainder is

provided. Normalization and rounding of the result are performed in the same way as

the fadd instruction.

• fmsub fni), frA, frC, fnit perfornis frD - fr:\ li-C - fril. Normalization and rounding

of the result are performed in the same way as the fodd instruction.

RISC Microprocessors: Intel 80960, Motorola MC88I00 and PowerPC 	 579

8.4.5.c Load/Store Instructions

Some examples of the 601 load and store instructions are listed below:

• lhzx rD, rA, rB loads the half word (16- bit) in memory addressed by the sum (rAjo) +

(r130) into bits 16 through 31 of rD. The remaining bits of rD are cleared to zero.

• sthux rS, rA, rB stores the 16-bit half word from bits 16-31 of register rS in memory

addressed by the sum (rAjo) + (rU). '['he value (ri\l0) + nil is placed into register rA.

• 1mw rD, d(rA) loads n (where 11 = 32-1) and D = 0 through 31) consecutive words

starting at memory location addressed by the sum (rAjO) + d into the general purpose

register specified by rD through r3 1.

• stmu rS, d(rA) is similar to 1mw except that the stmw stores n consecutive words.

8.4.5.d Flow Control Instructions

Flow control instructions include conditional and unconditional branch instructions. An

example of one of these instructions is provided below:

be (branch conditional) 130, 131, target branch with offset target if the condition bit in

CR specified by bit number 131 is true (The condition 'true' is specified by a value in 130).

For example, he 12, 0, target means that branch with offset target if the condition specified

by bit 0 in CR (RI = 0 indicated result is negative) is true (specified by the value 130 = 12

according to Motorola PowerPC 601 manual).

8.4.5.e. Processor Control Instructions

Processor control instructions are used to read from and write to the machine state register

(MSR), condition register (CR), and special status register (SPRs). Some examples of these

instructions are provided below:

1111cr ri) places the contents of the condition register into ri).

mtmsr rS places the contents of rS into the MSR. This is a supervisor-level instruction.

nlfmsr rD places the contents of MSR into rD. This is a supervisor-level instruction.

8.4.6 PowerPC 601 Exception Model

All 601 exceptions can be described as either pi-ccisc or imprecise and either synchronous or

asynchronous. Asynchronous exceptions are caused by events external to the processor's

execution. Synchronous exceptions, oil other hand, are handled precisely by the 601 and

are caused by instructions; precise exception means that the machine state at the time the

exception occurs is known and can be completely restored. That is, the instructions that invoke

trap and system call exceptions complete execution before the exception is taken. When

exception processing completcs, execution resumes at the address of the next instruction.

Ail of a maskahie asynchronous, precise exception is the external interrupt. When an

asynchronous, precise exception such as tile external interrupt occurs, the 601 postpones its

handling until all instructions and any exceptions associated those instructions complete execution.

System reset and machine check exceptions are two nonmaskable exceptions that are

asynchronous and imprecise. These exceptions may not be recoverable or may provide a

limited degree of recoverability for diagnostic purpose.

Asynchronous, imprecise exceptions have the highest priority with the synchronous, precise

exceptions the next priority and the asynchronous, precise exceptions have the lowest priority.

The 601 exception mechanism allows the processor to change automatically to supervisor

state as a result of exceptions. When exceptions occur, information about the state of the

Address

Address Arbitration

Address Start

Address Transfer

Transfer Attribute

Address Termination

Clocks

Data

Data Arbitration

Data Transfer

Data Termination

Processor State

Test and Control

580	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

-i-3.6V

FIGURE 8.18 System interlace.

processor is saved to certain registers rather than in memory as is usually done with other

processors in order to achieve high speed. The processor then begins execution at an address

(exception vector) predetermined for each exception. The exception handler at the specified
vector is then processed with processor in Supervisor mode.

8.4.7 601 System Interface

Figure 8.18 shows the system interface signals of the PowerPC 601.

The pins and signals of the PowerPC 601 include a 32-bit address bus, a 64-bit data bus, and
52 control and in formation signals.

The 601 control and in format ion signals include the address arbitration, address start,

address transfer, transfer attribute, address termination, data arbitration, data transfer, and

data signals. Test and control signals provide diagnostics for selected internal circuitry.

The processor supports mulliple master through a bus arbitration scheme that allows

various devices to compete for the shared resource. The arbitration logic can implement
priority protocols and call 	 masters to avoid arbitration overhead.

The following sections describe the 601 bus support for memory and I/O controller inter-
face operations.

8.4.7.a Memory Accesses

Memory accesses allow transfer sizes of 8, 16, 24, 32, 40, 48, 56, or 64 bits in one bus clock cycle.

Data transfers occur in either single-beat transactions or four-beat burst transactions. A single-

beat transaction transfers as much as 64 bits. Single-beat transactions are caused by non cached
accesses that access memory directly. An example is reading and writing when the cache is

disabled. Burst transactions, which always transfer an entire cache sector (32 bytes), are

initiated when a sector in tie cache is read from or written to memory.

8.4.7.b I/O Controller Interface Operations
Both memory and I/O accesses call 	 the same bus transfer protocols. The 601 also has the
ability to define memory areas as I/O controller interface areas.

The 601 uses '—I'S pill 	 memory-mapped accesses and XA'I'S pin for L'O controller
interface accesses.

8.3.7.c 601 Signals
The 601 signals are grouped as follows:

RISC Microprocessors: Intel 50960, Motorola MC88100 and PowerPC	 581

I. Address arbitration signals - these signals provide arbitration for address bus master-

ship.

2. Address transfer start Signals - these signals indicate that a bus master has be;un a

transaction oil 	 address bus.

3. Address transfer signals - these signals consisting of the address bus, address parity,

and address parity signals, are used to transfer the integrity of the transfer.

4. Transfer attribute signals 	 these signals provide jitormation about the type of trans-

fer, such as the transfer size, and whether the transaction is bursted or cache-inhibited.

5. Address transfer termination siqiials - these siinals are used to acknowledge the end

of the address phasc of transact ion. They also indicate whether a condition exists that

requires the address phase to he replaced.

6. Data arbitration signals - these signals are used to arbitrate for data bus mastership.

7. Data transfer signals - these signals consisting of the data bus, data parity, and data parity

error signals, are used to transfer the data and to ensure the integrity of the transfer.

3. Data transfer termination signals - ill single-beat transaction, these signals indicate

the end of the tenure, while
ill 	 access, the data termination signals apply to

individual beats and indicate the end 01- 111C tenure only alter the final data beat.

9. System status signals -- these signals include the interrupt signal and reset signals.

0. Clock signals - these signals determine the System clock frequency. These

signals can also be used to synchronize multiprocessor systems.

It. Processor state signals - these signals are used to set the reserval on coherency bit. The

601 uses this hit for atomic ineniorv updalingby using its atomic instructions. Note that

in multiprocessor Systems, 1 niechanisni is required to allow programs to manipulate

shared data ill indivisible manner so that when such an operation is underway,

another processor cannot perform the sanie operation. In order to implement higher-

level synchroiiization iiiechanisins, such as locks and semaphores, atomic instructions

are included ill 601. Memory caii be updated atomically by setting a reservation on

the load instructions (lvarx) mid checking that the reservation is still valid (stss'cx) is

executed.

The reservation (RSRV) output signal is always driven b y bus clock cycle and reflects the

status of the reservation coherency bit
ill 	 rcservatioll address register.

8.4.8 PowerPC 601 Vs. Alpha 21064

Roth Motoroha/lIt.\l!.'\pple Powerl'C hOt .ind Digital hquipnient Corporations Alpha 2 1064

are RISC-based supersealar microprocessors. That is, they can execute two or more instruc-

tions per cycle.

The PowerPC 601 contains powerful instructions while the Alpha 21064 includes a simpli-

fied instruction set with a very last clock.

Roth the PowerPC 601 and the Alpha are based oil architectures. This means that

Z111 instructions that access memor y are either loads or stores, and all operate instructions are

from register to register. They both have 32-bit fixed-length instructions along with 32 integer

Mid 32 floating-point registers.

The PowerPC 61)1 includes two primary addressing nodes. These are register plus displace-

ment and register plus register. III the 601 load and store instructions pertorni the

load or store operation and also modify the index register b y placing the just-computed

effective address ill 	 The Alpha 21064, oil 	 other hand, has onl y one primary addressing

mode called register tliis displacement. Ill 	 load and store instructions do not update the

index register.

There are significant il ifferences in the wa y the two microprocessors handle branching. In

both architectures, branch target addresses arc normally determined by using program counter

582	 Microprocessors and Microcoztipzi (er-Based System Design, 2nd Edition

TABLE 8.1 ,i Sitimiarv ol Iznciicuta1ion Chir.ictcristics

Characteristic	 I 'iiiserl'(00 I	 Alpha 2106.1

Technology
Die size
Transistor count
Total cache (instruction 	 d.it.i
Package
Clock frequency

0.(,-micron CS I OS	 0.75-micron CMOS
1 .09 on Square	 2.33 cu square
2.8 million	 1.68 million
32 Kbyte	 l(Klwie
304-in QFI'	 431-pin PGA
50 and 66 Mhc	 150 In 200 ,'slhz

relative mode. Thai is, the branch target address is determined by adding a displacement to the

program counter. However, as mentioned before, conditional branches in the 601 may test

fields in the condition code register and the contents of a special register called the count

register (CTR). A single 601 branch instruction can implement a loop-closing branch by

decrementing the CTR, testing its value, and branching if it is nonzero.

In the Alpha 21064, oil other hand, conditional branches test a general-purpose register

relative to zero or by low-order bit (a I or 0 in low order bit respectively mean odd or even)

odd/even register contents. Thus, results of most instructions can be used directly by condi-

tional branch instructions, as long as they are tested against zero or odd/even.

There are also differences in the way the return address is saved by certain control transfer

instructions such as the subroutine call. For example, special jump instructions are used to

save the return address in a general-purpose register. The 601, on the other hand, does this in

any branch by setting the link (1,K) hit to one. The return address is saved in the link register.

Next, the implantation characteristics of the 601 and 21064 are considered. Table 8.19

summarizes these differences.

Both the PowerPC 601 and Alpha 2 1064 ittili.e soph: :..ted1 pipelines. The 601 uses

relatively short independent pipelines with more buffering while the 21064 includes longer

pipelines with less internal buffering. The 601 does a lot of computation in each pipe stage.

Furthermore, the clock of the Alpha is approximately three times faster
than

the 601.

The two microprocessors utilize different cache memory designs. For example, the 601 has

a unified (combined) 32-Kbyte cache. That is, instructions and data reside in the same cache

in the 601. The 21064, on the other hand, has separate data and instruction caches of Kbytes

each. Therefore, the 601 is expected to have a higher hit rate than the 21061.

Finally, the 601 offers high performance by utilizing sophisticated design tricks. The 21061

gains performance by design simplicity. For xatnple, the 601 includes powerful instructions

such as floating-point multi ply- add and update load/store that perform more tasks with fewer

instructions. The 21064 architecture's simplicity, oil other hand, lends itself better to very

high clock rate implementations.

8.5 64-Bit RISC _Microprocessors •

Typical 61-bit RISC microprocessors include the Alpha 21164 (Digital Equipment Corpo-

ration), the PowerPC 620 (Motorola/IBM/Apple) and the Ultrasparc (Sun Microsystems).

These 64-bit processors are ideal candidates for data crunching machines and high-perfor-

nuance desktop systems/workstations.

The number of instructions issued per cycle has been increasing steadily. For example, the

PowerPC 601 can issue instructions 10 the integer, Ooating-point, and branch-processing units

in one and the same cycle. The 64-bit RISC microprocessors can typical issue four instructions

to six independent units or more.
These 64-bit processors include multiple integer units which allow multiple integer opera-

tions in each cycle. For example, the PowerPC 020 contains three integer units - two for

RISC Microprocessors: Intel 80960. Motorola MC88I00 and PowerPC 	 583

single cycle and one for multiple cycle operations. Some 64-bit RISC processors such as the

Ultraspare include multiple floating-point. units.

The clock frequencies of the 64-bit RISC microprocessors vary from 133 MH7. to 300 MHz.
These processors can issue a maximum o tour mstructions per cycle. In order to keep the data

and instructions flowing, man y 61-bit RISC processors such as the Alpha 21164 are provided

with 128-bit data bus. The Alpha 21164 is the fastest microprocessor available tod.	 .ith a

maximum of 300 MI-li'. clock, The Alpha 21161 	 superscalar proce.t

Table 8.20 compares the various features of t ypical 64-bit RISC microprocessors.

TABLE 8.20 Comparison of % 1 ,iriows Features of Typical 61-hit RISC Microprocessors

Digital Equipment	 Motoroia/lltM/Apptc	 Sun Microsystems

Features	 Corp. Alpha 2116. 1	 l'owc'rl'C 620	 tilt raspare

Clock spccd	 300 NI II/	 133 NIHt.	 167 MHz

Millions oft ra OsisiOrs	 93	 7	 3.8

On-chip data/instruction 	 S/S Primary	32132	 I (/t

cache, K Ityic
	

96 U a illeLl si'coimmiary

I 1 os',cr, \V
	

50	 30
	

30

Data bus size
	

28-hit	 328-hit
	

323-hit

Address bus site
	

40-hit	 40-lilt
	

41-hit

Maximum number of

instructionsper cycle

Number of independent
	

9

units (integer, floating-

point, etc.)

Questions and Problems

8.1 Summarize the basic features of RISC microprocessors. IdentiFy how some of these

features are implemented in the 80960SA/Sb and 88100.

8.2 What operations are controlled by the 80960SA/SB and 88100 register scoreboard?

8.3 Compare the main on-chip features of the 80960SA/SIt with those of the 88100. Com-

ment oil 	 floating-point and real data types.

8.4 Identify the 80960SA1S[t and 88100 stack pointers.

8.5 Compare 80960SA/SB cache with the 38200 cache.

8.6 Assume a 30960SA/SB with the condition code 010. Write an instruction to set bit 20 to

one in register gS and store the result in gS.

8.7 What happens after execution of the following instructions:

i) cmpo oxlO, r7

ii) cmpinco r12, g4, g7

8.8 Find the contents of r8 with (r-')) > (r4) after the Following 80960SA!S13 instruction

sequence is executed;
compo r2, r4

tcstg r8

584	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

8.9 Find 80960 single instructions which are equivalent to the following instruction se-
quences:

i) CLIlpi 0,gO
blc begin

ii) chkbit 1, g8
be start

8.10 For the following 80960 instruction, what will be the size of the result: addr ro, ri, fp 1.

8.11 Assume 80960. Find the operation performed along with the register in which the result
is stored after execution of each of the following instructions:

	

1)	 logbnrl r8, IpO

	

ii)	 logcpr rO, M. fp0
iii) modi ri, r2, r3
iv) notand g3, g4, g6
v) sqrtrl r2, fpl

8.12 What functions are performed by the following 80960SA/SB pins: BE,-BE,, BLAST!
FAIL, A(1:3).

8.113 Discuss the 80960SA!SB interrupts.

8.14 Describe briefly the functional blocks included in the 88200. What does the 88200
provide to an 88100 system?

8.15 What is the maximum number of 88200s that can be present in one 88000 processing
mode?

8.16 How many pipelines are in the 88100?

8.17 Since there is no return from subroutine instruction, how does the 88100 return from
subroutine?

8.18 What 88100 floating-point control registers can be accessed by user mode programs?

8.19 Show the contents of registers and memory locations after the 88100 executes the
following instructions:

i) stAt rl, r2, rO
ii) ld.h ri, r2, OXOA

Assume En] = 0000 0020 16, [030A] = 201816
[r2] = 0000 030016

All numbers are in hexadecimal.

8.20 Find the contents of r5 after execution of the following 88100 instrttctLon:
i) mask.0 r5, r2, OXFFFF
ii) mask r5, r2, r6

Assume [r5] = AAAA 010016
[r2] = 0020 05FF16
[r6] = 7777

prior to execution of the above instructions.

RISC Microprocessors: Intel 80960, Motorola MC88 100 and Powcrl'C	 585

All numbers are in hexadecimal.

8.21 What is the effect of the 88100 tbl rO, rl, 200 instruction?

8.22 What arc the functions of the 88100 CS/U, 13E0-13E3, CO. and C2 pins?

8.23 What 88100 registers are affected by hardware rcsct?

8.24 Discuss briefly the 88100 exceptions.

8.25 Write an 8096 or 88100 assembly language instruction sequence to logically shift thc

content of r2 into ri to the right by 8 bits.

8.26 Write an assembly language program in 80960 or 88100 assembly language to subtract

a 64-bit number in r4 r5 from another 64-bit number in rO r 1. Store result in rO ri.

8.27 Write a program n 80960 or 88100 assembly language to compute the volume of a

sphere V 4/3 icr 3 where r is the 32-bit radius stored in register r2.

8.28 Write a program in 80960 assembly language to perform the following: A+ (B/C) where

A is an 80-bit floating-point number contained in a floating-point register. B and C are

respeclively 64-bit floating-point numbers stored in r2 r3 and r4 r5 respectively. Store SO-bit

result in a floating-point register. Discard the remainder of 11/C.

8.29 Repeat 8.28 for the 38100 except that A, 13, and C are 64-bit floating-point numbers.

Assume that the number A is in fp 1. Store the result in fp2.

8.30 Write program in 80960 or 88100 assembly language to compute the roots of the

quadratic equation ax2 + bx + c = 0 by using

—b	 4ac

Use registers of your choice.

8.31 Discuss the types of PowerPC architectures.

8.32 1-low many execution units are included in the PowerPC 601? Comment.

8.33 1-low does the PowerPC 601 achieve zero-cycle branch?

8.34 What do you mean by the unified cache of the 601? What is its size?

8.35 What is meant by the snoop controller of the 601? What is its purpose?

8,36 List the user-level and supervisor-level registers of the 601?

8.37 How does the 601 MSR indicate the following:

i) The 601 executes both the user- and supervisor-level instructions.

ii) The 601 executes only the user-level instructions.

586	 Microprocessors and Microcom ;nz ter- Based Sys torn Design, 2nd Edition

8.38 Explain the operation performed by each of the following 601 instruction:

i) lbz r2,30(r4)

ii) lbzx rl,r2

iii) add.rl,r2,r3

iv) divwu r2,r3,r4

v) cxtsb rl,r2

vi) fsub fr2,fr3,fr4

8.39 Repeat Examples 8.13 through 8.19 using the 601 assembly language instructions of the
PowerPC.

8.40 Discuss briefly the exceptions included in the PowerPC 601.

8.41 What is the purpose of the reservation coherency bit of the 601?

8.42 Compare the basic features olthc 601 with the Alpha 21064.

8.43 Compare the basic features of the Alpha 21164, the PowcrPC620, and the Ultrasparc.

9
PERIPHERAL

INTERFACING

This chapter describes interfacing characteristics of a microcomputer with typical peripheral

devices such as a hexadecimal keyboard, display, DMA controller, printer, CRT (Cathode Ray

tube) terminal, and coprocessor.

