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Quantum theory:
introduction and1. 1
principles

this chopler uilraili,cc''. sc s/Ic of the basic principles of quail turn nicchan;CS. first, it reviews
the cspei uncool rcs u/I 07a  overthrew the concept of eta cs,cul p/I ysics. These experiments
ICI! to the cot iCii( i/ni that purfrch ,5 may not have oii (lrbOror'y energy urd thu t the classical
concepts of jurt,ele and 'wave' blend logctlier. the overthrow of classical mechanics
inspired the tar/li ulu lion of a new set of concf-pts and the formulation of quantum
,rii'ehu,i,e, in iüim fm mrc/iumcs, all the properties of a system are expressed in terms
of a WIIVI' fillulicin which is obtained by salvimj the Scti rOthnqer equation. We see how to
interpret wu ci inc (jO/is, finally, we in traduce some of the techniques of quon turn
mechanics in ter,Ii of operators, and see that they leach to the uncertainty principle, one
of Il/C i/lu (St pi c/lOUT/il il/fart tiles Ira/ti cliis sical flIC('liOl/iCS.

To understand the structures of individual atoms and molecules, we need to know how
subatomic particles move in response to the forces they experience. It was once thought that
the motion of atoms and subatomic particles could be expressed using the laws of classical
mechanics introduced in the seventeenth century by Isaac Newton. for these laws were very
successful at explaining the motion of everyday objects and planets. However, towards the
end of the nineteenth century, experimental evidence accumulated showing that classical
mechanics failed when it was applied to very small particles, and it took until the 1920s to
discover the appropriate concepts and equations for describing them. We describe the
concepts of this new mechanics, which is called quantum mechanics, in this chapter, and
apply them throughout the remainder of the text.

The origins of quantum mechanics
The basic principles of classical mechanics are reviewed in Further information 4. In brief,
they show that classical physics (1) predicts a precise trajectory for particles, with precisely
specified locations and momenta at each instant, and (2) allows the translational, rotational,
and vibrational modes of motion to be excited to any energy simply by controlling the forces
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11.2 An experimental representation of a black
body is a pinhole in an otherwise closed container.
The radiation is reflected many times within the
container and comes to thermal equilibrium with
the walls at a temperature T. Radiation leaking Out

through the pinhole is characteristic of the
radiation within ti. container.
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11 QUANTUM THEORY: INTRODUCTION AND PRINCIPLES

that are applied. These conclusions agree with everyday experience. Everyday experience.
however, does not extend to individual atoms, and careful experiments of the type described

Maximum	 below have shown that classical mechanics fails when applied to the transfers of very small
of P	 quantities of energy and to objects of very small mass.

11.1 The failures of classical physics
In this section we review some of the experimental evidence which showed that several
concepts of classical mechanics are untenable. In particular, we shall see that observations of
black-body radiation, heat capacities, and atomic and molecular spectra indicate that
systems can take up energy only in discrete amounts.

(a) Black-body radiation
A hot object emits electromagnetic radiation. An appreciable proportion of the radiation is
in the visible region of the spectrum at high temperatures, and a higher proportion of short-
wavelength blue light is generated as the temperature is raised. This behaviour is seen when
a heated iron bar glowing red hot becomes white hot when heated further. The dependence
is illustrated in Fig. 111, which shows how the energy output varies with wavelength at
several temperatures. The curves are those of an ideal emitter called a black body, which is
an object capable of emitting and absorbing all frequencies of radiation uniformly. A good
approximation to a blackbody is a pinhole in an empty container maintained at a constant
temperature, because any radiation leaking out of the hole has been absorbed and re-
emitted inside so many times that it has come to thermal equilibrium with the walls
(Fig. 11.2).

Figure 11.1 shows that the peak in the energy output shifts to shorter wavelengths as the
temperature is raised. As a result, the short-wavelength tail of the energy distribution
strengthens in the visible region and the perceived colour shifts towards the blue, as already
mentioned. Ali analysis of the data led Wilhelm Wien (in 1893) to formulate the Wien

displacement law:

=2 C, = 1.44 cm 	 (1)

where is the wavelength corresponding to the maximum of the distribution at a
temperature T. The constant c2 is called the second radiation constant. Using its value, we

can predict that 2,, u 2900 nm at 1000 K.
A second feature of black-body radiation had been noticed in 1879 by Josef Stefan, who

considered the toraPenergy density, £, the total electromagnetic energy in a region divided
by the volume of The region (E = El y). The energy density of the electromagnetic field
inside the container in Fig. 11.2 increases as the temperature is increased, and specifically
the Stefan-Boltzmann law states that

E=OTS	 (2a)

Ludwig Boltzmann's name is attached to this law because he explained it theoretically. An
alternative form of the law is in terms of the excitance, M, the power' emitted by a region of
surface divided by the area of the surface: the excitance is a measure of the brightness of the
emission. Because the excitance is proportional to the energy density in the container, Mis
also proportional to 7 5 , and we can write

M=o7	 c=5.ô7xlOWm2K4	 (2b)

The constant c is called the Stefan-Boltzmann constant. The Stefan-Boltzmann law implies

that 1 cm 2 of the surface of a black body at 1000 K radiates about 6 W when all

is Or at, Of Supply f rnrgy It, SI unit, are uStIs. W I W =I J -
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C
w
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11.1 The energy distribution in a black-body cavity
at several temperatures. Note how the energy
density increases in the visible region as the
temperature is raised, and how the peak shifts to
horter wavelengths. The total erergy density (the

area under the curve) increases as the temperature
is increased (as 7.4)
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11.3 the electromagnetic vacuum can be regarded
as able to support oscillations of the
electromagnetic field. When a high-frequency
short-wavelength oscillator (a) is excited, that
frequency of radiation is present. The presence of
low-frequency long-wavelength radiation (b)
signifies that an oscillator of tht corresponding
frequency has been excited.

Rayleigh-
Jeans

.2	 formula

CD

Lu

Experimental

Wavelength, X

11.4 The Rayleigh-Jeans law (eqn 31 predicts an
infinite energy density at short wavelengths. lIii
prediction is called the ul t raviolet catastrophe.

wavelengths of the emitted radiation are taken into account. The explanation of black-body
radiation was a major challenge for nineteenth-century scientists, and in due course it was
found to be beyond the capabiities of classical physics. The physicist Lord Rayleigh studied it
theoretically from a classical viewpoint, and thought of the electromagnetic field as a
collection of oscillators of all possible frequencies. He regarded the presence of radiation of

frequency v (and therefore of wavelength ). = c/u, where c is the speed of light) as
signifying that the electromagnetic oscillator of that frequency had been excited (Fig. 11.3).
Rayleigh used the equipartition principle (see the Introduction) to calculate the average

energy of each oscillator as U. Then, with minor help from James Jeans, he arrived at the

Rayleigh-Jeans law:

	

d(= pd).	 f) (3)

where p is the proportionality constant between d and the energy density in that range of

wavelengths: k is the Boltzmann constant (k = 1.381 x 10Y 23 3K-  I).

Unfortunately (for Rayleigh, Jeans, and classical physics), although the Rayleigh-Jeans
law is quite successful at long wavelengths (low frequencies), it fails badly at short
wavelengths (high frequencies). Thus, as ,T decreases, p increases without going through a
maximum (Fig. 11.4). The equation therefore predicts that oscillators of very short
wavelength (corresponding to ultraviolet light, X-rays, and even y-rays) are strongly excited
even at roont temperatul'. thisabsurd result, which implies that a large amount of energy is
radiated in the high-frequency region of the electromagnetic spectrum, is called the
ultraviolet catastrophe. According to classical physics, even cool objects should radiate in
the visible and ultraviolet regions: according to classical physics, objects should glow in the
dark: there should in fact be no darkness,

(b) The Planck distribution
The German physicist Max Planck studied black-body radiation from the viewpoint of
thermodynamics. In 1900 he found that he could account for the experimental observations

by proposing that the energy of each electromagnetic oscillator is limited to discrete values

and cannot he varied arbitrarily. This proposal is quite contrary to the viewpoint of classical
physics (on which the equipartition principle used by Rayleigh is based), in which all possible
energies are allowed. The limitation of energies to discrete values is called the quantization
of energy. In particular, Planck found that he could account for the observed distribution of
energy if he supposed that the permitted energies of an electromagnetic oscillator of
frequency v are inleger multiples of lit,:

	

E =. ri/it'	 ii = (1,1,2,...

where It is a fundamental constant now known as the Planck constant.
On the basis of this assumption, Planck was able to dtrive the Planck distribution:

Sm/ic I	 I

	

pd,	 p =.	 /k7

This expression fits the experimental curve very well at all wavelengths (Fig. 11.5), and the
value of /t, which is all undetermined parameter in the theory, may be obtained by varying
its value until a best fit is obtained. The currently 

a ccepted value for It is

6.62608x lO - ' is.
The Planck distribution resembles the Rayleigh-Jeans law (eqn 3) apart from the all-

important exponenlial factor in the denominator. For short wavelengths, hc/AkT is large

and ct111 r lacIer than ). - 0; therefore p 0 as ). -. 0 or v o. Hence, the

energy density approaches zero at high frequencies, in agreement with observation. For long

(4)

(5)
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wavelengths, Iic/kT	 I, and the denominator in the Planck distribution can be replaced
by

+±.+
ALT	 )	 AkT

15
When this approximation is substituted into eqn 5, we find that the Planck distribution
reduces to the Rayleigh-Jeans law.

The Planck distribution also accounts for the Stefan-Boltzmann and Wien laws. The
Planck	 former is obtained by integrating the energy density over all wavelengths from A = 0 toilistriliiition	 A	 t, which givs

e=jpdA=a74	 (6)

Substitution of the values of the fundamental constants gives c = 56.704 nWm 2 K, in
accord with the experimental value. The Wien law is obtained by looking for the wavelength
at which dp/dA = 0, the condition for the maximum in the distribution. When we take the

0	 0.5	 1.0	 1.5	 2.0	 derivative, set it equal to zero, and make the approximation that the wavelength is so short

XkT/hc	 that he/A > U, we obtain

11.5 The Planck distribution leqn SI accounts very
well for the experimentally determined distribution
of radiation. Planck's quantization hypothesis
essentially quenches the contributions of high-
frequency, short-wavelength oscillators. The
distribution coincides with the flayleigh-Jeans
distribution at long wavelengths.

lie
Tlmax = .	 (7)

This result lets us identify the second radiation constant as e2 = hc/L = 1.439 cm K, which
is also in good agreement with experiment.

It is quite easy to see why Rayleigh's approach was unsuccessful and Planck's hypothesis
was successful. The thermal motion of the atoms in the walls of the black body excites the
oscillators of the electromagnetic field. According to classical mechanics, all the oscillators
of the field share equally in the energy supplied by the walls, so even the highest frequencies
are excited. The excitation of very high frequency oscillators results in the ultraviolet
catastrophe. According to Planck's hypothesis, however, oscillators are excited only if they
can acquire an energy of at least hi'. This energy is too large for the walls to supply in the
case of the very high frequency oscillators, so the latter remain unexcited. The effect of
quantization is to reduce the contribution from the high frequency oscillators, for they
cannot be significantly excited with the energy available.

(c) Heat capAcities
In the early nineteenth century, the French scientists Pierre-Louis Dulong and Alexis-Therese
Petit determined the heat capacities of a number of monatomic solids. 2 On the basis of some
somewhat slender experimental evidence, they proposed that the molar heat capacities of all
monatomic solids are the same, and close to 25 JK mol (in modern units).

Dulong and Petit's law is easy to justify in terms of classical physics. If classical physics
were valid, the equipartition principle could be used to calculate the heat capacity of a solid.
According to this principle, the mean energy of an atom as it oscillates about its mean
position in a solid is Li for each direction of displacement. As each atom can oscillate in
three dimensions, the average energy of each atom is 3kT: for N atoms the total energy is
3NLT. The contribution of this motion to the molar internal energy is therefore

Urn = 3NA LT = 3RT

As explained in Serinn 745. ihr unstanivcurnr heal capacity . Cr. is dcr,vea as C, = iau/erl,. A sma4 heal capacity
indicates that a iai5r 'cc in iCrn,aio.e results from a gvec transfer of energy.
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11.6 Experimental low-temperature molar heat
capacities and the temperature dependence
predicted on the basis of Einstein's theory. His
equation (eqn 9) accounts for the dependence fairly
well, but is everywhere too low.
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because NAk = R, the gas constant. The molar constant-volume heat Capacity (cqn 2.19) is
then predicted to be

3R

	

Crm = (t1m) 	 (8)

This result, with 3k	 24.9 J K - ' mor', is in striking accord with Dulong and Petit's value.
Significant deviations from Dulong and Petit's law were observed when technological

advances made it possible to measure heat capacities at low temperatures. It was found that
the molar heat capacities of all metals are lower than 3R at low temperatures, and that the
values approach zero as T - 0. To account for these observations, Einstein (in 1905)
assumed that each atom oscillated about its equilibrium position with a single frequency V.

He then invoked Planck's iypothesis to assert that the energy of oscillation is confined to
discrete values, and specifically to n/tv, where n is an integer. Einstein first calculated the
contribution of the ocillations of the atoms to the total molar energy of the metal (by a
method described in Section 20.4) and obtained

- 3Nhv
m - 	 -

in place of the classical expression 3RT. Then he fotJ\nd the heat capacity by differentiating

Urn with respect to W . The resulting expression is now known as the Einstein formula:

1) / e0/2' \
C , . = 3Rf2	

= T (,,.eoE/T - i)

where the Einstein temperature, 0E = hzi/k, is a way of expressing the frequency of
oscillation of the atoms as a temperature: a high frequency corresponds to a high Einstein
temperature.

At high temperatures (when T OE) the exponentials in f can be expanded as

1 + O6/T + .. and higher terms ignored. The result is

..j'Ej'j+OEI2T+	 i 	 ma

Consequently, the classical result (Gy m = 3R) is obtained at high temperatures. At low
temperatures, when T t °E.

0	 OE/2T	 0
=e- OH12T	 (lob)

T (?Tf-T

The strongly decaying exponential function goes to zero more rapidly than l/T goes to
infinity: so jr -+ 0 as T -. 0, and the heat capacity therefore approaches zero too. We see
that Einstein's formula accounts for the decrease of heat capacity at low temperatures. The
physical reason for this success is that at low temperatures only a few oscillators possess
enough energy to oscillate significantly. At higher temperatures, there is enough energy
available for all the oscillators to become active: all 3N oscillators contribute, ad the heat
capacity approaches its classical value.

The temperature dependence of the heat capacity predicted by the Einstein formula is
plotted in Fig. 11.6. The general shape of the curve is satisfactory, but the numerical
agreement is in fact quite poor. The poor fit arises from Einstein's assumption that all the
atoms oscillate with the same frequency, whereas in fact they oscillate over a range of
frequencies from zero up to a maximum value, U1). This complication is taken into account by
averaging over all the frequencies present, the final result being the Debye formula:

/ 1' \ - r 0 /'	 r4Ct
C'm = 3Rf	 f3() I	 (1 1)

\0J in	 (e - 1)
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11 7 Di-bye's modification 01 Einstein's calculation
leqn ill gives very good agrc'rinrni with
experiment. For copper. 7 7O - 2 corresponds to.
about 670 K.
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where O - Itu1> /k is the Oebye temperature. The integral in eqn 11 has to be evaluated
numericaliy, but that is simple with mathematical software. The details of this modification,
Which, as Fig. 11.! shows, gives improved agreement with experiment need not distract us at
this stage Ironi the main conclusion, which is that quanti ation must be introduced in order
to explain the thermal properties of solids. 	 -

(d) Atomic and molecular spectra
The most compelling evidence for the quantization of energy comes from the observation of
the frequencies of radiation absorbed and emitted by atoms and molecules.

A typical atomic spectrum is shown in Fig. 11.8, and a typical molecular spectrum is
shown in Fig. 11.9. The obvious feature of both is that radiation is emitted or absorbed at a
series of discrete frequencies. [his observation can be understood if the energy of the atoms
or molecules is also corihncd to discrete values, for then energy can be discarded or absorbed
only in discrete amounts (Fig. 11.10). Then, it the energy of an atom decreases by AE, the
energy is carried away as radiation of frequency ii = AE/h, and a line appears in the
spectrum.

11.2 Wave—particle duality
At this stage we have tablished that the energies of the electromagnetic field and of
oscillating atoms are quantized. In this section we shall see the experimental evidence that
led to the revision of two other basic concepts concerning the nature of the world. One
experiment shows that electromagnetic radiation—which classical physics treats as wave-
like—actually also displays the characteristics of particles. Another experiment shows that
electrons- which classical physics treats as particles—also display the characteristics of
waves.

(a) The particle character of electromagnetic radiation
ihe observation that electromagnetic radiation of frequency o can possess only the energies
0, !i,', 21ti'. . . . suggests that it can be thought of as consisting of 0, 3,2,. . . particles, each
particle having an energy lit'. Then, if one of these particles is present, the energy is ho, if
two arc present the energy is 2hz', and soon. These particles of electromagnetic radiation are
now called photons. The observation of discrete spectra from atoms and molecules can be
pictured as the atom or molecule generating a photon of energy 1w when it discards an
energy of magnitude AF, with AE = ho.

>.
U,
C

C

C
0
U,
U,

E
w

415	 .	 420
Wavelength, XJnm

11.8 A region 01 the spectrum it radiation emitted
by excited iron atoms consists of radiation at a
series of discrete wavelengths (or frequencies).

Example 11.1 Ca1cultn9 the number of photons

Calculate the number of photons emitted by a 300 W yellow lamp in 1.0 s. Take the
wavelength of yellow light as 560 nm and assume IOU per cent efficiency.

Method Each photon has an energy 1w, so the total number of photons needed to produce
an energy E is E / /it'. To use this equation, we need to know the frequency of the radiation
(from t' = c/).) and the total energy emitted by the lamp. The latter is given by the product
of the power (F, in watts) and the time (E = Pt). In general, to avoid rounding and other
numerical errors, it is best to carry out algebraic calculations first, and to substitute
numerical values into a single, final formula.

Answer The number of photons is

	

N : 
A 	 P1	

-r

	

lii'	 h(c/).) -	 lit



588.8	 588.9	 589.0	 589.1

Wavenumber, /cm

11 9when a molecule changes its state, it does so
by absorbing radiation at definite frequencies. This
suggests that it can possess only discrete energies,
not an arbitrary energy. This spectrum is part of
that due to the vibrations and rotations of
dinitrogen oxide (N2 (]) molecules.
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Substitution of the data gives

N
(5.60 x 1 m) x (100 Js 1 ) x (1.0 s) - 28 x 1020

- (6L626x I0	 Js)x(2.998 x  10 ms')

('ommcntNote that it would take nearly 40 min to produce I mol of these photons.

Self-test 11.11-low many photons does a monochromatic (single-frequency) infrared
rangefinder of power I niW and wavelength 1000 rim emit in 0.1 s?

[S x iO']

Further evidence for the particle-like character of radiation comes from the
measurement of the energies of electrons produced in the photoelectric effect. this
effect is the ejection of electrons from metals when they are exposed to ultraviolet
radiation. The experimental characteristics of the photoelectric effect are as follows:

1. No electrons are ejected, regardless of the intensity of the radiation, unless Cat
frequency of the radiation exceeds a threshold value characteristic of the metal.

2. The kinetic energy of the ejected electrons increases linearly with the frequency of

the incident radiation but is independent of the intensity of the radiation
3. Even at low light intensities, electrons are ejected immediately I, the frequeicy is

abuve threshold.

The second characteristic is illustrated by the experimental data in Fig. 11.11.
These observations strongly suggest that the photoelectric effect depends on the ejection

of an electron when it is involved in a collision with a particle-like projectile that carries

0)
0)
C
uJ

£3

hv = E3 — E2

E2	

\] 'jI

Il_Il 	 /''l

= E3 -

I 10 Spectral lines ciii be accounted for if we
assume that a molecule emits a photon as it
changes between discrete energy levels. Note that
high -frci1iiency radiation is emittcit when the
energy change is large.

LO	 I lnct'easinqc'a
c'a/ work function

Frequency of incident radiation, v

11.11 In the photoelectric effect, it is found that
no electrons are ejected when the incident radiation
has a frequency below a value characteristic of the
metal and, above that value, the kinetic energy of
the photoelectrons varies linearly with the
frequency of the incident radiation.
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enough energy to eject the electron from the metal. If we suppose that the projectile is a
photon of energy hi.', where v is the frequency of the radiation, then the conservation of
energy requires that the kinetic energy of the ejected electron should obey

nrv2 = hi, - (P	 (12)

In this expression (P is a characteristic of the metal called its work function, the energy
required to remove an electron from the metal to infinity (Fig. 11.12). Photoejection cannot
occur if ht.'< (P because the photon brings insufficient energy: this conclusion accounts for
observation (1). Equation 12 predicts that the kinetic energy of an ejected electron should
increase linearly with frequency, in agreement with observation (2). When a photon collides
with an electron, it gives up all its energy, so we should expect electrons to appear as soon as
the collisions begin, provided the photons have sufficient energy: this conclusion agrees
with observation (3).

(b) The wave Character of particles
Although contrary to the long-established wave theory of light, the view that light consists
of particles had been held before, but discarded. No significant scientist, however, had taken
the view that matter is wave-like. Nevertheless, experiments carried out in 1925 forced
people to even that conclusion. The crucial experiment was performed by the American
physicists Clinton Davisson and Lester l3ermer, who observed the diffraction of electrons by
a crystal (Fig. 11.13). Diffraction is a characteristic property Of waves because it occurs when
there is interference between their peaks and troughs. Depending on whether the
interference is constructive or destructive, the result is a region of enhanced or diminished
intensitS, . Davisson and Germer's success was a lucky accident, because a chance rise of
temperature caused their polycrystalline sample to anneal, and the ordered planes of atoms
then acted as a diffraction grating. At almost the same time, G.P. Thomson, working in
Scotland, showed that a beam of electrons was diffracted when passed through a thin gold
foil.

The Davisson-Germer experiment, which has since been repeated with other particles
(including molecular hydrogen), shows clearly that particles have wave-like properties. We
have also seen that waves of electromagnetic radiation have particle-like properties. Thus we

Kinetic energy
of ejected
electron

1.12 The photoelectric effect can be explained ill
is supposed that the incident radiation is composed of
photons that have energy proportional to the
frequency of the radiation. (a) The energy of the
photon is insufficient to drive an electron Out of the
metal. fbI The energy of the photon is more than
enough to eject an electron, and the excess energy is
carried away as the kinetic energy of the
photoelectron (the ejected electron).

Energy needed	 hv
to remove
electron from
metal

Ak..	 ,	 fcD

>,Q.

ID .0
C
w

(a)	 (b)
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11.14 An illustration of the de Broglie relation
between momentum and wavelength. The wave is
associated with a particle (Shortly this wave will be
seen to be the wavefunction of the particle). A
particle with high momentum has a wavelunclion
with a short wavelength, and vice versa.

11.2 WAVE-PARTICLE DUALITY
	

293

11.13 The Davisson-Gerrner experiment. The
'cattering of an electron beam from a nickel crystal
Shows a variation of intensity characteristic of a
diffraction experiment in which waves interfere
constructively and destructively in different
directions.

Nickel crystal

are brought to the heart of modern physics. When examined on an atomic scale, the classical
concepts of particle and wave melt together, particles taking on the characteristics of waves,
and waves the characteristics of particles.

Some progress towards coordinating these properties had already been made by the
French physicist Louis de Brogue when, in 1924, he suggested that any particle, not only
photons, travelling with a linear momentum p should have (in some sense) a wavelength
given by the de Broglie relation

(13)
P

That is, a particle with a high linear momentum has a short wavelength (Fig, 11.14).
Macroscopic bodies have such high momenta (even when they are moving slowly) that their
wavelengths are undetectably small, and the wave-like properties cannot be observed.

Example 11.2 Estimating the de Brogue wavelength

Estimate the wavelength of electrons that have been accelerated from rest through a
potential difference of 40 kV.

Method To use the de Brogue relation, we need to know the linear momentum, p. of the
electrons. To calculate the linear momentum, we note that the energy acquired by an
electron accelerated through a potential difference ) v is e', where e is the magnitude of its
charge. At the end of the period of acceleration, all the acquired energy is in the form of
kinetic energy, p2/2nrr, so we can determine p by setting-p'/2m equal to er. As before,
carry through the calculation algebraically before substituting the data.

Answer The expr'ession

p2- = eY
2m,

solves to

p =

Then, from the de Brogue relation,

A = (2me)
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Substitution of the data and the fundamental constants (from inside the front cover) gives

-	 6.626x 10	 Js

- {2x(.t.I09xl0	 kg) x(I.609xi0'C)x(4.0x 10 V)}2

- 6.1 x 10 201

Comment The wavelength of 6.1 prii is shorter than typical bond lengths in molecules
(about 100 pin). Electrons accelerated in this way are used in the technique of electron
diffraction (Section 21.10) for the determination of molecular structure.

Self-test 11.2 Calculate the wavelength of a neutron with a translational kinetic energy
equal to kT at 300 K.

[178 pm]

We now have to conclude that, not only has electromagnetic radiation the character
classically ascribed to particles, but electrons (and all other particles) have the characteristics
classically ascribed to waves. This joint particle and wave character of matter and radiation is
called wave-particle duality. Duality strikes at th',heart of classical physics, where particles
and waves are treated as entirely separate entities. We have also seen that the energies of
electromagnetic radiation and of matter cannot be varied continuously, and that for small
objects the discreteness of energy is highly significant. In classical mechanics, in contrast,
energies could be varied continuously. Such total failure of classical physics for small objects
implied that its basic concepts were false. A new mechanics had to be devised to take its
place.

The dynamics of microscopic systems
Quantum mechanics acknowledges the wave-particle duality of matter by supposing that,
rather than travelling along a definite path, a particle is distributed through space like a
wave. This remark may seem mysterious at this stage: it will be interpreted more fully shortly.
The wave that in quantum mechanics replaces the classical concept of trajectory is called a
wavefunction, ' (psi).

11.3 The Schrodinger equation
In 1926 the Austrian physicist Erwin SchrOdinger proposed an equation for finding the
wavefunclion of any system. The time-independent SchrOdingcr equation for a particle of
mass m moving in one dimension with energy E is

1,2 110I
	 Eifr	 (14)

2ni dv

The factor V(e) is the potential energy of the particle at the pointx; /i (which is read h-cross
or h-bar) is a convenient modification of the Planck constant:

1.05457x10 34 Js 	 (15)

Various ways of expressing the Schrhdinger equation, of incorporating the time dependence
of the wavefunction, and of extending it to more dimensions, are collected in Table 11.1. In
Chapter 12 we shall solve the equation for a number of important cases; in th rhapter we
are mainly concerned with its significance, the interpretation of its solutions, and seeing
how it implies that energy is quantiLed.
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lzjlilr 1 1.1 The SchrOdinger equation

For one-dimensional systems:

— h, d, + V(x) =

where V (x) is the potential energy of the particle and E is its total energy. For three-dimensional
systems

V2,fVçf=EL,

where V may depend on position and V 2 (del squared') is
02	 2	 2

V2 =--f----,-4--
Ox'	 Ci"

In systems with spherical symmetry:

	

V 2 	 02	 20	 2

Or2	 r0r r-2

where

	

2	 I	 0	 0
A = —,--- — I- -- --sin 0—

sin 0	 sin 0 00	 00
In the general case the Schrddinger equation is written

ml, = Ei,

where II is the hamiltonian operator for the system:

lI__V2+V
2m

For the evolution of a system with time, it is necessary to solve the time-dependent SchrOdinger
equation

WI' = ih!
Of

Justification 11.1

Although the Schrodinger equation should be regarded as a postulate, like Newton's
equations of motion, it can be seen to be plausible by noting that it implies the de Brogue
relation for a freely moving particle. First. eqn 14 can be rearranged into

If the potential has a constant value V. a so!--:ion o r hs equation is

(2m
e' = coskt + i sin ke	 k =

	

(E -

 j 	 h2

For this result, we have used the mathematical relation eu = cosx + i sin x, where
= (— I ). Now we recognize that cos kr (or sin kc) is a wave of wavelength 2 = 2it1k, as

can be seen by comparing coskx with the standard form of a harmonic wave, eos(27e.x/).).
The quantity E — V is equal to the kinetic energy of the particle, EK, so k = (2,nEK/h2)2,
which implies that EK = k2 h 2 /2rn . Because EK 

p2 12m, it follows that

p = k/i

Therefore, the linear momentum is related to the wavelength of the wavefunction by

2n	 Ii	 /i
P = -;- x - — --

2it	 A

which is the de Broglie relation.
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dx	 11.4 The Born tflterprc I ation of the wavefunction

It is a principal tenet of quantum mechanics that the wove function contains all the
dynamical information about the system it describes. Here we shall concentrate on the

/ Probability	 information it carries about the location of the particle.

/	
litldx	 The interpretation of the wavefunction in terms of the location of the particle is based on

/ a suggestion made by Max Born, He made use of an analogy with the wave theory of light, in
which the square of the amplitude of an electromagnetic wave in a region is interpreted as
its intensity and therefore (in quantum terms) as a measure of the probability of finding a

X x+ dx photon present in the region. The Born interpretation of the wavefunction focuses on the
square of the wavefunction (Or the square modulus, 1012 = fr • q,. if fr is complex). 3 It states
that the value of jipj at a point is proportional to the probability of finding the particle at
that point. Specifically, for a one-dimensional system (Fig. 11.15):

11,15 The wavefunclion ç& is a probability
amplitude in the tense that its square modulus

or lfe l 2 ) in a probability density. The
probability of finding a particle in the region dx
located at x is proportional to 11,12 dx.

11.16 The Born interpretation of the wavefunction
in three-dimensional space implies that the
probability of finding the particle in the volume
element do = dxdydz at some location r is
proportional to the product of do and the value of
kl 2 at that location.

If the wavefunction of a particle has the value w at some point x, the prob-
ability of finding the particle between x and x+d.x is proportional to jyj2dx.

Thus, 101 2 is the probability density, and to obtain the probability it must be multiplied by
the length of the infinitesimal region dx. The wavefunction çfr itself is called the probability
amplitude. For a particle free to move in three dimensions (for example, an electron near a
nucleus in an atom), the wavefunction depends on the point r with coordinates x, y, and z,

and the interpretation of ip(r) is as follows (Fig. 11.16):

If the wavefunction of a particle has the value w at some point r, the

probability of finding the particle in an infinitesimal volume dt=dxdydz at
that point is proportional to lw) 2 dr.

The Born interpretation does away with any worry about the significance of  negative
(and, in general, complex) value of 0 because 1012 is real and never negative. There is no
direct significance in the negative (or complex) value of a wavefunction: only the square
modulus, a positive quantity, ;s directly physically significant, and both negative and positive
regions of a wavefunction may correspond to a high probability of finding a particle in a
region (Fig. 11.17). However, later we shall see that the presence of positive and negative
regions of a wavefunction is of great indirect significance, because it gives rise to the
";sibility of constructive and destructive interference between different wavefunctions.

Example 11.3 Interpreting a wavefunctlon

We shall see in Chapter 12 that the wavefunctiori of an e;cctron in the 
lowest energy state

of a hydrogen atom is proportional to cd/v0, with ao a constant and r the distance from the
nucleus. (Notice that this waefunction depends only on this distance, not the angular
position relative to the nucleus.) Calculate the relative probabilities of finding the electron
inside a region of volume 1.0 pm 3 , which is small even on the scale of the atom, located at
(a) the nucleus, (b) a distance ao from the nucleus.

Mclho'l The region of interest is so small on the scale of the atom that we can ignore the
variation of i within it and write the probability, P. as proportional to the probability
density (0 2 ; note that ' is real) evaluated at the point of interest multiplied by the volume
of interest, 6 V. That is, P x

3	 To ixIm Ire c:nlpeo . . fl jUlJ l r. *	 a C.nIpc	 lrnCtloO rep I cc w,- rcvcr : orcurs by r. for Instance. The complex COnu9a!t
vi c" C , " 11 lire ,va,eloniior o fc,l. 	 -



11.17 The sign of a wavefunction has no direct
physical significance: the positive and negative
regions of this wavefunction both correspond to the
same probability distribution (as given by theuare
modulus of and depicted by the density of
shading).
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Auswr In each case ÔV = 1.0 pm3 . (a) At the nucleus, r = 0, so

Pcx e°x(l.Opm 3 )= (1.0)x(1.0 pm3)

(b) At a distance r = ao in an arbitrary direction,

P oc e 2 x (1.0 pm 3 )	 (0.14) x (1.0 pm-")

Therefore, the ratio of probabilities is 1.0/0.14 = 7.1.

Cuii,ntiil Not that it is more probable (by a factor of 7.1) that the electron will be found
at the nucleus than in the same volume element located at a distance a 0 from the nucleus.
The negatively charged electron is attracted to the positively charged nucleus, and is likely to
be found close to it.

Self-tt't i .t The wavefunction for the lowest energy wavefunction in the ion He 4 is
proportional to e	 Repeat the calculation for this ion. Any comment? 	 -

[55; more compact wavefunction]

(a) NormalizatiQn
A mathematical feature of the Schrödinger equatiop is that, if (, is a solution, then so is Ni,L',
where N is any constant. This feature is confirmed by noting that 1i occurs in every term in
eqn 14, so any constant factor can be cancelled. This freedom to vary the wavefunction by a
constant factor means that it is always possible to find a normalization constant, N, such
that the proportionality of the Born interpretation becomes an equality.

We find the normalization constant by noting that, for a normalized wavefunction Nb,
the probability that a particle is in the region d.c is equal to (No * ) (NO) dx (we are taking N
to be real). Furthermore, the sum over all space of these individual probabilities must be 1
(the probability of the particle being somewhere is 1). Expressed mathematically, the latter
requirement is

N2fi/ii/vdx=l	 (16)

where the integral is over all the space accessible to the particle (for instance, from —Co to
+x if the partrle can be anywhere in an infinite re). It follows that

N=-----	 (17)
(fi/ii/,dv)2

Therefore, by evaluating the integral, we can find the value of N and hence 'normalize' the
wavefunction. From now on, unless we state otherwise, we always use wavefunctions that
have been normalized to I; that is, from now on we assume that i/i already includes a factor
which ensures that (in one dimension)

f OWt = I
	

(18)

In three dimensions, the wavefunction is normalized if

f Rd y d: I
	

(19)
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11.18 The spherical coordinates used for discussing
systems with spherical symmetry.

11.19 The surface of a sphere is covered by
allowing 0 to range from (Ito n, and then sweeping
that arc around a complete circle by allowing fi to
range from 0 to 2n.

or, more succinctly, if 	 -

I
Vdr I	 (20)

where dr = ded y d:. In all such integrals, the integration is over all the space accessible to
the particle. For systems with spherical symmetry, it is best -to work in spherical polar

coordinates r 0. i (Fig. 11.18):

X = r sin 0Cos	 y = rsind sin 4	 z = r cos O	 (21a)

The volume element in spherical polar coordinates is

do = r 2 sin Odr dO d	 (21h)

To cover all space, the radius r ranges from 0 to o, the colatitude, 0, ranges from 0 to or, and

the azimuth, 0, ranges from 010 2or (Fig. 11.19).

Example 11.4 Norrital I/l tiq a wdvetu oct loll

Normalize the wavefunction used for the hydrogen atom in Example 11.3.

Met bid We need to find the factor N that guarantees that the integral in eqn 20 is equal
to 1. Because the wavefunction is spherically symmetrical, it is sensible to work in spherical

polar coordinates.

Answer The integration we require is

' i dr N 2 (f r2e' dr) 
(f 

sin do)	
2x 

d
f	

)

= N° xx 2 x 2ot = itaN°

Therefore, for this integral to equal I,

N 
(fli.
\na1j

and the normalized wavefunction is

( I \i/2
C'

Comment If Example 11.3 is now repeated, we can obtain the actual L )babilities of
finding the electron in the volume element at each location, not just their r.lative values.
Given (from. the end-papers) that all = 52.9 pm, the results are (a) 2.2 x
corresponding to I chance in about 500000 inspections of finding the electron in the
test volume, and (b) 2.9 x iO'°, corresponding to I chance in 3.4 million.

-St'lf-te1 11.4 Normalize the wavefunctiors given in Self-test 11.3.
[N = (8/ita']

The quantity 101 2 dr is a dimensionless probability and do has the dimensions of volume,

(length)", where d is the number of spatial dimensions. Therefore, the dimensions of a
normalized wavefunction are l/(Iength)"°. Thus, in one spatial dimension, d = I and a

normalized wavefunction has the dimensions of 1/(length) 112 . For a three-dimensional

system, the wavefunction has the dimensions of 1/(length)112 , as we saw in

Example 11.4.
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(b) Quantization
The Born interpretation puts severe restrictions on the acceptability of wavefunctions. The
principal constraint is that Ii must not be infinite anywhere .4 If it were, the Integral in
eqn 20 would be infinite and the normalization constant would be zero. The normalized
function would then be zero everywhere, except where it is infinite, which would be
unacceptable. The requirement that li is finite everywhere rules out many possible solutions
of the Schrödinger equation, because many mathematically acceptable solutions rise to
infinity and are therefore physically unacceptable. We shall meet several examples shortly.

The requirement that t/, is finite everywhere is not the only restriction implied by the Born
interpretation. We could imagine (and in Section 12.6a will meet) a solution of the
SchrOdinger' equation that gives rise to more than one value of 

1012 at a single point. The

Born interpretation implies that such solutions are unacceptable, because it would be absurd
to have more than one probability that a particle is at some point. This restriction is

expressed by saying that the wavefunction must be single-valued, that is, have only one

value at each point of space.
The Schrödinger equation itself also implies some mathematical restrictions on the type

of functions that will occur. Because it is a second-order differential equation, the second

derivative of 0 must be well-defined if the equation is to be applicable everywhere. We can
take the second derivative of a function only if it is continuous (so there are no sharp steps in
it, Fig. 11.20) and if its first derivative, its slope, is continuous (so there are no kinks).5

At this stage we see that ' must be continuous, have a continuous slope, be single-
valued, and be finitr everywhere. An acceptable wavefunction cannot be zero everywhere,
because the particle it describes must be somewhere. These are such severe restrictions that
acceptable solutions of the SchrOdinger equation do not in general exist for arbitrary values

of the energy F. In other words, a particle may possess only certain energies, for otherwise
its wave function would be physically unacceptable. That is, the energy of a particle is
quantized. We can find the acceptable energies by solving the Schrbdinger equation for
motion of various kinds, and selecting the solutions that conform to the restrictions listed

above. That is the task of the next chapter.

Quantum mechanical principles
We have claimed that a wavefunction contains all the information it is possible to obtain
about the dynamical properties (for example, its location and momentum) of the particle.
We have seen that the Born interpretation tells us as much as we can know about location,
but how do we find any additional information?

11.5 The intorni:ition in a wavefunction
The Schrödinger equation for a particle of mass m free to move parallel to the x-axis with

zero potential energy (V	 0 everywhere) is

- h2d2
Efili

	(22)
2w sLt

4	 irfinitely ntraip spikes an acceptable pronided they have zero width. The true constraint o that the wavefunction must not be
,nfrrilr over any finite region In elementary quanturrr mechanics the simpler feSlrrCtian. to Iinjtn Ii. is roll dent

5 lOne are (urn's and we shall meet them, where ,rcrepluble waumlunctions have kinks, Thest casts airsie when the potential emsemgy
has peculiar properties such as 05mg abruptly to infinity When tire potential energy in srrroothly well trehaoed and lmflite, the

SImile of the wavnfo . ictriii ,nusl be Continuous, d the Ilocirlial energy Irti unitS inhrntn, sm the slope of the wauelooClmon need

out or dirolifluriur there are only Ion i-arts of this behaviour in elenrcnrtamy quantum mechanics, and the peculiarity will he

mentioned whnrrwrover 11cm

11.20 The wavefunction must satisfy stringent
conditions for it to be acceptable. (a) Unacceptable
because it is not continuous; IN unacceptable
because its slope is discontinuous;
(c)unacceptable because it is not single-valued;
(d)unacceptable because it is infinite over a finite
region.

2 1—A
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- 1
Ime= sin kx

{

(a)
Re e 5 . cos kx

The solutions of this equation have the form

fr=Aeth+f3ek r k71, 2
2,n

where A a nd flare constants. To verify that f is a solution of eqn 22, we simply substitute it
into the left-hand side of the equation and confirm that we obtain E0.

(a) The probability density
Suppose that I? = 0 in eqn 23:6 then the wavefunction is simply

(23)

=	 (24)

Where is the particle? We form the square modulus to find the probability density of the
particle:

	

10 12 = (Ae ) (A) = (Ae	 )(Ae) = A l 2	 (25)
This probability is independent of.r: so, wherever we look along the x-axis, there is an equal
probability of finding the particle (Fig. 11.21a). In other words, if the wavefunction of the
particle is given by eqn 24, we cannot predict where we will find the particle. The same
would be true if the wavefunction in eqn 23 had A = 0; then the probability density would
be JB, a constant.'

Now suppose that in the wavefunction A = B. Then eqn 23 becomes

A (eF c_ Li ) =	 c>s_	 (26)

The probability density now has the form

= (24 Cos v)(2A cosh) = 41Al 2 cos 2 kv	 (27)

This function is illustrated in Fig. 11.21b. As we see, the probability density periodically
varies between 0 and 4Al 2 . The locations where the probability density is zero correspond to
nodes in the wavefunction: particles will never be found at the nodes. Specifically, a node is
a point where a wavefunction passes through zero.

(b) Eigen values and eigen functions
Because the total energy of the particle is its kinetic energy, p2 /2m, it follows from eqn 23
that

p=kh	 (28)
This value is independent of the values of A and B.

To find a systematic way of extracting information from the wavefunction, we first note
that any SchrOdinger equation (such as those in eqn 14 and eqn 22) may be written in the
succinct form

Hç& = Ei4'

with (in one dimension)

ii = - --- + V(x)
2ri civ-

The quantity!! is an operator, something that carries out a mathematical operation on the
function ,. In this case, the operation is to take the second derivative of , and (after

6	 Wr shall set bser -ha( determine', the values vi .4 and B, for the nm being we can treat them as arfoirary constants.

/ It follows that 1 ii', allowed to range front - .r to r n_, the nOrrn01Iz3tori constants. A Or B, are 0 To acod this embarrassing
problem, a; Stowed to range from - L to i L. and L IS Sllowed to go to nfin,ty at the end of all cakalarmns We 51511 onorr this
cOropI:catorWiere

Os kx	 ('Os k.

N
(b)

11.21 (a) The square modulus of a wavefunction
corresponding to a definite state of linear
momentum is a constant, so it corresponds to a
uniform probability of finding the particle
anywhere. (b) The probability distribution
corresponding to the superposition of states of
equal magnitude of linear momentum but opposite
direction of travel.

(29)

(30)

-'	 a	 I
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multiplication by - /i 2 /2nd to add the result to the outcome of multiplying 0 b V. The
operator ii plays a special role ri quantum mechanics, and is called the hamiltonian
operator after the nineteenth century mathematician William Hamilton. Hamilton
developed a form of classical mechanics that, it subsequently turned out, is well suited to
the formulation of quantum mechanics and which shows very clearly the relation between
the two theories. The hamiltonian operator is the operator corresponding to the total energy
of the system, the sum of the kinetic and potential energies. Consequently, we can infer that
the first term in eqn 30 (the term proportional to the second derivative) must be the
operator for the kinetic energy.

When the Schrbdinger equation is written as in eqn 29, it is seen to be an elgenvalue
equation, an equation of the form

(operator) (function) -= (constant factor) x (same function)

If we denote a general operator by I1 and a constant factor by ro, this statement is

= rmli (31)

The factor co is called the eigenvalue of the operator Q In cqn 29, the eigenvalue is the
energy. The function 0 is called an cigenfunction and is different for each cigenvalue. In
eqn 29, the eigenfunction is the wavefunction corresponding to the energy E. It follows
that another way of saying solve the Schrbdinger equation is 'find the eigenvalues
and eigenfunctions of the hamiltonian operator for the system. The wavefunctions
are the eigenfunctions of the hamiltonian operator, and the corresponding eigenvalues are
the allowed energies.

1:xantplt' 11.> MI. ril:yiiiul Hi

Show that c" is an ciqenfunction of the operator d/th, and find the corresponding
eigenvalue. Show that c" 2 is not an eigcnfunction of d/dx.

N,11 ( 11; 1 1 ,; We need to operate on the function with the operator and check whether the
result is a constant factor times the original function.

Anss'r For	 = d/dc and i' -

QiI, - -- C" - tic",
(Ic

Therefore e" is indeed an eigr'nfunction of d/Li and its cigenvalue is a. For ' = c"2

live"' = 1j.r x if,
ci\

which is not in cigenval uc C ii it on eec ii though  the same function ' occurs on the right,
because '' is now multiplied by H variable factor (2ar), not a constant factor. Alternatively, if
the right-hand side is written 2u( ic"), we sec that it is a constant times a different
function.

C , w) , ril i ll Much of quantum mechanics involves looking for functions that are
cigenfunctions of a given operator, especially of the hamiltonian operator for the energy.

'It ll -i, • i ii . Is the function cos ax an cigenfunction of (a) d/th, (b) d1/dx2?

[(a) No, (b( yes]



If the w'avefunction is the one given in eqn 23 with B = 0,

hdI/ih de" =
	 x ike"

=	
= khAe' = kh&

th i th i

Low curvature,
ow kinetic
energy (35)
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High curvature.
higli kinetic
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The importance of eigenvalue equations is that the pattern

energy operatnr)IJI	 (energy)0

exemplified by the Schrodinger equation is repeated for other observables, or measurable
properties of a system, such as the momentum or the electric dipole moment. Thus, it is
often the case that we can write

(operator corresponding to an ohservahle)r/i = (value of observable) x çt'

The symbol 12 in eqn 31 is then interpreted as an operator (for example, the hamiltonian, H)
corresponding to an observable (for example, the energy), and the eigenvalue w is the value
of that observable (for example, the value of the energy, E). Therefore, if we know both the
wavefunction ' and the operator 1 corresponding to the observable 13 of interest, and the
wavefunction is an eigenfunction nf the operator [3, we can predict the outcome of an
observation of the property [2 (for example, an atoms energy) by picking out the factor w in
the eigenvalue equation, eqn 31.

(c) Operators
To make these abstract procedures concrete, we need to set up and use the operator
corresponding to a given observable. the procedure is summarized by the following rule:

Observables, 0, are represented by operators, [2, built from the following
position and momentum operators:

I -- x 	 =	 [32]

That is, the operator for location along the t-axis is multiplication (of the wavefunction) byx
and the operator for linear momentum parallel to the-x-axis is proportional to taking the
derivative (of the wavefunction) with respect to x.

For example, to deduce the value of the linear momentum given a specific wavefunction,
we set up the eigenvalue equation

=
	

(33)

in the form

ft dil
--=
i th

(34)

11.22 Even If a wavefunction does not have the
form of a periodic wave, it is still possible to infer
from it the average kinetic energy of a particle by
noting its average curvature. This illustration shows
two wavefunctions: the sharply curved function
corresponds to a higher kinetic energy than that of
the less sharply curved function.

this is an eigenvalue equation, and by comparing it with eqn 33 we find that p = +kh. The
positive value implies that the linear momentum is directed towards positive x. Now suppose
instead that the wavefunction is the one in eqn 23 with A = 0; then the same kind of
calculation gives p = —kh. It follows that a particle described by the second wavefunction
has the same magnitude of momentum (and the same kinetic energy) as before, but its
motion is towards —.c.

Ihe definitions in con 32 are used to construct operators for other observables. For
example, suppose we wanted the operator for a potential energy of theform

V 16 2	 (36)
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Region contributes
high kinetic
energy

C
0

C)
C

5)
>
Co

Region contributes
low kinetic
energy

Position, x

11.23 The observed kinetic energy of a particle is
an average of contributions from the entire space
covered by the wavefunction. Sharply curved
regions contribute a high kinetic energy to the
average; slightly curved regions contribute only a
small kinetic energy.

with k a conitant (later, we shall see that this potential describes the vibrations of atoms in
molecules). Then it follows from eqn 32 that the operator corresponding to V is

multiplication by .2.

kr2 x (37)

In normal practice, the multiplication sign is omitted. To construct the operator for kinittie
energy, we make use of the classical relation between kinetic energy and linear momentum,
which in one dimension is

- 2m

Then, using the operator for p in eqn 32 we find:

K	
/iI	 d	 /i d	 hTd2

=

It follows that the operator for the total energy, the hamiltonian operator, is

/12 d2
H = EK + V 

= ---- + 
V

The expression for the kinetic energy operator, eqn 38b, gives another clue to the
qualitative interpretation of a wavefunction. In mathematics, the second derivative of a
function is a measure of its curvature: a large second derivative indicates a sharply curved
function (Fig. 11.22). It follows that a sharply curved wavefunction is associated with a high
kinetic energy, and one with a low curvature is associated with a low kinetic energy. This
interpretation is consistent with the de Broglie relation, which predicts a short wavelength
(a sharply curved wavefunction) when the linear momentum (and hence the kinetic energy)
is high. However, it ektends the interpretation to wavefunctions that do not spread through
space and resemble those shown in Fig. 11.22. The curvature of a wavefunction in general
varies from place to place. Wherever a wavefunction is sharply curved, its contribution to
the total kinetic energy is large (Fig. 11.23). Wherever the wavefunction is not sharply
curved, its contribution to the overall kinetic energy is low. As we shall shortly see, the
observed kinetic energy of the particle is an integral of all the contributions of the kinetic
energy from each region. Hence, we can expect a particle to have a .high kinetic energy if the

average curvature of its wavefunction is high.
The association of high curvature with high kinetic energy will turn out to be a valuable

guide to the interpretation of wavefunctions and the prediction of their shapes. For
example, suppose we need to know the wavefunction of a particle with a given total energy
and a potential energy that decreases with increasing x (Fig. 11.24). Because the difference

E - V = EK increases from left to right, the wavefuriction must become more sharply
curved as .c increases: its wavelength decreases as the local contributions to its kinetic
energy increase. We can therefore guess that the wavefunction will look like the function
sketched in the-illustration, and more detailed calculation confirms this to be so.

(d) Superpositions and expectation values
Suppose now that the wavefunction is the one given in eqn 26 (with A = B). What is the
linear momentum of the particle it describes? We quickly run into trouble if we use the
operator technique. When we operate with p, we find

=	 = —Asinks	 (40)
cit	 i	 tic

This expression is not an eigenvalue equation, because the function on the right is different
from that on the left.

U U J OHM
5. 	 Kineticenergy, E

'r	 V
I 

X
-

11.24 The wavefunction of a particle in a potential
decreasing towards the right and hence subjected
to a constant force to the right. Only the real part
of the wavefunction is shown; 

the maginar-y part is
similar, but displaced to the right.

(38a)

(38b)

(39)
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When the Wavcfunction of a particle is not an cigcnfunction of an operator, the property
to which the operator corresponds does not have a definite value. However, in the current
example the momentuni is not completely indefinite because the cosine wavefunction is a
linear combination, or sum, of c i and c L, and these two functions, as we have seen,
individually correspond to definite momentum states. We say that the total wavefunction is
a superposition of more than one wavefunction. Symbolically we can write the
superposition as

i//--	 u t .	 I
Partictc with	 Particle with
linear monlenhtini	 linear momentum
4-k/i	 —k/i

The interpretation of this composite wavcfunction is that, if the momentum of the particle is
repeatedly measured in a lang series of observations, then its magnitude will found to be k/u
in all the measurements (because that is the value for each component of the
wavefunction). However, because the two component wavefunctions occur equally in the
superposition, half the measurements will show that the particle is moving to the right
(p -= +kti), and half the measurements will show that it is moving to the left (p =
According to quantum mechanics, we cannot predict in\which direction the particle will in
fact be found fri be travelling; all we can say is that, in a long series of observations, there are
equal probabilities of finding the particle travelling to the right andto the left.

The same interpretation applies to any wavefunction written as a linear combination of
eigenfunctions of an operator. Thus, suppose the wavefunetion is known to be a
superposition of many different linear momentum eigenfunctions and is written as the
linear combination

I t1 2 + >, c1 i1i	 (41)

where the c arc numerical coefficients and the 0, correspond to different momentum
states. Then, according to quantum mechanics,

1. When the momentum is measured, in a single observation one of the eigenvalues
corresponding to the O k that contribute to the superposition will be found.

2. The probability of measuring a particular eigenvalue in a series of observations is
proportional to the square modulus (k5 (2) of the corresponding coefficient in the
linear combination.

3. The average value of a large number of observations is given by the expectation
value (Q) of the operator f2 corresponding to the observable of interest.

The expectation value of an operator i2 is defined as

1421

This formula is valid only for normalized wavefunctions. As we see in the Justification
below, an expectation value is the weighted average of a large number of observations of a
property.

Justification 11 .2

If u is an eigenfunction of 	 with eigenvalue co, the expectation value of Q is

(ç) = Jr 
#P* O* dc = 

f	
dr = w  fri	 w
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because o is a constant and may be taken outside the integral, and the resulting integral is
equal to I for a normalized wavefunction. The interpretation of this expression is that,
because every observation of the property 12 results in the value w (because the
wavefunction is an cigenfunction of 12), the mean value of all the observations is also co.

A wavefunction that is not an cigenfunction of the operator of interest can be written
as a linear combination of eigenfunctions. For simplicity, suppose the wavefunction is the
sum of two cigenfunctions (the general case, eqn 41, can easily be developed). Then

= f(e i ii i + c211i 2) ñ (c 1 11# 1 + c211'2) dt 	-

=	 (CIO] + c202) ' (c 1 w 1 + c2(042)dt

CCU) f	 dr + C2C2W2 J 22 de

+ CtC2W2 
f 

0102 de + cC1w1 f ç14ç1i 1 th

The first two integrals on the right are both equal to I because the wavefunetions are
normalized- To deal with the remaining two integrals we need to make use of another
property of eigenfunctions, called orthogonality: to say that two functions are
orthogonal means that

f '11' di=0	 (43)

-	 A very general rule in quantum mechanics is that eigen functions correponding to
different eigenvolues of the same operator ore orthogonaL 8 For example, if
corresponds to one energy, and 02 corresponds to a different energy, then we know at
once that the two functions are orthogonal and that the integral of their product is zero.
Because 0 1 and 11(2 do correspond to different eigenvalues in the current example, they are
orthogonal, so we can conclude that

(t2) = c 1
1
2o + c2

1
2 c02	 (44)

This expression shows that the expectation value is the sum of the two cigenvalues
weighted by the probabilities that each one will be found in a series of measurements.
Hence, the expectation value is the weighted mean of a series of observations.

Exam plt	 11 .{i (:iI 1 1 !:111 IH1 It)	 Xl'.lt irlO valu

Calculate the average value of the distance of an electron from the nucleus in the hydrogen
atom in its state of lowest energy.

1tIh,I The average radius is the expectation value of the operator corresponding to the
distance from the nucleus, which is multiplication by r. To evaluate (r), we need to know the
normalized wavefirnction (from Example 11.4) and then evaluate the integral in eqn 42. A
useful integral for calculations on atomic wavefunctions is

- f ' .0, — d, — 
a"

where ,r! denotes factorial n: a!	 ir(n	 I )(n - 2) . 1.

