
APPENDIX A

THE HEWLETT-PACKARD (HP)
64000

A.1 System Description

The HP 64000 Microprocessor Logic Development System is a universal
development system which provides all of the necessary tools to create,
develop, modify, and debug software for mi crop roccssor-based systems.
In-circuit emulation provides the capability of performing an in-depth
analysis of hardware and software interfacing during the integration phase
of the development process.

The HP 64000 Microprocessor Logic Development System is a multi-
user development system, allowing up to as many as six users to operate on
the system simultaneously. All users of the system share a line printer and a
common data base in the form of a 12-megabyte Winchester Technology
Disc Drive or a selection of one to eight Multi-Access Controller (MAC)
disk drives connected to the system via the HP Interface Bus, commonly
referred to as HP-lB. Eight disk drives can provide up to 960 mctabytes of
HP-formatted storage space.

653

Solt I

"I ape drive

Cilit function

654	 Microprocessors and Microcomputcr-Jjcjsccl System Design, 2nd Edition

A.2 Development Station Description

Figure A.l shows the front view of ftc HP 64000 Development Station.
The keyboard (Figure A.2) is divided into four areas: (I) an ASCII-
encoded typcwritcr-type keyboard; (2) a group of edit keys, which facilitate
movement of text or cursor when in the edit mode; (3) special function keys,
for system reset or pause or to access a conimand recall buffer; (4) the all
important system "soft keys," eight unobtrusive large key pads just
beneath the bezel which surrounds the display.

The soft keys provide a quick and easy means to invoke system
commands, virtually eliminating the typographical errors one usually has
to contend with when having to enter commands character by character.
The definition of each soft key is written on the display just above the bezel.
The soft key syntax changes depending on the mode of operation and the

,'', -ho"	 I &i it keys	 l'I(OM progralnimer
mod iii.:

Figure A.I	 Front view of the HP 64000 Development Station (Model 64100A).
Front Panel: 'rite seven major areas of the front panel are shown. Each area
Provides the interface necessary to operate and control the system. CRT Display:
The CRT is a large-screen, raster-scan magnetic display. Screen capacity is 25
rows and 80 columns of characters. The standard 128-character (upper and lower
case) ASCII set can be displayed. A blinking underline cursor is present as the
prompt. Video enhancements are inverse video, blinking, and underline, Soft Keys:
Just below (lie CRT arc eight unlabeled keys. These keys are defined as the "soft
kcyi." Each key tics to thc soft key label line at the bottom of the CRT. During
operation, the soft keys are labeled on the CRT screen. Source: Courtesy of
Hewlett-Packard,

Appendix A
	 655

I/

Figure A,2 Model 641 OOA keyboard. Source: Courtesy of Hewlett-Packard.

position of the cursor. This greatly enhances the ease of use of the system
since it provides a list of alternatives available and guides the operator to
use the system. In cases where the form of the input required is unknown,
brackets surrounding a key word, a syntactical variable will prompt the
user with the corrcct form of input the system expects.

The system display is a Raster Scan CRT which provides a display of 18
lines of text entry, a status line which always displays the system's status
and date and time, three lines for command entry, and the soft key label
line which indicates the function of each key. The display is 80 columns
wide, but with the edit keys the display can be relocated to show text or
data out to 240 columns. This is convenient for adding comments and really
enhances the program documentation.

Other external station hardware includes RS232 ports for communica-
tion with either Data Communications Equipment (DCE) or Data Tcrinl i

-nal Equipment (DTF). The RS232 port has a selectable baud rate up to
9,600 and uses the X-ON X-OFF convention for handshaking at baud rates
2,400 and above. There is a 20-mA current loop for TTY interfacing and
two ports for triggering of external devices such as an oscihlos(56pc during a
logic trace. As system options, th Font panel hosts a PROM programmer
(Figure A.l) to the immediate r!ghl of the keyboard and a tape drive for
file back-up. The tape drive n: ::flS a high-speed read and write and each
cassette holds 250K bytes of data.

Is

656	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Figure A.3 shows special function keys and Table A. I summarizes their functions.

CLR LINE	 RECALL	 CAPS, LOCK

 A.3 Special function keys. Source: Courtesy of }iewlett-l'ackard.

'fable A.I Summary oISpccial Functions Keys

[ij	 Press to clear the current line containing cursor on the CRT,

Used to recall, to the command line, previous commands from
a stack. The commands are displayed one at a time for each
time the LJ key is pressed. The number of recallable
commands is variable. Only valid commands are pushed into
the stack. If the LEi1 key is pressed and the buffer is empty
the system responds with "Recall buffer is empty' message.

1s Loj Used to lock keyboard in all uppercase letters. A message is
presented on the CRT indicating "CAPS LOCK on" or "CAPS
LOCK off." At the next key stroke, the message is erased, but
the mode remains in effect.

Pressing L SE fl once initiates a pause in system operation. A
flashing "PAUSED" message, in inverse video, is presented on
the status line. To continue operation, press any key except

.LT.

Pressing the EI ;ET key the second time will clear the CRT
and return the system to the system monitor.

Holding the key down and pressing EFT initiates
a complete system reboot. This function should be regarded
as a last resort when the system does not respond.

Holding Skey down and pressing icn1 initiates system
performance verification.

Source: Courtesy of I IcwIcu-t'ackard.

(I

Appendix A
	 657

The following summarizes the HP 64000 soft keys, commands, assembler error
codes, and other features.

System Monitor Soft Keys

The following provides a description of the system monitor soft keys:

userid The userid or user identification identifies each user as
being unique within the system. This facilitates file
management in that once the userid command is
invoked all future references to files will be to files
within that uscrid unless explicitly stated otherwise.
The HP 64000 uses six characters and must begin with
an uppercase alpha character.

time HH:MM. Allows the user to enter the correct time on
the 24-hour clock displayed on the status tine. This
also facilitates file management since files can be
referenced by time and date.

date DD/MM/YY. (Day/Month/Year) Allows the user
to enter the correct date into the system. This aids the
file management system since files can be referenced
by date and time.

store This command will transfer files from the disk to the
tape cartridge. The user specifies the file name and file
type or all files. If all files are specified the system will
store only the source files, linker command files, and
emulator command files. Other file types may be
stored but the file type must be specified. Other file
types can readily be regenerated. This command will
overwrite any previous contents of the tape cartridge.

658	 Microprocessors and Micro computer-Based System Design 2nd Edition

a ppc nd

verify

restore

purge

recover

rename

copy

directory

library

log

(CM D_FILE)

Allows tiles to be appended to files previously stored on
tape.
Verify compares a file on the disk to a file resident on
the tape cartridge. The user has the option of speci-
fying a single file or all files on the tape assigned to the
current userid.
This command will transfer files from the tape car-
tridge to the disk. The user can specify file name or
names and tile type.
This command will remove specified files from the
active file list. A purged file can be recovered provid-
ing it has not been written over.
Recover is used to recover files which have been
purged. Files, if not written over, will be returned to
the active tile list.
Allows the user to rename files, This is used to rename
a file before recovering a previous file with the same
name. This command also allows the user to transfer a
file from one userid to another uscrid.
Copy allows a disk file to be copied to, or from, the
tape, display, or another file name or the RS232 port.
The current display or a file may be copied to the
printer.
This command provides a listing of those files on the
disk, the tape cartridge, and those recoverable files.
The listing information consists of file name, file type,
file size, last modified data, and last access date.
Options: A directory can be made to include all
userids, all types of files, before or after a specified
date a file has been accessed or modified, and files on a
specified disk unit.
This command is used to build libraries of relocatable
files for use by the linker. These library files consist of
relocatable files to be selectively loaded by the linker.
This creates a command file for all legal keystrokes.
The log function is either toggled on or off by the "log"
soft key.

This soft key represents a syntactical variable to be
supplied by the user. This variable is a file name
consisting of system commands which the develop-
ment system will execute. A command file can be
generated through the use of the editor or by using the
log soft key.

Appendix A
	

659

Editor Commands

The 64000 editor commands are listed below:

revise This mode is toggled ON and OFF and allows text to be

modified. Modification may include character insertion or

deletion. All appropriate command soft keys including

"insert" are operational within the "revise" mode.

delete This mode allows deletion of one line or a group of lines

specified by the limit specified. The syntax "thru" includes

deletion of the limit while the syntax "until" is not inclusive

of the limit. The limit can be specified as a line #, string

within a line, or as a start or end of text.

find This command allows the user to search the text for the

occurrence of the string. The find parameters include a

(string) consisting of a single character or any combination

of characters; (limit) allows the usdr to specify the bourida-

rics of the search.

replace This command allows text replacement of string, a charac-

ter, partial string with another character, string or partial

string. There is an optional (limit) parameter that can

specify boundaries of replacement. 	 I
(line #)	 This command causes the line to become the current line of

text.

end This terminates the edit session and directs it to a specific

destination. Usually this destination is a new file name. If no

new file name is specified, the edit session terminates by

purging the original file and replacing it with the edited

file.

merge Merge allows the user to merge an entire file or portions of it

into the file being edited. Any text added to the file being

edited will be added after the current line. Delimiters can be

specified to determine the amount to be merged.

copy Copy places specified text into a temporary storage buffer

on disk for future use. The copy command will overwrite any

text previously stored in the buffer. This is avoided by

selecting the append option. The default value for (limit) is

the current line only.

extract This command removes the specified lines and places them

into temporary storage space. If the append option is not

selected, the extracted text will overwrite previously stored

text. If (limit) is not specified, the current line will be

extracted.

660	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

retrieve This command retrieves the text from temporary storage
and inserts into the program following the current line. The
user has the option regarding the number of times the text is
to be retrieved.

insert This allows insertion of a combination of ASCII characters,
after the current line of text. Insert is executable in the
command mode, revise and insert mode.

list This allows the user to list a file to another file or to a printer
in numbered or unnumbered format. The listing will be
exactly like the file text. There is also a (limit) option
available.

renumber This command renumbers the edited text starting from line
one.

repeat Repeat allows the user to duplicate the current line of text
and add it immediately after the current line. The user can
specify the number of times the repeat command is exe-
cuted.

tabset This command allows the user to set tabs in the desired
column. The user has the choice of all 240 columns. Any
character can be used to set tabs in any desired location.

range Range restricts the columns to which find and replace
commands are constrained. Columns 1 through 240 can be
specified. The range function is toggled ON and OFF.
When ON, the label range displays in inverse video.

autotab This function provides an automatic tab function that is
based on the first nonblank column of the previous line of
text. Depressing the shift and the tab keys simultaneously
allows tab back from autotab position.

Assembler Soft Key Definitions

The following provides the definitions of the 64000 assembler soft keys.

Key Label	 Definition

(FILE) This indicates the name of the source file that will be assem-
bled.

lisifile This soft key specifies the destination of the assembler's output.
The options available are listing the output to a specified file, to
the display, to the printer, or to null (no generation of a list). If
no list file option is specified, the assembler output listing
defaults to the device previously specified by the user when the
userid was declared.

Appendix A
	

661

options This soft key provides the user with a selection of five options

specifying the type of output listing.

list This provides a listing of the source program excluding macro

or data expansion. All no list pseudoinstructions in the source

code arc ignored.

nolist Selection of this soft key provides no listing except error

messages. All list pscudoinstructions in the source code arc

ignored.

expand Thi soft key lists all source and macro generated codes. All list

pscudoinstructions in the source program are ignored.

nocode This option causes the source program to be assembled without

placing it in a relocatable file.

xrel	 The selection of this option turns on the symbol cross-reference

feature of the assembler and lists this table.

Assembler Pseudoinstructions

Pseudoinstruct ions arc instructions used only by the assembler. They

produce no executable code for the processor and normally do not take up

any memory locations. They arc used by the assembler to make program-

ming easier. The following list contains those pseudo ops and their

definitions supported by the HP 64000 assembler.

Op Code

ASC

BIN

CO MN

DATA

DEC

END

EQ Ii

EXPAND

EXT

GLI3

HEX

LIST

Function

Stores data in memory in ASCII format.

Stores dat;i in memory in binary format.

Assigns common block of data or code to a specific location

in memory.

Assigns data to a specific location in memory.

Stores data in memory in decimal format.

Terminates the logical end of a program module. Operand

field can be used to indicate starting address in memory for

program execution.

Defines label field with operand field value. Symbol cannot

be redefined.

Causes an output listing of all source and macro generated

codes.

Indicates symbol defined in another program module.

Defines a global symbol that is used by other modules.

Stores data in memory in hexadecimal format.

Used to modify output listing of program.

662	 Microprocessors and Microcomputer-Based System Design s 2nd Edition

MASK

NAME

NOLIST
ORG

PROG

RE PT

SKIP

SPC

TITLE

Performs and/or logical operations on designated ASCII
string.
Permits user to add comments for reference in the linker
list.
Suppresses output listings (except error messages).
Sets program counter to specific memory address for
absolute programming.
Assigns source statements to a specific location in memory.
Assembler default condition is "PROG" storage area.
Enables user to repeat a source statement any given
number of times.
Enables user to skip to a new page to continue program
listing.
Enables user to generate blank lines within program list-
ing.
Enables user to create a text line at the top of each page
listing for the source program.

The following pseudo ops arc for the 8080 and 8085 assembler.

DB
	

Stores data in consecutive memory locations starting with the
current setting of the program count.
Reserves the number of bytes of memory as i,:ficatcd by the value
in the operand field.

D W The define word pseudo stores each 16-bit value in the operand
field as an address with the least significant byte stored at the
current setting of the program counter, The most significant is
byte stored at the next higher location.

Assembler Error Codes

The following provides a description of the 64000 assembler error codes.

Error Code	 Definition

AS
	

ASCII string; the length of the ASCII string was not valid or the
string was not terminated properly.

CL
	

Conditional label: Syntax of a conditional macro source state-
ment requires a conditional label that is missing.

DE Definition error: Indicated symbol must be defined prior to its
being referenced. Symbol may be defined later in the program
sequence.

Appendix A	 663

DS	 Duplicate Symbol: Indicates that the 	 symbol has been
previously defined in the program. TI'	 's when the same
symbol is equated to two values (usinj 	 rcctivc) or when
the same symbol labels two instruction

DZ	 Division by zero: Invalid mathcmatica	 a resulting in the
assembler trying to divide by zero.

EG	 External Global: Externals cannot be 	 s globals.
EQ	 External Overflow: Program module 	 Lay external decla-

rations (512 externals maximum).
ES	 Expanded Source: Indicates insuff	 buffer area to

perform macro expansion. It coulc 	 ilt of too many
arguments being specified for a pr	 stitution, or too
many symbols being entered into t 	 inition.

El	 Expression Type: The resulting t 	 ression is invalid.
Absolute expression was cxpectee 	 und or expression
contains an illegal combination	 bic types (refer to
Chapter 2 of the .4sseth1cr Man;	 s and conventions).

IC	 Illegal Constant: Indicates that	 ibler encountered a
constant that is not valid.

IE	 Illegal Expression: Specified cxp 	 .ther incomplete or an
invalid term was found within ti 	 an.

10	 Invalid Operand: Specified o'	 either incomplete or
inaccurately used for this oper 	 occurs when an unex-
pected operand is encountered	 crand is missing. If the
required operand is an exprc	 error indicates that the
first item in the operand field

IP	 Illegal Parameter: Illegal par 	 the macro header.
IS	 Illegal Symbol: Syntax cxpec 	 itilier and encountered an

illegal character or token.
LR	 Legal Range: Address or di5 	 t causes the location coun-

ter to exceed the maximum	 ocation of the instruction's
addressing capability.

MC	 Macro Condition: Rclatio	 ional) operator in macro is
invalid.

MD	 Macro Definition: Macro	 oeforc being defined in the
source file. Macro defIniti	 cccdc the call.

ML	 Macro Label: Label not I 	 n the macro body.
MM Missing Mend: Indicatc 	 era definition with a missing

mend directive was inch.	 program.
MO Missing Operator: An a	 perator was expected but was

not found.
MP	 Mismatched Parcntlics 	 right or left parenthesis.
MS	 Macro Symbol: A be 	 within a macro body was not

found.

664	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

NM Nested Macro: A macro definition is not permitted within
another macro.

PC
	

Paramccr Call: Invalid parameter in macro header.
PE
	

Parcnictcr Error: An error hs been detected in the macro
parameter listed in the source statement.

RC
	

Repeat Call: Repeat cannot precede a macro call.
RM Repeat Macro: The repeat pseudo operation code cannot precede

a macro definition.
SE
	

Stack Error: Indicates that a statement or expression does not
conform to the required syntax.

TR
	

Text Replacement: Indicates that the specified text replacement
string is invalid.

UC
	

Undefined Conditional: Conditional operation code invalid.
Uo Undefined Operation code: Operation code encountered is not

defined for the microprocessor, or the assembler disallows the
operation to be processed in its current context. This occurs when
the operation code is misspelled or an invalid delimiter follows
the label field.

UP
	

Undefined Parameter: The parameter found in macro body was
not included in the macro header.

US
	

Undefined-Symbol: The indicated symbol is not defined as a label
or declared an external.

Linker Commands

The 64000 linker commands are defined below:

Key Label	 Definition

link	 Initiates the link process.
(CMDFILE) A syntactical variable supplied by the user. This would

be the name of linker command file previously estab-
lished.

listfilc

display

(FILE)

null

Allows the user to select a destination other than the
system default for the linker output listing.
Using this command designates the display as the output
destination for the linker output listing.
Syntactical variable supplied by the user. This would be
the name of a disk file to which the output of the linker
would be directed.
Using this command suppresses the output listing. Error
messages will still be output to the default destination as
previously selected by the user.

Appendix A
	

665

printer

	

	 This designates the printer to be the destination of the
linker output listing.

options	 Soft key which precedes the selection of a linker option.
edit

	

	 Available linker option to edit a previously established
linker command file.

nolist

	

	 Available linker option to suppress the generation of a
linker load map.

Soft Key Definitions

The 64000 emulator soft key definitions are given below:

Label	 Description

run This starts program execution in the emulation processor.
Execution begins at the location specified by "from" and
ending under the conditions specified by "until." If no limits
are specified, emulation will begin at the current address until
halted by a "stop run" or by a boundary specified by "until."
Syntax: run from (ADDRESS OR SYMBOL) until (AD-
DRESS OR SYMBOL)

step This function causes the emulation processor to execute one
instruction at a time. Once in the step mode, each depression of
the return key will cause another instruction to be executed
and displayed. The user can specify the number of steps to be
executed each time the return key is pressed and the address
from which stepping occurs. If these parameters are not
specified, the system defaults to stepping from the current
program counter location, executing one instruction each time
the return key is pressed.
Syntax: step # of (STATES) from (ADDRESS)

trace This key is used to control the analysis function of the system,
allowing the triggering and capturing of data of the emulation
data bus.
Syntax: trace in_sequence—permits tracing on a sequence

of events,
trace after—captures and displays data after the
trigger qualifier word is satisfied.
trace about—captures and displays data before and
after the trigger qualifier.
trace only—allows explicit definition of the informa-
tion to be captured in the trace.

666	 Microprocessors and Microcoinpu ter-Based System Design, 2nd Edition

trace continuous—allows continuous monitoring of
trace information without reentering the trace com-
mand.

display This command causes the system to display a variety of data
types on the development station's screen. Data types can be
specified as global symbols, local symbols, and last active trace
specification (valid only with the analysis card), the last active
run specification, the trace buffer (valid only with analysis
card), contents of proper emulation microprocessor registers,
absolute or relative time display (valid only with analysis
card), or contents of user or emulation memory.
Syntax: display trace
Syntax: display register (REGISTER NAME)
Syntax: display memory (ADDRESS)
Syntax: display trace specification
Syntax: display run specification
Syntax: display count
Syntax: display global symbols
Syntax: display local symbols

The mode option for the trace, register, and memory display provides the
user with a choice of how the data will be presented oil screen. The
following modes are defined:

static

	

	 The system will display the current conditions or coatents
one time only. No update will be shown.

dynamic

	

	 The system will continually update the display as data are
changed in the emulation system.

absolute

	

	 The system displays data in absolute numeric code. (i.e..
hexadecimal or octal).

mnemonic The system presents the data in the appropriate assembly
language.

offset by

	

	 The system displays program modules so that the address
values arc offset by a specified value.

no offset

	

	 The system displays all addresses in program modules with
those values assigned by the linking loader.

packed

	

	 The system displays opcodcs and operands on the same
line.

block

	

	 The system displays more data on the development station
by displaying multiple columns of data.

modify This command allows the user to change the contents of the
emulation memory or processor registers to correspond to
data entered from the console keyboard.
Syntax: modify (ADDRESS) to (VALUE)

Appendix A	 667

Syntax: modify memory (ADDRESS) thru (AD-
DRESS) to (VALUE)
Syntax: modify register (REGISTER NAME) to (VAL-
U Ii)

stop This command halts the execution of either the run or trace
commands. tistop-run is executed, it can be continued by a
run command without skipping any of the intervening of
the program code.
Syntax: stop run
Syntax: stop trace

end Selecting this soft key changes the operating mode of the
station, allowing olhcr tasks to be performed. "end" does
not stop the emulation process. Emulation continues even
as other functions are performed on the system.
Syntax: end_emulation

load	 load—memory transfers abolute object tiles from the sys-
tem's disk into emulation or user RAM memory.
Syntax: load memory (FILE)

count The count command is used in conjunction with a trace
command. The count command is used to measure the
elapsed time or the number of times certain user-specified
events occurred between the start and end times specified
by the trace.
Syntax: count time

count address - (ADDRESS)
copy This command allows the user to transfer data from one

location of emulation or user memory to the system's disk.
The content of memory from whichwhich the data are taken
remains unchanged.
Syntax: copy (ADDRESS) thru (ADDRESS) to (FILE-
NAME)

list—to This command allows the user to make a permanent record
of the contents of the stations display by writing it to a file
on the disk or to the line printer.
Syntax:	 list display to printer
Syntax: list display to (FILE)

restart Upon initializing the restart command, the microproces-
sor's program counter is reset to 00001-1 and the processor is
reinitialized. It is important to execute the run command
from the appropriate place in emulation memory.

edit_enig (Edit-Configuration). This command recalls the series of
queries which allows mapping of memory space and fault
selection. When this command is invoked the previous
responses can be modified by the user.
Syntax: cdit_cnfg

668	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Following are the monitor level soft keys which will be in effect after
December 1981:

edit compile assemble link emulate prom_prog run ---etc-"
directory purge rename copy library recover log ... etc ...
uerid date&time opt—test terminal (CMDFILE) --TAPE --- --- etc---

"--TAPE---" Soft Key

After --TAPE--- is returned the following soft keys are available.

store restore append verify tension directory --- etc---

"date&time" Soft Key

After date &tinic is depressed the following soft keys are available.

(DATE) (TIME)

"opt_test" Soft Key

This executes option test, which provides performance verification tests for
options that are present.

Terminal Mode

"terminal Soft Key

This puts the station in an RS232 terminal mode which allows it to be a
terminal to another system.

Passwords

The capability to have increased file security using passwords has been
added. Following is the new syntax for uscrid.

"userid" Soft Key

After uscrid is depressed the following soft keys are available.

(USERID) Iisttlle

Appendix A
	 669

After USER ID is entered the following soft keys arc available.

listfile password

After password is entered the following soft keys are available.

(PASSWD)

The useNypcs in his password. This is nonprinting so he will not sec on the
display what he entered.

"HOST" PASCAL

"HOST" PASCAL consists of a compiler to allow users of the 64000
system to write programs that will execute on the internal host processor. In
order to execute these programs the following syntax is used.

"run" Soft Key

After run is depressed the following soft key is available.

(FILE)

After a fllc is specified the following soft keys arc available.

input output

After input is depressed the following soft keys arc available.

(FILE) keyboard

After output is depressed the following soft keys are available.

(FILE) display display 1 printer null

670	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Summary of the HP 64000 Development System

Example A-i
This example shows how to create a new file and edit it. The file to he created
is listed below:

8085"
THIS PROGRAM STARTS AT 0 AND ADDS LOCATION 100H TO
LOCATION 101H AND STORES THE RESULT IN LOCATION 102H
NAME "ADD —WORKSHOP-1-
ORG 2000H	 PROGRAM ORIGIN WILL BE AT

HEXADECIMAL 2000
START	 LXI	 H,1 OOH	 ; LOAD HL PAIR WITH 100H

MOV AN	 MOVE NUMBER IN LOCATION 100
INTO THE ACC.

INX	 H	 INCREMENT H AND L PAIR
ADD M	 ADD LOCATION 101 TO ACCUMULATOR
INX	 H	 INCREMENT HL PAIR
MOV M,A	 STORE ACC IN LOCATION 102H
JMP START

Procedure
Step 1: Press soft key "userid" and type in your USERID. The HP doesn't

ask for the time and date after you cn'r your USERID. Rather, you have to
press the soft key "Date&Time" to chang. IL.

Step 2: To enter the edit mode, you have to cr ate it new file. We'll call this
new file 'ADD".

edit into ADD (RETURN)

Step 2.5: It is a good idea to set up tabs so that if you want to you may jump
to the opcode, operand or comment. You do this by pressing the softkcy
"Tabsct". The editor will then display a tab row in which you can type "1" at
the current cursor position. Then when you want to move faster, the "tab" key
will jump to where you set your tabs. The way we did it was:

tabset 7 17 27 37

To save your tab sets, type the inverse softkey text 'tabset" again.
Step 3: The first line of the program is the assembler directive, which lets

the assembler know what microprocessor you wish to emulate.

"8085" (RETURN)

Step 4: To enter comments, type a "" in column I and then start with your
comments. If you want to start it anywhere else on that line, type a ";" and enter
your comment.

Appendix A
	

671

* This is a comment (The '* is at the leftmost edge of column 1)
This is a comment (The ";" can be at any position).

Note: Your comments must conic after you type "" or ";".
Step 5: Enter "Name" and a brief explanation of the file. This lets you know

what a particular file does in case you have to link many files. This is optional.

(TAB) NAME (TAB) 'ADD_WORKSHOP I" (RETURN)

Step 6: Enter "ORU" to let the assembler know the starting location of your
program - in this case, at 20001-1.

(TAB) ORG (TAB) 2000H (TAB) COMMENTS (RETURN)

Step 7: Emer the label "START" at column 1 of the next line along with the
first instruction. This label helps the user to remember the English word rather
than what the iiumbcr was, if the user wants to loop or jump to that part of the
program again.

START (TAB) LXI (TAB) H,100H (TAB) ; COMMENTS (RETURN)

Step 8: If you use only a few labels in your program, it is wise to use the
softkcy "AUTOTAB". This softkey jumps to the next line and moves the
cursor right under the first word of the previous line. This saves time. Also note
that the "TAB" key can also do this if you specified the tab sets.

Step 9: Enter the rest of the program. This is the program listing called
"ADD".

Step 10: To list your file to the printer, make sure the printer is on-line (the
light that's adjacent to the word should he on; if not, push the "on-line" button
on the printer). Then type:

list printer all (RETURN)

Step'] I: To savc the file, type

end (RETURN)

Note: If your file wasn't named when you entered the edit mode, then type

end ADD (RETURN)

Step 12: The file is stored onto the hard drive or disk. To see your file on
it, type

directory (RETURN)

672	 Microprocessors and Microconipu ter- Based System Design s 2nd Edition

You should then see the file "ADD" with the type "SOURCE". You will also
see when you last modified it and accessed it. This information is important,
so that you know how updated your file is. The directory listing will only show
those files under your USERID.

Step 13: To re-edit the file, type

edit ADD (RETURN)

Notice that you don't type "edit into ADD". If you want to load your file from
a disk, you have to specify the drive number. For disk drive X, type "ADD:X",
where X is the disk drive number. If no drive number is specified, then the
default is 0.

Step 14: To use the insert softkey, type a "NOP" after line 9 by

9 (RETURN)
insert (TAB) NOR (TAB) (TAB) ; NO OPERATION (RETURN)

Note: If you get an error, go to Step IS and then back to 14. This may be
because the editor was trying to find line 9, but your file has line numbers
reading "NEW" instead.

Step 15: To renumber your file in order to give your editor a way to find
what line to edit, type

renumber (RETURN)

Step 16: If your file is very large and you want to search your file for a
particular word like "NOP", type

find "NOR" all (RETURN)

Note: Remember to enclose all strings with double quotes. If not, the editor will
think it is a sofikey command.

Step 17: To insert more text, type

insert (RETURN)

then move the cursor up, down, or sideways and begin typing the new line.
Step 18: To revise a line, enter

revise (RETURN)

This edits the line that the cursor is on. If that line isn't what you want, then
move the cursor using the cursor keys.

Step 19: To move the display to allow for viewing all of the columns,
depress the SHIFT and LEFT' arrow keys simultaneously. Hitting SHIFT and

Appendix A
	 673

RIGHT keys will scroll the text right. To scroll the text up or down, hit the edit
key ROLL UP or ROLL DOWN, respectively.

Step 20: To insert or delete character(s) when revising, hit the edit key
INSERT CHAR or DELETE CHAR, respectively.

Step 21: To delete a line at the current cursor position, hit DELETE (RE-
TURN). If you want to delete a line somewhere else, type

extract (RETURN)

Then move the cursor to where you want to insert that line and type

retrieve (RETURN)

Note: If you want to insert many copies of that line at the current cursor
position, then type retrieve (RETURN), where # is the number of copies.

Step 23: To abort the editor and not save your file, press the special function
key RESET twice. Pressing it once will pause a running listing or program.

Step 24: To replace a word with another word type

replace "wordi" with "word2" all

This will replace all word Is and word2s. You can also specify where you want
to stop replacing by using thru or until a certain line number.

Step 25: The "copy' command lets you copy a group of lines without
erasing those lines, like 'extract" does. First, plice the cursor at the starting
locution line and then type

copy thru line # (RETURN)

where # is the last of your lines to copy. Next, move the cursor to the place
where you want it inserted, and type retrieve.

Step 26: The "merge" command lets you insert an entire file or copies a
block of lines like the "copy" command does. To merge a file, type

merge ADD (RETURN)

This lets you insert the file ADD at the current cursor position.

Example A-2
This example goes through the steps in assembling a file. Upon completion, it
will create a "reloc" file to be later used for linking purposes.

Procedure
Step I: Enter your userid, and optionally enter the time and date. The HP

64000 already has the current date and time, so updating isn't necessary,

Microprocessors and Microcomputer-Based System Design, 2nd Edition

userid USERID (RETURN)

Step 2: To assemble your source file called "ADD" and make a printout of
it with the cross-reference table, type

assemble ADD Rstfile printer options xref (RETURN)

The printer will then output the assembled file that has both a source and object
listing. It will then show the cross-reference table that lists any labels you put
into that file and what lines accessed it or needed it to run.

Step 3: To show how the assembler command treats an error, we'll put one
in by doing this

edit ADD (RETURN)
11 (RETURN)
insert (TAB) MVI (TAB) D,FFH (RETURN)
end (RETURN)

Step 4: Now assemble the file by typing the commands from Step 2, The
assembler treated "FFH" as a symbol, not a hex value, so It generated an error.
You will sec the number of errors is one and that the error is an undefined
symbol. On the xref table, FFH is a type U, which means it's undefined.

Step 5: To fix this error, all hex values beginning with an alpha character
must be preceded with a "0". Do this by

edit ADD (RETURN)
12 (RETURN)
revise (TAB) (TAB) D,OFFH (RETURN)
end (RETURN)

Step 6: Now assemble the file again, and this time list it to the screen or
display.

assemble ADD listfi!e display options xref (RETURN)

To pause the display from scrolling up so fast, type RESET. To resume
scrolling, type any other key.

Step 7: Your assembled file is stored on your USERID directory. To see it
type

directory (RETURN)

You will then see two more 'ADD' files with the type "reloc" and "asmb_sym".

Appendix A
	

MAI

These files are useful for the assembler and linker programs. The "reloc" file
is an object file containing the hex values of your program. It then must be
made into an "absolute" file so it can run by itself.

Example A-3
This example goes through the steps in linking the "reloc" file to create an
"absolute" file. This new file can then be run independently, emulated, or even
used by the PROM programmer.

Procedure
Step I: Initialize the linker and show the results to the display by

link listf lie display (RETURN)
"Object files ?"

Step 2: This new message asks you what file(s) you want to be linked, so
type

ADD (RETURN)
"Library files 7

Step 3: There are no library routines in "ADD" so skip it by

(RETURN)
"Load addresses: PROG,DATA,COMN 0000H,0000H,0000H"

Step 4: This command allows you to specify different memory areas for the
program, data, and common modules. No memory assignment is needed be-
cause the "ADD" file already has an ORG statement, so skip it by

(RETURN)
"More files ?'

Step 5: Since there is only one file to be linked, respond by

no (RETURN)
"LIST,XREF, overlap_c heck, comp_db = on off on off"

Step 6: The linker is prompting the user to specify the output and declaring
the default for the output listing. It then checks to see if your memory assign-
ments overlap as well. Ignore this and type

(RETURN)
"Absolute file name ?"

676	 Microprocessors and Microcomputer . Based System Design, 2nd Edition

Step 7: The linker wants you to enter the file name to be assigned to the
absolute file.

ADD (RETURN)

Step 8: You will then see the linker examining your file

"STATUS:Linker : HP 640000S linker: Passi"
"STATUS:Linker : HP 640000S linker: Pass2"
"STATUS:Ljnker: HP 640000S linker: End of link"

Note that the above display will be on a single line.
Step 9: The linker output will display the start and end location of your

program, the current date and time, the assembler pseudo name
"ADD—WORKSHOP-1", and extra data like XFER address and the total bytes
loaded.

