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Spectroscopy 1:
rotational and
vibrational spectra

The general strategy we adopt in the chapter is to set up expressions for the cnergy levels of
molecules, and then to apply selection rules and considerations of populutions ta infer the
form of spectra. Rotational energy levels are considered first, and we see how to derive
expressions for their values and then how to interpret rotational spectra in terms of
molecular dimensions. Not ofl molecules can occupy oll rotatienal states: we see the
experimental evidence for- this restriction and its explanation in terms of nuclear spin and
the Pauli principle. Next, we consider the vibrationol energy levels of diatomic molecules, and
see that we can use the properties of harmonic oscillators developed in Chapter 12. Then we
consider polyatomic molecules and find that their vibrations moy be discussed as though
they consisted of a set of independent harmonic oscillators, so the same approach as that
employed for diatomic moilecules may be used. We also sec that the symmetry properlics of
the vibrations of polyatomic molecules ore helpful for deciding which modes can be studied
spectroscopically. :

The origin of spectral lines in molecular spectroscopy is the emission or absorption of a
photon when the energy of a molecule changes. The difference from atomic spectroscopy is
that the energy of a molecule can change not only as a result of electronic transitions but
also because it can undergo changes of rotational and vibrational state. Molecular spectra
are therefore more complex than atomic spectra. However, they also contain information
relating to more properties, and tneir analysis leads to values of bond strengths, lengths, and
angles. They also provide a way of determining a variety of molecular properties, particularly
molecular dimensions, shapes, and dipole moments.

Pure rotational spectra, in which only the rotational state of a molecule changes, can be
observed in the gas phase. Vibrational spectra of gaseous samples show features that arise
from rotational transitions that accompany the excitation of vibration. Electronic spectra,
which are described in Chapter 17, show features arising from simultaneous vibrational and
rotational transitions. The simplest way of dealing with these complexities is to tackle each
type of transition in turn, and then to see how simultaneous changes affect the appearance
of spectra.
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General features of spectroscopy
All types of spectra have some features in common, and we examine these first. We shall
often need to use the relations between the frequency, v, wavelength, 4, and wavenumber,
v, of electromagnetic radiation that were first mentioned in the Introduction
’ € v .
‘ Tl & X I
14 N [+ . ( )
The units of wavenumber are almost always chosen as reciprocal centimetres (cm™1).
Figure 16.1 summarizes the frequencies, wavelengths, and wavenumbers of the various
regions of the electromagnetic spectrum and anticipates the type of molecular excitation
that is characteristic of each region.
16.1 Experimental technigues
In emission spectroscopy, a molecule undergoes a transition from a state of high energy E,
to a state of lower energy E, and emits the excess energy as a photon. In absorption
spectroscopy, the net absorption' of nearly monochromatic (single-frequency) incident
radiation is monitored as the radiation is swept over a range of frequencies. The energy, hv,
of the photon emitted or absorbed, and therefore the frequency, v, of the radiation emitted
or absorbed, is given by the Bohr frequency condition
hvLE, -E, ()
@
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16.1 The electromagnetic spectrum and the classification of the spectral regions” The band at the bottom of the illustration indicates the types of transitions that
absorb or emit in the various regions. ['Huc}_ear magnetism’ refers to the types of transitions discussed in Chapter 18; ‘nuclear’ on the right refers to transitions

within the nucleus)

1 We say nef absorption, because it will become clear that, when 3 sample is irradiated, both absorption and emission at a given
Irequency are stimulated, and the detector measures the difference, the net absorplion.



= 16.2 The layout of a typical absarption spectrometer.

The beams pass alternately through the sample and
reference cells, and the detector is synchronized with
them so that the relative absorption can be
determined.
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16.3 A synchrotron storage ring. The electrons
injected into the ring from the linear accelerator
and booster synchrotron are accelerated to high
speed in the main ring. An electron in a curved
path is subject to constant adceleration, and an
accelerated charge radiates electromagnetic energy.
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16.4 One simple dispersing element is a prism,
which separates frequencies spatially by making use
of the higher refractive index of matter for high-
frequency radiation. The shortest wavelength for
which a glass prism can be used is #bout 400 nm,
but quartz can be used down to 180 nm.
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Emission and absorption spectroscopy give the same information about energy level
separations, but practical considerations generally determine which technique is employed.
Emission spectroscopy, if it is used at all, is normally used only for visible and ultraviolet
spectroscopy; absorption spectroscopy is much more widely employed, and we shall
concentrate on it. Absorption spectra are also often easier to interpret than emission spectra.

(a) Sources of radiation

The general layout of a spectrometer is summarized in Fig. 16.2. The source generally
produces radiation spanning a range of frequencies. For the far infrared, the source is a
mercury arc inside a quartz envelope, most of the radiation being generated by the hot
quartz. A Nernst filament is used to generate radiation in the near infrared. This device
consists of a heated ceramic filament containing rare-earth (lanthanide) oxides, which emits
radiation closely resembling that of a true black body. For the visible region of the spectrum,
a tungstenfiodine lamp is used, which gives out intense white light. A discharge through
deuterium gas or xendn in quartz is still widely used for the near ultraviolet. In a few cases,
the source generates monochromatic radiation which can be swept over a range of values.
One such generator is the klystron, an electronic device used to generate microwaves.
Lasers, which are discussed in more detail in Chapter 17, generate monochromatic
electromagnetic radiation that can often be tuned over a range of frequencies; different
types of laser are used to cover different regions of the electromagnetic spectrum.

For certain applications, synchrotron radiation from a synchrotron storage ring is
appropriate. A synchrotron storage ring consists of an electron beam (actually a series of
closely spaced packets of electrons) travelling in a circular path of several metres in
diameter. As electrons travelling in a circle are constantly accelerated by the forces that
constrain them to their path, they generate radiation (Fig. 16.3). Synchrotron radiation
spans a wide range of frequencies, including the far ultraviolet and beyond to X-rays, and in
all except the microwave region is much more intense than can be obtained by most
conventional sources. The disadvantage of the source is that it is 5o large and costly that it is
essentially a national facility, and not a laboratory commonplace,

(b) The dispersing element

In all but specialized techniques using monochromatic”microwave radiation and lasers,

absorption spectrometers include a component for separating the frequencies of the

radiation so that the variation of the absorption with frequency can be monitored. In
conventional spectrometers, this component is a dispersing element that separates
radiation with different frequencies into different spatial directions.

The simplest dispersing element is a glass or quartz prism, which utilizes the variation of
refractive index with the frequency of the incident radiation (Fig. 16.4). Materials generally
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16.5 A Michelson interferometer. The beam-
splitting element divides the incident beam into two
beams with a path difference that depends on the
location of the mirror M,. The compensator ensures
that both beams pass through the same thickness
of material.
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16.6 An interferogram produced as the path length
p is changed in the interferometer shown in

Fig. 16.5. Only a single frequency component is
present in the radiation.
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have a higher refractive index for high-frequency radiation than low-frequency radiation,
and therefore high-frequency radiation undergoes a greater deflection when passing
through a prism. Problems of absorption by the mrism can be avoided by replacing it by a
diffraction grating . A diffraction grating consists of a glass or ceramic plate into which fine
grooves have been cut about 1000 nm apart (a separation comparable to the wavelength of
visible light) and covered with a reflective aluminium coating. The grating causes
interference between waves reflected from its surface, and constructive interference
occurs at specific angles that depend on the wavelength of the radiation.

(c) Fourier transform techniques

Modern spectrometers, particularly those operating in the infrared, now almost always use
Fourier transform techniques of spectral detection and analysis. The heart of a Fourier
transform spectrometer is a Michelson interferomzter, » device for analysing the
frequencies present in a composite signal. The total signal from a sample is like a chord
played on a piano, and the Fourier transform of the signal is equivalent to the separation of
the_ chord into its individual notes, its spectrum.

A Michelson interferometer works by splitting the beam from the sample into two and
introducing a varying path difference, p, into one of them (Fig. 16.5). When the two
components recombine, there is a phase difference between them, and they interfere either
constructively or destructively depending on the difference in path lengths. The detected-
signal oscillates as the two components alternately come into and out of phase as the path
difference is changed (Fig. 16.6). If the radiation has wavenumber 7, the intensity of the
detected signal due to radiation in the range of wavenumbers & to & + diz, which we denote
I(p, #)dp, varies with p as

Z(p,#)di> = Z(i)(1 + cos 2nip) dir 3)

Hence, the interferometer converts the presence of a particular wavenumber component in
the signal into a variation in intensity of the radiation reaching the detector. An actual
signal consists of radiation spanning a large number of wavenumbers, and the total intensity
at the detector, which we write Z(p), is the sum of contributions from all the wavenumbers
present in the signal (Fig. 16.7);

I(p)= LWIU;,JJ)dﬁ :ju”n T(2)(1 + cos 2nip) div (4)

The problem is to find Z(&), the variation of intensity with wavenumber, which is the
spectrum we require, from the record of values of Z(p). This step is a standard technique of
mathematics, and is the 'Fourier transformation’ step from which this form of spectroscopy
takes its name. Specifically:
@
I(w)= 4/ {Z(p) — 1Z(0)} cos2nipdp (5)
0
Where Z(0) is given by eqn 4 with p = 0. This integration is carried out in a computer that is
interfaced to the spectrometer, and the output, Z(5), is the absorption spectrum of the
sample (Fig. 16.8).7
A major advantage of the Fourier transform procedute is that all the radiation emitted by
the source is monitored continuously. This is in contrast to a spectrometer in which a
monochromator discards most of the generated radiation. As a result, Fourier transform
spectrometers have a higher sensitivity than conventional spectrometers. The resolution

2 More precisely, 1l is the transmission spectrum, for the signal dep:nds on the transimiticd intensity However, the absorption and
Iransmission spectra carry the same informalion and the former term s normally employed.
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16.7 An interferogram obtained when several (in
this case, three) frequencies are present in the
radiation.

Intensity, AV)

Wavenumber, ¥

16.8 The three frequency components and their
intensities that account for the appearance of the
interferogram in Fig. 16.7. This spectrum is the
Fourier transform of the interferogram, and is a
depiction of the contributing frequencies.
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they can achieve is determined by the maximum path length difference, p,,,. of the
interferometer:

1
2Pmax

Ab = (6)
To achieve a resolution of 0.1 em~' requires a maximum path length difference
of 5 cm.

(d) Detectors

The third component of a spectrometer is the detector, the device that converts incident
radiation into an electric current for the appropriate signaf processing or plotting.
Radiation-sensitive semiconductor devices, such as a charge-coupled device (CCD), are
increasingly dominating this role in the spectrometer. A microwave detector is typically a
crystal diode consisting of a tungsten tip in contact with a semiconductor, such as
germanium, silicon, or gallium arsenide.

The intensity of the radiation arriving at the detector is usually modulated, because
alternating signals are easier to amplify than a steady signal. In some cases the beam is
chopped by a rotating shutter. In other cases, the absorption characteristics of the sample
itself are modulated. Ways of achieving the latter kind of modulation are described later in
the chapter and in Chapter 18.

(e) The sample

The highest resolution is obtained when the sample is gaseous and at such low pressure that
collisions between the molecules are infrequent. Gaseous samples are essential for rotational
(microwave) spectroscopy, for only then can molecules rotate freely. To achieve sufficient
absorption, the path lengths through gaseous samples must be very long, of the order of
metres; long path lengths are achieved by multiple passage of the beam between parallel
mirrors at each end of the sample cavity.

The most common range for infrared spectroscopy is from 4000 cm™' to 625 em™!.
Ordinary glass and quartz absorb over most of this range, so some other material must be
used as windows. Thus, the sample is typically a liquid held between windows of sodium
chloride (which is transparent down to 625 cm™') or potassium bromide (which is
transparent down to 400 cm™'). Other ways of preparing the sample include grinding it into
a paste with "Nujol', a hydrocarbon oil, or pressing it into a solid disk (with powdered
potassium bromide, for example).

(f) Raman spectroscopy

In Raman spectroscopy, the energy levels of molecules are explored by examining the
frequencies present in the radiation scattered by molecules. In a typical experiment, a
monochromatic incident beam is passed through the sample and the radiation scattered
perpendicular to the be3m is monitored (Fig. 16.9). About 1 in 107 of the incident photons
collide with the molecules, give up some of their energy, and emerge with a lower energy.
These scattered photons constitute the lower-frequency Stokes radiation from the sample.
Other incident photons may collect energy from the molecules (if they are already excited),
and emerge as higher-frequency anti-Stokes radiation. The component of radiation
scattered into the forward direction without change of frequency is called Rayleigh
radiation.

The shifts in frequency of the scattered radiation from the incident radiation are quite
small, and the latter must be very monochromatic if the shifts are to be observed. Moreover,
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16.9 The arrangement adopted .in Raman
spectroscopy. The scattered radiation is moni&'cd
at right angles to the incident radiation.
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the intensity of scattered radiation is low, so int=nsk incident beams are needed. Lasers are
ideal in both respects, and have entirely displaced the mercury-arcs used originally. Although
faser Raman spectra were originally examined using visible and ultraviolet incident
radiation, radiation in the near infrared is now commonly used because its use avoids
complications arising from the stimulation of fluorescence (Section 17.3). Detection is
usually with a semiconductor device. Raman spectroscopy is often complementary to
infrared spectroscopy because, as we shall see, different selection rules are obeyed.

16.2 The intensities of spectral lines

The ratio of the transmitted intensity, Z, to the incident intensity, Ty, ata given frequency is
called the transmittance, T, of the sample at that frequency:

T

T=— 7

7 | )
It is found empirically that the transmitted intensity varies with the length, J, of the sample
and the molar concentration, [J], of the absorbing species J in accord with the Beer-
Lambert law: .

T = Tyl0~ (8)

The quantity & is called the molar absorption coefficient (formerly, and still widely, the
‘extinction coefficient’). The molar absorption coefficient depends on the frequency of the
incident radiation and is greatest where the absorption is most intense. Its dimensions are
1/(concentration x length), and it is normally convenient to express it in litres per mole per
centimetre (L mol~! em™"). The form of eqn 7 suggests that it is sensible to introduce the
absorbance, A, of the sample at a given wavenumber as

b
A =Iog~9

T orA=—logT (9]

Then the Beer-Lambert law becomes
A=l . (10)
The product &[J|I was known formerly as the optical density of the sample.

Justification 16.1

The Beer-Lambert law is an empirical result. However, it is simple to account for its form.
The reduction in intensity, d 7, that occurs when light passes through a layer of thickness
d! containing an absorbing species J at a molar concentration [J] is proportional to the
thickness of the layer, the concentration of J, and the intensity, Z, incident on the layer
(because the rate of absorption is proportional to the intensity, see below). We can
therefore write - .

d7 = —x[J|Tdl
where x (kappa) is the proportionality coefficient, or equivalently
% -

3 Alternative units are cm® mol ™" This change of units emphasizes the paint that & is 3 molar cross-section for absorption and, the
greater the cross-section of the molecule for absorption, the greater its ability to block the passage of the incident radiation.
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16.10 The intensity of a transition is the area under
a plot of the molar absorption coefficient against
the wavenumber of the incident radiation,
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16.11 The processes that account for absorption
and emission of radiation and the attainment of
thermal equilibrium. The excited state can return to
the lower state spontaneously as well as by a
process stimulated by radiation already present at
the transition frequency.

3)—A

16,2 THE INTENSITIES OF SPECTRAL LINES 459

This expression applies to each successive layer into which the sample can be regarded as
being divided. Therefore, to obtain the intensity that emerges from a sample of thickness /
when the intensity incident on one face of the sample is T,, we sum all the successive
changes: )

f:ﬂj{= —rc_/uf{.l]dl

If the concentration is uniform, [J] is independent of location, and the expression
integrates to

- I.
IHIT, = —k[I)t

This expression gives the Beer-Lambert law when the logarithm is converted to base 10 by
using Inx = (In 10) log x and replacing x by £1n 10. .

llustration

......................................................... Pesssesisasa st n s anny

The Beer-Lambert law implies that the intensity of electromagnetic radiation transmitted
through a sample at a given wavenumber decreases exponentially with the sample thickness
and the molar concentration. If the transmittance is 0.1 for a path length of 1 cm
(corresponding to a 90 per cent reductien in intensity), then it would be (0.1)* = 0.01 fora
path of double the length (corresponding to a 99 per cent reduction in intensity
overall). * i

The maximum value of the molar absorption coefficient, gy, is an indication of the
intensity of a transitidn. However, as absorption bands generally spread over a range of
wavenumbers, quoting the absorption coefficient at a single wavenumber might not give
a true indication of the intensity of a transition. The integrated absorption coefficient,
A, is the sum of the absorption coefficients over the entire band (Fig. 16.10), and
corresponds to the area under the plot of the molar absorption coefficient against
wavenumber:

M= /Md {5} 5 (1)

For lines of similar widths, the integrated absorption coefficients are proportional to the
heights of the lines. -

(a] Absorption intensities

Einstein identified three contributions to the transitions between states. Stimulated
absorption is the tvansition from a low energy state to one of higher energy that is driven by
the electromagnetic field oscillating at the transition frequency. The more intense the
electromagnetic field (the more intense the incident radiation), the greater the rate at which

. transitions are induced and hence the stronger the absorption by the sample (Fig. 16.11).

Einstein wrote the transition rate, w, from the lower to the upper state as’

W:Bp (12)

The constant B is the Einstein coefficient of stimulated absorption and pdv is the energy
density of radiation in the frequency range v to v + dv, where v is the frequency of the

4 Specifically, w is the rale of change of probability of the molecule being found in the upper state: w = dP/dr
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transition. When the molecule is exposed to Jblack-body radiation from a source of
temperature T, p is given by the Planck distribution (eqn 11.5);
8mhi? [c3
P = T { | WS

For the time being, we can treat B as an empirical parameter that characterizes the
transition: if B is large, then a given intensity.of incident radiation will induce transitions
strongly and the sample will be strongly absorbing. The total rate of absorption, W, the
number of molecules excited during an interval divided by the duration of the interval, is the
transition rate of a single molecule multiplied by the number of molecules N in the lower
state: W = Nw.

Einstein considered that the radiation was also able to induce, the molecule in the upper
state to undergo a transition to the lower state, and hence tp generate a pﬁoton of
frequency v. Thus, he wrote the rate of this stimulated emission as

w =8'p (14)

where B' is the Einstein coefficient of stimulated emission. Note that only radiation of the
same frequency as the transition can stimulate an excited state to fall to a lower state.
However, Einstein realized that stimulated emission was not the only means by which the
excited state could generate radiation and return to the lower state, and suggested that an
excited state could undergo spontaneous emission at a rate that was independent of the
intensity of the radiation (of any frequency) that is already present. He therefore wrote the
total rate of transition from the upper to the lower state as

w=A+8p T (15)
The constant A is the Einstein coefficient of spontaneous emission. The overall rate of
emission is
W' = N'(A+B'p) (16)
where N' is the population of the upper state.
As demonstrated in the Justification below, Einstein was able to show that the two

coefficients of stimulated absorption and emission are equal, and that the coefficient of
spontaneous emission is related to them by

A= (gtﬁ"l)s (17)

Justification 16.2

At thermal equilibrium, the total rates of emission and absorption are equal, so
NBp =N'(A+ B'p)
This expression rearranges into
N'A A/B A/B
P=NBZNB ~N/N -B/B_ ew _B/B

We have used the Boltzmann expression (see the Introduction) for the ratio of populations
of states of energies E and E' in the last step:

NJ
R!--—‘e""’/" hv=E —E

5 The sightly different form of the distsibution stems from the fact thal the pin eqn 11.5 is for the encrgy density written as pdA,
whereas here it is writlen as pdw, and |dd| = (c/3#) dv.

31=B
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16.12 (a) When a 15 electron becomes a 2s
electron, there is a spherical migration of charge;
there is no dipole moment associated with this
migration of charge; this transition is electric-dipole
forbidden. (b) In contrast, when a 1s electron
becomes a 2p electron, there is a dipole assaciated
with the charge migration; this transition is
allowed. (There are subtle effects arising from the
sign of the wavefunction that give the charge
migration a dipolar character, which this diagram
does not attempt to convey.)
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This result has the same form as the Planck distribution (eqn 13), which describes the
radiation density at thermal equilibrium. Indeed, when we compare the two expressions for
p. we can conclude that B' = B and that A is related to B by eqn 17.

The growth of the importance of spontaneous emission with increasing frequency is a
very important conclusion, as we shall see when we consider the operation of lasers
(Section 17.5). The equality of the coefficients of stimulated emission and absorption implies
that, if two states happen to have equal populations, then the rate of stimulated emission is
equal to the rate of stimulated absorption, and there is then no net absorption.

Spontaneous emission can be largely ignored at the relatively low frequencies of
rotational and vibrational transitions, and the intensities of these transitions can be
discussed in terms of stimulated emission and absorption. Then the net rate of absorption is
given by

Woe = NBp — N'B'p = (N — N')B 18
o

and is proportional to the population difference of the two states involved in the transition.

(b) Selection rules and transition moments

We met the concept of a ‘selection rule’ in Sections 13.3 and 15,6 as a statement about
whether a transition is forbidden or allowed. Selection rules also apply to molecular spectra,
and the form they take depends on the type of transition. The underlying classical idea is
that, for the molecule to be able to interact with the electromagnetic field and absorb or
create a photon of frequency v, it must possess, at least transiently, a dipole oscillating at
that frequency. This transient dipole is expressed quantum mechanically in terms of the
transition dipole moment, i, between states |i) and |£3:

mﬂwm=fwwm S [19]

where p is the electric dipole moment operator. The size of the transition dipole can be
regarded as a measure of the charge redistribution that accompanies a transition: a
transition will be active (and generate or absorb photons) only if the accompanying charge
redistribution is dipolar (Fig. 16.12).

The coefficient of stimulated absorption (and emission), and therefore the intensity of
the transition, is proportional to the square of the transition dipole moment, and a detailed
analysis gives

p=tal, (20)

Only if the transition moment is nonzero does the transition cantribute to the spectrum. We
see that, to identify the selection rules, we must establish the conditions for which p; # 0.

A gross selection rule specifies the general features a molecule must have if it is to have
a spectrum of a given kind. For instance, we shall see that a molecule gives a rotational
spectrum only if it has a permanent electric dipole moment. This rule, and others like it for
other types of transition, will be explained in the relevant sections of the chapter.

A detailed study of the transition moment leads to the specific selection rules that
express the allowed transitions in terms of the changes in quantum numbers. We have
already encountered examples of specific selection rules when discussing atomic spectra
(Section 13.3), such as the rule Al = +1 for the angular momentum quantum number.
Specific selection rules can often be interpreted in terms of the changes of angular
momentum when a photon [with its intrinsic spin angular momentum s = 1) enters or
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16.13 The shape of a Doppler-broadened spectral
line reflects the Maxwell distribution of speeds in
the sample at the temperature of the experiment.
Notice that the line broadens as the temperature is
increased.
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leaves a molecule, and we shall discuss them once we have set up the quantum numbers
needed to describe rotation and vibration.

16.3 linewidths

A number of effects contribute to the widths of spectroscopic lines. Some contributions to
linewidth can be modified by changing the conditions, and to achieve high resolutions we
need to know how to mimimize these contributions. Other contributions cannot be changed,
and represent an inherent limitation on resclution.

(a) Doppler broadening

One important broadening process in gaseous samples is the Doppler effect, in which
radiation is shifted in frequency when the source is moving towards or away from the
observer. When a source emitting electromagnetic radiation of frequency v moves with a
speed 5 relative to an observer, the cbserver detects radiation of frequency

1 —s/c\'? 14s/c e ’
Vieceding = u(rrjﬁ) Pupproaching = ¥ f— T/(‘) (2”

where c is the speed of light. For nonrelativistic speeds (s < c), these expressions simplify to

v 14

Vreceding ~ ]__TT/; Vapproaching ~ m (22)

Molecules reach high speeds in all directions in a gas, and a stationary observer detects the
corresponding Doppler-shifted range of frequencies. Some molecules approach the
observer, some move away; some move quickly, others slowly. The detected spectral 'line’
is the absorption or emission profile arising from all the resulting Doppler shifts. The profile
reflects the distribution of molecular velocities parallel to the line of sight (Section 1.3),
which is a bell-shaped Gaussian curve [of the form ¢ *'). The Doppler line shape is therefore
also a Gaussian (Fig. 16.13), and calculation shows that, when the temperature is T and the
mass of the molecule is m, the width of the line at half-height (in terms of frequency or
wavelength) is

5 1/2 1/2
e BECEYY g, R @)

[s m C m

For a molecule like N, at room temperature (T~ 300 K), dv/v=2.3 x 107°. For a typical
rotational transition wavenumber of 1 cm™' (carresponding to a frequency of 30 GHz), the
linewidth is about 70 kHz.

Doppler broadening increases with temperature because the molecules acquire a wider
range of speeds. Therefore, to obtain spectra of maximum sharpness, it is best to work with
cold samples.

(b) Lifetime broidening

It is found that spectroscopic lines from gas-phase samples are not infinitely sharp even
when Doppler broadening has been largely eliminated by working at low temperatures. The
same is true of the spectra of samples in condensed phases and solution. This residual
broadening is due to quantum mechanical effects. Specifically, when the Schrédinger
equation is solved for a system that is changing with time, it is found that it is impossible to
specify the energy levels exactly. If on average a system survives in a state for a time 1, the
lifetime of the state, then its energy levels are blurred to an extent of order 8E, where

OFE =

R

(24)
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16.14 The definition of moment of inertia. In this
maolecule there are three identical atoms attached
to the B atom and three different but mutually
identical atoms attached to the C atom. In this
example, the centre of mass lies on the C, axis, 3nd
the perpendicular distances are measured from the
axis passing through the B and C atoms.
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This expression is reminiscent of the Heisenberg uncertainty principle (eqn 11.46), and
consequently this lifetime broadening is often called ‘uncertainty broadening’. When the
energy spread is expressed as a wavenumber through 6£ = hcdis, and the values of the
fundamental constants are introduced, this relation becomes

s S (25)
1/ps
No excited state has an infinite lifetime; therefore, all states are subject to some lifetime
broadening and, the shorter the lifetimes of the states involved in a transition, the broader
the corresponding spectral lines.

Two processes are responsible for the finite lifetimes of excited states. The dominant one
for low-frequency transitions is collisional deactivation, which arises from collisions
between molecules or with the walls of the container. If the collisional lifetime, the mean
time between collisions, is ,, the resulting collisional linewidth is 6£,. = h/t,,. Because
T = 1/2z, where z is the collision frequency, and from the kinetic model of gases
(Section 1.3) we know that z is proportional to the pressure, p, we see that the collisional
linewidth is proportional to the pressure. The collisional linewidth can therefore be
minimized by working at low pressures.

The rate of spontancous emission cannot be changed. Hence it is a natural limit to the
lifetime of an excited state, and the resulting lifetime broadening is the natural linewidth of
the transition. The natural-linewidth is an intrinsiesproperty of the transition, and cannot be
changed by modifying the conditions. Natural linewidths depend strongly on the transition
frequency (they increase with the coefficient of spontaneous emission A and therefore as
7, so low-frequency transitions (such as the microwave transitions of rotational
spectroscopy) have very small natural linewidths, and collisional and Doppler line-
broadening processes are dominant. The natural lifetimes of electronic transitions are
very much shorter than for vibrational and rotational transitions, so the natural linewidths
of electronic transitions are much greater than those of vibrational and rotational
transitions. For example, a typical electronic excited state natural lifetime is about 1078 s
(10 ns), corresponding to a natural width of about 5x 10~* cm~! (15 MHz). A typical
rotational state natural lifetime is about 10° s, corresponding to a natural linewidth of only
5% 107" cm~! (of the order of 10~* Haz).

Pure rotation spectra

The general strategy we adopt for discussing molecular spectra and the information they
contain is to find expressions for the energy levels of molecules and then to calculate the
transition frequencies by applying the selection rules. We then predict the appearance of the
spectrum by taking into account the transition moments and the populations of the states.
In this section we illustrate the strategy by considering the rotational states of molecules.

16.4 Moments of incrtia

The key molecular parameter we shall need is the moment of inertia, /, of the molecule
(Section 12.6). The moment of inertia of a molecule is defined as the mass of each atom
multiplied by the square of its distance from the rotational axis through the centre of mass
of the molecule (Fig. 16.14):

! = Zm,r,-z [26]
1

where r, is the perpendicular distance of the atom i from the axis of rotation. The moment of
inertia depends on the masses of the atoms present and the molecular geometry, so we can



464

16.15 An asymmetric rotor has three different
moments of inertia; all three rotation axes coincide
at the centre of mass of the molecule.
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suspect (and later shall see explicitly) that rotational spectroscopy will give information
about bond lengths and bond angles.

In general, the rotational properties of any molecule can be expressed in terms of the
moments of inertia about three perpendicular axes set in the molecule (Fig. 16.15). The
convention is to label the moments of inertia [, /;, and I_, with the axes chosen so that
I, 2 1, > I,. For linear molecules, the moment of inertia around the internuclear axis is zero,
The explicit expressions for the moments of inertia of some symmetrical molecules are given

in Table 16.1.

Table 16.1 Moments of inertiat

1. Diatomics
Q0

My Mg

2, Linear rotors

my mg me
P9
my My My

3. Symmetric rotors

4. Spherical rotors
my

mg

my

1=TAT8 o2 R?
m

I= mARI +meR?
(mR - meRY

m

1=2m,R

Iy= 2mAR2(I -cos )
I, =m,R*(] - cos 8)
My L 2
+—(mg + m:)R(1 + 2cos B)
m

+ gk, [(3m, +mg)R"
m

+6m,R{3(1 +2cos8)]'7)
= EMARI{I —cos 8)
I =mAR2(! ~cos @)

+wR2(l +2cos 8)
m

.’.-—-4.mRJ
I, = ?JIARZ + 2’"CR'2

my
my
my i My I= 4mAR2
m
B
my,
my

t1in each case m is the total mass of the molecule.
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16.16 A schematic illustration of the classification
of rigid rotors.
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Example 16.1 Calculating the moment of ‘inertia of a molecule

Calculate the moment of inertia of an H,0 molecule around its twofold axis (the
bisector of the HOH angle (1)). The HOH bond angle is 104.5° and the bond length is
95.7 pm.

Method According to eqn 26, the moment of inertia is the sum of the masses multiplied by
the squares of their distances from the axis of rotation. The latter can be expressed by using
trigonometry and the bond angle and bond length.

" Answer From eqn 26,

I = Zm,-rf = myrf + 0 + myrf = 2myr}
i

If the bond angle of the molecule is denoted 2¢ and the bond length is R, trigonometry gives
ry = Rsing. It follows that

I = 2myR*sin’ ¢
Substitution of the data gives

I=2x(1.67%10"7 kg) x (9.57 x 10™"" m)” x sin? 52.3°
=1.91x107*7 kgm?

Comment The mass of the O atom makes no contribution to the moment of inertia for this
mode of rotation as the atonf is immobile while the H atoms circulate around it.

Self-test 16.1 Calculate the moment of inertia of a CH**Cl, molecule around its threefold
axis. The C-Cl bond length is 177 pm and the HCCI angle is 107°; m(**Cl) = 34.97 u.
[4.99 x 107** kgm?]

We shall suppose initially that molecules are rigid rotors, bodies that do not distort under
the stress of rotation. Rigid rotors can be classified into four types (Fig. 16.16):

Spherical rotors have three equal moments of inertia (examples: CH,, SiH,, and
SFe).

Symmetric rotors have two equal moments of inertia (examples: NH,, CH,Cl, and
CH,CN).

Linear rotors have one moment of inertia (the one about the axis) equal to zero
(examples: CO,, HCI, OCS, and HC=CH).

Asymmetric rotors have three different moments of inertia (H,0, H,CO, and
CH,0H are examples).

In group theoretical language, a spherical rotor is a molecule that belongs to a cubic or
icosahedral point group; a symmetric rotor is a molecule with at least a threefold axis of
symmetry. All diatomic molecules are linear rotors. An asymmetric rotor is a molecule
without a threefnld (or higher) axis: it may have other elements of symmetry, such as a
twofold axis or mirror planes. The energy levels of asymmetric rotors are compllcated and we
shall not consider them.
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16.17 The rotational energy levels of a linear or
spherical rotor. Note that the energy separation
between neighbouring levels increases as J

increases.
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16.5 The rotational energy levels

The rotational energy levels of a rigid rotor may be obtained by solving the appropriate
Schriddinger equation. Fortunately, however, there is a much less onerous short cut to the
exact expressions that depends on noting the classical expression for the energy of a
rotating body, expressing it in terms of the angular'momentum, and then importing the
quantum mechanical properties of angular momentum into the equations.

The classical expression for the energy of a body rotating about an axis a is

E, =1 Lw? (27)

where w,, is the angular velocity (in radians per second, rad s~') about that axis and 1, is the
corresponding moment of inertia. A body free to rotate about three axes has an energy

E =11} 4+ o} +11.w]

Because the classical angular momentum about the axis a is J, = l,w,, with similar
expressions for the other axes, it follows that

-
E—%+%+ﬂ{ (28)

This is the key equation. We described the quantum mechanical properties of angular
momentum in Section 12.7b, and can now make. use of them in conjunction with this
equation to obtain the rotational energy levels.

(a) Spherical rotors
When all three momenta of inertia are equal to some value /, as in CH, and SF;, the classical
expression for the energy is
g it R+st_ 2.

2/ 2
where 7 is the magnitude of the angular momentum. We ¢an immediately find the
quantum expression by making the replacement

TP I+ T=0,1,2,...

Therefore, the energy of a spherical rotor is confined to the values
h!
E,=J(J+l)ﬂ Ji=i05 1,2, (29)

The resulting ladder of energy levels is illustrated in Fig. 16.17. The energy is normally
expressed in terms of the rotational constant, B, of the molecule, where

h? h

The expression for the energy is then
E,=heBéJ+1) J=0,1,2,... (31)

The rotational constant as defined by eqn 31 is a wavenumber.® The energy of a rotational
state is normally reported as the rotational term, F(J), a wavenumber, by division by he:

F(J)=BJ(J +1) (32)
The separation of adjacent levels is
F(J)—-F(J —1)=28J (33)

€ The definition of 8 as a wavenumber is convenient when we come 10 vibration-rotation spectra. However, for pure rotational
spectroscopy it is more common fo define B as a frequency. Then B = A /4xf and the energy is £ = hBJ(J + 1}. o



(b)

16.18 The significance of the quantum number K.
(a) When |K| is close to its maximum value, J, most
of the molecular rotation is around the principal
axis. (b) When K = 0 the molecule has no angular
momentum about its principal axis: it is undergoing
end-over-end rotation.
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Because the rotational constant decreases as / increases, we see that large molecules have
closely spaced rotational energy levels. We can estimate the magnitude of the separation by
considering CCl,: from the bond lengths and masses of the atoms we find
] = 4.85x107% kgm?, and hence B = 0.0577 cm™".

(b) Symmetric rotors

In symmetric rotors, two moments of inertia are equal but different from the third (as in
CH,Cl, NH,, and CgH;); the unique axis of the molecule is its principal axis (or figure axis).
We shall write the unique moment of inertia (that about the principal axis) as / and the
other two as /,. If Jy>1,, the rotor is classified as oblate (like a-pancake, and CeHg); if
Iy<i, itis classified as prolate (like a cigar, and CH,Cl). The classieal expression for the
energy, eqn 28, becomes

W s P

=g

This expression can be written in terms of J2 = J2 +J3 +J%:

2_n 2 2
gt J"+J—"AJ—+(~1——L)J,E (34)

T T TR T
Now we generate the quantum expression by replacing J2 by J(J + 1)#%, where J is the
angular momentum quantum number. We also know from the quantum theory of angular
momentum (Section 12.7b) that the component of angular momentum about any axis is
restricted to the values K, with K =0, +1,..., +J. (K is the quantum number used to
signify a component on the principal axis; M, is reserved for a component on an externally
defined axis) Therefare, we also replace J2 by K?A. It follows that the rotational terms are

FUK)=BIJ+1)+(A-B)K*> J=0,1,2,... K=0+1,...,%J
. (35)

with

LB g b 36
4ncl) 4ncl |

Equation 35 matches what we should expect for the dependence of the energy levels on the
two distinct moments of inertia of the molecule. When K = 0, there is no component of
angular momentum about the principal axis, and the energy levels depend only on I,
(Fig. 16.18). When K = +J, almost all the angular momentum arises from rotation around
the principal axis, and the energy levels are determined largely by /. The sign of X does not
affect the energy because opposite values of K correspond to opposite senses of rotation,
and the energy does not depend on the sense of rotation.

Example 16.2 Calculating the rotational energy levels of a molecule

An "NH, moleculc is a symmetric rotor with bond length 101.2 pm and HNH bond angle
106.7°. Calculate its rotational terms.

Method Begin by calculating the rotational constants A and B by using the expressions for
moments of inertia given in Table 16.1. Then use eqn 35 to find the rotational terms.
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(a)

(b)

{c)

16.19 The significance of the quantum number M.
(a) When M is close to its maximum value, J, most
of the molecular rotation is around the laboratory
z-axis. (b) An intermediate value of M. (c) When
M; = 0 the molecule has no angular momentum
about the z-axis. All three diagrams correspond to a
state with X = 0; there are corresponding diagrams
for different values of X, in which the angular
momentum makes a different angle to the
molecule’s principal axis.
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Answer Substitution of m, = 1.0078 u, mg = 14.0031 u, R = 101.2 pm, and § = 106.7°
into the second of the symmetric rotor expressions in Table 16.1 gives
;= 44128 107" kgm? and /, =2.8059 x 10°*7 kgm?. Hence, 4 = 6.344 cm™! and
B =9.977 cm™'. It follows from egn 35 that

F(J,K)fem™ = 9.9770(J + 1) — 3.633K?

Comment ForJ = 1, the energy needed for the molecule to rotate mainly about its figure
axis (K = +.J) is equivalent to 16.32 cm™", but end-over-end rotation (K = 0) corresponds
to 19.95 cm™ .

Self-test 16.2 A CH;%Cl molecule has a C-Cl bond length of 178 pm, a C-H bond length
of 111 pm, and an HCH angle of 110.5°. Calculate its rotational energy terms.
[F(J,K)/em™" = 0.444J(J + 1) + 4.58K?]

(c) Linear rotors

For a linear rotor (such as CO,, HCI, and C,H,), in which the nuclei are regarded as mass
points, the rotation occurs only about an axis perpendicular to the line of atoms and there is
zero angular momentum around the line. Therefore, the component of angular momentum,
around the figure axis of a linear rotor is identically zero, and K =0 in eqn 35. Thasotational
terms of a linear molecule are therefore

FU)=BIJ+1) J=0,1,2,... (37)

This expression is the same as eqn 32 but we have arrived at it in a significantly different
way: here K =0 but for a spherical rotor A = B.

(d) Degeneracies and the Stark effect

The energy-of a symmetric rator depends on J and K, and each level except those with
K = 0is doubly degenerate: the states with K and —K have the same energy. However, we
must not forget that the angular momentum of the molecule has a component on an
external, laboratory-fixed axis. This component is quantized, and its permitted values are
Mh, with M, =0, +1,..., +J, giving 2J + 1 values in all (Fig. 16.19). The quantum
number M, does not appear in the expression for the energy, but it is necessary for a
complete specification of the state of the rotor, Consequently, all 2.7 + 1 orientations of the
rotating molecule have the same energy. It follows that a symmetric rotor level is
2(2J + 1)-fold degenerate for K # 0 and (2J + 1)-fold degenerate for K = 0. A linear
rotor has K fixed at 0, but the angular momentum may still have 2J + 1 components on the
laboratory axis, so its degeneracy is 2J + 1.

A spherical rotor can be regarded as a version of a symmetric rotor in which A is equal to
B. The quantum number K may still take any one of 24 + 1 values, but the energy is
independent of which value it takes. Therefore, as well as having a (2 + 1)-fold degeneracy
arising from its orientation in space, the rotor also has a (27 + 1)-fold degeneracy arising
from its orientation with réspec! to an arbitrary axis in the molecule. The overall degeneracy
of a symmetric rotor with quantum number J is therefore (27 + l)l. This degeneracy
increases very rapidly: when J = 10, for instance, there are 441 states of the same energy.

The degeneracy associated with the quantum number M, (the orientation of the rotation
in space) is partly removed when an electric field is applied to a polar molecule (for example,
HCl or NH;), as iliustrated in Fig. 16.20. The splitting of states by an electric field is called the
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16.20 The effect of an electric field on the energy
levels of a polar linear rotor. All levels are doubly
degenerate except that with M, = 0.

'a} fCemrifuga!

orce

16.21 The effect of rotation on a molecule. The
centrifugal force arising from rotation distorts the
molecule, opening out band angles and stretching
bonds slightly. The effect is to increase the moment
of inertia of the molecule and hence to decrease its
rotational constant.
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Stark effect. For a linear rotor in an electric field £, the energy of the state |/, M) is given
by
E(J,M,) = heBJ(J + 1) + a(J, M, )2 E* (38a)
where
{J(J +1) - 3M3}

M) = B+ DRI - D@I +3) -

Note that the energy of a state with quantum number M, depends on the square of the
permanent electric dipole moment, u. The observation of the Stark effect can therefore be
used to measure this property, but the technique is limited to molecules that are sufficiently
volatile to be studied by microwave spectroscopy. However, as spectra can be recorded for
samples at pressures of only about 1 Pa, even some quite nonvolatile substances may be
studied. Sodium chloride, for example, can be studied as diatomic NaCl molecules at high
temperatures. '

(e) Centrifugal distortion y

We have treated molecules as rigid rotors. However, the atoms of rotating molecules are
subject to centrifugal forces that tend to distort the molecular geometry and change the
moments of inertia (Fig. 16.21). The effect of centrifugal distortion on a diatomic molecule is
to stretch the bond and hence to increase the moment of inertia. As a result, centrifugal
distortion reduces the rotational constant and consequently the energy levels are slightly
closer than the rigid-rotor expressions predict. The effect is usually taken into account
largely empirically by subtracting a term from the energy and writing

F())=BJ(J +1) « DA +1) (39)

The parameter D; is the centrifugal distortion constant. It is large when the bond is easily
stretched. The centrifugal distortion constant of a diatomic molecule is related to the
vibrational wavenumber of the bond, & (which, as we shall see later, is a measure of its
stiffness), through the approximate relation

D=z (40)

Hence the observation of the convergence of the rotational levels as J increases can be
interpreted in terms of the rigidity of the bond.

16.6 Rotational transitions

Typical values of B for small molecules are in the region of 0.1 to 10 cm~! (for example,
0.356 cm™" for NF; and 10.59 cm™! for HCI), so rotational transitions lie in the microwave
region of the spectrum. The transitions are detected by monitoring the net absorption of
microwave radiation. Modulation of the transmitted intensity can be achieved by varying
the energy levels with an oscillating electric field. In this Stark modulation, an electric field
of about 10° Vm~' and a frequency of between 10 and 100 kHz is applied to the sample.

(a) Rotational selection rules

We have already remarked (Section 16.2) that the gross selection rule for the observation of
a pure rotational spectrum is that a molecule must have a permanent electric dipole
moment. That is, for a molecule to give a pure rotationgl spectrum, it must be polar. The
classical basis of this rule is that a polar molecule appears to possess a fluctuating dipole
when rotating, but a nonpolar molecule does not [Fig. 16.22). The permanent dipole can be
regarded as a handle with which the molecule stigs the electromagnetic field into oscillation
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16.22 To a stationary observer, a rotating polar
molecule looks like an oscillating dipole which can
stir the electromagnetic field into oscillation. This
picture is the classical origin of the gross selection
rule for rotational transitions.

__,_,_,_,}_—
hv

16.23 When a photon is absorbed by a molecule,

the angular momentum of the combined system is
conserved. If the molecule is rotating in the same
sense as the spin of the incoming photon, then J

increases by 1.
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(and vice versa for absorption). Homonuclear diatomic molecules and symmetrical (Dgp)
linear molecules such as CO, are rotationally inactive. Spherical rotors cannot have electric
dipole moments unless they become distorted by rotation, so they are also inactive exceptin
special cases. An example of a sphericai rotor that does become sufficiently distorted for it to
acquire a dipole moment is SiH,, which has a dipole moment of about 8.3 uD by virtue of its
rotation when J 10 (for comparison, HCI has a permanent dipole moment of 1.1 D:
molecular dipole moments and their units are discussed in Section 22.1). The pure rotational
spectrum of SiH, has been detected by using Iong path lengths (10 m) through high-
pressure (4 atm) samples,

lllustration

Of the molecules N,, CO,, OCS, H,0, CH,=CH,, CzHg, only O{_‘S and H,0 are polar, so only
these two molecules have microwave spectra.

Self-test 16.3 Which of the molecules H,, NO, N,O, CH, can have a pure rotational
spectrum?
[NO, N,0]

The specific rotational selection rules are found by evaluating the transition dipole
moment between rotational states. For a linear molecule, the transition moment vanishes
unless the following conditions are fulfilled:

Al=+1 AM, =0, +1 (41)

The transition AJ = +1 corresponds to absorption and the transition AJ = —1
corresponds to emission. The allowed change in J in each case arises from the conservation
of angular momentum when a photon, a spin-1 particle, is emitted or absorbed (Fig. 16.23).
The change in M, is also a consequence of the conservation of angular momentum, and
takes into account the direction in which the photon leaves or enters the molecule.

When the transition moment is evaluated for all possible relative orientations of the
molecule to the line of flight of the photon, it is found that the total J + 1 « J transition
intensity is proportional to

J+1
|HJ+1.Jf2 = (2_].§. [)ﬂ — du* for J > 1 (42)

where y is the permanent electric dipole moment of the molecule. Although the intensity of
the absorption varies with J, the dependence is weak and the dominant effect on intensities
is the population of the states. It should be noted that the intensity is proportional to the
square of the permanent electric dipole moment, so strongly polar molecules give rise to
much more intense rotational lines than less polar molecules.

A selection rule for K is needed for symmetric rotors. Any electric dipole moment
possessed by a sythmetric rotor must lie parallel to the principal axis, as in NF, (recall
Fig. 15.16). Such a molecule cannot be accelerated into different states of rotation around
the figure axis by the absorption of radiation, so AK = 0 for a symmetric rotor.

(b) The appearance of rotational spectra

When these selection rules are applied to the expressions for the energy levels of a rigid
rotor, it follows that the wavenumbers of the allowed J + 1+J absorptions are

b=2B(J+1) J=0,1,2,... (43)
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16.24 The rotational energy levels of a linear rotor,
the transitions allowed by the selection rule

AJ = 11, and a typical pure rotational absorption
spectrum (displayed here in terms of the radiation
transmitted through the sample). The intensities
refiect the populations of the initial level in each
case and the strengths of the transition dipole
moments.
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When centrifugal distortion is taken into account, the corresponding expression is

p=2B(J+1)—4D,(J +1) (44)
»
However, because the second term is typically very small compared with the first, the
appearance of the spectrum closely resemtles that predicted from eqn 43.

Example 16.3 Predicting the appearance of a rotational spectrum
Predict the form of the rotational spectrum of NH,.

Method We calculated the energy levels in Example 16.2. The NH; molecule is a polay
symmetric rotor, so the selection rules AJ = +1 and AK =0, apply. For absorption,
AJ = +1 and we can use eqn 43. Because B = 9.977 cm™", we can draw up the following
table for the J + 1«J transitions.

J 0 1 2 3
p/em™! 19.95 3991 59.86 79.82

The line spacing is 19.95 cm™".

Self-test 16.4 Repeat the problem for C**CIH, (see Self-test 16.2 for details).
[Lines of separation 0.888 cm™']

The form of the spectrum predicted by eqn 43 is shown in Fig. 16.24. The most significant
feature is that it consists of a series of lines with wavenumbers 28,48,6B, ... and of
separation 2B. The intensities increase with increasing J and pass through a maximum
before tailing off as J becomes large. It should be recalled from Section 16.2 that the
observed absorption is the net outcome of the stimulated absorption less the stimulated
emission, and that the intefisity of each transition depends on the value of J. Hence the
value of J corresponding to the most intense line is not quite the same as the value of J for
the most highly populated level. The value of J for the most highly populated rotational
energy level in a linear molecule is

kT 1/2
% _1
e (5105) 3 (45)

For a typical molecule (for example, OCS, with B =0.2cm™') at room tempel.'ature,
kT 2 1000hcB, so J,,, %30.

Justification 16.3

There is a maximum in population because the Boltzmann distribution decays
exponentially wath increasing J, but the degeneracy of the levels, the number of states
with a given encrgy. increases. Specifically, the population of a rotational energy level J is
given by the Bo!tzmann expression

Ny o Ng,ez’e“mr

where N is the total number of molecules and g, is the degeneracy of the level J. The value
of J corresponding to a maximum of this expression is found by treating J as a continuous
variable, differentiating with respect to J, and then setting the result equal to zero. The
result is eqn 45.




472

Electric
. field

(a)

(b)

16.25 An electric field applied to a molecule results
in its distortion, and the distorted molecule acquires
a contribution to its dipole moment (even if it is
nunpolar initially). The polarizability may be
different when the field is applied (a) parallel or (b}
perpendicular ta the molecular axis (or, in general,
in different directions relative to the molecule); if
that is so, then the molecule has an anisotropic
polarizability.
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The measurement of the line spacing gives B, and hence the moment of inertia
pcipendicular to the principal axis of the molecule. Because the masses of the atoms are
known, it is a simple matter to deduce the bond length of a diatomic molecule, However, in
the case of a polyatomic molecule such as OCS or NH;, the analysis gives only a single
quantity,/,, and it is not possible to infer both bond lengths (in OCS) or the bond length and
bond angle (in NH;). This difficulty can be overcome by using isotopically substituted
molecules, such as ABC and A'BC; then, by assuming that R(A—B) = R(A'—B), both
A-B and B-C bond lengths can be extracted from the two moments of inertia. A famous
example of this procedure is the study of OCS; the actual calculation is worked through in
Problem 16.12. The assumption that bond lengths are unchanged by isotopic substitution is
only an approximation, but it is a good approximation in most Ea_ses.

16.7 Rotational Raman spectra

The gross selection rule for rotational Raman transitions is that the molecule must be
anisotropically polarizable. We begin by explaining what this means.

The distortion of a molecule in an electric field is determined by its polarizability, «
(Section 22.1¢). More precisely, if the strength of the field is £, then the molecule acquires an
induced dipole moment of magnitude

n=af (46)

in addition to any permanent dipole moment it may have. An atom is isotropically
polarizable. That is, the same distortion is induced whatever the direction of the applied
field. The polarizability of a spherical rotor is also isotropic. However, nonspherical rotors
have polarizabilities that do depend on the direction of the field relative to the molecule, so
these molecules are anisotropically polarizable (Fig. 16.25). The electron distribution in H,,
for example, is more distorted when the field is applied parallel to the bond than when it is
applied perpendicular to it, and we write ay>ay.

All linear molecules and diatomics (whether homonuclear or heteronuclear) have

+ anisatropic polarizabilities, and so are rotationally Raman active. This activity is one reason
* for the importance of rotational Raman spectroscopy, for the technique can be used to study

many of the molecules that are inaccessible to microwave spectrascopy. Spherical rotors
such as CH, and SFg, however, are rotationally Raman inactive as well as microwave
inactive.”

The specific rotational Raman selection rules are

Linear rotors: AJ =0, +2 47
Symmetric rotors: AJ =0, +1, +2,AK =0 (7
The classical origin of the +2 in these selection rules is outlined in the Justification below,
The AJ = 0 transitions do not lead to a shift of the scattered photon's frequency in pure
rotational Raman spectroscopy, and contribute to the unshifted Rayleigh radiation observed
in the forward direction.?

7 This inactivity does not mean that such malecules are never found in rotationally excited states. Molecular colfisions do not have
1o obey such restrictive selection rules, and hence collisions between molecules can resull in the population of any rotational
stale.

B See Section 235 for the information present in this component under different circumstances.
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field

16.26 The distortion induced in a molecule by an
applied electric field returns to its initial value after
a rotation of only 180° (that is, twice a revolution).
This is the origin of the AJ = +2 selection rule in
rotational Raman spectroscopy.
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Justification 16.4

If the incident electric field is that of a light wave of frequency w;, the induced dipole
moment of a molecule is

pu=af(r) = af coswt
.If the molecule is rotating at a circular frequency wg, to an external observer its
polarizability is also time-dependent (if it is anisotropic), and we can write
o = ay + Accos 2wyt
where Aa = o — a; and o ranges from o + Ac to ey — Accas the molecule rotates. The 2
appears because the polarizability returns to its initial value twice each revolution
(Fig. 16.26). Substituting this expression into the expression for the induced dipole
moment gives ,
1= (g + Axcos 2wgr) x (£ cos w;t)
ay€ cos w;t + EAa cos 2wy cos wyt
= o€ cos it + € Aafcos(w; + 2w )t + cos(w; — 2wg)t}

This calculation shows that the induced dipole has a component oscillating at the incident
frequency (which generates Rayleigh radiation), and that it also has two components at
o; + 2wg, which give rise to the shifted Raman lines. Note that these lines appear only if
Ax # 0; hence the polarizability must be anisotropic for there to be Raman lines.

The selection rules can also be explained in terms of the conservation of angular
momentum, but the details are tricky because the incoming and scattered photons travel
at right angles to each other. However, it should be clear that, because two photons are
involved, and each one is a spin-1 particle, a maximum change in angular momentum
quantum number of++2 is possible.

We can predict the form of the Raman spectrum of a linear rotor by applying the
selection rule AJ = +2 to the rotational energy levels (Fig. 16.27). When the molecule
makes a transition with AJ = +2, the scattered radiation leaves it in a higher rotational
state, so the wavenumber of the incident radiation, initially &, is decreased. These transitions
account for the Stokes lines in the spectrum:

o) +2d) =5 — (FUJ +2) — F(J)} = & — 2B(2J +3) (48a)

The Stokes lines appear to low frequency of the incident radiation and at displacements
6B, 108, 148, ... from & for J = 0,1,2,.... When the molecule makes a transition with
AJ = =2, the scattered photon emerges with increased energy. These transitions account
for the anti-Stokes lines of the spectrum:

B —2ed) =5+ {F(J) = F(J = 2)} = & + 2B(2J — 1) (48b)

The anti-Stokes lines occur at displacements of 68, 108, 148, ... (for / =2,3,4,....J =2
is the lowest state that can contribute under the selection rule AJ = —2) to high frequency
of the incident radiation. The separation of adjacent lines in both the Stokes and the anti-
Stokes regions is 4B, so from its measurement I, can be determined and then used to find
the bond lengths exactly as in the case of microwave spectroscopy.

