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This chapter establishes the properties of gases thot will be used throughout the text. It
begins with on account of on idealized version of a gas, a perfect gas, and shows how its
equation of state maybe assembled experimentally. We then see how this relation between
the properties of the gas can be explained in terms of the kinetic model, in which the gas is
represented by a collection of point mosses in continuous random motion. Finally, we see
how the properties of real gases differ from those of a perfect gas, and construct an equation
of stole that describes their properties.

The simplest state of matter is a gas, a form of matter that fills any container it occupies.
Initially we shall consider only pure gases, but later in the chapter we shall see that the same
ideas and equations apply to mixtures of gases too.

Ihu I)CI'ICCl (JIS

We shall find it helpful to picture a gas as a collection of molecules (or atoms) in continuous
Problems	 random motion, with speeds that increase as the temperature is raised. A gas differs from a

liquid in that, except during collisions the molecules of a gas are widely separated from one
another and move in paths that are largely unaffected by intermolecular forces.

0.1 The states of gases

The physical state of a sample of a substance is defined by its physical properties, and two
samples of a substance that have the same physical properties are in the same state. The
state of a pure gas, for example is specified by giving the values of its volume, V, amount of
substance (number of moles), n, pressure, p, and temperature, T. However, it has been
established experimentally that it is sufficient to specify only three of these variables, for
then the fourth variable is fixed. That is, it is an experimental fact that each substance is
described by an equation of state an equation that interrelates these four variables.
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The general form of an equation of state is

P =f(T, V, 11) (1)

This equation 1016 us that, if we know the values of n, T. and V for a particular substance,
then we can find its pressure. Each substance is described by its own equation of state, but
we know the explicit form of the equation in only a few special cases. One very important
example is the equation of state for a perfect gas, which has the form

rzRT
(2)

where R is a constant. MLICh of the rest of this chapter will examine the origin and
implications of this equation of state.

(a) Pressure
Pressure is defined as force divided by the area to which the force is applied. The greater the
force acting on a given area, the greater the pressure. The origin of the force exerted by a gas
is the incessant battering of the molecules on the walls of its container. The collisions are so
numerous that they exert an effectively steady force, which is experienced as a steady
pressure.

The SI unit of pressure, the pascal (Pa), is defined as 1 newton per metre squared:

1 Pa = I Nm 2 	 13]

However, several other units are still widely used; they are summarized in Table I.I. A
pressure of I  Pa (I bar) is the standard pressure for reporting data, and we shall denote

it p9.

tablc 1.1 Pressure units

Name	 Symbol	 Value

Pascal	 I Pa	 I Nm 2. 1kgms2.
bar	 Ibar	 10' Pa
atmosphere	 I aWl	 101 325 Pa
torr	 I Trr	 ([01325/760) Pa= 133.32 ... Pa
millimetre of mercury	 1 mmHg	 133.322 •.. Pa
pound per square inch 	 I psi	 6.894 757 .. kPa

Example 1.1 C;Iuul;iliriq pressure

Suppose Isaac Newton weighed 65 kg. Calculate the pressure he exerted on the ground
when wearing (a) boots with soles of total area 250 cm  in contact with the ground, (b) ice
skates, of total area 2.0 cm. 2.

Metluid Pressure is force divided by area (p = F/A), so the calculation depends on being
able to calculate the force. F, that Newton exerts on the ground, and then to divide it by the
area, A. over which the force is exerted. To calculate the force, we need to know'(from
elementary physics) that the downward force an object of mass in exerts at the surface of
the Earth is F = mg, where g is the acceleration of free fall, 9.81 ms 2 . Note that
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I N = I kg ma and I Pa = I N m 2 Convert the areas to metre squared by using

1 em' = 10 - m2.

Answcr The force exerted by Newton is

F = (65 kg) . (9.81 ms - ') = 6.4x 102 N

The force is the same whatever his footwear. The areas 250 cm 2 and 2.0 cm2 correspond to

2.50 x 10_2 m 2 and 2.0 x 10-4n12 respectively. The pressure he exerts in each case is:

(a) p = 6.4 x I0 N
2.50 x 102r 

= 2.6 x 104 Pa (26 kPa)

(b)p=
6.4x102N

3
2.0 x iO m2 = .2 x 

106 Pa (3.2 MPa)

Cornirnnt One Newton exerts a force of much more than I newton. A pressure of 26 kPa
corresponds to 0.26 atm and a pressure of 3.2 MPa corresponds to 32 atm.

Movable
wall

High	 Low
pressure	 pressure

Motion

Equal pressures

I

Suit .-ttsi i.i Calculate the pressure exerted by a mass of 1.0 kg pressing through the
point of a pin of area lOx 0-2 mm 2 at the surface of the Earth.

[0.98 GPa, 9.7 x 103 atm]

If two gases are in separate containers that share a common movable wall (Fig. 1.1), the
gas that has the higher pressure will tend to compress (reduce the volume ofLthe lower
pressure gas. The pressure of the former gas will fall as it expands and that of the latter gas
will rise as it is compressed. There will come a stage when the two pressures are equal and the
wall has no further tendency to move. This condition of equality of pressure on either side of
a movable wall (a 'piston') is a state of mechanical equilibrium between the two gases. The
numerical value of the pressure of a gas is therefore an indication of whether a container
that contains the gas will be in mechanical equilibrium with another gas with which it shares

a movable wall.

(b) The measurement of pressure
The pressure exerted by the atmosphere is measured with a barometer. The original version
of a barometer (which was invented by Torricelli, a student of Galileo) was an inverted tube
of Aercury sealed at the upper end. When the column of mercury is in mechanical
equilibrium with the atmosphere, the pressure at its base is equal to that exerted by the
atmosphere. It follows that the height of the mercury column is proportional to the external

pressure.

Exairplc 1.2 (,ili.u.i[;;,	 rcc,irc ixcrtctl by a column of liquid

Derive an equation for the pressure at the base of a column of liquid of'cnass density p and

height It at the surface of the Earth.

Millid As in Example 1.1, p = F/A and F = mg, so we need to know the mass of a

column of liquid. The mass of a column of liquid is its mass density, p, multiplied by its
volume, V. So, the first step is to calculate the volume of. a cylindrical column of liquid.

Answi r Let the column have cross-sectional area A; then its volume is Alt and its mass is

m = p4h. The force the column of this mass exerts at its base is

F = mg = pflhg

Low	 High
pressure	 pressure

(C)

LI When a region of high pressure is separated
from a region of low pressure by a movable wait,
the s411 will be pushed into one region or the
other, as in (a) and Id. However, if the two
pressures are identical, the wall will not move (b).
The latter condition is one of mechanical
equilibrium between the two regions.
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The pressure at the base of the column is therefore

(a)	 (b)

1.2 Two versions of a manometer used to measure
the pressure of a sample of gas. (a) The height
difference, h, of the two columns in the sealed-tube
manometer is directly proportional to the pressure
of the sample, and p = pg/v, where p is the density
of the liquid. (b) The difference in heights of the
columns in the open-tube manometer is
proportional to the difference in pressure between
the sample and the atmosphere. In the example
shown, the pressure of the sample is tower than
that of the atmosphere,

p = - =	 pg/s
A	 it

Ciinintnl Note that the pressure is independent of the shape and cross-sectional area of
the column. The mass of the column increases as the area, but so does the area on which the
force acts, so the two cancel.

Srlf-tcst 1.2 Derive an expression for the pressure at the base of a column of liquid of
length I held at an angle 0 to the vertical (1).

[p = pgl Cos 0]

The pressure of a sample of gas inside a container is measured with a manometer
(Fig. 1.2). In its simplest form, a manometer is a U-tube filled with a liquid of low volatility
(such as silicone oil). The pressure, p, of the gaseous sample balances the pressure exerted by
the column of liquid, which is equal to pg/i if the column is of height h (see Example 1.2),
plus the external pressure, Pru if one tube is open to the atmosphere:

P = Pry pg/i (4)

It follows that the pressure of the sample can be obtained by measuring the height of the
column and noting the external pressure. More sophisticated techniques are used at lower
pressures. Methods that avoid the complication of having to account for the vapour from
the manometer fluid are also available. These superior methods include monitoring the
deflection of a diaphragm, either mechanically or electrically, or monitoring the change in a
pressure-sensitive electrical property.

(c) Temperature
The concept of temperature springs from the observation that a change in physical state (for
example, a change of volume) can occur when two objects are in contact with one another
(as when a red-hot metal is plunged into water). Later (Section 2.1) we shall see that the
change in state can be interpreted as arising from a flow of energy as heat from one object
to another. The temperature, T, is the property that tells us the direction of the flow of
energy. If energy flows from A to 13 when they are in contact, then we say that A has a
higher temperature than B (Fig. 1.3),

It will prove useful to distinguish between two types of boundary that can separate the
objects. A boundary is diathermic if a change of state is observed when two objects at
different temperatures are brought into contact (the word dia is from the Greek for
'through'). A metal container has diathermic walls. A boundary is adiabatic if no change
occurs even though the two objects have different temperatures.

The temperature is a property that tells us whether two objects would be in thermal
equilibrium if they were in contact through a diathermic boundary. Thermal equilibrium is
established if no change of state occurs when two objects A and B are in contact through a
diathermic boundary. Suppose an object A (which we can think of as a block of iron) is in
thermal equilibrium with an object B (a block of copper), and that B is also in thermal
equilibrium with another object C (a flask of water). Then it has been found experimentally
that A and C will also be in thermal equilibrium when they are put in contact (Fig. 1.4). This
observation is summarized by the following statement:

The Zeroth Law of thermodynamics: If A is in thermal equilibrium with B,
and B is in thermal equilibrium with C. then C is also in thermal equilibrium
with A.
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The Zeroth Law justifies the concept of temperature and the use of a thermometer, a
device for measuring the temperature. Thus, suppose that B is a glass capillary containing
mercury. then, when A is in contact with B, the mercury column in the latter has a certain
length. According to the Zeroth Law, if the mercury column in B has the san*length when it
is placed in contact with another object C, then we can predict that no change of state of A
and C will occur when they are in contact. Moreover, we can use the length of the mercury

column as a measure of the temperatures of A and C.
In the early days of thermometry (and still in laboratory practice today) temperatures

were related to the length of a column of liquid, and the difference in lengths shown when
the thermometer was first in contact with melting ice and then with boiling water was
divided into 100 steps called 'degrees', the lower point being labelled 0. This procedure led to
the Celsius scale of temperature. In this text, temperatures on the Celsius scale are denoted
(1 and expressed in degrees Celsius ("C). However, because different liquids expand to'
different extents, and do not always expand uniformly over a given range, thermometers
constructed from different materials showed different numerical values of the temperature
between their fixed points. The pressure of a gas, however, can be used to construct a
perfect-gas temperature scale that is almost independent of the identity of the gas, as we
shall explain shortly. The perfect-gas scale turns out to be identical to the thermodynamic
temperature scale to be introduced in Section 4.2c, so we shall use the latter term from now
on to avoid a proliferation of names. On the thermodynamic temperature scale,

temperatures are denoted T and ae normally reported in kelvins, K. Thermodynamic and

Celsius temperatures are related by the exact expression

T/K=O/°C+273.15	 (5)

This relation is the current definition of the Celsius scale in terms of the more fundamental

Kelvin scale.

Illustration
To express 25.00°C as a temperature in kelvins, A write

T/K = 25.00°C/°C + 273.15 25.00 -i- 273.15 = 298.15

Note how the units are cancelled like numbers. This is the procedure called 'quantity
calculus' in which a physical quantity (such as the temperature) is the product of a numerical
value (25.00) and a unit (1°C). Multiplication of both sides by the unit K then gives

T = 298.15 K.

Diathermic
wall

High	 Low
temperature I temperature

(a) Energy as heat

Equal temperatures

(b)

Low	 High
temperature	 temperature

HI,.
(C)

3.3 Energy flows as heat from a region at a higher
temperature to one at a lower temperature if the
two are in contact through a diathermic wall, as in
(a) and (c). However, if the two regions have
identical temperatures, there is no net transfer of
energy as heat even though the two regions are
separated by a diathermic wall (b). The latter
condition corresponds to the two regions being at
thermal equilibrium.

EqullibFIui>/	 Eqiiilc liii

1: i.iilil ' ii' i r 

1.4 The experience summarized by the Zeroth Law
of thermodynamics is that, if an object A is in
thermal equilibrium with B and if B is in thermal
equilibrium with C, then B is in thermal equilibrium
with A.

1.2	 he' iii
The equation of state of a low-pressure gas was established by combining a series of
empirical laws. We shall introduce these laws below, and then show how they can be

combined into the single equation of state pV = riRT.

(a) The individual gas laws

Robert Boyle, acting on the suggetion of a correspondent John Townley, showed in 1661
that, to a good approximation, the pressure and volume of a fixed amount of gas at constant

temperature are related by

pV = constant	 (6)0
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CL

Volume. V	 i/v	 —273	 Temperature, OC

1.5 The pressure—volume dependence of a fixed	 1.6 Straight lines are obtained when the pressure 	 1.1 The variation of the volume of a fixed amount
amount of perfect gas at different temperatures. 	 is plotted against ]IV.	 of gas with the temperature constant. Note that in
Each curve is a hyperbola lpV = constant) and is	 each case they extrapolate to zero volume at
called an isotherm. 	 —273.I5*C.

This relation is known as Boyle's law. That is, at constant temperature, the pressure of a
sample of gas is inversely proportional to its volume, and the volume it occupies is inversely
proportional to its pressure:

V.x	 (7)n

The variation of the pressure of a sample of gas as the volume is changed is depicted in
Fig. 1.5. Each of the curves in the graph corresponds to a single temperature and hence is
called an isotherm. According to Boyle's law, the isotherms of gases are hyperbolas.' An
alternative depiction, a plot of pressure against 1/volume, is shown in Fig. 1.6.

More modern experiments have shown that Boyle's law is valid only at low pressures, and
that real gases obey it only in the limit of the pressure approaching zero (which we write
p -. 0). Boyle's law is therefore an example of a limiting law, a law that is strictly true only
in a certain limit, in this case p — 0. Equations that are valid in this limiting sense will be
signalled by a on the equation number, as in eqn 6.

The molecular explanation of Boyle's law is that, if a sample of gas is compressed to half
its volume, then twice as many molecules strike the walls in a given period of time than
before it was compressed. As a result, the average force exerted on the walls is doubled.
Hence, when the volume is halved the pressure of the gas is doubled, and p x Visa constant.
The reason why Boyle's law applies to all gases regardless of their chemical identity (provided
the pressure is low) is that at low pressures the molecules are so far apart on average that
they exert no influence on one another, and hence travel independently.

Te French scientist Jacques Charles established the next important property of gases. He
studied the effect of temperature on the volume of a sample of gas that was subjected to
constant pressure. He found that the volume increased linearly with the temperature,

I	 A hypObola '5 3 curve Ohiasnesl by pkziing y ag a inst x w1b	 = constxnL
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whateverthe identity of the gas, provided it was at low pressure. Specifically, he established
that

V = constant x (0 + 273"C)	 (at constant pressure) 	 (8)°

(Recall that we use (Ito denote temperatures on the Celsius scale,) The linear variation of
volume with temperature summarized by this expression is illustrated in Fig. 1.7. The lines
are examples of isobars, or lines showing the variation of properties at constant pressure.

Equation 8 suggests that the volume of any gas should extrapolate to zero at
0 = —273°C and therefore that —273°C is a natural zero of a fundamental temperature
scale. As we have already indicated, a scale with 0 set at —273.15°C is equivalent to the
thermodynamic temperature scale devised by Kelvin, so Charles's law can be written

V = constant x T	 (at constant pressure)	 (9)°

An 91ternative version of Charles's law, in which the pressure of a sample of gas is monitored
under conditions of constant volume is

p = constant x T	 (at constant volume)	 (10)°

0	 Temperature, T/K	 This version of the law indicates that the pressure of a gas falls to zero as the temperature is

1.8 The pressure also varies linearly with the 	
reduced to zero (Fig. 1.8).

temperature, and extrapolates to zero at T = 0
The molecular explanation of Charles 's law lies in the fact that raising the temperature of

- (-273.I5-C). a gas increases the average speed of its molecules. The molecules collide with the walls more
frequently, and do so with greater impact. Therefore they exert a greater pressure on the
walls of the container. A problem we leave until later is why the pressure depends so simply
on the temperature.

The final piece of experimental information we need is that, at a given pressure and
temperature, the molar volume, V = V/n, the volume per mole of molecules, of a gas is
approximately the same regardless of the identity of the gas. This observation implies that
the volume of a sample of gas is proportional to the amount of molecules (in moles) present,
and that the constant of proportionality is independent of the identity of the gas:

V = constant x n	 (at constant pressure and temperature) 	 (1 1)°

This conclusion is a modern form of Avogadro's principle, that equal volumes of gases at the
same pressure and temperature contain the same numbers of molecules.

(b) The combined gas law

The empirical observations summarized by eqns 6-11 can be combined into a single
expression:

PV constant x ni

This expression is consistent with Boyle's law (pV = constant) when n and Tare constant
with both forms of Charles's law (p cc T, V cc T) when n and either V orp are held constant.
and with Avogadro's principle (V cc ,4 when p and T are constant. The constant of
proportionality, which experimentally is found to be the same for all gases, is denoted!? and
is called the gas constant. The resulting expression

PV = nRT	 (12)°

is called the perfect gas equation. It is the approximate equation of state of any gas, and
becomes increasingly exact as the pressure of the gas approaches zero. A gas that obeys
eqn 12 exactly under all conditions is called a perfect gas (or ideal gas). A real gas, an actual
gas, behaves more like a perfect gas the lower the pressure, and is described exactly by
eqn 12 in the limit of p .-. 0. The gas constant R can be determined by evaluating
I? = pV/nT for a gas inihe limit of zero pressure (to guarantee that it is behaving perfectly).
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i . V is'i i ii 11)

V.- Tisubar

A region of the p. V. T surface of a fixed	 I. ii Sections through the surface shown in
amount of perfect gas. The points forming the	 Fig. 1.9 at constant temperature give the isotherms
surface represent the only stales of the gas that 	 shown in Fig. 1.5 and the isobars shown in Fig. 1.7.

can exist.

However, a more accurate value can be obtained by measuring the speed of sound in a low-
pressure gas and extrapolating its value to zero pressure. The values of R in a variety of units

are given in table 1.2.
The surface in Fig. 1.9 is a plot of the pressure of a fixed amount of perfect gas against its

volume and thermodynamic temperature as given by eqn 12. The surface depicts the only
possible states of a perfect gas: the gas cannot exist in states that do not correspond to
points on the surface. The graphs in Figs 1.5 and 1.8 correspond to the sections through the
surface (Fig. 1.10).

The perfect gas equation is of the greatest importance in physical chemistry because it is
used to derive a wide range of relations that are used throughout thermodynamics.
However, it is also of considerable practical utility for calculating the properties of a gas
under a variety of conditions. For instance, the molar volume of a perfect gas under the
conditions called standard ambient temperature and pressure (SAW), which means
298.15 K and I bar (that is, exactly 10 1 Pa), is easily calculated from Vm = RT/p to be

24.790 Lmol 1. An earlier definition, standard temperature and pressure (SW), was 0°C
and I atm; at SIP, the molar volume of a perfect gas is 22.414 Lmol*

Table 1.2 The gas constant in various units

R

8.31451 iK'mol
8.20578 X 10 LatmK' mol
8.31451 x I0_2 LbarKmol
8.31451 Pa m' K moI

62.364 LTorrK mol
1.98722 cal KmoI

1.3	 Iilil I iic pi. I let-I	 1;1'-, c'qu;llil1

In an industrial process, nitrogen is heated to 500 K in a vessel of constant volume. If it
enters the vessel at a pressure of 100 atm and a temperature of 300 K, what pressure would
it exert at the working temperature if it behaved as a perfect gas?

i.iIliiil The known and unknown data are summarized in (2). We expect the pressure to be
greater on account of the increase in temperature. Moreover, because pressure is
proportional to temperature, we can anticipate that the pressure will increase by a factor of
T2 /T1 , where T1 is the initial temperature and T2 is the final temperature. To proceed more
formally, we note that, when a problem involves a change in conditions for a constant

n	 p	 V

Initial S e 100 Same 3

Final Sate 7 Same 500

2
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amount of gas, the perfect gas equation can be developed as follows. First, write eqn 12 for
the initial and final sets of conditions:

PI VI -	 2nR	 nR—=
-

Because n (in this problem) and R are both constant and equal, it follows that

p1V1 P2 V2

- T2

Any constant quantities (volume in this example) cancel, and the data may then be
substituted into the resulting expression.

Answer Cancellation of the volumes (because V1 = 72) on each side of this expression
results in

1) 1 _P
- T2

which can be rearranged into

P2 =XJ)j

Substitution of the data then gives

50(1 K
P2 =K x(IOOatm) 167 atm

Coiiirncnt Experiment shows that the pressure is actually 183 atm under these conditions,
so the assumption that the gas is perfect leads to a 10 per cent error. The expression
pV/T =p1 V2 /T2 is commonly called the combined gas low.

Self -test 1.3 What temperature would result in the same sample exerting a pressure of
300 atm?

[900K1

(c) Mixtures of gases
The kind of question we need to answer when dealing with gaseous mixtures is the
contribution that each component gas makes to the total pressure of the sample. In the
nineteenth century John Dalton made observations that provide the answer and summarized
them in a law:

Dalton's law: The pressure exerted by a mixture of perfect gases is the sum of
the partial pressures of the gases.

The partial pressure of a perfect gas is the pressure that it would exert if it occupied the
container alone. That is, if a certain amount of H 2 exerts 25 kPa when present alone in a
container, and an amount of N 1 exerts 80 kPa when present alone in the same container at
the same temperature, then the total pressure when both are present is the sum of these two
partial pressures, or 105 kPa (provided the individual gases and the mixture behave
perfectly). More generally, if the partial pressure of a perfect gas A is PA' that of a perfect
gasj3 is P. and so on, then the total pressure when all the gases occupy the same container
at the same temperature is

(t3)°
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where, for each substance J,

njRT	
(14)°P1 =

V

Example 1.4 Using Milton's law

A container of volume 10.0 L holds 1.00 moIN 2 and 3.00 molH 2 at 298 K. What is the
total pressure in atmospheres if each component behaves as a perfect gas?

Mclhml It follows from eqns 13 and 14 that the total pressure when two gases, A and B,
occupy a container is

RT
P = PA + PB = (nA + lB)--

To obtain the answer expressed in atmospheres, use R = 8.206x 10-2 LatmK mol*

Ancwcr Under the stated conditions

(8.206x 10 -2 LatmK mol 1 ) x(298 K)
p=(1O0mol+3.00mol)x 	

lO.OL
= 9.78 atm

Srlf- lcsl 1.4 Calculate the total pressure when 1.00 mol N 2 and 2.00 M0102 are added to
the same container (with the nitrogen and hydrogen still inside) at 298 K.

117.1 atm]

(d) Mole fractions and partial pressures
We can take a step closer to the discussion of mixtures of real gases by introducing the mole
fraction of each component J. The mole fraction, .r 2 , is the amount of I expressed as a
fraction of the total amount of molecules, n, in the sample:

Xj —	 PI=flA+OB+	 [15]

When. no I molecules are present, Xj = 0; when only I molecules are present, x1 = 1. A

mixture of.1 .0 mol N 2 and 3.0 mol 1-1 2 , and therefore of 4.0 mol molecules in all, consists of
mole fractions 0.25 of N 2 and 0.75 of H 2 . It *illows from the definition of x1 that, whatever
the composition of the mixture,

XA+ X B- f —1	 (16)

Next, we define the partial pressure, 

p, 

of a gas I in a mixture (any gas, not just a perfect
gas) as

=	 [17]

where p is the total pressure of the mixture (Fig. 1.11). Only for a mixture of perfect gases
can we identify pj with the pressure that the gas J would exert if it were alone in the
container and calculate its value from eqn 14.

It follows from eqns 16 and 17 that the sum of the partial pressures is equal to the total
pressure:

PA 4 pre +'(A+XB+'')PP	 (18)

This relation is true for both real and perfect gases.

Total pressure, p = PA + PB

/
Partial —n0)	 pressure

U,
	 of B:

U,
PB=XBP

0

/ \

Partial
pressure
of A:
PAXAP_J

/

0	
Mole-fraction of B, XB

1. I The partial pressures PA and Pa of a binary
mixture of (real or perfect) gases of total pressure p
as the composition changes from pure A to pure B.
The sum of the partial pressures is equal to the
total pressure. If the gases are perfect, then the
partial pressure is also the pressure that each gas
would exert if it were present alone in the
container.
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Exiniplu 11.5	 diCtildi	 J P'' idl l)r('SSLirt's

The mass percentage composition of dry air at sea level is approximately N 7 : 75.5;0 2 23.2;
Ar 1,3. What is the partial pressure of each component when the total pressure is
1.00 atm?

Method We expect species with a high mole fraction to have a proportionally high partial
pressure, Partial pressures are defined by eqn 17. To use the equation, we need the mole
fractions of the components. To calculate mole fractions, which are defined by eqn 15, we
use the fact that the amount of molecules J of molar mass M in a sample of mass m5 is
nj = m/M. The mole fractions are independent of the total mass of the sample, so we can
choose the latter to be IOU g (which makes the conversion from mass percentages very
easy).

A;wer The amounts of each type of molecule present in 100 g of air are

n(N2) = (
100 g)xO.755 = 2.69 mol
28.02 gmol

-- (10(1 g) xO.232 -
0.725 mol

- 32.00 gmoh 1 -

,,(Ar)=	
-

 (100 g) xO.013 -
0.033 mol

39.95 gmoI 

Because overall n = 3.45 mol, the mole fractions and partial pressures (obtained by
multiplying the mole fraction by the total pressure, 1.00 atm) are as follows:

N 2 	02	 Ar
Mole fraction:	 0.780	 0.210	 0.0096
Partial pressure/atm: 0.780	 0.210	 0.0096

Comment We have not had to assume that the gases are perfect: partial pressures are
defined aspj = x,p for any gas.

Self-tcst 1.5 When carbon dioxide is taken into account, the mass percentages are 75.52
(N 2 ), 23.15 (0 7 ), 1.28 (Ar), and 0.046 02 ). What are the partial pressures when the total
pressure is 0.900 atm?

(0.703,0.189,0.0084,0.00027 atm)

1.3 The kinetic model of qases

We have seen that properties of a perfect gas can be rationalized qualitatively in terms of a
model in which the molecules of the gas are in ceaseless random motion. We shall now see
how this interpretation can be expressed quantitatively in terms of the kinetic model of
gases, in which it is assumed that the only contribution to the energy of the gas is from the
kinetic energies of the molecules (that is, the potential energy of the interactions between
molecules makes a negligible contribution to the total energy of the gas). The kinetic model
is one of the most remarkable—and arguably most beautiful—models in physical chemistry
for, from a set of very slender assumptions powerful quantitative conclusions can be
deduced,

The kinetic model of gases is based on three assumptions;

1. The gas consists of molecules of mass rn in ceaseless random motion,
2. The size of the molecules is negligible, in the sense that their diameters are much

smaller than the average distance travelled between collisions.
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3. The molecules do not interact, except that they make perfectly elastic collisions
when they are in contact.

An elastic collision is one in which no internal modes of motion are excited; that is, the
translational energy of the molecules is conserved (remains constant) in a collision.

From these very economical assumptions, it follows that the pressure and volume of the
gas are related by the following expression:

PV = jnMc 2 	 (19)°

where M = mNA , the molar mass of the molecules, and c is the root mean square speed of
the molecules, the square root of the mean of the squares of the speeds, v, of the molecules:

C = (i;2)2
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The derivation of eqn 19 is set out in the following Justification.

JLItUiCIti(itI 1.1

1.1? The pressure of a gas arises from the impact	 Consider the arrangement in Fig. 1.12. When a particle of mass m that is travelling with a
of its molecules on the walls. In an elastic collision 	 component of velocity v, parallel to the x-axis collides with the wall on the right and is
of a molecule with a wall perpendicular to the .t	 reflected, its linear momentum (the product of its mass and its velocity) changes from ow,
axis, the x-component of velocity is reversed but	 . .
the y- and z-components are unchanged 	 before the collision to —mv, after the collision (when It IS travelling in the opposite

direction). The momentum therefore changes by 2mv on each collision (the y- and z-
components are unchanged). Many molecules collide with the wall in an interval At, and
the total change of momentum is the product of the change in momentum of each
molecule multiplied by the number of molecules that reach the wall during the interval.

Next we calculate the number of molecules that collide with the wall in the interval At.
Because a molecule with velocity component v 1 can travel a distance v.At along the x-axis
in an interval At, all the molecules within a distance v5Lv of the wall will strike it if they are
travelling towards it (Fig. 1.13). It follows that, if the wall has area A, then all the particles
in a volume A x vAt will reach the wall (if they are travelling towards it). The number
density of particles is nNA /V, where n is the total amount of molecules in the container of
volume V and NA is the Avogadro constant, so the number in the volume Av5 & is
(ONA /V) xAv&,

On average, at any instant half the particles are moving to the right and half are moving
to the left. Therefore, the average number of collisions with the wall during the interval At
is nNAAvAf/V. The total momentum change in that interval is the product of this
number and the change 2rnvr:

-

	

Momentum change ONAAVX& 
x 2mv1 -
	 AAYt

2V	 -	 V
nMAvAr

- V

where M = rnN,.

Next, to identify the force, we calculate the rate of change of momentum, which is this
change of momentum divided by the interval At during which it occurs:

Rate of change of momentum =
V

This rate bf change of momentum is equal to the force (by Newton's second law of motion).
It follows that the pressure, the force divided by the area, is

nMv2
Pressure =

\A/oii't
0--->

X	 Area 

V,ljmp - Iv \IIA

1.13 A molecule will reach the wail on the right
within an interval At if it is within a distance v,A:
of the will and travelling to the right.
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Not all the molecules travel with the same velocity, so the detected pressure, p, is the
average (denoted ( ... )) of the quantity just calculated:

nM(v)
V

This expression already resembles the perfect gas equation of state.
Because the molecules are moving randomly (and there is no net flow in a particular

direction), the average speed along .x is the same as that in the y- and z-diretions. It
follows that

= (V,2 + (v ,) + (v) = 3(v. ),	 implying that (ti) =

Equation 19 now follows immediately.

Equation 19 is one of the key results of the kinetic model, We see that, if the root mean
square speed of the molecules depends only on the temperature, then at constant
temperature

pV = constant

which is the content of Boyle's law.

(a) Molecular speeds	 -
If eqn 19 l5 to be precisely the equation of state of a perfect gas, its right-hand side must be
equal to nRT. It follows that the root mean square speed of the molecules in a gas at a
temperature T must be given by the expression

(3RT) 1/2
c=	 (21)°

We can conclude that the root mean square speed of the molecules of a gas is proportional
to the square root of the temperature and inversely proportional to the square root of the
molar mass. That is, the higher the temperature, the faster the molecules travel on average,
and, at a given temperature, heavy molecules travel more slowly on average than light
molecules. Sound waves are pressure waves, and for them to propagate the molecules of the
gas must move to form regions of high and low pressure. Therefore, we should expect the
root mean square speeds of molecules to be comparable to the speed of sound in air
(340 ms).

Illustration

The molar mass of CO, is 44.01 gmol. Therefore, it follows from eqn 21 that at 298 K

C 
=

/3 x (8.3145_JK'_niol') x (298 K)'\ 12

------ x 10kgmol-'	
= 411 rns

To obtain this result, we have used R in SI units and 1 J = 1 kg in2

Equation 21is an expression for the root mean square speed of molecules. However, in an
actual gas the speeds of individual molecules span a wide range, and the collisions in the gas
continually redistribute the speeds among the molecules. Before a collision, a particular
molecule may be travelling rapidly, but after a collision it may be accelerated to a very high
speed, only to be slowed again by the next collision. The fraction of molecules that have
speeds in the rangv to I; + dv is proportional to the width of -the range, and is written
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1.14 The distribution of molecular speeds with
temperature and molar mass. Note that the most
probable speed (corresponding to the peak of the
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f(v)dv, where f(v), which varies with the speed, v, is called the distribution of speil. The

precise form of f was derived by J.C. Maxwell, and is

f(s ) = 4n(T)v2cM1u/2RT	
(22)

This expression is called the Maxwell distribution of speeds, and is derived in the following

Ju5t(f,cot(on. Its main features are summarized in Fig. 1.14. We see that the range of speeds
broadens as the temperature increases. Lighter molecules also have a broader distribution of
speeds than heavy molecules. To use eqn 22 quantitatively to calculate the fraction of
molecules in a given narrow range of speeds, Av, we evaluate f(v) at the speed of interest

then multiply it by the width of the range of speeds of interest (that is, we form f(v)iv). To
use the distribution to calculate the fraction in a range of speeds that is so wide that it
cannot be regarded as almost infinitesimal, we evaluate the integral:

Fraction in the range V 1 to v2 = f ' f(v) dv	 (23)

This integral is the area under the graph of f as a function of v, and except in special eases

has to be evaluated numerically using mathematical software (Fig. 1.15).

JLIStifiCdtIl)I1 1.2

The probability that a molecule has a velocity in the range v to v + dv, v to v + dv,, v,

to v, ± di), is proportional to the widths of the ranges and depends on the velocity

components, so we write it f(ti vy,V:)dV,dVydVr The probability that a molecule has a

particular velocity parallel to x is independent of the probability that it has a particular
velocity parallel toy or z, so f(v,v,v,) rf(vX)f(v?)f(v,). Moreover, the probability of
finding a molecule with a velocity in the range +v,I to +(v,I + dv, is the same as finding it

in the range -Iv,I to -Iv,( - dvi , so f(v) must depend on the square of v,. Hence,

f(v,) =f(v,), and likewise for v, and v,. It follows that we can also write

AV, v,,v,) =f(t,)f(v,)f(v,).

Next, we assume that the probability of a molecule lying in a particular range is
independent of its direction of flight. That is, we assume that f(vv,,v,) depends only on

the speed v, with v2 = v 2
V + v + v, but not on the individual components. For example,

we assume that the probability that a molecule has a velocity in an infinitesimal range at

the velocity (1.0,2.0,3.0) km s, and speed 3.7 km s -1 , is the same as the probability

that it has a velocity in the same infinitesimal range at the velocity
(2.0, —1.0, —3.0) kms, or any other set of components corresponding to the speed

3.7 km s -  It follows that f(v,,v,v,) =f(v +v +v).
By combining the conclusions of these two paragraphs, we can write

f(v, +v, + v) =f(v)f(v)f(v)

Only an exponential function satisfies such a relation (because c'e1' = ea ) , so we can

conclude that

f(v,) = Ke"
1.15 To calculate the probability that a molecule 	 where K and C (zeta) are constants andf(v,) =f(t4). The two constants are the same for
will have a speed in the range v 1 to v2 . we f(v) and f(v,) because the distributions are independent of direction. Moreover, because
integrate the distribution between those two limits: 
the integral is equal to the area of the curve	 the probability is very small that a molecule will have a very high velocity, we can discard

between the limits, as shown shaded here, 	 the solution witho+,v,2 in the exponent.
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1.16 To evaluate the probability that a molecule
has a speed in the range i' to ii + i.tu, we evaluate
the total probability that the molecule will have a
speed that Is anywhere on the surface of a sphere
of radius v = (v + + v 11 by summing the
probabilities that it is in a volume element
dvdv,dv, at a distance v from the origin.

4—A
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To determine the constant K, we note that a molecule must have a velocity somewhere
in the range

- I	 (24)

Substitution of the expression for f(v) then gives

1 = Kf cdV =K()

Therefore, K (4/ 7r)t/2 To determine we calculate the root mean square speed. The first
step is to write

(v,) = f v f(v ) 
dv = () L ve°' dv

	

= (,.	
n

1/2	 1/2

	

is 	('	 I
=

Therefore,

c= ((v)+(v)+(e))t/2=

(TIC)
However, we already know that c = (3RT/M) 2 ; therefore ' = M12RT. At this
therefore, we know that

M	 L/2
1(v) = (;;) eM/2RT

The probability that a molecule has a velocity in the range v to v 1 + dvi, v, to v, + dv,, v5

tOtl +dV is

f(v, v, v) dv1dvdv, = f(V:lf(V)f() dvdvdv2

=
 (

M 3/2

;) 
e'dvdv7&

The probability f(v)dv that the molecules have a speed in the range v to v + dv regardless
of direction is the sum of the probabilities that the velocity lies in any of the volume
elements dvdv,dv1 forming a spherical shell of radius v (Fig. 1.16). The sum of the volume
elements on the right-hand side of the last equation is the volume of this shell, 4iw2 dv.
Therefore,

M \3/2
f(v) = 4,t I / - I v2eM/T

\2nRT)
as given in eqn 22.

Example 1.G Calluistlog the rlsevt speed of molecules jr, a gas

What is the mean speed, , of W2 molecules in air at 25°C?

Mcl!isi We are asked to calculate the mean speed, not the root mean square speed. A mean
value is calculated by multiplying each speed by the fraction of molecules that have that
speed, and then adding all the products together. When the speed varies over a continuous
range, the sum is replaced by an integral. To employ this approach here, we note that the
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1.17 A summary of the conclusions that can be
deduced from the Maxwell distribution for
molecules of molar mass M at a temperature T: c
is the most probable spend, F is the mean speed,
and c is the root mean square speed.

I
G

GG o
0	 2v	 2v

1.18 A simplified version of the argument to show
that the relative mean speed of molecules in a gas
is related to the mean speed. When the molecules
are moving in the same direction, the relative
mean speed is zero: it is 2v when the molecules
are approaching each other. A typical mean
direction of approach is from the side, and the
mean speed of approach is then 2 111 v. The last
direction of approach is the most characteristic, sri
the mean speed of approach can be expected to be
about 2 112 v. This value is confirmed by more
detailed calculation,

28
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l/e

I—cc

c/(2RT/M)t'2
—.f(2RT101
—02RT/M)1'

fraction of molecules with a speed in the range v to v + dv is f(v) dv, so the product of this

fraction and the speed is if (v) dv. The mean speed, e, is obtained by evaluating the integral

= f vf(v) dv

with f given in eqn 22.

An .'er The integral required is

/ M
	= 4tt ( _--.'_'\	 I	 dv

\52ttRT) j

	

G ir
A( \	 2RT' 2	 /IRT'\ 

1/2

x	 =

Substitution of the data then gives

-	 (t x(8.3l4S JK' moF t ) x(298 K)'\ IR
C 
= " stx(28.O2xl0kg rnoH)	 ) =

	 m s

To evaluate the integral we have used the standard result from tables of integrals (or

software] that

=

St'lI-tesi 1.6 Evaluate the root mean square speed of the molecules by integration. You
will need the integral

	

f th 
=	

1/2

[c = (3RT/M)' 12 ,515 nn s]

As shown in Example 1.6, the Maxwell distribution may be used to evaluate the mean

speed, E, of the molecules in a gas:

	

(!.T) 
1/2	

(26)

The most probable speed, c, may also be identified from the location of the peak of the
distribution:

	

(2RT
) 

1/2	
(27)

These results are summarized it; Fig. 1.17. The relative mean speed, E. 1 , the mean speed with
which one molecule approaches another, can also be calculated from the distribution:

=	 (28)

This result is much harder to derive, but the diagram in fig. 1.18 should help to show that it
is plausible. The last result can also be generalized to the relative mean speed of two
dissimilar molecules of masses MA and m5:

	

cr.I =. (UT) 1/2	
= 0ZAmB	 (29)

MA + nab

4-13
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Note that the molecular masses (not the molar masses) and the Boltzmann constant,
k R/NA, appear in this expression; the quantity p is called the reduced mass of the
molecules. Equation 29 turns into eqn 28 when the molecules are identical (that is,

MA = m 5 = m, sop = sm).
The Maxwell distribution has been verified experimentally. For example, molecular speeds

can be measured directly with a velocity selector (Fig. 1.19). The spinning disks have slots
that permit the passage of only those molecules moving through them at the appropriate
speed, and the number of molecules can be determined by collecting them at a detector.

(b) The collision frequency

0	 2112 V	 2v	 The kinetic model enables us to make more quantitative our picture of the events that take
1.15 A velocity selector. The molecules are	 place in a gas. In particular, it enables us to calculate the frequency with which molecular
produced in the source (which may be an oven with 	 collisions occur and the distance a molecule travels on average between colliions.2
a small hole in one wall), and travel in a beam

We c aunt a 'hit' whenever the centres of two molecules come within a distanced of eachtowards the rotating disks. Only if the speed of a
molecule is such as to carry it through each slot	 other, where d, the collision diameter, is of the order of the actual diameters of the
that rotates into its path will it reach the detector,	 molecules (for impenetrable hard spheres d is the diameter). As we show in the following
Thus, the number of slow molecules can be counted 	 Justification, kinetic theory can be used to deduce that the collision frequency, z, the
by rotating the disks slowly, and the number of ía'
molecules counted by rotating the disks rapidly. 	 number of collisions made by one molecule divided by the time interval during which the

collisions are counted, when there are N molecules in a volume V is

= 17E'o, 1N 	 7rd2	 (30)°

Table 1.3' Collision cross-sections 	 with N = N/V and	 given in eqn 28. The area a is called the collision cross-section of
the molecules. Some typical collision cross-sections are given in Table 1.3 (they are obtained

	

ri/nm2	 by the techniques described in Section 22.5). In terms of the pressure,

'V

A

a a

Benzene. C6 H 6 	0.88
Carbon dioxide, CO 2 	0.52
Helium, He	 0.21
Nitrogen, N 2 	0.43

• Marc values are given in the Data section at the end
of this volume.

We consider the positions of all t he molecules except one to be frozen. Then we note what
happens as one mobile molecule travels through the gas with a mean relative speed c, l for

a time &. In doing so it sweeps out a 'c•.11ision tube' of cross-sectional area a = 7td2 and
length i'o,&. and therefore of volume C o,1 a\t (Fig. 1.20). The number of stationary
molecules with centres inside the collision tube is given by the volume of the tube
multiplied by the number density )V = N/V, and is jVuZo, 1 &. The number of hits scored in
the interval At is equal to this number, so the number of collisions divided by the time
interval, is Nai o,. The explcssiun in terms of the pressure of the gas is obtained by using
the perfect gas equation to write

N nNA PNA P
'i1	 V - RTkT

Equation 30 tells us that the collision frequency increases with increasing temperature in
a sample held at constant volume. The reason is that the mean relative speed increases with
temperature. Equation 31 tells us that, at constant temperature, the collision frequency is
proportional to the pressure. Such a proportionality is plausible for, the greater the pressure,
the greater the number density of molecule the sample, and the rate at which they
encounter one another is greater even though their average speed remains the same. For an
N 2 molecule in a sample at I atm and 25°C. z7 x 10 s 1 , so a given molecule collides

a	 The kinetic model 51cc pro'ades a bar's to, calculating how rapidly ph'yicaI propenies are trnspsned through a gas, Chapter 24.

and the rasm of chemical reactions, chapter 21
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1.21 The variation of the potential energy of two
mo:ccuirs on their separation. High positive
potential energy (at very small separations) indicates
that the interactions between them are strongly
repulsive at these distances. At intermediate
separations, where the potential energy is negative.
the attractive interactions dominate. At large
separations (on the right) the potential energy is
zero and there is no interaction between the
molecules.
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1.10 In an interval &, a molecule of diameter a sweeps out a tube of diameter 2d and length tM At. As
it does so it encounters other molecules with centres that lie within the tube, and each such encounter
counts as one collision. In practice, the tube is not straight, but changes direction at each collision.
Nevertheless, the volume swept out is the same, and this straightened version of the tube can be used a -
a basis of the calculation.

about 7 x 109 times each second. We are beginning to appreciate the timescale of events in

gases.	 -

(c) The mean free path
Once we have the collision frequency, we can calculate the mean free path, 2, the average

distance a molecule travels between collisions. If a molecule collides with a frequency z, it

spends a time I /Z in free flight between collisions, and therefore travels a distance (1/z).

Therefore, the mean free path is

), =
	 (32)

Substitution of the expression for z in eqn 31 gives

U-	21/2(fl)
	 (33)

Doubling the pressure reduces the mean free path by half. A typical mean free path in
nitrogen gas at I aim is 70 nm, or about IO molecular diameters. Although the
temperature appears in eqn 33, in a sample of constant volume, the pressure is proportional

to T, so T/p remains constant when the temperature is increased. Therefore, the mean free
path is independent of the temperature in a sample of gas in a container of fixed volume.
The distance between collisions is determined by the number of molecules present in the
given volume, not by the speed at which they travel.

In summary, a typical gas (N 2 or 02) at 1 aim and 25°C can be thought of as a collection

of molecules travelling with a mean speed of about 350 ms). Each molecule makes a
collision within about I ns, and between collisions it travels about 102 to 1 0molecular

diameters. The kinetic model of gases is valid (and the gas behaves nearly perfectly) if the
diameter of the molecules is much smaller than the mean free path (d 4 1), for then the

molecules spend most of their time far from one another.

Real gases
Real gases do not obey the perfect gas law exactly. Deviations from the law are particularly
important at high pressures and low temperatures, especially when a gas is on the point of

condensing to liquid.
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1.22 The variation of the compression factor
Z = pV,,,/RT with pressure for several gases at
0°C. A perfect gas has Z = I at all pressures.
Notice that although the curves approach t as
p -.0, they do so with different slopes.
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1.23 Experimental isotherms of carbon dioxide at
several temperatures. The critical isotherm, the
isotherm at the critical temperature, is at 31.04°C.
The. critical point is marked with a star.

1.4 Molecular interactions
Real gases show deviations from the perfect gas law because molecules interact with each
other. Repulsive forces between molecules assist expansion and attractive forces assist
compression.

Repulsive forces are significant only when molecules are almost in contact: they are
short-range interactions, even on a scale measured in molecular diameters (Fig. 1.21).
Because they are short-range interactions, repulsions can be expected to be important
only when the molecules are close together on average. This is the case at high pressure,
when a large number of molecules occupy a small volume. On the other hand, attractive
intermolecular forces have a relatively long range and are effective over several
molecular diameters. They are important when the molecules are fairly close together but
not necessarily touching (at the intermediate separations in Fig. 1.21). Attractive forces
are ineffective when the molecules are far apart (well to the right in Fig. 1.21).
Intermolecular forces may also be important when the temperature is so, low that the
molecules travel with such low mean speeds that they can be captured by one another.
At low pressure, when the sample occupies a large volume, the molecules are so far apart
for most of the time that the intermolecular forces play no significant role, and the gas
behaves perfectly. At moderate pressure, when the molecules are on average only a few
molecular diameters apart, the attractive forces dominate the repulsive forces. In this
case, the gas can be expected to be more compressible than a perfect gas because the
forces arc helping to draw the molecules together. At high pressure, when the molecules
are on average close together, the repulsive forces dominate and the gas can be expected
to be less compressible because now the forces help to drive the molecules apart.