0	 Slorlly p.akng th y rufr oppirs only 10 Heelon operators, which art operators for which J çlO dr	 (f0 04o, k)'
shall be dealing only with Hurnilian operators.
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Answer The average value is given by the expectation value

(r) = fdz

which we evaluate by using spherical polar coordinates. Using the normalized, function in
Example 11.4 gives

(r) '
	 (f 

re 2.od,.)(i.sinodo)(fd)
I0 	 1) 	 0

1	 3!a"
=	 x	 x 2 x 27z = a0

Because a0 = 52.9 pm (see end-papers), (r) = 79.4 pm.

Comment the result means that, if a very large number of measurements of the distance of
the electron from the nucleus are made, their mear\value will be 79.4 pm. However, each
different observation will give a different and unpredictable individual result, because the
wavefunction is not an eigenfunction of the operator corresponing to r.

Self-test 11.6 Evaluate the root mean square distance, (r2) '"a, of the electron from the
nucleus in the hydrogen atom.

[31/2 a0]

The mean kinetic energy of a particle in one dimension is the expectation value of the
operator given in eqn 38b. Therefore, we can write

(A K) = fxdt =	(45)

We see that the kinetic energy is a kind of average over the curvature of the wavefunction:
we get a large contribution to the observed value from regions where the wavefunction is
sharply curved (so d2 i,&/d.x2 is large) and the wavefunction itself is large (so that t' is large
too).

Location
of particle

11.25 The wavefunction for a particle at a well-
defined location is a sharply spiked function which
has zero amplitude everywhere except at the
particle's position.

11.6 The uncertainty principle
We have seen that, if the wavefunction is Ae, then the particle it describes has a definite
state of linear momentum, namely travelling to the right with momentum p = +kh.
However, we have also seen that the position of the particle described by this wavefunction
is completely unpredictable. In other words, if the momentum is specified precisely, it is
impossible to predict the location of the particle. This statement is one-half of a special case
of the Heisenberg uncertainty principle, one of the most celebrated results of quantum
mechanics:

It is impossible to specify simultaneously, with arbitrary precision, both the
momentum and the position of a particle.

Before discussing the principle further, we must establish its other half: that if we know
the position of a particle exactly, then we can say nothing about its momentum. The
argument draws on the idea of regarding a wavefunction as a superposition of
eigenfunctions, and runs as follows.

If we know that the particle is at a definite location, its wavefunction must be large there
and zero everywhere else (Fig. 11.25). Such a wavefunction can be created by superimposing
a large number of harmonic (sine and cosine) functions, or, what is equivalent, a number of



11.26 The wavefunction for a particle with an ill-
defined location can be regarded as the
superposition of sever-at wavefunctions of definite
wavelength which interfere constructively in one
place but destructively elsewhere. As more waves
are used in the superposition (as given by the
numbers attached to the curves), the location
becomes more precise at the expense of uncertainty
in the particles momentum. An infinite number of
waves is needed to construct the wavefunction of a
perfectly localized particle.
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eth fu,ictions. 9 In other words, we can create a sharply localized wavefunction by forming a
linear combination of wavefunctions that correspond to many different linear momenta.
The superposition of a few harmonic functions gives a wavefunction that spreads over a
range of locations (Fig. 11.26). However, as the number of wavefunctions in the
superposition increases, the wavefunction becomes sharper on account of the more
complete interference between the positive and negative regions of the individual waves
When an infinite number of components is used, the wavefunction is a sharp, infinitely
narrow spike, which corresponds to perfect localization of the particle. Now the particle is
perfectly localized. However, we have lost all information about its momentum because, as
we saw above, a measurement of the momentum will give a result corresponding to any one
of the infinite number of waves in the superposition, and which one it will give is
unpredictable. Hence, if we know the location of the particle precisely (implying that its
wavefunction is a superposition of an infinite number of momentum eigenfunctions), its
momentum is completely unpredictable.

A quantitative version of this result is

ApLsq > h	 (46)

In this expression Lip is the 'uncertainty' in the linear momentum parallel to the axis q, and
Lsq is the uncertainty in position along that axis. These 'uncertainties' are precisely defined.
for they are the root mean square deviations of the properties from their mean values:

1Ap= {(,2)_(,)2}l/2	 Lsq= ((q2)—(q)2 jt/2

If there is complete certainty about the position of the particle (Liq 0), the only way that
eqn 46 can be satisfied is for Lip = 'cio, which implies complete uncertainty about the
momentum. Conversely, if the momentum is known exactly (Lip = 0), then the position
must be completely uncertain (Lsq =

Thep and q that appear in eqn 46 refer to the same direction in space. Therefore, whereas
position on thee-axis and momentum parallel to the x-axis are restricted by the uncertainty
relation, simultaneous location of position on x and motion parallel to y or z is not
restricted.

Example 11.7 Using the uncertainty principle

The speed of a projectile of mass 1.0 g is known to within 1 x 10_6 ins-'. Calculate the
minimum uncertainty in its position.

Method Estimate Lip from mAy where Air the uncertainty in the speed; then use eqn 46
to estimate the minimum uncertainty in position, Aq.

Answer The miiimum uncertainty in position is

Ag
2mAv

1.055 x 10	 is

2x(1.0x lO kg) x(l x lU-s ms 
l) =SX 10	 m

Comment The uncertainty is completely negligible for all practical purposes concerning
macroscopic objects. However, if the mass is that of an electron, the same uncertainty in
speed implies an uncertainty in position far larger than the diameter of an atom, so the

9	 thew stuns are rquvaknl, because e"' 	 cos k, • i sinkx
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concept of a trajectory, the simultaneous possession of a precise position and momentum, is
untenable.

- ui	 ..' Estimate the minimum uncertainty in the speed of an electron in a one-
dimensional region of length

[50() km s-']

The Heisenberg unceQainty principle is more general than eqn 46 implies. It applies to
any pair of observabics called complementary observables, which are defined in terms
of the properties of their operators. Specifically, two observables 0 1 and LL are
complementary if

Qi22I	 (48)

When the eflect of two operators depends on their order (as this equation implies), we say
that they do not commute.

Illustration
To show that the operators for position and momentum do not commute (and hence are
complementary observables) we consider the effect of ij3 on a wavefunction 0:

•	 /idipxpi/i =	
(1

Next, we consider the effect of /5i on the same function:

/id	 hf	 di
id.r	 i\	 th

For this step we have used the standard rule about differentiating a product of functions.
The second expression is clearly different from the first, so the two operators do not
commute.

With the discovery that some pairs of observables are complementary (we meet more
examples in the next chapter), we are at the heart of the difference between classical and
quantum mechanics. Classical mechanics supposed, falsely as we now know, that the position
and momentum of a particle could be specified simultaneously with arbitrary precision.
However, quantum mechanics shows that position and momentum are complementary, and
that we have to make a choice: we can specify position at the expense of momei4tum, or
momentum at the expense of position.

The realization that some observables are complementary allows us to make considerable
progress with the calculation of atomic and molecular properties, but it does away with
some of classical physics' most cherished concepts.

Checklist of key ideas
• classical mechanics	 11.1 The failures of classical

[H quantum mechanics	 physics
black body

The origins of quantum	 : Wien displacement law (1)
mechanics	 second radiation constant

total energy density
Stefan !-Boltzmann law )2o)
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Exercises
11.1 (a) Calculate the power radiated by a 20 m x 3.0 in section of
the surface of a hot body at 1500 K.

11.1 (b) Calculate the power radiated by the surface of a cylindrical
wire of length 5.0 cm and radius 0.12 mm that is heated to 33(X) K
by an electric current.

11.2 (a) Calculate the average power output of a photodetector that
collects 8.0 x iO photons in 3.8 ms from monochromatic light of
wavelength 325 rim.

11.2 (b) Calculate the average power output of a photosensitive
plate that collects 1.20 x 10 photons in 5.9 ms from monochromatic
light of wavelength 297 nm.

11.3 (a) Determine tie wavelength of the radiation of the most
intense electromagnetic radiation emitted from the surface of the
star Sirius, which has a surface temperature of It IX))) K.

11.3 (b) Determine the wavelength of the radiation of the most
intense electromagnetic radiation emitted from a furnace at 2501cc

11.4 (a) Calculate the speed of an electron of wavelength 3.0 cm.

11.4 (b) Calculate the speed of a neutron of wavelength 3.0 cm.

11.5 (a) The fine-structure constant, a, plays a Special role in
the Structure of matter; its approximate value is I /137. What is the
wavelength of an electron travelling at a speed se, where c is

the speed of light? (Note that the circumference of the first Bohr orbit
in the hydrogen atom is 331 pm.)

11.5 (h) A certain diffraction experiment requires the use of
electrons of wavelength 0.45 rim. Calculate the speed of the
electrons.

11.6 (a) Calculate the linear momentum of photons of wavelength
750 rim. What speed does an electron need to travel to have the same
linear momentum?

11.6 (b) Calculate the linear momentum of photons of wavelength
35)) urn. What speed does a hydrogen molecule need to travel to have
the same linear momentum?

11.7 (a) The energy required for the ionization of a certain atom is
3.44 a II) iK J. The absorption of a photon of unknown wavelength
iunh,Cs the atom and ejects an electron with velocity
I 03 x III in 	 . Calculate the wavelength of the incident radiation.

11.7 (h) The energy required for the ionization of a certain atom is
5 12 di. The absorption ot a photon of unknown wavelength ionizes
the atom and ejects an electron with velocity 345 km s'. Calculate
the wavelength of the incident radiation.
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11.8 (a) The speed of a certain proton is 4.5 x 10' or s'. It the
uncertainty in its momentum is to be reduced to (1.0118) per cent,
what uncertainty in its location must be tolerated?

11.8 (b) The speed of a certain electron is 995 kin s It the
uncertainty in its momentum is to be reduced to 0.0010 per cent,
what uncertainty in it location must he tolerated?

11.9 (a) Calculate the energy per photon and the energy per mole of
photons for radiation of wavelength (a) 600 nrn (red), (h) 550 nor
(yellow), (c) 400 mm (blue).

11.9 (b) Calculate the energy per photon and the energy per mole of
photons for radiation of wavelength (a) 200 nni (ultraviolet), (h)
ISO pm (X-ray), (c) 1.00 cm. (microwave).

11.10 (a) Calculate the speed to which a stationary H atom would he
accelerated if it absorbed each of the photons used in Exercise 1 1.9a.

11.10 (b) Calculate the speed to which a stationary 4 H atom (mass
4.0026 u) would be accelerated ifit absorbed each of the photons
used in Exercise 11.9b.

11.11 (a) A glow-worm of mass 5.0 g emits red light (650 nm) with
a power of 0.10 W entirely in the backward direction. To what speed
will it have accelerated after 10 y if released into free space and
assumed to live?

11.11 (b) A photon-powered spacecraft of mass 10.0 kg emits
radiation of wavelength 225 nm with a power of 1.50 kW entirety
in the backward direction. To what speed will it have accelerated after
10.0 y if released into free space?

11.12 (a) A sodium lap7p emits yellow light (550 not). How many
photons does it emit each second if its power is (a) 1.0 \V, (h) 100 W?

iLl 2 (b) A laser used to read CDs emits red light of wavelength
700 rim. How many photons does it emit each second if its power is
(a) 0.10W, (b) IA) W?

11.13 (a) The peak of the Suns emission occurs at about 480 nih;

estimate the temperature of its surface.

1 1 .13 (b) The peak of the emission from the hot iron in a steel furnace
occurs at about 16(8) nm; estimate the temperature of the steel.

11.14 (a) the work function for metallic caesium is 2.14 eV.
('alculale the kinetic energy and the speed of the electrons ejected
by light of wavelength (a) 700 rim, (h) 300 rim.

11.14 (h) The work function for metallic rubidium is 2.09 eV.
Calculate the kinetic energy and the speed of the electrons ejected
by light of wavelength (a) 650 nm, (h) 195 rim.

11.15 (a) Calculate the size of the quantum involved in the
excitation of (a) an electronic oscillation of period 1.0 fs, (b) a
molecular vibration of period II) fs, (c) a pendulum of period 1.0 s.
Express the results in joules and kilojoules per mole.

11.1 S (b) Calculate the size of the quantum involved in the
excitation of (a) an electronic oscillation of period 2.50 Is, (b) a
molecular vibration of period 2.21 ft. (c) a balance wheel of period
III ms. Express the results it joules and kilojoules per mole.

11.16 (a) Calculate the de Broglie wavelength of (a) a mass of 1.0 g
travelling at 1.0 cms i . (b) the same, traelling at 100 km (c) an
He atom travelling at 10)O ms_ i (a typical speed at room

temperature).
11.16 (b) Calculate the de Brogue wavelength of an electron
accelerated from rest through a potential difference of (a) 100 V,
(b( 1.0 kV, (c) 100 kV.
11.17 (a) Calculate the minimum uncertainty in the speed of a ball
of mass SIX) g that is known to be within 1.0 pm of a certain point on
a bat. What is the minimum uncertainty in the position of a bullet of
mass 5.0 g that is known to have a speed somewhere between
350.0(8)111 ms_ i and 350.00000 ms-I?
11.17 (b) An electron is confined to a linear region with a length of
the same order as the diameter of an atom (about 1043 pm). Calculate
the minimum uncertainties in its position and speed.

11.18 (a) In an X-ray photoelectron experiment, a photon of
wavelength 150 pm elects an electron from the inner shell of an
atom and it emerges with a speed of 2.14 x 10 m s. Calculate the
binding energy of the electron.

11.18 (b) In an X-ray photoelectron experiment, a photon of
wavelength 121 pm ejects an electron frcm the inner shell of an
atom and it emerges with a speed of 5.69 x Io7 ms'. Calculate the

binding energy of the electron.

Problems

Numerical problems
11.1 The Planck distribution gives the energy in the wavelength
range dA at the wavelength .. Calculate the energy density in the
range 650 rim to 655 rim inside a cavity of volume 100 cm' when its
temperature is (a) 25°C, (b) 31)00°C.

11.2 The wavelength of the emission maximum from a small pinhole
in an electrically heated container was determined at a series of
temperatures, and the results are given below. Deduce a value for the
Planck constant.

U/°C	 1000	 1500	 20(8) 2500 3000 3500

A,,,,/nm	 2181	 1600	 1240 1035 878	 763

11.3 Write a computer program (Or use mathematical 5oftware) to
evaluate the Planck distribution at any temperature and wavelength
or fequcncy, and add to it a routine for evaluating integrals for the
energy density of the radiation between any two wavelengths. Use it
to calculate the total energy density in the visible region (600 not to



PROBLEMS

350 rim) for a black body at (a) I 00°C, (b) 5(X)C, (c) 7(X) K. What are
the classical values at these temperatures?

11.4 The Einstein frequency is often expressed in terms of an
equivalent temperature (), where O, = 1w/k. Confirm that O F, has
the dimensions of temperature, and express the criterion for the
validity of the high-temperature form of the Einstein equation in
terms of it. Evaluate OE for (a) diamond, for which

= 4.65 x 1013 Hz 	 and	 (b)	 for	 copper,	 for	 which
ii = 7.15 x 10 12 Hz. What fraction of the Dulong and Petit value of
the heat capacity does each substance reach at 25C?

11.5 The ground-state wavefunetion for a particle confined to a one-
dimensional box of length F. is

(2)hf2
: 	

sin( -

Suppose the box is 10.0 rim long. Calculate the probability that the
particle is (a) between .r = 4.95 rim and 5.05 rim. (b) between
x = 1.95 rim and 2.05 rim, )c) between x = 9.90 rim and 10.00 rim,
(d) in the right half of the box, (e) in the central third of the box.

11.6 The ground-state wavefuriction of a hydrogen atom is

/ I
= ( -ioJ)\lra

where a0 = 53 pm (the Bohr radius). (a) Calculate the probability that
the electron will be found somewhere within a small sphere of radius
1.0 pm centred on the nucleus. (b) Now suppose that the same sphere
is located at r = a0. What is the probability that the electron is inside
it?

Theoretical problems

11.7 Derive Wren's law, that ;, n 7' is a constant, from the Planck
distribution, and deduce an expression for the constant.

11.8 Normalize the following wavefunctions: (a) sin(rrru/L) in the
range  < x < L, (b) a constant in the range --L < x K L. )c) c "i in
three-dimensional space, (d) XC_ 1121 in three-dimensional space. Hint.
The volume element in three dimensions is de = r' drsin OdOdr/r,
with 0 ' r< en, 0 0 < ii, 0 z 27t. A useful integral was given
in Example 11.6.

11.9 Two (unnormalized) excited state wavefunctions of the El atom
are (a) ip =: (2 - r1a 11 )e - '/", (b) 0 = rsin Ocos r Normalize
both functions to 1.

11.10 Identify which of the following functions are cigenlurietions
of the operator d/dr: (a) e', (b) coo kr, (c) k, )d) hi, (r) c . Give the
corresponding eigenvalue where appropriate.

11.11 Determine winch of the following functions are cigecnfurc-
tions of the inversion operator r (which has the etfert of making the
replacement x - --.x): (a) x3 - kx, (b) cos/c, (c) .r is I. State
the eigenvalue of i when relevant.

11.12 Which of the functions in Problem 11. lit are (a) ;ilso
cige nfu neti ons (if it /i[n and (b) only ciqen functions of
Give the eigs'nv.ilurs where appropriate.

311

11.13 A particle is in a slate described by the wavefunetion

(ens x)e L + ( sin ;()C 
-i&

where x is a parameter. What is the probability that the particle will
be found with a linear momentum (a) +kln. (b) -Air? (e) What form
would the wavcfunct ion have if it were 90 per cent certain that the
particle had linear momentum +klr?

11.14 Evaluate the kinetic energy of the particle with wavcfunetion
given in Problem 11.13.

11.15 Calculate the average linear momentum of a particle described
by the following wavefunclions: (a) (b) coskc, (c) c, wherein
each one .c ranges from -en to +en.

11.16 Evaluate the expectation values of r and r2 for a hydrogen
atom with wavcfunctions give)i in Problem 11.9.

11,17 Calculate (a) the mean potential energy and (b) the mean
kinetic energy of an electron in the ground state of a hydrogenie
atom.

11.18 Write a computer program, or use mathematical software, for
constructing superpositions of cosine functions and explore how the
wawfunctiorc becomes more localized as more components are
included. Include routines that determine the probability that a given
momentum will be observed. If you plot the superposition (which you
should), set y (I at the centre of the screen and build the
superposition there. Include a routine that includes the evaluation of
the root mean square location of the packet, (x2)hi'2.

11.19 Determine the commutators (that is, the value of
- 2 Q) of the operators (a) d/th and x. (b) d/dx and .e2,

(c) en and a, where a = (.v ) jp)12112 and a t = (x - ip)/21/2.

Additional problems supplied by Carmen Giunta
nd Charles Trapp

11.20 Demonstrate explicitly that the Planck distribution reduces to
the tlayleigh-.Jeans law at long wavelengths.

11.21 The temperature of the Sun's surface is approximately 5800 K.
On the assumption that the human eye evolved to be most sensitive at
the wavelength of light corresponding to the maximum in the Sun's
radiant energy distribution, determine the colour of light to which the
eye is the most sensitive.

11.22 Solar energy strikes the top of the Earth's atmosphere at a rate
of 343 Wm ? About 30 per rent of this energy is reflected directly
back into space by the Earth or the atmosphere. The Earth-
atmosphere system absorbs the remaining energy and re-radiates it
into space as black-body radiation. What is the average black-body
temperature of the Earth? What is the wavelength of the most
plentiful  of the Earth's black-body radiation?

11.23 A star to. S1Ii4i a rid cold to shine has been found by
tt.lt O p ticnhcrnccr. 5. Kulkarric, K. Matthews. and T. Nsikajinia (Science
210, 1478, It 995)). [he spectrum of the ob j ect shows the presence of
mctlraccc which. according to the authors. would not exist at
tm'rnmm'r;nlures ncuclm cbivr' 111131 K The rmmassoft lie object. asdr term irmcd
frrci p Is c t oivc l,it c iirijl effect upon a connpancon star, is roughly 20 limes
he nay, of Jupiter. Wi Iii this mass, it is very unlikely that the object
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formed as a planet; hence it is considered a brown dwarf star, the
coolest ever found. (a) From available thermodynamic data test the
stability of methane at temperatures above 1((X) K. (b) What is
for this star? (c) What are the energy density and excitance of this
star relative to that of the Sun (o(XX) K)? (d) To determine whether
the star will shine, estimate the fraction of the energy density of the
star that appears in the visible portion of the spectrum.

11.24 Max Planck was the first to determine the Boltzmann
constant, /, and the value of the constant now known by his name
from the experimental data on black-body radiation. Calculate values
fork and /i from the following data. The excitance, M, from.a surface

of area I.0(X) m2 	 20(X) K is 904.48 kW; at this temperature
= 1.451 x 10' in. Hint. Obtain ,,m from the Planck distribu-

tion by differentiation with respect to ..



Quantum theory:
techniques andI
applications

To find the propertir i of system s occnrrfmf to (1 110111 ' al ? iiii'cfiuii,s ive nerd to solve the
opproprrnte Shrod,nger equation . This chap ter pre"enrc f/ic essenNo/so I the so/uI ions for
three basic types of motion: translation, vibration and I utii(iii/i I'Ve shall Ste that only
certain wovefunctions and their corresponding enirri/Irs ore iicrepliitiie. Hence, quunlwibon
emerges as a natural consequence of the equation and (he (oodolions imposed on if The
solutions bring to light u number of highly nonelussa of. and therefore cuiprising features of
particles, particularly flicirabi/ity to tunnel info and through ieginc where clossiColpliyjcs
would forbid (firm to be found We shall also encounter a propert r Of the elrc(ron, its spin,
that has no classical counterpart.

The three basic modes of motion—translation (motion through space), vibration, and
rotation—all play an important role in chemistry because they are ways in which molecules
store energy. Gas-phase molecules, for instance, undergo translational motion, and their
kinetic energy is a contribution to the total internal energy of a sample. Molecules can also
store energy as rotational kinetic energy, and transitions between their rotational energy
states cant be observed spectroscopically. Energy is also stored as molecular vibration, and
transitions between vibrational states are responsible for the appearance of infrared spectra.

Translational motion
The quantum mechanical description of free motion in one dimension was introduced in
Section 11.5. We saw there that the Schrödinger equation is

Translational motion

12.1 A particle in a box

12.2 Motion in two dimensions

12.3 Tunnelling

Vibrational motion

12.4 The energy levels

12.5 The wavefunctions

Rotational motion

12.6 Rotation in two dimensions

12.7 Rotation in three dimensions

12.8 Spin
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The general solutions are

i/i t = Ae" -I- Bc	
= k2tj2
	

(2)

Note that we are now labelling both the wavefunctions and the energies (that is, the

eigenfunctiOns and eigenvalues of HI with the index k. That these functions are solutions

can be verified by substituting tl'k into the left-hand side of eqn 10 and showing that the

result is equal to Ei,Li 1 . In this case, all values of k, and therefore all values of the energy, are

permitted. It follows that the translational energy of a free particle is not quantized.
We saw in Section USc that a wavefunction of the form e' describes a particle with

linear momentum p0 = +kh, corresponding to motion towards positive x (to the right), and

that a wavefunction of the form e i' describes a particle with the same magnitude of linear

momentum but travelling towards negative x (to the left). That is, e th is an elgenfunction of

the operator fr with eigenvalue +kh, and e_th is an eigenfunction with eigenvalue —kh. In

either state, 101 2 is independent of .e, which implies that the position of the particle is
completely unpredictable. This conclusion is consistent with the uncertainty principle
because, if the momentum is certain, then the position cannot be specified (the operators i

and f do not commute, Section 11 Se).

12.1 A particle in a box
In this section, we consider the problem of a particle in a box, in which a particle of mass m

is confined between two walls at a = 0 and .e = L. In an infinite square well, the potential

energy is zero inside the flax but rises abruptly to infinity at the walls (Fig. 12.1). This
potential energy is an idealization of the potential energy of a gas-phase molecule that is

free to move in a one-dimensional container.

(a) The Schröthnger equation
]he SchrOdinger equation for the region between the walls (where V = 0) is the same as for

a free particle ]eqn 1), so the general solutions given in eqri 2 are also the same. It is

convenient to write them as'

k' h2
iI, k (x) =C sin ke+D cos kt	 E	 (3)

>.

C
at

C
at

ci
0

L	 x

Wall

12 1 A particle in a one-dimensional rcgisfl with
impenetrable walls- its potential energy 5 zrrii

between x = 0 and .s L. a nd rises ailruptly iii

infinity 35 SOOn 35 it touchr the wails

(b) The acceptable solutions

For a free particle, an y value of Ek corresponds to an acceptable solution. However, when the
particle is confined within a region, the acceptable wavefunctions must satisfy certain
boundary conditions, or constraints on the function at certain locations. It is physically

impossible for the particle to be found with an infinite potential energy, 50 the

wavefurction must be zero where V is infinite, at xozO and e>L. The continuity of the

wavelunction then requires it to vanish just inside the well at x 0 and x = L. That is. the

boundary conditions are 5ti(0) = 0 and 11i 5 (L) = 0.

Consider the wall at .t -- 0. According to eqn 3, çli(0) = 1) (because sin 0 = 0 and

cos() - I). But because t'iO) = 0 we must have D = 0. It follows that the wavefunction

must be of the form	 - Csin U. The value of iP at the other wall (at .c = L) is

('.)	 Csin ki., which must also he zero. Taking C = 0 would give 1p, ( r) = 0 for all x,

ciiii'llid" air;i,,i, .jd ,a,i,itl,{ z faClufs Into tie corifür n tS Cand 0.
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12.2 The allowed energy levels for a particle in a
box. Note that the energy levels increase as n2 , and
that their separation increases as the quantum
number increasm

12.3 The first five normalized wavefunctions or a
particle in a box. Each wavefuraction is a standing
wave, and successive functions possess one more
hair wave and a correspondingly shorter
wavelenqth.
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which would conflict with the Born interpretation (the particle must be somewhere).
Therefore, kL must be chosen so that sinkL = 0, which is satisfied by

kL=nii n=1,2,... (4)
The value n = 0 is ruled out, because it implies k = 0 and l/i*(X) 0 everywhere (because
sin 0 = 0), which is again unacceptable, and negative values of n merely change the sign of
sinkL (because sin (—x) = —sinx). The wavefunctions are therefore

• n= 1,2,... (5)

(At this point we have started to label the solutions with the index n instead of k.) Because k
and Ek are related by eqn 3, it follows that the energy of the partible is limited to the values

E	
(n7r/L)2h2	 n2h2	

1 22m	 8mL2  ()

We see that the energy of the particle is quantized, and that the quantization arises from the
boundary conditions that 0 must satisfy if it is to be an acceptable wavefunction. This is a
general conclusion: the need to satisfy boundary conditions implies that only certain
wove functions are acceptable, and hence restricts observabks to discrete values. So far,
only energy has been quantized: shortly we shall see that other physical observables may
also be quantized.

(c) Normalization
Before discussing the solution in more detail, we shall complete the derivation of the
wavefunctions (which are real, that is, do not contain i) by finding the normalization
constant (here written C). To do so, we look for the value of C that ensures that the integral
of 02 over all the space available to the particle (that is, from x = 0 to x = L) is equal to 1:2

fLII,2thC2fLi,thC2iL	 (2)1/2

for all s. Therefore, the complete solution to the problem is

n2!:2E. 	 n=1,2,..,8mL2
1/2	 (7)

#5(x)= 
(2)
	

(nxt 	 for O<x<L

The energies and wavefunctions are labelled with the 'quantum number' n. A quantum
number is an integer (in some cases, as we shall see, a half-integer) that labels the state of
the system. Fora particle in a box there is an infinite number of acceptable solutions, and the
quantum number a specifies the one of interest (Fig. 12.2). As well as acting as a label, a
quantum number can often be used to calculate the energy corresponding to the state and
to write down the waefunction explicitly (in the present example, by using the information
in eqn 7).

(d) The properties of the solutions
Figure 12.3 shows some of the wavefunctions of a particle in a box: they are all sine
functions with the same amplitude but different wavelengths. With these images in mind, it
is easy to see the origin of the quantization: each wavefunction is a standing wave and, to fit

2	 To evaluate the integral. we use the standard twm

Jun 1 wodn .-	 -- nin 2uu
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into the cavity, successive wavefunctions must possess one more half-wavelength.
Shortening the wavelength results in a sharper average curvature of the wavefunction
and therefore an increase in the kinetic energy of the particle. Note that the number of
nodes (points where the wavefunction passes through zero) also increases as n increases,

and that the wavefunction 0. has it - I nodes. Increasing the number of nodes between
walls of a given separation increases the average curvature of the wavefunction and hence
the kinetic energy of the particle.

Example 12.1 DeIit'1119 the cnergirs of a particle, in a box

Derive the energy levels of a particle in a box from the de Brogue relation and the boundary
conditions on the wavefunction.

Mdliud We see from Fig. 12.3 that, to fit into the bo, successive wavefunctions possess
one more half-wavelength. Therefore, the first thing to do is to find an expression for the
permitted wavelengths. To convert the permitted wavelengths into onergies, we use the de
Brogue, relation to express wavelength as linear momentum and then use the expression for-
the kinetic energy in terms of the momentum to find the permitted energies.

Answer The permitted wavelengths satisfy

L=nxA	 n= 1, 2,...

and therefore

2L,	
1, 2....

it

According to the de Broglie relation, these wavelengths correspond to the momenta

h nh

The particle has only kinetic energy inside the box (where V = 0), so the permitted energies

are
p2	 n2h2
2m 8mL2

as obtained more formally earlier.

Sell-test 12.1 What is the average value of the linear momentum of a particle in a.ox
with quantum number ri?

[(p) =01

The linear momentum of a particle in a box is not well defined because the wavefunction
sinkx is a standing wave and, like the example of coskx treated in Section 11.5d, not an
cigenfunction of the linear momentum operator. However, each wavefunction is a
superposition of momentum eigenfunctions:

= 

(2

) 
"2sin () = - 

(2

) 

I/2(eth - 
e)	 k =	 (8)

It folIds that measurement of the linear momentum will give the value +kh for half the

measurements of momentum and —k/i for the other half. This detection of opposite
directions of travel with equal probability is the quantum mechanical version of the classical
picture that a particle in a box rattles from wall to wall, and in any given period spends half
s time travelling to the left and half travelling to the right.

22—B
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Because n cannot be zero, the lowest energy that the particle may possess is not zero (as
would be allowed by classical mechanics, corresponding to a stationary particle) but

8mL2

This lowest, irremovable energy is called the zero-point energy.
The physical origin of the zero-point energy can be explained in two ways. First, the

uncertainty principle requires a particle to possess kinetic energy if it is confined to a finite
region: the particles location is not completely indefinite, so its momentum cannot be
precisely zero. Hence it has nonzero kinetic energy. Second, if the wavefunction is to be zero
at the walls, but smooth continuous, and not zero everywhere, then it must be curved, and
curvature in a wavefunction implies the possession of kineticenergy.

The separation between adjacent energy levels with quantum numbers n and it + 1 is

(n + 1 ) 2 h2 	 n 2h 2	h2
E^ —E 

=

	

8oiL2 -.---= (2n+ 1)—	 (10)

This separation decreases as the length of the container increases, and is very small when the
container has macroscopic dimensions. The separation of adjaceiit levels becomes zero when
the walls are infinitely far apart. Atoms and molecules free to move in normal laboratory-
sized vessels may therefore be treated as though their translational energy is not quantized.
The translational energy of completely free particles (those not confined by walls) is not
quantized.

Illustration

For a containerpf length L = 1.0 nm h 2 18rnL2 = 6.0 x I0 J. Therefore, the zero-point
energy is E 1 = 6.0 x 10 0 J (corresponding to 0.37 vV). The minimum excitation energy is

given by eqn 10 with n = I, and is 3E 1 , or 1.8 x 10 — 19 J, which corresponds to I.! eV.

Self-test 12.2 Estimate a typical nuclear excitation energy by calculating the first
excitation energy of a proton confined to a one-dimensional infinite square well with a
length roughly equal to the diameter of a nucleus (1 fm).

[0.6 GeV)

The probability density for a particle in a box is

.2(X)2sjfl2(flhu)	
.	 (11)

(b)

-

n=1
(c)

12.4 (a) The first two wavefunctions, (b) the
corresponding probability distributions, and (c) a
representation of the probability distribution in
terms of the darkness of shading.

This probability density varies with position within the box. The nonuniformity is
pronounced when o is small (Fig. 12.4), but 0 2 (x) becomes more uniform as it increases.
The distribution at high quantum numbers reflects the classical result that a particle
bouncing between the walls spends, on the average, equal times at all points. That the
quantum result corresponds to the classical prediction at high quantum numbers is an
illustration of the correspondence principle, which states that classical mechanics emerges
from quantum mechanics as high quantum numbers are reached-

Example 12.2 Using the particle in a box solutions

What is the probability, P of locating the electron between x = 0 (the left-hand edge) and
x = 0.2 rim in its lowest energy state in a box of length 1.0 rim?



12.5 Two functions we orthogonal it the integral
of thtir product Is zero. Here the calculation of the
integral is illustrated graphically for two
wavefunctions or a particle in a square well. The
integral is equal to the total area beneath the
graph of the product, and is zero.
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Method The value of çk 2 dx is the probability of finding the particle in the small region dx
located at x; therefore, the total probability of finding the electron in the specified region is
the integral of dx over that region. The wavefunction of the electron is given in eqn 7

with n = I.

Answer The probability of finding the particle in a region between x 0 and x = 1 is

	

2 
l 2 ,'rnx'	 I	

I . (^/
2n

P = - j sin l—l&r =  - --sin
U0\L-/ 	 L 2nm 	 L )

We then set n = I and I = 0.2 rim, which gives P = 0.05.

Comment The result corresponds to a chance of I in 20 of finding the electron in the

region. As n becomes infinite, the sine term, which is multiplied by I/n, makes no

contribution to P and the classical result, F' = l/L, is obtained.

Self-test 12.3 Calculate the probability that a particle in the state with n = I will be

found between .c = 0.25L and x = 0.75L in a box of length L (with x = 0 at the left-hand

wall).
(0.82)

(e) Orthogonality and the bracket notation
A property of wavefunctions first mentioned in Justification 11.2 can now be illustrated

more fully. Two wavefunctions are orthogonal if the integral of their product vanishes.

Specifically, the functions I', and i,L',,, are orthogonal if

I	 di=0

where the integration is over all space. A general feature of quantum mechanics is that
wavefunctions corresponding to different energies are orthogonal: therefore, we can be
confident that all the wavefunctions of a particle in a box are mutually orthogonal.

Illustration
We can verify the orthogonality of wavefunctions of a particle in a box with n = I and

it 	 3 (Fig. 12.5):

fL
41 3 CLC  = Jsin(-)	 (') &= 0

from the general properties of integrals over trigonometric functions.

The integral in eqn 12a is often written

(n)n') = 0	 (n'	 'I)	 (12h)

This Dirac bracket notation is much more succinct than writing out the integral in full. It
also introduces the words 'bra' and 'ket' into the language of quantum mechanics. Thus, the

bra (nj corresponds to the complex conjugate of the wavefunction if,, and the ketIn')
corresponds to the wavefunction ç1',,. When the bra and ket are put together as in eqn 12b,

the integration over all space .
 is understood. Similarly, the normalization condition in

eqn 11.20 becomes simply

(n(n) = I	 (13)
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I2.6 A two-dimensional square well. The particle is
confined to the plane bounded by impenetrable
walls. As soon as it touches the walls, its potential
energy rises to infinity.
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in bracket notation. These two expressions can be combined into a single expression:

(n)n') =	 (14)

where	 which is called the Kronecker delta, is I when n' = n and 0 when n' 54 n. We
shall see more of this notation later.

The property of orthogonality is of great importance in quantum mechanics because it
2	 enables us to eliminate a large number of integrals from calculations. Orthogonality plays a

central role in the theory of chemical bonding (Chapter 14) and spectroscopy (Chapter 17).

12.2 Motion in two dimensions
Next, we consider a two-dimensional version of the particle in a box. Now the particle is
confined to a rectangular surface of length L 1 in the x-direction and L2 in the y-direction;
the potential energy is zero everywhere except at the walls, where it is infinite (Fig. 12.6). The
wavefunction is now a function of both x and y and the Schrödinger equation is

a2 i^ 	
E41
	

(15)

We need to see how to solve this partial differential equation, an equation in more than one
variable.

(a) Separation of variables
Some partial differential equations can be simplified by the separation of variables
technique, which divides the equation into two or more ordinary differential equations, one
for each variable. The method works in this case, as can be seen by testing whether a solution
of eqn 15 can be round by writing the wavefunction as a product of functions, one
depending only on .r and the other only on y:

i/i(x,v) = X(x)Y(y)	 (16)

The notation X(x)Y(y) reminds us that the two functions into which the wavefunction is
factored depend only on x and only on y for X and Y. respectively. We show in the
Justification below that with this substitution, eqn 15 separates into two ordinary
differential equations, one for each coordinate:

± Exx —4EY E — E+Ey	 (17)

The quantity Fx is the energy associated with the motion of the particle parallel to the x-
axis, and likewise for Ey and motion parallel to the y-axis.

Justification 12.1

The first step in the justification of the separability of the wavefunction intt the product of
two fUnctions x and Y is to note that, because X is independent of y and Y i5 independent
of x, we can write

- 2XY - ,d2X	 -	 -
—	 — dr2	 y2 -	 - dy2

Then eqn 15 bepomes

W( d2X	 d2Y\
=EXY



12.7 The wavefuoctions for a particle confined to a rectangular surface depicted as contours of equal amplitude. lal ,i, = In2 = I the state of lowest energy, (h)
= 1, n2 = 2, (c) r' '=2, it2	 1, and (d) it, = 2, it2 = 2.

4a) (b) Id (d)
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When both sides are divided by KY, the resulting equation can be rearranged into

ld2X ld2 Y 	 2naE

The first term on the left is independent of y, so if y is varied only the second term can
change. But the sum of these two terms is a constant given by the right-hand side of the
equation; therefore, even the second term cannot change when y is changed. In other
words, the second term is a constant, which we write —2mEy/h2. By a similar argument,
the first term is a constant when x changes, and we writ it —2mEx/h2 . and E = E + E.
Therefore, we can write	 -

1 d2X 	 2rnEx	 I d2Y

Xdx2 -
	

h2	 Ydy2 -

which rearrange into the two ordinary (that is, single variable) differential equations in
eqn 17.

Each of the two ordinary differential equations in eqn 17 is the same as the one-
dimensional square-well SchrOdinger equation; hence we can adapt the results in eqn 7
without further calculation:

1/2	 1/2
2 \	 . 1 fl1ltX\ 	 i 2 '	

. ( '!—
,iry

= 	
Sifl ---Y,,() =)

	
SII1
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Then, because 1, XY and E = !? + E, we obtain

2	
sin

	 . fn2rry

	

iIi,(x.v) =Jz.L2)1/2 S'fl 	 sin

f,t2	 #I\ j?
E, =i4+—i----

L LJ 8m

with the quantum numbers taking the values n 1 = 1,2,. . and n 2 = 1, 2,. independently.
Some of these functions are plotted in Fig. 12.7. They are the two-dimensional versions of
the wavefunctions shown in Fig. 12.3. Note that two quantum numbers are needed in this

0 < x L,0 <y

(18)
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two-dimensional problem, and in the Dirac bracket notation we denote the states by the ket

I	 , n2).
A particle in a three-dimensional box can be treated in the same way. The wavefunctions

have another factor (for the z-dependence), and the energy has an additional term in n/14

(b) Degeneracy

An interesting feature of the solutions is obtained when the plane surface is square, when
L 1 = Land L2 = L. Then eqn 18 becomes

2	 n 1 gx 	 2Y'\	 h2ii,i0,,(x,y) = Lsin(_.L-_) sln(-_L__)	 E002 = (n + n)—	 (19)

Consider the cases n 1 = I	 = 2 and n 1 = 2, n2	 1:

(ltX\
	 (2'y)

5h2
= sinI,-L sin 	 E1,2 

=

f,u\
1' 2,I (x,Y) = sin(,, 2_1.)

 
sin (

iry
7)	 E2	

5h2
,1 =

We see that different wavefunctions correspond to the same energy, the condition called
degeneracy. In this case, in which there are two degenerate wavefunctions, we say that the
energy level 5(h 2 /8rnL2 ) is 'doubly degenerate'. Alternatively, we say that the states 11,2)
and 12, I) are degenerate.

The occurrence of degeneracy is related to the symmetry of the system. Fig. 12.8 shows
contour diagrams of the two degenerate functions and Because the box is square,
we can convert one wavefunction into the other simply by rotating the plane by 900.
Interconversion by rotation through 900 is not possible when the plane is not square, and

i/i and /l are then not degenerate. We shall see many examples of degeneracy in the
pages that follow (for example, in the hydrogen atom), and all of them can be traced to the
symmetry properties of the system (see Section 15.4b).

17.8 Thewavefunctions for a particle confined to a
square surface. Note that one wevefunction can be
converted into the other by a rotation of the box by
900 . The two functions correspond to the same
energy. Degeneracy and symmetry are closely
related.

12.3 Ttiunclli,t;

If the potential energy of a particle does not rise to infinity when it is in the walls of the
container, and F <V. the wavefunction does not decay abruptly to zero. If the walls are thin
(so that the potential energy falls to zero again after a finite distance), the wavefunction
oscillates inside the box, varies smoothly inside the region representing the wall, and
oscillates again on the other side of the wall outside the box (Fig. 12.9). Hence the particle
might be found on the outside of a container even though according to classical mechanics
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12.9 A particle incident on a barrier from the left
has an oscillating wavefunction, but inside the
harrier there are no oscillations (for E< V). It the
barrier is not too thick, the wavefuoction is nonzero
at its opposite face, and so oscillations begin again
there. (Only the real component of the
wavefunction is shown.)

12.10 When a particle is incident on a barrier from
the left, the wavefunction consists of a wave
representing linear momentum to the right, a
reflected component representing momentum to
the left, a varying but not oscillating component
inside the barrier, and a (weak) 'wave representing
motion to the right on the far side of the barrier.

12.11 The wavefunction and its slope must be
continuous at the edges of the barrier. The
conditions for continuity enable us to connect the
wavefunctioris in the three zones and hence to
obtain relations between the coefficients that
appear in the solutions of the Schrödinger equation.
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it has insufficient energy to escape. Such leakage by penetration through classically
forbidden zones is called tunnelling.

The Schrödinger equation can be used to calculate the probability of tunnelling of a
particle of mass rn incident on a finite barrier from the left. On the left of the barrier (for
x<0) the wavefunctions are those of a particle with V = 0, so from eqn 2 we can write

= Ae& + Be'	 kit = (2mE)'2 	 (20)

The Schrodinger equation for the region representing the barrier (for 0 x L), where the
potential energy is the constant V. is

h2tlfr	
=F	 (21)2m clx

We shall consider particles that have F <V. so V - F is positive. The general solutions of this
equation are then

cit - Ce" ± Dc	 Kh = f2nr(V -	 (22)

as can readily be verified by differentiating s twice with respect to x. The important feature
to note is that the two exponentials are now real functions (as distinct from the complex,
oscillating functions for the region where V = 0).3 To the right of the barrier (x>L), where
V = 0 again, the wavefunctions are

flCkC ±Bcth	 kit = (2mE) 2 	 (23)

The complete wavefunction for a particle incident from the left consists of an incident wave,
a wave reflected from tise barrier, the exponentially changing amplitudes inside the barrier,
and an oscillating wave representing the propagation of the particle to the right after
tunnelling through the barrier successfully (Fig. 12.10). The acceptable wavefunctions have
to obey the conditions set out in Section 11 .4b. In particular, they must be continuous at the
edges of the barrier (at .r = 0 and x = L, remembering that e° = 1):

A +B = C + D	 Ce" ± De  1- = ikL + B'e'	 (24)

Their slopes (their first derivatives) must also be continuous there (Fig. 12.11):

ikA - ikB = KC . KD	 KCeL - KDe" ik4 !eIkl. - ikBte	 (25)

At this stage, We have four equations for the six unknown coefficients. If the particles are
shot towards the barrier from the left, there can be no particles travelling to the left on the
right of the barrier. Therefore, we can set B' = 0, which removes one more unknown. We
cannot set B = 0 because some particles may be reflected back from the barrier toward
negative x.

The probability that a particle is travelling towards positive x (to the right) on the left of
the barrier is proportional to JA l2, and the probability that it is travelling to the right on the
right of the barrier is proportional to JA '1 2. The ratio of these two probabilities is called the
transmission probability, T. After some algebra we find

7,
= {l + 

(el. — e - L)2 	

(26)

where c Ely. This function is plotted in Fig. 12.12; the transmission coefficient for F> V
is shown there too. For high, wide barriers (in the sense that icL >s 1), eqri 26 simplifies to

T 16c(1 - )e 2'"	 (27)

3 OroIbIiri5 loncimis wuo'4 he obtained it >V.
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The transmission probability decreases exponentially with the thickness of the barrier and

with rnV2 . It follows that particles of low mass are more able to tunnel through barriers than
heavy ones (Fig. 12.13). Tunnelling is very important for electrons and muons, and
moderately important for protons; for heavier particles it is less important. A number of
effects in chemistry (for example, the isotope-dependence of some reaction rates) depend
on the ability of the prtton to tunnel more readily than the deuteron. The very rapid
equilibration of proton transfer reactions (which were discussed in Chapter 9) is also a
manifestation of the ability of protons to tunnel through barriers and transfer quickly from
an acid to a base. The important technique of scanning tunnelling microscopy' (STM), which
is described in more detail in Section 28.2f, relies on the exponential dependence of electron
tunnelling on the lhicknes of the region between a point and a surface.

Illustration
To estimate the relative probabilities that a proton and a deuteron can tunnel through the

same barrier of height 1.00 eV (1.60 x 10 - 19 J) and length 100 pm when their energy is

'.	 0.9 eV, so E - V = 0.10 eV, we first evaluate

I 2(m/u) x (1.67 x 1021 kg) x (1.6_x 1020	
1/2

(1.055xI0-Js)2

14 pm

The values of K for a proton (in = 1.0 u) and a deuteron (rn = 2.0 u) are 1/(14 pm) and

1 1(9.9 pm), respetively. so KL I and eqn 27 can be used. The ratio of transmission

probabilities is then
T1
- = e 21K,.''-	 3.7 x 10

(The ratio is very sensitive to rounding errors.) The result shows that the tunnelling
probability of a proton (in the system specified) is about 370 times greater than that of a

deuteron.

12.13 The wavefunction of a heavy particle decays
more rapidly inside a barrier than that of a light
particle. Consequently, a light particle has a greater
probability of tunnelling through the barrier.
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4 The parabolic potential energy V = I kX2 of a
harmonic oscillator, where x is the displacement
from equilibrium. The narrowness of the curve
depends on the force constant k: the larger the
value of k, the narrower the well.
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Self-test 12.1 Calculate the relative tunnelling probabilities when the barrier is twice as
long, the other conditions being unchanged.

[1.4x iO]

Vibrational motion
A particle undergoes harmonic motion if it experiences a restoring force proportional to its
displacement:

F= —kx	 (28)

where k is the force constant: the stiffer the 'spring', the greater the value of k. Because
force is related to potential energy by F = —dV/dx (see Further information 4), the force in
eqn 28 corresponds to a potential energy

V = kx	 (29)

This expression, which is the equatioil'of a parabola (Fig. 12.14), is the origin of the term
parabolic potential energy' for the potential energy characteristic of a harmonic oscillator.

The Schrfldinger equation for the particle is therefore

— --+kxtIi=Ect,	(30)

12.4 1 Its' 'tRrslY kv&'Is

Equation 30 is a standard equation in the theory of differential equations and its solutions
are well known to mathematicians (see below). 4 When the boundary conditions, that the
oscillator will not be fOund with infinitely large compressions or extensions, are applied, it is
found that the permitted energy levels are

E,, = (v + )1lw	
a = (

k

-)	
v = 0,1,2...	 (31)

Note that co increases with increasing force constant and decreasing mass. It follows that the
separation between adjacent levels is

E,, 1 - E0 = hw	 (32)

which is the same for all v. Therefore, the energy levels form a uniform ladder of spacing ho)
(Fig. 12.15). The energy separation hw is negligibly small for macroscopic objects (with large
mass), but is of great importance for objects with mass similar to that of atoms.

Illustration
The force constant of a typical X-H chemical bond is around 500 Nm. Because the mass
of a proton is about 1.7 x lO kg, o5 x 10I4 s and the separation of adjacent levels is
1zw6 x 10 0 J (about 0.4 eV). This energy separation corresponds to 30 kJrnor', which
is chemically significant. The excitation of the vibration of the bond from one level to the
level immediately above requires 6x IO° J. Therefore, if it is caused by a photon, the
excitation requires radiation of frequency r.' = AFIh = 9 x 1013 Hz and wavelength
A = c/p = 3 y rn. It follows that transitions between adjacent vibrational energy levels of
molecules are stimulated by or emit infrared radiation (Chapter 16).

4 Forthe details of the solution. ve Further reading

* ••4--- . 	--:) l'(}(,L III
-rcjy V

L1

*1.................

0
Displacement, x

12.1', The energy levels of a harmonic oscillator are
evenly spaced with separation Piw, with
co = (k/rn)' 12 . Even in its lowest state, an oscillator
has an energy greater than zero.
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Table 12.1 The Hermite polynomials H.y)

Rl
	

H.

0
2y

2	 -2
3
	

V. - l2y
4
	

16y4 —48y2 + 12
5
	

32y5 - 160? + 120y
6
	

64y6 - 480y4 + 720y2 - 120

The Hermite polynomials (which continue up to
infinite v) satisfy the equation

- 2yII 1- 2vH, (I

and the recursion relation
14 = 2y11. - 2vH,..1

An important integral is
10	 ifsf&vf H,,If,edy =	 i/2 20 if V =
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Because the smallest permitted value of v is 0, it follows from eqrs 31 that a harmonic
oscillator has a zero-point energy

Eo = hw	 (33)

For the typical molecular oscillator specified in the Illustration, the zero-point energy is

about 3 x 10 0 J. which corresponds to 0.2 eV, or 15 kJmol. The mathematical reason

for the zero-point energy is that v cannot take negative values, for if it did the wavefunction
would be ill-behaved. The physical reason is the same as for the particle in a square well: the
particle is confined,.its position is not completely uncertain, and therefore its momentum,
and hence its kinetic energy, cannot be exactly zero. We can picture this zero-point state as
one in which the particle fluctuates incessantly around its equilibrium position; classical
mechanics would allow the particle to be perfectly still.

12.5 The wavefunctionc

It is helpful at the outset to identify the similarities between the harmonic oscillator and the
particle in a box, for then we shall be able to anticipate the form of the oscillator
wavefunctions without detailed calculation. Like the particle in a box, a particle undergoing
harmonic motion is trapped in a symmetrical well in which the potential energy rises to large
values (and ultimately to infinity) for sufficiently large displacements (compare Figs 12.1
and 12.14). However, there are two important differences. First, because the potential
energy climbs towards infinity only as x2 and not abruptly, the wavefunction approaches
zero more slowly at large displacements than for the particle in a box. Second, as the kinetic
energy of the oscillator depends on the displacement in a more complex way (on account of
the variation of the potential energy), the curvature of the wavefunction also varies in a

more complex way.

(a) The form of the wave functions
The detailed solution of cqn 30 shows that the wavefunction for a harmonic oscillator has

the form

O(x) = N x (polynomial in x) x (belt-shaped Gaussian function)

where N is a normalization constant. A Gaussian function is a function of the form e
(Fig. 12.16). The precise form of the wavefunctions is

2 1/4

= NHi (y)e_ 2	 =	 = (;)	
(34)

mk

The factor H1 (y) is a Hermite polynomial (Table 12.1). For instance, because !10 (y) = 1, the

wavefunction for the.ground state (the lowest energy state, with v = 0) of the harmonic

oscillator is

b0(x) = Nuc_ 2 =
	 (35)

It follows that the probability density is the bell-shaped Gaussian function

t,Lt(x) = (36)

The wavefunction and the probability distribution are shown in Fig. 12.17. Both curves have
their largest values at zero displacement (at x = 0), so they capture the classical picture of
the zero-point energy as arising from the ceaseless fluctuation of the particle about its

equilibrium position.
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The wavefunction for the first excited state of the oscillator, the state with v = 1, is
obtained by noting that 11, (y) = 2y (note that some of the Hermite polynomials are very
simple functions!):

1i (x) N 1 x 2yc 2 = _!xeI2	 (37)

This function has a node at zero displacement (x = 0), and the probability density has
maxima at x = ±a, corresponding toy= ± I (Fig. 12.18).

Th shapes of several wavefunctions are shown in Fig. 12.19. The shading in Fig. 12.20
that represents the probability density is based on the squares of these functions. At high
quantum numbers, harmonic oscillator wavefunctions have their largest amplitudes near
the turning points of the classical motion (the locations at which V = E. so the kinetic
energy is zero). We see classical properties emerging in the correspondence limit of high
quantum numbers, for a classical particle is most likely to be found at the turning points
(where it travels most slowly) and is least likely to be found at zero displacement (where it
travels most rapidly).

Example 12.3 Normalizing a harmonic oscillator wavcfunction

Find the normalization constant for the harmonic oscillator wavefunctions.

Mtthod Normalization is always carried out by evaluating the integral of 101
2 over all space

and then finding the normalization factor from eqn 11.17. The normalized wavefunction is
then equal to NO. In this one-dimensional problem, the volume element is dx and the
integration is from .- to +co. The wavefunctions are expressed in terms of the
dimensionless variable y = x/cz, so begin by expressing the integral in terms of y by using
dx = dy. The integrals required are given in Table 12.1.

Answrr The unnormalized wavefunction is

= H1,(y)c2

It follows from the integrals given in Table 12.1 that

41, cbc
= a!: 

cfruit,dy 
a!: 

H(y)e dy

where v! = v(v - l)(v —2) ... 1. Therefore,

\}	
N = (airh/22vv!)'/2

Note that for a harmonic oscillator N is different for each value of v,

Cotnnieril The Hermite polynomials are members of a class of functions called orthogonal
polynomials. These polynomials have a wide range of important properties which allow a
number of quantum mechanical calculations to be done with relative ease. See Further

reading for a reference to their properties.

—4	 —2	 0	 2	 4	 Ss'll-t.'l I).! Confirm, by explicit evaluation of the integral, that 0 and 0, are
orthogonal.

12.111 The normalized wavefunetion and probability 	 [Evaluate the integral f.	 1k0 dx
distribution (shown also by shading) for the first 	 by using the information in Table 12.1.1
excited state of a harmonic oscillator.	 .... .	 .
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1119 The normalized wavefursetions for the first

five states of a harmonic oscillator. Even values of v
are black: odd values are green. Note that the
number of nodes is equal to v and that alternate
wavefunctions are symmetrical or antisymmetrucal
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12.0 The probability distributions for the First five

states of a harmonic oscillator represented by the
density of shading. Note how the regions of highest
probability (the regions of densest shading) move
towards the turning points of the classical motion
as v increases.

