Appendix: Calculus Review

The rules for some useful derivatives are found in
Table A-1. The reader will notice in rule (a) that the
rate of change of a constant k with respect to a change
in z is zero since it is evident that a constant, by
definition, does not change. As noted in rule (d), the
base of the natural logarithm raised to the power r has
the strange property of remaining unchanged on differ-
entiation.

TABLE A—1. Rules of Differentiation

Function Dervative Rule
y=k dylor = 0 (a)
¥y =Kx ovigr = k (B)
Yy = ke" oyigr = knx"~} {c}
y = ke" ayldx = ke’ d)
y=kinx oyidx = kix (e}
yEv+v+w dvidx = duldx + dvidx + owidx )
y=uw dyldx = ulavidx) + viduicx) &)
_ Viowidx) - uldvidx)

¥ = ulv dyldx = ————— (h)

W

Several examples are given here 1o illustrate the use
of the rules of Table A-1.

: 4
Example A- 1. Differentiate v = 22 — = * 4z = 6 According

w rule (f), the denvative of ¥ with respect w z is the sum of the
derivatives of the separale terms. The eeparate functions sare
differenuated by the applicatior o ruie (¢;. Hint: The second
nghl-nand term may be wrizten —4z~%%,

E = (2 x 52}
! o
2= T R S
dy &

E=1(|_—'+_;_..._,;

E£xample A-2. Differentiate the produc:
v=3xr -2
Apphving rule (g), in which. 1n this case, v = 8z* ang ¢ = (=F + 2), one
obtains

dy ay
—= =12z and — = 2z
das s

F e L B e (- e
ax az

=60+ 1220 + 240 = 1800 4 240

Rle e

This particular problem is actually solved more simply
by first multiplving out the terms on the right-hand side
of the equation to give

y = 82f + 6o
and then differentiating by rule (f) in Table A-1 to
obtain directiy

= 1825 + 2427

Bhe

e
Example A-3. Differentiate the quotient v = ln— LL

:1, Using rules

{e) and (k), one proceeds as follows. Letu = 2Inzandv = Inz + 1.
Then

du 2 dv 1
& R
dv _ widwds) - uldv/dz)
i =
2 1
inz+1)~= (2=~
_ T z
(nzx = 1¥
and, upon simplifying,
a2

ar  z(lnz < 1®

At times an expression mayv appear too complicated
to differentiate directly. Wher y is some function not of
7 but of u, or ¥ = f(u), which in turn is 2 funetion of =
or u = f{z). three steps are used in the differentiztion.
Fer example, if

§ = & I
this is the form ¥ = f(u), in which u = (2 + 1) is in turn
some function of z.
(1) Let w = 2* = 1, and first differentiate ¥ with
respect Lo u: ¥ = w>
dyidu = 2u = 2(x? + 1)
{2) Then differentiate u with respect to z:
u =%+ 1 dwdzr = 2z
(8) Now, it is observed that when the diﬁ’erer}tia]
eguations of steps (I) and (£) are multiphed togetber,
du is eliminated and dy/dz is obtained:
dylds = dy/du x dw/dz = 2u x 2z
dyldx = 2(22 + 12z = 4z(z> + 1)
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Example A- ©  , = in(z* + 3), find dy/dz. First, let u a4+
y = In w, dy/du = i; dwdz = 2x
Therefore, dyrdz = dy/du x dwdz = 2z + 3)
Example A-5. |f y = ¢, find dydz.

Let u = az. then y = #* and dy/du = ¢* = ¢, dwdz = ¢ and
dyidr = ae*”.

SUCCESSIVE DIFFERENTIATION

In addition to serving as a necessary tool in integral
calculus, differentiation allows one to compute the rate
of change of the dependent variable, for example,
distance in a falling body problem, with respect to the
independent variable, for sxample, time. It is also
useful for computing maxima and minima of various
funcgions. These two applications are iilustrated in the
2xampies of the following sections.