Step 10: To view your new files on the directory, type

directory (RETURN)

You should then see three new files with types "link_sym", "link —corn", and
"absolute". The absolute file is used for the emulator or the PROM program-
mer. The "link—corn" is a command file that holds all of the data that you
entered from Steps I to 7. This is good if you want to keep the same link
configuration, but want to change or re-edit your source file(s).

If you want to save a linker listing to a file for later viewing type

link ADD listfile ADDL (RETURN)

This will create a link listing similar to that of Step 9. Specifying "link ADD"
will tell the linker to link it using its "link —corn" file.

Example A-4
This example goes through the steps of emulating an absolute file without
external hardware. This gives you a good idea of the importance of develop-
rnent system like the HP 64000.

Procedure
Step I: Before beginning, you must go through Examples I through 3. Also,

the HP 64000 must have an 8085 emulator. If it is configured or has a 68000
emulator, emulation program will use only it, so be wary of this.	 -

Step 2: To enter the emulation mode and load the absolute file do this

emulate load ADD (RETURN)
"Processor clock ?"

Appendix A	 677

Step 3: This question asks if you want the source of the processor clock to
be internal or external. Since there is no external hardware being used, type

internal (RETURN)
"Restrict processor to real-time runs ?"

Step :]'his question asks if you want to restrict the processor to real-time
runs, which will limit the analysis functions that can be performed, such as
debugging your program. An example of this would be "display registers
blocked". So answer

no (RETURN)
'Stop processor on illegal opcodes ?"

Step 5: Specify 'yes" so that the emulator will sop if an illegal opcodc is
detected.

yes (RETURN)

Step 6: The emulator will then want to specify the memory range for your
emulation ram/roni and user ram/rom. Since all memory is internal (no user
external hardware for this file), address 1001-Ito 103H is used for storing the
variables used in the program. Define this to be emulation RAM. To protect
your program, define the memory to be emulation ROM. Thus, if something
writes to your program, it will generate an error.

100H thru 103H emulation ram
2000H thru 20FFH emulation rom

Also notice that the ram and rorn ranges are from l00H-3FFH and 20001-1-
20FFI-I. This may he because the emulator can only provide a range of memory
area rather than a specified one.

Step 7: To keep your defined memory area, type

end (RETURN)
"Modify simulated I/O ?"

Step 8: Since we are not using any I/O ports, type

no (RETURN)
"Modify interactive measurement specification ?"

Step 8.5: This question is not in the book so type

678	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

(RETURN)
"Command the name ?"

Step 9: The emulator wants you to specify a file name to which to assign the
emul_ corn file configuration. Specify with

ADD (RETURN)

Once doing this, the emulator will then load your absolute file to the memory
areas you specified. You should then see

"STATUS: 8085--Program loaded"

If you want to make any modifications, you have to start again, by re-editing,
assembling, linking and—then emulating. If you want the same emulating con-
figuration that you specified in Steps I to 9, then type emulate ADD load
ADD.

Step 11: To display your program with mnemonics, type

display memory 2000H mnemonic (RETURN)

You should then sec the locations with their e ::onding instructions of your
program.

Step 12: To change the values that your program uses to add two numbers,
you have to modify the emulation RAM by

modify memory 100H thru 102H to 02H (RETURN)
display memory 100H blocked (RETURN)

You should now see a display of your edited bytes. The memory block map will
show you the address, data, and ASCII translation of each byte.

Step 13: To run your program, you can type either

run from 2000H (RETURN)

or

run from glob_sym START (RETURN)
"STATUS: 8085--Running"

Your program will keep running, so you can now modify the memory locations
from Step 12 to something else, and then see the changes.

Step 14: You can also single-step the program to execute a single instruction
at a time. This is a good debugging tool on the 64000.

Appendix A
	

679

break (RETURN)
STATUS: 8085--break in background'

display registers (RETURN)
step from 2000H (RETURN)

or

step from glob_sym START (RETURN)
step (RETURN)
(RETURN)

Continuously pressing return will execute the "step" command again. Remem-
ber that pressing "return" will execute anything on the command prompt, no
matter where the cursor is. You should then see a display of each instruction
being executed with its corresponding register values. This is really good be-
cause you can trace any program, and scan the instructions, registers, flags,
stack pointer, and the next IP.

Step 15: You can also set up breakpoints to stop the program when it reaches
a certain argument. An example of this would be "run" from 2000H until
address 2006H.

Step 16: To set up a breakpoint at address 2005H, type

run from 2000H until address 2005H (RETURN)

Step 17: Now say you want to halt the program after a memory write:

run from 2000H until status memory write (RETURN)

Step 18: To end the emulation session, type

end (RETURN)

You can also press "RESET" twice too.
Step 19: If you want to get back to the emulation and keep the same

emulator configuration, type

emulate ADD load ADD (RETURN)

If you want to change the emulator configuration type

m odify_conf igu ration (RETURN)

Note that the HP 64000 can perform in-circuit emulation with or without a
large-system hardware.

680	 Microprocessors and Microcomputer . Based Systeni Design, 2nd Edition

Operation of the 68000 Emulator

In order to use the 68000 emulator, a monitor program must be included in the
linking of the user's program. The purpose of the monitor is to provide special
functions during emulation (including register display, software breakpoint
selling, etc.).

The steps in the emulation process are as follows:

1. Create a program using the 64000's text edition.
A. Make sure that "68000", including quotations, is the first line in the

editor.
B. Make the second line in the application program "PROC'. (This will

cause the monitor program to be successfully linked with the applica-
tion.)

C. Use "1-f" for Hex instead of "$" signs.
D. Write your application program.

Locate the program between OFFH and 10000Ff-application size.
2. Assemble the program you write by typing:

<Assemble> MON_68K

3. Make a copy of the assembly program "MON_68K" by typing:

COPY Mon 68K:HP:source TO MON 68K

(Note upper and lower case. Type it exactly as shown.)
4. Now assemble this program by typing:

SOFTKEY
<Assemble> MON 68K

5. Now, the application and monitor program must be linked together. Type:

SOFTKEY
<LINK>
Object File?
Library Files?
Prog ,Data,Cornn,A5=

More Files?
Object Files?
Library Files?
Prog ,Data,Comn,A5=
More Files?
Absolute File Name=

MYFILE
<CR>
000XXX,OH 2 OH 2 OH where XXX=100H to

10000H
<yes> Soft Key
MON_681<
<CR>
100001-1,01-1,01-1,01-1
<No> Soft Key
MY FILE

Assume MYFILE is the name of your application program File.

Appendix A	 68 1

A. Notes: The monitor program is position independent. Since the
TARGET SYSTEM has limited address space, it is suggested that you
locate your program in THAT address range. Furthermore, this al-
lows the user to specify the monitor program's address in upper-
address space and in emulation RAM.

B. Care should be taken so that address ranges 0001-1--0FFl-1 are re-
served for vectors, and that user program addresses do not conflict
with the monitor program whose size is about I 000t(bytes. I locate
the monitor at address 1000011--- I OFFFFI.

6. Finally, the emulator is entered by answering questions with their default
values (unless the user wishes otherwise).
A. For the memory map, the following should be entered:

0000H-OFFFH	 Emulation ROM (Vectors, Interrupts, User Prog)
1 0000H-1 OFFFH Emulation RAM (Monitor Program)
OWWWH-OVVVH User RAM (other space for ports, tables, etc.

that exist in either software or the target
system)

B. Some helpful commands during emulation (<XXXX> = Soft Key):

1. <Load> MYFILE	 Loads both your file and the
monitor program (linked)

2. <Modify><Config>	 Lets you change the emulator
configuration

3. <Modify><Sottwre_bkpts>	 Modifies software breakpoints so
that you can stop program
execution anywhere

NOTE: The 68000 emulator DOES NOT allow single-stepping.
4. <BREAK>	 Enter the monitor program

5. <DISPLAY><MEMORY>	 Display disassembled code
<MNEMONIC>

6. <MODIFY><REGISTER>	 Modify address space and
<MODIFY><MEMORY>	 registers

DO NOT put ORG satcments in your program except for the interrupt
vectors.

APPENDIX B M C68000L4
(4 MHz)

MC68000L6
(6 MHz)

MC68000L8
(8 MHz)

MC68000L1O
(10 MHz)

(^^ MOTOROLA

Advance Information

16-BIT MICROPROCESSING UNIT

Advances in Semiconductor technology have provided the capability
to place on a single Silicon chip a microprocessor at least an order of
magnitude higher in performance an J circuit complexity than has been
previously available, The MC680 10	 the first of a family of such VLSI
mrcoprocessors from MotoroL	 It combines stale-of-the-art
technology and advanced circuit !eSign techniques with computer
sciences to achieve an architectural advanced 16-but microprocessor.

The resources available to the MC63000 user consist of the following:
• 32-01t Data and Address Registers
• 18 Megabyte Direct Addressing Range
• 56 Powerful Instruction Types
• Operororus on Fvc Main Data Types
O Memory Mapped i/O
• 14 Addressing Mode s
As shown in the programming model, the MC6 oilers Seventeen

32-bit registers in addlon to the 32-Ut program Counicr and a tb-bit
status register. The first eight registers iD0-D7l are used as data
registers for byte lb-bIt, word 116-bu0, and long word (32-bit) data
operations The second set of seven registers (AO A61 and the system
stack pointer may be used as software stack pointers and base address
rsgstsrs. In addition, these registers may be used for word and long
v.ord address operations All Seventeen registers may be used is mdcv
reds ems

PROGRAMMING MODEL

Light
Data
P-eg510r5

31	 16rb	 0
•	 AG
-	 Al

-	 I	 - A2 Seven
A3 Address

I	 I A4 Registers

- - - -
Use Sracrr Porrrer

1	
Two Stack

L - -	 Supervisor Stack Poster - - -	 Pointers
31	 0

Piograrrr
I	 Coverer

lb	 0	
S't's

Lsysow 9 yre User Oyte	 Rag-star

HMOS
HIGH-DENSITY, N-CHANNEL,

SILICON-GATE DEPLETION LOAD)

16-BIT
MICROPROCESSOR

SU FF IX
cLuhAMrc PACKAGE

CASE roe

64-pin dual in-line package
	04dt 	.'	 HDS

D7

	

Dl 4	 61 08

	

DO 5	 60

	

AS S	 55 010

	

UDS 7	 58 Ott

	

LOS 6	 5'? 012

	

111W 9	 56 013
	01 AC I' 10	 55 014
	11 	

015
BGA
	

GNU

	

11
	

A23
SI A22

	

CLK	 50 421

	

GNU lb
	

49 VCC
	H ALT I?	 48 A20
	155km	

8
	

47
	 #t9

	

VMA	 46 A18
45	 AlP

	

VPA[21
	 44 A16

	

BEAWR C 22
	 43 415

	

iI'L2t 23	 -42.	 414

	

24	 411	 Al3
	TP —Loc 25	 40 AU

	

FC2E 25	 391 All

	

FCtC 27
	

391 A10

	

PCOC 28
	 37

	AIC 29	 39
A2(
A3,[I
A4 'Is

683

9GAC

"cc

GNC

C NC
N C
Ar

V 4.4 A

>35-1.1

213
) 14

D'S
NO

DNO
"23
"22

2)

"20
9

113

l7

5
'5

":4

684	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

68-Terminal Chip Carrier

68-Pin Quad Pack

0003000

	

I	 I	 I	 I	 I	 II	 I	 I	 I	 I	 II	 I	 I	 II

rc75- ':0

"CC-

CN o -

	

-18	 TOP VIEW
HAl. F -	 -

BERA-
P 1.7-
,•OTi-	

27

	

III	 1111111- U —	 a> 0
30

611 . 1,111 grId 4rIAv.

!0000000000,
	40. 	 302	 300	 Al	 £3	 £4	 >6	 11	 £3	 N.C.0000000000

	

F —RFi Fr-k b (CI	 AC.	 £0	 £5	 £9	 £30 All A14

	

p 000	 000

	

jQ	 AID (II (IS

	

00	 00
AIS	 Al?

0

	

00	 0

	

o 0	
W7 MR A 9 £19

o0

	

CI>	 0730 V-

	

'00 	 00'

	

Ãä	 YCC	 0440 AlT

	

;QQ	 000

	

GA X 6t 'RIS	 £13 >23 > 21

I o.d00000000

	

07	 QS 03	 03	 05	 03 311 034 015

'0000000000

	

NC.	 i	 Dl	 02	 04	 06	 01	 08	 010	 DII

	

I	 0	 3	 4	 5	 5	 1	 3	 9	 1 0

-DID
-(3IJ
-035
-GNO
-*3N0
_A23
- .A22
-

52 - "cc
- "DO
-.1.19
- A113
—All
- "IS
—AI5

445

F-i

Appendix B

(^^ MOTOROLA

Advance Information

MC58230 PARALLEL INTERFACE/TIMER

T lie M C31/33Il ',rI Ci	 Ci (PCI' I liner provides versa sIc doe Plc Ire

bred lmliIjjel uiiCrICCnlS arid iii opc,at ir,g :ySlrsrr ;;r;crrId saner to
M C6i3cXD SysIrrrC Dill ptalIi in ir lureis operete ii rjnid11cr.t,n3l or

brdrei:lon3 nodes. Cl cr B or 16 hits wide In trio urnrd;recIronSI
modes, an a,soc.aIC;i data director rinstcI- rJClCirrlirlCO -hcIher Thu
rori PITh are tripoli; Of euI;iutt; I, ine brrlircclroriai modes ho data
Ircclic,rr	 CrjrStCrs are rgrrorcd a rid the tl;rOct,orr is defer rrrrricd

dyrranruialiy b y tire stale of f our trarliJSIraCil puts It one ar urJranamidblC
Ir3rrds(r,rkc tire lrrrnv,iIC an iitr,rl pcc lCvdde rirrOviJir br CIirirCClrQri to3
wide van 'clv of low. rr erhurn or lr;rjbr s;reed PC; pher 313 or r.p IrCr corn-
purer systems Tire P1/1 11(1111; allow use yr3 vectored or autirvoctürOd 0-

Cr rr;p15, and ao p iovide a DMA IbrqueSI pin for connection to the
hI C€13431 P ccl Mu; lore Act.uit, C nrv oiler or a smidaf Pr Cii The P1 / 1
cc, corr curs r 2$ bi I wide Ce',;; or a"d a b-let presc;Ccr Th e imCr
rn-ac be docked fry lie system clack P1/I CLK pin) or try in external
clock IT IN pill. and a 5 but Imuscalci can be uSed. IL can generalS
0rr00 C CtCllvIIIS. 3 lqrI3irt is-tee, or a niiqie aitcrrip pt utter a to-

rjrrrnrrrUd t, rne period Also it can be used for c1,rpsrd rime measurl

i-rio or as a device mate rUng

• MCh61337 ll;.s C0mrrIrlil)C
• ('Cml Modes include

131 I/O
Unrdirectorral 6. 131: arid 16-13i.
Bidirectional 13 Bit ;rrnrl IG- [lit

• SeIrlctsbIc I Iunrjslnakirrr) Options
• 2.1- Ifs Pru;jrumrnablrr Timer
• Sr;tieeame I'roqrarnrnubIo Tunic; Modes
• Contains Interrupt Vector Gener;orr Logic
• Separate Port and Trrrer iirtrniupt Service ll;tr,ts

• 1109SierS 310 IleirO/Writur and Directly Addressable

• bbojisicus are Addressed or MOVEP (Move Pcrrplrerut) and DMAC

Cornpatiiril; iy

685

MC68230L8
MC68230L10

HMOS
IH1GH-DENSITY N-CHANNEL

SILICON GATE)

PARALLEL INTERFACE/TIMER

I SUFFIX
CLIrAMiL PACKAGE

P SUFFIX	 -	 CII 140

ILAS tic r-aCJpt
1viiru mILL 1002

PlN ASSIGNMENT

0 ir	 04

Dc 2	 47 W

Di 3
	

46 02

PAT 4
	

45

PAt 5
	

44 Do

PA2 6
	

43 141 7%

PA.3	 42
	

DIACK

PA4
	

8	 41
	

Cs

Pair 9
	

40 CLK

('AC
	

ID
	

31)
	

un tIlt

('A?	 38
	

VS3

VcI,	 3?	 r3 7r TIACII

rim
	

13
	

36
	

PCC1PIACII

	

III
	

35
	

PCI,f P1110

1(3	 IL
	

P..
	 PO4/DMAAeO

114
	 113
	

33
	

PD" 103)1

duO
	

17
	

3? u'):? 1 i

I'd-a'
	 13	 31

	 PCI

PB., to
	

36 PCo

P113 120
	

29
	 Its'

1034
	

21
	

28
	

0S2

P115 22
	

27 OS)

PQ6 - 211

Fil/
	

2'l
	

25
	

11513

686	 Microprocessors and Microconiputcr-Bascd System Design, 2nd Edition

(^^ MOTOROLA

PERIPHERAL INTERFACE ADAPTER (PIAI

The MC6821 Per i pheral Interlace Adapter provides rhO unive rsal
mezjrrs of raleriocing per,pirer,il ectuPrnert 10 the M680 family of
mrc.roprcrccssors This device is capable of rrtterlarrrg the MPU to
Peripherals tin oriqfr two 8 hit iridirectorral per iplreral dala buser and
our Cortirol litres, No external IOcJic is required forinterfacing to most

peripheral devves
The functional CrinhrrjurtItroii 01 the PIA is programrrred by thin MPU

Out 119 syste a ri tiilrza till 001 of the pci iil oral data hOt'S can he pro-
grammed to act as art rirpol or output, and each of tire four car,-
Irol/innlerrupt lines may be programmed for one of Several control
modes. This allows a high degree of flexibility in the overall operation of
I he interface.
• 8-13rt Bidirectional D a taBus for Communication with the

M PU
• Two Bidirectional 8-Itt ij uses for Interfac., to PEtnipher.rls
• Two Programmable Cont r ol Registers
• Two Programmable Data Direct i on Registers
• Four Individually- ControlledInterrupt Input Lines, two

Usable as Peripheral Control Outputs
• Handshake Control Logic for Input and Output Peripheral

Operation
• High . frrrpedaric Three State and Direct Transistor Drive

Peripheral Lines
• Program Controlled ltitirrrupt and Interrupt Disable Capability
• CIVICS Drive Capability on Side A Peripheral Lilies
• Two TTL Drive Capability crr All A and Side buffers
• TIL-Compatiblrn
• Static Operation

MAXIMUM RATINGS

Cniaracrerisrics 	 Syrnt,ot	 Value
Supply VO!taTe	 vCC	 -0 3 iii + 7 0	 V
opel Voiraqr, 	 V,	 -03 to -• 7 0	 V

Opoitiliruul lerrupinrarur, ll.rrigrt 	 tL 1 0 lii
MC6821. l.lC68A21. rlC68B21 	 TA	 0 ir, 20	 'C
MC61d21c. ',1C88371C VCCuIII3?IC	 - - 40 ri .8	 -

Storag., Terniperarure ilaruIe 	 -	 T 149	 I	 hiS hi i 10	 'C

THERMAL CHARACTERISTICS
Characteri s tic	 j Symbol	 V&r.io	 I Unit

Thermal Resi s tance	 I	 I
Ceramic	 I	 I50I
Plastic	 I	 8 JA	 I	 ICO	 I 'C/W

Cerdup	 00

Tire deuce contains circuiry to protect the .rpi.rs against damage due to tt5ir
static voltages or tnIctriy lue1rJs. however, .1 is advised That normal piecautuohrs
be lakcn to avoid application Of any voltage lvgher triari mnauirr,urn-rar.nd
voltages to this rtugh . umliortance circuit lieliabrlrry of operates us CuiraruCeti if

r.riuod inouls are luau loan appropriate logic voltage ii C thiher V55 or VCCI

MC6821
(1.0 MHz)

MC68A21
(1.5 MHz)

MC68B21
(2.0 MHz)

MOS
(N-ChANNEL. SILICON - GATE,

DEPLETION LOAD)

PERIPHERAL INTERFACE
ADAPTER

SUFFIX
CtA ANIJC PACKAGE

CASE 715

.iiH1•tLiu S SUFFIX
 CEFD,P PACKAGE

CASE 734

P SUFFIX
PL AS T. PACKAGE

CASE)ni

PIN ASSIGNMENT

a	 CAIVS5 I 0

PAIl'
	

CA2

INCA
-t 18013PA?

PA4qv	 :15 RSt
PAS/	 34 RESET
P1u6 ii
	 DO

PA? 'i	 3i DI

P130 Id	 it 02
F'St It	 30 03
P112 r	 79
P133 ij	 78 05

PEI-If 14	 0'S
FBI.ul 5
	 iS D7

PUG 5	 21. C

P1311 Il
	 74 CST

dIll IS	 73 C52

C1121 19	 2? CS0

V cl 70
	

21 87W

Appendix B
	 687

The expanded block diagram of the MC6821 is Shown in Figure Eli,

IF?OA 38 -

r—i r n A
00 33	 IC9AI

D l 32

02 31

03 3u

CA 29	 IDBUI Olo 9

D? 2b

VccP?0

OlnI
11.0,11., 0

)fl9I
C50 22

CS1 24

e-ST 23

ASO 36

H 7w 71

En.1.

RE E 34

*-4O CAl
IflI.s,upl 5,at,jt

Conlol A	 t— 39 CA?

0.1s 0utCIOfl
Il.,I. c A
IODfl Al

Ott. 01OcI'Ofl
ll•9tl B
100118)

2 PAO

3 PAt

4 PA?

5 PA3

6 P.54

/ P.55

O PA6

9 PA?

10 P90

11 P91

I? PB?

13 P03

14	 '134

15 PBS

16 PUG

F? POt

FIGURE B.1 EXPANDED BLOCK DIAGRAM	

is cut

68$	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

PIA INTERFACE SIGNALS FOR MPU

The P14 interfaces to the M6800 bus wilt an Ubit bidirec
tional data bus, three chip select 5005, two logisler select
lines, two interrupt request litres, ii rcad/wnie line, an enable
line and a reset line. To ensure proper operation with the
MCEOOD. MCe002. or MCG8*3 microprocessors, VMA
should be used as on active part of the address decoding.

Bidirectional Data lDO-D71 - The bidirectional data lines
(DO D7) allow the transfer of data between pro MPU and tt'ih
PIA. the data bus output drivers are three-stale devices that
reirl,riit in the high-impedance loffI state except w000 the
MPU performs a PIA road operation. The read/write line is or
the read (high) state when the PIA is selected lot a toad
operation

Enable (El - Tire citable pulse E. is the only timing
signal that is supplied to the PIA. Timing of all other signals
is referenced to the loading and trailing edges of ttie E pultir

Road/Write (R/WI - This signal is generated by the
MPU to control the direction of data transfers on thO data
bus. A low state on the P14 road/write line enables the input
buffers and data is transferred from the MPU to the PIA on
the E signal if the device has been selected. A high on Ore
road/write line sets up the PIA lot a transfer of data to the
bus. The PIA output buffers are enabled whon the proper ad
dross and the enable pulse E are present

RESET - The active low RESET line is used to reset all
register bits in the PIA to a logical acre howl. This line cart be
used as a power-nn reset and as a master teson during
system operation

Chip Selects ICSO, CST, and ES-2) - These tlnreir iritiut
signals are used to select the 'IA. CSO and CST irtust be
high and a ' inust be toy, for selection of the rhevirtir. Data
transfers are than performed under the control of the inrioble
and read/write signals. The chip select lines must bit statue

for the duration of the E pulse The device is deselected
when any of the chip Selects are in the inactive state,

Register Selects IASO and ItSI) - TIre Iwo register
select tines are used to select the various registers inside the
PIA These two lines are used in conjunctionconjurrcliorr with internal
Control Registers to select a particular reg.sier liSt is to be
written or read.

TIro register and chip select lines should be Stable for the
duration of tIre E pulse while in the read or write cycle.

Interrupt Request IIHOA and IRQB)- The active tow in .
torrupt Request lines 111104 and ROB) act to interrupt the
MPU either directly or through interrupt priority circuitry.
Those lines are open ttiamn'' no load device on the elnipi
This perm:ls all interrupt request litres to be tied together inn ii
wire-OR configuration.

[urclr Interrupt Request tine rat two internal interrupt flag
bits that can cause the Interrupt Ifequest hoc to go low. Each
flag bit is associated with a particular peripheral interrupt
line. Also, four interrupt eniatutir bits are provided in the P14
which may be used Ip irnlinbit a particular interrupt from a
peripheral device.

Servrcing air interrupt by IIIV MPU IT13Y be accomplished
by a software routine that, on a prioritiacni basis, sequentially
reads and tests the two control registers nit cacti P14 for in-
terrupt flag bits that are riot.

The interrupt flogs are cleared lzeroc'dl as a result of an
M1i0 (lead Peritrlrera! Data Operation of the corresponding
data register. Alter being cleared, the interrupt flag bit can-
not be enabled to be set until the ('IA is deselected during an
E pulse. The E pulse is used to condition the interrupt control
lines (CAT, CA2. Clit, Cl32). When ttrc'se lines are used as
interrupt inputs, at least one E pulse must occur from the in
active edge to the active edqrr of the interrupt input signal to
condition the edge sense network. If the interrupt flag has
been enabled and the edge sense circuit has been properly
conditioned, the nnlerrupt flay will Iii, tint on 111V mmcxi active
trairsitnon of the interrupt input inn.

PIA PERIPHERAL INTERFACE LINES

The PIA provides two 8-bit bidirectional data Irur,ir.s arid
four interrupt/control lines for interfacing to tinnplmc'ral
devices.

Section A Peripheral Data (PAO-PA7) - Eactt of the
peripheral data lines can be programmed to act as an input or
output. This is accomplished by setting a "1" in the cor-
responding Data Direction Register bit for those tines which
are to be outputs. A '0' in a bit of the Data Direction
Register causes the corresponding peripheral data line to act
as art input. During an MPU Read Peripheral Data Operation,
the data on peripheral tines programmed to act as inputs ap-
pears directly on the corresponding MPU Data Bus lines. In
the input mode, the internal pullup resistor on these lines
represents a maxr'num of 1.5 standard TTL loads.

The data in Output Register A will appear on the data lines
that are programmed to be outputs. A logical "t" written in-
to the register will cause a "high" oil the corresponding data

line while aC" rLe,ills in a 'tow." Data i n Oul;nu: Register A
may be road by an MPU "(lead Peripheral Dams A' operation
when the contesporidiirg lies are piogramr-od as Outputs
This data will be read property it the voltage on the
peripheral data linos is greater than 2.0 volts for a logic
Output and lest than 0.8 volt for a logic "0" output, Loading
the output linos such that the voltage on these lines does not
reach full voltage causes the data transferred into the MPU
on a (lead operation to differ from that contained in the
respective bit of Oiittirrl Register A.

Section B Peripheral Data IPBO'PB7I - The peripheral
data lines in the B Section of the P14 can be programmed to
act as Oilhrer inputs or outputs in a similar manner to PAO..
P47. They have three-state capabuty, allowing them to enter
a high-impedance state when the peripheral data line is used
as an input. In addition, data on the peripheral data lines

Appendix B
	

689

PBO-P87 will be read properly from those lines programmed
as outputs even if the voltages are below 2.0 volts for a
"high" or above 0.8 V for a "low" As outputs, these lines
are compatible with standard TTL and may 5150 be used as a
source of up to I miliiampere at 1.5 volts to directly drive the
base of a transistor Switch

Interrupt Input (CAI and CBI) - Peripheral input lines
CM and CBI 'are input Only lines that set the interrupt flags
of the control registers. The active transition for those
signals is also programmed by the two control rogisters

Peripheral Control ICA2) - The peripheral control line
CA2 can be programmed to act as an interrupt input or as a

peripheral control output. As an output, this line is compati-
ble with standard TTL; as an input the internal pullup resistor
on this line represents 1.5 standard TTL loads. The function
of this signal line is programmed with Control Register A.

Penpheral Control (CB2J - Peripheral Control line C82
may also be programmed to act as an interrupt input or
peripheral control output. As an Input, this line has high in-
put impedance and is compatible with standard TTL. As an
output it is compatible with standard TTL and may also be
used as a source of up to I milliampere at 1.5 volts todirecily
drive the base of a transistor switch. This line is programmed
by Control Register B

INTERNAL CONTROLS

INITIALIZATION
A kT has the effect of zeroing all PIA registers. This

will set PAO-PA7, PBO-PB7, CA2 and CB2 as inputs, and all
interrupts disabled. The PIA must be configured during the
restart program which follows thq reset.

There are six locations within the PIA accessible to the
MPU data bus: two Peripheral Registers, two Data Direction
Registers, and two Control Registers. Selection of these
locations is controlled by the RSO and RSt inputs together
with bit 2 in the Control Register, as shown in Table 8.1

Details of possible configurations of the Data Direction
and Control Register are as follows:

TABLE 13.1 INTERNAL ADDRESSING
Conr'oi

Hoister Br
IRSI R50 CRA-?	 cAB-S	 Loc.rr,on Selected

o	 0	 r	 x	 Pe,,i,herai Regdie, A
o	 o	 0	 X	 Data D,recr,on flegrsrer A
o	 1	 X)i	 Control fReqitor iS

_L.	 0	 X	 t	 Per pheri Rerjrster B
0x	 0	 Data D,recl,Oo Reqirer B

1	 X	 X	 Control Hgrtier It

X Don't Care

PORT A-B HARDWARE CHARACTERISTICS
As shown in Figure .17, the MC6821 has a pair of I/O ports

whose characteristics differ greatly. The A side is designed
to drive CMOS logic to normal 33% 1070% levels, and incor-
porates an internal pullup device that remains connected
even in the input mode. Because of this, the A side requires
more drive current in the input mode than Port B. In con-
trast, the B side uses a normal three-state NMOS buffer
which cannot pullup to CMOS levels without external
resistors. The B side can drive extra loads such as Oat)-
ingtons without problem. When the PIA comes out of reset,
the A port represents inputs with pullup resistors, whereas
the B side (input mode also) will float high or low, depending
upon the load connected to it.

Notice the differences between a Port A and Port 13 road
operation when in the output mode. When reading Port A.
the actual pints read, whereas the B side road comes from an
output latch, ahead of the actual pin.

CONTROL REGISTERS (CRA and CRB)
The two Control Registers (CRA and CR6) allow the MPU

to control the operation of the tour peripheral control lines
CAI, CA2, CB I, and CB2. In addition they allow the MPU to
enable the interrupt lines and monitor the status of the inter-
rupt flags, Bits 0 through 5 of the two registers may be writ-
ten or read by the MPU when the proper chip select and
register select signals are applied; Bits 6 and 7 of the two
registers are read only and are modified by external interrupts
occurring on control lines CAI, CA2, CBI, or C132. The for-
mat of the control words is shown in Figure 13.3

DATA DIRECTION ACCESS CONTROL BIT (CRA-2 and
CR 6-21

Bit 2, in each Control Register ICRA and CR81, deter-
mines selection of either a Peripheral Output Register or the
corresponding Data Direction 6 Register when the proper
register select signals are applied to RSO and RS1. A "1' in
bit'2 allows access of the Peripheral Interface Register, while
a "0' causes the Data Direction Register to be addressed.

Interrupt Flags (CRA-6. CRA .7, CRB-6, and CRB-7) -
The four interrupt flag bits are set by active transitions of
sIgnals on the four Interrupt and Peripheral Control lines
when those lines are programmed to be inputs. Those bits
cannot be set directly from the MPU Data Bus and are reset
indirectly by a Read Peripheral Data Operation on the ap-
propriate section.

Control of CA2 and C132 Peripheral Control Lines (CRA-3,
CRA-4, CRA-5, CRB-3, CRB-4, and CRB•5) - Bits 3, 4, and
5 of the two control registersare used to control the CA2arrd
CB2 Peripheral Control lines. These bits determine if the con-
trol lines will be an interrupt input or an output control
signal. II bit CRA . 5 ICRB-5t is low, CA2 (CB2I is an interrupt
input tine similar to CAI ICBtt. When CRA-5 ICRB-5t is
high, CA2 lCB2l becomes an output signal that may be used
to control peripheral data transfers. When in the Output
mode, CA2 and CO2 have slightly different loading
characteristics.