(a) The compression factor
That real gases reflect the distance dependence of the forces we have described can be
demonstrated by plotting the compression factor, Z. against pressure, where Z is defined as

134)RT

Because, for a perfect gas, Z = I under all conditions, deviation of Z from lisa measure of
departure from perfect behaviour.

Some experimental values of Z are plotted in Fig. 1.22. At very low pressures, all the gases
shown have Z 1 and behave nearly perfectly. At high pressures, all the gases have Z> 1,
signifying that they are more difficult to compress than a perfect gas (for a given molar
volume, the product PVm is greater than RT). Repulsive forces are now dominant At
intermediate pressures, most gases have Z<1, indicating that the attractive forces -are
dominant and favour compression.

(b) Virial coefficients
Some experimental isotherms for carbon dioxide are shown in Fig. 1.23. At large molar
volumes and high temperatures the real isotherms do not differ greatly from perfect
isotherms. The small differences suggest that the perfect gas law is in fact the first term in an
expression of the form

PV. = RT(1 + B'p + dp 2 +..-)	 (35)

20°C
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Table 1 .4 Second	 virial
B/(cmT mol1)

Temperature
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coefficients, This expression is an example of a common procedure in physical chemistry, in which a
simple law (in this case pV = nRT) is treated as the first term in a series in powers of a
variable (in this case p). A more convenient expansion for many applications is

273K	 600K pVm = Rr(1 +	 +	
+...)	

(36)

These two expressions are two versions of the virial equation of state, 3 The coefficients

N	 —105	 217	 13,C.... . which depend on the temperature, are the second, third,... virial coefficients

Xc	 —153.7	 —196	 (Table 1.4); the first virial coefficient is I. The third virial coefficient, C, is usually less
important than the second coefficient, B, in the sense that, at typical molar volumes,

'More values are given in the Data section.	 C/V 4 B/Vm.
The virial equation can be used to demonstrate the important point that, although the

equation of state of a real gas may coincide with the perfect gas law asp -. 0, not all its
properties necessarily coincide with those of a perfect gas in that limit. Consider, for
example, the value of dZ/dp, the slope of the graph of compression factor against pressure.
For a perfect gas dZ/dp = 0 (because Z	 I at all pressures), but for a real gas

Higher
temperature 7'

Boyle

Pcect

In rn pc a lush

gas

1	
Pressure

Lower
temperature

1.24 The compression factor approaches I at low
pressures, but does so with different slopes. For a
perfect gas, the slope is zero, but real gases may
have either positive or negative slopes, and the
slope may vary with temperature. At the Boyle
temperature, the slope is zero and the gas behaves
perfectly over a wider range of conditions than at
other temperatures.

asp0	 (37)
dp

However, fr is not necessarily zero, so the slope of Z with respect top does not necessarily
approach 0 (the perfect gas value). Because several properties depend on derivatives (as we
shall see), the properties of real gases do not always coincide with the perfect gas values at
low pressures. By a similar argument,

dZ

d( l/Vm) -• 
B as V. - cocorresponding to p —s 0	 '-(38)

Because the virial coefficients depend on the temperature, there may be a temperature at
which Z -. I with zero slope at low pressure or high molar volume (Fig. 1.24). At this
temperature, which is called the Boyle temperature, T, the properties of the real gas do
coincide with those of a perfect gas asp -. 0. According to the relation above, Z has zero
slope asp -. 0 if B = 0, so we can conclude that B = 0 at the Boyle temperature. It then
follows from eqn 36 that pt',, =RTH over a more extended range of pressures than at other
temperatures because the first term after I (that is, !3/Vm) in the virial equation is zero and
CIV?,, and higher terms are negligibly small. For helium T = 22.64 K; for air

= 346.8 K; more values are given in Table 1.5.

(c) Condensation
Now consider what happens when a sample of gas initially in the state marked A in Fig. 1.23
is compressed at constant temperature (by pushing in a piston). Near A. the pressure of the
gas rises in approximate agreement with Boyle's law. Serious deviations from that law begin
to appear when the volume has been reduced to B.

At C (which corresponds to about 60 atm for carbon dioxide), all similarity to perfect
behaviour is lost, for suddenly the piston slides in without any further rise in pressure: this
stage is represented by the horizontal line CDE. Examination of the contents of the vessel
shows that just to the left of C a liquid appears, and there are two phases separated by a
sharply defined surface. As the volume is decreased from C through D to E, the amount of
liquid increases. There is no additional resistance to the piston because the gas can respond
by condensing. The pressure corresponding to the line CDE, when both liquid and vapour
are present in equilibrium, is called the vapour pressure of the liquid at the temperature of
the experiment.

3 the name comes from the 1atir word for force.
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Table 1.5* Critical constants of gases

p/atm	 V/(cm'moI')	 T/K	 Zr	 TB/K

Ar	 48,0	 75.3
	

150.7
	

0.292
	

411.5
CO 2	72.9	 940

	
304.2
	

0.274
	

714.8
He	 2.26	 57.8

	
5.2
	

0.305
	

22.6

02	50.14	 78.0
	

154.8
	

0.308
	

405.9

More values are given in the Data Section.

At E. the sample is entirely liquid and the piston rests on its surface. Any further
reduction of volume requires the exertion of considerable pressure, as is indicated by the
sharply rising line to the left of E. Even a small reduction of volume from E to F requires a
great increase in pressure.

(d) Critical constants
The isotherm at the temperature T (304.19 K, or 31.04°C for CO 2 ) plays a special role in
the theory of the states of matter. An isotherm slightly below Tc behaves as we have
already described: at a certain pressure, a liquid condenses from the gas and is
distinguishable from it by the presence of a visible surface. If, however, the compression
takes place at T itself, then a surface separatir. two phases does not appear and the
volumes at each end of the horizontal part of the isotherm have merged to a single
point, the critical point of the gas. The temperature, pressure, and molar volume at the
critical point are called the critical temperature, T, critical pressure, p, and critical
molar volume, V, of the substance. Collectively, p, V. and T are the critical constants
of a substance (Table 1.5).

At and above T, the sample has a single phase which occupies the entire volume of the
container. Such a phase is, by definition, a gas. Hence, the liquid phase of a substance does
not form above the critical temperature. At the critical temperature, a surface does not
form and the horizontal part of the isotherm has merged to a single point. The critical
temperature of oxygen, for instance, signifies that it is impossible to produce liquid oxygen
by compression alone if its temperature is greater than 154.8 K: to liquefy it—to obtain a
fluid phase that does not occupy the entire volume—the temperature must first be lowered
to below 154.8 K, and then the gas compressed isothermally. The single phase that fills the
entire volume at T>T may be much denser that we normally consider typical of gases, and
the name supercritical fluid is preferred.

1.5 The van der Waals equation
Conclusions can be drawn from the virial equations of state only by inserting specific values
of the coefficients. It is ofti useful to have a broader, if less precise, view of all gases.
Therefore, we introduce the approximate equation of state suggested by J.H. van der Waals
in 1873. This equation is an excellent example of an expression that can be obtained by
thinking scientifically about a mathematically complicated but physically simple problem,
that is, it is a good example of 'model building'. Van der Waals himself proposed his equation
on the basis of experimental evidence available to him in conjunction with rigorous
thermodynamic arguments. The van der Waals equation is

nRT	 n2
° V_flb°(V)	

(39a)
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and a derivation is given in the Justification below. The equation is often written in terms of
the molar volume V. = V/n as

RT	 a
(39b)in

The constants a and h are called the van der Waals coefficients. They are characteristic of
each gas but independent of the temperature; some value5 are listed in Table 1.6.

Justification 1.4

The repulsive interactions between molecules are taken into account by supposing that
they cause the molecules to behave as small but impenetrable spheres. The nonzero volume
of the molecules implies that instead of moving in a volume V they are restricted to a
smaller volume V - nb, where nb is approximately the total volume taken up by the
molecules themselves. This argument suggests that the perfect gas law  = nRT/V should
be replaced by

nRT
P= V - Ft/S

when repulsions are significant.
The pressure depends on both the frequency of collisions with the walls and the force of

each collision. Both the frequency of the collisions and their force are reduced by the
attractive forces, which act with a strength proportional to the molar concentration, n/V,
of molecules in the sample. Therefore, because both the frequency and the force of the
collisions are reduced by the attractive forces, the pressure is reduced in proportion to the
square of this concentration. If the reduction of pressure is written as —a(n/V) 2 , where a
is a positive constant characteristic of each gas, the combined effect of the repulsive and
attractive forces is the van der Waals equation of state as expressed in eqn 39.

In this Justification we have built the van der Waals equation using vague arguments
about the volumes of molecules and the effects of forces. It can be derived in other ways,
but the present method has the advantage that it shows how to derive the form of an
equation out of general ideas. The derivation also has the advantage of keeping imprecise
the significance of the coefficients a and b: they are much better regarded as empirical
parameters than as precisely defined molecular properties.

Example 1.7 Using the van der Waals equation to estt;iate a molar
volume

Estimate the molar volume of CO 2 at 500 K and 100 atm by treating it as a-van der Waals
gas

Method To express eqn 39b as an equation for the molar volume, we need to rearrange it
into	 -

(1) + RT Vm' + () V._=O

Although closed expressions for the roots of a cubic equation can be given, they are very
complicated. Unless analytical solutions are essential, it is usually more expedient to solve
such equations either with a programmable calculator or with a commercial software
package."

4 ) p'occdure 5 included in the CO that accn4npnes this tent.
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Table 1.6 Van der Waals coefficients

a/(atm L2 mor 2) b/(IO 2 L mot-)

Ar	 1.363	 3.219

CO 2	 3.640	 4.267

He	 0.057	 2.370

N2	1.408	 3.913

More values are given in the Data section.
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Table 1.7 Selected equations of state

Equation
	 Reduced form	 Critical constants

PC	 VC	 TC

Perfect gas

Van der Waals

Berthelot

Dieterici

Beattie-Bridgman

RT
P =

m
RT	 a	 81',	 3

'3VrlV

Ri'	 a	 8T1	 3
P,b TI/2

RTe'"	 2Tre-"T V.

2V,-1

= (I - y)RT( Vm +13) -! with s = ao(i ±_)

Co
Y

Virial (Kammerlingh Onnes) 	 Ri' I +	 +	
+ ..7. 	 V V

Answer According to Table 1.6, a = 3.640 atm L2 m0I 2 and b = 4.267 x 102 LmoI"*
Under the stated conditions, RT/p = 0.410 Lmol. The coefficients in the equation for

Vm are therefore

b +RT/p 0.453 LmoF1

alp 3.64x 10 (LmoF')2

ab/p = 1.55 x 10 3 (L M01-1)3

Therefore, on writing x = V/(Lmol), the equation to solve is

- 0.453x2 + (3.64 x 10 2 )x - (1.55 x 10-i) 0

The acceptable root is x = 0.366, which implies that Vm = 0.370 Lmol".

Comment For a perfect gas under these conditions, the molar volume is 0.410 Lmol".

Volume

1.25 The surface of possible states allowed by the
van der Waals equation. Compare this surface with
that shown in Fig. 1.9.

Self-test 1.7 Calculate the molar volume of argon at 100°C and 100 atm on the
assumption that it is a van der Waals gas.

[0.298 Lmol"]

(a) The reliability of the equation
We now examine to what extent the van der Waals equation predicts the behaviour of real
gases. It is too optimistic to expect a single, simple expression to be the true equation of
state of all substances, and accurate work on gases must resort to the virial equation, use
tabulated values of the coefficients at various temperatures, and analyse the systems
numerically. The advantage of the van der Waals equation is that it is analytical and allows
us to draw some general conclusions about real gases. When the equation fails we must use
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15

C.
aL

1.0

01
0.1
	

10

1.26 Van der Waals isotherms at several values of TIT, . Compare these curves with those in Fig.1.23.
The van der Waals loops are normally replaced by horizontal straight lines. The critical isotherm is the
isotherm for T/T = I.

one of the other equations of state that have been proposed (some are listed in Table 1.7),
invent a new one, or go back to the virial equation.

That having been said, we can begin to judge the reliability of the equation by comparing
Equal the isotherms it predicts with the experimental isotherms in Fig. 1.23. Some calculated
areas

	

isotherms are shown in Figs 1.25 and 1.26. Apart from the oscillations below the critical

L\
temperature, they do resemble experimental isotherms quite well. The oscillations, the van
der Waals loops, are unrealistic because they suggest that under some conditions an
increase of pressure results in an increase of volume. Therefore they are replaced by
horizontal lines drawn so the loops define equal areas above and below the lines: this

3	 procedure is called the Maxwell construction (3). The van der Waals coefficients, such as
those in Table 1.6, are found by fitting the calculated curves to the experimental curves.

4\

(b) The features of the equation
The principal features of the van der Waals equation can be summarized as follows.
(1)Perfect gas isotherms are obtained at high temperatures and large molar volumes.
When the temperature is high. RT may be so large that the first term in eqn 39b greatly
exceeds the second. Furthermore, if the molar volume is large (in the sense V. . b), then
the denominator Vm - bVm. Under these conditions, the equation reduces to
p = RT/Vm , the perfect gas equation.

(2)Liquids and gases coexist when cohesive and dispersing effects are in balance.
The van tier Waals loops occur when both terms in eqn 39b have similar magnitudes. The
first term arises from the kinetic energy of the molecules and their repulsive interactions;
the second represents the effect of the attractive interactions.

(3)The critical constants are related to the van der Wools coefficients.
For T.<T, the calculated isotherms oscillate, and each one passes through a minimum
followed by a maximum. These extrenia converge as T .-* T and coincide at T = T; at the
critical point the curve has a fiat inflexion (4). From the properties of curves, we know that
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an inflexion of this type occurs when both the first and second derivatives are zero. Hence,
we can find the critical constants by calculating these derivatives and setting them equal to
zero:

dp	 RT	 2a

(1 2p	 2RT	 6a0

dV(v../) 3	V

at the critical point. The solutions of these two equations are

VC = 3b	 p = :-f 	 T = 2	
(40)

These relations can be tested by noting that the critical compression factor, 4, is predicted

to be equal to

	

Z=t=	 (41)

for all gases. We see from Table 1.5 that, although Z < (or 0.375), it is approximately
constant (at 0.3) and the discrepancy is reasonably small.

1.6 [he princjilc of correspondiiiq states
An important general technique in science for comparing the properties of objects is to
choose a related fundamental property of the same kind and to set up a relative scale on that
basis. We have seen that the critical constants are characteristic properties of gases, so it
may be that a scale can be set up by using them as yardsticks. We therefore introduce the
reduced variables of a gas by dividing the actual variable by the corresponding critical
constant:

Pr =	 = -	 = 1	 1421
PC	 C	 C

If the reduced pressure of a gas is given, then we can easily calculate its actual pressure by
using p = PrPc' and likewise for the volume and temperature. Van der Waals, who first tried
this procedure, hoped that gases confined to the same reduced volume, V. at the same
reduced temperature, Tr, would exert the same reduced pressure, Pr The hope was largely
fulfilled (Fig. 1.27). The illustration shows the dependence of the compression factor on the
reduced pressure for a variety of gases at various reduced temperatures. The success of the
procedure is strikingly clear: compare this graph with Fig. 1.22. where similar data are
plotted without using reduced variables. The observation that real gases at the same volume
and temperature exert the same reduced pressure is called the principle of corresponding
states. It is only an approximation, and works best for gases composed of spherical
molecules; it fails, sometimes badly, when the molecules are non-spherical or polar.

The van der Waa!s equation sheds some light on the principle. First, we express eqn 39b in
terms of the reduced variables, which gives

	

RTrTc	 a
P1P =	 -

Then we express the critical constants in terms of a and b by using eqn 40:

'Pr -	 aT	 a
27h2 - 27b(3bVr - b) 9b2V
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1.0

0.8

Z

0.6

0.4

0.2

0
1.0	 3.0	 5.0	

Pr	
7.0

['J thermodynamic temperature
scale

1.2 The gas laws
[] Boylrs law (6)
Li isotherm
Li limiting law
[isobar
LI Charles's law (9)
LI Avogadro's principle (11)
Li gas constant

El perfect gas equation (12)
[J perfect gas
0 real gas
El standard ambient

temperature and pressure
(SAW)

D standard temperature and
pressure (SW)

LI Dalton's law
0 partial pressure
Li mole fraction (15)
Li partial pressure defined (17)

121 The compression factors of four gases, including two of those shown in Fig. 1.22, plotted using
reduced variables. The use of reduced variables organizes the data on to single curves,

which can be reorganized into

- 8T	 3
P r	 -

This equation has the same form as the original, but the coefficients a and b, which differ
from gas to gas, have disappeared. It follows that, if the isotherms are plotted in terms of the
reduced variables (as we did in fact in Fig. 1.26 without drawing attention to the fact), then
the same curves are obtained whatever the gas. This is precisely the content of the principle
of corresponding states, and so the van der Waals equation is compatible with it

Looking for too much significance in this apparent triumph is mistaken, because other
equations of state also accommodate the principle (Table 1.7). In fact, all we need are two
parameters playing the roles of a and L', for then the equation can always be manipulated
into reduced form. The observation that real gases obey the principle approximately
amounts to saying that the effects of the attractive and repulsive interactions can each be
approximated in terms of a single parameter. The importance of the principle is then not so
much its theoretical interpretation but the way that it enables the properties of a range of
gases to be coordinated on to a single diagram (for example, Fig. 1.27 instead of Fig. 1.22).

(43)

Checklist of key ideas
Li gas	 fl barometer

LI manometer
The perfect gas	 LI temperature

fl diathermic
1.1 The states of gases	 Li adiabatic

Li state	 0 thermal equilibrium
[J equation of state	 Li Zeroth Law of

LI perfect gas	 thermodynamics
[I] pressure	 Li thermometer

Li standard pressure	 Li Celsius scale

LI mechanical equilibrium	 perfect-gas temperature
scale
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fl collision frequency (30) 	 Lifl collision cross-section
mean free path (33) 	 LI

Real gases	 I

1.4 Molecular interactions
0 attractive and repulsive 	 LI

intermolecular forces 	 LI
[1 compression factor (34) 	 Ti

1.3 The kinetic model of gases
kinetic model of gases
elastic collision

EJ root mean square speed
0 distribution of speeds

( Maxwell distribution of
speeds (22)

R relative mean speed (29)
:i Boltzmann constant
0 reduced mass (29)
fl collision diameter

virial equation of state
136)
virial coefficient
Boyle temperature
condensation
vapour pressure
critical point
critical temperature
critical pressure
critical molar volume
critical constants
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1.5 The van der Waals equation
0 van der Waals equation (39)
fl van der Waals coefficients
[1 van der Waals loops
0 Maxwell construction
0 critical compression factor

(41)

1.6 The principle of
corresponding states

M reduced variables
0 principle of corresponding

states
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Exercises
1.1 (a) A sample of air occupies 1.0 L at 25°C and 1.00 atm. What 	 what pressure would it exert? (b) What pressure would it exert if it
pressure is needed to compress it to 100 cm  at this temperature? 	 behaved as a van der Waals gas?

1.1 (b) A sample of carbon dioxide gas occupies 350 cm 3 at 20'C
and 104 kPa. What pressure is needed to compress it to 250 cm 3 at	 1.3 (a) IA perfect gas undergoes isothermal compression, which

this temperature?	 reduces its volume by 2.20 L. The final pressure and volume of the gas
are 3.78 x 103 Torr and 4.65 L, respectively. Calculate the original

1.2 (a) (a) Could 131 g of xenon gas in a vessel of volume 1.0 L exert	 pressure of the gas in (a) Torr, (b) atm.
a pressure of 20 atm at 25°C if it behaved as a perfect gas? If not,
what pressure would it exert? (b) What pressure would it exert if it 	 1.3 (b) A perfect gas undergoes isothermal compression, which
behaved as a van der Waals gas? reduces its volume by 1.80 dm 3 . The final pressure and volume of the
1.2 (b) (a) Could 25 got argon gas in a vessel of volume 1.5 L exert	 gas are 1.48 x 10 'Forr and 2.14 din 3 , respectively. Calculate the
a pressure of 2.0 bar at 30'C if it behaved as a perfect gas? If not, 	 original pressure of the gas in (a) Torr. (b) bar.
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1.4 (a) To what temperature must a 1.0 L sample of a perfect gas be
cooled from 25°C in order to reduce its volume to tOO cm3?

1.4 (b) To what temperature must a sample of a perfect gas of
volume 500 ml., be cooled from 35°C in order to reduce its volume to
150 cm 3?

1.5 (a) A car Lyre (that is, an automobile tire) was inflated to a
pressure of 24 Ibin 2 (1.00 atm = 14.7 Ibin 2 ) on a winter's day
when the temperature was -5°C. What pressure will be found,
assuming no leaks have occurred and that the volume is constant, on
a subsequent summer's day when the temperature is 35°C? What
complications should be taken into account in practice?

1.5 (b) A sample of hydrogen gas was found to have a pressure of
125 kPa when the temperature was 23°C. What can its pressure be
expected to be when the temperature is II °C?

1.6 (a) A sample of 255 mg of neon occupies 3.00 L at 122 K. Use
the perfect gas law to calculate the pressure of the gas.

1.6 (b) A homeowner uses 4.00 x 10 3 m3 of natural gas in 5 year to
heat a home. Assume that natural gas is all methane, CH 4 , and that
methane is a perfect gas for the conditions of this problem, which are
1.00 aim and 20°C. What is the mass of gas used?

1.7 (a) In an attempt to determine an accurate value of the gas
constant, R. a student heated a 20.000 L container filled with
0.25132 g of helium gas to 500°C and measured the pressure as
206.402 cm of water in a manometer at 25°C. Calculate the value of
R from these data. (The density of water at 25°C is 0.99707 gcm3.)

1.7 (b) The following data have been obtained for oxygen gas at
273.15 K. Calculate the best value of the gas constant R from them
and the best value of the molar mass of 02.

p/atm	 0.750000	 0.500000	 0.250000

Vm/LmOI' 1	29.8649	 44.8090	 89.6384

p/(gL)	 1.07144	 0.714110	 0.356975

1.8 (a) At 500°C and 699 Ton, the mass density of sulfur vapour is
3.71 gL"'. What is the molecular formula of sulfur under these
conditions?

1.8 (b) At 100°C and 120 Ton, the mass density of phosphorus
vapour is 0.6388 kgm 3 . What is the molecular formula of
phosphorus under these conditions?

1.9 (a) Calculate the mass of water vapour present in a room of
volume 400 m 3 that contains air at 27°C on a day when the relative
humidity is 60 per cent.

1.9 (b) Calculate the mass of water vapour present in a room of
volume 250 m3 that contains air at 23°C on a day when the relative
humidity is 53 per cent.

1.10 (a) Given that the density of air at 740 Tore and 27°C is
1.146 gL. calculate the mole fraction and partial pressure of
nitrogen and oxygen assuming that (a) air consists only of these two
gases, (b) air also contains 1.0 mole per cent Ar.

1.10 (b) A gas mixture consists of 320 mg of methane, 175 mg of
argon, and 225 mg of neon. The partial pressure of neon at 300 K is
66,5 Ton. Calculate (a) the volume and (b) the total pressure of the
mixture.

1.11 (a) The density of a gaseous compound was found to be
1,23 gL' at 330 K and ISO Ton. What is the molar mass of the
compound?

1.11 (b) In an experiment to measure the molar mass of a gas,
250 cm 3 of the gas was confined in a glass vessel. The pressure
was 152 Tore at 298 K and, after correcting for buoyancy effects,
the mass of the gas was 33.5 mg. What is the molar mass of
the gas?

1.12 (a) The density of air at -85°C, 0°C, and 100°C is
1.877 gL, 1.294 gL, and 0.946 gL_i, respectively. From these
data, and assuming that air obeys Charles's law, determine a value for
the absolute zero of temperature in degrees Celsius.

1.12 (b) A certain sample of a gas has a volume of 20.00 L at 0°C
and 1.000 atm. A plot of the experimental data of its volume against
the Celsius temperature, 0, at constant p, gives a straight line of slope
0.0741 L(0C)i. From these data alone (without making use of the
perfect gas law), determine the absolute zero of temperature in
degrees Celsius.

1.13 (a) Determine the ratios 01(a) the mean speeds, (b) the mean
kinetic energies of gaseous H 2 molecules and Hg atoms at 20°C.

1.13 (b) Determine the ratios of (a) the mean speeds, (b) the mean
kinetic energies of He atoms and Hg atoms at 25°C.

1.14 (a) A 1.0 L glass bulb contains 1.0 x 1023 H 2 molecules. If the
pressure exerted by the gas is tOO kPa, what are (a) the temperature
of the gas, (b) the root mean square speeds of the molecules? (c)
Would the temperature be different if they were 02 molecules?

1.14 (b) The best laboratory vacuum pump can generate a vacuum
of about I nTorr. At 25°C and assuming that air consists of N2
molecules with a collision diameter of 395 pm, calculate (a) the mean
speed of the molecules, (b) the mean free path, (c) the collision
frequency iii the gas.

1.15 (a) At what pressure does the mean free path of argon at 25°C
become comparable to the size of a 1 L vessel that contains it? Take
o = 0.36 nm2.

1.15 (b) At what pressure does the mean free path of argon at 25°C
become comparable to the diameters of the atoms themselves?

1.16 (a) At an altitude of 20 km the temperature is 217 K and the
pressure 0.050 atm. What is the mean free path of N 2 molecules?
to = 0.43 rim2.)

1.16 (b) At an altitude of 15 km the temperature is 217 K and the
pressure 12.1 kPa. What is the mean free path of N 2 molecules?

0.43 rim2.)

1.17 (a) How many collisions does a single Ar atom make in 1.0
when the temperature is 25°C and the pressure is (a) 10 atm. (b)
1.0 atm, (c) 1.0 patm?

1.17 (b) How many collisions per second does an N 2 molecule make
at an altitude of 15 km? (See Exercise 1.16b for data.)
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1.18 (a) Calculate the mean free path of molecules in air using
a	 0.43 am2 at 25°C and (a) 10 atm, (14 1.0 atm. (c)
lOx 10-6 atm.

116 (b) Calculate the mean free path of carbon dioxide molecules
using a = 0.52 nm 2 at 25°C and (a) IS atm. (6) 1.0 bar. (c) 1.0 Tori.

1.19 (a) Use the Maxwell distribution of speeds to estimate the
fraction of N 2 molecules at 500 K that have speeds in the range 290
to 300 ms.

1.19 (b) Use the Maxwell distribution of speeds to estimate the
fraction of CO 2 molecules at 300 K that have speeds in the range 200
to 250 mst.

1.20 (a) Calculate the pressure exerted by 1.0 niol C 2 H 6 behaving as
(a) a perfect gas, (b) a van der Waals gas when it is confined under the
following conditions: (i) at 273.15 K in 22.414 L, (ii) at 1000 K in
100cm3 . Use the data in Table 1.6.

1.20 (b) Calculate the pressure exerted by 10 molH 7 S behaving as
(a) a perfect gas, (b) a van der Waals gas when it is confined under the
following conditions: (i) at 273.15 K in 22.414 L, (ii) at 500 K in
150 cm 3. Usethe data in Table 1.6.

1.21 (a) Estimate the critical constants of a gas with van der Waals
parameters a = 0.751 atm L2 mo1 2 and b = 0.0226 L mol.

1.21 (b) Estimate the critical constants of a gas with van der Waals
parameters a = 1.32 aunL 2 mol 2 and b = 0.0436 Lmo1.

1.22 (a) A gas at 250 K and IS atm has a molar volume 12 per cent
smaller than that calculated from the perfect gas law. Calculate (a)
the compression factor under these conditions and (14 the molar
volume of the gas. Which.are dominating in the sample, the attractive
or the repulsive forces?

1.22 (b) A gas at 350 K and 12 atm has a molar volume 12 per cent
larger than that calculated from the perfect gas law. Calculate (a) the
compression factor under these conditions and (b) the molar volume
of the gas. Which are dominating in the sample, the attractive or the
repulsive forces?

1.23 (a) In an industrial process, nitrogen is heated to 500 K at a
constant volume of 1.000 m3. Theas enters the container at 300 K
and 100 atm. The mass of the gas is 92.4 kg. Use the van der Waas
equation to determine the approximate pressure of the gas at its
working temperature of 500 K. For nitrogen, a = 1.408 1.2 atm mo12,
b = 0.0391 Lmol.

1.23 (14 Cylinders of compressed gas are typically filled to a pressure
of 200 bar. For oxygen, what would be the molar volume at this
pressure and 25°C based on (a) the perfect gas equation, (b) the
van der Waals equation? For oxygen, a 1.378 L 2 atm mot -2,

b = 3.183 x 102 Lmol.

1.24 (a) The density of water vapour at 327.6 atm and 776.4 K is
133.2 gdm 3 . (a) Determine the molar volume, V,,, of water and
the compression factor, Z, from these data. (14 Calculate Z from
the van der Waals equation with a = 5.536 1_ 2 atm Mot -2 and
b = 0.03049 L mot .

1.24 (b) The density of water vapour at 1.00 bar and 383 K is
0.5678 kgin 3 . (a) Determine the molar volume, Vm, of water and
the compression factor, Z, from these data. (b) Calculate Z from
the van der Waals equation with a = 5.536 L2 atm mo1 2 and
6 = 0.03049 l. mot .

1.25 (a) Suppose that 10.0 molC 2 H 6 (9) is confined to 4.860 L at
27°C. Predict the pressure exerted by the ethane from (a) the perfect
gas and (b) the van der Waals equations of state. Calculate the
compression factor based on these calculations- For ethane,
a = 5.562 L2 atmmol 2 , b = 0.06380 LmoI*

1.25 (14 At 300 K and 20 atm, the compression factor of a gas is
0.86. Calculate (a) the volume occupied by 8.2 mmol of the gas under
these conditions and (b) an approximate value of the second virial
coefficient B at 300 K.

1.26 (a) A vessel of volume 22.4 L contains 2.0 mot H 2 and
1.0 mot N. at 273.15 K. Calculate (a) the mole fractions of each
component, (b) their partial pressures, and (c) their total pressure.

1.26 (b) A vessel of volume 22.4 L contains 1.5 molH 2 and
2.5 niolN 2 at 273.15 K. Calculate (a) the mole fractions of each
component, (b) their partial pressures, and (c) their total pressure.

1.27 (a) The critical constants of methane are p6 = 45.6 atm,
V6 = 98.7 cm 3 moH, and T = 190.6 K. Calculate the van der
Waals parameters of the gas and estimate the radius of the molecules.

1.27 (b) The critical constants of ethane are p6 = 48.20 atm,
V6 148 cm 3 inoI_i, and T, = 305.4 K. Calculate the van der
Waals parameters of the gas and estimate the radius of the molecules.

1.28 (a) Use the van der Waals parameters for chlorine to calculate
approximate values of (a) the Boyle temperature of chlorine and (b)
the radius of a Cl. molecule regarded as a sphere.

1.28 (b) Use the van der Waals parameters for hydrogen sulfide to
calculate approximate values of (a) the Boyle temperature of the gas
and (b) the radius of a H 2 S molecule regarded as a sphere.

1.29 (a) Suggest the pressure and temperature at hich 1.0 mot of
(a) NH 3 , (6) Xe. (c) He will be in states that correspond to 1.0 mot H 2 at
1.0 atm and 25°C.

1.29 (b) Suggest the pre .iure and temperature at which 1.0 mot of
(a) 1-1 2 S, (b) C071 (c) Ar wiii be in states that correspond to 1.0 mot N2

at 1.0 atm and 25°C.

1.30 (a) A certain gas obeys the van der Waals equation with
a = 0.50 mPamol 2 .	 Its	 volume	 is	 found	 to	 be
SIX) x 10 in' inul at 273 K and 3.0 MPa. From this information
calculate the van der Waals constant 6. What is the compression
factor for this gas at the prevailing temperature and pressure?

1.30 (14 A certain gas obeys the van der Waa!s equation with
a = 076 in6 Pamol 2 . Its volume is found to be
4.00 x I0 4 m 3 mol at 288 K and 4.0 MIN. From this information
calculate the van der Waals constant b. What is the compression
factor for this gas at the prevailing temperature and pressure?
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Problems

Numerical problems
1.1 A diving bell has an air space of 3.0 m3 when on the deck of a
boat. What is the volume of the air space when the bell has been
lowered to a depth of 50 m? Take the mean density of sea water
to be 1.025 gcm 3 and assume that the temperature is the same
as on the surface.

1.2 What pressure difference must be generated across the length
of a 15 cm vertical drinking straw in order to drink a water-like
liquid of density 1.0 gcnr3?

1.3 Recent communications with the inhabitants of Neptune have
revealed that they have a Celsius-type temperature scale, but based
on the melting point (0°N) and boiling point (100°N) of their
most common substance, hydrogen. Further communications have
revealed that the Neptunians know about perfect gas behaviour
and they find that, in the limit of zero pressure, the value of pV i5
28 Latm at 0°N and 40 Latm at 100°N. What is the value of the
absolute zero of temperature on their temperature scale?

1.4 A meterological balloon had a radius of 1.0 m when released
at sea level at 20°C and expanded to a radius of 3.0 rn when it
had risen to its maximum attitude where the temperature was
-20°C. What is the pressure inside the balloon at that altitude?

1.5 Deduce the relation between the pressure and mass density, p.
of a perfect gas of molar mass M. Confirm graphically, using the
following data on dirnethyl ether at 25°C. that perfect behaviour
is reached at low pressures and find the molar mass of thegas.

p/Ton	 91.74 188.98 277.3 452.8 639.3 760.0

p/(gL)	 0.232 0.489 0.733	 1.25	 1.87	 2.30

1.6 Charles's law is sometimes expressed in the form
V = V0( I + aO), where 9 is the Celsius temperature, a is a constant,
and V0 is the volume of the sample at 0°C. the following values for a
have been reported for nitrogen at 0°C:

p/Ion'	 749.7 599.6 333.1 98.6

10 3e/(°C) - 3.6717 3.6697 3.6665 3.6643

From these data calculate the best value for the absolute zero of
temperature on the Celsius scale.

1.7 Investigate some of the technicalities of ballooning using the
perfect gas law. Suppose your balloon has a radius of 3.0 m and
that it is spherical. (a) What amount of H. (in moles) is needed to
inflate it to 1.0 aIm in an ambient temperature of 25°C at sea
level? (b) What mass can the balloon lift at sea level, where the
density of air is 1.22 kg  ? (c) What would be the payload if He
were used instead of Ha?

1.8 The molar mass of a newly synthesized fluorocarbon was
measured in a gas microbalance. This device Consists of a glass bulb
forming one end of a beam, the whole surrounded by a closed
container. The beam is pivoted, and the balance point is attained by
raising the pressure rf gas in the container, so increasing the buoyancy
of the enclosed ould. In one experiment, the balance point was reached

when the fluorocarbon pressure was 327.10 Torr; for the same setting
of the pivot, a balance was reached when CHF 3 (M = 70.014 g mol')
was introduced at 423.22 Ton. A repeat of the experiment with a
different setting of the pivot required a pressure of 293.22 Ton of the
fluorocarbon and 427.22 Ton of the CHF 3. What is the molar mass of
the fluorocarbon? Suggest a molecular formula.

1.9 A constant-volume perfect gas thermometer indicates a pressure
of 50.2 Ton at the triple point temperature of water (273.16 K), (a)
What change of pressure indicates a change of 1.00 K at this
temperature? (b) What pressure indicates a temperature of
00.00°C? (c) What change of pressure indicates a change of

1.00 K at the latter temperature?

1.10 A vessel of volume 22.4 L Contains 2.0 mol H 2 and
1.0 mot N2 at 273.15 K initially. All the H2 reacted with sufficient
N 7 to form NH 3 . Calculate the partial pressures and the total
pressure of the final mixture.

1.11 In an experiment to measure the speed of molecules by a
rotating slotted-disk experiment, the apparatus consisted of five
coaxial 5.0 cm diameter disks separated by 1.0 cm, the slots in
their rims being displaced by 2.0° between neighbours. The relative
intensities, I, of the dctcctccf beam of Kr atoms for two different
temperatures and at a series of rotation rates were as follows:

ii/l-lz	 20	 40	 80	 100	 120

1(40 K)	 0.846 0.513 0.069 0.015 0.002

1(100 K)	 0.592 0.485 0.217 0.119 0.057

Find the distributions of molecular velocities, f(v), at these
temperatures, and check that they conforin to the theoretical
prediction for a one-dimensional system.

1.12 Cars were timed by police radar as they passed in both
directions below a bridge. Their velocities (kilometres per hour,
numbers of ears in parentheses) to the east and west were as follows:
80 E (40), 85 E (62), 90 E (53), 95 E (12), 100 E (2); 80W (18), 85 W
(59), 90 W (60), 100 W (2). What are (a) the mean veloc ,, (b) the
mean speed, (c) the root mean square speed?

1.13 A population consists of people of the following heights (in
metres, numbers of individuals in parentheses): 1.80(1), 1.82(2), 1.84
(4), 1.86 (7), 1.88 (tO), 1.90 (15), 1.92 (9), 1.94 (4), 1.96 (0), 1.98 (1).
What are (a) the mean height, (b) the root mean square height of the
population?

1.14 Calculate the escape velocity (the minimum initial velocity that
will take an object to infinity) from the surface of a planet of radius
R. What are the values for (a) the Earth, R = 6.37 x 106 m,
K = 9.81 in (b) Mars, R = 3.38 x 106 ni, in,.. /mEa,1h = 0.108?
At what temperatures do H 2 , He, and 02 molecules have mean speeds
equal to their escape speeds? What proportion of the molecules have
enough speed to escape when the temperature is (a) 240 K,
(b) 1500 K? Calculations of this kind are very important in
considering the composition of planetary atmospheres.
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1.15 Calculate the molar volume of- chlorine gas at 350 K and
2.30 aim using (a) the perfect gas law and (b) the van der W.ials
equation. Use the answer to (a) to calculate a first approximation to
the correction term for attraction and then use successive
approximations to obtain a numerical answer for part (b).

1.16 At 273 K, measurements on argon gave B = ---21.7 cm 3 mol
and C = 1200 en' mol, where B and C are the second and third
virial coefficients in the expansion of Z in powers of 1/V,,. Assuming
that the perfect gas law holds sufficiently well for the estimation of
the second and third terms of the expansion, calculate the
compression factor of argon at 100 aim and 273 K. From your
result, estimate the molar volume of argon under these conditions.

1.17 Calculate the volume occupied by 1.00 niol N 2 using the van
der Waals equation in the form of a virial expansion at (a) its critical
temperature, (b) its Boyle temperature. Assume that the pressure is
10 aim throughout. At what temperature is the gas most perfect? Use
the following data: Tr = 126.3 K, a 1.408 aim L 2 inol 2,

b 0.0391 Lmol.

1.18 The mass density of water vapour at 327.6 aim and 776.4 K is
1.332x 102 gL. Given that for water T = 647.4 K.
Pr = 218.3 aim, a = 5.536 aim L2 moI 2, It = 0.03049 Lmo1,
and M = 18.02 gmot 1 , calculate (a) the molar volume. Then
calculate the compression factor (b) from the data, (c) from the
virial expansion of the van der Waals equation.

1.19 The critical volume and critical pressure of a certain gas are
160 cm 3 mol 1 and 40 aim, respectively. Estimate the critical
temperature by assuming that the gas obeys the Berthelot equation
of state. Estimate the radii of the gas molecules on the assumption
that they are spheres.

1.20 Estimate the coefficients a and Li in the Dieterici equation of
state from the critical constants of xenon. Calculate the pressure
exerted by 1.0 rnol Xe when it is confined to 1.0 L at 25'C.

Theoretical problems
1.21 The Maxwell distribution of speeds was derived from arguments
about probability, but it can also be derived from the Boltzmann
distribution',see the Introduction. Do so.

1.22 Start from the Maxwell-Boltzmann distribution and derive an
expression for the most probable speed of a gas of molecules at a
temperature T. Go on to demonstrate the validity of the equipartition
conclusion (see the Introduction) that the average translational
kinetic energy of molecules free to move in three dimensions is k!.

1.23 Consider molecules that are confined to move in a plane (a two-
dimensional gas). Calculate the distribution of Speeds and determine
the mean speed of the molecules at a temperature T.

1.24 A specially constructed velocity-selector accepts a beam of
molecules from an oven at a temperature 7' but blocks the passage of
molecules with a speed greater than the mean. What is the mean
speed of the emerging beam, relative to the initial value, treated as a
one-dimensional problem?

1.25 What is the proportion of gas molecules having (a) more than,
(b) less than the root mean square speed? (ci What are the proportions
having speeds greater and smatter than the mean speed?

1.26 Calculate the fractions of molecules in a gas that have a speed
in a range Av at the speed nc relative to those in the same range at r°
itself. This calculation can be used to estimate the fraction of very
energetic molecules (which is important for reactions). Evaluate the
ratio for it = 3 and ,:= 4.

1.27 Show that the van der Waalsequation leads to values of Z <I and
7> I, and identify the conditions for which these values are obtained.

1.28 Express the van der Waats equation of state as a virial expansion
in powers oft / l', and obtain expressions for B and C in terms of the
parameters a and 6. The expansion you will need is

	

(I s) 1 = I +x j	 +••. Measurements on argon gave
B =. -21.7 cm 3 mol - and C = 1200 cine. M01 -2 for the virial
coefficients at 273 K. What are the values of a and Li in the
corresponding van der Waals equation of state?

1.29 A scientist proposed the following equation of state:

	

RI' B	 C

Show that the equation leads to critical behaviour. Find the critical
constants of the gas in terms of B and C and an expression for the
critical compression factor.

1.30 Equations 35 and 36 are expansions in p and I /Vm. respectively.
Find the relation between IJ,C and 8', C.

1.31 The second virial coefficient B' can be obtained from
measurements of the density p of a gas at a series of pressures.
Show that the graph of p/p against p should be a straight line with
slope proportional to fr. Use the data on dirnethyl ether in
Problem 1.5 to find the values of B' and B at 25°C. -

1.32 The equation of state of a certain gas is given by
P RT/V, + (a + hT)/V, where a and Li are constants. Find
(V/ôT),,.

1.33 The following equations of state are occasionally used for
approximate calculations on gases: (gas A) pV = RT(1 + b/V),
(gas B) p(V,,, - 1,) = RT. Assuming that there were gases that
actually obeyed these equations of state, would it be possible to
liquefy either gas A or B? Would they have a critical temperature?
Explain your answer.

1.34 Derive an expression for the compression factor of a gas that
obeys the equation of state p(V - nb) aRT, where Li and R are
constants. If the pressure and temperature are such that Vm = lob,
what is the numerical value of the compression factor?

1.35 The barometric formula

relates the pressure of a gas of molar mass M at an altitude h to its
pressure Pu at sea level. Derive this relation by showing that the
change in pressure dp for an infinitesimal change in altitude dh where
the density is p is dp -.pgdh. Remember that p depends on the
pressure. Evaluate the pressure difference between the top and
bottom of (a) a laboratory vessel of height 15 cm, and (b) the World
Trade Center, 1350 ft. Ignore temperature variations.

5-A
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Additional problems supplied by Carmen Giunla
and Charles Trapp
1.36 Amedeo Avogadro (Journal de Physique (1811)) noted that two
volumes of hydrogen combine with one volume of oxygen to form
two volumes of water vapour. He also gave the density of water
vapour relative to that of air as 0.625 and that of hydrogen as 0.0732.
Use this information and Avogadro's principle to compute the molar
masses of water vapour and oxygen relative to that of hydrogen.

1.37 The discovery of the element argon by Lord Rayleigh and Sir
William Ramsay had its origins in Rayleigh's measurements of the
density of nitrogen with an eye toward accurate determination of its
molar mass. Rayleigh prepared some samples of nitrogen by chemical
reaction of nitrogen-containing compounds: under his standard
conditions, a glass globe filled with this chemical nitrogen had a
mass of 2.2990 g. He prepared other samples by removing oxygen,
carbon dioxide, and water vapour from atmospheric air: under the
same conditions, this 'atmospheric nitrogen had a mass of 2.3102 g
(Lord Rayleigh. Royal Institution Proceedings 14, 524 (895)), With
the hindsight of knowing accurate values for the molar masses of
nitrogen and argon, compute the mole fraction of argon in the latter
sample on the assumption that the former was pure nitrogen and the
latter a mixture of nitrogen and argon.

1.38 A substance as elementary and well known as argon still
receives research attention. Stewart and Jacobsen have published a
review of thermodynamic properties of argon (R.B. Stewart and
R.T. Jacobsen, J. Phys. Chem. Ref. Data 18, 639 (1989)) which
included the following 300 K isotherm.

p/MPa	 0.4000 0.5000 0.6000 0.8000	 1.000
Vm/(Lmol') 6.2208 4.9736 4.1423	 3.1031	 2.4795
p/MPa	 1.500 2.000 2.500	 3.000	 4.000
Vm/(Lmol 1 )	 1.6483 1.2328 0.98357 0.81746 0.60998

(a) Compute the second virial coefficient. B, at this temperature. (b) If
you have access to nonlinear curve-fitting software, compute the
third virial coefficient, C, at this temperature.

1.39 Ozone is a trace atmospheric gas which plays an important role
in screening the Earth from harmful ultraviolet light, and the
abundance of ozone is commonly reported in Dobson units. One
Dobson unit is the thickness, in thousandths of a centimetre, of a
column of gas if it were collected as a pure gas at 1.00 atm and 0CC.
What amount of 03 (in moles) is found in a column of atmosphere
with a cross-sectional area of 1.00 dm2 if the abundance is 250
Dobson units (a typical mid-latitude value)? In the seasonal Antarctic
ozone hole, the column abundance drops below 100 Dobson units:
how many moles of ozone are found in such a column of air above a
1.00 dm2 area? Most atmospheric ozone is found between 10 and

50 km above the surface of the Earth. If that ozone is spread
uniformly through this portion of the atmosphere, what is the
average molar concentration corresponding to (a) 250 Dobson units,
(b) 100 Dobson units?

1.40 Chlorofluorocarbons such as CCI 3 F and CCl 2 F2 have been linked
to ozone depletion in Antarctica. As of 1994, these gases were found
in quantities of 261 and 509 parts per trillion (1012) by volume (World
Resources Institute, World Resources (1996-97)). Compute the molar
concentration of these gases under conditions typical of (a) the mid-
latitude troposphere (10 CC and 1.0 atm) and (b) the Antarctic
stratosphere (200 K and 0.050 atm).

1.41 In the standard model of stellar structure (I. Nicholson, The
sun, Rand McNally, New York (1982)), the interior of the Sun is
thought to consist of 36 per cent H and 64 per cent He by mass, at a
density of 158 gcm 3 . Both atoms are completely ionized. the
approximate dimensions ol the nuclei can be calculated from the
formula 1.4)< I0 5A 113 m, where A is the mass number.
The size of the free electron, r1 5zz 10- m, is negligible compared to
the size of the nuclei. (a) Calculate the excluded volume in 1.0 cm 3 of
the stellar interior and on that basis decide upon the applicability
of the perfect gas low to this system. (b) The standard model suggests
that the pressure in the stellar interior is 2.5 x 10 11 atm. Calculate the
temperature of the Sun's interior based on the perfect gas model. The
generally accepted standard model value is 1.6 x iO K. (c) Would a
van der Waals type of equation (with a = 0) give a better value for T?

