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Quantum theory:
Introduction and
principles

This chapter introduces some of the basic principles of quantum mechanics, First, it reviews
the experimental results that averthrew the concepts of classical physics. These experiments
fed to the conclusion thut particles may not have an arbitrory energy and that the classical
concepts of ‘purticle’ and ‘wave’ blend logether. The overthrow of classical mechanics
inspired the formulation of u new set of concepts and the formulation of quantum
mechanics. In (iaentum mechanics, all the properties of a system are expressed in terms
of - wavelunction whicl s obtained by solving the Schradinger equation. We sec how to
interpret wavelunctions. Finully, we mtroduce some of the techniques of quantum
mechaontcs in terms of operators, ond see thot they Jead to the uncertainty principle, ane
of the mast prafound depurtures from clossical mechanics.

To understand the structures of individual atoms and molecules, we need to know how
subatomic particles move in response to the forces they experience, It was once thought that
the motion of atoms and subatomic particles could be expressed using the laws of classical
mechanics introduced in the seventeenth century by Isaac Newton, for these laws were very
successful at explaining the motion of everyday objects and planets. However, towards the
end of the nineteenth century, experimental evidence accumulated showing that classical
mechanics failed when it was applied to very small particles, and it took until the 1920s to
discover the appropriate concepts and equations for describing them. We describe the
concepts of this new mechanics, which is called quantum mechanics, in this chapter, and
apply them throughout the remainder of the text.

The origins of quantum mechanics

The basic principles of classical mechanics are reviewed in Further information 4. In brief,
they show that classical physics (1) predicts a precise trajectory for particles, with precisely
specified locations and momenta at each instant, and (2) allows the translational, rotational,
and vibrational modes of motion to be excited to any energy simply by controlling the forces
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11.1 The energy distribution in a black-body cavity
at several temperatures. Note how the energy
density increases in the visible region as the
temperature is raised, and how the peak shifts to
shorter wavelengths. The total energy density (the
area under the curve) increases as the temperature
is increased (as T*).

Detected
radiation

Pinhole

Container at a
temperature T

11.2_An experimental representation of a black
body is a pinhole in an otherwise closed container.
The radiation is reflected many times within the
container and comes to thermal equilibrium with
the walls at a temperature T. Radiation leaking out

" through the pinhole is characteristic of the
radiation within th cantainer,

11 QUANTUM THEORY: INTRODUCTION AND PRINCIPLES

that are applied. These conclusions agree with everyday experience. Everyday experience,
however, does not extend to individual atoms, and careful experiments of the type described
below have shown that classical mechanics fails when applied to the transfers of very small
quantities of energy and to objects of very small mass.

1.1 The failures of classical physics

In this section we review some of the experimenta! evidence which showed that several
concepts of classical mechanics are untenable. In particular, we shall see that observations of
black-body radiation, heat capacities, and atomic and molecular spectra indicate that
systems can take up energy only in discrete amounts.

(a) Black-body radiation

A hot object emits electromagnetic radiation. An appreciable proportion of the radiation is
in the visible region of the spectrum at high temperatures, and a higher proportion of short-
wavelength blue light is generated as the temperature is raised. This behaviour is seen when
a heated iron bar glowing red hot becomes white hot when heated further. The dependence
is illustrated-in Fig. 11.1, which shows how the energy output varies with wavelength at
several temperatures. The curves are those of an ideal emitter called a black body, which is
an object capable of emitting and absorbing all frequencies of radiation uniformly. A good
approximation to a black body is a pinhole in an empty container maintained at a constant
temperature, because any radiation leaking out of the hole has been absorbed and re-
emitted inside so many times that it has come to thermal equilibrium with the walls
(Fig. 11.2).

Figure 11.1 shows that the peak in the energy output shifts to shorter wavelengths as the
temperature is raised. As a result, the shorf-wavelength tail of the energy distribution
strengthens in the visible region and the perceived colour shifts towards the blue, as already
mentioned. An analysis of the data led Wilhelm Wien (in 1893) to formulate the Wien
displacement law:

T’lmax = %("Z
where 1., is the wavelength corresponding to the maximum of the distribution at a
temperature T. The constant c, is called the second radiation constant. Using its value, we
can predict that 4., =2900 nm at 1000 K.

A second feature of black-body radiation had been noticed in 1879 by Josef Stefan, who
considered the totatenergy density, £, the total electromagnetic energy in a region divided
by the volume of the region (£ = E/V). The energy density of the electromagnetic field
inside the container in Fig. 11.2 increases as the temperature is increased, and specifically
the Stefan-Boltzmann law states that

£=al* (2a)

Ludwig Boltzmann's name is attached to this law because he explained it theoretically. An
alternative form of the law is in terms of the excitance, M, the power' emitted by a region of
surface divided by the area of the surface: the excitance is a measure of the brightness of the
emission. Because the excitance is proportional to the energy density in the container, M is
also proportional to T, and we can write

M=o a=567x10°"Wm?3K* (25)

c; =144 ecmK (1)

The constant a is called the Stefan-Boltzmann constant. The Stefan-Boltzmann law implies
that 1 cm? of the surface of a black body at 1000 K radiates about 6 W when all

1 Power is the rate of supply of energy, Its SI units are watts, W' 1 W =1 Js!
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11.3 The electromagnetic vacuum can be regarded
as able to support oscillations of the
electromagnetic field. When a high-frequency
short-wavelength oscillator (a) is excited, that
frequency of radiation is present. The presence of
low-frequency long-wavelength radiation (b)
signifies that an oscillator of the corresponding
frequency has been excited.

Rayleigh-
Jeans
formula

Energy density distribution, p

Experimental

' Wavelength, A

11.4 The Rayleigh-Jeans law (eqn 3] predicts an
infinite energy density at short wavelengths. This
prediction is called the ultraviolet catastrophe.
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wavelengths of the emitted radiation are taken into account. The explanation of black-body
radiation was a major challenge for nineteenth-century scientists, and in due course it was
found to be beyond the capabilities of classicalvphysics. The physicist Lord Rayleigh studied it
theoretically from a classical viewpoint, and thought of the electromagnetic field as 2
collection of oscillators of all possible frequencies. He regarded the presence of radiation of
frequency v (and therefore of wavelength A = ¢/, where ¢ is the speed of light) as
signifying that the electromagnetic oscillator of that frequency had been excited (Fig. 11.3).
Rayleigh used the equipartition principle (see the Introduction) to calculate the average
energy of each oscillatar as k7. Then, with minor help from James Jeans, he arrived at the
Rayleigh-Jeans law:

e
where p is the proportionality constant between dA and the energy density in that range of
wavelengths; k is the Boltzmann constant (k = 1.381 % 107 JK™').

Unfortunately (for Rayleigh, Jeans, and classical physics), although the Rayleigh-Jeans
law is quite successful at long wavelengths (low frequencies), it fails badly at short
wavelengths (high frequencies). Thus, as 4 decreases, p increases without going through a
maximum [Fig. 11.4). The equation therefore predicts that oscillators of very short
wavelength (corresponding to ultraviolet light, X-rays, and even y-rays) are strongly excited
even at room temperaturt. Tnis absurd result, which implies that a large amount of energy is
radiated in the high-frequency region of the electromagnetic spectrum, is called the
ultraviolet catastrophe. According to classical physics, even cool objects should radiate in
the visible and ultraviolet regions: according to classical physics, objects should glow in the
dark; there should in fact be no darkness.

(b) The Planck distribution

The German physicist Max Planck studied black-body radiation from the viewpoint of
thermodynamics. In 1900 he found that he could account for the experimental observations
by proposing that the energy of each electromagnetic oscillator is limited to discrete values
and cannot be varied arbitrarily. This proposal is quite contrary to the viewpoint of classical
physics (on which the equipartition principle used by Rayleigh is based), in which all passible
energies are allowed. The limitation of energies to discrete values is called the quantization
of energy. In particular, Planck found that he could account for the observed distribution of
energy if he supposed that the permitted energies of an electromagnetic oscillator of
frequency v are integer multiples of hv:

E = nhv n=0,1,2,... (4)

where i is a fundamental constant now known as the Planck constant.
On the basis of this assumption, Planck was able to derive the Planck distribution:

8mhe 1
d€ = pdﬁ. g = T (m) (5)
This expression fits the experimental curve very well at all wavelengths (Fig. 11.5), and the
value of h, which is an undetermined parameter in the theory, may be obtained by varying
its value until a best fit is obtained. The currently accepted value for h is
6.62608 x 107% Js.

The Planck distribution resembles the Rayleigh-Jeans law (eqn 3) apart from the all-
important exponential factor in the denominator. For short wavelengths, he/AKT is large
and ¢MA7 o faster than A° — 0; therefore p — 0 as 1 — 0 or v — co. Hence, the
energy density approaches zero at high frequencies, in agreement with observation, For long
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11.5 The Planck distribution (eqn 5) accounts very
well for the experimentally determined distribution
of radiation. Planck’s quantization hypothesis
essentially quenches the contributions of high-
frequency, short-wavelength oscillators. The
distribution coincides with the Rayleigh-Jeans
distribution at long wavelengths.
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wavelengths, he/AkT < 1, and the denominator in the Planck distribution can be replaced
by

; he
c"‘f“"—l:(l+ﬂ‘—+~--)—lz%

When this approximation is substituted into eqn 5, we find that the Planck distribution
reduces to the Rayleigh-Jeans law.

The Planck distribution aiso accounts for the Stefan-Boltzmann and Wien laws. The
former is obtained by integrating the energy density over all wavelengths from A =0 to
4 = oo, which gives

40 2mi ks

= T s (6)

o
Ei= f pdd = aT?
0

Substitution of the values of the fundamental constants gives ¢ = 56.704 nW m=2K~*, in
accord with the experimental value. The Wien law is obtained by looking for the wavelength
at which dp/d = 0, the condition for the maximum in the distribution. When we take the
derivative, set it equal to zero, and make the approximation that the wavelength is so short
that he/4 3 kT, we obtain

he

Thnax = (7)

This resuit lets us identify the second radiation constant as ¢; = he/k = 1.439 cm K, which
is also in good agreement with experiment.

It is quite easy to see why Rayleigh's approach was unsuccessful and Planck's hypothesis
was successful, The thermal motion of the atoms in the walls of the black body excites the
oscillators of the electromagnetic field. According to classical mechanics, all the oscillators
of the field share equally in the energy supplied by the walls, so even the highest frequencies
are excited. The excitation of very high frequency oscillators results in the ultraviolet
catastrophe. According to Planck's hypothesis, however, oscillators are excited only if they
can acquire an energy of at least k. This energy is too large for the walls to supply in the
case of the very high frequency oscillators, so the latter remain unexcited. The effect of
quantization is to reduce the contribution from the high frequency oscillators, for they
cannot be significantly excited with the energy available.

(c) Heat capacities

In the early nineteenth century, the French scientists Pierre-Louis Dulong and Alexis-Thérése
Petit determined the heat capacities of a number of monatomic solids.” On the basis of some
somewhat slender experimental evidence, they proposed that the molar heat capacities of all
monatomic solids are the same, and close to 25 JK~' mol~" (in modern units).

Dulong and Petit's law is easy to justify in terms of classical physics. If classical physics
were valid, the equipartition principle could be used to calculate the heat capacity of a solid.
According to this principle, the mean energy of an atom as it oscillates about its mean
position in a solid is k7" for each direction of displacement. As each atom can oscillate in
three dimensions, the average energy of each atom is 3kT for N atoms the total energy is
3NKT. The contribution of this motion to the molar internal energy is therefore

Un = 3NAKT = 3RT

2 As explained in Section 2.4b, the constant-volume heat capacity, Cy, is defined as €y = (dU/aT),. A small heal capacity
indicates that  large rise i Lemperature results from a given transfer of energy.
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11.6 Experimental low-temperature molar heat
capacities and the temperature dependence
predicted on the basis of Einstein's theory, His
equation (eqn 9) accounts for the dependence fairly
well, but is everywhere too low.
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because N,k = R, the gas constant. The molar constant-volume heat capacity (eqn 2.19) is
then predicted to be

U,
CII'.m = ("aT)V= 3R (8)

This result, with 3R = 24.9 JK~' mol™', is in striking accord with Dulong and Petit's value.

Significant deviations from Dulong and Petit's law were observed when technological
advanccs made it possible to measure heat capacities at low temperatures, It was found that
the molar heat capacities of all metals are lower than 3R at low temperatures,and that the
values approach zero as T — 0. To account for these observations, Einstein [in 1905)
assumed that cach atom oscillated about its equilibrium position with a single frequency v.
He then invoked Planck's hypothesis to assert that the energy of oscillation is confined to

. discrete values, and specifically to nhv, where n is an integer. Einstein first calculated the

contribution of the osgillations of the atoms to the total molar energy of the metal (by a
method described in Section 20.4) and obtained

3N\ hy

Un= o

in place of the classical exﬁrcssion 3RT. Then he foynd the heat capacity by differentiating
U, with respect to T The resulting expression is now known as the Einstein formula:

Op [ €%/
Cym = 3R f=-7.§(e—am) 9

where the Einstein temperature, O = hv/k, is a way of expressing the frequency of
oscillation of the atoms as a temperature: a high frequency corresponds to a high Einstein
temperature. .

At high temperatures (when T » 6] the exponentials in f can be expanded as
14 0g/T + - - and higher terms ignored. The result is

O [ 1405/2T -0 )
f"r{{1+9,jr+---)—l}~' : (10)

Consequently, the classical result (Cy,, = 3R) is obtained at high temperatures. At low
temperatures, when T < 0,

Op (e%/*T Oc _o.por
f,.?(__e,w) e, (105)

The strongly decaying exponential function goes to zero more rapidly than 1/T goes to
infinity; so f — 0 as T — 0, and the heat capacity therefore approaches zero too. We sce
that Einstein's formula accounts for the decrease of heat capacity at low temperatures. The
physical reason for this success is that at low temperatures only a few oscillators possess
enough energy to oscillate significantly. At higher temperatures, there is enough energy
available for all the oscillators to become active: all 3N oscillators contribute, apd the heat
capacity approaches its classical value. :

The temperature dependence of the heat capacity predicted by the Einstein formula is

. plotted in Fig. 11.6. The general shape of the curve is satisfactory, but the numerical

agreement is in fact quite poor. The poor fit arises from Einstein's assumption that all the
atoms oscillate with the same frequency, whereas in fact they oscillate over a range of
frequencies from zero up to a maximum value, v, This complication is taken into account by
averaging over all the frequencies present, the final result being the Debye formula:

TN\ [0lT e
Cyvm =3Rf f—3(§;) fo Wd’ _ (11)
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1.7 Debye's modification of Einstein's calculation
leqn 11) gives very good agreement with
experiment. For copper, T/0p = 2 corresponds to
about 670 K.
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11.8 A region of the spectrum of radiation emitted
by excited iron atoms consists of radiation at a
series of discrete wavelengths (or frequencies).
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where t, = huy/k is the Debye temperature. The integral in egn 11 has to be evaluated
numerically, but that is simple with mathematical software. The details of this modification,
which, as Fig. 11.7 shows, gives improved agreement with experiment, need not distract us at
this stage from the main conclusion, which is that quantization must be introduced in order
to explain the thermal properties of solids.

(d) Atomic and molecular spectra

The most compelling evidence for the quantization of energy comes from the observation of
the frequencies of radiation absorbed and emitted by atoms and molecules.

A typical atomic spectrum is shown in Fig. 11.8, and a typical molecular spectrum is
shown in Fig. 11.9. The obvious feature of both is that radiation is emitted or absorbed at a
series of discrete frequencies. This observation can be understood if the energy of the atoms
or molecules is also confined to discrete values, for then energy can be discarded or absorbed
only in discrete amounts (Fig. 11.10). Then, if the energy of an atom decreases by AE, the
energy is carried away as radiation of frequency v = AE/h, and a line appears in the
spectrum.

1.2 Wave—particle duality

At this stage we have established that the energies of the electromagnetic field and of
oscillating atoms are quantized. In this section we shall see the experimental evidence that
led to the revision of two other basic concepts concerning the nature of the world. One
experiment shows that electromagnetic radiation—which classica! physics treats as wave-
like—actually also displays the characteristics of particles. Another experiment shows that
electrons—which classical physics treats as particles—also display the characteristics of
waves.

(a) The particle character of electromagnetic radiation

The observation that electromagnetic radiation of frequency » can possess anly the energies
0, hw, 2hw, ... suggests that it can be thought of as consisting of 0, 1,2, ... particles, each
particle having an energy Av. Then, if one of these particles is present, the energy is hv, if
two are present the energy is 2/, and so on. These particles of electromagnetic radiation are
now called photons. The observation of discrete spectra from atoms and molecules can be
pictured as the atom or molecule generating a photon of energy hi- when it discards an
energy of magnitu?ie AFE, with AE = hv.

Example 11.1 Calculating the number of photons

Calculate the number of photons emitted by a 100 W vyellow lamp in 1.0 s. Take the
wavelength of yellow light as 560 nm and assume 100 per cent efficiency.

Method  Each phaton has an energy /v, so the total number of photons needed to produce
an energy £ is £ /hi. To use this equation, we need to know the frequency of the radiation
(from v = ¢/4) and the total energy emitted by the lamp. The latter is given by the product
of the power (£, in watts) and the time (£ = P1). In general, to avoid rounding and other
numerical errors, it is best to carry out algebraic calculations first, and to substitute
numerical values into a single, final formula.

Answer The number of photons is
E P AP

o hcfi) ~ he
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11.9%hen a molecule changes its state, it does so
by absorbing radiation at definite frequencies. This
suggests that it can possess only discrete energies,
not an arbitrary energy. This spectrum is part of
that due to the vibrations and rotations of
dinitrogen oxide (N,0) molecules.

1. AWAVE-PARTICLE DUALITY

Substitution of the data gives

(5.60% 1077 m)x (100 Ts ") = (1.05)

2N

=28x10%"

T (6.626x 1073 J5) x (2.998 x 108 ms ')

CommentNote that it would take nearly 40 min to produce 1 mol of these photons.

Self-test 11.1How many photons does a monochromatic (single-frequency) infrared
rangefinder of power | mW and wavelength 1000 nm emit in 0.1 s?

[5% 10

Further evidence for the particle-like character of radiation comes from the
measurement of the energies of clectrons produced in the photoelectric effect. This
effect is the ejection of electrons from metals when they are exposed to ultraviolet
radiation. The experimental characteristics of the photoelectric effect are as follows:

1. No electrons are ejected, regardless of the intensity of the radiation, unless tie
frequency of the radiation exceeds a threshold value characteristic of the metal.

2. The kinetic energy of the ejected electrons increases linearly with the frequency of
the incident radiation but is independent of the intensity of the radiation

3. Even at low light intensities, electrons are ejected immediately 1, the frequency is

above threshold.

The second characteristic is illustrated by the experimental data in Fig. 11.11.
These observations strongly suggest that the photoelectric effect depends on the ejection
of an electron when it is involved in a collision with a particle-like projectile that carries

Es
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11.10 Spectral lines can be accounted for if we
assume that a molecule emits a photon as it
changes between discrete energy levels. Note that
high-frequency radiation is emitted when the
energy change is large.
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11.11 In the photoelectric effect, it is found that
nao electrons are ejected when the incident radiation
has a frequency below a value characteristic of the
metal and, above that value, the kinetic energy of
the photoelectrons varies iinearly with the
frequency of the incident radiation.
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11.12 The photoelectric effect can be explained if it
is supposed that the incident radiation is composed of
photons that have energy proportional to the
frequency of the radiation. (a) The energy of the
photon is insufficient to drive an electron out of the
metal, (b) The energy of the photon is more than
enough to eject an electron, and the excess energy is
carried away as the kinetic energy of the
photoelectron (the ejected electron).
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enough encrgy to eject the electron from the metal. If we suppose that the projectile is a
photon of energy /v, where v is the frequency of the radiation, then the conservation of
energy requires that the kinetic energy of the ejected electron should obey

Imp? = hy ~ & (12)

In this expression @ is a characteristic of the metal called its work function, the energy
required to remove an electron from the metal to infinity (Fig. 11.12). Photoejection cannot
occur if hv < @ because the photon brings insufficient energy: this conclusion accounts for
observation (1). Equation 12 predicts that the kinetic energy of an ejected electron should
increase linearly with frequency, in agreement with observation (2). When a photon collides
with an electron, it gives up all its energy, so we should expect electrons to appear as soon as
the collisions begin, provided the photons have sufficient energy: this conclusion agrees
with observation (3).

(b) The wave character of particles

Although contrary to the long-established wave theory of light, the view that light consists
of particles had been held before, but discarded. No significant scientist, however, had taken
the view that matter is wave-like. Nevertheless, experiments carried out in 1925 forced
people to even that conclusion. The crucial &periment was performed by the American
physicists Clinton Davisson and Lester Germer, who observed the diffraction of electrons by
a crystal (Fig. 11.13). Diffraction is a characteristic property bf waves because it occurs when
there is interference between their peaks and troughs. Depending on whether the
interference is constructive or destructive, the result is a region of enhanced or diminished
intensity. Davisson and Germer's success was a lucky accident, because a chance rise of
temperature caused their polycrystalline sample to anneal, and the ordered planes of atoms
then acted as a diffraction grating. At almost the same time, G.P. Thomson, working in
Scotland, showed that a beam of electrons was diffracted when passed through a thin gold
foil.

The Davigson-Germer experiment, which has since bc:n repeated with other particles
(including molecular hydrogen), shows clearly that particles have wave-like properties. We
have also seen that waves of electromagnetic radiation have particle-like properties. Thus we

Kinetic energy
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Energy needed
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11.13 The Davisson-Germer experiment. The
~cattering of an electran beam from a nickel crystal
shows a variation of intensity characteristic of a
diffraction experiment in which waves interfere
constructively and destructively in different
directions.

Short wavelength,
high momentum

Long wavelength,
low momentum

MY
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11.14 An illustration of the de Broglie relation
between momentum and wavelength. The wave is
associated with a particle (shortly this wave will be
seen to be the wavefunction of the particle). A
particle with high momentum has a wavefunction
with a short wavelength, and vice versa.
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Electron
beam

Nickel crystal

are brought to the heart of modern physics. When examined on an atomic scale, the classical
concepts of particle and wave melt together, particles taking on the characteristics of waves,
and waves the characteristics of particles.

Some progress towards coordinating these properties had already been made by the
French physicist Louis de Broglie when, in 1924, he suggested that any particle, not only
photons, travelling with a linear momentum p should have (in some sense) a wavelength
given by the de Broglie relation:

L (13)

That is, a particle with a high linear momentum has a short wavelength (Fig. 11.14).
Macroscopic bodies have such high momenta (even when they are moving slowly) that their
wavelengths are undetectably small, and the wave-like properties cannot be observed.

Example 11.2 Estimating the de Broglie wavelength

Estimate the wavelength of electrons that have been accelerated from rest through a
potential difference of 40 kV.

Methad To use the de Broglie relation, we need to know the linear momentum, p, of the
electrons. To calculate the linear momentum, we note that the energy acquired by an
clectron accelerated through a potential difference ¥ is e¥”, where e is the magnitude of its
charge. At the end of the period of acceleration, all the acquired energy is in the form of
kinetic energy, p?/2m,, so we can determine p by setting:p®/2m, equal to e¥". As before,
carry through the calculation algebraically before substituting the data.

Answer The expression

P2

= oV
2m i

e
solves to
p= (Zfrrtv‘!")“:
Then, from the de Broglie relation,
h
(2m,e 3_'-}'?

4




294

I QUANTUM THEOQRY: INTRODUCTION AND PRINCIPLES

Substitution of the data and the fundamental constants (from inside the front cover) gives
; 6.626 x 107* J s
A=—
{2 % (9.109 x 10-3 kg) x (1.609 x 10-1° C) x (4.0 x 104 V)}'/2
=6.01x10 " m

Comment The wavelength of 6.1 pm is shorter than typical bond lengths in molecules
(about 100 pm). Electrons accelerated in this way are used in the technique of electron
diffraction (Section 21.10) for the determination of molecular structure.

Self-test 11.2 Calculate the wavelength of a neutran with a translational kinetic energy
equal to kT at 300 K.
(178 pm]

We now have to conclude that, not anly has electromagnetic radiation the character
classically ascribed to particles, but electrons (and all other particles) have the characteristics
classically ascribed to waves. This joint particle and wave character of matter and radiation is
called wave-particle duality. Duality strikes at thésheart of classical physics, where particles
and waves are treated as entirely separate entities. We have also seen that the energies of
electromagnetic radiation and of matter cannot be varied continuously, and that for small
objects the discreteness of energy is highly significant. In classical mechanics, in contrast,
energies could be varied continuously. Such total failure of classical physics for small objects
implied that its basic concepts were false. A new mechanics had to be devised to take its
place. :

The dynamics of microscopic systems

Quantum mechanics acknowledges the wave-particle duality of matter by supposing that,
rather than travelling along a definite path, a particle is distributed through space like a
wave. This remark may seem mysterious at this stage: it will be interpreted more fully shortly.
The wave that in quantum mechanics replaces the classical concept of trajectory is called a
wavefunction, i (psi). .

11.3 The Schriodinger equation

In 1926, the Austrian physicist Erwin Schridinger proposed an equation for finding the
wavefunction of any system. The time-independent Schridinger equation for a particle of
mass m moving in one dimension with energy E is

e dzljl

-+ V(x = ’[4‘

2m d.lz I [A )U'f Elf) \ J
The factor V(x) is the potential eniergy of the particle at the point x; k (which is read h-cross
or h-bar) is a convenient modification of the Planck constant:

h=2—‘;: 1.05457 x 107 Js _ (15)
Various ways of expressing the Schradinger equation, of incorporating the time dependence
of the wavefunction, and of exlending it to more dimensions, are collected in Table 11.1.1n
Chapter 12 we shall solve the equation for a number of important cases; in thig chapter we
are mainly concerned with its significance, the interpretation of its solutions, and seeing
how it implies that energy is quantized.
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lable 11.1 The Schradinger equation
For one-dimensional systems:
Wdy
5y V@ =Ev _
where V (x) is the potential energy of the particle and £ is its total eneray. For three-dimensional

systems

"
— Vi P =
2m
where V may depend on position and V? (‘del squared’) is
o . Gl \ o
ox? 92?022
In systems with spherical symmetry:
2 22 1,
==+-—+5A
o2 rar A

V=

v

where
t= —lz— —?i. + L Esinﬂ-g
sin’ @ 9¢®  sint) 80 o0
In the general case the Schradinger equation is written
Hy = Ey
where /{ is the hamiltonian operator for the system:

»
H=—-—Vl4Vy
2m
For the evolution of a system with time, it is necessary to solve the time-dependent Schrddinger

equation
HY =ik oy
ot

Justification 1.1

Although the Schridinger equation should be regarded as a postulate, like Newton's
equations of motion, it can be seen to be plausible by noting that it implies the de Broglie
relation for a freely moving particle. First, eqn 14 can be rearranged into.
d'y
e
If the potential has a constant value V, a scluiion of this equation is

2m(E — V)}”’2
32

For this result, we have used the mathematical relation e'* = cosx + isinx, where
i = (=1)". Now we recognize that cos kx (or sin kx) is a wave of wavelength 4 = 2x/k, as
can be seen by comparing cos kx with the standard form of a harmonic wave, cos(2mx/4).
The quantity £ — V is equal to the kinetic energy of the particle, Ey, so k = (2mEg /0*)'/2,
which implies that E, = k*A%/2m. Because Ex = p?/2m, it follows that

p = kh

-2E- VWl

wzei*‘=coskx+isin_kr k= {

Therefore, the linear momentum is related to the wavelength of the wavefunction by
2 h A
PET 5"
which is the de Broglie relation.
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Probability
= Iyl“dx

¥

11.15 The wavefunction  is a probability
amplitude in the sense that its square modulus
4"y or ||p|2] is a probability density. The
probability of finding a particle in the region dx
located at x is proportional to Will dx.

11.16 The Born interpretation of the wavefunction
in three-dimensional space implies that the
probability of finding the particle in the volume
element dr = dxdydz at some location r is
proportional to the product of dt and the value of
[i¥)? at that lacation.

.

11 QUANTUM THEORY: INTRODUCTION AND PRINCIPLES

1.4 The Born interpretation of the wavefunction

It is a principal tenet of quantum mechanics that the wavefunction contoins all the
dynamical information about the system it describes. Here we shall concentrate on the
information it carries about the location of the particle.

The interpretation of the wavefunction in terms of the location of the particle is based on
a suggestion made by Max Born, He made use of an analogy with the wave theory of light, in
which the square of the amplitude of an electromagnetic wave in a region is interpreted as
its intensity and therefore (in quantum terms) as a measure of the probability of finding a
photon present in the region. The Born interp\retation of the wavefunction focuses on the
square of the wavefunction (or the square modulus, [W[? = y* . if yr is complex).? It states
that the value of ||,012 at a point is proportional to the probability of finding the particle at
that point. Specifically, for a one-dimensional system (Fig. 11.15):

If the wavefunction of a particle has the value y at some point x, the prob-
ability of finding the particle between x and x+dx is proportional to 1\1.«|2 dx.

Thus, Mz is the probability density, and to obtain the probability it must be multiplied by
the length of the infinitesimal region dx. The wavefunction y itself is called the probability
amplitude. For a particle free to move in three dimensions (for example, an electron near a
nucleus in an atom), the wavefunction depends on the point r with coordinates x, y, and z,
and the interpretation of (r) is as follows (Fig. 11.16}:

If the wavefunction of a particle has the value y at some point r, the
probability of finding the particle in an infinitesimal volume dt=dx dydz at
that point is proportional to WIZ dr.

The Born interpretation does away with any worry about the significance of a negative
(and, in general, camplex) value of i because ||,¢':|2 is real and never negative. There is no-
direct significance in the negative (or complex) value of a wavefunction: only the square
modulus, a positive quantity, is directly physically significant, and both negative and positive
regions of a wavefunction may correspond to a high probability of finding a particle in a
region (Fig. 11.17). However, later we shall see that the presence of positive and negative
regions of a wavefunction is of great indirect significance, because it gives rise to the
n~ssibility of constructive and destructive interference between different wavefunctions.

Example 11.3 [nterpreting a wavefunction

We shall see in Chapter 12 that the wavefunction of an eiectron in the lowest energy state
of a hydrogen atam is proportional to e /%, with a, a constant and r the distance from the
nucleus. (Notice that this wavefunction depends only on this distance, not the angular
position relative to the nucleus.) Calculate the relative probabilities of finding the electron
inside a region of volume 1.0 pm?, which is small even on the scale of the atom, located at
(a) the nucleus, (b) a distance a, from the nucleus.

Method The region of interest is so small on the scale of the atom that we can ignare the
variation of  within it and write the probability, P, as proportional to the probability
density (4 ; note that i is real) evaluated at the point of interest multiplied by the volume
of interest, 8. That is, P oc Y *dV.

3 To form the compiex conjugate, ¢, of a complex function, replace @ wherever it occurs by —i. For instance, the complex conjugate
)
of e is e~ |f the wavelunction s real, ¥|° = ¢



\——~ Wavefunction

Probability
density

11.17 The sign of a wavefunction has no direct
physical significance: the positive and negative
regions of this wavefunction both correspond to the
same probability distribution (as given by the*Suare
modulus of y and depicted by the density of
shading).
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Answer In each case 6V = 1.0 pm?. (a) At the nucleus, r = 0, so
Poce x (1.0 pm®) = (1.0) % (1.0 pm?®)

(b) At a distance r = a, in an arbitrary direction, :
Poce™x (1.0 pm) = (0.14) x (1.0 pm?)

Therefore, the ratio of probabilities is 1.0/0.14 = 7.1.

Comment Not= that it is more probable (by a factor of 7.1) that the electron will be found
at the nucleus than in the same volume element located at a distance a, from the nucleus.
The negatively charged electron is attracted to the positively charged nucleus, and is likely to
be found close to it.

Self-test 1.1 The wavefunction for the lowest energy wavefunction in the ion He* is
proportional to e/, Repeat the calculation for this ion. Any comment?
[55; more compact wavefunction)

(a) Normalizatign

A mathematical feature of the Schridinger equatiop is that, if / is a solution, then so is Ny,
where N is any constant. This feature is confirmed by noting that y occurs in every term in
eqn 14, 5o any constant factor can be cancelled. This freedom to vary the wavefunction by a
constant factor means that it is always possible to find a normalization constant, N, such
that the proportionality of the Born interpretation becomes an equality.

We find the normalization constant by noting that, for a normalized wavefunction Ny,
the probability that a particle is in the region dx is equal to (N\*)(Ny) dx (we are taking N
to be real). Furthermore, the sum over all space of these individual probabilities must be 1
(the probability of the particle being somewhere is 1). Expressed mathematically, the latter
requirement is

Nwa'gmr:l (16)

where the integral is over all the space accessible to the particle (for instance, from —co to
+ac if the partiele can be anywhere in an infinite ra=e). It follows that
1

Jopd)”

(17)

' Therefore, by evaluating the integral, we can find the value of N and hence ‘normalize’ the

wavefunction. From now on, unless we state otherwise, we always use wavefunctions that
have been normalized to 1; that is, from now on we assume that i already includes a factor
which ensures that (in one dimension)

[ovac= (18)
In three dimensions, the wavefunction is normalized if

]l{l'l}ldrd}'d: = | (19)
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11.18 The spherical coordinates used for discussing
systems with spherical symmetry.

11.19 The surface of a sphere is covered by
allowing 0 to range from 0 to =, and then sweeping
that arc around a complete circle by aliowing ¢ to
range from 0 fo 2m.
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or, more succinctly, if
fw'wdr =1 (20)

where dt = dvdydz. In all such integrals, the integration is over all the space accessible to
the particle. For systems with spherical symmetry, it is best-to work in spherical polar
coordinates r, 0, ¢ (Fig. 11.18):

x=rsinfcos¢ y = rsinfsing¢ z=rcosd (21a)
The volume element in spherical polar coordinates is
dt = r*sin 0 drd0 d¢p (21b)

To cover all space, the radius r ranges from 0 to oo, the colatitude, , ranges from 0 to 7, and
the azimuth, ¢, ranges from 0 to 2z {Fig. 1.19).

Example 11.4 Normalizing a wavefunction
Normalize the wavefunction used for the hydrogen atom in Example 11.3.

Method We need to find the factor N that guarantees that the integral in egn 20 is equal
to 1. Because the wavefunction is spherically symmetrical, it is sensible to work in spherical
polar coordinates.

Answer The integration we require is

Y dr = N? rle~¥/s gr sin 0. d0 de
Jovsemwe( [ peimar) ([ smoan) ([0

2
= N%xlaj x2 x2n = nagh

N o

Therefore, for this integral to equal 1, -

; 1/2
(3
na

and the normalized wavefunction is

. 1 172

—r/i
td':’ = ( 3) e~ 4o
nday

Comment |f Example 11.3 is now repeated, we can obtain the actual ¢ Jbabilities of
finding the electron in the volume element at each location, not just their relative values,
Given (from. the end-papers) that ap, =52.9 pm, the results are (a} 2.2x 10-¢,
corresponding to 1 chance in about 500000 inspections of finding the electron in the
test volume, and (b) 2.9 x 1077, corresponding to 1 chance in 3.4 million.

Self-test 11.4 Normalize the wavefunction given in Self-test 11.3.

IV = (8/na})')

The quantity ||,£r|2 dr is a dimensionless probability and dt has the dimensions of volume,
(length)’, where d is the number of spatial dimensions. Therefore, the dimensions of a
normalized wavefunction are I/([rngth}""z. Thus, in one spatjal dimension, d =1 and a
normalized wavefunction has the dimensions of 1/(length)'/?. For a three-dimensional
system, the wavefunction has the dimensions of l}{length)m. as we saw in
Example 11.4.



(b}

(c)

AN

11.20 The wavefunction must satisfy stringent
conditions for it to be acceptable. (a) Unacceptable
because it is not continuous; (b) unacceptable
because its slope is discontinuous;

(c) unacceptable because it is not single-valued;
(d) unacceptable because it is infinite over a finite
region,

21—A
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(b) Quantization

The Born interpretation puts severe restrictions on the acceptability-of wavefunctions. The
principal constraint is that ¢ must not be infinite anywhere.* If it were, the integral in
eqn 20 would be infinite and the normalization constant would be zero. The normalized
function would then be zero everywhere, except where it is infinite, which would be
unacceptable. The requirement that i is finite everywhere rules out many possible solutions
of the Schrédinger equation, because many mathematically acceptable solutions rise to
infinity and are therefore physically unacceptable. We shall meet several examples shortly.

The requirement that ¢ is finite everywhere is not the only restriction implied by the Born
interpretation. We could imagine (and in Section 12.6a will meet] a solution of the
Schridinger equation that gives rise to more than one value of |a,b| at a single point. The
Born interpretation implies that such solutions are unacceptable, because it would be absurd
to have more than one probability that a particle is at some point. This restriction is
expressed by saying that the wavefunction must be single-valued, that is, have only one
value at each point of space.

The Schrodinger equation itself also implies some mathematical restrictions on the type
of functions that will occur. Because it is a second-order differential equation, the second
derivative of  must be well-defined if the equation is to be applicable everywhere. We can
take the-second derivative of a function only if it is continuous (so there are no sharp steps in
it, Fig. 11.20) and if its first derivative, its slope, is continuous (so there are no kinks).®

At this stage we see that | must be continuous, have a continuous slope, be single-
valued, and be finite everywhere. An acceptable wavefunction cannot be zero everywhere,
because the particle it describes must be somewhere. These are such severe restrictions that
acceptable solutions of the Schrédinger equation do not in general exist for arbitrary values
of the energy £. In other words, a particle may possess only certain energies, for otherwise
its wavefunction would be physically unacceptable. That is, the energy of a particle is
quantized. We can find the acceptable energies by solving the Schrdinger equation for
motion of various kinds, and selecting the solutions that conform to the restrictions listed
above. That is the task of the next chapter.

Quantum mechanical principles

We have claimed that a wavefunction contains all the information it is possible to obtain
about the dynamical properties (for example, its location and momentum) of the particle.
We have seen that the Born interpretation tells us as much as we can know about location,
but how do we find any additional information?

s,

1.5 The information in a wavefunction

The Schriidinger equation for a particle of mass m free to move parallel to the x-axis with
zero potential energy (V = 0 everywhere] is

@ lll
T2 de?

=Ey (22)
4 Infinitely sharp spikes are acceptable provided they have zero width. The true constraint s that the wavefunction must not be
infinite over any finite region. In elementary quantum mechames the simpler restriction, o finite , 15 sufficient

Thete are cases, and we shall meel them, where acceplable wavelunctions have kinks. These cases arise when the potential energy
has peculiar propetties, such as rising abruptly to infinity. When the potential energy is smoothly well-behaved and finite, the
slupe of the wavelunction must be continuows, if the potential eneigy becomes infinite, then the slope of the wavefunction need
not be continuaus There are only two cases ol 1his behaviour in elementary quantum mechanics, and the peculiarity will be
mentioned when we meet them

-
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11.21 (a) The square modulus of a wavefunction
corresponding to a definite state of linear
momentum is a constant, sa it corresponds to a
uniform probability of finding the particle
anywhere. (b) The probability distribution
corresponding to the superposition of states of
equal magnitude of linear momentum but appasite
direction of travel.
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The solutions of this equation have the form

kZhI

= ik —1kx ol
¥ = Ae™ + Be Eomes - (23)

where A and B are constants. To verify that i is a solution of eqn 22, we simply substitute it
into the left-hand side of the equation and confirm that we obtain Ey.

(a) The probability density
Suppose that B = 0 in eqn 23:° then the wavefunction is simply

¥ =A™ (24)
Where is the particle? We form the square modulus to find the probability density of the
particle:

W = (Ae™)" (4c™) = (a%e"4)(Ae) = Ja? (25)

This probability is independent of x; so, wherever we look along the x-axis, there is an equal
probability of finding the particle (Fig. 11.21a). In other words, if the wavefunction of the
particle is given by eqn 24, we cannot predict where we will find the particle. The same
would be true if the wavefunction in eqn 23 had A = 0; then the probability density would
be |B|?, a constant.’ e

Now suppose that in the wavefunction A = B. Then eqn 23 becomes

¥ = A" + e ) = 24 cos ke (26)
The probability density now has the form
W) = (24 cos kx)" (24 cos kx) = 4|A|* cos? kx (27)

This function is illustrated in Fig. 11.21b. As we see, the probability density periodically
varies between 0 and 4|A|*. The locations where the probability density is zero correspond to
nodes in the wavefunction: particles will never be found at the nodes, Specifically, a node is
a point where a wavefunction passes through zero,

(b) Eigenvalues and eigenfunctions
Because the total energy of the particle is its kinetic energy, p*/2m, it follows from eqn 23
that

p=kh (28)

This value is independent of the values of A and B.

To find a systematic way of extracting information from the wavefunction, we first note
that any Schridinger equation (such as those in eqn 14 and eqn 22) may be written in the
succinct form

Hy = Ey (29)
with (in one dimension)
R d*
2mdy?
The quantity # is an operator, something that carries out a mathematical operation on the
function . In this case, the operation is to take the second derivative of \ and (after

+V(x) (30)

6 We shall see later what determines the values of 4 and B, tor the time being we can 1real them as arbitrary constanls.

7 It fallows that if x is allowed 10 range from - x, to + 1, the normalization constants, A or B, are 0 To avoid this embarrassing
protlem, x is allowed (0 range from —L 10 L, and L  allowed 1o go 1o mfinity at the end of all calculations. We shall wgnore thrs
comphcationshere.

» 21—8
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multiplication by —A%/2m) to add the result to the outcome of multiplying ¥ by V. The
operator H plays a special role in quantum mechanics, and is called the hamiltonian
operator after the nineteenth century mathematician William  Hamilton. Hamilton
developed a form of classical mechanics that, it subsequently turned out, is well suited to
the formulation of quantum mechanics and which shows very clearly the refation between
the two theories. The hamiltonian operator is the operator corresponding to the total energy
of the system, the sum of the kinctic and potential energics. Consequently, we can infer that
the first term in eqn 30 (the term proportional to the second derivative) must be the
operator for the kinetic energy.

When the Schrédinger equation is written as in eqn 29, it is seen to be an eigenvalue
equation, an cquation of the form

(operator)(function) = (constant factor) x (same function)

If we denote a general operator by € and a constant factor by w, this statement is

QU = wy (31)

The factor w is called the eigenvalue of the operator Q. In eqn 29, the eigenvalue is the
energy. The function y is called an eigenfunction and is different for each cigenvalue. In
eqn 29, the eigenfunction is the wavefunction corresponding to the energy E. It follows
that another way of saying 'solve the Schriddinger equation' is ‘find the cigenvalues
and eigenfunctions of the hamiltonian operator for the system'. The wavefunctions
are the eigenfunctions of the hamiltonian operator, and the corresponding eigenvalues are
the allowed energies.

Example 15.5 Ideatityimg an cigentunction

Show that ¢ is an cigenfunction of the operator d/dx, and find the carresponding
cigenvalue. Show that ¢ is not an eigenfunction of d/dx.

Method We need to operate on the function with the operator and check whether the
result is a constant factor times the original function.

Answer For Q = d/dy and iy = e

W = —c" = ac™ =af
= dv

” : " 5 5 § F? 1
Therefore ¢ 15 indeed an eigenfunction of d/dv, and its eigenvalue is a. For i = ¢*

Qi = —dwc‘“'. = 2ave™ = 2uyx 1
dv
which is not an cigenvalue equation even though the same function ¢ occurs on the right,
because i is now multiplied by a variable faclor (2w, not a constant factor. Alternatively, if
the right-hand side is writlen Qu{.\c"‘l), we sce that it is a constant times a different
function.

Cnmment Much of quantum  mechanics invoives looking for functions that are
eigenfunctions of a given operator, especially of the hamiltonian operator for the energy.

Self=fest 114 s the function cosav an cigenfunction of (a) d/dy, (b) ¢ /ds??
((a) No, (b) yes]
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High Curvature,
high kineuc
energy

R

A\
Low curvature,
low kinetic
energy

11.22 Even if a wavefunction does not have the
form of a periodic wave, it is still possible to infer
from it the average kinetic energy of a particle by
noting its average curvature. This illustration shows
two wavefunctions: the sharply curved function
corresponds to a higher kinetic energy than that of
the less sharply curved function.
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The importance of eigenvalue equatians is that the pattern

[energy operator)iy = (energy)y

exemplified by the Schriddinger equation is repeated for other observables, or measurable
properties of a system, such as the momentum or the electric dipole moment. Thus, it is
often the case that we can write

(operator corresponding to an observable)iy = (value of observable) x i

The symbol £ in egn 31 is then interpreted as an operator (for example, the hamiltonian, H)
correspunding to an observable (for example, the energy), and the eigenvalue @ is the value
of that observable (for example, the value of the energy, E). Therefore, if we know both the
wavefunction i and the operator € corresponding to the observable Q of interest, and the
wavefunction is an eigenfunction of the operator Q, we can predict the outcome of an
observation of the property Q (for example, an atom's energy) by picking out the factor w in
the eigenvalue equation, eqn 31.

{c) Operators

To make these abstract procedures concrete, we need to set up and use the operator
corresponding to a given observable. The procedure is summarized by the following rule:

Observables, (), are represented by operators, Q, built from the following
position and momentum operators:

: 5 5 . hd
D =AW Bp==r (32]
That is, the operator for location along the x-axis is multiplication (of the wavefunction) by x
and the operator for linear momentum parallel to the x-axis is proportional to taking the
derivative (of the wavefunction) with respect to x.
For example, to deduce the value of the linear momentum given a specific wavefunction,
we set up the eigenvalue equation

P = p (33)
in the form

hdy

< Py (34)

If the wavefunction is the one given in eqn 23 with B = 0,

hdy R de® h i
et I el M, ] ey — = 3
= i.d o iAx:Ige khAe ki (35)

This js an eigenvalue equation, and by comparing it with eqn 33 we find that p, = +kh. The
positive‘vatue implies that the linear momentum is directed towards positive x, Now suppose
instead that the wavefunction is the one in eqn 23 with A = 0; then the same kind of
calculation gives p, = —kh. It follows that a particle described by the second wavefunction
has the same magnitude of momentum (and the same kinetic energy) as before, but its
motion is towards —x.

The definitions in eqn 32 are used to construct operators for other observables. For
example, suppose we wanted the operator for a potential energy of the farm

V=l (36)
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high kinetic
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Wavefunction, vy
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Position, x

11.23 The observed kinetic energy of a particle is
an average of contributions from the entire space
covered by the wavefunction. Sharply curved
regions contribute a high kinetic energy to the
average; slightly curved regions contribute only a
small kinetic energy.

Wavefunction, y

£

Energy

11.24 The wavefunction of a particle in a potential

_ decreasing towards the right and hence subjected
to a constant force to the right. Only the real part
of the wavefunction is shown; the imaginary part is
similar, but displaced to the right.
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with k a constant (later, we shall see that this potential describes the vibrations of atoms in
molecules). Then it follows from eqn 32 that the operator corresponding to V is
multiplication by x?:

V =l x : (37)
In normal practice, the multiplication sign is omitted. To construct the operator for kinetic

energy, we make use of the classical relation between kinetic energy and linear momentum,
which in one dimension is

k=1 (38a)
Then, using the operator for p, in eqn 32 we find:
2 2
-k (D00 -5 o
It follows that the operator for the total energy, the hamiltonian operator, is
N . 2at .
H:EK+V="5§@+V (39)

The expression for the kinetic energy operator, eqn 38b, gives another clue to the
qualitative interpretation of a wavefunction. In mathematics, the second derivative of a
function is a measure of its curvature: a large second derivative indicates a sharply curved
function (Fig. 11.22). It follows that a sharply curved wavefunction is associated with a high
kinetic energy, and one with a low curvature is associated with a low kinetic energy. This
interpretation is consistent with the de Broglie relation, which predicts a short wavelength
(a sharply curved wavefunction) when the linear momentum (and hence the kinetic energy)
is high. However, it extends the interpretation to wavefunctions that do not spread through
space and resemble those shown in Fig. 11.22. The curvature of a wavefunction in general
varies from place to place. Wherever a wavefunction is sharply curved, its contribution to
the total kinetic energy is large (Fig. 11.23). Wherever the wavefunction is not sharply
curved, its contribution to the overall kinetic energy is low. As we shall shortly see, the
abserved kinetic energy of the particle is an integral of all the contributions of the kinetic
energy from each region. Hence, we can expect a particle to have a high kinetic energy if the
average curvature of its wavefunction is high. )

The association of high curvature with high kinetic energy will turn out to be a valuable
guide to the interpretation of wavefunctions and the prediction of their shapes. For
example, suppose we need to know the wavefunction of a particle with a given total energy
and a potential energy that decreases with increasing x (Fig. 11.24). Because the difference
E —V = Ey increases from left to right, the wavefunction must become more sharply
curved as x increases: its wavelength decreases as the local contributions to its kinetic
energy increase. We can therefore guess that the wavefunction will look like the function
sketched in thellustration, and more detailed calculation confirms this to be so.