Port Pin Data Direction-D
imlll knd

Port Pm

Data Direction
Il —input Pin)

10—Output Pint
Road of B

Dare When
in Output

Mode

Dal
Dr ec lion

li — Output Pint
0—input Pm)

To External
Bus

Road A Data
in Input or

Output Mode

internal PIA Bus

Read ot B
Data when

in input Mode

690	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

	Control of CAI and CBI Interrupt Input Line. (CRA-O,	 enable the MPU interrupt signals 1A and i, respec-

	

CRB-1, CRA . l. and CRB-1 - The two lowest-order bits ol	 trdely. Bits CRA-f and CRB-1 determine the active transition

	

the control registers are used to control the Interrupt input 	 of the interrupt input signals CAI and CSI.
lines CAI and CBI. Bits CRA-O and CRB-O are used to

FIGURE B.2 PORT A AND PORT B EQUIVALENT CIRCUITS

	

Port A	 Port	 BVrr	 VCC

Appendix B
	 691

Determine Mdv. CAT CS)) Transition for Selling
Inteenapt Flog IRQA)8)t - Ibit 7)
Itt 0: ItloAlBit set by high tolow transition on CAI

ICB1I
bl 1: lRQA101t set try 0w-to-high IransitiOn on CAI

CUll
CAT (Cell Interrupt RequeSt Ersabl.fDIsabs
P0-0 Disables IROAIBI MPU Interrupt by CM

[CBI) active transition.1
bO- 1: Enable lRt3AlBl MFU Interrupt by CAT ICB1)

active transition
1. IAQAIO) will OtCxi on flout (MPU generated) positive

transition of P0 if CAI (CS)) active transition oc-
curred while interrupt was disabled

tfROA(B) 1 Interrupt Flag (bit 7)
Goes high or, active transition of CAI (CI31). Automa-
tically cleared by Mf'lJ Road of Output Register AlP)
May also be cleared by hardware Reset

[II	 P6	 bh	 I	 b4	 I	 P3	 h2	 tn	 PC
Control Register [loA)B)t	 IttOAlUl?	 CA? ICB2I	 DDR	 CAl (CS))

Ilaçt	 Ilari	 Co riot	 Accns	 Control

IRQAIBI2 Interrupt Flag Ibit 61
When CA? (CU?) isari input, lROAlI3l goes high on ac 	 Otteernnlnes Whethe r Data Direction Register Or Output

line Iransitioli CA? 10021; Automatically cleared by	 Register is Addressed
MPU Read of Output Registeu AlISI May also be	 0?- 0: Data 0uectron Register selected.
cleared by hardware llc,nat 	 02 1: output Register sIocted
CA? (CD?) Established as Output bb = It IltOAlul
2-0, of affected by CA? CU?) liarrsitroris

CA? (CS?) Established as Output by b5- 1
(Note that operation of CA? and CU? output

PU lid 53	 tunCtions are not identical)
—0- CA?

0	 P3- a. Reed Strobe with CAI Restore
CA2 goes low on lust high -lO-lOw

transilion Iotlowinij an MPU load
01 Output Register A. returned high
by next active CAI transition, as
spocitied by but 1

b3ri 1: Reed Strobe with E Restore
CA2 goes tow on first high-lo-low
I uansiton foi)onrng an MPU road
of Output ttutgislor A; returned high
by next high-to-lowE transition dxii-
irS4 a ijesnloct

—0- CII?
0-0: Write Strobe with CBI Restore

CU2 goes low on first low to trigti
I transition following an OPt) write
into Output Rogistor U. rorunnind
high by the next OCtinu CBI tiansi-
ion as specified by tnt t CIRU hi
must first be cleared by a rodul of
data.

b.?- 1 Write Strobe with 6 Restore
CU2 goes low on first low-to-high

transition following an OPU write
into Output Register B; returned

bIt tnt 03	 high by the next low-to-high E tram-

-	 srtion foltowneg an 6 pulSe wtnicri

L

occurred while the part won do-
selected.

Set] Reset CA2 CCO21
CA? ICO?) goes low as O p t) writes
b3 0 into Control Register.
CA2 ICB?l goes high as MPU writes
b3-I into Control Register.

CA.? (C82) Evtabkefs.ui si Input by P5-0

L5 	 P3

0	 CA?)C82) Interrupt Request Enable/Disable
b3 -0: Disables IF1OA(A) MPU Interrupt by

CA? (Ctl?t active transition.
b3 I Enables lfttDAtB) OPt) Interrupt by

CA2 lCB21 active transition
• IFRQAIUI will occur on next IMPU general.
bull positive transition of b3 if CA? (CU?)
active transition occurred white interrupt
was disabled

- Determines Active CA?)CB2I Transition for
Setting Interrupt Flag IRQAI0I2 - (Sit 06)
P.1-0	 ROAI 312 set by tnigtn-tO-Iow transi-

tion on CA? ICB21
b4 1: IROA(BI2 set by low-to-high transi-

tion on CA? C6?)

FIGURE B.3 CONTROL WORD FORMAT

692	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

MOTOROLA	
MCM6116

16K BT STATIC RANDOM ACCESS MEMORY

The MCM61 16 is a 16,384-bit Static Random Access Memory
organized as 2048 words by 8 bits, fabricated using Motorola's high.
Performance silicon-gate CMOS (HCMOS) technotogy. It uses a design
approach which provides the simple timing features associated with fijI.
ly static memories and the reduced power associated with CMOS
memories. This means low standby power Without the need for clocks,
nor reduced data rates due to cycle limos that exceed access time,

Chip Enable ll Controls the power-down feature. It is not a clock but
rather a chip control that affects power consumption. In toss than a cy-
cle time after Chip Enable (l goes high, the part automatically reduces
its power requirements and remains in this low-power standby as long
as the Chip Enable ll remains high. The automatic power-down
feature causes no performance degradation,

Tt'le MCM61 16 is in a 24-pin dual-in-line package with the industry
standard .)EDEC approved pinout and is priout compatible with the in- -
dustry standard 16K EPROM/ROM.
• Single + 5 V Supply
• 2048 Words by 8-Bit Operation
• HCMOS Technology
• Fully Static: No Clock or Timing Strobe Required
• Maximum Access Time: MCM6I 16 . 17 - 120 ns

MCM6116-15 - 150 ns
MCM6116-20 - 200ns

• Power Dissipation: 70 mA Maximum lActivel
15 mA Maximum lStandby .TTL Levels)
2 mA Maximum lStandby)

• Low Power Version Also Available - MCM61L16
• Low Voltage Data Retention IMCM611_16 Only);

50 ,A Maximum

- HCMOS
COMPLEMENTARY MOSt

2,048x8 BIT
STATIC RANDOM

ACCESS MEMORY

PIN ASSIGNMENTS

A7,	 Iv
	A61 2	 23 IA

	

AS(t	 22 IA

	

A44	 2JF
A3

	

A2 6	 19 A'

	

At 1	 ta

	

AO 8	 ri ID,

	DOOL 9	 16 0<

	

oat, to	 5 0<

	

0021 II	 14 IDC

PIN NAMES

000-DO? .,,.,.......,. Date Input/Output
Write Enable

Output Ezable
t.... Chip Enable
'/CC Power l+5Vt

Ground

S
P SUFFIX

PLASTIC PACKAGE
CASE 709

Appendix B
	 693

ABSOLUTE MAXIMUM RATINGS ISee Nottl
Rating	 Value	 Unit

Temperature Undnr that 	 -1010 •
Voltage on Any Pin With RespeCt 10 V55	 0 to	 • 7.0	 V

DC Out put Current	 20	 itmA

Power Dissipation 	 Watt

O perat ing Tampetature Range 	 Pro + 70	 °C

Storage Temperature Range	 -65 to I	 v.0

NOTE; permanent dev ice damage may occur it Al MAXIMUM RATINGS art Os

coedott Functional r)pOi3OmOri ShOuld 1,0 restricted to RECOMMENDED OPCII AT.
INC CONDITIONS. [sposuroto higher than recommended voltages for extend-
ed periods of trrrte could a[lecl device reliability.

Tins deuce cortanS crcurtty to protect the
inputs against damage due to high static
voltages or electric fields, however. it is ad
vrsed that normal precautions be taken to
avoid applrcatrorm of any voltage '91Cr than
rra.mum rated voltages to this high-
impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operatrig voltage and temperature ranges unless othCrwcti noted I

oerrioAoAcPdrrerr n pe p o.TI par. C(tInotTl(ThJS

Parameter	 Symbol Min Typ Max Unit
VCC	 4	 5.0 55	 V

Supply Voltage 	 v55	 o	 0	 0	 v
V IH	 22 35 60	 V

Input Voltage	 E V11 	 -1 0	 0.8

• The device writ withstand undershoots to the - 1 0 volt level mItt] maurrrrum 1)1150 wdtrr or :. vs at inn - u .i tori luvul. rims ib Perrou..arl'+
suimplmt rather than 13% tested

RFC.UMMENDED OPERATING CHARACTERISTICS

V CC v S V. TA-25'C
Also, output voltages are compatible wth Motorola's new hgh Speed CMOS logic famrly ml the same power Supply voltage is 15011.

CAPACITANCE II 1.0 MI-it. 1A 25 eC . Periodically sampled rather that IOT% levied I

esCep t I

cance and UInput Capacitance

MODE SELECTION

694	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

AC OPERATING CONDITIONS AND CHARACTERISTICS
lFijil opcialirrg voltage and leflphiratuic unless olherwso noted.)

Input Pulse Lcu yI	 .	 ii Viii hr 3 i Volt5	 Invi,1 and Output Timing Itelcience Levels1.5 Volts
lrPiii Iiice arid rail Turrets 	 .	 tons	 Otilput Load	I III. Gateand CL 100 pF

READ CYCLE

WRITE CYCLE

TIMING PARAMETER ABBREVIATIONS
lXXXx

signal name from whii..ti interval is defined
transition dilection IOI first signal --

signal name 10 which interval IS defined
transition direction for second signal

The transition definitions used In this data sheet are
H transition 10 high
L= ltOnSilion 10 love
V = transition to valid
X transition to invalid or don't Cole
Z transition to off Ih,gh impedance)

TIMING LIMITS
TInt table of liming vaiues shows either a minimum or a

mauirriurii limit for each parameter. Input requirements are
specified from Ihe external system point of view. Thus, ad-
dress setup time is Shown as a minimum Since the system
must Supply at least. that much lime levee though most
devices do not require ill. On the other hand, responses from
the memory are Specified from the device point of view.
Thus, the access lime is Shown 35 a maximum since the
device never provides data J3lr than that time.

APPENDIX C

intel® 8085
losI:l OUT

SQl)
Sit)

TI(AI'
KS! 7,5
KS F I, 5
(ST 5.5

INTI(
INTA
A D7

AD,

AD:

AD1

AD,

A 0

A 0,
AD7

Vss

'IO

2	 3')

3	 35

' 1	 37

5	 3(7

(I
3	 34

$.13

'(I

2	 2')

13	 25

11	 27

IS	 U

6	 25
Ii	 24

Is	 23

Il	 22

20	 71

Vt.(.

I lOLl)

ILl) A
CL K (010"I')

RESET IN
READY
(J/M

St
RD
WK
A I.
SO

Ati
A14

A11

Al,

A77

A7

A1

Figure C.1 8085 pinout

Figure C.1 shows 805 pins and signals. The following table describes the
function ol Ca C h pill::

-	 S'i'M (DI.	 FUNCTION

Address bus: The most significant 8 bits of the memory address or the
(Output, three-state) 	 bits of the I/O address.

AD,.,	 Multiplexed address/data bus: Lower 8-bits of the memory address (or /0
(Input/output,	 address) appear on the bus during the first clock cycle (T state) of a ma
three-state)	 chine cycle. It then becomes the data bus during the second and third clock

cycles.
ALE	 Address Latch Enable: It occurs during the first clock state of a machine Cy-

(Output) -	 etc and enables the address to get latched into the on-chip latch.
S 0 ,S, and lO/M	 Machine cycle status:

(Output)
10 '/'%i	 S,	 SQ	 SrAluc

O	 (2	 I	 MwiiOry write
0
	 0	 Memory read

0
	 1	 110 write

695

696
	

Microprocessors and Microcomputer- Based System Dcsi,gn, 21ld Edition

Svi not.	 FUNCTION

STATUS
0	 I/O road

1	 I	 Op coda retch
1	 1	 Interrupt acknowledge
0	 0	 Hall
X	 X	 Hold
X	 X	 Flosot

•	 3-st.uc Oligh iinpcd.incc)
X unspccificd
S 1 can be used as an advanced R/W status. IC/M, S 0. and S, become valid
at the beginning of a machine cycle and remain stable throughout the cycle.
The tatting edge of ALE may be used to latch the state 01 those linos.
READ control: A low level on RD indicates the selected memory or I/O de-
vice is to be read.
WRITE control: A tow lo yal on WA indicates Iho data on Ihe data bus is to
be written into the sotocted memory or I/O location.
It READY is high during a road or write cycle, it indicates that the memory or
peripheral is ready to 5ond or receive data. It READY is low, the CPU will
wail an integral number of clock cycles for READY to go high before com-
pleting the read or write cycle.
HOLD ind:ca Ins that another master is requesting the use of the address
and data buses. The CPU, upon receiving the hold request, will relinquish
the use of the bus as soon as the completion of the current bus translor. In-
ternal processing can continue. The processor can regain Ihe bus only after
he HOLD is removed. When the HOLD is ocknowtodgnd, Ilia address, data.

AD. WA, and tO/M lines are three-slated.
HOLD ACKNOWLEDGE: Indicates that the CPU has received the HOLD re-
quest and that it will relinquish the bus in the next clock cycle. HLDA goes
low after the HOLD request is removed. The CPU takes the bus one-half
clock cycle after HLOA goes tow.
INTERRUPT REQUEST: Is used as a general-purpose interrupt. his sampled
only during the next to the last clack cycle of an instruction and during
HOLD and HALT states. It it is active the PC will be inhibited from incrc-
:nentinçj and an INTA will be issued. During this cycle a RESTART or CALL
nslrucIion can be inserted to jump to the interrupt service routine. The INTR
is enabled and disabled by software. It is disabled by RESET and immedi-
ately alter an interrupt is accepted.
INTERRUPT ACKNOWLEDGE: Is used instead of (and has the same Liming
as) RD during the instruction cycle alter an INTR is accepted. It can be used
to activate the 3259 interrupt chip or some other interrupt port.
RESTART INTERRUPTS: Theo IhraG inputs have the same liming as INTR
except they cause an internal RESTART to be automatically inserted.

lO/M	 S	 S,

Trap interrupt is a nonmaskablo RESTART interrupt. It is recognized at the
same time as INTR or R8T5.5-7.5. It is unaffected by any mask or interrupt
enable. It has the highest priority of any interrupt.
Sets the program counter to zero and resets the interrupt enable and IILDA
flip-flops.
Indicates CPU is being reset. Can be used as a system reset.

RD
±0u t Put three-stale)

WA
(Output three-state)

READY
(Input)

HOLD
(Input)

HL DA
(Output)

INIR
(Input)

INTA
(Output)

R815.5
RST6.5
RST7.5

(Inputs)
TRAP

(Input)

RESET IN
(Input)

RESET OUT
(Output)

Appendix C
	

697

SYMBOL	 FuNcrioN

X and X, are connected to a crystal, LC, or AC network to drive the internal
clock generator. X, can also be an external clock input from a logic gate.
The input frequency is divided by 2 to give the processors internal operat
rig frequency.
Clock output for use as a system clock. The period of CLK is twice the X.
X input period.
Serial Input Data line. The data on this line is loaded into accumulator bit 7
whenever a RIM instruction is executed.
Serial Output Data l ine. The output SOD is set or reset as specified by the
SIM instruction.

5 V supply.
Ground reference.

xl•x2
(Input)

CLK
(Output)

SID
(Input)

SOD
Output)

vs

698
	 Microprocessors and Microcomi,utcrJ3asccl Sysiem Design, 2nd Edition

Intel
0

8086/8086-2/8086-4
16-BIT HMOS MICROPROCESSOR

• Direct Addressing Capability to 1
MByte of Memory

• Assembly Language Compatible with
8080/8085

• 14 Wotd, By 16-Bit Register Set with
Symmtrlcal Operations

• 24 Operand Addressing Modes

• Bit, Byte, Word, and Block Operations

• 8-and 16-Bit Signed and Unsigned
Arithmetic in Binary or Decimal
Including Multiply and Divide

• 5 MHz Clock Rate (8 MHz for 8086.2)
(4 MHz for 8066-4)

• MULTIBUSTM System Comrdtible
Interface

The Intola 8086 is a new generation, high performance microprocessor implemented in N-channel, depletion Icad,
silicon gate technology (HMOS), and packaged in a 40-pin CorDIP package The processor has attributes of both Band
16-bit micropr.cessors. It addresses memory as a sequence of 0-bit byLes, but has a 16-bit wide physical path to mem
ory for high performance.

	

C*ICU"ON UNIT	 4(15 IN,EOFQCL UN!

	

I	 I

	

aE,iER Till	 RLCSTIUI(I

0*14,	 R(çIS!(QS

	

POINTEN. *50	 AND

	

INOU NEON	 ,NSTQUCIIOT.
ii WONOSI	 PO(TIYFN

(S WONOSI
.1.	 4

ITNII*l4

1AGS	 111(1110CC

r
NIT Cud (IN

QUEUE

9r	 -
Q1(TSI	 CONTROL, 1(01(0

CI T RESET Retol 011101 0(0
YLC

8088 CPU Functional Block Diagram

Gus [1
	

40] VcC

ASIA [U	 u 3 ADIS

A013 [0
	 311 7) A161153

A012 [
	

21 3 Al?(S4

AD)) [
	

34 3 AIR/SO

AD1O [6
	

36 3 AiR/SE

AD9[;
	

34 -J 811E(S?

ADA[a	 33 1 MN(MX

AOl C U
	

02 1 AD

*o&C 10
	 oi J äiTh (IIOLO)

ADOC ii
	

00] RO(GT) (ii). DA)

AN [TO
	

29 I 10CR (WR)

A03[I
	

DR I SO	 (MID)

ADU _	 4	 .') -J 54	 (STiR)

ASIC
	

26	 K0	 (DEN)

ADO 	 16
	

26 3 050	 (ALE)

24 1 05*)>

(NOR [lB	 21	 1 CS T

CLAC ig
	

22 3 READY

GNU r	 2) 3 0(5(1

40 LEAD

8086 Pin Diagram

Appendix C
	 699

inW'	 18284
CLOCK GENERATOR AND DRIVER

FOR 8086, 8088, 8089 PROCESSORS
• Generates the System Clock for the

8066, 8088 and 8089

• Uses a Crystal or a TTL Signal for Fre -
quency Source

• Single + 5V Power supply

18-Pin Package

• Generates System Reset Output from
Schmitt Trigger Input

of Provides Local Ready and MULTIBUSTM
Ready Synchronization

• Capable of Clock Synchronization with
other 8284's

• Industrial Temperature Range
_400 to + 85°C

The 10284 is a bipolar clock goner or driver designed to provide clock signals for the 8086, 8088 & 8089 and

peripherals. It also contains READY re for operation with two MULTIt3US T ' systems and provides the processors
required READY synchronr:olion and ri ing. Reset logic 'rlh hysteresis and syrrchrorrrzalion is also provided.

18284 PIN CONFIGURATIO. I
	

18284 BLOCK DIAGRAM

LID'. C L IT "1-j cc
PCLK 2 	 7	 vi

3	 Ii	 X2

1011	 1$	 r i, K
READY	 5	 14] Eli

1012	 6	 Ii	 co

U91' ^
CLK

ClD RESET

•I

EFI

-	 L
18284 PIN NAMES

ovciscross FOR CRYSTAl.

TAN O	 USED Will01(07095 CRYSTAL
lilt 	 COCK SOU R CE SELECT
Err	 £4116961 CLOCK INPUT
CSYNC CLOCK SYNCHRONIZATION ivPur

READY SIG'IAL FROM TWO Mi.ji.TISAS SYSTEMS
ADY

At	 ADDRESS ENABLED 000LIEIERS FOR 6027, 2

rs	 RESET INPUT
RESET SYNCI,00NlZETi R(SET OVIPUT
OSC	 OSCILLATOR OUTPUT
ELKMOO CLOCK FOR THE PROCESSOR

PC LX
	 111 CLOCK FOR PERIPHERALS

READY SYNCHRONIZED READY OUTPUT
ICC	 .SVOLTS
0200	 0 VOLTS

IA'. ^ -ZSTATUS
-
Iowa

iMWZUULTI000
- iä•	 COMMAND

lOwC	
SIGNALS

- AIOWC

• lIlA

CLII

CONTROL HEN
INPUT ct

08

DTI
ADDRESS LATCH. DATA

DEN	 TRANSCEIVEI. AND

uçü5iS J
IN11IRIJPT CONTROL

ALE	 SIGNALS

BLOCK DIAGRAM

AND

700	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

inW	 8288
BUS CONTROLLER

FOR 8086, 8088, 8089 PROCESSORS

a Bipolar Drive Capability 	 • 3-State Command Output Drivers

a Provides Advanced Commands

• Provides Wide Flexibility in System
Configurations

a Configurable for Use with an I/O Bus

a Facilitates Interface to One or Two
Multi-Master Busses

The Inlei 8288 Bus Controller Is a 20-pin bipolar component for use with medium-to-large 8086 processing systems.
The bus controller provides command and control timing generation as well as bipolar bus drive capability while
optimizing , system performance.
A strappingOption on the bus controller configures it for use with a multi-master system bus and separate I/O bus.

PIN CONFIGURATION
lOb C I	 vcc

CLII C 2	 iI	 5
19

STill C 4	 Il	 MCEIPDEN

ALE	 S	 l	 DEN
-	 8219
AEN	 6	 IS	 CEN

MRDCU81 INTA

AMWCIORC

MWICAIOWC

OTIS iW

FUNCTIONAL PIN-OUT
GND VCC

-1
PROCESSOR

STATUS

MWTZF_
COMMAND
BUS

8211

0TI
ALE — CONTROL

UCEI	 OUTPUT

DEN

CONTROL
INPUT

-I CEN

I_I
BLOCK DIAGRAM

00	 QUIPUT (bAILS
PC.M	 CHiP F NAIL I *90

	

•POG LOGIC	 O.JTPOI'&Ui*E P40

rs

Apjtiidix C
	

701

inw"	
2716

16K (2K x 8) UV ERASABLE PROM

• Fast Access Time	 • Pin Compatible to intei 2732 EPROM
- 350 ns Max. 2716•1
- 390 ns Max. 2716.2-	 • Simple Programming Requirements
- 450 ns Max. 2716	 - Single Location Programming
- 650 ns Max. 2716.6	 - Programs with One 50 ms Pulse

Single + 5V Power Supply	
• Inputs and Outputs IlL Compatible

• Low Power Dissipation
	 during Read and Program

- 525 mW Max. Active Power
- 132 mW Max. Standby Power 	 • Completely Static

The Intel! 27113 is a 1 6,384bit ultraviolet erasable and electrically programmable read-only memory (EPROM). The 2716
operates from a single 5-volt power supply, has a static standby mode, and features fast single address location program-
ming. It makes designing with EPROMs faster, easier and more economical.

The 2716, with its single 5-volt supply and with an access time up to 350 ns, is ideal for use with the newer high performance
+5V microprocessors such as Intel's 8085 and 8086. The 2716 is also the first EPROM with a static stariby mode which
reduces the power dissipation without increasing access time. The maximum active power dissipation is 525 mW while the
maximum standby power dissipation is only 132 mW, a 75% savings.

The 2716 has the simplest and fastest method yet devised for programming EPROMs - single pulse TTL level programming.
No need for high voltage pulsing because all programming controls are handled by TTL signals. Program any location at any
time—either i ndividually, sequentially or at random, with the 2716's single address location programming. Total programming
time for all 16,384 bits is only 100 seconds.

PIN CONFIGURATION
	 MODE SELECTION

2716

	

04t 1	 33 0

	

A l I

03 3	 fl

	

*4, 4	 21 lop?
e 61

	

•	 ig .010

	

Li C I	 Ilk ii St
	w C I	 ,,

	

001	 1101

	

0, '0	 is 01
07	 U	 ii .04

0N0	 I?	 ii C))

7

•	 2	 33]L

	

0$' 3	 U L

	

L3 C ,	 o i.V,v..

:1,
	 9 0)0

	

ID	 5 105

	

i	 f;
I Refer to 2732
data sheet for
specifications

PIN NAMES

I 00 ne
C1,P643 I CPI1PUCARO(!t000kAM

Lc!!i_	 OUTPUT (NAILS
o1 -o,	 OUIPUTS

VCC

A1

All

01 tv,
Ar0

0

04

PIN CONFIGURATION

A,j	 I	 24

A6(2	 23

AsI)	 22

A1(4	 21

A2(5	 20
A2(6	 19
A,(7	 is

Ast B	 17

OoL 9	 16

C I E 10	 15

O[ii	 ii

	

ONOC 12	 13

PIN NAMES

ADDRESSES
CZ	 CHIP ENABLE
OS	 OUTPUT ENABLE
0,-07 	OUTPUTS

MODE SELECTION

PINS	 !	 !Npp	 Vcc	 OUTPUTS
MODE"-..	 (18)	 (20)	 1241	 (9-11,13-17)

Read	 V1L	 ViL	 +5	 Dour
Standby	 VIH Dont Care	 45	 Hgh Z
Program	 V1L	 Vpp	 .5	 Ds
Program Verily VIL	 VIL	 45	 Dour
Program Inhibit I V 1	 Vpp	 •S	 Higir Z

BLOCK DIAGRAM

DATA OUTPUTS

YCC	 og-Or
0500-	 ____.....

1111111
O —r}--

	

! -..L EE LOGIC 	 OUTPUT BUFFERS

AO-All
OECODEA

ADOREOS

	

OCCODER	 CELL MATRIX

INPUTS	 1=::
02.7-BIT

702	 Microprocessors and Microcomputer-Bascd System Design, 2nd Edition

inW'D 32K (4K x 8) UV ERASABLE PROM
• Fast Access Time: 	 • Pin Compatible to intel ® 2716 EPROM

- 450 ns Max. 2732
- 550 ns Max. 2732.6 	 . Completely Static

• Single +5V ± 5% Power Supply

• Output Enable for MCS-85' and
MCS-86' Compatibility

• Low Power Dissipation:
150mA Max. Active Current
30mA Max. Standby Current

• Simple Programming Requirements
- Single Location Programming
- Programs with One 50ms Pulse

• Three-State Output for Direct Bus
Interface

The Intel 2732 is a 32.768-bit ultraviolet erasable and electrically programmable read-Only memory (EPROM). The 2732
operates From a single 5-volt power supply, has a standby mode, and features an output enable control. The total program-
ming time forall bits Is three and a hall minutes. All these features make designing with the 2732 in microcomputer systems
faster, easier, and more economical.

An important 2732 Feature is the separate output control. Output Enable I OE i. from the Chip Enable control CE. The OE
Control eliminates bus contention in multiple bus microprocessor systems. Infers Application Note AP-30 describes the
microprocessor system implementation of the OE and CE controls on Intel's 2716 and 2732 EPROMs. AP-30 is available
from Intel's Literature Department.

The 2732 has a Standby mode which reduces the power dissipatlin wit:out increasing access time. The maximum active
current is 150mA, whrle the maximum standby current is only 3OmA, an 'vings. The standby mode is achieved by
applying a TTL-high signal to the CE input.

Appendix C
	 703

intel'

8355/8355-2
16,384-BIT ROM WITH I/O

2048 Words x 8 Bits

Single +5V Power Supply

Directly compatible with 8085A
and 8088 Microprocessors

. 2 General Purpose 8-Bit I/O Ports

Each 110 Port Line Individually
Programmable as Input or Output

Multiplexed Address and Data Bus

• Internal Address Latch

• 40-Pin DIP

The Intel' 8355 is a ROM and '0 chip to be used in the 8085A and 8088 microprocessor systems. The ROM por-
tion is organized as 2048 words by 8 bits. It has a maximum acoss time 01 400 ns to permit use with no wait states in
the 8085A CPU.

The 110 portion consists of 2 general purpose I/O ports. Each I/O port has 8 portlines and each /0 port mo is
individually programmable as input or output.

The 8355-2 has a 300ns access time for compatibility with the 8085A-2 and full speed 5 MHz 8088 microprocessors.

PIN CONFIGURATION
	 BLOCK DIAGRAM

CE, C
CE2 [

CLIT [

RESET C
N.C. NOT CONNECTEDIL

READY [

0/0 C
iOl C
ETOL

ion E
ALE C
AL) 2 C
AD, C
AD 2 [
AD 2 C
AD, C
AD C
AD, C

VII

'Cc

?8, CLE

Pu'
FBI	

READY
PB,
PD,

PB,
PB,	

CEj
PA1

PAL
PA5	

ALE
PA,
PA2	 c5;
PA,	

REEET
PA1	 Z-FA

A,2

-I
"i

LAxB	

A	

PORTA

PA0.7

ROM
PORT B

Pu,.,

I	 I-NVl
V 21 IOV/

Funcllon

The CLK is used to force the READY
into its high impedance state after it
has boon forced low by CE low, CE
high and ALE high.

Ready is a 3-state output controlled by
CEi, CE, ALE and ELK. READY is
forced low when the Chip Enables are
active during the time ALE is high, and
remains low until the rising edge of the
next CLK Isee Figure 61.

These are general purpose I/O pins.
Their input/output direction is deter-
mined by the contents 01 Data Direction
Register iDDRI. Port A is selected for
write operations when the Chip Enables
are active and [W is low and a 0 was
previously latched From ADo.

Read operation is selected by either
FOR low and active Chip Enables and
ADD low, pj tO/M high, RD low, active
chip enables, and ADo low,
This general purpose I/O port is
identical to Port A except that it is
selected by a 1 latched From ADO.

An input high on RESET causes all pins
in Port A and B to assume Input mode.

When the Chip Enables are active, a low
on FOR- will output the selected I/O port
Onto the AD bus. TOR low performs the
same function as the combination IO/M
high and RD low. When IOR is not used
in a system, IOR should be tied to Vcc
l''l'').
+5 volt supply.

Ground Reference.

Symbol

CLK
(input)

READY
Output)

(Input/
Output'

PB0-i
Input!

Output i

RESET
ilnput

(input)

Vcc
V ss

704
	

Microprocessors and Microcomputer-Based System Design, 2nd Edition

8355/8355-2

Symbol	 Function

ALE	 When ALE lAddress Latch Enable is
linpun	 high, ADO-7. lO/M. A8_,. CE, and l

enter address latched. The signals
AD, tO/K&	 CE,	 i are latched

in at the trailing edge of ALE.

ADO-7	 Bidirectional Address/Data bus. The
(Input) lower 8-bits of the ROM or I/O address

are applied to the bus lines when ALE
is high.
During an I/O Cycle, Port A or B are
selected based on the latched value of
ADo. If RD or FUR is low when the latched
chip enables are active, the output
butters present data on the bus,

These are the high order bits of the ROM
ltnpuli	 address. They do not affect I/O oper-

ations.

CEt	 Chip Enable Inputs: ti is active low
CE2	 and CE2 is active	 The 8355 can be
llnputi accessed only when BOTH Chip En-

ables are active at the time the ALE
signal latches them u p. If either Chip
Enable input is not active, the ADO-7
and READY outputs will be in a high
impedance state.
If the latched IO/Ki is high when RD is

Inputi low, the output data comes from an
I/O port. If it is tow the output data
comes From the ROM.

RD	 If the latched Chip Enables are active
I Input when RD goes low, the ADO-7 output

buffers are enabled and output either
the selected ROM location or I/O port.
When both RD and	 are high, the
ADO-7 Output butters are 3-state.

lOW	 If the latched Chip Enables are active,
(Input) a low on causes the output port

pointed to by the latched value of ADD
to be written with the data on ADO-i.
The state of lO/M is ignored.

Appendix C
	

705

intel

0

8755A 18755A-2
16,384-BIT EPROM WITH I/O

. 2048 Words x 8 Bits

Single + 5V Power Supply (Vcc)

• Directly Compatible with 8085A
and 8088 Microprocessors

• U.V. Erasable and Electrically
Reprogrammable

• Internal Address Latch

• 2 General Purpose 8-81t I/O Ports

• Each I/O Port Line Individually
Programmable as Input or Output

• Multiplexed Address and Data Bus

• 40-Pin DIP

The lntel 8755A is an erasable and electrically roprogrammable ROM (EPROM) and I/O chip to be used in the 8085A
and 8088 microprocessor systems. The EPROM portion is organized as 2048 words by 8 bits. II has a maximum
access time of 450 es to permit use with no wait states in an 8085A CPU

The I/O portion consists of 2 general purpose I/O ports. Each I/O port has 8 port lines, and each I/O port line is
individually programmable as input or output.

The 8755A2 is a high speed selected version of the 8755A compatible with the 5 MHz 8085A-2 and the lull speed 5
MHz 8088.

PIN CONFIGURATION

	

P600 AND CE,(I 	 40	 VCC

	

C(2 (2	 so

	

CLIO(3	 38

	

RESET [4	 37 JPB5

	

V,,3[5	 36 Y.

	

11(ADV [6	 35]PB3

	ioii[r	 34	 PD8

	

ãR1 8	 33)P8,

	

Vu E 3	 17

E	 8755A/ 31 :)PA,
ALE I it 875SA.2 j

	

ADQ1 12	 29 JPA

	

AD, E 13	 28)PA,
A0	 14	 37
A0 3 C 	 26)PA7

	

16	 25JPA,

	

AD3 r ii	 71

	

A04[le	 73

	

AD,(II	 72 IA,

VU	 20	 21 A,

BLOCK DIAGRAM

CL

READY

PORT A

	

CE?

___ 	 1}IJ

i0ñ.	 EPROM

	

___________	 P08 0 8ALE	 I

RESET

	

PROD/CE,	 I	 vCC 1.501

	

oo	 .	 V lOOP

706	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

8755A/8755A-2

8755A FUNCTIONAL PIN DEFINITION
Symbol
	

Function
ALE
	

When Address Latch Enable goes
(input) ADü-, tO/M, A1Q, CE2, and

CE; enter the address latches. The
signals (AD, tO/M, As-lo. CE) are
latched in at the trailing edge of ALE.

