
Appendix: Calculus Review
The rules for some useful derivatives are found in

Table A-i. The reader will notice in rule (a) that the
rate of change of a constant k with respect to a change
In z is zero since it is evident that a constant, by
definition, does not change. As noted in rule (d), the
base of the natural logarithm raised to the power has
the strange propert y of remaining unchar ged on differ.
ent1atiOi.

TABLE A - I. Rules of Differential ion

Fi,nct,oe	 Derivai,ve

CvIax=O	 (a)
y	 cr	 Cvtce= k	 (b)
y	 OPGA- knf'1	 (C)
V - 

le,	 can =	 Id)
r	 k In 	 o"de = kin	 Is)
3' ' U - V w	 dvidx = duIda 4 daida	 dpi/dc	 (f)
y	 u'	 Oy/dx = v(ds/do) -.' v)dwdx) 	 (g)

V UN	 dy/dc '(ouldx) - u(dvdn)=	 -	 (C)

Several exam ples are given here to illusti-ate the use
Of the rules of Table A- I.

&amp)C A- I. Differerjuai,e r' = 2 -	 - 6. According

no. rule u', the denvause of v with mincer: no, a is the sum of the
denvauves of the separate terrnu. Toe eeparal.e functions are
thfferenuatec b' the a ppbcatjor, of r,lie (C,. Hint: The eeond
ri rnt .r.and tel-re may be writtOc -4r'-.

(2
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Example A-2.	 fieennats the predur.

S 3rir

rise ( p ), in which, in tIns se, ii = Sr' and v (rX 2. ore
OOtaJrn

C, ,,	 ,

Cz
-

C-

ther

El	 EL..	 3aC2i - mc - 2)12ia:

dv
-	 •	 +24zjISx° + 24

Tins particular problem is actusib' solved more simply
by first multiplying out the terms on the nght-hand side
of the equation to give

3x

and then differentiating by rule (f l in Table A-i in
obtain directly

ay
= IS z' - 24r3

Cr

	

Example A-3, Differentiate the ountient y	 i'•

	

2 ±_	
Using r-ues

(c) and (h), one proceeds as (shown. Let ii = 2 In r and 1' in a
Thee.

di,	 2	 dr	 I- sac — -
a: a	 d.c a

= v(dufdr) - i9drld.a)
d.c

a 4 I	 - (2 in a)!

(in a

and, upon sunp(:fymg,

du

a: z/'lra-

At times an expression ma y appear too complicated
to differentiate directl y . Whene ii is some function not of
x but of u. or v = f(o. which In turn is a function of
or u = fir). tm-ce steps are used in the differentiation.
For example, if

= (.2 - 1)2

	this is the form y =f(n), in which is =	 - 1)is in turn
some function of X.

(1) Let is =	 - 1, and first, differentiate y with
respect to a: ii

dida = 2is	 2(3 t - 1)

(e Then differentiate a with respect to x:

a =	 - 1: dw'dr 2x

(S) Now, it is observed that when the differential
equations of steps (7) and are multiplied together.
au is eLiminated and dy/dx is obtained:

dy/dr = dy/dnl x disfdz = 2t, x 2r

dy/dr2(x2+1)2x=4x(tr-S+1)
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Example A-	 .' n(z	 5). lnddV/dz. First. let a - r2	 5.

in w .'$u !. itoda

Therefore. dy,dv dy,du a avsdz - 2 z,(--

(maple A—s. :r	 md ay'az.
Let i	 is, then	 .r ane o'jidn	 e, dsidz	 a and

op/if_c	 /54"

SUCCESSIVE OIFFERENTtATLON

In addition to serving as a necessary tool In integral
calculus, differentiation allows one to compute the rate
of change of the de pendent variable, for example,
distance in a faiUng body p roolem, with respect to the
.r,deoendent variable, for example, time. it is also
useful for computing maxima and minima of various
functions. These two a pp lications are illustrated in the
examples of the following sections.

We know from physics that the derivative of distance
with respect to time dsdt gives the velocity v of a body.