(d) Superpositions and expectation values

Suppose now that the wavefunction is the one given in eqn 26 (with A = B). What is the
linear momentum of the particle it describes? We quickly run into trouble if we use the
operator technique. When we operate with p,, we find

hdy _2h deoskx  2kA L. . (40)
1

Tde i dx
This expression is not an eigenvalue equation, because the function on the right is different
from that on the left.
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When the wavefunction of a particle is not an eigenfunction of an operator, the property
to which the operator corresponds does not have a definite value. However, in the current
example the momentum is not completely indefinite because the cosine wavefunction is a
linear combination, or sum, of ¢'* and ¢ '™, and these two functions, as we have seen,
individually correspond to definite momentum states. We say that the total wavefunction is
a superposition of more than one wavefunction. Symbolically we can write the
superposition as

=y, oo
Particle with Particle with
ltncar momentum linear momentum
+kh . —kh

The interpretation of this composite wavefunction is that, if the momentum of the particle is
repeatedly measured in a lgng series of observations, then its magnitude will found to be kh
in all the measurements (because that is the value for each component of the
wavefunction). However, because the two component wavefunctions oceur equally in the
superposition, half the measurements will show that the particle is moving to the right
(p, = +kh), and half the measurements will show that it is moving to the left (p, = —k).
According to quantum mechanics, we cannot predict inwhich direction the particle will in
fact be found to be travelling; all we can say is that, in a long series of observations, there are
equal probabilities of finding the particle travelling to the right and'to the left.

The same interpretation applies to any wavefunction written as a linear combination of
eigenfunctions of an operator. Thus, suppose the wavefunction is known to be a
superposition of many different linear momentum eigenfunctions and is written as the
linear combination

Y=o ey b= g (41)
k

where the ¢, are numerical coefficients and the i), correspond to different momentum
states. Then, according to quantum mechanics,

1. When the momentum is measured, in a single observation one of the eigenvalues
corresponding Lo the i, that contribute to the superposition will be found.

2. The probability of measuring a particular eigenvalue in a series of observations is
proportional to the square modulus (|c;|*) of the corresponding coefficient in the
linear combination.

3. The average value of a large number of observations is given by the expectation
value (Q) of the operator corresponding to the observable of interest.

The expectation value of an operator Q i defined as
() = / i de (42

This formula is valid only for normalized wavefunctions. As we see in the Justification
below, an expectation value is the weighted average of a large number of observations of a
property.

Justification 11.2

If  is an eigenfunction of § with eigenvalue w, the expectation value of Q is

) =]¢'ﬁwdr ~ [wova- o [viai=o
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because w is a constant and may be taken outside the integral, and the resulting integral is
equal to | for a normalized wavefunction. The interpretation of this expression is that,
because every observation of the property Q results in the value w (because the
wavefunction is an eigenfunction of ), the mean value of all the observations is also .
A wavefunction that is not an eigenfunction of the operator of interest can be written
as a linear combination of eigenfunctions. For simplicity, suppose the wavefunction is the
sum of two eigenfunctions (the general case, eqn 41, can easily be developed). Then

@ = [+l e+
= [ + caa) (v + cxonga) e
:‘r;rlml [¢;¢,dr+ciczw2/|ﬁ;¢zdt

sty / Vidde+ cieo, f W, de

The first two integrals on the right are both equal to 1 because the wavefunctions are
normalized. To deal with the remaining two integrals we need to make use of another
property of eigenfunctions, called ‘orthogonality’: to say that two functions are
orthogonal means that

[uiwae=0 S @)

A very general rule in quantum mechanics is that eigenfunctions corresponding to
different eigenvolues_of the same operator are orthogonol.® For example, if y,
corresponds to one energy, and \, corresponds to a different energy, then we know at
once that the two functions are orthogonal and that the integral of their product is zero.
Because |/, and y, do correspond to different eigenvalues in the current example, they are
orthogonal, so we can conclude that

(@) = |ey [, + [P0y (44)

This expression shows that the expectation value is the sum of the two eigenvalues
weighted by the probabilities that each one will be found in a series of measurements.
Hence, the expectation value is the weighted mean of a series of observations.

Example 1.6 Caleuiating an expectation value

Calculate the average value of the distance of an electron from the nucleus in the hydrogen
atom in its state of lowest energy.

Melhodd The average radius is the expectation value of the operator corresponding to the
distance from the nucleus, which is multiplication by r. To evaluate (r), we need to know the
normalized wavefunction (from Example 11.4) and then evaluate the integral in eqn 42. A
useful integral for calculations on atomic wavefunctions is

o 1
P> n.

e Mdy = —

o ant ]

where n! denotes factorial n: n! = n(n — 1)(n = 2)---1.

8 Strictly speaking, thrs rule appiies only to "Hermilian operators’, which are operators for whichjﬂl,'m, dr = U'ﬁ,'m,dr)’. We
shall be dealing only with Hermitian operators.
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_
Y X
Location
of particle

11.25 The wavefunction for a particle at a well-
defined location is a sharply spiked function which
has zero amplitude everywhere except at the
particle’s position.
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Answer The average value is given by the expectation value
(r)= f Y i dr

which we evaluate by using spherical polar coordinates. Using the normalized function in
Example 11.4 gives

{r) = i& (fr rle ¥ dr) ([ sinﬂdﬂ) (]:" d¢)

1 3la}
— X 5 X2x2nm=3a,
nay = 2

Because ag = 52.9 pm (see end-papers), (r) = 79.4 pm.’

Comment The result means that, if a very large number of measurements of the distance of
the electron from the nucleus are made, their mcar\value will be 79.4 pm. However, each
different observation will give a different and unpredictable individual result, because the
wavefunction is not an eigenfunction of the operator corresponging to r.

Self-test 11.6 Evaluate the root mean square distance, (r’)”z, of the electron from the

nucleus in the hydrogen atom.
[3I,t'Za°]

The mean kinetic energy of a particle in one dimension is the expectation value of the
operator given in eqn 38b. Therefore, we can write

- Wl
B = [whcpar=- [y e (45)
We see that the kinetic energy is a kind of average over the curvature of the wavefunction:
we get a large contribution to the observed value from regions where the wavefunction is
sharply curved (so dy/dx? is large) and the wavefunction itself is large (so that i” is large
too). '

11.6 The uncertainty principle

We have seen that, if the wavefunction is Ae™™, then the particle it describes has a definite
state of linear momentum, namely travelling to the right with momentum p, = +kh.
However, we have also seen that the position of the particle described by this wavefunction
is completely unpredictable. In other words, if the moementum is specified prc'ciscly, it is
impossible to predict the location of the particle. This statement is one-half of a special case
of the Heisenberg uncertainty principle, one of the most celebrated results of quantum
mechanics:

It is impossible to specify simultaneously, with arbitrary precision, both the
momentum and the position of a particle.

Before discussing the principle further, we must establish its other half; that if we know
the position of a particle exactly, then we can say nothing about its momentum. The
argument draws on the idea of regarding a wavefunction as a superposition of
eigenfunctions, and runs as follows.

If we know that the particle is at a definite location, its wavefunction must be large there
and zero everywhere else (Fig. 11.25). Such a wavefunction can be created by superimposing
a large number of harmonic (sine and cosine) functions, or, what is equivalent, a number of
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11.26 The wavefunction for a particle with an ill-
defined location can be regarded as the
superposition of several wavefunctions of definite
wavelength which interfere constructively in one
place but destructively elsewhere. As more waves
are used in the superposition [as given by the
numbers attached to the curves), the location
becomes more precise at the expense of uncertainty
in the particle’s momentum. An infinite number of
waves is needed to construct the wavefunction of a
perfectly localized particle.
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el functions.” In other words, we can create a sharply localized wavefunction by forming a
linear combination of wavefunctions that correspond to many different linear momenta.
The superposition of a few harmonic functions gives a wavefunction that spreads over a
range of locations (Fig. 11.26). However, as the number of wavefunctions in the
superposition increases, the wavefunction becomes sharper on account of the more
complete interference between the positive and negative regions of the individual waves.
When an infinite number of components is used, the wavefunction is a sharp, infinitely
narrow spike, which corresponds to perfect localization of the particle. Now the particle is
perfectly localized. However, we have lost all information about its momentum because, as
we saw above, a measurement of the momentum will give 2 result corresponding to any one
of the infinite number of waves in the superposition, and which one it will give is
unpredictable. Hence, if we know the location of the particle precisely (implying that its
wavefunction is a superposition of an infinite number of momentum eigenfunctions), its
momentum is completely unpredictable.

A quantitative version of this result is

ApAg > th (46)

In this expression Ap is the 'uncertainty’ in the linear momentum parallel to the axis g, and
Agq is the uncertainty in position along that axis. These ‘uncertainties’ are precisely defined,
for they are the root mean square deviations of the properties from their mean values:

ap= {0 - Ag={) - @} (47)

If there is complete certainty about the position of the particle (Ag = 0), the only way that
eqn 46 can be satisfied is for Ap = oo, which implies complete uncertainty about the
momentum. Conversely, if the momentum is known exactly (Ap = 0), then the position
must be completely uncertain (Aq = o).

The p and g that appear in ecin 46 refer to the same direction in space. Therefore, whereas
pusition on the x-axis and momentum parallel to the x-axis are restricted by the uncertainty
relation, simultaneous location of position on x and motion parallel to y or z is not
restricted.

Example 11.7 Using the uncertainty principle

The speed of a projectile of mass 1.0 g is known to within 1% 10-% ms~"'. Calculate the
minimum uncertainty in its position.

Method Estimate Ap from mAw where Av is the uncertainty in the speed; then use eqn 46
to estimate the minimum uncertainty in position, Ag.

Answer The mipimum uncertainty in position is

_h
9 2mAv

1.055x 107 s
. 2 Le =5x10%m
2x(1.0x 107 kg) x (1 x 10~ ms~t) ™

Comment The uncertainty is completely negligible for all practical purposes concerning
macroscopic objects. However, if the mass is that of an electron, the same uncertainty in
speed implies an uncertainty in position far larger than the diameter of an atom, so the

9 These sums are equivalent, because e = coskx + isinkx
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concept of a trajectory, the simultaneous possession of a precise position and momentum, is
untenable.

Svll-teat 11,0 Estimate the minimum uncertainty in the speed of an electron in a one-
dimensional region of length 2a.
[500 kms™!]

et e e SO S y—

The Heisenberg uncectainty principle is more general than eqn 46 implies. It applies to
any pair of observables called complementary observables, which are defined in terms
of the properties of their operators. Specifically, two observables Q, and £, are
complementary if

0,0, # 0,9, : (48)
When the effect of two operators depends on their order (as this cquatlon implies), we say
that they do not commute.

llustration

To show that the operators for position and momentum do not commute (and hence are
complementary observables) we consider the effect of &5, on a wavefunction ¢:

h dl],'l

idy

Next, we consider the effect of p.& on the same function:

hd dy
th—_a (‘f"*‘ )

For this step we have used the standard rule about differentiating a product of functions.
The second expression is clearly different from the first, so the two operators do not
commute.

Py = x %

With the discovery that some pairs of observables are complementary (we meet more
examples in the next chapter), we are at the heart of the difference between classical and
guantum mechanics. Classical mechanics supposed, falsely as we now know, that the position
and momentum of a particle could be specified simultaneously with arbitrary precision.
However, quantum mechanics shows that position and momentum are complementary, and
that we have to make a choice: we can specify position at the expense of momertum, or
momentum at the expense of position.

The realization that some observables are complementary allows us to make considerable
progress with the calculation of atomic and molecular properties, but it does away with
some of classical physics' most cherished concepts.

Checklist of key ideas

[71 classical mechanics
[Z] quantum mechanics

The origins of quantum
mechanics

11.1 The failures of classical
physics
"1 black body
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i | total energy density
1 StefantBoltzmann law (2a)

excitance
Stefan-Boltzmann constant
Rayleigh-Jeans law (3)
ultraviolet catastrophe
quantization of energy
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Planck distribution (5)

Einstein formula (9)
Einstein temperature
Debye formula [11)
Debye temperature

11.2 Wave-particle duality
photon
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Exercises

1.1 (a) Calculate the power radiated by a 2.0 m x 3.0 m section of
the surface of a hot body at 1500 K.

1.1 (b) Calculate the power radiated by the surface of a cylindrical
wire of length 5.0 cm and radius 0.12 mm that is heated to 3300 K
by an electric current.

11.2 (a) Calculate the average power output of a photodetector that
collects 8.0 x 107 photons in 3.8 ms from monochromatic light of
wavelength 325 nm.

1.2 (b) Calculate the average power output of a photosensitive
plate that collects 1.20 x 10® photons in 5.9 ms from monochramatic
light of wavelength 297 nm.

11.3 (a) Determine tie wavelength of the radiation of the most
intense electromagnetic radiation emitted from the surface of the
star Sirius, which has a surface temperature of 11 (X0 K.

11.3 (b) Determine the wavelength of the radiation of the most
intense electromagnetic radiation emitted from a furnace at 2500°C.
11.4 (a) Calculate the speed of an electron of wavelength 3.0 cm.
1.4 (b) Calculate the speed of a neutron of wavelength 3.0 cm.
1.5 (a) The fine-structure constant, x, plays a special role in
the structure of matter; its approximate value is | /137, What is the
wavelength of an electron travelling at a speed xc, where ¢ is

the speed of light? (Note that the circumference of the first Bohr orbit
in the hydrogen atom is 331 pm.)

1.5 (b) A certain diffraction experiment requires the use of
electrons of wavelength 0.45 nm. Calculate the speed of the
electrons.

11.6 (a) Calculate the linear momentum of photons of wavelength
750 nm. What speed does an electron need to travel to have the same
linear momentum?

11.6 (b) Calculate the linear momentum of photons of wavelength
350 nm. What speed does a hydrogen molecule need to travel to have
the same linear momentum?

11.7 (a) The energy required for the ionization of a certain atom is
3.44 % 10 '™ J. The absorption of a photon of unknown wavelength
ionizes  the atom and ejects an electron  with  velocity
1.03 % 10° ms ' Calculate the wavelength of the incident radiation.

11.7 (b) The energy required for the ionization of a certain atom is
5.12 a). The absorption of a photon of unknown wavelength ionizes
the atom and ejects an electron with velocity 345 kms~'. Calculate
the wavelength of the incident radiation.
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11.8 (a) The speed of a certain proton is 4.5% 10° ms~". If the
uncertainty in its momentum is to be reduced to 0.0100 per cent,
what uncertainty in its location must be tolerated?

11.8 (b) The speed of a certain electron is 995 kms™'. If the
uncertainty in its momentum is to be reduced to 0.0010 per cent,
what uncertainty in its location must be tolerated?

11.9 (a) Calculate the energy per photan and the energy per mole of
photons for radiation of wavelength (a) 600 nm (red), (b) 550 nm
(yellow), (c) 400 nm (blue).

11.9 (b) Calculate the energy per photon and the energy per mole of
photons for radiation of wavelength (a) 200 nm (ultraviolet), (b)
150 pm (X-ray), (c) 1.00 cm (microwave).

11.10 (a) Calculate the speed to which a stationary H atom would be
accelerated if it absorbed each of the photons used in Exercise 11.9a.

11.10 (b) Calculate the speed to which a stationary *He atom (mass
4.0026 u) would be accelerated if it absorbed each of the photons
used in Exercise 11.9b.

11.11 (a) A glow-worm of mass 5.0 g emits red light (650 nm) with
a power of 0.10 W entirely in the backward direction. To what speed
will it have accelerated after 10 y if released into free space and
assumed to live?

11.11 (b) A p_hoton-powcred spacecraft of mass 10.0 kg emits
radiation of wavelength 225 nm with a power of 1.50 kW entirety
in the backward direction. To what speed will it have accelerated after
10.0 y if released into free space?

11.12 (a) A sodium lamp emits yellow light (550 nm). How many
photons does it emit each second if its power is (a) 1.0 W, (b) 100 W?

11.12 (b) A laser used to read CDs emits red light of wavelength
700 nm. How many photons does it emit each second if its power is
(a) 0.10 W, [b) 1.0 W?

11.13 (a) The peak of the Sun's emission occurs at about 480 nm;
estimate the temperature of its surface.

11.13 (b) The peak of the emission from the hotironin a steel furnace
occurs at about 1600 nm; estimate the temperature of the steel.
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11.14 (a) The work function for metallic caesium is 2.14 eV.
Calculate the kinelic energy and the speed of the electrons ejected
by light of wavelength (a) 700 nm, (b) 300 nm.

11.14 (b) The work function for metallic rubidium is 2.09 eV.
Calculate the kinetic energy and the speed of the electrons ejected
by light of wavelength (a) 650 nm, {b) 195 nm.

11.15 (a) Calculate the size of the quantum involved in the
excitation of (a) an clectronic oscillation of period 1.0 fs, [b) a
molecular vibration of period 10 fs, (c) a pendulum of period 1.0 s.
Express the results in joules and kilojoules per mole.

11.15 (b) Calculate the size' of the quantum involved in the
excitation of (a) an electronic oscillation of period 2.50 fs, (b) a
molecular vibration of period 2.21 fs, {c) a balance wheel of period
1.0 ms. Express the results i joules and kilojoules per mole.

11.16 (a) Calculate the de Broglie wavelength of (a) amassof 1.0 g
travelling at 1.0 cm s=', (b) the same, travelling at 100 kms™', () an
He atom travelling at 1000 ms™' (a typical speed at room
temperature). )

11.16 (b) Calculate the de Broglie wavelength of an electron
accelerated from rest through a potential difference of {a) 100V,
(b) 1.0 kV, (c} 100 kV.

11.17 (a) Calculate the minimum unct:rtamty in the speed of a ball
of mass 500 g that is known to be within 1.0 um of a certain point on
a bat. What is the minimum uncertainty in the position of a bullet of
mass 5.0 g that is known to have a speed somewhere between
350.00001 ms~' and 350.00000 ms~'?

11.17 (b) An electron is confined to a linear region with a length of
the same order as the diameter of an atom (about 100 pm). Calculate
the minimum uncertainties in its position and speed.

11.18 (a) In an X-ray photoelectron experiment, a photon of
wavelength 150 pm ejects an electron from the inner shell of an
atom and it emerges with a speed of 2.14 x 107 ms~*. Calculate the
binding energy of the electron.

11.18 (b) In an X-ray photoelectron experiment, a photon of
wavelength 121 pm cjects an electron frem the inner shell of an
atom and it emerges with a speed of 5.69 x 107 ms~'. Calculate the
binding energy of the electron.

Problems

Numerical problems

11.1 The Planck distribution gives the energy in the wavelength
range dA at the wavelength A. Calculate the energy density in the
range 650 nm to 655 nm inside a cavity of volume 100 cm® when its
temperature is (a) 25°C, (b) 3000°C.

11.2 The wavelength of the enfission maximum from a small pinhole
in an electrically heated container was determined at a series of
temperatures, and the results are given bclow Deduce a value for the
Planck constant.

1500
1600

2500 3000 3500
1035 878  763-

1000
2181

2000
1240

a/°c
Ammax /M

11.3 Write a computer program (or use mathematical software) to
evaluate the Planck distribution at any temperature and wavelength
or frequency, and add to it a routine for evaluating integrals for the
energy density of the radiation between any two wavelengths. Use it
to calculate the total energy density in the visible region (600 nm to
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350 nm) for a black body at {a) 100°C, (b} 500°C, {c) 700 K. What are
the classical values at these temperatures?

11.4 The Einstein frequency is often expressed in terms of an
equivalent temperature O, where O = hv/k. Confirm that 0 has
the dimensions of temperature, and express the criterion for the
validity of the high-temperature form of the Einstein equation in
terms of it. Evaluate 0Og for (a) diamond, for which
v=465x10"Hz and (b) for copper, for which
v =7.15%10'2 Hz. What fraction of the Dulong and Petit value of
the heat capacity does each substance reach at 25°C?

1.5 The ground-state wavefunction for a particle confined to a one-
dimensional box of length L. is

o= () ()

Suppose the box is 10.0 nm long. Calculate the probability that the
particle is (a) between x =4.95 nm and 5.05 nm, (b) between
x = 1.95 nm and 2.05 nm, (c) between x = 9.90 nm and 10.00 nm,
(d) in the right half of the box, (e} in the central third of the box.

11.6 The ground-state wavefunction of a hydrogen atom is

|12
v=— e~
nay

where ay = 53 pm (the Bohr radius). (a) Calculate the probability that
the electron will be found somewhere within a small sphere of radius
1.0 pm centred on the nucleus. (b) Now suppose that the same sphere
is located at r = a,. What is the probability that the electron is inside
it?

Theoretical problems

11.7 Derive Wien's law, that 4., T is a constant, from the Planck
distribution, and deduce an expression for the constant.

11.8 Normalize the following wavefunctions: (a) sin{anx/L) in the
range 0 < x < L, (b) a constant in the range —L < x < L, (c) e "/ in
three-dimensional space, (d) xe="/2? in three-dimensional space, Hint:
The volume element in three dimensions is dr = r? drsin 0d0 de,
With0 < r<w,0<0<7,0< ¢ < 2n A useful integrai was given
in Example 11.6. :

11.9 Two (unnormalized) CJ.((:‘ited state wavefunctions of the H atom
are (a) ¢ = (2~ r/ag)e ™/, (b) y = rsinOcos dpe "™, Normalize
both functions to 1.

11.10 Identify which of the following functions are eigenfunctions
of the operator d/dx: (a) e, (b) cos kx, (c) &, (d) kv, (e} e =" Give the
corresponding eigenvalue where appropriate,

11.11 Determine which of the following functions are cigenfunc-
tions of the inversion operator i (which has the effect of making the
replacement x — —xJ: (a) x* — kx, (b) coskr, {c) 22 + 3v — 1. State
the eigenvalue of i when relevant,

11.12 Which of the functions in Problem 11.10 are (a) also
eigenfunctions of d?/d:? and (b) only eigenfunctions of d°/d."?
Give the eigenvalues where appropriate.

an

1.13 A particle is in a state described by the wavefunction
¥ = (cos x)e™ + (sinyg)e ™

where y is a parameter. What is the probability that the particle will
be found with a linear momentum (a) +kh, (b) —&A? (c) What form
would the wavefunction have if it were 90 per cent certain that the
particle had linear momentum +kh?

11.14 Evaluate the kinetic energy of the particle with wavefunction
giwen in Problem 11.13.

1.15 Calculate the average linear momentum of a particle described
by the following wavefunctions: (a) e'¥*, (b) cos kx, (¢) e=*, where in
each one x ranges from —co to +4-oo.

11.16 Evaluate the expectation values of r and 2 for a hydrogen
atom with wavefunctions giveh in Problem 11.9.

11.17 Calculate (a) the mean potential energy and (b) the mean
kinetic energy of an clectron in the ground state of a hydrogenic
atom.

11.18 Write a computer program, or use mathematical software, for
constructing superpositions of cosine functions and explore how the
wavefunction becomes more localized as more components are
included. Include routines that determine the probability that a given
momentum will be observed. If you plot the superpasition (which you
should), set v =0 at the centre of the screen and build the
superposition there. Include a routine that includes the evaluation of
the root mean square location of the packet, {x2)'/2,

1.19 De_tetmine the commutators (that is, the value of
0,9, —,Q)) of the operators (a) d/dx and x, (b) d/dx and 2,
(c) u and o', where a = (x +ip)/2'/2 and o' = (x — ip)/2"/2.

Additional problems supplied by Carmen Giunta
and Charles Trapp

11.20 Demonstrate explicitly that the Planck distribution reduces to
the Rayleigh-Jeans law at long wavelengths.

11.21 The temperature of the Sun's surface is approximately 5800 K.
On the assumption that the human eye evolved to be most sensitive at
the wavelength of light corresponding to the maximum ln the Sun's
radiant energy distribution, determine the colour of light to which the
eye is the most sensitive.

11.22 Solar energy strikes the top of the Earth's atmosphere at a rate
of 343 Wm %, Abaut 30 per cent of this energy is reflected directly
back into space by the Earth or the atmosphere. The Earth-
atmosphere system absorbs the remaining energy and re-radiates it
into space as black-body radiation. What is the average black-body
temperature of the Earth? What is the wavelength of the most
plentiful of the tarth's black-body radiation?

11.23 A star oo small and cold to shine has been found by
B.R. Oppenheimer, S. Kulkarni, K. Matthews, and T, Nakajima (Science
270, 1478, (1995)). The spectrum of the object shows the presence of
methane which, according to the authors, would. not cxist at
temperaturesmuch zbove 1000 K. The massof theobject, asdetermined
fromits gravitational effect upon a companion star, is roughly 20 times
the mass of Jupiter. With this mass, it is very unlikely that the object
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formed as a planet; hence it is considered a brown dwarf star, the
coolest ever found. (a) From available thermodynamic data test the
stability of methane at temperatures above 1000 K. (b) What is 4,
for this star? (c) What are the energy density and excitance of this
star relative to that of the Sun (6000 K)? (d) To determine whether
the star will shine, estimate the fraction of the energy density of the
star that appears in the visible portion of the spectrum.

11 QUANTUM THEORY: INTRODUCTION AND PRINCIPLES

11.24 Max Planck was the first to determine the Boltzmann
constant, &, and the value of the constant now known by his name
from the experimental data on black-body radiation. Calculate values
for k and i from the following data. The excitance, M, from.a surface
of area 1.000 m? at 2000 K is 904.48 kW; at this temperature
2= 1.451 x 10 m. Hint. Obtain i, from the Planck distribu-

man

tion by differentiation with respect to 4.
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To find the propertics of Systems according to quantum mechanics we need ta solve the
oppropriate Schridinger equation. This chapter presents the essentiols of the solutions for
three basic types of motion: transiation, vibration, and rotatmn. We shall see that only
certain wovefunctions and their carresponding eneryies arc acceplabic, Hence, quontization
emerges as a natural consequence of the cquation and the conditions imposed on it The
solutions bring to light a number of highly nonclussical, and therefore surprising, feotures of
particies, particularly their ability to tunnel into and through regions where clossical physics
would forbid them to be found. We shall olso encounter a preperty o the electron, its spin,
that has no classical counterpart,

The three basic modes of motion—translation (motion through space), vibration, and
rotation—all play an important role in chemistry because they are ways in which molecules
store energy. Gas-phase molecules, for instance, undergo translational motion, and their
kinetic energy is a contribution to the total internal energy of a sample. Molecules can also
store energy as rotational kinetic energy, and transitions between their rotational energy
states can be observed spectroscopically. Energy is also stored as molecular vibration, and
transitions between vibrational states are responsible for the appearance of infrared spectra.

Translational motion

The quantum mechanical description of free motion in one dimension was introduced in
Section 11.5, We saw there that the Schrédinger equation is

n d*y
- =F la
2m dy? v e
or more succinctly
PRI
Hy =By " gp=-2 8 (1b)
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Potential energy

0 L x

EWall Wall
12.1 A particle in a one-dimensional region with
impenetrable walls. Its potential energy 15 zero
between x = 0 and x = L, and rises abruptly o
infinity as soon as it touches the walls

12 QUANTUM THEORY: TECHNIQUES AND APPLICATIONS

The general solutions are 3

ikx —~ikx ke

g, = Ae'"™ + Be I',,‘=7m~ (2)
Note that we are now labelling both the wavefunctions and the energies (that is, the
cigenfunctions and eigenvalues of H) with the index k. That these functions are solutions
can be verified by substituting , into the left-hand side of eqn 1a and showing that the
result is equal to . In this case, all values of k, and therefore all values of the energy, are
permitted. It follows that the translational energy of a free particle is not quantized.

We saw in Section 11.5¢ that a wavefunction of the form ei** describes a particle with
linear momentum p, = -+kh, corresponding to motion towards positive x (to the right), and
that a wavefunction of the form e~ describes a particle with the same magnitude of linear
momeritum but travelling towards negative x (to the left). That is, e is an eigenfunction of
the operator p, with eigenvalue +kh, and e~ is an eigenfunction with eigenvalue —k#. In
cither state, [@|* is independent of x, which implies that the position of the particle is
completely unpredictable. This conclusion is consistent with the uncertainty principle
because, if the momentum is certain, then the position cannot be specified (the operators &
and p, do not commute, Section 11.5€).

12.1 A particle in a box

In this section, we consider the problem of a particleina box, in which a particle of mass m
is confined between two walls at x = 0 and x = L. Inan infinite square well, the potential
energy is zero inside the Box but rises abruptly to infinity at the walls (Fig. 12.1). This
potential energy is an idealization of the potential energy of a gas-phase molecule that is
free to move in a one-dimensional container.

»

(a) The Schrodinger equation
The Schrisdinger equation for the region between the walls (where V = 0) is the same as for
a free particle (egn 1), so the general solutions given in eqn 2 are also the same. It is
convenient to write them as'
; K
W, (x) = Csinkx + D cos kx E,=— (3)

T 2m

(b) The acceptable solutions

For a free particle, any value of £, corresponds to an acceptable solution. However, when the
particle is confined within 2 region, the acceptable wavefunctions must satisfy certain
boundary conditions, or constraints on the function at certain locations. It is physically
impossible for the particle to be found with an infinite potential energy, so the
wavefunction must be zero where V is infinite, at x<0 and x>L. The continuity of the
wavefunction then requires it to vanish just inside the well at x = 0 and x = L. That is, the
boundary conditions are i, (0) = 0 and Y (L) = 0.

Consider the wall at x = 0. According to eqn 3, ¥(0) = D (because sin0 =0 and
cos0 = 1). But because (0) = 0 we must have D = 0. It follows that the wavefunction
must be of the form i, (x) = Csinkxy. The value of i at the other wall (at x =1} is
W, (L) = Csinkl, which must also be zero. Taking C = 0 would give ,(x) =0 for all x,

| Wewse et o cosa b sy and absorb ail numencal factors into the coefficients C and .
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12.2 The allowed energy levels for a particle in a
box. Note that the energy levels increase as n?, and
that their separation increases as the quantum
number increases.

12.3 The first five normalized wavefunctions of a
particie in a box. Each wavefunction is a standing
wave, and successive functions possess one more
half wave and a correspondingly shorter
wavelength.
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which would conflict with the Born interpretation (the particle must be somewhere).
Therefore, kL must be chosen so that sin kL = 0, which is satisfied by

kL = nm A=ils2 0 ; (4)

The value n = 0 is ruled out, because it implies k = 0 and ,(x) = 0 everywhere (because
sin 0 = 0), which is again unacceptable, and negative values of n merely change the sign of
sin kL (because sin (—x) = - sinx). The wavefunctions are therefore

1,(!,,(.:)=Csinf%-x b T AT (5)

(At this point we have started to label the solutions with the index n instead of .) Because k
and E, are related by eqn 3, it follows that the energy of the particle is limited to the values

(nm/L)H  n?H?

2m  8ml?
We see that the energy of the particle is quantized, and that the quantization arises from the
boundary conditions that  must satisfy if it is to be an acceptable wavefunction. This is a
general conclusion: the need to satisfy boundory conditions implies that only certain
wavefunctions are acceptable, and hence restricts observables to discrete values. So far,
only energy has been quantized; shortly we shall see that other physical observables may
also be quantized.

E,=

L ' (6)

(c) Normalization

Before discussing the solution in more detail, we shall complete the derivation of the
wavefunctions (which are real, that is, do not contain i) by finding the normalization
constant (here written C). To do so, we look for the value of C that ensures that the integral
of % over all the space available to the particle (that is, fromx =0tox = L) is cqual to 1

1/2
fw’:u:czf sint ™ dr=CxiL=1, soC=(>
0 0 L L

for all n. Therefore, the complete solution to the problem is
n?h?
"= Bml?

Valt) = (—) sin (") for0<xsL

The energies and wavefunctions are labelled with the ‘quantum number’ n. A quantum
number is an integer (in some cases, as we shall see, a half-integer) that labels the state of
the system. For a particle in a box there is an infinite number of acceptable solutions, and the
quantum number n specifies the one of interest (Fig. 12.2). As well as acting as a label, a
quantum number can often be used to calculate the energy corresponding to the state and
to write down the wavefunction explicitly (in the present example, by using the information
inegn 7).

n=12...
(M

(d) The properties of the solutions

Figure 12.3 shows some of the wavefunctions of a particle in a box: they are all sine
functions with the same amplitude but different wavelengths. With these images in mind, it
is easy to see the origin of the quantization: each wavefunction is a standing wave and, to fit

2 To evaluate the integral, we use the standard form

/iin’axdx = b — L sin 2ax + constant



316

12 QUANTUM THEORY: TECHNIQUES AND APPLICATIONS

into the cavity, successive wavefunctions must possess one more half-wavelength.
Shortening the wavelength results in a sharper average curvature of the wavefunction
and therefore an increasc in the kinetic energy of the particle. Note that the number of
nodes (points where the wavefunction passes through zero) also increases as n increases,
and that the wavefunction i, has n — 1 nodes. Increasing the number of nodes between
walls of a given separation increases the average curvature of the wavefunction and hence
the kinetic energy of the particle.

Example 12.1 Deriving the energies of 3 partiele in a box

Derive the energy levels of a particle in a box from the de Broglie relation and the boundary
conditions on the wavefunction.

Method We see from Fig. 12.3 that, to fit into the bo*. successive wavefunctions possess
one more half-wavelength. Therefore, the first thing to do is to find an expression for the
permitted wavelengths. To convert the permitted wavelengths into anergies, we use the de
Broglie relation to express wavelength as linear momentum and then use the expression for*
the kinetic energy in terms of the momentum to find the permitted energies.

Answer The permitted wavelengths satisfy
L=nx}i n=12...
and therefore
ok

A o n=1,2,...
According to the de Broglie relation, these wavelengths correspond to the momenta
pa
A 2L

The particle has only kinetic energy inside the box (where V = 0), so the permitted energies
are

_ p2 - nth?

oy N
" 2m  8ml?
as obtained more formally earlier.

Sclf-test 12.1 What is the average value of the linear momentum of a particle in abox
with quantum number n?

lp) =0l

The linear momentum of a particle in a box is not well defined because the wavefunction
sin kx is a standing wave and, like the example of cos kx treated in Section 11.5d, not an
eigenfunction of the linear momentum operator. However, each wavefunction is a
superposition of momentum eigenfunctions:

1/2 1/2

v, = (%) sin ("2%) = % (%) (—e) k=T (8)
It folldws that measurement of the linear momentum will give the value +k# for half the
measurements of momentum and —k#h for the other half. This detection of opposite
directions of travel with equal probability is the quantum mechanical version of the classical
picture that a particle in a box rattles from wall to wall, and in any given period spends half
its time travelling to the left and half travelling to the right.

22—B



12.4 (a) The first two wavefunctions, (b) the
corresponding probability distributions, and (c) a
representation of the probability distribution in
terms of the darkness of shading.
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Because n cannot be zero, the lowest energy that the particle may possess is not zero (as
would be allowed by classical mechanics, corresponding to a stationary particle) but

h?
= i o
This lowest, irremovable energy is called the zero-paint energy. .

The physical origin of the zero-point energy can be explained in two ways. First, the
uncertainty principle requires a particle to possess kinetic energy if it is confined to a finite
region: the particle’s location is not completely indefinite, so its momentum cannot be
precisely zero. Hence it has nonzero kinetic energy. Second, if the wavefunction is to be zero
at the walls, but smogth, continuous, and not zero everywhere, then it must be curved, and
curvature in a wavefunction implies the possession of kinetic'energy.

The separation between adjacent energy levels with quantum numbers n and n + 1 is

i (n+ 17K n2n? W
b ==~z = O Vg (10)

This separation decreases as the length of the container increases, and is very small when the
container has macroscopic dimensions. The separation of adjal:eﬁt levels becomes zero when
the walls are infinitely far apart. Atoms and molecules free to move in normal laboratory-
sized vessels may therefore be treated as though their translational energy is not quantized.
The translational energy of completely free particles (those not confined by walls) is not
quantized.

lllustration

........................................................................ tessansansanes

For a container of length L = 1.0 nm, h?/8mL? = 6.0 x 102 . Therefore, the zero-point
energy is £; = 6.0 x 10~ J (corresponding to 0.37 V). The minimum excitation energy is
given by eqn 10 with n = 1, and is 3E, or 1.8x 10~ J, which corresponds to 1.1 eV.

.......................................................... D e T TR R T

Self-test 12.2 Estimate a typical nuclear excitation energy by calculating the first
excitation energy of a proton confined to a one-dimensional infinite square well with a

length roughly equal to the diameter of a nucleus (1 fm).
[0.6 GeV]

The probability density for a particle in a box is

Vi) =%sinz(%r) , (1)

This probability density varies with position within the box. The nonuniformity is
pronounced when 7 is small (Fig. 12.4), but r{:z(.r) becomes more uniform as n increases.
The distribution at high quantum numbers reflects the classical result that a particle
bouncing between the walls spends, on the average, equal times at all points. That the
quantum result corresponds to the classical prediction at high quantum numbers is an
illustration ef the correspondence principle, which states that classical mechanics emerges
from quantum mechanics as high quantum numbers are reached.

Example 12.2 Using the particle in a box solutions

What is the probability, P of locating the electron between x = 0 (the left-hand edge) and
x = 0.2 nm in its lowest energy state in a box of length 1.0 nm?



318

12.5 Two functions are orthogonal if the integral
of their product is zero. Here the calculation of the
integral is illustrated graphically for two
wavefunctions of a particle in a square well. The
integral is equal to the total area beneath the
graph of the product, and is zero.

12 QUANTUM THEORY: TECHNIQUES AND APFLICJ’:TIDNS

Method The value of 'pz dx is the probability of finding the particle in the small region dx
located at x; therefore, the total probability of finding the electron in the specified region is
the integral of /> dx over that region. The wavefunction of the electron is given in egn 7
with n = 1.

Answer The probability of finding the particle in a region between x = 0 and x =/ is

R A (. 2nnl
== dy = — — i
£ L_/u = (L L thsn( L )

We then set 7 = | and / = 0.2 nm, which gives P = 0.05.

Comment The result corresponds to a chance of 1 in 20 of finding the electron in the
region. As n becomes infinite, the sine term, which is multiplied by 1/n, makes no
contribution to £ and the classical result, P = //L, is obtained.

Self-test 12.3 Calculate the probability that a particle in the state with n.=1 will be
found between x = 0.25L. and x = 0.75L in a box of length L (with x = 0 at the left-hand
wall).

[0.82]

(e) Orthogonality and the bracket notation

A property of wavefunctions first mentioned in Justification 11.2 can now be illustrated
more fully. Two wavefunctions are orthogonal if the integral of their product vanishes.
Specifically, the functions ¥, and i, are orthogonal if

f Vil dt =0 (12a)

where the integration is over all space. A general feature of quantum mechanics is that
wavefunctions corresponding to different energies are orthogonal; therefore, we can be
confident that all the wavefunctions of a particle in a box are mutually orthogonal.

Illustration

We can verify the orthogonality of wavefunctions of a particle in a box with n =1 and
n =3 (Fig. 12.5):

[t [ () n () =0

from the general propertlcs of integrals over trigonometric functions.

The integral in eqn 12a is often written
(nln'y =0 (n" #n) (12b)

This Dirac bracket notation is much more succinct than writing out the integral in full. It
also introduces the words ‘bra’ and 'ket’ into the language of quantum mechanics. Thus, the
bra (n| corresponds to the complex conjugate of the wavefunction i, and the ket |n')
corresponds to the wavefunction .. When the bra and ket are put together as ineqn 12b,
the integration over all space is understood. Similarly, the normalization condition in
eqn 11.20 becomes simply * '

(nln) =1 (13)
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12.6 A two-dimensional square well. The particle is
confined to the plane bounded by impenetrable
walls. As soon as it touches the walls, its potential
energy rises to infinity.
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in bracket notation. These twa expressions can be combined into a single expression:
("ln') == ‘Snn' (14)

where §,,,, which is called the Kronecker delta, is 1 when n’ = n and 0 when n’ # n. We
shall see more of this notation later.

The property of arthogonality is of great importance in quantum mechanics because it
enables us to eliminate a large number of integrals from calculations. Orthogonality plays a
central role in the theory of chemical bonding (Chapter 14) and spectroscopy (Chapter 17).

122 Motion in two dimensions

Next, we consider a two-dimensional version of the particle in a box. Now the particle is
confined to a rectangular surface of length L, in the x-direction and L, in the y-direction;
the potential energy is zero everywhere except at the walls, where it is infinite (Fig. 12.6). The
wavefunction is now a function of both x and y and the Schrédinger equation is

N CL LA
L (55 ®

We need to see how to solve this partial differential equation, an equation in more than one
variable,

(a) Separation of variables

Some partial differential equations can be simplified by the separation of variables
technique, which divides the equation into two or more ordinary differential equations, one
for each variable. The method works in this case, as can be seen by testing whether a solution
of eqn 15 can be found by writing the wavefunction as a product of functions, one
depending only on x and the other only on y:

Wixy) = XY () 6)

The notation X(x)Y(y) reminds us that the two functions into which the wavefunction is
factored depend only on x and only on y for X and Y, respectively. We show in the
Justification below that with this substitution, eqn 15 separates into two ordinary
differential equations, one for each coordinate:

W d’X  dy

—ﬂE=ErY E=Ex+Ey (17)

The quantity Ey is the energy associated with the motion of the particle parallel to the x-
axis, and likewise for £, and motion parallel to the y-axis.

Justification 12.1

The first step in the justification of the separability of the wavefunction int. the product of
two functions X and Y is to note that, because X is independent of y and Y is independent
of x, we can write

By _oxy  dx dy Fxy 4

22T A da? P By T dy?
Then egn 15 becomes

2 7 o2 2

h (Yd X d'y

o EZ"FXE]—I-):EXY
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-

When both sides are divided by XY, the resulting equation can be rearranged into
ld2X+ 1dY  2mE
Xd2 "Ydy? A _
The first term on the left is independent of y, so if y is varied only the second term can
change. But the sum of these two terms is a constant given by the right-hand side of the
equation; therefore, even the second term cannot change when y is changed. In other
words, the second term is a constant, which we write —2mEy /A”. By a similar argument,
the first term is a constant when x changes, and we wrigg it —2mEy /W, and E = Ey + Ey.
Therefore, we can write
18X omby 1Y __2nky
X de?2 W Y dy? e 1

which rearrange into the two ordinary (that is, single variable) differential equations in
eqn 17.

Each of the two ordinary differential equations in eqn 17 is the same as the one-
dimensional square-well Schriddinger equation; hence we can adapt the results in eqn 7
without further calculation:

0,0 =(2) n(%2)  r0=(2) (%)

Then, because |y = XY and E = Ey + Ey, we obtain

'J",,I,,,(.r,yj = ———“ f)uzsin(%?x—) sin(lzé'!) 0<x<L,0<y<L,
Sln

I | W
n;  nz\ R*
Epo=|=2+2)— 18
Ll (L}+L5) 8m (s}

with the quantum numbers taking the valuesn, = 1,2,...and n, = 1,2,... independently.
Some of these functions are plotted in Fig. 12.7. They are the two-dimensional versions of
the wavefunctions shown in Fig. 12.3. Note that two quantum numbers are needed in this

I
l >/

(c} (d)

12,7 The wavefunctions for a particie confined to a rectangular surface depicted as contours of equal amplitude. (a) n, = 1, n, = 1, the state of lowest energy, (b)

m=lm=2(mn=2n=1ad(dn=2n=2
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two-dimensional problem, and in the Dirac bracket notation we denote the states by the ket
Iy o).

A particle in a three-dimensional box can be treated in the same way. The wavefunctions
have another factor (for the z-dependence), and the energy has an additional term in n3/L3.

(b) Degeneracy
An interesting feature of the solutions is obtained when the plane surface is square, when
Ly =L and L, = L. Then egn 18 becomes

2. rn . h?
4’..,..2(—", )’) = ESIH(]T,L() Slﬂ(% Enlrrl = (’1? + n%)m {19)

Consider the cases n; = I, my =2 and ny =2, m, ¢ 1:

2. - (2my Sh
¥a(xy) —Esm(%) S'“(T) Eia=g s

2 . (2ax\ . rmy _ 5h?
Yo lxy) = ZS'n(T) sin (T) E;, = i

We see that different wavefunctions correspond to the same energy, the condition called
degeneracy. In this case, in which there are two degenerate wavefunctions, we say that the
energy level 5(h?/8mL?) is 'doubly degenerate’. Alternatively, we say that the states |1,2)
and |2, 1) are degenerate.

The occurrence of degeneracy is related to the symmetry of the system. Fig. 12.8 shows
contour diagrams of the two degenerate functions ¥, , and ¢, ,. Because the box is square,
we can convert one wavefunction into the other simply by rotating the plane by $0°.
Interconversion by rotation through 90° is not possible when the plane is not square, and
Y12 and i, are then not degenerate. We shall see many examples of degeneracy in the
pages that follow (for example, in the hydrogen atom), and all of them can be traced to the
symmetry properties of the system (see Section 15.4b).

12.8 The wavefunctions for a particle confined to a
square surface, Note that one wavefunction can be
converted into the other by a rotation of the box by
90°. The two functions correspond to the same
energy. Degeneracy and symmetry are closely
related.

12.3 Tunnclling

If the potential energy of a particle does not rise to infinity when it is in the walls of the
container, and E < V, the wavefunction goes not decay abruptly to zero. If the walls are thin
(so that the potential energy falls to zero again after a finite distance), the wavefunction
oscillates inside the box, varies smoothly inside the region representing the wall, and
. oscillates again on the other side of the wall outside the box (Fig. 12.9). Hence the particle
might be found on the outside of a container even though according to classical mechanics
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Wavefunction

12.9 A particle incident an a barrier from the left
has an oscilleting wavefunction, but inside the
barrier there are no oscillations (for E < V). If the
barrier is not too thick, the wavefunction is nonzero
at its opposite face, and so oscillations begin again
there. (Only the real component of the
wavefunction is shown.}

Incldent wave

11!

12.10 When a particle is incident on a barrier from
the left, the wavefunction consists of a wave
representing linear momentum to the right, a
reflected component representing momentum to
the left, a varying but not oscillating component
inside the barrier, and a (weak) ‘wave rcpresenting
motion to the right on the far side of the barrier.

;.

Transmitted

wave
S

12.11 The wavefunction and its slope must be
continuous at the edges of the barrier. The
conditions for continuity enable us to connect the
wavefunctions in the three zones and hence to
obtain relations between the coefficients that
appear in the solutions of the Schrading

equation,
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it has insufficient energy to escape. Such leakage by penetration through classically
forbidden zones is called tunnelling.

The Schrédinger equation can be used to calculate the probability of tunnelling of a
particle of mass m incident on a finite barrier from the left. On the left of the barrier (for
x <0) the wavefunctions are those of a particle with V = 0, so from eqn 2 we can write

¥ = Ael™ h = (2mE)'"? (20)

The Schrodinger equation for the region representing the barrier (forO < x < L), where the
potential energy is the constant V, is

nd? ljr
T 2mde?

