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Introduction
 

Dimensions and Units Statistical Methods and the Analysis of Errors 
Some Elements of Mathematics 

-----------------------_:p-----------------­

The pharmacist today more than ever before is called 
upon to demonstrate a sound knowledge·of pharmacol­
ogy, organic chemistry, and biochemistry and an intel­
ligent understanding of the physical and chemical 
properties of the new medicinal products that he or she 
prepares and dispenses. 

Whether engaged in research, teaching, manufactur­
ing, community pharmacy, or any of the allied branches 
of the profession, the pharmacist must recognize the 
need to borrow heavily from the basic sciences. This 
stems from the fact that pharmacy is an applied science, 
composed of principles and methods that have been 
culled from other disciplines. The pharmacist engaged 
in advanced studies must work at the boundary be­
tween the various sciences and must keep abreast of 
advances in the physical, chemical, and biologic fields to 
understand and contribute to the rapid developments in 
his own profession. 

Pharmacy, like many other applied sciences, has 
passed through a descriptive and an empiric era and is 
now entering the quantitative- and theoretic stage. 

The scientific principles of pharmacy are not as 
complexas some would believe, and certainly they are 
not beyond the understanding of the well-educated 
pharmacist of today. In the followingpages, the reader 
willbe directed through fundamental theory and exper­
imental findings to practical conclusions in a manner 
that should be followed easily by the average pharmacy 
student. 

The name physical pharmacy has been associated 
with the area of pharmacy that deals with the quanti­
tative and theoretic principles of science as they apply 
to the practice of pharmacy. Physical pharniacy at­
tempts to integrate the factual knowledge of pharmacy 
through the development of broad principles of its own, 
and it aids the pharmacist, the pharmacologist, and the 
pharmaceutical chemist in their attempt to predict the 
solubility, stability, compatibility, and biologic action of 
drug products. As a result of this knowledge, the 

pharmaceutical scientist is in a better position to 
develop new drugs and dosage forms and to improve 
upon' the various modes of administration. 

This course should mark the turning point in the 
study pattern of the student, for in the latter part of the 
pharmacy curriculum, emphasis is placed upon the 
application of scientific principles to practical profes­
sional problems. Although facts must be the foundation 
upon which any body of knowledge is built, the rote 
memorization of disjointed "particles" of knowledge 
does not 'lead to logical and systematic thought. The 
student should strive in this course to integrate facts 
and ideas into a meaningful whole. In the pharmacist's 
career, he or she frequently will call upon these 
generalizations to solve practical pharmaceutical prob­
lems. 

The comprehension of course material is primarily 
the responsibility of the student. The teacher can guide 
and direct, explain and clarify, but facility in solving 
problems in the classroom and the laboratory depends 
largely on the student's understanding of theory, recall 
of facts, ability to integrate knowledge, and willingness 
to devote sufficient time and effort to the task. Each 
assignment should be read and outlined, and assigned 
problems should be solved outside the classroom. The 
teacher's comments then will serve to clarify question­
able points and aid the student to improve his or her 
judgment and reasoning abilities. 

DIMENSIONS AND UNITS 

The properties of matter are usually expressed by 
the use of three fundamental dimensions: length, mass, 
and time. Each of these properties is assigned a definite 
unit and a reference standard. In the metric system, 
the units are the centimeter (em), the gram (g), and the 
second (sec); accordingly, it is often 'called the egs 
system. A reference standard is a fundamental unit 

1 



I

1

1

2 Physical Pharmacy 

TABLE 1-1. Fundamental Dimensions and Units 

Dimension 
(Measurable Dimensional Reference 
Quantity) Symbol CGS Unit 51 Unit Standard 

Length (I) L Centimeter (em) Meter(m) Meter 
Mass (m) 
Time (t) 

M 
--T 

Gram (g) 
Second (sec) 

Kilogram (kg) 
Second (s) 

Kilogram 
Atomic frequency of 

Cesium 133 

relating each measurable quantity to some natural or 
artificial constant in the universe. 

Measurable quantities or dimensions such as area, 
density, pressure, and energy are compounded from 
the three fundamental dimensions just referred to. In 
carrying out the operation of measurement, we assign 
to each property a dimension that is expressed quanti­
tatively in units. Thus the quantities of length, area, 
and volume are measured in the dimension of length 
(L), length squared (£2), and length cubed (£3), respec­
tively corresponding to the unit of em, cm'', and em" in 
the cgs system. The fundamental dimensions, units, 
and reference standards are given in Table 1-1. 

The International Union of Pure and Applied Chem­
istry (IUPAC) has introduced a Systeme International 
or 81 units in an attempt to establish an internationally 
uniform set of units. Physical Pharmacy generally uses 
the cgs or common system of units. However, since SI 
units appear with increasing frequency in research 
articles and are found in some textbooks, they are 
introduced to the student in this chapter. They are also 
used in Chapter 4 and to some extent elsewhere in the 
book. SI units are listed in Tables 1-1 and 1-2, and 
some appear inside the front cover of the book under 
Physical Constants. 

Length and Area. The dimension of length serves as a 
measure of distance and has as its reference standard 
the meter. It is defined as follows: 

1 meter = 1.65076373 x 106AKr_86 

in which AKr-86 = 6.057~021 X 10-7 m is the wavelength 
in vacuo of the transition between two specific energy 
levels of the krypton-86 atom, Prior to this definition, 
the meter was arbitrarily' defined as the distance 
between two lines on a platinum-iridium bar preserved 
at the International Bureau of Weights and Measures in 
Sevres, France. The unit of length, the centimeter, is 

TABLE 1-2. Fractions and MUltiples of Units 

Multiple Prefix Symbol 

1012 tera T 
109 

106 

103 

giga 
mega 
kilo 

°G 
M 
k 

10-3 milli m 
10-6 

10-9 
micro 
nano 

JL 
n 

10- 12 pico p 

one hundredth of a meter, the common dimensions and
 
multiples of which are found in Table 1-2. In the
 
microscopic range, lengths are expressed as microme­

ters (J,Lm),. nanometers (nm), and angstroms, A, some­

times written A. Units are often multiplied by positive
 
and negative powers of 10 to indicate their magnitude,
 
the micrometer being 1 x 10-3 millimeters or 10- 4 em,
 
the nanometer 0.001 um, and the angstrom 0.1 nm or
 
10-8 em, Although the micrometer (JLm) is the pre­

ferred term for 0.001 mm in modern textbooks on
 
colloid chemistry, the practice is sometimes to use the
 
older and more familiar term, micron (JL). Similarly, the
 
nanometer has replaced the millimicron (mJL). The
 
student should be familiar with the prefixes (see Table
 
1-2) accompanying units such as mass, volume, and
 
time. For example, a nanosecond, or ns, is 10- 9 second;
 
a megaton (Mton) is 106 tons. Area is the square of a
 
length and has the unit of square centimeters (sq. em or
 
cm''), 

Volume. The measurable quantity, volume, is also
 
derived from length. Its reference standard is the cubic
 
meter; its cgs unit is one millionth of this value or 1
 
cubic centimeter (cc or em"). Volume was originally
 
defined in terms of the liter, the volume of a kilogram of
 
water at 1 atmosphere pressure and 40 C, and was
 

° meant to be equivalent to 1000em", Owing to the failure 
to correct for the dissolved air in the water, however, 
the two units do not compare exactly. It has since been 
established that 1 liter actually equals 1000.027 em". 
Thus, there is a discrepancy between the milliliter (one 
thousandth of a liter) and the cubic centimeter, but it is 
so slight as to be disregarded in general chemical and 
pharmaceutical practice. Volumes are usually ex­
pressed in milliliters in this book, abbreviated ml or 
mL, in conformity with the U.S. Pharmacopeia and the 
National 'Formulary; however, cubic centimeters are 
used in the book where this notation seems more 
appropriate. 

The pharmacist uses cylindric and conical graduates, 
droppers, pipettes, and burettes for the measurement 
of volume; graduates are used more frequently than the 
other measuring apparatus in the pharmacy laboratory. 
The flared conical graduate is less accurate than the 
cylindric type, and the. use of the flared graduate should 
bediscouraged except for some liquids that need not be 
measured accurately. The selection of. the correct 
graduate for the volume of liquid to be measured has 
peen determined by Goldstein et ale 1 
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Mass. The standard of mass is the kilogram. It is the 
mass of a platinum-iridium block preserved at the 
Bureau of Weights and Measures. The practical unit of 
mass in the cgs system is the gram (g), which is one 
thousandth of a kilogram. Mass is often expressed as 
the weight of a body. The balance is said to be used for 
"weighing," and the standard masses are known as 
"weights." The proper relationship between mass and 
weight will be considered under the topic of force. 

To weigh drugs precisely and accurately, the phar­
macist must understand the errors inherent in operat­
ing a balance. A Class A balance, used for the 
compounding of prescriptions, is serviceable only if 
kept in good working condition and checked periodically 
for equality of arm length, beam rider accuracy, and 
sensitivity. These tests are described in the booklet by 
Goldstein and Mattocks. 2 Furthermore, a good balance 
is of no use unless an accurate set of weights is 
available. 

Density and Specific Gravity. The pharmacist fre­
quently uses these measurable quantities when inter­
converting between mass and volume. Density is a 
derived quantity since it combines the units of mass and 
volume. It is defined as mass per unit volume at a fixed 
temperature and pressure and is expressed in the cgs 
system in grams per cubic centimeter (g/cm"), In SI 
units, density is expressed as kilograms per cubic 
meter. 

Specific gravity, unlike density, is a pure number 
without dimension, however, it may be converted to 
density by the use of appropriate formulas." Specific 
gravity is defined as the ratio of the density of a 
substance to the density of water, the values for both 
substances being determined at the same temperature 
unless otherwise specified. The term specific gravity, in 
light of its definition, is a poor one; it would be more 
appropriate to refer to it as relative density. 

Specific gravity is defined more often for practical 
purposes as the ratio of the mass of a substance to the 
mass of an equal volume of water at 4° or at some other 
specified temperature. The following notations are 
frequently found to accompany specific gravity read­
ings: 25°/25°, 25°/4°, and 4°/4°. The first figure refers to 

TABLE 1-3. Derived Oimensions andUnits 
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the temperature of the air in which the substance was 
weighed; the figure following the slash is the tempera­
ture of the water used. The official pharmaceutical 
compendia use a basis of 25°/25° to express specific 
gravity. 
/ Specific gravity may be determined by the use of 
various types of pycnometers, the Mohr-Westphal 
balance, hydrometers, and other devices. The measure­
ments and calculations are discussed in elementary 
chemistry, physics, and pharmacy books. 

Other Dimensions and Units. The derived dimensions 
and their cgs and SI units are listed in Table 1-3. 
Although the units and relations are self-explanatory 
for most of the derived dimensions, force, pressure, and 
energy require some elaboration. 

Force. One is familiar with force in everyday 
experience as a push or pull required to set a body i.i 
motion. The larger the mass of the body and the greater 
the required acceleration, the greater the force that one 
must exert. Hence, the force is directly proportional to 
the lI1aSS (when acceleration is constant) and to the 
acceleration (when the mass is constant). This may be 
represented by the relation 

Force ex Mass x Acceleration (1-1) 

This proportionality is converted to an equality, that is, 
to an equation or mathematical expression involving an 
equal sign, according to the laws of algebra, by the 
introduction of a constant. Accordingly, we write 

f = k x m x a . (1-2) 

in whichfis the force, k is the proportionality constant, 
m is the mass, and a is the acceleration. If the units are 
chosen so that the constant becomes unity (i.e., has the 
value of 1), the well-known force equation of physics is 
obtained: 

f= m x a (1-3) 

The cgs unit of force is the dyne, defined as the force 
that imparts to a mass of 1 g an acceleration of 1 
cm/sec'', 

The reader should recall from physics that weight is 
the force of gravitational attraction that the earth 

Derived Dimensional Relationsh ip to 
Dimensions Symbol CGS Unit SI Unit OtherDimensions 

Area (A) 
Volume (V) 

L2 

L3 
cm2 

cm3 . 
m2 

m3 * 
the square of a length 
the cube of a length 

Density (p) ML- 3 glcm3 kg m- 3 mass/unit volume 
Velocity (v) 
Acceleration (a) 
Force (f) 
Pressure (p) 
Energy (E) 

LT- 1 

LT- 2 

MLT- 2 

ML-lr-2 

ML2T- 2 

em/sec 
em/sec" 
g ern/sec" or dyne 
dyne/cm2 
g cm2/sec2 or erg 

m S-1 

m S-2 

kg m s- 2 = J m-1 = N 
N m- 2 = kg m-1s-2 = Pa 
t<g m2 S-2 = N m = J 

length/unit time 
length/Ctime)2 
mass x acceleration 
force/unit area 
force x length 

Key: N = newton, or kilogram x meter x second-2 j . Pa = pascal, or newton x meter-2 j J = joule, in this table, m = meter, not mass, L = length, T = time: 
M = mass. 