It will also he recalled f
ront that acceleration a

Is defined as the rate of change of velocity with time,
it, or distance divided by the square of time, sit. In

incremental notation, the average acceleration over the

otance As can be written as

:i/	 .S
a	 = --	 A– 1)

At	 ft)

The instanianeous acceleration at any time during the
fall of a body is expressed by writing the limit of the
ratio of the increments in equation (A– 1). The change
in velocity with respect to time dv,dt may be expressed

as di/dt taken a second time with respect to time, or
d(d.sldt)Idt, This is known as the second derivative with
reSoeCt to time and is written in the short-hand symbol
i

23idt2 . Hence,

At	 dt -

In general, beginning with the function y = f(z) and

differentiating y with respect to .x gives the first

derivative dy/dx. Differentiating again with respect to x

gives the second derivative, d2 y1dz2 , and successive

differentiations give the third derivative d3yldx 5 , the
'vvrih derivative d4 y1dx 4 . and so on.

Example A — S. The eccation from general physics relating the
9iz.aoce and time of fail of a body beginning at rest is j = . The
velocity alter 4 secorids is given by

do
p1 	 951 0 I = .3924 cznlsec.

in which g is the acceleration of gravity. 981 cni/seir. What is the
acceleration a at this time?

Taking the vecond derivative of distance with respect to time
simply involves differentiating the result just given a second nme:

d°3 di,
/5 —	 9

.11-

2	 hi)

This resutt expresses the fact that the acceleration is
constant at 981 cm.sec throughout -,he fall. Taking the
third derivative of distance with respect to time yields

—=0

which shows that the rate of change of acceleration with
time is zero. This is another way of saying that the
acceleration is constant. See Proolem t4 i n Chapter 1.

From a geometric point of view, on a graph of y
plotted against x, the first derivative dipdx gives the
slope of the line at any point, and the second derivative
dlyldc:4 gives the rate of change of the sloe with
respect to x. The slope of the curve is equal to two' imes
the value of a at any point, since iylax = 2z. The rate
of change if the sio pe of the curie is constant at a value
of 2 since d1V/dz2	2.

Maxima and Minima. Within the region where a curve
slopes up to the right, dytda is posit

i
ve. Where tt slopes

up to the left, dyidx is negative. Where the curve is fiat,
exhibiting a maximum, a minimum, or a horizontal
point of inflection, dy/dy is zero, and the tangent to the
curve is a horizontal line.

The second derivative expresses the difference be-
tween these three possibilities. If the second derivative
is positive for the value of a at the critical value, that is,
at the point in qustion, the point represents a minimum;
if the second derivative is negstive, the point repre-
sents a maximum; and if the second derivative is zero,
there may be a point of inflection (or there may be an
unusually flat maximum or minimum or none of these).

Example A-7. Does the curve of the equation p	 snow a
m:rumurn or a mamum, and if oo, what is Itsvaiue?

The problem is solved by taking the lust derivative and setting the
result eouai to zero.

dy

ciz

= I)

Hence theurve ihows acaiticul vaiue at z = 0. The iecxnd dervauve
10 yidx' = .1:2 nosltive, so that p has a nini"iuni vaoae at r 	 By

juch a tacu,ation. ;t can be shown hat he buffer capacity of an
buffer exnlbii.n a mmdrnu.m at p)1 = pK, where the concerlsrallosa of
the salt and the acid are equivalent, as seen on page 114.

The Differential. Before considering the topic of partial
differentiation, it is necessary to introduce the differ-

ential. The differential of y is dy and the differential of

a is dx. if y in a, dyidx ii or, written as the
differential of y,

dy	 dx

Beginning with the function, y = 3z + 4a – 3, the
differential of y is written,

dy &x dx + 4 dx

Partial Differentiation. In these examples and all
previous discussions. j has depended on only me
variable, a. When 'j is a function if sever-at variables.



b1	
opt

- C

C

a

WI
= slope

for example, y = ft,v,w), the total change in y, that is,
the total differential dy, is the sum of the individual
changes in y with respect to each of the variables, in
partial differentiation, v and u are held constant while
a is allowed to change, a and w are held constant while
r changes, and u and a are held constant while w
changes.

The symbol it is used for partial differentiation, and
the fundamental equation for the total differential of a,
is written,

lv

	

au = -r--' Ou -" --- av	 air (A-2)

in which ay/6u, ä y/äv, and 3yl6w are the partial
derivatives of y with respect to the three variables.