ADO-?	 Bidirectional Address/Data bus. The
(input/output lower 8-bits of the PROM or hO

address are applied to the bus lines
when ALE is high.

During an I/O cycle. Port A or B are
selected based on the latched value of
ADO. If RD or OR is low when the
latched Chip Enables are active, the
Output buffers present data on the
bus.

A-;o	 Those are the high order bits of the
(input)	 PROM address. They do not affect

I/O operations.
PROG/CEi	 Chip Enable Inputs: CE; is active low
CE2	 and CE2 is active high. The 8755A
(input) can be accessed only when BOTH

Chip Enables are active at the time
the ALE signal latches them up. If
either Chip Enable input is not active,
the ADO-7 and READY outputs will
be in a high impedance state. CE; is
also used as programming pin. See
section on programming.i

IO/M	 If the latched IOJ71 is high when -R-D-
(input) is low, the output data comes from

an I/O port. If it is low the output data
comes from the PROM.

RD	 lithe latched Chip Enables are active
(input) when RD goes low, the ADO-7 output

buffers are enabled and output either
the Selected PROM location or t'O
port. When both RDand lORare high,
the ADO-7 output butlers are 3-stated.

tOW	 It the latched Chip Enables are active,
input; a tow on OW causes the output port

pointed to by the latched value of
AD to be written with the data on
ADO-7. The state of IO/M is ignored.

CLK	 The CLK is used to force the READY
(input) into its high impedance state after it

has been forced tow by CE; low. CE2
high, and ALE high.

Symbol	 Function
READY
	

READY Is 33-stale output Controlled
:Output] by CE?. CEr. ALE and CLK. READY

is forced tow when the Chip Enables
are active during the time ALE is high,
and remains low until the rising edge
of the next CLK. (See Figure 6.;

PA0i	 These are general purpose I/O pins.
input/output; Their input/output direction is deter-

mined by the contents of Data Direc-
tion Register I DDR. PortA issetected
for write operations when the Chip
Enables are active and TOW is low
and a 0 was previously latched from
ADO, AD;.

Read operation is selected by either
OR low and active Chip Enables and

ADO and AD; low, or IO/M high, RD
low, active Chip Enables, and ADO
and AD; tow.

P BO-7	 This general purpose I/O port is
iiflpul/outputi identical to Port A except that it is

selected by a 1 latched from ADO and
a 0 from AD,

RESET	 In normal operation, an input high on
inputi RESET causes all pins in Ports A and

B to assume input mode iclear DDR
register;.

OR	 When the Chip Enables are active, a
(input) low on IOR will output the selected

I/O port onto the AD bus. FOR low
performs the same function as the
combination of lO/M high and RD
ow. When OR is not used inasyslem,
FOR- should be tied to VCC ("1'.

Vcc	 +5 volt supply.

VSS
	

Ground Reference.
VDD VOD is a program;n:r.g voltage, and

must be tied to +5V when the 8755A
is being read.

For programming, a high voltage is
supplied with VDD=25V, typical. iSce
section on programming.;

PIN CONFIGURATION

PC'

TIMER Ill

RESET
PC9

TIMER OUT

IOi.1
CE 08

I115

CII

ALE

AD,

AD1

AD2

AD2

AD4

AD1

A04

AD,

vol

I	 40

2	 39

3	 34

4	 37

5	 38

6	 35

7	 34

9	 33

932

0	 31

1	 818571 30

12	 81562	 ,

I)	 28

14	 77

15	 76

16	 25

17	 24

18	 23
19	 22

20	 21

vcc
PC2

PC'

PC,

P13,

P28

pal

P8

PR3

P137

Pu,

Pa0

PA,

PA4

PA3

PA4

PA1

I,,.,,
PA1

Appendix C
	

707

intel f

8155/8156/8155-2/8156-2
2048 BIT STATIC MOS RAM WITH I/O PORTS AND TIMER

256 Word x 8 Bits
Single +5V Power Supply
Completely Static Opçration
Internal Address Latch
2 Programmable B Bit I/O Ports

• 1 Programmable 6-Bit I/O Port
• Programmable 14-Bit Binary Counter!

Timer
• Compatible with 8085A and 8088 CPU
• Multiplexed Address and Data Bus
• 40 Pin DIP

The 8155 and 89156 are PAM and I/O chips to be used in the 8085A and 8088 microprocessor s ystems. The
RAM portion is designed with 2048 static cells organized as 256 x 8. They have a maximum access time of 400 na
Lo permit use with no wait states in 8085A CPU. The 8 1552 and 81562 have maximum access times of 330 ns for use
with the 5085A-2 and the full speed 5 MHz 3088 CPU.

The 1,1 0 portion Consists of three general purpose I/O ports. One of the three ports can be programmdd to be status
pins, thus allowing the other two ports to operate in handshake mode.

A 14-bit programmable counter/ timer is jatso included on chip 10 provide either a square wave or terminal count pulse
tor the CPU system depending on timer mode.

0:7,1

AU0

ALL

111)

All

0(5(1

TIMER CLO

IotA OLI I

BLOCK DIAGRAM

256 0 8	 H
/1.2.!_

STATIC
RAM	

H '
PORT

TIMER	 H
L___

Vss 00)

8155181552 - FE. 8156/81562 CE

rca-s

708	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

8155/8156/8155-2/8156-2

8155/8156 PIN FUNCTIONS
Function

RESET
	

Pulse provided by the 8085A to ini-
(input) tialize the system iconnect to 8085A

RESET OUTi. Input high on this line
resets the chip and initializes the
three I/O ports to input mode. The
width of RESET pulse should typically
be two 8085A Clock cycle times.

ADO-7
	

3-state Address/Data lines that inter-
(input) face with the CPU tower 8-bit Ad-

dress/Data Bus. The 8-bit address is
latched into)rle address latch inside
the 8155/56 on the falling edge of
ALE. The address can be either for
the memory Section or the I/O section
depending on the lO/M input. The
8-bit data is either written into the
chip or read from the chip, depending
on the WA or RD input signal.

CE or CE
	

Chip Enable: On the 8155, this pin is
(input)
	

CE and is ACTIVE LOW. On the 8l56,
this pin is CE and is ACTIVE HIGH.

RD	 Read control: input low on this line
(input) with the Chip Enable active enables

and A007 butters. If lO/M pin is low,
the RAM content will be read Out to
the AD bus, Otherwise the Content
of the selected I/O port or command/
status registers will be read to the
AD bus.

WA_	 Write control: Input low on tl'iiS line
(input) with the Chip Enable active causes

the data on the Address/Data bus to
be written to the RAM or I/O ports and
command/status register depending
on IO/M.

Funtipri

ALE
	

Address Latch Enable: This control
(input) signet latches both the address on the

ADO-7 lines and the state of the Chip
Enable and lO/M into the chip at the
falling edge of ALE.

lO/M
	

Selects memory if low and I/O and
(input 1
	 command/status registers if high.

PAO 718
	

Those 8 pins are general purpose I/O
i input/output) pins. The in/out direction is selected

by programming the command
register.

P807181	 These 8 pins ae general purpose I/O
(input/output pins. The in/out direction is selected

by programming the command
register.

PCO56	 These 6 pins can function as either
(input/output) input port, output port, or as control

signals for PA and PB. Programming
is done through the command reg-
ister. When are used as control
signals, they will provide the fol-
lowing:
PC0 - A lf'JTR (Port A Interrupt,
PC, - ABFP0rf A Butter Putt)
PC2 - A STB i Port A Sl robe i
PC3 - B INTR (Port'B tnterrupt
PC4 - 6 B (Port B Buffer Full)
PC - B STB (Port B Strobe,

TIMER IN	 Input to the counter-timer.
input)

TIMER UT	 Timer output. This output can be
Output)	 either a square wave or a pulse de-

pending on the timer mode

Vcc	 -4-5 volt supply.

V5 5	Ground Reference.

U
a
U
U
U
U
U

S
U

3.,
8255A

•1

3

PIN NAMES

=1

Appendix C
	 709

intel'
8255A18255A5

PROGRAMMABLE PERIPHERAL INTERFACE

• MCS-85 Compatible 8255A-5

• 24 Programmable I/O Pins

• Completely TTL Compatible

• Fully Compatible with Intel® Micro-
processor Families

• Improved Timing Characteristics

• Direct Bit Set/Reset Capability Easing
Control Application Interface

• 40-Pin Dual In-Line Package

• Reduces System Package Count

• Improved DC Driving Capability

The IntoP 8255A is a general purpose programmable I/O device designed for use with lntoI microprocessors. It has
24 I/O pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation. In the first
mode (MODE 0), each group of 12110 pins may be programmed in sets of 4 to be input or output. In MODE 1, the second
mode, each group may be programmed to have 8 lines of input or output. Of the remaining 4 pins, 3 are used for hand.
shaking and irilerrupt control signals. The third mode of operation (MODE 2) is a bidirectional bus mode which uses 8
lines for a bidirectional bus, and 5 lines, borrowing one from the other group, for handshaking.

PIN CONFIGURATION
	 8255A BLOCK DIAGRAM

RI2

RI)

CL 6
RU

B L
IT I

B L
P17

RESt T

0901

DIII
05,1

0941

0551

05, (

os
V34 1

6

9
To
IT

17

13
14

09

I,

TI

19
20

710	 Microprocessors and Microcoinpu ter- Based System Design, 2nd Edition

intef
PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

• Simultaneous Keyboard Display
Operations

• Scanned Keyboard Mode
• Scanned Sensor Mode
• Strobed Input Entry Mode
• 8-Character Keyboard FIFO
• 2-Key Lockout or N-Key Rollover with

Contact Debounce
• Dual 8- or 16-Numerical Display

• Single 16-Character Display
• Right or Left Entry 16-Byte Display

RAM
• Mode Programmable from CPU
• Programmable Scan Timing
• interrupt Output on Key Entry
• Available in EXPRESS

-Standard Temperature Range
- Extended Temperature Range

The InteI 4D 8279 is a general purpose programmable keyboard and display i/O interface device designed foruse with lntel microprocessors, The keyboard portion can provide a scanned interface to a 64-contact key
matrix. The keyboard portion will also interface to an array of sensors or a strobod interface keyboard, such as
the hail effect and ferrite variety. Key depressions can be 2-key lockout or N . key rollover. Keyboard entries aredebouncod and sirobed in an 8-character FIFO. If more than B characters are entered, overrun status is set.Key entries set the interrupt output line to the CPU.

The display portion provides a scanned display interface for LED, incandescent and other popular displayI echnologies. Both numeric and alphanumeric segment displays uay be used as well as simple indicators. The
8279 has 16x8 display RAM which cap be organized into dual 16x4. The -an be loaded or interrogated
by the CPU. Both right entry, calculathr and loft entry typewriter display formats rire possible. Both read and
write of the display RAM can be done with auto-increment of the display RAM aedross.

"cc

CPU
174100 fACE

RU	 RIOT

DATA
eus

	

54440	 0EV DATA

-	 CNTI'STD
WE

	

SL,,	 4

AO	

OUT A 0 ,	 4
RE SE I

(04SP1AY
CLII	 OUT :0 ,	 4	 >OATA

so

40

39

3,

36

33
34
33

32
.779

31

29

21
27
26

23
24

23
22

21

IRL1
It

CNTL'ST5

I SHIFT

£13
SI,

519
OUT I

OUT 5
OUT 62

OUT a3

OUT A

OUT At

OUT A3

OUT A3

g
ZT

A0

Vu

Figure 1. Logic Symbol

290123-I

Ssptemb.r 1957
Order Number; 290123-002

290123-2
Figure 2. Pin Configuration

Appendix C
	

711

intel	 3279/8279-5

HARDWARE DESCRIPTION
The 8279 is packaged in a 40 pin DIP. The following is a functional description of each pin.

Table 1. Pin Description

Symbol

	

	 Name and FunctionNo.

DB 0 -D8 7	19-12 BI-DIRECTIONAL DATA BUS: All data and commands between the CPU
and the 8279 are transmitted on these lines.

CLK	 3	 CLOCK: Clock from system used to generate internal timing.
RESET	 9	 RESET: A high signal on this pin resets the 8279. After being reset the 8279 is

placed In the following mode:
1)16 8-bit character display—left entry.
2) Encoded scan keyboard-2 key lockout.
Along with this the program clock prescaler is set to 31.

CS	 22	 CHIP SELECT: A low on this pin enables the interface functions to receive or
transmit.

A0	 21	 BUFFER ADDRESS: A high on this line indicates the signals in or out are
interpreted as a command or status. A tow indicates that they are data.

10-11 INPUT/OUTPUT READ AND WRITE: These signals enable the data buffers
to either send data to the external bus or receive it from the external bus.

IRQ	 4	 INTERRUPT REQUEST: In a keyboard mode, the interrupt line is high when
there is data in the FIFO/Sonsor RAM. The interrupt line goes low with each
FIFO/Sensor RAM read and returns high if there is still information in the
RAM. In a sensor mode, the interrupt 1mb goes high whenever a change in a
sensor is detected,

Vss, VCC	 20,40 GROUND AND POWER SUPPLY PINS.

SL0-SL3	32-35 SCAN LINES: Scan lines which are used to scan the key switch or sensor
matrix and the display digits. These lines can be either encoded (1 of 16) or
decoded (1 of 4).

RL0-RL7	38, 39, RETURN LINE: Return line inputs which are connected to the scan lines
1.2,5-8 through the keys or sensor switches. They have active internal pullups to

keep thorn high until a switch closure pulls one low. They also servo as an B.
bit input in the Strobod Input mode.

SHIFT	 36	 SHIFT: The shift input status is stored along with the key position on key
closure in the Scanned Keyboard modes. It has an active internal pullup to
keep it high until a switch closure pulls it low.

CNTL/STB	 37	 CONTROL/STROBED INPUT MODE: For keyboard modes this line is used
as a control input and stored like status on a key closure. The tine is also the
strobe line that enters the data into the FIFO in the Strobod Input mode.
(Rising Edge). It has an active internal pullup to keep it high until a switch
closure pulls it low,

OUT A0-OUT A3	 27-24	 OUTPUTS: Those two ports are the outputs for the 16 x 4 display refresh
OUT 13 0 -OUT B3 31-28 registers. The data from those outputs is synchronized to the scan lines (SL0-

SL3) for multiplexed digit displays. The two 4 bit ports may be blanked
independently. Those two ports may also be considered as one 8-bit port.

15	 23	 BLANK DISPLAY: This output is used to blank the display during digit
switching or by a display blanking command. 	 7

APPENDIX D
MC68000 INSTRUCTION EXECUTION TIMES

D.1 INTRODUCTION

This Appendix contains listings of the instruction execution times in terms of external
clock (CLK) periods. In this data, it is assumed that both memory read and write cycle
times are four clock periods. A longer memory cycle will cause the generation of wait
states which must be added to the total instruction time.

The number of bus read and write cycles for each instruction is also included with the
timing data. This data is enclosed in parenthesis following the number of clock periods
and is shown as: (nw) where r is the number of read cycles and w is the number of write
cycles included in the clock period number. Recalling that either a read or write cycle re-
quires four clock periods, a timing number given as 18(3/1) relates to 12 clock periods for
the three read cycles, plus 4 clock periods for the one write cycle, plus 2 cycles required
for some internal function of the processor.

NOTE
The number of periods includes instruction fetch and all applicable operand
fetches and stores.

D.2 OPERAND EFFECTIVE ADDRESS CALCULATION TIMING

Table D-1 lists the number of clock periods required to compute an instruction's effective
address. It Includes fetching of any extension words, the address computation, and
fetching of the memory operand. The number of bus read and write cycles is shown In
parenthesis as (nw). Note there are no write cycles involved in processing the effective
address.

Table D . 1. Effective Address Calculation Times
Addressing Mode 	 Byt(. Word	 Long

Register
35	 Fata Hog,ster Direct 	 00/0)	 0)0/0)
An	 ddress Register Direct 	 011/0)	 01010)

Memory
(An)	 Address Register Indirect 	 4(110)	 8)2/0)
(An) -s•	 Address Register Indirect with Postincrement 	 4(1/0)	 8(2/0)
— (An)	 Address Register Indirect with t'redocrement 	 61/0)	 10)210)
tI.)	 Address Register Indirect with Displacement 	 8)2/0)	 12)3/0)

ulAis. .)	 ACOress Register Indirect with Index 	 10)2/0)	 14)3/0)
xxx 'A	 Absolute Short 	 812/01	 12(3/0)

Absolute Long	 12)3/0)	 16)4/0)
0)P0	 Program Counter wir Di5ptacCrrirn	 8)71;01	 17)3/0)
d)PC. i1	 Program Counter e.ith Idcx	 10)210)	 14)3/0)

Immediate	 411/0)	 8)2/0)

The size at the index register lix) does not attect esCCutiOfl t,,rr

ra

714	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

D.3 MOVE INSTRUCTION EXECUTION TIMES

Tables D-2 and D-3 indicate the number of clock periods for the move instruction. This
data includes instruction fetch, operand reads, and operand writes. The number of bus
read and write cycles Is shown In parenthesis as (nw).

Table D-2. Move Byte and Word Instruction Execution Times

OUICIs	 1' OtiflMiOfl•	
Din	 An	 (An)	 I (An) 4	 —(An)	 d(An)	 d)An. W e 	 xxx.W	 xxx.L

Dn	 4(110)	 4(1/0)	 8(1/1)8(1/I)	 8(1/1)	 12)211)	 14(211)	 12(2/1)	 1613/1)
An	 41)/01	 40101	 811/1)	 8)11(1	 8)1/))	 1212/11	 14)2111	 12(211)	 16)3/1)
(An)	 8)2/01	 8(210)	 12(2/1)	 122/1)	 122/11	 163/1)	 180/11	 16)3/I)	 20(41I)
(An) +	 8)2/0)	 8)2/0)	 12171	 12)2/I)	 12)2/1)	 16(3/))	 1eI31 11	 1613/1I	 20)411)
- (An)	 10(210)	 10)210)	 1412/I)	 14(211)	 1412/11	 18)3/1)	 20(3/1)	 18)3/1)	 22)4/1)
d(An)	 12(3/01	 12010)	 1613/1)	 16)3/1)	 16)3/1)	 20)4/1I	 22)411)	 20)4/1)	 24)5/1)
dIAn.ix)	 14)3/0)	 14(35)	 18)3/1)	 18(3/1)	 18(3/))	 22)411)	 24(4/1)	 22(411)	 285/fl
XxX.W	 12)3/0)	 12(6J	 16(3/1)	 16(3/1)	 16)3/1)	 20(4/1)	 22)4/))	 20)4/1)	 24)5/I)
xxx.L	 16)410)	 16(410)	 20)4/1)	 20)4/1)	 20)411)	 24(511)	 26(5111	 24)5/1)	 26)611)
d)PCI	 12)3/0)	 12(310)	 16)311)	 16)3/1)	 16(3/1)	 20)4/1)	 22)4/1)	 20)4/1)	 24)511))
d(PC. ix) •	 14(3/0)	 14)3/0)	 18(3/1)	 18(3/1)	 18(3/1)	 22(411)	 24)411)	 22)4/1)	 26)5/1)
Ixxx	 8)210)	 8(210)	 1212/1)	 12)2/1)	 1 12)2/1)	 16(3/1)	 18)3/1)	 16)3/1)	 20)4/1)

The size 01 the index register (ix) does not affect execution time.

Table D .3. Move Long Instruction Execution Times

	_______ 	 P4tinItiQnSOUrCI	 Dn	 I	 An	 (An)	 (An) +	 -. (An)	 d(An)	 d)An,)*	 xxx.W	 xxx.).
Dn	 4(1/0)	 4(1/0)	 12)1/2)	 12)1/2)	 12(1/2)	 16)2/2)	 18(2/2)	 16(212)	 20(312)
An	 4)1/0)	 4)1/0)	 12)1/2)	 12)1/2)	 12)1/2)	 1612121	 18)212)	 16(21'2)	 20(312)
(An)	 12)3/0)	 12)310)	 20)3/2)	 20)3/2)	 20(312)	 24)4/2)	 26)4/2)	 24)4/2)	 26(5/2)
(An) +	 12(3/0)	 12)3/0)	 20)312)	 20)3/2)	 20(3/2)	 24(4/2)	 26)4/2)	 24)4/2)	 26(5/2)
- (An)	 14(3/0)	 14(3/0)	 22)3/2)	 22312	 22)312)	 26)412)-	 26)4/2)	 26)412)	 30)5/2)
d(An)	 18)410)	 16)4/0)	 24)4/2)	 24)4/7)	 24(4/2)	 28)5/2)	 30(5/2)	 26(5/2)	 32(6/2)
d(An, ix) •	 18(4/0)	 18)410)	 26)4/2)	 26)4/2)	 26)4/2)	 30)512)	 32)512)	 30(5/2)	 34(612)
xxx.W	 16)410)	 16(410)	 24)412)	 24(412)	 24)4/2)	 28)512)	 30)5/2)	 28)5/2)	 32)6/2)
xxx L	 20)5/0)	 20)5/0)	 26)5/2)	 28(5/2)	 26)5/2)	 32(6/2)	 34)6/2)	 3216/21	 36)712)
d)PC)16)410)	 16(4/0)	 24(4/2)	 24)4/21	 24)4/2)	 26)5/2)	 30(512)	 26(5/2)	 32)512)
d)PC, ix) •	 16)4/0)	 18)4/0)	 26(4/2)	 26)4/2)	 26)4/2)	 30(5/2)	 32(5/2)	 30)5/2)	 34)6/2(
lxxx	 12)3/0)	 12)3/0)	 20)3/2)	 20)3/2)	 20)312)	 24)4/2)	 26)4/2)	 24)412)	 28)512)

The size of the index reorder lix) does not affect execution time.

Appendix D
	

715

D.4 STANDARD INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table D-4 indicates the time required to perform
the operations, store the results, and read the next instruction. The number of bus read
and write cycles is shown In parenthesis as (ri'w). The number of clock periods and the
number of read and write cycles must be added respectively to those of the effective ad-
dress calculation where Indicated.

In Table D-4 the headings have the following meanings: An= address register operand,
Dn=data register operand, ea=an operand specified by an effective address, and
M =memory effective address operand.

Table D-4. Standard Instruction Execution Times

Instruction	 Size	 op<oa>, Ant	 op<oa>. On	 op On, <M>

ADD	
Byte, Word	 8(1/0)+	 4(1/0)+	 8(1/1)+

Long	 6(1/0)+ •	 6(1/0)+ •	 1211/21+

AND	 Byte. Word	 -	 4(1/0)+	 8I1/1l*
Long 	 6(1/0)+"	 12(1/2)+

CMP	 Byte. Word	 (1/0)+	 411/01+	 -
Long	 6(1/01+	 6(110)+	 -

DIVS	 -	 -	 158(1/0)+•	 -
DIVU	 -	 -	 140(1/0)+•	 -

EOR	 Byte. Word	 -	 4(1/0}	 8(1/1)*
Long	 -	 8(1/0]" •	 1211/2)+

MULS	 -	 -	 70(1/0)+	 -
MULU	 -	 -	 70(1/0)+	 -

OR	 Byte, Word	 -	 4(110)+	 8(1/11+
Long	 -	 611/01+ *	 1211/21+

SUB	 Byte. Word	 811101+	 4(110)+	 8(1/1)+
Long	 6(1/0)+ •	 6(110)+ •	 1211/21+

NOTES.
dJ eltoCtive address calculation time

I word or long only
indicates rnrixirriunr value
The base lime of six clock Iritiods is increased to eight if the effective address mode is
roister direct or immediate (effective address tilrro should also be aditedl.
Only available c'Ilactivo address rnorje is data register direct.

DIVS. DIVU - The divide tilgorilfim used by the MC6O3 provides less than 10% dii tcrencc
between the best and worst case timings.

MULS, MULU - The multiply algorithm reguires 30 + 2n clocks where n is defined as:
f.ULU: n the number 01 ones in the <cc>
MULS: n concatanale the <cc> with a sore as the LSB; n is the resultant number of

10 or 01 patterns in the 17•bit source; i a., worst case happens when the
source is $5555.

7 16	 Microprocessors and Micrncomputcr-Based System Design, 2nd Edition

0.5 IMMEDIATE INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table D-5 Includes the time to fetch immediate
operands, perform the operations, store the results, and read the next operation. The
number of bus read and write cycles is shown in parenthesis as (nw). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

In Table D-5, the headings have the following meanings: #lmmedIate operand,
On = data register operand, An = address register operand, and M = memory operand.
SR=status register.

Table 0 .5. Immediate Instruction Execution Times

Instruction	 Size	 op 1, Do	 op 1. An	 op 1. M

ADD)	 Byte, Word	 8)710)	 j	 —	 12)2/I)
Long	 16(3/0)	 -	 2013/2)+

ADDO	 Bye. Vold	 411/0)	 8)110)•	 8)1111+
Long	 8(1/0)	 80101	 12)1/21+

AND	 Byte, Word	 8)210)	 —	 12)7111
Long	 16)3/0)	 2.013/1)+

CMPI	 Byte. Word	 8)2/0)	 -	 8(210)+
Long	 14(310)	 -	 12(3/0) i

1,0111	 llyle.8(2101	 -	 12(2/11+
Long	 16)310)	 —	 201312)+

MOVED	 Long	 4)1/0)	 -	 --
Byte. Word	 8)210)	 -	 12)2/1)-f

Long	 16(3/0)	 -

SUBI	 Byte, Word	 612101	 —	 12(2/1)4
Long	 16)3/0)	 -	 20)3/21+

suoo	 Byte. Word	 4)1/0)	 811/0(BIll))-,-
____________	 Long	 8(1/0)	 811/0)	 12)1/2)+

+ add effective address calculation time
• word only

Appendix L)
	 717

D.6 SINGLE OPERAND INSTRUCTION EXECUTION TIMES

Table D-6 indicates the number of clock periods for the single operand instructions. The
number of bus read and write cycles Is shown in parenthesis as (nw). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

Table 0-6. Single Operand Instruction Execution Times

Instruction	 Size	 Aorslr	 Memory

CL))
Bytr. V/ord	 4(1/0)	 8)1/1 +

--
Lonq	 6(110)	 120/21+

NDCD	 ((yIn	 6(1/0)	 8(1/1)4

NEG	
Byte, Wardy rd	 4)1/0)	 8(1/1)

Long	 6(1/01	 12)112)+

NEGX	
Byte. '.'ord	 411/C)	 8(1/1) +

Long	 6(1/0)	 120/21+

NOT	 Byte, Word	 4(1/0)	 80/11+
Log	 6)110)	 1211/2)+

[lyle, False,	4)1/0)	 8(1/11+
sCc Byte, 100	 6(110)	 811/11+
rAs	 Byte	 411101	 100/0+

TSI	 Byte, Word	 4)110)	 4I1i0l
Log	 4(1/0)	 411/01+

4 add effective /,ddress calculation time

0.7 SHIFT/ROTATE INSTRUCTION EXECUTION TIMES

Table D-7 indicates the number of clock periods for the shift and rotate instructions. The
number of bus read and write cycles is shown in parenthesis as (nw). The number of
clock periods and the number of read and write cycres must be added respectively to
those of the effective address calculation where indicated.

Table 0-7. Shlft!Rotate Instruction Execution Times

Instruction	 Size	 Register	 Memory

AS)), ASL	
Byte, Word	 6 r 2r) 10)	 S(1/I)

Long	 8 + 2n(1101

LSI1. LSL	
Bylu, Word	 6 + 2n(1/0)	 8)1/11+

lorry	 8 + 2n(I/0)	 -

10)), ROL	
Bytrt, Word	 6 + 2n(1/0)	 8(1/11+

Long	 8 + 2n(1/0)	 -

F1OXR. ROXL	 Byte. Word	 6 + 2n(1/0)	 8(1/11+
Long	 B + 2n1/0)	 -

+ add effective address calculation time
n is the shill Count

718	 Microprocessors (111(1 Microcomputer-Based System Design, 2nd Edition

D.8 BIT MANIPULATION INSTRUCTION EXECUTION TIMES

Table D-8 indicates the number of clock periods required for the bit manipulatln Instruc-
tions. The number of bus read and write cycles Is shown in parenthesis as (nw). The
number of clock periods and the number of read and write cycles must be added respec-
tively to those of the effective address calculation where indicated.

Table D-8. Bit Manipulation Instruction Execution Times

________Dynamic	 StaticInstruction	 Size
Register	 Memory	 Register	 Memory

BC(-(G	 Byte	 -	 811111+	 -.12(2111+
Long	 8(l/0)	 -	 1212/0(-

OCLR	 Byte	 -	 8(1/1)+	 -	 12(2/1)+
10(1/0)	 -	 14(21011-

USET	 Byte	 -	 811/11+	 -	 12(2/1)+
Long	 8(1/0)	 -	 12(2/01--
UyIu	 -	 411/0	 -	 2101+[ITST	 1+	 81____________

10(2/0)	 -

+ add effective address calculation Limo
* indicates maximum value

D.9 CONDITIONAL INSTRUCTION EXECUTION TIMES

Table D-9 indicates the number of clock periods required for the conditional Instructions,
The number of bus read and write cycles is Indicated In paieri'.esis as (nw). The number
of clock periods and the number of read and write cycles must he added respectively to
those of the effective address calculation where indicated.

Table D-9. Conditional Instruction Execution Times

Instruction	 Displacement	 Drench	 Branch

	

Taken	 Not Taken
B y te	 10)210)	 8(1/0)ncc	 Word	 1012/0)	 12)2/0)

(LIlA Byte	 10(2/0)	 -
Word	 10)210)	 -

BSF1 Byte	 18(212)	 -
Word	 18(2/21	 -

CC trio	 -	 12(710)
08CC	 CC (also	 10)2/0)	 1	 14(3/0)

+ add effective address calculation time
mndrcatos maximum value

	

Appendix D
	 719

D10 JMP, JSR, LEA, PEA, AND MOVEM INSTRUCTION EXECUTION TIMES

Table D-10 indicates the number of clock periods required for the Jump, jump-to-
subroutine, load effective address, push effective address, and move multiple registers
instructions. The number of bus read and write cycles is shown in parenthesis as (nw).

Table D-10. JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Tir-"

Instr	 Size	 (An)	 (An) s	 -(An)	 tl)Aol	 d)Anix(i	 xxi,,W	 xxx.L	 d)F'C)	 d(PC, ix)
JMP	 -	 8(2/0)	 -	 --	 10(710)	 14(3/0)	 101201	 12(3/0)	 101210lJ	 14)3/0)
JSR	 -	 16(712)	 '	 -	 -	 18(217)	 22(712)	 18)2/2)	 20(3/7)	 181217)	 22(217)
LEA	 -	 411101	 -	 -	 8)210)	 12210I	 8(2/0)	 12(310)	 8(210)	 12)210)
PEA	 -	 12)117)	 -	 -	 .6)712)	 20)712)	 16)2117)	 20(317)	 16(2/2)	 20)212)

	

Word	 12+4n	 12+4n	 -	 16440	 1814n	 1614n	 20440	 1644n	 18+4n
MOVEM	 (3, n/UI	 13 * n! 0)	 1.) f ri/UI	 4	 i/O)	 (4 • n/0l	 5, n/U)	 (4 t triO)	 (4 + ri/0(
M-1(Long	 12+Bn	 12480	 -	 168n	 18*8n	 16+8n	 20+8n	 16f80	 18+8n

	

3 * 2n10((3* 211/0)	 11 , 2rr/O)	 1 * 2o101	 II 4 2rr/01)5 + 2n/0)	 14 f 7n/01	 14 , 7rr/0(

	

Word	 8+ 4n	 :.	 84 4n	 12t 4rr	 144 4n	 12 + 4n	 16 4n	 -	 -
MOVEM	 2/n)	 (2/n)	 (3/n)	 13/n))3/1r))41rr)	 -	 -
R — M	 Long	 8+Bn	 -	 8+8n	 12-*Bn	 14-x8n	 12-t8n	 16+8n	 -

12/2n(--	 (2/7r.)	 (3/2n))3/2n))3/2rr()412n)	 -	 -

fl is the number of registers to robyn
is the site of the index regiMen (ix) does nol aI)cct the rrs(ri,criOn S exucrrIrOrr 11100

D 11 MULTI-PRECISION INSTRUCTION EXECUTION TIMES

Table D-11 Indicates the number of clock periods for the multi-precision Instructions. The
number of clock periods includes the time to fetch both operands, peform the operations,
store the results, and read the next instructions. The number of read and write cycles is
shown in parenthesis as (nw).

In Table D-11, the headings have the following meanings: Dn = data register operand and
M = memory operand.

Table D-11. Multi-Precision Instruction Execution Times

Instruction 1	 Size	 op Dn On	 op M M

ADOX	 Bytz, Word	 4)110)	 78(311)
Long	 8)1/0)	 30r5/21

Cm NO	 Byte. Word	 -	 12(3/0)
Long	 -	 20(5/0)

SUOX	
Byte, Word	 4)1/0)	 18(3/1)

Long	 811/01	 30)512)
ABC))	 Byte	 61)101	 18)311)
SBCD	 (lyre	 611/01	 1813/1)

720	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

D12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

Tables 0-12 and 0-13 indicate the number of clock periods for the following
miscellaneous Instructions. The number of bus read and write cycles is shown In paren-
thesis as (nw). The number of clock periods plus the number of road and write cycles
must be added to those of the effective address calculation where indicated.