We know from physics that the derivative of distance
with respect to time ds/dt gives the velocity v of a body.
It will also be recalled from physies that acceleration a
is defined as the rate of change of velocity with time,
wit, or distance divided by the square of time, #/t*. In
incremental notation, the average acceleration over the
“istance As can be written as

Aw As

Qaver = At = r&\t)z (A-1)
The instantaneous acceleration at any time during the
fall of a body is expressed by writing the limit of the
ratio of the inerements in equation (A-1). The change
in velocity with respect to time dv/dt may be expressed
as ds/dt taken a second time with respect to time, or
dlds/dt)/dt. This is known as the second derivative with
respect to time and is written in the short-hand symbol
d*sidt*. Hence,

i 0 o Ay s
iy At dt o ge

In general, beginning with the function y = f(x) and
differentiating y with respect to .z gives the first
derivative dy/dz. Differentiating again with respect to =
wives the second derivative, d*y/dz", and successive
differentiations give the third dervative d*y/dz?, the
fourth derivative d*y/dz*, and so on.

Erample A-6. The equation from general physics relating the
distance and time of fall of a body beginning at restis 3 = ggrz. The
velocity aiter 4 seconds is given by

u=§-gl=93lxl=-3924crmec.

in which g is the acceleration of gravity, 981 em/sec®. What is the
acceleration a at this time?

Taking the second derivative of distance with respect o time
simply involves differentiating the result just given a second time:

d*s _ dv
=9

e i

a = 981 envsec

This resuit expresses the fact that the acceleration is
constant at 981 crvsec” throughout the fall. Taking the
third derivative of distance with respect to time yields

dle _
dts

which shows that the rate of change of acceleration with
time is zero. This is another way of saying that the
acceleration is constant. See Problem 14 in Chapter 1.

From a geometric point of view, on a grapn of ¥
plotted against x, the first derivative dy/dz gives the
slope of the line at any point, and the second derivative
d*y/ide® gives the rate of change of the slope with
respect to z. The siope of the curve is equal to two times
the value of z at any point, since dydz = 2z. The rate
of change of the slope of the curve1s constant at a value
of 2 since a*ydz = 2.

Maxima and Minima. Within the region where a curve
slopes up to the right, dy/dz is positive. Where it siopes
up to the left, dy/dx is negative. Where the curve is flat,
exhibiting a maximum, a minimum, or a horizontal
point of inflection, dy/dz is zero, and the tangent to the
curve is a horizontal line.

The second derivative expresses the difference be-
tween these three possibilities. [f the second derivative
is positive for the value of x at the critical value, that is,
at the point in qustion, the point represents a minimum;
if the second derivative is negative, the point repre-
sents a maximum; and if the second derivative is zero,
there may be a point of inflection (or there may be an
urusually flat maximum or minimum or none of these).

0

Example A—7. Does the curve of the equation y = =* show a
minimum o 2 maximum, and if so, what is its value?

The problem is solved by taking the first derivative and setting the
result equal to zero.

. L A

2z =10
Henes the curve shows a critical value at z = 0. The second derivative
d*yldz* = 2 is positive, 50 that y has a minimum value at & = 0. By
such a caiculation, it can be shown that the buffer capacity of an acid
buffer exhibits a maximum at pH = pK, where the concentrations of
the salt and the acid are equivalent, as seen on page 174.

The Differential. Before considering the topic of partial
differentiation, it is necessary to introduce the differ-
entinl. The differential of y is dy and the differential of
zis dx. If y = In x, dy/dx = l/z or, written as the
differential of v,

dy=§d:

Beginning with the function, y = 3z° + 4z - 3, the
differential of y is written,
dy = bz dr + 4 dx
Partial Differentiation. In these examples and all

previous discussions. y has depended on only one
variable, z. When y is a function of several varabies.



ior example, ¥ = flu,v,w), the total change in y, that ic,
the total differential dy, is the sum of the individual
changes in y with respect to each of the variables. In
partial differentiation, v and w are held constant while
u it allowed to change, u and w are held constant while
v changes, and u and v are held constant while
changes.

The svmbol & is used for partial differentiation, and

the fundamental equation for the tota! differential of v

is written,
_{dy 5 [y ) S 5
dy = o _} du (—“—avJ dv + \oo! O (A-2)

in which éwiou, ewlgv, and awéw are the partal
derivatives of ¥ with respect to the three variables.

