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In this chapter we return to the techniques thot ure used fo determine structure, but now the
emphasis is on the gecometrical arrangement of utoms and (he distribution of electrons

+ rather than energy levels. All the techniques described in this chapter make use of the
property of diffraction of waves by abjects with similar dimensions to the wavelength of the
waves,

First, we see how to describe the reqular arrangement of atoms in crystais and the
symmetry of their arrangement. Then we consider the basic principles of X-ray diffraction,
and show how the dimensions of unit cclls and their symmetries con be inferred from
experiments on powdered samples. After that, we turn to the most valuable technique,
single-crystal X-ray diffraction, and show how the diffraction pattern can be interpreted in
terms of tie distribution of electron density in a unit cell. We then explore some of the
principles that govern the crystal structures that X-ray diffraction reveals.

In the concluding scctions of the chapler we see how neutron diffraction and efectron
diffraction bear close sinularities to X-ray diffraction, but provide complementary informa-
tion.

A characteristic property of waves is that they interfere with one another, giving a greater
displacement where peaks or troughs coincide and a smaller displacement where peaks
coincide with troughs (Fig. 20.1). According to classical electromagnetic theory, the
intensity of electromagnetic radiation is proportional to the square of the amplitude of the
waves, Therefore, the regions of constructive or destructive interference show up as regions
of enhanced or diminished intensities. The phenomenon of diffraction is the interference
caused by an object in the path of waves, and the pattern of varying intensity that results is
called the diffraction pattern. Diffraction occurs when the dimensions of the diffracting
object are comparable to the wavelength of the radiation.

X-rays have wavelengths comparable to bond lengths in molecules and the spacing of
atoms in crystals (about 100 pm). By analysing an"X-ray diffraction pattern, it is possible to
draw up a detailed picture of the location of atoms even in such complex molecules as
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(a)

(b}

21.1 When two waves are in the same region of
space they interfere. Depending on their relative
phase, they may interfere (a) constructively, to give
an enhanced amplitude, or (b) destructively, to give
a smaller amplitude. The component waves are
shown in black and the resultant in green.
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Structural motif

21.2 Each lattice point specifies the location of a

structural motif (for examplé, a molecule or a

group of molecules). The crystal lattice is the array

of lattice points; the crystal structure is the

collection of structural motifs arranged according

to the lattice,
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proteins. Electrons moving at about 20000 kms~' (after acceleration through about 4 kV)
have wavelengths of 40 pm, and may also be diffracted by molecules, surfaces, and thin
slices of solids. Neutrons generated in a nuclear reactor, and then siowed, to thermal
velocities, have similar wavelengths and may also be used for diffraction studies.

Crystal structure

Early in the history of modern science it was suggested that the regular external form of
crystals implied an internal reqularity of their constituents. In this section we see how to
describe the arrangement of atoms inside crystals.

21.1 Lattiees and unit eelis

A crystal is built up from regularly repeating ‘structural motifs', which may be atoms,
molecules, or groups of atoms, molecules, or ions. A space lattice is the pattern formed by
paints representing the locations of these motifs (Fig. 21.2). The space lattice is, in effect, an
abstract scaffolding fog the erystal structure. More formally, the space lattice is a three-
dimensional, infinite array of points, each of which is surrounded in an identical way by its
neighbours, and which defines the basic structure of the crystal. In some cases there may be
a structural motif centred on each lattice point, but that is not necessary. The crystal
structure itself is obtained by associating with each lattice point an identical structural
motif.

The unit cell is an imaginary parallelepiped (parallel-sided figure) that contains one unit
of the translationally repeating pattern (Fig. 21.3). A unit cell can be thought of as the
fundamental region from which -the entire crystal may be constructed by purely
translational displacements (like bricks in a wall). A unit cell is commonly formed by joining
neighbouring lattice points by straight lines (Fig. 21.4). Such unit cells are called primitive. It
is sometimes more convenient to draw non-primitive unit cells that also have lattice points
at their centres or on pairs of opposite faces. An infinite number of different unit cells can
describe the same lattice, but we normally choose the one with sides that have the shortest
lengths and that are most nearly perpendicular to one another. The lengths of the sides of a

211 A unit cell is a parallel-sided (but not 214 A unit cell can be chosen in a variety of
necessarily rectanguiar) figure from which the ways, as shown here. It is conventional to choose
entire crystal structure can be constructed by using  the cell that represents the full symmetry of the
only translations (not reflections, rotations, or lattice. In this rectangular lattice, the rectangular
inversions). unit cell would normally be adopted.

41—B



Table 21.1 The seven crystal systems

System Essential symmetries
Triclinic None
Monoclinic One C; axis

Orthorhombic ~ Three perpendicular C, axes
Rhombohedral ~ One Cy axis

Tetragonal One C, axis

Hexagonal One C, axis

Cubic Four Cy axes in a tetrahedral
arrangement

21.1 LATTICES AND UNIT CELLS 621

. a
c
b
(4
A1 ' The notation for the sides and angles of a /1.6 A unit cell belonging to the cubic system has
unit cell. Note that the angle = lies in the plane four threefold axes arranged tetrahedrally. The
[b, ) and perpendicular to the axis a. insert shaws the threefold symmetry.

unit cell are denoted a, b, and ¢, and the angles between them are denoted a, f, and y
(Fig. 21.5).

Unit cells are classified into seven crystal systems by noting the rotational symmetry
elements they possess. A cubic unit cell, for example, has four threefold axes in a tetrahedral
array (Fig. 21.6). A monoclinic unit cell has one twofold axis; the unique axis is by
convention the b-axis (Fig. 21.7). A triclinic unit cell has no rotational symmetry, and
typically all three sides and angles are different (Fig. 21.8). The essential symmetries, the
elements that must be present for the unit cell to belong to a particular crystal system, are
listed in Table 21.1,

Z1.7 A unit belonging to the monoclinic system /1.8 A triclinic unit cell has no axes of rotational
has a twafold axis (shown in more detail in the symmetry.
insert).
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Tetragonal P Tetragonal |

a» b 2 . . . .
..‘ '71 E * J -:l.
) R ¥
¥ g ¥4
c-r <1 . 24
. b P » 4 -3-'

Orthorhombic P~ Orthorhombic C  Orthorhombic|  Orthorhombic F
a

Monoclinic P Monoclinic C

21.9 The fourteen Bravais lattices. The points are
lattice points, and are not necessarily occupied by
atoms. P denotes a primitive unit cell (R is used for a
trigonal lattice), | a body-centred unit cell, F a face-
centred unit cell, and C (or A or B) a cell with lattice
paints on two opposite faces.

Triclinic Hexagonal Trigonal R

There are only 14 distinct crystal lattices in three dimensions. These Bravais lattices are
illustrated in Fig. 21.9. It is conventional to portray these lattices by primitive unit cells in
some cases and by non-primitive unit cells in others. Primitive unit cells (with lattice points
only at the corners) are denoted P. A body-centred unit cell (1) also has a lattice point at its
centre. A face-centred unit cell (F) has lattice points at its corners and also at the centres of
its six faces, A side-centred unit cel! (A, B, or C) has lattice points at its corners and at the
centres of two opposite faces. For simple structures, it is often convenient to choose an atom
belonging to the structural motif, or the centre of a molecule, as the location of a lattice
point or the vertex of a unit cell, but that is not a necessary requirement.

21.2 The identification of lattice planes

The spacing of the lattice points in a crystal is an important quantitative aspect of its
structure and its investigation by diffraction techniques. However, there are many different
sets of planes (Fig. 21.10), and we need to be able to label them. Two-dimensional lattices
are easier to visualize than three-dimensional lattices, so we shall introduce the concepts
involved by referring to two dimensions initially, and then extend the conclusions by
analogy to three dimensions.
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71.10 Some of the planes that can be drawn through the points of the space Iattice and their corresponding Mitier indices (Akl): (a) (110), (b) (230), (c) (T10),
(d) (010).

(a) The Milier indices

Consider a two-dimensional rectangular lattice formed from a unit cell of sides a, b (as in
Fig. 21.11). Each plane in the illustration (except the plane passing through the origin) can
be distinguished by the distances at which it intersects the a- and b-axes. One way of
labelling each set of parallel planes would therefore be to quote the smallest intersection

g e B ‘® ® distances. For example, we could denote the four sets in Fig. 21.10 as (1a, 1), La,ib),

S e s, (—1a, 1b), and (aca, 1b)sHowever, if we agree to quote distances along the axes as multiples
\ o T of the lengths of the unit cell, we can label the planes more simply as (1,1), ¢, (=1, 1)
0. e S and [co, 1). If the lattice in Fig. 21.10 is the top view of a three-dimensional orthorhombic

lattice in which the unit cell has a length ¢ in the z-direction, all four sets of planes intersect

: the z-axis at infinity. Therefore, the full labels are (1, 1,0), ,4,00) (-1, 1, c0), and
® (c0, 1, ). 5

The presence of fractions and co in the labels is inconvenient. They can be eliminated by

® taking the reciprocals of the labels. As we shall see, taking rccip?ocab; turns out to have

further advantages. The Miller indices, (hkl), are the reciprocals of intersection distances

FLA The divensions o’f‘a siritcvell and their (with fractions cleared by multiplying through by an appropriate factor, if taking the

relation to the plane passing through the lattice reciprocal results in a fraction). For example, the (1, 1, o0) planes in Fig. 21.10a are the (110)

points. planes in the Miller notation. Similarly, the (3,4, o) planes are denoted (230). Negative

: ! indices are written with a bar over the number, and Fig. 21.10c shows the (110) planes. The

Miller indices for the four sets of planes in Fig. 21.10 are therefore (110), (230), (T10), and

(010). A three-dimensional representation of a selection of planes, including one in a lattice

with a non-orthogonal axes, is shown in Fig. 21.12.

21.12 Some representative planesin three
dimensions and their Miller indices.-Note that a 0
indicates that a plane is parallel to the corresponding
axis, and that the indexing may also be used for unit
cells with non-orthogonal axes.
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a’k

/P
a/h a

(ki)

21.13 The calculation of the separation of the
planes (hki) in terms of the Miller indices for a
square lattice.

21.14 The separation of the (230) planes is half

71 DIFFRACTION TECHNIQUES

A helpful feature to remember is that, the smaller the absolute value of A in (hkD), the
more nearly parallel the planc is to the a-axis.” The same is truc of k and the h-axis and { and
the c-axis. When i = 0, the planes intersect the g-axis at infinity, so the (0ki) planes are
parallel to the u-axis. Similarly, the (h0/) planes arc parallel to b and the (4k0) planes are
parallel to ¢.

(b) The separation of planes

The Miller indices are very useful for expressing the separation of planes. The separation of
the (hk0) planes, ir: the square lattice shown in Fig. 21.13 is given by

L a
(h +k2)'2

T w o dhg =
By extension to three dimensions, the separation of the (ki) planes of a cubic lattice is given
by

(n

1 Iy a
= or dyy = 5wy L i
(B + k2 + 17)

=— 2
Ay a? @
The corresponding exp.reSsion for a general orthorhombic lattice is the generalization of this
expression:

U L S

i oy R 2 3
diy, b2+c2 (3)

Example 21.1 Using the Miller indiees

Calculate the separation of (a) the (123) planes and [b) the (246) planes of an orthorhombic
cell with a = 0.82 nm, b = 0.94 nm, and ¢ = 0.75 nm.

Mcthod For the first part, simply substitute the information into eqn 3. For the second part,
instead of repeating the calculation, note that, if all three Miller indices are multiplied by n,
their separation is reduced by that factor (Fig. 21.14):
2 2 2
1 _ (nh) . (nk)"  (nl) z(hz +k_1 E) n?

=St 4 ) =
., a? b? c? al b 2 diy

which implies that
dhyg
dnhﬂ.k,n! = _:t
Answer Substituting the indices into eqn 3 gives

2 2 2
1 /s 3 2 m—z

1
- = 5+ R 7=2
diy  (0.82 nm)®  (0.94 nm)*  (0.75 nm)
Hence, d\; = 0.21 nm. It then follows immediately that dyes is one-half this value, or
0.11 nm.

Self-test 21.1 Caleulate the separation of (a).thc (133) planes and (b) the (399) planes in
the same lattice.
[0.19 nm, 0.063 nm]

that of the (110) planes. In general, the sep
of the planes (nh, nk,ni) is n times smaller than the
separation of the (kki) planes.

1 The (A00) planes are exceptions.
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Metal
target

Beryllium
window

21.15 X-rays are generated by directing an electron
beam on to a cooled metal target. Beryllium is
transparent to X-rays (on account of the small
number of electrons in each atom) and is used for
the windows.

Intensity

?remsstrahlung
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X-ray diffraction

X-rays, which are electromagnetic radiation with wavelengths of the order of 10-'° m, are
typically generated by bombarding a metal with high-energy electrons (Fig. 21.15). The
electrons decelerate as they plunge into the metal and generate radiation with a continuous
range of wavelengths called Bremsstrahlung.? Superimposed on the continuum are a few
high-intensity, sharp peaks (Fig. 21.16). These peaks arise from collisions of the incoming
electrons with the electrons in the inner shells of the atoms. A collision expels an electron
from an inner shell, and an electron of higher energy drops into the vacancy, emitting the
excess energy as an X-ray photon (Fig. 21.17). If the electron falls into a X shell (that is, a
shell with n = 1), the X-rays are classified as K -radiation, and similarly for transitions into
the L (n = 2) and M (n = 3) shells. Strong, distinct lines are labelled K,, Ky and so on.

21.3 Bragg's law

Wilhelm Réntgen discovered X-rays in 1895, Seventeen years later, Max von Laue suggested
that they might be diffracted when passed through a crystal, for by then he had realized that
their wavelengths are domparable to the separations of lattice planes. von Laue's suggestion
was confirmed almost immediately by Walter Friedrich and Paul Knipping, and has grown
since then into a technigue of extraordinary power.

An early approach to the analysis of diffraction patterns produced by crystals was to
regard a lattice plane as a mirror, and to model a crystal as stacks of reflecting lattice planes
of separation d (Fig. 21.18). The model makes it easy to calculate the angle the crystal must

NN
Ejected i \ H /‘
electron ' \ :
H\ 2 % \ ';' /
lonization o ey i/ /
_IONN L
\N\// ]d
Electron N\ S
beam - \ /
| >
5 \
= i
L oA
K

Wavelength

21.16 The X-ray emission from a metal cansists of
a broad, featureless Bremsstrahlung background,
with sharp transitions superimposed on it. The label
K indicates that the radiation comes from a
transition in which an electrgn falls into a vacancy
in the K shell of the atom.

21.17 The processes thal contribute to the
generation of X-rays. An incoming clectron
collides with an electron (in the K shell), and
ejects it. Another electron (from the L shell in this
illustration) falls into the vacancy and emits its
excess energy as an X-ray photon.

2 Bremse is German for deceleration. Strohiung for ray

21.18 The conventional derivation of the Bragg law
\reats each lattice plane as a reflecting-the incident
radiation. The path lengths differ by AB + BC,
which depends on the giancing angle, .
Constructive interference (a ‘reflection’) occurs
when AB + BC is equal to an integer number of
wavelengths.
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make to the incoming beam of X-rays for constructive interference to occur. It has also
given rise to the name reflection to denote an intense beam arising from constructive
interference.

The path-length difference of the two rays shown in Fig. 21.18 is

AB + BC = 2dsin0

where 0 is the glancing angle. For many glancing angles the path-length difference is not
an integer number of wavelengths, and the waves interfere largely destructively. However,
when the path-length difference is an integer number of wavelengths (AB + BC = ni), the
reflected waves are in phase and interfere constructively. It follows that a bright reflection
should be observed :Jhen the glancing angle satisfies Bragg's law:

nd = 2dsin@ 4

Reflections with n=2,3,... are called second-order, third-order, and so on; they
correspond to path-length differences of 2,3,... wavelengths. In modern work it is
normal to absorb the n into d, to write Bragg's law as

A=2dsin0 - . (5)

and to regard the nth-order reflection as arising from the (nh,nk,nl) planes (see
Example 21.1). _

The primary use of Bragg's law is in the determination of the spacing between the layers
in the lattice for, once the angle § corresponding to a reflection has been determined, 4 may
readily be calculated, )

Example 21.2 Using Bragy's law

A reflection from the (111) planes of a cubic crystal was observed at a glancing angle of
11.2° when Cu K, X-rays of wavelength 154 pm were used. What is the length of the side of
the unit cell?

Method The separation of the planes can be determined from Bragg's law. Because the
crystal is cubic, the separation is related to the length of the side of the unit cell, a, by eqn 2,
which may therefbre be solved for a.

Answer According to eqgn 5, the (111) planes responsible for the diffraction have separation
A

dy =———
M= 2sing
The separation of the (111) planes of a cubic lattice of side a is given by eqn 2 as

a
dyy, =31T

Therefore,

- 324 3'2x (154 pm)
" 2sin@ 2sinl1.2°

= 687 pm

Self-test 21.2 Calculate the angle at which the same crystal will give a reflection from the
(123) planes.
[24.8°]




21.19 The same set of planes in two
microcrystallites with different orientations around
the direction of the incident beam gives diffracted
rays that lie on a cone. The full powder diffraction
pattern is formed by cones corresponding to
reflections from all the sets of (hk/) planes that
satisfy Bragg's law. (A reflection at a glancing angle
@ gives rise to a reflection at an angle 28 to the
direction of the incident beam; see inset.)

-

Intensity
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21.20 In the Debye-Scherrer method, a
monochromatic X-ray beam is diffracted by a
powder sample. The crystallites give rise to cones of
intensity, which are detected electronically to give a
pattern like that shown here.

21.4 THE POWDER METHOD 627

21.4 The powder method

von Laue's original method consisted of passing a broad-band beam of X-rays into a single
crystal, and recording the diffraction pattern photographically. The ided behind the
approach was that a crystal might not be suitably orientated to act as a diffraction grating
for a single wavelength but, whatever its orientation, Bragg's law would be satisfied for at
least one of the wavelengths if a range of wavelengths was used. There is currently a
resurgence of interest in this approach because synchrotron radiation spans a range of X-ray
wavelengths (Section 16.1a).

(a) The Debye-Scherrer method

An alternative technique to von Laue’s was developed by Peter Debye and Paul Scherrer and
independently by Albert Hull. They used monochromatic radiation and a powdered sample.
When the sample is a powder, at least some of the crystallites will be orientated so as to
satisfy the Bragg condition for each set of planes (hk/). For example, some of the crystallites
will be oriented so that their (111) planes, of spacing d,,,, give rise to diffracted intensity at
the glancing angle @ (Fig. 21.19). The crystallites with this glancing angle will lie at all
possible angles around'the incoming beam, so the diffracted beams lie on a cone around the
incident beam of half-angle 26. Other crystallites will be oriented with different planes
satisfying the Bragg condition. They give rise to a cone of diffracted intensity with a
different half-angle. In principle, each set of (h/) planes gives rise to a diffraction cone,
because some of the randomly orientated crystallites will have the correct angle to diffract
the incident beam. In modern powder diffractometers the intensities of the reflections are
monitored electronically as the detector is rotated around the sample in a plane containing
the incident ray (Fig. 21.20). '

Powder diffraction techniques are used to identify a sample of a solid substance by
comparison of the positions of the diffraction lines and their intensities with a large data
bank (The powder diffraction file, which is maintained by the International Centre for
Diffraction Data, ICOD, and contains information on about 50000 crystalline phases).
Powder diffraction data are also used to determine phase diagrams, for different solid
phases result in different diffraction patterns, and to determine the relative amounts of each
phase present in a mixture. The technique is also used for the initial determination of the
dimensions and Symmetries of unit cells, as the following section explains.

(b) Indexing the reflections

Bragg's law is used to interpret the angle 0 of a reflection in terms of the separation of the
lattice planes. If the values of k, &, and / for the planes responsible for that reflection are
known, the dimensions of the unit cell can be deduced. The crux of the technique is
therefore the indexing of the reflection, or ascribing the indices k&l to it.

Some types of unit cell give characteristic and easily recognizable patterns of lines. For
example, in a cubic lattice of unit cell dimension a the spacing is given by eqn 2, so the
angles at which the (hkl) planes give reflections are given by

sin@ = (k* + & +F)‘“% (6)

The reflections are then predicted by substituting the values of k, k, and /:

(hki) (100) (110) (111) (200) (210) (211) (220) (300) {221) (310) ---
Ry | 2 3 4 5 6 8 9 9 10

Notice that 7 (and 15, .. ) is missing because the sum of the squares of three integers cannot
equal 7 (or 15, .. ). Therefore the pattern has omissions that are characteristic of the cubic P
lattice. e
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21.21 X-ray powder photographs of (a) NaCl, (b)
KCl and the indexed reflections. The smaller number
of lines in (b) is a consequence of the similarity of
the K* and CI- scattering factors, as discussed later
in the chapter.

21 DIFFRACTION TECHNIQUES

Example 21.3 Identifying the unit cell

A powder diffraction photograph of the element polonium gave lines at the following values
of 20 (in degrees) when 71.0 pm Ma X-rays were used: 12.1, 17.1, 210,243,272, 29.9,
34.7,36.9, 38.9, 40.9, 42.8. Identify the unit cell and determine its dimensions.

Mcthod From eqn 6 we write

q 2
in? ) = 2 2 2 = &
sin® 0 = A(h® + k* + %) A (Za)

We need to determine the common factor A, and then find A2 + &2 + 2.

Answer We draw up the following table: Y )

20/° 12.1 17.1 21.0 24.3 27.2 29.9 34.7 369 389 40.9 42.8
6/° 6.05 8.55 105 12.2 13.6 15.0 17.4 18.5 19.5 205 21.4
100sin? 0 LI1 2.21 332 447 553 6.70 8.94 10.1 11.1 12.3 13.3

The common divisor is 1.11/100. Divide through to identify h2 + &% + 2
e R L2 3 4 5 6 8 9 10 11 -12
The corresponding indices are

(100) (110) (111) (200) (210) (211) (220) (300) (310) (311) (222)

Note that indices like (120) and (012) are equivalent to (210) in this list. We have now
indexed the lines. Note the absence of A2 + A2 4+ 12 = 7, whnch indicates a primitive cubic
(cubic P) cell. From (4/2a)* = 0.0111, we find a = 337 pm.

Comment Later we shall see that additional information comes from the intensities of the
lines.

(a) NaCl~ {b) KCI

Intensity
Intensity

ey LM

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Glancing angle, 20 . Glancing angle, 20
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(b)
71.22 A fragment of the structure of NaCl and 21.23 (a) One octant of the unit cell of NaCl; the
KCI: showing one plane of ions. Each cation (small ~ Na* Jons and CI~ ions have different numbers of
spheres) has anions (large spheres) as its nearest electrons and hence have different scattering
neighbours. (For the three-dimensional structure, factors. (b) One octant of the unit cell of KCI; the
see Fig. 21.40.) K* ions and CI~ ions have the same numbers of

electrons and hence have similar scattering factors.
The diffraction pattern in this case is that of a
primitive cubic lattice, *

Seif-test 21.3 In the same camera, another cubic crystal gave reflections at the following
values of 20 (in degrees): 10.4,14.8, 18.2,21.0,23.6,25.8,27.7. Identify the unit cell and
determine its ditnension. See Fig. 21.26 for assistance.

[Cubic I; 550 pm]

(c) Systematic absences

The X-ray powder diffraction patterns for NaCl and KCl are remarkably different for two
such similar structures (Fig. 21.21). Both crystals consist of two mutually interpenetrating
face-centred cubic arrays of ions, one of Na* ions or K* ions and the other of Cl~ ions
(Fig. 21.22). The explanation of the difference is found in the scattering strengths of the ions
and the interference between waves scattered by the cations and anions. Thus, some
reflections from the Na* ions are in phase with the CI~ reflections, and the two reflections
augment one another to give more intense maxima. For other orientations, thetwo sets of
reflections may be out of phase, and tend to cancel, but, as the scattering strengths of the
two ions are different, the cancellation is incomplete. For KCI, however, the scattering
strengths of K* and CI~, which have the same numbers of electrons, are very similar, and
cancellation is complete. The ions in KCI therefore all look very similar (Fig. 21.23) and,
instead of appearing to be face-centred cubic, the powder diffraction pattern is that typical
of a lattice with a primitive cubic unit cell.



630

2\ DIFFRACTION TECHNIQUES

The general form of the diffraction pattern of a crystal composed of atoms and ions with
different scattering strengths can be predicted by considering a crystal composed of A and
B atoms with scattering strengths measured by their scattering factors, f, and fg. If the
scattering factor is large, the atoms scatter X-rays strongly. The scattering factor of an atom
is related to the electron density distribution in the atom, p(r), by

f':47:]0 p(r )qm::rrzdr k=47nsinﬂ (7)

The value of f is greatest in the forward direction and smaller for directions away from the
forward direction (Fig. 21.24). The detailed analysis of the intensities of reflections must take
this dependence on direction into account (in single-crystal studies as well as for powders).
We show in the Justification below that, in the forward direction (for 0 = 0), f is equal to
the total number of electrons in the atom.

Justification 21.1

. 1 L I L
0 02 04 06 08 10 1.2
(sin B)/A

21.24 The variation of the scattering factor of
atoms and ions with atomic number and angle. The
scattering factor in the forward direction (at @ = 0,
and hence at (sin@)/4 = 0) is equal to the number
of electrons present in the species.

Asf — 0,50k — 0. Bccausesinx-x—%r‘{--”.

-~ ‘ Ix3 .
hmﬂ—l —-—--—llm(l—x2+---)=
=0 X x—-O X

The factor (sin kr) /kr is therefore equal to 1 for forward scattering. It follows that in the
forward direction

f= 411/(f p(r)rtdr

The integral over the electron density p (the number of electrons in an infinitesimal region
divided by the volume of the region) multiplied by the volume element 4zr? dr is the total
number of electrons, N,, in the atom. Hence, in the forward direction, f = N,. For
example, the scattering factors of Na*, K*, and CI~ are 8, 18, and 18, respectively.

The scattering factor is smaller in non-forward directions because: 8in kr) /kr <1 for
6>0, so the integral is smaller than the value calculated above.

We shall now c’alcula{p the diffraction pattern to expect: when two kinas of atom are
present in a unit cell. We begin by showing in the following Justification that, if in the unit
cell there is an A atom at the origin and a B atom at the coordinates (xa, yb, zc), where x, y,
and z lie in the range 0 to 1, then the phase difference between the hikl refiectiénsof the A
and B atoms is

Dp = 2n(hx + ky + I2) (8)

Justification 21.2

Consider the crystal shown schematically in Fig. 21.25. The reflection correspondi‘to two
waves from adjacent A planes, the phase difference of the waves being 27. if thereisa B
atom at a fraction x of the distance between the two A planes, then it gives rise to a wave
with a phase difference 2nx relative to an A reflection. To see this accn'lclusiorn-n-o'a: that, if
x =0, there is no phase difference; if x = % the phase difference is ; if x = 1, the B atom
lies where the lower A atom is and the phase difference is 2n. Now consider a (200)
reflection. There is now a 2 x 2 difference between the waves from the two A layers, and
if B were to lie at x = 0.5 it would- give rise to a wave that differed in phase by 27 from the
wave from the upper A layer. Thus, for a general fractional position x, the phase difference
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for a (200) reflection is 2 x 2nx. For a general (R00) reflection, the_phase difference is
therefore # x 2nx. For three dimensions, this result generalizes to eqn 8.

The A and B reflections interfere destructively when the phase difference is x, and the
total intensity is zero if the atoms have the same scattering power. For example, if the unit
cells are cubic | with a B atom at x=y=2z=1 then the A,B phase difference is
(h + k + I)z. Therefore, all reflections for odd values of h + k + [ vanish because the waves
are displaced in phase by n. Hence the diffraction pattern for a cubic | lattice can be
constructed from that for the cubic P lattice (a cubic lattice without points at the centre of
its unit cells) by striking out all reflections with odd values of k + & + /. Recognition of these
systematic absences in a powder spectrum immediately indicates a cubic | lattice
(Fig. 21.26). :

h+ k+/=o0dd are

Face-centred cubic
h.k,I all even or all
odd are present
Body-centred cubic
absent
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2i.2% Diffraction from a crystal containing two
kinds of atom. (a) For a {100) reflection from the
A planes there is a phase difference of 2n between
waves reflected by neighbouring planes, but (b) for
a (200) reflection the phase difference js 47. The
reflection from a B plane at a fractional distance
xa from an A plane has a phase that is x times
these phase differences.

/1 76 The powder diffraction patterns and the
systematic absences of three versions of a cubic
cell. Comparison of the observed pattern with
patterns like these enables the unit cell to be
identified. The locations of the lines give the cell
dimensions.
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21.27 A four-circle diffractometer. The settings of
the orientations (¢, x, 0, and ) of the companents
are controlled by computer; each (hki] reflection is
manitored in turn, and their intensities are
recorded.

21 DIFFRACTION TECHNIQUES

If the amplitude of the waves scattered from A is f, at the detector, that of the waves
scattered from B is fye'™v, with ¢,,, the phase difference given in egn 8. The total
amplitude at the detector is therefore J

Fia =/ + fae'® 9)

Because the intensity is proportional to the square modulus of the amplitude of the wave,
the intensity, /,;, at the detector is

Dy o€ FiFug = s +fBe—‘¢m}{fA +fuc'¢"*’} (10)
This expression expands to
Dt o S& +f + Safu(€ 4+ e70) = R+ f3 4 Upfy cos dpy (11)

The cosine term either adds to or subtracts from f7 + f3 depending on the value of ¢,
which in turn depends on A, k, and [ and x, y, and z (through eqn 8). Hence, there is a
variation in the intensities of the lines with different hk/, which is exactly what is observed
for NaCl (Fig. 21.21a).

21.5 Single-crystal X-ray diffraction

The method developed by the Braggs (William and his son Lawrence, who later jointly won
the Nobel Prize) is the foundation of almost all modern work in X-ray crystallography. They
used a single crystal and a monochromatic beam of X-rays, and rotated the crystal until a
reflection was detected. There are many different sets of planes in a crystal, so there are
many angles at which a reflection occurs. The complete set of. data consists of the list of
angles at which reflections are observed and their intensities.

(a) The technique

The diffraction pattern produced by a single crystal is measured by using a four-circle
diffractometer (Fig. 21.27). The computer linked to the diffractometer determines the unit
cell dimensions and the angular settings of the diffractometer's four circles that are needed
to observe any particular (hkl) reflection. The computer controls the settings, and moves the
crystal and the~detector for each one in turn. At each setting, the diffraction intensity is
measured, and background intensities are assessed by making measurements at slightly
different settings. Computing techniques are now available that lead not only to automatic
indexing but also to the automated determination of the shape, symmetry, and size of the
unit cell. Moreover, several techniques are now available for sampling large amounts of data,
including area detectors and image plates, which sample whole regions of diffraction
patterns simultaneously.

(b} Structure factors

The problem we now address is how to interpret the data from a diffractometer in terms of
the structure of the crystal. To do so, we must go beyond Bragg's law.

Suppose the unit cell contains several atoms with scattering factors f; and coordinates
(xa,y,b,2,c). The overall amplitude of a wave diffracted by the (&ki)_planes is a
generalization of the expression Fyy, = f, +fze'®» obtained earlier:

Fug =D _fe®™  ¢0) = 2n(hx; + ky; +Iz)) (12)
J

The sum is over all the atoms in the unit cell. The quantity F,, is called the structure factor,
and the intensity of the (hkl) reflection is proportional to |Fu,|*.
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21.28 The location of the atoms for the structure
factor calculation in Example 21.4. The dark spheres
are Na*, the light spheres are Ci.
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Example 21.4 Calculating a structure factor
Calculate the structure factors for the unit cell in Fig. 21.28,

Method The structure factor is given by eqn 12. To use this equation, consider the ions at
the locations specified in Fig. 21.28. Write f* for the Na* scattering factor and /™~ for the
(I~ scattering factor. Note that ions in the body of the cell contribute to the scattering with
a strength f. However, ions on faces are shared between two cells (use 1), those on edges
by four cells (use 1f), and those at corners by eight cells (use !f] Two useful relations are

el = ] cos =1(c" +e7'?)

Answer From eqn 12, and summing over the coordinates of all 27 atoms in the illustration:
F =f* (l: + letmil kzn-(;m;&m)

+f.(czxi(y|+§*+y) +Zlcm[}h) Sesarn +:l‘_cixi(§h+!])

To simplify this 27-term expression, we use

czmh - clxik . c!ml =

because h, k, and { are all integefs:

Fug =f{1 +cos(h + k)r + cos(h + )z + cos(k + Hr}
+f_{(—l)”t+' + cos kft + cos In + cos )}

Then, because cos hn = (— l}".

Fug = fH{14+ (=1)" 4 (=)™ 4 (1)
HAED g (=) 4 (=) (=)
Now note that:
if A, k, dndldrcallcven k= fH{1+14+1+1}
H{l+ 1+ 1+ 1} =4(f"+f)
if h,k,and are all odd, F = 4(f* ~f~)

if one index is odd and two are even, or vice versa, Fy; = 0

Comment The kk! all-odd reflections are less intense than the hk/ all-even.

Sclf-test 21.4 Deduce the rule for the systematic absences of a cubic | lattice.
. [for h + k + [ odd, Fyy = 0]

{c) The electron density

If we knew all the structure factors F,,,, we could calculate the electron density gistribution,
p(r), in the unit cell by using the expression

j?(!") = L"h e 2mi{hrtky+1z) (13)

hki

where V' is the volume of the unit cell. Equation 13 is called a Fourier synthesis of the
electron density.
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21.29 The plot of the electron density calculated in
Example 21.5.

Electron density, p(x)

0 0.5 % 1.0

21.30 The plot of the electron density calculated in
Self-test 21.5. Note how a different choice of
phases for the structure factors leads to a markedly
different structure,
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Example 21.5 Calculating an electvon density by Fourier synthesis

Consider the (h00) planes of,a crystal extending indefinitely in the x-direction. In an X-ray
analysis the structure factors were found as follows:

h: 0 i 2 3 4 5 6 7 8 9
Fy: i6 =i0 2 <1 7 =0 8 =3 2 =3
h: 10 11 12 13 14 15
Fy: 6 —5 3 -2 2 =3

(and F_, = F,). Construct a plot of the electron density projected on to the x-axis of the
unit cell.

Mcthod Because F_,, = F,, it follows from eqn 13 that

w .
Volx) = 3 Fe 2 = Fy 4 3 (Fpe ™ + F_ye?™W)
h=1

h=—cw M

oo @
=Fy+ ZF"' ((“"“ + ey = Fo +2 ZF,, cos(2nhx)
h=1 h=1

and we evaluate the sum (truncated at h = 15) for points 0 < x < 1 using mathematical
software.

Answer The results are plotted in Fig. 21.29.

Comment The positions of three atoms can be discerned very readily. The more terms that
are included, the more accurate the density plot. Terms corresponding to high values of &
(short-wavelength cosine terms in the sum) account for the finer details of the electron
density; low values of h account for the broad features.

Self-test 21.5 Use mathematical software to experiment with different structure factors
(including changing signs as well as amplitudes). For example, use the same values of F;, as
above, but with positive signs throughout.

[Fig. 21.30]

(d) The phase problem

From the measured intensities, 1,,,, we get the structure factors, £, and then evaluate
eqn 13 to find the electron density, p(r), throughout the unit cell. Unfortunately, I, is
proportional to the square modulus |F,,,|", 50 we cannot say whether we should use +|Fy|
or —|F,,,| in the sum. in fact, the difficulty is more severe for non-centrosymmetric unit
cells because, if we write F,,, as the complex number |F,|e'%, where « is the phase of Fy
and |F,| is its magnitude, the intensity lets us determine |Fyy,| but tells us nothing of its
phase, which may lie anywhere from 0 to 2z. This ambiguity is called the phase problem; its
consequences are illustrated by comparing Figs. 21.29 and 21.30. Some way must be found
to assign phases to the structure factors, for otherwise the sum for p could not be evaluated
and the method would be useless.

The phase problem can be overcome to some extent by a variety of methods. One
procedure that is widely used for inorganic materials with a reasonably small number of
atoms in a unit cell and for organic molecules with a small number of heavy atoms, is the
Patterson synthesis. Instead of the structure factors F,, the values of EF,,H{Z, which can be



21.31 The Patterson synthesis corresponding to the
pattern in (3) is the pattern in (b). The distance and
orientation of each spot from the origin gives the
orientation and separation of one atom-atom
separation in (a). Some of the typical distances and
their contribution to (b) are shown as R, etc.

42—A
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obtained without ambiguity from the intensities, are used in an expression that resembles
eqn 13:

_ ] 2 2nmi(hv+ky+lz ' .

Pr) = 2 Fufe et (14)
The outcome of a Patterson synthesis is a map of the vector separations of the atoms (the
distances and directions between atoms) in‘the unit cell. Thus, if atom A is at the coordinates
(*a.¥a-2a) and atom B is at (xg,yp,2g). then there will be a peak at
(xp — Xg,¥a — ¥YBrZa — 2p) in the Patterson m‘ap. There will also be a peak at the negative
of these coordinates, because there is a vector from B to A as well as a vector from A to B.
The height of the peak in the map is proportional to the product of the atomic numbers of
the two atoms, Z, Zg. For example, if the unit cell has the structure shown in Fig. 21.31a, the
Patterson synthesis would be the map shown in Fig. 21.31b, where the location of each spot
relative to the origin gives the separation and relative orientation of each pair of atoms in
the original structure.

If some atoms are heavy, they dominate the scattering (because their scattering factors
are large, of the order of their atomic number) and their locations may be deduced quite
readily. The sign of F,;, can now be calculated from the locations of the heavy atoms in the
unit cell, and to a high probability the phase calculated for them will be the same as the
phase for the entire unit cell. To see why this is so, we have to note that a structure factor of
a centrosymmetric cell has the form

F = (4 ) freavy + (£ Migh + (2 Miigne + -+ (15)

where fi. .., is the scattering factor of the heavy atom and fi, the scattering factors of the
light atoms. (An expression of this form, but for atoms of simifar atomic number, was derived
in Example 21.4) The f,y, are all much smaller than f.,yy, and their phases are more or less
random if the atoms are distributed throughout the unit cell. Therefore, thenet effect of the

’ fiign i to change F only slightly from f,.,,,. and we can be reasonably confident that F will

have the same sign as that calculated from the location of the heavy atom. This phase can
then be combined with the observed |F| (from the reflection intensity) to perform a Fourier
synthesis of the full electron density in the unit cell, and hence to locate the light atoms as
well as the heavy atoms. ’
Modern structural analyses make extensive use of direct methods. Direct methods are
based on the possibility of treating the atoms in a unit cell as being virtually randomly
distributed (from the radiation’s point of view), and then to use statistical techniques to
compute the probabilities that the phases have a particular value. It is possible to deduce
relations between some structure factors and sums (and sums of squares) of others, which
have the effect of constraining the phases to particular values (with high probability, so long
as the structure factors are large). For example, the Sayre probability relation has the form

sign of Fy 4 w44 is probably equal to (sign of Fy) x (sign of Fyp,)
(16)

For example, if F|,; and F,;, are both large and negative, then it is highly likely that F;sq,
provided it is large, will be positive.

(e) Structure refinement

In the final stages of the determination of a crystal structure, the parameters describing the
structure (atom positions, for instance) are adjusted systematically to give the best fit
between the observed intensities and those calculated from the model of the structure
deduced from the diffraction pattern. This process is called structure refinement. Not only
does the procedure give accurate positions for all the atoms in the unit cell, but it also gives
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21.32 A fragment of the structure of diamond.
Each C atom is tetrahedrally bonded to four
neighbours. This framework-like structure results in
a rigid crystal with a high thermal conductivity.

21 DIFFRACTION TECHNIQUES

an estimate of the errors in those positions and in the bond lengths and angles derived from
them. The pracedure also provides information on the vibrational amplitudes of the atoms.

Information from X-ray analysis

The bonding within a solid may be of various kinds. Simplest of all (in principle) are metals,
where electrons are delocalized over arrays of identical cations and bind them together into
a rigid but ductile and malleable wholc. In many cases the crystal structures of metals can be
rationalized in terms of a model in which spherical metal cations pack together into an
orderly array. In an ionic solid, both cations and anions are packed together.

In covalent solids, covalent bonds in a definite spatial orientation link the atoms in a
network extending through the crystal. The demands of directional bonding, which have
only a small effect an the structures of many metals, now override the geometrical problem
of packing spheres together, and elaborate and extensive structures may be formed. A
famous example of a covalent solid is diamond (Fig. 21.32), in which each sp*-hybridized C
atom is bonded tetrahedrally to its four neighbours.

Molecular solids, which are the subject of the overwhelming majority of modern
structural determinations, are bonded together by van der Waals interactions (Chapter 22).
The observed crystal structure is nature’s solution to the problem of condensing objects of
various shapes into an aggregate of minimum energy (actually, for temperatdres above zero,
of minimum Gibbs energy). The prediction of the structure is a very difficult task, and rarely
possible. The problem is made more complicated by the role of hydrogen bonds, which in
some cases dominate the crystal structure, as in ice (Fig. 21.33), but in others (for example,
phenol) distort a structure that is determined largely by the van der Waals interactions. X-
ray diffraction studies of molecular compounds reveal a huge amount of information,
including interatomic distances, bond angles, the stereochemistry of the molecules, and
vibrational parameters.

21.33 A fragment of the crystal structure of ice (ice-1), Each O atom is at the centre of a tetrahedron of
four O atoms at a distance of 276 pm. The central O atom is attached by two short O-H bonds to two H
atoms and by two long hydragen bonds to the H atoms of two of the neighbouring molecules. Overall,
the structure consists of planes of hexagonal puckered rings of H,0 malecules (like the chair form of
cyclohexane).

42—B



(a)

(b}

21.3% (a) The third layer of close-packed spheres
might occupy the dips lying directly above the
spheres in the first layer, resulting in an ABA
structure, which corresponds to hexagonal close-
packing. (b) Alternatively, the third layer might lie
in the dips that are not above the spheres in the
first layer, resulting in an ABC structure, which
corresponds to cubic close-packing.

Z1.6, THE PACKING OF IDENTICAL SPHERES: METAL CRYSTALS 637

21711 The first layer of close-packed spheres used 71.35 The second layer of close-packed spheres

to build a three-dimensional close-packed occupies the dips of the first layer. The two layers

structure. are the AB component of the close-packed
structure,

21.6 The packing of identical spheres: metal crystals

Most metallic elements crystallize in one of three simple forms, two of which can be
explained in terms of rigid spheres packing together in the closest possible arrangement.

(a] Close packing
A close-packed layer of identical spheres, one with maximum utilization of space, is shown
in Fig, 21.34. A close-packed three-dimensional structure can be envisaged as formed by
stacking such close-packed layers on top of one another. However, this stacking can be done
in different ways and can result in close-packed polytypes, or structures that are identical in
two dimensions (the close-packed layers) but differ in the third dimension.

"In all polytypes, the spheres of the second close-packed layer lie in the depressions of the
first layer (Fig. 21.35). The third layer may be added in either of two ways. In one, the spheres
are placed so that they reproduce the first layer (Fig. 21.36a), to give an ABA pattern of
layers. Alternatively, the spheres may be placed over the gaps in the first layer (Fig. 21.36b),
so giving an ABC pattern. Two polytypes are formed if the_two stacking patterns are
repeated in the vertical direction. If the ABA pattern is repeated, to give the sequence of
layers ABABAB.. . ., the spheres are hexagonally close-packed (hcp). Alternatively, if the
ABC pattern is repeated, to give the sequence ABCABC. . ., the spheres are cubic close-
packed (ccp). The origins of these names can be seen by referring to Fig. 21.37. The ccp
structure gives rise to face-centred unit cells, so may also be denoted cubic F {or fee, for

(a) - (b)

21,37 A fragment of the structure shown in Fig. 21.36 revealing the (a) hexagonal (b) cubic symmetry.
The tints on the spheres are the same as for the layers in Fig. 21.36.
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21.38 The calculation of the packing fraction of a
ccp unit cell,
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21.19 The caesium-chloride structure consists of
two interpenetrating simple cubic arrays of ions,
one of cations and the other of anions, so that
each cube of ions of ane kind has a counter-ion at
its centre.

Cl MNa

- - “J

21.40 The rock-salt (NaCl) structure consists of two
mutually interpenetrating slightly expanded face-
centred cubic arrays of ions. The entire assembly
shown here is the unit cell.