Table D-12. Miscellaneous LstructIon Execution Times

Instruction	 So	 Register	 Memory
ANDI to CCR	 [lyre	 20)3/0)	 -
AND[to SB	 Word	 201210)	 -
CUK	 -	 1011/01+	 -
EORI to CCR	 Byte	 20(3/0)	 -
EOflI to SR	 Word	 20)310)
OR) to CCII	 Byte	 20(3/0)	 -
OR) to SR	 Word	 20)3/0)
MOVE Irorri SR	 -	 6)1/0)	 8)111)+
MOVE to CC)'	 -	 12)210)	 12(2/0)+
MOVE to SR	 -	 12)2/0)	 12(2/0)+
EXO	 -	 6(110)	 -

EXT	
Word	 4(110)	 -
Long	 4(1/0)

LINK	 -	 16)2/2)	 -
MOVE from USP	 -	 4(1/0)	 -
MOVE to US)' 	 -	 40101	 -
NOR	 -	 41110)	 -
BESET	 -	 132(1/0)	 -
RTE	 --	 20(510)	 -
RTR	 -	 20)5/0)	 -
HIS	 -	 1614/01	 -
STOP	 -	 4(0/0)	 -
SWAP	 40/01	 -
mARy	- 	 4(1/0)	 -
UNLK	 -	 12(3/0)	 -

i rdd effective address calculation lime

Table D .13. Move Peripheral Instruction Execution Times

Instruction	 Size	 Reg)ster— Memory	 Memory — Register

	

Word	 16)2/2)	 1614/0)
MOVE)'	 lonq	 24(2/4)	 24(6101

Appendix 	 721	

II

0.13 EXCEPTION PROCESSING EXECUTION TIMES

Table D14 indicates the number of clock periods for exception processing. The number
of clock periods includes the time for all stacking, the vector fetch, and the fetch of the
first two instruction words of the handler routine. The number of bus read and write
cycles is shown in parenthesis as (nw).

Table 0 .14. Exception Processing Execution Times

* CLhJ cftcchvc address caIcuIaCorr time
• The interrupt acknowledge cycle is assumed

to take four Clock pmods
• lnuirctes the time from when RESET ansi

HALT are List Sarrplcd as negated to when
instruction execution Starts

F ,

APPENDIX E

8086 INSTRUCTION SET REFERENCE DATA

AAA	 IAAA (no operands)	 Flags 0 D I T S Z A P C
ASCII adjust for addition	 U	 U.0 X U X

Operands	 Clocks	 Transfers j Bytes	 Coding Example

(no operands)	
}	

4	
-	

1	 AAA

AAD	 IAAD (no operands)	 Flags 0 D I T S Z A P C
ASCII adjust for division	 U	 X X U X U

Operands	 1 Clocks	 Transfers I Bytes	 Coding Example

(no operands)	 60	
-	

2	 AAD

AAM
AAM (no operands)	 Fla	 0 Q I T S Z A P C
ASCII adjust for multiply 	 Flags U	 X X U X U

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

(no operands)	 83	 -	 1	 AAM

AAS	 AAS (no operands)	 Fl	 0 D I T S Z A P C
ASCII adjust for subtraction
	 Flags U

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

(no operands)	 4	 -	 1	 AAS

For ho 808, add four clocks for each la-bit word transfor with an odd address, For the 808.8. add four clocks for each 56-bit word transfer.

V724	 Microprocessors and Microcoznjcr-Based System Design, 2nd Edition

ADC	 ADC destination, source	 Flags 0 D T S Z A P C

	

Add with carry	 X	 X X X X X
Operands	 Clocks	 Transfers* Bytes	 Coding Example

register, register	 3	 2	 ADC AX, SI
register, memory 	 9 + EA	 1	 2-4	 ADC DX, BETA [SlJ
memory, register	 16+ EA	 2	 2-4	 ADC ALPHA [BX] [S11, DI
register, immediate	 4	 -	 3-4	 ADC BX, 256
memory, immediate	 17+EA	 2	 3-6	 ADC GAMMA, 30H
accumulator, immediate	 4	 -	 2-3	 ADC AL, 5

ADD	 ADD destination, source 	 0 D I I S Z A P C
Addition	 Flags <	 > X X <

Operands	 Clocks	 Transfers	 Bytes	 Coding Example
register, register	 3	 -	 2	 ADD CX, DX
register, memory 	 U + EA	 1	 2-4	 ADD Dl, jBXj.ALPHA
memory, register	 16+EA	 2	 2-4	 ADD TEMP CL
register, immediate 	 4	 -	 3-4	 ADD CL, 2
memory, immediate	 17+ EA	 2	 3-6	 ADD ALPHA 2
accumulator, immediate	 4	 -	 2-3	 ADD AX, 200

AND	 AND destination, source	 Flags 0 D I I S Z A P C
Logical and	 o	 X X U X 0

Operands	 Clocks	 Transfers' Bytes	 Coding Example
register, register	 3 -	 -	 2	 AND AL,BL
register, memory	 9+EA	 1	 2-4	 AND CX,FLAG_WORD
memory, register	 16+ EA	 2	 2.4	 AND ASCII [DI,AL
register, immediate 	 4	 -	 3-4	 AND CX,OFOH
memory, immediate	 17+ EA	 2	 3-6	 AND BETA 01H
accumulator, immediate	 4	 -	 2-3	 AND AX, 010I0000B

CALL	 CALL target	
Flags	 0 I I S Z A P C

Call a procedure
Operands	 Clocks	 Transfers	 Bytes	 Coding Examples

near-proc	 19	 1	 3	 CALL NEAR_PROC
tar-proc	 28	 2	 5	 CALL FAR_PROC
memptr16	 21+EA	 2	 2-4	 CALL PROC_TABLE ISIIregptrl6	 16	 1	 2	 CALL AX
nlomptr32	 37+EA	 4	 2-4	 CALL LBXI.TASK [SlJ

r'B"	 CBW(no operands)	 Flags 0 D I T S Z A P C.s vi
Convert byte 1 word

Operands	 Clocks	 Transfers* Bytes	 Coding Example
(no operands) 	 2	 -	 1	 CBW

'For the 8088, add tour clocks for each 18-bit word Iranster with an odd address. For the 8088, add tour clocks for each 16-bit word trarrsler.

Appendix E	 725

CLC	 1CLC (no operands) 	 Flags ODITSZAPC

	

Clear carry flag	 0

Operands	 j Clocks	 Transfers*[Bytes	 Coding Example

(no operands)	
1	

2	
[

1	 CLC

CLD]CLD (no operands)	 Flags 0 D IT S Z A P C
Clear direction flag	 0

Operands	 Clocks [Transfers* Bytes	 Coding Example

(no operands)	 2	
[

-	 1	 CLO

CLI	 Icu (no operands)	 Flags 0 D I T S Z A P C
Clear interrupt flag	 0

Operands	 Clocks I Transfers* 1 Bytes	 Coding Example

(no operands)	 2	
-	

1	 CLI

CMC	 CMC(no operands) 	 Flags 0 0 I I S Z A P C
Complement carry flag 	 X

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

(no operands)	 2	 -	 1	 CIVIC

C RA	 CMP destination. source	 0 0 I I S Z A P C
lvi	 Flags

Compare destination to source	 X	 X X X X X

Operands	 Clocks	 Transfers' Bytes	 Coding Example

register, register	 3	 2	 CMP EX. CX
register, memory	 9-i-EA	 1	 2-4	 CMP DH, ALPHA
memory, register 	 9 + EA	 1	 2-4	 CMP [BP + 21, SI
register, immediate	 4	 -	 3-4	 CMP BL, 02H
memory, immediate	 10+ EA	 1	 3-6	 CMP [BXI.RADAR JDIJ, 3420H
accumulator, immediate	 4	 -	 2-3	 CMP AL, 00010000B

CPS	 CMPSdest-string,source-string 	 0 0 I T S Z A P C
ivi	 Flags

	

Compare string	 X	 X X X X X

Operands	 Clocks	 Transfers* Bytes	 Coding Example

dest-string, source-string	 22	 2	 1	 CMPS BUFF1, BUFF2
(repeat) dest-string, source-string 	 9 + 221 rep	 21rep	 1	 REPE CMPS ID, KEY

For tho 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four ciocku for each 15-bit word transfer.

726	 Microprocessors and Microconipu ter-I3ascd System Design, 2nd Edition

cwo	 ICWD (no operands) 	
Flags ODITSZAPC

Convert word to doubleword
Operands	 1 Clocks	 Transfers 1 Bytes	 Coding Example

(no operands)	
1	 -]

1	 CWD

DAA	 IDAA (no operands)	 Flags 0 D I T S Z A P C
Decimal adjust for addition 	 X	 X X X X X

Operands	 Clocks F Transfers	 Bytes	 Coding Example
(no operands)	 4	

f	
-	 1	 DAA

DAS	 DAS (no operands)	 Flags 0 0 I T S Z A P C
IDecimal adjust for subtraction 	 U	 <

Operands	 Clocks f Transfers* Bytes	 Coding Example
(no operands)	 4	

[
1	 DAS

DEC	 IDEC destination	 0 0 I T S Z A P C
Decrement by 1	 Flags >	 < < > >

Operands	 Clocks	 Transfers	 Bytes	 Coding Example
rcg16	 2	 -.	 1	 DEC AX
reg8	 3	 -	 L	 DECAL
memory	 15+EA	 2	 2-4	 DEC ARRAY 1St)

DIV	 DlVsource	 0 D ITS Z A PC
Division, unsigned	 Flags u	 U U U U U

Operands	 Clocks	 Transfers	 Bytes	 Coding Example
rega	 80-90	 -	 2	 DIV CL
reg16	 144-162	 -	 2	 DIV 8X
mem8	 (86-96)	 1	 2-4	 DIV ALPHA

+ EA
mem16	 (150-168)	 1	 2-4	 DIV TABLE [SI]

+EA

ESC	 ESC external-opcode,source 	 Flags 0 D I T S Z A P C
Escape

Operands	 Clocks	 Transfers' Bytes	 Coding Example
immediate, memory 	 8-i- EA	 1	 2-4	 ESC 6,ARRAY (SI)
Immediate, register 	 2	 -	 2	 ESC 20,AL

For the 8086, add four clocks for each 15-bit word transfer with an odd address. For the 8088, add four Clocks for each 16-bit word trans lot.

HLT Flags
ODITSZAPCHLT (no operands)

Halt

Appcn dix li
	 727

Operands

(no operands)

Clocks	 Transfers	 Bytes I	 Coding Example

2	 I	 - -T i IHLT

IDIV source	 0 0 T S Z A P C
IDIV Integer division	

Flags

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

reg8	 101-112	 -	 2	 IDIV BL

reg16	 165-184	 -	 2	 I DIV CX

memo	 (107-118)	 1	 2-4	 IDIV DIVISOR—BYTE [SI]
+EA

mem16	 (171-190)	 1	 2-4	 IDIV [BX].DIVISORWORD
+ EA

IMUL source	 Fl	
ODITSZAPC

IMUL Integer multiplication
	 Flags	 U U U

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

reg8	 80-98	 -	 2	 IMUL CL

reg16	 128-154	 -	 2	 IMUL BX

memo	 (86-104)	 1	 2-4	 IMUL RATE—BYTE
+ EA

mem16	 (134-160)	 1	 2-4	 IMUL RATE—WORD [BP[[DI(

	

+EA	 -.

IN
Operands

accumulator, immed8
accumulator, DX

IN accumulator,port
Input byte or word

Clocks	 Transfers*_Bytes

10	 1	 2
8	 1	 1

Flags 0 D I T S Z A P C

Coding Example

IN AL, OFFEAH
IN AX, DX

	

INC destination	 0 D I T S Z A P C
INC	 Flags

Increment by 1	 X	 X X X X

Operands	 Clocks	 Transfers' Bytes	 Coding Example

regl6	 2	 -	 1	 INC CX

regS	 3	 .-	 2	 INC BL

memory	 15+EA	 2	 2-4	 INC ALPHA [DI[]BXI

For tho 606, odd tour clocks or oach 16-bit word transfer with an odd address. For the 6088. add tour clocks for each 16-bit word tranOtO.

728	 Microprocessors and Microcomputer-Based System Design, 217d Edition

INT	 tNT interrupt-type 	 Flags o 0 I I S Z A P C
Interrupt 	 0 0

Operands	 Clocks	 Transfers' Bytes	 Coding Example
immed8 (type = 3)	 52	 5	 1	 INT 3
imrned8 (type 0 3)	 51	 5	 2	 INT 67

INTO	 INTR (external maskabie interrupt) 	
Fl	 0 0 J I S Z A P CagInterrupt if INTR and lF=1	 0

Operands	 Clocks	 Transfers' Bytes	 Coding Example
(no operands)	 61	 7	 N/A	 N/A

INTO	 INTO (no operands)	
Fl	 0 0 I I S Z A PCagsInterrupt if overflow	 0 0

Operands	 Clocks	 Transfers- Bytes	 Coding Example
(no operands)	 53 or 4	 5	 1 - INTO

IRET	 IRET (no operands)	
Fl	 0 D I T S Z A P C

Interrupt Return	 Flags RRRRRRRRR
Operands	 Clocks	 Transfers' Bytes	 Coding Example

(no operands)	 24	 3	 1	 IRET

JA/JNBE	 JA/JNBE short-label 	 Flags) D I T S Z A P C
Ju m p If above /Jump if not below nor equal

Operands	 Clocks	 Transfers' Bytes	 Coding Example
short-label	 16or4	 -	 2	 JA ABOVE

JAE/JNB	 JAE/JNB short-label 	 Flags 0 D I I S Z A P C
Jump it above or equal/Jump it not below

Operands	 Clocks	 Transfers' Bytes	 Coding Example
short-label	 16or4	 -	 2	 JAE ABOVE—EQUAL

JB/JNAE	 JB/JNAE short-label	 Flags 0 0 I T S Z A P C
Jump if below/Jump it not above nor equal

Operands	 Clocks	 Transfers' Bytes	 Coding Example
short-label	 16 or 4	 -	 2	 JB BELOW

'For the 8080 arid four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
tfNTR i5 not an instruction; it is included In table 221 Only for timing information.

/

Appendix

IJBE/JA short-label 	 Flags	 D I T S Z A
JBE/J NA	 I Jump u below or equal/Jump if not above

Operands	 Clocks Transfers	 Bytes -	 Coding Example

short-label	 16 or 	 -	 2	 JNA NOT—ABOVE

jc	
JCshort-label	 Flags 0 D I T S Z A P C
Jump if carry

Operands	 [Clocks	 Transfers] Bytes	 Coding Example

short-label	 16 or 4
J	 -	

2	 JC CARRY—SET

IJCXh0rt01	
0 D I T S Z A P C

jcxz 1Jump it CX s?ero 	
Flags

Operands	 Clocks	 Transfers . Bytes	 Coding Example

short-label	 18or6 j	 -	
2	 JCXZ COUNT—DONE

FJE/JPZsrtort.labot 	 0 D I T S Z A P C
JE/JZ	 um

	

If equal/Jump if zero

ks	 Transfers	 B

-	 Flags

Operands	 Clocytes	 Coding Example

short-label	 16or4	
-	

2	 JZ ZERO

JG/JNLE	 IJLEth0rt	
0 0 I T S Z A P C

Jump It greater/Jump If not less nor equal 	
Flags

Operands	 Clocks (ransfers	 Bytes	 Coding Example

short-label	 16 or 4	
-	

2	 JG GREATER

7JG7EJNL :=Jump
JGE/JNL 	

Flags 0 D I T S Z A P C
 if greater or equal /Jump if not less

Operands	 I Clocks 1 Transfers f Bytes	 Coding Example

short-label	 16or4	 -	 2	 JGE GREATER—EQUAL

JL/JNGE	 !JL/JNGEShOrI-tabel 	 Flags 0 0 I T S Z A P C
I Jump if less/Jump if not greater nor equal

Operands	 I Clocks	 Transfers	 Bytes	 Coding Example	 -

short-label	 16 or4	 -	 2	 JL LESS

For the 8386. add four clocks or each tb-br ward transfer with an odd add rem For the 8088, add tour clocks for each 16-bit word transfer.

730	 Microprocessors and Micrc:onipu ter- Based Systenj Design, 2nd ldztion

JLE/JNG	 JLE/JNG short-label
Jump if less or equdiump if not greater

Operands	 Clocks	 Translers	 Bytes
short-Label	 16 or 4	 -	 2

Flags ODITSZAPC

Coding Example

JNG NOT—GREATER

JMP	 JMP target	 Fla $ 0 D I T S Z A P C
Jump	 9

Operands	 Clocks	 Transfers	 Bytes	 Coding Example
short-label	 15	 -	 2	 JMP SHORT
near-label	 15	 -	 3	 JMP WITHIN—SEGMENT
far-label	 15	 -	 5	 JMP FAR—LABEL
memptr16	 18+EA	 1	 2-4	 JMP [BX].TARGET
regptrl6	 11	 -	 2	 JMP CX
memptr32	 24+EA	 2	 2-4	 JMP OTHER.SEG Slj

UINC	 JNCshort-Iabel	 Flags 0 DI T S ZAP C
Jump if not carry

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

short-label	 16or4	 -	 2	 JNC NOT—CARRY

JNE/JNZ	 JNE/JNZ short-label 	 Flags 0 0 I T S Z A P C
Jump if not equal /Jump if not zero

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

short-label	 16or4	 -	 2	 JNE NOT—EQUAL

'No	 JNO short-label 	 Flags 0 D I IS Z A PC
Jump if not overflow

Operands	 Clocks	 Transfers* Bytes	 Coding Example

short-label	 16or4	 -	 2	 JNO NO—OVERFLOW

JNP/JPO	 JNP/JPO short-label 	 Flags 00 ITS Z A PC
Jump if not parity/Jump it parity odd

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

short-label	 16or4	 -	 2	 JPO ODD—PARITY

Jk'S	 JNS short-label	 Flags 0 0 I T S Z A P C
Jump if not sign

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

short-label	 16or4	 -	 2	 JNS POSITIVE

For the 8080. add four clocks For each 16-bit word transfer with an odd addruss. For the 8088. add four clocks For each 16-bit word transfer.

Appendix j;;	 73 1

IO	
JO short-label	 Flags 0 D I T S Z A P C
Jump it overflow

Operands	 Clocks	 Transfers' Bytes	 Coding Example

short-label	 16 or 4	 -	 2	 JO SIGNED_OVRFLW

'P 1 'PEJP/JPE short-label	 0 D T S Z A P C
U ii	 FlagsJump II parity/Jump it parity even

Operands	 Clocks	 Transfers	 Bytes

	

Coding Example

short-label	 16014	 -	 2	 JPE EVEN_PARITY

is	
JS short-label 	 0 D I T S Z A P C
Jump if sign	 Flags

Operands	 Clocks [Transfers' I Bytes	 Coding Example

short-label	 16or4	 -	 2	 JS NEGATIVE

LAHF	 LAHF(no operands) 	 Flags 0 D I T S Z A P C
Load AH from flags

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

(no operands)	 4	
-	 { 1
	 LAHF

LDS	 LDS destination,source 	 Flags 0 D I T S Z A P C
Load pointer using DS

Operands	 Clocks	 Transfers [Bytes	 Coding Example

reg16, mem32	 16-i- EA	 2	 [2-4	 LDS SIDATA.SEG IDII

LEA	 LEA destination, source 	 Flags 0 D I T S Z A P C
Load effective address

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

regl6, mem16	 2+ EA	 -	 2-4	 LEA BX [BP] [DI]

LEs	 LES deslinalion source 	 Flags 0 D I T S Z A P C
Load pointer using ES

Operands	 Clocks	 Transfers' Bytes	 Coding Example

regl6, mem32	 16-i-EA	 2	 2-4	 LES DI, [BX].TEXT_BUFF

For Llo8O86 add four clocks for each 1&-bil word Iran for wirh an Md address. For hc 8088, add four clocks for each 16-bit word trans ier

732	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

LOCK	 FlagsILOCK (no operands) 	 0 D IT S Z A PC
Lock bus

Operands	 Clocks I Transfers	 Bytes	 Coding Example

(no operands)	 2	 -	 1	 LOCK XCHG FLAGAL

LODS	 LODSsource-strrng	 Flags 0 D I T S Z A PC
Load string

Operands	 Clocks	 Transfers' Bytes	 Coding Example

source-string	 12	 1	 1	 LODS CUSTOMER—NAME
(repeat) source-string 	 9+13/rep	 1/rep	 1	 REP LODS NAME

LOOP	 LOOP short-label 	 Flags 0 D 1 1 S Z A PC
Loop

Operands	 Clocks	 Transfers* Bytes	 Coding Example

short-label	 1715	 -	 2	 LOOP AGAIN

LOOPE/LOO PZ
Operands

short-label

LOOPE/LOOPZ short-label
Loop if equal/ Loop if zero

Clocks	 Transfers

18or6	 -

Flags ODITSZAPC

Bytes	 Coding Example

2	 LOOPE AGAIN

LOOPN E/LOOPNZ I LOOPNE/LOOPNZ short-label 	 Flags ODITSZAPC
Loop it not equallLoop if not zero

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

short-label	 19or5	 -	 2	 LOOPNE AGAIN

NMIt	 NMI (external nonrnaskable interrupt) 	 Flags 0 S I I S Z A P C

	

Interrupt if
NMI =1	 00

Operands	 Clocks	 Transfers' Bytes	 Coding Example

(no operands) 	 50	 5	 NIA	 N/A

'For the 8086, add tour clocks lor each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
tNMI is not an instruction; it is includod In table 2-21 Only for timing inbormation

0

I'

0

Appendix E	
733

MOV	 MOV destinationsource	 Flags 0 D I T S Z A P C
Move

Opevands	 Clocks	 Transfers' Bytes	 Coding Example

memoryaCCumUIatOr	 10	 1	 3	 MOV ARRAY ISII; AL

accumulator, memory	 10	 1	 3	 MOV AX, TEMP_RES'LT

register, register	 2	 -	 2	 MOV AX,CX

register, memory	 8+EA	 1	 2-4	 MOV BP,STACK_TOP

memory, register 	 9+EA	 1	 2-4	 MOV COUNT [DI), C(

register, immediate	 4	 -	 2-3	 MOV CL, 2

memory, immediate	 10+EA	 1	 3-6	 MOV MASK [BXJ[SI],2CH

seg-reg, regib	 2	 -	 2	 MOV ES, CX
seg-reg,meml6	 8+EA	 1	 2-4	 MOV DS.SEGMET_BASE

reg16, seg-reg	 2	 -	 2	 MOV BP, SS

memory,seg-reg	 9+EA	 1	 2-4	 MOV (BX].SEG_SAVE.

MOVS

	

	 MOVS deststring,5ourCC-String
Move string

Operands	 Clocks	 Transfers

dest-string, source-string	 18	 2
(repeat) dest-string, source-string 	 9 +171 rep	 2/rep

Flags 0 DITSZAPC

Bytes -	 Coding Example

1	 MOVS LINE EDIT—DATA
1	 REP MOVS SCREEN, BUFFER

Flags
ODITSZAPC

MOVSB/MOVSW
Operands

(no operands)
(repeat) (no operands)

MOVSB/MOVSW (no operands)
Move string (byte/word)

I Clocks I Transfers

18	 2
9+17/rep	 21rep

Bytes	 Coding Example

1	 MOVSB
1	 REP MOVSW

MULsource	 Flags 0 D I T S Z A P C
MUL Multiplication, unsigned	 X	 U U U U X

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

regS	 70-77	 -	 2	 MUL BL

reg16	 118-133	 -	 2	 MUL CX

mem8	 (76-83)	 1	 2-4	 MUL MONTH [SI)
+EA

mem16	 (124-139)	 1	 2-4	 MUL BAUD—RATE
+EA

For the 8086, add four clocks for each 16-bit word trans ter with an odd address. "Or i no ouw acu uu,

734	 Microprocessor; and Microcoinputcr-Based SysLcrn Design, 2nd Edition

NEG

	

	 I

NEG destination	 o D T S Z A P C
Negate	 Flags	 < > •

Operands	 Clocks	 Transfers	 Bytes	 Coding Example
register	 3	 -	 2	 NEC AL
memory	 .16+ EA]

	
2	 2-4	 NEC MULTIPLIER

0 it destination = 0

NOP	 NOP(no operands)	 Flags 0 D I T S Z A PC
No Operation

Operands	 Clocks	 Transfers' Bytes	 Coding Example
(no operands)	 3	 -	 1	 NOP

NOT

	

	 NOT destination	 Flags 0 0 I T S Z A P C
Logical not

Operands	 Clocks	 Transfers	 Bytes	 Coding Example
register	 3	 -	 2	 NOT AX
memory	 16+EA	 2	 2-4	 NOT CHARACTER

OUT	 OUT port,accumulator	 Flags 0 D I I S Z A P C
Output byte or word

Operands	 Clocks	 Transfers , Bytes	 Coding Example
immedS, accumulator	 10	 1	 2	 OUT 44, AX
DX, accumulator	 3	 1	 1	 OUT DX, AL

POP

	

	 POP destination	 Flags 0 D I T S Z A P C
Pop word off stack

Operands	 Clocks	 Transfers	 Bytes	 Coding Example
register	 8	 1	 1	 POP DX
seg-reg (CS illegal)	 8	 1	 1	 POP DS
memory	 17.i-EA	 2	 2-4	 POP PARAMETER

*For the 8086, add four clocks for each 15bj word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Appendix E

POPF
Operands

(no operands)

POPF (no operands)
Pop flags off stack

Clocks I Transfers' I Bytes

735

Flags 0 D I T S Z A P C
R R R R RR A AR

Coding Example

POP F

PUSH	 PUSH source	 Flags 0 D I T S Z A P C
Push word onto slack

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

register	
J	 11	 1	 1	 PUSH Si

seg-reg (CS legal) 	 10	 I	 1	 1	 PUSH ES
memory	 16+ EA	 2	 2-4	 PUSH RETURN—CODE [Sl]

PUSH F	 Flags
IPUSHF (no operands)	

Fl	 0 D I T S Z A P C
Push flags onto stack

Operands	 Clocks	 Transfers [Bytes	 Coding Example
(no opera.ds)	 10	 1	

{	
I	 PUSHF

RCL	
lRotate
RCL destination,count	 Fla	 0 D I I S Z A P C

 left through carry	 X	 X
Operands	 Clocks	 Transfers' Bytes	 Coding Example

register, 1	 2	 -	 2	 RCL CX, 1
register, CL	 6+4/bit	 -	 2	 RCL AL, CL
memory, 1	 15+EA	 2	 2-4	 RCL ALPHA, 1
memory, CL	 20+EA+	 2	 2-4	 RCL [BP],PARM,CL

4/bit

RCR	 RCRdesignation,count	 Flags 0 D I T S Z A P C

	

Rotate right through carry 	 X	 x
Operands	 Clocks	 Transfers' Bytes	 Coding Example

register, 1	 2	 -	 2	 RCA BX, i
register, CL	 8+41bit	 -	 2	 RCA BL, CL
memory,1	 15-EA	 2	 2-4	 RCR [BXJSTATUS,1
memory, CL	 20+EA+	 2	 2-4	 RCA ARRAY (DI], CL

4/bit

REP

	

	 REP (no operands) 	 Flags 0 D I T S Z A P C
Repeat string operation

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

(no operands)	 2	 -	 1	 REP MOVS DEST, SRCE

Fortho 8088, add four cIock3 for oach 18bitword transfer with an Odd address. For the 8'88, add four coc's cr each d-bit word lranor.

736	 Microprocc,9sors and Microcomputer-Based System Design, 2nd Edition

REPEIR EPZ

	

	 IREPE/REPZ (no operands)	 Flags O D T S Z A P C
Repeat string operation while equal /while zero

	

Operands	 [Clocks
f

Transfers	 Bytes	 Coding Example

(no operands)	
[

2	 -	 1	 REPE CMPS DATA, KEY

REPNE/REPNZ	 REPNE/REPNZ'(no operands) 	 Flags 0 D I T S Z A P C
Repeat st(mg operation while not equal/not zero

	

Operands	 I clocks	 Transfers 1 Bytes	 Coding txmpIe

(no operands)	 2	 -	 1	 REPNE SCAS INPUT—LINE

RET	 RET optional-pop-value	 Flags	 D I I S Z A P C
Return from procedure

	

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

(intra-segment, no pop) 	 8	 1	 1	 RET
(intra-segment, pop) 	 12	 1	 3	 RET 4
(inter-segment, no pop)	 18	 2	 1	 RET
(inter-segment, pop)	 17	 2	 3	 RET 2

ROL	 AOL destinationcount	 0 D I I S Z A P C
Rotate loft	 Flags

	

Operands	 Clocks	 Transfers	 Bytes	 Coding Examples

register, 1	 2	 -	 2	 ROL BX, 1
register, CL	 8+4/bit	 -	 2	 ROL DI, CL
memory,1	 15+EA	 2	 2-4	 AOL FLAG—BYTE ID11,1
memory, CL	 20+EA+	 2	 2-4	 ROL ALPHA ,CL

4/bit

R0R	 FOR destination Count 	 Flags 0 0 I T S Z A P C
Rotate right	 X	 x

	Operand	 Clocks	 Transfers'	 Bytes	 Coding Example

register, 1	 2	 -	 2	 ROR AL, 1
register, CL	 8+41bit	 2	 ROR BX, CL
memory,1	 15+EA	 2	 2-4	 ROB PORT_STATUS,1
memory, CL	 20+EA+	 2	 2-4	 FOR CMDWORD,CL

4/bit

SAHF	 SAHF (no operands)	 Flags 0 D IT S Z A PC
Store AH into flags	 B B B A R

	

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

(no operands)	 4	 -	 1	 SAHF

For the 808. add tour Clocks for each 16-bit word traesforwith an odd address. For tire SOBa, add l our clocks For each 16-bit word trans ler.

Appendix 	 737

SAL/SHL SAL/SHL deshition,cout	
Fl	 0 D I S Z A P C

Shift arithmetic left/Shift logical left
	

Flags

Operands	 Clocks	 Transfers	 Bytes	 Coding Examples
register,1	 2	 -	 2	 SAL AL,1
register, CL	 8+4/bit	 -	 2	 SHL Dl, CL
rpemory,1	 15+ EA	 2	 2-4	 SHL [BX]OVERDRAW,i
memory, CL	 20.,-EA+	 2	 2-4	 SAL STORE—COUNT CL

4/bit

SAR

	

	 I
S AR destlnation.source	 Fla	 0 D i T S Z A P C
Shift arithmetic right 	 95 x	 x x u x x

Operands	 Clocks	 Transfers	 Bytes	 Coding Example
register, 1	 2	 -	 2	 SAR DX, 1
register, CL	 8+41bit	 -	 2	 SAR Di, CL
mernory,1	 15+ EA	 2	 2-4	 SAR N_BLOCKS,1
memory, CL	 20+EA+	 2	 2-4	 SAR NBLOCKS, CL

4/bit

SBB	 SBBdestl nation, source 	 0 D I I S Z A P C
Subtract with borrow 	 Flags	 >

Operands	 Clocks	 Transfers'	 Bytes	 Coding Example
register, register 	 3	 -	 2	 SBB OX, CX
register, memory	 9+ EA	 1	 2-4	 SOB Di, (BXJ.PAYMENT
memory, register	 16+EA	 2	 2-4	 SBB BALANCE,AX
accumulator, immediate 	 4	 -	 2-3	 SOB AX, 2
register, immediate	 4	 -	 3-4	 SOB CL, 1
.memory, immediate 	 17+ EA	 2	 3-6	 SOB COUNT [SI], 10

SCAS	 ISCASdest-string	 Flags 0 D I T S Z A P C
Scan string	 X	 X X X x x

Operands	 Clocks I Transfers	 Bytes	 Coding Example
dest-string	 15	 1	 1.	 SCAS INPUT—LINE
(repeat) dest-string 	 9+15/repj	 1/rep	 1	 REPNE SCAS BUFFER

SEGMENT t 	 FlagsISEGMENT override prefix 	 0 D I I S Z A P C
Override to specified segment

Operands	 Clocks I Transfers I Bytes	 Coding Example
(no operands)	

j	
2	 -	 1	 MOV SS:PARAMETER, AX

For the 8068, add lour clocks lor each 16-bit word transfer with an odd address. For the 8088, add tour clocks for each 16-bit word transfer.
tASM-86 incorporates tho segment override prolix into the operand spocilcallon and not as a setaralo irsIruclion. SEGMENT is included it table
2-21 only for timing Information.

ivucroprocessors and Microcomputer-Based Systein Design, zna Qition

SHR	 SHRdestlnationcount	 0 D I T S Z A P C

	

Shift logical right 	 Flags

Operands	 Clocks Transfers	 Bytes	 Coding Example
register, 1	 2	 -	 2	 SHR SI, 1
register, CL	 8+41bit	 -	 2	 SHR SI,CL
memory,1	 15+ EA	 2	 2-4	 SHR ID—BYTE [SI] [8X],1
memory, CL	 20+EA+	 2	 2.4	 SHR INPUT_WORD, CL

4/bit

SINGLE SlEpt	 ISINGLESTEP(Trapflaglnterrupt) 	 Flags 0 D I T S Z A P C

	

Interrupt If TF1	 0 0
Operands	 Clocks [Transfers* Bytes	 Coding Example

(no operands) 	 50	 5	 N/A	 N/A

STC

	

	 I
STC(nooperands)	 0 D ITS Z A P C
Set carry flag	 Flags

Operands	 I Clocks	 Transfers	 Bytes	 Coding Example
(no operands)	

[
2	 -	 1	 STC

STD	 FSTD (no operands)	 0 D I I S Z A P C

	

Set direction flag	 Flags	 1
Operands	 Clocks	 Transfers	 Bytes	 Coding Example

(no operands)	 2	 -	 1	 STO

STt	 STI (no operands)	 Flags 0 D I T S Z A P C
Set interrupt enable flag	 1

Operands	 Clocks	 Transfers J Bytes	 Coding Example
(no operands)	 2	

-	 J 1	 STi

STOS	 STOSdest-siring	 Fla	 0 D I T S Z A P C
Store byte or word string	 g

Operands	 Clocks	 Transfers	 Bytes	 Coding Example
dest•string	 11	 1	 1	 STOS PRINT—LINE
(repeat)deststring	 9+101rep	 11 rep	 1	 REP STOS DISPLAY

• For the 8088, add four clocks for each 16-bit word transfer with an odd address. For the 8088 acid four clocks for each 16bIL word transfer,
fSINGLE STEP is not an Instruction; If Is Included in fable 2.21 only for timing information.