Example A-S. Find the ioi,ai differential or 71 (er the funetjoa, v
411. in wIli(!r 's a faincrior. rf the vL),es L. I. and

hy =	 + 3-

ht- =

'Ill
dy = 16 71 1 '1 3)th1 - 6uvdv -F 4 dw

Equation (A-2) is used in thermod y namics and max
be applied here to the relationship between the volume
V. temperature T. and pressure P of a gas. According
to the meal gas equation, the volume of a gas depends
on the temperature and pressure, that is. V = ffT,P).
and the change of volume is given by the equation

dl'dT 'i'	 dP	 (A-3)

which expresses the fact that an infinitesimal change dV
in V is obtained from the temperature coefficient of
volume \'iT multiplied by the change in temperature
dT plus tn pressure coethcien of volume dV;P
multiplied c' : :ne mange in pressure d.°. The oartial

• Catcga,s Rrv,e, 59.

derivatives are written as (aViT) and (àVfdP)r- to
show that P is held constant while differentiating V
with respect to T, and T is held constart while
differentiating V with respect to P.

Figure A-la is meant to be an infinitesimall y small
section of a surface representing the function. V =
f(T,Pj. The projection of this three-dimensional dia-
gram to a V vs. Tand a V vs. P plot are shown in
Figures A-lb and A-3c. The general sh pes of the
curves in Figure A-"  agree with the ides: gas laws.
that is, the volume increases lire.arlv with temperature.
and volume decreases as the pressure increases. The
slope of the line ab or ad in Figure A-lb is the
temperature coefficient of volume (W,'67), and the
change in volume in going from a to t. (1' - V 0 ), is
equal to the slope multiplied by the charge in temper-
ature dT. or (VfiT;5 dT. The slope of the line bd cr cc
in Figure A-1c is (VIiPj and the change in volume in
going from b to d. (V - V5), is (W/P) 7 dP.

It is equall y proper to carry out the pressure change
first, proceeding in Figure A- !afrom a to a. and then
bring about the temperature change, passing from a to
d. The total chan ge in volume in going from a to d, viz..
- dV. ma y be represented by a diagonal curve

on the surface of the figure. A-la According to the
method of partial differentiation, the toza l change is
obtained by the two-step process:

Ve - i' = (i" 

or

dV	 dT - (i dP

The oath by which we arrive at V, from U,, has no
influence on the value of dl. The differential depends
onl y on the initial and final values i',, and V 1;: thus. cT
is said Lo be an eroar thffcrcririal and V is referred to as
a tJic'r?nodiIflhmrnac properrij . These terms are used in the
chapter or tnermoavnamics. S:nce V. T. ann O are ali
inde pendent variables. tn change in any one can be

lsmp.rtup'.- •	 - iSfnpSrature- 	 - Preiaure -
(a)	 (b)

	
(C)

Fig, Al. Gr*bi demomqrRLHm Of thefund1wnW mitio 
of paiia1 diftervmaon. (After F. Daniels. A1dtkml.c& Prrporol,oe fi,rP*nc& CMiutsárp, MeGr,w.HtIL New York. 1II2S, p. 179.)
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obtained in terms of the others. For example. P =

;(T.V' and thus the i nfinitesimal. change in P with

caaflges In tem per-.iture mo Volume 15

=	 aT	 j)r.:'V	 A--I)
aT;

INTEGRAL CALCULUS

Integration. Integration can be considered as the
summation of infinitesimal elements, such as dv. The

s ymbol for i ntegration is an elongated a. written j' , and

dy = y means that the summation of the infinitesimal
elements of y gives the wnole value y. integration is
1150 considered as the reverse of differentiation in the
same sense that division is the reverse of muitipiication.
.Vhen we divide 15 by 3, we obtain the answer by

thinkin g of the number by which 3 is multiplied to :'ieid
5. Similarly in calculus when we are asked to integrate

2:, we attemoc to recall the value that, when differen-
tiated. rieided 2.c. The function y =	 and the more
reneral expression y = x	 C come to mind as possible
answers, since, in either case,

= 2:	 (A-5)
dx

The symbol C stands for a constant. Equation (A— 5)
may also be written in the differential form for the
purpose of integration where di can be summed to
give y:

dy 2: dx

and we signify our intention to integrate by adding the
integral sign to both sides of the equation.

dy = 2: dx

Both integraL signs inu.st always be followed by differ-
ennals, this being the reason for se parating dy and dx

in.the prev i ous ste p . The ñriai result after integration is
written:

(A-6)

This process of finding the function when the differ-
ential is given is known as integration. Thus, i lf the

rate of change of y with x is known, it is possible by

inte gration to obtain the functional relationship be-
t'.veen the variables y and:, The constantofintegTation
C has been added to "play safe," snce it is quite
possible that the value we are seeking in the integration
process contained a constant that dropped out on
differentiation.