9.1 Keyboard Interface

9.1.1 Basics of Keyboard and Display Interface to a Microprocessor

A common method of entering programs into it is via a keyboard. A popular
way of displaying results by the microcomputer is by using seven segment displays. The main

functions to be performed for interfacing a keyboard arc

1. Sense a key actuation.

2. Debounce the key.

3. Decode the key.

Let us now elaborate on the ke yboard interfacing concepts. A keyboard is arranged in rows

and columns. Figure 9.1 shows a 2 x 2 keyboard interfaced to a typical microcomputer. In

Figure 9. 1, the columns are normally at a 1-IIGLI level. A key actuation is sensed by sending a

LOW to each row one at a time via PAO and PA] of port A. The two columns can then be input

via 1`132 and P133 of port B to see whether any of the normally HIGH columns arc pulled LOW

by a key actuation. If so, the rows can be checked individually to determine the row in which

the key is don. The row and column code iii which the key is pressed can thus be found.

The next step is to debounee the key. Key bounce occurs when a key is pressed or released

- it bounces for a short time before making the contact. When this bounce occurs, it may

appear to the microcomputer that the same key has been actuated several times instead Of just
once. This problem can be eliminated by reading the keyboard after 20 ins and then verifying

to see if it is still down. If it is, then the key actuation is valid.

The next step is to translate the row and column code into a more popular code such as

hexadecimal or ASCII. This can easily be accomplished by a program.

There are certain characteristics-associated with keyboard actuations which must be consid-

ered while interfacing to a microcomputer. Typically, these are two-key lockout and N-key

rollover. The two-key lockout takes into account only one key pressed. An additional key

587

588	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

FIGURE 9.1 A 2 x 2 kcyboard interfaced to a microcomputer.

pressed and released does not generate any codes. I'hc system is simple to implement and most
often used. However, it might slow down the typing since each key must be fully released
before the next one is pressed down. On the other hand, the N-key rollover will ignore all keys
pressed until only one remains down.

Now let us elaborate on the interfacing characteristics of typical displays. The following
functions are to be typically performed for displays:

1. Output the appropriate display code,
2. Output the code via right entry or left entry into the displays if there is more than one

display.

The above functions can easily be realized by a microcomputer program. If there is more
than one display, they are typically arranged in rows. A row of four displays is shown in Figure
9.2. In the figure, one has the option of outputting the display code via right entry or left entry.
If it is entered via right entry, then the code for the most significant digit of the four-digit
display should be output first, then the next digit code, and so on. Note that the first digit will
be shifted three limes, the next digit twice, the next digit once, and the last digit (least
significant digit in this case) does not need to be shifted. The shifting operations are so fast that
visually all four digits will appear on the display simultaneously. lithe displays are entered via
left entry, then the least significant digit must be output first and the rest of the sequence is
similar to the right entry.

Right	 I	 I

	

-h	
Left

entrycntry

FIGURE 9.2 A row of four displays.

7E

ieripheroJ Interfacing
	 589

IIG URE 9.3 Nonioulliplexed liexad,cinial displays.

Two techniques are typically used to interface a hexadecimal display to the microcomputer.

These are nonnndtiplexed and multiplexed. In nonmultiplcxed methods, each hexadecimal

display digit is interfaced to the microcomputer via an 1/0 port. Figure 9.3 illustrates this

rncthod.
BCD to seven-scginent conversion is done in software. The microcomputer can he pro-

grammed to output to the two display digits in sequence. I lowever, the inicroctnnputer

executes the display instruction sequence so fast that the displays appear to the human eye at

the same time.
Figure 9.4 illustrates the multiplexing method of interfacing the two headeeimal displays

to the microcomputer.

In the multiplexing scheme, seven-segment code is sent to all displays simultaneously.

However, the segment to he illuminated is grounded.

GND

GND

FIG U RE 9.4 M ul tipi cxd dispLiys.

590	 Microprocessors and Microcornptiter-Based System Design, 2nd Edition

The keyboard and display interfacing concepts described here can be realized by either
software or hardware. In order to relieve the microprocessor of these functions, microproces-
sor manufacturers have developed it number of keyboard/display controller chips such as the
Intel 8279. These chips arc typically initialized by the microprocessor, The keyboard/display
functions are then performed by the chip independent of the microprocessor.

The amount of keyboard/display functions performed by the controller chip varies from
one manufacturer to another. However, these functions are usually shared between the con-
troller chip and the microprocessor.

9.1.2 8086 Keyboard Interface

In this section, an 8086-based microprocoinpLiter is designed to display 4 hcxidccinial digits
entered via a keypad (16 keys). Figure 9.5 shows the hardware schematic.

9.1.2.;i Hardware

The 8086/8255 microcomputer is designed using standard 1/0. For simplicity, only seven
address lines are used to directly access the system memory. Therefore, only 128 bytes of
System memory can be accessed by the microcomputer. Furthermore, RAM is not available in
the system, although RAM should have been used in the design for interrupts and subroutines.
However, a small system like this will work without any RAM. Finally, only 8-bit even
addressed 1/0 ports are available in the system. The ports are configured as follows:

I. Port A is configured as an input port to receive the row-column code
2. Port B is configured as an output port to display tii	 '(s) pressed
3. Port C is configured as an output poet to control the row column code

Table 9.1 shows memory and 1/0 maps.
The system is designed to run at 2 Mhz. Dcbouncing is provided to avoid unwanted

oscillation caused by the opening and closing of the key contacts, In order to ensure stability
Of the input signal, a delay of 20 msec is used for debouncing the input.

The following diagram shows the internal layout of the keypad used:

Port C {

I'(fltA {

9.1.2.b Software

The program begins by performing all necessary initializations. Next, it makes sure that all the
keys are opened (not pressed). A delay loop o120 msec is included for debounciug. The initial
loop counter values is calculated as follows:

mov reg/imm	 (4 cycles)
loop	 label	 (19/5 cycles)

Peripheral Interfacing	 591

0
V

S92	 Microprocessors and Micro con ipu ter-Based System Design, 2nd Edition

TABLE 9.1 Memory and t/O Maps

Mcmory Map:

A,, A,	 A,, A16 i\,, A 14 A,, A,, All it,, A,	 A4 	A,	 A,	 As	 A4 	A,	 A,	 A,	 A,

1	 1	 1	 I	 1	 I	 1	 I	 1	 1	 1	 I	 0	 0	 0	 0	 0	 0	 0	 0
I	 I	 1	 1	 1	 1	 1	 1	 1	 1	 I	 I	 0	 0	 0	 0	 0	 0	 0	 1
I	 1	 1	 1	 I	 1	 1	 1	 1	 1	 1	 1	 0	 0	 0	 0	 0	 0	 1	 0

1	 1	 1	 1	 I	 1	 1	 I	 I	 I	 L	 1	 1	 1	 1	 I	 I	 1	 I	 0
1	 1	 1	 1	 I	 1	 1	 1	 I	 1	 I	 1	 I	 1	 1	 I	 1	 I	 1	 I

I/O Map:

A,	 A6 	A,	 A 4 	A,	 A,	 A,	 A	 Port Selected	 I lex

1	 1	 1	 1	 1	 0	 0	 0	 Port it	 P8
I	 1	 1	 1	 1	 0	 1	 0	 I'odil	 PA
I	 I	 I	 I	 I	 I	 0	 0	 Port C	 PC
I	 1	 1	 1	 I	 I	 I	 0	 CSR	 FE

20 mscc (2,000,000 cyciclmscc) = 40,000 cycles

4 + 19 (count - 1) + 5 = 40,000

—) count = 3813216

The next three lines detect for a key closure. If a key closure is detected, it is first dcbounccd.

It is necessary tGdeterntinc exactly which key is pressed- To do this, a sequence of row-control
codes (OFH, OEH, ODH, 07H) are output via Port C. The row-column code is input via Port

A to determe if the column code changes corresponding to each different row code. If the
C011.111111 code is not OPH (changed), the input key is identified. The program then indexes

through a look-up table to determine the row-column code. If the code is found, the corre-

sponding index value which equals to the input key's face value (a single hexidecinial digit) is

buffered. Since the microcomputer does not have access to any RAM, the input key's face vilue

along with three previously entered values are saved into register bx. The upper 4 bits of bit

correspond to the most significant digit (least current input), while the lower 4 bits correspond

to the next significant digit. The upper 4 bits of bi correspond to the second to the least

significant digit. Finally, the lower 4 bits of bi correspond to the least significant digit (most

current input). All four digits arc output via Port B (one digit at a time). In other words, the
displays (four TIL3 Ii's) are refreshed for every key input. The program is written such that it

will continuously scan for input key and update the display for each new input. Note that

lower-case letters are used to represent the 8086 registers in the program. For example, al, ah,
and ax in the program represent the 8086 AL, Al-I, and AX registers, respectively.

A listing of the 8086 assembly language program is given in the following:

.MODEL SMALL

.8086	 ; restrict to 8086
instructions only!!!

.CODE	 ; ASSUME CS:CODE, DS:DATA0000

0000	 main
= 00F8

= OOFA

= OOFC
OOFE
OOFO

PROC
PORTA EQU OF8h
	

hex keyboard input (row/
coin)

PORTB EQU OFAh ; LED displays/controls
(c3-c:0)

PORTC EQU OFCh
	

hex keyboard row controls
CSR EQtY OFEh	 control status register
OPEN EQU OFOh	 row/coin codes if all

keys are opened

Peripheral Interfacing
	 593

0000	 start:

0000 BO 90
0002 E6 FE
0004 2A Co
0006 E6 FA
0008 2B DB

mov al, 90h
out CSR, al
sub al, al
out PORTB, al
sub bx, bx

config PortA,B,C as i/o/O

clear al
enable/initialize displays
clear bx (content for
displays)

;can-key:
sub al, al
out PORTC, al

ey-close:
in al, PORTA
cinp al, OPEN
jnz key-close
mov cx, 38d2h

ielayl: loop delay 1
cey-open:

in al, PORTA
cmp al, OPEN
jz key-open
mov cx, 38d2h

lelay2: loop delay2
mov al, OFFh
dc

next-row:
rcl. al , 1
mov ci, al
out PORTC, al
in al, PORTA
mov dl, al

clear al
set row controls to zero

read PORTA
Are all keys opened?
repeat if closed
delay of 20 msec
debounce key opened

read PORTA
Are all keys closed?
repeat if opened
delay of 20 msec
debounce key closed
set al to all one's
clear carry

set up row mask
save row mask in al
set a row to zero
read PORTA
save row/coin codes in

initialize index register

set up counter

increment index
index thru table of
codes

loop if not found
amount to be shifted (1
digit)

advanced [bx] by i digit
append current digit
extract lst/2nd digits
mask 2nd digit
move digit to a3-aO

000A	 5

000A 2A CO
00CC E6 FC
000E
000E E4 F8
0010 3C FO
0012 75 FA
0014 B9 38D2
0017 E2 FE
0019	 3

0019 E4 F8
OO1B 3C FO
OO1D 74 FA
001F B9 38D2
0022 E2 FE
0024 BO FF
0026 F8
0027
0027 DO DO
0029 BA c8
002B E6 FC
002D E4 F8
002F 8A DO
ci
0031 24 OF
0033 3C OF
0035 75 05
0037 BA Cl
0039 F9
003A EB EB
003C
003C BE FFFF
003F Bi OF
0041
0041 46
0042 2E: 3A 9
0075 R

0047 EO F8
0049 Bi 04

00dB D3 E3
004D 03 DE
004F BA c7
0051 24 FO
0053 D2 E8

decode:
mov Si, -1
mov ci, OFh

search:
inc Si

cup di,
TABLE+5i]

loopne search
mov ci, 04h

shi bx, ci
add bx, Si

mov al, bh
and al, OFOh
shr al, cl

and al, OFh	 ; mask row code

cmp al, OFh	 ; Is coin code affected?

jnz decode	 ; if yes, decode coin code

mov al, ci	 restore row mask to al

stc	 ; if no, set carry

jmp next-row	 ; check next row

94
	

Microprocessors a zid Microcozziptiter-Hasecl System Design, 2nd Edition

TABLE

0055 OC 70
0057 E6 FA
0059 8A C7
005B 24 OF
005D OC BO
005F E6 FA
0061 8A C3
0063 24 FO
0065 D2 E8
0067 OC DO
0069 E6 FA
0065 BA C3
006D 24 OF
006F OC ED
0071 E6 FA
0073 ES 95

0075 E7
0076 EB
0077 ED
0078 EE
0079 D7
007A DR
0075 DD
007C DE
007D 57
007E BB
007F BD
0080 BE
0081 77
0082 7B
0083 7D
0084 7E
0085 B8 4C00

or al, 70h
out PORTB, al
mov al, bh
and al, OFh
or al, OBOh
out PORTB, al
inov al, bi
and al. OFOh
shr al, ci
or al, ODOh
out PORTB, al
mov al, bi
and al, OFh
or al, OEOh
out PORTB, al
jmp scan-key

DB OE7h
DB OEBh
DR OEDh
DR OEEh
DR OD7h
DB ODBh
DR ODDh
DB ODEh
DB OB7h
DR OBBh
DR OBDh
DB OREh
DB 77h
DR 7Bh
DB 7Dh
DR 7Eh
mov ax, 4COOh

enable /L3 (set low)
display 1st digit (MSD)
extract lst/2nd digits
mask 1st digit
enable /L2 (set low)
display 2nd digit
extract 3rd/4th digits
mask 4th digit
move digit to a3-aO
enable /Ll (set low)
display 3rd digit
extract 3rd/4th digits
mask 3rd digit
enable /L0 (set low)
display 4th digit (LSD)
return to scan another
key input

code for 0
code for 1
code for 2
code for 3
code for 4
code for 5
code for 6
code for 7
code for 8
code for 9
code for A
code for B
code for C
code for D
code for E
code for F
these two lines are
required

to exit DOS
end of procedure
end of program

0088 CD 15	 mt 21
008A	 main	 ENDP

END main

9.2 DMA Controllers

As mcnt ioncd before, direct memory access (DMA) is a type of data transfer between the
microcomputer 's main memory and an external device such as disk without involving the

microprocessor. The DMA controller is an LSI (Large-Scale Integration) chip in a microcom-

puter system which supports DMA-type data transfers. The DMA controller can control the

memory in the same way as the microprocessor, and, therefore, the DMA controller can be

considered as a second microprocessor in the system, except that its function is to perform I/O

transfers. DMA controllers perform data transfers at a vcry high rate. This is because several

functions for accomplishing the transfer ate inplcmcnicd in hardware. The DMA controller
is provided with a number of I/O ports. A typical microcomputer system with a DMA
controller is shown in Figure 9.6.

Peripheral Interfacing 	 595

Syslcm •
Ijic;

MICRO-
I'ROCESSOK

• '1	 /
>- —

9I
a	 I

DMi\ CON! ROLLER

CHANNEL	 CHANNEL.
MLMORY 1/0	 0	 1

A

ct
ce .f

DO

L	 I/O	 I/O

DATA
10R1	 PORT DATA

EXTERNAL.	 EXTERNAL
DEVICE	 DEVICE

(such as	 (such as
disk)	 iL sk)

FIGURE 9.6 A microcomputer system with a DMA controller.

The DMA controller ill 	 figure connects one or more lions directly to memory so that

data call 	 transferred between these ports and memory without going through the micropro-

cessor. Iherefore, the microprocessor is not involved
ill

	 data transfer.

The DMA controller in the figure has two channels (Channel 0 and 1). Each channel

contains
all

	 register, a control register, and a counter for block length. The purpose of

the DMA controller is to move a string of data between the memory and all 	 device.
Ill 	 to accomplish this, the microprocessor writes the starting address of memory where

transfer is to take place ill 	 address register, and controls information such as the direction

of transfer
ill

	 control register and the length of data to be transferred in the counter.

The DMA controller then completes the transfer independent of the microprocessor. 1-low-

ever, in order to carry out the transfer, the DMA controller must not start the transfer until

the microprocessor relinquishes the system bus and the external device is ready.

The interface between an I/O port and each channel has typically a number of control

signals which include DMAREQ, DMACK, and I/O read/write signals. When the I/O port is

ready with an available buf1r to receive data or has data ready to write into memory location,

it activates the DMAREQ line of the DMA controller. In order to accomplish the transfer, the

596	 Microprocessors and Microcoi pr icr-Based System Design, 2nd &lition

DMA controller sends the DMACK to the port, telling the port that it
call

	 data from

memory or send data to memory.

DMACK is similar to a chip select. This is because
when the DMACK signal on the port is

activated by the DMA controller, the port is selected to transfer data between the I/O device

and memory. The main difference between a normal and DMA transfer is that the read or

write operations have opposite meanings - that is, if the DMA controller activates the read

line of the port, then data are read from a memory location to the port. However, this is a write

operation as far as the port is concerned. This means that a read from a memory location is

a write to the Port. Similarly, a write to a memory location is equivalent to a read from the port.

The figure shows two types of R/ W signals. These are the usual memory R/ W signal and

the I/O R/ W for external devices. The DMA controller activates both of these lines at the

same time in opposite directions. That is, for reading data from memory and writing into a

port, the DMA controller activates the memory R/ W HIGH and 1/0 R/ W LOW. The I/O

ports are available with two modes of operation: non-DMA and DMA.

For non-DMA (microprocessor-controlle(I transfers), the ports operate iii a normal mode.

For DMA mode, the microprocessor first configures the port in the DMA mode and then

signals the DMA controller to perform the transfer. The R / W line is complemented for

providing proper direction of the data transfer during DMA transfer.

The DMA controller has a HOLD output signal and a HOLD ACK input signal. The port,

when ready, generates the DMAREQ's signal for the DMA controller. The DMA controller

then activates the HOLD input signal of the microprocessor, requesting the microprocessor to

relinquish the bus, and waits for a HOLD ACK back from the microprocessor.

After a few cycles, the microprocessor activates the HOLD acknowledge and tristaLcs the output

drivers to the system bus. The DMA controller then takes over the bus. The DMA controller:

1. Outputs the starting address in the system bus

2. Sends DMACK to the 1/0 port requesting DMA	 -

3. Outputs normal R/ W to memory and complemented R/ W to the I/O port

The I/O port and memory then complete the transfer. After the transfer, the DMA control-

ler disables all the signals including the E lOLl) oil 	 system bus and tristates all its bus drivers.

The microprocessor then takes over the bus and continues with its normal operation.

For efficient operation, the DMA controller is usually provided with a burst mode in which

it has control over the bus until the entire block of data is transferred.

In addition to the usual address, control, and counter registers, some DMA controllers are

also provided with data-chain registers which contain an address register, a control register, a

counter, and a channel identification. These data-chain registers store the information for a

specific channel for the next transfer. When the specified channel completes a DMA transfer,

its registers are reloaded from the data-chain registers and the next transfer continues without

any interruption from the microprocessor. In order to reload the data-chain registers for

another transfer, the microprocessor can check the status register of the DMA controller to

determine whether the DMA controller has already used the contents of the data-chain

registers. Jo case it has, the microprocessor reinitializes the data-chain registers with appropri-

ate information for the next block transfer and the process continues.

In order to illustrate the functions of a typical DMA controller just described, Motorola's

MC68440 dual channel DMA controller is described.

The MC68440 is designed for the MC68000 family microprocessors to move blocks of data

between memory and peripherals using DMA.