We shall consider particles that have E<V, so V
equation are then

+ Be &

V= £y (21)

— E is positive. The general solutions of this

¥ =Ce™ +De ™  kh={2m(V - E)}'? (22)

as can readily be verified by differentiating y twice with respect to x. The important feature
to note is that the two exponentials are now real functions (as distinct from the complex,
oscillating functions for the region where V = 0).% To the right of the barrier (x> L), where
V = 0 again, the wavefunctions are

!p Ale iky +Bic—ikr fy= (2””;:)1."2 (23)

The complete wavefunction for a particle incident from the left consists of an incident wave,
a wave reflected from the barrier, the exponentially changing amplitudes inside the barrier,
and an oscillating wave representing the propagation of the particle to the right after
tunnelling through the barrier successfully (Fig. 12.10). The acceptable wavefunctions have
to obey the conditions set out in Section 11.4b. In particular, they must be continuous at the
edges of the barrier (at x = 0 and x = L, remembering that " = 1):

A+B=C+D  Ce +De ™ = Aleit 4 ple~it (24)

Their slopes (their first derivatives) must also be continuous there (Fig. 12.11):

ikA — kB = kC — kD kCe*t — kDe ™ = ikA’e™ — ikB'e (25)

At this stage, we have four equations for the six unknown coefficients. If the particles are
shot towards the barrier from the left, there can be no particles travelling to the left on the
right of the barrier. Therefore, we can set B' = 0, which removes one more unknown. We
cannot set B = 0 because some particles may be reflected back from the barrier toward
negative x.

The probability that a particle is travelling towards positive x (to the right) on the left of
the barrier is proportional to |A|:l and the probablhty that it is travelling to the right on the
right of the barrier is proportional to jA’| . The ratio of these two probabilities is called the
transmission probability, T. After some algebra we find

-1
i {e“"' — e-xl.)2
T'=¢1l4+—- 2
{ . 16e(1 — ) (26)
where ¢ = E/V. This function is plotted in Fig. 12.12; the transmission coefficient for £>V
is shown there too. For high, wide barriers (in the sense that kL » 1), eqn 26 simplifies to

T=16(1 — g)e” 2 27

3 Oscillating functions would be oblained if E> V.



12.12 The transHion probabilities for passage through
a barrier. The horizontal axis is the energy of the
incident particle expressed as a multiple of the barrier
height. The curves are labelled with the value of
L(2mV)"/? fh. The graph on the left is for E<V and
that on the right for £> V. Note that T>0 for

E <V, whereas classically T would be zero. However,
T <1 for E>V, whereas classically T would be 1.

Heavy
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| Light
particle

Wavefunction

x

12.13 The wavefunction of a heavy particle decays
more rapidly inside a barrier than that of a light
particle. Consequently, a light particle has a greater
probability of tunnelling through the barrier,
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The transmission probability decreases exponentially with the thickness of the barrier and
with m'/2. It follows that particles of low mass are more able to tunnel through barriers than
heavy ones (Fig. 12.13). Tunnelling is very important for electrons and muons, and
moderately important for protons; for heavier particles it is less important. A number of
effects in chemistry (for example, the isotope-dependence of some reaction rates) depend
on the ability of the prdton to tunnel more readily than the deuteron. The very rapid
equilibration of proton transfer reactions (which were discussed in Chapter 9) is also a
manifestation of the ability of protons to tunnel through barriers and transfer quickly from
an acid to a base. The important technigue of ‘scanning tunnelling microscopy’ (STM), which
is described in more detail in Section 28.2f, relies on the exponential dependence of electron
tunnelling on the thickness of the region between a point and a surface.

Ilustration

To estimate the relative probabilities that a proton and a deuteron can tunnel through the
same barrier of height 1.00 eV (1.60 x 10~ J) and length 100 pm when their energy is
09eV,s0 E—V =0.10eV, we first evaluate

1/2
2(mfu) x (1.67 x 107" kg) x (1.6 x 107 J) !
K =
(1.055x 10~ Js)?

_m/w)'?
i4 pm

The values of « for a proton (m = 1.0 u) and a deuteron (m = 2.0 u) are 1/(14 pm) and
1/(9.9 pm), respectively, so kL » | and eqn 27 can be used. The ratio of transmission
probabilities is then

Tu

Ty
(The ratio is very sensitive to rounding errors.) The result shows that the tunnelling
probability of a proton (in the system specified) is about 370 times greater than that of a
deuteron, ‘

= ¢ M sl = 3.7 %10
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LY Displacement, x

12.14 The parabolic potential energy V = }ix® of a
harmonic oscillator, where x is the displacement
from equilibrium. The narrowness of the curve
depends on the force constant k: the larger the
value of k, the narrower the well.
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Displacement, x

12.15 The energy levels of a harmonic oscillator are
evenly spaced with separation Aw, with

@ = (k/m)"/%. Even in its lowest state, an oscillator
has an energy greater than zero.

12 QUANTUM THEORY: TECHNIQUES AND APPLICATIONS

Setf-test 12.4 Calculate the relative tunnelling probabilities when the barrier is twice as
long, the other conditions being unchanged. '
[1.4 % 10%)

Vibrational motion

A particle undergoes harmonic motion if it experiences a restoring force proportional to its
displacement:

F=—k (28)

where k is the force constant: the stiffer the ‘spring’, the greater the value of k. Because
force is related to potential energy by F = —dV /dx (see Further information 4), the force in
eqn 28 corresponds to a potential energy

V= l? (29)

This expression, which is the equatioff of a parabola (Fig. 12.14), is the origin of the term
‘parabolic potential energy’ for the potential energy characteristic of a harmonic oscillator.
The Schridinger equation for the particle is therefore

n d*y

_ﬂ'&ﬂff-‘-%"f“’:E'p (30)

124 lhe cnergy tevels

Equation 30 is a standard equation in the theory of differential equations and its solutions
are well known to mathematicians (see below).* When the boundary conditions, that the
oscillator will not be fdund with infinitely large compressions or extensions, are applied, it is
found that the permitted energy levels are

1/2
E, = (v+he _m=(;§) v=0,12,... (31)

Note that w increases with increasing force constant and decreasing mass. It follows that the
separation between adjacent levels is

Eyp —E, =ho (32)

which is the same for all . Therefore, the energy levels form a uniform ladder of spacing hw
(Fig. 12.15). The energy separation ha is negligibly small for macroscopic objects (with large
mass), but is of great importance for objects with mass similar to that of atoms.

lllustration

......................................................................................

The force constant of a typical X-H chemical bond is around 500 N'm~". Because the mass
of a proton is about 1.7 x 102" kg, =5 x 10" s~' and the separation of adjacent levels is
hw==6x 1072 J (about 0.4 eV). This energy separation corresponds to 30 kJ mol~!, which
is chemically significant. The excitation of the vibration of the bond from one level to the
level immediately above requires 6 x 107" J. Therefore, if it is caused by a photon, the
excitation requires radiation of frequency v = AE/h =9%10" Hz and wavelength
A=cfv=3 um. It follows that transitions between adjacent vibrational energy levels of
molecules are stimulated by or emit infrared radiation (Chapter 16).

4 For the details of the solution, see Further reading
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12.16 The graph of the Gaussian function,
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Table 12.1 The Hermite polynomials H (v)

[ H,

0 1

1 2y

2 42 -2

3 8 — 12y

4 16y —48y* + 12

5 325 — 160y + 120y

6 64y5 — 480)° + 72002 — 120

The Hermite polynomiats (which continue up to
infinite ) satisfy the equation

HY —2pH, + 20H, = 0
and the recursion relation

Hy =2yH, — 204, ,
An important integral is

m 0 i #o
_f =
j:,”’”" & {n'“?"u‘. if v =
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Because the smallest permitted value of v is 0, it follows from eqn 31 that a harmonic
oscillator has a zero-point energy

Eq = $ha (33)

For the typical malecular oscillator specified in the lllustrotion, the zero-point energy is
about 3 x 10~ J, which corresponds to 0.2 eV, or 15 kYmol~'. The mathematical reason
for the zero-point energy is that v cannot take negative values, for if it did the wavefunction
would be ill-behaved. The physical reason is the same as for the particle in a square well: the
particle is confined..its position is not completely uncertain, and therefore its momentum,
and hence its kinetic energy, cannot be exactly zero. We can picture this zero-point state as
one in which the particle fluctuates incessantly around its equilibrium position; classical
mechanics would allow the particle to be perfectly still.

12.5 The wavefunctions

Itis helpful at the outset to identify the similarities between the harmonic oscillator and the
particle in a box, for then we shall be able to anticipate the form of the oscillator
wavefunctions without detailed calculation. Like the particle in a box, a particle undergoing
harmonic motion is trapped in a symmetrical well in which the potential energy rises to large
values (and ultimately to infinity) for sufficiently large displacements {compare Figs 12.1
and 12.14). However, there are two important differences. First, because the potential
energy climbs towards infinity only as x* and not abruptly, the wavefunction approaches
zero more slowly at large displacements than for the particle in a box. Second, as the kinetic
energy of the oscillator depends on the displacement in a more complex way (on account of
the variation of the potential energy), the curvature of the wavefunction also varies in a
more complex way.

(a) The form of the wavefunctions
The detailed solution of eqn 30 shows that the wavefunction for a harmonic oscillator has
the form

W(x) = N x (polynomial in x) x (bell-shaped Gaussian function)
where N is a normalization constant. A Gaussian function is a function of the form e
(Fig. 12.16). The precise form of the wavefunctions is

mk

2y 1/4
W) =NH e y=E = (2 (34)

The factor H,(y) is a Hermite polynomial (Table 12.1). For instance, because Hy(y) = 1, the
wavefunction for the_ground state (the lowest energy state, with v = 0) of the harmonic
oscillator is '

Wolx) = Noe "1 = Npe ™/ (33)
It follows that the probability density is the bell-shaped Gaussian function
Yolx) = Nge ™/ (36)

The wavefunction and the probability distribution are shown in Fig. 12.17. Both curves have
their largest values at zero displacement (at x = 0), so they capture the classical picture of
the zero-point energy as arising from the ceaseless fluctuation of the particle about its
equilibrium position.
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The wavefunction for the first excited state of the oscillator, the state with v = 1, is
obtained by noting that H,(y) = 2y (note that some of the Hermite polynomials are very
simple functions!):

N :
Wy (x) = Ny x 29 = %xe"‘]ﬂ" 37)

This function has a node at zero displacement (x = 0), and the probability density has
maxima at x = +a, corresponding to y = + 1 (Fig. 12.18).

The shapes of several wavefunctions are shown in Fig. 1-2:19. The shading in Fig. 12.20
that represents the probability density is based on the squares of these functions. At high
quantum numbers, harmonic oscillator wavefunctions have their largest amplitudes near
the turning points of the classical motion (the locations at which V = E, so the kinetic
energy is zero). We see classical properties emerging in the correspondence limit of high
quantum numbers, for a classical particle is most likely to be found at the turning points
(where it travels most slowly) and is least likely to be found at zero displacement (where it
travels most rapidly).

Example 12.3 Normalizing a harmonic osciliater wavefunction
Find the normalization constant for the harmonic oscillator wavefunctions.

Method Normalization is always carried out by evaluating the integral of |||Mz over all space
and then finding the normalization factor from eqn 11.17. The normalized wavefunction is
then equal to Ny. In this one-dimensional problem, the volume element is dx and the
integration is from <o to +co. The wavefunctions are expressed in terms of the
dimensionless variable y = x/a, 50 begin by expressing the integral in terms of y by using
dx = ady. The integrals required are given in Table 12.1.

Answer The unnormalized wavefunction is
bo(x) = H,(y)e ™/
It follows from the integrals given in Table 12.1 that

o0 - v} a0
[ iwax=a f bty =a [ e oy
-0 - -Q0
= gn'/22%!

where v! = (v — 1)(v — 2) - - - 1. Therefore,
1

b= (aﬂ”zl"v!)”z
Note that for a harmonic oscillator N, is different for each value of v,

Comment The Hermite polynomials are members of a class of functions called orthogonal
polynomials. These polynomials have a wide range of important properties which allow a
number of quantum mechanical calculations to be done with relative ease. See Further
reading for a reference to their properties.

Sell-test 12,5 Confirm, by explicit evaluation of the integral, that y, and y, are
orthogonal.

[Evaluate the integral [* wai, dx

by using the information in Table 12.1]
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12.20 The probability distributions for the first five
states of a harmonic oscillator represented by the
density of shading. Note how the regions of highest
probability (the regions of densest shading) move
towards the turning points of the classical motion
as v increases.
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(b) The properties of oscillators

With the wavefunctions that are available, we can start calculating the properties of a
harmonic oscillator. For instance, we can calculate the expectation values of an observable
by evaluating integrals of the type

@= [ viava 5 (38)

(Here and henceforth, the wavefunctions are all taken to be normalized.) A tidier expression
is obtained by using Dirac bracket notation, in which an integral is replaced by a bracket
labelled with the quantum numbers of the states:

W'|Qw) = f_ m Yo Qy, dx [39]

This bracket is also called a matrix element of the operator €. Note how the operator stands
between the bra and the ket (which may denote different states), in the place of the c in
{brajc|ket). An integration is implied whenever a complete bracket is written. In this
notation, the expectation value is

(Q) = (i) (40)

with the bra and the ket corresponding to the same state (with quantum number v and
wavefunction y,).

When the explicit wavefunctions are substituted, the integrals look fearsome, but the
Hermite polynomials have many simplifying features. For instance, we show in the following
example that the mean displacement, (x), and the mean square displacement, {x2), of the

oscillator when it is in the state with quantum number v are
—

=0 (D=(+) (1)

(mk) 72
The result for (x) shows that the oscillator is equally likely to be found on either side of
x=0 [like a classical oscillator). The result for {x*) shows that the mean square
displacement increases with . This increase is apparent from the probability densities in
Fig. 12.20, and corresponds to the classical amplitude of swing increasing as the oscillator
becomes more highly excited.

WL T AT L R I ST

Example 12.4 Calculating properties of a harmonie oscillator
Calculate the mean displacement of the oscillator when it is in a quantum state v.

Method Normalized wavefunctions must be used to calculate the expectation value. The
operator for position along x is multiplication by the value of x (Section 11.5c). The resulting
integral can be evaluated either by inspection (the integrand is the product of an odd and an
even function), or by explicit evaluation using the formulas in Table 12.1. To give practice in
this type of calculation, we illustrate the latter procedure. We shall need the relation x = ay,
which implies that dx = ady.

Angwer The integral we require is

W= [ v =z [ " (He P Py(H,e ) dx

=N [ (He P )y(H,e ) dy

-

= a®N? ] H,yH,e™ dy

L 7}
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Now use the recursion relation in Table 12.1 to form
YH, =vH,_, +-1TH9+I

which turns the integral into

o ) w0
f prHue_yJ d)" = vj Hv_lee-)’ dy + %f H“_,Hve—’: d}'
b ¥ -0 —

Both integrals are zero (Table 12.1), so (x) = 0.

Self-test 12.6 Calculate the mean square displacement (x*) of the particle from its
equilibrium position. (Use the recursion relation twice.)
[eqn 41]

The mean potential energy of an oscillator, the expectation value of V = %kx2 can now
be calculated very easily:

-rpy 12 ’
) = @) =40+ 90 (5) < 4o+ o (@)

Because the total energy in the state with quantum number v is (v + 1)hew, it follows that
(V) = iE, (43)

The total energy is the sum of the potential and kinetic energies, so it follows at once that
the mean kinetic energy of the oscillator is

{Ex) = %Ev (44)

The result that the mean potential and kinetic energies of a harmonic oscillator are equal
(and therefore that both are equal to half the total energy) is a special case of the virial
theorem:

If the potential energy of a particle has the form V=ax’ then its mean
potential and kinetic energies are related by

2Ey) = b{V) (45)

For a harmonic oscillator b = 2, so (Ex) = (V), as we have found. The virial theorem is a
short cut to the establishment of a number of useful results, and we shall use it again.

An oscillator may*be found at extensions with V> E that are forbidden by classical
physics, for they correspond to negative kinetic energy. For example, it follows from the
shape of the wavefunction (sce the Justification below) that in its lowest energy state there
is about an 8 per cent chance of finding an oscillator stretched beyond its classical limit and
an 8 per cent chance of finding it with a classically forbidden compression. These tunnelling
probabilities are independent of the force constant and mass of the oscillator. The
probability of being found in classically forbidden regions decreases quickly with increasing
», and vanishes entirely as » approaches infinity, as we would expect from the
correspondence principle. Macroscopic oscillators (such as pendulums) are in states with
very high quantum numbers, so the probability that they will be found in a classically
forbidden region is wholly negligible. Molecules, however, are normally in their vibrational
ground states, and for them the probability is very significant.



Table 12.2° The error function

C 4 erfz

0 0

0.01 0.0113
0.05 0.0564
0.10 0.1125
0.50 0.5205
1.00 0.8427
1.50 . 0.9661
2.0 0.9953

*More values are given in the Dato section at the
end of this volume.

12.21 The angular momentum of a particle of mass
m on a circular path of radius r in the xy-plane is
represented by a vector of magnitude pr
perpendicular to the plane.
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Justification 12.2

*According to classical mechanics, the turning point, x,, of an oscillator occurs when its
kinetic energy is zero, which is when its potential energy Lkx? is equal to its total energy E.
This equality occurs when

12
T aqes(Z)

k

with £ given by eqn 31. The probability of finding the oscillator stretched beyond a -
displacement x, is the sum of the probabilities v dx of finding it in any of the intervals dx
lying between x,; and infinity: G

a0 &
sz W2 de
)

The variable of integration is best expressed in terms of y = x/« with a specified in eqn 34,
and then the turning point on the right lies at

2(v + Yo\ '
o = raft = (Fd2) " = 2v 1)
For the state of lowest energy (v = 0), y,, = 1 and the probability is
o o0
P=f wﬁm:mg/ e dy
) Y 1
[} !
The integral is a special_case of the error function, erf z, which is defined as follows:
2 1 .a
eﬁz:l—m'[e dy [46)
The values of this function are tabulated (just like sine and cosine functions), and a small
selection of values is given in Table 12.2. In the present case
P=1(1—erf 1) =11 -0.843) = 0.079

It follows that in 7.9 per cent of a large number of observations, any oscillator in the state
v =0 will be found stretched to a classically forbidden extent. There is the same
probability of finding the oscillator with a classically forbidden compression. The total
probability of finding the oscillator tunnelled into a classically forbidden region (stretched
or compressed) is about 16 per cent.

Rotational mation

The treatment of rotational motion can be broken down into two parts. The first deals with
motion in two dimensions and the second with rotation in three dimensions. it may be
helpful to review the classical description of rotational motion given in Further information
4, particularly the concepts of moment of inertia and angular momentum.

12.6 Rotation in two dimensians

We consider a particle of mass m constrained to move in a circular path of radius r in the xy-
plane (Fig. 12.21). The total energy is equal to the kinetic energy, because V = 0 everywhere.
We can thérefore write £ = p*/2m. According to classical mechanics, the angular
momentum, J,, around the z-axis (which lies perpendicular to the xy-plane) is J, = _ipr.
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12.22 Two solutions of the Schrédinger equation
for a particle on a ring. The circumference has been
opened out into a straight line; the points at ¢ = 0
and 2x are identical. The solution in (a) is
unacceptable because it is not single-valued.
Moreover, on successive circuits it interferes
destructively with itself, and does not survive. The
solution in (b) is acceptable: it is single-valued, and
on successive circuits it reproduces itself.
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so the energy can be expressed as J2/2mr®. Because mr? is the moment of inertia, /, of the
mass on its path, it follows that
J? :
=0 (47)
We shall now see that not all the values of the angular momentum are permitted in
quantum mechanids, and therefore that both angular momentum and rotational energy are
quantized.

(a) The qualitative origin of quantized rotation
Because J, = +pr and, from the de Broglie relation, p = /A, the angular momentum
about the z-axis is

L=t

A

Opposite signs correspond to opposite directions of travel. This equation shows that, the
shorter the wavelength of the particle on a circular path of given radius, the greater the
angular momentum of the particle. It follows that, if we can see why the wavelength is
restricted to discrete values, then we shall understand why the angular momentum is
quantized.

‘Suppose for the moment that A can take an arbitrary value. In that case, the
wavefunction depends on the azimuthal angle ¢ as shown in Fig. 12.22a. When ¢ increases
beyond 27, the wavefunction gontinues to change, but for an arbitrary wavelength it gives
rise to a different value at each point, which is unacceptable (Section 11.4b). An acceptable
solution is obtained only if the wavefunction reproduces itself on successive circuits, as in
Fig. 12.22b. Because only some wavefunctions have this property, it follows that only some
angular momenta are acceptable, and therefore that only certain rotational energies exist.
Hence, the energy of the particle is quantized. Specifically, the only allowed wavelengths are

with my, the conventional notation for this quantum number, taking integral values
including 0.° The angular momentum is therefore limited to the values

hr mhr  mh

T T In

where we have allowed m, to have positive or negative values. That is,

J, = mh mp=0,41,%£2,... (48)
Positive values of m, correspond to rotation in a clockwise sense around the z-axis (as viewed
in the direction of z, Fig. 12.23) and negative values of m; correspond to counter-clockwise
rotation around z. It then follows from eqn 47 that the energy is limited to the values

J__=i

72 min?
E=2=_1 4
2 2 e
We shall see shortly that the corresponding normalized wavefunctions are
ci"'1¢
Vo (@) = W (50)

The wavefunction with m, = 0is yy(¢) = 1/(2)"/, and has the same value at all points on
the circle.

We have arrived at a number of conclusions about rotational motion by cobbling
together some classical notions and the de Broglie relation. Such a procedure can be very

5 The value m, = Ocorresponds lo J = a0, a ‘wave’ of infinite wavelength has a constant height at all values of ¢
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12.23 The angular momentum of a particle
confined to a plane can be represented by a vector
of length |m,| units along the z-axis and with an
orientation that indicates the direction of motion of
the particle. The direction is given by the right-
hand screw rule,

12.24 The cylindrical coordinates r and ¢ for
discussing systems with axial (cylindrical) symmetry.
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useful for establishing the general form (and, as in this case, the exact energies) for a
quantum mechanjcal system, However, to be sure that the correct solutions have been
obtained, and to obtain practice for more complex problems where this less formal approach
is inadequate, we need to solve the Schréidinger equation explicitly. The formal solution is
described in the Justification that follows.

Justification 12.3

The hamiltonian for a particle of mass m in a plane (with V = 0) is the same as that given in
eqn 15:

hz az ai
H=——| =+
2Zm \ax?  0y?
and the Schrdinger equation is Hyy = Ey, with the wavefunction a function of the angle
¢. It is always a good idea to use coordinates that reflect the full symmetry of the system,
so we introduce the coordinates r and ¢ (Fig. 12.24), where x = rcos ¢ and y = rsin ¢. By
standard manipulations we can write
Lo 18 (51)
a2 32 2 rdr riag?
However, because the radius of the path is fixed, the derivative with respect to r can be
discarded; the hamiltonian then becomes

__re
g
The moment of inertia / = mr* has appeared automatically, so / may be written
n d
" =
and the Schrédinger equation is
d2y 2E .
— e 53
Y (53)
The normalized general solutions of the equation are
e (21E)'?
¢’»:;(¢)—W my gy

The quantity m; is just a dimensionless number at this stage.

We now select the acceptable solutions from among these general solutions by
imposing the condition that the wavefunction should be single-valued. That is, the
wavefunction  must satisfy a cyclic boundary condition, and match at points separated
by a complete revolution: (¢ + 2n) = (). On substituting the general wavefunction
into this condition, we find

2 o
As e'* = —1, this relation is equivalent to

Vi, (6 + 27) = (=1)"" () (54)
Because we require (-1)2"” =1, 2m; must be a positive or negative even integer

(including 0), and therefore m; must be an integer:m; =0, +1, +2,....
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12 2% The real parts of the wavefunctions of a
particle on a ring. As shorter wavelengths are
achieved, the magnitude of the angular momentum
around the z-axis grows in steps of &

Angular J

momentum /
/

12.2t. The basic ideas of the vector representation
of angular momentum: the magnitude of the
angular momentum is represented by the length of
the vector, and the orientation of the motion in
space by the orientation of the vector (using the
right-hand screw rule).
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(b) Quantization of rotation

We can summarize the conclusions so far as follows. The energy is quantizgd and restricted
to the values given in eqn 49 (£ = m,lhzf?_l}. The occurrence of m; as its square means that
the energy of rotation is independent of the sense of rotation (the sign of m)), as we expect
physically. In other words, states with a given value of |m,| are doubly degenerate, except for
m; = 0, which is non-degenerate. Although the result has been derived for the rotation of a
single mass point, it also applies to any body of moment of inertia / constrained to rotate
about one axis.

We have also seen that the angular momentum is quantized and confined to the values
given in eqn 48 (/, = myh). The increasing angular momentum 1s associated with the
increasing number of nodes in the real and imaginary parts of the wavefunction:® the
wavelength decreases stepwise as |m,| increases, so the momentum with which the particle
travels round the ring increases (Fig. 12.25). As shown in the following Justification, the
same conclusion can be obtained formally by using the argument about the relations
between eigenvplues and the values of observables that were established in
Section 11.5.

Justification 12.4

In the discussion of transiational motion in one dimension, we saw that the opposite signs
in the wavefunctions e and e~ correspond to opposite directions of travel, and that the
linear momentum is given by the eigenvalue of the linear momentum operator. The same
conclusions can be drawn here, but now we need the eigenvalues of the ongular
momentum operator. In classical mechanics the orbital angular momentum [, about the z-
axis is defined as’ '
I, = ap, —¥p, 55]

where p, is the component of linear motion parallel to the x-axis and Py is the component

parallel to the y-axis. The dperators for the two linear momentum components are given in
eqn 11.32, so the operator for angular momentum about the z-axis, which we denote [, is

. h d &
L=<(x——y=— 56
o (l dy £ Or) 136}
When expressed in terms of the coordinates » and ¢, this equation becomes
- hd
it i 57
io¢ 57)

With the angular momentum operator available, we can test the wavefunction in eqn 50.
Disregarding the normalization constant, we find

f,'l'm, = }:dj‘;l = 'lm',?clnlm" = mfhtflm., (58)
That is, ¢, is an eigenfunction of 1,, and corresponds to an angular momentum m;h. When
m, is positive, the angular momentum is positive (clockwise when seen from below); when
my, is negative, the angular momentum is negative (counter-clockwise when seen from
below). These features are the origin of the vector representation of angular momentum,
in which the magnitude is represented by the length of a vector and the direction of
motion by its orientation (Fig. 12.26).

& The complex function €™ does not hive nodes, however it may be wiilten as cosm,@ + 1sinm,b, and the real (cos m;@) and
miaginary (sinmyd) components do have nodes

7 The angular momentum n theee dimensions is defined as I = 7 x p. 1o oblan eqn 55, expand the vector product and wentify the
z-component

23—13



12.27 The probability density for a particle in a

definite state of angular momentum is uniform, so

there is an equal probability of finding the particie
anywhere on the ring.

17 2% The wavefunction of a particle on the
surface of a sphere must satisfy two cyclic
boundary conditions; this requirement leads to two
quantum numbers for its state of angular
momentum.

12.2) Spherical polar coordinates. For a particle
confined to the surface of a sphere, only the
colatitude, &, and the azimuth, ¢, can change.
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To locate the particle given its wavefunction in eqn 50, we form the probability density:

'.llf‘ V. = _Ci""‘p ) eimid _ e~ im¢ eimid
" \en ™) \en'™) T \@o ) \@n'” )

.1
T n

Because this probability density is independent of @, the probability of locating the particle
somewhere on the ring is also independent of ¢ (Fig. 12.27). Hence the location of the
particle is completely indefinite, and knowing the angular momentum precisely eliminates
the possibility of specifying the particle’s location. Angular momentum and angle are a pair
of complementary observables (in the sense defined in Section 11.5¢), and the inability to
specify them simultaneously with arbitrary precision is another example of the uncertainty
principle,

12.7 Rotation in three dimensjons

We now consider a particle of mass m that is free to move anywhere on the surface of a
sphere of radius r. We shall need the results of this calculation when we come to describe the
states of electrons in atoms (Chapter 13 and of rotating molecules (Chapter 16). The latter
application arises from the fact that the rotation of a solid body of moment of inertia J can
be represented by a single point of mass m rotating at a radius r, which is defined so that
I = mr®. The requirement that the wavefunction should match as a path is traced over the
poles as well as round the equator of the sphere surrounding the central point introduces a
second cyclic boundary condition and therefore a second quantum number (Fig. 12.28).

(a) The Schrédinger equation
The hamiltonian for motion in three dimensions (Table 11.1) is
" g 8 . @

H=-_-V'4+v WV

SR 0, S, T 4 60
2m aat oy? i (o)

The symbal V7 is a convenient abbreviation for the sum of the three second derivatives; it is
called the laplacian, and read either ‘del squared’ or ‘nabla squared'. For the particle
confined to a spherical surface, V = 0 wherever it is free to travel, and the radius r is a
constant. The wavefunction is therefore a function of the colatitude, 0, and the azimuth, ¢
(Fig. 12.29), and we write it (0, ¢). The Schridinger equation is

®_,

-V = Fy (61)

2m
This partial differential equation can be simplified by the separation of variables procedure
by expressing the wavefunction (for constant r) as the product

v(0,9) = ©0)0(4) (62)
where @ is a function only of § and @ is a function only of ¢. '

Justification 12.5

The laplacian in spherical polar coordinates is

29 1,
g 9 &0 L5
Tt ror ¥ rzA (o)
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Table 12.3 The spherical harmonics Y, (8, )

rm Y,
1\ 12
e ()
12
1 0 (41) cosf
T
31172 ‘
+1 F (é;) sinfeti®
5\ 2
2 0 (-I—&;) (3cos’0—1)
15% 172
+1 i(ﬂ) cos@sin Qe
1/2 '
+2 (;;; sin® et
73\ 12 i
3 0 (1_6;) {5cos’ 0 — 3cos )
213\ 112
+1 F m) (5cos?0—1)sin0 e*'
172
+2 %) sin® f cos ) e T3¢
12 )
+3 F (%) sin’ 0 e3¢

Normalization and orthogonality:

x pln
j Y:" Yy sin 0d0dd = 86,7,
o o

Triple integral

t] In
f f Y7 i Y ui V1w, 5in 0d0dp = 0
o Jo

unless m) = m; + mj and [, ',/ can form a triangle.
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where the legendrian, A%, is

5 1@ 1

= oo’ an0a0"" 50 (oa) -

Because r is constant, we can discard the part of the laplacian that involves differentiation
with respect to r, and so write the Schridinger equation as

2mE

1 2
aly=—gy

or, because / = mr?

Al = —ey E=r

85

To verify that this expression is separable, we substitute | = @®:

@ &0 © d . de
—sinf) —

sin30$+md0 =B

do
We have made use of the fact that ® and ® are each functions of one variable, so the
partial derivatives become complete derivatives. Division through by ©® and multi-
plication by sin®  give
1d*®  sin0d .

de .2
6rﬁ+—é—dgsm9d—~—ssm 0

0

The first term on the left depends only on ¢ and the remaining two terms depend only on
0. We met a similar situation when discussing a particle on a rectangular surface
(Justification 12.1) and; by the same argument, the complete equation can be separated.
Thus, if we set the first term equal to the numerical constant —m,: (a constant clearly
chosen with an eye to the future), the separated equations are

1 d*@ )
—— = —mj
D¢’ i
sinfl d

?Esin (F%rk gsin®0 = m}

The first of these two equations is the same as in Justification 12.3, so it has the same
solutions (eqn 50). The second is much more complicated to solve, but the solutions are
tabulated as the associated Legendre functions. The cyclic boundary conditions on 8
result in the introduction of a second quantum number, I, which identifies the acceptable
solutions. The presence of the quantum number m, in the second equation implies, as we
see below, that the range of acceptable values of m, is restricted by the value of /.

As indicated in the Justification, solution of the Schrédinger equation shows that the
acceptable wavefunctions are specified by two quantum numbers | and m; which are
restricted to the values

1=0,1,2,... m=01~-1,... I (65)
Note that the quantum number [ is non-negative and that, for a given value of I, there are
21 + 1 permitted values of m,. The normalized wavefunctions are usually denoted Y,m[ﬂ, ¢)
and are called the spherical harmonics. Some of the spherical harmonics are listed in
Table 12.3, and their amplitudes at different points on the spherical surface are illustrated in
Fig. 12.30.



I=3 m=0

I=4 m=0

12.30 A representation of the wavefunctions of a
particle on the surface of a sphere. Note that the
number of nodes increases as thg value of /
increases. All these wavefunctions correspond to
m; = 0; a path around the vertical z-axis of the
sphere does not cut througk any nodes,
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It also follows from the solution of the Schriddinger equation that the energy E of the
particle is restricted to the values

i
E=i(!+l)§; I=0,1,2,... (66)

We see that the energy is quantized, and that it is independent of m,. Because there are
21 + 1 different wavefunctions (one for each value of m;) that correspond to the same
energy, it follows that a level with quantum number [ is (2! + 1)-fold degenerate.

(b) Angular momentum

The energy of a rotating particle is related classically to its angular momentum J by
E = J? /21 (see Further information 4). Therefore, by comparing this equation with eqn 66,
we can deduce that, because the energy is quantized, then so too is the magnitude of the
angular momentum, and confined to the values

magnitude of angular momentum = {/(/ + 1)}'/*# =012
(67a)

We have already seen (in the context of rotation in a plane) that the angular momentum
about the z-axis is quantized, and that it has the values

z-component of angular momentum = mh m=1L1-1,...,—1 (67b)

A feature of the (real or imaginary parts of the) wavefunction ¥, (0, ¢) is that, the
higher the value of /, the larger the number of nodal lines in the wavefunction (the positions
at which s passes thruuah 0). This feature reflects the fact that higher angular momentum
implies higher kinetic energy, and therefore a more sharply buckled wavefunction. We can
also see that the states corresponding to high angular momentum around the z-axis are
those in which most nodal lines cut the equator: a high kinetic energy now arises from
motion parallel to the equator because the curvature is greatest in that direction.

Illustration

The moment of inertia of H, is 4.603 x 10~*% kgm?. It follows that

R (1.05457 x 107* Js)?

—= =1.208 x 1072}
2 2x(4.603 % 10-* kgm?)

or 1.208 zJ (where z is the little-used but useful S| prefix zepto, denoting 10~2!). This energy
corresponds to 0.727 kJ mol~". The first few rotational energy levels are therefore 0 (I = 0),
2416 z] (1 = 1), 7.248 I (I = 2), and 14.496 zJ (/ = 3). The degeneracies of these levels are
1,3, 5, and 7, respectively (from 21+ 1) and the magnitudes of the angular momentum of
“he molecule are 0, 2'/2#, 6'/2h, and (12)"/*h (from eqn 67a).

Self-test 12.7 Repeat the calculation for a deuterium molecule (same bond length,
approximately twice the mass).

[Energies smaller by a factor of two; same angular

momenta and numbers of components]

(¢) Space quantization

The result that m, is confined to the values I,/ — 1,...,—I for a given value of / means that
the component of angular momentum about the z-axis may take only 2/ + 1 values. If the
angular momentum is represented by a vector of length proportional to its magnitude (that



336
z

my = +2 m, = +1

/"J,’
—
m, =0

m; = -2

|

12.31 The permitted arientations of angular
momentum when [ = 2. We shall see soon that this
representation is too specific because the azimuthal
orientation of the vector (its angle around z) is
indeterminate.
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is, of length {I(/ + l_)}""2 units), then to represent correctly the value of the component of
angular momentum, the vector must be oriented so that its projection on the z-axis is of
length my units. In classical terms, this means that the plane of rotation of the particle can
take only a discrete range of orientations (Fig. 12.31)..The remarkable implication is that the
orientation of a rotating body is quantized. '

The quantum mechanical result that a rotating body may not take up an arbitrary
orientation with respect to some specified axis (for example, an axis defined by the direction
of an externally applied electric or magnetic field) is called space quantization. It was
confirmed by an experiment first performed by Otto Stern 3nd Walther Gerlach in 1921, who
shot a beam of silver atoms through an inhemogeneous magnetic field (Fig. 12.32). The idea
behind the experiment was that a rotating charged body behaves like a magnet and interacts
with the applied field. According to classical mechanics, because the orientation of the
angular momentum can take any value, the associated magnet can take any orientation.
Because the direction in which the magnet is driven by the inhomogeneous field depends on
the magnet's orientation, it follows that a broad band of atoms is expected to emerge from
the region where the magnetic field acts. According to quantum mechanics, however,
because the angular momentum is quantized, the associated magnet lies in a number of
discrete orientations, and so several sharp bands of atoms are expected.

In their first experiment, Stern and Gerlach appeared to confirm the classical prediction.
However, the experiment is difficult because collisions between the atoms in the beam blur
the bands. When the experiment was repeated with a beam of very low intensity (so that
collisions were less frequent), Stern and Gerlach observed discrete bands, and so confirmed
the quantum prediction”

(d) The vector model

Throughout the preceding discussion, we have referred to the z-component of angular
momentum (the component about an arbitrary axis, which is conventionally denoted z), and
have made no reference to the x- and y-components (the components about the two axes
perpendicular.to z). The reason for this omission is that, because the operators for the three
components do not commute with one another (Section 11.5¢), the uncertainty principle
forbids the simultaneous, exact specification of more than one component (unless / = 0).
Therefore, if [, is known, it is impossible to ascribe values to the other two components. It
follows that the illustration in Fig. 12.31, which is summarized in Fig. 12.33a, gives a false
impression of the state of the system, because it suggests definite values for the x- and y-
components. A better picture must reflect the impossibility of specifying /, and 1, if I, is
known.

The vector model of angular momentum uses pictures like that in Fig. 12.33b. The cones
are drawn with side {/(/+ 1)} "2 units, and represent the magnitude of the angular
momentum. Each cone has a definite projection (of m; units) on the z-axis, representing the

“system'’s precise value of /.. The I, and [, projections, however, are indefinite. The vector

{a) : b) (e

'+ {a] The experimental arrangement for the Stern-Gerlach experiment: the magnet pravides an
inhomogeneous field. (b) The classically expeeted result. (¢) The observed outcome using silver atoms.
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12.133 (a) A summary of Fig. 12.31. Hawever,
because the azimuthal angle of the vector around
the z-axis is indeterminate, a better representation
is as in [b), where each vector lies at an unspecified
azimuthal angle on ils cone.
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representing the state of angular momentum can be thought of as lying with its tip on any
point on the mouth of the cone. At this stage it should not be thought of as sweeping round
the cone; that aspect of the model will be added later when we allow the picture to convey
more information.

12.8 Spin

Stern and Gerlach observed two bands of Ag atoms in their experiment. This observation
seems to conflict with one of the predictions of quantum mechanics, because an angular
momentum { gives rise to 2/ -+ 1 orientations, which is equal to 2 only if I = 1, contrary to

_the conclusion that / must be an integer. The conflict was resolved by the suggestion that

the angular momentum they were observing was not due to orbital angular momentum (the
motion of an electron around the atomic nucleus) but arose instead from the métion of the
electron about its own axis. This intrinsic angular momentum of the electron is called its
spin. =

The spin of an electron does not have to satisfy the same boundary conditions as those for a
particle circulating around a central point, so the quantum number for spin angular
momentum is subject to different restrictions. To distinguish this spin angular momentum
from orbital angular momentum we use the quantum number s (in place of /; like /, s is a non-
negative number) and m, for the projection on the z-axis. The magnitude of the spin angular
momentum is {s(s + 1)}'"*A and the component mgh is restricted to the 25 + 1 values

my=x85—1,...,—5 . (68)

The detailed analysis of the spin of a particle is sophisticated (it is rooted in special
relativity), and shows that the property should not be taken to be an actual spinning motion.
However, that picture can be very useful when used with care. For an electron it turns out
that only one value of s is allowed, namely s = % corresponding to an angular momentum of
magnitude ;J.'m = ().866A. This spin angular momentum is an intrinsic property of the
electron, like its rest mass and its charge, and every electron has exactly the same value: the
magnitude of the spin angular momentum of an electron cannot be changed. The spin may
lie in 2s+ I =2 different orientations (Fig. 12.34). One orientation corresponds to
m, =+ (this state is often denoted @ or f); the other orientation corresponds to
m, = — | (this state is denoted f§ or |).

The outcome of the Stern-Gerlach experiment can now be explained if we suppose that
each Ag atom possesses an angular momentum due to the spin of a single electron, because
the two bands of atoms then correspond to the two spin orientations. Why the atoms
behave like this will be explained in Chapter 13.%

Like the electron, other elementary particles have characteristic, constant spin angular
momenta. For exsmblt. protons and neutrons are spin-% particles (that is, s = %] and
invariably spin with angular momentum (g)”zh. Because the masses of a proton and a
neutron are so much greater than the mass of an electron, yet they all have the same spin
angular momentum, the classical picture would be of these two particles spinning much
maore slowly than an electron. Some elementary particles have s = 1, and so have an intrinsic
anqular momentum of magnitude 2'/*h. Some mesons are spin-1 particles (as are some
atomic nuclei), but for our purposes the most impartant spin-1 particle is the photon.? We
shall see the importance of photon spin in the next chapter.

8 11 alrcady probabiy larmliar hom introductony chemisiry that the ground-state configuration of a siiver atum is [Kr]4d'Y5s', a
single unpaed electren sutside a cosed shell
9 A photon has zeto fesl mass, 2ero charge, an energy he, a linear momentum h/4 or hv/c, an intnnsic angular momentum of

2'2h, and travels at the sperd ¢



338

1414 An electran spin (s == 1) can take only two
orientations with respect to a specified axis. An
electran (top) is an electron with m, = +};a 8
clectran (bottom) is an electron with m, = -4 The
vector representing the magnitude of the spin
angular momentum lies at an angle of 55° to the z-
axis (more precisely, at arccos(1/3'/2)).

1
ms""/‘:.

/2 QUANTUM THEORY: TECHNIQUES AND APPLICATIONS

Particles with half-integral spin are called fermions and those with integral spin
(including 0) are Called bosons. Thus, electrons and protons are fermions and photons are
bosons. It is a very deep feature of nature that all the elementary particles that constitute
matter are fermions whereas the fundamental particles that are responsible for the forces
that bind fermions together are all bosons. (Photons, for example, transmit the
clectromagnetic force that binds together electrically charged particles.) Matter, therefore,
is an assembly of fermions held together by forces conveyed by bosons.

The properties of angular momentum that we have developed are set out in Table 12.4.
As mentioned there, when we use the quantum numbers [ and m; we shall mean orbital
angular momentum (circulation in space); when we use s and m, we shall mean spin angular
momentum (intrinsic angular momentum); and %hen we use j and m; we shall mean either
(or, in some contexts to be described in Chapter 13, a combmatlon of orbital and spin
momenta).

Table 12.4 Angular momentum

e . . i

The quantum numbers:
Orbital angular momentum quantum number: / = 0,1,2,...
Orbital magnetic quantum number: m; =0, +1,..., +/ ’
Spin angular momentum quantum number: 5 = i
Spin magnetic quantum number: m, = + }
In general: -
Angular momentum quantum number: ;
Magnetic quantum number: m;

The magnitude of the angular momentum is equal to {j(j + l)}"fzh and the z-component of
angular momentum is equal to m;h with the 2j + 1 values j,j — 1,...,—j.

For the total angular momentum of a composite system see Section 13.8.
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(1995).
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Exercises

12.1 (a) Calculate the energy separations in joules, kilojoules per
mole, electronvolts, and reciprocal centimetres between the levels (a)
n=2andn=1,(b)n =6andn =5 of an elertron in a box of length
1.0 nm.

12.1 (b) Calculate the energy separatinns\in joules, kilojoules per
mole, electronvolts, and reciprocal centimetres between the levels (a)
n=3andn = 1,(b)n =7and n = 6 of an electron in a box of length
1.50 nm.

12.2 (a) Caleulate the probability that a particle will be found"

between 0.49L and 0.51L in a box of length L when it has (a) n = |,
(b) n = 2. Take the wavefunction to be a constant in this range.

12.2 (b) Calculate the probability that a particle will be found
betwgen 0.65L and 0.67L in a box of length £, when it has (a) n = 1,
(b) n = 2. Take the wavefunction to be a constant in this range.

12.3 (a) Calculate the expectation values of p and p?* for a particle in
the state n = 1 in a square-well potential. '

12.3 (b) Calculate the expectation values of p and p* for a particle in
the state n = 2 in a square-well potential.
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Texts and sovurces of data and information

P.W. Atkins, Quanta: a handbook of concepts. Oxford
University Press (1991).

P.W. Atkins and R.S. Friedman, Molecular quantum mechanics.
Oxford University Press (1997).

P.J.E. Peebles, Quantum mechanics. Princeton University Press,
Princeton (1992).

G.C. Schatz and M.A. Ratner, Quantum mechanics in chemistry.
Ellis Horwood/Prentice-Hall, Hemel Hempstead (1993).

J.P. Lowe, Quantum chemistry. Academic Press, San Diego
(1993).

R.E. Christofferson, Basic principles and techniques of
molecular quantum mechanics. Springer, New York (1989).

D.A. McQuarrie, Quantum chemistry. University Science Books,
Mill Valley (1983).

L Palling and E.B. Wilson, Introduction to quantum mechanics.
McGraw-Hill, New York (1935).

12.4 (a) What are the most likely locations of a particle in a box of
length L in the state n = 3?

12.4 (b) What are the most likely locations of a particle in a box of
length L in the state n = 52

12.5 (a) Consider a particle in a cubic box. What is the degeneracy of
the level that has an energy three times that of the lowest level?

12.5 (b) Consider a particle in a cubic box. What is the degeneracy of
the level that has an energy 4! times that of the lowest level?

12.6 (a) Calculate the percentage change in a given energy level of a
particle in a cubic box when the length of the edge of the cube is
decreased by 10 per cent in each direction.

12.6 (b) A nitrogen molecule is confined in a cubic box of volume
1.00 m*. Assuming that the molecule has an energy equal to 34T at
T =300 K, what is the value of n= (n? +n§ +n2)'"? for this
particle? What is the energy separation between the levels n and
n+ 17 What is its de Broglie wavelength? Would it be appropriate to
describe this particle as classical?
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12.7 (a) Calculate the zero-point energy of a harmonic oscillator
consisting of a particle of mass 2.33 x 1072 kg and force constant
155 Nm ™',

12.7 (b) Caiculate the zero-point energy of a harmonic oscillator
consisting of a particle of mass 5.16 x 10 2 kg and force constant
285 Nm~!.

12.8 (a) For a harmonic oscillator consisting of a particle of mass
1.33x 107 kg, the difference in adjacent energy levels is
4.82 x 107" J. Calculate the force constant of the oscillator.

12.8 (b) For a harmonic oscillator consisting of a particle of mass
2.88 x 1072 kg, the difference in adjacent energy levels is 3.17 zJ.
Calculate the force constant of the oscillator.

12.9 (a) Calculate the wavelength of a photon needed to excite a
transition between neighbouring energy levels of a harmonic
oscillator of mass equal to that of a proton (1.0078 u) and force
constant 855 Nm~',

12.9 (b) Calculate the wavelength of a photon needed to excite a
transition between neighbouring energy levels of a harmonic
oscillator of mass equal to that of an oxygen atom (15.9949 u) and
force constant 544 Nm~'.

12.10 (a) Refer to Exercise 12.9a and calculate the wavelength that
would result from doubling the mass of the particle.

12.10 (b) Refer to Exercise 12.9b and calculate the wavelength that
would result from doubling the mass of the particle.

12.11 (a) Calculate the minimum excitation energies of (a) a
pendulum of length 1.0 m on the surface of the Earth, (b) the
balance-wheel of a clockwork watch (12 = 5 [z).

