MICHAEL J. PELCZAR, JR. E.C.S. CHAN NOEL R. KRIEG

TATA McGRAW-HILL EDITION

Microbiology

Microbiology

MICHAEL J. PELCZAR, JR.

Professor Emeritus University of Maryland

E. C. S. CHAN

Associate Professor of Microbiology McGill University

NOEL R. KRIEG

Alumni Distinguished Professor of Microbiology Virginia Polytechnic Institute and State University

With the assistance of MERNA FOSS PELCZAR

FIFTH EDITION

Tata McGraw Hill Education Private Limited

McGraw-Hill Offices

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal San Juan Santiago Singapore Sidney Tokyo Toronto

Microbiology, Fifth Edition

Copyright © 1986, 1977, 1972, 1965, 1958 by McGraw-Hill, Inc. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

Tata McGraw-Hill Edition 1993

43rd reprint 2012 RAACRRBHDLZLQ

Reprinted in India by arrangement with The McGraw-Hill, Inc., New York

Sales territorics: India, Pakistan, Nepal, Bangladesh, Sri Lanka and Bhutan

Library of Congress Cataloging-in-Publication Data

Pelczar, Michael Joseph, date Microbiology

Includes bibliographies and indexes. 1. Microbiology. I. Chan, Eddie Chin Sun, date II. Krieg, Noel R. III. Title QR 41.2 P4 1986 576 84-23932 ISBN 0-07-049234-4

ISBN-13: 978-0-07-462320-6 ISBN-10: 0-07-462320-6

Published by Tata McGraw Hill Education Private Limited, 7 West Patel Nagar, New Delhi 110 008, and printed at SDR Printers, West Jyothi Nagar, Delhi 110 094

The McGraw Hill Companies

Contents

Preface

DA DT ONE	INTRODUCTION TO MICROBIOLOGY	
PART ONE		
Chapter 1	The Scope of Microbiology	3
Chapter 2	The History of Microbiology	18
Chapter 3	The Characterization, Classification, and Identification of Microorganisms	37
Chapter 4	The Microscopic Examination of Microorganisms	50
PART TWO	MICROORGANISMS-BACTERIA	
FARTINO	MICROORDINISMID - DAOLEMAN	
Chapter 5	The Morphology and Fine Structure of Bacteria	73
Chapter 6	The Cultivation of Bacteria	99
Chapter 7	Reproduction and Growth	115
Chapter 8	Pure Cultures and Cultural Characteristics	133
PART THREE	MICROBIAL PHYSIOLOGY AND GENETICS	
Chamber 0	Enzymes and Their Regulation	151
Chapter 9	Microbial Metabolism: Energy Production	171
Chapter 10 Chapter 11	Microbial Metabolism: Utilization of Energy and Biosynthesis	196
Chapter 12	Bacterial Genetics	227
,		
PART FOUR	THE WORLD OF BACTERIA	
	The World of Bacteria I: "Ordinary" Gram-Negative Bacteria	261
Chapter 13 Chapter 14	The World of Bacteria II: "Ordinary" Gram-Positive Bacteria	285
Chapter 14 Chapter 15	The World of Bacteria III: Bacteria with Unusual Properties	300
Chapter 15 Chapter 16	The World of Bacteria IV: Gram-Positive, Filamentous Bacteria of	
Cliapter 10	Complex Morphology	320
		-
PART FIVE	MICROORGANISMS—FUNGI, ALGAE, PROTOZOA, AND VIRUSES	
Chanton 17	Fungi—Molds and Yeasts	333
Chapter 17 Chapter 18	Algae	365
Cushiet 19	1 1940	
	v	

. .

vi	CONTENTS	
		389
Chapter 19	Protozoa	415
Chapter 20	Viruses of Bactèria	435
Chapter 21	Viruses of Animals and Plants	435
PART SIX	CONTROL OF MICROORGANISMS	
Chapter 22	Control of Microorganisms by Physical Agents	469
Chapter 23	Control of Microorganisms by Chemical Agents	488
Chapter 24	Antibiotics and Other Chemotherapeutic Agents	510
PART SEVEN	ENVIRONMENTAL AND INDUSTRIAL MICROBIOLOGY	
Chapter 25	Microbiology of Soil	543
Chapter 26	Aquatic Microbiology	569
Chapter 27	Microbiology of Domestic Water and Wastewater	593
Chapter 28	Microbiology of Foods	618
Chapter 29	Industrial Microbiology	643
PART EIGHT	MICROORGANISMS AND DISEASE	
Chapter 30	Microbial Flora of the Healthy Human Host	673
Chapter 31	Host-Microbe Interactions: The Process of Infection	687
Chapter 32	Natural Resistance and Nonspecific Defense Mechanisms	703
Chapter 33	Basic and Theoretical Aspects of the Immune Response	718
Chapter 34	Assays and Applications of the Immune Response	741
Chapter 35	Epidemiology of Infectious Diseases	764
Chapter 36	Microbial Agents of Disease: Bacteria	788
Chapter 37	Microbtal Agents of Disease: Viruses	824
Chapter 38	Microbial Agents of Disease: Fungi and Protozoa	850
	Glossary	877
Indexes		903
	Name Index	
	Organism Index	
	Subject Index	

÷

.

•

5

Preface

"Messieurs, c'est les microbes qui auront le dernier mot." Pasteur

For the major part of the twentieth century the physical sciences have dominated science and engineering. This situation was due to a large degree to the development of the atomic bomb, and the achievements of the Soviet Union in outer space. The successful launching of the first satellite into space (Sputnik) in 1957 by the Soviet Union accelerated physical science research and development programs in the United States by the government, by universities, and by industry. We became engaged in a race for leadership in science and technology.