The MC68410 includes two independent DMA channels with built-in priorities that arc

programmable. The MC68440 can Perform two types of DMA: cycle stealing and burst. In

addition, it can provide noncontinuous block transfer (continue mo(Ie) and block transfer

restart operation (reload mode).

Figure 9.7 shows a typical block diagram of the MC68000168410I6823() interlace to a disk.

C

ri

hUI	 a'

_J

Peripheral Jnicrfacii
	 597

598	 tvlicroproccssors and Microcomputer-Based System Desiç'n, 2nd LcIi ion

68000 S1JJ)J)IICS IC) 68440:
Device Address

Memory Address
?Vlcfliory iranfcr Count

I	
16ROO()Mumory

I'rocesor
I tst(Inc)ry i\chlrc'ss

(I
I	 dock

•0

Ct

\106tt440
DDMA

C

\.

Device
or

Memory

FIGURE 9.8 Data block format.

Data transfer between the disk and the memory takes place via port A of the MC68230, using
handshaking signals 1-11 - I-It.

The AS/DO through A23/Dl 5 lines are multiplexed. The MC68'l10 multiplex control signals
OWN, UAS (upper address strobe), DitliN (data buffer enable), and DDIR (data direction)
arc used to control external demultiplexing devices such as 74LS2'15 bi-directional buffer and
74LS373 latch to separate address and data information on the A8/DO-A23/1)15 lines. The
MC68440 has 17 registers plus a general control register for each of the two channels and is

selected by the loscr address lines (Al -A7) in the M PU node. Al -A7 also provides the lower
7 address outputs in the DMA mode.

Al -i\7 lines can select 12S (2) registers; however, with A I -A7 lines, only seventeen registers
with addresses are defined in the range from 00 1 , through PP, 1 arid sonic addresses are not
used. As an example, the addresses of the channel status register and the channel priority

register arc, respectively, 00, and 2I).

The MC68440 registers contain information about the data transfer such as:

Source and destination addresses along with function codes

2. Transfer count

3. Operand size and device port size

4. Channel priority

5. Status and error information oil 	 activity

The processor service request register (l'SRR) of the MC68230 defines how the DMAREQ
pin should be used and how the DMA transfer should take place, whether via handshaking or

ports.

A data block contains a sequence of bytes or words starting at a particular address with the

block length defined by the transfer count register. Figure 9.8 shows the data block format.

l'criphertil In erfaci ng	 599

There are three phases ofa DMi\ transfer. These arc channel initialization, data transfer, and

block termination. During channel nitiahzation, the MC68000 loads the MC68440 registers

with control information, address pointers, and transfer counts, and then starts the channel.

During the transfer phase, the MC68'140 acknowledges data transfer requests and performs

addressing and bus controls br the t ransbcr. Finally, the block termination phase takes place

when the transfer is complete. During this phase, the 68I'I0 informs the 68000 of the comple-

tion of data transfer via a status register. During the t hi rce phases of a data transfer operation,

the MC68140 will he in one ob the three nodes of operation. These are idle, MPU, and DMA.

The MC68110 goes into the idle node when it is reset by an external device and waits for

initialization by the MC68000 or an operand transt'er request from a peripheral.

The MPU mode is assumed by the MC68140 when its CS (chip select) is enabled by thc

MC68000. In this mode, the MC68440 internal registers can be read or written for controlling

channel operation and for checking the statLis of a block transfer.

The MC68110 assumes the DMA mode when it takes over the bus to perform an operand

transtr.

In Figure 9.7, upon reset, the MC68I40 goes into idle mode. In order to initialize the

MC68440 registers, the MC68000 outputs appropriate register addresses on the bus. This will

enable the MC68140 CS line and places the MC68440 in the MPU mode. The MC68000

initializes the MC68440 registers iii this node. The MC68000 then executes the RESET

instruction to place the MC681 ,10 back to the idle mode.

The MC68000 now waits for a transfer request from the 68230. When the 68000 desires a

DMA transfer between the disk and memory, it enables the CS line of the 68230. The 68230,

when ready, activates the D?vIAREQ line low, which in turn drives the REQO line of the

MC68440 to low. The MC68'140 then outputs low on its BR line requesting the MC68000 to

relinquish the bus. The MC68000, when ready, sends a low on its BC pin. This tells the

MC684'10to take over the bus. The MC68410 then enters the DMA mode and sends a low on

its I3GACK pin to inform the MC68000 of its taking over the bus. The MC68440 transfers data

between the disk and memory via the MC6$230. Each time a b y te is transferred, the MC68440

decrements the transfer counter register and increments the address register. When the

transfer is c pleted, the MC6$4I0 updates a bit in the status register to indicate this. It also

asserts the DTC (data transfer complete) to indicate completion of the transfer.

The MC68110 DIG pin can be connected to the MC6$230 PIRQ pin. The MC68230 then

outputs high to the MC68110 REQO pin, which in turn places a 1-IIGIl on the MC68000 BR,

and the MC68000 takes over Ilic bus and goes back to normal operation.

9.3 Printer Interface

Microprocessors ate typically interfaced to two types of printers: serial and parallel.

Serial printers print one character at a lime, while pai'allcl printers print a number of

characters on a single line so fast that they appear to be printedted si in ultaneously. Depending on

the character generation technique used, printers can he classified as impact or non impact. In

impact printers, the print head strikes the printing medium, such as paper, directly, in order

10 print a character. In nonimpact printers, tliernial or electrostatic methods are used to print

a character.

Printers can also he classified based on the character formation technique used. For ex-

ample, character printers use completely formed characters for character generation, while

matrix printers use dots or lines to create characters.

The inexpensive seri,il dot matrix impact printer is very popular with microcomputers. An

example of Such a printer is the l.RC70I() miìanuhictured b y LAC, Inc. of Riverton, Wyoming,

The LRC7040 can print up to It) columns of alphanumeric characters. The printer includes

four major parts. These are the frame, the printhiel, the main drive, and the paper handling

600	 Microprocessors mid Microcomputer-Based System Design, 2nd Edition

10	 TI	 T2	 '[I	 14

SO

SI

st

53

SI

55

S(

FIGURE 9.9 5 x 7 I)oI I1i,IIri\ Nitcol br gelicraling the char.icLcr V.

components. 'I'hc LRC704() provides 8 inputs in the basic configuration. One input turns the

main drive motor ON or OFF, while the other seven inputs control the print solenoids for the

priiitlicad, usint 'I'll. drivers.

The LRC7040 utilizes a 5 x 7 matrix of dots to generate characters. The columns are labeled

TO through 'l'-t and rows are labeled SO through S6. Each row corresponds to one of the

solenoids. The entire printhead assembly is moved from left to light across the paper so that

at some time the printhead is over the column TO, then it's over column TI, and so on.

A character is generated by energizing the proper solenoids at each one of the columns TI)

through T4. Figure 9,9 shows how the character C is formed.

At TO, solenoids So through S6 are ON and at Ti through T4 solenoids SO and S6 are active

to form the character C. A number of characters can he formcd by the microcomputer by

sending appropriate data to the printhead to generate the correct pattern of active solenoids

for each of the five instants of time, The code for the character C consists of 5 bytes of data in

the sequence 71' 11,, 4 1,, 41 u' 4 116, 11 , as l'ollows:

	

5655	 Si	 53	 52	 SI	 SO

Column 10	 I	 I	 I	 I	 I	 I	 I	 = 71,,
Columii'II	 I	 0	 0	 II	 (I	 0	 I
(.olunuil2	 I	 (1	 0	 (1	 (1	 0	 I	 = 11,,
Column T3	 I	 II	 ii	 (I	 U	 (I	 I	 =

Column T-1	 I	 II	 (I	 (I	 (I	 I)	 I	 - II,.

Note that in the above, it is assumed that a I will loIn a solenoid ON and a 0 will turn it OFF.

Also it is assumcd that S7 is zero.

The interface signals to the printer include a pair of wires for each solenoid, .i pair of wires

for each motor (main drive motor and line feed motor), a pair of wires indicating the state of

the HOME niicroswitch, and a pair of wires indicating the state of the Ii NEFEED microswitch.

Riper feed is accomplished by activating the line Iced motor. The LINEFEED microswitch

is activated by the print logic when the actual paper teed takes place. The control logic can use

the trailing edge of the signal generated by the 1.1 NEFEED microswitch to turn the line feed

motor OFF. The l,ltC70I0 also has an automatic line ked version.

'l'lie HOME ruicroswitch is activated 1-I IGII when the printhead is at the left-hand edge of

the paper. When the pri ntliead is over the print area and moves from left to right, the HOME

niicroswitch is deactivated to zero.

The solenoids must be driven from 40 ± 'I volts with a peak current of 3.6 A. An interface

circuit is required at the microcomputer's OUtl) Llt (0 provide this drive capability.

Pcriplwral Interfacing
	 601

There are two ways of interfacing dle printer to a microcomputer. These are

1. Direct microcomputer control

2. Indirect microcomputer control using a special chip called the Printer Controller

The direct microcomputer control interfaces the printer via its I/O ports and utilizes mostly

software. The microcomputer performs all the functions required for printing the alphanu-

meric characters.
Indirect microcomputer control, oil other hand, utilizes a printer control chip such as

the Intel 8295 Dot Matrix Printer Controller. The benefits of each technique depend on the

specific application.
The direct microcomputer approach provides an inexpensive interface and can be appro-

priate when the microcomputer has a light load. The indirect microcomputer approach, oil

other hand, may be useful when the microcomputer has a heavy load and cost is not a major

concern.

9.3.1 LRC7040 Printer Interface Using Direct Microcomputer Control

The steps involved in starting a printing sequence by the microcomputer are provided below:

1. The microcomputer must turn the Main Drive motor (MDM) ON by sending a HIGH

output to the MDM,

2. The microcomputer is required to detect a HIGH at the HOME microswitch. This will

ensure that the printhead is at the left-hand margin of the print area.

3. The microcomputer is then required to send five bytes of data for an alphanumeric

character in sequence to energize the solenoids. Each solenoid requires a pulse of about

400 ins to generate a dot oil paper. A pitusc of about 900 ins is required between

these pulses to provide a space between dots.

Figure 9.10 shows a block diagram interfacing the LRC7040 printer
to

an MC68000/6821/

6116/271 6-based microcomputer.
Using the hardware of Figure 9.10, ail assembly program can be written to send

the start pulse for the main drive motor, detect the HOME microswitch, and then, by utilizing

the timing requirements of 400 ps and 900 is of the printer, a hexadecimal digit (0 to F) stored

in a RAM location can be printed, Ail 	 assembly language program for printing the

character C is shown in Figure 9.11 assuming the 68000 user mode so that USP can be initialized.

The program assumes a look-up table which stores the 5-byte code for the character C

starting at $003000. Furthermore, the program assumes that the delay routines DELAY400 for

400[is and DELAY900 for 900 ps are available. The program prints only one character C and

then stops. The program is provided for illustrating the direct microcomputer control tech-

nique for printing.

9.3.2 LRC7040 Printer Interface to a Microcomputer Using the 8295 Printer
Controller Chip

With direct microcomputer control, the microcomputer spends time in a "wait" loop for

polling the status of the HOME signal from the LRC7040 printer. In order to unload the

microcomputer of polling the printer status and other functions, typical LSI printer controller

chips such as the Intel 8295 can be used.
The 8295 isa dot matrix printer controller. It provides an interface for microprocessors such

as the 8085 and 8086 to dot matrix impact printers such as the LRC7040. The 8295 is packaged

in a 40-pill DIP and can operate in a serial or parallel communication mode with the 8085 or

8086. In parallel mode, command and data transfers to the printer by the processor occur via

M DM
Port 13

-H	 > Motor
- driver

LRC7O4O
Printer
with

automatic
linefeed

Ouz	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

3l—"I	 I	 7
Port A	 4	 Solenoid

drivers
68000/6821
6116/2716

based
microcomputer

Home Micrijswjtcji

FIGURE 9.10 MC68000-based microcomputer interface to the printer.

polling, interrupts, or DMA using commands, The processor specifies the format of the
printed character and controls all printer functions such as linefeco and carriage return.

The 8295 includes a 40-character buffer. When the buffer is full or a carriage return is received,
a line is printed automatically. The 8295 has the buffering capability of up to 40 characters and
contains a 7 x 7 matrix character generator, which includes 64 ASCII characters, The mode
selection (serial or parallel) is not software prranimable and is inherent in system hardware.
For example, by connecting Ihc8295 IRQ/SER pin to ground, the serial mode is enabled;
otherwise the parallel mode is enabled. The two modes cannot be mixed in a single application.
Note that the IRQ I SER pin is also the 8295 interrupt request to the processor in the parallel mode.

9.3.2.a 8295 Parallel Interface

Two 8295 registers (one for input and the other for output) can be accessed by the processor
in the parallel mode. The registers are selected as follows:

i.j	 W1	 6	 Register Selected

I	 0	 0	 Input data register
0	 t	 0	 Output status register

Two types of data can be written in the input data register by the processor:

I. A command to be executed. The command can be OXH or 1XH. For example, the
command OSH will enable DMA mode. On the other hand, the command 11 16 will
enable normal left-to-right printing for printers whose printhead home is on the right.

2. A character data (defined in the 8295 data sheet) such as 37H for 7 or 4 11 for 'A' to
be stored in the character buffer for printing.

The 8295 Status is available in the output status register at all times. Typical status bits
indicate whether the input buffer is full or DMA is enabled. For example, the IBF (Input buffer

Peripheral Interfacing

ORG $500000

13CR.13#$2, CRA

MOVE.B $1 $7F, DORA

[ISETiI # $2, CRA

BCLR.13 # $2, CR0

MOVE.13 ft $02, ODRU

IISET.B ft $2, CR13

MOVEA.L ft $040000, Al

MOVE.LAI, USP

MOVE.I1 ft $02, PORT Ii

HOME	 MOVE.13 PORT 13, Dl

ANDI.lt ft $01, 1)1

BEQ HOME

MOVEA.L ft $3000, A2

MOVEJ3 $05, D3

CHARACTER MOVE.13 ft $00, PORT A

MOVE. II (A2)+, PORT A

CALL DELAY 400

MOVE.13 ft $00, PORT A

CALL DELAY900

SUEIQ.B#$0l, D3

tINE CHARACTER

MOVE.R ft $00, PORT 11

STOP)MP STOP

ORG $003000

DO $71', $41, $41, $41, $41

END

603

Address DDRA

Configure Bits 0-6

As outputs and access Port A

Address DDRB

Configure bit 0 and

1311 1 of Port 13 as input

and output respectively

and access Fort B

Initialize

USP

Turn MDM on

Input HOME switch

Wait for HOME

Switch to be on

Move starting address

of character

Initialize

Character

Counter

Cenerage

Solenoid pulses

Generate 400ps

Pulses

Delay YOOfrs

Subtract character counter

Loop to Output all five bytes

Turn MDM OFF

Halt

5-byte

Code for C

FIGURE 9.11 Assembly language program for printing the character C.

full; bit 1 of the status register) is set to one whenever data are written to the input data register.

When IBF = 1, no data should be written to the 8295. The DE bit (DMA Enabled; bit 4 of the

status register) is set to one whenever the 8295 is in DMA mode. Upon completion of the DMA

transfer, the DE is cleared to zero.

The 8295 IRQ/SER pin is used for interrupt driven systems. This output is activated HIGH

when the 8295 is ready to receive data. Using polling in parallel mode, the 8295 IRQ/SER pin

can be input via the processor I/O port and data can be sent to the 8295 input data register.

Using interrupt in parallel mode, the 8295 IRQ/SER pin can be connected to a processor's

interrupt pin to provide an interrupt-driven system.

Using polled or interrupt techniques in parallel mode, the processor typically communi-

cates with the 8295 by performing the following Sequence of operations in the main program

(polled) or service routine (interrupt):

604	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

t)ACKx
8257
DMA DRQx

CONTROLLER

ADDRESS,
Microcomputer	 DATA

AND
CONTROL

DRQ _I
DACK ff[DRIVERS

MOTOR
PFM

STB
I'FEED

8295 IIOME Printer

FIGURE 9.12 8295 DMA transfer,

• The processor reads the 8295 status register and checks the 11W flag for HIGH.

• If IBF = 1, the processor waits in a wait loop until IBF = 0. The processor writes data
to be printed to the 8295 input data register. The 11W flag is then set to one indicating
no data should be written.

Data can also be transferred from the main memory to the 8295 via the DMA method using
a DMA controller such as 8257.

The processor initializes the 8257 by sending a starting address and a block length. The
processor also enables the 8295 DMA channel by sending it the "ENABLE DMA" command
(08H) followed by two bytes specifying the block length to be transferred (low byte first). The
8295 will then activate the DMA request line of the 8257 without any further involvement by
the main processor. The DMA enable (DE) flag in the status register will be HIGH until the
data transfer is cplctcd. As soon as the data transfer is completed, the DE flag is cleared to
zero and IRQ/SER is set to 1-UGH. The 8295 then goes back to the non-DMA mode of
operation.

Figure 9.12 shows a block diagram of the 8295 DMA transfer.
Typical control signals between the 8257 and the processor include HOLD, J-{LI)A, RD,

and WR. The 8295 control signals for the processor include CS, RD, WIZ, RESET, and
IRQ/SER. CS, RD, and WR pins are used to select either 8295 input or output registers.

The 8295 control signals for the printer include MOT, PFM, SIB, PFEED, and HOME.
The 8295 MOT output pin, when LOW, drives the motor. The M€T output is automati-

cally in LOW on power-up. This will make the 8295 HOMI input pin indicating that
the printhead of the printer is in HOME position.

The PFM signal, when LOW, drives the paper' feed motor, and this is LOWpowerup.
The PFEED is an 8295 input and indicates status of paper feed. A WW on the PFM indicates
that the paper feed mechanism is 'disabled' and a one indicates that the SI through S7 signals,
when LOW, drive the seven solenqids of the printer. Each character datum, when written into
the 8295 input da ja register, is automatically converted to the five-byte code by the 8295 and
provides the proper ON/OFF equcnce for the solenoids. Th& SIB output is used to determine
the duration of solenoid activation and is automatically Provided by the 8295.

9.3.2.b 8295 Serial Mode

The 8295 serial mode is enabled by connecting the IRQ/SER pin to LOW. The serial mode
is enabled immediately upon power-up. The serial baud rate is programmed by the D2, Dl,

I'eriphcral Iii Ler/acing	 605

DO data lines. For example, D2 Dl D0= 001 means 150 baud (bits/see) and is used to set the
serial transfer data rate. In this mode, RI) must be tied to high and CS and WIZ must be tied

to ground. The processor needs a UART (Universal asynchronous receiver transmitter) such
as the 8251. The 8295 DACK/SIN signal (data input for serial mode) must be connected to
the 8251 TXD output (8251 transmit data output bit). Also, the 8295 DRQ/ CTS (clear to send
in serial mode) must be connected to the 8251 CTS Output. Note that a UARTchip converts
parallel to serial data and vice versa. The processor must wait for 8295 CTS to go LOW before
sending data via TXI).

9.4 CRT (Cathode Ray Tube) Controller and Graphics
Controller Chips

The CRT terminal is extensively used in microcomputer systems as an efficient man-machine

interface. The users communicate with the microcomputer system via the CRT terminal. It

basically consists of a typewriter keyboard and a CRT display. In order to relieve the micro-

processor from performing the tedious tasks of CRT control, manufacturers have designed an

LSI chip called the CRT Con This chip simplifies and minimizes the cost of interfacing
the CRT terminal to a microcomputer.