1.42 Problem 1.7 on ballooning is most readily solved (see the
Solutions manual) with the use of Archimedes' principle, which states
that the lifting force is equal to the difference between the weight of
the displaced air and the weight of the balloon. Prove Archimedes'
principle for the atmosphere from the barometric formula (see
Problem 1.35). Hint. Assume a simple shape for the balloon, perhaps a
right circular cylinder of cross-sectional area A and height h.

1.43 The composition of the atmosphere is roughly 80 per cent
nitrogen and 20 per cent oxygen by mass. At what height above the
surface of the Earth would the atmosphere become 90 per cent
nitrogen and 10 per cent oxygen by mass? Assume that the
temperature of the atmosphere is constant at 25 CC. What is the
pressure of the atmosphere at that height?

1.44 Show that the compression factor, Z, of a van der Woals gas can
be expressed as Z = V/(V -. - 27/64TV, where V,=
pV,,/RT is the 'pseudoreduced volume', or alternatively as the
solution of the cubic equation Z3 - {(prI8Tr) + 1}Z2+

(27Pr/64T2 )Z_27P/512T0 Solve this equation for Z for
nitrogen, methane, propane, and ethene at T1 = 1.2 and p1 = 3.0 and
compare to the value given in Fig. 1.27.

5-B



The First Law:
the concepts

This chap let inlrorh,ces some of the basic concepts of lhrrmodynarnics. it concentrates on
the conservation of energy—the experimental observation that energy can be neither
created nor destroyed—and shows how the principle of conservation of energy can be used
to assess the energy changes that accompany physical and chemical processes. Much of this
chapter examines the means by which a system can exchange energy with its surroundings
in terms of the work it may do or the heal that it moy.produce. The target concept of the
chapter is entholpy, which is a very useful book-keeping property for keeping track of the
heat output for requirements) of physical processes and chemical reactions at constant
pressure.

The release of energy can be used to provide heat when a fuel burns in a furnace, to produce
mechanical work when a fuel burns in an engine, and to produce electrical work when a
chemical reaction pumps electrons through a circuit. In chemistry, we encounter reactions
that can be harnessed to provide heat and work, reactions that liberate energy which is
squandered (often to the detriment of the environment) but which give products we require,
and reactions that constitute the processes of life, Thermodynamics, the study of the
transformations of energy, enables us to discuss all these matters quantitatively and to make
useful predictions.

The basic concepts
For the purposes of physical chemistry, the universe is divided into two parts, the system and
its surroundings. The system is the part of the world in which we have a special interest It
may be a reaction vessel, an engine, an electrochemical cell, a biological cell, and so on. The
surroundings are where we make our measurements. The type of system depends on the
characteristics of the boundary that divides it from the surroundings (Fig. 1.1). If matter can
be transferred through the boundary between the system and its surroundings the system is
classified as open. If matter cannot pass through the boundary the system is classified as

The basic conccpt

2.1	 Work, heat, and energy

2.2	 The First Law

Work and heat

2.3	 Expansion work
2.4	 Heat transactions

2.5	 Enthalpy

2.6	 Adiabatic changes

Thermochemistry

2.7	 Standard enthalpy changes

2.8
	

Standard enthalpies of
formation

2.9 The temperature dependence
of reaction enthalpies

Checklist of key ideas

Further reading

Exercises

Problems
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Surroundings

urroundi

	
'Matter

ft

(a) Open
	 (b), Closed	 (c) Isolated

1.1 (a) An open system can exchange matter and energy with its surroundings. (h) A closed system can
exchange energy with Is surroundings. but it cannot exchange matter. (ci An isolated system can
exchange neither energy nor matter with Is surroundings.

closed. Both open and closed systems can exchange energy with their surroundings. For

example, a closed system can expand and thereby raise a weight in the surroundings, and it
may also transfer energy to them if they are at a lower temperature. An isolated system is a
closed system that has neither mechanical nor thermal contact with its surroundings.

Diathermic
wall

Energy

(a) as heat

Adiabatic
I wall

1.
I

(b)

2.2 (a) A diathermic system is one that allows
energy to escape as heat through its boundary if
there is a difference in temperature between the
system and its surroundings. (b) An adiabatic system
is one that does not permit the passage of energy
as heat through its boundary even if there is a
temperature difference between the system and its
surroundings.

2.1 Work, heat, and energy

The fundamental physical property in thermodynamics is work: work is done when an object
is moved against an opposing force. It is equivalent to a change in the height of a weight
somewhere in the surroundings. An example of doing work is the expansion of a gas that
pushes out a piston and raises a weight. A chemical reaction that drives an electric current
through a resistance also does work, because the same current could be driven through a
motor and used to raise a weight.

The energy of a system is its capacity to do work. When work is done on an otherwise
isolated system (for instance, by compressing a gas or winding a spring), its capacity to do
work is increased, so the energy of the system is increased. When the system does work
(when the piston moves out or the spring unwinds), its energy is reduced because it can do
less work than before.

Experiments have shown that the energy of a system (its capacity to do work) may be
changed by means other than work itself. When the energy of a system changes as a result of
a temperature dlffFrence between it and its surroundings we say that energy has been
transferred as heat. When a heater is immersed in a beaker of water (the system), the
Capacity of the system to do work increases because hot water can be used to do more work
than cold water. Not all boundaries permit the transfer of energy even though there is a
temperature difference between the system and its surroundings. A boundary that does
permit energy transfer as heat (such as steel and glass) is called diathermic. A boundary that
does not permit energy transfer as heat is called adiabatic (Fig. 2.2).

A process that releases energy as heat is called exothermic. All combustion reactions are
exothermic. Processes that absorb energy as heat are called endothermic, An example of an
endothermic process is the vaporization of water. An endothermic process in a diathermic
container results in energy flowing into the system as heat. An exothermic process in a
similar diathermic container results in a release of energy as heat into the surroundings.
When an endothermic process takes place in an adiabatic container, it results in a lowering
of temperature of the system; an exothermic "proccss results in a rise of temperature. These
features are summarized in Fig. 2.3.
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In molecular terms, heat is the transfer of energy that makes use of chaotic molecular
motion. the chaotic motion of molecules is called thermal motion. The thermal motion of
the molecules in the hot surroundings stimulates the molecules in the cooler system to move
more vigorously and, as a result, the energy of the system is increased. When a system heats
its surroundings, molecules of the. 5system stimulate the thermal motion of the molecules in
the surroundings (Fig. 2.4).

In contrast, work is the transfer of energy that makes use of organized motion (Fig. 2.5).
When a weight is raised or lowered, its atoms move in an organized way. The atoms in a
spring move in an orderly way when it is wound; the electrons in an electric current move in
an orderly direction when it flows. When a system does work it causes atoms or electrons in
its surroundings to move in an organized way. Likewise, when work is done on a system,
molecules in the surroundings are used to transfer energy to it in an organized way, as the
atoms in a weight are lowered or a current of electrons is passed.

The distinction between work and heat is made in the surroundings. The fact that a
falling weight may stimulate thermal motion in the system is irrelevant to the distinction
öetween heat and work: work is identified as energy transfer making use of the organized
motion of atoms in the surroundings, and heat is identified as energy transfer making use of
thermal motion in the surroundings. In the compression of a gas, for instance, work is done
as the particles of the compressing weight descend in an orderly way, but the effect of the
Incoming piston is to accelerate the gas molecules to higher average speeds. Because
collisions between mocules quickly randomize their directions, the orderly motion of the
atoms of the weight is in effect stimulating thermal motion in the gas, We observe the
falling weight, the orderly descent of its atoms, and report that work is being done even
though it is stimulating thermal motion.

Surroundings	 uninauI•i

4.

Errrqy	 3ergy1.	 /.Energy /	 Ererciy4'is.

'-	 .•4

(a)	 (b),

Isothermal

Hea
	 Heat

(C)	 (d)

23 (a) When an endothermic process occurs in an
adiabatic system, the temperature falls; (b) if the
process is esathernsic, then the temperature rises.
(c) When an endothermic process occurs in a
diathermic container, energy enters as heat from
the surroundings, and the system remains at the
same temperature; (d) if the process is exothermic,
then energy leaves as heat and the process is
isothermal.

System	 System

When energy is transferred to the surroundings
as heat, the transfer stimulates disordered motion of
the atoms in the surroundings. Transfer of energy
from the surroundings to the system makes use of
disordered motion (thermal motion) in the
surroundings.

?t, When a system does work, it stimulates orderly
motion in the surroundings. For instance, the
atoms shown here may be part of a weight that is
being raised. The ordered motion of the atoms in a
falling weight does work on the system.
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2.2 The First Law
In thermodynamics, the total energy of a system is called its internal energy, U. The internal
energy is the total kinetic and potential energy of the molecules composing the system. We
denote by AU the change in internal energy when a system changes from an initial state i
with internal energy U1 to a final state I of internal energy U:

lsU=U1 — U,	 .	 [1]

The internal energy is a state function in the sense that its value depends only on the
current state of the system and is independent of how that state has been prepared. In other
words, it is a function of the properties that determine the current state of the system.
Changing any one of the state variables (such as the pressure) results in a change in internal
energy. The internal energy is an extensive property.

Internal energy, heat, and work are all measured in the same units, the joule (J). Changes
in molar internal energy are typically expressed in kilojoules per mole (kJmoL').

Molecular interpretation 2.2
Consider the case of a monatomic perfect gas at a temperature T. We know that the kinetic
energy of one atom, of mass m, is

EK = I71V + lim2 +

According to the equipartition theorem (see the Introduction), the average energy of each
term is 21 kT, where k is the Boltzmann constant. Therefore, the mean energy of the atoms is
kT and the total eergy of the gas (there being no potential energy contribution) is I NU,

or -' nRT. We can therefore write

Urn = Urn(0) + IRT

where Urn(0) is the molar internal energy at T = 0, when all translational motion has ceased
and the sole contribution to the internal energy arises from the internal structure of the
atoms. This equation shows that the internal energy of a perfect gas increases linearly with
temperature.

When the gas consists of polyatomic molecules that can rotate around three axes as well
as translate in three dimensions, there is an additional contribution ofRT arising from the
kinetic energy of rotation. In this case, therefore,

Urn = Urn(0) + 3RT

The internal energy now increases twice as rapidly with temperature compared with the
monatomic gas.

Energy is also taken up by the vibrations of molecules. However, these modes cannot be
treated classically because the separations between their energy levels are so wide. The
expression for the mean energy of an oscillator of frequency v is worked out by using the
quantum mechanical expression for the energy levels (which form a uniform ladder like that
illustrated in Fig. 0.7) and the Boltzmann distribution. The resulting expression (which is
derived in Section 19.1b) is

U	
NAhV

rn = Jrn(0) + ch^IkT -

It may be verified that the second term on the right increases with temperature and
approaches RT, the classical expression, when kT ' hi'.

The internal energy of interacting molecules in condensed phases also has a contribution
from the potential energy of their interaction. However, no simple expressions can be
written down in general. Nevertheless, the crucial molecular point is that, as the
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temperature of a system is raised, the internal energy increases as the various modes of
motion become more highly excited. 	 -

(a) The conservation of energy
It has been found experimentally that the internal energy of a system may be changed either
by doing work on the system or by heating it. Whereas we may know how the energy
transfer has occurred (because we can see if a weight has been raised or lowered in the
surroundings, indicating transfer of energy by doing work, or if ice has melted in the
surroundings, indicating transfer of energy as heat), the system is blind to the mode
employed. Heat and work are equivalent ways of changing a system's internal energy. A
system is like a bank: it accepts deposits in either currency, but stores its reserves as internal
energy. It is also found experimentally that, if a system is isolated from its surroundings,
then no change in internal energy takes place. We cannot use a system to do work, leave it
isolated for a month, and then come back expecting to finding it restored to its original state
and ready to do the same work again. The evidence for this property is that no perpetual
motion machine of the first kind (a machine that does work without consuming fuel or some
other source of energy) has ever been built

These remarks may be summarized as follows. If we write w for the work done on a

system, q for the energy transferred as heat to a system, and AU for the resulting change in

internal energy, then it follows that

4M1=q+w	 (2)

Equation 2 is the mathematical statement of the First Law of thermodynamics, for it
summarizes the equivalence of heat and work and the fact that the internal energy is

constant in an isolated system (for which q = 0 and w = 0). The equation states that the

change in internal energy of a closed system is equal to the energy that passes through its
boundary as heat or work. It employs the 'acquisitive convention', in which w>0 or q>0 if

cnergys transferred to the system as work or heat and w <0 or q <0 if energy is lost from

the system as work or heat.

Illustration
If an electric motor produced 15 kJ of energy each second as mechanical work and lost 2 Id
as heat to the surroundings, then the change in the internal energy of the motor each

second is

AU = —2 kJ - 15 LI = —17 Id

Suppose that, when a spring was wound, 100 J ofork was done on it but 15 J escaped to
the surroundings as heat. The change in internal energy of the spring was

AU=+IOOkJ — I5kJ=+85kJ

(b) The formal statement of the First Law
The expression of the First Law that we have given is adequate for most purposes in
thermodynamics. However, there are several unsatisfactory features about it, such as how
we define and measure 'heat'. This section gives a more sophisticated version of the law, and
shows how eqn 2 can be put on a firmer foundation. As the remainder of the text does not
depend on this material, it is possible to omit it and go immediately to the following section

('Work and heat').



26 It is found that the same quantity of work
must be done on an adiabatic system to achieve the
same change of state even though different means
of achieving that work may be used. This path
independence implies the existence of a state
function, the internal energy. The change in internal
energy is like the change in altitude when climbing
a mountain: its value is independent of path.
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We begin by pretending that we do not know what we mean by energy. We pretend that
we know only what is meant by work, because we can observe a weight being raised or
lowered in the surroundings. We also know how to measure work by noting the height
through which the weight is raised. Throughout this section, work will be the fundamental,
measurable quantity, and we define energy, heat, and the First Law in terms of work alone.
We shall employ terms that have been established by the Zeroth Law of thermodynamics
(Section 1. 1), namely, state and temperature and the concepts of adiabatic and diathermic
walls.

In an adiabatic system of a particular composition, it is known experimentally that the
same increase in temperature is brought about by the same quantity of any kind of work we
do on the system. Thus, if I kJ of mechanical work is done on the system (by stirring it with
rotating paddles, for instance), or I U of electrical work is done (by passing an electric
current through a heater), and so on, then the same rise in temperature is produced. The
following statement of the First Law of thermodynamics is a summary of a large number of
observations of this kind:

The work needed to change an adiabatic system from one specified state to
another specified state is the same however the work is done.

This form of the law looks completely different from the form we gave before, but we shall
now see how it implies cqn 2.

Suppose we do work w,, on an adiabatic system to change it from an initial state ito a
final state 1. The work may be of any kind (mechanical or electrical) and may take the system
through different intermediate states (different temperatures and pressures, for instance).
We might tin ignorance of the First Law) think that we need to label w d with the path and to
write w(mechanical) or w(eIectricaI). However, the First Law tells us that w d is the same
for all paths and depends only on the initial and final states. This conclusion is analogous to
climbing a mountain: the height we must climb between any two points is independent of
the path we take (Fig. 2.6). In mountain climbing we can attach a number, the altitude, A, to
each point on the mountain and express the height, h, of the climb as a difference in
altitudes;

h = A - A 1 M

That is, in mountain climbing, the observation that h is independent of the path taken
implies the existence of the state function A. The First law has exactly the same implication.
The fact that w. is independent of the path implies that to each state of the system we can
attach a value of a quantity—we call it the 'internal energy', U—and express the work as a
difference in internal energies:

Wad = Ut - = AU	 [3]

This equation also shows that we can measure the change in the internal energy of a system
by measuring the work needed to bring about the change in an adiabatic system,

(c) The mechanical definition of heat
Suppose we strip away the thermal insulation around the system and make it diathermic. The
system is now in thermal contact with its surroundings as we drive it from the same initial
state to the same final state. The change in internal energy is the same as before, because U
is a state function, but we might find that the work we must do is not the same as before.
Thus, whereas we might have needed to do 42 U of work when-the system was in an
adiabatic container, to achieve the same change of state we might now have-to do 50 kiof
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work. The difference between the work done in the two cases is defined as the heat absorbed
by the system in the process:

=	 - w	 [4)

In the present case, we would conclude that q = 42 kJ - 50 kJ —8 kJ, and report that
8 kJ of energy had left the system as heat. We see that we now have a purely mechanical
definition of heat in terms of work. We know how to measure work in terms of the height
through which a weight falls, so we now also have a method for measuring heat in terms of
work.

Finally, we can express eqn 4 in a more familiar way. Because we already know that AU is
(by definition) equal to w,,, the expression for the energy transferred to the system as heat is
q = AU - w. However, this expression i5 equivalent to eqn 2, the mathematical form of the
First Law that we saw earlier.

Work and heat
The way can now be opened to powerful methods of calculation by switching attention to
infinitesimal changes of state (such as infinitesimal change in temperature) and infinitesimal
changes in the internal energy dU. Then, if the work done on a system is dw and the energy
supplied to it as heat is dq, in place of eqn 2 we have

dU = dq -I- dw	 (5)

To use eqn 5 we must be able to relate dq and dw to events taking place in the surroundings.

2.3 Expansion work
We begin by discussing expansion work, the work arising from a change in volume. This type
of work includes the work done by a gas as it expands and drives back the atmosphere, Many
chemical reactions result in the generation or consumption of gases (for instance, the

A

	

	
thermal decomposition of calcium carbonate or the combustion of octane), and the
thermodynamic characteristics of a reaction depend on the work it can do.

(a) The general expression for work
The calculation of expansion work starts from the definition used in physics, which states
that the work required to move an object a distance dz against an opposing force of
magnitude F is

dw = —Pd:	 (6]

The negative sign tells us that, when the system moves an object against an opposing force,
the internal energy of the system doing the work will decrease. Now consider the
arrangement shown in Fig. 2.7, in which one wall of a system is a massless, frictionless, rigid,
perfectly fitting piston of area A. If the external pressure is p, the force on the outer face of
the piston is F = When the system expands through a distance dz against an external
pressure P' it follows that the work done is dw = —pCXAdz. But Ad: is the change in
volume, (IV, in the course of the expansion. Therefore, the work done when the system
expands by dV against a pressure p is

dw = —pt, dV	 (7)

To obtain the total work done when the volume changes from V to V1 we integrate this
expression between the initial and final volumes:

w = -
	

Pr, dV	 (8)

2.1 When a piston of area A moves out through a
distance dr, it sweeps out a volume 4V = A dz. 1h
external pressure, p,, is equivalent to a weight
pressing on the piston, and the force opposing
expansion is F = p,,A.
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Table 2.1 Varieties of work'

Type of work	 dw	 Comments	 Unitst

Expansion	 —pdV	 Px is the external pressure 	 Pa
dV is the change in volume

Surface expansion	 y da	 )' 5 the surface tension	 Nm
de is the change in area	 m2

Extension	 fdl	 f is the tension	 N
dl is the change of length 	 m

Electrical	 4) dq	 4) is the electric potential	 V
dq is the change in charge	 C

• In general, the work done on a system can be expressed in the Form dw = —Fdz, where F is a generalized
101cc' and dz is a generalized displacement'.

For work in joules (11. Note that I Nm = I .1 and I VC = I J.

The force acting on the piston, pea' is equivalent to a weight that is raised as the system
expands. If the system is compressed instead, then the same weight is lowered in th
surroundings and eqn 8 can still be used, but now V <V1 . It is important to note that it is
still the external pressure that determines the magnitude of the work.

Other types of work (for example, electrical work) have analogous expressions, with each
one the product of an intensive factor (the pressure, for instance) and an extensive factor
(the change in volume). Some are collected in Table 2.1. For the present we continue with
the work associated with changing the volume, the expansion work, and see what we can
extract from eqn 7.

(b) Free expansion
By free expansion we mean expansion against zero opposing force. It occurs when p =0.
According to eqn 7, dw = 0 for each stage of the expansion. Hence, overall:

w=O	 (9)

That is, no work is done when a system expands freely. Expansion of this kind occurs when a
system expands into a vacuum.

(c) Expansion against constant pressure
Now suppose that the external pressure is constant throughout the expansion. For example,
the piston may be pressed on by the atmosphere, which exertsThe same pressure throughout
the expansion. A chemical example of this condition is the elpansion of a gas formed in a
chemical reaction. Equation 8 may now be evaluated by taking the constantp 5 outside the
integral:

r V1

= —Pe.	 dV = -p 5 (V - V1)
V.

Therefore, if we write the change in volume as LW = V -

W = —p EsV
	

(10)

This result is illustrated graphically in Fig. 2.8, which makes use of the fact that an integral
can be interpreted as an area.' ihe magnitude of w, which is denoted 1wi, is equal to the area
beneath the horizontal line at p = p lying between the initial and final volumes. A p V-
graph used to compute expansion work is called an indicator diagram; James Watt first used
one to indicate aspects of the operation of his steam engine.

1	 Speritcally. the value ol the integral rf() do is equal tO the area under the graph of f(x) between a w and a

CL

0

0
	 Area

CL

V1	! Volume. V

iM

I

2.8 The work done by a gas when it expands
against a constant external pressure. p, is equal to
the shaded areain this example of an indicator
diagram.
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(d) Reversible expansion
A reversible change in thermodynamics is a change that can be reversed by an infinitesimal
modification of a variable. The key word 'infinitesimal sharpens the everyday meaning of the
word reversible' as something that can change direction. We say that a system is in
equilibrium with its surroundings if an infinitesimal change in the conditions in opposite
directions results in opposite changes in its state. One example of reversibility that we have
encountered already is the thermal equilibrium of two systems with the same temperature.
The transfer of energy as heat between the two is reversible because, if the temperature of
either system is lowered infinitesimally, then energy flows into the system with the lower
temperature. If the temperature of either system at thermal equilibrium is raised
infinitesimally, then energy flows out of the hotter system.

Suppose a gas is confined by a piston and that the external pressure, p, is set equal to
the pressure, p, of the confined gas. Such a system is in mechanical equilibrium with its
surroundings (as illustrated in Section 1.1) because an infinitesimal change in the external
pressure in either direction causes changes in volume in opposite directions. If the external
pressure is reduced infinitesimally, then the gas expands slightly. If the external pressure is
increased infinitesimally, then the gas contracts slightly. In either case the change is
reversible in the thermodynamic sense. If, on the other hand, the external pressure differs
measurably from the internal pressure, then changing p infinitesimally will not decrease it
below the pressure of the gas and so will not change the direction of the process. Such a
system is not in mechanical equilibrium with its surroundings and the expansion is
thermodynamically irreversible.

To achieve reversible expansion we set p equal top at each stage of the expansion. In
practice, this equalization could be achieved by gradually removing weights from the piston
so that the downward force due to the weights always matched the changing upward force
due to the pressure of the gas. When we set p = p. eqn 7 becomes

dw = —p dV = —pdV	 (1 l)

(Equations valid only for reversible processes are labelled with a subscript 'rev'.) Although
the pressure inside the system appears in this expression for the work, it does so only because
p has been set equal top to ensure reversibility. The total work of reversible expansion is
therefore

V

W	

(r

=_J pdV	 (12)vi
The integral can be evaluated once we know how the pressure of the confined gas depends
on its volume. Equation 12 is the link with the material covered in Chapter 1 for, if we know
the equation of state of the gas, then we can express p in terms of V and evaluate the
integral.

(e) Isothermal reversible expansion
Consider the isothermal, reversible expansion of a perfect gas. The expansion is made
isothermal by keeping the system in thermal contact with its surroundings (which may be a
constant-temperature bath). Because the equation of state is pV = nRT, we know that at
each stage p = giRT/V, with V the volume at that stage of the expansion. The temperature
T is constant in an isothermal expansion, so (together with a and R) it may be taken outside
the integral. It follows that the work of reversible isothermal expansion of a perfect gas from
Vi to V1 at a temperature T is

w = _n	
V dV

RT r -- = —nRT In (.J)	 (13)IV
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When the final volume is greater than the initial volume, as in an expansion, the logarithm in
cqn 13 is positive and hence w<0. In this case, the system has done work on the
surroundings and the internal energy of the system has decreased as a result of the work it
has done. The equation also shows that more work is done for a given change of volume
when the temperature is increased. The greater pressure of the confined gas then needs a
higher opposing pressure to ensure reversibility.

The result of the calculation can be expressd as an indicator diagram, for the magnitude
of the work done is equal to the area under the isotherm p = nRT/V (Fig. 2.9).
Superimposed on the diagram is the rectangular area obtained for irreversible expansion
against constant external pressure fixed at the same final value as that reached in the
reversible expansion. More work is obtained when the expansion is reversible (the area is
greater) because matching the external pressure to the internal pressure at each stage of the
process ensures that none of the system's pushing power is wasted. We cannot obtain more
work than for the reversible process because increasing the external pressure even
infinitesimally at any stage results in compression. We may infer from this discussion that,
because some pushing power is wasted when p>p, the maximum work available from a
system operating between specified initial and final states and passing along a specified
path is obtained when the change fakes place reversibly.

We have introduced the connection between reversibility and maximum work for the
special case of a perfect gas undergoing expansion. Later (in Section 4.6b) we shall see that
it applies to all substances and to all kinds of work.

1x;iinplc 2,1	 ':lrti l ; I!ull Flit' work III q.r production

Calculate the work done when 50 g of iron reacts with hydrochloric acid in (a) a closed
vessel of fixed volume, (b) an open beaker at 25°C.

lvl'thnd We need to judge the magnitude of the volume change, and then, to decide how
the process occurs. If there is no change in volume, there is no expansion work however the
process takes place. If the system expands against a constant external pressure, the work can
be calculated from eqn 10. A general feature of pro!'esses in which a condensed phase
changes into a gas is that the volume of the former may usually be neglected relative to that
of the gas it forms.

Airwcr In (a) the volume cannot change, so no work is done and w = 0. In (b) the gas drives
back the atmosphere and therefore w = PeX LtV. We can neglect the initial volume
because the final volume (after the production of gas) is so much larger and
AV = V1 - V V1 = iiRT1p55 , where it is the amount of H 2 produced. Therefore,

nRT
W —pLsV -P x - —,zRT

flex

Because the reaction is

Fe(s) + 2HCI(aq) —* FeCl 2 (aq) + 1-12(g)

we know that I mol H 2 is generated when I mol Fe is consumed, and n can be taken as the
amount of Fe atoms that react. Because the molar mass of Fe is 55.85 gmol" 1 , it follows
that

50 g
w — _______

55.85 grnol	
(8.3145 JK' mol) x (298.15 K)

— 2.2 kJ

The system (the reaction mixture) does 2.2 U of work driving back the atmosphere.

Vi	 Volume,V	 'I.

2.') The work done by a perfect gas when it
expands reversibly and isothermally is equal to the
area under the isotherm p = ,skT/V. The work done
during the irreversible expansion against the same
final pressure is equal to the rectangular area
shown slightly darker. Note that the reversible work
is greater than the irreversible work.
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tO A constant-volume bowls calorimeter. The
'bomb' is the central vessel, which is massive
enough to withstand high pressures. The calorimeter
(for which the heat capacity must be known) is the
entire assembly shown here. To ensure adiabaticity,
the calorimeter is immersed in a water bath with a
temperature continuously readjusted to that of the
calorimeter at each stage of the ((iflibUStiOn.
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(fIIIIou'ul Note that (for this perfect gas system) the external pressure does not affect the
final result: the lower the pressure the larger the volume occupied by the gas, so the effects
cancel.

sll l'st LT Calculate the expansion work done when 50 g of water is electrolysed under
constant pressure at 25°C.

[—lOkJ]

2.4 Heat t t'' r'.i't ti, ti
In general, the change in internal energy of a system is

dU = dq + dw,, p + dt4'
	 (14)

where dw, is work in addition (c for extra) to the expansion work, For instance, dw.
might be the electrical work of driving a current through a circuit. A system kept at constant
volume can do no expansion work, so dw,, p = 0. If the system is also incapable of doing any
other kind of work (if it is not, for instance, an electrochemical cell connected to an electric
motor), then dw, = 0 too. Under these circumstances:

dU = dq	 (at constant volume, no additional work)	 (15)

We express this relation by writing dU = eli/v, where the subscript implies a change at
constant volume. For a measurable change,

lsU=qy	 (16)

It follows that,. by measuring the energy supplied to a constant-volume system as heat
(q>0) or obtained from it as heat (q <0) when it undergoes a change of state, we are in fact
measuring the change in itsits internal energy.

(a) Calorimetry
The most common device for measuring AU is the adiabatic bomb calorimeter (Fig. 2.10).
The process we wish to study—which may be a chemical reaction—is initiated inside a
constant-volume container, the bomb. The bomb is immersed in a stirred water bath, and the
whole device is the calorimeter. The calorimeter is also immersed in an outer water bath. The
water in the calorimeter and that of the outer bath are both monitored and adjusted to
the same temperature. This arrangement ensures that there is no net loss of heat from the
calorimeter to the surroundings (the bath) and hence that the calorimeter is adiabatic.

The change in temperature, \T, of the calorimeter is proportional to the heat that the
reaction releases or absorbs. Therefore, by measuring AT we can determine q,, and hence
find AU. The conversion of AT to q5 is best achieved by calibrating the calorimeter using a
process of known energy output and determining the calorimeter constant, the constant C
in the relation

q=CAT	 (17)

The calorimeter constant may be measured electrically by passing a current,!, from a source
of known potential, V. through a heater for a known period of time, I:

q=!Vi	 (18)

Alternatively, C may be determined by burning a known mass of substance (benzoic acid is
often used) that has a known heat output. With C known, it is simple to interpret an
observed temperature rise as a release of heat.
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Temperature, T

2.11 The internal energy of a system increases as
the temperature is raised; this graph shows its
variation as the system is heated at constant
volume. The slope of the graph at any temperature
(as shown by the tangents at A and B) is the heat
capacIty at constant volume at that temperature.
Note that for the system illustrated, the heat
capacity is greater at B than at A.

Volume, V

2.12 The internal energy of a system varies with
volume and temperature, perhaps as shown here by
the surface. The variation of the internal energy
with temperature at one particular constant volume
is illustrated by the curve drawn parallel to T. The
slope of this curve at any point is the partial
derivative (FiU/eT).
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Illustration
If we pass a current of 10.0 A from a 12 V supply for 300 s, then from eqn 18 the energy
supplied as heat is

q (10.0 A) x(12 V) x (300 s) = 3.6 x 104 A V s 36 Id

because I AV s  = I J. If the observed rise in temperature is 5.5 K, then the calorimeter
constant is C = (36 kJ)/(5.5 K) = 6.5 k) K-1.

(b) Heat capacity.
The internal energy of a substance increases when its temperature is raised. The increase
depends on the conditions under which the heating takes place, and for the present we shall
suppose that the sample is confined to a constant volume. For example, it may be a gas in a
container of fixed volume. If the internal energy is plotted against temperature, then a curve
like that in Fig. 2.11 may be obtained. The slope of the curve at any temperature is called the
heat capacity of the system at that temperature. The heat capacity at constant volume is
denoted C, and is defined formally as2

(ÔU\
cv 

=	
119)

The notation is that of a partial derivative. A partial derivative is a slope calculated with all
except one variables held constant? In this case, the internal energy varies with the
temperature and the volume of the sample, but we are interested only in its variation with
the temperature, the volume being held constant (Fig. 2.12).

Heat capacities are extensive properties; 100 g of water, for instance, has 100 times the
heat capacity of 1 g of water (and therefore requires 100 times the heat to bring about the
same rise in temperature). The molar heat capacity at constant volume, C,1 , is the heat
capacity per mole of material, and is an intensive property (all molar quantities are
intensive). Typical values of Cvm for polyatomic gases are close to 25 JK' mol_'. For
certain applications it is useful to know the specific heat capacity (more informally, the
'specific heat') of a substance, which is the heat capacity of the sample divided by the mass,
usually in grams. The specific heat capacity of water at room temperature is close to
4 JK g. In general, heat capacities depend on the temperature and decrease at low
temperatures. However, over small ranges of temperature at and above room temperature,
the variation is quite small and for approximate calculations heat capacities can be treated
as almost independent of temperature.

Molecular interpretation 2.3

The heat capacity of a monatomic perfect gas can be calculated by inserting the expression
for the internal energy derived in Molecular interpretation 2.2. There we saw that
Urn = U. (0)+ 2 RT, so from eqn 19

Cvm(1rn)R

It the System can change 
its compsnàtion, it is "cessary to distinguish between CqU.I4l inn and fixed-composition values of Cr.

AN apçlicatism in this chapter refer to a single substance, so this complication can be ignored.

Po,tI derivatives are reviewed in Further information I.
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The numerical value is 12.47 JK 'mol. Similarly, for a gas composed of nonlinear
polyatomic molecules

Cm = 3R	 (20)

or 24.94 J K' mol t . These values are both independent of temperature.
The heat capacity arising from vibration is obtained by evaluating the derivative of the

expression derived using quantum mechanics, and for a vibrational frequency v is

kT(L")
Cym = Rf2 	'	 1 — e_RT	

(21)

The factor f = 0 at T 0 and f I when kT ' hi.'. That is, the contribution of the
vibration of a molecule to the molar heat capacity is zero at T = 0 and climbs towards its
classical value (R) as the temperature is raised. Physically, at low temperatures the gap
between the energy levels is so great that the vibrations cannot be excited, so energy cannot
be absorbed. As the temperature is raised, more and more energy levels become accessible,\
and the molecule begins to behave as though its vibrations were not quantized.

The heat capacity can be used to relate a change in internal energy to a change in
temperature of a constant-volume system. It follows from eqn 19 that

dU C, dT	 (at constant volume)	 (22a)

That is, an infinitesimal change in temperature brings about in infinitesimal change in
internal energy, and the constant of proportionality is the heat capacity at constant volume.
If the heat capacity is independent of temperature over the range of temperatures of
interest, a measurable change of temperature, AT, brings about a measurable increase in
internal energy, AU, where

AU = C5, 1sT	 (at constant volume)	 (22b)

Because a change in internal energy can be identified with the heat supplied at constant
volume (eqn 16), the last equation can be written

qv = C,LsT	 (22c)

This relation provides a simple way of measuring the heat capacity of a sample: a measured
quantity of heat is supplied to the sample (electrically, for example), and the resulting
increase in temperature is monIored. The ratio of the heat supplied to the temperature rise
it causes is the heat capacity of the sample.

A large heat capacity implie that. for a given quantity of heat, there will be only a small
increase in temperature (the siiple has a large capacity for heat). An infinite heat capacity
implies that there will be no ircrease in temperature however much heat is supplied. At a
phase transition (such as at thrt0ilit19 point of water), the temperature of a substance does
not rise as heat is supplied ( the energy is used to drive the endothermic phase transition, in
this case to vaporize the w iter, rather than to increase its temperature), so, at the
temperature of a phase transi , the heat capacity of a sample is infinite. The properties of
heat capacities close to phasrP5itions are treated more fully in Section 6.7.

2.5 Enthalpy
2.1l When a system is subjected to constant 	 The change in internal energ'5 not equal to the heat supplied when the system is free to
pressure and is free to change its volume, some of 	 change its volume. Under 	 circu mstances some of the energy supplied as heat to the
the energy supplied as heal may escape back into
the surroundings as work In such a case, the	 system is returned to the sur din1 g5 as expansion work (Fig.. 2.13), so dU is less than dq.
change in internal energy is smaller than the energy 	 However, we shall now hOat in this case the heat supplied at constant pressure is equal
supplied as heat, 	 to the change in another ti odyn amie property of the system, the enthalpy, H.
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(a) The definition of enthalpy
The enthalpy is defined as

If = (I ± pV	 [2i

where p is the pressure of the system and V is its volume. Because U, p. and V are all stat
functions, the enthalpy is a state function. As is true of any state function, the change in
enthalpy, All, between any pair of initial and final states is independent of the path between
them.

The change in enthalpy is equal to the heat supplied at constant pressure to a system (so
long as the system does no additional work):

dH = dq	 (at constant pressure, no additional work) 	 (24a)

For a measurable change,

All =
	

(24b)

Justification 2.1

For a general infinitesimal change ih the state of the system, U changes to U + dU, p
changes top + dp, and V changes to V + dv, soil changes from U + pV to

iI+dH=(U+dU)+ (p+dp)(V+dV)
U ± dU + pV + pdV + V dp + dpdV

The last term is the product of two infinitesimally small quantities, and can be neglected.
As a result, after recognizing U +pV = H on the right, we find that H changes to

H+dIi H+dU+pdV+Vdp

and hence that

dli = dU +pijV + Vdp

If we now substitute dU = dq + dw into this expression, we get

dPI

If the system is in 'chanical equilibrium with its surroundings at a pressure p and does
only expansion work we can write dw = —pdV and obtain

dH = (I(J + Vdp

Now we impose the condition that the heating occurs at constant pressure by writing
dp 0. Then

dq	 (at constant pressure, no additional work)

as in eqn 240.

The result expressed qn 24 states that, when a system is subjected to a constant pressure
and only expansion "It can occur, the change in enthalpy is equal to the energy supplied as
heat. For examPle, if v, supply 36 ki of energy through an electric heater immersed in an
open beaker of water hen the enthalpy of the water increases by 36 kJ and we write
All = +36 kJ.

(b) The mea5e ent of an enthalpy change
An enthalpy change	 be measured calorimetrically by monitoring the temperature
change that aCc0mP3 physical or chemical change occurring at constant pressure. For
,a 	 reaction adiabatic name calorimeter may be used to measure AT when a
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Gas, vapour
Oxygen

Products

2.14 A constant-pressure flame calorimeter consists
of this element immersed in a stirred water bath.
Combustion occurs as a known amount of reactant
is passed through to fuel the flame, and the rise in
temperature is monitored.

It

given amount of substance burns in a supply of oxygen (Fig. 2.14). Another route to AH is to
measure the internal energy change by using a bomb calorimeter, and then to convert AU to
Es/i. Because solids and liquids have small molar volumes, for them Pt"m is so small that the
molar enthalpy and molar internal energy are almost identical (I'm = 1'n P1"m Uj.
Consequently, ifa process involves only solids or liquids, the values of All and AL! are almost
identical. Physically, such processes are accompanied by a very small change in volume, the
system does negligible work on the surroundings when the process occurs, so the energy
supplied as heat stays entirely within the system.

t.xstttpl	 2.2	 isri.,l iii'	 \1f	 itid .\i

The internal energy change when 1.0 mol CaCO 3 in the form of calcite converts to
aragonite is +0.21 kJ. Calculate the difference between the enthalpy change and the
change in internal energy when the pressure is 1.0 bar given that the densities of the solids
are 2.71 gcm 1 and 2.93 gcm' 3 . respectively.

itclliiiil the starting point for the calculation is the relation between the enthalpy of a
substance and its internal energy (eqn 23). The difference between the two quantities can be
expressed in terms of the pressure and the difference of their molar volumes, and the latter
can be calculated from their molar masses, M, and their mass densities, p. by using

P =

Aitw,rr The change in enthalpy when the transformation occurs is

AH = H(aragonite) - H(calcite)

= {U(a) + pV(a)} - {U(c) +pV(c)}
=AU±p{V(a)-V(c)} =EsU+pAV

The volume of 1.0 mol CaCO 3 (100 g) as aragonite is 34 cm 3 , and that of 1.0 moll CaCO 3 as
calcite is 37 cm'. Therefore,

pAV = (1.0 x 1 5 Pa) x (34-37) x 10-6 113 = -0.3 J

(because I Pa mt	 I I). Hence,

AH - AU= -0.3J

which is only 0.1 per cent of the value of AU.

l'intrittnl It is usually justifiable to ignore the difference between the enthalpy and
internal energy of condensed phases, except at very high pressures, when pV is no longer
negligible.

Sll-trt 2.? Calculate the difference between AU and AU when 1.0 mol of grey tin
[density 5.75 gem .1) changes to white tin (density 7.31 g cm 3) at 10.0 bar. At 298 K,
AH= +11 U.

[All - AU = -4.4 J]

The enthalpy of a perfect gas is related to its internal energy by using pV = nRT in the
definition of H:

I1=U--pV =U -i aRT

(3—A
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This relation implies that the change of enthalpy in a reaction that produces or consumes
gas is

tiE = All 1- LnRT	 (26)°

where Au g is the change in the amount of gas molecules in the reaction. For example, in the
reaction

2(9)	 u5°2(9) - 2H 2 0(I)	 jj8 = —3 mot

because 3 mol of gas-phase molecules is ieplaced by 2 mot of liquid-phase molecules, and
at 298 K the enthalpy and internal energy changes taking place in the system are related by

A-11 - till = (-3 mot) x RTt - 7.5 kJ

Note that the difference is expressed in kilojoules, not joules as in Example 2.2. The enthalpy
change is smaller than the change in internal energy because, although heat escapes from
the system when the reaction occurs, the system contracts when the liquid is formed, so
energy is restored to it from the surroundings.

ExanaIc 23 Cilculting i chinqc in enthalpy

Water is heated to boiling under a pressure of 1.0 atm. When an electric current of 0.50 A
from a 12 V supply is passed for 3(X) s through a resistance in thermal contact with it, it is
found that 0.798 g of water is vaporized. Calculate the molar internal energy and enthalpy
changes at the boiling point (373.15 K).

Method Because the vaporization occurs at constant pressure, the enthalpy change is equal
to the heat supplied by the heater. Therefore, the strategy is to calculate the heat supplied
from q = lvi), express that as an enthalpy change, and then convert the result to a molar

enthalpy change by division by the amount of 1120 molecules vaporized. To convert from
enthalpy change to internal energy change, we assume that the vapour is a perfect gas and
use eqn 26.

Answer The enthalpy change is

AN = q,, = (0.50 A) x (12 V) x (300 s) = +1.8 U

Because 0.798 g of water is 0.0443 mot H 2 0, the enthalpy of vaporization per mole of H20

is

1.8 kJ
AR 0 = + 443	 = +41 kimor 1

0.0 	 mot

In the process 1-1 2 0(1) -, 4 2 0(g) the change in the amount of gas molecules is

An g = -I- I mot, so

AUm = All,,, - RT +38 kJmol

Cuimrnc,uI The plus sign is added to positive quantities to emphasize that they represent an
increase in internal energy or enthalpy. Notice that the internal energy change is smaller
than the enthalpy change because energy has been used to drive back the surrounding
atmosphere to make room for the vapour.

SclI-test 2.3 The molar enthalpy of vaporization of benzene at its boiling point
(353.25 K) is 30.8 kimoY* What is the molar internal energy change? For how long

Ru—B
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More values are given in the Data section at the end	 composition va lues All applications in this chapter irk, to pure suktiricrs. so this complication ran be ignored
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would the same 12 V source need to supply a 0.50 A current in order to vaporize a 10 g
sample?

[+27.9 kJmol, 6.6x 10 s]

Enthalpy and internal energy changes may also be measured by noncalo rime tric methods
(see Chapters 9 and 10).

(c) The variation of enthalpy with temperature
The enthalpy of a substance increases as its temperature is raised. The relation between the
increase in enthalpy and the increase in temperature depends on the conditions (for
example, constant pressure or constant volume). The most important condition, is constant
pressure, and the slope of a graph of enthalpy against temperature at constant pressure is
called the heat capacity at constant pressure, C,, (Fig. 2.1 5). More formally:

CP 

= ()	
127)

The heat capacity at constant pressure is the analogue of the heat capacity at constant
volume, and is an extensive property. 4 The molar heat capacity at constatt pressure, C,,,,,
is the heat capacity per mole of material; it is an inten5ive property.

The heat capacity at constant pressure is used to relate the change in enthalpy to a
change in temperature. For infinitesimal changes of temperature,

dJ/ = C',, dT	 (at constant pressure) 	 (28a)

If the heat capacity is constant over the range of temperatures of interest, then for a
measurable increase in temperature

MI = C,4T	 (at constant pressure)	 (28b)

Because an increase in enthalpy can be equated with the heat supplied at constant pressure,
the practical form of the latter equation is

q,, = AT	 (29)

Table 2.2 Temperature variation of molar
heat	 capacities, 	 Cp./(J K' mol- t ) =
a + bT + c/T2

C(s,
graphite)

CO2(g)
H20(l)
N2g]

U	 b/(tOaI(i) c/(1.05K2)

16.86 4.77	 —8.54

44.22 8.79	 8.62	 What is the change in molar enthalpy of N 2 when it is heated from 25 C to I (XrC? Use the
75.29 0	 0 heat capacity information in Table 2.2.
28.58 3.77	 —0.50

Temperature, T

2.15 The slope of a graph of the enthalpy of a
system subjected to a constant pressure platted
against temperature is the constant-pressure heat
capacity. The slope of the graph may change with
temperature. in which case the heat capacity varies
with temperature. Thus, the heat capacities at A
and B are different. For gases, the slope of the
graph of enthalpy versus temperature in steeper
than that of the graph of internal energy versus
temperature, and C,,,,, is larger than C.,,,.

This expression shows us how to measure the heat capacity of a sample: a measured quantity
of heat is supplied under conditions of constant pressure (as in a sample exposed to the
atmosphere and free to expand), and the temperature rise is monitored.

The variation of heat capacity with temperature can sometimes be ignored if the
temperature range is small; this approximation is highly accurate for a monatomic perfect
gas (one of the noble gases). However, when it is necessary to txt. the variation into
account, a convenient approximate empirical expression is

C,,m 0 + bT + ,	 (30)

The empirical parameters a, h, and c are independent of temperature. Some typical values
are given in Table 2.2.

Example 2.4 Lv,iluiling an incruase in cnthalpy with tcmpertlurc

0.

C
w
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The treat capacity of N 1 changes with temperature, so we cannot use cqri 28b
(which assumes that the treat capacity of the substance is constant). Therefore, we must use
cqn 28a, substitute eqn 30 for the temperature dependence of the heat capacity, and
integrate the resulting expression from 25°C to tOti°C.

Aiiw: for convenience, we denote the two temperatures T, (2911 K) and T2 (373 K). The
integrals we require are

	

(f// - f (a ± hT i	 dT

Notice how the limits of integration correspond on each side of the equation: the
integration over II on the left ranges from 11(T 1 ), the value of// at T, up to H(T), the
value of  at T, while on the right the integration over the temperature ranges from to
1 1 . Now we use the integrals

dc=	 xdr=c/	 /	 f_c=__
to obtain

fl(i,) f/() = a (i'- T,) + b(7' - T) - 
(T2 T) --

Substitution of the numerical data results in

11(373 K) = 1/2911 K) - 220 kirnoF'

If we had assumed a constant heat capacity of 29.14 J K - ' mol ' (the value given by
eqn 30 at 25'('),.we would have found that the two enthalpies differed by 2.19 kimol"1.

Self-test 2.4 At very low temperatures the heat capacity of a solid is proportional to P
and we can write C,) - oP. What is the change in enthalpy of such a substance when it is
heated from (I to a temperature I (with I close to 0)?