Example 16.4 Predicting the form of a Raman spectrum

Predict the form of the rotational Raman spectrum of "*N,, for which B = 1.99 cm™', when
it is exposed to monochromatic 336.732 nm laser radiation.
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16.27 The rotational energy levels of a linear rotor
and the transitions allowed by the AJ = +2 Raman
selection rules. The form of a typical rotational
Raman spectrum is also shown.
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Method The molecule is rotationally Raman active because end-over-end rotation
modulates its polarizability as viewed by a stationary observer. The Stokes and anti-
Stokes lines are given by eqn 48.

Answer Because J; = 336.732 nm corresponds to & = 29697.2 cm™', eqns 48a and 48b
give the following line positions:

J 0 1 2 3

Stokes lines

o/em™! 29685.3 29677.3 29669.3 29661.4
- Afnm 336.868 336.958 337.048 337.139

Anti-Stokes:lines

fem™! 29709.1 29717.1

A/nm 336.597 336.507

Comment There will be a strong central line at 336.732 nm accompanied on either side by
lines of increasing and then decreasing intensity (as a result of transition moment and
population effects). The spread of the entire spectrum is very small, so the incident light
must be highly monochromatic.

Seif-test 16.5 Repeat the calculation for the rotational Raman spectrum of NH,
(B=9977Tcm™").
[Stokes lines at 29637.3, 29597.4, 29557.5,29517.6 cm ™',
anti-Stokes lines at 29 757.1, 29797.0 cm™']
&

16.8 Nuclear statistics and rotational states

If eqn 48 is used in conjunction with the rotational Raman spectrum of CO,, the rotational
constant is inconsistent with other measurements of C-0 bond lengths. The results are
consistent only if it is supposed that the molecule can exist in states with even values of J, so
the Stokes lines are 2+ 0, 4«2, etc. and not 53, 3«1, etc.

The explanation of the missing lines is the Pauli principle and the fact that O nuclei are
spin-0 bosons: just as the Pauli principle excludes certain electronic states, so too does it
exclude certain molecular rotational states. The form of the Pauli principle given in
Justification 13.7 states that, when two identical bosons are exchanged, the overall
wavefunction must remain unchanged in every respect, including sign. In particular, when a
CO, molecule rotates through 180°, two identical O nuciei are interchanged, so the overall

* wavefunction of the molecule must remain unchanged. However, inspection of the form of

the rotational wavefunctions (which have the same form as the s, p, etc. orbitals of atoms)
shows that they change sign by (1) under such a rotation (Fig. 16.28). Therefore, only
even values of J are permissible for CO,, and hence the Raman spectrum shows only
alternate lines.

The selective occupation of rotational states that stems from the Pauli principle is termed
nuclear statistics. Nuclear statistics must be taken into account whenever a rotation
interchanges equivalent nuclei. However, the consequences are not always as simple as for
CO, because there are complicating features when the nuclei have nonzero spin: there may
be several different relative nuclear spin orientations consistent with even values of J and a
different number of spin orientations consistent with odd values of J. For molecular
hydrogen and fluorine, for instance, with their two identical spin- nuclei, we show in the
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16.28 The symmetries of rotational wavefunctions
[shown here, for simplicity as a two-dimensional
rotor) under a rotation through 180°,
Wavefunctions with J/ even do not change sign;
those with J odd do change sign.

_JJ‘ ] Ll ,lll

Frequency —»

16.29 The rotational Raman spectrum of a diatomic
molecule with two identical spin—% nuclei shows an
alternation in intensity as a resull of nuclear
statistics.
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Justification below that there are three times assmany ways of achieving a state with odd J
than with even J, and there is a corresponding 3 : 1 alternation in intensity in their
rotational Raman spectra (Fig. 16.28). In general, for a homonuclear diatomic molecule with
nuclei of spin /, the numbers of ways of achieving states of odd and even J are in the ratio

Number of ways of achieving odd J [ (14 1)/ for half-integral spin nuclei
I/{I+1) for integral spin nuclei

Number of ways of achieving even J
(49)

For hydrogen, / = 1 and the ratio is 3 : 1. For N,, with / = 1, the ratio is 1 : 2.

Justification 16.5

Hydrogen nuclei are. fermions, so the Pauli principle requires the overall wavefunction to
change sign under particle interchange. However, the rotation of an H, molecule through
180° has a more complicated effect than merely relabelling the nuclei, because it
interchanges their spin states too if the nuclear spins are paired (1}) but not if they are
parallel (11). %

For the overall wavefunction of the molecule to change sign when the spins are parallel,
the rotational wavefunction must change sign. Hencesonly odd values of J are allowed. In
contrast, if the nuclear spins are paired, their wavefunction is a(A)g(B) — a(B)#(A),
which ehanges sign when « and f are exchanged in order to bring about a simple A «— B
interchange overall (Fig. 16.30). Therefore, for the overall wavefunction to change sign in
this case requires the rotational wavefunction not to change sign. Hence, only even values
of J are allowed if the nuclear spins are paired.

As there are three nuclear spin states with parallel spins (just like the triplet state of two
parallel electrons, as in Fig. 13.26), but only one state with paired spins (the analogue of
the singlet state of two efectrons, see Fig. 13.20), it follows that the populations of the odd
J and even J states should be in the ratio of 3 : 1, and hence the intensities of transitions
originating in these levels will be in the same ratio.

Different relative nuclear spin orientations change into one another only very slowly, so
an H, molecule with parallel nuclear spins remains distinct from one with paired nuclear
spins for long periods. The two forms of hydrogen can be separated by physical techniques,
and stored. The form with parallel nuclear spins is called ertho-hydrogen and the form with
paired nuclear spins is called para-hydrogen. Because ortho-hydrogen cannot exist in a
state with J =0, it continues to rotate at very low temperatures and has an effective
rotational zero-point energy (Fig. 16.31). This energy is of some concern to manufacturers of
liquid hydrogen, for the slow conversion of ortho-hydrogen into para-hydrogen (which can
exist with J = 0) as nuciear spins slowly realign releases rotational energy, which vaporizes
the liquid. Techniques are used to accelerate the conversion of ortho-hydrogen to pora-
hydrogen to avoid this problem. One such technique is to pass hydrogen over a metal
surface: the molecules adsorb on the surface as atoms, which then recombine in the lower
energy pare-hydrogen form.

The vibrations of diatomic molecules

In this section, we adopt the same strategy of finding expressions for the energy levels,
establishing the selection rules, and then discussing the form of the spectrum. We shall also
see how the simultaneous excitation of rotation modifies the appearance of a vibrational
spectrum.
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16.30 The interchange of two identical fermion
nuclei results in the change in sign of the overall
wavefunction. The relabelling can be thought of as
occurring in two steps: the first is a rotation of the
molecule; the second is the interchange of unlike
spins (represented by the different colours of the
nuclei). The wavefunction changes sign in the second
step if the nuclei have antiparallel spins.
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16.31 When hydrogen is cooled, the molecules with
parallel nuclear spins accumulate in their lowest
available rotational state, the one with J = 0. They
can enter the lowest rotational state [/ = 0) only if
the sgmschmgc their relative orientation and
become antiparallel. This is a slow process under
normal circumstances, so energy is slowly released.
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16.9 Molecular vibrations

We base our discussion on Fig. 16.32, which shows a typical potential energy curve (as in
Fig. 14.1) of a diatomic molecule. In regions close to R, (at the minimum of the curve) the
potential energy can be approximated by a parabola, so we can write

V=1kd x=R-R, (50)
where k is the force constant of the bond. The steeper the walls of the potential (the stiffer
the bond), the greattr the force constant.

Ta see the connection between the shape of the molecular potential energy curve and the
value of k, note that we can expand the potential energy around its minimum by using a
Taylor expansion:

V(x) = V{0) + (%)n.rf§(i—‘:)of+--- (51)

The term V/(0) can be set arbitrarily to zero. The first derivative of V is 0 at the minimum.
Therefore, the first surviving term is propartional to the square of the displacement. For
small displacements we can ignore all the higher terms, and so write

2
V(x) = g(%) Dxf (52)

Therefore, the first approximation to a molecular potential energy curve is a parabolic
potential, and we can identify the force constant as .

2
i (d_‘;) (53]
dx? /y ’

We see 4hat, if the potential energy curve is sharply curved close to its minimum, then k will
be large. Conversely, if the potential energy curve is wide and shallow, then k will be small
(Fig. 16.33).

The Schridinger equation for the relative motion of two atoms of masses m, and m;, with
a parabolic potential energy is

n & .
_ma‘fﬁm, = Ef . (54)

where m_ is the effective mass:

_ mymy i
L s 55]
These equations are derived in the same way as in Justification 13.1, but here the separation
of variables procedure is used to separate the relative motion of the atoms from the motion
of the molecule as a whole.”

The Schridinger equation in eqn 54 is the same as eqn 12.30 for a particle of mass m,
undergoing harmonic motion. Therefore, we can use the results of Section 12.4 to writ=

down the permitted vibrational energy levels:

£\
E, = (v+ )hw w= ( ) ; =01, 25000 (56)
Mlegp

9 |n that context, the effective mass is called the ‘reduced mass’, and the name s widely used in this context too.
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16.32 A molecular potential energy curve can be
approximated by a parabola near the bottom of the
well, The parabolic potential ieads to harmonic
oscillations. At high excitation energies the
parabolic approximation is poor (the true potential
is less confining), and is totally wrong near the
dissociation limit.

Potential energy, V

Displacement, x

16.33 The force constant is a measure of the
curvature of the potential energy close to the
equilibrium extension of the bond. A strongly
canfining well (one with steep sides, a stiff bond)
corresponds to high values of k.
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The vibrational terms of a molecule, the energies of its vibrational states expressed in
wavenumbers, are denoted G(»), with E, = heG(v), so

| E M2
G =(v+ % ‘ o= e | 7
0 =0+hp o=5 (o) (57)
The vibrational wavefunctions are the same as those discussed in Section 12.5.

It is important to note that the vibrational terms depend on the effective mass of the
molecule, not directly on its total mass. This dependence is physically reasonable for, if atom
| were as heavy as a brick wall, then we would find m_g = m,, the mass of the lighter atom.
The vibration would then be that of a light atom relative to that of a st= jonary wall (this is
approximately the case in HI, for example, where the | atom ba:ely moves and m g 2 my). For
a homonuclear diatomic molecule m; = m,, and the eifecive mass it half the total mass:

1
Mg = 3m.

lllustration

An HCI molecule has a force constant of 516 N.m™', a reasonably typical value, The effective
mass of 'H¥Cl is 1.63 x 107" kg (note that this mass is very close to the mass of the
hydrogen atom, 1.67 x 107*" kg, so the Cl atom is actipg like a brick wall). These values
imply ©=563%x10"%s"', »=895THz (1 THz=10"Hz), &=2990cm™",
24 = 3.35 um. These characteristics correspond to electromagnetic radiation in the infrared
region.

16.10 Selection rules

The gross selection rule fgr a molecular vibration is that the electric dipole moment of the
molecule must change when the atoms are displaced relative to one another. Such
vibrations are said to be infrared active. The classical basis of this rule is that the molecule
can shake the electromagnetic field into oscillation if its dipole changes as it vibrates, and
vice versa (Fig. 16.34); its formal basis is given in the Justification below. Note that the
molecule need not have a permanent dipole: the rule requires oniy a change in dipole
moment, possibly from zero. Some vibrations do not affect the molecule's dipole moment
(for example, the stretching motion of a homonuclear diatomic molecule), so they neither
absorb nor generate radiation: such vibrations are said to be infrared inactive. Homonuclear
diatomic molecules are infrared inactive because their dipole moments remain zero however
long the bond; heteronuclear diatomic maolecules are infrared active.

Justification 1€.6

The gross selection rule is based on an analysis of the transition dipole moment (v¢[njy;).
For simplicity, we shall consider a one-dimensional oscillator (like a diatomic molecule).
The electric dipole moment operator depends on the location of all the electrons and all
the nuclei in the molecule, so it varies as the internuclear separation changes (Fig. 16.35). If
we think of the dipole moment as arising from two partial charges + &g separated by a
distance R = R, -+ x, we can write its variation with displacement from the equilibrium
separation, x, as )

u = Réq = R, 8q + xbq = jiy + xbc

where i, is the electric dipole moment operator when the nuclei have their equilibrium
separation. It then follows that, with f i,

(olulv;) = po(vgls) + Sq(vg|xl;)
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16.34 The oscillation of a malecule, even if it is
nanpolar, may result in an oscillating dipole that
can interact with the electromagnetic field.

Linear
approximation

Electric dipole moment, p

‘0 Extension, x

16.35 The electric dipole moment of a

. heteronuclear diatomic molecule varies as shown by
the green curve. For small displacements the change
in dipole moment is proportional to the
displacement.
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The term proportional to yq is zero because the states with different values of v are
orthogonal. It follows that the transition dipole moment is

(wrlpele) = (welx|vi}éig

Because
du
og = —
= &
we can write the transition dipole moment more generally as
du
o) = ) () (s8)

and we see that the right-hand side is zero unless the dipole moment varies with
displacement. We consider the matrix element of x in the next Justification,

lllustration

Of the molecules N,, CO,, OCS, H,0, CH,=CH,, and CgHg, all except N, possess at least one
vibrational mode that results in a change of dipole moment, so all except N, can show a
vibrational absorption spectrum. Not all the modes of complex molecules are vibrationally
active. For example, the symmetric stretch of CO,, in which the 0-C-0 bonds stretch and
contract symmetrically, is inactive because it leaves the dipcle moment unchanged (at zero).

Sclf-test 16,6 Which of the molecules H,, NO, N,0, and CH, have infrared active

vibrations?
[NO, N,0, CH,]

e — . e e e e

The specific vibrational selection rule, which is obtained from an analysis of the
expression for the transition moment and the properties of integrals over harmonic
oscillator wavefunctions {as shown in the Justification below), is

Av=+1 (59)

Transitions for which Av= +1 correspond to absorption and those with Av = —1
correspond to emission.

Justification 316.7

The specific selection ruie is determined by considering the value of the matrix element of
x in eqn 58. We need to write out the wavefunctions in terms of the Hermite polynomials
given in Section 12,5%and then to use their properties (Example 12.4 should be reviewed,
for it gives further details of the calculation). We note that x = ay with 2 = (h’/m,nk)"‘
(eqn 12.34), and write

w
ko =NV [ He e an
-
= aiNL_erl / H"r_vale-)” dy
-0

To evaluate the integral we use the recursion relation in Table 12.1:

YH,=vH,_ , + %HLFH
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16.36 The Morse potential energy curve reproduces
the general shape of a molecular potential energy
curve, The corresponding Schridinger equation can
be solved, and the values of the energies obtained.
The number of bound levels is finite, The illustration
also shows the refation between the dissociation
energy, Dy, and the minimum- energy, D, of a
molecular potential energy curve. )
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This relation turns the matrix element into
(vello;)
e ao o
=a2Nw,Nn,{vi/ Hu,Hvl-lt"yz dy +i/ Hv(Hul-He—y’ dy}
- —w

We see from Table 12.1 that the first integral is zero unless v; = »; — 1 and that the second
is zero unless v = v, + 1. It follows that the transition dipole moment is zero unless
Av=+1.

-

et e o o e e e e o e 8 R e e e .

It follows from the specific selection rules that the wavenumbers of allowed vibrational
transitions, which are denoted AG,, for the transition v + 1+v, are

AG,, = G(v+1) - G(v) =¥ (60)

As we have seen,  lies in the infrared region of the electromagnetic spectrum, so vibrational
transitions absorb and generate infrared radiation.

At room temperature kT /hc=~200 cm~', and most vibrational wavenumbers are
significantly greater than 200 cm™!. It fallows from the Boltzmann distribution that
almost all the molecules will be in their vibrational ground states initially. Hence, the
dominant spectral transition will be the fundamental transition, 1+0. As a result, the
spectrum is expected to consist of a single absorption line. If the molecules are formed in a
vibrationally excited state, such as when vibrationally excited HF molecules are formed in
the reaction H, -+ F, — 2HF*, the transitions 5 — 4, 4 — 3, etc. may also appear (in
emission). In the harmonic approximation, all these lines lie at the same frequency, and the
spectrum is also a single line. However, as we shall now show, the breakdown of the
harmonic approximation causes the transitions to lie at slightly different frequencies, so
several lines are observed.

16.11 Anharmonidity

The vibrational terms in eqn 60 are only approximate because they are based on a parabolic
approximation to the actual potential energy curve, A parabola cannot be correct at all
extensions because it does not allow a bond to dissociate. At high vibrational excitations the
swing of the atoms (mare precisely, the spread of the vibrational wavefunction) allows the
molecule to explore regions of the potential energy curve where the parabolic
approximation is poor and additional terms in the Taylor expansion of V (eqn 51} must
be retained. The motion then becomes anharmonic, in the sense that the restoring force is
no longer proportional to the displacement. Because the actual curve is less confining than a
parabola, we can anticipate that the energy levels become less widely spaced at high
excitations.

{a) The convergence of energy levels

One approach to the calculation of the energy levels in the presence of anharmanicity is to
use a function that resembles the true potential energy more closely. The Morse potential
energy is

(R-R,) z Mg’ W
V=J-D{lf”"-}’ i 61
et Gl “ (m-nc) (61)

where D, is the depth of the potential minimum {Fig. 16.36). Near the well minimum the
variation of V with displacement resembles a parabola (as can be checked by expanding the
exponential as far as the first term) but, unlike a parabola, eqn 61 allows for dissociation at
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16.37 The dissociation energy is the sum of the
separations of the vibrational energy levels up to
the dissociation limit just as the length of a ladder
is the sum of the separations of its rungs.

Linear
extrapolation

AGun= Viv+l « W

16.38 The area under a plot of transition
wavenumber against vibrational quantum number is
equal to the dissociation energy of the molecule.
The assumption that the differences approach zero
linearly is the basis of the Birge-Sponer
extrapolation.
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large displacements. The Sch}édinger equation can be solved for the Morse potential and the
permitted energy levels are

a*h v

= o n2, 5 = ———
G) =0+ D7~ w+{xd  x=50= o (62)

The parameter v, is called the anharmonicity constant. The number of vibrational levels of a
Morse oscillator is finite, and v = 0, 1,2, ..., v, @ shown in Fig. 16.36. The second term
in the expression for G subtracts from the first with increasing effect as v increases, and
hence gives rise to the convergence of the levels at high quantum numbers.

Although the Morse oscillator is quite useful theoretically, in practice the more general
expression

G) = (v + 45— (v + 3 x4+ (w0 + ) yo+- - (63)

where x,,v,,... are empirical constants characteristic of the molecule, is used to fit the
experimental data and to find the dissociation energy of the molecule. When
anharmonicities are present, the wavenumbers of transitions with Av = +1 are

AG,y =v -2+ )xd+--- (64)

The latter equation shows that when x, # 0 the transitions move to lower wavenumbers as v
increases.

Anharmonicity also accounts for the appearance of additional weak absorption lines
corresponding to the transitions 2«0, 3«0, etc, even though these first, second, ...
overtones are forbidden by the selection rule Av = + 1. The first overtone, for example,
gives rise to an absorption at

Gv+2)—Gv) =20 —220+ xb + - - (65)

The reason for the appearance of overtones is that the selection rule is derived from the
properties of harmonic oscillator wavefunctions, which are only approximately valid when
anharmonicity is present. Therefore, the selection rule is also only an approximation. For an
anharmonic oscillator, all values of Av are allowed, but transitions with Av> 1 are allowed
only weakly if the anharmonicity is slight.

(b) The Birge-Sponer plot

When several vibrational transitions are detectable, a graphical technique called a Birge-
Sponer piot may be used to determine the dissociation energy, Dy, of the bond. The basis of
the Birge-Sponer plot is that the sum of successive intervals AG, 4 from the zero-point level
to the dissociation limit is the dissociation energy: '

Dy =AGy; + AGy + - = 3 AG,,, (66)
v

just as the height of the ladder is the sum of the separations of its rungs (Fig. 16.37). The
construction in Fig. 16.38 shows that the area under the plot of AG,,H against v + } is equal
to the sum, and therefore to Dy, The successive terms decrease linearly when only the x,
anharmonicity constant is taken into account and the inaccessible part of the spectrum can
be estimated by linear extrapolation. Most actual plots differ from the linear plot as shown
in the illustration, so the value of D, obtained in this way is usually an overestimate of the
true value.
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16,39 The Birge-Sponer plot used in Example 16.5.
The area is obtained simply by counting the squares
beneath the line or using the farmula for the area
of a right triangle.

16.40 A high-resolution vibration-rotation spectrum
of HCL. The lines appear in pairs because H*Cl and

HYC1 both contribute [their abundance ratio is 3 : 1).

There is no Q branch, because AJ = 0 is forbidden
for this molecule.
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Example 16.5 Using a Birge-Sponer plot

The observed vibrational intervals of HY lie at the following values for 140, 2¢1,...
respectively (in cm™'): 2191,2064, 1941, 1821,1705, 1591, 1479, 1368, 1257, 1145, 1033,
918,800,677, 548, 41 1. Determine the dissociation energy of the molecule.

Method Plot the separations against v +%, extrapolate linearly to the point cutting the
horizontal axis, and then measure the area under the curve.

Answer The points are plotted in Fig. 16.39, and a linear extrapolation is shown as a dotted
line. The area under the curve (use the formula for the area of a triangle or count the
squares) is 214, Each square corresponds to 100 cm™" (refer to the scale of the vertical axis);
hence the dissociation energy is 21 400 cm™" (corresponding to 256 kI mol~').

Self-test 16.7 The vibrational levels of HgH converge rapidly, and successive intervals are
1203.7,965.6,632.4, and 172 cm™". Estimate the dissociation energy.
[35.6 kI mol™']
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16.12 Vibration-rotation spectra

Each line of the high-resolution vibrational spectrum of a gas-phase heteronuclear diatomic
molecule is found to consist of a large number of closely spaced components (Fig. 16.40).
Hence, molecular spectra are often called band spectra. The separation between the
components is of the order of 10 cm~', which suggests that the structure is due to
rotational transitions accompanying the vibrational transition. A rotational change should
be expected because classically we can think of the transition as leading to a sudden increase
ar decrease in the instantaneous bond length. Just as ice-skaters rotate more rapidly when
they bring their arms in, and more slowly when they throw them out, so the molecular
rotation is either accelerated or retarded by a vibrational transition.

(a) Spectral branches

A detailed analysis of the quantum mechanics of simultaneous vibrational and rotational
changes shows that the rotational quantum number J changes by + 1 during the vibrational
transition of a diatomic molecule. If the molecule also possesses angular momentum about
its axis, as in the case of the electronic orbital angular momentum of the 21T molecule NO,
then the selection rules also allow AJ = 0.

The appearance of the vibration-rotation spectrum of a diatomic molecule can be
discussed in terms of the combined vibration-rotation terms, §:

S(v,d) = G(v) + F(J) : (67)
‘I O—hr.jnch T
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16.41 The formation of P, Q, and R branches in a
vibration-rotation spectrum, The intensities reflect
the papulations of the initial rotational levels.
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16.42 The method of combination differences
makes use of the fact that some transitions share a
comman level,
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If we ignore anharmonicity and centrifugal distagtion,
S,y =(v+ o+ BIJ+1) (68)

In a more detailed treatment, 8 is allowed to depend on the vibrational state because as v
increases the molecule swells slightly and the moment of inertia changes, We shall continue
with the simple expression initially.

When the vibrational transition v + 1« occurs, J changes by + 1 and in some cases by 0
(when AJ = 0 is allowed). The absorptions then fall into three groups called branches of the
spectrum. The P branch consists of all transitions with AJ = —1:

() =S+ 1,7 = 1) = S(»,J) = o — 2BJ (69a)

This branch consists of lines at & — 2B, & — 48, ... with an intensity distribution reflecting
both the populations of the rotational levels and the magnitude.of the J — 1 «J transition
moment (Fig. 16.41). The Q branch consists of all lines with AJ = 0, and its wavenumbers
are all

() =S(w+1,0) = S(n,J) = b (695)

for all values of J. This branch, when it is allowed (as in NO), forms a single line at the
vibrational transition wavenumber. In practice, because the rotational constants of the two
vibrational levels are slightly different, the Q branch appears as a cluster of closely spaced
lines. In Fig. 16.41 there is a gap at the expected location of the Q branch because it is
forbidden in HCI. The R branch consists of lines with AJ = +1:

) =8v+ 1,/ 4+ 1)~ S(uJ) =i +2B(J + 1) (69¢)

This branch consists of lines displaced from 7 to high wavenumber by 28,48, ....

The separation between the lines in the P and R branches of a vibrational transition gives
the value of 8. Therefore, the bond length can be deduced without needing to take a pure
rotational microwave spectrum. However, the latter is more precise.

(b) Combination differences

The rotational constant of the vibrationally excited state, B, (in general, B8,), is in fact
slightly smaller than that of the ground vibrational state, By, because the anharmonicity of
the vibration results in a slightly extended bond in the upper state. As a result, the Q branch
(if it exists) consists of a series of closely spaced lines, the lines of the R branch converge
slightly as J increases, and those of the P branch diverge:

Op(f) = i — (B, + Bo)J + (B) — By)J?
() =i+ (By = By)J(J + 1) (70)
() =24 (B, +By)(J + 1) + (B, — By)(J + 1)

To determine the two rotational constants individually, we use the method of combination
differences. This procedure is used widely in spectroscopy to extract information about a
particular state. It involves setting up expressions for the difference in the wavenumbers of
transitions to a common state: the resulting expression then depends solely on properties of
the other state. :

As can be seen from Fig. 16.42, the transitions 7 (J — 1) and Up(J + 1) have a common
upper state, and hence can be anticipated to depend on B,. Indeed, it is easy to show from
eqn 70 that

R = 1) = 5(J + 1) = 4By(J + 1) (71a)

Therefore, a plot of the combination difference against J + § should be a straight line of
slope 48, so the rotational constant of the molecule in the state v = 0 can be determined.



1
oSO, |

C=NWaNMO~N w

O MNWATIM~N @ w

=0
RSeS|

A1

16.43 The formation of O, Q, and S branches in a
vibration-rotation Raman spectrum of a linear
rotor. Note that the frequency scale runs in the
opposite direction to that in Fig. 16.41, because the
higher energy transitions (on the right) extract
more energy from the incident beam and leave it at
iower frequency.
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Table 16.2° properties of diatomic molecules

v/em~'  Bjem™!  k/(Nm™)

"H, 4400 60.86 575
'HsC 2991 10.59 516
W' 2309 6.61 313
Iel, 560 0.244 323

*More values are given in the Date section at the end
of this volume. See Tables 14.2 and 14.3 for related
information (on D, and &,).
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(Any deviation from a straight line is a consequence of centrifugal distortion, so that effect
can be investigated too.) Similarly, & (/) and &p(S) have a common lower state, and hence
their combination difference gives information about the upper state:

R() = 0p(J) = 4B, (J +3) ' (716)

The two rotational constants of 'H¥*Cl found in this way are By = 10.440 cm™' and
B, =10.136 cm™.

16.13 Vibrational Raman spectra of diatomic molecules

The gross selection rule for vibrational Raman transitions is that the polarizability should
change as the molecule vibrates. As homonuclear and heteronuclear diatomic molecules
swell and contract during a vibration, the control of the nuclei over the électrans varies, and
hence the molecular polarizability changes. Both types of diatomic molecule are therefore
vibrationally Raman active,

The specific selection rule for vibrational Raman transitions in the harmonic
approximation is Av = + 1. The lines to high frequency of the incident light, the anti-
Stokes lines, are those for which Av = —1. They are usually weak because very few
molecules are in an excited vibrational state initially. The lines to low frequency, the Stokes
lines, correspond to Av = +1. In gas-phase spectra, these lines have a branch structure
arising from the simultaneous rotational transitions ‘that accompany the vibrational
excitation (Fig. 16.43). The selection rules are AJ =0, +2 (as in pure rotational Raman
spectroscopy), and give rise to the O branch (AJ = —2), the Q branch (AJ = 0), and the §
Jbranch (AJ = +2):

o(3 = B, — i — 2B + 4BJ
G =5 -0 (12)
(/) = B, — 7 — 6B — 4BJ

Note that, unlike in infrared spectroscopy, a Q branch is obtained for all linear molecules.
The spectrum of CO, for instance, is shown in Fig. 16.44: the structure of the Q branch arises
from the differences in rotational constants of the upper and lower vibrational states.

The information available from vibrational Raman spectra adds ta that from infrared
spectroscopy because homonuclear diatomics can also be studied. The spectra can be
interpreted in terms of the force constants, dissociation energies, and bond lengths, and
some of the information obtained is included in Table 16.2.

The vibrations of polyatomic molecules -

There is only one mode of vibration for a diatomic molecule, the bond stretch. In polyatomic
molecules there are several modes of vibration because all the bond lengths and angles may
change.

16.14 Normal modecs

We begin by calculating the total number of vibrational modes of a polyatomic molecule.
We then see that we can chaose combinations of these atomic displacements that give the
simplest description of the vibrations.

(a) The number of vibrational modes

As shown in the Justification below, for a nonlinear molecule that consists of N atoms, there
are 3N — 6 independent modes of vibration. If the molecule is linear, there are 3N — 5
independent vibrational modes.
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16.44 The structure of a vibrational line in the
vibrational Raman spectrum of carbon monoxide,
shawing the O, Q, and § branches.

(a)

16.45 (a) The orientation of a linear molecule
requires the specification of two angles. (b} The
orientation of a nonlinear molecule requires the
specification of three angles.
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Justifieation 16.8

The total number of coordinates needed to specify the locations of N atoms is 3N. Each
atom may change its location by varying one of its three coordinates (x, y, and z), so the
total number of displacements available is 3N. These displacements can be grouped
together in a physically sensible way. For example, three coordinates are needed to specify
the location of the centre of mass of the molecule, so three of the 3N displacements
correspond to the translational motion of the molecule as a whole. The remaining 3V — 3
are non-translational 'internal’ modes of the molecule.

Two angles are needed to specify the orientation of a linear-molecule in space: in effect,
we need to give-only the latitude and longitude of the direction in which the molecular
axis is pointing (Fig. 16.45a). However, three angles are needed for a nonlinear molecule
because we also need to specify the orientation of the molecule around the direction
defined by the latitude and longitude’ (Fig. 16.45b). Therefore, two (linear) or three
(nonlinear) of the 3N — 3 internal displacements are rotational. This leaves 3N — 5 (linear)
or 3N — 6 (nonlinear) displacemgnts of the atoms relative to one another: these are the
vibrational modes. It follows that the number of modes of vibration N, is 3N — 5 for
linear molecules and 3N — 6 for nonlinear molecules. ’

Hiustration

Water, H,0, is a nonlinear triatomic molecule, and has three modes of vibration (and three
modes of rotation); CO, is a linear triatomic molecule, and has four modes of vibration (and
only two modes of rotation). Even a middle-sized molecule such as naphthalene (C,Hg) has
48 distinct modes of vibration.

...................... S T T T N T R P

(b) Combinations of displacements

The next step is to find tiic best description of the modes. One choice for the four modes of
CO,, for example, might be the ones in Fig. 16.46a. This illustration shows the stretching of
one bond (the mode 14 ), the stretching of the other (1), and the two perpendicular bending
modes (15). The description, while permissible, has a disadvantage: when one CO bond
vibration is excited, the motion of the C atom sets the other CO bond in motion, so energy
flows backwards and forwards between v and . Moreover, the position of the centre of
mass of the molecule varies in the course of either vibration. '

The description of the vibrational motion is much simpler if linear combinations of ¢, and
vy are taken. For example, one combination is v, in Fig. 16.46b: this mode is the symmetric
stretch. In this mode, the C atom is buffeted simultaneously from each side and the motion
continues indefinitely. Another mode is 14, the antisymmetric stretch, in which the two 0
atoms always move in the same direction and opposite to that of the C atom. Both modes are
independent in the sense that, if one is excited, then it does not excite the other. They are
two of the 'normal modes’ of the molecule, its independent, collective vibrational
displacements. The two other normal modes are the bending modes »,. In general, a
normal mode is an independent, synchronous motion' of atoms or groups of atoms that may
be excited without leading to the excitation of any other normal mode.

The four normal modes of CO,, and the N, normal modesof polyatomicsin general, are the
key to the description of molecular vibrations. Each normal mode, g, behaves like an
independent harmonic oscillator (if anharmonicities are neglected), so each has a seriesof terms

172
- - : 1 kq
G,(v) = (v + %]"ﬂa Lt ("_’4) (73)
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16.46 Alternative descriptions of the vibrations of C0,. {a) The stretching mades are not independent, and if one CO group is excited the ather begins to vibrate.
(b) The symmetric and antisymmetric stretches are independent, and one can be excited without affecting the other: they are normal modes. (¢) The two

perpendicular bending motions are also normal modes.

16.47 The three normal mades of H,0. The mode
1 is predominantly bending, and occurs at lower
wavenumber than the other two.

where 7, is the wavenumber of mode ¢ and depends on the force constant k, for the mode
and on the effective mass m, of the mode. The effective mass of the mode is a measure qf
the mass that is swung about by the vibration and in general is a'complicated function of the
masses of the atoms. For example, in the symmetric stretch of CO,, the C atom is stationary,
and the effective mass depends on the masses of only the O atoms. In the antisymmetric
stretch and in the bends, all three atoms move, so all contribute to the effective mass. The
three normal modes of H,0 are shown in Fig. 16.47: note that the predominantly bending
mode (1) has a lower frequency than the others, which are predominantly stretching
modes. It is generally the case that the frequencies of bending motions are lower than those
of stretching modes. One point that must be appreciated is that only in special cases (such as
the CO, molecule) are the normal modes purely stretches or purely bends. In general, a
normal mode is a composite motion of simultaneous stretching and bending of bonds.
Another point in this connection is that heavy atoms generally move less than light atoms in
normal modes.

(c) The symmetry species of normal modes

One of the maost powerful ways of dealing with normal modes, especially of complex
molecules, is to classify them according to their symmetries. Each normal mode must belong
to one of the symmetry species of the molecular point group, as discussed in Chapter 15.

Example 16.6 Identifying the symmetry species of a normal mode

Establish the symmetry species of the normal mode vibrations of CH,, which belongs to the
group Ty.

Method The first step in the procedure is to identify the symmetry species of the irreducible
representations spanned by all the 3N displacements of the atoms, using the characters of
the molecular point group. Find these characters by counting 1 if the displacement is
unchanged under a symmetry operation, —1 if it changes sign, and 0 if it is changed into
some other displacement. Next, subtract the symmetry species of the transfations.
Translational displacements span the same symmetry species as x, y, and z, so they can be
obtained from the right-most column of the character table. Finglly, subtract the symmetry
species of the rotations, which are also given in the character table (and denoted there by
R.R, orR,)
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16.48 The atomic displacements of CH, and the
symmetry elements used to calculate the characters.
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Answer There are 3 x S = |5 degrees of freedom, of which 3 x5 — 6 = 9 are vibrations.
Refer to Fig. 16.48. Under E, no displacement coordinates are changed, so the character is
15. Under Cy, no displacements are left unchanged, so the character is 0. Under the C,
indicated, the z-displacement of the central atom is left unchanged, whereas its x- and y-
components both change sign. Therefore x(C;) =1-1-1+0+0+---= —1. Under
the S, indicated, the z-displacement of the central atom is reversed, so x(S,) = —1. Under
a4, the x- and z-displacements of C, H, and H, are left unchanged and the y-displacements
are reversed; hence y(ay) = 3 + 3 — 3 = 3. The characters are therefore 15,0,—1,-1,3,
corresponding to A, + E + T, + 3T,. The translations span T,; the rotations span T,.
Hence, the nine vibrations span A; + E + 2T,. B

Comment The modes themselves are shown in Fig. 16.49. We shall see that symmetry
analysis gives a quick way of deciding which modes are active.

Self-test 16.8 Establish the symmetry species of the normal modes of H,0.
[2A, + B,]

16.15 The vibrational spectra of polyatomic molecules

“he gross selection rule for infrared activity is that the mation corresponding to a normal
mode should be accompanied by o change of dipole moment. Deciding whether this is so
can sometimes be done by inspection. For example, the symmetric stretch of CO, leaves the
dipole moment unchanged (at zero, see Fig. 16.46), so this mode is infrared inactive. The
antisymmetric stretch, however, changes the dipole moment because the molecule becomes
unsymmetrical as it vibrates, so this mode is infrared active. Because the dipole moment
change is parallel to the principal axis, the transitions arising from this mode are classified as
parallel bands in the spectrum. Both bending modes are infrared active: they are
accompanied by a changing dipole perpendicular to the principal axis, so transitions
involving them fead to a perpendicular band in the spectrum. The latter bands eliminate the
linearity of the molecule, and as a result a Q branch is observed; a parallel band does not
have a Q branch. )

(a) Symmetry and normal mode activity

It is best to use group theory to judge the activities of more complex modes of vibration. This
is easily done by checking the character table of the molecular point group for the symmetry

Va (B)

16.49 Typical normal modes of vibration of a tetrahedral molecule. There are in fact two modes of symmetry species E and three modes of each T, symmetry

species.
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species of the irreducible representations spanned by x, y, and z, for their species are also the
symmetry species of the components of the electric dipole moment. Then apply the
following rule:

If the symmetry species of a normal mode is the same as any of the symmetry
species of x, y, or z, then the mode is infrared active.

Justification 16.9

The rule hinges on the form of the transition dipole moment between the ground-state
vibrational wavefunction, yio, and that of the first excited state, y,. The x-component is

Heio = {1]i,]0) = —G/l#;x%dr (74)

for the x-component, with similar :xpr:ssi::ns for the two other components of the
transition moment. The ground-state vibrational wavefunction is a Gaussian function of
the form e, 50 it is symmetrical in x. The wavefunction for the first excited state gives a
nonvanishing integral only if it is proportional to x, for then the integrand is proportional
to % rather than to xy or xz. Consequently, the excited state wavefunction must have the
same symmetry as the displacement x.

[x.mlpk 16.7 il n’u(ymu infrared active modes
Which mudcs of CH, are infrarcd active?

Method Refer to the T, character table to establish the symmetry species of x, y, and z for
this molecule, and then use the rule given above.

Answer The functions x, y, and z span T,. We found in Example 16.6 that the symmetry
species of the normal modes are A; + E + 3T;. Therefore, only the T, modes are infrared
active.

Comment The distortions accompanying these modes lead to a changing dipole moment.
The A; mode, which is inactive, is the symmetrical "breathing' mode of the molecule.

Selt-test 16.9 Which of the normal modes of H,0 are infrared active?
[All three]

(b) The appearance of the spectrum

The active modes are subject to the specific selection rule Aw, = +1 in the harmonic
approximation, so the wavenumber of the fundamental transition (the ‘first harmonic’) of
cach active mode is . From the analysis of the spectrum, a picture may be constructed of
the stiffness of various parts of the molecule: that is, we can establish its force field, the set
of force canstants corresponding to all the displacements of the atoms. Superimposed on
this simple scheme are the complications arising from anharmonicities and the effects of
molecular rotation. Very often the sample is a liquid or a solid, and the molecules are unable
to rotate freely. In a liquid, for example, a molecule may be able to rotate through only a few
degrees before it is struck by another, so it changes its rotational state frequently. This
random changing of orientation is called tumbling.
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Table 16.3" Typical vibrational wavenumbers,
fem™!

C—H stretch 2850-2960
C—H bend 1340-1465
C—C stretch 700-1250
C=C stretch 16201680

T

“More values are giu_in in the Dota section.
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The lifetimes of rotational states in liquids are very short, so in most cases the rotational
energies are ill-defined. Collisions occur at a rate of about 10" s™' and, even allowing for
only a 10 per cent success rate in knocking the molecule into another rotational state, a
lifetime broadening (eqn 24) of more than | cm™! can easily result. The rotational structure
of the vibrational spectrum is blurred by this effect, so the infrared spectra of molecules in
condensed phases usually consist of broad lines spanning the entire range of the resolved
gas-phase spectrum, and showing no branch structure,

One very important application of infrared spectroscopy to condensed phase samples,
and for which the blurring of the rotational structure by random collisions is a welcome
simplification, is to chemical analysis. The vibrational spectra of different groups in a
molecule give rise to absorptions at characteristic frequencies. Their intensities are also
transferable between molecules. Consequently, the molecules in a sample can often be
identified by examining its infrared spectrum and referring to a table of characteristic
frequencies and intensities (Table 16.3 and Fig. 16.50).

co;

QT

NH;

|Amina
=~ acids,

-C-H

salts out-of-plane
Amino acid-" n . -
Aryl?—CO; ~NH; deformation
! | ; 3 - 4 i
3500 3000 2500 “2000 1500 1000 Vem™

16,50 The infrared absorption spectrum of an amino acid, and a partial assignment.

16.16 Vibrational Raman spectra of polyatomic molecules

The normal modes of vibration of molecules are Raman active if they are accompanied by a

changing polarizability. It is sometimes quite difficult to judge by inspection when this is so.

The symmetric stretch of CO,, for example, alternately swells and contracts the molecule:
this motion changes the polarizability of the molecule, so the mode is Raman active. The
other modes of CO, leave the polarizability unchanged, so they are Raman inactive.

(a) Symmetry aspects of Raman transitions

Group theory provides an explicit recipe for judging the Raman activity of a normal made. In
this case, the symmetry species of the quadratic forms (x?, xy, etc) listed in the character
table are noted (they transform in the same way as the polarizability), and then we use the
following rule:

If the symmetry species of a normal mode is the same as the symmetry species
of a quadratic form, then the mode may be Raman active.

lllustration

To decide which of the vibrations of CH, are Raman active, refer to the T, character table. It
was established in Example 16.6 that the symmetry species of the normal modes are



16.51 The definition of the planes used for the
specification of the depolarization ratio, p, in Raman
scattering. The fat arraws represent the electric vecgpr
of the incident (green) and scattered (grey) radiation.
There is also a perpendicular scattered component, as
indicated by the simple wave-like line.
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A + E + 2T,. Because the quadratic forms span A; + E 4 T,, all the normal modes are
Raman active. All totally symmetric vibrations, whatever the point group of the molccule,
are Raman active (and polarized; see below).

Self-test 16,10 Which of the vibrational modes of H,0 are Raman active?
[All three]

The exclusion rule also helps us to decide which modes are active:

If the molecule has a centre of symmetry, then no modes can be both infrared

and Ran:. - active. i

(A mode may be inactive in both.) Because it is often possible to judge intuitively if a mode
changes the molecular dipole moment, we can use this rule to identify modes that are not
Raman active. The rule applies to CO, but to neither H,0 nor CH, because they have no
centre of symme!ry.

(b) Depolarization _
The assignment of Raman lines to particular vibrational mades is aided by notirg the state of
polarization of the scattered light. The depolarization ratio, p, of a line is the ratio of the
intensities, 7, of the scattered light with polarizations perpendicular and parallel to the
plane of polarization of the incident radiation: )
I.L
p=== (7]
Iy
To measure p, the intensity of a Raman line is measured with a polarizing filter (a 'half-wave
plate’) first parallel and then perpendicular to the polarization of the incident beam. If the
emergent light is not polarized, then both intensities are the same and p is close to 1; if the
light retains its initial polarization, then T, = 0, so p = 0 (Fig. 16.51). A line is classified as
depolarized if it has p close to or greater than 0.75 and as polarized if p<0.75. Only totally
symmetrical vibrations give rise to polarized lines in which the incident polarization is

Incident
radiation

Scattered
radiation
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largely preserved. Vibrations that are not totally symmetrical give rise to depolarized lines

because the incident radiation can give rise to radiation in the perpendicular direction too.

(c) Resonance Raman spectra

A modification of the basic Raman effect involves using incident radiation that nearly
coincides with the frequency of an electronic transition of the sample (Fig. 16.52). The
technique is then called resonance Raman spectroscopy. It is characterized by a much
greater intensity in the scattered radiation. Furthermore, because it is often the case that

A
3
> > '
S| | 5 Resonant
esonan
T SCS.”‘?’“" & scattered
radiation radiation
N & | A
Incident Incident
radiation ! ’ rathation
= :
N e Wi
|
(a) (b)

16.52 (a) In conventional Raman spectroscopy, the incident radiation does not match an absorption
frequency of the molecule, and there is only a "virtual’ transition to an excited state. (b) However, in the
resonance Raman effect, the incident radiation has a frequency that coincides with a molecular

transition,

only a few vibrational modes contribute to the more intense scattering, the spectrum is
greatly simplified. The resonance Raman spectrum shown in Fig. 16.53, for example, is of
solid potassium chromate. The nine peaks that are identified are the Stokes lines that
correspond to the excitation of the symmetric breathing mode of the tetrahedral Cr0%~ ion
and the transfer of up to nine vibrational quanta during the photon-ion collision. The high
intensity of the resonance Raman transitions is employed to examine the metal ions in
biological macromolecules (such as the iron in haemoglobin and cytochromes or the cobalt
in vitamin B), which are present in such low abundances that conventional Raman
spectroscopy cannot detect them. An additional advantage is that resonance picks out the

Intensity

1 1 i 1 L Y i ]
8000 7000 6000 5000 4000 3000 2000 1000 O
' Raman shift/cm™

16.53 The resonance Raman spectrum of solid K,Cr0,. The peaks are due to the totally symmetric
stretching made of the Cr0]~ anion. (W. Kiefer and HJ. Bernstein, Molec. Phys. 23, 835 (1972))
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fragment of a molecule that in conventional Raman spectroscopy would have a spectrum
too complex to interpret.

(d) Coherent anti-Stokes Raman spectroscopy

The intensity of Raman transitions may be enhanced by coherent anti-Stokes Raman
spectroscopy (CARS, Fig. 16.54). The technique relies on the fact that, if two laser beams of
frequencies 11, and 1, pass through a sample, then they may mix together and give rise to
coherent radiation of several different frequencies, one of which is

V=2 -1, (76)

Suppose that v, is varied until it matches any Stokes line from the sample, such as the one
with frequency v, — A; then the coherent emission will have frequency

V=2 — (v, — Av) = v, + Av T (77

which is the frequency of the corresponding anti-Stokes line. This coherent radiation forms a
narrow beam of high intensity.

An advantage of CARS is that it can be used to study Raman transitions in the presence of
competing incoherent background radiation, and so can be used to observe the Raman
spectra of species in flames. The intensities of the transitions can then be interpreted in
terms of the temperatures of different regions of the flame.

Laser
) Detector
Dye e
laser v, v, ,\ e

: Sample

16.54 The experimental arrangement for the CARS experiment.
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Exercises

16.1 (a) Caiculate the ratio of the Einstein coefficients of
spontaneous and stimulated emission, A and B, for transitions with
the following characteristics: (a) 70.8 pm X-rays, (b) 500 nm visible
light, (c) 3000 cm™' IR radiation.

16.1 (b) Calculate the ratio of the Einstein coefficients of
spontaneous and stimulated emission, &4 and B, for transitions with
the following characteristics: (a) 500 MHz radiofrequency radiation,
(b) 3.0 cm microwave radiation.

16.2 (a) Calculate the frequency of the J = 4+ 3 transition in the
pure rotational spectrum of “N'60. The equilibrium bond length is
115 pm.

16.2 (b) Calculate the frequency of the J = 3+2 transition in the
pure rotational spectrum of ‘2C'®0. The equilibrium bond length is
112.81 pm.

16.3 (a) If the wavenumber of the J = 3«2 rotational transition of
'H35Cl considered as a rigid rotator is 63.56 cm~', what is (a) the
moment of inertia of the molecule, {b) the bond length?

16.3 (b) If the wavenumber of the J = 1+ 0 rotational transition of
"H®'Br considered as a rigid rotator is 16.93 cm™', what is (a) the~
moment of inertia of the molecule, (b) the bond length?

16.4 (a) Given that the spacing of lines in the microwave spectrum
of 7AI'H is constant at 12.604 cm™', calculate the moment of inertia
and bond length of the molecule [m(*Al) = 26.9815 u).

16.4 (b) Given that the spacing of lines in the microwave spectrum
of 35CI"9F is constant at 1.033 em ™', calculate the moment of inertia
and bond length of the molecule (m(**C!) = 34.9688 u,
m("*F) = 18,9984 u). ‘

127135C) s 0.1142 ¢cm L
(m(35Cl) = 34.9688 u,

constant of
bond  length

16.5 (a) The rotational
Calculate  the ICI
m('71) = 126.9045 u).

16.5 (b} The rotational constant of '2C'®0, is 0.39021 cm™'.
Calculate the bond length of the molecule (m('?C) =12 u exactly,
m('%0) = 15.9949 u).

16.6 (a) Determine the HC and CN bond lengths in HCN from the
rotational constants B('H'2C'N) = 44.316 GHz, B(*H'?C"N) =
36.208 GHz.

16.6 (b) Determine the CO and CS bond lengths in OCS from the
rotational constants B('50'7C?S) = 6081.5 MHz, B('%0"C¥S) =
5932.8 MHz. =

16.7 (a) The wavenumber of the incident radiation in a Raman
spectrometer is 20487 cm™'. What is the wavenumber of the
scattered Stokes radiation for the J = 2«0 transition of *N,?

16.7 (b) The wavenumber of the incident radiation in a Raman
spectrometer is 20623 cm~'. What is the wavenumber of the
scattered Stokes radiation for the J = 4+2 transition of 10,7

16.8 (a) Infrared absorption by 'H®'Br gives rise to an R branch from
v = 0. What is the wavenumber of the line originating from the
rotational state with J = 27 Use the information in Table 16.2.

16.8 (b) Infrared absorption by 'H'’| gives rise tc an R branch from
v = 0. What is the wavenumber of the line originating from the
rotational state with J = 2? Use the information in Table 16.2.

16.9 (a) An object of mass 1.0 kg suspended from the end of a
rubber band has a vibrational frequency of 2.0 Hz. Calculate the
force.constant of the rubber band.
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16.9 (b) An object of mass 2.0 g suspended from the end of a spring
has a vibrational frequency of 3.0 Haz. Calculate the force constant of
the spring.

16.10 (a) Calculate the percentage difference in the fundamental
vibration wavenumber of Z2Na®5Ci and *Na*'Cl on the assumption
that their force constants are the same.

16.10 (b} Caiculate the perccntagc difference in the fundamental
vibration wavenumber of "H¥*Cl and ZH¥Cl on the aswmntmn that
their force constants are the same.

15.11 (a) The wavenumher of the fundamental vibrational transition
of ¥Cl, is 564.9 cm~'. Calculate the force constant of the bond
{m(*3Cl) = 34 9688 u).

16.11 (b) The wavenumber of the fundamental vibrational transi-
tion of Br #'Br is 323.2 ecm~!. Calculate the force constant of the
bond {m(7*Br) = 78.9183 v, m(*'Br) = 80.9163 u).

16.12 {a) The molecule CH,Cl, belongs to the point group Cs,. The
displacements of the atoms span SA| + 2A; + 4B, + 4B,. What pre
the symmetries of the norma! modes of vibration?

16.12 (b) A carbon disulfide molecule belongs ta the point group
D_,. The nine displacements of the threc atoms span
A + Ay + Ay + 2B, + . What are the symmetries of the
normal modes of vibration?

16.13 (a) Which of the following molecules may show a pure
rotaticnal microwave absorption spectrum: (a] 4, (b} HCI, (c) CH,, (d}
CH,Cl, (e} CH,CI,?

16.13 (b) Which of the foliowing molecules may show a pure
rotational microwave absorptior spectrum: (a) H,0, {b) H,0,, (c) NH,,
(d) N,O?

16.14 (a) Which of the fallowing molecules may show
absorption spectra: {a} H,, (b) HCY, (¢} CO,, {d) H,07

16.14 {b) Which of the following molecules may show infrared
absarption spectra: (a) CH,CH,, {b) CH,, (¢} CH, QI {d) N,7?

16.15 (a) Which of the following molecules may show a pure
rotational Raman spectrum: (a) H,, (b) HEI, () CH,, {d) CH,CI?

16.15 (o) Which of the following molecules may show a pure
rotational Raman spectrum: (a) CH,Cl,, (b) CH,CHy, (c) SFe, (d) N,07

16.16 (a) What is the Doppler-shifted wavelength of a red (660 nm)
traffic light appreached at 80 kmh'?

16.16 (b) At what speed of approach would a red (660 nm) traffic
light appear green (520 nm)?

16.17 (a) A spectral line of *8Ti®* (of mass 47.95 u) in a distant star
was found to be shifted from 654.2 nm-to 706.5 nm and to be
broadened to 61.8 pm. What is the speed of recession and the surface
temperature of the star?

16.17 (b) A spectral fine of I'P** (of mass 20.97 u) in a distant star
was found to be shifted from 326 nm to 365 nm and to be broadened
to 458 pm. What is the speed of recession and the surface
temperature of the star?

infrared

16.18 (a) Estimate the lifetime of 3 state that gives rise to a line of
width {a) 0.10 cm™!, (b} 1.0 em ™.

1 SPECTROSCOPY 1

16.18 [b) Estimate the lifetime of a state that gives rise to a line of
width (a) 100 MHz, (b) 2.14 cm~",

16.19 (a) A molecule in a liquid undergoes about 1.0x 10"
collisions in each second. Suppose that (a) every collision is effective
in deactivating the molecule vibrationally and (b) that one collision in
100 is effective. Calculate the width {in ¢m~') of vibrational
transitions in the molecule.

16.19 (b) A molecule in a gas undergoes about 1.0 x 10° collisions in
each second. Suppose that (a) every collision is effective in
deactivating the molecule rotationally and (b) that one collision in
10 is effective. Calculate the width {in hertz) of rotational transitions
in the molecule,

16.20 (a) Calculate the relative numbers of Cl, molecules
(7 = 559.7 em~"} in the ground and first excited vibrational states
at {a) 298 K, (b) 500 K. .

16.20 (b} Calculate the relative numbers of Br, molecules
(7 =321 cm™") in the second and first excited vibrational states at
(a) 298 K, (b} 800 K.

16.21 (a) The hydrogen halides have the following fundamental
vibrational wavenumbers: 4141.3 cm™" (HF); 2988.9 cm™' (H*5Cl);
2649.7 em~' (H¥'Br); 2309.5 cm™! (H'?1). Calculate the force
constants of the hydrogen-halogen bonds.

16.21 (b) From the data in Exercise 16.21a, predict the fundamental
vibrational wavenumbers of the deuterium halides.

16.22 (a) For ""0,, AG values for the transitions v = 140, 240,
and 3+0 are, respectively, 1556.22, 3088.28, and 4596.21 cm™'.
Calculate & and a,. Assume y, to be zero.

16,22 (b) For *N,, AG values for the transitions v = 1+0, 2+0,
and 3«0 arc, respectively, 2345.15, 4661.40, and 6983.73 cm™!.
Caleulate & and x.. Assume y, to be zero.

16.23 (a) The first five vibrational energy levels of HCI are at
1431.86, 4367.50, 7149.04, 9826.48, and 12399.8 cm~'. Calculate
the dissociation energy of the molecule in reciprocal centimetres and
ciectronvolts, *

16.23 (b) The first five vibrational energy levels of Hi are at 1144 .83,
3374 90, 5525.51, 7596.66, and 9588.35 cm ). Calculate the
dissociation energy of the molecule in reciprocal centimetres and
electronvaolts.