The CRT controller supports all the functions required for interfacing a CRT terminal to a

microprocessor. The microprocessor and the CRT controller usually communicate via a

shared RAM. The microprocessor writes the characters to be displayed in this RAM; the CRT

controller reads this memory using I)N4A and then generates the characters on the video

display. The CRT co provides functions such as clocking and timing, cursor placement,

and scrolling. The CRT controller chip includes several registers that can be programmed to

generate timing signals and video interface signals required by a terminal, The display func-

tions are driven by clock pulses generated from a master clock. The CRT controller chip

normally produces a special symbol such as a blinking signal or an underline on the CRT. This

signal is commonly called the 'cursor'. It can be moved on the screen to a specific location

where data need to be modified. The scrolling function implemented in the CRT controller

moves currently displayed data to the top of the screen as new data are entered at the bottom.
In this section, fundamentals of CRT, character generation techniques, and graphics con-

trollers are discussed.

A typical CRT controller such as the Intel 8275 is then considered to illustrate its basic
functions. Finafl,, the graphics functions provided by Intel 82786 are covered.

9.4.1 CRT Fundamentals

A CRT consists of an evacuated glass tube, a screen with an inner fluorescent coating, and an

electron gun for producing electron beams. Vhcn the electrons generated by the gun arc

focused on the fluorescent inner coating of the screen, an illuminated phosphor dot is
produced.

The position of the dot can be controlled by deflecting the electron beam by using an

electromagnetic deflection technique. A complete display is produced by moving the bcani

horizontally and vertically across the entire surface of the screen and at the same time by
changing its intensity.

Most modern CRT terminals generate the display by using horizontal and vertical scans. In

the horizontal scan, the beam moves from the upper left-hand corner to the extreme right-

hand of the line and thus travels across the screen. The beam then goes off and starts at the left

of the next lower line for another scan. After several horizontal scans, the beam reaches the

bottom of the screen to complete one vertical scan. The beam then disappears from the screen

and begins another vertical scan from the top. This type of scan is also called 'raster' scan. This

Three
row I

select 	 I1i_lines

ME II ME
IC !1
IC No
IC II
IC II
IC II
I. N MMI

606	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

0	 0	 0	 0	 0	 0	 0
0	 S
	

I
	

S
	

I
	

0
0	 I
	

0	 0	 0
	

I
	

U
0
	

I
	

U	 0	 0
	

S
	

0

5X7
	 0
	

I
	

0	 0
	 0
	

I
	

0
Dot Matrix	 0
	

I
	

0	 0	 0
	

S
	

0
0
	

I
	

0	 0•
	

0
	

I
	

0
0
	

S
	

S
	

I
	

I
	

0
0	 0	 0	 0	 0.	 0

	
0

FIGURE 9.13 Generation of '0' using 5 x 7 dot matrix.

is because the display is produced on the screen by continuously scanning the beam across the
screen for obtaining a regular pattern of closely spaced horizontal lines, or raster covering the
entire screen. One of the most common examples of a raster display is the home TV set. The
typical bandwidth used in these TV sets is 4.5 MHz. The raster displays used with microcom-
puters include a wider bandwidth from 10 MHz to 20 MHz for displaying detailed informa-
tion. In most modern CR1' terminals, each sweep field contains the entire picture or text to be
displayed.

In order to display characters, the screen is divided by horizontal and vertical lines into a dot
matrix. A matrix of 5 x 7 or 7 x 9 dots is popular for representing a character, For example,
a 5 x 7 dot matrix can be used to represent the num5er '0 as shown in Figure 9.13.

To provide space around the character, one top, one left, one right, and one bottom line are
left blank. Each character is generated using 5 x 7 dot matrix. Therefore, each character
requires 35 dots, which can be turned ON or OFF depending on the dot pattern required by
the character. The pattern of dots is usually stored in ROM. A ROM pattern for '0' is shown
in Figure 9.14.

One character requires a 35-bit word. Each row is addressed by three bits. After reading each
row data, it is transferred to a parallel to serial shift register. These data are then shifted serially
by a clock to the CRT. For a standard 64-character set with each character represented by.a 5 x 7
dot matrix, a total of 2240-bit (64 x 7 x 5) ROM is required. Each character in the 64 (2)-

Clock Parallel to Serial
Shift Register To CRT

FIGURE 9.14 ROM pattern for '0'.

Peripheral Interfacing	 607

character set can be addressed using 6 address lines and three row select or scan lines (row select
counter typically used) are required to identify the dot row of the character. The ROM, address-
ing logic, and parallel to serial shift register are referred to as a character generator. Also, a
memory known as display memory is required in the CRT to store the character data to be
displayed. When a character is entered via the CRT keyboard, it is stored in the display memory.

Graphics can display any figure oil CRT screen. An example of such a VLSI chip is the
Intel 82786. In this chip, linked lists are used to update the display and can thus generate
displays at a high speed.

Most modern graphics use the bit mapping technique rather than character generation. In
order to understand bit mapping, consider a CRT screen as divided into 512 by 128 dots. Each
dot is called a Pixel, or picture element, which can be illuminated by an electron beam. Each
dot is a single bit in a 64K (512 x 128 = 65,536) byl RAM and is called a bit plane. If '1' is
stored in a specific bit location, the associated Pixel is turned ON (white). On the other hand,
if a '0' is stored, the corresponding Pixel is turned OFF (black). The video refresh circuitry
implemented in the \'ISl chip converts the ones and zeros in the bit plane to whites and blacks
on the CRT screen,

Resolution is an important factor to be considered in graphics. In order to provide various
colors and intensity, more than one bit is utilized in representing a Pixel. For example, Apple's
68000-based LISA microcomputer uses four bits per Pixel oil 364 x 720 Pixel screen.
Therefore, a high speed RAM of over 1 megabit (361 x 720 x 4 = 1,048,320) is required to
support such a resolution.

Therefore, graphics generation requires a bit-mapped RAM array and the LSI video inter-
face chip. The software involves determining the information written to the bit plane array to
generate the desired graphic display. Most graphics systems generate figures by combinations
of straight-line segments. The software is required to generate a straight line by identifying
each Pixel and writing information to its corresponding bit-map positions.

The concepts associated with CRT controllers and graphics described above are illustrated
by using the Intel 8275 and Intel 82786 in the following.

9.4.2 Intel 8275 CRT Controller

The INTEL 8275 is a single chip (40-pin) CRT controller. It provides the functions required
to interface CRT raster scan displays with Intel microcomputer systems using the 8051, 8085,
8086, and 8088. It refreshes the display by storing (buffering) the information to be displayed
from memory and controls the display position on the screen. The 8275 provides raster timing,
display row buffering, visual attribute decoding, cursor timing, and light pen detection. The
8275 can be interfaced with the Intel 8257 DMA controller and character generator ROM for
dot matrix decoding.

Figure 9.15 shows the 8275's interface to a microcomputer system and the 8257.
The 8275 obtains display characters from memory and displays them on a row-by-row basis.

There are two row buffers in the 8275. It uses one row for display, and at the same time fills
the other row with the next row of characters to be displayed. The nuiiiber of display characters
per row and the number of character rows are software programmable.

The 8275 utilizes the 8257 DMA controller to fill the row buffer that is not being used for
display. It displays character rows one line at a time.

The 8275 controller provides visual attribute codes such as graphics symbols, without the
use of the character generator, and blinking, highlighting, and underlining of characters. The
raster timing is controlled by the 8275. This is done by generating the horizontal retrace and
vertical retrace signals on the H RTC and the VRTC pins.

The 8275 provides the light pen input and associated registers. The light pen input is used to
read the registers. A command can be used to read the light pen registers. The light pen consists

608	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

System [los

DRQ

DACK

Micro-
processor	 Memory	 I/O	 13257

To other
Peripherals

LCO-3	 I
/)1
4

Cco-6
I
4	 Character

8275	 Generator

I Signal

	

I	 Horizontal	 I

Dot	 To
Timing	 Sync	 (

and	 Vertical	
?CRT

Control	
Sync

I IntensityJ

CCLK

Video
Controls

FIGURE 9.15 Microcomputer/8275/8257 interface.

of a microswitch and a tiny light sensor. When the light pen is pressed against the CRT screen,
the microswitch enables the light sensor. When tile raster sweep reaches the light sensor, it
enables the light pen output. lithe output of the light pen is presented to the 8275 LPEN pin,
the row and character position coordinates are stored in a pair of registers. These registers can
be read by a command. A bit in the status register in the 8275 is set, indicating detection of the
light pen signal. The 8275 call a cursor. The cursor location is determined by a cursor
row register and a character position register which are added by a command to the controller.

The cursor call 	 programmed to appear oil 	 display in niany forms such as a blinking
underline and a nonblinking underline. The 8275 does not provide a scrolling function.

The 8275 outputs the line count (LCO-LC3) and character code (CCO-M) signals for the
character generation. The LCO-1-0 signals are contents of the 8275 line counter which are used to
address the character generator for the line positions oil screen. The CCO-CC6 outputs of the
8275 are the contents of the row buffers used for character selection in the character generator.

The 8275 video control signals typically include line attribute codes, highlight, and video
suppression. The two line attribute codes (LAO and LA1 pin outpu(s) must be decoded by the
dot timing logic to produce the horizontal and vertical line combinations for the graphic
displays defined by the character attribute codes. The video suppress (VSP pins) output signal
is used to blank the video signal to the CRT. The highlighted (HLGT) output signal is used to
intensify the display at a specific position oil 	 screen, as defined by the attribute codes.

The dot timing and interface logic must provide the character clock (CCLK pin) input of
the 8275 for proper timing.

9.4.3 Intel 82786 Graphics Controller

The Intel 82786 is a single VLSI chip providing bitmapped graphics. It is designed for
microcomputer graphics applications, including personal computers, engineering worksta-

	

Peripheral interfacing	 609

System Bus

los Interlace Unit

I[
(IJIU)

I or
I

Display Processor 	 ----
50286 I	 I System I i	 Video

orI I	 Vieniury
I I	 DRAM / VRAM	 Graphics	 Interlace

80336	 Controller	 Processor
A

I

	

L	

52786

Graphics
DRi\M / VRAM

Memory

FIGURE 9.16 80186/80286180386 interface to 80786.

lions, terminals, and laser printers. The 82786 is designed using Intel's Cl-IMOS Ill process. It

is capable of both drawing and refreshing raster displays. It supports high resolution displays

	

with a 25-MI-li Pixel clock and call 	 up to 256 colors simultaneously. It call 	 interfaccd

to all Intel microcomputers such as 80186, 80286, and 80386. Figure 9.16 shows a block

diagram of the 80186/80286/80386 interfaces to the 82786.

The 32786 includes three basic components. These are a display processor (DP), a graphics

processor (GP), and a bus interface unit (B1U), with a DRAM/VRAM controller.
The display processor controls the CRT timing and provides the serial video data stream for

the display. It can assemble several windows (p9rtions of bitmaps) oil the screen from different

bitmaps scattered across the memory accessiIe to it.
The graphics processor executes commaids from a graphics command block placed in

memory by the 80 186/80286/80386 and updates the bitmap memory for the display processor.

The graphics processor has high level video display interface-like commands and can draw

graphical objects and text at high speeds.

The BIU controls all communication between the 32786, 30136/80286/80386, and memory.

The BIU contains a DRAM/VRAM controller that can perform block transfers. The display

processor and graphics proccSsot use the [flU to access the bitmaps in memory.

The system bus connects the 80186/80286/80336 and system memory to the 82786. The

video interface connects the 82736 to the CR1' or other display. The video interface is con-

trolled directly, by the display processor. Flie 82786 can be programmed to generate all the CRT

signals for up to 8 bits/Pixel (256 colors) displays. The other interfaces are controlled by the

BIU. The BIU interfaces the graphics and display processors to the 80186/80286/80386 and

system memory as well as the graphics memory via the internal DRAM/VRAM controller.

The dedicated graphics DRAM/VRAM memory provides the 82786 with fast access to

memO rywlftioul CollLCIlti011 with the m i croprocessor and system memory.

Usually, the bitmaps to be drawn and displayed, the characters, and commands for the

82786 are all stored ill memory- 'llie 32786 DRAM/VRAM controller interfaces directly

with a number of dynamic RAMS sv ith out external logic.
Figure 9.15 shows the most common configuration. The microprocessor call the

system memory, while the $2786 accesses its dedicated graphics memory simultaneously.

However, when the microprocessor accesses the graphics memory, the 82786 cannot access tile

system memory. Also, when the $2786 accesses the system memory, the microprocessor

cannot access the graphics memory.

610	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

If DMA capability is provided, the 82786 can operate in either slave or master mode. In the
slave mode, the microprocessor or DMA controller can access the 82786 internal registers or
dedicated graphics memory through the 82786. in the master mode, the 82786 can access the
system memory.

The microprocessor software can access both system and graphics memory in the same way.
When the microprocessor accesses the 82786, the 82786 runs in slave mode.

In slave mode, the 82786 appears like an intelligent DRAM/VRAM controller to the micro-
processor. The microprocessor can chip-select the 82786 and the 82786 will acknowledge
when the cycle is completed by asserting ;I 	 signal for the microprocessor.

The 82786 graphics and display processor accesses both system memory and graphics
memory in the same way. When the 82786 accesses system memory, the 82786 must run in
master mode.

In the master mode, the 82786 acts as a second microprocessor controlling the system bus.
The 82786 activates the HOLD line to take control of the system bus. When the nlicroproccs-
sor asserts HLDA line, the 82786 takes over the bus. When the 82786 is finished with the bus,
it will disable the HOLD line and the microprocessor can remove H 1,DA and take over tile bus.

The 82786 provides two different video interlaces when using standard DRAMS. The 82786
reads the video data from memory and internally serializes the video data to generate the serial
video data stream. When using VRAMS, the 82786 loads the VRAIvI shift register. Periodically,
the shift register and external logic then generate tile serial video data stream.

9.5 Coprocessors

In Chapters 1 and 7, the basics ofcoproccssors, along with the functions provided by Motorola
coprocessors such as the MC6885 1 and MC68881, arc covered, In this section, a brief overview
of the Intel coprocessors will be provided.

Intel offers a number of coprocessors which include numeric coprocessors such as 8087]
80287/80387, DMA coprocessors such as the 82258, and graphic coprocessors such as the
82786. In the following, a brief overview of Intel's numeric coprocessors, which include the
8087, 80287, and 80387, is given.

9.5.1 Intel 8087

Intel 8087 numeric data coprocessor is designed using liMOS III technology and is packaged
in a 40-pin DIP. When ail 	 is present in a microcomputer system, it adds 68 numeric
processing instructions and eight 80-bit registers to the in 	 register set. The 8087
can be interfaced to Intel microprocessors such as tile 808618088 and 80186/80188.

The 8087 supports seven data types which include 16-, 32-, and 64-bit integers, 32-, 64-, and
80-bit floating point, and 18-digit BCD operands. The 8087 is compatible with the IEEE
floating-point format, it includes several arithmetic, trigonometric, exponential, and logarith-
mic instructions.

The 8087 is treated as an extension to tile microprocessor, providing additional register data
types, instructions, and control at the hardware level. At the programmer's level, the micro-
processor and the 8087 are viewed as a single processor. For tile 8086/8088, the microprocessor's
status (S0-S2) and queue status lines (QSO-QSI) enable the 8087 to nionitor and decode
instructions in synchronization. For 80186180188 systems, the queue status signals of the
80186/80188 are synchronized to the 8087 by the 8288 bus controller. The 8087 can operate
in parallel with and independent of the microprocessor. For resynchronization, the 8087's
BUSY pin tells the nlicroprocessul that the 8087 is executing ail and the
microprocessor's WAIT instruction tests this signal to ensure that the 8087 is ready to execute
subsequent instructions. The 8087 can interrupt the microprocessor when it detects an error

Peripheral Interfacing	 611

or exception. The 8087's interrupt register line is typically connected to the microprocessor

through all programmable interrupt controller for 8086/8088 systems and INT for

80186/80188 systems.

The 8087 uses the request/grant lines of the microprocessor to gain control of the system bus

for data transfer.

The microprocessor controls overall program execution while the 8087 utilizes the coprocessor

interlace to recognize and perform numeric operations.

9.5.2 Intel 80287

Intel 80287 is all
8087 that extends the 80286 microprocessor. The 80287 adds over

50 instructions to the 80286 instruction set. The 80287 is designed using HMOS technology

and is housed in a 40-pin special package called 'CERDIP'.

The 80287 supports the IEEE floating-point lorniat, The 80287 expands the 80286 data

types to include 32-bit, 61-bit, and 80-bit floating point, 32-bit and 64-bit integers, and 18-

digit BCD operands. It extends the 80286 instruction set to trigonometric, logarithmic, expo-

nential, and arithmetic instructions for all data types.

The 80287 executes instructions in parallel with an 80286. The 80287 has two operating

modes like the 80286. Upon reset, the $0287 operates in real address mode. It can be placed

in the protected virtual address mode by executing an instruction oil 80286. The $0287

cannot be placed back to the real address mode unless reset. Once in protected mode, all

memory references for numeric data or status information follow the 80286 memory manage-

ment and protection rules and thus the $0287 extends the 80286 protected mode.

The $0287 receives instructions and data via the data channel control signals (PEREQ -

Processor Extension Data Channel Operand Transfer Request); IEACK - Processor Exten-

sion Data Channel Operand Transfer Acknowledge; BUSY; NPRD - Numeric Processor

PD; NPWR - Numeric Processor WR). When in protected mode, all information received

by the 80287 is validated b y the 80286 memory management and protection unit. When the

80237 detects an exception, it will indicate this to the 80286 by asserting the ERROR signal.

The 30286/80287 is programmed as a single processor. All memory addressing modes,

physical memory, and virtual memory of the $0286 are available in the 80287.

9.5.3 Intel 80387

Intel 30387 is a numeric coprocessor that extends the 80386 processor with floating-point,

extended integer, and BCD data types. It is compatible with IEEE floating point. The 80387

includes 32-, 64-, and 80-bit floating point, 32- and 64-bit integers, and 18-digit BCD oper-

ands. It extends the 80386 instruction set to include trigonometric, logarithmic, exponential,

and arithmetic instructions of all data types. The 80387 call
in the real, protected, or

virtual 8086 modes of the 80386. It is designed using ClIMOS III technology and is packaged

in a 63-pin PGA (Pin Grid Array).

The 30387 operates in the same manner whether the $0386 is executing in real address

mode, protected mode, or virtual 36 mode. All memory access is handled by the 80386; the

80387 operates oil and values passed to it he the 30386. Therefore, the 80387 is

independent of the 80386 mode.

The 80387 includes three functional units that can operate in parallel. The 80386 can be

transferring commands and data to the 80387 bus control logic for the next instruction while

the $0387 floating-point unit is performing the current numeric instruct n. This parallelism

improves system performmiimice.

The 80387 adds to an $0386 system additional data types, registers instructions, and

interrupts. All communication between the 80386 and $0337 is transparent to application

software. Thus, the 80387 greatly enhances the 803S6 capabilities.