[Lli=aT4]

(d) The relation between heat capacities
Most systems expand when heated at constant pressure. Such systems do work on the
surroundings and some of the energy supplied to them as heat escapes back to the
surroundin gs. As a result, the temperature of the system rises less than when the heating
occurs at constant volume. A smaller increase in temperature implies a larger heat capacity,
so we conclude that in most cases the heat capacity at constant pressure of a system is
larger f/ian its heat capacity at constant volume.

There is a simple relation between the two heat capacities of a perfect gas:

-	 oR	 (31)°

(This relation is derived in Section 3.3s.) It follows that the molar heat capacity of a perfect
gas is about $ J K ' niot i larger at constant pressure than at constant volume. Because the
heat capacity at constant volume of a nonlinear potyatomie gas is about 25 J K nro1, the
difference is highly significant and must be taken into account.

2.6 Adi aa tic s - (t J nycs

We are now equipped to deal with the changes that occur when a perfect gas expands
adiabatically. A decrease in temperature should be expected: because work is done, the
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V•t Ti, 

Vi

Temperature, T

internal energy falls, and therefore the temperature of the working gas also falls. In
molecular terms, the kinetic energy of the molecules falls as work is done, so their average
speed decreases, and hence the temperature falls.

(a) The work of adiabatic change
The change in internal energy of a perfect gas when the temperature is changed from Ti to

T and the volume is changed from V to V1 can be expressed as the sum of two steps

(Fig. 2.16). in the first step, only the volume changes and the temperature is held constant at
its initial value. However, because the internal energy of a perfect gas arises solely from the
kinetic energies of the molecules, the overall change in internal energy arises solely from the
second step, the change in temperature at constant volume. Provided the heat capacity is
independent of temperature, this change is

AU = CV (TI - 'F) = CV ,AT	 (32)

Because the expansion is adiabatic, we know that q = 0; because LW = q ± w, it then

follows that AU = Wad . Therefore, by equating the two values we have obtained for AU, we

obtain

wd=CVL1T	 (33)°

V,l —
	 TV1 AUCvIST	

T1.

a;
E
2
0	 C
>	 g

2.16 To achieve a change of state from one That is, the work done during an adiabatic expansion of a perfect gas is proportional to the
temperature and volume to another temperature
and volume, we may consider the overall change 	 temperature difference between the initial and final states. That is exactly what we expect

composed of two steps. In the first step, the system 	 on molecular grounds, because the mean kinetic energy is proportional to T, so a change in
expands at constant temperature; there is no 	 internal energy arising from temperature alone is also expected to be proportional to AT.
change in internal energy if the system consists of 	 To use eqn 33, we need to relate the change in temperature to the change in volume
a perfect gas. In the second step, the temperature
of the system is increased at constant volume. The	 (which we know). The most important type of adiabatic expansion (and the only kind that we

overall change in internal energy is the sum of the	 need for later) is reversible adiabatic expan;ion, in which the external pressure is matched to
changes for the two 5CCPS.

	

	 the internal pressure throughout. For adiabatic, reversible expansion the initial and final
temperatures are related by

	

= vTT	 c =	 (3)
R

This expression is derived in the following Justification and the temperature dependence it

implies is shown in Fig. 2.17. All we need do at this stage to find the work done by the system
is to solve this relation for T1,

	G11)

	
(35)'

calculate AT, and substitute into eqn 33.

Justification 2.2

Consider a stage in the expansion when the pressure inside and out is  (the expansion is
reversible, so the internal and external pressures are equal at all stages). The work done
when the gas expands by dV is —p V. However, for a perfect gas, dU = C, dT (by the

same argument as in the text for a macroscopic change). Therefore, because dU dw for
an adiabatic change, we can write

Relative volume, VI V,

2.17 Thevariation of temperature as a perfect gas
is expanded reversibly and adiabatically. The curses
are labelled with different values of c =
Note that the temperature falls most steeply for
gases with low molar heat capacity.

C. dT= —pdV

We are dealing with a perfect gas, so we can replace p by taRT/V and obtain

dT	 dV
C 7 = — taR -----
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To integrate this expression we note that T is equal to T1 when Vs equal to V1 , and is equal
to T when V is equal to Vf at the end of the expansion Therefore,

f TrdT	 fV,dV
Cv] —= -nRj -

V

(We are taking C1 to be independent of temperature.) Then, because fdx/x = [tax, we
obtain

C1, In Q') -oR In (t)
Ti	 Vi

With r = C/nR and by using a mx = 1nx' and - In (x/y) = In Cy/x) we obtain

(T1 ''	 (V
In	 = In

which implies eqn 34.

Illustration
Consider the adiabatic, reversible expansion of 0.020 uiol Ar, initially at 25'C, from 0.50 L
to 1.00 L. The molar heat capacity of argon at constant volume is 12.48 JK' mol, so
c = I.501. Therefore, from eqn 35,

G0-OO
50 L I/I501

Tf 98K)X) =188K 

It follows that AT	 -110 K. and therefore, from eqn 33, that

w = CVAT (0.020 mo!) x (12.48 JK' moC 1 ) x(-1l0 K)
= -27 J

Note that the temperature change is independent of the mass of gas but the work is not.

Sell-test 2.5 Calculate the final temperature, the work done, and the change of internal
energy when ammonia is used in a reversible adiabatic expansion from 0.50 L to 2.00 L,
the other initial conditions being the same.

[194 K, -56 3, -5631

(b) Heat capacity ratio and adiabats
Now we considcr the change in pressure that results from an adiabatic, reversible expansion
of a perfect gas. We show in the Justification below that

pV5 = constant (36) rev

where the heat capacity ratio, ', of a substance is defined as

(37)

Because the heat capacity at constant pressure is greater than the heat capacity at constant
volume, '> 1. For a perfect gas, it follows from eqn 31 that

= E_iL	 (38)°
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For a monatomic perfect gas, Cvrn = - R (see Molecular interpretation 2.3), so = . For a

gas of nonlinear polyatomic molecules (which can rotate as well as translate), Cv . m 	 JR. so

4'—
} - 3.

ii 'jt

The initial and final states of a perfect gas satisfy the perfect gas law regardless of how the

change of state takes place, so we can use pV = nRT to write

Pi vi - Ti

pV, Tr
However, we have established (cqn 35) that for a reversible adiabatic. change the

temperature changes so as to satisfy

T1
T 'v)

Then we combine the two expressions, to obtain

p Vi, = p1V

It follows that ph 7	constant as used in the text.

I	

Vi	 V1	 The curves of pressure versus volume for adiabatic, reversible change are known as adiabats,
(b)	 Volume, V	 and one is illustrated in Fig. 2.18. Because y> I, an adiabat falls more steeply (p cc 1/1/7)

2.18 An adiabat depicts the variation of pressure	 than the-corresponding isotherm (p cc l/V). The physical reason for the difference is that,

with volume when a gas expands reversibly and 	 in an isothermal expansion, energy flows Into the system as heat and maintains the

adiabatically. (a) An adiabat for a perfect gas. (b) 	 temperature; as a result, the pressure does not fall as much as in an adiabatic expansion.
Note that the pressure declines more steeply for an
adiabat than it does for an Isotherm because the
temperature decreases in the former.	 Illustration

When a sample of argon (for which y =) at 100 kPa expands reversibly and adiabatically to

twice its initial volume, the final pressure will be

Vi	
(100 kPa) x 

()5/3= 
31.5 kPaPr = I'

For an isothermal doubling of volume, the final pressure would be 50 kPa.

ThermochemistrV
The study of the heat produced or required by chemical reactions is called thermochemistry.
Thermochemistry is a branch of thermodynamics because a reaction vessel and its contrl'hts
form a system, and chemical reactions result in the exchange of energy between the system
and the surroundings. Thus we can use calorimetry to measure the heat produced or
absorbed by a reaction, and can identify q with a change in internal energy (if the reaction
occurs at constant volume) or a change in enthalpy (if the reaction occurs at constant
pressure). Conversely, if we know the AU or All for a reaction, we can predict the heat the

reaction can produce.
We have already remarked that a process that releases heat is classified as exothermic and

one that absorbs heat is classified as endothermic. Because the release of heat signifies a
decrease in the enthalpy of a system (at constant pressure), we can now see that an
exothermic process at constant pressure is one for which AK <0. Conversely, because the
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absorption of heat results in an increase in enthalpy, an endothermic process at constant
pressure has All >0.

2.7 Standard enthalpy changes

Changes in enthalpy are normally reported for processes taking place under a set of standard
conditions. In most of our discussions we shall consider the standard enthalpy change,
AH, the change in enthalpy for a process in which the initial and final substances are in
their standard states:

The standard state of a substance at a specified temperature is its pure form at
1 bar.

For example, the standard state of liquid ethanol at 298 K is pure liquid ethanol at 298 K
and I bar; thestandard state of solid iron at 500 K is pure iron at 500 K and I bar. The
standard enthalpy change for a reaction or a physical process is the difference between the
products in their standard states and enthalpy of the reactants in their standard states, all at
the same specified temperature.

As an example of a standard enthalpy change, the standard enthalpy of vaporization,
A,AP ll 	is the enthalpy change per mole when a pure liquid at I bar vaporizes to a gas at
I bar, as in

H 70(l) -. H2 0(g)	 Avaph1(373 K) = +40.66 kJmoF1

As implied by the examples, standard enthalpies may be reported for any temperature.
However, the conventional temperature for reporting thermodynamic data is 298.15 K
(corresponding to 25.00°C). Unless otherwise mentioned, all thermodynamic data in this
text will refer to this conventional temperature.

(a) Enthalpies of physical change
The standard enthalpy change that accompanies a change of physical state is called the
standard enthalpy of transition and is denoted A1 H° (Table 2.3). The standard enthalpy
of vaporization, AV,,, !/	 is one example. Another is the standard enthalpy of fusion

the erithalpy change accompanying the conversion of a solid to a liquid, as in

H 1 0(s)	 H0(1)	 Arus11°(273 K) = ±6.01 kJmol

As in this case, it is sometimes convenient to know the standard enthalpy change at the
transition temperature as well as at the conventional temperature.

Because enthalpy is a state function, a change in enthalpy is independent of the path
between the two states. This feature is of great importance in thermochemistry, for it implies
that the same value of All ' will be obtained however the change is brought about (so long
as the initial and final states are the same). For example, we can picture the conversion of a

Tahk 2.3 Standard enthalpies of fusion and vaporization at the transition temperature,
Is,,!! /(kJ ,iiol i)

	

Ti /K	 Fusion

Ar	 83.81	 1.198
C'H'	 27861	 10.59
H 20	 273.15	 6.008

He	 35	 0.021

More values are given in the Onto sect ion.

	

T5/K	 Vaporization

	

87.29	 6.506
	353.2	 30.8

	

373.15	 40.656
44.016 at 298K

	

4.22	 0.084
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1

solid to a vapour either as occurring by sublimation (the direct conversion from solid to

vapour),

HO(s) -u H 2 0(g)	 A51,H

or as occurring in two steps, first fusion (melting) and then vaporization of the resulting

liquid:

	

1120(5) -----. 1-170(1)	 A,,,11e

	H 200) -. 11 2 0(g)	 Ls.,,H'

Overall: 11 7 0(5)	 HO(g)	 Es1551! e +

Because the overall result of the indirect path is the same as that of the direct path, the
overall enthalpy change is the same in each case (1), and we can conclude that (for processes

occurring at the same temperature)

= ius11 + EsvapH

An immediate conclusion is that, because all enthalpies of fusion are positive, the enthalpy
of sublimation of a substance is greater than its enthalpy of vaporization (at a given

temperature).
Another consequence of H being a state function is that the standard enthalpy changes

of a forward process and its reverse must differ only in sign (2):

-. B) = —EsH(A - B)

For instance, because the enthalpy of vaporization of water is +44 U moI at 298 K, its

enthalpy of condensation at that temperature is —44 UmoIt.
The different types of enthalpies encountered in thermochemistry are summarized in

Table 2.4. We shall meet them again in various locations throughout the text.

(b) Enthalpies of chemical change
Now we consider enthalpy changes that accompany chemical reactions. Broadly speaking,

the standard reaction enthalpy, tS r!I e , is the change in enthalpy when reactants in their

standard states change to products in their standard states, as in

CH 4 (g) -i- 202 (g) -i CO2 (g) + 21-10(l)	 Es1H	 —890 kJnio1

;tt
!(&..apH

C	 'LS H°W	 sub

Table 2.4 Enthalpies of transition

Transition	 Process
	 Symbol

Transition
Fusion
Vaporization
Sublimation
Mixing of fluids
Solution
Hydration
Atomization
Ionization
Electron gain
Reaction
Combustion
Formation
Activation

Phase	 phase /3
s—'l
1-9
s----.g
Pure -- mixture
Solute -. solution
X ± (g) -. Xt (aq)
Speciests. I, q I --. atoms(g)
X(g) -, X(g) e(g)
X(g) +eiq) —. X(g)

Reactants -. products
Compound(s, I, g) + 02(g) -. CO(g) H 200, g)
Elements -. compound
Reactants -. activated complex

Ar,,!1

Am  11

Es,,,!!

A,ll

ArH

• IUPAC recommendations. in common usage, the transition subscript i5 often attached to All, as in AJ1,,
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This standard value refers to the reaction in which I mol CH 4 in the form of pure methane
gas at I bar reacts completely with 2 mol 02 in the form of pure oxygen gas to produce

mol CO2 as pure carbon dioxide at I bar and 2 mol lI 70 as pure liquid water at I bar; the
numerical value is for the reaction at 298 K. The combination of a chemical equation and a
standard reaction enthalpy is called a thermochemical equation. A standard reaction
enthalpy refers to the overall process

Pure, unmixed reactants in their standard states
pure, separated products in their standard states

Except in the case of ionic reactions in solution, the enthalpy changes accompanying mixing
and separation are insignificant in comparison with the contribution from the reaction
itself.

We said 'broadly speaking' above, because the precise specification of the standard
reaction enthalpy is more specific about the significance of the 'per mole' that appears in the
value of A rH e . To establish this precise definition, consider the reaction

2A - B -----k 3C + I)

The standard enthalpy of this reaction is based on the expression

ArIl	 >	 (39)
Products	 Reactants

where the terms on the right are the standard molar enthalpies of the products and
reactants weighted by the stoichiometric coefficients, ii, in the chemical equation. For our
reaction,

= {3/(,( )+H(D)} - {2R(A) +H(B)}

where H(J) is the standard molar enthalpy of species J at the temperature of interest.
A somewhat more sophisticated way of expressing the definition, which is useful for

some of the formal expressions we shall derive (but less so in practice), is obtained by writing
the reaction in the symbolic form

0 = 3C + D - 2A - B

by subtracting the reactants from both sides (and replacing the arrow by an equals sign). This
equation has the form

0 =L1J J 	 (40)

where J denotes the substances and the v1 are the corresponding stoichiometric numbers in
the chemical equation. These numbers have the values

11A = — 2	 v3 = — 1	 1/c = +3	 V1) = + 1

Note that, in the convention we shall adopt, the stoichiometric numbers of the products are
positive and those of the reactants are negative. The standard reaction enthalpy is then
defined as

A,H=	 ii1H,(J)	 [411

as may be verified by substituting the values of the stoichiometric numbers given above.

Illustration
For the reaction

N 2 (g) 4 31-1 2 (g) - 2NJH3(g)
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Tihk 2.5 Standard enthalpies of formation and combustion of organic compounds at 298 K

ArH/(k.Jm0I')
	

A,,!! °/(kJ mol')

Benzcne, C6H(l)
	

+49.0	 —3268

Ethane, C2Hlg)	 —84.7	 —1560

Glucose, C6H06(s)
	 —1274	 —2808--

Methane, CH4(g)	 —74.8	 -890

Methanol. CH30H(l) 	 —238.7	 —726

More values are given in the Onto section.

the stoichiometric numbers are

= —1	 v(l-l) = —3	 ti(NH3) = +2

so the standard reaction enthalpy is

LS rht e = 2H(N1-I 3 ) - {H(N2 ) + 3H(H2)}

Some standard reaction enthalpies have special names and a particular significance. The
standard enthalpy of combustion, is the standard reaction enthalpy for the
complete oxidation of an organic compound to CO 2 and H 2 0 if the compound contains C, H.

and 0, and to N 2 if N is also present. An example is the combustion of glucose:

C6 H 12 06 (5) -4- 602 (9) -i 6CO 2 (g) + 6H 2 0(l)	 INCH	 —2808 kJmoI

The value quoted shows that 2808 kJ of heat is released when I mol C6 H 12 05 bums under

standard conditions (at 298 K). Some further values are listed in Table 2.5.

(c) Hess's law
Standard enthalpies of individual reactions can be combined to obtain the enthalpy of
another reaction. This application of the First Law, is called Hess's law:

The standard enthalpy of an overall reaction is the sum of the standard
enthalpics of the individual reactions into which a reaction may be divided.

The individua l steps need not be realizable in practice: they may be hypothetical reactions,
the only requirement being that their chemical equations should balance. The
thermodynamic basis of the law is the path-independence of the value of 

/TQ and the

impiication that we may take the specified reactants, pass through any (possibly
hypotbetcal) set of reactions to the specified products, and overall obtain the same
chcnrji . nthalpy. The importance of Hess's law is that information about a reaction of
interesi, wnich may be difficult to determine directly, can be assembled from information on
other reactions.

Example 2.5 llsiriçj F1c's's ltw

The standard reaction enthalpy for the hydrogenation of propene.

CH 1 =CHCH 3 (g) + H 7 (g) -. CH3CH7CH3(g)

is —124 kjmol* The standard reaction enthalpy for the combustion of propane,

CH 3 CH 2 CH 3 (9) -i- 50(g) - 3CO 2 (g) + 4H200)

is —2220 LI mol '. Calculate the standard enthalpy of combustion of propene.
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Method Add and subtract the reactions given, together with any others needed, so as to
reproduce the reaction required. Then add and subtract the reaction enthalpies in the same
way. Additional data are in Table 2.5.

Answer The combustion reaction we require is

CH5(g) f 202(9) -b 3CO 2 (g) + 31-170(1)

This reaction can be recreated from the following sum:
rh1/1(1 mol

C 3 H 6 (g) + H,(g) -. C3 F-l(g) —124
C 3 H 8 (g) -F- 50 2 (g) ---. 3C0 7 (g) + 4H 2 00) —2220
H 70(l) - H2 (g) -t 2'0 2 (1)+286
C 3 H 6 (g) + 0(g) ---p 3CO 2 (g) ± 3l-l00) —2058

Comment The skill to develop is the ability to assemble a given thermochemical equation
from others.

Self-test 2.6 Calculate the enthalpy of hydrogenation of benzene from its enthalpy of
combustion and the enthalpy of combustion of cyclohexane.

(-205 kJmoI]

2.8 Standard enthalpics of formation
The standard enthalpy of formation, of a substance is the standard reaction
enthalpy for the formation of the compound from its elements in their reference states. The
reference state of an element is its most stable state at the specified temperature and I bar.
For example, at 298 K the reference state of nitrogen is a gas of N 2 molecules, that of
mercury is liquid mercury, that of carbon is graphite, and that of tin is the white (metallic)
form. There is one exception to this general prescription of reference states: the reference
state of phosphorus is taken to be white phosphorus despite this allotrope not being the
most stable form but simply the most reproducible form of the element. Standard enthalpies
of formation are expressed as enthalpies per mole of the compound. The standard enthalpy
of formation of liquid benzene at 298 K. for example, refers to the reaction

6C(s, graphite) -f. 3H2 (9)-.a C5H6(l)

and is -i--49.0 U mol . The standard enthalpies of formation of elements in their reference
states are zero at . all temperatures because they are the enthalpies of such null reactions as

N 2 (g) -a N7(g)

Some enthalpies of formation are listed in Tables 2.5 and 2.6.

(a) The reaction enthalpy in terms of enthalpies of formation
Conceptually, we can regard a reaction as proceeding by decomposing the reactants into
their elements and then forming those elements into the products. The value of Ar1I for
the overall reaction is the sum of these unforming and forming enthalpies. Because
'unforming' is the reverse of forming, the enthalpy of an unforming step is the negative of
the enthalpy of formation (3). Hence, in the entha[ies of formation of substances, we have
enough information to calculate the enthalpy of any reaction by using

= j 1i1 -
	

i vA,H o	(42)
Products	 Reactants

Table 2.6 Standard enthalpies of formation
of inorganic compounds, A1/I e /(kJ mani), at
298K

HrO(II	 —285.83	 H 202 (I)	 —187,78
NH 3 (g)	 —46.11	 N2114(1)	 +50.63
NO 2 (g)	 +33.18	 N 704(g)	 -I-9.t6
NaCI(s)	 —411.15	 KCllsl	 —436.75

More values are given in the Data section.

Elements

LU

ir

Reactants

Products

3
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where in each case the enthalpies of formation of the species that occur are multiplied by
their stoichiometrie coefficients.

Illustration

The standard reaction enthalpy of

2HN 3 (l) -t- 2N0(g) - 1-1 2 0 2 0) + 4N2(g)

is calculated as follows:

= {A 111(11 2 0 2 , I) 4- 4A ,/1 0 (N,,
- {2r/I e (I1N j , 1) -I.- 2JJe(NO,g)}

= (-187.714 -- 4(0)} - {2(264.0) + 2(90.25)} kJmol

= —892.3 kJrnoL'

The formal expression for eqn 42 in terms of a reaction written as in eqn 40 is

=	 I,jA1H0(J)	 [43]

It may be verified that this expression reproduces the value calculated in the lllo5trotiorl.

1.	 C(H)2(C)2

4

04)
C(C)4

5

(b) Group contributions
We have seen that standard reaction enthalpies may be constructed by combining standard
enthalpies of formation. The question that now arises is whether we can construct standard
enthalpies of formation from a knowledge of the composition of the species. The short
answer is that there is no thermodynamically exact way of breaking enthalpies of formation
down into contributions from individual atoms and bonds. In the past, approximate
procedures based on mean bond enthalpies, AH(A-8), the enthalpy change associated
with the breaking of a specific A—B bond,

A—B(g) - A(g) + B(g) AH(A—B)

have been used. However, this procedure is notoriously unreliable, in part because the
H(A—B) are average values for a series of related compounds. Nor does the approach

distinguish between geometrical isomers, where the same atoms and bonds may be present,
but experimentally the enthalpies of formation might be significantly different.

Somewhat more reliable is an approach i'. hich :i 'rlecule is regarded as being built up
of thermochemical groups, an atom or physical group of atoms bound to at least two other
atoms: two examples are shown as (4) and (5). The enthalpy of formation of the compound is
then expressed (approximately, at least) as the sum of the contributions associated with all
the thermochemical groups into which the molecule can be divided. A list of the appropriate
values is given in Table 2.7 and the method is illustrated in the following example. Table 2.7
also contains information on heat capacity, which is approximately additive in a similar
sense.

Example 2.6 Using thi' thcrmocI1cmic3I group approach

Estimate the standard enthalpy of formation at 298 K of hexane in (a) the gas phase, (b) the
liquid phase.

Table 2.7 Benson thermochemical groups

Group	 ArHe/	 C7m/
(kJmor')	 (JK'mol')

C(H) 310 	 —42.17	 25.9
C(H) 2 (C) 2	 —20.7	 22.8
C(H)(C) 3	 6i9	 18.7
C(C) 4	±8.16	 18.2

Method First, identify the thermochemical groups present in the molecule. Then add
More values are given in the Data section.	 together the appropriate values in Table 2.7. To obtain the enthalpy of formation of the
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liquid, include the enthalpy of condensation of the vapour, that is the negative of the
enthalpy of vaporization of the liquid (Table 2.3).

Answer The decomposition of the molecule into groups is depicted in (6). There are two
C(H) 3 (C) groups and four C(H) 2 (C) 2 groups; therefore

LHe(C4Hi4,g) = 2(-42.17 kJ moL') + 4(-20.7 kJmoL')

= —167.1 kimol'

The enthalpy of vaporization of hexane is 28.9 kJ moL'(Table 2.3); therefore (7),

= (-167.1 kimoL') —(28.9 kJmol') = —196.0 kJmoL1

The experimental value is - 198.711moL'

Self-test 2.7 Estimate the standard enthalpy of formation of gaseous 2,2-dimethyl-

6	 ',	 propane.
(-160.52 kJmoL']

	

Elements	 2.9 The temperature dependence of reaction enthalpies
The standard enthalpies of many important reactions have been measured at different

	

E	 E	 temperatures, and for serious work these accurate data must be used. However, in the
absence of this information, standard reaction enthalpies at different temperatures may be

	

110	
6

0.
estimated from heat capacities and the reaction enthalpy at some other temperature.

	

C H ( )	
It follows from eqn 27 that, when a substance is heated from T, to T2, its enthalpy

	

I	 6 54	 changes from 11(T 1 ) to

	

11(T2) = H(T,) - f CdT	 (44)

	

C H	
(We have assumed that no phase transition takes place in the temperature range of interest.)

6 14	 Because this equation applies to each substance in the reaction, the standard reaction
7	 enthalpy changes from Ls11°T,) to

AJ1(T2 ) = r1(Ti ) +	 dT	 (45)

where A1C' is the difference of the molar heat capacities of products and r ictants under
standard conditions weighted by the stoichiometric coefficients that appear 'n the chemical
equation;

iIComm -	 i	 /,m	 ()
Producis	 Rcuciunt

More formally,

=	 vC,',,(J)	 [47]

Equation 45 is known as Kirchhoff s law (Fig. 2.19). It is normally a good approximation
to assume that Lt1C,' is independent of the temperature, at least over reasonably limited
ranges, as illustrated in the following example. Although the individual heat capacities may
vary, their difference varies less significantly. In some cases the temperature dependence of
heat capacities is taken into account by using eqn 30.
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Exaniplc 2.1 CJiiq Kirchholf"s Iiv

The standard enthalpy of formation of gaseous H 2 0 at 298 K is —241.82 kJmol'.
Estimate its value at 100°C given the following values of the molar heat capacities
at constant pressure: H 70(g) 33.58 J K" 1 mol -t ; H2 (9) 28.84 JX'' mol"';
02(9) : 29.37 i K moV 1 . Assume that the heat capacities are independent of
temperature.

Method When ACJ 	'is independent of temperature in the range 1 to T2 , the integral in
cqn 45 evaluates to (T2 - T1 )AC7. Therefore,

ArH(T2 ) = Arll(Ti ) + (7'2 - Tt)ArC;

To proceed, write the chemical equation, identify the stoichiometric coefficients, and
calculate AC7 from the data.

Anwcr The reaction is

H 2 (g) + O(g) -s H20(g)

so

= C(H2O,g) - {C(H 2 ,g) +.C(O2,g)}

= —9.94 1K -1 mol

It then follows that

A 11I(373 K) = —241.82 kimoL' + (75 K) x (-9.94 JK' mol)

= —242.6 kJmol

Self-test 2.8 Estimate the standard enthalpy of formation of liquid cyclohexane at 400 K
from the data in Table 2.5 in the Data section at the end of this volume.

[-163 kJmo1)

Prcn IICIS

H (T?)
'U

LU

A, H T^'	

Reactants

Temperature, T

2.19 An illustration of the, content of Kjrcflhoff's
law. When the temperature is increased, the
enthalpies of the products and the reactants both
increase, but may do so to different extents. In
each case, the change in enthalpy depends on the
heat capacities of the substances. The change in
reaction enthalpy reflects the difference in the
changes of the enthalpies.

Checklist of key ideas
	thermodynamics	 Li the molecular interpretation

of heat and work

	

The basic concepts	 Li thermal motion

Ej system
[1 surroundings
0 open system
• closed system
• isolated system

2.1 Work, heat, and energy

D work
fl energy
fl heat
[J diathermic boundary.
fl adiabatic boundary
LI exothermic processes
0 endothermic processes

Li free expansion
expansion against cc.-stant
pressure
indicator diagram
reversible change
equilibrium
work of reversible expansion
(12)

I work of isothermal
reversible expansion (13)
maximum work and
reversible change

2.4 Heat transactions

Li internal energy change and
heat transfer at constant
volume
adiabatic bomb calorimeter

L] calorimeter constant

fl heat capacity

LI heat capacity at constant
volume

LI molar heat capacity at
constant volume
specific heat capacity

LI internal energy change and
temperature rise (22)

2.5 Enthalpy
(j enthalpy
LI enthalpy change and heat

transfer at constant
pressure

LI relation between At.) and
AH (26)

2.2 The First taw
internal energy

LI state f&nction
El First Law of

thermodynamics
LA alternative starement of

First Law
LI definition of heat

Work and heat

2.3 Expansion work
LI expansion work

work defined
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[j heat capacity at constant	 [I pressure-volume relation for
pressure	 adiabatic change
molar heat capacity at	 U] adiabat
constant pressure

U empirical temperature	 Thermochemistry
variation (30)

Li relation between heat 	 thermochemistry

capacities (31)
2.7 Standard enthalpy changes

2.6 Adiabatic changes	 P standard enthalpy change

U work of adiabatic change	 St2i1d5d state

El temperature change	 [I] standard enthalpy of

accompanying adiabatic 	 vaporization

change	 Li standard cnthalpy of

Li heat capacity ratio 	 transition ).He(

•i addition of enthalpy changes 2.8 Standard enthalpies of
enthalpy change for reverse	 formation
process	 H standard enthalpy of

H standard reaction enthalpy 	 formation (ts111)
(A,II.e)	 [I reference state
thermochemical equation	 Li combining enthalpies of
writing a chemical equation	 formation
formally	 Li mean bond enthalpy
stoichiorrietric numbers 	 Li thermochemical group
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combustion	 2.9 The temperature dependence
Hess's law	 of reaction enthalpies

H lKirchhoffs law for the
temperature dependence of
reaction enthalpies
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EXERCISES

Exercises
Assume all gases are perfect unless stated otherwise. Note that
1 bar = 1.01325 atm exactly. Unless otherwise stated, thermoche-
mical data are for 298.15 K.
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2.7 (a) In the isothermal reversible compression of 52.0 mmol of a
perfect gas at 260 K. the volume of the gas is reduced to one-third its
initial value. Calculate w for this process.

2.1 (a) Calculate the work done to raise a mass of 1.0 kg through 	 2.7 (b) In the isothermal reversible compression of 1.77 mmol of a
10 m on the surface of (a) the Earth (g = 9.81 m s 2 ) and (b) the	 perfect gas at 273 K. the volume of the gas is reduced to 0.224 of its
moon (s = 1.60 m s 2 ).	 initial value. Calculate w for this process.

2.1 (b) Calculate the work done to raise a mass of 5.0 kg through
100 m on the surface of (a) the Earth (g = 9.81 m 2) and (b) Mars
(g = 3.73 ms2).

2.2 (a) Calculate the work needed for a 65 kg person to climb
through 4.0 m oji the surface of the Earth.

2.2 (b) Calculate the work needed for a bird of mass 120 g to fly to a
height of 50 m from the surface of the Earth.

2.3 (a) A chemical reaction takes place in a container of cross-
sectional area 100 cm 2. As a result of the reaction, a piston is pushed
out through 10 cm against an external pressure of 1.0 atm. Calculate
the work done by the system.

2.3 (b) A chemical reaction takes place in a container of cross-
sectional area 50.0 cm2 . As a result of the reaction, a piston is pushed
out through 15 cm against an external pressure of 121 kPa. Calculate
the work done by the system.

2.4 (a) A sample Consisting of 1,00 molAr is expanded isothermally
at 0°C from 22.4 L to 44.8 L (a) reversibly, (b) against a constant
external pressure equal to the final pressure of the gas, and (c) freely
(against zero external pressure). For the three processes calculate q, w,
AU, and All.

2.4 (b) A sample consisting of 2.00 mol He is expanded isothermally
at 22°C from 22.8 L to 31.7 L (a) reversibly, (b) against a constant
external pressure equal to the final pressure of the gas, and (c) freely
(against zero external pressure). For the three processes calculate q, w,
AU, and All.

2.5 (a) A sample consisting of 1.00 mot of monatomic perfect gas,
for which Cv,,, = R, initially at P = 1.00 atm and T1 = 300 K, is
heated reversibly to 400 K at constant volume. Calculate the final
pressure, AU, q, and w.

2.5 (b) A sample consisting of 2.00 mot of a perfect gas, for which
Cv,,,, = R. initially at p = ill kPa and T1 = 277 K. is heated
reversibly to 356 K at constant volume. Calculate the final pressure.
AU, q, and w.

2.6 (a) Asample of 4.50 got methane gas occupies 12.7 Lat3lO K.
(a) Calculate the work done when the gas expands isothermally
against a constant external pressure of 200 Torr until its volume has
increased by 3.3 L. (b) Calculate the work that would be done if the
same expansion occurred reversibly.

2.6 (b) A sample of argon of mass 6.56 g occupies 18.5 L at 305 K.
(a) Calculate the work done when the gas expands isothermally
against a constant external pressure of 7.7 kPa until its volume has
increased by 2.5 L. (14 Calculate the work that would be done if the
same expansion occurred reversibly.

2.8 (a) A sample of 1.00 mol H 2 0(g) is condensed isothermally and
reversibly to liquid water at 100°C. The standard enthalpy of
vaporization of water at 100°C is 40.656 Id moI* Find w, q, AU, and
All for this process.
2.8 (14 A sample of 2.00 moICH 3 OH(g) is condensed isothermally
and reversibly to liquid at 64°C. The standard enthalpy of
vaporization of methanol at 64°C is 35.3 Idmol. Find w, q, AU,
and All for this process.

2.9 (a) A strip of magnesium of mass 15 g is dropped into a beaker of
dilute hydrochloric acid. Calculate the work done by the system as a
result of the reaction. The atmospheric pressure is 1.0 aIm and the
temperature 25°C.

2.9 (b) A piece of zinc of mass 5.0 g is dropped into a beaker of
dilute hydrochloric acid. Calculate the work done by the system as a
result of the reaction. The atmospheric pressure is 1.1 atm and the
temperature 23°C.

2.10 (a) Calculate the heat required to melt 750 kg of sodium metal
at 371 K.

2.10 (b) Calculate the heat required to melt 500 kg of potassium
metal at 336 K. The enthalpy of fusion of potassium is 2.40 kJmot*
2.11 (a) The value of Cr, ,,, for a sample of a perfect gas was found to
vary with temperature according to the expression Cpm/(JK) =
20.17 +0.3665(T/K). Calculate q, w, AU, and AN for 1.00 mot
when the temperature of 1.00 mot of gas is raised from 25°C to
200°C (a) at constant pressure, (b) at constant volume.

2.11 (b) The constant-pressure heat capacity of a sample of a
perfect gas was found to vary with temperature according to the
expression Cpm/(JK) = 20.17 + 0.4001(T/K). Calculate q, w
AU, and All for 1.00 mot when the temperature of 1.00 mot of gas is
raised from 0°C to 100°C (a) at constant pressure, (b) at constant
volume.

2.12 (a) Calculate the final temperature of a sample of argon of
mass 12.0 g that is expanded reversibly and adiabatically from 1.0 L
at 273.15 K to 3.0 L.
2.12 (b) Calculate the final temperature of a sample of carbon
dioxide of mass 16.0 g that is expanded reversibly and adiabatically
from 500 mL at 298.15 K to 2.00 L.
2.13 (a) A sample of carbon dioxide of mass 2.45 g at 27.0°C is
allowed to expand reversibly and adiabatically from 500 mL to
3.00 L What is the work done by the gas?

2.13 (b) A sample of nitrogen of mass 3.12 g at 23.0°C is allowed to
expand reversibly and adiabatically from 400 mL to 2.00 L What is
the work done by the gas?

7-A
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2.14 (a) Calculate the final pressure of a sample of carbon dioxide
that expands reversibly and adiabatically from 57.4 kPa and 1.0 L to
a final volume of 2.0 L. Take y = 1.4.
2.14 (b) Calculate the final pressure of a sample of water vapour
that expands reversibly and adiabatically from 87.3 Torr and 500 mL
to a final volume of 3.0 L. Take y = 1.3.
2.15 (a) Calculate the final pressure of a sample of carbon dioxide of
mass 2.4 g that expands reversibly and adiabatically from an initial
temperature of 278 K and volume 1.0 L to a final volume of 2.0 L.
Take' = 1.4.
2.15 (b) Calculate the final pressure of a sample of water vapour of
mass 1.4 g that expands reversibly and adiabatically from an initial
temperature of 300 K and volume 1.0 L to a final volume of 3.0 L.
Take y = 1.3.

2.16 (a) Calculate the standard enthalpy of formation of butane at
25°C from its standard enthalpy of combustion.

2.16 (b) Calculate the standard enthalpy of formation of hexane at
25°C from its standard enthalpy of combustion.

2.17 (a) When 229 J of energy is supplied as heat at constant
pressure to 3.0 mol Ar(g). the temperature of the sam pie increases by
2.55 K. Calculate the molar heat capacities at constant volume and
constant pressure of the gas.

2.17 (b) When 178 J of energy is supplied as heat  at constant
pressure to 1.9 mcI of a gas, the temperature of the sample increases
by 1.78 K. Calculate the molar heat capacities at constant volume
and constant pressure of the gas.

2.18 (a) A sample of a liquid of mass 25 g is cooled from 290 K to
275 K at constant pressure by the extraction of 1.2 U of energy as
heat. Calculate q and All and estimate the heat capacity of the
sample.

2.18 (b) Asampleofa liquid of mass 30.5 g is cooled from 288 K to
275 K at constant pressure by the extraction of 2.3 U of energy as
heat. Calculate q and All and estimate the heat capacity of the
sample.

2.19 (a) When 3.0 M0102 is heated at a constant pressure of
3.25 atm, its temperature increases from 260 K to 285 K. Given that
the molar heat capacity of 02 at constant pressure is
29.4 JK mol, calculate q. All, and AU.
2.19 (b) When 2.0 mol CO 2 is heated at a constant pressure of
1.25 atm. its temperature increases from 250 K to 277 K. Given that
the molar heat capacity of CO 2 at constant pressure is
37.11 J K- ' mol' calculate q, till, and AU.

2.20 (a) A sample of 4.0 niol 02 is originally confined in 20 L at
270 K and then undergoes adiabatic expansion against a constant
pressure of 600 Tori until the volume has increased by a factor of 3.0.
Calculate q, w, AT, AU. and All. (The final pressure of the gas is not
necessarily 600 Torn)
2.20 (b) A sample of 5.0 mol CO 2 is originally confined in 15 L at
280 K and then undergoes adiabatic expansion against a constant
pressure of 78.5 kPa until the volume has increased by a factor of 4.0.
Calculate q, w, AT, AU, and All. (The final pressure of the gas is not
necessarily 78.5 kPa.)

2.21 (a) A sample consisting of 3.0 mol of perfect gas at 200 K and
2.00 aIm is compressed reversibly and adiabatically until the
temperature reaches 250 K. Given that its molar constant-volume
heat capacity is 27.5 JK' mol, calculate q, w, AU, All, and the
final pressure and volume.

2.21 (b) A sample consisting of 2.5 mo] of perfect gas at 220 K and
200 kPa is compressed reversibly and adiabatically until the
temperature reaches 255 K. Given that its molar constant-volume
heat capacity is 27.6 1K 1 mol. calculate q, w, AU. All, and the
final pressure and volume.

2.22 (a) A sample consisting of 1.0 mol of perfect gas with
C,. .= 20.8 J K I is initially at 3.25 atm and 310 K_• It undergoes
reversible adiabatic expansion until its pressure reaches 2.50 atm.
Calculate the final volume and temperature and the work done.

2.22 (b) A sample consisting of 1.5 mol of perfect gas with
Cpm = 20.8 JK mo1 is initially at 230 kPa and 315 K. It
undergoes reversible adiabatic expansion until its pressure reaches
170 kPa. Calculate the final volume and temperature and the work
done.

2.23 (a) Estimate the change in volume that occurs when a sample
of mercury of volume 1.0cm 3 is heated through 5.0 K at room
temperature.

2.23 (b) Estimate the change in volume that occurs when a sample
of iron of volume 5.0 cm 3 is heated through 10.0 K at room
temperature.

2.24 (a) Consider a system consisting of 2.0 mol CO 2 (assumed to be
a perfect gas) at 25°C confined to a cylinder of cross-section 10 cm2
at ID atm. The gas is allowed to expand adiabatically and irreversibly
against a constant pressure of 1.0 atm. Calculate w, q, AU, All, and
AT when the piston has moved 20 cm.

2.24 (b) Consider a system consisting of 3.0 mol 02 (assumed to be a
perfect gas) at 25°C confined to a cylinder of cross-section 22 cm 2 at
820 kPa. The gas is allowed to expand adiabatically and irreversibly
against a constant pressure of 110 kPa. Calculate w, q, AU All and
AT when the piston has moved 15 cn.

2.25 (a) A sample consisting of 65.0 g of xenon is confined in a
container at 2.00 atm and 298 K and then allowed to expand
adiabatically (a) reversibly to 1.00 aim, (b) against a constant pressure
of 1.00 atm. Calculate the final temperature in each case.

2.25 (b) A sample consisting of 15.0 g of nitrogen is confined in a
container at 220 kPa and 200 K and then allowed to expand
adiabatically (a) reversibly to 110 kPa, (b) against a constant pressure
of 110 kPa. Calculate the final temperature in each case.

2.26 (a) A certain liquid has All"' = 26.0 kJmol'. Calculate q,
w, EsH, and AU when 0.50 mol is vaporized at 250 K and 750 Torr.

2.26 (b) A certain liquid has A VPH = 32.0 kimoL'. Calculate q.
w, All, and AU when 0.75 mcI is vaporized at 260 K and 765 Tori.

2.27 (a) The standard enthalpy of formation of ethylbenzene is
-12.5 kJmol. Calculate its standard enthalpy of combustion.

2.27 (b) The standard enthalpy of formation of phenol is
-165.0 kJmo1. Calculate its standard enthalpy of combustion.

7-B
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2.28 (a) Calculate the standard enthalpy of hydrogenation of 1-

hexene to hexane given that the standard enthalpy of combustion of
1-hexene is -4003 kJmo1.

2.28 (b) Calculate the standard enthalpy of hydrogenation of 1-
butene to butane given that the standard enthalpy of combustion of
1-butene is -2717 kJ mot-

2.29 (a) The standard enthalpy of combustion of cyclopropane is
-2091 kJmoI at 25°C. From this information and enthalpy of
formation data for CO 2 (g) and H 2 0(g), calculate the enthalpy of
formation of cyclopropane. The enthalpy of formation of propene is
±20.42 kJmoI. Calculate the enthalpy of isomerization of
cyclopropane to propene.

2.29 (b) From the following data, determine AfH O for diborane,
82 11 6 (g), at 298 K:
(1) B 2 1-11 6 (g) + 303 (9) -i 6 2 03 (5) + 3H20(g)

&jj e = - 1941 kJ mot
(2)213(s) + 22 03 (g) -b B2 03 (S)= -2368 kJmol
(3) H 2 (g) +02 (g) -. I10(g)	 A,H = -241.8 kJmot

2.30 (a) Calculate the standard internal energy of formation of
liquid methyl acetate from its standard enthalpy of formation, which
is -442 kimol'.

2.30 (b) Calculate the standard internal energy of formation of urea
from itsstandard enthalpy of formation, which is -333.51 kJ mot-

2.31 (a) The temperature of a bomb calorimeter rose by 1.617 K
when a current of 3.20 A was passed for 27.0 a from a 12.0 V source.
Calculate the calorimeter constant.

2.31 (b) The temperature of a bomb calorimeter rose by 1.712 K
when a current of 2.86 A was passed for 22.5 s from a 12.0 V source.
Calculate the calorimeter constant.

2.32 (a) When 120 ing of naphthalene, C 10 H 8 (s), was burned in a
bomb calorimeter the temperature rose by 3.05 K. Calculate the
calorimeter constant. By how much will the temperature rise when
100 mg of phenol, C 6 1-1 5OH(s), is burned in the calorimeter under the
same conditions?

2.32 (b) When 225 mg of anthracene, C 14 H 10 (s), was burned in a
bomb calorimeter the temperature rose by 1.35 K. Calculate the
calorimeter constant. By how much will the temperature rise when
135 mg of phenol, C6 FI 5OH(5), is burned in the calorimeter under the
same conditions?

2.33 (a) When 0.3212 g of glucose was burned In a bomb
calorimeter of calorimeter constant 641 J K the temperature rose
by 7.793 K Calculate (a) the standard molar enthalpy of combustion,
(b) the standard internal energy of combustion, and (c) the standard
enthalpy of formation of glucose.

2.33 (b) When 0.2715 g of fructose was burned in a bomb
calorimeter of calorimeter constant 437 J K the temperature rose
by 9.69 K. Calculate (a) the standard molar enthalpy of combustion,
(b) the standard internal energy of combustion, and (c) the standard
enthalpy of formation of fructose.

2.34 (a) Calculate the standard enthalpy of solution of AgCI(s) in
water from the enthalpies of formation of the solid and the aqueous
ions.

2.34 (b) Calculate the standard enthalpy of solution of AgBr(s) in
water from the enthalpies of formation of the solid and the aqueous
ions.

2.35 (a) The standard enthalpy of decomposition of the yellow
complex H 3 NSO 2 into NH 3 and 502 is +40 kJmoI. Calculate the
standard enthalpy of formation of H3N502.

2.35 (b) Given that the standard enthalpy of combustion of graphite
is -393.51 kJmol and that of diamond is -395.41 kJmol,
calculate the enthalpy of the graphite -+ diamond transition.

2.36 (a) The mass of a typical (sucrose) sugar cube is 1.5 g. Calculate
the energy released as heat when a cube is burned in air. To what
height could a 65 kg person climb on the energy a cube provides
assuming 25 per cent of the energy is available for work?

2.36 (b) The mass of a typical glucose tablet is 2.5 g. Calculate the
energy released as heat when a tablet is burned in air. To what height
could a 65 kg person climb on the energy a cube provides assuming
25 per cent of the energy is available for work?

2.37 (a) The standard enthalpy of combustion of propane gas is
-2220 kJmol and the standard enthalpy of vaporization of
propane liquid is +15 kJmol. Calculate (a) the standard enthalpy
and (b) the standard internal energy of combustion of liquid propane.

2.37 (b) The standard enthalpy of combustion of butane gas is
-2878 kJ mot- ' and the standard enthalpy of vaporization of butane
liquid is +21.0 kJmol'. Calculate (a) the standard enthalpy and (b)
the standard internal energy of combustion of liquid butane.