*Thecubic meter is a largevolume, so that volume is often expressed in 51 units as decimeter cubed(dm3 ) which is equaJ to 1000 cm3 • 
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exerts on a body, and it should be expressed properly in 
force units (dynes) rather than mass units (grams). The 
relationship between weight and mass can be obtained 
from equation (1-3). Substituting weight w for force 
and g for acceleration, the equation becomes 

w = m x g (1-4) 

Although the gravitational acceleration of a body varies 
from one part of the earth to another, it is approxi­
mately constant at 981 cm/see'', Substituting this value 
for g, the weight of a 1-g mass is calculated from 
equation (1-4) as follows: 

w = 1 g x 981 cm/sec'' 

and 

w = 981 g cm/sec'' or 981 dynes 

Therefore, the weight of a body with a mass of 1 gram 
is actually 981 dynes. It is common practice to express 
weight in the mass unit, grams, since weight is directly 
proportional to mass; however, in problems involving 
these physical quantities, the distinction must be made. 

The SI unit of force is the newton (N), which is equal 
to one kg m S-2. It is defined as the force that imparts 
to a mass of 1 kg an acceleration of 1 m/sec" (see 
Table 1-3). 

Pressure. Pressure may be defined as force per unit 
area; the unit commonly used in science is dyne/em'', 
Pressure is often given in atmospheres (atm) or in 
centimeters or millimeters of mercury. This latter unit ' 
is derived from a measurement of the height of a column 
of mercury in a barometer, which is used. to measure 
the atmospheric pressure. The equation from elemen­
tary physics used .to convert height in a column of 
mercury or another liquid into pressure units is 

pressure (dyne/ern') = p x g x h (1-5) 

where p is the density of the liquid in g/cm" at a 
particular temperature, g is the acceleration of gravity 
980.665 cm/sec'', and h is the height in em of the column 
of liquid. At sea level, the mean pressure of the 
atmosphere supports a column of mercury 76 em (760 
mm) or 29.9 inches in height. The barometric pressure 
may be translated into the fundamental pressure unit, 
dyne/cm'', by multiplying the height, h = 76 em, times 
1 cm~ cross-sectional area by the density p of mercury, 
13.595g/cm", at 00 to give the mass and multiplying this 
by the acceleration of gravity, g = 980.7 cm/sec'', The 
result divided by cm2 is 1.0133 x 106 dyne/ern" and is 
equal to 1 atm. This series of multiplication and division 
is expressed simply by equation 5. 
. In the SI system, the unit of pressure (or stress) is 
the newton divided by the meter squared (Nm-2) and is 
called the pascal (Pa), (see Table 1-3). 

Example 1- 1. Convert the pressure of a column of ethyl alcohol 76 
em Hg (760nun Hg) high to a pressure at sea level and 0° C (standard 
pressure) expressed in (a) dyne/em" and (b) pascals (Pa). The density 
(P) of ethanol at 0° Cis. 0.80625 g/cm", 

(a) To obtain the standard pressure in dyne/em", one uses equation 
(1-5) with the density p = 0.80625 g/em", the acceleration of gravity 
9 at sea level as 980.665 em/see", and the height h of the column of 
mercury as 76.000 cm Hg. 

Pressure = 0.80625 g/cm" x 980.665 em/sec" x 76.000 em 

= 6.00902 x 104 dyne/em'' 

(b) To obtain the standard pressure in pascals (Pa), we use SI units 
in equation (1-5): 

kg (1Q2)3cm3)* (Pressure = 0.80625 g/cm" x - x --­
\ 103g 1m3 

m 
x (980.665 cm/see2 x ~) x (76.000 em x 100 )

100 em cm 
2= 6.00902 x 103 kg m" . S-2 (or N . m- , or Pa) 

*1 meter = lQ2 em; therefore, 1 m3 = (102)3em3 = 106cm3. 

Work and Energy. Energy is frequently defined as the 
condition of a body that gives it the capacity for doing 
work. The concept actually is so fundamental that no 
adequate definition can be given. Energy may be 
classified as kinetic energy or potential energy. 

The idea. of energy is best approached by way of the 
mechanical equivalent of energy known as work and the 
therinal equivalent of energy or heat. When a constant 
force is applied to a body in the direction of its 
movement, the work done on the body equals the force 
multiplied by the displacement, and the system under­
goes an increase in energy. The product of force and 
distance has the same dimensions as energy, namely 
ML2T--2• Other products also having the dimensions of 
energy are pressure x volume, surface tension x area, 
mass x velocity'', and electric potential difference x 
quantity of electricity. 

The cgs unit of work, also the unit of kinetic and 
potential energy, is the erg. It is defined as the work 
done when a force of 1 dyne acts through a distance of 
1 centimeter: 

1 erg = 1 dyne x 1 em 

The erg is often too small for practical use and is 
replaced by the joule (J) (pronounced jewel), which is 
equal to 107 ergs: 

1 joule = 1 x 107 erg 

In carrying out calculations in the cgs system involving 
work and pressure, work must be expressed in ergs and 
pressure in dynes/em'', When using the 81 or any other 
system, consistent units mustalso be employed. 

Heat and work are equivalent forms of energy and 
are interchangeable under certain circumstances. The 
thermal unit of energy in the cgs system is the gram 
calorie (small calorie). Formerly it was expressed as the 
amount of heat necessary to raise the temperature of 1 
gram of water from 15° to 16° C. The small calorie is 
now defined as equal to 4.184 joules. The large or 
kilogram calorie (kcal) equals 1000 small calories. 
The SI unit for energy or work is the joule (J), which is 
seen in Table r-3 to be equivalent to the newton x 
meter (N m). 
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Temperature. Temperature is assigned a unit known 
as the degree. On the centigrade and the Kelvin or 
absolute scales, the freezing and boiling points of pure 
water at 1 atm pressure are separated by 100 degrees. . 
Zero degree on the centigrade scale equals 273.15° on 
the Kelvin scale. 

SOME ELEMENTS OF MATHEMATICS . 

The student should become familiar with the funda­
mental concepts of mathematics that are frequently 
used in the physical sciences and upon which are based 
many of the equations and graphic representations 
encountered in this book. 

Calculations Involving dimensions. Ratio and propor­
tions are frequently used in the physical sciences for 
conversions from one system to another. The following 
calculation illustrates the use of proportions. 

Example 1-2. How many gram calories are there in 3.00 joules? 
One should first recall a relationship or ratio that connects calories 
and joules. The relation 1 cal = 4.184 joules comes to mind. The 
question is then asked in the form of a proportion: If 1 calorie equals 
4.184 joules, how many calories are there in 3.00 joules? The 
proportion is set down, being careful to express each quantity in its 
proper units. For the unknown quantity, aq "X" is used. 

\ 
1 cal X 

4.184 joules 3.00 joules 

X = 3.00 joules x 1 cal 
4.184 joules 

X = 0.717 cal 

A second method, based on the requirementthat the 
units as well as the dimensions be identical on both 
sides of the equal sign, is sometimes more convenient 
than the method of proportions. 

Example 1-3. How many gallons are equivalent to 2.0 liters? It 
would be necessary to set up successive proportions to solve this 
problem. In the method involving identity ofunits on both sides of the 
equation, the quantity desired, X (gallons), is placed on the left and 
its equivalent, 2.0 liters, is set down on the right side of the equation. 
The right side must then be multiplied by known relations in ratio 
form, such as 1 pint per 473 ml, to give the units of gallons. Carry­
ing out. the indicated operations yields the result with its proper 
units. 

X (ingallons) = 2.0 liter x (1000 mLlliter) 

x (1 ptl473mL) x (1 gaV8 pt) 

X = 0.53 gal 

One may be concerned about the apparent disregard for 
the rules of significant figures (p. 11) in the equivalents 
such as 1 pint = 473 mL. The quantity of pints. can be 
measured as accurately as that of milliliters, so that we 
assume 1.00 pint is meant here. The quantities 1 gallon 
and 1 liter are also exact by definition, and significant 
figures need not be considered in such cases. 

Exponents. The various operations involving expo­
nents, that is, the powers to which a number is raised, 
are best reviewed by studying the examples set out in 
Table 1-4. . 

TABLE 1-4. The Rules DfEXpDnents 

a x a x a = a3 

a2 .x a3 = a2 + 3 = as 
<a2 )3 = a2 x a2 x °a2 = a6 

as/a2 2= aoS - = a3 

s/a4 = as-4a = a l = a 

Logarithms. The equality 

103 = 1000° (1-6) 

is expressed in logarithmic notation as: 

10glO 1000 = 3 (1-7) 

The exponent 3 to which the base 10 is raised to give 
1000in equation (1-6) is referred to as the logarithm of 
1000. The number 1000 is known as the antilogarithm 
of the number 3. In general, if b, raised to the power x, 
gives the number a, then the logarithm to the base b of 
a is x: 

bX = a (1-8) 
log, a = x (1-9) 

When 10 is used as the base, the logarithm is known 
as the common or Briggsian logarithm, whereas the 
number 2.71828. . . , designated as e, is used. as the 
base for the natural or Napierian logarithms. The 
quantity e is important in the theoretic development of • 
the physical and biochemical sciences and is discussed in 
some detail by Daniels.! It is the sum of the Series 1 + 
1 + 1/2! + 1/3! + 1/4! . . . in which! denotes a factorial 
number that is defined as the product of the positive 
integers between 1 and the number.r'I'hus, 2! = 1 x 2, 
3! = 1 x 2 x 3 = 6, and 4! = 1 x 2 x 3 x 4 = 24. The 
common logarithms are designated by the symbol logj, 
or simply as log, while the natural logarithms are 
written as loge or In. 

Although one usually has access to a hand calculator 
for obtaining the logarithms of numbers, it sometimes 
happens that one has only a table of common logarithms 
(see the back cover of this book). To convert from one 
system to another, particularly from the natural to the 
common logarithm, the following formula is used: 

In a = 2.303 log a* (1-10) 

Equation (10) may be derived as follows. Let 

log a = x (1-11) 

so that 

(1-12) 

*The conversion factor, 2.303, is more accurately expressed as 
2.302685. 
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and taking the natural logarithm, equation (1-12) 
becomes 

In a = In lOX = x In 10 (1-13) 

Now In 10 = 2.303, and equation (1-13) becomes 

In a = 2.303 x (1-14) 

Substituting the identity x = log a from equation 
(1-11) into equation (1-14) gives the desired formula. 

The application of logarithm is best demonstrated by 
considering several examples. In the expression, 

log 60.0 = 1.778 

the digit 1 to the left of the decimal point in the 
logarithm is known as the characteristic and signifies 
that the number 60.0 belongs to that class of numbers 
with a magnitude of 101 and thus contains two figures to 
the left of the decimal point. The quantity 0.778 of the 
logarithm is known as the mantissa and is found in the 
table of common logarithms. It is often convenient to 
express the number 60.0 by writing it with one 
significant figure to the left of the decimal point, 6.00, 
multiplied by 10 raised to the first power, viz., 6.00 x 
101

• The exponent of 10 then gives the characteristic, 
and the value in the logarithm table gives the mantissa 
directly. 