(b) The properties of oscillators
With the wavefunctions that are available, we can start calculating the properties of a
harmonic oscillator. For instance, we can calculate the expectation values of an observable fl
by evaluating integrals of the type

=	
-	 (38)41^12011 &V

(Here and henceforth, the wavefunctions are all taken to be normalized.) A tidier expression
is obtained by using Dirac bracket notation, in which an integral is replaced by a bracket
labelled with the quantum numbers of the states:

(v'IflIv) =
	

d.c

This bracket is also called a matrix element of the operator (1 Note how the operator stands
between the bra and the ket (which may denote different states), in the place of the c in
(brc(ket). An integration is implied whenever a complete bracket is written. In this
notation, the expectation value is

()	 (vjlv)	 (40)

with the bra and the ket corresponding to the same state (with quantum number v and
wavefunction L',).

When the explicit wavefunctions are substituted, the integrals look fearsome, but the
Hermite polynomials have many simplifying features. For instance, we show in the following
example that the mean displacement, (x), and the mean square displacement. (x2), of the
oscillator when it is in the state with quantum number v are

(x)=0	 (X2)=(V+)(fl:)1,2	 (41)

The result for (x) shows that the oscillator is equally likely to be found on either side of

= 0 (like a classical oscillator). The result for (x2 ) shows that the mean square

displacement increases with v. This increase is apparent from the probability densities in

Fig. 12.20, and corresponds to the classical amplitude of swing increasing as the oscillator

becomes more highly excited.

Example 12.4 Calculating properties of a harmonic oscillator

Calculate the mean displacement of the oscillator when it is in a quantum state v.

Method Normalized wavefunctions must be used to calculate the expectation value. The
operator for position along x is multiplication by the value of x (Section 11.5c). The resulting
integral can be evaluated either by inspection (the integrand is the product of an odd and an
even function), or bc explicit evaluation using the formulas in Table 12.1. To give practice in
this type of calculation, we illustrate the latter procedure. We shall need the relation x = my,
which implies thatdx = ady.

An$*er The integral we require is

(x = f	 .c*,.th = N

2N2f (!!c_2)y(Kue_)2)dyt.

= m2N f 1IyII1 ,e Y' dy
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Now use the recursion relation in Table 12.1 to form

yH = viI, I +H1

which turns the integral into

dy	 H	 +	 dy

Both integrals are zero (Table 12.1), so (x) = 0.

Self-test 12.6 Calculate the mean square displacement (x2) of the particle from its
equilibrium position. (Use the recursion relation twice.)

(eqn 411

The mean potential energy of an oscillator, the expectation value of V = kx2, can now
be calculated very easily:

(V) = (k) = (v + )fl (-) = (v + )hw	 (42)

Because the total energy in the state with quantum number v is (v + )hw, it follows that

(V)=E.	 (43)

The total energy is the sum of the potential and kinetic energies, so it follows at once that
the mean kinetic energy of the oscillator is

(EK) =	 (44)

The result that the mean potential and kinetic energies of a harmonic oscillator are equal
(and therefore that both are equal to half the total energy) is a special case of the virial
theorem:

If the potential energy of a particle has the form Vax" then its mean

potential and kinetic energies are related by

2(EK ) = h(V)	 (45)

For a harmonic oscillator b = 2, so (EK ) = (V), as we have found. The virial theorem is a
short cut to the establishment of a number of useful results, and we shall use it again.

An oscillator maybe found at extensions with V>E that are forbidden by classical
physics, for they correspond to negative kinetic energy. For example, it follows from the
shape of the wavefunction (see the Justification below) that in its lowest energy state there
is about an 8 per cent chance of finding an oscillator stretched beyond its classical limit and
an 8 per cent chance of finding it with a classically forbidden compression. These tunnelling
probabilities are independent of the force constant and mass of the oscillator. The
probability of being found in classically forbidden regions decreases quickly with increasing
v, and vanishes entirely as v approaches infinity, as we would expect from the
correspondence principle. Macroscopic oscillators (sUch as pendulums) are in states with
very high quantum numbers, so the probability that they will be found in a classically
forbidden region is wholly negligible. Molecules, however, are normally in their vibrational
ground states, and for them the probability is very significant.
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Table 12.2' The error function	 iustif'ucatiorp 12.7

z	 rrfz	 According to classical mechanics, the turning point. xq,. of an oscillator occurs when its

o	 0	 kinetic energy is zero, which is when its potential energy kI is equal to its total energy E.

0.01	 0.0113	 This equality occurs when

0.05	 0.0564 1/2

0.10	 0.1125	 orx,= ±(-r)
0.50	 0.5205
1.00	 0,8427	 with E given by eqn 31. The probability of finding the oscillator stretched beyond a
1.50	 0.91	 displacement x 11, is the sum of the probabilities i/i2 dx of finding it in any of the intervals dx
2.0	 0.9953	 lying between x and infinity:

'More values are given in the Data section at the	 P 
= f.tii dx

end or this volume.

The variable of integration is best expressed in terms of y = x/a with a specified in eqn 34,
and then the turning point on the right lies at

(2(v + I)h\ 1/2
=	

a2k ) = (2v + 1)1/2

For the state of lowest energy (V = 0), y, = 1 and the probability is

P= fdx=ccNfedy

The integral is a special •case of the error function, cr1' z, which is defined as follows:

erfz=1__fe_Y dy	 (46]

The values of this function are tabulated (just like sine and cosine functions), and a small
selection of values is given in Table 12.2. In the present case

—cr1' 1)=(1 —0.843)=O.079

It follows that in 7.9 per cent of a large number of observations, any oscillator in the state
v = 0 will be found stretched to a classically forbidden extent There is the same
probability of finding the oscillator with a classically forbidden compression. The total
probability of finding the oscillator tunnelled into a classically forbidden region (stretched
or compressed) is about 16 per cent.

Rotational motion
The treatment of rotational motion can be broken down into two parts. The first deals with
motion in two dimensions and the second with rotation in three dimensions. It may be
helpful to review the classical description of rotational motion given in Further information
4. particularly the concepts of moment of inertia and angular momentum.

12.6 Rotation in two dimensions

We consider a particle of mass ni constrained to move in a circular path of radius r in the .xy-
in on a circular path of radius r in the .*y-plane is
1771 The angular momentum of a particle of mass 	 plane (Fig. 12.21). The total energy is equal to the kinetic energy, because V = 0 everywhere.
represented by a vector of magnitude pr	 We can therefore write E = p2 12m. According to classical mechanics, the angular
perpendicular to the plane. 	 momentum, J. around the z-axis (which lies perpendicular to the .ry-plane) is J = ±pr,
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so the energy can be expressed as J,12rnr 2 . Because it-2 is the moment of inertia, I, of the

mass on its path, it follows that 

E=-	 (47)
2!

Fusi	 We shall now see that not all the values of the angular momentum are permitted in

/rcu•,

	

	

quantum mechanics, and therefore that both angular momentum and rotational energy are
quantized.

(a) The qualitative origin of quantized rotation
Because J	 ±pr and, from the de Broglie rlation, in h/A, the angular momentum
about the 2-axi5 is

It
A

Opposite signs correspond to opposite directions of travel. This equation shows that, the
shorter the wavelength of the particle on a circular path of given radius, the greater the
angular momentum of the particle. It follows that, if we can see why the wavelength is
restricted to discrete values, then we shall understand why the angular momentum is
quantized.

Suppose for the moment that A can take an arbitrary value. In that case, the
wavefunction depends on the azimuthal angle 0 as shown in Fig. 12.22a. When increases
beyond 27z, the wavefunction continues to change, but for an arbitrary wavelength it gives
rise to a different value at each point, which is unacceptable (Section 1 1.4b). An acceptable
solution is obtained only if the wavefunction reproduces itself on successive circuits, as in
Fig. 12.22b- Because only some wavefunctions have this property, it follows that only some
angular momenta are acceptable, and therefore that only certain rotational energies exist.
Hence, the energy of the particle is quantized. Specifically, the only allowed wavelengths are

in'

with ins, the conventional notation for this quantum number, taking integral values
including o. The angular momentum is therefore limited to the values

hr	 ,n1 /ar	 m1h

	

J. = ± = .-= -	 -,.	 2nr	 2n

where we have allowed in, to have positive or negative values. That is,

J,=n,,h m,=0,±t,±2,... (48)

Positive values of in, correspond to rotation in a clockwise sense around the z-axis (as viewed
in the direction of z. Fig. 12.23) and negative values of in, correspond to counter-clockwise
rotation around a. It then follows from eqn 47 that the energy is limited to the values

(49)

We shall see shortly that the corresponding normalized wavefunctions are

	

(2r)lf2	
(50)

The wavefunction with e, = 0 is 00 (4)	 1/(2-) 'Y2 and has the same value at all points on
the circle.

We have arrived at a number of conclusions about rotational motion by cobbling
together some classical notions and the de Broglie relation. Such a procedure can be very

5	 the value ,,,, ,- O.co,rco',js Is . 	 ',	 wave 'of infinite wavelength has a constant height at all Values of

O/\\j

(a)

Second
cilicoit 

A, C 

Ircul I

TE	 21t

(b)

1221 Two solutions of the Schrtdingcr equation
for a particle on a ring. The circumference has been
opened Out into a straight lint; the points at 0 = 0
and 2n are identical. The solution in (a) is
unacceptable because it is not single-valued.
Moreover, on successive circuits it interferes
destructively with itself, and does not survive. The
solution in (b) is acceptable: it is Single-valued, and
or successive circuits it reproduces itself.



(a)

(:::^ - - I_
b)

m1 < 0

12.23 The angular momentum of a particle
confined to a plane can be represented by a vector
of length Imrl units along the z-axis and with an
orientation that indicates the direction of motion of
the particle. The direction is given by the right-
hand screw rule.

12.24 The cylindrical coordinates r and 0 for
discussing systems with axial Icylindrical) symmetry.
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useful for establishing the general form (and, a g in this case, the exact energies) for a
quantum mechanical system. However, to be sure that the correct solutions have been
obtained, and to obtain practice for more complex problems where this less formal approach
is inadequate, we need to solve the Schrödinger equation explicitly. The formal solution is
described in the .k'stificotion that follows.

Justification 12.3

The hmiltonian for a particle of mass m in a plane (with V = 0) is the same as that given in
eqn 15:

232
H 
= - (	

32

+

and the Schrödinger equation is Hi = Ets, with the wavefunction a function of the angle
q. It is always a good idea to use coordinates that reflect the full symmetry of the system,
so we introduce the coordinates rand 0 (Fig. 12.24), wherex = rcos4. andy = rsin4. By
standard manipulations we can write

32	 32	 32	 13	 102
(51)

However, because the radius of the path is fixed, the derivative with respect to r can be
discarded; the hamiltonian then becomes

H-------
- 21nr2d2

-

The moment of inertia I = mr2 has appeared automatically, so H may be written

2d2
H = - -

2/d42

and the Schrödinger equation is

d2 i	 21E

d4 2	 h2'

The normalized general solutions of the equation are

	

e'"0	 (21E) 
1/2

=

	

(27r) 
1/2

m1 = ±
1 Al

The quantity m1 is just a dimensionless number at this stage.
We now select the acceptable solutions from among these general solutions by

imposing the condition that the wavefunction should be single-valued. That is, the
wavefunctiort i must satisfy a cyclic boundary condition, and match at points separated
by a complete revolution: 1i( + 27r) = çli(4). On substituting the general wavefunction
into this condition, we find

e+2x)
+ 27t)	

(27r)I/2 =	
=

As cx = —1, this relation is equivalent to

	

=	 (54)

Because we require (_1)"1 = 1, 2m1 must be a positive or negative even integer
(including 01, and therefore m1 must bean integer: m1 = 0, ±1, ±2.....

(52)

(53)

23—A
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(b) Quantzation of rota tion
We can summarize the conclusions so far as follows. The energy Is quantized and restricted
to the values given in eqn 49 (K = m1h 2 /2I). The occurrence of nt 1 as its square means that
the energy of rotation is independent of the sense of rotation (the sign of m 1 ), as we expect
physically. In other words, states with a given value of Im i l are doubly degenerate, except for
in, = 0, which is non-degenerate. Although the result has been derived for the rotation of a
single mass point, it also applies to any body of moment of inertia 1 constrained to rotate
about one axis.

We have also seen that the angular momentum is quantized and confined to the values
given in cqn 48 (J, = nr,h). The increasing angular momentum is associated with the
increasing number of nodes in the real and imaginary parts of the wavefunction: 6 the
wavelength decreases stepwise 35 rn] increases, so the momentum with which the particle
travels round the ring increases (Fig. 12.25). As shown in the following Justification, the
same conclusion can be obtained formally by using the argument about the relations
between eigenvalurs and the values of observables that were established in
Section 11.5.

Justification 12,4

In the discussion of translational motion in one dimension, we saw that the opposite signs
in the wavefunctions e lk-' and e'' correspond to opposite directions of travel, and that the
linear momentum is given by the eigenvalue of the linear momentum operator. The same
conclusions can be drawn here but now we need the eigenvalues of the angular
momentum operator. In classical mechanics the orbital angular momentum l about the
axis is defined as'

m1 = 0
	 1. = .5/7, - .5'!),

	 [55)

12 2'. The real parts of the wavefunctions of a 	
where p, is the component of linear motion parallel to the x-axis and p is the component

particle on a ring As Shorter wavelengths are 	 parallel to the v-axis. The cfperators for the two linear momentum components are given in
achieved, the magnitude of the angular momentum	 eqn 11.12. so the operator for angular momentum about the z-axis, which we denote L, is
around the :-axis grows in steps of h h(A: i1	

56)1.	
iOy	 (

When expressed in terms of the coordinates r and 0, this equation becomes

(57)
i 80

With the angular momentum operator available, we can test the wavefunction in eqn 50.
Disregarding the normalization constant, we find

= hd5 =
	 , Cnn1e = nt,h,,	( 58)

That is, is an eigenfunction of 1., and corresponds to an angular momentum m,h. When
nt, is positive, the angular momentum is positive (clockwise when seen from below); when
nI, is negative, the angular momentum is negative (counter-clockwise when seen from
below). These featurec are the origin of the vector representation of angular momentum,
in which the magnitude is represented by the length of a vector and the direction of
motion by its orientation (Fig. 12.26).

lirJi. The basic ideas or the vector representation
of angular momentum: the magnitude of the
angular momentum is represented by the length of
the vector, and the orientation of the motion in
space by the orientation of the vector (using the
right-hand screw rule).

6	 The complex funrt y,ml C"' dlx's nut iliac viSits , busty,'? , Ii may or wrilen as cosm,* i ninni,d. an, ihr real con ,..,l and

inragi,rjry lviii ,n 1 ,Jl t rnl)u,nenms ii heir nodrs

7	 The angular ,nomrrluum 'ii ''re ,iirnrnnrrn , lef fled ml	 p Ic Star rqn ss, expand tnt urrlov produci and identify the
z-romporicni

I&i
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ii,

I? /7 the probility density for a particle in a
definite state of angular momentum is uniform, 50
there is an equal probability of finding the particle
anywhere on the ring.

I
0	 '0

\

/ .: The wavefunction of a particle on the
surface of a sphere must satisfy two cyclic
boundary conditions; this requirement leads to two
quantum numbers for its state of angular
momentum.

2.2I Spherical polar coordinates. For a particle
confined to the surface of a Sphere, only the
colatitude, O, and the azimuth, fl can change.

To locate the particle given its wavefunction ineqn 50, we form the probability density:

( e" ) 

I e""' '\	 / e"	 I en '\
( .5) 1/2	 1/2 1 = I	 1/2 1 t (2) 1/2)\ (21t)	 \(21r)	 J

7 2

Because this probability density is independent of 4, the probability of locating the particle
somewhere on the ring is also independent of 0 (Fig. 12.27). Hence the location of the
particle is completely indefinite, and knowing the angular momentum precisely eliminates
the possibility of specifying the particle's location. Angular momentum and angle are a pair
of complementary observables (in the sense defined in Section 11.5e), and the inability to
specify them simultaneously with arbitrary precision is another example of the uncertainty
principle.

12.7 Rotation in three dimensions
We now consider a particle of mass en that is free to move anywhere on the surface of a
sphere of radius r. We shall need the results of this calculation when we come to describe the
states of electrons in atoms (Chapter 13) and of rotating molecules (Chapter 16). The latter
application arises from the fact that the rotation of a solid body of moment of inertia I can
be represented by a single point of mass m rotating at a radius r, which is defined so that
I = mr2 . The requirement that the wavefunction should match as a path is traced over the
poles as well as round the equator of the sphere surrounding the central point introduces a
second cyclic boundary condition and therefore a second quantum number (Fig. 12.28).

(a) The 5chrOcHnger equation
The hamiltonian for motion in three dimensions (Table 11.1) is

/t 2 	 a2	 a2
H=----V-+V	 V-=—+--+---

2nt	 12	 a-	 )z-

The symbol V 2 is a convenient abbreviation for the sum of the three second derivatives; it is
called the laplacian, and read either 'del squared' or 'nabla squared'. For the particle
confined to a spherical surface, V = 0 wherever it is free to travel, and the radius r is a
constant. The wavefunction is therefore a function of the colatitude, 0, and the azimuth, 4i
(Fig. 12.29), and we write it 0(0, st). The Schrodinger equation is

_ - 2m_V2,=F#	 (61)

This partial differential equation can be simplified by the separation of variables procedure
by expressing the wavefunction (for constant r) as the product

1li(f1, () = ø(0)O(ct')

where e is a function only of (1 and 0 is a function only of 0.

Justification 12.5

The laplacian in spherical polar coordinates is

V, = a1 
+ 2a - 

i—-
ar7 rar r2

—A

(60)

(62)

(63)
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where the legendrian, A2,

2 1	 i 2	i	 .
A =	 -4-------st1l 0--

	sin 0i4	 sill 	 0

Because r is constant, we can discard the part of the taplacian that involves differentiation
with respect to r, and so write the SchrOdinger equation as

-

or, because I = mr 2 , as

A20=—riti	
51E

V.
To verify that this expression is separable, we substitute it' =GV

®d2 V	 bddO
+--sinO— = — cOils

2 0c1ç 7	 sin OdO	 dOsin

(64)

We have made use of the fact that 0 and (O are each functions of one variable, so the
partial derivatives become complete derivatives. Division through by OtO and multi-
plication by sin2 0 give

Id2 l)	 sitsOd.	 dO	 '2= —esin 0

The first term on the left depends only on 0 and the remaining two terms depend only on
0. We met a similar situation when discussing a particle on a rectangular surface
(Justification 12.1) and by the same argument, the complete equation can be separated.
Thus, if we set the first term equal to the numerical constant —m (a constant clearly
chosen with an eye to the future), the separated equations are

1d2tO
= —fllj

tO d4,

sin Od inO dO	 .
0 = rnT

The first of these two equations is the same as in Justification 12.3, so it has the same
solutions (eqn 50). The second is much more complicated to solve, but the solutions are
tabulated as the associated Legendre functions. The cyclic boundary conditions on U
result in the introduction of a second quantum number!, which identifies the acceptable
solutions. The presence of the quantum number ni in the second equation implies, as we
see below, that the range of acceptable values of rn1 is restricted by the value of 1.

As indicated in the Justification, solution of the SchrUdinger equation shows that the

acceptable wavefunctions are specified by two quantum numbers 1 and mi which are

restricted to the values

1=0,1,2,..	 = 1,1•- 1 fl .., --1	 (65)

Note that the quantum number / is non-negative and that, for a given value of!. there are
21 + I permitted values of mp the normalized wavefunctions are usually denoted Y1, ,,(0, 4,)

and are called the spherical harmonics. Some of the spherical harmonics are listed in
Table 12.3, and their amplitudes at different points on the spherical surface are illustrated in
Fig. 12.30.

Tahk 12.3 The spherical harmonics Y,,,(O, 4,)

I	 m 1 	Y,_,

/2
o (—)

0 I—I cosO
\4ir)

/	 2

	

±1	 sinOc5

/	 /2
2	 a	 (3cos20_. I)

1/2
	±	 (j—) Cos 0 sin Oe

/15\2
	±2	 sin2

( 1 67r
7

3	 0	 --) (5cos3 0— 3 
Cos 

ft)

/ 21'\

	

±1	 (5cos20-1) sin 0e

105 1/2

	

±2	 sin2 Ccs 0 e2'

/ 3 \ 1/2
	±3	 sin' 0 et)

Normaiiaation and orthogonality:

Lf YY1sin0d0d4,=ô,,i5.,,,,,

Triple integral

f

. j2. 
Y.Y,Y, sin 0d0d,=O

unless m' = m1 + in and 1", P.! can form a triangle.
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It also follows from the solution of the Schrdinger equation that the energy E of the
particle is restricted to the values

E=!(/+l)	 /=01,2,...	 (66)

We see that the energy is quantized, and that it is independent of m,. Because there are
21 + I different wzivefunctions (one for each value of ni,) that correspond to the same
energy, it follows that a level with quantum number / is (21 -C 1)-fold degenerate.

(b) Angular momentum
The energy of a rotating particle is related classically to its angular momentum J by

I? = J2 /21 (see Further information 41. Therefore, by comparing this equation with eqn 66,
we can deduce that, because the energy is quantized, then so too is the magnitude of the
angular momentum, and confined to the values

magnitude of angular momentum = {1(l+ 1)} V2 h 	 / 0,1,2,...

(67a)

We have already seen (in the context of rotation in a plane) that the angular momentum
about the :-axis is quantized, and that it has the values

z-component of angular momentum = m 1 h 	 m1 = 1,1 - 1, . . —1	 (67b)

A feature of the (real or imaginary parts of the) wavefunctiQn .) is that, the
higher the value of!, the larger the number of nodal lines in the wavefunction (the positions
at which ' passes through 0). This feature reflects the fact that higher angular momentum
implies higher kinetic energy, and therefore a more sharply buckled wavfunction. We can
also see that the states corresponding to high angular momentum around the :-axis are
those in which most nodal lines cut the equator: a high kinetic energy now arises from
motion parallel to the equator because the curvature is greatest in that direction.

Illustration
	The moment of inertia of H7 is 4.603 x io	 kg M2. It follows that

- (1.05457 x lO	 Js) 2 -
l.208 x10' 2 ' j

21 - 2 x (4.603 x lO- kg 1112) -

or 1.208 ii (where z is the little-used but useful SI prefix zepto, denoting 10-2 1 ). This energy
corresponds to 0.727 Id mol. The first few rotational energy levels are therefore 0(1 = 0),
2.416 zJ (1 = 1), 7.248 'ii (1 = 2), and 14.496 zJ (1 = 3). The degeneracies of these levels are
1,3.5, and 7, respectively (from 2/+ 1) and the magnitudes of the angular momentum of

'the molecule are 0, 2 112 h, 6' 12 h, and (12) 1/2 h(from eqn 670).

Self-tt'st 17.1 Repeat the calculation for a deuterium molecule (same bond length,
approximately twice the mass).

[Energies smaller by a factor of two: same angular
momenta and numbers of components]

(c) Space quantization
The result that in1 is confined to the values 1,! - I.... . -1 for a given value of! means that
tht component of angular momentum about the z-axis may take only 21 + 1 values. If the
angular momentum is represented by a vector of length proportional to its magnitude (that

1= 0, m 1 =0

1	 1 m,	 0

1= 2, m, =0

I = 3, m 1 	 0

12.30 A representation of the wavefunctions of a
particle on the surface of a sphere. Note that the
number of nodes increases as thç value of I
increases. All these wavefunctions correspond to
m1 = 0; a path around the vertical z-axis of th
sphere does not cut through any nodes.
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is, of length (1(1 + 112 units), then to represent correctly the value of the component of
angular momentum, the vector must be oriented so that its projection on the z-axis is of
length ni l units. In classical terms, this means that the plane of rotation of the particle can
take only a discrete range of orientations (Fig. 12.3 1)..The remarkable implication is that the
orientation of a rotating body is quantized.

The quantum mechanical result that a rotating body may not take up an arbitrary
orientation with respect to sonic specified axis (fur example, an axis defined by the direction
of an externally applied electric or magnetic field) is -called space quantization. It was
confirmed by an experiment first performed by Otto Stern and Waithe, Gerlach in 1921, who
shot a beam of silver atoms through art inhomogeneous magnetic field (Fig. 12,32). The idea
behind the experiment was that a rotating charged body behaves like a magnet and interacts
with the applied field. According to classical mechanics, because the orientation of the
angular momentum can take any value, the associated magnet can take any orientation.
Because the direction in which the magnet is driven by the inhomogeneous field depends on
the magnet's orientation, it follows that a broad band of atoms is expected to emerge from
the region where the magnetic field acts. According to quantum mechanics, however,
because the angular momentum is quantized, the associated magnet lies in a number of
discrete orientations, and so several sharp hands of atoms are expected.

In their first experirrient, Stern and Gerlach appeared to confirm the classical prediction.
However, the experiment is difficult because collisions between the atoms in the beam blur
the bands. When the experiment was repeated with a beam of very low intensity (so that
collisions were less frequent), Stern and Gerlach observed discrete bands, and so confirmed
the quantum prediction

(d) The vector model

= +1

m,=O

qmli.

.11 The permitted orientations of angular 	 Throughout the preceding discussion, we have referred to the :-component of angular
momentum when I = 2. We shall see soon that this 	 momentum (the component about an arbitrary axis, which is conventionally denoted z), and
representation is too specific because the azimuthal
orientation of the vector (its angle around ) is	

have made no reference to the .c- and y-components (the components about the two axes
indeterminate, perpendicular to z(. The reason for this omission is that, because the operators for the three

components do not commute with one another (Section 11.5e), the uncertainty principle
forbids the simultaneous, exact specification of more than one component (unless I = 0).
Therefore, if I, is known, it is impossible to ascribe values to the othef two components. It
follows that the illustration in Fig. 12.31, which is summarized in Fig. 12.33a, gives  false
impression of the state of the system, because it suggests definite values for the x- and y-
components. A better picture must reflect the impossibility of specifying r and 1, if l is
known.

The vector model of angular momentum uses pictures like that in Fig. 12.33b. The cones
are drawn with side {l(I + 1)1 1/2 units, and represent the magnitude of the angular
momentum. F,pch cone has a definite projection (of ni l units) on the :-axis, representing the
system's precise value of I.. The I and l projections, however, are indefinite. The vector

now

Iii	 lbl	 (ci

bat The cnperimnCntal arrangement for the Strrn'-Gerlach enpnrinleilt: tht magnet provides an
iilioniriyrrieuiuc field. (1>1 the classically enpeteii reuli Ic) the ntier y t'd l)uicnmC Usr,lg silver atoms.



+1

'-

-

fbi	
I

12:3 la) A summary of Fig. 12.31. Flowever,
because the azimuthal angle of the vector around
the z-axis is indeterminate, a better representation
it as in ltd, where each vector lies at an unspecified
azimuthal angle on its cone.
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representing the state of angular momentum can be thought of as lying with its tip on any
point on the mouth of the cone. At this stage it should not be thought of as sweeping round
the cone; that aspect of the model will be added later when we allow the picture to convey
more information.

12.8 Spin

Stern and (lerlacli observed two bands of Ag atoms in their experiment. This observation
scents to conflict with one of the predictions of quantum mechanics, because an angular
momentum / gives rise to 21 f 1 orientations, which is equal to 2 only if! = , contrary to
the conclusion that I must be an integer. The conflict was resolved by the suggestion that
the angular momentum they were observing was not due to orbital angular momentum (the
motion of an electron around the atomic nucleus) but arose instead from the mOtion of the
electron about its own axis. This intrinsic angular momentum of the electron is called its
spin.

The spin ofan electron does not have to satisfy the same boundary conditions as those for a
particle circulating around a central point, so the quantum number for spin angular
momentum is subject to different restrictions. To distinguish this spin angular momentum
from orbital angular momentum we use the quantum numbers (in place of!; like!, s is a non-
negative number) and ,n, for the projection on the :-axis. The magnitude of the spin angular
momentum is {s(s +	 12/ and the component ?Ia Fl is restricted to the 2s + I values

in,	 .v, s - I .....—.r	 (68)

The deta i led analysis of the spin of a particle is sophisticated (it is rooted in special
relativity), and shows that the Property should not be taken to be an actual spinning motion.
However, that picture can be very useful when used with care. For an electron it turns out
that only one value of .s is allowed, namely .c = , corresponding to an angular momentum of
magnitude /3!u = 0.866/u. This spin angular momentum is an intrinsic property of the
electron, like its rest mass and its charge, and every electron has exactly the same value: the
magnitude of the spilt angular momentum of an electron cannot be changed. The spin may
lie in 2.s I I	 2 different orientations (fig. 12.34). One orientation corresponds 	 to

1 (this state is often denoted a or 1); the other orientation corresponds to
= - (this state is denoted ft or fl.
The outcome of the Stern-Gerlach experiment can now be explained if we suppose that

each Ag atom possesses an angular momentum due to the spin of a single electron, because
the two bands of atoms then correspond to the two spin orientations. Why the atoms
behave like this will be explained in Chapter 13.8

Like the electron, other elementary particles have characteristic, constant ,spin angular
momenta. For example, protons and neutrons are spin- ! particles (that is, s = ) and
invariably spin with angular momentum () I/2, Because the masses of a proton and a
neutron are so much greater than the mass of an electron, yet they all have the same spin
angular momentum, the classical picture would be of these two particles spinning much
more slowly than art electron. Some elementary particles haves = I, and so have an intrinsic
angular momentum of magnitude 2 112 /u. Some mesons are spin-I particles (as are some
atomic nuclei), but for our purposes the most important spin-I particle is the photon. 9 We
shall see the importance of photon spin in the next chapter.

8	 It	 alrcac.yprIbal,	 In II	 ni	 'u.lu( Ui benlsIry that The 91I,und . ,Tair confl,JL,litiOn ala silver alum is 1(r14d"'Ss' . a
I hliiii!, .,,iil ii,rlI

9

	

	 A pholltl han dr,,l '(SI nIdsi di ll ri r ge, an enerq-8 9 p, a linear mOnrniwrn k/A ne At/c. an intrinsic tngula, rnorriefltum UI
21 '8 and lraar'i .11 Tile '.i,rr,i
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s.i ll•	 )

a

1 14 An electron spin (.r - ( I can take only two
orientations with respect to a specified axis. An a

electron (top) is an electron with rn,	 +); a fl
electron (bottom) is an electron with rn = — . The
vector representing the magnitude of the spin
angular momentum ties at an angle of 55 to the z-
axis (more precisely, at arccos(l/3iR)).

Particles with half-integral spin are called fermions and those with integral spin
(including 0) are Uled bosons. Thus, electrons and protons are fermions and photons are
bosons. It is a very deep feature of nature that all the elementary particles that constitute
matter are lermions whereas the fundamental particles that are responsible for the forces
that bind fermions together are all bosons. (Photons, for example, transmit the
electromagnetic 1oce that binds together electrically charged particles.) Matter, therefore,
is an assembly of lerm ions held together by forces conveyed by bosons.

The properties of angular momentum that we have developed are set out in Table 12.4.
As mentioned there, when we use the quantum numbers I and m1 we shall mean orbital
angular momentum (circulation in spate); when we use sand m5 we shall mean spin angular
momentum (intrinsic angular momentum); and hen we usej and in we shall mean either
(or, in some contexts to be described in Chapter 13, a combination of orbital and spin
momenta).

Table 12.4 Angular momentum

The quantum numbers:
Orbital angular momentum quantum number: 1 = 0. 1, 2,
Orbital magnetic quantum number: in1 = 0, ± I.... . ±1

Spin angular momentum quantum number: .x =

Spin magnetic quantum number: nr = ±
In general:	 -

Angular momentum quantum number
Magnetic quantum number: rnj

The magnitude of the angular momentum is equal to {j(j + 1)}it2h and the s-component of
angular momentum is equal to in1i with the 2j + I valuesj,j - 1.... . —j.

For the total angular momentum of a composite system see Section 13.8.
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Exercises
12.1 (a) Calculate the energy separations in joules, kilojouies per
mole, electronvolts, and reciprocal centimetres between the levels (a)
n = 2 and n = 1,(b)n = 6 and ri = 5 of an eletron in a box of length
1.0 nm.

12.1 (b) Calculate the energy separations "in joules, kilojoules per
mole, electronvolts, and reciprocal centimetres between the levels (a)
n = 3 and n = I,(b)n =7 and n = 6 of an electron in a box of length
1.50 nm.

12.2 (a) Calculate the probability that a particle will be found
' between 0.49L and 0.51L in a box of length L when it has (a) n =

(b) n = 2. Take the wavefunction to be a constant in this range.

12.2 (b) Calculate the probability that a particle will be found
betw1en 0.65L and 0.67L in a box of length L when it has (a) n =
(b) n = 2. Take the wavefunction to be a constant in this range.

12.3 (a) Calculate the expectation values ofp and p2 for a Particle in
the state n = I in a square-well potential.

12.3 (b) Calculate the expectation values ofj, and p 2 for a particle in
the state n =2 in a square-well potential.

12.4 (a) What are the most likely locations of a particle in a box of
length L in the state ,i = 3?

12.4 (b) What are the most likely locations of a particle in a box of
length L in the state n = 5?

12.5 (a) Consider a particle in a cubic box. What is the degeneracy of
the level that has an energy three times that of the lowest level?

12.5 (b) Consider a particle in a cubic box. What is the degeneracy of
Me level that has an energy ' times that of the lowest level?

12.6 (a) CaIculat the percentage change in a given energy level of a
particle in a cubic box when the length of the edge of the cube is
decreased by 10 per cent in each direction.

12.6 (b) A nitrogen molecule is confined in a cubic box of volume
1.00 in 3 . Assuming that the molecule has an energy equal to kT at
7' = 300 K, what is the value of n = (n + n2 + n2) for this
particle? What is the energy separation between the levels n and
ii -t- 1? What is its de Brogue wavelength? Would it be appropriate to
describe this particle as classical?
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12.7 (a) Calculate the zero-point energy of a harmonic oscillator
consisting of a particle of mass 2.33 x lb ' kg and force conslani
155 N 

12.7 (b) Calculate the zero-point energy of a harmonic oscillator
consisting of a particle of mass 5.16 x 10 °' kg and force constant
285 Nm '.

12.8 (a) For a harmonic oscillator consisting of a particle of mass
1.33 x 10 kg, the difference in adjacent energy levels is
4.82 x 10_ 21 J. Calculate the force constant of the oscillator.

12.8 (b) For a harmonic oscillator consisting of a particle of mass
2.89 x 10 ' kg, the difference in adjacent energy levels is 3.17 1J.

Calculate the force constant of the oscillator.

12.9 (a) Calculate the wavelength of a photon needed to excite 11

transition between neighbour i ng energy levels of a harmonic
oscillator of mass equal to that of a proton (1.(8)78 u) and force
constant 855 Nm:.

12.9 (b) Calculate the wavelength of a photon needed to excite a
transition between neighbouring energy levels of a harmonic
oscillator of mass equal to that of an oxygen atom (15.9949 ul and
force constant 544 N rn

12.10 (a) Refer to Exercise 12.9a and calculate the wavelength that
would result from doubling the mass of the particle.

12.10 (b) Refer to Exercise 1 2.9b and calculate the wavelength that
would result from doubling the mass of the particle.

12.11 (a) Calculate the minimum excitation energies of (a) a
pendulum of length 1.0 m on the surface of the Earth, (b) the
balance-wheel of a clockwork watch (v .. 5 II.).

12.11 (b) Cal'ulate the minimum excitation energies of lal the
33 kllz quartz crystal of a watch, (b) the bond between two 0 atoms
in O, for which k = 1177 N rn1.

12.12 (a) Confirm that the wavefunction for the ground state of a
one-dimensional linear harmonic oscillator given in Table 17.1 is a
SOlui.uuJrl of the Schrbairlqcr equation for the oscillator and that its
energy is I Fuw.

12.12 (b) Confirm that the wavefunction for the first excited state
of a one-dimensional linear harmonic oscillator given in Table 12.1 is
a solution of the Sehriidinger equation for the oscillator and that its
energy is I ho.

12.13 (a) Assuming that the vibrations of a 250 7 molecule are
equivalent to those of a harmonic oscillator with a force constant
k ._ 329 N or ', what is the zero-point nergy of vibration of this
rnoleule? The mass of a "Cl atom is 34.9688 u.

12.13 (h) Assunuuing that the vibrations of a 'N 2 molecule are
euIuIsaIenit to thrice of a harmonic oscillator with a force constant
A. = 2293.8 N ill . what is the zero-point energy of vibration of this
molecule? The mass of a ' 4 N atom is 14.18)31 u.

12.14 (a) The wavefunction, r/i(p), for the motion of a particle in a
ring is ol the form i Determine the normalization constant,
N.

12.14 (b) Confirm that wavefunctions for a particle in a ring with
different values of the quantum number m1 are orthogonal.

12.15 (a) A point mass rotates in a circle with I = I. Calculate the
magnitude of its angular momentum and the possible projections of
the angular momentum on an arbitrary axis.

12.16 (b) A point mass rotates in a circle with I = 2. Calculate the
magnitude of its angular momentum and the possible projections of
the angular momentum on an arbitrary axis.

12.16 (a) Draw scale vector diagrams to represent the states
(a)s=.j,tit,	 r,(b)l.- 1,.'n,-l1,(c)I=2,rn,=0.

12.16 (b) Draw the vector diagram for all the permitted states of a
particle with / = 6.

Proberns

Numerical proble-m
12.1 Calculate the separation between the two lowest levels for an
02 molecule in a ore-dimensional container of length 5.0 cr11, At
what value of it does the energy of the molecule reach kT at 3(1() K,
and what is the separation of this level from the one immediatelS'
below?

12.2 To a crude first approximation, a n electron in a linear polyene
may be considered to be a particle in a one-dimensional box. The
polyene /3-carotene contains 22 conjugated C atoms, and the average.
intrnuelear distance is 140 pm. Each state up to it = II is occupied
by two electrons. Calculate (a) the separation in energy between the
ground state and the first excited state in which one electron occupies
the state with a = 12, (b) the frequency of the radiation required to
produce a transition between these two states, and (C) the total
probability of finding an electron between C atoms II and 12 in the
ground state of the 22-electron molecule.

12.3 The mass to use in the expression for the vibrational frequency
of a diatomic molecule is the effective mass p = m Amb /(mA + mB),
where ni,, and rn8 ,ire the masses of the individual atoms. The
following data on the infrared absorption wavenumt,aers (in cm') of
molecules is taken from Spectra of diatomic molecules, G. Herzberg,
van Nostrand (1950).

FI35CI	 }iHt3r	 HI	 CO	 NO
1 990	 2650	 2310	 2170	 1904

Calculate the force constants of the bonds and arrange them in order
of increasing stIffness,

12.4 the rotation of an H 1 l molecule can be pictured as the orbital
motion of an H atom at a distance 160 pm from a stationary I atom.
(This is quite a good picture; to he precise, both atoms rotate around
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their common centre of mass, which is very close to the I nucleus.)
Suppose that the molecule rotates only in a plane. Calculate the
energy needed to Cxcite the molecule into rotation. What apart from
0, is the minimum angular momentum of the molecule?

12.5 Calculate the energies of the first four rotational levels of H1''l
free to rotate in three dimensions, using for its moment of inertia
I = pR, with it = in0ni i /(m 1i ± m 1 ) and R = 160 pm.

Theoretical probIerTl

12.6 Set up the Schrddinger equation for a particle of mass nun a
three-dimensional square well with sides L 1 , 1. and L 1 . Show that
the wavcfuncton is defined by three quantum numbers and that the
Schrodinger equation is separable. Find the energy levels, and
specialize the result to a cubic box of side L.

12.7 The wavefunction inside a long barrier of height V is
fr = Calculate (a) the probability that the particle is inside
the barrier and (b) the average penetration depth of the particle into
the barrier.

12.11 Confirm that a function of the form e 5 ' is a solution of the
Schrodinger equation for the ground state of a harmonic oscillator
and find an expression for g in terms of the mass and force constant
of the oscillator.

12.9 Calculate the mean kinetic energy nix harmonic oscillator using
the relations in Table 12.1.

12.10 Calculate the values of 	 and (i) for a harmonic oscillator
using the relations in Table 12.1.

12.11 Determine the values of ,Ii, = { (x2 ) - (X)2)112 andAp = { ,2> - (,)21112 for (a) a particle in a box of length 1. and
(b) a harmonic oscillator. Discuss these quantities with reference to
the uncertainty principle.

12.12 We shall see in Chapter 16 that the intensities of spectroscopic
transitions between the vibrational states of a molecule are
proportional to the square of the integral fO,,xO,,dk over all
space. Use the relations between Hermit polynomials given in
Table 12.1 to show that the only pernitted transitions are those for
which v' = v± 1 and evaluate the integral in these cases.

12.13 Use the virial theorem to obtain an expression for the relation
between the mean kinetic and potential energies of an electron in a
hydrogen atom.

12.14 Evaluate the z-component of the angular momentum and tIle
kinetic energy of a Particle 00 a ring that is described by the
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(uiunormahizcd) wavefunctions (a) eW, (b)	 (c) cos O, and (d)
(cosj)c	 .1 (sin X)e1.

12.15 Confirm that the spherical harmonics (a) Y110 , (b) Y2.- ,and (c)
satisfy the Schrodinger equation for a particle free to rotate in

three dimensions, and find its energy and angular momentum in each
case.

12.16 Confirm thatY 3.1 , is normalized to 1. (The integration
required is over the surface of a sphere.)

12.17 Derive an expression in terms of land in, for the half-angle of
the apex of the cone used to represent an angular momentum
according to the vector model. Evaluate the expression for an a spin.
Show that the minimum possible angle approaches 0 as / -=

12.18 Show that the function f = cos ax cos hv cos cz is an
cigcnfunction of V 2 and determine its eigenvalue.

12.19 Derive (In Cartesian coordinates) the quantum mechanical
operators for the three components cf angular momentum starting
from the classical definition of angular momentum, 1 r xp. Show
that any two of ftf components do not mutually commute, and find
their commutator.

12.20 Starting from the definition 1 = xp 2 - yp , prove that in
spherical polar coordinates l	 -ih8/10.

Mciittc'rl rtrirhlftns supplk'd by Cartnn Giurlta
and 'hr!ec Tripp

12.21 Scanning tunnelling microscopy is an imaging technique
based on detecting electrons tunnelling across the vacuum between a
conducting sample and a conducting probe tip. The tunnelling current
is very sensitive to the distance between the tip and the sample, so
sensitive that imaging of atoms has been accomplished through this
technique. To get an idea of the distance dependence of this
tunnelling current, suppose that the wavefunction of the electron in
the gap between sample and tip is given by ' =	 where
i )2rn(V - E)/h2)i'2; take V - E to be 2.0 eV. By what factor
would the current drop if tVe probe is moved from 0.50 nm to
0.60 nm from the surface?

12.22 A particle is confined to move in a one-dimensional box of
length L. (a) If the particle is classical, show that the average value of
.x is equal to ,L, and that the root mean square value is L/3 1/2 . (b)
Show that, for large values of n, a quantum particle approaches the
classical values. This result is an example of a very general principle
called the correspondence principle, which states that, for very large
values of the quantum numbers, quantum Mechanics approaches
classical mechanics.
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wove! int'l lonc obtained ore the 'crtonu,ic in tatahi 'I inyiiii 'ip'ii cu/ails Nest, we use these
hydroqenie atomic orbitals to describe the struetii,c's of !'ini'nr •eli'e/ro;c nih,,', In ClfliJitflC-

lion with the Pauli exclusion principle, we arcm.'n I for lbic' pet iodity of atomic properties.
13.4 The orbital approximation	 The spectra of many-electron atonis are marc einitphi'niten/ i/hal i/list' of hydrogen, but liii.'
13.5 Self-consistent field orbitals 	 some principles apply. We see i n the rfoinrj Sections of the i'hu p/er how such spectra are

described in terms of term sym hots, the ornun of the (tic, i fctmk nil (bird nppi'uroncc, and the
The spectra of complex atoms	 effects on them of on applied magnetic field.

13.6 Quantum defects and	 In this chapter we see how to use quantum mechanics to describe the electronic structure
ionization limits	 of an atom, the arrangement of electrons around a nucleus. The concep ts we meet are of

13.7 Singlet and triplet states
central importance for understanding the structures and reactions of atoms and molecules,
and hence have extensive chemical applications. We need to distinguish between two types

13.8 Spin-orbit coupling	 of atoms. A hydrogenic atom is a one-electron atom or ion of general atomic number Z;

13.9 Term symbols and selection 	 examples of hydrogenic atoms are H. Het Li 2 f . and 11J91f, A many-electron atom is an atom

rules	 or ion with more than one electron; examples include all neutral atoms other than H. So

13.10 The effect of magnetic fields
even He, with only two electrons, is a many-electron atom. Hydrogenic atoms are important
because their Schrbdinger equations can be solved exactly. They also provide a set of
concepts that are used to describe the structures of many-electron atoms and, as we shall

Checklist of key ideas	 see in the next chapter, the structures of molecules too.
One of the principal experimental techniques for determining the electronic structures of

Further.reading	 atoms is spectroscopy, the detection and analysis of the electromagnetic radiation absorbed
or emitted by a species. The record of spectral intensity as a function of frequency ('4,

Exercises	 wavelength (A), or wavenumber ('4' of the radiation emitted or absorbed by an atom or a

Problems	 1 N rthtn bniwt	 quintitim	 dcvibcd in the inintthit'tion:	 c/a, f, = I/A
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ATOMIC STRUCTURE AND ATOMIC SPECTRA

molecule is called its spectrum (from the Greek word for appearance; plural 'Spectra'). The
spectrum of an atom consists of a series of 'lines, or sharply defined emission or absorption
peaks.

Th structtre and sp^ : e.ra of hydrogcnic atoms
When an electric discharge is passed through gaseous hydrogen, the H 2 molecules are
dissociated and the energetically excited H atoms that are produced emit light of discrete
frequencies (Fig. 13.1(. The first important contribution to the interpretation of this
spectrum was made by the Swiss schoolteacher Johann Balmer, who pointed out in 1885
that (in modern terms) the wavenumbers of the hncs in the visible region fit the expression

	

i .x	 n = 3,4,...

The transitions this formula describes are now called the Rainier series. When further lines
were discovered in the ultraviolet, giving the Lyman series, and in the infrared, the Paschen
series, the Swedish spectroscopist Johannes Hydberg noted (in 1890) that all of them could
be fitted to the expression

	

=	
I.,

J	
= 109677 Cm	 (1)

with n = I (the Lyman series), 2 (the Balmer series), and 3 (the Paschen series), and that in
each case n 2 ,i1 I I, ,i1 I 2, The constant R.H is now called the Rydberg constant for
the hydrogen atom.

Illustration
The transition with the longest wavelength (lowest wavenumber) in the Lyman series
(n = 1) is the one with ii = 2; its wavenumbec is

	

= 1ii(jj -
	

= (109677 cns)x = 82258 cm'

Its wavelength is therefore

	

=	 = 1.2157x iü - m
12	 9.2258x 0" no

or 121.57 tim, in the vacuum ultraviolet region of the spectrum.

). mm
CD ci'

	

CD CDC'Qci 0 ci	 0	 ci	 0	 0

	

ci cici ci C. C. ci	 ci	 ul	 e'	 ci
aD ID

IV - f 	 I	 I	 P	 I

I	 I
Total	 II

—	 Balmer Lyman

111 The spectrum of atomic hydrogen. Both the 	 Analysis Im Paschen
observed spectrum nd its resolution into overlapping

series arc shown. Note that the Balmer series ties in	 a Brackett
the visible region.
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High
energy
state	 E2

E riritted
PtUitOtl

	- 	 Calculate the shortest wavelength transition in the Paschen series.
[821 nm]

The form of cqn 1 strongly suggests that the wavenumber of each spectral line can be
written as the difference of two terms, each of the form

ilI
T, = —=i:	 S	 (2)

The Ritz combination principle states that the wavenumber of arty spectral line is the
difference between two terms. We say that two terms T 1 and T combine to produce a
spectral line of Wavcnumber

(3)

The Ritz combination principle applies to all types of atoms and molecules, but only for
hydrogcnic atoms do the terms have the simple form (constant)j,i 2 . The Ritz combination
principle is readily c'xpktinrd in terms of photons and the conservation of energy. Thus, a
spectroscopic line arises from the transition of an atom from one energy level (a term) to
another (another term) with the emission of the difference in energy as a photon (Fig. 13.2).
This interpretation leads to the Bohr frequency condition, which states that, when an atom
changes its energy by /sE, the difference is carried away as a photon of frequency i, where

ts./. = Ic,,	 (4)

Thus, if each spectroscopic term represents an energy IzcT, the difference in energy when the
atom undergoes a transition between two terms is AE = hcT, - heT,, and the frequency of
the light emitted is given by ii = cT, - T2 . This expression rearranges into the Ritz formula
when expressed in terms of wavenumbers (on division by c).

Because spectroscopic observations show that electromagnetic radiation is absorbed and
emitted by atoms only at certain wavenumbers, it follows that only certain energy states of
atoms are permittr:J Our tasks in the first part of this chapter are to determine the origin of
this energy quantization, to find the permitted energy levels, and to account for the value
of l,.

	13.1	 'r!u- srtcttir	 (if	 ;y'irlr?ettit' striis

The Coulomb potential energy of an electron in a hydrogenic atom of atomic number Z (and
nuclear cli,irgt' Zr) is

(5)4m:,1r

where r is the distance of the electron from the nucleus and c- is the vacuum permittivity.
The hani,ltonian for the electron and a nucl eus of mass '"N is therefore

Knk'ir,m * 'Kr k-u, +

h 2	 1,2	 - Ze 2	 (6)

_?I, V	 21-?' N V ^	 4

Low
energy.i'tiy.
state	 4v

it	 Energy is conserved when a photon s em i tted,
so the difference in energy of the atom bcfwc and
after the emission event must be equal to th e

energy of the ph'oton emitted.

The subscripts on V2 indicate differentiation with respect to the electron or nuclear
coordina es.
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(a) The separation of internal motic i
Physical intuition suggests that the full Schroding'er equation ought to separate into two
equations, one for the motion of the atom as a w.holc through space and the other for the
motion of the electron relative to the nucleus. We have already solved the first of these
equations, because it corresponds to the free translational motion of a particle of mass
rn = m + ' N (Section 11.5). The initial strategy of the calculation i5 therefore to separate
the relative motion of the electron and the nucleus from the motion of the atom as a whole.
As we show in the following Justification the resulting expression for the hamiltonian for
the internal motion of the electron relative to the nucleus is

h 2 ,	 Ze 2 	 1	 1	 1
H	 -	 —=—±—	 (7)

211	 41rcr	 p m

The quantity p is called the reduced mass. The reduced mass is very similar to the
electron mass because t1N' the mass of the nucleus, is much la,ycr than the mass of an
electron, so l /pz l/ni. In all except the most precise work, the reduced mass can be
replaced by nit.

Justif1eairt l't. I

Consider a one-dimensional system in which the potential energy depends only on the
separation of the two particles; the total energy is

E =	 + -- ± v
2nz 1 2n2

where p i 	m 1 i1 and P2 = fl!2.2, the dot signifying differentiation with respect to time.
The centre of mass (Fig. 13.3) is located at

Ml	 !!2X =—x +—x 2 m =m 1 +m2
M	 at

and the separation of the particles is x ---	 - x2 . It follows that

x 1 =X+(' 2)x	 x2=X..-(J-)x
M	 Art

The linear momenta of the particles can be expressed in terms of x and X:

Pt =	 = ,n 1 i +

m1m2
P2 -	 = m2X

Then it follows that

+ - =	 ±
2m 1 2m2

where p is given in eqn 7. By writing P = aiX for the linear momentum of the system as a

K,	 X	 x2	
whole and defining j' as px, we find

E = - +'+ V

The corresponding hamiltonian (generalized to three dimensions) is therefore

2m 2p

M2
h22 _V 2 ±VX H = -	 cm. 2

13.3 The coordinates ue1 for discussing the
separation of the relative motion of two particles	 where the first term differentiates with respect tc the centre of mass coordinates and the
from the motion of the cCntrC of mass, 	 second with respect to the relative coordinates.
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Now we write the overall wavefunction as the product 0,, = 	 where the first
factor is a function of only the centre of mass coordinates and the second is a function of
only the relative coordinates. The overall Schrödinger equation, 	 =	 then
separates by the argument that we have used twice already:

--	
Vm .m. -	 m cm	 -

with E 1 =	 + E.