2.38 (a) Express the following reactions in the form 0 =
identify the stoichiometric numbers, and classify the reactions as
exothermic or endothermic.
(a) CH 4 (9) + 20 2 (g) -* CO2 (g )+ 2H 2 0 ( 1 )

= -890 kimoL'
(b)2C(s) + 1 1 2 (g) -' C2 H 2 (g)	 LSrH 0 = +227 kJmoI
(c) NaCI(s) -. NaCl(aq)	 I.TH = +3.9 kJmot

2.38 (b) Express the following reactions in the form 0 =Ej vJ,
identify the stoichiometric numbers, and classify the reactions as
exothermic or endothermic.
(a)C(s,diamond) -. C(s,graphite) 	 !'0	 -1.9 kJmoI'

(b) Fe304 (s) + C0(g) -* 3FeO(s) + CO2(g)
ArH = +35.9 kJ mot-'

(c)3FeO(s) + CO 2 (g) - Fe3 04 (s) + C0(g)
ArH O= -35.9 kJmoI'

2.39 (a) Use standard enthalpies of formation to calculate the
standard enthalpies of the following reactions:
(a)2NO 2 (g) -i N704(g)
(b) NH 3 (g) + HCI(g) -4 NH4CI(s)

2.39 (b) Use standard enthalpies of formation to calculate the
standard enthalpies of the following reactions:
(a)Cyclopropane(g) -. propene(97
(b) HCI(aq) + NaOH(aq) -b NaCI(aq) + 1120(l)

2.40 (a) Given the reactions (1) and (2) below, determine (a) AH
and L%,U for reaction (3), (b) tSHe for both HCI(g) and H 2 0(9) all
at 298 K. Assume all gases are perfect.
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(1) H(q) + C1 2 (g) -' 2HCI(g)	 iU 0 = - 184.62 kJ mo1
(2) 21-1 2 (g) +02 (g) - 2112 0(9)	 Arl = -483.64 kJmol
(3)4HCI(g) + 02 (g) -. C12 (g) + 2H20(g)

2.40 (b) Given the reactions (1) and (2) below, determine (a) rHe
and AU for reaction (3). (b) 5 1H for both Hl(g) and H 2 0(g) all
at 298 K. Assume all gases are perfect.
(1) H, (g)+ 1 2 (5) -I 2H1(g)	 A111 = +52.96 kJmol
(2) 21-1 2 (g) + 02 (9) -. 2H2 0(g)	 AU° = -483.64 kJmoI
(3)4H1(g) + 02 (g) -b 2 (s) + 21-120(q)

2.41 (a) For	 the	 reaction	 C2 H 5OH(l) + 30 2 (g) -. 2CO2(g)
+31-1 2 0(g), ArU° - 1373 kJmol at 298 K. Calculate A,Be.

2.41 (b) For the reaction 2C6 H 5COOH(s) + 130 2 (g) -. 12CO2(g)
+ 6H20(9). ArUo = -772.7 Id moI at 298 K. Calculate A,H.

2.42 (a) Calculate the standard enthalpies of formation of (a)
KCIO3 (s) from the enthalpy of formation of KCI. (b) NaHCO 3 (s) from
the enthalpies of formation of CO 2 and NaOH together with the
following information:
2KC103 (s)	 * 2KCI(s)+302 (9)	 LSrH° = -89.4 kimoi'
NaOH(s)+CO2 (g) -' NaCO3 (s)	 A,.H = - 127.5 kJmol'
2.42 (b) Calculate the standard enthalpy of formation of NOCI(g)
from the enthalpy of formation of NO given in Table 2.5, together
with the following information:
2NOCI(g) -+ 2N0(g) + C1 2 (g)	 Ar!!0 = +75.5 kJmoi

2.43 (a) Use the information in Table 2.5 to predict the standard
reaction enthalpy of 2NO 2 (g) .- N2 04 (g) at 100°C from its value at
25°C.

2.43 (b) Use the information in Table 2.5 to predict the standard
reaction enthalpy of 21-12 (g) + O(g) -. 21-1 2 0(l) at 100°C from its
value at 25°C.

Problems

Assume all gases are perfect unless stated otherwise. Note that
I atm	 1.01325 bar. Unless otherwise stated, thermochemical data
are for 298.15 K.

Numerical problems

2.1 Calculate the heat needed to raise the temperature of the air in a
house from 20°C to 25°C. Assume that the house contains 600 m 3 of
air, which should be token to be a perfect diatomic gas. The density of
air is 1.21 kg m -3 at 20°C. Calculate AU and All for the heating of
the air.

2.2 An average human produces about 10 Mi of heat each day
through metabolic activity. lça human body were an isolated system
of mass 65 kg with the heat capacity of water, what temperature rise
would the body experience? Human bodies are actually open systems,
and the main mechanism of heat loss is through the evaporation of
water. What mass of water should be evaporated each day to
main:.,in constant temoerature?

2.44 (a) From the data in Table 2.5, calculate ArH 0 and AUe at
(a) 298 K. (b) 378 K for the reaction C(graphite) + H 2 0(g) -,
CO(g) + H 2 (g). Assume all heat capacities to be constant over the
temperature range of interest.

2.44 (b) Calculate ArH0 and 1sU 0 at 298 K and A,JIe at 348 K
for the hydrogenation of ethyne (acetylene) to ethene (ethylene)
from the enthalpy of combustion and heat capacity data in Tables 2.5
and 2.6. Assume the heat capacities to be constant over the
temperature range involved.

2.45 (a) Setup a thermodynamic cycle for determining the enthalpy
of hydration of M9 2 ions using the following data: enthalpy of
sublimation of Mg(s). +167.2 kJmo1; first and second ionization
enthalpies of Mg(g), 7.646 eV and 15.035 eV; dissociation enthalpy
Of C1 2 (g), +241.6 kimor'; electron-gain enthalpy of Cl(g),
-3.78 eV; enthalpy of solution of MgCl 2 (s), -150.5 kJmoi;
enthalpy of hydration of C1(g), -383.7 kJmol'.

2.45 (b) Set up a thermodynamic cycle for determining the
enthalpy of hydration of Ca 2 ions using the following data:
enthalpy of sublimation of Ca(s), + 178.2 kJmol'; first and second
ionization enthalpies of Ca(g), 589.7 kJmo1 and 1145 Idmolt;
enthalpy of vaporization of bromine, +30.91 kJmo1; dissociation
enthalpy of Br2 (g), +192.9 kJmoI; electron-gain enthalpy of
Br(g), -331.0 kimol 1 ; enthalpy of solution of CaBr2(s),
-103.1 Umol'; enthalpy of hydration of Br- (g), -337 kJmol.

2.46 (a) Use the thermochemical groups in Table 2.7 to estimate the
standard enthalpy of formation in the gas phase of (a) cyclohexane,
(b)2,4-dimethylhexane.

2.46 (b) Use the thermochemical groups in Table 2.7 to estimate
the standard enthalpy of formation of gaseous (a) 2,2,4-
trimethylpentane, (b) 2.2-dimethylpropane.

2.3 Consider a perfect gas contained in a cylinder and separated by a
frictionless adiabatic piston into two sections, A and B; Section B is
in contact with a water bath that maintains it at constant
temperature. Initially TA = T = 300 K, VA = V8 = 2.00 L, and
nA = n5 = 2.00 mol. Heat is supplied to Section A and the piston
moves to the right reversibly until the final volume of Section B is
1.00 L. Calculate (a) the work done by the gas in Section A, (b) AU
for the gas in Section B, (c) q for the gas in B, (d) AU for the gas in A,
and (e) q for the gas in A. Assume Gym = 20.0 J K mo1.

2.4 A sample consisting of I mci of a monatomic perfect gas (for
which CV,n, = R) is taken through the cycle shown in Fig. 2.20. (a)
Determine the temperature at 1,2, and 3. (b) Calculate q, w, AU, and
A!! for each step and for the overall cycle. If a numerical answer
cannot be obtained from the information given, then write in +,-,O,
or ? as appropriate.

2.5 A 5.0 g block of solid carbon dioxide is allowed to evaporate in a
vessel of volume 100 cm 3 maintained at 25°C. Calculate the work
done when the system expands (a) isothermally against a pressure of
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energy released as heat) of complete aerobic oxidation compared
with anaerobic hydrolysis of sucrose to lactic acid?

Thcorctical problems
2.13 With reference to Fig. 2.21 and assuming perfect gas
behaviour, calculate: (a) the amount of gas molecules (in moles) in
this system and its volume in states B and C, (b) the work done on the
gas along the paths ACB and ADB, (c) the work done on the gas
along the isotherm AB, (d) q and LW for each of the three paths. Take
Cern = 2 R and T = 313 K.

E 1.00

Isotherm

22.44 	44.88
Volume, V/L

Fig, 2.20

1.0 atm, and (b) isothermally and reversibly to the same volume as
in (a).
2.6 A sample consisting of 1.0 molCaCO 3 (s) was heated to 800°C.
when it decomposed. The heating was carried out in a container fitted
with a piston which was initially resting on the solid. Calculate the
work done during complete decomposition at 1.0 atm. What work
would be done if instead of having a piston the container were open
to the atmosphere?
2.7 A new fluorocarbon of molar mass 102 g mol was placed in an
electrically heated vessel. When the pressure was 650 Tort, the liquid
boiled at 78°C. After the boiling point had been reached, it was found
that a current of 0.232 A from a 12.0 V supply passed for 650 s
vaporized 1.871 g of the sample. Calculate the (molar) enthalpy and
internal energy of vaporization.
2.8 An object is cooled by the evaporation of liquid methane at its
normal boiling point (112 K). What volume of gas at 1.00 atm
pressure must be formed from the liquid in order to remove 32.5 kJ
of energy as heat from the object?
2.9 The molar heat capacity of ethane is represented in the
temperature range 298 K to 400 K by the empirical expression
c , /(JK' mo1) = 14.73 + 0.1272(T/K). The corresponding
expressions for C(s) and H 2 (g) are given in Table 2.2. Calculate the
standard enthalpy of formation of ethane at 350 K from its value at
298 K.
2.10 A sample of the sugar D-ribose (C 5 1-1 10 05) of mass 0.727 g was
placed in a calorimeter and then ignited in the presence of excess
oxygen. The temperature rose by 0.910 K. In a separate experiment
in the same calorimeter, the combustion of 0.825 g of benzoic acid,
for which the internal energy of corn bustin is —3251 Id mol,gavc
a temperature rise of 1.940 K. Calculate the internal energy of
combustion of 0-ribose and its enthalpy of formation.
2.11 The standard enthalpy of formation of the metallocene
bis-(benzene)chromium was measured in a calorimeter. It was
found for the reaction Cr(C 6 H 6 )(s) -.. Cr(s) + 2C 6 H 6 (g) that
A,U(583 K) = +8.0 kJmo1. Find the corresponding reaction
enthalpy and estimate the standard enthalpy of formation of the
compound at 583 K. The constant-pressure molar heat capacity of
benzene is 140 JK' moI in its liquid range and 28 J K rnol 21 as
a gas.
2.12 The standard enthalpy of combustion of sucrose i
—5645 kJ.mol, What is the advantage (in kilojoules per mole of

E 20

1,<thIrm

0.50	 10
Volume, V/L

Fig. 2.21

2.14 When a system is taken from state A to . state B along the path
ACB in Fig. 2.22, 80 1 of heat flows into the system and the system
does 30 3 of work. (a) How much heat flows into the system along
path ADB if the work done is 10 1? (b) When the system is returned
from state B to A along the curved path, the work done on the system
is 20 J. Does the system absorb or liberate heat, and how much?
(c) If U0 - UA = +40 J, find the heat absorbed in the processes AD
and DB.

Is.

0

Volume, V

Fig. 2.22

2.15 Show that the value of 1sf! for the adiabatic expansion of a
perfect gas may be calculated by integration of dH = Vdp and
evaluate the integral for reversible adiabatic expansion.
2.16 Express the work of isothermal reversible expansion of a van
der Waals gas in reduced variables and find a definition of reduced
work that makes the overall expression independent of the identity of
the gas. Calculate the work of isothermal reversible expansion along
the critical isotherm from V to xV.
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Additional problems supplied by Carmen Giunta
and Charles Trapp

2.17 Since their discovery in 1985, fullerenes have received the
attention of many chemical researchers. Kolesov ct al. have recently
reported the standard enthalpy of combustion and of formation of
crystalline C based on calorimetric measurements (VP. Kolesov,
S.M. Pimenova, V.K. Pavlovich, N.B. Tamm, and A.A. Kurskaya, J.
Chem. Thermodynamics 28, 1121 (1996)), In one of their runs, they
found the standard specific internal energy of combustion to be
-36.0334 kJ g- 1 at 298.15 K. Compute &H° and	 of Cw.
2.18 A thermodynamic study of DyCI 3 (E.H.P. Cordfunke, AS Booji,
and M. Yu. Furkaliouk, J. Chcm. Thermodynamics 28, 1387 (1996))
determined its standard enthalpy of formation from the following
information

(1) DyC1 3 (s) - DyCI3 (aq,in 4.0 MHCI)
Ar11 = -180.06 kJmol

(2-
Dy(s) + 3HCI(aq,4.0 M) -i DyCI3 (aq, in 4.0 M HCI) +2112(g)

11e = -699.43 kJmo1

(3)H 2 (g) +Cl2 (g) -. HCI(aq,4.0 M)
A,lf = -158.31 kimol'

Determine LsrH°'(DyCI3 ,$) from these data.
2.19 Seakins et a!	 (P.W. Seakins, MJ. Pilling, J.T. Niirancn,
D. Gutman, and LN. Xrasnoperov, J. Phys. Chem. 96, 9847 (1992))
report EsH for a variety of alkyl radicals in the gas phase-
information which is applicable to studies of pyrolysis and the
oxidation reactions of hydrocarbons. This information can be
combined with thermodynamic data on alkenes to determine the
reaction enthalpy for possible fragmentation of a large alkyl radical
into smaller radicals and alkenes. Use the following set of data to
compute the standard reaction enthalpies for three possible fates of
the tert-butyl radical, namely (a) tert-C4 H 9 -.+ sec-C4H9,
(b) tert-C4 l19 -+ C3 11 6 + CH 3 , (c) tert-C4 H 9 -. CFl4 + C214.
Species:	 C2 H,sec-C4 H 9 tert-C4H9
rH/ (kJ moI) +121.0 +67.5	 +51.3

2.20 Alkyl radicals are important intermediates in the combustion and
atmospheric chemistry of hydrocarbons. N. Cohen has reported group
additivity tables for the thermochemistry of alkyl radicals in the gas
phase (N. Cohen, J. Phys. Chem. 96, 9052 (1992)). He suggests
computing enthalpies of formation based on the following bond-
dissociation energies (AU) for C-H bonds: primary (-(H)C(H)-H),
420.5 kJmoL'; secondary (-(C)CfH)-H), 410.5 kimol'; tertiary
(-(C)C(C)-H), 398.3 kJmol* Estimate t51/1e of (a) C2 H 5 , (b) see-
C4 H9. and (c) tert-C4 H 9 . (AçH(2-methylpropane, g) =
-134.2 kJmoI.)

2.21 Silylene (S1H 2) is a key intermediate in the thermal
decomposition of silicon hydrides such as silane (SiH 4) and disilane
(Si2 H6). Moffat et aL (H.K. Moffat, K.F. Jensen, and R.W. Carr, J. Phys.
Chem. 95. 145 (1991)) report AH°(SiH7 ) = +274 kJmol. If

1H°(SiH4 ) = +34.3 kJmoI and ArH(5i2 Hs) = +80.3
kJmoI (CRC Handbook (1995)), compute the standard enthalpies
of the following reactions:

(a)SiH 4 (g) - SIH2 (g) + H2(g)

(b)S' 2 11 6 (g) --- SiH2 (g) + SiH4(g)

2.22 Silanonc (SiH 2 0) and silanol (SiH 3 0H) are species believed to be
important in the oxidation of silane (SiH 4). These species are much
more elusive than their carbon counterparts. Darling and Schlegel
(C.L Darling and H.B. Schlegel, J. Phys. Chem. 97, 8207 (1993)) report
the following values (converted from calories) from a computational
study: A 1/f(5iH2 0) = -98.3 kJmol' and i 1 Ii°(SiH3 01,1) =
-282 kJmol. Compute the standard enthalpie5 of the following
reactions:

(a)Sil-l 4 (g) + C 2 (g) - SiH30H(g)

(b)SiH 4 (g) + 02(9) -I SiH 20(g) + H20(l)

(c)SiH 3 0H(g) -s SiH 7 0(g) + H2(g)

Note that rH(5jH4 , g) = +34.3 Id mo1 (CRC Handbook (1995)).
2.23 Polytropic processes are defined as those that satisfy the
condition PV = C, where C is a constant. In one experiment.
1.00 mol of 'air molecules' is compressed from 1.00 bar to 10.0 bar at
25°C by two different combinations of reversible polytropic
processes: (1) heating at constant volume to the final pressure,
followed by cooling at constant pressure, (2) adiabatic compression to
the final volume, followed by cooling at constant volume. (a) Sketch
these processes on a pV diagram and identify the value of n for each
step in each process. (b) Calculate q, iv, AU, and AH for each step in
the processes and for the overall process. Note that the overall process
can be accomplished in one isothermal reversible step. Assume air is a
perfect diatomic gas with Ce ,,, = 7 R.

2.24 For reversible polytropic processes described by the general
relation pv" = C, derive the following expressions for work and
heat

W RT1 { 
^__

=-
n-I

q	
(n - y)RT1 { ()

(n-I)(y1)
=	

--	
_lI

Show that these expressions reduce to already familiar expressions for
o = 0, 1, ', and ft.).

2.25 From the enthalpy 0-combustion data in Table 2.5 for the
alkanes methane through octane, test the extent to which the
relation A.Jie = k(M/gmol') holds and find the numerical values
for k and n. Predict LtHe for decane and compare to the known
value.

2.26 Ammonia is compressed in a piston-cylinder apparatus from an
initial state of 30°C and 500 kPa to a final pressure o11400 kPa. The
following data were obtained during the process.

p/kPa	 500 653 802 945 1100 1248 1400
V/L	 1.25 1.08 0.96 0.84 0.72	 0.60	 0.50

(a) Is this a polytropic process? (See Problem 2.23 for the definition of
a polytropic process.) If so, what is n? (b) Calculate the work dine on
the ammonia. (c) What is the final temperature?
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In this chapter wr twqn to unfoldsome of the powerof thermodynamics by showing how to
etabIish reluitioris bctwen different properties of a system. The procedure we use is based
on the experimental fact that the internal energy and the entholpyare state functions, and
we derive (1 number of relations between observables by exploring the mathematical
consequences of these facts. We shall see that one very useful aspect of thermodynamics
is that a property can be measured indirectly by measuring others and then combining their
values, The relations we derive also enable us to discuss the liquefaction of gases and to
establish a quantitative relation between the heat capacities of a substance at constant
pressure and constant volume.

State functions and exact
differentials

31	 State functions

3.2	 The temperature dependence
of the enthalpy

3.3	 The relation between C, and
cp

Checklist of key ideas
We saw in Section 2.2 that properties that are independent of how a sample is prepared

Further reading	 are called state functions. Such properties can be regarded as functions of variables,
such as pressure and temperature, that define the current state ef the system. The

Exercises	 internal energy and enthalpy are examples of state functio,. for they depend on the
current state of the system and are independent of its previous history. Properties that

•obIems relate to the preparation of the state are called path functions. Examples of path
functions are the work that is done in preparing a state and the energy transferred as
heat. We do not speak of a system in a particular state as possessing work or heat. In
each case, the energy transferred as work or heat relates to the path being taken, not to
the current state itself.

State functions and exact differentials
We can use the mathematical properties of state functions to draw far-reaching conclusions
about the relations between physical properties and establish connections that may be
completely unexpected. The practical importance of these results is that we can combine
measurements of different properties to obtain the value of a property we require.
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Internal
energy, U

Path 2,
. O,.	 ' 0

Path 1,	
q

w w0, q = 0

Temperature, T

;i

3.1 State functions

Consider a system undergoing the changes depicted in Fig. 3.1. The initial state of the system
is I and in this state the internal energy is U1 . Work is done by the system as it expands
adiabatically to a state f. In this state the system has an internal energy U1 and the work
done on the system as it changes along Path I from ito I is w. Notice our use of language: U
is a property of the state; w is a property of the path. Now consider another process, Path 2,
in which the initial and final states are the same but in which the expansion is not adiabatic.
The internal energies of both the initial and the final states are the same as before (because
U is a state function). However, in the second path an energy q' enters the system as heat
and the work w1 is not the same as w. The work and the heat are path functions. In terms of
the mountaineering analogy introduced in Section 2.2, the change in altitude (a state
function) is independent of the path, but the distance travelled (a path function) does
depend on the path taken between the fixed endpoints.

(a) Exact and inexact differentials
If a system is taken along a path (for example, by heating it), U changes from Uj to U1 , and
the overall change is the sum (integral) of all the infinitesimal changes along the path:

AU=fdU	 (1)

The value of AU depends on the initial and final states of the system but is independent of
the path between them. This path-independence of the integral is expressed by saying that
dU is an exact differential. In general, an exact differential is an infinitesimal quantity
which, when integrated, gives a result that is independent of the path between the initial
and final states.

When a system is heated, the total energy transferred as heat is the sum of all individual
contributions at each point of the path:

q 	 dq	 (2)
,path

Notice the difference between this equation and eqn 1. First, we do not write &, because q
is not a state function and the energy supplied as heat cannot be expressed as qf - q1.
Secondly, it is necessary to specify the path of integration because q depends on the path
selected (for example, an adiabatic path has q 0, whereas a nonadiabatic path between
the same two states would have q 3A 0). This path-dependence is expressed by saying that dq
is an inexact differential. In general, an inexact differential is an infinitesimal quantity that,
when integrated, gives a result that depends on the path between the initial and final states.
Often dq is written dq to emphasize that it is inexact.

The work done on a system to change it from one state to another depends on the path
taken between the two specified states; for example, it is different if the change takes place
adiabatically from if it takes place nonadiabatically. It follows that dw is an inexact
differential. It is often written dw.

[xarnplc 3.1 C:llcul;lting work, heat and internal energy

Consider a perfect gas inside a cylinder fitted with a piston. Let the initial state be T. V1 and
the final state be T, V1 . The change of state can be brought about in many ways, of which the
two simplest are the following: Path I, in which there is free expansion against zero external
pressure; Path 2, in which there is reversible, isothermal expansion. Calculate w, q, and AU
for each process.

Volume, V

3.1 As the volume and temperature of a system are
changed, the internal energy changes. An adiabatic
and a non-adiabatic path are shown as Path I and
Path 2, respectively): they correspond to different
values of q and w but to the same value of 5U.
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Mdhod To find a starting point for a calculation in thermodynamics, it is often a good idea
to go back to first principles, and to look for a way of expressing the quantity we are asked to
calculate in terms of other quantities that are easier to calculate. Because the internal
energy of a perfect gas arises only from the kinetic energy of its molecules, it is independent
of volume; therefore, for any isothermal change. AU = 0. We also know that in general
AU = q + w. The question depends on being able to combine the two expressions. We
derived a number of expressions for the work done in a variety of processes in Chapter 2,
and here we need to select the appropriate ones.

Answer Because AU = 0 for both paths and AU = q + w, in each case q = —w. The work
of free expansion is zero (Section 2.3b), so in Path I, w = 0 and q = 0. For Path 2, the work
is given by eqn 2.13, so w = —nRT In (V1/ V1 ) and consequently q = nRT ln(Vr/V1).

Self-test 3.1 Calculate the values of q, w, and AU for an irreversible isothermal expansion
of a perfect gas against a constant nonzero external pressure.

Eq =pAV, w = PeM', AU = 01

(b) Changes in internal energy
We shall now begin to unfold the consequences of dU being an exact differential by noting
that, for a closed system of constant composition (the only type of system considered in this
chapter), U is a function of volume and temperature.' When V changes to V + dV at
constant temperature, U changes to

'=+ au) dV(8V T

The coefficient (U/M, the slope of a plot of U against Vat constant temperature, is the
partial derivative 2 of U with respect to V. If, instead. T changes to T + dT at constant
volume, the internal energy changes to

flUU' = U ± () dr

Now suppose that V and I both cl,nge infinitesimally. The new internal energy, neglecting
second-order infinitesimals (those proportional to dVdT), is

= U +()v+ ()dT

As a result of the infinitesimal changes in conditions, the internal energy U differs from U
by the infinitesimal amount dU, Therefore, from the last equation we obtain the very
important result that

dU = ().v+ ('U)dT	 (3)
a_v TT

The interpretation of this equation is that, in a closed system of constant composition, any
infinitesimal change in the internal energy is proportional to the Iflflnitesimal changes of
volume and temperature, the coefficients of proportionality being the partial derivatives.

1 U could be regarded as a functions of V, T, and p but, because there is an equation of state it is possible to eopnrm p in terms o
V and T, so p.s not an independent variable. We could have chosen p. Ton p. V as independent variables. but V. 1' fit our
purpose

2	 Partial derivatives are reviewed in further rnformnfjon I.
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>1

C

	

	 RepulsionsI
WI dominant
C,

Perfect gas

In every case, a partial derivative is the slope of a graph of the property of interest
against one of the variables on which it depends (recall Fig. 2.12), all the other variables
being held constant. In many cases the slopes have a straightforward physical
interpretation, and thermodynamics gets shapeless and difficult only when that meaning
is not kept in sight. In the present case, we have already met (0U/0T) in eqn 2.19, where
we saw that it is the constant-volume heat capacity, C i,. Therefore, we can write

dU= ()dv+cvdT	 (4)

The other coefficient, (U/lV) T, plays a major role in thermodynamics because it is a

Attractions	 measure of the variation of the internal energy of a substance as the volume it occupies is

dominant

	

	 changed at constant temperature. We shall denote it 1t (because it has the same dimensions
as pressure), and call it the internal pressure:

(lU\
'rT

= 	 v) •	
[5]

Volume, V

3.2 For a perfect gas, the internal energy is
independent of the volume (at constant
temperature). If attractions are dominant in a real
gas, the internal energy increases with volume
because the molecules become further apart on
average. If repulsions are dominant, the internal
energy decreases as the gas expands.

niyri	
Vacuumpressure	 'In$

gas

3.3 A schematic diagram of the apparatus used by
Joule In an attempt to measure the change in
internal energy when a gas expands isothermally.
The heat absorbed by the gas is proportional to the
change in temperature of the bath.

We shall see that the internal pressure is a measure of the strength of the cohesive forces in
the sample. Then

dU=acdV+Cy(IT	 (6)

If the internal energy increases (dU >0) as the volume of the sample expands isothermally
(dV >0), which is the case when there are attractive forces between the particles, a graph of
internal energy against volume slopes upwards and it.>0 (Fig. 3.2). When there are no
interactions between the molecules, the internal energy is independent of their separation
and hence independent of the volume the sample occupies: hence 5T = 0 for a perfect gas.

The statement 7t 1 = 0 (that is, the internal energy is independent of the volume occupied by
the sample) can be taken to be the definition of a perfect gas, for later we shall see that it
implies the equation of state pV = nRT.

(c) The Joule experiment
James Joule thought that he could measure 7c1 by observing the change in temperature of a
gas when it is allowed to expand into a vacuum. He used two metal vessels immersed in a
water bath (Fig. 3.3). One was filled with ir at about 22 atm and the other was evacuated.
He then tried to measure the change in temperature of the water of the bath when a
stopcock was opened and the air expanded into a vacuum. He observed no change in
temperature.

The thermodynamic implications of the experiment're as follows. No work was done in
the expansion into a vacuum, so w = 0. No heat entered or left the system (the gas) because
the temperature of the bath did not change, so q = 0. Consequently, within the accuracy of
the experiment, A U = 0. It follows that U does not change much when a gas expands
isothermally and therefore that nT = 0.

Joule's experiment was crude. In particular, the heat capacity of the apparatus was so
large that the temperature change that gases do in fact cause was too small to measure.
His experiment was on a par with Boyle's: he extracted an essential limiting property of a
gas, a property of a perfect gas, without detecting the small deviations characteristic of
real gases.

Illustration
For ammonia, 7rT =840Pa at 300K and 1.0 bar, and
Cti,m = 27.32 J K mo1 1 . The change in molar internal energy of
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ammonia when it is heated through 2.0 K and compressed through
100 cm3 is approximately

MJm (80Jm 3 moI)x(-10OxI0 6 m3)

+ (27.32 JK 1 mol) x (2.0 K)

- 0.084 Jrnol +55 JmoI' = +55 Jmol

Note that the contribution of the heating term greatly dominates that of the compression
term for this gas.

(d) Changes in internal energy at constant pressure
Partial derivatives have many useful properties and some that we shall draw on frequently
are reviewed in Further information 1. Skilful use of them can often turn some unfamiliar
quantity into a quantity that can be recognized, interpreted, or measured.

As an example, suppose we want to find out how the internal energy varies with
temperature when the pressure of the system is kept constant. If we divide both sides of
eqn 6 by dT and impose the condition of constant pressure on the resulting differentials, so
that dU/dT on the left becomes (ZU/T), we obtain

18U\	 fV\
= mr()+Cv

It is usually sensible in thermodynamics to inspect the output of a manipulation like this to
see if it contains any recognizable physical quantity. The differential coefficient on the right
in this expression is the slope of the plot of volume against temperature (at constant
pressure). This property is normally tabulated as the expansion coefficient, a, of a
substance, 3 which is defined as

I (8V\
[7]

A large value of a means that the volume of the sample responds strongly to changes in
temperature. Some experimental values are given in Table 3.1.

Example 3.2 Using the expansion coefficient of a gas

Derive an expression for the expansion coefficient for a perfect gas.

Method The expansion coefficient is defined in eqn 7. To use this expression, we simply
substitute the expression for V in terms of  obtained from the equation of state for the gas.
As implied by eqn 7, the pressure, p, is treated as a constant-

Table 3.P Expansion coefficients (a) and iso-
thermal compressibilities (Kr)

Answer (a) Because pV = nRT, we can write

-
 I (

a(nUlp)' - nR -
3T )PVT

Substance a/(10 4 K) FCr/(10'atm')	 The higher the temperature, the less responsive is its volume to a change in temperature.

Benzene	 12.4	 92.1
Diamond	 0.030	 0.187	 Self-test 3.2 Evaluate a for a gas for which the equation of state is p = nRT/(V - nb)
Lead	 0.861	 2.21	 [ - (1 - b/Vm)/TJ
Water	 2.1	 49.6

• More values are given in the Data section at the end	 3 As for heat calpaciics, the expanson coefficients of a reiniuc desend on whether or not the composition is allowed to charrgt
of this volume.	 throughout this chapter, we deal only with pure substaOce, so this complication can be disregarded.
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When we introduce the definition of at into the equation for (8U/eT), we obtain

(U\

IP

.nrV + C,
aT

This equation is entirely general (provided the system is closed and its composition is
constant). It expresses the dependence of the internal energy on the temperature at
constant pressure in terms of CV, which can be measured in one experiment, in terms of e,
which can be measured in another, and in terms of the quantity ,t-. For a perfect gas,
nT = 0, so

()= 
C, (9)°

That is, the constant-volume heat capacity of a perfect gas is equal to the slope of a plot of
internal energy against temperature at constant pressure as well as (by definition) to the
slope at constant volume.

At this stage we know the slope of U with respect to Tat constant volume (the constant-
volume heat capacity) and the slope of U with respect to Tat constant pressure, eqn 8. The
fact that the former expression is so simple strongly suggests that it is sensible to treat U as
a function of the volume, and to use it in thermodynamics when V is under our control. We
saw a hint of that simplicity earlier in the expression AU = q.

3,2 The temperature dependence of the enthalpy

We can carry out a similar set of operations on the enthalpy, H = U + pV. The quantities U,
p, and V are all state functions; therefore H is also a state function, and hence dH is an exact
differential.

(a) Changes in the enthalpy at constant volume
The variation of enthalpy with temperature at constant pressure is simply the constant-
pressure heat capacity, C,,. The simplicity of this relation strongly suggests that H will prove
to be a useful thermodynamic function when the pressure is under our control. We saw a
sign of that in the relation J-1 = q,, (eqn 2.24). We shall therefore regard H as a function of
p and T, and adapt the argument in Section 3.1 to find an expression for the one
temperature variation we currently lack, the variation of H with temperature at constant
volume. This relation will prove useful for relating the heat capacities at constant pressure
and volume and for a discussion of the liquefaction of gases.

By the same argument as for U (but with pin place of V) we find that, for a closed system
of constant composition,

	

f\	 I
dH	

H

	

=( . —J	 dp+(J dT	 (10)

	

\P/r	 \ Ip

We recognize the second coefficient as the definition of the constant-pressure heat
capacity, C, 50

dH 1H) dp + C, dT (11)

The manipulation of this expression is slightly more involved than before, but we show in the
Justification below that it implies that

)= (i _)c
O(12)

(8)
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where the isothermal compressibility, Kr, is defined as

I fV\
KT = - i;	 )

and the Joule-Thomson coefficient, ju, is defined as

(Or

H

[13]

[14]

Equation 12 applies to any substance. Because all the quantities that appear in it can be
measured in suitable experiments, we now know how H varies with T when the volume of
the sample is held constant.

Justihctirjn :i.i

First, divide eqn 11 through by dT and impose constant volume:

IOH\ fH\ ("PT) +C,
—)

The third differential coefficient looks like something we ought to recognize, and is
perhaps related to (V18T), the expansion coefficient. It follows from the chain relation
in Further information 7 that

() (i) (Y)

and therefore that

(Op'\__

T) v

Unfortunately, (OT/OV) occurs instead of (V/T). However, another relation between
partial differentials (see Further information ;) allows us to invert partial derivatives and
to write (ay/Ox) = 1/(0x/y), and leads to

(ap^ - _______ -

- _______ -

Next, we must change (OH/Op)T into something recognizable. The chain relation lets us
write this partial derivative as

(1H)	 _

- (Op/OT)11(OT/eH)

Both derivatives may be brought up into the numerator:

(1H)	 (OT (OH"1

ai'r' 	 p)HT)P

and we can recognize both the constant-pressure heat capacity. C,,, and the Joule-
Thomson coefficient p as defined in the text. Therefore,

M() =_ cp	 (15:

When we use this expression in the first equation in this Justification, we obtain eqn 12.

(b) The isothermal compressibility
The negative sign in the definition of KT, eqn 13, ensures that it is positive, because an
increase of pressure, implying a positive dp, brings about a reduction of volume, a negative
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dv. The isothermal compressibility is obtained from the slope of the plot of volume against
pressure at constant temperature (that is, it is proportional to the slope of an isotherm).
Some values of KT are listed in Table 3.1. Its value for a perfect gas is obtained by
substitution of the perfect gas equation of state into eqn 13, which gives

- i(a(nRT/p)\1	nRT( 1\ _!	 (160
- v	 op )	 V	 p2 ) p

This expression shows that, the higher the pressure of the gas, the lower its compressibility.

Example 3.3 LJsinq the isothermal compressibility

The isothermal compressibility of water at 20 CC and I atm is 4.94 x 10_ 6 atm. What
change of volume occurs when a sample of volume 50 cm  is subjected to an additional
1000 atm at constan1Perature?

Method We know from the definition sc. that, for an infinitesimal change of pressure at
constant temperature, the volume chanes by

dV = (—aV) dp = —scTVdp

Therefore, for a finite change in pressure, we need to integrate both sides. When confronted
by an integration, it is often a useful first approximation (for substances other than gases) to
suppose that the integrand is constant over the range of integration.

Answer The integral we need to evaluate is
Thermocouples Gas at

Porous	 Gas at
barrier	 high pressure

3.4 A diagram of the apparatus used for measuring
the Joule-Thomson effect. The gas expands through
the porous barrier, which acts as a throttle, and the
whole apparatus is thermally insulated. As explained
in the text, this arrangement corresponds to an
isenthalpic expansion (expansion at constant
enthalpy). Whether the expansion results in a
heating or a cooling of the gas depends on the
conditions..

f Pc

J
dV= — J kTVdP

V1

The integral on the left is AV. If we suppose that rc . and V are approximately constant over
the range of pressures of interest, we can write

fPr
AV = —KTV J dp = KrVLSP

P.

Substitution of the data into the last expression then gives

AV = —(4.94 x 10_6 atm) x (50 cm 3 ) x (1000 atm) = —0.25 cm3

Comment Because the compression results in a decrease in volume of only 0.5 per cent, the
assumption of constant V and KT is probably acceptable as a first approximation. Note that
very high pressures are needed to bring about significant changes of volume.

Self-test 3.3 A sample of copper of volume 50 cm  is subjected to an additional pressure
of 100 atm and a temperature increase of 5.0 K. Estimate the total change in volume.

[8.8 mm3]

(c) The Joule-Thomson effect

The analysis of the Joule-Thomson coefficient is central to the technological problems
associated with the liquefaction of gases. We need to be able to interpret it physically and to
measure it.

The cunning required to impose the constraint of constant enthalpy on a change of state
was supplied by Joule and William Thomson (later Lord Kelvin). They let a gas expand
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3.6 A diagram representing the thermodynamic
basis of Joule-Thomson expansion. The pistons
represent the upstream and downstream gases,
which maintain constant pressures either side of the
throttlt. The transition from the top diagram to the
bottom diagram, which represents the passage of a
given amount of gas through the throttle; occurs
without change of enthalpy.

Heater

Thermometer	 Thermometer

3.6 A schematic diagram of the apparatus used for
measuring the isothermal Joule-Thomson
coefficient The electrical heating required to offset
the cooling arising from expansion is interpreted as
8.11 and used to calculate ( TI1/p), which is then
converted to z as explained in the text.
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through a porous barrier from one constant pressure to another, and monitored the
difference of temperature that arose from the expansion (Fig. 3.4). The whole apparatus was
insulated so that the process was adiabatic. They observed a lower temperature on the low-
pressure side, the difference in temperature being proportional to the pressure difference
they maintained. This Cooling by adiabatic expansion is now called the Joule-Thomson
effect.

The thermodynamic analysis of the experiment takes as the system a sample of fixed
amount of gas. Because all changes to the gas occur adiabatically, q = 0. To calculate the
work done as the gas passes through the throttle, we consider the passage of a fixed amount
of gas from the high-pres5ure side, where the pressure isp. the temperature Ti , and the gas
occupies a volume V (Fig. 3.5). The gas emerges on the low-pressure side, where the same
amount of gas has a pressure p 1 , a temperature T1 , and occupies a volume Vr. The gas on the
left is compressed isothermally by the upstream gas acting as a piston. The relevant pressure
is pi and the volume changes from V1 to 0; therefore, the work done on the gas is
-p(O - V), or pt/. The gas expands isothermally on the right of the throttle (but possibly
at a different constant temperature) against the pres5urep 1 provided by the downstream gas
acting as a piston to be driven out. The volume changes from 0 to V1 , so the work done on
the gas in this stage is -p(V1 - 0), or -pV1. The total work done on the gas is the sum of
these two quantities, or p i V - p1 V1 . It follows that the change of internal energy of the gas
as it moves from one side of the throttle to the other is

Uir - U = w = pV1 - J1fVf

Reorganization of this expression gives

Ur +pf Vf = (J +pV1, orH = (17)

Therefore, the expansion occurs without change of enthalpy: it is an isenthalpic process, a
process at constant enthalpy.

The property measured in the experiment is the ratio of the temperature change to the
change of pressure. AT/Esp. Adding the constraint of constant enthalpy and taking the limit
of small Ap implies that the thermodynamic quantity measured is (3T/ep)11 , which is the
Joule-Thomson coefficient, ji. In other words, the physical interpretation of a is that it is the
ratio of the change in temperature to the change in pressure when a gas expands under
adiabatic conditions.

The modern method of measuring p is indirect, and involves measuring the isothermal
Joule-Thomson coefficient, the quantity

7aH
Pr = I -\iP r

The two coefficients are related by eqn 15:

Pr = -Cop

To measure p 1. , the gas is pumped continuously at a steady pressure through a heat
exchanger (which brings it to the required temperature), and then through a porous plug
inside a thermally insulated container. The steep pressure drop is measured, and the cooling
effect is exactly offset by an electric heater placed immediately after the plug (Fig. 3.6). The
energy provided by theTheater is monitored, Because the heat can be identified with the
value of All for the gas (because All = q,), and the pressure change tsp is known, the value
of Pr can be obtained from the limiting value of A.H/Ap as tsp - 0, and then converted to
p. Some values obtained in this way are listed in Table 3.2.

Real gases have nonzero Joule-Thomson coefficients and, depending on the identity of
the gas, the pressure, the relative magnitudes of the attractive and repulsive intermolecular
forces, and the temperature, the sign of the coefficient may be either positive or negative

[18[

(19)
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3.7 The sign of the Joule-Thomson coefficient, ji.
depends on the conditions. Inside the boundary, the
shaded area, it is positive and outside it is negative.
The temperature corresponding to the boundary at
a given pressure is the inversion temperature of
the gas at that pressure. For a given pressure, the
temperature must be below a certain value if
cooling is required but, if it becomes too low, the
boundary Is crossed again and heating occurs.
Reduction of pressure under adiabatic conditions
moves the system along one of the isenthatps, or
curves of constant enthalpy. The inversion
temperature curve runs through the points of the
lsenthalps where their slopes change from negative
to positive.
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Table 3.2 Inversion temperatures (T1 ), normal	 (Fig. 3.7). A positive sign implies that dT is negative when dip, is negative, in which case the
freezing (7's) and boiling (Tb) points, and Joule-	 gas cools on expansion. Gases that show a heating effect (,u <O) at one temperature show a
Thomson coefficients (js) at I atm and 298K cooling effect (p >0) when the temperature is below their upper inversion temperature, T1

(Table 3.2, Fig. 3.8). As indicated in Fig. 3.8, a gas typically has two inversion temperatures,

T11K T/X Tb/K (Katm)	 one at high temperature and the other at low.
The 'Linde refrigerator makes use of Joule-Thomson expansion to liquefy gases (Fig. 3.9).

Ar	 723	 83.8	 87.3	 The gas at high pressure is allowed to expand through a throttle; it cools and is circulated
CO2	1500	 194.7	 1.11	 past the incoming gas. That gas is cooled, and its subsequent expansion cools it still further.
He	 40	 4.2 —0.060 There comes a stage when the circulating gas becomes so cold that it condenses to a liquid.
N 2	621	 63.3	 77.4	 0.25

For a perfect gas, p = 0; hence, the temperature of a perfect gas is unchanged by Joule-

More values are given in the Data section. Thomson expansion.4 This characteristic points clearly to the involvement of intermolecular
forces in determining the size of the effect. However, the Joule-Thomson coefficient of a
real gas does not necessarily approach zero as the pressure is reduced even though the
equation of state of the gas approaches that of a perfect gas. The coefficient is an example
of a property mentioned in Section 1.4b that depends on derivatives and not on p. V. and T
themselves.

3.3 The relation between C. and C,,,

The constant-pressure heat capacity C differs from the constant-volume heat capacity C
by the work needed to change the volume of the system to maintain constant pressure. This
work arises in two ways. One is the work of driving back the atmosphere; the other is the
work of stretching the bonds in the material, including any weak intermolecular
interactions. In the case of a perfect gas, the second makes no contribution. We shall
now derive a general relation between the two heat capacities, and show that it reduces to
the perfect gas result in the absence of intermolecular forces.

(a) The relation for a perfect gas
First, we carry through the calculation for a perfect gas. In this special case, we can use
eqn 9 to express both heat capacities in terms of derivatives at constant pressure:

Cp — Cv= 
(1H\  (aU)p	 (20)

Then we introduce

H = U + pV = U + ,tRT

into the first term, which results in

CV
,M

\
C - =()+nR -)= nR

	
(21)°

This is the formal derivation of eqn 2.31.

(b) The general case
We shall now demonstrate that the general relation between the two heat capacities for any
pure substance is

Cr - CV = -
KT

4	 Simple adiabatic expansion does coot a pefrcI gas because the gas does n.o,k; recall Section 25
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3.9 the principle of the Linde refrigerator is shown
in this diagram. The gas is recirculated and, so long
as it is beneath its inversion temperature, it cools

on expansion through the throttle. The cooled gas
cools the high-pressure gas, which cools still further
an It expands. Eventually liquefied gas drips from
the throttle.

This formula is a thermodynamic expression, which means that it applies to any substance
(that is, it is 'universally true). It reduces to eqn 21 for a perfect gas when we set m = 1/T

and 1'T = I/p.

Jiistilic:itittt 1._'

A useful rule when doing a problem in thermodynamics is to go back to first principles. In
the present problem we do this twice, first by expressing C and C, in terms of their
definitions and then by inserting the definition H = U +pV:

(aH'\ (8u\
C,, — Cv

- (U(pV)'\ (EV'\
- T)+ T )	 T)

We have already calculated the difference of the first and third terms on the right, and
eqn 8 lets us write this difference as cestT V. The factor ccV gives the change in volume when
the temperature is raised, and itT = ( U/0V) converts this change in volume into a
change in internal energy. We can simplify the remaining term by noting that, because p is
constant,39- ( V'\ - /

The middle term of this expression identifies it as the contribution to the work of pushing
back the atmosphere: ('tV/8T) is the change of volume caused by a change of
temperature, and multiplication by  converts this expansion into work.

Collecting the two contributions gives

Cp -. Cl' = ca(p + ir,,)V

As just remarked, the first term on the right (epV) is a measure of the work needed to push
back the atmosphere; the second term on the right, ruItTV, is the work required to separate
the molecules composing the system.

At this point we can go further by using the result we prove in Section 5.1 that

(ap\,
itT T	 —p

When this expression is inserted in the last equation we obtain

C,, - C, = ceTV ()

The same coefficient as appears here was encountered in Justification 31, where we saw
that it is equal to 0I'KT. Therefore, this expression turns into eqn 22.

Because thermal expansivitmes, a, of liquids and solids are small, it is tempting to deduce
from cqn 22 that for them (.' z C. But this is not always so, because the compressibility KT

might also be small, so a 2 1. might be large. That is, although only a little work need be
done to push back the atmosphere, a great deal of work may have to be done to pull atoms
apart from one another as the solid expands. As an illustration, for water at 25°C, eqn 22
gives c,, = 75.3 J K' mol ' compared with Cym = 74.8 3 K ' moL t . In some cases, the
two heat capacities differ by as much as 30 per cent.
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Checklist of key ideas
E state functions
Li path functions

State functions and exact
differentials

3.1 State functions
I.] exact differential

inexact differential
Li change in internal energy

arising from changes in
volume and temperature

internal pressure )e 1, 5)
Joule experiment to show
ItT = 0
expansion coeffic i en t )x, 7)

3.2 The temperature
dependence of the enthalpy
variation of enthalpy wilt
temperature at constant
volume

isothermal
compressibility ( NT, 13)
Joule-Thomson
coefficient )i, 14)
isothermal
compressibility of a perfect
gas
Joule-Thomson effect
isenthalpic process
isothermal Joule-Thomson
coeffic:en t (jz 7 . 18)

Li inversion temperature
I Linde refrigerator

3.3 The relation between C
and C,
the relation between C,,
and C5 for a perfect gas
the relation between C,,
and C i,, for a general
substance

Further reading

Articles of general interest

S.M. Blinder, Mathematical methods in elementary . 	 R.A. Alberty, Leqendre transforms in chemical thermodynamics.
thermodynamics. i. Chem. Educ. 43, 85 (1966).	 Chem. Rev. 94, 1457 (1994).

