APPENDIX A

THE HEWLETT-PACKARD (HP)
64000

A.1 System Description

The HP 64000 Microprocessor Logic Development System is a universal
development system which provides all of the nccessary tools to create,
develop, modify, and debug software for microprocessor-based systems.
In-circuit emulation provides the capability of performing an in-depth
analysis of hardware and softwarc interfacing during the integration phase
of the development process.

The HP 64000 Microprocessor Logic Development System is a multi-
user development system, allowing up to as many as six users to operate on
the system simultancously. All users of the system sharc a line printcrand a
common data base in the form of a 12-megabyte Winchester Technology
Disc Drive or a selection of one to eight Multi-Access Controller (MAC)
disk drives connected to the system via the HP Interface Bus, commonly
referred to as HP-1B. Eight disk drives can provide up to 960 metabytes of
HP-formatted storage space.

653

654 Microprocessors and Microcomputer-Based System Design, 2nd Edition

A.2 Development Station Description

Figurc A.1 shows the front view of the HP 64000 Development Station.
The keyboard (Figure A.2) is divided into four areas: (1) an ASCII-
encoded typewriter-type keyboard; (2) a group of edit keys, which facilitate
movement of lext or cursor when in the edit modc; (3) special function keys,
for system rescl or pause or to aceess a command recall bufTer; (4) the all
important system “solt keys,” cight unobtrusive large key pads just
beneath the bezel which surrounds the display.

The soft keys provide a quick and casy means to invoke system
commands, virtually eliminating the typographical crrors one usually has
to contend with when having to enter commands character by character.
The definition of each soft key is written on the display just above the bezel.
The soft key syntax changes depending on the mode of operation and the

Tape drive

Special function
.—'/
] keys

—4

~__

Keyboard Edit keys PROM programmer
module

Figure A.1 Front view of the HP 64000 Development Station (Model 64100A).
Front Pancl: The seven major areas of the front panel are shown. Each area
provides the interface necessary to operate and control the system. CRT Display:
The CRT is a large-screen, rasler-scan magnetic display. Screen capacity is 25
rows and 80 columns of characters. The standard 128-character (upper and lower
casc) ASCII set can be displayed. A blinking underline cursor is present as the
prompt. Video enhancements are inverse video, blinking, and underline, Soft Keys:
Just below the CRT are cight unlabeled keys. Thesc keys are defined as the “soft
keys.™ Each key tics to the soft key label line at the bottom of the CRT. During
operation, the soft keys arc labeled on the CRT screen. Source: Courtesy of
Hewlett-Packard.

Appendix A

655

Figure A.2 Modcl 64100A keyboard. Source: Courltesy of Hewlett-Packard.

position of the cursor. This greatly enhances the ease of use of the system
since it provides a list of alternatives available and guides the operator to
use the system. In cases where the form of the input required is unknown,
brackets surrounding a key word, a syntactical variable will prompt the
user with the correct form of input the system expects.

The system display is a Raster Scan CRT which provides a display of 18
lines of text entry, a status line which always displays the system’s status
and date and time, three lines for command entry, and the soft key label
line which indicates the function of cach key. The display is 80 columns
wide, but with the edit keys the display can be rclocated to show text or
data out to 240 columns. This is convenient for adding comments and really
enhances the program documentation.

Other external station hardware includes RS232 ports for communica-
tion with cither Data Communications Equipment (DCE) or Data Termi-
nal Equipment (DTE). The RS232 port has a selectable baud rate up to
9,600 and uscs the X-ON X-OFF convention for handshaking at baud rates
2,400 and above. There is a 20-mA current loop for TTY interfacing and
two ports for triggering of external devices such as an oscillos€ope during a
logic trace. As systcm options, the front panel hosts a PROM programmer
(Figure A.1) to the immediate right of the keyboard and a tape drive for
file back-up. The tape drive pe:fr rms a high-speed rcad and write and each
cassctte holds 250K bytes of data.

620

Microprocessors and Microcomputer-Based System Design, 2nd Edition

Figure A.3 shows special function keys and Table A.1 summarizes their functions.

Figure A.3 Special function keys. Source: Courtesy of Hewlett-Packard.

Table A.1 Summary of Special Functions Keys

RECALL

CAPS LOCK

Press to clear the current line containing cursor on the CRT.

Used to recall, to the command line, previous commands from
a stack. The commands are displayed one at a time for each
time the key is pressed. The number of recallable
commands is variable. Only valid commands are pushed into
the stack. If the key is pressed and the buffer is empty
the system responds with ‘‘Recall buffer is empty'' message.

Used to lock keyboard in all uppercase letters. A message is
presented on the CRT indicating “CAPS LOCK on' or ""CAPS
LOCK off.” At the next key stroke, the message is erased, but
the mode remains in effect.

Pressing once initiates a pause in system operation. A
flashing *"PAUSED" message, in inverse video, is presented on
the status line. To continue operation, press any key except

(e

Pressing the key the second time will clear the CRT
and return the system to the system monitor.

Holding the key down and pressing [meser Jinitiates

a ‘complete system reboot. This function should be regarded
as a last resort when the system does not respond.

Holding key down and pressing initiates system

performance verification.

Source: Courltesy of Hewlett-Packard.

-

Appendix A 657

The following summarizes the HP 64000 soft keys, commands, assembler error
codes, and other features.

System Monitor Soft Keys
The following provides a description ‘of the system monitor soft keys:

userid The userid or user identification identifics cach uscr as
being unique within the system. This facilitates file
management in that once the userid command is
invoked all future references to files will be to files
within that userid unless explicitly stated otherwisc.
The HP 64000 uses six characters and must begin with
an uppercase alpha character.

time HH:MM. Allows the user to enter the correct time on
the 24-hour clock displayed on the status line. This
also facilitates file management since files can be
referenced by time and date.

date DD/MM/YY. (Day/Month/Ycar) Allows the uscr
to enter the correct date into the system. This aids the
file management system since files can be referenced
by date and time.

store This command will transfer files from the disk to the
tape cartridge. The user specifies the file name and file
type or all files. If all files are specified the system will
store only the source files, linker command files, and
emulator command files. Other file types may be
stored but the file type must be specified. Other file
types can readily be regenerated. This command will
overwrite any previous contents of the tape cartridge.

658 Microprocessors and Mz'crocomputex:-ﬂnscd System Design, 2nd Edition

append

verify

restore

purge

recover

" rename

copy

directory

library

log

(CMD_FILE)

Allows files to be appended to files previously stored on
tape.

Verify compares a file on the disk to a file resident on
the tape cartridge. The uscr has the option of speci-
fying a single file or all files on the tape assigned to the
current userid.

This command will transfer files from the tape car-
tridge to the disk. The user can specify file name or
names and file type.

This command will remove specified files from the
active file list. A purged file can be recovered provid-
ing it has not been written over,

Recover is used to recover files which have been
purged. Files, if not written over, will be returned to
the active file list.

Allows the user to rename files. This is used to rename
a file before recovering a previous file with the same
name. This command also allows the user to transfer a
file from one userid to another userid.

Copy allows a disk file to be copied to, or from, the
tape, display, or another file name or the RS232 port.
The current display or a file may be copied to the
printer.

This command provides a listing of those files on the
disk, the tape cartridge, and those recoverable files.
The listing information consists of file name, file type,
file size, last modified data, and last access date.
Options: A directory can be made to include all
userids, all types of files, before or after a specified
date a filc has been accessed or modified, and files on a
specified disk unit.

This command is used to build libraries of relocatable
files for use by the linker, These library files consist of
relocatable files to be selectively loaded by the linker.
This creates a command file for all legal keystrokes.
The log function is either toggled on or off by the “log”
soft key.

This soft key represents a syntactical variable to be
supplied by the user. This variable is a file name
consisting of system commands which the develop-
ment system will cxecute. A command file can be
generated through the use of the editor or by using the
log soft key.

Appendix A

Editor Commands

659

The 64000 editor commands are listed below:

revise

delete

find

replace

(linc #)

end

merge

copy

extract

This mode is toggled ON and OFF and allows text to be
modified. Modification may include character insertion or
deletion. All appropriate command soft keys including
“insert” arc operational within the “revise” mode.

This modc allows deletion of onc line or a group of lines
specified by the limit specified. The syntax “thru™ includes
deletion of the limit while the syntax “until” is not inclusive
of the limit. The limit can be specified as a line #, string
within a linc, or as a start or end of text.

This command allows the uscr to scarch the text for the
occurrence of the string. The find parameters include a
(string) consisting of a single character or any combination
of characters; (limit) allows the uscr to specify the bounda-
rics of the search.

This command allows text replacement of a string, a charac-
ter, partial string with another character, string or partial
string. There is an optional (limit) parameter that can
specify boundaries of replacement. [

This command causes the line to become the current line of
text.

This terminates the edit session and directs it to a specific
destination. Usually this destination is a new file name. If no
new file name is specified, the edit session terminates by
purging the original file and replacing it with the edited
file.

Merge allows the user to merge an entire file or portions of it
into the file being cdited. Any text added to the file being
cdited will be added after the current line. Delimiters can be
specified to determine.the amount to be merged.

Copy places specificd text into a temporary storage buffer
on disk for future usc. The copy command will overwrite any
text previously stored in the buffer. This is avoided by
sclecting the append option. The default value for (limit) is
the current line only.

This command removes the specificd lines and places them
into temporary storage spacc. If the append option is not |
selected, the extracted text will overwrite previously stored
text. If (limit) is not specified, the current line will be
cxtracted,

660 Microprocessors and Microcomputer-Based System Design, 2nd Editjon

retricve

insert

list

renumber

repeat

tabset

range

autotab

This command retrieves the text from temporary storage
and inserts into the program following the current line. The
user has the option regarding the number of times the text is
to be retrieved.

This allows insertion of a combination of ASCII characters,
after the current line of text. Insert is executable in the
command mode, revise and insert mode.

This allows the user to list a file to another file or to a printer
in' numbered or unnumbered format. The listing will be
exactly like the file text. There is also a (limit) option
available.

This command renumbers the edited text starting from line
one. .

Repeat allows the user to duplicate the current line of text
and add it immediately after the current line. The user can
specily the number of times the repeat command is exe-
cuted.

This command allows the user to set tabs in the desired
column. The user has the choice of all 240 columns. Any
character can be used to set tabs in any desired location.
Range restricts the columns to which find and replace
commands arc constrained. Columns 1 through 2406 can be
specified. The range function is toggled ON and OFF.
When ON, the label range displays in inverse video.

This function provides an automatic tab function that is
based on the first nonblank column of the previous line of
text. Depressing the shift and the tab keys simultaneously
allows tab back from autotab position.

Assembler Soft Key Definitions

The following provides the definitions of the 64000 assembler soft keys.

Key Label

Definition

(FILE) This indicates the name of the source file that will be assem-
bled.

listfile This soft key specifies the destination of the assembler’s output.
The options available are listing the output to a specified file, to
the display, to the printer, or to null (no generation of a list). If
no list file option is specified, the assembler output listing
defaults to the device previously specified by the user when the
userid was declared.

A pps}zdix A

options

list
nolist

cxpand
nocode

xrefl

661

This soft key provides the user with a sclection of five options
specifying the type of output listing.

This provides a listing of the source program excluding macro
or data cxpansion. All no list pscudainstructions in the source
codc arc ignored.

Sclection of this soft key provides no listing except error
messages. All list pscudoinstructions in the source code are
ignored.

This soft key lists all source and macro gencrated codes. All list
pscudoinstructions in the source program are ignored.

This option causes Lthe source program to be assembled without
placing it in a rclocatable file.

The selection of this option turns on the symbol cross-reference
feature of the assembler and lists this table.

Assembler Pseudoinstructions

Pscudoinstructions arc instructions used only by the assembler. They
produce no exccutable code for the processor and normally do not take up
any memory locations. They arc used by the assembler to make program-
ming casicr. The following list contains those pscudo ops and their
definitions supported by the HP 64000 assembler.

Op Code

ASC
BIN
COMN

DATA

DEC
END

EQU

Function

Stores data in memory in ASCII format.

Stores data in memory in binary format.

Assigns common block of data or code to a specific location
in memory,

Assigns data to a specific location in memory.

Stores data in memory in decimal format.

Terminates the logical end of a program module. Operand
ficld can be used to indicate starting address in memory for
program cxecution. '
Defines label ficld with operand ficld value. Symbol cannot
be redelined.

EXPAND Causes an output listing of all source and macro gencrated

EXT
GLB
HEX
LIST

codes.

Indicates symbol defined in another program module.
Defines a global symbol that is used by other modules.
Stores data in memory in hexadecimal format.

Used to modify output listing of program.

662 Microprocessors and Microcomputer-Based System Design, 2nd Edition

MASK Performs and/or logical operations on designated ASCII

string,.

NAME Permits user to add comments for reference in the linker

list.

NOLIST Suppresscs output listings (except error messages).

ORG Scts program counter to specific memory address for
absolute programming.

PROG Assigns source statements to a specific location in memory.
Assembler default condition is “PROG storage area.

REPT Enables user to repeat a source statement any given
number of times.

SKIP Enables user to skip to a new page to continue program
listing.

SPC Enables uscr to gencrate blank lines within program list-
ing.

TITLE Enables user to create a text line at the top of each page

listing for the source program.,

The following pscudo ops arc for the 8080 and 8085 assembler.

DB

DS

DW

Stores data in consccutive memory locations starting with the
current setting of the program counter.

Reserves the number of bytes of memory as indicated by the value
in the operand field.

The define word pscudo stores each 16-bit value in the operand
ficld as an address with the least significant byte stored at the
current setting of the program counter. The most significant is
byte stored at the next higher location.

Assembler Error Codes

The following provides a description of the 64000 assembler crror codes.

Error Code Definition

AS
CL

DE

ASCII string; the length of the ASCII string was not valid or the
string was not terminated properly.

Conditional label: Syntax of a conditional macro source state-
ment requires a conditional label that is missing.

Definition error: Indicated symbol must be defined prior to its
being referenced. Symbol may be defined later in the program
sequence. '

Appendix A

DS

DZ

EG
EO

ES

ET

IC
1E

10

IP
IS

LR

MC

MD

ML
MM

MO

MP
MS

Duplicate Symbol: Indicates that the
previously defined in the program. Th
symbol is equated to two values (using
the same symbol labels two instruction
Division by zero: Invalid mathematica
assembler trying to divide by zero.
External Global: Externals cannot be
External Overflow: Program module
rations (512 externals maximum).
Expanded Source: Indicates insuff
perform macro expansion. It could
arguments being specified for a pe
many symbols being cntered into th
Expression Type: The resulting t
Absolute cxpression was expected
contains an illegal combination
Chapter 2 of the Assembler Mani
Illegal Constant: Indicates that
constant that is not valid.

Illegal Expression: Specified exp
invalid term was found within t!
Invalid Operand: Specified o
inaccurately used for this oper
pected operand is encountered
required operand is an expre:
first item in the operand field '
Illcgal Parameter: lllegal par
[llegal Symbol: Syntax expec
illegal character or token.

Legal Range: Address or dis

ter to exceed the maximum
addressing capability.

Macro Condition: Relatior
invalid.

Macro Definition: Macro
source file. Macro definiti

Macro Label: Label not f
Missing Mend: Indicate:

mend directive was inclu

Missing Operator: An a

not found.

Mismatched Parenthes

Macro Symbol: A loc

found.

663

symbol has been
's when the same
rective) or when

n resulting in the

s globals.
1ay external decla-

buffer area to
alt of too many
stitution, or too
inition,
ression is invalid,
sund or expression
ble types (refer to
s and conventions).
ibler encountered a

ither incomplete or an

on.

cither incomplete or
» occurs when an unex-
crand is missing. If the

error indicates that the

the macro header.
ifier and encountered an

{ causcs the location coun-
ocation of the instruction’s

ional) operator in macro is

before being defined in the
ccede the call.
n the macro body.
«cro definition with a missing
program.
perator was expected but was

right or left parenthesis.
within a macro body was not

664 Micropro

NM

PC
PE

RC
RM

SE
TR

uc
uo

Up

us

cessors and Microcomputer-Based System Design, 2nd Edition

Nested Macro: A macro definition is not permitted within
another macro.

Parameter Call: Invalid parameter in macro header.

Paremcter Error: An crror has been detected in the macro
parameter listed in the source statement.

Repeat Call: Repeat cannot precede a macro call.

Repeat Macro: The repeat pseudo operation code cannot precede
a macro definition.

Stack Error: Indicates that a statement or cxpression does not
conform to the required syntax.

Text Replacement: Indicates that the specified text replacement
string is invalid.

Undefined Conditional: Conditional operation code invalid.
Undefined Operation code: Operation code encountered is not
defined for the microprocessor, or the assembler disallows the
operation to be processed in its current context. This occurs when
the operation code is misspelled or an invalid delimiter follows
the label field. .

Undcfined Parameter: The parameter found in macro body was
not included in the macro header.

Undefined-Symbol: The indicated symbol is not defined as a label
or declared an external.

Linker Commands

The 6400
Key Labe

link

0 linker commands are defined below:
I Definition

Initiates the link process.

(CMDFILE) A syntactical variable supplied by the user. This would

listfile
display

(FILE)

null

be the name of linker command file previously cstab-
lished.

Allows the user to select a destination other than the
system default for the linker output listing.

Using this command designates the display as the output
destination for the linker output listing,

Syntactical variable supplied by the user. This would be
the name of a disk file to which the output of the linker
would be directed.

Using this command suppresses the output listing. Error
messages will still be output to the default destination as
previously selected by the user.

Appendix A 665

printer This designates the printer to be the destination of the
linker output listing.

oplions Soft key which precedes the selection of a linker option.

edit Available linker option to edit a previously established
linker command file. '

nolist Available linker option to suppress the gencration of a
linker load map.

Soft Key Definitions

The 64000 cmulator soft key definitions arc given below:

Label

run

step

trace

Description

This starts program exccution in the emulation processor.
Execution begins at the location specified by *‘from™ and
ending under the conditions specified by “until.” If no limits
arc specified, cmulation will begin at the current address until
halted by a *“‘stop run” or by a boundary specified by “until.”
Syntax: run from (ADDRESS OR SYMBOL) until (AD-
DRESS OR SYMBOL)
This function causes the emulation processor to execute onc
instruction at a time. Once in the step mode, each depression of
the return key will cause another instruction to be executed
and displayed. The user can specify the number of steps to be
exccuted cach time the return key is pressed and the address
from which stepping occurs. If these paramcters are not
specified, the system defaults to stepping from the current
program counter location, executing one instruction cach time
the return key is pressed.
Syntax: step # of (STATES) from (ADDRESS)
This key is used to control the analysis function of the system,
allowing the triggering and capturing of data of the emulation
data bus.
Synlax: trace in_scquence—permils tracing on a sequence
of cvents.
trace after—captures and displays data after the
trigger qualificr word is satisfied.
trace about—captures and displays data before and
after the trigger qualifier.
trace only—allows explicit definition of the informa-
tion to be captured in the trace.

666 Microprocessors and Microcomputer-Based System Design, 2nd Edition

trace continuous—allows continuous monitoring of
trace information without reentering the trace com-
mand.

display This command causes the system to display a variety of data
types on the devclopment station’s screen. Data types can be
specified as global symbols, local symbols, and last active trace
specification (valid only with the analysis card), the last active
run specification, the trace buffer (valid only with analysis
card), contents of proper emulation microprocessor registers,
absolute or relative time display (valid only with analysis
card), or contents of uscr or emulation memory.
Syntax: . display trace '
Syntax: display register (REGISTER NAME)
Syntax: display memory (ADDRESS)
Syntax: display trace specification
Syntax: display run specification
Syntax: display count
Syntax: display global symbols
Syntax: display local symbols

The mode option for the trace, register, and memory display provides the
user with a choice of how the data will be presented on the screen. The
following modes are defined:

static
dynamic
absolute
mnemonic
offset by
nd,;)ffsct
packed
block

modify

The system will display the current conditions or contents
one time only. No updatc will be shown.

The system will continually update the display as data are
changed in the emulation systcm

The system displays data in absolute numeric code. (J.(:..
hexadecimal or octal).

The system presents the data in the appropriate assembly
language.

The system displays program modules so that the address
values are offsct by a specified value.

The system displays all addresses in program modules with
those values assigned by the linking loader.

The system displays opcodes and operands on the same
line.

The system displays more data on the development station
by displaying multiple columns of data.

This command allows the user to change the contents of the
emulation memory or processor registers to correspond to
data entered from the console keyboard.

Syntax: modify (ADDRESS) to (VALUE)

Appendix A

stop

end

load

count

copy

list_to

restart

edit_cnfg

667

Syntax: modifly memory (ADDRESS) thru (AD-
DRESS) 1o (VALUE)
Syntax: modify register (REGISTER NAME) to (VAL-
UE)
This command halts the execution of either the run or trace
commands. If stop-run is executed, it can be continued by a
run command without skipping any of the intervening of
the program code.
Syntax: stoprun
Syntax: slop trace
Sclecting this soft key changes the operating modc of the
station, allowing other tasks to be performed. “end” docs
not stop the emulation process. Emulation continucs cven
as other functions are performed on the system.
Syntax: end_emulation
load_memory transfers abolute object files from the sys-
tem’s disk into emulation or user RAM mecmory.
Syntax: load memory (FILE)
The count command is used in conjunction with a trace
command. The count command is used to measure the
clapsed time or the number of times certain user-specified
cvents occurred between the start and end times specified
by the trace.
Syntax: count time

count address = (ADDRESS)
This command allows the user to transfer data from one
location of emulation or user memory to the system'’s disk.
The content of memory from which the data are taken
remains unchanged.
Syntax: copy (ADDRESS) thru (ADDRESS) to (FILE-
NAME)
This command allows the user to make a permanent record
of the contents ol the stations display by writing it to a file
on the disk or to the line printer.
Syntax: list display to printer
Syntax: list display to (FILE)
Upon initializing the restart command, the microproces-
sor's program counter is reset to 0000H and the processor is
reinitialized. It is important to execute the run command
from the appropriate place in emulation memory.
(Edit-Configuration). This command recalls the series of
querics which allows mapping of memory space and fault
sclection. When this command is invoked the previous
responses can be modificd by the user.
Syntax: edit_cnfg

668

Microprocessors and Microcomputer-Based System Design, 2nd Edition

Following arc the monitor level soft keys which will be in effect after
December 1981:

edit compile assemble link emulate prom_prog run ---etc--+

directory purge rename copy library recover log ---etc---
verid date&time opt_test terminal (CMDFILE) --TAPE--- --- etc---

“--TAPE---" Soft Key

After --TAPE--- is rcturned the following soft keys arc available.
slore restore append verify tension directory ---etc---

“'date&time’’ Soft Key

After date&time is depressed the following soft keys are available.
(DATE) (TIME)

“opt_test’ Soft Key

This exccutes option test, which provides performance verification tests for
options that are present.

Terminal Mode

“terminal Soft Key

This puts the station in an RS232 terminal mode which allows it to be a
terminal to another system.

Passwords

The capability to have increased file security using passwords has been
added. Following is the new syntax for userid.

"‘userid’’ Soft Key

After uscrid is depressed the following soft keys arc available.

(USERID) listfile

Appendix A

669

Aflter USERID is entered the following soft keys arc available.
listfile password

Alter password is entered the following soft keys are available.
(PASSWD)

The uscr4ypes in his password. This is nonprinting so he will not sec on the
display what he entered.

“HOST”” PASCAL

“HOST” PASCAL consists of a compiler to allow users of the 64000
system to write programs that will exccute on the internal host processor. In
order to exccule these programs the following syntax is used.

“run’’ Soft Key

After run is depressed the following soft key is available.
(FILE)

After a file is specified the following soft keys arc available.
input output

After input is depressed the following soft keys arc available.
(FILE) keyboard

After output is depressed the following soft keys are available.

(FILE) display display1 printer null

670 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Summary of the HP 64000 Development System

Example A-1 ,
This example shows how to create a new file and cdit it. The file to be created
is listed below:

"8085”
i THIS PROGRAM STARTS AT 0 AND ADDS LOCATION 100H TO
5 LOCATION 101H AND STORES THE RESULT IN LOCATION 102H
NAME "ADD_WORKSHOP_1"
ORG 2000H i PROGRAM ORIGIN WILL BE' AT
3 HEXADECIMAL 2000
START LXI H,100H i LOAD HL PAIR WITH 100H
MOV AM i MOVE NUMBER IN LOCATION 100
;. INTO THE ACC.
INX H . INCREMENT H AND L PAIR
ADD M ;. ADD LOCATION 101 TO ACCUMULATOR
INX H i INCREMENT HL PAIR
MOV M.A i STORE ACC IN LOCATION 102H
JMP START
Procedure

Step 1: Press soft key “userid” and type in your USERID. The HP doesn’t
ask for the time and date after you entar your USERID, Rather, you have to
press the soft key “Date&Time” 10 chang. ii.

Step 2: To enter the edit mode, you have to create a new file. We'll call this
new file “ADD".

edit into ADD (RETURN)

Step 2.5: Itis a good idea to set up tabs so that if you want to you may jump
to the opcode, operand or comment. You do this by pressing the softkey
“Tabset”. The editor will then display a tab row in which you can type “T" at
the current cursor position. Then when you want to move faster, the “tab” key
will jump to where you set your tabs. The way we did it was:

tabset 7 17 27 37

To save your tab sets, type the inverse softkey text “tabset” again.
Step 3: The first line of the program is the assembler dircctive, which lets
the assembler know what microprocessor you wish to emulate.

"8085" (RETURN)

Step 4: To enter comments, type a *“*" in column 1 and then start with your

comments. If you want to start it anywhere else on that line, typea ;" and enter
your comment.

Appendix A

671

* This is a comment (The "*" is at the leftmost edge of column 1)
; This is a comment (The *;" can be at any position).

Note: Your comments must come after you type “*” or *;”,
Step 5: Enter “Name" and a brief explanation of the file. This lets you know
what a particular file docs in case you have to link many files. This is optional.

(TAB) NAME (TAB) "ADD_WORKSHOP_|" (RETURN)

Step 6: Enter “ORG™ to let the assembler know the starting location of your
program — in this case, at 2000H.

(TAB) ORG (TAB) 2000H (TAB) ; COMMENTS (RETURN)

Step 7: Enter the label “START" at column 1 of the next line along with the
first instruction. This label helps the user to remember the English word rather
than what the number was, if the user wants to loop or jump to that part of the
program again.

START (TAB) LXI (TAB) H,100H (TAB) ; COMMENTS (RETURN)

Step 8: If you usc only a few labels in your program, it is wise to use the
softkey "AUTOTAB". This softkey jumps to the next line and moves the
cursor right under the first word of the previous line. This saves time. Also note
that the “TAB™ key can also do this if you specified the tab sets.

Step 9: Enter the rest of the program. This is the program listing called
“ADD", ‘

Step 10: To list your file to the printer, make sure the printer is on-line (the
light that’s adjacent to the word should be on; if not, push the “on-line" button
on the printer). Then type:

list printer all (RETURN)
Step-11: To save the file, type
end (RETURN)
Note: If your file wasn't named when you entered the edit mode, then type
end ADD (RETURN)

Step 12: The file is stored onto the hard drive or disk. To sce your file on
it, type

directory (RETURN)

672

Microprocessors and Microcomputer-Based System Design, 2nd Edition

You should then see the file “ADD" with the type “SOURCE". You will also
see when you last modified it and accessed it. This information is important,
so that you know how updated your file is. The directory listing will only show
those files under your USERID.

Step 13: To re-cdit the file, type

edit ADD (RETURN) '

Notice that you don’t type “edit into ADD". If you want to load your file from
a disk, you have to specify the drive number. For disk drive X, type “ADD: X",
where X is the disk drive number. If no drive number is specified, then the
default is 0.

Step 14: To usc the insert softkey, type a “NOP” afier line 9 by

9 (RETURN) .
insert (TAB) NOP (TAB) (TAB) ; NO OPERATION (RETURN)

Note: If you get an error, go to Step 15 and then back to 14. This may be
because the editor was trying to find line 9, but your file has line numbers
rcading “NEW” instead.)

Step 15: To renumber your file in order to give your editor a way to find
what linc to edit, type

renumber (RETURN)

Step 16: If your file is very large and you want to scarch your file for a
particular word like “NOP", type

find "NOP" all (RETURN)

Note: Remember to enclose all strings with double quotes. If not, the editor will
think it is a softkey command.
Step 17: To insert more lext, type

insert (RETURN)

then move the cursor up, down, or sideways and begin typing the new line.
Step 18: To revise a line, enter

revise (RETURN)

This edits the line that the cursor is on. If that line isn’t what you want, then
move the cursor using the cursor keys.

Step 19: To move the display to allow for viewing all of the columns,
depress the SHIFT and LEFT arrow keys simultancously. Hitting SHIFT and

Appendix A

Example

673

RIGHT keys will scroll the text right, To scroll the text up or down, hit the edit
key ROLL UP or ROLL DOWN, respectively.

Step 20: To insert or delete character(s) when revising, hit the edit key
INSERT CHAR or DELETE CHAR, respectively.

Step 21: To delete a line at the current cursor position, hit DELETE (RE-
TURN), If you want to delete a line somewhere else, type

extract (RETURN)
Then move the cursor to where you want to insert that line and type
retrieve (RETURN)

Note: If you want to insert many copies of that line at the current cursor

position, then type retrieve # (RETURN), where # is the number of copies.
Step 23: To abort the editor and not save your file, press the special function

key RESET twice. Pressing it once will pause a running listing or program.
Step 24: To replace a word with another word type

replace "word1" with "word2" all

This will replace all word1s and word2s. You can also specify where you want
to stop replacing by using thru or until a certain line number.

Step 25: The “copy"” command lets you copy a group of lines without
erasing those lines, like “extract” does. First, place the cursor at the starting
location line and then type

copy thru line # (RETURN)

where # is the last of your lines to copy. Next, move the cursor to the place
where you want it inserted, and type retrieve.

Step 26: The “merge” command lets you insert an entire file or copies a
block of lines like the “copy” command does. To merge a file, type

merge ADD (RETURN)
This lets you insert the file ADD at the current cursor position.

A-2
This example goes through the steps in assembling a file. Upon completion, it
will create a “reloc” file to be later used for linking purposes.

Procedure

Step 1: Enter your userid, and optionally enter the time and date. The HP
64000 already has the current date and time, so updating isn’t necessary.

O/ s

Microprocessors and Microcomputer-Based System Design, 2nd Edition

userid USERID (RETURN)

Step 2: To assemble your source file called “ADD” and make a printout of
it with the cross-reference table, type

assemble ADD listfile printer options xref (RETURN)

‘The printer will then output the assembled file that has both a source and object

listing. It will then show the cross-reference table that lists any labels you put
into that file and what lines accessed it or needed it to run.

Step 3: To show how the assembler command treats an error, we'll put one
in by doing this -

edit ADD (RETURN)

11 (RETURN)

insert (TAB) MVI (TAB) D,FFH (RETURN)
end (RETURN)

Step 4: Now assemble the file by typing the commands from Step 2. The
assembler treated “FFH" as a symbol, not a hex value, soit generated an error.
You will see the number of errors is one and that the error is an undefined’
symbol. On the xref table, FFH is a type U, which means it's undefined.

Step 5: To fix this error, all hex values beginning with an alpha character
must be preceded with a “0". Do this by

edit ADD (RETURN)

12 (RETURN)

revise (TAB) (TAB) D,0FFH (RETURN)
end (RETURN)

Step 6: Now assemble the file again, and this time list it to the screen or
display.

assemble ADD listfile display options xref (RETURN)

To pause the display from scrolling up so fast, type RESET. To resume
scrolling, type any other key.
Step 7: Your assembled file is stored on your USERID directory. To seé it

type
directory (RETURN)

You will then see two more “ADD" files with the type “reloc™ and “asmb_sym".

Appendix A 675

These files are useful for the assembler and linker programs. The “reloc” file
is an object file containing the hex values of your program. It then must be
made into an “absolute” file so it can run by itself.

Example A-3
This example goes through the steps in linking the “reloc” file to create an
“absolute” file. This new file can then be run independently, emulated, or even
used by the PROM programmer.

Procedure
Step 1: Initialize the linker and show the results to the display by

link listfile display (RETURN)
"Object files ?"

Step 2: This new message asks you what file(s) you want to be linked, so
type

ADD (RETURN)
"Library files ?"