The constant can be evaluated from the boundary

conditions of the problem, that is, from the values of y
for known values of X. If the function does not contain
a constant term. the value of C will turn out to be zero,
and no harm has aeeri done vi r.s inclusion. If, in the

example just given, the boundary condition is given as
= S when r = .1, one obtains the following result by

substituting the boundary condition Into equation

= 9 - C

or

C = .5 - 9 = —4

and substituting this value of C in equation (A-5) the
ma! result becomes

y 

Rules of Integration. The rules of integration are not
obtained by mathematical derivations as were those of
differentiation. Instead, the :ntegration rules follow
from a consideration of exam ples, such as the following

-
(a) If y = x	 C.	 = ox, or

5x dx

then

5x dx = x5 - C

(b) If y =	 C,	 = -- = , or

di, = x.i dx:

then

.,.i:
Z' dx	 -- - C

0

(c) If y =	 4' C.	 = (it 4' Ux"
dx

then

(ii + 1)x 1 dx = x 	 C

or in general	 : dx i-'-- C

The integral x 1 dx is a special case to which the
general formula in (c) does not apply. This case is
treated in (d)

Id) If j = In 	 C,	 = from Table A.— 1.
ax x

dy = dxix;

then

= In r ' C

The student should take particular note of the integral
onder :a'l, since it is freq uently used in science. The
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1 = -

Ly
ox

Ly
0% a
dy
dx	 52

dx e — C

:nxdr=xunx - 1(-C

ox = ii x — C
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TABLE A-.2. Suiwery of Sevet1 Import,ivt Dvs and lntegr-e

Funon	 :erlvalve

ox.

This integration is acne ay lice meth	 Ilustraced in &aag,e A . 4 1.

tnost Important derivatives and integrals are surnina-
r-.zed in TabLe t-2. The integration of sums and
differences and the treatment of constants, not shown
in these exam ples, are best learned by studying the
following problems.

£aneple 4-3. Find , when the	 eresttxa1 equation, as it is celled,
= ft" + 4r - 4. is given.

dx + 6 f 172 dx - 3 j dx

The constants are taken outside the integral sign, since they are not
changed by integration. Applying (c) to each term, the integration
results in

v4T-3xC=x2zJ_ax+c

&ampIeA- IQ, Integrate dylctx _2&'2 with y - 2 when z 4
Y

and by use of the general formula (c), above,
r	 _. -ssre

Y=_2)r_'Odx=	 +C 
-4x--C

Then. emPloying the bodnaary conditions: 2 -4 x (4) - C
2 -	 to

and finally

Y -4x14 + 10
If one i s not sure of the answer, he or she should check it by
dofferenuatsaig the result

Y - — z'2 + tO
dy
ax -2x	 -

&amp!eA11, Integrate
dy 13 + xY Czl dx

Problems of this t','pe are solved by introducing the (unction cc. Let

then

du = 4r1dx
ouZd therefore be possible to substitute

'or this function, excevc. for the fact, that
= 0 + xI 2 4z' dx

which differ, O'sm the orrnal.differentxai by a factor of 4. Therefore,
we write

= t 3 aY4z'3 I.
The left-hand side is easily '.ntegrazed to give

3
2	 -c

and this is obviously the solution of the original problem.

fcerc,sis, Integrate the following expressions.
I. d = i5 - x'1)Sdx with , O when x 2
Minwer: y	 - .r' - 3

2. dV xx

5.4ruswer:y-C---Inx

[Hint: Write as

Y -	 - x)x° dx 
= f 

(52 -

3. dy = (3 + xx?r dx
+-

Answer.' V (3

(Hint: Let 	 (3+ a°): du 2z dx. Then (3 + z°) 32 r dx u du and
c° du (3 + rx dx.]