16.24 (a) The  rotational  Raman  spectrum  of gl
[m(75Cl) = 34.9688 u) shows a series of Stokes lines separated by
0.9752 cm™! and a similar series of anti-Stokes lines. Calculate the
bond length of the molefcu‘ie.

16.24 (b) The  rotational  Raman  spectrum  of  'F,
(m('®F) = 18.9984 u} shows a series of Stokes lines separated by
3.5312 em™' and a similar series of anti-Stokes lines. Calculate the
bond fength of the molecule.

16.25 {a) How many normal modes of vibration are there for the
foliowing molecules: (a) H,0, (b) H;0,, (c) C,H,?

16.25 (b) How many normal modes of vibration are there for the
following molecutes: (a) CgHg, [b) CaHgCHy, (c) HC=C—C=CH?



v’ PROBLEMS

16.26 (aj Which of the three wvibrations of an AB,
molecule are infrared or Raman active when it is (a) angular, (b)
linear?

16.26 (b) Which of the vibrations of an AB, molecule are infrared or
Raman active when it is (a) trigonal planar, (b) trigenal
pyramidal?
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16.27 (a) Consider the vibrational mode that corresponds  to
the uniform expansion of the benzene ring. !s it (a] Raman, (b)
infrared active?

16.27 (b) Consider the vibrational mode that corresponds to the
‘boat-iike bending of a benzenc ring. Is it (a) Raman, (b) infrared
active? ’

Problems

Numerical problems

16.1 Calculate the Doppler width {as a fraction of the transition
wavelength) for any kind of transition in (a) HCI, (b) ICI at 25°C.
What would be the widths of the rotational and vibrationai
transitions in these molecules (in MHz and cm™', respectively),
given B(ICl) = 0.1142 cm™! and #(ICI) = 384 cm ™! and additional
information in Table 16.27

16.2 The collision frequency of a molecule of mass m in a gas of
pressure p is z = 4a(kT/nm)"*p /KT, where o is the coliision cross-
section. Find an expression for the collision-limited lifetime of an
excited state assuming that every collision is effective. Estimate the
width of rotational transition in HCl (¢ = 0.30 am?) at 25°C and
1.0 atm. To what value must the pressure of the gas be reduced in
order to ensure that collision broadening is less important than
Doppler broadening?

16.3 The rotational constant of NH, is equivalent to 298 GHz.
Compute the separation of the pure rotational spectrum lines in GHz,
cm™', and mm, and show that the value of B is consistent with an
N-H bond length of 101.4 pm and a bond angle of 106.78°.

16.4 The - rotational constant for CO is 19314 cm™' and
1.6116 cm™" in the ground and first excited vibrational states,
respectively. By how much does the internuclear distance change as a
result of this transition? ‘

16.5 Pure rotational Raman spectra of gaseous CgHg and CgDg yield
the following rotational constants: B(CgHg) = 0.18960 cm™,
B(C¢Dg) = 0.15681 cm™'. The moments of inertia of the molecules
about any axis perpendicular to the Cg axis were calculated from
these data as [(CeHg) = 147.59 x 10747 kgm?,  I(CyDg) =
178.45x 107" kgm?. Calculate the CC, CH, and CD bond
lengths.

16.6 The vibrational enérgy levels of Nal lie at the wavenumbers
142.81, 427.31, 710.31, and 991.81 cm~'. Show that they fit the
expression (v 4+ 1o — (v+ %)2x=17. and deduce the force constant,
zero-point energy, and dissociation energy of the molecule.

16.7 Predict the shape of the nitronium ion, NOZ, from its Lewis
structure and the VSEPR model. It has one Raman active vibrational
mode at 1400 cm™!, two strong IR active modes at 2360 and
540 em~!, and one weak IR mode at 3735 cm~'. Are these data
consistent with the predicted shape of the molecule? Assign the
vibrational wavenumbers to the mades from which they arise,

16.8 Rotational absorption lines from "H**Cl gas were found at the
following wavenumbers (R.L Hausler and R.A. Oetjen, J. Chem. Phys.
21, 1340 (1953)): 83.32, 104.13, 124.73, 145.37, 165.89, 186.23,
206.60,226.86 cm™'. Calculate the moment of inertia 2nd the bond
length of the molecule. Predict the positions of the corresponding
lines in ZH35CL

16.9 Is the bond length in HCl the same as that in DCI? The
wavenumbers of the J = 1+0 rotational transitions for H3*Cl and
2HICl are 20.8784 and 10.7840 cm™', respectively. Accurate atomic
masses are 1.007825 v and 2.0140 u for 'H and ?H, respectively. The
mass of *Cl is 34.96885 u. Based on this information alone, can you
conclude that the bond lengths are the same gr different in the two
molecules?

16.10 The microwave spectrum of '80'2CS  (C.H. Townes,
AN. Holden, and F.R. Merritt, Phys. Rev. 74, 1113 (1948)) gave
absorption lines (in GHz) as follows:

Fou ) 3 T4
25 2432592 3648882 48.65164 60.81408
S 2373233 47.462 40

~Use the expressions for moments of inertia in Table 16.1 and assume
that the bond lengths are unchanged by substitution; calculate the
CO and CS bond lengths in OCS.

16.11 The HCl molecule is quite well described by the Marse
potential  with D, =533eV, ©7=2989.7cm™!, and
X7 = 5205 cm”'. Assuming that the potential is unchanged
on deuteration, predict the dissociation energies (Dg) of (a) HCI, [b)
DCl

16.12 The Morse potential (eqn 61) is very useful as a simple
representation of the actual molecular potential energy. When RbH
was  studied, it was ‘found that ©=9368cm™' and
x.7 = 14.15 cm™!. Plot the potential energy curve from 50 pm to
800 pm around R, = 236.7 pm. Then go on to explere how the
rotation of a molecule may weaken its bond by allowing "for the
kinetic energy of rotation of a molecule and piotting
V' =V 4+ heBI(J + 1) with B = h/4rcuR®, Plot these curves on
the same diagram for J = 40, 80, and 100, and observe how the
dissociation energy is affected by the rotation, (Taking
B =3.020 cm~" at the equilibrium bond length will greatly simplify
the calculation.)
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Theoretical problems

16.13 Show that the moment of inertia of a diatomic molecule
composed of atoms of masses m, and my and bond iength R is equal
to m. K2, where mq = mamg/(ma + mg).

16.14 Derive an expression for the value of J correspanding to the
most highly populated rotational energy level of a diatomic rotor at a
temperature T remembering that the degeneracy of each level is
27 + 1. Evaluate the expression for ICI (for which B = 0.1142 cm ')
at 25°C. Repeat the problem for the most highly populated level of a
spherical rotor, taking note of the fact that each level is (2J + 1)*-
fold degenerate. Evaluate the expression for CH, (for which
B =524 cm™!) at 25°C.

16.15 The moments of inertia of the linear mercury(ll) halides are
very large, so the O and S branches of their vibrational Raman spectra
show little rotational structure. Nevertheless, the peaks of both
branches can be identified and have been used to measure the
rotational constants of the molecules (RJ.H. Clark and D.M. Rippon, J.
Chem. Soc. Faraday Soc. 11 69, 1496 (1973)). Show, from a knowledge
of the value of J corresponding to the intensity maximum, that the
separation of the peaks of the O and S branches is given by the
Placzek-Teller relation 8i» = (32BkT/hc)'/*. The following widths
were obtained at the temperatures stated:

HgCl,  HgBr,  Hgly
a/°c 282 292 292
svfem™' 238 15:2 11.4

Calculate the bond lengths in the three molecules.

Additional problems supplied by Carmen Giunta
and Charles Trapp

16.16 The noble gases and their complexes are favourite objects for
the study ‘of weak interatomic and intermolecular forces.
J.-U. Grabow, AS. Pine, G.T. Fraser, FJ. lovas, R.D. Suenram,,
T. Emilsson, E. Arunan, and H.S. Gutowsky (/. Chem. Phys. 102,
1181 (1995)) measured the pure rotational spectrum of ’Ne**Ar and
reported its rotational constant (actually cB) as 2914.9 MHz. What is
the internuclear separation of the complex? They also reported the
centrifugal distortion constant (actually ¢D,) as 231.01 kHz.
Estimate the fundamental vibrational wavenumber and the force
constant  of the weak bond.  (m(*°Ar) = 39.963 u;
m(?Ne) = 19.992 u)

16.17 B.D. Shizgal (J. Molec. Structure (Theochem) 391, 131 (1997))
reports the wavenumbers of vibrational transitions (based on
quantum mechanical computations) for NeAr to be 1909.3, 1060.3,
and 386.6 m~! for 1-0, 2-1, and 3-2, respectively. Determine the
Morse potential parameters D, and a for this complex.

16.18 F. Luo, G.C. McBane, G. Kim, CF. Giese, and W.R. Gentry (/.
Chem. Phys. 98, 3564 (1993)) reported experimental observation of,
the He, complex, a species which had escaped detection for a long
time. The fact that the observation required temperatures in the

16 SPECTROSCOPY 1.

neighbourhood of | mK is consistent with computational studies
which suggest that heD, for He, is about 1.51 x 1072 J, heDy about
2% 1072 J, and R, about 297 pm. (a] Estimate the fundamental
vibrational wavenumber, force constant, moment of hertia, and
rotational constant based on the harmonic-oscillator and rigid-rotor
approximations. (b) Such a weakly bound complex is hardly likely to
be rigid. Estimate the vibrational wavenumber and anharmonicity
constant based on the Morse potential.

16.19 In a study of the rotational spectrum of the linear FeCO
radical, K. Tanaka, M. Shirasaka, and T, Tanaka (/. Chem. Phys. 106,
6820 (1997)) report the following J 4 1+J transitions.

J 24 25 26
#/m-' 2147777 223379.0 2319812
J 27 28 29

p/m~' 2405844 249188.5 2577935

Evaluate the rotational constant of the molecule. Also, estimate the
value of J for the most highly populated rotational energy level at
298 K and at 100 K.

16.20 In the constellation Ophiuchus, there is a gaseous interstellar
cloud illuminated from behind by the star {-Ophiuci. Analysis of the
Fraunhofer  electronic-vibrationai-rotational  absorption  lines
obtained by H.S. Uhler and R.A. Patterson (Astrophys. J. 42, 434
(1915)) shows the presence &f CN molecules in the intersteilar
medium. A strong absorption line in the ultraviolet region at
1 =1387.5nm was observed corresponding to the transition
J = 0-1. Unexpectedly, a second strong absorption line with 25 per
cent of the intensity of the first was found at a slightly longer
wavelength (A4 = 0.061 nm) corresponding to the transition
J = 1-1 [here allowed). Calculate the temperature of the CN
molecules. Gerhard Herzberg, who was later to receive the Nobel
Prize for his contributions to spectroscopy, calculated the tempera-
ture as 2.3 K. Although puzzled by this result, he did not realize its
full significance. If he had, his prize might have been for the discovery
of the cosmic background radiation.

16.21 The rotational energy levels for the H molecular ion, an
oblate symmetric rotor, are given by eqn 35, with C replacing A, when
centrifugal distortion and other complications are ignored.
Experimental values of the vibrational-rotational constants are
in(E') =2521.6 cm™', B =43.55cm™, and C = 20.71 cm™'. (a)
Show that for a nonlfinear planar molecule such as Hy that /¢ = 2.
The rather large discrepancy with thé experimental values is due to
the factors ignored in eqn 35. (b) Calculate an approximate value of
the internuclear distance in H3. (c) The value for R, obtained from the
best quantum mechanical calculations by J.B. Anderson (/. Chem.
Phys. 96,3702 (1991)) is 87.32 pm. Use this result to calculate values
of the rotational constants B and C. (d) Assuming that the geometry
and force constants are the same in D and Hj, calculate the
spectroscopic constants of D. The molecular ion D was first
produced by L.T. Shy, JW. Farley, W.E. Lamb, Jr, and W.H. Wing (Phys.
Rev. Lett. 45, 535 (1980)) who observed the 1,(E') band in the
infrared.
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Spectroscopy 2:
electronic transitions

Simple analyticol expressions for clectronic energy levels cannot be qiven, so this r.':u;jrz'r
concentrates on the qualitative features of electromic transitians. A common theme
throughaut the chapter is that electronic transitions vecur within a stationary nucleor
fromework, We pay particulor ottenlion te spontancous rodintive decay processes, which
include fluorescence and phosphorescence. A specraily important example of stimulated
radiative decay is that responsible for the action of lusers, ond we see how this stimulated
emission may be achieved and empluyed.

An extreme case of electron excitation is pholoionization, in which an electron is expelled
completely from o molecule. Photoionization spectroscopy is used to build up detailed
pictures of orbitol energies and the role of particular clectrons in bonding. Hence itisan
experimental technique for exploring the concepts encountered in Chapter 14.

The energies neeged to change the electron distributions of moiecules are of the order of
several clectronvolts (1 eV is equivalent to about 8000 cm~! or 100 kJmol™").
Consegquently, the photons emitted or absorbed wher such changes occur lie in the visible
and ultraviolet regions of the spectrum (Table 17.1). In sonfe cases the relocation of
electrons may be so extensive that it results in dissociation of the molecule,

Table 17.1* Colour, frequency, and energy of light

Colour A/nm v/(10" Hz) E/(kJmol™")
Infrared > 1000 <3.0 <120
Red T00 43 170
Yellow 580 5.2 210
Blue 470 6.4 250
Ultraviolet <300 >10 >400

*Mare values are given in the Dato section at the end of this volume.
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Absorption

| 1 I\

400 500 600 700

V7.1 The absorption spectrum of chlorophyll in the
visible region, Note that it absorbs in the red and
blue regions, and that green light is not absorbed.

Electronic
excited state

Turning
point
(statianary
nuclie)

Electronic
ground state

Nucle stationary

12.2 According to the Franékuc-ondon principle, the
mast intense vibronic transition is from the ground

vibrational state to the vibrational state lying

vertically above it. Transitions to other vibrational

levels also occur, but with lower intensity.
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The characteristics of electronic transitions

The nuclei in a molecule are subjected to different forces after an electronic transition has
occurred, and the molecule may respond by starting to vibrate. The resulting”vibrational
structure of electronic transitions can be resolved for gaseous samples, but in a liquid or
solid the lines usually merge together and result in a broad, almost featureless band
(Fig. 17.1). Superimposed on tl.z vibrational transitions that accompany the electronic
transition of a molecule in the gas phase is an additional branch structure that arises from
rotational transitions. The electronic spectra of gaseous samples are therefore very
complicated, but rich in information.

17.1 The vibrational structure

The widths of electronic absorption bands in liquid samples can be traced to their vibrational
structure, which is usually unresolved in sclution. This structure, which can be resolved in
gases and weakly interacting solvents, arises from the vibrational transitions that
accompany eiectronic excitation.

(a) The Franck-Condon principle
The vibrational structure of an electronic transition is explained by the Franck-Condon
principle:

Because the nuclei are so much more massive than the electrons, an
electronic transition takes place very much faster than the nuclei can
respond.

As a result of the transition, electron density is rapidly built up in new regions of the
molecule and removed from others, and the initially stationary nuclei suddenly experience a
new force field. They respond to the new force by beginning to vibrate, and (in clussical
terms) swing backwards and forwards from their original separation, which was maintained
during the rapid electronic excitation. The stationary equiiihrium separation of the nuclei in
the initial electronic state therefore becomes a stationary turning point in the final
electronic state (Fig. 17.2). :

The quantum mechanical version of the Franck-Condon principle refines this picture.
Before the absorption, the molecule is in the lowest vibrational state of its lowest electronic
state (Fig. 17.3); the most probable location of the nuclei is at their equilibrium separation,
R..The electronic transition is most likely to take place when the nuclei have this separation.
When the transition occurs, the'molecule is excited to the state represented by the upper
curve. According to the Franck-Condon principle, the nuclear framework remains constant
during this excitation, so we may imagine the transition as being up the vertical line in
Fig. 17.3. The vertical line is the origin of the expression vertical transition, which is used to
denote an electronic transition that occurs without change of nuclear geometry.

The vertical transition cuts through several vibrational levels of the upper electronic
state. The level marked * is the one in which the nuclei are most probably at the same initial
separation R, (because the vibrational wavefunction has maximum amplitude there), so this
vibrational state is the most probable state for the termination of the transition.-However, it
is not the only accessible vibrational state because several nearby states have an appreciahie
probability of the nuclei being at the separation R,. Therefore, transitions occur to all the
vibrational states in this region, but most intensely to the state with a vibrational
wavefunction that peaks most strongly near R,.

The vibrational structure of the spectrum depends on the relative horizontal position of
the two potential energy curves, and a long vibrational progression, a lot of vibrational



17.3 In the quantum mechanical version of the
Franck-Condon b:inciplc. the molecule undergoes a
transition to the upper vibrational state that most
closely resembles the vibrational wavefunction of
the vibrational ground state of the lower electronic
state. The two wavefunctions shown here have the
greatest overlap integral of all the vibrational states
of the upper electronic state and hence are most
clasely similar.
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structure, is stimulated if the upper potential energy curve is appreciably displaced
horizontally from the lower. The upper curve is usually displaced to greater equilibrium bond
lengths because electronically excited states usually have more antibonding character than
cicctr\gnic ground states.

The separation of the vibrational lines of an electronic absorption spectrum depends on
the vibrational energies of the upper electronic state. Hence, electronic absorption spectra
may be used to assess the force fields and dissociation energies of electronically excited
molecules (for example, via a Birge-Sponer plot, Section 16.110).

(b) Franck-Condon factors
The quantitative form of the Franck-Condon principle is derived from the exptession for the

- transition dipole moment, p; = {f|n[i). The dipole moment operator is a sum over all nuclei

and electrons in the molecule:
p:—le,-+eZZ,R, (n
I i

where the vectors are the distances from the centre of charge of the molecule. The intensity
of the transition is proportional to the square modulus, |us|%, of the magnitude of the
transition dipole moment (eqn 16.20), and we show in the Justification below that this
intensity is proportional to the square modulus of the overlap integral, S(vy, v;), between the
vibrational states of the initial and final electronic states. This overlap integral is a measure
of the match between the vibrational wavefunctions in the upper and lower electronic
states: § = 1 for a perfect match and § = 0 when there is no similarity.

(]

Justification 17.1

The overall state of the molecule consists of an electronic part, |¢), and a vibrational part,
|v). Therefore, within the Born-Oppenheimer approximation, the transition dipole moment
factorizes as follows: *

Mg = (qv,]{ —e Z ri+e Z Z,R,}Isivl)
= HE'E(EflrifEi){”flvi) TE zzl(edsl)(”rlk!'”i)
i 7

The second term on the right of the last row is zero, because (¢|&;) = 0 for two different
electronic states (they are orthogonal). Therefore,

e = —e 3 el o) = St ) s

where

Pey = —€ Z(‘:r]rriﬁi) S(ve,vi) = (velwy) (3)

The matrix element p, , is the transition dipole moment arising from the redistribution of
electrons (and a measure of the 'kick' this redistribution gives to the electromagnetic field,
and vice versa for absorption). The factor S(vy,v;) is the overlap integral between the
vibrational state [v,) in the initial electronic state of the molecule, and the vibrational state
) in the final electronic state of the molecule. '

Because the transition intensity is proportional to_the square of the magnitude of the
transition dipole moment, the intensity of an absorption is proportisnal to [S(ur, »,)[°, which
is known as the Franck-Condon factor for the transition. It follows that, the greater the
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overlap of the vibrational state wavefunction in the upper clectronic state with the
vibrational wavefuncfion in the lower electranic state, the greater the absorption intensity
of that particular simultaneous electronic and vibrational transition. This conglusion is the
basis of the illustration in Fig. 17.3,mhere we see that the vibrational wavefunction of the
ground state has the greatest overlap with the vibrational states that have peaks at similar -
bond lengths in the upper electronic state.

e e

Example 17 1 Calculating a Franck-Condon factor

Consider the transition from one electronic state to another, their bond lengths being R,
and R, and their force constants equal. Calculate the Franck-Condon factor for the 0-0
transition and show that the transition is most intense when the bond lengths are equal.

Method We need to caleulate S(0,0), the overlap integral of the two ground-state
vibrational wavefunctions, and then take its square. The difference between harmonic and
anharmonic vibrational wavefunctions is negligible for v =0, so harmonic oscillator
wavefunctions can be used (Table 12.1).

Answer We use the (real) wavefunctions

1 1}2 1,,'2 ) l 1 )ﬂf?,
“’°=(;,Fﬁ) 5 "’"=(;;fﬁ) :

where y = (R — R,)/x and y' = (R —R;)/a, with a = (h?/mk)""* (Section 12.5a). The
overlap integral is

-

$(0,0) = 000) = [ otk = 5 [ 7 et gy
We now write az = R — L (R, + R;), and manipulate this expression into
5(0,0) = —f,—zc"”f“i":"” f e dz
n -00
The value of the integral is n'/*. Therefore, the overlap integral is
§(0,0) = e~ ReR/e7
and the Franck-Condon factor is

5(0,0)" = e~ R/

This factor is equal to | when R. = R, and decreases as the equilibrium bond lengths diverge
from each other (Fig. 17.4). .

Comment For Bry, R, = 228 pm and there is an upper state with R, = 266 pm. Taking the
vibrational wavenumber as 250 cm™", gives 5(0,0)? = 5.1 x 10717, 50 the intensity of the
0-0 transition is only 5.1 x 10~'® what it would have been if the potential curves had been
directly above each other.

.

Sell-test 17.1 Suppose the vibrational wavefunctions can be approximated by rectangular
functions of width W and W', centred on the equilibrium bond lengths (Fig. 17.5). Find the
corresponding Franck-Condon factors when the centres are coincident and W<W.

[5* = W' /W]

e s T - == = ==
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17.6 The electronic absorption spectrum of
[Ti(OH,)¢]** in aqueous solution.
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17.2 Specific types of transitions

The absorption of a photon can often be traced to the excitation of specific types of
electrons or to electrons that belong to a small group of atoms. For example, when a
carbonyl group (> C==0) is present, an absorption at about 290 nm is normally observed,
although its precise location depends on the nature of the rest of the molecule. Groups with
characteristic optical absorptions are called chromophores (from the Greek for 'colour
bringer'), and their presence often accounts for the colours of substances (Table 17.2).

Fahle 17.2" Absorption characteristics of some groups and molecules

Group Vay/em ! Jnax /MM Eongx/ (L mol~tem™1)
C=0(n"«n) 61000 163 15000
57300 174 5500
C=0(n"*+~n) 37-35000 270-290 10-20
H,0(n* «n) 60 000 167 7000

* More values are given in the Data section.

(a) d-d transitions

Al five d orbitals of a given shell are degenerate in a free atom. In a d-metal complex, where
the immediate environment of the atam is no longer spherical, the d orbitals are not all
degenerate, and electrons can absorb energy by making transitions between them. In an
octahedral complex, such as [ﬁ(OHz)s]“. the five d orbitals of the central atom are split into
two sets (1), a triply degenerate set labelled t,, and a doubly degénerate set labelled e,. The
three 1,, orbitals lie below the two e, orbitals; the difference in energy is denoted Ag and
called the ligand-field splitting parameter (the O denoting octahedral symmetry). The d
ogbitals also divide into two sets in a tetrahedral complex, but in this case the e orbitals lie
below the ; orbitals and their separation is written Aq. Neither separation is large, so
transitions between the two sets of orbitals typically occur in the visible region of the
spectrum even though they are electronic. The transitions are responsible for many of the
colours that are so characteristic of d-metal complexes. As an example, the spectrum of
[Ti(OHy)]*" near 20000 cm™" (SO0 nm) is shown in Fig. 17.6, and can be ascribed to the
promotion of its single d electron from a t,, Orbital to an e, orbital. The wavenumber of the
absorption maximum suggests that Ap, 220000 cm™! for this complex, which corresponds
to about 2.5 eV.

(b) Vibronic transitions

A major problem with the interpretation of visible spec;ra of octahedral complexes is that
their d-d transitions are forbidden. The Laporte selection rule for centrosymmetric
complexes (those with a centre of inversion) and atoms states that:

The only allowed transitions are transitions that are accompanied by a
change of parity.

That is, w — g and g — u transitions are allowed, but g — g and u — u tragsitions are
forbidden.

Justification 17.2

The transition dipole moment in eqn 16.19 vanishes unless the inted¥and is invariant under
all symmetry operations of the molecule. Hence, in a centrosymmetric complex it must
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5 3 have even (g) parity (in O, it needs to be Ay, but only the g symmetry is important for this

L argument). The three components of the dipole moment operator transform like x, y, and z,
and are all u. Therefore, for a d-d transition (a g — g transition), the overall p_a'rity of the
transition dipole is g x u x g = u, 50 it must be zero. Likewise, for a u — u transition, the
overall parity is u X u x u = u, so it must also vanish. Hence, transitions without a change
of parity are forbidden.

0 . A forbidden g — g transition can become allowed if the centre of symmetry is eliminated
: by an asymmetrical vibration, such as the one shown in Fig. 17.7. When the centre of
f symmetry is lost, d-d transitions are no longer parity-forbidden, so the eg+ 1y, transition

becomes weakly allowed. A transition that derives its intensity from an asymmctncal
17.1 A d-d transition is parity-forbidden because it vibration of a molecule is called a vibronic transition.
corresponds to a g-g transition. However, a
vibration of the molecule can destray the inversion
symmetry of the molecule and the g, u classification

no longer applies. The removal of the centre of {c) Chargf-fi”a nsfer transitions
:"’""_‘:‘"’ gives rise to a vibronically allowed A complex may absorb radiation as a result of the transfer of an electron from the ligands
ransition.

into the d orbitals of thé central atom, or vice versa. In such charge-transfer transitions the
electron moves through a considerable distance, which means that the transition dipole
moment may be large and the absorption is correspondingly intense. This mode of
chromophore activity is shown by the permanganate ion, MnO;, and accounts for its intense
violet colour (which arises from strong absorption within the range 420-700 nm). In this
oxoanion, the electron migrates from an arbital that is largely confined to the O atom
ligands to an orbital that is largely confined to the Mn atom. It is therefore an example of a
ligand-to-metal charge-transfer transition (LMCT). The reverse migration, a metal-to-
ligand charge-transfer transition (MLCT), can also occur. An example is the transfer of a d
electron into the antibonding n orbitals of an aromatic ligand. The resulting excited state
may have a very long lifetime if the electron is extensively delocalized over several aromatic
rings, and such species can participate iff photochemically induced redox reactions.

(d) n*«nx and n*«n transitions

Absorption by a C=C double bond excites a = electron into an antibonding n* orbital
(Fig. 17.8). The chromophore activity is thercfore due to a n*+«r transition (which is
normally read 'z to n-star transition’). Its energy is about 7 eV for an unconjugated double
bond, which corresponds to an absorption at 180 nm (in the ultraviolet). When the double
bond is part of a conjugated chain, the energies of the molecular orbitals lie closer together
and the n* +n transiticn moves to longer wavelength; it may even lie in the visible region if
the conjugated system is long enough.

An important example of a n*«n transition is provided by the photochemical

178 A C=C double bond acts as 3 chro:ﬂDP"O'f- mechanism of vision. The retina of the eye contains 'visual purple’, which is a protein in
g:;zzr;m;’:;?ﬂﬁm;:h‘: :It'c':an " combination with 11-cis-retinal (2). The 11-cis-retinal acts as a chromaphare, and is the
promoted from a  orbital to the corresponding primary receptor for photons entering the eye. A solution of 11-cis-retinal absorbs at about
antibonding orbital, 380 nm, but in combination with the protein (a link which might invoive the elimination of
the terminal carbonyl) the absorption maximum shifts to about 500 nm and tails into the

X blue. The conjugated double bonds are responsible for the ability of the molecule to absorb

over the entire visible region, but they also play another important role. In its electronically
excited state the conjugated chain can isomerize, one half of the chain being able to twist
about an excited C=C bond and forming 11-trans -retinal (3). The primary step in vision

g therefore appears to be photon absorption followed by isomerization: the uncoiling of the
molecule then triggers a nerve impulse to the brain.
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The transition responsible for absorption in carbony! compounds can be traced to the
lone pairs of electrons on the O atom. The Lewis concept of a ‘lone pair’ of electrons is
represented in molecular orbital theory by a pair of electrons in an orbital confined largely to
one atom and not appreciably involved in bond formation. One of these electrons may be
excited into an empty n* arbital of the carbonyl group [Fig. 17.9), which gives rise to a
" +n transition {an 'n to n-star transition’). Typical absorption energies are about 4 eV
(290 nm). Because n*«—n transitions in carbonyls are symmetry forbidden, the absorptions
are weak.

The fates of electronically excited states

A radiative decay process is a process in which a molecule discards its excitation energy asa
photon. A more common fate is nonradiative decay, in which the excess energy is
transferred into the vibration, rotation, and translation of the surrounding molecules. This
thermal degradation converts the excitation energy into thermal motion of the environment
(that is, to 'heat’). An excited molecule may also take part in a chemical reaction, as we
discuss in Part 3.

17.3 Fluorescence and phosphorescence

In fluorescence, the spontaneously emitted radiation ceases immediately after the exciting
radiation is extinguished (Fig. 17.10). In phosphorescence, the spontaneous emission may
persist for long periods (even hours, but characteristically seconds or fractions of seconds).
The difference suggests that fluorescence is an immediate conversion of absorbed radiation )
into re-emitted energy, and that phosphorescence involves the storage of energy in a
reservoir fram which it slowly leaks.

> S
v | ~~o_ Phasphorescence
¢ ““"-«___‘_
5 é‘ [ e
-t 2 -
n* g |-
L=
£ -
§ |
% |t
o s
E |=
w
1
)
>— q Fiuoresseice
1
'l \.
n o e Time
17.9 A carbonyl {COJ group acts as a chromophore 1/ 1 The empirical (observation-based) distinction
primarily on accaunt of the excitation of a between fluorescence and phosphorescence is that
nonbonding O lone-pair electron to an antibonding  the former is extinguished immediately the exciting
CO = orbital, source is removed, whereas the latter continues

with relatively slowly diminishing intensity.
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(a) Fluorescence

Figure 17.11 shows the sequence of steps involved in fluorescence. The initial absorption
takes the molecule to an excited electronic state, and if the absorption spectrum were
monitored it would look like the one shown in Fig. 17.12a. The excited molecule is subjected
ta collisions with the surrounding molecules, and as it gives up energy nonradiatively it steps
down the ladder of vibrational levels to the lowest vibrational level of the electronically
excited molecular state. The surrounding molecules, however, might now be unable to
accept the larger energy difference needed to lower the molecule to the ground electronic
state. It might therefore survive long enough to undergo spontaneous emission, and emit
the remaining excess energy as radiation. The downward electronic transition is vertical (in
accord with the Franck-Condon principle) and the fluorescence spectrum has a vibrational
structure characteristic of the lower electronic state (Fig. 17.12b).

Provided they can be seen, the 0-0 absorption and fluorescence transitions can be
expected to be coincident. The absorption spectrum arises from 0-0, 1-0, 2-0, etc
transitions and the peaks occur at progressively higher waverumber and with intensities
governed by the Franck-Condon principle. The fluorescence spectrum arises from 0-0, 0-1,
0-2, etc. downward transitions, and hence the peaks occur with decreasing wavenumbers.
The 0-0 absorption and fluorescence peaks are not always exactly coincident because the
solvent may interact differently with the solute in the ground and excited states (for
instance, the hydrogen bonding pattern might differ). Because the solvent molecules do not
have time to rearrange during the transition, the absorption occurs in an environment
characteristic of the solvated ground state; however, the fluorescence occurs in an
environment characteristic of the solvated excited state (Fig. 17.13).
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\7.11 The sequence of steps leading to ' 1/ 17 An absorption spectrum (a) shows a vibra-
fluorescence. After the initial absorption, the upper  tional structure characteristic of the upper state, A
vibrational states undergo radiationless decay by fluorescence spectrum (b) shows a structure charac-

giving up energy to the surroundings. A radiative teristic of the lower state; it is also displaced ta lower
transition then occurs from the vibrational ground  frequencies (but the 0-0 transitions are coincident)
state of the upper clectronic state. and resembles a mirror image of the absorption.



17.13 The solvent can shift the fluorescence
spectrum relative to the absorption spectrum. On the
left we see that the absorption occurs with the
solvent (the ellipses) in the arrangement characteristic
of the ground electronic state of the molecule (the
sphere). However, before fluorescence accurs, the
solvent molecules relax into a new arrangement, and
that arrangement is preserved during the subsequent
radiative transition,
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i7.14 The sequence of steps leading to
phosphorescence. The important step is the
intersystem crassing, the switchfrom a singlet state
to a triplet state brought about by spiri-orbit
coupling. The triplet state acts as a slowly radiating
reservoir because the return to the ground state is
spin-forbidden.
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Fluorescence occurs at a lower frequency than the incident radiation because the
emissive transition occurs after some vibrational energy has been discarded into the
surroundings, The vivid oranges and greens of fluorescen{ dyes are an everyday
manifestation of this effect: they absorb in the ultraviolet and blue, and fluoresce in the
visible, The mechanism also suggests that the intensity of the fluorescence ought to depend
on the ability of the solvent molecules to accept the electronic and vibrational quanta. It is
indeed found that a soivent composed of molecules with widely spaced vibrational levels
(such as water) can in some cases accept the large quantum of electronic energy and so
extinguish, or 'quench’, the fluorescence.

(b) Phosphorescence

Figure 17.14 shows the sequence of events leading to phosphorescence for a molecule with
a singlet ground state. The first steps are the same as in fluorescence, but the presence of a
triplet excited state plays a decisive role.' The singlet and triplet excited states share a
common geometry at the point where their potential energy curves intersect. Hence, if there
is a mechanism for unpairing two electron spins (and 2C.ueving the conversion of T| to 11),
the molecule may undergo intersystem crossing and become a triplet state. We saw in the
discussion of atomic spectra (Section 13.9d) that singlet-triplet transitions may occur in the
presence of spin-orbit coupling, and the same is true in molecules. We can expect
intersystem crossing to be important when a molecule contains a moderately heavy atom
{such as S}, because then the spin-orbit coupling is large. ‘
If an excited molecule crosses into a triplet state, it continues to deposit energy into the
surroundings. However, it is now stepping down the triplet's vibrational ladder, and at the
lowest energy level it is trapped because the triplet state is at a lower energy than the
corresponding singlet (recall Hund's rule, Section 13.7). The solvent cannot absorb the final,
large quantum of electronic excitation energy, and the molecule cannot radiaie its energy
because return to the ground state is spin-forbidden, The radiative transition, however, is
not totally forbidden because the spin-orbit coupling that was respomsible for the

1 We first encountered Iriplel states in Section 13.7: they are stales in which two electrons have parallel spins
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intersystem crossing also breaks the selection rule. The molecules are therefore able to emit
weakly, and the emission may continue long after the original excited state was formed.

The mechanism accounts for the observation that the excitation energy seems to get
trapped in a slowly leaking reservoir. It also suggests (as is confirmed experimentally) that
phosphorescence should be most intense from solid samples: energy transfer is then less
efficient and intersystem crossing has time to occur as the singlet excited state steps slowly
past the intersection point. The mechanism also suggests that the phosphorescence
efficiency should depend on the presence of a moderately heavy atom (with strong spin-
orbit coupling), which is in fact the case. The confirmation of the mechanism is the
experimental observation (using the sensitive resonance techniques described in
Chapter 18) that the sample is paramagnetic while the reservoir state, with its unpaired
electron spins, is populated. ) .

The various types of nonradiative and radiative transitions that can occur in molecules
are often represented on a schematic Jablonski diagram of the type shown in Fig. 17.15.

17.4 Dissociation and predissociation

Another fate for an electronically excited molecule is dissociation, the breaking of bonds
(Fig. 17.16). The onset of dissociation can be detected in an absorption spectrum by seeing
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17.15 A Jablonski diagram (here, for naphthalene) 17 16 When absorption occurs to unbound states
is a simplified portrayal of the relative positions of  of the upper electronic state, the molecule

the electronic energy levels of a molecule. dissociates and the absorption is a contiruum.
Vibrational levels of states of a given electronic Below the dissociation limit the electronic
state lic above each other, but the relative spectrum shows a normal vibrational structure.

horizontal locations of the columns bear no
relation to the nuclear separations in the states.
The ground vibrational states of each electronic
state are correctly located vertically but the other
vibrational states are shown only schematically. (IC;
internal conversion; ISC: intersystem crossing.)
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17.17 When a dissociative state crosses a bound
state, as in the upper part of the illustration,
molecules excited to levels near the crossing may
dissociate. This process is called predissociation, and
is detected in the spectrum as a loss of vibrational
structure that resumes at higher frequencies.
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17.18 The transitions involved in one kind of three-
level laser. The pumping pulse populates the
intermediate state /, which in turn populates the
laser state A. The laser transition is the stimulated
emission A — X,
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that the vibrational structure of a band terminates at a certain energy. Absorption occurs in
a continuous band above this dissociation limit because the final state is an unquantized
translational motion of the fragments. Locating the dissociation limit is a valuable way of
determining the bond dissociation energy.

In some cases, the vibrational structure disappears but resumes at higher photon
energies. This predissociation can be interpreted in terms of the molecular potential energy
curves shown in Fig. 17.17. When a molecule is excited to a vibrational level, its electrons
may undergo a reorganization that results in it undergoing an internal conversion, a
radiationless conversion to another state of the same multiplicity. An internal conversion
occurs most readily at the point of intersection of the two molecular potential energy
curves, because there the nuclear geometries of the two states are the same. The state into
which the molecule converts may be dissociative, so the states near the intersection have a
finite lifetime, and hence their energies are imprecisely defined. As a result, the absorption
spectrum is blurred in the vicinity of the intersection. When the incoming photon brings
enough energy to excite the molecule to a vibrational level high above the intersection, the
internal conversion does not occur [the nuclei are unlikely to have the same geometry).
Consequently, the levels resume their weII defined, vibratianal character with correspond-
ingly well-defined energies,"and the line structure resumes on the high-frequency side of the
blurred region.

Lasers

Lasers have transformed chemistry as much as they have \fransformcd the everyday world. In
this section, we see some of the principles of their operation, and then explore their
applications in chemistry. Lasers lie very much on the frontier of physacs and chemistry, for
their operation depends on details of optu:s and, in some cases, of solid-state processes. We
shall concentrate on the more chemical aspects of their operation, particularly the materials
from which they are made and the events taking place within them.

17.5 General principles of laser action

The word laser is an‘acronym formed from light amplification by stimulated emission of
radiation. In stimulated emission, an excited state is stimulated to emit a photon by
radiation of the same frequency; the more photons that are present, the greater the
probability of the emission. The essential feature of laser action is positive-feedback: the
more photons present of the appropriate frequency, the more photons of that frequency
that will be stimulated to form.

(a) Population inversion

One requirement of laser action is the existence of a metastable excited state, an excited
state with a long enough lifetime for it to participate in stimulated emission. Another
requirement is the existence of a greater population in the metastable state than in the
lower state where the transition terminates, for then there will be a net emission of
radiation. Because at thermal equilibrium the opposite is true, it is necessary to achieve a
population inversion in which there are more molecules in the upper state than‘_m the
lower.

One way of achieving population inversion is illustrated in Fig. 17.18. The molecule is
excited to an intermediate state /, which then gives up some of its energy nonradiatively and
changes into a lower state A; the laser transition is the return of A to the ground state X.
Because three energy levels are involved overall, this arrangement leads to a three-level
laser. In practice, / consists of many states, all of which can convert to thg upper of the two
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laser states A. The J+X transition is stimulated with an intense flash of light in the process
_"“_'__ called pumping. The pumping is often achieved with an electric discharge through xenon or
“\t A N with the light of another laser. The conversion of / to A should be rapid, gnd the laser

transitions from A to X should be relatively slow.

The disadvantage of this three-level arrangement is that it is difficult to achieve
population inversion, because so many ground-state molecules must be converted to the
excited state by the pumping action. The arrangement adopted in a four-level laser
simplifies this task by having the laser transition terminate in a state A" other than the
ground state (Fig. 17.19). Because A’ is unpopulated initially, any population in A
corresponds to a population inversion, and we can expect laser action if A is sufficiently
metastable. Moreover, this population inversion can be maintained if the A’ — X transitions
are rapid, for these transitions will deplete any population in A’ that stems from the laser
transition, and keep the state A’ relatively empty. '

(b) Cavity and mode characteristics

17.19 The transitions involved in a four-level laser. The laser medium is confined to a cavity that ensures that only certain photons of a
Because the laser transition terminates in an excited particular frequency, djrection of travel, and state of polarization are generated abundantly.
state (4'). the population inversion betweeen A and The cavity is essentially a region between two mirrors, which reflect the light back and forth.
ki L This arrangement can be regarded as a version of the particle in a box, with the particle now
being a photon. As in the treatment of a particle in a box (Section 12.1), the only
wavelengths that can be sustained satisfy

(a) Thermal equilibrium nxgh =L (4)

where n is an integer and L is the length of the cavity. That is, chly an integral number of
half-wavelengths fit into the cavity; all other waves undergo destructive interference with
themselves. In addition, not all wavelengths that can be sustained by the cavity are amplified
by the laser medium (many fall outside the range of frequencies of the laser transitions), so
only a few contribute to the laser radiation. These wavelengths are the resonant modes of
the laser.

Photons with the correct wavelength for the resonant modes of the cavity and the
correct frequency to stimulate the laser transition are highly amplified. One photon might
be generated spaataneously, and travel through the medium. It stimulates the emission of
another photon, which in turn stimulates more (Fig. 17.20). The cascade of energy builds up
rapidly, and soon the cavity is an intense reservoir of radiation at all the resonant modes it
can sustain. Some of this radiation can be withdrawn if one of the mirrors is partially
transmitting.

(c) Laser action The resonant modes of the cavity have various natural characteristics, and to some extent

oot R may be selected. Only photons that are travelling strictly parallel to the axis of the cavity
undergo more than a couple of reflections, so only they are amplified, all others simply
vanishing into the surroundings. Hence, laser light generally forms a beam with very low
divergence. It may also be polarized, with its electric vector in a particular plane (or in some
other state of polarization), by including a polarizing filter into the cavity or by making use
of polarized transitions in a solid medium.

) Pu -
(b) Population inversion mw

17.20 A schematic illustration of the steps leading Laser radiation is coherent in the sense that the electromagnetic waves are all in step. In
to laser action. (a) The Boltzmann population of spatial coherence the waves are in step across the cross-section of the beam emefging from
states, with more atoms in the ground state. (b) the cavity. In temporal coherence the waves remain in step along the beam. The latter is

When the initial state absorbs, the populations are
inverted (the atoms are pumped“to the excited
state). (c) A cascade of radiation then occurs, as one wavelengths, A4, present in the beam:

emitted photon stimulates another atom to emit, 2

and so on. The radiation is coherent (phases in - A (5)

step). . T 244

normally expressed in terms of a coherence length, [c, and is related to the range of

34+-B
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17.21 The principle of Q-switching. The excited

state is populated while the cavity is nonresonant.
" Then the resonance characteristics are suddenly
restored, and the stimulated emission emerges in 4
giant pulse.

/
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If the beam were perfectly monochromatic, with strictly one wavelength present, then Al
would be zero, and the waves would remain in step for an infinite distance. When many
wavelengths are present, the waves get out of step in a short distance ang the coherence
length is small, A typical light bulb gives out light with a coherence 1ength‘of only about
400 nm; a He-Ne laser with AA~2 pm has a coherence length of about 10 cm.

(c) Q-switching

A laser can generate radiation for as long as the population inversion is maintained. A laser
can operate continuously when heat is easily dissipated, for then the population of the
upper level can be replenished by pumping. Practical considerations govern whether or not
continuous pumping is feasible, as we shall see when we consider some particular lasers.
When overheating is a problem, the laser can be operated only in pulses, perhaps of
microsecond or millisecond duration, so that the medium has a chance to cool or the lower
state discard its population. However, it is sometimes desirable to have pulses of radiation
rather than a continuous output, with a lot of power concentrated into a brief pulse. One
way of achieving pulses is by Q-switching, the modification of the resonance characteristics
of the laser cavity? * -

Example 17.2 Reiating the power and energy of a laser

A laser rated at 0.10 J can generate radiation in 3.0 ns pulses. What is the average power
output per pulse?

-
Method The power output, P, is the energy released in an interval divided by the dura_tion
of the interval, and is expressed in watts (1 W =1 J s71). So, to calculate the power, divide
the energy output by the time over which the pulse is generated. :

Answer From the data,

_ 0101 &y
—m—3.3!]0 Is

That is, the pulses deliver 33 MW of power.

Comment The answer gives the average power; the peak power will be larger if the pulse is
not rectangular.

Self-test 17.2 Calculate the average power output of a laser in which a 2.0 J pulse can be
delivered in 1.0 ns. N

[2.0 GW]

The aim of Q-switching is to achieve a healthy population inversion in the absence of the
resonant cavity, then to plunge the population-inverted medium into a cavity, and hence to
obtain a sudden pulse’ of radiation. The switching may be achieved by impairing the
resonance characteristics of the cavity in‘some way while the pumping pulse i¥ active, and
then suddenly to improve them (Fig. 17.21). One technique is to use a saturable dye, a dye
that loses its power to absorb when many of its molecules have been excited by intense
radiation. It then suddenly becomes transparent, and the cavity becomes resonant. In
practice, Q-switching can give pulses of about 10 ns duration.

rame comes from the ‘0-factor’ used 2 a measure of the quality of 2 resonance cavity in microwave engineering.
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17.22 The output of a mode-locked laser consists
of a stream of very narrow pulses separated by an
interval equal to the time it takes for light to make
a round trip inside the cavity.
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17.23 The function derived in Justification 17.3
showing in more detail the structure of the pulses
generated by a mode-locked laser.
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(d) Mode locking

The technique of made locking can produce pulses of picosecond duration and less, A laser
radiates at a number of different frequencies, depending on the precise detgils of the
resonance characteristics of the cavity and in particular on the number of half-wavelengths
of radiation that can be trapped between the mirrors (the cavity modes). The resonant modes
differ in frequency by multiples of ¢/2L (as can be inferred from eqn 4 with v = c/J).
Normally, these modes have random phases relative to each other. However, it is possible to
lock their phases together. Then interference oceurs ta give a series of sharp peaks, and the
energy of the laser is obtained in picosecond bursts (Fig. 17.22). The sharpness of the peaks
depends on the range of modes superimposed and, the wider the range, the narrower the
pulses. In a laser with a cavity of length 30 cm, the peaks will be separated by 2 ns. If 1000
modes contribute, the width of the pulses will be 4 ps. ¢

Justification 17.3

The general expression for a (complex) wave of amplitude &£, and frequency w is £ge™".
Therefore, each wave that can be supported by a cavity of length L has the form

8,.,(!) - Serrri[u?-m,'lL)r
where » is the lowest frequency. A wave formed by superimposing N modes with
n=0,1,---N — 1 has the form

N-1
S(I) == EEH(I) = Eoeluiw Zeinnﬂﬂ.
n n=0

The sum is a geometrical progression:
N-1 :
Zeimﬂ‘ i einﬂ/L i czirrcr/l. (TE.
n=0

= sin(Nnct/2L) x g(N—Dinct/2L
sin(net/2L)

The intensity, Z, of the radiation is proportional to the square modulus of the total
amplitude, so

. 2
I EEre Sll:l SNn’cr/ZL)

sin“(net/2L)
This function is shown in Fig. 17.23. We see that it is a-series of peaks with maxima
separated by t = 2L/c, the round-trip transit time of the light in the cavity, and that the
peaks become sharper as N is increased.

Mode locking is achieved by varying the O factor of the cavity periodically at the
frequency c/2L. The modulation can be pictured as the opening of a shutter in synchrony
with the round-trip travel time of the photons in the cavity, so only photons making the
journey in that time are amplified. The modulation can be achieved by linking a prism in the
cavity to a transducer driven by a radiofrequency source ata frequency c/2L. The transducer
sets up standing-wave vibrations in the prism and modulates the loss it introduces into the
cavity. Mode locking may also be accomplished passively by including a saturabledye. This
procedure makes use of the fact that the gain, the growth in intensity of a component, is
‘'very sensitive to amplification and, once a particular frequency begins to grow, it can quickly
dominate. If a saturable dye is included in the cavity, a spontaneous fiuctuation in
intensity—a bunching of photons—may result in its becoming transparent, and the bunch
can pass through and travel to the far end of the cavity, amplifying as it goes. The dye
immediately shuts down again (if it is well chosen), but opens when the intense pulse returns
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17.24 A summary of the features needed for
efficient laser action.
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from the mirror at the far end and saturates it. In this way, that particular bunch of photons
may grow to considerable intensity because it alone is stimulating emission in the cavity.

" 17.6 Practical lasers

Figure 17.24 summarizes the requirements for an efficient laser. In practice, the
requirements can be satisfied by using a variety of different systems, and this section
reviews some that are commonly available. For completeness, we include some lasers that
operate by using other than electronic transitions,

(a) Solid-state lasers

A solid-state laser is one in which the active medium is in the form of a single crystal or a
glass. The first successful laser, the ruby laser built by Theodore Maiman in 1960, is an
example (Fig. 17.25). Ruby is Al,0, containing a small proportion of CrP* ions.? Ruby is a
three-level system, and the ground state, which is also the lower level of the laser transition,
is A, with three unpaired spins on_each Cr** ion. The population inversion results from
pumping a majority of the Cr** ions into an excited state by using an intense flash from
another source, followed by radiationless transition to another excited state. The pumping
flash need not be monochromatic because the upper level actually consists of several states
spanning a band of frequencies. The transition from the lower of the two excited states to
the ground state (2E — “A,) is the laser transition, and gives rise to red 694 nm radiation.
The population inversion is very difficult to sustain continuously, and in practice the ruby
laser is pulsed. Typical pulses from a Q-switched ruby laser might consist of 2 J pulses
persisting for 10 ns, corresponding to an average power of 0.2 GW. . .

The neodymium laser is an example of a four-level laser (Fig. 17.26). In one form it
consists of Nd** ions at low goncentration in yttrium aluminium garnet (YAG, specifically
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17.25 The transitions involved in a ruby laser. The  17.26 The transitions involved in a neodymium -

laser medium, ruby, consists of Al,0; doped with laser. The laser action takes place between two

Cr* ions, excited states, and the population inversion is
easier to achieve than in the ruby laser.

3 The normal green of Cr'* is modified to red by the distortion of the local crystal field stemming from the replacement of an AP+
fon by a slightly larger CP'* ion
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Y,Al;0,,), and is then known as a Nd-YAG laser. A cheaper medium is glass, but glass is a
poorer thermal conductor than YAG and the laser must be pulsed. A neodymium laser operates
at a number of wavelengths in the infrared, the band at 1064 nm being most cammon. The
transition at 1064 nm is very efficient and the laser is capable of substantial power output.
The power is great enough for frequency doubling to be used efficiently. Frequency
doubling is a technique in which the laser beam is converted to radiation with twice (and
in general a multiple) of its initial frequency as it passes through a suitable transparent
material. A frequency-doubled Nd-YAG laser produces green light at 532 nm.

Example 17.3 Accounting for multiphaton phenomena

Show that if a substance responds nonlinearly to incident radiation of frequency w, then it
may act as the source of radiation of twice the incident frequency.

Method Radiation of a particular frequency arises from oscillations of an electric dipole at
that frequency. Therefore, express the induced electric dipole moment of the system in
terms of powers of the applied electric field, and write the powers of harmanic (cosine)
terms as sums and diffetences of cosine terms. Inspect the sum to see if cos 2wt is present.

Answer The incident electric field € induces an electric dipole of magnitude 4 and, allowing
for nonlinear response, we can write '

u=uaf+ ﬂgz oo
The nonlincarrterms can.be expanded as follows if we suppose that the incident electric field
is £g cos wi: g
BE: = BEL cos® wt = LBE(1 + cos 2w1)

Hence, the nonlinear term contributes an induced electric dipole that oscillates at the
frequency 2w and which can act as a source of radiation of that frequency.

Self-test 17.3 Show that, if a substance responds nonlinearly-to two sources of radiation,
one of frequency w, and the other of frequency w,, then it may give rise to radiation of
the sum and difference of the two frequencies.

[BE? o cosw, + w,)t + cos(w — ;)]

(b) Gas lasers

Because gas lasers can be cooled by a rapid flow of the gas through the cavity, they can be
used to generate high powers. The pumping is normally achieved using a gas that is different
from the gas responsible for the laser emission itself.

In the helium-neon laser the active medium is a mixture of helium and neon in a mole
ratio of about 5 : 1 (Fig. 17.27). The initial step is the excitation of an He atom to the
metastable 15'2s! configuration by using an electric discharge (the collisions of electrons
and ions cause transitions that are not restricted by electric-dipole selection rules). The
excitation energy of this transition happens to match an excitation energy of fieon, and
during an He-Ne collision efficient transfer of energy may occur, leading te the production
of highly excited, metastable Ne atoms with unpopulated intermediate states. Laser action
generating 633 nm radiation (among about 100 other lines) then occurs.

The argon-ion laser (Fig. 17.28), one of a number of ‘ion lasers', consists of argen at
about 1 Torr, through which is passed an electric discharge. The discharge results in'the
formation of Art and Ar®* ions in excited states, which undergo a laser transition o a lower
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17.27 The transitions involved in a helium-neon
laser. The pumping (of the neon) depends on a
coincidental matching of the helium and nean
energy scparations, so excitéd He atoms can
transfer their excess energy to Ne atoms during a

collision.
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17.29 The transitions infolved in a carbon dioxidé
laser. The pumping also depends on the coincidental
matching of energy separations; in this case the
vibrationally excited N, molecules have excess
energies that correspond to a vibrational excitation
of the antisymmetric stretch of CO,. The laser
transition is from vy = 1 tow; = 1.

17.28 The transitions involved in an argon-ion
laser.

state. These ions then revert to their ground states by emitting hard ultraviolet radiation (at '
72 nm), and are then neutralized by a series of electrodes in the laser cavity. One of the
design problems is 1o find materials that can withstand this damaging residual radiation.
There are many lines in the laser transition because the excited ions may make transitions to
many lower states, but two strong emissions from Art are at 488 nm (blue) and 514 nm
(green); other transitions occur elsewhere in the visible region, in the infrared, and in the
ultraviolet. The krypton-ion laser works similarly. It is less efficient, but gives a wider range
of wavelengths, the most intense being at 647 nm (red), but it can also generate a yellow
line. Both lasers are widely used in laser light shows (for this application argon and krypton
are often used simultaneously in the same cavity) as well as being used as laboratory sources
of high-power radiation.