Step 3: There are no library routines in “*“ADD” so skip it by’

(RETURN)
"Load addresses: PROG,DATA,COMN = 0000H,0000H,0000H"

Step 4: This command allows you to specify different memory areas for the
program, data, and common modules. No memory assignment is needed be-
cause the “ADD" file already has an ORG statement, so skip it by

(RETURN)
"More files ?"

Step 5: Since there is only one file to be linked, respond by

no (RETURN)
"LIST,XREF, overlap_check,comp_db = on off on off"

Step 6: The linker is prompting the user to specify the output and declaring
the default for the output listing. It then checks to see if your memory assign-
ments overlap as well. Ignore this and type

(RETURN)
"Absolute file name ?"

;;;

676 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Step 7: The linker wants you to enter the file name to be assigned to the
absolute file.

ADD (RETURN)
Step 8: You will then see the linker examining your file

"STATUS:Linker : HP 640000S linker: Pass1"
*"STATUS:Linker : HP 6400008 linker: Pass2"
"STATUS:Linker : HP 68400008 linker: End of link"

Note that the above display will be on a single line.

Step 9: The linker output will display the start and end location of your
program, the current date and time, the assembler pseudo name
“ADD_WORKSHOP_I", and extra data like XFER address and the total bytes
loaded.

Step 10: To view your new files on the directory, type

directory (RETURN)

You should then see three new files with types “link_sym”, “link_com"”, and
“absolute™. The absolute file is used for the emulator or the PROM program-
mer. The “link_com” is a command file that holds all of the data that you
entered from Steps 1 to 7. This is good if you want to keep the same link
configuration, but want to change or re-edit your source file(s).

If you want to save a linker listing to a file for later viewing type

link ADD listfile ADD_L (RETURN)

This will create a link listing similar to that of Step 9. Specifying “link ADD”
will tell the linker to link it using its “link_com™ file.

Example A-4
> This example goes through the steps of emulating an absolute file without
external hardware. This gives you a good idea of the importance of a develop-
ment system like the HP 64000.

Procedure
Step 1: Before beginning, you must go through Examples 1 through 3. Also,
the HP 64000 must have an 8085 emulator. If it is configured or has a 68000
emulator, emulation program will use only it, 50 be wary of this.
Step 2: To enter the emulation mode and load the absolute file do this

emulate load ADD (RETURN)
~ "Processor clock 7"

Appendix A

677

Step 3: This question asks if you want the source of the processor clock to
be internal or external. Since there is no external hardware being used, type

internal (RETURN)
"Restrict processor to real-time runs ?"

Step 4: This question asks if you want to restrict the processor to real-time
runs, which will limit the analysis functions that can be performed, such as
debugging your program. An cxample of this would be “display registers
blocked". So answer '

no (RETURN)
"Stop processor on illegal opcodes ?"

Step 5: Specify “yes” so that the emulator will stop if an illegal opcode is
detected.

yes (RETURN)

Step 6: The emulator will then want to specify the memory range for your
emulation ram/rom and user ram/rom. Since all memory is internal (no user
external hardware for this file), address 100H to 103H is used for storing the
variables used in the program. Define this to be emulation RAM. To protect
your program, define the memory to be emulation ROM. Thus, if something
writes to your program, it will generate an error.

100H thru 103H emulation ram
2000H thru 20FFH emulation rom

Also notice that the ram and rom ranges are from [00H-3FFH and 2000H-
20FFH. This may be because the emulator can only provide a range of memory
arca rather than a specified one.

Step 7: To keep your defined memory area, type

end (RETURN)
"Modify simulated /O 7"

Step 8: Since we are not using any I/O ports, type

no (RETURN)
"Modify interactive measurement specification ?"

Step 8.5: This question is not in the book so type

678

Microprocessors and Microcomputer-Based System Design, 2nd Edition

(RETURN)
"Command file name ?"

Step 9: The emulator wants you to specify a file name to which to assign the
emul_ com file configuration. Specify with

ADD (RETURN)

Once doing this, the emulator will then load your absolute file to the memory
arcas you specified. You should then see

"STATUS: 8085--Program loaded"

If you want to make any modifications, you have to start again, by re-editing,
assembling, linking and then emulating. If you want the same emulating con-
figuration that you specified in Steps 1 to 9, then type emulate ADD load
ADD. ’

Step 11: To display your program with mnemonics, type

display memory 2000H mnemonic (RETURN)

You should then see the locations with their corrzzponding instructions of your
program,

Step 12: To change the values that your program uses to add two numbers,
you have to modify the emulation RAM by

modify memory 100H thru 102H to 02H (RETURN)
display memory 100H blocked (RETURN)

You should now see a display of your edited bytes. The memory block map will
show you the address, data, and ASCII translation of each byte.
Step 13: To run your program, you can type either

run from 2000H (RETURN)

or

run from glob_sym START (RETURN)
"STATUS: 8085--Running"

Your program will keep running, so you can now modify the memory locations
from Step 12 to something else, and then see the changes,

Step 14: You can also single-step the program to execute a single instruction
at a time. This is a good debugging tool on the 64000.

Appendix A

679

break (RETURN)

"STATUS: 8085--break in background"
display registers (RETURN)

step from 2000H (RETURN)

or

step from glob_sym START (RETURN)
step (RETURN)
(RETURN)

Continuously pressing return will exccute the “step” command again. Remem-
ber that pressing “return” will executé anything on the command prompt, no
matter where the cursor is. You should then see a display of each instruction
being executed with its corresponding register values. This is really good be-
cause you can trace any program, and scan the instructions, registers, flags,

stack pointer, and the next IP.
Step 15: You can also set up breakpoints to stop the program when it reaches
a certain argument. An example of this would be “run” from 2000H until

address 2006H.
Step 16: To set up a breakpoint at address 2005H, type
run from 2000H until address 2005H (RETURN)
Step 17: Now say you want to halt the program after a memory write:
run from 2000H until status memory_write (RETURN)
. Step 18: To end the emulation session, type
end (RETURN)
You can also press “RESET" twice too.
Step 19: If you want to get back to the emulation and keep the same
emulator configuration, type
emulate ADD load ADD (RETURN)
If you want to change the emulator configuration type

modify_configuration (RETURN)

Note that the HP 64000 can perform in-circuit emulation with or without a
large-system hardware.

680 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Operation of the 68000 Emulator

In order to use the 68000 emulator, a monitor program must be included in the
linking of the user's program. The purpose of the monitor is to provide special
functions during emulation (including register display, software breakpoint
selting, ele.).)

The steps in the emulation process are as follows:

1. Create a program using the 64000's text edition.

A. Make sure that “68000", including quotations, is the first line in the
editor,

B. Make the sccond line in the application program "PROG", (This will
cause the monitor program to be successfully linked with the applica-
tion,)

C. Use “H" for Hex instead of “$" signs.

D. Write your application program.

Locate the program between OFFH and 10000H-application size.
2. Assemble the program you write by typing:

<Assemble> MON_B8K
3. Make a copy of the assembly program “MON_68K" by typing:
COPY Mon_68K:HP:source TO MON_68K

(Note upper and lower case. Type it exactly as shown.)
4. Now assemble this program by typing:

SOFTKEY
<Assemble> MON_68K

5. Now, the application and monitor program must be linked together. Type:

SOFTKEY

<LINK>

Object File? MYFILE

Library Files? <CR>

Prog,Data,Comn,AS= 000XXX,0H,0H,0H where XXX=100H to
' 10000H

More Files? <yes> Soft Key

Object Files? MON_68K

Library Files? <CR>

Prog,Data,Comn,A5= 10000H,0H,0H,0H

More Files? <No> Soft Key

Absolute File Name= MYFILE

Assume MYFILE is the name of your application program file.

Appendix A

A,

681

Notes: The monitor program is position independent. Since the
TARGET SYSTEM has limited address space, it is suggested that you
locate your program in THAT address range. Furthermore, this al-
lows the user to specify the monitor program’s address in upper-
address space and in emulation RAM.

Carc should be taken so that address ranges 000H—OFFH are re-
served for vectors, and that user program addresses do not conflict
with the monitor program whose size is about 1000 bytes. [locate
the monitor at address 10000H— 10FFFH.

6. Finally, the emulator is entered by answering questions with their default
values (unless the user wishes otherwisc).

A.

For the memory map, the following should be entered:

0000H-OFFFH Emulation ROM (Vectors, Interrupts, User Prog)

10000H-10FFFH Emulation RAM (Monitor Program)
OWWWH-0VVVH User RAM (other space for ports, tables, etc.

B.

%

2.

3.

that exist in either software or the target

system)
Some helpful commands during emulation (<XXXX> = Soft Key):
<Load> MYFILE Loads both your file and the
monitor program (linked)
<Moadify><Config> Lets you change the. emulator
configuration
<Modify><Softwre_bkpts> Modifies software breakpoints so

that you can stop program
execution anywhere

NOTE: The 68000 emulator DOES NOT allow single-stepping.

4.
5,

6.

<BREAK> Enter the monitor program
<DISPLAY><MEMORY> Display disassembled code
<MNEMONIC>

<MODIFY><REGISTER> Modify address space and
<MODIFY><MEMORY> registers

DO NOT put ORG statements in your program except for the interrupt
vectors.

APPENDIX B

. MOTOROLA

Advance Information

16-BIT MICROPROCESSING UNIT

Advances in semiconductor technology have provided the capability
1o place on a single silicon chip a microprocessecr at least an order of
magnitude higher in performance anJ circuit complexily than has been
previously available. The MCG8000 s the first of a family of such VLSI
microprocessors from Motoroli It combines state-of-the-art
techriology and advanced cicuit lesign techniques with computer
sciences to achieve an architecturaliy advanced 16-bit microprocessor.

The resources available to the MCB8000 user consist of the following:

@ 32.Bit Data and Address Registers

@ 16 Megabyte Direct Addressing Range

® 55 Powerlul Instruction Types

® Operations on Five Main Data Types

® Memory Mapped I/O

® 14 Addressing Modes

' As shown in the programming model, the MCB8000 offers seventeen
32-bit registers in addition to the 32-bil program counter and a 16-bil
slatlus register. The first eight registers {D0-O71 are used as data
registers lor byte 18-bit), word (16-bit), and long werd (32-bit) data
operations. The second set of seven registers (AD-A6) and the system
stack pointer may be used as soltware stack pointers and base address
registers. In addition, these registers may be used for word and long
word address operations. All seventeen regislers may be used as index
registers

MC68000L4
(4 MHz)

MC68000L6
(6 MHz)

MC68000L8
(8 MHz)

MC68000L10
(10 MHz)

HMOS

(HIGH-DENSITY, N-CHANNEL,
SILICON-GATE DEPLETION LOAD)

16-BIT
MICROPROCESSOR

L SUFFIX
CERAMIC PACKAGE
CASE 746

PROGRAMMING MODEL

3 16 15 87 0
T T)
[| | _|Do
- | | D1
| 1 | _|p2
| | p3 Eight
I~ =l Data
- | | _ e Registers
| | 8553
- | | D6
L 1 | G2
N 1615 0
= I _|A0
= | Al
L | _|A2 Sseven
| A3 Address
~ | Tl aq Registers
B | s
! A6
L - _U‘s;rgta; Pour:[;r_ - __]AT Two Stack
& Supervisor Stack Pointer -: Painters
T T T T T EmETT 0
L] Program
Counter
1 7
- = ﬂ'i 5 g Status
Systomn Byley User Byte] Regsster

64-pin dual in-line package

683

Microprocessors and Microcomputer-Based System Design, 2nd Edition
68-Terminal Chip Carrier

684

greSfnnstieteteuo i N
: YSiac1aca ; = 2~z
Seerv I T I QE03 0205020202 020208
nnAnNnNoaonAasnannn %) o -
no- 48 7 LJ0 S 020z 0202 030803020208
1ng- -1y . -
o%l -Otv O~05 0Z O©s050=
: i
20— = - =
¥ - & . | 020s= 0205
& 90~ 2 -ov E
S0 - i -5y : 0=z 0z = 0s0s
g o-dol- = ghrv 3 2t
2 - a. -
3 o- S g | O=0= 2 O 0=
= < ey
o =l O=0% OB O=
3

0803 OF "OZOBOs
O& O OFOE OF0E O $0OROEOR
0 OE 0-~ClE OE0z O OO0

- - = w - — o =] @ -

10

Appendix B

MOTOROLA

G685

MC68230L8
MC68230L10

Advance Information

MC68230 PARALLEL INTERFACE/TIMER

The MC68230 Parallel Interface/ Timer provides versatile doubie bul-
fered parallel interlaces and an operating system onented laner to
MC68000 sysiems The parallel interlaces operate in untdirectional or
bidirecuional modes, either B or 16 bis wide. In the unidirectuional
modes, an assoc:aled data direction register- deternungs whether the
porl pins are mputs or vutputs In the bidirectional modes the data
dircction registers are mnoted and the duection 15 determined
dynamically by the state of four handshake pins These programmable
handshake pins provide aninterlace fexitle enough lor connection 10 a
wide vanety ol low, medium, or high speed penpherals or other com-
puter systems. The P/ T potts allow use of vectiored or autovectored in-
werrupts, and also provide a DMA Request pin for conneclion 1o the
MCB8450 Direct Mermory Access Controller or a similargitcuit. The P/ T
umer contans a 24-bit wide counter and a 5-bit prescaler The umer
may be clocked by the system clock (PI/T CLK pinl or by an external
clock (TIN pinl, and a 5-bu prescaler can be used. It can generate
punodic ntenupts, @ square wave, or a single interrupt alier a pro-
grammed tme penod. Also it can be used lor elapsed nme measure-
tnent of as a device walchdog.

@ MCBB000 Bus Compatible
® Port Modes Include

Bu /O

Unidireclonal B-8it and 16-8Bn

Bidirectional 8-Biv and 16-8nt
Selectable Handshaking Qpuions
24-Bi Programmable Timer
Soliware Programmablie Twner Modes
Contains Interrupt Vector Generation Logic
Separate Port and Timer interrupt Service Requests
Registers are Read/Write and Directly Addressable
Registers are Addressed for MOVEP (Move Penpherall and DMAC
Compatitiliy

e o @ o o 0 @O

(HIGH-DENSITY N-CHANNEL

PARALLEL INTERFACE/TIMER

HMOS

SILICON-GATE)

P SUFFIX

PLASTIC PACKAGE
AVAILABLE 2082

L SUFFIX
CERAMIC PACKAGE
CASE 740

"PIN ASSIGNMENT

o5 [
o6 []
07 0
PAD [
ra1]

PA25
paaf] 7

PAa [
Pas [
ras [
FA?d
vee

H1 c

w2 g

H3
e
Po [
ro1 [
r82 [
Pa3
P4 (]
ras
Po6 [
o7 (]

= T & B SR S X)

1"

pEd

D4
D3

%
o}

i

NRwW

JOTACK

ncs

O CLK

AESET

0 Vss
pC7/TTACK

gpcorm

b Pes/PIRG

N PCa/DMARLO

pPC3’TQUT

32 Prearnn

31 pprcy

30 [J PCO

29 [RS1

28 I RS2

27 PDRS3

26 [1 RS4

25 PASS

e L8l 82888882338

686 Microprocessors and Microcomputer-Based System Design, 2nd Edition

@ MOTOROLA

MC6821
(1.0 MHz)

MeeRR2L

MC68B21
(2.0 MHz)

PERIPHERAL INTERFACE ADAPTER (PIA)

The MCB821 Perpheral Interlace Adapter prowvides the universal
means ol interfacing perpheral equipment to the MBBOG family of
microprocessors. This device 1s capable ol interfacing the MPU 1o
peripherals through two 8- it wdirectional penipheral data buses and
tour control hines. No external logic 1s required lor interfacing 10 most
pernipheral devices

The funcuional conligutaton ol the PIA 15 programmed by tha MPU
dunng systern imnhalizator. tach ol the penpheral data ines can be pro-
grammed 0 act as an npul of vulpul, and eéach of the four con-
trol/interrupt lines may be programmed for one ol several conitrol
modes. This allows a high degree of flexibility in the overall operation of
the interface.
® 8-8it Bidirectional Data Bus for Communication with the
MPU
Two Bidirectional B-Bit Buses for Interface 1o Penpherals
Two Programmable Control Registers
Two Programmable Data Direction Registers
Four Individually-Contralled Interrupt Input Lines; Two
Usable as Penipheral Control Quipuls
® Handshake Conltral Logie for Input and Quiput Penpheral
Operation
High-lmpedance Three-State and Direct Transistor Dive
Penpheral Lines
® Program Controlled Interrupt and Interrupt Disable Capability
® CMOS Dnve Capability on Side A Penipheral Lines
® Two TTL Dnve Capability cn All A and B Side Butlers
@ TTL-Compatble
® Stauc Operation

MOS

IN-CHANNEL. SILICON-GATE,
DEPLETION LOAD)

PERIPHERAL INTERFACE
ADAPTER

L SUFFIX
i ' CERAMIC PACKAGE
CASE 715

3 1 S SUFFIX
S3 1oL Lo CERDIP PACKAGE
e CASE 734

T P SUFFIX
. 5. PLASTIC PACKAGE
CASE 111

MAXIMUM RATINGS

Charactetistics Symbol Valus Unit
Supply Vollage \-'?; =031 +70 | V
Input Volage Vin =03 +70 v
Operating Temperawwre Hange TLio by
MCB821, MCGBA21, MCGBB21 TaA 0 w70 °C
MC6821C. MC6BAZ1C. MCA8B21C =40 10 + 85
Storage Temperature Range Tsin -5%510 4150 | °C

THERMAL CHARACTERISTICS

Characteristic Symbol Value Unit
Thermal Resistance
Ceramic 50 .
5 W
Plasic A 100 2
Cerdip [£4]

This device conlains circuiry 10 protect the nputs aganst damage due 1o high
stanc voltages or elecinc helds, however, il 15 adwvised that pormal precautions
be taken 1o avoid apphcanon ol any voltage higher than mamimum-rated
vollages to thss highsimpedance cicuil. Reliability of operation 1s enhanced if
unused inpuls are bed 1o an appropriate logic vollage (e , either Vg5 or V)

PIN ASSIGNMENT

vsslli @ wflca
paof] » s [lcaz
PAILY 3 []IRGA
pa2f4 311 1RGB
PA3[)Y W{IRSQ
PA4fL BARSY
pas(] / 3 [IRESET
pa6l s 110100
PAT[4 zf1o
PBO[J10 nfoz
PBIQ N 0[1o3
pa2(]12 2(D4
PBI[1y 28[]05
Paafi4 z7[106
PBs[1y sflo7
PE6[16 »E
Pa7l/ flcst
cerfis 23[1Cs2
cs2l]19 22f1cso
veel2o nprRw

Appendix B 687

The expanded block diagram of the MC6821 is shown in Figure B.1,

-——— 40 CA
IRQA (34 Interrupt Status
f 2 Contral A 39 CAZ
Cantrol
Aegistar A
Do 33 -.—uJ (CRA)]
D1 32 = = 1 -] Oata Diwection
D2 31— V1 Megister A
l] (DDRA)
0J 310 =—a DalaBus
Bulfers <
D4 27 =—W (§o1:1: 1] Owuinut Bus |
D5 28 =+—¥
DG 27 -y Z Fag
o7 26 Qutput g —a] PAL
p | Megistar A FAZ
{ana) %
Paripheral le—e 5 PA3
Intarlace 6 PA4
A
- re—a] PAS
Bus Input 2 m— = 8 PaG
Registar = R
(@A) a r&—-— 9 PAT
£
Vee * Pin 20 lt—a= 10 PBO
Veg + Pin 1
5 T Qutput jt—a= 11 PB1
Ragivtar D
:: > 12 PB2
(ORB)
€50 22 -—a=y Paripharal re—a=— 13 P8I
€51 24 ——= :nuéhcc 14 P4
€8T 23 — Chip la—= 15 PES
RSO 36— STlect le—w= 16 POG
RS1 35 ——ey nw |+—= 17 PB7
RAW 21 - Control >
Enatile 25 ——&=
RESET 34 ——a > .
— Data Direction
Controi Register B
Regiter O (DDRB)
ICAB)
L__4 le—— 18 cB1
Interrupt Statut
{AGD 37 Confralig le—s= 19 CD2

FIGURE B.1 EXPANDED BLOCK DIAGRAM

688 Microprocessors and Microcomputer-Based System Design, 2nd Edition

PIA INTERFACE SIGNALS FOR MPU

The PIA interfaces to the M6800 bus with an 8-bit bidirec-
uonal dala bus, three chip select lines, two register select
lines, 1two interrupl request lines, a read/write ing, an enable
line and a resot line. To ensure proper operation with the
MC6800, MC6B02, or MCE808 microprocessors, VMA
should be used as an active part of the address decoding

Bidirectional Data (DO-D7) — The bidirectional data lines
{DO-D7) allow the transier of data between the MPU and the
PIA. The data bus output drivers are three-state devices that
remain in the high-impedance loff) state except when the
MPU perlorms a PIA read operation. The read/write line is in
the read (high) state when the PIA s selected lor a read
operation.

Enablo (E) ~ The enable pulse, E, is the only uming
signal that is supphed to the PIA, Timing ol all other signals
is roforenced to the loading and trailing edges of the E pulse.

Aoad/Write (R/W) — This signal is generated by the
MPU 10 control the diroction ol data transfers on the data
bus. A low state on the PIA read/write line enables the input
buffers and data is transferred from the MPU to the PIA on
the E signal if the device has been selected. A high on the
road/write line sets up the PIA for a transler of data 10 the
bus. The PIA outpul buffers are enabled when the proper ad-
drass and the enable pulse E are present.

RESET — The active low RESET line is usod to reset all
register bits in the PIA 10 a logical zero llow). This line can be
usod as a power-on reset and as a master resel dunng
system operation.

Chip Selects (CS0, CS1, and CS2) — These three input
signals are used to select the PIA. CSO and CS1 mus! be
high and C5Z must be low for seloction of the device, Data
transfers are then performod under the control of the enable
and read/write signals. The chip select lines must ba sjable

PIA PERIPHERAL

The PIA provides two 8-bit bidirectional data buses and
four interrupt/control lines for interfacing 1o peripheral
devices,

Seoction A Peripheral Data (PAG-PAT7) — Each of the
poripheral data lines can be programmed Lo acl as an input or
output. This is accomplished by setting a "'1"" in the cor-
responding Data Diroction Register bit for those lines which
are 10 be oulputs. A “0” in a bit of the Dala Direclion
Register causes the corresponding peripheral data line to act
as an inpul. During an MPU Read Peripheral Data Operation,
the data on peripheral lines programmed to act as inpuls ap-
pears directly on the corresponding MPU Data Bus lines. In
the input mode, the internal pullup resistor on thase lines
represents a maximum of 1.5 standard TTL loads.

The data in Output Register A will appear on the data lines
that are programmed to be outputs. A logical 1" written in-
1o tha register will cause a *"high’* on the corresponding data

for the duration ol the E pulse. The device is deselected
when any of the chip salects are in 1he inactive state.

Register Selocts (RS0 and RS1) — The 1wo register
select linos are used to seloct the various registers inside the
PIA. These two lines are used in conjunction with internal
Control Registers 10 select a particular register that is to be
writlen or read.

The register and chip select lines should be stable for the
duration of the E pulse while in the read or write cycle.

Interrupt Request [IRQA and IRQB) — The active low In-
terrupt Request lines (IRQA and TRQB) act to interrupt the
MPU either directly or through interrupt priority circuitry.
These lines are “open drain’’ (no load device on the chip).
This permits all interrupt request lines to be tied togetherin a
wire-OR conliguration.

Each Interrupt Request ine has two internal interrupt flag
bits that can cause the Interrupt Request line to go low. Each
flag bit is associated wih a particular peripheral interrupt
line. Also, four interrupt enable bits are provided in the PIA
which may be used 1p inhibit 3 parucular intetrupt from a
periphoral device.

Servicing an interrupt by the MPU may be accomplished
by a software routine that, on a priorilized basis, sequentially
reads and tests Lhe two control registers in each PIA for in-
terrupt flag bits that are set.

The interrupt flags are cleared (zeroed) as a resull of an
MPU Read Peripheral Data Operation of the correspanding
data register. After being cleared, the interrupt flag bit can-
not be enabled to be set until the PIA is deselected during an
E pulse. The E pulse is used 1o condition the interrupt control
lines (CAY, CA2, CB1, CB2). When these lines are used as
intertupt inputs, at least one E pulse must occur from the in-
aclive edge to the active edge of the interrupt input signal 1o
condition the edge sense network, If the interrupt flag has
been enabled and the edge sense circuit has been properly
conditioned, 1he interrupt flag will be set on the next active
transition ol the interrupt input pin,

INTERFACE LINES

line while a "0 results in @ “low.” Data in Quiput Rogistor A
may be read by an MPU “'Read Peripheral Data A™ operation
when the cofresponding lines are programmad as outpuls.
This data will be read property if the vcitage on the
paoripheral data lines is greater than 2.0 volts for a logic "1
oulput and less than 0.8 volt for a logic "0 outpul. Loading
the output lines such that the voltage on these lines does not
reach full voliage causos the data translerred into the MPU
on a Read operation to difler from that contained in the
respoctive bit ol Output Register A,

Section B Peripheral Data (PBO-PB7) — The peripheral
data lines in tha B Section of the PIA can be programmed to
act as oither inputs or outputs in a similar manner 10 PAG
PA7. They have throo-state capabiity, allowing them to enter
a high-impedance state when the peripheral data line is used
as an inpul. In addition, data on the peripheral data lines

Appendix B

PBO-PB7 will be read properly from those lines programmed
as outputs even if the voltages are below 2.0 volts for a
high' or above 0.8 V for a "low™. As oulputs, these lines
are compatible with standard TTL and may also be used as a
source of up 10 1 milliampere at 1.5 voits 10 directly drive the
base of a transistor switch.

Interrupt Input (CA1 and CB1) — Peripheral input lines
CA1 and CB1 are input only lines that set the interrupt flags
of the control registers. The active transition for these
signals is also programmed by the two control registers.

Poripheral Control (CA2) — The peripheral control line
CAZ2 can be programmed 10 acl as an interrupt input or as a

689

peripheral control output. As an output, this line is compati-
ble with standard TTL; as an input the internal pullup resisior
on this line represents 1.5 standard TTL loads. The function
of this signal line is programmed with Control Register A,

Peripheral Control (CB2) — Peripheral Control line CB2
may also be programmed to act as an interrupt input or
peripheral control output. As an input, this line has high in-
put impedance and is compatible with standard TTL, As an
output it is compatible with standard TTL and may also be
used as a source of up to 1 milliampere at 1,5 volts to directly
drive the base of a transistor switch. This line is programmed
by Control Register B. |

INTERNAL CONTROLS

INITIALIZATION

A RESET has the effect of zeroing all PIA registers. This
will set PAO-PA7, PBO-PB7, CA2 and CB2 as inputs, and all
interrupts disabled. The PIA must be configured during the
restart program which lollows the rese1,

There are six locations within the PIA accessible to the
MPU data bus: two Peripheral Registers, two Data Direction
Registers, and two Control Registers. Selection of these
locations is controlled by the RS0 and RS1 inputs together
with bit 2 in the Control Register, as shown in Table B.1

Details of possible configurations of the Data Direction
and Control Register are as follows:

TABLE B.1 INTERNAL ADDRESSING

Control
Register Bit
RS1 | ASQ | CRA-2 | CRB-2 Locauon Selected

0 0 1 X Peripheralt Regisier A

0 .0 0 X Data Dwrection Register A
0 1 X X Caontrol Register A

1] X 1 Petipheral Register B

1 Q X] Data Dwecuion Register B
1 1 X X Control Register B

X = Don't Care

PORT A-B HARDWARE CHARACTERISTICS

As shown in Figure ¥7, the MC6821 has a pair of 1/0 ports
whose characteristics differ greatly. The A side is designed
10 drive CMOS logic 1o normal 30% to 70% levels, and incor-
porates an internal pullup device that remains connected
even in the input mode. Because of this, the A side requires
more drive current in the input mode than Port B. In con-
trast, the B side uses a normal three-state NMOS buffer
which cannot pullup to CMOS levels without external
resistors. The B side can drive extra loads such as Darl-
ingtons without problem. When the PIA comes out of reset,
the A port represents inputs with pullup resistors, whereas
the B side (input mode also) will float high or low, depending

" upon the load connected to it.

Notice the differences between a Port A and Port B read
operation when in the output mode. When reading Port A,
the aclual pin is read, whereas the B side read comes from an
output latch, ahead of the actual pin.

CONTROL REGISTERS (CRA and CRB)

The two Control Registers (CRA and CRB) allow the MPU
to control the operation of the four peripheral control lines
CAl, CA2, CB1, and CB2. In addition they allow the MPU to
enable the interrupt lines and monitor the status of the inter-
rupt flags. Bits O through 5 of the two registers may be wril-
ten or read by the MPU when the proper chip select and
register select signals are applied.” Bits 6 and 7 of the two
registers are read only and are modified by external interrupts
occurring on control lines CA1, CAZ2, CB1, or CB2. The for-
mat of the control words is shown in Figure B.3

DATA DIRECTION ACCESS CONTRQL.BIT (CRA-2 and
CRB-2)

Bit 2, in each Control Register (CRA and CRBI, deter-
mines selection of either a Peripheral Output Register or the
corresponding Data Direction E Register when the proper
register select signals are applied to RS0 and RS1. A 1" in
bit' 2 allows access of the Peripheral Interface Register, while
a 0" causes the Data Direction Register 10 be addressed.

Interrupt Flags (CRA-8, CRA-7, CRB-6, and CRB-7) —
The four interrupt flag bits are set by active transitions of
signals on the four Interrupt and Peripheral Control lines
when those lines are programmed to be inputs. These bits
cannot be set directly from the MPU Data Bus and are resel
indirectly by a Read Peripheral Data Operation on the ap-
propriate section.

Control of CAZ and CB2 Peripheral Control Lines (CRA-3,
CRA-4, CRA-5, CRB-3, CRB-4, and CRB-5) — Bits 3, 4, and
5ol the two control registers are used 1o control the CAZ and
CB2 Peripheral Control lines. These bits determine if the con-
trol lines will be an interrupt input or an oulput control
signal, If bit CRA-5 (CRB-5) is low, CAZ (CB2I is an interrupt
input line similar to CA1 (CB1). When CRA-5 (CRB-5! is
high, CA2 (CB2) becomes an output signal that may be used
to control peripheral data transfers. When in the output
mode, CA2 and CB2 have slightly different loading
characteristics.

690 Microprocessors and Microcomputer-Based System Design, 2nd Edition

enable the MPU interrupt signals TROA and IRQB, respec-
tively. Bits CRA-1 and CRB-1 determine the aclive transition
of the interrupt input signals CA1 and CB1.

Control of CA1 and CB1 Interrupt Input Lines (CRA-0,
CRB-1, CRA-1, and CRB-1} —.The two lowest-order bits of
the control registers are used to control the interrupt input
lines CA1 and CBI1. Bits CRA-0 and CRB-0 are used to

FIGURE B.2 PORT A AND PORT B EQUIVALENT CIRCUITS

Port A Port B
vee vce

P
DATA ot fin Data Direction
Data ’_'D DATA :E"
Ditecuon Data Direction

(1=Input Pin}
[0=Output Pin) —

(1= Qutput Pin}
{0=Input Pin) —

Read of
Data When
in Output
Mode

Read of B

Read A Data g
To External in Input or ata when
Bus Output Mode in Input Mode

:} 2 Internal PIA Bus

Appendix B

Determine Active CA1 (CB1) Transition for Setting
interrupt Flag IRGA(BI — bit 7)
b1=0: IRQAI(B} set by high-to-low transition on CA1
— BN
bl=1: IRQAIB) set by low-to-high transition on CAl
icsn.

e e

IRQA(B) 1 Interrupt Flag (bit 7

Goos high on active transiton of CA1 (CB1), Automa-
tically cloarod by MPU Read of Outpul Register A{B)
May also be cleated by hardwara Reset

691

CA1 (CB1) Interrupt Requekt Enable/Disable
bO=0. Disables IRQAIB) MPU Interrupt by CAl
(CB1) active transition.
bO=1: Enable IROA(B] MPU Interrupt by CA1 (CB1)
active transition.
1 IRQAIB) wll occur on next (MPU generated) posilive
transition of b0 it CA1 (CB1) active transition oc-
curred while interrupt was disabled.