This method may be used to obtain the logarithm of 
6000 from a table as follows. The number is first written 
as 6.000 x 103if it is accurate to four significant figures. 
The characteristic is observed to be 3, and the mantissa 
is found in the table as 0.778. Hence, 

• log 6000 = 3.778 

For decimal fractions that frequently appear in prob­
lems involving molar concentration, the following 
method is used. Suppose one desires to know the 
logarithm of 0.0600. The number is first written as 6..00 
x 10- 2• The characteristic of a number may be positive 
or negative; the mantissa is always positive. The 
characteristic in this case is -2 and the mantissa is 
0.778. Hence, 

log 0.0600 = -2 + 0.778 =.-1.222 

Finding the number in a table when the logarithm is 
given, that is, obaining the antilogarithm, is shown by 
the following example. What is the value of a if log a = 
1.7404? The characteristic is 1 and the mantissa is 
0.7404. From the table of logarithms, one finds that the 
number corresponding to a mantissa of 0.7404 is 5.50. 
The characteristic is 1, so the antilogarithm is 5.50 x 
101 or 55.0. . 

Let us find the antilogarithm of a negative number, 
-2.699. Recalling that the mantissa must always be 
positive, we first separate the logarithm into a negative­
characteristic and positive mantissa: 

-2.699 = -3.00 + 0.301 

This transformation is easily seen in Figure 1-1, in 

0­0 

-1­-1 

+
-3 

-2 

1 
-2­

45' 
0.301

-3 -3 

0 

-1­~l
 
-2.699 

-2- 1 
-3-~ 

Fil. 1- 1. Schematic representation for finding the antilogarithm of a 
negative number. 

which -2.699 corresponds to going down the scale in a 
negative direction to -3 and coming back up the scale 
0.301 units in the positive direction. Actually, by this 
process, we are subtracting 1 from the c~aracteristic 
and adding 1 to the mantissa, or to the quantity 

-2.699 = (-2) + (-0.699) 

we subtract and add 1 to yield 

(-2 - 1) + (-0.699 + 1) = -3 + 0.301 

The result (-3 + 0.301) is sometimes abbreviated to 
(3.301), in which the minus sign above the 3 applies only 
to the·characteristic. 3" is commonly referred to as "bar 
three." It has been the practice in some fields, such as 
quantitative analysis, to use the form in which 1~ is 
added and subtracted to give 

3.301 = 7.301 - 10 

For physical chemical calculations and for plotting 
logarithms of numbers, it is more convenient to use the 
form -2.699 than one of the forma having a mixture of 
negative and positive parts. For use with logarithm 
tables, however, the mixed form is needed. Thus, in 
order to obtain the antilogarithm, we write the loga­
rithm as 3.301. The number corresponding to the 
mantissa is found in the logarithm table to be 2.00. The 
characteristic is observed to be -a, and the final result 
is therefore 2.00 x 10-3. 

We have dealt with logarithms to the base 10 
(common logarithms) and to the base e = 2.71828. · · 
(natural logarithms). Logarithms to any other positive 
number as the base, b, may also be obtained. The 
formula used for this purpose is 

logb(a) = loge(a)lloge(b) (1-15) 

To obtain the logarithm of the number a = 100 to the 
base b = 37, we substitute in equation (1-15): 

log37(100) = In(100)lln(37) = 1.2753 

One may also use commonlogs on the right side of the 
equation: 

log37(lOO) = loglo(100)lloglo(37) = 1.2753 
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TABLE 1-5. Rules of Logarithms 

logab = loga + log b 1
log- = log 1 - loga = -log a 

a 
log~ = log a - log b log a

2 = log a + log a = 2 log a 

log 1 = 0 since 10° = 1 logva = loga1l2 = ~ loga 

loga- 2 = - 2 loga = 2 log~ 
a 

These formulas allow one to obtain a logarithm to a base 
b for any whole or fractional positive number desired. 
Problem 1-12 is an exercise involving the change from 
one logarithmic base to another. 

As seen in the table of exponents (Table 1-4), 
numbers may be multiplied and divided by adding and 
subtracting exponents. Since logarithms are exponents, 
they follow the same rules. Some of the properties of 
logarithms are exemplified by the identities collected in 
Table 1-5. 

Variation. The scientist is continually attempting to 
relate phenomena and establish generalizations with 
which to consolidate and interpret experimental data. 
The problem frequently resolves itself into a search for 
~he relationship between two quantities that are chang­
mg at a certain rate or in a particular manner. The 
dependence of one property, the dependent variable y, 
on the change or alteration of another measurable 
quantity, the independent variable x, is expressed 
mathematically as 

y ex X (1-16) 

which is read: "y varies directly as x," or "y is directly 
proportional to z." A proportionality is changed to an 
equation a~ follows. If y is proportional to x in general, 
then all pairs of specific values of y and s, say YI and Xl' 

Y2 and X2, • • • , are proportional. Thus 

Yl Y2-:=-= .... (1-17) 
Xl X2 

Since the ratio ?f any y to its corresponding X is equal 
~o any other ratio of y and x, the ratios are constant, or, 
In general 

1- = const~nt (1-18)
x 

Hence, it is ~ simpl~ matter to change a proportionality 
to an equality by Introducing a proportionality con­
stant, k. To summarize, if 

TABLE 1- 6. Formulas "1IIustratin, thePrinciple of Variation 

Chapter 1 • Introduction 

yexx 

then 

y = kx (1-19) 

It is frequently desirable to show the relationship 
between X and y by the use of the more general 
notation, 

y = fix) (1-20) 

which is read: "y is some function of x." That is, y may 
be e~ual to 2x, .to 27x2

, or to 0.0051 + log (a/x). The 
functional notation, equation (1-20), merely signifies 
that y and x are related in some way without specifying 
the actual equation by which they are connected. Some 
well-known formulas illustrating the principle of varia­
tion are shown in Table 1-6. 

Graphi~ Methods. Scientists are not usually so fortu­
nate as to begin each problem with an equation at hand 
r~lating the variables under study. Instead, the inves­
tigator must collect raw data and put them in the form 
of a table ?r graph to b~tter observe the relationships. 
Constructing a graph WIth the data plotted in a manner 
~o as. to form a smooth curve often permits the 
investigator to observe the relationship more clearly, 
and perhaps allows expression of the connection in the 
form of a mathematical equation. The procedure of 
obtaining an empiric equation from a plot of the data is 
known as curve fitting and is treated in books on 
statistics and graphic analysis. 

The magnitude of the independent variable Iscustom­
arily measured along the horizontal coordinate scale 
called the X axis. The dependent variable is measured 
along the vertical scale or the y axis. The data are 
plotted on the· graph, and a smooth line is drawn 
through the points. The X value of each point is known 
as the X coordinate or the abscissa, the y value is known 
as the y coordinate or the ordinate. The intersection of 
the X axis and the y axis is referred to as the origin. The 
X and y values may be either negative or positive. 

The simplest relationship between two variables 
where the variables contain no exponents other than 
one (first-degree equation), yields a straight line when 
plotted on rectangular graph paper. The straight-line or 
linear relationship is expressed as 

y = a + b» (1-21) 

in which y is the dependent variable, x is the indepen­
dent variable, and a and b are constants. The constant 

Dependent Independent ProportionaIity 
Measurement Equation Variation Variable Constant 

Circumference of a circle C 'frD Circumference, C Diameter, D 'fr = 3.14159 . 
Density M = pV Mass, M· Volume, V Density,·p 
Distance of falling body s = !gt2 Distance, S Time, t2 Gravity constant, !g

C .Freezing point depression 41, ~ K,m Freezing point depression, 4Tf Molality, m ryOSCOPIC constant, K, 2 
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b is the slope of the line; the greater the value of b, the 
steeper the slope. It is expressed as the change in y 

with the change in x or b = ~; b is also the tangent of 
the. angle that the line makes with the x axis. The slope 
may be positive or negative depending on whether 
the line slants upward or downward to the right. When 
b = 1, the line makes an angle of 45°with the x axis (tan 
45° = 1), and the equation of the line may then be 
written 

y = a + x (1-22) 

When b = 0, the line is horizontal (i.e., parallel to the x 
axis), and the equation reduces to 

y=a (1-23) 

The constant a is known as the y intercept and 
signifies the point at which the line crosses the y axis. If 
a is positive, the line crosses the y axis above the x axis; 
if negative, it intersects the y axis below the x axis. 
When a is zero, equation (1-21) may be written, 

y = bx (1-24) 

and the line passes through the origin. 
The results of the determination of the refractive 

index of a benzene solution containing increasing con­
centrations of carbon tetrachloride are found in Table 
1-7. The data are plotted in Figure 1-2 and are seen to 
produce a straight line with a negative slope. The 
equation of the line may be obtained by using the 
two-point form of the linear equation, 

Y2 - YI 
y - YI = (x - Xl) (1-25)

X2 - Xl 

The method involves selecting two widely separated 
points (Xl' YI) and (X2' Y2) on the line and substituting 
into the two-point equation. 

Ex.mpl, 1-4. Referring to Figure 1-2, let 10.0% be Xl and its 
corresponding y value 1.497 be YI; let 60.0% be X2 and 1.477 be Y2. 

The equation then becomes 

y - 1.497 = 1~~~ =:O~:7 (3: - 10.0) 

Y - 1.497 = -4.00 x 10-4 (X -.10.0) 

Y = -4.00 X 10-4 X + 1.501 

The value -4.00 x 10-4 is the slope of the straight line 
and corresponds to b in equation (1-21). A negative 

TABLE 1-7. Refractive Indices of Mixtures of Benzen, and 
Carbon Tetrachloride 

(x) (y) 
Concentration of CCI 4 Refractive 
(volume %) Index 

10.0 1.497 
25.0 1.491 
33.0 1.488 
50.0 1.481 
60.0 1.477 

y intercept = 1.501 ,1.500 , 
, XhYl 

~SIOpe = -4.00 X 10-4 

)( 

~ 1.490 
.5 

; 
: 
o 
C'G 
~ 
CDa:: 

1.480 
X~,Y2 

Equation of line ,
Y = -4.00 X 10- 4x + 1.501 ,, , 

20 40 60 

Carb~n tetrachloride, % by volume 

Fig. 1-2. Refractive index of the system benzene-carbon tetrachlo­
ride. 

value for b indicates that y decreases with increasing 
values of x as observed in Figure 1-2. The value 1.501 
is the y intercept and corresponds to a in equation 
(1-21).* It may be obtained from the plot in Figure 1-2 
by extrapolating (extending) the line upwards to the 
left until it intersects the yaxis. It will also be observed 
that 

Y2 - Yl = fiy = b (1-26)
X2' - Xl fix 

and this simple formula allows one to compute the slope 
of a straight line. The use of statistics to determine 
whether data fit the slope of such a line and its intercept 
on the y axis is illustrated later in this chapter. 

Not all experimental data form straight lines. when 
plotted on ordinary rectangular coordinate paper. 
Equations containing x2 or y2 are known as second­
degree or quadratic equations, and. graphs of these 
equations yield parabolas, hyperbolas, ellipses, and 
circles. The graphs and their corresponding equations 
may be found in standard textbooks on analytic geom­
etry. 

Logarithmic relationships occur frequently in scien­
tific work. The data relating the amount .ofoil separat­
ing from an emulsion per month (dependent variable, y) 
as a function of the emulsifier concentration (indepen­
dent variable, ~) are collected in Table 1-8. 