The carbon dioxide laser works on a slightly different principle (Fig. 17.29), for its
radiation {between 9.2 um and 10.8 um, with the strongest emission at 10.6 um, in the
infrared) arises from vibrational transitions. Most of the working gas is nitrogen, which
becomes vibrationally excited by electronic and ionic collisions.in an electric dischisge. The
vibrational levels happen to coincide with the ladder of antisymmetric stretch (15, see
Fig. 16.46) energy levels of CO,, which pick up the energy during a collision. Laser action
then occurs from the lowest excited level of i to the lowest excited level of the symmetric
stretch (1), which has remained unpapulated during the collisions. This transition is allowed
by anharmonicities in the molecular potential energy. Some helium is included in the gas to
help remove energy from this state and maintain the population inversion.
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17.31 The optical absorption spectrum of the dye
Rhodamine G and the region used for laser action.
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In the nitrogen laser, the efficiency of the stimulated transition (at 337 nm, in the
ultraviolet, the transition C°IT, — B*I1,) is so great that a sirgle passage of a pulse of
radiation is enough to generate laser radiation and mirrors are unnecessaryssuch lasers are
said to be superradiant. )

(c) Chemical and exciplex lasers

Chemical reactions may also be used to generate molecules with non-equilibrium, inverted
populations. For example, the photolysis of Cl, leads to the formation of Cl atoms which
attack H, molecules in the mixture and produce HCl and H. The latter then.attacks Cl, to
produce vibrationally excited ('hot’) HCI molecules. Because the newly formed HCi molecules
have non-equilibrium vibrational populations, laser action can result as they return to lower
states. Such processes are remarkable examples of the direct conversion of chemical energy
into coherent electromagnetic radiation.

The population inversion needed for laser action is achieved in a more underhand way in
exciplex lasers,” for in these (as we shall sce) the lower state does not effectively exist. This
odd situation is achieved by forming an exciplex, a combination of two atoms that survives
only in an excited ate and which dissociates as soon as the excitation energy has been
discarded. An example is a mixture of xenon, chlorine, and neon (which acts as a buffer gas).
An electric discharge through the mixture produces excited Cl atoms, which attach to the Xe
atoms to give the exciplex XeCI*. The exciplex survives for about 10 ns, which is time enough
for it to participate in laser action at 308 nm (in the ultraviolet). As soon as XeCl* has
discarded a photon, the atoms separate because the molecular potential energy curve of the
ground state is dissociative, and the ground state of the exciplex cannot become populated
(Fig. 17.30). The KrF* exciplex laser is another example: it prbduces radiation at 249 nm.

(d) Dye lasers

A solid-state laser and 3 gas laser operate at discrete frequencies and, although the
frequency required may be selected by suitable optics, the laser cannot be tuned
continuously. The tuning problem is overcomz by using a dye laser, which has broad
spectral characteristics because the solvent broadens the vibrational structure of the
transitions into bands. Hence, it is possible to scan the wavelength continuously (by rotating
the diffractio grating in the cavity) and achieve laser action at any chosen wavelength. A
commonly used dye is Rhodamine 6G in'methanol (Fig. 17.31). As the gain is very high, only
a short length of the optical path need be through the dye. The excited states of the detive
medium, the dye, are sustained by another laser or a flash lamp, and the dye solution is
flowed through the laser cavity to avoid thermal degradation (Fig. 17.32).

(e) Light-emitting diodes and semiconductor lasers

We have seen (in Section 14.10d) that a semiconductor is classified as 'n-type' if its
conduction band is partly populated and as'p-type’ if its valence band has a small number of
holes. in this section we need to consider the properties of a p-n junction, the interface of
the two types of semiconductor.

The band structure at the junction is shown in Fig. 17.33. When a ‘forward bias’ is applied
to the junction, in the sense that electrons are supplied through an external gircuit to the n
side of the junction, the electrons in the conduction band of the n-type semiconductor fall
into the holes in the valence band of the p-type semiconductor. As they fall, they emit
energy. In silicon semiconductors this energy is largely in the form of heat because
the wavefunctions of the relevant states of the bands differ in linear momentum, so the

& The term ‘excimer laser’ is also widely encountered and used loosely when ‘exciplex laser’ is more appropriate. An exciplex has the
form AB® whereas an excimer, an excited dimer, is AA*,
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17.32 The configuration used for a dye laser. The
dye is flowed through the cell inside the laser
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17.33 The structure of a diode junction (1) without
bias and (b) with bias.
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transition can occur only if the electron transfers linear momentum to the lattice, and the
device becomes warm. However, in some materials, most notably gallium arsenide, GaAs,
the wavefunctions of the states involved correspond to the same linear momentum, so
transition can occur without the lattice needing to be involved and the energy isTemitted as
light. Practical light-emitting diodes of this kind are widely used in electronic displays.
Gallium arsenide itself emits infrared light, but the band gap is widened by incorporating
phosphorus, and a material of compasition approximately GaAsg ¢P, 4 emits light in the red
region of the spectrum.

A light-emitting diode is not a laser, because no resonance cavity and stimulated
emission are involved. However, it is easy (in principle) to employ the light emission of
electron-hole recombination as the basis of laser action. The population inversion can be
sustained by sweeping away the electrons that fall into the holes of the p-type
semiconductor, and a resonant cavity can be formed by using the high refractive index of
the semiconducting material and cleaving single crystals so that the light is trapped by the
sudden variation of refractive index, One widely used material is Ga, _ Al As, which produces
infrared laser radiation and is widely used in compact-disc (CD) players.

17.7 Applications‘ of lasers in chemistry

Laser radiation has five striking characteristics (Table 17.3). Each of them (sometimes in
combination with the others) opens up interesting opportunities in spectroscopy, giving rise
to 'laser spectroscopy’ and, in photochemistry, giving rise to 'laser photochemistry'.

(a) Spectroscopy at high photon fluxes

The high spectral power density of a laser—the high intensity of the radiation it produces at
well-defined frequencies—is an aid to conventional spectroscopy. Thus, it reduces the
problem of detector noise and the interfering effects of background radiation. The high
intensity is particularly advantageous in Raman spectroscopy, which until the introduction
of lasers was plagued by the low intensity of the scattered radiation (which could be
overcome only by using long exposures) and by interference from background scattering
(which obscured the signal).

Table 17.3 Characteristics of laser radiation and their chemical applications

Characteristic Advantages Applications
High power Multiphaton process Non-linear spectroscopy
Saturation spectroscopy
Low detector noise Improved sensitivity
High scattering intensity Raman spectrascopy
Monochromatic High resolution Spectroscopy

State selection Isotope separation
Photochemically precise
State-to-state reaction dynamics
Sensitivity

Non-linear Raman spectroscopy

Collimated beam Long path lengths

Forward-scattering observable

Coherent Interference between separate CARS
beams
Pulsed Precise timing of excitation Fast reactions

Relaxation
Energy transfer
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17.34 The configuration of laser radiation used for
saturation spectroscopy.
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- 17.35 In one method of isotope scparation, one
photon excites an isotopomer to an excited state, and
then a second photon achieves photoionization. The
success of the first step deper.ds on the nuclear mass.
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17.36 An experimental airanﬁcmcnl for isotope
separation. The dye laser, whichis pumped by a copper-
vapour laser, photoionizes the U atoms selectively
according to their mass, and the ions are deflected by
the electric field applied between the plates.
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The large number of photons in an incident beam generated by a laser gives rise to a
qualitatively different branch of spectroscopy, for the photon density is so high that more
than one photon may be absorbed by a single molecule and give rise to multiphoton
processes. One application of multiphoton processes is that states inaccessible by
conventional one-photon spectroscopy become observable because the overall transition
occurs with no change of parity. For example, in one-photon spectroscopy, only g « u
transitions are observable; in two-photon spectroscopy, however, the overall outcome of
absorbing two photons is a g — g or a u — u transition.

High powers and monochromatic beams make possible the technique of saturation
spectroscopy, which permits the very precise location of absorption maxima. As illustrated
in Fig. 17.34, the output of a tunable laser is divided into an intense saturating beam and a
less intense probe beam that pass through the sample cavity in nearly opposite directions.
The chopped saturating beam periodically excites molecules that are Doppler-shifted to its
frequency. The probe beam gives a modulated signal at the detector, but only if it is
interacting with the same Doppler-shifted molecules despite the fact that it is coming from
an opposite direction. Because those molecules must be ones that are not moving parallel to
the beams, the technique selects molecules that have essentially zero Doppler shift and
hence gives very high resolution.

(b) Collimated beams

The collimated beams generated by most kinds of lasers permit the use of very long path
lengths through spectroscopic samples. A well-defined beam also implies that the detector
can be designed to collect only the radiation that has passed through a sample, and can be
screened much more effectively against stray scattered light. Moreover, with a collimated
beam, the interaction zone in Raman spectroscopy is much more well-defined than in
conventional spectroscopy, so the optics of the spectrometer can be optimized.

The availability of nondivergent beams makes possible a qualitatively different kind of
spectroscopy. The beam is so well-defined that it is possible to observe Raman transitions
very close to the direction of propagation of the incident beam (rather than perpendicular to
it). This configuration is employed in the technique called stimulated Raman spectroscopy.
In this form of spectroscopy, the Stokes amﬂanti-Stokcs radiation in the forward direction
are powerful eaough to undergo more scattering and hence give up or acquire more quanta
of energy from the molecules in the sample. This multiple scattering resuits in lines of
frequency v + 21y, ¥; + 314y, and so on, where v; is the frequency of the incident radiation
and vy the frequency of a molecular excitation.

Raman spectroscopy was revitalized by the introduction of lasers. We have already
commented on the enhancements of the technique that stem from the high powers and
collimation of the incident beam. Its monochromaticity is also a great advantage, for it is
now possible to observe scattered light that differs by only fractions of reciprocal
centimetres from the incident radiation. Such high resolution is particularly useful for

serving the rotational structure of Raman lines because rotational transitions are of the
wder of a few reciprocal centimetres. Monochromaticity also allows observations to be
made very close to absorption frequencies, giving rise to the technique of resonance Raman
spectroscopy {Section'ls.lsc). Modern, small, and efficient semiconductor lasers have also
allowed the development of Fourier transform Raman spectrometers. o

(c) Precision-specified transitions

The monochromatic character of laser radiation is a very powerful characteristic because it
allows us to excite specific states with very high precision. One consequence of state-
specificity for photochemistry is that the illumination of a sample may be photochemically '
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.

precise and hence efficient in stimulating a reaction, because its frequency can be tuned
exactly to an absorption. The specific excitation of a particular excited state of a molecule
may greatly enhance the rate of a reaction even at low temperatures. The rate of a reaction
is generally increased by raising the temperature because the energies of the vgrious modes
of motion of the molecule are enhanced. However, this enhancement increases the energy
of all the modes, even those that do not contribute appreciably to the reaction rate. With a
laser we can excite the kinetically significant mode, so rate enhancement is achieved most
efficiently. An example is the reaction

BCly + CgHg ——» CgHs—BCl, + HCI

which normally proceeds only above 600°C in the presence of a catalyst; exposure to
10.6 um CO, laser radiation results in the formation of products at room temperature
without a catalyst. The commercial potential of this procedure is considerable (provided laser
photons can be produced sufficiently cheaply), because heat-sensitive compounds, such as
pharmaceuticals, may perhaps be made at lower temperatures than in conventional
reactions. '

A related application is the study of state-to-state reaction dynamics, in which a
specific state of a reactant molecule is excited and we monitor not only the rate at which it
forms products but also the states in which they are produced. Studies such as these give
highly detailed information about the deployment of energy in chemical reactions
(Chapter 27).

(d) Isotope separation

- The precision state-selectivity of lasers is also of considerable potential for laser isotope

separation. Isotope separation is possible because two isotopomers, or species that differ
only in their isotopic composition, have slightly different energy levels and hence slightly
different absorption frequencies.

One approach is to use photoionization, the ejection of an electrpn by the absorption of
electromagnetic radiation. Direct photoionization by the absorption of a single photon does
not distinguish between isotopomers because the upper level belongs to a continuum; to
distinguish isotopomers it is necessary to deal with discrete states. At least two absorption
processes are required. in the first.step, a photon excites an atom to a higher state; in the
second step, a pboton achieves photoionization from that state (Fig. 17.35). The energy
separation between the two states involved in the first step depends on the nuclear mass.
Therefore, if the laser radiation is tuned to the appropriate frequency, only one of the
isotopomers will undergo excitation and hence be available for photoionization in the
second step. An example of this procedure is the photoionization of uranium vapour, in
which the incident laser is tuned to excite 2*°U but not 28U, The ™5U atoms in the atomic
beam are ionized in the two-step process; they are then attracted to a negative electrode,
and may be collected (Fig. 17.36). This procedure is being used in the latest generation of
uranium separation’plants. )

Molecular isotopomers are used in techniques based on photodissociation, the
fragmentation of a molecule following absorption of electromagnetic radiation. The key
problem is to achieve both mass selectivity (which requires excitation to take place between
discrete states) and dissociation (which requires excitation to continuum states). In one
apprnz_lch, two lasers are used: an infrared photon excites one isotopomer seleetively to a
higher vibrational level, and then an ultraviolet photon completes the process of
photodissociation (Fig. 17.37). An alternative procedure is to make use of multiphoton
absorption within the ground electronic state (Fig. 17.38); the efficiency of absorption of
the first few photons depends on the match of their frequency to the energy level
separations, so it is sensitive to nuclear mass. The absorbed photons open the door to a
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subsequent influx of enough photons to complete the dissociation process. The isotopomers
325k, and 3*SF; have been separated in this way.

In a third approach, a selectively vibrationally excited species may react with another
species and give rise to products that can be separated chemically. This procedure has been
employed successfully to separate isotopes of B, N, Q, and, most efficiently, H. A variation on
this procedure is to achieve selective photoisomerization, the conversion of a species to one
of its isomers (particularly a geometrical isomer) on absorption of electromagnetic radiation.
Once again, the initial absorption, which is isotope selective, opens the way to subsequent
further absorption and the formation of a geometrical isomer that can be separated
chemically. The approach has been used with the photoisomerization of CH;NC to CH;CN.

A different, more physical approach, that of photodeflection, is based on the recoil that
occurs when a photon is absorbed by an atom and the linear momentum of the photon
(which is equal to k/J) is transferred to the atom. The atom is deflected from its original path
only if the absorption actually occurs, and the incident radiation can be tuned to a particular
isotope. The deflection is very small, so an atom must absorb dozens of photons before its
path is changed sufficiently to allow collection. For instance, if a Ba atom absorbs
about 50 photons of 550 nm light, it will be deflected by only about 1 mm after a flight
of 1 m,

‘ (e) Pulse techniques

The ability of lasers to produce pulses of very short duration is particularly useful in
chemistry when we want to monitor processes in time. Q-switched lasers produce
nanosecond pulses, which are generally fast enougﬁ to study reactions with rates controlled
by the speed with which reactants can move through a fluid n'u:dium. However, when we
want to study the rates at which energy is converted from one mode to another within a
molecule, we need the shorter timescale of picosecond pulses. These timescales are available
from mode-locked lasers, and modern techniques have reduced timescales of pulses to the
femtosecond region (1 fs = 10~'3 s), the shortest pulse currently reported being about 6 fs,
corresponding to a packet of electromagnetic radiation of only a few wavelengths long. We
shall see some of the information obtained from this femtosecond spectroscopy in Section
27.5f. Pulse techniques are used to study ultrafast dynamical processes such as energy
transfer and conversion from one mode of motion to another. They are used to study
relaxation of a disturbed set of level populations to thermal equilibrium, and, of particular
importance in chemistry, to study the rates of fast reactions.

Photoelectron spectroscopy

The technique of photoelectron spectroscopy (PES] measures the ionization energies of
molecules when electrons are ejected from different orbitals, and uses the information to
infer the orbital energies. The technique is also used to study solids, and in Chapter 28 we
shall see the important information that it gives about species at or on surfaces.

17.8 The technique

Because energy is conserved when a photon ionizes a sample, the energy of the incident
photon hv must be equal to the sum of the ionization energy, /, of the sanfple and the
kinetic energy of the photoclectron, the ejected electron (Fig. 17.39):

hy = ima? + 1 (6)

This equation (which is like the one used for the photoelectric effect, Section 11.2a) can be
refined in two ways. First, photoelectrons may originate from one of a number of different
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orbitals, and each one has a different ionization energy. Hence, a series of different kinetic
encrgies of the photoelectrons will be obtained, each one satisfying

hy = Sma? +1,

+

where [ is the ionization energy for ejection of an electron from an orbital i. Therefore, by
measuring the kinetic energies of the photoelectrons, and knowing v, these ionization
encrgies can be determined. Photoelectron spectra are interpreted in terms of an
approximation called Koopmans' theorem, which states that the ionization energy 7; is
equal to the orbital energy of the ejected electron (formally: [, = —¢). That is, we can
identify the ionization energy with the energy of the orbital from which it is ejected. The
theorem is only an approximation because it ignores the fact that the remaining electrons
adjust their distributions when ionization occurs.

The ejection of an electron may leave an ion in a vibrationally excited state. Then not all
the excess energy of the photon appears as kinetic energy of the photoelectron, and we
should write

hu = Ima® + 1+ Ely (8)

where E, is the energy ued to excite the ion into vibration. Each vibrational quantum that
is excited leads to a different kinetic energy of the photoelectron, and gives rise to the
vibrational structure in the photoelectron spectrum.

The ionization energies of molecules are several electronvolts even for valence electrons,
so it is essential to work in at least the ullraviolet\region of the spectrum and with
wavelengths of less than about 200 nm. Much work has been done with radiation generated
by a discharge through helium: the He(l) line (1s'2p' — 15%) lies at 58.43 nm,
corresponding to a photon energy of 21.22 eV. Its use gives rise to the technique of
ultraviolet photoelectron spectroscopy (UPS). When core electrons arc being studied,
photons of even higher energy are needed to expel them: X-rays are used, and the technique
is denoted XPS. A modern version of PES makes use of synchrotron radiation (Section 16.1)
which may be continuously tuned between UV and X-ray energies. The additional
information that stems from the variation of the photoejection probability with wavelength
is a valuable guide to the identity of the molecule and the orbital from which
photoionization occurs.

Hlustration

Photoelectrons ejected from N, with He(l) radiation hag kinetic energies of 5.63 ¢V
(1 eV = 8065.5 cm '). Helium(l) radiation of wavelength 58.43 nm has wavenumber
1.711 % 10° cm " and therefore corresponds to an energy of 21.22 eV. Then, from eqn 7,
21.22 eV = 5.63 eV + 1, 50 I, = 15.59 ¢V. This ionization energy is the energy needed to
remove an electron from the HOMO of the N, molecule, the 3, bonding orbital (see
Fig. 14.29), :

Self-test 17.4 Under the same circumstances, photoelectrons are also detected at
4.53 eV. To what ionization energy does that correspond? Suggest an origin.
[16.7 ev, 1m,]

The kinetic energies of the phatoelectrons are measured using an electrostatic deflector
which produces different deflections in the paths of the photoelectrons as they pass
between charged plates (Fig. 17.40). As the field strength is increased, electrons of different
speeds, and therefore kinetic energies, reach the detector. The electron flux can be recorded
and plotted against kinetic energy to obtain the photoelectron spectrum.
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17.9 Ultraviolet photoelectron spectroscopy

A typical photoelectron spectrum (of HBr) is shown in Fig, 17.41. If we disregard the fine
structure, we see that the HBr lines fall into two main groups. The least tightly bound
electrons (with the lowest ionization energies and hence highest kinetic energies when
ejected) are those in the nonbonding lone pairs of Br (with / = 11.8 eV). The next ionization
energy lies at 15.2 eV, and corresponds to.the removal of an electron from the H-Br ¢ bond.

The HBr spectrum shows that ejection of a o electron is accompanied by a long
vibrational progression. The Franck-.ondon principle would account for this progression if
ejection were accompanied by an appreciable change of equilibrium bond length between
HBr and HBr* because the ion is formed in a bond-compressed state, which is consistent
with the important bonding effect of the o electrons. The lack of much vibrational structure
in the two bands labelled *IT is consistent with the nonbending role of the Br2px lone pair
of electrons, for the equilibrium bond length is litt!= ch=nz2d when one is removed.

Example 17.4 interpreting a UV photoelectron spectrum

The highest kinetic-energy electrons in the spectrum of H,0 using 21.22 eV He radiation are
at about 9 eV and show a large vibrational spacing of 0.41 eV. The symmetric stretching
made of the neutral H,0 molecule lies at 3652 cm™!. What conclusions can be drawn from
the nature of the orbital from which the electron is ejected?

Method We need to interpret the vibrational fine structure, which indicates the vibrational
characteristics of the ion, in relation to the informatidn about the vibrational characteristics
of the neutral molecule.

Answer Because 0.41 eV corresponds to 3310 cm™", which is similar to the 3652 cm™! of
the nonionized molecule, we can suspect that the electron is ejected from an orbital that has
little influence on the bonding in the molecule. That is, photoejection is from a largely

"nonbonding orbital.

Self-test 17.5 In the same spectrum of H,0, the band near 7.0 eV shows a long
vibrational series with spacing 0.125 eV. The bending mode of H,0 lies at 1596 cm~'.
What conclusions can you draw about the characteristics of the orbital occupied by the
photoelectron?

[The electron contributed to non-neighbour H-H bonding]

17.10 X-ray photoelectron spectroscopy

In XPS, the energy of the incident photon is so great that electrons are ejected from inner
cores of atoms. As a first approximation, core ionization energies are insensitive to the bonds
between atoms becauise they are too tightly bound to be greatly affected by the changes
that accompany bond formation, so core iunization energies are characteristic of the
individual atom rather than the overall molecule. Consequently, XPS gives lines
characteristic of the elements present in a compound or alloy. For instance. the K-shell
ionization energies of the second row elements are

Li Be B C N 0 F
50 110 190 280 400 530 690 eV

Detection of one of these values (and values corresponding to cject‘a‘on from other inner
shells) indicates the presence of the corresponding element. This application is responsible
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excited by Al K-radiation, showing the region of N
core ionization and the assignment. (K. Siegbahn, et

al, Science, 176, 245 (1972})
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for the alternative name electron spectroscopy for chemical analysis (ESCA). The technique
is mainly limited to the study of surface layers (as we explore in Chapter 28) because, even
though X-rays may penetrate into the bulk sample, the ejected electrons cannot escape
except from within a few nanometres of the surface. Despite (or because of) this limitation,
the technique is very useful for studying the surface state of heterogeneous catalysts, the
differences between surface and bulk structures, and the processes that can cause damage
to high-temperature superconductors and semiconductor wafers.

Whereas it is largely true that core ionization energies are unaffected by bond formation,
it is not entirely true, and small but detectable shifts can be detected and interpreted in
terms of the environments of the atoms. For example, the azide.ion, N3, gives the spectrum
shown in Fig. 17.42. Although the spectrum lies in the region of 400 eV (and hence is typical
of N1s electrons), it has a doublet structure with splitting 6 eV. This splitting can be
understood by noting that the structure of the ion is N=N=N, with more negative charge

“on the outer two N atoms than on the inner (the formal charges are (—1, +1, —1)). The

presence of the negative charges on the terminal atoms lowers the core ionization energies,
whereas the positive charge on the central atom raises it. This inequivalence of the atoms
results in two lines in the spectrum with intensities in the ratio 2 : 1¢ Observations like this
can be used to obtain faluable information about the presence of chemically inequivalent
atoms of the same element.
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Exercises

17.1 (a) The molar absorption coefficient of a substance dissolved in
hexane is known to be 855 Lmol~' cm™' at 270 nm. Calculate the
percertage reduction in intensity when light of that wavelength
passes through 2.5 mm of a solution of concentration
3.25 mmol L1,

17.1 (b} The molar absorption coefficient of a substance dissolved in
hexane is known to be 327 Lmol~'cm~! at 300 nm. Calculate the
percentage reduction in intensity when light of that wavelength
passes through 1.50 mm of a solution of concentration
2.22 mmol L-1,

17.2 (a) Asolution of an unknown component of a biological sample
when placed in an absorption cell of path length 1.00 cm transmits
20.1 per cent of light of 340 nm incident upon it. If the concentration
of ' the component is 1.11x107* molL~', what is the molar
absorption coefficient?

17.2 (b) When light of wavelength 400 nm passes through 3.5 mm
of a solution of an absorbing substance at a concentration
6.67 % 107* mol L™, the transmission is 65.5 per cent. Calculate
the molar absorption coefficient of the solute at this wavelength=and
express the answer in cm? mol~'.



EXERCISES

17.3 (a) The molar absorption coefficient of a solute at 540 nm is
286 Lmol~'cm~'. When light of that wavelength passes through a
6.5 mm cell containing a solution of the solute, 46.5 per cent of the
light was absorbed. What is the concentration of the solution?

17.3 (b) The molar absorption coefficient of a solute at 440 nm is
323 Lmol~' cm~'. When light of that wavelength passes through a
7.50 mm cell containing a solution of the solute, 52.3 per cent of the
light was absorbed. What is the concentration of the solution?

17.4 (a) The absorption associated with a particular transition begins
at 230 nm, peaks sharply at 260 nm, and ends at 290 am. The
maximum . value of the molar absorption coefficient is
1.21 x 10* Lmol~' cm~"'. Estimate the integrated absorption coeffi-
cient of the transition assuming a triangular lineshape (sec
eqn 16.11). .

17.4 (b) The absorption associated with a-certain transition begins at
199 nm, peaks sharply at 220 nm, and ends at 275 nm. The maximum
value of the molar absorption coefficient is 2.25 x 10* L mol~' cm ™.
Estimate the integrated absorption coefficient of the transition
assuming an inverted parabolic lineshape (Fig. 17.43; use egn 16.11).

2

E(V) = Bl 1-%(V=¥ )}

%

Molar absorption coefficient, &

Wavenumber, ¥
Fig. 17.43

17.5 (a) The two -compounds 2,3-dimethyl-2-butene and 2,5-
dimethyl-2,4-hexadiene are to be distinguished by their ultraviolet
absorption spectra. The maximum absorption in one compound occurs
at 192 nm and in the other at 243 nm. Match the maxima to the
compounds and justify the assignment.

17.5 (b) 1,3,5-hexatricne (a kifd of ‘linear’ benzene) was converted
into benzene itself. On the basis‘of a free-electron molecular orbital
model (in which hexatriene is treated as a linear box and benzene as a

35—A
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ring), would you expect the lowest energy absorption to rise or fall in
energy?

17.6 (a) The following data were obtained for the absorption by Br,
in carbon tetrachloride using a 2.0 mm cell. Calculate the molar
absorption coefficient of bromine at the wavelength employed:

0.0050
35.6

0.0010
81.4

0.0100
12,7

0.0500
3.0x10°3

[Bry)/(molL~")
T/(per cent)
17.6 (b) The following data were obtained for the absorption by a
dye dissolved in methylbenzene using a 2.50 mm cell. Calculate the
molar absorption coefficient of the dye at the wavelength employed:
0.0500
1.33x 1073

|dye]/(mol L7')  0.0010 0.0050
T{(per cent) 73 21

0.0100
4.2

17.7 (a) A 2.0 mm cell was filled with a solution of benzene in a
non-absorbing solvent. The concentration of the benzene was
0.018 mplL~" and the wavelength of the radiation was 256 nm
(where there is a maximum in the absorption). Calculate the molar
absorption coefficient of benzene at this wavelength given that the
transmission was 48 per cent. What will the transmittance be in a
4.0 mm cell at the same wavelength?

17.7 (b) A 2.50 mm cell was filled with a solution of a dye. The
concentration of the dye was 0.0155 mol L~!. Calculate the molar
absorption coefficient of dye at this wavelangth given that the
transmission was 32 per cent. What will the transmittance be in a
4.50 mm cell at the same wavelength? ’

17.8 (a) A swimmer enters a gloomier world (in one sense) on diving
to greater depths. Given that the mean molar absorption coefficient
of sea water in the visible region is 6.2x10~% Lmol~'cm™',
calculate the depth at which a diver will experience (a) half the
surfage intensity of light, (b) one-tenth the surface intensity.
17.8 (b} Given that the maximum molar absorption coefficient of a
“molecule containing a carbonyl group at a concentration of
1.00 molL™" is 30 Lmol™'em™' near 280 nm, calculate the
thickness of a sample that will result in (a) half the initial intensity
of radiation, (b) one-tenth the initial intensity.

17.9 (a) The electronic absorption bands of many molecules in
solution have half-widths at half-height of about 5000 cm~'.
Estimate the integrated absorption coefficients of bands for which
() by = 1 % 10° Lmol™" cm™, (b) s =5 x 107 Lol ™' em~".
“17.9 (b) The electronic absorption band of a compound in solution
had a Gaussian lineshape and a half-width at half-height of
4233 em™" and gy, = 1.54 x [0* Lmol~'cm™'. Estimate the
integrated absorption coefficient.
17.10 (a) The photoionization of H, by 21 eV photans produces H3.
Explain why the intensity of the v = 2+0 transition is stronger than
that of the 0+0 transition.
17.10 (b) The photoionization of F, by 21 eV photons produces F;.
Would you expect the 2«0 transition to be weaker or stronger than
that of the 0«0 transition? Justify your answer.
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Problems

Numerical problems

17.1 The vibrational wavenumber of the oxygen molecule in its
electronic ground state is 1580 cm ™', whereas that in the first excited
state (B3Z;) to which there is an allowed electronic transition is
700 cm™~'. If the separation in energy between the minima in their
respective potential energy curves of these two electronic states is
6.175 eV, what is the wavenumber of the lowest energy transition in
the band of transitions originating from the v = 0 vibrational state of
the electronic ground state to this excited state? ignore any rotational
structuic or antlannonicity.

17.2 A Birge-Sponer extrapolation yields 7760 cm™' as the area
under the curve for the B state of the oxygen molecule described in
Problem 17.1. Given that the B state dissociates to ground-state atoms
(at zero energy, °P) and 15870 cm™! ('D) and the lowest vibrational
state of the B state is 49 363 cm™' above the lowest vibrational state
of the ground electronic state, calculate the dissociation energy of the
molecular ground state to the i_;round—st‘.atc atoms.

17.3 The electronic spectrum of the IBr molecule shows two low-
lying, well defined convergence limits at 14660 and 18345 cm™'.
Energy levels for the iodine and bromine atoms occur at
0,7598cm™'; and 0,3685 cm™', respectively. Other atomic levels
are at much higher energies. What possibilities exist for the numerical
value of the dissociation energy of IBr? Decide which is the correct
possibility by calculating this quantity from
AH® (IBr, g) = 440.79 kimol~! and the dissociation energies of
1,(g) and Br,(g) which are 146 and 190 kJ mol ™', respectively.

17.4 In many cases it is possible to assume that an absorption band
has a Gaussian lineshape (one proportional to e~*') centred on the
band maximum, Assume such a lineshape, and show that
A 1.0645¢,,, A7y 5, where Ay, .is the width at half-height. The
absorption spectrum of azoethane (CH,CH,N,) between 24 000 cm !
and 34 000 cm~' is shown in Fig. 17.44. First, estimate 4 for the band

10+

) e — 1 1
26000 30000 34000
WHem™

22 000

Fig. 17.44

by assuming that it is Gaussian. Then integrate the absorption band
graphically. The latter can be done either by ruling and counting
squares, or by tracing the lineshape on to paper and weighing. A more
sophisticated procedure would be to use mathematical software to fit
a polynomial to the absorption band (or a Gaussian), and then to
integrate the result analytically.

17.5 A lot of information about the energy levels and wavefunctions
of small inorganic molecules can be obtained from their ultraviolet
spectra. An example of a spectrum with considerable vibrational
structure, that of gaseous SO, at 25°C, is shown in Fig. 17.45.
Estimate the integrated absorption coefficient for the transition.
What electronic states are accessible from the A, ground state of this
C,, molecule by electric dipole transitions?

400

g

g/lLmol™ em™)

200 +

100+

Q
200

I ]
280 320
Anm
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Fig. 17.45

17.6 A certain molecule fluoresces at a wavelength of 400 nm with a
half-life of 1.0 ns. l:fhmphore!u_s at 500 nm. If the ratio of the
transition probabilities for stimulated emission for the §* — S to the
T — S transitions is 1.0x10°, whaw is the haif-life of the
phosphorescent state? ' C

17.7 The photoelectron spectra of N, and CO are shown in Fig. 17.46.
Aggribe the lines to the ionization processes involved and classify the
orbitals from which the electrons are ejected as bonding, nonbonding,

- or antibonding in the light of the extent of vibrational structure in the

band. Analyse the bands near 4 eV in terms of the vibrational energy
levels of the ions.

35—B
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17.8 The photoelectron spectrum of NO can be described as follows
(D.W. Turner, in Physical methods in advanced inorgenic chemistry
(ed. HA.O. Hill and P. Day), Wiley, Chichester (1968)). Using He
58.4 pm (21.21 eV) radiation there is a single strong peak at kinetic
energy 4.69 eV and a long series of 24 lines starting at 5.56 eV and
ending at 2.2 €V. A shorter series of six lines begins at 12.0 eV and
ends at 10.7 eV. Account for this spectrum,

Theoretical problems

17.9 mﬂu:ne that the electronic states of the = electrons of a
conjugated mofécule can be approximated by the wavefunctions of a
particie in a one-dimensional box, and that the dipole moment can be
related to the displacement along this length by u = —ex. Show that
the transition probability connecting states 1 and 2_is nonzero,
whereas that connectingstates 1 and 3 is zero,

17.10 Use a group theoretical argument to decide which of the
following transitions are electric-dipole allowed: (a) the n*+«=x
transition in ethene, (b) the n* ++n transition in a carbonyl group in a
C,, environment. ’
17.11 The line marked A in Fig. 17.47 is the fluorescence spectrum of
benzophenone in solid solution in ethanol at low temperatures
observed when the sample is illuminated with 360 nm light. What can
be said about the vibrational energy levels of the carbonyl group i (a)
its ground electronic state and (b) its excited electronic state? When
naphthalene is illuminated with 360 nm light it does not absarb, but
e line marked B in the Illustrathp is the phosphorescence snertryim
of a solid solution of a mixture 5f [upininalene and benzophenone in
ewhanol. Now a component of fluorescence from naphthalene can be
detected. Account for this observation.
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17.12 The fluorescence spectrum of anthracgne vapour shows a
series of peaks of increasing intensity with individual maxima at
440 nm, 410 nm, 390 nm, and 370 nm followec, by a sharp cut-off at
shorter wavelengths. The absorption spectrum rises sharply from zero
to a maximum at 360 nm with a trail of peaks of lessening intensity at
345 nm, 330 nm, and 305 nm. Account for these observations.
17.93 Suppose that you are a colour chemist and had been asked to
intensify the colour of a dye without changing the type of compound,
and that the dye in question was a polyene. Would you choose to
dengthen or to shorten the chain? Would the modification to the length
shift' the apparent colour of the dye towards the red or the blue?

17.14 One measure of the intensity of a transition of frequency v is
the oscillator strength, f, which is defined as

Consider an electron in an atom to be oscillating harmonically in one
dimension (the threé-dimensional version- of this model was used in
early attempts to describe atomic structure). The wavefunctions for
siach an electron are those in Table 12.1. Show that the oscillator
stréngth for the transition of this electron from its ground state is
17.15 Estimate the oscillator strength (sce Problem 17.14) of a
charge-transfer transition modelled as the migration of an electron
from a hydrogen Is orbital on one atom to another hydrogen 1s
orbital on an atom a distan~e R away. Approximate the transition
mument by —eRS where S is the overlap integral of the two orbitals.
Sketch the oscillator strength as a function of R using the curve for §
given in Fig. 14.31.. Why does the intensity fall to zero as R
approaches O and infinity?
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Additional problems supplied by Carmen Giunta
and Charles Trapp

17.16 Refer to Fig, 17.25 and estimate thc maximum lascr power
that can be delivered from a ruby crystal of length 5.0 ¢cm and
diameter 0.50 cm, in a pulse of duration 100 ns. 'Pink ruby’ consists
of about 0.050 per cent by mass Cr®* and the mass density of Al,0, is
3.97 gem~®. Assume that the pumping radiation is of sufficient
intensity to pump all the chromium ions out of their ground state at a
rate faster than they decay back to the ground state.

17.17 ).G. Dojahn, E.C.M. Chen, and W.E. Wentworth (J. Phys. Chem.
100, 9649 (1996)) characterized the potential encrgy curves of the
ground and electronic states of homonuclear diatomic halogen
anions. These anions have a 2E} ground state and 211y, 211, and *%;
excited states. To which of the excited states arc transitions by
absorption of photons allowed? Explain.

17.18 M. Schwell, H.-W. Jochims, B. Wassermann, U. Rockland,
R. Flesch, and E. Rihl {J. Phys. Chem. 100, 10070 (1996)) measured
the ionization energies of Cl,0, by photoelectron spectroscopy in
which the ionized fragments were detected using a mass spectro-
meter. From their data, we can infer that the ionization enthalpy of
Cl,0, is 11.05 eV and the enthalpy of the dissociative ionization
Cl,0, — Cl + OCIO* + ¢ is 10.95 eV. They used this information to
make some inferences about the structure of CI,0,. Computational
studies had suggested that the lowest energy isomer is CIOQCI, but
that CICIO, (C,,) and CIOCIO are not very much higher in energy. The
Cl,0, in the photoionization step is the lowest energy isomer,
whatever its structure may be, and its enthalpy of formation had
previously been reported as -+133 kimal~'. The Cl,0, in the
dissociative ionization step is unlikely to be CIOOCI, for the product
can be derived from it only with substantial rearrangement. Given
AH®(0CI0*) = 41096 KImol~! and A1 ®(e”) = 0, determine
whether the C1,0, in the dissociative ionization is the same as that in
the photoionization. If different, how much greater is its AcH €7 Are
these results consistent with or contradictory to the computational
studies?

17.19 G.C.G. Wachewsky, R. Horansky, and V. Vaida (J. Phys. Chem.
100, 11559 (1996)) examined the UV absorption spectrum of CH;l, a
species of interest in connection with stratospheric ozone chemistry.
They found the integrated absorption coefficient to be dependent on
temperature and pressure to an extent inconsistent with internal
structural changes in isolated CH,l molecules; they explained the
changes as due to dimerization of a substantial fraction of the CH,l, a
process which would naturally be pressure- and temperature-
dependent. {a) Compute the integrated absorption coefficient over
a triangular lineshape in the range 31250 to 34483 cm™' and a
maximal molar absorption coefficient of 150 Lmol 'cm™! at
31250 cm™'. (b) Suppose 1 per cent of the CH,l units in a sample
at 2.4 Torr and 373 K exists as dimers. Compute the absorbance
expected at 31250 cm~' in a sample cell of length 12.0 cm. (c)

Suppose 18 per cent of the CHy! units in a sample at 100 Torr and
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3173 K cxists as dimers. Compule the absorbance expected at
31250 ¢ ' in a sample cell of length 12.0 cm; compute the
molar absorption coefficient that would be inferred from this
absorbance if dimerization were not considered.

17.20 The abundance of ozonc is typically inferred from measure-
ments of UV absarption and is often expressed in terms of Dobson
units (DU): 1 DU is equivalent to a layer of pure ozone 10~ cm thick
at | atm and 0°C. Compute the absorbance of UV radiation at 300 nm
expected for an ozone abundance of 300 DU (a typical value) and
100 DU (a value reached during seasonal Antarctic ozone depletions)
given a molar absorption coefficient of 476 Lmol™' em™'.

17.21 Ozone absorbs ultraviolet radiation in a part of the
electromagnetic spectrum that is energetic enough to disrupt DNA
in biological organisms and that is absorbed by no other abundant
atmospheric constituent. This spectral range, denoted UV-B, spans the
wavelengths of about 290 nm to 320 nm. The molar extinction
coefficient of ozone over this range is given in the table below
(W.B. DeMore, S.P. Sander, D.M. Golden, R.F. Hampson, M.J. Kurylo,
C.J. Howard, A.R. Ravishankara, C.E. Kolb, and M.J. Malina, Chemical
kinetics and photochemical data for use in stratospheric modeling:
Evaluation Number 11, JPL Publication 94-26 (1994)).

A/nm 292.0° 296.3 300.8 305.4 310.1 315.0 320.0
g/(Lmol 'em™') 1512 B65S 477 257 1359 695 34.5

Compute the integrated absorption coefficient of ozone over the
wavelength range 290-320 nm. (Hint: (&) can be fitted to an
exponential function quite well))

17.22 One of the principal methods of obtaining the electronic
spectra of unstable radicals is to study the spectra of comets, which
consist almost entirely of radical spectra. Many radical spectra have
been found in comets including that due to CN. These radicals are
produced in comets by the absorption of far ultraviolet solar radiation
by their parent compounds. Subsequently, their fluorescence is
exciled by sunlight of longer wavelength. The spectra of comet Hale-
Bopp (C/1995 01) have been the subject of many recent studies. One
such study is that of the fluorescence spectrum of CN in the coma of
Hale-Bopp at large helincentric distances by R.M. Wagner and
D.G. Schleicher (Science 275, 1918 (1997)), in which the authors
determine the spatial distribution and rate of production of CN in the
coma. The (0-0) vibrational band is centred on 387.6 nm and the
weaker (1-1) band with relative intensity 0.1 is centred on 386.4 nm.
The band heads for (0-0) and (0-1) are known to be 388.3 and
421.6 nm, respectively. From these data, calculate the energy of the
excited §, 'state relative to the ground S, state, the vibrational
wavenumbers and the difference in the vibrational wavenumbers of
the two states, and the relative populations of they = O and v =1
vibrational levels of the §, state. Also estimate the effective
temperature of the molecule in the excited S, .state. Only
cight rotational levels of the §; state are said to be populated. Is
that statement consistent with the effective temperature of the §,
state?
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One of the most widely used spectroscopic procedures in chemistry mokes use of the
clossical concept of resonance. The chapter begins with an account of conventional nuclear
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forced into oscillation by the motion of the common axle. As a result, energy flows between
the two pendulums. The energy transfer occurs most efficiently when the frequencies of the
two pendulums are identical. The condition of strong effective coupling when the
frequencies of two oscillators are identical is called resenance.

Resonance is the basis of a number of everyday phenomena, including the response of
radios to the weak oscillations of the electromagnetic field generated by a distant
transmitter. In this chapter we explore some spectroscopic applications that, as originally
developed (and in some cases still), depend on matching a set of energy levels to a source of
monochromatic radiation and observing the strong absorption that occurs at resonance.

Nuclear magnetic resonance

The basic nuclear magnetic resonance (NMR) experiment is the resonant absorption of
radiofrequency radiation by nuclei exposed to a magnetic field. Although simple in concept,
NMR spectra can be highly complex; yet they have proved invaluable in chemistry, for they
reveal so much structural information. A magnetic nucleus is a very sensitive, noninvasive
probe of the surrounding electronic structure.
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18.1. Nuclear magnetic moments

Many nuclei possess spin angular momentum. A nucleus with spin quantum nugiber!(whlch
is a fixed characteristic property of a nucleus and may be an integer or a halfnintegtr but is
never negative) has the following properties:

1. An angular momentum of magnitude {/(/ + I)}'ph.

2. A component of angular momentum m;A on an arbitrary axis, where
PORISS O () I

3. IfI>0, a magnetic moment with a constant magnitude and an orientation that is
determined by the value of m;.

To say that a nucleus has a magnetic moment means that, to some extent, it bchavcs like a
small bar magnet.

According to the second property, the spin, and hence the magnetic moment, of the
nucleus may lie in 2/ + 1 different orientations relative to an axis. A proton has ] = }and its
spin may adopt either of two orientations; a "*N nucleus has / = 1 and its spin may adopt
any of three orientations. For much of this chapter we shall consider spin—-%nucld which
are nuclei with [ = i"‘hut NMR is applicable to nuclei with any nonzero spin. As well as
protons, which are thc most common nuclei studied by NMR, spin-} nuclei include *C, '*F,
and ¥'P nuclei. The state with m; = +1 (1) is denoted « and the state with m, = —} () is
denoted f. It is worth bearing in mind that two very common nuclei, *C and "0, have zero
spin, and hence zero magnetic moment, and so arc\ invisible in magnetic resonance.

18.2 The energies of nuclei in magnetic fields

The nuclear magnetic moment of a nucleus is denoted . The component of the nuclear
magnetic moment on the z-axis, u,, is proportional to the component of spin angular
momentum on that axis, mgh, and we write

Hy = yvhmy (1)

The coefficient of proportionality y is called the magnetogyric ratio of the nucleus, and is an
experimentally determined quantity (Table 181). The magnetic moment is sometimes
expressed in tesms of the nuclear g-factor, g;, and the nuclear magneton, p,, by using
yh = gy ,u,,=i=s.051x w7t 2)
2m,
where m, is the mass of the proton. Nuclear g-factors are numbers of the order of 1
{Table 18.1): positive values of g; and y denote a magnetic moment that is parallel to the
spin; negative values indicate that the magnetic moment and spin are antiparallel. The
nuclear magneton is about 2000 times smaller than the Bohr magneton, so nuclear magnetic
moments are about 2000 times weaker than the electron spin magnetic moment.

Table 18.1° Nuclear spin properties

Natural
Nuclide  abundance/% Spin I g-value, g, /(107 T's7)
'n } -3.826  -18.32
H 99.98 i 5.586 26.75
M- 0.02 1 0.857 4.10
¢ 1.1 i 1.405 6.73
"N 99.64 1 0.404 1.93

*More values are given in the Data section at the end of this volume. Note that y = g puw/A.
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/1B.1 The nuclear spin energy levels of a spin-
nucleus (for example, 'H or '2C) in a magnetic field.
Resonance occurs when the energy separation of
the levels matches the energy of the photons in the
electromagnetic field.

18.2 The layout of a typical NMR spectrometer. The
link from the transmitter to the detector indicates
that the high frequency of the transmitter is
subtracted from the high-frequency received signal to
give a low-frequency signal for processing.
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{a) The basic resonance experiment

Each value of m, corresponds to a different orientation of the nuclear spin and therefore of
the nuclear magnetic moment too. In a magnetic field B in the z-direction, the 2/ + 1
orientations of the nucleus have different energies, which are given by

E,=-uB= —yhBm, &)

These energies are often expressed in terms of the Larmor frequency, 1

yB

—— )

E,, = —mihiy,
The stronger the magnetic field, the: higher the Larmor frequency. A field of 12T
corresponds to a Larmor frequency of about 500 MHz for protons.

The energy separation of the two states of spm-l nuclei is

AE=E;—E, = LynB — (—zyhB) = yhB = hy (5)

For most nuclei y is positive. In such cases, the f state lies above the a state, and there are
slightly more a spins than J spins. When the sample is exposed to radiation of frequency v,
the energy separations come into resonance with the radiation when the frequency satisfies
the resonance conditior: (Fig. 18.1):

hy = yhB = huy - (6)

That s, there is resonance when v = 1, . At resonance there is strong coupling between the
nuclear spins and the radiation, and strong absorption occurs ag the spins make the
transition « — f. At 12 T, protons come into resonance at about 500 MHz (the Larmor
frequency at that magnetic ficld).

(b) The technique

In its simplest form, nuclear magnetic resonance (NMR) is the study of the properties of
malecules containing magnetic nuclei by applying a magnetic field and observing the
frequency of the resonant clectromagnetic field. Larmor frequencies of nuclei at the fieids
normally employed typically lie in the radiofrequency region of the electromagnetic
spectrum, so NMR is a radiofrequency technique.

An NMR spectrometer consists of a magnet that can produce a uniform, intense field and
the appropriate sources of radiofrequency electromagnetic radiation. In simple instruments,
the magnetic ficld is provided by a permanent magnet. For serious work, a superconducting
magnet capable of producing fields of the order of 2 T and more is used (Fig. 18.2). The
sample is placed in the cylindrically wound magnet. in some cases the sample is rotated
rapidly to remove magnetic inhomogeneities. However, sample spinning is a source of noise,

4 Superconducting
magnet

i Probe

Preamplifier

Radiofrequency
radiation
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and is often avoided. Aithough a superconducting magnet operates at the temperature of
liquid helium (4 K), the sample itself is normally at room temperature.

The use of high magnetic fields has several advantages, the most important being that
they simplify the appearance of spectra and so allow them to be interpreted more readily. A
further advantage is that the rate of energy uptake by the sample is greater in a high field.
There are two contributions to this increase. One comes from the greater population
difference between the upper and lower spin states at high fields, for the population
difference is approximately proportional to B. The second contribution stems from the
greater energy of each absorbed photon, which is also proportional to B. It follows that
overall the signal is proportional to B,

Justification 18.1

According to the Boltzmann distribution, the ratio of populations is

Do easnr o _4E
kT

a
It follows that
Nu _Nﬂ " AE )’hB

N,+N; = 2T~ 24T
and the population difference is proportional to q The energy of the photon absorbed
when a nucleus makes a transition from its lower state to its higher state is Av; at
resonance v is equal to 14, and v isgroportional to B. Hence, at resonance, each photon
has an energy that is proportional to B. The net rate of energy absorption is proportional to
the population difference multiplied by the energy of each absorption event (the photon
energy), so overall the net rate is proportional to 132,

18.3 The chemical shift

Nuclear magnetic moments interact with the /ocal magnetic field. The local fieid may differ
from the applied field because the latter induces electronic orbital angular momentum (that
is, the circulation of electronic currents) which gives rise to a small additional magnetic field
6B at the nuclei. This additional field is proportional to the applied field, and it is
conventional to write

OB = —aB3 ) (7)

where the dimensionless quantity ¢ is called the shielding constant of the nucleus (o is
usually positive but may be negative). The ability of the applied field to induce an electronic
current in the molecule, and the strength of the resulting local magnetic field experienced
by the nucleus, depend on the details of the electronic structure near the magnetic nucleus
of interest, so nuclei in different chemical groups have different shielding constants. The
calculation of reliable values of the shiclding constant is very difficult, but trends in it are
quite well understood, and we concentrate on them.

(a) The & scale of chemical shifts
Because the total local field is

B =B+ 06B={1~0)B (8)
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the Larmor frequency is

VL=%E=“"0)§ _ “ (9)
This frequency is different for nuclei in different environments. Hence, different nuclei, even
of the same element, come into resonance at different frequencies.

It is conventional to express the resonance frequencies in terms of an empirical quantity
called the chemical shift, which is related to the difference between the resonance
frequency, r, of the nucleus in question and that of a reference standard, v°:

v—1°

»°

8= x 10°® (10]

The standard for protons is the proton resonance in tetramethylsilane (Si(CH;),, commonly
referred to as TMS), which bristles with protons and dissolves without reaction in many
liquids. Other references are used for other nuclei. For 13C, the reference frequency is the 3C
resonance in TMS; for 3'P it is the *'P resonance in 85 per cent HyPO,(aq). The advantage of
the §-scale is that shifts reported on it are independent of the applied field (because both
numerator and denominator are proportional to the applied field).

lllustration

A nucleus with & = 1.00 (which is often, but unnecessarily, expressed as 1.00 ppm on
account of the 10° in the definition of 4) in a spectrometer operating at 500 MHz will have
a shift relative to the reference equal to %

v —1° = (500 MHz) x (1.00) x 1078 = 500 Hz

In a spectrometer operating at 100 MHz, the shift relative to the reference would be 'cmly
100 Hz.

The relation between & and ¢ is obtained by substituting eqn 8 into eqn 10:

_(1=o}B-(1-0a°)8 _o°—a 6
Hie (1—0°)8 x106~1—cr°xm (11)

= (6° - o) x 10°

As the shielding, a, gets smalier, § increases. Therefore, we speak of nuclei with large
chemical shift as being strongly deshielded. Some typical chemical shifts are given in
Fig. 18.3. As can be seen from the illustration, the nuclei of different elements have very
different ranges of chemical shifts. The ranges exhibit the variety of electronic environments
of the nuclei in molecules.

By convention, NMR spectra are plotted with & increasing from right to left.
Consequently, in a given applied magnetic field the Larmor frequency also increases from
right to left. In a continuous wave {CW) spectrometer, in which the radiofrequency is heid
constant and the magnetic field is varied (a ‘field sweep experiment’), the spectrum is
displayed with the applied magnetic field increasing from left to right: a nucleus with a small
chemical shift experiences a relatively low local magnetic field, so it needs a higher applied
magnetic field to bring it into resonance with the radiofrequency field. Consequently, the
right-hand end (low chemical shift) end of the spectrum is commonly referréd to as the
‘high field end’ of the spectrum. z

(b) Resonance of different groups of nuclei

The existence of a chemical shift explains the general features of the spectrum of ethanol
shown in Fig. 18.4. The CH, protons form one group of nuclei with 4= 1. The two CH,
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18.3 The range of typical chemical shifts for (a) "H resonances and (b) "C resonances.
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—
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18.4 The 'H-NMR spectrum of ethanol. The bold letters denote the protons giving rise to the resonance
peak, and the step-like curve is the integrated signal.
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protons are in a different part of the molecule, experience a different local magnetic field,
and resonate at 43, Finally, the OH proton is in another environment, and has a chemical
shift of & a24. The increasing value of d (that is, the increase in deshielding) s consistent with
the electron-withdrawing power of the O atom: it reduces the electron density of the OH
proton most, and that proton is strongly deshielded. It reduces the electron density of the
distant methyl protons least, and those nuclei are least deshielded.

The relative intensities of the signal (the areas under the absorption lines) can be used to
help distinguish which group of lines corresponds to which chemical group. The
determination of the area under an absorption line is referred to as the integration of
the signal (just as any area under a curve may be determined by mathematical integration).
Spectrometers can integrate the absorption automatically (as indicated in Fig. 18.4). In
ethanol the group intensities are in the ratio 3 : 2 : 1 because there are three CH, protons,
two CH, protons, and one OH proton in each molecule. Counting the number of magnetic
nuclei as well as noting their chemical shifts helps to identify a compound nresent in a
sample.

(c) The origin of shielding constants
The calculation ‘of shitlding constants is very difficult, even for small molecules, for it
requires detailed information about the distribution of electron density in the ground and
excited states and the excitation energies of the molecul.. Some success has been achieved
with the calculation for diatomic molecules and small polyatomic molecules such as H,0 and
CHy, but large molecules are much more difficult, Nevertheless, a considerable body of
useful empirical information about a variety of contributions to chemical shifts in large
molecules has been compiled, and has been used to understand and interpret observations
reasonably systematically.

The empirical approach supposes that the observed shielding constant is the sum of three
contributions:

¢ = o(local) + a(neighbour) + a(solvent) (12)

The local contribution, o(local), is essentially the contribution of the electrons of the atom
that contains the nucleus in question. The neighbouring group contribution, a(neighbour),
is the contribution from the groups of atoms that form the rest of the molecule. The solvent
contribution, o(selvent), is the contribution from the solvent molecules.

(d) The local contribution

It is convenient to regard the local contribution to the shielding constdnt as the sum of a
positive diamagnetic contribution, o, and a negative paramagnetic contribution, a,:

o(local) = gy + g, (13)

The total local contribution is positive if the diamagnetic contribution dominates, and is
negative if the paramagnetic contribution domin2tes.