Example A- €. Find the towal differential of % for the function, v =
21t = Bwr= = 4 i whaeh y is 3 function of the variabies u, . ang 1.
‘_1—!', = 6ut + 417
an

ay
== = bur X,
ai

ay
~ =y
au’

cody = 6w + 3r¥) du + buv dv + 4 du

Equation (A-2) is used in thermodynamics and may
be applied here to the relationship between the volume
V. temperature T, and pressure P of 2 gas. According
Lo the ideal gas equation, the volume of = gas depends

. On the temperature and pressure, that is, V = f(T.P),
and the change of volume is given by the equation
@l ((ﬂ"
(-aT'ir ar + aPJr =
which expresses the fact that an infinitesimal change dV’
i V' ie obtained from the temperature coefficient of
volume &1/6T multiplied by the change in temperature
2F pius the pressure coefficient of voiume &V/6F
multiplied o) tne cnange in pressure dF. The partia)

av’ = (A-3)
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derivatives are written as (6V/aT)p and (6VieF)r to

show that P is held constant while differentiating V' .
with respect to T, and T is held constant while -

differentiating V' with respect 1o P.

Figure A-1a is meant w be an infinitesimally small
section of z surface representing the function, V =

f(T.P). The projection of thic three-dimensional diz-

gramtoa Vvs. Tand 2 V' vs. P plot are shown in -

Figures A-1b and A-lc. The general shapes of the
curves in Figure A-1 zgree with the ideal gas laws,
that is, the volume increzses linearly with temperature,
and volume decreases as the pressure increases. The
siope of the line ab or cd in Figure A-1b is the
temperature coefficient of volume (§V/aT)p, and the

change in volume in going from a to &, (V, — V), is .

equal to the siope multiplied by the change in temper-
ature dT., or (dV/6T)s dT. The slope of the line bd or ec
in Figure A-1cis (6V/8P), and the change in volume in
going from b to d, (V, — V), is (4V/aP)y dP.

It is equally proper to carry out the pressure change
first, proceeding in Figure A—1a from a wo ¢. and then
bring zbout the temperature change, passing from ¢ Lo
d. The total change in volume in going from a to d, viz.,
Vg =V, =dV. may be represented by a diagonal curve

on the surface of the figure, A-la. According to the

method of partial differentiation, the total change is

obtained by the two-step process:
Ve— Vo= (V= V) + (Vg = V)
or
av = (&) ar+ (2 ap
\aT/p " \aP/r

The path by which we arrive at V', from V', has no
influence on the value of dV. The differential depends
oniy on the initial and final values 17, and 1 thus. 617
Is said 1o be an ezact differential and 1" is referred to as
a thermodynamic property. These terms are used in the

chapter on thermodynamics. Since 17, T, and P are all

independent variables. the change in any one can be-
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Fig. A-1. Graphical the fundamental

demonstration of
Phyncal Chemustry, MeGraw-Hill. New Yaork 1928 p. 10))

equation of partial differentiation. (Afier F. Daniels, Mathemalical Preparation for
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obtained in terms of the others. For example, £ =
F(T.V) and thus the infinitesimal change in P with
changes in temperature and volume is

(a2
aT - ‘i . av (A-4)

INTEGRAL CALCULUS

Integration. Integration can be considered as the
summation of indnitesimal elements, such as dy. The
symbol for integration is an eiongated s. wntten J, and
[ dy = y means that the summation of the infinitesimal
elements of y gives the whole value y. Integration is
1iso considered as the reverse of differentiation in the
same sense chat division is the reverse of multiplication.
When we divide 15 by 3, we obtain the answer by
*hinking of the number by which 3 is multipiied to neld
15. Similarly in calculus when we are asked to integrate
2z, we attempt to recall the value that, when differen-
tiated, vielded 2z. The function y = z° and the more
general expression y = &~ + C come to mind as possible
answers, since, in either case,

@y _y
oo T

The symbol C stands for a constant. Equation (A-3)
may also be written in the differential form for the
purpose of integration where A~ can be summed to
give y:

(A-3)

dy = 2z dz

and we signify our intention to integrate by adding the
integral sign to both sides of the equation.

p

ldy=[22dm

Both integral signs must always be followed by differ-
gntials, this being the reason for separating dy and dz
in.the previous step. The final result after integration is
written:

(A-6)

This process of finding the function when the differ-
ential is given is known as integration. Thus, if the
rate of change of y with = is known, it is possible by
integration to obtain the functional relationship be-
tween the variables y and z. The constant of integration
C has been added to “play safe,” sjnce it is quite
possible that the value we are seeking in the integration
process contained a constant that dropped out on
differentiation.