-l

g =g n (SR

b7 b6 b5 I b4 } b3 b2 b1 l b0
Control Rogister | |nQAIDI | IRQAIBI2 CA2 ICB2) DDR CA1(CB1)
Flag Flag Conurol Accass Control

IRQAI(B)2 Interrupt Flag (bit 61°

When CA2 (CB2) is an inpul, IROAID) goes high on ac-
live wransition CA2 (CB2); Automaucally cleared by
MPU Read ol Output Register A(B1 May also be
cleared by hardware Neset

CA2 (CB2) Estabhished as Output (bS=1): IRQAIBI
2=0, not aifected by CA2 (CB2) ransitions. I

Determines Whaether Data Direction Register Or Output
Register is Addressed

v2=0: Data Dwecuan Hagaslur salocted.

vZ=1: Output Register selocted.

[

|

CAZ (CB2) Established as Output by b5=1
INote that operation of CA2 and CB2 output
5 bd b3 lunclions are not identical)
T T a2
10 b3=0. Read Strobe with CA1 Restore
CA2 goes low on fust high-1o-low
£ transition following an MPU read
of Quiput Register A, retutned high
by next active CAl transiion, as
specified by bit 1
b3=1: Read Strobe with E Restore
CA2 goes low on fust high-to-low
E transition following an MPU tead
ol Qutpul Register A: returned high
by next lugh-10-low E transiion dur-

ing a deseloct.
L—b cB2

b3=0: Write Stwrobe with CB1 Restore
CB2 goes low on lrst low-10-high
E wransition followsng an MPU wrie
nto Output Rogister B, rewurned
high by the next active CB1 transi-
tion as spacihed by bu 1. CRB-b7
must lirst be cleared by a read of

i data.

b3=1. Write Strobe with E Restore
CB2 goes low on lust low-to-tugh
E wransition following an MPU write
inta Qutput Aegister B; roturned

b5 b4 b3 high by the next low-to-tugh E tran-

- sition following an E pulse which
occurrod while the parl was de-
salecied.

11 Set/Resst CA2 (CB2)

CAZ2 (CB2) goes low as MPU wnies
b3 =0 inlo Control Register.
CA2 (CB2) goes high as MPU wnles
b3=1into Control Rogister.

CA2 (CB2) Established ss Input by b6=0

b5 b4 Dﬁ
0 CA2 (CB2) Interrupt Request Ensbie/Disable

b3=0: Disables IROAIA] MPU Interrupt by
CA2 ICB2) active transition.”
b3=1: Enables IRQAIB) MPU Interrupt by
CA2 (CB2) active transition,
*IRQAIB) will occur an next (MPU general-
ted| positive transition of b3 if CA2 (CB2)
active transition occurred while interrupt
was disabled.
L= Determines Active CA2 (CB2) Transition for
Setting Interrupt Flag IRQA(IBIZ — (Bit b6)
ba=0: IRQA(B)2 sel by high-to-low transi-
uon on CA2 (CB2).
bd=1: IRQAI(BIZ sat by low-10-high transi-
tion on CA2 ICB2).

FIGURE B.3 CONTROL WORD FORMAT

692 Microprocessors and Microcomputer-Based System Design, 2nd Edition

16K BIT STATIC RANDOM ACCESS MEMORY . HCMOS
(COMPLEMENTARY MOS)
The MCM6116 is a 16,384-bit Static Random Access Memory
orgamzed as 2048 words by 8 bits, fabricated using Motorola’s high- 2,048x8 BIT
performance silicon-gate CMOS (HCMOS) technalogy. It uses a design | STATIC RANDOM
approach which provides the simple timing features associated with hul- ACCESS MEMORY
ly static memories and the reduced power associated with CMOS
memories. This means low standby power without tha need for clocks,
nor reduced data rates due to cycle times that exceed access time. Al
Chip Enable (E) controls the power-down feature. It is not a clock but
rather a chip control that alfects power consumption. In less than a cy-
cle time after Chip Enable (E} goes high, the part automatically reduces
its power requirements and remains in this low-power standby as long
as the Chip Enable (E) remains high. The automatic power-down
feature causes no performance degradation. P SUFFIX
The MCM6116 is in a 24-pin dual-in-line package wilth the industry PLASTIC PACKAGE
standard JEDEC approved pinout and is pinout compatible with the in- CASE 709
dustry standard 16K EPROM/ROM.,
@ Single +5 V Supply
® 2048 Words by 8-Bit Operation
® HCMOS Technology
® Fully Static: No Clock or Timing Strobe Required
® Maximum Access Time: MCM6116-12 — 120 ns
MCMB116-15 — 150 ns
MCM6116-20 — 200 ns
® Power Dissipation: 70 mA Maximum (Active) PIN ASSIGNMENTS
15 mA Maximum (Standby-TTL Levels)
2 mA Maximum (Standby) ATl @
® Low Power Version Also Availabla ~ MCMB1L16 As (]
® Low Voltage Data Retention (MCMB1L16 Only): As(]
50 A Maximum : Al
A3l
A(]
BLOCK DIAGRAM Al
P\ J—— Pin 24V
At < P: 12= .,§§ NJE
’3_"?_‘ Row . Memory Matnx pooQs
{jtnd 128x
f‘f 5 Decoder : 8 paf]
g oaz(]
9
gg?{}] o Column 110
2y Input
Da3 T B Data
D04 e
D05~ anih Column Decoder
008181
oa?
8 l I nIiJ nlg 19 %
AD AAB bA9 1
18 _-—1
E__' Control
w [Logic

Appendix B

ABSOLUTE MAXIMUM RATINGS (Sce Notel

693

Rating Value Unit
Temperature Undar Bias -~ 10t +B0 °C
Voltage on Any Pin With Respect to Vgg -1010 +7.0 v
DC Output Current 20 mA
Power Dissipation 1.2 Watt
Operating Temperature Range Oio +70 °C
Storage Temperalure Range -6510 + 150 °C

This device conlans Circuilry 1o protect the
npuls against damage due 1o high stauc
voltages or electric helds, however, it 15 ad-
vised that normal precaulions be taken 1o
avord apphcation ol any voltage higher than
maximum raled voltages 10 s high-
wnpedance circui.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are ex-
ceedod. Funcuional operauon should be resticted to RECOMMENDED OPERAT-
ING CONDITIONS. Exposure 10 hugher than tecommended vollages lor extend-

ed periods of lime could allect device rehability.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature ranges unless otherwise noted)

RECOMMENDED OPERATING CONDITIONS

Parameter

Symbol | Min | Typ | Max | Unit

-Supply Voltagg

Vee 45 | 50 |55 N
Vss 0 0 0 v

Input Voltage

vin |22 [3as[60] v
Yie |-ret) - 08 v

*The device will withstand undershoots 1o the - 1 0 volt level with a maximum pulse width of 50 ns at the - 0.3 volt level, This s penodicaily

sampled 1ather than 100% tested

RECOMMENDED OPERATING CHARACTERISTICS

MCM6116 MCM61L16

Parsmtef Simbol Min | Typ® | Max | Min | Typ® [Max Lol
Input Leakage Current (Ve =55V, Vin=GND to V) ul - — 1 = - 1 A
Output Leakage Current (E= Vi or G =V V);0=GND to Vee) Lol = - 1 - | - [BA
Operaling Power Supply Current [E= V)i, ljy0=0 mAl Icc - a5 70 - 35 55 | mA
Average Operating Current Mimimum cycle, duty = 100% [T o) - 0 70 - 35 55 | maA
Standby Power[IE = Vi) IsB - 5 15 - 5 12 mA
Supply Current [[E2Vee-02 V. Vin2Veg=02Vor Vin<02 V) 1581 - 20 |2000] - 4 | 100 | wA
Output Low Voltage (g = 2.1 mA) VoL - - 0.4 == = 04 v
Output High Voltage {Igy= - 1.0 mA)** VoH 24 - - 24 - - v

Vo5V, TA=25°C

** Also, oulpul vollages are compalible with Molorola’s new high-speed CMOS logic family if the same power supply vollage 15 used.

CAPACITANCE (f=1.0 MHz, T =25°C, periodically sampled rather than 100% tested.)

Charactaeristic

Symbol | Typ | Max| Una

Input Capacilance excent £

Input/Output Capacitance and E Input Capacitance

Ci/o 5 7 pF

MODE SELECTION
Mods E G W | Ve Current DQ
Standby H X X Isg. IsB1 High Z
Read ; L| L |H cc Q
Write Cycle (1) L H L Ice D
White Cycle (2) L 7 L icc D

694

Microprocessors and Microcomputer-Based System Design, 2nd Edition

AC OPERATING CONDITIONS AND CHARACTERISTICS
tFull operating voltage and temperatuie uniess olherwise noted.]

Input Pulsa Levels NVoir103 5 Volts Irput and Quiput Timing Reference Levels1.5Volls
Input Rise and Fall Tirnes 10ns Quiput Load ver -1 TTL Gateand C_= 100 pF
READ CYCLE
MCM6116-12 MCME116-15 MCME1168-20
Parameter Symbaol MCMB1L16-12 MCME1L16-15 MCM61L16-20 Unit
| Min Max Min Max Min Max
Address Vald to Address Don't Care .

(Cycle Tume wben Chip Enablc 1s Held Activel LAVAX 120 - 150 - 200 - ns
Chip Enable Low to Chip Enable High ELEH 120 - 150 - 200 - ns
Address Valid to Output Vald (Access) tavQv - 120 - 150 - ' 20 ns
Chip Enable Low 1o Output Valil [Access) 'ELOV - 120 - 150 - 200 ns
Address Vahd to Outpul Invald TAVOX 10 - 15 - 15 - ns
Chip Enable Low 1o Output Invald 1ELOX 10 - 15 - 15 = ns
Chip Enable High 1o Output High 2 1EHOZ 0 40 (s 50 0 L] ns
Output Enable 1o Output Valid IGLOV - 80 N 100 - 120 ns
Output Enable to Output Invahd 1G1OX 10 - 15 - 15 - ns
Output Enable to Output High 2 GLOZ 0 40 0 50 1] 60 ns
Address Invaiud 10 Quiput Invalid TAXOX 10 - 15 - 15 - ns
Address Valid to Chip Enable Low (Address Setup) TAVEL 0 - 0 - 0 - ns
Chip Enable to Power-Up Time Ipy 0 - 0 = 0 - ns
Chip Disable to Power-Down Time PD - 30 - 30 - 0 ns

WRITE CYCLE
MCME1'5-12 MCM6116-15 MCM6116-20
Paramater Symbol | MCM51L16- 12 MCME61L16-15 MCM61L16-20 Unit
Min Max Lim | Max Min Max
Chip Enable Low to Write High ELWH 70 - K0 - 120 - ns
Address Valid 1o Write High TAVWH 105 - 120 - 140 - ns
Address Valid 1o Write Low (Address Setup) TAVWIL 20 - 20 - 20 - ns
Write Low to Write High (Write Pulse Width) WAL WH 70 ~ 20 - 120 - ns
Write High to Addiess Dan't Care IWHAX 5 - 10 - 10 - ns
Data Vahd 1o Wnite High IDVWH 5 - 40 - 60 - ns
Whrite High 1o Data Don’t Cate (Dala Hold) TWHDX 5 - 10 - 10 - as
Write Low to Output High 2 wiLaz 4] 0 60 0 60 ns
Write High to Output Vahd TWHOV & - 10 - 10 - ns
Output Disable 10 Oulput High £ IGHOZ 0 40 0 50 [1] 60 ns
TIMING PARAMETER ABBREVIATIONS TIMING LIMITS
: X XXX The 1able of timing vaiues shows either a minimum or a

signal name from which interval i1s defined —J
- transition direction for first signal ——
signal name to which interval is defined
transition direction for second signal

The transition definitions used in this data sheet are:
H = transition to high
L =1ransinon 10 low
V =transition to valid
X = transition to invald or don't care
Z = transition to off (high impedance)

maximum hmil lor each parameter. Inpul requirements are
specified lrom the external system point of view. Thus, ad-
dress setup time 1S shown as a minimum since the system
must supply at least that much ume (even though most
devices do not require 1t), On tha other hand, responses lrom
the memory are specilied from the device point ol view.
Thus, the access tme 1S shown as a maximum since the
device never provides data later than that uime.

APPENDIX C

B (] ——-—-—-——-ﬁ
Intel 8085 i EL 1 [
0 2 39 O nown
RESETOUT [3 38 0 neoa
sob(d 4 37 0 cLK oun)
s s A6 [J RESETIN
TRAP T 6 35 [READY
rsrsQg 2 Mo
kST OS] nps
TS o] L2 0eo
INTR 0 MO wr
INT.\E g T 2 0 AL
AD, (O 12 29 7 Su
AD, [13 28) As
AD, O] 1 i A ‘
AD, [: |3 0 : Ay
AD,] 16 35 Ar
AD, [17 24) An
AD, O 1% 37 A |
ADy O 19 22 ‘:] Ag
Vs O] 20 21 [Ay

Figure C.1 8085 pinout

Figure C.1 shows 8085 pins and signals. The following table describes the
[unction of cach pin:

SyMnor. Funcrion

Ay-As Address bus: The most significant 8 bits of the memory address or the 8
(Output, three-state) bits of the |/0O address.,

AD,.; Multiplexed address/data bus: Lower 8-bils of the memory address (or /0
(Inpul/oulpul, address) appear on the bus during the first clock cycle (T slate) of a ma-
three-stale) chine cycle. It then becomes the data bus during the second and third clock

cycles.

ALE Address Latch Enable: It occurs during the first clock slale ol a machine cy-
(Output) _ cle and enables the address to gel latched into the on-chip lalch.

S0.5, and 10/M Machine cycle status:

(Qutput)
1O/M Si Ss STATUS
0 0 1 Mamory wrile
0 1 0 Memory read
1 0 1 140 wrile

695

696 Microprocessors and Microcomputer-Based System Design, 2nd Edition
Symnol FuncTtion
10/M S, 5 STATUS
1 t s 0 1/0 road
0 1 1 Op codoe lelch
1 1 1 Interrupt acknowledge
. 0 0 Halt
* X X Hold
4 S X Rosot v

RD
__(Outpul. three-state)
WR

(Output, three-state)
READY

(Input)

HOLD
(Input)

HLDA
(Output)

INTR
(Input)

INTA
(Output)

RST5.5
RST6.5
RST7.5
(Inputs)
TRAP
(Input)

RESET IN
(Input)
RESET OQUT
(Output)

* = J-state (high impedance)

X =~ unspecified e i~

S, can be used as an advanced R/W slatus. 10/M, S,, and S, become valid

al the beginning of a machine cycle and remain stable throughout the cycle.

The falling edge of ALE may bo used to latch the state of these lines.

READ conlrol: A low level on RD indicates the selected memory or I/0 de-

vice is lo be read. -

WRITE conlrol: A low lovol on WR indicates the data on the data bus is lo

be written into the selecled memory or'1/Q location.

It READY is high during a read or write cycle, il indicates that the memaory or

peripheralis ready o sond or recoive data, I READY is low. the CPU will

wail an integral number of clock cycles for READY to go high belore com-

pleting the rcad or write cycle.

HOLD indicatlos that anothor master is requesting tho use of the addross

and data buses. The CPU, upon receiving the hold request, will relinquish

the use of the bus as soon as the completion of the current bus transier. In-

ternal processing can continue. The processor can regain the bus only alter

the IHOLD is removed. Whon tho HOLD is acknowledged, the address, dala,

RD, WR, and I0/M lines are three-stated,

HOLD ACKNOWLEDGE: Indicales that the CPU has received the HOLD ro-

quest and that it will relinquish the bus in the nex! clock cycle. HLDA goes

low alter the HOLD request is removed. The CPU takes the bus one-hali

clock cycle after HLDA goes low.

INTERRUPT REQUEST: Is used as a general-purpose inlerrupt. It is sampled

only during the next to the last clock cycle of an instruction and during

HOLD and HALT stales. It it is aclive, the PC will be inhibited from incre-

menlmg and an INTA will be issued. Durmq this cycle a RESTART or CALL
slruction can be inserted to jump to the interrupl service routine, The INTR

is enabled and disabled by software. It is disabled by RESET and immedi-

ately after aninterrupt is accepled.

INTERRUPT ACKNOWLEDGE: Is used instcad ol (and has the same timing

as) RD during the instruclion cycle alter an INTR is accepled. Il can be used

lo aclivate the 8259 interrupl chip or some other interrupt port.

RESTART INTERRUPTS: These three inpuls have the same liming as INTR

except they cause an internal RESTART to be automatically inserted.

Trap interrupl is a nonmaskable RESTART interrup!. It is rocognized at tho
same lime as INTR or RST5.5-7.5. It is unafiected by any mask or interrupt ~
enable. It has the highest priority of any interrupt.

Sets the program counter 10 zoro and resels the interrup! enable and HLDA
flip-llops.

Indicates CPU is being resel. Can be used as a system reset.

Appendix C

697

SYMBOL

FUNCTION

Xy Xa
(Input)

CLK
(Qutput)
SID
(Input)
sobD
(Qutput)
Vee
Vis

X, and X, are connecled to a crystal, LC, or RC nelwork to drive the inlernal
clock generator. X, can also be an external clock input from a logic gale.
The input Irequency is divided by 2 to give the processor's internal operal-
ing Irequency.

Clock outpul for use as a system clock. The period of CLK is twice the X,
X, inpul period.

Serial Input Dala line. The data on this line is loaded inlo accumulator bit 7
whenever a RIM instruction is executed.

Serial Outpul Data line. The outpul SOD is set or resel as specificd by the
SIM inslruclion,

+5 V supply.

“Ground reference.

698 Microprocessors and Microcomputer-Based System Design, 2nd Edition

intel
8086/8086-2/8086-4
16-BIT HMOS MICROPROCESSOR

= Direct Addressing Capability to 1 = Bit, Byte, Word, and Block Operations

MByte of Memory
m 8-and 16-Bit Signed and Unsigned

Arithmetic in Binary or Decimal

m Assembly Language Compatible with Including Multiply and Divide

8080/8085
m 5 MHz Clock Rate (8 MHz for 8086-2)
= 14 Word, By 16-Bit Register Set with (4 MHz for 8086-4)
Symmetrical Operations
' = MULTIBUS™ System Compatible
m 24 Operand Addressing Modes Interface

The Intel® 8086 is a new generation, high performance microprocessor implemented in N-channel, depletion Icad,
silicon gate technology (HMQS), and packagedin a 40-pin CerDIP package. The processor has attributes of both & and
16-bil microprocessors, It addresses memory as a sequence of 8-bit bytes, but has a 16-bit wide physical path to mem-

ory for high performance. .
TXECUTION UNIT_ 8U3 ITERTACL Uit
| | merocanon
RECISTER FiILE REGSTIER Pt
SEGMENT
OATA, RLGISTERS
POINTER. AND AND
0€x REGS S1RUCTION \.)
i wonos) ONTER ono 1 w0 [J Vee
(S WORDS ap1a [2 n[] ADS
<
I__._AJ Ao]2 38 [A16iS3
g I aD12 [] ¢ a1 [Ans4
= — FAls, AD11 [5 36 [) ASS
et AL —.—f> i i apio []s 35 [A19iS6
L% BLe
Voawsy aDs (] 4[] BHEST
Bus (L AD,y AD; |:] Mx
L0 INTERFACE ;—;“> i aoe (] 8 33 I:Q_me
wet | N ap? 9 2] AD
3 INTA RO, W —_—
;D A06 (] 10 11| AT (HOLD)
5 puE OTH act aos] 11 2|7 RQETT (HLDA)
aps [} 12 29 [) (OCK (Wh)
J L e =
a3 (] (] 52 (MI0)
sevie apz] 14 20§ (OTR)
[IC 110! e —
et ao1 [15 6] 50 (DEN}
apo [16 5[] QS0 (ALE)
=l] LT e BY) 2]l ast (NTA)
J L—' INTR [18 23] TEST
ESH—— . (oCh cuk [19 22 [] READY
INT LOoCh E 3
o s cno (] 20 21[) neser
1 U505y
fwﬁ@ CONTROL & TIMING ,__‘}
HOLD ——| nas
HLOA =——, " 40 LEAD

Y

B

| ==
CLK RESE! AEADY MM/MX GHD
Yee

8086 CPU Functional Block Dliagram 8086 Pin Dlagram

Appendix C ' 699

inter [8284

CLOCK GENERATOR AND DRIVER
FOR 8086, 8088, 8089 PROCESSORS

= Generates the System Clock for the m Generates System Reset Output from
8086, 8088 and 8089 Schmitt Trigger Input

a Uses a Crystal or a TTL Signal for Fre- = Provides Local Ready and MULTIBUS™
Ready Synchronization

= Capable of Clock Synchronization with
other 8284’s

m Industrial Temperature Range
-40° to +85°C

quency Source
m Single + 5V Power Supply
e 18-Pin Package

The 18284 is a bipolar clock gener ‘lor/driver designed to provide clock signals for the B086, 8088 & 8088 and
peripherals. It also contains READY I 3ic tor operalion with two MULTIBUS™ systems and provides the processors
required READY synchronization and tii ing. Resetlogic with hysteresis and synchronizalion is also provided.

18284 PIN CONFIGURATIO. ! 18284 BLOCK DIAGRAM
AES e e e b——‘n o} —neser
— —{ex
cysnec [t fdVec XAt
pcLk []2 [B o || Do—- ose
AENT[]3 18] x2 TANK : i
navi [e 15[INK !L
READY []5 4[] EF
Rova2 [(}6 nJrt m—?—{)o D’ >~——~
AENZ []7 12]Josc o —
cLr []a nlJjRes
cno 9 0[] neser [o
CESYNC —— - SR S

(13

}——= READY

o
o

=
ei———— Wy

18284 PIN NAMES

LONNECTIONS FOR CRYSTAL

TANK USED WiTH OVERTOMNE CAYSTAL
Fit CLOCK SOURCE SELECT
EFI EXTERNAL CLOCK INPUT

CSYNC CLOCK SYNCHRONIZATION INPUT

¥ “
:g:_?: ACADY SIGNAL FROM TWO MULTIBUS '™ SYSTEMS
AEN1

AERD | ADORESS ENABLED QUALIFIERS FOR ROY12

AES RESET INPUT

RESET SYNCHRONIZED RESET OUTPUT
0SC OSCILLATOR OUTPUT

cLK MOS CLOCK FOR THE PROCESSOR
PCLK 1TL CLOCK FOR PERIPHERALS
READY SYNCHMRONIZED READY QUTPUT
vee +3VOLTS

GND D VOLTS

700 Microprocessors and Microcomputer-Based System Design, 2nd Edition

intel | 8288
~ BUS CONTROLLER
FOR 8086, 8088, 8089 PROCESSORS

m Bipolar Drive Capability m 3-State Command Output Drivers

u Provides Advanced Commands m Configurable for Use with an /O Bus
= Provides Wide Flexibility in System m Facilitates Interface to One or Two
Configurations Multi-Master Busses

The Intel® 8288 Bus Controller is a 20-pin bipolar component for use with medium-to-large 8086 processing systems.
The bus controller provides command and control timing generation as well as bipolar bus drive capability while
optimizing system performance.

A strapping option on the bus controller configures It for use with a multi-master system bus and separate I/O bus.

PIN CONFIGURATION

o8 [1 [vee
ak(]? (150
. 5i1]s 18]35
BLOCK DIAGRAM ot 4 17 [mcer@BEn
ALE[] s 16 [] DEN
AEn[] & 15 [Jcen
S wnne MRDC[] 7 14 [iNTA
8086 STATUS WTE e T
sTATUS | o DECODER — ek Amwcl]e 11 [)ioRe
=2 MAND ARWE | iunious'™ wwic e 12 [ATowe
SIGNAL TORE) COMMAND e,
GENER. owe | StamALs anp [10 1 [Jiowe
ATOR X
Rigwe
INTA
[FUNCTIONAL PIN-OUT
aND v,
cx oTA v
G ConTROL ADDRESS LATCH. DATA
CONTROL | AEN CONTROL [sIGNAL DEN TRANSCEIVER, AND
INPUT | cen toaic || GENER MCEPDER T
1}
Al ATOR ik SIGNALS -5 ATOWC |—=
PROCESSOR | _| TAWE |
STATUS 5
[| e o 0
COMMAN
5V aNp FWTE [~) us
NAGT —
a28g TORC
- KER INTA
CONTROL | =| CLK
INPUT | ot j0B OTR |-
~{ CeN ALE [~ | cONTROL
MCE/FDEN [[OUTPUT
DEN |—

Appendix C 701

intel"’ 2716

16K (2K x 8) UV ERASABLE PROM

w Fast Access Time s Pin Compatible to Intel® 2732 EPROM
— 350 ns Max. 2716-1
— 390 ns Max. 2716-2 -
— 450 ns Max. 2716
— 650 ns Max. 2716-6

= Simple Programming Requirements
— Single Location Programming
— Programs with One 50 ms Pulse

Single + 5V Power Suppl
a Sing r Supply » Inputs and Outputs TTL Compatible

e Low Power Dissipation duriag Read ahd. Program

— 525 mW Max. Active Power
— 132 mW Max. Standby Power m Completely Static

The Intel® 2716 is a 16,384-bit ultraviolet erasable and electrically programmable read-only memory (EPROM). The 2716
operates from a single 5-volt power supply, has a static standby mode, and features fast single address location program-
ming. It makes designing with EPROMs faster, easier and more economical.

The 2716, with its single 5-volt supply and with an access time up 10 350 ns, is ideal for use with the newer high performance
+5V microprocessors such as Intel’s BOB5 and 8086, The 2716 is also the first EPROM with a static standby mode which
reduces the power dissipation without increasing access time, The maximum active power dissipation is 525 mW while the
maximum standby power dissipation is only 132 mW, a 75% savings.

The 2716 has the simplest and fastest method yet devised for programming EPROMs — single pulse TTL level programming.
No need for high voltage pulsing because all programming controls are handled by TTL signals. Program any location at any
time—either individually, sequentially or at random, with the 2716's single address location programming. Total programming
time for all 16,384 bits is only 100 seconds.

PIN CONFIGURATION MODE SELECTION
27186 2732'
o i
sy uhvee PINS (=] ot ver | vec | outrurs
pis o b e nm 1201 121 | 124 | e
C
“g 5 21hs MODE i
ag]e Mpan
s 1b 5T Aesd viL ViL iy .5 Oout
ardde wha Standby Vin Don't Cara T 5 Migh 2
adr ax aphice Program Pulied Vi 10 Vi Vin .25 +5 Din
Agl]s 1oy " Vent v v)) 0,
gt whos oo am Venty L I 'ouT
o Y S, Progeam Inhitet ViL Vin .78 +5 High T
o[l wltog
[1s 2] ufio BLOCK DIAGRAM
t Refer to 2732 UATAUUIFULS
vt o—— Oy Wy
data sheet for T TR
specifications Ve o——o 1 I [I } I !]
ot QUTPUT ERABLL
Ei CHIP ENABLE AN
PIN NAMES CENCH PROG LOGIC OUTPUT BUFIEKS
—] ¥ .
Ag- Ayp | ADORESSES == owootn | = | voaTmG
Elf’ﬂﬂ CHIP ENABLE/PROGRAM Ag- A3a i
of DUTPUT ENABLE ADDALSS ==
0,-0, ouTPUTS intuTs | —x x . 16384 BIT
—_— DecooLa . CLLL MATHI
- —— =
.

702 Microprocessors and Microcomputer-Based System Design, 2nd Edition

" ® 2732
Intel 32K (4K x 8) UV ERASABLE PROM

m Fast Access Time: B Pin Compatible to Intel® 2716 EPROM
— 450 ns Max. 2732
— 550 ns Max. 2732:6 m Completely Static

m Single +5V * 5% Power Supply
B Simple Programming Requirements

- ’o;ggu;g:‘gb!e '°r"m|ci:ts'85" o — Single Location Programming
" el y — Programs with One 50ms Pulse
B Low Power Dissipation:
150mA Max. Active Current E Three-State Output for Direct Bus
30mA Max. Standby Current Interface

The Intel® 2732 is a 32,768-bit ultraviolet erasable and clectrically programmable read-only memory (EPROM). The 2732
operates from a single 5-voit power supply, has a standby mode, and features an output enable control. The total program-
ming time for all bits is three and a half minutes. All these features make designing with the 2732 in microcomputer systems
faster, easier, and more economical.

An important 2732 feature is the separate oulput control, Output Enable (OE), from the Chip Enable control (CE). The OE
control eliminates bus contention in multiple bus microprocessor systems. Intel's Application Note AP-30 describes the
microprocessor system implementation of the OE and CE controls on Intel's 2716 and 2732 EPROMs. AP-30 is available
from Intel's Literature Department,

The 2732 has a standby mode which reduces the power dissipatisn witi:out increasing access time. The maximum active
current is 150mA, while the maximum standby current is only 30mA, an ¢2%. zavings. The standby mode is achieved by
applying a TTL-high signal to the CE input.

b

PIN CONFIGURATION MODE SELECTION

adr ~ 2bve PINS CE | OFE/Vpp Vee OUTPUTS
(18) | (20) 24) | (9-11,1317)
A 2 22 [JA MODE
A,C 3 22 j.u‘ Read ViL ViL +5 Cour
A 4 21[JAn Standby Vi |Dont Care | 45 High 2
A s 0 :]ﬁiN" Program ViL Vep 45 Oy
A
:E o L2 g;: Pragram Venfy | V|, ViL +5 Dout
7 18
“:C - i Program Inhibit| Vin | Vpp 5 High Z
="1w K} 16 [J0g
0,[] 10 15 [J0s
%0 n 14130 BLOCK DIAGRAM
ono (] 12 1300,
DATA QUTPUTS
vee o——r ©Og-07
GND 00—
Vil L
OF — AND
PIN NAMES &t —| &ELocic OUTPUT BUFFERS
= Y s ;
Ag-Ay | ADDRESSES Ag-Apy | —|_pecooea [% Y-GATING
[CHIP ENABLE ABORBSRT) =
OF OUTPUT ENABLE — X % 12768817
0g-07 OUTPUTS —==| DECODER : CELL MATAIX

Appendix C

- L

in

m 2048 Words x 8 Bits

m Single + 5V Power Supply

8 Directly compatible with 8085A
and 8088 Microprocessors

m 2 General Purpose 8-Bit 1/0 Ports

703

8355/8355-2

16,384-BIT ROM WITH /O

s Each 1/0 Port Line Individually
Programmable as Input or Output

s Multiplexed Address and Data Bus

® |nternal Address Latch

m 40-Pin DIP

The Intel* 8355 is a ROM and 1/0 chip to be used in the BO85A and B088 microprocessor systems. The ROM por-
tion is organized as 2048 words by 8 bits. It has a maximum acess time of 400 ns to permit use with no wait states in

the 8CGB85A CPU.

The 1/0 portion consists of 2 general purpose 170 ports. Each 1/0 port has 8 port'lines and each |/0 port line is

individually pregrammable as input or outpul.

The 8355-2 has a 300ns access time for compatibility with the BOB5A-2 and full speed 5 MHz 8088 microprocessors.