12.11 (b) Calzulate the minimum excitation energies of (a) the
33 kHz quartz crystal of a watch, (b) the bond between two O atoms
in 0y, for which k = 1177 Nm~'.

Problems

Numerical problems

12.1 Calculate the separation between the two lowest levels for an
0, molecule in a ore-dimensional container of length 5.0 cm. At
what value of n does the energy of the molecule reach AT at 300 K,
and what is the separation of this level from the one immediately
below?

12.2 To a crude first approximation, a = electron in a linear polyene
may be considered to be a particle in a one-dimensional box. The

polyene fi-carotene contains 22 conjugated C atoms, and the average.

intérnuclear distance is 140 pm. Each state up to s = 11 is occupied
by two electrons, Calculate (a) the separation in energy between the
ground state and the first excited state in which one electron occupies
the state with n = 12, (b) the frequency of the radiation required to
produce a transition between these two states, and (c) the total
probability of finding an electron between C atoms 11 and 12 in the
ground state of the 22-electron molecule.

QUANTUM THEORY: TECHNIQUES AND APPLICATIONS

12.12 (a) Confirm that the wavefunction for the ground state of a
one-dimensional linear harmonic oscillator given in Table 12.1 is a
solution of the Schrodinger equation for the oscillator and that its
encrgy is 4 fuo.

©12.12 (b) Confirm that the wavefunction for the first excited state

of a one-dimensional linear harmonic oscillator given in Table 12.1 is
a solution of the Schriddinger equation for the oscillator and that its
energy is $he.

12.13 (a) Assuming that the vibrations of a *°Cl, molecule are
equivalent to those of a harmonic oscillator with a force constant
k =329 Nm~', what is the zero-point énergy of vibration of this
mnlecule? The mass of a **Cl atom is 34.9688 u.

12.13 (h) Assuming that the vibrations of a '*N, molecule are
equivalent to those of a harmonic oscillator with a force constant
k= 22938 Nm ', what is the zero-point energy of vibration of this
molecule? The mass of a "*N atom is 14.0031 u.

12.14 (a) The wavefunction, y(¢), for the motion of a particle in a
ring is of the form = Ne*™?®_ Determine the normalization constant,
N.

12.14 (b) Confirm that wavefunctions for a particle in a ring' with
different values of the quantum number m; are orthogonal.

12.15 (a) A point mass rotates in a circle with [ = 1. Calculate the
magnitude of its angular momentum and the possible projections of
the angular momentum on an arbitrary axis.

12.15 (b) A point mass rotates in a'circle with [ = 2. Calculate the
magnitude of its angular momentum and the possible projections of

- the angular momentum on an arbitrary axis. -

12.16 (a) Draw scale vector diagrams to represent the states
(a) s = %, mg = -+ %, Y l=1,m=+1!=2m=0.

12.16 (b) Draw the vector diagram for all the permitted states of a
particle with [ = 6.

12.3 The mass to use in the expression for the vibrational frequency
of a diatomic molecule is the effective mass y = mymy /(my + my),
where m, and my dre the masses of the individual atoms. The
following data on the infrared absorption wavenumbers (in cm™!) of
molecules is taken from Spectra of diatomic molecules, G. Herzberg,
van Nostrand (1950): '

H"'Br HI Co NO
2650 2310 2170 1904

H**(l
2090

Calculate the force constants of the bonds and arrange them in order
of increasing stitfness.

12.4 The rotation of an 'H'?’I molecule can be pictured as the orbital
motion of an H atom at a distance 160 pm from a stationary | atom.
(This is quite a good picture; to be precise, both atoms rotate around
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their cammon centre of mass, which is very close to the | nucleus.)
Suppose that the molecule rotates only in a plane. Calculate the
energy needed to excite the molecule into rotation. What, apart from
0, is the minimum angular momentum of the molecule?

12.5 Calculate the energies of the first four rotational levels of "H'?’|
free to rotate in three dimensions, using for its moment of inertia
I'= pR?, with gt = mym, /(my + m;) and R = 160 pm.

Theoretical problems

12.6 Set up the Schradinger equation for a particle of mass m in a
three-dimensional square well with sides L,, L,, and L,. Show that
the wavefunction is defined by three quantum numbers and that the

Schridinger equation is separable. Find the energy levels, and.

specialize the result to a cubic box of side £..

12.7 The wavefunction inside a long barrier of height V is
Y = Ne ™. Calculate (a) the probability that the particle is inside
the barrier and (b) the average penetration depth of the particle into
the barrier.

12.8 Confirm that a function of the form e~#* is a solution of the
Schradinger equation for the ground state of a harmonic oscillator
and find an expression fnr £ in terms of the mass and force constant
of the oscillator.

12.9 Calculate the mean kinetic energy of a harmonic oscillator using
the relations in Table 12.1.

12.10 Caleulate the values of (x*) and (x*) for a harmonic oscillator

using the relations in Table 12.1.

12 11 Dctcrmine the wvalues of Ax={{) - ()*}'? and

= {{p") }'/* for (a) a particle in a box of length £ and
[b] a harmomc osm[lator Discuss these quantities with reference to
the uncertainty principle.

12.12 We shall see in Chapter 16 that the intensities of spectroscopic
transitions between the vibrational states of a molecule are
proportional to the square of the integral [y, x¢, dv over all
space. Use the relations between Hermite polynomials given in
Table 12.1 to show that the only permitted transitions are those for
which ¢ = v+ 1 and evaluate the integral in these cases.

12.13 Use the virial theorem to obtain an expression for the relation
between the mean kinetic and potential energies of an electron in a
hydrogen atom.

12.14 Evaluate the z-component of the angular momentum and thie
kinetic energy of a particle on a ring that is deseribed by the
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(unnormalized) wavefunctions (a) e, (b) =24, (c) cos, and (d)
(cos ge' + (sin g)e®,

12.15 Confirm that the spherical harmonics (a) ¥,,4, [b) Y3 _,, and (c)
¥; ;3 satisfy the Schrddinger equation for a particle free to rotate in
three dimensions, and find its energy and angular momentum in each
case,

12.16 Confirm that ¥, is normalized to 1. (The integration
required is over the surface of a sphere.)

12.17 Derive an expression in terms of [ and m, far the half-angle of
the apex of the cone used to represent an angular momentum
according to the vector model. Evaluate the expression for an x spin.
Show that the minimum possible angle approaches 0 as | — oo,

12.18 Show that the function f = cosax coshycoscz is an
cigenfunction of V*, and determine its eigenvalue.

12.19 Derive (in Cartesian coordinates) the quantum mechanical
operators for the three components cf angular momentum starting
from the classical definition of angular momentum, f = rxp. Show
that any two of the components do not mutually commute, and find
their commutator.

12.20 Starting from the definition I, =xp, —
spherical polar coordinates f, = -ma/a¢

¥p,. prove that in

Additicnal problems supplied by Carmen Giunta
antd Charles Trapp

12.21 Scanning tunnelling microscopy is -an imaging technique
based on detecting electrons tunnelling across the vacuum between a
conducting sample and a conducting probe tip. The tunnelling current
is very sensitive to the distance between the tip and the sample, so
sensitive that imaging of atoms has been accomplished through this
technique. To get an idea of the distance dependence of this
tunnelling current, suppose that the wavefunction of the electron in
the gap between samplc and tip is given by = Be™™, where
K= {2m (V — E)/h}'7*; take V — E to be 2.0 eV. By what factor
would the current drop if thie probe is moved from 0.50 nm to
0.60 nm from the surface?

12.22 A particle is confined to move in a one-dimensional box of
length L. (a) If the particle is classical, show that the average value of
xis equal to 4L, and that the root mean square value is £./3'/2, (b)
Show that, for lasge values of n, a quantum particle approaches the
classical values. This result is an example of a very general principle
called the correspondence principle, which states that, for very large
values of the quantum numbers, quantum mechanics approaches
classical mechanics. ’
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Atomic structure and
atomic spectra

The principles of guantum mevhanics inteoduced in the preceding fwa chapters pre now used
to describe the internal structures of atoms. We see what expenimentol information is
available from a study of the spectrum ol atomic hydrogen. Then we sel up the Schrodinger
equation for an clectron in an atom ond separate if wio angular and rodial ports. The
.wavefunctions obtoined are the ‘atomic orbitals’ of hydrogee aloms Next, we use these
hydrogenic atomic orbitals to describe the structares of many-clectron utoms. In conjunc-
tion with the Pouli exclusion principle, we account for the periodicity of atomic propertics,
The spectra of many-electron atoms are more compheated than thuse uf hydrogen, but the
same principles apply. We see in the closing sections of the chapter how such spectra are
described in terms of term symbiols, the ariyin of the finer deils of their appeorance, and the
effects on them of an applied mognetic field.

In this chapter we see how to use quantum mechanics to describe the electronic structure
of an atom, the arrangement of electrons around a nucleus. The concepts we meet are of
central importance for understanding the structures and reactions of atoms and molecules,
and hence have extensive chemical applications. We need to distinguish between two types
of atoms. A hydrogenic atom is a one-electron atom or ion of general atomic number Z;
examples of hydrogenic atoms are H, He*, Li**, and U*'*. A many-electron atom is an atom
or ion with more than one electron; examples include all neutral atoms other than H. So
even He, with only two electrons, is a many-electron atom. Hydrogenic atoms are important
because their Schridinger equations can be solved exactly. They also provide a set of
concepts that are used to describe the structures of many-electron atoms and, as we shall
see in the next chapter, the structures of molecules too.

One of the principal experimental techniques for determining the electronic structures of
atoms is spectroscopy, the detection and analysis of the electromagnetic radiation absorbed
or emitted by a species. The record of spectral intensity as a function of frequency (),
wavelength (4), or wavenumber ()" of the radiation emitted or absorbed by an atom or a

1 The relation between these quantities was described in the Introduction: v = ¢/ & = 1 /A = v/c.
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13.1 The spectrum of atomic hydrogen. Bath the
observed spectrum and its resolution into overlapping
series are shown, Note that the Balmer series lies in
the visible region.

i1l ATOMIC STRUCTURE AND ATOMIC SPECTRA

molecule is called its spectrum (from the Greek word for appearance; plural ‘'spectrs’). The
spectrum of an atom consists of a series of ‘lines’, or sharply defined emission or absorption
peaks.

The structure and speetra of hydrogenic atoms

When an electric discharge is passed through gaseous hydrogen, the H, molecules are
dissociated and the energetically excited H atoms that are produced emit light of discrete
frequencies (Fig. 13.1). The first important contribution to the interpretation of this
spectrum was made by the Swiss schoolteacher Johann Balmer, who pointed out in 1885
that (in modern terms) the wavenumbers of the tines in the visible region fit the expression

1
I ;=T -
22 gt !
The transitions this formula describes are now called the Baliner series. When further lines
were discovered in the ultraviolet, giving the Lyman series, and in the infrared, the Paschen
serics, the Swedish spectroscopist Johannes Rydberg neted (in 1890) that all of them could

be fitted to the expression

| |

5= 73.,,( - ) Ry = 109677 cm ™! (1)
”] fii,:

with n, = | (the Lyman series), 2 (the Balmer series), and 3 (the Paschen series), and that in

each case n, = n -+ 1,0, -+ 2,.... The constant Ry, is now called the Rydberg constant for

the hydrogen atom.

lllustration

The transition with the longest wavelength (lowest wavenumber) in the Lyman series
(n, = 1} is the one with n, = 2; its wavenumber is

1
b= R.,(F—_%) = (109677 cm™') x 3 = 82258 cm™!

Its wavelength is therefore

l |

_ _ 1=
g T T e 1.2157% 107" m

A=

or 121.57 nm, in the vacuum ultraviolet region of the spectrum.

B -
Analysis -Paschen
I- Brackett
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13,2 Energy is conserved when a photon ‘s emitted,

. 50 the difference in energy of the atom before and
after the emission event must be equal to the
energy of the photon emitted.
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Seff-test 110 Caleulate the shortest wavelength transition in the Paschen series.
[821 nm]
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The form of eqn 1 strongly suggests that the wavenumber of each spectral line can be
written as the difference of two terms, each of the form

R

3
n

(2)

The Ritz combination principle states that the wavenumber of any spectral line is the

difference between two terms. We say that two terms T, and T, 'combine’ to produce a
spectral line of wavenumber -

p=T-T (3)

The Ritz combination principle applics to all types of atoms and molecules, but only for
hydrogenic atoms do the terms have the simple form (constant)/n®. The Ritz combination
principle is readily explained in terms of photons and the conservation of energy. Thus, a
spectroscopic line arises from the transition of an atom from one energy level (a term) to
another (anuther term) with the emission of the difference in energy as a photon (Fig. 13.2).
This interpretation leads to the Bohr frequency condition, which states that, when an atom
changes its energy by AL, the difference is carried away as a photon of frequency v, where

AE = hv (4)

Thus, if each spectroscopic term represents an energy hcT, the difference in energy when the
atom undergoes a transition between two terms is AE = hcT| — heTs, and the frequency of
the light emitted is given by v = ¢T| — ¢T,. This expression rearranges into the Ritz formula
when expressed in terms of wavenumbers (on division by ¢).

Because spectroscopic gbservations show that electromagnetic radiation is absorbed and
emitted by atoms only at certain wavenumbers, it follows that only certain energy states of
atoms are permitted, Our tasks in the first part of this chapter are to determine the origin of
this energy quantization, to find the permitted energy levels, and to account for the value
of Ry.

13.1 the structure of hiydrogenic atoms
The Coulomb potential energy of an electrun in a hydrogenic atom of alomic number Z (and
nuclear charge Ze) is
Ze? .
V== (5)

dmeyr

where 1 is the distance of the electron from the nucleus and &, is the vacuum permittivity.
The hamiltonian for the electron and a nucleus of mass my, is therefore’

H = EK@!:-:Lmn + EK,nurlcuu i k"'
3 2 2 6

__ K Mo Ze (6)
2m, *

The subscripts on V* indicate differentiation with respect to the electron or nuclear
coordinates.
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13.3 The coordinates used for discussing the
separation of the relative motion of two particles
from the motion of the centre of mass.

{3.1 ATOMIC STRUCTURE AND ATOMIC SPECTRA

(a) The separation of internal motica

Physical intuition suggests that the full Schriidinger equation ought to separate into two
equations, one for the motion of the atom as a whole through space and the other for the
motion of the electron relative to the nucleus. We have already solved the first of these
equations, because it corresponds to the free translational motion of a particle of mass '
m = m, + nmy (Section 11.5). The initial strategy of the calculation is therefore to separate
the relative motion of the electron and the nucleus from the motion of the atom as a whole.
As we show in the following Justification, the resulting expression for the hamiltonian for
the internal motion of the electron relative to the nucleus is

1 |

2 7,2
Hewragput, L b b )
2u dmegr pom, my

The quantity p is called the reduced mass. The reduced mass is very similar to the
electron mass because my, the mass of the nucleus, is much la.yer than the mass of an
electron, so 1/u=1/m.. In all except the most precise work, the reduced mass can be
replaced by m,.

Justificatign 11,1

Consider a one-dimensional system in which the potential energy depends only on the
separation of the two particles; the total energy is

2 2
4 P
E=—+-—"+V
2m1+2m2

where p; = mx, and p, = myx,, the dot signifying differentiation with respect to time.
The centre of mass (Fig. 13.3) is located at
n i
X=— —= =
m.r]+mrz m=m + my
and the separation of the particles is x = x, — x,. It follows that
m
X =X+(Tl)x n=X- (——'—)x
m m

The linear momenta of the particles can be expressed in terms of x and X:

. mm
e ( 1 2)'
P =mx =mX + m -

Py = Xy = mpX — ( : z)x
m

Then it follows that
2 2
P P L O
e Y G T o
m,  2m, 2

where g is given in eqn 7. By writing P = mX for the linear momentum of the systcl:n asa
whole and defining p as ux, we find

The corresponding hamiltonian (generalized to three dimensions) is therefore
n h?
o G v - L
2 Vem =3,V +V

where the first term differentiates with respect to the centre of mass coordinates and the
second with respect to the relative coordinates.
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4
Now we write the overall wavefunction as the product ¢, = V. ¥, where the first
factor is a function of only the centre of mass coordinates and the second is a function of
only the relative coordinates. The overall Schrodinger equation, H, .. = Eiqa¥ o then
separates by the argument that we have used twice already:;
"
) i;, ch,m“t(’um. = Ec.m.!pc.m.

Ll Vi + Vi = By
2u -

with Eyy = ., +E.

From now on we consider only the internal, relative coordinates. The Schridinger
equation, Hy = Ey, is
.h: Ze?

— Yy =
2 v dnegr

Y = E¢ (8)

Because the potential energy is centrosymmetric (independent of angle), we can suspect
that the equation is separable into radial and angular components. Therefore, we write

W(r,0,¢) = R(r)¥ (0, ) 9)

and examine whether the Schridinger equation can be separated into two equations, one
for R and the other for Y. As shown in the Justification below, the equation does separate,
and the equations we have to solve are

AYY = —I(1+ )Y (10)
n (d*R  2dR '
i@t 2T * Vel = ER o

where

Zet l(l+ )

Wi =
elf Ameyr 2ur?

(12)

Justification 13.2

The laplacian in three dimensions is given in eqn 12.63. It follows that the Schrédinger
equation in eqn 8 is

it 2d 1,

—— =ttt RY + VRY = ERY

2;1(ar2+rdr+r2}\) ¥
Because R depends only on r and Y depends only on the angular coordinates, this equation
becomes
s (Ydffa 2¥dR R

- + =+
2u

it —A’Y ) + VRY = ERY
dr® rdr r? ) %

If we multiply through by r2/RY, we obtain

W (:,d?;e
r

—m F-i—Zr

dR H?
— ) + Vit = —A%Y = E?
dr 2uY
At this point we employ the usual argument. The term in Y is the only one that depends on
the angular variables, so it must be a constant. When we write this constant as
PRI(1 4+ 1)/2u, eqn 12 follows immediately.
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Effective potential energy, Vey

Radius, r

13.4 The effective potential energy of an electron in
the hydrogen atom. When the electron has zero
orbital angular momentum, the effective potential
energy is the Coulombic potential energy. When the
clectron has nonzero orbital angular momentum, the
centrifugal effect gives rise to a positive contribution
which is very large close to the nucleus. We can
expect the ! = 0 and [ # 0 wavefunctions to be very
different near the nucleus.

1+i ATOMIC STRUCTURE AND ATOMIC SPECTRA

Equation 10 is the same as the Schridinger equation for a particle free to move round a
central point, and we considered it in Section 12.7. The solutions are the spherical harmonics
(Table 12.3), and are specified by the quantum numbers { and m,. We consider them in more
detail shortly. Equation 11 is called the radial wave Equatiun. The radial wave equation is
the description of the motion of a particle of mass u in a one-dimensional region where the
potential energy is V.

(b) The radial solutions

We can anticipate some features of the shapes of the radial wavefunctions by analysing the
shape of V.. The first term in eqn 12 is the Coulomb potential energy of the electron in the
field of the nucleus. The second term stems from the centrifugal force that arises from the
angular momentum of the electson around the nucleus. When ! = 0, the electron has no
angular momentum, and the effective potential energy is purely Coulombic and attractive at
all radii (Fig. 13.4). When | # (), the centrifugal term gives a positive contribution to the
effective potential energy. When the electron is close to the nucleus (r=0), this repulsive
term, which is proportional to 1/r?, dominates the attractive Coulombic component, which
is proportional to 1/r, and the net effect is an effective repulsion of the electron from the
nucleus. The two effective potential energies, the one for / = 0 and the one for [ # 0, are
qualitatively very differcnt close to the nucleus; however, they are similar at large distances
because the centrifugal contribution tends to zero more rapidly than the Coulombic
contribution. Therefore, we can expect the solutions with [ =0 and /5 0 to be quite
different near the nucleus but similar far away from it.

We shall not go through the technical steps of solving the radial equation (see Further
reading). It is sufficient to know that acceptable solutions can be found only for integral
values of a quantum number n, and that the allowed energies are

7 e
E,=————- 13
b 2n2edhn? (13)
with a="1.2,:..
The radial wave equation depends on /, and the radial wavefunctions, which depend on
the values of both n and / (but not on my), all have the form

R(r) = (polynomial in r) x (decaying exponential in r) (14)

These functions are most simply written in terms of the dimensionless quantity p (rho),
where

2Zr mu:(,h2
) = — Iy = ——— 15
f a, o m.e’ {13

The Bohr radius, gy, has the value 52.9177 pm; it is so called because the same guantity
appeared in Bohr's early model of the hydrogen atom as the radius of the electron orbit of
lowest energy. Specifically, the radial wavefunctions for an electron with quantum numbers
n and [ are the (real) functions

!

Rn.n’(r) = Nn.t(ti) l‘nJe R {Iﬁ)

24—B
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where L is a polynomial in p called an associated Laguerre polynomial. Expressions for some
radial wavefunctions are given in Table 13.1 and their appearance is illustrated in Fig. 13.5.
Note that, because R is proportional to o/, all radial wavefunctions are zero at the nucleus
unless [ = 0. ’

Table 13 * Hydrogenic radial wavefunctions

Orbital n ! R.;
Is 1 ] 2 (aﬁ) lﬂe -p/2
o
1 fz\"
25 2 0 @ﬁ (n;') m(z - { ple-elt
2p 2 1 ) [6]}”2 (,E) )npe‘ﬁf )
' —, [ = -»
3y 3 0 9(3)], 5 (""Z) ,,(,6 2p+§pt)e
ip 3 1 ;'—(‘Tl)rﬁ (ﬂ_oz) ],54 - ip)pe"ﬂ
u 3 ‘2 T (;) R

The full wavefunction is ¢ = RY, where ¥ is given in Table 12.3. In the table, p = 22Zr/a,.
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L1H
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3,$ The radial wavefunctions of the first few states of hydrogenic atoms of atomic number Z. Note
that the s orbitals have a nonzero and finite value at the nucleus. The horizontal scales are different in
each case: orbitals with high principal quantum numbers are relatively distant from the nucleus.
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IHustration

To calculate the probability density for a Is-clectron at the nucleus, we set n=1,1=0,
my; = 0 and evaluate  at r = 0:

=z 3/2 1 1/2
¢|.n.l)(0-‘}»¢) e Rl,rl(o}yli,0{0»¢) = 2(“_) (H)

0

-

The probability density is therefore

Zl
¥i00(0,0.¢) =
l?
which evaluates to 2.15x 10°® pm~ when Z = 1. . .

Self-test 13.2 Evaluate the probability density of the electron at the nucleus for a 2s-
electron.

[(Z/ay)’ /87)

13.2 Atomie okbitals and their energies

An atomic orbital is a one-electron wavefunction for an electron in an atom. Each
hydrogenic atomic orbital is defined by three quantum numbers (Table 13.2), designated n, /,
and m;. When an electron is described by one of these wavefunctions, we say that it
‘occupies’ that orbital. We could go on to say that the electron is in the state |n, /,m;). For
instance, an electron described by the wavefunction i, o, and in the state |1,0,0) is said to
occupy the orbital withn =1,/ =0, and m, = 0.

One quantum number, , is called the principal quantum number; it can take the values
n=1,2,3,... and determines the energy of the electron:

An electron in an orbital with quantum number n has an energy given by
egn 13.

The two other quantum numbers, [ and m, come from the angular solutions, and specify the
angular momentum of the electron around the nucleus:

An electron in an orbital with quantum number [ has an angular momentum
of magnitude {{(/+1)}"/2#, with 1=0,1,2,...,n—1.
An electron in an orbital with quantum number m; has a z-component of
angular momentum mh, with m;=0,x1,£2,... 21

Note how the value of the principal quantum number, , controls the maximum value of /,
and how [ in turn controls the range of values of m;.

To define the state of an clectron in a hydrogenic atom fully we need to specify not onlv
the orbital it occupies but also its spin state. We saw in Section 12.8 that an electron
possesses an intrinsic angular momentum that is described by the two quantum numbers s
and m, (the analogues of { and m,). The value of s is fixed at  for an :icctron. so we do not
need to consider it further at this stage. However, m, may be either + or — 3 1, and to specify
the electron's state in a hydrogenic atom we need to specify which of these values describes
it. It follows that, to specify the state of an electron in a hydrogenic atom, we need to give
the values of four quantum numbers, namely n, 1, m,, and m,.
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13.6 The energy levels of a hydrogen atom. The
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Table 13.2 Hydrogenic atoms

The wavefunctions of hydrogenic atoms depend on three quantum numbers:
Principal quantum number: n = 1,2,3,...
Angular momentum quantum number: / = 0,1,2,...,n—1

Magnetic quantum number: m; = 1,1 —1,1=2,..., =1
The energy is related to n by
heR Zuet
Ey=—Tgeom heRuom =55 hant

The magnitude of the orbital angular momentum of the electron {/(f + l)}mh and its
component on an arbitrary axis is mh. Each energy level is n*-fold degenerate.
The wavefunctions are products of radial and angular components:

¥ =R(r)Y(0,¢)
The angular wavefunctions ¥ are the spherical harmonics (Table 12.3) and the radial
wavefunctions R are the normalized associated Laguerre palynomials multiplied by an

exponential factor (Table 13.1).
The selection rules for spectroscopic transitions are

Am;=0,+1 Anunrestricted Al= +1

(a) The energy levels

The energy levels predicted by eqn 13 are depicted in Fig. 13.6. The energies, and also the
separation of neighbouring levels, are proportional to Z2, so the levels are four times as
widely apart (and the ground state four times deeper in energy) in He* (Z = 2) thar in H
(Z = 1). All the energies given by eqn 13 are negative, They refer to the bound states of the
atom, in which the energy of the atom is lower than that of the infinitely separated,
stationary electron and nucleus (which corresponds to the zero of energy). There are also
solutions of the Schradinger equation with positive energies. These solutions correspond to
unbound states of the electron, the states to which an electron is raised when it is ejected
from the atom by a high-energy collision or photon. The energies of the unbound electron
are not quantized and form the continuum states of the atom.

Equation 13 is consistent with the spectroscopic result summarized by eqn 1, and we can
identify the Rydberg constant for hydrogen (Z = 1) by writing

K]
P Hye
hRy=—"5= 17
HT men (t7)
where ju is the reduced mass for hydrogen. The Rydberg constant itself, R, is defined by the
same expression except for the replacement of u by the mass of an electron, m,:
4
Hu m.e
Ry=—"R~R = —— 18
H e R Bezhic L

Insertion of the values of the fundamental constants into the expression for Ry, gives almost
exact agreement with the experimental value. The only discrepancies arise from the neglect
of relativistic corrections, which the non-relativistic Schrdinger equation ignores.

(b) lonization energies

The ionization energy, /, of an element is the minimum energy required to remove an
electron from the ground state, the state of lowest energy, of one of its atoms. The ground
state of hydrogen is the state with n = I, which has energy

E, = —hcRy
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13.7 The plot of the data in Example 13.1 used to

determine the ionization energy of an atom (in th
case, of H).

13.2 ATOMIC STRUCTURE AND ATOMIC SPECTRA

The atom is ionized when the electron has been excited to the level corresponding to n = ©
(see Fig. 13.6). Therefore, the energy that must be supplied is

1= heRy _ (19)

The value of / is 2.179 al (a, for atto, is the prefix that denotes 10~'*), which corresponds to
13.60 cV.

Example 13,1 Measuring an ionzation energy spectroscopically

The spectrum of  atomic hydrogen shows lines at 82259,97492, 102824,
105292, 106632, 107 440 cm ™", Determine (a) the ionization energy of the lower state,
(b) the value of the Rydberg constapt.

Method The spectroscopic determination of ionization energics depends on the
determination of the series limit, the wavenumber at which the series terminates and
becomes a continuum. If the upper state lies at an energy —hcRy/n?, then, when the atom
makes a transition to £, a photon of wavenumber

- R
V== -’;‘:! . E]uutr/h(-
is emitted. However, because / = —£, ., it follows that
v =1/hc - E;—'
n

A plot of the wavenumbers against 1/n* should give a straight line of slope —~R,, and
intercept [ /hc. Use a computer (or a calculator) to make a least-squares fit of the data to get
a result that reflects the precision of the data.

Answer The wavenumbers are plotted against 1/n? in Fig. 13.7. The (least-squares)
intercept lies at 109679 cm~', so the ionization energy is 2.1788 aJ (1312.1 kI mol~!). The
slope is, in this instance, numerically the same, so Ry = 109679 cm™'.

Comment A similar extrapolation procedure can be used for many-electron atoms (see
Section 13.6).

Self-test 13.3 The spectrum of atomic deuterium shows lines at 15238, 20571,

23039,24 380 cm~'. Determine (a) the ionization energy of the lower state, (b) the

ionization energy of the ground state, (c] the mass of the deuteron (by expressing the

Rydberg constant in terms of the reduced mass of the electron and the deuteron, and
solving for the mass of the deuteron).

((a) 328.1 kImol~', (b) 1312.4 kI mol ™!,

(c) 2.8 x 10~% kg, a result very sensitive to Ry.]

(c) Shells and subshells

All the orbitals of a given value of n are said to form a single shell of the atom. In a
hydrogenic atom, all orbitals of given », and therefore belonging to the same shell, have the
same energy. It is common to refer to successive shells by letters:

n= 1 2 3 4
K L M N

Thus, all the orbitals of the shell with # = 2 form the L shell of the atom, and so on.
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11.8 The energy levels of the hydrogen atom 13.9 The organization of orbitals into subshells

showing the subshells and (in square brackets) the  (characterized by /) and shells (characterized by n).
numbers of orbitals in each subshell. In hydrogenic

atoms, all orbitals of a given shell have the same

energy.

The orbitals with the same value of n but different values of / are said to form a subshell
of a given shell. These subshells are generally referred to by letters:

iI= 0 1 2 3 4 5 6
p d f g ki

The letters then run alphabetically (j is not used). Figure 13.8 is a version of Fig. 13.6 which
shows the subshells explicitly. Because ! can range from 0 to n — 1, giving # values in all, it
follows that there are n subshells of a shell with principal quantum number n. Thus, when
n = 1, there is only one subshell, the one with [ = 0.

When n = 2, there are two subshells, the 2s subshell (with / = 0) and the 2p subshell
(with 1 = 1). When n = 1 there is only one subshell, that with [ = 0, and that subshell
contains only one orbital, with a1, = 0 (the only value of m; permitted). When n = 2, there
are four orbitals, one in the s subshell with / = 0 and m; = 0, and three in the / = 1 subshell
with m, = +1,0,—1. When n = 3 there are nine orbitals (one with / = 0, three with / = 1,
and five with [ = 2). The organization of orbitals in the shells is summarized in Fig. 13.9. In
general, the number of orbitals in a shell of principal quantum number n is n?, s0in a
hydrogenic atom each shell is n?-fold degenerate.
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13.10 The balance of kinetic and potential energies
that accounts for the structure of the ground state
of hydrogen (and similar atoms). (a) The sharply
curved but localized orbital has high mean kinetic
energy, but low mean potential energy; (b) the
mean kinetic energy is low, but the potential energy
is not very favourable; (c) the compromise of
moderate kinetic energy and moderately favourable
potential energy.

13.0 ATOMIC STRUCTURE AND ATOMIC SPECTRA

(d) s orbitals .

The orbital occupied in the ground state is the one with n = 1 [and therefore with / = 0 and
m, = 0, the only possible values of these quantum numbers when n = 1). From Table 13.1
we can write (for Z = 1):

W (20)

12
(rmé) /

This wavefunction is independent of angle and has the same value at all points of constant
radius, that is, the 1s orbital is spherically symmetrical. The wavefunction decays
exponentially from a maximum value of 1/(ra}})'"” at the nucleus (at r = 0). It follows
that the most probable point at which the electron will be found is at the nucleus itself.

We can understand the general form of the ground-state wavefunction by considering
the contributions of the potential and kinetic energies to the total energy of the atom. The
closer the electron is to the nucleus on average, the lower its average potential energy, This
dependence suggests that the lowest potential energy should be obtained with a sharply
peaked wavefunction that has a large amplitude at the nucleus and is zero everywhere else
(Fig. 13.10). However, this shape implies a high kinetic energy, because such a wavefunction
has a very high average curvature. The electron would have very low kinetic energy if its
wavefunction had only a very low average curvature. However, such a wavefunction spreads
to great distances from the nucleus and the average potential energy of the electron will be
high. The actual ground-state wavefunction is a compromise between these two extremes:
the wavefunction spreads away from the nucleus (so the expectation value of the potential
energy is not as low as in the first example, but nor is it very high) and has a reasonably low
average curvature (so the expectation of the kinetic energy is not very low, but nor is it as
high as in the first example). ’

One way of depicting the probability density of the electron is to represent M] by
density of shading (Fig. 13.11). A simpler procedure is to show only the boundary surface,
the surface that captures about 90 per cent of the electron probability. For the 15 orbital, the
boundary surface is a sphere centred on the nucleus (Fig. 13.12).

All s orbitals are spherically symmetric, but differ in the number of radial nodes. For
instance, the 2s orbital has radial nodes where the polynomial factor (Table 13.1) is equal to
zero:

9
2- g = 0at p = 4, which implies that r = —'g—@

(remember that p = 27r/a,). Hence, the 2s orbital of a hydrogenic atom with atomic
number Z has a radial node at 2a,,/Z (see Fig. 13.5). Similarly, the 3s orbital has two nodes
which are found by solving

6-2p+ () =0

One radial node is at 1.90a,/Z and the other is at 7.10a,/Z (see Fig. 13.5).

The energies of thes orbitals increase (the electron becomes less tightly bound) as n
increases because the average distance of the electron from the nucleus increases, By the
virial theorem with b = —1 (Section 12.5b, eqn 12.45), (Ey) = ~ 1 (V), so, even though the

average kinetic energy decreases as n increases, the total energy is equal to ! (V), which
becomes less negative as n increases.

Example 13.2 Calevlating the mean radius of an prbital

Use hydrogenic orbitals to calculate the mean radius of a 15 orbital.



{a) 1s

(b) 2s
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14.11 Representations of the 1s and 2s hydrogenic atomic orbitals in terms of their electron 13.17 The boundary surfacg of an s.orbital, within

densities (as represented by the density of shading).

13.13 The variation of the mean radius of a

hydrogenic atom with the principal and orbital
angular momentum guantum numbers. Note that
the mean radius lies in the order d <p<s for a
given value of n.

which there is a 90 per cent probability of finding
the electron.

Methad The mean radius is the expectation value
0= [vive= [nura

We therefore need to evaluate the integral using the wavefunctions given in Table 13.1 and
dr = r2drsin0d@dg. The angular parts of the wavefunction are normalized in the sense
that <

f f ¥, sin0d0dep = 1
4] a

The integral over r required is given in Example 11.6.

Answer With the wavefunction written in the form y = RY, the integration is

@ R in ' a0
(r) = /; /; fu R Y, ' dr sin 6 d6 d¢p = L r*R%,dr

For a 1s orbital,

112
Ryg= 2(5}.) el

ﬂu

Hence

42\ [ 3 g 3a
oy [ 3a—2Er/ay - =0
{r) (a?,) /0 r'e dr 27

Comment The general expression for the mean radius of an orbital with quantum numbers !

and n is
(Mas = Jr:{l + %(! - ’(—In:;l—]) }%’

The variation with n and [ is shown in Fig. 13.13. Note that, for a given principal quantum
number, the mean radius decreases as [ increases.
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13.14 A constant-valume electron-sensitive
detector (the small cube) gives its greatest reading
at the nucleus, and a smaller reading elsewhere. The
same reading is obtained anywhere on a circle of
given radius: the s orbital is spherically symmetrical.

ria,

13.15 The radial distribution function P gives the
probability that the electron will be found
anywhere in a shell of radius r. For a |5 electron in
hydrogen, P is a maximum when r is equal to the
Bohr radius a,. The value of P is equivalent to the
reading that a detector shaped like a spherical shell
would give as its radius was varied.
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Self-{est 1.4 Evaluate the mean radius (a) of a 3s orbital by integration, and (b) of a ip
orbital by using the general formula. :
(a) 27a4/2Z, (b) 25a,/22]

(e) Radial distribution functions

The wavefunction tells us, through the value ofN:]z, the probability of finding an electron in
any region. We can imagine a probe with a volume dt and sensitive to electrons, and which
we can move around near the nucleus of a hydrogen atom, Because the probability density '
in the ground state of the atom is

] oc e /e

the reading from the detector decreases exponentially as the probe is moved out along any
radius but is constant if the probe is moved on a circle of constant radius (Fig. 13.14).
Now consider the probability of finding the electron anywhere on a spherical shell of
thickness dr at a radius r. The sensitive volume of the probe is now the volume of the shell
(Fig. 13.15), which is 4mr® dr. The probability that the electron will be found between the
inner and outer surfaces of this shell is the probability density at the radius r multiplied by
the volume of the probe, or [ib)* x 4nr2dr. This expression has the form P(r)dr, where

P(r) = 4nriy? (21)
This expression is valid only for spherically symmetric orbitals. For all other orbitals we have
to use the more general expression

P(r) = r*R(r)? (22)

where R(r) is the radial wavefunction for the orbital in question.

Justification

The probability of finding an electron in a volume element dt when its wavefunction is
Y =RY is |RY|*dr with dr = r2drsin0d0d¢. The total probability of finding the
electron at any angle at a constant radius is the integral of this probability over the surface
of a sphere of radius r, and is written P(r)dr, so’

PR = £ - A " RIY(0, $)2r? dr sin 0d0.dp

=rR(r) dr foh f; |¥(0, )|’ sin0dO dd = r*R(r)* dr

The last equality follows from the fact that the spherical harmonics are normalized (see
Example 13.2). It follows that P(r) = rZR{r)z. as stated in the text.

The radial distribution function, P(r), is a probability density in the sense that, when it is
multiplied by dr, it gives the probability of finding the electron anywhere in a shell of
thickness dr at the ~adius r. For a s orbital,

i
P(r) = 47, rle ¥ lm (23)

[
Because r” increases with radius from zero at the nucleus, and the exponential term
decreases towards zero at infinity, P(0) = 0 and P(r) — 03sr — oo and passes through a
maximum at an intermediate radius (see Fig. 13.15). The maximum of P(r), which can be
found by differentiation, marks the most probable radius at which the electron will be



Wavefunction, y

Radius, r

13.16 Close to the nucleus, p orbitals are

proportional to r, 4 orbitals are praportional to /2,
and f orbitals are proportional to rY. Electrons are
progressively cxcluded from the neighbourhaod of

the nucleus as ! increases. An s orbital has a finite,

nanzero value at the nucleus.
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found, and for a Ls orbital in hydrogen occursrat r = ay, the Bohr radius. When we carry
through the same calculation for the radial distribution function of the 2s orbital in
hydrogen, we find that the most probable radius is 5.2a, =275 pm. This larger value
reflects the expansion of the atom as.its energy increases.

Example 13.3 Calculating the most probable radius

Calculate the most probable radius, r*, at which an electron will be found when it occupies a
15 orbital of a hydrogenic atom of atomic number Z, and tabulate the values for the one-
electron species from H to Net,

Method We find the radius at which the radial distribution function of the hydrogenic 1s
orbital has a maximum value by solving dP/dr = 0.

Answer The radial distribution function is given in eqn 23. It follows that

3 2
(lf — £ 2r — :_"'Zr_ C‘U’fuo =10
dr ) ag
at r = r*, Therefore,
)
==

Z
Then, with a, = 52.9 pm,

H Het Li2+ Be.!-!— B4t 5+ NE+ o't F3+ Nl‘9+
F/pm 529 265 17.6 13.2 106 B.B2 7.56 6.614 588 5.29

Comment Notice how the Ly orbital is drawn towards the nucleus as the nuclear charge
increases. At uranium the most probable radius is only 0.58 pm, aimost 100 times closer
than for hydragen. (On & scale where »* = 10 cm for H, »* = 1 mm for U.) The electron then
experiences strong accelerations, and relativistic effects are important. .

Self-test 145 Find the most probable distance of a 2y electron from the nucleus in a
hydrogenic atom.

(3 + V5)ay/2)

(f] p orbitals

A p clectron has nonzero angular momentum (its actual magnitude is 2'/2h). This
momentum has a profound effect on the shape of the wavefunetion close to the nucleus, for
p orbitals have zero amplitude af » = 0. This difference from s orbitals can be understood
classically in terms of the centrifugal effect of the angular momentum, which tends to fling
the electron away from the nucleus. It is also what we expect from the form of the effective
potential energy shown in Fig. 13.4, which rises to infinity as r — 0 and excludes the
wavefunction from the nucleus. The same centrifugal effect appears in all orbitals with />0
(such as the d orbitals and the f orbitals). We see from eqn 16, in fact, that close to the
nucleus a wavefunction is proportional to r', so p wavefunctions are proportional to r, J
wavefunctions to %, and so on (Fig. 13.16). The increasingly strong dependence on r as /
increases can be regarded classically as the outcome of increasing centrifugal effects arising
fram the angular momentum. As remarked previously, all orbitals with {>0 have zero
amplitude at the nucleus, and consequently zero probability of finding the electron there.

The three 2p orbitals are distinguished by the three different values that m, can take
when [ = 1. Because the quantum number iy, tells us the angular momentum around an
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axis, these different values of m, denote orbitals in which the electron has different angular
momenta around an arbitrary z-axis but the same magnitude of momentum (because { is the
same for all three). The orbital-with m; = 0, for instance, has zero angular momentum
around the z-axis. Its angular variation is proportional to cos 0, so the probability density,
which is proportional to cos? 0, has its maximum value on either side of the nucleus along
the z-axis (at 0 = 0 and 180°).

The wavefunction of a 2p orbital with my = 0is

: 1 _fzy"” 21220
Po =Ry (r)Y,o(0,¢) = W (c-r;) rcosle

=rcosOf(r)

where f(r) is a function only of r. Because\n spherical polar coordinates z = rcos @, this
wavefunction may also be written  ~

pe = (r) (24)
All p-orbitals with m; = 0 have wavefunctions of this form regardless of the value of . This
way of writing the orbital is the origin of the name 'p,-orbital’: its boundary surface is shown
in Fig. 13.17. The wavefunction is zero everywhere in the xy-plane, where z = 0, so the xy-
plane is a nodal plane of the orbital: the wavefunction changes sign on going from one side
of the plane to the other.

The wavefunctions of 2p orbitals with m; = +1 have the following form:

. AL .
Pe1 =Ry (N)Y 1 (0.4) = F —5 (—) re /2 gingeti¢

|
o el tid
Iﬁr.\ln[»’t: f(r)

= + 2
These functions do have angular momentum about the z-axis: as we have seen (in
Section 12.6b), wavefunctions with this ¢ dependence correspond to a particle with angular
momentum either clockwise or counter-clockwise around the z-axis: e corresponds to
clockwise rotation when viewed from below, and e~* corresponds to counter-clockwise
rotation (from the same viewpoint). They have zero amplitude where 0 = 0 and 180° (along
the z-axis) and maximum amplitude at 90°, which is in the xy-plane. To draw the functions it

is usual to take the real linear combinations

| 8
o=~ g7 =p) = rin0cos (1) =) 29

p, = 2:7(1,“ +p_,) =rsinflsingf(r) '=)f(’)

These linear combinations are standing waves with no net angular momentum around the z-
axis, as they are composed of equal and opposite values of my. The p, orbital has the same

V.17 The boundary surfaces of p orbitals. & nodal "
plane passes through the nucleus and separates the
two lobes of each orbital. The dark and light areas
denote regions of opposite sign of the wavefunction.




12.18 The boundary surfaces of d orbitals. Two nodal
planes in each orbital intersect at the nucleus and
separate the lobes of each orbital. The dark and light
areas denote regions of opposite sign of the
wavefunction. -
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shapeasap, orbital, butitis directed along the x-axis (see Fig. 13.17); the p, orbital is similarly
directed along the y-axis. The wavefunction of any p orbital of a given shell can be written as
a product of x, y, or z and the same radial function (which depends on the value of n).

Justificatian 134

In this remark, we justify the step of taking linear combinations of degenerate orbitals
when we want to indicate a particular point. The freedom to do so rests on the fact that,
whenever two or more wavefunctions correspond to the same energy, any linear
combination of them is an equally valid solution of the Schridinger equation.
Suppose yr, and yr, are both solutions of the Schradinger equation with energy E; then
we know that
Hy, = Ey, Hy, = EY,
Now consider the linear combination
Y=oy +cy,
where ¢, and ¢, are arbitrary coefficients. Then it follows that
HY = H(e\) + ehs) = o HYy + coHy
e o\ By + By = E
Hence, the linear combination is also a solution corresponding to the same energy E.

{g) d orbitals
When n =3, / can be 0, 1, or 2. As a result, this shell consists of one 3s orbital, three 3p
orbitals, and five 3d orbitals. The five d orbitals have m; = +2,+1,0,-1,-2 and
correspond to five different angular momenta around the z-axis (but the same magnitude
of angular momentum, because / = 2 in each case). As for the p orbitals, d orbitals with
opposite values of », (and hence opposite senses of motion around the z-axis) may be
combined in pairs to give real standing waves, and the boundary surfaces of the resulting
shapes are shown in Fig. 13.18. The real combinations have the following forms:

dy=xf(r)  dy=yaf(r)  d = 2xf(r)

2 2 26
da_p =307 =y )f(r) di= 5‘—1/3{3.’“ —r)f(r) (26)

-_— ‘—‘_——__- i“'
/ , / :
d, iz iy d,,
}‘“‘ y
X
/ ’ dx:',vz " d

¥z
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13.3 Spectroscopic transitions and selection rules

The energies of the hydrogenic atoms are given by eqn 13. When the electron undergoes a
transition, a change of state, from an orbital with quantum numbers ny, [, m, to another
(lower energy) orbital with quantum numbers n,, [, my,, it undergoes a change of energy AE
and discards the excess energy as a photon of electromagnetic radiation with a frequency v
given by the Bohr frequency condition (eqn 4).

It is tempting to think that all possible transitions are permissible, and that a spectrum
arises from the transition of an electron from any initial orbital to any other orbital.
However, this is not so, because a photon has an intrinsic spin angular momentum
corresponding to s = | (Section 12.8). The change in angular momentum of the electron
must compensate for the angular momentum carried away by the photon. Thus, an electron
in a d orbital (/ = 2) cannot make a transition into an s orbital ({ = 0) because the photon
cannot carry away enough angular momentum. Similarly, an s electron cannot make a
transition to another s orbital, because there would then be ro change in the electron's
angular momentum to make up for the angular momentum carried away by the photon. It
follows that some spectroscopic transitions are allowed, meaning that they can occur,
whereas others are forbidden, meaning that they cannot occur.

A selection rule is a statement about which transitions are allowed. They are derived (for
atoms) by identifying the transitions that conserve angular momentum when a photon is
emitted or absorbed. The selection rules for hydrogenic atoms are

Al=+1  Am=0+1 27

The principal quantum number n can change by any amount consistent with the Al for the
transition, because it does not relate directly to the angular momentum.