21 DIFFRACTION TECHNIQUES

Table 21.2 The crystal structures of some elements

Structure Element

hep® Be, Cd, Co, He, Mg, S¢, Ti, Zn

fee® (cep, cubic F) Ag, Al, Ar, Au, Ca, Cu, Kr, Ne, Ni, Pd, Pb, Pt, Rh, Rn, 5r, Xe
bee (cubic 1) Ba, Cs, Cr, Fe, K, Li, Mn, Mo, Rb, Na, Ta, W, V

cubic P Po

* Close-packed structures.

face-centred cubic). It is also possible to have ABCABAB ... structures and even random
sequences; however, the hcp and ccp polytypes are the most important. Some elements
possessing these structures are listed in Table 21.2,

The compactness of close-packed structures is indicated by their coordmatmn number,
the number of atoms immediately surrounding any selected atom, which is 12 in all cases.
Another measure of their compactness is the packing fraction, the fraction of space
occupied by the spheres, which is 0.740 (see the Justification below). That is, in a close-
packed solid of identical spheres, only 26.0 per cent of the volume is empty space. The fact
that many metals are close-packed accounts for their high densities.

Justification 21.3

To calculate a packing fraction of a cep structure, we first calculate the volume of a unit
cell, and then calculate the total volume of the spheres that fully or partially occupy it. The
first part of the calculation is a straightforward exercise in geometry. The second part
involves counting the fraction of spheres that occupy the cell.

Refer to Fig. 21.38. Because a diagonal of any face passes completely through one
sphere and halfway through two other spheres, its length is 4R. The length of a side is
therefore 8'/2R and the volume of the unit cell is 8%/2R%, Because each cell contains
the equivalent of 6 x 1 + 8 x | = 4 spheres, and the volume of each sphere is 3 7R?, the
total occupied volume is -§1:R3 The fraction of space occupied is thcrcfort
18 R} /8¥2R? = 167/8%3, or 0.740. Because an hep structure has the same coordination
number its packing fraction is the same. The packing fractions of structures that are not
close-packed are calculated similarly (see Problem 21.13).

(b) Less closely packed structures

As shown in Table 21.2, a number of common metals adopt structures that are less than
close-packed. The departure from close packing suggests that specific covalent bonding
between neighbouring atoms is beginning to influence the structure and impose a specific
geometrical arrangement. One such arrangement results in a cubic | (bee, for body-centred
cubic) structure, with one sphere at the centre of a cube formed by eight others. The
coordination number of a bee structure is only 8, but there are six more atoms not much
further away than the eight nearest neighbours. The packing fraction of 0.68 is not much
smaller than the value for a close-packed structure (0.74), and shows that about two-thirds
of the available space is actually occupied.

21.7 lonie crystals

When crystals of compounds of monatomic ions are modelled by stacks of spheres it is
essential to allow for the different ionic radii (typically with the cations smaller than the
anions) and different charges. The coordination number of an ion is the number of nearest



21.41 The structure of the sphalerite form of ZnS
showing the location of the Zn atoms in the
tetrahedral holes formed by the array of S atoms.
[There is an S atom at the centre of the cube inside
the tetrahedron of Zn atoms.)

Table 21.3" lonic radii, R/pm

Na* 102(61), 116(8)
it 138(6), 151(8)
F~ 128(2), 131(4)
(o 181 (close packing)

* More values are given in the Data section at the end
of this volume,
t Coordination number.

COOH
HO
H
H COOH
OH
1 b(+)-Tartaric acid
H
HO
H

HOOC OH

HOOC

2 L{-)-Tartaric acid
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neighbours of opposite charge; the structure itself is characterized as having (n,,n_)
coordination, where'n, is the coordination number of the cation and n_ that of the anion.

Even if, by chance, the ions have the same size, the problems of ensuring that the unit
cells are electrically neutral make it impossible to achieve 12-coordinate close-packed
structures. As a result, ionic solids are generally less dense than metals. The best packing that
can be achieved is the (8, 8)-coordinate caesium-chloride structure in which each cation is
surrounded by eight anions and each anion is surrounded by eight cations (Fig. 21.39). In
this structuie, an ion of one charge occupies the centre of a cubic unit cell with eight
counter-ions at its corners. The structure is adopted by CsCl itself and also by CaS, CsCN
(with some distortion), and CuZn. ‘

When the radii of the ions differ more than in CsCl, even eight-coordinate packing
cannot be achieved. One common structure adopted is the (6, 6)-coordinate rock-salt
structure typified by NaCl (Fig. 21.40). In this structure, each cation is surrounded by six
anions and each anion is surrounded by six cations. The rock-salt structure can be pictured as
consisting of two interpenetrating slightly expanded cubic F (fce) arrays, one of cations and
the other of anions. This structure is adopted by NaCl itself and also by several other MX
compounds, including KBr, AgCl, MgO, and ScN.

The switch from the caesium-chloride structure to the rock-salt structure occurs
(sometimes) in accord with the radius-ratio rule, which is based on the value of the radius
ratio, y:

— Tomaller (17)
rln.rgﬂ
The two radii are those of the larger and smaller ions in the crystal. The radius-ratio rule is
derived by considering the geometrical problem of packing the maximum number of hard
spheres of one radius around a hard sphere of a.different radius. The rule states that the
caesium-chloride structure should be expected when

y>32-1=0732
and that the rock-salt structure should be expected when
2'2 -1 =0414 <y <0.732

For 7 <0.414, the most efficient packing leads to four-coordination of the type exhibited by
the sphalerite (or zinc blende) form of ZnS (Fig. 21.41). The deviation of a structure from
that expected on the basis of the radius-ratio rule is often taken to be an indication of a shift
from ionic towards covalent bonding; however, a major source of unreliability is the
arbitrariness of ionic radii and their variation with coordination number.

lonic radii are derived from the internuclear distance between adjacent ions in a crystal.
However, we need to apportion the total distance between the two ions by defining the
radius of one ion and then inferring the radius of the other ion. One scale that is widely used
is based on the value 140 pm for the radius of the 07~ ion (Table 21.3). Other scales are also
available [such as one based on F~ for discussing halides), and it is essential not to mix values
from different scales. Because ionic radii are so arbitrary, predictions based on them must be
viewedgrautiously.

21.8 Absolute configurations

Although it has long been possible to separate enantiomers (mirror-image chiral isomers,
Section 15.3b), it was not until X-ray diffraction techniques were developed that the
absolute stereochemical configuration of an isomer could be determined. We now know, for
example, that D-tartaric acid (1) is the isomer responsible for rotating light clockwise (that
is, it is the (4) isomer), and that L-tartaric acid (2) is the (—) isomer. The X-ray method is not



21.42 The two versions (top and bottom) of the two
layers of atoms represent enantiomers. The
interference between their scattered waves results in
compaosite waves that differ in phase (a and ), but
the absolute phase cannot be determined, and the
intensities of the reflections are identical. If, hawever,
the atoms represented by the larger spheres modify
the phase of the waves they scatter, then the
resultant superpositions differ in amplitude as well as
phase (b and b'), the reflections have different
intensities, and the absolute configuration can be
established. The green bands represent the waves
scattered by the layers, with alternating positive and
negative regions shown as light and dark. The width
of a band indicates its intensity. The resultant in each
instance is indicated by the grey band.
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trivial, because enantiomers give almost identical diffraction patterns. The information
about the absolute configuration is contained in small differgnces in diffraction intensities
and is based on a technique developed by J.M. Bijvoet.

Consider first the diagrams in Fig. 21.42, which represent an idealized crystal and its
mirror image. This model resembles the arrangement of Zn and S atoms in zinc blende, which
was the first absolute configuration to be determined. The technique we are about to |
describe was used to show that the shiny (111) faces of the crystal have § atoms on the
surface whereas the dull (111) faces have Zn atoms on the surface (Fig. 21.43), Each plane of
atoms gives rise to a scattered wave, and their superpositions are shown on the left of
Fig. 21.42. Note that the two superpositions have the same amplitude but differ in phase.
The diffraction pattern therefore has the same intensity for each enantiomer and, at this
stage, cannot be used to distinguish them.

The essence of the method is to use X-rays that are close to an absorption frequency of
one species of atom in the sample.-in the examination of ZnS, for instance, gold L, radiation
(127.6 pm) was used, which is close to the beginning of a zinc absorption band (which
commences at 128.3 pm). In Bijvoet's development of this approach for a study of tartaric
acid, aRb atom is incorporated into the compound (he used sodium rubidium tartrate) with
X-rays from a zirconium target. Atoms with absorptions close to the X-ray frequency
introduce an extra phase shift in the scattered X-ray. A simple way to picture the additional
phase shift is to imagine the X-rays as exciting the atom before being re-emitted, and being
delayed in the process. The effect is called anomalous scattering.

Suppose the layer marked A in the crystal contains the anomalous scatterers; then the
scattered waves are as shown on the righg of Fig. 21.42. The essential point is that the
superpositions now differ slightly in amplitude, not only phase, so the diffracted intensities
are slightfy different in each case, Therefore, the enantiomers can in fact be distinguished
because the scattering intensities differ.

Modern diffractometers are so sensitive that the incarporation of a heavy atom is no
longer strictly necessary. It is now possible to detect the small intensity variations arising
from the light atoms normally present. However, the procedure is much easier and more

Resultarit
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21.43 The (111) faces of the sphalerite crystal have
cither S atoms above Zn atoms or, as shown here,
In atoms above S atoms.
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reliable if some moderately heavy atoms (such as S or Cl) are present, Anomalous scattering
depends strongly o the wavelength of the X-radiation. Thus, atoms lighter than S and CI
give little effect for Mo K, radiation, and until recently Cu K, radiation had to be used.

Neutron and electron diffraction

A neutron generated in a reactor and slowed to thermal velocities by repeated collisions with
a moderator (such as graphite) until it is travelling at about 4 kms~! has a wavelength of
atibut 100 pm. Because 100 pm is comparable to X-ray wavelengths, similar diffraction
phenomena can be expected. In practice, a range of wavelengths occurs in a neutron beam,
but a monochromatic beam can be selected by diffraction from a germanium crystal.
Electrons can be accelerated to precisely controlled energies by a known potential
whference. When accelerated from rest through 10 keV they acquire a wavelength of

T2 pm, which makes them suitable for structural studies too.

Example 21.6 Calculating the typical wavelength of thermal neutrons

Célculate the typical wavelength of neutrons that have reached thermal equilibrium with
s3¢ir surroundings at 100°C.

MR:thod We need to relate the wavelength to the temperature. There are two linking steps.
First, the de Broglie relation expresses the wavelength in terms of the linear momentum.
Then the linear momentum can be expressed in terms of the kinetic energy, the mean value
of which is given in terms of the temperature by the equipartition theorem (sce the
Introduction and Section 20.3). ’

Answer The de Broglie relation states that A = k/p. Then, from the equipartition theorem
we know that the mean translational kinetic energy of a neutron at a temperature T

travelling in the x-direction is Ex = 1kT. The kinetic energy is also equal to P*/2m, wheré p

is the momentum of the neutron and m is its mass. Hence, p = (ka)m. It follows that the
neutron’s wavelength is '

_ h
(mkT)'/?
Therefore, at 100°C,

e 6.626 x 107 Is i
T {(1.675 % 10777 kg) x (1.381 x 10-3 JK-') x (373 K)}'/*

Sclf-test 21.6 Calculate the temperature needed for the average wavelength of the
neutrons to be 100 pm.
[1.6x10°°C]

21.9 Neutron diffraction

The scattering of X-rays is caused by the oscillations an incoming electromagnetic wave
generates in the electrons of atoms. In contrast, the scattering of neutrops is a nuclear
phenomenon. Neutrons pass through the electronic structures-of atoms and interact with
the nuclei through the strong nuclear force that is responsible for binding nucleons
together. As a result, the intensity with which ncutrons are scattered is independent of the
number of electrons. Whereas X-ray scattering factors increase strongly with atomic



21.44 If the spins of atoms at lattice points are
orderly, as in this antiferromagnetic material, where
the spins of one set of atoms are aligned
antiparallel to those of the other set, neutron
diffraction detects two interpenetrating simple
cubic lattices on account of the magnetic
interaction of the neutron with the atoms, but
X-ray diffraction would see only a single bee lattice,

Scattering intensity

Angle, 0

K6}

(b) s

_ 21.45 (a) The scajtering intensity consists of a
smoothly varying background with undulations A
superimposed. (b) The undulations are emphasized if
a sector is rotated in front of the screen, and then
the densitometer trace taken from the photograph
plotted against s = (4z/1) sin1 0.
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number, neutron scattering factors vary much less strongly; nor do they vary with angle. As
a result, in contrast to X-rays, neutron diffraction is not dominated by the heavy atoms
present in a molecule. Neutron diffraction therefore shows up the positions of hydrogen
nuclei much more clearly than X-rays do. Similarly, although neighbouring elements in the
periodic table have almost identical X-ray scattering factors, and hence are almost
indistinguishable in X-ray diffraction, their neutron scattering lengths may be signifi_antly
different. As a result, it is possible to distinguish atoms of elements such as Ni and Co that
are present in the same compound and to study order-disorder phase transitions in FeCo.
The difference in sensitivity to hydrogen nuclei can have a pronounced effect on the
measurement of C-H bond lengths. Because X-rays respond to accumulations of electrons,
the weak peaks in an X-ray diffraction map represent the locations of the bulk of the
electron density in the bonds, and this density may be shifted towards the C atom. For
example, X-ray measurements on sucrose give R(C—H) = 96 pm; neutron measurements,
which respond to the location of the nuclei, give R(C—H) = 109.5 pm. The 0-H bond
lengths in sucrose show similar differences, being 79 pm by X-rays but 97 pm by neutrons.
Another property of neutrons that distinguishes them from X-ray photons is their
possession of a magnetic moment due to their spin. This magnetic moment can couple to the
magnetic fields of ions in a crystal (if the ions have unpaired electrons) and modify the
diffraction pattern. A simple example of this magnetic scattering is provided by metallic
chromium. The lattice is cubic | {bce), and the diffraction pattern using X-rays has systematic
absences. These absences are not observed when neutrons are used, because the structure is
such that atoms at the body—ctntft‘location have magnetic moments opposite to those at
the corners, and the structure is better regarded as consisting of two interpenetrating arrays
of magnetically different Cr atoms (Fig. 21.44). Thercfore, although the atoms are identical
as far as X-rays are concerned, they are different from the viewpoint of neutrons, and
diffraction intensity is observed at the predicted systematic X-ray absences. Neutron
diffraction is especially important for investigating these magnetically ordered lattices.

21.10 Electron diffraction

Electrons are scattered strongly by their interaction with the charges of electrons and nuclei,
and so until recently could not be used to study the interiors of solid samples. However, they
have been used for some time to study molecules in the gas phase, on surfaces, and in thin
films. The application to surfaces, which is called 'low-energy electron diffraction’ (LEED), is a
major use of the technique and is discussed in Section 28.2e. Recent developments have
extended electron diffraction techniques to solids, where they have certain advantages over
X-ray diffraction. For instance, they are applicable to very small samples, and so may be used
when single-crystal X-ray diffraction is impractical or powder diffraction too complex to
interpret (see Further reading ). A sample size of about 10* unit cells can be used for electron
diffraction studies. on solids, which is several million times smaller than for X-ray
crystallography, even using synchrotron radiation.

In a typical gas-phase electron diffraction apparatus, electrons are emitted from a hot
filament and are then accelerated through a potential gradient. They then pass through the
stream of gas, and on to a fluorescent screen. The wavelength of electrons accelerated from
rest through a potential difference V is

h

 ORCTE...- PO 18
(2meev)'? £

(see Exampie 11.2). For an accelerating potential difference of 40 kV, the wavelength is
6.1 pm.
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sectar Screen

21.46 The layout of an electron diffraction
apparatus. The diffraction pattern is photographed
from the fluorescent screen. A rotating heart-
shaped sector emphasizes the scattering from the
nuclear positions and suppresses the smoothly
varying background due to scattering from the
continuous electron distribution in the molecules.
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The gaseous sample presents all possible orientations of atom-atom separations ta the
electron beam. The resulting diffraction pattern consists of a series of concentric
undulations on a background with an intensity that decreases steadily with increasing
scattering angle (Fig. 21.45). The undulations are due to the molecular scattering, the
sharply defined scattering from the nuclear positions. The background is due largely to the
atomic scattering. One way of levelling the total intensity and hence to emphasize the
undulations is to insert a rotating heart-shaped disk in front of the screen (Fig. 21.46).

The scattering from a pair of nuclei separated by a distance R;; and orientated at a
definite angle to the incident beam can be calculated. The overall diffraction pattern is then
calculated by allowing for all possible orientations of this pair of atoms: When the molecule
consists of a number of atoms, we sum over the contribution from all pairs, and find that the
total intensity has an angular variation given by the Wierl equation:

sin.iR,;, dn

1(0) = Zf,)j—m_j s = —sinl0 | (19)
1) L

TR
where 4 is the wavelength of the electrons in the beam and @ is the scattering angle. The
clectron scattering factor, f, is a measure of the intensity of the electron scattering powers
of the atoms. -

The electron diffraction pattern gives the distances between all possible pairs of atoms in
the malecule (not just to those bonded together). When there are only a few atoms, the
peaks can be analysed reasonably quickly, and the analysis proceeds by assuming a geometry
and calculating the intensity pattern by using the Wierl equation. The best fit is then taken
as the actual molecular geometry.
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Exercises

21.1 (a) Equivalent lattice points within the unit cell of a Bravais
lattice have identical surroundings. What points within a face-centred
cubic unit cell are equivalent to the point (§,0,0)?

21.1 (b) Equivalent lattice points within the unit cell of a Bravais
lattice have identical surroundings. What points within a body-
centred cubic unit cell are equivalent to the point (},0,3)?

21.2 (a) Find the Miller indices of the planes that intersect
the crystallographic axes at the distances (2a, 3b, 2¢) and (2a, 26, coc).

21.2 (b) Find the Miller indices of the planes that intersect
the crystallographic axes at the distances (la,3b,—c) and
(2a, 3b, 4c).

21.3 (a) Calculate the separations of the planes (111), (211), and
(100) in a crystal in*which the cubic unit cell has side 432 pm.

21.3 (b) Calculate the separations of the planes (121), (221), and
(244) in a crystal in which the cubic unit cell has side 523 pm.
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21.4 (a) The glancing angle of a Bragg reflection from a set of crystal
planes separated by 99.3 pm is 20.85°. Calculate the wavelength of
the X-rays.

21.4 (b) The glancing angle of a Bragg reflection from a set of crystal
planes separated by 128.2 pm is 19.76°. Calculate the wavelength of
the X-rays.

21.5 {(a) Whatare the values of 20 of the first three diffraction lines of
bee iron (atomic radius 126 pm) when the X-ray wavelength is 58 pm?

21.5 (b) What are the values of 26 of the first three diffraction lines
of fec (gold atomic radius 144 pm) when the X-ray wavelength is
154 pm?

21.6 (a) Copper K, radiation consists of two components of
wavelengths 154.433 pm and 154.051 pm. Calculate the separation
of the diffraction lines arising from the two components in a powder
diffraction pattern recorded in a circular camera of radius 5.74 cm
(with the sample at the centre) from planes of separation 77.8 pm.

21.6 (b) A synchrotron source produces X-radiation at a range of
wavelengths. Consider two components of wavelengths 95.401 and
96.035 pm. Calculate the separation of the diffraction lines arising
from the two components in a powder diffraction pattern recorded in
a circular camera of radius 5.74 cm (with the sample at the centre)
from planes of separation 82.3 pm.

21.7 (a) The compgund Rb;TIF; has a ietragonal unit cell with
dimensions @ = 651 pm and ¢ = 934 pm. Calculate the volume of
the unit cell.

21.7 (b) Calculate the volume of the hexagonal unit cell of sodium
nitrate, for which the dimensions are a = 16929 pm and
¢ = 506.96 pm.

21.8 (a) The orthorhombic unit cell of NiSO, has the dimensions
a =634 pm, b =784 pm, and ¢ = 516 pm, and the density of the
solid is estimated as 3.9 gem™>. Determine the number of formula
units per unit cell and calculate a more precise value of the
density.

21.8 (b) An orthorhombic unit cell of a compound of molar mass
135.01 gmol~' has the dimensions a = 589 pm, b = 822 pm, and
c =798 pm. The density of the solid is estimated as 2.9 gem™.
Determine the number of formula units per unit cell and calculate a
more precise value of the density.

21.9 (a) The unit cells of SbCl, are orthorhombic with dimensions
a =812 pm, b = 947 pm, and ¢ = 637 pm. Calculate the spacing of
the (411) planes.

21.9 (b) An orthorhombic unit cell has dimensions a = 679 pm,
b =879 pm, and ¢ = 860 pm. Calculate the spacing of the (322)
planes.

21.10 (a) A substance known to have a cubic unit cell gives
reflections with Cu K, radiation (wavelength 154 pm) at glancing
angles 19.4°, 22.5°, 32.6°, and 39.4°. The reflection at 32.6° is known
to be due to the (220) planes. Index the other reflections.
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21.10 (b} A substance known to have a cubic unit cell gives
reflections with radiation of wavelength 137 pm at the glancing
angles 10.7°, 13.6°, 17.7°, and 21.9°. The reflection at 17.7° is known
to be due to the (111) planes. Index the other reflections.

21.11 (a) Potassium nitrate crystals have orthorhombic unit cells of
dimensions a = 542 pm, b = 917 pm, and ¢ = 645 pm. Calculate the
glancing angles for the (100), (010), and (111) reflections using Cu K,
radiation (154 pm).

21.11 (b) Calcium carbonate crystals in the form of aragonite have
orthorhombic unit cells of dimensions @ = 574.1 pm, b = 796.8 pm,
and ¢ = 495.9 pm. Calculate the glancing angles for the (100), (010),
and (111) reflections using radiation of wavelength 83.42 pm (from
aluminium). :

21.12 (a) Copper(l) chloride forms cubic crystals with four formula
units per unit cell. The only reflections present in a powder
photograph are those with either all even indices or all odd indices.
What is the symmetry of the unit cell?

21.12 (b) A powder diffraction photograph from tungsten shows
lines which index as (110), (200), (211), (220), (310), (222), (321),
(400), . . . Identify the symmetry of the unit cell.

21.13 (a) The coordinates, in units of a, of the atoms in a simple
cubic lattice are (0,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,0), (1,1,0),
(1,0,1), and (1, 1, 1). Calculate the structure factors Fy,; when all the
atoms are identical.

21.13 (b) The coordinates, in units of a, of the atoms in a body-
centred cubic lattice are (0,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,0),
(1,1,0),(1,0,1), (1,1,1), and ({,1,1). Caleulate the structure factors
F i when all the atoms are identical.

21.14 (a) Calculate the packing fraction for close-packed cylinders.

21.14 (b) Calculate the packing fraction for equilateral triangular
rods stacked as shown in (3).

21.15 (a) Verify that the radius ratio for sixfold coordination is 0.414.

21.15 (b) Verify that the radius ratio for eightfold coordination is
0.732.

21.16 (a) From the data in Table 21.3 determine the radius of the
smallest cation that can have (a) sixfold and (b) eightfold
coordination with the 02" ion.

21.16 (b) From the data in Table 21.3 determine the radius of the

smallest cation that can have (a) sixfold and (b) eightfold
coordination with the K* ion.
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21.17 (a) Calculate the atomic packing factor far diamond.
21.17 (b) Calculate the atomic packing factor for a cubic C unit cell.

21.18 (a) The carbon-carbon bond length in diamond is 154.45 pm.
If diamond were considered to be a close-packed structure of hard
spheres with radii equal to half the bond length, what would%be its
expected density? The diamond lattice is face-centred cubic and its
actual density is 3.516 gem™. Can you explain the discrepancy?

21.18 (b) Although the crystallization of large biological molecules
may not be as readily accomplished as that of small molecules, their
crystal lattices are no different. Tobacco seed globulin forms face-
centred cubic crystals with unit cell dimension of 12.3 nm and a
density of 1.287 gem~2. Determine the globulin's molar mass.

21.19 (a) Is there an cxpansion or a contraction as titanium
transforms from hep tg body-centred cubic? The atomic radius of
titanium is 145.8 pm in hcp but 142.5 pm in bee.

21.19 (b) Is there an expansion or a contraction as iron transforms
from hep to bee? The atomic radius of iron is 126 pm in hcp but
122 pm in bec.

21.20 (a) In a Patterson synthesis, the spots correspond to the
lengths and directions of the vectors joining the agoms in a unit cell.
Sketch the pattern that would be obtaaned for a planar, triangular
isolated BF; molecule.
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21.20 (b) In a Patterson synthesis, the spots correspond to the
lengths and directions of the vectors joining the atoms in a unit cell.
Sketch the pattern that would be obtained from the C atoms in an
isnlated benzene molecule.

21.21 (a) What velocity should neutrons have if they are to have
wavelength 50 pm?

21.21 (b) Calculate the wavelength of neutrons that have reached
thermal equilibrium by collision with a moderator at 300 K.

21.22 (a) What accelerating potential difference must be applied to
electrons to generate a beam with wavelength 18 pm?

21.22 (b) Calculate the wavelengths of electrons thaf have been
accelerated through (a) 1.0 kV, (b) 10 kV, (c) 40 kV.

21.23 (a) Predict from the Wierl equation the positions of the first
maximum and first minimum in the neutron and electron Hiffraction
patterns of the Cl, molecule obtained with neutrons of wavelength
80 pm and electrons of wavelength 4.0 pm.

21.23 (b) Predict from the Wierl equation the positions of the first
maximum and first minimum in the neutron and electron diffraction
patterns of a Br, molecule obtained with neutrons of wavelength
78 pm and electrons of wavelength 4.0 pm.

Problems

Numerical problems

21.1 In the carly days of X-ray crystallography there was an urgent
need to know the wavelengths of X-rays. One technique was to
measure the diffraction angle from a mechanically ruled grating.
Another method was te estimate the separation of lattice planes from
the measured density of a crystal. The density of NaCl is 2.17 gem ™3
and the (100) reflection using Pd K, radiation occurred at 6.0°.
Calculate the wavelength of the X-rays.

21.2 The element polonium cry's'tallizcs in a cubic system. Bragg
reflections, with X-rays of wavelength 154 pm, occur at
sinf = 0.225, 0.316, and 0.388 from the (100), (110), and (111)
sets of planes. The separation between the sixth and seventh lines in
the powder Spectrum is larger than between the fifth and sixth lines.
Is the unit cell simple, body-centred, or face-centred? Calculate the
unit cell dimension.

21.3 The unit cell dimensions of NaCl, KCI, NaBr, and KBr, all of which
crystallize in face-centred cubic lattices, are 562.8 pm, 627.7 pm,
596.2 pm, and 658.6 pm, respectively. In each case, anign and cation
are in contact along an edge of the unit cell. Do the data support the
contention that jonic radii are constants independent of the counter-
ion?

21.4 The powder diffraction patterns of (a) tungsten, {b) copper
obtained in a camera of radius 28.7 mm are shown in Fig. 21.47. Both
were obtained with 154 pm X-rays and the scales are marked. Identify

the unit cell in each case, and calculate the lattice spacing. Estimate
the metallic radii of W and Cu.

(a)

DR

(b}

Fig. 21.47

21.5 Elemental silver reflects X-rays of wavelength 154.18 pm at
angles of 19.076°, 22.171°, and 32.256°, However, there are no other
reflections at angles of less than 33°. Assuming a cubic unit cell,
determine its type and dimension. Calculate the density of silver.

21.6 Genuirte pearls consist of concentric layers of calcite crystals
(CaCO,) in which the trigonal axes are oriented along the radii. The
nucleus of a cultured pear| is a piece of mother-of-pearl that has been
worked into a sphere on a lathe. The oyster then deposits concentric
layers of calcite on the central seed. Suggest an X-ray method for
distinguishing between real and cultured pearls.
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21.7 In their book X-rays and crystal structures (which begins "It is
now two years since Dr. Laue conceived the idea .. ") the Braggs give a
number of simple examples of X-ray analysis. For instance, they report
that the reflection from (100) planes in KCl occurs at 5° 23, but for
NaCl it occurs at 6° (' for X-rays of the same wavelength. If the side
of the NaCl unit cell is 564 pm, what is the side of the KCl unit cell?
The densities of KCI and NaCl are 1.99 gem ™ and 2.17 gem?,
respectively. Do these values support the X-ray analysis?

21.8 The volume of a monoclinic unit cell is abe sin f§. Naphthalene
has a monoclinic unit cell with two molecules per cell and sides in the
ratio 1.377 : 1 : 1.436. The angle f§ is 122° 49’ and the density of the
solid is 1.152 gecm™. Calculate the dimensions of the cell.

21.9 Calculate the coefficient of thermal expansion of diamond given
that the (111) reflection shift< from 22° 2' 25" t021° 57’ 59" on heat-
ing a crystal from 100 K to 300 K and 154.0562 pm X-rays are used.

21.10 Use the Wierl equation to predict the appearance of the
electron diffraction pattern of CCl, with an (as yet) undetermined

C-Cl bond length but of known tetrahedral symmetry. Take f, = 17f"

and fo = 6f and note that R(CI, C1) = (4)"/2R(C, C1). Plot 7/f? against
x = sR(C,Cl). In an actual experiment using 10.0 keV electrons the
positions of the maxima occurred at 3° 10/, 5° 22/, and 7° 54" and
minima occurred at 1° 46/, 4° 6/, 6° 40, and 9° 10". What is the C-Cl
bond length in CCl,?

Theoretical problems

21.11 Show that the separation of the (hkl/) planes in an
orthorhombic crystal with sides a, b, and c is given by egn 3.

21.12 Show that the volume of a triclinic unit cell of sides a, b, and ¢
and angles &, 3, and y is

V = abc(l — cos® @ — cos® f — cos?y + 2 cos x cos fcosy)'?

Use this expression to derive expressions for monoclinic and
ortherhombic unit cells. For the derivation, it may be helpful to use
the result from vector analysis that V = a - b x ¢ and to calculate V2
initially.

21.13 Calculate the packing fractions of (a) a primitive cubic lattice,
(b) a bee unit cell, (¢) an fee unit cell.

21.14 The coordinates of the four | atoms in the unit cell of KIO, are
(0,0,0), (0,3,4), G,4,3), (5,0,3). By calculating the phase of the |
reflection in the structure factor, show that the | atoms contribute no
net intensity to the (114) reflection.

21.15 The coordinates, in units of a, of the A atoms, with scattering
factor fy, in a cubic lattice are (0,0,0), (0,1,0), (0,0,1), (0,1, 1),
(1,0,0), (1,1,0), (1,0, 1), and (1,1, 1). There is also a'B atom, with
scattering factor fy, at (3,1, 1). Calculate the structure factors £,
and predict the form of the powder diffraction pattern when (a)

fa=ffa =0,b)f3 =1fa and () 1, =fp=f
Additional problems supplied by Carmen Giunta
and Charles Trapp

21.16 B.A. Bovenzi and G.A. Pearse, Jr (/. Chem. Soc. Dolton Trans.
(accepted, 1997)) synthesized coordination compounds of the
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Indentate ligand pyridine-2,6-diamidoxime (C;HgN;0,). The com-
pound, which they isolated from the reaction of the ligand with
CuS0,(aq), did not contain a [Cu(C,HyNg0,),]*" complex cation as
expected. Instead, X-ray diffraction analysis revealed a linear polymer
of formula [Cu(Cu(C;HsN;0,)(50,) - 2H,0],, which features bridg-
ing sulfate groups. The unit cell was primitive monoclinic with
a = 1.0427 nm, b = 0.8876 nm, ¢ = 1.3777 nm, and § = 93.254°,
The mass density of the crystalsis 2.024 gcm™. How many monomer
units are there per unit cell?

21.17 D. Selimann, ~ MW. Wemple,  W. Donalibauer,  and
F.W. Heinemann (/norg. Chem. 36, 1397 (1997)) describe the synthesis
and  reactivity of the ruthenium nitrido  compound
[N(C4Hg ), ][RU(N)(S;CeH,),). The ruthenium complex anion: has the
two 1,2-benzenedithiolate ligands (4) at the base of a rectangular
pyramid and the nitrido ligand at the apex. Compute the mass density
of the compound given that it crystallizes into an orthorhombic unit
cell with @ = 3.6881 nm, b = 0.9402 nm, and ¢ = 1.7652 nm and
eight formula units per cell. Replacing the ruthenium with an osmium
results in a compound with the same crystal structure and a unit cell
with a volume less than 1 per cent larger. Estimate the mass density of
the osmium analogue.

S

21,18 P.G. Radaelli, M. Marezio, M. Perroux, S.de Brion,
J.L. Tholence, Q. Huang, and A. Santoro (Science 265, 380 (1994))
report the synthesis and structure of a material that becomes
superconducting at temperatures below 45 K. The compound is based
on a layered compound Hg,Ba,YCu,04_, which has a tetragonal unit
cell with a = 0.38606 nm and ¢ =2.8915 nm; each unit cell
contains two formula units. The compound is made superconducting
by partially replacing Y by Ca, accompanied by a change in unit cell
volume by less than 1 per cent. Estimate the Ca content x in
superconducting Hg,Ba,Y,_,Ca,Cu,0, ;. given that the mass density
of the compound is 7.651 gem™3.

21.19 The scattering factor of an atom is given by eqn 7. In general
this expression is difficult to evaluate as it requires knowledge of a(r),
which in turn requires knowledge of the wavefunction of the atom.
The latter is not generally available in simple analytical form except
for a hydrogenic atom. Derive an expression for the scattering factor
of a hydrogenic atom of atomic number Z in its ground state.

21.20 Diamond forms a face-centred cubic lattice with eight atoms
per unit cell. There are atoms at each lattice point and at points
displaced by 1, 1, ! from each lattice point. Calculate the structure
factor, £, for diamond. Hint. Sec Example 21.4.

21.21 Determine the relative intensities of the (100), (110), and (200)
reflections in CsCl by calculating their structure factors. Assume that
the atomic scattering factors are given by the number of electrons in
the ions.
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In this chapter we examine some of the electric and magnetic properties of molecules and
interpret them in terms of electronic structure. The properties we consider include the
electric dipole moments and polorizabilities of molecules and some refated properties that
include refractive index, optical uctivity, and intermolecular forces. All these properties
reflect the degree to which the nuclei of atoms exert control over the electrons in a molecule,
either by causing electrons to accumulate in particulor regions, or by permitting them o
respond more or less strongly to the effects of external fields. We also discuss the analogous
magnetic properties, porticulorly the magnetizabilities and magnetic susceplibutities of
molecules, ond see the origins of the distinction between paramagnctic and diamagnetic
substances. )

The electric properties, and to a smaller extent the magnetic properties, of molecules are
responsible for many of the properties of bulk matter. The small imbalances of charge
distributions in molecules allow them to interact with one another and with externally
applied fields. One result of this interaction is the cohesion of molecules to form the bulk
phases of matter. These interactions are also important for understanding the shapes
adopted by biological and synthetic macromolecules, as we shall see in Chapter 23.

Electric properties

Many of the electrical properties of molecules can be traced to the competing influences of
 nuclei with different charges or the competion between the control exercised by a nucleus
and the influence of an externally applied field. The former competition may result in an
* electric dipole moment. The latter may result in properties such as refractive index and
optical activity.
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1 Electric dipole

27 THE ELECTRIC AND MAGNETIC PROPERTIES OF MOLECULES

22.1 Permanent and inducced electric dipole moments

An electric dipole consists of two electric charges ¢ and —¢ separated by a distance R. This
arrangement of charges is represented by a vector, the electric dipole moment, g, that
points from the negative charge to the positive charge (1)." The magnitude of g is = gR.
The magnitudes of dipole moments are still commonly reported in the non-51 unit debye, D,
where?

1 D=333564x107Cm (1

The dipole moment of a pair of charges +¢ and —e separated by 100 pmis 1.6 x 107 Cm,
corresponding to 4.8 D. Dipole moments of small molecules are typically about 1 D.

\

(a) Classes of substance

A polar molecule is a molecule with a permanent electric dinole moment. The permanent
dipole moment stems from the partial charges on the atoms in the molecule that arise from
differences in electronegativity or other features of bonding (Section 14.7). Nonpolar
molecules acquire an induced dipole moment in an electric field on account of the distortion
the field causes in their electronic distributions and nuclear positions; however, this induced
moment is only temporary, and disappears as soon as the perturbing field is removed. Polar
molecules also have their existing dipole moments temporarily modified by an applied field.

The polarization, P, of a sample is the electric dipole moment density, the mean electric
dipole moment of the molecules, (i), multiplied by the number density, N

P={mN @

In the following pages we refer to the sample as a dielectric, by which is meant a polarizable,
nonconducting medium,

The polarization of an isotropic fluid sample is zero in the absence of an applied field
because the molecules adopt random orientations, so (i) = 0. In the presence of a field, the
dipoles become partially aligned because some orientations have lower energies than others.
As a result, the electric dipole moment density is nonzero. Moreover, as we shall see, there is
an additional contribution from the dipole moment induced by the field.

A ferroelectric solid is a solid that has a permanent polarization on account of a
cooperative shift of some of its atoms in a given direction. For example, above 120°C,
barium titanate, BaTi0,, is electrically a normal solid, and the Ti ion is symmetrically placed
inside an octahedron of O atoms. However, below 120°C, the Ti ion moves from the centre of
the octahedron by about 10 pm and every unit cell over a large domain acquires an electric
dipole moment that persists even in the absence of an applied field.

(b) Polar molecules

The Stark effect (Section 16.5) is used to measure the electric dipole moments of molecules
for which a rotational spectrum can be observed. In many cases microwave spectroscopy
cannot be used because the sample is not volati'e, decomposes on vaporization, or consists
of molecules that are so complex that their rotational spectra cannot be interpreted. In such
cases the dipole moment may be obtained by measurements on a liquid or solid bulk sample
using a method explained later.

1 In elementary chemistry, an electric dipole momenl is represented y the arrow +— added 1o the Lewis structure for the molecule,
with the + marking the positive end. Nole that the direction of the arrow is oppasite to that of g

2 The conversion factor stems from the original definition of the debye in terms of €. units: | D is the dipole moment of two
equal and opposite charges of magnitude 1 es.u. separated by 1 A. The debye is named after Peter Debye, a pioneet in the study
of dipole moments of molecules.
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-
Table 22.1° Dipole moments (u) and polariz- All heteronuclear diatomic molecules are polar, and typical values of y include 1.08 D for
ability volumes («) HCl and 0.42 D for HI (Table 22.1). A very approximate relation between the dipole moment
and the difference in electronegativities of the two atoms, Ay, i
4/D /(1079 m?) . Sl
‘ DxA 3
CccCl, 0 10.5 “ 1 ( )
H, 0 0.819 The more electronegative atom is normally the negative end of the dipole, but there are
H,0 1.85 1.48 exceptions, particularly when antibonding orbitals are occupied.® Thus the dipole moment of
HCl 1.08 2.63 CO is very smali (0.12 D), but the negative end of the dipole is on the C atom even though
HI 0.42 5.45 oxygen is more electronegative than carbon.

The interpretation and prediction of electric dipole momenfs is made even more
complicated by the fact that a difference in atomic radii can result in an imbalance of
electron density because the enhanced charge density associated with the overlap region lies
closer to the nucleus of the smaller atom (Fig. 22.1). Such a homopolar contribution to the
total dipole moment can arise even in the absence of a difference in electronegativity
between the two atoms.

A polyatomic molecule is nonpolar if it fulfils certain symmetry criteria. We saw in
Section 15.3a that a molecule is nonpolar if it belongs to a D point group or to one of the
cubic or icosahedral point groups. We also saw that the dipole moment of a polar molecule
with a symmetry axis cannot lie perpendicular to that axis (the dipole moment of NH;, for
instance, lies parallel to the molecular C; axis). The symmetry criterion is more important
Overlap than the question of whether or not the atoms in the molecule are the same. Thus the
region homonuclear triatomic molecule Oy (which is angular, with C,, symmetry) is allowed to be
polar by symmetry considerations, and in fact is polar because the electron density on the
central O atom differs from that on the two outer O atoms. The dipole moment of the

* More values are given in the Data section at the end
of this volume.

22.1 One of the contributions to the dipole
moment of a molecule is the imbalance of charge

arising from the overlap of orbitals of different molecule lies parallel to the C; axis of the molecule (2). The heteronuclear triatomic
radii. This diagram shows how the charge molecule CO, (which is linear, with D, symmetry) is strictly nonpolar by symmetry even
accumulation leads to a region of negative charge though the C and O atoms have different electronegativities. The dipole moments associated

clisker 10:the Saallar S5, with each CO bond point in opposite directions in CO,, and cancel.

To a first approximation, the dipole moment of a polyatomic molecule can be resolved
into contributions from various components (Fig. 22.2). Thus, 1,4-dichlorobenzene is
nonpolar on account of the cancellation of the two equal but opposing moments associated

Ak with the presence of Cl atoms on opposite sides of the ring (the molecule has D, symmetry,
S+ 8+ so it is necessarily nonpolar). The isomer 1, 2-dichlorobenzene (which has C,, symmetry,
&= 5 with the C, axis lying along the bisector of the angle between the two CCl bonds) has a
dipole moment that is approximately the resultant of two monochlorobenzene dipole
2 Ozone, O, moments arranged at 60°. The technique of vector addition can be applied with fair success
\-P v Q
, p l<
G Dy, h‘ Car
9
(a) pope = 1.57 D B pp, =0 ! {c) pyp=2.25D
" )
u':l; =0 = l'ln: : 2.7

22.2 The resultant dipole moments (grey) of the dichlerobenzene isomers (b to d) can be obtained approximately by Vectorial addition of two chlorobenzene dipale
moments (1,57 D).

3 We remarked in Section 14.7 thal the major contribution to an antibonding orbital is made by the atomic orbitals of the less
clectronegative atom. Therefore, if an antibonding orbitai s occupied thete may be so much electron density on the less
electronegative atom thal that atom has a partial negalive charge.

43—A
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i T to other series of related molecules, and the resultant of two dipole moments that make an
_,/ ol angle 0 to each other (3) is obtained from
A
‘_;_,\' . 1=y} 4 4 2y cos 0 (4a)
=l W— >

15
?

3 Addition of dipoles

When the two dipole moments are equal, this equation simplifies to
p = 2, cos 30 (4b)

The mean dipole moment of the molecules of a fluid sample is zero in the absence of an
orientating electric field. In the presence of a field and at a temperature T the mean moment
is nonzero, and we show in the Justification below that

() = 5 , )

where z is the direction of the applied field. This nonzero value stems from the fact that
" some orientations of the dipole moment are energetically more favourable than others.

Justification 22.1

The probability dp that a dipole has an orientation in the range @ to 6 + df is given by the
Boltzmann distribution (Section 19.1c), which in this case is

o e~ EOT sin g 4@

" Jy e~EOT sin §dO
where £(8) is the energy of the dipole in the field: £(8) = —ué cos B, with0 < 0 < m. The
average value of the component of the dipole moment parallel to the applied electric field
is therefore
. ) _ _,uj:c""'“cosﬂsinﬂdﬂ
() = f”qup a ‘"fcosodp T [ eePsinfdo

with x = € /kT. The integral takes on a simpler appearance when we write y = cos 8 and
note that dy = — sin 8d6:

_Bfl e dy
{#1)'_ f_'leﬂdy

At this point we use

1 - 1 et —-x ef—a¥
[ te'J'd;,-_—_eI xc / ye?dy = te s %
- -1

1 X X2

It is now straightforward algebra to combine these two results and to cbtain
e 1
) =EE) L0 = 2

ez W (6)
The function £(x) is called the Langevin function.

Under most circumstances, x is very small (for example, if u=1D and T =300 K,
then x exceeds 0.01 only if the field strength exceeds 100 kVem™!, and most
measurements are done at much lower strengths). When x < 1, the exponentials in the
Langevin function can be expanded, and the largest term that survives is

L) =bet - 0]

Therefore, the average molecular dipole moment is given by egn 5.

43—B
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(cJ Induced dipole moments

An applied electric field can distort a molecule as well as aligning its permanent electric
dipole moment. The induced dipole moment, u*, is proportional to the field strength, £, and
we write* =

= ' ®)

The constant of proportionality « is the polarizability of the molecule. The greater the
polarizability, the larger is the induced dipole moment for a given applied field. When the
applied field is very strong (as in laser beams), the induced moment is not strictly linear in
the strength of the field, and we write

W =af+1BE7 4. - ©)

The coefficient § is the hyperpolarizability of the molecule.
Polarizability has the units (coulomb-metre)? per joule, C2m?J-!. That collection of
units is awkward, so a is often expressed as a polarizability volume, o/, by using the relation

where ¢ is the vacuum permittivity. Because the units of 4z, are coulomb-squared per
joule per metre (C2J~"m™"), it follows that o’ has the dimensions of volume [hénce its
name).® Polarizability volumes are similar in magnitude to actual molecular volumes (of the
order of 103 m?, 1 A%).

Some experimental polarizability volumes of molecules are given in Table 22.1. As shown
in the Justification below, there is a correlation between the HOMO-LUMO separation in
atoms and molecules. The electron distribution can be distorted readily if the LUMO lies close
to the HOMQ in energy, so the polarizability is then large. If the LUMO lies high above the
HOMO, an applied field can perturb the electron distribution significantly, and the
polarizability is 'ow. Molecules with small HOMO-LUMO gaps are typically large, with
numerous electrons.