The data from this experiment may be plotted in 
several ways. In Figure 1-3, the oil separation y is 
plotted as ordinates against the emulsifier concentra­
tion x as abscissas on a rectangular coordinate grid. In 

*The y-intercept, 1.501, is of course the refractive index of pure 
benzene at 20°C. For the purpose of this example we·assume that we 
were not able to find this value in a table of refractive indices. In 
handbooks of chemistry and physics the value is actually found to be 
1.5011 at 20° C. 
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TABLE 1-8. Emulsion Stability asa Function of Emulsifier 
Concentration 

Emulsifier Oil Separation Logarithm of 
(% Concentration) (mUmonth) Oil Separation 
(x) (y) (logy) 

0.50 5.10 0.708 
1.00 3.60 0.556 
1.50 2.60 0.415 
2.00 2.00 0.301 
2.50 1.40 0.146 
3.00 1.00 0.000 

Figure 1-4, the logarithm of the oil separation is 
plotted against the concentration. In Figure 1-5, the 
data are plotted on semilogarithm paper, consisting of a 
logarithmic scale on the vertical axis and a linear scale 
on the horizontal axis. 

Although Figure 1-3 provides a direct reading of oil 
separation, difficulties arise when one attempts to draw 
a smooth line through the points or to extrapolate the 
curve beyond the experimental data. Furthermore, the 
equation for the curve cannot be obtained readily from 
Figure 1-3. When the logarithm of oil separation is 
plotted as the ordinate, as in Figure 1-4, a straight line 
results, indicating that the phenomenon follows a 
logarithmic or exponential relationship. The slope and 
the y intercept are obtained from the graph, and the 
equation for the line is subsequently found by use of the 
two-point formula: 

log y = 0.85 - 0.28x 

Figure 1-4 requires that we obtai-i the logarithms of 
the oil-separation data before the graph is constructed 
and, conversely, that we obtain the antilogarithm of the 
ordinates to read oil separation from the graph. These 
inconveniences of converting to logarithms and antilog­
arithms may be overcome by the use of semilogarithm 
paper. The x and y values of Table 1-8 are plotted 
directly on the graph to yield a straight line, as seen in 
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Fig. 1-4. A plot of the logarithm of oil separation of an emulsion vs, 
concentration on a rectangular grid. 

Figure 1-5. Although such a plot ordinarily is not used 
to obtain the equation of the line, it is convenient for 
reading the oil separation directly from the graph. It is 
well to remember that the In of a number is simply 
2.303 log of the number. Therefore, logarithmic graph 
scales may be used for In as well as for log plots. 

C,omputers and Calculators. Computers are used 
widely in industry, government, business, education, 
and research and touch the lives of nearly everyone in 
one way or another. Computers may be divided into 
analog and digital machines. Digital computers deal 
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Fil. 1-5. E)Ilulsion stability plotted on a semilogarithmic grid. 
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with numbers much like desk and hand-held calculators 
do. The modern calculator is provided with registers for 
the storage of data and a central core that can be 
programmed with mathematical instructions to carry 
out most mathematical functions. The programmable 
calculator, like the computer, also has a decision­
making capacity through its ability to determine 
whether a number is larger than zero (positive), smaller 
than zero (negative), or equal to zero. The computer 
differs from the calculator in that it is faster, capable of 
greater storage, and more versatile. 

The analog computer, unlike the digital computer, 
handles mathematical problems using voltages to rep­
resent variables such as concentration, pressure, time, 
and temperature. If the problem can be written as' a 
differential equation (Examples A-9, A-12, p. 599), 
the solution is obtained by expressing the equation in 
voltages, capacitances., and resistances and then caus­
ing the voltage to vary with time as determined by the 
differential equation. The solution to the problem ap­
pears as a graphic plot on a recorder or is displayed as 
a tracing on an oscilloscope screen. The analog com­
puter is composed of tens or hundreds of amplifiers that 
are used for the mathematical operations of addition, 
multiplication, and so on. The amplifiers are connected 
by the operator into a circuit that represents the dif­
ferential equation at hand. Each amplifier corresponds 
to one step in the chemical, physical, or mechanical 
process under consideration. The analog computer is 
used in engineering to simulate the spring action on the 
axles of an automobile or the movement of a skyscraper 
in a high wind. It has been used to calculate the 
absorption, distribution, and elimination constants for a 
drug that is administered to a patient and to plot the 
curves for uptake and excretion. Today the digital 
computer can also calculate such values and prepare 
graphs with facility, and the popularity of the analog 
computer has diminished in pharmacy in recent years. 

Currently, the microcomputer and the hand-held 
calculator are of great interest in small business and 
education and for personal use. The microcomputer, at 
a price within reach of the average individual, is more 
powerful today than the large institutional computers of 
the 1960s. 

Programs may be written for large electronic com­
puters and microcomputers in a number of languages, 
the most popular of which are FORTRAN, BASIC, 
PASCAL, C, and C++. Even some hand-held calcula­
tors can now be programmed in BASIC. 

It will profit the student to become familiar with 
BASIC and/or FORTRAN and with the operation of an 
institutional or personal microcomputer. A hand-held 
calculator will be useful for working the problems atthe 
ends of the chapters of this book. A programmable 
calculator is particularly convenient to obtain the slopes 
and intercepts of lines and for carrying out a repetitive 
sequence of mathematical operations. For example, in 
the chapter on solubility, if one desires to calculate the 

minimum pH for complete solubility of a series of 10 
acidic drugs of known pKa values, it is simpler and 
faster to program the calculator than to carry out a 
number of repetitive steps for each of the 10 drugs. 

Significant Figures. A significant figure is any digit 
used to represent a magnitude or quantity in the place 
in which it stands. The number zero is considered as a 
significant figure except when it is used merely to locate 
the decimal point. The two zeros immediately following 
the decimal point in the number 0.00750 merely locate 
the decimal point and are not significant. However, the 
zero following the 5 is significant since it is not needed 
to write the number; if it were not significant, it could 
be omitted. Thus, the value contains three significant 
figures. The question of significant figures in the 
number 7500.is ambiguous. One does not know whether 
any or all of the zeros are meant to be significant, or 
whether they are simply used to indicate the magnitude 
of the number. To express the significant figures of such 
a value in an unambiguous way, it is best to use 
exponential notation. Thus, the expression 7.5 x lOa 
signifies that the number contains two significant 
figures, and the zeros in 7500 are not to be taken as 
significant. In the value, 7.500 x 103, both zeros are 
significant, and the number contains a total of four 
significant figures. The significant figures of some 
values are shown in Table 1-9. 

The significant figures of a number include all certain 
digits plus the first uncertain digit. For example, one 
may use a ruler, the smallest subdivisions of which are 
centimeters, to measure the length of a piece of glass 
tubing. If one finds that the tubing measures slightly 
greater than 27 em in length, it is proper to estimate the 
doubtful fraction, say 0.4, and express the number as 
27.4 em. A replicate measurement may yield the value 
27.6 or 27.2 em so that the result is expressed as 27.4 ± 
0.2 em. When a value such as 27.4 em is encountered in 
the literature without further qualification, the reader 
should assume that the final figure is correct to within 
about ± 1 in the last decimal place, which is meant to 
signify the mean deviation of a single measurement. 
However, when a statement is given in the official 
compendia (U.S. Pharmacopeia and National Form­
ulary) such as "not less than 99," it means 99.0 and 
not 98.9. 

Significant figures are particularly useful for indicat­
ing the precision of a result. The precision is limited by 

TABLE 1-9. Sifnificant Figures 

Number of 
Number Significant Figures 

53.	 2 
530.0	 4
 

0.00053 2
 
5.0030 5
 
5.3 x 10-2	 2 
5.30 X 10-4 3 

53000 indeterminate 



the instrument used to make the measurement. A 
measuring rule marked off in centimeter divisions will 
not produce as great a precision as one marked off in 0.1 
em or mm. One may obtain a length of 27.4 ± 0.2 ern 
with the first ruler and a value of, say, 27.46 ± 0.02 em 
with the second. The latter ruler, yielding a result with 
four significant figures, is obviously the more precise 
one. The number 27.46 implies a precision of about 2 
parts in 3000, whereas 27.4 implies a precision of only 2 
parts in 300. 

The absolute magnitude of a value should not be 
confused with its precision. We consider the number 
0.00053 molelliter as a relatively small quantity because 
three zeros immediately follow the decimal point. But 
these zeros are not significant and tell us nothing about 
the precision of the measurement. When such a result is 
expressed as 5.3 x 10-4 molelliter, or better as 5.3 
(±O.l) x 10-4 molelliter, both its precision and its 
magnitude are readily apparent. 

In dealing with experimental data, certain rules 
pertain to the figures that enter into the comp.itations: 

1. In rejecting superfluous figures, increase by 1 the 
last figure retained if the following figure rejected is 5 
or greater. Do not alter the last figure if the rejected 
figure has a value of less than 5. Thus, if the value 
13.2764 is to be rounded off to four significant figures, it 
is written as 13.28. The value 13.2744 is rounded off to 
13.27. 

2. In addition or subtraction, include only as many 
figures to the right of the decimal point as there are 
present in the number with the least such figures. Thus, 
in adding 442.78, 58.4, and 2.684, obtain the sum and 
then round off the result so that it contains only one 
figure following the decimal point: 

442.78 + 58.4 + 2.684 = 503.684 

This figure is rounded off to 503.9. 
Rule 2 of course cannot apply to the weights and 

.volumes of ingredients in the monograph of a pharma­
ceutical preparation. The minimum weight or volume of 
each ingredient in a pharmaceutical formula or a 
prescription should be large enough that the error 
introduced is no greater than, say, 5 in 100 (5%), using 
the weighing and measuring apparatus at hand. Accu­
racy and precision in prescription compounding is 
discussed in some detail by Brecht. 5 

3. In multiplication or division, the rule commonly 
used is to retain the same number of significant figures 
in the result as appear in the value with the least 
number of significant figures. In multiplying 2.67 and 
3.2, the result is recorded as 8.5 rather than as 8.544. A 
better rule here is to retain in the result the number of 
figures that produces a percentage error no greater 
than that in the value with the largest percentage 
uncertainty. 

4. In the use of logarithms for multiplication and 
division, retain the .same number of significant figures 
in the mantissa as there are in the original numbers. 
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The characteristic signifies only the magnitude of the 
number and accordingly is not significant. Since calcu­
lations involved in theoretic pharmacy usually require 
no more than three significant figures, a four-place 
logarithm table yields sufficient precision for our work. 
Such a table is found on the inside back cover of this 
book. The hand calculator is more convenient, however, 
and tables of logarithms are used less frequently today. 
Logarithms to nine significant figures are obtained by 
the simple press of a button on the modern hand 
calculator. 

5. If the result is to be used in further calculations, 
retain at least one digit more than suggested in the 
rules just given. The final result is then rounded off to 
the last significant figure. 

STATISTICAL METHODS AND THE ANALYSIS OF ERRORS 

If one is to maintain a high degree of exactitude in the 
compounding of prescriptions and the manufacture of 
products on a large scale, one must know how to locate 
and eliminate constant and accidental errors insofar as 
possible. Pharmacists must recognize, however, that 
just as they cannot hope to produce a perfect pharma­
ceutical product, neither can they make an absolute 
measurement. In addition to the inescapable imperfec­
tions in mechanical apparatus and the slight impurities 
that are always present in chemicals, perfect accuracy 
is impossible because of the inability of the operator to 
make a measurement or estimate a quantity to a degree 
finer than the smallest division of the instrument scale. 

Error may be defined as a deviation from the absolute 
value or from the true average of a large number of 
results. Two types of errors are recognized: determi­
nate (constant) and indeterminate-(random or acciden­
tal) . 

Determinate Errors. Determinate or constant errors are 
those that, although sometimes unsuspected, may be 
avoided or determined and corrected once they are 
uncovered. They are usually present in each measure­
ment and affect all observations of a series in the same 
way. Examples of determinate errors are those inher­
ent in the particular method used, errors in the 
calibration and the operation of the measuring instru­
ments, impurities in the reagents and drugs, biased 
personal errors that, for example, might recur consis­
tently in the reading of a meniscus, in pouring and 
mixing, in weighing operations, in matching colors, and 
in making calculations. The change of volume of solu­
tions .with temperature, while not constant, is, how­
ever, a systematic error that also may be determined 
and accounted for once the coefficient of expansion is 
known. 