PIN CONFIGURATION

ﬁ,[:l'l ~ w0 v,
CE;] 2 » [Jre,
cik(]3 8 Eni
RESET [] 4 7 [Jre,
N.C. (NOT CONNECTEDIL] 6 36 [Dea,
Reaoy []6 35 [Jes,
oMl 4 [es,
ior(]s 1 [es,
MO yrrm3552 27 PP
iow] 10 n[dea,
acdn 30 [Jra,
A0, [12 2 [pra,
a0,[] 13 28 pa,
Ap, [14 27 [JPa,
A, [15 26 [Jra,
an, [16 75 [dea,
an, [» 2 [Jra,
ap [1e 23[JA,
AD, [19 204,
v [2 21 j»\.—

BLOCK DIAGRAM

PORT A
PORT B

IKXB

By = ROM

|

iow
RESET
iOR

Vg (OV)

Microprocessors and Microcomputer-Based System Design, 2nd Edition

8355/8355-2
Symbol Functlon Symbol Functlon
ALE When ALE (Address Latch Enable is CLK The CLK is used to force the READY
(Input) high, ADo-7, 10/M, Ag-10, CE, and CE {Input) into its high impedance state after it
enter address latched. The signals has ‘been forced low by CE low, CE
{AD, 10/M, Ag-10. CE, CE) are latched high and ALE high.
in at the trailing edge of ALE, READY Ready is a 3-state output controlled by
ADo-7 Bidirectional Address/Data bus. The {Qutput) CE1, CE2, ALE and CLK. READY is
{Input) lower B-bits of the ROM or 1/O address forced low when the Chip Enables are
are applied to the bus lines when ALE active during the time ALE is high, and
is high. remains low until the rising edge of the
During an I/O cycle, Port A or B are next CLK (see Figure G).
selected based on the latched value of PAg-7 These are general purpose I/O pins.
ADo. 11 RD or IOR is low when the latched (Inpul/ Their input/output direction is deter-
chip enables are active, the output Outputy mined by the contents of Data Direction
bulfers present data on the bus. Register (DDR). Port A is selecled for
A5-10 These are the high order bits of the ROM write operations when the Chip Enables
{Input) address. They do not affect 1/0 oper- are active and TOW is low and a 0 was
ations. previously latched from ADa.
CEs Chip Enable Inputs: CE is active low Read operation is selected by either
CEz andeEz is active high. The 8355 can be i\%ﬂ low and ﬂcﬂ‘*e,c"'&f‘f"ab‘“ and
(Input} accessed only when BOTH Chip En- 0 low, or 10/M high. RD low, active
ables are active at the time the ALE chip enables, and ADo low.
signal latches them up. Il either Chip PBo-7 This general purpose I/O port is
Enable input is not active, the ADo-7 tInput/ identical to Port A except that it is
and READY outputs will be in a high Output) selected by a 1 latched from ADo.
impedance state. RESET An input high on RESET causes all pins
10/M If the latched |0/M is high when RDis (Inputi in Port A and B to assume input mode.
ttnput) low. the oulput dala comes from an TOR When the Chip Enables are active, a low
I/0 port. If it is low the output data (Input on 1OR will output the selected 1/0 port
comes [rom the ROM. onlo the AD bus. TOR low performs the
RD It the latched Chip Enables are aclive same funclion as the combination 10/M
{Input: when RD goes low, the ADg-7 output high and RD low. When IOR is not used
bulfers are enabled and output either in a system, 10R should be tied to Vcc
the selected ROM location or I/Q port. (1",
When both RD and TOR are high. the . +5 volt supply.
ADo-7 output buffers are 3-state.
P . . Vss Ground Reference.
10w If the latched Chip Enables are active,
iInput) a low on [OW causes the cutput port

pointed 1o by the latched value of ADg
lo be written with the data on ADo-7.
The state of 10/M is ignored.

Appendix C 705

intel
8755A /8755A-2
16,384-BIT EPROM WITH 1/0

u 2048 Words x 8 Bits = 2 General Purpose 8-Bit /O Ports

m Single +5V Power Supply (Vce) m Each /O Port Line Individually
Programmable as Input or Output

® Directly Compatible with 8085A
and 8088 Microprocessors m Multiplexed Address and Data Bus

m U.V. Erasable and Electrically m 40-Pin DIP
Reprogrammable

m Internal Address Latch

The Intel® 8755A is an erasable and elecirically reprogrammable ROM (EPROM) and I/ O chip to be used in the 8085A
and 8088 microprocessor systems. The EPROM portion is organized as 2048 words by 8 bits. It has a maximum
access time of 450 ns to permit use with no wait states in an 8085A CPU.

The |/0 portion consists of 2 general purpose /0 ports. Each |/0 port has 8 port lines, and each I/0 port line is
individually programmable as input or output.

The B755A-2 is a high speed selected version of the 8755A compatible with the § MHz B085A-2 and the full speed 5
MHz 8088,)

PIN CONFIGURATION BLOCK DIAGRAM

PROG AND CE, (] b 3 Vee

L]

)
e ¥ P8, cLK
ck[]a 3a [P8y
RESET »
GLdn] 3 28 READY +—————
Voo O} 5 36 {]%8,
Aeaoy (] 6 a5 [PB, Al
oM] 7 34 [JPB, POAT A
@mgs mpe S a— e
Ao o 37 [1P8,
st FOPIPSE—
oW [0 arssas 11 [0PA, £ i FIEY)
ALE[] 11 B755A2 5o [ypa, 10/] EPROM
POAT B
a0,] 12 29 [P ALE ——————]
PBo-,
ADy [13 28 [JPA, R ————————e] {
AD; [1a 27 [JPA, e —
AD; (s 26 [QPA; RESET———]
A0,] 16 25 [JPA, OR
A0y] 17 24 [1P4,
AD, A ! = l
o 1w PROG/CE, Vee 45V)
ADy [19 2204,
Voo E Vyg (OV)

Vas [20 214

706

Microprocessors and Microcomputer-Based System Design, 2nd Edition

8755A/8B755A-2

8755A FUNCTIONAL PIN DEFINITION

Symbol

ALE
{input)

ADg-7
(input/output)

Ag-10
(input_)

PROG/CE;
CEz
[input)

1O/M
(input)

RD

(input)

1ow
(input)

CLK
(input)

Function

* When Address Latch Enable goes

high, ADg-7, 10/M, Ag-10, CE2, and
CE1 enter the address latches, The
signals (AD, IO/M, Ag-10. CE) are
latched in at the trailing edge of ALE.
Bidirectional Address/Data bus. The
lower 8-bils of the PROM or I/0
address are applied to the bus lines
when ALE is high.

During an I/O cycle, Port A or B are

selecled based on the latched value of
ADg. It RD or IOR is low when the
latched Chip Enables are active, the
output buffers present data on the
bus,

These are the high order bits of the
PROM address. They do not affect
IO operations.

Chip Enable Inputs: CE; is active low
and CE2 is active high. The 8755A
can be accessed only when BOTH
Chip Enables are active at the time
the ALE signal latches them up. If
either Chip Enable input is notactive,
the ADg-7 and READY outputs will
be in a high impedance state. CE1 is
also used as a programming pin. (See
seclion on programming.)

If the latched 10/M is high when RD
is low, the output data comes from
an I/O port. Ifitis low the output data
comes from the PROM.

It the latched Chip Enables are active
when AD goes low, the ADo-7 output
buffers are enabled and output either
the selected PROM location or I/0
port. When both RD and IOR are high,
the ADg-7output buflers are 3-stated.

If the latched Chip Enables are active,
a low on IOW causes the output port
pointed o by the lalched value of
ADg lo be written with the data on
ADp-7. The state of 10/M is ignored.

The CLK 1s used lo force the READY
into its high impedance slate after it
has been forced low by CE» low, CE2
high, and ALE high.

Symbol
READY
{outputi

PAp-7
linput/output)

PBo-7
{input/output)

RESET
tinput)

IOR
linput)

Function

READY is a 3-state output controlled
by CEz, CEs, ALE and CLK. READY
is forced low when the Chip Enables
are active during the time ALE is high,
and remains low until the rising edge
of the next CLK. (See Figure 6.)

These are general purpose 1/0 pins.
Their inpul/output direction is deter-
mined by the contents of Data Direc-
tion Register IDDRi. Port Aisselected
for write operations when the Chip
Enables are active and 1OW is low
and a 0 was previously latched from
ADo, AD1.

Read operation is selected by either
10R low and active Chip Enables and
ADo and ADy low, or IO/M high, RD
low, active Chip Enables, and ADg
and AD; low.

This general purpose IO port is
identical to Port A excepl that it is
selected by a 1 latched from ADgand
a 0 from AD:. ‘

In normal operation, aninput high on
RESET causes all pins in Porls A and
B to assume inpul mode (clear DDR
register,

When the Chip Enables are active, a
low on IOR will output the selected
I/Q port onto the AD bus. iOR low
performs the same function as the
combination of IO/M high and RD
low. When IORis notusedinasystem,
IOR should be tied to Vee ("1™,

+5 volt supply.
Ground Relerence.

Voo is a programming voltage, and
musl be tied to +5V when the 8755A
is being read.

For programming, a high voltage is
supplied with Vpp =25V, typical. (See
seclion on programming.)

Appendix C

intel

8155/8156/8155-2/8156-2

707

2048 BIT STATIC MOS RAM WITH I/0 PORTS AND TIMER

@ 256 Word x 8 Bits

@ Single +5V Power Supply
B Complelely Static Operation

Internal Address Latch

B 2 Programmable 8 Bit I/O Ports

B 1 Programmable 6-Bit I/0 Port
B Programmable 14-Bit Binary Counter/

Timer

B Compatible with 8085A and 8088 CPU

B Multiplexed Address and Data Bus

H 40 Pin DIP

The 8155 and 89156 are RAM and 1/0 chips to be used in the 8085A and 8088 microprocessor systems. The
RAM portion is designed with 2048 static cells organized as 256 x 8. They have a maximum access time of 400 ns
.0 permit use with no wait states in BO85A CPU. The 8155-2 and 8156-2 have maximum access times of 330 ns for use
with the 80B5A-2 and the full speed 5 MHz 8088 CPU.

The I/ O portion consists of three general purpose |/O ports. One of the three ports can be programmed to be status
pins, thus allowing the other two ports to operate in handshake mode,

A 14-bit programmable counter/timer is jalso included on chip to provide either a square wave or terminal count pulse

for the CPU system depending on timer mode.

PIN CONFIGURATION

re; O ~ W 1 Vee

rc, 2 (] rc,
Timerin [3 38 [] pc,
RESET (] 4 a[Jre,
pcg 15 36 [PB,
Tmerour [6 35 [ruy,
oM 7 4[] ey
CEoRce"[]e 1] re,
Ab []o 127 ray

wa] :;22’ 311 ea,

ALE (11 gys5, 30[] P8,
AD, [J12 81562 29[pa,

Ao, [20 pa,

Ap, [] 14 277 pag

ap, [15 26 [] pa,

ap, 16 15[Pa,

Ao [17 4[] PA,

ADg [18 230 P,

AD, [19 22[] Pa,

Vs [20 21[] pay

‘BLOCK DIAGRAM

B ——

ALf ————————

256 X 8
STATIC
RAM

npy —————

Wit

PORT A

| Ko
PORT B

o Ko
PORT C

TIMER CLK—1

L'Vcc (+5v)

IMER OU

:8155/8155-2 = CE, B156/B156-2 = CE

Vg ov)

Microprocessors and Microcomputer-Based System Design, 2nd Edition

8155/8156/8155-2/8156-2

8155/8156 PIN FUNCTIONS

Symbeol

RESET
{input)

ADo-7
(input)

CE or CE
(input)
RD
(input)

WR
finput)

Eunction

Pulse provided by the BOBSA 1o ini-
tialize the system iconnect to 8085A
RESET OUT . Input high on this line
resets the chip and initializes the
three 110 ports to input mode, The
width ol RESET pulse shouldtypically
be two BOB5A clock cycle times.

3-state Address/Dala lines that inter-
face with the CPU lower 8-bit Ad-
dress/Data Bus. The 8-bit address is
latched into ihe address latch inside
the 8155/56 on the falling edge of
ALE. The address can be either for
the memory section or the I/O section
depending on the 10/M input. The
8-bit dala is either wrilten into the
chip or read from the chip, depending
on the WR or RD input signal.

Chip Enable: On the 8155, this pin is
CEand is ACTIVE LOW. Onthe 8156,
this pin is CE and is ACTIVE HIGH.

Read control: Input low on this line
with the Chip Enable aclive enables
and ADo-7 bulffers. If IO/M pin is low,
the RAM content will be read out to
the AD bus. Otherwise the content
of the selected I/0 port or command/
status registers will be read to the
AD bus.

Write control: Input low on this line
with the Chip Enable active causes
the data on the Address/Data bus 1o
be written to the RAM or I/0 ports and
command/status register depending
on IO/M.

Symbol

ALE
{input)

10/M

finput)
PAp-718:
finput/output)

PBo-718)
(input/output)

PCo-5161
(input/outputy

TIMER IN
tinput)
TIMER OUT
toutput)

Vee
Vss

Function

Address Latch Enable: This control
signal latches both the address on the
ADg-7 lines and the state of the Chip
Enable and IO/M into the chip at the
falling edge of ALE.

Selects memory if low and IO and
command/status registers if high.

These 8 pins are general purpose I/0
pins. The in/out direction is selected
by programming the command
register,

These 8 pins age general purpose I/0
pins. The in/out direction is selected
by programming the command
register,

These 6 pins can function as either
input port, output port, or as control
signals for PA and PB. Programming
is done through the command reg-
ister, When PCp-5 are used as control
signals, they will provide the fol-
lowing:

PCo — A INTR (Port A Interrupt)
PC1 — ABF (Port A Bulfer Full)
PCz — A STB (Port A Strobe)

PCa — B INTR (Port' B Interrupt)
PCs — B BF (Port B Bufter Full)
PCs — B STB (Port B Strobe)

Input to the counter-timer.

Timer output. This output can be
either a square wave or a pulse de-
pending on the timer mode.

+5 volt supply.
Ground Reference.

Appendix C 709

intel
8255A/8255A-5

PROGRAMMABLE PERIPHERAL INTERFACE

= MCS-85™ Compatible 8255A-5 = Direct Bit Set/Reset Capability Easing

s 24 Programmable 1/O Pins Control Application Interface

= Completely TTL Compatible m 40-Pin Dual In-Line Package

a Fully Compatible with Intel® Micro-
processor Families .

= Improved Timing Characteristics s Improved DC Driving Capability

= Reduces System Package Count

The Intel® B255A is a general purpose programmable 110 device designed for use with Intel® microprocessors, It has
24 1/0 pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation, In the first
mode (MODE 0), each group of 12 /O pins may be programmed in sets of 4 to be inpul or output. In MODE 1, the second
mode, each group may be programmed to have 8 lines of input or oulput. Of the remaining 4 pins, 3 are used for hand-
shaking and interrupt control signals. The third mode of operation (MODE 2) is a bidirectional bus mode which uses 8
lines for a bidirectional bus, and 5 lines, borrowing one from the other group, for handshaking.

PIN CONFIGURATION 8255A BLOCK DIAGRAM
sl N
sl Y]
i u[]rea M
.-.[:'. n{Jmr rowtn e
o] »Om “’“"{—*h e e— = K s
als [et e [V Gmm— oA B
wo] m[Je —
w]e nln
wa] nl]e
scr e B255A e e
2 ~H~ m— T e
s L wn w-il e
e wFim o roma s b -
s wb we) S K————)
2w B nl]we ;".'.-'.‘.“. —
wa]n n{Jm C:j[romt € ;o
=] i [e —i— i S e
] wf] e
] 1) | —
] el n—
[PR ""‘j' o : o
—| comtan <:"> i ::)n-_ﬂ
PIN NAMES — . = o
-t = ol
0,-D, DATA BUS (81 OIRECTIONAL [- 1
AESET RESET INPUT
[=4 CHIF STLICT
55 READ INFYT
wh WAITE INFUT =t
AQ_ A1 PORT ADOAESS
PAIPAD | PORT A (MIT)
i) FORT B (BIT)
rC1AC FOAT C (BIT)
Voo +4 VOLTS
) VOLTS

710 Microprocessors and Microcomputer-Based System Design, 2nd Edition

intel

8279/8279-5
PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE
® Simultaneous Keyboard Display ® Single 16-Character Display
e ® Right or Left Entry 16-Byte Display
B Scanned Keyboard Mode RAM
B Scanned Sensor Mode B Mode Programmable from CPU
= Strobed Input Entry Mode ®m Programmable Scan Timing
®m 8-Character Keyboard FIFO ® Interrupt Output on Key Entry
m 2-Key Lockout or N-Key Rolover with E Avallable In EXPRESS
Contact Debounce ' — Standard Temperature Range
m Dual 8- or 16-Numerical Display — Extended Temperature Range

The Intel® 8279 is a general purposo programmable keyboard and display /0 interface device designed for
use with Intel® microprocessors. The keyboard portion can provide a scanned interface 1o a 64-contact key
matrix. The keyboard portion will also interface to an array of sensors or a strobed interface keyboard, such as
the hall effect and ferrite variety. Key depressions can be 2-key lockout or N-key rollover. Keyboard entries are
debounced and strobed in an B-character FIFO. If more than 8 characters are entered, overrun status is set.
Key entries set the interrupt output line to the CPU.

The display portion provides a scanned display interface for LED, incandescent, and other popular display
technologies. Both numeric and alphanumeric segment displays may be used as well as simple indicalors. The
8279 has 16x8 display RAM which can bo organized into dual 16x4. The ii~n: ~an be loaded or interrogated
by the CPU. Both right entry, calculatgr and left entry typewriter display formats «re possible. Both read and
write of the display RAM can be done with auto-increment of the display RAM aadress.

Yee

1-“:c AL ~/ L)
' AL 2 » [IAL
———a Alar <}: aks w [JRLg
RG] 37 [JCNTLISTR
<:I> R , AL s 38 [DswieT

JSHIFT | e s, XEY DATA) , .
7
a
9

L (] 1 [0st,

1] ALe 34 s,

ALy (] sy,

an CNTLSTE | RESET] g B] sLo
cry] .1:Jm R 3 [Jout g,

INTERFACE
- WA n x[Jouts,
Stoy ‘) scan o8,]2 2 [Joute,
i 3 os,[] 13 28 [Jout e,
c8,[] 1 27 [JouT 4,
ouT A 4
a3 na)[" 1y 26 [JOUT A,
os,[] 16 s [Jourt A,
| | DisPLAY D"C " FT :OUT Aj
N T . . DATA .

o8, (] 18 n[|w

8D o8, (] 19 2T

.L l J Vs [20 2104,
Vig 2901231 200123-2

Figure 1. Logic Symbol September 1987 Figure 2. Pin Configuration
Order Number: 290123-002

Appendix C

intel

711

8279/8279-5

HARDWARE DESCRIPTION
The 8279 is packaged in a 40 pin DIP. The following is a functional description of each pin. '

Table 1. Pin Description

Symbol

Pin
No.

Name and Function

DBg-DB7

19-12

BI-DIRECTIONAL DATA BUS: All data and commands between the CPU
and tha 8279 are transmitted on these lines.

CLK

CLOCK: Clock from system used to generate internal timing.

RESET

RESET: A high signal on this pin resets the 8279. After being reset the 8279 is
placed In the following mode:

1) 16 8-bit character display—Ileft entry.

2) Encoded scan keyboard—2 key lockout.

Along with this the program clock prescaler is set lo 31.

cs

22

CHIP SELECT: A low on this pin enables the interface functions to receive or
transmit,

21

BUFFER ADDRESS: A high on this line indicates the signals in or out are
interpreted as a command or status. A low indicates that they are data.

RD, WR

10-11

INPUT/OQUTPUT READ AND WRITE: These signals enable the data buffers
to either send data to the external bus or receive it from the external bus.

IRQ

INTERRUPT REQUEST: In a keyboard mode, the interrupt line is high when
there is data in the FIFO/Sensor RAM. The interrupt line goes low with each
FIFO/Sensor RAM read and returns high if there is still information in the
RAM. In a sensor mode, the interrupt line goes high whenever a change in a
sensor is detected.

Vss: Voo

GROUND AND POWER SUPPLY PINS.

SLp-Slg

SCAN LINES: Scan lines which are used to scan the key switch or sensor
matrix and the display digits. These lines can be either encoded (1 of 16) or
decoded (1 of 4).

Rlo-RLy

RETURN LINE: Return line inputs which are connected to the scan lines
through the keys or sensor swilches. They have active internal pullups to
keep them high until a switch closure pulls cne low. They also serve as an 8-
bit input in the Strobed Input mode.

SHIFT

36

SHIFT: The shift input status is stored along with the key position on key
closure in the Scanned Keyboard modes. It has an active internal pullup to
keep it high until a switch closure pulls it low. .

CNTL/STB

a7

CONTROL/STROBED INPUT MODE: For keybcard modes this line is used
as a confrol input and stored like status on a key closure. The line is also the
strobe line that enters the data into the FIFQ in the Strobed Input mode.
(Rising Edge). It hus an active internal pullup to keep it high until a switch
closure pulls it low.

OUT Ap-0UT Az
OUT Bp-0UT B4

27-24
31-28

OUTPUTS: These two ports are the outputs for the 16 x 4 display refresh
registers. The dala from these outpuls is synchronized to the scan lines (SLg-
SLj) for multiplexed digit displays. Tha two 4 bit ports may be blanked
independently. These two ports may also be considered as one 8-bit port.

BD

23

BLANK DISPLAY: This output is used to blank the display during digit
switching or by a display blanking command.

,i;! .
.

APPENDIX D
MC68000 INSTRUCTION EXECUTION TIMES

D.1 INTRODUCTION

This Appendix contains listings of the instruction execution times in terms of external
clock (CLK) periods. In this data, it is assumed that both memory read and write cycle
times are four clock periods. A longer memory cycle will cause the generation of walit

states which must be added to the total instruction time.

The number of bus read and write cycles for each instruction is also included with the
timing data. This data is enclosed in parenthesis following the number of clock periods
and is shown as: (r/'w) where r is the number of read cycles and w is the number of write
cycles included in the clock period number. Recalling that either a read or write cycle re-
quires four clock periods, a timing number given as 18(3/1) relates to 12 clock periods for
the three read cycles, plus 4 clock periods for the one write cycle, plus 2 cycles required
for some internal function of the processor.

NOTE

The number of periods includes instruction fetch and all applicable operand
fetches and stores.

D.2 OPERAND EFFECTIVE ADDRESS CALCULATION TIMING

Table D-1 lists the number of clock periods required to compute an instruction's effective
address. It Includes fetching of any extension words, the address computation, and
fetching of the memory operand. The number of bus read and write cycles is shown in
parenthesis as (r/'w). Note there are no write cycles involved in processing the effective

address.

Table D-1. Effective Address Calculation Times

Addressing Mode Byte, Word Long

Register
Dn Data Aegister Direct 00/0) 0(0/01
An Address Register Direct 0(2/0) 010/0)

Memory .
(An) Address Register Indirect 4(1/01 B(2/0)
(Anl + Address Register Indirect with Postincrement 4(1/0) 812/0)
- {An) Address Register Indirect with Predecrement 6(1/0) 1012/0)
1{An) Address Register Indirect with Displacement 8(2/0) 12(3/0)
diAn, ix® Address Register Indirect with Index 10(2/01 1413/0)
xxx. W Absolute Short 8(2/0) 12(3/0
xxx.L Absolute Long 12(3/0) 16(4/0)
u(PCl Program Counter with Displacement 8(2/01 12(3/0)
dIPC, ix)* Program Counter with Index 10(2/0) 14(3/01
Fxxx Immediate 4(1/0) 8(2/0)

* The size of the index register (ix) does not alfect execution time

713

714 Microprocessors and Microcomputer-Based System Design, 2nd Edition

D.3 MOVE INSTRUCTION EXECUTION TIMES
Tables D-2 and D-3 indicate the number of clock periods for the move instruction. This

data includes instruction fetch, operand reads, and operand writes. The number of bus
read and write cycles Is shown in parenthesis as (r/w).

Table D-2. Move Byte and Word Instruction Execution Times

ination
i Dn An (An) (An)+ | —(An) | dlAnl [diAn, M0%] oW | sl
Dn 4(1/0) 4(1/0) 8(1/1) BU1/1) sl | 122/1 142/1) | 2271 | 1613/1)
An 4(1/01 401/0) 811/ 1) Bl1/1) 801/ | 122/ 142/1) | 22/ | 1813/1)
(An) 812/0) 82/0) | 1202/1) 122/0 | w22/ | 1.3 18(3/1) | 16(3/1) | 2014/1)
(An) + 8(2/0) 8(2/0) | 122/ | w2/u | w2/ | ean | 8GN 1e@ | 200400
~An) 1002700 | 1002/00 | 42/ | 14271 | @2 | oqsain | 2003/ | s | 22040
diAn) 1203/00 | 1203/00 | 18(3/1) | 18(3/10 | 163711 | 2004710 | 2204710 | 2014/1) | 2415/1)
dlAn, ix)® 14(3/0) 14(3/0) 18(3/1) 18(3/1) 18(3/1) | 22(4/1) | 2414/1) 22(4/1) | 28(5/1)
xux.W 120/00 | 1208 | e 1613/1) | 16t3/1) | 2004710 | Zz24/1) | 2004/1) | 24i5/1)
xxx, L 16(4/0) 1814/0) | 2014/1 | 2004/1) | 2004710 | 24571y | 2805/11 | 2415/1) | 2BI6/1)
dIPCl 1213/00 12i3/00 | 1613/1) 16(3/1) [16(3/1) | 201471) | 224/1) | 2014/1) | 24(5/1)
diPC, ix)* 14(3/0) |- 14(3/0) 18(3/1) 1813/11 18(3/1) | 2214/ 2404/1) 22(4/1) | 26(5/1)
#xxx B(2/0) 8(2/0) | 12(2/1) 1202/1 | 22 | 163 18(3/1) 16(3/11 | 201471

* The size ot the index register (ix) does not allect execulion ume.

Table D-3. Move Long Instruction Execution Times

n
Source Dn An (An) {Anl+ | —(Anl | diAn) |d{An, ¥ oW | ool
Dn . 4070 401/0) 120/ | w2002 | w2 | e | e/ | oe2/20 | 2003/2)
An " 4(1/0) 401/0) 1202 | 12020 | 2ty | 18172 | 8i2/2) | 1612420 | 2003/2)
{An) 1203700 | 123/0) | 20(3/2) | 2013/2) | 20(3/2) | 24(4/2) | 26(4/2) | 2414/2) | 2BI5/2)
(An) + 12(3/0 123/00 | 2013/21 | 2003/2) | 2013/2) | 24¢4/2) | 2614/2) | 24(4/2) | 2B(5/2)
= (An) 14(3/0) 14(3/0) 213/2) 223/20 | 213/2) 26(4/2)-(284/2) 2614/2) | 3015/2)
dlAn) 18(4/0) 1814/0) | 24(4/2) | 2414/2) | 2414/ | 2815/2) | 3015/2) | 2B5/2) | 3206/2
dlAn, ix)* 18(4/0) 1814/0) [26(4/21 | 2814/2) | 2614/2) | 30i5/2) | 3215/2) | 30(5/2) | 34(6/2)
xxx.W 168(4/01 184/0) | 2414/2) | 24(4/2) | 2404/2) | 2815/2) | 30i5/2) | 2B15/2) | 3206/2)
xx. L 20i5/01 | 2015/00 | 28(5/2) | 2B15/2) | 28(5/2) | 3216/2) | 346/ | 3206/2) | 36(7/2)
d(PC) 16(4/0) | 16(4/0) 24(4/2) | 2414720 | 244720 | 2B(5/21 | 30(5/2) 28(5/2) | 32(5/2
d(PC, ix)* 1814/01 1814/0) 2614/2) | 26/ | 2614/ | 30(5/2) | 3205/2) | 305/ | 341672
#xxx 12(3/0) | 12(3/0) 2013/2) | 2003/2) | 2043/2) | 24(4/2) | 2614/2) | 24(4/2) | 2B15/2)

* The size of the index register (ix) does not alfect execution ume.

Appendix D ’ 715

D.4 STANDARD INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table D-4 indicates the time required to perform
the operations, store the results, and read the next instruction. The number of bus read
and write cycles is shown in parenthesis as (r/w). The number of clock periods and the
number of read and write cycles must be added respectively to those of the effective ad-
dress calculation where indicated.

In Table D-4 the headings have the following meanings: An = address register operand,

Dn =data register operand, ea=an operand specified by an effective address, and
M = memory effective address operand.

Table D-4. Standard Instruction Execution Times

Instruction Size op<oa>, Ant op<ea>, Dn op Dn, <M>
ADD Byle, Word 8(1/0) + 401/01 + B(1/ 1)+
Long 6(1/01 + = * 601/01+** 12(1/2) +
AND Byte, Word - 4(1/0) + B/ +
Long - 6(1/01+ == 120172 +
EME Byte, Word 8(1/01 + 411/0) + -
Long 6(1/01 + 6(1/0) + -
DIVS - - 158(1/0) + * -
DIvu - - 140(1/0) + * - =
EOR Byte, Word - 4(1/0)* = * B(1/1) +
Long - B(1/0)% = * 12(1/2) +
MULS - - 70(1/0) + * -
MULU - = 70(1/0) + * - s
oR Byte, Word - 4(1/0) + Bl1/11 +
Long - B(1/Q)+** 1200/2) +
SUB Byle. Word Bl1/0) + 401/0) + 8(1/1)+
Long 6(1/0)+** 6(1/0)+ = * 12(1/2) +
NOTES:
+ add ellective address calculation time
t word or long only
* indicales maximum value
** The base time of six clock periods is increased to cight il the elfective address mode is

register direct or immediate (effective address time should also be added!.
** * Only available elfective address mode is data register direct.
DIVS, DIVU — The divide algorithm used by the MCB8000 provides less than 10% ditlerence
between the best and wors1 case imings.
MULS, MULU — The multiply algerithm requires 33 + 2n clocks where n is defined as:
MULU: n= the number of ones in the <ea>
MULS: n=concatanate the <ea> with a zero as the LSB; n is the resultant number of
10 or 01 patlerns in the 17-bit source; i.e., worsl case happens when the
source is $5555.

716 Microprocessors and Microcomputer-Based System Design, 2nd Edition

D.5 IMMEDIATE INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table D-5 includes the time to fetch immediate
operands, perform the operations, store the results, and read the next operation. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

In Table D-5, the headings have the following meanings: #=Iimmediate operand,
Dn =data register operand, An =address register operand, and M= memory operand.

SR = status register.

Table D-5. Immediate Instruction Execution Times
Instruction Size op #, Dn opd, An oph, M
ADDI Byte, Word 812/0) - 12(2/1) +
Long 16(3/0) - 2003/2) +
ADDQ Byte. Word 4(1/0) Bi1/0)* Bl1/1} +
Long 8(1/01 8{1/01 12(1/21 +
ANDI Byte, Word B(2/0) - 1202/ 1) +
Long 1613/0) - 2003/1) +
CMPI Byte, Word 8(2/0) - 812/0) +
Long 14(3/01 - 1203/01 +
EORI Byte, Word 8(2/01 - 12271+
Long 16(3/0) - 2003/2) +

MOVEQ Long 4(1/0) = =
ORI Byte. Word 8(2/0) - 1212/1) +
Long 16(3/01 — 2003/2) +
SUBI Byte, Word BI2/01 - 1202711 +
Long 16(3/0) - 2(3/2) +
Byte, Word 4(1/0) 8l1/00* Bi1/1)+

susQ

i Long 8(1/0) 8l 1211721 +

+ add ellective address calculation time

*word only

Appendix D 717

D.6 SINGLE OPERAND INSTRUCTION EXECUTION TIMES

Table D-6 Indicates the number of clock periods for the single operand instructions. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where Indicated.

Table D-8. Single Operand Instruction Execution Times

Instruction Size Register Memory
CLH Byte. Word 411/0) 8(1/1) +
Long 6(1/0) 1201721 +
NBCD Byte 611/0 8(1/1) +

.t 1
NEG Byte, Word 401/00 B(1/1)+
Long 6(1/0) 1201/2) +

7 1
NEGX Byte, Word 4(1/0! B(1/1) +
Long 6(1/0) 12005 +
NOT Byte, Word 4(1/0) B(1/1)+
Long 6(1/01 1201/2) +
Byte, False 4(1/01 8(1/1)+
Sce

Byte, True 6(1/01 B(1/1}+
TAS Byte 4010 1001/1) +
15T Byle, Word 4{1/0) 4(1/0) +
Long 4(1/01 4(1/01 +

+ add effective address calculation lime

D.7 SHIFT/ROTATE INSTRUCTION EXECUTION TIMES

Table D-7 indicates the number of clock periods for the shift and rotate instructions. The
number of bus read and write cycles is shown in parenthesis as (rfw). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where Indicated.

Table D-7. Shift/Rotate Instructlon Execution Times

Instruction Size Register Memory
. Word 6 + 2nl1/0 (1/1)
ASR, ASL Byte, Wor + 2nl) B +
Long B + 2n(1/0 =
Byle, Word 6 + 2nl1/0) B(1/1) +
LSAH, LSL
Long B8 + 2n(1/0} =
Byte. Word 6 + 2nl1/Q) (/1 +
ROR, ROL il i 2
Long 8 + 2n(1/0) -
Iyte, W 6 + 2nl1/0) acisn
HOXR, ROXL Byte. Word + 2n +
Long B + 2n(1/0) -

+ add elfective address calculanen ume

n is the shift count

718 Microprocessors and Microcomputer-Based System Design, 2nd Edition

D.8 BIT MANIPULATION INSTRUCTION EXECUTION TIMES

Table D-8 indicates the number of clock periods required for the bit manipulation instruc-
tions. The number of bus read and write cycles is shown in parenthesis as (r/w). The
number of clock periods and the number of read and write cycles must be added respec-

tively to those of the effective address calculation where Indicated.