Appendix E	 739

SUB	 SUB destination, source 	 Flags	 D I I S Z A P C
Subtraction	 X	 X X X X X

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

register, register	 3	 -	 2	 SUB CX, BX
register, memory	 9+EA	 1	 2-4	 SUB DX, MATH—TOTAL [S!}
memory, register	 16+EA	 2	 2-4	 SUB [BP+2],CL
accumulator, immediate	 4	 -	 2-3	 SUB AL, 10
register, immediate	 4	 -	 3-4	 SUB SI, 5280
memory, Immediate 	 17+EA	 2	 3-6	 SUB [BP},BALANCE. 1000

TEST	 TEST destination, source 	 Flags 0 D I T S Z A P C
Test or non-destructive logical and	 0	 X X U X 0

Operands	 Clocks	 Transfers* Bytes	 Coding Example

register, register 	 3	 -	 2	 TEST SI, DI
register, memory	 9+EA	 1	 2-4	 TEST SI, END—COUNT
accumulator, immediate	 4	 -	 2-3	 TEST AL, 00100000B
register, immediate	 5	 -	 3-4	 TEST BX, OCC4H
memory, immediate	 11+EA	 -	 3-6	 TEST RETURN—CODE, 01

WAIT	 JWAlT(noo2nds)	 Flags 0 D I I S Z A P C
Wait while TEST pin not asserted

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

(no operands)	 3 + 5n	 -	 1	 WAIT

—7VCHG	 XCHG destination,source 	 Flags 0 D I T S Z A P C
A Exchange

Operands	 Clocks	 Transfers	 Bytes	 Coding Example

accumulator, reg16	 3	 -	 1	 XCHG AX, BX
memory, register	 17-i-EA	 2	 2-4	 XCHG SEMAPHORE, AX
register, register	 4	 2	 XCHG AL, BL

XLAT

	

	 XLAT source-table	 Flags 0 D I T S Z A P C
Translate

Operands	 Clocks	 Transfers' Bytes	 Coding Example

source-table	 11	 1	 1	 XLAT ASCII—TAB

For tile 8088. add four clocks [or each 16bjt word iranster with an odd address. For the 8088, add four clocks for each 16•bii word Iransler.

740
	

Microprocessors and Microcomputer-Based System Design, 2nd Edition

XOR destinatlonsource
Logical exclusive or

Clocks	 Transfers*

3	 -
9+EA	 1
16+EA	 2

4	 -

4	 -
17+EA	 2

Flags
ODITSZAPC

Bytes	 Coding Example

2	 XOR CX, BX
2-4	 XOR CL, MASK—BYTE
2-4	 XOR ALPHA [SI], DX
2-3 XOR AL, 0100001 O
3-4	 XOR SI, 0OC2H
3-6	 XOR RETURN—CODE, OD2H

XOR
Operands

register, register
register, memory
memory, register
accumulator, immediate
register, immediate
memory, immediate

For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add tour clocks for each 16-bit word transfer.

APPENDIX F

GLOSSARY/ASCII CODES

Absolute Addressing: The ccific identification number (address) permanently assigncd to

a storage location, device, or register by the machine designer. Used to locate information and

assist in circuit fault diagnosis.

Accumulator: Used for storing the result oiler most ALU operations: 8 bits long for an 8-

bit microprocessor.

Address: A unique identification number (or locator) ofsomc source or destination of data.

That part of an instruction which specifies the register or memory location of an operand
involved in the instruction.

Addressing Mode: The manner in which a microprocessor determines the operand and
destination addresses in an instruction cycle.

Address Register: A register used to store the address (label for a memory location) of data

being fetched or stored, a sequence of instructions to be executed, or the location to which

control will be transferred.

Address Space: The number of storage locations in a m icrocomputer's memory that can be

directly addressed by the microprocessor. The addressing range is determined by the number

of address pins provided with the microprocessor chip.

American Standard Code for Information Interchange (ASCII): An 8-bit code commonly
used with microprocessors for representing alphanumeric codes.

Analog-to-Digital (A/D) Converter: Transforms an analog voltage into its digital equiva-
lent,

Architecture: The organizational structure or hardware configuration of a computer sys-
tem.

Arithmetic and Logic Unit (ALU): A dh:itol circuit which performs arithmetic and logic

operations on two n-bit numbers.

Assembler: A program that translates an assembly language program into a machine lan -

guage program.

Assembly Language: A type of microprocessor programming language that uses a semi-

English-language statement.

Asynchronous Operation: The execution of a sequence of steps such that each step is
initiated 01)00 completion of the previous step. For bus structures, this implies a timing

protocol that uses no clock and has no period; hence systein operation proceeds at a rate

governed by the time-constants of the enabled circuitry.

741

742	 Microprocessors and Microcomputer-Based System Design, 2nd Ld1 tlOfl

Asynchronous Serial Data Transmission: The transmitting device does not need to be
synchronized with the receiving device.

Autodccrcment Addressing Mode: The contents of the specified microprocessor register are
first dccrcmentcd by K (1 for byte, 2 for 16-bit, and 4 for 32-bit) and then the resulting value
is used as the address of the operand.

Autoincrenient Addressing Mode: The contents of a specified microprocessor register are
used as the address of the operand first and then the register contents are automatically
incremented by K (1 for byte, 2 for 16-bit, and 4 for 32-bit).

Bandwidth: Bandwidth of a bus or memory is a measure of communications throughput
and can be represented as the product of the maximum number of transactions per second and
number of data bits per transaction.

Barrel Shifter: A specially configured shift register that is normally included in 32-bit
microprocessors for fast shift operations.

Base Address: An address that is used to convert all relative addresses in a program to
absolute (machine) addresses.

Base Page Addressing: This instruction typically uses two bytes: the first byte is the op code,
and the second byte is the low-order address byte. The high-order address byte is assumed to
be the base-page number.

Baud Rate; Rate of data transmission in bits per second.

Binary-Coded Decimal (BCD): The representation of 10 decimal digits, 0 through 9, by
their corresponding 4-bit binary numbers.

Bit: An abbreviation for a binary digit. A unit of information equal to one binary decision
or one of two possible states (one or zero, on or off, true or false) and represents the smallest
piece of information in a binary notation system.

Bit-Slice Microprocessor: Divides the elements of a central processing unit (ALl_I, registers,
and control unit) among several ICs. The registers and ALU are usually contained in a single
chip. These microprocessors can be cascaded to . produce microprocessors of variable word
lengths such as 8, 12, 16, 32. The control unit of a bit-slice microprocessor is typically
microprogrammed.

Block Transfer DMA: A peripheral device requests the DMA transfer via the DMA request
line, which is connected directly or through a DMA controller chip to the microprocessor, The
DMA controller chip completes the DMA transfer and transfers the control of the bus to the
microprocessor.

Branch: The branch instruction allows the computer to skip or jump out of program
sequence to a designated instruction either unconditionally or conditionally (based on condi-
tions such as carry or sign).

Breakpoint: Allows the user to execute the section of a program until one of the breakpoint
conditions is met. It is then halted. The designer may then single step or examine memory and
registers. Typically breakpoint conditions are program counter address or data references.
Breakpoints are used in debugging assembly language programs.

Buffer: A temporary memory storage device designed to compensate for the different data
rates between a transmitting device and a receiving device (for example, between a CPU and
a peripheral). Current amplifiers are also sometimes referred to as buffers.

Appendix F	 743

Bus: A collection of parallel unbroken electrical signal lines that interconnect or link
computer modules. The typical microcomputer interface includes separate buses for address,
data, control, and power functions.

Bus Arbitration: Bus operation protocols that guarantee conflict-free access to a bus.
Arbitration is the process of selecting one respondent from a collection of several candidates
that concurrently request service.

Bus Cycle: The period of time in which a microprocessor carries out all the necessary bus
communications to implement a standard operation.

Byte: An 8-bit word.

Cache Memory: Ali speed, directly accessible, relatively small semiconductor
memory block used to store data/instructions that the microcomputer may need in the
immediate future. Increases system bandwidth by reducing thc.numbcr of cxtern 1 '''emory
fetches required by the processor. Typical 32-bit microprocessors are normally provided '.'ith
on-chip cache memory.

Cathode Ray Tube (CRT): Evacuated glass tube with a fluorescent coating on the inner side
of the screen.

Central Processing Unit (CPU): The portion of a computer containing the ALU, register
section, and control unit.

Clock: Timing signals providing synchronization among the various components in a
microcomputer system.

Code: A system of symbols or sets of rules for the representation of data in a digital
computer. Some examples include binary, BCD, and ASCII.

Compiler: A software program which translates the source code written in a high-level
programming language into machine language that is understandable to the processor,

Complementary Metal Oxide Semiconductor (CMOS): Provides low power density and
high noise immunity.

Concurrency: The occurrence of one or more operations at a time (see Parallel Operation).

Conditional Branching: Conditional branch instructions are used to change the order of
execution of a program based on the conditions set by the status flags.

Condition Code Register: Contains information such as carry, sign, zero, and overflow
based on ALU operations.

Control Store: Used to contain microcode (usually in ROM) in order to provide for
microprogrammed "firmware" control functions. An integral part of a microprogrammed
system controller.

Control Unit Part of the microprocessor; its purpose is to read and decode instructions
froni the memory.

Controller/Sequencer: The hardware circuits which provide signals to carry out selection
and retrieval of instructions from storage in sequence, interpret them, and initiate the required
operation. The system functions may be implemented by hardware control, firmware control,
or software control.

Coprocessor: A companion microprocessor that performs specific functions such as float-
ing-point operations independently from the microprocessor to speed up overall operations.

744	 Microprocessors and Microcomputer-Based System Design, 211d Edition

CPU Space: Protected memory space addressable only by the microprocessor itself; it is used

for a processor's internal functions or vectored exception processing.

CRT Controller: Provides all logic functions for interfacing the microprocessor to a CR1.

Cycle Stealing DMA: The DMA controller transfers a byte of data between the

microcomputer's memory and a peripheral device such as the disk by stealing a clock cycle of

the microprocessor.

Data: Basic elements of information represented in binary form (that is, digits consisting of

bits) that
call

processed or produced by a microcomputer. Data represents any group of

operands made up of numbers, letters, or symbols denoting any condition, value, or state.

Current typical inicrocomilcr operand sizes include: a word, which typically contains 2 bytes

or 16 bits; a long word, which contains 4 bytes or 32 bits; a quad word, which contains 8 bytes

or 64 bits.

Data Counter (DC): Also known as Memory Address Register (MAR). Stores the address of

data; typically, 16 bits long for 8-bit microprocessors.

Data Register: A register used to temporarily hold operational data being. sent to and from

a peripheral device.

Debugger: A program that executes and debugs the object program generated by the

assembler or compiler. The debugger provides a single stepping, breakpoints, and program

tracing.

Decoder: A device capable of generating 2ii output lines based oil 	 inputs.

Direct Memory Access (DMA): A type of input/output technique in which data can be

transferred between the microcomputer memory and external devices without the

microprocessor's involvement.

Directly Addressable Memory: The memory address space in which the microprocessor can

directly execute programs. The maxi mu in directly addressable memory is determined by the

number of the microprocessor's address pins.

Dynamic RAM: Stores data in capacitors and, therefore, must be refreshed; uses refresh

circuitry.

EAROM (Electrically Alterable Read-Only Memory): Call programmed without remov-

ing the memory from its sockets. This memory is also called read-mostly memory since it has

much slower write times than read times.

Editor: A program that produces
all

	 source program, written in assembly or high-

level languages.	 -

Effective Address: The final address used to carry out an instruction. l)ctermincd by the

addressing mode.

Emulator: A hardware device that allows a microcomputer system to emulate (that is,

mimic the procedures or protocols) another microcomputer system.

Encode: To apply the rules governing a specific code. For example, the selection of which

hardware devices to enable during
all

can occur automatically by encoding indi-

vidual device identifications into the instructions themselves. Hence, to encode is to convert

data from its natural form into i machine-readable code usable to the computer.

Appendix I:	 745

EPROM (Erasable Programmable Read-Only Memory): Call 	 programmed and erased

using ultraviolet light. The chip must be removed from the microcomputer system for pro-

gramming.

Exception Processing: The CPU processing state associated with interrupts, trap instruc-
tions, tracing, and other exceptional conditions, whether they are initiated internally or

externally.

Extended Binary-Coded Decimal Interchange Code (EBCDIC): An 8-bit code commonly

used with microprocessors for representing character codes.

Firmware: Permanently stored, unalterable program instructions contained in the ROM

section of a computer's memory (see Control Store).

Flag(s): An indicator, often a single bit, to indicate some conditions such as trace, carry,

zero, and overflow.

Flash Memory: Nonvolatile and reprogrammable memory. Fabricated by using ETOXI I
(EPROM tunnel oxide) technology which is a combination of EPROM and EEPROM tech-
nologies. Can be reprogrammed while embedded in the board. However, one call change

a sector or block (consisting of multiple bytes) at a time.

Flowchart: Representation of a program in a schematic form. It is convenient to flowchart

,a 	 before writing the actual programs.

Global Bus: A computer bus system that is available to and shared by a number of processors

connected together in a multiprocessor system environment.

Handshaking: Data transfer via exchange of control signals between the microprocessor and
all 	 device.

Hardware: The physical electronic circuits (chips) that make up the microcomputer system.

HCMOS: Low-power HMOS.

Hexadecimal Number System: Base-16 number system.

Hierarchical Memory: A memory organization or informational structure in which func-

tional relationships are associated with different levels.

High-Level Language: A type of programming language that uses a more understandable

human-oriented language such as Pascal.

HMOS: 1-ugh-performance MOS reduces the channel length of the NMOS transistor and

provides increased density and speed in LSI and VLSI circuits.

Immediate Address: An address that is used as an operand by the instruction itself.

Implied Address: An address not specified, but contained implicitly in the instruction.

In-Circuit Emulation: The most powerful hardware debugging technique; especially valu-

able when hardware and software arc being debugged simultaneously.

Index: A symbol used to identify or place a particular quantity in an array (list) of similar

quantities. Also, all 	 list of references to the contents of a larger body of data such as

a file or record.

746	 Microprocessors and Microcompnicr-Based Sysiem Design, 2nd Edition

Indexed Addressing: Typically uses 3 bytes: the first byte for the op code and the next 2 bytes
for the 16-bit address. The effective address of the instruction is determined by the sum of the
16-bit address and the contents of the index register.

Index Register: A register used to hold a value used in indexing data, such as when a value
is used in indexed addressing to increment a base address contained within ail

Indirect Address: A register holding a memory address to he accessed.

Instruction: A program statement (step) that causes the microcomputer to carry out an
operation, and specifies the values or locations of all operands.

Instruction Cycle: The sequence of operations that a microprocessor has to carry out while
executing an instruction.

Instruction Register (IR): A register storing instructions; typically 8 bits long for an 8-bit
microprocessor.

Instruction Set: Lists all the instructions (available in machine code) that the microcom-
puter can execute.

Interleaved DMA: Using this technique, the DMA controller takes over the system bus when
the microprocessor is not using it.

Internal Interrupt: Activated internally by exceptionally conditions such as overflow and
division by zero.

Interpreter: A program that executes a set of machine language instructions in response to
each high-level statement in order to carry out the function.

Interrupt I/O: An external device can force the microcomputer system to stop executing the
current program temporarily so that it can execute another program known as the interrupt
service routine.

Interrupts: A temporary break in a sequence of a program, initiated externally, causing
control to pass to a routine, which performs some action while the program is stopped.

I/O (Input/Output): Describes that portion of microcomputer system that exchanges data
between the microcomputer system and the external world, or the data itself.

I/O Port: A module that contains control logic and data storage used to connect a micro-
computer to external peripherals.

Keyboard: Has a number of pushbutton-type switches configured in a matrix form (rows
X columns).

Kcybounce: When a mechanical switch opens or closes, it bounces (vibrates) for a small
period of time (about 10-20 nis) before settling down.

Large-Scale Integration (LSI): An LSI chip contains more than lOQ gates.

Linkage Editors: Connect the individual programs together which are assembled or com-
piled independently.

Linked Programming: The process of joining a subprogram with a main program or joining
two separate programs together to form a single program.

Local Area Network: A collection of devices and communication channels that connect a
group of computers and peripherals devices together so that they can communicate with each
other.

Appendix F	 747

Logic Analyzer: A hardware development aid for microprocessor-based design; gathers data

oil 	 fly and displays it.

Logical Address Space: All storage locations with a programmcr's addressing range.

Loops: A programming control structure wherc a sequence of microcomputer instructions

are executed repeatedly (looped) until a terminating condition (result) is satisfied.

Machine Code: A binary code (composed of bit patterns) that a microcomputer Carl

rcad, interpret, recognize, and manipulate.

Machine Language: A type of microprocessor programming language that uses binary or

hexadecimal numbers.

Macroinstruction: Commonly known as an instruction; initiates execution of a complete

microprogram.

Macroprogram: The assembly language progranl.

Mask: A pattern of bits used to specify (or mask) which bit parts of another bit pattern are

to be operated oil 	 which bits are to be ignored or "masked" out.

Mask ROM: Programmed by a masking operation performed oil 	 chip (luring the

manufacturing process; its contents cannot he changed by the user.

Maskable Interrupt: Can be enabled or disabled by executing typically the instructions such

as lii and Dl, respectively. If the microprocessor's interrupt is disabled, the microprocessor

ignores the interrupt.

Memory: Any storage device which can accept, retain, and read back data. Usually refers to

a computer subsystem of internal RAM- or ROM-based storage devices.

Memory Access Time: Average time taken to read a unit of information from the memory.

Memory Address Register (MAR): Also known as the Data Counter (DC). Stores the

address of the data; typically 16 bits long for 8-bit microprocessors.

Memory Cycle 'lime: Average time lapse between two successive read operations.

Memory Management Unit (MMU): Performs address translation and protection func-

tions.

Memory Map: A representation of the physical location of software within a microcomputer's

addressable main storage.

Memory-Mapped I/O: A microprocessor communications methodology (addressing scheme)

where the data, address, and control buses extend throughout the system, with every con-

nected device treated as if it were a memory location with a specific address. Manipulation of

I/O data occurs in "interface registers" (as opposed to memory locations); hence there are no

input (read) or output (write) instructions used in memory-mapped I/O.

Microcode: A set of "subcominands" or "pseudocommands" built into the hardware (usu-

ally stored in ROM) of a microcomputer (that is, firmware) to handle the decoding tile

execution of higher-level instructions such as arithmetic operation.

Microcomputer: Consists of a microprocessor, a memory unit, and all input/Output unit.

Microcontroller: Typically includes a microcomputer, timer, A/I) (Analog to Digital) and

D/A (Digital to Analog) converters in the same chip.

748	 Microprocessors and Microcomputer-Based Systein Design, 2nd Edition

Microinstruction: Most microprocessors have an internal memory called control memory.
This memory is used to store a number of codes called microinstructions, These microinstruc-
tions are combined to design the instruction set of the microprocessor.

Microprocessor: The Central Processing Unit (CPU) of a microcomputer.

Microprocessor Development System: A tool for designing and debugging both hardware
and software for microcomputer-based systems.

Microprocessor-Halt DMA: Data transfer is performed between the microcomputer's
memory and a peripheral device either by completely stopping the microprocessor or by a
technique called cycle stealing.

Microprogramming: The microprocessor can use microprogramming to design the in-
struction set. Each instruction in the instruction register initiates execution ofa microprogram
in the control unit to perform the operation required by the instruction.

Module: (1) Any single hardware arrangement (device or component) within a microcom-
puter system. (2) Any software, rOlililiC, or subroutine.

Monitor: Consists of a number of subroutines grouped together to provide "intelligence"
to a microcomputer system. This intelligence gives the microcomputer system the capabilities
for debugging a user program, system design, and displays.

Multiplexer: A hardware device which allows a microprocessor to be physically connected
to a number of communication channels to receive or transmit data.

Multiprocessing: The process of executing two or more programs in parallel, handled by
multiple processors all under common control. Typically each processor will he assigned
specific processing tasks.

Multitasking: Operating system software that permits more than one program to rum oil
single microprocessor. Even though each program is given a small time slice in which to
execute, the user has the impression that all tasks (different programs) are executing at the
same time.

Multiuser: Describes a computer operating system that permits a number of users to access
the system oil time-sharing basis.

Nested Subroutine: A commonly used programming technique that includes one subrou-
tine entirely embedded within the "scope" of another subroutine.

Nibble: A 4-bit word.

NMOS: Denser and faster in comparison to PMOS. Most 8-bit microprocessors and some
16-bit microprocessors are fhbricatcd using this technology.

Noncontiguous: Noncontiguous in nature. Refers to breaks in the linear sequential flow of
any information structure.

Nonniaskablc'Intcrrupt: Occurrence of this type of interrupt cannot be ignored by the
microprocessor, even though the interrupt capability of the microprocessor is disabled. Its
effect cannot be disabled by instruction.

Non-Multiplexed: A non-multiplexed system indicates a direct single communication channel
(that is, electrical wires) connection to the microprocessor.

Object Code: The binary (machine) code into which a source program is translated by a
compiler, assembler, or interpreter.

Appendix F
	 749

Octal Number System: Base-") number system.

One-Pass Assembler: This assembler goes through the s.seiiih1y language program once

and translates the assembly language program into a macli inc language program. This asseni-

bIer has the problem of defining forward references. Sec Iwo-Pass Assembler.

01) Code (Operation Code): The instruction represented in binary toni'.

Operand: A datum or intoruiatioit iteLu iii volved in an operation from which the result is

obtained as a consequence of defined actions (that is, data which is operated on by an

instruction). Various operand types coil lain information, such as source address destination

address, or immediate data.

Operating System: Consists of a number of program modules to provide resource manage-

ilicilt. Typical resources include microprocessors, disks, and printers.

Operation: (1) Means by which a result is obtained from an operand(s). (2) An action

defined by a single instruction or single logical element.

Page: Sonic nucroproccssors, such as the Motorola 6300 and the MOS 6502, divide the

65,536 memory locations into 256 blocks. Each of these blocks is called a page and contains

256 addresses.

Parallel Operation: An y operation carried out simultaneously with a related operation.

Parallel Transmission: Each bit of- binary data is transmitted over a separate wire.

Parity; The number of l's in a word is odd for odd parity and even for even parity.

Peripherals: An I/O device capable of being operated tinder the control of' a CPU through

communication channels. Examples include disk drives, keyboards, CRTs, printers, modems,

etc.

Personal Computer: Low-cost, affordable microcomputer used by all 	 or a small

group for video gaines, daily schedules, and industrial applications.

Physical Address Space: ,'\ddrcss space is defined by the address pins of tile microprocessor.

Pipeline: A technique that allows a microcomputer processing operation to be broken down

into several steps (dictated by the number of pipeline levels or Stages) so that tile individual

step outputs can be handled by tile computer in parallel. Often used to fetch tile processors

next instruction while executing the current instruction, which considerably speeds up the

overall operation of the microcomputer.

Pointer: A stora ge location (usually ,I 	 within a microprocessor) that contains tile

address of (or points to) a required item of data or subroutine.

Polled Interrupt: A software approach [or determining the souicc of intcrrupt ill multiple

interrupt system.

POP Operation: Reading from the tol l or bottom of the stack.

Port: An access point (a register) for ;I 	 through which coinniunicittion data

may be passed to peripheral devices.

Primary Memory Store: That mnclilory storage which is considered main, integral, or

internal to the computing system. It is that storage which is physically most closely associated

with the microprocessor and is directly controlled by it.

Primitives: A basic or fundamental unit; often refers to the lowest level of machine instruc-

000 or the lowest unit of prograionhing language instruction.

750	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Privileged Instructions: An instruction which is reserved for use by a computer's operating
system, which will determine the range of system resources that the user is allowed to exploit.

Processor Memory: A set of microprocessor registers for holding temporary results when a
computation is in progress.

Program: A self-contained sequence of computer software instructions (source code) that,
when converted into machine code, directs the computer to perform specific Operations for
the purpose of accomplishing some processing task.

Program Array Logic (PAL): Similar to a ROM in concept except that it does not provide
full decoding of the input tines. PAL's are used with 32-bit microprocessors for performing the
memory decode function.

Program Counter (l'C): A regislr that normally contains the address of the next instruction
in the sequence of operations.

Programmed I/O: The microprocessor executes a program to perform all data transfers
between the microcomputer system and external devices.

PROM (Programmable Read-Only Memory): Can be, programmed by the user by using
proper equipment. Once programmed, its contents cannot be altered.

Protocol: A list of data transmission conventions or procedures that encompass the timing,
control, formatting, and data representations by which two devices are to communicate. Also
known as hardware "handshaking", which is used to permit asynchronous communication.

PUSH Operation: Writing to the top or bctom of the stack.

Random Access Memory (RAM): A read/write memory. RAMs (static or dynamic) are
volatile in nature (in other words, information is lost when power is removed).

Read-Only-Memory (ROM): A memory in which any addressable operand can be read
from, but not written to, after initial programming. It is an asynchronous device wbose access
time is dictated by its internal circuit time delays. ROM storage is non-volatile (information
is not lost when power i removed).

Real-Time Software: Computer code that allows processes to be performed during the
actual time that a related physical I/O action takes place.

Reduced Instruction Set Computer (RISC): A necessary and sufficient instruction set is
included. The RISC architecture maximizes speed by reducing clock cycles per instruction.
Performs infrequent operations in software and frequent functions in hardware.

Register: A one-word, high-speed memory device usually constructed from flip-flops (elec-
tronic switches) that are directly accessible to the processor. it can also refer to a specific
location in memor that contains word(s) used during arithmetic, logic, and transfer opera-
tions.

Register Indirect: Uses a register pair which contains the address of data.

Relative Address: An address used to designate the position of a memory location in a
routine or program.

Rollover: Occurs when more than one key is pushed simultaneously.

Routine: A group of instructions for carrying out a specific processing operation. Usually
refers to part of larger program. A routine and subroutine have essentially the same meaning,
but a subroutine could be interpreted as a self-contained routine nested within a routine or
program.

Appendix F
	

751

Sample and Hold Circuit: When connected to the input of an A/D convcrtcr, it keeps a

rapidly varying analog signal fixed during the AID conversion process by storing it in a
capacitor.

Scalar Microprocessor: Provided with one pipeline. Can execute one instruction per clock
cycle. The 80486 is a scalar microprocessor.

Scaling: To_ adjustvalues or bring them into a range that is acceptable to a microcomputer.

Secondary Memory Storage: An auxiliary data storing device that supplements the main

(primary) internal memory of a microcomputer. It is used to hold programs and data that

would otherwise exceed the capacity of the main memory. Although it has a much slower

access time, secondary storage is less expensive, Common devices include magnetic disk
(floppy and hard), cassette tape, and videodisk,

Serial Transmission: Only one line is used to transmit the complete binary data bit by bit.

Single-Chip Microcomputer: Microcomputer (CPU, memory, and input/output) on a
hip.

Single-Chip Microprocessor: Microcomputer CPU (microprocessor) on a chip.

Single Step: Allows the user to execute a program one instruction at a time and examine
memory and registers.

Software: Programs in a microcomputer.

Source Code: The high-level language code used by a programmer to write computer

instructions. This code must be translated to the object (machine) code to be usable to the
microcomputer.

Stack: An area of read/write memory reserved to hold information about the status of a

microcomputer the instant an interrupt occurs so that the microcomputer can continue

processing after the interrupt has been handled. Another common use is in handling the

accessing sequence of 'nested" subroutines. The stacks are the last in/first out (LIFO) devices
that are manipulated by using PUSH or POP instructions,

Stack Pointer: An address or register used to keep track of the storage and retrieval of each
byte or word of information in the system stack.

Standard I/O: Utilizes a control pill the microprocessor chip called the lO/M pin, in

order to distinguish between input/output and memory; typically, IN and OUT instructions

are used for performing input/output operations.

Static RAM: Stores data in flip-flops; does not need to be refreshed. Information is lost upon
power failure unless backed up by battery.

Status Register: A register which contains information concerning the activity within the

microprocessor or about the condition of a functional unit or peripheral device.

Subroutine: A program carrying out a particular function and which call 	 called by
another program known as the main program. A subroutine needs to be placed only once in
memory and call 	 called by the main program as many times as the programmer wants.

Superscalar Microprocessor: Provided with dual pipelining and executes more than one

instruction per clock cycle. The Pentium is a superscalar microprocessor.

Supervisor: Provides the procedures or instructions for coordinating the use of system

resources and maintaining the flow of operations through a microprocessor to perform I/O
operations.

752	 Microprocessors and Micmco:npuler-Based Sy,stem Design, 2nd Ethtion

Supervisor State: When internal microprocessor system processing operations are cOil-

dueLed at a higher privilege level, it is usually in the supervisor state. An operating system

typically executes in the supervisor state to protect the integrity of "basic" system operations

from user influences.

Synchronous Operation: Operations that occur at intervals directly related to a clock

period. Also, a bus protocol in such data transactions is controlled by ;I clock and is

completed within a llxed clock period.

Synchronous Serial Data Transmission: Data is transmitted or receive(] based oil clock

signal.

Tracing: A dynamic diagnostic technique in which a record of internal counter events is

made to permit analysis (debpgging) of the progt'anl 's execution.

Trislate Buffer: I - las nec output states: logic 0, 1 , and a high-impedance state. It is typically

enabled by a control signal to provide logic () or I outputs. This type of huller can also he

disabled by the control signal to place it ill high-impedance state.

2's Complement: The 2's complement of a binary number is obtained by replacing each 0

with a 1 and each I with a 0 and adding one to the resulting number.

Two-Pass Assenibler: This assembler goes through the assembly language program twice. in

the first pass, the assembler defines the labels with the addresses. Ill second pass, the

assembler translates the assembly language program to the machine langLiage. See One-Pass

Assembler.

UART (Universal Asynchronous Receiver Transmitter): A chip that provides all the inter-

face functions when a microprocessor transmits-or receives data to or from a serial device.

Converts serial data to parallel and vice versa.

User State: Typical microprocessor operations processing conducted at the user level. 'ftc

user state is usually at lower privilege level than the supervisor state. This protects basic system

operation resources (the operating system).

Vectored Interrupts: A device identification tcchn iqtic in which the highest priority device

with ;I interrupt request forces program execution to branch to ill routine

to handle exception processing for the device.

Very Large Scale Integration (VLSI): A Vl.Sl chip Contains iiiore than lOOt) gates.

Virtual Machine: i\ microcomputer whose hardware and software architecture is specifi-

cally designed to so pport virtual storage tech niques. The virtual machine concept is widely

used within multiprogramming enviroiinientS.

Virtual Memory: i\ memory management operating system tech ii ique that allows progranm

or data to exceed the physical size of the main, internal, dircrtls' accessed memory. Program

or data segments/pages are swapped from external disk sloragc as needed. The swapping is

invisible (transparent) to the programmer. Therefore the programmer need not he concerned

with the actual physical size of internal memory while writing the code.

Word: The bit size of a microprocessor refers to the number of bits that can be processed

simultaneously by the basic arithmetic circuits of the microprocessor. i\ iiumber of bits taken

as a group ill 	 manner is called a word.