Justification 22.2

The quantum mechanical expression for the mean polarizability is

ltonl”

where g, is the magnitude of the transition dipole moment, the integral
ton = [ Wi,

with u the electric dipole moment operator. This integral is a measure of the extent to
which electric charge is shifted when an electron migrates from a wavefunction ¥, to an
‘excited-state wavefunction y,.. The sum is over the excited states, with energies £,. The
content of the expression for the polarizability can be appreciated by approximating the
excitation energies by a mean value AE (an indication of the HOMO-LUMO separation),

4 We should use vector quantities and allow for the possibility that the induced dipole moment might not li parallel to the applied
field; for simplicity we discuss polarizabilities in terms of [scalar) magnitudes.

5 When using older compilations of data, it is useful to note that polarizability volumes have the same numerical values as the
"polanzabilities’ reported using .95, electrical units, 5o the tabulated vatues previously called ‘polarizabilities’ can be used directly.
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and supposing that the most important transition dipole moment is approximately equal
to the charge of an electron multiplied by the radius, R, of the molecule. Then

2¢R?

X% 3AE
This expression shows that a increases with the size of the molecule and with the ease with
which it can be excited (the smaller the value of AE).

If the excitation energy is approximated by the energy needed to remove an electron to
infinity from a distance R from a single positive charge, we can write AE et fdnegR.
When this expression is substituted into the equation above, both sides are divided by 4nzg,
and the factor of 2 ignored in this approximation, we obtain o ~/R®, which is of the same
order of magnitude as the molecular volume.

For all molecules other than those belonging to one of the cubic or icosahedral groups,
the polarizability depends on the orientation of the molecule relative to the field. The
polarizability volume of benzene when the field is applied perpendicular to the ring is
12.3 % 10-¥ m? and is 6.7 x 107> m? when the field is applied in the plane of the ring. The
anisotropy of the polarizability determines whether a molecule is rotationally Raman active
(Section 16.7).

(d) Polarization at high frequencies

When the applied field changes direction slowly, the permanent dipole moment has time to
reorientate—the whole molecule rotates into a new direction—and follow the field. However,
when the frequency of the field is high, a molecule cannot change direction fast enough to
follow the change in direction of the applied field and the dipole moment then makes no
contribution to the polarization of the sample. Because a molecule takes about 1 ps to turn
through about 1 radian in a fluid, the loss of this contribution to the polarization occurs
when measurements are made at frequencies greater than about 10" Hz (in the microwave
region). We say that the orientation polarization, the polarization arising from the
permanent dipole moments, is lost at such high frequencies.

The next contribution to the polarization to be lost as the frequency is raised is the
distortion polarization, the polarization that arises from the distortion of the positions of
the nuclei by the applied field. The molecule is bent and stretched by the applied field, and
the molecular dipole moment changes accordingly. The time taken for a molecule to bend is
approximately the inverse of the molecular vibrational frequency, so the distortion
polarization disappears when the frequency of the radiation is increased through the
infrared. The disappearance of polarization occurs in stages: as shown in the Justification
below, cach successive stage occurs as the incident frequency rises above the frequency of a
particular mode of vibration,

Justification 22.3

The quantum mechanical expression for the polarizability of a molecule in the presence of

an electric field that is oscillating at a frequency w is :
2

2 wnOllu'ﬂul (12)

a(m):ii L m:o...wz



224 PERMANENT AND INDUCED ELECTRIC DIPOLE MOMENTS 655

The quantities in this expression (which is valid provided that w is not close to w,g) are the
same as those in the previous Justification, with hayg = E, — Eg. Asw — 0, the equation
reduces to eqn 11 for the static polarizability. As e becomes very high (and much higher
than any excitation frequency of the molecule), the polarizability becomes
L

afw) = e Onoltonl* = 0 a5 0 = 0
3hw? &

That is, when the incident frequency is higher than any excitation frequency, the
polarizability becomes zero. The argument applies to each type of excitation, vibrational as
well as electronic, and accounts for the successive decreases in polarizability as the
frequency is increased.

At even higher frequencies, in the visible region, only the electrons are mobile enough to
respond to the rapidly changing direction of the applied field. The polarization that remains
is now due entirely to the distortion of the electron distribution, and the surviving
contribution to the molecular polarizability is called the electronic polarizability.

(e) Relative permittivities

When two charges g, and g, are separated by a distance r in a vacuum, the potential energy
of their interaction is

_ 942
V= dneyr il

When the same two charges are immersed in a medium (such as air or a liquid), their
potential energy is reduced to

9192
V=—7>= 136
dner (138)

where ¢ is the permittivity of the medium. The permittivity is normally expressed in terms of

the dimensianless relative permittivity, &, (whicﬁ is also called the dielectric constant) of
the medium:®

(14]

5

Sl

The relative permittivity can have a very significant effect on the strength of the
interactions between ions in solution. For instance, water has a relative permittivity of 78 at
25°C, so the interionic Coulombic interaction energy is reduced by nearly two orders of
magnitude from its vacuum value. Some of the consequences of this reduction for
electrolyte solutions were explored in Chapter 10.

The relative permittivity of a substance is large if its molecules are polar or highly
polarizable. The quantitative relation between the relative permittivity and the electric

6 The relative permitivity of a substance s measured by comparing the capacitance of a capacitor with and without the sample
present (C and Cp, respectively) and using ¢, = C/Cy.
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properties of the molecules is obtained by considering the polarization of a medium, and is
expressed by the Debye equation:

& — 1 me

=— 15
E+2 M (15)
where p is the mass density of the sample, M is the molar mass of the molecules, and P, is
the molar polarization,” which is defined as

N 2
=t () e

The term u?/3kT stems from the thermal averaging of the electric dipole moment in the
presence of the applied field (egn 5). The corresponding expression without the contribution
from the permanent dipole moment is called the Clausius-Mossotti equation:

.

e,—1 pNja
= 17
e+2  3Mg (17)

The Clausius-Mossotti equation is used when there is no contribution from permanent
electric dipole moments to the polarization, either because the molecules are nonpolar or
because the frequency of the applied field is so high that the molecules cannot orientate
quickly enough to follow the change in direction of the field.

Equation 16 implies that the polarizability and permanent dipole moment of the
molecules in a sample can be determined by measuring ¢ at a series of temperatures,
calculating P, and plotting it against 1/7. The slope of the graph is Nyu?/9¢k and its
intercept at 1 /T = 0 is Nyat/3e,.

Example 22.1 Determining dipole moment and polarizability

The relative permittivity of camphor (4) was measured at a series of temperatures with the
results given below. Determine the dipole moment and the polarizability volume of the
molecule.

0/°Cc  p/(gem™) &

0 0.99 12.5
20 0.99 11.4
40 0.99 10.8
60 0.99 10.0
80 0.99 ‘ 9.50
100 0.99 8.90
120 0.97 8.10
140 0.96 7.60
160 0.95 7.11
200 0.91 6.21

Mcthod According to eqn 15, we need to calculate (g — 1)/(e, + 2) at each temperature,
and then multiply by M /p to form P,,. Next, from eqn 16, we should plot P, against 1/T
and expect a straight line. The intercept at 1/T = 0is Nya/3¢, = (4nN, /3)«’ and the slope
is Nopi? /9egk. '

7 Molar polarization is an unhappy but traditional name for P,,, which has the dimensions of volume per mole. H. Looyenga (Mol.
Phys. 9,501 (1965]) has argued that a better description is obtained if (£ — 1)/(e + 2) is replaced by ¢/* — 1in egns 15and 17.
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22.3 The plot of P,,/(cm® mol~') against
(10° K)/T used in Example 22.1 for the
determination of the polarizability and dipole
moment of camphor.

- Tahle 22.2" Refractive indices (at different
wavelengths of light) relative to air at 20°C

589 nm

434nm 656 nm

CeHsll) 1.524 1,501 1.497

s,{1) 1.675 1.628 1.618
H,0(1) 1.340 1.333 1.33]
Ki(s) 1.704 1.666 1.658

'Mo'rt values are given in the Doto section.
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Answer For camphor, M = 152.23 g mol ~!. We can therefore use the data to draw up the
following table:

0/C  (I0K)T (6= /(6 +2)  Pp/(em?mol™)

0 3.66 12.5 0.793 122
20 3.41 11.4 0.776 119
40 3.19 10.8 0.766 118
60 3.00 10.0 0.750 115
80 2.83 9.50 0.739 114
100 2.68 8.90 0.725 111
120 2.54 8.10 0.703 110
140 2.42 7.60 0.688 109
160 2.31 7.11 0.670 107
200 2.11 6.21 0.634 106

The points are plotted in Fig. 22.3. The intercept lies at 82.7, s0 & = 3.3 x 1072 cm’. The
slope is 10.9, s0 y = 4.46 x 1073% Cm, corresponding to 1.34 D.

Comiment Because the Debye equation describes molecules that are free to rotate, the data
show that camphor, which does not melt until 175°C, is rotating even in the solid. It is an
approximately spherical molecule.

Self-tesk 22,1 The relative permittivity of chlorobenzene is 5.71 at 20°C and 5.62 at
25°C. Assuming a constant density (1.11 gcm™), estimate its polarizability volume and
dipole moment.

[1.4x 1072 cm?, 1.2 D}

22.2 Refractive index

One of the optical properties of matter that we are almost in 3 position to explain is the
ability of a prism to separate light into its component colours. This effect depends on the
refractive index, n,, of the medium, the ratio of the speed of light in a vacuum, ¢, to its speed
c in the medium:

ne= ; [18]
It follows from the Maxwell equations® that the refractive index at a (visible or ultraviolet)
specified frequency is related to the relative permittivity at that frequency by

el (19)

The molar polarization, P, and hence the molecular polarizability, «, can therefore be
measured at frequencies typical of visible light (about 10'3 to 10'® Hz) by measuring the
refractive index of the sample (Table 22.2) and using the Clausius-Mossotti equation.

The refractive index is related to the molecular polarizability because the propagation of
light through a medium can be imagined to occur by the incident light inducing an
oscillating dipole moment, which then radiates light of the same frequency. The newly
generated radiation is delayed slightly by this process, so it propagates more slowly through
the medium than through a vacuum. Because photons of high-frequency light carry more
energy than those of low-frequency light, they can distort the electronic distributions of the

8 The Maxwell equations describe the properties of electromagnetic radiation; they are not discussed in this text: see Further
reading
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molecules in their path more effectively. Therefore, after allowing for the loss of
contributions from low-frequency modes of motion, we can expect the electronic
polarizabilities of molecules, and hence the refractive index, to increase as the incident
frequency rises towards an absorption frequency. This dependence on frequency is the origin
of the dispersion of white light by a prism: the refractive index is greater for blue light than
for red, and therefore the blue rays are bent more than the red. The term dispersion is a term
carried over from this phenomenon to mean the variation of the refractive index, or of any
property, with frequency. Figure 22.4 shows the typical dispersion of the polarizability of a
sample.

The concept of refractive index is closely related to the property of optical activity. An
optically active substance is a substance that rotates the plane of polarization of plane-
polarized light. As shown in the Justification below, the rotation arises from the difference
in the refractive indices for right- and left-circularly polarized light, np and n, , respectively.
By convention, in right-handed circularly polarized light the electric vector rotates clockwise
as seen by an observer facing the oncoming beam (Fig. 22.5). A sample in which these two

“ refractive indices are different is said to be circularly birefringent.

Justification 22.4

Before entering the medium, the beam is plane-polarized (that is, the electric field
oscillates in a plane containing the propagation direction). This beam may be regarded as a

‘superposition of two oppositely rotating, circularly polarized components (Fig. 22.6). On

entering the medium, one component propagates faster than the other if their refractive
indices are different. If the sample is of length /, the difference in the times of passage is
1 I
Al = — — —

where cp and ¢ are the speeds of the two components in the medium. In terms of the
refractive indices, the difference is

]
At = (ng — "l.};

Orientation
polarization

Polarizability,

Distortion

:| polarization
Electronic
polarization

Radioc Microwave Infrared Visible Ultraviolet

Frequency, v
—

22.4 The general form of the variation of the polarizability with the frequency of the applied field, Note
the considerable reduction in polarizability when the field is reversing direction so rapidly that the polar
molecules cannot reorientate quickly enough to follow it. The inset shows the variation of the electronic
polarizability in the visible region near an electronic excitation of the molecule. .
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22.5 Linearly polarized light entering a sample
(from the left) can be regarded as the superposition
of two counter-rotating circularly polarized
components (represented by the two cylindrical
objects, which are actually superimposed inside the
sample) with a definite phase relation. If one
component propagates more rapidly than the other
in the medium, when they emerge the phase
relation is changed, and the resultant is plane-
polarized light rotated through an angle Af to its
original orientation.
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22.6 The superposition shown in Fig. 22.5 as viewed
by an observer facing the oncoming beam.
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The phase difference between the two components when they emerge from the sample is
therefore “

AD = 2mvAr = 2":"" = (ng —m) x #

where A is the wavelength of the light. The two rotating electric vectors have a different_:_
phase when they leave the sample from the value they had initially, so their superposition
gives rise to a plane-polarized beam rotated through an angle Af relative to the plane of
the incoming beam. It follows that the angle of optical rotation is proportional to the
difference in refractive index, ng — ;.. '

To explain why the refractive indices depend on the handedness of the light, we must
examine why the polarizabilities depend on the handedness. One interpretation is that, if a -
molecule has a helical structure (including, if the molecule is small, a structure that can be
regarded as being a fragment of a helix), its polarizability depends on Whether or not the
electric field of the incident radiation rotates in the same sense as the helix. Molecules
having a helical structure are chiral, which is the criterion for optical activity discussed in
Section 15.3b.

The angle of optical rotation varies with the frequency of the radiation. This variation is
called optical rotatory dispersion (ORD). It arises from the individual dispersions of the
polarizabilities (and refractive indices) for left- and right-circularly polarized radiation. The
effect can be used to investigate the stereochemistry of molecules.

Associated with the differences in the two refractive indices (the circular birefringence of
the medium) is a difference in absorption intensities Ty and Ty for right- and left-circularly
polarized radiation. This difference is known as circular dichroism (CD). The CD spectrum of
a sample is a plot of the variation of Z; — T with frequency of the radiation. Circular
dichroism is particularly useful for determining the absolute configurations of d-metal
complexes, because complexes with similar geometries have CD spectra with similar
features. . '

Intermolecular forces

Van der Waals forces are the interactions between molecules that leave their chemical
identities essentially unchanged. They include the interactions between the partial charges
of polar molecules. There are also repulsive interactions that prevent the complete collapse
of matter to nuclear densities. The repulsive interactions arise from Coulombic repulsions
and, indirectly, from the Pauli principle and the exclusion of electrons from regions of space
where the orbitals of neighbouring species averlap. In this section we consider the attractive
forces between molecules, and see how they are related to the electrical properties treated
in Section 22.1.

22.3 Interactions between dipoles

Most of the discussion in this section is based on the Coulombic potential energy of
interaction between two charges (eqn 13a). It is easy to adapt this expression to obtain the
potential energy of a charge and a dipole and to extend it to the interaction between two
dipoles.
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22.7 The potential energy of interaction between a
dipole and a point charge is the sum of the
repulsion of like charges and the attraction of
opposite charges. For a point dipole, | < r.

72.K There are two contributions to the diminishing

field of an electric dipole with distance (here seen
from the side). The potential of the charges
decreases (shown here by a fading intensity) and

the two charges appear to merge, so their combined

effect approaches zero more rapidly than by the
distance effect alone.

22.9 The potential energy of interaction between
two dipoles is the sum of the repulsions of like
charges and the attractions of opposite charges.
This illustration shows a collinear arrangement of
dipoles.
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(a) The potential energy of interaction

We show in the Justification below that the potential energy of interaction between a point
dipole u, = g,/ and the point charge g, in the arrangement shown in Fig. 22.7 is

192

Vismac e
dmeyr?

(20)

With p in coulomb-metres, ¢, in coulombs, and » in metres, V is obtained in joules. A point
dipole is a dipole in which the separation between the charges is much smaller than the
distance at which the dipole is being observed, [ < r. This expression should be multiplied by
cos @ when the point charge lies at an angle @ to the axis of the dipole. The potential energy
rises towards zero (the value at infinite separation of the charge and the dipole) more rapidly
(as 1/r?) than that between two point charges (which varies as 1/r) because, from the
viewpoint of the point charge, the partial charges of the dipole seem to merge and cancel as
the distance r increases (Fig. 22.8).

Justification 22.5

The sum of the potential energies of repulsion between like charges and attraction
between opposite charges in the orientation shown in Fig. 22.7 is

1 9192 | 91492
V=—1|- +
41:50( r=3 r+l

Because / < r for a point dipole, this expression can be simplified by writing

9192 1 !
V= — —_
41t£0r( 1~x+1+x)
where x = [/2r, and then expanding the terms in x by using
1 ' 3
e S
e x4x

and retaining only the leading term:

i
——=ltxtl 4
1=

R TR | e

4negr
PO [ S L/ ]
dmegr dmegrt

With p; = ¢y, this expression becomes eqn 20.

Example 22.2 Calculating the interaction energy of two dipoles

Calculate the potential energy of interaction of two dipoles in the arrangement shown in
Fig. 22.9 when their separation is r.

Method We proceed in exactly the same way as in the Justification, but now the total
interaction energy is the sum of four pairwise terms: two attractions between opposite
charges, which contribute negative terms to the potential energy, and two repulsions
between like charges, which contribute positive terms. ‘



22.10 A parallel arrangement of electric dipoles.
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3 Quadrupole
1 | Quadrupole
J
@ Octupole
3
Octupole
¥

22.11 Typical charge arrays corresponding to
electric multipoles. The field arising from an
arbitrary finite charge distribution can be expressed
as the superposition of the fields arising from a
superposition of multipoles.
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Answer The sum of the four contributions is

l 2
- _ili_'_qlqz_*_QIqZ_QI‘h
dneg \ r+1 r ri Fl

_ .q_l_‘.?l _,l__ - 2 + 1
dregr\1+x |, 1-x
with x = [/r. As before, we expand the two terms in x and retain only the first survh;ing
term, which is equal to 2x2. This step results in the expression

__Yaaq
Anegr

Therefore, because u, =g,/ and u, = q,l, the potential energy of interaction in the
alignment shown in Fig. 22.9 is i

" 2p1;
Aneqr?

Comment Notice that the interaction energy approaches zero more rapidly (as 1 /) than
for the previous case: now both interacting entities appear neutral to each other at large
separations.

self-test 22.2 Derive an expression for the potential energy when the dipales are in the .
arrangement shown in Fig. 22.10.
[V = (o /8megr ) (1 — 3cos? 8)]

The various expressions for the interaction of charges and dipoles are summarized in
Table 22.3. It is quite easy to extend the formulas given there to obtain expressions for the
energy of interaction of kKigher multipoles, or arrays of point charges (Fig. 22.11).
Specifically, an n-pole is an array of point charges with an n-pole moment but no lower
moment. Thus, a monopole is a point charge, and the monopole moment is what we
normally call the overall charge. A dipole, as we have seen, is an array of charges that has no
monopole moment (no net charge). A quadrupole consists of an array of point charges that
has neither net charge nor dipole moment (as for CO, molecules (5)). An octupole consists of
an array of point charges that sum to zero and which has neither a dipole moment nor a
gquadrupole moment (as for CH, molecules (6)). The feature to remember is that the

Table 22.3 Multipole interaction potential energies

Interaction Distance Typical energy/  Comment
type dependence (kJ mol~")
of potential
energy
lon-ion 1/r 250 Only between ions
lon-dipole 1/ 15 ‘
Dipole-dipole /7 2 Between stationary polar
molecules
1/ 0.6 Between rotating polar
molecules
London (dispersion) 1/r¢ 2 Between all types of
molecules

The energy of a hydrogen bond A~H- - -B is typically 20kJ mol~' and occurs on contact for A, B = N, O, or E
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22.12 The electric field of a dipole is the sum of
the opposing fields from the positive and negative
charghs, each of which is proportional ta 1/72. The
difference, the net field, is proportional to 1/,
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interaction energy falls off more rapidly the higher the order of the multipole. For the
interaction of an n-pole with an m-pole, the potential energy varies with distance as

1

The reason for the even steeper decrease with distance is the same as before: the array of

.charges appears to blend together into neutrality more rapidly with distance the higher the

number of individual charges that contribute to the multipole. Note that a given molecule
may have a charge distribution that corresponds to a superposition of several different
multipoles.

(b) The electric field

The same kind of argument as that used to derive expressions for the potential energy can be
used to establish the distance dependence of the strength of the electric field generated by
a dipole. We shall need this expression when we calculate the dipole moment induced in one
molecule by another.
The starting point for the calculation is the strength of the electric field® generated by a
point electric charge:
q
= Inegr? (22)
The field generated by a dipole is the sum of the fields generated by each partial charge. For
the point-dipole arrangement shown in Fig. 22.12, the same procedure that was used to
derive the potential energy gives

2p
s 23
dmeyrd (23)
The electric field of a multipole (in this case a dipole) decreases more rapidly with distance
(as 1/ for a dipole) than that of a monopole (a point charge).

(c) Dipole-dipole interactions

The potential energy of interaction between two polar molecules is a complicated function
of their relative orientation. When the two dipoles are parallel (as in Fig. 22.10), the
potential energy is simply ’

V= m“:;ir(f) £(0) =1-3cos?0 (24)
This expression applies to polar molecules in a fixed, parallel orientation in a solid.

In a fluid of freely rotating molecules, the interaction between dipoles averages to zero
because f changes sign as the orientation changes, and its average value is zero. Physically,
the like partial charges of two freely rotating molecules are close together as much as the
two opposite charges, and the repulsion of the former is cancelled by the attraction of the
latter.

The interaction energy of two freely rotating dipoles is zero. However, because their
mutual potential energy depends on their relative orientation, the molecules do not in fact
rotate completely freely, even in a gas. In fact, the lower energy orientations are marginally
favoured, so there is a nonzero average interaction between polar molecules. We show in the

9 The electric fiekd i actually 3 vector, and we cannol simply add and subtract magnitudes without taking into account the
directions of the fields. In the cases we consider, this will not be a complication because the two charges of the dipoles will be
collinear and give rise to fields in the same direction. Be careful, though, with more general arrangements of charges.
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following Justification that the average potential energy of two rotating molecules that are
separated by a distance r is

C ?.,ufy%
o e Cemthe o 25
W) (e 3(4mey ) kT (23)

This expression describes the Keesom interaction.

Justiﬁcatf on 22,6

The detallcd calculation of the Keesom interaction energy is qum: compllcated but the
form of the final answer can be constructed quite simply. First, we note that the average
interaction energy of two polar molecules rotating at a fixed separation r is given by

{V) - Hlﬂz(f)

dmeyr?
where (f) now includes a weighting factor in the averaging that is equal to the probability
that a particular orientation will be adopted. This prabability is given by the Boltzmann
distribution p oc e~/*", with E interpreted as the potential energy of interaction of the
two dipoles in that orientation. That is,
VT V= i f

pxe dmegrd

When the potential energy of interaction of the two dipoles is very small compared with
the energy of thermal motion, we can use V < kT, expand the :xponentlal function in p,
and retain only the first two terms:

o l-1+
e T

The weighted average of f is therefore

(1) % (o = gpeirs o

where (.-}, denotes an unweighted spherical average. The average value of f is zero, so
the first term vanishes. However, the average value of £ is nonzero because /2 is positive
- at all orientations, so we can write

(V) o a“?#%(f2>0
(4meq)*kTrS

The average value (f2), is a number that we can expect to be close to 1 (because f2 ranges
from O to 4) and in fact turns out to be § when the calculation is carried through in detail.
The final result is that quoted in egn 25.

The important features of eqn 25 are its negative sign (the average interaction is
attractive), the dependence of the average interaction energy on the inverse sixth power of
the separation, and its inverse dependence on the temperature. The last feature reflects the
way that the greater thermal motion overcomes the mutual orientating effects of the
dipoles at higher temperatures. The inverse sixth power arises from the inverse third power
of the interaction potential energy that is weighted by the energy in the Boltzmann term,
which is also proportional to the inverse third power of the separation.

At 25°C the average interaction energy for pairs of molecules with u =1 D is about
—0.07 kJmol~! when the separation is 0.5 nm. This energy should be compared with the
average molar kinetic energy of %RT =37k mol™! at the same temperature. The



664 -

(a) e
(b) e

22.13 (a) A polar molecule (green arrow) can
induce a dipole (white arrow) in a nonpolar
molecule, and (b) the latter's orientation follows the

" former’s, so the interaction does not average to
zero.
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interaction energy is much smaller than the energies involved in the making and breaking of
chemical bonds.

(d) Dipole-induced-dipole interactions

A polar molecule with dipole moment u, can induce a dipole ; in a neighbouring
polarizable molecule. The induced dipole interacts with the permanent dipole of the first
molecule, and the two are attracted together. It is shown in the Justification below that the
average interaction energy when the separation of the molecules is r is}®

V=_E C=&

o g (28

where o, is the polarizability volume of molecule 2 and ; is the permanent dipole moment
of molecule 1.

Justification 22.7

The energy of interaction between a permanent dipole, y,, and an induced dipole, 3, is
given in Example 22.2:
o
4ngyr?

The induced dipole moment depends on the field generated by the polar molecule, and
hence on the separation of the two molecules. Because we can write u; = a,€, where a, is
the polarizability of molecule 2 and £ is the field generated by molecule 1 (the polar
molecule), the potential energ, is:

20E

4ngyr3
The electric field generated by the polar molecule is given by eqn 23, so:

s _(Zﬂ.az 2 ) _ Al
dneyrd | \dnegrd (4meg)*r

As the induced dipole follows the direction of the inducing dipole (Fig. 22.13), we do not
need to take account of the effects of thermal motion: both dipoles remain aligned
however fast the molecules tumble. Therefore, the interaction energy has app' ximately
this value at all relative orientations. This expression rearranges into eqn 26 by noting that
o = oty /4mey.

V=

The dipole-induced-dipole interaction energy is independent of the temperature because
thermal motion has no effect on the averaging process. Moreover, like the dipole-dipole
interaction, the potential energy depends on 1/r%: this distance dependence stems from the
1/ dependence of the field (and hence the magnitude of the induced dipole) and the 1/r*
dependence of the potential energy of interaction between the permanent and induced
dipoles. For a molecule with g = 1 D (such as HCI) near a molecule of polarizability volume
@' = 10 % 107 m? (such as benzene, Table 22.1), the average interaction energy is about
—0.8 kJmol~! when the separation is 0.3 nm.

10 Note that the C in this expression is different from the C in eqn 25 and other expressions below: we are using the same symbol in
C/r* to emphasize the similarity of form of each expression.



(a)

(b)

2214 (a) In the dispersion interaction, an
instantaneous dipole on one molecule induces a
dipole on another molecule, and the two dipoles
then interact to lower the energy. (b) The two
instantaneous dipoles are correlated and, although
they occur in different orientations at different
instants, the interaction does not average to zero.
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(e) fnduced-dipofe—induced-dipb!e interactions

Nonpolar molecules (including closed-shell atoms, such as Ar) attract one another even
though neither has a permanent dipole moment. The abundant evidence for the existence of
interactions between them is the formation of condensed phases of nonpolar substances,
such as the condensation of hydrogen or argon to a liquid at low temperatures and the fact
that benzene is a liquid at normal temperatures.

The interaction between nonpolar molecules arises from the transient dipoles that all
molecules possess as a result of fluctuations in the instantaneous positions of electrons. To
appreciate the origin of the interaction, suppose that, the electrons in one molecule flicker
into an arrangement that gives the molecule an instantaneous dipole moment 4. This dipole
generates an electric field that polarizes the other molecule, and induces in that molecule an
instantaneous dipole moment 5. The two dipoles attract each other and the potential
energy of the pair is lowered. Although the first molecule will go on to change the size and
direction of its instantaneous dipole, the electron distribution of the second molecule will
follow, that is, the two dipoles are correlated in direction (Fig. 22.14). Because of this
correlation, the attraction between the two instantaneous dipoles does not average to zero,
and gives rise to an induced-dipole-induced-dipole interaction. This interaction is called
either the dispersion interaction or the London interaction (for Fritz London, who first
described it).

Polar molecules also interact by a dispersion interaction: such molecules also possess
instantaneous dipoles, the only difference being that the time average of each fluctuating
dipole does not vanish, but corresponds to the permanent dipole. Such molecules therefore
interact both through their permanent dipoles and through the correlated, instantaneous
fluctuations in these dipoles.

The strength of the dispersion interaction depends on the polarizability of the first
molecule because the instantaneous dipole moment u} depends on the looseness of the
control that the nuclear charge exercises over the outer electrons. The strength of the
interaction also depends on the polarizability of the second molecule, for that polarizability
determines how readily a dipole can be induced by another molecule. The actual calculation
of the dispersion interaction is quite involved, but a reasonable approximation to the
interaction energy is given by the London formula:

9 C Fob) l'ull

T - . 27
r6 )alazll +1; ( )

V=
where [, and [, are the ionization energies of the two molecules (Table 13.4). This
interaction energy is also proportional to the inveise sixth power of the separation of the
molecules. The dispersion interaction generally dominates all the interactions between
molecules other than hydrogen bonds.

llustration

For two CH, molecules, we can substitute o = 2.6x 107 m? and /=700 kJmol™' to
obtain V = ~2 kJmol™' for r = 0.3 nm. A very rough check on this figure is the enthalpy
of vaporization of methane, which is 8.2 kI mol~!. However, this comparison is insecure,
partly because the enthalpy of vaporization is a many-body quantity and partly because the
long-distance assumption breaks down.

(f) Hydrogen bonding
The interactions described so far are universal in the sense that they are possessed by all
molecules independent of their specific identity. However, there is a type of interaction
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42.15 The molecular orbital interpretation of the
formation of an A-H.--B hydrogen bond. From the
three A, H, and B orbitals, three molecular orbitals
can be formed (their relative contributions are
represented by the sizes of the spheres). Only the
two lower energy orbitals are occupied, and there
may therefore be a net lowering of energy
compared with the separate AH and B species.
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22.16 The general form of an intermolecular
potential energy curve. At long range the
interaction is attractive, but at close range the
repulsions dominate.
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possessed by molecules that have a particular constitution, A hydrogen bond is an attractive
interaction between two species that arises from a link of the form A—H - - . B, where A and
B are highly electronegative elements and B possesses a lone pair of electrons. Hydrogen
bonding is conventionally regarded as being limited to N, 0, and F but, if B is an anionic
species (such as CI™), it may also participate in hydrogen bonding. There is no strict cut-off
for an ability to participate in hydrogen bonding, but N, O, and F participate most
effectively.

The formation of a hydrogen bond can be regarded as a particular example of delocalized
molecuiar orbital formation in which A, H, and B each supply one atomic orbital from which
three molecular orbitals are constructed (Fig. 22.15)."" The A and H1s orbitals are those used
to form the A—H bond in the AH molecule and the B orbital originally accommodates the
lone pair on B. In the combined species, there are four electrons to accommodate (two from
the A—H bond, two from the lone pair of B), and they occupy the two lowest molecular
orbitals of the AHB fragment. Because the uppermost (most antibonding) orbital is vacant,
it is feasible for the net effect to be a lowering of energy, and hence the formation of a
hydrogen bond.

In practice, the strength of the bond is found to be about 20 kJmol~!. Because the
bonding depends on orbital overlap, it is virtually a contact-like interaction that is turned on
when AH touches B and is zero as soon as the contact is broken. If hydrogen bonding is
present, it dominates the other intermolecular interactions. The properties of liquid and solid
water, for example, are dominated by the hydrogen bonding between H,0 molecules.

(g) ‘The total attractive interaction

We shall consider molecules that are unable to participate in hydrogen bond formation. The
total attractive interaction energy between rotating molecules is then the sum of the three
van der Waals contributions discussed above. (Only the dispersion interaction contributes if
both molecules are nonpolar.) In a fluid phase, all three contributions to the potential energy
vary as the inverse sixth power of the separation of the molecules, so we may write

V=- (28)

30

where Cg is a coefficient that depends on the identity of the molecules.

Although attractive interactions between molecules are often expressed as in eqn 28, we
must remember that this equation has only limited validity. First, we have t:' »n into
account only dipolar interactions of various kinds, for they have the longest range and are
dominant if the average separation of the molecules is large. However, in a complete
treatment we should also consider quadrupolar and higher-order multipole interactions,
particularly if the molecules do not have permanent electric dipole moments. Secondly, the
expressions have been derived by assuming that the molecules can rotate reasonably freely.
That is not the case in most solids, and in rigid media the dipole-dipole interaction is
proportional to 1/r? because the Boltzmann averaging procedure is irrelevant when the
molecules are trapped into a fixed orientation.

A different kind of limitation is that eqn 28 relates to the interactions of pairs of
molecules. There is no reason to suppose that the energy of interaction of three (or more)
molecules is the sum of the pairwise interaction energies alone. The total dispersion energy

11 A purely tlectrostatic description, in which the partial positive charge of H interacts Coulombically with the partial negative
charge of B, is an alternative model of hydrogen bonding,
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2717 The Lennard-Jones polential, the relation of
the parameters to the features of the curve, and
the two contributions. Note that 26 =1.122, .

Table 22.47 Lennard-Jones (12, 6) parameters

(e/k)/K ro/pm
Ar 111.84 362.3
CCl, 376.86 624.1
Na 91.85 391.9
Xe 213.96 426.0

“More values are given in the Data section.

te is expressed as an effective temperature an

division by Boltzmann's constant &,
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of three closed-shell atoms, for instance, is given approximately by the Axilrod-Teller
formula:

[
V=_£,,__£,L~&+_C—_ (29a)

e e " (rapracrea)
where
C' = a(3cosfl, cos g cos O + 1) (29b)

The parameter a is approximately equal to 3’Cy; the angles @ are the internal angles of the
triangle formed by the three atoms (7). The term in C ' (which represents the non-additivity
of the pairwise interactions) is negative for a linear arrangement of atoms (so that
arrangement is stabilized) and positive for an equilateral triangular cluster. It is found that
the three-body term contributes about 10 per cent of the total interaction energy in liquid
argon.

22.4 Repulsive ang total interactions

When molecules are squeezed together, the nuclear and electronic repulsions and the rising
electronic kinetic energy begin to dominate the attractive forces. The repulsions increase
steeply with decreasing separation in a way that can be deduced only by very extensive,
complicaled molecular structure calculations of the kind described in Chapter 14
(Fig. 22.16).

In many cases, however, progress can be made by using a greatly simplified
representation of the potential energy, where the details are ignored and the general
features expressed by a few adjustable parameters. One such approximation is the hard-
sphere potential, in which it is assumed that the potential energy rises abruptly to infinity as
soon as the particles come within a separation d:

V=wforr<d V=0forr>d (30)

This very simple potential is surprisingly useful for assessing a number of properties. Another
widely used approximation is the Mie potential:
=S _Cn (31)
N
with n>m. The first term represents repulsions and the second term attractions. The
Lennard-Jones potential is a special case of the Mie potential with n =12 and m= 6
(Fig. 22.17); it is often written in the form

V=4f,{ (@)‘2_('"_0)6} (32)
r r
The two parameters are ¢, the depth of the well, and ry, the separation at which V=0
(Table 22.4). The well minimum occurs at r, = 2'/r,. Although the Lennard-Jones potential
has been used in many calculations, there is plenty of evidence to show that 1/r'? is a very
poor representation of the repulsive potential, and that an exponential form, e~"/", is
greatly superior. An exponential function is more faithful to the exponential decay of atomic
wavefunctions at large distances, and hence to the overlap that is responsible for repulsion.
The potential with an exponential repulsive term and a 1/7° attractive term is known as an
exp-6 potential. These potentials can be used to calculate the virial coefficients of gases, as
explained in Section 20.5, and through them various properties of real gases, such as the
Joule-Thompson coefficient. The potentials are also used to maodel the structures of
condensed fluids.

Until recently, the potential energy of interaction of molecules was of primary interest.
However, with the advent of atomic force microscopy (AFM), in which the force between a
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22.18 The basic arrangement of a molecular beam apparatus. The atoms or molecules emerge from a
heated source, and pass through the velocity selector, a train of rotating disks. The scattering occurs
from the target gas (which might take the form of another beam), and the flux of particles entering the
detector set at some angle is recorded.

molecular sized probe and a surface is monitored (see Section 28.2f), force is moving back
into the centre of attention. As force, F, is the negative slope of potential, for a Lennard-
Jones potential between individual molecules

dv  24c {_pmr\" oy
A ORE
dr g { (r r) (33)
The net attractive force is greatest at r = (26/7)"%r,, or 1.244r,, and at that distance is

cqual to —144(7/26)"%:/13r,, or —2.3975/r,. For typical parameters, the magnitude of
this force is about 10 pN.

22.5 Molecuiar iateractions i heams

Intermolecular forces can be studied in molecular beams, which consist of a collimated,
narrow stream of molecules travelling though an evacuated vessel. The beam is directed
towards other moiecules, and the scattering that occurs on impact is related to the
intermolecular interactions.

(a) The basic principles

The basic arrangement for a molecular beam experiment is shown in Fig. 22.18. If the
pressure of vapour in the source is increased so that the mean free path of the molecules in
the emerging beam is much shorter than the diameter of the pinhole, many collisions take
place even outside the source. The net effect of these collisions, which give rise to
hydrodynamic flow, is to transfer momentum into the direction of the beam. The molecules
in the beam then travel with very similar speeds, so further downstream few collisions take
place between them. This condition is called molecular flow. Because the spread in speeds is
so small, the molecules are effectively in a state of very low translational temperature
(Fig. 22.19). The translational temperature may reach as low as 1 K. Such jets are called
supersonic because the average speed of the molecules in the jet is much greater than the
speed of sound for the molecules that are not part of the jet.

A supersonic jet can be converted into a more parallel supersonic beam if it is 'skimmed’
in the region of hydrodynamic flow and the excess gas pumped away. A skimmer consists of
a conical nozzle shaped to avoid any supersonic shock waves spreading back into the gas and
so increasing the translational temperature (Fig. 22.20). A jet or beam may also be formed by
using helium or neon as the principal gas, and injecting molecules of interest into it in the
hydrodynamic region of flow.

The low translational temperature of the molecules is reflected in the low rotational and
vibrational temperatures of the molecules. In this context, a rotational or vibrational
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22.21 Three typical cases for the collisions of two
hard spheres: (a) b = 0, giving backward scattering;
[b) >R, + Ry, giving forward sqattering; (c)
0<b <R, + Ry, leading to scattering into one
direction on a ring of possibilities. (The target
molecule is taken to be so heavy that it remains
virtually stationary.)
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. Q

22.21 The definition of the salid angle.'dﬂ. for 2.#/ The definition of the impact parameter, b,
scattering. as the perpendicular separation of the initial paths
of the particles.

temperature means the temperature that should be used in the Boltzmann distribution to
reproduce the observed populations of the states. However, as rotational modes equilibrate
more slowly, and vibrational modes equilibrate even more slowly, the rotational and
vibrational populations of the species correspond to somewhat higher temperatures, of the
order of 10 K for rotation and 100 K for vibrations.

The target gas may be either a bulk sample or another molecular beam. The latter crossed
beam technique gives a lot of information because the states of both the target and
projectile molecules may be controlled. The intensity of the incident beam is measured by
the incident beam flux, I, which is the number of particles passing through a given areain a
given interval divided by the area and the duration of the interval.

The detectors may consist of a chamber fitted with a sensitive pressure gauge, a
bolometer, or an ionization detector, in which the incoming molecule is first ionized and
then detected electronically. The state of the scattered molecules may also be determined
spectroscopically, and is of interest when the collisions change their vibrational or rotational
states.

(b) The experimental observations

The pfimary experimental information from a molecular beam experiment is the fraction of
the molecules in the incident beam that are scattered into a particular direction. The fraction
is normally expressed in terms of dZ, the rate at which molecules are scattered into a cone
that represents the area covered by the 'eye’ of the detector (Fig. 22.21). This rate is reported
as the differential scattering cross-section, &, the constant of proportionality between the
value of dZ and the intensity, Z, of the incident beam, the number density of target
molecules, N, and the infinitesimal path length dx through the sample:

dT = oIN dx (34)

The value of ¢ (which has the dimensions of area) depends on the impact parameter, b, the
initial perpendicular separation of the paths of the colliding malecules (Fig. 22.22), and the
details of the intermolecular potential. The role of the impact parameter is most easily seen
by considering the impact of two hard spheres (Fig. 22.23). If b = 0, the lighter projectile is
on a trajectory that leads to a head-on collision, so the only scattering intensity is detected
when the detector is at 0 = z. When the impact parameter is so great that the spheres do
not make contact (h>> R, + Ry), there is no scattering and the scattering cross-section is
zero at all angles except () = 0. Glancing blows, with 0<b < R, + Ry, lead to scattering
intensity in cones around the farward direction.

(c) Scattering effects .

The scattering pattern of real molecules, which are not hard spheres, depends on the details
of the intermolecular potential, including the anisotropy that is present when the molecules
are non-spherical. The scattering also depends on the relative speed of approach of the two
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22.2: The extent of scattering may depend on the
relative speed of approach as well as the impact
parameter. The dark central zone represents the
repulsive core; the fuzzy outer zone represents the
long-range attractive potential.

interfering
paths

22,75 Two paths leading to the same destination
will interfere quantum mechanically; in this case
they give rise to quantum oscillations in the
forward directicn.

Decreasing b

Varying 6

22,4p The interference of paths leading to rainbow
scattering. The rainbow angle, #,, is the maximum
scattering angle reached as b is decreased,
Interference between the numerous paths at that
angle modifies the scattering intensity markedly.
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particles: a very fast particle might pass through the interaction region without much
deflection, whereas a slower one on the same path might be temporarily captured and
undergo considerable deflection (Fig. 22.24). The variation of the scattering cross-section
with the relative speed of approach should therefore give information about the strength
and range of the intermolecular potential.

A further point is that the outcome of collisions is determined by quantum, not classical,
mechanics. The wave nature of the particles can be taken into account, at least to some
extent, by drawing all classical trajectories that take the projectile particle from source to
detector, and then considering the effects of interference between them.

Two guantum mechanical effects are of great importance. A particle with a certain
impact parameter might approach the attractive region of the potential in such a way that
the particle is deflected towards the repulsive core (Fig. 22.25), which then repels it out
through the attractive region to continue its flight in the forward direction. Some molecules,
however, also travel in the forward direction because they haye impact parameters so large
that they are undeflected. The wavefunctions of the particles that take the two types of path
interfere, and the intensity in the forward direction is modified. The effect is called quantum
oscillation. The same phenomenon accounts for the optical ‘glory effect’, in which a bright
halo can sometimes be seen surrounding an illuminated object. (The coloured rings around
the shadow of an aircraft cast on clouds by the sun, and often seen in flight, is an example of
an optical glory.)

The second quantum effect we need consider is the observation of a strongly enhanced
scattering in a nonforward direction. This effect is calied rainbow scattering because the
same mechanism accounts for the appearance of an optical rainbew. The origin of the
phenomenon is illustrated in Fig. 22.26. As the impact parameter decreases, there comes a
stage at which the scattering angle passes through a maximum and the interference
between the paths results in a strongly scattered beam. The rainbow angle, 0,, is the angle
for which df}/db = 0 and the scattering is strong.

Another phenomenon that can occur in certain beams is the capturing of one species by
another. The vibrational temperature in supersonic beams is sc low that van der Waals
molecules may be formed, which are complexes of the form AB in which A and B are held
together by van der Waals forces or hydrogén bonds. Large numbers of such molecules have
been studied spectroscopically, including ArHCI, (HCI),, ArCO,, and (H,0),. More recently,
van der Waals clusters of water molecules have been pursued as far as (H,0);. The study of
their spectroscopic properties gives detailed information about the intermolecular
potentials involved.

Magnetie properties

The magnetic and clectric properties of molecules are analogous. For instance, some
molecules possess permanent magnetic dipple moments, and an applied magnetic field can
induce a magnetic moment.

22.6 Magnelie suseeptibility

The analogue of the electric polarization, P, is the magnetization, M, the average molecular
magnetic dipole moment multiplied by the number density of molecules in the sample. The
magnetization induced by a field of strength H is proportional to H, and we write

M=xH
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22 27 The arrangement of the Gouy balance for
measuring magnetic susceptibilities. A paramagnetic
sample appears to weigh more and a diamagnetic
sample appears to weigh less, when the magnetic
field is on. In a modern alternative version (not
shown), a sensitive balance is used to measure the
force exerted by the sample on a suspended
permanent magnet.
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Current

Superconducting
wire
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Current

Magnetic

22.24 The arrangement used to measure magnetic
susceptibility by using a SQUID. The sample is moved
upwards in small increments and the potential
difference across the SQUID is monitored.