612	 Microprocessors and Microcoinpu Cr- Based System Design, 217d Edition

Questions and Problems

9.1 Interface a hexadecimal matrix keyboard and four LED displays to an 8086/8255-based

microcomputer.
i) Draw a hardware schematic of the design. Show only the pertinent signals.

ii) Write an 8086 assembly language program to display the hex digit on the display
from 0-P each time a digit is pressed on the keyboard.

9.2 Describe the basic functions of a DMA Controller. How does it control the I/O R/W
and memory R/ W signals? Why is the DMA Controller faster than the microprocessor for
data transfer?

9.3 Describe briefly the main features of Motorola's MC68440 DMA controller.

9.4 Draw a functional block diagram showing the pertinent signals of the MC68020/68230/
68440 interface.

9.5 Define the MC68440 modes of operation.

9.6 Which mode and which address lines are required by the MC68440 to decode the register
addresses? Why does the MC68440 require more address lines than it requires for register
address decoding?

9.7 Draw a functional block diagram of the MC68440/68008 interface.

9.8 What is the difference between the following?
i) Serial and Parallel printers
ii) Impact and Nonimpact printers

iii) Character and Matrix printers

9.9 Assume all 	 printer. Draw a functional block diagram of the LRC7040 printer
to an 8086-based microcomputer. Write an 8086 assembly language program to print the
hexadecimal digit '0' oil 	 printer.

9.10 Draw a functional block diagram of the 8295 printer controller interface to an 8085-
based microcomputer.

9.11 How are the 8295 input data register and output status registers accessed? What are the
functions of these registers?

9.12 How are the 8295 serial and parallel modes of operation selected?

9.13 In the 8295 parallel mode, describe briefly how printers are interfaced for polled,
interrupt, or DMA operation.

9.14 Summarize the basics of a CRT. What is the main difference between character genera-
tion displays and graphics displays?

9.15 What are the typical functions of a CR'!' controller? Relate these typical functions to the
Intel 8275.

Peripheral Interfacing	 613

9.16 Draw a functional block diagram showing an 8086-based microcomputer interlace to

an 8275. Show only pertinent signals.

9.17 What is meant by bitmapping? How does it apply to graphics?

9.18 Describe briefly the functions provided by the Intel 82786 graphics controller.

9.19 Draw 'a functional block diagram showing an 30386/82786 interface. Show only perti-

netit signals,

9.20 Summarize the basic differences between the Intel 8087, the 80287, and the $0387

numeric coprocessors. Why are these three separate chips for the same coprocessor family

provided by Intel?

-	 - o I	 41

10
DESIGN PROBLEMS

This chapter includes a number of design problems that utilize external hardware. The systems

are based oil 	 microprocessors such as the 8085, 8086, and 68000.

The concepts presented can be extended to other microprocessors.

10.1 Design Problem No. 1

10.1.1 Problem Statement

An 8085-based digital voltmeter is designed which will measure a maximum of 5 V DC via an

AID converter and then display the voltage on two BCD displays. The upper display is the

integer part (0 to 5 V DC) and the lower display is the fractional part (0.0 to 0.9 V DC).

10.1.2 Objective
A digital voltmeter capable of measuring DC voltage up to and including 5 V will be built and

tested. The voltmeter is to be implemented using the Intel 8085 microprocessor and an analog-

to-digital converter of the designer's choice. The measured voltage is to be displayed on two

seven-segment LEDs.

10.1.3 Operation

Figure 10.1 shows a block diagram of the digital voltmeter. It is composed of the micropro-

cessor, 2K bytes of EPROM, 256 bytes of RAM with I/O, the AID converter, and the display

section.
The Intel 8085 microprocessor provides control overall address, data, and control informa-

tion involved in program execution. It also provides for manipulation of data as taken from

the AiD and sent to the display section.
The EPROM is a memory unit which stores the instructions necessary for system operation.

The RAM and 110 section is a memory unit which provides for data storage as well as data

transfers to and from the AID and display. The AID converter takes the voltage measured

across Vin(+) and Vin(—) pins and converts it to an 8-bit binary value. The binary information

is taken into the microprocessor via the I/O and converted to its decimal equivalent. The

display section takes the converted binary information from the processor so that it may be

read on two seven-segment LED displays. The leftmost display provides the integer portion of

the measured voltage, while the rightmost provides the decimal portion.

615

616	 Microprocessors and Microcompuf er-B ased S3,stem Design, 2nd Edition

FIGURE 10.1 \'oImcLcr block diagram,

10.1.4 Hardware
Figure 10.2 shows the detailed hardware schematic. The system uses standard 1/0 with RAM
memory mapped at OBOOH-OSFFI-l. Thc 110 ports of the 8155 are all used and are 110 mapped
starting at 081-1. Configured as an input port, port B is connected to the output of the 0804 AID
chip. Configured as an output port, port C is connected to the TIL3I 1 displays. Bits 0-3 are
the data outputs while bits 4 and 5 are connected to the latches of the TIL3 II. Only three bits
of port A are used, configured as an output port, to control the select, read, and write lines of
the A/D chip.

Using the fully decoded memory addressing, the 74LS3 IS decoder is used to select either the
RAM or the EPROM. Also, a 74LS373 is used to latch the address lines for the EPROM. The
RAM does not require such a chip because the 8155 RAM has its own internal latches. The ALE
line of the 8085 microprocessor controls the latches as seen in the schematic.

The EPROM contains the instructions for converting the binary representation of the
analog voltage (applied to the A/D converter) back to decimal representation. The instructions
are used to control the system operation. The algorithm uses repeated subtraction to obtain
the correct voltage in decimal form. The left display is the integer part and thright display is
the decimal part.

The displays, as stated before, are TIL31 I hexadecimal displays. In addition, the displays
have their own latches which arc active low. In the 8085 microprocessor, the interrupt RST6.5
is used to jump to the address with the algorithm to convert and display the voltage. The INTR

•	 •'-	 r'.	 •.j	 ..,	 -

FM

iSV

Vcc	 1
WR

K	
P00

to
P82

P82

PB)

P84

Pas
II

P0"

£87

Ii Vcc
GND

RD

WR

INTR

]	 I

Lii
PAl

PAl
PAZ

RAM

	

'CE 511	
8155

	

1AO	 I

	

IMEPROM I	 I
I	 2716	 I,	 121

	

1 A7	 MI	 , IADO
3	 lID	 III	 PCO

	

A6	 OIl	 .' IADI

	

A4	 031	 .111	 ioj

	

III	 I	 'I	 PCi

	

A3	 011	 .11
	

ADZ

	

III	 III is	 PC)

	

34	 liii i$I	 PC)

	

04
	 .1141	 IAD4

	

1	 11111

	

.JAl	 051
i	

.11	 lADS	
PC4

	

11$	 1111 1 1 iii	 PCS

	

h Al	 01
	

IAD6

	

I AO	 07	 t1itHIl 1A07

i. jcdD	 itu	 I

MC	 4(137

•1v	 ,1y

0"
oil

LIII	 B oil

I_J CIAIO I_J
1_7

I CIJjJ I0CPA

Design Problems
	

617

34

45v
+Sv	 7431

IN --

	

wlO.iR0	 14148	 0 Vcc

sox -
RLSI1 IN

XI

3'

1F

XTAL

6I*4z	 01	 13	 o

	

IIis 	 71
Cl

	

27	 4
EILA?	 l 74

7	 Au	 C	 138R5T7.5	 23	 2

AST S.5

	

All	 8
24

INTO	 All	 A

HOLD

osr&..0

1I_______________
IA	 J

.'- '	 __

8108

7 ^

a Um
nuuim

q m

JiIIIII

FIGURE 10.2 Digital voltnieter detailed schematic.

pin of the AID is connected directly to the RST 6.5 pin of the microprocessor. First, all

low is sent to the chip select pin, and then the write pin of the AID converter is toggled.

Upon completion of the AID conversion, the 8085 is interrupted. The service routine

outputs an active low onto the read pin of the AID, which latches the data. After inputting the

data via the port, the read pin is toggled which then tristates the AID output.

10.1.5 Software

An important part of the software is to convert the AID's 8-bit binary data into its decimal

equivalent for the display. The decimal data will have two digits: one integer part and one

fractional part. Two approaches can be used to accomplish this as follows.

r.iI.

FIGURE 10.2 continued.

Approach 1
Since the maximum decimal value that can be accommodated in 8 bits is 255 (FF 16), the
maximum voltage of 5 V will be equivalent to 255. This means that the display in decimal is
given by:

Design I'roblerns
	

619

D = 5*(Input/255)
Input/51

= Quotient + (Remainder/51)
1'

Integer part

The iract ion al part in decimal is

F = (Reniainder/51)*10
Remainder/5

Approach 2

In the second approach, the equivalent of I V (255/5 V = 51 0 = 33) is subtracted from the

mput data. If the input data are greater than I V, a counter initially cleared to zero is

incremented by one. This process continues until the data are less than I V. The register keeps

count of how many subtractions take place with a remainder greater than I V and thus

contains the integer portion of the measured voltage in decimal.

The decimal portion of the fractional part is obtained in the same way except that if the

input data are less than 1 V, then they are compared with the decimal equivalent (51/10 5)

of 0.1 V. If the measured data are greater than 0.1 V, a counter initially cleared to zero is

incremented by one and the process continues until the input data are less than 0.1 V. The

counter contains the fractional part of the display.
Approach 2 is used as a solution to this problem. A complete listing of the 8035 assembly

language program to control the digital voltmeter is given below. The program is iscd to begin

and end the A/D conversion process as well as to manipulate the binary data into their decimal

form so that they can he displayed in an easily readable format.

FILE: LIST1;RAT001 HEWLETT-PACKARD: 8085 Assembler

LOCATION
CODE

<09A0>
<0009>
<00 OA>
<000B>
<0008>
<0034>
<0000>

0000 3109A0
0003 3EOD
0005 30
0006 FB
0007 D308
0009 3E30
000B D3OB
000D 3EFF
000F D309
0011 3EFE
0013 D309
0015 3EFC
0017 D309

OBJECT
LINE

1 "8085"
2 STACK?
3 PORTA
4 PORTB
5 PORTC
6 CSR
7 INTR
8 PROG
9
10
11
12 START
13
14
15
16
17
18
19
20
21
22
23

SOURCE LINE

O9AOH
00095
00 OAH
000BH
000SH
0034H
00 0 OH

PROG
SP, STACK?
A, ODS

CSR
A, 30H
PORTC
A, OFFH
PORTA
A, OFEH
P ORTA
A, OFCH
PORTA

EQU
EQU
EQU
EQU
EQU
EQtJ
EQU

ORG
LXI
MVI
SIM
El
OUT
MVI
OUT
MVI
OUT
MV!
OUT
MVI
OUT

INIT, STACK
SET INTERRUPT MASK
SET INTERRUPT MASK 6.5
ENABLE INTERRUPT
DEFINE PORTS A,B,C
SET DISPLAY ENABLES

SET /CS,/WRIRD HIGH

SEND /CS LOW

620	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

FILE: LIST1;RAT001 HEWLETT-PACKARD- 8085 Assembler (continued)
LOCATION	 OBJECT
CODE	 LINE	 SOURCE LINE
0019 3EFE	 24	 MVI A,OFEH
001B D309	 25	 OUT PORTA	 ; TOGGLE /WR
0011) 9B	 26 WAIT	 JMP WAIT	 WAIT FOR INTERRUPT

27
28
29	 ORG INTR	 ; INTERRUPT VECTOR

0034 210900
0037 1600
0039 0E33
003B 3EFA
003D D309
003F 00
0040 DBOA
0042 47
0043 3EFE
0045 D309
0047 70
0048 78
0049 91
004A DA0052
004D 14
004E •77
004F C30049
0052 7A
0053 D3OB
0055 E63F
0057 D3OB
0059 1600
005B 0E05
005D 7E
005E 91
005F DA0066
0062 14
0063 C3005E
0066 TA
0067 F610
0069 D3OB
00GB E63F
006D D3OB
006F 3EFC
007]. D309
0073 3EFE
0075 D309
0077 CB
Errors = 0

30	 LXI
31	 MVI
32	 MVI

33	 MVI
34	 OUT
35	 NOP
36	 IN
37	 MOV

38	 MVI
39	 OUT
40	 MOV
41	 MOV
42 SUB].:	 SUB
43	 JC
44	 INR
45	 MOV

46	 JMP

47 CONT1: MOV
48	 OUT
49	 ANI
50	 OUT
51	 MVI
52	 MVI
53	 MOV

54 SUB2:	 SUB
55	 JC
56	 INR
57	 JMP
58 CONT2: MOV
59	 ORI
60	 OUT
61	 ANI
62	 OUT
63	 MVI
64	 OUT
65	 MVI
66	 OUT
67	 RET

ADDRESS
H, 0900H	 INIT, MEW POINTER
D, OOH	 INIT, INTEGER COUNTER
C, 33H
A, OFAH	 SEND /RD LOW
PORTA

PORTB	 INPUT DATA
B, A	 MOVE DATA TEMP. TO B
A, OFEH
PORTA	 TOGGLE /1W
H, B
A, B	 MOVE DATA TO 0900H
C
CONT1
D
M,A
SUB 1
A, D
PORTC
3FH
PORTC
D, OOH
C, 05H
A, M
C
CONT2
D
SUB2
A, D
10H
PORTC
3FH
PORTC
A, OFCH
PORTA
A, OFEH
PORTA

Lines 2-8 arc assembler directives which equate a recognizable label with a hex value. This
is useful for values which are to be used throughout the program.

Line 10 is another assembler directive which sets the beginning of the program at address
0000FI.

Dcsi,,'xj Problems	 621

Line 11 initializes the stack pointer at address 09A01-1. This is necessary if we are to return

to a current program aftcr an interrupt has been serviced.

Lines 12-14 set the mask bits and enable interrupt RS'1'6.5.

Line 15 defines port A as output, port 11 as input, and port C as output. Note that the data

to configure the ports were already III
	 accumulator as per line 12.

Lines 16-17 send an active high to each display's data latch enable pin. This insures that the

displays will output the correct data on the next 	 h-to-low transition at the latch enable pins.

Lincs 18-19 send a high to the chip's select (CS), write (Wit), and read (RD) pins of the

AID converter. This insures proper start-up of the converter.

Lines 20-21 first send an active low to the converter's CS pin. Next, lines 22-25 toggle the

WR pin so that conversion starts. The combination of CS and WRactive low resets the AID
internally and sets it up for the start of the conversion. By sending Wit high, the conversion

starts. Figure 10.3 shows the timing diagram For the All).
Line 26 is a "WAIT LOOP" which is provided as a delay to wait for the interrupt request.

This is necessary since it may take as long as 127 its for the interrupt to be asserted. This is

equivalent to approximately 380 clock cycles For the 8085 operating at 3 MHz.

Line 29 continues the program at the interrupt vector for interrupt RS'l'6.5.

Line 30 loads the 111. register pair with a memor y address to be used later in the program.

Lines 31-32 initialize the 1) and C registers. 1) register is to hold the integer portion of the

measured voltage, while C register holds it hex value equivalent to 1 V for this system.

Lines 33-31 send all 	 low to the RE) pill 	 the AID converter so that the binary

information corresponding to the measured voltage may be read by the microprocessor.

Lines 36-37 take the data from the A/I) converter and store it into register B.

Lines 38-39 toggle the RI) pill 	 to active high.

Lines 40-41 move the 8-bit data into memory location 09001-I and then into the accumulator.

Lines 42-46 convert the binary data into their decimal equivalent so that the integer portion

may be displayed. First the equivalent of I V is subtracted from the input data. If the measured

voltage is less than I V, the program jumps to Line 47. If the voltage is greater than one, the

program continues at line 41 where register D is incremented by one. The remainder from the

subtraction is temporarily stored in memory. The program then unconditionally jumps hack

to line 42 so that another subtraction takes place. This loop occurs until the remainder from

the subtraction is less than I V. Register 1) keeps count of how many subtractions took place

with a remainder greater than 1 \f and thus counts the integer number of volts measured.

Lines 47-50 send the contents of register I) to the leftmost display. The AND operation

unlatches the data at the display.

Lines 51-52 again initialize registers I) and C, but this time register I) will be counting the

fractional portion of the nieasu red voltage and register C will hold the hex equivalent of 0. I V.

Line 53 moves the last positive remainder l'roni memory into the accumulator.

Lines 54-57 perform the same function as lines 42-46 but with the fractional portion of the

measured data.

The remaining lines output the contents of register 0 into the rightmost display, toggle

VR , and returns to the main program.

10.2 Design Problem No 2

10.2.1 Display Scroller Using the Intel 8086

10.2.1.a Introduction and Problem Statement

The objective of this project is to design and build an 8086-based system as shown ill block

diagram of Figure 10.4. The system scans a 16-key keyboard and drives three seven-segment

displays. The keyboard is scanned ill 4 x 4 X-V matrix. The system will take each key pressed

622	 Microprocessors and Microcomputer-Based System Design, 2nd Edition
Timing diagram
start Conversion

Cs

ItusY,

100 P s
'Nor uusy-

7) lluŝ --,, ,.,

H 781 nsns

tNT asserted

WR

Actual Internal
Status of Converter
(Last data read)

INTR

(Last dais wasn ' t read)

Output Enables and Reset
YNTR

450 11s)I

ED

Data	 12.5 lts
. outputs	

T^rl late

200 us

FIGURE 10.3 AID timing diagranL

and scroll them in from the right side of the displays and keep scrolling as each key is pressed.
The leftmost digit is discarded. The system continues indefinitely.

10.2.1.b Hardware Description

Figure 10.5 shows the hardware schematic, The microcomputer is designed using the 8086,
8255 1/0 port chip and two 2716 EPROMs. The system does not contain any RAM since no
stack is required.

0

0
I)
0
0
U

Design Pruviems

C,

C,

C,

CJ

½

0

U

0
C,0-c

S.) '!'-CI IIliIIfl() US(IL,I C1.L

gi

Design Problems	 625

Ccc'Co
ce

2222

Q	 EttO

:E	 0
000

626
	

Microprocessors and Microcomputcr-Based System Design, 2nd Edition

PROG
	

SEGMENT
ASSUME CS:PROG, DS:PROG
• 8086

PORTA eq-u OOh
PORTB equ 02h
PORTC eq-u 04h
CSR equ 06h
start: mov CX, OFFFh
LP1: loop LPl

mov AL, 90h
out CSR, AL
xor EL, BL
xor AX, AX
out PORTB, AL
out PORTC, AL
mov CL, 04h

over:	 wait
in AL, PORTA
out PORTC, Al
shJ. AL, CL
shi AX, CL
mov AL, EL
out PORTB, AL
movEL, All
mov CX, OFFFh

LP2: loop LP2
mov CL, 04h
jmp over

PROG	 ENDS
END start

Delay test.
set ports A input, B & C output

clear EL
clear AX
clear Displays

set CL to 04
wait for TEST pin to go low.
Get data
Out first number and
rotate into place for
2nd and 3rd position.
Move old iriputed nibbles
to be outputed.
Copy AR new to EL.
Delay so D.A. signal
can return to low.
Reset CL to 04h

FIGURE I0.6a 8086 Assembly language program for the kcyboard scroller.