E.W. Anacker, S.E. Anacker, and W.J. Swartz, Some comments
on partial derivatives in thermodynamics. I. ('hem. Educ. 64,
674 (1987).

G.A. Estvez, K. Yang, and B.B. Dasgupta, Thermodynamic
partial derivatives and experimentally measurable quantities. I.
Chem. Fduc. 66, 890 (1989).

Exercises
Assume that all gases are perfect and that all data refer to 298-15 K
unless stated otherwise.

3.1 (a) Show that the following functions have exact differentials:
(a) x2y + 31v 2 , ( b) xcn.sxr.

3.1 (b) Show that the following functions have exact differentials:
(a)	 (b) :(r -i- c') -I- .c.

3.2 (a) Let	 a.s7y3. Find d:.

3.2 (b) Let z =,%/(]  ± ) 1 Find dz.

3.3 (a) What is the total differential of 	 - n. 7 i 2r 2 - 2" +
2x -	 - 8? (b) Show that 8z11yctx = a2:/xiv for this function.

lcxts kind s(tLtr('t's ii) data Ir1(.J ir11orfl1I(on

M. L. McGlashan, Chemical thermodynamics. Academic Press,
London (1979).

D.M. Hirst, Mathematics for chemists. Macmillan, London
(1983).

E. Steiner, The chemistry moths book. Oxford University Press
(1996).

3.3 (b) (a) What is the total differential of a = 	 - 2.sy2 i
)h) Show that ':/ay0x =- :/xey for this function.

3.4 (a) Let z = nv v + lox + 2. Find dz and show that it is exact.

3.4 (Ia) Let z = .r y -ivy2 . Find d: and show that it is exact.

3.5 (a) Express ((1Cv1(1V)y as a second-derivative of U and find its
relation to ( (iU/ iJV). From this relation show that (('C,J'V) T = 0
for a perfect gas.

3.5 (Ia) Express 0(',,/3p) as a second-derivative of H and find its
relation to (i'f(/iTp)T. From this relation show that (("C,,0p) = 0
for a perfect gas.

i— 11



PROBLEMS

3.6 (a) By direct differentiation of H = U -f- pV, obtain a rItion
between ( iH/cU) and (ltU/JV),,.

3.6 (b) Confirm that (il/I/eu),, = I + p(CV/1JU),, by expressing
as the ratio of two derivatives with respect to volume and

then using the definition of enthalpy.

3.7 (a) Write an expression for dV given that Visa function ofp and
T. Deduce an expression for d In V in terms of the expansion
coefficient and the isothermal compressibility.

3.7 (b) Write an expression for dp given that 1) is a function of V and
T. Deduce an expression for dIn1, in terms of the expansion
coefficient and the isothermal compressibility.

3.8 (a) The internal energy of a perfect monatomic gas relative to its
value at T = 0 is I nRT. Calculate (OU/ilV) and (011/TfV),, for the
gas.

3.8 (b) The internal energy of a perfect monatomic gas relative to its
value at T = 0 is 3 nR7'. Calculate (8110p),, and (CU/il1i), for the
gas.

3.9 (a) The coefficient of thermal expansion, a, is defined in eqn 7
and the isothermal compressibility, KT, is defined in eqn 13. Starting
from the expression for the total differential dV in terms of  and j,,
show that (ilp/aT) = a/kr.
3.9 (b) Evaluate or and 'CT for a perfect gas.

3.10 (a) When a certain freon used in refrigeration was expanded'
adiabatically from an initial pressure of 32 atm and 0°C to a final
pressure of 1.00 aim, the temperature fell by 22 K. Calculate the
Joule-Thomson coefficient, i i, at 0°C. assuming it remains constant
over this temperature range.

3.10 (b) A vapour at 22 atm and 5°C was allowed to expand
adiabatically to a final pressure of 1.00 atm; the temperature fell by
10 K. Calculate the Joule-Thomson coefficient, )1, at 5°C, assuming it
remains constant over this temperature range.

3.11 (a) For a van der Waals gas, irr a/V,. Calculate AU the
isothermal reversible expansion of nitrogen gas from an initial volume
of 1.00 L to 24.8 L at 298 K. What are the values of q and iv?

3.11 (b) For a van der Waals gas, lrr = a/V. Calculate AV the
isothermal reversible expansion of argon from an initial volume of
I .(X) L to 22.1 L at 298 K. What are the values of q and w?
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3.12 (a) The volume of a certain liquid varies with temperature as

V V'{0.75 + 3.9 x 10 4 (T/K) + 1.48 x 106(T/K)2}

where V' is its volume at 300 K. Calculate its expansion coefficient, a.
at 320 K.

3.12 (b) The volume of a certain liquid varies with temperature as

V = V'10.77 + 3.7 x 10 4 (T/K) + 1.52x 106 (TI K)2}

where V' is its volume at 298 K. Calculate its expansion coefficient, a,
at 310 K.

3.13 (a) The isothermal compressibility of copper at 293 K is
7.35 x 10 7 atm'. Calculate the pressure that must be applied in
order to increase its density by 0.08 per cent.

3.13 (b) The isothermal compressibility of lead at 293 K is
2.21 x 10 -6 atm'. Calculate the pressure that must be applied in
order to increase its density by 0.08 per cent.

3.14 (a) Given that p = 0.25 K atm' for nitrogen, calculate the
value of its isothermal Joule-Thomson coefficient. Calculate the
energy that must be supplied as heat to maintain constant
temperature when 15.0 mot N 2 flows through a throttle in an
isothermal Joule-Thomson experiment and the pressure drop is
75 atm.

3.14 (b) Given that i 1.11 Katm for carbon dioxide, calculate
the value of its isothermal Joule-Thomson coefficient. Calculate the
energy that must be supplied as heat to maintain constant
temperature when 12.0 mot CO 2 flows through a throttle in an
isotherigal Joule-Thomson experiment and the pressure drop is
55 atm.

3.15 (a) to design a particular kind of refrigerator we need to know
the temperature reduction brought about by adiabatic expansion of
the refrigerant gas. for one type of freon, it = 1.2 K aim'. What
pressure difference is needed to produce a temperature drop of
5.0 K?

3.15 (b) For another type of freon (see previous exercise).
it 113 mK kPa . What pressure difference is needed to produce
a temperature drop of 4.5 K?

Problems

Assume All gases are perfect unless stated otherwise. Unless otherwise
stated, thermochemical data are for 298.15 K.

Numerical problems

3.1 The isothermal compressibility of lead is 2.21 i< 10" 2iTn
Express this value in Pa '. A cube of lead of side 10 cm at 25 "C was
to be inserted in the keel of an underwater exploration 1V camera, and
its designers needed to know the stresses in the equipment. Calculate
the change of volume of the cube at a depth of 1.000 km
(disregarding the effects of temperature). Take the mean density of

sea water as 1.03 gem - . Given that the expansion coefficient of lead
is 8.61 x iO K -- ' and that the temperature where the camera
operates is -5"C, calculate the volume of the block taking the
temperature into account too.

3.2 Calculate the change in (a) the molar internal energy and (b) the
molar enthalpy of water when its temperature is raised by 10 K.
Account for the difference between the two quantities.

3.3 The constant-volume heat capacity of a gas can be measured by
observing the decrease in temperature when it expands adiabatically
and reversibly. If the decrease in pressure is also measured, we can use
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it to infer the value of y (the ratio of heat capacities, C,,/C) and
hence, by combining the two values, deduce the constant-pressure
heat capacity. A fluorocarbon gas was allowed to expand reversibly
and adiabatically to twice its volume; as a result, the temperature fell
from 298.15 K to 248.44 K and its pressure fell from 1522.2 Torr to
613.85 Tore. Evaluate Cr.
3.4 A sample consisting of 1.00 mol of a van der Waals gas is
compressed from20.0 L to 10.0 L at 300 K. In the process, 20.2 kJ
of work is done on the gas. Given that p .= ((2ci1RT) -
with cm = 38.4 JK' mol'. a = 3.60 L2 atrnmol, and b =
0.44 Lmo1 1 , calculate AH for the process.

3.5 Estimate y (the ratio of heat capacities) for xenon at 100°C and
1.00 atm on the assumption that it is a van der Waals gas )see
Problem 3.22).

1'hvurtt ca prohk'tti '

3.6 Determine whether or not d: = xvd.r 1- xvd y is exact by
integrating it around the closed curve formed by the paths Y=
and y = .e between the points ((1,0) and (I, I).

3.7 Decide whether dq = (RT/p) rip - R dT is exact. 1 hen determine
whether multiplication of dq by l/T is exact. Comment on the
significance of your result.

3.8 Obtain the total differential of the function w - xv + r: + .1:.
Demonstrate that dw is exact by integration between the points
(0,0,0) and (1,1,1) along the two different paths (a) z = v . x and
(b)z = y =x2.

3.9 Derive the relation C i, , = -(U/V)1(OV/tT), from the
expression for the total differential of U(T, V).
3.10 Starting from the expression for the total differential of
!I(T,p), express (a"IZ'P)T in terms of (.' and the Joule-Thomson
coefficient, p.

3.11 Starting from the expression C - Ct .. = T(0p1T)5.(0V10T),
use the appropriate relations between partial derivatives to show
that

- - _________
C CV -

Evaluate C,, - Cv for a perfect gas.

3.12. From an analysis of Joule's free expansion experiment,
demonstrate that it is possible to calculate the change in
internal energy of a perfect gas for any process by knowing only
C 1, and AT.
3.13 By the consideration of a suitable cycle involving a perfect gas,
demonstrate that dq is an inexact differential and, therefore, that q is
not a state function.

3.14 Use the fact that (PU/V), = a1'V, 1 far a van der Wools gas to
show that pC',,, z (2a/RT) - b by using the definition of r and
appropriate relations between partial derivatives. (Hint: Use the
approximation pVm=RT when it is justifiable to do so.)

3.15 Obtain the expression for the total differential dp for a van der
Waals gas in terms of dT and dV. Also obtain ((IV/aT),,. Demonstrate

that dp is not an exact differential by integrating it from (T1 , V1 ) to
(T,, V,) along the two different paths, namely (a) (T,, V,
(T ,V 1 ) -. ( T2 , V,) and (b) (i' i ,V) -. (TI, V,) .... (T2 , 1/2).

3.16 Take nitrogen to be a van der Waals gas with
a = 1.408 atm L2 mol - and b = 0.03913 L mol ', and calculate
AH when the pressure on the gas is decreased from 500 atm to
1.00 aIm	 at	 300 K.	 For	 a	 van	 der	 Waals	 gas.

{(2a/RT) - h}/C,,,,. Assume C,,m = R.

3.17 The pressure of a given amount of a van der Waals gas depends
on T and V. Find an expression for dp in terms of dT and dv.
3.18 Rearrange the van der Waals equation of state to give an
expression for 7' as a function of p and V (with n constant). Calculate

and confirm that ()T/ap) 5	 11(p1)T) 1,. Go on to
confirm Euler's chain relation.

3.19 Calculate the isothermal compressibility and the expansion
coefficient of a van der Waals gas. Show, using Euler's chain relation,
that v,.R = a(V, - b).
3.20 Given that pC,, = T(cV/ iT),, - V, derive an expression for p
in terms of the van der Waals parameters a and 6, and express it in
terms of reduced variables. Evaluate p at 25°C and 1.0 aim, when the
molar volume of the gas is 24.6 LmoI_i. Use the expression obtained
to derive a formula for the inversion temperature of a van der Waals
gas in terms of reduced variables, and evaluate it for the xenon
sample.

3.21 The thermodynamic equation of state ()U/8V) T =
7(p/aT - p was quoted in the chapter. Derive its partner

1-1=-TI-I i-V
Ell?

from it and the general relations between partial differentials.

3.22 Show that for a van der Waals gas,

I	 (V -
C,,,, - C5,,, = ).R	

- 4V1Tr

and evaluate the difference for xenon at 25°C and 10.0 atm.

3.23 The speed of sound, c,, in a gas of molar mass Mis related to the
ratio of heat capacities y by r, = (yRT/M). Show that

= (yp1p) 1 ', where p is the mass density of the gas. Calculate
the speed of sound in argon at 25°C.

tF'Ii)&'!tt	 'iipp(t't) )iy Larnicli (.Iiiinta

3.24 In 1995, the Intergovernmental Panel on Climate Change
considered a global average temperature rise of 1.0-3.5°C likely by
the year 2100, with 2.0°C its best estimate )IPCC Second Assessment
Synthesis of Scientific-Technical Information Relevant to Interpreting
Article 2 of the UN Framework Convention on Climate Change
(1995)). Predict the average rise in sea level due to thermal expansion
of sea water based on temperature rises of 1.0°C, 2.0°C, and 3.5°C
given that the volume of the Earth's oceans is 1.37 x 106 km 3 and
their surface area is 361 x 106 km', and state the approximations
that go into the estimates.



PROBLEMS

3.25 Concerns over the harmful effects of chlorofluorocarbons on
stratospheric ozone have motivated a search for new refrigerants.
One such alternative is 2,2-dichloro- 1,1.1 -trifluoroethane (rcfriq-
erant 123). Younglove and McLindcn published a compendium of
thermophyxical properties of this substance (BA. Younglove and
M. McLinden, J. Phys. Chem. Ref. Data 23, 7 (1994)), from which
properties such as the Joule-Thomson coefficient p can he computed.

(a) Compute it	 at	 1.00 bar and 50C C given	 that

(eH/p) = -3.29 x 103 J MPa' mol	 and Cp, = 110.0 J K'

mo1.

(b) Compute the temperature change that would accompany
adiabatic expansion of 2.0 mcii of this refrigerant from 1.5 bar to
0.5 bar at 50C.

3.26 Another alternative refrigerant (see preceding problem) is
1 • 1 • I ,2-tetrafluoroethane (refrigerant HFC-1 34a). till ncr-Roth and
Baehr published a compendium of thermophysical properties of this
substance (R. Tillner-Roth and H.D. Baehr, I. Phys. Chem. Ref. Data
23. 657 (1994)), from which properties such as the Joule-Thomson
coefficient p can be computed.

(a) Compute It at 0.100 MPa and 300 K from the following data (all
referring to 300 K).

p/MPa	 0.080 0.100 0.12
Specific enthalpy/(kJkg 1 )	 426.48 426.12 425.76

(The specific constant-pressure heat capacity is 0.7649 Id K' kg-'.)
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(b) Compute It at 1.00 MPa and 350 K from the following data (all
referring to 350 K).

p/MPa	 0.80	 1.00	 1.2

Specific ent hal p y l(kJ kg -1 )	 461.93 459.12 456.15

(The specific constant-pressure heat capacity is 1.0392 U K - ' kg'.)

3.27 A cylindrical container of fixed total volume is divided into
three sections, S 1 . S 2 . and 5 3 . The sections S, and S are separated by
an adiabatic piston, whereas S 2 and 5 3 are separated by a diathermic
(heat-conducting) piston. The pistons can slide along the walls of the
cylinder without friction. Each section of the cylinder contains
1.00 mcii of a perfect diatomic gas. Initially the gas pressure in all
three sections is 1.00 bar and the temperature is 298 K. the gas In s
is heated slowly until the temperature of the gas inS 3 reaches 348 K.
Find the final temperature, pressure and volume, as well as the
change in internal energy for each section. Determine the total
energy supplied to the gas in S.

3.28 Solve Problem 3.27 for the case where both pistons are
(a) adiabatic, (b) diathermic.

3.29 A gas obeying the equation of state p(V - h) = nRT is
subjected to a Joule-Thomson expansion. Will the temperature
increase, decrease, or remain the same?

3.30 A gas obeys the equation of state V, = RT/p t aT2 and its

constant-pressure heat capacity is given by C,.. = A + BT + Cp,
where a, A. B. and C are constants independent of T and p. Obtain
expressions for (a) the Joule-Thomson coefficient and (b) 'the
constant-volume heat capacity of the gas.



4	 The Second Law:

the concepts

Checklist of key ideas

Further reading

Exercises

Problems

The purpose of this chapter is to explain the origin of the spontaneity of physical and
chemical change, We examine two simple processes and show that a property, the entropy,
can be defined, measured, and used to discuss spontaneous changes quantitatively. The
chapter also introduces a major subsidiary thermodynamic property, the Gibbs energy. The
introduction of the Gibbs energy enables the spontaneity of a process to be expressed solely
in terms of the properties of a system (instead of having to consider entropy changes in the
system and its surroundings). The Gibbs encrgya)so enables us to predict the maximum non-
expansion work that a process con do.

Some things happen naturally: some things don't. A gas expands to fill the available volume,
a hot body cools to the temperature of its surroundings, and a chemical reaction runs in one
direction rather than another. Some aspect of the world determines the spontaneous
direction of change, the direction of change that does not require work to be done to bring
it about. We can confine a gas to a smaller volume, we can cool an object with a
refrigerator, and we can force some reactions to go in reverse (as in the electrolysis of
water). However, none of these processes happens spontaneously; each one must be brought
about by doing work.

The recognition of two classes of process, spontaneous and non-spontaneous, is
summarized hy the Second Law of thermodynamics. This law may be expressed in a variety
of equivalent ways. One statement was formulated by Kelvin:

No process is possible in which the sole result is the absorption of heat from a
reservoir and its complete conversion into work,

for example, it has proved impossible to constru&an engine like that shown in Fig. 3.1, in
which heat is drawn from a hot reservoir and completely converted into work. All real heat
engines have both a hot source and a cold sink, and some heat is always discarded into the
cold sink and not converted into work. The Kelvin statement is a generalization of another
everyday observation, that a ball at rest on a surface has never been observed to leap

The direction of spontaneous
change

4.1
	

The dispersal of energy

4.2
	

Entropy

4.3
	

Entropy changes
accompanying specific
processes

4.4
	

The Third law of
thermodynamics

4.5
	

Reaching very low
temperatures

Concentrating on the system

4.6
	

The Helmhgltz and Gibbs
energies

4.7
	

Standard molar Gibbs
energies



i The direction of spontaneous change for a ball
bouncing on a floor. On each bounce some of its
energy is degraded into the thermal motion of the
atoms of the floor, and that energy disperses. The
reverse has never been observed to take place on a
macroscopic scale.
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spontaneously upwards. An upward leap of the ball would be equivalent to the conversion of
heat from the surface into work.

The directiot, of spontaneous change
What determines the direction of spontaneous change? It is not the total energy of the
isolated system. The First law of thermodynamics states that energy is conserved in any
process, and we cannot disregard that law now and say that everything tends towards a
state of lower energy: the total energy of an isolated system is constant.

Is It perhaps the energy of the system of interest that tends towards a minimum? Two
arguments show that this cannot be so. First, a perfect gas expands spontaneously into a
vacuum, yet Its internal energy remains constant as it does so. Secondly, if the energy of a
system does happen to decrease during a spontaneous change, the energy of its
surroundings must increase by the same amount (by the First Law). The increase in
energy of the surroundings is just as spontaneous a process as the decrease in energy of the
system.

When a change occurs, the total energy of an isolated system remains constant but it is
parcelled out in different ways. Can it be, therefore, that the direction of change is related to
the distribution of energy? We shall see that this idea is the key, and that spontaneous
changes are always accompanied by a dispersal of energy into a more disordered form.

Hot 8

f.M..
lI€niit

How of
energy

\A'i,rk

4. 1 The Kelvin statement of the Second Law denies
the possibility of the process illustrated here, in
which heat is changed completely into work, there
being no other change. The process is not in
conflict with the First Law because energy is
conserved.

41 The dispersal of ener9y
The role of the distribution of energy can be illustrated by thinking about a ball (the system
of interest) bouncing an a floor (the surroundings). The ball does not rise as high after each
bounce because there are inelastic losses in the materials of the ball and floor (that i, the
conversion of kinetic energy of the ball's overall motion into the energy of thermal motion).
The direction of spontaneous change is towards a sLate in which the ball is at-rest with all its
energy degraded into the thermal motion of the atoms of the virtually infinite floor
(Fig. 4.2).

A ball resting on a warm floor has never been observed to start bouncing. For bouncing to
begin, something rather special would need to happen. In the first place, some of the
thermal motion of the atoms in the floor would have to accumulate in a single, small object,
the ball. This accumulation requires a spontaneous localization of energy from the myriad
vibrations of the atoms of the floor into the much smaller number of atoms that constitute
the ball (Fig. 4.3). furthermore, whereas the thermal motion is disorderly, for the ball to
move upwards its atoms must all move in the same direction. The localization of random
motion as orderly motion is so unlikely that we can dismiss it as virtually impossible.'

We appear to have found the signpost of spontaneous change: we look for the direction
of change that leads to the greater chaotic dispersal of the total energy of the isolated
system. This principle accounts for the direction of change of the bouncing ball, because its
energy is dissipated as thermal motion of the atoms of the floor. The reverse process is not
spontaneous because it is highly improbable that the chaotic distribution of energy will
become organized into localized, uniform motion. A gas does not spontaneously contract,
because to do so the chaotic motion of its molecules would have to take them all into the
same region of the container; the opposite change, spontaneous expansion, is a natural
consequence of increasing disorder. An object does not spontaneously become warmer than
its surroundings because it is highly improbable that the jostling of randomly vibrating
atoms in the surroundings will lead to the accumulation of excess thermal motion in the

It Occurs nfl a much millIe, scale in the form ,,J rhe fluctnaiion, Of posiiion known as Brownian motron
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(a)	 fbI

The molecular interpretation of the irreversibility expressed by the Second Law. a) A ball resting on
a warm surface; the atoms are undergoing thermal motion (chaotic vibration, in this instance), as
indicated by thearrows. )b) For the ball to fly upwards, some of the random vibrational motion would
have to change into coordinated, directed motion. Such a conversion is highly improbable.

object. The opposite change, the spreading of the objects energy into the surroundings as
thermal motion, is a natural consequence of chaos.

It may seem very puzzling that collapse into disorder can account for the formation of
such ordered substances as crystals or proteins. Nevertheless, in due course we shall see that
organized structures cati emerge as energy and matter disperse. We shall see, in fact, that
collapse into disorder accounts for change in all its forms.

4.2

The First Law of thermodynamics led to the introduction of the internal energy, U. The
internal energy is a state function that lets us assess whether a change is permissible: only
those changes may occur for which the internal energy of an isolated system remains
constant. The law that is used to identify the signpost of spontaneous change, the Second
Law of thermodynamics, may also be expressed in terms of another state function, the
entropy, S. We shall see that the entropy (which we shall define shortly, but which is a
measure of the molecular disorder of a system) lets us assess whether one state is accessible
from another by a spontaneous change. The First Law uses the internal energy to identify
permissible changes: the Second Law uses the entropy to identify the spontaneous changes
among those permissmb(e changes.

The Second Law of thermodynamics can be expressed in terms of the entropy:

The entropy of an isolated system increases in the course of a spontaneous
change:

\S, >0	 (1)
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where S is the total entropy of the system and its surroundings. Thermodynamically
irreversible processes (like cooling to the temperature of the surroundings and the free
expansion of gases) are spontaneous processes, and hence most be accompanied by an
increase in entropy.

(a) The thermodynamic definition of entropy
The thermodynamic definition of entropy concentrates on the change in entropy itS that
occurs as a result of a physical or chemical change (in general, as a result of a process). The
definition is motivated by the idea that a change in the extent to which energy is dispersed
in a disorderly manner depends on the quantity of energy transferred as heat. As we have
remarked, heat stimulates disorderly motion in the surroundings. Work, which stimulates
uniform motion of atoms in the surroundings, does not change the degree of disorder, and
50 (foes not change the entropy.

The thermodynamic definition of entropy is based on the expression

itS = 
tq	

]2]
T

For a measurable change between two states i and I' this expression integrates to

(3)

That is, to calculate the difference in entropy between any two states of a system, we find a
reversible patti between them, and integrate the heat supplied at each stage of the path
divided by the temperature at which the heat is supplied.

Mc,ttcuiar nh rpri.iIin .i The molecules in a system at high temperature are highly
disorganized, either in terms of their locations or in terms of the occupation of their
available translational, rotational, and vibrational energy states. A small additional transfer
of energy will result in a relatively small additional disorder, much as sneezing in a busy
street may be barely noticed. In contrast, the molecules in a system at tow temperature
have access to far fewer energy states (at T = 0, only the lowest state is accessible), and
the same quantity of heat will have a pronounced effect on the degree of disorder, much as
sneezing in a quiet library can he very disruptive. Hence, the change in entropy when a
given quantity of heat is transferred will be greater when it is transferred to a cold body
than when it is transferred to a hot body. This argument suggests that the change in
entropy should be inversely proportional to the temperature at which the transfer takes
place, as in eqn 2.

According to eqn 2, when the heat transferred is expressed in joules and the temperature
is in kelvins, the units of entropy are joules per kelvin (J K - '). Molar entropy, the entropy
divided by the amount of substance, is expressed in joules per kelvin per mote (J K moli),
the same units as those of the gas constant, R, and molar heat capacities.

Example 4.1 CaftLIlaliricJ the entropy cliuitqc lor (fit' Is()i}icrmil

CXL)aflSrt)n of ii pet ftCt g;s
Calculate the entropy change of a sample of perfect gas when it expands isothermally from a
volume V to a volume V.

Method The definition of entropy instructs us to find the heat absorbed for a reversible
path between the stated initial and final states regardless of the actual manner in which the
process takes place. A simplification is that the expansion is isothermal, so the temperature is
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a constant and may be taken outside the integral in cqn 3. The heat absorbed during a
reversible isothermal expansion of a perfect gas can be calculated from AU q + w and
AU = 0, which implies that q r- —w in general and therefore that qrc , = —w, for a
reversible change. The work of reversible isothermal expansion was calculated in Section 2.3
(eqn 2.13).

Because the temperature is constant, eqn 3 becomes

ASfdqrv

From cqn 2.13, we know that

	

rv =	 ,iRT In(.1;)

Therefore, it follows that

AS -r oR In (.!)

inns. As an illustration of this formula, when the volume of 1.00 mol of any perfect
gas is doubled at any constant temperature,

AS = (1.00 niol) x (8.3145 J K 1 mol ') x In 2 = -1-5.76 J K1

is '. I Calculate the change in entropy when the pressure of a perfect gas is
changed isothermally from p to Pr

[AS = oR In (pip1)]

The definition in eqn 2 can be used to formulate an expression for the change in entropy
of the surroundings, ASsur Consider an infinitesimal transfer of heat dq,0 to the
surroundings. The surroundings consist of a reservoir of constant volume,' so the heat
supplied to them can be identified with the change in their internal energy, dUur. The
internal energy is a state function, and d(J,sr is an exact differential. As we have seen, these
properties imply that dU is independent of how the change is brought about, and in
particular is independent of whether the process is reversible or irreversible. The same
remarks therefore apply to dq555 , to which dU55 , is equal. Therefore, we can adapt the
definition of entropy change in eqn 2 to write

	

dSsur =	
= dq	

(4)

Furthermore, because the temperature of the surroundings is constant whatever the change,
for a measurable change

	

=	 (5)

That is, regardless of how the change is brought about in the system, the change of entropy
of the surroundings can be calculated by dividing the heat transferred by the temperature at
which the transfer takes place.

Ainernairvely the sssrrosrrrings can be regarded as irerng at cansiani pressure, in which case we ry5j equale dq,,, to d/i,,.
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4.5 The basic structure of a Carnot cycle. In step I.
there is isothermal reversible expansion at the
temperature 1,. Step 2 is a reversible adiabatic
expansion in which the temperature falls from T5

to 7',. In Step 3 there is an isothermal reversible
compression at 7'. and that isothermal step is
followed by an adiabatic reversible compression.
which restores the sysiern to its initial stale.

3,

4.
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Equation 5 makes it very simple to calculate the changes in entropy of the surroundings
that accompany any process. For instance, for any adiabatic change, 9,,, = 0, 50

0	 (6)

This expression is true however the change takes place, reversibly or irreversibly, provided no
local hot spots are formed in the surroundings. That is, it is true so long as the surroundings
remain in internal equilibrium. If hot spots do form, then the localized energy may
subsequently disperse spontaneously and hence generate more entropy.

Illustration
To calculate the entropy change in the surroundings when 1.00 mol 1-1 2 00) is formed from

its elements under standard conditions at 298 K, we use MI = -286 Id from Table 2.6.

The heat released is supplied to the surroundings, now regarded as being at constant

pressure, so	 = +286 kJ. Therefore,

ASr = 298K = +959 J K'

This strongly exothermic reaction results in an increase in the entropy of the surroundings as

heat is released into them.

Initial
state

Volume, V

4.4 In a thermodynamic cycle, the overall change
in a state function (from the initial state to the
final state and then back to the initial state again)
is zero-

SeIt-test 4.7 Calculate the entropy change in the surroundings when 1.00 moll N 2 04 (g) is

formed from 2.00 mol N0 7 (g) under standard conditions at 298 K.
[-192 JK'I

(b) The entropy as a state function
The entropy is a state function. To prove this assertion, we need to show that the integral of
dS is independent of path. To do so, it is sufficient to prove that the integral of eqn 2 around
an arbitrary cycle is zero, for that guarantees that the entropy is the same at the initial and
final states of the system regardless of the path taken between them (Fig. 4.4). That is, we

need to show that
abet

(7)

B
Isotherm	 where the symbol j denotes integration around a closed path.

To prove eqn 7, we first consider the special Carnot cycle shown in Fig. 4.5. A Carnot

2	 cycle, which is named after the French engineer Sadi Carnot, consists of four reversible

\	 stages:

Adiabat

CL

a)

U)in	
T

a-

Isotherm

Reversible isothermal expansion from A to B at Th : the entropy change is q5/T,

where 9, is the heat supplied to the system from the hot source. In this step, q, is

positive.
Reversible adiabatic expansion from B to C. No heat (eaves the system, so the
change in entropy is zero. In the course of this expansion, the temperature falls
from 7' to 7, the temperature of the cold sink.
Reversible isothermal compression front C to D at T. Heat is released to the cold

sink; the change in entropy of the system is q/T; in this expression q,, is

negative.
Reversible adiabatic compression from D to A. No heat enters the system, so the
change in entropy is zero. The temperature rises from T to Th.
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The total change in entropy around the cycle is

£ dS =	 I-
J	 'l'ii	 J•

However, we show in the Justification below that

qh = -	 (8)
q,: '

Substitution of this relation into the preceding equation gives zero on the right, which is
what we wanted to prove.

Hot source

Th

lcj,il;i:ition ';	 I

As explained in Example 4.1, for a perfect gas:

qh = nRT in ()
	

q = nRT in (VD)

From the relations between temperature and volume for reversible adiabatic processes
(eqn 2.34):

V=V0 7 	 VCT=VBT

Multiplication of the first of these expressions by the second gives

VA VCTT = Vj)Vfl7T

which simplifies to

VA Vol
VT3 - VC

Consequently,

q = nRT in (VA)

B

and eqn 8 follows.

Now we need to show that the same conclusion applies to any material, not just a perfect
gas. To do so, consider the efficiency, c, of a heat engine:

- work performed -

- 
H191- heat absorbed 	 q

The definition implies that, the greater the work output for a given supply of heat from the
hot reservoir, the greater the efficiency of the engine. The definition can be expressed in
terms of the heat transactions alone, because (as shown in Fig. 4.6) the work performed by
the engine is the difference between the heat supplied by the hot reservoir and that
returned to the cold reservoir:

I	 (10)
'ih

(Remember that q <(I.) It then follows that for a Carnot engine

-=1

	

	 (11)
Tl

Now, the Second Law of thermodynamics implies that oil reversible engines have the some
efficiency regardless of their construction. To see the truth of this statement, suppose two

qh
+20 -

E

Cold sink

4.13 Suppose an energy q5 (fur example, 20 kJ) is
supplied to the engine and q is lost from the
engine (for example. q = - 5 kJ) and discarded
into the cold reservoir. The work dune by the
engine is equal to q + q (for example.
20 ki 4 (—It kJ) = 5 kI). The.efFiciency is the
work done divided by the heat supplied from the
hot source.
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reversible engines are coupled together and run Lctween the same two reservoirs (Fig. 4.7).
The working substances and details of construction of the two engines are entirely arbitrary.
Initially, suppose that engine A is more efficient than engine II, and that we choose a setting
of the controls that causes engine B to acquire the heat q from the cold reservoir and to
release a ccrt:iin quantity of heat into the hot reservoir. However, because engine A is more
efficient than engine 13, not all the work that A produces is needed for this process, and the
difference can be used to do work. The net result is that the cold reservoir is unchanged,
work has been produced, and the hot reservoir has lost a certain amount of energy. This
outcome is contrary to the Kelvin statement of the Second Law, because some heat has been
converted directly into work. In molecular terms, the disordered thermal motion of the hot
reservoir has been converted into ordered motion characteristic of work. Because the
conclusion is contrary to experience, the initial assumption that engines A and B can have
different efficiencies must be false. It follows that the relation between the heat transfers
and the temperatures (eqn 11) must also be indrpendit c l the working material, and
therefore that eqn 8 is always true for any substance involved in a Carnot cycle.

To complete the argument, we note that any reversible cycle can be approximated as a
collection of Carrsot cycles (Fig. 4.8). This approximation becomes exact as the individual
cycles are allowed to become infinitesimal. The entropy change around each individual cycle
is zero (as demonstrated above), so the sum of entropy changes for all the cycles is zero.
However, itt the interior of the overall cycle, the entropy change along any path is cancelled
by the entropy change along the path it shares with the neighbouring cycle. Therefore, all
the entropy changes cancel except for those along the perimeter of the overall cycle. That is,

•(liC5	
>=

t)
T	 11T

At	 pen lnlcr

Hot source

Til

Cold sink
lot

In the limit of infinitesimal cycles, the non-cancelling edges of the Carnot cycles match the
overall cycle exactly, and the suni becomes an integral. Equation 7 then follows
immediately. This result implies that dS is an exact differential and therefore that S is a
state function.

(c) The thermodynamic temperature
Suppose we have an engine that is working reversibly between a hot source at a temperature

Tb and a cold sink at a temperature 7'; then we know from eqn 11 that

T = (I - e)T5	 (12)

This expression enabled Kelvin to define the thermodynamic temperature scale in terms of
the efficiency of a heat engine. The zero of the scale occurs for a Carnot efficiency of I. The
siR' of the unit is entirely arbitrary, but on the Kelvin scale is defined by setting the
temperature of the triple point of water as 273.16 K exactly. Then, if the heat engine has a
hot source at the triple point of water, the temperature of the cold sink (the object we want
to measure) is found by measuring the efficiency of the engine. This result is independent of
the working substance.

An additional point is that, as we saw in Section 2.2c, heat transferred can, in principle,
be measured mrchanically (in terms of the location of a weight). Therefore, it is possible, in
principle at least, to use the distance moved by a weight to measure temperature. Kelvin's
definition of the thermodynamic temperature scale puts the measurement of temperature
on to a purely mechanical basis.

(bl

4 7 (a) The demonstration of the equivalence of the
efficiencies of all reversible engines working
between the same thermal reservoi,n is based on
the 8OW of energy represented in this diagram. 1W
The net effect of the processes is the conversion of
heat into work without there being a need for a

cold sink: this is contrary to the Kelvin statement of

the Second Law.
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(d) The Clausius inequality

So far, we have verified that the entropy as defined in cqn 2 is a stale function. We now

vive	
need to verify that the entropy is a signpost of spontaneous change in the sense that
dS > () for any spontaneous change.

Consider a system in thermal and mechanical contact with its surroundings at the same
temperature, I'. The system and the surroundings are not necessarily in mechanical
equilibrium (for instance, a gas might have a greater pressure than that of its surroundings).
Any change of state is accompanied by a change in entropy of the system, dS, and of the
surroundings, dS,,,. Because the process might be irreversible, the total entropy will increase
when a process occurs in the system, so we can write

(IS + (IS_, ? It,	 or u.S >	 dSsxr

4.8 A general cycle can Sc divided into small
Carnot cycles The match is exact in the hrn,i at
infinitesimally small cycles. Paths ..irrl in the
interior of the collection, and only the perimeter, an
increasingly good approximation to the true cycle
as the number of cycles increases. survives. Because
the entropy change around every individual cycle is
zero, the integral of the entropy around the
perimeter is zero too.

Hot source

(The equality applies if the process is reversible.) Because eqrs 5 implies that dS,,. = —dq/T,
where dq is the heat supplied to the system during the process (that is, dq w, = —dq, because
the heat that enters the system comes from the surroundings) it follows that for any change

dS>
dq

 (13)

This expression is the Clausius inequality.

Suppose the system is isolated from its surroundings. Then dq = 0, and the Clausius
inequality implies that

dS>O	 (14)

This is exactly the characteristic we need for the entropy to be the signpost of spontaneous
change, fo r it tells us that in art isolated system the entropy of the system alone cannot
decrease when a spontaneous change takes place.

We can illustrate the content of the Clausius inequality in two simple cases. First, suppose
a system undergoes an irreversible adiabatic change. Then dq = 0 and, by eqn 13, dS > 0.
That is, for this type of spontaneous change, the entropy of the system has increased.
Because no heat flows into the surroundings, their entropy remains constant and dS, = 0.
Therefore, the total entropy of the system and its surroundings obeys dS11 > 0.

Now consider irreversible isothermal expansion of a perfect gas. As we saw in
bxainple 4.1, for such a change dq = — dun' (because dU	 0). If the gas expands freely

o a vacuum, it does no work and do' = 0, which implies that dq = 0 too. Therefore,
acrording to the Clausius inequality, (IS > 0. Next, consider the surroundings. No heat is
iriinsferrcd into the surroundings, so dS 5ur	 0. Therefore, in this ease too	 > 0.

Another type of irreversible process is spontaneous cooling. Consider a transfer of energy
as heat dq from one system—the hot source—at a temperature 'F 9 to another system—the
cold sink-al a temperature 1. (Fig. 4.9). When jdq1 leaves the hot source, the entropy of the
source changes by . . ldqlii i, (a decrease). When jJqj enters the cold sink its entropy changes
by +dq/T (an] increase). The overall change in entropy is therefore

<IS = kh,I - .
	 Idqj	

-.	
(15)7.

which is positive (because 1' > 1). Hence, cooling (the transfer of heat from hot to cold) is
spontaneous, as we know from experience. When the temperatures of the two systems are
equal, dS ia i = 0: the two systems are then at thermal equilibrium.

Cold sink

4.9 When energy leaves a hot reservoir as heal, thr
entropy of the reservoir decreases. Wlii'n the same
quantity of energy e,itCrS a moles rcsrrvoir. the
entropy increases by a larger amount l-lrnc, overall
there is an increase in entropy and thi' process is
Spontaneous. Relative changes in entropy are
indicated by the sizes of the arrows.
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4,3 Entropy .'Iia:cs ccornpmifl9 spcc ific )I'OCCSSCS

We now see how to calculate the entropy changes that accompany a variety of simple
processes.

(a) The entropy of phase transition at the transition temperature
Because a change in the degree of molecular order occurs when a substance freezes or boils,
we should expect the transition to be accompanied by a change in entropy. For example,
when a substance vaporizes, a compact condensed phase changes into a widely dispersed
gas, and we can expect the entropy of the substance to increase considerably. The entropy of
a solid substance increases when it melts to a liquid, and it also increases when the liquid
phase turns into a gas.

Consider a system and its surroundings at the normal transition temperature Tw, the
temperature at which two phases are in equilibriur, ataim. This temperature is 0C
(273 K) for ice in equilibrium with liquid water at I atm, and !00°C (373 K) for water in
equilibrium with its vapour at I atm. At the transition temperature, any transfer of heat
between the system and its surroundings is reversible because the two phases in the system
are in equilibrium. Because at constant pressure q = 1 1 H, the change in molar entropya of

the system is

s= AirsH(16)

If the phase transition is exothermic (AtrcH <0, as in freezing or condensing), then the
entropy change is negative. This decrease in entropy is consistent with the system becoming
more ordered when a solid forms from a liquid. If the transition is endothermic (i,H >0, as
in melting), then the entropy change is positive, which is consistent with the system
becoming more disordered. Melting and vaporizing are endothermic processes, so both are
accompanied by an increase in the system's entropy. this increase is consistent with liquids
being more disordered than solids, and gases more disordered than liquids. Some
experimental entropies of transition are listed in Table 4.1.

In Table 4.2 we list in more detail the standard entropies of vaporization of several liquids
at their boiling points. An interesting feature of the data is that a wide range of liquids give
approximately the same standard entropy of vaporization (about 85 J K - ' mol'): this

empirical observation is called Trouton's rule.

Molecular inlerpr 1ltdi 4.1 The explanation of Irouton's rule is that a comparable
amount of disorder is generated when any liquid evaporates and becomes a gas. Hence, all
liquids can be expected to have similar standard entropies of vaporization.

Liquids that show significant deviations from Trouton's rule do so on account of the
molecules in the liquid being arranged in a partially orderly manner. In such eases, a greater
change of disorder occurs when the liquid evaporates than if the molecules were highly
disordered in the liquid. An example is watcr, where the large entropy of vaporization
reflects the presence of structure arising from iydrogen-bonding in the liquid. Hydrogen
bonds tend to organize the molecules in the Jquid so that they are less random than, for
example, the molecules in liquid hydrogen sulfide (which is not hydrogen bonded).

Methane has an unusually low entropy of vaporization. A part of the reason is that the
entropy of the gas itself is slightly low (186 J K mol_i at 298 K); the entropy of N 2 under

the same conditions is 192 JK' mul. As we shall see in Chapter itt, light molecules are

3	 Recall from Section 2.7 that is,,,!? is an cnthaipy change per ,rrh of substance. so A,,S is also a molar quantity.
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	Standard entropies (and temperatures) of phase transitions, 	 Se/(J K I mol I)

Fusion (at T)	 Vaporization (at Tb)

Argon, Ar	 14.17 (at 83.8 K)	 74,53 (at 87.3 K)
Benzene, C6H 6	38.00 (at 279 K)	 87.19 (at 353 K)
Water, H 70	 22.00 (at 273.15K)	 109.0 (at 37.15K)
Helium, He	 4.8 (at 1.8K and 30 bar)	 19.9 (at 4.22 K)

More values are given in the Data section at the end of this volume.

Tabi. 4.2' The standard entropies of vaporization of liquids

-- - -	 A ... H°/(kJ mol')	 0b/ C	 1S1(3 K - ' mol

Benzene	 +30.8	 80.1	 +87.2
Carbon tetrachloride 	 +30.00	 76.7	 +85.8
Cyclohexane	 +30.1	 80.7	 +85.1
Hydrogen sulfide	 +18.7	 -60.4	 +87.9
Methane	 +8.18	 -161.5	 +73.2
Water	 +40.7	 100.0	 ±109.1

More values are given in the Data section.

difficult to excite into rotation; as a result, only a few rotational states are accessible at room
temperature, and the disorder associated with the population of rotational states is low.

Exirnplc 4.2 Usiiig Trouton's ruic

Predict the standard molar enthalpy of vaporization of bromine given that it boils at 59.2 C.

Method We need to judge whether there is the likelihood of anomalous structural
organization in the liquid phase or some anomaly in the gas phase. If there is not, it is
permissible to use Troutons rule in the form

T1, X (85 JIC' mol)

Ariswtr There is no hydrogen bonding in liquid bromine and Br 2 is a heavy molecule that is
unlikely to display unusual behaviour in the gas phase, so it would seem safe to use Trouton's
rule. Substitution of the data then gives

(332.4 K) x (85 J 	 I mol 1 ) = +28 kJmo1'

The experimental value is +29.45 kJmol1.

Sell i; i ..1 Predict the enthalpy of vaporization of ethane from Its boiling point,

1+16 kJmol1

(b) The expansion of a perfect gas
We established in Example 4.1 that the change in entropy of a perfect gas that expands
isothermally from V to V is

AS=nRInc	 .	 ( 17)

9-A
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Because S is a slate function, this expression applies whether the change of state occurs
reversibly or irreversibly.

If the change is reversible, the entropy change in the surroundings (which are in thermal
and mechanical equilibrium with the system) must be such as to give AS,,, = 0. Therefore, in
this case, the change of entropy of the surroundings is the negative of the expression in
eqn 17. If the expansion occurs freely (w	 0) and irreversibly, and if the temperature

	

remains constant, then q	 0. Consequently, S 0, = 0, and the total entropy change is
given by eqn 17.

(c) The variation of entropy with temperature
Equation 3 can be used to calculate the entropy of a system at a temperature T1 from a
knowledge of its entropy at a temperature Ti and the heat supplied to change its
temperature from one value to the other:

5(T,)	 S() ±
	

(18)

We shall be particularly interested in the entropy change when the system is subjected to
constant pressure (such as from the atmosphere) during the heating. Then, from the
definition of constant-pressure heat capacity (eqn 2.27),

dq,00 =

so long as the system is doing no non-expansion work. Consequently, at constant pressure:

'C d
S(7'	

r,) = 5(T1) 
± 	

(19)

The sanie expression applies at constant volume, but with C,, replaced by C. When C,, is
independent of temperature in the temperature range of interest, we obtain

	

5(T,) = S(T,) 4(-	
'd?	

S (T,) C in ()
	

(20)

with a similar expression for heating at constant volume.

Example 4.3 Calculating the entropy change

Calculate the entropy change when argon at 25°C and 1.00 atm in a container of volume
50(1 cm' is allowed to expand to 1000 cnr and is simultaneously heated to 100°C.

MiO Because S is a state function, we are free to choose the most convenient path from
the initial state. One such path is reversible isothermal expansion to the final volume,
followed by reversible heating at constant volume to the final temperature. The entropy
change in the first step is given by eqn 17 and that of the second step, provided Cv is
independent of temperature, by eqn 20 (with (.'v in place of C,,). In each case we need to
know n, the amount of gas, and can calculate it from the perfect gas equation and the data
for the initial stale. The heat capacity at constant volume can be obtained from the value of

in Table 2.6 and the relation C1 ,0 - C,.,,, = R.

Answer The amount of Ar present (from n = pY/RT) is 0.0204 mot. The entropy change in
the first step (expansion from 500 cm- 1 to 100(1 cm 3 at 298 K) is

AS = nR In 2.00 = 40 118 J K'

9-13
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The entropy change in the second step, from 298 K to 373 K at constant volume, is

-	 AS = (0.0204 mol)x (12.48 J K' moL)x In
() 

= +0.057 JK'
298 K

The overall entropy change, the sum of these two changes, is AS = +0.175 JK

• . .l .;	 Calculate the entropy change when the same initial sample is compressed to
50.0 cm3 and cooled to —25°C.

[-0.44 JK]

E

.Cü.
a) 0.
Oco

Solid	 —J	 Gas

T	 Tb	 T

S

T1	 Tb	 T

6.10 The determination of entropy from heat
capacity data. (al The variation of C/T with the
temperature for a sample. (b) The entropy, which is
equal to the area beneath the upper curve up to
the corresponding temperature, plus the entropy of
each phase transition passed.