The diamagnetic contribution arises from the ability of the applied field to generate a
circulatiop of charge in the ground-state electron distribution of the atom. The circulation
generates a magnetic field that opposes the applied field and hence shields the nucleus. The
magnitude of o4 depends on the electron density close to the nucleus and can be calculated
from the Lamb formula:

2
L (14)
12nm_ \r
where p, is the vacuum permeability (a fundamental constant, see inside the front cover)
and r is the electron-nucleus distance.

gy =
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18.5 The variation of chemical shielding with
electronegativity. The shifts for the methylene
protons agree with the trend expected with
increasing clectronegativity. However, to emphasize
that chemical shifts are subtle phenomena, notice
that the trend for the methyl protans is opposite to
that expected. For these protons another
contribution (the magnetic anisotropy of C-H and
C-X bonds) is dominant,
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18.6 The correlation of chemical shifts relative to
[Co(CN),]*~ and the ligand field parameter for
complexes of cobait. The wavelefigth is that of

the lowest energy transition (and A oc 1/4,
approximately). Data from R. Freeman, G.R. Murray,
and R.E. Richards, Proc. Roy. Soc. A242, 455 (1957).
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Example 18.1 Using the Lamb formula

Calculate the shielding constant for the proton in a free H atom.

-

Method To use the Lamb formula, we need to calculate the expectation value of 1/r for a
hydrogen 1s orbital. Wavefunctions are given in Table 13.1, and a useful integral is given in
Example 11.6.

Answer Because dt = r2drsin 0 d0 d¢, we can write

. n 4 -]
<1> =/‘ud1=%f dfp/ sinOdO/ re~¥/% g4r
r r nay Jo 0 0

=— re e dr = —
g Jo ag
Therefore,
e’y

=g
¢ 12am.a,

With the values of the fundamental constants inside the front cover, this expression
evaluates to 1.78 x 1077,

Comment The shielding constant is inversely proportional to the Bohr radius. This distance
dependence can be understood as arising from the classical result that the magnetic
moment of a current loop is proportional to its area (which for a hydrogen atom is of the
order of a}) and the magnetic field that it generates at the nucleus is inversely proportional
to the cube of the latter's distance (a(’,]. Hence, the local: field is proportional to
alxlfa} =1/ay.

Self-test 18.1 Caleulate a4 for a hydrogenic atom with atomic number Z.
lag = Zay(H)]

The diamagnetic contribution is the only contribution in closed-shell free atoms. It is also
the only contribution to the local shielding for distributions of charge that have spherical or
cylindrical symm::try. Thus, it is the only contribution to the local shielding from inner cores
of atoms, for cores remain spherical even though the atom may be a component of a
molecule and its valence electron distribution highly distorted. The diamagnetic
contribution is broadly proportional to the electron density of the atom containing the
nucleus of interest. It follows that the shielding is decreased if the electron density on the
atom is reduced by the influence of an electronegative atom nearby. That reduction in
shielding translates into an increase in deshielding, and hence to an increase in the chemical
shift & as the electronegativity of a neighbouring atom increases (Fig. 18.5). That is, as the
electronegativity increases, & decreases.

The local paramagnetic contribution, g, arises from the ability of the applied field to
force the electrons to circulate through the molecule by making use of orbitals that are
unoccupied in the ground state. It is zero in free atoms and around the axes of linear
molecules (such as ethyne, HC=CH) where the electrons can circulate freely_and a field
applied along the internuclear axis is unable to force them into other orbitals.

The magnitude of the paramagnetic contribution depends on the ease with which the
applied field can promote electrons into unoccupied orbitals. Hence, it is inversely
proportional to the energy separation of the highest filled (HOMO) and lowest unfilled

(LUMO) orbitals of the molecule, A. The strength of the magnetic field generated by the

magnetic moment of the resulting circulation of charge is inversely proportional to the cube
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18.7 The variation of the function | — 3 cos? 0 with
the angle 0.

18.8 The neighbouring group effect in NMR. (a) The
protons in HC=CH are shielded by the currents
induced in the triple bond, but a proton perpendicular
to the bond is deshielded. (b) The opposite is true for
protons near a C=C double band because the applied
fieid can induce a paramagnetic current parallel to
the axis of a double bond.
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of the distance of the nucleus from the circulating current, so the field at the nucleus is
proportional to (r *). Overall, therefore,

(r)

Gp o — (15)

We can therefore expect large paramagnetic contributions from small atoms in molecules
with low-lying excited states. In fact, the paramagnetic contribution is the dominant local
contribution for atoms other than hydrogen. The shielding constants of the nuclei of d-
metal ions in complexes correlate quite well with spectroscopic data if A is identified with
the ligand-field splitting parameter (Fig. 18.6). ‘

(e) Neighbouring group contributions

The neighbouring group contribution arises from the currents induced in nearby groups of
atoms. The effectof either kind of current (diamagnetic or paramagnetic) is toshield or deshield
the nucleus depending on the relative location of the nucleus to the neighbouring group.
The applied field generates currents in the electron distribution of the neighbouring
group and gives rise to 3 magnetic moment proportional to the applied field; the constant of
proportionality is the ma(jnctic susceptibility, x, of the group.' This induced magnetic
moment gives rise to a magnetic field at the nucleus with a strength that is inversely
proportional to the cube of the distance of the nucleus from the group of atoms. The field
varies with the orientation of the molecule, but it does not average to zero because the
magnetic susceptibility also changes as the molecule‘presents different orientations to the
applied field. The result is that the shielding constant depends on three quantities: the
difference in the magnetic susceptibilities parallel and perpendicular to the group (we are
assuming that the group has cylindrical symmetry), the angle 8 that the vector to the
magnetic nucleus makes to the axis of symmetry of the group, and the distance r of the
nucleus from the group (1):
(16)

3

a(neighbour} cc (y; — xi}(%cﬁ—q)
This expression shows that the neighbouring group contribution may be positive or negative
according to the relative magnitudes of the two magnetic susceptibilities and the relative
orientation of the nucleus. The latter effect is casy to anticipate: if 54.7° < < 125.3°, then
I = 3cos? (1 is positive, but it is negative otherwise (Fig. 18.7).

A —C==C— group is linear, and an applied field cannot induce a paramagnetic current
when it is parallel to the group's axis.” The pattern of shielding and deshielding resulting
from the diamagnetic current is shown in Fig. 18.8. Protons lying on the axis of the group (as

(a) (b)

1 Magnetic susceptibilities are discussed in Section 226

2 The electrons are in orbitals that are eigenfunctions of the anquiar momentum operator, /,, for circulation about the axis of the
molecule. When the field s applied along that axs, it gives rise 10 @ perturbation proportional to B, which cannot mix excited
states into its own egenfunctions
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18.9 The shieiding and deshielding effects of the
ring current induced in the benzene ring by the
appﬂedﬂeld.ﬁuqomlthdndtnmtringlrt
deshielded but a proton attached to a substituent
that projects above the ring is shielded.
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in ethyne itself) are shielded, but a proton that lies perpendicular to the bond (as part of a
larger molecule) is deshielded. The opposite is true for protons near a C=C double bond
because in this nonlinear group the applied field can induce a paramagnetic turrgnt when it
lies parallel to the axis.

A special case of aneighbouring group effect is found in aromatic compounds. The strong
anisotropy of the magnetic susceptibility of the benzene ring is ascribed to the ability of the
field to induce a ring current, a circulation of electrons around the ring, when it is applied per-
pendicular to the molecular plane. Protons in the plane are deshielded (Fig. 18.9), but any that
happen to lie above or below the plane (as members of substituents of the ring) are shielded.

(f) The solvent contribution

A solvent can influence the local magnetic field experienced by a nucleus in a variety of
ways. Some of these effects arise from specific interactions between the solute and the
solvent (such as hydrogen-bond formation and other forms of Lewis acid-base complex
formation). The magnetic susceptibility of the solvent molecules, especially if they are
aromatic, can also be the source of a local magnetic field. Moreover, if there are steric
interactions that result jn a loose but specific interaction between a solute molecule and a
solvent molecule, then protons in the solute molecule may experience shielding or deshielding
effects according to their location relative to the solvent molecuie (Fig. 18.10). We shall see
that the NMR spectra of species that contain pratons with widely different chemical shifts
are easier to interpret than those in which the shifts are similar, so the appropriate choice
of solvent may help to simplify the appearance and, interpretation of a spectrum.

18.4 The fine structure

The splitting of resonances into individual lines in Fig. 18.4 is called the fine structure of the
spectrum, It arises because each magnetic nucleus may contribute to the local field
experienced by the other nuclei and so modify their resonance frequencies. The strength of
the interaction is expressed in terms of the scalar coupling constant, J, and reported in
hertz (Hz)." Spin coupling constants are independent of the strength of the applied field
because they do not depend on the latter's ability to generate local fields. If the resonance
line of a particular nucleus is split by a certain amount by a second nucleus, then the
resonance line ok the second nucleus is split by the first to the same extent.

- ©
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18.10 An aromatic solvent (benzene here) can give 18.11 The effect of spin-spin coupling on an AX
rise to local currents that shield or deshield a spectrum. Each resonance is split into two lines
proton in a solvent moleculé. In this relative separated by J, The pairs of resonances are centred
orientation of the solvent and solute, the proton on the chemical shifts of the protons in the

on the solute molecule is shiclded. absence of spin-spin coupling.

3 The scalar coupling constant i so called because the ir it describes is proportional to the scalar product of the two
interacting spins: £ o I - 1. The constant of proportionality in this expression is J. (More precisely, it is AJ /4, because each
angular momentum is proportienal 1o A)
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(a) Patterns of coupling .

In NMR, letters far apart in the alphabet (typically A and X) are used to indicate nuclej with
very different chemical shifts; letters close together (such as A and B) are used for nuclei
with similar chemical shifts. We shall consider first an AX system, a molecule that contains
two spin-} nuclei A and X with very different chemical shifts in the sense that the difference
in chemical shifts is large compared with their spin-spin coupling. :

Suppose the spir. ".i X is a; then the spin of A will have a Larmor frequency as a result of-
the combined effect of the external field, the shielding constant, .and the spin-spin
interaction of A with X. The spin-spin coupling will result in one line in the spectrum of A
being shifted by — }.J from the frequency it would have in the absence of coupling. If the
spin of X is f, the spin of A will have a Larmor frequency shifted by + 1 J. Therefore, instead
of asingle line from A, we get a doublet of lines separated by J and centred on the chemical
shift characteristic of A (Fig. 18.11). The same splitting occurs in the X resonance: instead of
asingle line, the resonance is a doublet with splitting J (the same value as for the splitting of
A) centred on the chemical shift characteristic of X.

A subtle point is that the X resonance in an AX,, species (such as an AX; ar AX, species)
is also a doublet with splitting J. As we shall explain below, @ group of equivalent nuclei
resonates like a single fducleus. The only difference for the X resonance of an AX, species is
that the intensity is n times as great as that of an AX species (Fig. 18.12). The A resonance in
an AX, species, though, is quite different from the A resonance in an AX species. For
example, consider an AX, species with two equivalent X nuclei. The resonance of A is split
into a doublet of separation J by one X, and each li{:c of that doublet is split again by the
same amount by the second X (Fig. 18.13). This splitting results in three lines in the intensity
ratio 1 : 2 : 1 (because the central frequency can be obtained in two ways). The A resonance

X resonance
- in AX

> |
-1 T
8y B34

18.12 The X resonance of an AX, species is also
a doublet; because the two equivalent X nucles
behave like a single nucleus; however, the overall
absarption is twice as intense as that of an AX
species,

1B8.13 The origin of the 1:2: 1 triplet in the A
resonance of an AX, species. The resagance of A
is split into two by coupling with one X nucleus
(as shown in the inset], and then each of those
two lines is spiit into two by coupling to the
second X nucleus. Because each X nucleus causes
the same splitting, the two central transitions are
coincident and giwe rise to an absorption line of
double the intensity of the outer lines.
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18.14 The origin of the 1 . 3:3: 1 quartet in the
A resenance of an AX, species. The third X
nucleus splits each of the lines shown in Fig, 18.13
for an AX; species into a doublet, and the
intensity distribution reflects the number of
transitions that have the same energy.
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of an A, X, species would also be a 1 : 2 : | triplet of splitting J, the only difference being
that the intensity of the A resonance would be n times as great as that of AX,.

Three equivalent X nuclei (an AX, species) split the resonance of A intp four lines of
intensity ratio | : 3: 3 : 1 and separation J (Fig. 18.14). The X resonance, though, is still a
doublet of separation J. In general, n equivalent spin-} nuclei split the resonance of a nearby
spin or group of equivalent spins into n+ 1 lines with an intensity distribution given by
Pascal's triangle (2). The easiest way of constructing the pattern of fine structure is to draw a
diagram in which successive rows show the splitting of a subsequent proton. The procedure
is illustrated in Fig. 18.15 and was used in Figs. 18.13 and 18.14. It is easily extended to
molecules containing nuclei with /> % (Fig. 18.16).

Example 18.2 Accounting for the fine structure in a spectrum
Account for the fine structure in the NMR spectrum of the C-H protons of ethanol.

Method Consider how each group of equivalent protons (for example, three methyl protons)
split the resonance of the other groups of protons. There is no splitting within groups of
equivalent protons. Each splitting pattern can be decided by referring to Pascal’s triangle.

Answer The three protons of the CH, group split the resonance of the CH; protons into a
1 :3:3:1 quartet with a splitting J. Likewise, the two protons of the CH, group split the
resonance of the CH, protons into a 1: 2 : 1 triplet with the same splitting J. All the lines
mentioned so far are split into doublets by the OH proton, but the splitting cannot be
detected because the OH protons migrate rapidly from molecule to molecule and their effect
averages to zero. :

1 2 3 2 1
14 1% The intensity distribution of the A 18.1G The intensity distribution arising from spin-
resonance of an AX, resonance can be spin interaction with nuclei with / = 1 can be

constructed by considering the splitting caused by constructed similarly, but each successive nucleus
1,2,...n protons, as in Figs. 18.13 and 18.14. The  splits the lines into three equal intensity

resulting intensity distribution has a binomial components. Two equivalent spin-1 nuclei give rise
distribution and is given by the integers in the toal:2:3:2:1 quintet. '
corresponding row of Pascal's triangle. Note that,

although the lines have been drawn side-by-side

for clarity, the members of each group are

coincident. Four protons, in AX,, split the A

resonance intoa 1:4:6:4:1 quintet.
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Self-test 18.2 What fine structure can be expected for the protons in "“NH}? The spin
quantum number of nitrogen is 1.
[1:1:1 triplet from N]
-

(b) The energy levels of coupled systems

It will be useful for later discussions to consider an NMR spectrum in terms of the energy
levels of the nuclei and the transitions between them. The energy level diagram for a single
spin-3 nucleus and its single transition were shown in Fig. 18.1, and nothing more needs to
be said. For a spin—% AX system there are four spin states: ‘

Ay apfPy Baox Babx
The energy depends on the orientation of the spins in the external magnetic field, and, if
spin-spin coupling is neglected,

E = —yi(1 — 6,)Bm, — yh(1 - ox)Bmy = —huym, — huymy (17)

where v, and vy are the Larmor frequencies of A and X and m, and my are their quantum
numbers. This expressiqn gives the four lines on the left of Fig. 18.17. The sbin—spin coupling
depends on the relative orientation of the two nuclear spins, so it is proportional to the
product mymy; the constant of proportionality is kJ. Therefore, the energy including spin-
spin coupling is '

E = —hvuamy — huxmy + idmymy (18)

IfJ >0, a lower energy is obtained when mymy <0, \‘Nhich is the case if one spin is ¢ and the
other is 5. A higher energy is obtained if both spins are x or both spins are f. The opposite is
true if J<0. The resulting energy level diagram (for J>0) is shown on the right of
Fig. 18.17. We see that the xx and B states are both raised by %h.l and that the af and fa
states are both lowered by 1 AJ.

When a transition of nucleus A occurs, nucleus X remains unchanged. Therefore, the A
resonance is a transition for which Am, = +1 and Amy = 0. There are two such transitions,
one in which §, «oa, occurs when the X nucleus is ay, and the other in which f, «a,
occurs when the X nucleus is fiy. They are shown in Fig. 18.17 and in a slightly different

Energy No spin-spin With spin-spin
coupling coupling

BB 1/,hJ¢ s

v (A) + Vb (X)

Gy — Py
Uy Py

. 2 Pacty
T P =
1 1 “Abx
ok (A) fatv (X)
2R 4 i —Wﬁ\
P o P
T et
a’( N‘I

Uplly fyfrd
=AY = kv iX) P ¢

18.17 The energy levels of an AX system. The four levels on the left are those of the two spins in the
absence of spin-spin coupling. The four levels on the right show how a positive spin-spin coupling
constant affects the energies. The transitions shown are for Bea of A or X, the other nucleus (X or A,
respectively) remaining unchanged.
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18.18 An alternative depiction of the energy levels
and transitions shown in Fig. 18.17.
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form in Fig. 18.18. The energies of the transitions are
AE = huy + J (19)

Therefore, the A resonance consists of a doublet of separation J centred on the chemical
shift of A (as in Fig. 18.11).

Similar remarks apply to the X resonance, which consists of two transitions according to
whether the A nucleus is & or f§ (Fig. 18.18). The transition energies are

AE = hug + 3 (20)

It follows that the X resonance also consists of two lines of separation J, but they are
centred on the chemical shift of X (as shown in Fig. 18.11).

(c) The magnitudes of coupling constants

The scalar coupling constant of two nuclei separated by N bonds is denoted N1, with
subscripts for the types of nuclei involved. Thus, 1J oy is the coupling constant for a proton
joined directly to a 'C atom, and 2J ¢y is the coupfing constant when the same two nuclei
are separated by two bonds [as in '7C-—C—H). A typical value of 'J¢ is in the range 120 to
250 Hz; 2J is between 0 and 10 Hz. Both J and *J give detectable effects in a spectrum,
but couplings over larger numbers of bonds can generally be ignored. One of the longest
couplings that has been detected is 9w =04 Hz for CH; and CH, protons in
CH,C=CC=CC=CCH,0H. b _

The sign of Jyy indicates whether the energy of two spins is lower when they are parallel
(J <0) or when they are antiparallel (J>0). It is found that 1 /oy s often positive, Ly is
often negative, *Jy, is often positive, and s0 on. An additional point is that J varies with the
angle between the bonds (Fig. 18.19). Thus, a 3Jyn coupling constant is often found to
depend on the angle ¢ (3) according to the Karplus equation:

J=A+Bcos¢ + Ccos2¢ (21)

with A, B, and C empirical cogistants with values close to +7 Hz, —1 Hz, and +5 Hz,
respectively. It follows that the measurement of 3/, in a series of related compounds can be
used to determine their conformations. The coupling constant 'Jqy also depends on the
hybridization of the C atom, as the following values indicate:

sp sp? sp?
We/Hz: 250 160 125

(d) The origin of spin-spin coupling
Spin-spin coupling is a very subtle phenomenon, and it is better to treat J as an empirical
parameter than to use calculated values. However, we can get some insight into its origins, if
not its precise magnitude—or always reliably its sign—by considering the magnetic
interactions within molecules.

A nucleus with spin projection m, gives rise to a magnetic field with z component Bt
a distance R, where

Boe = —z_hn%(l - 3cos? O)m, (22)

The angle @ is defingd in (4). The magnitude of this field is about 0.1 mT when R = 0.3 nm,

corresponding to a splitting of resonance signal of about 10* Hz, and is of the order of
magnitude of the splitting observed in solid samples (see Section 18.9a).

In a liquid,the angle @ sweeps over all values as the molecule tumbles, and 1 — 3cos? 0
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18.21 The origin of the Fermi contact interaction.
From far away, the magnetic field pattern arising
fram a ring of current (representing the rotating
charge of the nucleus, the pale grey sphere) is that
of a point dipole. However, if an electron can
sample the field close to the region indicated by the
sphere, the field distribution differs significantly
from that of a point dipole. For example, if the
electron can penetrate the sphere, then the
spherical average of the field it experiences is not
zero.
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J/Hz

Fermi Pauli Fermi

1 1
0 90 ¢ 180

18.20 The polarization mechanism for spin-spin
coupling ('Jyy). The two arrangements have
slightly different energies. In this case, J is
positive, corresponding to a lower energy when the
nuclear spins are antiparallel.

18.19 The variation of the spin-spin coupling
constant with angle predicted by the Karplus
equation.

averages to zero.* Hence the direct dipolar interaction between spir!s cannot account for the
fine structure of the spectra of rapidly tumbling molecules. The direct interaction does make
an important contribution to the spectra of solid samples and to the spectra of molecules
that tumble only slowly in solution, such as biological and synthetic macromolecules,

Spin-spin coupling in molecules in solution can be explained in terms of the polarization
mechanism, in which the interaction is transmitted through the bonds. The simplest case to
consider is that of '/, where X and Y are spin—% nuclei joined by an electron-pair bond
(Fig. 18.20). The coupling mechanism depends on the fact that in some atoms it is favourable
for the nucleus and a nearby electron spin to be parallel (both & or both f), butin othersit is
favourable for thém to be antiparallel (one « and the other f). The electron-nucleus
coupling is magnetic in origin, and may be either a dipolar interaction between the magnetic
moments of the electron and nuclear spins or a Fermi contact interaction. As shown in the
Justification below, the latter depends on the very close approach of an electron to the
nucleus and hence can occur only if the electron occupies an s orbital. We shall suppose that
it is energetically favourable for an electron spin and a nuclear spin to be antiparallel (as is
the case for a praton and an electron in a hydrogen atom).

Justification 14.2

A pictorial description of the Fermi contact interaction is as follows. First, we regard the
magnetic moment of the nucleus as ari‘sing from the circulation of a current in a tiny loop
with a radius similar to that of the nucleus (Fig. 18.21). Far from the nucleus the field

' generated by this loop is indistinguishable from the field generated by a point‘magnetic

dipole. Close to the loop, however, the field differs from that of a point dipole. The

4 The volume element in palar coordinates is propertional to sin 046, and & ranges from 0 1o = Therefore the average value of B,
for a tumbling molecule is proportional to

/ (1= 3cos’ 0) sin 840 = 0
0
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18.22 The polarization mechanism for 2Jy spin-
spin coupling. The spin information is transmitted
from one bond to the next by a version of the
mechanism that accounts for the lower energy of
electrons with parallel spins in different atomic
arbitals (Hund's rule of maximum multiplicity). In
this case, J is negative, corresponding to a lower
energy when the nuclear spins are parallel.
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magnetic interaction between this non-dipolar field and the electron's magnetic moment
is the contact interaction. The lines of force depicted in Fig. 18.21 correspond to those for
a proton with a spin. The lower energy state of an electron spin in such a field isthe f state.

If the X nucleus is #, a § electron of the bonding pair will tend to be found nearby (since

" that is energetically favourable for it). The second electron in the bond, which must have «

spin if the other is f§, will be found mainly at the far end of the bond (because electrons tend
to stay apart to reduce their mutual repulsion). Because it is energetically favourable for the
spin of Y to be antiparallel to an electron spin, a Y nucleus with f8 spin has a lower energy,
and hence a lower Larmor frequency, than a Y nucleus with a spin. The opposite is true when
X is fi, for now the « spin of Y has the lower energy. In other words, the antiparallel
arrangement of nuclear spins lies lower in energy than the parallel arrangement as a result
of their magnetic coupling with the bond electrons, That is, "Jyy is positive.

To account for the value of 2y, as in H-C-H, we need a mechanism that can transmit
tive spin alignments through the central C atom (which may be 12, with no nuclear spin of
its own). In this case (Fig. 18.22), an X nucleus with « spin polarizes the electrons in its bond,
and the a electron is likely to be found closer to the C nucleus. The more favourable
arrangement of two electrons on the same atom is with their spins paraliel-(Hund's rule,
Section 13.4d), so the more favourable arrangement is for the electron of the
neighbouring bond to be close to the C nucleus. Consequently, the § electron of that
bond is mare likely to be found close to the Y nucleus, and therefore that nucleus will have a
lower energy if it is . Hence, according to this mechanism, the lower Larmor frequency of Y
will be obtained if its spin is parallel to that of X. That is, 2] is negative,

The coupling of nuclear spin to electron spin by the Fermi contact interaction is most
important for proton spins, but it is not necessarily the most important mechanism for other
nuélei. These nuclei may also interact by a dipolar mechanism with the ele
moments and with their orbital motion, and there is no simple way of speci
will be positive or negative.

(e) Equivalent nuclei

A group of nuclei are chemically equivalent if they are related by a symmetry operation of
the molecule and have the same chemical shifts. Chemically equivalent nuclei are nuclei that
would be regarded as ‘equivalent’ according to ordinary chemical criteria. Nuclei are
magnetically equivalent if, as well as being chemically equivalent, they also have identical
spin-spin interactions with any other magnetic nuclei in the molecule.

The difference between chemical and magnetic equivalence is illustrated by CH,F, and
H,C=CF,, in both of which the protons are chemically equivalent: they are related by
symmetry and undergo the same chemical reactions. However, although the protons in CH,F,
are magnetically equivalent, those in CH,=CF, are not. One proton in the latter has spin-
coupling interactions with a cis F nucleus which might be a whereas the other proton hasa
trans interaction with it. In CH,F, both protons are equally distant from the two F nuclei, so
there is no distinction between them. Strictly speaking, the CH; protonsin ethanol (and other
compounds) are magnetically inequivalent on account of their different interactions with
the CH, protons in the next group. However, they are in practice made magmetically
equivalent by the rapid rotation of the CH; group, which averages out any differences.
Magnetically inequivalent species can give very complicated spectra (for instance, the
spectrum of H,C=CF, consists of ten lines), and we shall not consider them further.

An important feature of chemically equivalent magnetic nuclei is that, although they do
couple together, the coupling has no effect on the appearance of the spectrum. The reason
for the invisibility of the coupling is set out in the Justification below, but qualitatively it is
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18.24 The energy levels of an A, system in the
absence of spin-spin coupling are shown an the

left. When spin-spin coupling is taken into account,.

the energy levels on the right are obtained. Note
that the three states with total nuclear spin [ = 1
correspond to parallel spins and give rise to the
same increase in energy [/ is positive); the one state
with [ = O (antiparallel nuclear spins) has a lower
energy in the presence of spin-spin coupling, The
only allowed transitions are those that preserve the
angle between the spins, and so take place between
the three states with I = 1. They occur at the same
resonance frequency as they would have in the
absence of spin-spin coupling.
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Two intermediate
orientations

18.23 (a) A group of two equivalent nuclei realigns as a group, without change of angle between the
spins, when a resonant absorption occurs. Hence it behaves like a single nucleus and the spin-spin
coupling between the individual spins of the group is undetectable. (b) Three equivalent nuclei also
realign as a group without change of their relative orientations.

that all allowed nuclear spin transitions are collective reorientations of groups of equivalent
nuclear spins that do not change the relative orientations of the spins within the group
(Fig. 18.23). Then, because the relative orientations of nuclear spins are not changed in any
transition, the magnitude of the coupling between them is undetectable. Hence, an isolated
CH, group gives a single, unsplit line because all the allowed transitions of the group of*
three protons occur without change of their relative orientations.

Justificaticn 8.3

Consider an A, system of two chemically equivalent spin-} nuclei. First, consider the
energy levels in the absence of spin-spin coupling. There are four spin states which (just as
for two electrons) can be classified according to their total spin / (the analogue of § for
two electrons) and their total projection M; on the z-axis. The states are analogous to those
we developed for two electrons in singlet and triplet states:®

Spins paralie, I =1: M, =41 oax
M =0 (1/27){af + pa}
M, =-1 fp
Spins paired, I = 0: M, =0  (1/22){ap — fa}
The effect of a magnetic field on these fcur states is shown on the left in Fig. 18.24: the

energies of the two states with M, = 0 are unchanged by the field because they are
composed of equal proportions of @ and f spins.
5 Asin Section 13.7, the states we have selected are those with a definite resultant, and hence 2 well defined value of /. The + sign

in af + Pa signifies an in-phase alignment of spins and J = 1; the — sign in aff — B signifies an alignment out of phase by x,
and hence / = 0. See Fig. 13.26.
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18.25 The NMR spectrum of an A, system [top)
and an AX system (bottam) are simple, and give
rise to 'first-order spectra’. At intermediate relative
values of the chemical shift difference and the
spin-spin coupling, complex 'strongly coupled’
spectra are obtained. Note how the inner two lines
of the bottom spectrum move together, grow in
intensity, and form the single central line of the top
spectrum, The two outer lines diminish in intepsity
and are absent in the top spectrum,
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The spin-spin coupling energy is proportional to the scalar product of the vectors
representing the spins, and we write £ = (hJ/H*)I, - I,. The scalar product can be
expressed in terms of the total nuclear spin by noting that

P=+0L)-(h+L)=F+B+2,-1,
and replacing the magnitudes by their quantum mechanical values:

Iy = I+ 1) = 1(1, + 1) = Ll + 1)} (23)
Then, because I, = I, = 1, it follows that

E=Yhii(t+1)-13 (24)

For parallel spins, / = 1 and E = +%h]; for antiparallel spins / = 0 and E = — }M. asin
the illustration. We see that three of the states move in energy in one direction and the
fourth (the one with antiparallel spins) moves three times as much in the opposite
direction. The resulting energy levels are shown in Fig. 18.24.

The NMR spectrum of the A, species arises from transitions between the levels.
However, the radiofrequency field affects the two equivalent protons equally, so it cannot
change the orientatign of one proton relative to the other; therefore, the transitions take
place within the set of states that correspond to parallel spin (those labelled / = 1), and no
spin-parallel state can change to a spin-antiparallel state (the state with / = 0). Put
another way, the allowed transitions are subject to the selection rule A7 = 0. This selection
rule is in addition to the rule AM, = +1 that arises from the conservation of angular
momentum and the unit spin of the photon. The allowed transitions are shown in
Fig. 1B.24: we see that there are only two transitions, and that they occur at the same
resonance frequency that the nuclei would have in the absence of spin-spin coupling.
Hence, the spin-spin coupling interaction does not affect the appearance of the
spectrum.

(f) Strongly coupled nuclei

NMR spectra are usually much more complex than the foregoing simple analysis suggests.
We have described the extreme case in which the differences in chemical shifts are much
greater than the spin-spin coupling constants. In such cases it is simple to identify groups of
magnetically equivalent nuclei and to think of the groups of nuclear spins as reorientating
relative to each other. The spectra that result arc called first-order spectra.

Transitions cannot be allocated to definite groups when the differences in their chemical
shifts are comparable to their spin-spin coupling interactions. The complicated spectra that
are then obtained are called strongly coupled (or ‘second-order spectra’) and are much more
difficult to analyse (Fig. 18.25). Because the difference in resonance frequencies increases
with field, but spin-spin coupling constants are independent of it, a second-order spectrum
may become simpler (and first-order) at high fields because individual groups of nuclei
become identifiable again. ¢

A clue to the type of analysis that is appropriate is given by the notation for the types of
spins involved. Thus, an AX spin system (which consists of two nuclei with a lakge chemical
shift difference) has a first-order spectrum, An AB system, on the other hand (with two
nuclei of similar chemical shifts), gives a spectrum typical of a strongly coupled system. An
AX system may have widely different chemical shifts because A and X are nuclei of
different elements (such as "C and 'H), in which case they form a heteronuclear spin
system. AX may also denote a homonuclear spin system in which the nuclei are of the
same element but in markedly different environments.
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(g) Dilute and abundant spins: spin decoupling

Carbon-13 is a dilute-spin species in the sense that it is unlikely that more than one ¢
nucleus will be found in any given small molecule (provided the sample has not been
enriched with that isotope; the natural abundance of *Ciis only 1.1 per cent). Even in large
molecules, although more than one '*C nucleus may be present, it is unlikely that they will ‘
be close enough to give an observable splitting. Hence, it is not normally necessary to take
into account ¥*C—"3C spin-spin coupling within a molegule.

Protons are abundant-spin species in the sense that a molecule is likely to contain many
of them. If we were observing a >C-NMR spectrum, we would obtain a very complex
spectrum on account of the coupling of the one 13C nucleus with all the protons that are
present. To avoid this difficulty, *C-NMR spectra are normally observed using the technique
of proton decoupling. Thus, if the CH, protons of ethanol are irradiated with a second,
strong, resonant radiofrequency source, they undergo rapid spin reorientations and the *C
nucleus senses an average orientation. As a result, its resonance is a single line and not a
1:3:3:1 quartet. Proton decoupling has the additional advantage of enhancing
sensitivity, because the intensity is concentrated into a single transition frequency instead
of being spread over several transition frequencies. If care is taken to ensure that the other
parameters on which the Strength of the signal depends are kept constant, the intensities of
proton-decoupled spectra are proportional to the number of '*C nuclei present. The
technique is widely used to characterize synthetic polymers.

Pulse techniques in NMR

Modern methods of detecting the energy separation between riuclear spin states are more
sophisticated than simply looking for the frequency at which resonance occurs. One of the
best analogies that has been suggested to illustrate the difference between the old and new
ways of observing an NMR spectrum is that of detecting the spectrum of vibrations of a bell.
We could stimulate the bell with a gentle vibration at a gradually increasing frequency, and
note the frequencies at which it resonated with the stimulation. A lot of time would be spent
getting zero response when the stimulating frequency was between the bell’s vibrational
modes. However, if we were simply to hit the bell with a hammer, we would immediately
obtain a clang composed of all the frequencies that the bell can produce. The equivalent in
NMR is to monitor the radiation nuclear spins emit as they return to equilibrium after the
appropriate stimulation. The resulting Fourier-transform NMR gives greatly increased
sensitivity, so opening up the entire periodic table to the technique. Moreover, multiple-
pulse FT-NMR gives chemists unparalleled control over the information content and display
of spectra. We need to understand how the equivalent of the hammer blow is delivered and
how the signal is monitored and interpreted. These features are generally expressed in terms
of the vector model of angular momentum introduced in Section 12.7d.

18.5 The magnetization vector

Consider a sample composed of many identical spin-% nuclei. As we saw in Section 12.7d, an
angular momentum can be represented by a vector of length {I{I + 1}}"'2-..unit5 with a
component of length m, units along the z-axis. As the uncertainty principle does not allow

" us to specify the x- and y-components of the angular momentum, all we know is that the

vector lies somewhere on a cone around the z-axis. For I = 1, the length of the vector is i V3
and it makes an angle of 55° to the z-axis (Fig. 18.26).

In the absence of a magnetic field, the sample consists of equal numbers of a and I
nuclear spins with their vectors lying at random angles on the cones. These angles are



18 SPECTROSCOPY 3

= VL

Net )

magnetization,

M

Precession (B %

18.27 The magnetization of 3 sample of spin—% 18.28 (a) In a resonance experiment, a circularly
nuclei is the resultant of all their magnetic polarized radiofrequency magnetic field B, is
moments. (a) In the absence of an externally applied in the xy-plane (the magnetization vector
applied field, there are equal numbers of « and f§ lies along the z-axis). (b) If we step into a frame

spins at random angles around the z-axis (the field  rotating at the Larmor frequency, the
direction) and the magnetization is zero, (b) In the radiofrequency field appears to be stationary if its
presence of a field, the spins precess around their frequency is the same as the Larmor frequency.

cones (that is, there is an energy difference When the two frequencies coincide, the
between the o and f states) and there are slightly  magnetization vector of the sample begins to
more a spins than f spins. As a result, there is a rotate around the direction of the B, field.

net magnetization along the z-axis.

unpredictable, and at this stage we picture the spin vectors as stationary. The
magnetization, M, of the sample, its net nuclear magnetic moment, is zero (Fig. 18.27a).

(a) The effect of the static field

Two changes occur in the magnetization when a magnetic field is present. First, the energies
of the two orientations change, the « spins moving to low energy and the § spins to high
energy (provided y>0). At 10 T, the Larmor frequency for protons is 427 MHz, and in the
vector model the individual vectors are pictured as precessing, or sweeping round their
cones, at this rate. This motion is a pictorial representation of the change in energy of the
spin states (it is not an actual representation of reality). As the field is increased, the Larmor
frequency increases and the precession becomes faster. Secondly, the populations«of the two
spin states (the numbers of « and f spins) change, and there will be more « spins than f
spins. Because huy /AT 7% 107° for ptotons at 300 K and 10 T, there is only a tiny
imbalance of populations, and it is even smaller for other nuclei with their smaller
magnetogyric ratios. However, despite its smallness, the imbalance.means that there is a net
magnetization that we can represent by a vector M pointing in the z-direction and with a
length proportional to the population difference (Fig.18.27h).
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(b) The effect of the radiofrequency field

We now consider the effect of 4 circularly polarized radiofrequency field in the xy-plane. We
have considered the electric component of this field in the other forms of spectroscopy that
we have treated. However, in this chapter we consider only the magnetic component, foritis
this component that interacts with the nuclear magnetic moment. The strength of the
oscillating magnetic field is B,.

Suppose we choose the frequency of the oscillating field to be equal to the Larmor
frequency of the spins. This choice is equivalent to selecting the resonance condition in the
conventional experiment. The nuclei now experience a steady B, field because the rotating
magnetic field is in step with the precessing spins (Fig. 18.28). Under the influence of this
effectively steady field, the magnetization vector begins to precess around the direction of
B, at a rate that is proportional to B,. If we apply the B, field in a pulse of a certain
duration, the magnetization precesses into the xy-plane, and we say that we have applied a
90° pulse (or a 'n/2 pulse’). The duration of the pulse depends on the strength of the B, field,
but is typically of the order of microseconds. To a stationary external observer (a
radiofrequency coil, Fig. 18.29), the magnetization vector is now rotating in the xy-plane at
" the Larmor frequency (at about 430 MHz). The rotating magnetization induces a 430 MHz

signal in the coil, which ¢an be amplified and processed. In practice, the processing takes
place after subtraction of a constant high-frequency component, so that all the signal
manipulation takes place at frequencies of a few kilohertz. :

As time passes, the individual spins move out of step (partly because they are precessing
at slightly different rates, as we shall explain later), so the magnetization vector shrinks
exponentially with a time constant T, and induces an ever weaker signal in the detector

coil. The form of the signal that we can expect is therefore the oscillating-decaying free-
induction decay (FID) shown in Fig. 18.30, and the y—compunent' of the magnetization
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|
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18.29 (a) If the radiofrgquency field is applied for ~ 18.30 A simple free induction decay of a sample
a certain time, the magnetization vector is rotated  of spins with a single resonance frequencgy.

into the xy-plane. [b) To an external stationary

observer (the coil), the magnetization vector is

rotating at the Larmor frequency, and can induce a

signal in the coil.
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18.31 (a) A free induction decay signal of a sample
of AX species and (b) its analysis into its frequency
components.

18 SPECTROSCOPY 3

varies as
M, (1) = Mycos(2mu 1)e T (29

We have considered the effect of a pulse applied at exactly the Larmor frequency. However,
virtually the same effect is obtained off resonance, provided that the pulse is applied close to
u.. If the difference in frequency is small compared to the inverse of the duration of the 90°
pulse, the magnetization will end up in the xy-plane. Note that we do not need to know the
Larmor frequency beforehand: the short pulse is the analogue of the hammer blow on the
bell, exciting a range of frequencies. The detected signal shows that a particular resonant
frequency is present.

(c) Time- and frequency-domain spectra

We can think of the magnetization vector of a homonuclear AX spin system with J = 0 as
consisting of two parts, one formed by the A spins and the other by the X spins. When the
90° pulse is applied, both magnetization vectors are rotated into the xy-plane. However,
because the A and X nuclei precess at different frequencies, they induce two signals in the
detector coils, and the overall FID curve may resemble that in Fig. 18.31a. The composite FID
curve is the analogue of the struck bell emitting a rich tone composed of all the frequencies
at which it can vibrate.

The problem we must address is how to recover the resonance frequencies present in a
free-induction decay. We encountered a similar problem when discussing Fourier-transform
infrared spectra in Section 16.1c, where all the vibrational frequencies were detected at
once. The same technique is used here. We know that the FID curve is a sum of oscillating
functions, so the problem is to analyse it into its harmonic components.

The analysis of the FID curve is achieved by the standard mathematical technique of
Fourier transformation. We start by noting that the signal §(r) in the time domain, the total
FID curve, is the sum (more precisely, the integral) over all the contributing frequencies®

S(t) = [m T(v)e 2™ gy (26)

o0

We need Z(v), the spectrum in the frequency domain; it is obtained by evaluating the
integral

" I(v) = Re /ﬂ “ S(0et™ g @7)

where Re means take the real part of the following expression. This integral is very much like
an overlap integral: it gives a nonzero value if (r) contains a component that matches the
oscillating function €™, The integration is carried out at a series of frequencies v on a
computer that is built into the spectrometer. When the signal in Fig. 18.31a is transformed
in this way, we get the frequency-domain spectrum shown in Fig. 18.31b. One line
represents the Larmor frequency of the A nuclei and the other that of the X nuclei.

The FID curve in Fig. 18.32 is obtained from a sample of ethanol, The frequency-domain
spectrum obtained from it by Fourier transformation is the one that we have already
discussed (Fig. 18.4). We can now see why the FID curve in Fig. 18.32 is so complex: it arises
from the precessiorl of a magnetization vector that is composed of eight components, each
with a characteristic frequency.

6  Because ™" = cos(2rwr) + i sin(2xu), this expression is a sum over harmonically oscillating functions, with each one
weighted by the intensity 7(v)
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Time

18.32 A free induction decay signal of a sample of ethanol. Its Fourier transform is the frequency-
domain spectrum shown in Fig. 18.4.

18.6 Linewidths and rate processes

The linewidths of NMR spectra, in common with other spectroscopic techniques, pru\iidc
information about the rates of processes relating to the molecules in the sample. We have
seen that the FID signal decreases with time, which implies that the component of the
magnetization vector in the xy-plane must be shrinking. In this section we see some of the
processes involved. )

(a) Spin relaxation

There are two reasons why the component of the magnetization vector in the xy-plane
shrinks. Both reflect the fact that the nuclear spins are not in thermal equilibrium with their
surroundings (for then M lies parallel to z). The return to equilibrium is the process called
spin relaxation.

At thermal equilibrium the spins have a Boltzmann distribution, with more & spins than
spins; however, a magnetization vector in the xy-plane immediately after a 90° pulse has
equal numbers of a and f3 spins. The populations revert to their thermal equilibrium values
exponentially. As l?lty do s0, the z-component of magnetization reverts to its equilibrium
value M, with a time constant called the longitudinal relaxation time, T, (Fig. 18.33):

M, (1) — M, o /M (28)

Because this relaxation process involves giving up energy to the surroundings (the 'lattice’)
as f§ spins revert to a spins, the time constant T, is also called the spin-lattice relaxation
time. Spin—iattiéc relaxation is caused by fluctuating local magnetic fields arising from the
motion of the molecules. These fluctuations can stimulate the spins to change from f§ to a,
and vice versa, and hence to relax towards the thermal equilibrium population.

A second aspect of spin relaxation is the fanning-out of the spins in the xy-plane if they
precess at different rates (Fig. 18.34). The magnetization vector is large when all the spins
are bunched together immediately after a90° pulse. However, this orderly bunching of spins
is not at equilibrium and, even if there were no spin-lattice relaxation, we would eupect the
individual spins to spread out until they were uniformly distributed with all possible angles
around the z-axis. At that stage, the component of magnetization vector in the plane would
be zero. The randomization of the spin directions occurs exponentially with a time constant
called the transverse relaxation time, T:

M, (1) o c‘_"fT' (29)
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18.35 A Lorentzian absorption line. The width at
half-height is inversely proportional to the
parameter T; (so Avy/,T; is a constant) and, the
longer the transverse relaxation time, the narrower
the line.
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18.33 In longitudinal relaxation the spins refax 10.34 The transverse relaxation time, T, is the

back towards their thermal equilibrium time it takes for the phases of the spins to become
populations. On the left we see the precessianal randomized (another condition for equilibrium) and
cones representing spin-} angular momenta, and to change from the orderly arrangement shown on
they do not have their thermal equilibrium the left to the disorderly arrangement on the right.

populations (there are more f-spins than a-spins).  Note that the populations of the states remain the
On the right, which represents the sample after a same; only the relative phase of the spins relaxes.
time T, the populations are those characteristic of

a Boltzmann distribution.

Because the relaxation involves the relative orientation of the spins, T is also known as the
spin-spin relaxation time.
If the y-component of magnetization decays with a time constant T;, the spectral line is
broadened (Fig. 18.35), and its width at half-height becomes
M= (30)
Typical values of T, in proton NMR are of the order of seéonds, so linewidths of around
0.1 Hz can be anticipated, in broad agreement with observation. In mabile liquids, T, ~T;.
So far, we have assumed that the equipment, and in particular the magnet, are perfect,
and that the differences in Larmor frequencies arise solely from interactions within the
sample. In practice, the magnet is not perfect, and the field is different at different locations
in the sample. The inhomogeneity broadens the resonance, and in most cases this



18.6 LINEWIDTHS AND RATE PROCESSES 551

inhomogeneous broadening dominates the broadening we have discussed so far. It is
comman to express the extent of inhomogeneous broadening in terms of an effective
transverse relaxation time, T3, by using a relation like eqn 30, but writing

-l
= 31)

where Au, j, is the observed width at half-height.”

Hlustration

(b) Gonformatiohal conversion and exchange processes

The appearance of an NMR spectrum is changed if magnetic nuclei can jump rapidly
between different environments. Consider a fluxional molecule, such as N, N-dimethylform-
amide, that can jump between conformations; in its case, the methyl shifts depend on
whether they are cis or trans to the carbony! group.(Fig. 18.36). When the jumping rate is
low, the spectrum shows two sets of lines, one each from from molecules in each
conformation. When the inversion is fast, the spcu:trhm shows a single line at the mean of
the two chemical shifts. At intermediate inversion rates, the line is very broad. This maximum
broadening occurs when the lifetime, 7, of a conformation gives rise to a linewidth that is
comparable to the difference of resonance frequencies, v, and both broadened lines blend
together into a very broad line. Coalescence of the two lines occurs when

V2

=— y 32

& nov (32)
For example, if the-chemical shifts differ by 100 Hz, the spectrum collapses into a single line
when the conformation lifetime is less than about 5 ms.

18.36 When a molecule changes from one conformation to another, the positions of its protons are
interchanged and jump between magnetically distinct environments.

7 This formula assumes that the lineshape is Lorentzian; that s, of the form y = 1/(1 4 2).
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Example 18.3 Interpreting line broadening

The NO group in N, N-dimethylnitrosamine, (CH;),N—NO, rotates and, as a result, the
magnetic environments of the two CH; groups are interchanged. In a” 600 MHz
spectrometer the two CH; resonances are separated by 390 Hz. At what rate of
interconversion will the resonance collapse to a single line?

Method Use eqn 32 for the average lifetimes of the conformations. The rate of
interconversion is the inverse of their lifetime.

Answer With du = 390 Hz,
= v2 —=12ms
Tax(39%0s) o™ ;
It follows that the signal will collapse to a single line when the interconversion rate exceeds
about 830 5-,

Comment The dependence of the rate of collapse on the temperature is used to determine
the energy barrier to interconversion.

Self-test 18.3 What would you deduce from the observation of a single line from the
same molecule in a 300 MHz spectrometer?
[Conformation lifetime less than 2.3 ms]

A similar explanation accounts for the loss uf structure in solvents able to exchange
protons with the sample. For example, hydroxyl protons are able to exchange with
water protons. When this chemical exchange occurs, a molecule ROH with an a-spin
proton (we write this ROH,) rapidly converts to ROH; and then ‘perhaps to ROH, again
because the protons provided by the solvent molecules in successive exchanges have
random spin orientations. Therefore, instead of seeing a spectrum composed of
contributions from both ROH, and ROH; molecules (that is, a spectrum showing a
doublet structure due to the OH proton), we see a single, unsplit line at the mean
position (as in Fig 18.4). The effect is observed when the lifetime of a molecule due to
this chemical exchange is so short that the lifetime broadening is greater than the
doublet splitting. Because this splitting is often very small (about 1 Hz), a proton must
remain attached to the same molecule for longer than about 0.1 s for the splittina to
be observable. In water, the exchange rate is much faster than that, so alcohols = ow
no splitting from the OH protons. In dry dimethylsulfoxide (DMS0), the exchange rate
may be slow enough for the splitting to be detected.

(c) The measurement of T,

The longitudinal relaxation time can be measured by the inversion recovery technique,
The first step is to apply a 180° pulse to the sample. A 180° pulse is achieved by
applying the B, field for-twice as long as for a 90° pulse, so the magnetization vector
precesses through 180° and points in the —z direction (Fig. 18.37). No signa can be
seen at this stage because there is no component of magnetization in the xy-plane
(where the detection coils are sensitive). The f# spins begin to relax back into a spins,
and the magnetization vector shrinks exponentially back towards its thermal equilibrium
value, M.. After an interval 7, a 90° pulse is applied that rotates the magnetization into
the xy-plane, where it starts to generate an FID signal. The frequency-domain spectrum
is then obtained by Fourier transformation.
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18.37 The result of applying a 180° pulse to the magnetization in the rotating frame and the etfect of a
subsequent 90° pulse. The amplitude of the frequency-domain spectrum varies with the interval between
the two pulses because spin-lattice relaxation has time to occur.

%

The intensity of the spectrum obtained in this way depgnds on the length Sf the
magnetization vector that is rotated into the xy-plane, The length of that vector
returns exponentially to its thermal equilibrium value as the interval between the two
pulses is increased, so the intensity of the spectrum also returns exponentially to its
equilibrium intensity with increasing z. We can therefore measure T, by fitting an
exponential curve to the series of spectra obtained after different values of t.

(d) Spin echoes

The measurement of T (as distinct from T3) depends on being able to eliminate the effects
of inhomogeneous broadening. The cunning required is at the root of some of the most
important advances that have been made in NMR since its introduction.

A spin echo is the magnetic analogue of an audible echo: transverse magnetization is
created by a radiofrequency pulse, decays away, is refl--ted by a2 second pulse, and grows
back to form an echo. The sequence of events is illustrated in Fig. 18.38. We can consider the
overall magnetization as being made up of a number of different magnetizations, each of
which arises from a spin packet of nuclei with very similar precession frequencies. The
spread in these frequencies arises because the applied field B, is inhomogeneous, so
different parts of the sample experience different fields. The precession frequencies also
differ if there is more than one chemical shift present. As will be seen, the importance of a
spin echo is that it can suppress the effects of both field inhomogeneities and chemical
shifts.

First, 3 90° pulse is applied to the sample. The frame of reference is rotating-at the same
rate as the radiofrequency magnetic field of the pulse, with B, applied along the x-axis, so
the magnetization is rotated down into the xy-plane. The spin packets now begin to fan out
because they have different Larmor frequencies, with some above the radiofrequency and
some below. The detected signal depends on the resultant of the spin-packet magnetization
vectors, and decays with a time constant T because of the combined effects of field
inhomogeneity and spin-spin relaxation.
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18.39 The exponential decay of the spin echoes can
be used to determine the transverse refaxation time.
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After an interval 7, a 180° pulse is applied to the sample; this time, about the y-axis of the
rotating frame.® The pulse rotates the magnetization vectors of the faster spin packets into
the positions previously occupied by the slower spin packets, and vice versa. Thus, as the
vectors continue to precess, the fast vectors are now behind the slow; the fan b'egins to close
up again, and the resultant signal begins to grow back into an echo. At time 21, all the
vectors will once more be aligned along the y-axis, and the fanning out caused by the field
inhomogeneity is said to have been refocused; the spin echo has reached its maximum,
Because the effects of field inhomogerigities have been suppressed by the refocusing, the
echo signal will have been attenuated by:the factor e 2%/"2 caused by spin-spin relaxation
alone. After the time 27, the magnetization will continue to precess, fanning out once again,
giving a resultant that decays with time constant T3.

The impartant feature of the technique is that the size of the echo is independent of any
local fields that remain constant during the two t intervals. If a spin packet is 'fast’ because it
happens to be composed of spins in a region of the sample that experiences higher than
average fields, then it remains fast throughout both intervals, and what it gains on the first
interval it makes up on the second interval. Hence, the size of the echo is independent of
inhomogeneities in the magnetic field, for these remain constant. The true transverse
relaxation arises fron? fields that fluctuate on a molecular timescale, and there is no
guarantee that an individual 'fast’ spin will remain ‘fast’ in the refocusing phase: the spins
within the packets therefore spread with a time constant T,. Hence, the effects of the true
relaxation are not refocused, and the size of the echo decays with the time constant T,
(Fig. 18.39).

18.7 The nuclear Overhauser effect

Spin relaxation can be used constructively to enhance the intensities of resonance lines. The
enhancement is brought about by the nuclear Overhauser effect (NOE) which we shall
explain by considering a simple AX system in which A is a '3C nucleus and X is a proton.

We have seen already that one advantage of protons in NMR is their high magnetogyric
ratio, which results in relatively large Boltzmann population differences and hence
appreciable resonance intensities. In the nuclear Overhauser effect, relaxation processes
involving internuclear dipole-dipole interactions are used to transfer this population
advantage to angther nucleus (to '*C in the case we are considering), so that the latter's
resonances are enhanced. A detailed calculation (which we do not reproduce here) shows
that, if the relaxation of a nucleus A is dominated by its dipolar interaction with a nucleus X,
and X is saturated by strong irradiation at its resonance frequency, then the sic al
enhancement is

T 4 (33)
A “IA

where Z, is the signal intensity of nucleus I. For *C coupled to a saturated proton, the ratio

evaluates to 2.99, which shows that an enhancement of about a factor of 3 can be achieved.

The NOE is also used to determine interproton distances. The Overhauser enhancement of

a proton A generated by saturating a spin X depends on the fraction of A’s spin-lattice

relaxation that is caused by its dipolar interaction with X. Because the dipolar field is

proportional to #=3, where r is the internuclear distance, and the relaxation effect is

“proportional to the square of the field, and therefore to r~6, the NOE may be used to
determine the geometries of malecules in solution. The determination of the structure of a

small protein in solution involves the use of several hundred NOE measurements, effectively

casting a net over the protons present. *

8 The axis of the pulse is changed from x to y by 2 90° phase shift of the radiofrequency radiation.
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18.40 A typical two-dimensional '*C-NMR
spectrum obtained by correlation spectroscopy. The
sample is |-nitropropane. Diagonal peaks show the
narmal one-dimensional spectrum, and cross-peaks
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(Spectrum provided by Dr G. Morris.)
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18.8 Two-dimensional NMR

An NMR spectrum contains a great deal of information and, if many protons are‘present, is
very complex. Even a first-order spectrum is complex, for the fine structuse of different
groups of lines can overlap. The complexity would be reduced if we could use two axes to
display the data, with resonances belonging to different groups lying at different
locations on the second axis. This separation is cssentially‘ what is achieved in two-
dimensional NMR.