Keyboard encoding is accomplished via hardware. The 71C922 chip is used for this purpose.
This chip inputs a key pressed from a hexadecimal keypad and outputs the corresponding
binary equivalent on its data lines. In order to indicate that a key has been pressed, the 74C922
sends a HIGH on its Data Available (DA) output pin. This signal is inverted and then
connected to the TEST pin of the 8086. This means that the key actuation is indicated by a
LOW on the 8086 TEST pin.

The displays are three TI1,3I Is. The rightmost TIL31 I is connected to bits 0-3 of port C.
This display outputs the most recent key pressed. The middle and the leftmost displays are
connected to port B. These two displays show the previous two keys pressed.

10.2.1.c Software Development
Figure 10.6a shows the 8086 assembly language program.

The program first initializes the ports and then waits in a loop for a key to be pressed. In this
loop, the 8086 WAIT instruction checks the TEST pin for a LOW. As soon as a key is pressed,
the DA pin of the 74C922 goes to a HIGH. This, in turn, drives the TEST pin of the 8086 to
a LOW indicating that the data is available.

The 4-bit equivalent of the hex key pressed is input into the 8086 Al. register and output to
port C. The last two keys pressed are saved in BL. This data is moved to AL and then output
to port B. The program loops back to the WAIT instruction and waits for the next key.

Figure I0.6b shows how the contents of the 8086 rcgistcI change as the keys arc pressed on
the keyboard.

627Design Problems

dSW

3 4 dsa

H dSO

od	 06
Ac

j 1 dSG	 A3	 I 3tI	 >	 I>,	 I	 >-.	 I	 >.
1dsa	 I - 	<0.	 —0.	 <0.

	

<°	 <0

	

4zE AA 	 --

	

II	 >'	 <	 <	 Ltr) :	 c/)	 (/) Fn < 	 s<	 c/) :r	(/)	 <

C) C'4	 0 C'J	 0 C'J	 N ()	 It ()	 0 ()	 0 ()	 C)

co
ca	 C) -	 0 — I — N 	 N' C'J	 0 C'J	 C'J C)

0	 I	 10	 0*

3 C'J 0 (N 0 C) 0 C) 0 3	 -	 31i1 Lds0	 ,-	 ,-.	 (NO ('JO C)0

odSLO0	 ><)<	 X ><	 >(>()<)	 >()<)<)<)<)()()<

	

—J CdSQ <cc <cc <cc <cc	 <cc <cc <cc <cc

dSO

0 dsa

0 CdS0

Ac

co	 0 -)<A	 <	
<

C)	 —	 3r

- C)
cc00

<0
—	 ><
<	 <

I	 I	 —-
cc<

>-'
0.

'I)x

V

V

E

0

C

C

C
0
U

.0

C)

L.

0 0	 0 0 CD 0 0 01	 (N	 0	 0	 — (N

0	 C) C)	 0 0 - 0 0 0 010 (' 0 0 (N 0 0 0 C)cxC)	 I-U.) LI

0 ZdSO 0 0 3 o 0 0 o — 0	
o	

0 (N 0 (N 0

CdSO 0 0 0 0 0 0 0 0 010	 0	 0 0	 0	 0

)< >()< X	 >< ><()<)<)<	 >()<)< ><	 X)<)< ><
<cc <cc <cc <cc <cc <cc <cc <cc <cc

628	 Microprocessors and Microcomputer-Based S3 ,stein Design, 2nd Edition

Increment	 Decrement	 Mode Change
Key	 Key	 Key

FIGURE 10.7 Block diagram for design problem no. 3.

10.3 Design Problem No. 3

10.3.1 Problem Statement

A 68000-based system is designed to drive three seven-segment displays and monitor three key
switches. The system starts by displaying 000. If the increment key is pressed, it will increment
the display by one. Similarly, if the decrement key is pressed, it will decrement the display by
one. The display goes from 00-FF in the hex mode and from 000-255 in the BCD mode. The
system will count correctly in either mode. The change mode key will cause the display to
change from hex to decimal or vice versa, depending oil present mode. Figure 10.7 depicts
the block diagram.

Two solutions are provided for this problem. Solution one uses programmed 1/0 with no
interrupts, while solution two utilizes interrupt 1/0 but no programmed 1/0.

10.3.2 Solution No. 1

The simplest and the most straightforward system Possible is built to obtain the required
results. This means that there will be no RAM in the system; therefore, no subroutine will be
used in the software and only programmed I/O (no interrupt) is used.

10.3.2.a Hardware

Figure 10.8 shows the detailed hardware schematic. The circuit is divided into the following
Sections.

103.2a.i Reset Circuit. 'l'Iic reset circuit for the system is basically the same as the one used for the
8085. The circuit has a 0.1-pP_capacitor and 1K resistor to provide an RC time constant of
10 s for power on reset. The RESET and HALT pins of the 68000 and the RESET pin of the
6821 are tied together for complete and total reset of the system.

1 O.3.2.a.ii Clock Signal. An external pulse-generator is used to generate the clock signal for the system.
The system is driven up to 3 MHz, the limit of the generator, without any problems.

10.3.2.a.iiiflddrcss Mapping. The system has two 2K EPROM (2716s) and one 6800's peripheral I/O
chip (6821). The 68000 address lines Al through All are needed to address the EPROMs. So

629

1)1 C01)l I) AI)DRLSSI S

K(I.'.I IXX)0I 1-(1 Fill
II 11)1 S'l)I)KA: I 110111

-	 (lOS: 100311
?	 l'OKFIFJI)OKFI. 100511

I	 I	 CKII:IIXl71I

Design Problems

0 =Ii(()IIMS
K UI MIS

:ij	 J	 ia	 2Ij1;I:.III2!flj2.-I,II-4
1&A	 (t.KiTi7i7

MC68000	 I) -1)lI

	

VM -\ UI)S 1 13S A:-'	 1)7-tX)	 All-Al	 l)IAIl

	

I=T	 A	 A

	

k'2	 I-I1	 K

211	 2.11	 I	 Is I	 "-I
(52 CSI CS))	 RSI RS()	 1)7-I))

CIII
2L	 CAl

(,1121 (01)1)).
lZ[S[I	 IRQA

21 lij\\'	 roR I II	 PURl A IX) lI
I	 I	 I	 IS	 II	 1, 1 2

cCG.D	 cCGNI)	 cCc.NII	
I4

Xl	 KJ	 iI	 KI	 RI

1)0-1)7	 Tv

All -Al I
2710

101)1))
VCC

INI)

CL

D1)-IX

All-All

001))

UNI)

J 1

ffla

FIGURE 10.8 Detailed hardware sçheniatic.

A 12 is used to select between the 271 Os and the 6821 (0 for 2716s and 1 for 6821). Memory

access for the EPROMs is asynchronous, while the 6821 is synchronized with the E-clock. A 12

is inverted, through the buffer, so the output of the inverter goes to CS2 of the 6821 and also

to VP1\ of the 68000 for synchronization. 'l'he 68000 \'MA pin is also buffered and inverted

and it goes to CSO of the 6821. Ihe 6821 is chosen to he odd, so CSi is activated by the

inverted LDS line. hinally, address lines A I and A2 are connected to RSO and RS I, respectively.

The CE for the two 2716s comes from two NAND gates. They are the results of the inverted

Al2 NANDed with the inverted IDS or the inverted UDS, depending on whether the

630	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

EPROM is odd or even. The DTACK pin of the 68000 and the OE pins of the 27l6s are
activated by the signal of R/ W inverted. When the 68000 wants to read the EPROMs this
signal will be high, so its inverted signal will provide a low to DTACK. This does not cause
any problem because when the 68000 accesses the 6821, VPA is activated and so the 68000
will not look for DTACK.

The configuration above causes the memory map to be as follows:

	

A23 ... A13 Al2AI1AI0A9A8A7A6A5A4 A3A2A1	 HEX

4Kof	 0 0 	 0	 0 0 0 0 0 0 0 0 0 0 0	 00000016
EPROM	 THROUGH	 to
Mcniory	 0 0 	 0	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

PA/DDRAO 0	 1	 00000000001	 001001

CRA	 00	 1	 0 0 0 0 0 0 0 0 0 1	 1	 00I0036

P11/DORIs 0 0	 1 0 0 0 0 0 0 0 0 1 0	 1	 001005

CR11	 () 0	 1	 0 0 0	 0 0 0 0 0	 1	 1	 I	 1	 00100716

10.3.2.a.iv I/O. There are 3 seven-segments displays in the system (11311), an LED, and 3 switches.
The 3 displays have internal lat':hes and hex decoders. So the two least significant displays are
connected directly to port B of the 6821 chip, and the most significant display is connected to
the upper 4 hits of port A. The latches are tied to grcund so -is to enable the displays at all times.
The LED, when ON, will indicate that the display is in the BCD mode. Each of the three
switches, double-pole single throw type, with LED indicator arc connected to the lowest 3 bits
of port A.

10.3 .2.a.v Unused-Input Pins Connection. For the 68000 there are 6 unused, active-low, input ps
which must be disabled by connecting them to 5V. These are IPLO, IPL 1, IPL 2, I3ERR, BR,
and BGACK. Two of the 6821 unused pins (IRQA and IRQI3) are also disabled this way,
while CAl and CBI are disabled by connecting them to ground.

10.3.2.b Microcomputer Development System

Hewlett-Packard (HP) 64000 is used to design, develop, debug, and emulate (lie 68000-based
system. Some details are given in this section.

The emulator is a very important part of the development of the software and hardware of
the system. The 68000 emulator has most of the functions for emulation such as display
memory or registers, modify memory or registers. But there is no single-step function. The HP
64000 emulator is divided into three modes of operations: initialization, emulation, and
EPROM programming.

1 0,3.2.b.i Initialization

Edit. The edit function is used to create the application program in mnemonic form. The
first line of the program must be "68000" to indicate that the program is to be assembled by
the 68000 assembler, and that a 68000 microprocessor is to be used for emulation.

Assemble. When the application program has been completed and properly edited, the file
is then assembled into a relocatable object code file. All errors indicated by the assembler
should be corrected at this point.

Design Problems	 631

In order to use the 68000 emulator special functions, a special monitor program is required.
This can be copied as follows:

COPY Mon_68K:HP:source to MON68K

Note upper and lower case. Once this monitor is copied, it must be assembled for no errors.
Assume MON_68K as user file name.

Linking. The two relocatable files must be linked together to create an absolute file for the
emulation process. The files can be linked as follows:

Link <Cr>
Object files? Mon _68K
Library file? <Cr>
Prog, Data, Comm = 000100H, 00000011, 00000011

More files? yes
Object file? (name of application program file)

Library file? <Cr>
Prog, Data, Comm = 00110011, 00000011, 00000011
More files? no
Absolute file? (name of absolute file)

There are reasons why the two files were linked this way. The monitor program must be

stored at 0100H through 0FPlH, and since this I/O port is mapped starting at 100IH, the
application program must be stored starting at a different address, so 110011 was used. Also,

addres .s 000H through 0FIP is used for exception vectors by the 68000 microprocessor.

10.3,2.b.i Emulation. The emulator was used as a replacement for the actual 68000 chip to test the
software logic and hardware before it was actually installed into the circuit.

To start the emulation process the following soft-key parameters were entered:

ENTJLATELOAD	 (absolute file name)

Processor clock?	 external

Restrict to real time?	 no

Memory block size? 	 256

Significant bits?	 20

Break on write to ROM? 	 yes

Memory map:
000011 thru OFFFH emulation RAN (monitor & exception vector)

100011 thru 1OFFH user RAN (I/O PORT addresses)
110011 thru 1FFFH emulation ROM (application program)

Modify simulated I/O?	 no

Reconfigure pod?	 no

Command file name?	 (name of emulation command file)

Note: Usually external clock requires external DTACK; however, since the system only has
EPROMs and for the purpose of emulation these EPROMs are not used, the external
DTACK is not required.

Once the required files and memory maps are loaded, the system is ready for emulation. The
monitor program must be running before the application program is executed. To run the
monitor program the following is used:

632	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Then the application program is run using:

run from 1100H <Cr>

Another important part that the user should keep in mind is the processor status. There are
three messages for the processor status which indicate that the emulator is not generating any
bus cycles. They are

1. Reset - Indicates that the user's hardware is asserting the Reset input. The condition
can only be terminated by releasing the user's hardware.

2. Wait Indicates that the 68000 is waiting for a DTACK or other memory response.
The condition can be terminated by asserting DTACK , BERR, VPA , or entering
"reset" from the keyboard.

3. No memory cycle - Indicates that the 68000 has executed a STOP instruction. The
condition can be terminated by asserting "break" or "reset" from the keyboard.

10.3.2.b.iii EPROM Programming. After the software and hardware have been emulated and they
work properly, the final step is to program the IiPROM and put the final circuit together. But
before this, the program must be changed to include the addresses fo the stack pointer and
the initial PC. This is done by using the "ORG" and "DC" assembler directives. Then this new
program is assembled and linked again. The EPROM is then programmed with the Contents
of this final "absolute file".

Programming EPROMs with the 1-11 1 6 ,1000 for 68000 is done by odd and even EPROMs.
program the lower S bits of data (odd ROM), the option bit 0 is selected, and bit 8 for the upper
8 hits (even ROM) is chosen as follows:

Prom_Prog	 <cr>
2716	 <Cr>
Program from	 (filename: absolute: bit 0 or 8)

Also, to check if the EPROM is clear, the command "checksum" is used and if the result is
F800H then the EPROM is clear.

10.3.2.c Software

The program consists of three major functions: initialize I/O ports and data registers, monitor
and debounce key switches, and increment, decrement, or change mode. The j) gram con-
figures port B of the 6821 as an output port which will be used to display the two lower
significant nibbles of data. The higher 4 bits of port A arc configured as output to display the
most significant nibble of the data. Bit 3 is also an output bit which turns ON and OFF the
LED. The lowest 3 bits of port A are configured as inputs to detect the positions of three key
switches. Register D3 is used to store the data in hex. Registers D4 and D7 are used to store
the data in BCD mode with the low order byte in D4 and the high order byte in D7. Bit 3 of
DO contains a logic I representing IICD mode and logic 0 representing hex mode. Register D5
contains a I which will be used for incrementing IICD data, since ABCD doesn't have
immediate mode. Register D6 contains 999 which is used for decremcntiiig BCD.

The program monitors the three switches and stores the three input bits into register DO if
any of the keys is pressed. The processor then waits until the depressed key is released and then
checks the input data one by one. The processor then branches to the increment, decrement,
or mode change routine according to the depressed key. After execution, the processor will
display the result oil 	 three seven-segment displays.

Figure 10.9 shows the software flowchart. Note that the flowchart and the corresponding
software does not include 'Mode LEE)' on/off feature.

Design I'rob]cins	 633

Start -	 2

Display

Port AO-A2= Input
	 Test bit 3 of DO

Port A3-A7=0utput
Port BO-87=Output

Z flag
Clear PA, PB,	 Test bit 0 of Dl
DO. 03, D5=O1H;
D6=909H

Scan

Input from PA to
Dl; mask out least
3-bits.

Z flag

INCR

Compare 03	 Test bit I of 0
to FFH

Display in
HEX mode

Display in
BCD mode

<Z flag)

Debounce: input
lower 3-bit again
and cmp. with 1st
input.

ZtlagZIlag

3	 K>Mqd

a
0 #01 D3 Compare D3

toOOH

ABCD.W 05, 04
Z flag

SUBO.W #01H,

ABCD.W 06, D4

2)--

	

I	 •'

0

KEYRL 1—

Check for key
release by ANDing
PA with 07H.

FIGURE 10.9 Software flowchart.

634	 Microprocos.sors and Microcoznpu ter- Based System Design, 2nd Edition

The assembly language program is listed below:

FILE: LAB2:KHOA22 HEWLETT-PACKARD: 68000 Assembler

1 w68000

2
3 *TH IS PROGRAM STARTS DISPLAYING 000 AND MONITORS THREE KEY*
4 *SWITCHES THEN INCREMENT, DECREMENT, OR CONVERT HEX TO BCD*
5 *OR VICE VERSA, DEPENDING ON WHICH KEY IS DEPRESSED, THE *
6 *DISPLAY GOES FROM 00-FF IN HEX MODE OR 00-255 IN BCDMODE*
7

000008 4238 1003
00000C 11FC OOFB

000012 OBF8 0002

SOURCE LINE

8 PA	 EQU	 001001H
9 DDRA	 EQU	 001001H
10 CRA	 EQU	 001003H
11 PB	 EQU	 00100511
12 DDP.B	 EQU	 001005H
13 CR11	 EQU	 001007H
14	 ORG	 00000000H
15	 DC.L	 OFFFFFFFFI-1
16	 DC.L	 START
17 *
18 * CONFIGURE THE INPUT AND OUTPUT PORTS,
19 * DISPLAY 000 ON THE 7-SEGMENT DISPLAYS,
20 * AND INITIALIZE ALL THE DATA REGISTERS.
21 * THE HEX MODE IS STORED IN D3 AND THE
22 * BCD MODE IS STORED IN D7 AND D4.
23 START CLR.B CRA
24	 MOVE.B #OF8H,DDRA ;BIT 0-2 OF

;PORT A AS
INPUT

25	 BSET.B #0211,CRA	 ;BIT 3-7 OF
;PORT AS OUT-
PUT

LOCATION OBJECT
CODE LINE

<1001>
<1001>
<1003>
<1005>
<1005>
<1007>

000000 FFFF FFFF
000004 0000 0008

000018 4238 1007	 26	 CLR.B	 CRB
00001C 11FC 00FF	 27	 MOVE.B #OFFH,DDRB ;ALL 8 BITS OF

;PORT B AS
OUTPUT

000022 08F8 0002
000028 4200
00002A 11C0 1001
00002E 11C0 1005
000032 4203
000034 4244
000036 7A01
000038 3C3C 099Q
00003C 4207

00003E 1238 1001

000042 0201 0007

28	 BSET.B #02H,CRB
29	 CLR.B	 DO
30	 MOVE.B DO, PA	 ;DISPLAY 000
31	 MOVE.B D0,PB
32	 CLR.B	 D3
33	 CLR,W	 D4
34	 MOVEQ.W #01H, D5
35	 MOVE .W #999H,D6
36	 CLR.B	 D7

*

38 * DEBOtJNCE THE KEY SWITCHES
39 *
40 SCAN	 MOVE.B PA,D1	 ;MONITOR THE

KEYS
41	 ANDI.B #07H,D1	 ;MASK OUT THE

;OUTPUT PINS

Design Problems	 635

FILE: LAB2:KHOA22 HEWLETT-PACKARD: 68000 Assembler (continued)

LOCATION OBJECT
CODE LINE	 SOURCE LINE

000046 67F6	 42	 BEQ	 SCAN	 ;IF NO KEY IS
;DEPRESSED GO TO
SCAN

000048 1438 1001	 43	 MOVE.B PA,D2	 ;READ THE DATA
AGAIN

00004C 0202 0007	 44	 ANDI.B #07H,D2
000050 B401 45 CMP.B D1,D2 ;CHECK TO SEE IF

;THE DATA REMAIN
UNCHANGED

000052 66EA	 46	 BNE	 SCAN	 ;IF IT CHANGES GO
;TO SCAN

47 *

48 * CHECK TO MAKE SURE THAT THE KEY IS
49 * RELEASED BEFORE THE NEXT KEY CAN BE
50 * ENTERED.