From now on we consider only the internal, relative coordinates. The Schrhdinger
equation, Hii	 Ei, is

(8)
2;i	 4nc)r

Because the potential energy is centrosymmetric (independent of angle), we can suspect
that the equation is separable into radial and angular components. Therefore, we write

fr(r, 0, ) = R(r)Y(0, j) (9)

and examine whether the Schrödinger equation can be separated into two equations, one
for R and the other for Y. As shown in the Justification below, the equation does separate,
and the equations we have to solve are

	

A 2y = —1(1+ l)Y	 (10)

j2 (d2 1? 2dR\
d,	 .dr)	

V, 11RER	 (11)

where

	

Ze 2 	1(1± 1)112
vcIT_ - —--+	 -

	

4in;r	 2ir

Justification 13,7

The taplacian in three dimensions is given in eqn 12.63. It follows that the SchrOdinger
equation in eqn 8 is

	

1,2 a2 I

-- (-+	 f-A2'\RY + VRY = ERY
	2p DrY+ 	 r2 

/

Because R depends only on rand Y depends only on the angular coordinates, this equation
becomes

h7&R2YdRR2' VRY=ERY

2i \ dr-	 r dr	 r2	 j

If we multiply through by r 7 /RY, we obtain

	

?z 2 f 9 d2R	 dR\
---I r	 t 2r— I -t- Vr 2 _—A2 Y	 2= Er

	

2jR \ dr	 dr)	 2pY

At this point we employ the usual argument. The term in Y is the only one that depends on
the angular variables, so it must be a constant. When we write this constant as
11 2 1(!4- 1)/211, eqn 12 follows immediately. 	 -

(12)

24—A
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13.4 The effective potential energy of an electron in
the hydrogen atom. When the electron has zero
orbital angular momentum, the effective potential
energy is the Coulombk potential energy. When the
electron has nonzero orbital angular momentum, the
centrifugal effect gives rise to a positive contribution
which is very large close to the nucleus. We can
expect the I = I) and I Ii wavefunctions to be very
different near the nucleus,
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Equation 10 is the same as the SchrOdinger equation for a particle free to move round a
central point, and we considered it in Section 12.7. The solutions are the spherical harmonics
(Table 12.3), and are specified by the quantum numbers land ,n,. We consider them in more
detail shortly. Equation 11 is called the radial wave quation. The radial wave equation is
the description of the motion of a particle of mass p in a one-dimensional region where the
potential energy is VCIF

(b) The radial solutions
We can anticipate sonic features of the shapes of the radial wavefunetions by analysing the
shape of V. The first term in rqn 12 is the Coulomb potential energy of the electron in the
field of the nuclr'us The st'cnnil term sternssterns from the centrifugal force that arises from the
angular niOnwriturri of the cictn around the nucleus. When / = 0, the electron has no
angular momentum, and the effective potential energy is purely Coulonibic and attractive at
all radii (Fig. 13.4) When 1 / 0, the centrifugal term gives a positive contribution to the
effective potential energy. When the electron is close to the nucleus (r0). this repulsive
term, which is proportional to I /r 2 , dominates the attractive Coulombic component, which
is proportional to l/r, and the net effect is an effective repulsion of the electron from the
nucleus. The two effective potential energies, the one for / = 0 and the one for ! 0, are
qualitatively very different close to the nucleus; however, they are similar at large distances
because the centrifugal contribution tends to zero more rapidly than the Coutombic
contribution. Therefore, we can expect the solutions with I 0 and 1 54 0 to be quite

different near the nucleus but similar far away from it.
We shall not go through the technical steps of solving the radial equation (see Further

reading). It is sufficient to know that acceptable solutions can be found only for integral
values of a quantum number it, and that the allowed energies are

F, -	 _.11	 (13)

with it -= 1,2.....
The radial wave equation depends on 1, and the radial wavefunctions, which depend on

the values of both n and I (but not on pit1), all have the form

R(r) = ( polynomial in r) x (decaying exponential in r)	 (14)

These functions are most simply written in terms of the dimensionless quantity , (rho),

where

2Zr	 47rc11Pt2
P = -	 o =

i)

The Bohr radius, au, has the value 52.9177 pm; it is so called because the same quantity
appeared in Bohr's eanly model of the hydrogen atom as the radius of the electron orbit of
lowest energy. Specifically, the radial wavefunetions for an electron with quantum numbers

it and / are the (real) functions

R./r) -= Nni	 r./2	 (16)

(15)

24—Ft
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where Lisa polynomial in p called an associated Laguerre polynomial. Expressions for some
radial wavefunctions are given in Table 13.1 and their appearance is illustrated in Fig. 13.5.
Note that, because R is proportional to p', all radial wavefunctions are zero at the nucleus
unless 1	 (J.

tibI 13 Hydrogenic radial wavefunctions

	

Orbital	 a	 I

( Z)3/2
2- e"2

3

0	 I
1/2 ;) (2 - p)c'I4

I	
I

/2	 )ao

0	
1 l/2) (6-2p+p2)e'I'

I	 fZ\312
27(6)'/'(4 -

2	
1 Z 3/2

81(30) 1 /2 ii;;) p2 e"6

The full wave1untion is l. = RY. where I' is given in Table 12.3. In the table. p 2Z.r/a,.

Is

2s	 2

2j;	 2

3
	

3

lji	 3

3d
	

3

2.0
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1.
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o
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0

0
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	0.15	 0.05
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N0.10-1

0.03 /
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0	 5	 10	 15	 0 1.5 15.0 22.5
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13$ The radial wavefunclions of the Form few states of hydrogenic atoms of atomic number 7. Note
that th s orbitals have a nonzero and finite value at the nucleus. The horizontal scales are ditfrent
each case: orbitals with high principal quantum numbers are relatively distant front the nucleus,
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Illustration
To calculate the probability density for a Is-electron at the nucleus, we set n	 1, 1 = 0,

m1 = 0 and evaluate 0 at r = 0:

4, () (0, 0, 0) = R,)(0)Y,0(0, 4,) = 2
(ao
f)

J	

1/2

The probability density is therefore

 IWO

which evaluates to 2.15)< 10 " pill -I when Z	 I.

Self-tet 13.2 Evaluate the probability density of the electron at the nucleus for a 2s-

electron.
[(Z/a0)' /874

13.2 Atome obitas and tiei eitPrgi5

An atomic orbital is a one-electron wavefunction for an electron in an atom. Each
hydrogenic atomic orbital is defined by three quantum numbers (Table 13.2), designated it,!,
and rn1 . When an electron is described by one of these wavefunctions, we say that it
'occupies' that orbital. We could go on to say that the electron is in the state I, I, m1 ). For

instance, an electron described by the wavefunction 	 and in the state 11, 0,0> is said to

occupy the orbital with n	 1, 1 = 0, and in, = 0.

One quantum number, it, is called the principal quantum number; it can take the values

n = 1,2,3,... and determines the energy of the electron:

An electron in an orbital with quantum number it has an energy given by

eqn 13.

The two other quantum numbers, land in,, come from the angular solutions, and speoify the
angular momentum of the electron around the nucleus:

An electron in an orbital with quantum number l has an angular momentum
of magnitude (1(l+i))hI'2, with 1=0,1,2.....n—i.
An electron in an orbital with quantum number m 1 has a z-component of

angular momentum m,1, with m,=0 ±1. ±2.... V.

Note how the value of the principal quantum number, n, controls the maximum value of!.

and how / in turn controls the range of values of in,.
To define the state of an electron in a hydrogenic atom fully we need to specify not only

the orbital it occupies but also its spin state. We saw in Section 12.8 that an picetron
possesses an intrinsic angular momentum that is described by the two quantum numbers S

and m (the analogues of land in,). The value of a is fixed at 1 for an electron, so we do not

need to consider it further at this stage. However, in, may be either + 1 or - , and to specify

the electron's state in a hydrogenic atom we need to specify which of these values describes
it. It follows that, to specify the state of an electron in a hydrogenic atom, we need to give
the values of four quantum numbers, namely n, 1, ni l , and in,.
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Table 13.2 Hydrogenic atoms

The wavefunctions of hydrogenic atoms depend on three quantum numbers:
Principal quantum number: n = 1,2, 3,...
Angular momentum quantum number: I = 0,1,2,..., .- I
Magnetic quantum number: m1 = I,! - I,! - 2.....-,

The energy is related to n by

hcl?L Z2pe4
= -	 J,c1Z,,, =	 2 'n	 32st i.h

The magnitude of the orbital angular momentum of the electron U(l+ I)} 12h and its
component on an arbitrary axis is m,h. Each energy level is n 2 -fold degenerate.
The wavefunctions are products of radial and angular components:

= R(r)Y(O,)

The angular wavefunctions Y are the spherical harmonics (Table 12.3) and the radial
wavefunctions R are the normalized associated Laguerre polynomials multiplied by an
exponential factor (Table 13.1).
The selection rules for spectroscopic transitions are

Am, = 0, ± I An unrestricted tI = ± I
Con nuum

(a) The energy levels
The energy levels predicted by eqn 13 are depicted in Fig. 13.6. The energies, and also the
separation of neighbouring levels, are proportional to Z2 , so the levels are four times as

widely apart (and the ground state four times deeper in energy) in He = 2) thar in H
(Z = 1). All the energies given by eqn 13 are negative. They refer to the bound states of the
atom, in which the energy of the atom is lower than that of the infinitely separated,
stationary electron and nucleus (which corresponds to the zero of energy). There are also
solutions of the SchrOdinger equation with positive energies. These solutions correspond to
unbound states of the electron, the states to which an electron is raised when it is ejected
from the atom by a high-energy collision or photon. The energies of the unbound electron
are not quantized and form the continuum states of the atom.

Equation 13 is consistent with the spectroscopic result summarized by eqn 1, and we can
identify the Rydberg constant for hydrogen (Z = 1) by writing

	

lie RH 
=14H.,	 [17]

32ircjh

where PH is the reduced mass for hydrogen. The Rydberg constant itself, 1?. is defined by the

same expression except for the replacement of p by the mass of an electron, m:

11 = I'll 'R	 R	
m,e [18]

8eh c

Insertion of the values of the fundamental constants into the expression for 1H gives almost

exact agreement with the experimental value. The only discrepancies arise from the neglect
of relativistic corrections, which the non-relativistic Schrödinger equation ignores.

(b) Ionization energies
The ionization energy, I, of an element is the minimum energy required to remove an
electron from the ground state, the state of lowest energy, of one of its atoms. The ground

state of hydrogen is the state with n = I. which has energy

El = —heR,,

-hc1
4

a

LU

Classically
allowed
energies

ti

),.

-hclZ

13.6. The energy levels of a hydrogen atom. The
values are relative to an infinitely separated,
stationarV electron and a proton.
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The atom is ionized when the electron has been excited to the level corresponding ton =
(see Fig. 13.6). Therefore, the energy that must be supplied is

I = he1Z	 (19)

The value of! is2.179 aJ (a, for atto, is the prefix that denotes 10 18) , which corresponds to
3.6(1 cv.

110

	

105	 .....	 .

100

-,a

90

85

80

	

0	 0.05 0.10 0.15 0.20 0.25

1/n2

13.7 The plot of the data in Example 13.1 used to
determine the ionization energy of an atom (in this
ca, of H).

ixantplr it. 1 MeaurlMq an IM111, 11H911 .nc.'ryy spcctrn&'opicilly

The spectrum of atomic hydrogen shows lines at 82259,97492, 102824,
05292, 106632,107440 cm I Determine (a) the ionization energy of the lower state,

(b) the value of the Rydberq constapt.

MIhud The spectroscopic determination of ionization energies depends on the
determination of the series limit, the wavcnumter at which the series terminates and
becomes a continuum. If the upper state lies at an energy — /lC7 H/fl 2 , then, when the atom
makes a transition to E10,1, a photon of wavenumber

= -	 -- E51wr/hC

	is emitted. However, because I =	 Iorr, it follows that

= 1/he ..-

A plot of the wavenumbers against l/,,2 should give a straight line of slope —1? and
intercept 1/hr. Use a computer (or a calculator) to make a least-squares fit of the data to get
a result that reflects the precision of the data.

Answer The wavenumbers are plotted against I1n 2 in Fig. 13.7. The (least-squares)
intercept lies at 109679 cm -1 , so the ionization energy is 2.1788 aJ (1312.1 Id rnol°° 1 ). The
slope is, in this instance, numerically the same, so RH = 109679 cm - 1.

Comment A similar extrapolation procedure can be used for many-electron atoms (see
Section 13.6).

Self-test 13.3 The spectrum of atomic deuterium shows lines at 15238, 20571,
23 039, 24 380 cm. Determine (a) the ionization energy of the lower state, (b) the
ionization energy of the ground state. (c) the mass of the deuteron (by expressing the
Rydberg constant in terms of the reduced mass of the electron and the deuteron, and
solving for the mass of the deuteron).

[(a) 328.1 kJmol, (b) 13114 kJmol1,
(c) 2.8 x I0_27 kg, a result very sensitive to R0J

(c) Shells and subshells
All the orbitals of a given value of it are said to form a single shell of the atom. In a
hydrogenic atom, all orbitals of given ii, and therefore belonging to the same shell, have the
same energy. It is common to refer to successive shells by letters:

it
	 1	 2	 3	 4

K L M N

Thus, all the orbitals of the shell with it = 2 form the L shell of the atom, and so on.
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I  it The energy levels of the hydrogen atom 	 13.9 The organization of orbitals into wbs)iells
showing the sijbshttI and (in square brackets) the 	 (characterized by 0 and shells (characterized by n)
numbers of orbitals in each subshell. In hydrogenic
atoms, all orbitals of a given shell have the same
energy.

The orbitals with the same value of n but different values of! arc said to form a subshcll
of a given shell. These subshells are generally referred to by letters;

1=	 0	 I	 2	 3	 4	 5	 6
.c	 p	 d	 f	 g	 h	 i

The letters then run alphabetically (j is not used) Figure 13.8 is a version of Fig. 13.6 which

shows the subshells explicitly. Because I can range from 0 ton - I. giving is values in all, it

follows that there are is subshells of a shell with principal quantum number ii. Thus, when
is = 1, there is only one subshell, the one with I = 0.

When is -= 2, there are two subshells, the 2s subshell (with I = 0) and the 2p subshell

(with I = 1). When is	 I there is only one subshell, that with / = 0, and that subsheli
contains only one orbital, with ni l = 0 (the only value of m 1 permitted). When is = 2, there

are four orbitals, one in the .s subshell with 1 0 and rn1 = 0, and three in the I = I subshell

with rn1 = + 1,0, - I. When is = 3 there are nine orbitals (one with! = 0, three with! = 1,

and five with I =- 2). The organization of orbitals in the shells is summarized in Fig. 13.9. In
general, the number of orbitals in a shell of principal quantum number is is n2 , so in a

hydrogenic atom each shell is n2 -fold degenerate.
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13. 10 The balance of kinetic and potential energies
that accounts for the structure of the ground state
of hydrogen (and similar atoms). (a) The sharply
curved but localized orbital has high mean kinetic
energy, but low mean potential energy; Ib) the
mean kinetic energy is tow, but the potential energy
is not very favourable; (c) the compromise of
moderate kinetic energy and moderately favourable
potential energy.
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(d) s orbitals
The orbital occupied in the ground state is thr one with ri = I (arlIl therefore with! = (I and
m1 = 0, the only possible values of these quantum numbers when n r. I). From Table 13.1
we can write (for Z	 I):

(20)
(lraij)

This wavefunction is independent of angle and has the same value at all points of constant
radius, that is, the Is orbital is spherically symmetrical. The wavefunction decays
exponentially from a maximum value of I/(ra) 2 at the nucleus (at r = 0). It follows
that the most probable point at which the electron will be found is at the nucleus itself.

We can understand the general form of the ground-state wavefunction by considering
the contributions of the potential and kinetic energies to the total energy of the atom. The
closer the electron is to the nucleus on average, the lower its average potential energy. This
dependence suggests that the lowest potential energy should be obtained with a sharply
peaked wavefunction that has a large amplitude at the nucleus and is zero everywhere else
(Fig. 13.10). However, this shape implies a high kinetic energy, because such a wavefunction
has a very high average curvature. The electron would have very low kinetic energy if its
wavefunction had only a very low average curvature. However, such a wavefuriction spreads
to great distances from the nucleus and the average potential energy of the electron will be
high. The actual ground-state wavefunction is a compromise between these two extremes:
the wavefunction spreads away from the nucleus (so the expectation value of the potential
energy is not as low as in the first example, but nor is it very high) and has a reasonably low
average curvature (so the expectation of the kinetic energy is not very low, but nor is it as
high as in the first example).

One way of depicting the probability density of the electron is to represent 101 2 by
density of shading (Fig. 111.1). A simpler procedure is to show only the boundary surface,
the surface that raptures about 90 per cent of the electron probability. For the Is orbital, the
boundary surface is a sphere centred on the nucleus (Fig. '112).

All .e orbitals are spherically symmetric, but differ in the number of radial nodes. For
instance, the 2s orbital has radial nodes where the polynomial factor (Table 13.1) is equal to

2 - = Oatp = 4, which implies that r =

(remember that p = 27r1a0). Hence, the 2s orbital of a hydroqenic atom with atomic
number 2 has a radial node at 21i11 1Z (see Fig. 13.5). Similarly, the 3s orbital has two nodes
which are found by solving

6 - 21) + (')	 o

One radial node is at 1.90a0/Z and the other is at 7.10o 0 /Z (see Fig. 13.5).
The energies of thes orbitals increase (the electron becomes less tightly bound) as ,i

increases because the average distance of the electron from the nucleus increases. By the
virial theorem with!, = -I (Section 1 2.5b, eqn 12.45), (EK) = . (V), so, even though the
average kinetic energy decreases as n increases, the total energy is equal to 12 (V), which
becomes less negative as n increases.

EcmpIe 13.2 Calculating the mean radluc of 	 orbrJ

Use hydrogenic orbitals to calculate the mean radius of a Is orbital.
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n	 .	 —

(a)ls	 (b) 2s

Representations of the Ix and 2s hydrogenic atomic orbitals in terms of their electron 	 13.11 The boundary surfacç of an a orbital, within
densities (as represented by the density of shading). 	 which there is a 90 per cent probability of finding

the electron.

Method The mean radius is the expectation value

(r) f	 dr = f rj de

We therefore need to evaluate the integral using the wavefunctions given in Table 13.1 and

dr = r2 dr sin U dO d. The angular parts of the wavefunction are normalized in the sense

that	 -

J o f20 Y,,,,j 2 sin OdOd = I

The integral over r required is given in Example 11.6.

Answer With the wavefunction written in the form r = RY, the integration is

(r) 
= j f f rRiIYj,2r2drsinOdOd = f r3R,dr

For a Is orbital,

( 
R10=21 

Z'
—1 1 c

V'uJ

Hence

r) 
= () .L 	 22r/au dr =

Cmmejit The general expression for the mean radius of an orbital with quantum numbers!

and n is

I	 (l -

The variation with n and / is shown in Fig. 13.13. Note that, for a given principal quantum
number, the mean radius decreases as / increases.

60

40

'II	 iI	 S
20-l

-
.jI	 l)	 i.

f-'i	 I
.,.,.:l
1	 2	 3	 4	 5	 6

n

13.13 The variation of the mean radius ot a
hydrogenic atom with the principal and orbital
angular momentum quantum numbers. Note that
the wean radius lies in the order d<p<s for a
gives value of n.
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Self-lest I .s Evaluate the mean radius (a) of a 3s orbital by integration, and (b) of a 3p
orbital by using the general formula.

[(a) 27a/2Z (b) 25o012Z]

(e) Radial distribution functions
The wavelunction tells us, through the value of 	 2 the probabilityof finding an electron in

\\ any region. We can imagine a probe with a volume de and sensitive to electrons, and which
we can move around near the nucleus of a hydrogen atom. Because the probability density
in the ground state of the atom is

Radius

13.1d A constant-volume electron-sensitive
detector Ithe small cube) gives its greatest reading
at the nucleus, and a smaller reading elsewhere. The
same reading is obtained anywhere on a circle of
given radius: the .r orbital is spherically symmetrical.

06

53

0.4 / \\ (

O V I 	 ____________
o	 2	 4

1.15 The radial distribution function P gives the
probability that the ClCCtriri will he found
anywhere in a shell of radius r. for a Is electron in
hydrogen. P is a nsanimurn when r is equal to the
Bohr radius 00. The value of P is equivalent to the
reading that a detector shaped like a spherical shell
would give as its radius was varied.

the reading from the detector decreases exponentially as the probe is moved out along any
radius but is constant i f the probe is moved on a circle of constant radius (Fig. 13.14).

Now consider the probability of finding the electron anywhere on a spherical shell of
thickness dr at a radius r. The sensitive volume of the probe is now the volume of the shell
(Fig. 13.15), which is 47[1-2 dr. The probability that the electron will be found between the
inner and outer surfaces of this shell is the probability density at the radius r multiplied by
the volume of the probe, or 11p12 x 47ir2 dr. This expression has the form P(r) dr, where

P(r) = 4,7P.2i/i (21)

This expression is valid only for spherically symmetric orbitals. For all other orbitals we have
to use the more general expression

P(r	 rR(r)	 (22)

where R(r) is thr radial wavefanctioii for the orbital in question.

Jtis j

The probability of finding an electron in a volume element th when its wavefunction is
= RY is IRYI 2 dt with d.c = rT d.c sin OdOdçl'. The total probability of finding the

electron at any angle at a constant radius is the integral of this probability over the surface
of a sphere of radius r, and is written P(r)dr, so

P(r)dr 
= f25 f R(r)TIY(U, )

1 2 r2 dr sin OdOd/i

= r2R(r) 2 dr I I Y(O,)j 2 sinOdOd = r2R(r)2dr
Jo Jo

2n

The last equality follows from the fact that the spherical harmonies are normalized (see
Example 13.2). It follows that P(r) = r2 R(r) 2 , as stated in the text.

The radial distribution function, P(r), is a probability density in the sense that, when it is
multiplied by dr, it gives the probability 01 finding the electron anywhere in a shell of
thickness dr at the -dius a. For a Is orbital,

P() 
=	

re	 '	 (23)
(ii)

Because ,2 increases with radius from zero at the nucleus, and the exponential term
decreases towards zero at infinity, P(0) 0 and P(r) 0 as r —. x and passes through a
maximum at an intermediate radius (see Fig. 13.15). the maximum of P(r), which can be
found by differentiation, marks the most probable radius at which the electron will be
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Radius, r

13.16 Close to tire nucleus, p orbitals are
proportional to r, d orbitals are Propori iOflOI to r°,
and  orbitals are proportional to r. Electrons are
progressively excluded from the neiIitiourhood of
the nucleus as I increases. An v orbital has a ii tr
concern value at the nucleus
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found, and for a Is orbital in hydrogen occurs-at r = a0 , the Bohr radius. When we carry

through the same calculation for the radial distribution function of the 2s orbital in

hydrogen, we find that the most probable radius is 5.2a, = 275 pm. This larger value
reflects the expansion of the atom as its energy increases.

Example 13.3 Calcuti1 i rig the rti()st probahk' ridius

Calculate the most probable radius, r, at which an electron will be found when it occupies or
Is orbital of a hydrogenic atom of atomic number?, and tabulate the values for the one-
electron species from H to Ne0'

Method We find the radius at which the radial distribution fiinrtion of the hydrogenic Is

orbital has a maximum value by solving dP/dr = 0.

Answer The radial distribution function is given in eqn 23. II follows that

-- =	 (2r .-	 c2'j =
de	 (r'1	 \.	 'i

at r = r. Therefore,

Then, with	 52.9 pm,

H	 He'	 Li 2	Be"' B41	 C 5 '	 N'	 F8'	 Ne9+

r/pm 52.9	 26.5	 17.6	 13.2	 10.6	 8.82	 7.56	 6.614 5.88 5.29

('omninent Notice how the Is orbital is drawn towards the nucleus as the nuclear charge
increases. At uranium the most probable radius is only 0.58 pm, almost 100 times closer
than for hydrogen. (On 13 scale where r = 10 cm for H, r = 1 mm for U.) The electron then
experiences strong accelerations, and relativistic effects are important.

St'lf-test 1	 Find the most probable distance of a 2s electron from the nucleus in a

hydrogertic atom.
[(3 +

(fj p orbitals
A p electron has nonirro angular rliomeriturti (its actual magnitude is 24). This
momentum has a profound effect on the shape at thewavefunv'tion close to the nucleus, for
p orhitals have zero amplitude an r 0. This difference from .v orbitals can be understood
classically in terms of the centrifugal effect of the angular momentum, which tends to fling
the electron away front the nucleus. It is also what we expect from the form of the effective
potential energy shown in Fig. 13.4, which rises to infinity as r -. 0 and excludes the
wavefunctir,n froncthe nucleus. The same centrifugal effect appears in all orbitals with 1>0

(such as the el orbitals and the f orbitals). We sec from ego 16, in fact, that close to the

nucleus a wavcfunction is propurtional to rt , so p wavefunctions are proportional to r, .1

wavefunctions to r, and so 00 (fig. 13.16). The increasingly strong dependence on r as 1

increases can be regarded classically as the outcome of increasing centrifugal effects arising
from the angular momncntum. As remarked previously, all orbilals with 1>0 have zero
amplitude at the nucleus, and consequently zero probability of finding the electron there.

the three 21i ,,rbilals art- distinguishedinquishr'd by the t tree different Values that en,,, can take
when I - I lictause the quanturn number en, ,. tells us the angular momentum arnursrl an
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axis, these different values of in 1 denote orbitals in which the electron has different angular
momenta around an arbitrary 2-axis but the same magnitude of momentum (because I is the
same for all three). The orbital with rn 1 = 0, for instance, has zero angular momentum
around the z-axis. Its angular variation is proportional to cos 0, so the probability density,
which is proportional to cos" 0, has its maximum value on either side of the nucleus along
the :-axis (at 0 = 0 and 1800).

The wavefunction of a 21) orbital with n? 1 = 0 is

= R 21 (r)Y10 (0, b) =	
() 

rcos0e'°
4(2 -;p(to

= r ens Of (I-)

where f(r) is a function only of r. Because 'ln spherical polar coordinates z = rcosO, this
wavefunction may also be written

p. = zf()	 (24)

All j,-orbitals with in1 0 have wavefunctions of this form regardless of the value of is. This
way of writing the orbital is the origin of the name p,-orbital': its boundary surface is shown
in Fig. 13.17. The wavcfunction is zero everywhere in the xy-plane, where z = 0, so the Ay-
plane is a nodal plane of the orbital: the wavefunction changes sign on going from one side
of the plane to the other.

The wavefunctions of 2p orbitals with rn1 = ± I have the following form:

= R21(r)Y111(O,)	
(7)112

 
87r	 ao

+ 
2 F12

These functions do have angular momentum about the 2-3xis: as we have seen (in
Section 1 2,6b), wavefunctions with this (/1 dependence correspond to a particle with angular
momentum either clockwise or counter-clockwise around the 2-axis: corresponds to
clockwise rotation when viewed from below, and e' 0 corresponds to counter-clockwise
rotation (from the same viewpoint). They have zero amplitude where 0 = 0 and 1800 (along
the 2-axis) and maximum amplitude at 90°, which is in the xy-plane. To draw the functions it
is usual to take the real linear combinations

=	 — p) =r sin 0 cos f(r) =.sf(r)
(25

= 
—

1/ 2 (i', 
I +p_) = r sin U sin çbf(r)=yf(r)

These linear combinations are standing waves with no net angular momentum around the:-
axis, as they are composed of equal and opposite values of m1 . The p1 orbital has the same

Li / The boundary surfaces of p orbitals. A nodal
plane passes through the nucleus and separates the
two lobes of each orbital. The dark and light areas
denote regions of opposite sign of the wavefunction.

I . 

^_Y

I

P,	 p	 p0
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shape asap. orbital, but it is directed along the x-axis (see Fig. 13.17); thep, orbital is similarly
directed along the y-axis. The wavefunction of anyp orbital of a given shell can be written as
a product of x, v, or z and the same radial function (which depends on the value of n).

	

iust(iicat1	 134

In this remark, we justify the step of taking linear combinations of degenerate orbitals
when we want to indicate a particular point. The freedom to do so rests on the fact that,
whenever two or more wavefunctions correspond to the same energy, any linear
combination of them is an equally valid solution of the Shriidinger equation.

Suppose i/' and i/', are both solutions of the Schridinger equation with energy E; then
we know that

Hi/i 1 _—Ei/i 1	H02=E02

Now consider the linear combination

i/i = c4 1 + c2i,fr2

where c 1 and c2 are arbitrary coefficients. Then it follows that

	

Hi/i	 11(c 1 1s 1 + c202) = c 1 Hli 1 + c2H2

c 1 E + c2E0 2 = Etl/

Hence, the linear combination is also a solution corresponding to the same energy E.

(g) d orbitals
When n = 3, / can be 0, 1, or 2. As a result, this shell consists of one 3s orbital, three 3p
orbitals, and five 3d orbital-. The five d orbitals have m 1 = +2, +1,0,—I, —2 and
correspond to five different angular momenta around the z-axis (but the same magnitude
of angular momentum, because / = 2 in each case). As for the p orbitals, d orbitals with
opposite values of n (and hence opposite senses of motion around the 2-axis) may be
combined in pairs to give real standing waves, and the boundary surfaces of the resulting
shapes are shown in Fig. 13.18. The real combinations have the following forms:

	

= xyf(r)	 d. = .vzf(r)	 d, = xf(r)	
(26)

	

"(A - y 2 )f(r)	 d.2 = i(3..2 -- rT)f(r)

	

/	 i T i•

	

d1 2	 I Z	 'd	 d1

	

x 

^-- Y	 I

1318 The boundary surfaces of d orbitals. Two nodal
planes in each orbital intersect at the nucleus and
separate the lobes of each orbital. The dark and light
areas denote regions of opposite sign of the

wavef unction.

/
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13.3 Spcttri I('IJp!c transitions anill selection rules

The energies of thehyclrogenic atoms are givers by eqn 13 When the electron undergoes a
transition, a change of state, from an orbital with quantum numbers Oh, 1, ni l , to another
(lower energy) orbital with quantum numbers n2 , 12, rn0 , it undergoes a change of energy AE
and discards the excess energy as a photon of electromagnetic radiation with a frequency v
given by the Bohr frequency condition (eqn 41.

It is tempting to think that all possible transitions are permissible, and that a spectrum
arises from the transition of an electron from any initial orbital to any other orbital.
However, this is not so, because a photon has an intrinsic Spin angular momentum
corresponding to s = I (Section 12,8). The change in angular momentum of the electron
must compensate for the angular momentum carried away by the photon. Thus, an electron
in a ri orbital (1 = 2) cannot make a transition into an s orbital (1 = 0) because the photon
cannot carry away enough angular momentum. Similarly, an .v electron cannot make a
transition to another a orbital, because there would then be rZo change in the electron's
angular momentum to make up for the angular momentum carried away by the photon. It
follows that some spectroscopic transitions are allowed, meaning that they can occur.
whereas others arc forbidden, meaning that they cannot occur.

A selection rule is a statement about which transitions are allowed. They are derived (for
atoms) by identifying the transitions that conserve angular momentum when a photon is
emitted or absorbed. The selection rules for hydrogenic atoms are

Al = +I	 Ani	 II, ± I	 (27)

The principal quantum number it 	 change by any amount consistent with the A l for the
transition, because it does not relate directly to the angular momentum.

Justification I

The formal derivation of a selection rule is based on the evaluation of a transition dipole
moment, j.t,, between the initial and final states, where

Ii fi = ( fIlili)	 1281

and p is the electric dipole moment operator. For a one-electron atom it is identified with
multiplication by —er with components p = —ex, p = —ey, and p2 = —ez. If the
transition dipole moment is zero, the transition is forbidden. If it is nonzero, the transition
is allowed and its intensity is proportional to the square modulus of the transition dipole
moment. Physically, the transition dipole moment is a measure of the dipolar 'kick' that the
electron gives to or receives from the electromagnetic field. To evaluate a transition dipole
moment, we consider each component in turn. For example, for the z-component,

= - '(fIzIi)	 - e I 	 th	 (29)

To evaluate the integral, we note from Table 12.3 that z	 (4T/3) 2rY 1 a, so

f	 d 
= () 12f 

A: ,rR,r2 drfn f Y(O, )Y1,0 (O, )Y1,	 (0, ) sin OdOd ik

It follows from the properties of the spherical harmonics (Table 12.3) that the integral

f fl f2

J J	 Y,',,,(O, )Y,(0,'I-')Y,,,,,11,(0, 0)sinOd0d4
0	 0
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f	 is zero unless i	 I ± I and flt1 = tfl1 + rn. Becusc nt = 0 in the present case, the
angular integral, and hence the z-component of the transition dipole moment, is zero

Pasch
	 -	 unless Al = ± I and Am, = 0, which is a part of the set of selection rules. The same

procedure, but considering the x- and 5-components, results in the complete set of rules.
BaIme, 1' L.

2215	 I,)
..	 20 571 cril	 iH.)

23 638cmll1
24380 cm lH,

1/-- 102 824-cm
L_97 491 cm
—82258cm

Lyman

13.18 A Grotriar, diagram that summarizes the
appearance and analysis of the spectrum of atomic
hydrogen. The thicker the line, the more intense the
transition.

Illustration

To identify the orbitals to which a 4d electron may make radiative transitions, we First
identify the value oft ant] then apply the selection rule for this quantum number. Because

= 2, the Final orbital must have I I or 3. Thus, an electron may-make a transition from a
4d orbital to any op orbital (subject to L\fl( = 0, ± 1) and to any of orbital (subject to the
same rule). However, it cannot undergo a transition to any other orbital, so a transition to
any ns orbital or to another ud orbital is forbidden.

Self-test t ti; To what orbitals may a 4s-electron make radiative transitions?

[To op orbitals only]

The selection rules account for the structure of a Grotrian thagram (Fig. 13.191, which
summarizes the energies of the states and the transitions between them. The thicknesses of
the transition lines in the diagram denote their relative intensities in the spectrum.

The struct urt's of niany-clectroll atoms

The Schrodinger equation for a many-electron atom is highly complicated because all the
electrons interact with one another. Even for a helium atom, with its two electrons, no
analytical expression for th le orbitals and energies can be given, and we are forced to make
approximations. We shall adopt a simple approach based on what we already know about
the Structure of hydrogcnic atoms. Later we shalt see the kind of numerical computations
that are currently used to obtain accurate wavefunctioris and energies.

13.4 *111(' rhtt:I ;ippsuxirnatuin

The wavefunction of a many-electron atom is a very complicated function of the
coordinates of all the electrons, and we should write it 'P(r1.......), where r, is the vector
from the nucleus to electron ,. However, in the orbital approximation we suppose that a
reasonable first approximation to this exact wovefunction is obtained by thinking of each
electron as occupying its own' orbital, and writing

'I'lr 1 .r ... . j	 ir li(r,)	 (30)

We can think of the individual orbitals as resembling the hydroqenic orbitals, but with nuclear
charges that are modified by the presence of all he other electrons in the atom. ibis
description is only approximate, but it is a useful model for discussing the chemical properties
of atoms, and is the Starling point for more sophisticated descriptions of atomic structure.

JUSt 1 ,,:i [ii iii	 1

The orbital approximation would be exact if there were no interactions between electrons.
To demonstrate the validity of this remark, we need to consider a system in which the
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hamiltonian for the energy is the sum -f two contributions, one for electron 1 and the

other for electron 2:

H=11 1 I :12

In an actual atom (such as helium atom), there is an additional term corresponding to the
interaction of the two electrons, but we are ignoring that term. We shall now show that, if

iti(r,) is art of H with energy E, and 0(r2 ) is an eigenfunction of H2 with
energy E. then the product 'P(r 1 , r2 ) = 0(r 1 )i/i(r2) is an elgenfunction of the combined

hamiltonian H. To do so we write

IIP(r 1 , r2 ) = (H, ±-H,)çI(r1)i,fr(r2)

= {H 1 0(r 1 )}0(r2 ) -I 0(r,){H20(r2)}

= (E l i1i(r i )}tIi(r2 ) + t/i(r1){E2t/i(r2)}
(E 1 +E,)i(r,)çi'(r2) =irtr,,r2)

where F = F, + F2. This is the result we ncJ to prove. However, if the electrons interact
(as they do in fact), then the proof fails.

(a) The helium atom
The orbital approximation allows us to express the electronic structure of an atom by
reporting its configuration, the list of occupied orbitals (usually, but not necessarily, in its
ground state). Thus, as the ground state of a hydrogenic atom consists of the single electron

in a Is orbital, we report its configuration as Is'.
The He atom has two electrons. We can imagine forming the atom b y adding the

electrons itt succession to the orbitals of the bare nucleus (of charge 2e). The first electron
occupies a Is hydrogenic orbital, but because Z 2 that orbital is more c3mpact than in H

itself. The second electron joins the lest in the I.e orbital, so the electron configuration of the

ground stale of He is W.

(b) The Pauli principle
Lithium, with Z 3, has three electrons. The first two occupy a Is orbital drawn even more
closely than in He around the more highly charged nucleus. The third electron, however,
does not join the first two in the Is orbital because that configuration is forbidden by the
Pauli exclusion principle;

No more than two electrons may occupy any given orbital and, if two do
occupy one orbital, then their spins must be paired.

Electrons with paired spins, which we denote TI, have zero net spin angular momentum
because the spin of one electron is utncelled by the spin of the other. Specifically, one
electron has rn, - I , the other has in, = - , and they are orientated on their respective
cones so that the resultant spin is zero (fig. 13.20). The exclusion principle is the key to the
structure of complex atoms, to chemical periodicity, and to molecular structure. It was
proposed by Wolfgang Pauli in 1924 when he was trying to account for the absence of some
lines in the spectrum hr helium. Later he was able to derive a very general form of the
principle from theoretical considerations.

Justification 13.7

The Pauli exclusion principle in fact applies to any pair of identical ferniions (particles with
half integral spin). Thus it applies to protons, neutrons, and i3C nuclei (all of which have

spin 10 and to 350 nuclei (which have spin ). It doe's not apply to identical bosons (particles

I

1 I)i Electrons with paired spins have zero
resultant spin angular momentum. They can be
represented by two vectors that lie at an
indrterminalc position on the cones shown here
but, whtsnver one lies on its cant', the other points
in the opposite direction; their resultant is zero.
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with integral spin), which include photons (spin I), C nuclei (spin 0). Any number of
identical bosons may occupy the same orbital.

The Pauli exclusion principle is a special case of a general statement called the Pauli
principle:

When the labels of any two identical fermions are exchanged, the total
wavefunction changes sign. When the labels of any two identical bosons are
exchanged, the total wavefunction retains the same sign.

By 'total wavefunction' is meant the entire wavefunction, including the spin of the
particles.

Consider the wavefunction for two electrons T(1, 2). The Paull principle implies that it
is a fact of nature (which has its roots in the theory of relativity) that the wavefunction
must change sign if we interchange the labels I and 2 wherever they occur in the function:

P(2,1)=.-'P(I,2) (31)

Suppose the two electrons in an atom occupy an orbital i/i, then in the orbital
approximation the overall wavefunction is '(1)0(2). To apply the Pauli principle, we must
deal with the total wavefunction, the wavefunction including spin. There are several
possibilities for two spins: both a, denoted a(1)a(2), both P. denoted fi(1)p(2), and one
the other /1, denoted either a( I)fl(2) or a(2)fl(I). Because we cannot tell which electron is
a and which is fi, in the last case it is appropriate to express the spin states as the
(normalized) linear combinations

a+(1,2)=.{a(I)fl(2)+/3(I)a(2)}	 i_(1,2)=.{a(1)fl(2)—fl(1)(2)}

(32)
because these allow one spin to be a and the other fi with equal probability. The total
wavefunction of the system is therefore the product of the orbital part and one of the four
spin states:

0(1)'(2)a(1)a(2)	 i(I)0(2)fl(I)fl(2)	 I)02)cT+(1,2) fr(1)0(2)a_(l,2)

The Pauli principle says that, for a wavefunction to be acceptable (for electrons), it must
change sign when the electrons are exchanged. In each case, exchanging the labels I and 2
converts the factor i(I)0(2) into çl'(2),(l), which is the same, because the order of
multiplying the functions does not change the value of the product. The same is true of
a(l)a(2) and fl(I)P(2). Therefore, the first two overall products are not allowed, because
they do not change sign. The combination a,(1,2) changes to

-	 {a(2)fl(1)+fl(2)a(1)} =c,(1,2)
-

because it is simply the original function written in a different order. The third overall
product is therefore also disallowed. Finally, consider t_(1,2):

c_(2, I) ._j..y{a(2)fl(I)._.fl(2)a(I)) = —s{a(l)#(2) —fl(1)a(2)}

= —_(I,2)

This combination does change sign (it is 'antisymmetric'). The product 0(l)0(2)i_(l,2)
also changes sign under particle exchange, and therefore it is acceptable.

Now we see that only one of the four possible states is allowed by the Pauli principle,
and the one that survives has paired a and spins. 2 This is the content of the Pauli
exclusion principle. The exclusion principle is irrelevant when the orbitals occupied by the

The drslinct,on bctwcrn a, and a, o.hth wis hne one o and one ft spin, is explained in Section 13.7.

2 5—A
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No net effect
of these
electrons

Nal
Net effect
equivalent to
a point charge
at the centre

13.21 An electron at a distance r from the nucleus
cxperlenc.a Coulombic repulsion from all the
electrons within a sphere or radius r and which is
equivalent to a point negative charge located on
the nucleus. The negative charge reduces the
effective nuclear charge of the nucleus from Ze to
Ze.

)	 4	 8	 12	 16
Zr/a0

13.22 An electron in an s orbital (here a 3s orbital)
is more likely to be found close to the nucleus than
an electron in a p orbital of the same shell (note
the closeness of the innermost peak of the 3s
orbital to the nucleus at r = 0). Hence an s electron
experiences less shielding and is more tightly bound
than a p electron.

electrons are different, and both electrons may then have (but need not have) the same
spin state. Nevertheless, even then the overall wavefunction must still be antisymmetric
overall, and must still satisfy the Pauli principle itself.

In Li (Z = 3), the third electron cannot enter the is orbital because that orbital is already
full: we say the K shell is complete and that the two electrons form a closed shell. Because a
similar closed shell is characteristic of the He atom, we denote it [He]. The third electron is
excluded from the K shell and must occupy the next available orbital, which is one with
n 2 and hence belonging to the L shell. However, we now have to decide whether the next
available orbital is the 2s orbital or a 2p orbital, and therefore whether the lowest energy
configuration of the atom is (llel2s' or [He]2p'.

(c) Penetration and shielding
Unlike in hydrogenic atoms, the Zr and 2p orbitals (and, in general, all subshells of a given
shell) are not degenerate in many-electron atoms. For reasons we shall oow explain, s
orbitals generally lie lower in energy than p orbitals of a given shell, and p orbitals lie lower
than d orbitals.

An electron in a many-electron atom experiences a Coulombic repulsion from all the
other electrons present. If it is at a distance r from the nucleus, it experiences a repulsion
that can be represented by a point negative charge located at the nucleus and equal in
magnitude to the total charge of the electrons within a sphere of radius r (Fig. 13.21). The
effect of this point negative charge, when averaged over all the locations of the electron, is
to reduce the full charge of the nucleus from Ze to Ze, the effective nuclear charge. We
say that the electron experiences a shielded nuclear charge, and the difference between Z
and Z ff is called the shielding constant, ri:

Zeff = Z — a	 [33]

The electrons do not actually 'block' the full Coulombic attraction of the nucleus: the shielding
constant is simply a way of expressing the net outcome of the nuclear attraction and the
electronic repulsions in terms of a single equivalent charge at the centre of the atom.

The shielding constant is different for sand p electrons because they have different radial
distributions (Fig. 13.22). An s electron has a greater penetration through inner shells than a
p electron, in the sense that it is more likely to be found close to the nucleus than a p
electron of the same shell (the wavefunction of a p orbital, remember, is zero at the nucleus).
Because only electrerns inside the sphere defined by the location of the electron (in effect,
the core electrons) contribute to shielding, an s electron experiences less shielding than a p
electron. Consequently, by the combined effects of penetration and shielding, an s electron
is more tightly bound than a p electron of the same shell. Similarly, a d electron penetrates
less than a p electron of the same shell (recall that the wavefunction of a d orbital varies as

r2 close to the nucleus, whereas a p orbital varies as r). and therefore experiences more
shielding.

Shielding constants for different types of electrons in atoms have been calculated from
their wavefunctions obtained by numerical solution of the Schrddinger equation for the
atom (Table 13.3). We see that, in general, valence-shell .c electrons do experience higher
effective nuclear charges than p electrons, although there are some discrepancies. We return
to this point shorjiy.

The consequence of penetration and shielding is that the energies of subshells in a many-
electron-atom in general lie in the order

s <p <d <f
25—B
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Table 13.3' Screening constants for atoms

	

	 The individual orbitals of a given subshell remain degenerate because they all have the same
radial characteristics and so experience the same effective nuclear charge.

Element	 Z	 Orbital	 c	 We can now complete the Li story. Because theshell with a = 2 consists of two non-
He	 2	 Is	 0.3125	 degenerate subshells, with the 2s orbital lower in energy than the three 2p orbitals, the third
C	 6	 Is	 0.3273	 electron occupies the 2s orbital. This occupation results in the ground-state configuration

2s	 2.7834	 1s22s', with the central nucleus surrounded by a complete helium-like shell of two Is
2.8642	 electrons, and around that a more diffuse 2s electron. The electrons in the outermost shell of

an atom in its ground state are called the valence electrons because they are largely-More values are given in the Oats section at the end
of this voturne	 responsible for the chemical bonds that the atom forms. Thus, the valence electron in Li is a

2s electron and Its other two electrons belong to its core.

(d) The building-up principle
The extension of the procedure used for H, He, and Li to other atdnis is called the building-
up principle, or the 'Au thou principle', from the German word for b'uilding up. The building-
up principle proposes an order of occupation of the hydrogenic orbitals that accounts for
the experimentally determined ground-state configurations of neutral 2toms.3

We imagine the bare nucleus of atomic number Z. and then feed into th&bitaIs Z
electrons in succession. The order of occupation is

ls2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s...

and each orbital may accommodate up to two electrons. This order of occupation is
approximately the order of energies of the individual orbitals because, in general, the lower
the energy of the orbital, the lower the total energy of the atom as a whole when that
orbital is occupied. However, there are complicating effects arising from electron-electron
repulsions that are important when the orbitals have very similar energies (such as the 4s
and 3d orbitals near Ca and Sc), and we must take special care then.

We feed the Z electrons in succession into the orbitals subject to the demand of the
exclusion principle that n7J more than two electrons can occupy any one orbital. Because an
s subshell consists of only one orbital, up to two electrons may occupy it. A p subshell
consists of three orbitals, so it can accommodate up to six electrons; a d subshell consists of
five orbitals and can accommodate up to ten electrons.

As an example, consider the carbon atom, for which Z = 6 and there are six electrons to
accommodate. Two electrons enter and fill the Is orbital, two enter and fill the 2s orbital,
leaving two electrons to occupy the orbitals of the 2p subshell. Hence the ground-state
configuration of C is ls22i22p2 , or more succinctly [He]2s22p2 , with [He] the helium-like 1s2
core. However, we can be more precise: we can expect the last two electrons to occupy
different 2p orbitals because they will then be further apart on average and repel each other
less than if they were in the some orbital. Thus one electron can b e thought of as occupying
the 2p orbital and the other the 2p, orbital (the x, y, z designation is arbitrary, and it would
be equally valid to use the complex forms of these orbitals), and the lowest energy
configuration of the atom is [ HeJ2s22p2p. The same rule applies whenever degenerate

_ p.rl itals of subshell are available , for occupation. Thus, another rule of the building-up
principle is:

Electrons occupy different orbitals of a given subshell before doubly
occupying any one of them.

Thus nitrogen (Z = 7) has the configuration [He]2s22p2p2p and only when we get to
oxygen (Z = 8) is a 2p orbital doubly occupied, giving [He]2s22p2p2p.

3 Ekct,on ixinfigur2tions are determined either pcctrocopco5y of by meosurreWnls of magncI,c popci1ie.
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An additional point arises when electrons occupy orbitals singly, for there is then no
requirement that their spins should be paired. We need to know whether the lowest energy
is achieved when the electron spins are the same (both e, for instance, denoted TI, if there
are two electrons in question, as in C) or when they are paired (fl). This question is resolved
by an empirical observation known as Hund's rule:

An atom in its ground state adopts a configuration with the greatest number
of unpaired electrons.

The explanation of Hunds rule is subtle, but it reflects the quantum mechanical property of
spin correlation, that, as demonstrated in the Justification below, electrons with paralkl
spins behave as if they have a tendency to stay well apart, and hence repel each other less.4
We can now conclude that in the ground state of the carbon atom, the two 2p electrons
have the same spin, that all three 2p electrons in the N atoms have the same spin, and that
the two 2p electrons in different orbitals in the 0 atom have the same spin (the two In the
2p orbital are necessarily paired).

Justification 138

Suppose electron I is described by a wavefunction *(r1 ) and electron 2 is described by a
wavefunction c& b(r2 ); then, in the orbital approximation, the joint wavefunction of the
electrons is the product 'P = 0(r1 )IItb(r2). However, this wavefunction is not acceptable,
because it suggests that we know which electron is in which orbital, whereas we cannot
keep track of electrons. According to quantum mechanics, the correct description is either
of the two following wavefunctions:

According to the Pauli principle (Justification 13.7), because 'P, is symmetrical under
particle interchange, it must be multiplied by an antisymmetric spin function (the one
denoted a in Justification 13.7). That combination corresponds to a spin-paired state.
Conversely, '1'_ is antisymmetric, so it must be multiplied by one of the three
symmetric spin states. These three symmetric states correspond to electrons with parallel
spins.5

Now consider the values of the two combinations when one electron approaches
another, and r 1 = r2 . We see that 'V vanishes, which means that there is zero probability
of finding the two electrons at the same point in space when they have parallel spins. The
other combination does not vanish when the two electrons are at the same point in space.
Because the two electrons have different relative spatial distributions depending on
whether their spins are parallel or not, it follows that their Coulombic interaction is
different, and hence that the two states have different energies.

Neon, with Z = 10, has the configuration Die)2s 24 6, which completes the L shell. This
closed-shell configuration is denoted INel, and acts as a core for subsequent elements. The
next electron must enter the 3s orbital and begin a new shell, so an Na atom, with Z = 11,
has the configuration [Ne]3.c'. like lithium with the configuration [He)2s' sodium has a
single .c electron outside a complete core.

This analysis has brought us to the origin of chemical periodicity. The L shell is completed
by eight electrons, so the element with Z = 3 (Li) should have similar properties to the

4 The effect of spin correlation is to axon the xlunt to shfink slightly. so the ele t(an-nucleus inleroclion is itimppoved when the
spins art paraSel

See Section 13.7 to an explanation of this point.
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element with Z = Ii (Na). Likewise, Be (Z = 4) should be similar to  = 12 (Mg). and so on,
up to the noble gases He (Z = 2), Ne (Z = 10). and Ar (Z = 18).

Argon has complete 3s and 3p subshells, and as the 3d orbitals are high in energy it
counts as having a closed-shell configuration. Indeed, the 3d orbitals are so high in energy
that the next electron (for K) occupies the 4s orbital, and the configuration of a K atom is
analogous to that of an Na atom. The same is true of a Ca atom, which has the configuration
[A,]4s2. However, at this point, the 3d orbitals become comparable in energy to the 4s
orbitals (Fig. 13.23), and they commence to be filled.

Ten electrons can be accommodated in the five 3d orbitals, which accounts for the
electron configurations of scandium to zinc. However, the building-up principle has less
clear-cut predictions about the ground-state configurations of these elements because
electron-electron repulsions are comparable to the energy difference between the 4s and 3d
orbitals, and a simple analysis no longer works. At gallium, the energy of the 3d orbitals has
fallen so far below those of the 4s and 4p orbitals that the 3d orbitals can be largely ignored,
and the building-up principle can be used in the same way as in preceding periods. Now the
4s and 4p subshells constitute the valence shell, and the period terminates with krypton.
Because 18 electrons have intervened since argon, this period is the first 'long period' of the
periodic table. The existence of the d-block elements (the 'transition metals') reflects the
stepwise occupation of the 3d orbitals, and the subtle shades of energy differences along
this series give rise to the rich complexity of inorganic d-metal chemistry. A similar intrusion
of the I orbitals in Periods 6 and 7 accounts for the existence of the / block of the periodic
table (the lanthanides and actinides).

1323 The orbital energies of the elements. Note
the relative energies of the 3d and 4s orbitals Close (e) The configurations of ions
to potassium (see Inset). We derive the configurations of cations of elements in the s, p, and d blocks of the periodic

table by removing electrons from the ground-state configuration of the neutral atom in a
specific order. First, we remove valence p electrons, then valence .e electrons, and then as
many d electrons as are necessary to achieve the stated charge. For instance, because the
configuration of Fe is [Ai]3d64s2. the Fe cation has the configuration [Ar]3d5.

The configurations of anions are derived by continuing the building-up procedure and
adding electrons to the neutral atom until the configuration of the next noble gas has been
reached. Thus, the configuration of the 0 ion is achieved by adding two electrons to
[He]2s2 2p4 , giving [He]2s22p6, the same as the configuration of neon.

(fJ ionization energies and electron affinities
The minimum energy necessary to remove an electron from a many-electron atom is the
first ionization energy. ! of the element. 6 The second ionization energy, 12' is the
minimum energy needed to remove a second electron (from the singly charged cation). The
variation of the first ionization energy through the periodic table is shown in Fig. 13.24. and
some numerical values are given in Table 13.4. In thermodynamic considerations we often
need the standard enthalpy of ionintion, Lu,,,,,H 0 . As shown in the Justification below, the
two are related by

= I + RT	 (34)

At 298 K, the difference between the ionization enthalpy and the corresponding ionization
energy is 6.20 kJmol'.

Tattle 13.4' first and second ionization
energies. 11 /(kJ moF 1 ) and 12 /(kJ moi5

H	 1312
He	 2372	 5251
Mg	 738	 1451
Na	 496	 4562

More values are given in the Data SeCtIOre	 6 The symb& recomrrrnded by IIJPAC for iOnhZahOfl eflerljy 6 t: but this rWIIiC6 6 09C0 10
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plotted against atomic number. Z
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Justification 1.9

It follows from Kirchhoff s law (Section 2.9 and eqn 2.45) that the reaction enthalpy for

M(g) -p M(g) + e(g)

at a temperature T is related to the value at T = 0 by

H(T) = H(0) + fACpdT

The molar constant-pressure heat capacity of each species in the reaction is JR, so
= + R. The integral in this expression therefore evaluates to +RT. The reaction

enthalpy at T = 0 is the same as the (molar) ionization energy, I. Equation 34 then follows.
The same expression applies to each successive ionization step, so the overall ionization
enthalpy for the formation of M 2 is

H °(T) =I I +i'2-f5RT

Table 13.5 Electron affinities, E,/(kJ moll

	

	 The electron affinity', is the energy released when an electron attaches to a gas-
phase atom (Table 13.5). In a Common, logical, but not universal convention (which we

Cl	 adopt), the electron affinity is positive if energy is released when the electron attaches to the

H	 73
F	 322	

atom (that is, E 1 >0 implies that electron attachment is exothermic). It follows from a
similar argument to that given in the Justification above that the standard enthalpy of

-844
	 electron gain, AHG, at a temperature T is related to the electron affinity by

*More values are given in the Data section.	
cg11(T) = —E. —RT	 (35)

Note the change of sign. In typical thermodynamic cycles the RT that appears in eqn 35
cancels that in eqn 34, so ionization energies and electron affinities can be used directly. A
final preliminary point is that the electron-gain enthalpy of a species Xis the negative of the
ionization enthalpy of its negative ion:

11(X) = —AH(X)	 (36)

As ionization energy is often easier to measure than electron affinity, this relation can be
used to determine numerical values of the latter.

Ionization energies and electron affinities show periodicities, but the former is more
regular and we concentrate on it. Lithium has a low first ionization energy: its outermost
electron it welI-5hielded from the nucleus by the core (Z = 1.3, compared with Z = 3)
and it is easily removed. Beryllium has a higher nuclear charge than lithium, and its
outermost electron (one of the two 2s electrons) is more difficult to remove: its ionization
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energy is higher. The ionization energy decreases between beryllium and boron because in
the latter the outermost electron occupies a 2p orbital and is less strongly bound than if It
had been a 2s electron. The ionization energy increases between boron and carbon because
the latter's outermost electron is also 2p and the nuclear charge has increased. Nitrogen has
a still higher ionization energy because of the further increase in nuclear charge.

There is now a kthk in the curve which reduces the ionization energy of oxygen below
what would be expected by simple extrapolation. The explanation is that at oxygen a 4
orbital must become doubly occupied, and the electron-electron repulsions are increased
above what would be expected by simple extrapolation along the row. In addition, the loss of
a 2p electron results in a configuration with a half\fllled subshell (like that of N), which Is an
arrangement of low energy, so the energy of O + e is lower than might be expected, and
the ionization energy is correspondingly low too. (The kink is Less pronounced in the next
row, between phosphorus and sulfur because their orbitals are more diffuse.) The values for
oxygen, fluorine, and neon fall roughly on the same line, the increase of their ionization
energies reflecting the increasing attraction of the more highly charged nuclei for the
outermost electrons.