Justification 13.5

The formal derivation of a selection rule is based on the evaluation of a transition dipole
moment, p;, between the initial and final states, where

M = (Flli) (28]
and p is the electric dipole moment operator. For a one-electron atom it is identified with
multiplication by —er with components u = —ex, u, = —ey, and p, = —ez. If the
transition dipole moment is zero, the transition is forbidden. If it is nonzero, the transition
is allowed and its intensity is proportional to the square madulus of the transition dipole
moment, Physically, the transition dipole moment is a measure of the dipolar ‘kick’ that the
electron gives to or receives from the electromagnetic field. To evaluate a transition dipole
moment, we consider each component in turn. For example, for the z-component,

o = —e(f]2fi) = —e ] Yiz, de (29)

To evaluate the integral, we note from Table 12.3 that z = [411/3)""2

- 47[ ”2 - .
f Wiz, dr = (T) /0 Ry TR, rtdr

n 2x ¢
. A A Y7 ma(0,6)Y10(0,9)7,.,, (0, 4)sin 008

r¥y g s0

It follows from the properties of the spherical harmonics (Table 12.3) that tﬁe integral

n pln
//; Yi (0,8, (0, 8)Y, . (6,¢)sin0d0d¢
0
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" 13.19 A Grotrian diagram that summarizes the
appearance and analysis of the spectrum of atomic
hydrogen. The thicker the line, the more intense the
transition,
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is zero unless {p = ;1 and myq = my; +m. Becpuse m =0 in the present case, the
angular integral, and hence the z-component of the transition dipole moment, is zero
unless Al = +1 and Amy = 0, which is a part of the set of selection rules. The same
procedure, but considering the x- and y-components, results in the complete set of rules.

lllustration

To identify the orbitals to which a 4d electron may make radiative transitions, we first
identify the value of / and then apply the selection rule for this quantum number. Because
! = 2, the final orbital must have / = | or 3. Thus, an electron may_make a transition from a
4d orbital to any ap orbital {subject to Am; = 0, +1) and to any nf orbital (subject to the
same rule). However, it cannot undergo a transition to any other orbital, so a transition to
any ns orbital or to another nd orbital is forbidden.

Setf-test 13,6 To what orbitals may a 4s-electron make radiative transitions?
) [To np orbitals only]

The selection rules account for the structure of a Grotrian diagram (Fig. 13.19), which
summarizes the energies of the states and the transitions between them. The thicknesses of
the transition lines in the diagram denote their relative intensities in the spectrum,

The structures of many-electron atoms

The Schradinger equation for a many-electron atom is highly complicated because al! the
electrons interact with one another. Even for a helium atom, with its two electrons, no
analytical expression for the orbitals and energies can be given, and we are forced to make
approximations. We shall adopt a simple approach based on what we already know about
the structure of hydrogenic atoms. Later we shall see the kind of numerical computations
that are currently used to obtain accurate wavefunctionss and energies.

13.4 The orbital approximation

The wavefunction of a many-electron atom is a very complicated function of the
coordinates of all the electrons, and we should write it ¥(r,,r,, .. .), where r; is the vector
from the nucleus to electron 1. However, in the orbital approximiation we suppose that a
reasonable first approximation to this exact wavefunction is obtained by thinking of each
electron as occupying its ‘own’ orbital, and writing

Wiryraoo.) = g(r)y(r). (30)
We can think of the individual orbitals as resembling the hydrogenic orbitals, but with nuclear
charges that are modified by the presence of all the other electrons in the atom. This

description is only approximate, but it is a useful model for discussing the chemical properties
of atoms, and is the starting point for more sophisticated descriptions of atomic structure.

Tastihweatom 120

The orbital approximation would be exact if there were no interactions between electrons.
To demonstrate the validity of this remark, we need to consider a system in which the
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13.20) Electrons with paired spins have zero
resultant spin angular momentum. They can be
represented by two vectors that lie at an
indeterminate position on the cones shown here
but, wherever one lies on its cone, the other points
in the oppasite direction; their resultant is zero.
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hamiltonian for the energy is the sum of two contributions, one for electron 1 and the
other for electron 2:

H=H +H4,
In an actual atom (such as helium atom), there is an additional term corresponding to the
interaction of the two electrons, but we are ignoring that term. We shall now show that, if
W (r,) is an eigenfunction of H, with energy E,, and yi(r,) is an eigenfunction of H, with
energy E,, then the product ¥(r,, ry) = ¢(r)¥(r,) is an eigenfunction of the combined
hamiltonian H. To do so we write

HY(r,ry) = (Hy + Hy)(r )(r2)
= (H(r) }(ra) + ¥ (ry {H ¥ (ry)}
= {Eyy(r) W(r) + ¥(r){E2y ()}
= (Ey + EQ)Y(r)¥(r;) = Evry,r) .
where E = E, + E,. This is the result we ncid to prove. However, if the electrons interact
(as they do in fact), then the proof fails.

{a) The helium atom

The orbital approximation allows us to express the electronic structure of an atom by
reporting its configuration, the list of occupied orbitals (usually, but not necessarily, in its
ground state). Thus, as the ground state of a hydrogenic atom consists of the single electron
in a 1s orbital, we report its configuration as 1s'.

The He atom has two electrons. We can imagine forming the atom by adding the
electrons in succession to the orbitals of the bare nucleus (of charge 2e). The first electron
occupies a 1s hydrogenic orbital, but because Z = 2 that orbital is more compact than in H
itself. The second electron joins the first in the Ly orbital, so the electron configuration of the
ground state of He is 157

(b) The Pauli principle

Lithium, with Z = 3, has three electrons. The first two occupy a Ls orbital drawn even more
closely than in He around the more highly charged nucleus. The third electron, however,
does not join the first two in the |s orbital because that configuration is forbidden by the
Pauli exclusion principle:

No more than two electrons may occupy any given orbital and, if two do
occupy one orbital, then their spins must be paired.

Electrons with paired spins, which we denote 7|, have zero net spin angular momentum
because the spin of one electron is vancelled by the spin of the other. Specifically, one
electron has m, = + }, the other has m, = — , and they are orientated on their respective
cones so that the resultant spin is zero (Fig. 13.20). The exclusion principle is the key to the
structure of complex atoms, to chemical periodicity, and to molecular structure. It was
proposed by Wolfgang Pauli in 1924 when he was trying to account for the absence of some
lines in the spectrum of helium. Later he was able to derive a very general form of the
principle from theoretical considerations.

Justification 13.7

The Pauli exclusion principle in fact applies to any pair of identical fermions (particles with
half integral spin). Thus it applies to protons, neutrons, and C nuclei (all of which have
spin 1) and to **Cl nuclei (which have spin ). It does not apply to identical bosons {particles
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with integral spin), which include photons (spin 1), '2C nuclei (spin 0). Any number of
identical bosons may occupy the same orbital.

The Pauli exclusion principle is a special case of a general statement called the Pauli
principle:

When the labels of any two identical fermions are exchanged, the total
wavefunction changes sign. When the labels of any two identical bosons are
exchanged, the total wavefunction retains the same sign,

By ‘total wavefunction' is meant the entire wavefunction, including the spin of the
particles.

Consider the wavefunction for two electrons '¥(1,2), The Paull principle implies that it
is a fact of nature (which has its roots in the theory of relativity) that the wavefunction
must change sign if we interchange the labels 1 and 2 whercvsr_thqy occur in the function:

Y(2,1) = —‘I"(l,Z) (31)
Suppose the two electrons in an atom occupy am orbital y, then in the orbital
approximation the overall wavefunction is y(1)y(2). To apply the Pauli principle, we must
deal with the total wavefunction, the wavefunction including spin. There are several
possibilities for two spins: both «, denoted a(1)a(2), both f§, denoted B(1)#(2), and one &
the other f, denoted either a(1)(2) or a(2)f(1). Because we cannot tell which electron is
a and which is B, in the last case it is appropriate to express the spin states as the
(normalized) linear combinations

04(1,2) = 55 (DA + B} 0_(1,2) = 577 (a(1)B2) - BA(2)}
(32)
because these allow one spin to be « and the other f# with equal probability. The total

wavefunction of the system is therefore the product of the orbital part and one of the four
spin states:

Y (2)a(Da(2) ¢ (Y(2)BMAR) w(1)¥(2)a,(1,2) Y(1)¥(2)a_(1,2)
The Pauli principle says that, for a wavefunction to be acceptable (for electrons), it must
change sign when the electrons are exchanged. In each case, exchanging the labels 1 and 2
converts the factor (1)y(2) into y(2)y(1), which is the same, because the order of
multiplying the functions does not change the value of the product. The same is true of
a(1)a(2) and B(1)B(2). Therefore, the first two overall products are not allowed, because
they do not change sign. The combination o, (1,2) changes to

0, (2,1) = 577 (=(2)A(1) + A1)} = 0,(1,2)

because it is simply the original function written in a different order. The third overall
product is therefore also disallowed. Finally, consider a_(1,2):

0 (211) = 517 ((B(1) ~ B)a(1)) = — 575 (a(1)B(2) — B(1)a(@)}
T oy=—a_(1,2)

This combination does change sign {it is ‘antisymmetric’). The product y(1)¥(2)o_(1,2)
also changes sign under particle exchange, and therefore it is acceptable.

Now we see that only one of the four possible states is allowed by the Pauli principle,
and the ome that survives has paired « and § spins.? This is the content of the Pauli
exclusion principle. The exclusion principle is irrelevant when the orbitals occupied by the

2 The distinction between o, and o_, which both have une @ and one fi spin, is explained in Section 13.7.
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No net effect
of these
electrons

Net effect
equivalent to
a point charge
at the centre

13.21 An electron at a distance r from the nucleus
experiences.a Coulombic repulsion from all the
electrons within a sphere of radius r and which is
equivalent to a point negative charge located on
the nucleus. The negative charge reduces the
effective nuclear charge of the nucleus from Ze to

Zoge.
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13.22 An electron in an s orbital (here a 3s orbital)
is more likely to be found close to the nucleus than
an clectron in a p orbital of the same shell (note
the closeness of the innermost peak of the 3s
orbital to the nucleus at r = 0). Hence an s electron
experiences less shielding and is more tightly bound
than a p electron.
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electrons are different, and both electrons may then have (but need not have) the same
spin state. Nevertheless, even then the overall wavefunction must still be antisymmetric
overall, and must still satisfy the Pauli principle itself.

In Li (Z = 3), the third electron cannot enter the 15 orbital because that orbital is already
full: we saythe K shell is complete and that the two electrons form a closed shell. Because a
similar closed shell is characteristic of the He atom, we denote it [He]. The third eleetron is
excluded from the K shell and must occupy the next available orbital, which is one with
n = 2 and hence belonging to the L shell. However, we now have to decide whether the next
available orbital is the 2s orbital or a 2p orbital, and therefore whether the lowest energy
configuration of the atom is [Hel2s" or [He]2p'.

(c) Penetration and shielding

Unlike in hydrogenic atoms, the 2s and 2p orbitals (and, in general, all subshells of a given
shell) are not degenerate in many-electron atoms. For reasons we shall pow explain, s
orbitals generally lie lower in energy than p orbitals of a given shell, and p orbitals lie lower
than d orbitals. ’

An electron in a many-electron atom experiences a Coulomblc repulsion from all the
other electrons present. If it is at a distance r from the nucleus, it experiences a repulsion
that can be represented by a point negative charge located at the nucleus and equal in
magnitude to the total charge of the electrons within a sphere of radius r (Fig. 13.21). The
effect of this point negative charge, when averaged over all the locations of the electron, is
to reduce the full charge of the nucleus from Ze to Z qe, the effective nuclear charge. We
say that the electran experiences a shielded nuclear charge, and the difference between Z
and Z; is called the shielding constant, :

Zp=Z-o - (33)

The electrons do not actually ‘block’ the full Coulombic attraction of the nucleus: the shielding
constant is simply a way of expressing the net outcome of the nuclear attraction and the
electronic repulsions in terms of a single equivalent charge at the centre of the atom.

The shielding constant is different for s and p electrons because they have different radial
distributions (Fig. 13.22). An s electron has a greater penetration through inner shells than a
p electron, in the sense that it is more likely to be found close to the nucleus than a p
electron of the same shell (the wavefunction of a p orbital, remember, is zero at the nucleus).
Because only electrons inside the sphere defined by the location of the electron (in effect,
the core electrons) contribute to shielding, an s electron experiences less shielding than a p
electron. Consequently, by the combined effects of penetration and shielding, an s electron
is more tightly bound than a p electron of the same shell. Similarly, a d electron penetrates
less than a p electron of the same shell (recall that the wavefunction of a 4 orbital varies as
r? close to the nucleus, whereas a p orbital varies as r), and therefore experiences more
shielding.

Shielding constants for different types of electrons in atoms have been calculated from
their wavefunctions obtained by numerical solution of the Schrédinger equation for the
atom (Table 13.3). We see that, in general, valence-shell 5 electrons do experience higher
effective nuclear charges than p electrons, although there are some discrepancies. We return
to this point shorfly.

The consequence of penetration and shielding is that the energies of subshells in a many-
electron.atom in general lie in the order

s<p<d<f
25—B



Table 13.3° Screening constants for ators

Element z Orbital o

He * 2 Is 0.3125

c Is 0.3273
25 2.7834
2p 2.8642

* More values are given in the Data section at the end

of this volume.
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The individual orbitals of a given subshell remain degenerate because they all have the same
radial characteristics and so experience the same effective nuclear charge.

We can now complete the Li story. Because the'shell with n = 2 consists of two non-
degenerate subshells, with the 2s orbital lower in energy than the three 2p orbitals, the third
clectron occupies the 2s orbital. This occupation results in the ground-state configuration
15225', with the central nucleus surrounded by a complete helium-like shell of two 1s
electrons, and around that a more diffuse 2s electron. The electrons in the outermost shell of
an atom in its ground state are called the valence electrons because they are largely
responsible for the chemical bonds that the atom forms. Thus, the valence electron in Liis a
2s electron and its other two electrons belong to its core.

(d) The building-up principle
The extension of the procedure used for H, He, and Li to other atoms is called the building-
up principle, or the ‘Aufbau principle’, from the German word for building up. The building-
up principle proposes an order of occupation of the hydrogenic orbitals that accounts for
the experimentally determined ground-state configurations of neutral atoms.”

We imagine the bare nucleus of atomic number Z, and then feed into thbwbnals Z
electrons in succession. The order of occupatlon is >

Is 25 2p 35 3p 4s 3d 4p 55 4d 5p 6s...

and each orbital may accommodate up to two electrons. This order of occupation is
approximately the order of energies of the individual orbitals, because, in general, the lower
the energy of the orbital, the lower the total energy of the atom as a whole when that
orbital is occupied. However, there are complicating effects arising from electron-electron
repulsions that are important when the orbitals have very similar energies (such as the 4s
and 34 orbitals near Ca and Sc), and we must take special care then.

We feed the Z electrons in succession into the orbitals subject to the demand of the
exclusion principle that nd more than twa electrons can occupy any one orbital. Because an
s subshell consists of only one orbital, up to two electrons may occupy it. A p subshell
consists of three orbitals, so it can accommodate up to six electrons; a d subshell consists of
five orbitals and can accommodate up to ten electrons.

As an example, consider the carbon atom, for which Z = 6 and there are six electrons to
accommodate. Two electrons enter and fill the 1s orbital, two enter and fill the 2s orbital,
leaving two electrons to occupy the orbitals of the 2p subshell. Hence the ground-state
configuration of C is 1525222, or more Siccirictly [He]2522p, with [He] the helium-like 15
core. However, we can be more precise: we can expect the last two electrons to occupy
different 2p orbitals because they will then be further apart on average and repel each other
less than if they were in the same orbital. Thus one electrgn can be thought of as occupying
the 2p, orbital and the other the 2p, orbital (the x, y, z designation is arbitrary, and it would
be equally valid to use the complex forms of these orbitals), and the lowest energy
configuration of the atom is [He]25?2p!2p!. The same rule applies whenever degenerate

_orbitals of a subshell are available for occupation. Thus, another rule of the building-up

principle is: =~ ~ \

" Electrons occupy different orbitals of a given subshell before doubly
occupying any one of them.

Thus nitrogen (Z = 7) has the configuration [Hel25?2p}2p} 2p!, and only when we get to
oxygen (Z = 8) is a 2p orbital doubly occupied, giving [}-Ic]25’2pi2p,2p, ;

3 Electron configurations are determined either spectroscopically or by measurements of magnetic propertics.
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An additional point arises when electrons occupy orbitals singly, for there is then no
requirement that their spins should be paired. We néed to know whether the lowest energy
is achieved when the electron spins are the same (both o, for instance, denoted 11, if there
are two electrons in question, as in C) or when they are paired (1}). This question is resolved
by an empirical observation known as Hund's rule:

An atom in its ground state adopts a configuration with the greatest number
of unpaired electrons.

The explanation of Hund's rule is subtie, but it reflects the quantum mechanical property of
spin correlation, that, as demonstrated in the Justification below, electrons with parallel
spins behave as if they have a tendency to stay well apart, and hence repel each other less.*

. We can now conclude that, in the ground state of the carbon atom, the two 2p electrons

have the same spin, that all three 2p electrons in the N atoms have the same spin, and that
the two 2p electrons in different orbitals in the O atom have the same spin (the two in the
2p, orbital are necessarily paired).

Justification 13.8

Suppose electron 1 is described by a wavefunction y,(r,) and electron 2 is described by a
wavefunction y,(r;); then, in the orbital approximation, the joint wavefunction of the
electrons is the product ¥ = ,(r, ), (r,). However, this wavefunction is not acceptable,
because it suggests that we know which electron is in which orbital, whereas we cannot
keep track of electrons. According to quantum mechanics, the correct description is either
of the two following wavefunctions:

SV )0(r2) £ (r ()}

According to the Pauli principle (Justification 13.7), because ‘¥, is symmetrical under
particle interchange, it must be muitiplied by an antisymmetric spin function (the one
denoted o_ in Justification 13.7). That combination corresponds to a spin-paired state.
Conversely, W_ is antisymmetric, so it must be multiplied by one of the three
symmetric spin states. These three symmetric states correspond to electrons with parallel
spins.

Now consider the values of the two combinations when one electron approaches
another, and r, = r,. We see that '¥'_ vanishes, which means that there is zero probability
of finding the two electrons at the same point in space when they have parallel spins. The
other combination does not vanish when the two electrons are at the same point in space.
Because the two electrons have different relative spatial distributions depending on
whether their spins are parallel or net, it follows that their Coulombic interaction is
different, and hence that the two states have different energies.

¥, =

Neon, with Z = 10, has the configuration [He]2s22p%, which completes the L shell. This
closed-shell configuration is denoted [Ne], and acts as a core for subsequent elements. The
next electron must enter the 3s orbital and begin a new shell, so an Na atom, with Z = 11,
has the configuration [Ne3s'. Like lithium with the configuration [He]2s', sodium has a
single 5 electron outside a complete core.

This analysis has brought us to the origin of chemical periodicity. The L shell is completed
by eight electrons, so the element with Z =13 (Li) should have similar properties to the

4 The effect of spin corelation i to allow the atom to shrink shghtly, so the election-nucleus interaction is improved when the
spins are paraficl

§  See Section 13.7 for an explanalion of this point.



13.23 The orbital energies of the elements. Note
the relative energies of the 3d and 4s orbitals close
to potassium (see inset),

Table 13.4" Fist and second ionization
energies, , /(i mol™') and £,/(kJ mol™')

H 1312

He 2372 5251
Mg 738 1451
Na 496 4562

* More values are given in the Dato section.
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element with Z = 11 (Na). Likewise, Be (Z = 4) should be similar to Z = 12 (Mg), and so on,
up to the noble gases He (Z = 2), Ne (Z = 10), and Ar (Z = 18).

Argon has complete 3s and 3p subshells, and as the 3d orbitals are high in energy it
counts as having a closed-shell configuration. Indeed, the 34 orbitals are so high in energy
that the next electron (for K) occupies the 4s orbital, and the configuration of a K atom is
analogous to that of an Na atom. The same is true of a Ca atom, which has the configuration
[Ar]4s2. However, at this paint, the 3d orbitals become comparable in energy to the 4s
orbitals (Fig. 13.23), and they commence to be filled.

Ten electrons can be accommodated in the five 3d orbitals, which accounts for the
electron configurations of scandium to zinc. However, the building-up principle has less
clear-cut predictions about the ground-state configurations of these elements because
electron—electron repulsions are comparable to the energy difference between the 45 and 34
orbitals, and a simple analysis no longer works. At gallium, the energy of the 3d orbitals has
fallen so far below those of the 4s and 4p orbitals that the 3d orbitals can be largely ignored,
and the building-up principle can be used in the same way as in preceding periods. Now the
4s and 4p subshells constitute the valence shell, and the period terminates with krypton.
Because 18 electrons have intervened since argon, this period is the first “long period’ of the
periodic table. The existence of the d-block elements (the ‘transition metals’) reflects the

* stepwise occupation of the 3d orbitals, and the subtle shades of energy differences along

this series give rise to the rich complexity of inorganic 4-metal chemistry. A similar intrusion
of the f orbitals in Periods 6 and 7 accounts for the existence of the f block of the periodic
table (the lanthanides and actinides).

(e) The configurations of ions

We derive the configurations of cations of elements in the 5, p, and d blocks of the periodic
table by removing electrons from the ground-state configuration of the neutral atom in a
specific order. First, we remove valence p electrons, then valence s electrons, and then as
many d electrons as are necessary to achieve the stated charge. For instance, because the
configuration of Fe is [AM3d®4s%, the Fe* cation has the configuration [Ar]34°.

The configurations of anions are derived by continuing the building-up procedure and
adding electrons to the neutral atom until the configuration of the next noble gas has been
reached. Thus, the configuration of the 0%~ ion is achieved by adding two electrons to
[He]2522p?, giving [He]2s*2p®, the same as the configuration of neon.

(f) lonization energies and electron affinities

The minimum energy necessary to remove an electron from a many-electron atom is the
first ionization energy, /,, of the element® The second ionization energy, /, is the
minimum energy needed to remove a second electron (from the singly charged cation). The
variation of the first ionization energy through the periodic table is shown in Fig. 13.24. and
some numerical values are given in Table 13.4. In thermodynamic considerations we often
need the standard enthalpy of ionization, A, H ©. As shown in the Justification below, the
two are related by

»

AoH®(T) =1 +3RT (34)

At 298 K, the difference between the ionization enthalpy and the corresponding ionization
energy is 6.20 kimol .

6  The symbo! recommended by IUPAC for ionization encrgy i Ej: but this notation & open Lo confusion,
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13.24 The first ionization -energks of the elements
plotted against atomic number.

Table 13.5" Electron affinities, E, /(kJ mol™")

(&) 349
F 322
H 73
0 141 0~ —844

*More values are given in the Dato section.

13.4 ATOMIC STRUCTURE AND ATOMIC SPECTRA

30~

Justification 13.9 . .

It follows from Kirchhoff's law (Section 2.9 and eqn 2.45) that the reaction enthalpy for

M(g) — M*(g) + ¢ (g) :
at a temperature T is related to the value at T = 0 by

. . ¥ .
AHOM) = A0+ [ aC,%ar }
0

The molar constant-pressyre heat capacity of each species in the reaction is 3R, so
AC; =+3R.The integral in this expression therefore evaluates to +3RT. The reaction
enthalpy at T = 0 is the same as the (molar) ionization energy, /. Equation 34 then follows.

The same expression applies to each successive ionization step, so the overall ionization
enthalpy for the formation of M+ is

AH®(T) =1, +1, + SRT

The electron affinity, E,,, is the energy released when an electron attaches to a gas-
phase atom (Table 13.5). In a common, logical, but not universal convention (which we
adopt), the electron affinity is positive if energy is released when the electron attaches to the
atom (that is, E., >0 implies that electron attachment is exothermic). It follows from a
similar argument to that given in the Justification above that the standard enthalpy of
electron gain, A, H €, at a temperature T is related to the electron affinity by

Ay H®(T) = —E,, — IRT o (35)

Note the change of sign. In typical thermodynamic cycles the .}RT that appears in eqn 35
cancels that in eqn 34, so ionization energies and electron affinities can be used directly. A
final preliminary point is that the electron-gain enthalpy of a species X is the negative of the
ionization enthalpy of its negative ion:

AgH® (X) = —AgeH® (X") (36)

As ionization energy is often easier to measure than electron affinity, this relation can be
used to determine numerical values of the latter.

lonization energies and electron affinities show periodicities, but the former is more
regular and’we concentrate on it. Lithium has a low first ionization energy: its outermost
electron is well-shielded from the nucleus by the core (Zg = 1.3, compared with Z = 3)
and it is easily removed. Beryllium has a higher nuclear charge than lithium, and its
outermost electron (one of the two 2s electrons) is more difficult to remove: its ionization
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energy is higher. The ionization energy decreases between beryllium and boron because in
the latter the outermost electron accupies a 2p orbital and is less strongly bound than if it
had been a 2s electron. The ionization energy increases between boron and carbon because
the latter's outermost electron is also 2p and the nuclear charge has increased, Nitrogen has
a still higher ionization energy because of the further increase in nuclear charge.
There is now a kink in the curve which reduces the ionization energy of oxygen below
what would be expected by simple extrapolation. The explanation is that at oxygen a2p
orbital must become doubly occupied, and the electron-electron repulsions are increased
above what would be expected by simple extrapolation along the row. In addition, the loss of
a 2p electron results in a configuration with a halfyfilled subshell (like that of N), which is an
arrangement of low energy, so the energy of O* + e~ is lower than might be expected, and
- the ionization energy is correspondingly low too. (The kink is less pronounced in the next
row, between phosphorus and sulfur because their orbitals are more diffuse.) The values for
oxygen, fluorine, and neon fall roughly on the same line, the increase of their ionization

" energies reflecting the increasing attraction of the more highly charged nuclei for the
outermost electrons. .

The gutermost electron in sodium is 3s. It is far from the nucleus, and the latter’s charge
is shielded by the compact, complete neon-like core. As a result, the ionization energy of
sadium is substantially lower than that of neon. The periodic cycle starts again along this
row, and the variation of the ionization energy can be traced to similar reasons.

Electron affihities are greatest close to fluorine, for the incoming electron enters a
vacancy in a compact valence shell and can interact strongly with the nucleus. The
attachment of an electron to an anion (as in the formation of 0*~ from 0~) is invariably
endothermic, so E,, is negative. The incoming electron is repelled by the charge already
present. Electron affinities are also small, and may be negative, when an electron enters an
orbital that is far from the nucleus (as in the heavier alkali metal atoms) or is forced by the
Pauli principle to occupy a new shell (as in the noble gas atoms). '

13.5 Self-consistent field orbitals
The central difficulty of the Schridinger equation is the presence of the electron-electron
interaction terms. The potential energy of the electrons is

, V==3 = +1> < | (37)7
N T dnegr; 2 7 4mepry !

The prime on the second sum indicates that i # j, and the factor of one-half prevents
double-counting of electron pair repulsions (1 with 2 is the same as 2 with 1). The first term
is the total attractive interaction between the electrons and the nucleus. The second term is
the total repulsive interaction; r; is the distance between electrons i and j. It is hopeless to
expect to find analytical solutions of a Schrodinger equation with such a complicated
potential energy term, but computational techniques are available that give very detailed
and reliable numerical solutions for the wavefunctions and energies. The techniques were
originally introduced by D.R. Hartree (before computers were available) and then modified -
by V. Fock to take into account the Pauli principle correctly. In broad outline, the Hartree-
Fack self-consistent field (SCF) procedure is as follows.

Imagine that we have a rough idea of the structure of the atom. In the Ne atom, for
instance, the orbital approximation suggests the configuration 15?25?2p% with the orbitals
approximated by hydrogenic atomic orbitals. Now consider one of the 2p electrons. A
Schrédinger equation can be written fo. this electron by ascribing to it a potential energy
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13.25 The radial distribution functions for the
orbitals of Na based on SCF calculations. Note the
shell-like structure,-with the 3s orbital outside the
inner K and L shells.

126 ATOMIC STRUCTURE AND ATOMIC SPECTRA

due to the nuclear attraction and the repulsion from the other electrons. This equation has
the form

2
T 1) ~ gy (r)

o o

{f‘l‘ Fiif::(fz}f t;}ﬂlf(rl)

= Ep ()

(38)

The orbitals are labelled i, and the sums on the left are over all the occupied orbitals. A
similar equation can be written for the 1s and 2s orbitals in the atom.

Equation 38 is fearsome, but it can be interpreted by examining each term. The first term
on the left is the usual kinetic energy contribution. The second term is the potential energy
of attraction of the electron to the nucleus. The third term is the potential energy of the
electron of interest due to the charge density —e|W;(r,)|* of the electrons in the other
occupied orbitals. The fourth term takes into account the spin correlation effects discussed
earlier. Note that, although the equation is for the 2p orbital in neon, it depends on the
wavefunctions of all the other occupied orbitals in the atom.

There is no hope of solving eqn 38 analyticaily. However, it can be solved numerically if
we guess an approximate form of the wavefunctions of all the orbitals except 2p. The
procedure is then repeated for the other orbitals in the atom, the 1s and 25 orbitals. This
sequence of calculations gives the form of the 2p, 25, and 15 orbitals, and in general they will
differ from the set used initially to start the calculation.” These improved orbitals can be
used in another cycle of calculation, and a second improved set of orbitals is obtained. The
recyeling continues until the orbitals and energies obtained are -insignificantly different
from those used at the start of the current cycle. The solutions are then sclf—connstent and
accepted as solutions of the problem, s

Plots of some of the self-consistent field (SCF) Hartree-Fock radial distribution functions
for sodium are shown in Fig. 13.25. They show the grouping of electron density into shells, as
was anticipated by the early chemists, and the differences of penetration as discussed above.
These SCF calculations therefore support the qualitative discussions that are used to explain
chemical periodicity. They also considerably extend that discussion by providing detailed
wavefunctions and precise energies.

The speetra of complex atoms

The spectra of atoms rapidly become very complicated as the number of electrons increases,
but there are some important and moderately simple features. The general idea is
straightforward: lines in the spectrum (in either emission or absorption) occur when the
atom undergoes a change of state with a change of energy |AE|, and emits or absorbs a
photon of frequency i = |AE|/h and wavenumber & = |AE|/hc. Hence, we can expect the
spectrum to give information about the energies of electrons in atoms. However, the actual
energy levels are not given solely by the energies of the orbitals, because the electrons
interact with one another in various ways, and there are contributions to the energy in
addition to those we have already considered.

7 In practice, much more efficient procedures are used, and the equations for the wavefunctions are solved simultaneously.
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*13.6 Quantum defects and ionization limits

One application of atomic spectroscopy is to the determination of ionization energies.
However, we cannot use the procedure illustrated in Example 13.1 indiscriminately because
the energy levels of a many-electron atom do not'in general vary as 1/n% If we confine
attention to the outermost electrons, then we know that, as a result of penetration and
shielding, they experience a nuclear charge of slightly more than le because in a neutral
atom the other Z — 1 electrons cancel all but about one unit of nuclear charge. Typical
values of Z are a little more than 1, so we expect binding energies to be given by a term of
the form —hcR/n?, but lying slightly lower in energy than this formula predicts. We
therefore introduce a quantum defect, &, and write the energy as —hcR/(n — 8)°. The
quantum defect is best regarded as a purely empirical quantity.

There are some states that are so diffuse that the 1/a? variation is vali2: these states are
called Rydberg states. In such cases we can write

! R
v = h_f - ;5 - (39)

and a plot of wavenumber against 1/n? can be used to obtain / by extrapolation; in practice,
one would use a linear regression fit using a computer. If the lower state is not the ground
state (a possibility if we wish to generalize the concept of ionization energy), the ionization
energy of the ground state can be determined by adding the appropriate energy difference
to the ionization energy obtained as described here.

13.7 Singlet and triplet states

Suppose we were interested in the ene@v.lmls of a He atom, with its two electrons. We
know that the ground-state configuration is 1s%, and can anticipate that an excited
configuration will be one in which one of the electrons has been promoted into a 2s orbital,
giving the configuration 15'2s'. The two electrons need not be paired because they occupy
different orbitals. According to Hund's rule, the state of the atom with the spins parallel lies
lower in energy than the state in which they are paired. Both states are permissible, and can
contribute to the spectrum of the atom,

Parallel and antiparallel (paired) spins differ in their overall spin angular momentum. In
the paired case, the two spin momenta cancel each other, and there is zero net spin (as was
depicted in Fig. 13.20). The paired-spin arrangement is called a singlet. Its snin state is the
one we denoted o_ in the discussion of the Pauli principle:

0-(1,2) = 51 {al)B(2) - A(1)a(2)} (40a)

The angular momenta of two parallel spins add together to give a nonzero total spin, and the
resulting state is called a triplet. As illustrated in Fig. 13.26, there are three ways of
achieving a nonzero total spin, but only one way to achieve zero spin. The three spin states
are the symmetric combinations introduced earlier:

a(od)  9,(1,2) = 57 (DA@) + BO@)  FIAD)  (408)

1.3 24 When two electrans have parallel spins, they have a nonzero total spin angular momentum. There
are three ways of achieving this resultant, which are shown by these vector representations. Note that,
although we fannot know the orientation of the spin vectors on the cones, the angle between the
vectors is the same in all three cases, for all three arrangements have the same total spin angular
momentum (that is, the resultant of the two vectors has the same length in each case, but points in
different directions). Compare this diagram with Fig. 13.20, which shows the antiparallel case. Note that,
whereas two paired spins are precisely antiparallel, two 'parallel’ spins are not strictly paraflel.
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13.28 Angular momentum gives rise to a magnetic
moment (). For an electron, the magnetic moment
is antiparallel to the orbital angular momentum, but
proportional to it. For spin angular momentum,
there is a factor 2, which increases the magnetic
moment to twice its expected value (see

Section 13.10).
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1327 Part of the Grotrian diagram for a helium atom. Note that there are no transitions between the
singlet and triplet levels. Transition wavelengths are given in nanometérs.,

The fact that the parallel arrangement of spins in the 1s'2s' configuration of the He
atom lies lower in energy than the antiparallel arrangement can now be expressed by saying
that the triplet state of the 1s'2s' configuration of He lies lower in energy than the singlet
state. This is a general conclusion that applies to other atoms (and molecules), and, for states
arising from the same configuration, the triplet state generally lies lower than the singlet
state. The origin of the energy difference lies in the effect of spin correlation on the
Coulombic interactions between electrons, as we saw in the case of Hund'sTule for ground-
state' configurations. Because the Coulombic interaction between electrons in an atom is
strong, the difference in energies between singlet and triplet states of the same
configuration can be farge. The two states of 1s'2s' He, for instance,’ differ by
6421 cm™' (corresponding to 0.7961 eV).

- The spectrum of atomic helium is more complicated than that of atomic hydrogen, but
there are two simplifying features. One is that the only excited configurations it is necessary
to consldcr are of the form 1s'ni': that is, only one electron is excited. Excitation of two
electrons réquires an energy greater than the ionization energy of the atom, so the Het ion-~
is formed instead of the doubly excited atom. Second, no transitions take place between
singlet and triplet statés because the relative orientation of the two electron spins cannot
change during a transition. Thus, there is a shectrum arising from transitions between singlet
states (including the ground state) and between triplet states, but not between the two.
Spectroscopically, helium behaves like two distinct species, and the early spectroscopists
actually thought of helium as consisting of ‘parahelium’ and ‘orthohelium'. The Grotrian
diagram for helium in Fig. 13.27 shows the two sets of transitions.

13.8 Spin-orbit coupling

Electron spin has a further implication for the energies of atoms. Because an electron has

_spin angular momentum, and because moving charges generate magnetic fields, an electron

has a magnetic moment that arises from its spin (Fig. 13.28). Similarly, an electron with
orbital angular momentum (that is, an electron in an orbital with />0) is in effect a
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13.29 Spin-orbit coupling is a magnetic interaction
between spin and orbital magnetic moments. When
the angular momenta are parallel, as in (a), the
magnetic moments are aligned unfavourably; when
they are opposed, as in (b), the interaction is
favourable. This magnetic coupling is the cause of
the splitting of a configuration into levels.

13.30 The coupling of the spin and orbital angular
momenta of a d electron (/ = 2) gives two possible
values of j depending on the relative orientations of
the spin and orbital angular momenta of the
electron. '
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circulating current, and possesses a magnetic moment that arises from its orbital
momentum. The interaction of the spinand orbital magnetic moments is called spin-
orbit coupling. The strength of the coupling, and its effect on the energy levels of the atom,
depends on the relative orientations of the spin and orbital magnetic moments, and
therefore on the relative orientations of the two angular momenta (Fig. 13.29).

(a) The total angular momentum

One way of expressing the dependence of the spin-orbit interaction on the relative
orientation of the spin and orbital momenta is to say that it depends on the total angular
momentum of the electron, the vector sum of its spin and orbital momenta. Thus, when the
spin and orbital angular momenta are nearly parallel, the total angular momentum is high;
when the two angular momenta are opposed, the total angular momentum is low.

The total angular momentum of an electron is described by the quantum numbers j and
‘my, with j =1+ % (when the two angular momenta are in the same direction) or j =/ —f d
(when they are opposed, Fig. 13.30). The different values of j that can arise for a given value
of 1 label levels of a term. For / = 0, the only permitted value is j = ] (the total angular
momentum is the same as the spin angular momentum because there is no other source of
angular momentum in the atom). When [ = 1, j may be either% (the spin and orbital angular
momenta are in the same sense) or % (the spin and angular mornenta are in opposite senses).

Example 13.4 Identifying the levels of a configuration
Identify the levels that may arise from the configurations (a) 4, (b) s'.

Method In each case, identify the value of / and then the possible values of . For these one-
clectron systems, the total angular momentum is the sum or difference of the orbital and
spin momenta. :

Answer (a) For a d electron, [ = 2 and there’are two levels in the configuration, ohe with
Jj=2+1}=1and the other withj = 2 — { = (b} For an s electron’/ = 0, 50 only one level
is possible, and j = 1.

Seif-test 13.7 Identify the levels of the configurations (a) p' and (b) f'.
@3.501.3

The dependence of the spin-orbit interaction on the value of j is expressed in terms of the
spin—orbit coupling constant, A (which is typically expressed as a wavenumber). A quantum
mechanical calculation leads to the result that the energies of the levels with quantum
numbers s, /, and j are given by '

Eypy = $heA((i+1) = (1 +1) = s(s + 1)} (41)

Justification 13.10

&he energy of a magngtic moment p in a magnetic field B is equal to their scalar product
—p - B. If the magnetic-field arises from the orbital angular momentum of the electron, it
is proportional to I; if the magnetic moment p is that of the electron spin, then it is
proportional to s. It then follows that the energy of interaction is proportional to the scalar
product 5 - I :

energy of interaction = —p-Bocs 1
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13.31 The levels of a 2P term arising from spin-
orbit coupling. Nete that the low-j level fics below
the high-j level.
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13.32 The energy-level diagram for the formation
of the sodium D lines. The splitting of the spectral
lines (by 17 em™') reflects the splitting of the levels
of the 2P term.
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" Next, we note that the total angular momentum is the vector sum of the spin and orbital

momenta: j = [ + 5. The magnitude of the vectbr j is calculated by evaluating
=(F+s8)-(I+s)=I-1+s-5+2s-1
That is,
s-i=3- P -5}

This is a classical result. To make the transition to quantum mechanics, we treat all the
quantities as operators, and write

§-01=Yj?-0"-5% (42)
At this point, we evaluate the expectation value:
(ks sl 01,0, 8) = 30, 4,512 = 12 = 821, 1, 5)
=G+ 1) = I+ 1) = s(s + 1)}m2

Then, by inserting this expression into the formula for the energy, and writing the constant
of proportionality as hcA/A*, we obtain egn 41. The calculation of A is much more
complicated: see Further reading.

(43)

Hlustration

..................................................... B

The unpaired electron in the ground state of an alkali metal atom has I =0, so j = {-
Because the orbital angular momentum is zero in this state, the spin-orbit coupling energy is
zero (as is confirmed by setting j = s and / = 0 in eqn 41). When the electron is excited to
an orbital with / = 1, it has orbital angular momentum and can give rise to a magnctic field
that interacts with its spin. In this configuration the electron can have; 3 gorj= i' and the
energies of these levels are

Eyp = $heA{3%3 —1x2-}x3} =lheA
Eip=3heA{ix3 - 1x2-1x3} = —hcA

The corresponding energies are shown in Fig. 13.31. Note that the ‘centre of gravity' of the
levels is unchanged, because there are four states of energy 1 hed and two of energy —hcA.

The strength of the spin-orbit coupling depends on the nuclear charge. To understand
why this is so, imagine riding on the orbiting electron and seeing a charged nucleus
apparently orbiting around us (like the sun rising and setting). As a result, we find ourselves
at the centre of a ring of current. The greater the nuclear charge, the greater this current,
and therefore the stronger the magnetic field we detect. Because the spin magnetic moment
of the electron interacts with this orbital magnetic field, it follows that, the greater the
nuclear charge, the stronger the spin-orbit interaction. The coupling increases sharply with
atomic number (as Z* in a hydrogenic atom). Whereas it is only small in H (giving rise to
shifts of energy levels of no more than about 0.4 cm™'), in heavy atoms like Pb it is very
large [giving shifts of the order of thousands of reciprocal centimetres).

(b) Fine structure

Two spectral lines are observed when the p electron of an electronically excited alkali metal
atom undergoes a transition and falls into a lower s orbital. One line is due to a transition
starting in a j = 3 level and the other line is due to a transition starting in the j = } level of
the same configuration. The two lines are an example of fine structure. Fine structure can be
clearly seen in the emission spectrum from sodium vapour excited by an electric discharge
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13.37 A summary of the types of interaction that
are responsible for the various kinds of splitting of
energy levels in atoms. For light atoms, magnetic
interactions are small, but in heavy atoms they may
dominate the clectrostatic (charge-charge)
interactions.
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(for example, in one kind of street lighting). The yellow line at 589 nm (close to
17000 cm™") is actually a doublet composed of one line at 589.76 nm (16956.2 cm™') and
another at 589.16 nm (16973.4 cm™'); the componénts of this doublet are the D lines’ of
the spectrum (Fig. 13.32). Therefare, in Na, the spin-orbit coupling affects the energies by
about 17 cm™L.

B LB R T G e i R R R LL 1 T e Tt

Fxample 13.5% Analsing a specirum for e spim-orbit coupling
constinl

The origin of the D lines in the spectrum of atomic sodium is shown in Fig. 13.32. Calculate
the spin-orbit coupling constant for the upper configuration of the Na atom.

Methad We see from Fig. 13.32 that the splitting of the lines is equal to the energy
separation of the j =3 and } levels of the excited configuration: This separation can be
expressed in terms of A by using eqn 41. Therefore, set the observed splitting equal to the
energy separation calculated from eqn 41 and solve the equation for 4.

Answee The two levels are split by
Ar=A{i3+1)-iG+1)) =23
The experimental value is 17.2 cm™'; therefore
-

A=%x(172em™") =11.5cm™

Comment The same calculation repeated for the other alkali metal atoms gives Li:
0.23 cm™'; K: 38.5 cm™': Rb: 158 cm™!; Cs: 370 cm™'. Note the increase of A with atomic
number (but more slowly than Z* for these many-electron atoms).

Seli-test 13.8 The configuration ... 4p°5d" of rubidium has two levels at 25 700.56 cm™'
and 25703.52 cm~! above the ground state. What is the spin-orbit coupling constant in
this excited state?

[1.18 cm™!)

13.9 Term symbols and selection rules

We have used expressions such as 'the j = § level of a configuration’. A term symbol, which
is a symbol looking like 2Py, or *D,, conveys this information much more succinctly. The
convention of using lower-case letters to label orbitals and upper-case letters to label
overall states applies throughout spectroscopy, not just to atoms.

A term symbol gives three pieces of information:

1. The letter (for example, P or D in the examples) indicates the total orbital angular
momentum quafitum number, L.

2. The left superscript in the term symbol (for example, the 2 in 2Py ;) gives the

multiplicity of the term.

The right subscript on the term symbol (for example, the § in 2Py ;) is the value of

the total angular momentum guantum number, J.

w

We shall now say what each of these statements means; the contributions to the energies
which we are about to discuss are summarized in Fig. 13.33.
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13.34 The total angular orbital momenta of a p
clectron and a d electron correspond to L = 3 2, and
1 and reflect the different relative orientations of the
two momenta.
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(a) The total orbital angular momentum

When several electrons are present, it is necessary to judge how their individual orbital
angular momenta add together or oppose each other. The total orbital angular momentum
quantum number, L, teils us the magnitude of the angular momentum through
{LiL + ])}'ﬂh. It has 2L + 1 orientations distinguished by the quantum number M,
which can take the values L,L —1,...,~L. Similar remarks apply to the total spin
quantum number, S, and the quantum number M, and the total angular momentum

" quantum number, 7, and the quantum number M,. The value of L (a non-negative integer)

is obtained by coupling the individual orbital angular momenta by using the Clebsch-
Gordan series: '

L=b+b+h=1 ) =b] | (44)

The modulus signs are attached to /; — I, because L is non-negative. The maximum value,
L =1, +1,, is obtained when the two orbital angular momenta are in the same direction;
the lowest value, |I; — L, is obtained when they are in opposite directions. The intermediate
values represent possible mtermediate relative orientations of the two momenta (Fig. 13.34).
For two p electrons (for which I, = [, = 1), L = 2, 1,0. The code for converting the value of
L into a letter is the same as for the s, p,d,f, ... designation of orbitals, but uses upper-case
Roman letters:

L: 0 1 2 3 4 5 6 ...
- 8 P D F G H -

Thus, a p? configuration can give rise to D, P, and S terms. The terms differ in energy on
account of the different spatial distribution of the electrons and the consequent differences
in repulsion between them.

A closed shell has zero orbital angular momentum because all the individual orbital
angular momenta sum to zero. Therefore, when working out term symbols, we need consider
only the electrons of the unfilled shell. In the case of a single electron outside a closed shell,
the value of L is the same as the value of /; so the configuration [Ne]3s' has only an S term.

Examplc 13.6 Deriving the total angular mementum of a configuration
Find the terms that can anse from the configurations (a) 42, (b) p’

Mcthod Use the Clebsch- Gordan series and begin by finding the minimum valur: of L(so
that we know where the series terminates). When there are more than two electrons to
couple together, use two series in succession: first couple two electrons, and then couple the
third to each combined state, and so on.

I =2




(a)

13.35 For two electrons (which have s = 1), only
two total spin states are permitted (S = 0, 1). The
state with 5 = 0 can have énly one value of M
(Mg = 0) and is a singlet; the state with § = | can
have any of three values of Mg (+1,0,—1) and is a
triplet. The vector representations of the singlet and
triplet states are shown in Figs. 13.20 and 13.26,
respectively.

11.9 TERM SYMBOLS AND SELECTION RULES ar?

Answer () Minimum value: |I, — | = |2 - 2| = 0. Therefore,
L=2+2242-1,...,0= 43210

corresponding to G, F, D, P, § tcrms, respectnvcly (b) First couplmg minimum value:
[1- l| = (. Therefore,
=1+1,1+4+1- 1,...,0=2,1,0
Now couple I; with L' = 2, to give L = 3,2, 1; with L' = 1, to give L = 2, 1,0; and with
L' =0, to give L = 1. The overall result is
L=3221110
giving one F, two D, three P, and one S term,

Self-test 13.9 Repeat the question for the configurations (a) f'd" ‘and (b) d°.
[(a) H, G, F, D, P; (b) 1, 2H, 3G, 4F, 5D, 3P, 5]

CF TP aoie S Ty

(b) The multiplicity

When there are several electrons to be taken into account, we must assess their total spin
angular momentum quantum number, S (a non-negative integer or half integer).? Once
again, we use the Clebsch~Gordan series in the form

S=I]+J‘2,31+52—l,...,|5|—'.'I'z' (45)

to decide on the value of §, noting that each electron has s =§. which gives § = 1,0
(Fig. 13.35). If there are three electrons, the total spin angular momentum is obtained by
coupling the third spin to each of the values of § for the first two spins, which results in
§=3lands=1

The multiplicity of a term is the value of 25 + 1. When § = 0 (as for a closed shell) the
electrons are all paired and there is no net spin: this arrangement gives a singlet term, such

as 'S. A single electron has § = s = 4, 50 a configuration such as [Ne]3s' can give rise to a
doublet term, 2S. The configuration [Ne]3p' likewise is a doublet, 2P. When there are two
unpaired electrons § = 1,50 25 + | = 3, giving a triplet term, such as >D. We discussed the
relative energies of singlets and triplets in Section 13.7 and saw that their energies differ on
account of the different effects of spin correlation.