000054 1438 1001	 51 KEYRL MOVE.B PA,D2
000058 0202 0007	 52	 ANDI.B #07H,D2
00005C 66F6	 53	 BNE	 KEYRL

54 * CHECK TO SEE WHICH KEY HAS BEEN EN-
55 * TERED. BITS 0, 1, AND 2 OF Dl REPRESENT
56 * INCREMENT, DECREMENT, AND MODE EX-
57 * CHANGE RESPECTIVELY.

00005E 0801 0000	 58	 BTSTB #0H,D1
000062 6600 003C	 59	 BNE	 INCR	 ;IF BIT-0 OF Dl

;IS 1 GOTO INCR
000066 0801 0001	 60	 BTST.B #1H,D1
00006A 6700 0044	 61	 BEQ	 MODE	 ;IF BIT-1 IS 1

DECREMENT, OTHER-
;WISE GOTO MODE

62 *
63 * DECREMENT BOTH HEX AND BCD AT THE SAME
64 * TIME.

00006E 00O3 0000	 65	 CMPI.B #OOH,D3
000072 67CA	 66	 BEQ	 SCAN	 ;IF THE NUMBER IS

;0 NO DECREMENT,
;GOTO SCAN

000074 5303	 67	 SUBQ.B #1H,D3	 ; DECREMENT HEX BY 1
000076 C603	 68	 AND.B	 D3,D3	 ;CLEAR THE CARRY
000078 C906	 69	 ABCD.B D6,D4	 ;DECREMENT BCD BY

;1 BY ADDING IT
;WITH 999

00007A CF06	 70	 ABCD.B D6,D7
71 *

72 * DISPLAY THE NUMBER IN HEX IF BIT-3 OF
73 * DO IS 0, OTHERWISE DISPLAY IN BCD.
74 *

00007C 0800 0003	 75 DISPLAY BTST.B #3H,D0
000080 6700 0014	 76	 BEQ	 HEX	 ;IF BIT-3 OF DO

;IS 0, GOTO HEX
000084 11C4 1005	 77	 MOVE.B D4,PB	 ;OUTPUT THE LSB

;TO PORT B
000088 E94F	 78	 LSL.W #4H,D7 ;SHIFT LEFT 4

TIMES

636	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

FILE: LAB2:KHOA22 HEWLETT-PACKARD: 68000 Assembler (continued)

LOCATION OBJECT
CODE LINE	 SOURCE LINE

00008A 08C7 0003	 79	 BSET.B #3H,D7	 ;TURN OFF THE LED
00008E 11C7 1001	 80	 MOVE.B D7,PA	 ;OUTPUT THE MSB

;TO UPPER 4 BITS
;OF PORT A

000092 E84F
000094 60A8
000096 11CO 1001
00009A 11C3 1005

00009E 609E

81	 LSR.W	 #4,07
82	 BRA	 SCAN
83 HEX	 MOVE.B DO, PA	 ;OUTPUT OTO PORT A
84	 MOVE.B D3,PB	 ;OUTPUT THE HEX

;NUMBER TO PORT B
85	 BRA	 SCAN
86	 *
87	 * INCREMENT BOTH HEX AND BCD.
88	 *
89 INCR	 C1I.B #OFFH,D3
90	 BEQ	 SCAN	 IF THE NUMBER

;IS FF NO
INCREMENT

91	 ADDQ.B #111,03 ;INCREMENT HEX
;NUMBER BY 1

92	 CLR.B	 D2
93	 ABCD.B D5,D4	 ;INCREMENT LSB OF

;BCD BY 1
94 ABCD D2,07 ;INCREMENT MSB OF

;BCD BY 1 IF CARRY
;IS 1

95	 BRA	 DISPLAY
96 *
97 * EXCHANGE THE MODE THEN DISPLAY THE
98 * NUMBER.

0000BO 0840 0003
	

99 MODE	 BCHG	 0H,D0 ;EXCHANGE MODE BY
;CHANGING BIT-3
;OF DO

0000B4 6QC6	 100	 BRA	 DISPLAY
Errors = 0

LINE# SYMBOL TYPE REFERENCES

B	 U	 23,24,25,26,27,28,29,30,31,32,36,40,414344
45,51,52,58,60,65,67,68,69,70,75,77,79,80
83, 84, 89, 91,92

10
	

CRA	 A	 23,25
13
	

CRB	 A	 26,28
9
	

DORA	 A	 24
12
	

DDRB	 A	 27
75	 DISPLAY A	 95,100
83
	

HEX	 A	 76
89
	

INCR	 A	 59
5].	 KEYRL	 A	 53

L	 U	 15,16
99
	

MODE	 A	 61
8
	

PA	 A	 30,40,43,51,80,83
1].	 PB	 A	 31,77,84
40
	

SCAN	 A	 42, 46, 66, 82, 85, 90
23
	

START	 A	 16
W	 U	 33,34,35,78,81

0000AO 00O3 00FF
0000A4 6798

0000A6 5203

0000A8 4202
0000AA C905

0000AC CF02

0000AE 60CC

Design I'robleins	 637

TABLE 10.1 Memory Map

S00000040001lJ	 EPROM
S00300040031 : 1F	 RAM
S005000-$O05FI]	 DISPLAYS
s009000so09I : IF	 SWITCI I

10.3.3 Solution No. 2

The second solution approach uses interrupt I/O but no I/O ports.

10.3.3.a Hardware
The system includes a 3-digit display and three momentary function switches (increment,
(Iecrement, and mode select). In order to minimize the complexity of the project, no 1/0 chips
are used. Instead, a buffer and some latches are used as the 1/0 ports. The buffer is used to
input the status of the momentary switches and the latches arc used to input the information
coming from the data bus. To further the design, three TI 1.311 displays are used because they
contain internal data latches. Because the 68000 has 23 address lines (not including AO), the
memoryjincarly decoded. The even and odd memory chips are enabled by decoding pins
UDS, LDS, and AS.

To display the three-digit number, the data lines are connected to the inputs of the three
TIL3I 1 displays (D0—D3 = LSD, D4—D7 = middle digit, D8—D1 1 = MSD). The address strobe

AS) is NANDed with the address line A14 to latch the data onto the three displays. The
memory map for the displays is given in Table 10.1. Because of linear decoding, the problem
of foldback exists.

Two 2716s are used for the EPROM and two 6116s are used for the RAM. Both the RAM
and the EPROM chips are divided into even and odd memory. The configuration enables the
63000 to access all or all data bytes or a complete word in one bus cycle. The even
and odd select lines arc generated by ANDing the UDS and AS pins and the LDS and AS
pins, respectively. To access a word, both the even and the odd enable signals are asserted.
These signals are then NANDed with address lines A 12 and A 13 to select the EPROM and the
RAM, respectively (see Figure 10.10). The odd memory chip data lines are connected to DO—
D7 of the 68000. The even memory chip data lines are connected to D8—D 15. I'ablc 10.1 shows
the memory map.

In the system, the interrupt pins are implementejyANDing the status of the iorne'
switches and connecting the output of the gate to 1 P1.2. To achieve a level 5 interrupt, I PL I
and]PLO pins are connected to Vcc and ground, respectively (see Figure 10.10). To reduce
the number of components, the 68000 is instructed to_gerate all autovector to
service the interrupt. This is accomplished by asserting VPA and IPL2 at the same time. If
an interrupt occurs (switch pressed), the 6800() will compute the autvector number $1 D and
the vector qddress $74. The processor will then go to a .service routine that will find the switch
that was pressed.

A 1-MHz crystal oscillator is used to clock the processor. Since the 68000 is operating at
4 M1-Iz, AS is directly connected to IYl'ACK .'['his gave the EPROMs (450 ns access time) about
500 us to provide valid data. A reset circuit similar to the one used in the 8085_ystem is used
for the 68000-based microcomputer. l-Iowever, on the 68000, both the RESET and l-IAL'F
pins are tied together (see Figure 10.10). Figure 10.11 shows the board layout of all the chips.

10.3.3.b Software
The first major feature of the software is the inclusion of a start-up routine. The advantage of
the start-up routine is to visibly verily the system performance. For example, if one of the
displays malfunctions, the fault will not be known unless the user is able to see the display
patterns. This requirement leads to the development of a start-up routine in which all three

638	 Microprocessors and Microco!np tit erBased System Design, 2nd Edition
—A

,II:	

0)5 ______-	 Odd	 ___________
II)!)

Al?

CIK	 713S-	 AID AID

2716 716
ROM

1)lo
C0I

Ocd	 ULRR	
1)51)11Uk

llC.ACK

MC63000

Al-All

SOK	 RLSIT

hAil	 Al?
A13
	

All
All	 F	 CS	

CSAll	

All)'I NIT
LOW 0(1.1)7	 (.116	 L	 1
hIGH	 1)5 (III

_ _All,

(I 6
RAM l)7 RAM

I)	 II

-	 All	 Ill)IA
1)01)15	

10	 l)(1
OV^'

TIntl S

RI S

Cl
1)1
1)1

LI

Ill

Al

0)

LN

1K (5

1)15	

011

in

DI	

03

SW

FIGURE 10.10 68000-based systcnl for design problcm no. 2.

displays count F down to 0 (in parallel). This routine uses a 1)131? 100 1) in which the coun(crs
value is dup]icatcd to the two higher hex digits. The following is the actual start-up routine
implemented in the program.

MOVEQ	 #OFH,DO	 ; INITIALIZE LOOP COUNTER
TO $0000000F

LOOP MOVE.W DO,D].	 COPY DO TO Dl
ASL.W	 #4, D1	 ; SHIFT Dl LEFT 4 TIMES
ADD	 DO,D1	 ; ADD DO TO Dl
ASL.W	 #4.D1	 ; SHIFT Dl LEFT 4 TIMES

07

D5
D4
03
D2
Dl
DO

24
CE

21
j5L

19	 17
—22	 2716	 16
- 23 (ODD) 15
—Il	 14
—12	 13
—13	 11
—14	 10
—(5	 9
—(6
—17
—111	 12

ODD

Al2

All
Al 0

A')
From he A8

68000

AS
A4
A)
A2
Al

Design Problems	 639

ROM Connections

EVEN

Al2

All
A 10

A9
1mm Ilic All

68000

AS
A4
A3
A2
Al

21
CE

21
(IL

19	 17
22	 2716	 16

(EVEN)
2	 13
3	 Il
4	 10
5	 9

7
11	 12

IN

015
014
013
012
011
010
09
DII

+5

Im

FIGURE 10.10 continucil.

ADD. W
	

DO, DI
	

ADD DO TO Dl

MOVE W Dl, DISPADDR
	

SEND RESULT TO DISPLAY
MOVE. L #VISIBLE, D6
	

LOAD DELAY TIME

JSR
	

DELAY
	

CALL DELAY SUBROUTINE
DEF . W
	

DO, LOOP
	

DEC BRANCH IF DO :P^ —1, NOT
TO THE LOOP

CLR.L
	

DO
	

INITIALIZE COUNTER TO ZERO
CLR.L
	

D7
	

INITIALIZE MODE TO DECIMAL
MOVE. W DO, DISPADDR

	
INITIALIZE DISPLAYS TO ZERO

MOVE. W #INTRMASK, SR
	

SET INTR AT LEVEL 5 AND

SUPERVISOR MODE
WAIT BRA.B	 WAIT	 ; WAIT FOR INTERRUPT

Upon successful completion of the start-up routine, the software directs the 68000 to enter
an infinite wait loop. The wait loop serves to occupy the 68000 until a level S interrupt signals
the processor. Upon interrupt, SR is pushed and the PC is also stacked. The 68000 accesses the
long word located at address $74 and jumps to that service routine. The service routine exists
at location $500. In response to the interrupt, the soitware directs the 68000 to move in the

status switches to the low word of DO. A 'C"-type priority case statement executes.

640	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

RAM Connections

IN
EVEN

A13

All
All)
A)

irtnii I le	 All
(llOOO

A5
Al
AS)
A2
Al

Vcc
CL	 - 21lw -0 OE

19	 17
22	 611(16

([VEN)
2	 13
3	 II

10

7
Il	 12

RAW

015
D!4
I)).)
012
Dli
0)0
09
08

00))

Al)

All
A10
A)

Eroni lhe All
68000

AS
M
A)
A2
Al

24
VCC

— 22 6116

O(5i

23 (ODD) lii

it
4	 10

9

- 8	 12

RAW

07
06
D5
04
03
02
Dl
DO

IIGURE 10.10 co,,tis:uot

The case statement has the Priority of up, down, then mode. Implementation of the case
statement eliminates uncertainties when multiple keys are depressed. In the following, the case
statement is shown.

RESPONSE NOP	 ; ENTRY NO OPERATION
MOVE.W STATUS,D]. 	 ; MOVE IN BUTTON STATUS WORD
BTST.W #UPBIT,D1	 ; TEST INCREMENT BIT
BEQ.W INCREASE	 ; IF UPBIT=0 BRANCH TO INCREASE
BTST.W #DOINBIT,D1 ; TEST DECREMENT BIT
BEQ.W DECREASE	 ; IF DOWNBIT=O BRANCH TO

DECREASE
BTST.W #MODEBIT,D1. ; TEST MODEBIT
BEQ.B CHMODE,Di.	 ; IF MODEBIT=O BRANCH TO CHANGE

MODE
BRA.B RESPONSE	 ; NO RESPONSE, THEN SEARCH AGAIN

This segment utilizes the test bit facilities of the 68000. The algorithm first loads the
switches. The switch word is then tested by the 131ST instruction. The first bit test is the upbit.
If the bit is found to be 0, the program branches to an increase-update routine. If the downbit

Design Problems	 641

FIGURE 10.11	 Jtqard layout.

is Mind to be low, then the program reacts to decrement the displays. II the node bit is tound

low, then thu response is thlc' base cojiverston Ut the displayed output

T hC L!, er na y be tempted to inLlcflniteLy press a button or press muh1pe buttons. The liibit_

' ftc program implements a 0.1-second wait loop at the end of any press ala key.

lliis is 1 post-deboiticc. Without this feature, the 68000 will either Count or chaiu'e nodes at

speeds beyond recognition. The debounce routine ,tlso contains a priority. If the user con-

stantly depresses multiple keys, the 08000 will service the input with the highest priority.

At this point, a deviation of the oi'oblcm was made. The deviation was for ease of clicckin

OW the project. During chcekout, when one wanN to see a rollover, the increment or decre-

ment key must be pressed 255 times. This is futile. At the end of the service routine, the

software will not lock out a key entry, but rather the 68000 will immediately go to the wait state

where the next interrupt i-na y take piJCC. l, the user, it will appear that the 63000 is either

autoincrementing, autodecrcmentiug, or .utto;natically changing modes. the post- deL)oUrice

segment is displayed below.

VIEWER NOP	 ENTRY NO OPERATION

MOVE.1 #VISIBLE,D6	 PLACE DELAY INTO D6

642
	

Microprocessors ,and Microcomputer-Based System Desiz1, 2nd Edition

DELAY

JSR	 DELAY	 ; JUMP TO DELAY SUBROUTINE
RTE	 ; RETURN FROM EXCEPTION
NOP	 ; ENTRY NO OPERATION
DBF.W D6,DELAY	 ; DECREMENT FOR WAIT
RTS	 ; RETURN FROM SUBROUTINE

The debounce routine implements a dummy loop that utilizes a large loop count. The
routine is initialized by an imrncdiate move long to D6. The dcbouncc routine is called via the
jump subroutine command. The delay loop contains a no-operation to increase loop time.
After the NOP, the DBF.W will decrement D6 and branch if D6 is not equal to negative 1.

The software uses a hex base for counting; that is, all numbers whether decimal or hex will
originate from a hex byte in data register 0 (DO). The display status exists in data register 7
(D7), If the contents ofD7 are zero, this informs the program to display a decimal number on
the next update. Otherwise, the program will send a hex value to the display. & typical
decision-making segment (below) uses the 68000's ability to update flags on a move operation.

MOVE. D7, D7	 ; MOVE TO UPDATE FLAGS
BNE.B HEX	 ; IF Z0 THEN SEND HEX TO DISPLAYS
BRA,B DECIMAL ; OTHERWISE, DECIMAL TO DISPLAYS

To convert a hex number to decimal format) the program uses the division/modulo algo-
rithm shown in the following.

DECIMAl.. NOP
CLR.L
CLR. L
MOVE. B
D IVU

SWAP

MOVE. W
CLR.W
SWAP
DIVtJ
SWAP
AS L . W
ADD .W
SWAP
ASL.W
ASL. W
ADD
MOVE W

BRA. W

ENTRY NO OPERATION
INITIALIZE D2 TO ZERO
INITIALIZE Dl TO ZERO
COPY COUNT
DIVIDE Dl BY 10 MSD HEX -
DECIMAL
PLACE REMAINDER IN LOW WORD
Dl
MOVE REMAINDER TO 02
CLEAR REMAINDER
REPLACE REMAINDER
DIVIDE Dl BY 10
REMAINDER TO LOW WORD Dl
SHIFT REMAINDER UP ONE DIGIT
ADD IN SECOND SIG FIG

; REPLACE QUOTIENT
SHIFT QUOTIENT tip ONE DIGIT
SHIFT QUOTIENT ANOTHER DIGIT

; ,ADD IN LSD HEX JE DECIMAL
SEND DECIMAL RESULTS TO
DISPLAY

; CO TO DISPLAY BRANCH

D2
Di.
D0,D1
#10,01

Dl

01,02
Dl
Di.
#10, Dl
Dl

4 , Dl
Dl, D2
Dl
#4,01
#4,D1
Dl, 02
D2, DISPADDR

VIEWER

The algorithm exploits the DIVU (unsigned division) facilities of the 68000. The hex byte
is moved to a long word register with zero-extend (assumed by CLR.L followed by a MOVE.B
operation). The number is then divided by 10. The quotient remains in the low word of the
destination register (Dl); the remainder lies in the high word. With the use of SWAP, the
remainder and quotient words arc swapped. The remainder is moved (MOVE.W DID2) to
another register D2 (initialized to zero). At this point, the remainder is cleared in Dl, and swap
is used to rcpacc the quotient in the low word of Dl. The next lower significant digit is

Design Problems	 643

extracted. Again, DIVU uses an iminediatc source of 1O. The remainder in DI is swapped into
the low word, shifted up four times, then added to D2. The (1UOtiCllt is swapped back to the
low word, shifted left eight times, then added to D2. The result of this routine is (at most) a
three-digit BCD number which is suitable to send to the displays.

After the update of the displays, a time delay subroutine allows execution delays from
the order of microseconds to the order of seconds. The time delay subroutine is shown
below.