Determinate errors may be combated in analytic 
work by the use of calibrated apparatus, by the use of 
blanks and controls, by using several different analytic 
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procedures and apparatus, by eliminating impurities, 
and by carrying out the experiment under varying 
conditions. In pharmaceutical manufacturing, determi­
nate errors may be eliminated by calibrating the 
weights and other apparatus and by checking calcula­
tions and results with other workers. Adequate correc­
tions' for determinate errors must be made before the 
estimation of indeterminate errors can have any signif­
icance. 

Indeterminate Errors. Indeterminate errors occur by 
accident or chance, and they vary from one measure­
ment to the next. When one fires a number of bullets at 
a target, some may hit the "bull's eye," while others will 
be scattered around this central point. The greater the 
skill of the marksman, the less scattered will be the 
pattern on the target. Likewise, in a chemical analysis, 
the results of a series of tests will yield a random 
pattern around an average or central value, known as 
the mean. Random errors will also occur in filling a 
number of capsules with a drug, and the finished 
products will show a definite variation in weight. 

Indeterminate errors cannot be allowed for or cor­
rected because of the natural fluctuations that' occur in 
all measurements. 

Those errors that arise from random fluctuations in 
temperature or other external factors and from the 
variations involved in reading instruments are not to be 
considered accidental or random. Instead, they belong 
to the class of determinate errors and are often called 
pseudoaccidental or variable determinate errors. These 
errors may be reduced by controlling conditions 
through the use of constant-temperature baths and 
ovens, the use of buffers, and the maintenance of 
constant humidity and pressure where indicated. Care 
in reading fractions of units on graduates, balances, and 
other apparatus can also reduce pseudoaccidental er­
rors. Variable determinate errors, although seemingly 
indeterminate, can thus be determined and corrected 
by careful analysis and refinement of technique on the 
part of the worker. Only errors that result from pure 
random fluctuations in nature are considered truly 
indeterminate. 

Precision and Accuracy. Precision is a measure of the 
agreement among the values in a group of data, while 
accuracy is the agreement between the data and the 
true value. Indeterminate or chance errors influence 
the precision of the results, and the measurement of the 
precision is accomplished best by statistical means. 
Determinate or constant errors affect the accuracy of 
data. The techniques used in analyzing the precision of 
results, which in turn supply a measure of the indeter­
minate errors, will be considered first, and the detec­
tion and elimination of determinate errors or inaccura­
cies will be discussed later. 

Indeterminate or chance errors obey the laws of 
probability, both positive" and negative errors being 
equally probable, and larger errors being less probable 
than smaller ones. If one plots a large number of results 
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Fig. 1-6. The normal curve for the distribution of indeterminate 
errors. 

having various errors along the vertical axis against the 
magnitude of the errors on the horizontal axis, a 
bell-shaped curve, known as a normal frequency distri­
bution curve, is often obtained, as shown in Figure 1-6. 
If the distribution of results follows the normal proba­
bility law, the deviations will be represented exactly by 
the curve for an infinite number of observations, which 
constitute the universe or population. Whereas the 
population is the whole of the category under consider­
ation, the sample is that portion of the population used 
in the analysis. 

The Arithmetic Mean. When a normal distribution is 
obtained, it follows that .the arithmetic mean is the best 
measure of the central value of a distribution; that is, 
the mean represents a point corresponding closest to 
the "bull's eye." The theoretic mean for a large number 
of measurements (the universe or population) is known 
as the universe or population mean and is given the 
symbol ..., (mu). 

The arithmetic mean X is obtained by adding to­
gether the results of the various measurements and 
dividing the total by the number N of the measure­
ments. In mathematical notation, the arithmetic mean 
for a small group of values is expressed as 

X = I(Xi) (1-27)
N 

in which I is the Greek capital letter sigma standing for 
"the sum of," Xi is the ith individual measurement of 
the group, and N is the number of values. X is an 
estimate of ..., and approaches it as the number of 
measurements N is increased, 

Measures of Dispersion. After having chosen the 
arithmetic mean as the central tendency of the data, it 
is necessary to express the dispersion or scatter about 
the central value in a quantitative· fashion so as to 
establish an estimate of variation among the results. 
This variability is usually expressed as the Ta1"ge, the 
mean deviation, or the standard deviation. 



The range is the difference between the largest and 
the smallest value in a group of data and gives a rough 
idea of the.dispersion. It sometimes leads to ambiguous 
results, however, when the maximum and minimum 
values are notIn line with the rest of the data. The 
range will not be considered further. 

The average distance of all the hits from the "bull's 
eye" would serve as a convenient measure of the scatter 
on the target. The average spread about the arithmetic 
mean of a large series of weighings or analyses is the 
mean deviation 8 of the population.* The sum of the 
positive and negative deviations about the mean equals 
zero; hence, the algebraic signs are disregarded in 
order to obtain a measure of the dispersion. 

The mean deviation d for a sample, that is, the 
deviation of an individual observation from the arith­
metic mean of the sample, is obtained by taking the 
difference between each individual value Xi and the 
arithmetic mean X, adding the differences without 
regard to the algebraic signs, and dividing the sum by 
the number of values to obtain the average. The mean 
deviation of a sample is expressed as 

(1-28) 

in which IIXi - XI is the sum of the absolute deviations 
from the mean. The vertical lines on either side of the 
term in the numerator indicate that the algebraic sign 
of the deviation should be disregarded. 

Youden" discourages the use of the mean deviation 
since it gives a biased estimate that suggests a greater 
precision than actually exists when a small number of 
values are used in the computation.·Furthermore, the 
mean deviation of small subsets may be widely scat­
tered around the average of the estimates, and accord­
ingly, d is not particularly efficient as a measure of 
precision. 

The standard deviation (J' (the Greek lower case letter 
sigma) is the square root of the mean of the squares of 
the deviations. This parameter is used to measure the 
dispersion or variability of a large number of measure­
ments; for example, the weights of the contents of 
several million capsules. This set of items or measure­
ments approximates the population or the universe, 
and (J is therefore called the standard deviation of the 
universe. ** Universe standard deviations are shown in 
Figure 1-6. 

*The population mean deviation is written as 

IIXi - 11-1 
& = N 

where Xi is an individual measurement, II-is the population mean, and 
N is the number of measurements. 
**The equation for the universe standard deviation is 

IT = '<Xi; 11-)2 
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As previously noted, any finite group of experimental 
data may be considered as a subset or sample of the 
population; the statistic or characteristic of a sample 
from the universe used to express the variability of a 
subset and supply an estimate of the standard deviation 
of the population is known as the sample standard 
deviation and is designated by the small letter s. The 
formula is 

s= 
VI(Xi; X)2 (1-29) 

For a small sample the equation is written 

S 

_ 
-

!l(Xi'J' N 
- X)2 
- 1 (1-30) 

The term (N - 1) is known as the number ofdegrees 
of freedom. It replaces N to reduce the bias of the 
standard deviation s, which on the average is lower 
than the universe standard deviation. 

The reason for introducing (N - 1) is explained as 
follows. When a statistician selects a sample and makes 
a single measurement or observation, he or she obtains 
at least a rough estimate of the mean of the parent 
population. This single observation, however, can give 
no hint as to the degree of variability in the population. 
When a second measurement is taken, however, a first 
basis for estimating the population variability is ob­
tained. The statistician states this fact by saying that 
two observations supply one degree of freedom for 
estimating variations in the universe. Three values 
provide two degrees of freedom, four values provide 
three degrees of freedom, and so on. Therefore, we do 
not have access to all N values of a sample for obtaining 
an estimate ofthe standard deviation of the population. 
Instead, we must use 1 less than N or (N - 1), as shown 
in equation (1-30). When N is large, say N > 100, one 
may use N instead of (N - 1) to estimate the population 
standard deviation, since the difference between the 
two is negligible. 

Modern statistical methods handle the small sample 
quite well; however, the investigator should recognize 
that the estimate of the standard deviation becomes 
less reproducible and, on the average, becomes lower 
than the universe standard deviation as fewer samples 
are used to compute the estimate. 

A sample calculation involving the arithmetic mean, 
the mean deviation, and the estimate of the standard 
deviation follows. 

Example '-5. A pharmacist received a prescription for a patient 
with rheumatoid arthritis calling for seven divided powders, the 
contents of which were each to weigh 1.00 gram. To check his skill in 
filling the powders, he removed the contents from each paper after 
filling the prescription by the block-and-divide method and then 
weighed the powders carefully. The results of the weighings are 
given in the first column of Table 1-10; the deviations of each value 
from the arithmetic mean, disregarding the sign, are given in column 
2; and the squares of the deviations are shown in the last column. 
Based on the use of the mean deviation, the weight of the powders 
may be expressed as 0.98 ::t 0.046 gram. The variability of a single 
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TABLE 1-10. StMiltical Analysis Df Divided PDwder 
Compoundin6 Technique 

Weight of Deviation, Square of the 
Powder Contents (Sign -,gnored) Deviation 
(grams) IXi - XI (Xi - X)2 

1.00 0.02 0.0004 
0.98 0.00 0.0000 
1.00 0.02 0.0004 
1.05 0.07 0.0049 
0.81 0.17 0.0289 
0.98 0.00 0.0000 
1.02 0.04 0.0016 

Total I = 6.84 I = 0.32 I = 0.0362 
Average 0.98 0.046 

powder may. also be expressed in terms of percent deviation by 
dividing the mean deviation by the arithmetic mean and multiplying 
by 100. The result is 0.98 ::!: 4.6%; of course, it includes errors due to 
removing the powders from the papers and weighing the powders in 
the analysis. 

The standard deviation is used more frequently than 
the mean deviation in research work. For large sets of 
data, it is approximately 25% larger than the mean 
deviation, that is, (J = 1.25 8. 

The statistician has estimated that owing to chance 
errors, about 68% of all results in a large set will fall 
within one standard deviation on either side of the 
arithmetic mean, 95.5% within ±2 standard deviations, 
and 99.7% within ±3 standard deviations, as seen in 
Figure 1-6. 

Goldstein7 selected 1.73 (J as an equitable tolerance 
standard for prescription products, whereas Saunders 
and Fleming'' advocated the use of ±3 (J as approximate 
limits of error for a single result. 

In pharmaceutical work, it should be considered 
permissible to accept ±2 8 as a measure of the 
variability or "spread" of the data in small samples. 
Then, roughly 5 to 10% of the individual results will be 
expected to fall outside this range if only chance errors 
occur. 

The estimate of the standard deviation in Example 
1-.1,. is calculated as follows: 

~0.0362s = (7 _ 1) = 0.078 gram 

and ±2 s is equal to ±0.156 gram. That is to say, based 
upon the analysis of this experiment, the pharmacist 
should expect that roughly 90 to 95% of the sample 
values will fall within ±0.156 gram of the sample mean. 

The smaller the standard deviation estimate (or the 
mean deviation) the more precise is the compounding 
operation. In the filling of capsules, precision is a 
measure of the ability of the pharmacist to put the same 
amount of drug in each capsule and to reproduce the 
result in subsequent operations. Statistical techniques 
for predicting the probability of occurrence of a specific 
deviation in future operations, although important in 

pharmacy, require methods that are outside the scope 
of this book. The interested reader is referred to 
treatises on statistical analysis. 

Whereas the average deviation and the standard 
deviation can be used as measures of the precision of a 
method, the difference between the arithmetic mean 
and the true or absolute value expresses the error that 
can often be used as a measure of the accuracy of the 
method. 

The true or absolute value is ordinarily regarded as 
the universe mean IJr- that is, the mean for an infinitely 
large set-since it is assumed that the true value is 
approached as the sample size becomes progressively 
larger. The universe mean does not, however, coincide 
with the true value of the quantity measured in those 
cases in which determinate errors are inherent in the 
measurements. 