Table D-8. Bit Manipulation Instruction Execution Times

" . Dynamic Static
Instruction Size = -
Register Memory Registor Memory
BCHG Byte - a0/ + - 120271+
Long 8(1/0)* - 12(2/0)* -
Byte - BI1/ 1+ - 1202/ +
BCLR
Long 1001701 - 14(2/01* -
Byte - 8/ 1+ - 1202711+
BSET
Long 8{1/o " - 12(2/0)* -
BIST Byto - 401101 + - 8(2/01 +
Long 6(1/0) - 10(2/01 -

+ add ellective address calculation ume
*indicates maximum value

D.9 CONDITIONAL INSTRUCTION EXECUTION TIMES

Table D-9 indicates the number of clock periods required for the conditional Instructlions.
The number of bus read and write cycles is indicated In pareni~esis as (r'w). The number
of clock periods and the number of read and write cycles must be added respectively to

those of the effective address calculation where indicated.

Table D-9. Conditional Instruction Execution 'flmeu

Instruction Displacemeont "’l":::: Nf: aTn;;hm
& Byto 1012/0) 801/0)
cc Word 1012/00 1212/0
— Byte 1002/0) =
Word 1012/0) =
Byte 18(2/2) -
BSR
Word 18(2/2) -
- CC true = 12(2/0)
cc CC falsa 10(2/0) 1413/0)

+add ellective address calculation time

*indicates maximum value

Appendix D 719

D.10 JMP, JSR, LEA, PEA, AND MOVEM INSTRUCTION EXECUTION TIMES

Table D-10 indicates the number of clock periods required for the jump, jump-to-
subroutine, load effective address, push effective address, and move multiple registers
instructions. The_ number of bus read and write cycles is shown in parenthesis as (r/iw).

Table D-10. JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Tim~s

Instr Size (An) (An) + - (An) dlAn} [d(An, ix)+ xxx. W xxx.L d(PC) diPC, ix)*
JMP — B(2/Q) - = 1012/0) 14(3/0) 10(2/0) 12(3/0) 10(2/0) 14(3/0)
JSR - 1612/2) | ~ - - 18i(2/2) 2212/2) 1812/2) 20(3/2) 1812/2) 22(2/2)
LEA — 4(1/0) — - 8(2/0) 12(2/01 B(2/01 12i3/01 Bi2/0) 1212/0)
PEA - 12(1/2) - - A612/2) 2012/2) 1612/2) 20(3/2) 16(2/2) 2012/2)
Word 12+ 4n 12 +4n - 16 +4n 18 +4n 16+ 4n 20 +4n 16 + 4n 18 +4n
MOVEM (3+n/0) 13+ n/0) (44 n/01 (4+n/01 | (44 n/0l (54 n/0) 14+ n/0) 4+ n/0)
M—R Long 12+8n 12+ 8n - 16 +8n 18 +8n 16+ 8n 20+8n 16+ 8n 18 + Bn
13+ 2n/0) (34 2n/0) 14 20/01 [+ 20/00 [(A4 2000 | (5+20/0) [14 +2n0/0) [14+ 20/0)
Word 8+4n = 84 4n 12+4n 14+ 4n 12+ 4n 16 + 4n - -
MOVEM (2/nl (2/n) 13/n1 (3/n} {3/n) (4/nl ~ -
R—M Long 8+8n - B8+8n 124 8n 14+8n 12+8n 16+ 8n - -
(2/2n - (2/2n) (3/2n) (3/2n) (3/2n}" (4/2n) - -

n is the number ol registers to move
*1s the size ol the index register Lix) does not allect the instruction’s execution time

D 11 MULTI-PRECISION INSTRUCTION EXECUTION TIMES

Table D-11 indicates the number of clock periods for the multi-precision instructions. The
number of clock periods includes the time to fetch both operands, peform the operations,
store the results, and read the next instructions. The number of read and write cycles Is

shown in parenthesis as (r/w).

In Table D-11, the headings have the following meanings: Dn = data register operand and
M =memory operand.

Table D-11. Multi-Precision Instruction Execution Times

Instruction Size op Dn, Dn opM, M
ADDX Byte, Word 401700 18(3/1)
Long 8l11/0) 30(5/21

CMPM Byle, Word - 12(3/0)
Long - 20(5/01

W

SUBX Byte, Word 4(1/0) 18(3/11
Long 8(1/0 30(5/2)

ABCD Byte 6(1/0) 18(3/1)
SBCD Byte 611/0b 18(3/1)

720 Microprocessors and Microcomputer-Based System Design, 2nd Edition

D.12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

Tables D-12 and D-13 indicate the number of clock periods for the following
miscellaneous instructions. The number of bus read and write cycles Is shown In paren-
thesis as (r/w). The number of clock periods plus the number of read and write cycles
must be added to those of the effective address calculation where Indicated.

Table D-12. Miscsellaneous lnstruction Exocuilon Times

Instruction Size Register Mamory
ANDI 1o CCR Byte 2003/0) -
ANDI to SR Waord 20(3/0) -
CHK - 1001/0) + -
EORI 10 CCR Byte 20(3/01 -
EORI to SR Word 20(3/01 -
ORI to CCR Byte 2013/0) -
ORI 10 SR Word 2013/0) .
MOVE lrom SR - - 611/0) B(1/1)+
MOVE 10 CCR - 12(2/0) 12(2/01 +
MOVE to SR - 1212/0 12(2/0) +
EXG - 611/0) -
EXT Word 401/0) -

Long 4(1/0) -
LINK = 1612/2) —
MOVE lrom USP - 4(1/0) =
MOVE to USP - 4(1/0) -
NOP - 4(1/0) -
RESET - 13201701 —
RTE - 2015/0) -
RTR - 2015/0 -
RTS - 1614/0) -
STOP - 410/0) -
SWAP -~ 4(1/0) =
TRAPV — 4(1/0) s
UNLK - 12(3/0) -

+ add elleclive address calculation time

Table D-13. Move Peripheral Instruction Execution Times

Instruction Size Register — Memory | Memory — Register
Word 1612/2) 1614/0)
MIEREE Long 24(2/4) 24(6/0)

Appendix D 721

D.13 EXCEPTION PROCESSING EXECUTION TIMES

Table D-14 indicates the number of clock periods for exception processing. The number
of clock perlods includes the time for all stacking, the vector fetch, and the fetch of the
first two Instruction words of the handler routine. The number of bus read and write
cycles Is shown In parenthesis as (r/w).

Table D-14. Exceptlon Processing Execution Times

Exception Periods
Address Error 50(4/7)
Bus Error 50(4/7)
CHK Instruction 44(5/4) +
Divida by Zero 42(5/4)
lllegal Instruction 3414/3)
Interrupt 44(5/3)*
Privilege Violation 34(4/3)
RESET®* 40(6/0)
Trace 34(4/3)
TRAP Instruction 38(4/4)
TRAPV Instruction 34(4/3)

+add elfective address calculation time
* The interrupl acknowledge cycle is assumed
to take four clock periods
* *Indicates the ume from when RESET and
HALT are first sampled as negated 1o when
Instruclion execution starts

APPENDIX E
8086 INSTRUCTION SET REFERENCE DATA

AAA (no operands) ODITSZAPC
AAA ASCII adjust for addition Flags UU X U X
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) - 4 — 1 AAA
' AAD (no operands) GOITEZAPE
AAD ASCIl adjust for division Fiags XX UX U
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 60 - 2 AAD
AAM (no operands) . OQITSZAPC
AAM ASCll adjust for multiply Flags XXUXU
Operands Clocks | Transfers* | Bytes Coding Example
{no operands) 83 — . AAM =
AAS (no operands) ODITSZAPC
AAS ASCIl adjust for subtraction Flags u UuXxXuxX
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 AAS

*For the 8088, add four clocks for each 18-bil word transler with an odd address. For the 8088, add four clocka for each 16-bit word Iransler.

724 Microprocessors and Microcomputer-Based System Design, 2nd Edition
ADC destination,source ODITSZAPC
ADC Add withcarry Flags X X X X X
Operands Clocks | Transfers* | Byles Coding Example
register, register 3 — 2 ADC AX, S|
register, memory 9+EA 1 2-4 ADC DX, BETA [SI]
memory, register 16+ EA 2 2-4 ADC ALPHA [BX][SI], DI
register, immediate 4 — 3-4 ADC BX, 256
memory, immediate 17+ EA 2 3-6 ADC GAMMA, 30H
accumulator, immediate 4 — 2-3 ADC AL,5
ADD destination,source ODITSZAPC
ADD Addition Flags XXX XX
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 - 2 ADD CX, DX
register, memory 9+EA 1 2-4 ADD DI, [BX].ALPHA
memory, register 16+ EA 2 2-4 ADD TEMP, CL
register, immediate 4 — 3-4 ADD CL,2
memory, immediate 17+EA 2 3-6 ADD ALPHA,2
accumulator, immediate 4 - 2-3 ADD AX, 200
AND destination,source ODITSZAPC
AND Logical and Flags XX UX0
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 AND AL,BL
register, memory 9+EA 1 2-4 AND CX,FLAG_WORD
memory, register 164 EA 2 2-4 AND ASCII [DI],AL
register, immediate 4 - 3-4 AND CX,0F0H
memory, immediate 17+ EA 2 3-6 AND BETA, 01H
accumulator, immediate 4 — 2-3 AND AX, 010100008
CALL target ODITSZAPC
CALL Callaprocedure Flags
Operands Clocks | Transfers® | Bytes Coding Examples
near-proc 19] 3 CALL NEAR_PROC
far-proc 28 2 5 CALL FAR_PROC
memplr 16 21+EA 2 2-4 CALL PROC_TABLE [SI]
regptr 16 16 1 2 CALL AX
memptr 32 37+EA 4 2-4 CALL [BX].TASK [SI]
CBW (no operands) ODITSZAPC
CBW _ Convert byte to word Flags
. Operands Clocks | Transfers® | Bytes Coding Example
(no operands) 2 — 1 cBw

“For the B08S, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transler.

Appendix E

725

CLC (no operands)

ODITSZARE

CLC Clear carry flag Flags 0
Operands Clocks | Transfers® | Bytes Coding Example
(no operands) 2 — 1 CcLC
CLD (no operands) ODITSZAPC
CLD Clear direction flag Flags 0
Operands Clocks | Transfers® | Bytes Coding Example
(no operands) 2 — 1 CLD
CLl (no operands) ODITSZAPC
CLI Clearinterrupt flag Fiags 0
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CLI
CMC (no operands) QDTS Z-ARE
CMC Complement carry flag riags X
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CMC
CMP destination,source ODITSZAPGC
CMP Compare destinalion to source Fings X XXX XX
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 CMP BX, CX
register, memory 9+EA 1 2-4 CMP DH, ALPHA
memaory, register 9+ EA 1 2-4 CMP [BP+2],SI
register, immediate 4 — 3-4 CMP BL, 02H
memory, immediale 10+ EA 1 3-6 CMP [BX].RADAR [DI], 3420H
accumulator, immediate 4 — 2-3 CMP AL, 000100008
CMPS dest-string,source-string OCDITSZAPRC
CMPS Compare string ' Fitgs o XXX N
Operands Clocks | Transfers® | Bytes Coding Example
dest-string, source-string 22 2 1 CMPS BUFF1, BUFF2
(repeat) dest-string, source-string 9+22/rep 2/rep 1 REPE CMPS 1D, KEY

*For the 8086, add four clocks for each 16-bit word trans!er with an odd address. For the 8088, add four clocks for each 16-bit word translor,

726 Microprocessors and Microcomputer-Based System Design, 2nd Edition
CWD (no operands) ODIETSEZAPGC
CwD Convert word lo doubleword Fiags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 5 - 1 CWD
' DAA (no operands) ODITSZAPC
DAA Decimal adjust for addition rige X XX XXX
Operands Clocks | Transfers*® | Bytes Coding Example
(no operands) 4 — 1 DAA
DAS (no operands) ODITSZAPC
DAS Decimal adjust for subtraction Flags u XX XXX
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 ce 1 DAS
DEC destination ODITSZAPC
DEC Decrement by 1 Flags X XX XX
Operands Clocks | Transfers* | Bytes | Coding Example
reg16 2 —-- 1 DEC AX
regd 3 - ‘ DEC AL
memory 15+EA 2 2-4 L DEC ARRAY [SI]
DIV source ODITSZAPC
DIV Division, unsigned ol UUUU U
Operands Clocks | Transfers® | Byles Coding Example
reg8 80-90 - 2 DIV CL
reg16 144-162 — 2 DIV BX
mem8 (86-96) 1 2-4 DIV ALPHA
+EA
mem16 {150-168) i 2-4 DIV TABLE [SI]
+EA
ESC ESC external-opcode,source Flidi ODITSZAPC
Escape g
Operands Clocks | Transfers* | Bytes Coding Example
immediate, memory 8+EA 1 24 ESC 6,ARRAY [SI]
immediate, register 2 — 2 ESC 20,AL

“For the B0B6, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add lour clocks lor each 16-bit word transler.

Appendix E 727
HLT (no operands) ODITSZAPC
HLT Halt Flags
Operands Clocks | Transfers® | Byles Coding Example
(no operands) 2 - 1 HLT
IDIV source ODITSZAPC
IDIV Integer division Flags u uuuuu
" Operands Clocks | Transfers® | Bytes Coding Example
reg8 101-112 - 2 IDIV BL
reg16 165-184 — 2 IDIV CX
mem38 (107-118) 1 2-4 IDIV DIVISOR_BYTE [Sl]
+EA
mem16 (171-190) 1 2-4 IDIV [BX].DIVISOR_WORD
+EA
IMUL source ODITSZAPC
IMUL Integer multiplication Fings X VuUuUuUX
Operands Clocks | Transfers® | Byles Coding Example
reg8 80-98 — 2 IMUL CL
reg16 128-154 - 2 IMUL BX
memB8 (86-104) 1 2-4 IMUL RATE_BYTE
+EA
mem16 (134-160) 1 2-4 IMUL RATE_WORD [BP][DI]
+EA -
IN accumulator,port ODITSZARG
IN Input byte or word Elage
Operands Clocks | Transfers* | Bytes Coding Example
accumulator, immed8 10 1 2 IN AL, OFFEAH
accumulator, DX 8 1 1 IN AX, DX
INC destination ODITSZAPC
INC Increment by 1 Flags X X XXX
Operands Clocks | Transfers*® | Bytes Coding Example
reg16 2 — 1 INC CX
reg8 3 S 2 INC BL
memory 15+ EA 2 2-4 INC ALPHA (DI} [BX]

*For tha BOBS, add four clocks for each 16-blt word transfer with

an odd address. For the B0BB, add four clocks for each 16-bit word transler,

728

Microprocessors and Microcomputer-Based System Design, 2nd Edition

INT

INT interrupt-type

ODITSZAPC

Interrupt Flags 00
Operands Clocks | Transfers* | Bytes Coding Example
immed8 (type = 3) 52 & 1 INT 3
immeds (lype # 3) 51 5 2 INT 67
i INTR (external maskable interrupt) ODITSZAPC
INTR Interrupt if INTR and IF=1 Flagé 00
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 61 7 N/A N/A
INTO (no operands) ODITSZAPC
INTO Interrupt if overflow Fiags 00
Operands Clocks | Transfers* | Byles Coding Example
(no operands) 53or4 5 1 INTO
IRET (no operands) ODITSZAPC
IRET Interrupt Return Flags R RRRRRARR
Operands Clocks | Transfers® | Bytes Coding Example
(no operands) 24 3 1 IRET
JA/JNBE short-label ODITSZAPC
JA/JNBE Jump if above/Jump if not below nor equal Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JA ABOVE
JAE/JNB short-label ODITSZAPC
JAE/JNB Jump if above or equal/Jump if not below Fings
Operands Clocks | Transfers* | Byles Coding Example
short-label 16or4 — 2 JAE ABOVE_EQUAL
JB/JNAE JB/JNAE short-label Flaig ODITSZAPC
Jump if below/Jump if not above nor equal g
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JB BELOW

*For the 8086, add four clocks for each 16-bit word transfer with an odd address, For the 8088, add lour clocks for each 16-bit word transler.
tINTR is notan instruction; it is included in lable 2-21 only for liming inlermation,

Appendix E U
JBE/JNA JBE/SNA short-label Claqg DD ITSZA Pe
Jump if below or equal/Jump if notabove 8
Operands Clocks } Transfers* | Bytes Coding Example
short-label 160rd — 2 JNA NOT_ABOVE
JC short-label ODITSZAPC
JC Jump if carry Fiags
Operands .Clocka Transfers* | Bytes . Coding Example
short-label 16or4 — 2 JC CARRY_SET
‘ JCXZ short-label ODITSZAPC
JCXZ Jump if CX is zero i
Operands Clocks | Transfers® | Bytes 1 Coding Example
short-label 180r8 — | 2 | JCXZ COUNT_DONE
JE/JZ short-label ODITSZAPC
JE/JZ Jump if equal/Jump if zero Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16ord - 2 JZ ZERO
JG/JNLE short-label ODITSZAPE
: JG/JNLE Jump If greater/Jump if not less nor equal olis. s
Operands " Clocks | ®ransfers® | Bytes Coding Example
short-labetl 16or4 —_— 2 JG GREATER
JGE/JNL short-label 0OPDITSZAPLC
JGE/JNL Jump if greater or equal/Jump if notless i
Operands Clocks | Transfers® | Bytes Coding Example
short-label 16or4 - 2 JGE GREATER_EQUAL
JL/JNGE short-label ODITSZAPC
JL/JNG E Jump if less/Jump if not greater nor equal o
Operands Clocks | Transfers*® | Bytes Coding Example
short-label 16ord4 — 2 JL LESS

*For the 8086, add four clocks lor each 16-bit w

ord transler with an odd address. For the 8088, add four clogks for each 16-bit word tfransier.

730 Microprocessors and Microcomputer-Based System Design, 2nd Edition
JLE/JNG short-labe! ODITSZAPC
JLE/ING Jumpif less or equal/ Jump if not greater Flags
Operands Clocks | Transfers* | Byles Coding Example
short-label 16or4 — 2 JNG NOT_GREATER
JMP target ODITSZAPC
JMP Jump Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 15 e 2 JMP SHORT
near-label 15 o 3 JMP WITHIN_SEGMENT
far-label 15 — 5 JMP FAR_LABEL
memptri6 18+ EA 1 2-4 JMP [BX].TARGET
regptri6 1 o 2 JMP CX
memptr32 24+ EA 2 2-4 JMP OTHER.SEG [SI]
JNC JNC short-label S ODITSZAPC
Jump if not carry 9
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JNC NOT_CARRY
JNE/JNZ short-label ODITSZAPC
JNE/JNZ Jump if not equal/Jump if not zero Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16ord - 2 JNE NOT_EQUAL
JNO short-label ODITSZAPC
JNO Jump if not overflow Flags
Operands Clocks | Transfers® | Bytes Coding Example
short-label 16or4 —_ 2 JNO NO_OVERFLOW
JNP/JPO short-label ODITSZAPG
JNP/JPO Jump if not parity/Jump if parity odd Flaga
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JPO ODD_PARITY
JNS JNS short-label Flags &DITSZAPC
Jump if not sign
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JNS POSITIVE

*For the 8080, add lour clocks lor each 16-bit word transfer with an odd addruss, For the 8088, add lour clocks for each 16-bit word transfor.

Appendix E

731

JO short-label

OBDITS ZAPC

JO Jump if overflow Flags
Operands Clocks | Transfers*® | Bytes Coding Example
short-label 16or4 — 2 JO SIGNED_OVRFLW
JP/JPE short-label ODITSZAPC
JP/JPE Jump if parity/Jump if parity even Fings
Operands Clocks | Transfers® | Bytes Coding Example
short-label 16ord — 2 JPE EVEN__PARITY
JS short-label X ODITSZAPC
JS Jumpif sign Flags
Operands Clocks | Transfers*® | Bytes Coding Example
short-label 160r4 — 2 JS NEGATIVE
LAHF (no operands) ODITSZAPC
LAHF Load AH from flags Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 —_ 1 LAHF
LDS destination,source ODITSZARC
LDS Load pointer using DS riags
Operands Clocks Transters | Bytes Coding Example
reg16, mem32 164+ EA 2 2-4 LDS SI,DATA.SEG [DI]
LEA destination,source OQDITSZAPC
LEA Load effective address Fiags
Operands Clocks | Transfers® | Bytes Coding Example
reg16, mem16 2+EA - 24 LEA BX, [BP)[DI|
LES deslination,source ODITSZAPC
LES Load pointer using ES Flags
Operands Clocks | Transfers® | Bytes Coding Example
reg16, mema32 16+ EA 2 2-4 LES DI, [BX].TEXT_BUFF

*For the B0BS, add four clocks for each 16-bit word transier with an odd address. For the 8088, add four clocks for each 16-bit word transler.

732 Microprocessors and Microcomputer-Based System Design, 2nd Edition
LOCK (no operands) ODITSZAPC
LOCK Lovicbus Flags i
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 - 1 LOCK XCHG FLAG,AL
LODS source-string ODITSZAPC
LODS Loadaiti Flags
Operands Clocks | Transfers® | Bytes ‘Coding Example
source-string 12 1 1 LODS CUSTOMER_NAME
(repeat) source-string 9+13/rep 1/rep 1 REP LODS NAME
LOOP short-label ODITSZAPC
LOOP Loop Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 1715 - 2 LOOP AGAIN
LOOPE/LOOPZ short-label ODITSZAPC
LOQ’PE/LOOPZ Loop if equal/Loopif zero Flags
Operands Clocks | Transfers*® | Byles Coding Example
short-label 18or6 - 2 LOOPE AGAIN
LOOPNE/LOOPNZ LOOPNE/LOOPNZ short-label Flaas ODTTS ZAPC
Loop if not equal/Loop if not zero g
QOperands Clocks | Transfers® | Bytes Coding Example
short-label 190r5 - 2 LOOPNE AGAIN
1 NMI (external nonmaskable interrupt) OSITSZAPC
NMI Interrupt if NMI = 1 Fihge 00
Operands Clocks | Transfers*® | Bytes Coding Example
(no operands)’ 50° 5 N/A NIA

*For the B08EG, add four clocks for each 16-bil word transter with an odd address. For the B0B8, add four clocks for each 16-bit word transfer.
tNMIlis not an instruclion; ilis included in table 2-21 only for timing inlormation.

&

Appendix E 733
MOV destination,source QDITSZAPE
MOV Moy Flags
Operands | Clocks | Transfers® | Bytes Coding Example
memory, accumulator 10 1 3 MOV ARRAY [SI]; AL
accumulator, memory 10 1 3 MOV AX, TEMP_RESWLT
register, register 2 - 2 MOV AX,CX
register, memory 8+EA 1 2-4 MOV BP, STACK_TOP
memory, register 9+EA 1 2-4 MOV COUNT [DI}, CX
register, immediate 4 — 2-3 MOV CL, 2
memory, immediate 10+EA 1 3-6 MOV MASK [BX][Sl], 2CH
seg-reg, regib 2 — 2 MOV ES,CX
seg-reg, mem16 8+EA 1 2.4 | MOV DS, SEGMENT_BASE
regl16, seg-reg 2 — 2 MOV BP, SS
memory, seg-reg 9+EA 1 2-4 MOV [BX].SEG_SAVE,CS
MOVS MOVS dest-siring,source-string Flitis ODITSZAPGC
Move string g
Operands Clocks Traﬁslers' Bytes Coding Example
dest-string, source-string 18 2 1 MOVS LINE EDIT__DATA
(repeat) dest-string, source-string 9+17/rep 2/rep 1 REP MOVS SCREEN, BUFFER
MOVSB/MOQOVSW (no operands) ODITSZAPC
MOVSB/MOVSW Move string (byte/word) Flags
Operands Clocks | Transfers® | Byles Coding Example
(no operands) 18 2 1 MOVSB
(repeat) (no operands) 9+17/rep 2/rep 1 REP MOVSW
MUL source ODITSZAPC
MUL Multiplication, unsigned Fiags X Uuuu X
Operands Clocks | Transfers® | Bytes Coding Example
reg8 70-77 — 2 MUL BL
regib 118-133 - 2 MUL CX
mem8 (76-83) 1 2-4 MUL MONTH [SI]
+EA
mem16 (124-139) 1 2-4 MUL BAUD__RATE
+EA

*For the 8085, add four clocks for each 16-bit word transler

with an odd address. For the 8088, add four clocks lor each 16-bit word transler.

734 Microprocessors and Microcomputer-Based System Design, 2nd Edition
NEG destination ODITSZAPC
NEG Negate AR h XX X X1°
Operands Clocks | Transfers® | Bytes Coding Example
register 3 — 2 NEG AL
memory 16+ EA 2 2-4 NEG MULTIPLIER
*0if destination=10
NOP (no operands) ODITSZAPFPC
NOP No Operation Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 3 — 1 NOP
NOT destination ODITSZAPC
NOT Logical not -ERgE
Operands Clocks | Transfers* | Bytes Coding Example
register 3 — 2 NOT AX
memory 16+ EA 2 2-4 NOT CHARACTER
OR destination,source . ODITSZAPC
OR Logical inclusive or Flags o5~ . xxuxo
Operands Clocks | Transfers® | Bytoo + Coding Example
register, register 3 - 2 O AL, BL
register, memory . 9+EA 1 2-4 OR DX, PORT_ID [DI]
memory, register 16+EA 2 2-4 OR FLAG_BYTE,CL
accumulator, immediate 4 — 23 OR AL, 011011008
register, immediate L4 — 3-4 ORCX,01H
memory, immediate 17+EA 2 3-6 OR [BX].CMD_WORD,0CFH
OUT port,accumulator ODITSZAPC
ouT Output byte or word Fiags
Operands Clocks | Transfers* | Byles Coding Example
immed8, accumulator 10 1 2 OUT 44, AX
DX, accumulator 8 1 1 OUT DX, AL
POP destination ODITSZAPC
POP Pop word off stack Fiags
Operands Clocks | Transfers* | Bytes Coding Example
register 8 1 1 POP DX
seg-reg (CSillegal) 8 1 1 POP DS
memory 17+EA 2 2-4 POP PARAMETER

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word translter.

Appendix E

735

POPF

POPF (no operands)
Pop flags off stack

ODITSZAPC

Flags 2 RRRRR R R R

Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 8 4 1 POPF
PUSH source ODITSZAPC
PUSH Push word onto stack Plags
Operands Clocks | Transfers* | Bytes Coding Example
register " 1 1 PUSH SI
seg-reg (CS legal) 10 1 1 PUSH ES
memory 16+ EA 2 2-4 PUSH RETURN__CODE (S}
PUSHF (no operands) OBFITSZAPGE
PUSHF Push flags onto stack Flags
Operands Clocks | Transfers® | Bytes Coding Example
(no operands) 10 1 1 PUSHF
RCL destination,count ODITSZAPC
RCL Rotate left through carry Fiags X X
Operands Clocks | Transfers® | Bytes Coding Example
register, 1 2 - 2 RCL CX, 1
register, CL 8+4/bit — 2 RCL AL,CL
memory, 1 15+ EA 2 2-4 RCL ALPHA,1
memory, CL 20+EA + 2 2-4 RCL [BP].PARM, CL
4/ bit
RCR designation,count ODITSZAPC
RCR Rotate right through carry Flags X X
Operands Clocks | Transfers® | Bytes Coding Example
register, 1 2 — 2 RCR BX, 1
register, CL 8+4/bit — 2 RCR BL,CL
memory, 1 15+ EA 2 2-4 RCR [BX].STATUS, 1
memory, CL 20+ EA + 2 2-4 RCR ARRAY [Di], CL
4/bit
REP REP (no operands) Flags ODITSZAPC
Repeat string operation g
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 REP MOVS DEST, SRCE

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add lour clocks for each 18-bit word transfer.

736 Microprocessors and Microcomputer-Based System Design, 2nd Edition
REPE/REPZ (no operands) ODITSZAPGC
REPE/REPZ Repeal siring operation while equal/while zero Flags '
' Operands Cloeks | Transfers® | Byles Coding Example
(no operands) 2 - 1 REPE CMPS DATA, KEY
REPNE/REPNZ(no operands) ODITSZAPC
.R EPNE/REPNZ Repeat strifig operation while not equal/not zero -
Operands Glocks | Transfers® | Bytes Coding Example
(no operands) 2 — 1 REPNE SCAS INPUT_LINE
RET optional-pop-value oD TrTSZAPC
RET Return from procedure Fiage
Operands Clocks | Transfers® | Bytes Coding Example
(intra-segment, no pop) 8 1 1 RET
(intra-segment, pop) 12 1 3 RET 4
(inter-segment, no pop) 18 2 1 RET
(inter-segment, pop) 17 2 3 RET 2
ROL destination,count oDITSZAPC
ROL Rotate left Elags X X
Operands Clocks Transfers | Bytes Coding Examples
register, 1 2 — 2 ROL BX,1
register, CL 8+4/bit — 2 ROL DI, CL
memory, 1 15+ EA 2 2-4 ROL FLAG_BYTE (DI}1
memory, CL 204EA+ 2 2-4 ROL ALPHA ,CL
4/bit
ROR destination,count 'O BITSZAFC
ROR Rotate right FAps X X
Operand Clocks | Transfers® | Bytes Coding Example
register, 1) 2 et 2 | ROR AL,1
register, CL 8+4/bit — 2 ROR BX,CL
memory, 1 15+EA 2 2-4 ROR PORT_STATUS, 1
memory, CL 20+EA+ 2 2-4 ROR CMD_WORD, CL
4/bit .
) SAHF (no operands) ODT T SZAPC
SAHF : Store AH into flags s RRRARR
Operands Clocks | Transfers® | Bytes Coding Example
(no operands) 4 - 1 SAHF

“Eor the 8086, add four clocks for each 16-bil word transler wilh an odd address. For the 8088, add four clocks for each 16-bit word transler.

Appendix E 737
SAL/SHL destination,count OQDITS8SZA PG
SAL/SHL Shift arlthmetic left/Shift logical left Flags X
Operands Clocks | Transfers* | Bytes Coding Examples
register,1 2 — 2 SAL AL,1
register, CL 8+4/bit — 2 SHL DI, CL
memory,1 15+ EA 2 2-4 | SHL [BX).OVERDRAW, 1
memory, CL 0+EA+ 2 2-4 SAL STORE_COUNT, CL
4/blt
SAR destination,source ODITSZAPC
SAR “shitt arithmetic right FIRgs: . XX U XX
Operands Clocks | Transfers* | Bytes Coding Example
register, 1 2 — 2 SAR DX, 1
register, CL 8+4/blt — 2 SAR DI, CL
memory, 1 15+EA 2 2-4 SAR N_BLOCKS, 1
memory, CL 20+EA+ 2 2-4 SAR N_BLOCKS, CL
4/blt
SBB destination,source ODITSZAPC
SBB Subtract with borrow Flags X XX XXX
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 - .2 SBB BX, CX
register, memory 9+EA 1 2-4 SBB DI, [BX].PAYMENT
memory, reglster 16+ EA 2 2-4 SBB BALANCE, AX
accumulator, Immediate 4 - 2-3 SBB AX, 2
register, iImmediate 4 — 3-4 SBB CL, 1
.memory, immediate 17+ EA 2 3-6 SBB COUNT [SI], 10
SCAS dest-string ODITSZAPC
SCAS Scan string Flags X XX XXX
Operands Clocks | Transfers® | Bytes Coding Example
dest-string 15 1 1. SCAS INPUT__LINE
(repeat) dest-string 9+15/rep 1/rep 1 REPNE SCAS BUFFER
1' SEGMENT override prefix ODITSZAPC
SEGMENT Override to specified segment Elage
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 - 1 MOV SS:PARAMETER, AX

“For the 8088, add lour clocks for each 16-bit word transfer with an odd address, For the B088, add lour clocks lor each 16-bit word transler,

tASM-86 incorporates the segment override prelix into the operand specilication and not as a separate instruclion. SEGMENT isincluded in table

2-21 only for timing information,

Q0 VIICIOPIOCESSOrS and viicrocomputer-vasea sysiem LJesigll, <nd cdition
SHR destination,count ODITSZAPC
‘SHR Shift logical right Flags X
Operands Clocks | Transfers* | Bytes Coding Example
register, 1 2 — 2 SHR SI,1
register, CL 8+ 4/bit — 2 SHR SI,CL
memory, 1 15+EA 2 2-4 SHR ID_BYTE [SI] [BX], 1
memory, CL 20+ EA+ 2 2-4 SHR INPUT_WORD, CL
4/bit
1' SINGLE STEP (Trap flag interrupt) ODITSZAPC
SINGLE STEP Interruptif TF =1 I 00
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 50 5 N/A | N/A
STC (no operands) ODITSZAPC
STC Setcarry flag Flags 1
Operands Clocks | Transfers* | Byles Coding Example .
(no operands) 2 — 1 STC
STD (no operands) ODITSZAPC
STD Setdirection flag Flags 1
Operands Clocks | Transfers*® | Bytes Coding Example
(no operands) 2 — 1 STD
STl (no operands) ODITSZAPC
STI Set interrupt enable flag Flags 1
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 —_ 1 STI
STOS dest-string ODITSZAPC
STOS Store byte or word string Flags
Operands Clocks | Transfers* | Bytes Coding Example
dest-string 1 1 1 STOS PRINT__LINE
(repeat) dest-string 9+10/rep 1lrep 1 REP STOS DISPLAY

*For the 8088, add four clocks lor each 16-bit word transfer with an odd address. For the 8088, add lour clocks for each 16-bit word transfer,
tSINGLE STEP is not an Instruction; It Is Included in table 2-21 only for timing information,

Appendix E

739

SUB destination,source DI TSZAPC
SUB Subtraction FIEgE X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 SuB CX, BX
register, memory 9+EA 1 2-4 SUB DX, MATH_TOTAL [SI]
memory, register 164+ EA 2 2-4 SUB [BP+2),CL
accumulator, immediate 4 - 2-3 SUB AL, 10
register, immediate 4 — 3-4 SUB S, 5280
memory, immediate 17+EA 2 3-6 SUB [BP].BALANCE, 1000
TEST destination,source ODITSZAPC
TEST Testor non-destructive logical and Flaga 0 XXUXO0
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 TEST SI, DI
register, memory 9+EA 1 2-4 TEST SI, END_COUNT
accumulator, immediate 4 — 2-3 TEST AL, 001000008
register, Immediate 5 — 3-4 TEST BX, 0CC4H
memory, immediate 11+EA - 3-6 TEST RETURN__CODE, 01H
WAIT (no operands) ODITSZAPC
WAIT Wait while TEST pin not asserted Flags
Operands Clocks | Transfers* | Byltes Coding Example
(no operands) 3+ 5n — 1 WAIT
XCHG XCHG destination,source Flags ODITSZAPC
Exchange 9
Operands Clocks | Transfers* | Bytes Coding Example
accumulator, reg16 3 — 1 XCHG AX, BX
memory, register 17+EA 2 2-4 XCHG SEMAPHORE, AX
register, register 4 — 2 XCHG AL, BL
XLAT XLAT source-table Filiaa ODITSZAPC
Translate g
Operands Clocks | Transfers* | Bytes Coding Example
source-table 11 1 1 XLAT ASCI_TAB

*For the B0B6, add four clocks for each 16-bit word transter with an odd address. For the 8088, add lour clocks for each 16-bil word Iransler.