Appendix F
	

753

Table for American Standard Code for Information Interchange (ASCII), Standard No. X3.4-

1968 of the American National Standards Institute.

bb5b (coturnn)

Row	 000	 001	 010	 Oil	 100	 101	 ItO	 Ill

b fr hb0 	 (hex)	 0	 I	 2	 3	 4	 5	 6	 7

0000	 0	 NUt,	 DLE	 SP	 0	 8	 P	 p

0001	 1	 SOH	 DCI	 1	 A	 Q	 a	 q

0010	 2	 STX	 !)C2	 "	 2	 B	 R	 b	 r

0011	 3	 ETX	 DO	 #	 3	 C	 S	 C	 S

0100	 4	 POT	 DC4	 $	 4	 D	 T	 d
0101	 5	 ENQ	 NAK	 %	 5	 E	 U	 e	 u
0110	 6	 ACK	 SYN	 &	 6	 F	 V	 f	 v

0111	 7	 IIEL	 Pill	 '	 7	 0	 W	 g	 w
1000	 8	 US	 CAN	 (8	 H	 X	 h	 x

1001	 9	 liP	 EM	 1	 9	 I	 Y	 I	 y
1010	 A	 IF	 SUB	 *	 J	 N	 j	 z

1011	 B	 VT	 ESC	 +	 K	 I	 k

1100	 C	 PP	 PS	 L	 1

1101	 I)	 CR	 GS	 -	 N	 m

1110	 P	 SO	 RS	 >	 N	 n	 -
III!	 F	 SI	 US	 /	 ?	 0	 o	 DEL

Control codes

NUL	 Null	 DI.E	 Data link escape
501-1	 Start of heading	 DCI	 Device control I
STX	 Start of Text	 DC2	 Device control 2
ETX	 End of text	 DO	 Device control 3
EOT	 End of transmission	 DCI	 Device control 4
ENQ	 Enquiry	 NAK	 Negative acknowledge
ACK	 Acknowledge	 SYN	 Synchronize
BEL	 Bell	 ETB	 End transmitted block
BS	 Backspace	 CAN	 Cancel
I-IT	 Horizontal tab	 EM	 End of medium
LF	 Line feed	 SUB	 Substitute
VT	 Vertical tab	 PXC	 Escape
P-F	 Form feed	 VS	 File separator
CR	 Carriage retorts	 GS	 Group separator
SO	 Shift out	 RS	 Record separator
SI	 Shift in	 US	 Unit separator
SP	 Space	 DEL	 Delete or rubout

Bibliography

Allison, D. R., "A Design Philosophy for Microcomputcr Architectures", IEEE Trans. Computers.
Artwick, B. A., Microcomputer Interfacing, Prentice- HaIl, 1980.

Bacr, J.-L., Computer Sysicins Architecture, Computer Science Press, 1980.

Boyce, J. C., Microprocessor mid Microcomputer Basics, Prentice- Hal!, 1979.

Breeding, K., Microprocessor System Design Fundamentals, Prentice-Hall, 1995.

Brcy, B., The Motorola Microprocessor Family: 68000, 68008, 68010, 68020, 68030, and 68040,
Saunders College Publishing, 1992.

Burns, J., "Within the 68020," Electronics and Wireless Word, pp 209-212, February 1985; pp

103-106, March 1985.

Chi, C. S., "Advances in Mass Storage Technology," IEEE Computer, Vol. 15, no. 5, pp 60-74,

May 1982.

Chow, C. K., "On Optimization of Storage Hierarchies," IBM Journal of Research and Dcvcl-
opinent, pp 194-203, May 1974-

Cohn, D. L. and Melsa, J. L., A Step by Step introduction to 8080 Microprocessor Systems,
Dilithium Press, 1977.

Cramer, W. and Kane, G., 68000 Microprocessor Handbook, 2nd ed., Osborne/McGraw-Hill,
1986.

Danhor, K. J. and Smith, C. L., Computing System Fundamentals: Air 	 Based on
Microcomputers, Addison-Wesley, 1981.

Denning, P. J., "Virtual Memory," ACM Computing Surveys, Vol. 2, no. 3, PP 153-159,

September 1970.

Electronic Industries Association, Washington, D.C., EtA Standard RS-232-C Interface, Elec-

tronic Industries Association, 1969.

Faggin, F., "1-Tow VLSI Impacts Computer Architecture," iEEESpcctr, pp 28-31, May 1978.

Feibus, M. and Slater, M., "Pentium Power," PC Magazine, April 27, 1993.

Fisher, E. and Jensen, C. W,, Pet and the IEEE 455 Bus (BI'IB), Osborne/McGraw-Hill, 1979.

Friedman, A. D., Logical Design oJDi'iuil Systems, Computer Science	 :ss, 1975.

Garland, H., introduction to Microprocessor System Design, McGraw-4i, 1979

Ga y , "6800 Famil y Memory Management - Part I, " Electronic Engiriei uç, pp 39-48, June

1986.

Gibson, G. A. and Liu, Y., Microprocessors for Engineers and Scientists, Prcn,ic-Hall, 1980.

Gill, A., Machine and Assembly Language Programming of the PDP- 11, 2nd ed., Prentice-Hall,

1983.

Girsline, G., 16-1)11 A\•lodcr/I Microcomputers, 77ic Intel 8086 Family, Prentice-Hall, 1985.

Gladstone, B. E., "Comparing Microcomputerputer Development System Capabilities," Computer
Design, pp 83-90, February 1979.

Goody, R. W., Intelligent Microcomputer, SRi\, 1982.

Goody, R., The Versatile Microcomputer, The Motorola Fain ily, S RA, 1984.
Greenfield, J. D., Practical Digital Design Using IC's, John Wiley & Sons, 1977.

Greenfield, J. D. and Wray, W. C., Using Microprocessors and Microcomputers: The 6800
) :1 ,i/, John Wiley & Sons, 1983.

Greenfield, J. D., Practical Di'iial Dcsi'n Usitiç' IC's, John Wiley & Sons, 1983.
Grinich, V. H. and Jackson, IT. G., Introduction to Integrated Circuits, McGraw-Hill, 1975.
Hall, D. V., Microprocessors and Digital Systems, McGraw-Hill, 1980.

755

756	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Hamacher, V. C., Vranesic, Z. G., and Zaky, S. G., Computer Organization, McGraw-Hill, 1978.
Hamacher, V. C., Vrancsic, Z. G., and Zaky, S. G., Computer Organization, McGraw-Hill, 1984.
Harman, T. L and Lawson, B., The Motorola MC68(0) Microprocessor Family, Prentice-Hall, 1984.
Hartman, B., "16-Bit 68000 Microprocessor Concepts on 32-Bit Frontier," MC 68000 Article

Reprints, Motorola, pp 50-57, March 1981.
Hayes, J. P., Computer Architecture and Organization, McGraw-Hill, 1978.
Hayes, J. P., Digital System Design and Microprocessors, McGraw-Hill, 1984.
Haynes, J. L. "Circuit Design with Lotus 1-2-3," BYTE, Vol. 10, no. 11, pp 143-156, 1985.
Hewlett-Packard, "HP 64000," Hewlett-Packard Journal, 1980.
Hnatek, E. R., A User's Handbook of Semiconductor Memories, John Wiley & Sons, 1977.
Molt, C. A., Electronic Circuits - Digital and Analog, John Wiley & Sons, 1978.
Horden, 1., "Microcontrol]crs Offer Realtime Robotics Control," Cornp titer Design, pp 98-101,

October 15, 1985.
IEEE, "Technology 1994" - The Spectrum, January 1994.
IEEE, "Technology 1995" - The Spectrum, January.199.
Intel, Microprocessors and Peripheral Handbook, Vol. 1, Microprocessors, Intel Corporation, 1988.
Intel, Microprocessors and Peripheral Handbook, Vol. 2, Peripheral, Intel Corporation, 1988,
Intel, 80386 Programmer's Reference Manual, Intel Corporation; 1986.
Intel, 80386 Hardware Reference Manual, Intel Corporation, 1986.
Intel, 80386 Advance Information, Intel Corporation, 1985,
Intel, 80387 Programmer's Reference Manual, 1987.
Intel, Intel 486 Microprocessor Family Programmer's Reference Manual, 1992.
Intel, Intel 486 Microprocessor Hardware Reference Manual, 1992.
Intel, i960 SA/SB Microprocessor, 1991.
Intel, Pentium Processor User's Manual, 1993.
Intel, 8080 and 8085 Assembly Language Programming Manual, Intel Corporation, 1978.
Intel, The 8086 Family User's Family, Intel Corporation, 1979.
Intel, Intel Component Data Catalog, Intel Corporation, 1979.
Intel, MCS-85 User's Manual, Intel Corporation, 1978.
Intel, MCS-86 User's Manual, Intel Corporation, 1982.
Intel, Memory Components Handbook, Intel Corporation, 1982.
Intel, SDK-85 User's Manual, Intel Corporation, 1978.
Intel, "Marketing Commun: rions," The Semiconductor Memory Book, John Wiley & Sons, 1978.
Isaacson, R. et al., "The Oe.n Report - Personal Computing," selected reprints from IEEE

Computer, pp 226-37,
Johnson, "A Comparison of Mc68000 Family Processors," BYTE, pp 205-218, September 1986.
Johnson, C. D., Proccj Control Instrumentation Technology, John Wiley & Sons, 1977.
Johnson, R. C., "Microsystems Exploit Mainframe Methods," Electronics, 1981.
Kane, G., CRT Controller Handbook, OsbornefMcG raw- Hill, 1980.
Kane, G., Hawkins, D., and Leventhal, L, 68000 Assembly Language Programming. Osborne!

McGraw-Hill, 1981.
King, T. and Knight, B., Programming the MC68000, Addison-Wesley, 1983.
Krutz, R. L., Microprocessors and Logic Design, John Wiley & Sons, 1980.
Krutz, R. L., Microprocessors and Logic Design, John Wiley & Sons, 1977.
Lesea, A. and Zaks, R., Microprocessor Interfacing Techniques, Sybex, 1978.
Leventhal, L. A., 8080A/8085 Assembly Language Programming, Osborne!McG raw- Hill, 1978.
Leventhal, L. A., Introduction to Microprocessors: Software, Hardware Programming, Prentice-

Hall, 1978.
Leventhal, L. and Walsh, C., Microcomputer Experimentation with the Intel SDK-85, Prentice-

Hall, 1980.

Bibliography	 757

Lewin, M., Logic Design and Computer Organization, Addison-Wesley, 1983.

Lipschutz, S., Essential Computer Mathematics, Schaum Outline Series, McGraw-Hill, 1982.
MacGregor, Mothersoic, Meyer, The Motorola MC68020," IEEE MICRO, pp 101-116, August 1984.
MacGregor, "Diverse Applications Put Spotlight on 68020's Improvements," Electronic Dc-

sign, pp 155-164, February 7, 1985.
MacGregor, "Hardware and Software Strategies for the MC68020," EDN, pp 163-168, June 20, 1985.

Mano, M., Computer System Architecture, Prentice-Hall, 1983.
McCartney, Grocpler, "The 32-Bit 68020's Power Flows Fully Through a Versatile Interface,"

Electronic Design, pp 335-343, January 10, 1985.
Miller, M., Raskin, R., and Rupley S., "The Pentium that Stole Christmas," PC Magazine,

February 27, 1995.
MITS-ALTAIR, S-100 Bus, MITS, Inc., Albuquerque, NM.

Morse, S., The 808618088 Primer, 2nd cd., Hayden, 1982.

Motorola, 6809 Applications Notes, Motorola Corporation, 1978.

Motorola, MC68000 User's Manual, Motorola Corporation, 1979.
Motorola, 16-Bit Microprocessor - MC68000 User's Manual, 4th ed., Prentice-Hall, 1984.

Motorola, MC68000 16-Bit Microprocessor User's Manual, Motorola Corporation, 1982.
Motorola, MC68000 Supplement Material (Technical Training), Motorola Corporation, 1982.

Motorola, Microprocessor Data Material, Motorola Corporation, 1981.

Motorola, MC63020 User's Manual, Motorola Corporation, 1985.
Motorola, "MC68020 Course Notes," MTI'A20 REV 2, July 1987.
Motorola, "MC68020!68030/88100 Audio Course Notes," 1988.
Motorola, MC88100 Data Sheets, Motorola Corporation, 1988.

Motorola, MC68020 User's Manual, 2nd ed., MC68020 UM/AD Rev. 1, Prentice-Hall, 1984.

Motorola, Programmer's Reference Manual (Includes CPU 32 Instructions), 1989.

Motorola, MC68040 User's Manual, 1989.
Motorola, Power PC 601, RISC Microprocessor User's Manual, 1993.

Motorola Technical Summary, 32-Bit Virtual Memory Microprocessor, MC68020 BR243/D.
Rev. 2, Motorola Corporation, 1987.

Myers, G. and J3udde, D., The 30960 Microprocessor Architecture, John Wiley & Sons, 1988.

Osborne, A., An Introduction to Microprocessors, Vol. 1, Basic Concepts, rev. ed., Osborne!
McGraw-Hill, 1980; 2nd ed., 1982.

Osborne, A. and Kane, G., The Osborne Four- and Eight-Bit Microprocessor Handbook, Osborne/

McGraw-Hill, 1980,
Osborne, A. and Kane, G., The Osborne 16-Bit Microprocessor Handbook, Osborne/McGraw-

Hill, 1981.
Rafiquzzaman, M., Microprocessors and Microcomputer Development Systems - Designing

Microprocessor-Based Systems, Harper and Row, 1984.
Rafiquzzaman, M., Microprocessors and Microcomputer Development Systems, John Wiley &

Sons, 1984.
Rafiquzzaman, M., Microcomputer Theory and Applications with the INTEL SDK-85, 2nd ed.,

John Wiley & Sons, 1987.
Rafiquzzaman, M., Microprocessors - Theory andApplications - Intel and Motorola, Prentice-

Hall, 1992.
Rafiquzzaman, M. and Chandra, Modern Computer Architecture, West, 1988.
RCA, Evaluation Kit Manualfor the RCA CDPI802 COSMACMicroproccssor, RCA Solid State

Division, Somerville, NJ.
Rector, R. and Alexy, G., The 8086 Book, Osborne/McGraw-Hill, 1980.
Reichborn-Kjennerud, G., "Novel Methods of Integer Multiplication and Division," BYTE,

Vol. 8, no. 6, pp 364-374, June 1983.

758	 Microprocessors and Microcomput cr-Based System Design, 2nd Edition

Ripps, Mushinsky, "32-11t Up Speeds Code Design and Execution) " EDN, pp 163-168, June
27, 1985.

Rockwell International, Microelectronic Devices Data Catalog, 1979.
Short, K. L., Microprocessors and Programmed Logic, Prentice-Hall, 1981.
Sloan, M. E, Introduction to Minicomputers and Microcomputers, Addison-Wesley, 1980.
Smith, J. and Weiss, S., "Power PC 601 and Alpha 21064: A Tale of Two RISCs," IEEE

Computer, June 1994.
Solomon, "Motorola's Muscular 68020," Computers & Electronics, PP 74-79, October 1984.
Sowell, E. F., Programming in Assembly Language, MACRO II, Addison-Wesley, 1984.
Starnes, T. W., "Compact Instruction Set Gives the MC68000 Power While Simplifying Its

Operation," MC68000 Article Reprints, Motorola, pp 43-47, March 1981.
Strauss, B., The Waite Group, Inside the 80286, A Brady Book published by Prentice-Hall, 1986.
Stone, Ii. S., Introduction to Computer Architecture, SRA, 1980.
Stone, ii. S., Microcomputer Interfacing, Addison-Wesley, 1982.
Strcitmattcr, G. A. and Fiore, V., Microprocessors, 71mco' and Applications, Reston Publishing, 1979.
Stritter, B. and Gunter, T., "A Microprocessor Architecture for a Changing World: The

Motorola 68000," IEEE Computers, Vol. 12, no. 2, pp 43-52, February 1970.
Tanenbaum, A. S., Structured Computer Organization, Prentice-I-jaIl, 1984.
Teledyne, Teledyne Semiconductor Catalog, 1977.
Texas Instruments, The iT!. Data Book, Vol. 1, 1984.
Texas Instruments, Vic 'IT!. Data Book for Design Engineers, 2nd ed., 1976.
Tocci, R. J. and Laskowski, L. P., Microprocessors and Microcomputers: Hardware and Software,

1 3 rcnticc-1-lall, 1979.
Triehel, W., The $0386 DX Microprocessor, Prentice Flat;, 1992.
Twaddel, "32-Bit Extension to the 68000 Family Addresses / L 1 cs, Runs at 3 MIPS," EDN,

pp 75-77, July 12, 1981.
Wakerly, J. F., Microcomputer Architecture and Programming, John Wiley & Sons, 1981,
Zilog, Z8000 Advance Specification, Zilog, Inc., 1978,
Zoch, 13., "68020 Dynamically Adjusts Its Data Transfers; to Match Peripheral Ports," Electronic

Design, PP 219-225, January 10, 1985.
Zorpette, G., "Microprocessors - The Beauty of 32-Bits," IEEE Spectrum, Vol. 22, no. 9, PP

65-71, September 1985.

Credits

The following material was reprinted by permission of the sources indicated below:

Motorola Corporation, Inc.: Chapter 1: Figures 1.10, 1.11, 1.12; Chapter 5: Figurc .
5.5, 5.7, 5.10 to 5,12, 5,14, 5.15, 5.17, 5.21 to 5.24, Tables 5.1, 5.2, 5.14 to 5.16, table on rage
332; Chapter 6: Examples 6.1 and 6.8, all figures, table, and graphics; Chapter 7: Figures 7.1
to 7.29, Tables 7.1 to 7,7; Chapter 8: Figures 8.5 to 8.18, 'fables 8.7 to 8.18; Chapter 9: Figures
9.7, 9.8; Appendix B: data sheets; Appendix D: 68000 Instruction,

Intel Corporation: Chapter 2: Figures 2.3, 2.4; 2.6 to 2.8, 2.10 to 2.15, 2.17, 2.23 to 2.25,
Tables 2.9, 2.12, 2.13; Chapter 3: Figures 3.1 to 3.3, 3.5 to 3.13, 3.24, 3.26a and b, Table 3.2,
structure on page 165; Chapter 4: Figures 4.1,4.2,4.6 to 4.28, Tables 4.1 to 4.3, 4.5 to 4.11, table
on page 244; Chapter 7: Figure 7.30; Chapter 8: Figures 8.1 to 8.4, Tables 8.1 to 8.3; Chapter
9: Figures 9.15 , 9.16; Appendix C: figures and data sheets; Appendix E: 8086 Instructions.

All mnemonics in Tables 2.1 and 3.1 are courtesy of Intel Corporation.

The 80386 microprocessor referred to in text as the i386TM; the 80486 as the i486 TM and the
Pentium as the Pentium TM , trademarks of Intel Corporation.

Rafiquzzaman, M., Microcomputer Thcoty and Applications with the Intel SDK-85, John
Wiley & Sons, Inc., New York, New York, 1987, reprinted by perniission ofJohn Wiley & Sons,
Inc.: Chapter 2: Tables 2.1 to 2.8, Section 2.6; Chapter 5: Tables 5,6 to 5.13, Examples 5.1 to
5.5.

Rafiquzzarnan, M., Microcomputer Theory and Applications with the Intel SDK-85, John
Wiley & Sons, Inc., New York, New York, 1987, reprinted by permission of Prentice Hall, Inc.,
Englewood Cliffs, New Jersey: Chapter 2: Figures 2,18 to 2.20, 2.24, 2.25, 2.29a and b, 2.30,
figure on page 92, Sections 2.5 and 2.9.2, pages 53 to 56, 77 to 89, 93 to 99; Chapter 5: Figures
5,6, 5.7, 5.11, 5.14, 5.24, 5.31, 5.32, 'fables 5.2, 5.4, 5.5, text on pages 280 to 303, 305 to 307,
309 to 312, 314 to 319, 323, 328, 334 to 335, 341 to 346.

Rafiquzzaman, M., Microprocessors and Microcomputer Development Systems, copyright
John Wiley & Sons, Inc., New York, New York, 01984, reprinted by permission of John Wiley
& Sons, Inc.: Chapter 9: Figures 9.1, 9.2, 9.8 to 9.13, Section 9.1.2; Chapter 10: Problems 10.2
to 10.13; Appendix A; Appendix C (excluding figures and data sheets).

Morse, S. amd Albert, D., The 80286 Architecture, John Wiley & Sons, Inc., New York, New
York, ©1986, reprinted by permission of John Wiley & Sons, Inc.: Chapter 4: Figures 4.3 and
4.4.

Practical Microprocessors - Hardware, Software and Troubleshooting, Hewlett Packard, Palo
Alto, California: Chapter 2: Figure 2.1.

Burns, D. and Jones, D., Within the 68020, Electronics and Wireless World, Surrey, United
Kingdom, ©1987: Chapter 7: Figures 7.3, 7.27, Example 7.1.

Gay, C., MC68000 Family Memory Management, Electronic Engineering, 58(714), June
1986, reprinted by permission of Electronic Engineering, London, United Kingdom, ©1986:
Chapter 6: Figure 6.28.

759

Index

A

Absolute addressing mode, 37, 283

Absolute offset mode, 520

Access right byte, 201

Accumulator, 7, 53-55

Add, See Arithmetic instructions

Address bus, 6-7

Addressing modes, 36-37, Sec also specific

modes

Alpha 21064, 581

Intel 8085, 55-56

Intel 8086, 117-123, 161, 163-165

I/O port access, 122

Intel 80286, 194

Intel 80386, 211-212

Intel 80960, 520-521

Motorola MC68000, 280-285

Motorola MC68020, 361, 364-371

Motorola MC68030, 464

Motorola MC88100, 545, 551

Pentium, 508

PowerPC 601, 575-577, 581

Address initialization, 134

Address Latch Enable (ALE)

Intel 8085, 77, 79, 81, 695

Intel 8086, 161

interrupts, 175-176

Intel 80386, 255

Intel 80960, 541, 542

Address register indirect mode, Sec Register

indirect mode

Address status (AS), 541

Address strobe, 345, 347-348

Address translation, 19, 476-479

descriptor tables, 21

Intel 80286, 196

Intel 80386, 206, 234, 251

Motorola MC68030, 462, 481-488

Motorola 1MC88 100, 546

substitution and offset techniques, 19-20

Address Translation Cache (ATC), 420, 462,

481-488,499-501

Address Unit (AU), 192, 193

ALE, Sec Address Latch Enable

Aligned data transfer, 575

Alignment checking, 504

Alpha 21064, 581-582

Alpha 21164, 3, 47, 582-583

Analog-to.igital (AiD) converters, 1, 27

AND, Sec Logical instructions

Arithmetic control bit, 519

Arithmetic instructions, 38

flags, 8

Intel 8085, 66

Intel 8086,135-137

Intel 80186, 190

Intel 80386, 214, 221

Intel 80387, 269-270

Intel 80960, 525-531

Motorola MC68000, 294-298

Motorola MC88 100, 556-557

PowerPC 601, 577

RISC system memory and, 575

Arithmetic logic units (ALUs), 7, 10, 53

ASCII numbers, 3, 4

BCD conversion, 383-385

Assembler, 34, 35, 43-44

directives, 41-43, 140-154

HP 64000 system, 660-664

761

762	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Intel 80386, 234
Assembly language programming, 35-36, See

also specific microprocessor instruc-
tion sets

assembler directives, 41-43, 140-154
Intel 8085, 73-75, 91-93, 98-103
Intel 8086, 144-154, 170-173, 177-180

keyboard interface, 592-594
Intel 80386, 230-233, 261-264
Intel 80387, 271
Intel 80960, 521, 537-539
Motorola MC68000, 309-314, 349-351,

634-636,643-646
Motorola MC68020, 388-390, 418-420
Motorola MC68040, 497
Motorola MC88 100, 564
printer interfacing, 601

Associative memory, 23
ASSUME directive, 141
Asynchronous bus control, 315-318
Asynchronous exceptions, PowerPC 601

model, 579
Asynchronous operation

Motorola MC68020, 436-440
Motorola MC68030, 471-476

Atomic instructions, 531
Autovcctoring, 342, 344, 444, 445
Auxiliary carry flag, 55

LIE

Barrel shifter, 7, 10, 360, 508
Based mode, 118-120, 211
Based index mode, 121, 211
Based index mode with displacement, 212
Based scaled index mode, 211
Based scaled index mode with displacement,

212
Base register, 115, 116
BCD, See Binary-coded decimal
BERR (Bus Error), 317-319, 342-343, 346
Bidirectional buffer, 25
Big-endian, 572
Binary-coded decimal (BCD), 3-4

floating-point form, 5, 6
Intel 80960 arithmetic operations, 530
Motorola MC68000 instructions, 301
packed/unpacked, 383-385, 412

Binary real form, 6
Bit field instructions

Intel 80960, 529-530

Motorola MC68020, 380-382
Motorola MC88100, 558-560

Bit manipulation instructions
Intel 80386, 215, 221-223
Motorola MC68000, 300-301

execution times, 718
Bit mapping, 607
Bit ordering, PowerPC 601, 572
BLAST / FAIL, 541
Block Address Translation (BAT), 571
Block address translation cache (BATC), 546
Block-transfer DMA, 31
Boolean operations, Sec Logical instructions
BOUND, 191-192, 227, 229
Boundary checking, 306-307
Branching instructions, 38

Alpha 21064, 581-582
delayed branhing, 545
Intel 8085, 68
Intel 8086, 139-140
Intel 80960, 533-534
Motorola MC68000, 301-303, 545, 560-562

execution times, 718
PowerPC 601, 579, 581-582

Branch processing unit (BPU), 568, 570
Branch Target Buffer (BTB), 508
Breakpoints, 44, 175, 238, 346, 390-394, 442
BSWA1, 504-505
Buffer

double buffering, 329
programmed I/O, 25
printer controller, 602

Burst mode, 473, 596
Burst READ and WRITE, 542
Bus

backoff, 503
Intel 80960, 540-541
Motorola MC68000 control, 315-318

Bus Controller, 700
Bus cycle

Intel 8086, 160-161
Intel 80386, 244-246

Bus Error (BERR), 317, 318, 405-406, 421,
431,437-438,476

Bus Grant Acknowledge line, 344-345
Bus Interface Unit (BIU), 113-114, 205, 410,

609
Bits Request line, 344
Bus snooper, 500, 571
Bits Unit (BU), 192-193
Byte ordering, PowerPC 601, 572

IndeX
	

763

Byte-set-on condition instructions, 223

C

Cache burst request, 473

Cache control register, 473

Cache disable, 403, 430, 509

Cache hit, 22, 403

entry examples, 469, 471

Cache inhibit out, 474

Cache memory, 3, 22-24

Alpha 21064, 582

flush instructions, 466

Intel 80336-based system, 257

Intel 30486, 503

Motorola MC68020, 362, 402-404

Motorola MC68030, 462, 466-470

Motorola MC68040, 500

Motorola MC68851 PMMU, 420

Pentium, 508

PowerPC 601, 571, 582

Cache miss, 22, 403, 470

Cache registers, 362, 403

Call instructions

Intel 8085, 68-70

Intel 80960, 517, 535

Motorola MC68000, 303

CALL module (CALLM) instruction, 394-395

Carry flag, 8, 55

CAS/CAS2 instructions, 395-400

Cathode ray tube (COT) terminal, 33, 605-603

CD-ROM, 11

CHK/CHK2, 375-379

Clock features and requirements, Sec also

Timing and timing diagrams

Intel 8086, Il], 158-159

Intel 80186, 137, 138

Intel 80386, 206, 239

Intel 80387 numeric coprocessor, 265

Intel 18284, 699

Motorola MC63000, 314, 316

Motorola MC68020, 432, 434

Motorola MC68230 parallel interlace!

timer, 329-333, 635

PowerPc real-time clock (RTC), 568-569

CMP/CMP2, 377-378

CMPXCIIG, 505

CMPXCIIG$B, 509

Code prefetch unit 205

Command register, 25

Compaq, 204

Compare instructions

Intel 8035, 67

Intel 80386, 226

Intel 80387 coproccssor, 270

Intel 80960, 531-534

Motorola MC68000, 296

Motorola MC68020 (CAS), 395-400

Motorola MC88 100, 560

Compiler, 34-36, 669

Computer-aided design (CAD), 511

Computer numerical control (CNC), 511

Conditional branch instructions, 38

flags, 7

Intel 8086, 139-140

Intel 80386, 223-224

Motorola MC68000 execution times, 718

Motorola MC68881, 415

Motorola MC88 100, 561

PowerPC 601, 579

Conditional I/O, 27

Condition code

Intel 80386, 218

Motorola MC68000, 290

register (CCR), 362

Condition register (CR), 574, 579

Control bus, 6-7

Control register, 259

Intel 30386 paging mechanism, 250

Motorola MC68020, 373

Motorola MC88100, 546-547

Pentium, 509

Control unit, tO, 206

Control word register, 268

Coprocessor(s), 5-6, 32-34, 610-611, See

also specific types and models of

coprocessors

Intel 30236 interface, 193-198

Intel 80386 interface, 206

Intel 80337, 33

Motorola data sheets, 685-694

Motorola MC68020 interface, 406-422

instructions, 400-402

Motorola MC68881/MC68882, 33, 359,

361-362,400,408-419

Coproccssor Interface Register (CIR), 406-407

Counter register, 115

Counting semaphore, 396

CPU space cycle, 364, 424

Cross assembler, '13

CRT, 33, 6054,03, 635

Current Access Level (CAL), 421

764	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Cursor, 608
Cycle stealing, 31-32

rX

Daisy-chain interrupts, 31
Data Acknowledge (DTACK), 317-319, 325-

329, 335, 338, 342, 346
Data buffer enable, 474
Data bus, 6-7, 161
Data cache

Motorola MC68030, 462, 466-470
Motorola MC68040, 500
PowerPC 601, 571

Data-chain registers, 586
Data-direction register, 25
Data register, 115

Motorola MC68000, 279
Data transfer, See Direct memory access;

Input/output; Memory; Register(s);
specific types

Data transfer instructions, 38, See also
specific instructions

Intel 8086, 123
Intel 80186, 190
Intel 80386, 213-214, 224-225
Intel 80387 coprocessor, 269
Intel 80960, 522-524
Motorola MC68000, 291-294
Motorola MC68881 floating-point

coprocessor, 412-413
Data types, 3-6

Intel 8087 numeric coprocessor, 610
Intel 80286, 194
Intel 80386, 208
Intel 80960, 520, 524
Motorola MC68020, 362-363
Motorola MC68030, 463-464
Motorola MC68040, 492, 495-496
Motorola MC6888 1 coprocessor, 410-412
Motorola MC88100, 547-548, 551

Data unit, Intel 80386, 206
Dcbouncing, 587
Debugging, 34, 43-44

breakpoints, 44, 175, 238, 346, 390-394,
442

Intel 80386 capability, 238
Intel 80960 features, 535
Motorola MC68000 features, 346
Pentium features, 509

Decimal arithmetic, 530-531, Sec also
Binary-coded decimal

DEFB, 42
DEFW, 442
Delay circuit, 338
Delayed branching, 545
DELAY subroutines, 75
Delimiters, 40
Demand paged memory, 499, 571
Denormals, 5
Descriptor tables, 21, 196
Destination function code (DFC), 361
Destination function code register, 373
Development systems, 1, 38-41, 653-681, Sec

also Hewlett-Packard (HP) 64000
MC68000 design exercise, 6314332
soft keys, 40, 654-655

assembler, 660-661
emulator, 665-668
system monitor, 657-658

system software, 34
Digital Equipment Corporation Alpha 21064,

581-582
Digital Equipment Corporation Alpha 21164,

3,47,582-583
Digital signal processing, 511, 570
Digital-to-analog (D/A) converters, I
Digital voltmeter design, 615-621
Direct mapping, 22-23, 257
Direct memory access (DMA), 31-32, 594

graphic controller, 610
Intel 8085, 56, 79, 97-98
Intel 8086, 181
Intel 80186, 188
Motorola MC68000, 323, 344-345
Motorola MC68851 PMMU, 421
printer controller, 604

Direct memory access (DMA) controller, 31-
32,206,329,594-599

Direct mode, 118, 211
Disk memory, 11
Display interface, 588-590

CRT, 605-608
Intel 8279, 710-711

Display processor (DP), 609
Display scroller, 621-627
Division

Pentium flaw, 506-507
by zero, 174, 345, 386, 492, 556

DMA, Sec Direct memory access
Dot matrix printers, 599
Double buffering, 329
Double-precision data type, 6, 411, 527
Dual pipelining, 507-508