The difference between the sample arithmetic mean 
and the true value gives a measure of the accuracy ofan 
operation; it is known as the mean error. 

In Example 1-5, the true value is 1.00 gram, the 
amount requested by the physician. The apparent error 
involved in compounding this prescription is 

E = 1.0 - 0.98 = +0.02 gram 

in which the positive sign signifiesthat the true value is 
greater than the mean value. An analysis of these 
results. shows, however, that this difference is not 
statistically significant, but rather is most likely due to 
accidental errors.* Hence, the accuracyof the operation 
in Example 1-5 is sufficiently great that no systemic 
error can be presumed. We ~ay find on further 
analysis, however, that one or several results are 
questionable. This possibility is considered later. If the 

*The deviation of the arithmetic mean from the true value or the 
mean of the parent population can be tested by use of the following 
expression: 

X-ILt = """':';--'-­
8/~ 

In this equation, t is a statistic known as Student's t value, after W. 
S. Gosset, who wrote under the pseudonym of "Student." The other 
terms in the equation have the meaning previously assigned to them. 

Student's t Values for Six Degrees of Freedom 

Probability of a plus or minus deviation greater than t 

0.8 0.6 0.4 0.2 0.02 0.001 
t value 0.27 0.55 0.91 1.44 3.14 5.96 

Substituting the results of the analysis of the divided powders into 
the equation just given, we have 

t = X - IL = 0.98 - 1.00 = -0.02 = -0.61 
8/~ 0.08rv6 0.033 

Entering the table with a t value of 0.61, we see that the probability 
of finding a ± deviation greater than t is roughly equal to 0.6. This 
means that in the long run there are about 60 out of 100 chances of 
finding a t value greater than -0.61 by chance alone. This probability 
is sufficiently large to suggest that the difference between the mean 
and the true value may be taken as due to chance. 
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arithmetic mean in Example 1-5 were 0.90 instead of 
0.98 the difference could be stated with assurance to 
have statistical significance, since the probability that 
such a result could occur by chance alone would be 
small.* The mean error in this case is 

1.00 - 0.90 = 0.10 gram 

The relative error is obtained by dividing the mean 
error by the true value. It may be expressed as a 
percentage by multiplying by 100, or in parts per 
thousand by multiplying by 1000. It is easier to compare 
several sets of results by using the relative error rather 
than the absolute mean error. The relative error in the 
case just cited is 

0.10 gram x 100 = 10% 
1.00 gram 

The reader should recognize that it is possible for a 
result to be precise without being accurate, that is, a 
c098tant error is present. If the capsule contents in 
Example 1-5 had yielded an average weight of 0.60 
gram with a mean deviation of 0.5%, the results would 
have been accepted as precise. The degree of accuracy, 
however, would have been low since the average 
weight would have differed from the true value by 40%. 
Conversely, the fact that the result may be accurate 
does not necessarily mean that it is also precise. The 
situation can arise in which the mean value is close to 
the true value, but the scatter due to chance is large. 
Saunders and Fleming" observe that "it is better to be 
roughly accurate than precisely wrong." 

A study of the individual values of a set often thro.ws 
additional light on the exactitude of the compounding 
operations. Returning to the data of E.xample 1-5, we 
note one rather discordant value, namely, 0.81 gram. If 
the arithmetic mean is recalculated ignoring this meas­
urement, one obtains a mean of'1.01 grams. The mean 
deviation without the doubtful result was 0.02 gram. It 
is now seen that the divergent' result is 0.20 gram 
smaller than the new average or, in other words, its 
deviation is 10 times greater than the mean deviation. 
A deviation greater than four times the mean devi.ati~n 
will occur purely by chance only about once or twice In 

1000 measurements; hence, the discrepancy in this case 
was probably caused by some definite error. in. ~ech­
nique. This rule is rightly questione~ by sta.tIst~cIans, 

but it is a useful though not always reliable cntenon for 
finding discrepant results. \ 

*When the mean is 0.90 gram, the t value is 

t = 0.90 -1.00 = -0.10"" -3 
0.08/"\16 0.033 

and the probability of finding a t value greater than -3 as a result ?f 
chance alone is found in the t table to be about 0.02, or 2 chances Itt 
100. This probability is sufficiently small to suggest that the 
differencebetween the mean and the true value is real, and the error 
may be computed accordingly. 

TABLE 1- 11. Refractive Indices of Mixtures of Benzene and 
Carbon Tetrachloride 

(x) 
Concentration (y) 

of CCI4 Refractive 
(volume %) Index 

10.0 1.497 
26.0 1.493 
33.0 1.485 
50.0 1.478 
61.0 ,1.477 

Having uncovered the variable weight among the 
units, one can proceed to investigate the cause of the 
determinate error. The pharmacist may find that some 
of the powder was left on the sides of the mortar or on 
the weighing paper or possibly was lost during tritura­
tion. If several of the powder weights deviated widely 
from the mean, a serious deficiency in the compounder's 
technique would be suspected. Such appraisals as these 
in the college laboratory Will aid the student in locating 
and correcting errors and will help the pharmacist to 
become a safe and proficient compounder before enter­
ing the practice of pharmacy. Binge~heimer~ has ?e­
scribed such a program for students In the dispensing 
laboratory. 

Linear Regression Analysis. The data given in Table 
1-7 and plotted in Figure 1-2 clearly indicate ~he 

existence of a linear relationship between the refractive 
index and volume percent of carbon tetrachloride in 
benzene. The straight line that joins virtually all the 
points can be drawn readily on the figure by. sight~ng 

the points along the edge of a ruler and drawing a line 
that can be extrapolated to the y axis with confidence. 

Let us suppose, however, that the person who 
prepared the solutions and carried out the refractive 
index measurements was not skilled and, as a result of 
poor technique, allowed indetermin~te errors to. ap­
pear. We might then be presented WIth the data given 
in Table 1-11. When this is plotted on graph paper, an 
appreciable scatter is observed (Fig. 1-7) and we ::-re 
unable with any degree of confidence, to draw the line 
that expresses .the relation between refractive index 
and concentration. It is here that we must employ 
better means of analyzing the available data. 

The first step is to determine whether or not the data 
in Table 1-11 should fit a straight line, and for this we 
calculate the correlation coefficient, r, using the follow­
ing equation: 

I(x - X)(y - fj) 
(1-31)

r = -V-;:I=(x=-::::::::X1'~I(=y~-=:Yf:=;; 

When there is perfect correlation between the two 
variables (i.e., a perfect linear relationship), r == 1. 
When the two variables are completely independent, 
r = O. Depending on the degrees of freedom and the 
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y = -4.325 X 10-4x + 1.502 
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Carbon tetrachloride, % by volume 

Fig. 1- 7. Slope, intercept, and equation of line for data in Table 1-11 
calculated by regression analysis. 

chosen probability level, it is possible to calculate 
values of r above which there is significant correlation 
and below which there is no significant correlation. 
Obviously, in the latter case, it is not profitable to 
proceed further with the analysis unless the data can be 
plotted in some other way that will yield a linear 
relation. An example of this is shown in Figure 1-4, in 
whicha linear plot is obtained by plotting the logarithm 
of oil sepration from an emulsion against emulsifier 
concentration, as opposed to Figure 1-3, in which the 
raw data are plotted in the conventional manner. 

Assuming that the calculated value of r shows a 
significant correlation between x and y, it is then 
necessary to calculate the slope and intercept of the line 
using the equation: 

b = I(x - x)(y - 'Ii) (1-32) 
I(x - ~)2 

in which b is the regression coefficient, or slope. By 
substituting the value for b in equation (1-33), we can 
then obtain the y intercept: 

'Ii = y + b(x - x) (1-33) 

The following series of calculations, based on the data in 
Table 1-11, will illustrate the use of these equations. 

Exampl, 1-6. Using the data in Table 1-11, calculate the 
correlation coefficient, the regression coefficient, and the intercept on 
the y axis: 

Examination of equations (1-31), (1-32), and (1-33) shows the 
various values we must calculate, and these lire set up as shown: 

x (x - x) (x .; X)2 

10.0 -26.0 676.0 
26.0 -10.0 100.0 
33.0 - 3.0 9.0 
50.0 +14.0 196.0 
61.0 +25.0 625;0 

I = 180.0 I=O I = 1606.0 

x= 36.0 

Y (y - y) (y - yf 
1.497 +0.011 0.000121 
1.493 +0.007 0.000049 
1.485 -0.001 0.000001 
1.478 -0.008 0.000064 
1.477 -0.009 0.000081 

I = 7.430 I~ I = 0.000316 

Y= 1.486 

(x - X)(y - Y> 
-0.286 
-0.070 
+0.003 
-0.112 
-0.225 

I = -0.693 

Substituting the relevant values into equation (1-31) 
gives 

r = -0.693 = -0.97* 
\/1606:0 x 0.000316 

From equation (1-32) 

b = -0.693 = -4 315 x 10-4 
1606.0 . 

and finally, from equation (1-33) 

the intercept on the yaxis = 1.486 

-4.315 x 10-4 (0 - 36) 

= +1.502 

Note that for the intercept, we place x equal to zero in 
equation (1-31). By inserting an actual value of x into 
equation (1-33), we obtain the value ofy that should be 
found at that particular value of x. Thus, when x = 10, 

Y = 1.486 - 4.315 x 10- 4 (10 - 36) 

= 1.486 - 4.315 x 10-4 (-26) 

= 1.497 

The value agrees with the experimental value, and 
hence this point lies on the statistically calculated slope 
drawn in Figure 1-7. 

Multiple Linear and Polynomial Regression. Regression 
for two, three, or more independent variables may be 
performed, using a linear equation: 

y = a + bXl + CX2 + dX3 + . . . (1-34) 

"'The theoretic values of r when the probability level is set at 0.05 
are: 

Degrees of freedom (N - 2): 
2 3 5 10 20 50 

Correlation coefficient, r: 
0.95 0.88 0.75 0.58 0.42 0.27 

In Example 1-6, (N - 2) = 3 and hence the theoretic value of r = 
0.88. The calculated value was found to be 0.97, and the correlation 
between x and y is therefore significant. 



For a power series in x, a polynomialform is employed: 

y == a + bx + cx2 + dx3 + . . . (1-35) 

In equations (1-34) and (1-35), y is the dependent 
variable, and a, b, c, and d are regression coefficients 
obtained by solving the regression equation. Comput­
ers are used to handle these more complex equations, 
but some hand-held calculators, such as the Hewlett 
Packard HP41C, are programmed to solve multiple 
regression equations containing two or more indepen­
dent variables. The r used in multiple regression is 
called the square of the multiple correlation coefficient 
and is given the symbol R2 in some texts to distinguish 
it from r, the square of the linear correlation coeffi­
cient. Multiple regression analysis is treated by Draper 
and Smith. 10 

References and Notes 
1. S. W. Goldstein, A. M. Mattocks, and U. Beirrnacher, J. Am. 

Pharm. Assoe., Pract. Ed. 12,421, 1951. 
2. S. W. Goldstein and A. M. Mattocks,	 Professumai Equilibrium 

and Compounding Precision, a bound booklet reprinted from the 
J. Am. Pharm. Assoc., Pract. Ed. April-August 1951. 

3. CRC Handbook	 of Chemistry and Physics, 63rd Edition, CRC 
Press, Boca Raton, FL., 1982-83, p. D-227. 

4. F. Daniels,	 Mathe'TfUJ,tical Preparation for Physical Chemistry, 
McGraw-Hill, New York, 1928. 

5. E. A. Brecht, in Sprowls' American PhaTrru;tCy, L. W. Dittert, 
Ed., 7th Edition, Lippincott, Philadelphia, 1974, Chapter 2. 

6. W. J.	 Youden, Statistical Methods for Chemists, R. Krieger, 
Huntington, N.Y., Reprint of original edition; 1977, p. 9. 