We are now experiencing a rapid shift of national priorities in research and development. As we approach the twenty-first century, we see biology emerging as one of the top priorities in the field of science, and among the biological sciences microbiology has gained new stature. Microorganisms and their activities are increasingly central to many of the concerns of society both nationally and internationally. The problems of the global environment, the recognition of the need to recycle natural resources, the discovery of recombinant DNA and the resulting high technology of genetic engineering—these and other developments have placed microbiology in the limelight.

Microbiology is emerging as the key biological science. Microorganisms provide the models used in molecular biology for research. This research at the molecular level has provided, and continues to provide, the answers to numerous fundamental questions in genetics, metabolism, and cell forms and functions. Microorganisms also provide model systems for studying the relationships. between species in mixed populations.

There is growing recognition of the potential of microorganisms in many applied areas. The ability of microorganisms to decompose materials such as herbicides, pesticides; and oils in oil spills; the potential of microorganisms as food supplements; the apploitation of microbial activity to produce energy such as methane gas for read consumption; and the potential of new therapeutic substances produced by microorganisms—these and other uses of microorganisms are becoming increasingly attractive.

Recombinant DNA technology, commonly retared to as genetic engineering, is one of the principal thrusts of the emerging high technologies in the biological sciences. Recombinant DNA technology makes it feasible to consider genetically manipulated (engineered) microorganisms for commercial production of new and valuable products for a variety of purposes; e.g., medicinals, fuel, and food.

This fifth edition of MICROBIOLOGY retains many of the features that have proved successful in the first four editions, particularly the balance between fundamental or basic microbiology and applied microbiology. This approach emphasizes the importance of integrating new knowledge gained through basic research with applied research and development programs. A strong continuum of research and development, from the basic to the applied, facilitates the development of benefits for society.

One of the new features of this edition is a presentation of the classification of bacteria in a totally new format following the scheme introduced in the first volume of the recently published Bergey's Manual of Systematic Bacteriology. (One of us, Noel R. Krieg, served as editor of the first volume.)

We have also expanded and revised the material on metabolism, bacterial genetics, and genetic engineering and reorganized the section on microorganisms and disease. Careful attention has been given to updating of information in all aspects of the discipline. Many new summary tables have been developed, and new illustrations selected. New review questions, and updated references, follow each chapter.

The subject material is precented in eight parts. As a new feature, each part now opens with an essay providing added insight into the material that follows. Each chapter begins with a chapter outline and an introduction. Many chapters now contain boxed essays highlighting important discoveries and developments in microbiology. As in the past, the order of arrangement of chapters lends itself to adjustments in any sequence desired by the instructor.

A considerable amount of the artwork has been drawn by Dr. Erwin F. Lessel (a microbiologist in his own right). We have found this to be a distinct asset in terms of improving the pedagogical value of illustrations.

Three valuable supplementary publications are available to accompany this new edition: an INSTRUCTOR'S MANUAL, a STUDENT'S GUIDE, and LABO-RATORY EXPERIMENTS IN MICROBIOLOGY. Each has been revised to conform with the subject matter in the fifth edition of MICROBIOLOGY. We have provided extensive cross-referencing among these four publications. The INSTRUC-TOR'S MANUAL includes suggested lecture and laboratory schedules, chapter summaries, sources of audiovisual aids, sources of laboratory equipment and reagents, as well as sample test questions. The STUDENT'S GUIDE has been developed to assist the student in his or her efforts to comprehend the subject matter. It provides for each chapter a concise statement of the content (an overview), a comprehensive topical outline, and a series of self-study questions of several types.

The writing of a textbook on a subject as comprehensive as microbiology requires considerable assistance from a large number of professional colleagues. Among these, we wish to acknowledge the following persons who were generous in their assistance, particularly in commenting upon drafts of various chapters: Phillip M. Achey, University of Florida; Ronald L. Crawford, University of Minnesota; Loretta C. Ellias, Florida State University; Louis R. Fina, Kansas State University; Thomas R. Jewell, University of Wisconsin-Eau Claire; Ted R. Johnson, St. Olaf College; Robert J. Janssen, University of Arizona; David Kafkewitz, Rutgers University; Joseph S. Layne, Memphis State University; Haideh Lightfoot, Eastern Washington University; Robert Todd, South Dakota State University; Anne H. Williams, Evergreen Valley College; and Fred D. Williams, Iowa State University.

Special thanks are due Malcolm G. Baines, McGill University; John O. Corliss, University of Maryland; A. C. Dornbush, Medical Research Division, American

PREFACE

Cyanamid Co.; Jerome J. Motta, University of Maryland; and Robert C. Bates, Virginia Polytechnic Institute and State University, who provided extra help with certain chapters.

We are grateful to our colleagues at the McGraw-Hill Book Company, Kathleen Civetta, Editor; James W. Bradley, Editing Supervisor; and Charles Hess, Production Supervisor, for their pleasant cooperation and assistance in the task of preparing and publishing this book. Thanks are due also to Karen Jacques and Edna Khalil for their skillful assistance in the preparation of manuscript.

In the writing of this text, each chapter has been the primary responsibility of one author. However, each of us has read and critiqued all the chapters. As previously mentioned, we have had the benefit of reviews of each chapter from several of our professional associates. In the end we take collective responsibility for the complete content of this text.

> Michael J. Pelczar, Jr. E. C. S. Chan Noel R. Krieg