The outermost electron in sodium is 3s. It is far from the nucleus, and the latter's charge
is shielded by the compact, complete neon-like core. As a result, the ionization energy of
sodium is substantially lower than that of neon. The periodic cycle starts again along this
row, and the variation of the ionization energy can be traced to similar reasons.

Electron affthities are greatest close to fluorine, for the incoming electron enters a
vacancy in a compact valence shell and can interact strongly with the nucleus. The
attachment of an electron to an anion (as in the formation of O from 01 is invariably
endothermic, so Eea is negative. The incoming electron is repelled by the charge already
present. Electron affinities are also small, and may be negative, when an electron enters an
orbital that is far from the nucleus (as in the heavier alkali metal atoms) or is forced by the
Pauli principle to occupy a new shell (as in the noble gas atoms).

13.5 Self-consistent field orbitals
The central difficulty of the Schrodinger equation is the presence of the electron-electron
interaction terms. The potential energy of the electrons is

Ze2 (37)

The prime on the second sum indicates that I 34 j, and the factor of one-half prevents
double-counting of electron pair repulsions (1 with 2 is the same as 2 with 1). The first term
is the total attractive interaction between the electrons and the nucleus. The second term is
the total repulsive interaction; r is the distance between electrons I and j. It is hopeless to
expect to find analytical solutions of a Schrädinger equation with such a complicated
potential energy term, but computational techniques are available that give very detailed
and reliable numerical solutions for the wavefunctions and energies. The techniques were
originally introduced by D.R. Hartrcc (before computers were available) and then modified
by V. Fuck to take into account the Pauli principle correctly. In broad outline, the Hartree-
Foek self-consistent field (SCF) procedure is as follows.

Imagine that we have a rough idea of the structure of the atom. In the Ne atom, for
instance, the orbital approximation suggests the configuration 15 2 2,s22p with the orbitals
approximated by hydrogenic atomic orbitals. Now consider one of the 2p electrons. A
Schrodinger equation can be written fr this electron by ascribing to it a potential energy
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13.25 The radial distribution functions for the
orbitals of Na based on SCF calculations. Note the
Shell-like structure-with the 3s orbital outside the
inner K and L shells.
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due to the nuclear attraction and the repulsion from the other electrons. This equation has
the form

- ---V 2 (r 1 ) - ---- (r)
2rn

+2>{
f/i(r,)Ji,(3)e

J____dt2}iI;ar(ri)

>:{I ;r2r2e dT2}c&i(rI)
-	 4irc0r12

= E214,(r1)

(3k)

The orbitals are labelled i, and the sums on the left are over all the occupied orbitals. A
similar equation can be written for the Is and 2s orbitals in the atom.

Equation 38 is fearsome, but it can be interpreted by examining each term. The first term
on the left is the usual kinetic energy contribution. The second term is the potential energy
of attraction of the electron to the nucleus. The third term is the potential energy of the
electron of interest due to the charge density — e lcfr1(r2)1 2 of the electrons in the other
occupied orbitals. The fourth term takes into account the spin correlation effects discussed
earlier. Note that, although the equation is for the 2p orbital in neon, it depends on the
wavefunctions of all the other occupied orbitals in the atom.

There is no hope of solving eqn 38 analytically. However, it can be solved numerically if
we guess an approximate form of the wavefunctions of all the orbitals except 2p. The
procedure is then repeated for the other orbitals in the atom, the is and Zr orbitals. This
sequence of calculations gives the form of the 2p, 2s, and Is orbitals, and in general they will
differ from the set used initially to start the calculation.? These improved orbitals can be
used in another cycle of calculation, and a second improved set of orbitals is obtained. The
recycling continues until the orbitals and energies obtained are insignificantly different
from those used at the sta,rt of the current cycle. The solutions are then self-consistent and
accepted as solutions of the problem.

Plots of some of the self-consistent field (SCF) Hartree-Fock radial distribution functions
for sodium are shown in Fig. 13.25. They show the grouping of electron density into shells, as
was anticipated by the early chemists, and the differences of penetration as discussed above.
These SCF calculations therefore support the qualitative discussions that are used to explain
chemical periodicity. They also considerably extend that discussion by providing detailed
wavefunctions and precise energies.

The spectra of complex atoms
The spectra of atoms rapidly become very complicated as the number of electrons increases,
but there are some important and moderately simple features. The general idea is
straightforward: lines in the spectrum (in either emission Or absorption) occur when the
atom undergoes a change of state with a change of energy IAEI, and emits or absorbs a
photon of frequency i = AEj/h and wavenumber i = ]AE/hc. Hence, we can expect the
spectrum to give information about the energies of electrons in atoms. However, the actual
energy levels are not given solely by the energies of the orbitals, because the electrons
interact with one another in various ways, and there are contributions to the energy in
addition to those we have already considered.

7 In p.acuce, moth more efficient procedures are used, and the equations for the aorelunctions are so5ed smoItancously.
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13.6 Quantum defects and ionization limits
One application of atomic spectroscopy is to the determination of ionization energies.
However, we cannot use the procedure illustrated in Example 131 indiscriminately because
the energy levels of a many-electron atom do not in general vary as 1/n 2. If we confine
attention to the outermost electrons, then we know that, as a result of penetration and
shielding, they experience a nuclear charge of slightly more than Ic because in a neutral
atom the other Z - I electrons cancel all but about one unit of nuclear charge. Typical
values of Z11 are a little more than 1, so we expect binding energies to be given by a term of
the form —hc1/n2 , but lying slightly lower in energy than this formula predicts. We
therefore introduce a quantum defect, 6, and write the energy as —hclZ/(n - 6)2 . The
quantum defect is best regarded as a purely empirical quantity.

There are some states that are so diffuse that the I In2 variation is vali± these states are
called Rydberg states. In such cases we can write

I	 7Z	
(39)

and a plot of wavenumber against I/n2 can be used to obtain! by extrapolation; in practice,
one would use a linear regression fit using a computer. If the lower state is not the ground
state (a possibility if we wish to generalize the concept of ionization energy), the ionization
energy of the ground state can be determined by adding the appropriate energy difference
to the ionization energy obtained as described here.

13.7 Singlet and triplet states
Suppose we were interested in the energy.levels of a He atom, with its two electrons. We
know that the ground-state configuration is 1s2. and can anticipate that an excited
configuration will be one in which one of the electrons has been promoted into a 2s orbital,
giving the configuration ls'2s 5 . The two electrons need not be paired because they occupy
different orbitals. According to Hund's rule, the state of the atom with the spins parallel lies
lower in energy than the state in which they are paired. Both states are permissible, and can
contribute to the spectruii of the atom.

Parallel and antiparallel (paired) spins differ in their overall spin angular momentum. In
the paired case, the two spin momenta cancel each other, and there is zero net spin (as was
depicted in Fig. 13.20). The paired-spin arrangement is called a singlet. Its s p in state is the
one we denoted or in the discussion of the Pauli principle:

c_(l2) _2l12{o(I)1J2) —fl(1)o(2)} 	 (40a)

The angular momenta of two parallel spins add together to give a nonzero total spin, and the
resulting state is called a triplet. As illustrated in Fig. 13.26, there are three ways of
achieving a nonzero total spin, but only one way to achieve zero spin. The three spin states
are the symmetric combinations introduced earlier:

a(l)a(2)	 o,(],2) =	 {a(l)fl(2) + fl(I)(2)}	 fl(l)fl(2)	 (40b)

I 'i When two electrwis have parallel spins, they have a nonzero total spin angular momentum. There
are three ways of achieving this resultant, which are shown by these vector representations. Note that
although we cannot know the orientation of the spin vectors on the cones, the angle between the
vectors is the same in all three cases, for all three arrangements have the same total spin angular
momentum (that is, the resultant or the two vectors has the same length in each case, but points in
different directions). Compare this diagram with Fig. 13.20, which shows the antiparallet case. Note that
whereas two paired spins are precisely antiparallel, two 'paraller spins are not strictly parallel.
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13.28 Angulaj momentum gives rise to a magnetic
moment (p). For an electron, the magnetic moment
Is antiparalki to the orbital angular momentum, but
proportional to it For spin angular momentum,
there is a factor 2, which increaws the magnetic
moment to twice Its expected value (see
Section 13.10).
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1 S 	 1P	 I D 1 F	 3s 	3p	 3D 3F

13.27 Part of the Grotrian diagram for a helium atom. Note that there are no transitions between the
singlet and triplet levels. Transition wavelengths are given in nanometers.

The fact that the parallel arrangement of spins in the 1s I 2.s I configuration of the He
atom lies lower in energy than the antiparallel arrangement can now be expressed by saying
that the triplet state of the Is'2s' configuration of He lies lower in energy than the singlet
state. This is a general conclusion that applies to other atoms (and molecules), and, for states
arising from the sathe configuration, the triplet state generally lies lower than the singlet
state. The origin of the energy difference lies in the effect of spin correlation on the
Coulombic interactions between electrons, as we saw in the case of Hund'snle for ground-
state configurations. Because the Coulombic interaction between electrons in an atom is
strong, the difference in energies between singlet and triplet states of the same
configuration can be large. The two states of ls'2.r' He, for instance, differ by
6421 cm' (corresponding to 0.7961 eV).

The spectrum of atomic helium is more complicated than that of atomic hydrogen, but
there are two simplifying features. One is that the only excited configurations it is necessary
to consider are of the form ls'n1 1 : that is, only one electron is excited. Excitation of two
electrons requires an energy greater than the ionization energy of the atom, so the He+ ion
is formed instead of the doubly excited atom. Second, no transitions take place between
singlet and triplet stofrs because the relative orientation of the two electron spins cannot
change during a transition. Thus, there is a spectrum arising from transitions between singlet
states (including the ground state) and between triplet states, but not between the two.
Spectroscopically, helium behaves like two distinct species, and the early spectroscopists
actually thought of helium as consisting of 'parahelium' and 'orthohelium', The Grotrian
diagram for helium in Fig. 13.27 shows the two sets of transitions.

13.8 Spin—orbt coupling
Electron spin has a further implication for the energies of atoms. Because an electron has
spin angular momentum, and because moving charges generate magnetic fields, an electron
has a magnetic moment that arises from its spin (Fig. 13.28). Similarly, an electron with
orbital angular momentum (that is, an electron in an orbital with 1>0) is in effect a



13.30 The coupling of the spin and orbital angular
momenta of a d electron (I = 2) gives two possible
values off depending on the relative or ientations of
the spin and orbital angular momenta or the
dectron.
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circulating current, and possesses a magnetic moment that arises from its orbital
momentum. The interaction of the spin and orbital magnetic moments is called spin-

High j	 orbit coupling. The strength of the coupling, and its effect on the energy levels of the atom,
depends on the relative orientations of the spi'n and orbital magnetic moments, and

I	 .	 therefore on the relative orientations of the two angular momenta (Fig. 13.29).

(a) The total angular momentum

Low j
(: L M^ 7^)S

energy

13.29 Spin-orbit coupling is a magnetic interaction
between spin and orbital magnetic moments. When
the angular momenta are parallel, as in (a), the
magnetic momenta are aligned unfavourably; when
they are opposed, as in (b), the interaction is
favourable. This magnetic coupling is the cause of
the splitting of a configuration into levels.

One way of expressing the dependence of the spin-orbit interaction on the relative
orientation of the spin and orbital momenta is to say that It depends on the total angular
momentum of the electron, the vector sum of its spin and orbital momenta. Thus, when the
spin and orbital angular momenta are nearly parallel, the total angular momentum is high;

when the two angular momenta are opposed, the total angular momentum is low.
The total angular momentum of an electron is described by the quantum numbersj and
with] = ! + I (when the two angular momenta are in the same direction) or  = I -

(when they are opposed, Fig. 13.30). The different values of j that can arise for a given value
of! label levels of a term. For I = 0, the only permitted value is j (the total angular
momentum is the same as the spin angular momentum because there is no other source of
angular momentum in the atom). When I = 1,j may te either 2 (the spin and orbital angular
momenta are in the same sense) or 1 (the spin and angular momenta are in opposite senses).

Example 13.4 identifying the levels of a configuration

Identify the levels that may arise from the configurations (a) d 1 , (b) s'.

Mclhud In each case, identify the value of land then the possible values off. For these one-
electron systems, the total angular momentum is the sum or difference of the orbital and
spin momenta.

Answer (a) For a d electron, l = 2 and there'are two levels in the configuration, one with
j = 2 + I = and the other withj 2— I = . (bForans electron! = 0, so only one level
is possible, and =

Sell-test 13.7 Identify the levels of the configurations a) p' and (b)f'.
((a) , ; (b) J, P

The dependence of the spin-orbit interaction on the value off is expressed in terms of the
spin-orbit coupling constant, A (which is typically expressed as a wavenumber). A quantum
mechanical calculation leads to the result that the energies of the levels with quantum
numbers s, 1, and fare given by

= 3hcA{j(j+ 1)— 1(1+1) - s(s+ i)}
	

(41)

Justification 13.10

he energy of a magnttic moment it in a magnetic field B is equal to their scalar product
—p 'B. If the magnetic-field arises from the orbital angular momentum of the electron, it
is proportional to I; if the magnetic moment p is that of the electron spin, then it is
proportional to s. It then follows that the energyof interaction is proportional to the scalar
product 3 . 1:

energy of interaction = — p . B oc s
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13.31 The levels .f a 2 1P term arising from spin-
orbit coupling. Pie te that the low-f level lies below
the high-f level.
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13.32 The energy-level diagram for the formation
of the sodium D lines. The splitting of the spectral
line (by 17 cm( reflects the splitting of the levels
of the 2i' t.
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Next, we note that the total angular momentum is the vector sum of the spin and orbital
momenta:j = I + s. The magnitude of the vecthrj is calculated by evaluating

j j = (F + s) (1 + s) = 1 . 1 + s S + 2s 1

That is,

 Hi lS. =	 - S-11
This is a classical result. To make the transition to quantum mechanics, we treat all the
quantities as operators, and write

1{j2_i2_.2}	 (42)

At this point, we evaluate the expectation value:

(j, 1 s	 ii), 1, S) 
= ( j, I s1 1 2 - j2 - . 2 Ij, 1S)	

(43
={j(j+1)-!(1+I)-s(s+1)}ts2

Then, by inserting this expression into the formula for the energy, and writing the constant
of proportionality as hcA/h 2 , we obtain eqn 41. The calculaton of A Is much more
complicated: set Further reading.

Illustration
The unpaired electron in the ground state of an alkali metal atom has I = 0, so j =
Because the orbital angular momentum is zero in this state, the spin-orbit coupling energy Is
zero (as is confirmed by setting j = sand I = 0 in eqn 41). When the electron is excited to
an orbital with I = 1, it has orbital angular momentum and can give rise to a magnetic field
that interacts with its spin. In this configuration the electron can havej = orj = , and the
energies of these levels are

E312 = hcA(- I x2 - x} = hcA

E 112 =hcA{x - 1 x2-x} = -hcA

The corresponding energies are shown in Fig. 13.31. Note that the 'centre of gravity' of the
levels is unchanged, because there are four states of energy 1 hcA and two of energy -hcA.

The strength of the spin-orbit coupling depends on the nuclear charge. To understand
why this is so, imagine riding on the orbiting electron and seeing a charged nucleus
apparently orbiting around us (like the sun rising and setting). As a result, we find ourselves
at the centre of a ring of current. The greater the nuclear charge, the greater this current,
and therefore the stronger the magnetic field we detect. Because the spin magnetic moment
of the electron interacts with this orbital magnetic field, it follows that, the greater the
nuclear charge, the stronger the spin-orbit interaction. The coupling increases sharply with
atomic number (as 2 4 in a hydrogenic atom). Whereas it is only small in H (giving rise to
shifts of energy levels of no more than about 0.4 cm -1 ), in heavy atoms like Pb it is very
large (giving shifts df the order of thousands of reciprocal centimetres).

(b) Fine' structure

Two spectral lines are observed when the p electron of an electronically excited alkali metal
atom undergoes a transition and falls into a lowers orbital. One line is due to a transition
starting in a  = level and the other line is due to a transition starting in the  = I level of
the same configuration. The two lines are an example of fine structure. Fine structure can be
clearly seen in the emission spectrum from sodium vapour excited by an electric discharge
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(for example, in one kind of street lighting). The yellow line at 589 not (close to
17 000 cm -1 ) is actually a doublet composed of one line at 589.76 nm (16956,2 cm') and
another at 589.16 nm (16973.4 cm); the components of this doublet are the 'D lines' of
the spectrum (Fig. 13.32). Therefore, in Na, the spin-orbit coupling affects the energies by
about 17 cm.

I xaniplr	 l'i /t:',.I!q	 .1	 ')iki:; rJ4)I	 lof	 ti!(-	 '.()Il1Url)it	 t.t)Uplifl(J

The origin of the D lines in the spectrum of atomic sodium is shown in Fig. 13.32. Calculate
the spin-orbit coupling constant for the upper configuration of the Na atom.

Mr • llioil We see from Fig. 13.32 that the splitting of the lines is equal to the energy
separation of the j =and 1 levels of the excited configuratio1r. This separation can be
expressed in terms of A by using rqn 41. Therefore, set the observed splitting equal to the
energy separation calculated from eqn 41 and solve the equation for A.

The two levels are split by

Esi=A1{,(+ l) — 	 + 1)} =A

The experimental value is 17.2 cm; therefore

A =x (17.2 cm') = 11.5cm
Configuration

Cuminenl The same calculation repeated for the other alkali metal atoms gives Li:
013 cm K: 38.5 cm; Rb: 158 cm -1 ; Cs: 370 cm* Note the increase of A with atomic
number (but more slowly than Z4 for these many-electron atoms.

Sd i-I tst 13.8 The configuration . . . 4p65d' of rubidium has two levels at 25700.56 cm
and 25703.52 cm above the ground state. What is the spin-orbit coupling constant in
this excited state?

11.18 cm-11

13.9 Term symbols and selection rules
We have used expressions such as 'the j = level of a configuration'. A term symbol, which
is a symbol looking like 2 P31, or 3 D2 , conveys this information much more succinctly. The
convention of using lower-case letters to label orbitals and upper-case letters to label
overall states applies throughout spectroscopy. not just to atoms.

A term symbol gives three pieces of information:

1. The letter (for example, P or D in the examples) indicates the total orbital angular
momentum quantum number, L.

2. The left superscript in the term symbol (for example, the 2 In 2P312) gives the
multiplicity of the term.

3. The right subscript on the term symbol (for example, the J in 21' 12) is the value of
the total angular momentum quantum number. J.

We shall now say what each of these statements means; the contributions to the energies
which we are about to discuss are summarized in Fig. 13.33.

1
3p2	 3p1

	 1
13.11 A summary of the types of Interaction that
are responsible for the various kinds of splitting of
energy levels in atoms. For light atoms, magnetic
interactions are small, but in heavy atoms they may
dominate the electrostatic (charge-charge)
interactions.
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(a) The total orbital angular momentum
When several electrons are present, it is necessary to judge how their individual orbital
angular momenta add together or oppose each other. The total orbital angular momentum
quantum number, L, tells us the magnitude of the angular momentum through
L(L + l)}h. It has 2L+ I orientations distinguished by the quantum number ML,

which can take the values L,L - I.... . -L Similar remarks apply to the total spin
quantum number. S, and the quantum number M5, and the total angular momentum
quantum number, 7, and the quantum number M3 . The value of L(a non-negative integer)
is obtained by coupling the individual orbital angular momenta by using the athsdi-
Gordan series:

L= 1 1 + 12,1 1 +12 - I ,...,l l i - '21 \
	

(44)

The modulus signs are attached to 1 - 12 because L is non-negative. The maximum value,
L = 1 + 12 . is obtained when the two orbital angular momenta are in the same direction;
the lowest value, Jl - 1, is obtained when they are in opposite directions. The intermediate
values represent possible intermediate relative orientations of the two momenta (Fig. 1334).
For two  electrons (for which ! = 12 = 1). L = 2, 1, 0. The code for converting the value of
L into a letter is the same as for the s,p, d,f,.. . designation of orbitals, but uses upper-case
Roman letters:

L:	 0	 I	 2	 3	 4	 5	 6...
	-S 	 P	 D	 F	 G	 H	 I...

Thus, a p2 configuration can give rise to D, P. and S terms. The terms differ in energy on
account of the different spatial distribution of the electrons and the consequent differences
in repulsion between them.

A closed shell has zero orbital angular momentum because all the individual orbital
angular momenta sum to zero. Therefore, when working out term symbols, we need consider
only the electrons of the unfilled shell. In the case of a single electron outside a closed shell,
the value of L is the same as the value of 1; so the configuration (Ne}3s' has only an S term.

Example 13$ Deriving-the total angular momentum of a configuration
Find the terms that can arise from the configurations (a) d2, (b) p3.

MthlId Use the Clebsch-Gordan series and begin by finding the minimum valut of L (so
that we know where the series ternh inates) . When there are more than two electrons to
couple together, use two series in succession: first couple two electrons, and then couple the
third to each combined state, and so on.

13.34 The total angular orbital momcnta of a p
C)tctron and ad electron eomspond to L = 36 2, and
I and reflect the different relative orkntations of the
two momenta.
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Anwci (a) Minimum value: 11, - 12 1 = 12 —21 = 0. Thefore,

°L=2+2,2+2— 1,0=43,2,1,0

corresponding to 0, F, D, P, S terms, respectively. (b) First coupling: minimum value:
II - 1 1 =0. Therefore,

L' = 1 + 1,1 + I - 1,... ,0 = 2, 1,0

Now couple 13 with L' = 2, to give L = 3,2,1; with L' = 1, to give L = 2,1,0; and with
L' = 0, to give L = I. The overall result is

L = 3,2,2,1,1,1,0

giving one F, two D. three P, and one S term.

Self-tesi 13.l Repeat the question for the configurations (a) f'd' and (b) d3.
[(a) H, G, F, D, P; (b) I, 2H, 3G, 4F, 5D, 3P, SJ

(b) The multiplicity
When there are several electrons to be taken into account, we must assess their total spin
ngular momentum quantum number, S (a non-negative integer or half integer) e Once

again, we use the Clebsch-Gordan series in the form

(45)
to decide on the value of S. noting that each electron has s = 4, which gives S = 1,0
(Fig. 13.35). If there are three electrons, the total spin angular momentum is obtained by
coupling the third spin to each of the values of S for the first two spins, which results in
S = 2 , 1 and S =

The multiplicity of a term is the value of 2S + 1. When S = 0 (as for a closed shell) the
electrQns are all paired and there is no net spin: this arrangement gives a singlet term, such
as 1 S. A single elec&on has S = s = so a configuration such as [Ne)3.s' can give rise to a
doublet term, 2 S. The configuration [Ne]3p' likewise is a doublet. 2P. When there are two
unpaired electrons S = I, so 25 + I = 3, giving a triplet term, Such as 3D. We discussed the
relative energies of singlets and triplets in Section 13.7 and saw that their energies differ on
account of the different effects of spin correlation.

(c) The total angular momentum
As we have seen, the quantum number  tells us the relative orientation of the spin and
orbital angular momenta of a single electron. The total angular momentum quantum
number, J (a non-negative integer or half integer), does the same for several electrons. If
there is a single electron outside a closed shell, J =j, with  either 1+4 or I1-4. The
[Nel3s t configuration hasj = 4 (because 1 = 0 and: = 4), so the 2S term has a single level,
which we denote 2S 112 . The [Ne]3p' configuration has! = 1; thereforej = 4 and 4; the 2P
term therefore has two levels, 213/3 and 2P112 . These levels lie at different energies on
account of the magnetic spin-orbit interaction.

If there are everal electrons outside a closed shell we have to consider the coupling of all
the spins and all the orbital angular momenta. This complicated problem can be simplified
when the spin-orbit coupling is weak (for atoms of low atomic number), for then we can use
the Russell-Saunders coupling scheme. This scheme is based on the view that, if spin-orbit
coupliq is weak, then it is effective only when all the orbital momenta are operating

tMtngun5 J tJlr 5, the total ip'n quantum nurTsber. from Roman S. the term abet

'I

(a)

IO	

(b)

t27

13.35 For two electrons (which haves = )) only
two total spin states are permitted IS 0. 1). The
state with S = 0 can have only One value of
(145 = 0) and Is a singlet; the State with S 1 can
have any of three values of M (+1,0, —I) and is a
triplet The vector representations of the singlet and
triplet states are shown in Figs. 13.20 and 13.20,
respectively.
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cooperatively. We therefore imagine that all the orbital angular momenta of the electrons
couple to give a total L, and that all the spins are similarly coupled to give a total S. Only at
this Stage do we imagine the two kinds of momenta coupling through the spin-orbit
interaction to give a total I. The permitted values off are given by the Clebsch-Gordan
series

J=L+S,L+S-I,...,IL---SI	 (46)

For example, in the case of the 3 D term of the configuration [Ne)2p 1 3p', the permitted
values off are 3, 2, I (because 3 D has L = 2 and S 1), so the term has three levels, 3D3,

3 D1, and 3D1.

When L>S, the multiplicity is equal to the n'1.imber of levels. For example, a 2 P term has
the two levels 2P312 and 2P112, and 3 D has the three levels 3 D3 , 3D2 , and 3 D 1 . However, this
is not the ease when L<S: the term S, for example, has only the one level 2S112.

Example 13.7 Deriving lrni symbols

Write the term symbols arising from the ground-state configurations of (a) Na and (b) F, and
(c) the excited configurations Is2 2s2p'3p' of C.

Method Begin by writing the configurations, but ignore inner closed shells. Then couple the
orbital momenta to find L and the spins to find S. Next, couple L and S to find J. Finally,
express the tcmi as 25+1 {L}, where {L} is the appropriate letter. For F, for which the
valence configuration is 2p5 , treat the single gap in the closed-shell 2p6 configuration as a
single particle.

Answer (a) For Na. the configuration is [Ne]3s', and we consider the single 3s electron.
Because L = I = 0 and S = s = 4, it is possible for J =j = s = 4 only. Hence the term
symbol is
(b) For F, the configuration is [He]2s 22p5 , which we can treat as [Ne]2p' (where the
notation 2p signifies the absence of a 2p electron). Hence L = 1, and S = s = . Two
values off = fare allowed: I = 4,4. Hence, the term symbols for the two levels are

I/i'
(c)For C, the configuration is effectively 2p'3p 1 . This is a two-electron problem, and

= I = l - S 1 = s2 = 4. it follows that L = 2, l,O and S = 1,0. The terms are therefore 3D

and 'I), 3 Pand 'P, and -1S and 'S. For 3 D,L = 2 and S = I; hencel = 3,2,1 and the levels
are 3 D3 , 3D2 , and 3 D 1 . For 'D, 1. = 2 and S = 0, so the single level is 'D 2 . The tripletof levels
of 3 P is 3 P2, 3 P 1 , and 3P, and the singlet is 'F 1 . For the 3S term there is only one level, 3S1

(because J = I only), and the singlet term is 1S0.

Coniment The reason why we have treated an excited configuration of carbon is that in the
ground configuration. 2p2 , the Pauli principle forbids some terms, and deciding which
survive ('D, 3 P, 'S, in fact) is quite complicated. That is, there is a distinction between
'equivalent electrons', which are electrons that occupy the same orbitals, and 'inequivalent
electrons, which are electrons that occupy different orbitals.

.1

Slf-Irst 13.1 Write down the terms arising from the configurations (a) 2s'2p', (b)
2p'3d'.

((a) 3P2, 3 P1 , 3 P0, ' P,;
(b) 3 F4, SF3 , 3 F2, ' F3 , 3 D3 , 3 D 2, D 1 , tD2,

.ip2 3p1, 3po, 'p,]
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Pure	 Pure
Russell-Saunders	 jJ coupling
coupling

D

p2

api
3r

0
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13.36 The correlation diagram for some of the
states of a two-electron system. All atoms lie
between the two extremes but the heavier the
atom, the closer it lies to the pure jj-coupling case.

26--A

Russell-Saunders coupling fails when the spin-orbit coupling is large (in heavy
atoms). In that case, the individual spin and orbital momenta of the electrons are
coupled into individual j values; then these momenta are combined into a grand total, J.
This scheme is called j/-coupling. For example, in a p 2 configuration, the individual
values of j are 1 and 1 for each electron. If the spin and the orbital angular momentum
of each electron are coupled together strongly, it is best to consider each electron as a
particle with angular momentum j = or . These individual total momenta then couple as
follows:

j 1 = and J2 =	 1=3,2,1,0
j 1 = and j2 =	 J=2,I
j1= andj2 =	 1=2,!
j 1 = and j2 = 	 1=1,0

For heavy atoms, in which if-coupling is appropriate, it is best to discuss their energies using
these quantum numbers.

Although if-coupling should be used for assessing the energies of heavy atoms, the term
symbols derived from Russell-Saunders coupling can still be used as labels. To see why this
procedure is valid, we need to examine how the energies of the atomic states change as the
spin-orbit coupling increases in strength. Such a correlation diagram is shown in Fig. 13.36.
It shows that there is a correspondence between the low spin-orbit coupling (Russell-
Saunders coupling) and high spin-orbit coupling (if-coupling) schemes, so the labels derived
by using the Russell-Saunders scheme can be used to label the states of the jj-coupling
scheme.

(d) Selection rules
Any state of the atom, and any spectral transition, can be specified by using term symbols.
For example, the transitions giving rise to the yellow sodium doublet (which were shown in
Fig. 13.32) are 	 -

3p' 2 P312 - 3s 2S 112	 3p' 2P112 -. 3s 1 2S12

By convention, the upper term precedes the lower. The corresponding absorptions are
therefore denoted

2 P32 4- 2 S 112	 2P112'-2S112

(The configurations have been omitted.)

We have seen that selection rules arise from the conservation of angular momentum
during a transition and from the fact that a photon has a spin of 1. They can therefore be
expressed in terms of the term symbols, because the latter carry information about angular
momentum. A detailed analysis leads to the following rules:

S=0	 AL=O, ±1	 Ll ±1	
47AJ=0,±1, butf = 0+ 1=0

The rule about 6.5 (no change of overall spin) stems from the fact that the light does not
affect the spin directly. The rules about AL and Es/ express the fact that the orbital angular
momentum of an individual electron must change (so 6.1 = ± I), but whether or not this
results in an overall change of orbital momentum depends on the coupling.

The selection rules given above apply when Russell-Saunders coupling is valid (in light
atoms). If we insist on labelling the terms of heavy atoms with symbols like 3D, then we shall
find that the selection rules progressively fail as the atomic number increases because the
quantum numbers S and L become ill defined as if-coupling becomes more appropriate. As
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explained above, Russell-Saunders term snbols re only a convenient way of labelling the
terms of heavy atoms: they do not bear any direct relation to the actual angular momenta of

the electrons in a heavy atom. For this reason, transitions between singlet and triplet states

(for which i,S '= I 1), while forbidden in light atoms, are allowed in heavy atoms.

13.10 The effect of maqnetie ficld
Orbital and spin angular momenta give rise to magnetic moments (recall the evidence
provided for electron spin by the Stern-Gerlach experiment, Section 12.8). It can be
expected that the application of a magnetic field should modify an atom's spectrum. We
shall first establish how the energies of an atom depend on the strength of an external field
and then see how the spectrum is affected.

(a) The magnetic moment of an electron
The orbital angular momentum of an electron around the :-axis (which we now take as the
direction of the applied held) is ni 1 /i. Because the component of magnetic moment on the z-

axis, p., is proportional to the angular momentum around that axis, we can write

fL. = 'm1/i	 (4)

where is a constant called the magnetogyric ratio of the electron. It the magnetic

moment is treated as arising from the circulation of an electron of charge —e, standard

electromagnetic theory gives

49)

The negative sign (arising from the sign of the electron's charge) shows that the orbital
magnetic moment of the electron is antiparallel to its orbital angular momentum (as was
depicted in Fig. 13.28). ltfollows that the possible values of p. are

p 0 = -X rn i h S —ij0,n
	 (:30)

where the Bohr magneton, PB 
is

Pit = cit
	

(51)

2

4 031L

•'-'	
(

'.

3.3? The different energies Of the m, states in
magnetic Odd are represented by different rates of
precession of the vectors representing the angular
momentum.

Its numerical value is 9.274x 1O 24 iT_ i . The Bohr magneton is often regarded as the

fundamental quantum of magnetic moment.
The energy of a magnetic moment in a magnetic field of magnitude B in the.--direction

is

E = p03 	 (52)

Therefore, in the presence of a magnetic field, an electron in a state with quantum number

or 1 has an additional 'contribution to its energy given by

Em,.= itni113

The same expression, but with m1 replaced by M1 , applies when the orbital magnetic moment

arises Ironi several electrons.
A p electron has I = I and m1 = 0, ± 1. In the absence of a magnetic field, these three

states are degenerate. When a field is present, the degeneracy is removed: the state with

Ii's ,5a result from standard magnetic 1hr.1rV Li is am tuul!y the roost ml	 ,du, t,n	 liii Is n,easured '0 I C54
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Field	 Field
off	 on
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(5	 5!	 13
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13.38 The normal Zeeman effect. On the left, when
the field is off, a single spectral line is observed.
When the field is on, the line splits into three, with
different polarizations. The circularly polarized lines
are called the o-lints; the plane-polarized lines are
called sr-lines. Which line in observed depends on
the orientation of the observer.

= + I moves up in energy b', PB8. the state with m1 = 0 is unchanged, and the state with
m1 = - I moves down by p8:

= +PBI3 E5 0	 E = PBB

The different energies arising from an interaction with an external field are sometimes
represented on the vector model by picturing the vectors as precessing, or sweeping round
their cones, with the rate of precession proportional to the energy of the state (Fig. 13.37).

The spin magnetic moment of an electron is also proportional to its angular momentum.
However, it is not given by y m,1l but by about twice this value:

= &y nh	 g	 2.002319... 	 (54)
The extra factor g, is called the g-value of the electron. The factor 2 (as distinct from
2.0023) is derived from the Dirac equation; the additional 0.0023 arises from interactions of
the electron with the electromagnetic fluctuations in the sfcuum that surrounds the
electron. The energy of an electron in a state m, in a magnetic field of magnitude B in the z-
direction is

=	 = g,pm,8	 (55)

The same expression, but with m, replaced by M5 , applies to the total magnetic moment
arising from the spin of several electrons.

(b) The Zeeman effect
The Zeeman effect is the modification of an atomic spectrum by the application of a strong
magnetic field. In particular, the normal Zeeman effect is the observation of three lines in
the spectrum where, in the absence of the field, there is only one (Fig. 13.38). The splitting is
in fact very small: a field of 2 T (20 kG) is needed to produce a splitting of about 1 cm,
which should be compared with typical optical transition wavenumbers of 20000 cm and
more.

Much more common than the normal Zeeman effect is the anomalous Zeeman effect, in
which the original line spl,its into more than three components. The origin of this complexity
is the anomalous magnetic moment of electron spin, which results in a more complicated
splitting Pattern.
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Exercises
13.1 (a) When ultraviolet radiation of wavelength 58.4 rim from a
helium lamp is directed on to a sample of krypton, electrons are
ejected with a speed of 1.59 x 106 ms . Calculate the ionization
energy of krypton.

13.1 (I,) When ultraviolet radiation of wavelength 58.4 nm from a
helium lamp is directed on to a sample of xenon, electrons are ejected
with a speed of 1.79 x 106 ms'. Calculate the ionization energy of
xenon.

13.2 (a) Consider the 2s radial wavefunction. Show that it has two
extrema in its amplitude, and locate them.

13.2 (b) Consider the 3s radial wavefunction. Show that it has three
extrema in its amplitude, and locate them.

13.3 (a) Locate the radial nodes in the 3s orbital of an H atom.
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T.P. Softley, Atomic spectra, Oxford Chemistry Primers. Oxford
University Press (1994).

P.R. Scott and W.G. Richards. Energy levels in atoms and
molecules, Oxford Chemistry Primers, Oxford University Press
(1994).

P.A. Cox, Introduction to quantum theory and atomic
structure, Oxford Chemistry Primers. Oxford University Press
(1996).

C.F. Fischer, The Hartree-Fock method for atoms. Wiley, New
York (1977).

F.U. Condon and H. Odabai, Atomic strucjure. Cambridge
University Press (1980).

S. Bashkin and JO. Stonor, Jr. Atomic energy levels and
Grotrion diagrams. North-Holland, Amsterdam (1975-1982).

13.7 (b) What is the orbital angular momentum of an electron in the
orbitals (a) 4d. (b) 2p, (c) 3p? Give the numbers of angular and radial
nodes in each case.

13.8 (a) Calculate the permitted values off for (a) ad electron, (b) an
f electron.

13.8 (b) Calculate the permitted values off for (a) a  electron, (b) an
h electron.

13.9 (a) An electron in two different states of an atom is known to
have j = and . What is its orbital angular momentum quantum
number in each case?

13.9 (b) What are the allowed total angular momentum quantum
numbers of a composite system in which J = 5 and j2 = 3?

13.3 (b) Locate the radial nodes in the 3p orbital of an H atom. 	 13.10 (a) State the orbital degeneracy of the levels in a hydrogen

13.4 (a) The wavefunction for the ground state of a hydrogen atom 	 atom that have energy (a) -hcl H : (b)	 hci H ; (c) - hciZH.
isNe" 1'. Determine the normalization constant N.	 13.10 (b) State the orbital degeneracy of the levels in a hydrogenic
13.4 (b) The wavefunction for The 2s orbital of a hydrogen atom is 	 atom (Z in parentheses) that have energy (a) -4hc7Z 11 	(2), fbi
N(2 - r/a0)e" o . Determine the normalization constant N.	 - hcR.,.w.m (4), and (c) '-hc7Z	 (5).
13.5 (a) Calculate the average kinetic and potential energies of an 	 13.11 (a) What information does the term symbol 'D 2 provide
electron in the ground state of a hydrogen atom. 	 about the angular momentum of an atom?
13.5 (b) Calculate the average kinetic and potential energies of a 2s	 13.11(b) What information aoes the term symbol 3 F4 provide about
electron in a hydragenic atom of atomic number Z. 	 tht, angular momentum of an atom?
13.6 (a) Write down the expression for the radial distribution

1L12 (a) At what radius does the probability of finding an electronfunction of a 2s electron in a hydrogenic atom and determine the
radius at which the electron is most likely to be found, 	 at a point in the H atom fall to 50 per cent of its maximum value?

13.6 (b) Write down the expression for the radial distribution
function of a 3s electron in a hydrogenic atom and determine the
radius at which the electron is most likely to be found.

13.7 (a) What is the orbital angular momentum of an electron in the
orbitals (a) is, fbi 3s, (c) 3d 7 Give the numbers of angular and radial
nodes in each case.

13.12 (b) At what radius in the H atom does the radial distribution
function of the ground state have (a) 50 per cent, (b) 75 per cent of its
maximum value?

13.13 (a) Which of the following transitions are allowed in the
normal electronic emission spectrum of an atom: (a) 2s -. is, (b)
2p - Is, (c) 3d -. 2p?
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13.13 (b) Which of the following transitions are allowed in the
normal electronic emission spectrum of an atom: (a) Sd -. 2s, (b)
5p --. 3s, (c) 5p ' 3f?

13.14 (a) How many electrons can occupy the following subshells:
(a) Is, (b) 3p, (c) 3d, and (d) 6g?

13.14 (b) How many electrons can occupy the following subshells:
(a) 2s, (b) 4d, (c) 6f, and (d) 6h?

13.15 (a) (a) Write the electronic configuration of the Ni l ' ion. (b)
What are the possible values of the total spin quantum numbers Sand
M5 for this ion?

13.15 (b) (a) Write the electronic configuration of the V 2 ion. (b)
What are the possib values of the total spin quantum numbers Sand
M5 for this ion?

13.16 (a) Suppose that an atom has (a) 2, (b) 3 electrons in different
orbitals. What are the possible values of the total spin quantum
numbers? What is the multiplicity in each case?

13.16 (b) Suppose that an atom has (a) 4. (b) 5, electrons in different
orbitals. What are the possible values of the total spin quantum
number 5? What is the multiplicity in each case?

13.17 (a) What atomic terms are Possible for the electron
configuration ns'nd'? Which term is likely to lie lowest in
energy?

13.17 (b) What atomic terms are possible for the electron
configuration np'nd'? Which term is likely to lie lowest in energy?

13.18 (a) What values of J may occur in the terms (a) 'S. (b) 2P, (c)
T P? How many states (distinguished by the quantum number M)
belong to each level?

13.18 (b) What values of J may occur in the terms (a) 3 D, (b) 4 D, (c)
20? How many states (distinguished by the quantum number M,)
belong to each level?

13.19 (a) Give the possible term symbols for (a) Li [He12s', (b)
Na [Ne] 3p ' .	 -

13.19 (b) Give the possible term symbols for (a) Sc[Ar]3d'4s 2 , (b)
Br [Ar]3d104s24p5.

13.20 (a) Calculate the magnetic induction, 3, required to produce a
splitting of 1.0 cm 1 between the states of a 'P term.

13.20 () Calculate the magnetic induction, B, required to produce a
splitting of 07114 cm	 between the states of a 'D term.

Problems

Numerical problems
13.1 The Humphreys series is another group of lines in the spectrum
of atomic hydrogen. It begins at 12 368 nm and has been traced to
3281.4 nm. What are the transitions involved? What are the
wavelengths of the intermediate transitions?

13.2 A series of lines in the spectrum of atomic hydrogen lie at
656.46 nm, 486.27 nm. 434.17 nm, and 410.29 nm. What is the
wavelength of the next line in the series? What is the ionization
energy of the atom when it is in the lower state of the transitions?

13.3 The Li ll ion is hydrogenic and has a Lyman series at
740747 cm-1 , 877924 cm', 925933 cm ', and beyond. Show
that the energy levels are of the form - - . hcR/n 2 and find the value of
1Z for this ion. Go on to predict the wavenumbers of the two longest-
wavelength transitions of the Balmer series of the ion and find the
ionization energy of the ion.

13.4 A series of lines in the spectrum of n'utral Li atoms rise from
combinations of 1s2 2p' 2P with ls2nd 1 2 D and occur at 610.36 nm,
460.29 nm, and 413.23 nm. The d orbitals are hydrogenic. It is known
that the 2 P term lies at 670.78 nm above the ground state, which is
1s22s 1 2 S. Calculate the ionization energy of the ground-state atom.

13.5 The characteristic emission from K atoms when heated is purple
and lies at 770 nm. On close inspection, the line is found to have two
closely spaced components, one at 766.70 nrn and the other at
770.11 nm. Account for this observation, and deduce what
information you can.

13.6 Calculate the mass of the deuteron given that the first line in
the Lyman series of H lies at 82 259.098 cm - ' whereas that of 0 lies

at 82281.476 cm'. Calculate the ratio of the, ionization energies of
H and D.

13.7 Positronium consists of an electron and a positron (same ma55,
opposite charge) orbiting round their common centre of mass. The
broad features of the spectrum are therefore expected to be
hydrogen-like, the differences arising largely from the mass
differences. Predict the wavenumbers of the first three lines of the
Balmer series of positronium. What is the binding energy of the
ground state of positronium?

13.8 In 1976 it was mistakenly believed that the first of the
'superheavy' elements had been discovered in a sample of mica. Its
atomic number was believed to be 126. What is the most probable
distance of the innermost electrons from the nucleus of an atom of
this element? (In such elements, relativistic effects are very important,
but ignore them here.)

Theoretical problems
13.9 Is an electron further from the nucleus on average when it is in

25 orbital or a 2p orbital?

13.10 What is the most probable point (not radius) at which a 2p
electron will be found in the hydrogen atom?

13.11 Show by explicit integration that (a) hydrogenic Is and 2.r
orbitals, (b) 2p and 2p orbitals are mutually orthogonal.

13.12 Determine whether the p, and p orbitals are eigenfunctions of
C. If not, does a linear combination exist that is an cigenfunction of[,?
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13.13 Show that!, and 12 both commute with the hamiltonian for a
hydrogen atom. What is the significance of this result?

13.14 The 'size' of an atom is sometimes considered to be measured
by the radius of a sphere that contains 90 per cent of the charge
density of the electrons in the outermost occupied orbital. Calculate
the size of a hydrogen atom in its ground state according to this
definition.

13.15 One of the most famous of the obsolete theories of the
hydrogen atom was proposed by Bohr. It has been replaced by
quantum mechanics but, by a remarkable coincidence (not the only
one where the Coulomb potential is concerned), the energies it
predicts agree exactly with those obtained from the Schriidingcr
equation. In the Bohr atom, an electron travels in a circle around the
nucleus. The Coulombic force of attraction (Ze2 /4irc0 r 2 ) is balanced
by the cent'rifugal effect of the orbital motion. Bohr proposed that
the angular momentum is limited to integral values of h. When the
two forces are balanced, the atom remains in a stationary state until it
makes a spectral transition. Calculate the energies of a hydrogenic
atom by using the Bohr model.

13.16 The Bohr model of the atom is specified in Problem 13.15.
What features of it are untenable according to quantum mechanics?
How does the Bohr ground state differ from the actual ground state?
Is there an experimental distinction between the Bohr and quantum
mechanical models of the ground state?

13.17 Atomic units of length and energy may be based on the
properties of a particular atom. The usual choice is that of a hydrogen
atom, with the unit of length being the Bohr radius. 00, and the unit
of energy being the energy of the Is orbital. If the positronium atom
(e+,e_) were used instead, with analogous definitions of units of
length and energy, what would be the relation between these two sets
of atomic units?

Additional problems supplied by Carmen Giunta
and Charles Trapp

13.10 The diameters of atoms can be estimated from their densities
in a condensed state. Calculate the diameters of hydrogen and
uranium atoms in this manner from information it) the Dofo section.
One finds that all atoms are roughly the same size, with
rm0.3 ±0.1 nm. Why is that? In a plot of atomic radk.s against
atomic number some periodicity is evident, but not to the extent seer]
in a plot of first ionization energies against atomic number. Explain
this observation.

13.19 In the Bohr model of the hydrogen atom, the electron orbits
the nucleus at a distance of 52.9 pm. Calculate the speed of the
electron in the first Bohr orbit. Considering the electron and proton to
be classical charges, calculate the electrical field strength at the
electron and the magnetic field Strength at the proton. Compare to
field strengths commonly available in the laboratory.

13.20 Use the radial wave equation for the hydrogen atom to
demonstrate that the energies of the 2s and 2' orbitals are identical.

13.21 Dimensionless ratios that occur in the physical sciences are
thought to be of fundamental significance. These ratios tend to be
clustered around (1020)a, wherern = 0, 1,2,3, and 4. One such ratio in
the ni = 0 group is the mass ratio of the two fundamental particles,
the proton and the electron. Scientists are puzzled as to why this ratio
should be close to 2000. The precise value of the ratio is determined
by comparison of the atomic spectral lines in H and Hc+. (a) Der;-
the following relations for the first line in any of the series (yman,
Balmer, etc.) for H and He:

- il =

1111

where It is a reduced mass. (b) Calculate mH/mC from the following
data.

on1 )/nni	 7Z/cm
H	 121.5664	 109677.7
He	 30.3779	 1(19 722.4

First do the calculation from the wavelength data; then derive a
formula for the mass ratio in terms of the Rydberg constants 7Z, of the
species J and repeat the calculation of the mass ratio from that data.

13.22 Highly excited atoms are said to be in a 'high Rydberg state'
and have electrons with large principal quantum numbers. Such
'Rydberg atoms' have several unusual properties and have attracted
much attention in recent years, for example, in astrophysics and
radioastronomy. For hydrogen atoms with large n, derive a relation for
the separation of energy levels. Calculate this separation for n = 100:
also calculate the average radius, the geometric cross-section, and the
ionization energy. Could a thermal collision with another hydrogen
atom ionize this Rydberg atom? What minimum velocity of the
second atom is required? Could a normal-sized neutral H atom simply
pass throui the Rydberg atom leaving it undisturbed? What might
the radial wavefunction for a IOOs orbital be like?

13.23 W.P. Wjesundera, S.H. Vosko, and F.A. Parpia (Phys. Rev. A 51,
278 (1995)) attempted to determine the electron configuration of the
ground state of lawrencium, element 103. The two contending
configurations are [Rn]5f 14 7s2 7p' and [Rn)5f' 4 6d7 s2 . Write down the
term symbols for each of these configurations, and identify the lowest
level within each configuration. Which level would be lowest
according to a simple estimate of spin-orbit coupling?

13.24 Stern-Gerlach splittings of atomic beams are small and
require either large magnetic field gradients or long magnets for their
observation. for a beam of atoms with zero orbital angular
momentum, such as H or Ag. the deflection is given by
= I (/1 5 L2 /4EK )dL3/dz, where L is the length of the magnet, Ek

is the average kinetic energy of the atoms in the beam, and dif/d.z is
the magnetic field gradient. (a) Use the Maxwell-Boltzmann velocity
distribution to show that the average translational kinetic energy of
atoms emsierging as a beam from a pinhole in an oven at temperature
T is 2kT. (b) Calculate the magnetic field gradient required to produce

splitting of I (XI mm in a beam ofAg atoms from an oven at 1000 K
with a magnet of length 50 cm.
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The concepts developed in Chapter 13. particularly 1/lose of orbitals, can be extended to a
description of the electronic structures of molecules. There are two principal quantum
mechanical theories of molecular electronic structure, In vu/crier-ha nil theory the starting
paint is the concept of the shored electron pair We see how to write the wovefonc/in for
such a pair, and how it mrti be extended In account (or lIre chin tart's of a wide variety of
molecules. The theory introduces (hr concept of,; and n builds, promotion, and hybridiza-
tion that are used i.idely in chemistry. In r,bu/c'i'ti/ar itt/ri Itt/theory (with which / hr bulk of the
chapter is concerned), the conce/ it of atomic orbital is extended to that alma/ecu/ar orbital,
which is a wave fun1ion that spreads over oil the otirrac in it ,irriler'ule. This theory may be
extended to the description of the electronic rrnriet ir' of 5(iinlj, and ii sit to account for
lectricoi conduction and scm/conduction,

The Born-Oppenheimer approximation
All theories of molecular structure make the same simplification at the outset. Whereas the
Schrodinger equation for a hydrogen atom can be solved exactly, an exact solution is not
possible for any molecule because the simplest molecule consists of three particles (two
nuclei and one electron). The Born-Oppenheimer approximation is therefore adopted, in
which it is supposed that the nuclei, being so much heavier than an electron, move relatively
slowly, and may be treated as stationary while the electrons move relative to them. We can
therefore think of the nuclei as being fixed at an arbitrary separation R, and then solve the
Schrödinger equation for the wavefunction of the electrons alone.

The approximation is quite good for ground-state molecules, for calculations suggest
that the nuclei in H 2 move through only about 1 pm while the electron speeds through
1000 pm so the error of assuming that the nuclei are.stionary is small. Exceptions to the
approximation's validity include certain excited states of polyatomic molecules and the



14.1 A moleculc potential energy curve. The
equilibrium bond lciogtlr corresponds to the energy
trrininrum.
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ground states of cations; both types of species are important when considering
photoelectron spectroscopy (Section 17.8) and mass spectrometry.

The Born-Oppenheimer approximation allows uto select an internuclear separation, and
(in principle) to solve the Schrddinger equation for the electrons at that nuclear separation.
Then we choose a different separation and repeat the calculation, and so on. In this way we
can explore how the energy of the molecule varies with bond length (and, in more complex
molecules, with. angles too), and obtain a molecular potential energy curve (Fig. 14•1),i It is
called a potential energy curve because the kinetic energy of the stationary nuclei is zero.
Once the curve has been calculated or determined experimentally (by using the
spectroscopic techniques described in Chapters 16 and 17), we can identify the equilibrium
bond length (the internuclear separation at the minimum of the curve) and the bond
dissociation energy, L), which is closely related to the depth of the minimum below the
energy of the infinitely widely separated atoms.7

Valence-bond theory
The valence-bond theory (VEt theory) of bonding was the first to be developed. The language
it introduced, which includes concepts such as spin-pairing, o and it bonds, and
hybridization, is widely used throughout chemistry. It is particularly widespread in the
description of the properties and reactions of organic compounds.

A(2}B(1)

A(1)B(2) + A(2)B(l)
En no nced
electron deiit,ily

14.2 It is very difficult to represent valence-bond
wavefunctions because they refer to two electrons
simultaneously. However, this illustration is an
attempt. The atomic orbital for electron I is
represented by the black contours, and that of
electron 2 is represented by the green contours. The
top illustration represents A(t )fi(2), and the middle
illustration represents the contribution A(2)11(l).
When the two contributions are superimposed,
there is interference between the black
contributions and between the green contributions,
resulting in an enhanced (two-etectron) density in
the internuclear region.

14.1 The hydrogen molecule
The simplest molecule with an electron pair bond is H 2 . We shall use this molecule to
introduce the basic concepts of the theory.

(a) The spatial wave function
The wavefunclion for an electron on each of two widely separated H atoms is

=	 FlA(I )t/Hiult(T2)

if electron I is on atom A and electron 2 is on atom B. For simplicity, we shall write this
wavefunction as civ -- .4(1(8(2). When the atoms are close, it is not possible to know
whether it is electron I that is on A or electron 2. An equally valid description is therefore

- A(2)B{ t), in which electron 2 is on A and electron 1 is on B. When two outcomes are
equally probable, quantum mechanics instructs us to describe the true state of the system as
a superposition of the wavefunctions for each possibility (Section 11.5d), so a better
description of the molecule than either wavefunction alone is

v =,,4(l)/l(2) ± 4(2)8(1)	 (1)

(these linear combinations are not normalized.) It turns -out (as shown in the Justification
below) that the combination with lower energy is the one with a -4- sign, so the valence-
bond wavefunction of the H 2 molecule is

= A(I)B(2) j ,'(2)B(l)
	

r2)

i	 l%hen mcre thJn One rreIec i ;lur farareler is ch y n;ec j , a wlyatornic molecule, me obtain a potential energy surface.
2	 the dssociaton energy difrrc from the depth of tire w,f by an energy equal to the uero-point vibrational energy of the bonded

atoms If the depth of the well is denoted I),. then 0,, 	 I), - bra, wnere ,o is the vibrational frequency of the frond
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14.3 The molecular potential energy curve for the
hydrogen molecule showing (he variation of the
energy of the molecule as the bond length is
changed. The calculated curve refers to the valence-
bond model.

Jutuiation 14.1

The VB wavefunction for H 2 is an approximate solution of the SchrOdinger equation in
which the potential energy of the two electrons is

V = —	 + + —+-- l +
e2 (1	 1	 1	 1\	 e2

—l---4it	 \\rAt	 r, 	 r1	 TB2J	 47tc0r12

The coordinates are specified in (1). The four terms in parentheses are the attractive
contribution from the interaction between the electrons and the nuclei. The remaining
term is the repulsive interaction between the two electrons. The energy of the molecule is
calculated by evaluating the expectation value of the hamiltonian

e2
H = - - V -- V + V +

with the expression for V given above; the final term is the potential energy of the
nucleus—nucleus repulsion. When the wavefunctions in eqn 1 are used, the expectation
value turns out to be

E = 2EH 
+ J+K	 e2

+	 (3)

where EH is the energy of a hydrogen atom and J and K are complicated collections of
integrals over the wavefunctions. These integrals represent the interaction of the electrons
with the nuclei and the mutual repulsion of the electrons. The integral S is the overlap
integral, which is discussed in more detail shortly. The integrals J and K are both negtive
and the lower energy is achieved with the + sign in eqn 1.