The constant can be evaluated from the boundary
conditions of the problem, that is, from the values of y
for known values of z. If the function does not contain
a constant term. the value of C will turn out to be zero.
and no harm has oeen done ov its inciusion. If in the

y=2+C

example just given, the boundary condition is given as
y = 3 when r = 3, one obtains the following result by
substituting the boundary condition into equation
LA=B):

i=9+C
or
C=5-3=-4
and substituting this value of C in equation (A~6) the
final resuit becomes
y=z —4

Rules of Integration. The rules of integration are not
obtained by mathematical derivations as were those of
differenciation. Instead, the integration rules follow
from a consideration of examples; such as the following

(a) Ify=x5+C,j—g=Sz*,or

dy = 3z dx
then
[Su:‘dx=x5+-c
2 dy _ 32 _
(b) [fy-g?c,dxsT—r',OI‘
dy = = dx;
then
Jﬁdz=z3—3+c

d

— pln+d ay _ "
() lfy=rx *C'dx (n + Dz
then k

J(n + D dr = 2P+ C

¢ Gir D
*"':I'
J.trc:.z n+1+C

or in general

The integral = ™! dz is a special case to which the
general formula in (c) does not apply. This case is
treated in (d)

= + ﬂ—l I -
(@) Ify=Inx+ C,d:—xrromTaoleA L,

dy = dz/z;
then

y = d‘—f=lnz+C

T

The student shouid take particular note of the integral
ander (@), since if is frequenty used in science. The
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Function Cervative Intega
y=x £ 4 ) f P
il | dx = = +.Con =1
J n-1
_— ay i
d 5= S
f=inx £=£ i.
ax x ‘flnxdx=x{mx-i)<-{:"
1 dy 1 (1
e o | ~ax=Inx+C
X dx 2 b

“This integration rs done by the method illustrated in Examoie A=11.

most important derivatives and integrals are summa-
rized in Table A-2. The integration of sums and
differences and the treatment of constants, not shown
in these examples, are best learned by studying the
following problems.

Example A-3. Find y when the differential equation, s it is cailed,
dytdx = 4 + B2* — 3, is given,

_|(dy=J(4:J+6::2—3)d:
=¢J§dz+6[fdx—3jda:

The constants are taken outside the integral signs since they are not
changed by integration. Applying (c) to each term, the incegration
results in
4
y:-l:?bs-?—az?i_’,'=:'f-2f—32+c
Example A-10. Integrate dyidz = -2z'? with y = 2 when z = 4

y--zj;%- —?.Jz""‘dz

and by use of the general formula (c), above,

_ggl-l2eem
y=-2|zBdg =" — Loy +(
1y
(=3 +9
Then, employing the boundary conditions: 2 = —4 x (4)V2 - 7
C=2+38a10
and finally
y=—-4z2"%+ 10

If one is not sure of the answer, he or she should check it by
differentiating the resulit;

y= -4+ 10

R S

ke

Exampie A~ 1. Integrate
dy = (3 + 2" dx
Problems of this type are solved by introducing the function w. Let
¥u=3+
then
du =42 dz
- -uould thereiore be possible to substtute

iy =ut iy

' for this fanction, except for the fact that

w2 du = (3 + 2"V g
which differs from the original differential by a factor of 4. Therefore,
we write
dy = u"du = (3 + YRS dr
The left-hand side is easily integrated to give

u‘.‘! |3+34)uz
I =3ig % TR=—

and this is obviously the solution of the:‘rig'inal problem.
Exercises. Integrate the following expreasions.
L dy = (5 -~ )z dz; withy = 9whenz =2
Answer: y -;.r" —‘lx‘ +3

S—-z

2 dy= dz

An.lwer:y-(.‘—;-lnz
[Hine: Write as
-,«-I(s -z tdzr = J[S‘:'z - z7Y) dz]

3. dy=@3+ 2 Prdz
.-\mwr:y!-(:!;—-ﬁﬁc

&

(Hint: Let u = {3+ ); du = 2z dz. Then (3 + £2*2r dz = v’ du and
Wldu = (3 + FPrds]

The Definite Intégral. All previous formulas of integra-
tion have involved an arbitrary constant C, and these
are known as indefinite integrals. When the integration
is carried out between two definite values of z, the
integration constant drops out of the result and the
integral is called a definite integral. The process by
which the definite integral is obtained is known as
integration between limits. The definite integral of f(z)
dz is written

5
f fiardz (A=T)
a

in which 2 and b represent the limits between which the
integration is carried out. The process is des_cnoed s
iollows. After iz axis integrated in tile usuai way, Lhe
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limits b and a are substituted successively for z in the
result, and the second guantity is subtracted from the
first. The constant of integration disappears wher the
subtraction is carried out. The details of the method are
illustrated in Ezample A-12. Notice that v 1= inte-
grated between limits in the same manner as I.