DELAY NOP	 ENTRY NO OPERATION
DBF.W D6,DELAY ; DECREMENT FOR WAIT
RTS	 ; RETURN FROM SUBROUTINE

The NOP serves to increase the delay time of the loop. The NOP takes'l clock cycles. DBRW
(decrement and branch on false) takes 10 clocks on branch and 14 on a skip. JSR (jump
subroutine) to the delay takes 23 cycles. The time analysis is simplified when consideration is
taken only of the duration of the delay loop. A suitable delay for this project is about 0.1 s. This
equates to (1-MHz clock) 1.6 million clock cycles! Because of the high number of cyces
required, the "calls" and "returns" can be avoided because of their insignificance whe
compared to the massive number of clock delays required. A delay of about 0.4 s is used, which
requires about 100,000 loops in the delay routine.

Sonic mention should be made of the mode feat ores of the software. The change mode
allows the user to liberally change the viewing format from hex to BCD or vice versa. The
activation of this software feature simply complements 1)7 and then updates the displays via
the previously mentioned methods. The increment facility increments DO and updates the
displays. Similarly, the decrement facility decrements DO and updates the displays.

Expansion of the system is possible. Maybe for user entertainment, an uptone or downtonc
Call implemented. The tone can he generated ili rough a variable delay routine. One of Us
address lines may be tied in series to a small speaker and every time the address is accessed, the
speaker will "tick". Otherwise, the software, as it is, is suitable for the project. A listing of the
assembly language program is provided below:

"68000"

Microcomputer Applications
H. Rafiquzzaman
Noveniber 9, 1987

This is the software routine for Design Problem
No.2
THE BCD<>HEX COUNTER
Language is 68000 MACRO

NAME
AUTO6	 EQU

TSTACK	 EQU
RESPONSE	 EQU

DISPADDR	 EQU
PCINIT	 EQU

BCD<>HEXCOUNrER
00000074H

000037FCH
00000500H

00005000H
00000400H

;SERVICE ROUTINE
;ADDRESS LOCATION
;STACK INITIALIZE
INTERRUPT VECTOR
ADDRESS
;ADDRESS OF DISPLAY
;PC STARTUP ADDRESS

644	 Microprocessors and Microcomputer-liaseci System Design, 2nd Edition

VISIBLE	 EQU	 OO100000H	 ;DELAY TIME APPROX. 0.4
SECONDS

UPEIT	 EQU	 OFH	 ;INCREMENT BIT LOCATION
DOWNBIT	 EQU	 OEH	 ;DECREMENT BIT LOCATION
MODEBIT	 EQU	 ODH	 ;MODE BIT LOCATION
STATUS	 EQU	 00009000H	 ;STATUS WORD LOCATION
INSTRMSK	 EQU	 2500H	 ;INTERRUPT MASK, LEVEL 7

Top of the stack, program origin, and interrupt service
; location

STARTUP
;INITIAL SUPERVISOR
;FIRST PROGRAM INSTR
LOC
;LOCATION OF AUTOVECTOR
;RESPONSE
;ADDRESS OF SERVICE
;ROUTINE 5
;ADDRESS OF SERVICE
ROUTINE 6
;ADDRESS OF SERVICE
;ROUTINE NMI

;BOOTUP AND TEST
;ROUTINE
;ENTRY NO OPERATION
;INITIALIZE LOOP
;COUNTER TO $0000000F
;COPY DO TO Dl
;SHIFT Dl LEFT FOUR
TIMES
;ADD DO TO Dl
;SHIFT Dl LEFT FOUR
TIMES
;ADD DO TO Dl
;SEND RESULT TO DISPLAY
;LOAD DELAY TIME
;CALL DELAY SUBROUTINE
;DEC BRANCH IF DO !
;-1, NOT TO LOOP
;INITIALIZE COUNTER TO
ZERO
;INITIALIZE MODE TO
;ZERO
;INITIALIZE DISPLAYS TO
ZERO
;SET INTR AT 5 AND
;SUPER MODE
;WAIT FOR INTERRUPT

;ENTRY NO OPERATION
;MOVE IN BUTTON STATUS
;WORD

ORG	 00000000H
DC.L	 TSTACK
DC.L	 PCINIT

ORG	 AUTO6

DC.L	 RESPONSE

DC.L	 RESPONSE

DC.L	 RESPONSE

Startup routine

ORG	 PCINIT

NOP
MOVEQ	 0FN,00

LOOP	 MOVE.W D0,D1
ASL.W	 #4,D1

ADD.W	 DO,D1
ASL.W	 #4,Dl

ADD.W	 DO, Dl
MOVE.W D1,DISPADDR
MOVE.L #VISIBLE,D6
JSR	 DELAY
DBF	 D0,LOOP

CLR.L DO

CLR.L	 D7

MOVE.W DO,DISPADDR

MOVE.W tINTRMASK, SR

WAIT	 BRA.B WAIT

3 INTERRUPT ROUTINE

ORG	 RESPONSE
RESPONSE	 NOP

MOVE.W STATUS,D1

Dc.sign Problems 645

;TEST INCREMENT HIT
;IF UPBITO THEN BRANCH
;TO INCREASE
;TEST DECREMENT BIT
IF DOWNBITO BRANCH TO
DECREASE
;TEST MODEBIT
;IF MODEBIT=O THEN
;BRANCH TO CHANGE MODE
;NO RESPONSE, THEN
SEARCH AGAIN

;ENTRY NO OPERATION
;COMPLEMENT MODE MASK
;IF EORI IS NOT ZERO
;THEN HEX OUT
;EORI IS ZERO, THEN
;DECIMAL OUT

;ENTRY NO OPERATION
;INCREMENT THE COUNT DO
;MOVE TO UPDATE FLAGS
IF Z0 THEN SEND HEX
;TO DISPLAYS
;OTHERWISE, DECIMAL TO
DISPLAYS

BTST.W #TJPHIT,Dl
BEQ.W INCREASE

BTST.W #DOWNBITID1
BEQ.W DECREASE

BTST.W #MODEBIT,D1
BEQ.B CHNODE,D1

BRA.B RESPONSE

Change mode and update displays

CHMODE	 NOP
EORI.B #OFFH,D7
BNE.B HEX

BRA.B DECIMAL

Increment display count

INCREASE	 NOF
ADDQB t!1,D0
MOVE.3 D7.D7
BNE.B HEX

BRA.B DECIMAL

Decrement display count

DECREASE	 NOP	 ;ENTRY NO OPERATION
SUBQ.B #1,DO	 ;DECREMENT COUNT
MOVE.B D7,D7	 MOVE TO UPDATE FLAGS
BNE.B HEX	 ;IF Z=O THEN SEND HEX

;TO DISPLAYS
BRA.B DECIMAL	 ;OTHERWISE, DECIMAL

DISPLAYS
This routine sends hex contents of DO to the displays

HEX	 NOP	 ;ENTRY NO OPERATION
MOVE.W DO,DISPAIDR	 ;BEX DATA IS SENT TO

DISPLAYS
BRA.W VIEWER	 ;GO TO DELAY BRANCH

HEX -4 Decimal converter

DECIMAL	 NOP
CLR,L D2
CLR.L Dl
MOVE.B D0,01
DIVU	 #10,D1

SWAP	 Dl

HOVE.W Dl, D2
CLR.W Dl

;ENTRY NO OPERATION
;INITIALIZE D2 TO ZERO
;INITIALIZE Dl TO ZERO
;COPY COUNT
;DIVIDE Dl BY 10 MSD
;HEX -4 DECIMAL
;PLACE REMAINDER IN LOW
;WORD Dl
MOVE REMAINDER TO D2
;CLEAR REMAINDER

646	 Microprocessors ciiid Mwrocompuicr-Based Sysciu Design. 2nd Edition

SWAP	 Dl	 ;REPLACE REMAINDER
DIVU	 #10,01	 ;DIVIDE Dl BY 10
SWAP	 Dl	 ;RF.MAINDEP. TO LOW WORD

;D1
ASL.W	 94,D1	 ;SHIFT REMAINDER (32 ONE

;DIGIT
ADD.W D1,D2	 ;ADD IN SECOND SIG FIG
SWAP	 Dl	 ;REPLACE QUOTIENT
ASL.W	 #4,D1	 ;SHIFT QUOTIENT LIP ONE

DIGIT
ASL.W #4,01	 ;SHIFT QUOTIENT ANOTHER

DIGIT
ADD	 D1,D2	 ;ADD IN LSD HEX —)

DECIMAL
MOVE.W D2,DISPADDR 	 ;SEND DECIMAL RESULTS

;TO DISPLAY
BRAW VIEWER	 ;GO TO DISPLAY BRANCH

This sends output to displays and implements delay of 0.7
seconds

VIEWER	 NOP	 ".iri.v
MOVE.L #VISIBLE,06
JSR	 DELAY

,	 ..	 SJt E..L'..tt.L .1. L)L'

;PLACE ENTRY INTO D6
;JUMP TO DELAY
SUBROUTINE
;RETURN FROM EXCEPTIONRTE

Delay subroutine

DELAY	 NOP
DBF . B
RTS

;ENTRY NO OPERATION
D6,DELAY	 ;DECREMENT FOR WAIT

;RETURN FROM
SUBROUTINE

The lollowing shows 68000 Delay An.iyss;

MOVE.L #VISIBLE,D6

.3SR	 DELAY

DELAY	 NOP

DBF	 D6,DELAY
RTS

Execution '[inic:

;MOVE IN DELAY LOOP
COUNT
;CALL SUBROUTINE TO
;DELAY LOOP
;TIME DELAY INCREASE
LOOP
DECREMENT BRANCH FALSE
;RETURN SUBROUTINE

MOVE L
JSR
NOP
DEF
RTS

REG
AD DR

PEG, ADDR

12
10
4
14/10
16

CLOCKS
CLOCKS
CLOCKS
CLOCKS
CLOCKS

First Pass: ti = 12 i 20 - 1 L't 50 CLOCKS

Middle Pass: t(n-2) (u - 2) (4 F 14) CLOCKS

Last Pass: to 4 + 10 + 16 = 30 CLOCKS

Design Problems	 647

General Pass: (for ri > 3)

Typical Pass: (for large n)

For 0.45-s delay with a 4-MI-li. clock, 1.8 million clock cycics are required (0.15 s was chosen
For ease of calculations).

Therefore,

18D = 1,800,000
n = 100,000

Figure 10,12 shows the flowchart for the start-up routine.

Initialization on
startup PC and

SSP loaded

Initialization for
Startup routine DO

jail. to count

Copy counter to
lower three

nibbles of Dl

Send Dl to
displays

Decrcment
DO= -1?

yes

Startup completed.
Wait for interrupt

lbl	 b lbt -

FIGURE 10.12 Start-u 1' routinc tluwJ,art.

648	 Microprocessors and Microcomputer- Based System Design, 2nd Edit 101

From Interrupt 6 Autovector

FIGURE, 10.12 cmai,,iwL

Questions and Problems

Design and develop the software and hardware for the following using a particular micropro-
cessor (unless mentioned) and its support chips with a microcomputer development system
of your choice.

10.1 Design and develop the hardware and software for a microproccssor-based system that
would measure, compute, and display the Root-Mean-Square (RMS) value of a sinusoidal
voltage. The system is required to:

1. Sample a 60-Hz sinusoidal voltage 128 times.
2. Digitize the sampled value through a microprocessor-controlled analog-to-digital

converter.

Design Problems	 649

3. Input the digitized value to the microprocessor using an interrupt.
4. Compute the RMS value of the waveform using the equation

Xi2
RMS value =

^[;N

where Xi's arc the samples and N is the total number of samples.
5. Display the RMS value using two digits.

10.2 Design a microcomputer-based capacitanct meter using the following RC circuit:

1K

1 IV
	

CT

The voltage across the capacitor is V0(t) = ke-. In one time constant RC, this voltage
is discharged to the value k/c. For a specific value of R, the value of the capacitor C = t/R,
where t is the time constant that can be counted by the microcomputer. Design the hardware
and software for a microprocessor to charge a capacitor by using a pulse to a voltage of up
to 10 V peak voltage via an amplifier. The microcomputer will then stop charging the
capacitor, measure the discharge time for one time constant, and compute the capacitor
value.

10.3 Design and develop the hardware and software for a microprocessor-based system to
drive a four-digit seven-segment display for displaying a number from 0000H to FFFPH.

10.4 Design a microprocessor-based digital clock to display time in hours, minutes, and
seconds on six-digit seven-segment displays in decimal.

10.5 Design a microcomputer-based temperature sensor. The microcomputer will measure
the temperature of a thermistor. The thermistor controls the timing pulse duration of a
monostabic multivibrator. By using a counter to convert the timing pulse to a decimal count,
the microcomputer will display the temperature in degrees Celsius.

10.6 Design a microprocessor-based system to test live different types of IC, namely, OR,
NOR, AND, NAND, and XOR. The system will apply inputs to each chip and read the output.
It will then compare the output with the truth table stored inside the memory. If the conipari-
son passes, a red LED will be turned OFF. If the comparison fails, the red LED will be turned
ON.

10.7 Design a microprocessor-based system that reads a thermistor via an A/D converter and
then displays the temperature in degrees Celsius on three seven-segment displays.

10:8 Design a microprocessor-based system to measure the power absorbed by a 1K resistor.
The system will input the voltage V across the 1K resistor and then compute the power using
V2/R.

650	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

1K

1H

10 sin 377

10.9 It is desired to design a priority vectored interrupt system using a daisy-chain structure
for a microcomputer. Assume that the system includes four interrupt devices DEVO, DEV1,

DEV3, which, during the interrupt sequence, place the respective instructions RSTO, RSTI,
RST3 on the data bus. Also assume that DEVO.....DEV3 are Teledyne 8703 A/D

converters (DEV3 highest, DEVO lowest priority) or equivalent.
i) Flowchart the problem to provide service routines for inputting the AID converters'

outputs.
ii) Design and develop the hardware and software.

10.10 It is desired to drive a six-digit display through six output lines of a microcomputer
system. Use six Texas Instruments TIL3 II, 14-pin MSI hexadecimal displays or equivalent:

i) Design the interface with mini in u in hardware.
ii) Flowchart the software.

iii) Convert the flowchart to the assembly language program.
iv) Implement the hardware and software.

10.11 Design a microcomputer-based combinational lock which has a combination of five
digits. The five digits arc entered from a hexadecimal keyboard and they are to be entered
within 10 s. If the right combination is entered within the same limit, the lock will open. If after
10 s either all five digits are not entered or a wrong combination is entered, then the display
will show an error signal by displaying "E". The system will then allow 5 s for the first digit to
be entered the second time. If after this time the digit is not entered, the system will turn ON
the alarm. If the second try fails, the alarm is also turned ON. When the alarm is ON, in order
to reset the system, power has to be turned OFF.

10,12 Design a microcomputer-based stopwatch. The stopwatch will operate ill follow-
ing way: the operator enters three digits (two digits for minutes and one digit for tenths of
minutes) from a keyboard and then presses the GO key. The system counts down the remain-
ing time on three seven-segment LED displays.

10.13 Design a microcomputer-based system as shown in the following diagram. The system
scans a 16-key keyboard and drives three seven-segment displays. The keyboard is a 4 x 4
matrix. The system will take each key pressed and scroll them in from the right side of the displays
and keep scrolling as each key is pressed. The leftmost digit is just discarded. The system
continues indefinitely. Do not use any keyboard encoder chip. Use the 68000 microprecessor.

Design Problems	 651

10.14 Design a microcomputer-based smart scale. The scale will measure the weight of an

object in the range of 0-5 lb. The scale will use a load cell as a sensor such as the one

manufactured by transducer, Inc. (Model # c462- 1 0- lOpl strain-gage load cell). This load ccli

converts a weight in the range of 0-10 lb to an analog electrical voltage in the range 0-20 mV.

The weight in lbs. and tenths should be displayed onto two BCD displays.

10.15 Design it microcomputer-based EPROM programmer to program a 2716.

10.16 Design a microcomputer-based system to control a stepper motor.

10.17 Design a microcomputer-based sprinkler control system.

10.18 Design a phone call controller. The controller will allow the user to pass only ten

random phone numbers chosen by the user. The controller will use the touch-tone frequencies

to encode the user information code numbers. A device will he used to decode the touch-tone

signals and convert each into a seven-hit word. A microprocessor Will then interpret this word

and see if it is it match with one of the ten different numbers chosen by the user. The ten

numbers are inputted by the user via the button from the touch-tone system. The controller
Will

have a manual override via the # but ton Irom the touch- tone system.

10.19 Design a microprocessor-based appointment reminder system with a clock. The sys-

tem will alert the user before the present appointment time. The user has to set the appoint-

ments into fixed slots; for example: 9 AM or 2 PM. The system will deliver a voice message such

as "Your next appointment is live minutes away" live minutes before the appointment time.

A real time clock is to be included in the system to display the current time and will show the

appointment time slots. You may use the Radio Shack SP0256 narrator speech processor.

10.20 Design a microcomputer-based autoraniged ohmmeter with a range of 1 ohm to 999

kohm as follows: the microcomputer generates a pulse to charge a capacitor up to 10 V peak

voltage through an amplifier and then stops charging the capacitor. The microcomputer

measures the discharge time of the capacitor for one time constant and then computes the

value of the resistor.

10.21 Interface two microcomputers to a pair 2K x S dual-ported RAMs (IDT7 132) without

using any bus locking mechanism, Two seven-segment displays will serve as an indicator. A

program will be written to verily the dual-ported RAM contents. One processor will write

some known data to (lie dual-ported RAM
and

the other processor will read and verily this

data against the known data.

10.22 Design a microcomputer-based low frequency (1 l-lz to 10 ki-lz) sine waveform

generator. One cycle of a sine wave will be divided into a certain number of equal intervals.

Each interval is defined as a phase increment. The precalculated sine values corresponding to

the intervals are stored in ROM. The frequency of the signal will be set up by switches. When

the system is started, the microprocessor will read the switches and will determine the time

delay corresponding to the phase increment. The microprocessor will follow the time mere-

merits to send data .to a D/i\ converter to convert the digital signal to an analog signal.

10.23 Design a microcomputer-based automobile alarm system. The purpose of this system

is to prevent intruders from stealing a car or having enough time to steal a stereo or other

valuable items in a car.

10.24 Design a microcomnputer-based three-axis robot arm controller. The microcomputer
vilI norfnriij mh.' rnlrii!idni,c ni,,t dn I/fl in rnntrnl ,nn'nn,,',,t nftI,n nm, 11i0 ,,,rrnrnn,,,1trr

652	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

will receive destination data from an external source and perform coordinate transformations
and boundary checking on the external data. It will then provide motor commands to the
motor controllers to move the arm to the esired position.

10.25 Design a microcomputer-based home controller system. The system will simulta-
neously control six sprinkler stations, a heater, an air conditioner, and a burglar alarm. The
system will contain a 12-hour clock and a temperature sensor. The user will program the
system through a keypad. The time and temperature will be entered to control the sprinklers,
the heater, and the A/C. The alarm will be armed or disarmed by entering a 4-digit code.

10.26 Design a microcomputer-based FM modulator. The microcomputer will read an
analog input, convert the signal to digital, and perform several data manipulations to generate
a digital representation of the FM signal. Finally, the microcomputer will convert the FM value
to an analog signal.

10.27 Design and develop a microcomputer-based system for F17 (Fast Fourier Transform)
computation. The microcomputer will sample eight data points using all converter and
compute the time-decimation UFT. After computation of the FF1', the result will be stored in
system RAM where it call 	 used by another program for signal processing.