Table 22.5" Magnetic susceptibilities at 289 K

x/107% X/ (10 Fcm? mol 1)

H;0(1) —90 —160

NaCl(s) -13.9 -38

Cu(s) -9.6 -6.8

CuS0ys  +176 +1930
5H,0(s)

"More values are given in the Dato section.
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where ¢ is the dimensionless volume magnetic susceptibility. A closely related quantity is:
the molar magnetic susceptibility, z,,:

xl'ﬂ = Xl{'"\ [361

where V_ is the molar volume of the substance (we shall soon see why it is sensible to
introduce this quantity). The magnetic flux density, B, is related to the applicd field
strength and the magnetization by

B = py(H + M) = py(1 + 0)H [37)
where g, is the vacuum permeability:
o =4nx 1077 1C T m 1 ¢ (38]

The magnetic flux density can be thought of as the density of magnetic lines of force
permeating the medium. This density is increased if M adds to 2 (when y>0), but the
density is decreased if M opposes H (when y < 0). Materials for which  is positive are called
paramagnetic. Those for which y is negative are called diamagnetic.

Just as polar molecules contribute a term proportional to w?/3kT to the electric
polarization of a medium, so molecules with a permanent magnetic dipole moment of
magnitude m contribute to the magnetization an amount proportional to m?/3kT. An
applied field can also induce a magnetic moment to an extent determined by the
magnetizability, £ (xi), of the molecules, and the magnetic analogue of eqn 16 is

2
m
=Nup(&+-— 39
1 =Np (é 3 kT) (39)
We can now see why it is convenient to introduce ., for the product of the number density
N and the molar volume is the Avogadro constant, Nyp:

NV, " LN

= — = 40
da v nv,, Na )
Hence
.oom? .
Xm = Nf\.“n(§ + ’i‘ﬁ) (41)

and the density dependence of the susceptibility (which occurs in eqn 39 via N = Nap/[M)
has been eliminated. The expression for x,, is in agreement with the empirical Curie law:

tm = A+ (42)

with A = Ny po& and C = N pipm? /3k.

The magnetic susceptibility is traditionally measured with a Gouy balance. This
instrument consists of a sensitive balance from which the sample hangs in the form of a
narrow cylinder (Fig. 22.27) and lies between the poles of a magnet. If the sample is
paramagnetic, it is drawn into the field, and its apparent weight is greater than when the
field is off. A diamagnctic sample tends to be expelled from the field and appears to weigh
less when the field is turned on. The balance is normally calibrated against a sample of
known susceptibility. The modern version of the determination makes use of a super-
conducting quantum interference device (SQUID, Fig. 22.28).

Some experimental values are listed in Table 22.5; a typical paramagnetic volume
susceptibility is about 1073, and a typical diamagnetic volume susceptibility is about
(=)1073%. The permanent magnetic moment can be extracted from susceptibility
measurements by plotting y against 1/T.,
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22.29 (a) in a paramagne’.c material, the electron
spins are aligned at random in the absence of an
applied magnetic field. (b} In a ferrumagnetic
material, the electron spins are locked into a

" parallel alignment over large domains. [c] In an
antiferromagnetic material, the electron spins are
locked into an antiparallel arrangement. The latter
two arrangements survive even in the absence of an
applied field.
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22.7 The permanent magnctie moment

The permanent magnetic moment of a molecule arises from any unpaired electron spins in
the molecule. We saw in Section 13.10a that the magnitude of the magnetic moment of an

electron is proportional to the magnitude of the spin angular momentum, {s(s + 1)},
/2 eh
m=g{s(s+ 1)} "4y pp= I (43)

where g, = 2.0023. If there are several electron spins in each molecule, they combine to a
total spin S, and then s(s+ 1) should be replaced by S(S + 1). It follows that the spin
contribution to the molar magnetic susceptibility is

NagaporpS(S + 1)

Xm = s 7 (44)
This expression shows that the susceptibility is positive, so the spin magnetic moments
contribute to the paramagnetic susceptibilities of materials. The contribution decreases with
increasing temperature because the thermal motion randomizes the spin orientations. In
practice, a contribution to the paramagnetism also arises from the orbital angular momenta
of electrons: we have discussed the spin-only contribution.

Illustration

Consider a complex salt with three unpaired electrons per complex cation at 298 K, of mass
density 3.24 gem 3, and molar mass 200 gmol~'. First note that

N 2 i
Daetol’s 63001 em* K~ mol™'
Consequently,
S(§+1) _
Ym = 6.3001 x —F/—K--— cm?® mol ™!

Substitution of the data with § = 3 gives ¢, = 7.9 x 107% cm® mol~". Note that the density
is not needed at this stage. To obtain the volume magnetic susceptibility, the malar
susceptibility is divided by the molar volume V,, = M/p, where p is the mass density. In this
illustration, V,, = 61.7 cm’ mol!, 50 x = 1.3x 107,

At low temperatures, some paramagnetic solids make a phase transition (0 a state in
which large domains of spins align with parallel orientations. This cooperative alignment
gives rise to a very strong magnetization and is called ferromagnetism (Fig. 22.29). In other
cases, the cooperative effect leads to alternating spin orientations: the spins are locked into
a low-magnetization arrangement to give an antiferromagnetic phase. The ferromagnetic
phase has a nonzero magnetization in the absence of an applied field, but the
antiferromagnetic phase has a zero magnetization because the spin magnetic moments
cancel. The ferromagnetic transition occurs at the Curie temperature, and the
antiferromagnetic transition occurs at the Néel temperature.

22.8 Induced magnelie moments

An applied magnetic field induces the circulation of electronic currents. These currents give
rise to a magnetic field which usually opposes the applied field, so the substance is
diamagnetic. In a feg cases the induced field augments the applied field, and the substance
is then paramagnetjc.

The great majority of molecules with no unpaired electron spins are diamagnetic. In these
cases, the induced electron currents occur within the orbitals of the molecule that are
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occupied in its ground state. In the few cases in which molecules are paramagnetic despite
having no unpaired electrons, the induced electron currents flow in the opposite direction
because they can make use of unoccupied orbitals that lie close to the HOMO in energy. This
orbital paramagnetism can be distinguished from spin paramagnetism by the fact that it is
temperature-independent: this is why the property is called temperature-independent
paramagnetism (TIP).

We can summarize these remarks as follows. All molecules have a diamagnetic com-
ponent to their susceptibility, but it is dominated by spin paramagnetism if the molecules
have unpaired electrons. In a few cases (where there are low-lying excited states) TIP is
strong enough to make the molecules paramagnetic even though their electrons are paired.

Checklist of key ideas

Electric properties

22.1 Permanent and induced
clectric dipole moments
electric dipole
electric dipole moment
polar molecule
polarization
dielectric
ferroelectric solid
homopolar contribution
Langevin function (6)
induced dipole moment
polarizability
hyperpolarizability
polarizability volume (10)
orientalion polarization
distortion polarization
electronic polarizability
permittivity
relative permittivity
Debye equation (15)
molar polarization (16)
Clausius-Mossotti equation
(17)
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Intermolecular forces
"1 van der Waals forces

22.3 Interactions between
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point dipole

multipole

[ n-pole

i} Keesom interaction (25)
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[]] London interaction

[ London formula (27)

I} hydrogen bond

i} Axilrod-Teller formula (29)
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[ hard-sphere patential (30)

Mie potential (31)

" Lennard-Jones potential (32)
cxp-6 potential

_ atomic force microscopy
(AFM)

22.5 Molecular interactions in
beams
i molecuiar beam
i hydrodynamic flow
molecular flow
" . supersonic jet
"1 supersonic beam
. crossed beam technique
7 incident beam flux
i differential scattering cross-
section
impact parameter
"} quantum oscillation
., rainbow scattering
" rainbow angle
. van der Waals molecule

Magnetic properties

22.6 Magnetic susceptibility
magnelization
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| volume magnetic
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i | molar magnetic
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. | magnetic flux density

i ; vacuum permeability (38)

paramagnetic

diamagnetic

{7 magnetizability

{1 Curie law (42)
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interference device (SQUIDI

22.7 The permanent magnetic
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Exercises

22.1 (a) Which of the following molecules may be polar: CIF,, 0,
H,0,?7 :

22.1 (b) Which of the fallowing molecules may be polar: S0,, Xef,,
SF,?

22.2 (a) The molar polarization of fluorobenzene vapour varies
linearly with T', and is 70.62 cm*mol~' at 351.0K and
62.47 cm® mol~! at 423.2 K. Calculate the polarizability and dipole
moment of the molecule.

22.2 (b) The molar polarization of the vapour of a compound was
found to vary linearly with 7-', and is 75.74 cm® mol~" at 320.0 K
and 71.43 em? mol~' at 421.7 K. Calculate the polarizability and
dipole moment of the molecule.

22.3 (a) At 0°C, the molar polarization of liquid chlorine trifluoride
is 27.18 em® mol~' and its density is 1.89 gcm™>. Calculate the
relative permittivity of the liquid.

© 22.3 (b) At

0°C, the molar polarization of a liquid is
32.16 em?mol~! and its density is 1.92 gem™. Calculate the
relative permittivity of the liquid. Take M = 85.0 g mol™".

22.4 (a) The refractive index of CH,l, is 1.732 for 656 nm light. Its
density at 20°C is 3.32 gem ™. Calculate the polarizability of the
molecule at this wavelength.

22.4 [b) The refractive index of a compound is 1.622 for 643 nm
light. Its density at 20°C is 2.99 gcm 3. Calculate the polarizability of
the molecule at this wavelength. Take M = 65.5 gmol .

22.5 (a) The dipole moments of the bonds C—0 and C=0 are 1.2
and 2.7 D, respectively. The bond lengths are 143 and 122 pm,
respectively. Estimate the percentage ionic character of the bonds.
How well do the results correlate with the electronegativity
differences of the atoms in the bonds?

22.5 (b) The dipole moments of the bonds C-F and C-0 are 1.4 and
1.2 D, respectively. The bond lengths are 141 and 143 pm,
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respectively. Estimate the percentage ionic character of the bonds.
How well do the results correlate with the clectronegativity
differences of the atoms in the bonds?

22.6 (a) The electric dipole moment of toluene (methylbenzene) is
0.4 D. Estimate the dipole moments of the three xylenes
(dimethylbenzene). Which answer can you be sure about?

22.6 (b) Calculate the resultant of two dipole moments of magnitude
1.5 D and 0.80 D that make an angle of 109.5° to each other.

22.7 (a) Calculate the magnitude and direction of the dipole
moment of the following arrangement of charges in the xy-plane:
3e at (0,0), —e at (0.32 nm, 0), and —2¢ at an angle of 20° from the
x-axis and a distance of 0.23 nm from the origin.

22.7 (b) Calculate the magnitude and direction of the dipole
moment of the following arrangement of charges in the xy-plane:
4e at (0,0), —2e at (162 pm, 0), and —2¢ at an angle of 30° from the
x-axis and a distance of 143 pm from the origin.

22.8 (a) The polarizability volume of H,0 is 1.48 x 1072 cm*;
calculate the dipole moment of the molecule (in addition to the
permanent dipole moment) induced by an applied electric field of
strength 1.0 kVem™'. .

22.8 (b) The polarizability volume of NH; is 222x 107" m%;
caiculate the dipole moment of the molecule (in addition to the
permanent dipole moment) induced by an applied electric field of
strength 15.0 k¥ m~". .

22.9 (a) The polarizability volume of H,0 at optical frequencies is
1.5 x 10 em?: estimate the refractive index of water. The exper-
imental value is 1.33; what may be the origin of the discrepancy?

22.9 (b) The polarizability volume of a liquid of molar mass
72.3 gmol~' and density 865 kgmol~' at optical frequencies is
2.2 % 1073 m?3; estimate the refractive index of the liquid.

22.10 (a) The dipole moment of chlorobenzene is 1.57 D and its
polarizability volume is 1.23x 1072 cm?®. Estimate its relative
permittivity at 25°C, when its density is 1.173 gem ™.

22.10 (b) The dipole moment of bromobenzene is 5.17 x 107* Cm
and its polarizability volume is approximately 1.5 x 1072” m* Estimate
its relative permittivity at 25°C, when its density is 1491 kgm™>.

22.11 (a) A solution of an optically active substance shows an
optical rotation of 250° in a cell of length 10 cm at 500 nm. What is
the difference of the refractive indices of left and right circularly
palarized light through this substance?
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22.11 (b) A solution of an optically active substance shows an
optical rotation of 192° in a cell of length 15 cm at 450 nm. What is
the difference of the refractive indices of left and right circularly
polarized light through this substance?

22.12 (a) The magnetic moment of CrCl; is 3.81uy. How many
unpaired electrons does the Cr possess?

22.12 (b) The magnetic moment of Mn?* in its complexes is
typically 5.3ug. How many unpaired electrons does the ion possess?

22.13 (a) Calculate the molar susceptibility of benzene given that its
volume susceptibility is —7.2 x 107 and its density 0.879 gem™ at
25°C,

22.13 (b) Calculate the molar susceptibility of cyclohexane given
that its volume susceptibility is —7.9x107" and its density
811 kgm~* at 25°C.

22.14 (a) According to Lewis théory, an 0, molecule should be
diamagnetic. However, experimentally: it is found that
fm/ (mPmol ') = (1.22x 1075 K)/T. Determine the number of
unpaired spins in 0,. How is thc problem of the Lewis structure
resolved?

22.14 (b) Predict the molar susceptibility of nitrogen dioxide at
298 K. Why does the molar ‘susceptibility of a sample of nitrogen
dioxide gas decrease as it is compressed?

22.15(a) Data on a single crystal of MnF, give
4 = 0.1463 cm? mol™' "at 294.53 K. Determine the effective
number of unpaired efectrons in this compound and compare your
result with the theoretical value.

22.15(b) Data on a single crystal of NiSO,7H,0 give
¥ = 6.00%107® m*mol~! at 298 K. Determine the effective
number of unpaired electrons in this compound and compare your
result with the theoretical value.

22.16 (a) Estimate the spin-only molar susceptibility of CuSO,-5H,0
at 25°C. .

22.16 (b) Estimate the
MnS0,-4H,0 at 298 K.

spin-only molar  susceptibility of

22.17 (a) Approximately how large must the magnetic induction, B,
be for the orientational energy of an § = 1 system to be comparable
to kT at 298 K?

22.17 (b) Estimate the ratio of populations of the M; states of a
system with § = 1 in 15.0 T at 298 K.

Problems

Numerical problems

22.1 Suppose an H,0 molecule (u = 1.85D) approaches an
anion. What is the favourable orientation of the molecule?
Calculate the electrie field {in volts per metre) experienced by the
anion when the water dipole is (a) 1.0 nm, (b) 0.3 nm, (c) 30 nm from
the ion.

22.2 An H,0 molecule is aligned by an external electric field of
strength 1.0 kVm~' and an Ar atom (o = 1.66 x 107 cm?) is
hrought up slowly from one side. At what separation is it encrgetically
favourable for the H,0 molecule to flip over and point towards the
approaching Ar atom?



676

22,3 The relative permittivity of chloroform was measured over a
range of temperatures with the following results:

e/°c -80 -70 -60 -—40 -20 0 20
g 31 31 70 65 60 55 50
p/(gem™) 165 164 1.64 161 157 153 1.50

The freezing point of chloroform is —64°C. Account for these results
and calculate the dipole moment and polarizability volume of the
molecule,

22.4 The relative permittivities of methanol (m.p. —95°C) corrected
for density variation are given below. What molecular information
can be deduced from these values? Take p = 0.791 gem~? at 20°C.
6/°C —185 ~170 —150 —140 —110 —80 —50 —20 0 20
& 32 36 40 51 67 57 49 43 38 34
22.5 In his classic book Polar molecules, Debye reports some early
measurements of the polarizability of ammonia, From the selection
below, determine the dipole moment and the polarizability volume of
the molecule.

T/K 2922 309.0 333.0 387.0 4130 446.0
Po/(em*mol™!) 57.57 5501 5122 4499 4251 39.59

The refractive index of ammonia at 273 K and 100 kPa is 1.000379
(for yellow sodium light). Calculate the molar palarizability of the gas
at this temperature and at 292.2 K. Combine the value calculated
with the static molar polarizability at 292.2 K and deduce from this
information alone the molecular dipole moment.

22.6 Values of the molar polarization of gaseous water at 100 kPa as
determined from capacitance measurements are given below as a
function of temperature.

T/K 3843 4201 4447 4841 5220
Po/(cm’mol™') 574 535 501 468  43.

Calculate the dipole moment of H,0 and its polarizability volume.

Theoretical problems

22.7 Calculate the potential energy of the interaction between two
linear quadrupoles when they are (a) collinear, (b) parallel and
separated by a distance r.

22.8 Show that, in a gas (for which the refractive index is close to 1),
the refractive index depends on the pressure as n. =1+ constxp,
and find the constant of proportionality. Go on to show how to
deduce the polarizability volume of a molecule from measurements of
the refractive index of a gaseous sample.

22.9 The refractive index of benzene is constant (at 1.51) from
0.4 GHz up to 0.55 GHz (in the microwave region of the spectrum),
but then shows a series of oscillations between 1.47 and 1.54.
Throughout the same frequency range, methyibenzene shows a
higher refractive index (about 1.55), the same oscillations as in
benzene, and additional oscillations between 1.52 and™1.56 near
0.4 GHz. Account for these observations.

22.10 Acetic acid vapour contains a proportion of planar, hydrogen-
bonded dimers. The relative permittivity of pure liquid acetic acid is
7.14 at 290 K and increases with increasing temperature. Suggest an
interpretation of the latter observation. What effect should

27 THE ELECTRIC AND MAGNETIC PROPERTIES OF MGLECULES

isothermal dilution have on the relative permittivity of solutions of
acetic acid in benzene?

22.11 Show that the mean interaction energy of N atoms of
diameter d interacting with a potential energy of the form C/RS is
given by U = —2N2C,/3Vd>, where V is the volume in which the
molecules are confined and all effects of clustering are ignored.
Hence, find a connection between the van der Waals parameter a and
Cq from na/V? = (BU/[0V);.

22.12 Suppose the repulsive term in a Lennard-Jones (12,6)
potential is replaced by an exponential function of the form e="/4,
Sketch the form of the potential energy and locate the distance at
which it is a minimum.

22.13 The cohesive energy density, U, is defined as U /V, where U is
the mean petential energy of attraction within the sample and V its
volume. Show that U = — LA™ [V(R) dr, where A/ is the number
density of the molecules and V(R) is their attractive potential energy
and where the integration ranges from d to infinity and over all
angles. Go on to show that the cohesive energy density of a uniform
distribution of molecules that interact by a van der Waals attraction
of the form —Cy/RS is equal to (2n/3)(N% /d*M?)p*Cy, where p is
the mass density of the solid sample and M is the molar mass of the
molecules.

22.14 Consider the collision between a hard-sphere molecule of
radius R, and mass m, and an infinitely massive impenetrable sphere
of radius R,. Plot the scattering angle @ as a function of the impact
parameter b. Carry out the calculation using simple geometrical
considerations.

22.15 The dependence of the scattering characteristics of atoms on
the energy of the collision can be modelled as follows. We suppose
that the two colliding atoms behave as impenetrable spheres, as in
Problem 22.14, but that the effective radius of the heavy atoms
depends on the speed v of the light atom. Suppose its effective radius
depends on v as Ry,e /"', where o* is a constant. Take R, = LR, for
simplicity and an impact parameter b = %R,. and plot the scattering
angle as a function of (a) speed, (b) kinetic energy of approach.

22.16 The magnetizability, £, and the volume and molar magnetic
susceptibilities can be calculated from the wavefunctions of
molecules. For instance, the magnetizability of a hydrogenic atom is
given by the expression &= —(e?/6m.)(r?), where (r?) is the
{expectation) mean value of r? in the atom. Calculate £ and g, for the
ground state of a hydrogenic atom.

22.17 Nitrogen dioxide, a paramagnetic compound, is in equilibrium
with its dimer, dinitrogen tetroxide, a diamagnetic compound. Derive
an expression in terms of the equilibrium constant, K, for the
dimerization to show how the molar susceptibility varies with the
pressure of the sample. Suggest how the susceptibility might be
expected to vary as the temperature is changed at constant pressure,

22.18 An NO molecule has thermally accessible electronically excited
states. It also has an unpaired electron, and so may be expected to be
paramagnetic. However, its ground state is not paramagnetic because
the magnetic moment of the orbital motion of the unpaired electron
almost exactly cancels the spin magnetic moment. The first excited
state (at 121 cm™') is paramagnetic because the orbital magnetic
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moment adds to, rather than cancels, the spin magnetic moment. The
upper state has a magnetic moment of 2. Because the upper state is
thermally accessible, the paramagnetic susceptibility of NO shows a
pronounced temperature dependence even near room temperature.
Calculate the molar paramagnetic susceptibility of NO and plot it as a
function of temperature.

Additional problems supplied by Carmen Giunta
“and Charles Trapp

22.19 The notion of group additivity of thermodynamic properties
was introduced in Chapter 2. Results of a computational study of the
polarizabilities of the homologous series of linear saturated silanes
SigyHens2 raise the possibility of group additivity of polarizability.
B. Champagne, EA. Perpete, and J.-M. André (J. Molec. Structure
(Theochem) 391, 67 (1997)) report the following values for the
electronic contribution to the polarizability, &, of Si;yH,y., based on
ab initio quantum mechanical calculations):

N 1 2 3 4 5
af/(107% J-'Cm?) 3495 7.766 1240 1718 22.04
N 6 7 8 9

af/(107% J-'Cm?)

Determine the average contribution to this quantity per additional
Si;H, group, and report the root mean square deviation between the
reported values and the best group-additivity fit.

22.20 F. Luo, G.C. McBane, G. Kim, C.F. Giese, and W.R. Gentry [/
Chem. Phys. 98, 3564 (1993)) reported experimental observation of
the He, complex, a species which had escaped detection for a long
time. The fact that the observation required temperatures in the
neighbourhood of 1 mK is consistent with computational studies
which suggest that hcD, for He, is about 1.51 x 10~2 J, heDy, about
2% 1072 J, and R, about 297 pm. (a) Determine the Lennard-Jones
parameters r, and ¢ and plot the Lennard-lones potential for He-He

2692 3182 3674 4163
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interactions. (b) Plot the Morse given that

a=579%100 m'.

22.21 J.). Dannenberg, D. Liotard, P. Halvick, and J.C. Rayez (J. Phys.
Chem. 100, 9631 (1996)) carried out theoretical studies of organic
maolecules consisting of chains of unsaturated four-membered rings.
The calculations suggest that such compounds have large numbers of
unpaired spins, and that they should therefore have unusual magnetic
properties. For example, the lowest-energy state of the five-ring
compound C,;H,, (8) is computed to have § = 3, but the energies of
5§ =12 and § = 4 structures are each predicted to be 50 kImol™!
higher in energy. Compute the molar magnetic susceptibility of these
three low-lying levels at 298 K. Estimate the molar susceptibility at
298 K if each level is present in proportion to its Boltzmann factor
(effectively assuming that the degeneracy is the same for all three of
these levels).

=Lt et )

22.22 D.D. Nelson, G.T. Fraser, and W. Klemperer (Science 238, 1670
(1987)) examined several weakly bound gas-phase complexes of
ammonia in search of examples in which the H atoms in NH; formed
hydrogen bonds, but found none. For example, they found that the
complex of NH, and CO, has the carbon atom nearest the nitrogen
(299 pm away): the CO, molecule is at right angles to the C-N "bond’,
and the H atoms of NH; are pointing away from the CO,. The
permanent dipole moment of this complex is reported as 1.77 D. If
the N and C atoms are the centres of the negative and positive charge
distributions, respectively, what is the magnitude of those partial
charges (as multiples of e)?

22.23 From data in Table 22.1 calculate the molar polarization,
relative permittivity, and refractive index of methanol at 20°C. Its
density at that temperature is 0.7914 gem ™.

potential
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colloids

Macromolecules exhibit « rnge ot properhies and problems thal dlustele o wide varicty of
physical.chenucal principles. They need to be characterized i terms of their molar mass, their
size, and their shape. However, the molcculces are so furye that the solutions they form depart
strongly from adeality, so techniques for accommodating these departures need 1o be
developed. - Although the shapes of large biomolecules cun be delermined by X-ray
diffraction, synthetic polymers hove less regular shapes m solution, umd onty thew qeneral
shape can be inferred. Anather major problem concerns the witluences that determme the
shapes of the moleclles. We consuder o range uf intlucncres in this chapler, beginming with
the structureless random coil and ending with the structuraily precise forees thut operate in
palypeptides.

Collnids, and other aggregates of molecules thal are aot chemcally bonded together,
exhibit some of the propertics of molecules but have their own characlenstic features
arising from the very large surface-to-volume ratios of their constituent particles.

There are macromolecules everywhere, inside .5 and outside us. Some are natural: they
include polysaccharides such as cellulose, polypeptides such as enzymes, and nucleic acids
such as DNA. Others are synthetic: they include polymers such as nylon and polystyrene that
are manufactured by stringing together and (in some cases) cross-linking smaller units
known as monomers. Life in all its forms, from its intrinsic nature to its technological
interaction with its environment, is the chemistry of macromolecules.

Macromolecules give rise to special problems that include the determination of their
sizes, the shapes and the lengths of polymer chains, and the large deviations from ideality of
their solutions. We concentrate on, these special characteristics here.

Size and shape

X-ray diffraction (Chapter 21) can reveal the position of almost every atom even in highly
complex molecules. However, there are several reasons why other techniques must also be
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used. In the first place, the sample might be a mixture of molecules with different chain
lengths and extents of cross-linking, in which case sharp X-ray images are unobtainable.
Even if all the molecules in the sample are identical, it might prove impossible to obtain a
single crystal. Furthermore, although the work on enzymes, proteins, and DNA has shown
how immensely stimulating the data can be, the information is incomplete. For
instance, what can be said about the shape of the molecule in its natural environment, a
biological cell? What can be said about the response of its shape to changes in its
environment?

23.1 Mean mnolar nmiasses

A pure protein is monodisperse, meaning that it has a single, definite molar mass. (There
may be small variations, such as one amino acid replacing another, depending on the source
of the sample.) A synthetic polymer, however, is polydisperse in the sense that a sample is a
mixture of molecules with various chain lengths and molar masses. The various techniques
that are used to measure molar masses result in different types of mean values of
polydisperse systems. The ‘mean obtained from the determination of molar mass by
osmometry (Section 7.5¢) gives the number-average molar mass, M,, which is the value
obtained by weighting each molar mass by the number of molecules of that mass present in
the sample:

M, = %zN,M‘ 1]

where N; is the number of molecules with molar mass M; and there are N molecules in all.
Viscosity measurements give the viscosity-average molar mass, M,, light-scattering
experiments give the weight-average molar mass, M, and sedimentation experiments give
the Z-average molar mass, M. Although such averages are often best left as empirical
quantities, some may be interpreted in terms of the composition of the sample. Thus, the
weight-average molar mass is the average calculated by weighting the molar masses of the

molecules by the mass of each one present in the sample:
- 1
M, =— M. 2
v = M, 2

In this expression, m; is the total mass of molecules of molar mass M; and m is the total mass
of the sample. Because m, = N;M,/N,, we can also express this average as

. ¥ N,-M?
= AT 3
M. o NM; (3)

Hence, the weight-average molar mass is proportional to the mean square molar mass.
Similarly, the Z-average molar mass can be interpreted in terms of the mean cubic molar
mass:

_ E, N.J”?

e = &

Exampie 2.3.1 Calculating number and mass averages

Determine the number-average and the weight-average molar masses for a sample of
poly(viny! chioride} from the following data:
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Molar mass Average molar mass Mass of sample

interval/(kgmol ') within interval/(kgmol~')  within interval/g
5-10 7.5 9.6

10-15 12.5 8.7

15-20 17.5 8.9

20-25 22,5 5.6

25-30 27.5 3.1

30-35 325 1.7

Mcthud The relevant equations are eqns 1 and 2. The two averages are obtained by
weighting the molar mass within each interval by the number and mass, respectively, of the
malecule in each interval. The numbers in each interval are obtained by dividing the mass of
the sample in each interval by the average molar mass for that interval. Because number of
molecules is proportional to amount of substance (the number of moles), the number-
weighted average can be obtained directly from the amounts in each interval.

Answer The amounts in each interval are as follows:

Interval 5-10 10-15 15-20 20-25 25-30 30-35

Molar mass/(kgmol~') 7.50 12.5 17.5 22.5 275 325

Amount/mmol 1.30 0.70 051 025 0.11 0.052
Total: 292

The number-average molar mass is therefore

M,/(kgmol™') = Z"Iéi(” x7.54070x12.5+0.51x17.5
+0.25%22.5 + 0.11 x27.5 4 0.052 x 32.5)
=13

The weight-average molar mass is calculated directly from the data after noting that the
total mass of the sample is 37.6 g:

M, /(kgmol ) = §;3(9.6 x 7.5 +8.7 %125
+8.9x17.5+56x22.5+3.1 x27.5 + 1.7 x 32.5)
=16

Comment Note the significantly different values ¢f the two averages. In this instance,
M, /M, =12

Self-tesl 23.1 Evaluate the Z-average molar mass of the sample,

[19 kgmol™!]

Ml oaos oo b Bl TR B DR S e St T

Whereas at first sight it might appear troublesome to have several types of average, the
observation that they have different values gives additional information about the range of
molar masses in the sample: the ratio M, /M, i called the heterogeneity index (or
‘polydispersity index’). In the determination of protein molar masses we expect the various
averages to be the same because the sample is monodisperse (unless there has been
degradation). In samples of synthetic polymers there isnormally a range of molar masses and
the different averages are expected to yield different vilues. Typical synthetic materials have
M, /M,~4. The term ‘monodisperse’ is conventiondly applied to synthetic polymers in
which this index is less than 1.1; commercial polyethene samples might be much more
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23.1 The excluded volume into which the centre of
a molecule cannot penetrate is 8u, where v is the
volume of the molecule itself,
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heterogencous, with a ratio close to 30. One consequence of a narrow molar mass
distribution for synthetic polymers is often a higher crystallinity, and therefore density and
melting point. The spread of values is controlled by the choice of gatalyst and reaction
conditions (Section 26.1).

The most direct method for measuring molar masses is by mass spectrometry. However,
until recently this technique was thwarted by the difficulty of vaporizing the sample. That
problem has been solved by embedding the macromolecules in a substrate; the substrate is
vaporized, and carries the macromolecules into the vapour with it.

23.2 Colligative properties

The classical methods of determining molar mass utilize colligative properties (Section 7.5).
For macromolecules, where the number of molecules in solution may be very small even
though the mass of the solute may be appreciable, only osmometry is sufficiently sensitive;
this procedure was described and illustrated in Section 7.5e. Osmometry can be used for
molar masses up to about 100 kg mol ™', Its lower limit of about 8 kg mol~! is due to the use
of membrane materials that allow these relatively small molecules to pass through.

Macromolecules give strongly nonideal solutions: being so large, they displace a large
quantity of solvent instead of replacing individual solvent molecules with negligible
disturbance. In thermodynamic terms, the displacement of solvent molecules implies that
the entropy change is especially important when a macromolecule dissolves. Furthermore,
its great bulk means that a macromolecule is unable to move freely through the solution
because the molecule is excluded from the regions occupied by other solute molecules. There
are also significant contributions to the Gibbs energy from the enthalpy of solution, largely
because solvent-solvent interactions are more favourable than the macromolecule-solvent
interactions that replace them. =

The osmotic virial coefficient, B (see eqn 7.38), arises largely from the effect of excluded
volume. If we imagine a solution of a macromolecule being built by the successive addition
of macromolecules to the solvent, each one being excluded by the anes that preceded it,
then the value of 8 turns out to be

B = INsop (5)
where vp is the excluded volume due to a single molecule,

Example 23.2 Estimating the volume of polymer molecules

Use the information in Example 7.5 to estimate the volume of the polymer . slecules
regarded as impenetrable spheres,

Metisod The excluded volume of spherical molecules of volume v is vp = 8v because the
minimum separation of the centres of two spheres is the sum of their radii (Fig. 23.1),
Estimate up from B by using eqn 5, and find B from the slope of the graph plotted in
Fig. 7.25. To do so use (as in Example 7.5):

h RT ( B )
—=— |l +=c
¢ pgM, M,

Ansv.cr The intercept RT/pgM, was found in Example 7.5 to be 0.21 cm/(gL""). The
sope of the straight line in Fig. 7.25, which is equal to (RT/pgM,)xB/M,, is
0073 (emg~'L)/(gL"). It follows that

_slope B 0.073 (emg’ LY/ L") 035
intercept M, 0.2l emg~'L T gLt

n
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— Syringe

— Thermistor

Solvent
Insulation

23.2 A vapour-phase osmometer. The syringes
introduce droplets of solvent and solution on to the
thermistors, and the difference in temperature
(arising from the different rates of vaporization) is
noted,
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Therefare
B=(035/gL") x (123 x 10" gmol™") = 4.3 x 10* L mol~"'
Equation 5 then implies that
28
=2 14x10°2 o
vp N, 1.4x107* m
From this value of vy it follows that the molecular volume is approximately 1.8 x 10* nm®.

Comment The radius of the molecule is approximately 16 nm.

Self-test 23.2 Another sample in the same solvent resulted in the following heights of
solution at the same temperature: 0.22, 0.53, 1.39, 3.32, 5.02 cm. Calculate the molar mass
and the molecular volume of the solute.

[14 kgmol~!, 9x 1072 m?]

In broad terms, the excluded volume contributes to the excess entropy of solution (the
entropy change in excess of the ideal value, Section 7.4), and the attractions and repulsions
between macromolecules contribute to the excess enthalpy. For most solute-solvent
systems there is a unique temperature (which is not always experimentally attainable) at
which these effects cancel and the solution is virtually ideal. This temperature (the analogue
of the Boyle temperature for real gases) is called the Flory theta temperature, . At this
temperature, the osmotic virial coefficient B is zero. As an example, for polystyrene in
cyclohexane 0306 K, the exact value depending on the average molar mass of the
polymer. A solution at its Flory theta temperature is called a @ solution. Because a 0 solution
behaves nearly ideally, its thermodynamic and structural properties are easier to describe
even though the molar concentration is not low. In molecular terms, in a @ solution the
molecules are in an unperturbed condition, whereas in other solutions expansion or
contraction of the coiled molecule takes place as a result of interactions with the solvent.

(a) Vapour-phase osmometry

In the technique of vapour-phase osmometry, a droplet of solution is placed on one
thermistor {a semiconductor temperature probe) and a droplet of pure solvent is placed on
another thermistor (Fig. 23.2). The two droplets are surrounded by an atmosphere of solvent
vapour. Because the vapour pressure of a solvent in a solution is lower than when it is pure,
the net rate of condensation of solvent on to a droplet of solution is greater than the rate of
condensation on to a droplet of pure solvent. It follows that more heat is liberated in the
solution droplet, and the rise in temperature is greater there than in the droplet of pure
solvent. The difference in temperature is measured for a series of concentrations and
extrapolated to zero concentration. After calibration by using samples of known molar mass,

‘the molar mass of the sample can be inferred from the temperature difference between the

two thermistors. The method is not particularly sensitive, and is confined to samples of low
molar mass.

(b) Polyelectrolytes and dialysis

Some polymers are strings of acid groups, as in polylacrylic acid), —(CH,CHCQOH),—, or
strings of bases, as in nylon, —[NH(CH, };NHCO(CH,),C0] —; proteins have both acid and
base groups. Macromolecules may therefore be polyelectrolytes, and, depending on their
state of ionization, polyanions or polycations. A macromolecule with mixed cation and
anion character is known as a polyampholyte.
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One consequence of dealing with polyelectrolytes is that it is necessary to know the
extent of ionization before osmotic data can be interpreted. For example, suppose the
sodium salt of a palyelectrolyte is present in solution as v Na* ions and a single polyanion
U~ then if it is fully dissociated in solution it gives rise to v 4 1 particles for each formula
unit of salt that dissolves. If we guess that » = | when in fact v = 10, then the estimate of
the molar mass will be wrong by an order of magnitude. We can find a way out of this
difficulty by considering another feature of charged macromolecules.

Suppose the solution of the polyclectrolyte Na, P also contains added NaCl, and that it is
in contact through a semipermeable membrane with another salt solution. Furthermore,
suppose the membrane is permeable to the solvent and to the salt ions, but not to the
polyanion. This arrangement is one that actually occurs in living systems, where osmosis is an
important feature of cell operation. The presence of the salt affects the osmotic pressure
because the anions and cations cannot migrate through the membrane to an-arbitrary
extent. Apart from small imbalances of charge close to the membrane and which give rise to
transmembrane potentials, electrical neutrality must be preserved in the bulk on both sides
of the membrane: if an anion migrates, a cation must accompany it.

The presence of a high concentration of added salt on each side of a semipermeable
membrane ensures that the effective difference in concentrations is due solely to the
presence of the polyanion P on one side of the membraffe, for the number of cations the
polymer provides is insignificant in comparison with the number supplied by the additional
salt, Hence, under such circumstances we can expect the osmotic pressure to be given by
IT = RT[P|, independent of the value of v (a result confirmed in the Justification below).
Therefore, if we measure the osmotic pressure in the presence of high concentrations of salt,
the molar mass may be obtained unambiguously.

Justiticatinn 23 1

Suppose that Na,P is at a molar concentration [P] o one side of the membrane, and that
NaCl is added to each side. On the left (L) there are P*~, Na*, and CI” ions. On the right (R)
there are Na* and CI~ ions. The condition for equilibrium is that the Gibbs energy of NaCl
in solution is the same on hoth sides of the membrane, so a net flow of Na* and CI™ ions
oceurs until G, (NaCl,L) = G, (NaCl, R). This equality occurs when

#®(NaCl) + RTIna (Na*) + RT Ina (CI7) =
1 ®(NaCl) + RT Inag(Na*) + RT Inag(C17)

or
RT Ina (Na*)a{Cl™) = RT Inag(Na* )ag (C17)

If we ignore activity coefficients, the two expressions are equal when
[Na*],[CI], = [Na*|[Cl |5 As the Na* ions are supplied by the polyelectrolyte as weli
as the added salt, the conditions for bulk electrical neutrality are [Na*], = [CI7], + v[P]
and [Na* |, = [CI™ |- We can now combine these three conditidns to obtain expressions for
the differences in ion concentrations across the membrane:

. o v[PNat) v[P][Nat]
Nal =~ No"le = (a3 (Na Ty ~ 210 + ofF ©
JPICK], __vRler],

Crj -[Cr =~ CrL+[C)g  2[CH]

where [CI7] = 3([CI7], + [CI]g). The quantity [CI~) is the average concentration of CI~
ions on each side of the membrane.

4H—B
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The final step is to note that the osmotic pressure depends on the difference in the
numbers of solute particles on each side of the membrane. That being so, the van't Hoff
equation, IT = RT[Solute], becomes

JT=RT{({P] + [Na*]_ + [CI"]) - ([Na*]g + [CI"})}
A0, (7

=RTPP|(1+B[P) B= AT+ 2]

When the concentration of added salt is so great that [CI7], and [CI~], are both much
larger than [P], it follows that B[P] < 1 and this expression reduces to the one quoted in
the text.

A second point arises from the effect of added salt. There is often interest in the extent to
which ions are bound to macromolecules, especially when a membrane (such as a cell wall)
scparates two solutions. The equations

. o VIPliNa*)
I.Na }L - lNa ]R = ZTéF] X V{I.F'] (8)
[e), - o), = ~ 4P
L " 2[CI-)

which are derived in the Justification, show that cations will dominate the anions in the
compartment containing the polyanion (because the concentration difference is positive for
Na™ and negative for Cl~) as a result of the equilibrium and electroneutrality conditions. The
equilibrium distribution of ions in two compartments in contact through a semipermeable
membrane, in one of which there is a polyelectrolyte, is called a Donnan equilibrium.

Exampie 23.3 Analysing a Donnan equilibrium

Suppose that two equal volumes of 0.200 M NaCl(aq) are separated by a membrane and
that a macromolecule of molar mass 55 kgmol~!, which cannot pass through .the
membrane, is added as its sodium salt NagP to a concentration of 50 gL~ to the left-hand
compartment. Calculate the molar concentrations of Na* and Cl- in each compartment.

Muthad The sums of the equilibrium concentrations of Na* and Cl- in each compartment
are .

[Na™} + [Na*g = [CI7], + [C17]g + [P] = 2(CI7] + u[P]
Then use [CI7] = 0.200 mol L',
Ansvics As [Pl = 9.0 10 molL", we find

. 6 (9.1 10~* mol L") x [Na¥]
+1 _ o= L
[Na™}, — [Na*lq 2% (0.200 molL-") + 6 x (9.1 x 10-* mol L)

and the sum above gives

[Na*] + [Na'Jy = 2% (0.200 mol L™") + 6 x (9.1 x 10~ mol L")
= 0.405 mol L' '

The solutions of these two equations are

Na*] =0.204 mol L~ Na*|, = 0.201 mol L™!
L R
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Blank
{balancing)

(a)

Solution

“Bottom”
(b)

23.3 (a) An ultracentrifuge head. The sample on
one side is balanced by a blank diametrically
opposite. (b] Detail of the sample cavity: the ‘top’
surface is the inner surface, and the centrifugal
force causes sedimentation towards the outer
surface; a particle at a radius r experiences a force
of magnitude mra?.
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Then

[C17], = [Na*]g = 0.201 mol L™
(0], = [Na*], - 6[P] = 0.199 mol L~

Comment The Na* ions accumulate slightly in the compartment containing the
macromolecule.

Self-test 73.3 Repeat the calculation for 0.300 MNaCl(aq), a polyelectrolyte Na,oP of
molar mass 33 kgmol™' at a mass concentration of 50.0 gLl
. [Na: 0.311 mol L™, 0.304 mol L~']

= e e L e = e g T T T

23.3 Sedimentation

In a gravitational field, heavy particles settle towards the foot of a column of solution by the
process called sedimentation. The rate of sedimentation depends on the strength of the field
and on the masses and shapes of the particles. Spherical molecules (and compact molecules
in general) sediment faster than rod-like or extended molecules. For example, DNA helices
sediment much faster when they are denatured to a random coil, so sedimentation rates can
be used to study denaturation. When the sample is at equilibrium, the particles are dispersed
over a range of heights in accord with the Boltzmann distribution (because the gravitational
field competes with the stirring effect of thermal motion). The spread of heights depends on
the masses of the molecules, so the equilibrium distribution is another way of determining
molar mass.

Sedimentation is normally very slow, but it can be accelerated by replacing the
gravitational field by a centrifugal field. The latter can be achieved in an ultracentrifuge,
which is essentially a cylinder that can be rotated at high speed about its axis with a sample
in a cell near its periphery (Fig. 23.3). Modern ultracentrifuges can produce ‘accelerations
equivalent to about 107 that of gravity (105 g). Initially the sample is uniform, but the ‘top’
(innermost) boundary of the solute moves outwards as sedimentation proceeds.

(a) The rate of sedimentation

A solute particle of mass m has an effective mass m,; = bm on account of the buoyancy of
the medium, with !

b=1-py 9)

where p is the solution density, v, is the solute’s partial specific volume (v, = (3V /0mp)7.
where mg is the total mass of the solute), and py, is the mass of solvent displaced per gram
of solute. The solute particles at a distance r from the axis of a rotor spinning at an angular
velocity @ experience a centrifugal force of magnitude i gre?. The acceleration outwards
is countered by a frictional force proportional to the speed, s, of the particles through the
medium. This force is written fs, where f is the frictional coefficient. The particles therefore
adopt a drift speed, a steady speed through the medium, which is found by equating the two
forces mqre” and fs. The forces are equal when

2 2

bmrw

£ f

Ml
s=—

(10)
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23.4 A plot of the data in Example 23.4.
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The drift speed depends on the angular velocity and the radius, and it is convenient to focus
on the sedimentation constant, S, which is defined as
5
§=— 11
ra? L
Then, because the average molecular mass is related tc the average molar mass M,, through
m= nn./NA'
b,

- A (12)

Example 23.4 Delermuning a sedimentation constant

The sedimentation of bovine serum albumin (BSA) was monitored at 25°C. The initial
location of the solute surface was at 5.50 cm from the axis of rotation, and during
centrifugation at 56 850 r.p.m. it receded as follows:

t/s 0 500 1000 2000 3000 4000 5000
rfem  5.50 555  5.60 5.70 5.80 591 6.01

Calculate the sedimentation coefficient.

Method Equdtion 11 can be interpreted as a differential equation for s = dr/dt in terms of
r, s0 integrate it to obtain a formula for r in terms of £ The integrated expression, an
expression for r as a function of 4, will suggest how to plot the data and obtain from it the
sedimentation constant.