(c) The total angular momentum

As we have seen, the quantum number ; tells us the relative orientation of the spin and
orbital angular momenta of a single electron. The total angular momentum quantum
number, J (a non-negative integer or haif integer), does the same for several electrons. If
there is a single clectron outside a closed shell, J = j, with j either /+1 or |1 = 1]. The
[NeI3s' configuration-has j = } (because / = 0 and 5 = }), so the 2S term has a single level,

* which we denote %S, ;. The [Nc]3p' mnﬁgumtmn has [ = 1; therefore j = 3 and §; the 2P

term therefore has two levels, 2Py, and 2P, . These levels lie at dlffcrcnt cnergies on
account of the magnetic spin-orbit interaction.

If there are several electrons outside a closed shell we have to consider the coupling of all
the spins and all the orbital angular momenta. This complicated problem can be simplified
when the spin-orbit coupling is weak (for atoms of low atomic number] for then we can use
the Russell- Saunders coupling scheme. This scheme is based on the view that, if spin-orbit
couplug is weak, then it is effective only when all the orbital momenta are operating

8 Distinguish italic S, the total spin quantum number, from Roman S, the term label
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cooperatively. We therefore imagine that all the orbital angular momenta of the electrons
couple to give a total L, and that all the spins are similarly coupled to give a total 5. Only at
this stage do we imagine the two kinds of momenta coupling through the spin-orbit
interaction to give a total J. The permitted values of J are given by the Clebsch-Gordan
series

J=L+§,L+S—|,...,|L—S| (46)

For example, in the case of the *D term of the configuration [Ne]2p'3p', the permitted
values of J are 3,2, | (because *D has L = 2 and § = 1), s0 the term has three levels, *D;,
Dy, and *D,.

When L > S, the multiplicity is equal to the number of levels. For example, a *P term has
the two levels *P;, and 2P, and D has the three levels *Dy, *D,, and *D,. However, this
is not the case when L <S: the term S, for example, has only the one level 28, .

Example 13.7 Deriving lerm symbhols

Write the term symbols arising from the ground-state configurations of (a) Na and (b) F, and
{c) the excited configurations 1522s22p'3p' of C.

Methnd Begin by writing the configurations, but ignore inner closed shells. Then couple the
orbital momenta to find L and the spins to find S. Next, couple L and § to find J. Finally,
express the temm as 5*!{L},, where {L} is the appropriate letter. For F, for which the
valence configuration is 2p°, treat the single gap in the closed-shell 2p° configuration as a
single particle.

Answer (a) For Na, the configuration is [Ne]3s', and we consider the single 35 electron.
Because L =1/=0 and § =s=1, it is possible for J =j =5 =1 only. Hence the term
symbol is 28, ,,.

(b) For F, the configuration is [He]2s*2p°, which we can treat as [Ne]2p~' (where the
notation 2p~' signifies the absence of a 2p electron). Hence L =1, and § =5 =4 Two
values of J = j are allowed: J =3, . Hence, the term symbols for the two levels are P,
P, .

(c) ‘;:or C, the configuration is effectively 2p'3p'. This is a two-electron problem, and
I, =l =15 =s, =it follows that L = 2,1,0and § = 1,0. The terms are therefore *D
and 'D,*Pand 'P, and *S and 'S. For °D, L = 2 and § = i; hence J = 3,2, 1 and the levels
are ’D;, °D,, and *D,. For 'D, L = 2 and § = 0, so the single level is ' D,. The triplet of levels
of 3P is °P,, *P;, and *Py, and the singlet is 'P,. For the *S term there is only one level, 35,
(because J = 1 only), and the singlet term is 'S,.

Comment The reason why we have treated an excited configuration of carbon is that in the
ground configuration, 2p%, the Pauli principle forbids some terms, and deciding which
survive ('D, P, 'S, in fact) is quite complicated. That is, there is a distinction between
‘equivalent electrons’, which are electrons that occupy the same orbitals, and ‘inequivalent
electrons’, which are electrons that occupy different orbitals.

Self-test 13,10 Write down the terms arising from the configurations (a) 25'2p', (b)
2p'3d".

[(a) °Py, *Py, *Py. 'Py;

(h) 3F4, JF]. 3[:2' ]FJ, 3D3| JD2. ’D[u IDZ'

Py, *Py, *Po, P

o —— g it A = e o o 8+ S
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13.36 The correlation diagram for some of the
states of a two-electron system. All atoms lie
between the two extremes but, the heavier the

- atom, the closer it lies to the pure jj-coupling case.
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Russell-Saunders coupling fails when the spin-orbit coupling is large (in heavy
atoms). In that case, the individual spin and' orbital momenta of the electrons are
coupled into individual j values; then these momenta are combined into a grand total, J.
This scheme is called jj-coupling. For example, in a p* configuration, the individual
values of j are % and } for each electron. If the spin and the orbital angular momentum
of each electron are coupled together strongly, it is best to consider each electron asa
particle with angular momentum j = 2 or J. These individual total momenta then couple as
follows:

h=3andj,=3 J=3,21,0
f|=%aﬂdjz=% J=2,1
J=21

J'1=% andj2=%
h=4andj=1 J=1,0

For heavy atoms, in which jj-coupling is appropriate, it is best to discuss their energies using
these quantum numbers.

Although jj-coupling should be used for assessing the energies of heavy atoms, the term
symbols derived from Russell-Saunders coupling can still be used as labels. To see why this
procedure is valid, we need to examine how the energies of the atomic states change as the
spin-orbit coupling increases in strength. Such a correlation diagram is shown in Fig. 13.36.
It shows that there is a correspondence between the low spin-orbit coupling (Russell-
Saunders coupling) and high spin-orbit coupling (jj-coupling) schemes, so the labels derived
by using-the Russell-Saunders scheme can be used to label the states of the Ji-coupling
scheme.

(d) Selection rules

Any state of the atom, and any spectral transition, can be specified by using term symbols.
For example, the transitions giving rise to the yellow sodium doublet (which were shown in
Fig. 13.32) are

3! Py = 35128, 3pt Py, 35 2,

By convention, the upper term precedes the lower. The corresponding absorptions are
therefore denoted

2F':A,rz‘—zsl/z 2Pl,.fz ‘—251/2

(The configurations have been omitted.) )

We have seen that selection rules arise from the conservation of angular momentum
during a transition and from the fact that a photon has a spin of 1. They can therefore be
expressed in terms of the term symbols, because the latter carry information about angular
momentum. A detailed analysis leads to the following rules:

AS=0 AL=0,+1 A= 41

47
Al=0,+1, butS =0+ J=0 (“7)

The rule about AS (no change of overall spin) stems from the fact that the light does not
affect the spin directly. The rules about AL and A/ express the fact that the orbital angular
momentum of an individual electron must change (so A/ = + 1), but whether or not this
results in an overall change of orbital momentum depends on the coupling.

The selection rules given above apply when Russell-Saunders coupling is valid (in light
atoms). If we insist on labelling the terms of heavy atoms with symbols like D, then we shall
find that the selection rules pmbrcssivety fail as the atomic number increases because the
quantum numbers § and L become ill defined as jj-coupling becomes more appropriate, As
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13.37 The different energies of the m, states in a
magnetic field are represented by different rates of
precession of the vectors representing the angular
momentum,
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explained above, Russell-Saunders term symbols ire only a convenient way of labelling the
terms of heavy atoms: they do not bear any direct relation to the actual angular momenta of
the electrons in a heavy atom. For this reason, transitions between singlet and triplet states
(for which AS'= + 1), while forbidden in light atoms, are allowed in heavy atoms,

13.10 The effect of magnetie ficlds

Orbital and spin angular momenta give rise to magnetic moments (recall the evidence
provided for electron spin by the Stern-Gerlach experiment, Section 12.8). It can be
expected that the application of a magnetic field should modify an atom’s spectrum. We
shall first establish how the energies of an atom depend on the strength of an external field
and then see how the spectrum is affected.

(a) The magnetic moment of an electron

The orbital angular momentum of an electron around the z-axis (which we now take as the
direction of the applied field) is mh. Because the component of magnetic moment on the z-
axis, Ji,, is proportional to the angular momentum around that axis, we can write

#, = yemih (48)
where 7, is a constant called the magnetogyric ratio of the electron. If the magnetic

moment is treated as arising from the circulation of an electron of charge —e, standard
electromagnetic theory gives

49

The negative sign (arising from the sign of the electron’s charge) shows that the orbital
magnetic moment of the electron is antiparallel to its orbital angular momentum (as was
depicted in Fig. 13.28). It follows that the possible values of u, are

e
Hy =~ 2m, xmyh = —jiym, (50)
where the Bohr magneton, g, is

eh
Hp =5

ohte:

(51)

Its numerical value is 9.274 x 1072 JT~'. The Bohr magneton is often regarded as the
fundamental quantum of magnetic moment.
The energy of a magnetic moment in a magnetic field of magnitude B in the z-direction
is®
E=—-uB (52)

Therefore, in the presence of a magnetic field, an electron in a state with quantum number
m, has an additionalcontribution to its energy given by

E,..= HymB (53)

The same expressian, but with s, replaced by M, , applies when the orbital magnetic moment
arises from several electrons.

A p electron has { = 1 and m = 0, + 1. In the absence of a magnetic field, these three
states are degenerate. When a field is present, the degeneracy is removed: the state with

9 This is™a result from standard magnetic theory. B i actually the magnetic induction, and i measured in tesla, T,
IT=1kgs A" Ineunit gauss, G, s aiso occasonally wsea: | T = ¢ G

26—B
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13.38 The normal Zeeman effect. On the left, when
the field is off, a single spectral line is observed.
When the field is on, the line splits into three, with
different polarizations. The circularly polarized lines
are called the o-lines; the plane-polarized lines are
called n-lines. Which line is observed depends on
the orientation of the observer.
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m; = +1 moves up in energy by ug B, the state with m; = 0isunchanged, and the state with
m; = —1 moves down by ugB:

Eq=+mB  E;=0 E_ | =-4B

The different energies arising from an interaction with an external field are sometimes
represented on the vector model by picturing the vectors as precessing, or sweeping round
their cones, with the rate of precession proportional to the energy of the state (Fig. 13.37).

The spin magnetic moment of an electron is also proportiona to its angular momentum.
Hawever, it is not given by y.m.h but by about twice this value:

M, =g yembh g, =2.002319... (54)

The extra factor g is called the g-value of the electron, The factor 2 (as distinct from
2.0023) is derived from the Dirac equation; the additional 0.0023 arises from interactions of
the electron with the electromagnetic fluctuations in the Vacuum that surrounds the
electron. The energy of an electron in a state m, in a magnetic fiefd of magnitude B in the z-
direction is

Em. = —gc}l:m,hb‘ = geJ“BmIB (SSJ

The same expression, but with m, replaced by Mg, applies to the total magnetic moment
arising from the spin of several electrons.

(b) The Zeeman effect

The Zeeman effect is the modification of an atomic spectrum by the application of a strong
magnetic field. In particular, the normal Zeeman effect is the observation of three lines in
the spectrum where, in the absence of the field, there is only one (Fig. 13.38). The splitting is
in fact very small: a field of 2 T (20 kG) is needed to produce a splitting of about 1 cm~!,
which should be compared with typical optical transition wavenumbers of 20000 cm~! and
more. .
Much more common than the normal Zeeman effect is the anomalous Zeeman effect, in
which the original line splits into more than three components. The origin of this complexity
is the anomalous magnetic moment of electron spin, which results in a more complicated
splitting pattern.
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Exercises

13.1 (a) When ultraviolet radiation of wavelength 58.4 nm from a
helium lamp is directed on to a sample of krypton, electrons are
ejected with a speed of 1,59 x 10% ms~'. Calculate the ionization
energy of krypton.

13.1 (b) When ultraviolet radiation of wavelength 58.4 nm from a
helium lamp is directed on to a sample of xenon, electrons are ejected
with a speed of 1.79 x 10° ms~'. Calculate the ionization energy of
xenon.

13.2 (a) Consider the 2s radial wavefunction. Show that it has two
extrema in its amplitude, and locate them.

13.2 (b) Consider the 35 radial wavefunction. Show that it has three
extrema in its amplitude, and locate them.

13.3 (a) Locate the radial nodes in the 3s orbital of an H atom.,
13.3 (b) Locate the radial nodes in the 3p orbital of an H atom.

13.4 (a) The wavefunction for the ground state of a hydrogen atom
is Ne~"/%, Determine the normalization constant N.

13.4 (b) The wavefunction for'the 2s orbital of a hydrogen atom is
N(2 — rfap)e />, Determine the normalization constant .

13.5 (a) Calculate the average kinetic and ‘borcntial energies of an
electron in the ground state of a hydrogen atom.

13.5 (b) Calculate the average kinetic and potential energies of a 25
electron in a hydrogenic atom of atomic number Z.

13.6 (a) Write down the expression for the radial distribution -

function of a 2s electron in a hydrogenic atom and determine the
radius at which the electron is most likely to be found.

13.6 (b) Write down the expression for the radial, distribution
function of a 3s electron in a hydrogenic atom and determine the
radius at which the electron is most likely to be found. )
13.7 (a) What is the orbital angular momentum of an electran in the
orbitals (a) 1s, (b) 3s, [c) 3d? Give the numbers of angular and radial
nodes in each case.

13.7 (b) What s the orbital angular momentum of an electron in the
orbitals (a) 4d, (b) 2p, (c) 3p? Give the numbers of angular and radial
nodes in each case.

13.8 (a) Calculate the permitted values of j for (a) a d electron, (b) an
[ electron. ;

13.8 (b) Calculate the permitted values ofj for (a) a p electron, (b) an
h electron.

13.9 (@) An electron in two different states of an atom is known to
have j =42 and 1. What is its orbital angular momentum quantum
number in each case?

13.9 (b) What are the allowed total angular momentum quantum
numbers of a composite system in which j, = 5 and j, = 3?

13.10 (a) State the orbital degeneracy of the levels in a hydrogen
atom that have energy (a) —hcRy; (b) — JhcRy; (@) — L heRy,.

13.10 (b) State the orbital degeneracy of the levels in a hydrogenic
atom (Z in parentheses) that have energy (a) —4hcR, 0 (2), (b)
—3heR yom (4), and (@) —heR o (5).

13.11 (a) What information does the term symbol 'D, provide
about the angular momentum of an atom?

13.11 (b) What information does the term symbol *F, provide about
the angular momentum of an atom?

13.12 (a) At what radius does the probability of finding an electron
at a point in the H atom fall to 50 per cent of its maximum value?

13.12 (b) At what radius in the H atom does the radial distribution
function of the ground state have (a) 50 per cent, (b) 75 per cent of its
maximum value?

13.13 (a) Which of the following transitions are allowed in the
normal electronic emission spectrum of an atom: (a) 2s — 1s, (b)
2p — 15, [c) 3d — 2p?
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13.13 (b) Which of the following transitions are allowed in the
normal electronic emission spectrum of an atom: (a) 54 — 2s, (b)
5p — 3s, (c) 5p = 3f7 .

13.14 (a) How many electrons can occupy the following subshells:
(a) 1s, (b) 3p, (c) 34, and (d) 6¢7

13.14 (b) How many electrons can oceupy the following subshells:
(a) 25, (b) 44, (c) 6f, and (d) 6h?

13.15 (a) (a) Write the electronic configuration of the Ni2*+ ion. (b)
What are the possible values of the total spin quantum numbers § and
M; for this ion?

13.15 (b) (a) Write the electronic configuration of the V2* jon. (b)
What are the possitif values of the total spin quantum numbers § and
M; for this ion?

13.16 (a) Suppose that an atom has (a) 2, [b) 3 electrons in different
orbitals. What are the possible values of the total spin quantum
number $? What is the multiplicity in each case?

13.16 (b) Suppose that an atom has (a) 4, (b) 5, electrons in different
orbitals. What are the possible values of the total spin quantum
number 57 What is the multiplicity in each case?

13,10 ATOMIC STRUCTURE AND ATOMIC SPECTRA

13.17 (a) What atomic terms are possible for the electron
configuration ns'nd'? Which term is likely to lie lowest in
energy? .

13.17 (b) What atomic terms are possible for the electron
configuration np'nd'? Which term is likely to lie lowest in energy?
13.18 (a) What values of J may occur in the terms (a) 'S, (b) 2P, (c)
3P? How many states (dlstinguished by the quantum number M,)
belong to each level?

13.18 (b) What values of J may occur in the terms (a) *D, (b) *D, (c)
*G? How many states (distinguished by the quantum number M)
belong to each level?

13.19 (a) Give the possible term symbols for (a) Li[He]2s', (b)
Na [Ne]3p!.

13.19 (b) Give the possible term symbols for (a) Sc[Ar]3d"4s?, (b)
Br [Ar]3d'4524p5.

13.20 (a) Calculate the magnetic induction, 3, required to produce a
splitting of 1.0 em~! between the states of a 'P term. .

13.20 (b) Calculate the magnetic induction, B, required to produce a
splitting of 0.784 cm™' between the states of a 'D term.

Problems

Numerical problems

13.1 The Humphreys series is another group of lines in the spectrum
of atomic hydrogen. It begins at 12 368 nm and has been traced to
3281.4 nm. What are the transitions involved? What are the
wavelengths of the intermediate transitions?

13.2 A series of lines in the spectrum of atomic hydrogen lie at
656.46 nm, 486.27 nm, 434.17 nm, and 410.29 nm. What is the
wavelength of the next line in the series? What is the ionization
energy of the atom when it is in the lower state of the transitions?

13.3 The Li** ion is hydrogenic and has a Lyman series at
740747 cm™', 877924 cm™', 925933 cm™!, and beyond. Show
that the energy levels are of the form —hcR /n? and find the value of
R for this ion. Go on to predict the wavenumbers of the two longest-
wavelength transitions of the Balmer series of the ion and find the
ionization energy of the ion.

13.4 A series of lines in the spectrum of neutral Li atoms rise from
combinations of 15*2p' 2P with 1s*nd" 2D and occur at 610.36 nm,
460.29 nm, and 413.23 nm. The d orbitals are hydrogenic. It is known
that the ?P term lies at 670.78 nm above the ground state, which is

15725 28, Calculate the ionization energy of the ground-state atom.

13.5 The characteristic emission from K atoms when heated is purple
and lies at 770 nm. On close inspection, the line is found to have two
closely spaced components, one at 766.70 nm and the other at
770.11 nm. Account for this observation, and deduce what
information you can.

13.6 Calculate the mass of the deuteron given that the first line in
the Lyman series of H lies at 82259.098 cm~! whereas that of D lies

at 82281.476 cm™. Calculate the ratio of the ionization energies of
H and D.

13.7 Positronium consists of an electron anda positron (same mass,
oppasite charge) orbiting round their common centre of mass. The
broad features of the spectrum are therefore expected to be
hydrogen-like, the differences arising largely from the mass
differences. Predict the wavenumbers of the first three lines of the
Balmer series of positronium. What is the binding energy of the
ground state of positronium?

13.8 In 1976 it was mistakenly believed that the first of the
‘superheavy' elements had been discovered in a sample of mica. Its
atomic number was believed to be 126. What is the most probable
distance of the innermost electrons from the nucleus of an atom of
this element? (In such elements, relativistic effects are very important,
but ignore them here.)

Theoretical problems

13.9 Is an electron further from the nucleus on average when it is in
3 2s orbital or a 2p orbital?

13.10 What is the most probable point [not radius) at which a 2p
electron will be found in the hydrogen atom?

13.11 Show by explicit integration that (a) hydrogenic 1s and 2s
orbitals, (b) 2p, and 2p, orbitals are mutually orthogonal.

13.12 Determine whether the p, and p, orbitals are eigenfunctions of
I..1f not, does a linear combination exist that is an eigenfunction of /,?
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13.13 Show that /, and /* both commute with the hamiltonian for a
hydrogen atom. What is the significance of this result?

13.14 The 'size’ of an atom is sometimes considered to be measured
by the radius of a sphere that contains 90 per cent of the charge
density of the electrons in the outermost occupied orbital. Calculate
the 'size’ of a hydrogen atom in its ground state according to this
definition.

13.15 One of the most famous of the obsolete theories of the
hydrogen atom was proposed by Bohr. It has been replaced by
quantum mechanics but, by a remarkable coincidence (not the only
one where the Coulomb potential is concerned), the energies it
predicts agree exactly with those obtained from the Schriidinger
equation. In the Bohr atom, an electron travels in a circle around the
nucleus. The Coulombic force of attraction (Ze? /4me,r?) is balanced
by the centrifugal effect of the orbital motion. Bohr proposed that
the angular momentum is limited to integral values of 4. When the
two forces are balanced, the atom remains in a stationary state until it
makes a spectral transition. Calculate the energies of a hydrogenic
atom by using the Bohr model.

13.16 The Bohr model of the atom is specified in Problem 13.15.
What features of it are untenable according to quantum mechanics?
How does the Bohr ground state differ from the actual ground state?
Is there an experimental distinction between the Bohr and quantum
mechanical models of the ground state?

13.17 Atomic units of length and energy may be based on the
properties of a particular atom. The usual choice is that of a hydrogen
atom, with the unit of length being the Bohr radius, a,, and the unit
of energy being the energy of the 1s orbital. If the positronium atom
(e*,e”) were used instead, with analogous definitions of units of
length and energy, what would be the relation between these two sets
of atomic units?

Additional problems supplied by Carmen Giunta
and Charles Trapp

13.18 The diameters of atoms can be estimated from their densities
in a condensed state. Calculate the diameters of hydrogen and
uranium atoms in this manner from information in the Data section.
One finds that all atoms are roughly the same size, with
r=0.3+0.1 nm. Why is that? In a plot of atomic radius against
atomic number some periodicity js evident, but not to the extent seen
in a plot of first ionization energies against atomic number. Explain
this observation. *

13.19 In the Bohr model of the hydrogen atom, the electron orbits
the nucleus at a distance of 52.9 pm, Calculate the speed of the
electron in the first Bohr orbit. Considering the electron and proton to
be classical charges, calculate the electrical field strength at the
electron and the magnetic field strength at the proton. Compare to
field strengths commonly available in the laboratory.

13.20 Use the radial wave equation for the hydrogen atom to
demonstrate that the energies of the 25 and 2p orbitals are identical.

385

13.21 Dimensionless ratios that occur in the physical sciences are
thought to be of fundamental significance, These ratios tend to be
clustered around (10°°)", where n = 0, 1,2, 3, and 4. One such ratio in
the n = 0 group is the mass ratio of the two fundamental particles,
the proton and the electron. Scientists are puzzled as to why this ratio
should be close to 2000. The precise value of the ratio is determined
by comparison of the atomic spectral lines in H and He™. (a) Derive
the following relations for the first line in any of the series (Lyman,
Balmer, etc.) for H and He*:

1=~ -
_3He T VM _ Hue — Hu
Yu Hu

where y¢ is a reduced mass. (b) Calculate my/m, from the following
data.

ay

! L]

Alny = ny)/am  R;/em™!
H 121.5664 109677.7
He' 30.3779 109722.4

First do the calculation from the wavelength data; then derive a
formula for the mass ratio in terms of the Rydberg constants R of the
species J and repeat the calculation of the mass ratio from that data.

13.22 Highly excited atoms are said to be in a high Rydberg state’
and have electrons with large principal quantum numbers. Such
‘Rydberg atoms' have several unusual properties and have attracted
much attention in recent years, for example, in astrophysics and
radioastronomy. For hydrogen atoms with large n, derive a relation for
the separation of energy levels. Calculate this separation for n = 100;
also calculate the average radius, the geometric cross-section, and the
ionization energy. Could a thermal collision with another hydrogen
atom ‘ionize this Rydberg atom? What minimum’ velocity of the
second atom is required? Could a normal-sized neutral H atom simply
pass through the Rydberg atom leaving it undisturbed? What might
the radial wavefunction for 2 100s orbital be like?

13.23 W.P. Wijesundera, S.H. Vosko, and F.A. Parpia (Phys. Rev. A 51,
278 (1995)) attempted to determine the electron configuration of the
ground state of lawrencium, element 103. The two contending
configurations are [Rn)5f'47s°7p! and [Rn]5f'*647s%. Write down the
term symbols for each of these configurations, and identify the lowest
level within each configuration. Which level would be lowest
according to a simple estimate of spjn-orbit coupling?

13.24 Stern-Gerlach splittings of atomic beams are small and
require either large magnetic field gradients or long magnets for their
observation. For a beam of atoms with zero orbital angular
momentum, such as H or Ag, the deflection is given by
v = +{ugl?/4E)dB/dz, where L is the length of the magnet, £,
is the average kinetic energy of the atoms in the beam, and dB/dz is
the magnetic field gradient. (a) Use the Maxwell-Boltzmann velocity
distribution ta show that the average translational kinetic energy of
atoms emerging as a beam from a pinhole in an oven at temperature
Tis 2kT. [b) Calculate the magnetic field gradient required to produce
asplitting of 1.00 mm in a beam of Ag atoms from an oven at 1000 K
with a magnet of length 50 c¢m.
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Molecular structure

\{

The concepts developed in Chapler 13, particularly those of orbitals, can be extended to a
description of the electronic structures of molecules. There are two principal quantum
mechanical theories of moleculor electronic structure. In valence-hond theory the starting
point is the concept of the shared electron pair. We sec how 1o wrile the wovefunction for
such o pair, and how it may he extended to occount for the structures of a wide voriely of
molecules. The theory introduces the concepts of o and m bonds, prometion, and hybridiza-
tion that are used widely in chemustry, In molecular orbital theory (with which the bulk of the
chapter is concerned), the ror.1r'r,nt‘nfnrnmjr arbital is extended (o that of moleculor orbital,
which is a wavefuntiion that spreads over oll the atoms in a molecule. This thro?y may be
extended to the description of the clectronic propertics ol §olids, and used to occount for
electricol conduction and semiconduction.

The Born-Oppenheimer approximation

All theories of molecular structure make the same simplification at the outset. Whereas the
Schrédinger equation for a hydrogen atom can be solved exactly, an exact solution is not
possible for any molecule because the simplest molecule consists of three particles (two
nuclei and one electron). The Born-Oppenheimer approximation is therefore adopted, in
which it is supposed that the nuclei, being so much heavier than an electron, move relatively
slowly, and may be treated as stationary while the electrons move relative to them. We can
therefore think of the nuclei as being fixed at an arbitrary separation R, and then solve the
Schradinger equation for the wavefunction of the electrons alone.

The approximation is quite good for ground-state molecules, for calculations suggest
that the nuclei in H, move through only about 1 pm while the electron speeds through
1000 pm, so the error of assuming that the nuclei are stationary is small. Exceptions to the
approximation's validity include certain excited states of polyatomic molecules and the
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Energy

‘Da| o

14.1 A molecubsr potential energy curve. The
equilibrium bond length corresponds to the energy
minimum.

Al1)8(2)

A(2)B(1)

— .

A(1)B(2) + A(2)B(1)

Ennanced
electron density \

14.2 It is very difficult to represent valence-bond
wavefunctions because they refer to two electrons
simultaneously, However, this illustration is an
attempt. The atomic orbital for electron 1 is
represented by the black contours, and that of
electron 2 is represented by the green contours. The
top illustration represents A(1)B(2), and the middle
illustration represents the contribution A(2)8(1).
When the two contributions are superimposed,
there is interference between the black
contributions and between the green contributions,
resulting in an enhanced (two-electron) density in
the internuclear region.

14 MOLECULAR STRUCTURE

ground states of cations; both types of species are important when considering
photoelectron spectroscopy (Section 17.8) and mass spectrometry.

The Born-Oppenheimer approximation allows us.to select an internuclear separation, and
(in principle) to solve the Schridinger equation for the electrons at that nuclear separation,
Then we choose a different separation and repeat the calculation, and so on. In this way we
can explore how the encrgy of the molecule varies with bond length (and, in more complex
molecules, with angles too), and obtain a molecular potential energy curve (Fig. 14.1)." It is
called a potential energy curve because the kinetic energy of the stationary nuclei is zero.
Once the curve has been calculated or determined experimentally (by using the
spectroscopic techniques described in Chapters 16 and 17), we can identify the equilibrium
bond length (the internuclear separation at the minimum of the curve) and the bond
dissociation energy, Dy, which is closely related to the depth of the minimum below the
energy of the infinitely widely separated atoms.”

Valence-bond theory

The valence-bond theory (VB theory) of bonding was the first to be developed. The language
it introduced, which includes concepts such as spin-pairing, ¢ and n bonds, and
hybridization, is widely used throughout chemistry. It is particularly widespread in the
description of the properties and reactions of organic compounds.

14.1 The hydrogen molecule

The simplest molecule with an electron pair bond is H,. We shall use ‘this molecule to
introduce the basic concepts of the theory.

(a) The spatial wavefunction '
The wavefunction for an electron on each of two widely separated H atoms is
-

V= Yrga(r Wia ()

if electron 1 is on atom A and electron 2 is on atom B. For simplicity, we shall write this
wavefunction as y = A(1)B(2). When the atoms are close, it is not possible to know
whether it is electron 1 that is on A or electron 2. An equally valid description is therefore
i = A(2)B(1), in which électron 2 is on A and electron 1 is on B. When two outcomes are
equally probable, quantum mechanics instructs us to describe the true state of the system as
a superposition of the wavefunctions for each possibility (Section 11. 5d] SO a better
description of the molecule than either wavefunction alone is

¥ =A(1)B(2) + A(2)B(1) (m

(These linear combinations are not normalized.) It turns out (as shown in the Justification
below) that the cumpinatinn with lower energy is the one with a + sign, so the valence-
bond wavefunction of the H, molecule is

¥ = A(1)B(2) + A(2)B(1) @)

1 When more than one molecular parameter is changed in a polyatomic molecule, we oblain a potential energy surface.

2 The drssociation energy differs from the depth of the well by an energy equal to the zero-point vibrational energy of the bonded
“atoms. If the depth of the well s denoted D, then D, = D, - ;hm, where w 15 the vibrational frequency of the bond.
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energy of the molecule as the bond length is

changed. The calculated curve refers to the valence-

bond model,

14 1 THE HYDROGEN MOLECULE 389

Justification 14.1

The VB wavefunction for H, is an approximate solution of the Schrodinger equation in
which the potential energy of the two electrons is

e /11 1 1 &
Veee——t—+—+—] +
Ameg \Far a2z e fex/  AmEr
The coordinates are specified in (1). The four terms in parentheses are the attractive
contribution from the interaction between the electrons and the nuclei. The remaining
term is the repulsive interaction between the two electrons. The energy of the molecule is
calculated by evaluating the expectation value of the hamiltonian
n R &
—V e ViiV—
2mg " 2my 2 R
with the expression for ¥ given above; the final term is the potential energy of the
nucleus-nucleus repulsion. When the wavefunctions in eqn 1 are used, the expectation
value turns out to be

H=-

(3)

where Ey is the energy of a hydrogen atom and J and X are complicated collections of
integrals over the wavefunctions. These integrals represent the interaction of the electrons
with the nuclei and the mutual repulsion of the electrons. The integral S is the overlap
integral, which is discussed in more detail shortly. The integrals J and X are both negative
and the lower energy is achieved with the + sign in egn 1.

=

The formation of the bond in H, can be pictured as due to the high probability that the
two electrons will be found between the two nuclei and hence will bind them together.
More formally, the wave pattern represented by the term A(1)B(2) interferes constructively
with the wave pattern represented by the contribution A(2)B(1), and there is an
enhancement in the value of the wavefunction in the internuclear region (Fig. 14.2).

The electron distribution described by the wavefunction in eqn 2 is called a o bond. A o
bond has cylindrical symmetry around the internuclear axis, and is so called because, when
viewed along the internuclear axis, it resembles a pair of electrons in an s orbital (and ¢ is the
Greek equivalent of 5). Mare precisely, the electrons in a @ bond have zero orbital angular
momentum about the internuclear axis®

The molecular potential energy curve for H, is calculated by changing the internuclear
separation R and evaluating the expectation value of the energy at each selected separation.
The resulting graph is shown in Fig. 14.3. The energy falls below that of two separated H
atoms as the two atoms are brought within bonding distance and each electron is free to
migrate to the other atom. However, the energy reduction that follows from this process is
counteracted by an increase in energy from the Coulombic repulsion between the two
positively charged. nuclei. This positive contribution to the energy becomes large as R
becomes small. Consequently, the total potential energy curve passes through a minimum
and thcn-cii[nbs to a strongly positive value at small internuclear separations.

(b) The role of electron spin
So far, the electron spin has not played a role in the argument, yet a chemist's picture of a
covalent bond is one in which the spins of two electrons pair as the atomic orbitals overlap.

3 Recall from Section 126 that the orbital anqular momentum of an electron 15 related to the number of angular nodes in ils
wavefunction, but there are no angular nodes in the wavefunction of a ¢ bond, 5o il has zero orbital angular momentum
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14.4 The orbital overlap and spin-pairing between
electrons in two collinear p orbitals that result in
the formation of a o bond.

— Internuclear
axis

14.5 A & bond results from spin pairing and orbital
overlap of p orbitals that approach side by side.
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The origin of the role of spin is that the wavefunction given in eqn 2 can be formed only by a
pair of electrons with opposed spins. Thus, spin-pairing is not an end in itself: it is a means of
achieving a spatial wavefunction (and the probability distribution it implies) that
corresponds to a low energy.

Justification 14.2

The Pauli principle requires the wavefunction of two electrons to change sign when the
labels of the electrons are interchanged (see Justification 13.7). The total VB wavefunction
for two electrons is

¥(1,2) = {A(1)B(2) + A(2)B(1)}a(1,2)

where o represents the spin component of the wavefunction. When the labels 1 and 2 are
interchanged, this wavefunction becomes
W(2,1) = {A(2)B(1) +A(1)B(2)}a(2,1)
={A(1)B(2) + A(2)B(1)}a(2,1)
The Pauli principle requires that ¥(2,1) = —-‘l’(l',Z), which is satisfied only if
a(2,1) = —a(1,2). The combination of two spins that has this property is

5. (1,2) = 577> (a(1B@) - )}

which corresponds to paired electron spins (Section 13.7). Therefore, we conclude that the
state of lower energy (and hence the formation of a chemical bond) is achieved if the
electron spins are paired.

14.2 Homonuclear diatomic molecules

The essential features of valence-bond theory are the pairing of. the electrons and the
accumulation of electro density in the internuclear region that stems from that pairing. The
same description can be applied to more complex molecules, such as homonuclear diatomic
molecules, which are diatomic molecules in which both atoms belong to the same element.
Nitrogen, N,, is an example. To construct the valence-bond description of N,, we consider
the valence electron configuration of each atom: ’

N 252p,2p,2p,

It is conventional to take the z-axis to be the internuclear axis, so we can imagine each atom
as having a 2p, orbital pointing towards a 2p, orbital on the other atom (Fig. 14.4), with the
2p, and 2p, orbitals perpendicular to the axis. A o bond is then formed by spin-pairing
between the two electrons in the opposing 2p, orbitals. Its spatial wavefunction is given by
eqn 2, but now A and B stand for the two 2p, orbitals.

The remaining 2p orbitals cannot merge to give o bonds as they do not have cylindrical
symmetry around the internuclear axis. Instead, the electrons in them merge to form two &t
bonds (Fig. 14.5)."A mbond arises from the spin-pairing of electrons in two p orbitals that
approach side-by-side. It is so called because, viewed along the internuclear axis, a & bond
resembles apair of electrons in a p orbital (and % is the Greek equivalent of p). More
precisely, an electron in a 7 bond has one unit of orbital angular momentum about the
internuclear axis, for the wavefunction has one angular node.

There are two n bonds in N,, one formed by spin-pairing in two neighbouring 2p, orbitals
and the other by spin-pairing in two neighbouring 2p, orbitals. The overall bonding pattern



14.6 The structure of bonds in a nitrogen molecule
which consists of one @ bond and two n bonds. The
electron density has cylindrical symmetry around
the internuclear axis.

14.7 A first approximation to the valence-bond
degcription of bonding in an H,0 molecule. Each o
bond arises from the overlap of an Hls orbital with
one of the O2p orbitals, This model suggests that
the bond angle should be 90°, which is significantly
different from the experimental value.
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in N, is therefore a @ bond plus two 7 bonds (Fig. 14.6), which is consistent with the Lewis
structure : N=N: for nitrdgen.

lllustration

.............................................. A G R SRR A A R RO R
To abtain the VB description of Cl,, note that the ground-state electron configuration of a Cl
atom is [Ar]3s23p23p23p!. A & bond can be formed between two atoms by spin-pairing of
the electrons in rhe'.?p: orbitals. This description is consistent with the Lewis structure
:ClI—Cl: for chlorine. The VB wavefunction for the bonding pair is the same as in eqn 2 but
with A and B now standing for the two Cl3p, orbitals.

Self-test 14.1 Describe the ground state of HCl in valence-bond terms.
leqn 2 with A = Yy, B = gy, ]

14.3 Polyatomic molecules

Each o bond in a polyatomic molecule is formed by the spin-pairing of electrons in any
atomic orbitals with cylindrical symmetry about the relevant internuclear axis. Likewise, 7
bonds are formed by pairing electrons that occupy atomic orbitals of the appropriate
symmetry.

The valence-bond description of H,0 will make this clear. The valence electron
configuration of an O atom is 2522pf2p;,2p}. The two unpaired electrons in the 02p
orbitals can each pair with an electron in an Hls orbital, and each combination results in the
formation of a o bond (each bond has cylindrical symmetry about the respective O-H
internuclear axis). Because the 2p; and 2p, orbitals lie at 90° to each other, the two a bonds
also lie at 90° to each other (Fig. 14.7). We can predict, therefore, that H,0 should be an
angular molecule, which it is. However, the theory predicts a bond"angle of 90°, whereas the
actual bond angle is 104.5°.

Example 14.1 Predicting the shape of a molecule by using valence-
bond theory

Describe the valence-bond structure of NH,, and predict the bond angle of the molecule on
the basis of this description.

Method Write down the ground-state configuration of an N atom, and decide which
electrons and orbitals can be used to form bonds. Then, from the spatial arrangement of
those atomic orbitals, infer the shape of the resulting molecule.

Answer The valence electron configuration of an N atom is N 2s°2p!2pl2pl. This
configuration suggests that three H atoms can form bonds by spin-pairing with the
electrons in the three half-filled 2p orbitals. The latter are perpendicular to each other, so we
predict a trigonal pyramidal molecule with a bond angle of 90°,

Comment The molecule is trigonal pyramidal, but the experimental bond angle is 107°. The
origin of this discrepancy is discussed below.

Self-test 14.2 Use valence-bond theory to suggest a shape for the hydrogen peroxide
molecule, H,0,.
[Each H-0-0 bond 90°]
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14.8 An sp® hybrid orbital formed from the

superposition of s and p orbitals on the same atom.

There are four such hybrids: each one points
towards the corner of a regular tetrahedron, The
overall electron density remains spherically
symmetrical.

i4 MOLECULAR STRUCTURE

{a) Promotion

An apparent deficiency of valence-bond theory is its inability to account for carbon's
tetravalence (its ability to form four bonds). The ground-state configuration of C is
25°2p!2p), which suggests that a carbon atom should be capable of forming only two bonds,
not four. This deficiency is overcome by allowing for promotion, the excitation of an
electron to an orbital of higher energy. Although electron promotion requires an investment
of energy, it is worthwhile if that energy can be more than recovered from the greater
strength or number of bonds that it allows to be formed. Promotion is not a 'real’ process in
which an atom somehow becomes excited and then forms bonds: it is a contribution to the
overall energy change that occurs when bonds form.

In carbon, for example, the promotion of a 25 electron to a 2p orbital can be thought of
as leading to the configuration 25'2p!2p!2p!, with four unpaired electrons in separate
orbitals. These electrons may pair with four electrons in orbitals_provided by four other
atoms (such as four H1s orbitals if the molecule is CH,), and hence form four @ bonds.

Although energy was required to promote the electron, it is more than recovered by the

atom’s ability to form four bonds in place of the two bonds of the unpromoted atom.
Promotion, and the formation of four bonds, is a characteristic feature of carbon because
the promotion energy is quite small: the promoted electron leaves a doubly occupied 2s
orbital and enters a vacant 2p orbital, hence significantly relieving the electron-electron
repulsion it experiences in the former,

(b) Hybridization

The description of the bonding in CH, (and other alkanes) is still incomplete because it
appears to imply the presence of three o bonds of one type (formed from Hls and C2p
orbitals) and a fourth o bond of a distinctly different character (formed from Hls and C2s).
This problem is overcome by realizing that the electron density distribution in the promoted
atom is equivalent to the electron density in which each electron occupies a hybrid orbital
formed by interference between the C2s and C2p orbitals. The origin of the hybridization
can be appreciated by thinking of the four atomic orbitals, which are waves centred on a
nucleus, as being like ripples spreading from a single point on the surface of a lake:* the
waves interfere destructively and constructively in different regions, and give rise to four
new shapes.

The specific linear combinations that give rise to four equivalent hybrid orbitals are

hy=s+p.+p,+p, Mh=s—p,—p,+p,

(4)
hy=s—p.+p,—p. hi=s+p.—p,—p,

As a result of the interference between the component orbitals, each hybrid orbital consists
of a large lobe pointing in the direction of one corner of a regular tetrahedron (Fig. 14.8).
The angle between the axes of the hybrid orbitals is the tetrahedral angle,
cos (—1/3) = 109.47°. Because each hybrid is built from one s orbital and three p orbitals,
it is called an sp* hybrid orbital.

Itis now easy to see how the valence-bond description of the CH, molecule leads to a
tetrahedral molecule containing four equivalent C-H bonds. Each hybrid orbital of the
promoted C atom confains a single unpaired electron; an H1s electron can pair with each
one, giving rise to a o bond pointing in a tetrahedral direction. For example, the (un-
normalized) wavefunction for the bond formed by the hybrid orbital 4, and the 1s, orbital
{with wavefunction that we shall denote 4) is

Y= h(1A2) + h (2)A(1)

4 Itis admittedly aifficult to imagine how a ripple resembling a p orbital could be contrved, but the general idea should be clear,



143 POLYATOMIC MOLECULES _ 393

Because each sp? hybrid orbital has the same composition, all four ¢ bonds-are identical
apart from their orientation in space (Fig. 14.9).

A further feature of hybridization is that a hybrid orbital has pronounced directional
character, it the sense that it has an enhanced amplitude in the internuclear region. This
directional character arises from the constructive interference between the s orbital and the
positive lobes of the p orbitals (Fig. 14.10). As a result of the enhanced amplitude in the
internuclear region, the bond strength is greater than for an s or p orbital alone. This
increased bond strength is another factor that helps to repay the promotion energy.

Hybridization can also be used to describe the structure of an ethene molecule,
H,C=CH,, and the torsional rigidity of double bonds. An ethene molecule is planar, with
HCH and HCC bond angles close to 120°. To reproduce the a bonding structure, we promote
each C atom to a 25'2p* configuration. However, instead of using all four orbitals to form
14.9 Excht 2p° hybwid arbital forms a & bond by hybrids, we form sp* hybrid orbitals by the superposition of an s orbital and two p orbitals.

overlap with an Hls orbital located at the corner of B i .
the tetrahedron. This: modelsccousits: for the As shown in Fig. 14.11, the three hybrid orbitals

equivalence of the four bonds in CH,. B =gef 2""2[?
1= Y
1/2 1/2
hy=s+(3)"p - (3) Py (5)
112 1/2
H=s= ) "p - () py

lie in a plane and point towards the corners oF an equilateral triangle. The third 2p orbital
(2p.) is not included in the hybridization, and its axis is perpendicular to the plane in which
the hybrids lie.

Constructive
interference

(a)
+ Lo+
£y

Destructive

interference
14.10 A maore detailed representation of the 14.11 (a) An s arbital and two p orbitals can be
formation of an sp' hybrid by interference hybridized to form three equivalent orbitals that
between wavefunctions centred an the same point towards the corners of an equilateral
atomic nucleus (To simplify the representation, we triangle. (b) The remaining, unhybridized p orbital

have ignored the radial node of the 2s orbital) 1s perpendicular to the plane.
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14,12 A representation of the structure of a double
bond in ethene; only the n bond is shown explicitly.
-

14.13 A representation, of the structure of a triple -
bond in ethyne; only the nt bonds are shown
explicitly. The overall electron density has cylindrical
symmetry around the axis of the molecule.
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The structure of CH,==CH, can now be described as follows. The sp®-hybridized C atoms
each form three o bonds by spin-pairing with either the k; hybrid of the other C atom or
with Hls orbitals. The o framework therefore consists of C-H and C-C o bondsat 120° to
each other. When the two CH, groups lie in the same plane, the two electrons in the
unhybridized p orbitals can pair and form a n bond (Fig. 14.12). The formation of this = bond
locks the framework into the planar arrangement, for any rotation of one CH, group relative
to the other leads to a weakening of the # bond (and consequently an increase in energy of
the molecule).

A similar description applies to ethyne, HC=CH, a linear molecule, Now the C atoms are
sp hybridized, and the o bonds are formed using hybrid atomic orbitals of the form

| =5+p; hIZS_pz (6)

These two orbitals lie along the internuclear axis. The electrons in them pair either with an
electron in the corresponding hybrid orbital on the other C atom or-with an electron in one
of the Hls orbitals. Electrons in the two remaining p orbitals on each atom, which are
perpendicular to the molecular axis, pair to form two perpendicular = bonds (Fig. 14.13).

Other hybridization schemes, particularly those involving 4 orbitals, are often invoked to
be consistent with other molecular geometries (Table 14.1). The hybridization of N atomic
orbitals always results in the formation of N hybrid orbitals. For example, sp*d®
hybridization results in six equivalent hybrid orbitals pointing towards the corners of a
regular octahedron. This octahedral hybridization scheme is sometimes invoked to account
for the structure of octahedral molecules, such as SFg.

Tahle 14.1° Some hybridization schemes

Coordination Arrangement Composition

number

2 Linear sp,pd,sd
Angular sd

3 Trigonak planar spt,pd
Unsymmetrical planar spd
Trigonal pyramidal pd’

4 Tetrahedral sp,sd’
Irregular tetrahedral 2 spd®, p'd, pd®
Square planar prdt sptd

5 Trigonal bipyramidal spid, spd®
Tetragonal pyramidal sprd®, sd®, pd* p*d®
Pentagonal planar pid’

6 Octahedral sp*d?
Trigonal prismatic spd*, pd®
Trigonal antiprismatic pd

*Source: H. Eyring, J. Walter, and G.E. Kimball, Quantum chemistry. Wiley (1944),

Molecular orbital theory

In molecular orbital theory (MO theory), it is accepted that electrons should not be regarded
as belonging to particular bonds but should be treated as spreading throughout the entire
molecule. This theory has been more fully developed than VB theory and provides the
language that is widely used in modern discussions of bonding. To introduce it, we follow the
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same strategy as in Chapter 13, where the one-electron H atom was taken as the
fundamental species for discussing atomic structure and then this discussion was developed
into a description of many-electron atoms. In this chapter we use the simplest molecular
species of all, the hydrogen molecule-ion, H, to introduce the essential features of bonding,
and then use it as a guide to the structures of more complex systems.

14.4 The hy.dri'zgen malecule-ion

The hamiltonian for the single electron in Hy is

i e [1 1 1
H = —-— 2 V V £ Eie—— Y 7
2meVl * e (’M +rm R) 7

where r,, and ry, are the distances of the electron from the,two nuclei (2). The one-electron
wavefunctions obtained by solving the Schridinger equation Hy = Eyr are called
molecular orbitals (MO). A molecular orbital ¥ gives, through the value of N:iz. the
distribution of the electron in the molecule. A molecular orbital is like an atomic orbital, but
spreads throughout the molecule.

The Schridinger equation can be solved for Hi (within the Born-Oppenheimer
approximation), but the wavefunctions are very complicated functions; moreover, the
solution cannot be extended to polyatomic systems. Therefore, we shall adopt a simpler
procedure that, while more approximate, can be extended readily to other molecules.