Example A—12. Find the solution of the differential equation. as It
is called, dy/ds = Zz, given tha: v = ( when r = Zanc y = ¢ wnen
=2

ic ]

jpdy =2 |, & dx

Ly} = [~ C
c-0=(=C1-4-0
c=3
Exampie A-13. The veloc:r of & body faling freely from rest s
expressed by Loe eguauon ¢+ = ¢f What 1: the distance (in em) tha
tne bocy has falier betweer tne tnird anc the fourtn second” Tne
prabiem is soived by INtEgralion.

as
= — =

The distance a1 1 = 3 sec is given Lhe SYIbo 8, anc the corresponding
distance traveied 2t 1 = 4 sec 1= wnitten =,. Tne disiance traveiec
between the third and fourth second 1s therefore §, = §; = As ]t is
solved by integravion as foliows.
s
| de =

J e

fsI = Lol

5, — Sa = At =

Applications. The rate of disintegration of 2 radioac-
tive element may De expressed as

Rate = AN
~EE 2y
d:

inwhich A is the specific reaction rate and N the number
of aloms remaining undecomposed at time {. The rate of
decrezse of radioactive atoms with time is writlen as
—dNid:, the negative sign being included because the
number of atoms ts decreasing Wwith increasing ume.

Eadioactive disintegration i= one case of what is calied

Arsi-order decompositior.. Tne general expression for 2
first-order rate. which will be discussed in Chapter 12,
i ordinarily written in the form of z differential
eguation

ac 1

i (A-8
in which ¢ is the concentration of the substance
decomposing al any ume. 11 1 desirable to integrale
this equation sc tha: i can be computed conveniently.
The bmits of the defimte integrals are obtained by
writing the initizl conceniratiorn. i.e.. the concentrauon
ait 1 = (. as ¢y and the concentration at some other time
tas ¢. Equation (A-8) 1 put inw a convenient form for

integration by separating the variables, that is, by
collecting ¢ and dc on one side of the equation and df on
the other side. The boundary limits are addec, and the
eguation is ready for integration:

={{in )X, = K[(0)};
(=lne¢c) = (—=inegy) = k(. = Q)

it = 2 = 2,08 log 2
c [

Ba 2.303 o o

t € c
Based on the rules of logarithms, the sohition may 2isy
be written

C = (gt
or
¢ = ¢ol0” 12302

The rate of growth of bacteriz freguently may be
expressed by 2 similar equation, dN/df = eN, in which
N ig the number of cells present at any moment {. and
a is the rate constant. On integration between the limits
Ngatt =L and N at time {, the equation is written,

_2.303 N
“EH=0 R
in which L is the lag or induction period before the
bacteriz begin to foliow the jogarithmic growth law.

As an iliustration of both differentiztion and integra-
tion. we may consider a derivation of the ideal gas law.
It jollows from Bovle's law and Charies’ law thati the
veume of one mole of an ideal gas 1s a function of the
pressure and the temperature

V= f(P.T (A-C
anc the total differential can be wnitlen
ial
s pLA -~ i .
dav = "\ET ' d: (A=10,

Now, al a fixed temperature, according Lo Bovie's law,

¥ g = By (A-11)
=gk = A-
and a: 2 fixed pressure, according to Charles™ law.
¥
Vo= kol ke = = (A=-12)
“

The paruz! derivative of equation (A-11) i givern by
tNe expression

al k PV’ ¥

LA U . N
A A T



and the partial derivative of (A-12) is

aV 4
P2 S = 2 2
51,]9 ke =3 (A-14)
Substituting these vaiues into equation (A-10) gives
i = = sl o
dav = P} dP T al

or by factoring V from the right-hand terms and
dividing both sides by V, we have

v  dP _dT

v 7 T (A-13)
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Integration of equation (A-13) then yieids
mV+InP=nT-hR (A-16)

The !n R term has been wntten in place of C, the
integration constant. R s the moiar gas constant.

The equation or state, hat is, the equation relating £.
V, and T for an ideai gas, :s finally obtained by taking
the antilogarithms of the terms in equation (A-16),

PV = RT
which, for n moles of gas, becomes
PV = nRT (A-1T)