7. S. W. Goldstein,	 J. Am. Pharm. Assoc., Sci. Ed. 38, 18, 131, 
1949; ibid., 39, 505, 1950. 

8. L.	 Saunders and R. Fleming, Mathe'TfUJ,tics and Statistics, 
Pharmaceutical Press, London, 1957. 

9. L. E. Bingenheimer, Am. J. Pharm. Educ. 17,236, 1953. 
10. N. Draper and H. Smith,	 Applied Regression ArULlysis, Wiley, 

New York, 1980. 
11. N. C. Harris and E. M. Hemmerling, Introductory Applied 

Physics, McGraw-Hill, New York, 1972, p. 310. 
12. M. J.	 Kamlet, R. M. Doherty, V. Fiserova-Bergerova, P. W. 

Carr, M. H. Abraham and R. W. Taft, J. Pharm. Sci. 76, 14, 
1987. 

13. W. Lowenthal, "Methodology and Calculations," in Remington's 
Pharmaceutical Science, A. R. Gennaro, Editor, Mack Publish­
ing, Easton, PA., 1985, p. 82. I 

Probl,ms 
1-1. The density p of a plastic latex particle is 2.23 g cm", 

Convert this value into SI units. 
Answer: 2.23 x lOS kg m-3• (See Table 1-3 and the physical 

constants on the inside front cover of the book for cgs and SI units.) 
1-2. Convert 2.736 nm to cm. 
Answer: 2.736 x 10-7 em 
1-3. Convert 1.99 x 104 As into (nancmeters)", 
Answer: 19.9 nm" 
1-4. The surface tension (oy) of a new synthetic oil has a value of 

27.32 dyne	 em". Calculate the corresponding oy value in SI units. 
Answer:-O.02732 N m- I = 0.02732J m-2 

1-5. The work done by the kidneys in transforming 0.1 mole of 
urea from the plasma to the urine is 259 cal. Convert this quantity 
into SI units. 

Answer: 1084 J 
1-6. The body excretes HCl into the stomach in the concentration 

of 0.14 M at 37" C. The work done in this process is 3.8 x 1011 erg. 
Convert this energy into the fundamental SI units of kg m2 S-2. M 
stands for molarity. 

Answer: 3.8 x 104 kg m2 S-2 

1-7. The gas constant R is given in SI units as 8.3143 J OK-I 
mole-I. Convert this value into calories. 

Answer: 1.9872 cal OK-I mole"! 

-~...... . 
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Fig. 1-8. Owing to atmospheric pressure, mercury rises to a height 
of 76 em, as demonstrated here. 

1-8. Convert 50,237 Pa to torrs or mm Hg, where 1atm = 760mm 
Hg = 760 torrs. 

Answer: 376.8 torrs 
1-9. Convert an energy of 4.379 x 106 erg into SI units. 
Answer: 0.4379 J 
1-10. A pressure of 1 atmosphere will support a column of 

mercury 760 mm high at 0° C (Fig. 1-8). To what height will a 
pressure of 1 atm support a column of mineral spirits at 25° C? The 
density of mineral spirits (mineral oil fraction) at 25° C is 0.860 g/cm", 
Express the results both in feet and in millimeters of mineral spirits. 
Hint: See Example 1-1. 

Answer: 12010 mm of mineral spirits (or 39 ft) 
1-11. How high can an ordinary hand-operated water pump (Fig. 

1-9)lift a column of water at 25°C above its surface from a water well? 
How high could it lift a column ofmercury at 25° C from a well filled 
with mercury? The density of mercury at 25° C is 13.5340 g em". 

Answer: According to Harris and Hemmerling,'! "since atmo­
spheric pressure at the sea level is approximately 34 ft of water the 
most perfect pump of this type could not lift water more than 34 ft 
from the water level in the well." The same argument applies in the 
case of mercury. 

1-12. Derive equation (1-15), shown on page 6 and used in this 
problem. Choose a base b for a logarithmic system. For the fun of it, 
you may pick a base b = 5.9 just because your height is 5.9 feet. Set 
up a log table with b = 5.9 for the numbers 1000, 100, 10,0.1, and 
0.001. 

Answer: For the number 0.001 you would obtain log5.9(0.OOI) = 
-3.8916 

1-13. According to Boyle's law of ideal gases, the pressure and 
volume of a definite mass of gas at a constant temperature are given 
by the equation PV =k or P =k(llV), in which P is the pressure in 
atmospheres and V is the volume in liters. Plot the tabulated data so 
as to obtain a straight line and find the value of the constant k from 
the graph. Express the constant in ergs, joules, and calories. 

Data for Problem 1-13 

P (atm) 0.25 0.50 1.0 2.0 4.0 

V (liters) 89.6 44.8 22.4 11.12 5.60 

Answer: k = 22.4 liter atm, 2.27 x 1010 ergs, 2.27 x 103 joules, 
5.43 x 102cal 

1-14. The distance traveled by a free-falling body released from 
rest is given by the equation s = (112)gt2. Plot the accompanying data 
so as to obtain a straight line and determine the value of g, the 

17 
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Fil. 1-9. An old-fashioned hand-operated water pump, showing the piston and valves required to lift the water from the well. 

acceleration due to gravity. From the graph, obtain the time that has 
elapsed when the body has fallen 450 feet. 

Data for Problem 1-14 

s (ft) 0 16 64 144 256 400 

t (sec) 0 1 2 3 4 5 

Answer: g = 32 ftJsecj t = 5.3 sec 
1-15. The amount of acetic acid adsorbed from solution by charcoal 

is expressed by the Freundlich equation, x/m = kc", in which x is the 
millimoles of acetic acid .adsorbed by m grams of charcoal when the 
concentration of the acid in the solution at adsorption equilibrium is c 
molelliter, and k and n are empirical constants. Convert the equation 
to the logarithmic form, plot log(x/m) vs. log c, and obtain k and n 
from the graph. 

Data for Problem 1-15 

Millimoles of acetic Concentration of 
acid per gram of acetic acid 
charcoal (x/m) (molelliter) (c) 

0.45 0.018 
0.60 0.03 
0.80 0.06 
1.10 0.13 
1.50 0.27 
2.00 0.50 
2.30 0.75 
2.65 1.00 

Answer: k = 2.65; n = 0.42 
1-16. The equation describing the effect of temperature on the 

rate of a reaction is the Arrhenius equation, 

E. 

k = Ae RT 0-36) 

in which k is the reaction rate constant at temperature T (in degrees 
absolute), A is a constant known as the Arrhenius factor, R is the gas 
constant (1.987 cal mole"? deg"), and Ea is known as the energy of 
activation in cal mole -I. Rearrange the equation so as to fonn an 
equation for a straight line (see equation (1-19» and then calculate 
Ea and A from the following data: 

Data for Problem 1-16 

40 ·50 60 

0.10 0.25 0.70 

Hint: Take the natural logarithm of both sides of the Arrhenius 
equation. 

Answer: E. = 20,152 cal mole": A = 1.13 x 1013 sec-I 

1-17. (a) Convert the equation, FN =",' G into logarithmic form, 
where F is the shear stress or force per unit area, G is rate of shear, 
and ",' is a viscosity coefficient. N is an exponent that expresses the 
deviation of some solutions and pastes from the Newtonian viscosity 
equation (see Chapter ir, in particular pp. 454 and 456). Plot log G 
versus log F (common logarithms) from the table of experimental data 
given below, and solve for N, the slope of the line. Onthe same graph 
plot In G vs. InF (natural logarithms) and again obtain the slope, N. 
Does the value of N differ when obtained from these two lines? 



Chapter 1 • Introduction 19 

(b) Directly plot the F and G values of the table on l-eycle by 
2-cycle log-log paper (i.e., graph paper with a logarithmic scale on 
both the horizontal and the vertical axes). Does the slope of this line 
yield the coefficient N obtained from the slope of the previous two 
plots? How can one obtain N using log-log paper? 

(c) Regress In G vs. In F and log G vs. log F and obtain N from the 
slope of the two regression equations. Which method, (a), (b), or (c), 
provides more accurate results? 

Data for Problem 1-17 

G (sec") 22.70 45.40 68.0 106.0 140.0 181.0 272.0 

F (dyne/cm'') 1423 1804 2082 2498 2811 3088 3500 

Hint: Convert G and F to In and to log and enter these in a table 
of G and F values. Carry out the log and In values to four decimal 
places. 

Partial Arnrwer: (c) log G = 2.69 log F - 7.1018; r = 0.9982 
N = 2.69, lJ' = (antilog 7.1018) = 1.26 x 107 

In G = 2.69 In F - 16.3556; r = 0.9982 
N = 2.69; lJ' = antiln(16.3556) = 1.27 x 107 

1-18. In the equation 

ds 
-- = ks (1-37)

dt 

s is the distance a car travels in time t and k is a proportionality 
constant. In this problem the velocity dsldt is proportional to the 
distance s to be covered at any moment. Thus the speed is not 
constant, but rather is decreasing as the car reaches its destination, 
probably because the traffic is becoming heavier as the car ap­
proaches the city. The equation may be integrated to solve for k, 
knowing the distance s at time t and the total distance, So. Separating 
the variables and integrating between the limits of s = s; at t = 0 and 
s = s at t = t yields 

ds ftfs - -=k dt (1-38) 
s" s 0 

(-In s) - (-In s.) = kt and In s = In s" - kt, or in terms of common 

logs, log s = log s, - 2.;~3' The quantity 2.303 must be used because 

In s = 2.303 log s, as shown on p. 5. 
Knowing the remaining distance, 8, at several times, one obtains k 

from the slope, and the total distance So from the intercept 

Data for Problem 1-18 

8 (km) 259.3 192.0 142.3 105.4 

t (hr) 1 2 3 4 

Compute So and k using In and log values with the data given in the 
table above. Discuss the advantages and disadvantages in using 
natural logarithms (In) and common logarithms (log) in a problem of 
this kind. Why would one change from In to log when plotting data, as 
some workers do? 

Answer: Using In, k = 0.300 hr "; In So = 5.8579; 80 = 350 km. 
Using log, k = 0.300 hr- I; log 8" = 2.5441; 80 = 350 km. 

1-19. After preparing a prescription calling for six capsules each 
containing three grains of aspirin, you remove the contents com­
pletelyand weigh each. The weights are 2.85,2.80,3.02,3.05,2.95, 
and 3.15 grains. Compute the average weight of the contents of the 
capsules, the average deviation, and the standard deviation. One 
gram is equal to 15.432 grains (gr.) 

Answer: Av. wt. = 2.97 grains; Av. dev. = 0.103 grain; stand. dev. 
= 0.13 grain. 

1-20. (a) Using the data in Table 1-7 and the least-squares 
method, calculate the slope and the intercept for the linear relation­
ship between refractive index and percent by volume of carbon 
tetrachloride. Calculate the correlation coefficient, r. 

(b) Use the data in Table 1-8 and the least-squares method to 
obtain the equation of the line plotted in Figure 1-4. Calculate the 
correlation coefficient, r. Compare your results with the equation 
shown in Figure 1-4. Explain why your results using the statistical 
least-squares method might differ from the equation shown in Figure 
1-4. 

Answers: (a) Compare your least-square results with those found 
in Figure 1-2, which were obtained by use of equation (1-23). r = 
0.9998. 

(b) r = 0.9986; log y = 0.843 - 0.279 x 
1-21. According to a principle known as Trouton's rule the molar 

heat of vaporization, /lily (callmole) of a liquid divided by its boiling 
point (Tb ) on the Kelvin scale at atmospheric pressure should equal a 
constant, approximately 23. If this rule holds, a plot of /lily of a 
number of liquids against their absolute boiling points, Tb, should fall 
on a straight line with a slope of 23 and an intercept of 0: 

/lily = 0 + 23Tb 

(a) Plot /lily versus Tb on rectangular coordinate paper using all 
the data points given in the table. With a least-squares linear 
regression program, obtain the slope and the intercept. Draw a line 
on the graph corresponding to the equation /lilv = 23Tb. 