S/(J K' mol)
Debye extrapolation	 1.92
Integration, from 10 K to 35.61 K	 25.25
Phase transition at 35.61 K	 6.43
Integration, from 35.61 K to 63.14 K 	 23.38
Fusion at 6314 K	 11.42
Integration, from 63.14 Kto 77.32 K 	 11.41
Vaporization at 77.32 K	 72.13
Integration, from 77.32 K to 298.15 K	 39.20
Correction for gas imperfection 	 0.92

Total 192.06

4 5cr Sectcon 205

S0)
0

(a)
C/T

(ci) The measurement of entropy
The entropy of a system at a temperature T is related to its entropy at T = 0 by measuring
its heat capacity C. at different temperatures and evaluating the integral in eqn 19. The
entropy of transition (A,5H/T) must be added for each phase transition between T = 0
and the temperature of interest. For example, if a substance melts at T and boils at Tb , then
its entropy above its boiling temperature is given by

TIC (S)dT A
S(T)=S(0)+f	

H
T

-I- 
[C(l)dTA,,/I	 fTC',,jT	 (21)

JTr	 T	 Tb	 iTs	 T

All the properties required, except S(0), can be measured calorimetrically, and the integrals
can be evaluated either graphically or, as is now more usual, by fitting a polynomial to the
data and integrating the polynomial analytically. The procedure is illustrated in Fig. 4.10: the
area under the curve of C,,/T against T is the integral required. Because dT/T = d In T, an
alternative procedure is to evaluate the area under a plot of C. against In T.

One problem with the measurement of entropy is the difficulty of measuring heat
capacities near T = 0. There are good theoretical grounds for assuming that the heat
capacity is proportional to T 3 when T is low (see Section 1 Tic), and this dependence is the
basis of the Debye extrapolation. In this method, C, is measured down to as low a
temperature as possible, and a curve of the form aT 3 is fitted to the data. That fit determines
the value of a, and the expression C,, = aT is assumed valid down to T = 0.

Illustration
The standard molar entropy of nitrogen gas at 25°C has been calculated from the following
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Therefore,

S(298.15 K) = S(0) ± 192.1 JK' mol

lxisiilc 4.4 Ca;kul,iliml Uic ciil.r upy at low temperatures

The molar constant-pressure heat capacity of a certain solid at 10 K is 043 JK' ma!'.
What is its molar entropy at that temperature?

Mtiliid Because the temperature is so low, we can assume that the heat capacity varies
with temperature as aT, in which case we can use eqn 19 to calculate the entropy at a
temperature Tin terms of the entropy at T = 0 and the constant a. When the integration is
carried out, it turns out that the result can be expressed in terms of the heat capacity at the
temperature T, so the data can be used directly to calculate the entropy.

Anwcr The integration required is

TaT3dTr
S(T)S(0)f	 T =S(0)+a(T2dT=S(0)+aT3

Jo

However, because aT 3 is the heat capacity at the temperature T,

S(T) = S(0) -f C(T)

from which it follows that

S,,(10 K) - S(0) ± 0.14 JK moY

Sdf-1el 4.! For metals, there is also a contribution to the heat capacity from the
electrons which is linearly proportional to T when the temperature is low. Find its
contribution to the entropy at low temperatures.

[S(T) = S(0) + C(T)

4.4 i hu hOd I. dW of

At 1 0, all energy of thermal motion has been quenched, and in a perfect crystal all the
atoms or ions are in a regular, uniform array. The absence of both spatial disorder and
thermal motion suggests that such materials also have zero entropy. This conclusion is
consistent with the molecular interpretation of entropy, because S = 0 if there is only one
way of arranging the molecules.

(a) The Nernst heat theorem
The thermodynamic observation that turns ofit to be consistent with the view that the
entropy of a regular array of molecules is zero at T = 0 is known as the Nernst heat
thecirem:

The entropy change accompanying any physical or chemical transformation
approaches zero as the temperature approaches zero: AS -. 0 as T -= 0.

As an example of the experimental evidence for this law, consider the entropy of the
transition between orthorhombic sulfur, S(a), and monoclinic sulfur, S(fl), which can be
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calculated from the transition cnthalpy (-402 J moJ) at the transition temperature
(369 K):

- srn(fl)	 ---h —1.09 J K nsol'
369 K

The two individual entropies can also be determined by measuring the heat capacities from
1 = 0 up to T = 369 K. It is found that

= S,(, O) + 37 JK 'moL'

Sm(I1) = S(/3,0) + 38 JK' moL

These two values imply that, at the transition temperature,

= Sm(,0) - S 5,(fl,O) - I ' J K -1 moL'

On comparing this value with the one above, we conclude that

Sm(a,O)Sm(IS,O)0

in accord with the theorem.
It follows from the Nernst theorem that, if we arbitrarily ascribe the value zero to the

entropies of elements in their perfect crystalline form at T = 0, then all perfect crystalline
compounds also have zero entropy at T = 0 (because the change in entropy that
accompanies the formation of the compounds, like the entropy of all transformations at
that temperature, is zero). Hence, all perfect crystals may be taken to have zero entropy at
T = 0. This conclusion is summarized by the Third Law of thermodynamics:

If the entropy of every element in its most stable state at T = 0 is taken as
zero, then every substance has a positive entropy which at T = 0 may become

Table 4.3 Standard Third-Law entropies at
	 zero, and which does become zero for all perfect crystalline substances,

298 K
	

including compounds.

S/(J K' mor')	 Note that a non-crystalline perfect state, such as the superfluid state of He (Section 6.3c), is
included by the opening phrase.

Solids:	 it should also be noted that the Third Law does not state that entropies are zero at
Graphite, C(s)	 5.7	 T = 0: it merely implies that all perfect materials have the same entropy at that
Diamond, C(s) 	 2.4	 temperature. As far as thermodynamics is concerned, choosing this common value as zero is
Sucrose, C1 5 H 22 011(s)	 360.2	 then a matter of convenience. The molecular interpretation of entropy, however, implies
Iodine 2(5)	 116,1	 that S	 Oat T=r 0.

Liquids:

Benzene, C 5H 6(I)	 173.3
Water, H 2 0(I)	 69.9
Mercury, Hg(l)	 76.0

Gases:

Methane, CH 4(g)	 186.3
Carbon dioxide, CO 2 (g)	 213.7
Hydrogen, H 2 (g)	 130.7
Helium, He(g)	 126.2
Ammonia, NH 3 19)	 192.3

More values are given in the Data section.

(b) Third-Law entropies
The choice 5(0) Sr 0 for perfect crystals will be made from now on. Entropies reported on
the basis of this choice are called Third-Law entropies (and often just 'standard entropies').
When the substance is in its standard state at the temperature T, the standard (Third-Law)
entropy is denoted S (T). A list o f values at 298 K is given in Table 4.3.

The standard reaction entropy, AS', is defined, like the standard reaction enthalpy, as
the difference between the molar entropies of the pure, separated products and the pure,
separated reactants, all substances being in their standard states at the specified
temperature:

ArS" = 	,iS - >	 (22a)
Products	 Reactants
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In this expression, each term is weighted by the appropriate stoichiometric coefficient. More
formally, in the notation introduced in eqn 2.41,

(22b)

Illustration

To calculate the standard reaction entropy of 1-1 2 (g) + 0 2 (g) —a H 2 00)at 25°C, we use the
data in Table 26 of the Data section to write

Ar S° = S,(I-I,O, I) - {S(H 2 .g) +	 g)}

69.9	 130.7 +05.0)} JK' mo' = —163.3 JK 'mol

The negative value is consistent with the conversion of two gases to a compact liquid.

S'll-tit .t; Calculate the standard reaction entropy for the combustion of methane to
carbon dioxide and liquid water at 25°C.

(-243 JK' moI)

4.5 Reaching very low temperatures

The world record low temperature stands at about 20 nK. Gases may be cooled by Joule—
Thomson expansion below their inversion temperature, and temperatures lower than 4 K
(the boiling point of helium) can be reached by the evaporation of liquid helium by pumping
rapidly through large-diameter pipes. Temperatures as low as about I K can be reached in
this way, but at lower temperatures helium is too involatile for this procedure to be
effective: moreover, the superfluid phase begins to interfere with the cooling process by
creeping round the apparatus.

The method used to reach very low temperatures is adiabatic demagnetization. In the
absence of a magnetic field, the unpaired electrons of a paramagnetic material are
orientated at random, but in the presence of a magnetic field there are more / spins
(m, = - ; these terms are explained in Section 12.81 than a spins (m5 = + ). In
thermodynamic terms, the application of a magnetic field lowers the entropy of a sample
(Fig. 4.11) and, at a given temperature, the entropy of a sample is lower when the field is on
than when it is off.

A sample of paramagnetic material, such as a d- or f-metal complex, is cooled to about
I K by using helium. Gadolinium(III) sulfate octahydrate, Gd 2 (SO 4 ) 3 81-1 2 0, has been used
because each gadolinium ion carries several unpaired electrons but is separated from its
neighbours by a coordination sphere of hydrating H 7 0 molecules. The sample is then
exposed to a strong magnetic field while it is surrounded by helium, which provides thermal
contact with the cold reservoir. This magnetization step is isothermal, and heat leaves the
sample as the electron spins adopt the lower energy state (AB in Fig. 4.11). Thermal contact
between the sample and the surroundings is now broken by pumping away the helium and
the magnetic field is reduced to zero. This step is adiabatic and effectively reversible, so the
state of the sample changes from B to C. At the end of this step the sample is the same as it
was at A except that it now has a lower entropy. That lower entropy in the absence of a
magnetic field corresponds to a lower temperature. That is, adiabatic demagnetization has
cooled the sample.
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11)	 magnetic/

field
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rnrn I
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0	 Temperature, T/

4.1 I The technique of adiabatic demagnetization is
used to attain very low temperatures. The upper
curve shows the variation of the entropy of a
paramagnetic system in the absence of an applied
field. The lower curve shows the variation in
entropy when a field is applied and has made the
electron magnets more orderly. The Isothermal
magnetization step is from A to B; the adiabatic
demagnetization step (at constant entropy) is from
B to C.
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Even lower temperatures can be reached if nuclear spins (which also behave like small
magnets) are used instead of electron spins in the technique of adiabatic nuclear
demagnetization. This technique was used to reach the current world record (in copper).

Concentrating on the system
Entropy is the basic concept for discussing the direction of natural change, but to use it we
have to analyse changes in both the system and its surroundings. We have seen that it is
always very simple to elculate the entropy change in the surroundings, and we shalt now
see that it is possible to devise a simple method for taking that contribution into account
automatically. This approach focuses our attention on the system and simplifies discussions.
Moreover, it is the foundation of all the applications of chemical thermodynamics that
follow.

4.6 The Helmholtz and Gibbs energies
Consider a system in thermal equilibrium with its surroundings at a temperature T. When a
change in the system occurs and there is a transfer of energy as heat between the system
and the surroundings, the Clausius inequality. eqn 13, reads

dS —
	
>O	 (23)

This inequality can be developed in two ways according to the conditions (of constant
volume or constant pressure) under which the process occurs.

First, consider heat transfer at constant volume. Then, in the absence of non-expansion
work, we can write dq = dU; consequently	

*

dS —
	
>O	 (24)

The importance of the inequality in this form is that it expresses the criterion for
spontaneous change solely in terms of the state functions of the system. The inequality is
easily rearranged to

do	 (constant it, no non-expansion work) 	 (25)

At either constant internal energy (dU = 0) or constant entropy (dS = 0), this expression
becomes, respectively,

dSu. :^ 0	 dU5, < 0	 (26)

where the subscripts indicate the constant properties.
Equation 26 expresses the criteria for spontaneous change in terms of properties relating

to the system. The first inequality states that, in a system at constant volume and constant
internal energy (such as an isolated system), the entropy increases in a spontaneous change.
That statement is essentially the content of the Second taw. The second inequality is less
obvious, for it says that, lithe entropy and volume of the system are constant, then the
internal energy must decrease in a spontaneous change, Do not fnterpret this criterion as a
tendency of the system to sink to lower energy. It is a disguised statement about errtropy,
and should be interpreted as implying that, if the entropy of the system is unchanged, then
there must be an increase in entropy of the surroundings, which can be achieved only if the
energy of the system decreases as energy flows out as heat.

When heat is transferred at constant pressure, and there is no work other than expansion
work, we can write dq = dJ-I and obtain

Td. > d/1	 (constant p , no non-expansion work)	 (27)
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At either constant enthalpy or constant entropy this inequality becomes, respectively.

(IS111, > 0	 dl/,.,	 (I	 (28)

The interpretations of these inequalities are similar to those of eqn 26. The entropy of the
system at constant pressure must increase if its enthalpy remains constant (for there can
then be no change in entropy of the surroundings). Alternatively, the enthalpy must
decrease if the entropy of the system is constant, for then it is essential to have an increase
in entropy of the surroundings.

Because eqns ' 5 and 27 have the forms dU - TdS 0 and dH - TdS 0, respectively,
they can be expressed more simply by introducing two more thermodynamic quantities. One
is the Helmholtz energy, A, which is defined as

A = U TS	 [29]

The other is the Gibbs energy, G:

U = H - TS	 [30]

All the symbols in these two definitions refer to the system.
When the state of the system changes at constant temperature, the two functions

change as follows:

(a) dAr- dU --TdS	 (b) dG=d/1—TdS	 (31)

When we introduce eqns 25 and 27, respectively, we obtain the criteria of spontaneous
change as

4r,i' < 0	 dG7	 0	 (32)

These inequalities are the most important conclusions from thermodynamics for chemistry.
They are developed in subsequent sections and chapters.

(a) Some remarks on the Helmholtz energy
A change in a system at constant temperature and volume is spontaneous if dAr . < 0. That
is, a change under these conditions is spontaneous if it corresponds to a decrease in the
Helmholtz energy. Such systems move spontaneously towards states of lower A if a path is
available. The criterion of equilibrium, when neither the forward nor reverse process has a
tendency to occur, is

dJt ry = 0	 (33)

The expressions dA = dU - TdS and dA <0 are sometimes interpretr as follows. A
negative value of cIA is favoured by a negative value of dU and a positive value of TdS. This
observation suggests that the tendency of a system to move to lower A is due to its tendency
to move towards states of lower internal energy and higher entropy. However, this
interpretation is false (even though it is a good rule of thumb for remembering the
expression for d.4) because the tendency to lower A is solely a tendency towards states of
greater overall entropy. Systems change spontaneously if in doing so the total entropy of
the System ond its surroundings increases, not because they tend to lower infernal energy.
The form of cIA may give the impression that systems favour lower energy, but that is
misleading; dS is the entropy change of the system, —dU/T is the entropy change of the
surroundings (when the volume of the system is constant), and their total tends to a
maximum.
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(b) Maximum work
It turns out that A carries a greater significance than being simply a signpost of spontaneous
change: the change in the Helmholtz energy is equal to the maximum work accompanying a
process:

dw 1 = dA	 (34)

As a result, A is sometimes called the maximum work function, or the work function
(Arbeit is the German word for work; hence the symbol A).

Justification 4.2

First we prove that a system does maximum work when it is working reversibly. (This
conclusion was demonstrated in Section 2.3e for the expansion of a perfect gas; now we
prove its universal validity.) We combine the Clausius inequality dS > dq/T in the form
TdS > dq with the First Law, dU = dq + dw, and obtain

dU TdS + dw

(dU is smaller than the term on the right because we are replacing dq by TdS, which in
general is larger.) This expression rearranges to

dw > dU - TdS

It follows that the most negative value of dw, and therefore the maximum energy that can
be obtained from the system as work, is given by

dWm 	dU - TdS

and that this work is done only when the path is traversed reversibly (because then the
equality applies). Because at constant temperature dA = dU - TdS, we conclude that
dWm =

AU < 0
AS < 0

wi <

When a macroscopic isothermal change takes place in the system, eqn 34 becomes

=
	 (35)

where

AA = AU - TAS
	

(36)

This expression shows that in some cases, depending on the sign of TAS, not all the change
in internal energy may be available for doing work. If the change occurs with a decrease in
entropy (of the system), in which case TAS'czo, then the right-hand side of this equation is
not as negative as AU itself, and consequently the maximum work is less than JAU1. For the
change to be spontaneous, some of the energy must escape as heat in order to generate
enough entropy in the surroundings to overcome the reduction in entiopy in the system
(Fig. 4.12). In this case, Nature is demanding a tax on the internal energy as it is converted
into work. This is the origin of the alternative name 'Helmholtz free energy' for A, because
£4 is that part of the change in internal energy that we are free to use to do work.

Molecular interpretation 4.3 Further insight into the relation between the work that a
system can do and the Helmholtz energy is to recall that work is energy transferred to the
surroundings as the uniform motion of atoms. The expression A = U TS can be
interpreted as showing that A is the total internal energy of the system, U, less a
contribution that is stored chaotically (the quantity TS). Because chaotically stored energy

Surroundings	 ASiu, >0

4.12 In a system not isolated from its surroundings.
the work done may be different from the change in
internal energy. Moreover, the process is
spontaneous if, overall, the entropy of the global
isolated system increases. In the process depicted
here, the entropy of the system decreases, so that
of the surroundings must increase in order for the
process to be spontaneous, which means that
energy must pass from the system to the
surroundings as heat. Therefore, less work than
tsUl can be obtained.
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cannot be used to achieve uniform motion in the surroundings, only the part of U that is
not stored chaotically, the quantity U	 L, is available for conversion into work.

lithe change occurs with an increase of entropy of the system (in which case
the right-hand side of the eqn 36 is more negative than AU. In this case, the maximum work
that can be obtained from the system is greater than AU. The explanation of this apparent
paradox is that the system is not isolated and energy may flow in as heat as work is done.
Because the entropy of the system increases, we can afford a reduction of the entropy of the
surroundings yet still have, overall, a spontaneous process. Therefore, some heat (no more
that) the value of TAS) rriay leave the surroundings and contribute to the work the change is
generating (Fig. 4.13). Nature is now providing a tax refund.

Example 4.5 Calculating thu maximum available work

When .0(8) not C I,Ft U OO (glucose) is oxidized to carbon dioxide and water at 25CC
according to the equation

C6 11 2 06 (s) t 60 2 (g) -- 6CO2 (9) + 6H20(l)

calorimetric measurements give AJJ°	 - 2808 U rnoV and A r S = +182.4 3K -1 mol
at 25'C. Now much of this energy change can be extracted as (a) heat at constant pressure,
(b) work?

Method We know that the heat released at constant pressure is equal to the value of AN,
so we need to relate A, 11' t o A, U . which is given. To do so, we suppose that all the gases
involved are perfect, anti use eqn 2.26 in the form L\ r If = Ar U ± AnRT. For the maximum
work available from the process we use eqn 35.

Answer (a) Because An,- U, we know that /• Nw = ArU° = — 2808 k1nio1.
Therefore, at constant pressure, the energy available as heat is 2808 U mo!t.
(b) Because 7. - 298 K, the value of A, A 0 is

ArA ' = Ar U	 [\Ø -. —2862 kJ mol

Therefore, the combustion of 1.1100 mot C 6 H 12 0 can be used to produce up to 2862 U of
work.

Comment The maximum work available is greater than the change in internal energy on
account of the positive entropy of reaction (which is partly due to the generation of a large
number of small molecules from one big one). The system can therefore draw in energy from
the surroundings (so reducing their entropy) and make it available for doing work.

Self-test 4.7 Repeat the calculation for the combustion of 1.000 mol CH 4 (g) under the
same conditions, using data from Table 2.5.

I = 890 kJ,	 rn.x I	 1)13 kJl

(c) Some remarks on the Gibbs energy
The Gibbs energy (the 'free energy') is more common in chemistry than the Hclmholtz energy
because, at least in laboratory chemistry, we are usually more interested in changes
occurring at constant pressure than at constant volume. The criterion dGT,P 0 carries over

into chemistry as the observation that, at constant temperature and pressure, chemical
reactions are spontaneous in the direction of decreasing Gibbs energy. Therefore, if we want
to know whether a reaction is spontaneous, the pressure and temperature being constant,
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AU < 0
AS > 0

kstem
>

Surroundings	 ASso, 0

4.13 In this process, the entropy of the system
increases; hence we can afford to lose sonic
entropy of the surroundings. That is, some of their
energy may be lost as ht to the system. This
energy can be returned to them as work. Hence the
work done can exceed AU.
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we assess the change in the Gibbs energy. If G decreases as the reaction proceeds, then the
reaction has a spontaneous tendency to convert the reactants into products. If G increases,

then the reverse reaction is spontaneous.
The existence of spontaneous endothermic reactions provides an illustration of the role

of G. In such reactions, II increases, the system rises spontaneously to states of higher
enthalpy, and W >11. Because the reaction is spontaneous we know that dG <0 despite
W >0; it follows that the entropy of the system increases so much that irIS is strongly

positive and outweighs dH in dG = dH TdS. Endothermic reactions are therefore driven
by the increase of entropy of the system, and this entropy change overcomes the reduction
of entropy brought about in the surroundings by the inflow of heat into the system

(dS = —dH/T at constant pressure).

(d) Maximum non-expansion work

The analogue of the maximum work interpretation of A4, and the origin of the name free
energy, can be found for AG. In the Justification below, we show that, at constant

temperature and pressure, the maximum non-expansion work, 1r (with 'e' denoting extra'),

is given by the change in Gibbs energy:

dIj'	 = dG
	

(37)

The corresponding expression for a measurable change is

We,nv = AG
	

(38)

This expression is particularly useful for assessing the electrical work that may be produced
by fuel cells and electrochemical cells, and we shall see many applications of it.

Justification 4.3

Because H = U -l-pV, in a general change,

d1=dq-4-dw--d(pV)

When the change is reversible, dw = dW, and dq = dq = TdS, so

dG = TdS -4.- dwre v + d(pV) - TdS = dwrcv + d(pV)

The work consists of expansion work, which for a reversible change is given by —p V, and
possibly some other kind of work (for instance, the electrical work of pushing electrons
through a circuit or of raising a column of liquid): this non-expansion work we denote dw.
Therefore, with d(pV) = p dV + V dp,

dG = (—p dV + dw,, ) 4 p dV + V dp = dw, rev + V dp

If the change occurs at constant pressure (as well as constant temperature), the last term
disappears, and dG = d Wrrrv . Therefore, at constant temperature and pressure,

= dG. However, because the process is reversible, the work done must now have
its maximum value, so eqn 37 follows.

Example 4.6 Ltk'LII:Il;muj 	 lit	 Ifl;iX;ttiiIrIi rioIl_rxpamlsi(Jl1 work of a
r':I(t i tin

How much energy is available for sustaining muscular and nervous activity from the
combustion of .041 tool of glucose molecules under standard conditiors at 37°C (blood
tcmperature)? Ilie standard entropy of reaction is + 182.4 J K - ' tool



Table 4.4 Standard Gibbs energies of forma-
tion at 298K

Diamond, C(s)
Benzene, C6H6(I)
Methane, CH4(g)
Carbon dioxide, CO2(g)
Water, H200)
Ammonia, NH3(q)
Sodium ch,oride, NaCI(s)

tSrG/(kJ mol')

+2.9
±124.3

—50.7
—394.4

—237.1
—I6.5

—384.1

More values are given in the Data section,

118
	

4 THE SECOND LAW: THE CONCEPTS

Method The non-expansion work available from the reaction is equal to the change in
standard Gibbs energy for the reaction (&G, a quantity defined more fully below). To
calculate this quantity, it is legitimate to ignore the temperature dependence of the
reaction enthalpy, to obtain A,Hw from Table 2.5, and to substitute the data into

= A,H0 - T&Se.

Answer Because the standard reaction enthalpy is —2808 kJrnoI, it follows that the
standard reaction Gibbs energy is

Ar G o = — 2808 kJmoY' —(310 K) x(182.4 JK 1 moI) —2865 kJmo1

Therefore,	 = —2865 kJ for the combustion of I mol glucose molecules, and the
reaction can be used to do up to 2865 kJ of non-expansion work.

Comment A person of mass 70 k8 would need to do 21 Id of work to climb vertically

through 3.0 m; therefore, at least 0.13 g of glucose is needed to complete the task (and in
practice significantly more).

Self-test 4.8 How much non-expansion work can be obtained from the combustion of
100 mot CH 4 (9) under standard conditions at 298 K? Use I Se —243 JK' mol*

(818 Id)

4.7 Standard molar Gibb . ai'qics
Standard entropies and enthalpies of reaction can be combined to obtain the standard
Gibbs energy of reaction, A T G 5 (or 'standard reaction Gibbs energy'):

=	 - ThrSe	 [1

The standard Gibbs energy of reaction is the difference in standard molar Gibbs energies of
the products and reactants in their standard states at thetemperature specified for the
reaction as written. As in the case of standard reaction enthalpies, it is convenient to define
the standard Gibbs energies of formation, G°:

The standard Gibbs energ of formation is the standard reaction Gibbs
energy for the formation of a compound from its elements in their reference
states.

The reference state of an element was defined in Section 2.7. Standard Gibbs energies of
formation of the elements in their reference states are zero, because their formation is a
'null' reaction. A selection of values for compounds is given in Table 4.4. From the values
there, it is a simple matter to obtain the standard Gibbs energy of reaction by taking the
appropriate combination:

Ar G o =	 vts1G° --	 z,'LSG	 (40a)
Products	 RruIants

with each term weighted by the appr"priate stoichiometric coefficient. More formally, in the
notation introduced in Section 2.7,

(4Db)
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Illustration

To calculate the standard Gibbs energy of the reaction C0(g) + 0 (g) -. CO2 (g) at 25°C,
we write

ArGo = A1Ge(CO2,g) - {z\rG(CO,g) +

= —394.4-- {(— 137.2) + ((J)} kJrnol' = —257.2 kJ moI

Self-test 4.9 Calculate the standard reaction Gibbs energy for the combustion of CH4(g)
at 298 K.

[-818 kJmol]

Calorimetry (for Is.!1 directly, and for S via heat capacities) is only one of the ways of
determining the values of Gibbs energies. They may also be obtained from equilibrium
constants (Chapter 9) and electrochemical measurements (Chapter 10), and they may be
calculated using data from spectroscopic observations (Chapter 20). The information in
Tables 2.5 and 2.6 of the Dote section; however, together with the machinery we shall now
construct, is all we need in order to draw far-reaching conclusions about reactions and other
processes of interest in chemistry.

Checklist of key ideas
O Kelvin statement of Second

Law of thermodynamics

The direction of spontaneous
change

4.1 The dispersal of energy
LI spontaneity and the rise of

disorder
D collapse into disorder as the

driving force of change

4.2 Entropy
LI Second Law [LS.S IOE >0)
LI thermodynamic definition of

entropy
O entropy change in the

surroundings (4,5)
o entropy change for an

adiabatic process
O Carnot Cycle
LI efficiency of a heat engine
D Carnol efficiency

0 proof that entropy is a state
function

0 thermodynamic temperature
scale

El Kelvin scale
LI Clausius inequality
LI entropy as a signpost of

Spontaneous change
sponta neous cooling

4.3 Entropy changes
accompanying specific
processes

U entropy of phase transition
at the transition temperature

U Trouton's rule
U entropy of expansion of a

perfect gas
LI variation of entropy with

temperature (19,20)
0 measurement of entropy
LI Debye extrapolation

4.4 The Third Law of
thermodynamics

LI Nernst heat theorem
Third Law of
thermodynamics
Third-Law entropy

L standard reaction entropy
(1 t r5 , 22)

4.5 Reaching very low
temperatures

1 ad iabatic demagnetization
adiabatic nuclear
demagnetization

Concentrating on the system

4.6 The Helmholtz and Gibbs
energies

El the criteria dS,1 v	 0 and
dUr	 0
Ilelmholtz enerqy
Gibbs energy

0 the criteria dATV !^ 0 and

U 
dGTJ, 0
the criterion of equilibrium
at constant temperature
and volume

LI maximum work and the
Helmholtz energy (34,35)

[Ii the criterion of equilibrium
at constant temperature
and pressure

LI maximum non-expansion
work and the Gibbs energy
(37,38)

4.7 Standard molar Gibbs
energies

El standard Gibbs energy of
reaction (ArG = , 39)

U standard Gibbs energy of
formation (A1G)

El expressing IsG in terms
of A 1G' (40)



120
	

4 THE SECOND LAW: THE CONCEPTS
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Exercises

Assume that all gases are perfect and that data refer to 298.15 K
unless otherwise stated.

4.1 (a) Calculate the change in entropy when 25 Id of energy is
transferred reversibly and isothermally as heat to a large block of iron
at (a) 0°C, (b) 100°C.

4.1 (b) Calculate the change in entropy when 50 kJ of energy is
transferred reversibly and isothermally as heat to a large block of
copper at (a) 0'C, (b) 70°C.

4.2 (a) Calculate the molar entropy of a constant-volume sample of
neon at 500 K given that it is 146.22 J K mol at 298 K.

4.2 (b) Calculate the molar entropy of a constant-volume sample of
argon at 250 K given that it is 154.84 J K -' mot	 at 298 K.

4.3 (a) A sample consisting of 1(0 mot of a monatomic perfect gas
with C 0 = R is heated from I 00C to 3(1(1°C at constant pressure.
Calculate AS (for the system).

4. (b) A sample consisting of I .11(1 mol of a diatomic perfect gas
with Cv,, = -R is heated from (1°C to 10()°C at constant pressure.
Calculate AS (for the systm).

4.4 (a) Calculate AS(fo: the system) when the state of 3.00 mol of a
monatomic perfect gas, for which = R, is changed from 25°C
and 1.00 atm to 125°C and 5(X) attn. How do you rationalize the sign
of AS?

4.4 (b) Calculate AS (for the system) when the state of 2.00 mol of a
diatomic perfect gas, for which C,,, = 7,R, is changed from 25°C and
ISO atm to I. and 7.00 atm. How do you rationalize the sign of
AS?

4.5 (a) A sample consisting of 3(X) mot of a diatomic perfect gas at
20(1 K is compressed reversibly and adiabatically until its temperature
reaches 250 K. Given that Cm = 27.5 JK' mol t , calculate q. w,
AL'. AN, and AS.

4.5 (b) A sample consisting of 2.00 mot of a diatomic perfect gas at
250 K is compressed reversibly and adiabatically until its temperature
reaches 300 K. Given that C t m = 27.5 JK mot- ', calculate q. w,
AU, All, and AS.

4.6 (a) Calculate the increase in entropy when 1.00 mat of a
monatomic perfect gas with C II, = 1 R, is heated from 300K to
600 K and simultaneously expanded from 30.0 L to 50.0 L
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4.6 (b) Calculate the increase in entropy when 3.50 nol of a
monatomic perfect gas with C,, 1?, is heated from 250 K to
700 K and simultaneously expanded from 20.0 I. to 60.0 L.

4.7 (a) A system undergoes a process in which the entropy change is
+2.41 J K '. During the process, 1.00 kJ of heat is added to the
system at 500 K. Is the process thermodynamically reversible? Explain
your reasoning.

4.7 (b) A system undergoes a process in which the entropy change is
+5.51 1K '. During the process, 1.50 kJ of heat is added to the
system at 350 K. Is the process thermodynamically reversible? Explain
your reasoning.

4.8 (a) A sample of aluminium of mass 1.75 kg is cooled at constant
pressure from 300 K to 265 K. Calculate (a) the energy that must be
removed as heat and (b) the change in entropy of the sample.

4.8 (b) A sample of copper of mass 2.75 kg is cooled at constant
pressure from 330 V to 275 K. Calculate (a) the energy that must he
removed as heat and (b) the change in entropy of the sample.

4.9 (a) A sample of methane gas of mass 25 g at 250 K and
18.5 aim expands isothermally until its pressure is 2.5 atm. Calculate
the change in entropy of the gas.

4.9 (b) A sample of nitrogen gas of mass 35 g at 230 K and 21.1 aim
expands isothermally until its pressure is 4.3 atm. Calculate the
change in entropy of the gas.

4.10 (a) A sample of perfect gas that initially occupies 150 L at
250 K and 1.00 aim is compressed isothermally. To what volume
must the gas be compressed to reduce its entropy by 5.0 1 K - '?
4.10 (b) A sample of perfect gas that initially occupies 11.0 L at
270 K and 1.20 atm is compressed isothermally. To what volume
must the gas be compressed to reduce its entropy by 3.0 J K • '?
4.11(a) Calculate the change in entropy when 50 g of water at
80°C is poured into IOU g of water at 10'C in an insulated vessel
given that c,,,	 "' S J K - ' mu!
4.11 (b) Calculate the change in entropy when 25 p of ethanol at
50°C is poured into 70 g of ethanol at 10°C i n an insulated vessel,
given that C'p,m '= 111.5 1K' ma! '.

4.12 (a) Calculate All and AS,1 when two copper blocks, each of
mass 10.0 kg one at 100"C and the other at 0°C, are placed in
contact in an isolated container. The specific heat capacity of copper
is 0.385 1 K' g' and may be assurnecl e constant over the
temperature range involved.

4.12 (b) Calculate A/i and AS,, when two iron blocks, each of mass
((K) kg, one at 200' -and the other at 25 °C, are placed in contact in
an isolated contai• Cr. The specific heat capacity of iron is
0.449 JK 1 g' and nay be assumed constant over the temperature
range involved.

4.13 (a) Consider a system consisting 012.0 utot CO 2 (q), initially at
25°C and tO aim and confined to a cylinder of crtiss-scctiur,
10.0 cm 2 . It is allowed to expand adiabatically against a ll external
pressure of 1.0 aim untiluntIl the piston has moved outwards through
20 cm. Assume that carbon dioxide may be considered a perfect gas
with C V, ,,, =: 28.8 J K rnot 1 and calculate (a) q, (b) w, (c) itt), (cl(
AT, (r) AS.

4.13 (b) Consider a system consisting of 1.5 moICO 7 (g), initially at
IS C and 9.0 aim and confined to a cylinder of cross-section
100.0 cm. The sample is allowed to expand adiabatically against an
external pressure of 1.5 aim until the piston has moved outwards
through IS cm. Assume that carbon dioxide may be considered a
perfect gas with C = 28.11 1 K - ' rou! ', and calculate (a) q, (b) sc
(c) AU, (d) AT, (e) AS.

4.14 (a) The enthalpy of vaporization of chloroform (CHCI 3) i5
20.4 kJ mot ' at its normal boiling point of 334.88 K. Calculate (a)
the entropy of vaporization of chloroform at this temperature and (b)
the entropy change of the surroundings.

4.14 (Ii) The enthalpy of vaporization of methanol is 35.27 kJ mo!'
it its normal boiling point of 64.1"C. Calculate (a) the entropy of
vaporization of methanol at this temperature and (b) the entropy
change of the surroundings.

4.15 (a) Calculate the standard reaction entropy at 2911 K of

(a) 20I 3 00(g) -t 0 2 (g) - 2CHC00H()
(0) 2AqCllsl + Br 7 (l) - 2AgBr(s) -- C12(g)
(c) Hg(l) I- C1 2 (q) -. HgC(7(s)

4.15 (b) Calculate the standard reaction entropy at 298 K of

(a) Zn(s) t- Cu 2 (aq) --- Zri 2 (aq) + Cu(s)
)b) (' r? H 22 0 11 (s) -1 120(g) --. 1 2CO 2 (g) ± 111120(1)

4.16 (a) Combine the reaction entropies calculated in Exercise 4.15a
with the reaction enthalpies, and calculate the standard reaction
Gibbs energies at 2911 K.

4.16 (b) Combine the reaction entropies calculated in Exercise 4.15b
with the reaction enthalpies, and calculate the standard reaction
Gibbs energies at 298 K.

4.17 (a) Use standard Gibbs energies of formation to calculate the
standard reaction Gibbs energies at 298 K of the reactions in
Ext rcisc 4.1 Sa.

4.17 (b) Use standard Gibbs energies of formation to calculate the
standard reaction Gibbs energies at 2911 K of the reactions in
Exercise 4,15b.

4.18 (a) Calculate the standard Gibbs energy of the reaction
4HCI(q) -t ( q ) -. 20 2 (y) -1 2H 2 0(l) at 298 K, from the standard
entropies and enthalpies of formation given in Table 2.6.

4.18 (b) Calculate the standard Gibbs energy of the reaction
CU)') -- CH.,0H(l) -. CH 3 COOFI(l) at 298 K, from the standard
eniripics and cnthalpii.'s of formation given in Tables 2.5 and 2.6.

4.19 (a) The standard enthalpy of combustion of solid phenol
(C 1 H0l I) is -3054 kJ niol at 2911 K and its standard molar entropy
is 144A) J K - tool '. C: cu!ate the standard Gil: is energy of
(a rriratiii ii of phenol at 298 K.

4,19 (b) he standard erithalpy of combustion of solid urea
)C0(NH 2 ) 7 ) is -032 kJ no! at 2911 K and its standard molar
('ritro1iy is 104 (it) J K 1 tool . Calculate the standard Gibbs energy
tit for nat ion of urea at 298 K.

4.20 (a) Calculate the change in the entropies of the system and the
surroundings, and the total change in entropy, when a sample of
nil rogeri gas tit mass 14 p at 298 K arid 1.(11) bar doubles its volume
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in (a) an isothermal reversible expansion, (b) an isothermal irreversible
expansion against p = 0, and (c) an adiabatic reversible expansion.

4.20 (b) Calculate the change in the entropies of the system and the
surroundings, and the total change in entropy, when the volume of a
sample of argon gas of mass 21 g at 28 K and 1.50 bar increases
from 1.20 L to 4.60 L in (a) an isothermal reversible expansion, (b) an
isothermal irreversible expansion against p = 0. and (c) an adiabatic
reversible expansion.

4.21 (a) Calculate the change in entropy when a monatomic perfect
gas is compressed to half its volume and simultaneously heated to
twice its initial temperature.

4.21 (b) Calculate the change in entropy when a diatomic perfect
gas is compressed to one-third its volume and simultaneously heated
to three times its initial temperature.

Problems

Assume that all gases are perfect and that data refer to 298 K unless
otherwise stated.

Numerical problems

4.1 Calculate the difference in molar entropy (a) between liquid
water and ice at -5°C, (b) between liquid water and its vapour at
95°C and 1.00 atm. The differences in heat capacities on melting and
on vaporization are 37.3 J K mol and -41.9 JK' moUi,
respectively. Distinguish between the entropy changes of the
sample, the surroundings, and the total system, and discuss the
spontaneity of the transiti6ns at the two temperatures.

4.2 The heat capacity of chloroform (triehtoromethane. CHCI3)
in	 the	 range	 240 K	 to	 330 K	 is	 given	 by

K mol') = 91.47 + 7.5 x 10 2 (7'/K). In a particular
experiment, 1.00 mol CHCI 3 is heated from 273 K to 300 K.
Calculate the change in molar entropy of the sample.

4.3 A block of copper of mass 2.00 kg (Cr5 = 0.385 J K 1 g')
and temperature 0°C is introduced into an insulated container in
which there is 1.00 mol I-1 2 0(g) at 100°C and 10) atm. (a) Assuming
all the steam is condensed to water, what will be the final
temperature of the system, the heat transferred from water to
copper, and the entropy change of the water, copper, and the total
system? (b) In fact, some water vapour is present at equilibrium. From
the vapour pressure of water at the temperature calculated in (a), and
assuming that the heat capacities of both gaseous and liquid water
are constant and given by their values at that temperature, obtain an
improved value of the final temperature, the heat transferred, and the
various entropies. (Hint: You will need to make plausible approxima-
tions.)

4.4 Consider a perfect gas contained in a cylinder and separated by a
frictionless adiabatic piston into two sections A and B. All changes in
B are isothermal, that is, a thermostat surrounds H to keep its
temperature constant. There is 2.00 mol of the gas in each section.
Initially, TA = T8 = 30 K. VA = V11 = 2.00 L Heat is added to

4.22 (a) Calculat - the maximum non-expansion work per mole that
may be obtained fiom a fuel cell in which the chemical reaction is thc
combustion of methane at 298 K.

4.22 (b) Calculate the maximum non-expansion work per mole that
maybe obtained from a fuel cell in which the chemical reaction is the
combustion of propane at 298 K.

4.23 (a) (a) Calculate the Carnot efficiency of a primitive steam
engine operating on steam at 100°C and discharging at 60°C. (h
Repeat the calculation for a modern steam turbine that operates with
steam at 300°C and discharges at 80°C.

4.23 (b) A certain heat engine operates between 1000 K and 500 K.
(a) What is the maximum efficiency of the engine? (b) Calculate the
maximum work that can be done for each 1.0 U of heat supplimi by
the hot source. (c) How much heat is discharged into the cold sini in
reversible process for each 1 .0 Id supplied by the hot source'

Section A and the piston moves to the right reversibly until the final
volume of Section B is 1.00 L. Calculate (a) AS A and AS11 , (b( AAA
and Au 5 , (c) AG A and AG 8 , (d) AS of the total system and its
surroundings. If numerical values cannot be obtained, indicate
whether the values should be positive, negative, or zero or are
indeterminate	 from	 the	 information	 given.	 (Assume

= 20 J K_i mol.)

4.5 A Carnot cycle uses 1.00 mol of a monatornic perfect gas as the
working substance from an initial state of 10.0 atm and 600 K. It
expands isothermally to a pressure of 1.00 atm (step t), and then
adiabatically to a temperature of 300 K (step 2). This expansion is
followed by an isothermal compression (step 3), and then an adiabatic
compression (step 4) back to the initial state. Determine the values of
r,', w, AU, All, AS, and AS,,, for each stage of the cycle and for the
cycle as a whole. Express your answer as a table of values.

4.6 1.00 mul of a perfect gas at 27°C is expanded isothermally from
an initial pressure of 3.00 atm to a final pressure of 100 arm in two
ways: (a) reversibly, and (b) against a constant external pressure of

.00 atm. Determine the values of q, w, AU, AH, AS, AS,, and
for each path.	 •

4.7 A sample of 1.0(1 mol of a monatomic perfect gas at 27°C and
1(X) atmis expanded adiabatically in two ways: (a) reversibly to
0.5	 na0 at, and (b) against a constant external pressure of 0.50 atm.
Deteimine the values of q, w, AU, All, AS, 	 and AS, for each
path where the data permit. Take C1 , 	 R.

4.8 A sample. of I.M tool of a monatomic perfect gas with
= R. initially at 298 K and 10 1., is expanded, with the

surroundings maintained at 298 K. to a final volume of 20 1., in three
ways: (a) isothermally and reversibly, (b) isothermally against a
constant external pressure of 0.50 atm. (c) adiabatically against a
constant external pressure of 0.50 aim. Calculate AS, All, AT,
Au), and AG for each path. If a numerical answer cannot be obtained
from the data, write -I-, or -. or ? as appropriate.
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4.9 The standard molar entropy of NH3 (g) is 192.45 JK mot- at
298 K, and its heat capacity is given by eqn 2.30 with the coefficients
given in Table 2.2. Calculate the standard molar entropy at (a) 100°C
and (b) 500°C.

4.10 A block of copper of mass 500 g and initially at 293 K is in
thermal contact with an electric heater of resistance 1.00 k!Q and
negligible mass. A current of 1.00 A is passed for 15.0 s. Calculate the
change in entropy of the copper, taking Cpm = 24.4 1K 1 mot-'.
The experiment is then repeated with the copper immersed in a
stream of water that maintains its temperature at 293 K. Calculate
the change in entropy of the copper and the water in this case.
4.11 Calculate the standard Helmholtz energy of formation, EsA, of
CH30H(l) at 298 K from the standard Gibbs energy of formation and
the assumption that H2 and 02 are perfect gases.
4.12 Calculate the change in entropy when 200 g of (a) water at
0°C, (b) ice at 0°C is added to 200 g of water at 90°C in an insulated
container.

4.13 Calculate (a) the maximum work and (b) the maximum non-
expansion work that can be obtained from the freezing of
supercooled water at -5°C and 1.0 atm. The densities of water and
ice are 0.999 gcm 3 and 0.917 gcm 3 , respectively, at -5°C.
4.14 The molar heat capacity of lead varies with temperature as
follows:
T/K	 10	 15	 20	 25	 30	 50
C/(JK'rnor')	 2.8	 7.0	 10.8	 14.1	 16.5	 21.4
T/K	 70	 100	 150	 200	 250	 298
C ,,/(JK' moI')	 23.3 24.5	 25.3	 25.8	 26.2	 26.6
Calculate the standard Third-Law entropy of lead at (a) 0°C and (b)
25°C.

4.15 Suppose that an internal combustion engine runs on octane, for
which the enthalpy of combustion is -5512 kimor', and take the
mass of 1 gallon of fuel as 3 kg. What is the maximum height,
neglecting all forms of friction, to which a car of mass 1000 kg can be
driven on 1.00 gallon of fuel given that the engine cylinder
temperature Is 2000°C and the exit temperature is 800°C?

4.16 From standard enthalpies of formation, standard entropies, and
standard heat capacities available from tables in the Data section,
calculate the standard enthalpies and entropies at 298 K and 398 K
for the reaction CO2 (g) + H7 (g) -. C0(g) + H 2 0(g). Assume that
the heat capacities are constant over the temperature range
involved,

4.17 The standard reaction Gibbs energy of
K4 [Fe(CN) 6 J . 3H20(s)

4K'(aq) + [Fe(CN) 6 ] 4 (aq) + 3H20(I)

is+26.120 kJmol' (l.R. Malcolm,IAK, Staveley,and R.D. Worswick,
J. Chem. Sac Forodoy Trans. I, 1532 (1973). The enthalpy of solution
of the trihydrate is +55.000 kjmol-'. Calculate (a) the standard
molar entropy of the hexacyanoferrat(l) ion in water and (b) the
standard reaction entropy given that the standard molar entropy of
the solid trihydrate is 599.7 J K- ' mo1 and that of the K ion in
water is 102.5 JK' moI',

4.18 The heat capacity of anhydrous potassium hexacyanoferrate(ll)
varies with temperature as follows:

T/K C/(JK' mot -') T/K	 Cp,mI(JK ' mol-')
10	 2.09	 100	 179.6
20	 14.43	 110	 192.8
30	 36.44	 150	 237.6
40	 62.55	 160	 247.3
50	 87.03	 170	 256.5
60	 111.0	 180	 265.1
70	 131.4	 190	 273.0
80	 149.4	 200	 280.3
90	 165.3

Calculate the molar enthalpy relative to its value at T = 0 and the
Third-Law entropy at each of these temperatures.

4.19 The compound 1,3,5-trichloro-2,4.6-trifluorobenzene is an
intermediate in the conversion of hexachlorobenzene to hexafluoro-
benzene, and its thermodynamic properties have been examined by
measuring its heat capacity over a wide temperature range
(R.L. Andon and J.F. Martin, J. Them. Soc. Faraday Trans. I, 871
(1973)). Some of the data are as follows:
T/K	 14.14 16.33 20.03 31.15 44.08 64.81
Cp,mI(JK ' mol') 9.492 12.70 18.18 32.54 46.86 66.36
T/K	 100.90 140.86 183.59 225.10 262.99 298.06
Cpm/(JK 1 mot- ') 95.05 121.3 144.4 163,7 180.2 196.4
Calculate the molar enthalpy relative to its value at T = 0 and the
Third-Law entropy of the compound at these temperatures.