(a) Linear combinations of atomic orbitals

If an electron can be found in an atomic orbital belonging to atom A and also in an atomic
orbital belonging to atom B, the overall wavefunction is a superposition of the two atomic
orbitals:

¥y =NALB) (8)

where, for H), A denotes iy .4 and B denotes y,, 5 and N is a normalization factor. The
technical term for the superposition in eqn 8 is a linear combination of atomic orbitals
(LCAQ). An approximate molecular orbital formed from a linear combination of atomic
orbitals is cailed an LCAO-MO. A molecular orbital that has cylindrical symmetry around the
internuclear axis, such as the one we are discussing, is called a o orbital because it resembles
an s orbital when viewed along the axis and, more precisely, because it fas zero orbital
angular momentum around the internuclear axis. ’

Example 14.2 Normalizing a molecular orbital

Normalize the molecular orbital  in eqn 8.

Mcthod We need to find the factor N such that

[.p‘wdr =1

To proceed, substitute the LCAQ into this integral, and make use of the fact that the atomic
orbitals are individually normalized.

Answer When we substitute the wavefunction, we find

j'ﬁ‘ll'df:Nz{/ﬂldr-l-[Bzdt+2/ABc1z}

=N (1+1+25)
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{a)

(b)

14.14 (a) The amplitude of the bonding molecular
orbital in a hydrogen molecule-ion in a plane |
containing the two nuclei and (b) a contour
representation of the amplitude.
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where § = [ABdr. For the integral to be equal to 1, we require
_. 1
{201+ 5)}'?

Comment In H, $~0.59, so N = 0.56.

Self-test 14.3 Normalize the orbital ¢ _ in egn 8.
N =1/{2(1 - $)}"*, 50 N = 1.10)

Figure 14.14 shows the contours of constant amplitude for the molecular orbital y +in
eqn 8, and Fig. 14.15 shows its boundary surface. Plots like these are readily obtained using
commercially available software. The calculation is quite straightforward, because all we
need do is feed in the mathematical forms of the two atomic orbitals, and let the program do
the rest. In this case, we use

c*’a/“n e"’nl’“«
= 172 = 1/2 ©)
(na) (nag)
and note that r, and ry are not independent (3):
re = {r} + R* — 2r,Rcos 0} (10)

To make this plot, we have taken N? = 0.31 (Example 14.2).

(b) Bonding orbitals

According to the Born interpretation, the probability density of the electron in HJ is
proportional” to the square modulus of its wavefunction. The probability density
corresponding to the (real) wavefunction y in egn 8 is

¥’ = N*(A? + B? + 24B) (1)
This probability density is plotted in Fig. 14.16.

An important feature of the probability density becomes apparent when we examine the
internuclear region, where both atomic orbitals have similar amplitudes. According to

Boundary
surface

Nuclei

141" The boundary surface of a o orbital encloses  14.16 The electron density caleulated by forming

the region where the electrons that occupy the the square of the wavefunction used to construct
orbital are most likely to be found. Note that the Fig. 14.14. Note the accumulation of electron
orbital has cylindrical symmetry. density in the internuclear region.
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Region of
constructive
interference

14.17 A representation of the constructive
interference that occurs when two Hls orbitals
overlap and form a bonding o orbital. Compare this
illustration with Fig. 14.14.
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eqn 11, the total probability density is proportional to the sum of

1. A2 the probability density if the electron were confined to the atomic orbital on A.
2. B2, the probability density if the electron were confined to the atomic orbital on B.
3. 2A4B, an extra contribution to the density.

This last contribution, the overlap density, is crucial, because it represents an enhancement
of the probability of finding the electron in the internuclear region. The enhancement can be
traced to the constructive interference of the two atomic orbitals: each has a positive
amplitude in the internuclear region, so the total amplitude is greater there than if the
electron were confined to a single atomic orbital.

We shall frequently use the result that electrons accumulate in regions where atomic
orbitals overlap and interfere constructively. The accumulation of electron density between
the nuclei puts the electron in a position where it interacts strangly with both nuclei. Hence,
the energy of the molecule is lower than that of the separate atoms, where each electron
can interact strongly with only one nucleus.®

The o orbital we have described is an example of a bonding orbital, an orbital which, if
occupied, helps to bind two atoms together. Specifically, we label it 1o as it is the o orbital of
lowest energy. An electron that occupies a o orbital is called a o electron and, if that is the
only electron present in the molecule (as in the ground state of H), then we report the
configuration of the molecule as lo'.

The energy of the I orbital decreases as R decreases from large values because electron
density accumulates in the internuclear region as the constructive interference between the
atomic orbitals increases (Fig. 14.17). However, at small separations there is too little space
between the nuclei for significant accumulation of electron density there. In addition, the
nucleus-nucleus repulsion (which is proportional to 1/R) becomes large. As a result, the
energy of the molecule rises at short distances, and there is a minimum in the potential
energy curve. Calculations on H give R, = 130 pmand D, = 1.77 eV (171 kJ mol™!); the
experimental values are 106 pm and 2.6 eV, so this simple LCAO-MO description of the
molecule, while inaccurate, is not absurdly wgpng.

Justification 14.3

To evaluate the energy of the bonding orbital, we calculate the expectation value of the
hamiltonian, just as in VB theory. However, the calculation is much simpler, because there
is only one electron, so there are no integrafs corresponding to electron-electron
repulsions. The expectation value of the hamiltonian in eqn 7 is
e? jtk
=E N, )
Ey ""+41u:oR 115 (12)
(We have included the energy for both linear combinations in eqn 8 in this expression; for
the bonding orbital, use the upper sign throughout.) The integrals that appear in this

5 Unfortunately, ths conventional explanation is probably incorrect in the case of Hy (at least), because shifting an clectron away
from a nucleus into the Tntermuclear region raises its patential energy. The modern explanation s more sublie, still controversial,
and does nut emerge from the simple LCAD trealment grven here. It seems thal, al the same time as the electron shifts into the
internucteqr region, the alomic orbitals shrnk This orbital shrinkage improves the eleciron-nucieus atiraction more than it is
decreased by the migration to the interaucieat region, so there is a nel lowering of potential encrgy The kinetic energy of the
electron is alsa mogified because the curvature of the wavefunction is changed, but the change in kinetic energy is domunated by
the change in potenlial encrgy

Throughout the following discussion we ascribe the strength of chemical bonds to the accumulation of electron density in the
internuclear regon. We leave open the question whether in molecules more comphicated than Hj the true source of energy
lowening 15 thal accumulation itselt or some indirect but related effect
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14.18 The calculated and experimental molecular
potential enefgy curves for a hydrogen molecule-
ion.

Region of
destructive
interference

14.19 A representation of the destructive
interference that cecurs when two Hls orbitals
overlap and form an antibonding o* orbital.
Compare this illustration with Fig. 14.20,

—
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expression are

2
=fABdr: 1+£+§(£) e R/a
ay ay

et A &2 " R .
= e | — —— T I D e —2R/ay (13)
I g ) vy 4naoR{' ( +ao)° }
2 2
= C_ g dr = g 14+ .E. e_Rf“D
dngy | ry 4meyaq ag .

All three integrals are positive and decline exponentially towards zero at large internuclear
separations. The integral j is a measure of the interaction between a nucleus and electron
density centred on the other nucleus; k is a measure of the interaction between a nucleus
and the excess probability in the internuclear region arising from overlap. It is easy to use a
mathematical software package to plot the energy as a function of R and hence to obtain
Fig. 14.18.

(c) Antibonding orbitals

The linear combination ¢ _ in eqn 8 corresponds to a higher energy than . Because it is
also a o orbital we label it 2¢. This orbital has an internuclear nodal plane where A and 8
cancel exactly (Fig. 14.19 and Fig. 14.20). The probability density is

Y2 =N} (A + B? - 248) (14)

There is a reduction in probability density between the nuclei due to the —2A48 term
(Fig. 14.21); in physical terms, there is destructive interference where the two atomic
orbitals overlap. The most significant point of difference between _ and Y, is the
existence of a nodal plane in §_, on which the amplitude of one atomic orbital is cancelled
by the other. The physical significance of the nodal plane is that an electron that occupies
the orbital will not be found anywhere on the plane.

The 20 orbital is an example of an antibonding orbital, an orbital that, if occupied,
contributes to a reduction in the cohesion between two atoms and helps to raise the energy
of the molecule relative to the separated atoms. Antibonding orbitals are often labelled with
an asterisk (*), so this particular orbital could also be denoted 20* (and read '2 sigma star'),

The destabilizing effect of an antibonding electron is partly due to the fact that it is
excluded from the internuclear region, and hence is distributed largely outside the bonding
region. In effect, whereas a bonding electron pulls two nuclei together, an antibonding
electron pulls the nuclei apart (Fig. 14.22). Figure 14.18 also shows another feature that we
draw on later: |E_ — Ey,,|>|E, — Ey,,|, which indicates that the antibonding orbital is
more antibonding than the bonding orbital is bonding. This conclusion stems in part from
the presence of the nucleus-nucieus repulsion (e? /4ng,R), which raises the energy of both
molecular orbitals.

14.5 The structures of diatomic molecules

In Chapter 13 we used the hydrogenic atomic orbitals and the building-up principle to
deduce the ground electronic configurations of many-electron atoms. We now do the same
for many-electron. diatomic molecules by using the HZ molecular orbitals. The general
procedure is to construct molecular orbitals by combining the available atomic orbitals. The
electrons'supplied by the atoms are then accommodated in the orbitals so as to achieve the
lowest overall energy subject to the constraint of the Pauli exclusion principle, that no more
than two electrons may occupy a single orbital (and then must be paired). As in the case of
atoms, if several degenerate molecular orbitals are available, we add the electrons singly to
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cach individual orbital before doubly occupying any one orbital (because that minimizes
electron—electron repulsions). We also take note of Hund's rule (Section 13.4d) that, if
electrons do occupy different degenerate orbitals, then a lower energy is obtained if they do
so with parallel spins.

(a) The hydrogen and helium molecules

Consider H,, the simplest many-electron diatomic molecule. Each H atom contributes a 1s
orbital (as in H}), so we can form the 1o and 20° orbitals from them, as we have seen
already. At the experimental internuclear separation these orbitals will have the energies
shown in Fig, 14.23, which is called a molecular orbital energy level diagram. Note that
from two atomic orbitals we can build two molecular-orbitals. In general, from N atomic
orbitals we can build N molecular orbitals.

There are two electrons to accommodate, and both can enter 1o by pairing their spins.
The ground-state configuration is therefore lg? and the atoms are joined by a bond
consisting of an electron pair in a bonding @ orbital. This approach shows that an electron
pair, which was the focus of Lewis's account of chemical bonding, represents the maximum
[\ number of electrons that can enter a bonding molecular orbital.

L " The same argument shows why He does not form diatomic molecules.® Each He atom
(b} coniributes a Ls orbital, so l¢ and 2a* molecular orbitals can be constructed. Although
these orbitals differ in detail from those in H,, the general shape is the same, and we can use
maolecolar etitaf i Hydrogen miokeeye-lon in 8 the same qualitative energy level diagram in the discussion. There are four electrons to
plane containing the two nuclei and (b) a contour accommodate. Two can enter the 1o orbital, but then it is full, and the next two must enter
representation of the amplitude. Note the the 2¢* orbital (Fig. 14.24). The ground electronic configuration of He, is therefore 16%2¢*2, -
internuclear nade. We see that there is one bond and one antibond. Because an antibond is slightly more
antibonding than a bond is bonding, an He, molecule hasa higher energy than the separated
atoms, so it is ynstable relative to the individual atoms. .

14.20 (a) The amplitude of the antibonding

20+
H1s Hls
14.21 The electron density calculated by forming 14,22 A partial explanation of the origin of 14.23 A molecular orbital encrgy level diagram for
the square of the wavefunction used to construct bonding and antibonding effects. (al In a bonding orbitals constructed from the overlap of Hls
Fig. 14.20. Note the elimination of electron density arbital, the nuclei are attracted to the orbitals; the separation of the levels correspands to
from the internuclear region. accumulation of electron density in the that found at the equilibrium bond length. The
& internuclear region. [b) In an antibonding orbital, ground electronic configuration of H, is obtained
the nuclei are attracted to an accumulation of by accommodating the two electrons in the lowest
electron density outside the internuclear region. available orbital (the bonding orbital).

6 Diatomic helum ‘molecules’ have been prepared quite recently: they consist of pairs of atoms heid together by weak van der
Waals forees of the type described in Chapter 22
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14.24 The ground electronic configuration of the
hypathetical four-electron molecule He, has two
bonding electrons and two antibonding electrons. It
has a higher energy than the separated atoms, and
50 is unstable.

Table 14.2" Bond lengths

Bond Order R./pm
HH 1 74.14
NN 3 109.76
HCI 1 127.45
CH 1 114
cc = 154
cc 2 134
cc 3 120

“More values will be found in the Data
section at the end of this volume. Numbers
in italics are mean values for polyatomic
molecules.

Table 14.3° Bond dissociation energies

Bond Order D./(kJmol~')
HH 1 432.1

NN 3 941.7

HCI 1 4277

CH 1 435

cc 1 368

cc 2 720

cc 3 962

"More values will be found in the Doto
section. Numbers in italics are mean values
for polyatomic molecules.

14.25 According to molecular orbital theory, o
orbitals are built from all orbitals that have the
appropriate symmetry. In homonuclear diatomic
molecules of Period 2, that means that two 2s and
two 2p, orbitals should be used. From these four
orbitals, four molecular orbitals can be built.
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(b) Bond order

A measure of the net bonding in a diatomic molecule is its bond order, b:
=3(n—n") (15)

where n is the number of electrons in bonding orbitals and #* is the number of electrons in
antibonding orbitals. Thus each electron pair in a bonding orbital increases the bond order
by 1 and each’pair in an antibonding orbital decreases b by 1. For H,, b = 1, corresponding
to a single bond, H-H, between the two atoms. In He,, b = 0, and there is no bond.

As we shall see, the bond order is a useful parameter for discussing the characteristics of
bonds; because it correlates with bond length and bond strength:

The greater the bond order between atoms of a given pair of elements, the
shorter the bond. -
The greater the bond order, the greater the bond strength.

Table 14.2 lists some typical bond lengths in diatomic and polyatomic molecules. The
strength of a bond is measured by its bond dissociation energy, D,, the energy required to
separate the atoms to infinity,” Table 143 lists some experimental values of dissociation
energies.

(c) Period 2 diatomic molecules

We now see how the concepts we have introduced appiy' to homonuclear diatomic
molecules in general. In elementary treatments, only the orbitals of the valence shell are
used to form molecular orbitals. ‘

14.27 A schematic representation of the structure
of x bonding and antibonding molecular orbitals.

14.26 A representation of the composition of
bonding and antibonding « orbitals built from the
overlap of p orbitals. These illustrations are
schematic.

7 Bond dissociation efiergies are commonly used in thermodynamic cycles, where bond enthaipies, Ay, ?, should be used
instead. It fol'ows from the same kind of arqument used in Justificotion 13.9 concerning ionization enthalpies that

At *(T) = D, + IRT

To derwve this relation, we have supposed that the molar conslant-pressure heat capacity of X; i ] . for there & a contribution
from two rotational modes as well as three translational modes.

Xa(g) — 2X(g)



14.28 In a linear molecule, the electron density in 2
1 orbital has cylindrical symmetry around the
internuclear axis.

Atom Molecule Atom

14.29 The molecular orbital energy level diagram
for homonuclear diatomic molecules. As remarked
in the text, this diagram should be used for 0,
and Fy. ’
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In Period 2, the valence orbitals are 2s and 2p. A general principle of molecular orbital
theory is that all orbitals of the appropriate symmetry contribute to a molecular orbital.
Thus, to build & orbitals, we form linear combinations of all atomic orbitals that have
cylindrical symmetry about the internuclear axis. These orbitals include the 2s orbitals on
each atom and the 2p, orbitals on the two atoms (Fig. 14.25). Thus, the general form of the o
orbitals that may be formed is

W = CarWass + CoasWras + Cazp, ¥ azp, + Cozp,Veop, (16)

Erom these four atomic orbitals we can form four molecular orbitals of & symmetry by an
appropriate choice of the coefficients c.

The procedure for calculating the coefficients will be described in Section 14.7. At this
stage we adopt a simpler route, and suppose that, because the 2s and 2p, orbitals have
distinctly different energies, they may be treated separately, That is, the four o orbitals fall
approximately into two sets, one consisting of two moleculat orbitals of the form

b = canWaz + eBaW s (17a)
and another consisting of two orbitals of the form
¥ = Cazp Waz, + Cuzp,¥'e2p, (17b)

Because atoms A and B are identical, the energies of their 25 orbitals are the same, so the
coefficients are equal (apart from a possible difference in sign); the same is true of the 2p,
orhitals. Therefore, the two sets of arbitals have the form Y age t Wpoe and Y, Vo

The 25 orbitals on the two atoms overlap to give a bonding and an antibonding a orbital
(16 and 20, respectively) in exactly the same way as we have already seen for 1s orbitals. The
two 2p, orbitals directed along the internuclear axis overlap strongly. They may interfere
either constructively or destructively, and give a bonding or antibonding o orbital,
respectively (Fig. 14.26). These two ¢ orbitals are labelled 3¢ and 4a*, respectively. In
general, note how the numbering follows the arder of increasing energy.?

(d) = orbitals

Now consider the 2p, and 2p, orbitals of each atom. These orbitals are perpendicular to the
internuclear axis and may overlap broadside-on. This overlap may be constructive or
destructive, and results in a bonding or an antibonding = orbital (Fig. 14.27). The notation &
is the analogue of p in atoms for, when viewed along the axis of the molecule, a 7 orbital
looks like a p orbital, and has one unit of orbital angutar momentum around the internuclear
axis. The two 2p, orbitals overlap to give a bonding and antibonding m, orbital, and the two
2p, orbitals overlap to give two m, orbitals. The 7, and =, bonding orbitals are degenerate; so
100 are their antibonding partners. Strictly, because we are dealing with molecules with
cylindrical symmetry, we should consider the complex forms of the p orbitals, one
corresponding to circulation about the internuclear axis clockwise and the other
anticlockwise. That is, we form n, o« p, tip,, corresponding to angular momenta AR
with 4= +1. Each complex orbital is like a cylindrical torus (Fig. 14.28). Although it is
conventional to draw the real forms, it should not be forgotten that each n orbital in a linear
molecule corresponds to a cylindrical distribution of charge.

In some cases, Qrbitals are less strongly bonding than o orbitals because their maximum
overlap occurs off-axis. This relative weakness suggests that the molecular orbital energy
level diagram ought to be as shown in Fig. 14.29. However, we must remember that we have
constructed the diagram on the assumption that the 2s and 2p, orbitals contribute t
different sets of molecular orbitals, whereas in fact all four atomic orbitals contribute jointl

B Inanalternative system of notation, lo and 2a are used 1o designate the molecular orbitals tormed from the core |3 orbitals of
the aloms; the arbitals we are considering would then be labelied from 3 to 6, We are ignoring orbitals formed {rom core orbilaks.
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14.30 The variation of the orbital energies of Period 2 homonuclear diatomics.

The g and u labels-are explained later (Section 14.6a).

: ./

Was H
g’
{b)

14.32 (a) When two orbitals are on atoms that are
far apart, the wavefunctions are small where they
overlap, so § is small. (b) When the atoms are
closer, both orbitals have significant amplitudes
where they overlap, and § may approach I. Note
that S will decrease again as the two atoms
approach more closely than shown here, because
the region of negative amplitude of the p orbital
starts to overlap the positive overlap of the s
orbital. When the centres of the atoms coincide,
S=0,
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Atom Molecule

Atom

1441 An alternative molecular orbital energy level
diagram for homonuclear diatomic molecules. As
remarked in the text, this diagram should be used
for diatomics up to and including N,.

to the four o orbitals. Hence, there is no guarantee that this order of energies should prevail,
and it is found experimentally (by spectroscopy) and by detailed calculation that the order
varies along Period 2 (Fig. 14.30). The order shown in Fig. 14.31 is appropriate as far as Ny,
and Fig. 14.29 applies for O, and F,. The relative order is controlled by the separation of the
2s and 2p orbitals in the atoms, which increases across the group. The consequent switch in
order occurs at about N,

(e) The overlap integral

The extent to which two atomic orbitals on different atoms overliu'a is measured by the
overlap integral, S:

s= [ Wi 18)

If the atomic orbital i/, on A is small wherever the orbital ¥p on B s large, or vice versa,
then the product of their amplitudes is everywhere small and the integral—the sum of these
products—is small (Fig. 14.32). If W4 and gy are simultaneously large in some region of
space, then § may be large. If the two normalized atomic orbitals are identical (for example,
Ls orbitals on the same nucleus), then § = 1. In some cases, simple formulas can be given for
overlap integrals and the variation of § with bond length plotted (Fig. 14.33). It follows that
8§ = 0.59 for two H1s orbitals at the equilibrium bond length in Hi, which is an unusually
large value. Typical values for orbitals with n = 2 are in the range 0.2 to 0.3.

Now consider the arrangement in which an s orbital is superimposed on a p, orbital of a
different atom (Fig. 14.34). The integral over the region where the product of orbitals is
positive exactly cancels the integral over the region where the product of orbitals is
negative, so overall § =0 exactly. Therefore, there is no net overlap between the s and p
orbitals in this arrangement.

(f) The structures of homonuclear diatomic molecules

We show the general layout of the valence-shell atomic orbitals of Period 2 atoms on the left
and right of the molecular orbital energy level diagrams in Figs. 14.29 and 14.31. The fines in
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14.33 The overlap integral, S, between two Hls
orbitals as a function of their separation R.

14.34 A p orbital in the orientation shown here has
zero net overlap (S = 0) with the s orbital at all
internuclear separations.
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the middle are an indication of the energies of the molecular orbitals that can be formed by
overlap of atomic orbitals: from the eight valence shell orbitals (four from each atom), we can
form eight molecular orbitals. With the orbitals established, we can deduce the ground
configurations of the molecules by adding the apgropriate number of electrons to the orbitals
and following the building-up rules. Anionic species (such as the peroxide ion, 03~) need more
electrons than the parent neutral molecules; cationic species (such as 07 ) need fewer.

Consider N, which has 10 valence electrons. For this molecule, we use Fig. 14.31. Two
electrons pair, occupy, and fill the 1o orbital; the next two occupy and fill the 2¢* orbital. Six
electrons remain. There are two 17 orbitals, so four electrons can be accommodated in them.
The last two enter the 3¢ orbital. The ground-state configuration of N, is therefore
16%20**17*30 and the bond order is £ (8 — 2) = 3. This bond order accords with the Lewis
structure of the molecule (:N=N:) and is consistent with its high dissociation energy
(942 kI mol™').

The ground-state electron configuration of O,, with 12 valence electrons, is based on
Fig. 14.29, and is 16°26*?30” 1n*2n*%. Its bond order is 2. Aecprding to the building-up
principle, however, the two 2n* electrons occupy different orbitals: one will enter 2a} and
the other will enter 2n;. Because the electrons are in different orbitals, they will have
parallel spins. Therefore, we can predict that an 0, molecule will have a net spin angular
momentum S = | and, in the language introduced in Section 13.7, be in a triplet state.
Because electron spin is the source of a magnetic moment, we can go on to predict that
oxygen should be paramagnetic.® This prediction, which valence-bond theory does not
make, is confirmed by experiment. * '

An F, molecule has two more electrons than an 0, molecule. Its configuration is
therefore 16220**3621n*2n*! and b = 1. We conclude that F, is a singly bonded molecule,
in agreement with its Lewis structure. The low bond order is consistent with its low
dissociation energy (154 kJ mol~"). The hypothetical molecule dineon, Ne,, has two further
electrons: its configuration is 16%20"23¢% 1n*22**40*2 and b = 0. The zero bond order is
consistent with the monatomic nature of Ne.

Example 14.3 Judging the relative bond strengths of molecules and
ions

Judge whether NJ is likely to have a larger or smaller dissociation energy than N,.

Method Because the molecule with the larger bond order is likely to have the larger
dissociation energy, compare their electronic configurations and assess their bond
orders,

Answer From Fig. 14.31, the electron configurations and bond orders are

N, 16%26*%1n%36> b=3
NF 16226”17230’ b=2

Because the cation has the smaller bond order, we expect it to have the smaller dissociation
energy.

Comment The exptrimental dissociation energies are 945 kJmol~' for N, and
842 kImol~' for Nj.

9 A paramagnetic substance tends to move into a magnetic field, a diamagnetic substance tends to move oul of onc
Paramagnelism, the rarer praperty, arises when the molecules have unpaired electron spins. Both properties are discussed in more
detail in Section 226



Centre of
inversion

14.35 The parity of an orbital is even (g) if its
wavefunction is unchanged under inversion in the
centre of symmetry of the molecule, but odd (u) if
the wavefunction changes sign. Heteronuclear
diatomic molecules do not have a centre of
inversion, so for them the g,u classification is
irrelevant,
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Self-test 14.4 Which can be expected to have the higher dissociation energy, F, or F?
(3]

14.6 More about notation

We have seen how to label molecular orbitals by taking note of their symmetries with
respect to rotation around the internuclear axis. Certain other features of their symmetry
can also be used. As we shall see in later chapters, these symmetry designations are used to
formulate selection rules in molecular spectroscopy. Symmetry designations are described in
detail in Chapter 15, and the following remarks are expanded there.

(a) Parity ;
The molecular orbitals of homonuclear diatomic molecules are labelled with a subscript g or
u which specifies their parity, their behaviour under inversion. To decide on the parity,
consider any point in a homonuclear diatomic molecule, and note the sign of the orbital.
Then imagine travelling on a straight line through the centre of the moleeule to a point the
same distance out on the other side; this process is called inversion and the central point is
the centre of inversion (Fig. 14.35). If the orbital has the same sign, it has even parity and is
denoted g (from gerade, the German word for even). If the orbital has opposite sign, then it -
has odd parity and is denoted u (from ungerade, uneven). The parity designation applies only
to homonuclear diatomic molecules, because heteronuclear diatomic molecules (such as
HCI) do not have a centre of inversion,

We see from Fig. 14.35 that a bonding o orbital has even parity; so we write it a,; an |
antibonding o orbital has odd parity and is written ¢,. A bonding = orbital has odd parity
and is denoted =, and an antibonding = orbital has even parity, denoted n,."°

(b) Term symbols

The term sy;nhols of linear molecules (the analogues of the symbols 2P, etc. for atoms) are
constructed in a similar way to those for atoms, but now we must pay attention to the
component of total orbital angular momentum about the internuclear axis, Ah. The value of
|A]| is denoted by the symbols Z,TT, A, ... for |[4| = 0,1,2.. ., respectively. These labels are
the analogues of S,P, D, ... for atoms.

The value of A is the sum of the values of A for the individual electrons in a molecule."’ A
single electron in a o orbital has A = (: the orbital is cylindrically symmetrical and has no
angular nodes when viewed along the internuclear axis. Therefore, if that is the only electron
present, A = 0. The term symbol for H is therefore E. As in atoms, we use a superscript with
the value of 25 + 1 to denote the multiplicity of the term. Ip this case, because there is only
one electron, § =5 = % and the term symbol is 2E, a doublet term. The overall parity of the
term is added as a right subscript, and (if there are several electrons) is calculated by using

gxXg=g uxu=g uxg=1u (19)
(The rules can be generated by interpreting g as +1 and u as —1.) For Hf, the parity of the
only occupied orbital is g, sb the term itself is also g, and in full dress is *Z,. The term symbol
for any closed-shell homonuclear diatomic molecule is 'Z. because the spin is zero (all
electrons paired), there is no orbital angular momentum from a closed shell, and the overall
parity is g.
10 For simplicity in comparing homonuclear and heteronucicar molecules, we ignare the parity subscripts when numbering orbitals;

however, a more formal convention is to number the g and u orbitals separately

11 Recall from Section 14.5d that ik w5 the component of orbital angular momentum on the internuclear axis.



14,36 The + in a term symbol refers to the
symmetry of an orbital when it is reflected in a
plane containing the two nuclei.

& i lonization limit

2 2 1

of o g o
0.98y(H)

o - 0.19y(F)

H1s
0.19y(H) -
+ 0.98y(F) F2p

14.37 The atomic orbital energy levels of H and F
atoms and the molecular orbitals they form.
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A n electron in a diatomic molecule has one unit of orbital angular momentum about the
internuclear axis (1 = + 1) and, if it is the only electron outside a closed shell, gives rise to a
T1 term. If there are two n electrons (as in O,) then the term symbol may be either £ (if the
electrons are travelling in opposite directions, which is the case if they occupy different =
orbitals, one with A = +1 and the other with A = —1) or'f:_\ (if they are travelling in the same
direction, which is the case if they occupy the same = orbital, both 4 = +1, for instance). For
0, the two n electrons occupy different orbitals with parallel spins, so the ground term is
3%, The overall parity of the molecule is

(closed shell) xgxg =g

The term symbol is therefore >E,.

For £ terms, a +-superscript denotes the behaviour of the molecular wavefunction under
reflection in a plane containing the nuclei (Fig. 14.36). If, for convenience, we think of 0, as
having one electron in 2m,, which changes sign under reflection in the xz-plane, and the
other electron in 2, which does not change sign under reflection in the same plane, the
overall reflection symmetry is

(closed shell) x (+) x (=) = (=) .
and the full term symbol is 32‘.;. The need for all this dressing of a basic symbol will become
apparent when we deal with the spectroscopic selection rules in Chapter 17.

14.7 Heteronuclear diatomic molecules

A heteronuclear diatomic molecule is a diatomic molecule formed from atoms of two
different elements, such as CO and HCL. The electron distribution in the covalent bond
between the atoms is not evenly shared because it is energetically favourable for the
electron pair to be found closer to one atom than the other. This imbalance results in a polar
bond, a covalent bond in which the electron pair is shared unequally by the two atoms. The
bond in HF, for instance, is polar, with the electron pair closer to the F atom. The
accumulation of the electron pair near the F atom results in that atom having a net negative
charge, which is called a partial negative charge and denoted d—. There is a matching
partial‘ positive charge, 3+, on the H atam.

(a) Polar bonds -
A polar bond consists of two electrons in an orbital of the form
Y= A+ CyB (20)

with unequal coefficients. The proportion of the atomic orbital A in the bond is lf,\|2 and
that of B is |fg|2. A nonpolar bond has |¢-,..|1 = |q,|2 and a pure ionic bond has one
coefficient zero [so the species A*B~ would have ¢, =0 and cp = 1). The atomic orbital
with the lower energy makes the larger contribution to the bonding molecular orbital. The
opposite is true of the antibonding orbital, for which the dominant component comes from
the atomic orbital with higher energy.

These points can be illustrated by considering HF, and judging the energies of the atomic
orbitals from the ionization energies of the atoms. The general form of the molecular
orbitals is

¥ = cu¥y + cp¥e (21)
where i, is an H1s orbital and y is an F2p orbital. The H1s orbital lies at 13.6 ¢V below the
zero of energy (the separated proton and electron) and the F2p orbital lies at 18.6 eV below
the zero of energy (Fig. 14.37). Hence, the bonding o orbital in HF is mainly F2p and the
antibonding o orbital is mainly H1s orbital in character. The two electrons in the bonding
orbital are most likely to be found in the F2p orbital, so there is a partial negative charge on
the F atom and a partial positive charge on the H atom.
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Table 14.4° Pauling electronega-
tivities

Element Ip
H 2.2
iy 2.6
N 3.0
0 34
F 4.0
cl 32
Cs 0.79

*More values will be found in the Data
section.
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(b) Electronegativity

The charge distribution in bonds is commonly discussed in terms of the electronegativity,
(chi), of the elements involved. The electronegativity is a parameter introduced by Linus
PRauling as a measure of the power of an atom to attract electrons to itself when it is part of
a compound. Pauling used valence-bond arguments to suggest that an appropriate
numerical scale of electroneqgativities could be defined in terms of bond dissociation
energies, D, and proposed that the difference in electronegativities could be expreised as

lxa — 28l = 0.102{D(A—B) — }[D(A—A) + D(B—B)]}'/? 22)

Electronegativities based on this definition are called Pauling electronegativities. A list of
Pauling electronegativities is given in Table 14.4. The most electronegative elements are
those close to fluorine; the least are those close to caesium. It is found that, the greater the
difference in electronegativities, the greater the polar character of the bond. The difference
for HF, for instance, is 1.78; a C-H bond, which is commonly regarded_as almost-nonpaolar,
has an electronegativity difference of 0.51.

The American spectroscopist RS. Mulliken proposed an alternative definition of
electronegativity. He argued that an element is likely to be highly electronegative if it
has a high ionization energy (so it will not release electrons readily) and a high electron
affinity (so it is energetically favorable to acquire electrons). The Mulliken electronegativity
scale is therefore based on the definition

Im = %(’ A E:u) [23]

where [ is the ionization energy of the element and E_, is its electron affinity, both in
electronvolts (Section 13.4f)."” The Mulliken and Pauling scales are approximately in line
with one another." '

(c) The variation principle

A more systematic way of discussing bond polarity and finding the coefficients in the linear
combinations used to build molecular orbitals is provided by the variation principle:

If an arbitrary wavefunttion is used to calculate the energy, the value
calculated is never less than the true energy.

This principle is the basis of all modern molecular structure calculations. The arbitrary
wavefunction is called the trial wavefunction. The principle implies that, if we vary the
coefficients in the trial wavefunction until the lowest energy is achieved (by evaluating the
expectation value of the hamiltonian for each wavefunction), then those coefficients will be
the best. We might get a lower energy if we use a more complicated wavefunction (for
example, by taking a linear combination of several atomic orbitals on each atom), but we
shall have the optimum (minimum energy) molecular orbital that can be built from the
chosen basis set, the given set of atomic orbitals.

The method can be illustrated by the trial wavefunction in eqn 20aWe show in the
Justification below that the coefficients are given by the solutions of the two secular
equations'

(g — E)cp + (f — ES)cg =0

(B — ES)ea + (kg — E)cp = 0 2

12 There are certain technical difficulties with this definition in connection with the electronic state chosen to represent the state of
the atom in a compound.

13 A reasonably reliable conversion between the two is gp = 1351;.” -1.37

14 The nate 'secular’ is derived from the Latin word for age or generation. The term comes via astronomy, where Lthe same equations
appear in connection with slowly accumulating modifications of planetary orbits.
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The parametera is called a Coulomb integral. It canbeinterpreted as the energy of the electron
when it occupies A (for @, ) or B (for ay), and is negative. In a homonuclear diatomic molecule,
a, = ag. The parameter f§ is called a resonance integral (for classical reasons). It vanishes
when the orbitals do not overlap, and at equilibrium bond lengths it is normally negative.

Justification 14.4

The trial wavefunction in egn 20 is real but not normalized because at this stage the
coefficients can take arbitrary values, Therefore, we can write ¥" = ¢ but do not assume
that [¢*dr = 1. The energy of the trial wavefunction is the expectation value of the
energy operator (the hamiltonian, H, Section 11.5):

_ J¥Hydr

E_W (25)

We must search for values of the coefficients in the trial function that minimize the value
of E. This is a standard problem in calculus, and is solved by finding the coefficients for
which

0 0 A
Bc, dcg -

The first step is to express the two integrals in terms of the coefficients. The denominator
is

' /\flzdt=/(CAA +cpB)ldr

=cifA2dr+c§jB’df+2c‘AchABdr
=ci+c§+2cACBS

because the individual atomic orbitals are normalized and the third integral is the overlap
integral S (eqn 18). The numerator is

/JJHW dr = ](CAA + cgB)H(cpA + cgB) dr
= ci[AHAdz + cp /BHBdr + cAcB/AHBdt
+ cplh fBHA dr

There are some complicated integrals in this expression, but we can combine them all into
the parameters

dA=fAHAdT a3=fBHBdt ﬂ:fA.HBdr:]BHAdt

[26]
Then
f\bH!j‘dI‘: Aap + chag + 2cacpf
The complete expression for E is
W CA%a + Chtp + 2cxpfl @7)

i + ¢k +2cpcpS
Its minimum is found by differentiation with respect to the two coefficients and setting

the results equal to 0. This involves elementary but slightly tedious work, and the end result
is eqn 24,
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To solve the secular equations for the coefficients we need to know the energy E of the
orbitat. As for any set of simultancous equations, the secular equations have a solution if the
secular determinant, the determinant of the coefficients, is zero, that is, if

oy —E [—-ES| _ ’

Pl | L (28)
This determinant exgands to a quadratic equation in E (see Example 14.4). Its two roots give
the energies of the bonding and antibonding molecular orbitals formed from the atomic
orbitals and, according to the variation principle, these roots are the best energies for the
given basis set.

' \ ;
Example 14.4 Finding the roots of a secular determinant

Find the energies £ of the bonding and antibonding orbitals ‘of a homonuclear diatomic
molecule by solving egn 28.

Method We need to know that a 2 x 2 determinant expands as follows:

a b
c d

| = ad — bc
Answer When we apply the determinant expansion rule to eqn 28 with o, = oy =, we
get

a—E J-—ES
p—ES a-E

l=(a—£f—(ﬂ—ss>’=o

The solutions of this equation are

atf
E =
7 4S

Sclf-test 14.5 Find the coefficients corresponding to these two energies.
[See belaw; 2qn 30]

The values of the coefficients in the linear combination are obtained by solving the
secular equations using the two energies abtained from the secular determinant. The lower
energy gives the coefficients for the bonding molecular orbital, the upper energy the
coefficients for the antibonding molecular orbital. The secular equations give expressions for
the ratio of the coefficients in each case, so we need a further equation in order to find their
individual values, This equation is obtained by demanding that the best wavefunction should
also be normalized. This condition means that, at this final stage, we must also ensure that

/dt:-dn-—-qz..+ ek +2pcpS =1 (29)

(d) Two simple cases

The complete solutions of the secular equations are very cumbersome, even for 2x2
determinants, but there are two cases where the roots can be written down very simply.



14.7/ HETERONUCLEAR DIATOMIC MOLECULES 409

We saw in Example 14.4 and its Self-test that, when the two atoms are the same, and we
can write a, = ay = a, the solutions are

a4 _{_f o 1 P
R tAh{Z(]J“S)}UZ v (30)
ax-—fi 1
In this case, the bo':wding orbital has the form
A+ 8B
+ = .—‘—_W (31‘1)
{2(1 + 5)}
and the corresponding antibonding orbital is
A (31b)

P )
{2(1 - )
in agreement with the discussion of homonuclear diatomics we have already given, but now
with the normalization constant in place.
The second simple case is for a heteronuclear diatomic molecule but with § = 0 (a
common approximation in elementary work). The secular determinant is then

o W El = -BE B - =0

The solutions ean be expressed in terhs of the parameter { (zeta), with'®

{ = Jarctan &% (32)

and are

E_=a, — ficot{ Y_=—Asin{ + Bcos{

E, =ay+ fcotl Y, =Acos{ + Bsin{ (33)

An important feature revealed by these solutions is that, as the difference lag — ap|
increases, the value of { decreases.'® When the energy difference is large the energies of the
molecular orbitals differ only slightly from those of the atomic orbitals, which implies in turn
that the bonding and antibonding effects are small. That is, the strongest bonding and
antibonding effects are obtained when the two contributing orbitols haye closely similar
energies. The difference in energy between core and valence orbitals is the justification for
neglecting the contribution of core orbitals to bone#ng. The core orbitals of one atom have a
similar energy to the core orbitals of the other atom; but core-core interaction is largely
negligible because the overlap between them (and hence the value of B is so small.

Example 14.5 Calculating the molecular orbitals of HF

Calculate the wavefunctions and energies of the o orbitals in the HF molecule, taking
B=—1.0eV and the following ionization energies: Hls: 13.6 eV, F2s: 40.2 eV, F2p:
18.6 eV.

15 arctanx is the same as tan ' x

16 Because tanx=x and cotx= 1/x when x < |, when lax — 23] 3 21| we can write { = |B]/(xq — a,). which implies that
tan{ = B|/(xy - a,), and hence that cot{ = (ag - a,)/|8]. Then (noting that 8/]f] = —1] the energies of the two molecular
ortitals are

E =ay E, =2,

Because sin{ = { and cos (=1 when { < . the orbitals are respectively almost pure B and almost pure A,
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Method Because the F2p and H1s orbitals are much closer in energy than the F2s and Hls
orbitals, to a first approximation neglect the contribution of the F2s orbital. To use edn 33,
we need to know the values of the Coulomb integrals oy and o. Because these integrals
represent the energies of the Hls and F2p electrons, respectively, they are approximately
equal to (the negative of) the ionization energies of the atoms. Calculate { from eqn 32
(with A identified as F and B as H), and then write the wavefunctions by using eqn 33.

Answer Refer to, Fig. 1437. Setting ay =—13.6eV and o = —18.6eV gives
tan 2{ = 0.40; so { = 10.9°. Then

E =—134¢eV ¢ =098, —0.19%
E,=—188eV ¥, =019, + 098y

Comment Notice how the lower energy orbital (the one with energy —18.8¢V) has a
composition that is more F2p orbital than Hls, and that the epposite is true of the higher
energy, antibonding orbital.

Self-test 14.6 The ionization energy of Clis 13.1 eV; find the form and energies of the @
orbitals in the HCl molecule using f = —1.0 eV.
[E_ = —123 eV, y_ = 062y +0.7%q:
CE,=-—144eV, i =079y +0.62¢)

Molecular orbitals for polyatomic systems

The molecular orbitals of polyatomic molecules are built in the same way as in diatomic
molecules, the only difference being that we use more atomic orbitals to construct the
molecular orvitals. As for diatomic molecules, polyatomic molecular orbitals spread over the
entire molecule. A molecular orbital has the general form

y=" c (34)

where , is an atomic orbital and the sum extends over all the valence orbitals of all the
atoms in the molecule, To find the coefficients, we set up the secular equations and the
secular determinant, just as for diatomic molecules, solve the latter for thc'e'nergi:s. and
then use these energies in the secular equations to find the coefficients of t"= atomic
orbitals for each molecular orbital.

The principal difference between diatomic and polyatomic molecules lies in the greater
range of shapes that are possible: a diatomic molecule is necessarily linear, but a triatomic
molecule, for instance, may be either linear or angular with a characteristic bond angle. The
shape of a polyatomic molecule—the specification of its bond lengths and its bond angles—
can be predicted by calculating the total energy of the molecule for a variety of nuclear
positions, and then igentifying the conformation that corresponds to the lowest energy.
However, more insight into the features that control molecular geometry can be obtained by
analysing the orbitals and their energies in a more pictorial fashion. We shall illustrate what
is involved by considering H,0, which has an experimental bond angle of 104°,

14.8 Walsh diagrams

The molecular orbitals of H,0 (and of H,X molecules in general) have the form

¥ = W, 1+ Ca¥ligis Vo ca¥oyp, + Cs'o”ozp, + coWonp,



14.38 The molecular orbitals that can be
constructed from the Hls, O2s, and 02p atomic
orbitals in a hypothetical linear H,0 molecule.
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14,39 The Walsh diagram for H,0. The energies of
the linear molecule are shown on the left (see

Fig. 14,38 for theif compositions) and those of the
90° molecule are shown on the right (see Fig. 14.40).
The actual molecule has a bond angle of 104°.
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There are six such orbitals (because they are built from six atomic orbitals) and eight valence
electrons to accommodate in them. We shall tonsider two hypothetical conformations of
the molecule, the linear 180° molecule and the angular 90° molecule, and then decide how
the molecular orbitals of one shape turn into the molecular orbitals of the other as the bond
angle changes from 180° to 90°. The procedure results in the construction of a Walsh
diagram, a diagram showing the variation of orbital energy with molecular geometry.

(a) The Walsh diagram for H,X molecules
The molecular orbitals of a hypothetical linear HOH molecule are classified as either ¢ or =«
(Fig. 14.38):
Vo, = CiWon, + 2P0, + Wigis) (two orbials)
Yo, = Voo Yoo, (one orbital each) (35)
Vo, = 3oz, + sV = Vi) (two orbitals)

[

We have added the parity labels, but they no longer tell us which is bonding and
antibonding. Thus, there are two o, orbitals, one bonding (with the two coefficients the
same sign) and the other antibonding (with the coefficients of apposite sign). There are no
orbitals of m symmetry on the H atoms, so the 02p, and 02p, orbitals do not form bonding
and antibonding molecular orbitals. They are examples of nonbonding orbitals, orbitals that
do not contribute directly to the bonding between atoms. The coefficients in the molecular
orbitals may be found in the normal way, by setting up and solving the secular determinants
using estimates of the Coulomb and resonance integrals, and the energies of the orbitals are
shown on the left of the diagram in Fig. 14.39.

The molecular orbitals of-a hypothetical 90° molecule are formed. from the following
groupings of atomic orbitals (Fig. 14.40):

lj,“‘ =c1Woxt C;!lll--,z,,, 4 "J(U"n,‘ls -+ l,b"s,,) (three orbitals)
Yo, = Yo, (36)
Yo, = CaWoz, + Cs(¥,is = Vi) (two orbitals)

(The coefficients are different from those in eqn 35.) We can no longer classify the orbitals
as o and = because those labels apply only when there is an axis of symmetry; the labels used
here will be explained in Chapter 15 (as will be the choice of the orbitals from which each
molecular orbital is built)."”

The lowest energy orbital in 90° H,0 is the one labelled 1a;, which is built from the
overlap of the 025 and O2p, orbitals with the iy, |, + iy, |, combination of HLs orbitals. The
energy of the la, orbital rises as the bond angle increases, in part because the weakly
bonding H-H overlap decreases and in part because the loss of p, character diminishes the
overlap with the H-H combination. The energy of the 15, orbital is lowered because the Hls
orbitals move into a better position for overlap with the 02p, orbital; their weakly
antibonding H-H overlap is also reduced. The biggest change occurs for the 2a, orbital. This
molecular arbital is principally an 02s orbital in the 90° molecule, but correlates with a pure
02p, orbital in the 180° molecule. Hence, it shows a steep rise in energy as the bond angle
increases. The 1h, orbital is a nonbonding 02p orbital perpendicular to the molecular plane
in the 90° molecyle and remains nonbonding in the linear molecule. Hence, its energy barely
changes with angle.

17 As remarked earlier, the central feature of molecular orbital theory is the tormation of molecular orbitals from all the atemic
orbilals available that have the appropniate symmetry, and the linear combinations listed above can be regarded as a grouping of
the atomic orbitals into different symmztry classes. This grouping is Lhe subject of Chapter 15
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The principal feature that determines whether or not the H,0 molecule is bent is whether
the 2a; orbital is occupied. This orbital has considerable O2s character in the bent molecule
but not in the linear molecule. Therefore, a lower total energy is achieved if, when it is
occupied, the molecule is bent. The shape adopted by an H,0 molecule therefore depends on
the number of electrons that occupy the orbitals.

Example 14.6 Using a Walsh diagram to predict a shape
Predict the shape of the H,0 molecule from the Walsh diagram.

Method Choose an intermediate bond angle along the horizontal axis of the H,0 diagram
in Fig. 14.39, and accommodate eight electrons. Then consider whether the energy can be
reduced by a modification of the bond angle. To do so, look atthe effect on the energies of
the occupied orbitals of a change in bond angle. :

Answer The resulting configuration is 1a32al 103162, The 2a, orbital is occupied, so we
expect the nonlinear molecule to have a lower energy than the linear molecule,

Self-test 14.7 Predict the shape of the BeH, molecule.
[Linear]

14.9 The Hiickel approximation

Molecular orbital theory takes large molecules and extended aggregates of atoms, such as
solid materials, into its stride. First we shall consider conjugated molecules, in which there is
an alternation of single and double bonds along a chain of carben atoms.