Data for Problem 1-21 

/lily ss.n, 
Compound Tb(OK) (cal mole-I) (cal OK-I mole-I) 

Propane 231 4,812 20.8 
Ethyl ether 308 6,946 22.6 
Carbon disulfide 320 6,787 21.2 
Hexane 342 7,627 22.3 
Carbon tetrachloride 350 8,272 23.6 
Cyclohexane 354 7,831 22.1 
Nitrobenzene 483 12,168 25.2 

(b) Repeat the regression, removing nitrobenzene from the data. 
(e) Repeat the analysis using the following combinations of data 

(nitrobenzeneis not used in any of these): 

(1) Propane (2) Propane (3) Propane 
Carbon disulfide Ethyl ether Carbon tetrachloride 
Hexane Carbon disulfide Carbon disulfide 
Cyclohexane Hexane Hexane 

Cyclohexane 

(d) Compare the slopes you obtain in (a), (b), and (el), (c2), and 
(c3). Which one compares best with the Trouton value of23? Why did 
you get a slope in (a) quite different from the others? 

(e) Does this approach we have used, employing the equation 
/lilv = 23 Tb and linear regression analysis, appear to be a convincing 
proof of the Trouton rule? Can you suggest another approach to test 
the validity of the Trouton principle in a more convincing way? (Hint: 
What result would you expect if you plotted /liljT.b on the vertical 
axis against Tb on the horizontal axis?) Regardless of the method 
used, the results would probably have been much improved if a large 
number of organic liquids had been chosen to test the Trouton 
principle, but in a student problem this approach is not practical. 

Answers: (using a Casio hand calculator): 
(a) r= 0.9843; slope = 29.46; intercept = -2272 
(b) r = 0.9599; slope = 26.14; intercept = -1255 
(c) (1) i'- = 0.9914; slope = 24.65; intercept = -921'.5 

(2) r = 0.9810; slope = 24.57; intercept = -839 
(3) r = 0.9639; slope = 27.0; intercept = -1517 

1-:22. A series of barbituric acids, disubstituted at the 5,5 (Ra , Rb) 

position, is tested for hypnotic action against rats. The relative 
activity required to produce hypnosis is measured for each derivative. 
It is presumed that this hypnotic activity, dependent variable y, may 
be linearly related to the logarithm of the partition coefficient, log K 
(see Chapter 10, p. 237 for a definition of K) as the independent 
variable x for each barbituric acid derivative. The observed activity 



20 Physical Pharmacy 

Data for Problem 1-22 

H 
o N~ 

R~121 
1 3NH 

Derivative R2 Relative Activity (RA) 

s, n, o K log K Observed Calculated % Difference 

Ethyl, ethyl 4.47 2.79 
Ethyl, phenyl 26.3 3.12 
Ethyl, amyl 141.3 3.45 
Ethyl, butyl 44.7 3.33 
Ethyl isobutyl 28.2 3.28 
Allyl, cyclopentyl 97.7 3.67 
Ethyl, I-methyl-amyl 281.8 3.60. 
Ethyl, isoamyl 89.1 3.50 
Ethyl, cyclopentyl 61.7 3.45 
Allyl, I-methyl-butyl 143.3 3.83 

and partition coefficient for each disubstituted barbiturate derivative 
are as in table above. Calculate the log K values and enter them in the 
space under the log K heading. Plot the observed relative activities 
vs, log K values and obtain the slope of the line, using two widely 
spaced points. Determine the intercept. Then, using linear regres­
sion, determine the slope and the intercept by the least-squares 
method and calculate r, the correlation coefficient. Obtain the 
least-squares equation of the line and use it to obtain the calculated '. 
relative activity for each compound. Enter these calculated activities 
in the table and record the percent difference between observed and 
calculated relative activities for each compound. 

Answer: r = 0.9089; r = 0.8262; RA = 2.472 + 0.5268 log K. For 
the (ethyl, ethyl) derivative, the calculated activity using the 
least-squares equation -is 2.81, which is -0.7% different from the 
experimental value. Incidentally, the linear relationship found be­
tween activity and log K signifies that the more nonpolar the 
barbiturate derivative (as measured by the partition coefficient), the 
more active it is as a hypnotic agent in rats. The term r has more 
significance than the correlation coefficient r; and r of0.8262 means 
that 82.62% of the barbiturate data are explained by the linear 
equation obtained in this problem. 

(This problem came from C. Hansch, Biological Correlations-The 
Hansch Approach, American Chemical Society, 1972, pp. 30, 33. The 
data are from H. A. Shonle, A. K. Keltch and E. E. Swanson, J. Am. 
Chern. Soc. 52, 2440, 1930. Calculated values are given by C. Hansch, 
A. R. Steward, S. M. Anderson and D. Bentley, J. Med. Chern. 11, 
1, 1968. The regression equation calculated here is slightly different 
from the result found in Biological Correlations because we have 
used only 10 of the 16 data points.) 

1-23. The anesthetic activity of nine aliphatic ethers was plotted 
against the logarithm of the partition coefficient, log K. Log l/C is 
used as a measure of anesthetic action, C being the molar concentra­
tion of each drug. A plot of the data was not linear but rather 
appeared to be quadratic, suggesting the need for a parabolic 
equation of the form 

log lIC =a + b(logK) + c(log K)2 

The observed activity (log lIC) and the log partition coefficient for 
each of the substituted aliphatic ethers are found in the table. Plot 
log lIC on the vertical axis and log K on the horizontal axis of 
rectangular coordinate paper to observe the parabolic nature of the 
curve. 

Using a polynomial regression program, available on a personal 
computer, fit the data points with a parabolic polynomial equation, 

y=a+bx+cx2 

to obtain r, the y-intercept, and the regression coefficients band c. 
Substitute the values of log K and (log K)2 in the parabolic equation 

Data fot Problem 1-23: Anesthetics in Mice~ 

Log Partition 
CoefficientObserved Activity 
(log K)(log lIC)t Aliphatic Ether 

0.75Methyl cyclopropyl 2.85 
1.00Methyl isobutyl 3.00 
1.273.15Methyl butyl 
1.503.25Ethyl tert-butyl 
1.753.33Propyl isobutyl 
2.033.40Methyl amyl 
2.353.45Ethyl isoamyl 
2.573.43Di-see-butyl 
2.903.35Diisobutyl 

*These data are not real but rather were arbitrarily chosen to show an 
example of a quadratic (parabolic) relationship. See W. Glave and C. Hansch, J. 
Pharm. Sci. 61. 589, 1972, Table I, for the actual data. 

"The observed activity is recorded as the ED 50 in mice. 

to back-calculate the nine values oflog lIC. Compare these calculated 
values with the observed anesthetic activities found in the table for 
each substituted ether. If the value of r, called the multiple 
correlation coefficient when associated with multiple regression, is 
nearly 1.000 and the percent difference between observed and 
calculated log lIC is small, you can assume that the polynomial 
equation you have chosen provides a satisfactory fit of the data. 

Answer: r = 0.9964 

log l/C = 2.170 + 1.058(log K) - O.223(log K)2 

1-24. Kamlet et al. 12 found that the logarithmic solubility (logS) of 
solutes in brain tissue was related to, several physical properties 
according to the model 

log S = a + b(V/loo) + C'IT + d13 

where V is the intrinsic (van der Waals) molar volume. 'IT is a 
parameter that measures solute polarity and polarizability, and 13 
expresses the hydrogen bond acceptor basicity character of the 
solutes. The equation above is treated by multiple linear regression, 
where the dependent variable is log S and the three independent 
variables are Vlloo, 'IT, and 13. 

(a) Using the data below and a computer program or a hand 
calculator (Hewlett-Packard 41V, for example) that provides the 
calculations for multiple linear regression of three independent 
variables, compute the square of the correlation coefficient. r, the 
y-intercept, a, and the regression coefficients b, e, and d. 
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Data for Problem 1-24 Data for Problem 1-25 

Solutes* log S V1100 'IT 13 

Methanol 
Ethanol 
2-Propanol 
l-Propanol 
Isobutyl alcohol 
Acetone 
2-Butanone 
(C2H5)20 
Benzene 
CHCl3 

1.13 
0.69 
0.33 
0.12 

-0.31 
0.36 

-0.06 
-0.31 
-0.93 
-0.53 

0.405 
0.584 
0.765 
0.748 
0.920 
0.734 
0.895 
1.046 
0.989 
0.805 

0.40 
0.40 
0.40 
0040 
0040 
0.71 
0.67 
0.27 
0.19 
0.38 

0.42 
0.45 
0.51 
0.45 
0.45 
0.48 
0.48 
0.47 
0.10 
0.10 

t (OC) Density (g/cm 3)* 

~O 0.9997026 
12 0.9995004 
14 0.9992474 
16 0.9989460 
18 0.9985986 
20 0.9982071 

*Selected values from Table I of Kamlet et al.12 

(b) Use the equation you obtained in part (a) to back-calculate the 
logS values for the 10 cases, and compare them with the experimen­
tally determined log S values (those found in the table). Give the 
percent error 

log S(exper,) - log S(ca1c.) 
---'--'--~-'-""';' x 100 

log S(exper.) 

in the 10 calculated log S values. Do these percentage errors appear 
to be reasonable for a multiple linear regression? Discuss this point 
with the instructor and with your colleagues. (See Y. C: Martin, 
Quantitative Drug Design, Marcel Dekker, New York, 1978, pp. 
194-198, to determine how well your multiple linear equation fits the 
data.) 

Partial Answer: (a) Using,a personal computer or a hand calculator 
capable of multiple linear-regression analysis, the square of the 
correlation coefficient is found to be r = 0.9811 and the equation is 

log S = 1.3793 - 2.5201(V/100) - 0.1216'IT + 1.814813 

1-25. The specific gravity of alcohol is determined by measuring 
the mass (weight) of alcohol at 15.56°C and comparing it to the mass 
(weight) of an equal volume of water, taken as the standard at 15.56° 
C. The temperature 15.56° C is used because many years ago the
 
United States government settled on a temperature of 60° F (15.56°
 
C) for its testing of alcoholic products."
 
. To obtain the mass of an equal volume of water, one must know the
 
density of water at the standard temperature, 15.56° C. The density
 
of water at various temperatures, as found in handbooks of chemis­

try, is tabulated below.
 

*The reader is referred to the latest handbooks for tables of values for the 
density of water. The values above were obtained from the GRGHandbook of 
G1uJmi$try and Physics, 63rd Edition, pp. F5 and F6. 

Plot the data and obtain an equation that will reproduce the points on 
the curve most accurately. If the curve is not linear, it may require 
the use of a quadratic or a cubic equation to represent the data: 

Density = a + bt + ct2 

or 

Density = a + bt + ct2 + dt3 

Some scientific calculators (such as HP41, TI56, and Casio) and 
personal computers are provided with multiple regression programs. 

Using the equation that best fits the data, calculate the density of 
water at 15.56° C. Attempt to read the density at 15.56° C diTectly 
from the graph. Which method of obtaining the density of water 
appears to be more accurate, calculation or direct reading? 

Using your equation and direct reading frOmthe graph, obtain the 
density of water at 25° C and at 3T C. Compare your results with 
those from a chemistry handbook. Is it safe to extrapolate your 
results obtained from the range of 10°to 20° C to obtain values at 25· 
and 3T C? 

Partial Answer: The cubic equation gives the density at 25° C = 
0.9970524g/cm3; the CRC Handbook, p. F5, gives the 'density at 25· 
C = 0.9970479 g/cm3• 

1-26. Using the data in Problem 1-15, compute the correlation 
coefficient r and the regression coefficient b (n in Problem 1-15). 

Answer: r = 0.9995; b = 0.432. The use of a programmed hand 
calculator or a personal computer will provide these results. The 
problem may also be done by hand, following the in$tructions on 
pages 11 through 16. 