We have seen that a spin-echo experiment refocuses spins that are in a constant
environment. Hence, if two spins are in environments with different chemical shifts, they
will be refocused and a single line will be obtained. That is, we can eliminate chemical shifts
from a spectrum. Since we saw earlier that we can also remove the effects of spin-spin
coupling by decoupling techniques, we can separate the two contributions to the spectrum,
In practice, a clever choice of pulses and Fourier transformation techniques makes it possible
to display spin coupling in one dimension and the chemical shifts in another, and so greatly
simplify the appearance of a spectrum.

Much modern NMR work makes use of correlation spectroscopy (COSY) in which the
basic pulse sequence js 90;—t, —902—acquire (,). A series of acquisitions is taken with a
variable delay #,, much as in a spin-echo experiment. The double Fourier transform is then
performed on the real time-domain variable 1, and then on the interferograms arising from
the time delay ,. A typical outcome for an AX system is shown in Fig. 18.40: the diagram
shows contours of equal signal intensity.

The detailed analysis of the appearance of the cantour plot is quite difficult, and a simple
vector diagram of the processes involved cannot be given. However, the general rules of
interpretation are quite straightforward (in simple casés, at least). The peaks across the
diagonal constitute the normal four peaks of a one-dimensional NMR spectrum of an AX
system, so they add nothing new. The interesting information is in the off-diagonal peaks,
for they indicate that the protons to which they correlate by vertical and horizontal lines are
spin-spin coupled. Although this information is trivial in this AX system, it can be of
enormous help in the interpretation of more complex spectra. A complex spectrum that
would be impossible 10 interpret in one-dimensional NMR can be interpreted reasonably
rapidly by two-dimensional NMR. The techniques themselves are described in the books
listed in Further reading at the end of the chapter.

18.9 Solid-state NMR

The principal difficulty with the application of NMR to salids is the low resolution that is
characteristic of solid samples. Nevertheless, there are good reasons for seeking to overcome
these difficulties. They include the possibility that a compound of interest is unstable in
solution or that it is insoluble, so conventional solution NMR cannot be employed. Moreover,
many species are intrinsically interesting as solids, and it is important to determine their
structures and dynamics. Synthetic polymers are particularly interesting in this regard, and
information can be obtained about the arrangement of molecules, their conformations, and
the motion of different parts of the chain. This kind of information is crucial to an
interpretation of the bulk properties of the polymer in terms of its molecular characteristics.
Similarly, inorganic substances, such as the zeolites that are used as molecular sieves and
shape-selective catalysts, can be studied using solid-state NMR, and structural problems can
be resolved that cannot be tackled by X-ray diffraction. '

Problems of resclution and linewidth are not the only features that plague NMR studies
of solids. Because molecular rotation has almost ceased (except in special cases, including
‘plastic crystals’ in which the molecules continue to tumble), spin-lattice relaxation times
are very long but spin-spin relaxation times are very short. Hence, in a pulse experiment,
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there need to be lengthy delays—of several seconds—between successive puises so that the
spin system has time to revert to equilibrium. Even gathering the murky information may
therefore be a lengthy process. Moreover, because lines are so broad, very high powers of
radiofrequency radiation may be required to achieve saturation. Whereas solution pulse
NMR uses transmitters of a few tens of watts, solid-state NMR may require transmitters
rated at several hundreds of watts.

\

(a) The origins of linewidths in solids

Theré are two principal contributions to the linewidths of solids. One is the direct magnetic
dipolar interaction between nuclear spins. As we saw in the discussion of spin-spin coupling,
a nuclear magnetic moment will give rise to a local magnetic field

h
By = — 5205 (1 - 30057 6) (34)

Unlike in solution, this field is not motionally averaged to zero. Many nuclei may contribute
to the total local field experienced by a nucleus of interest, and different nuclei in a sample
may experience a wide range of fields. Typical dipole-dipole fields are of the order of 1072 T,

'which corresponds to splittings and linewidths of the order of 10 Hz.

A second source of linewidth is the anisotropy of the chemical shift. We have seen that
chemical shifts arise from the ability of the applied.field to generate electron currents in
molecules. In general, this ability depends on the arientation of the molecule relative to the
applied field. In solution, when the molecule is tumbling rapidly, anly the average value of
the chemical shift is relevant. However, the anisotropy is not averaged to zero for stationary
molecules in a solid, and molecules in different orientations have resonances at different
frequencies. The chemical shift anisofropy also varies with the angle between the applied
field and the principal axis of the molecule as 1 - Jcos? 0.

(b) The reduction of linewidths

Fortunaiely, there gre techniques available for reducing the linewidths of solid samples. One
technigue, magic-angle spinning (MAS), takes note of the 1 — 3 cos” @ dependence of both
the dipole-dipole interaction and the chemical shift anisotropy. The ‘magic angle’ is the
angle at which 1 — 3cos? @ = 0, and corresponds to 54.74°. In the technique, the sample is
spun at high speed at the magic angle to the applied field (Fig. 18.41). All the dipolar
interactions and the anisotropies average to the value they would have at the magic angle,
but at that angle they are zero. The difficulty with MAS is that the spinning frequency must
not be less than the width of the spectrum, which is of the order of kilohertz. However, gas-
driven sample spinners that can be rotated at up to 25 kHz are now routinely available, and
a considerable body of work has been done.

The saturation and pulse techniques that we have described earlier in this section may
also be used to reduce linewidths. The dipolar field of protons, for instance, may be reduced
by a decoupling procedure. However, because the range of coupling strengths is so large,
radiofrequency power of the order of 1 kW is required. Elaborate pulse sequenceShave also
been devised that reduce linewidths by averaging procedures that make use of twisting the
magnetization vector through an elaborate series of angles.

37—B
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18.42 Electron spin levels in a magnetic ficld. Note  18.43 The layout of an ESR spectrometer. A typical
that the B state is lower in energy than the a state magnetic field is 0.3 T, which requires 9 GHz
(because the magnetogyric ratig of an electron is (3 cm) microwaves for resonance.

negative). Resonance is achieved when the

frequency of the incidens radiation matches the

frequency corresponding to the energy separation.

Electron spin resonance
The energy levels of an electron spin in a magnetic field B (Fig. 18.42) are
Em. = Bt Bm, m; = :t% (35)

where ug is the Bohr magneton and g, = 2.0023 (Section 13.10a). This equation shows that
the energy of an « electron (m, = + ) increases and the energy of a f§ electron (m, = — 3
decreases as the field is increased, and that the separatior of the levels is

AE =Eg —E, = g ugB - (36)

When the sample is exposed to electromagnetic radiation of frequency v, resonant
absorption occurs when the resonance condition

hv = g ugB (37)

is fulfilled. Electron spin resonance (ESR), or electron paramagnetic resonance (EPR), is the
study of molecules and ions containing unpaired electrons by observing the magnetic fields
at which they come inta resonance with monochromatic radiation. Magnetic fields of about
0.3 T (the value used in most commercial ESR spectrometers) correspond to resonance with
an electromagnetic field of frequency 10 GHz (10" Hz) and wavelength 3 cm. Because
3 cm radiation falls in the X-band of the microwave region of the electromagnetic
spectrum, ESR is a microwave technique.

The layout of an ESR spectrometer is shown in Fig. 18.43. It consists of a microwave
source (a kiystron), a cavity in which the sample is inserted in a-glass or quartz container, a
microwave detector, and an electromagnet with a field that can be varied in the region of
0.3 T. The ESR spectrum is obtained by monitoring the microwave absorption as the field is
changed, and a typical spectrum (of the benzene radical anion, CgHg) is shown in Fig. 18.44,
The peculiar appearance of the spectrum, which is in fact the first derivative of the
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absorption, arises from the detection technique, which is sensitive to the slope of the
absorption curve (Fig. 18.45). ) ’

The sample must possess unpaired electron spins, so ESR is less widely applicable than
NMR. It is used to study radicals formed during chemical reactions or by radiation, many d-
metal complexes, and molecules in triplet states (such as those involved in phosphorescence,
Section 17.3b). It is insensitive to normal, spin-paired molecules. The sample may be a gas, a
liquid, or a solid, but the free rotation of molecules in the gas phase gives rise to
complications. .

18.10 The g-value

As in NMR, the spin magnetic moment interacts with the local magnetic field, and the
resonance condition is normally written

hv = gugB - (38)

where g is the g-value of the radical or complex.

lllustration

......................................................................................

The centre of the ESR spectrum of the methyl radical occurred at 329.40 mT in a
spectrometer operating at 9.2330 GHz. Its g-value is therefore

_ hv (6.62608 % 107 J5) x (9.2330 x 10° s71)

e = 2.0027
1B (9.2740 x 1024 JT~') % (0.32940 T)

Comment Many organic radicals have g-values close to 2.0027; inorganic radicals have g-
values typically in the range 1.9 to 2.1; d-metal complexes have g-values in a wider range
(for example, 0 to 4).

Self-test 18.4 At what magnetic field would the methyl radical come into resonance in a
spectrometer operating at 9.468 GHz?
[337.8 mT]

The deviation of g from g, = 2.0023 depends on the ability of the applied field to induce
local electron currents in the radical, and therefore its value gives some information about
electronic structure. However, because g-values differ very little from g, in many radicals
(for example, 2.003 for H, 1.999 for NO,, 2.01 for C10,), its main use in chemical applications
is to aid the identification of the species present in a sample.

18.11 Hyperfine structure

The most important feature of ESR spectra is their hyperfine structure, the splitting ‘of
individual resonance lines into components. In general in spectroscopy, the term ‘*hyperfine
structure’ means the structure of a spectrum that can be traced to interactions of the
electrons with nuclei other than as a result of the latter’s point electric charge. Thegource of
the hyperfine structure in ESR is the magnetic interaction between the electron spin and the
magnetic dipole moments of the nuclei present in the radical. ’

(a) The effects of nuclear spin

Consider the effect on the ESR spectrum of a single H nucleus-located somewhere in a
radical. The proton spin is a source of magnetic field and, depending on the orientation of
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18.45 When phase-sensitive detection is used, the  18.46 The hyperfine interaction between an

signal is the first derivative of the absorption clectron and a spin-} nucleus results in four energy
intensity. (a) The absorption; (b) the signal, the levels in place of the original two. As a result, the
slope of the absorption signal at each point. Note  spectrum consists of two lines (of equal intensity)
that the peak of the absorption corresponds to instead of one, The intensity distribution can be
the point where the derivative passes through summarized by a simple stick diagram. The

zero, . diagonal lines show the energies of the states as

the applied field is increased, and resonance occurs
when the separation of states matches the fixed
energy of the microwave photon,

the nuclear spin, the field it generates adds to or subtracts from the applied field. The total
local field is therefore
Bo=B+am m=+1 (39)

where a is the hyperfine coupling constant. Half the radicals in a sample have m; = +1, so
half resonate when the applied field satisfies the condition

hu=g}lg(3+%a), 0rB=h—u—£ﬂ (40a)
8l
The other half (which have m; = — }) resonate when
h
hy = gug (B ~ 1a), orB=—+ ja (40b)
8hp

Therefore, instead of a single line, the spectrum shows two lines of half the original intensity
separated by a and centred on‘the field determined by g (Fig. 18.46).
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If the radical contains an "N atom (J/ = 1), its ESR spectrum consists of three lines of
equal intensity, because the "*N nucleus has three possible spin orientations, and each spin
orientation is possessed by one-third of all the radicals in the sample. In ‘gengral, a spin-/
nucleus splits the spectrum into 2/ + 1 hyperfine lines of equal intensity.

When there are several magnetic nuclei present in the radical, each one contributes to the
hyperfine structure. In the case of equivalent protons (for example, the two CH, protons in the
radical CH,CH,) some of the hyperfine lines are coincident. It is not hard to show that, if the
radical contains N equivalent protons, then there are N + 1 hyperfine lines with a binomial
intensity distribution (that is, the intensity distribution given by Pascal's triangle). The
spectrum of the benzene radical anion in Fig. 18.44, which has seven lines with intensity ratio
1:6:15:20:15:6: 1, is consistent with a radical containing six equivalent protons.

Example 18.4 Predicting the hyperfine structure of an ESR spectrum

A radical contains one "N nucleus (/ = 1) with hyperfine constant 1.61 mT and two
equivalent protons (f = 1) with hyperfine constant 0.35 mT. Predict the form of the ESR
spectrum.

Method We should consider the hyperfine structure that arises from each type of nucleus
or group of equivalent nuclei in succession. So, split a line with one nucleus; then each of
those lines is split by a second nucieus (or group of nuclei), and so on. It is best to start with
the nucleus with the largest hyperfine splitting; however, any choice could be made, and the
order in which nuclei are considered does not affect*the conclusion.

Answer The "N nucleus gives three hyperfine lines of equal intensity separated by
1.61 mT. Each line is split into doublets of spacing 0.35 mT by the first proton, and each
line of these doublets is split into doublets with the same 0.35 mT splitting (Fig. 18.47). The
central lines of each. split doublet coincide, so the proton splitting gives 1: 2 : | triplets of
internal splitting 0.35 mT. Therefore, the spectrum consists of three equivalent 1:2:1
triplets.

Comment Often it is quicker to realize that a group of equivalent protons gives a
characteristic hyperfine pattern (two giving a 1:2:1 tnplet in this case), and to
superimpose the patterns dlrectly

e 5 i B v . e o e B B e cecammessssssmssssmessmce=aenny e

Self-test 18.5 Predict the form of the ESR spectrum of a radical containing three

equivalent "*N nuclei.
[Fig. 18.48] -

The hyperfine structure of an ESR spectrum is a kind of fingerprint that heips to identify
the radicals present in a sample. Moreover, because the magnitude of the splitting depends
on the distribution of the unpaired electron near the magnetic nuclei present, the spectrum
can be uszd to map the molecular orbital occupied by the unpaired electron. For example,
because the hyperfine splitting in C4Hg is 0.375 mT, and one proton is close to a C atom
with one-sixth the unpaifcd electron spin density (because the electron is spread uniformly
around the ring), the hyperfine splitting caused by a proton in the electron spim entirely
confined to a single adjacent C atom should be 6 x 0.375 mT = 2.25 mT. If in another
aromatic radical we find a hyperfine splitting constant a, then the spin density, p, the

* probability that an unpaired electron is on the atom, can be calculated from the McConnell

equation:

a=Qp (a1)
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Table 18.2° Hyperfine coupling constants for
atoms, a/mT

Nuclide Isotropic Anisotropic
coupling coupling

'H 50.8(1s)

H 7.8(1s)

“N 55.2(2s) 3.4(2p)

i & 1720(2s) 108.4(2p)

*More values are given in the Data section.
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with Q = 2.25 mT. In this equation, p is the spin density on a C atom and a is the hyperﬁnc
splitting observed for the H atom to which it is attached.

Illustratmn

The hyperfine structure of the ESR spectrum of the radical anion (naphthalene)™ can be
interpreted as arising from two groups of four equivalent protons. Those at the 1,4, 5, and
8 positions in the ring have a = 0.490 mT and those in the 2, 3, 6, and 7 positions have
a = 0.183 mT. The densities obtained by using the Mchnncll equation are 0.22 and 0.08,
respectively (5).

Self-test 18.6 The spin density in (anthracene)™ is shown in (6). Predict the form of its
ESR spectrum. g

[A1:2:1 triplet of splitting 0.43 mT splitintoa 1:4:6:4: | quintet of

splitting 0.22 mT, split intoa 1 : 4: 6: 4 : 1 quintet of

splitting 0.11 mT, 3x 5x 5 =75 lines in all)

(b) The origin of the hyperfine interaction

The hyperfine interaction is an interaction between the magnetic moments of the unpaired
electron and the nuclei. There are two contributions to the interaction.

An electron in a p orbital does not approach the,nucleus very closely, so it experiences a
field that appears to arise from a point magnetic dipole. The resulting interaction is called
the dipole-dipole interaction. The contribution of a magnetic, nucleus to the local field
experienced by the unpaired electron is given by an expression like that in eqn 34. A
characteristic of this type of interaction is that it is anisotropic: that is, its magnitude (and
sign) depends on the orientation of the radical with respect to the applied field.
Furthermore, just as in the case of NMR, the dipole-dipole interaction averages to zero
when the radical is free to tumble. Therefore, hyperfine structure due to the dipole-dipole
interaction is observed only for radicals trapped in solids.

An s electron is spherically distributed around a nucleus and so has zero average dipole-
dipole interaction with the nucleus even in a solid sample. However, because an s electron
has a nonzero pFobabiIity of being at the nucleus, it is incorrect to treat the interaction as
one between two point dipoles. An s electron has a Fermi contact interaction with the
nucleus, which as we saw in Section 18.4d is a magnetic interaction that occurs when the
point dipole approximation fails. The contact interaction is isotropic (that is, independent of
the radical's orientation), and consequently is shown even by rapidly tumbling molcculcs in
fluids (provided the spin density has some s-character).

The dipole-dipole interactions of p electrons and the Fermi contact interaction of s
electrons can be quite large. For example, a 2p electron in a nitrogen atom experiences an
average field of about 3.4 mT from the "N nucleus. A 1s electron in a hydrogen atom
experiences a field of about 50 mT as a result of its Fermi contact interaction with the
central proton. More values are listed in Table 18.2. The magnitudes of the contact
interactions in radicals can be interpreted in terms of the s orbital character of the molecular
orbital occupied by the unpaired electron, and the dipole-dipole interaction can be
interpreted in terms of the p character. The analysis of hyperfine structure therefore gives
information about the composition of the orbital, and especially the hybridization of the
atomic orbitals (see Problem 18.6).

We still have the source of the hyperfine structure of the CgHg anion and other aromatic
radical anions to explain. The sample is fluid, and as the radicals are tumbling the hyperfine
structure cannot be due to the dipole-dipole interaction. Moreover, the protons lie in the
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effective coupling between the unpaired electron and

the proton,

(a) Low energy

V¥ Pauli

Farmi

(b) High energy

nodal plane of the = orbital occupied by the unpaired electron, so the structure cannot be
due to a Fermi contact interaction. The explanation lies in a polarization mechanism similar
to the one responsible for spin-spin coupling in NMR. There is a magnetic interaction
between a proton and the o electrons which results in one of the electrons tending to be
found with a greafer probability nearby (Fig. 18.49). The electron with opposite spin is
therefore more likely to be close to the C atom at the other end of the bond. The unpaired
electron on the C atom has a lower energy if it is parallel to that electron (Hund's rule
favours parallel electrons on atoms), so the unpaired electron can detect the spin of the
proton indirectly. Calculation using this model Ieads to a hyperfine interaction in agreement
with the observed value of 2.25 mT.

Checklist of key ideas

Nuclear magnetic resonance

18.1 Nuclear magnetic
moments

[J spin-{ nuclei

18.2 The energies of nuclei in
magnetic fields

magnetogyric ratio

nuclear g-factor

nuclear magneton

Larmor frequency

resonance condition (6)

nuclear magnetic resonance
(NMR) -

LAagooo

18.3 The chemical shift
shielding constant
chemical shift (10)
deshielded nuclej
integration .
local contribution -
neighbouring group
contribution

solvent contribution

O O008000m

(] diamagnetic contribution
[] paramagnetic contribution
{C] Lamb formula (14)

[ ring current

18.4 The fine structure

fine structure

scalar coupling constant
Karplus equation (21)
polarization mechanism
Fermi contact interaction
chemically equivalent
nuclei

magnetically equivalent
nuclei

first-order spectra
strongly coupled spectra
heteronuclear spin system
homonuclear spin system
dilute-spin species
abundant-spin species
proton decoupling

gutuoo g goooog

Pulse techniques in NMR
[ Fourier-transform NMR

18.5 The magnetization vector
[ magnetization

{"] precessing

"} 90° pulse

{_] free-induction decay (FID)

18.6 Linewidths and rate
processes

] spin relaxation

[ longitudinal relaxation time

[ spin-lattice relaxation time

transverse relaxation time

spin-spin relaxation time

inhomcgeneous broadening

effective transverse

relaxation time (31)

chemical exchange

inversion recovery technique

spin echo

spin packet

refocused

1 66 i (i

aoco

18.7 The nuclear Overhauser
effect
[] nuclear Overhauser effect
(NOE)

18.8 Two-dimensional NMR
] two-dimensional NMR

O correlation spectroscopy
(Cosy)

18.9 Solid-state NMR
[ magic-angle spinning (MAS)

Electron spin resonance

[J electron spin resonance
(ESR)

[J electron paramagnetic
resonance (EPR)

[] resonance condition (38)

18.10 The g-value
0 g-value

18.11 Hyperfine structure

[J hyperfine structure

[ hyperfine coupling constant
[J spin density

(0 McConnell equation (41)

[0 dipole-dipole intéraction
[J polarization mechanism



FURTHER READING

563

Further reading

Articles of general interest

R.H. Orcutt, A straightforward way to determine relative
intensities of spin-spin splitting lines of equivalent nuclei in
NMR spectra. J. Chem. Educ. 64, 763 (1987).

T.D. Lash and S.S. Lash, The use of Pascal-like triangles in
describing first-order coupling patterns. J. Chem. Educ. 64, 315
(1987).

T.A. Shaler, Generalization of Pascal's triangle to nuclei of any
spin. J. Chem. Educ. 68, 853 (1991).

LJ. Schwartz, A step-by-step picture of pulsed (time-domain)
NMR. J. Chem. Educ. 65, 959 (1988); idem, 752.

M.-K. Ahn, A comparison of FINMR and FTIR techniques. J.
Chem. Educ. 66, 802 (1989).

D.J. Wink, Spin-lattice relaxation times in 'H NMR
spectroscopy. J. Chem. Educ. 66, 810 (1989).

R.W. King and K.R. Williams, The Fourier transform in
chemistry. Part 1. Nuclear magnetic resonance: introduction. J.
Chem. Educ. 66, A213 (1989); Part 2. Nuclear magnetic
resonance: the single pulse experiment. Ibid. A243; Part 3.
Multiple-puise experiments. J. Chem. Educ. 67, A9 (1990); Part
4. NMR: two-dimensional methods. Ibid. A125; A glossary of
NMR terms. /bid. A100..

R. Freeman, Selective excitation in high-resolution NMR. Chem.
Rev. 91, 1397 (1991).

D.H. Grant, Paramagnetic susceptibility by NMR: the “solvent’
correction” reexamined. J. Chem. Educ. 72, 39 (1995).

B.E. Mann, The analysis of first-order coupling patterns in NMR.
J. Chem. Educ. 72, 614 (1995).

J.C. Paniagua and A. Moyano, On the, way of introducing some
basic NMR aspects: from the classical and naive quantum
madels to the density-operator approach. J. Chem. Educ. 73,
310 (1996). _

LR. Dalton, A. Bain, and C.K. Westbrook, Recent advances in
electron paramagnetic resonance. Ann. Rev. Phys. Chem. 41,
389 (1990).

B.H. Suits, Magnetic resonance spectrometers. In Encyclopedia
of applied physics (ed. G.L Trigg), 9, 71. VCH, New York (1994).

R.G. Barnes, Electron paramagnetic resonance. In Encyclopedia

of applied physics (ed. G.L Trigg), 5, 475. VCH, New York
(1993).

Texts and sources of data and information

P.J. Hore, Nuclear magnetic resonance, Oxford Chemistry
Primers. Oxford University Press (1995).

RJ. Abraham, J. Fisher, and P. Lofthus, Introduction to NMR
spectroscopy. Wiley, New York (1991). ‘

R.K. Harris, Nuclear magnetic resonance spectroscopy.
Longman, London (1986).

AE. Derome, Modern NMR techniques for chemistry research.
Pergamon, Oxford (1987).

LKM. Sanders and B.K. Hunter, Modern NMR spectroscapy.
Oxford University Press (1993).

J.K.M. Sanders, E.C. Constable, and B.K. Hunter, Modern NMR

spectroscopy: a workbook of chemical problems. Oxford
University Press (1993).

R. Freeman, A handbook of nuclear magnetic resonance
spectrocopy. Longman, London (1997). +

R. Freeman, Spin choreography: basic steps in high resolution
NMR. Spektrum, Oxford (1997).

H. Giinther, NMR spectroscopy: basic principles, concepts, and
applications in chem'_r‘stry. Wiley, New York (1995).

D. Canet, Nuclear magnetic resonance: concepts and methods.
Wiley, New York (1996).

LN.S. Evans, Biomolecular NMR spectroscopy. Oxford University
Press (1995).

EAV. Ebsworth, D.W.H. Rankin, and S. Cradock, Structural
methods in inorganic chemistry. Blackwell Scientific, Oxford
(1991).

R. Drago, Physical methods for chemists. Saunders, Philadelphia
(1992).

D.M. Grant and R.K. Harris (ed.), Encyclopedia of nuclear
magnetic resonance, Vols 1-8. Wiley, New York (1996).

N.M. Atherton, Principles of electron spin resonance. Ellis
Horwood/Prentice-Hall, Hemel Hempstead (1993).



564

18 SPECTROSCOPY 3

Exercises

18.1 (a) What is the resonance frequency of a proton in a magnetic
field of 14.1 T7

18.1 (b) What is the resonance frequency of a '°F nucleus in a
magnetic field of 16.2 T?

18.2 (a) S has a nuclear spin of 3 and a nuclear g factor of 0.4289.
Calculate the energies of the nuclear spin states in a magnetic field of
7.500 T.

18.2 (b) "N has a nuclear spin of 1 and a nuclear g fact®r of 0.404.
Calculate the energies of the nuclear spin states in a magnetic field of
11.50 T.

18.3 (a) Calculate the frequency separation of the nuclear spin levels
of a "C nucleus in a magnetic field of 14.4 T given that the
magnetogyric ratio is 6.73 x 107 T~'s™".

18.3 (b) Calculate the frequency separation of the nuclear spin levels
of a "N nucleus in a magnetic field of 154 T given that the
magnetogyric ratio is 1.93 x 107 T-'s~1.

18.4 (a) In which of the following systems is the energy level
separation the largest: (a) a proton in a 600 MHz NMR spectrometer,
(b} 2 deuteron in the same spectrometer? '

18.4 (b) In which of the following systems is the energy level
separation the largest: (a) a "N nucleus in a 600 MHz NMR
spectrometer, (b) an electron in a radical in a fieid of 0.300 T?

18.5 (a) Calculate the energy difference between the lowest and
highest nuclear spin states of a "N nucleus in a 15.00 T magnetic field.

18.5 (b) Calculate the magnetic field needed to satisfy the resonance
condition for unshielded protons in a 150.0 MHz radiofrequency field.

18.6 (a) Use Table 18.1 to predict the magnetic fields at which (a)
TH, (b) 2H, (c) '*C come into resonance at (i) 250 MHz, (ii) 500 MHz.

18.6 (b) Use Table 18.1 to predict the magnetic fields at which (al
N, (b) "F, and (c) *'P come into resonance at (i) 300 MHz, (ii)
750 MHz.

18.7 (a) Calculate the relative population differences (SN/N) for
protons in fields of (a) 0.30 T, (b) 1.5 T, and (c) 10 T at 25°C.

18.7 (b) Calculate the relative population differences (5N /N) for *C
nuclei in fields of (a) 0.50 T, (b) 2.5 T, and (c) 15.5 T at 25°C.

18.8 (a) The first generally available NMR spectrometers operated at
a frequency of 60 MHz; today it is not uncommon to use a
spectrometer that operates at 600 MHz. What are the relative
population differences of '*C spin states in these two spectrometers
at 25°C?

18.8 (b) What are the relative values of the chemical shifts observed

for nuclei in the spectrometers mentioned in Exercise 18.8a in terms
of (a) 6 values, (b) frequencies?

18.9 (a) The chemical shift of the CH, protons in acctaldehyde
(ethanal) is & = 2.20 and thaf of the CHO proton is 9.80. What is the
difference in local magnetic field between the two regions of the
molecule when the applied field is (2) 1.5 T, (b) 15 T?

18.9 (b) The chemical shift of the CH; protons in diethyl ether is
& =1.16 and that of the CH, protons is & = 3.36. What is the
difference in local magnetic field between the two regions of the
molecule when the applied field is (a) 1.9 T, [b) 16.5 T?

18.10 (a) Sketch the appearance of the 'H-NMR spectrum of
acetaldehyde [ethanal) using /=290 and the data in
Exercise 18.9a in a spectrometer operating at (a) 250 MHz, (b)
500 MHz. ,

18.10 (b) Sketch the appearance of the "H-NMR spectrum of diethyl
ether using J =6.97 Hz and the data in Exercise 18.9b in a
spectrometer operating at (a) 350 MHz, (b) 650 MHz.

18.11 (a) Two groups of protons are made equivalent by the
isomerization of a fluxional molecule. At low temperatures, where
the interconversion is slow, one group has & = 4.0 and the other has
§ = 5.2. At what rate of interconversion will the twa signals merge in
& spectrometer operating at 250 MHz?

18.11 (b) Two groups of protons are made equivalent by the
isomerization of a fluxional molecule. At low temperatures, where
the interconversion is slow, one group has § = 5.5 and the other has
& = 6.8. At what rate of interconversion will the two signals merge in
a spectrometer operating at 350 MHz?

18.12 (a) Sketch the form of the 'F-NMR spectra of a natural
sample of tetrafluoroborate ions, BF;, allowing for the relative
abundances of "°BF; and ''BF;. :

18.12 (b) From the data in Table 18.1, predict the frequency needed
for 'P-NMR in an NMR spectrometer designed to observe proton
resonance at 500 MHz. Sketch the proton and 3'P resonances in the
NMR spectrum of PH; .

18.13 (a) Sketch the form of an A;M, X, spectrum, where A, M, and
X are protons with distinctly different chemical shifts and
Jam = ax > Iux

18.13 (b) Sketch the form of an }\,szs spectrum, where A, M,
and X are protons with distinctly different chemical shifts and
JAM >JrAx >‘.'Mx. L
18.14 (a) Which of the following molecules have sets of nuclei that
are chemically but not magnetically equivalent: (a) CH,CH,, (9!
CH,=CH,? sl

18.14 (b) Which of the following molecules have sets of nuclei that
are chemically but not magnetically equivalent: (a) CH,=C==CF,, (b)
cis- and trans-[Mo(CO),(PH;),]?

18.15 (a) The duration of a 90° or 180° pulse depends on the
strength of the B, field. If a 90° pulse requires 10 us, what is the
strength of the B, field? How long would the corresponding 180°
pulse require? ’

18.15 (b) The duration of a 90° or 180° pulse depends on the
strength of the B, field. T a 180° pulse requires 12.5 ps, what is the
strength of the B, field? How long would the corresponding 90° pulse
require?
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18.16 (a) What magnetic field would be required in order to use an
ESR X-band spectrometer (9 GHz) to observe 'H-NMR and a
300 MHz spectrometer to observe ESR?

18.16 (b) Some commercial ESR spectrometers use 8 mm microwave
radiation (the Q band). What magnetic field is needed to satisfy the
resonance condition?

18.17 (a) The centre of the ESR spectrum of atomic hydrogen lies at
329,12 mT in a spectrometer operating at 9.2231 GHz. What is the
g-value of the atom?

18.17 (b) The centre of the ESR spectrum of atomic deuterium lies at
330.02 mT in a spectrometer operating at 9.2482 GHz. What is the
g-value of the atom?

18.18 (a) A radical containing two equivalent protons shows a
three-line spectrum with an intensity distribution 1: 2 : 1. The lines
occur at 330.2 mT, 332.5 mT, and 334.8 mT. What is the hyperfine
coupling constant for each proton? What is the g-value of the radical
given that the spectrometer is operating at 9.319 GHz?

18.18 (b) Aradical containing three equivalent protons shows a four-
line spectrum with an intensity distribution 1 : 3 : 3 : 1. The lines occur
at 331.4 mT, 333.6 mT, 335.8 mT, and 338.0 mT. What is the
hyperfine coupling constant for each proton? What is the g-value of
the radical given that the spectrometer is operating at 9.332 GHz?

18.19 (a) A radical. containing two inequivalent protons with
hyperfine constants 2.0 mT and 2.6 mT gives a spectrum centred

on 332.5 mT. At what fields do the hyperfine lines occur and what are

their relative intensities?
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18.19 (b) A radical containing three inequivalent protons with
hyperfine constants 2.11 mT, 2.87 mT, and 2.89 mT gives a
spectrum centred on 332.8 mT. At what fields do the hyperﬁnc
lines occur and what are their relative intensities?

18.20 (a) Predict the intensity distribution in the hyperfine lines of
the ESR spectra of (a) -CH,, (b) -CD,.

18.20 (b) Predict the intensity distribution in the hyperfine lines of
the ESR spectra of (a) -CH,CH;, (b) -CD,CD,.

18.21 (a) The benzene radical anion has g = 2.0025. At what field
should you search for resonance in a spectrometer operating at (a)
9.302 GHz, (b) 33.67 GHz?

18.21 (b) The naphthalene radical anion has g = 2.0024. At what
field should you search for resonance in a spectrometer operating at
(a) 9.312 GHz, (b) 33.88 GHz?

18.22 (a) The ESR spectrum of a radical with a single magnetic
nucleus is split into four lines of equal intensity. What is the nuclear
«spin of the nucleus?

18.22 (b) The ESR spectrum of a radical with two equivalent nuclei
of a particular kind is split into five lines of intensity ratio
1:2:3:2: 1. What is the spin of the nuclei?

18.23 (a) Sketch the form of the hyperfine structures of radicals XH,
and XD,, where the nucleus X has [ = 5 -

18.23 (b) Sketch the form of the hyperfine structures of radicals XH,
and XD, where the nucleus X has 4’r =

Problems

Numerical problems

18.1 A scientist investigates the possibility of neutron spin
resonance, and has available a commercial NMR spectrometer
operating at 300 MHz. What field is required for resonance? What
is the relative population difference at room temperature? Which is
the lower energy spin state of the neutron?

18.2 Two groups of protons have § =4.0 and 6 =5.2 and are
interconverted by a conformational change of a fluxional molecule. In
a 60 MHz spectrometer the spectrum collapsed into a single line at
280 K but at 300 MHz the collapse did not occur until the
temperature had been raised to 300 K. What is the agtivation
energy of the interconversion?®

18.3 The angular NO, molecule has a single unpaired electron and
can be trapped in a solid matrix or prepared inside a nitrite crystal by
radiation damage of NO7 ions. When the applied field is parallel to
the 0O direction the centre of the spectrum lies at 333.64 mT in a
spectrometer operating at 9.302 GHz When the field lies.aicy the
bisector of the ONO angle, the resonance lies at 331.94 mT. What are
the g-values in the two osentations?

18.4 The hyperfine coupling constant in -CH, is 2.3 mT. Use the
information in Table 18.1 to predict the splitting between the

hyperfine lines of the spectrum of -CD;. What are the overall widths
of the hyperfine spectra in each case?

18.5 The p-dinitrobenzene radical anion can be prepared by
reduction of p-dinitrobenzene. The radical anion has two equivalent
N nuclei {f = 1) and four equivalent protons. Predict the form of the
ESR spectrum using a(N) = 0.148 mT and a(H) = 0.112 mT.
18.6 The hyperfine coupling constants observed in the radical anions
(7). (8), and (9) are shown (in mT). Use the value for the benzene
radical anion to map the probability of finding the unpaired electron
in the n urbltal on each C atom.

NO,
0112,
0.011 0272 0112 00:::
0.172 0011 O 103
0.172 p.as0  NO:
7 8 9
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Theoretical problems

18.7 The z-component of the magnetic field at a distance K from a
magnetic moment parallel to the z-axis is given by eqn 22. In a
solid, a proton at a distance R from another can experience such a
field and the measurement of the splitting it causes in the
spectrum can be used to calculate R. In gypsum, for instance, the
splitting in the H,0 resonance can be interpreted in terms of a
magnetic field of 0.715mT generated by one proton and
experienced by the other. What is the separation of the protons
in the H,0 molecule?

18.8 In a liquid crystal, a melecule might not rotate freely in all
directions and the dipolar interaction might not average to zero.
Suppose a molecule is trapped so that, although the vector separating
two protons may rotate freely around the z-axis, the colatitude may
vary only between 0 and @. Average the dipolar field over this
restricted range of orientations and confirm that the average vanishes
when ' = n (corresponding to rotation over an entire sphere). What
is the average value of the lacal dipolar field for the H,0 molecule in
Problem 18.7 if itgs dissolved in a liquid crystal that enables it to
rotate up to & = 30°?

18.9 The shape of a spectral line, T(w), is related to the free
induction decay signal G(r) by

an
T(w) = aRe/ G(f)e dr -
0

where a is a constant and 'Re' means take the real part of what
follows. Calculate the lineshape corresponding to an oscillating,
decaying function G(t) = cos wyre~"/".

18.10 In the language of Problem 18.9, show that, if
G(t) = (acosw,r + bcos wyf)e ™", then the spectrum consists of
two lines with intensities proportional to a and b and located at
w = @, and w,, respectively.

Additional problems supplied by Carmen Giunte
and Charles Trapp -

18.11 Suppose that the FID in Fig. 18.30 was recorded in a 300 MHz
spectrometer, and that the interval between maxima in the
oscillations in the FID is 0.10 s. What is the Larmor frequency of
the nuclei and the spin-spin relaxation time?

18.12 In a classical study of the application of NMR to the
measurement of rotational barriers in molecules, P.M. Nair and J.D.
Roberts (L Am. Chem. Soc. 79, 4565 (1957)) obtained the
40 MHz '9F-NMR spectrum of F,BrCCBrCl,. Their spectra are
reproduced in Fig. 18.50. At 193 K, the spectrum shows five
resonance peaks. Peaks | and Ill are separated by 160 Hz, as are IV
and V. The ratio of the integrated intensities of peak Il to peaks I, 11l, IV,

18 SPECTROSCOPY 3

0°C

Increasing magnetic field —>

Fig. 18.50

and V is approximately 10 to 1. At 273 K, the five peaks have
collapsed into one. Explain the spectrum and its change with
temperature. At what rate of interconversion will the spectrum
collapse to a single line? Calculate the rotational energy barrier
between the rotational isomers on the assumption that it is related to
the rate of interconversion b::twecn the isomers.

1B.13 Various versions of the Karplus equation (eqn 21) have been
used to correlate data on vicinal proton coypling constants in systems
of the type R,R,CHCHR,R,. The original version, (M. Karplus, J. Am,
Chem. Soc. 85, 2870 (1963)), is *Jyy = Acos® ¢y + B. When
Ry=R,=H, 3y =73Hz; when Ry=CH; and R,=H,
3Jyn = 8.0 Hz; when Ry = R, = CH,, *Jjyy = 11.2 Hz. Assume that
only staggered conformations are important and determine ‘which
version of the Karplus equation fits the data better.

18.14 It might be unexpected that the Karplus equation, which was
first derived for *J coupling constants, should also apply to vicinal
coupling between the nuclei of metals such as tin. T.N. Mitchell and
B. Kowall (Magn. Reson. Chem. 33, 325 (1995)) have studied the
relation between *Ji, and *Jg g, in compounds of the type
Me;SnCH,CHRSnMe; and find that *Js.s, = 78.86 2Jy, + 27.84Hz
(a) Does this result support a Karplus type equation for tin? Explain
your reasoning. (b) Obtain the Karplus equation for *Jg, and plot it
as a function of the dihedral angle. {c) Draw the preferred
conformation,

18.15 The relative sensitivity of NMR lines for equal numbers of
different nuclei at constant temperature for a given frequency is
R, o (I + 1)} whereas for a given field it is Rg oc {(7 + 1)/},
(a) From the data in Table 18.1, calculate these sensitivities for the
deuteron, 3C, N, '5F, and Y'P relative to the proton. (b) Derive the
equation for Ry from the equation for R,,.
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Statistical thermodynomics provides the link between the nueroscopic properties of matter
ond its bulk properties. Two key ideas ore introduced in (s chapter. The first is the
.Boltzmann distribution. This enormously impaortant result was descnbed in the Introduction,
where we saw that it can be used to predict the populutions of states. In Lhis chapler we see
its derivation in terms of the distribution of particles over ovailable states. The derivation
leads naoturally to the introduction of the partition function, which is the central mathe-
maticol concept of these two chuplers. We sec how L interpret the porlition function and
how to calculate it in a number of simple cases. The next part of the chapter shows how to
extract thermodynamic information from the partition function.

-In the final part of the chapter, we generalize the discussion to include systems that are
composed of assemblics of interacting particles. Very similar equations are developed to
those in the first part of the chapter, but they are much more widely applicable.

" The preceding chapters of this part of the text hove shown how the energy levels of
molecules can be calculated, determined spectroscopically, and related to their structures,
The next major step is to see how a knowledge of these energy levels can be used to account
for the properties of matter in bulk. To do so, we now introduce the concepts of statistical
thermodynamics, the link between molecular properties and bulk thermodynamic
properties.

The crucial step in going from the quantum mechanics of individual molecules to the
thermodynamics of bulk samples is to recognize that the latter deals with the average
behaviour of large numbers of molecules. For example, the pressure of a gas depends on the
average force exerted by its molecules, and there is no need to specify which molecules
happen to be striking the wall at any instant. Nor is it necessary to consider the fluctuations
in the pressure as different numbers of molecules collide with the wall at different moments.
The fluctuations in pressure are very small compared with the steady pressure: it is
highly improbable that there will be a sudden lull in the number of collisions, or a sudden
surge.
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This chapter introduces statistical thermodynamics in two stages..Jhe first, the derivation
of the Boltzmann distribution for individual particles, is of restricted applicability, but it has
the advantage of taking us directly to a result of central importance in a straightforward and
elementary way. We can use statistical thermodynamics once we have deduced the
Boltzmann distribution. Then (in Section 19.5) we extend the arguments to systems '
composed of interacting particles, '

The distribution of molecular states

We consider a closed system composed of N molecules. Although the total energy is
constant at £, it is not possible to be definite about how that energy is shared between the
molecules. Collisions result in the ceaseless redistribution of energy, not only between the
molecules but also among their different modes. The closest we can come to a description
of the distribution of energy is to report the population of a state, the average number of
molecules that occupy it, and to say that on average there are n; molecules in a state of
energy &;. The populations of the states remain almost constant, but the precise identities
of the molecules in each state may change at every collision.

The problem we addréss in this section is the calculation of the populations of states for
any type of molecule in any mode of motion at any temperature. The only restriction is that
the molecules should be independent, in the sense that the total energy of the system is a
sum of their individual energies. We are discounting (at this stage) the possibility that in a
real system a contribution to the total energy may arise from interactions between
molecules. We also adopt the principle of equal a priori probabilities,' the assumption that
all possibilities for the distribution of energy are equally probabie'. That is, we assume that
vibrational states of a certain enerqy, for instance, are as likely to be populated as rotational
states of the same energy.

19.1 Configurations and weights

Any individual molecule may exist in states with energies g, &, .. .. We shall always take &,
the lowest state, as the zero of energy (g; = 0), and measure all other energies relative to
that state. To obtain the actual internal energy, U, we may have to add a constant to the
calculated energy of the system. For example, if we are considering the vibrational
contribution to the internal energy, we must add the total zero-point energy of any
oscillators in the sample.

(a) Instantaneous configurations

At any instant there will be ny molecules in the state with energy &, n, with g;, anu so on.
The specification of the set of populations ng, ,, ... in the form {ny, n;, ...} is a statement
of the instantaneous configuration of the system. The instantaneous configuration
fluctuates with time because the populations change. We can picture a large number of
different instantaneous configurations. One, for example, might be {N,0,0,...},
corresponding to every molecule being in its ground state. Another might be
{N -2,2,0,0,...}, in which two molecules are in the first excited state. The latter
configuration is intrinsically more likely to be found than the former because it can be

1 A_wioc'im:ansmthvstDnMIWN‘asfaflsmkr;M.w:mmmtoprhmwmhmk:ﬂmﬂﬁﬂmhm
equally likely to be occupied whatever their nature.



19.1 Whereas a configuration {5,0,0,--
achieved in only one way, a configuration

{3,2,0,---} can be achieved in the ten different
ways shown here, where the tinted blocks represent

19.2 The 18 molecules shown here can be distributed
into four receptacies (distinguished by the three
vertical fines) in 18! different ways. However, 3! of
the selections that put three molecules in the first
receptacie are equivalent, 6! that put six molecules
into the second receptacle are equivalent, and so on.
Hence the number of dnstingunshabk arrangements is

181/31615141.

-} can be
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achieved in more ways: {N,0,0,...} can be achneved in only one way, but {N —2,2,0,...}
can be achieved in 'N(N — 1) different ways (Fig. 19.1).2

Justification 19.1

One candidate for promotion to an upper state can be selected in N ways. There are N —'1
candidates for the second choice, so the total number of choices is N(N - 1). However, we
should not dlstmgwsh the choice (Jack, Jill) from the choice (Jill, Jack) because they lead to
the same configurations. Therefore, only half the choices lead to distinguishable
configurations, and the total number of distinguishable choices is IN(V ~1).

If, as a result of collisions, the system were to fluctuate between the configurations
{N,0,0,...} and {N —2,2,0,...}, it would almost always be found in the second, more
likely state (especially if N were large). In other words, a system free to switch between the
two configurations would show properties characteristic almost exclusively of the second
configuration.

A general configuration {ny,n,,...} can be achieved in W different ways, where W is
called the weight of the configuration. The weight of the configuration {ng, n;, ...} is given
by the expression

Nt
L (1
nolnglny!- -
where x|, x factorial, denotes x(x — 1)(x — 2) - - - 1, and by definition 0l = 1. This expression
is a generalization of the formula W = IN(N — 1), and reduces to it for the configuration
{N-2,2,0,...}.

Justification 19.2

Consider the number of ways of distributing N balls into bins. The first ball can be selected
in N different ways, the next ball in N — 1 different ways for the balls remaining, and so
on. Therefore, there are N(N — 1) --- 1 = N! ways of selecting the balis for distribution
over the bins. However, if there are ng balls in the bin labelled &, there’ would be nol’
different ways in which the same balls could have been chosen (Fig. 19.2). Samitarhf there
are n,! ways in which the n, balls in the bin labelled ¢, can be chosen, and so on. Therefore,
the total number of distinguishable ways of distribu*ing the balls so that there are ny in bin
£y, 1 in bin g, etc. regardltss of the order in which the halls were chosen is N1/ng!n,! - -

which is the content of eqn 1.
51 ‘ 4l

2 Atthisstage in the argument, we are ignoring the requirement thal the total energy of the system should be constant [the second
configuration has a higher energy than the first). The constraint of total energy Is imposed later in this section.
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Ilustration

To calculate the number of ways of distributing 20 identical objects with the arrange-ment
1,0,3,5,10, 1, we note that the configuration is {1,0,3,5,10,1} with N = 26, therefore
the weight is

20!

— i =8 8
= Tioniston — o1 x 10

Scif-test 19.1 Calculate the weight of the configuration in which 20 objects are
distributed in the arrangement 0,1,5,0,8,0,3,2,0,1.
(4.19 % 10'7]

It will turn out to be more convenient to deal with the natural logarithm of the weight,
In W, rather than with the weight itself. We shall therefore need the expression

InW = IH(W) =InN! — In(ngln,!n,! - - )

=InN!— (inng! + Inny! + lnmy! + - +)

= InN! - Z Inn;!
1

where in the first line we have used In(x/y)=Inx—Iny and in the second
Inxy=Inx+Iny. One reason for introducing InW is that it is easier to make
approximations. In particular, we can simplify the factorisls by using Stirling's
approximation in the form?

Inx! = xlnx — x (2)
Then the approximate expression for the weight is

InW = (NlnN —N) =3 "(n;Inn, —n;)

4 (3
=NInN -3 ninn )
i

The second line is derived by noting that the sum of n, is equal v ., so the second and
fourth terms on the right in the first line of eqn 3 cancel.

(b) The dominating configuration

We have seen that the configuration {N —2,2,0,...} dominates {N,0,0,...}, and it
should be easy to believe that there may be other configurations that greatly dominate both.
We shall see, in fact, that there is a configuration with so great a weight that it overwhelms
all the rest in importance to such an extent that the system will almost always be found in it.
The properties of the system will therefore be characteristic of that particular dominating
configuration. This dominating configuration can be found by locking for the values of s
that lead to a maximum value of W. Because W is a function of all the n,, we can do this
search by varying the n; and looking for the values that correspond to dW = 0 (just asin the

3 The precse form of Stirling's approximation is

o = (2m) PrHles

and it is reliable when x is greater than about 10, We deal with far larger values of x, and, the simplified version in eqn 24s
adequate.
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search for the maximum of any function), or equivalently a maximum value of InW.
However, there are two difficulties with this procedure.

The first difficulty is that the only permitted configurations are those cofrspondmg to
the specified, constant, total energy of the system. This requirement rules out many
configurations; {N,0,0,...} and {N - 2,2,0,...}, for instance, have different energies, so
both cannot occur in the same isolated system. It follows that, in looking -for the
configuration with the greatest weight, we must ensure that the configuration also satisfies
the condition

Constant total energy: -z:n‘-ef =E (4)
i

where E is the total energy of the system.

The second constraint is that, because the total number of molecules present is also fixed
{4£-N), we cannot arbitrarily vary all the populations simultaneously. Thus, increasing the
population of one state by 1 demands that the population of another state must be reduced
by 1. Therefore, the search for the maximum value of W is also subject to the condition

Constant total number of molecules: Zn,- =N (5)
i

(c) The Boltzmann distribution

We are looking for the set of numbers ny, n,, ... for which W has its maximum value. We
show in the following Justification that the populations in the configuration of greatest
weight depend on the energy of the state according to the Boltzmann distribution:

n; "‘ﬂ‘l 1
N E = B =T (6)

where T is the thermodynamic temperature and k is the Boltzmann constant.

" Justification 19.3

We have already remarked that it turns out to be simpler to find the condition for lnW.
being a maximum rather than dealing directly with W.Because In W depends on all the n;,
when a configuration changes and the n; change to n; + dn;, the function In W chanaes to
InW + dIn W, where

At a maximum, d1n W = 0. However, when the n; change, they do so subject to the two
constraints '

Doedn=0 3 dn=0 (7)

The first constraint recognizes that the total energy must not change, and the second
recognizes that the total number of molecules must not change. These twa, constraints
prevent us from solving d In W = 0 simply by setting all (d mw;an,) = 0 because thc dn;
are not all independent.

The way to take constraints into account was devised by the French mathematician
Lagrange, and is called the method of undetermined multipliers. The technique is
described in Further information 3. All we need here ls.thg rule that o constraint should
be multiplied by a constant and then added to the main mnaﬂon equation. The variables
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are then treated as though they were all independent, and the constants are evaluated at
the end of the calculation. .

We employ the technique as follows. The two constraints are multnplled by the
constants —ff and «, respectively (the minus sign in —f has been included for future
convenience), and then added to the expression for dInW:

dinW = Z(g)dn, + aZdn; - ﬂZc,-dn;

N Z{ (a'" W) i ﬁs.}dn

All the dn; are now treated as independent. Hence the only way of satisfying dIn W = 0 is
to require that, for each i,

(ag;w) = i = 0 - ®

when the n; have their most probable values.
The expression for In W is given in egn 3. Differentiation of it with respect to n; gives

AW\ _d(NInN) ~0nlnm)
( n, ) T ‘Z on;

The derivative of the first term is obtained as follows:

BN InN) (AN
on T \0n

. .
because N = n, +n, + - and its derivative with respect to any of the ns is I. The
derivative of the second term is*

S - { @) e (a)

_EZ( )mm 1) =Inn; + 1

)|N+aN_mN+H
on;

and therefore _
OlnW
an;

It follows from eqn B that

In(N) +a—flgg=0

and therefore that

n; =
i

= —(inm +1) + (0N + 1) = —m(%)

‘4 Weuse

dnm dlnn, _ (t"iayI
da, o \Bn,

Then, if i # j. n; s independent of ,, so 8, /dn, = 0. However, if i = j,

o P
&n, ~ n,

38—b
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At this stage we note that
M= =Ne Ye
i j

(We are free to label the states with Jinstead of i) Because the & cancels on each side of
this equality, it follows that
1
& et
°= R

®

and the Boltzmann distribution in eqn 6 follows immediately. We justify the relation
B = 1/kT shortly (Section 19.3b). d

19.2 The molccular partition function
From now on we write the Boltzmann distribution as
e f
et (10)
q i

where p; is the fraction of molecules in the state i, p;=m/N, and q is the molecular
partition function: Z

g=3y eM \ [11]

The sum in g is sometimes expressed slightly differently. It mayshappen that several states
have the same energy, and so give the same contribution to the sum. If, for example, &
states have the same energy i (s the level is g,-fold degenerate), we could write

= get (12)

levels j

where the sum is now over energy levels (sets of states with the same energy), not individual
states.

a

Example 19.1 Writing a partition function

Write an expression for the partition function of a linear molecule (such as HCI) treated as a
rigid rotor.

Mcthod To use eqn 12 we need to know (a) the energies of the levels, (b) the degeneracies,
the number of states that belong to each level. Whenever calculating a partition function,
the energies of the levels are expressed relative to 0 for the state of lowest energy. The
energy levels of a rigid linear rotor were derived in Section 16.5¢.

Answer From eqn 16.37, the energy levels of a linear rotor are hcBJ(J + 1), with
J=10,1,2,.... The state of lowest energy has zero energy, so no adjustment need be made
to the energies given by this expression. Each level consists of 2/ + 1 degenerate states.
Therefore, -

a0
q= (?J‘i‘- i)e—ﬂkwuplj

Comment The sum can be evaluated numerically by supplying the value of B (from
spectroscopy or calculation) and the temperature. For reasons explained in Section 20.2b,
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19.3 The equally spaced infinite arrsy of energy
levels used in the calculation of the partition
function. A harmonic ogscillator has the same
spectrum of levels.

19 STATISTICAL THERMODYNAMICS: THE CONCEPTS

|
this expression applies only to unsymmetrical linear rotors (for example, HCI, not CO,; in

. general, to C,,, and not D, species).

Self-test 19.2 Write the partition function for a two-level system, the lower state (at

energy 0) being non-degenerate, and the upper state (at an_energy ¢} doubly degenerate.
lg=1+2P]

(a) An interpretation of the partition function
Some insight into the significance of a partition function can be obtained by considering

. how g depends on the temperature. When T is close to zero, the parameter § = 1/kT is close

to infinity. Then every term except one in the sum defining q is zero because each one has
the form e~* with x — 0. The exception is the term with g =0 (or the gq terms at zero,
energy if the ground state is go-fold degenerate), because then & /kT =0 whatever the
temperature, including zero. As there is only one surviving term when 7 =0, and its value is
g0, it follows that

limq = g _ (13)

That is, at T =0, the partition function is equal to the degeneracy of the ground state.
Now consider the case when T is 5o high that for each term in the sum &;/kT 0. Because
e~% = 1 when x = 0, each term in the sum now cohtributes 1. It follows that the sum is

equal to the number of molecular states, which in general is infinite:
lim g — © - 5 (14)

T—wx

In some idealized cases, the molecule may have only a finite number of states; then the

.upper limit of g is equal to the number of states. For example, if we were considering only

the spin energy levels of a radical in a magnetic field, then there would be only two states
(m, = + }). The partition function for such a system can therefore be expected to rise
towards 2 as T is increased towards infinity.