Answer Equation 11 may be written

dr 2
e S
5 =
This equation integrates to

Ini = St

o

It follows that a plot of In(r/ry) against ¢ should be a straight line of slope @”S. Use
@ = 2mv, where v is in cycles per second, and draw up the following table:

t/s 0 500 1000 2000 3000 4000 5000
100in(r/r,) O 0900 1.80 357 531 7.9 887

The straight-line graph (Fig. 23.4) has slope 1.78 x 1073, 50 w*§ = 1.79 x 1075 s~!. Because
@ = 21 x (56850/60) s~ = 5.95x 10 s, it follows that § = 5.02x 10~? s,

Comm 1 t We develop this result below. The unit 10~'? s is sometimes called a ‘svedberg’
and denoted Sv; in this case § = 5.02 Sv. Accurate results are obtained by extrapolating to
zero concentration.

Self-test 23.4 Calculate the sedimentation constant given the following data (the other
conditions being the same as above):

tfs 0 500 1000 2000 %)0 4000 5000
r/em 5.65 5.68 5.71 5.77 4 5.90 597

[3.11 Sv]




688

Table 23.1" Frictional coefficients and mole-
cular geometryt

a/b Prolate Oblate
2 1.04 1.04
4 1.18 1.17
6 1.31 1.2%
8 1.43 1.3%
10 1.54 1.46

*More values and analytical expressions are given in
the Dato section at the end of this volume.

t Entries are the ratio f/f, where f, = 6nnc with
e = (ab?)'"? for prolate cllipsoids and ¢ = (¢*h)'"*
for ablate ellipsoids; 2a is the major axis and 24 is the
minor axis.

Table 23.2° Diffusion coefficients in water at
20°C

* M/(kgmol™') D/(mis ")

Sucrose 0.342 4.59 x 1010

. Lysozyme 14.1 1.04 x 10~'°
Haemoglobin 68 6.9% 101
Collagen 345 6.9 x 10712
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To make progress we necd to know the frictional constant, f. For a spherical particle of
radius @ in a solvent of viscosity 5, and for solute molecules that are not small compared with
the solvent molecules, f is given by Stokes' relation

f = 6nay ' (13)
Therefare, for spherical molecules,

M,

= 14
OmanN , (14)

and § may be used to determine either M, or a. If the molecules are not spherical, we use the
appropriate value of [ given in Table 23.1. As always when dealing with macromolecules,
the measurements must be carried out at a series of concentrations and then extrapolated to
zero concentration to avoid the complications that arise from the interference between
bulky molecules.

At this stage, it appears that we need to know the molecular radius a (and in general the
frictional coefficient f) to obtain the molar mass from the value of S. Fortunately, this
requirement can be avoided by drawing on the Stokes-Einstein relation between f and the
diffusion coefficient, D:

kT -

p= (15)

The diffusion coefficient is a measure of the rate at which molecules spread down a

concentration gradient (it is treated in detail in Section 24.11); this coefficient can be

measured by observing the rate at which a concentration boundary spreads or the rate at

which a more concentrated solution diffuses into a less concentrated one. Some typical

values are given in Table 23.2. The diffusion coefficient can also be measured by using light
scattering (Section 23.5). It follows from eqns 12 and 15 that

. SRT

= 16
=75 (16)

This result is independent of the shape of the solute malecues. It follows that we can find
the molar mass by combining measurements of sedimentation and diffusion rates (for § and
D, respectively).

(b) Sedimentation equilibria
The difficulty with using sedimentation rates to measure molar masses lies in the
inaccuracies inherent in the determination of diffusion coefficients, such as the blurring
of the boundary by convection currents. This prablem can be avoided by allowing the system
to reach equilibrium, for the transport property D is then no longer relevant. As we show in
the Justification below, the weight-average molar mass can be obtained from the ratio of
concentrations of the macromolecules at two different radii in a centrifuge operating at
angular frequency w:
5 2RT ¢
= _ln
Y (g = rhbw? " € (7
An alternative treatment of the data leads to the Z-average molar mass. The centrifuge is
run more slowly in this technique than in the sedimentation rate mettiod to avoid having all
the solute pressed in a thin film against the bottom of the cell. At these slower speeds,
several days may be needed for equilibrium to be reached.
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Justifieation 23.2

The distribution of particles is the outcome of the balance between the effect of the
centrifugal force and the dispersing effect of diffusion down 3 concentration gradient. The
kinetic energy of a particle of effective mass m at a radius r in a rotor spinning at a
frequency @ is -'jmwzrl, so the total chemical potential at a radius r is
7i(r) = pu(r) — i Mw*r?, where u(r) is the contribution that depends on the concentration
of solute. The condition for equilibrium is that the chemical potential is uniform, so

Oft 3]
((;E) = (E—JE) —Mw*r=0 5
or); \or/,

To evaluate the partial derivative of u, we write

®).-@).3,®.6)
orj; \Op/p.\or/;. \dc 7o\ 1,

= Mvw?rp + RT(a In (')
or T

The first result follows from the fact that (O/dp); = Vi, the partial molar volume, and
Vo =Mu. It also makes use of the fact that the hydrostatic pressure at r is
p(r) = plro) +  pw?(r* — r2). where ry is the radius of the surface of the liquid in the
sample holder (that is, the iocation of its meniscus), with p the density of the solution. The
concentration term stems from the expression u = u® +RTIne. The condition for
equilibrium is therefore ’

Olnc
200 _ _ o B
Mrw (1 —vp) RT( a )T.P 0

and therefore, at constant temperature,

Mra?(1 — vp)dr
d = — e
Ine BT

This expression integrates to eqn 17.

(c) Electrophoresis

Many macromolecules are charged and move in response to an electric field: this motian is
called electrophoresis In gel electrophoresis the migration takes place through a cross-
linked polyacrylamide gel. The mobilities of macromolecules depend on their masses and
their shapes, and a constant drift speed is reached when the driving force ez€ (where z is the
charge number and £ is the field strength) is matched by the viscous retarding force f.

One way to avoid the problem of knowing neither the hydrodynamic shape of the
molecules nor their charge is to denature them in a controlled way. Sodium dodecylsulfate
has been found to be very useful in this respect: it denatures proteins, whatever their initial
shapes, into rods by forming a complex with them. Moreover, most proteins bind a constant
amount of the anion to a given mass, so the charge per protein molecule is well requlated.
The molar mass of the protein is determined by comparing its mobility in its rod-like
complexed form with standard samples.

The charge on a protein depends on the pH, and hence the rate of migration varies with
pH. This apparent difficulty can be used tg distinguish proteins. For example, at a given pH
the rate of migration of haemoglobin from people with sickle-cell anaemia is different from
that of a sample taken from people without the disease. This difference is an indication that
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Measuring
lines

Capillary

23.5 An Ostwald viscometer. The viscosity is
measured by noting the time required for the liguid
to drain between the two marks,
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there are different charges on the protein molecule, which in turn is ascribed to the presence
of a different amino acid residue in the polypeptide chain.

(d) Size-exclusion chromatography
All the techniques discussed 5o far have certain drawbacks, including the time needed to
obtain data, and the often awkward interpretation of the data. Much of this difficulty has
been swept away by a technigue that makes use of beads of porous polymeric material about
6.1 mm in diameter that capture molecules selectively, according to their size. In the
technique of size-exclusion chromatography (SEC), or gel permeation chromatography
(GPC), which is now the most widely used technique for molar mass determinations of
polymers, a solution of the polymer sample is filtered through a column. The small molecules,
which can permeate into the porous structure of the gel, require a long elution time, or time
to pass through a particular length of column, whereas the larger ones, which are not
captured, pass through rapidly. The average molar mass of a macromolecule may therefore
be determined by observing its elution time in a column calibrated against standard samples.
The range of molar masses that can be determined by SEC can be altered by selecting
columns made from palymers with different degrees of cross-linking and different materials.
The elution time depends on shape in a complicated way and the technique works best if the
molecules are spherical. Polystyrene gels are used for investigations of nonpolar palymers in
nonpolar solvents, and porous glass gels are used for more polar systems. Because elution is
performed under pressure, molar mass determinations may be completed within a few
minutes, in striking contrast to the time required for more classical techniques. Moreover,
only a few milligrams of material are needed for highly reliable measurements.

23.4 Viscosity

The presence of a macromolecular solute increases the viscosity of a solution. The effect is
large even at low concentrations, because big molecules affect the fluid flow over an
extensive region surrounding them, At low concentrations the viscosity, 5, of the solution is
related to the viscosity of the pure solvent, n;, by

n=mno(l +[nlc+--) (18)

The intrinsic viscosity, [5], is the analogue of a virial coefficient (and has the dimensions of
1/concentration). It follows from eqn 18 that

(] = lim ("—_1‘—') = lim (3/—"'{—1) _ (19)

c—0 Cl’?u c—0

Viscosities are measured in several ways. In the Ostwald viscometer shown in Fig. 23.5, the
time taken for a solution to flow through the capillary is noted, and compared with a
standard sample. The method is well suited to the determination of [] because the ratio of
the viscasities of the solution and the pure solvent is proportional to the drainage times ¢
and t, after correcting for different densities p and py:

L X (20)
Mo .fTo  Po
(In practice, the two densities are only rarely significantly different)) This ratio can be used
directly in egn 19. Viscometers in the form of rotating concentric cylinders are also used
(Fig. 23.6), and the torque on the inner cylinder is monitored while the outer one is rotated.
« Such rotating drum viscometers have the advantage oves the Ostwald type that the shear
gradient between the cylinders is simpler than in the capillary, and effects of the kind
discussed shortly can be studied more easily.
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23.6 A rotating drum viscometer. The torque on
the inner drum is observed when the outer
container is rotated.
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23.7 The plot used for the determination of
intrinsic viscasity, which is taken from the intercept
at ¢ = 0; see Example 23.5.
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Table 23.3" Intrinsic viscosity

Macromolecule Solvent 0/°C K/(em*g™!) a
Polystyrene Benzene 25 9.5x107? 0.74
Polyisobutylene Benzene 23 83x 1072 0.50
Various proteins Guanidine 72x%107? 0.66
hydrochloride
+ HSCH,CHZ0H

*More values are given in the Data section.

There are many complications in the interpretation of viscosity measurements. Much of
the work is based on empirical observations, and the determination of molar-mass is usually
based on comparisons with standard, nearly monodisperse samples. Some regularities are
observed that help in the determination. For example, it is found that 0 solutions of
macromolecules often fit the Mark—Kuhn-Houwink-Sakurada equation:

) = KM, (21

where K and a are constants that depend on the solvent and type of macromolecule
(Table 23.3); the viscosity-average molar mass, M,, appears in this expression. As an
example, solutions of puly[y-bcnzyl-i.—gIutamate] in its rod-like form have an intrinsic
viscosity about four times greater than when it is denatured and the rods collapse into
r=ndom coils. Conversely, solutions of natural ribonuclease are less viscous than solutions of
the denatured form: this observation indicates that the natural protein is more compact

than the denatured form.

Example 23.5 Using intrinsic viscosity to measure molar mass

The viscosities of a series of solutions of polystyren in toluene were measured at 25°C with
the following results: ‘

¢/(gL™") o 20 40 60 80 100
n/(10-* kgm~'s™') 558 615 674 735 798 B8.64

Calculate the intrinsic viscosity and estimate the molar mass of the polymer by using eqn 2

* with K = 3.80x10~° Lg~" and a = 0.63.

Mcthad The intrinsic viscosity is defined ineqn 19; therefore, form this ratio at the series of
data points and extrapolate to ¢ = 0. Interpret M, as M,/(gmol™") in eqn 21.

Answer We draw up the following table:

c/(gL™") 0 20 4.0 6.0 8.0 10.0
0/ 1 1102 1208 1317 1430 1.549
100{(n/mo) — 11/(c/8 L) _ 511 520 5.28 538  5.49

The points are plotted in Fig. 23.7. The extrapolated intercept at ¢ =0 is 0.0504, s0
[7) = 0.0504 Lg™". Therefore,

1/a
M, = (%) —9.0x10* gmol™’

Comment When 71,

!n1=ln(1+"—"")z"—"“=i—1
Mo Mo
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711 Rayleigh scattering from a sample of point-like
particles follows a I + cos? 0 dependence (outer trace
on the polar plot) when unpolarized light is used, but
a cos? § dependence (inner trace) when plane-
polarized light is used,
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This relation is exact in the limit that 1) coincides with i, which is true when ¢ = @, Hence,
[7] can also be defined as the limit of (1/c) In(n/ny) as ¢ — 0. The intercept is identified
more precisely by plotting bath functions,

Self-test 23,5 Evaluate the viscosity-average molar mass by using the second plotting
technique.
[90 kg mol ']
Insome cases, it is found that the flow is non-Newtonian in the sense that the viscosity of
the solution changes as the rate of flow increases. A decrease in viscosity with increasing
rate of flow indicates the presence of long rod-like molecules that are orientated by the flow
and hence slide past each other more freely. In some somewhat rare cases the stresses set up
by the flow are so great that long molecules are broken up, with further consequences for
the viscosity.

23.5 Light seattering

When electromagnetic radiation falls on an object, it forces the electron distribution in the
object to oscillate and hence to radiate. If the medium is perfectly homogeneous (for
example, a perfect erystal or 3 completely random collection of molecules that is
homogeneous on the scale of the wavelength of the radiation, like a sample of water),
the secondary waves interfere destructively except in the original propagation direction,
Therefore, an observer sees the beam only when looking towards the source along the initial
direction. If the medium is inhomogeneous (an imperfect crystal or a solution containing
foreign bodies, such as macromolecules in a solvent or smoke in air), radiation is scattered
into other directions too. A familiar example is light scattered by specks of dust in 2 sunbeam
(and in advertisers' photographs of laser beams).

Scattering by particles with diameters much smaller than the wavelength of the incident
radiation is called Rayleigh scattering. The intenisity of Rayleigh scattered radiation depends
on 1/4*% so shorter wavelength radiation is scattered more intensely than longer
wavelengths. The blue of the sky arises from the more intense scattering of the blue
component of white sunlight by the molecules of the atmosphere. The intensity also depends
on the scattering angle 0, and is proportional to | + cos? ' when the light is unpolarized and
to cos? @ when it is polarized (Fig. 23.8). In practice it turns out to be easier to make
observations at an angle to the incident beam. The intensity also depends on the strength of

Detector
Sample 4

Incident
e | T3Y
EELTIESTR |
Monochromatic
source

Scattering
intensity, /
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the interaction of the light with the molecules: the interaction is strong when the
polarizability of the molecules is large. ’

When these remarks are combined into a quantitative theory, it turns out that the
scattering intensity, Z(0), at the angle 0 is

| + cos? 0 for unpolarized light

2
cos? 0 for polarized light (22)

= AT ML Ple(0)  8(0) = {
In this expression, T, is the incident intensity, [P] is the molar concentration of the solute,
M, its weight-average molar mass, and A is a constant that depends on the refractive index
of the solution, the wavelength, and the distance of the detector from the sample.
Equation 22 is an ‘ideal’ result in the sense that it ignores the complications that arise from
the interactions between solute particles, and in an actual experiment it is important to
extrapolate to zero concentration.

(a) Large-particle scattering

When the wavelength of the incident radiation is comparable to the size of the scattering
particles, scattering may occur from different sites of the same molecule and the
interference between different rays is important.' As a result, the scattering intensity is
distorted from the form characteristic of small-particle, Rayleigh scattering of light given in
¢qn 22, A measure of the distortion is the ratio

P= Inburvrd [231
T
‘+Rayleigh

measured at several angles, where T peene iS the observed intensity at each angle and
Tgayleign 15 the intensity predicted for Rayleigh scattering at that angle.

If the molecule is regarded as composed of a number of atoms i at distances R, from a
convenient point, interference occurs between the radiation scattered by each pair. The
scattering from all the particles is then calculated by allowing for contributions from all
possible orientations of each pair of atoms in each molecule. This description is very much
like the one used in the discussion of electron diffraction (Section 21.10), so we can expect
the intensity pattern to be described by a kind of Wierl equation. This turns out to be so and,
if there are N atoms in the macromolecule, and if all are assumed to have the samc
scattering power, then

_ 1 sin sk _Am
P-—-I‘V—Z'ZJ—';E;— S—Thlnia (24)
In this expression, R; is the separation of atoms i and j,and 4 is the wavelength of the

incident radiation. The observed intensity is equal to PT gagtcigns With T Rayleigh 9IvEN by
eqn 22.

(b) Small-particle scattering

When the molecule is much smaller than the wavelength of the incident radiation in the
sense that sR,; < | (for example, if R = 5 nm, and 1 = 500 nm, all the sR,; are about 0.1),

1 The effect accounts for the appearance of clouds, which, aithough we see them by scattered light, look white, not blue like the sky.
The waler molecules group logether into droplets of a size comparable Lo the wavelength of light, and scatter cooperatively.
Although biue light scatters more strangly, more molecules can contribute cooperatively when Ihe wavelength is longer [as for
Jed light], s0 the net resull s uniform scatiesing for ail wavelengths. white light scatters as white light. This paper looks white for
the same reason Cigarette smake 15 biue before it is inhaled, but brownish after it is exhaled because the particles aggregate in
the lungs.
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23.9 (a) A spherical molecule and [b) the hollow
spherical shell that has the same rotational
characteristics. The radius of the hollow shell Is the
radius of gyration of the molecule. The radius of
gyration of a solid sphere of radius R is 0.77R.

Table 23.4° Radius of gyration

M/(kgmol~') R, /nm
Serum albumin 66 2.98
Polystyrene 32x10° 50t
DNA 4x10° 117
*More values are given in the Dota section.

tIn a poor solvent.
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then we show in the Justification below that the deviation from Rayleigh scattering is
proportional to the square of the radius of gyration, R, of the molecule:

P 190 K2 (25)

The radius of gyration is the radius of a thin hallow spherical shell of the same mass and
moment of inertia as the molecule (Fig. 23.9), and is calculated formally from the
expression:?

1 /2
Ry=5 (52&’,-) [26]

Justification 23.3

When sR;; < 1 we can use the expansion sinx = x - 3 + ... to write
sinsRy; = sR;; — %(535)3 oo

and then
.P(Gi '—‘,\an{‘ —dR) +--} =1 ‘%ZRE**'
i i

The sum over the squares of the separations gives the radius of gyration of the molecule
(through eqn 26). Therefore
1672 sin® L9
PO)~1-4PRE =1 — —-—3:2 Zpe

shows that P — 1 is proportional to R;.

Because the deviation from Rayleigh scattering de, »~ds on Ry, an analysis of the
scattering intensity should give the value of Ry for the molecule in solution. This quantity in
turn can be interpreted in terms of the size of the molecule. For example, a solid sphere of
radius R has R, = (3/5)"/?R, and a long thin rod of length / has Ry = 1/2(3)"/* for rotation
about an axis perpendicular to the long axis. Once again, it must be emphasized that the
analysis must be performed on data obtained by extrapolation to zero concentration. Some
experimental values are listed in Table 23.4.

. The use of laser light has led to further refinements in the application and interpretation
of light scattering. There has been a shift of emphasis towards the investigation of the time
dependence of the positions of atoms and the orientation of macromolecules in solution.
These aspects of polymer dynamics can be studied by measuring the shift of frequency that
occurs when monochromatic light is scattered by a moving target in the technique called
dynamic light scattering. In particular, laser light scattering can be used for the direct
determination of the diffusional characteristics of macromolecules, and provides 3 fast,
direct, and reliable method for the measurement of diffusion coefficients, even of
macromolecules of low stability. Polymer dynamics are also studied by inelastic neutron
scattering, and are a target of computer simulation algorithms? .

2 In Problem 23.25, this definition is shown 10 be equivalent to another and more easily visualized one in the case of 3 chain of
identical atoms: the radius of gyration is the root mean square distance of the atoms from the centre of mass.
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23,10 A freely jointed chain is like a three-
dimensional random walk, each step being in an
arbitrary direction but of the same length.

Arbitrary
angle

] Arbitrary

angle

23.11 A better description is obtained by fixing the
bond angle (for example, at the tetrahedral angle)
and allowing free rotation about a bond direction.
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‘Conformation and configuration

The primary structure of a macromolecule is the sequence of small molecular residues
making up the chain (or network if there is cross-linking). In the case of a synthetic polymer,
virtually all the residues are identical, and it is sufficient to name the monomer used in the
synthesis. Thus, the the repeating unit of polyethylene is —CH,CH,—, and the primary
structure of the chain is specified by denoting it as —(CH,CH,),—.

The concept of primary structure ceases to be trivial in the case of synthetic copolymers
and biological macromolecules, for in general these substances are chains formed from
different molecules. Proteins, for example, are polypeptides, the name signifying chains
formed from different amino acids (about twenty occur naturally) strung together by the
peptide link, —CONH—. The determination of the primary structure is then a highly complex
problem of chemical analysis called sequencing. The degradation of a polymer is a
disruption of its primary structure, when the chain breaks into shorter components.

The secondary structure of macromolecules refers to the (often local) spatially well-
characterized arrangement of the basic structural units. The secondary structure of an
isolated molecule of polyethylene is a random coil, whereas that of a protein is a highly
organized arrangement determined largely by hydrogen bonds, and taking the form of
helices or sheets in various segments of the molecule. The loss of secondary structure is
called denaturation. When the hydrogen bonds in a protein are destroyed (for instance, by
heating, as when cooking an egg) the structure denatures into a random coil.

The difference between primary and secondary structure is closely related to the
difference between the 'configuration’ and the ‘conformation’ of a chain. The term
configuration refers to the structural features that can be changed only by breaking
chemical bonds and forming new ones. Thus, the chains —A—B—C— and —A—C—B—
have different configurations. The term conformation refers to the spatial arrangement of
the different parts of a chain, and one conformation can be changed into another by
rotating one part of a chain around a bond.

By tertiary structure is meant the overall three-dimensional structure of the molecule.
For instance, many proteins have a helical secandary structure, but in many proteins the
helix is so bent and distorted that the molecule has a globular tertiary structure. The term
quaternary structure refers to the manner in which some molecules are formed by the
aggregation of others. Haemoglobin is a famous example: each molecule consists of four
subunits of two types (the @ and the ff chains).

23.6 Random coils

As the first step in unravelling the various aspects of structure, we consider the most likely
conformation of a chain of identical units that are incapable of forming hydrogen bonds or
any ather type of specific bond. Polyethylene is a simple example, but the general idea
applies to a denatured protein too. The simplest model is a freely jointed chain, in which any
bond is free to make any angle with respect to the preceding one (Fig. 23.10); the residues
are assumed to occupy zero volume, so different parts of the chain can occupy the same
region of space. The model is obviously an oversimplification, because a bond is actually
constrained to a cone of angles around a direction defined by its neighbour
(Fig. 23.11).

The random coil is the least structured conformation of a polymer chain and corresponds
to the state of greatest entropy. Any stretching of the coil introduces order and reduces the
entropy. Conversely, the formation of a random coil from a more extended form is a
spontaneous process (provided enthalpy contributions do not interfere). The random coil
model is a helpful starting point for estimating the orders of magnitude of the
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23.12 The change in molar entropy of a perfect
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hydrodynamic properties (such as sedimentation rates) of polymers and denatured proteins
in solution,

The elasticity of a perfect clastomer, a flexible polymer in which the internal energy is
independent of the extension, may also be discussed in terms of the properties of a random
coii. The strategy is to set up an expression for the conformational entropy, the statistical
entropy arising from the arrangement of bonds, and then to use various thermodynamic
relations to establish an expression for the force needed to stretch the coil. The first part of
the calculation leads to the result that the change in conformational entropy is

AS = —UNIW{(1 + )" (1 =»)"™"}  v=n/N (27)

when a polymer containing N bonds of length / is stretched or compressed by nl.

Justifieation 23.4

Consider a one-dimensional freely jointed polymer, The conformation of a molecule can be
expressed in terms of the number of bonds pointing to the right (Ng) and the number
pointing to the left (N ). The distance between the ends of the chain is (Ng — NI, where
is the length of an individual bond. We write n = Ng — Ny and the total number of bonds
asN = Np + N,

The number of ways of forming a chain with a given end-to-end distance n/ is the
number of ways of having Ny right-pointing and N, left-pointing bonds, and is given by
the binomial coefficient

N1 N!
Lls NUINR! ™ {3V + a) IV = )}

The conformational entropy of the chain, § = & In W, is therefore
S/k=InN!~In {%{‘N +n)}! —In {%(N —n)}!

Because the factorials are large (except for large extensions), we can use Stirling's
approximation (Section 19.1a) in the form

1/2

Inxl = In(27)"" + (x+ ) Inx —x

to obtain _
S/k=—In(2m)' + (N + 1) In2 + (N + 3 InN
~In{(N + AV oy t-n+1}
The most probable conformation o1 the chain is the one with the ends close together
(n = 0), as may be confirmed by differentiation. Therefore, the maximum entropy is
Sfk=~n(2n)"? + W+ 1)In2 - }InN

The change in entropy when the chain is stretched or compressed by nf is therefore the
difference of these two quantities, and the resulting expression is eqn 27 (Fig. 23.12).

Now for the thermodynamic part of the calculation. The work done on an elastomer
when it is extended through a distance dx is F dx, where F is the restoring force. The change
in internal energy is therefore

dU =TdS — pdV + Fdx (28)
It follows that

ou as
bl =T(= 2
(af")r,v T(a‘)r,v-'- s )
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6 In a perfect elastomer, as in a perfect gas, the internal energy is independent of the
dimensions (at constant temperature), so (8U/0x);, = 0. The restoring force is therefore
| s "
- Fe —T(E,.—) (30)
o CVJ)ry
& :
]
Lok . If eqn 27 is now substituted into this expression (we evade problems arising from the
TN constraint of constant volume by supposing that the sample contracts laterally as it is
tlooie . stretched), we obtain o
of o
e, o T(OS\ LT () _AT (v 31)°
T TTI\m/)y, NI\BY/,, 2 \T-w
2L By
This function is plotted in Fig. 23.13. At low extensions, when v < 1,
4l " Fa vk nkT (32)°
\ DR
8 . | | ) and the sample obeys Hooke's law (that the restoring force is proportional to the
-1.0 -05 0 05 1.0 displacement). For small displacements, therefore, the whole coil shakes with simple
. Ry harmonic motion.
23.13 The restoring force, F, of a one-dimensional m i 6 2
perfect rubber, For small deflections, F is linearly (a) The radial distribution
E"’F"’“i"“" to extension, corresponding to Hooke's As shown in the Justification below, the same model used to discuss the elasticity of a
W polymer can be used to calculate the probability that the ends of a one-dimensional random
coil are a distance n/ apart: -
1
P=|— ,"i" /N 33
(&) (33)
1.0~ o~ This function is plotted in Fig. 23.14.
"l ]
P T 5
o / A = insfseation s
..S 0.8_ / \ P P AL e —— e
E \ The probability of the separation being a/ is
= \ _ number of polymers with Ny bonds to the right
0.6 : B total number of arrangements of bonds
\ _ NUYNRUN = Ng)! N!
\ 2N _{é{N+n)}!{%(N—n)}!2”
0.4}
At this point, the development follows the same route as in the previous Justification, and
the use of Stirling's approximation gives (after quite a lot of algebra)
0.2+ \ 2172
' InP=1In (;;_f\?) ~N+na+D)In(1+v) =N =-n+1)In(1 —v)
0 | | L Ry For small extensions (1 < 1) we can use the approximation In (1 + 1)~ v -} and so
=4 -2 0 . 2 4 obtain
niN 2\ 12
~ 2 |
23.14 The probability distribution for the L (nN) ZN')
separation of the ends of a one-dimensional . .
random coil, The separation of the ends is nl, where which rearranges into eqn 33.

1 is the bond length,
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23.15 The variation of the root mean square
separation of the ends of a three-dimensional
random coil, R, with the number of monomers.

23 MACROMOLECULES AND COLLOIDS

Equation 33 can be used to calculate the probability that in a three-dimensional coil the
ends of the chain lie in the infinitesimal range R to R + dR. We write this probability as fdR,
where

a \3 2 —dR? 3 12
f=41:(m) R a= (55 (34)

As usual, N is the number of bonds and [ is the bond length.® Equation 34 shows that, in
some coils (the proportion being given by the value of f with R large), the ends may be far
apart, whereas in others their separation is small. An alternative interpretation is to regard
each coil as ceaselessly writhing from one conformation to another; then fdR is the
probability that at any instant the chain will be found with the separation of its ends
between R and R + dR.

(b) Measures of size

There are several measures of the geometrical size of a random coil. The contour length, R,
is the length of the macromolecule measured along its backbone from atom to atom (the
maximum distance that the random walker could walk). For a polymer of N monomer units
each of length /, the contour length is

R, = NI (35)

The root mean square separation, R, is a measure of the average separation of the ends
of a random coil: it is the square root of the mean value of R?, calculated by weighting each
possible value of R? with the probability that R occurs:

@ 1/2
Ris = (f szdR) =N (36)
! .

We see that, as the number of monomer units increases, the root mean square separation of
its ends increases as N'/? (Fig. 23.15), and consequently its volume increases as N*/2,
Similarly, the radius of gyration of the coil is

R, = (%") i : 37

The radius of gyration also increases as N'/2,

Example 23.6 Calculating the dimensions of a random coil

Calculate the mean separation of the ends of a freely jointed polymer chain of /V bonds of
length 1.

Method The general expression for the mean nth power of the end-to-end separation is
kel
&)= [ Rfar
i

which should be used with n =1 and f from eqn 34.

Answer The mean separation is

a3m3_azxz 2_8]\(”z
(R)_4n(m)j; R Fdr=—m= (] !

a Here and elsewhere we are ignoring the fact that the chain cannot be longer than NI. Although egn 34 gives a nonzero
probability for R> NI, the values are so small that the errors in pretending that R can range up to infinity are negligible.



23.16 A random coil in three dimensions. This one
contains about 200 units. The root mean square
distance between the ends (R,.,) and the radius of
gyration (R,) are indicated.
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The standard integral we have used is

= 3 —ated _L
j; xX'e d.x—M

Comment The result must be multiplied by a factor when the chain is not freely jointed: see
below.

Sclf-test 23.6 Evaluate the root mean square separation of the ends of the chain.

V2

(c) Constrained chains

Before making use of these conclusions we must remove the freedom for bond angles to
take any value. This adjustment is simple for long chains, for we can take groups of
neighbouring bonds and consider the direction of their resultant. Although the individual
bonds are constrained to a single cone of angle 6, the resultant of several bonds lies in a
random direction. By concentrating on such groups rather than individuals, it turns out that
for long chains the average values given above should be multiplied by

F=G;Eﬂ9m 38)

1+ cosf

For tetrahedral bonds, for which cos 0 = — | (that is, 8 = 109.5°), F = 2'/2. Therefore:

/2
R =(2N)'?1 R, = ({:_)' i (39)

lllustration

For a polyethylene chain with M = 56 kgmol~', corresponding to N = 4000, because
/=154 pm for a C—C bond, we find R, = 14 nm and R, = 5.6 nm (Fig. 23.16). This
value of R, means that, on average, the coils rotate like hollow spheres of radius 5.6 nm and
mass equal to the molecular mass.

The model of a randomly coiled molecule is still an approximation, even after the bond
angles have been restricted, because it does not take into account the impossibility of two or
more atoms occupying the same place. Such self-avoidance tends to swell the coil, so it is
better to regard R y,, and R, as lower bounds to the actual values. The model also ignores the
role of the solvent: a poor solvent will tend to cause the coil to tighten so that solute-
solvent contacts are minimized; a good solvent does the opposite. A 0 solvent leaves the coil
in its natural state,

23.7 Heliees and sheets

Natural macromolecules need a precisely maintained conformation to function. The
achievement of a specific conformation is the major remaining problem in protein synthesis
for, although primary structures can be built, the product is inactive because the correct
secondary structure is not adopted.
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link. The C—CO—NH—C atoms define a plane (the
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23.18 The polypeptide a helix. There are 3.6
residues per turn, and a translation along the helix
of 150 pm per residue, giving a pitch of 540 pm.
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600 pm.
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(a) The Corey-Pauling rules -

The origin of the secondary structures of proteins is found in the rules formulated by Linus
Pauling and Robert Corey in 1951. The essential feature is the stabilization of structures by
hydrogen bonds involving the peptide link. The latter can act both as a donor of the H atom
(the NH part of the link) and as an acceptor (the CO part). The Corey-Pauling rules are as
follows (Fig. 23.17):

1. The atoms of the peptide link lie in a plane.

2. The N, H, and O atoms of a hydrogen bond lie in a straight line (with
displacements of H tolerated up to not more than 30° from the N—O vector).

3. All NH and CO groups are engaged in hydrogen bonding.

The rules are satisfied by two structures. One, in which hydrogen bonding occurs between
peptide links of the same chain, is the a helix. The other, in which hydrogen bonding links
different chains, is the p-pleated sheet; this form is the secondary structure of the protein
fibroin, the constituent of silk.

The o helix is illustrated in Fig. 23.18. Each turn of the helix contains 3.6 amino acid
residues, so the period of the helix corresponds to 5 turns (18 residues). The pitch of a single
turn (the distance between points separated by 360°) is 544 pm. The N—H- - O bonds lies
parallel to the axis and residue 7 is linked to residues i — 4 and i + 4. There is freedom for the
helix to be arranged as either a right- or a left-handed screw, but the overwhelming majority
of natural polypeptides are right-handed on account of the preponderance of the L-
configuration of the naturally occurring amino acids, as we explain below. The reason for
their preponderance is uncertain, but it may be related to the symmetries of fundamental
particles and the nonconservation of parity (the fact that this universe behaves differently
from its hypothetical mirror image).

(b) Conformational energy

The stabilities of different polypeptide geometries can be investigated by calculating the
total potential energy of all the interactions between nonbonded atoms, and looking for a
minimum. It turns out, in agreement with experience, that a right-handed « helix of L-amino
acids is marginally more stable than a left-handed helix of the same acids.

The geometry of the chain can be specified by two angles, ¢ (the torsional angle for the
N—C bond) and ¢ (the torsional angle for the C—C baond). The illustration in Fig. 23.19
defines these angles. The sign convention is that a positive angle means that the front atom
must be rotated clockwise to bring it into an eclipsed position relative to the rear atom. The
illustration shows the all-trans form of the chain, in which all ¢ and y are 180°. A helix is
obtained when all the ¢ are equal and when all the iy are equal. For a right-handed « helix,
all ¢ = —57° and all y = —47°. For a left-handed « helix, both angles are positive. Because
only two angles are needed to specify the conformation of a helix, and they range from
—180° to +180°, the potential energy of the entire molecule can be represented on a
Ramachandran plot, a contour diagram in which one axis represents ¢ and the other
represents .

The potential energy of a given conformation (¢, ) can be calculated by using the
expressions developed in Sections 22.3 and 22.4; the procedure is now widely automated in
commercially available molecular modelling software. For example, the interaction energy of
two atoms separated by a distance R (which we know once ¢ and y are specified) can be
given the Lennard-Jones (12, 6) form. If the partial charges on the atoms (arising from ionic
character in the bonds) are known, a Coulombic contribution of the form 1/R can be
included. The inclusion of Coulombic interactions is sometimes accomplished by ascribing
charges —0.28¢ and +0.28¢ to N and H, respectively, and —0.39¢ and -+0.39¢ to O and C,
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23.19 The definition of the torsional angles ¢ and
¢ between two peptide units. In this case (an a-L-
polypeptide) the chain has been drawn in its all-
trans form, with = ¢ = 180°,

23.21 The structure of myoglobin. Only the a-
carbon atom positions are shown. The haém group,
the oxygen binding group, is shown as a shaded
region. (Based on M.F. Perutz, copyright Scientific
American, 1964; with permission.)
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2320 Ramachandran diagrams for (a) a glycyl residue of a polypeptide chain and (b) an alanyl residue.
The darker the shading is, the lower the potential energy. The glycyl diagram is symmetrical, but regions |
and Il in the alanine diagram, which correspond to right- and left-handed helices, are unsymmetrical,
and the minimum in region | lies lower than that in region Il. (After D.A. Brant and P.J. Flory, J. Mol
Biol. 23, 47 (1967).)

respectively. There is also a torsional contribution arising from the barrier to internal
rotation of one bond relative to another (just like the barrier to internal rotation in ethane),
and which is normally expressed as

V = A(1 + cos 3¢) + B(1 + cos3y) (40)

in which A and B are constants of the order of 1 kJmol~".

The potential energy contours for the helical form of polypeptide chains formed from the
nonchiral amino acid glycine (R = H) and the chiral amino acid L-alanine are shown in
Fig. 23.20. They were computed by summing all the contributions described above for each
choice of angles, and then ‘plotting contours of equal potential energy. The glycine map is
symmetrical, with minima of equal depth at ¢ = —80° = +90° and at ¢ = +80°,
¥ = —90°. In cantrast, the map for L-alanine is unsymmetrical, and there are three distinct
low-energy conformations (marked 1, Il, 11l). The minima of regions | and Il lie close to the
angles typical of right- and left-handed a helices, but the former has a lower minimum,
which is consistent with the formation of right-handed helices from the naturally occurring
L-amino acids.

23.8 Higher-order structures

Helical polypeptide chains are folded into a tertiary structure if there are other bonding
influences between the residues of the chain that are strong enough to overcome the
interactions responsible for the secondary structure. The folding influences include disulfide
(—S—5—) links, ionic interactions (which depend on the pH), and strong hydrogen bonds
(such as 0—H - -- 0—), and is illustrated by the structure of myoglobin (Fig. 23.21), the full
structure {of 2600 atoms) having been determined by X-ray diffraction. The folding of the
basic « helix caused by disulfide links can be seen in the structure: about 77 per cent of the
structure is a helix, the rest being involved in the folds.

Proteins with M>50 kgmol~' are often found to be aggregates of two or more
polypeptide chains. The possibility of such a quaternary structure often confuses the
determination of their molar masses, for different techniques might give values differing by
factors of 2 or more. Haemoglobin, which consists of four myoglobin-like chains, is an
example.

Protein denaturation can be caused by several means, and different aspects of structure
may be affected. The ‘permanent waving' of hair, for example, is reorganization at the
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quaternary level. Hair is a form of the protein keratin, and its quaternary structure is thought
to be a multiple helix, with the « helices bound together by disulfide links and hydrogen
bonds (although there is some dispute about its precise structure). The process of permanent
waving consists of disrupting these links, unravelling the keratin quaternary structure, and
then reforming it into a more fashionable disposition. The ‘permanence’ is only temporary,
however, because the structure of newly formed hair is genetically controlled. Incidentally,
normal hair grows at a rate that requires at least 10 twists of the keratin helix to be
produced each second, so very close inspection of the human scalp would show it to be
literally writhing with activity.

Denaturation at the secondary level is brought about by agents that destroy hydrogen
bonds. Thermal motion may be sufficient, in which case denaturation is a kind of
intramolecular melting. When eggs are cooked, the albumin is denatured irreversibly, and
the protein collapses into a structure resembling a random coil. This helix-coil transition is
sharp, like ordinary melting, because it is a cooperative process: when one hydrogen bond
has been broken it is easier to break the bonds to its neighbours, and then even easier to
break their bonds, and so on. The disruption cascades down the helix, and the transition
occurs sharply. Denaturation may also be brought about chemically, For instance, a solvent
that forms stronger hydrogen bonds than those within the helix will compete successfully
for the NH and CO groups. Acids and bases can cause denaturation by protonation or
deprotonation of groups involved in hydrogen bonding.

Colloids and surfactants

Much of the material discussed in this chapter also applies to aggregates of particles, either
in the form of small particles or of extended sheets, like those forming biological cell walls.
However, these systems present a number of specific properties, and we concentrate on
them.

23.9 The properties of colloids

A colloid, or disperse phase, is a dispersion of small particles of one material in another. In
this context, ‘small' means something less than about 500 nm in diameter (about the
wavelength of visible light). In general, colloidal particles are aggregates of numerous atoms
or molecules, but are too small to be seen with an ordinary optical microscope. They pass
through most filter papers, but can be detected by light-scattering, sedimentation, and
05Mosis.

(a) Classification and preparation

The name given to the disperse phase depends on the two phases involved. A sol is a
dispersion of a solid in a liquid (such as clusters of gold atoms in water) or of a solid in a solid
(such as ruby glass, which is a gold-in-glass sol, and achieves its colour by scattering). An
aerosol is a dispersion of a liquid in a gas (like fog and many sprays) or a solid in a gas (such
as smoke): the particles are often large enough to be seen with a microscope. An emulsion is
a dispersion of a liquid in a liquid (such as milk).

A further classification of colloids is as lyophilic, or solvent-attracting, and iyophobic,
solvent-repelling. If the solvent is water, the terms hydrophilic and hydrophobic,
respectively, are used instead. Lyophobic colloids include the metal sols. Lyophilic colloids
generally have some chemical similarity to the solvent, such as ~OH groups able to form
hydrogen bonds. A gel is a semirigid mass of a lyophilic sol in which all the dispersion
medium has penetrated intu the sol particles.
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The preparation of aerosols can be as simple as sneezing (which produces an imperfect
aerosol). Laboratory and commercial methods make use of several techniques. Material (for
example, quartz) may be ground in the presence of the dispersion medium. Passing a heavy
electric current through a cell may lead to the sputtering (crumbling) of an electrode into
colloidal particles. Arcing between electrodes immersed in the: support medium also
produces a colloid. Chemical precipitation sometimes results in a colloid. A precipitate (for
example, silver iodide) already formed may be dispersed by the addition of a peptizing agent
{for example, potassium iodide). Clays may be peptized by alkalis, the OH™ ion being the
active agent.

Emulsions are normally prepared by shaking the two components together vigorously,
although some kind of emulsifying agent usually has to be added to stabilize the product.
This emulsifying agent may be a soap (the salt of a long-chain carboxylic acid) or other
surfactant (surface active] species, or a lyophilic sol that forms a protective film around the
dispersed phase. In milk, which is an emulsion of fats in water, the emulsifying agent is
casein, a protein containing phosphate groups. It is clear from the formation of cream on the
surface of milk that casein is not completely successful in stabilizing milk: the dispersed fats
coalesce into oily droplets which float to the surface. This coagulation may be prevented by
ensuring that the emulsion is dispersed very finely initially: intense agitation with
ultrasonics brings this dispersion about, the product being ‘homaogenized" milk.

One way to form an aerosol is to tear apart a spray of liquid with a jet of gas. The dispersal
is aided if a charge is applied to the liquid, for then electrostatic repulsions help to blast it
apart into droplets. This procedure may also be used to produce emulsions, for the charged
liquid phase may be directed into another liquid.

Colloids are often purified by dialysis. The aim is to remove much (but not all, for reasons
explained later) of the ionic material that may have accompanied their formation. As in the
discussion of the Donnan cffect in Section 23.2b, a membrane (for example, cellulose) is
selected that is permeable to solvent and ions, but not to the colloid particles. Dialysis is very
slow, and is normally accelerated by applying an electric field and making use of the charges
carried by many colloid particles; the technique is then called electrodialysis.

(b) Structure and stability

A disperse phase is thermodynamically unstable with respect to the bulk. This instability can
be expressed thermodynamically by noting that, because the change in Gibbs energy, dG,
when the surface area of the sample changes by do at constant temperature and pressure is
dG = yda, where 7 is the interfacial surface tension (Section 6.10), it follows that dG <0 if
da <0, The survival of colloids must therefore be a consequence of the kinetics of collapse:
colluids are thermodynamically unstable but kinetically nonlabile.

At first sight, even the kinetic argument seems to fail: colloidal particles attract cach
other over large distances, so there is a long-range force that tends to condense them intoa
single blob. The reasoning behind this remark is as follows. The energy of attraction between
two individual atoms i and j separated by a distance R,;, one in each colloidal particle, varies
as their separation as l,r’R3 (Section 22.4). The sum of all these pairwise interactions,
however, decreases only as approximately I/R? (the precise variation depending on the
shape of the particles and their closeness), where R is the separation of the centres of the
particles. The sum has a much longer range than the 1/R® dependence characteristic of
individual particles and small molecules.