740 Microprocessors and Microcomputer-Based System Design, 2nd Edition

XOR destination,source - ODITSZAPC

XOR Logical exclusive or TREE o XXUXO0

Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 XOR CX, BX
register, memory 9+EA 1 2-4 XOR CL, MASK__BYTE
memory, register 16+ EA 2 2-4 XOR ALPHA [SI], DX
accumulator, immediate 4 — 2-3 XOR AL, 010000108
register, immediate 4 — 3-4 XOR SI, 00C2H
memory, immediate 17+EA 2 3-6 XOR RETURN__CODE, 0D2H

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks lor each 16-bit word transfer.

APPENDIX F
GLOSSARY/ASCII CODES

Absolute Addressing: The $pecific identification number (address) permanently assigned to
astorage location, device, or register by the machine designer. Used to locate information and
assist in circuit fault diagnosis.

Accumulator: Used for storing the result after most ALU operations; 8 bits long for an 8-
bit microprocessor.

Address: A unique identification number (or locator) of some source or destination of data.
That part of an instruction which specifies the register or memory location of an operand
involved in the instruction.

Addressing Mode: The manner in which a microprocessor determines the operand and
destination addresses in an instruction cycle.

Address Register: A register used to store the address (label for a memory location) of data
being fetched or stored, a sequence of instructions to be c‘(ccutcd or the location to which
control will be transferred.

Address Space: The number of storage locations jn a microcomputer’s memory that can be
directly addressed by the microprocessor. The addressing range is determined by the number
of address pins provided with the microprocessor chip.

American Standard Code for Information Infcrclmngc (ASCII): An §-bit code commonly
used with microprocessors for representing alphanumeric codes.

Analog-to-Digital (A/D) Converter: Transforms an analog voltage into its digital equiva-
lent.

Architecture: The organizational structure or hardware configuration of a computer sys-
tem. :

Arithmetic and Logic Unit (ALU): A digital circuit which performs arithmetic and logic
operations on two n-bit numbers.

Assembler: A program that translates an assembly language program into a machine lan-
guage program.

Assembly Language: A type of microprocessor programming language that uses a semi-
English-language statement.

Asynchronous Operation: The execution of a sequence of steps such that cach step is
initiated upon campletion of the previous step. For bus structures, this implies a timing
protocel that uses no clock and has no period; hence system operation proceeds at a rate
governed by the time-constants of the enabled circuitry.

741

742 Microprocessors and Microcomputer-Based System Design, 2nd tdition

Asynchronous Serial Data Transmission: The transmitting device does not need to be
synchronized with the receiving device.

Autodecrement Addressing Mode: The contents of the specified microprocessor register are
first decremented by K (1 for byte, 2 for 16-bit, and 4 for 32-bit) and then the resulting value
is used as the address of the operand.

Autoincrement Addressing Mode: The contents of a specified microprocessor register are
used as the address of the operand first and then the register contents are automatically
incremented by K (1 for byte, 2 for 16-bit, and 4 for 32-bit).

Bandwidth: Bandwidth of a bus or memory is a measure of communications throughput
and can be represented as the product of the maximum number of transactions per second and
number of data bits per transaction.

Barrel Shifter: A specially configured shift register that is normally included in 32-bit
microprocessors for fast shift operations.

Base Address: An address that is used to convert all relative addresses in a program to
absolute (machine) addresses.

. Base Page Addressing: This instruction typically uses two bytes: the first byte is the op code,
and the second byte is the low-order address byte. The high-order address byte is assumed to
be the base-page number.

Baud Rate: Rate of data transmission in bits per second.

Binary-Coded Decimal (BCD): The representation of 10 decimal digits, 0 through 9, by
their corresponding 4-bit binary numbers.

Bit: An abbreviation for a binary digit. A unit of information equal to one binary decision
or one of two possible states (one or zero, on or off, true or false) and represents the smallest
piece of information in a binary notation system.

Bit-Slice Microprocessor: Divides the elements of a central processing unit (ALU, registers,
and control unit) among several ICs. The registers and ALU are usually contained in a single
chip. These microprocessors can be cascaded to produce microprocessors of variable word
lengths such as 8, 12, 16, 32. The control unit of a bit-slice microprocessor is typically
microprogrammed.

Block Transfer DMA: A peripheral device requests the DMA transfer via the DMA request
line, which is connected directly or through a DMA controller chip to the microprocessor. The
DMA controller chip completes the DMA transfer and transfers the control of the bus to the
microprocessor.

Branch: The branch instruction allows the computer to skip or jump out of program
sequence to a designated instruction cither unconditionally or conditionally (based on condi-
tions such as carry or sign).

Breakpoint: Allows the user to execute the section of a program until one of the breakpoint
conditions is met. It is then halted. The designer may then single step or examine memory and
registers, Typically breakpoint conditions are program counter address or data references.
Breakpoints are used in debugging assembly language programs.

Buffer: A temporary memory storage device designed to compensate for the different data
rates between a transmitting device and a receiving device (for example, between a CPU and
a peripheral). Current amplifiers are also sometimes referred to as buffers.

Appendix F 743

Bus: A collection of parallel unbroken electrical signal lines that interconnect or link
computer modules. The typical microcomputer interface includes separate buses for address,
data, control, and power functions.

Bus Arbitration: Bus operation protocols that guarantee conflict-free access to a bus.
Arbitration is the process of selecting one respondent from a collection of several candidates

that concurrently request service.

Bus Cycle: The period of time in which a microprocessor carries out all the necessary bus
communications to implement a standard operation.

Byte: An 8-bit word.

Cache Memory: An ultra-high speed, directly accessible, relatjvely small semiconductor
memory block used to store data/instructions that the microcomputer may nced in the
immediate future. Increases system bandwidth by reducing the.number of externz! memory
fetches required by the processor. Typical 32-bit microprocessors arc normally provided vwith
on-chip cache memory.

Cathode Ray Tube (CRT): Evacuated glass tube with a fluorescent coating on the inner side
of the screen.

Central Processing Unit (CPU): The portion of a computer containing the ALU, register
section, and control unit. -

Clock: Timing signals providing synchronization among the various components in a
microcomputer system.

Code: A system of symbols or scts of rules for the representation of data in a digital
“computer. Some examples include binary, BCD, and ASCII.

Compiler: A software program which translates the source code written in a high-level
programming language into machine language that is understandable to the processor.

Complementary Metal Oxide Semiconductor (CMOS): Provides low power density and
high noise immunity.

Concurrency: The occurrence of one or more operations at a time (see Parallel Operation).

Conditional Branching: Conditional branch instructions are used to change the order of
execution of a program based on the conditions set by the status flags.

Condition Code Register: Contains information such as carry, sign, zero, and overflow
based on ALU operations.

Control Store: Used to contain microcode (usually in ROM) in order to provide for
microprogrammed “firmware” control functions. An integral part of a microprogrammed
system controller.

Control Unit: Part of the microprocessor; its purpose is to read and decode instructions
from the memory.

Controller/Sequencer: The hardware circuits which provide signals to carry out selection
and retrieval of instructions from storage in sequence, interpret them, and initiate the required
operation. The system functions may be implemented by hardware control, firmware control,
or software control.

Coprocessor: A companion microprocessor that performs specific functions such as float-
ing-point operations independently from the microprocessor to speed up overall operations.

744 Microprocessors and Microcomputer-Based System Design, 2nd Edition

CPU Space: Protected memory space addressable only by the microprocessor itself; it s used
for a processor’s internal functions or vectored exception processing.

CRT Controller: Provides all logic functions for interfacing the microprocessor to a CRT,

- Cycle Stcaling DMA: The DMA controller transfers a byte of data between the
nucrocomputcr s memory and a peripheral device such as the disk by Slcillll‘l}, a clock cycle of
the microprocessor.

Data: Basic elements of information represented in binary form (that is, digits consisting of
bits) that can be processed or produced by a microcomputer. Data represents any group of
operands made up of numbers, letters, or symbols denoting any condition, value, or state.
Current typical microcomputer operand sizes include: a word, which typically contains 2 bytes
or 16 bits; a long word, which contains 4 bytes or 32 bits; a quad word, which contains 8 bytes
or 64 bits.

Data Counter (DC): Also known as Memory Address Register (MAR), Stores the address of
data; typically, 16 bits long for 8-bit microprocessors.

Data Register: A register used to temporarily hold operational data being sent to and from
a peripheral device,

Debugger: A program that exccutes and debugs the object program generated by the
assembler or compiler. The debugger provides a single stepping, breakpoints, and program
tracing.

Decoder: A device capable of generating 2n output lines based on n inputs.

Direct Memory Access (DMA): A type of input/output technique in which data can be
transferred between the microcomputer memory and external devices without the
microprocessor’s involvement,

Directly Addressable Memory: The memory address space in which the microprocessor can
dircctly execute programs. The maximum directly addressable memory is determined by the
number of the microprocessor’s address pins.

Dynamic RAM: Stores data in capacitors and, therefore, must be refreshed; uses refresh
circuitry,

EAROM (Electrically Alterable Read-Only Memory): Can be programmed without remov-
ing the memory from its sockets. This memory is also called read-mostly memory since it has
much slower write times than read times.

Editor: A program that produces an error-free source program, written in assembly or high-
level languages. - ;

Effective Address: The final address used to carry out an instruction. Determined by the
addressing mode.

Emulator: A hardware device that allows a microcomputer system to emulate (that is,
mimic the procedures or protocols) another microcomputer system.

Encode: To apply the rules governing a specific code. For example, the selection of which
hardware devices to enable during an operation can occur automatically by encoding indi-
vidual device identifications into the instructions themselves. Hence, to encode is to convert
data from its natural form into a machine-readable code usable to the computer.

Appendix F 745

EPROM (Erasable Programmable Read-Only Memory): Can be programmed and erased
using ultraviolet light. The chip must be removed from the microcomputer system for pro-
gramming.

Exception Processing: The CPU processing state associated with interrupts, trap instruc-
tions, tracing, and other exceptional conditions, whether they are initiated internally or
externally. ;

Extended Binary-Coded Decimal Interchange Code (EBCDIC): An 8-bit code commonly
used with microprocessors for representing character codes.

Firmware: Permancntly stored, unalterable program instructions contained in the ROM
section of a computer’s memory (see Control Store).

Flag(s): An indicator, often a single bit, to indicate some conditions such as trace, carry,
zero, and overflow,

Flash Memory: Nonvolatile and reprogrammable memory. Fabricated by using ETOXII
(EPROM tunnel oxide) technology which is a combination of EPROM and EEPROM tech-
nologies. Can be reprogrammed while embedded in the board. However, one can only change
a sector or block (consisting of multiple bytes) at a time.

Flowchart: Representation of a program in a schematic form. It is convenient to flowchart
a problem before writing the actual programs.

Global Bus: A computer bus system that is available to and shared by a number of processors
connected together in a multiprocessor system environment.

Handshaking: Data transfer via exchange of control signals between the microprocessor and
an external device.

Hardware: The physical clectronic circuits (chips) that make up the microcomputer system.
HCMOS: Low-power HMOS.
Hexadecimal Number System: Base-16 number system.

Hierarchical Memory: A memory organization or informational structure in which func-
tional relationships are associated with different levels.

High-Level Language: A type of programming language that uses a more understandable
human-oriented language such as Pascal.

HMOS: High-performance MOS reduces the channel length of the NMOS transistor and
provides increased density and speed in LSI and VLSI circuits.

Immediate Address: An address that is used as an operand by the instruction itself.
Implied Address: An address not specified, but contained implicitly in the instruction.

In-Circuit Emulation: The most powerful hardware debugging technique; especially valu-
able when hardware and software are being debugged simultancously.

Index: A symbol used to identify or place a particular quantity in an array (list) of similar
quantitics. Also, an ordered list of references to the contents of a larger body of data such as
a file or record.

746 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Indexed Addressing: Typically uses 3 bytes: the first byte for the op code and the next 2 bytes
for the 16-bit address. The effective address of the instruction is determined by the sum of the
16-bit address and the contents of the index register.

Index Register: A register used to hold a value used in indexing data, such as when a value
is used in indexed addressing to increment a base address contained within an instruction.

Indirect Address: A register holding a memory address to be accessed.

Instruction: A program statement (step) that causes the microcomputer to carry out an
operation, and specifies the values or locations of all operands.

Instruction Cycle: The sequence of operations that a microprocessor has to carry out while
executing an instruction.

Instruction Register (IR): A register storing instructions; typically 8 bits long for an 8- bll
mICroprocessor.

Instruction Set: Lists all the instructions (available in machine code) that the microcom-
puter can execute.

Interleaved DMA: Using this technique, the DMA controller takes over the system bus when
the microprocessor is not using it.

Internal Interrupt: Activated internally by exceptionally conditions such as overflow and
division by zero.

Interpreter: A program that executes a set of machine language instructions in response to
each high-level statement in order to carry out the function.

Interrupt I/O: An external device can force the microcomputer system to stop executing the
current program temporarily so that it can execute another program known as the interrupt
service routine.

Interrupts: A temporary break in a sequence of a program, initiated externally, causing
control to pass to a routine, which performs some action while the program is stopped.

I/O (Input/Output): Describes that portion of a microcomputer system that exchanges data
between the microcomputer system and the external world, or the data itself.

I/O Port: A module that contains control logic and data storage used to connect a micro-
computer to external peripherals.

Keyboard: Has a number of pushbutton-type switches configured in a matrix form (rows
X columns).

Keybounce: When a mechanical switch opens or closes, it bounces (vibrates) for a small
period of time (about 10-20 ms) before settling down.

Large-Scale Integration (LSI): An LSI chip contains more than 100 gates.

Linkage Editors: Connect the individual programs together which are assembled or com-
piled independently.

Linked Programming: The process of joining a subprogram with a main program or joining
two separate programs together to form a single program.

Local Area Network: A collection of devices and communication channels that connect a
group of computers and peripherals devices together so that they can communicate with each
other.

Appendix F ' 747
Logic Analyzer: A hardware development aid for microprocessor-based design; gathers data
on the fly and displays it.
Logical Address Space: All storage locations with a programmer’s addressing range.

Loops: A programming control structure where a sequence of microcomputer instructions
arc executed repeatedly (looped) until a terminating condition (result) is satisfied.

Machine Code: A binary code (composed of bit patterns) that a microcomputer can sense,
rcad, interpret, recognize, and manipulate.

Machine Language: A type of microprocessor programming language that uses binary or
hexadecimal numbers.

Macroinstruction: Commonly known as an instruction; initiates execution of a complete
microprogran.

Macroprogram: The assembly language program.

Mask: A pattern of bits used to specify (or mask) which bit parts of another bit pattern arc
to be operated on and which bits are to be ignored or “masked” out.

Mask ROM: Programmed by a masking operation performed on the chip during the
manufacturing process; its contents cannot be changed by the user.

Maskable Interrupt: Can be enabled or disabled by executing typically the instructions such
as El and DI, respectively. If the microprocessor’s interrupt is disabled, the microprocessor
ignores the interrupt. '

Memory: Any storage device which can accept, retain, and read back data. Usually refers to
a computer subsystem of internal RAM- or ROM-based storage devices.

Memory Access Time: Average time taken to read a unit of information from the memory.

Memory Address Register (MAR): Also known as the Data Counter (DC). Stores the
address of the data; typically 16 bits long for 8-bit microprocessors.

Memory Cycle Time: Average time lapse between two successive read operations.

Memory Management Unit (MMU): Performs address translation and protection func-
tions.

Memory Map: A representation of the physical location of software within a microcomputer’s
addressable main storage.

Memory-Mapped I/O: A microprocessor communications methodology (addressing scheme)
where the data, address, and control buses extend throughout the system, with every con-
nected device treated as if it were a memory location with a specific address. Manipulation of
I/0 data occurs in “interface registers” (as opposed to memory locations); hence there are no
input (read) or output (write) instructions used in memory-mapped 1/0.

Microcode: A set of “subcommands” or “pseudocommands” built into the hardware (usu-
ally stored in ROM) of a microcomputer (that is, firmware) to handle the decoding the
execution of higher-level instructions such as arithmetic operation.

Microcomputer: Consists of a microprocessor, a memory unit, and an input/output unit,

Microcontroller: Typically includes a microcomputer, timer, A/D (Analog to Digital) and
D/A (Digital to Analog) converters in the same chip.

748 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Microinstruction: Most microprocessors have an internal memory called control memory.
This memory is used to store a number of codes called microinstructions. These microinstruc-
tions are combined to design the instruction set of the microprocessor.

Microprocessor: The Central Processing Unit (CPU) of a microcomputer.

Microprocessor Development System: A tool for designing and debugging both hardware
and software for microcomputer-based systems.

Microprocessor-Halt DMA: Data transfer is performed between the microcomputer’s
memory and a peripheral device either by completely stopping the microprocessor or by a
technique called cycle stealing.

Microprogramming: The microprocessor can use microprogramming to design the in-
struction set. Each instruction in the instruction register initiates execution of a microprogram
in the control unit to perform the operation required by the instruction.

Module: (1) Any single hardware arrangement (device or component) within a microcom-
puter system. (2) Any software, routine, or subroutine.

Monitor: Consists of a number of subroutines grouped together to provide “intelligence”
to a microcomputer system. This intelligence gives the microcomputer system the capabilities
for debugging a user program, system design, and displays.

Multiplexer: A hardware device which allows a microprocessor to be physically connected
to a number of communication channels to reccive or transmit data.

Multiprocessing: The process of executing two or more programs in parallel, handled by
multiple processors all under common control. Typically each processor will be assigned
specific processing tasks.

Multitasking: Operating system software that permits more than one program to run on a
single microprocessor. Even though each program is given a small time slice in which to
execute, the user has the impression that all tasks (different programs) are executing at the
same time.

Multiuser: Describes a computer operating system that permits a number of users to access
the system on a time-sharing basis.

Nested Subroutine: A commonly used programming technique that includes one subrou-
tine entirely embedded within the “scope” of another subroutine.

Nibble: A 4-bit word.

NMOS: Denser and faster in comparison to PMOS. Most 8-bit microprocessors and some
16-bit microprocessors are fabricated using this technology.

Noncontiguous: Noncontiguous in nature. Refers to breaks in the linear sequential flow of
any information structure.

Nonmaskable Interrupt: Occurrence of this type of interrupt cannot be ignored by the
microprocessor, even though the interrupt capability of the microprocessor is disabled. Its
effect cannot be disabled by instruction.

Non-Multiplexed: A non-multiplexed system indicates a direct single communication channel
(that is, clectrical wires) connection to the microprocessor.

Object Code: The binary (machine) code into which a source program is translated by a
compiler, assembler, or interpreter.

Appendix F 749

Octal Number System: Base-8 number system.

One-Pass Assembler: This assembler goes through the assembly language program once
and translates the assembly language program into a machine language program. This assem-
bler has the problem of defining forward references. Sce Two-Pass Assembler.

Op Code (Operation Code): The instruction represented in binary form.

Operand: A datum or information item involved in an operation from which the result is
obtained as a consequence of defined actions (that is, data which is operated on by an
instruction). Various operand types contain information, such as source address, destination
address, or immediate data.

Operating System: Consists of a number of program modules to provide resource manage-
ment. Typical resources include microprocessors, disks, and printers.
Operation: (1) Means by which a result is obtained from an operand(s). (2) An action

defined by a single instruction or single logical clement.

Page: Some microprocessors, such as the Motorola 6800 and the MOS 6502, divide the
65,536 memory locations into 256 blocks. Each of these blocks is called a page and contains
256 addresses.

Parallel Operation: Any operation carried out simultancously with a related operation.
Parallel Transmission: Each bit of binary data is transmitted over a separate wirc.
Parity: The number of 1's in a word is odd for odd parity and even for even parity.

Peripherals: An 1/O device capable of being operated under the contral of a CPU through
communication channels. Examples include disk drives, keyboards, CRTs, printers, modems,
ctc.

Personal Computer: Low-cost, affordable microcomputer used by an individual or a small
group for video games, daily schedules, and industrial applications.

Physical Address Space: Address space is defined by the address pins of the microprocessor.

Pipeline: A technique that allows a microcomputer processing operation to be broken down
into several steps (dictated by the number of pipeline levels or stages) so that the individual
step outputs can be handled by the computer in parallel. Often used to fetch the processor’s
next instruction while executing the current instruction, which considerably speeds up the
overall operation of the microcomputer.

Pointer: A storage location {usually a register within a microprocessor) that contains the
address of (or points to) a required item of data or subroutine.

Polled Interrupt: A software approach for determining the source of interrupt in a multiple
interrupt system.

POP Operation: Reading from the top or bottom of the stack.

Port: An access point (a register) for a microcomputer through which communication data
may be passed to peripheral devices.

Primary Memory Store: That memory storage which is considered main, integral, or
internal to the computing system. It is that storage which is physically most closely associated
with the microprocessor and is directly controlled by it.

Primitives: A basic or fundamental unit; often refers to the lowest level of machine instruc-
tion or the lowest unit of programming language instruction.

750 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Privileged Instructions: An instruction which is reserved for use by a computer’s operating
system, which will determine the range of system resources that the user is allowed to exploit,

Processor Memory: A set of microprocessor registers for holding temporary results when a
computation is in progress.

Program: A sclf-contained sequence of computer software instructions (source code) that,
when converted into machine code, directs the computer to perform specific operations for
the purpose of accomplishing some processing task.

Program Array Logic (PAL): Similar to a ROM in concept except that it does not provide
full decoding of the input lines. PAL’s are used with 32-bit microprocessors for performing the
memory decode function,

Program Counter (PC): A register that normally contains the address of the next instruction
in the sequence of operations,

Programmed 1/0O: The microprocessor exccutes a program to perform all data transfers
between the microcomputer system and external devices.

PROM (Programmable Read-Only Memory): Can be programmed by the user by using
proper equipment. Once programmed, its contents cannot be altered.

Protocol: A list of data transmission conventions or procedures that encom pass the timing,
control, formatting, and data representations by which two devices are to communicate. Also
known as hardware “handshaking”, which is used to permit asynchronous communication.

PUSH Operation: Writing to the top or bactom of the stack.

Random Access Memory (RAM): A rcad/write memory. RAMs (static or dynamic) are
volatile in nature (in other words, information is lost when power is removed).

Read-Only-Memory (ROM): A memory in which any addressable operand can be read
from, but not written to, after initial programming,. It is an asynchronous device whose access
time is dictated by its internal circuit time delays. ROM storage is non-volatile (information
is not lost when power is removed).

Real-Time Software: Computer code that allows processes to be performed during the
actual time that a related physical 1/O action takes place.

Reduced Instruction Set Computer (RISC): A necessary and sufficient instruction set is
included. The RISC architecture maximizes speed by reducing clock cycles per instruction.
Performs infrequent operations in software and frequent functions in hardware.

Register: A onc-word, high-speed memory device usually constructed from flip-flops (elec-
tronic switches) that are directly accessible to the processor. It can also refer to a specific
location in memory that contains word(s) used during arithmetic, logic, and transfer opera-

; Al
tions.

Register Indirect: Uses a register pair which contains the address of data.

Relative Address: An address used to designate the position of a memory location in a
routine or program.

Rollover: Occurs when more than one key is pushed simultaneously.

Routine: A group of instructions for carrying out a specific processing operation. Usually
refers to part of a larger program. A routine and subroutine have essentially the same meaning,
but a subroutine could be interpreted as a self-contained routine nested within a routine or
program.

Appendix F 751

Sample and Hold Circuit: When connected to the input of an A/D converter, it keeps a
rapidly varying analog signal fixed during the A/D conversion process by storing it in a
capacitor,

Scalar Microprocessor: Provided with one pipeline. Can execute one instruction per clock
cycle. The 80486 is a scalar microprocessor.

Scaling: To adjust values or bring them into a range that is acceptable to a microcomputer.

Secondary Memory Storage: An auxiliary data storing device that supplements the main
(primary) internal memory of a microcomputer. It is used to hold programs and data that
would otherwise exceed the capacity of the main memory. Although it has a much slower
access time, secondary storage is less expensive, Common devices include magnetic disk
(floppy and hard), cassette tape, and videodisk.

Serial Transmission: Only one line is used to transmit the complete binary data bit by bit.

Single-Chip Microcomputer: Microcomputer (CPU, memory, and input/output) on a
chip.
Single-Chip Microprocessor: Microcomputer CPU (microprocessor) on a chip.

Single Step: Allows the user to execute a program one instruction at a time and examine
memory and registers.

Software: Programs in a microcomputer.

Source Code: The high-level language code used by a programmer to write computer
instructions. This code must be translated to the object (machine) code to be usable to the
microcomputer, I 1

Stack: An area of read/write memory reserved to hold information about the status of a
microcomputer the instant an interrupt occurs so that the microcomputer can continue
processing after the interrupt has been handled. Another common use is in handling the
accessing sequence of “nested” subroutines. The stacks are the last in/first out (LIFQO) devices
that are manipulated by using PUSH or POP instructions.

Stack Pointer: An address or register used to keep track of the storage and retrieval of each
byte or word of information in the system stack.

Standard 1/0: Utilizes a control pin on the microprocessor chip called the 10/M pin, in
order to distinguish between input/output and memory; typically, IN and QUT instructions
are used for performing input/output operations.

Static RAM: Stores data in flip-flops; does not need to be refreshed. Information is lost upon
power failure unless backed up by battery.

Status Register: A register which contains information concerning the activity within the
microprocessor or about the condition of a functional unit or peripheral device.

Subroutine: A program carrying out a particular function and which can be called by
another program known as the main program. A subroutine needs to be placed only once in
memory and can be called by the main program as many times as the programmer wants,

Superscalar Microprocessor: Provided with dual pipelining and executes more than one
instruction per clock cycle. The Pentium is a superscalar microprocessor.

Supervisor: Provides the procedures or instructions for coordinating the use of system
resources and maintaining the flow of operations through a microprocessor to perform /O
operations.

752 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Supervisor State: When internal microprocessor system processing operalions are con-
ducted at a higher privilege level, it is usually in the supervisor state. An operating system
typically executes in the supervisor state to protect the integrity of “basic” system operations
from user influences.

Synchronous Operation: Operations that occur at intervals directly related to a clock
period. Also, a bus protocol in such data transactions is controlled by a master clock and is
completed within a fixed clock periog.

Synchronous Serial Data Transmission: Data is transmitted or received based on a clock
signal. :

Tracing: A dynamic diagnostic technique in which a record of internal counter cvents is
made to permit analysis (debugging) of the program’s execution.

‘Tristate Buffer: Has three output states: logic 0, 1, and a high-impedance state. It is typically
cnabled by a control signal to provide logic 0 or 1 outputs. This type of buffer can also be
disabled by the control signal to place it in a high-impedance state.

2’s Complement: The 2's complement of a binary number is obtained by replacing each 0
with a 1 and each 1 with a 0 and adding one to the resulting number.

Two-Pass Assemibler: This assembler goes through the assembly language program twice. In
the first pass, the assembler defines the labels with the addresses. In the second pass, the
assembler translates the assembly language program to the machine language. See One-Pass
Assembler,

UART (Universal Asynchronous Recciver Transmitter): A chip that provides all the inter-
face functions when a microprocessor transmits-or receives data to or from a scrial device.
Converts serial data to parallel and vice versa.

User State: Typical microprocessor operations processing conducted at the user level. The
uscr state is usually at lower privilege level than the supervisor state. This protects basic system
operation resources (the operating system).

Vectored Interrupts: A device identification technique in which the highest priority device
with a pending interrupt request forces program execution to branch to an interrupt routine
to handle exception processing for the device.

Very Large Scale Integration (VLSI): A VLSI chip contains more than 1000 gates.

Virtual Machine: A microcomputer whose hardware and software architecture is specifi-
cally designed to support virtual storage techniques. The virtual machine concept is widely
used within multiprogramming environments.

Virtual Memory: A memory management operating system technique that allows programs
or data to exceed the physical size of the main, internal, directly accessed memory. Program
or data segments/pages are swapped from external disk storage as needed. The swapping is
invisible (transparent) to the programmer. Therefore the programmer neced not be concerned
with the actual physical size of internal memory while writing the code.

Word: The bit size of a microprocessor refers to the number of bits that can be processed
simultancously by the basic arithmetic circuits of the microprocessor. A number of bits taken
as a group in this manner is called a word.

Appendix F

Table for American Standard Code for Information Interchange (ASCII), Standard No. X3.4—

1968 of the American National Standards Institute.

bbb, (column)

Row 000 001 010 (8} 100 101 110 111
bbby, (hex) 0 1 2 3 4 5 6 7
0000 0 NUL DLE Sp 0 e P 0 p
0001 1 SOH DCI ! 1 A Q a q
0010 2 STX DC2 = 2 B R b r
0011 3 ETX DC3 # 3 C s € s
0100 4 EOT DC4 - q D T d t
0101 5 ENQ NAK % 2 E u e u
0110 6 ACK SYN & 6 F v f v
0111 7 BEL ETB ’ 7 G W g W
1000 8 BS CAN I] H X h b
1001 9 HT EM) 9 1 Y i y
1010 A LE SUB * : J z j 2
1011 B VT ESC # 3 K [k {
1100 C FF F$ ' < L \ 1 |
1101 D CR GS - = M] m }
1110 E SO RS . > N ~ n ~
11 F sl us / ? 0 _ o DEL
Control codes
NUL Null DLE Data link escape
SOH Start of heading DCl Device control 1
STX Start of Text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission DC4 Device control 4
ENQ Enquiry NAK Negative acknowledge
ACK Acknowledge SYN Synchronize
BEL Bell ETB End transmitted block
BS Backspace CAN Cancel
HT Horizontal tab EM End of medium
LE Line feed SUB Substitute
VT Vertical tab EXC Escape
FF " Form feed FS File separator
CR Carriage return GS Group scparator
S0 Shift out RS Record separator
Sl Shift in us Unit separator
Sp Space DEL Delete or rubout

Bibliography

Allison, D. R., “A Design Philosophy for Microcomputer Architectures”, IEEE Trans. Computers.