We see that the molecular partition function gives an indication of the average number
of states that arethermally accessible to a molecule at the temperature of the system. At
T = 0, only the ground level is accessible and g = g At very high temperatures, virtually all
states are accessible, and g is correspondingly large.

Example 19.2 Evaluating the partition function for a uniform (adder of
energy levels
Evaluate the partition function for a molecule with an infinite number of edually spaced

non-degenerate, energy levels (Fig. 19.3). These levels can be thought of as the vibrational
energy levels of a diatomic malecule in the harmonic approximation.

Method We expect the partition function to increase from 1 at T =0 and approach
infinity as T — co. To evaluate eqn 11 explicitly, note that®

1

l4x+a2 4=
l—x

S The sum of the infinite series S=1+x+x 4. is obtained by mulliplying both sides by x, which gives
S=x4+2 42 +--- =5 — 1. This relation reorganizes into

g
-X
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19.4 The partition function for the system shown
in Fig. 19.3 (a harmonic oscillator) as a function of
temperature.
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19.5 The partition function foe a two-level system as a function of temperature. The two graphs differ in
the scale of the temperature axis to show the approach to 1 as T — 0 and the slow approach to 2 as
T — oo,

Answer If the separation of neighbouring levels is &, the partition function is

. b
cq=lteP e =1 pe Py ().
_ 1
T 1-—ef
This expression is plotted in Fig. 19.4: notice that it rises from 1 to infinity as the
temperature is raised, as anticipated.

Self-test 19.3 Find and plot an expression for the partition function of a system with one
state at zero energy and another state at the energy &.
lg =1 +e*, Fig. 19.5]

. -

Be: 3.0 1.0 0.7 0.3
¢ 105 158  1.99 3.86

19.6 The populations of the energy-evels of the
system shown in Fig. 19.3 at different-temperatures,
and the corresponding values of the partition
function calculated in Self-test 19.3, Note that

B = 1/kT.

It follows from egn 10 and the expression for ¢ derived in Example 19.2 for a uniform
ladder of states of spacing ¢,

= 1 —e B ) (15)
that the fraction of molecules in the state with energy ¢ is
pi=(1—eP)ePu (16)

The variation of p; with temperature is illustrated in Fig. 19.6. We see that at very low
temperatures, where g is close to 1, only the lowest state is significantly populated. As the
temperature is raised, the population breaks out of the lowest state, and the upper states
become progressively more highly populated. At the same time the partition function rises
from 1, and its value gives an indication of the range of states populated. TR name
‘partition function' reflects the sense in which ¢ measures how the total number of
molecules is distributed—partitioned—over the available states.

The corresponding expressions for a two-level system derived in Self-test 19.3 are

1 e fe

Tltek Pr =T e

Do (17)
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19.7 The fraction of populations of the two states
of a two-level system as a function of temperature
[eqn 17). Note that, as the temperature approaches
infinity, the populations of the two states become
equal (and the fractions both approach 0.5).
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*

These functions are plotted in Fig. 19.7. Notice how the populations tend towards equality
{py = 0.5,p, = 0.5)as T — co. A common error is to suppose that all the molecules in the
system will be found in the upper energy state when T = co; however, we see from eqn 17
that, as T — ou, the populations of states become equal. The same conclusion is true of
multi-level systems too: as T — oo, oll states become equally populated.

Example 19.3 Using the partition function to calculate a population

Calculate the proportion of 1, molecules in their ground, first excited, and second excited
vibrational states at 25°C. The vibrational wavenumber is 214.6 cm ™",

Melhod Vibrational energy levels have a constant separation (in the harmonic
approximation, Section 16.9), so the partition function is given by eqn 15 and the
populations by eqn 16. To use the latter equation, we identify the index { with the quantum
number v, and calculate p, for » = 0,1, and 2. At 298.15 K, kT /hc = 207.226 em™!

Answer First, we mote that

hev 2146 em™!
o ik g g i MRS I f |
Pe = = 357236 em=1 — 100

Then it follows from eqn 16 that the popu|ati0n\s are
p. = (1 —eP)e P = 0.645¢ 0%

Therefore, py = 0.645, p, = 0.229, p, = 0.031.

Comment The I-1 bond is not stiff and the atoms are heavy: as a result, the vibrational
energy separations are small and at room temperature several vibrational levels are
significantly populated. The value of the partition function, g = 1.55, reflects this small but
significant spread of populations.

-

Self-test 19.4 At what temperature would the » =1 level of 1, have (a) half the
population of the ground state, (b) the same population as the ground state?
[(a) 445 K, (b} infinite]

(b) Approximations and factorizations

In general, exact analytical expressions for partition functions cannot be obtained. However,
closed approximate expressions can often be found and prove to be very important in a
number of chemical applications. For instance, the expression for the partition function fora
particle of mass m free to move in a one-dimensional container of length X can be evaluated
by making use of the fact that the separation of energy levels is very smalkand that large
numbers of states are accessible at normal temperatures. As shown in the Justification -
below, in this case

e 12
e (ﬁ,T’;) X (18)
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Justification 19.4

The energy levels of a molecule of mass m in a container of length X are given by eqn 12.7

with L = X: d .
nth?
E,‘E‘é'm—p )‘t=1‘2,...
The lowest level (n = 1) has energy h?/8mX?, so the energies relative to that level are
h2
2
e, = -1 = —
The sum to evaluate is therefore
e
n=] '

The translational energy levels are very close together in a container the size of a typical
laboratory vessel; therefore, the sum can be approximated by an integral:

a
°_Q.\'=/ e~ =Dfe gy
1

The extension of the lowér limit to n = 0 and the replacement of n? — 1 by n? introduces
negligible error but turns the integral into standard form. We make the substitution
x* = n?fe, implying dn = dx/(Be)}, and therefore that

- (ﬁ)m/;me“’dx= (%)1/2(%2) _ (i%;’)mx

Another useful feature of partition functions is used to derive expressions when the
energy of a molecule arises from several different, independent sources: if the energy is a
sum of independent contributions, the partition function is a product of partition functions
for each mode of motion. For instance, suppose the molecule we are considering is free to
move in three dimensions. We take the length of the container in the y-direction to be ¥ and
that in the z-direction to be Z. The total energy of a molecule ¢ is the sum of its translational
energies in all three directions: '

£

X ¥ ¥4
ajmyhy ="£$'|) i EF‘:] + s'(u) (19)

where n), n,, and ny are the quantum numbers for motion in the x-, y-, and z-directions,
respectively. Therefore, because e®**< = e%ebet, the partition function factorizes as
follows:

] 4 {
G= Zc—ﬂx,'.’,'"ﬂrl,‘~8cf.’," " Z e AR

all n alln

x) 14} (F1) (20)

m

It is generally true that, if the energy of @ molecule con be written as the sum of
independent terms, the partition fuaction is the corresponding product of individual
contributions.

Equation 18 gives the partition function for translational motion in the x-direction. The
only change for the other two directions is to replace the length X by the lengths ¥ or Z.
Hence the partition function for motion in three dimensions is

/2
g= G%) XvZ (21)
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The product of lengths XYZ is the volume, V, of the container, so we can write

v (BN
=g "=l -

The quantity A has the dimensions of length and is called the thermal wavelength of the
molecule.

lllustration \‘

To calculate the translational partition function of an H, molecule confined to a 100 cm®
vessel at 25°C we use m = 2.016 u; then

. 6.626x 107 J .
{2 % (2.016 x 1.6605 x 10-27 kg) x (1.38 x 10-2 JK~-V) x (298 K)}'/?
=7.12x10""m
Therefore, i
5 —4 .3
ol R WY

"= zxi0 my

»

About 10% quantum states are thermally accessible, even at room temperature and for this
light molecule. Many states are occupied if the thermal wavelength (which in this case is
71.2 pm) is small compared with the linear dimehsions of the container.

Self-test 19.5 Calculate the translational partition function for a D, molecule under the
same conditions.
[g = 7.8 x 10%, 2%/ times larger]

The internal energy and the entropy

The importance of the molecular partition function is that it contains all the information
needed to calculate the thermodynamic properties of a system of independent particles. In
this respect, g plays a role in statistical thermodynamics very similar to that played by the
wavefunction in quantum mechanics: g is a kind of thermal wavefunction.

19.3 The internal energy

We shall begin to unfold the importance of g by showing how to derive an expression for the
internal energy of the system.

- (a} The relation between U and ¢

The total energy of the system is
E= Zn,—ei (23)
i

Because the most probable configuration is so strongly dominating, we can use the
Boltzmann distribution for the populations and write

E -_-ggs,c’ﬁ“ ' - (24)
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19.8 The total energy of a two-level system
(expressed as a multiple of Ne) as a function of
temperature, on two temperature scales. The graph
at the top shows the slow rise away from zero
energy at low temperatures; the slope of the graph
at T = 0 is 0 (that is, the heat capacity is zero at
T = 0). The graph below shows the slow rise to 0.5
as T — oo as both states become equally populated
(see Fig. 18.7)-
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To manipulate this expression into a form involving only ¢ we note that

_d_ e — _pe P
3 .Be = —g€
It follows that
N d _ Nd Ndgq
pe Nyl Z oY =y 25
q Z:dﬁ q dﬂz,-: g df @)
Ilustration

From the two-level partition function g = 1 + e P, we can deduce that the total energy of
N two-level systems is :

N d Nee™Pe
= —| ——— | ~Pe - ——
& (1 +c‘5‘) A ) =Ty F
- Ne
T1tek

This function is plotted in Fig. 19.8. Notice how the energy is zeroat F = 0, when only the
lower state (at the zero of energy) is occupied, and rises to jNeas T — @, when the two
levels become equally populated. ’

sssssanme TR TEE TR LR T L R LR LR sanemn ssssvitsnssnavessavenaaneny ssanve

. z

There are several points in relation to eqn 25 that need to be made. Because g =0,
(remember that we measure all energies from the lowest avajlable level), E should be
interpreted as the value of the internal energy relative to its value at T = 0, U(0). Therefore,

to obtain the conventional internal energy U, we must add the internal energy at T =0:
U=U0)+E (26)

Secondly, because the partition function may depend on variables ‘other than the
temperature (for example, the volume), the derivative with respect to B in ean 25 Is
actually a partial derivative with these other variables held constant. The complete
expression relating the molecular partition function to the thermodynamic internal energy
of a system of independent molecules is therefore

N aq)
U=U@0)-—|z3 27a
© q (6;‘1 v (27a)
An equivalent form is obtained by noting that dx/x = dinx:
9ln q)
U=U(0)-N s 27b
o -~(%), e

These two equations confirm that we need know only the partition function (as a function of -
temperature) to calculate the internal energy relative to its value at T = 0.

(b) The value of

We now confirm that the parameter f, which we have anticipated is equal to 1/kT, does
indeed have that value. To do so, we shall compare the equipartition expression for the
internal energy of a monatomic perfect gas, which from Molecular interpretation 2.2 we
know to be

U = U(0) + }nRT ‘ - (280)
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with the value calculated from the translational partition function (see the following
Justification), which is

U=U(0) + Z—'; (28b)

It follows by comparing these two expressions that

N N, |
e = 2
A nRT  aN, kT ~ kT (28}

as was to be proved. (We have used N = nN,, where n is the amount of gas molecules, N, is
the Avogadro constant, and R — N, k)

Justification 19.5

To use eqn 27, we introduce the translational partition function from eqn 22:
(%) < (31) -l ¥di
98/, \opA> v dp A3 A*dp
Then we note from the formula for Ain eqgn 22 that
4 d { hp'2 } 1 h A

and so obtain
@) - v
o), 2847

Then, by eqn 274,
A? v kY
v=00-N(3)(~55) =00 ]

- ) SRt

19.4 The statistical entropy
Ifitis true that the partition function contains all thermodynamic information, then it must
be possible to use it to calculate the entropy as well as the internal energy. Because we know
(from Section 4.2} that entropy is related to the dispersal of energy and that the partition
function is a measure of the number of states that are thermally accessible, we can be
confident that the two are indeed related.

We shall develop the relation between the entropy and the partition function in two
stages. In the first stage, we Justify one of the most celebrated equations in statistical
thermodynamics, the Boltzmann formula for the entropy: -

S=klnw 30]
In this expression, W is the weight of the most probable configuration of the system. In the
second stage, we express W in terms of the partition function.
Justification 19.6
A change in the internal energy
U=U(0)+) ng (31),
i
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(b)

19.9 (a) When a system is heated, the energy levels
are unchanged but their populations are changed. (b)
When work is done on a system, the energy levels
themselves are changed. The levels in this case are
the one-dimensional particle-in-a-box energy levels
of Chapter 12: they depend on_the size of the
container and move apart as its length is decreased.
For simplicity in making the essential point, we have
shown the encrgy levels as equally spaced; in fact,
their separation increases with energy.
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may arise from either a modification of the energy levels of a system (when ¢; changes to
&, + de,) or from a modification of the populations (when n; changes to ; + dn;). The most

general change is therefore
&

dU = dU(0) + 3 nde; + S edn, (32)

Because the energy levels do not change when a system is heated at constant volume
(Fig. 19.9), in the absence of all changes other than heating

dU =Y edn;
i

We know from thermodynamics (and specifically from eqn 5.2) that under the same
conditions

dU = dgpy = TdS

Therefore,
dU
ds == kﬁz:e,.dnf < (33)

We also know that for changes in the most pmbablé configuration (the only one we need
consider)

OlnW
( o, )+a—ﬁs,-—0
A

(this is eqn 8). After rearranging this expression to

dlnW
B, = ( om; ) e

we find that
¢lnW
ds = kZ( o )dn,. + kaZ:dn,-
But the sum over the dn; is zero, because the number of molecules is constant. Hence

ds = ’“Z (a g;:’v) dn; = k(dIn W) (34)

This relation strongly suggests the definition § = kInW, as in eqn 30.

The statistical entropy behaves in exactly the same way as the thermodynamic entropy.
Thus, as the temperature is lowered, the value of W, and hence of S, decreases because fewer
configurations are compatible with the total energy. In the limit T — 0, w=1, s
InW = 0, because only one configuration (every molecule in the lowest level) is compatible
with E = 0. It follows that § — 0 as T — 0, which is compatible with the Third Law of
thermodynamics, that the entropies of all perfect crystals approach the same valueasT — 0
(Section 4.4a). .

Now we relate the Boltzmann formula for the entropy to the partition funcffon. To do so,
we substitute the expression for InW given in eqn 3 into eqn 30 and, as shown in the
Justification below, obtain

_u-u(

5 +Nklng (35)
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19.10 The temperature variation of the entropy of
the system shown in Fig. 19.3 (expressed here as a
multiple of N&). The entropy approaches zero as

T — 0, and increases without limit as T — ™.
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19.11 The temperature variation of the entropy of
a two-level system (expressed as a multiple of Nk).
As T — co, the two states become equally
populated and § approaches Nkin2.
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Justification 19.7
The first stage is to write

S=kY (n 10N nlnn) = ~k 3 mln(3) = Nk piinp, (36)

where p; = n;/N, the fraction of molecules in state ;. It follows from eqn 10 that

Inp; = —fe; — Inq
and therefore that

§ = ~Nk (—ﬁ 2 P& =Y pln q) = kB{U - U(0)} + NkIng
[ i
We have used the fact that the sum over the p; isequal to 1 and the sum over Np;g; is equal

to U—U(0) (see eqn 31). We have already established that 8 = 1/kT, so eqn 35°
immediately follows.

Example 19.4 Calculating the entropy of a collection of oscillators

Calculate the entropy of a collection of N independent harmonic oscillators, and evaluate it
using vibrational data for |, at 25°C (Example 19.3),

Method To use egn 31, we use the partition function for a molecule with evenly spaced
vibrational energy levels, eqn 15. With the partition function available, the internal energy
can be found by differentiation (as in eqn 27a), and the two a':pressions then combined to
give §.
Answer The molecular partition function as given in egn 15 is
_ 1

=1 "

The internal energy is obtained by using eqn 27a:

0g\ _ Nee e Ng
o)y 1—ehe e |

U-um):-%

The entropy is therefore

S=Nt{ =P i1 — e
s -ma-em}

efe

This function is plotted in Fig. 19.10. For 1, at 25°C, fe = 1.036 (Example 19.3), so
S =838 JK " mol!. :

Scif-test 19.6 Evaluate the molar entropy of N two-level systems and plot the resulting
expression. What is the entropy when the two states are equally thermally accessible?
© [S/Nk = Be/(1 + ¢%) + In(1 +e7P); see Fig. 19.11; 5 = NkIn2]

The canonical partition function

In this section we see how to generalize our conclusions to include systems composed of
interacting molecules. We shall also see how to obtain the molecular partition function from
the more general form of the partition function developed here.
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19.12 A representation of the canonical ensemble,
in this case for N = 20. The individual replications
of the actual system all have the same mm'position
and volume. They are all in mutual thermal contact,
and so all have the same temperature. Energy may
be transferred between them as heat, and so they
do not all have the same energy. The total energy
[E) of all 20 replications is a constant because the
ensemble is isolated averall,
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19.5 The canonical ensemble

The crucial new concept we need when treating systems of interacting particles is the
ensemble. Like so many scientific terms, the term has basically its normgl meaning of
‘collection’, but it has been sharpened and refined into a precise significance.

(a) The concept of ensemble

To set up an ensemble, we take a closed system of specified volume, composition, and
tcm'peraturc, and think of it as replicated N times (Fig. 19.12). All the identical closed
systems are regarded as being in thermal contact with one another, so they can exchange
energy. The total energy of all the systems is E and, because they are in thermal equilibrium
with one another, they all have the same temperature, T. This imaginary collection of
replications of the actual system with a common temperature is called the canonical
ensemble.’®

The important point about an ensemble is that it is a collection of imaginary replications
of the system, so we are free to let the number of members be as large as we like; when
appropriate, we can let N become infinite.” The number of members of the ensemble in a
state with energy E; is denotedwi;, and we can speak of the configuration of the ensemble
(by analogy with the configuration of the system used in Section 19.1) and its weight, W.

(b) Dominating configurations
Just as in Section 19.1, some of the configurations, of the ensemble will be very much more

probable than others. For instance, it is very unlikely that the whole of the total energy, E,
will accumulate in one system. By analogy with the earlier discus_sinn, we can anticipate that
there will be a dominating configuration, and that we can evaiuate the thermodynamic
properties by taking the average over the ensemble using that single, most probable,
configuration. In the thermodynamic limit of N — oo, this dominating configuration is
overwhelmingly the most probable, and it dominates the properties of the system virtually
completely.

The quantitative discussion follows the argument in Section 19.1 with the modification
that N and n; are replaced by N and ;. The weight of a configuration {fig, , ...} i

T
Ayl L
The configuration of greatest weight, subject to the constraints that the total energy of the
ensemble is constant at £ and that the total number of members is fixed at N, is given by the

canonical distribution:
e PE

Qo

gy o (38)

.

n!
N

The quantity Q, which is a function of the temperature, is called the canonical partition
function.

& The word 'canon’ means “according 10 a rule’. There are two other important ensembles. In the microcanonical ensemble the
condition of constant temperature is replaced by the requirement that all the systems should have exactly the same energy: each
system is individually isolated. In the grand canonical ensemble the volume and temperature of each system are The same, but
they are open, which means that matter can be imagined as able to pass between the systems; the composition of each one may
fluctuate, but now the chemical potential is the same in each system: ' ’

Microcanonical ensembie: N, ¥, E common
Canonical ensemble: ¥, ¥, T common
Grand canonical ensemble: g, ¥, T common

7 Note that N is unrelated ta N, the number of molecules in the actual system; N is the number of imaginary replications of that
system,



el [

m —_—m

e

c — TN Wadth of
8

ar ¥oEnge

e ————————
e e ee————
———

Number of
stales

19.13 The energy density of states is the number of
states in an energy range divided by the width of
the range.

Probability
of energy
Number Probability
of states of state
Energy

19.14 To construct the form of the distribution of

bers of the ical e le in terms of
their energies, we multiply the probability that any
one is in 3 state of given energy, egn 38, by the
number of states corresponding fo that energy (a
steeply rising function). The produgt is a sharply
peaked function at the mean energy, which shows
that almost all the members of the ensembie have
that energy.
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(c) Fluctuations from the most provable distribution

The shape of the canonical distribution in eqn 38 is only apparently an exponentially
decreasing function of the energy of. the system. We must appreciate that-eqn 38 gives the
probability of occurrence of members in a single state i of the entire system of energy £,
There may in fact be numerous states with almost identical energies. For example, in a gas
the iderititics of the molecules moving slowly or quickly can change without necessarily
affecting the total energy. The density of states, the number of states in an energy range
divided by the width of the range (Fig. 19.13), is a very sharply increasing function of energy.
It follows that the probability of a-member of an ensemble having a specified energy (as
distinct from being in a specified state) is given by eqn 38, a sharply decreasing function,
multiplied by a sharply increasing function (Fig. 19.14). Therefore, the overall distribution is
asharply peaked function. We conclude that most members of the ensemble have an energy
very close to the mean value. '

19.6 The thermodynamic information in the partition function

Like the molecular partition function, the canonical partition function carries all the
thermodynamic information about a system. However, Q is more general than q because it
does not assume that the molecules are independent. We can therefare use @ to discuss the
properties of condensed phases and real gases where molecular interactions are important.

(a) The internal energy

If the total energy of the ensemble is £, and there are N members, the average energy of a

member is £ = £/N. We use this quantity to calculate the internal energy of the system in

the limit of N (and E) approaching infinity: i

E _

U'—"U{O}-}-E:U(D)-i-!—\,: as N — oo (39)

The fraction, p;, of members of the ensemble in a state i with energy Euis given by the

analogue of eqn 10 as

e PE, (
p; = 40
RSt )
. It follows that the internal energy is given by
I
U=U©)+Y FE =U0)+=3 Eec 41
(0) Zp (0) QZ.: (41)
By the same argument that led to eqn 27,
1 /2@ omQ
J=U0)-=|=) =U(0) - 42
v=v0-5(5),=v0- (% ), e

(b) The entropy

The total weight, W, of a configuration of the ensemble is the product of the average weight
W of each member of the ensemble, W = W¥_ Hence, we can calculate S from

S:kan:kan"’“:%an (43)
It follows, by the same argument used in Section 19.4, that
U—-u(o
§= —T'-(—) +kinQ@ (44)
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19.7 independent molecules

We shall now see how to recover the molecular partition function from the more general
canonical partition function when the molecules are independent. When the molecules are
independent and distinguishable (in the sense to be described), the relation between Q and g is

Q=d" (45)
Justification 19.8

The total energy of a collection of ¥ independent molecules is the sum of the energies of

the molecules. Therefore, we can write the total energy of a state i of the system as
E;=¢(1) +£(2) + -+ &(N)

In this expression, £,(1) is the energy of molecule 1 when the system is in the state i, £,(2)

the energy of molecule 2 when the system is in the same state i, and so on. The canonical

partition function is then

g zc—ﬁt«(l)—qu(z)—---—ﬁc,.(m
f

The sum over the states of the system can be reproduced by letting each molecule enter all
its own individual states (although we meet an important proviso shortly). Therefore,
instead of summing over the states i of the system, we can sum over all the individual
statesi of molecule 1, all the states i of molecule 2, and so on. This rewriting of the original
expression leads to

o (52) (5r) (5r) -5 <

(a) Distinguishable and indistinguishable molecules

If all the molecules are identical and free to move through space, we cannot distinguish
them and the relation Q = ¢" is not valid. Suppose that molecule | is in some state a,
molecule 2 is in b, and molecule 3 is in ¢, then one member of the ensemble has an energy
E =&, + ¢, +.&.. This member, however, is indistinguishable from one formed by putting
molecule | in state b, molecule 2 in state ¢, and molecule 3 in state a, or some other
permutation. There are six such permutations in all, and N! in general. In the case of
indistinguishable molecules, it follows that we have counted too many states in going from
the sum ‘over system states to the sum over molecular states, so writing Q=4
overdgtimates the value of Q. The detailed argument is quite involved, but at all except
very low temperatures it turns out that the correction factor is 1/N!. Therefore:

- (a) For distinguishable independent molecules: Q = ¢
rud (46)

(b) For indistinguishable independent molecules: Q = N

For molecules to be indistinguishable, they must be of the same kind: an Ar atom is never
indistinguishable from a Ne atom. Their identity, however, is not the only criterion. Each
identical molecule in a crystal lattice, for instance, can be ‘named’ with a set of coardinates.
Identical molecules in a lattice are therefore distinguishable because their sites are
distinguishabie, and we use eqn 46a for any of their modes that may be considered
independent of their neighbours..Equation 46a is also applicable to a collection of N
malecules, each one of which is in its own box. On the other hand, identical molecules in a
gas are free to move to different locations, and there is no way of keeping track of the
identity of a given molecule; we thereforé use eqn 46b.
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(b) The entropy of a monatomic gas

" An important application of the previous material is the derivation (as shown in-the

Justification below) of the Sackur-Tetrode equation for the entropy of a monatomic gas:

5/2
s:mem(e V,) A=;|2 (47a)
AN A (2nmkT)"/

Because the gas is perfect, we can use the relation V = nRT/p to express the entropy in
terms of the pressure as

52
§ = nR1n (" A’;'T) (47b)
P .

Justification 19.9

For a gas of independent molecules, Q may be replaced by q" /N!, with the result that
eqn 44 becomes

S=-U_TU(0)+lelnq—kmN!

Because the number of molecules (N = nN,) in a typical sample is large, we can use
Stirling’s approximation (eqn 2) to write

8= U—_TE(O—)+Nan— k(NInN —N)
The only mode of motion for a gas of atoms is translation, and the partition funEﬁon' is
g =V/A® (eqn 22), where A is the thermal wavelength. The internal energy is given by
eqn 28, so the entropy is

'S=§nR+nR(ln%—lnnN,\+1-)
=nR(lnc3"'2+ln%—lnnNA+h1e)

which rearranges into eqn 47.

Example 19.5 Using the Sackur-Tetrode equation
Calculate the standard molar entropy of gaseous argon at 25°C.

Mecthod To calculate the molor entropy, S, from eqn 47b, divide both sides by n. To
calculate the standard molar entropy, S, set p = p in the expression for Sp:

S/2kT
e €&
Sm =RIn (;a—;l-j)

Answer The mass of an Ar atom is m = 39.95 u. At 25°C, its thermal wavelength ls.16.0 pm
{by the same kind of calculation as in the lllustration following eqn 22). Therefore,

ln{ 52 x (4.12x 1072 J) }

(105 Nm-2) x (1.60 x 10-1! m)*
= 18.6R = 155 JK~' mol™!

S =



()

19.15 As the width of a container is increased
(going from (a) to (b)), the energy levels become
closer together (as 1/L2), and as a result more are
thermally accessible at a given temperature.
Consequently, the entropy of the system rises as the
vontainer expuids. As utivig, Wis ciagram &
schematic: the separation of levels increases with

energy.
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Comment We can anticipate, on the basis of the number of accessible states for a lighter
molecule, that the standard molar entropy of Ne is likely to be smaller than for Ar; its actual
value is 17.60R at 298 K.

Self-test 19.7 Calculate the translational contribution to the standard molar entropy of
H, at 25°C. .
(14.2R]

The Sackur-Tetrode equation implies that, when a monatomic perfect gas expands

isothermally from V; to V/, its entropy changes by
v,
AS = nRIn(aV;) - nR In(aV,) =nmn(7’) (48)
: :

where aV is the collection of quantities inside the logarithm of eqn 47a. This is exactly the

expression we obtained by using classical thermodynamics (Example 4.1). Now, though, we

see that that classical expression is in fact a consequence of the increase in the number of

accessible translational states when the volume of the container is increased (Fig. 19.15).

Table 19.} Key equations, with § = 1/kT

Definition of molecular partition function:
i

levels, |

Definition of canonical partition function:

Q=Y et _ [ ¢ distinguishable independent partices
- " /N! indistinguishable independent particles

Two-level system, energies 0, :

g=1l+e™
Evenly spaced, infinite level system, energies 0,¢,2¢,---:
g=(1-eP)"

Translational motion of particle of mass m in volume V:

g\ ‘2 P
qg= Ej A= (-—ﬂ) = —lﬁ
A 2nm (2nmkT)
Boltzmann distribution:
e Py

_

o= _q— P = N
Boltzmann formula:
S=kinW

Internal energy (independent particles):

/=00 -5(5),-v0 (),

Internal energy (general):

U=u)-1 (@) - U(o) - (f”" Q)y

Q\op of
Entropy (independent particles):
5= U—_TULD—) +NklIng
Entropy (general):
§= w +kInQ
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Checklist of key ideas
[] statistical thermodynamics 19.2 The molecular partition
function

The distribution of molecular - | | motecular partition. function

states 3 (11,12)
) population 11 thermal wavelength
{(J principle of equal a priori .
2r0ba‘:1iliti5 9 P The internal energy and the
4 entropy
19.1 Configurations and [] q for uniform array (15)
weights [} g for translation (18, 22)

(] configuration

[] weight (1)

[] Stirling's approximation (2)

[] Boltzmann distribution (6)

[] method of undetermined
multipliers

19.3 The internal energy
(] Uin terms of g (27)

19.6 The thermodynamic
information in the
partition function

'] Uin terms of Q (41)

7] Sin terms of Q (44)

19.4 The statistical entropy
Boltzmann formula (30)
Sin terms of g (35)

The canonical partition
function

19.7 Independent molecules
] distinguishable and
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I ! ensemble

!} canonical ensemble ~ (48)
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Exercises

19.1 (a) What are the relative populations of the states of a two-
level system when the temperature is infinite?

19.1 (b) What is the temperature of a two-level system of energy
separation equivalent to 300 cm~' when the population of the upper
state is one-half that of the lower state?

19.2 (a) Calculate the translational partition function at (a) 300 K
and (b) 600 K of a molecule of molar mass 120 gmol™' in a container
of volume 2.00 ecm?.

19.2 (b) Calculate (a) the thermal wavelength, (b) the translational
partition function of an Ar atom in a cubic box of side 1.00 cm at (i)
300 K and (i) 3000 K.

19.3 (a) Calculate the ratid of the translational partition functions
of D, and H, at the same temperature and volume.

19.3 (b) Calculate the ratio of the translational partition functions
of xenon and helium at the same temperature and volume.

19.4 (a) A certain atom has a threefold degenerate ground level, a
non-degenerate electronically excited level at 3500 em™!, and a
threefold degenerate level at 4700 cm~'. Calculate the partition
function of these electronic states at 1900 K.

19.4 (b) A certain atom has a doubly degenerate ground level, a
triply degenerate eclectronically excited level at 1250 em™', and a
doubly degenerate level at 1300 cm™'. Calculate the partition
function of these electronic states at 2000 K.

19.5 (a) Calculate the electronic contribution to the motar internal
energy at 1900 K for a sample composed of the atoms specified in
Exercise 19.4a.

19.5 (b) Calculate the electronic contribution to the molar internal
energy at 2000 K for a sample composed of the atoms specified in
Exercise 19.4b.

39—B _'
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19.6 (a) A certain molecule has a non-degenerate excited state lying
at 540 cm~! above the non-degenerate ground state. At what
temperature will 10 per cent of the molecules be in the upper state?

19.6 (b) A certain molecule has a doubly degenerate excited state
lying at 360 cm™! above the non-degenerate ground state, At what
temperature will 15 per cent of the molecules be in the upper state?

19.7 (a) An electron spin can adopt either of two orientations in a
magnetic field, and its energies are + u,B, where Mg is the Bohr
magneton. Deduce an expression for the partition function and mear
energy of the electron and sketch the variation of the functions with
B. Calculate the relative populations of the spin states at (a) 4.0 K, (b)
298 Kwhen B=10T.

19.7 (b) The spin of a nitrogen nucleus can adopt any of three
orientations in a magnetic field, and its energies are 0, +yyhl3, where
¥n is the magnetogyric ratio of the nucleus. Deduce an expression for
the partition function and mean energy of the nucleus and sketch the
variation of the functions with B. Calculate the relative populations
of the spin states at (a) 1.0 K, (b) 298 K when B =200 T.

19.8 (a) Consider a system of distinguishable particles having only
two non-degenerate energy levels separated by an energy which is
equal to the value of T at 10 K. Calculate (a) the ratio of populations
in the two states at (1) 1.0K, (2) 10K, and (3) 100 K, (b) the
molecular partition function at 10 K, (c) the molar energy at 10 K, (d)
the molar heat capacity at 10 K, (¢) the molar entropy at 10 K.

19.8 (b) Consider a system of distinguishable particles having only
three non-degenerate energy levels separated by an energy which is
equal to the value of T at 25.0 K. Calculate (a) the ratio of
populations in the states at (1) 1.00 K, (2) 25.0 K, and (3) 100 K, (b)
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the molecular partition function at 25.0 K, (c) the molar energy at
25.0 K, (d) the molar heat capacity at 25.0 K, (e) the molar entropy at
25.0 K. =
19.9 (a) At what temperature would the population ef the first
excited vibrational state of HCl be 1/e times its population of the
ground state?

19.9 (b) At what temperature would the population of the first
rotational level of HCI be 1/e times the population of the ground
state?

' 19.10 (a) Calculate the standard molar entropy of neon gas at (a)

200 K, (b) 298.15 K.

19.10 (b) Calculate the standard molar entropy of xenon gas at (a)
100 K, [b) 298.15 K. '

19.11 (a) .Calculate the vibrational contribution to the entropy of
Cl, at 500 K given that the wavenumber of the vibration is
560 cm™!

19.11 (b) Calculate the vibrational contribution to the entropy of
Bf; at 600 K given that the wavenumber of the vibration is
321 em~!,

19.12 (a) Identify the systems for which it is essential to include a
factor of 1/N! on going from Q to ¢: (a) a sample of helium gas, (b) a
sample of carbon monoxide .gas, (c) a-solid sample of carbon
monoxide, (d) water vapour.

19.12 (b) Identify the systems for which it, is essential to include a
factor of 1/N! on going from Q to ¢: (a) a sample of carbon
dioxide gas, (b) a sample of graphite, () a sample of diamond,
(d) ice.

.

Problems

Numerical problems

19.1 A certain atom has a doubly degenerate ground level pair and
an upper level of four degenerate states at 450 cm~' above the
ground level. In an atomic beam study of the atoms it was observed
that 30 per cent of the atoms were in the upper level, and the
translational temperature of the beam was 300 K. Are the electronic
states of the atoms in thermal equilibrium with the translational
states? g

19.2 Explore the conditions under which the ‘integral’ approximation
for the translational partition function is not valid by considering the
translational partition function of an Ar atom in a cubic box of side
1.00 cm. Estimate the témperature at which, according to the
integral approximation, ¢ = 10 and evaluate the exact partition
function at that temperature,

19.3 (a) Calculate the electronic partition function of a tellurium
atom at (i) 298 K, (ii} 5000 K by direct summation using the
following data:

Term Degeneracy Wavenumber/cm ™!
Ground 5 0

1 1 4707

2 3 4751

3 5 10559

(b) What proportion of the Te atoms are in the ground term and in the
term labelled 2 at the two temperatures? (c) Calculate the electronic
contribution to the standard molar entropy of gaseous Te atoms.

19.4 The four lowest electronic levels of a Ti atom are: *Foe °F;, °F,,
and 5F|, at 0, 170, 387, and 6557 cm~!, respectively. There are many
other clectronic states at higher energies. The boiling point of
titanium is 3287°C. What are the relative populations of these levels
at the boiling point? (Hint : The degeneracies of the levels are 27 + 1.)

19.5 The NO molecule has a doubly degenerate excited level
121.1 em~! above the doubly degenerate ground term. Calculate
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and plot the electronic partition function of NO from 7 =0 to
1000 K. Evaluate (a) the term populations and (b) the electronic
contribution to the molar internal energy at 300 K. Calculate the
electronic contribution to the molar entropy of the NO molecule at
300 K and 500 K.

19.6 Calculate, by explicit summation, the vibrational partition
function and the vibrational contribution to the molar internal
energy of |, molecules at (a) 100 K, (b) 298 K given that its
vibrational energy levels lie at the following wavenumbers above
the zero-point energy level: 0, 213.30, 425.39, 636.27,
845.93 cm~'. What proportion of |, molecules are in the ground
and first two excited levels at the two temperatures? Calculate the
vibrational contribution to the molar entropy of I, at the two
_ temperatures.

Theoretical problems

19.7 A sample consisting of five molecules has a total energy 5¢. Each
molecule is able to occupy states of energy je, with j = 0,1,2,....(a)
Calculate the weight of the configuration in which the molecules are
distributed evenly over the available states. (b) Draw up a table with
columns headed by the energy of the states and write beneath them
all configurations that are consistent with the total energy. Calculate
the weights of each configuration and identify the most probable
configurations.

19.8 A sample of nine molecules is numerically tractable but on the
verge gf 'beiné thqmodynamically significant. Draw up a table of
configurations for # = 9, total energy 9¢ in a system with energy
levels je (as in Problem 19.7). Before evaluating the weights of the
configurations, guess (by looking for - the most ‘exponential’
distribution of populations) which of the configurations will turn
out to be-the most probable. Go on to calculate the weights and
idt_:’rEify the most probable configuration.

19.9 The most probable configuration is characterized by a
parameter we know as the ‘temperature’. The temperatures of the
system specified in Problems 19.7 and 19.8 must be such as to give a
mean value of & for the energy of each molecule and a total energy Ne
for the system. (a) Show that the temperature can be obtained by
plotting p; against j, where p; is the [most probable) fraction of
molecules in the state with energy je. Apply the procedure to the
system in Problem 19.8. What is the temperature of the system when
& corresponds to 50 em~!? (b) Choose configurations other than the
most probable, and show that the same procedure gives a worse
straight line, indicating that a temperature is not well-defined for
them.

19.10 A certain molecule can exist in either a non-degenerate singlet
state or a triplet state (with degeneracy 3). The energy of the triplet
exceeds that of the singlet by ¢. Assuming that the molecules are
distinguishable (localized) and independent, (a) obtain the expression
for the molecular partition function, (b) find expressions in terms of &
for the molar energy, molar heat capacity, and molar entropy of such
molecules and calculate their values at T = g/k.

19.11 Consider a system with energy levels ¢; = je and N molecules.
(a) Show that, if the mean energy per molecule is ae, then the
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temperature is given by

ﬁ:lln(l +l)
& a

Evaluate the temperature for a system in which the mean energy is €,
taking ¢ equivalent to 50 cm™". (b) Calculate the molecular partition
function g for the system when its mean energy is ae. (c) Show that
the entropy of the system is

S/k=(1+a)In(l +a)—alna

and evaluate this expression for a mean energy &.

19.12 Suppose that by some means we contrive to invert the
population of a two-level system, in the sense that the upper and
lower levels have the populations of the lower and upper levels,
respectively, in the system in thermal equilibrium at a temperature T.
Show that the relative populations are still given by a Boltzmann-like
expression but with a temperature —7. Under what circumstances is it
possible to speak of negative temperatures of an evenly spaced three-
level system?

19.13 Consider Stirling's approximation for InN! in the derivation of
the Boltzmann distribution. What difference would it make if (a) a
cruder approximation, N! =NV, (b) the better approximation in
footnote 3 of Section 19.1a\wcrc used instead?

Additional problems supplied by Carmen Giunta
and Charles Trapp

19.14 Consider a system A consisting of subsystems A, and A,, for
which W, = 1% 10?® and W, = 2x 10%, What is the number of
configurations available to the combined system? Also, compute the
entropies §, S,, and S,. What is the significance of this result?

19.15 Consider 1.00x 10*2 *He atoms in a box of dimensions
1.0 cm % 1.0 cm x 1.0 cm. Calculate the occupancy of the first
excited level at 1.0 mK, 2.0 K, and 4.0 K. Do the same for *He. What
conelusions might you draw from the results of your calculations?

19.16 Given that for gases the canonical partition function, Q, is
related to the molecular partition function ¢ by Q = ¢ /NI, prove,
using the expression for ¢ and general thermodynamic relations, the
perfect gas law pV = nRT.

19.17 By what factor does the number of available configurations
increase when 100 J of energy is added to a system containing
1.00 mol of particles at constant volume at 298 K?

19.18 By what factor does the number of available configurations
increase when 20 m® of air at 1.00 atm and 300 K is allowed to
expand by 0.0010 per cent at constant temperature?

19.19 (a) The standard molar entropy of graphite at 298, 410, and
498 K is 5.69, 9.03, and 11.63 JK~!'mol~!, respectively. If
1.00 mol C(graphite) at 298 K is surrounded by thermal insulation
and placed next to 1.00 mol C(graphite) at 498 K, also insulated,
how many. configurations are there altogether for the combined but
independent systems? (b) If the same two samples are now placed in
thermal contact and brought to thermal equilibrium, the final
temperature will be 410 K. (Why might the final temperature not be
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the average? It isn’t) How many configurations are there now in the
combined system? Neglect any volume changes. (c) Demonstrate that
this process is spontaneous.

19.20 Obtain the barometric formula (Problem 1.35) from the
Boltzmann distribution. Recall that the potential energy of a
particle at height h above the surface of the Earth is mgh. Convert
the barometric formula from pressure to number density, N.
Compare the relative number densities, A(h)/A(0), for O, and

H,0 at h=80km, a typical cruising altitude for commercial ,

aircraft.

19.21 Over time planets lose their atmospheres unless they are
replenished. A complete analysis of the overall process is very
complicated and depends upon the radius of the planet, temperature,
atmospheric composition, and other factors. Prove that the atmo-
sphere of planets cannot be in an equilibrium state by demonstrating
that the Boltzmann distribution leads to a uniform finite number
density as r — oo. Hint. Recall that in a gravitational field the
potential energy is V(r) = —GMm/r, where G is the gravitational
constant, M is the planet's mass, and m the mass of the particle.
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19,22 Consider the distribution of particles in a fluid (liquid) as a
function of height in the fluid. Assume the particles have a slightly
greater density than the fluid. (a) Show that the potential energy of
such a particle is given by V(h) = v(p — po)gh. where g is the mass
density of the particle, and gy is the mass density of the fluid. (b)
Derive a formula for the number density of particles, AV, in the fluid as
a function of height. (c) Perrin (1906) found for gamboge gum grains
in water with density 1.21 x 10° kgm~3 and volume 1.03 x 107*° m?
at 4°C that the number density decreased to half its value at
h=123%10"° m. From this result determine the Boltzmann
constant and the Avogadro constant.

19.23 1. Sugar and A. Musgrove (J. Phys. Chem. Ref. Data 22, 1213
(1993)) have published tables of energy levels for germanium atoms
and cations from Ge*' to Ge*?'. The lowest-lying energy levels in
neutral Ge are as follows.

Py Py ’P, 'D, 'Sy
Ej/cm™! 0.0 557.1 14100 71253 163673
Calculate the electronic partition function at 298 K and 1000 K by
direct summation. Hint. The degeneracy of a level is 27 + 1.
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Fundamental relations ——

20.1 The thermodynamic functions

20.2 The molecular partition
function

In this chapter we apply the concepts of statistical thermodynomics to the calculation of
chemically significant quontities. First, we establish the relations between thermodynamic
functions and partition functions. Next, we show that the molecular portition function can
be foctorized into contributions fram cach mode of motion, and establish the formulas for
the partition functions for translational, ratational, vibrational, ond clectronic modes of

Usina statistiv.’
‘thermodynamics

20.3 ' Mean energies

20.4 Heat capacities motion. These contributions can be calculated (rom spectroscopic data. Finally, we turn to
205 Equations of state specific calculations. These npplfmrr‘uns include the mean energics of mades of motion, the

i . heat capacities of substances, and residual entropies. In the final scction, we see how to
206 Residual entropics calculate the equilibrium constant of a reaction and through that calculation understand
20.7  Equilibrium constants some of the molecular features that determine the magnitudes of equilibrium constants and

their temperalure dependence.

Checklist of key ideas A partition function is the bridge between thermodynamics, spectroscopy, and quantum

’ mechanics. Onee it is known, it can be used to ‘calculate thermodynamic functions, heat
Further reading capacities, entropies, and equilibrium constants. It also sheds light on the significance of
these properties.
Exercises

Fundamental relations .

In this section we see how all the thermodynamic functions can be obtained once we know
the partition function, Then we see how to calculate the molecular partition function, and
through that the thermodynamic functions, from spectroscopic data.

Problems

19.1 The thermodynamic functions
We have already derived (in Chapter 19) the two expressions for caleulating the internal

energy ahd the entropy of a system from its canonical partition function, Q:

u-U(o):-(%g)v S=U;,I(,J(-0—)+kan. (1)
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Table 20.1 Statistical
tions

thermodynamic rela-

In terms of the canonical partition function O

U-U0)= H(alng)y

op
a0 -TU(O) +kinQ

A—A(0) = —kTInQ
= dlnQ
r=(59),

H — H(0) = — (aan)y

op
0lnQ
+irv (O )
G-G(0) = —kTInQ + mf(m)
ov /.
For indistinguishable, independent particles
2=4"/M '
d Inq)
U-U(0)=-N—=
o --n(%5),
S=9_"‘T_W’l+ nR(Ing - InN + 1)
= i m
G- G(0) = nRTln(NA)

where g, is the molar partition function. For
distinguishable, independent particles © = "

_U-U(0)
S=—7—

+nRIng
G~ G(0) = —nRTIng
In general, for indistinguishable independent
particles, ;
-l ('qulrrm:lqivw-;n])n
G-

N
= ____(?u;?.]) x (qmm)~

The thermodynamic functions are then the
sums of internal and external (translational)
contributions.
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where f = 1 /kT. If the molecules are independent, we can go on to make the substitutions
Q = ¢ (if the molecules are also distinguishable, as in a solid) or Q = ¢ [N (if they are
indistinguishable, as in a gas). All the thermodynamic functions introduced in Part 1 are
related to I/ and S, so we have a route to their calculation from Q. For later convenience, the
expressions we derive here are collected in Table 20.1.

(a) The Helmholtz energy
The Helmholtz energy, A, is defined as A = U/ — TS. This relation implies that A(0) = U(Q),
so substitution for U/ and § by using eqn 1 leads to the very simple expression

A—A(0) = ~kTInQ )

(b) The pressure

It fallows from classical thermodynamics, using an argument like that leading to egn 5.10,'
that the pressure, p, and the Helmholtz energy are related by

0AY
=), =
Therefore,
_ dlnQ
p= kT( W )T g (4)

This relation is entirely general, and may be used for any type of substance, including perfect
Qases, real gases, and liquids.

Example 20.1 Deriving an equation of state
Derive an expression for the pressure of a gas of independent particles.

Method We can suspect that the pressure is that given by the perfect gas law. To proceed
systematically, substitute the explicit formula for Q for a gas of independent,
indistinguishable molecules (see Table 19.1) into eqn 4.

Answer For a gas of independent molecules, Q = ¢ /N1 with q=V/A*

_r(20Q) _ AT (30\ _MiT (3
"‘*’"(a—v); ) (av); P (av),

NKTA® 1 _NKT _nRT

v R 14

To derive this relation, we have used

&), (%) =%

and NkT = nN kT = nRT.

Comment The calculation shows that the equation of state of a gas of independent
particles is indeed the perfect gas law. This calculation can be regarded as yet another way of
deducing that § = 1/kT.

1 Specificaly, from A = U ~ T5, it follows that d4 = ~pd¥ — S4T, o (@4/a¥); = —p.
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Self-test 20.1 Derive the equation of state of a sample for which Q = g"f/N!, with
q= VfA’, where f depends on the volume. :
{p = nRT/V +kT(@Inf /OV);]

(c) The enthalpy

At this stage we can use the expressions for U and p in the definition H = U + pV to obtain
an expression for the enthalpy, H, of any substance:

We have already seen that U — U(0) = %nRT for a gas of independent particles
(eqn 19.28a), and have just shown that pV = nRT. Therefore, for such a gas,?,

H — H(0) = InRT (6)°

(d) The Gibbs energy )

One of thé most impqrtant thermodynamic functions for chemistry is the Gibbs energy,
G = H — TS = A + pV. We can now express this function in terms of the partition function
by combining the expressions for A and p:

G —G(0) = —kTInQ + KTV (a ;" Q) )
v T

\ y
This expression takes a simple form for a gas of independent molecules because pV in the
expression G = A + pV can be replaced by nRT:

G —-G(0) = —kTInQ + nRT (8)°
Furthermore, because 0 = ¢"/N!, and therefore InQ = Nlng — InN!, it follows that by
using Stirling’s approximation (InN!~N InN — N) we can write

G — G(0) = —NkTIng + KT InN! + nRT
= —nRTIng + kT(NInN = N) + nRT (9)°

= —nR:rxn(,%)

with N = nN,. Now we see ancther interpretation of the Gibbs energy: it is proportional to
the logarithm of the average number of thermally accessible states per molecule.

It will turn out to be convenient to define the molar partition function, g, = q/n {with
units mol ™!}, for then

G - G(0) = —nRT In (:—':) (10)°

202 The moleccular partition function
The energy of a molecule is the sum of contributions from its different modes of motion:

g=6 +ef g o (11)

where T denotes translation, R rotation, V vibration, and E the electronic contribution. This
separation is only approximate (except for translation) because the modes are not
completely independent, but in most cases it is satisfactory. The separation of the electronic
and vibrational motions, for example, is justified by the Born-Oppenheimer approximation

2 Recall from Part 1 that we use a superscript ® on an equation number 1o denote 3 result valid only for 3 perfect gas.
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20.1 The contributions to the rotational partition
function of an HCl molecule at 25°C. The vertical
axis is the value of (2J + 1)e~ABU+1) Suecessive
terms (which are proportional to the populations of
the levels) pass through a maximum because the
population of individual states détreases
exponentially, but the degmcm:y of the levels
increases with J,
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(Chapter 14), and the separation of the vibrational and rotational modes is valid to the
extent that a molecule can be treated as a rigid rotor.

Given that the energy is a sum of independent contributions, the partition function
factorizes into a product of contributions (recall Section 19.2b):

7= :e'”" - Ze—ﬂcffwfﬁgy-ﬂﬁp
- (Bem) (5 (T (o) e

This factorization means that we can investigate each contribution separately.

(a) The translational contribution _
The translational partition function of a molecule of mass m in a container of volume V was
derived in Section 19.2:

Vo, L)'”__’*_ v
=3 1Mo  (2nmkT)'2 -

Notice that g™ — oo as T — oo because an infinite number of states becomes accessible as
the temperature is raised. Eveh at room temperature g7 22 x 10% for an 0, molecule in a
vessel of volume 100 cm?’.

The thermal wavelength A, lets us judge whether the approximations that led to the
expression for ¢ are valid. The approximations are valid if many states are occupied, which
requires V/A? to be large. That will be so if A is small compared with the linear dimensions
of the container. For H, at 25°C, A = 71 pm, which is far smaller than any conventional
container is likely to be (but comparable to pnres in zeolites or cavities in clathrates). For 0,
a heavier molecule, A = 18 pm.

(b) The rotational contribution

As demonstrated in Example 19.1, the partition function of a nonsymmetrical (AB) linear
rotor is

qR . Z(ZJ e ]}c-ﬂhcﬂl(!ilﬂ : (14)
7 g

The direct method of calculating g® is to substitute the experimental values of the rotational
energy levels into this expression and to sum the series numerically.

Example 20.2 Evafuaung the mtaatonal pamtwn function explicitly
10.591 em™',

Evaluate the rotational partition function of 'H¥C| at 25°C, given that B =

Method We use eqn 14, and evaluate it term by term. A useful relation is
KT [hc = 207.22 cm™" at 298.15 K. The sum is readily evaluated using mathematical
software.

Answer To show how successm terms coptribute, we draw up the following table using
heB/kT = 0.05111 (Fig. 20.1). i

J 0 1 22k 3 4 10
(27 + 1)e~00SHLU+) | 291 368 379 324 ... 0.08

The sum required by eqn 14 (the sum of the numbers in the last row of the table) is 19.9;
hence ¢* = 19.9'at this temperature. Taking J up to 50 gives g* = 19.902.



Table 20.2° Rotational and vibrational tem-
peratures

Molecule Mode Oy/K  O0x/K

H, 6330 88
HCI 4300 9.4
I 309 0.053
o, " 1997  0.561
78 3380
¥ - 960

* For more values, see Table 16.2 in the Dato section
at the end of this volume, and use hefk =
1439Kem.
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Comment Notice that about ten J-levels are significantly populated but the number of
populated states is larger on account of the (2J + 1)-fold degeneracy of each level. We
shall shortly encounter the approximation that q® = kT [hcB, which in the present case gives
gR = 19.6, in good agreement with the exact value, and with much less work.

Self-test 20.2 Evaluate the rotational partition function for HCl at 0°C.
[18.26]

At room temperature kT /hc 2200 cm~'. The rotational constants of many molecules are
close to 1 cm™! (Table 16.2) and often smaller. (The very light H, molecule, for which
B =609 cm™', is one exception.) It follows that many rotational levels are populated at
normal temperatures. When this is the case, the partition function may be approximated by

i
hcB

32 "
Nonlinear rotors: g* = (g) (.4%(.‘")

Linear rotors: g* =

(15)

where A, B, and C are the rotational constants of the molecule. However, before using these

expressions, read on (to eqns 17 and 20).

Justification 20.1

When many rotational states are occupied and kT is much larger than the separation
between neighbouring states, the sum in the partition function ¢an be approximated by an
integral, much as we illustrated for translational motion in Justification 19.4.

¢ = fm(?./ + 1)e P+ g7
0

Although this integral looks complicated, it can be evaluated without much effort by
noticing that it can also be written as

qn=__'_f°° 4 penr+n) g7
BheB Jo \&

Then, because the integral of a derivative of a function is the function itself,

1 @ 1
. —BheBI(I4+1) [P
7 =~ GheB® lo BheB

The calculation for a nonlinear molecule is along the same lines, but slightly trickier (see
Further reading). '

A useful way of expressing the temperature above which the approximation is valid is to
introduce the rotational temperature, 0y = hcB/k. Then ‘high temperature’ means T > Og.
Some typical values are shown in Table 20.2. The value for H, is abnormally high and we
must be careful with the approximation for this molecule.

The general conclusion at this stage is that molecules with large moments of inertia (and
hence small rotational constants and low rotational temperatures) have large rotational
partition functions. The large value of ¢® reflects the closeness in energy {compared with kT)
of the rotational levels in large, heavy molecules, and the large number of them that are
accessible at normal temperatures.