Index
	

765

DUP directive, 142-143

Dyadic instructions, 414-415, 554

Dynamic bus sizing, 244, 252, 424-428, 503

Dynamic RAM (DRAM), 12-13

Intel 8086 interface, 164

Intel 80386 interface, 257

Intel 80960 interface, 543

Dynamic relocation, 195

E

EAROM, 12

EBCDIC, 134, 383

Editor, 34, 40

EEPROM, 12,13

Effective address (E\), 293, 575

calculation timing, 713

EFLAGS, 209

Electrically alterable ROM (EAROM), 1, 12

Electrically erasable PROM (EEPROM), 12, 13

Embedded control, 49, 192, 515

Emulate Coprocessor bit, 267

Emulation

in-circuit, 38, 39, 44

Motorola MC68000, 631-632

out-of-circuit, 43

soft key definitions, 665-668

ENDS directive, 141

ENTER, 190-191, 227-229

EPROM, See Erasable programmable read-

only memory

EPROM tunnel oxide, 13

EQU, 4112

Erasable programmable read-only memory

(EPROM), 12

development system programmer, 39

Intel 2716, 701

Intel 2732, 702

Intel 8085 interface, 79, 85-88

design exercises, 615-621

Intel 8086 interface, 163-164

Intel 8755i\, 705-706

Intel 80386 interface, 255

Intel 80960 interface, 543

Motorola MC68000 interface, 326-328, 335

Motorola MC68020 interface, 446, 450, 453

ETOX 11, 13

Exception processing, Sec also Interrupt(s)

instruction continuation, 406

Intel 80286, 204

Intel 80386, 235-237, 247

Intel 80387 numeric coprocessor, 268

Motorola MC68000, 345-347, 721

execution times, 721

map, 343-344

Motorola MC68020, 406, 441-446

Motorola MC88I00, 566-567

Pentium, 510

PowerPC 601, 579-580

TRAPcc instructions, 379-380

Exception stack frame, 444

Exception time registers, 546

Exchange instructions, 292, 554-555

Exclusive-OR, Sec Logical instructions

Execution unit (EU), 113-115, 192, 193, 206

Extended-precision data type, 6, 410, 412, 492

External cycle start (ECS) pin, 429

External fragmentation, 21

External interrupts, 30

F

Fault-tolerant systems, 47

Fields, 40

Finite clement analysis, 511

First-in first-out (FIFO), 20

Flag, 7-8

control instructions, 225

Intel 8085 registers, 55

Intel 8086, 116

Intel 80386, 217

register, 209-210

Flash memory, 13

Flight simulators, 49

Floating-point control register, 416

Floating-point coprocessors, 5-6, 610-1 1

Intel 80286 interface, 194

Intel 80386 interface, 206

Intel 80387, 33

Motorola MC68881/MC68882, 33, 359,

361-362,400,408-419

Floating-point instructions and operations,

3-6,410-411

Intel 80387 coprocessor, 269-271

Intel 80486, 503, 504

Intel 80960, 527-529

literals, 520

Motorola MC88 100, 557-558, 560-561

PowerPC 601, 578

Floating-point move instruction, 523

Floating-point on-chip hardware

Intel 80960, 517

766	 Microprocessors and Microcoinptater-Based System Design, 2nd Edition

Motorola MC68040, 492-493, 498

Motorola MC88 100 system, 545, 547-548

Pentium, 508, 510

PowerPC 601, 568, 570, 573

Floating-point registers, 573

Floating-Point software package (FPSP), 495

Floppy disk, 11

Fragmented memory, 21

Function code pins, 323, 364, 420

G

General-purpose register, 7

Intel 8086, 115

Motorola MC68000, 278

Motorola MC88 100, 547, 548

PowerPC 601, 573

General registers, Intel 80386, 208-209

Global Descriptor Table (GDT), 196-197, 248

Graphics controller, 607-610

Graphics processor (GP), 609

H

HALT, 318-322, 430-431

Handshake interrupt, 30, 93

Handshake ports, 26

Handshaking, 27, 324, 329

Hard disk memory, 11, 13

Hardware debugging, 43-44

Hardware interrupts, See Interrupt(s)

Hardware reset, See Reset

Harvard architecture, 499

Hewlett-Packard (HP) 64000, 653-681

assembler, 660-664

development station, 654-655

editor commands, 659-660

EPROM programming, 630, 632

examples, 670-681

linker commands, 664-665

MC68000 design exercise, 631-632

passwords and security, 668-669

soft keys, 654-655

assembler, 660-661

emulator, 665-668

system monitor, 657-658

special function keys, 656

High-density MOS (lIMOS), 2

High-level language programming, 35-36

Intel 80386 instructions, 215-216, 227-229

UMOS, 2

HOLD acknowledge, 31, 155

"HOST" PASCAL, 669

I/O, See Input/output

IBM 360/85, 22

IBM Personal Computer, 112

IBM PP601, 567

Identification code, 39

Immediate mode, 37, 117, 211, 284

Impact printers, 599

Implied addressing mode, 123, 284

In-circuit emulator (ICE), 38, 39, 44

Indexed addressing mode, 120-121, 211

Index register, 7, 9

Index with displacement mode, 521

Infinity, 6, 410

Inherent addressing mode, 37

INHIBIT line, 31-32

Input/output (I/O), 24-34, 71, See also

Interrupt(s); Memory; Pins and

signals; specific coprocessors, micro-

proc.u:. peripherals

conditional and unconditional, 37

DMA, See Direct memory access

Intel 8085, 53, 77

Intel 8086, 26, 122

Intel 8255 peripheral interface, 709

Intel 80386, 235, 257-261

Intel 80960, 544

interrupt driven, 29-31

Motorola MC68000, 329-335

Motorola MC88 100, 566

output circuit, 27-29

Pentium, 510

ports, 24-26

PowerPC 601, 580-581

Input/output instructions, 38

Intel 8086, 134

Intel 80386 string, 226-227

Input/Output Privilege Level (IOPL), 200,

202, 210

Instruction(s), 36-38, Sec also specific

instruction types, specific micropro-

cessor instruction sets

Instruction cache, 3

Intel 80960, 516

Motorola MC68020, 362, 402-404

Motorola MC 6 8030, 462, 466-470

Motorola MC68040, 500

Index
	

767

PowerPC 601, 571
Instruction continuation, 406
Instruction cycle, 36
Instruction decoding, 2-3, 205
Instruction pointer (IP), 114, 519
Instruction register (JR) 7
Instruction Translation Lookaside Buffer

(ITLB), 571
Instruction Unit (IU), 192, 193, 570
Integer, 208, See also Data types

Intel 80960 conversion features, 524
Motorola MC68881 floating-point

operations, 410-411
Motorola MC88 100 register data format,

547-548
Integer exception register (XER), 574
Integer Unit (ItJ), 498, 500, 545, 547, 568,

570
Intel, 2

data sheets, 695-711
Pentium flaw and, 506-507

Intel ASM-86, 140
Intel 432, 2
Intel 2716 EPROM, 701
Intel 2732 EPROM, 702
Intel 4004, 2
Intel 8008, 2
Intel 8080, 46
Intel 8085, 2, 46, 53-105

design exercises, 615-621
DMA, 79
I/O, 84-85

8155/8156 port, 85, 88-90
8355/8755 port, 85, 86-88
DMA, 79, 97-98
examples, 90-93, 98-103
interrupt, 93-97

SD and SOD lines, 98
memory addressing, 55-56
pins and signals, 77-81, 695-697
register architecture, 53-55
Reset features, 80-8I
system design, 80-85
timing methods, 75-77

Intel 8085 instruction set, 57-75
arithmetic, 66
CALL/RST, 68-70
examples, 73-75
1/0, 71
interrupts, 72-73
LOAD and STORE, 65

logical/Boolean, 66-67
MOVE, 57, 60-61, 64
rotate, 68
stack manipulation, 70-71
summary tables, 58-63
symbols, 63
timing and execution, 81-85

Intel 8086, 46, 47, 111-181, 698
address and data bus, 161-163
addressing modes, 117-123
architecture, 113-117
assembler directives, 140-154
assembly programming examples, 144-154,

170-173,177-180

bus cycle, 160-161
display scrollcr design problem, 621-627
DMA, 181
1/0, 26, 164-165

keyboard interface, 134, 590-594
memory interface, 163-165
port access, 122

interrupt system, 173-177
microcomputer configuration, 165-170
Pentium Virtual 8086 mode, 506
pins and signals, 112-113, 155-159
timing system, 158-159
virtual 8086 mode, 251, 503

Intel 8086 instruction set, 10, 123-140, 723-
740

address initialization, 134
arithmetic, 135-137
branch and loop, 139-140
data transfer, 123
interrupt, 140
I/O, 134
logical, shift and rotate, 137
processor control, 140
string, 137-138
sunimary table, 124-133

Intel 8087, 610-611
Intel 8088, 10, 46, 47, 112
Intel 8096 microcontroller, 1
Intel 8155/8156, 85, 88-90, 707-708
Intel 8202 RAM controller, 164
Intel 8251, 605
Intel 8255, 709
Intel 82C55A, 259-261
Intel 8257, 604
Intel 8259A,206
Intel 8275 CRT controller, 607-608
Intel 8279,590,710-711

768	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Intel 8284, 111
Intel 8288 Bus Controller, 700
Intel 8295 printer controller, 601-605
Intel 8355/8755, 85-88, 703-704
Intel 8751 microcon troller, 1

Intel 8755A EPROM, 705-706
Intel 80186, 46, 113, 187-192

DMA, 188
functional block diagram, 188
instruction set, 189-192
interrupt system, 188-189
timing system, 187, 188

Intel 80286, 46, 47, 113, 192-195
coprocessor interface, 193-194
data types and addressing modes, 194
exceptions, 204
instruction Set, 194-195
memory management, 195-198, 203-204
multitasking capability, 192, 202
protection features, 198-203
segment descriptors, 249
timing system, 193

Intel 80287/80387 floating-point coproccssor,

5, 33, 194, 206,611
instructions, 269-271
registers, 267-269

Intel 80386, 2, 46, 48, 204-271, 501-502
addressing modes, 211-212
assembler, 234
assembly language program examples, 230-

233,261-264
barrel shifter, 10

bus cycles, 244-246
condition codes, 218
data types, 208
interrupts and exceptions, 235-237, 247
I/O, 235, 257-261

coprocessor interface, 206, 264-271
Programmable Peripheral Interface, 259-

261
memory, 208, 234

interface, 253-257
management, 247-251

multitasking capabilities, 205
pins and signals, 239-243
processing modes, 206
programming model, 206-207
protected mode, 247-251
protection features, 249-250
real mode, 246-247
registers, 208-210

reset and initialization, 237
segment descriptors, 249
self-test and debugging features, 238
status flags, 217
timing system, 239

Intel 80386 instruction set, 213-234
arithmetic, 214, 221
bit manipulation, 215, 221-223
conditional jumps and loops, 223-224
data transfer, 213-214, 224-225
high-level language, 215-216, 227-229
logical, 214,225-226
program control, 215
string, 214, 226-227
summary table, 213-216, 218-221

Intel 80486, 2, 46, 48, 501-505
cache memory, 22
instructions, 504-505
Pentium comparison, 506

Intel 80960, 2, 47, 516-544
assembler, 536
assembly language programming examples,

537-539
data types, 520
floating point unit, 517
microcomputer configuration 543-544
performance features, 516-517
pins and signals, 539-541
registers, 517-519

Intel 80960 instruction set, 518, 521-536
arithmetic, 525-531
comparison and control, 531-536
data movement and conversion, 522-524
synchronous load and move, 524-525

Intel 82258 ADMA controller, 206
Intel 82384, 206
Intel 82786 graphics controller, 607-610
Intel 18284 clock generator/driver, 699
Intel iMC004FLKA, 13
Intelligent monitor interface, 33
Intel Pentium, See Pentium

Intel SDK-86, 34
Intel style, 42
Inter-agent communication, 525
Interleaved DMA, 32
Internal fragmentation, 21
Internal interrupts (traps), 30
Interpreter, 34
Interrupt(s), 24, 29---31, See also Exception

processing

automatic vectoring, 342, 344, 444, 445

Index
	

769

instructions, 140

Intel 8085, 72-73, 93-97

Intel 8086, 173-177

Intel 8087, 611

Intel 80186, 188-189

Intel 80386, 235-237, 243

Intel 80960, 517, 541

Motorola MC68000, 280, 323, 341-344

design exercise, 637-643

Pentium, 510

PowerPC 601, 579

saving registers, 30-31

service routine, 24, 29, 236

types of, 30	 -

Interrupt acknowledge (INTA), 31

Interrupt address vector, 30, 344

Interrupt controller, Intel 8259A, 206

Interrupt descriptor table, 248

Interrupt enable, 95, 175

Interrupt pending, 96, 430

Intra . agent communication, 516

INYD, 505

IQPL, 200, 202, 210

IP with displacement mode, 521

Jump INSTRUCTIONS

Intel 8085, 56

Intel 8086, 139-140

Intel 80386, 223-224

Motorola MC68000, 301-303

execution times, 719

Motorola MC88 100, 562

K

Keyboard interface, 587-590

display scroller design exercise, 621-627

Intel 8086, 134, 590-594

Intel 8279, 710-711

key actuation and debounce, 587

L

Last-in first-out (LIFO), 8

LEA, 293

Least recently used (LRU), 20

Leave instruction, 191, 227-228

Light pen, 607-608

Limit checking, 201

Linear decoding, 14-15

Linker commands, HP 64000, 653

Link instructions, 293-294, 304-305

Literals, 520

Little-endian, 572

Load instructions

Alpha 21064, 581

Intel 8085, 65

Intel 80386, 225

Intel 80387 coprocessor, 270-271

Intel 80960, 516 522, 525

Motorola MC68030, 465

Motorola MC88 100, 554-555

PowerPC 601, 576, 579, 581

Local Descriptor Table (LDT), 196-197, 248

Locality of reference, 22

Logical addresses, 19

Logical instructions, 38

Intel 8035, 66-67

Intel 8086, 137

Intel 80186, 190

Intel 80386, 214, 225-226

Intel 80960, 529

Motorola MC68000, 298

Motorola MC88 100, 558

Logical I/O, 25

Logic analyzers, 44

Loop instructions, 140,224

Lower Data Strobe (LDS), 317-318, 325-328

LRC7040 printer, 599-601

M

Machine state register (MSR), 574, 579

Macintosh computers, 501

Macroassemblcr, 43

Magnetic storage media, 11

Mask bits, 95

Mask programmable ROMs, 11

Master/slave architecture, 39

Memory, 10-24, See also Random access

memory; Read only memory

array design, 13-17

full/partial decoding, 15

linear decoding, 14-15

memory decoding using PAL, 15-17

associative, 23

cache, See Cache memory

DMA, See Direct memory access

fragmentation, 21

Intel 8086, 111-112, 117-122, 163-165

770	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Intel 80286, 193

Intel 80386, 208, 234, 253-257

Intel 80960 interface, 543

Motorola MC68000 interface, 326-328

PowerPC 601, 580

primary and secondary, 11

processor, 10-11

RISC instructions and, 575

virtual, 405-406

Memory indirect mode, 368-370, See also

Register indirect mode

Memory management

Intel 80286, 203-204

Intel 80386, 247-251

Pentium, 509

Memory ma1'.gement unit (MMU), 17-21,

476-480

Intel 80286, 193-194

microcomputer development system, 39

Motorola MC68030, 462, 464-465, 480-491

Motorola MC68040, 499-501

Motorola MC68851 Paged MMU, 359,

361,390,400,420-422

Motorola MC88 100, 545-546

PowerPC 601, 570-571

Memory-mapped I/O, 26, 566, See also

Input/output

Memory paging, 19-21, 247, 250-251, 476,

499,509

Memory segmentation, 19-21, 111, 208,

248-249

Mctaassembler, 43

Metal oxide semiconductor (MOS)

technology, 1

Microcode, RISC microprocessors and, 515

Microcomputer configuration, See System

design

Microcomputer development systems, Sec

Development systems

Microcontrollcrs, I

Microprocessors, 1, 7-10, 46-47, See also

specific processors

evolution of, 2-3

practical applications, 47, 49

Misaligned data transfer, 253, 575

Mnemonics, 35

Modular programming, 394

Monadic iistructions, 413-414

Monitors, 34

MOS Technology 6502, 2

Motorola CPU32, 46, 48

Motorola data sheets, 683-694

Motorola I-Id 1/HC16 microcontroller, 1, 49

Motorola MC3456 timer, 432, 434

Motorola MC6800/MC6809, 46

Motorola MC6821 Peripheral Interface

Adapter, 333-335, 686-691

Motorola MC68000, 46, 48, 277-348, 359-

360, 683-684

addressing structure, 280-285

assembly language programming examples,

309-314,349-351,634-636,643-646

clock input, 314, 316

data types, 362-363

debugging features, 346

design exercise, 628-648

DMA, 323

controller interface, 596-599

exception handling, 345-347

exception map, 343-344

interrupts, 323 341-344

memory interface, 326-328

microcomputer configuration, 335-340

multiprocessing, 347-348

parallel interface/timer interface, 329-333

peripheral interface adapter, 333-335

pins and sigitals, 314-323

programming model, 683

register architecture, 279-280

stacks, 307-309

status lines, 323

synchronous/asynchronous control lines,

315-318

system control, 318-322

system design, 324

timing diagrams, 324-325

Motorola MC68000 instruction set, 285-307

arithmetic, 294-298

BCD, 301

bit manipulation, 300-301

condition codes, 290

data movement, 291-294

execution times, 713-721

logical, 298

program control, 301-305

shift and rotate, 298-300

summary table, 286-290

system control, 305-307

test and set, 298-299

Motorola MC68008, 46, 277

Motorola MC8010, 46, 48, 277

Motorola MC68012, 46, 277

index	
771

Motorola MC68020, 2, 48, 359-453

addressing modes, 361 364-371

assembly language programming, 388-390,
413-420

barrel shifter, 10

cache memory, 22

coprocessor interlace, 400-402, 405-422

conditional instructions, 415

data movement instructions, 412-113

dyadic instructions, 414-415

MMU, 390, 400, 420-422

monadic instructions, 413-I14

pins and signals 417-418

programming model, 409

exception processing, 406, 441-446

floating-point operations, 361-362

interrupts, 444-446

21,10456 timer, 432, 434

MC68000 comparison, 359-360
on-chip cache, '102-401

pins and signals, 422-436

dynamic bus sizing and multiplexing,

424-428

hardware signal index, 423-124

RESET and HALT, 430-434

pipelining, 404-405

system design, 446-453

virtual memory, 405-406

Motorola MC6302() instruction set, 372
BCD 1'ACKIUNPK, 383-385

bit field, 330-382

breakpoints, 390-394

call Module,ide, 394-395

check and compare (CHK,CMP), 375-379

compare and swap (CAS), 395-400

coprocessor, 400-402

MC68000 enhinced instructions, 383-390

multiplication and division, 385-388

privileged MOVE, 373-374

return and dclocate (RTD), 375

TRAP, 379-380

Motorola MC6$030, 2, 48, 461-191

addressing modes, 464

block diagram, 46I162

cache, 462, 466170

data types, 463-464

instruction set, 464166

on-chip MMU, 180-491

pins and signals, 470-471, 473, 475

programming model, 462-163

read and write timing diagrams, 471-476

Motorola MC68040, 2, 18, 491-501

assembly language program examples, 497
block (liagrani, 498

cache, 500

commercial applications, 501

data types, 492, 495-496

instruction set, 493-496

memory management, 499-500

on-chip FPU, 492-493, 498

programming model, 491-492

Motorola MC68 230 parallel i nterfaccft imcr,

329-333,685

Motorola MC63440 DMA controller, 596-599
Motorola MC68450 DMA controller, 329

Motorola MC68851 Paged Memory Manage-

ment Unit, 359, 361, 390, 400, 420-
422,485

Motorola MC6888 11MC68882 floating-point
coprocessor, 5-6, 33, 359, 361-362,
400,408-119

assembly language programming, 418-420

data movement instructions, 412l13

dyadic instructions, 414-415

monadic instructions, 413-414

pins and signals, 4] 7-418

programming model, 409

Motorola MC88 100, 2, 47, 544-567

addressing modes, 551

assembly language programming examples,
564

data types, 547-548, 551

exception processing, 566-567

MMU interlace, 545-546

pins and signals, 565-566

registers, 546-550

Motorola MC88I00 instruction set, 551, 553-
562

arithmetic, 556-557

bit field, 558-560

compare and branching, 560-562

load, store, and exchange, 554-555

logical, 558

summary table, 553

Motorola MC88200, 545-546

Motorola MCM6I 16, 692-694

Motorola MPC60I, 567

Move instructions

Intel 8085, 57, 60-61, 64

Intel 80386, 224

Intel 80960, 522, 525

Motorola MC68000, 291-292, 714

772	 Microprocessors and Microcomputer-Based System Design, 2nd Edition

Motorola MC68020, 373-374
Motorola MC68030, 464

Multiplexing
display interfacing, 589
MC68020 dynamic bus sizing, 424-428

Multiplication and division, MC68020
instructions, 385-388

Multitasking
Intel 80286, 192, 202
Intel 80386, 205
MC68020 instructions, 395-400

Mutual exclusion, 297

N
National Semiconductor IMP-16, 2
Nested Task (NT) bit, 210
Networked development systems, 38
N-key rollover, 588
NMOS, 2
NOT, See Logical instructions
Not a number (NaN) representation, 5, 410,

492
N-type MOS (NMOS), 2

0

One-pass assembler, 43
Op-code field, 36, 41
Operand cycle start (OCS) pin, 430
Operating system, 11, 34

Intel 80286 support, 192, 195
for microcomputer development system,

40
Operating system mode, 277
Optical disk memory, 11
OR, Sec Logical instructions
Ordinal, 208, 520
ORG, 41
Out-of-circuit emulator (OCE), 43
Overflow (V), S

P

Packed BCD, 4, 383-385, 412
PACK/UNPK instructions, 383-385
Page address translation cache (PATC), 546
Paged memory, 19-21, 234, 247, 250251,

499,509
Intel 80386 unit, 206
Motorola MC68030 MMU, 476

Paged Memory Management Unit, 390, 400,
420-422.

Paged-segmentation, 21
PAL, 15-17, 255
Parallel I/O, 25
Parallel interface/timer, 329-333, 685
Parallel ports, 259
Parallel printers, 599
Parity bit, 4
PASCAL, 669
Passwords, 668-669
PEA, 293
Pentium, 46-48, 505-511

applications, 510-511
block diagram, 507
cache, 508
division flaw, 506-507
exceptions and I/O, 510
floating-point features, 508-510
instructions, 508-509
registers and addressing modes, 508-509
superscalar design, 507-508

Peripheral interfaces, 24, 33 587-611, See
also Coprocessor(s); Input/output;
specific types of peripheral devices

CRT controller, 605, 607-608
DMA controller, 594-599
graphics, 608-610
Intel 8255, 709
Intel 8279,710-711
keyboard and display interface, 587-594
Motorola MC68000 interfaces, 329-335
printer controller, 599-605

Peripheral Interface Adapter, 333-335, 686-
691

PFLUSH, 466
PEAR LAP, 234
Physical address, 20
Pins and signals

Intel 8085, 77-81, 695-697
Intel 8086, 112-113, 155-159
Intel 80386, 239-243
Intel 80960, 539-541
Motorola MC68000, 314-323
Motorola MC68020, 422-436
Motorola MC68030, 470-471, 473, 475
Motorola MC68881, 417-418
Motorola MC88 100, 565-566
PowerPC 601, 580-581

Pipelining, 3
Alpha 21064, 582
delayed branching, 545

In dcx
	 773

Intel 80386, 205, 254

Intel 80486, 503

Motorola MC68020, 104-105

Pentium, 507-508

RISC microprocessors, 515, 568, 582

Pi value, 495, 536

Pixel, 607

1'MOS, 2

Polled interrupts, 31

POP instructions, 8-9, 56, 71-

Power failure interrupt, 30, 175

PowerPC 601, 2, 47, 567-582

Alpha 21064 compared with, 581-582

block diagram, 569

cache, 571

exception model, 579-580

execution unit, 570

instructions, 577-579

instruction unit, 570

memory addressing, 575-577

MMU, 570-571

pins and signals, 580-581

real-time clock (RTC), 568-569

registers and programming model, 572-575

system interface, 572, 580-581

PowerPC 620, 582

Primary memory, 11

Printer controller chip, 601-605

Printer interface, 134, 599-605

Priorities of interrupts, 31, 176-177

Privileged MOVE instruction, 373-371

Privilege levels, 200-202, 210, 249-250, 421,

572

Process control register, 519

Processor bus (I'BUS), 545

Processor cotroI instructions, Intel $086, 140

Processor version register, 575

Program control instruct ions

Intel 80386, 215

Motorola MC68000, 301-305

Program counter (PC), 7

Intel 8085, 55

Motorola MC68020, 362, 369-370

relative addressing, 254

Programmable array logic (PAL), 15-17

Programmable Peripheral Interface (PPI),

259-261

Programmable read-only memory (PROM),

11, Sec also Erasable programmable

read-only memory

Programmed I/O, 24-29

Intel 8085, 84-85

Intel 8086, 164-165

Motorola MC68000, 329-335

design exercise, 628-636

Programming, 35-36, 5cc also Assembly

language programming; High- level

language programming

EPROM, 39

1'ALs, 17

Programming model

Intel 80386, 206-207

Motorola MC68000, 278-280, 683

Motorola MC68020, 362, 363

Motorola MC68030, 462-463

Motorola MC68040, 491-492

Motorola MC68881 floating-point

coprocessor, 409

PowerPC 601, 572

Program status word, 55

PROM, 11, See also Erasable programmable

read-only memory

Protected mode, 206, 247-251, 503, 506

Protected Virtual Address Mode (PVAM),

195-196, 198, 503

Protection features

Intel 80286, 198-203

Intel 80386, 249-250

Pentium I/O, 510

Prototype design, 314

PTEST, 464-465

1 1 -type MOS (PMOS), 2

l'ullup resistances, 329, 430

Push instructions, 8-9, 56

PUSH-PULL circuit, 27-29

Q

Quick immediate node, 254

R

Radius Rocket, 501

Random access memory (RAM), 12-13

CRT controller, 605

graphic controller, 609-610

Intel 8085, 77, 85, 88-90

Intel 8086, 164

Intel 8155/8156, 707-708

tiitcl 80386, 255-257

Intel 30960, 543

Motorola MC68000, 326-328, 335

774	 Microprocessors and Microcornputer.Based System Design, 2nd Edition

Motorola MC68020 interface, 446, 450,
453

Motorola MCM6116, 692-694
Raster scan, 605-606, 635
RDMSR, 509
RDTSC, 509
Read mostly rncmor1' (RMM), 12
Read only memory (ROM), 11-12, Sec also

Erasable programmable read-only
memory

Intel 8086 interface, 163-164
Intel 8355, 703-704

READ timing, 82
Read/write cycles, Sec also Input/output; Pins

and signals
Intel 80336, 244-246
Intel 80960, 542

READY, 79
Real data types, 524
Real mode, 206, 246-247, 503, 506
Real-time applications, 36, 195
Real-time clock (RTC), 568-569
Real-time clock (RTC) register, 574
Real-time controllers, 49
Reduced Instruction Set Computer (RISC),

2-3,47,515-516
32-bit microprocessors, Sec Intel 80960;

Motorola MC88 100; PowerPC 601
64-bit microprocessors, 582-583

Refresh circuitry, 12, 164
Register(s), 7-9, See also specific types

DMA controller chip, 32
I/O port, 24, 25
Intel 8085 accumulator, 53-55
Intel 8086, 113-116
Intel 80386, 208-210
Intel 80387 numeric coprocessor, 267-269
Intel 80960, 516-519
Motorola MC6821 parallel interface

adapter, 334
Motorola MC68000 programming model,

279-280
Motorola MC68020, 360
Motorola MC68040, 491-492
Motorola MC88 100, 546-550
Pentium, 508-509
PowerPC 601, 572-575

real-time clock, 568-569
printer controller, 602
RISC processors, 3
saving on interrupt, 30-31

Register addressing mode, 37, 117

Register direct mode, 282
Register indirect mode, 37, 55-56, 118, 211,

282-283,364-365,368,520-521
Register indirect with index mode, 576
Register mode, 211
Relative addressing mode, 123
Requested Privilege Level (RPL), 196
Reset

DMA controller and, 599
Intel 8085, 73, 80-81
Intel 8086, 157
Intel 80386 systems, 237, 265
Intel 80960, 541
Motorola MC68000, 305, 319-322
Motorola MC68020, 430, 432-434
Motorola MC88 100, 567

Response register, 33
Resume Flag (RF), 20
Return and delocate (RTD) instruction, 375
RISC, Sec Reduced Instruction Set Computer
Robotics, 49
Rockwell International PPS-4, 2
ROM, a Read only memory
Rotate instr:ns

Intel 8085, 68
Intel 8086, 137
Intel 80960, 527
Motorola MC68000, 298-300

execution times, 717

S

Scaled index, 211, 361, 368
Scanbyte instruction, 530
Scoreboard register, 3
Screen editor, 40
Secondary memory, 11
Security system, 39

HP 64000 passwords, 668-669
Segmentation unit, Intel 80386, 206
Segment descriptors, 249
SEGMENT directive, 141
Segmented memory, 19-21, 111, 208, 234,

248-249
Segment limit checking, 201
Segment registers, 209, 574
Self-test features, 238
Semaphore, 297, 347, 396, 531
Sequential process control, 75
Serial input data (SID), 79, 96, 98
Serial output data (SOD), 79, 98
Serial printers, 599

Index

Set-associative mapping, 23

Shadow registers, 198, 546
Shift instructions

Intel 8086, 137

Intel 80186, 190

Intel 80386, 225-226

Intel 80960, 526

Motorola MC68000, 298-300

execution times, 717

Sign extension, 292

Sign status flag, 55

Signal(s), See Input/output; Pins and signals
Signaling NaN, 5

Signed binary integer, 3

Simulation applications, 511

Single operand instructions, 216

Single-precision data type, 6, 411

Single-step debug facility, 44

Soft keys, 40, 654-655

assembler, 660-661

emulator 665468

system monitor, 657-658

Software, 34-35, See also Assembly language

programming

debugging, 43-44

development, 44-45

interrupts, 30, 236

for processor development system, 39-41

Source function code (SFC), 361

Source function code register, 373

Speed-power-product, 2

Stack frame, 304, 444

Stack manipulation

Intel 8085, 70-71

Intel 8086, 114

Pentium, 509

Stack pointer (SP), 7-9

Intel 8085, 55

Intel 8086, 116

Motorola MC68000, 307-309

Motorola MC68020, 360

Standard I/O, 26, Sec also Input/output

Static RAM (SRAM), 12

Intel 8036 interface, 164

Intel 8155/3156, 707-708

Intel 80386 interface, 255-257

Intel 80960 interface, 543

Motorola MC68020 interface, 453

Motorola MC88 100, 546

Motorola MCM6I 16, 692-694

Status flags, 210, 217

Status register (SR), 7, 279

775

Status word register, 268

Storage medium, 11

Store instructions

Intel 80960, 522

Motorola MC88 100, 554-555

l'owcrPC 601, 576, 579

String addressing mode, 121-122

String instructions

Intel 8086, 137-138

Intel 80186, 190

Intel 80386, 214, 226-227

Subtract, Sec Arithmetic instructions

Sun Microsystems Ultrasparc, 582

Superminicomputers, 2

Superscalar design, 568

Supervisor-level registers, 574-575

Supervisor mode, 277-278, 346, 545, 548

Swap instructions

Intel 80486, 504-505

Motorola MC68000, 292

Synchronous bus control, 315-313

Synchronous exceptions, PowerPC 601

model, 579

Synchronous load and move instructions,

524-525

Synchronous operation, Motorola MC68020,

436-439

System bus, 6-7

System calls, 30

System control instructions

Intel 80960, 535-536

Motorola MC68000, 305-307

PowerPC 601, 579

System control pins, 430

System design

Intel 8085, 103-105

design exercise, 615-621

Intel 8086, 165-170

design exercise, 621-627

Intel 80960, 543-544

Motorola MC68000, 324, 335-340

design exercise, 628-648

Motorola MC68020, 446-453

PowerPC 601, 572, 580-581

System management mode, 506

System software, 34-36

T

Table Indicator (TI), 196

Task Register (TR), 197

Task switching, 195, 202, 205

776	 Microprocessors and Microcomputer-Based Systcn] Design, 2nd Edition

Test and set instructions, Motorola

MC68000, 298-299

Test condition codes, Intel 80960, 534-535

TEST instructions, Motorola MC68030,464-

465

Text editor, 34

Timer input pin, 329

Time-shared systems, 38,

Timing and timing diagrams

Intel 8085, 75-77, 81-85

Intel 8086, 111, 158-159

bus cycle, 160-161

Intel 80186, 187, 188

Intel 80386, 206, 239

Intel 80387 numeric coproccssor, 265

Motorola MC68000, 314, 324-325

instructions, 713-721

Motorola MC68020, 432, 434, 436-441

Motorola MC68230 1 parallel interface!

timer, 329-333, 685

PowerPc real-time clock (RTC), 568-569

Motorola MC68030, 471-476

TITLE, 43

Trace exception, 346

Transceivers, 255

Transistor transistor logic (TTL), 2

Translation Lookaside buffer (TLI3), 505, 508

Traps, 30, See also Interrupt(s)

Intel 8085, 79-80, 93

Motorola MC68000, 306, 346

Motorola MC68020, 442

TRAP on condition (TRAPcc), 379-380, 415

Triadic register instructions, 554

Two-key lockout, 587-588

Two-operand instructions, 216

Two-pass assembler, 43

Two-way set associative cache, 257

U

UART, 605

Ultrasl)arc, 582
Unconditional branching instructions, 38

Intel 8086, 139

Intel 80960, 533-534
Motorola MC8$100, 562

PowerPC 601, 579

Unconditional I/O, 27

Unified Translation Lookasidc Buller

(UTLl), 571

Universal asynchronous receiver transmitter

(UART), 605

Universal development systems, 38

UNIX, 506

UNLK, 293-294, 304-305

Unpacked BCD, 4, 383-385

Unsigned binary integer, 3

Upper Data Strobe (UDS), 317-318, 325-328

U-pipe, 508

USER ID, 39

User-level registers, PowerPC 601, 572-574

User mode, 277-278, 346, 545

V

Valid ACCeSS Level (VAL), 421

Valid bit, 24

Valid memory address (VMA), 317, 334, 342

Valid peripheral address (VPA), 317, 334

VAX-type computers, 49

Vector base register (VBR), 360, 362, 373

Virtual address, 196

Virtual 8086 mode, 206, 210, 251, 503, 506

Virtual 1/0, 25

Virtual memory, 19

Motorola MC68020, 405-406

PowerPC 601, 570-571

Virtual segments, 195

Volatile memories, 12

Voltmeter design exercise, 615-621

V-pipe, 508

w

Workstations, 47, 506

Write-back cache policy, 23-24, 500

Write once read many (WORM), 11

Write-through policy, 24, 466, 500

WRITE timing, 84

WRMSR, 509

x

XADD, 505

XER, 574

IFA

Zero, 6
division by, 174, 345, 383, 492, 556

Ilag(Z), 8, 55

Zero-operand instructions, 37, 216