The formation of the bond in H 2 can be pictured as due to the high probability that the
two electrons will be sound between the two nuclei and hence will bind them together.
More formally, the wave pattern represented by the term A (1 )B(2) interferes constructively
with the wave pattern represented by the contribution A(2)B(1), and there is an
enhancement in the value of the wavefunction in the internuclear region (Fig. 14.2).

The electron distribution described by the wavefunction in eqn 2 is called a a bond. Ac
bond has cylindrical symmetry around the internuclear axis, and is so called because, when
viewed along th internuclear axis, it resembles a pair of electrons in an s orbital (and or is the
Greek equivalent of s). More precisely, the electrons in a c bond have zero orbital angular
momentum about the internuclear axis.3

The molecular potential energy curve for H 7 is calculated by changing the internuclear
separation R and evaluating the expectation value of the energy at each selected separation.
The resulting graph is shown in Fig. 14.3. The energy falls below that of two separated H
atoms as the two atoms are brought within bonding distance and each electron is free to
migrate to the other atom. However, the energy reduction that follows from this process is
counteracted by an increase in energy from the Coulombic repulsion between the two
positively charged. nuclei. This positive contribution to the energy becomes large as R
becomes small. Consequently, the total potential energy curve passes through a minimum
and thnctimbs to a strongly positive value at small internuclear separations.

(b) The role of electron spin
So far, the electron spin has not played a role in the argument, yet a chemist's picture of a
covalent bond is one in which the spins of two electrons pair as the atomic orbitals overlap.

3	 Iterat twin Sect,nn 1 26 that theorinlal ,IIJLIIJI rooweoLw of no ekntun is irlatrit in the nunibe, 01 angular nuden 0 115

wuvelunclion. hut their are rn anqular nodes n the wavetuncton at 2 a bond. 5011 has zero orbital angular mOuncnlurn.
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14.5 A ir bond results from spin pairing and orbital
overlap of p orbitals that approach side by side.
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The origin of the role of spin is that the wavefunction given in eqn 2 can be formed only by 
pair of electrons with opposed spins. Thus, spin-pairing is not an end in itself: it is a means of
achieving a spatial wavefunction (and the probability distribution it implies) that
corresponds to a low energy.

Justification 14.2

The Pauli principle requires the wavefunction of two electrons to change sign when the
labels of the electrons are interchanged (see Justification 13.7). The total VB wavefunction
for two electrons is

'Y(1,2) = {A(1)B(2)+A(2)B(1)}a(1,2)

where a represents the spin component of the wavefunction. When the labels I and 2 are
interchanged, this wavefunction becomes

'f'(2, 1) = {A(2)B(1) +A(1)B(2)}c(2, 1)

= {A(l)B(2) +A(2)B(1)}n(2, I)

The Pauli principle requires that '{'(2, I) = -. 'V(1,2), which is satisfied only if
o(2, I) = —o(1,2). The combination of two spins that has this properly is

r (1,2) = 21/2 {e(1)(2) - a(2)fl(1)}

which corresponds to paired electron spins (Section 13.7). Therefore, we conclude that the
state of lower energy (and hence the formation of a chemical bond) is achieved if the
electron spins are paired.

14.2 Homonucicar diatomic molecules
The essential features of valence-bond theory are the pairing of the electrons and the
accumulation of electroiTdensity in the internuclear region that stems from that pairing. The
same description can be applied to more complex molecules, such as homonuckar diatomic
molecules, which are diatomic molecules in which both atoms belong to the same element.
Nitrogen, N 2 , is an example. To construct the valence-bond description of N 2 , we consider
the valence electron configuration of each atom:

N	 2s22p2p21,

It is conventional to take the z-axis to be the internuclear axis, so we can imagine each atom
as having a 2p2 orbital pointing towards a 2p orbital on the other atom (Fig. 14.4), with the
2p and 2p orbitals perpendicular to the axis. A a bond is then formed by spin-pairing
between the two electrons in the opposing 21) orbitals. Its spatial wavefunction is given by
eqn 2, but now A and B stand for the two 2p orbitals.

The remaining 2p orbitals cannot merge to give or bonds as they do not have cylindrical
symmetry around the internuclear axis. Instead, the electrons in them merge to form two it

bonds (Fig. 14.51.A iv' bond arises from the spin-pairing of electrons in two p orbitals that
approach side-by-side. It is so called because, viewed along the internuclear axis, a in bond
resembles a pair of electrons in a p orbital (and k is the Greek equivalent of p). More
precisely, an electron in a it bond has one unit of orbital angular momentum about the
internuclear axis, for the wavefunction has one angular node.

There are two it bonds in N 2 , one formed by spin-pairing in two neighbouring 2p, orbitals
and the other by spin-pairing in two neighbouring 2p , orbitals. The overall bonding pattern

-390

14.4 The orbital overlap and spin-pairing between
electrons in two collinear p orbitals that result in
the formation of a a bond.



14.7 A first approximation to the valence-bond
d5riptioir of bonding in an H S O molecule. Each

bond arises from the overlap of art His orbital with

one of the 02p orbitals. Ibis model suggests that

the bond angle should be 90', which Is significantly
different from the experimrntal value.

$
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146 The Structure of bonds in a nitrogen molecule
which consists of one c bond and two rr bonds. The
electron density has cylindrical symmetry around
the internuclear axis.

in N2 is therefore a ii bond plus two it bonds (Fig. 14.6), which is consistent with the Lewis
structure : N-N for nitrd'gen.

Illustration

To obtain the V8 description of Cl., note that the ground-state electron configuration of a Cl
atom is (ArJ3s23'p31)3p!. A a bond can be formed between two atoms by spin-pairing of
the electrons in the 3p. orbitals. This description is consistent with the Lewis structure
Cl—Cl: for chlorine. The VB wavefunction for the bonding pair is the same as in eqn 2 but

with A and it now standing for the two C131). orbitals.

Self-test 14.1 Describe the ground state of HCI in valence-bond terms
[eqn 2 with A =	 B =

14.3 PoIyitoinic n]olecules
Each a bond in a polyatomic molecule is formed by the spin-pairing of electrons in any
atomic orbitals with cylindrical symmetry about the relevant internuclear axis. Likewise, it

bonds are formed by pairing electrons that occupy atomic orbitals of the appropriate
symmetry.

The valence-bond description of I10 will make this clear. The valence electron
configuration of an 0 atom is 2s2 2p;'2p2p. The two unpaired electrons in the 02p
orbitals can each pair with an electron in an H Is orbital, and each combination results in the
formation of a a bond (each bond has cylindrical symmetry about the respective 0-H
internuclear axis). Because the 2P) and 2p7 orbitals lie at 900 to each other, the two a bonds
also lie at 900 to each other (Fig. 14.7). We can predict, therefore, that H 2 0 should be an
angular molecule, which it is. However, the theory predicts a bond angle of 90°, whereas the
actual bond angle is 104.50.

Example 14.1 Predicting -the shape of a molecule by using valence-
bond theory

Describe the valence-bond structure of NH ] , and predict the bond angle of the molecule on
the basis of this description.

Method Write clown the ground-state configuration of art N atom, and decide which
electrons and orbitals can be used to form bonds. Then, from the spatial arrangement of
those atomic orbitals, infer the shape of the resulting molecule.

Answer The valeoct electron configuration of an N atom is N 2s2 2p2p2p. This
configuration suggests that three H atoms can form bonds by spin-pairing with the
electrons in the three half-filled 2p orbitals. The latter are perpendicular to each other, so we
predict a trigonal pyramidal molecule with a bond angle of 90°.

Comment The molecule is trigonal pyramidal, but the experimental bond angle is 107 0 . The
origin of this discrepancy is discussed below.

Silt -tr'st 14.2 Use valence-bond theory to suggest a shape for the hydrogen peroxide
molecule, H202.

[Each H-0-0 bond 90°1



14.8 An vp3 hybrid orbital formed from the
superposition of s and p orbitals on the same atom
There are four such hybrids: each one points
towards the corner of a regular tetrahedron. The
overall electron density remains spherically
symmetrical,
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(3) Promotion
An apparent deficiency of valence-bond theory is its inability to account for carbon's
tetravalence (its ability to form four bonds). The ground-state configuration of C is
2s2 2p21), which suggests that a carbon atom should be capable of forming only two bonds,
not four. This deficiency is overcome by allowing for promotion, the excitation of an
electron to an orbital of higher energy. Although electron promotion requires an investment
of energy, it is worthwhile if that energy can be more than recovered from the greater
strength or number of bonds that it allows to be formed, Promotion is not a real' process in
which an atom somehow becomes excited and then forms bonds: it is a contribution to the
overall energy change that occurs when bonds form.

In carbon, for example, the promotion of a 2s electron to a 2p orbital can be thought of
as leading to the configuration 2s 1 2p2p2p, with four unpaired electrons in separate

XYorbitals. These electrons may pair with four electrons in orbitals.provided by four other
atoms (such as four His orbitals if the molecule is CM 4 1 and hence form four or bonds.
Although energy was required to promote the electron, it is more than recovered by the
atom's ability to form four bonds in place of the two bonds of the unpromoted atom.
Promotion, and the formation of four bonds, is a characteristic feature of carbon because
the promotion energy is quite small: the promoted electron leaves a doubly occupied 2s
orbital and enters a vacant 211 orbital, hence significantly relieving the electron-electron
repulsion it experiences in the former.

(b) Hybridization
The description of the bonding in CH 4 (anti other alkanes) is still incomplete because it
appears to imply the presence of three r bonds of one type (formed from H Is and C2p
orbitals) and a fourth ci bond of a distinctly different character (formed from His and C2s).
This problem is overcome by realizing that the electron density distribution in the promoted
atom is equivalent to the electron density in which each electron occupies a hybrid orbital
formed by interference between the C2s and C2p orbitals. The origin of the hybridization
can be appreciated by thinking of the four atomic orbitals, which are waves centred on a
nucleus, as being like ripples spreading from a single point on the surface of a lake :4 the
waves interfere destructively and constructively in different regions, and give rise to four
new shapes.

The specific linear combinations that give rise to four equivalent hybrid orbitals are

11 1 =s±p,±p I-p.	 h2=s-p-p+p.	
(4

11 3 = S - + Pc Pr	 /74 = S + - _

As a result of the interference between the component orbitals, each hybrid orbital consists
of a large lobe pointing in the direction of one corner of a regular tetrahedron (Fig. 14.).
The angle between the axes of the hybrid orbitals is the tetrahedral angle,
cos(- 1/3) = 09.47°. Recause elch hybrid is built from one.s orbital and three p orbitals,
it is called an sp 3 hybrid orbital.

It is now easy to see how the valence-bond description of the CM 4 molecule leads to a
tetrahedral molecule containing four equivalent C-H bonds. Each hybrid orbital of the
promoted C atom confaitis a single unpaired electron; an His electron can pair with each
one, giving rise to a (T bond pointing in a tetrahedral direction. For example, the fun-
normalized) wavefunction for the bond formed by the hybrid orbital h 1 and the is, orbital
(with wavefunctin that we shall denote 4) is

i/i = /t 1 (l)A(2) + hi(2)A(l)

4	 It is admittedly 5ilcuII totriijyirsc ho a rppa resembling a 1, 0,73731 could be (Ofltr,ved. but the 9enerai idea should be clear.
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14.9 Each sp 1 hybrid orbital forms a o bond by
overlap with an His orbital located at the corner of
the tetrahedron. This model accounts for the
equivalence of the four bonds in CH.
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Because each vp 1 hybrid orbital has the same composition, all four a bonds-are identical
apart from their orientation in space (Fig. 14.9).

A further feature of hybridization is that a hybrid orbital has pronounced directional
character, in' the sense that it has an enhanced amplitude in the internuclear region. This
directional character arises from the constructive interference between the s orbital and the
positive lobes of the p orbitals (Fig. 14.10). As a result of the enhanced amplitude in the
internuclear region, the bond strength is greater than for an s or p orbital alone. This
increased bond strength is another factor that helps to repay the promotion energy.

Hybridization can also be used to describe the structure of an ethene molecule,
H 2 C=CH 7 , and the torsional rigidity of double bonds. An ethene molecule is planar, with
HCH and HCC bond angles close to 120'. To reproduce the a bonding structure, we promote
each C atom to a 2.v'2p 3 configuration. However, instead of using all four orbitals to form
hybrids, we form sp 2 hybrid orbitals by the superposition of an s orbital and twop orbitals.
As shown in Fig. 14.11, the three hybrid orbitals

h 1 = .r + 22p5

	

(3) 	 1/2

	

112 ..5 + ()	 p - ()	 p3	 (5)
1/2	 1/2

	

. /i 3 = s - ()
3 	

p - () p3

lie in a plane and point towards the corners an equilateral triangle. The third 2p orbital
(21).) is not included in the hybridization, and its axis is perpendicular to the plane in which
the hybrids lie.

7 .	 +

/
I	 Constructive

interference

r.

Destructive
in'terferonce

(a)

+

1 4 10 A more ilelailrrJ rvirrcsclitoiion of the
formation of an sp' irUr,d by irilrrfercnvc
between wavriunrth p ns cent'd on the Sante
alomc	 ciroc (To snrplifv the eprcsrnnta lion, we
have 1 9 riwed to( r.idiai nude ti the 1v orhun;ii I

14.11 (a) Air .c orbital and two p orbitals can be
hybridized to form three equivalent orbitals that
viol towards the corners of an equilateral
triangle. (b) The remaining, unhybriciiicd p orbital
is perpendicular to the plane.
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The structure of CH 2 =CH 2 can now be described as follows. The sp 2 -hybridized C atoms
each form three a bonds by spin-pairing with either the h 1 hybrid of the other C atom or
with His orbitals. The a framework therefore consists of C-H and C-C a bonds at 1200 to
each other. When the two Cl-I 2 groups lie in the same plane, the two electrons in the
unhybridizedp orbitls can pair and form a it bond (Fig. 14.12). The formation of this it bond
locks the framework into the planar arrangement, for any rotation of one CH 2 group relative
to the other leads to a weakening of the it bond (and consequently an increase in energy of
the molecule).

A similar description applies to ethyne, HCCH. a linear molecule. Now the C atoms are
sp hybridized, and the a bonds are formed using hybrid atomic orbitals of the form

It ) = S fji.	 = s — p2	(6)

These two orbitals lie along the internuclear axis. The electrons in them pair either with an
electron in the corresponding hybrid orbital on the other C atom or-with an electron in one
of the His orbitals. Electrons in the two remaining p orbitals on each atom, which are
perpendicular to the molecular axis, pair to form two perpendicular iv bonds (Fig. 14.13).

Other hybridization schemes, particularly those involving d orbitals, are often invoked to
be consistent with other molecular geometries (Table 14.1). The hybridization of N atomic
orbitals always results in the formation of N hybrid orbitals. For example. .p3d2
hybridization results in six equivalent hybrid orbitals pointing towards the corners of a
regular octahedron. This octahedral hybridization scheme is sometimes invoked to account
for the structure of octahedral molecules, such as SF,.

Table 14.	 Some hybridization schemes

Coordination	 Arrangement	 Composition
number

2	 linear	 sppd,sd
Angular	 sd

3	 Trigonal-planar	 sp2,p2d
Unsymmetrical planar	 .cpd
Trigonal pyramidal	 pd2

4	 Tetrahedral 	 sp3,sd3
Irregular tetrahedral	 spcP,p3dpd3
Square planar	 p2d2sp2d

5	 Trigonal bipyramidal 	 sp3d, spd3
Tetragonal pyramidal	 sp2d2, sd4 pd4,p3dt
Pentagonal planar 	 pd3

6	 Octahedral	 sptd2
Trigonal prismatic	 spd4,pd'
Trigonal antiprismatic	 p1d3

'Source: H. Eyring. J. Walter, and G.E. Kimball, Quantum chemistry. Wiley (1944).

Molecular orbital theory
In molecular orbital theory (MO theory), it is accepted that electrons should not be regarded
as belonging to particular bonds but should be treated as spreading throughout the entire
molecule. this theory has been more fully developed than VB theory and provides the
language that is widely used in modern discussions of bonding. To introduce it, we follow the

14.17 A representation of the structure of a double
bond in ethene; only the ii bond is shown explicitly.

14.13 A representation of the structure of a triple
bond in ethyne; only the it bonds are shown
explicitly, the overall electron density has cylindrical
symmetry around the axis of the molecule.
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same strategy as in Chapter 13, where the one-electron F-I atom was taken as the
fundamental species for discussing atomic structure and then this discussion was developed
into a description of many-electron atoms. In this chapter we use the simplest molecular
species of all, the hydrogen molecule-ion, F1 to introduce the essential features of bonding,
and Ellen U5C it as a guide to the structures of more complex systems.

1	 14.4 The hydrogen molecule-ion
The hmiltonian for the single electron in H is

H=	
e 

GAIA	 R	 B	 2m,	
v=---- +CCO\ 	 (7)

2 where TAI and r 1 are the distances of the electron from the.two nuclei (2). The one-electron
wavefunctions obtained by solving the Schrodinger equation H' = Eti are called
molecular orbitals (MO). A molecular orbital ' gives, through the value of 101 2 , the
distribution of the electron in the molecule. A molecular orbital is like an atomic orbital, but
spreads throughout the molecule.

The Schrddinger equation can be solved for H (within the Born-Oppenheimer
approximation), but the wavefunctions are very complicated functions; moreover, the
solution cannot be extended to polyatomic systems. Therefore, we shall adopt a simpler
procedure that, while more approximate, can be extended readily to other molecules.

(a) Linear combinations of atomic orbitals
If an electron can be found in an atomic orbital belonging to atom A and also in an atomic
orbital belonging to atom B, the overall wavefunction is a superposition of the two atomic
orbitals:

(8)

where, for H, A denotes OHIIA and B denotes iPN and N is a norFoalization factor. The
technical term for the superposition in eqn 8 is a linear combination of atomic orbitals
(LCAO). An approximate molecular orbital formed from a linear combination of atomic
orbitals is caled an LCAO-MO. A molecular orbilal 'that has cylindrical symmetry around the
internuclear axis, such as the one we are discussing, is called a if orbital because it resembles
an s orbital when viewed along the axis and, more precisely, because it Ras zero orbital
angular momentum around the internuclear axis.

Example 14.2 Normalving a rnolccular orbital

Normalize the molecular orbital ' in eqn 8.

Method We need to find the factor N such that

f dz =

To proceed, substitute the LCAO into this integral, and make use of the fact that the atomic
orbitals are individually normalized.

Answei When we substitute the wavefunction, we find

f iP'iPdz = W2{JA2dt -I- f B 2 dz +2fABdt}

= N1 (l I- I -I- 25)

27—A
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where S = f Al? di. For the integral to be equal to I, we require

{2(1.+ S)}12

Comment In H. S0.59 so N = 0.56.

ScIf-ttt 14:1 Normalize the orbital çb_ in eqri 8.
[N= 1/{2(l —S)}"2,soN= 1.101

Figure 14.14 shows the contours of constant amplitude for the molecular orbital fr, in
eqn 8, and Fig. 14.15 shows its boundary surface. Plots like these are readily obtained using
commercially available software. The calculation is quite straightforward, because all we
need do is feed in the mathematical forms of the two atomic orbitals, and let the program do
the rest. In this case, we use

	

e' 1°')	 emB/i
(9)

and note that rA and ry are not independent (3):

	

r. = {rj •i- R	 2rARcosO}2
	

(10)

To make this plot, we have taken N2 = 0.31 (Example 14.2).

(b) Bonding orbitals
According to the Born interpretation, the probability density of the electron in H is
proportional to the square modulus of its wavefunction. The probability density
corresponding to the (real) wavefunction 0, in eqn 8 isrA	 r8	

=N2(A2+B2+2AB)	 (11)

A	 R	
-'	 This probability density is plotted in Fig. 14.16.

An important feature of the probability density becomes apparent when we examine the
3	 internuclear region, where both atomic orbitals have similar amplitudes. According to

14 1, The boundary surface of a a orbital encloses
the region where the electrons that occupy the
orbital are most likely to be found. Note that the
orbital has cylindrical symmetry.

14.1 The electron density calculated by forming
the square of the wavefunction used to Construct
Fig. 1414. Note the accumulation of electron
density in the internuclear region.

27—B
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14.17 A representation of the constructive
interference that occurs when two His orbitals
overlap and form a bonding or orbital. Compare this
illustration with Fig. 14.14.
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eqn 11, the total probability density is proportional to the sum of

42 the probability density if the electron were confined to the atomic orbital on A.

2. B2 , the probability density if the electron were confined to the atomic orbital on B.

3. 2AB, an extra contribution to the density.

This last contribution, the overlap density, is crucial, because it represents an enhancement
of the probability of finding the electron in the internuclear region. The enhancement can be
traced to the constructive interference of the two atomic orbitals: each has a positive
amplitude in the internuclear region, so the tcftal amplitude is greater there than if the
electron were confined to a single atomic orbital.

We shall frequently use the result that electrons accumulate in regions where atomic
orbitals overlap and interfere constructively. The accumulation of electron density between
the nuclei puts the electron in a position where it interacts strojlgly with both nuclei. Hence,
the energy of the molecule is lower than that of the separate atoms, where each electron

can interact strongly with only one nucleus5
The a orbital we have described is an example of a bonding orbital, an orbital which, if

occupied, helps to bind two atoms together. Specifically, we label it ]a as it is the 47 orbital of

lowest energy. An electron that occupies a ci orbital is called a ci electron and, if that is the
only electron present in the molecule (as in the ground state of Hfl, then we report the

configuration of the molecule as Ioi.
The energy of the Ia orbital decreases as R decreases from large values because electron

density accumulates in the internuclear region as the constructive interference between the
atomic orbitals increases (Fig. 14.17). However, at small separations there is too little space
between the nuclei for significant accumulation of electron density there. In addition, the
nucleus-nucleus repulsion (which is proportional to I /R) becomes large. As a result, the

energy of the molecule rises at short distances, and there is a minimum in the potential

energy curve. Calculations on H' give R = 130 pm and D = 1.77 eV (171 kJ mo19; the

experimental values are 106 pm and 2.6 eV, so this simple LCAO-M0 description of the

molecule, while inaccurate, is not absurdly wçpng.

Justification 14.3

To evaluate the energy of the bonding orbital, we calculate the expectation value of the
hamiltonian, just as in VB theory. However, the calculation is much simpler, because there
is only one electron, so there are no integraFs corresponding to electron-electron
repulsions. The expectation value of the hamiltonian in eqn 7 is

=	
+ e2 -	

( 12)

(We have included the energy for both linear combinations in eqn 8 in this expression: for
the bonding orbital, use the upper sign throughout.) The integrals that appear in this

Unfortunately. th ,Sf onritonal explanation is firobabty incorrect in the case at H; lal least). because tdnttiog an electron away

front a nucleus into thdnternuckai regaIn mites its potential energy the modern enplamation is more subtic, still cnntrcrrerSidl.
and does nut enrage from the simple LCAO trn-atnrCnt given here. It teens that. am the name tune as the electron 

Shifts Into the

,nternuctelr region, thc atianric ortitais cp rnt. This orbital shnntiige imprones the ckctrOit-no<heos attraction rome than it is

decreased by the migration to the interiodeur region, so their is a net lowering of potential energy the kinetic energy of the
electron is also nrratbert because the curvature Of TItO wanetunction is changed. baT the change in kinetic energy is dominated by

the change in potential cnrigy
throughout the tolbowng dn(uSsifia we actiihe the strength of iyrcnrical bonds to the accamaiatio,r Of electron density in the

internuclear irgon We leave open the question whether, in molecules more co.npirnited than H the true source of energy
lowering it that accumulation usd1 of slime indirect but retated effect
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Experimental	
expression are

a0	 a0
+ -

Calculated	
S = J ABth = {
	

R	 (R\2

	

e2 A 2	 e 
j = — — dr	 (

2	 R\ 2R/ao}	 (13)
4rre	 rB	 I -	 a0

2on	
T	 4a0	 ao)

	

e2 JAB	 e2 ( R
k=— —dr=------1+— e

\ All three integrals are positive and decline exponentially towards zero at large internuckar
separations. The integral  is a measure of the interaction between a nucleus and electron
density centred on the other nucleus; k is a measure of the interaction between a nucleus10	
and the excess probability in the internuclear region arising from oVerlap. It is easy to use a
mathematical software package to plot the energy as a function of R and hence to obtain

-0.2

14.18 The calculated and experimental molecular
potential energy curves for a hydrogen molecule-
ion.

Region of
destructive
interference

14.19 A representation of the ileStrucirve
interference that occurs when two His orbitals
overlap and form an antibonding a orbital.
Compare this il!ust r rio n with Fig. 14.20.

(c) Antibondrng orbitals
The linear combination rL' in cqn 8 corresponds to a higher energy than 0,. Because it is
also a ty orbital we label it 2a. this orbital has an internuclear nodal plane where A and B
cancel exactly (Fig. 14.19 and Fig. 14.20). the probability density is

= N 2 (4 2 f B 1. -2.48)	 (14)

There is a reduction in probability density between the nuclei due to the -2AB term
(Fig. 14.21); in physical terms, there is destructivt interference where the two atomic
orbitals overlap. The most significant point of difference between ,&_ and i/' is the
existence of a nodal plane in '_, on which the amplitude of one atomic orbital is cancelled
by the other. The physical significance of the nodal plane is that an electron that occupies
the orbital will not be found anywhere on the plane.

The 2c orbital is an example of an antibonding orbital, an orbital that, if occupied,
contributes to a reduction in the cohesion between two atoms and helps to raise the energy
of the molecule relativeto the separated atoms. Antibonding orbitals are often labelled with
an asterisk ("), so this particular orbital could also be denoted 2o (and read '2 sigma star').

The destabilizing effect of an antibondirtg electron is partly due to the fact that it is
excluded from the internuclear region, and hence is distributed largely outside the bonding
region. In effect, whereas a bonding electron pulls two nuclei together, an antibonding
electron pulls the nuclei apart (Fig. 14.22). Figure 14.18 also shows another feature that we
draw on later: E_ - EHi,> - EH ,,j. which indicates that the antibonding orbital is
more antibonding than the bonding orbital is bonding. This conclusion stems in part from
the presence of the nucleus-nucleus repulsion (e2 /4recR), which raises the energy of both
molecular orbitals.

14.5 The structures of diatomic molecules
In Chapter 13 we used the hydrogenic atomic orbitals and the building-up principle to
deduce the ground electronic configurations of many-electron atoms. We now do the same
for many-electrom diatomic molecules by using the H molecular orbitals. The general
procedure is to construct molecular orbitals by combining the available atomic orbitals. The
electronssupplied by the atoms are then accommodated in the orbitals so as to achieve the
lowest overall energy subject to the constraint of the Pauli exclusion principle, that no more
than two electrons may occupy a single orbital (and then must be paired). As in the case of
atoms, if several degenerate molecular orbitals are available, we add the electrons singly to



(a)

(b)

14.20 (a) The amplitude of the antibonding
molecular orbital in a hydrogen molecule-ion in a
plane containing the two nuclei and (b) a contour
representation of the amplitude. Note the
internuclear node.

14.5 THE STRUCTURES OF DIATOMIC MOLECULES	 399

4

each individual orbital before doubly occupying any one orbital (because that minimizes
electron-electron repulsions). We also take note of Hund's rule (Section 114d) that, if
electrons do occupy different degcnerate orbitals then a lower energy is obtained if they do

Etc
1. .
	 so with parallel spins.

(a) The hydrogen and helium molecules
Consider H 2, the simplest many-electron diatomic molecule. Each H atom contributes a Is
orbital (as in Hi), so we can form the hi and 2 orbitals from them, as we have seen
already. At the experimental internuclear separation these orbitals will have the energies
5hOWfl in Fig. 14.23, which is called a molecular orbital energy level diagram. Note that
from two atomic orbitals we can build two molecular-orbitals. In general, from N atomic

orbitals we can build N molecular orbitals.
There are two electrons to accommodate, and both can enter hr by pairing their spins.

The ground-state configuration is therefore lo and the atoms are joined by a bond
consisting of an electron pair in a bonding a orbital. This approach shows that an electron
pair, which was the locus of Lewis's account of chemical bonding, represents the maximum
number of electrons that can enter a bonding molecular orbital.

The same argument shows why He does not form diatomic molecules. 6 Each He atom

contributes a is orbital, so Ic and 2er molecular orbitals can be constructed, Although

these orbitals differ in detail from those in H 7 , the general shape is the same, and we can use

the same qualitative energy level diagram in the discussion. There are four electrons to
accommodate. Two can enter the hr orbital, but then it is full, and the next two roust enter
the 2c' orbital (Fig. 14.24) The ground electronic configuration of He  is therefore 102?2.
We see that there is one bond and one antibond. Because an antibond is slightly more

antibonding than a bond is bonding, an He 2 molecule hasa higher energy than the separated

atoms, so it is qnstable relative to the individual atoms.

14.21 the electron density calculated by forming
the square of the wavefurretion used to construct
Fig. 14.20. Note the elimination of electron density
from the Internuclear region.

(a)

(b)

16 AN

14.22 A partial explanation of the origin of
bonding and antibonding effects. lal In a bonding
orbital, the nuclei are attracted to the
accumulation of cIectron density in the
internuclear region. (b) in an antibonding orbital.
the nuclei are attracted to an accumulation of
electron density outside the internuclear region.

2as

Hj!1S

14.23 A molecular orbital energy level diagram for
orbitals constructed from the overlap of Ills
orbitals; the separation of the levels corresponds to
that found at the equilibrium bond length. The
ground electronic configuration of H 7 is obtained
by accommodating the two electrons in the lowest
available orbital (the bonding orbital).

S Ouinmr hetum noeciiies hair been prepared quite recently: the y consist of pass of atoms held together by weak van den
Wails lnrcs of the type described fl Chapter 22.
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2os

H1j!/e1s

14.24 The ground electronic configuration of the
hypothetical four-electron molecule He 2 has two
bonding electrons and two antibonding electrons. If
has a higher energy than the separated atoms, and
so is unstable.

Table 14.2 Bond lengths

Bond	 Order	 Re/pm

HO	 I	 74.14
NN	 3	 109.76
1-ICI	 1	 127.45
CO	 1	 1/4
CC	 I	 /54
CC	 2	 134
CC	 3	 120

More values will be found in the Data
section at the end of this volume. Numbers
in italics are mean values for polyatomic
molecules.

Tattle i4.3* Bond dissociation energies

Bond	 Order	 Del (kJ moll -')

RH	 I	 432.1
NN	 3	 941.7
HCI	 I	 427.7
CH	 1	 435
CC	 I	 36/i
CC	 2	 720
CC	 3	 962

• More values will be found in the Data
section. Numbers in italics are mean values
for polyatomic molecules.

2s	 2s

A 2j,1 8 2p

14.25 According to molecular orbital theory, a
orbitals are built from all orbitals that have the
appropriate symmetry. In homonucfear diatomic
molecules of Period 2, that means that two 2s and
two 2p, orbitals should be used. From these lour
orbitals, four molecular orbitals can be built.
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(b) Bond order
A measure of the net bonding in a diatomic molecule is its bond order, b:

h = (,t -	 (15J

where n is the number of electrons in bond ingorbitals and a' is the number of electrons in
antibonding orbitals. Thus each electron pair in a bonding orbital increases the bond order
by I and each' pair in an antibonding orbital decreases b by 1. For H 7 , b = I, corresponding
to a single bond, H-H, between the two atoms. In He 2 , b = 0, and there is no bond.

As we shall see, the bond order is a useful parameter for discussing the characteristics of
bonds, because it correlates with bond length and bond strength:

The greater the bond order between atoms of a given pair of elements, the
shorter the bond.
The greater the bond order, the greater the bond strength.

Table 14.2 lists some typical bond lengths in diatomic and polyatomic molecules. The
strength of a bond is measured by its bond dissociation energy, D. the energy required to
separate the atoms to infinity! lable 14.3 lists some experimental values of dissociation
energies.

(c) Period 2 diatomic molecules
We now see how the concepts we have introduced apply to homonuclear diatomic
molecules in general. In elementary treatments, only the orbitals of the valence shell are
used to form molecular orbitals.

2it'

(.

I4.6 A representation of the composition of 	 1427 A schematic representation of the structure
bonding and anlrboniling a orbitals built from the 	 of m bonding and antibonding molecular orbitals.
overlap of p orbitals. These illustrations are
schematic.

Bond dissociation r4e,giei ire commonly used in therrnod',.namic cycles, where bond enthalpes, 
&._,11 should be usedinstead It ful",ws tram Ire same 1,1 of argLmrni used in Juttrf,cat,on 13.9 concerning omzaion erithaipes lbs

X, (g)	 ?X(g)	 .s.iPi°lTl	 E) -s- 1,RT

in dcrne this relation, rue hone supposed that live maim conuant-preswre hear capacity of X 1 is R. for there is a couithejtion
from two r0iOIiori2J modes as well as three translational modes.



14.28 In a linear molecule the electron density in a
it orbital has cylindrical symmetry around the
internuclear axis.

Atom	 Molecule	 Atom

460

14.5 THE STRUCTURES OF DIATOMIC MOLECULES 	 401

In Period 2, the valence orbitals are 2s and Zp. A general principle of molecular orbital

theory is that all orbitols of the appropriate symmetry contribute to a molecular orbital.

Thus, to build a orbitals, we form linear combinations of all atomic orbitals that have
cylindrical symmetry about the internuclear axis. These orbitals include the 2s orbitals on
each atom and the 2p orbitals on the two atoms (Fig. 14.25). Thus, the general form of the a

orbitals that may be formed is

= CA4A2J l- C 5020 + CP.2p,tIJA2p, + Ct2p,hI1B2p,	
(16)

From these four atomic orbitals we can form four molecular orbitals of a symmetry by an

appropriate choice of the coefficients c.
The procedure for calculating the coefficients will be described in Section 14.7. At this

stage we adopt a simpler route, and suppose that, because the 2s and 2p orbitals have
distinctly different energies, they may be treated separately. That is, the four or orbitals fall
approximately into two sets, one consisting of two moleculal orbitals of the form

= CA110A2 + CB2/B21
	 (17a)

and another consisting of two orbitals of the form

= A21'uIA241, + 4121,tB21,
	 (17b)

Because atoms A and B are identical, the energies of their 2s orbitals are the same, so the
coefficients are equal (apart from a possible difference in sign); the same is true of the 2p0

orbitals. Therefore, the two sets of orbitals have the form ttl! A21 ±	 and t1'A, ±

The 2s orbitals on the two atoms overlap to give a bonding and an antibonding a orbital
(hr and 2a. respectively) in exactly the same way as we have already seen for is orbitals. The

two 2p orbitals directed along the internuclear axis overlap strongly. They may interfere
either constructively or destructively, and give a bonding or antibonding a orbital,
respectively (Fig. 14.26). These two a orbitals are labelled 3a and 4cr', respectively. In
general, note how the numbering follows the order of increasing energy.8

(d) ir orbitals
Now consider the 2p, and 2p orbitals of each atom. These orbitals are perpendicular to the

internuclear axis and may overlap broadside-on. This overlap may be constructive or
destructive, and results in a bonding or an antibonding it orbital (Fig. 14.27). The notation it

is the analogue of p in atoms for, when viewed along the axis of the molecule, a it orbital
looks like a p orbital, and has one unit of orbital angular momentum around the internuclear

axis. The two 2p, orbitals overlap to give a bonding and antibonding it orbital, and the two

2p orbitals overlap to give two it orbitals. The it, and is, bonding orbitals are degenerate; so

too are their antibonding partners. Strictly, because we are dealing with molecules with
cylindrical symmetry, we should consider the complex forms of the p orbitals, one
corresponding to circulation about the internuclear axis clockwise and the other

anticlockwise. That is, we form itt Of: pi±I',. corresponding to angular momenta Ala

with A = ± 1. Each complex orbital is like a cylindrical torus (Fig. 14.28). Although it is

conventional to draw the real forms, it should not be forgotten that each at orbital in a linear

molecule corresponds to a cylindrical distribution of charge.

In some cases, it orbitals are less strongly bonding than a orbitals because their maximum

overlap occurs off-axis. This relative weakness suggests that the molecular orbital energy
level diagram ought to be as shown in Fig. 14.29. However, we must remember that we have

constructed the diagram on the assumption that the 2s and 2p 1 orbitals contribute tc

different sets of molecular orbitals, whereas in fact all four atomic orbitals contribute jointh

8

	

	 In in alternat.oe Salem Of notation, to and 2o are used to dcigndte the molecular ombrtah, tomnned tram the COIC is orbitals at
the atoms; hr omtaIalS wr are considering woold then be labelled from3 tot, We are ignoring orbrtalS forrrKA from core orbitals.

i:T
14.29 The molecular orbital energy level diagram
for honronuclear diatomic molecules. As remarked
in the text, this diagram should be used for O
and F3.
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Atom	 Molecule Atom

: ^' 2p'.

2s

\	 -/
(4.30 The variation of the orbital energies of Period 2 homonuciear diatomic
The g and a labels'ce explained later (Section 14.63). 4 $ 1 An alternative molecular orbital energy level

diagram for homonuclear diatomic molecules. As
remarked in the text, this diagram should be used
for diatomies up to and including N1.

to the four or orbitals. Hence, there is no guarantee that this order of energies should prevail,
and it is found experimentally (by spectroscopy) and by detailed calculation that the order
varies along Period 2 (Fig. 14.30). The order shown in Fig. 14.31 is appropriate as far as N2,
and Fig. 14.29 applies for 0 2 and F2 . The relative order is controlled by the separation of the
2s and 2p orbitals in the atoms, which increases across the group. The consequent switch in
order occurs at about N2.

(e) The overlap integral

The extent to which two atomic orbitals on different atoms overlap is measured by the
overlap integral, 5:

= f	 dr	 [18}

If the atomic orbital 
'A on A is small wherever the orbital ifr on B is large, or vice versa,

then the product of their amplitudes is everywhere small and the integral—the surn of these
products—is small (Fig. 14.32). If OA and ii 1a are simultaneously large in some region of
space, then S may be large. if the two normalized atomic orbitals are identical (for example,
Is orbitals on the same nucleus), then S = I. In some eases, simple formulas can be given for
overlap integrals and the variation of S with bond length plotted (Fig. 14.33). It follows that
S = 0.59 for two His orbitals at the equilibrium bond length in H, which is an unusually
large value. Typical values for orbitals with n = 2 are in the range 0.2 to 0.3.

Now consider the arrangement in which an s orbital is superimposed on a p1 orbital of a
different atom (Fig. 14.34j. The integral over the region where the product of orbitals is
positive exactly cancels the integral over the region where the product of orbitals is
negative, so overall 8 =,O exactly. Therefore, there is no net overlap between the a and p
orbitals in this arrangement.

(f The structures of homonuclear diatomic molecules
We show the general layout of the valence-shell atomic orbitals of Period 2 atoms on the left
and right of the molecular orbital energy level diagrams in Figs. 14.29 and 14.31. The lines in

(a)

(b)

14.32 (a) When two orbitals are on atoms that are
far apart, the wavefunctions are small where they
overlap, so S is small. lb) When the atoms are
closer, both orbitals have significant amplitudes
where they overlap, and S may approach I. Note
that S will decrease again as the two atoms
approach more closely than shown here, because
the region of negative amplitude of the p orbital
Starts to overlap the positive overlap of the a
orbital. When the centres of the atoms coincide,
S = 0.
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1433 The overlap integral, S. between two His
orbitals as a function of their separation R.
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.	 •

14.34 A  orbital in the orientation shown here has
zero net overlap IS = 01 with the a orbital at all
internuclear Separations.

the middle are an indication of the energies of the molecular orbitals that can be formed by
overlap of atomic orbitals: from the eight valence shell orbitals (four from each atom), we can
form eight molecular orbitals. With the orbitals established, we can deduce the ground
configurations of the molecules by adding the appropriate number of electrons to the orbitals
and following the building-up rules. Anionic species (such as the peroxide ion, 0) need more
electrons than the parent neutral molecules; cationic species (such as Ofl need fewer.

Consider N 1 , which has 10 valence electrons. For this molecule, we use Fig. 14.31. Two
electrons pair, occupy, and fill the let orbital; the next two occupy and fill the 2c orbital. Six
electrons remain. There are two In orbitals, so four electrons can be accommodated in them.
The last two enter the 3z orbital. The ground-state configuration of Na is therefore
I c2 2c I ir4 3c2 and the bond order is 1 (8 - 2) = 3. This bond order accords with the Lewis
structure of the molecule (:NN :) and is consistent with its high dissociation energy
(942 kJmol).

The ground-state electron configuration of 02, with 12 valence electrons, is based on
Fig. 14.29, and is 1cz 2 2o 23c2 1ir4 27r' 2 . Its bond order is 2. Arcprding to the building-up
principle, however, the two 21r electrons occupy different orbitals: one will enter 2,t and
the other will enter 2,z. Because the electrons are it, different orbitals, they will have
parallel spins. Therefore, we can predict that an 0 2 molecule will have a net spits angular
momentum S = I and, in the language introduced in Section 13.7, be in a triplet state.
Because electron spin is the source of a magnetic moment, we can go on to predict that
oxygen should be paramagnetic. 9 This prediction, which valence-bond theory does not
make, is confirmed by experiment.

An F2 molecule has two more electrons than an 02 molecule. Its configuration is
therefore 1e2 2?2 3e2 1ir4 2it 4 and b = 1. We conclude that F3 is a singly bonded molecule,
in agreement with its Lewis structure. The low bond order is consistent with its low
dissociation energy (154 kJ moI). The hypothetical molecule dineon, Ne 2 , has two further
electrons: its configuration is 1a 2 2?23alir42n 44a 2 and b 0. The zero bond order is
consistent with the monatomic nature of Ne.

Example 14.3 Judqinq the relative bond strengths of molecules and
ions

Judge whether N is likely to have a larger or smaller dissociation energy than N3.

Method Because the molecule with the larger bond order is likely to have the larger
dissociation energy, compare their electronic configurations and assess their bond
orders.

Answer From Fig. 14.31, the electron configurations and bond orders are

N 3	 1c22f2ljr43tr2	 h=3

N	 l,r22a'2lir43crt	 b=2

Because the cation has the smaller bond order, we expect it to have the smaller dissociation
energy.

Comment The exprimental dissociation energies are 945 kJ mol t for N. and
842 kJmo1 for N'

O A paramagnetic substance tends to move into a magnetic held, a diamagnetic substance tends to now Out of one
Paramaqnetisnr Inc rarer properly. ansco when the molecules have unpaired election spins Both properties are discussed in more
detail in Section 225
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14. 3s The parity of an orbital is even (g) if its
wavefunction is unchanged under inversion in the
centre of symmetry of the molecule, but odd Eu) if
the wavefunction changes sign. lieteronudear
diatomic molecules do not have a centre of
Inversion, so for them the g, u classification is
irrelevant
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Self-test 14.4 Which can be expected to have the higher dissociation energy, F 2 or
[Ffl

14.6 More about notation

We have seen how to label molecular orbitals by taking note of their symmetries with
respect to rotation around the internuclear axis. Certain other features of their symmetry
can also be used. As we shall see in later chapters, these symmetry designations are used to
formulate selection rules in molecular spectroscopy. Symmetry designations are described in
detail in Chapter 15, and the following remarks are expanded there.

(a) Parity
The molecular orbitals of hnrnonuclear diatomic molecules are labelled with a subscript g or
u which specifies their parity, their behaviour under inversion. To decide on the parity,
consider any point in a homonuclear diatomic molecule, and note the sign of the orbital.
Then imagine travelling on a straight line through the centre of the molecule to a point the
same distance out on the other side; this process is called inversion and the central point is
the centre of inversion (Fig. 14.35). If the orbital has the same sign, it has even parity and is
denoted g (from gerade, the German word for even(. If the orbital has opposite sign, then it
has odd parity and is denoted u (from ungerade . uneven). The parity designation applies only
to homonuclear diatomic molecules, because heteronuclear diatomic molecules (such as
HCI) do not have a centre of inversion.

We see from Fig. 14.35 that a bonding or orbital has even parity; so we write it an
antibonding or orbital has odd parity and is written c., . A bonding it orbital has odd parity
and is denoted it and an antibonding it orbital has even parity, denoted

(b) Term symbols

The term symbols of linear molecules (the analogues of the symbols 2 P, etc. for atoms) are
constructed in a similar way to those for atoms, but now we must pay attention to the
component of total orbital angular momentum about the internuclear axis, Alt. The value of
(A( is denoted by the symbols E, ft A.... for J AI = 0, 1,2..., respectively. These labels are
the analogues of S, P, D,... for atoms.

The value of A is the sum of the values of A for the individual electrons in a mokcule. A
single electron in a ir orbital has A 0: the orbital is cylindrically symmetrical and has no
angular nodes when viewed along the internuclear axis. Therefore, if that is the only electron
present, A = 0. The term symbol for H is therefore E. As in atoms, we use a superscript with
the value of 2S + Ito denote the multiplicity of the term. Ip this case, because there is only
one electron, S = s = I and the term symbol is 2E, a doublet term. The overall parity of the
term is added as a right subscript, and (if there are several electrons) is calculated by using

gxg=g	 uxu =g	 uxg= u	 (19)

(The rules can be generated by interpreting gas +1 and u as - I.) For H, the parity of the
only occupied orbital is g, sZi the term itself is also g, and in full dress is The term symbol
for any closed-shell homonuclear diatomic molecule is'E ll because the spin is zero (all
electrons paired), there is no orbital angular momentum from a closed shell, and the overall
parity is g.

10 FaIr Irnp1itiIy fl romparing hoananucirar and hnlrrnnuclrar molaculas, we ignore the parity rubsrnpin when numbering OubitaIS
howeurr, a more laimll ronurnlon is In number the S and a orbitals separately

11 llcak from SrcI,na 14.F4 that J, mu lhr component ul orbital angular nomfinlum an he inlemnudra, uris
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A it electron in a diatomic molecule has one unit of orbital angular momentum about the
internuclear axis (). = ± I) and, if it is the only electron outside a closed shell, gives rise to a
TI term. if there are two it electrons (as in 02) then the term symbol may be either (if the
electrons are travelling in opposite directions, which is the case if they occupy different it
orbitals, one with). = + I and the other with A = - I) or A (if they are travelling in the same
direction, which is the case if they occupy the same it orbital, both A = + I, for instance). For

02' the two it electrons occupy different orbitals with parallel spins, so the ground term is
E. The overall parity of the molecule is

(closed shell) xgxg = g

The term symbol is therefore
For  terms, a ±superscript denotes the behaviour of the molecular wavefunction under

reflection in a plane containing the nuclei (Fig. 14.36). if, for convenience, we think of 02 as

having one electron in 2n, which changes sign under reflection in the xz-plane, and the
other electron in 27t, which does not change sign under reflection in the same plane, the
overall reflection symmetry is

(closed shell) x (+) x (—) = (—)	 -.

and the full term symbol is 	 The need for all this dressing of a basic symbol will become
apparent when we deal with the spectroscopic selection rules in Chapter 17.

14.7 Heteronude'ar tliatorntc tnolectzks
A heteronuclear diatomic molecule is a diatomic molecule formed from atoms of two
different elements, such as CO and HCI. The electron distribution in the covalent bond
between the atoms is not evenly shared because it is energetically favourable for the
electron pair to be found closer to one atom than the other. This imbalance results in a polar
bond, a covalent bond in which the electron pair is shared unequally by the two atoms. The
bond in HF, for instance, is polar, with the electron pair closer to the F atom. The
accumulation of the electron pair near the F atom results in that atom having a net negative
charge, which is called a partial negative charge and denoted ö—. There is a matching
partial positive charge, ô+, on the H atqm.

(a) Polar bonds
A polar bond consists of two electrons in an orbital of the form

= CAA + CBB	 (20)

with unequal coefficients. The proportion of the atomic orbital A in the bond is CAl2 and

that of B is c512. A nonpolar bond has IA l 2 C812 and a pure ionic bond has one

coefficient zero (so the species A 4 B would have CA = 0 and co = I). The atomic orbital

with the lower energy makes the larger contribution to the bonding molecular orbital. The
opposite is true of the antibonding orbital, for which the dominant component comes from
the atomic orbital with higher energy.

These points can be illustrated by considering HF, and judging the energies of the atomic
orbitals from the ionization energies of the atoms. The general form of the molecular
orbitals is

= CHU + CF,L/F (21)

where t/'H is an His orbital and OF is an F2p orbital. The His orbital lies at 13.6 eV below the

zero of energy (the separated proton and electron) and the F2p orbital ties at 18.6 eV below
the zero of energy (Fig. 14.37). Hence, the bonding a orbital in HF is mainly F2p and the
antibonding a orbital is mainly His orbital in character. The two electrons in the bonding
orbital are most likely to be found in the Up orbital, so there is a partial negative charge on
the F atom and a partial positive charge on the H atom.

..	 ,..

In

14.36 The ± in a term symbol refers to the
symmetry of an orbital when it is reflected in a
plane containing the two nuclei.

Ionization limit

>	 >	 > >
a)	 a)	 a)

CD	 .	 cc	 (0

C')

8(H)
- 0.19i(F)

Hls

0.19t(H)
+ 0.98.(F) ,Z F2p

14.37 The atomic orbital energy levels of H and F
atoms and the molecular orbitals they form.
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(b) Electronegativity
The charge distribution in bonds is commonly discussed in terms of the electron egativity, x
(chi), of the elements involved. The electron egativity is a parameter introduced by linus
Pauling as a measure of the power of an atom to attract electrons to itself when it is part of
a compound. Pauling used valence-bond arguments to suggest that an appropriate
numerical scale of electronegativities could be defined in terms of bond dissociation
energies, D, and proposed that the difference in eleetronegativities could be expressed as

XA -	 = 0- 10211)(A—B) - [D(A—A) + D(B—B)j} 112 	 [22]

Electronegativities based on this definition are called Pauling electronegativities. A list of
Pauling electronegativitics is given in Table 14.4. The most electronegative elements are
those close to fluorine: the least are those close to caesium. It is found that, the greater the
difference in electronegativities, the greater the polar character of the bond. The difference
for HF, for instance, is 1.79-,a C-H bond, which is commonly regarded -as al most .nonpolar,
has an electronegativity difference of 0.51.

The American spectroscopist R.S. Mulliken proposed an alternative definition of
electronegativity. He argued that an element is likely to be highly electronegative if it
has a high ionization energy (so it will not release electrons readily) and a high electron
affinity (so it is energetically favorable to acquire electrons). The Mulliken electron egativity
scale is therefore based on the definition

XM =	 + E 0 )	 [23]

where / is the ionization energy of the element and E. is its electron affinity, both in
electronvolts (Section 13.40. 12 the Mulliken and Pauling scales are approximately in line
with one another.

(c) The variation principle
A more systematic way of discussing bond polarity and finding the coefficients in the linear
combinations used to build molecular orbitals is provided by the variation principle:

If an arbitrary wavefuntion is used to calculate the energy, the value
calculated is never less than the true energy.

This principle is the basis of all modern molecular structure calculations. The arbitrary
wavefunction is called the trial wavefunction. The principle implies that, if we vary the
coefficients in the trial wavefunction until the lowest energy is achieved (by evaluating the
expectation value of the hamiltonian for each wavefunction), then those coefficients will be
the best. We might get a lower energy if we use a more complicated wavefunction (for
example, by taking a linear combination of several atomic orbitals on each atom), but we
shall have the optimum (minimum energy) molecular orbital that can be built from the
chosen basis set, the given set of atomic orbitals.

The method can be illustrated by the trial wavefunction in eqn 20&We show in the
Justification below that the coefficients are given by the solutions of the two secular
equations 14

(aA - E)cA + 	 ES)CB = 0

(/3 - ES)CA + CB - E)c = 0

12 Three we renta's technical difficulties with this definition or connection with the electronic state Chosen to represent the state of
the atom in a compound.

13 A rpaOonatEy reliable corr,,eesron between the twos 	1.31f - 1,37

14 The nine 'secular' is derived from the L1io word for age or generation. The term comes via astronomy, w)reoe the same equ3tears
appear in connection with tkrwly accumulating nrodfcølioot of planetary orb.ts.
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Table 14.4 Pauling clectronega-
tivities

Element	 XP

2.2
2.6
3.0
3.4
4.0

CI
	

3.2
Cs
	

0.79

• More values will be fdund in the Data
section.

(24)
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The parameter  is called a Coulomb integral. It canbe interpreted as the energy of the electron
when it occupies A,  (for a) or B (for as), and is negative. Ina homonuclear diatomic molecule,
CEA 

= a. The parameter fi is called a resonance integral (for classical reasons). It vanishes
when the orbitals do not overlap, and at equilibrium bond lengths it is normally negative.

Justification 14.4

The trial wavefunction in eqn 20 is real but not normalized because at this stage the
coefficients can take arbitrary values. Therefore, we can write i = (' but do not assume
that f 02 dr  = I. The energy of the trial wavefunction is the expectation value of the
energy operator (the hamiltonian, H, Section 11,5):

25-

We must search for values of the coefficients in the trial function that minimize the value
of E. This is a standard problem in calculus, and is solved by finding the coefficients for
which

E 0	0E0

UCA

The first step is to express the two integrals in terms of the coefficients. The denominator
is

fdr = f(CAA +c5B)di

= c fn2 di ^ cB 
fB2 dt -I- ZCA C B JAB di

= c3 + 4 + 2CACBS

because the individual atomic orbitals are normalized and the third integral is the overlap
integral S (eqn 18). Thenumerator is

J ifrH& di = J(cAA 4- cBB)H(CA,4 + cgB) di

= C2 f ABA di +41 BHB di + CACB J AHB di

+ CAL8 I BHA dT

There are some complicated integrals in this expression, but we can combine them all into
the parameters

o A fMIAdt	 B=J8HBdt fl=JABBdi=J BHA di

[2
Then

fçfrH,iir	
A(XA + COB

The complete expression for E is

F =	 + 2CACOP	
(27)-	 c3 + 4 + 2CAC8S

Its minimum is found by differentiation with respect to the two coefficients and setting
the results equal to 0. This involves elementary but slightly tedious work, and the end result
is eqn 24.
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To solve the secular equations for the coefficients we need to know the energy E of the

orbital. As for any set of simu lthneous equations, the secular equations have a solution if the
secular determinant, the determinant of the coefficients, is zero, that is, if

aA — E fl — ES =	 (28)
fl — ES O B — E

This determinant exands to a quadratic equation in E (see Example 14.4). Its two roots give

the energies of the bonding and antibonding molecular orbitals formed from the atomic
orbitals and, according to the variation principle, these roots are the best energies for the

given basis set

Example 14.4 Finding the roots of a secular determinant

Find the energies E of the bonding and antibonding orbitals'of a homonuclear diatomic

molecule by solving eqn 28.