We must take care, however, not to include too many rotational states in the sum. For a
homonuclear diatomic molecule or a symmetrical linear molecule (such as CO, or HC=CH), a
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70.2 The values of the individual terms

(24 + 1)e PRI+ contributing to the mean
partition function of a 3 : 1 mixture of ortho- and
para-H,, The partition function is the sum of all
these terms. At high temperatures, the sum is
approximately equal to the sum of the terms over
all values of J, each with a weight of L. This is the
sum of the contributions indicated by the curve,

20.2 The relative populations of the rotational
energy levels of CO,. Only states with even J values
are occupied. The full line shows the smoothed,
averaged population of levels.
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rotation through 180° results in an indistinguishable state of the molecule. Hence, the
number of thermally accessible states is only half the number that can be occupied by a
heteronuclear diatomic molecule, where rotation through 180°. does result in a
distinguishable state. Thercfore, for a symmetrical linear molecule, -
R
2hcB
The equations for symmetrical and nonsymmetrical molecules can be combined into a
single expression by introducing the symmetry number, g, which is the number of
indistinguishable orientations of the molecule. Then
kT
R
=— 17
o ahcB ‘ (17

(16)

For a heteronuclear diatomic molecule o = 1: for a homonuclear diatomic molecule or a
symmetrical (D) linear molecule, ¢ = 2.

Justifieation 20.2

The quantum mechanical origin of the symmetry factor is the Pauli principle, which forbids
the occupation of certain states. We saw in Section 16.8, for example, that H, may occupy
rotational states with even J only if its nuclear spins are paired (para-hydrogen), and odd J
states only if its nuclear spins are parallel (ortho-hydrogen). There are three states of
ortho-H, to each value of J (because there are three parallel spin states of the two nuclei).

_ Toset up the rotational partition function we'note that ‘ordinary’ molecular hydrogen
is a mixture of one part pora-H, (with only its even-J rotational states occupied) and three
parts ortho-H, (with only its odd-J rotational states occupied). Therefore, the average
partition function per molecule is :

= }{ D (2 + 1)ePhBiu) 4 3 S+ l)c‘”"”"’“’} (18)
even J odd J

The odd-J states are more heavily weighted than the even-J states (Fig. 20.2). From the

illustration we see that we would obtain approximately the same answer for the partition

function [the sum of all the populations) if each J term contributed half its normal value to

the sum. Thaf'is, the last equation can be approximated as

=1 (2 + 1)e MBI (19)

and this approximation is very good when many terms contribute (at high temperatures),

The same type of argument may be used for finear symmetrical molecules in which
identical bosons are interchanged by rotation (such as C0,). As pointed out in
Section 16.8, if the nuclear spin of the bosons is 0, then only even-J states are admissible,
Because only half the rotational states are occupied, the rotational partition function is
only half the value of the sum obtained by allowing all values of J to contribute (Fig. 20.3).

The same care must be exercised for other types of symmetrical molecule, and for a
nonlinear molecule we write

1 (kT\Y? 0 7 \i2
_ 1 (4T 2
4 a (hc) (ABC) (20)
Some typical values of the symmetry numbers required are given in Table 20.2. The value

o(H;0) =-2 reflects the fact that a 180° rotation about its C, axis interchanges two
indistinguishable atoms. In NH,, there are three indistinguishable orientations around its Gy
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axis. For CH,, any of three 120° rotations about any of its four C-H bonds leaves the
molecule in an indistinguishable state, s:: the symmetry number is 3 x 4 = 12. For benzene,
any of six orientations around its C;, axis leaves it apparently unchanged, as does a rotation
of 180° around any of six C, axes in the plane of the molecule.

A mare formal way of arriving at the value of the symmetry number is to note that a is
the order (the number of elements) of the rotational subgroup of the molecule, the point
group of the molecule with all but the identity and the rotations removed. The rotational
subgroup of H,0 is {E, C, }, so ¢ = 2. The rotational subgroup of NH; is {E,2C;},s0 o = 3.
This recipe makes it easy to find the symmetry numbers for more complicated molecules. The
rotational subgroup of CH, is obtained from the T character table as {E,8C;,3C,}, so
o = 12. For benzene, the rotational subgroup of Dy, is {E,2Cs,2C5,C3,3C,3C3}, s0
a= 12,

Example 20.3 Estimating a rotational partition function
Estimate the rotational partition function of ethene at 25°C given that A = 4.828 cm™!,
B=1.0012cm™, and C = 0.8282 cm™,

Mcthod Use eqn 20 with kT'/hc = 207.226 cm™'. Next, identify the molecular point
group [for example, by using the chart in Fig. 15.14 or the shapes in Fig. 15.15). The
symmetry number is obtained by deciding an the rotational subgroup of the molecular point
group, and counting the number of elements in the\gruup.

Answer The point group of the molecule is Dy,. From that group's character table (see the
Data section), the rotational subgroup of Dy, consists of the elements {E, C;,, Cy,, Cy, }.
The order of this subgroup is 4; therefore ¢ = 4. Then, because ABC = 4.0033 cm™3, it
follows that g* = 661.

Camment Ethene is quite a big molecule, the energy levels are close together (compared
with kT at room temperature), and many are significantly populated at room temperature.

Self-test 20 1 Evaluate the rotational partition function of pyridine, C;HgN, at room
temperature (4 = 0.2014 cm™', B = 0.1936 cm ™', C = 0.0987 cm™').
[4.3 x 107]

(¢} The vibrational contribution

The vibrational partition function of a molecule is calculated by substituting the measured
vibrational energy levels into the exponentials appearing in the definition of ¢V, and
summing them numerically. In a polyatomic molecule each narmal mode (Section 16.14) has
its own partition function (provided the anharmonicities are so small that the modes are
independent). The overall vibrational partition function is the product of the individual
partition functions, and we can write ¢¥ = ¢"¥(1)¢¥(2)..., where ¢¥(K) is the partition
function for the K'th normal mode and is calculated by direct summation of the observed
spectroscopic levels.

Illustration

Given that a typical value of the vibrational partition function of one normal mode is
about 1.14, and that a nonlinear molecule containing 10 atoms has 3N — 6 = 24 normal
) mades (Section 16.14a), the overall vibrational partition function is approximately
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20.4 The vibrational partition function of a
molecule in the harmonig approximation. Note that
the partition function is linearly proportional to the
temperature when the temperature is high
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20.5 The doubly degenerate ground electronic level
of NO (with the spin and orbital argular
momentum around the axis in opposite directions)
and the doubly degenerate first excited level (with
the spin and orbital momenta parallel). The upper
level is thermally accessible at room temperature,
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V= (1.1 }7‘" = 9.8. Even though each vibrational maode is not appreciably excited, there may
be so many modes in a molecule that overall their excitation is significant.

If the vibrational excitation is not too great, the harmonic approximation may be made,
and the vibrational energy levels written as

E,=(@+)hes  v=01,2,... (21)

v

If we measure energies fram the zero-point level (our general rule), then the permitted
values are ¢, = vhcv and the partition function is

q‘-' - Ze—ﬂm‘lr[’ - Z(e—ﬂh[‘l})n (22)

[because e™ = (e*)“). We met this sum in Example 19.2 (which is no accident: the ladder-
like array of levels in Fig. 19.3 is exactly the same as that of a harmonic oscillator). The series
can be summed in the same way, and gives .
L. (23)
9 = T,
This function is plotted in Fig. 20.4. In a polyatomic molecule, each normal mode gives rise to
a partition function of this form.

Example 20.4 Calculating a vibrational partition function

The wavenumbers of the three normal modes of H,0 are 3656.7 cm~', 1594.8 cm~!, and
3755.8 cm™'. Evaluate the vibrational partition function at 1500 K.

Method Use eqn 23 for each mode, and then form the product of the thr=e contributions.
At 1500 K, kT /hc = 1042.6 cm™.

Answer We can draw up the following table displaying the contributions of each mode:

Mode: 1 2 3
sfem™'  3656.7  1594.8 37558
heo/kT  3.507 1.530 3.602
q’ 1.031 1.276 1.028

The overall vibrational partition function is therefore
q¥ = 1.031 x 1.276 % 1.028 = 1.353

Comment The vibrations of H,0 are at such high wavenumbers that even at 1500 K most
of the molecuies are in their vibrational ground state.

Sclf-test 20.4 Repeat the calculation for CO,, where the vibrational wavenumbers are,
1388 cm~!, 667.4 cm™', and 2349 cm !, the second being the doubly degenerate bending

mode. : .
. [6.79]

In many molecules the vibrational wavenumbers are so great that fheiz> 1. For example,
the lowest vibrational wavenumber of CH, is 1306 cm™!, so fhci = 6.3 at room
temperature. C-H stretches normally lie in the range 2850 to 2960 cm™', so for them
Pheiz=14. In these cases, =P in the denominator of ¢ is very close to zero (for example,
€753 = 0.002), and the vibrational partition function for a single mode is very close to 1



4~

o

3_

2 L ]
0 5 10

kTle

20.6 The variation with temperature of the
electranic partition function of an NO molecule.
Note that the curve resembles that for a two-level
system (Fig. 19.5), but rises from 2 (the degeneracy
of the lower level) and approaches 4 [the total
number of states) at high temperatures.

Table 20.3* Symmetry numbers

Molecule a
H,0 2
NHJ 3
CH, 12
CgHe 12,

*For more values, see Table 16.2 in the
Dato section.

20.2 THE MOLECULAR PARTITION FUNCTION 601

(¢¥ = 1.002 when fhei = 6.3), implying that only the zero-point level is significantly
occupicd. .

Now consider the case of bonds so weak that Bhci < kT. When this condition is
satisfied, the partition function may be approximated by expanding tfe exponential
le*=1+x+-)

v _ 1
7 '1—(1—ﬁm-q+---) 4

That is, for weak bonds at high temperatures,
St
Pheir hei
The temperatures for which eqn 25 is valid can be expressed in terms of the vibrational
temperature, 0y = hci/k (Table 20.2). In terms of the vibrational temperature, "high
temperature’ means T » f. The value for H, is abnormally high because the atoms are so
light and the vibrational frequency consequently high.

(25)

(d) The electronic contribution

Electronic energy sepErations from the ground state are usually very large, so for most cases
g% = 1. An important exception arises in the case of atoms and molecules having
electronically degenerate ground states, in which case gt = go. where g, is the degeneracy
of the electronic ground state. Alkali metal atoms, for example, have doubly degenerate
ground states (corresponding to the two orientations of their electron spin), so g% = 2.
Some atoms and molecules have low-lying electronically excited states. (At high enough
temperatures, all atoms and molecules have thermally accessible excited states.) An example
is NO, which has a configuration of the form - - - ! (the molecule has one electron more than
N,). The orbital angular momentum may take two orientations with respect to the molecular
axis (corresponding to circulation clockwise or counter-clockwise around the axis), and the
spin angular momentum may also take two, giving four states in all (Fig. 20.5). The energy of
the two states in which the orbital and spin momenta are parallel {giving the 2TT; term) is
slightly greater than that of the two other states in which they are antiparallel (giving the
*T1y,, term). The separation, which arises from spin-orbit coupling (Section 13.8), is only
121 cm~'. Hence, at normal temperatures, all four states are thermally accessible. If we
denote the energies of the two levels as £, = 0 and E3; = & the partition function is
"= geti=242" (26)
levels ; :
The variation of this function with temperature is shown in Fig. 20.6. At T =0, =2
because only the doubly degenerate ground state is accessible. At high temperatures, g
approaches 4 because all four states are accessible. At 25°C, ¢ =31

{e) The overall partition function

The partition functions for each mode of motion of a molecule are collected in Table 20.3.
The overall partition function is the product of each contribution. For a diatomic molecule
with no low-lying clectronically excited states and T > Oy,

o= () (25 (=)

Overall partition functions obtained in this way arc approximate because they assume that
the rotational levels are very close and that the vibrational levels are harmonic. These
approximations are avoided by using the energy levels identified spectroscopically and
evaluating the sums explicitly.
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o

dynamic funetion from spectro-

Example 20.5 Caleulating a thermp
Scopic data

Calculate the value of Gy — G2 (0) for H,0(g) at 1500 K given that A = 27:8778 cm~/,
B =14.5092 cm™', and C = 9.2869 cm™' and the information in Example 20.4,

Mecthod The starting point is egp 10. For the standard value, we evaluate the translational
partition function at p© (that is, at 105 Pa exactly). The vibrational partition function was
calculated in Example 20.4. Use the expressions in Table 20.4 for the other contributions.

Answer For this C;, molecule, ¢ = 2. Because m = 18.015 u, g, ® = 1.706 x 10® mol~'.
For the vibrational contribution we have already found that g¥ = 1.352. For the rotational
contribution, g® = 486.7. Therefore,
G — G (0) = —(8.3145 JK™' mol™") x (1500 K)
| ((1.706 x 10® mol~!) x 486.7 x 1.352)

6.022 14 x 108 mol~!
= —365.6 kImol™!

Self-test 20.5 Repeat the calculation for CO,. The vibrational data are given in Self-

test 20.4; B = 0.3902 cm™'.
[~366.6 KImol~"}

Table 20.4 Contributions to the molecular partition function®

Translation

v K\
5 ()
A 2nm
: 74
Afpm = 12 S V73
(T/K)"*(M /g mol-1)"/
g2 kT
F'"i o 2.561 x 1073(T/K)** (M /g mol~')*/?
Rotation
(a) Linear molecules
I 0.6950  T/K

= oheBf = "¢ (Bjem )
(b) Non-linear molecules

1 yaf m M 10270 (r/x)*?
q_;(t/hcﬁ) (m) e x(ABC/cm“’)m

Vibration .
1 1 1.4388(7/em™")
1= T=e=  °"— 1K
Electronic
q9=28o

where g; is the degencracy of the electranic ground state (when that is the only aecessible
level); at high temperatures, evaluate g explicitly.

*B = 1/kT. It is often useful to note that

%: 1.43879cmK

See also inside front cover for further information,
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20.7 The mean rotational e-ncrgy of a
nonsymmetrical linear rotor a5 a function of
temperature. At high temperatures (T » 6;), the

energy is linearly proportional to the temperature,
in accord with the equipartition theorem.
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Using statistical thermodynamics

Any thermodynamic quantity can now be calculated from a knowledge of the energy levels
of molecules: we have merged thermodynamics and spectroscopy. In this section, we
indicate how to do the calculations for a number of important properties.

20.3 Mean energies

It is often useful to know the mean energy, (¢), of various modes of motion. When the
molecular partition function can be factorized into contributions from each mode, the mean
energy of each mode M is

My 1 o™ -
(bM>—"W(W)V M=T,R,V, or E : (28)

{a) The mean translational energy

To see a pattern emerging, we consider first a one-dimensional system of length X, for which
g% = X/ A, with A = h(f/2rm)"/2. Then, if we note that A is a constant times §'/2,

: AfoX d i 1
Nl (=) == | —]|===Ur 29
=% (571).~ "5 (ﬁm) =1 (29)
For a molecule free to move in three dimensions; the analogous calculation leads to
(") = kT (30)

Both conclusions are in agreement with the classical equipartition theorem (see the
Introduction), that the mean energy of each quadratic contribution to the energy is 'ikT.
Furthermore, the fact that the mean energy is independent of the size of the container is
consistent with the thermodynamic result that internal energy of a perfect gas is
independent of its volume (Section 5.1b).

(b) The mean rotational energy

The mean rotational energy of a linear molecule is obtained from the partition function
given in eqn 14. When the temperature is low (T < 0), the series must be summed term by
term, which gives

qn = | 4 3o MheB | §u-6fkcB |
Hence

( R} B hCB(&—Zﬁth i 3oc-léﬂhr8 i e )
Eih= 1 Je-2hcB 4 Se—00hcB S

This function is plotted in Fig. 20.7. At high temperatures (T 3 0;), ¢* is given by eqn 17,
and

(31

I dg d 1 1

(ER}=—Eﬁ'd—ﬁ‘:“O’hfﬁBﬁm=B=kT (32)

(¢ is independent of V, so the partial derivatives have been replaced by complete
derivatives) The high-temperature result is also in agreement with the equipartition
theorem, for the classical expression for the energy of a linear rotor is Ex = 31, w2 + Y, @},
(There is no rotation around the line of atoms.) It follows from the equipartition theorem
that the mean rotational energy is 2 x 1T = kT.
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20.8 The mean vidrational energy of a molecule in
the harmonic approximation as a function of
temperature. At high temperatures (T 3 0,), the
energy is linearly proportional to the temperature,
in accord with the equipartition theorem,
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20.9 The temperature dependence of the rotational
contribution to the heat capacity f a linear
malecule.
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(c) The mean vibrational energy

The vibrational partition function in the harmonic approximation is given in cqn 23. Because
g is independent of the volume, it follows that

v ~ o~ fheir
dg” _ d/ 1 N oo hee i (33)
dg df\1 — e Fhev (1 — e~fhci)? :
and hence that
hep
(SV) = obhci — | {34)

The zero-point energy, %ha‘x, can be added to the right-hand side if the mean energy is to be
measured from O rather than the lowest attainable level (the zero-point level). The variation
of the mean energy with temperature is illustrated in Fig. 20.8.

At high temperatures, when T » Oy, or fhci < 1, the exponential functions can be
expanded (¢* = | +x +---) and all but the leading terms discarded. This approximation
leads to .

vy _ hc:ﬁ ~l—
) =trmmr =i =Y (35)

This result is in agreement with the value predicted by the classical equipartition theorem,
because the energy of a one-dimensional oscillator is £ = %mxfﬁ + %h‘" and the mean value
of each quadratic term is JAT.

20.4 Hcat capacitics

The constant-volume heat capacity is defined as Cy = (3U /0T)y. The derivative with
respect to T is converted into a derivative with respect to [ by using

g _[ya._. EA._ ol
dr - (dT) df ~  kT?df RE dp A%

It foliows that

o=+ (3), -

Because the internal energy of a perfect gas is a sum of contributions, the heat capacity is
also a sum of contributions from edch mode. The contribution of mede M is

o) e (), o

(a) The individual contributions

The temperature is always high enough (provided the gas is above its condensation
temperature) for the mean translational energy to be 34T, the cquipartitioff value.
Therefore, the molar constant-volume heat capacity is

3
M) i (39)°

CI.m = NA dT z

Translation is the only mode of motion for a monatomic gas, so for such a gas
Cym=3K = 12.47 JK~" mol~". This result is very reliable: helium, for example, has this
40—B
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20,10 The temperature dependence of the
vibrational heat capacity of 2 molecule in the
harmonic approximation calculated by using egn 41,
Note that the heat capacity is within 10 per cent of
its classical value for temperatures greater than 0.

" 2x Atoms (T)

Dissociation
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20.11 The general features of the temperature
dependence of the heat capacity of diatomic
molecules are as shown here. Each mode becomes
sactive when its characteristic temperature is
exceeded. The heat capacity becomes very large
when the molecule dissociates Because the energy is
used to cause dissociation and not to raise the
temperature. Then it falls back to the translation-
only value of the atoms.

Temperature
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value over a range of 2000 K. We saw in Section 3.3a that C,, — Cy.,, = R, so for a
monatomic perfect gas €, = gR, and therefore

Cp 5 o
1= 'C: =g (40)

When the temperature is high enough for the rotations of the molecules to be highly
excited (when T > @), we can use the equipartition value kT for the mean rotational
energy (for a linear rotor) to obtain C,,, = K. For nonlinear molecules, the mean rotational
energy rises to 3 kT, so the molar rotational heat capacity rises to 1R when T » Og. Unly the
lowest rotational state is occupied when the temperature is very low, and then rotation does
not contribute to the heat capacity. We can calculate the rotational heat capacity at
intermediate temperatures by differentiating the equation for the mean rotational energy
(eqn 31). The resulting (untidy) expression, which is plotted in Fig. 20.9, shows that the
contribution rises from zero (when T =0) to the equipartition value (when T » 6g).
Because the translational contribution is always present, we can expect the molar heat
capacity of a gas of diatomic molecules (C},, +C§,) to rise from 3R to 3R as the
temperature is increased above 8.

Molecular vibrations contribute to the heat capacity, but only when the temperature is
high enough for them to be significantly excited. The equipartition mean energy is kT for
each mode, so the maximum contribution to the molar heat capacity is R. However, it is very
unusual for the vibrations to be so highly excited that equipartition is valid, and it is more
appropriate to use the full expression for the vibrational heat capacity, which is obtained by
differentiating eqn 34:

-0, /2T
CYomRP . f=% (l—ie—m) | (41)
where 8y = hcir/k is the vibrational temperature. The curve in Fig. 20.10 shows how the
vibrational heat capacity depends on temperature. Note that even when the temperature is
only slightly above the vibrational temperature the heat capacity is close to its equipartition
value.)

(b) The overall heat capacity

The total heat capacity of a molecular substance is the sum of each contribution (Fig. 20.11).
When equipartition is valid (when the temperature is well above the characteristic
temperature of the mode, T > 8y,) we can estimate the heat capacity by counting the
numbers of modes that are active. In gases, all three translational modes are always active,
and contribute 2R to the molar heat capacity. If we denote the number of active rotational
modes by v (so for most molecules at normal temperatures v = 2 for linear molecules, and
3 for nonlinear molecules), then the rotational contribution is {114 R. If the temperature is
high enough for vy, vibrational modes to be active, the vibrational contribution to the molar
heat capacity is Ly R. In most cases vy, ~0. It follows that the total molar heat capacity is

Cym= %(3 + vp + 2vy)R (42)

Example 20.6 Estimating the molar heat capacity of a gas -

Estimate the molar constant-volume heat capacity of water vapour at 100°C. Vibrational
wavenumbers are given in Example 20.4; the ratational constants of an H,0 molecule are
27.9,14.5, and 9.3 cm ™.

3 Lquation 41 is essenlially the same as the Eidstein formula for the heat capacily of a solid {eqn 11.9) with @y, the Einstein
temperature, 0. The only difference is that vibrations can take place in three dimensions in a solid.
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fMuihod We need to assess whether the rotational and vibrational modes are active by
computing their characteristic temperatures from the data (to do so, use
hefk = 1.439 cmK).

Answer The characteristic temperatures (in round numbers) of the vibrations are 5300 K,
2300 K, and 5400 K; the vibrations are therefore not excited at 373 K., The three rotational
modes have characteristic temperatures 40 K, 21 K, and 13 K, so they are fully excited, like
the three translational modes. The translational contribution is 3R = 12.5 JK~" mol~!.
Fully excited rotations contribute a further 12.5 JK~" mol~". Therefore, a value close to
25 JK"mol ! is predicted.

Camment The experimental value is 26.1 JK " mol~'. The discrepancy is probably due to
deviations from perfect gas behaviour.

Sclt-lest 20.6 Estimate the molar constant-volume heat capacity of gaseous |, at 25°C
(B = 0.037 cm™!; see Table 16.2 for more data).
[21 JK ' mol™!]

T P S S ¥5 wEe e e e =

20.5 Equations of State

The canonical partition function, @, is a function of the voiume and the temperature of the
system and the number of molecules it contains. Therefore, eqn 4 for the pressure in terms
of the partition function has the form p = f(n, V,T). That is, eqn 4 is an equation of state.
The relation between p and Q is a very important route to the equations of state of real gases
in terms of intermolecular forces, for the latter can be built into Q.

We have already seen (Example 20.1) that the partition function for a gas of independent
particles leads to the perfect gas equation of state, pV = nRT. Real gases differ from perfect
gases in their equations of state and we saw in Section 1.4b that their equations of state
may be written

_'“=l+___+.__’+... 43
RT v, V3 e
where B is the second virial coefficient and C is the third virial coefficient.

The total kinetic energy of a gas is the sum of the kinetic energies of the individual
molecules. Therefore, even in a real gas the canonical partition function factorizes into a
part arising from the kinetic energy, which is the same as for the perfect gas, and a factor
called the configuration integral, Z, which depends on the intermolecular potentials. We
therefore write

Z

Q=—

A]N {44)

By comparing this equation with eqn 19.46b(Q = ¢"/N|, with g = V/A%), we see that fora
perfect gas

LW
Z=w (45)

For a real gas, Z is related to the total potential energy V of interaction of all the particles by

|
Z =m/e“””dr,drz-—-dr,v (46)
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llustration

When the molecules do net interact with one another, V = 0, and hence e=#¥ = 1. Then

I v
Z:ﬁ?/df|df2"'dfw=7!

because [dr = V, where V is the volume of the container. This result coincides with eqn 45.
When we consider only interactions between pairs of particles the configuration integral
simplifies to

Z=%fc"wdr.drz (47)

The second virial coefficient then turns out to be

N
By [fanan  f=eP- (48)
The quantity f is the Mayer f-function: it goes to zero when the two particles are so far
apart that V = 0. When the intermolecular interaction depends only on the separation r of
the particles and not on their relative orientation, as in the interaction of closed-shell atoms
and tetrahedral and octahedral molecules, eqn 48 simplifies to

B = —2zN, ‘[) B fridr ’ (49)

The integral can be evaluated (usually numerically) by substitijting an expression for the
intermolecular potential energy.

Intermolecular potential energies are discussed in more detail in Chapter 22, where
several expressions are developed for them. At this stage, we can illustrate how eqn 49 is
used by considering the hard-sphere potential, which is infinite when the separation of the
two molecules, r, is less than or equal to a certain value g, and is zero for greater separations.
Then

e V=0 = -1 when r < a (and V = o0) (50)
e™=1 f=0 whenr>g(and V=0)
It follows from eqn 49 that the second virial coefficient is
o
B=2m’VA[ r*dr = InN,a* (51)
Jo

This calculation of B raises the question as to whether a potential can be found which, when
the virial coefficients are evaluated, gives the van der Waals equation of state. Such a
potential can be found: it consists of a hard-sphere repulsive core and a long-range, shallow
attractive region. A further point is that, once a second virial coefficient has been calculated
for a given intermolecular potential, it is possible to calculate other thermodynamic
properties that depend on the form of the potential. For example, it is possible to calculate
the isothermal Joule-Thomson coefficient, uy (Section 3.2¢), from the thermodynamic
relation :
dB

li =B —-T-— 52
s =Tay : (32]

and from the result calculate the Joule-Thomson coefficient itself by using eqn 3.19.
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2012 The possible Iocati;ns of H atoms around a
central O atom in an ice crystal are shown by the
spheres. Only one of the locations en each bond
may be occupied by an atom, and two H atoms
must be close to the O atom and two H atoms must
be distant from it.
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20.6 Residual entropies

Entropies may be calculated from spectroscopic data; they may also be measured
experimentally (Section 4.3d). In many cases there is good agreement, but-in some the
experimental entropy is less than the calculated value. One possibility is that the
experimental determination failed to take a phase transition into account (and a term of
the form A H /T, incorrectly omitted from the sum). Another possibility is that some
disorder is present in the solid even at T = (). The entropy at T = 0 is then greater than zero,
and is called the residual entropy.

The origin and magnitude of the residual entropy can be explained by considering a
crystal composed of AB molecules, where A and B are similar atoms (such as CO, with its
very small electric dipole moment). There may be so little energy difference between
-.AB AB AB AB.., ..AB BA BA AB.., and other random arrangements that the
molecules adopt either orientation at random in the solid. We can readily calculate the
entropy arising from residual disorder by using the Boltzmann formula § = kIn W. To do so,
we suppose that two orientations are equally probable, and that the sample consists of N
molecules. Because the same energy can be achieved in 2¥ different ways (because cach
molecule can take either of two orientations), the total number of ways of achieving the
same energy is W = 2" It follows that

S=kin2" = NkIn2 = nRin2 (53)

We can therefore expect a residual molar entropy of RIn2 = 5.8 JK~" mol ' for solids
composed of molecules that can adopt either of two orientations at T = 0. If 5 orientations
are possible, the residual molar entropy will be

5, =Rlns (54)

An FCIO, molecule, for example, can adopt four orientations with about the same energy,
and the calculated residual molar entropy of RInd =11.5JK 'mol™' is in good
agreement with the experimental value (10.1 JK~"mol~"). For CO, the measured residual
entropy is 5 JK=" mol =", which is close to R In 2, the value expected for a random structure
of the form ..CO CO OC CO OC OC....

The residual entropy of ice is 3.4 JK~' mol~'. This value can be explained in terms of the
hydrogen-bonded structure of the solid. Each O atom is surrounded tetrahedrally by four H
atoms, two of which are attached by short ¢ bonds, the other two being attached by long
hydrogen bonds (Fig. 20.12). The randomness lies in which two of the four bonds are
short, and an approximate anaiysis (see the Justification below) leads to
Sa(0)=RInd =34 ITK-"mol™', in good agreement with the experimental value.

Justificatjon 20.3

Consider a sample of ice that consists of N H,0 molecules. Each of the 2N H atoms can be
in one of two positions: either close to or far from an O atom (Fig. 20.13). There are
therefore 2*¥ possible arrangements. However, not all these arrangements are acceptable.
Indeed, of the 2* = 16 ways of arranging four H atoms around one O atom, onfysix have
two short and two long OH distances and hence are acceptable. Therefore, the number of
permitted arrangements is

w=2"%)"=@"

It then follows that the residual molar entropy is RIn(3/2), as stated in the text.




20.13 The six possible arrangements of H atoms in
the locations identified in Fig. 20.12.

D,(reactants)

Dy(products)

AE.

20.14 The definition of A,E, for the calculation of
equilibrium constants.
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20.7 Equilibrivm canstants

The Gibbs energy of a Jas of independent molecules is given by eqn 10 in terms of the molar
partition function, g,, = q/n. The equilibrium constant K of a reaction is related to the
standard Gibbs energy of reaction by AG® = —RTInK. To calculate the equilibrium
constant, we must combine these two equations. We shall consider gas-phase reactions in
which the equilibrium constant is expressed in terms of the partial pressures of the reactants
and products. :

(a) The relation between K and the partition function

To find an expression for the standard reaction Gibbs energy we need expressions for the
standard molar Gibbs energies, G /n, of each species. For these expressions, we need the
value of the molar partition function when p = p® (where p® = 1 bar): we denote this
standard molar partition function g2 . Because only the translational component depends
on the pressure, we can find g, by evaluating the partition function with V replaced by Voo,
where V& = RT/p®. For a species 1 it follows that

<
q],m

G =G5n(0) —RTn (-ﬁ—) (55)°
A

where qu is the standard molar partition function of J. by combining expressions like this
one fas shown in the Justification below), it turns out that the equilibrium constant for the
reaction

aA + bB —— ¢C +dD

is given by the expression

iy (qg.mlfNA}r(qg.m/NA}d o~ AEo/RT
(qg.m/NA)a(qg,m/NA)b

(56)

where A E, is the difference in molar energies of the ground states of the products and
reactants (this term is defined more precisely in the Justification), and is calculated from the
bond dissociation energies of the species (Fig. 20.14).
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Justification 20.4

The standard molar reaction Gibbs energy for the reaction is
AG® =Gl +dGly — aG R — bG i
= ¢GEm(0) +dG 5 (0) — aGR,(0) = bGm(0)

b=d < -4 Rid
q9Cm 9D.m GAm 9B,m
— In{ —= — ] — —_ - i
wrfen(fyz) +an(z) -am(5) - en()
Because G(0) = {/(0), the first term on the right is
AEy = cU &n(0) +dU 5, (0) — aU R (0) — bU§,(0) (57)

the reaction internal energy at T = 0 (a molar quantity).
Now we can write

c d
AG® = AE, —RT{ In 9Cm +1In 45m
r=0 N NA

A

a

I3 e \ b
—In (qA_Jn) —In (gﬂ) }
N A NA

E:3 (- d
r—— {(qi.m/m)u(q%m/m)h}
(QA,m/NA) (‘?n,m/NA)
AEq (qam/w(q;m/m)"}}
=—RT{-——2+In
{ RT ! {(qzm/‘wﬁ)g(qg,m/‘v@)b

At this stage we can pick out an expression for K by comparing this equation with
AG® = —RTInK, which gives

- S {(qg*:m/m):(qﬁm/m): }
RT " (@Rm/Na) (a5m/Na)

This expression is easily rearranged into eqn 56 by taking antilogarithms of both sides.*

(b) A dissociation equilibrium
We shall illustrate the application of egn 56 to an equilibrium in which a diatomic molecule
X, dissociates into its atoms:

Pk

X,(g) =2X(g) K= (58
2(8) (8) P )
According to eqn 56 (witha = 1,b=0,¢ =2, and d = 0):
€ 2 2
= {qgm/NA) e~ DE/RT _ (ig.m) o~ AEo/RT ) (59)
x,m/Na 9%, mVa
with '
ALy = 20X m(0) = U, m(0) = Dy(X—X) (60)

where Dy(X—X) is the dissociation energy of the X—X bond.

¢ In terms of the general chemical equation for a reaction, eqn 2.40, we would write

e e

7 A
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The standard molar partition functions of the atoms X are

g2 zg(‘_/i) _ RTgy
X.m X A‘lx pGA;.‘

because Vo = RT/p®; gx is the degeneracy of the electronic ground state of X. The
diatomic molecule X, also has rotational and vibrational degrees of freedom, so its standard
molar partition function is

R .V
02 = o, [ ) gy, = FTExT00%,
z.m 2 A-;(J X,9X,; peA;!‘z

where gy is the degeneracy of the electronic ground state of X,. It follows that the
equilibrium constant is g

kTg3 A%,

. ~Dy/RT
=——""2 ¢ (61)
P gx, 4%, 9%, 1%

K

where we have used R /N, = k, the Boltzmann constant. All the quantities in this expression
can be calculated from spectroscopic data. The As are defined in Table 20.4 and depend on
ine masses of the species and the temperature; the expressions for the rotational and
vibrational partition functions are also available in Table 20.4 and depend on the rotational
constant and vibrational wavenumber of the molecule.

Example 20.7 Evaluating an equilisnum constant
Evaluate the equilibrium constant for the dissociation Na,{g) = 2Na(g) at 1000 K from the

following data: B = 0.1547 cm™', # = 159.2 em™!, Dy = 70.4 kImol~!, The Na atoms
have doublet ground terms.

Mcthod The partition functions required are specified in eqn 61. They are evaluated by
using the expressions in Table 20.4. For a homonuclear diatomic molecule, ¢ = 2. In the
evaluation of kT/p® use p® = 10° Paand | Pam® =1 J.

Answer The partition functions and other quantities required are as follows:
A(Na,) = 8.14 pm A(Na) = 11.5 pm

q®(Na,) = 2246 q*(Na;) = 4.885
g(Na) =2 8(Nay) = 1

Then, from egn 61

g — (138X 1072 JK™1) x (1000 K) x4 x (8.14 x 10712 m)* -
(105 Pa) x 2246 x 4.885 x (1.15 x 10~ m)®
=242

Comment For conversion to an equilibrium constant in terms of molar concentrations, use
[} =pi/RT.

Sclf-test 20,7 Evaluate K at 1500 K.
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(c) Contributions to the equilibrium constant

We are now in a position to appreciate the physical basis of equilibrium constants. To see
what is involved, consider a simple R = P gas-phase equilibrium (R for reactants, P for
products). '

Figure 20.15 shows two sets of encrgy levels; one set of states belongs to R, and the
other belongs to P. The populations of the states are given by the Boltzmann distribution,
and are independent of whether any given state happens to belong to R or to P. We can
therefore imagine a single Boltzmann distribution spreading, without distinction, over the
two sets of states. If the spacings of R and P are similar (as in Fig. 20.15), and P lies above R,
the diagram indicates that R will dominate in the equilibrium mixture. However, if P has a
high density of states (a large number of states in a given energy range, as in Fig. 20.16)
then, even though its zero-point energy lies above that of R, the species P might still
dominate at equilibrium. ’

R
. |
] E
L
— el
AE,

20.15 The array of R(eactants) and P{roducts)
energy levels. At equilibrium all are accessible (to
differing extents, depending on the temperature),
and the equilibrium composition of the system
reflects the overall Boltzmann distribution of
populations. As AE, increases, R becomes
dominant.

20.16 It is important to take into account the
densities of states of the molecules. Even though P
might lie well above R in energy (that is, AE, is
large and positive), P might have so many states
that its total population dominates in the mixture.
In classical thermodynamic terms, we have to take
entropies into account as well as enihalpies when
considering equilibria.
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20.17 The model used in the text for exploring the
effects of energy s:parat':’bns and.densities of states
on equilibria. The products P can dominate provided
AE, is not too large and that P has an appreciable

density of states.
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It is quite easy to show [see the Justification below) that the ratio of numbers of R and P
molecules at equilibrium is given by

Np _ 90 sk, /57 (62)
N  ag

and thercfore that the equilibrium constant for the reaction is

K= ﬂc'ﬁ'f""”' (63)
dr

just as would be obtained from eqn 56

Justification 20.5

The population in a state i of the composite (R, P) system is
Ne*ﬁll
n; =
q
where N is the total number of molecules. The total number of R molecules is the sum of
these populations taken over the states belonging to R; these states we label r with

cnergies g, The total number of P molecules is the sum over the states belonging to P;
these states we label p with energies &, (the prime is explained in a moment):

Ne=Yn :"fze-f"r Ne=Y 1, =%’Zc-ﬂ¢
P P

T 4%

The sum over the states of R is its partition function, gg, 50
Ngg

q
The sum over the states of P is also a partition function, but the energies are measured
from the ground state of the combined system, which is the ground state of R. However,
because &, =g, + Ag, where Ag, is the separation of zero-point energies (as in
Fig. 20.18),

Np = "!Z e—Ble+an) N (Z e—ﬂr,) e—Pbde !_Vﬂefa.f:u/n
g q
P

Ng =

T q

The switch from Ag,/k to A Eq/R in the last step is the conversion of molecular eneraies to
molar energies.

The equilibrium constant of the R=P reaction is proportional to the ratio of the
numbers of the two types of molecule. Therefore,

x=Dr _ @ o
Ne  qr

as in eqn 63

The content of eqn 63 can be seen mgst clearly by exaggétating the molecular features
that contribute to it. We shall suppose that R has only a single accessible level, which implies
that gp = 1. We also suppose that P has a large number of cvenly, closely spaced
levels (Fig. 20.17). The partition function of P is then gp = kT'/c. In this model system, the

5 foran R = P equilibrium, the ¥ factors in the partition functions cancel, so the appearance of g in place of 4"® has no effect. In
the case of a more general reaclion, the conversion from g to ¢ comes about at the stage of converting the pressures thal occur
in K to numbers of molecules
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equilibrium constant is

k= o-aeainr
&

{64)

When A, E, is very large, the exponential term dominates and K < 1, which implies that very
little P is present at equilibrium. When A E; is small but still positive, K can exceed 1|
because the factor &7 /e may be large enough to overcome the small size of the exponential
term. The size of K then reflects the predominance of P at equilibrium on account of its high
density of states. At low temperatures K < 1, and the system consists entirely of R. At high
temperatures the exponential function approaches 1 and the pre-exponential factor is large.
Hence P becomes dominant. We see that, in this endothermic reaction (endothermic because
P lies above R), a rise in temperature favours P, because its states become accessible. This
behaviour is what we saw, from the outside, in Chapter 9.

The model also shows why the Gibbs energy, G, and not just the enthalpy, determines the
position of equilibrium. It shows that the density of states (and hence the entropy) of each
species as well as their relative energies controls the distribution of populations and hence
the value of the equilibrium constant.
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Exercises

20.1 (a) Use the equipartition theorem ta estimate the constant-
volume molar heat capacity of (a) I, (b) CH,, (c) C;H; in the gas phase
at 25°C.

20.1 (b) Use the equipartition theorem to estimate the constant-
volume molar heat capacity of (a) 03, (b) C,H,, (c) CO; in the gas
phase at 25°C.

20.2 (a) Estimate the value of y = C,/Cy for gaseous ammonia and
methane. Do this calculation with and without the vibrational
contribution to the energy. Which is closer to the expected
experimental value at 25°C?

20.2 (b) Estimate the value of y = C,/Cy, for carbon dioxide. Do this
calculation with and without the vibrational contribution to the
energy. Which is closer to the expected experimental value at 25°C?
20.3 (a) Estimate the rotational partition function of HCI at (a) 25°C
and (b) 250°C.

20.3 (b) Estimate the rotational partition function of 0, at (a) 25°C
and (b) 250°C.

20.4 (a) Give the symmetry number for each of the following
molecules: (a) CO, (b) O,, (c) H,S, (d) SiH,, and (e} CHCI;.

20.4 (b) Give the symmetry number for each of the following
molecules: (a) CO,, (b) O3, (c) SO;, (d) SFg, and [e) Al,Clg.

20.5 (a) Calculate the rotational partition function of H,0 at 298 K
from its rotational constants 27.878 cm~', 14.509 cm~!, and
9.287 cm™'. Above what temperature is the high-temperature
approximation valid?

20.5 (b) Calculate the rotational partition function of 50, at 298 K
from its rotational constants 2.02736 cm™!, 0.34417 cm™~', and
0.293535 cm™'. Above what temperature is the high-temperature
approximation valid?

20.6 (a) From the results of Exercise 20.5a, calculate the rotational
contribution to the molar entropy of gaseous water at 25°C,

20.6 (b) From the results of Exercise 20.5b, calculate the rotational
contribution to the molar entropy of sulfur dioxide at 25°C.

20.7 (a) Calculate the rotational partition function of CH, (a) by
direct summation of the energy levels at 298 K and 500 K, and (b) by
the high-temperature approximation. Take B = 5.2412 cm~".

20.7 (b) Calculate the rotational partition function of CH,CN (a) by
direct summation of the energy levels at 298 K and 500 K, and (b) by
the high-temperature approximation. Take A =5.28 cm~' and
B =0.307 cm~.

20.8 (a) The bond length of O, is 120.75 pm. Use the high-
temperature approximation to calculate the rotational partition
function of the molecule at 300 K.

20.8 (b) The NOF molecule is an asymmetric rotor with rotational
constants 3.1752 em~', 0.3951 cm~!, and 0.3505 cm~'. Calculate
the rotational partition fuction of the molecule at (2) 25°C, (b) 100°C.
20.9 (a) Plot the molar heat capacity of a collection of harmonic
oscillators as a function of T/8y, and predict the vibrational heat
capacity of ethyne at (a) 298 K, (b) 500 K. The normal modes (and

their degeneracies in parentheses) occur at wavenumbers 612(2).
729(2), 1974, 3287, and 3374 cm~".

20.9 (b) Plot the molar entropy of a collection of harmonic
oscillators as a function of T/0y, and predict the standard molar
entropy of ethyne at (a) 298 K, (b) 500 K. For data, see the preceding
exercise.

20.10 (a) A CO; molecule is linear, and its vibrational wavenumbers.
are 1388.2 cm™!, 667.4 cm~', and 2349.2 cm~!, the last being
doubly degenerate and the others non-degenerate, The rotational
constant of the molecule is 0.3902 cm™'. Calculate the rotational and
vibrational contributions to the molar Gibbs energy at.298 K.
20.10 (b) An O, molecule is angular, and its vibrational wavenum-
bers are 1110 em™!, 705 cm~!, and 1042 cm~'. The rotational
constants of the malecule are 3.553 cm™!, 0.4452 cm™', and
0.3948 cm™'. Calculate the rotational and vibrational contributions

. to the molar Gibbs energy at 298 K.

20.11 (a) The ground level of Ci is Py, and a 2P, level lies
881 cm~! above it. Calculate the electronic contribution to the heat
capacity of Cl atoms at (a) 500 K and (b) 900 K.

20.11 (b) The first electronically excited state of 0, is ]As and lies
7918.1 cm™' above the grqund state, which is *Z,. Calculate the
electronic contribution to the molar Gibbs energy of 0, at 400 K.
20.12 (a) The ground state of the Co®* ion in CoSO,-7H,0 may be
regarded as *T, ;. The entropy of the solid at temperatures below 1 K
is derived almost entirely from the electran spin. Estimate the molar
entropy of the solid at these temperatures.

20.12 (b) Estimate the contribution of the spin to the molar entropy
of a solid sample of a d-metal complex with § = 5,

20.13 (a) Calculate the residual molar entropy of a solid in which the
malecules can adopt (a) three, (b) five, (c) six orientations of equal
energy at T = (.

20.13 (b) Suppose that the hexagonal molecule CgH,Fg_, has a
residual entropy on account of the similarity of the H and F atoms.
Calculate the residual for each value of n,

20.14 (a) An average human DNA molecule has 5 x 10® binucleo-
tides (rungs on the DNA ladderj o four aifferent kinds. If each rung
were a random choice of one of these four possibilities, what would be
the residual entropy associated with this typical DNA molecule?
20.14 (b) Calculate the standard molar entropy of N,(g) at 298 K
from its rotational constant B = 1.9987 cm~' and its_vibrational
wavenumber © =2358 cm~!. The thermochemical value is
192.1 JK~" mol~'. What does this suggest about the solid at T = 0?
20.15 (a) Calculate the equilibrium constant of the reaction
I(g) = 2l(g) at 1000 K from the following data for I,:
p=21436 cm™', B =0.0373 cm~', D, = 1.5422 eV The ground
state of the | atoms is 2P3i2- implying fourfold degeneracy.

20.15 (b) Calculate the value of K at 298 K for the gas-phase
isotopic exchange reaction 279Br® Br = 7*Br’®Br + #'Br3'Br. The Br,
molecule has a non-degenerate ground state, with no other electronic
states nearby. Base the calculation on the wavenumber of the
vibration of 7Br® Br, which is 323.33 cm™".
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Problems

Numerical problems

20.1 The NO molecule has a doubly degenerateggelectronic ground
state and a doubly degenerate excited state at 121.1 em~'. Calculate
the electronic contribution to the molar heat capacity of the molecule
at (a) 50 K, (b) 298 K, and (c) 500 K.

20.2 Explore whether z magnetic field can influence the heat
capacity of a paramagnetic molecule by calculating the electronic
contribution to the heat capacity of an NO, molecule in a magnetic
field. Estimate the total constant-volume heat capacity using
equipartition, and calculate the percentage change in heat capacity
brought about by a 5.0 T magnetic field at (a) SO K, (b) 298 K.

20.3 The energy levels of a CH, group attached to a larger fragment
are given by the expression for a particle on a ring, provided the group
is rotating freely. What is the high-temperature contribution to the

heat capacity and the entropy of such a freely rotating group at «

25°C? The moment of inertia of CHy about its € axis is
5.341 x 107%7 kgm?.

20.4 Calculate the temperature dependence of the heat capacity of
p-H, (in which only rotational states with even values of J are
populated) at low temperatures on the basis that its rotational levels
J = 0andJ = 2 constitute a system that resembles a two-level system
except for the degeneracy of the upper level. Use B = 60.864 cm™!
and sketch the heat capacity curve. The experimental heat capacity of
p-H; does in fact show a peak at low temperatures.

20.5 The pure rotational microwave spectrum of HCl has absorption
lines at the following wavenumbers (in cm™'): 21.19, 42.37, 63.56,

84.75, 105.93, 127.12, 148.31, 169.49, 190.68, 211.87, 233.06, .

254,24, 275.43, 296.62, 317.80, 338.99, 360.18, 381.36, 402.55,
423,74, 44492 -466.11, 487.30, 508.48. Calculate the rotational
partition function at 25°C by direct summation.

20.6 Calculate and plot as a function of temperature, in the rafige
300 K to 1000 K, the equilibrivm constant for the reaction
CD,(g) + HCI(g) = CHD4(g) + DCI(g) using the following data
(numbers in parentheses are degeneracies): #(CHD,)/cm™' =
2993(1), 2142(1), 1003(3), 1291(2), 1036(2); »(CD,)/em™" =
2109(1), 1092(2), 2259(3), 996(3); ©(HCI)/em™" =2991;
#(DCI)/em™! = 2145; B(HC)/cm™' = 10.59; B(DCl)/cm™! =
5.445; B(CHD,)/em™! =3.28; A(CHD;)/ecm~! =2.63; B(CD,)/
cm~! = 2.63.

20.7 The exchange of deuterium between acid and water is an
important type of equilibrium, and we can examine it by using
spectroscopic data on the molecules. Calculate the equilibrium
constant at (a) 298 K and (b) 800 K for the gas-phase exchange
reaction H,0+ DCi = HDO + HCI from the following data:
5(H,0)/em™~"! = 3656.7, 1594.8, 3755.8; 5(HDO)/cm™! = 2726.7,
1402.2, 3707.5; A(H,0)/cm~' =27.88, B(H,0)/cm~"' = 14.5I,
C(H;0)/cm~! =9.29; A(HDO)/em™' = 23.38, B(HDO)/cm~' =
9.102, C(HDO)/cm™' =6.417; B(HCl)/ecm~' = 10.59; B(DCI)/
em™! = 5.449; H(HCI)/em ™! = 2991; 5(DCl) /em™ = 2145.

Theoretical problems

20.8 Derive the Sackur-Tetrode equation for a monatomic gas
confined to a two-dimensional surface, and hence derive an
expression for the standard molar entropy of condensation to form
a mobile surface film.

20.9 Derive expressions for the internal energy, heat capacity,
entropy, Helmholtz energy, and Gibbs energy of a harmonic oscillator.
Express the results in terms of the vibrational temperature, 6, and
plot graphs of each property against T/0y,.

20.10 Although expressions like <&¢> = —dlng/df are useful for
formal manipulations in statistical thermodynamics, and for
expressing thermodynamic functions in neat formulas, they are
sometimes more trouble than they are worth in practical applications.
When presented with a table of energy levels, it is often much more
convenient to evaluate the following sums directly:

q=d ¢ g=3 pget  G=7) (Br)e
J i

J

(a) Derive expressions for the internal energy, heat capacity, and
entropy in terms of these three functions. (b) Apply the technique to
the caiculation of the electronic contribution to the constant volume
molar heat capacity of magnesium vapour at 5000 K using the
following data:

Term s Ip, i r, b ) 38
Degeneracy | i 3 5 3 3
L'J/cm" 0 21850 21870 21911 35051 41197

20.11 Dctermine whether a magnetic field can influence the value of
an equilibrium constant. Consider the equilibrium 1,(g) = 2l(g) at
1000 K, and calculate the ratio of equilibrium constants K(B)/K,
where K(B3) is the equilibrium constant when a magnetic field B is
present and removes the degeneracy of the four states of th Py,
level. Data on the species are given in Exercise 20.15a. The ele ronic
g-value of the atoms is §. Calculate the field required to chare the
equilibrium constant by 1 per cent.

20.12 The heat capacity ratio of a gas determines the speed of sound
in it through the formula

yRT 72
i (?)

where y = C,/Cy and M is the molar mass of the gas. Deduce an
expression for the the speed of sound in a perfect gas of (a) diatomic,
(b) linear triatomic, {c) nonlinear triatomic molecules at high
temperatures (with translation and rotation active). Estimate the
speed of sound in air at 25°C.



PROBLEMS

Additional problems supplied by Carmen Giunta
and Charles Trapp

20.13 For H,, at very low temperatures, only the translational
contribution to the heat capacity is observed. At temperatures above
Oy = heB/k, the rotational contribution to the heat capacity
becomes significant. At still higher temperatures, above 0, = hu/k,
the vibrations contribute, But at this latter temperature, dissociation
of the molecule into the atoms must be considered. (a) Explain the
origin of the expressions for 8 and 0y, and calculate their values for
hydrogen. (b) Obtain an expression for the molar constant-pressure
heat capacity of hydrogen at all temperatures taking into account the
dissociation of hydrogen. (c) Make a plot of the molar constant-
pressure heat capacity as a function of temperature in the high-
temperature region where dissociation of the 'molecule is significant.

20.14 ).G. Dojahn, E.CM. Chen, and W.E. Wentworth (/. Phys. Chem.
100, 9649 (1996)) characterized the potential energy curves of the
ground and electronic states of homonuclear diatomic halogen
anions. The ground state of F; is 2.} with a fundamental vibrational
wavenumber of 450.0 em~' and equilibrium internuclear distance of
190.0 pm. The first two excited states are at 1.609 and 1.702 eV
abaove the ground state. Compute the standard molar entropy of F; at
298 K.

20.15 R. Viswanathan, RW. Schmude, Jr, and KA. Gingerich (J. Phys.
Chem. 100, 10784 (1996)) studied thermodynamic properties of
several boron-silicon gas-phase species experimentally and theare-
tically. These species can occur in the high-temperature chemical
vapour deposition of silicon-based semiconductors. Among the
computations they reported was computation of the Gibbs function
of BSi(g) at several temperatures based on a *Z~ ground state with
«equilibrium internuclear distance of 190.5 pm and fundamental
vibrational wavenumber of 772 cm~! and a 2P, first excited level
8000 cm~" above the ground*level. Cempute Uic standard molar
Gibbs function G2 (2000 K) — G2 (0).

20.16 In a spectroscopic study of the fullerene Cg,, F. Negri,
G. Orlandi, and F. Zerbetto (/. Phys. Chem. 100, 10849 (1996))
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reviewed the wavenumbers of all the vibrational modes of the
molecule. The wavenumber for the single A, mode is 976 cm™';
wavenumbers for the four threefold degenerate T,, modes are 525,
578, 1180, and 1430 cm™'; wavenumbers for the five threefold
degenerate T,, modes are 354, 715, 1037, 1190, and 1540 cm™';
wavenumbers for six fourfold degenerate G, modes are 345, 757, 776,
963, 1315, and 1410 cm™'; and wavenumbers for the seven fivefold
degenerate H, modes are 403, 525, 667, 738, 1215, 1342, and
1566 cm™~!. How many modes have a vibrational temperature 0y
below 1000 K? Estimate the molar constant-volume heat capacity of
Cg at 1000 K, counting as active all modes with #y below this
temperature.

20.17 J. Hutter, H.P. Liithi, and F. Diederich (J. Amer. Chem. Soc.
116, 750 (1994)) examined the geometric and vibrational structure of
several carbon molecules of formula C,,. Given that the ground state
of €5, a molecule found in interstellar space and in flames, is a bent
singlet with moments of inertia 39.340, 39.032, and 0.3082 u A? and
with vibrational wavenumbers of 63.4, 1224.5, and 2040 cm™',
scompute Gy (10.00 K) — G2 (0) and G2 (1000 K) — G2(0) for C,.

20.18 The molecule C1,0,, which is believed to participate in the
seasonal depletion of ozone over Antarctica, has been studied by
several means. M. Birk, R.R. Friedl, EA. Cohen, H.M. Pickett, and
S.P. Sander (/. Chem. Phys. 91, 6588 (1989)) report its rotational
constants {actually cB) as 13 109.4, 2409.8, and 2139.7 MHz. They
also report that its rotational spectrum indicates a molecule with a
symmetry number of 2.19. J. Jacobs, M. Kronberg, H.S.P. Méiler, and
H. Willner (). Amer. Chem. Soc. 116, 1106 (1994)) report its
vibrational wavenumbers as 753, 542, 310, 127, 646, and 419 cm™\.
Compute G (200 K) — G2 (0) of Cl,0,.

20.19 (a) Show that the number of molecules in any given rotational
state of a linear molecule is given by N, = C(2J + 1)e~MBIU+N/AT,
where C is a constant. (b) Use this result to prove eqn 16.45 for the J
value of the most highly populated rotational energy level. (c)
Estimate the temperature at which the spectrum of HCl shown in Fig.
16.40 was taken.