Several factors oppose the long-range dispersion attraction. For example, there may be a
protective film at the surface of the colloid particles that stabilizes the interface and cannot
be penetrated when two particles touch. Thus the surface atotiis of a platinum sol in water
react chemically and are turned into -Pt(OH),H,, and this layer encases the particle like a
shell. A fat can be emulsified by a soap because the long hydrocarbon tails penetrate the oil
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23.22 A schematic version of a spherical micelle.
The hydrophilic groups are represented by spheres
and the hydrophobic hydrocarbon chains are

represented by the stalks; these stalks are mobile.
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21.23 The typical variation of some physical
properties of an aqueous solution of sodium
dodecylsulfate close to the critical micelle
concentration (CMC).
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droplet but the carboxylate head groups (or other hydrophilic groups in synthetic
detergents) surround the surface, form hydrogen bonds with water, and give rise to a
shell of negative charge that repels a possible approach from another similarly charged
particle,

(c) Micelle formation and the hydrophobic interaction

Surfactant molecules or ions can cluster together as micelles, which are colloid-sized
clusters of molecules, for their hydrophobic tails tend to congregate, and their hydrophilic
heads provide protection (Fig. 23.22). Micelles form only above the critical micelle
concentration (CMC) and above the Krafft temperature. The CMC is detected by noting a
pronounced discontinuity in physical properties of the solution, particularly the molar
conductivity (Fig. 23.23). The hydrocarbon interior of a micelle is like a droplet of oil. Nuclear
magnetic resonance shows that the hydrocarbon tails are mobile, but slightly more
restricted than in the bulk. Micelles are important in industry and biology on account of
their solubilizing function: matter can be transported by water after it has been dissolved in
their hydrocarbon interiors. For this reason, micellar systems are used as detergents and drug

carriers, and for organic synthesis, froth flotation, and petroleum recovery. )

Nonionic surfactant molecules may cluster together in clumps of 1000 or more, but ionic
species tend to be disrupted by the electrostatic repulsions between head groups and are
normally limited to groups of less than about 100. The micelle population is often
polydisperse, and the shapes of the individual micelles vary with concentration. Spherical
micelles do occur, but micelles are more commonly flattened spheres close to the CMC. Some
micelles at concentrations well above the CMC form extended parallel sheets, called lamellar
micelles, two molecules thick. The individual molecules lie perpendicular to the sheets, with
hydrophilic groups on the outside in aqueous solution and on the inside in nonpolar media.
Such lamellar micelles show a close resemblance to biological membranes, and are often a
useful model on which to base investigations of biological structures. In concentrated
solutions micelles formed from surfactant molecules may take the form of long cylinders
and stack together in reasonably close-packed (hexagonal) arrays. These orderly
arrangements of micelles are called lyotropic mesomorphs, and more colloquially ‘liquid
crystalline phases’ (Section 24.5e).

Micelle formation in aqueous systems is commonly endothermic, with AH = 1-2 kJ per
mole of surfactant. That micelles do form above the CMC indicates that the entropy change
accompanying their formation must then be positive, and measurements suggest a value of
about +140 JK~"mol~' at room temperature. The fact that the entropy change is positive
even though the molecules are clustering together shows that there must be a contribution
to the entropy from the solvent, and that solvent molecules must be more free to move once
the solute molecules have herded into small clusters, This interpretation is plausible, because
each individual solute molecule is held in an organized solvent cage (Fig. 23.24), but once
the micelle has formed the solvent molecules need form only a single (admittedly larger)
cage. The increase in energy when hydrophobic groups cluster together and reduce their
structural demands on the solvent is the origin of the hydrophobic interaction, which tends
to stabilize groupings of hydrophobic groups in biological macromolecules. The hydrophobic
interaction is an example of an ordering process that is stabilized by a tendency toward
greater disorder of the solvenl.

(d) The electrical double layer

A major source of kinetic stability of colloids is the existence of an electric charge on the
surfaces of the particles. On account of this charge, ions of opposite charge tend to cluster
nearby, and an ionic atmosphere is formed, just as for ions (Section 10.2c).



23.24 When a hydrocarbon molecule is surrounded
by water, the H,0 molecules form a clathrate cage.
As a result of this acquisition of structure, the
entropy of the water decreases, so the dispersal of
the hydrocarbon into the water is entropy-opposed;
its coalescence is entropy-favoured.

p>a

Potential energy, V

Ceagulation [

Fiocculation Separation, s

23.25 The patential energy of interaction as a
function of the separation of the centres of the
two particles and its variation with the ratio of the
particle size to the thickness a of the electrical
double layer rp. The regions labelled coagulation
and floceulation show the dips in the potential
energy curves where these processes occur.
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Twa regions of charge must be distinguished. First, there is a fairly immobile layer of ions
that adhere tightly to the surface of the colloidal particle, and which may include water
molecules (if that is the support medium). The radius of the sphere that captures this rigid
layer is called the radius of shear, and is the major factor determining the mobility of the
particles. The electric potential at the radius of shear relative to its value in the distant, bulk
medium is called the zeta potential, {, or the electrokinetic potential. Second, the charged
unit attracts an oppositely charged atmosphere of mobile ions. The inner shell of charge and
the outer ionic atmosphere is called the electrical double layer.

The theory of the stability of lyophobic dispersions was developed by B. Derjaguin and
L Landau and independently by E. Verwey and J.T.G. Overbeek, and is known as the DLVO
theory. It assumes that there is a balance between the repulsive interaction between the
charges of the electrical double !ayers on neighbouring particles and the attractive
interactions arising from van der Waals interactions between the molecules in the particles.
The potential energy arising from the repulsion of double layers on particles of radius a has
the form

22

Viegnttion = 1 AGY el (41)

where A is a constant, { is the zeta polential.‘ R is the separation of centres, 5 is the

separation of the surfaces of the two particles (s = R — 2a for spherical particles of radius

a), and ry, is the thickness of the double layer. This expression is valid for small particles with

a thick double layer (¢ < rp). When the double layer is thin (a » ry,). the expression is
replaced by

vr:pul.clon =+ %Aa':z ln(l + e—’.""n] (42)

In each case, the thickness of the double layer can be estimated from an expression like that
derived for the thickness of the ionic atmosphere in the Debye-Hiickel theory (eqn 10.33):

RT "2
. - - 43
n (zpplme) (43)

where / is the ionic strength of the solution, p its mass density, and b2 =1 molkg™'. The
potential energy arising from the attractive interaction has the form

v (44)

Vattraction =
s

where B is another constant. The variation of the total potential energy with separation is
shown in Fig. 23.25. ‘

At high ionic strengths, the ionic atmosphere is dense and the potential shows a
secondary minimum at large separations. Aggregation of the particles arising from the
stabilizing effect of this secondary minimum is called flocculation, The flocculated material
can often be redispersed by agitation because the well is so shallow. Coagulation, the
irreversible blending together of distinct particles into large particles, occurs when the
separation of the particles is so small that they enter the primary minimum of the potential
energy curve and van der Waals forces are dominant.

The ionic strength is increased by the addition of ions, particularly those of high charge
type, so such ions act as flocculating agents. This increase is the basis of the empirical
Schulze-Hardy rule, that hydrophobic colloids are flocculated most efficiently by ions of
opposite charge type and high charge number. The AI** ions in alum are very effective, and
are used to induce the congealing of blood. When river water containing colloidal clay flows

4 The actual potential is that of the surface of the particles; there is some danger in identifying it with the zeta potential Set the
references in Further reading
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23.26 The plot of drift speed against pH by which
the isoelectric point of a macromolecule can be
determined: it corresponds to the pH at which the
drift speed in the presence of an electric field is zero.
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into the sea, the salt water induces flocculation and coagulation, and is a major cause of
silting in estuaries.

Metal oxide sols tend to be positively charged whereas sulfur and the noble metals tend
to be negatively charged. Naturally occurring macromolecules also acquire a charge when
dispersed in water, and an important feature of proteins and other natural macromolecules
is that their averall charge depends on the pH of the medium. For instance, in acidic
enviranments protons attach to basic groups, and the net charge of the macromolecule is
positive; in basic media the net charge is negative as a result of proton loss. At the isoelectric
point the pH is such that there is no net charge on the macromolecule.

Example 23.7 Determining the isoelectric point

The drift speed of bovine serum albumin (BSA) under the influence of an electric field in
aqueous solution was monitored at several values of pH, and the data are listed below
(opposite signs indicate opposite directions of travel). What is the isoelectric point of the
protein?

pH 420 456 520 565 630  7.00
Speed/(ums=')  4+0.50 +0.18 —025 —0.65 -090 —1].25

Mcthod The macromolecule has zero electrophoretic mobility when it is uncharged.
Therefore, the isoelectric point is the pH at which it does not migrate in an electric field. We
should therefore plot speed against pH and find by interpolation the pH of zero mobility.

Answer The data are plotted in Fig. 23.26. The drift speed is zero at pH = 4.8; hence
pH = 4.8 is the isoelectric point.

Comment For some species, the isoelectric point must be obtained by extrapolation
because the macromolecule might not be stable over the whole pH range.

Sclf-test Q'J.T The following data were obtained for another protein;

pH 4.5 5.0 5.5 6.0
Speed/(pms™')  -0.10 -020 —0.30 -0.35

Estimate the pH of the isoelectric point.
(4.3]

The primary role of the electrical double layer is to confer kinetic stability. Colliding
colloidal’ particles break through the double layer and coalesce only if the collision is
sufficiently energetic to disrupt the layers of ions and solvating molecules, or if thermal
motion has stirred away the surface accumulation of charge. This disruption may occur at
high temperatures, which is one reason why sols precipitate when they are heated. The
protective role of the double layer is the reason why it is important not to remove all the ions
when a colloid is being purified by dialysis, and why proteins coagulate most readily at their
isoelectric point.

23.10 Surface films

The compositions of surface layers have been investigated by the simple (but technically
clegant) procedure of slicing thin layers off the surfaces of solutions and analysing their
compositions. The physical properties of surface films have also been investigated. Surface
films one molecule thick, such as that formed by a surfactant, are called monolayers. When a
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to mea. Jre the surface pressure and other
chifracteristics of a surface film. The surfactant is
spread on the surface of the liquid in the trough,
and then compressed horizontally by moving the
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monolayer has been transferred to a solid support, it is called a Langmuir-Blodgett film,
after Irving Langmuir and Katherine Blodgett, who developed experimental techniques for
studying them.

(a) Surface pressure

The principal apparatus used for the study of surface monolayers is a surface film balance,
Fig. 23.27. This device consists of a shallow trough and a barrier that can be moved along the
surface of the liquid in the trough, and hence compress any monolayer on the surface. The
surface pressure, n, the difference between the surface tension of the pure solvent and the
solution [ = y* — y) is measured by using a torsion wire attached to a strip of mica that
rests on the surface and against which one edge of the monolayer is pressed. The parts of the
apparatus that are in touch with liquids are coated in polytetrafluoroethylene to eliminate
effects arising from the liquid-solid interface. In an actual experiment, a small amount
(about 0.01 mg) of the surfactant under investigation is dissolved in a volatile solvent and
then poured on to the surface of the water; the compression barrier is then moved across the
surface and the surface pressure exerted on the mica bar is monitored.

Some typical results are shown in Fig. 23.28. One parameter obtained from the isotherms
is the area occupied by the molecules when the monolayer is closely packed. This quantity is
obtained from the extrapolation of the steepest part of the isotherm to the horizontal axis.
As can be seen from the illustration, even though stearic acid (1) and isostearic acid (2) are
chemically very similar (they differ only in the location of a methyl group at the end of a
long hydrocarbon chain), they occupy significantly different areas in the monolayer. Neither,
though, occupies as much area as the tri-p-cresyl phosphate molecule (3), which is like a
wide bush rather than a lanky tree.

The second feature to note from Fig. 23.28 is that the tri-p-cresyl phosphate isotherm is
much less steep than the stearic acid isotherms. This difference indicates that the tri-p-cresyl
phosphate film is more compressible than the stearic acid films, which is eonsistent with
their different molecular structures.

A third feature of the isotherms is the collapse pressure, the highest surface pressure.
When the monolayer is compressed beyond the paint represented by the collapse pressure,
the monolayer buckles and collapses into a film several molecules thick. As can be seen from
the isotherms in Fig. 23.28, stearic acid has a high collapse pressure, but that of tri-p-cresyl
phaosphate is significantly smaller, indicating a much weaker film.

|

1 Stearic acid

COOH COOH

2 Isostearic acid 3 Tri-p-cresylphosphate
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(b) The thermodynamics of surface layers

A surfactant is active at the interface between two phases, such as at the interface between
hydrophilic and hydrophobic phases. A surfactant=accumulates at the interface, and
modifies its surface tension and hence the surface pressure. To establish the relation
between the concentration of surfactant at a surface and the change in surface tension it
brings about, we consider two phases @ and ff in contact and suppose that the system
consists of several components J, each one present in an overall amount ny. If the
components were distributed uniformly through the two phases right up to the interface,
which is taken to be a plane of surface area a, the total Gibbs energy, G, would be the sum of
the Gibbs ensrgies of both phases, G = G(x) + G(ff). However, the components are not
uniformly distributed because one may accumulate at the interface. As a result, the sum of
the two Gibbs energies differs from G by an amount called the surface Gibbs energy, G‘a):

G(o) =G — {G(x) + G(B)} . (45]

Similarly, if it is supposed that the concentration of a species J is uniform right up to the
interface, then from its volume we would conclude that it contains an amount n,(«) of J in
phase x and an amount n;(f8) in phase fi. However, becaust a species may accumulate at the
interface, the total amount of J differs from the sum of these two amounts by
ny(o) = ny — {ny(2) + ny(B)}. This difference is expressed in terms of the surface excess,
ry:

= %1 (48]

The surface excess may be either positive (an accumulation of J at the interface) or negative
(a deficiency there).

The relation between the change in surface tension and the composition of a surface (as
expressed by the surface excess) was derived by Gibbs. In the following Justification we
derive the Gibbs isotherm, between the changes in the chemical potentials of the
substances present in the interface and the change in surface tension:

dy=-%_ Iy (47)
]

Justification 23.6

A general change in G.is brought about by changes in T, p, and the ny:
dG = <SdT + Vdp + ydo + Y _ py dny
J

When this relation is applied to G, G(«), and G(f) we find
dG(a) = —S(0)dT +ydo + _ pydny(a)
L ]
because at equilibrium the chemical potential of each component is the same in every

phase, ju;(a) = jiy(B) = py(c). Just as in the discussion of partial molar quantities
(Section 7.1), the last equation integrates at constant temperature to

Glo) =yo + Z (@)
1
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We are seeking a connection between the change of surface tension dy and the change of
composition at the interface. Therefore, we use the argument which in Section 7.1d led to
the Gibbs-Duhem equation (eqn 7.12), but this time we compare the expression

dG(o) = ydo + Eﬂ) dny(o)
]

(which is valid at constant temperature) with the expression for the same quantity but
derived from the preceding equation:

dG(0) = ydo +ady+ Y uydny + Y my(o) dyy
] R

The comparison implies that, at constant temperature,

ody+ Y nydp =0
J

Division by & then gives eqn 47.

Now consider a simplified model of the interface in which the 'oil’ and 'water’ phases are
scparated by a geometrically flat surface. This approximation implies that only the
surfactant, S, accumulates at the surface, and hence that ', and Iy, are both zero. Then
the Gibbs equation becomes

dy = =g dug (48)
For dilute solutions,
dus = RTdInc o (49)°
where ¢ is the molar concentration of the surfactant. It follows that
dy = —RTTg E
2

at constant temperature, or

ady RTTg o
0] eSS 50
(ac)r c (0)
If the surfactant accumulates at the interface, its surface excess is positive and eqn 50
implies that (3y/dc), <0. That is, the surface tension decreases when a solute accumulates
at a surface. Conversely, if the concentration dependence of y is known, the surface excess
may be predicted and used to infer the area occupied by each surfactant molecule on the
surface.

Checklist of key ideas

[ polymers ] viscosity-average molar | ' polyanion ] electrophoresis
[J monomers mass (3) || polycation ] gel electropharesis
[0 weight-average molar mass © ' “ polyampholyte [[] size-exclusion chromatogra-
Size and shape (2) Donnan equilibrium phy (SEC)
: : I} Z-average molar mass (4) LI gel pcrmeatfon

23.1 Mean molar masses [] heterogeneity index 23.3 Sedimentation ‘ chromatography (GPC)
] monodisperse ’ | sedimentation
] polydisperse 23.2 Colligative properties | ! frictional coefficient 23.4 Viscosity
[J number-average molar mass [] Florey theta temperature | drift speed {_] intrinsic viscosity (19)

) [7] @ solution | | sedimentation constant (11) [} Ostwald viscometer

7] vapour-phase osmometry | | Stokes' relation (13) [_j rotating drum viscometer
[ polyelectrolyte | ] Stokes-Einstein relation (15)
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[J Mark-Kuhn-Houwink-
Sakurada equation (21)

23.6 Random coils

freely jointed chain

random coil

perfect elastomer
conformational entropy (27)
radial distribution (34)
contour length (35)

root mean square separation
(36)

23.5 Light scattering

[ Rayleigh scattering

[J radius of gyration (26)
[ polymer dynamics

O dynamic light scattering
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Conformation and configuration
23.7 Helices and sheets

p;lmagy;;:;cture [7] Corey-Pauling rules
PRYRED [} Ramachandran plot
secondary structure p

1 a helix

denaturation (] p-pleated sheet

configuration
conformation
tertiary structure
quaternary structure

23.8 Higher-order structures
] helix-coil transition
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Colloids and surfactants [ lyotropic mesomorph
[T hydrophobic interaction

23.9 The propertics of colloids [-] radius of shear

[ colloid (J zeta potential _

(1 disperse phase [7] electrokinetic potential

] sol [ electrical double layer

[ % aerosol [J DLVO theory

7] emulsion [0 flocculation

.1 Iyophilic [] coagulation

[ lyophobic l;—] _Schulze—'Hard_y rule

|1 hydrophilic 7] isoelectric point

hydrophobic

1
!L : gel 23.10 Surface films
[] surfactant ['I monolayer )
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i1 micelle [7] surface film balance
[} critical micelle concentration [1 surface pressure
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[] Gibbs isotherm (47)
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Exercises

23.1 (a) Calculate the number-average molar mass and the mass-
average molar mass of a mixture of equal amounts of two polymers,
one having M = 62 kgmol~' and the other M = 78 kgmol~'.

23.1 (b) Calculate the number-average molar mass and the mass-
average molar mass of a mixture of two polymers, one having
M =62kgmol~' and the other M =78 kgmol~', with their
amounts (numbers of moles) in the ratio 3 : 2.

23.2 (a) A polymer chain consists of 700 segments, each 0.90 nm
long. If the chain were ideally flexible, what would be the r.m.s.
separation of the ends of the chain?

23.2 (b) A polymer chain consists of 1200 segments, each 1.125 nm
long. If the chain were ideally flexible, what would be the r.ms.
separation of the ends of the chain?

23.3 (a) The radius of gyration of a long chain molecule is found to
be 7.3 nm. The chain consists of C-C links. Assume the chain is
randomly coiled and estimate the number of links in the chain.

23.3 (b) The radius of gyration of a long chain molecule is found to be
18.9 nm. The chain consists of links of length 450 pm. Assume the
chain is randomly coiled and estimate the number of links in the chain.

23.4 (a) Calculate the contour length (the length of the extended
chain) and the root mean square separation (the end-to-end distance)
for polyethylene with a molar mass of 280 kgmol~'.

23.4 (b) Calculate the contour length (the length of the extended
chain) and the root mean square separation (the end-to-end distance)
for polypropylenc of molar mass 174 kg mol~".

23.5 (a) What s the relative rate of sedimentation for two spherical
particles of the same density, but which differ in radius by a factor of
10?

23.5 (b) What is the relative rate of sedimentation for two spherical
particles with densities 1.10 gem™ and 1.18 gcm™ and which
differ in radius by a factor of 8.4, the former being the larger?

23.6 (a) Find the drift speed of a particle of radius 20 ym and
density 1750 kgm~> which is settling from suspension in water
(density 1000 kgm™?) under the influence of gravity alone, The
viscosity of water is 8.9 x 10~* kgm~'s~".

23.6 (b) Find the drift speed of a particle of radius 15.5 um and
density 1250 kgm™ which is settling from suspension in water
(density 1000 kgm™*) under the influence of gravity alone. The
viscosity of water is 8.9 x 107! kgm~'s~!.

23.7 (a) Human haemoglobin has a specific volume of
0.749 x 107 m* kg™, a sedimentation constant of 4.48 Sv, and a
diffusion coefficient of 6.9 x 10~'" m?s~'. Determine its molar mass
from this information.

23.7 (b) A synthetic polymer has a specific volume of
8.01 x 10~* m*kg~!, a sedimentation constant of 7.46 Sv, and a
diffusion coefficient of 7.72x 10-"" m2s-', Determine its molar
mass from this information.

23.8 (a) At 20°C the diffusion coefficient of a macromolecule is
found to be 8.3 x 10~'" m? 5™, Its sedimentation constant is 3.2 Sv

in a solution of density 1.06 gecm=*, The specific volume of the
macromolecule is 0,656 cm® g~!. Determine the molar mass of the
macromolecule.

23.8 (b) At 20°C the diffusion coefficicnt of a macromolecule is
found to be 7.9 x 10" m?s~!, Its sedimentation constant is 5.1 Sv
in a solution of density 997 kgm™>. The specific volume of the
macromolecule is 0.721 cm® g='. Determine the molar mass of the
macromaolecule.

23.9 (a) A solution consists of solvent, 30 per cent by mass of a
dimer with M = 30 kg mol~' and its monomer. What average molar
mass would be obtained from measurement of: (a) osmotic pressure,
(b) light scattering?

23.9 (b) A solution consists of 25 per cent by mass of a trimer with
M = 22kgmol™' and its monomer. What average molar mass would
be obtained by measurement of: (a) osmotic pressure, (b) light
scattering?

23.10 (a) A polyelectrolyte Na, P with M = 100 kgmol~' at a
concentration 1.00 g/(100 cm?) was equilibrated in the presence of
0.0010 M NaCl(aq) (that is, [Na*]z = 0.0010 mol L~"). What is the
value of [Na*], at equilibrium?

23.10 (b) A polyelectrolyte K,sP with M =98.0 kgmol~' at a
concentration 2.00 g/(100 cm®) was equilibrated in the presence of
0.0015 MKCl(aq) (that is, [K*]z = 0.0010 molL""). What is the
value of [K*] at equilibrium?

23.11 (a) At the start of a membrane equilibrium experiment, the
first compartment contains 1.00 L of solution with an NaX
concentration of 0.100 mol L', where X~ cannot pass through the
membrane. The second compartment has 2.00L of
0.030 M NaCl(aq). Find the concentration of Cl~ ions in the first
compartment after equilibrium is established.

23.11 (b) At the start of a membrane equilibrium experiment, the
first compartment contains 1.00 L of solution with a KX concentra-
tion of 0.150 mol L™, where X~ cannot pass through the membrane.
The second compartment has 2.00 L of 0.045 M KCl(aq). Find the
concentration of CI~ ions in the first compartment after equilibrium
is established.

23.12 (a) The data from a sedimentation equilibrium experiment
performed at 300 K on a macromolecular solute in aqueous solution
show that a graph of In ¢ against r? is a straight line with a slope of
729 cm~2. The rotational rate of the centrifuge was 50000 r.p.m. The
specific volume of the solute is'0.61 cm? g='. Calculate the molar
mass of the solute.

23.12 (b) The data from a sedimentation equilibrium experiment
performed at 293 K on a macromolecular solute in aqueous solution
show that a graph of Inc against (r/cm)?® is a straight line with a
slope of 821. The rotation rate of the centrifuge was 1080 Hz. The
specific volume of the solute is 7.2 x 10~* m? kg~'. Calculate the
molar mass of the solute,
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23.13 (a) Calculate the radial acceleration (as so many g) in a cell
placed at 6.0 cm from the centre of rotation in an ultracentrifuge
operating at 80000 r.p.m.

23.13 (b) Calculate the radial acceleration (as so many g) in a cell
placed at 5.50 cm from the centre of rotation in an ultracentrifuge
operating at 1.32 kHz.

23.14 (a) Cotton consists of the polymer cellulose, which is a linear
chain of glucose molecules. The chains are held together by hydrogen

23 MACROMOLECULES AND COLLOIDS

bonding. When a cotten shirt is ironed, it is first moistened, then
heated under pressure. Explain this process.

23.14 (b) Sections of the solid fuel rocket boosters of the space
shuttle Challenger were sealed together with O-ring rubber seals of
circumference 11 m. These secals failed at 0°C, a temperature well
above the crystallization temperature of the rubber. Speculate on why
the failure occurred.

Problems

Numerical problcrﬁs

23.1 The concentration dependence of the osmotic pressure of
solutions of a macromolecule at 20°C was found to be as follows:

c/(gL™h) 121 272 508  6.60
11/Pa 134 321 655 898

Determine the molar mass of the macromolecule and the osmotic
virial coefficient.

23.2 The osmotic pressure of a fraction of poly(vinyl chloride) in a
ketone solvent was measured at 25°C. The density of the solvent
(which is virtually equal to the density of the solution) was
0.798 gem™. Calculate the molar mass and the osmotic virial
coefficient, B, of the fraction from the following data:

c/(g/10° cm®) 0200 0400 0.600 0.088 1.000
hfem 048 - 12 1.86 2.76 3.88

23.3 The concentration dependence of the viscosity of a polymer
solution is found to be as follows:

c/(gL7Y) 132 289 573 9.7
i/(em's) 108 120 142 LT3

The viscosity of the solvent is 0.985 gm~'s~'. What is the intrinsic
viscosity of the polymer?

23.4 In asedimentation experiment the position of the boundary as a
function of time was found to be as follows:

t/min 15:5 29.1 364 58.2

r/cm 5.05 5.09 5.12 5.19

The rotation rate of the centrifuge was 45000 r.p.m. Calculate the
sedimentation constant of the solute.

23.5 In an ultracentrifuge experiment at 20°C on bovine serum
albumin the following data were obtained: p = 1.001 gem™?,
v,=1.112cm’ g~', w/2n = 322 Hz,

rfem 5.0 5.1 5.2 53 54
¢/(mgem™) 0536 0284 0.148 0077 0.039
Evaluate the molar mass of the sample.

23.6 Calculate the speed of operation (in r.p.m.) of an ultracentrifuge
needed to obtain a readily measurable concentration gradient in a
sedimentation equilibrium experiment. Take that gradient to be a
concentration at the bottom of the cell about five times greater that

at the top. Use r,,, = 5.0 em, rygom = 7.0 cm, M2 10° gmol~!,
pu, =075, T = 298 K.
23.7 At the start of a Donnan equilibrium experiment, the first

. compartment contains 2.00 L of solution which is 0.015 M in the

polyelectrolyte Na,P(ag) and 0.010 M in NaCl(ag). The second
compartment has 2.00 L of solution which is 0.0050 M in
NaCl(ag). What is the potential difference across the membrane
arising from the Na* ion concentration difference at 300 K?

23.8 Investigation of the composition of the solutions used to study
the osmotic pressure due to a polyelectrolyte with v = 20 showed
that at equilibrium the concentrations corresponded to
[CI7] ~0.020 mol L~'. Calculate the osmotic virial coefficient for
v = 20. Does it dominate the effect of excluded volume?

23.9 Sedimentation studies on haemoglobin in water gave a
sedimentation constant § = 4.5 Sv at 20°C. The diffusion coefficient
is 6.3x 107" m?s~" at the same temperature. Calculate the molar
mass of haemoglobin using v, = 0.75 cm? g" for its partial specific
volume and p =0.998 gcm™? for the density of the solution.
Estimate the effective radius of the haemoglobin molecule given that
the viscosity of the solution is 1.00 x 10~ kgm~'s~",

23.10 The times of flow of dilute solutions of polystyrene in benzene
through a viscometer at 25°C are given in the table below. From these
data, calculate the molar mass of the polystyrene samples. Since
the solutions are dilute, assume that the densities of the solutions

are the same as those of pure benzene. n(benzene) =
0.601 x 1073 kgm~'s~! (0.601 cP) at 25°C.

¢/(gL™") 0.000 2.22 5.00 8.00 10.00
t/s 208.2 248.1 303.4 371.8 421.3

23.11 The rate of sedimentation of a recently isolated protein was
monitored at 20°C and with a rotor speed of 50000 r.p.m. The
boundary receded as follows:

tfs 0 300 600 900 1200 1500 1800
rfcm 6.127 6.153 6.179 6206 6232 6.258 6.284
Calculate the sedimentation constant and the molar mass of the
protein on the basis that its partial specific volume is 0.728 cm®g™!
and its diffusion coefficient is 7.62x 107" m?s~' at 20°C, the
density of the solution then being 0.9981 gcm ™. Suggest a shape
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for the protein given that the viscosity of the solution is
1.00x 1077 kgm™'s~! at 20°C.

23.12 The viscosities of solutions of polyisobutylene in benzene were
measured at 24°C (the (' temperature for the system) with the
following results:

c/(g/10* cm?) 0 02 04 06 08 10
n/(102 kgm~'s™") 0.647 0.690 0733 0.777 0.821 0.865

Use the information in Table 23.3 to deduce the molar mass of the
polymer.
23.13 Evaluate the radius of gyration, R,, of (a) a solid sphere of

radius g, (b) a long straight rod of radius @ and length /. Show that, in
the case of a solid sphere of specific volume .,

R,/nm = 0.036902 x {(v,/cm’ g ' )(M/gmol ')}/

Evaluate R, for a species with M =100 kgmol ',
v, = 0.750 cm? g™, and, in the case of the rod, of radius 0.50 nm.
23.14 Use the information below and the expression for R, of a solid
sphere quoted in the previous problem, to classify the species below as
globular or rod-like.

M/(gmol™") v, /(cm*g™") R, /nm
Serum albumin 66 x 10° 0.752 298
Bushy stunt virus  10.6 x 105 0.741 12.0
DNA 4x 108 0.556 117.0

23.15 In formamide as solvent, poly(y-benzyl-L-glutamate) is found
by light scattering experiments to have a radius of gyration
proportional to M; in contrast, polystyrene in butanone has R,
proportional to M'/2. Present arguments to show that the first
polymer is a rigid rad, while the second is a random coil.

23.16 The structures of crystalline macromolecules may be
determined by X-ray diffraction techniques by methods similar to
those for smaller molecules. Fully crystalline polyethylene has its
chains aligned in an orthorhombic unit cell of dimensions
740 pm x 493 pm x 253 pm. There are two repeating CH,CH, units
per unit cell. Calculate the theoretical density of fully crystalline
polyethylene. The actual density ranges from 0.92 to 0.95 gem >

Theoretical problems

23.17 A polymerization process produced a Gaussian distribution of
polymers in the sense that the proportion of molecules having a molar
mass in the range M to M + dM was proportional to e M) /2kgpr,
What is the numher-average molar mass when the distribution is
narrow?

23.18 Consider the thermodynamic description of stretching rubber.
The observables are the tension, r, and length, ! (the analogues of p
and V for gases). Because dw =dl/, the basic equation is
dU = T'dS + rdl. (The term pdV is supposed negligible throughout.)
If G =U —TS — ¢, find expressions for dG and dA, and deduce the
Maxwell relations

@&, GG
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Go on to deduce the equation of state for rubber,

E’Ji{ . ar
), \ar/,

23.19 On the assumption that the tension required to keep a sample
at a constant length is proportional to the temperature (: = aT, the
analogue of p o T), show that the tension can be ascribed to the
dependence of the entropy on the length of the sample. Account for
this result in terms of the molecular nature of the sample.

23.20 Radius of gyration is defined in eqn 26. Show that an
equivalent definition is that R, is the average root mean square
distance of the atoms or groups (all assumed to be of the same mass),
that is, that R} = (1/N) 37, R}, where R; is the distance of ator j
from the centre of mass.

23.21 Use eqn 34 to deduce expressions for (a) the root mean square
separation of the ends of the chain, (b) the mean separation of the
ends, and (c] their most probable separation. Evaluate these three
quantities for a fully flexible chain with N = 4000 and [ = 154 pm.

Addjtional problems supplied by Carmen Giunta
and Charles Trapp

23.22 Polystyrene in cyclohexane at 34,5°C forms a @ solution, with
an intrinsic viscosity related to the molar mass by [g] = KM®. The
following data on polystyrene in cyclohexane are taken from
LJ. Fetters, N. Hadjichristidis, J.S. Lindner, and JW. Mays (/. Phys.
Chem. Ref. Data 23, 619 (1994)).

M/(kgmol™') 100 198 106 249 359
[nl/lem3g™") 890 119 281 440 512
M/(kgmol™') 860 1800 5470 9720 56800
mlf{em*e™) 776 1139 195 275 667

Determine the paramcters K and a. What is the molar mass of a
polystyrene that forms a € solution in cyclohexane with
{n] = 100 cm*g~'?

23.23 Polymer scientists often report their data in rather strange
units. For example, in the determination of molar masses of polymers
in solution by osmometry, osmotic pressures are often reported in
grams per square centimetre (gcm~2) and concentrations in grams
per cubic centimetre (gcm ™). (a) With these choices of units, what
would be the units of R in the van't Hoff equation? (b) The data in the
table below on the concentration dependence of the osmotic pressure
of polyisobutene in chlorobenzene at 25°C have been adapted from J.
Leonard and H. Daoust (J. Polymer Sci. 57, 53 (1962)). From these data,
determine the number average molar mass of polyisobutene by
plotting /1 /c against c. (c) Theta solvents are solvents for which the
second usmotic virial coefficient is zero; for ‘poor’ solvents the plot is
linear and for good solvents the plot is nonlinear. From your plot, how
would you classify chlorobenzene as a solvent for polyisobutene?
Rationalize the result in terms of the molecular structure of polymer
and solvent. (d) Determine the second and third osmotic virial
coefficients by fitting the curve to the virial form of the osmotic
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pressure equation, (e) Experimentally, it is often found that the virial
expansion can be represented as
I RT
= =H(1 +B'c+gB%? +--1)
and in good solvents, the parameter g is often about 0.25. With terms
beyond the second power igriored, obtain an equation for (r/e)'?
and plot this quantity against c. Determine the second and third virial
coefficients from this plot and compare to the values from the first
plot. Does this plot confirm the assumed value of g?
1073(11 /c)/

(gem~2/gem™) 2.6 29 36 43 60 12.0

c/(gem™3) 0.0050 0.010 0.020 0.033 0.057 0.10
1072(1/c)/

(gem™?/gem™3) 190 310 380 52 63
c/(gem™) 0.145 0.195 0245 027 029

23.24 A manufacturer of polystyrene beads claims that they have an
average molar mass of 250 kg mol~'. Solutions of these beads are
studied by a physical chemistry student by dilute solution viscometry
with an Ostwald viscometer in both the ‘good’ solvent toluene and the
theta solvent cyclohexane. The drainage times, fp, as a function of
concentration for the two solvents are given in the table below. (a) Fit
the data to the virial equation for viscosity,
n=n"(1+ e+ K’ +---)

where k" is called the Huggins constant and is typically in the range
0.35-0.40. From the fit, determine the intrinsic viscosity and the
Huggins constant. (b) Use the empirical Mark-Kuhn-Houwink-
Sakurada equation (eqn 21) to determine the molar mass of
polystyrene in the two solvents. For theta solvents, @ = 0.5 and
K =8.2x1075 Lg~! for cyclohexane; for the good solvent toluene
a=0.72 and K=1.15x107° Lg™". (c) According to a general
theory proposed by Kirkwood and Riseman, the root mean square
end-to-end distance of a polymer chain in solution is related to [] by
[n] = ®(r*}**/M, where @ is a universal constant with the value
2.84 x 107® when [n] is expressed in litres per gram and the distance is
in metres. Calculate this quantity for each solvent. (d) From the molar
masses calculate the average number of styrene (C4H;CH=CH,)
monomer units, (n). (¢) Calculate the length of a fully stretched,
planar zigzag configuration, tcking the C-C distance as 154 pm and
the CCC bond angle to be 109°. (f) Use eqn 39 to calculate the radius
of gyration, R,. Also calculate (r)'/* = n'/2, Compare this result with
that predicted by the Kirkwood-Riseman theory: which gives the
better fit? (g) Compare your values far M to the results of Problem
23.23. Is there any reason why they should or should not agree? Is the
manufacturer's claim valid? .

c/(gL""toluene) 0 1.0 30 5.0
to/s 837 9.1 1072 1252
c/(gL " "cyclohexane) 0 g 15 20
to/s 832 867 885 9.03

23.25 K. Sato, F.R. Eirich, and J.E. Mark (/. Polym. Sci., Polym. Phys.
14, 619 (1976)) have reported the data in the table below for the
osmotic pressures of polychloroprene (p = 1.25 gem™J) in toluene
(p=0.858 gcm™3) at 30°C. Determine the molar mass of
polychloroprene and its second osmotic virial coefficient.

23 MACROMOLECULES

MD COLLOIDS

133 210 452 7.18 9.87
132 246 390

¢/(mgem™)
Hf(Nm?) 30 5l

23.26 Siandard polystyrene solutions of known average molar
masses ¢ ntinue to be used for the calibration of many methods of
characteizing polymer solutions. M. Kolinsky and J. Janca [ Polym.
Sci, Pofym. Chem. 12, 1181 (1974)) studied polystyrene in
tetrahydiofuran (THF) for use in calibrating a gel permeation
chromatogiaph. Their results for the intrinsic viscosity, [y], as a
function of average molar mass at 25°C are given in the table below.
(a) Obtain the Mark-Houwink constants that fit these data. (b)
Compare your values to those in Table 23.3 and Example 23.5. How
might you explain the differences? .

M,/(10° gmol~') 5.0 10.3 1985 51 982 173 411 867
/(em*g™) . 52 8.8 140 210 43.6 67.0 1250 206.7

23.27 There is much recent interest in electronically conducting
polymers and the determination of their average molar masses is an
important part of their characterization. S. Holderoft (. Polym. Sci.,
Polym. Phys. 29, 1585 (1991)) has determined the molar mases and
Mark-Houwink constants for the electronically conducting polymer,
poly(3-hexyithiophene) (P3HT) in tetrahydrofuran (THF) at 25°C by
methods similar to those used for nonconducting polymers. The
values for molar mass and intrinsic viscosity in the table below are
adapted from their data. Determine the constants in the Mark-Kuhn-
Houwink-Sakurada equation from these results and compare to the
values obtained in your solution to Problem 23.26.

M,/(10° gmol™') 38 1.1 153 588
nl/(em?g™") 623 1744 2373 8528

23.28 A problem arises in the use of the Svedberg equation (eqn 16)
for the determination of the molar masses of macromolecules due to
the fact that values of § and D depend upon concentration.
Consequently, accurate values for M, must be obtained by
extrapolation of the data to infinite dilution by using a virial
expansion in the form

hD 1

W=E(1 +2B'c + 3gB? + - )
where g is the parameter introduced in Problem 23.23. WJ. Closs,
B.R. Jennings, and H.G. Gerrard (Eur. Polymer J. 4, 639 (1968))
reported the data in the table below for polystyrene in cyclohexane at
35°C. The density of cyclohexane at this temperature, which can also
be assumed to be that of the solution, is 0.765 gem™, and the partial
specific volume of polystyrene is 0.93 cm® g~'. The dependence of
the diffusion constant for these solutions has been determined
empirically by TA. King, A Knox, W.l. Lee, and J.D.G. McAdam
(Polymer 14, 151 (1973)) to be given by the relation
D/{em?s~') = 1.3x 10~*(M,, /(gmol=1))"**" Determine the
molar mass of polystyrene in cyclohexane and the second viriai
coefficient, B'. Compare the molar mass obtained here to that
calculated in Problem 23.24. Is there any reason for them to be the
same?

¢/(mgem™) 20 30 40 50 60 70
§/(107Ys) 148 139 13.1 124 118 112



MicroProjects Part 2:

Prepared by M. Cady and C. A. Trapp

2.1 Black-body radiation and the greenhouse
effect

The experimentally observed average temperature of the Earth's
surface is 288.16 K. This temperature is maintained in a steady state
through an energy balance between solar radiation absorbed by the
Earth and black-body radiation which is emitted by the Earth and lost
to space. Energy balances of this type are often discussed in terms of
energy flux, J, the energy passing through an area in an interval divided
by the area and the duration of the interval and expressed in watts per
square metre (W m~2).

(a) Prove that / = }¢&, where £ is the isotropic black-body energy
density (eqn 11.5). Hint. Examine the radiation passing through area
A in the time; use spherical coordinates centred on A and recognize
that only volume eclements within the hemisphere of radius ¢
contribute to the flux through A. Also, determine f(#), where d/
= f(#)d and prove that the Stefun-Boltzmann constant is given
by eqn 11.6. Use f(#) to demonstrate graphically that the Earth's
black-body emissions are in the infrared.

(b) Consider an atmoSpheric model consisting of atmaspheric nitrogen
and oxygen only. Can these gases absorb any of Earth's black-body
emissions? Why? Determine the value of the Earth's surface
temperature that is predicted by this model. It is found experimentally
that the solar energy flux at the edge of the Earih's atmosphere is
0.1353 Wem™2 and that the fraction of the solar radiation scattered
by gases and clouds of the atmosphere (the albedo) is 0.29. Consider
that the magnitude of the solar radiation absorbed by the Earth equals
the disk area of the Earth limes the fraction of unscattered solar
radiation times the solar radiation flux. The difference between the
experimental value of the Earth's temperature and the temperature
predicted by this_model is due to the so-called greenhouse effect.

(c) Now, consider an atmospheric model consisting of nitrogen, oxygen,
some water vapour, and some carbon dioxide. Why 1s it that water and
carbon dioxide are able to absorb some of the Earth's black-body
radiation? Which vibrational modes are responsible for this absorption?
Water vapour shows strong absorption between 1300 em ™! and
1900 cm~! and also between 3550 cm ™' and 3900 ¢cm~'. Carbon
dioxide shows strong absorption between 500 cm™' and 725 cm™!
and also between 2250 cm~' and 2400 cm . Why are these bands so
broad? Assume that these gases absorb all radiation falling within these
bands and calculate the average surfucl tomperature predicted by this
atmospheric model. What percentage of the greenhouse cffect is
explained by the presence of atmospheric water and carbon dioxide?

2.2 One-dimensional tunnelling

Consider the one-dimensional space in which a particle can experience
one of three potentials depending upon its position. They are: V = 0
for—0o <x<0, V=V, for0<x<L and V= Viforl < x < oo.

The particle wavefunction is to have both a component e'* that is
incident upon the barrier V, and a reflected component e~ % in region
| (== < x <0} In region 3 the wavefunction has only a forward
component, ¢, which represents a particle which has traversed the
barricr. The energy of the particle, £, is somewhere in the range of the
V, > E > V;. The transmission probability, T, is the ratio of the square
modulus of the region 3 amplitude to the square modulus of the
incident amplitude.

(a) Base your calculation on the continuity of the amplitudes and the
slope of the wavefunction at the locations of the zone boundaries and
derive a general equation for T.

(b) Show that the general equation for T reduces to eqn 12.27 in the
high, wide barrier limit when ¥V, = V3 = 0.

(c) Draw graphs of the probability of proton tunnelling when V5 = 0,
L = 50 pm, and E = 10 kJmol~" in the barrier range E < V, < 2E.

2.3 Hydrogenic orbitals

Explicit expressions for hydrogenic orbitals are given in Tables 13.1 and
13.2.
Vi

(a) Verify both that the 3p, orbital is normalized (to 1) and that 3p, and
3d,, are mutually orthogonal.

(b) Determine the paositions of both the radial nodes and nodal planes
of the 3s, 3p,, and 3d,, orbitals.

(c) Determine the mean radius of the 3s orbital.

(d) Draw a graph of the radial distrijution function for the three
orbitals (of part (b)) and discuss the significance of the graphs for
interpreting the properties of many-electron atoms.

(e) Create both xy-plane polar plots and boundary surface plots for
these orhitals, Construct the boundary plots so that the distance from
the origin to the surface is the absolute value of the angular part of the
wavefunction. Compare the s, p, and d boundary surface plots with
that of an f-orbital, for example, y ocx(522 —r?)
sinf(5cos® @ — 1) cos ¢,

2.4 A partition function paradox

Consider the electronic partition function of a perfect atomic hydrogen
gas at a density of 1.99x 10~ kgm™* and 5780 K. These arc the
mean conditions within the Sun's photosphere, the surface layer of the
Sun that is about 190 km thick.

(a) Show that this partition function, which involves a sum over an
infinite number of quantum states that are solutions for the isolated
atomic hydrogen atom, is infinite.

(b] Develop a theoretical argument for truncating the sum and
estimate the maximum number of quantum states that contribute to
the sum.

47—B



Structure

(c) Calculate the equilibrium probability that an atomic hydrogen
electron is in each quantum state. Are there any general implications
concerning electronic states that will be observed for other atoms and
molecules? [s it wise to apply these calculations in the study of the
Sun's photosphere?

2.5 Ammonia inversion

(a) Use quantum mechanical concepts to explain both the origin of
ammonia microwave absorptions at 0.8 cm™' and 36 cm™! and an
infrared absorption at 1000 cm~'. All are associated with the
umbrella-like inversion of ammonia (see the illustration); the
absorption at 1000 cm™' is the lowest-energy infrared transition
associated with the inversion.

{b) Prove that

; S

C =28 =
arccosh B/

for an assumed inversion potential of the form

V(s) = A{1 + Bsech®(s/D) — C sech?(s/D}}

where s is the perpendicular distance of the nitrogen from the plane of
the three hydrogens. At s = s, the potential has a minimum value
equal to zero and the parameters A, B, C, and D are all positive.

{c) Use the absorption lines and 5, = 38.1 pm to determine both the
potential parameters and the value of the inversion potential barrier
height, & Simplify the computations by assuming that the inversion
mode vibrational wavefunctions are adequately described by harmonic
oscillator wavefunctions. Also assume that the distances between
hydrogen atoms remain constant during inversion. This approximation
simplifies the eifective mass to: m g = 3mymy/(3my + my,).