The Definite Integral. All previous formulas of integra-
tion have involved an. arbitrary constant C and these
are known as indefinite integrtnLa. When the integration
is carried out between two definite values of ,r, the
integration constant drops out of the result and the
integral is called a de-finite integral. The process by
which the definite integral is obtained is known as
integration between limits. The detinite integral off(x)
dx is written

ffEx)dx

in which a and b represent the limits between which the
ntegratlon is carried out- The process is described as
ioiows. ftrr.ci ax is t.ntegratetl in tIle USUSI way, L'ie
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limits Li and a are substituted successively for in the
result, and the second au5rititv is subtracted from the-
first. The constant of integration disappears wnen the

subtraction is carried out. The details of the method are
illustrated in Example A-2d Notice that ii ic inte-
grated between hrruts in the same manner as

Example A- 72 Find toe solution of the dt)'e'eLiw . 	as

l y lf	 -

c - 0 - (9- Cr -	 - C)

Example A- 11 Toe veio	 c S body J)rn- uree-J .% from ren
L• xres5ed c.'. irs eouaic'r	 c W'Ca: 2 r th d:st.ance on crn N us:
ire cod, r.as fsJs tezweer	 aid uc fo,_. record` Tni
prsaerr ci soivec try

= - at
Li

Toe distance at I 3 sec is eiven the * to;  i and Lie corresoonthng
distance trave jed 4 sec 0 wrrtten r. Toe disi-anre traveed
tecweer the third and bonn second is therefore &, -
solved by Iniep-suor as follows,

c.
ds =	 I dl

IS	 pj)t2) =	 - Si

i 9S1	 34s4 crr.

Applications. The rate of disintegration of a radioac-
tive element may oe ex pressed as

B-ate =

in which x is the specific reaction rate and .V the number
of atxrns remaining unuerc,mposeh at time t, Tne rate of
decrease of rathoactive acorns with time is written as-
-d.Vd:. the negatIve scgn neing rnciucied Decause toe-
number of atorne 5 decreasnr 'siut inereasinc' time.
Radioactive disintegration it one case of wna: is caiiec
drsi-oráat" decomposition. The genera; expression for a
first-order rate. which wi]i be discussed Sr. Chapter 12.

is ordinarily written so the form of a differenua
equation

---kC
a:

in which c is the concentration o ' ins substance
decomDosing at any time. it in desirable to interats
this equation sc that I: car be computed convenient:.
The limits of the definite integrais are ootained by
writing the initia concentnition. i.e.. the concentratior
at i = (, as c and the concentration at some other time

as c. Equation (A-S) is pci: into a convenient form for

integration by separating the variables, that is. by
collecting c and d.c on one side of the equation and di on
the other side. The boundary hmits are added, and tOe
eq uation is ready for integration:

-	 =1' Of

-'SI

- [iLsc c)) =

(-jr cr - -in c1  1, =	 -

	

kt = in	 = 2.303 log

9 3f13	 Cc.
	= 	 log -

Based or the ruies of logarithms, the solution mc:.' abet
be written

C =

or

C =

The rate of growth of bacteria frequently may be
expressed by a similar equation. dXidd = oN. in which
N is the number of cells present at any moment 1. and
o is the rate constant. On integration between the limits
.kc, at 1 = L and N at time the equation is written,

2.303	 N
logo=-(I - a)

in which L is the ian or induction pe riod before tO€
bacteria begin to follow the icrgarithmrc growth Last'.

As an illustration of both thfferentauon and integra-
tion, we may consider a derivation of the idesi gas law.
I: foliows from Boy le s iaw and Cnaries' :aw tea: the

•.ume of one mole of an ideai gas is a function of the
pressure and the temperature

= f(P.T	 (-9

and toe total difierer.:ial ca- IC written

Now, at a fixed temperature, according to Bo ic's law.

	

V =	 = PV	 lA-Il'

and a: a fixed pressure, accordin g to Cnaries law'.

The or.rua deriva t ive of equation IA-Il is given by
toe expression

(A-13)



and the partial derivative of (A— 12) is

	

=	 =	 (A-14)
- T

Substituting these values into equation (A-10) gives

-	 Vl.	 1V1
di=—.--)iP— -1T

or by factoring V from the right-hand terms and
dividing both sides by V, we have

V dP dT A— 15)

.4ope9th: Caicwus Rvtn, 501

Integration of equation A— 5'i then yields

In  - In P = ri - in!?	 A— 16)

The in R term has been wrttten :n ?Lace i C, the
integration constant- R s the moar gas constant-

The a=non or	 that is, the eauacion relating P.
V, and T for an deal gas. £ Inail y ootaineo by tang
the anulogartthms of the terms in e quation A— 6),

PV =

which, for a moles of gas. becomes

PV=rtRT	 A-17)