Theoretical problems

4.20 Show that the integral of dq,/T round a Carnot cycle is zero.
Then show that the integral is negative if the isothermal reversible
expansion stage is replaced by an isothermal irreversible expansion.

4.21 Prove that two reversible adiabatic paths can never cross.
Assume that the energy of the system under consideration is a
function of temperature only. (Hint. Suppose that two such paths can
intersect, and complete a cycle with the two paths plus one
isothermal path. Consider the changes accompanying each stage of
the cycle and show that they conflict with the Kelvin statement of the
Second Law.)

4.22 Represent the Carnot cycle on a temperature-entropy diagram
and show that the area enclosed by the cycle is equal to the work
done.

4.23 Find an expression for the change in entropy when two blocks
of the same substance and of equal mass, one at the temperature Th
and the other at Tç , are brought into thermal contact and allowed to
reach equilibrium. Evaluate the change for two blocks of copper. each
of mass 500 g, with Cpm = 24.4 1K' mot - 1 , taking Th = 500 K
and T = 250 K.

4.24 A gaseous sample consisting of 1.00 mot molecules is described
by the equation of state pV,, = RT(1 + Hp). Initially at 373 K, it

10-A
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undergoes Joule-Thomson expansion from 1(X) ann to 10) atm.
Given that C., = R, it =  0.21 Katm', B = -0.525(K/T) aim
and that these are constant over the temperature range involved,
calculate AT and AS for the gas.
4.25 The cycle involved in the operation of an internal combustion
engine is called the Otto cycle. Air can be considered to be the working
substance and can be assumed to be a perfect gas. The cycle consists of
the following steps: (1) reversible adiabatic compression from A to 13.
(2) reversible constant volume pressure increase from B to C due to the
combustion of a small amount of fuel, (3) reversible adiabatic
expansion from C to D, and (4) reversible and constant-volume
pressure decrease back to state A. Determine the change in entropy (of
the system and of the surroundings) for each step of the cycle and
determine an expression for the efficiency of the cycle, assuming that
the heat is supplied in Step 2. Evaluate the efficiency for a compression
ratio of 10 : 1. Assume that in state A, V = 4.00 L,1 = 1.00 atm. and
T = 300 K, that VA = 10V8, PC/PB = 5, and that	 = 2 R.
4.26 Prove that the perfect gas temperature scale and the
thermodynamic temperature scale based on the Second Law of
thermodynamics differ from each other by at most a constant
numerical factor.

4.27 The definitions of the enthalpy, Gibbs energy, and Helmholtz
energy have all been of the form g = f + yz. Show that the addition
of the product yz is a general way of converting a function of x and y
to a function of x and z in the sense that, if df = a dx - dy, then
dg =adx+yth.

Additional problems supplicd by Cirl'ncn Giunt.a
and Charics Tripp

4.28 Alkyl radicals are important intermediates in the combustion
and atmospheric chemistry of hydrocarbons. N. Cohen reports group
additivity tables for the thermochemistry of alkyl free radicals
(N. Cohen, J. Phys. Chem. 96, 9052 (1992)), A portion of the table
follows. Use the table to estimate the standard molar entropies of
C2 11 5 , sec-C4 H9 , and tert-C4 1-1 9 . Note that S = - R Ins, where
Siom is the so-called intrinsic molar entropy, computed by group
additivity and s is a symmetry number. (s = 6 for C2 H 5 . 3 1 for sec-
C4 H9, and 34 for tert-C4H9.)

Group	 '	 S/(J K' mol"')
C-(C)(H)3	126.8

135.9
. C-(C ) ? ( H )	 59.3
.C-(C)3	 -29.2
C-( . C)(H) 3	126.8

42.0

4.29 Use the following enthalpies of formation reported by Seakins
et 01. (P.W. Seakins, MJ. Pilling, J.T. Niiranen. D. Gutman, and
LN. Krasnoperov, J. Phys. Chem. 96. 9847 (1992)) and entropies
based on group additivity tables of Cohen (N. Cohen, J. Phys. ('hem.
96, 9052 (1992)) to compute L,G° for three possible fates of the
tert-butyl radical at 700 K, namely, (a) tert-C 4 H 9 -. 5ec-C4 1-1 9 , ( b)
tcrt-C4 H	 -' C 3 H 6 . CH 3 , (c) tert-C4 H9 -. C2 11 4 + C2115.

Species	 1H/(kJ mo! ')	 S/(J K' mo!')
C2 H 5	+121.0	 247.8
sec-C4 H9	4-67.5	 . 336.6
tert-C4 H 9	 +51.3	 314.6

4.30 Given that S = 29.79 J K - ' mol 'for bismuth at 100 K and
the following tabulated heat capacity data (D.G. Archer, J. Chem. Eng.
Data 40, 1015 11995)). compute the standard molar entropy of
bismuth at 200 K.

T/K	 100 120 140 150 160 180 200
Cp,m/(J' mol') 23.00 23.74 24.25 24.44 24.61 24.89 25.11

Compare this value to the value that would be obtained by taking the
heat capacity to be constant at 24.44 J K" mol"' over this range.

4.31 Consider a Carnot engine operating in outer space between the
temperatures T5 and T. The only way that the engine can discard
heat at T is by radiation. The power radiated by the engine at T
follows the Stefan-Boltzmann law (see Section 11.1), which for our
purposes here is written dq/dt = kAT, where k is a constant related
to the Stefan-Boltzmann constant. Find the ratio T/T5 that
corresponds to a minimum area A of the radiator for a fixed power
output and constant Th.

4.32 Polytropie processes are those that satisfy the relation pV" = C.
Make schematic plots of potytropic processes on a pV and TS diagram
for ii = 0, ± I, ',' (the heat capacity ratio), and ± x.

10-8
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5 The Second Law:

the machinery

Combining the First and Second
Laws

One of the principal applications of thermodynamics is to find relations between properties
that might not In' thought to be related. Several relations of this kind can be established by
making use of the foul that the Gibbs energy is a state function. We also see how to derive
expressions for the variation of the Gibbs energy with temperature and pressure. These
expressions will prove useful later when we need to discuss the effect of temperature and
pressure on equilibrium constants. This chapter also introduces the chemical potential, a
property that will be at the centre of discussions in the remaining chapters of this port of the
text. We slimill also see how to formulate expressions that are valid for real gases.

The Gibbs energy, G. is of central importance to chemistry, and in this chapter it begins to
move to the centre of the stage. We shall also meet the 'chemical potential', the quantity on
which almost all the most important applications of thermodynamics to chemistry are based.

Combining the First and Second Laws
We have seen that the First Law of thermodynamics may be written

dU = dq + dw

For a reversible change in a closed system of constant composition, and in the absence of
any non-expansion work,

dw = —pdV dq = TdS

Therefore,

5.1	 Properties of the internal
energy

5.2	 Properties of the Gibbs
energy

5.3	 The chemical potential of a
pure substance

Real gases: the fugacity

5.4 The definition of fugacity
5.5	 Standard states of real gases
5.6 The relation between

fugacity and pressure

Checklist of key ideas

Further reading

Exercises

Problems

dU = TdS — pdV
	

(2)

However, because dU is an exact differential, its value is independent of path. Therefore, the
same value of dU is obtained whether the change is brought about irreversibly or reversibly.
Consequently, eqri 2 applies to any change—reversible or irreversible—of a closed system
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that does no non-expansion work. We shall call this combination of the First and Second

Laws the fundamental equation.
The fact that the fundamental equation applies to both reversible and irreversible

changes may be puzzling at first sight. The reason is that only in the case of a reversible

change may TdS be identified with dq and —pdV with dw. When the change is irreversible

TdS> dq (the Clausius inequality) and —p dV > dw. The sum of dw and dq remains equal to

the sum of TdS and —p V, provided the composition is constant.

5.1 Properties of the internal energy
Equation 2 shows that the internal energy of a closed system changes in a simple way when

S and V are changed (du x dS and dU cc dv). These simple proportionalities suggest that U
should be regarded as a function of S and V. We could regard U as a function of other

variables, such as  and porT and V, because they are all interrelated; but the simplicity of

the fundamental equation suggests that U(S, V) is the best choice.

1 he mathematical consequence of U being a function of S and V is that a change dU can

be expressed in terms of the changes dS and dV by'

dU=
 GO

dS + ()dv	 (3)

	

43S	 av

This expression states that the change in U is proportional to the change in S and to the

change in V, the two coefficients being the slopes of the plots of U against S and V.
respectively. When this expression is compared to the thermodynamic relation, eqn 2, we see
that, for systems of constant composition,

(au'\	 (au	 (4)
WS	

\

	

T	 —p 

The first of these two equations is a purely thermodynamic definition of temperature as the
ratio of the changes in the internal energy and entropy of a constant-volume, closed,
constant-composition system. We are beginning to generate relations between the
properties of a system and to discover the power of thermodynamics for establishing

unexpected relations.

(a) The Maxwell relations
Because the fundamental equation. eqn 2, is an expression for an exact differential, the
coefficients of dS and dV must pass the test for exact differentials (see Further information

1). That is,

	

( \	 13h \
dj	

g
gdx + hdy is exact if	 (5)

Therefore, because we know that dU TdS —pdV is exact, it must be the case that

(T - (0p\
)S	 S)

We have generated a relation between quantities which, at first sight, would not seem to be

related.
The equation just derived is an example of a Maxwell relation. However, apart from being

unexpected, it does not look particularly interesting. Nevertheless, it does suggest that there
may be other similar relations that are more useful. Indeed, the fact that if, G. and A are all

state functions can be used to derive three more Maxwell relations. The argument to obtain

(6)

I	 foc 3 xew of Partial differentia l ptopois. set Farther informlion I.
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them runs in thesame way in each case: because Ii, G, and A are state functions, the
expressions for dJi, dO, and dA satisfy the relation like eqn 6. All four relations are listed in
Table 5.1. In the next section we derive one of them, but as no new principles are involved
we shall not derive them all.

(b) The variation of internal energy with volume
The coefficient we have called the internal pressure,

tT
 

(")

	
[7)

played a central role in the manipulation of the First Law, and in Justification 3.2 we used

the relation

7tT=T(T)_P	 (8)

This relation is called a thermodynamic equation of state because it expresses a quantity in
terms of the two variables T and p and applies to any substance. We are now ready to derive
it from the equations we have just established.

We can obtain the coefficient nT by dividing both sides of eqn 3 by dV, imposing the
constraint of constant temperature, and then introducing the two relations in eqn 4:

Gu\ 18U\ (as\ (u\

)v)T)S

GO
This equation is already beginning to look like the expression we want. One of the Maxwell
relations does the job of turning (S1V)7 into something else:

(S'\ -

kS0V) T	T)v

The substitution of this relation completes the proof of eqn B.

E.xmpIe 5.1 Deriving a Thermo4ynvnie rciatioh

Show thermodynamically that T = 0 for a perfect gas, and compute its value for a van der

Waals gas.

Method Proving a result 'thermodynamically' means basing it entirely on general
thermodynamic relations and equations of state, without drawing on molecular arguments
(such as the existence of Intermolecular forces). We know that, for a perfect gas
p = nRT/V, so this relation should be used in eqn 8. Similarly, the van der Waals equation is
given in Table 1.7. and for the second part of the question it should be used in eqn 8.

At1s4r Because (lp/T) = nR/V for a perfect gas (by differentiation of the equation of
state), eqn 8 becomes

nRT
JrT =	 - p = 0

The equation of state of a van der Waals gas is

Table 5.1 The Maxwell
relations

- (p\
tv)s - t.33s)

(er
kep)s	 s)
(ep)	

('S)

'ar)	 \.,ap)7

aRT	 a2
= V - oh - 11V2
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Therefore, because a and h are independent of temperature, we can write

- nR
\r) V v -

That is,

	

nRT	 nRT	 I2	 fl

= V - nh - V _ fl,, +a= a

Comment This result for it 1- implies that the internal energy of a van der Waals gas
increases when it expands isothermally (that is. (aU16f') 1- >0) and that the increase is
related to the parameter a, which models the attractive interactions between the particles. A
larger molar volume, corresponding to a greater average separation between molecules,
implies weaker mean intermolecular attractions.

Self-test 5.1 Calculate itT for a gas that obeys the virial equation of state.
Iitr R T2 (eB1o T)1 v, + . --1

5.2 Properties of the Gibbs energy
The same arguments that were applied to the fundamental equation for U may be applied to
the Gibbs energy G = 11 TS. When the system undegoes a change of state, G may change
because H, T. and S change. For infinitesimal changes in each property,

dG dI( - TdS - SdT

Because H = U +pV, we know that

dH = dU ±pdV + Vdp

For a closed system doing no non-expansion work, dU can be replaced by the fundamental
equation dU = TdS - pdV. The result of these steps is

dG = (TdS - pdV) -I- pdV + Vdp - TdS —Stir

That is, for a closed system in the absence of non-expansion work and at constant
composition

dG=Vdp— SIJT	 (9)

This expression, which shows that a change in G is proportional to changes in p and T,
suggests that G may be best regarded as a function of p and T. It confirms that G is an
important quantity in chemistry because the pressure and temperature are usually the
variables under our control. In other words, G carries around the combined consequences of
the First and Second Laws in a way that makes it particularly suitable for chemical
applications.

The same argument that led to eqn 4. when applied to the exact differential dG, now
gives

OG)'=
(TF -s	 ( IG

	
V	 (.10)

These relations show how the Gibbs energy varies with temperature and pressure. Because S
is positive, it follows that G decreases when the temperature is raised at constant pressure
and composition. Moreover, the relation shows that G decreases most sharply when the
entropy of the system is large. Therefore, the Gibbs energy of the gaseous phase of a
substance, which has a high molar entropy, is more sensitive to temperature than its liquid
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Temperature, T

5.1 The variation of the Gibbs energy with the
temperature is determined by the entropy. Because
the entropy of the gaseous phase of a substance is
greater than that of the liquid phase, and the
entropy of the solid phase is smallest, the Gibbs
energy changes most steeply for thegas phase.
followed by the liquid phase, and then the solid
phase of the substance.

Pressure, p

5.2 The variation of theGibbs energy with the
pressure is determined by the volume of the sample.
Because thevolume of the gaseous phase of a
substance is greater than that of the same amount
of liquid phase, and the volume of the solid phase
is smallest (for most substances), the Gibbs energy
Changes most steeply for the gas phase, followed by
the liquid phase, and then the solid phase of the
substance. Because the volumes of the solid and
liquid phases of a substance are similar, they vary
by similar amounts as the pressure is changed.

and solid phases (Fig. 5.1). Because V is positive, G always increases when the pressure of the

system is increased at constant temperature (and composition). Because the molar volumes
of gases are large, G is more sensitive to pressure for the gaseous phase of a substance than

for its liquid and solid phases (Fig. 5.2).

Example 5.2 Calculating the effect of pressure on the Gibbs energy

Calculate the change in the molar Gibbs energy of (a) liquid water treated as an
incompressible fluid and (b) water vapour treated as a perfect gas, when the pressure is
increased isothermally from 1.0 bar to 2.0 bar at 298 K.

Method In each case, the change in molar Gibbs energy can be obtained by integration of
cqn 9 with the temperature held constant (that is, setting dT 0):

Gm(.pr) - G,(,p) =
	

Vi,, dp

For an incompressible fluid, the molar volume is independent of the pressure, so Vm can be

treated as a constant. For a perfect gas, the molar volume varies with pressure as

V. = RT/p, so this expression must be used in the integrand, and the integration performed

treating RT as a constant.

Answer For the incompressible liquid, Vm is constant at 18.0 cm  mol -l ' so

I
Pt

Gm(Pi)_Gni(Pi)Vm 	 dp=Vx(pr—p)

= (18.Ox 10 6 m3mol')x(1.0x 10 Pa)

= +1.8 Jmol

(because I Pa m T = I N m = I J). For a perfect gas;

G,(p) - Gm(pi) = f	 di)= RT In ()

= (2.48 kJ mot ') x In 2.0 = +1.7 kJmoI

Comment Note that G increases in both cases, and that the increase for a gas is about 1000

times greater than for the liquid.

Self-test 5.2 Calculate the change in G. for ice at -10'C when it has density

0.917 gcm 1 , when the pressure is increased from 1.0 bar to 2.0 bar.
[+2.0 J molt]

(a) The temperature dependence of the Gibbs energy

In due course we shall see that the equilibrium composition of a system depends on the
Gibbs energy, and that to discuss the response of the composition to temperature it is
necessary to know how G varies with temperature. The3irst expression in eqn 10 is the
starting point; although it expresses the variation of G in terms of the entropy, it can be
expressed in terms of the enthalpy by using the definition of G to write S = (H - G)/T.

Then

GT-	 (11)T
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We shall see later that the equilibrium constant of a reaction is related to G/T rather than to
G itself,2 and it turns out the variation of this quantity with temperature is simpler than the
temperature variation of G alone. In fact, it is easy to deduce from the last equation (see the
Justification below) that

(8 (G)t\	 H
(12)

This expression is called the Gibbs-Helmholtz equation. (G-H is a helpful way of
remembering what this equation relates.) It shows that, if the enthalpy of the system is
known, then the temperature dependence of G/T is also known.

Ju'tilcation 5.1

First, we write eqn 11 as

(8G\ G H
T	 T

The expression on the left is simplified by noting that
(8 (G)) p Ii'8G\	 dl

=
1(8G\ G

T2

1f(8G	 G
T '), k.,8T)	 T

When we substitute eqn 11 into this expression, we obtain eqn 12.

Example S.5 Manipulating the Gibbs-HIrnhoitz equartion
Show that

Method This example is an exercise in manipulating partial differentials. The desired
expression resembles the Gibbs-Helmholtz equation, so eqn 12 is a good starting point. To
obtain the desired result, we need to convert the variable of differentiation from 7' to l/T,
which can be done by standard techniques of manipulating derivatives.

Answer The left-hand side of eqn 12 can be written

(8(G/T)'1 -	 d(1/T) - (8(G/T)\	 I
l 87' ),, k

(8(G/T)'
8(1/T)) dT - k8(1/T))	 ,, T2 )

Substitution of this result into eqn 12 and multiplication of both sides by _7'2 gives the
expression required.

2	 In Section 9 hI we derive the result that the equilibrium constant for a reaction is related to its standard reaCt,Ol free cncrgy by
5,G"/T_ —RInK.
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Cnmnrcnt The result shows that, if H is independent of temperature over a range, then a
plot of G/T against I /T should be a straight line of slope H. We see the usefulness of this
result in Chapter 9.

Volume	 Actual
assumed	 volume
constant

tp

Pi

Scl1-lest 5.3 Find the equation for the temperature dependence of A that corresponds to
that just derived for G.
-

The Gibbs-Helmholtz equation is most useful when it is applied to changes, including
changes of physical state and chemical reactions at constant pressure. Then, with
AG = Gr - G i for the change of Gibbs energy between the final and initial states, because
the equation applies to both G 1 and G, we can write

((AG/T) s1 -	 13)
k T	 72

Pressure, p

5.3 The difference in Gibbs energy of a solid or	 (b) The pressure dependence of the Gibbs energy
liquid at two pressures is equal to the rectangular
area shown. We have assumed that the variation of	 To find the Gibbs energy at one pressure in terms of its value at another pressure, the
volume with pressure is negligible,	 temperature being constant, we set dT = 0 in eqn 9 and integrate the remaining

expression:

f Pr

G(p1) = G(p i ) + J Vdp	 (14)
I?,

For a liquid or solid, the volume changes only slightly as the pressure changes (Fig. 53). so V
may be treated as a constant and taken outside the integral. Then, for molar quantities,

Gm (Pt) = G. (p i )+ Vm(P - Pi)	 (15)
= G., (p i ) + VmAI)

where Ap = Pr - p. Under normal laboratory conditions Vmtsp is very small, as we saw in
Example 5.2, and may be neglected. Hence, we may usually suppose that the Gibbs energies

It of solids and liqtiids are independent of pressure. However, if we are interested in
geophysical problems, then because pressures in the Earth's interior are huge, their effect on
the Gibbs energy cannot be ignored. If the pressuresare so great that there are substantial
volume changes, we must use the complete expression, eqn 14.

Illustration
Suppose that for a certain phase transition of a solid AV = +1.0 cm  mol* Then, for an
increase in pressure to 3.0 Mbar, the Gibbs energy of the transition changes from
rG(1 bar) to

AirrG(3 Mbar) = AG(l bar) + (lOx 106 m3mol')

x (3.0x 10 11 Pa - 1.0 x 105 Pa)

= A1 G(1 bar) +3.Ox 102 kJmol

Sclf-lcI F..4 Calculate the difference in molar Gibbs energy between the top and bottom
of a column of mercury in a barometer. The mass density of mercury is 13.6 gcm3.

1+1.5 Jmol)



0

M
C
B
0
0.

a)
U

E
a)

0

132
	

THE SECOND LAW: THE MACHINERY

J yap

Pr
Pressure, p

5.4 The difference in Gibbs energy for a perfect gas
at two pressures is equal to the area shown below
the perfect-gas isotherm.

IcuauIw, /.,

51, 4hc chemical potential, p, of a perfect gas is
proportional to In p, and the standard state is
reached at p°. Note that, asp —. 0, p kliftomes
negatively infinite.

The molar volumes of gases are large, so the Gibbs energy may depend strongly on the
pressure. Furthermore, because the volume also varies markedly with the pressure, we
cannot treat it as a constant in the integral in eqn 14 (Fig. 5.4). For a perfect gas we
substitute V = rtRT/p into the integral, and find

G(p 1 ) = G(p) -i- nRTf	 -' = G(p 1 )+itRT]n (t)	 (16)°

this expression shows that, when the pressure is increased ten-fold at room temperature, the
molar Gibbs energy Increases by about (s kJtnol_t. It also follows from this equation that, if
we set p -= p (the standard pressure of I bar), then the Gibbs energy of a perfect gas at a
pressure p is related to its standard value by

G(p)	 I ,tRT In ()
	

(17)°

5.3 The chemical poteiitial of a pure substance

Now we switch attention from the Gibbs energy itself to a quantity, the chemical potential,
that is closely related and which will play a central role in all subsequent discussions of
equilibrium. First, we introduce the chemical potent i al of a pure substance, and in particular
the chemical potential of a perfect gas. At this stage its introduction will seem to be no more
than a change of notation. However, the definition prepares the ground for the introduction
(in Section 7.1 b) of the chemical potential of a substance in a mixture (including a reaction
mixture), which is a powerful and general concept.

The chemical potential, ji, of a pure substance is defined as

/1 —
	

18]i,t(1G)
that is, the chemical potential shows how the Gibbs energy of a system changes as a
substance is added to it. For a pure substance, the Gibbs energy is simply G = n x Gm, S0

ii 
= (P?tGin)	

Gm	 (19)

and the chemical potential is the same as the molar Gibbs energy. For example, the chemical
potential of a perfect gas at a pressure p can be written from eqn 17:

p =p +RT In 
(^_ )	

(20)°

where p o is the standard chemical potential, the molar Gibbs energy of the pure gas at
I bar. The logarithmic variation of the chemical potential with the pressure given by eqn 20
is illustrated in Fig. 5.5.

Real gases: the fugacity
At various stages in the development of physical chemistry it is necessary to switch from a
consideration of idealized systems to real systems. In many eases it is desirable to preserve
the form of the expressions that have been derived for the idealized system. Then deviations
from the idealized behaviour can be expressed most simply. We shalt illustrate such a
procedure in this section by considering how the expressions that have been derived for
perfect gases, particularly eqn 20 for the chemical potential of a perfect gas, are adapted to
describe real gases.

a)
E
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5.6 The chemical potential or a real gas. As p — 0,
,u coincides with the value for a perfect gas (shown
by the pale line). When attractive forces are
dominant (at intermediate pressures), the chemical
potential is less than that or a perfect gas and the
molecules have a lower 'escaping tendency'. At high
pressurm when repulsive forces are dominant, the
chemical potential of a real gas is greater than that
of a perfect gas. Then the 'escaping tendency' is
increased.
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5.4 The definition of fugicity

The pressure dependence of the chemical potential of a real gas might resemble that shown
in Fig. 5.6. To adapt eqn 20 to this case, we replace the true pressure, p, by an effective
pressure, called the fugacity, f, and write

+RTI0(_c)	 [21]

The name 'fugacity' comes from the Latin for 'fleetness' in the sense of 'escaping tendency';
fugacity has the same dimensions as pressure. In later chapters we derive thermodynamically
exact expressions in terms of chemical potentials, and therefore in terms of fugacitics. For
example, from elementary chemistry we know that the equilibrium constant for a reaction
such as 11 2 (g) + 8r 2 (g)	 2HBr(g) should be written

=

where p j is the partial pressure of substance J; however, this expression is only an
approximation. The thermodynamically exact expression is

K —
flIfl3r,

where f is the fugacity of J. Although the latter expression is exact, it is useful only if we
know how to interpret the fugacities in terms of the partial pressures. This is the task we deal
with in the remainder of this chapter.

5.5 Standard states of real gases

A perfect gas is in its standard state when its pressure is p° (that is, 1 bar): the pressure
arises solely from the kinetic energy of the molecules and there are no intermolecular forces
to take into account. We aim to recapture this 'kinetic energy only' definition for the
standard state of a real gas by picturing it as a hypothetical state in which all the
intermolecular forces have been extinguished:

The standard state of a real gas is a hypothetical state in which the gas is at a
pressure p° and behaving perfectly.

The advantage of this definition is that it ensures that the standard state of a real gas has the
simple properties of a perfect gas. If we had defined the standard state as the one for which

f =p°, then the standard states of different gases would have had relatively complex
properties. The choice of a hypothetical standard state literally standardizes the interactions
between the particles by setting them to zero. 3 Then differences of standard chemical
potential of different gases arise solely from the internal structure and properties of the
molecules, not from the way they interact with each other.

5,6 The relation between fuj;iei (y and pressure

We shall write the fugacity as

f = çbp
	

[22)
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where 4, is the dimensionless fugacity coefficient. In general, 4, depends on the identity of
the gas, the pressure, and the temperature. With the introduction of 4,, eqn 21 becomes

p = p  + RT In (/e) + RT In 0	 £23)

As p refers to a hypothetical 'kinetic energy only' gas, and the term In p is the same as for a
perfect gas, the term RT In 4, must express the entire effect of all the intermolecular forces.
Because all gases become perfect as the pressure approaches zero (so f -+ p asp -. 0), we
know that 4, - I as p 0.

We shall now show that, at a general pressure p, the fugacity coefficient of a gas is given
by the expression

In 4, 
fP(7i) 

dp	 (24)

where Z is the compression factor of the gas (Z = pVm /RT; this quantity was introduced in
Section 1.4a). Equation 24 is an explicit expression for the fugacity coefficient at any
pressure p and therefore, through eqn 22, for the fugacity of the gas at that pressure.

Justification 5.2

Equation 14 is true for all gases, whether real or perfect. Expressing it in terms of molar
quantities and then using eqn 21 gives

f Vm dp = - p' = RT In ()

In this expression, f is the fugacity when the pressure is  and f is the fugacity when it
the pressure is p. If the gas were perfect we could write

f Vprcc t m dp	 -	 = RT In ()

The difference of the two equations is

f(Vm - V i,.) dp = RT{In (p,) - in ()}

which can be rearranged to

In (j x	 =	 - Vpeieect,m)dP

When p' -. 0, the gas behaves perfectly and f becomes equal to the pressure p'.
Therefore, p '/f' - I asp' -. 0. If we take this limit (which means setting p71' = I on the
left and p' = 0 on the right), the last equation becomes

In (—) = j ' (Vm - Ve,m) dp

With 4,

I	 t
In 4, =	 J (Vm - Vperec t,m) dP

RT 0

For a perfect gas l,,ecCm RT/p. For a real gas, V. = RTZ/p, where Z is the
compression factor. With these two substitutions, we obtain eqn 24.

To evaluate 4, from eqn 24, we need experimental data on the compression factor from
very low pressures up to the pressure of interest. Some information of this kind is available in
numerical tables, in which case the integral may be evaluated numerically. Sometimes an
algebraic expression is available for Z (for instance, from one of the equations of state,



5.7 The fugacity coefficient of a van der Waals gas
plotted using the reduced variables of the gas. the
curves are labelled with the reduced temperature
T,=T/T,.
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Table 1.7) and it may be possible to evaluate the integral analytically. Thus, if we know the
virial coefficients for the gas we can obtain the fuqacity by using

1ncb=B'p+C'p2+	 (25)

This expression was obtained by explicit evaluation of eqn 24.

Exmpk 5.4 Calcutatitg 21 fugacky

Suppose that the attractive interactions between gas particles can be neglected, and find an
expression for the fugacity of a van der Waals gas in terms of the pressure. Estimate its value
for ammonia at 10.00 atm and 298.15 K.

Metlmd The starting point for the calculation is eqn 24. To evaluate the integral, we need

an analytical expression for Z, which can be obtained from the equation of state. We saw in
Section 1.5 that the van der Waals coefficient a represents the attractions between
molecules, so it may be set equal to zero in this calculation.

Awt When we neglect a in the van der Waals equation, that equation becomes

RT
- h

and hence

bp= I + RT
The integral in eqn 24 that we require is therefore

1"IZ —l'\	 ["(b\	 hp
J	

)dP=

Consequently, from eqns 24 and 22, the fugacity at the pressure p is

f = pe'7
From Table 1.6, h = 3.707 x 10-2 LmoL', so pb/RT = 1.515 x 102, giving

f = (10.00 atm) x e° 1 " 5t' = 10.2 atm

Ciniiici The effect of the repulsive term (as represented by the coefficient b in the van

der Waals equation) is to increase the fugacity above the pressure, and so the effective
pressure of the gas—its 'escaping tendency—is greater than if it were perfect.

Find an expression for the fugacity coefficient when the attractive
interaction is dominant in a van der Waals gas, and the pressure is low enough to make the
approximation 4ap/(Rfl 2 4 I. Evaluate the fugacity for ammonia, as above.

[In 4) = —ap/(RT) 2 , 9.32 atm]

It is clear from Fig. 1.27 that for most gases Z< I up to moderate pressures, but that

Z> I at higher pressures. If 7< I throughout the range of integration, then the integrand in

eqn 24 is negative and 0 < 1.  This implies that f<p (the molecules tend to stick together)
and that the chemical potential of the gas is less than that of a perfect gas. At higher

pressures, the range over which Z> I may dominate the range over which Z< 1. The integral

is then positive, 0> land f>p (the repulsive interactions are dominant and tend to drive
the particles apart). Now the chemical potential of the gas is greater than that of the perfect
gas at the same pressure.

Figure 5.7, which has bee 'alculated using the full van der Waals equation of state,
shows how the fugacity depends on the pressure in terms of their reduced variables

C

/// 
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(Section 1.6). Because the critical constants are available in Table 1.5, the graphs can be
used for quick estimates of the lugacities of a wide range of gases. Table 5.2 gives some
explicit values for nitrogen.

Illustration

To estimate the fugacity of nitrogen at 500 atm and 0°C, we first convert the reduced
pressure (Pr = p/pc) and temperature (7 = TIT,) of the gas by using the critical pressure
and temperature of nitrogen (33.5 atm and 126.2 K); hence Pr = 14.9 and Tr = 2.16. These
values correspond to çt = 1.15 in Fig. 5.7. Therefore, the fugacity of nitrogen is
approximately J'	 1. 15 x (500 arm) = 575 atm under the stated conditions. Because

I, the repulsive contributions are dominant in nitrogen at 500 atm and 0°C.

Table 5.2 The fugacity of nitrogen
at 273 K

p/atm	 f/aim

I	 0.99955
10	 9.9560

100	 97.03
1000	 1539

More values are given in the Data
SrCt/On.

'wll - tt si :,.Ir Estimate the fugacity of carbon dioxide at 90°C and 580 atm.

[230 atm]

Chcckhst of key tdeis

Combining the First and Second
Laws

I	 fundamental equation

5.1 Properties of the internal
energy

I	 the relations
(DU/0S) v = T and
(8u/eV)5 -p

11 Maxwell relations (Table 5.1)
L-1 thermodynamic equation of

state

5.2 Properties of the Gibbs
energy
the relations
(öG/DT),,	 -s and
( 3G10p ) - V
the Gibbs-llelmholtz
equation
the variation of Gibbs
energy with pressure for a
condensed phase (15) and a
perfect gas (17)

5.3 The chemical potential of a
pure substance
chemical potential
chemical potential of a
perfect gas (20)

Real gases: the fugacity

5.4 The definition of fugacity
fugacity
the chemical potential of a
real gas

equilibrium constants in
terms of fugacities

5.5 Standard states of real
gases

I standard state of a real gas

5.6 The relation between
fugacity and pressure
fugacity coefficient
the fugacity coefficient in
terms of the compression
factor (24) and the virial
coefficients

Further reading

Articles of qenerrI itiftr&'t

iS, Winn, The fugacity of van der Waals gas. J. Chem. Educ. 65,
772 (1988).

R.M. Noyes, Thermodynamics of a process in a rigid container.
J. Chem. Educ. 69, 470 (1992).

L.L. Combs, An alternative view of fugacity. J. Chew. Educ. 69,
218 (1992).

L. YAlessio, On the fugacity of a van der Waals gas: an
approximate expression that separates attractive and repulsive
forces. J. Chem. Educ. 70, 96 (1993).

RJ. Tykoli, The Gibbs function, spontaneity, and walls. J. Chew.
Educ. 73, 308 (1996).

R.M. Noyes, Application of the Gibbs function to chemical
systems and subsys:,is. I, Chem. Educ. 73, 404 (1996),

S.E. Wood and R. Battirto, The Gibbs function controversy.
J. Chem. Ethic. 73, 408, (1996).

R.J. Tykodi, Spontaneity, accessibility, irreversibility, 'useful
work': the availability function, the Helmholtz function, and
the Gibbs function J. Chem. Educ. 72, 103 (1995).

I	 , ,,rt&l	 III d;il ;i :utd ti1Ic)rl11J1ion

J.M. Smith and H.C. Van Ness, Introduction to chemical
engineering thermodynamics. McGraw-Hill, New York (1987).

B.D. Wood, Applications of thermodynamics. Addison-Wesley,
New York (1982).

G.N. Lewis and M. Randall. Thermodynamics, revised by
K.S. Pitier and L. ' ewer. McGraw-Hill, New York (1961).



PROBLEMS

Exercises

Assume all gases are perfect and that the temperature is 298.15 K
unless stated otherwise.

5:1 (a) Express (c7S/oV) = (Op/3T) in terms of a and Kr (see
eqns 33 and 3.13 for definitions).

5.1 (b) Express (8S/ap ) T = _( tV/8T) in terms of a (see eqns 3.7
and 3.13 for definitions).

5.2 (a) Suppose that 3.0 mmot N 7 (g) occupies 36 coi l at 300 K and
expands to 60 cm 3 . Calculate AG for the process.

5.2 (b) Suppose that 2.5 mmol Ar(g) occupies 72 dm 3 at 298 K and
expands to 100 dm 3 . Calculate AG for the process.

5.3 (a) The change in the Gibbs energy for a certain constant-
pressure process was found to fit the expression AG/J -
-85.40 + 36.5(T/K). Calculate te value of AS for the process.

5.3 (b) The change in the Gibbs energy for a certain constant-
pressure process was found to fit the expression AG/i =
-73.1 + 42.8(T/K). Calculate the value of AS for the process.

5.4 (a) Calculate the change in Gibbs energy of 35 g of ethanol
(mass density 0.789 gcm 3 ) when the pressure is increased
isothermally from I atm to 3000 atm.

5.4 (b) Calculate the change in Gibbs energy of 25 p of methanol
(mass density 0.791 gcm 3 ) when the pressure is increased
isothermally from 100 kPa to 100 MPa.

5.5 (a) When 2.00 mol of a gas at 330 K and 3.50 atm is subjected
to isothermal compression, its entropy decreases by 25.0 J K
Calculate (a) the final pressure of the gas and (b) AG for the
compression.

5.5 (b) When 3.00 mol of a gas at 230 K and ISO kPa is subjected
to isothermal compression, its entropy decreases by 15.0 J K
Calculate (a) the final pressure of the gas and (b) AG for the
compression.

5.6 (a) Calculate the change in chemical potential of a perfect gas
when its pressure is increased isothermally from 1.8 atm to 29.5 atm
at 40°C.

5.6 (b) Calculate the change in chemical potential of a perfect gas
when its pressure is increased isothermally from 92.0 kPa to
252.0 kPa at 50°C.

137

5.7 (a) The fugacity coefficient of a certain gas at 200 K and 50 bar
isO 72. Calculate the difference of its chemical potential from that of
a perfect gas in the same state.

5.7 (b) The fugacity coefficient of a certain gas at 290 K and
2.1 MPa is 0.68. Calculate the difference of its chemical potential
from that of a perfect gas in the some state.

58 (a) At 373 K, the second virial coefficient B of xenon is
81.7 cm 3 iisol'. Calculate the value of B' and hence estimate the

fugacity coefficient of xenon at 50 atm and 373 K.

5.8 (b) At 100 K. the second virial coefficient B of nitrogen is
-160.0 cm' mol . Calculate the value of B' and hence estimate the
fuqacity coefficient of nitrogen at 62 MRs and 100 K.

5.9 (a) Estimate the change in the Gibbs energy of 1.0 L of benzene
when the pressure acting on it is increased from 1.0 atm to 100 atm.

5.9 (h) Estimate the change in the Gibbs energy of 1.0 L of water
when the pressure acting on it is increased from 100 kPa to 300 kPa.

5.10 (a) Calculate the change in the molar Gibbs energy of hydrogen
gas when its pressure is increased isothermally from 1.0 atm to
100.0 atm at 293 K.

5.10 (b) Calculate the change in the molar Gibbs energy of oxygen
when its pressure is increased isothermally from 50.0 kPa to
100.0 kPa at 500 K.

5.11 (a) The molar Helmholtz energy of a certain gas is given by:

A,,, = - - - RTIn(V,,, -- h) +f (T)
m

where a and b are constants and f(T) is a function of temperature
only. Obtain the equation of state of the gas.

5.11 (b) The molar Gibbs energy of a certain gas is given by:

- RI In  + A' -i . B'p +C'p2 +

where A, ii, C, and D are constants. Obtain the equation of state of
the gas.

5.12 (a) Evaluate (iS/E'l',. for a van der Wools gas. For an
isothermal expansion, will AS be greater for a perfect gas or a van
der Waals gas? Explain your conclusion.

Problems

Numerical problems

5.1 Calculate ArG°(375 K) for the reaction 2C0(g) + 0,(g)
2CO 2 (g) from the value of ArG°(298 K). A,H'(298 K), and the
Gibbs-Helmholtz equation.

5.2 Estimate the standard reaction Gibbs energy of
N(g) + 3H(9) -. 2NH 1 (g) at (a) 500 K, (b) 1(1(8) K from their
values at 298 K.

5.3 At 298 K the standard enthalpy of combustion of sucrose is
-5645 ki mol and the standard Gibbs energy of the reaction is
6333 ti mot . Estimate the additional non-expansion work that may

h obtained by raising the temperature to blood temperature, 37 C.

5.4 At 200 K, the compression factor of oxygen varies with pressure
as shown Oelow. Lvaluatc the fugocity of oxygen at this temperature
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and 100 atm.

p/atm 1.0000 4.00000 7.0000) 10.0000 40.00 70.00 100.0

2	 0.9971 0.98796 0.97880 0.96956 0.8734 0.7764 0.6871

Theoretical problems
5.5 Show that, for a perfect gas. ((3U/S) = T and (8U1)V)5 = ._p.

5.6 Two of the four Maxwell relations were derived in the text, but
two were not. Complete their derivation by showing that
(eS/V) = ( p/ T) and (T/p)5 = (8V/as).
5.7 Use the Maxwell relations to express the derivatives (S/V),.
and (0V/S),, in terms of the expansion coefficient a and the
isothermal compressibility

5.8 Use the Maxwell relations and Euler's chain relation to express
(aplaS)v in terms of the heat capacities, the expansion coefficient,
and the isothermal compressibility.

5.9 Use the Maxwell relations to show that the entropy of a perfect
gas depends on the volume as S cc R In V.
5.10 Derive the thermodynamic equation of state

(eH'\ -
	 (aV)p

PTTT

Derive an expression for (H/Zip) ]. for (a) a perfect gas and (b) a van
der Waals gas. In the latter case, estimate its value for 1.0 mol Ar(g)
at 298 K and 10 atm. By how much does the enthalpy of the argon
change when the pressure is increased isothermally to II aim?

5.11 Prove the following relation:

- _V2 (1p)(0(T/v))
Ov)	 ôT 	 öV

5.12 Show that if 5(T) is the second virial coefficient of a gas, and
AB = B(T') - 8(7-), AT = r' - T1 , and T is the mean of T" and 7',
then

RT2EtB
VLsT

Estimate lrT for argon given that B(250 K) = -28.0 cm 3 mol and
B(300 K) = -15.6 cm3 mol' at 275 Kat(a) 1.0 atm, (b) 10.0 atm.

5.13 (a) Prove that the heat capacities C,, and C,, of a perfect gas are
independent of both volume and pressure. May they depend on the
temperature? (b) Deduce an expression for the dependence of CV on
volume of a gas that is described by the equation of state
pVm/RT= 1 +B/V..
5.14 The Joule coefficient, j,, is defined as juj = (T/3V) 0 . Show
that IUJCV = p - (CZT/,cT).

5.15 Evaluate lrr for a Dieterici gas (Table 1.7). Justify physically the
form of the expression obtained.

5.16 Instead of assuming that the volume of a condensed phase is
constant when pressure is applied, assume only that the compres-

sibility is constant. Show that, when the pressure is changed
isothermally by Ap, C changes to

= G + V,\p(1 - rP)

Assess the error in assuming that a solid is incompressible by applying
this expression to the compression of copper when Ap = 500 atm.
(For copper at 25"C, KT = 0.8 x 106 atm and p = 8.93 gcm.)

5.17 Deriv, e an expression for the standard reaction Gibbs energy
L,G° (the analogue of the standard reaction enthalpy) at a
temperature T' in terms of its value 1rG at T by using the
Gibbs-Helmholtz equation and (a) assuming that LrH does not vary
with temperature, (b) assuming instead that A,C 0 does not vary with
temperature and using Kirchhoff's law.

5.18 The adiabatic compressibitiry, , is defined like KT (eqn 3.13)
but at constant entropy. Show that for 2 rfect gas p7K5 = I (where
-/ is the ratio of heat capacities).

5.19 Show that, if S is regarded as a function of  and p, then

TdS = CdT+T-" dV

Calculate the energy that must be transferred as heat to a van der
Waals gas that expands reversibly and isothermally from V to V.
5.20 Suppose that S is regarded as a function of p and T. Show that

TdS CdT - aiVdp

Hence, show that the energy transferred as heat when the pressure on
an incompressible liquid or solid is increased by Ltp is equal to
-aTVip. Evaluate q when the pressure acting on 100 cm 3 of
mercury at 0C is increased by 1.0 kbar. (a = 1.82 x 10 -' K-'.)

5.21 The volume of a newly synthesized polymer was found to
depend exponentially on the pressure as V = V0e P', where p is the
excess pressure and p is a constant Deduce an expression for the
Gibbs energy of the polymer as a function of excess pressure. What is
the natural direction of change of the compressed material when the
pressure is relaxed?

5.22 Find an expression for the fugacity coefficient of a gas that
obeys the equation of state

B C
RT-	 + V.

Use the resulting expression to estimate the fugacity of argon at
1.00 atm and 100 K using B = -21.13 cm3 mol' and
C = 1054 cm 6 moM.

5.23 Derive an expressiJn for the fugacity coefficient of a gas that
obeys the equation of state

RT	 Vm

where q is a constant, and plot 0 against 4pq/R.
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Additional probicrus suppl icd by (Thri n ('ii Giti,i I

and Charles Trapp

5.24 In 1995, the Intergovernmental Panel on Climate Change
considered a global average temperature rise of 1.0-3.5°C likely by
the year 2100, with 2.0°C its best estimate (IPCC Second Assessment
Synthesis of Scientific-Technical lnfonation Relevant to Interpreting
Article 2 of the UN Framework Convention on Climate Change
(1995)), Because water vapour is itself a greenhouse gas, the increase
in water vapour content of the atmosphere is of some concern to
climate change experts. Predict the relative increase in water vapour
in the atmosphere based on a temperature rises of 2.0 K. assuming
that the relative humidity remains constant. (The present global mean
temperature is 290 K, and the equilibrium vapour pressure of water
at that temperature is 0.0189 bar.)

5.25 Nitric acid hydrates have received much attention as possible
catalysts for heterogeneous reactions which bring about the Antarctic
ozone hole. Worsnop et al. investigated the thermodynamic stability
of these hydrates under conditions typical of the polar winter
stratophere (D.R. Worsnop, LE. Fox, M.S. Zabniser, and S.C. Wofsy,
Science 259, 71 (1993)). They report thermodynamic data for the
sublimation of mono-, di-, and trihydrates to nitric acid and water
vapours. HNO 3 . nH 2 0(s) -. HNO3 (g) + nH 2 0(g), for n = 1, 2, and 3.
Given AG0 andArt["' for these reactions at 220 K. use the Gibbs-
Helmholtz equation to compute A,G 0 at 190 K.

A	 I	 2	 3
A1G/(kJmot)	 46.2 69.4 93.2

H 437(kJmot)	 127 188 237

5.26 In an investigation of thermophysical properties of toluene
(R.D. Goodwin, J. Phys. Chem. Ref. Data 18, 1565 (1989)), Goodwin

tabulated (among other quantities) the compression factor, Z. at
several temperatures and pressures. From the following information,
compute the fugacity coefficient of toluene at 600 K and (a) 30.0 bar
and (b) 1000 bar.

p/bar 0.500	 1.013	 2.00	 3.000	 5.00
Z	 0.99412 0.98896 0.97942 0.96995 0.95133
p/bar lOOt)	 20.0	 30.0	 42.4	 50.0
Z	 0.50569 0.81227 0.70177 0.47198 0.22376
p/bar 70.0	 100.0	 200	 300	 500	 1000
Z 0.26520 0.34920 0.62362 0.88288 1.37109 2.48836

5.27 J. Gao and J.H. Weiner in their study of the origin of stress on
the atomic level in dense polymer systems (Science 266, 748 (19941),
observe that the tensile force required to maintain the length, 1, of a
long linear chain of N freely jointed links, each of length a, can be
interpreted as arising from an entropic spring. For such a chain,
S(!) = -3k12 12Na2 + C, where k is the Boltzmann constant and C is
a constant. Using thermodynamic relations from this and previous
chapters, show that the tensile force obeys Hooke's law. f = krl, if
we assume that the energy U is independent of 1.

5.28 You are told that the differential of pressure consistent with an
equation of We is given by one of the following two expressions.
Determine the equation of state.

2(V b)dV (V - h)2dT
dp = ----- +

RTdV RdT
dp=--	 +-

(V-h) V-b
5.29 At I aim, liquid water has its maximum density at 4°C. What
can be concluded about the variation of the entropy of liquid water
with pressure at constant temperature at 3°C, 4°C, and 5°C?

11-A