Potential energy

2.6 Vibration-rotation spectra and molccular
constants

High-resolution absorption lines of three infrared vibrational bands of
carbon monoxide are summarized in Table 1.

(a) Make the J and m assignments for cach line, using J to represent
the initial rotational state and defining m = —J for P branches and ~
m =J + 1 for R branches. Derive an equation for the dependence of
the spectral lines upon m including terms for anharmonicity,
centrifugal distortion, and rotation-vibration coupling. The rotation-
vibration perturbation of the energy of the state (v,J) is equai to
—a(v+ M/ + 1), where a is the molecular rotation-vibration
coupling constant.

(b) Determine all molecular constants associated with the absorption
lines by performing an appropriate regression analysis of Table 1 data.

Table 1 Wavenumbers (v/cm™') of the infrared absorption lines for
vibrational bands of carbon monoxide. (From N. Mina-Camilde,
C.l. Manzariares, and JF, Caballero, J. Chem. Educ. 73, 804 (1996).)

10 2«0 3«0
2059.6 2146.9 4169.8 4263.2 6253.1 63538
2063.9 2150.7 4174.6 4267.2 6259.3 6357.2
2068.8 2154.1 4180.0 4270.6 6264.6 6361.0
2073.1 2158.0 4184.8 4274.4 6270.4 6364.4
2077.4 2161.8 4190.1 42778 6276.2 6367.8
2081.8 2165.2 4194.9 4281.2 6281.5 6370.7
2086.1 2169.0 4199.7 4284.6 6286.8 6374.1
2090.5 21724 4204.1 42879 6291.6 6377.0
2094.3 2175.8 4208.9 4290.8 6296.9 6379.9
2098.7 2179.2 4213.7 42942 6303.7 6382.7
21030 2183.0 4218.0 4297.1 6307.1 6385.2
2106.8 2186.4 42224 4300.5 6311.4 6388.0
21112 2189.8 4226.7 4303.4 6316.2 6390.5
2115.5 2193.1 42311 4306.6 6321.0 6392.9
21194 2196.5 42354 4308.7 6325.4 6394.8
2123.2 2199.4 4239.7 4311.6 6329.7 6397.2
21271 2202.8 4244.1 4314.0 6334.0 6399.1
21314 2206.2 42479 4316.9 6337.9 6401.1
2135.3 2209.1 4251.8 43193 6342.2 6403.0
2139.2 22124 4255.6 6346.1

4321.7 6404.6
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(c) Determine each of the following: the moment of inertia and bond
length defined by the harmonic oscillator and rigid rotor models, /, and
R.; the moments of inertia and bond lengths for the v =0, 1, 2, 3
vibration states (define these by analogy to the harmonic oscillator and
rigid rotor models); the depth of the Morse potential; D, (the
‘spectroscopic dissociation energy’); and Dy (the bond dissociation
energy).

2.7 An IR absorption band of carbon dioxide

A mixture of carbon dioxide (2.1 per cent) and helium, at 1.00 bar and
298 K in a gas cell of length 10 em has an IR absorption band centred
at 2349 cm™' with absorbances, A(#), described by:

APy =— 2 —
I +ay(v—a3) 1 +as(0—ag)
where the coefficients are a, =0.932, a, = 0.005050 cm?,

ay = 2333 ecm™!, a, = 1.504, ag = 0.01521 cm?, ag = 2362 cm™'.
(a) Draw graphs of A(#) and &(i7). What is the origin of both the band
and the band width? What are the allowed and forbidden transitions of
this band?

(b) Calculate the transition wavenumbers and absorbances of the band
with a simple harmonic oscillator-rigid rotor model and compare the
result with the experimental spectra. The CO bond length is 116.2 pm.

(c} Within what height, &, is basically all the IR emission from the
Earth in this band absorbed by atmospheric carbon dioxide? The
mole fraction of CO, in the atmosphere is 3.3x10™* ‘and
T/K = 288 — 0.0065(h/m) below 10 km. Draw a surface plot of
the atmospheric transmittance of the band as a function of both
height and wavenumber.

2.8 ¢ and n bonding

Use the 2p, and 2p, hydrogenic atomic orbitals to construct simple
LCAO descriptions of 2pa and 2pn molecular orbitals.

(a) Make a prebability density plot, and both surface and contour plots
of the xz-plane amplitudes of the 2p,a and 2p,a* molecular orbitals.

(b) Make surface and contour plots of the xz-plane amplitudes of the
2p,n and 2p.n* molecular orbitals. Include plots for both of
internuclear distances, R, of 10a, and 3ap,. Interpret the graphs, and
describe why scientists are so interested in this graphical information.

2.9 Numerical analysis of the simple LCAO-MO
description of H,

The LCAO-MO constructed from normalized 1s hydrogenic wavefunc-
tions centred on nuclei that are a distance R apart, and having g
symmetry, does not describe the molecular hydrogen ion ground state
accurately. It does provide insight into functional characteristics of
wavefunctions, bonding, and numerical methods needed in quantum
chemistry. The overlap, Coulomb, and resonance integrals of this LCAO-
MO can be analytically evaluated to give the result in eqns 14.12 and
14.13. In this problem we evaluate the integrals numerically for S, j, and
k and compare the results with the values determined from the
analytically integrated forms of eqn 14.13.

MICROPROJECTS PART 2: STRUCTURE

(a) Use the LCAO-MO wavefunction and the Hy hamiltonian to derive
equations for the Coulomb and resonance integrals in terms of j and k;
do not integrate j and k analytically. Evaluate the overlap, Coulomb,
and resonance integrals numerically, and the total energy for the 1sa,
MO in the range ay; < R < 4a;. Compare the results obtained through
numerical integration with results obtained with the analytical
equations.

(b) Use the results of the numerical integrations to draw a graph of the
total energy, E(R), and determine the minimum of total energy, the
equilibrium internuclear distance, and the spectroscopic dissociation
energy (D).

2.10 The variation method and H;

A highly accurate description of the molecular hydrogen ion bond

length, R,, is provided by an MO constructed with the variation
parameter n, within the LCAO-MO ground state consisting of two Is
hydrogenic orbitals centred upon nuclei A and B. With the nuclear

separation R, the MO is
3 1/2
- )
2may(1 + 8)

(a) Use this wavefunction and the variation principle to determine n, R,
the electronie energy (,,), the minimum total energy (E), and D,. The
electronic Hamiltonian does not contain the nuclear repulsion term.
Draw graphs of n(R), E4(R). and £(R). With this MO it is found that
the electronic energy is the sum of the expectation value for kinetic
energy (7%F,) and the expectation value for electron potential energy
(nF5):

V= N(e“""‘/"“ + e""’/““)

_ ErFy () + nFy(w))

el 41“:000 w = 'IR/“D
- 1+ (1 + @ - lot)e™
Fi@)=—737 +S(;))}
(14 we®™—-1-id-20(l+w)e®
Ryl e {1 + (@)}

S(w) = (1 + o +lw?)e™

(b) Check numerically to determine whether or not the virial theorem is
satisfied by this solution.

(c) Prove that the overlap integral, S, is correctly described by the above
expression. The integration is facilitated with the ellipsoidal coordinates
(u, v, @) defined by the following relations:

Ru=ra+ry re=ry—rg dr=3R( - o) dpdrdg
withl <pu<o,—-1<v<l,and0 < ¢ <2n.

2.11 Simple.Hiickel molecular orbitals
Solve the following in the context of simple Hiickel theory, -

(a) Prove that for an open chain of N conjugated carbons the
characteristic polynomial of the segular determinant, Py(x), where
x=(ax— )/, obeys the recurrence relation Py =xPy_; — Py_;,
with P, = xand P, = 1. :
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(b) Determine a reasonable empirical estimate of the resonance integral
for the homologous series consisting of ethene, butadiene, hexatriene,
and octatetraene given that the n* = ultraviolet absorptions are at
61500, 46 080, 39750, and 32900 cm™', respectively.

(¢) Calculate the m-clectron delocalization energy, Eg,., of octa-
tetraene where Eg,. = E,—n(x+ ), where E, is the total
n-electron binding energy and n is the total number of n-electrons.

2.12 Equilibrium statistical thermodynamics

Treat carbon monoxide as a perfect gas and apply equilibrium statistical
thermodynamics to the study of its properties, as specified below, in
the temperature range 100-1000 K at 1 bar. v =2169.8 cm™!,

719

B =1931cm™!, and Dy = 11.09 eV; neglect anharmonicity and
centrifugal distortion.

(a) Examine the probability distribution of molecules over available
rotational and vibrational states.

(b) Explore numerically the differences, if any, between the rotational
molecular partition function as calculated with the discrete energy
distribution and that calculated with the classical, continuous energy
distribution. .

(¢) Calculate the individual contributions to U, (T) — U, (100 K),
Cy(T), and §,(T) = 5,(100 K) made by the translational, rota-
tional, and vibrational degrees of freedom.
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24 Molecules in motion

25The rates of chemical
reactions

26The kinetics of complex
reactions

27Molecular reaction
dynamics

28Processes at solid surfaces
28 Dynamic electrochemistry

MicroProjects

Part 3 considers the pracesses by which change accurs. We prepare the graund for o
discussion of the rates of reactions by considering the maotion of molecules in gases
and in liquids. Then we estoblish the precise.meaning of reactfon-rate, and see how
the overall rate, and the complex behowour of some redctions, may: be expressed in
terms of elementary steps and the atomic- evcnts that. take ﬁ!ace when molecules
meet. Choracteristic physical and chemical ‘events ‘take place af surfaces, including
catalysis, and we see how to describe them. A special type of surface is that of an
electrode, and we sholl see how to descrlbe ‘and undersm‘nd the . rate ‘at which
electrans are transferred between an electrode and species in solution,







Molecules In
motion

Molecular motion in gases —

24,1 Collisions with walls and
surfaces

24.2 The rate of effusion
243 Migration down gradients

; One of the simplest s of moleculor motion to describe is the random motion of molecules
24.4 Transport properties of a i i

of a perfect gos. We see that the kinctic theory can be used to account for the rates at which

perfect gas molecules and energy migrate through gases and that simple expressions for the rates can

W e T be derived. Molecular mobility is particularly important in liquids, and we shall see a little of
“Motion: in liquids *he structureof this phase and the motion of molecules in it. Another simple kind of motion is
. the lorgely uniform motion ofions in solution in the presence of an electric field. Moleculor

24.5 The structures of liquids and ionic motion have common features and, by considering them from a more general
24.6 Molecular motion in liquids viewpoint, we derive expressions that govern the migration of properties through matter.
247 The conductivities of One of the most useful consequences of this gencral approoch is the formulation of the
electrolyte solutions diffusion equation, which is an equation that shows how matter and energy spread through

media of various kinds. Finally, we build a simple model for all types of molecular mation, in

248 The mobilities of ions which the molecules migrate in a scries of small steps, and s=¢ that it accounts for many of

249 Conductivities and ion-ion the properties of migrating molecules in both gases and condensed phases.
interactions
. . The general approach we describe in this chapter provides techniques for discussing the
Diffusion motion of all kinds of paruicles in all#inds of fiuids. We set the scenc by considering a simple
type of motion, that of molecules in a perfect gas, and go on to see that molecular motion in

24.10 The thermedynamic view liquids shows a number of similarities.
24.11 The diffusion equation - '
- 24.12 Diffusion probabilities

24.13 The statistical view ‘Molecular motion in gases

Checklist ofk:y ideas In'Section 1.3 we saw that the equilibrium properties of a gas can be understood in terms of
the kinetic theory, which is based on a mode! of a gas in which the molecules are in ceaseless,

Further reading random motion. Here we develop the kinetic theory to deal with gases that are not at

internal equilibrium. In particular, we concentrate on the transport properties of a
substance, its ability to transfer matter, energy, or some other property from one place to

Exercises another. Four examples of transport properties are:

Problems
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“4.1 Four types of transport process: (a) diffusion,
the spreading of one species into another; (b)
thermal conduction, when molecules with different
energies of thermal motion (represented by the
arrows) spread into each others' regions; (c)
electrical conduction, when ions migrate under the
influence of an electric field; (d) viscosity, when
malecules with different linear momenta
(represented by the arrows) migrate.

’ v, At

Will reach
wall

Will not
reach wall
L

N

X——3>  \blume. I
Av,at  Area, A

++.¢ Only molecules within a distance v, Ar with
v, >0 can reach the wali on the right in an
interval Ar.

MOLECULES IN MOTION

Diffusion, the migration of matter down a concentration gradient.

Thermal conduction, the migration of energy down a temperature gradient,
Electric conduction, the migration of electric charge along a potential gradient.
Viscosity, the migration of linear momentum down a velocity gradient.

These processes are illustrated in Fig. 24.1. It is convenient to include effusion, the
emergence of a gas from a container through a small hole, in the discussion.

We shall use two expressions derived in Chapter 1. One is for the mean free path, 4, of
malecules in a gas:

kT a
e 0

where g is the collision cross-section (this is eqn 1.33). The mean free path is independent of
temperature in a container of constant volume because p is proportional to the temperature
(p = nRT/V) and its variation cancels the T in the numerator. The second property is the
mean speed, ¢, of molecules of mass m and molar mass M:

__ (sT\'* rgRT\'? @
““\m) T\

This expression was derived in Example 1.6. The mean speed is proportional to T'/2 and
inversely proportional to M'/2,

24.1 Collisions with walls and surfaces

The key to accounting for transport in the gas phase is the rate at which molecules strike an
area (which may be an imaginary area embedded in the gas, or part of a real wall). The
collision flux, Zy, is the number of collisions with the area in a given time interval divided
by the area and the duration of the interval. The collision frequency, the number of hits per
second, is obtained by multiplication of the collision flux by the area of interest. We show in
the Justification below that

P o

Y 2umT) ®)

When p = 100 kPa (1.00 bar) and T = 300 K, Zyy 23 x 102 em~25~!,

Justification 244

onsider a wall of area A perpendicular to the x-axis (Fig. 24.2). If a molecule has v.>0
(that is, it is travelling in the direction of positive x), then it will strike the wall within an
interval Az if it lies within a distance v,At of the wall. Therefore, all molecules in the
volume Av,Ar, and with positive x-component of velocities, will strike the wall in the
interval At. The total number of collisions in this interval is therefore the volume Av, At
multiplied by the number density, A, of molecules. However, to take account of the
presence of a range of velocities in the sample, we must sum the result over all the positive
values of v, weighted by the probability distribution of velocities (egn 1.25):

w
Number of collisions = NAA!/ v, f(v,)dx
0

The collision flux is the number of collisions divided by A and Ar, so

Zy =Nfo 0,f(0,) dx
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Then, using the velocity distribution in egn 1.25,

o n 12 = - kT 1/2
d = | — e ,/HT e
_/0 2 f(0,) do, (kaT) _/ﬂ‘ we i 2nm

Therefore,

Z =N( 7 )Iﬁ: LN (4y

2tm

Substitution of A = nN, /V = p/kT gives eqn 3.

242 The rate oF effusion

The essential empirical observations on effusion are summarized by Graham's law. of
effusion, which states that the rate of effusion is inversely proportional to the square root
of the molar mass. The basis of this result is that, as remarked above, the mean speed of
molecules is inversely proportional to M'/2, so the rate at which they strike the area of the
hole is similarly inversely proportional to M'/2. However, by using the expression for the rate
of collisions, we can obtain a more detailed expression for the rate of effusion and hence use
effusion data more effectively.

When a gas at a pressure p and temperature T is separated from a vacuum by a small
hole, the rate of escape of its molecules is equal to the rate at which they strike the area of
the hole [which is given by eqn 3). Therefore, for a hole of area Ay,

pA() —_ pAONA (s)°
(2nmkT)'? ~ (2nMRT)'?

Rate of effusion = ZywAy =

(in the last step we have used R = Nk and M = mN ) This rate is inversely proportional to
M'72, in accord with Graham's law.

Example 24.1 DPeducing the tirme dependence of the pressure inside am
cffusion oven

Derive an expression that shows how the pressure of a gas inside an effusion oven (a heated
chamber with a small hole in one wall) varies with time if the oven is not rcpleqished as the
gas escapes.

Method The rate of effusion is proportional to the pressure of the gas in the container so, as
gas effuses and the pressure falls, the rate of effusion will decrease. To find the explicit
expression, set up a differential equation relating dp/dr to p, and then integrate it. The rate
of effusion, as given by eqn 5, is the number of molecules that leave the container in a given
interval divided by the duration of the interval. The first step is to relate the rate of change
of pressure to the rate of change of number of molecules by using the perfect gas law in the
form pV = NkT.

Answer The rate of change of pressure of 2 gas in a container at constant pressure and
temperature is related to the rate of change of the number of molecules present by

dp kTdN

Vi
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24.3 The flux of particles down a concentration
gradient. Fick’s first law states that the flux of
mmmmmwummmhm
imaginary window in a given interval divided by the
area of the window and the length of the interval)
lspmporlinmllnﬂndensitvgmkm at that paint.

L]

24 MOLECULES IN MOTION

The rate of change of the number of molecules is equal to the collision frequency with the
hole, and that in turn is equal to the collision flux multiplied by the area of the hole:

dN pAy

o = vk (2nmkT)' 7
Substitution of this expression into the one above gives
®.(Z) Ypty
dr 2am Vv
This expression integrates to '

= p.e~t/T = i .
P = py =\ A

Comment The pressure falls exponentially towards zero; the decrease is faster the higher

the temperature; the bigger the hole, and the lower the mass of the molecules.

Sclf-test 24.1 Show that t,,, the time required for the pressure to decrease to half its
initial value, is independent of the initial pressure.
[ty2 =7In2]

Equation 5 is the basis of the Knudsen method for the determination of the vapour
pressures of liquids and solids, particularly of substances with very low vapour pressures.
Thus, if the vapour pressure of a sample is p, and it is enclosed in a cavity with a small hole,
then the rate of loss of mass from the container is proportional to p.

Examplc 24.2 Calculating the, vapour pressure from a mass loss

Caesium (m.p. 29°C, b.p. 686°C) was introduced into a container and heated to 500°C.
When a hole of diameter 0.50 mm was opened in the container for 100 s, a mass loss of
385 mg was measured. Calculate the vapour pressure of liquid caesium at 500°C.

Method The pressure of vapour is constant inside the container despite the effusion of
atoms because the hot liquid metal replenishes the vapour. The rate of effusion is therefore
constant, and given by eqn 5. To express the rate in terms of mass, the number of atoms that
escape is multiplied by the mass of each atom.

Answer The mass loss Am in an interval At is related to the collision flux by

Am = ZyAgmAt
where A, is the area of the hole and m is the mass of one atom. It follows that
Am
P = o

Because Zy, is related to the pressure by eqn 3, we can write

_ (27RT\'? Am
P=\"m ) am

Because M = 132.9 gmol™', substitution of the data gives p=11kPa (using
1Pa=1Nm™2=1Jm™), or 83 Torr.



Table 24.1° Transport properties of gases at

1 atm
k/(JK'm sy p/uPt
273K 273K 293K
Ar 0.0163 210 223
€0, 0.0145 136 147 .
He 0.1442 187 196
N:  0.0240 166 176
* More values are given in the Doto section at the end
of this volume,
“44"'11'1
Bring high
x-momentum
Bring low fip, |58 iy

<im | -

-
>

24.4 The viscosity of a gas arises from the
transport of linear momentum, In this illustration
the liquid is undergoing laminar flow, and particles
bring their initial momentum when they enter a
new layer, If they arrive with a high x-component
of momentum they accelerate the layer; if they
arrive with a low x-component of momentum they

retard the layer.
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Self-test 24.2 How long would it take 1.0 g of Cs atoms to effuse out of the oven under
the same conditions?
’ [260 s]

24.3 Migration down gradients

The rate of migration of a property is measured by its flux, J, the quantity of that property
passing through a given area in a given time interval divided by the area and the duration of
the interval. If matter is flowing (as in diffusion), we speak of a matter flux of so many
molecules per square metre per second; if the property is energy (as in thermal conduction),
then we speak of the energy flux and express it in joules per square metre per second, and so
on.

Experimental observations on transport properties show that the flux of a property is
usually proportional to the first derivative of some other related property. For example, the
flux of matter diffusing parallel to the z-axis of a container is found to be proportional to
the first derivative of the concentration:

J(matter) oc i‘g (6)

where A is the number density of particles with units number per metre cubed (m=3). The SI
units of J are number per metre squared per second (m~2 s~!).The proportionality of the flux
of matter to the concentration gradient is sometimes called Fick's first law of diffusion: the
law implies that, if the concentration varies steeply with position, then diffusion will be fast.
There is no net flux if the concentration is uniform (dA/dz = 0). Similarly, the rate of
thermal conduction (the flux of the energy associated with thermal motion) is found to be
proportional to the temperature gradient:

J(energy) o g )]

The SI units of this flux are joules per metre squared per second (Jm~2s"1),

A positive value of J signifies a flux towards positive z; a negative value of J signifies a
flux towards negative z. Because matter flows down a concentration gradient, from high
concentration to low concentration, J is positive if dA/dz is negative (Fig. 24.3). Therefore,
the coefficient of proportionality in egn 7 must be negative, and we write it —D:

J(matter) = —D% ‘ (8)

The constant D is called the diffusion coefficient; its S units are metre squared per second
(m?s~1). Energy migrates down a temperature gradient, and the same reasoning leads to
J(energy) =~k ©)
dz
where « is the coefficient of thermal conductivity. The Sl units of x are joules per kelvin per
metre per second (JK='m~'s~!). Some experimental values are given in Table 24.1.

To see the connection between the flux of momentum and the viscosity, consider a fluid
in a state of Newtonian flow, which can be imagined as occurring by a series of layers
moving past one another (Fig. 24.4). The layer next to the wall of the vessel is stationary, and
the velocity of successive layers varies linearly with distance, z, from the wall. Molecules
ceaselessly move between the layers and bring with them the x-component of linear
momentum they possessed in their original layer. A layer is retarded by molecules arriving
from a more slowly moving layer because they have a low momentum in the x-direction. A
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24.5 The calculation of the rate of diffusion of a
gas considers the net flux of molecules through a
plane of area A as a result of arrivals from on
average a distance 1 away in each direction, where
A is the mean free path.
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layer is accelerated by molecules arriving from a more rapidly moving layer. We interpret the
net retarding effect as the fluid's viscosity.

Because the retarding effect depends on the transfer of the x-component of lincar
momentum into the layer of interest, the viscosity depends on the fiux of this x-component
in the z-direction. The flux of the x-component of mementum is proportional to dv, /dz
because there is no net flux when all the layers move at the same velocity. We can therefore
write

d,

HE (10)

J(x-component of momentum) = —
The constant of proportionality, , is the coefficient of viscosity (or simply ‘the viscosity’). Its
units are kilogram per metre per second (kg m ™' s~'). Viscosities are often reported in poise
(P), where 1 P = 10~' kgm~'s~'. Some experimental values are given in Table 24.1.

24.4 Transport properties of a perfect gas

We shall now see how the kinetic theory can be used to justify Fick's law, and deduce the
values of the transport coefficients of a perfect gas. These expressions show how transport
properties vary with the conditions.

(a) Diffusion
As shown in the Justification below and summarized in Table 24.2, the kinetic theory leads
to the result that, for a perfect gas,

D =iic (1)’

The mean free path, 4, decreases as the pressure is increased (Section 1.3¢), so D decreases
with increasing pressure and, as a result, the gas molecules diffuse more slowly. Tne mean
speed, ¢, increases with the temperature (Section 1.3a), so D also increases with
temperature. As a result, molecules in a hot sample diffuse more quickly than those in a
cool sample (for a given concentration gradient). Because the mean free path increases
when the collision cross-section of the molecules decreases, the diffusion coefficient is
greater for small molecules than for large molecules.

Justification 24.2

Consider the arrangement depicted in Fig. 24.5. On average, the molecules passing
through the area A at z = 0 have travelled about one mean free path 4 since their last
collision. Therefore, the number density where they originated is A/(z) evaluated at
z = —2. This number density is approximately’

N(=2) = N(0) - z(%)o (12)

where the subscript O indicates that the slope should be evaluated at z = 0. The average
number of impacts on the imaginary window of area A, during an interval At is Zy, AgAt,
with Zy, = LN (eqn 4). Therefore, the flux from left ta right, J{L - R), arising from the
supply of molecules on the left, is

o SN (—a)cas

1 This relation, and others like it that follow, is based on the Taylor expansion of 3 function, f{x) = f(0) + (df/ds)px + -,
truncated after the second term.



Short flight
(survives)

Long flight
(collides
in flight)

24.6 One approximation ignored in the simple
treatment is that some particles might make a lang
flight to the plane even though they are only a
short perpendicular distance away, and therefore
they have a higher chance of colliding during their
journey.
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Table 24 2 Transport properties of perfect gases

Property Transported Simple kinetic Units
quantity theory
Diffusion Matter D=1 m? 5!
Thermal Energy k =11eC, ,[A] JK'm™'s™!
conductivity _ &Cy
" (3/2)aN,
Viscosity Momentum n =y AémN kgm~'s™!
_mé
T (3J2)e

There is also a flux of molecules from right to left. On average, the maolecules making the
journey have originated from z = 44 where the number density is A'(4). Therefore,

J(L «—R) = —-IN(A)E (13p)

The average number density at z = +1 is approximately

N(A) =N(0) + l(%f)o (14)

The net flux is
J,=J(L—=R)+J(L—R)

-] o]
()

This equation shows that the flux is proportional to the first derivative of the
concentration, in agreement with Fick's law.

#At this stage it looks as though we can pick out a value of the diffusion coefficient by
comparing eqns 8 and 15, so abtaining D = } Az. It must be remembered, however, that
the calculation is quite crude, and is little more than an assessment of the order of
magnitude of D. One aspect that has not been taken into account is illustrated in Fig. 24.6,
which shows that, although a molecule may have begun its journey very close to the
window, it could have a long flight before it gets there. Because the path is long, the
molecule is likely to collide before reaching the window, so it ought to be added to the
graveyard of other molecules that have collided. To take this effect into account involves a
lot of work, but the end result is the appearance of a factor of 2 representing the lower flux.
The modification results in eqn 11.

(b) Thermal conduction

According to the kinetic theory of gases, and as shown in the Justification below, the
coefficient of thermal conductivity of a perfect gas A having molar concentration [A] is
given by the expression

K = ECy (Al (16)°

where Cy . is the molar heat capacity at constant volume.
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24.7 The calculation of the viscosity of a gas
examines the net x-component of momentum
brought to a plane from faster and slower layers on
average a mean free path away in each direction,

24 MOLECULES IN MOTION

Justification 24.3

According to the equipartition theorem (Section 20.3 and the Introduction), each
molecule carries an average energy & = vkT, where v is a number of the order of 1. For
monatomic particles, » = 3. When one molecule passes through the imaginary window, it
transports that energy on average. We suppose that the number density is uniform but
that the temperature is not. On average, molecules arrive from the left after travelling a
mean free path from their last collision in a hotter region, and therefore with a higher
energy. Molecules also arrive from the right after travelling a mean free path from a cooler
region. The two opposing energy fluxes are therefore

JL—R)=JeNe(-)  e(-1)= ""{T B A(g)o}

; (17)
J(L~—R)=—}EN£(J.) s(l)=Uk{T+J.(ET)D}
_and the net flux is
F L SR R = -5ykm(‘-g)o (18)
As before, we multiply by§ to take long flight paths into account, and so arrive at
J, = —guuzﬂ(‘%)o (19)

Tue energy flux is proportional to the temperature gradient, as we wanted to show.
Comparison of this equation with eqn 9 shows that

K = JkITN - (20)

Equation 16 then follows from Cy ., = vkN,, for a perfect gas, where [A] is the molar
concentration of A. For this step, we use N = N/V = aN, /V = N, [A].

Because 1 is inversely proportional to the pressure, and hence inversely proportional to
the molar concentration of the gas, it follows from eqn 16 that the thermal conductivity is
independent of the pressure. The physical reason for this independence is that the thermal
conductivity can be expected to be large when many molecules are available to transport the
energy, but the presence of so many molecules limits their mean free path and they cannot
carry the energy over a great distance. These two effects balance. The thermal conductivity is
indeed found experimentally to be independent of the pressure, except when the pressure is
very low, when x oc p. At low pressures A exceeds the dimensions of the apparatus, and the
distance over which the energy is transported is determined by the size of the container and
not by the other molecules present. The flux is still proportional to the number of carriers,
but the length of the journey no longer depends on 4, so x oc [A], which implies that & oc p.

(c) The viscosity of a perfect gas
We have seen that viscosity is related to the flux of momentum. As shown in the

Justification below, the expression obtained from the kinetic theory of gases is
n = Mic(A] (21

where [A] is the molar concentration of the gas molecules and M is their molar mass.
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24.8 The experimental results for (a) the pressure
dependence of the viscosity of argon, and (b) its
temperature dependence. The dotted line in the
latter is the calculated value. Fitting the observed
and calculated curves is one way of determining the
collision cross-section.
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Justification 24.4

Molecules travelling from the right in Fig. 24.7 (from a fast layer to a slower one) transport
a momentum mv, (1) to their new layer at z = 0; those travelling from the left transport
my,(—4) to it. If it is assumed that the density is uniform, the collision flux is } V'E, Thoses
arriving from the right on average carry a momentum -

g (4) = s 0) + mi (G2
dz /,
Those arriving from the left bring a momentum
) = my(0) - ma($Z)
dz /o

The net flux of x-momentum in the z-direction is therefore

7= We{ ) - ma(G2) | - [muco) +ma () |}
(%),

The flux is proportional to the velocity gradient, as we wished to show. Comparison of this
expression with eqn 10, and multiplication by £ in the normal way, leads to

n=Wmiz ; (22)
which can easily be converted into eqn 21.

The viscosity is independent of the pressure: A oc 1/p and [A] o p, implying that 5 «c T,
independent of p. The physical reason is the same as for the thermal conductivity: more
molecules are available to transport the momentum, but they carry it less far on account of
the decrease in mean free path. An unexpected result is that, because & oc T'/2, the viscosity
coefficient is proportional to T'/2. That is, the viscosity of a gas increases with temperature.
This conclusion is explained when we remember that at high temperatures the molecules
travel more quickly, so the flux of momentum is grl:ater.2

There are two main techniques for measuring viscosities of gases. One technigue depends
on the rate of damping of the torsional oscillations of a disk hanging in the gas. The half-life
of the decay of the oscillation depends on the viscosity and the design of the apparatus, and
the apparatus needs to be calibrated. The other method is based on Paiseuilie’s formuia for
the rate of flow of a fluid through a tube of radius r:

d_‘i s (P? —p%)nr“ (23)
dr 16/np,

where V is the volume flowing, p; and p, are the pressures at each end of the tube of length
1, and py is the pressure at which the volume is measured.

Such measurements confirm that the viscosities of gases are independent of pressure
over a wide range. For instance, the results for argon from 10~* atm to 10 atm are shown in
Fig. 24.8, and we sce that 5 is constant from about 0.01 atm to 20 atm. The measurements
also confirm (to a lesser extent) the T'/2 dependence. The dotted line in the illustration
shows the calculated values using ¢ = 22 x 1072 m?, implying a collision diameter of
260 pm, in contrast to the van der Waals diameter of 335 pm obtained from the density of

2 As we shall see in Section 24.6, the viscosity of a liquid decreases with increase in
intections must be overcome. =

p t because inte:
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the solid. The agreement is not too bad, considering the simplicity of the model, especially
the neglect of intermolecular forces.

Example 24.3 Using the Poiseuille formula to measure a viscosity

In a Poiseuille flow experiment to measure the viscosity of air at 298 K, the sample was
allowed to flow through a tube of length 100 ¢m and internal diameter 1.00 mm. The high-
pressure end was at 765 Torr and the low-pressure end was at 760 Torr. The volume was
measured at the latter pressure. In 100 s, 90.2 cm® of air passed through the tube. What is
the viscosity of air at 298 K?

Method The data can be used in the Poiseuille formula, eqn 23, reorganized into

_ (pt - pi)mrt
1= T6lpg(avyar)
To use this formula, convert the pressures to pascals by using 1 Torr = 133.3 Pa.
Answer The rate of flow is

dv _ 9.02x 1073 m?
dr 100 s
Therefore, because

Pt —pl=1.355% 10" pa?

=9.02x 107" m*s~!

and

Rl
1 6![’0

it follows that n = 2.91 x 10~* kgm~'s"".

=194x10""®¥ N~'m?

Comment The kinetic theory expression gives 7 = 1.4 x 1075 kgm~' 5™, so the agreement
is quite good. Viscosities are commonly expressed in centipoise (cP) or (for gases) micropoise
(1P), the conversion being | cP = 10~ kgm~'s~'; the viscosity of air at 20°C is about
180 uP.

Self-test 24.3 What volume would be collected if the pressure gradient were doubled,

other conditions remaining constant? )
[180 cm?)

Motion in liquids

As a first step in dealing with the much more difﬁcmﬁt problem of motion in liquids, we
outline what is currently known about the structure of a simple liquid. Then we consider a
particularly simple type of motion through a liquid, that of an ion, and see that the
information that motion provides can be used to infer the behaviour of uncharged species
too. d

24.5 The sfructures of liquids

The starting point for the discussion of solids is the well-ordered structure of perfect
crystals. The starting point for the discussion of gases is the completely disordered
distribution of the molecules of a perfect gas. Liquids lie between these two extremes.

48—B
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(a) The radial distribution function

The average relative locations of the particles of a liquid are expressed in terms of the radial
distribution function, g(r). This function is defined so that g(r)r? dr is the probability that a
molecule will be found in the range dr at a distance » from another molecule. In a perfect
crystal, g(r) is a periodic array of sharp spikes, representing the certainty (in the absence of
defects and thermal motion) that molecules (or ions) lie at definite locations. This regularity
continues out to the edges of the crystal, so we say that crystals have long-range order.
When the crystal melts, the long-range order is lost and, wherever we look at long distances
from a given molecule, there is equal probability of finding a second molecule. Close to the
first molecule, though, the nearest neighbours might still adopt approximately their original
relative positions and, even if they are displaced by newcomers, the new particles might
adopt their vacated positioris. It is still possible to detect a sphere of nearest neighbours at a
distance ry, and perhaps beyond them a sphere of next-nearest neighbours at r;. The
existence of this short-range order means that the radial distribution function can be
expected to ostillate at short distances, with a peak at ry, a smaller peak at r,, and perhaps
some more structure beyond that.

The radial distribution function can be determined experimentally by X-ray diffraction,
for g(r) can be extracted from the diffuse diffraction pattern characteristic of liquid samples
in much the same way as a crystal structure is obtained from X-ray diffraction of crystals.
The shells of local structure shown in the example in Fig. 24.9 (for water) are unmistakable.
Closer analysis shows that any given H,0 molecule is surrounded by other molecules at the
corners of a tetrahedron, similar to the arrangement in ice (Fig. 21.33). The form of g(r) at
100°C shows that the intermolecular forces (in this case, principally by hydrogen bonds) are
strong enough to affect the local structure right up to the boiling point. Raman spectra and
molecular dynamics calculations indicate that in liquid water most molecules participate in
either three or four hydrogen bonds. Infrared spectra show that about 90 per cent of
hydrogen bonds are intact at the melting point of ice, falling to about 20 per cent at the
boiling point.

Despite its uniquely extensive hydrogen bonding, water has only a modest viscosity
(much less than that of glycerol, for example). Indeed, water is a conundrum and a severe
testing ground for theories of the liquid state. Water is a simple liquid when examined in the
context of dynamic characteristics, and the challenge is to reconcile its extensive hydrogen-
bonded structure with its dynamical simplicity.

| 4 = o n eyl 100°C
S g
. 2 .
/ /f L 7 / / 2
L, e /
00 o2 G2 —TBeo 0.8 o e
r’nm

24.9 The radial distribution function of the oxygen atoms in liquid water at three temperatures. Note
the expansion as the temperature is raised. (AH. Narten, M.D. Danford, and H.A. Levy, Discuss. Faroday.
Soc. 43, 97 (1967).)
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24.10 The radial distribution function for a
simulation of a liquid using impenetrable hard
spheres (ball-bearings).
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24.11 In a two-dimensional molecular dynamics
simulation that uses periodic boundary conditions,
when one particle leaves the cell its mirror image
enters through the opposite face.
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(b) The calculation of g(r)
Because the radial distribution function can be calculated by making assumptions about the
intermolecular forces, it can be used to test theories of liquid structure. However, even a
fluid of hard spheres without attractive interactions (a collection of ball-bearings in a
container) gives a function that oscillates near the origin (Fig. 24.10), and one of the factors
influencing, and sometimes dominating, the structure of a liquid is the geometrical problem
of stacking together reasonably hard spheres. Indeed, the radial distribution function of a
liquid of hard spheres shows more pronounced oscillations at a given temperature than that
of any other type of liquid. The attractive part of the potential modifies this basic structure,
but sometimes only quite weakly. One of the reasons behind the difficulty of describing
liquids theoretically is the similar importance of both the attractive and repulsive (hard core)
components of the potential.

The formal expression for the radial distribution function for molecules 1 and 2 in a fluid
consisting of N particles is the somewhat fearsome equation

J [ JePndrydr,---dry (24)
N[ [ Prdrdry i,

where = 1/kT and Vy is the N-particle potential energy. There are several ways of
building the intermolecular potential into the calculation of g(r). Numerical methods take a
box of about 10? particles (the number increases as computers grow more powerful), and
the rest of the liquid is simulated by surrounding the box with replications of the original
box (Fig. 24.11). Then, whenever a particle leaves the box through one of its faces, its image
arrives through the opposite face. When calculating the interactions of a molecule in a box,
it interacts with all the molecules in the box and all the periodic replications of those
molecules and itself in the other boxes.

Once g(r) is known it can be used to calculate the thermodynamic properties of liquids.
For example, the contribution of the pairwise additive intermolecular potential, V,, to the
internal energy is given by the integral

2 o0
U= 2':‘:’ fo gVartdr (25)

glri2) =

That is, U is essentially the average two-particle potential energy weighted by g(r)r* dr,
which is the probability that the pair of particles have a separation between r and r + dr.
Likewise, the contribution that pairwise interactions make to the pressure is

pv _ 2N [® _ (T2
] krvjo gurtdr  w=r L (26)

The quantity v, is called the virial (hence the term 'virial equation of state’).

(c) Monte Carlo methods

In the Monte Carlo method, the particles in the box are moved through small but otherwise
random distances, and the change in total potential energy of the N particles in the box,
AVy, is calculated using one of the intermolecular potentials discussed in Chapter 22.
Whether or not this new configuration is accepted is then judged from the following rules:

1. If the potential energy is not greater than before the change, then the
configuration is accepted.

2. If the potential energy is greater than before the changc. the factor e~8Ww/4T is
compared with a random number between 0 and 1: if the factor is larger than the
random number, the configuration is accepted; if the factor is not larger, the
configuration is rejected.
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This procedure ensures that at equilibrium the probability of occurrence of any
configuration is proportional to the Boltzmann factor e=*»/*7, The configurations generated
in this way can then be used to construct g(r) simply by counting the number of pairs of
particles with a separation r and averaging the result over the whole collection of
configurations.

(d) Molecular dynamics

In the molecular dynamics approach, the history of an initial arrangement is followed by
calculating the trajectories of all the particles under the influence of the intermolecular
. potentials. Newton's laws are used to predict where each particle will be after a short time
interval (about 107! s, which is shorter than the average time between collisions), and then
the calculation is repeated for tens of thousands of such steps. The time-consuming part of

CN the calculation is the evaluation of the net force on the molecule arising from all the other
molecules present in the system.

O A molecular dynamics calculation gives a series of snapshots of the liquid, and g(r) can

be calculated as before. The temperature of the system is inferred by computing the mean

kinetic energy of the particles and using the equipartition result that
(étm;é) =T (27)

for each coordinate g.

(e) Liquid crystals

A feature that makes calculations even more difficult is the possibility that molecules have
strongly anisotropic interactions. An important extreme case of anisotropv gives rise to a
mesophase, a phase intermediate between solid and liquid. Mesophases are of great
importance in biology, for they occur as lipid bilayers and in vesicular systems.

A mesophase may arise when molecules have highly anisotropic shapes, such as being
long and thin, as in (1), or disk-like. When the solid melts, some aspects of the long-range
order characteristic of the solid may be retained, and the new phase may be a liquid crystal,
a substance having liquid-like imperfect long-range order in at least one direction in space
but positional or orientational order in at least one other direction. One type of retained
long-range order gives rise to a smectic phase (from the Greek word for soapy), in which the
molecules align themselves in layers (Fig. 24.12a). Other materials, and some smectic liquid
crystals at higher temperatures, lack the layered structure but retain a parallel alignment
(Fig. 24.12b): this mesophase is called a nematic phase (from the Greek for thread, which
refers to the observed defect structure of the phase). In the cholesteric phase (from the

& Er 35 h .

A BN b e e b I Ry
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- (b) (c)

24.12 The arrangement of moleules in (a) the nematic phase, (b) the smectic phase, and (c) the cholesteric phase of liquid crystals. In the cholesteric phase, the
stacking of layers continues to give a helical arrangement of molecules.



736

160 |-

Isotropic

8/°C
140

Nematic

120

Solid
Solid solution

100 solution

0 0.5 1.0
XB

24.13 The phase diagram at 1 atm for a binary
system of two liquid crystalline materials,

4, 4'-dimethoxyazoxybenzene (A) and

4, 4 -diethoxyazoxybenzene (B).

Table 24.3° Viscosities of liquids at 298K,
/(10 kgm="s~")

Benzene 0.601
Mercury 1.55

Pentane 0.224
Watert 0.891

" More values are given in the Dota section.
 The viscosity of water corresponds to 0.891 cP.
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Greck for bile solid) the molecules lie in sheets at angles that change slightly between each
sheet (Fig. 24.12c). That is, they form helical structures with a pitch that depends on the
temperature. As a result, cholesteric liquid crystals diffract light and have colours that
depend on the temperature. The strongly anisotropic optical properties of nematic liquid
crystals, and their response to electric fields, is the basis of their use as data displays (LCDs).

Although there are many liquid crystalline materials, some difficulty is often experienced
in achieving a technologically useful temperature range for the existence of the mesophase.
To overcome this difficulty, mixtures can be used. An example of the type of phase diagram
that is then obtained is shown in Fig. 24.13. As can be seen, the mesophase exists over a
wider range of temperatures than either liquid crystalline material alone.

24.6 Molecular mation in liquids

The motion of molecules in liquids can be studied experimentally by a variety of methods.
Relaxation time measurements in NMR and ESR (Section 18.6b) can be interpreted in terms
of the mobilities of the molecules, and have been used to show that big molecules in viscous
fluids typically rotate in a series of small (about 5°) steps, whereas small molecules in
nonviscous fluids typically jump through about 1 radian (57°) in each step. Another
important technique is inelastic neutron scattering, in which the energy neutrons collect or
discard as they pass through a sample is interpreted in terms of the motion of its particles.
The same technique is used to examine the internal dynamics of macromolecules.

More mundane than these experiments are viscosity measurements (Table 24.3). For a
molecule to move in a liquid, it must acquire at least a minimum energy to escape from its
neighbours. The probability that a molecule has at least an energy E, is proportional to
e~F+/AT 50 the mobility of the molecules in the liquid should follow this type of temperature

1.6
s 12
E Conductivity
g bridge
E_ o ~ ’
© 08

0.4

1 1 J
60 80 100
a/°C

0 1 1
0 20 40

74.14 The experimental temperature dependence
of the viscosity of water. As the temperature is
increased, more molecules are able to escape from
the potential wells provided by their neighbours,
and so the liquid becomes more fluid. A plot of
In# against 1/T is a straight line (over a small
range) with positive slope.

24.15 The conductivity of an electrolyte solution
is measured by making a conductivity cell, like the
one shown here, one arm of a resistance bridge.
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dependence. Because the coefficient of viscosity, i, is inversely proportional to the mobility
of the particles, we should expect that

i oc e /KT (28)

(Note the positive sign of the exponent.) This expression implies that the viscosity should
decrease sharply with increasing temperature, Such a variation is found experimentally, at
least over reasonably small temperature ranges (Fig. 24.14). The activation energy typical of
viscosity is comparable to the mean potential energy of intermolecular interactions.

One problem with the interpretation of viscosity measurements is that the change in
density of the liquid as it is heated makes a pronounced contribution to the temperature
variation of the viscosity. Thus, the temperature dependence of viscosity at constant volume,
when the density is constant, is much less than that at constant pressure. The intermolecular
forces between the molecules of the liquid govern the magnitude of E,, but thé problem of
calculating it is immensely difficult and still largely unsolved. At low temperatures, the
viscosity of water decreases as the pressure is increased. This behaviour is consistent with the
rupture of hydrogen bonds. -

24.7 The conductivitics of clectrolyte solutions

Further insight into the nature of molecular motion can be abtained by studying the motion
of ions in solution, for they can be dragged through the solution by the application of a
potential difference between two electrodes immersed in the sample. By studying the
transport of charge through electrolyte solutions it is possible to build up a picture of the
events that occur in them and, in some cases, to extrapolate the conclusions to species that
have zero charge, that is, to neutral molecules.