Artwick, B. A., Microcomputer Interfacing, Prentice-Hall, 1980.

Baer, J.-L., Computer Systems Architecture, Computer Science Press, 1980.

Boyce, J. C., Microprocessor and Microcomputer Basics, Prentice-Hall, 1979.

Breeding, K., Microprocessor System Design Fundamentals, Prentice-Hall, 1995,

Brey, B., The Motorola Microprocessor Fanuily: 68000, 68008, 68010, 68020, 68030, and 68040,
Saunders College Publishing, 1992.

Burns, J., “Within the 68020,” Electronics and Wirceless Word, pp 209-212, February 1985; pp
103-106, March 1985.

Chi, C. §., “Advances in Mass Storage Technology,” IEEE Computer, Vol. 15, no. 5, pp 60-74,
May 1982,

Chow, C. K., “On Optimization of Storage Hierarchies,” IBM Journal of Research and Devel-
opment, pp 194-203, May 1974.

Cohn, D. L. and Melsa, J. L., A Step by Step Introduction to 8080 Microprocessor Systems.
Dilithium Press, 1977.

Cramer, W. and Kane, G., 68000 Microprocessor Handbook, 2nd ed., Osborne/McGraw-Hill,
1986. -

Danhor, K. J. and Smith, C. L., Computing System Fundamentals: An Approach Based on
Microcomputers, Addison-Wesley, 1981.

Denning, P. J., “Virtual Memory,” ACM Computing Surveys, Vol. 2, no. 3, pp 153-159,
September 1970.

Electronic Industries Association, Washington, D.C., EIA Standard RS-232 C Interface, Elec-
tronic Industries Association, 1969.

Faggin, F., “How VLSI Impacts Computer Architecture,” [EEE Spectrugs, pp 28-31, May 1978.

Feibus, M. and Slater, M., “Pentium Power,” PC Magazine, April 27, 1993.

Fisher, E. and Jensen, C. W., Pet and the IEEE 488 Bus (BPIB), Osborne/McGraw-Hill, 1979.

Friedman, A. D., Logical Design of Digital Systems, Computer Science ™ zss, 1975.

Garland, H., Introduction to Microprocessor Systemt Design, McGraw-Hull, 1979,

Gay, “6800 Family Memory Management — Part 1,” Electronic Engineering, pp 39-48, June
1986.

Gibson, G. A. and Liu, Y., Microprocessors for Engincers and Scientists, Prentice-Hall, 1980.

Gill, A., Machine and Assembly Language Prograniming of the PDP-11, 2nd ed., Prentice-Hall,
1983,

Girsline, G., 16-Bit Modern Microcomputers, The Intel 8086 Family, Prentice-Hall, 1985.

Gladstong, B. E., “Comparing Microcomputer Development System Capabilities,” Computer
Design, pp 83-90, February 1979.

Goody, R. W, Intelligent Microcorputer, SRA, 1982.

Goody, R., The Versatile Microcomputer, The Motorola Family, SRA, 1984,

Greenfield,]. D., Practical Digital Design Using IC's, John Wiley & Sons, 1977.

Greenfield, J. D. and Wray, W. C., Using Microprocessors and Microcomputers: The 6800
Family, John Wiley & Sons, 1983.

Greenfield, J. D., Practical Digital Design Using IC’s, John Wiley & Sens, 1983.

Grinich, V. H. and Jackson, H. G., Intreduction to Integrated Circuits, McGraw-Hill, 1975.

Hall, D. V., Microprocessors and Digital Systems, McGraw-Hill, 1980.

755

756 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Hamacher, V. C,, Vranesic, Z. G., and Zaky, S. G., Computer Organization, McGraw-Hill, 1978.

Hamacher, V. C., Vranesic, Z. G., and Zaky, S. G., Computer Organization, McGraw-Hill, 1984.

Harman, T. L. and Lawson, B., The Motorola MC68000 Microprocessor Family, Prentice-Hall, 1984,

Hartman, B., “16-Bit 68000 Microprocessor Concepts on 32-Bit Frontier,” MC 68000 Article
Reprints, Motorola, pp 50-57, March 1981.

Hayes, J. P., Computer Architecture and Organization, McGraw-Hill, 1978.

Hayes, . P., Digital System Design and Microprocessors, McGraw-Hill, 1984.

Haynes, J. L.; “Circuit Design with Lotus 1-2-3,” BYTE, Vol. 10, no. 11, pp 143-156, 1985.

Hewlett-Packard, “HP 64000,” Hewlett-Packard Journal, 1980.

Hnatek, E. R., A User’s Handbook of Semiconductor Memories, John Wiley & Sons, 1977.

Holt, C. A., Electronic Circuits — Digital and Analog, John Wiley & Sons, 1978.

Horden, 1., “Microcontrollers Offer Realtime Robotics Control,” Computer Design, pp 98-101,
October 15, 1985.

IEEE, “Technology 1994” — The Spectrum, January 1994,

IEEE, “Technology 1995” — The Spectrum, January-1995.

Intel, Microprocessors and Peripheral Handbook, Vol. 1, Microprocessors, Intel Corporation, 1988.

Intel, Microprocessors and Peripheral Handbook, Vol. 2, Peripheral, Intel Corporation, 1988.

Intel, 80386 Programmer’s Reference Manual, Intel Corporation, 1986.

Intel, 80386 Hardware Reference Manual, Intel Corporation, 1986.

Intel, 80386 Advance Information, Intel Corporation, 1985.

Intel, 80387 Programmer’s Reference Manual, 1987.

Intel, Intel 486 Microprocessor Family Programmer’s Reference Manual, 1992.

Intel, Intel 486 Microprocessor Hardware Reference Manual, 1992.

Intel, 1960 SA/SB Microprocessor, 1991.

Intel, Pentiurm Processor User’s Manual, 1993.

Intel, 8080 and 8085 Assembly Language Programming Manual, Intel Corporation, 1978.

Intel, The 8086 Family User’s Family, Intel Corporation, 1979.

Intel, Intel Component Data Catalog, Intel Corporation, 1979.

Intel, MCS-85 User’s Manual, Intel Corporation, 1978.

Intel, MCS-86 User’s Manual, Intel Corporation, 1982.

Intel, Memory Components Handbook, Intel Corporation, 1982.

Intel, SDK-85 User’s Manual, Intel Corporation, 1978.

Intel, “Marketing Communi« xtions,” The Semiconductor Memory Book, John Wiley & Sons, 1978.

Isaacson, R. et al., “The Grzyon Report — Personal Computing,” selected reprints from IEEE
Computer, pp 226~237.

Johnson, “A Comparisan of Mc68000 Famdy Processors,” BYTE, pp 205-218, September 1986.

Johnson, C. D., Process Control Instrumentation Technology, John Wiley & Sons, 1977.

Johnson, R. C., “Microsystems Exploit Mainframe Methods,” Electronics, 1981.

Kane, G., CRT Controller Handbook, Osborne/McGraw-Hill, 1980.

Kane, G., Hawkins, D., and Leventhal, L., 68000 Assembly Language Programming, Osbornel
McGraw-Hill, 1981.

King, T. and Knight, B., Programming the MC68000, Addison-Wesley, 1983.

Krutz, R. L., Microprocessors and Logic Design, John Wiley & Sons, 1980.

Krutz, R. L., Microprocessors and Logic Design, John Wiley & Sons, 1977.

Lesea, A. and Zaks, R., Microprocessor Interfacing Techniques, Sybex, 1978.

Leventhal, L. A., 8080A/8085 Assembly Language Programming, Osborne/McGraw-Hill, 1978.

Leventhal, L. A., Introduction to Microprocessors: Software, Hardware Programming, Prentice-
Hall, 1978.

Leventhal, L. and Walsh, C., Microcomputer Expcrzmentanon with the Intel SDK-85, Prentice-
Hall, 1980.

Bibliography 757

Lewin, M., Logic Design and Computer Organization, Addison-Wesley, 1983.

Lipschutz, S., Essential Computer Mathematics, Schaum Qutline Series, McGraw-Hill, 1982.

MacGregor, Mothersole, Meyer, The Motorola MC68020,” IEEE MICRO, pp 101-116, August 1984.

MacGregor, “Diverse Applications Put Spotlight on 68020's Improvements,” Electronic De-
sign, pp 155-164, February 7, 1985.

MacGregor, “Hardware and Software Strategies for the MC68020,” EDN, pp 163-168, June 20, 1985.

Mano, M., Computer System Architecture, Prentice-Hall, 1983.

McCartney, Groepler, “The 32-Bit 68020’s Power Flows Fully Through a Versatile Interface,”
Electronic Design, pp 335-343, January 10, 1985.

Miller, M., Raskin, R., and Rupley, S., “The Pentium that Stole Christmas,” PC Magazine,
February 27, 1995.

MITS-ALTAIR, S-100 Bus, MITS, Inc., Albuquerque, NM.

Morse, S., The 8086/8088 Primer, 2nd ed., Hayden, 1982.

Motorola, 6809 Applications Notes, Motorola Corporation, 1978.

Motorola, MC68000 User’s Manual, Motorola Corporation, 1979.

Motorola, 16-Bit Microprocessor — MC68000 User’s Manual, 4th ed., Prentice-Hall, 1984.

Motorola, MC68000 16-Bit Microprocessor User’s Manual, Motorola Corporation, 1982.

Motorola, MC68000 Supplement Material (Technical Training), Motorola Corporation, 1982.

Motorola, Microprocessor Data Material, Motorola Corporation, 1981.

Motorola, MC68020 User’s Manual, Motorola Corporation, 1985.

Motorola, “MC68020 Course Notes,” MTTA20 REV 2, July 1987.

Motorola, “MC68020/68030/88100 Audio Course Notes,” 1988.

Motorola, MC88100 Data Sheets, Motorola Corporation, 1988.

Motorola, MC68020 User's Manual, 2nd ed., MC68020 UM/AD Rev. 1, Prentice-Hall, 1984.

Motorola, Programmer’s Reference Manual (Includes CPU 32 Instructions), 1989.

Motorola, MC68040 User’s Manual, 1989.

Motorola, Power PC 601, RISC Microprocessor User’s Manual, 1993.

Motorola Technical Summary, 32-Bit Virtual Memory Microprocessor, MC68020 BR243/D.
Rev. 2, Motorola Corporation, 1987.

Myers, G. and Budde, D., The 80960 Microprocessor Architecture, John Wiley & Sons, 1988.

Osborne, A., An Introduction to Microprocessors, Vol. 1, Basic Concepts, rev. ed., Osborne/
McGraw-Hill, 1980; 2nd cd., 1982.

Osborne, A. and Kane, G., The Osborne Four- and Eight-Bit Microprocessor Handbook, Osborne/
McGraw-Hill, 1980.

Osborne, A. and Kane, G., The Osborne 16-Bit Microprocessor Handbook, Osborne/McGraw-
Hill, 1981.

Rafiquzzaman, M., Microprocessors and Microcomputer Development Systems — Designing
Microprocessor-Based Systems, Harper and Row, 1984.

Rafiquzzaman, M., Microprocessors and Microcomputer Development Systens, John Wiley &
Sons, 1984.

Rafiquzzaman, M., Microcomputer Theory and Applications with the INTEL SDK-85, 2nd ed.,
John Wiley & Sons, 1987.

Rafiquzzaman, M., Microprocessors— Theory and Applications — Intel and Motorola, Prentice-
Hall, 1992.

Rafiquzzaman, M. and Chandra, Modern Computer Architecture, West, 1988.

RCA, Evaluation Kit Manual for the RCA CDP1802 COSMAC Microprocessor, RCA Solid State
Division, Somerville, NJ.

Rector, R. and Alexy, G., The 8086 Book, Osborne/McGraw-Hill, 1980.

Reichborn-Kjennerud, G., “Novel Mcthods of Integer Multiplication and Division,” BYTE,
Vol. 8, no. 6, pp 364-374, Junc 1983.

758 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Ripps, Mushinsky, “32-Bit Up Speeds Code Design and Execution,” EDN, pp 163-168, June
27,1985,

Rockwell International, Microelectronic Devices Data Catalog, 1979.

Short, K. L., Microprocessors and Programmed Logic, Prentice-Hall, 1981.

Sloan, M. E., Introduction to Minicomputers and Microcomputers, Addison-Wesley, 1980.

Smith, J. and Weiss, S., “Power PC 601 and Alpha 21064: A Tale of Two RISCs,” IEEE
Computer, June 1994.

Solomon, “Motorola’s Muscular 68020,” Computers & Electronics, pp 74-79, October 1984,

Sowell, E. F., Programming in Assembly Language, MACRO 11, Addison-Wesley, 1984.

Starnes, T. W., “Compact Instruction Set Gives the MC68000 Power While Simplifying Its
Operation,” MC68000 Article Reprints, Motorola, pp 4347, March 1981.

Strauss, E., The Waite Group, Inside the 80286, A Brady Book published by Prentice-Hall, 1986.

Stone, H. S., Introduction to Computer Architecture, SRA, 1980.

Stone, H. S., Microcomputer Interfacing, Addison-Wesley, 1982.

Streitmatter, G. A. and Fiore, V., Microprocessors, Theory and Applications, Reston Publishing, 1979.

Stritter, E. and Gunter, T., “A Microprocessor Architecture for a Changing World: The
Motorola 68000,” IEEE Computers, Vol. 12, no. 2, pp 43-52, February 1970.

Tanenbaum, A. §., Structured Computer Organization, Prentice-Hall, 1984.

Teledyne, Teledyne Semiconductor Catalog, 1977.

Texas Instruments, The TTL Data Book, Vol. 1, 1984,

Texas Instruments, The TTL Data Book for Design Engineers, 2nd ed., 1976.

Tocci, R. J. and Laskowski, L. P., Microprocessors and Microcomputers: Hardware and Software,
Prentice-Hall, 1979.

Triebel, W., The 80386 DX Microprocessor, Prentice -Hali, 1992,

Twaddel, “32-Bit Extension to the 68000 Family Addresses 7 ub,*es, Runs at 3 MIPS,” EDN,
pp 75-77, July 12, 1984,

Wakerly, J. F., Microcomputer Architecture and Programming, John Wiley & Sons, 1981,

Zilog, Z8000 Advance Specification, Zilog, Inc., 1978,

Zoch, B., “68020 Dynamically Adjusts Its Data Transfers to Match Peripheral Ports,” Electronic
Design, pp 219-225, January 10, 1985.

Zorpette, G., “Microprocessors — The Beauty of 32-Bits,” IEEE Spectrum, Vol. 22, no. 9, pp
65-71, September 1985.

Credits

The following material was reprinted by permission of the sources indicated below:

Motorola Corporation, Inc.: Chapter 1: Figures 1.10, 1.11, 1.12; Chapter 5: Figures 3.1 to
5.5,5.7,5.10 t0 5.12, 5.14, 5.15, 5.17, 5.21 to 5.24, Tables 5.1, 5.2, 5.14 to 5.16, table on page
332; Chapter 6: Examples 6.1 and 6.8, all figures, tables, and graphics; Chapter 7: Figures 7.1
to 7.29, Tables 7.1 to 7.7; Chapter 8: Figures 8.5 to 8.18, Tables 8.7 to 8.18; Chapter 9: Figures
9.7, 9.8; Appendix B: data sheets; Appendix D: 68000 Instructions.

Inte] Corporation: Chapter 2: Figures 2.3, 2.4; 2.6 to 2.8, 2.10 to 2.15, 2.17, 2.23 to 2.25,
Tables 2.9, 2.12, 2.13; Chapter 3: Figures 3.1 to 3.3, 3.5 to 3.13, 3.24, 3.26a and b, Table 3.2,
structure on page 165; Chapter 4: Figures 4.1, 4.2, 4.6 to 4.28, Tables 4.1 to 4.3,4.5 to 4.11, table
on page 244; Chapter 7: Figure 7.30; Chapter 8: Figures 8.1 to 8.4, Tables 8.1 to 8.3; Chapter
9: Figures 9.15 , 9.16; Appendix C: figures and data sheets; Appendix E: 8086 Instructions.

All mnemonics in Tables 2.1 and 3.1 are courtesy of Intel Corporation.

The 80386 microprocessor referred to in text as the i386™, the 80486 as the i486™ and the
Pentium as the Pentium™, trademarks of Intel Corporation.

Rafiquzzaman, M., Microcomputer Theory and Applications with the Intel SDK-85, John
Wiley & Sons, Inc., New York, New York, 1987, reprinted by permission of John Wiley & Sons,
Inc.: Chapter 2: Tables 2.1 to 2.8, Section 2.6; Chapter 5: Tables 5.6 to 5.13, Examples 5.1 to
5.5

Rafiquzzaman, M., Micmcomptuer Theory and Applications with the Intel SDK-85, John
Wiley & Sons, Inc., New York, New York, 1987, reprinted by permission of Prentice Hall, Inc.,
Englewood Cliffs, New Jersey: Chapter 2: Figures 2.18 to 2.20, 2.24, 2.25, 2.29a and b, 2.30,
figure on page 92, Sections 2.5 and 2.9.2, pages 53 to 56, 77 to 89, 93 to 99; Chapter 5: Figures
5.6, 5.7, 5.11, 5.14, 5.24, 5.31, 5.32, Tables 5.2, 5.4, 5.5, text on pages 280 to 303, 305 to 307,
309 to 312, 314 to 319, 323, 328, 334 to 335, 341 to 346.

Rafiquzzaman, M., Microprocessors and Microcomputer Development Systems, copyright
John Wiley & Sons, Inc., New York, New York, ©1984, reprinted by permission of John Wiley
& Sons, Inc.: Chapter 9: Figures 9.1, 9.2, 9.8 to 9.13, Section 9.1.2; Chapter 10: Problems 10.2
to 10.13; Appendix A; Appendix C (excluding figures and data sheets).

Morse, . amd Albert, D., The 80286 Architecture, John Wiley & Sons, Inc., New York, New
York, ©1986, reprinted by permission of John Wiley & Sons, Inc.: Chapter 4: Figures 4.3 and
4.4.

Practical Microprocessors — Hardware, Software and Troubleshooting, Hewlett Packard, Palo
Alto, California: Chapter 2: Figure 2.1.

Burns, D. and Jones, D., Within the 68020, Electronics and Wireless World, Surrey, United
Kingdom, ©1987: Chapter 7: Figures 7.3, 7.27, Example 7.1.

Gay, C., MC68000 Family Memory Management, Electronic Engineering, 58(714), June
1986, reprinted by permission of Electronic Engincering, London, United Kingdom, ©1986:
Chapter 6: Figure 6.28.

759

Index

A

Absolute addressing mode, 37, 283
Absolute offset mode, 520
Access right byte, 201
Accumulator, 7, 53-55
Add, See Arithmetic instructions
Address bus, 6-7
Addressing modes, 36-37, Sec also specific
modes
Alpha 21064, 581
Intel 8085, 55-56
Intel 8086, 117-123, 161, 163-165
I/O port access, 122
Intel 80286, 194
Intel 80386, 211-212
Intel 80960, 520521
Motorola MC68000, 280-285
Motorola MC68020, 361, 364-371
Motorola MC68030, 464
Motorola MC88100, 545, 551
Pentium, 508
PowerPC 601, 575-577, 581
Address initialization, 134
Address Latch Enable (ALE)
Intel 8085, 77, 79, 81, 695
Intel 8086, 161
interrupts, 175-176
Intel 80386, 255
Intel 80960, 541, 542

Address register indirect mode, See Register

indirect mode
Address status (AS), 541
Address strobe, 345, 347-348
Address translation, 19, 476—479

descriptor tables, 21

Intel 80286, 196

Intel 80386, 206, 234, 251

Motorola MC68030, 462, 481-488

Motorola MC88100, 546

substitution and offset techniques, 19-20
Address Translation Cache (ATC), 420, 462,

481488, 499-501

Address Unit (AU), 192, 193
ALE, See Address Latch Enable
Aligned data transfer, 575
Alignment checking, 504
Alpha 21064, 581-582
Alpha 21164, 3, 47, 582-583
Analog-to-digital (A/D) converters, 1, 27
AND, See Logical instructions
Arithmetic control bit, 519
Arithmetic instructions, 38

flags, 8

Intel 8085, 66

Intel 8086, 135-137

Intel 80186, 190

Intel 80386, 214, 221

Intql 80387, 269-270

Intel 80960, 525-531

Motorola MC68000, 294-298

Motorola MC88100, 556-557

PowerPC 601, 577

RISC system memory and, 575
Arithmetic logic units (ALUs), 7, 10, 53
ASCII numbers, 3, 4

BCD conversion, 383-385
Assembler, 34, 35, 43—44

directives, 41—43, 140-154

HP 64000 system, 660—664

761

762 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Intel 80386, 234
Assembly language programming, 35-36, Sce
also specific microprocessor instruc-
tion sets
assembler directives, 41—43, 140-154
Intel 8085, 73-75, 91-93, 98-103
Intel 8086, 144—154, 170-173, 177-180
keyboard interface, 592-594
Intel 80386, 230-233, 261-264
Intel 80387, 271
Intel 80960, 521, 537-539
Motorola MC68000, 309-314, 349-351,
634636, 643-646
Motorola MC68020, 388-390, 418-420
Motorola MC68040, 497
Motorola MC88100, 564
printer interfacing, 601
Associative memory, 23
ASSUME directive, 141
Asynchronous bus control, 315-318
Asynchronous exceptions, PowerPC 601
model, 579
Asynchronous operation
Motorola MC68020, 436440
Motorola MC68030, 471476
Atomic instructions, 531
Autovectoring, 342, 344, 444, 445
Auxiliary carry flag, 55

B

Barrel shifter, 7, 10, 360, 508

Based mode, 118-120, 211

Based index mode, 121, 211

Based index mode with displacement, 212

Based scaled index mode, 211

Based scaled index mode with displacement,

_ 212

Base register, 115, 116

BCD, See Binary-coded decimal

BERR (Bus Error), 317-319, 342-343, 346

Bidirectional buffer, 25

Big-endian, 572

Binary-coded decimal (BCD), 3-4
floating-point form, 5, 6
Intel 80960 arithmetic operations, 530
Motorola MC68000 instructions, 301
packed/unpacked, 383-385, 412

Binary real form, 6

Bit field instructions
Intel 80960, 529-530

Motorola MC68020, 380-382
Motorola MC88100, 558-560
Bit manipulation instructions
Intel 80386, 215, 221-223
Motorola MC68000, 300-301
execution times, 718
Bit mapping, 607
Bit ordering, PowerPC 601, 572
BLAST / FAIL, 541
Block Address Translation (BAT), 571
Block address translation cache (BATC), 546
Block-transfer DMA, 31
Boolean operations, See Logical instructions
BOUND, 191-192, 227, 229
Boundary checking, 306-307
Branching instructions, 38
Alpha 21064, 581-582
delayed branching, 545
Intel 8085, 68
Intel 8086, 139-140
Intel 80960, 533-534
Motorola MC68000, 301-303, 545, 560-562
execution times, 718
PowerPC 601, 579, 581-582
Branch processing unit (BPU), 568, 570
Branch Target Buffer (BTB), 508
Breakpoints, 44, 175, 238, 346, 390-394, 442
BSWAP, 504-505
Buffer
double buffering, 329
programmed 1/0, 25
printer controller, 602
Burst mode, 473, 596
Burst READ and WRITE, 542
Bus
backoff, 503
Intel 80960, 540-541
Motorola MC68000 control, 315-318
Bus Controller, 700
Bus cycle
Intel 8086, 160-161
Intel 80386, 244-246
Bus Error (BERR), 317, 318, 405406, 421,
431, 437438, 476
Bus Grant Acknowledge line, 344-345
Bus Interface Unit (BIU), 113-114, 205, 410,
609
Bus Request line, 344
Bus snooper, 500, 571
Bus Unit (BU), 192-193
Bytc ordering, PowerPC 601, 572

Index

Byte-set-on condition instructions, 223

L&

Cache burst request, 473
Cache control register, 473
Cache disable, 403, 430, 509
Cache hit, 22, 403
entry examples, 469, 471
Cache inhibit out, 474
Cache memory, 3, 22-24
Alpha 21064, 582
flush instructions, 466
Intel 80386-based system, 257
Intel 80486, 503
Motorola MC68020, 362, 402—404
Motorola MC68030, 462, 466—470
Motorola MC68040, 500
Motorola MC68851 PMMU, 420
Pentium, 508
PowerPC 601, 571, 582
Cache miss, 22, 403, 470
Cache registers, 362, 403
Call instructions
Intel 8085, 68-70
Intel 80960, 517, 535
Motorola MC68000, 303
CALL module (CALLM) instruction, 394-395
Carry flag, 8, 55 -
CAS/CAS2 instructions, 395-400
Cathode ray tube (CRT) terminal, 38, 605-608
CD-ROM, 11
CHK/CHK2, 375-379
Clock features and requirements, Sec also
Timing and timing diagrams
Intel 8086, 111, 158-159
Intel 80186, 187, 188
Intel 80386, 206, 239
Intel 80387 numeric coprocessor, 265
Intel 18284, 699
Motorola MC68000, 314, 316
Motorola MC68020, 432, 434
Motorola MC68230 parallel interface/
timer, 329-333, 685
PowerPc real-time clock (RTC), 568-569
CMP/CMP2, 377-378
CMPXCHG, 505
CMPXCHGSB, 509
Code prefetch unit, 205
Command register, 25
Compaq, 204

763

Comparc instructions
Intel 8085, 67
Intel 80386, 226
Intel 80387 coprocessor, 270
Intel 80960, 531-534
Motorola MC68000, 296
Motorola MC68020 (CAS), 395400
Motorola MC88100, 560
Compiler, 34-36, 669
Computer-aided design (CAD), 511
Computer numerical control (CNC), 511
Conditional branch instructions, 38
flags, 7
Intel 8086, 139-140
Intel 80386, 223-224
Motorola MC68000 execution times, 718
Motorola MC68881, 415
Motorola MC88100, 561
PowerPC 601, 579
Conditional 1/O, 27
Condition code
Intel 80386, 218
Motorola MC68000, 290
register (CCR), 362
Condition register (CR), 574, 579
Control bus, 6=7
Control register, 259
Intel 80386 paging mechanism, 250
Motorola MC68020, 373
Motorola MC88100, 546-547
Pentium, 509
Control unit, 10, 206
Control word register, 268
Coprocessor(s), 5-6, 32-34, 610611, Sce
also specific types and models of
COprocessors
Intel 80286 interface, 193-198
Intel 80386 interface, 206
Intel 80387, 33
Motorola data sheets, 685-694
Motorola MC68020 interface, 406—422
instructions, 400—402
Motorola MC68881/MC68882, 33, 359,
361-362, 400, 408419
Coprocessor Interface Register (CIR), 406—407
Counter register, 115
Counting semaphore, 396
CPU spacc cycle, 364, 424
Cross assembler, 43
CRT, 38, 605-608, 635
Current Access Level (CAL), 421

764 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Cursor, 608
Cycle stealing, 31-32

D

Daisy-chain interrupts, 31
Data Acknowledge (DTACK), 317-319, 325~
329, 335, 338, 342, 346
Data buffer enable, 474
Data bus, 6-7, 161
Data cache
Motorola MC68030, 462, 466470
Motorola MC68040, 500
PowerPC 601, 571
Data-chain registers, 586
Data-direction register, 25
Data register, 115
Motorola MC68000, 279
Data transfer, See Direct memory access;
Input/output; Memory; Register(s);
specific types
Data transfer instructions, 38, See also
specific instructions
Intel 8086, 123
Intel 80186, 190
Intel 80386, 213-214, 224-225
Intel 80387 coprocessor, 269
Intel 80960, 522-524
Motorola MC68000, 291-294
Motorola MC68881 floating-point
coprocessor, 412-413
Data types, 3-6 '
Intel 8087 numeric coprocessor, 610
Intel 80286, 194
Intel 80386, 208
Intel 80960, 520, 524
Motorola MC68020, 362-363
Motorola MC68030, 463464
Motorola MC68040, 492, 495-496
Motorola MC68881 coprocessor, 410412
Motorola MC88100, 547-548, 551
Data unit, Intel 80386, 206
Debouncing, 587
Debugging, 34, 43—44
breakpoints, 44, 175, 238, 346, 390-394,
442
Intel 80386 capability, 238
Intel 80960 features, 535
Motorola MC68000 features, 346
Pentium features, 509
Decimal arithmetic, 530-531, Sce also
Binary-coded decimal

DEFB, 42
DEFW, 442
Delay circuit, 338
Delayed branching, 545
DELAY subroutines, 75
Delimiters, 40
Demand paged memory, 499, 571
Denormals, 5
Descriptor tables, 21, 196
Destination function code (DFC), 361
Destination function code register, 373
Development systems, 1, 38—41, 653-681, Sce
also Hewlett-Packard (HP) 64000
MC68000 design exercise, 631-632
soft keys, 40, 654—655
assembler, 660-661
emulator, 665-668
system monitor, 657658
system software, 34
Digital Equipment Corporation Alpha 21064,
581-582
Digital Equipment Corporation Alpha 21164,
3, 47, 582-583
Digital signal processing, 511, 570
Digital-to-analog (D/A) converters, 1
Digital voltmeter design, 615-621
Direct mapping, 22-23, 257
Direct memory access (DMA), 31-32, 594
graphic controller, 610
Intel 8085, 56, 79, 97-98
Intel 8086, 181
Intel 80186, 188
Motorola MC68000, 323, 344-345
Motorola MC68851 PMMU, 421
printer controller, 604
Direct memory access (DMA) controller, 31—
32, 206, 329, 594-599
Direct mode, 118, 211
Disk memory, 11
Display interface, 588-590
CRT, 605-608
Intel 8279, 710-711
Display processor (DP), 609
Display scroller, 621-627
Division
Pentium flaw, 506-507
by zero, 174, 345, 386, 492, 556
DMA, Sec Direct memory access
Dot matrix printers, 599
Double buffering, 329
Double-precision data type, 6, 411, 527
Dual pipelining, 507-508

Index

DUP directive, 142-143
Dyadic instructions, 414-415, 554
Dynamic bus sizing, 244, 252, 424428, 503
Dynamic RAM (DRAM), 12-13
Intel 8086 interface, 164
Intel 80386 interface, 257
Intel 80960 interface, 543
Dynamic relocation, 195

E

EAROM, 12
EBCDIC, 134, 383
Editor, 34, 40
EEPROM, 12, 13
Effective address (EA), 293, 575
calculation timing, 713
EFLAGS, 209
Electrically alterable ROM (EAROM), 1, 12
Electrically erasable PROM (EEPROM), 12, 13
Embedded control, 49, 192, 515
Emulate Coprocessor bit, 267
Emulation
in-circuit, 38, 39, 44
Motorola MC68000, 631632
out-of-circuit, 43
soft key definitions, 665-668
ENDS directive, 141
ENTER, 190-191, 227-229
EPROM, See Erasable programmable read-
only memory
EPROM tunnel oxide, 13
EQU, 4142
Erasable programmable read-only memory
(EPROM), 12
development system programmer, 39
Intel 2716, 701
Intel 2732, 702
Intel 8085 interface, 79, 85-88
design exercises, 615-621
Intel 8086 interface, 163-164
Intel 8755A, 705-706
Intel 80386 interface, 255
Intel 80960 interface, 543
Motorola MC68000 interface, 326-328, 335
Motorola MC68020 interface, 446, 450, 453
ETOX I, 13
Exception processing, Sce also Interrupt(s)
instruction continuation, 406
Intel 80286, 204
Intel 80386, 235-237, 247

765

Intcl 80387 numeric coprocessor, 268
Motorola MC68000, 345-347, 721
execution times, 721
map, 343-344
Motorola MC68020, 406, 441446
Motorola MC88100, 566-567
Pentium, 510
PowerPC 601, 579-580
TRAPcc instructions, 379-380
Exception stack frame, 444
Exception time registers, 546
Exchange instructions, 292, 554-555
Exclusive-OR, See Logical instructions
Execution unit (EU), 113-115, 192, 193, 206
Extended-precision data type, 6, 410, 412, 492
External cycle start (ECS) pin, 429
External fragmentation, 21
Eg(tcrnal interrupts, 30