Although the classification of an orbital as & or 7 is strictly valid only in linear molecules,

it is also used to denofe the focal symmetry with respect to a given A-B bond axis.
Moreover, in nonlinear molecules, there is no orbital angular momentum around the bond
axis: the m orbital is a (real) standing wave with electron density on each side of the local
molecular plane. '
. The n molecuiar orbital energy level diagrams of conjugated molecules can be
constructed using a set of approximations suggested by Erich Hiickel in 1931. In his
approach, the m orbitals are treated separately from the o orbitals, apd the latter form a rigid
framework that determines the general shape of the molecule. All the C atoms are treated
identically, so all the Coulomb integrals « for the atomic orbitals that contribute to the =
orbitals are set equal. For example, in ethene, we take the o bonds as fixed, and concentrate
on finding the energies of the single = bond and its companion antibond. In butadiene (4),
the o framework is taken as fixed, and we concentrate on finding the = orbitals spreading
across the four C atoms.

(a) The secular determinant

We express the = orQitals as LCAQs of the C2p orbitals that lie perpendicular to the molecular
plane. In ethene we would write

¥ = cpA +cpB (37)
and in butadiene
¥ = cpA + cgB + ccC + cpD (38)

where the A is a C2p orbital on atom A, and so on. Next, the optimum coefficients and
energies are found by the variation principle as explained in Section 14.7c. That is, we have
to solve the secular determinant, which in the case of ethene is eqn 28 with @, = ag = a.

28—B



14.41 The Hiickel molecular orbital energy ievels of
ethene. Two electrons occupy the lower & orbital,
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The determinant for butadiene is similar, but more atoms contribute and, being at various
distances from each other, they have different overlap and resonarice integrals:
Ethene: ‘

«a—E f-ES|_
g-g5 a-£|=° (28]
Butadiene;

a—E Bas — ESap Bac —ESac Bap — ESap

Bea — ESga e—E Buc — ESpc Ppp — ESpp -0 (40)
Bea — ESca Ben — ESca «—E Bep — ESco
Boa — ESpa  Pou — ESps  Boc — ESne a—E

The roots of the ethene determinant can be found very easily (they are the same as those in
Example 14.4). However, for elementary calculations, the roots of the butadiene
determinant are obviously going to prove difficult to find. In a modern computation all
the resonance integrals and overlap integrals would be included, but an indication of the
molecular orbital energy level diagram can be obtained very readily if we make the following
additional Hiickel approximations: "

1. All overlap integrals are set equal to zero.
2. All resonance integrals between non-neighbours are set equal to zero.
3. All remaining resonance integrals are set equal (to fi).

These approximations are obviously very severe, but they let us calculate at least a general
picture of the molecular orbital energy levels with very little work. The assumptions result in
the following structure of the secular determinant:

1. All diagonal elements: o — E.
2. Off-diagonal elements between neighbouring atoms: .
3. All other elements: 0.

(b) Ethene and frontier orbitals
For ethene, the Hiickel approximations lead to

5 Le|-e-mr-p=o @)

The roots of the equation are
E, =atfl (42)

The + sign corresponds to the bonding combination (f is negative) and the — sign
corresponds to the antibonding combination (Fig. 14.41)."® The building-up principle then
leads to the configuration 177, because each carbon atom supplies one electron to the n
system. We can also €stimate the n* —m excitation energy12|f|). The constant 8 is often left
as an adjustable parameter; an approximate value for (C2p,C2p)-overlap n-bonds is about
~75 kJmol~', corresponding to —0.8 eV.

The highest occupied molecular orbital in ethene, its HOMO, is the I orbital; the lowest
unfilled molecular orbitai, its LUMO, is the 2z* arbital. These two orbitals jointly form the
frontier orbitals of the molecule, The frontier orbitals are important because they are largely
responsible for many of the chemical and spectroscapic properties of the molecule.

18 Ta see the effect of neglecting overlap, compare the resull oblained here with eqn 0
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(c) Butadierie and n-electron binding energy
For butadiene, the approximations result in the determinant
a—E p 0 0

B a—E P 0 |_
0 p a-£ g |0 (43)
0 0 B a—E

Example 14.7 Finding the roots of a determinant
Find the roots of the butadiene secular determinant.

Method A 4 x 4 determinant is expanded in a series of steps like the 2 x 2 determinant
treated in Example 14.4. After expansion, the terms are grouped to give a polynomial in E,

-which is set equal to 0 and then solved for E. A 4 x 4 determinant expands into a quartic

equation, but we shall see that it may be expressed as a quadratic equation that can be
solved by elementary methods.

Answer

«u—E f 0| g B 0
—@-E)| B «-E B |-Blo a—E B
0 p  a—E 0 f a-E

o oa-E B BB
=88 5 a-5|_ﬁ(“ E”o a—E‘
a-E B 5|0 B
~F| a—E}-FB 0 a—E’

= (@~ E) (e~ EV'f* ~ («~ EV'F* ~ («~ E)'F" + §'
= (a—E)* =3 EYF + =0
With x = (« — E‘)z/ﬁz, the expanded determinant has the form of a quadratic equation
Z=3x+1=0
The roots are x = 2.62 and 0.38. Therefore, the energies of the four LCAO-MOs are
E=a+1.628, a+0.62f

Sclf-test 14.8 Write down and expand the secular determinant for cyclobutadiene.
[See Example 14.8, below]

We have seen in Example 14.7 that the energies of the four LCAO-MOs are
E=a+1.62,  a+0.628 (44)

These orbitals and their energies are drawn in Fig. 14.42. Note that, the greater the number
of internuclear nodes, the higher the energy of the orbital. There are four electrons to
accommodate, so the ground-state configuration is In*2n®. The frontier orbitals of
butadiene are the 2r orbital (the HOMO, which is largely bonding) and the 3r orbital (the
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LUMO, which is largely antibonding). ‘Largely’ bonding means that an orbital has both
bonding and antibonding interactions between various neighbours, but the bonding effects
dominate. ‘Largely antibonding’ indicates that the antibonding effects dominate.

An important point emerges when we calculate the total n-electron binding energy, £,,
the sum of the energies of each = electron, and compare it with what we find in ethene. In
cthene the total energy is

E.=2(a+f) =20 +2f
In butadiene it is
E, = 2(o +1.62f8) 4+ 2(a + 0.62f3) = 4 + 4.48

Therefore, the energy of the butadiene molecule lies lower by 0.488: (about —36 kJ mol~!)
than the sum of two individual n bonds. This extra stabilization of a conjugated system is
called the delocalization energy.

3

Example 14.8 Estimating the delocalization enefgy
Use the Hiickel approximation to find the energies of the 7 orbitals of cyclobutadiene, and

estimate the delocalization energy.

Mcthod Set up the secular determinant using the same basis as for butadiene, but note that
atoms A and D are also now neighbours. Then solve for the roots of the secular equation and
assess the total m-bond energy. For the delocalization energy, subtract from the total n-
bond energy the energy of two n bonds.

Answer The secular determinant is
la—E 8 0 B
Ji] a—E f 0
0 g a«-E B
B 0 poa-

This determinant expands to

xx—-4)=0 x:(a;E)z

The solutions are x = 0 and x = 4, so the energies of the orbitals are

E=ua+2p. o, a, a-—28

Four electrons must be accommodated. Two occupy the lowest orbital (of eneggy a + 28),
and two occupy the doubly degenerate orbitals (of energy ). The total energy is therefore
4a + 4. Two isolated = bonds would have an energy 4 + 48; therefore, in this case, the
delocalization energy is zero.

Sclf-test 14.9 Repeat the calculation for benzene.
' [Next subsection]

(d) Benzene and aromatic stability

The most notable example of delocalization conferring extra stability is benzene and the
aromatic molecules based on its structure, Benzene is often expressed in a mixture of
valence-bond and molecular orbital terms with, typicaily, valence-bond language used for
its o framework and molecular orbital language used to describe its 7 electrons.
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First, the valence-bond component. The six C atoms,are regarded as sp* hybridized, with a
single unhybridized perpendicular 2p orbital. One H atom is bonded by (Csp® H1s) overlap to
each C carbon, and the remaining hybrids overlap to give a regular hexagon of atoms
(Fig. 14.43). The internal angle of a regular hexagon is 120°, so sp? hybridization is ideally
suited for forming o bonds. We see that benzene's hexagonal shape permits strain-free o
bonding.

Now consider the molecular orbital component of the description. The six C2p orbitals
overlap to give six x orbitals that spread all round the ring. Their energies are calculated
within the Hiickel approximation by solving the secular determinant

«—E 0 0 0 B

B o«-E f 0 0 0

0 B a—-E f 0 0 |_

0 0 g a—-E B o |=0 (45)
0 0 0 B ao—E Ji]

B 0 0 0 B a—£E

When this determinant is expanded in the same way as in Example 14.7, the roots are found
to be simply

E=a+28, atp, at+fi (46)

as shown in Fig. 14.44. The orbitals there have been given symmetry labels which we explain
in Chapter 15. Note that the lowest energy orbital is bonding between all neighbouring
atoms, the highest energy orbital is antibonding between each pair of neighbours, and the
intermediate orbitals are a mixture of bonding, nonbonding, and antibonding character
between adjacent atoms.

We now apply the building-up principle to the m system. There are six electrons to
accommodate (one from each C atom), so the three lowest orbitals [a,, and the doubly
degenerate pair ¢,,) are fully occupied, giving the ground-state configuration a%ue'fs. A
significant point is that the anly molecular arbitals occupied are those with net bonding
character.

The z-electron energy of benzene is

E, = 2(a + 2f) + 4(a + fi) = 6a + 8f

If we ignored delocalization and thought of the molecule as having three isolated 7 bonds,
it would be ascribed a n-electron energy of only 3(2a+2f8) =6a+68 The
delocalization energy is therefore 28 ~ — 150 kJmol~', which is considerably more than
for butadiene.

This discussion suggests that aromatic stability can be traced to two main contributions.
First, the shape of the regular hexagon is ideal for the formation of strong & bonds: the'e
framework is relaxed and without strain. Second, the = orbitals are such as to be able to
accommodate all the electrons in bonding orbitals, and the delocalization energy is
large.

(e) Semi-gmpr‘ricaf and ab initio methods

Modern technigues of molecular electronic structure calculation have moved on
considerably from the techniques we have been describing, but they are clear descendants
of these more elementary methods. They still involve expressing molecular orbitals as linear
combinations of atomic orbitals, setting up secular determinants in which various integrals
appear, finding their roots, and then solving secular equations for the coefficients. However,
the principal difference is the inclusion of electron-electron repulsion into the energy
calculation and looking for self-consistent solutions, in much the same way as for atoms
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14.45 The product of two Gaussian functions (the
green curves) is itself a Gaussian function located
between the two contributing Gaussians.
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(Section 13.5). There are two main strategies of calculation. In semi-empirical methods
many of the integrals are estimated by appealing to spectroscopic data or physical properties
such as ionization energies, and using a series of rules to set certain integrals equal to zero.
In the ab initio methods, an attempt is made to calculate all the integrals that appear in the
secular determinant. Both procedures employ a great deal of computational effort and,
along with cryptanalysts and meteorologists, theoretical chemists are among the heaviest
users of the fastest computers.

The Hiickel method is a primitive example of a semi-empirical procedure: all the
properties of the = system are expressed in terms of the two parameters « and ff and all
overlap integrals are set equal to zero. In a more sophisticated procedure, we write the
orbitals as linear combination of atomic orbitals, but use the full hamiltonian, including the
electron-electron repulsions proportional to 1/r;. Moreover, we also make sure that the
many-electron wavefunction (the product of the individual occupied molecular orbitals)
satisfies the Pauli principle. When all this is worked through, it turns out that the secular
determinant includes integrals of the form

2
(AB|CD) = / A(1)B(1) (ﬁor_n) C(2)D(2) dt,d1, (47)
where A, B, C, and D are atomic orbitals which in general may be centred on different
nuclei, It can be appreciated that, if there are several dozen atomic orbitals used to build
the molecular orbitals, then there will be tens of thousands of integrals of this form to
evaluate.

One severe approximation is called complete neglect of differential overlap (CNDO),
in which all integrals are set to zero unless A and B are the same orbitals centred on the
same nucleus, and likewise for C and D. The surviving integrals are then adjusted until
the energy levels are in good agreement with experiment. The more recent semi-
empirical methods make less draconian decisians about which integrals are to be ignored,
but they are all descendants of the early CNDO technique. These procedures are now readily
available in commercial software packages and can be used with very little detailed
knowledge of their mode of calculation. The packages also have sophisticated graphical
output procedures, which enable one to analyse the shapes of orbitals and the distribution
of electric charge in molecules. The latter is important when assessing, for instance, the
likelihood that a given molecule will bind to an active site in an enzyme. Such studies can
greatly reduce the time and cost of screening compounds for potential pharmacological

" activity.

Commercial packages are also available for ab initio caiculations. Here the problem is to
evaluate as efficiently as possible thousands of integrals. This task is greatly facilitated by
expressing the atomic orbitals used in the LCAOs as linear combinations of Gaussian orbitals.
A Gaussian type orbital (GI0) is a function of the form e, The advantage of GTOs over
the correct orbitals (which are proportional to e™') is that the product of two Gaussian
functions is itself a Gaussian function that lies between the centres of the two contributing
functions (Fig. 14.45). In this way, the four-centre integrals like that in egn 47 become two-
centre integrals of the form

a2
. — —— 1¥(2)d7,d 48
(8ico) = [ x() (5 ) v(2) dnay (48)
where X is the Gaussian corresponding to the product AB and Y is the corresponding
Gaussian from BD. Integrals of this form are much easier and faster to evaluate numerically
than the original four-centre integrals. Although more GTOs have to be used to simulate the
atomic orbitals, there is an overall increase in speed of computation.
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14.10 The band theory of solids

The extreme case of delocalization is a solid, in which atom after atom lies in a three-
dimensional array and takes part in bonding spreading throughout the crystal. Two types of
solid are distinguished by the temperature dependence of their electrical conductivity:

A metallic conductor is a substance with a conductivity that decreases as the
temperature is raised. ) )

A semiconductor is a substance with a conductivity that increases as the
temperature is raised.

A semiconductor generally has a lower conductivity than that typical of metals, but the
magnitude of the conductivity is not the criterion of the distinction. It is conventional to
classify semiconductors with very low electrical conductivities as insulators. We shall use
this term, but it should be appreciated that it is one of convenience rather than one of
fundamental significance.

We shall consider a one-dimensional solid, which consists of a single, infinitely long line
of atoms, each one having one 5 orbital available for forming molecular orbitals. We can
construct the LCAO-MOs of the solid by adding N atoms in succession to a line, and then find
the electronic structure using the building-up principle.

(a) The formation of bands

One atom contributes one s orbital at a certain energy (Fig. 14.46). When a second atom is
brought up it overlaps the first, and forms a bonding and antibonding orbital. The third atom
overlaps its nearest neighbour (and only slightly the next-nearest), and from these three
atomic orbitals three molecular orbitals are formed: one is fully bonding, one fully
antibonding, and the intermediate orbital is nonbonding between neighbours. The fourth
atom leads to the formation of a fourth molecular orbital. At this stage, we can begin to see
that the general effect of bringing up successive atoms is to spread the range of energies
cavered by the molecular orbitals, and also to fill in the range of energies with more and
more orbitals (one more for each atom). When N atoms have been added to the line, there

(a) A . N=1

(b)

{c) E & 3
_— 3?,\'.\
t i ' i g

—EEES :
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14.46 The formation of a band of N molecular orbitals by successive addition of N atoms to a line. Note
that the band remains of finite width as N — co and, although it looks continuous, it consists of N
different orbitals.



14.47 The overlap of s orbitals gives rise to an s
band, and the overlap of p orbitals gives rise to a p
band. In this case, the s and p orbitals of the atoms
are so widely spaced that there is a band gap, In
many cases the separation is less, and the bands
overlap.
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are N molecular orbitals covering a band of energies of finite width, and the Hiickel secular
determinant is

a—E p 0. 0
p w—-E B 0
f

cCoooc o

0 0 f  a-E =0 (49)
0 0 0 p a—E
0 0 0’ 0 G e w=il

where ff is now the (s, s) resonance integral. The theory of determinants applied to such a
symmetrical example as this (technically a ‘tridiagonal determinant’) leads to the following
expression for the roots:

k
E, =a+2[)‘cos( =

=12, ...
~+|) k=1,2,...\N (50)

When N is infinitely large, the difference between neighbouring energy levels (the energies
corresponding to k and & + 1) is infinitely small, but the band still has finite widtn overall:

Ey—E —4BasN — o (51)

We can think of this band as consisting of N different molecular orbitals, the lowest-energy
orbital (k = 1) being fully bonding, and the highest-energy orbital (k = N) being fully
antibonding between adjacent atoms (Fig. 14.47). Similar bands form in three-dimensional
solids.

The band formed from overlap of s orbitals is called the s band. If the atoms have p
orbitals available, the same procedure leads to a p band (as shown in the upper half of
Fig. 14.47). If the atomic p orbitals lie higher in energy than the s orbitals, then the p band
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14.48 When N electrons occupy a band of N
orbitals, it is only half full and the electrans near
the Fermi level (the top of the filled levels) are
mobile.

14.49 The Fermi-Dirac distribution, which gives the
population of the levels at a temperature T. The
high-energy fail decays exponentially towards zero.
The curves are labelled with the value of u/kT. The
tinted grey region shows the occupation of levels at
T=0
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lies higher than the s band, and there may be a band gap, a range of energies to which no
orbital corresponds.

(b) The occupation of orbitals at 7= 0

Now consider the electronic structure of a solid formed from atoms each able to contribute
one electron (for example, the alkali metals). There are N atomic orbitals and therefore N
molecular orbitals squashed into an apparently continuous band. There are N electrons to
accommodate.

AtT = 0, only the lowest § N molecular orbitals are occupied (Fig. 14.48), and the HOMO
is called the Fermi level. However, unlike in the discrete molecules we have considered so far,
there are empty orbitals very close in energy to the Fermi levél, so it requires hardly any
energy to excite the uppermost electrons. Some of the electrons are therefore very mobile,
and give rise to electrical conductivity.

(c) The occupation of orbitals at 7>0

At temperatures above absolute zero, electrons can be excited by the thermal motion of the
atoms. The population, P, of the orbitals is given by the Fermi-Dirac distribution, a version
of the Boltzmann distribution that takes into account the effect of the Pauli principle:

= ol miAT (52)

The quantity y is the chemical potential,'® which in this context is the energy of the level
for which £ = 1 (note that the chemical potential changes as the temperature changes). The
shape of the Fermi-Dirac distribution is shown in Fig. 14.49. For energies well above g, the 1
in the denominator can be neglected, and then

P e EW/T (53)

The population now resembles a Boltzmann distribution, decaying exponentially with
increasing energy. The higher the temperature, the longer the exponential tail.

The electrical conductivity of a metallic solid decreases with increasing teniperature even
though more electrons are excited into empty orbitals. This apparent paradox is resolved by
noting that the increase in temperature causes more vigorous thermal motion of the atoms,
so collisions between the moving electrons and an atom are more likely. That is, the electrons
are scattered out of their paths through the solid, and are less efficient at transporting
charge.

(d) Insulators and semiconductors

When each atom provides two electrons, the 2N electrons fill the N orbitals of the s band.
The Fermi level now lies at the top of the band (at T = 0), and there is a gap before the next
band begins (Fig. 14.50). As the temperature is increased, the tail of the Fermi-Dirac
distribution extends across the gap, and electrons populate the empty orbitals of the upper
band. They are now™mobile, and the solid is an electric conductor. In fact, the solid is a
semiconductor, because the electrical conductivity depends on the number of electrons that
are promoted across the gap, and that number increases as the temperature is raised. If the
gap is large, though, very few electrons will be promoted at ordinary temperatures, and the
conductivity will remain close to zero, giving an insulator. Thus, the conventional distinction
between an insulator and a semiconductor is related to the size of the band gap and is not an
absolute distinction like that between a metal (incomplete bands at T=0) and a
semiconductor (full bands at T' = 0).

19 Note that the ‘chemical potential’ in ega 52 is an energy, not a malar Gibbs energy, as in the thermodynamic use of the term.
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14.50 (=) When 2N electrons are present, the 14.51 (a) A dopant with fewer electrons than its
band is full and the material is an insulator at host can form a narrow band that accepts
T = (. (b} At temperatures above T = 0, clectrons  electrons from the valence band. The holes in the
populate the levels of the upper ‘conduction’ band.are mobile, and the substance is a p-type
band at the expense of the filled ‘valence' band semiconductor. (b) A dopant with mare electrons
and the solid is a semiconductor, than its host forms a narrow band that can supply

electrons to the conduction band. The electrons it
supplies are mobile, and the substance is an n-type
semiconductor.

Another method of increasing the number of charge carriers and enhancing the
semiconductivity of a solid is to implant foreign atoms into an otherwise pure material. If
these dopants can trap electrons, they withdraw electrons from the filled band, leaving
holes which allow the remaining electrons to move (Fig. 14.51). This procedure gives rise to
p-type semiconductivity, the p indicating that the holes are positive relative to the
electrons in the band. Alternatively, a dopant might carry excess electrons (for example,
phosphorus atoms introduced into germanium), and these additional electrons occupy
otherwise empty bands, giving n-type semiconductivity, where n denotes the negative
charge of the carriers. The preparation of doped but otherwise ultrapure materials was
described in Section 8.7.
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Exercises

14.1 (a) Give the ground-state electron configurations and bond
orders of (a) Li,, (b) Be,, and (c) C,.

14.1 (b) Give the ground-state electron configurations of (a) H;, (b)
N,, and (¢) 0,.

14.2 (a) Give the ground-state electron configurations of (a) CO, (b)
NO, and (c) CN™—.

14.2 (b) Give the ground-state electron configurations of (a) CIF, (b)
CS, and (c) O05.

14.3 (a) From the ground-state electron configurations of B, and C,,
predict which molecule should have the greater bond dissociation
energy.

14.3 (b) Which of the molecules Ny, NO, 0,, C,, F,, and CN would
you expect to be stabilized by (a) the addition of an electron to form
AB~, (b) the removal of an electron to form AB+?

14.4 (a) Sketch the molecular orbital energy level diagram for XeF
and deduce its ground-state electron configurations. Is XeF likely to
have a shorter bond length than XeFt?

14.4 (b) Sketch the molecular orbital energy level diagrams for BrCl
and deduce its ground-state electron configurations. Is BrCl likely to
have a shorter bond length than BrCl-?

14.5 (a) Where appropriate, give the parity of (a) n* in F,, (b) o* in
NO, () & in iy, (d) 6" in Fe,.

14.5 (b) Give the parities of the six n molecular orbitals of benzene.

14.6 (a) The term symbol for the ground state of Nj is X, What is
the total spin and total orbital angular momentum of the molecule?
Show that the term symbol agrees with the electron configuration
that would be predicted using the building-up principle.

14.6 (b) One of the excited states of the C, molecule has the valence
electron configuration 10;2¢}? Ing2x). Give the multiplicity and
parity of the term.

14.7 (a) Use the electron configurations of NO and N, to predict
whith is likely to have the shorter bond length.
14.7 (b) Arrange the species O}, 0,, 07, 03~ in order of increasing
bond length. )
14.8 (a) Show that the sp® hybrid orbital (s +2'/2p)/3'/? is
normalized to | if the 5 and p orbitals are normalized to 1.
14.8 (b) Normalize the molecular orbital ¥ (A) + Ay, (B) in terms
of the parameter A and the overlap integral .
14.9 (a) Confirm that the bonding and antibonding. combinations
W (A) -+ (B) are mutually orthogonal in the sense that their mutual
overlap is zero.
14.9 (b) Suppose that a molecular orbital has the form
N{0.145A -+ 0.8448). Find a linear combination of the orbitals A
and 8 that is orthogonal to this combination.
14.10 (a) Which of the following triatomic molecules and ions are
cexpected to be linear: (a) CO,, (b) NO,, (c) NOJ ? Give reasons in each
case.
14.10 (b) Which of the following triatomic molecules and ions are
expected to be linear: (a) NO,, (b) SO,, (¢) H,0, (d) H,0**? Give
reasons in each case,

"
14.11 (a) Construct the molecular orbital energy level diagrams of
ethene (ethylene) on the basis that the molecule is formed from the
appropriately hybridized CH, or CH fragments.
14.11 (b) Construct the molecular orbital energy level diagrams of
ethyne (acetylene) on the basis that the molecule is formed from the
appropriately hybridized CH,,or CH fragments.
14.12 (a) Write down the secular determinants for (a) linear H,, (b)
cyclic Hy within the Hiickel approximation.
14.12 (b) Predict the electronic configurations of (a} the benzene
anion, (b) the benzene cation. Estimate the n-bond energy in each
case.
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Problems

Numerical problems

14.1 Show that, if a wave cos kx centred on A (so that x is measured
from A) interferes with a similar wave cos K'x centred on B (with x
measured from B) a distance R away, then constructive interference
occurs in the intermediate region when k=K =mn/2R and
destructiye interference if kR = 3= and KR = .

14.2 The overlap integral between two Hls orbitals on nuclei
separated by a distance R is § = {1 4 (R/ay) 41 (R/a,)"}e ¥/,
Plot this function for 0 > R <oo.

14.3 Before doing the calculation below, sketch how the overlap
betwgen an s orbital and a ap orbital can be expected to depend
on their separation, The overlap integral between an Hls orbital
and an-=-H2p orbital on nuclei separated by a distance R is
S = (R/ag){1 + (R/ay) + %(R/au)z}c“"f"". Plot this function, and
find the separation for which the overlap is a maximum.

14.4 Calculate the total amplitude of the normalized bonding and
antibonding LCAD-MOs that may be formed from two Hls orbitals at
a separation of 106 pm. Plot the two amplitudes for positions along
the molecular axis both inside and outside the internuclear region.
14.5 Repeat the calculation in Problem 14.4, but plot the probability
densities of the two orbitals. Then form the difference density, the
difference between ” and 4 {¢.(A) + ¢,(B)*}.

14.6 Imagine a small electron-sensitive probe of volume 1.00 pm’
inserted into an H} molecule ion in its ground state. Calculate the
probability that it will register the presence of an electron at the
following positions: (a) at nucleus A, (b) at nucleus B, (c) halfway
between A and B, (d) at a point 20 pm along the bond from A and
10 pm perpendicularly. Do the same for the molecule-ion the instant
after the electron has been excited into the antibonding LCAO-MO.
14.7 The energy of H) with internuclear separation R is given by the
expression

V] + Vg ?1
1+8  4negR

where E, is the energy of an isolated H atom, V| is the attractive
potential energy between the electron centred gn one nucleus and
the charge of the other nucleus, V, is the attraction between the
overlap density and one of the nuclei, S is the overlap integral. The
values are given below. Plot the molecular potential energy curve and
find the bond dissociation energy (in electronvolts) and the
equilibrium bond length.

E=Ey—

Rfa, 0 1 2—34 4

¥V,/E, 1.000 0.729 0.473 0.330 0.250
Vy/E, 1.000 0.736 0.406 0.199 0.092
s 1.000 0.85R 0.587 0.349 0.189

where E, = 27.3 ¢V, ay = 52.9 pm, and £y = — 1 E,.

-—“\

14.8 The same data as in Problem 14.7 may be used to calculate the
malecular potential energy curve for the antibonding orbital, which is
given by

E—E V,—V2+ &2
TEHT I8 T ane,R

Plot the cf:rvc.

14.9 In the ‘free electron molecular orbital’ (FEMO) theary, the
electrons in a conjugated molecule are treated as independent
particles in a box of length L. Sketch the form of the two occu-
pied orhitals in butadiene predicted by this model and predict the
minium excitation energy of the molecule, The tetraene
CH,=CHCH==CHCH=CHCH==CH, can be treated as a box of
length 8R, where R =140 pm (as in this case, an extra half bond-
length is often added at each end of the box). Calculate the minimum
excitation energy of the molecule and sketch the HOMO and LUMO.
Fstimate the colour a sample of the compound is likely to appear in
white light.

Theoretical problems

14.10 An sp® hybrid orbital that lies in the xy plane and makes an
angle of 120° to the x-axis has the form )

L[ 3172
W=?7ﬁ -“é‘,ﬁﬂ;*ﬁpy

Use hydrogenic atomic orbitals to write the explicit form of the hybrid
orbital. Show that it has its maximum amplitude in the direction
specified.

14.11 Use the expressions in Problems 14.7 and 14.8 to show that
the antibonding orbital is more antibonding than the bonding orbital
is bonding at most internuclear separations.

14.12 Derive the expressions used in Problems 14.7 and 14.8 using
the normalized LCAO-MOs for the H molecule-ion. Proceed by
evaluating the expectation value of the hamiltonian for the ion. Make
use of the fact that v (A) and ¢, (B) each individually satisfy the
Schrédinger equation for an isolated H atom.

14,13 Construct the Walsh diagram for an AH; molecule, and use it
to predict the shapes of (a) NH,, (b) CHJ.

14.14 Take as a trial function for the ground state of the hydrogen
atom (a) e, (b) e™¥" and use the variation principle to find the
optimum value of k in each case. ldentify the better wavefunction.
The only part of the laplacian that need be considered is the part that
involves radial derivatives (eqn 12.63).
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-Additional problems supplied by Carmen Giunta
and Charles Trapp

14.15 J.G. Dojahn, ECM. Chen, and W.E. Wentwaorth (J. Phys. Chem.
100, 9649 (1996)) characterized the potential energy curves of
homonuclear diatomic halogen molecules and molecular anions.
Among the properties they report are the the equilibrium internuclear
distance R,, the vibrational wavenumber, iz, and the dissociation
energy, D,.

Species r./pm  fem™' D, feV

F, 1411 9166 1.60

F; 1900 4500 131

Rationalize these data by using qualitative molecular orbital
‘conﬁgurations.

14.16 Rydberg molecules can be thought of as molecular analogues
of Rydberg atoms. However Rydberg molecules do not involve atomic
orbitals with analogously large quantum numbers (n = 100), but
rather atomic orbitals with » one higher than the n values of the
valence shells of the constituent atoms. Nevertheless speculate about
the existence of Rydberg H, as formed from two H atoms with 100s
electrons. Make reasonable guesses about the binding energy, the
equilibrium internuclear separation, the vibrational force constant,
and the rotational constant. Is such a molecule likely to exist under
any circumstances?

14.17 Set up and solve the Hiickel secular equations for the =
electrons in NO7. Express the energies in terms of the Coulomb
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integrals, ay and ay, and the*resonance integral §. Determine the
« delocalization energy of the nitrate ion.

14.18 In Exercise 14.12a, you were invited to set up the Hiickel
secular determinants for linear and cyclic H,. The same secular
determinant applies to the molecular ions HY and D3, The molecular
ion HY was discovered as long ago as 1912 by J.J. Thomson, but only
more recently has the equilateral-triangular structure been con-
firmed by M.J. Gaillard, et af. (Phys. Rev. A17, 1797 (1978)). The
molecular ion HY is the simplest polyatomic species with a confirmed
existence and plays an important role in interstellar chemistry. (a)
Solve the Hiickel secular equations for the energies of the H, system
in terms of the parameters o and f§, draw an-energy level diagram for
the orbitals, and determine the binding energies of the molecules H§+,
HY. Ha, and H5. (b) Accurate quantum mechanical calculations by
G.D. Carney and R.N. Porter (/. Chem. Phys. 65, 3547 [1976)) give the
dissociation energy for the process Hj(g) — 2H(g) +H*(g) as
849 kJ mol~'. From this information and data in Table 2.6, calculate
the enthalpy of the reaction H*(g) + H,(g) — HZ(g). Compare to
the binding energy of H,(g). (¢) From your equations and the
information given, calculate a value for the the resonance integral, £,
in H} ; then go on to calculate the binding energies for the other H,
species in (a).

14.19 There is some indication that other hydrogen ring compounds
and ions in addition to H, and D, species may play a role in interstellar
chemistry. According to J.S. Wright and G.A. Dilabio (/. Phys. Chem.
96, 10793 (1992)), Hz, Hg, and H}' are particularly stable, whereas H,
and Hy are not. Confirm these statements by Hiickel calculations.
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in this chapter we sharpen the concept of ‘shape'into a precise definition of symmetry’, and
show that symmetry may be discussed systematically. We see how to classify any molecule
according to its symmetry, and how to use this classification to discuss molecular properties.
After describing the symmetry properties of moleciles themselves, we turn to a considera-
tion of the effect of symmetry transformations on orbitals, and see that their transformation
properties can be used to set up a labelling scheme. These symmetry labels are used to
identify what integrals neeessarily vanish. One important integral is the overlap integral
between two orbitals. By knowing which atomic orbitals may have nonzero overlap, we can
decide which ones can contribute to the formation of molecular orbitals. We also see how to
select linear combinations of atomic orbitals that match the symmetry of the nuclear
framework. Finally, by considering the symmetry properties of inteqrals, we sec that it is
possible to derive the selection rules that gavern spéctroscapic transitions.

The systematic discussion of symmetry is called group theory. Much of group theory is a sum-
mary of common sense about the symmetries of objects. However, because group theory i
systematic, its rules can be applied in a straightforward, mechanical way, and in some cases it
gives unexpected results. In most cases the theory gives a simple, direct method for arriving at
useful conclusions with the minimum of calculation, and this is the aspect we stress here.

The symmetry elements of objects

Some objects are 'more symmetrical' than others. A sphere is more symmetrical than a cube
because it looks the same after it has been rotated through any angle about any diameter. A
cube looks the same only if it is rotated through certain angles about specific axes, such as
90°, 180°, or 270° about an axis passing through the centres of any of its opposite faces
(Fig. 14.1), or by 120° or 240° about an axis passing through any of its opposite corners.
Similarly, an NH; molecule is ‘more symmetrical’ than an H,0 molecule because NH, looks
the same after rotations of 120° or 240° about the axis shown in Fig. 14.2, whereas H,0
looks.the same only after a rotation of 180°.
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15.1 Some of the symmetry elements of a cube.
The twofold,. threefold, and fourfold axes are
labelled with the conventional symbols.

(a)

15.2 (a) An NHy molecule has'a threefold (C;) axis
and (b) an H,0 molecule has a twofold (C,) axis.
Both have other symmetry elements too.

15 MOLECULAR SYMMETRY

An action that leaves an object looking the same after it has been carried out is called a
symmetry operation. Typical symmetry operations include rotations, reflections, and
inversions. There is a corresponding symmetry element for each symmetry operation, which
is the point, line, or plane with respect to which the symmetry operation is performed. For
instance, a rotation (a symmetry operation) is carried out around an axis (the corresponding
symmetry element). We shall see that we can classify molecules by identifying all their
symmetry elements, and grouping together molecules that possess the same set of symmetry
elements. This procedure, for example, puts the trigonal pyramidal species NH; and SO3~
into one group and the angular species H,0 and 50, into another group.

15.1 Operations and symmetry elements

The classification of objects according to symmetry elements corresponding to operations
that leave at least one common point unchanged gives rise to the point groups. There are
five kinds of symmetry operation (and five kinds of symmetry element) of this kind. When we
consider crystals (Chapter 21), we shall meet symmetries arising from translation through
space. These more extensive groups are called space groups.

The identity, E, consists of doing nothing; the corresponding symmetry element is the
entire object. Because every object is indistinguishable from itself if nothing is done to it,
every object possesses at least the identity element. One reason for including the identity is
that some molecules have anly this symmetry element (1); another reason is technical and
connected with the detailed formulation of group theory.

An n-fold rotation (the operation) about an n-fold axis of symmetry, C, (the
corresponding element), is a rotation through 360°/n. The operation C; is a rotation
through 360°, and is equivalent to the identity operation E. An H,0 molecule has one
twofold axis, C,. An NH; molecule has one threefold axis, C;, with which is associated two
symmetry operations, one being 120° rotation in a clockwise sense and the other 120°
rotation in a counter-clockwise sense.' A pentagon has a Cy axis, with two (cloctwise and
counter-clockwise) rotations through 72° associated with it. It also has an axis denoted C2,
corresponding to two successive Cs rotations; there are two such operations, one throi h
144 in a clockwise sense and the other through 144° in a couter-clockwise sense. A ciio
has three C, axes, four Cy axes, and six C, axes. However, even this high symmetry i
exceeded by a sphere, which possesses an infinite number of symmetry axes (along any
diameter) of all possible integral values of n. If a molecule possesses several rotation axes,
then the one (or more) with the greatest value of n is called the principal axis. The principal
axis of a benzene molecule is the sixfold axis perpendicular to the hexagonal ring (2).

A reflection (the operation) in a mirror plane, o (the element), may contain the principal
axis of a molecule or be perpendicular to it. If the plane is parallel to the principal axis, it is
called ‘vertical' and denoted a,. An H,0 molecule has two vertical planes of symmetry

F Cs

/C\ 5 ®

/

Br

.1 CBrCIFI 2 Benzene

1 There is only one twalold rotation associated with a (' axis because clockwise and counler-clockwise | BO® rotations are identical.

29—B



Centre of
inversion, i

15.5 Aregularoctahedron hasa centre of inversion (i),
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15.3 An H,0 molecule has two mirror planes. They  15.4 Dihedral mirror planes (o) bisect the C; axes
are both vertical (that is, contain the principal perpendicular to the principal axis.
axis) and so are denoted ¢, and a,.

(Fig. 15.3) and an NH; molecule has three. A vertical mirror plane that bisects the angle
betw~ .1 two C, axes iscalled a ‘dihedral plane’ and is denoted a4 (Fig. 15.4). When the plane
of symmetry is perpendicular to the principal axis it is called 'horizontal’ and denoted gy, A
CgHg molecule has a Cg principal axis and a horizontal mirror plane (as well as several other
symmetry elements).

In an inversion (the operation) through a centre of symmetry, i (the element), we
imagine taking each point in a molecule, moving it to the centre of the molecule, and then
moving it out the same distance on the other side,” that is, the point (x, y, z) is taken into the
point (—x, —y, —z). Neither an H,0 molecule nor an NH; molecule has a centre of inversion,
but a sphere and a cube do have one. A CgHg molecule does have a centre of inversion, as
does a reqular octahedron (Fig. 15.5); a regular tetrahedron and a CH, molecule do not.

An n-fold improper rotation (the operation) about an n-fold axis of improper rotation or
an n-fold improper rotation axis, S, (the symmetry element), is composed of twa successive
transformations. The first component is a rotation through 360°/n, and the second is a
reflection through a plane perpendicular to the axis of that rotation; neither operation alone
needs to be a symmetry operation. A CH, molecule has three S, axes (Fig. 15.6).

18

(a) (b)

14 [a). A CH, molecule has a fourfold improper rotation axis (S,): the molecule is indistinguishable
after a 90° rotation followed by a reflection across the horizontal plane, but neither operation alone is.a
symmetry operation. (b) The staggered form of ethane has an S, axis composed of a 60° rotation
followed by a reflection.

2 This operation was firsl encountered in Section 1464 in connection with the parity classification of orbitals.
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15.2 The symmetry classification of molecules

To classify molecules according to their symmetries, we list their symmetry elements and
collect together molecules with the same list of eleraents. This procedure puts CH, and CCl,,
which both possess the same symmetry elements as a regular tetrahedron, into the same
group, and H,0 into another group. ‘

The name of the group to which a molecule belongs is determined by the symmetry
elements it possesses. There are two systems of notation (Table 15.1). The Schoenflies
system is more common for the discussion of individual molecules, and the Hermann-
Mauguin system, or International system, is used almost exclusively in the discussion of
crystal symmetry.

Table 15.1 The notation for point groups®

G 1

C, m 5

cp 1 (65 2 G 3 c 4 Gy 6

v G, 2mm T G, 3m (e 4mm Cy, 6mm

Cw 2/m Cy & Co  4/m Co  6/m
D, 222 D, 3R D, 42 D, 622
Dy, mmm Dy, 62m Dy, 4/mmm Dg, 6/mmm
D,y  2m Dy 3m Sy a/m S, 3

T 23 Ty 43m T m3

O 42 0, mm

*In the International system (or Hermann-Mauguin system) for point groups, a number a denotes the
presence of an n-fold axis and m denotes a mirror plane. A diagonal line [ indicates that the mirror plane is
perpendicular to the symmetry axis. It is important to distinguish symmetry elements of the same type but of
different classes, as in 4/mmm, in which there are three classes of mirror plane (o,,0,, and a,). A bar over a
number indicates that the element is combined with an inversion. The only groups listed in this table are the
so-called crystallographic point groups {Section 21.1).

(a) The groups C,, C;, and C,

A molecule belongs to the group C, if it has no element other than the identity (as in (1)). It
belongs to C; if it has the identity and the inversion alone (3), and to C, if it has the identity
and a mirror plane alone (4).

(b) The groups C,, C,,, and C,,
A molecule belongs to the group C, if it possesses an n-fold axis.® An H,0, molecule has the
elements E and C, (5), so it belongs to the group C,. .

Ifin addition to the identity and a C,, axis a molecule has n vertical mirror planes a,, then it
belongs to the group C,,. An H,0 molecule, for example, has the symmetry elements E, C,,
and 2g,,, s0 it belongs to the group Cs,. An NH; molecule has the elements E, 3, and 3a,, s0 it
belongs to the group Cs,. A heteronuclear diatomic molecule such as HCl belongs to the group
C, because all rotations around the axis and reflections across the axis are symmetry
operations. Other members of the group C,,, include the linear OCS molecule and a conc.

Objects that in addition to the identity and an n-fold principal axis also have a horizontal

. mirror plane @, belong to the groups C,,. An example is trans-CHCl=CHCI (6), which has

the elements E, C,, and g, and so belongs to the group Cy,; the molecule B(OH), in the
conformation shown in (7) belongs to the group C.,. The presence of certain symmetry

3 Nole that symbol C, is now playing a triple role: as the kabel of a symmetry element, a symmetry operation, and 3 group.



15.7 The presence of a twofold axis and a

horizontal mirror plane jointly imply the presence

of a centre of inversion in the molecule.
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15,8 A molecule with n twofold rotation axes
perpendicular to an n-fold rotation axis belongs to  to a C, axis, and with n twofold axes in the plane,

149 A molecule with a mirror plane perpendicular

the group D,. belongs to the group D,.

elements may be implied by the prcséncc of others: thus, in Cy, the operations C, and a,,
jointly imply the presence of a centre of inversion (Fig. 15.7).

(c) The groups D,, B,,, and D,

A molecule that has an n-fold principal axis and n twofold axes perpendicular to C, belongs
to the group D,, (Fig. 15.8). A molecule belongs to D, if it also possesses a horizontal mirror
plane (Fig. 15.9). The planar trigonal BF; molecule has the elements E, C;, 3C,, and g, (with
one C, axis along each B—F bond), and so belongs to Dy, (8). The Cghg molecule has the
elements E, Cg, 3C;, 3C%, and o), together with some others that these elements imply,* so it
belongs to Dg,. All homonuclear diatomic molecules, such as N, belong to the group D,
because all rotations around the axis are symmetry operations, as are end-to-end rotation
and end-to-end reflection; D, is also the group of the linear 0CO and HCCH molecule$ and
of a uniform cylinder. Other examples of D, molecules are shown in (9), (10), and (11).

A molecule belongs to the group D, if in addition to the elements of D,, it possesses n
dihedral mirror planes a,. The twisted, 90° allene (12) belongs to D,,, and the staggered
conformation of ethane (13) belongs to Dy,. :

(d) The groups S,
Molecules that have not been classified into one of the groups mentioned so far, but which
possess one S, axis, belong to the group §,. An example is tetraphenylmethane, which

11 [AuCl,] 12 H,C=C=CH,

4 The prime on 3C; indicates that the three C, axes are different from the other three C; axes.
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14 C(CgHy),

(a)

(b)

15.10 (a) Tetrahedral and (b) octahedral molecules
are drawn in a way that shows their relation to a

+ cube: they belong to the cubic groups Ty and O,

respectively.

15.11 The relation of an icosahedron to a cube. The
buckminsterfullerene molecule (15) is related to this
object by cutting off each apex to form a regular
pentagon,

15 Buckminsterfullerene, Cg,
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Y

Ru Fe

16 Ruthenocene, Ru{CgHgl, 17 Excited ferrocene, Fe(CgHg)*

belongs to the point group S, (14). Molecules belonging.to S, with n> 4 are rare. Note that
the group S, is the same as C;, so such a molecule will already have been classified as C;.

(e) The cubic groups

A number of very important molecules (for example, CH, and SF;) possess more than one
principal axis. Most belong to the cubic groups, and in particular to the tetrahedral groups
T, Ty, and T}, or to the octahedral groups ©, @y, (Fig. 15.10). A few icosahedral (20-faced)
molecules, belonging to the icosahedral group, / (Fig. 15.11), are also known: they include
some of the boranes and buckminsterfullerene, Cg, (15). The groups T, and O, are the
groups of the regular tetrahedrdh (for example, CH,) and the regular octahedron (for
example, SFg), respectively, If the object possesses the rotational symmetry of the
tetrahedron or the octahedron, but none of their planes of reflection, then it belongs to
the simpler groups T or O (Fig. 15.12). The group T}, is based on T but also contains a centre
of inversion (Fig. 15.13).

(f) The full rotation group

The full rotation group, Ry (the 3 refers to rotation in_three dimensions), consists of an
infinite number of rqtation axes with all possible values of n. A sphere and an atom belong to
R;, but no molecule does. Expldting the consequences of R, is a very important way of
applying symmetry arguments to atoms, and is an alternative approach to the theory of
orbital angular momentum. .

Example 15.1 |dentifying a point group of a molecyle
Identify the point group to which a ruthenocene molecule (16) belongs.

Mcthod The identification of a molecule's point group is simplified by referring to the flow
diagram in Fig. 15.14 and the shapes shown in Fig. 15.15,

Answer The path to trace throdgh the flow diagram in Fig. 15.14 is shown by a green line; it
ends at D,;,. Because the molecule has a fivefold axis, it belongs to the group Dy,

Comment If the rings were staggered, as they are in an excited state of ferrocene that lies
4 kJ mol ' above the ground state (17), the harizontal reflection plane would be absent, but
dihedral planes would be present.

Self-test 15,1 Classify the pentagonal antiprismatic excited state of ferrocene.

[Ds4l
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Molecule

fa) T

o,

15.12 Shapes corresponding to the point groups (a)

T and (b) O. The presence of the windmill-like 0
structures reduces the symmetry of the object from ’h
T, and O,, respectively. ’ ‘

Eelﬁct C, with
ighest n; then, are the nC.
perpendicular to C,? CNZAN /

15.13 The ﬂ?ahc of an object belonging to the D
group T, nd

171 A flow diagram for determining the point group of a molecule. Start at the top and answer the

guestion posed in each diamond (Y = yes, N = no).
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(pyramid)

Do

(plane or bipyramid)

15.15 A summary of the shapes corresponding to different point grnups The group to which a molecu!c belongs can often be identified from this diagram without
going through the formal procedurc in Fig. 15.14.



15.16 (a) A molecule with a C, axis cannot have a
dipale perpendicular to the axis, but (b) it may have
one parallel to the axis. The arrows represent local
contributions to the overall electric dipole, such as
may arise from bonds between pairs of
neighbouring atoms with different
electronegativities.

5

15.17 Some symmetry elements are implied by the
other symmetry elements in a group. Any molecule
containing an inversion also possesses at least an $,
clement because i and S, are equivalent.

COOH

e Gy '
" / T,
CH,

18 L-Alanine, NH,CH(CH,)COOH

COOH

-—#c
"/ Tk,

H
19 Glycine, NH,CH,COOH
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153 Some immediate consequences of symmetry

Some statements about the properties of a molecule can be made as soon as its point group
has been identified.

(a) Polarity ' .

A polar molecule is one with a permanent electric dipole moment (HCI, O;, and NH, are
examples). If the molecule belongs to the group C, with n> 1, it cannot possess a charge
distribution with a dipole moment perpendicular to the symmetry axis because the
symmetry of the molecule implies that any dipole that exists in one direction perpendicular
to the axis is cancelled by an opposing dipole (Fig. 15.16a). For example, the perpendicular
component of the dipole associated with one OH bond in H,0 is cancelled by an equal but
opposite component of the dipole of the second OH bond, so any