Method We need to know that a 2 x 2 determinant expands as follows:

a 
= ad - bc

cd

Answer When we apply the determinant expansion rule to eqn 28 with aA = aB = a, we

get

E)2_ (fl _ES)20
ES	 E

The solutions of this equation are

E- a±fl
 1±S

Self-test 14. Find the coefficients corresponding to these two energies.
[See belqw; eqn 301

The values of the coefficients in the linear combination are obtained by sOlg the
secular equations using the two energies obtained from the secular determinant The lower
energy gives the coefficients for the bonding molecular orbital, the upper energy the
coefficients for the antibonding molecular orbital. The secular equations give expressions for
the ratio of the coefficients in each case, so we need a further equation in order to find their
individual values. This equation is obtained by demanding that the best wavefunction should
also be normalized. This condition means that, at this final stage, we must also ensure that

f
c I2 + 2CACBS = 1	 (29)

(d) Two simple cases
The complete solutions of the secular equations are very cumbersome, even for 2x2
determinants, but thee are two cases where the roots can be written down very simply.
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We saw in Example 14.4 and its Self-test that, when the two atoms are the same, and we
can write 5A =	 = a, the solutions are

a +fl	 1
E	

jT CA	 {2(1)}2

E 
=.-

CA
 = (2(1 _S)}U2

In this case, the bonding orbital has the form

A+3

= 12(1 +S)}'12

and the corresponding antibonding orbital is

A — B

(2(1 —S)}2

in agreement with the discussion of homonuclear diatomics we have already given, but now
with the normalization constant in place.

The second simple case is for a heteronuclear diatomic molecule but with S 0 (a
common approximation in elementary work). The secular determinant is then

aA —L

The solutions ean be expressed in terms of the parameter C (zeta), with IS

21fl1= arcIan
aD -

and are

E_ = - flcot C i_ = —A sin +B cos C

= a ll + fi cot	 = A cos + B sin

An important feature revealed by these solutions is that as the difference 
IA - a81

increases, the value of decreases. t6 When the energy difference is large the energies of the
molecular orbitals differ only slightly from those of the atomic orbitals, which implies in turn
that the bonding and antibonding effects are small. That is, the strongest bonding and
ontibonding effects are obtained when the two contributing orbitals hayc closely similar
energies. the difference in energy between core and valence orbitals is the justification for
neglecting the contribution of core orbitals to borg. The core orbitals of one atom have a
similar energy to the core orbitals of the other atom; but core-core interaction is largely
negligible because the overlap between them (and hence the value of /3) is so small.

Example 14.5 C31cu12tin9 the molecular orhit;ils of HF

Calculate the wavefunctions and energies of the a orbitals in the HF molecule, taking
/3 = —1.0 eV and the following ionization energies: His: 13.6 eV, F2s: 40.2 eV, F2p:
18.6 eV.

IS arciarro rs tht samc as Lao

15	 cao tanna and c(ro /r when x 4 I, when 12A - 	 21fil we can write ar lfihf(a, - a). whidr orpirts thattan nr	 - an), and henet that cr1 &(a,, - r )/4. Tlre.r (001mg that fi/)4	 -11 the enorgies of the two molecular
o,brIals are

F.	 F, rra5

6ctaunt sinCar C and coso I wlrt	 4 I. lht orb,tals art frspectnvty almost pore if arid almost purtA.

CR = CA

(30)
CD = CA

(31a)

(31b)

(32)

(33)
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Method Because the F2p and His orbitals are much closer in energy than the F2s and His
orbitals, to a first approximation neglect the contribution of the F2s orbital. To use en 33,
we need to know the values of the Coulomb integrals ; and 0CP Because these integrals

represent the energies of the His and F2p electrons, respeetively, they are approximately

equal to (the negative of) the ionization energies of the atoms. Calculate (from cqn 32
(with A identified as F and B as H), and then write the wavefunctons by using eqn 33.

Answer Refer to Fig. 14.37. Setting a = —13.6eV and s = —18.6 eV gives

tan 2C	 0.40: so ( = 10.9°. Then

E_ = —13.4 eV	 , = 0.981// H 0' 1901

E = —18.8eV	 r/i =0.l9'H+O.98I/'F

Comment Notice how the lower energy orbital (the one with energy —18.8 eV) has a
composition that is more F2p orbital than His, and that the opposite is true of the higher

energy, antibonding orbital.

Self-test 14.6 The ionization energy of Cl is 13.1 cv: find the form and energies of the o

orbitals in the HCl molecule using fi = —1.0 eV.
[E, = —12.3 eV. # = —0.620 14 +O.l9';

—14.4 eV,	 = 0791'H + 0.620ri]

Molecular orbitals for polyatomic systems
The molecular orbitals of polyatomic molecules are built in the same way as in diatomic
molecules, the only difference being that we use more atomic orbitals to construct the
molecular orbitals. As for diatomic molecules, polyatomic molecular orbitals spread over the

entire molecule. A molecular orbital has the general form

l,=I:cii/Ii	 (34)

where i,fr is an atomic orbital and the sum extends over all the valence orbitals of all the
atoms in the molecule. To find the coefficients, we set up the secular equations and the
secular determinant, just as for diatomu'c molecules, solve the latter for the energ

i
es. and

then use these energies in the secular equations to find the coefficients of t atomic

orbitals for each molecular orbital.
The principal difference between diatomic and polyatomic molecules lies in t 1 e greater

range of shapes that are possible: a diatomic molecule is necessarily linear, but a uiatomic
molecule, for instance, may be either linear or angular with a characteristic bond angle. The
shape of a polyatoniic molecule—the specification of its bond lengths and its bond angles—
can be predicted by calculating the total energy of the molecule for a variety of nuclear
positions, and then iOentifying the conformation that corresponds to the lowest energy.
However, more insight into the features that control molecular geometry can be obtained by
analysing the orbitals and their energies in a more pictorial fashion. We shall illustrate what

is involved by considering H 2 0, which has an experimental bond angle of 104°.

14.8 Walsh diagrams
The molecular orbitals of H 20 (and of H ? X molecules in general) have the form

i/i = C i,fr H/ is + C 21/1 11 3 1 S + C30o2. + C4002l, , + C5002p, ± c600,
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There are six such orbitals (because they are built from six atomic orbitals) and eight valence
electrons to accommodate in them. We shall tonsider two hypothetical conformations of
the molecule, the linear 180' molecule and the angular 900 molecule, and then decide how
the molecular orbitals of one shape turn into the molecular orbitals of the other as the bond
angle changes from 1800 to 900. The procedure results in the construction of a Walsh
diagram, a diagram showing the variation of orbital energy with molecular geometry.

(a) The Walsh diagram for H2X molecules

The molecular orbitals of a hypothetical linear HOH molecule are classified as either o or it
(Fig. 14.38):

= "1002o + , (i/, 	 4- 	 )	 (two orbitals)

- 002p,' 002p	 (one orbital each)	 (35)

= t3002p, 4. 1 4(OH,, t - I'M, In)	 (two orbitals)

We have added the parity labels, but they no longer tell us which is bonding and
antibonding. Thus, there are two o orbitals, one bonding (with the two coefficients the
same sign) and the other antibonding (with the coefficients of opposite sign). There are no
orbitals of it symmetry on the H atoms, so the 021) and 02p, orbitals do not form bonding
and antibonding molecular orbitals. They are examples of nonbonding orbitals, orbitals that
do not contribute directly to the bonding between atoms. The coefficients in the molecular
orbitals may be found in the normal way, by setting up and solving the secular determinants
using estimates of the Coulomb and resonance integrals, and the energies of the orbitals are
shown on the left of the diagram in Fig. 14.39.

The molecular orbitals of-a hypothetical 90° molecule are formed from the following
groupings of atomic orbitals (Fig. 14.40):

I iO2o t c	 ± c, ( 1' 0 to	 I/ In)	 (three orbitals)

(36)

(-4 IO2,, + C 5( tI'H 0 I, - ll'Ft,I,)	 (two orbitals)

(The coefficients are different from those in eqn 35.) We can no longer classify the orbitals
as ii and it because those labels apply only when there is an axis of symmetry; the labels used
here will be explained in Chapter 15 (as will be the choice of the orbitals from which each
molecular orbital is built).17

The lowest energy orbital in 90° H 2 0 is the one labelled lot, which is built from the
overlap of the 02s and 021), orbitals with the 'íHt, + Off. l. combination of H Is orbitals. The
energy of the lai orbital rises as the bond angle increases, in part because the weakly
bonding H-H overlap decreases and in part because the loss of p0 character diminishes the
overlap with the H-H combination. The energy of the lb 2 orbital is lowered because the His
orbitals move into a better position for overlap with the 02p orbital; their weakly
ontibonding H-H overlap is also reduced. The biggest change occurs for the 2011 orbital. This
molecular orbital is Principally an 02s orbital in the 90° molecule, but correlates with a pure
02p, orbital in the 1800 molecule. Hence, it shows a steep rise in energy as the bond angle
increases. The lb 1 orbital is a nonbonding 021) orbital perpendicular to the molecular plane
in the 90° molecule and remains nonbonding in the linear molecule. Hence, its energy barely
changes with angle.

7 AS rerriarkrd earlier, the central tejtjle UI ir,olrcuiar orbital theory is the formation of molecular orbitals from all the atomic
orbitals available that have the appropriate sonimerry. and Thr linear corribrr'jrivrrv litt about can be regaided as a grOuping 07

the arorriro orbitals 010 illlrrrnl s-,nn,ritli j crosses fh,s qruupirig is the subject Of Chapter IS

28—A
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The principal feature that determines whether or not the H 2 0 molecule is bent is whether
the 2a l orbital is occupied. This orbital has considerable 02s character in the bent molecule
but not in the linear molecule. Therefore, a lower total energy is achieved if, when it is
occupied, the molecule is bent. The shape adopted by an H 2 0 molecule therefore depends on
the number of electrons that occupy the orbitals.

Example 14.6 Using a Walsh diagram to predict a shape

Predict the shape of the H 2 0 molecule from the Walsh diagram.

Mtthol Choose an intermediate bond angle along the horizontal axis of the llO diagram
in Fig. 14.39, and accommodate eight electrons. Then consider whether the energy can be
reduced by a modification of the bond angle. To do so, look at-the effect on the energies of
the occupied orbitals of a change in bond angle.

Answer The resulting configuration is la2alhlh. The 2a orbital is occupied, so we
expect the nonlinear molecule to have a lower energy than the linear molecule.

Self-test 14.7 Predict the shape of the BeH 2 molecule.
[Linear]

14.9 The Huckel approximation
Molecular orbital theory takes large molecules and extended aggregates of atoms, such as
solid materials, into its stride. First we shall consider conjugated molecules, in which there is
an alternation of single and double bonds along a chain of carbon atoms.

Although the classification of an orbital as a or it is strictly valid only in linear molecules,
it is also used to denote the !ocol symmetry with respect to a given A-B bond axis.
Moreover, in nonlinear molecules, there is no orbital angular momentum around the bond
axis: the it orbital is a (real) standing wave with electron density on each side of the local
molecular plane.

The it molecuiar orbital energy level diagrams of conjugated molecules can be
constructed using a set of approximations suggested by Erich Hückel in 1931. In his
approach, the it orbitals are treated separately from the a orbitals, apd the latter form a rigid
framework that determines the general shape of the molecule. All the C atoms are treated
identically, so all the Coulomb integrals o for the atomic orbitals that contribute to the it
orbitals are set equal. For example, in ethene, we take the a bonds as fixed, and concentrate
on finding the energies of the single it bond and its companion antibond. In butadiene (4),
the a framework is taken as fixed, and we concentrate on finding the it orbitals spreading
across the four C atoms.

(a) The secular determinant
We express the it orbitals as LCAOs of the Up orbitals that lie perpendicular to the molecular
plane. In ethene we would write

= CAA + C B R	 (37)

and in butadiene

= A A + CB + e ( C. + e0D	 (38)

where the A is a C2p orbital on atom A, and so on. Next, the optimum coefficients and
energies are found by the variation principle as explained in Section 14.7c. That is, we have
to solve the secular determinant, which in the case of ethene is eqn 28 with aA =	 =

281

2b2

lb1
	 /...,\

14.40 The molecular orbitals that can be
constructed from the H Is, 02s. and O atomic
orbitals in a hypothetical 90r HO n'oleculr.

2&—B



THE HOCKEL APPROXIMATION
	

413

The determinant for butadiene is similar, but more atoms contribute and, being at various
distances from each other, they have different overlap and resonance integrals:

Ethene:

cr—F /3—ES —oIT—ES n--F -	 (3))

Butadiene:

- F	 11Afl - ES455 ITAC - bSAc PAD - ESAD I

OHA -	 - E	 flc - ESBC ITBD ES0 
= 0	 (40)

/'CA -- CA PCH- ESCH	F	 PCD - ES 0 I
/3DA - ESDA #DB - ES	 - ESry	 E I

The roots of the ethene determinant can be found very easily (they are the same as those in
Example 14.4). However, for elementary calculations, the roots of the butadiene
determinant are obviously going to prove difficult to find. In a modern computation all
the resonance integrals and overlap integrals would be included, but an indication of the
molecular orbital energy level diagram can be obtained very readily if we make the following
additional Hückel approximations:

1. All overlap integrals are set equal to zero.
2. All resonance integrals between non-neighbours are set equal to zero.
3. All remaining resonance integrals are set equal (to /3).

These approximations are obviously very severe, but they let us calculate at least a general
picture of the molecular orbital energy levels with very little work. The assumptions result in
the following structure of the secular determinant:

1. All diagonal elements: n - E.
2. Off-diagonal elements between neighbouring atoms: P.
3. All other elements: 0

(b) Ethene and frontier orbitals
For ethene, the HOckel approximations lead to

n — F	 (41)

The roots of the equation are

E =n±1/
	

(42)

,..The + sign corresponds to the bonding combination (p is negative) and the - sign
a - corresponds to the antibunding combination (Fig. 14.41).' a The building-up principle then

leads to the configuration lit 2 , because each carbon atom supplies one electron to the it

system. We can also etimate then' 4—fl excitation energy2/31). The constant fl is often left
r	 - Up	 as an adjustable parameter: an approximate value for (C21),C2p)-overlap n-bonds is about

—75 LI moI '.corresponding to —0.8 cv.
The highest occupied molecular orbital in ethenc, its HOMO, is the In orbital; the lowest

171 a + 0 unfilled molecular orbital, its LUMO, is the 27., ' orbital. These two orbitals jointly form the
frontier orbitals of the molecule. The frontier orbitals are important because they are largely
responsible for many of the chemical and spectroscopic properties of the molecule.

14.41 The HtIckel molecular orbital energy levels of
ethene. two electrons occupy the lower it orbital. 	 ID In see Ihr I VIrt ft erIrtIn9 —raD. 'nrepnre Ihr Irs..11 obined hr with eqn 30
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a - l.62)

Up	 Cx - 0.62)3

cx + 0.62)3

\.,
In	

Ci + 1.62)3

14.42 The HUckel molecular orbital energy levels of
butadiene and the top view of the correxponding is
orbitals. The four p electrons (one supplied by each
C) occupy the two lower is orbitals. Note that the
orbitals are delocalized.

(c) Butadierie and r-eIectron binding energy
For butadiene, the approximations result in the determinant

/3	 0	 0
If 	 a—E	 /3	 0 —oo	 fi	 Of. —E	 13
O	 0	 /3	 a—F

Example 14.7 finding the roots of a determinant

Find the roots of the butadiene secular determinant.

Method A 4 x 4 determinant is expanded in a series of steps like the 2 x 2 determinant
treated in Example 14.4. After expansion, the terms are grouped to give a polynomial in E,

-which is set equal to 0 and then solved for F. A 4 x 4 determinant expands into a quartic
equation, but we shall see that it may be expressed as a quadratic equation that can be
solved by elementary methods.

Answer

If	 1)	 0
If	 3f —E	 /3	 0
0	 /3	 a — E	 /1

(I	 (I	 If	 a — F

a — F	 11	 0	 /3	 /3	 0

=(a—E) If	 a—E	 /3 —/30 a—E	 /3

0	 /3	 a—E	 0	 /3	 a—F

E)2
a—E	 /3	 0	 /3

=(a—
If	 a—E	 0 a—F

P
/3 a — F	 0 a—F

= (a - E) 4 - (a - E) 2 13 2 - (a - E) 2$2 - (a— E) 2 $2 +

= (a—F) 4 - 1(a, F) 2$2 + = 0

With x = (a - E) 2 1fl2 , the expanded determinant has the form of a quadratic equation

- 3.r + I = Cl

The roots are x = 2.62 and 0.38. Therefore, the energies of the four LCAO-MOs are

	

E=a±l.62/3,	 a± 0.62/i

Self -test 14.8 Write down and expand the secular determinant for cyclobutadiene.
[See Example 14.8, below]

We have seen in Example 14.7 that the energies of the four LCAO-MOs are

	

E=a±1.62fl,	 a±O.62fl	 (44)

These orbitals andther energies are drawn in Fig. 14.42. Note that, the greater the number
of internuclear nodes, the higher the energy of the orbital. There are four electrons to
accommodate, so the ground-state configuration is l,r2 2ir2 . The frontier orbitals of
butadiene are the 2ir orbital (the HOMO, which is largely bonding) and the 3at orbital (the

(43)
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LUMO, which is largely antibonding).'Largely' bonding means that an orbital has both
bonding and antibonding interactions between various neighbours, but the bonding effects
dominate, largely antibonding' indicates that the antibonding effects dominate.

An important point emerges when we calculate the total it-electron binding energy, Er,
the sum of the energies of each it electron, and compare it with what we find in ethene. In
ethene the total energy is

E=2(it+fl)=2it+2f?

In butadiene it is

E = 2(o -4-'l .62/3) + 2(o + 0.62/3) = 4 -1-4.48/3

Therefore, the energy of the butadiene molecule lies lower by 0.48/3 (about —36 LI mol)
than the sum of two individual it bonds. This extra stabilization of a conjugated system is
called the delocalization energy.

Example 14.8 Estimating the deloca)ization energy

Use the HUckel approximation to find the energies of the it orbitals of cyclobutadiene, and
estimate the delocalization energy.

Method Set up the secular determinant using the same basis as for butadiene, but note that
atoms A and Dare also now neighbours. Then solve for the roots of the secular equation and
assess the total it-bond energy. For the delocalization energy, subtract from the total it-
bond energy the energy of two It bonds.

Answer The secular determinant is

/3	 0	 /3
$ it—E /3	 0
0	 13 e—E /3 -
/3	 0	 /3

This determinant expands to

.v(x-4)=0	 X 
(E)2

The solutions are x = 0 and .e = 4, so the energies of the orbitals are

E=cz+2f1.	 it,	 it,	 it---2$

Four electrons must be accommodated. Two occupy the lowest orbital (of enegy it + 2/3),
and two occupy the doubly degenerate orbits (of energy it). The total energy is therefore
4a + 4/3. Two isolated it bonds would have an energy 4it + 4/3; therefore, in this case, the
delocalization energy is zero.

Self-test 14.9 Repeat the calculation for benzene.

[Next subsection]

(d) Benzene and aromatic stability
The most notable example of delocalization conferring extra stability is benzene and the
aromatic molecules based on its structure. Benzene is often expressed in a mixture of
valence-bond and molecular orbital terms with, typically, valence-bond language used for
itsa framework and molecular orbital language used to describe its r electrons.
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14 43 The a framework of benzene is formed by
the overlap of Csp 1 hybrids, which fit without strain
into a hexagonal a!rangement.
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14:44 The HOckel orbitals or benzene and the
corresponding energy levels. The symmetry labels
are explained in Chapter 15. The bonding and
antibonding character of the ddocalized orbitals
reflects the numbers of nodes between the atoms.
In the ground state, only the net bonding Alibitals
are occupied.

14 MOLECULAR STRUCTURE

First, the valence-bond component. The six C atomsre regarded as .tp2 hybridized, with a
single unhybridized perpendicular 2p orbital. One H atom is bonded by (C.sp2 His) overlap to
each C carbon, and the remaining hybrids overlap to give a regular hexagon of atoms
(Fig. 14.43). The internal angle of a regular hexagon is 120c, so sp2 hybridization is ideally
suited for forming a bonds. We see that benzene's hexagonal shape permits strain-free o

bonding.
Now consider the molecular orbital component of the description. The six C2p orbitals

overlap to give six it orbitals that spread all round the ring. Their energies are calculated
within the Hückel approximation by solving the secular determinant

-•E	 (1	 0	 0	 0	 3
/3	 s-E /3	 0	 0	 0
o	 /3	 a-E	 /3	 0	 0	 (45)o	 0	 /3	 a-E	 /3	 0
O	 0	 0	 /3	 o-E	 P
B	 0	 ()	 0	 8

When this determinant is expanded in the same way as in Example 14.7, the roots are found
to be simply

E=cx±213,	 it±/3,	 a±/?	 (46)

as shown in Fig. 14.44. The orbitals there have been given symmetry labels which we explain
in Chapter 15. Note that the lowest energy orbital is bonding between all neighbouring
atoms, the highest energy orbital is antibonding between each pair of neighbours, and the
intermediate orbitals are a mixture of bonding, nonbonding, and antihonding character
between adjacent atoms.

We now apply the building-up principle to the it system. There are six electrons to
accommodate (one from each C atom), so the three lowest orbitals (a 20 and the doubly
degenerate pair e 1g ) are futly occupied, giving the ground-state configuration a20e. A
significant point is that the only molecular orbitals occupied are those with net bonding
character.

The it-electron energy of benzene is

En = 2(o + 2/3) + 4(a + /3) = 6o + 8/3

If we ignored delocalization and thought of the molecule as having three isolated it bonds,
it would be ascribed a it-electron energy of only 3(2 + 2$) = 6a + 6$. The
delocalization energy is therefore 2/3 -150 kimol', which is considerably more than
for butadiene.

This discussion suggests that aromatic stability can be traced to two main contributions.
First, the shape of the regular hexagon is ideal for the formation of strong or bonds: thea
framework is relaxed and without strain. Second, the it orbitals are such as to be able to
accommodate all the electrons in bonding orbitals, and the delocalization energy is
large.

(e) Semi-empirical and ab initio methods
Modern techniques of molecular electronic structure calculation have moved on
considerably from the techniques we have been describing, but they are clear descendants
of these more elementary methods. They still involve expressing molecular orbitals as linear
combinations of atomic orbitals, setting up secular determinants in which various integrals
appear, finding their roots, and then solving secular equations for the coefficients. However,
the principal difference is the inclusion of electron-electron repulsion into the energy
calculation and looking for self-consistent solutions, in much the same way as for atoms



14.45 The product of two Gaussian functions (the
green curves) is itself a Gaussian function located
between the two contributing Gaussians.
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(Section 13.5). There are two main strategies of calculation. In semi-empirical methods
many of the integrals are estimated by appealing to spectroscopic data or physical properties
such as ionization energies, and using a series of rules to set certain integrals equal to zero.
In the ab initio methods, an attempt is made to calculate all the integrals that appear in the
secular determinant. both procedures employ a great deal of computational effort and,
along with cryptanalysts and meteorologists, theoretical chemists are among the heaviest
users of the fastest computers.

The HUekel method is a primitive example of a semi-empirical procedure: all the
properties of the 7z system are expressed in terms of the two parameters a and fi and all
overlap integrals are set equal to zero. In a more sophisticated procedure, we write the n
orbitals as linear combination of atomic orbitals, but use the full hamiltonian. including the
electron-electron repulsions proportional to l/r1. Moreover, we also make sure that the
many-electron wavefunction (the product of the individual occupied molecular orbitals)
satisfies the Pauli principle. When all this is worked through, it turns out that the secular
determinant includes integrals of the form 	 -

\
(ABICD) = f A(I)B(1) ( e2 )c(2)D(2) dT 1 dT2 	(47)

where A, B, C, and D are atomic orbitals which in general may be centred on different
nuclei. It can be appreciated that, if there are several dozen atomic orbitals used to build
the molecular orbitals, then there will be tens of thousands of integrals of this form to
evaluate.

One severe approximation is called complete neglect of differential overlap (CNDO),
in which all integrals are set to, zero unless A and B are the same orbitals centred on the

same nucleus, and likewise for C and D. The surviving integrals are then adjusted until
the energy levels are in good agreement with experiment. The more recent semi-
empirical methods make less draconian decisions about which integrals are to be ignored,
but they are all descendants of the early CNDO technique. These procedures are now readily
available in commercial software packages and can be used with very little detailed
knowledge of their mode of calculation. The packages also have sophisticated graphical
output procedures, which enable one to analyse the shapes of orbitals and the distribution
of electric charge in molecules. The latter is important when assessing, for instance, the
likelihood that a given molecule will bind to an active site in an enzyme. Such studies can
greatly reduce the time and cost of screening compounds for potential pharmacological
activity.

Commercial packages are also available for ob initic calculations. Here the problem is to

evaluate as efficiently as possible thousands of integrals. This task is greatly facilitated by
expressing the atomic orbitals used in the ICAOs as linear combinations of Gaussian orbitals.
A Gaussian type orbital (GJO) is a function of the form e'1 . The advantage of GTOs over
the correct orbitals (which are proportional to e') is that the product of two Gaussian
functions is itself a Gaussian function that lies between the centres of the two contributing
functions (Fig. 14.45). In this way, the four-centre integrals like that in eqn 47 become two-
centre integrals of the form

G imr[2 
'\ Y(2)drrdz 2 	 (48)(ABICD) =

where X is the Gaussian corresponding to the product AR and Y is the corresponding

Gaussian from BD. Integrals of this form are much easier and faster to evaluate numerically
than the original four-centre integrals. Although more GTOs have to be used to simulate the
atomic orbitals, there is an overall increase in speed of computation.
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14.10 The band theory of solids
The extreme case of delocalization is a solid, in which atom after atom lies in a three-
dimensional array and takes part in bonding spreading throughout the crystal. Two types of
solid are distinguished by the temperature dependence of their electrical conductivity:

A metallic conductor is a substance with a conductivity that decreases as the
temperature is raised.
A semiconductor is a substance with a conductivity that increases as the
temperature iS raised.

A semiconductor generally has a lower conductivity than that typical of metals, but the
magnitude of the conductivity is not the criterion of the distinction. It is conventional to
classify semiconductors with very low electrical conductivities as insulators. We shall use
this term, but it should be appreciated that it is one of convenience rather than one of
fundamental significance.

We shall consider a one-dimensional solid, which consists of a single, infinitely long line
of atoms, each one having one ,c orbital available for forming molecular orbitals. We can
construct the LCAO-MOs of the solid by adding N atoms in succession to a line, and then find
the electronic structure using the building-up principle.

(a) The formation of bands
One atom contributes ones orbital at a certain energy (Fig. 14.46). When a second atom is
brought up it overlaps the first, and forms a bonding and antibortding orbital. The third atom
overlaps its nearest neighbour (and only slightly the next-nearest), and from these three
atomic orbitals three molecular orbitals are formed: one is fully bonding, one fully
antibonding, and the intermediate orbital is nonbonding between neighbours. The fourth
atom leads to the formation of a fourth molecular orbital. At this stage, we can begin to see
that the general effect of bringing up successive atoms is to spread the range of energies
covered by the molecular orbitals, and also to fill in the range of energies with more and
more orbitals (one more for each atom). When N atoms have been added to the line, there

lal	 N= 1

(b) 2

(C______

4

14.46 The formation of a band of N molecular orbitals by successive addition of N atoms to a line. Note
that the band remains of finite width as N —. oc and, although it looks continuous, it consists of N
different orbitals.
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are N molecular orbitals covering a band of energies of finite width, and the HUckel secular
determinant is

a—E	 $	 0.

13	 z—E	 13
o	 fi. a—E
o	 0	 /3
o	 o	 0

o	 C)	 ...	 0
o	 ()	 ...	 0

0	 •..	 0
e—E	 1	 •'•	 0

/3	 0
=0 -	 (49)

14.47 The overlap of a orbitals gives rise to an
band, and the overlap of p orbitals gives rise to a p
band. In this case, the a and p orbitals of the atoms
are so widely spaced that there is a band gap. In
many cases the separation is less, and the bands
overlap.

0	 0	 0	 0	 0

where /3 is now the (s, s) resonance integral. The theory of determinants applied to such a
symmetrical example as this (technically a 'tridiagonal determinatit') leads to the following
expression for the roots:

Ek = a + 2#cos(_j)	 k = 1,2..... N 	(50)

When N is infinitely large, the difference between neighbouring energy levels (the energies
corresponding to k and k + I) is infinitely small, but the band still has finite widtn overall:

EN —E I --4flasN—.caz (51)

We can think of this band as consisting of N different molecular orbitals, the lowest-energy
orbital (k = 1) being fully bonding, and the highest-energy orbital (k = N) being fully
antibonding between adjacent atoms (Fig. 14.47). Similar bands form in three-dimensional
solids.

The band formed from overlap of a orbitals is called the .c band. If the atoms have p
orbitals available, the same procedure leads to a p band (as shown in the upper half of
Fig. 14.47). If the atomic p orbitals lie higher in energy than the a orbitals, then the p band

Highest level of p band (fully antibonding)

P
A	

p band

Lowest lvol of p band (fully bonding)

0.

0

a,'I	 C..!
5'c	 Highest level of s band (fully antibonding)
CC	

CC)

(—., fl n	 (•,.,
S 	 s band

Lowest level of s band Ifully bonding)
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14.48 When N electrons occupy a band of N
orbitals, it is only half full and the electrons near
the Fermi level (the top of the tilled levels) are
mobile.
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lies higher than the a band, and there may be a band gap, a range of energies to which no
orbital corresponds.

(b) The occupation of orbitals at T = 0
Now consider the electronic structure of a solid formed from atoms each able to contribute
one electron (for example, the alkali metals). There are N atomic orbitals and therefore N
molecular orbitals squashed into an apparently continuous band. There are N electrons to
accommodate.

At 1 = 0, only the lowest N molecular orbitals are occupied (Fig. 14,48), and the HOMO
is called the Fermi level. However, unlike in the discrete molecules we have considered so far,
there are empty orbitals very close in energy to the Fermi level, so it requires hardly any
energy to excite the uppermost electrons. Some of the electrons are therefore very mobile,
and give rise to electrical conductivity.

(c) The occupation of orbitals at T>0
At temperatures above absolute zero, electrons can be excited by the thermal motion of the
atoms. The population, F, of the orbitals is given by the Fermi-Dirac distribution, a version
of the Boltzmann distribution that takes into account the effect of the Pauli principle:

(52)

The quantity p is the chemical potential, t9 which in this context is the energy of the level
for which / - (note that the chemical potential changes as the temperature changes). The
shape of the Fermi-Dirac distribution is shown in Fig. 14.49. For energies well above p. the I
in the denominator can be neglected, and then

c	 ,l/AT	 (53)

The population now resembles a Boltzmann distribution, decaying exponentially with
increasing energy. The higher the temperature, the longer the exponential tail.

The electrical conductivity of a metallic solid decreases with increasing temperature even
though more electrons are excited into empty orbitals. This apparent paradox is resolved by

lo t 	 , ____..	 noting that the increase in temperature causes more vigorous thermal motion of the atoms,
SO colli s ions between the moving electrons and an atom are more likely. That is, the electrons

n	 "ç	 '\ \	 are scattered out of their paths through the solid, and are less efficient at transporting

P
	 \ \\1	 charge.

0.6)-

iiia

(E-p)4u

14.49 The Fermi-Dirac distribution, which gives the
population of the levels at a temperature T. The
high-energy thil decays exponentially towards zero.
The curves are labelled with the value of p/kT. The
tinted grey region shows the occupation of levels at
T = 0.

(d) Insulators and semiconductors
When each atom provides two electrons, the 2N electrons full the N orbitals of the s band
The Fermi level now lies at the top of the band (at T = 0), and there is a gap before the next
band begins (Fig. 14.50). As the temperature is increased, the tail of the Fermi-Dirac
distribution extends across the gap, and electrons populate the empty orbitals of the upper
band. They are nbwtnobile, and the solid is an electric conductor. In fact, the solid is a
semiconductor, because the electrical conductivity depends on the number of electrons that
are promoted across the gap, and that number increases as the temperature is raised. If the
gap is large, though, very few electrons will be promoted at ordinary temperatures, and the
conductivity will remain close to zero, giving an insulator. Thus, the conventional distinction
between an insulator and a semiconductor is related to the size of the band gap and is not an
absolute distinction like that between a metal (incomplete bands at T = 0) and a
semiconductor (full bands at T = 0).

19 Note that the 'cinc,,vcal potential' in eqn 52's an energy, not a molar luSty energy, as in the thermodynamic use ol the terrTs
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(a)
	

(b)

1 4 50 (l When 2N electrons are present, the
band is full and the material is an insulator at
T (I. (h) Al temperatures above T = 0, electrons
populate the levels of the upper 'conduction
band at the expense of the filled 'valence band
and the solid is a semiconductor.

I 4.5 I (a) A dopant with fewer electrons than its
host can form a narrow band that accepts
electrons from the valence band. The holes in the
band.are mobile, and the substance is a p-type
semiconductor. (b) A dopant with more electrons
than its host forms a narrow band that can supply
electrons to the conduction band. The electrons it
supplies are mobile, and the substance is an n-type
semiconductor.

Another method of increasing the number of charge carriers and enhancing the
semiconductivity of a solid is to implant foreign atoms into an otherwise pure material. If
these dopants can trap electrons, they withdraw electrons from the filled band, leaving
holes which allow the remaining electrons to move (Fig. 14.51). This procedure gives rise to
p-type semiconductivity, the p indicating that the holes are positive relative to the
electrons in the band. Alternatively, a dopant might carry excess electrons (for example,
phosphorus atoms introduced into germanium), and these additional electrons occupy
otherwise empty bands, giving n-type semkonductivity, where n denotes the negative
charge of the carriers. The preparation of doped but otherwise ultrapure materials was
described in Section R.7.
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Exercises
14.1 (a) Give the ground-state electron configurations and bond 	 14.7 (a) Use the electron configurations of NO and N. to predict
orders of (a) Li,, (b) Be,, and (c) C,. 	 which is likely to have the shorter bond length.

14.1 (b) Give the ground-state electron configurations of (a) H, (b) 	 14.7 (h) Arrange the species O, 0,, O, 0 	 in order of increasing
N 2 . and (c) 0 2 .	 bond length.

14.2 (a) Give the ground-state electron configurations of (a) CO. (b)
NO, and (c) CN.

14.2 (b) Give the ground-state electron configurations of (a) CIF, (b)
CS, and (c) O.

14.3 (a) From the ground-state electron configurations of B, and C,,
predict which molecule should have the greater bond dissociation
energy.

14.3 (b) Which of the molecules N,, NO, 0 2 , C,, F,, and CN would
you expect to be stabilized by (a) the addition of an electron to form
AB, (b) the removal of an electron to form AR?

14.4 (a) Sketch the molecular orbital energy level diagram for XeF
and deduce its ground-state electron configurations. Is XeF likely to
have a shorter bond length than XeF?

14.4 (b) Sketch the molecular orbital energy level diagrams for UrCI
and deduce its ground-state electron configurations. Is BrCl likely to
have a shorter bond length than BrCl?

14.5 (a) Where appropriate, give the parity of (a) it' in F,, (b) c
NO, (c) ö in TI,, (d) 5 in Fe,.

14.5 (b) Give the parities of the six it molecular orbitals of benzene.

14.6 (a) The term symbol for the ground state of N, is '. What is
the total spin and total orbital angular momentum of the molecule?
Show that the term symbol agrees with the electron configuration
that would be predicted using the building-up principle.

14.6 (b) One of the excited states of the C, molecule has the valence
electron configuration la2o' 17027t,. Give the multiplicity and
parity of the term.

14.8 (a) Show that the sp' hybrid orbital ( s + 2 11" 2p)/3 1/2 is
normalized to I if the sand,, orbitals are normalized to I.

14.8 (b) Normalize the molecular orbital 	 (A) + AçII,(B) in terms
of the parameter A and the overlap integral S.
14.9 (a) Confirm that the bonding and antibonding combinations

I ± 0, (B) are mutually orthogonal in the sense that their mutual
overlap is zero.

14.9 (b) Suppose that a molecular orbital has the form
,V(0. 145A f- (I 144B). Find a linear combination of the orbitals A
and B that is orthogonal to this combination.

14.10 (a) Which of the following triatomir moleCUIeS and ions are
expected to hi- linear (ii CO,. )b) N(1,, (c) N0 ? Give reasons in each
case.

14.10 (h) Winch of the following triatomic molecules and ions are
expected to be linear: (a) NO,, (hi SO,, (c) 11,0, (d) H 2 O'? Give
reasons in each case.

14.11 (a) Construct the molecular orbital energy level diagrams of
ethene (ethylene) on the basis that the molecule is formed from the
appropriately hybridized CII, or CH fragments.

14.11 (b) Construct the molecular orbital energy level diagrams of
ethyne (acetylene) on the basis that the molecule is formed from the
appropriately hybridized CH,.or CH fragments.

14.12 (a) Write down the secular determinants for (a) linear H,, (b)
cyclic H 3 within the Flückel approximation.

14.12 (b) Predict the electronic configurations of (a) the benzene
anion,ion, (h) the benzene cat on Estimate the a- bond energy in each
cast'.
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Problems

Numerical problems

14.1 Show that, if a wave coskx centred on A (so that xis measured
from A) interferes with a similar wave cosk'e centred on B (with .
measured from B) a distance R away, then constructive interference
occurs in the intermediate region when k = = ri/2R and
destructise interference if AR = 3 it and k'R = it.

14.2 The overlap integral between two His orbitals on nuclei
separated by a distance R is S = (I -I (R/a0 ) -I (R/a)2 )e
Plot this function for 0 > R < co.
14.3 Before doing the calculation below, sketch how the overlap
between an a orbital and a op orbital can be expected to depend
on their separation.jhe overlap integral between an H Is orbital
and an H2p orbital on nuclei separated by a distance R is
S = (R/a0)(i f (R/a0 ) ± (R/a0)2}e"°. Plot this function, and
find the separation for which the overlap is a maximum.

14.4 Calculate the total amplitude of the normalized bonding and
antibonding LCAO-MOs that may be formed from two HIs orbitals at
a separation of 106 pm. Plot the two amplitudes for positions along
the molecular axis both inside and outside the internuclear region.

14.5 Repeat the calculation in Problem 14.4, but plot the probability
densities of the two orbitals. Then form the difference density, the
difference between p 2 and 1 {tfr(A) 2 + i1,(B) }.

14.6 Imagine a small electron-sensitive probe of volume 1.00 pm1
inserted into an H molecu l e ion in its ground state. Calculate the
probability that it will register the presence of an electron at the
following positions: (a) at nucleus A, (b) at nucleus B, (e) halfway
between A and B, (d) at a point 20 pm along the bond from A and
10 pm perpendicularly. Do the same for the molecule-ion the instant
after the electron has been excited into the antibonding LAO-M0.

14.7 The energy of H with internuclear sepa ration R is given by the
expression

	

V+V2	 e2

l+S +1k

where Eff is the energy of an isolated H atom, V 1 is the attractive
potential energy between the electrOn centred n one nucleus and
the charge of the other nucleus, t', is the attraction between the
overlap density and one of the nuclei, S is the overlap integral. The
values are given below. Plot the molecular potential energy curve and
find the bond dissociation energy (in eleetronvulls) and the
equilibrium bond length.

R/a9	 0	 I	 2	 3	 4

V1 /Eh 1.000 0.729 0.473 0.330 0.250

V, 1E, 1.000 0.736 0.406 0.199 0.092

S	 1.000 0.858 0.587 0.349 0.189

where Eh = 27.3 cV, a0 = 52.9 pm, and E11 = - Eh

14.8 The same data as in Problem 14.7 may be used to calculate the
molecular potential energy curve for the antibonding orbital, which is
given by

V
L 

—V.	 e2
F=E11 --	 +___

1—S	 4ne0R

Plot the curve.

14.9 In the 'free electron molecular orbital' (FEMO) theory, the
electrons in a conjugated molecule are treated as independent
particles in a box of length L. Sketch the form of the two occu-
pied orbitals in butadiene predicted by this model and predict the
minium excitation energy of the molecule. The tetraene
CI-( 2 r CHCH-CHCH=CHCH=CH 2 can be treated as a box of
length 8R, where R 140 pm (as in this case, an extra half bond-
length is often added at each end of the box). Calculate the minimum
excitation energy of the molecule and sketch the HOMO and LUMO.
Estimate the colour a sample of the compound is likely to appear in
white light.

I )iiiit't ('at prtthtt'n1

14.10 An s1j 2 hybrid orbital that lies in the xv plane and makes an
angle of 120° to the T-axis has the form

(	 31/2

2 1,1 2 - )

Use hydrogenic atomic orbitals to write the explicit form of the hybrid
orbital. Show that it has its maximum amplitude in the direction
specified.

14.11 Use the expressions in Problems 14.7 and 14.8 to show that
the antibonding orbital is more antibonding than the bonding orbital
is bonding at most internuclear separations.

14.12 Derive the expressions used in Problems 14.7 and 14.8 using
Vie normalized LCAO-MOs for the H molecule-ion. Proceed by
evaluating the expectation value of the hamiltonian for the ion. Make
use of the tact that i,(A) and i(B) each individually satisfy the
Schrodinger equation for an isolated H atom.

14.13 Construct the Walsh diagram for an AH 2 molecule, and use it
to predict the shapes of (a) NH 3 , ( b) CFl

14.14 Take as a trial function for the ground state of the hydrogen
atom (a) e kr, (b) e e ' and use thevariation principle to find the
optimum value of k in each case. Identify the better wavefunction.
The only part of the laplacian that need be considered is the part that
involves radial derivatives (eqn 12.63).
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Additional problems supplied by Carmen Giunta	 integrals, ao and aN, and the'esonance integral P. Determine the
and Charles Trapp	 delOcali7atiOfl energy of the nitrate ion.

14.15 J.G. Dojahn, E.C.M. Chen, and W.E. Wentworth (.1. Phys. Chem.
100, 9649 (1996)) characterized the potential energy curves of
homonuclear diatomic halogen molecules and molecular anions.
Among the properties they report are the the equilibrium internuclear
distance Re, the vibrational wavenumber, i, and the dissociation
energy, D.

Specks re/pm /cm- ' D,/eV
F2	1.411	 916.6	 1.60
Fj	 1.900	 450.0	 1.31

Rationalize these data by, using qualitative molecular orbital
'configurations.

14.16 Rydberg molecules can be thought of as molecular analogues
of Rydberg atoms. However Rydberg molecules do not involve atomic
orbitals with analogously large quantum numbers (n = 100), but
rather atomic orbitals with n one higher than the n values of the
valence shells of the constituent atoms. Nevertheless speculate about
the existence of Rydbcrg H. as formed from two H atoms with l(X).c
electrons. Make reasonable guesses about the binding energy, the
equilibrium internuclear separation, the vibrational force constant,
and the rotational constant. Is such a molecule likely to exist under
any circumstances?

14.17 Set up and solve the Hückel secular equations for the a
electrons in N0. Express the energies in terms of the Coulomb

14.18 In Exercise 14.12a, you were invited to set up the Hückel
secular determinants for linear and cyclic H 2 . The same secular
determinant applies to the molecular ions HI and D. The molecular
ion H was discovered as long ago as 1912 by JJ. Thomson, but only
more recently has the equilateral-triangular structure been con-
firmed by MJ. Gaillard, et cii. (Phys. Rev. A17, 1797 (1978)). The
molecular ion H I is the simplest polyatomic species with a confirmed
existence and plays an important role in interstellar chemistry. (a)
Solve the HOckel secular equations for the energies of the H 3 system
in terms of the parameters a and 1, draw an-energy level diagram for
the orbitals, and determine the binding energies of the molecules
H, H3 . and H. (b) Accurate quantum mechanical calculations by
G.D. Carney and R.N. Porter (J. Chem. Phys. 66, 3547 (1976)) give the
dissociation energy for the process H(g) -. 2H(g) + H(g) as
$49 kimol'. From this information and data in Table 2.6, calculate
the enthalpy of the reaction H(g) + H 2 (g) -, H(g). Compare to
the binding energy of H 2 (g). (c) From your equations and the
information given, calculate a value for the the resonance integral, P,
in H; then go on to calculate the binding energies for the other H3
species in (a).

14.19 There is some indication that other hydrogen ring compounds
and ions in addition to H 3 and D3 species may play a role in interstellar
chemistry. According to J.S. Wright and G.A. Ditabio (J. Phys. Chem.
96, 10793 (1992)). H T, H 6 , and H are particularly stable, whereas H4
and H are not. Confirm these statements by Huckel calculations.



S Molecular symmetryI
The symmetry elements of
obieet

15.1 Operations and symmetry
elements

15.2 The symmetry classification	 In this chapter we sharpen the concept of'shupe into a precise definition of 'symmetry, and
of molecules	 show that symmetry may be discussed systematically. We see how to classify any molecule

15.3 Some immediate	 according to its symmetry, and how to use this classification to discuss molecular properties.

consequences of symmetry 	 After describing the symmetry properties of molec dies themselves, we turn to a considera-
tion of the effect ofsymmetry transformations on orbitals, and see that (heir transformation

('haractvr tables	
properties con be used to set up a labelling scheme. These symmetry labels are used to
identify what integrals nrssarily vanish. One important integral is the overlap integral

15.4 Character tables and	 between two orbitals. By knowing which atomic orbitals may hove nonzero overlap, we can

symmetry labels	 decide which ones con contribute to the formation of molecular orbitals. We utso see how to
select linear combinations of atomic orbitals that match the symmetry of the nuclear

15.5 Vanishing integrals and 	 framework. Finally, by considering the symmetry properties of integrals, we °ec that it is
orbital overlap	 possible to derive the selection rules that govern spectroscopic transitions.

15.6 Vanishing integrals and
selection rules

heckIistot key ideas

Further reading

Exercises

The systematic discussion of symmetry is called group theory. Much of group theory is  sum-
mary of common sense about the symmetries of objects. However, because group theory it

systematic, its rules can be applied in a straightforward, mechanical way, and in some cases it
gives unexpected results. In most cases the theory gives a simple, direct method for arriving at
useful conclusions with the minimum of calculation, and this is the aspect we stress here.

The symmetry elements of objects
Some objects are 'more symmetrical' than others. A sphere is more symmetrical than a cube

Prohiems because it looks the same after it has been rotated through any angle about any diameter. A
cube looks the same only if it is rotated through certain angles about specific axes, such as
90°, 180°, or 270° about an axis passing through the centres of any of its opposite faces
(Fig. 14.1), or by 120° or 240° about an axis passing through any of its opposite corners.
Similarly, an NH 3 molecule is 'more symmetrical' than an H 3 0 molecule because NH 3 looks
the same after rotations of 120° or 240° about the axis shown in Fig. 14.2, whereas H20
looks the same only after a rotation of 180°.

29—A
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15.1 Some of the synnhletry elements of a cube.
The twofold,.threefold, and fourfold axes are
labelled with the conventional symbols.

(a)

15.2 (a( An NH 3 molecule has'a threefold (C3 ) axis
and (b) an H 2 0 molecule has a twofold (C2 ( axis
Both have other sknmetry elements too.

An action that leaves an object looking theame after it has been carried out is called a
symmetry operation. Typical symmetry operations include rotations, reflections, and
inversions. There is a corresponding symmetry element for each symmetry operation, which
is the point, line, or plane with respect to which the symmetry operation is performed. For
instance, a rotation (a symmetry operation) is carried out around an axis (the corresponding
symmetry element). We shall see that we can classify molecules by identifying all their
symmetry elements, and grouping together molecules that possess the same set of symmetry
elements. This procedure, for example, puts the trigonal pyramidal species NH 3 and SO
into one group and the angular species H 2 0 and SO2 into another group.

15.1 Operations and symmetry elements
The classification of objects according to symmetry element; corresponding to operations
tha, leave at least one common point unchanged gives rise to the point groups. There are
five cinds of symmetry operation (and five kinds of symmetry element) of this kind. When we
consider crystals (Chapter 21), we shall meet symmetries arising from translation through
space. These more extensive groups are called space groups.

The identity, E, consists of doing nothing; the corresponding symmetry element is the
entire object. Because every object is indistinguishable from itself if nothing is done to it,
every object possesses at least the identity element. One reason for including the identity is
that some molecules have only this symmetry element (1); another reason is technical and
connected with the detailed formulation of group theory.

An n-fold rotation (the operation) about an n-fold axis of symmetry, C. (the
corresponding element), is a rotation through 360°/n. The operation C 1 is a rotation
through 360°, and is equivalent to the identity operation E. An H 2 0 molecule has one
twofold axis, C,. An NH 3 molecule has one threefold axis, C3 , with which is associated two
symmetry operations, one being 129° rotation in a clockwise sense and the other 120°
rotation in a counter-clockwise sense.' A pentagon has a C5 axis, with two (clocwise and
counter-clockwise) rotations through 72° associated with it. It also has an axis denoted C,
corresponding to two successive Ci rotations; there are two operations, one thro h
144° in a clockwise sense and the other through 144° in a cot. t -clockwise sense. A ci
has three C4 axes, four C3 axes, and six C3 axes. However, even this high symmetry
exceeded by a sphere, which possesses an infinite number of symmetry axes (along any
diameter) of all possible integral values of n. If a molecule possesses several rotation axes,
then the one (or more) with the greatest value of  is called the principal axis. The principal
axis of a benzene molecule is the sixfold axis perpendicular to the hexagonal ring (2).

A reflection (the operation) in a mirror plane, o (the element), may contain the principal
axis of a molecule or be perpendicular to it If the plane is parallel to the principal axis, it is
called 'vertical' and denoted o. An H 2 O molecule has two vertical planes of symmetry

 ci

Br
.1 CBrCIFI

I	 There isonly one twofold ,utation associated with a C a,s because clockwise and counter-clockwise l8ir rotations are identical.

29—B
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MR

15.3 An HaO molecule has two mirror planes. They	 15.4 Dihedral mirror planes o-) bisect the C1 axes
are both vertical (that is, contain the principal	 perpendicular to the principal axis.
axis) and so are denoted z, and a.

(Fig. (5.3) and an NH 3 molecule has three. A vertical mirror plane that bisects the angle
betw , two C, axes is called a 'dihedral plane and is denoted o (Fig. 15.4). When the plane
of symmetry is perpendicular to the principal axis it is called horizontal' and denoted c. A
C6 H 5 molecule has a C6 principal axis and a horizontal mirror plane (as well as several other
symmetry elements).

In an inversion (the operation) through a centre of symmetry, I (the element), we
imagine taking each point in a molecule, moving it to the centre of the molecule, and then
moving it out the same distance on the other side, 2 that is, the point (x, y, z) is taken into the
point (—x, —y, -4. Neither an H 2 0 molecule nor an NI-I 3 molecule has a centre of inversion,
but a sphere and a cube do have one. A C6 1-1 6 molecule does have a centre of inversion, as
does a regular octahedron (Fig. 15.5); a regular tetrahedron and a CH 4 molecule do not.

An n-fold improper rotation (the operation) about an n-fold axis of improper rotation or
an n-fold improper rotation axis, S (the symmetry element), is composed of two successive
transformations. The first component is a rotation through 360°/n, and the second is a
reflection through a plane perpendicular to the axis of that rotation; neither operation alone
needs to be a symmetry operation. A CH, molecule has three S4 axes (Fig. 15.61.

' S

(a)	 (b)

Is; (al. A CH, molecule has a [urfold improper rotation axis (S4): the molecule is indistinguishable
after a 90 rotation followed by a reflection across the horizontal plane, but neither operation alone in a
symmetry operation. (b) The staggered form of ethane has an Sn axis composed of a 60 rotation
followed by a reflection.

2	 this opc,atiun ,na, iirI cncounlrrcd on Sctt,unn 14 Gd in cosnernon with she parity clasailcaton of orbitals.
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COOH
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Centre of
inversion
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HOOC

3 Meso-tartaric acid
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15.2 The symmetry classification of molecules
To classify molecules according to their symmetries, we list their symmetry elements and
collect together molecules with the same list of elements. This procedure puts CH 4 and CCI4,
which both possess the same symmetry elements as a regular tetrahedron, into the same
group, and H 2 0 into another group.

The name of the group to which a molecule belongs is determined by the symmetry
elements it possesses. There are two systems of notation (Table 15.1). The Schoenflies
system is more common for the discussion of individua molecules, and the Hermann-
Mauguin system, or International system, is used almost exclusively in the discussion of
crystal symmetry.

Table 15.1 The notation for point groups

Ci	1
C,	 in
C 1	 I	 (.3	 2	 C3	 3	 (.4	 4	 c6	 6

C,	 2mm	 C,	 3m	 C4n	 4mm	 C6.,	 6mm
C,1,	 21rn	 CM,	 6	 C,	 4/rn	 C,	 61rn
1)	 222	 1)3	 32	 1)4	 422	 D6	 622
D2h	 ,nmrn	 1)th	 62nt	 1)41,	 41mrnrn	 D,	 61mmm

1)2d	 42m	 D	 3m	 S4	 4/m	 S6

T	 23	 7'd	 43m	 T5	 m3
0	 432	 01,	 m3m

*In the International system (or Hermann-Mauguin system) for point groups, a number is denotes the
presence of an n-fold axis and in denotes a mirror plane. A diagonal line / indicates that the mirror plane is
perpendicular to the symmetry axis. It is important to distinguish Symmetry elements of the name type but of
different classes, as in 41mnirn, in which there are three classes of mirror plane (a, 7, and ad ). A bar over a
number indicates that the element is combined with on inversion. The only groups listed in this (able are the
so-called crystallographic point groups (Section 21.1).

H	 (a) The groups C l , C 5 , and C5

A molecule belongs to the group C 1 if it has no element other than the identity (as in (1)). It
belongs to Ci if it has the identity and the inversion alone (3), and to Ca if it has the identity
and a mirror plane alone (4).

(b) The groups C,,, C,, and C,,h
Cl	 A molecule belongs to the group C0 if it possesses an pt-fold axis.3 An H 2 02 molecule has the

elements E and C2 (5), so it belongs to the group C2.

If in addition to the identity and a C axis a molecule has,, vertical mirror planes , then it
belongs to the group C0 . An H 70 molecule, for example, has the symmetry elements E, C2,
and 2cr, so it belongs to the group C20 .An NH 3 molecule has the elements E, C3 , and 3o, so it
belongs to the group C 5 . A heteronucleardiatomie molecule such as HCI belongs to the group
C,,,, because all rotations around the axis and reflections across the axis are symmetry
operations. Other members of the group C, include the linear OCS molecule and a cone.

Objects that in addition to the identity and an n-fold principal axis also have a horizontal
- mirror plane a belong to the groups C06 . An example is trans-CHCI=CHCI (6), which has

the elements E, C,, and a, and so belongs to the group C2,,; the molecule B(OH) 3 in the
conformation shown in (7) belongs to the group C, 6 . The presence of certain symmetry

3 Note that symbol C. is now playing a triplerole: as the label of a symmetry clement, a symmetry operation, and a group
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15.7 The presence of a twofold axis and a
horizontal mirror plane jointly imply the presence
of a centre of inversion in the molecule.