F

Fault-tolerant systems, 47
Fields, 40
Finite element analysis, 511
First-in first-out (FIFO), 20
Flag, 7-8
control instructions, 225
Intel 8085 registers, 55
Intel 8086, 116
Intel 80386, 217
register, 209-210
Flash memory, 13
Flight simulators, 49
Floating-point control register, 416
Floating-point coprocessors, 5-6, 610611
Intel 80286 interface, 194
Intel 80386 interface, 206
Intel 80387, 33
Motorola MC68881/MC68882, 33, 359,
361-362, 400, 408419
Floating-point instructions and operations,
3-6, 410411
Intel 80387 coprocessor, 269-271
Intel 80486, 503, 504
Intel 80960, 527-529
literals, 520
Motorola MC88100, 557-558, 560-561
PowerPC 601, 578
Floating-point move instruction, 523
Floating-point on-chip hardware
Intel 80960, 517

766 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Motorola MC68040, 492493, 498
Motorola MCB88100 system, 545, 547-548
Pentium, 508, 510
PowerPC 601, 568, 570, 573 1
Floating-point registers, 573
Floating-Point software package (FPSP), 495
Floppy disk, 11
Fragmented memory, 21
Function code pins, 323, 364, 420

HOLD acknowledge, 31, 155
“HOST” PASCAL, 669

1/O, See Input/output
IBM 360/85, 22
IBM Personal Computer, 112
IBM PP601, 567
Identification code, 39
G Immediate mode, 37, 117, 211, 284
Impact printers, 599 ‘
Implied addressing mode, 123, 284
In-circuit emulator (ICE), 38, 39, 44
Indexed addressing mode, 120-121, 211
Index register, 7, 9
Index with displacement mode, 521
Infinity, 6, 410
Inherent addressing mode, 37
INHIBIT line, 31-32
Input/output (I/0O), 24-34, 71, Sce also
Interrupt(s); Memory; Pins and
H signals; specific coprocessors, micro-
processuiZ, peripherals
conditional and nnconditional, 37
DMA, See Direct memory access
Intel 8085, 53, 77
Intel 8086, 26, 122
Intel 8255 peripheral interface, 709
Intel 80386, 235, 257-261
Intel 80960, 544
interrupt driven, 29-31
Motorola MC68000, 329-335
Motorola MC88100, 566
output circuit, 27-29
Pentium, 510
ports, 24-26
PowerPC 601, 580-581
Input/output instructions, 38
Intel 8086, 134
Intel 80386 string, 226-227
Input/Qutput Privilege Level (IOPL), 200,
202, 210
Instruction(s), 36-38, See also specific
instruction types, specific micropro-
cessor instruction sets
Instruction cache, 3
Intel 80960, 516

General-purpose register, 7

Intel 8086, 115

Motorola MC68000, 278

Motorola MC88100, 547, 548

PowerPC 601, 573
General registers, Intel 80386, 208-209
Global Descriptor Table (GDT), 196-197, 248
Graphics controller, 607-610
Graphics processor (GP), 609

HALT, 318-322, 430431
Handshake interrupt, 30, 93
Handshake ports, 26
Handshaking, 27, 324, 329
Hard disk memory, 11, 13
Hardware debugging, 43—44
Hardware interrupts, See Interrupt(s)
Hardware reset, Sce Resct
Harvard architecture, 499
Hewlett-Packard (HP) 64000, 653—681
assembler, 660-664
development station, 654-655
editor commands, 659-660
EPROM programming, 630, 632
examples, 670-681
linker commands, 664—665
MC68000 design exercise, 631-632
passwords and security, 668—669
soft keys, 654—655
assembler, 660-661
emulator, 665-668
system monitor, 657-658
special function keys, 656
High-density MOS (HMOS), 2

High-level language programming, 35-36

Intel 80386 instructions, 215-216, 227-229

HMOS, 2

Motorola MCGBUZO, 362, 402—404
Motorola MC68030, 462, 466-470
Motorola MC68040, 500

Index

PowerPC 601, 571
Instruction continuation, 406
Instruction cycle, 36
Instruction decoding, 2-3, 205
Instruction pointer (IP), 114, 519
Instruction register (IR), 7
Instruction Translation Lookaside Buffer
(ITLB), 571
Instruction Unit (IU), 192, 193, 570
Integer, 208, See also Data types
Intel 80960 conversion features, 524
Motorola MC68881 floating-point
operations, 410-411
Motorola MC88100 register data format,
547-548
Integer exception register (XER), 574
Integer Unit (IU), 498, 500, 545, 547, 568,
570
Intel, 2
data sheets, 695-711
Pentium flaw and, 506-507
Intel ASM-86, 140
Intel 432, 2
Intel 2716 EPROM, 701
Intel 2732 EPROM, 702
Intel 4004,2
Intel 8008, 2
Intel 8080, 46
Intel 8085, 2, 46, 53-105
design exercises, 615-621
DMA, 79
I/O, 84-85
8155/8156 port, 85, 88-90
8355/8755 port, 85, 86-88
DMA, 79, 97-98
examples, 90-93, 98-103
interrupt, 93-97
SID and SOD lines, 98
memory addressing, 55-56
pins and signals, 77-81, 695-697
register architecture, 53-55
Reset features, 80-81
system design, 80-85
timing methods, 75-77
Intel 8085 instruction set, 57-75
arithmetic, 66
CALL/RST, 68-70
examples, 73-75
1/0, 71
interrupts, 72-73
LOAD and STORE, 65

767

logical/Boolean, 6667
MOVE, 57, 6061, 64
rotate, 68
stack manipulation, 70-71
summary tables, 58-63
symbols, 63
timing and execution, 8§1-85
Intel 8086, 46, 47, 111-181, 698
address and data bus, 161-163
addressing modes, 117-123
architecture, 113=117
assembler directives, 140-154
assembly programming examples, 144-154,
170-173, 177-180
bus cycle, 160-161
display scroller design problem, 621-627
DMA, 181
1/0, 26, 164-165
keyboard interface, 134, 590-594
memory interface, 163-165
port access, 122
interrupt system, 173-177
microcomputer configuration, 165-170
Pentium Virtual 8086 mode, 506
pins and signals, 112-113, 155-159
timing system, 158-159
virtual 8086 mode, 251, 503
Intel 8086 instruction set, 10, 123-140, 723-
740
address initialization, 134
arithmetic, 135-137
branch and loop, 139-140
data transfer, 123
interrupt, 140
1/0, 134
logical, shift and rotate, 137
processor control, 140
string, 137-138
summary table, 124-133
Intel 8087, 610-611
Intel 8088, 10, 46, 47, 112
Intel 8096 microcontroller, 1
Intel 8155/8156, 85, 88-90, 707-708
Intel 8202 RAM controller, 164
Intel 8251, 605
Intel 8255, 709
Intel 82C55A, 259-261
Intel 8257, 604
Intel 82594, 206
Intel 8275 CRT controller, 607-608
Intel 8279, 590, 710-711

768 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Intel 8284, 111
Intel 8288 Bus Controller, 700
Intel 8295 printer controller, 601-605
Intel 8355/8755, 85-88, 703-704
Intel 8751 microcontroller, 1
Intel 8755A EPROM, 705-706
Intel 80186, 46, 113, 187-192
DMA, 188
functional block diagram, 188
instruction set, 189-192
interrupt system, 188—189
timing system, 187, 188
Intel 80286, 46, 47, 113, 192-195
coprocessor interface, 193-194
data types and addressing modes, 194
exceptions, 204
instruction set, 194—195
memory management, 195-198, 203-204
multitasking capability, 192, 202
protection features, 198-203
segment descriptors, 249
timing system, 193
Intel 80287/80387 floating-point coprogessor,
5, 33, 194, 206, 611
instructions, 269-271
registers, 267-269
Intel 80386, 2, 46, 48, 204-271, 501-502
addressing modes, 211-212
assembler, 234
assembly language program examples, 230-
233, 261-264
barrel shifter, 10
bus cycles, 244-246
condition codes, 218
data types, 208
interrupts and exceptions, 235-237, 247
1/0, 235, 257-261
coprocessor interface, 206; 264-271
Programmable Peripheral Interface, 259~
261
memory, 208, 234
interface, 253-257
management, 247-251
multitasking capabilities, 205
pins and signals, 239-243
processing modes, 206
programming model, 206-207
protected mode, 247-251
protection features, 249-250
real mode, 246-247
registers, 208-210

reset and initialization, 237
segment descriptors, 249
sclf-test and debugging features, 238
status flags, 217
timing system, 239
Intel 80386 instruction set, 213-234
arithmetic, 214, 221
bit manipulation, 215, 221-223
conditional jumps and loops, 223-224
data transfer, 213-214, 224-225
high-level language, 215-216, 227-229
logical, 214,-225-226
program control, 215
string, 214, 226-227
summary table, 213-216, 218-221
Intel 80486, 2, 46, 48, 501-505
cache memory, 22
instructions, 504-505
Pentium comparison, 506
Intel 80960, 2, 47, 516-544
assembler, 536
assembly language programming examples,
537-539
data types, 520
floating point unit, 517
microcomputer configuration, 543-544
performance features, 516-517
pins and signals, 539-541
registers, 517-519
Intel 80960 instruction set, 518, 521-536
arithmetic, 525-531
comparison and control, 531-536
data movement and conversion, 522-524
synchronous load and move, 524-525
Intel 82258 ADMA controller, 206
Intel 82384, 206
Intel 82786 graphics controller, 607-610
Intel 18284 clock generator/driver, 699
Intel IMCOQ4FLKA, 13
Intelligent monitor interface, 33
Intel Pentium, See Pentium
Intel SDK-86, 34
Intel style, 42
Inter-agent communication, 525
Interleaved DMA, 32
Internal fragmentation, 21
Internal interrupts (traps), 30
Interpreter, 34 .
Interrupt(s), 24, 29=31, Sce also Exception
processing
automatic vectoring, 342, 344, 444, 445

Index

instructions, 140

Intel 8085, 72-73, 93-97

Intel 8086, 173-177

Intel 8087, 611

Intel 80186, 188—189

Intel 80386, 235-237, 243

Intel 80960, 517, 541

Motorola MC68000, 280, 323, 341-344

design exercise, 637-643

Pentium, 510

PowerPC 601, 579

saving registers, 30-31

service routine, 24, 29, 236

types of, 30 - e
Interrupt acknowledge (INTA), 31
Interrupt address vector, 30, 344
Interrupt controller, Intel 82594, 206
Interrupt descriptor table, 248
Interrupt enable, 95, 175
Interrupt pending, 96, 430
Intra-agent communication, 516
INVD, 505
IQPL, 200, 202, 210
IP with displacement mode, 521

J

Jump INSTRUCTIONS
Intel 8085, 56
Intel 8086, 139-140
Intel 80386, 223-224
Motorola MC68000, 301-303
execution times, 719
Motorola MC88100, 562

K

Keyboard interface, 587-590
display scroller design excrcise, 621-627
Intel 8086, 134, 590-594
Intel 8279, 710-711
key actuation and debounce, 587

L

Last-in first-out (LIFO), 8
LEA, 293

Least recently used (LRU), 20
Leave instruction, 191, 227-228
Light pen, 607-608

Limit checking, 201

769

Linear decoding, 14-15
Linker commands, HP 64000, 653
Link instructions, 293-294, 304-305
Literals, 520
Little-endian, 572
Load instructions
Alpha 21064, 581
Intel 8085, 65
Intel 80386, 225
Intel 80387 coprocessor, 270-271
Intel 80960, 516, 522, 525
Motorola MC68030, 465
Motorola MCB88100, 554555
PowerPC 601, 576, 579, 581
Local Descriptor Table (LDT), 196-197, 248
Locality of reference, 22
Logical addresses, 19
Logical instructions, 38
Intel 8085, 66—67
Intel 8086, 137
Intel 80186, 190
Intel 80386, 214, 225-226
Intel 80960, 529
Motorola MC68000, 298
Motorola MCB88100, 558
Logical 1/0, 25
Logic analyzers, 44
Loop instructions, 140, 224
Lower Data Strobe (LDS), 317-318, 325-328
LRC7040 printer, 595601

M

Machine state register (MSR), 574, 579
Macintosh computers, 501
Macroassembler, 43
Magnetic storage media, 11
Mask bits, 95
Mask programmable ROMs, 11
Master/slave architecture, 39
Memory, 10-24, See also Random access
memory; Read only memory
array design, 13-17
full/partial decoding, 15
linear decoding, 14-15
memory decoding using PAL, 15-17
associative, 23
cache, See Cache memory
DMA, See Direct memory access
fragmentation, 21
Intel 8086, 111~112, 117-122, 163-165

770 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Intel 80286, 193
Intel 80386, 208, 234, 253-257
Intel 80960 interface, 543
Motorola MC68000 interface, 326-328
PowerPC 601, 580
primary and secondary, 11
processor, 10=11
RISC instructions and, 575
virtual, 405406
Memory indirect mode, 368-370, Sce also
Register indirect mode
Memory management
Intel 80286, 203-204
Intel 80386, 247-251
Pentium, 509
Memeory man.gement unit (MMU), 17-21,
476480
Intel 80286, 193-194
microcomputer development system, 39
Motorola MC68030, 462, 464465, 480491
Motorola MC68040, 499-501
Motorola MC68851 Paged MMU, 359,
361, 390, 400, 420—422
Motorola MC88100, 545-546
PowerPC 601, 570-571
Memory-mapped 1/0, 26, 566, Sce also
Input/output
Memory paging, 19-21, 247, 250-251, 476,
’ 499, 509
Memory segmentation, 19-21, 111, 208,
248-249
Metaassembler, 43
Metal oxide semiconductor (MOS)
technology, 1
Microcode, RISC microprocessors and, 515
Microcomputer configuration, See System
design
Microcomputer development systems, Sce
Development systems
Microcontrollers, 1
Microprocessors, 1, 7-10, 46—47, Scc also
specific processors
evolution of, 2-3
practical applications, 47, 49
Misaligned data transfer, 253, 575
Mnemonics, 35
Modular programming, 394
Monadic iustructions, 413414
Monitors, 34
MOS Technology 6502, 2
Motorola CPU32, 46, 48

Motorola data sheets, 683-694
Motorola HC11/HC16 microcontroller, 1, 49
Motorola MC3456 timer, 432, 434
Motorola MC6800/MC6809, 46
Motorola MC6821 Peripheral Interface
Adapter, 333-335, 686-691
Motorola MC68000, 46, 48, 277-348, 359-
360, 683-684
addressing structure, 280-285
assembly language programming cxamples,
309-314, 349-351, 634-636, 643-646
clock input, 314, 316
data types, 362-363
debugging features, 346
design excercise, 628—648
DMA, 323
controller interface, 596-599
exception handling, 345-347
exception map, 343-344
interrupts, 323, 341-344
memory interface, 326-328
microcomputer configuration, 335-340
multiprocessing, 347-348
parallel interface/timer interface, 329-333
peripheral interface adapter, 333-335
pins and signals, 314-323
programming model, 683
register architecture, 279-280
stacks, 307-309
status lines, 323
-synchronous/asynchronous control lines,
315-318
system control, 318-322
system design, 324
timing diagrams, 324-325
Motorola MC68000 instruction set, 285-307
arithmetic, 294-298
BCD, 301
bit manipulation, 300-301
condition codes, 290
data movement, 291-294
execution times, 713721
logical, 298
program control, 301-305
shift and rotate, 298-300
summary table, 286-290
system control, 305-307
test and set, 298-299
Motorola MC68008, 46, 277
Motorola MC68010, 46, 48, 277
Motorola MC68012, 46, 277

Index ‘ . 771

Motorola MC68020, 2, 48, 359-453 Motorola MC68040, 2, 48, 491-501
addressing modes, 361, 364-371 assembly language program examples, 497
assembly language programming, 388-390, block diagram, 498

418420 cache, 500
barrel shifter, 10 commercial applications, 501
cache memory, 22 ‘data types, 492, 495-496
coprocessor interface, 400402, 405-422 instruction set, 493—496
conditional instructions, 415 memeory management, 499-500
data movement instructions, 412—413 on-chip FPU, 492-493, 498
dyadic instructions, 414-415 programming model, 491-492
MMU, 390, 400, 420422 Motorola MC68230 parallel interface/timer,
monadic instructions, 413-414) 329-333, 685
pins and signals, 417-418 Motorola MC68440 DMA controller, 596-599
programming model, 409 Motorola MC68450 DMA controller, 329
cxception processing, 406, 441-446 Motorola MC68851 Paged Memory Manage-
floating-point operations, 361-362 ment Unit, 359, 361, 390, 400, 420—
interrupts, 444—446 422, 485
MC3456 timer, 432, 434 Motorola MC68881/MCG68852 floating-point
MC68000 comparison, 359-360 coprocessor, 5-6, 33, 359, 361-362,
on-chip cache, 402404 400, 408—419
pins and signals, 422-436 assembly language programming, 418-420
dynamic bus sizing and multiplexing, data movement instructions, 412—413
424-428 dyadic instructions, 414—415
hardware signal index, 423424 monadic instructions, 413—414
RESET and HALT, 430-434 pins and signals, 417418
pipelining, 404-405 programming model, 409
system design, 446-453 Motorola MC88100, 2, 47, 544-567
virtual memory, 405-406 addressing modes, 551

Motorola MC68020 instruction sct, 372 assembly language programming examples,
BCD PACK/UNPK, 383-385 564
bit field, 380-382 data types, 547-548, 551
breakpoints, 390-394 exception processing, 566-567
call module, 394-395 MMU interface, 545-546
check and compare (CHK,CMP), 375-379 pins and signals, 565-566
compare and swap (CAS), 395-400 registers, 546-550
coprocessor, 400—402 Motorola MC88100 instruction set, 551, 553—
MC68000 enhanced instructions, 388-390 562
multiplication and division, 385-388 arithmetic, 556-557
privileged MOVE, 373-374 bit field, 558-560
return and delocate (RTD), 375 compare and branching, 560-562
TRAP, 379-380 load, store, and exchange, 554-555

Motorola MC68030, 2, 48, 461-491 logical, 558
addressing modes, 464 summary table, 553
block diagram, 461462 Motorola MC88200, 545-546
cache, 462, 466470 Motorola MCM6116, 692—694
data types, 463-464 Motorola MPC601, 567
instruction set, 464—466 Move instructions
on-chip MMU, 480-491 Intel 8085, 57, 60—61, 64
pins and signals, 470-471, 473, 475 Intel 80386, 224
programming model, 462-463 Intel 80960, 522, 525

read and write timing diagrams, 471476 Motorela MC68000, 291-292, 714

772 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Motorola MC68020, 373-374

Motorola MC68030, 464
Multiplexing

display interfacing, 589

MCG68020 dynamic bus sizing, 424428
Multiplication and division, MC68020

instructions, 385-388

Multitasking

Intel 80286, 192, 202

Intel 80386, 205

MC68020 instructions, 395400
Mutual exclusion, 297

N

National Semiconductor IMP-16, 2

" Nested Task (NT) bit, 210

Networked development systems, 38

N-key rollover, 588

NMOS, 2

NOT, Sec Logical instructions

_ Not a number (NaN) representation, 5, 410,
492

N-type MOS (NMOS), 2

(0]

One-pass assembler, 43
Op-code field, 36, 41____
Operand cycle start (OCS) pin, 430
Operating system, 11, 34
Intel 80286 support, 192, 195
for microcomputer development system,
40 :
Operating system mode, 277
Optical disk memory, 11
OR, Sce Logical instructions
Ordinal, 208, 520
ORG, 41
Out-of-circuit emulator (OCE), 43
Overflow (V), 8

P

Packed BCD, 4, 383-385, 412
PACK/UNPK instructions, 383-385
Page address translation cache (PATC), 546
Paged memory, 19-21, 234, 247, 250-251,
499, 509
Intel 80386 unit, 206
Motorola MC68030 MMU, 476

Paged Memory Management Unit, 390, 400,
420-422
Paged-segmentation, 21
PAL, 15-17, 255
Parallel I/O, 25
Parallel interface/timer, 329-333, 685
Parallel ports, 259
Parallel printers, 599
Parity bit, 4
PASCAL, 669
Passwords, 668-669
PEA, 293
Pentium, 46-48, 505-511
applications, 510-511
block diagram, 507
cache, 508
division flaw, 506-507
exceptions and I/O, 510
floating-point features, 508-510
instructions, 508-509
registers and addressing modes, 508-509
superscalar design, 507-508
Peripheral interfaces, 24, 33, 587-611, Sce
also Coprocessor(s); Input/output;
specific types of peripheral devices
CRT controller, 605, 607-608
DMA controller, 594-599
graphics, 608-610
Intel 8255, 709
Intel 8279, 710-711
keyboard and display interface, 587-594
Motorola MC68000 interfaces, 329-335
printer controller, 599605
Peripheral Interface Adapter, 333-335, 686-
691
PFLUSH, 466
PHAR LAP, 234
Physical address, 20
Pins and signals
Intcl 8085, 77-81, 695-697
Intel 8086, 112-113, 155-159
Intel 80386, 239-243
Intel 80960, 539-541
Motorola MC68000, 314-323
Motorola MC68020, 422-436
Motorola MC68030, 470471, 473, 475
Motorola MC68881, 417—418
Motorola MC88100, 565-566
PowerPC 601, 580-581
Pipelining, 3
Alpha 21064, 582
delayed branching, 545

Index

Intel 80386, 205, 254
Intcl 80486, 503
Motorola MC68020, 404-405
Pentium, 507-508
RISC microprocessors, 515, 568, 582
Pi value, 495, 536
Pixcl, 607
PMOS, 2
Polled interrupts, 31
POP instructions, 8-9, 56, 71-
Power failure interrupt, 30, 175
PowerPC 601, 2, 47, 567-582
Alpha 21064 compared with, 581-582
block diagram, 569
cache, 571
exception model, 579-580
execution unit, 570
instructions, 577-579
instruction unit, 570
memory addressing, 575-577
MMU, 570-571
pins and signals, 580-581
real-time clock (RTC), 568-569
registers and programming model, 572-575
system interface, 572, 580-581
PowerPC 620, 582
Primary memory, 11
Printer controller chip, 601-605
Printer interface, 134, 599-605
Priorities of interrupts, 31, 176-177
Privileged MOVE instruction, 373-374
Privilege levels, 200-202, 210, 249-250, 421,
572
Process control register, 519
Processor bus (PBUS), 545
Processor control instructions, Intel 8086, 140
Processor version register, 575
Program control instructions
Intel 80386, 215
Motorola MC68000, 301-305
Program counter (PC), 7
Intel 8085, 55
Motorola MC68020, 362, 369-370
relative addressing, 284
Programmable array logic (PAL), 15-17
Programmable Peripheral Interface (PPI),
259-261
Programmable read-only memory (PROM),
11, Scc also Erasable programmable
read-only memory
Programmed 1/O, 24-29

773

Intcl 8085, 84-85
Intel 8086, 164—-165
Motorola MC68000, 329-335
design exercise, 628-636
Programming, 35-36, Sce also Assembly
language programming; High- level
language programming
EPROM, 39
PALs, 17
Programming model
Intel 80386, 206-207
Motorola MC68000, 278-280, 683
Motorola MC68020, 362, 363
Motorola MC68030, 462463
Motorola MC68040, 491-492
Motorola MC68881 floating-point
coprocessor, 409
PowerPC 601, 572
Program status word, 55
PROM, 11, Sce also Erasable programmable
read-only memory
Protected mode, 206, 247-251, 503, 506
Protected Virtual Address Mode (PVAM),
195-196, 198, 503
Protection features
Intel 80286, 198-203
Intel 80386, 249-250
Pentium I/O, 510
Prototype design, 314
PTEST, 464—465
P-type MOS (PMQS), 2 g
Pullup resistances, 329, 430
Push instructions, 8-9, 56
PUSH-PULL circuit, 27-29

Q

Quick immediate mode, 284

R

Radius Rocket, 501
Random access memory (RAM), 12-13
CRT controller, 605
graphic controller, 609-610
Intel 8085, 77, 85, 88-90
Intel 8086, 164
Intel 8155/8156, 707-708
Intel 80386, 255-257
Intel 80960, 543
Motorola MC68000, 326-328, 335

774 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Motorola MC68020 interface, 446, 450,
453 !
Motorola MCM6116, 692-694
Raster scan, 605-606, 635
RDMSR, 509
RDTSC, 509
Read mostly memory (RMM), 12
Read only memory (ROM), 11-12, See also
Erasable programmable read-only
memory
Intel 8086 interface, 163—164
Intel 8355, 703-704
READ timing, 82
Read/write cycles, Sce also Input/output; Pins
and signals
Intel 80386, 244-246
Intel 80960, 542
READY, 79
Real data types, 524
Real mode, 206, 246-247, 503, 506
Real-time applications, 36, 195
Real-time clock (RTC), 568-569
Real-time clock (RTC) register, 574
Real-time controllers, 49
Reduced Instruction Set Computer (RISC),
2-3, 47, 515-516
32-bit microprocessors, See Intel 80960;
Motorola MC88100; PowerPC 601
64-bit microprocessors, 582-583
Refresh circuitry, 12, 164
Register(s), 7-9, See also specific types
DMA controller chip, 32
I/O port, 24, 25
- Intel 8085 accumulator, 53-55
Intel 8086, 113-116
Intel 80386, 208-210
Intel 80387 numeric coprocessor, 267-269
Intel 80960, 516-519
Motorola MC6821 parallel interface
adapter, 334
Motorola MC68000 programming model,
279-280
Motorola MC68020, 360
Motorola MC68040, 491492
Motorola MC88100, 546-550
Pentium, 508-509
PowerPC 601, 572-575
real-time clock, 568-569
printer controller, 602
RISC processors, 3
saving on interrupt, 30-31
Register addressing mode, 37, 117

Register direct mode, 282
Register indirect mode, 37, 55-56, 118, 211,
282-283, 364365, 368, 520-521
Register indirect with index mode, 576
Register mode, 211
Relative addressing mode, 123
Requested Privilege Level (RPL), 196
Reset
DMA controller and, 599
Intel 8085, 73, 80-81
Intel 8086, 157 '
Intel 80386 systems, 237, 265
Intel 80960, 541
Motorola MC68000, 305, 319-322
Motorola MC68020, 430, 432-434
Motorola MC88100, 567
Response register, 33
Resume Flag (RF), 210
Return and delocate (RTD) instruction, 375
RISC, See Reduced Instruction Set Computer
Robotics, 49
Rockwell International PPS-4, 2
ROM, >ce Read only memory
Rotate instruztizns
Intel 8085, 68
Intel 8086, 137
Intel 80960, 527
Motorola MC68000, 298-300
exccution times, 717

S

Scaled index, 211, 361, 368
Scanbyte instruction, 530
Scoreboard register, 3
Screen editor, 40
Secondary memory, 11
Security system, 39

HP 64000 passwords, 668—669
Segmentation unit, Intel 80386, 206
Segment descriptors, 249
SEGMENT directive, 141
Segmented memory, 19-21, 111, 208, 234,

248-249

' Segment limit checking, 201

Scgment registers, 209, 574
Self-test features, 238
Semaphore, 297, 347, 396, 531
Sequential process control, 75
Serial input data (SID), 79, 96, 98
Serial output data (SOD), 79, 98
Serial printers, 599

Index

Set-associative mapping, 23
Shadow registers, 198, 546
Shift instructions
Intel 8086, 137
Intel 80186, 190
Intel 80386, 225-226
Intel 80960, 526
Motorola MC68000, 298-300
execution times, 717
Sign extension, 292
Sign status flag, 55
Signal(s), Sée Input/output; Pins and signals
Signaling NaN, 5
Signed binary integer, 3
Simulation applications, 511
Single operand instructions, 216
Single-precision data type, 6, 411
Single-step debug facility, 44
Soft keys, 40, 654-655
assembler, 660-661
emulator, 665-668
system monitor, 657-658
Software, 34-35, See also Assembly language
programming
debugging, 43—44
development, 44—45
interrupts, 30, 236
for processor development system, 39—41
Source function code (SFC), 361
Source function code register, 373
Speed-power-product, 2
Stack frame, 304, 444
Stack manipulation
Intel 8085, 70-71
Intel 8086, 114
Pentium, 509
Stack pointer (SP), 7-9
Intel 8085, 55
Intel 8086, 116
Motorola MC68000, 307-309
Motorola MC68020, 360
Standard I/0, 26, See also Input/output
Static RAM (SRAM), 12
Intel 8086 interface, 164
Intel 8155/8156, 707-708
Intel 80386 interface, 255-257
Intel 80960 interface, 543
Motorola MC68020 interface, 453
Motorola MC88100, 546
Motorola MCM6116, 692-694
Status flags, 210, 217
Status register (SR), 7, 279

775

Status word register, 268
Storage medium, 11
Store instructions
Intel 80960; 522
Motorola MC88100, 554-555
PowerPC 601, 576, 579
String addressing mode, 121-122
String instructions
Intel 8086, 137-138
Intel 80186, 190
Intel 80386, 214, 226-227
Subtract, Sec Arithmetic instructions
Sun Microsystems Ultrasparc, 582
Superminicomputers, 2
Superscalar design, 568
Supervisor-level registers, 574-575
Supervisor mode, 277-278, 346, 545, 548
Swap instructions
Intel 80486, 504-505
Motorola MC68000, 292
Synchronous bus control, 315-318
Synchronous exceptions, PowerPC 601
model, 579
Synchronous load and move instructions,
524-525
Synchronous operation, Motorola MC68020,
436-439)
System bus, 6=7
System calls, 30
System control instructions
Intel 80960, 535-536
Motorola MC68000, 305-307
PowerPC 601, 579
System control pins, 430
System design
Intel 8085, 103-105
design cxercise, 615-621
Intel 8086, 165-170
design exercise, 621-627
Intel 80960, 543544
Motorola MC68000, 324, 335-340
design exercise, 628-648
Motorola MC68020, 446-453
PowerPC 601, 572, 580-581
System management mode, 506
System software, 34-36

T

Table Indicator (TI), 196
Task Register (TR), 197
Task switching, 195, 202, 205

776 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Test and sct instructions, Motorola
MC68000, 298-299
Test condition codes, Intel 80960, 534-535
TEST instructions, Motorola MC68030,:464-
465
Text cditor, 34
Timer input pin, 329
Time-shared systems, 38,
Timing and timing diagrams
Intel 8085, 75-77, 81-85
Intel 8086, 111, 158-159
bus cycle, 160-161
Intel 80186, 187, 188
Intcl 80386, 206, 239
Intel 80387 numeric coprocessor, 265
Motorola MC68000, 314, 324-325
instructions, 713-721
Motorola MC68020, 432, 434, 436—441
Motorola MCG68230, parallel interface/
timer, 329-333, 685
PowerPc real-time clock (RTC), 568-569
Motorola MC68030, 471-476
TITLE, 43
Trace exception, 346
Transceivers, 255
Transistor transistor logic (TTL), 2
Translation Lookaside buffer (TLB), 505, 508
Traps, 30, Sce also Interrupt(s)
Intcl 8085, 79-80, 93
Motorola MC68000, 306, 346
Motorola MC68020, 442
TRAP on condition (TRAPcc), 379-380, 415
Triadic register instructions, 554
Two-key lockout, 587-588
Two-operand instructions, 216
Two-pass assembler, 43
Two-way set associative cache, 257

U

UART, 605
Ultrasparc, 582
Unconditional branching instructions, 38
Intel 8086, 139
Intel 80960, 533-534
Motorola MC88100, 562
PowerPC 601, 579
Unconditional I/O, 27
Unified Translation Lookaside Buffer
(UTLB), 571

Universal asynchronous recciver transmitter
(UART), 605

Universal development systems, 38

UNIX, 506

UNLK, 293-294, 304-305

Unpacked BCD, 4, 383-385

Unsigned binary integer, 3

Upper Data Strobe (UDS), 317-318, 325-328

U-pipe, 508

USER ID, 39

User-level registers, PowerPC 601, 572-574

User mode, 277-278, 346, 545

Vv

Valid Access Level (VAL), 421
Valid bit, 24
Valid memory address (VMA), 317, 334, 342
Valid peripheral address (VPA), 317, 334
VAX-type computers, 49
Vector base register (VBR), 360, 362, 373
Virtual address, 196
Virtual 8086 mode, 206, 210, 251, 503, 506
Virtual 1/0, 25
Virtual memory, 19

Motorola MC68020, 405-406

PowerPC 601, 570-571
Virtual segments, 195
Volatile memories, 12
Voltmeter design exercise, 615-621
V-pipe, 508

Vil

Workstations, 47, 506

Write-back cache policy, 23-24, 500
Write once read many (WORM), 11
Write-through policy, 24, 466, 500
WRITE timing, 84

WRMSR, 509

X
—

XADD, 505
XER, 574

Z

Zero, 6
division by, 174, 345, 383, 492, 556
flag (Z), 8, 55

Zero-operand instructions, 37, 216