F

FF
8 BF,

'1h

H

cur

HH

9 H2C=CH2

%S.% A molecule with a twofold rotation axes 	 ' A molecule with a mirror plane perpendicular
perpendicular to an n-fold rotation axis belongs to 	 to a C. axis, and with a twofold axes in the plane,
the group D,.	 belongs to the group D,th.

elements may be implied by the presence of others: thus, in C, the operations C2 and ah
jointly imply the presence of a centre of inversion (Fig. 15.7).

(c) The groups D, Dh, and Dd
A molecule that has an n-fold principal axis and a twofold axes perpendicular to C belongs
to the group D. (Fig. 15.8). A molecule belongs to D,,5 if it also possesses a horizontal mirror
plane (Fig. 15.9). The planar trigonal BF3 molecule has the elements E, C3 , 3C2 , and o (with
one C2 axis along each B—F bond), and so belongs to D3h (8). The C641 6 molecule has the
elements F, C6 , 3C2 , 3C,, and 0h together with some others that these elements imply, 4 so it
belongs to D6h. All homonuclear diatomic molecules, such as N 2 , belong to the group Dh
because all rotations around the axis are symmetry operations, as are end-to-end rotation
and end-to-end reflection; Dh is also the group of the linear OCO and HCCH moleculand
of a uniform cylinder. Other examples of D 5 molecules are shown in (9), (10), and (11).

A molecule belongs lo the group D,,, if in addition to the elements of D,, it possesses a
dihedral mirror planes 0d• The twisted, 90° allene (12) belongs to D, and the staggered
conformation of ethane (13) belongs to D.

(d) The groups S11

Molecules that have not been classified into one of the groups mentioned so far, but which
possess one S,, axis, belong to the group S,,. An example is tetraphenylmethane, which

Cl

CL,1.C, -, - - - i Cl

CI

10 PCI5

Cl

Cl—Au--p--Cl/4J\CJ

04h	 Cl

11 lAuCl4F

H =C = C
H

12 H2C=C=CH2

H

/	
H

H
13 C2H6

4	 The prime on 3CZ jndcates tfrtt the three C, noes are different from the other three C, toes.
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15 Buckminsterfullerene, C14 C(C6H5)4 16 Ruthenocene, Ru(C 6H 5 ) 2

OWN

(a)

(b)

1S.10 (a) Tetrahedral and (b) octahedral molecules
are drawn in a way that showS their relation to a
cube; they belong to the cubic groups Td and 0,
respectively.

15.11 The relation of an icosahedron to a cube. The
buckminsterfullerene molecule (5) is related to this
object by cutting off each apex to form a regular
pentagon.

belongs to the point group S4 (14). Molecules belonging to S. with n >4 are rare. Note that
the group S, is the same as C, so such a molecule will already have been classified as C.

(e) The cubic groups
A number of very important molecules (for example, CH, and SF6) possess more than one
principal axis. Most belong to the cubic groups, and in particular to the tetrahedral groups
T, T, and TIh or to the octahedral groups 0, °h (Fig. 15.10). A few icosahedral (20-faced)
molecules, belonging to the icosahedral group,! (Fig. 15.11), are also known: they include
some of the boranes and buckminsterfullerene, C (15). The groups T4 and °h are the
groups of the regular tetrahedrdh (for example, CH 4 ) and the regular octahedron (for
example, SF,), respectively. If the object possesses the rotational symmetry of the
tetrahedron or the octahedron, but none of their planes of reflection, then it belongs to
the simpler groups 7 orG (Fig. 15.12). The group Th is based on T but also contains a centre
of inversion (Fig. 15.13).

(t) The full rotation group
The full rotation group, R1 (the 3 refers to rotation in, .bree dimensions), consists of an
infinite number of rotation axes with all possible values of n. A sphere and an atom belong to
R 3 , but no molecule does. Explding the consequences of R3 is a very important way of
applying symmetry arguments to atoms, and is an alternative approach to the theory of
orbital angular momentum.

Example 15.1 ldnttfng a point group of a molecule

Identify the point group to which a ruthenocene molecule (16) belongs.

Mttltod The identification of a molecule's point group is simplified by referring to the flow
diagram in Fig. 15.14 and the shapes shown in Fig. 15.15.

Answer The path to trace through the flow diagram in Fig. 15.14 is shown by a green line; it
ends at D,h. Because the molecule has a fivefold axis, it belongs to the group Dss.

Cutn,i&nl If the rings were staggered, as they are in an excited state of ferrocene that lies
4 Id mol -' above the ground state (17), the horizontal reflection plane would be absent, but
dihedral planewould be present.

Self-test I .1 Classify the pentagonal antiprismatic excited state of ferrocene.
[DJ
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Ai^

(b) 0

15.12 Shapes corresponding to the point groups (a)
T and (b) 0. The presence of the windmill-like
structures reduces the symmetry of the object from	 'Er
1d and 0. respectively.

Select
highe
perpel

A
Al

15.13 The shape of an object belonging to the
group T5 .	 0nd

A flow diagram for determining the point group of a molecule. Start at the top and answer the
question posed in each diamond ('I' 	 yes, N - no).



15.1S A summary of the shapes corresponding to different point groups. The group to which a molecule belongs can often be identified from this diagram without
going through the formal procedure in Fig. 15.14.
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IS. 16 (a) A molecule with a C axis cannot have a
dipole perpendicular to the axis, but (b) it may have
one parallel to the axis. The arrows represent local
contributions to the overall electric dipole, Such as
may arise from bonds between pairs of
neighbouring atoms with different
etectronegativities.

15.17 Some symmetry elements are implied by the
other symmetry elements in a group. Any molecule
containing an inversion also possesses at least an S
element because I and S2 are equivalent.

COOH

H	
NH,

CH,

18 L-Alanino, NH2CH(CH3)COOH

COOH

NH,

19 Glycirse, NH2CH2COOH

15.3 Some immediate consequences of symmetry
Some statements about the properties of a molecule can be made as soon as its point group
has been identified.

(a) Polarity
A polar molecule is one with a permanent electric dipole mornCnt (HCI, 0 3 , and NH 3 are
examples). If the molecule belongs to the group C with n> 1, it cannot possess a charge
distribution with a dipole moment perpendicular to the symmetry axis because the
symmetry of the molecule implies that any dipole that exists in one direction perpendicular
to the axis is cancelled by an opposing dipole (Fig. 15.16a). For example, the perpendicular
component of the dipole associated with one OH bond in H 20 is cancelled by an equal but
opposite component of the dipole of the second OH bond, so any dipole that the molecule
has must be parallel to the twofold symmetry axis. However, as the group makes no
reference to operations relating the two ends of the molecule, a charge distribution may
exist that results in a dipole along the axis (Fig. 15.16b), and H 2 O has a dipole moment
parallel to its twofold symmetry axis. The same remarks apply to the group C,,, so molecules
belonging to any of the C,, groups may be polar. In all the other groups, such as Cah, D, etc.,
there are symmetry operations that take one end of the molecule into the other.
Therefore, as well as having no dipole perpendicular to the axis, such molecules can have
none along the axis, for otherwise these additional operations would not be symmetry
operations.

We can conclude that only molecules belonging to the groups C,,, C,,, and C, may have a
permanent electric dipole moment. For C. and C,,, that dipole moment must lie along the
symmetry axis. Thus ozone, 03 , which is angular and belongs to the group C, may
be polar (and is), but carbon dioxide, CO 2 . which is linear and belongs to the group Dssb, is
not.

(b) Chirality
A chiral molecule (from the Greek word for 'hand') is a molecule that cannot be
superimposed on its mirror image. Chiral molecules are optically active in the sense that they
rotate the plane of polarized light (a property discussed in more detail in Section 22.2). A
chiral molecule and its mirror-image partner constitute an enantiorneric pair of isomers and
rotate the plane of polarization in equal but opposite directions.

It follows from the theory of optical activity that a molecule may be chiral only if it does
not possess an axis nf"ini proper rotation, S. However, we need to be aware that such an axis
may be present under a different name, and be implied by other symmetry elements that are
present. For example, molecules belonging to the groups Ch possess an S axis implicitly
because they possess both C,, and e ',, which are the two components of an improper
rotation axis. Any molecule containing a centre of inversion, i, also possesses an S3 axis,
because i is equivalent to C, in conjunction V;'t:i o f,. and that combination of elements is S
(Fig. 15.17). It follows that all molecules with centres of inversion are achiral (that is. not
chiral) and hçnce optically inactive. Similarly, because S 1 = z, it follows that any molecule
with a mirror plane is achiral.

A molecule may be chiral if it(10cc not have a centre of inversion or a mirror plane, which is
the case with the amino acid alanine (18), but not with glycine (10). however, a molecule may
be achiral even though it does not have a centre of inversion. For example, the 54 species (20)
is achiral and optically inactive: though it lacks i, it does have an S. axis.
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Character tables
We shall now turn our attention away from the symmetries of molecules themselves and
direct it towards the symmetry characteristics of orbitals that belong to the various atoms in
a molecule. This material will enable us to discuss the formulation and labelling of molecular
orbitals and selection rules in spectroscopy.

15.4 Character tables and symmetry labels
We saw in Chapter 14 that molecular orbitals of diatomic and line5r polyatomic molecules
are labelled ar, it, etc. These labels refer to the symmetries of the orbitals with respect to
rotations around the principal symmetry axis of the molecule. Thus, a a orbital does not
change sign under a rotation through any angle, a it orbital changes sign when rotated by
180 0 , and so on (Fig. 15.18). The symmetry classifications a and it can also be assigned to
individual atomic orbitals in a linear molecule. For example, we can speak of an individual p
orbital as having a symmetry if the z-axis lies along the bond, because p, is cylindrically
symmetrical about the bond. This labelling of orbitals according to their behaviour under
rotations can be generalized and extended to nonlinear polyatomie molecules, where there
may be reflections and inversions to take into account as well as rotations.

Labels analogous to a and it are also used to denote the symmetries of orbitals in
polyatomic molecules. These labels look like a, a 1 , e, e , and we first encountered them in
Section 14.8a in connection with I1O and in Fig. 14.44 in connection with the molecular
orbitals of benzene. As we shall see, these labels indicate the behaviour of the orbitals under
the symmetry operations of the relevant point group of the molecule.

(a) The structure of character tables

436

CHYv
CH3

20 N(CH2CH(CH3)CH(CH3)CH2)

15. III A rotation through 180' about the
internuclear axis leaves the sign of a a orbital	 A label is assigned to an orbital by referring to the character table of the group, a table that

unchanged but the sign of a is orbital is changed,	 characterizes the different symmetry types possible in the point group. Thus, to assign the
In the language introduced in this chapter, the 	 labels or and it, we use the table shown in the margin. This table is a fragment of the full
characters of the C2 rotation are +1 and '-I for	 character table for a linear molecule. The entry +1 shows that the orbital remains the same
the a and is orbitals, respectively. and the entry - I shows that the orbital changes sign under the operation C2 at the head of

the column (as illustrated in Fig. 15.18). So, to assign the label or or it to a particular orbital,
we compare the orbital's behaviour with the information in the character table.

C2	(i.e. rotation by 1800) The entries in a complete character table are derived using the formal techniques of

a	 +1	 (i.e. no change of sign) 	 \	 group theory, and are called characters, X. These numbers characterize the essential features

it —I (i.e. change of sign) of each symmetry type in a way that we can illustrate by using the C3, character table
(Table 15.2). Character tables for other groups are given at the end of the Data section and
are used in exactly the same way.

Table 1	 The C3, character table

C35 . 3m	 E	 2C3	 Sc',	 h = 6

A 1	I	 I	 I	 z	 z2,x2.-y2
A 2	I	 I	 —1
E	 2	 —1	 0	 (x, y)	 (y, x2 —),2),(xz,yz)

More character tables are given at the end of the Doto section at the end of this volume.
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cc,,

15.19 Symmetry operations in the same class are
related to one another by the symmetry operations
of the group. Thus, the three mirror planes shown
here are related by threefold rotations, and the two
rotations shown here are related by reflection in a.

The columns in a character table are labelled with the symmetry operations of the
group, which in C3,, are E, C 3 , and cr, The numbers multiplying each operation are the
numbers of members of each class. Symmetry oQerations fall into the same class if they are
of the same type (for example, rotations) and can be transformed into one another by a
symmetry operation of the group. From the C3 ,, character table we see that the two
threefold rotations (clockwise and Counter-clockwise rotations by 120°) belong to the same
class: they are related by a reflection (Fig. 15.19). The three reflections (one through each of
the three vertical mirror planes) also lie in the same class: they are related by the threefold
rotations. The two reflections of the group C2 fall into different classes: although they are
both reflections, one cannot be transformed into the other by any symmetry operation of
the group.

The total number of operations in a group is called the order, h, of the group. The order of
C3 , for instance, is 6.

The rows under the labels for the operations summarize the symmetry properties of the
orbitals. They are labelled with the symmetry species (the anakigues of the labels e and at).
More formally, the symmetry species label the irreducible representations of the group,
which (as explained in the Justification below) are the basic types of behaviour that orbitals
may show when subjected to the symmetry operations of the group. They are the analogues
of the - I and + I given earlier, and which showed, respectively, whether an orbital changed
sign or did not change sign when the molecule was subjected to a rotation of 1800 about its
internuclear axis. By convention, irreducible representations are labelled with upper-case
Roman letters (such as A 1 and E) but the orbitals to which they apply are labelled with the
lower-case italic equivalents (so an orbital of symmetry species A 1 is called an a orbital).
Examples of each type of orbital are shown in Fig. 15.20.

Justification 15.1

Character tables are derived from the representation of the effects of symmetry operations
by matrices. As an illustration, consider the C2,, moleeule SO 2 and the valence p1 orbitals
on each atom, which tic shall denote Ps PA' and Pn (Fig. 15.21). Under o, the change

e/ \,

15.20 typical symmetry-adapted linear combinations of orbitals in a C,, molecule. 	 I The three p orbitals that are used to
illustrate the Construction of a matrix
representation in a Ci,,, molecule (SO2)'

S	 Note that care "rust be takeo to thstngurtlr the identay mt'rnsent & Italic, a column headrogl from the nrrrmetry label E (Roman.
3 row label)
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(PS,PB)PA) - (PSPA,PB) takes place. We can expres this transformation by using matrix
multiplication:

Ii 0 o\
(PSPB,PA) = (PS,PA ' PB) I 0 0 1 J	 (la)

i 0)

This relation can be expressed more succinctly as

(PS,PB,PA) (PS ,PA PB)D(0) (lb)

The matrix D(r) is called a representative of the operation o,. Representatives take
different forms according to the basis, the set of orbitals, that has been adopted.

We can use the same technique to find matrices that reproduce the other symmetry
operations. For instance, C2 has the effect ( —PS, —ps, -pA) -- (Ps,PA,PB), and its
representative is

	

f—I	 0 o\
D (C2) = ( 0	 0 —1	 (2)

o —i	 oJ

The effect of o, is ( —Ps —PA —PB) - (Ps,PA,PB), and its representative is

	

(-1	 0 o\
D(i)=	 U —I	 0)	 (3)

" 0 0 —1)

The identity operation has no effect on the basis, so its representative is the unit
matrix:

/1 0 0\
D(E)=j0 1 O	 (4)

\o 0 1)

The set of matrices that represents all the operations of the group is called a
matrix representation, F, of the group for the particular basis we have
chosen. We denote this three-dimensional representation by the symbol r 31 . The
discovery of a matrix representation of the group means that we have found a link
between the symbolic manipulations of the operations and algebraic manipulations
involving numbers.

The character of an operation in a particular matrix representation is the sum of the
diagonal elements of the representative of that operation. Thus, in the basis we are
illustrating, the characters of the representatives are

D(E)	 D(C2)	 D(r)	 D((7)
3	 —1	 1	 —3

The character of an operation depends on the basis.
Inspection of the representatives shows that they are all of block-diagonal form:

o U
D = 1)

The symmetry operations of C never mix Ps with the other two functions.
Consequently, the basis can be cut into two parts, one cAsisting of PS alone and the
other of (p,p). It is readily verified that the ps orbital itself is a basis for the One-
dimensional representation

D(E) = I	 D(C2) = —!	 D(a) = I	 D(o) = —1
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which we shall call r11 . The remaining two basis functions are a basis for the two-
dimensional representation P2>:

D(E)=( ?) D(C2)=(? 1)
D(a) = (? ) D(c) =

 (_0 _?)

These matrices are the same as those of the original three-dimensional representation,
except for the loss of the first row and column. We say that the original three-dimensional
representation has been reduced to the direct sum of a one-dimensional representation
spanned by Ps' and a two-dimensional representation spanned by (p,p8 ). This reduction
is consistent with the common sense view that the central orbital plays a role different
from the other two. The reduction is denoted symbolically by writing

= r(11 •+ r)	 (5)

The one-dimensional representation cannot be reduced any further, and is - called an
irreducible representation of the group (an irrep). We can demonstrate that the two-
dimensional representation is reducible (for this basis in this group) by switching attention
to the linear combinations p 1 = PA + Ps and P2 = PA - p5. These combinations are
sketched in Fig. 15.22. The representatives in the new basis can be constructed from the
old by noting, for example, that under o, (P8,PA)(PA1PB). In this way we find the
following representation in the new basis:-1

D(E) = ()
	

D(C) = (

	

0	 ?)0'

= ( 0	 ?) 	 D(c) = (
	 ?)

The new representatives are all in blocI4Iiagonal form, and the two combinations
are not mixed with each other by any operation of the group. We have therefore
achieved the reduction of 1)2) to the sum of two one-dimensional representations Thus,
P, spans

D(E) = I	 D(C2) = —I	 D(u5) = I	 D() = —1

which is the same one-dimensional representation as that spanned by ps, and P2 SPflS

D(E) = 1	 D(C2) = 1	 D(a) = —1 D(o,) = —1

which is a different one-dimensional representation: we shall denote itF'1t'.
Now we can make the final link to the material in the text. The character table of a

group is the list of the characters of all its irreducible representations. At this point we
have found two irreducible representations of the group C2, (Table 15.3). The two

Table16.3* The C2 character table

C2,,2mm	 F	 C2	 o,	 o	 h=4

A 1	 I	 I	 I	 I	 z

A2	 I	 I	 —1	 —I	 xy

B 1	 I	 —1	 I	 —1	 x	 xz

B2	 1	 —1.	 —1	 I

'More character tables are given at the end of the Data section.

15.22 Two synimetr-adapted linear combinations
of the basis orbits show, 	rig. 1 5.21. The two
combinations each span a one-dimensional
irreduciblerepresentation, and their symmetry
species are different
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irreducible representations are normally talelled B 1 and A 2 , respectively. An A or a B is
used to denote a one-dimensional representation; A is used if the character under the
principal rotation is '+1, and B is used if the character is —1. Subscripts are used to
distinguish the irreducible representations if there is more than one of the same type: A 1 is
reserved for the representation with character 1 for all operations. When higher
dimensional irreducible representation are permitted, E denotes a two-dimensional
irreducible representation and I a three-dimensional irreducible representation; all the
irreducible representations of C2, are one-dimensional.

There are in fact only two more species of irreducible rcpresentaäns of this group, for
a surprising theorem of group theory states that

Number of symmetry species = numter of classes 	 (6)

In C2, (Table 15.3), for instance, there are four classes (four colmns in the character
table), so there are only four species of irreducible repicsentation. The character table in
Table 15.3 therefore shows the characters of all the irrehdble representations of this
group.

(b) Character tables and orbital degeneracy
The characters of the identity operation, E, reveal the degeneracy of the orbitals. Thus, in a
C3, molecule, any orbital with a symmetry label a 1 or a2 is non-degenerate. Any doubly
degenerate pair of orbitals in C, must be labelled e because only E symmetry species have
characters greater than 1.

Because there are no characters greater than 2 in the column headed E in Cs,, we know
that there can be no triply degenerate orbitals in a C,,, molecule. This last point is a powerful
result of group theory, for it means that, with a glance at the character table of a molecule,
we can state the maximum possible degeneracy of its orbitals.

Exaniple 1 5.2. Using a charactrr lahle to juclçj cleqerienicy

Can a trigonal planar molecule such as BF 3 have triply degenerate orbitals' What is the
minimum number of atoms from which a molecule can be built that does display triple
degeneracy?

Method First, identify the point group, cnd then refer to the corresponding character table
in the Data section. The maximum number in the column headed by the identity E is the
maximum orbital degeneracy possible in a molecule of that point group. For the second part,
consider the shapes that can be built from two, three, etc. atoms, and decide which number
can be used to form a molecule that can have orbitals of symmetry species T.

Answer Trigonal planar molecules belong to the point group D35 . Reference to the
character table for this group shows that the maximum dçgeneracy is 2, as no character
exceeds 2 in the column headed E. Therefore, the orbitals cannot be triply degenerate. A
tetrahedral molecule (symmetry group T) has an irreducible representation with a T
symmetry species. The minimum number of atoms needed to build such a molecule is four
(as in P4 , for instance).

Self-test 15.2 A buckminsterfullerene molecule, C O3 belongs to the icosahedral point
group. What is the maximum possible degree of degeneracy of its orbitals?

15]
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1.24 A p Orbital on the central atom of a
molecule and the symmetry elemefits of the group.
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15.25 The three His orbitals used to construct
symmetry-adapted linear combinations in a
molecule such as NH3.

(c) Characters and operations
The characters in the rows labelled A and B and in the columns headed by symmetry
operations other than the identity E indicate the behaviour of an orbital under the
corresponding operations: a +1 indicates that an orbital is unchanged, and a —1 indicates
that it changes sign. It follows that we can identify the symmetry label of the orbital by
comparing the changes that occur to an orbital under each operation, and then comparing
the resulting + I or —1 with the entries in a row of the character table for the point group
concerned.

For the rows labelled E or T (which refer to the behaviour of sets of doubly and triply
degenerate orbitals, respectively), the characters in a row of the table are the sums of the
characters summarizing the behaviour of the individual orbitals in the basis. Thus, if one
member of a doubly degenerate pair remains unchanged under a symmetry operation but
the other changes sign (Fig. 15.23), then the entry is reported as y = I - I 0. Care must
be exercised with these characters because the transformations of orbitals can be
quite complicated; nevertheless, the sums of the individual characters are commonly
integers.

As an example, consider the 02p, orbital in #1 2 0. Because #120 belongs to the point group
C,, we know by referring to the C, character table (Table 15.3) that the labels available for
the orbitals are A 1 , A2, B, and B2. We can decide the appropriate label for 02p by noting
that under a I 90 rotation (C,) the orbital changes sign (Fi. 15.24), so it must be either B1

or B,, as only these two symmetry types have char3cter —1 under C,. The 02Pa orbital also
changes sign under the reflection ti, which identifies it as B 1 . As we shall see, any molecular
orbital built from this atomic orbital will also be a hi orbital. Similarly, 02pn changes sign
under C, but not under or',; therefore, it can contribute to h, orbitals.

The behaviour of ., p, and d orbitals on a central atom under the symmetry operations of
the molecule is so important that the symmetry species of these orbitals are generally
indicated in a character table. To make these allocations, we look at the symmetry species of
,s, y, and z, which appear on the right-hand side of the character table. Thus, the position of z
in Table 15.2 shows that p, (which is proportional to zf(r)), has symmetry species A 1 in C3,
whereas p, and p, (which are proportional to xj(r) and yf(r). respectively) are jointly of E
symmetry. In technical terms, we say that p and p jointly span an irreducible
representation of symmetry species E. An s orbital on the central atom always spans the
fully symmetrical irreducible representation (typically labelled A 1 ) of a group as it is
unchanged under all symmetry operations.

The five e l orbitals of a shell are represented by.sy for don, etc., and are also listed on the
right of the character table. We can see at a glance that in C-h , dr, and d02.s On a central
atom jointly belong to ii and hence form a doubly degenerate pair.

(d) The classification of linear combinations of orbitals
So far, we have dealt with the symmetry classification of individual orbitals. the same
technique may be applied to linear combinations of orbitals on atoms that are related by
symmetry transformations of the molecule, such as the combination 4/1 = t1'A f 41

13 + 'c
of the three His orbitals in the C 3 molecule NH 3 (Fig. 15.25). This combination remains
unchanged under a C 1 rotation and under any of the three vertical reflections of the group,
so its characters are

Z. 	 = I	 7(C1) = I	 x o ' ) =

Comparison with the C, character table shows that 0 1 is of symmetry sper ; A 1 , and
therefore that it contributes to a molecular orbitals in NH3'

15.23 The two orbitals shown here have different
properties under reflection through the mirror
plane: one changes sign (character —1). the other
does not (character + 1).



15.21 The value of an integral I (for example, an
area) is independent of the coordinate system used
to evaluate it. That is, Is a basis of a
representation of symmetry species A, (or its
equivalent).

15.26 One symmetry-adapted linear combination of
02p orbitals in the C2 NO2 molecule.
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Example 15.3 Identifying the syniinctry' species of orbitals

Identify the symmetry species of the orbital ci' = 	 - ji in a C2 NO2 molecule, where ii

is an 02p orbital on one 0 atom and ii that on the other 0 atom.

Method The negative sign in 41 indicates that the sign of OR is opposite to that of l,IIA . We
need to consider how the combination changes under each operation of the group, and then
write the character as +1, —1, or 0 as specified above. Then we compare the resulting
characters with each row in the character table for the point group, and hence identify the

symmetry species

Answer The combination is shown in Fig. 15.26. Under C2 , 0 changes into itself, implying a
character of i 1. Under the reflection o, both orbitals change sigrrso 0 -# — i/i ,implying a
character of — I. Under o,, & -. —iJi, so the character for this operation is also —I. The
characters are therefore

(E) = I	 (C2) = I	 x()	 —I	 x(o ) = —1

These values match the characters of the A2 symmetry species, so 0 can contribute to an a2

orbital.

Self-lest 15.3 Identify the symmetry type of the combination ci'A - ci's +* - 'P0 in a

square planar array of H atoms of point group D4h (21).

15.5 Vanishing integrals and orbital qverlap,

Suppose we had to evaluate the integral

1= fii 12 dt
	 (7)

where f and 12 are functions. For example, 

f, 

might be an atomic orbital A on one atom

and 12 an atomic orbital B on another atom, in which case/ would be their overlap integral.
If we knew that the integral was zero, we could say at once that a molecular orbital does not

result from K B) overlap in that molecule. We shall now see that character tables provide a
quick way of judging whether an integral is necessarily zero.

(a) The criteria for vanishing integrals
The key point in dealing with the integral! is that the value of any integral, and of an overlap
integral in particular, is independent of the orientation of the molecule (Fig. 15.27). In group
theoretical language we express this by saying that I is invariant under any symmetry

operation of the molecule, and that each op 2ration brings about the trivial transformation

/ - I. Because the volume element th is invat .tnt under any symmetry operation, it follows
that the integral is nonzero only if the integrand itself, the product f, f,, is unchanged by
any symmetry operation of the molecular point group. If the integrand changed sign under a
symmetry operation, the integral would be the Fum of equal and opposite contributions, and
hence would be zero. It follows that the only contribution to a nonzero integral comes from
functions for which, under any symmetry operation of the molecular point group,

11f2 —f,f2 and hence for which the characters of the operations are all equal to +1.

Therefore, for I not to be zero, the integrand ft f2 must have symmetry species A 1 (or its

equivalent in the specific molecular point group).

442
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SC j S6

15.28 A symmetry-adapted linear combination that
belongs to the symmetry species E in a Ca..,
molecule Such as NH 3 . This combination can form a
molecular orbital by overlapping with the p orbital
on the central atom (the orbital with Its axis
parallel to the width of the page; see Fig. 15.31c).

15.29 The integral of the function! = .ry over the
tinted region is zero. In this case, the result is
obvious by inspection, but group theory can be used
to establish similar results in,less obvious cases.

15.30 The integration of a function over a
pentagonal region.

We use the following procedure to deduce the symqletry species spanned by the product
f, f2 and hence to see whether it does ipdeed span A,.

1. Decide on the symmetry species of the individual functions f, and 12  by reference
to the character table, and write their characters in two rows in the same order as
in the table.

2. Multiply the numbers in each column, writing the results in the same order.
3. Inspect the row so produced, and sw if it can be expressed as a sum of characters

from each column of the group. The integral must be zero if this sum does not
contain A1.

For example, if f, is the SN orbital in NH 3 and 12 is the linear combination s3 = si, - sc
(Fig. 15.28) then, because SN spans A, and .r 3 is a member of the basis spanning E, we write

f:	 I	 II
12 . 	2 -J 0
1112:	 2 -1 0

The characters 2. - I, Dare those of E alone, so the integrand does not span A,. It follows
that the integral must be zero. Inspection of the form of the functions (see Fig. 15.28) shows
why this is so: .t3 has a node running through 5N• Had we taken Ii = SN and 12 = S 1 instead,
where s = 5A + sB + tC' then because each spans A 1 with characters 1 1, 1:

I	 I	 I
12 :	 III
fl f2 	 1	 1	 I

The characters of the product are those of A 1 itself, Therefore, s, and 5N may have nonzero
overlap. A short cut that works when f, and 12 are bases for irreducible representations of a
group is to note their symmetry species: if they are different the integral of their product
must vanish; if they are the same, the integral may be nonzero.

It is important to note tha group theory is specific about when an integral must be zero,
but integrals that it allows to be nonzero may be zero for reasons unrelated to symmetry.
For example, the N-H distance in ammonia may be so great that the (S,,SN) overlap integral
is zero simply because the orbitals are so far apart-

Example 15.4 Deciding if an integral Mot be zero (i)

May the integral of the function f = ry be nonzero when evaluated over a region the shape
of an equilateral triangle centred on the origin (Fig. 15.29)?

Mcthod First, note that an integral over a single function f is included in the previous
discussion if we take j =/ and J = I in eqn 7. Therefore, we need to judge whether I
alone belongs to the symmetry species A, (or its equivalent) in the point group of the
system. To decide that, we identify the point group and then examine the character table to
see whether f belongs to A 1 (or its equivalent).

Ariwtr An equilateral triangle has the point-group symmetry D35 . If we refer to the
character table of the group, we see that xy is a member of a basis that spans the irreducible
representation E'. Therefore, its integral must be zero, because the integrand has no
component that spans Ac.

Self-tet 15.4 Can the function x2 +y2 have a nonzero integral when integrated over a
regular pentagon centred on the origin?

[Yes, Fig. 15.301

30—A
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(b) Orbitals with nonzero overlap
The rules just given let us decide which atomic orbitals may have nonzero overlap in a
molecule. We have seen that 5N may have nonzero overlap with .c (the combination

1A ± IsB + ' se). so bonding and antibonding molecular orbitals can form from (SN,Si)

overlap (Fig. 15.31). The general rule is that only orbitals of the some symmetry species may

have nonzero overlap so only orbitals of the some symmetry species form bonding and
ontibonding combinations. It should be recalled from Chapter 14 that the selection of
atomic orbitals that have mutual nonzero overlap is the central and initial step in the
construction of molecular orbitals by the LC.AO procedure. We are therefore at the point of
contact between group theory and the material introduced in that chapter. The molecular
orbitals formed from a particular set of atomic orbitals with nonzerfl overlap are labelled
with the lower-case letter corresponding to the symmetry species. Thus,'the (sw,s1)-overlap

orbitals are called a 1 orbitals (or a, if we wish to emphasize that they are antibonding).

The s, and s3 linear combinations have symmetry species E. Does the N atom have
orbitals that have nonzero overlap with them (and give rise to e molecular orbitals)?

Intuition (at supporter) by Figs. 15.31b and c) suggests that N2pr and N2p should be

suitable. We can confirm this conclusion by noting that the character table shows that in

C351 the functions x and
'

jointly belong to the symmetry species E. Therefore, N2p5 and

N2p 5 also belong to E, so may have nonzero overlap with s 2 and s. This conclusion can be
verified by multiplying the characters and finding that the product of characters can be

expressed as E x  = A 1 + A2 + E. The two s' orbitals that result are shown in Fig. 15.31

(there are also two antibonding e orbitals).
The power of the method can be illustrated by exploring whether any d orbitals on the

central atom can take part in bonding. As explained earlier, reference to the C35 character

table shows that ri.5 has A 1 symmetry and that the pairs (d52_,d,) and each

transform as E. It follows that molecular orbitals may be formed by (s :d5 5) overlap and by

overlap of the s, s combinatins with the E d orbitals. Whether or not the or orbitals are in

fact important is a question group theory cannot answer because the extent of their
involvement depends on energy considerations, not symmetry.

Example 15.5 Petrrnnir19 which orbitals can contribute to botii)inq

The four His orbitals of methane span A 1 + T. With which of the C atom orbitals can they
overlap? What bonding pattern would be possible if the C atom had a orbitals available?

Method Refer to the T, character table (in the Data section) and look for s, p, and d

orbitals spanning A 1 or T.

Answer An s orbital spans A 1 , so it may have nonzero overlap with the A 1 cornbination of

H Is orbitals. The Up orbitals span T 2 , so they may have nonzero overlap with the T2

combination. The do,, d5 , and d orbitals span T 2 , so they may overlap the same

combination. Neither of the other two d orbitals span Ai (they span E), so they remain

nonbonding orbitals.

Comment It follows that in methane there are (C2s,1-1 ls)-overlap a orbitals and (C2p.H Is)

overlap 12 orbitals. The C3d orbitals might contribute to the latter. The lowest energy
configuration is probably a, i, with all bonding orbitals occupied.

£eif. test I 5.5 Consider the octahedral SF 6 molecule, with the bonding arising from

overlap of S orbitals and a 2p orbital on each F directed towards the central S atom. The

'4Vd3
(b)

15.31 Orbitals of the same symmetry species may
have non-vanishing overlap. This diagram illustrates
the three bonding orbitals that may be constructed
from (N2s, His) and (N2p, His) overlap in a C,
molecule. (a) a 1 : (b) and (cI the two components at
the doubly degenerate e orbitals. (There are also
three antibonding orbitals of the same species.)

30—B
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latter span A 1 + Eg + T. What S orbitals have nonzero overlap? Suggest what the
ground-state configuration is likely to be.

13s(A1J, 3p(T 1 ), 3d(E5); a4e1

(c) Symmetry-adap ted linear- combinations
So far, we have only asserted the forms of the linear combinations (such as s 1 etc.) that have
a particular symmetry. Group theory also 'provides machinery that takes an arbitrary basis, or
set of atomic orbitals (sA, etc.), as input and generates combinations of the specified
symmetry. Because these combinations are adapted to the symmetry of the molecule, they
are called symmetry-adapted linear combinations (SALCs). Symmetry-adapted linear
combinations are the building blocks of LAO molecular orbitls, for they include
combinations such as	 ±	 used to construct molecular orbitals in H20
(Section 14.8a) and some of the more complex examples that we have seen since then.
The construction of SALCs is the first step in any molecular orbital treatment of molecules.

The technique for building SALCs is derived by using the full power of group theory. We
shall not show the derivation, which is very lengthy, bul present the main conclusions as a
set of rules:

1. Construct a table showing the effect of each operation on each orbital of the
original basis.

2. To generate the combination of a specified symmetry species, take each column in
turn and:

Multiply each member of the column by the character of the corresponding
operation.

Add together all the orbitals in each column with the factors as determined
in (i).

Divide the sum by the order of the group.

ME

Original basis

5 N 	 5A	 5R	 Sc

Under E 5N	 5A	 5B	 s
N	 SR	 SC	 5A

Cc	 5N	 Sc	 SA	 5B
S	 5A	 5C	 5B
5N	 5B	 5A	 SC

el	 5N•	 5C	 SB	 5A

For example from the (EN, 5A c) basis in NH we form the table shown in the margin. To
generate the A 1 combination, we take the characters for A 1 (I, I, I 1, I, I); then rules (i)
and (ii) lead to

The order of the group (the number of elements) is 6, so the combination of A 1 symmetry
that can be generated from sN is s m itself. Applying the same technique to the column under
5A gives

iP = 61 (s 4 S13 + 5C + 5A ± 5R + S ) = (sA + S +

The same combination is built from the other two columns, so they give no further
information. The combination we have just formed is the .c 1 combination we used before
(apart from the numerical factor).

We now form the overall molecular orbital by forming a linear combination of all the
SALCS of the specified symmetry species. In this case, therefore, the a i molecular orbital is

IP- £S +

This is as far as group theory can take us. The coefficients must be found by solving the
Schrodinger equalion: they do not come directly from the symmetry of the system.

We run into a problem when we try to generate an SAIC of symmetry species E. because,
for representations of dimension 2 or more, the rules generate sums of SALCs. This problem
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can be illustrated as follows. In C3 , the E characters are 2, —1, -1,0,0,0, so the column

under 5N gives

The other columns give

	

SC)	 (2sB - SA -	 (2sc - SB - SA)

However, any one of these three expressions can be written as a sum of the other two (they
are not 'linearly independent'). The difference of the second and third gives 1 (R - SC), and

this combination and the first, (2s A - - SC), are the two (now linearly independent)

SALCS we have used in the discussion of e or6itals.

15.6 Vanishing integrals and selection rules

Integrals of the form

	

I = f fhf th	 (8)

are also common in quantum mechanics for they include matrix elements of operators

(Section 1 1.5d), and it is important to know when they are necessarily zero. For the integral

to be nonzero, the product f1f2f3 must span A 1 for its equivalent). To test whether this is so,

the characters of all three functions are multiplied together in the same way as in the rules

set out above.

Example 1 5.6 Decldin9 if an integral must be 'ZerO (2)

Does the integral f(3dz)x(3d1,) dr vanish in a C2 molecule?

Method We must refer to the C2 character table (Table 15.3) and the characters of the

irreducible representations spanned by 3z2 - r2 (the form of the d orbital), x, and xy; then

we can use the procedure set out above (with one more row of multiplication). Note that

3? 2 = 2 —22,—).

An'.wtr We draw up the following table:

	

E	 C2

	

1	 1	 —I	 —1	 A2

f2 =x	 I	 —1	 I	 —I	 B1

f1 =d	 1	 1	 1	 1	 A1

f1f2f3	 I	 —t	 —1	 1

The characters are those of B2 . Therefore, the integral is necessarily zero.

Self-test 15.6 Does the integral f(2p)(2p,)(2p) cit necessarily vanish in an octahedral

environment?
[No]

In Chapters 16 and 17 we shall see that the intensity of a spectral line arising from a

molecular transition between some initial state I') with wavefunction 0i and a final state 1)
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A1	
Forb idden 

A

CD ypolarizod

CL	 CL

Forbidden	 .-
B1 ,	 >	

^B2

15.32 The polarlza?Ions of the allowed transitions
in a C,, molecule. The shading indicates the
structure of the orbitals of the specified symmetry
species. The perspective view of the molecule makes
It look rather like a door-stop; however, from the
side. each 'door-slop' is in tact an isosceles triangle.

with wavefunction of depends on the (electric) transition dipole moment Pii• The z-

component of this vector is defined through

	

= (fJpIi) = _ef/s'zl$itdT	 191

where -e is the charge of the electron. Stating the conditions for this quantity (and the x-
and y-components) to be zero amounts to specifying the selection rules for the transition,
the rules that specify which transitions are allowed. The transition moment has the form of
the integral in cqn 8, so, once we know the symmetry species of the states, we canuse group
theory to decide which transitions have zero transition dipole moment and therefore are
forbidden.

As an example, we investigate whether an electron in an a 1 orbital in H2 0 (which belongs
to the group C20 can make an electric dipole transition to a b 1 orbital (Fig. 15.32). We must
examine all three components of the transition dipole moment, and take f2 in eqn 8 as x, y,
and'2 in turn. Reference to the C2 character table shows that these components transform
as B 1 , B2 , and A 1 , respectively. The three calculations run as follows:

	

x-component	 y-Component	 z-component

	

E	 C2 a,, a,	 E	 C2	 a	 tz	 E	 C2 er,,	 z,

	1 	 -1 1	 -1	 I	 -I	 1 -1	 1	 -I 1	 -1 B1

A	 I	 -I	 1	 -1	 I	 -1	 -1	 1	 1	 1	 1	 1

A	 I	 II	 II	 11	 11	 ii	 IA.1

./'1f2f	 I	 I	 I	 .1	 1	 1	 -1 -!	 1	 -1 1	 -1

Only the first product (with f2 = .r) spans A 1 , so only the .r-component of the transition
dipole moment may be nonzero. Therefore, we conclude that the electric dipole transitions
between a 1 and h 1 are allowed. We can go on to state that the radiation emitted (or
absorbed) is x-polarized and has its electric field vector in thee-direction, because that form
of radiation couples with the x-component of a transition dipole.

Exarnpfr 1S.7 Deducing 2 sekctiOn rule

Is p -.	 an allowed transition in a tetrahedral environment?

Method We must decide whether the product pqp with q = x,y, orz, spans A 1 by using
the 7'd character table.

AnSWer The procedure works out as follows;

	

1;	 8C3	 3C2	 6S4	 6d

	

f3(p)	 3	 0	 --i	 -1	 1	 T2

	

f2 (q)	 3	 0	 -I	 -1	 I	 T2

	

J(p ,)	 3	 0	 -I	 -1	 I	 T

	

f1f213	 27	 0	 -1	 -1	 1

A 1 occurs (once) in this set of characters, so p x -+ p is allowed.

Comment A more detailed, analysis (using the matrix representatives rather than the
characters) shows that only q z gives an integral that may be nonzero, so the transition is
z-polarized. That is, the electromagnetic radiation involved in the transition has its electric
vector aligned in the z-direction.



448	 15 MOLECULAR SYMMETRY

Self-test 15.7 What are the allowed transitions, and their polarizations, of a b 1 electron in
a C4 molecule?

[h1 —.b 1 (z);b 1 —.e(x,y)J

The following chapters will show many more examples of how the systematic use of
symmetry using the techniques of group theory can greatly simplify the analysis of
molecular structure and spectra.

CheckIjt of key ideas
[J group theory

The symmetry elements of
objects

symmetry operation
E] symmetry element

15.1 Operations and symmetry
elements

U point groups
0 space groups

identity
D n-fold rotation
U principal axis
fl reflection

mirror plane
113 inversion

113 centre of symmetry
Li n-fold improper rotation
Li n-fold improper rotation

axis

15.2 The symmetry
classification of molecules

[1] Schoentlies system
[1 Hermann-Mauguin ystem
[] International system
F] cubic group
H icosahedral group

15.3 Some immediate
consequences of symmetry

J polar molecule
13 chiral molecule
H enantiomeric pair

Character tables

15.4 Character tables and
symmetry labels

H character table
character
class
order
symmetry species
irreducible representation
representative
bass
matrix representation
block-diagonal form
reduced [representation)
direct sum
spanned (representation)

15.5 Vanishing integrals and
orbital overlap

Li symmetry-adapted linear
combinations (SAICs)

15.6 Vanishing integrals and
selection rules

13 criteria for vanishing
overlap integrals

fl construct' ng SALCS
LI selection rule

Further reading
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the Great Orthogonality Theorem' J. Chem. Educ. 68, 200
(1991).
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72, 821 (1995).
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Exercises
15.1 (a) The CH3 CI molecule belongs to the point group C.
List the symmetry elements of the group and locate them in the
molecule;

15.1 (b) The Cd 4 molecule belongs to the point group Td. List the
symmetry elements of the group and locate them in the molecule,

15.2 (a) Which of the following molecules may be polar: (a) pyridine
(C,), (b) nitroethane (C,). (c) gas-phase HgBr 2 (D), (d) R2N3I-46
(D3h)?

15.2 (b) Wjljch of the following molecules may be polar: (a) CH3CI
(C3 ), (b) HW2 (CO) 10 (D,), (c) SnCl 4 (i'd)?

15.3 (a) Use symmetry properties to determine whether or not the
integral fpzpdir is necessarily zero in a molecule with symmetry
c4v-

15.3 (b) Use symmetry properties to determine whether or not the
integral fpzpdr is necessarily zero in a molecule with symmetry
D.

15.4 (a) Show that the transition A 1 -* A2 is forbidden for electric
dipole transitions in a C3. molecule.

15.4 (b) Is the transition A 15 - E2 forbidden for electric dipole
transitions in a D6h molecule?

15.5 (a) Show that the function sy has symmetry species B 2 in the
group C4.
15.5 (b) Show that the function syz has symmetry species A 1 in the
group

15.6 (a) Molecules belonging to the point groups D 2h or C3h cannot
be chiral. Which elements of these groups rule out chirality?

15.6 (b) Molecules belonging to the point groups Th or T I cannot be
chiral. Which elements of these groups rule out chirality?

15.7 (a) The group D2 consists of the elements E. C2 , C, and C,
where the three twofold rotations are around mutually perpendicular
axes. Construct the group multiplications table.

15.7 (b) The group C4 consists of the elements E, 2C41 C2 , and 217,
2d' Construct the group multiplication table.

15.8 (a) Identify the point groups to which the following objects
belong: (a) a sphere, (b) an isosceles triangle. (c) an equilateral
triangle, (d) an unsharpened cylindrical pencil.

15.8 (b) Identify the point groups to which the following objects
belong: (a) a sharpened cylindrical pencil, (b) a three-bladed propellor,
(c) a four-legged table, (d) yourself (approximately).

15.9 (a) List the symmetry elements of the following molecules and
name the point groups to which they belong: (a) NO 2 , (b) N201
(c) CHCI 3 , (d) CH 2 =CH 2 , (e) cis-CFIBi-==CHBr, (f) trans- CHCI s=CH Cl.

15.9 (b) List the symmetry elements of the following molecules and
name the point groups to which they belong: (a) naphthalene (b)
anthracene, (c) the three dichlorobenzenes.

15.10 (a) Assign (a) cis-dichloroethene and (b) trans-dichloroethene
to point groups.

15.10 (b) Assign the following molecules to point groups: (a) HF, (b)
IF, (pentagonal bipyramid), (c) Xe0 2 F2 (see-saw), (d) Fe 2 (CO)9 (22), (e)
cubane, C5 1-18 , (f) tetrafluorocubane, C8 H 4 F4 (23).

OC
OC \	 CO

	

Fe	 F	 F
oc( )co	

F
Fe

occoF

	

22	 23

15.11 (a) Which of the molecules in Exercises 15.9a and 15.1 Oa can
be (a) polar, (b) chiral?

15.11(b) Which of the molecules in Exercises 15.9b and 15.1 Ob  can
be (a) polar, (b) chiral?

15.12 (a) Consider the C2 molecule NO2 . The combination
p(A) - p(B) of the two 0 atoms (with x perpendicular to the
plane) spans A2 . Is there any orbital of the central N atom that can
have a nonzero overlap with that combination of 0 orbitals? What
would be the case in 502 . where 3d orbitals might be available?

15.12 (b) Consider the C3 ion NO;. Is there any orbital of the
central N atom that can have a nonzero overlap with the combination
2p.(A) - p.(B) - p.(C) of the three 0 atoms (with z perpendicular
to the plane)? What would be the case in 50 3 , where 3d orbitals might
be available?

15.13 (a) The ground state of NO 2 is A 1 in the group C2 . To what
excited states may it be excited by electric dipole transitions, and
what polarization of light is it necessary to use?

15.13 (b) The d0 2 molecule (which belongs to the group C20 was
trapped in a-solid. Its ground state is known to be B 1 . Light polarized
parallel to the y-axis (parallel to the 00 separation) excited the
molecule to an upper state. What is the symmetry of that state?

15.14 (a) What states of (a) benzene, (b) naphthalene may be
reached by electric dipole transitions from their (totally symmetrical)
ground states?

15.14 (h) What states of (a) anthracene, (b) coronene (24) may be
reached by electric dipole transitions from their (totally symmetrical)
ground states?

24 Coronerte
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15.15 (a) Write f = sin  and 12 = cosO, and show by symmetry	 15.15 (b) Determine whether the integral overf 1 and!2 in Exercise
arguments using the group C that the integral of their product over 	 15.1 5(a) is zero over a symmetric range about 0 = 0 in the
a symmetrical range around 0 = 0 is zero.	 group C3

Problems

Numerical problems
15.1 list the symmetry elements of the following molecules and
name the point groups to which they belong: (a) staggered CH3CH3,
(b) chair and boat cyctohexane, (c) 8 2 1-1 6 . (d) [Co(en) 3 1

3 , where en is
ethylenedian,ine (ignore its detailed structure), (e) crown-shaped S9.

Which of these molecules can be (i) polar, (ii) chiral?

15.2 The group C2b consists of the elements E, C21 a5 , i. Construct
the group multiplication table (the outcome of all multiplications
RR1, where Rj and R1 are operations of the group) and find an
example of a molecule that belongs to the group.

15.3 The group D25 has a C2 axis perienditular to the principal axis
and a horizontal mirror plane. Show that the group must therefore
have a centre of inversion.

15.4 Consider the H 2 0 molecule, which belongs to the group C2.
Take as a basis the two H Is orbitals and the four valence orbitals of
the 0 atom and set up t(ie 6 x 6 matrices that represent the group in
this basis. Confirm by explicit matrix multiplication that the group
multiplications (a) C2a = 17', and (b) = C2. Confirm, by
calculating the traces of the matrices, (a) that symmetry elements
in the same class have the same character, (b) that the representation
is reducible, and (c) that the basis spans 3A 1 + E3 + 2B,.

15.5 Confirm that the 2-component of orbital angular momentum is
a basis for an irreducible representation of A 2 symmetry in C.

15.6 The (one-dimensional) matrices D(C 3 ) = 1 and D(C2 ) = ] , and
D(C5 ) = 1 and D(C2) — I both represent the group multiplication
C3 C2 C. in the group C6 with D(C(,) = +1 and —I, respectively.
Use the character table toconfirni these remarks. What are the
representatives of a and ad in each case?

15.7 Construct the multiplication table of the Pauli spin matrices, a,
and the 2 x 2 unit matrix:

/0 1\	 /0 —i

	

X=j	 )	
ay=j	

)

	

/1	 O\	 /1 0\

	

a=0	
t)	

a00

Do the four matrices form a group under multiplication (in the sense
that ayr1 cc a5 for all the matrices)?

15.8 What irreducible representations do the four His orbitals of
CH 4 span? Are there s and  orbitals of the central C atom that may
form molecular orbitals with them? Could d orbitals, even if they were
present on the C atom, play a rote in orbital formation in CH4?

15.9 Suppose that a methane molecule became distorted to (a) C
symmetry by the lengthening of one bond. (b) C2 symmetry, by a

kind of scissors action in which one .bond angle opened and
another closed slightly. Would more d orbitals become available for
bonding?

15.10 The algebraic forms of the f orbitals are a radial function
multiplied by one of the factors: (a) z(5z - 3r 2 ), (b) y(5) 2 - 3r2 ), (c)
x(5x2 -. 3r2), (d) z(x2 - y2), (e) y(x2 - z2), (f) x(z2 - y2 ). (g) .ryz.
Identify the irreducible representations spanned by these orbitals in
(a) C2 , (b) C3 , (c) 7'd' (d) °h Consider a lanthanide ion at the centre
of (a) a tetrahedral complex, (b) an octahedral complex. What sets of
oibitals do the seven f orbitals split into?

15.11 Does the product xyz necessarily ,anish when integrated over
(a) a cube, (b) a tetrahedron. (c) a hexagonal prism, each centred on
the origin?

15.12 Treat the naphthalene molecule as belonging to the group C2

with the C. axis perpendicular to the plane. Classify the irreducible
representations spanned by the carbon 2p orbitals and find their
symmetry-adapted linear combinations.

15.13 The NO, molecule belongs to the group C2 , with the C2 axis
bisecting the ONO angle. Taking as a basis the N2s, N2p, and 02p
orbitals, identify the irreducible representations they span, and
construct the symmetry-adapcd linear combinations,

15.14 Construct the symmetry-adapted linear combinations of C2p
orbitals for benzene, and use them to calculate the HOckel Secular
detminant. This procedure leads to equations that are much easier
to solve than those obtained by using the original orbitals. Show
that the Huckei orbitals are those specified in Section 14.9d.

Additional problems supplied by Carmen Giunta
and Charles Trapp
15.15 BA Bovenzi and GA Pearse, Jr (.1. Chem. Soc. Dalton Trans.
accepted. 1997) synthesized coordination compounds of the
tridentate ligand pyridine-2,6-diamidoxime (C,H 9N 50 2 , 251.
Reaction with NiSO 4 produced a complex in which two of the
essentially planar ligands are bonded at right angles to a single Ni
atom. Name the point group and the symmetry operations of the
resulting [Ni(C 7 H 9 N 5 O 2 ) 2 ] 2 complex cation.

HO

JLNI
NH 2	 NH2	 25
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15.16 R. Eujen, B. Hoge. and D.J. Brauer (Inorg. Chem. 36, 1464

(1997)) prepared and characterized several square-planar Ag(lll)
complex anions. In the complex anion jtron5_A9(CF 3 )(CN) 2 !. the
Ag-CN groups are collinear. (a) Assuming free rotation of the CF3
groups (that is, disregarding the A9CF and A9CH angles), name the
point group of this complex anion. (b) Now suppose the CF groups
cannot rotate freely (because the ion was in a solid, for example).
Structure (26) shows a plane which bisects the NC-Ag-CN axis and is
perpendicular to it. Name the point group of the complex if each CF3
group has a CF bond in that plane (so the CF 3 groups do not point to

either CN group preferentially) and the CF 3 groups are (i) staggered,

(ii) eclipsed.

•	 CF3

•	 CN

NC<	 26

CF3

15.17 A computational study by CJ. Marsden (Chern. Phys. Lefts.

245. 475 (1995)) of AM compounds. where A is in Group 14 of the
periodic table and M is an alkali metal, shows several deviations from
the most symmetric structures for each formula. (a) For example, most

of the AM4 structures were not tetrahedral but had two distinct
values for MAM bond angles. They could be derived from a
tetrahedron by a distortion shown in (27). What is the point group
of the distorted tetrahedron? What is the symmetry species of the
distortion considered as a vibration in the new, less symmetric group?
(b) Some AM6 structures are not octahedral, but could be derived
from an octahedron by translating a C-M-C axis as in (28). What is

27

28

the point group of the distorted octahedron? What is the symmetry
species of the distortion considered as a vibration in the new, less
symmetric group?
15.18 In a spectroscopic\study of C, F. Negri, G. Orlandi. and
F. Zerbetto (J. Phys. Chem. 100, 10849 (1996)) assigned peaks in the
fluorescence spectrum. The molecule has icosahedral symmetry (lh).
The ground electronic state is A i, and the lowest-lying excited states

are T 1g and C4 . Are photon-induced transitions allowed from the
ground state to either of these excited states? Explain your answer.
What if the transition is accompanied by a vibration that breaks the

parity?
15.19 The H molecule, which p l ays an important role in chemical

reactions occurring in interstellar clouds, is known to be equilateral
triangular. (a) Identify the symmetry elements and determine the
point group of this molecule. (b) Take as a basis for a representation of
this molecule the three His orbitals and set up the matrices that
represent the group in this basis. (c) Obtain the group multiplication
table by explicit multiplication of the matrices. (d) Determine if the
representation is reducible and, if so, give the irreducible representa-
tions obtained.
15.20 The H ion has recently been found in the interstellar medium
and in the atmospheres of Jupiter Saturn, and Uranus. The 114
analogues have not yet been found, and the square planar structure is
thought to be unstable with respect to vibration. Take as a basis for a
representation of the point group of this molecule the four His
orbitals and determine if this representation is reducible.