(a) Conductance and conductivity

The fundamental measurement used to study the motion of ions is that of the electrical
resistance, R, of the solution. The standard technique is to incorporate a conductivity cell
into one arm of a resistance bridge and to search for the balance point, as explained in
standard texts on electricity (Fig. 24.15). The main complication is that alternating current
must be used because a direct current would lead to electrolysis and to polarization, which
in this context means the modification of the composition of the layers of solution in
contact with the electrodes. The use of alternating current (with a frequency of about
1 kHz) may avoid polarization because the charging that occurs on one half of the cycle is
undone during the second half (if the reverse reaction is kinetically feasible).

The conductance, G, of a solution is the inverse of its resistance R: G = 1/R. As
resistance is expressed in ohms, (2, the conductance of a sample is expressed in Q' The
reciprocal ohm used to be called the mho, but its official designation is now the siemens, S,
and 1 $ =1 Q7. The conductance of a sample decreases with its length [ and increases
with its cross-sectional area A. We therefore write

G= F (29)
whese k is the conductivity. With the conductance in siemens and the dimensions in metres,
it follows that the St units of x are siemens per metre (S m~'). 7

The conductivity of a solution depends on the number of ions present, and it is normal to
introduce the molar conductivity, A, which is defined as

An== (30]
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24.16 The concentration dependence of the molar
conductivities of (a) a typical strong electrolyte
(aqueous potassium chioride) and (b) a typical weak
clectrolyte (agqueous acetic acid).

Table 24.4° Limiting ionic conductivities in
water at 298K, A/(mSm?mol~1)

H* 34,96 OH™ 19.91
Na* 5.01 o 7.63
o 7.35 Br— 7.81
Znt* 10.56 s03- 16.00

*More values are given in the Data section.
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where ¢ is the molar concentration of the added electrolyte. The S| unit of molar
conductivity is siemens metre-squared per mole (Sm?® mol~'), and typical values are about
10 mSm?mol~' (where | mS = 1073 S).

The molar conductivity of an electrolyte would be independent of concentration if k
were proportional to the concentration of the electrolyte. However, in practice, the molar
conductivity is found to vary with the concentration. One reason for this variation is that tiie
number of ions in the solution might not be proportional to the concentration of the
electrolyte. For instance, the concentration of ions in a solution of a weak acid depends on
the concentration of the acid in a complicated way, and doubling the concentration of the
acid added does not double the number of ions. Secondly, because ions interact strongly
with one another, the conductivity of a solution is not exactly proporticnal to the number of
ions present.

The concentration dependence of molar conductivities indicates that there are two
classes of electrolyte. The characteristic of a strong electrolyte is that its molar conductivity
decreases only slightly as its concentration is increased (Fig. 24.16). The characteristic of a
weak electrolyte is that its molar conductivity is normal at concentrations'close to zero, but
falls sharply to low values as the concentration increases. The classification depends on the
solvent employed as well as the solute: lithium chloride, for example, is a strong electrolyte
in water but a weak electrolyte in propanone.

(b) Strong electrolytes
Strong electrolytes are substances that are virtually fully ionized in solution, and include
ionic solids and strong acids. As a result of their complete ionization, the concentration of
ions in solution is proportional to the concentration of strong electrolyte added.

In an extensive series of measurements during the nineteenth century, Friedrich
Kohlrausch showed that at low concentrations the molar conductivities of strong
clectrolytes vary linearly with the square root of the concentration:

A= %= K2 (31)

This variation is called Kohlrausch's law. The constant Ay, is the limiting molar
conductivity, the molar conductivity in the limit of zero concentration (when the ions
are effectively infinitely far apart and do not interact with one another). The constant X is
found to depend more on the stoichiometry of the electrolyte (that is, whether it is of the
form MA, or M, A, etc.) than on its specific identity.

Kohlrausch was also able to show that A, can be expressed as the sum of contributions
from its individual ions. If the limiting molar conductivity of the cations is denoted 4, and
that of the anions 4_, then his law of the independent migration of ions states that

A= d, v d_ (32)°

where v, and ©v_ are the numbers of cations and anions per formula unit of electrolyte (for
example, v, = v_ = 1 for HCI, NaCl, and CuSQ,, but v, = 1, »_ = 2 for MgCl,). This simple
result, which can be understood on the grounds that the ions migrate independently in the
limit of zero concentration, lets us predict the limiting molar conductivity of any strong
electrolyte from the data in Table 24.4.

e T s s NG eSS

The limiting molar conductivity of BaCl, in water at 298 K is

A2 = (1272 + 2% 7.63) mSm* mol~" = 27.98 mS m? mol~'
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(c) Weak electrolytes
Weak electrolytes are not fully ionized in solution. They include weak Bransted acids and
bases, such as CH;COOH and NH,. The marked concentration dependence of their molar
conductivities arises from the displacement of the equilibrium

_ a(H;0%)a(A7)

HA(ag) + H,0() = H,0" (aa) + A~ (aq) K, = "-Crr

(33)

towards products at low molar concentrations.

The conductivity depends on the number of ions in the solution, and therefore on the
degree of ionization, o, of the electrolyte. The degree of ionization is defined so that, for the
acid HA at a molar concentration ¢, at equilibrium '

[HiO0Y) =ac  [A7|=ac [HA]=(1-a) ; (34)
If we ignore activity coefficients, the acidity constant, K, is approximately

2

(35)°

~HEDS “

The electrolyte is fully ionized at infinite dilution, and its molar conductivity is then Aj,.
Because only a fraction « is actually present as ions in the actual solution, the measured
molar conductivity A,, is given by

Ay = oA, (37y°

with a given by eqn 36.

Example 24.4 Using conductivity measurements to determine pK,

The molar conductivity of 0.0100 MCH,COOH(aq) at 298 K was measured as
A, = 1.65 mSm? mol~'. Determine the degree of ionization and the pK, of the acid.

Method To calculate «, use eqn 37 with Aj, calculated from the data in Table 24.4. Then
calculate K, by substitution of a into eqn 35 and form pK, = —log K.

Answer From the data in Table 24.4 we find A2 = 39.05 mSm?mol~'. Therefore,
a = 0.0423. It follows from eqn 35 that K, = 1.9 x 1073, implying that pK, = 4.72.

Comment The thermodynamic value of pK, is obtained by repeating the determination
with different concentrations and extrapolating to zero concentration.

Self-test 24.4 The molar conductivity of 0.0250 MHCOOH(ag) was measured as
4.61 mSm? mol~". Determine the pK, of the acid.
[3.44]

Once we know K, we can use eqns 36 and 37 to predict the concentration dependence®
of the molar conductivity. The result agrees quite well with the experimental curve in
Fig. 24.16. More usefully, we can use the concentration dependence of A in measurements
of the limiting molar conductance. First, we rearrange eqn 36 into

1 aAc o
; =1+ K—“ (38)
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24.17 The graph used to determine the limiting
value of the molar conductivity of a solution by
extrapolation to zero concentration.
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Then, by using eqn 37, we obtain Ostwald's dilution law:
o= Lﬂ T Am: 2
A"‘ A"‘ Ku(Am)

(39)°

This equation implies that, if 1/ 4, is plotted against cA,,, then the intercept at ¢ = O will be .
1/A2, (Fig. 24.17). .

24.8 The mobilities of ions

To interpret conductivity measurements we need to know why ions move at different rates,
why they have different molar conductivities, and why the molar conductivities of strong
clectrolytes decrease with the square root of the molar concentration. The central idea in
this section is that, although the motion of an ion remains largely random, the presence of
an electric field biases its motion, and the ion undergoes net migration through the solution.

(a) The drift speed
When the potential difference between two electrodes a distance [ apart is A¢, the ions in
the solution between them experience a uniform electric field of magnitude

=22 (40)

In such a field, an ion of charge® ze experiences a force of magnitude

F=1f= perd

(41)

A cation responds to the application of the field by accelerating towards the negative .
electrode and an anion responds by accelerating towards the positive electrode. However,
this acceleration is short-lived. As the ion moves through the solvent it experiences a
frictional retarding force Fg; proportional to its speed. If we assume that the Stokes
formula (eqn 23.13) for a sphere of radius a and speed s applies even on a microscopic scale
(and independent evidence from magnetic resonance suggests that it often gives at least the

. right order of magnitude), then we can write this retarding force as

Fric =15 f=6mna - (42)

The two forces act in opposite directions, and the ions quickly reach a terminal speed, the
drift speed, when the accelerating force is balanced by the viscous drag. The net force is zero
when

_ut
f

Because the drift speed governs the rate at which charge is transported, we might expect
the conductivity to decrease with increasing solution viscosity and ion size. Experiments
confirm these predictions for bulky ions (such as R,;N* and RCO;) but not for small ions. For
example, the molar conductivities of the alkali metal ions increase from Li* to Cs*
(Table 24.4) even though the ionic radii increase. The paradox is resolved when we realize
that the radius a in the Stokes formula is the hydrodynamic radius (or 'Stokes’ radius’) of
the ion, its effective radius in the solution taking into account all the H,0 molecules it
carries in its hydration sphere. Small ions give rise to stronger electric fields than large ones,*
so small ions are more extensively solvated than big ions. Thus, an ion of small ionic radius
may have a large hydrodynamic radius because it drags many solvent molecules through the

(43)

3 In this chapter we disregard the sign of the charge number and so avoid notational complications.
4 The clectric field at the surface of a sphere of radius r s proportionsl o ze/r, 50 the smaller the radius the stronger the field.



(a)

(c)

24.18 The mechanism of conduction by water as
proposed by N. Agmon (Chem. Phys. Letts. 244, 456
(1995)). Proton transfer between neighbouring
molecules occurs when one molecule rotates into
such a position that an 0—H- - -0 hydrogen bond
can flip into being an 0. . ‘H—0 hydrogen bond. See
text for a description of the steps.

Table 24.5" lonic  mobilities in  water at
298K, u/(10~ 4 m¥s~'v-")

H* 36.23 OH™ 20.64
Nat 5.19 cr- 791
K+ 7.62 Br~ 8.09
n* 5.47 S0i~ 8.29

*More values are given in the Data section.
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solution as it migrates. The hydrating H,0 molecules are often very labile, however, and NMR
and isotope studies have shown that the exchange between the coordination sphere of the
ion and the bulk solvent is very rapid. *

The proton, although it is very small, has a very high molar conductivity (Table 24.4)!
Proton and '70-NMR show that the times characteristic of protons hopping from one
molecule to the next are about 1.5 ps, which is comparable to the time that inelastic
neutron scattering shows it takes a water molecule to reorientate through about 1 rad (1 to
2 ps). According to the Grotthuss mechanism,” there is an effective motion of a proton that
involves the rearrangement of bonds in a group of water molecules. However, the actual
mechanism is still highly contentious. Attention now focuses on the Hy07 unit, in which the
nearly trigonal planar Hy0* ion® is linked to three strongly solvating H,0 molecules. This
cluster of atoms is itself hydrated, but the hydrogen bonds in the secondary sphere are
weaker than in the primary sphere. It is envisaged that the rate-determining step is the
cleavage of one of the weaker hydrogen bonds of this secondary sphere (Fig. 24.18a). After
this bond cleavage has taken place, and the released molecule has rotated through a few
degrees (a process that takes about 1 ps), there is a rapid adjustment of bond lengths and
angles in the remaining cluster, to form an H,07 cation of structure H,0---Ht ... OH,
(Fig. 24.18b). Shortly after this reorganization has occurred, a new HgOF cluster forms as
other molecules rotate into a position where they can become members of a secondary
hydration sphere, but now the positive charge is located one molecule to the right of its
initial location (Fig. 24.18c). According to this model, there is no coordinated motion of a
proton along a chain of molecules, simply a very rapid hopping between neighbouring sites,
with a low activation energy. The model is consistent with the observation that the molar
conductivity of protons increases as the pressure is raised, for increasing pressure ruptures
hydrogen bonds.

(b) lon mobilities

According to eqn 43, the drift speed of an ion is proportional to the strength of the applied
field. We write

s =u& [44]

where u is called the mobility of the ion (Table 24.5). Comparison of eqns 43 and 44 and use
of eqn 42 show that

ze ze
= e— I — 4
“ f  6ma (43)
lllustration

For an order of magnitude estimate we can take z = 1 and a the radius of an ion such as
Cs* (which might be typical of a smaller ion plus its hydration sphere), which is 170 pm.
For the viscosity, we use n=10cP (1.0x10"* kgm™'s~!, Table 24.3). Then
ux5x107% m*V-'s~!. This value means that, when there is a potential difference of
1 V across a solution of length 1 cm (so £ = 100 Vm™'), the drift speed is typically about
5 ums~'. That speed might seem slow, but not when expressed on a molecular scale, for it
corresponds to an ion passing about 10* solvent molecules per second.

§  The name of the mechanism is an allusion 1o an early view advanced by von Grotthuss, in which it was supposed that chains of
dipoles were responsible for the transporl of charge in water.

6 In the gas phase, H,0* is trigonal pyramidal
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24.19 In the calculation of the current, all the
cations within a distance s, Ar (that is, those in the
volume s, AAr ) will pass through the area A. The
anions in the corresponding volume on the other
side of the window will also contribute to the
current similarly.
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(c) Mobility and conductivity

The usefulness of ionic mobilities is that they provide a link between measurable and
theoretical quantities. As a first step we establish in the Justification below the following
relation between an ion's mobility and its molar conductivity:

A= zuF . ‘ (46)"
where F is the Faraday constant (F = N,e).

Justification 24.5

To keep the calculation simple, we ignore signs in the following, and concentrate on the
magnitudes of quantities: the direction of ion flux can always be decided by common
sense. _

Consider a solution of a fully dissociated strong electralyte at a molar concentration c.
Let each formula unit give rise to v, cations of charge z, ¢ and v_ anions of charge z_e.
The molar concentration of each type of ion is therefore vc (with v = v, or "—j-. and the
number density of each type is vcN . The number of ions of one kind that pass through an
imaginary window of area A during an interval At is equal to the number within the
distance sAr (Fig. 24.19), and therefore to the number in the volume sAzA. (The same sort
of argument was used in Section 1.3 in the discussion of the pressure of a gas,) The number
of ions of that kind in this volume is equal to sAtAveN . The flux through the window (the
number of this type of ion passing through the window divided by the area of the window
and the duration of the interval) is therefore

J(ions) = Ei}g_iﬁﬂ = svcNy

Each ion carries a charge ze, so the flux of charge is
J(charge) = zsvceN, = zsvcF

Because 5 = u€, the flux is
J(charge) = zuveFE

The current, I, through the window due to the ions we are considering is the charge flux
times the area:

I =JA = zuvcFEA

Because the electric field is the potential gradient, A¢ /I, we can write

I= zuud;’AAgﬁ (47)
Current and potential difference are related by Ohm's law, that
Ag kAAQ
= —= A = —
R Go i

where we have used eqn 29 in the form k = GI/A. Comparison of the last two expressions
gives k = zuvcF, Division by the molar concentration of ions, ic, then results in eqn 46.

Equation 46 applies to the cations and to the anions. Therefore, for the solution itself in
the limit of zero concentration (when there are no interionic interactions),

A = (zpuyvy +2z_u_v )F (48)°
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For a symmetrical z : z electrolyte (for example, CuS0O, with z = 2), this equation simplifies
to

Ap =z(uy +u_ )F (49)°

Earlier, we estimated the typical ionic mobility as 5 x 1078 m? V=1s7!; so, with z = 1 for
both the cation and anion, we can estimate that a typical limiting molar conductivity should
be about 10 mSm? mol ™!, in accord with experiment. The experimental value for KCl, for
instance, is 15 mSm®mol~',

(d) Transport numbers

The transport number, r ., is defined as the fraction of total current carried by the ions of a
specified type. For a solution of two kinds of ion, the transport numbers of the cations (,.)
and anions (r_) are

I
1y = ;f- (50)

where [, is the current carried by the cation (/,) or anion (/_) and I is the total current
through the solution. Because the total current is the sum of the cation and anion currents,
it follows that

o+t =1 (51)

The limiting transport number, ¢, , is defined in the same way but for the limit of zero
concentration of the electrolyte solution. We shall consider only these limiting values from
now on, for that avoids the problem of ionic interactions.

The current that can be ascribed to each type of ion is related to the mobility of the ion
by eqn 47. Hence the relation between ¢, and u is

Z v, u
£ =——"t2t (52)°
v, ‘z v u_

Because z v, =z_v_ for all ionic species, this equation simplifies to

o Uy °
— 53
fx u, +u (53]

Moreover, because the ionic conductivities are related to the mobilities by eqn 46, it follows
that

s _ vy :”i’lt (54)°
ST Ay

and hence, for each type of ion,
vidy =1345 (55)°

Consequently, because there are independent ways of measuring transport numbers of ions,
we can determine the individual ionic conductivities and (through egn 46) the ionic
mobilities.
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24.20 In the moving boundary method for the
meaSurement of transport numbers, the distance
moved by the boundary is observed as a current is
passed. All the M ions in the volume between AB
and CD must have passed through CD if the
boundary moves from AB to CD.
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(e) The measurement of transport numbers

One of the most accurate methods for measuring transport numbers is the moving
boundary method, in which the motion of a boundary between two ionic solutions having a
common ion is observed as a current flows.

Let MX be the salt of interest and NX a salt giving a denser solution. The solution of NX
is called the indicator solution; it occupies the lower part of a vertical tube of cross-
sectional area A (Fig. 24.20). The MX solution, which is called the leading solution, occupies
the upper part of the tube. There is a sharp boundary between the two solutions. The
indicator solution must be denser than the leading solution, and the mobility of the M ions
must be greater than that of the N ions.” Thus, if any M ions diffuse into the lower solution,
they will be pulled upwards more rapidly than the N iops around them, and the boundary
will reform. The interpretation of the experiment makes use of the relation (see the
Justification below) between the distance, /, moved by the houndary in the time Ar for
which a current / is passed for a period At:

; _ﬁz+clAF
YT A

Hence, by measuring the distance moved, the transport number and hence the conductivity
and mobility of the ions can be determined.

(56)

Justification 24.6 ‘

When a current / is passed for a time Az, the boundary moves from AB to CD, so all the M
ions in the volume between AB and CD must have passed through CD. That number is
clAN,, so the charge that the M ions transfer through the plane is z, clAeN,. However,
the total charge transferred when a current 7 flows for an interval At is IAr. Therefore, the
fraction due to the motion of the M ions, which is their transport number, is given by
eqn 56.

In the Hittorf method, an electrolytic cell is divided into three compartments and a
charge At is passed. An amount /At/z, F of cations is discharged at the cathode, but an
amount ¢, [At/z F of cations migrates into the cathode compartment. The net change in
the amount of cations in that compartment is therefore
1At 1A:

—t_— (57)

Net change = (1, —
el ehatge <i(r, 1)2+F g

Hence, by measuring the change of composition in the cathode compartment, the anion
transport number ¢_ can be deduced, Likewise, the change in composition of the anode
compartment is —, /At/z_F, which gives the cation transport number, 1.

Transport numbers may also be measured by using galvanic cells. in particular, the
measurement is made on a cell with transference, which is a galvanic cell with a liquid
boundary across which ions may pass from one electrode compartment to the other, An
example is the cell g

Ag(s)IAgCI(s)[HCl(m, )[HCI(m;)|AgCl(s) |Ag(s)

for which the zero-current cell potential is E, and the electrodes are reversible with respect
to anions (CI~). The corresponding cell without transference is

Ag(s)|AgCI(s)[HCI(m, ) [H;(g)[Pt(s)|H; (9)|HCl(m, ) |AgCi(s) |Ag(s)

7 Dne procedure is to add bromothymol blue indicator to a slightly a'kaline solution of the ion of interest and to use a cadmium
electrode at the lower end of the vertical tube. The eiectrode produces Cd™ ions, which are siow maving and sfightly acidic [the
hydrated ion is a Brensted acid], and the boundary is revealed by the colour change of the indicator.
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24.21 (a) In the absence of an applied field, the
lonic atmosphere is spherically symmetric, but (b)
when a field is present it is distorted and the
centres of negative and positive charge no longer
coincide. The attraction between the opposite
charges retards the motion of the central ion.
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and its zero-current potential is E. We show in the Justification below that the two
potentials are related by

E, =2.E (58)

Therefore, comparison of the two cell potentials gives the transport number of the counter-
fon of the ion with respect to which the electrades are reversible (in this case, the transport
number of H*).

Justification 24,7

The argument is similar to that used to analyse the Hittorf method. Consider the
consequences of passing 1 mol of electrons through the cell with transport specified
above. In the right-hand electrode compartment, 1 mol Cl~ is formed but ¢_ mol CI~
migrates out of it across the junction. The net change is (1 — ¢_) mol = ¢, mol. At the
same time, 1, molH* migrates into the compartment. In the left-hand electrode
compartment 1 mol CI~ is removed from solution (to form 1 mol AgCl), but ¢_ mol CI~
flows in across the junction. The net change is therefore (—1 + 1_) mol = —t, mol CI~.
At the same time, ¢, molH* flows out. The reaction Gibbs energy is therefore

ArG =1 {#(Cl_!MZ) - ”(C]-lml) L #(H+1m2) . #(H+,M|)}
o]
=2t RTIn—=
i, '.'f'lnal
Because A,G = —FE, it follows that
_2uRT n%
F a,
For the same cell without transference, the Nernst equation gives
RT a

E=—-—n2
F a

E =

and the ratio of the two cell potentials is 2¢,.

24.9 Conductivities and ion-ion interactions

The remaining problem is to account for the ¢'/? dependence of the Kohlrausch law
(eqn 31). In Section 10.2c we saw something similar: the activity coefficients of ions at low
concentrations also depend on ¢'/2 and depend on their charge type rather than their
specific identities. That c'/2 dependence was explained in terms of the properties of the ionic
atmosphere around each ion, and we can suspect that the same explanation applies here too.

To accommodate the effect of motion, we need to modify the picture of an ionic
atmosphere as a spherical haze of charge. The ions forming the atmosphere do not adjust to
the moving ion infinitely quickly, and the atmosphere is incompletely formed in front of the
maving ion and incompletely decayed behind the ion (Fig. 24.21). The overall effect is the
displacement of the centre of charge of the atmosphere a short distance behind the moving
ion. Because the two charges are opposite, the result is a retardation of the moving ion. This
reduction of the ions’ mobility is called the relaxation cffect. A confirmation of the picture
is obtained by observing the conductivities of ions at high frequencies, which are greater
than at low frequencies: the atmosphere does not have time to follow the rapidly changing
direction of motion of the ion, and the effect of the field averages to-zero.

The ionic atmosphere has another effect on the motion of the ions. We have seen that the
moving ion experiences a viscous drag. When the ionic atmosphere is present this drag is
enhanced because the ionic atmosphere moves in an opposite direction to the central ion.
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Table 24.6" Debye-Hiickel-Onsager  caeffi-

cients for (1, 1)-electrolytes at 298K

Solvent Af(mSm*  B/(molL~')"'"?
mol~!/
(mol L-1)")

Methanol 15.61 0.923

Propanone 32.8 1.63

Water 6.02 0.229

° More values arg given in the Data section.

(Ap - ASM(S em? mol™)

-100

-120

Zns0
—ofp ™

0 01

1
02 03 04
L

24.22 The dependence of molar conductivities on
the square root of the ionic strength, and
comparison (dotted lines) with the dependence
predicted by the Debye-Hiickel-Onsager theory.
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The enhanced viscous drag, which is called the electrophoretic effect, reduces the mobility
of the ions, and hence also reduces their conductivities.

The quantitative formulation of these effects is far from simple, but the Debye-Hiickel-
Onsager theory is an attempt to obtain quantitative expressions at about the same level of
sophistication as the Debye-Hiickel theory itself. The theory leads to a Kohlrausch-like
expression in which

K=A+BA, (59a)

with

_ gief ( 2\
" 24meRT (umr') . (59b)

2eF? { 2 \'2
A= 55 (o)
where ¢ is the electric permittivity of the solvent (Section 22.1¢) and ¢ = 0.586 fora 1, 1-
electrolyte (Table 24.6). The slopes of the conductivity curves are predicted to depend on the
charge type of the electrolyte, in accord with the Kohlrausch law, and some comparisons
between theory and experiment are shown in Fig. 24.22. The agreement is quite good at very
low molar concentrations (less than about 10~? M, depending on the charge type).
Molecular dynamics calculations can also shed light on electric conduction. The key
equation is a special case of a Green-Kubo relation, which expresses a transport property in
terms of the fluctuations in microscopic properties of a system. The electrical conductivity is
related to the fluctuations in the instantaneous electric current, j, in the sample that arises
from variations in the velocities of the ions:

1 o 7 N
=g [, GO =Y e (60)

where v, is the velocity of the ion i at a given instant and the angular brackets denote an
average over the sample. If the ions are very mobile, there will be large fluctuations in the
instantaneous currents in the sample, and the conductivity of the medium will be high. If the
ions are locked into position, as in an ionic solid, there will be no instantaneous currents, and
the ionic conductivity will be zero. The velocities of the ions are calculated explicitly in a
molecular dynamics simulation, so the correlation function, the quantity (j(0)j(1)), can be
evaluated reasonably simply.

Diffusion

We are now in a position to extend the discussion of ionic motion to cover the migration of
neutral molecules and of ions in the absence of an applied electric field. We shall do this by
expressing ion mation in a more general way than hitherto, and will then discover that the
same equations apply even when the charge on the particles is zero.

24.10 The thermodynamic view

We saw in Part 1 that, at constant temperature and pressure, the maximum non-expansion
work that can be done per mole when a substance moves from a location where its chemical
potential is u to a location where its chemical potential is g + dp is dw = dj. In a system in
which the chemical potential depends on the position x,

dw=du = (%) Td_x (6])
p.
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We also saw in Chapter 2 (Table 2.1) that in general work can always be expressed in terms
of an opposing force (which here we write F), and that

dw = —Fdx (62)
By comparing these two expressions, we see that the slope of the chemical potential can be

interpreted as an effective force per mole of niolecules. We write this thermodynamic force
as

Fom (a_“) . (63)

ox T

There is not necessarily a real force pushing the particles down the slope of the chemical
potential. As we shall see, the force may represent the spontaneous tendency of the
molecudes to disperse as a consequence of the Second Law and the hunt for maximum
entropy. '

(a) The thermodynamic force of a concentration gradient
In a solution in which the activity of the solute is g, the chemical potential is
p=p% +RTIna

If the solution is not uniform the activity d=pends on the position and we can write
C.f0lna
= —RT(—) (64)
ox »T

If the solution is ideal, a may be replaced by the molar concentration c, and then

()

o \&),, (65)

because (d1nc/dx) = (1/c)dc/dx.

Example 24.5 Calculating the thermadynamic force

Suppose the concentration of a solute decays exponentially along the length of a container.
Calculate the thermodynamic force on the solute at 25°C given that the concentration falls
to half its value in 10 cm.

Mecthod According to eqn 65, the thermodynamic force is calculated by differentiating the
concentration with respect to distance. Therefore, write an expression for the variation of
the concentration with distance, and then differentiate it. Note that 1 J= 1 Nm.

Answer The concentration varies with position as

xXfd

c=cge"
where 4 is the decay constant. Therefore,

dc»
dr

"

]

Equation 65 then implies that

RT
e
A
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We know that the concentration falls to ¢, at x=10cm, so we can find 4 from
} = (10em/% That is, A = (10 cm/ In2). It follows that

i (8.31451 JK~"mol~!) x (298 K) x In2

_ <
1.0x10-' m = el

Sclf-test 24.5 Calculate the thermodynamic force on the molecules of molar mass M in a

vertical tube in a gravitational field on the surfdce of the Earth, and evaluate F for

“molecules of molar mass 100 gmol~'. Comment on its magnitude relative to that just
calculated. .

[F = —Mg, —0.98 Nmol~'; the force arising from

the concentration gradient greatly dominates that

arising from the gravitational gradient]

(b) Fick's first law of diffusion

In Section 24.4a it was shown that Fick's first law of diffusion (that the particle flux is
proportional to the concentration gradient) could e deduced from the kinetic theory of
gases. We shall now show that it can be deduced more generally and that it applies to the
diffusion of species in condensed phases too.

We suppose that the flux of diffusing particles is motion in response to a thermodynamic
force arising from a concentration gradient. The particles reach a steady drift speed, 5, when
the thermodynamic force, F, is matched by the viscous drag. This drift speed is proportional
to the thermodynamic force, and we write soc . However, the particle flux, J, is
proportional to the drift speed, and the thermodynamic force is proportional to the
concentration gradient, dc/dx. The chain of proportionalities (/ocs, socF, and
F oc de/dx) implies that J cc de/dx, which is the content of Fick's law.

(c) The Einstein relation
Fick's law can be written®
de
J=—-D— 66
T (66)
In this expression, D is the diffusion coefficient and dc/dx is the slope of the molar
concentration. The flux is related to the drift speed by
J=sc (67)

This relation follows from the argument that we have used several times before. Thus, all
particles within a distance sAt, and therefore in a volume sAtA, can pass through a window
of area A in an interval Ar. Hence, the amount of substance that can pass through the
window in that interval is sAtAc. Therefore,

=-D—
3c dr

If now we express de/dx in terms of F by using egn 65, we find

Dde DF

Yl (68)

8 This expression is derived from eqn 8 by dividing both sides by the Avogadro constant, which converts numbers into amoun!
[numbers of moles) 2

49—B
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Therefore, once we know the effective force and the diffusion coefficient, D, we can
calculate the drift speed of the particles (and vice versa) whatever the origin of the force.
. There is one case where we already know the drift speed and the effective force acting on
a particle: an ion in solution has a drift speed s = u€ when it experiences a force ez€ from an
electric field of strength £. Therefore, substituting these known values into egn 68 gives

zZFED
uf = RT

and hence

zFD
u= —R"T— (69)

This equation rearranges into the very important result known as the Einstein relation
between the diffusion coefficient and the ionic mobility:
uRT

B (70)".

On inserting the typical value u = 5x 107® m?s~! V-1, we find Dx1x10" m?s~! at
25°C as a typical value of the diffusion coefficient of an ion in water.

(d) The Nernst-Einstein equation
The Einstein relation provides a link between the molar conductivity of an electrolyte and
the diffusion coefficients of its ions. First, by using eqns 46 and 70 we write

2DF? a
A=2“F=-_RT_ (71)

for each type of ion. Then, from A7, = v, 4, +v_A_, the limiting molar conductivity is
A= (153D, +v_2D ) (2

which is the Nernst-Einstein equation. One of its applications is to the determination of
ionic diffusion coefficients from conductivity measurements; another is to the prediction of
conductivities using models of ionic diffusion (see below).

(e) The Stokes-Einstein equation

Equations 45 (u = ez/f) and 70 relate the mobility of an ion to the frictional force and to
the diffusion coefficient, respectively. The two expressions can be combined to give the
Stokes-Einstein equation:

kT

D=t (73)

If the frictional force is described by Stokes’ law, then we also obtain a relation between the
diffusiencocefficient and the viscosity of the medium:

kT

Table 24.7" Diffusion cocfficients at 298 K, D=-—0 (74)
D/(10°m?s~") - 6ana =

i ‘
H* in water 9.31 An important feature of eqn 73 (and of its special case, eqn 74) is that it makes no
I, In hexane ) 405 - reference to the charge of the diffusing species. Therefore, the equation also applies in the
Na* in water 1.33 limit of vanishingly small charge, that is, it also applies to neutral molecules. Consequently,
Siicross I witeE 0.522 we may use viscosity measurements to estimate the diffusion coefficients for electrically

neutral molecules in solution (Table 24.7). It must not be forgotten, however, that both
“More values are given in the Dota section, equations depend on the assumption that the viscous drag is ;= ~rtional to the speed.
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Example 24.6 Interpreting the mobility of an ion

.Use the experimental value of the mobility to evaluate the diffusion coefficient, the

limiting molar conductivity, and the hydrodynamic radius of a sulfate ion in agueous
solution.

Method The starting point is the mobility of the ion, which is given in Table 24.5. The
diffusion coefficient can then be determined from the Einstein relation, eqn 70. The ionic
conductivity is related to the mobility by egn 46. To estimate the hydrodynamic radius, a, of
the ion, use the Stokes-Einstein relation to find f and Stokes' law to relate /" to a.

Ansier From Table 24.5, the mobility of S03- is 8.29 x 10~% m2s™! V-, It follows from
eqn 70 that . -

iy
D="RT _ 1 1x10" ms"
oF X m"s

From eqn 46 it follows that
A =zuF =16 mSm?mol~'

Finally, from f = 6nna using 1.00 cP (or 1.00 x 10 kgm™' s™!) for the viscosity of water
(Table 24.3):

kT

a= 6nnD =

200 pm

Comment The bond length in SO2- is 144 pm, so the radius calculated here is plausible and
consistent with a small degree of solvation.

Self-test 24.6 Repeat the calculation for the NHS ion.
[1.96 x 10~° m?s~", 7.4 mSm? mol ™', 110 pm]

Experimental support for the relations derived above comes from conductivity
measurements. In particular, Walden's rule is the empirical observation that the product
nAy, is very approximately constant for the same ions in different solvents. Because
Ay, oo D, and we have just seen that D cc | /5, we do indeed predict that A, oc 1/n, as
Walden's rule implies. The usefulness of the rule, however, is muddied by the role of
solvation: different solvents solvate the same ions to different extents, so both the
hydrodynamic radius and the viscosity change with the solvent.

24.11 The diffusion equation

We now turn to the discussion of time-dependent diffusion processes, where we are
interested in the spreading of inhomogeneities with time. One example is the temperature of
a metal bar that has been heated at one end: if the source of heat is removed, then the bar
gradually settles down into a state of uniform temperature. When the source of heat is
maintained and the bar can radiate, it settles down into a steady state of nonuniform
temperature. Another example (and one more relevant to chemistry) is the concentration
distribution in a solvent to which a solute is added. We shall focus on the description of the
diffusion of particles, but similar arguments apply to the diffusion of physical properties,
such as temperature. Our aim is'to obtain an equation for the rate of change of the
concentration of particles in an inhomogeneous region.
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24,23 The net flux in a region is the difference
between the flux entering from the region of high
concentration (on the left) and the flux leaving to
the region of low concentration (on the right).

24,11 THE DIFFUSION EQUATION 751

The central equation of this section is the diffusion equation,? which refates the rate of

change of concentration at a point to the spatial variation of the concentration at that point:
2

Oc 0°c . (75)

Frame =AY

Justification 24.8

Consider a thin slab of cross-sectional area A that extends from x to.x +/ (Fig. 24.23). iet '
the concentration at x be ¢ at the time «. The amount (number of moles) of particles that
enter the slab in the infinitesimal. interval dr is JAds, so the rate of increase in molar
concentration inside the slab (whiefj has volume A/) on account of the flux from the left is

e T d :

o Al |
There is also an outflow through the right-hand window. The flux through that window is
J', and the rate of change of concentration that results is

o JAk _r

a  Alde 1
The net rate of change of concentration is therefore

o _J-J

o !
Each flux is proportional to the concentration gradient at the window. So, by using Fick’s
first law, we can write

o 8  d D ac\ 1
J=-J = —Da+D—'—ax = —Da-FD—aI{C'l' (a)l}
d%c

When this relation is substituted into the expression for the rate of change of
concentration in the slab, we get eqn 75.

(a) The significance of the diffusion equation

The diffusion equation shows that the rate of change of concentration is proportional to the
curvature (more precisely, to the second derivative) of the concentration with respect to
distance. If the concentration changes sharply from point to point (if the distribution is
highly wrinkled), then the concentration changes rapidly with time. If the curvature is zero,
then the concentration is constant in time. If the concentration decreases linearly with
distance, then the concentration at any point is constant because the inflow of particles is
exactly balanced by the outflow. '

The diffusion equation can be regarded as a mathematical formulation of the intuitive
notion that there is a natural tendency for the wrinkles in a distribution to disappear. More
succinctly: Nature abhors a wrinkle.

(b) Diffusion with convection

The transport of particles arising from the motion of a streaming fluid is called convection. If
for the moment we ignore diffusion, then the flux of particles through an area A in an

9 This equation used to be called Fick’s second law of diffusion’, but that name is now rardly used.
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24.24 The concentration profiles above a plane
from which a solute is diffusing. The curves are

plots of egn 79. The units of Dr and x are arbitrary,

but are related so that Dt/x? is dimensionless. For
example, if x is in metres, Dt would be in metres?,
so, for D = 10~° m?s™!, Dt = 0.1 corresponds to
t=10"s.
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.

interval Az when the fluid is flowing at a velocity v can be calculated in the way we have
used several times before (by counting the particles within a distance vAs), and is

_cAv Ar

TAAL (76)

This J is called the convective flux. The rate of change of concentration in a slab of thickness
I and area A is, by the same argument as before, -

3 J-r ac) ac
af T {C G {C + (a—x)l] }7 —va (77)
(We have assumed that the velocity does not depend on the position.)

When both diffusion and convection occur, the total change of concentration in a rcglon
is the sum of the two effects, and the generalized diffusion equation is

2

Y S (78)
A further refinement, which is important in chemistry, is the possibility that the
concentrations of particles may change as a result of reaction. When reactions are included
in eqn 78 (Section 27.3), we get a powerful differential equation for discussing the
properties of reacting, diffusing, convecting systems and which is the basis of reactor design
in chemical industry and of the utilization of resources in living cells.

(c) Solutions of the equation

The diffusion equation, eqn 75, is a second-order differential equation with respect to space
and a first-order differential equation with respect to time. Therefore, we must specify two
boundary conditions for the spatial dependence and a single initial condition for the time
dependence.

As an illustration, consider a solvent in which the solute is initially coated on one surface
of the container (for example, a layer of sugar on the bottom of a deep bieaker of water). The
single initial condition is that at r = 0 all N, particles are concentrated on the yz-plane (of
area A) at x = 0. The two boundary conditions are derived from the requirements: (1) that
the concentration must everywhere be finite and (2) that the total amount (number of
moles) of particles present is ny (with ny = Ny/N,) at all times. These requirements imply
that the flux of particles is zero at the top and bottom surfaces of the system. Under these

conditions it is found that o
ny -2 jADe
c(x,f) =————e 79)
) A(nDr)'? (

as may be verified by direct substitution. Figure 24.24 shows the shape of the concentration
distribution at various times, and it is clear that the concentration spreads and tends to
uniformity. ’

Another useful result is for a localized concentration of solute in a three-dimensional
solvent (a sugar lump suspended in a large flask of water). The concentration of diffused
solute is spherically symmetrical, and at a radius r is

" —r2 /4D | ‘ l
c(ri)=—"_¢ 80
8(nDi)*? (50)

Other chemieally [an& physically) interesting arrangements can be treated, but the solutions
are more cumbersome.
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(d) The measurement of diffusion coefficients

The solutions of the diffusion equation are useful for experimental determinations of
diffusion coefficients, In the capillary technique, a capillary tube, open at one end and
containing a solution, is immersed in a well stirred larger quantity of solvent, and the change
of concentration in the tube is measured at a series of times. The solute diffuses from the
open end of the capillary at a rate that can be calculated by solving the diffusion equation
with the appropriate boundary conditions, so D may be determined. In the diaphragm
technique, the diffusion occurs through the capillary pores of a sintered glass diaphragm
separating the well-stirred solution and solvent. The concentrations are monitored and then
related to the solutions of the diffusion equation corresponding to this arrangement.

24.12 Diffusion probabilities

The solutions of the diffusion equation can be used to predict the concentration of particles
(or the value of some other physical quantity, such as the temperature in a nonuniform
system) at any location. We can also use them to calculate the net distance through which
the particles diffuse in a given time.

Example 24.7 Cakulating the net distance of diffusion

Calculate the net distance travelled on average by particles in a time ¢ if they are diffusing in
a medium with diffusion constant D.

Method We need to calculate the probability that a particle will be found at a certain
distance from the origin, and then calculate the average by weighting each distance by that
probability.

Answer The number of particles in a slab of thickness dx and area A at x, where the molar
concentration is ¢, is cAN, dx. The probability that any of the N, = noN,, particles is in the
slab is therefore cAN,dx/N;. If the particle is in the slab, it has travelled a distance x from
the origin. Therefore, the mean distance travelled by all the particles is the sum of:each x
weighted by the probability of its occurrence:

(el o
(1') n f xcAN, A dx = 1 - f 'A‘C_P [ADt dx
o No (nD1)""* Jo

N 2(91) 1/2
n

Comment The average distance of diffusion varies as the square root of the lapsed time. If
we use the Stokes-Einstein relation for the diffusion coefficient, the mean distance travelled
by particles of radius a in a solvent of viscosity n is

= (2T <
=i Inpa)

..............................................................

Self-test 24.7 Derive an expression for the root mean square distance travelled by
diffusing particles in a time .

[0 = (201)"")
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As shown in Example 24.7, the average distance travelled by diffusing particle in a time ¢
(in an arrangement like that illustrated in Fig. 24.24) is

Dt 1/2
- 81
w=2(2) 1)
and the root mean square distance travelled in the same time is
)" = (200" (82)

The latter is a valuable measure of the spread of particles when they can diffuse in both
directions from the origin (for then (x) = 0 at all times). The root mean square distance
travelled by particles with a typical diffusion coefficient (D =5x 107" m?*s~") is
illustrated in Fig. 24.25. The graph shows that diffusion is a very slow process (which is
why solutions are stirred, to encourage mixing by convection). .

24.13 The statistical view

An intuitive picture of diffusion is of the particles moving in a series of small steps and
gradually migrating from their original positions. We shall explore this idea using a model in
which the particles can jump through a distance A in a time 7. The total distance travelled by
a particle in a time ¢ is therefore 14/7. However, the particle will not necessarily be found at
that distance from the origin. The direction of each step may be different, and the net
distance travelled must take the changing directions into account.

If we simplify the discussion by allowing the particles to travel only along a straight line
(the x-axis), and for each step (to the left or the right) to be through the same distance 4,
then we obtain the one-dimensional random walk.'® We show in the Justification below
that the probability of a particle being at a distance x from the origin after a time ¢ is

1/2
P o= 2_7" ! e'-.llf/'zdz
nl

Justification 24.9

(83)

Consider a one-dimensional random walk in which each step is through a distance 4 to the
left or right. The net distance travelled after N steps is equal to the difference between the
number of steps to the right (Ng) and to the left (N.), and is (N — N, )4 We write
n = Ng — Ny and the *otal number of steps as N = N + N,..

The number of ways of performing a walk with a given net distance of travel nl is the
number of ways of making Ny steps to the right and Ny steps to the left, and is given by
the binomial coefficient

W N! N!
NN T {(J(N 4 )PV — )}
The probability of the net distance walked being nd is
__ number of paths with Ny steps to the right
. total number of steps
R 5 N!.
T 3N+ n) PN — n)}12V

The use of Stirling's approximation (Section 19.1a) iﬁ the form -

P

Inxla In(27)'2 + (x4 Inx—x

1 The same model was used in the discussion of a one-dimensional random coil in Section 23.6.
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gives (after quite a lot of algebra)

lnP:ln(;i,—)m—%(N+n+l)ln(1+£) —%(N—n+1)1n(l—’%)

For small net distances (n <€ N) we can use the approximation In (1tx)~+x- gf and
so obtain

2\ 12
lan]n(m) —nt/2N

At this point, we note that the number of steps taken in a time ¢ is N = t/7 and the net
distance travelled from the origin is x = nl. Substitution of these quantities into the
equation just derived gives an expression that rearranges into eqn 83.

The differences of detail between eqns 79 and 83 arise from the fact that in the present
calculation the particles can migrate in cither direction from the origin. Moreover, they can
be found only at discrete points separated by 1 instead of being anywhere on a continuous
line. The fact that the two expressions are so similar suggests that diffusion can indeed be
interpreted as the outcome of a large number of steps in random directions.

We can now relate the coefficient D to the step length A and the rate at which the jumps
occur. Thus, by comparing the two exponents in eqns 79 and 83 we can immediately write
down the Einstein-Smoluchowski equation:

.{2
D= 5 (84)
- Illustration

Suppose that an 503~ ion jumps through its own diameter each time it makes a move in an
aqueous solution; then, because D = 1.1 x 10~ m?s~! and @ = 210 pm (as deduced from
mobility measurements), it follows from 1 = 2a that 7 = 80 ps. Because t is the time for
one jump, the ion 'nakes 1x 10" jumps per second.

The Einstein-Smoluchowski relatlon is the central connection between the microscopic
details of particle motion and the macroscopic parameters relating to diffusion (for example,
the diffusion coefficient and, through the Stokes-Einstein relation, the viscosity). It also
brings us back full circle to the properties of the perfect gas. For, if we interpret /7 as ¢, the
mean speed of the molecules, and interpret A as a mean free path, then we can recognize in
the Einstein-Smoluchowski equation exactly the same expression as we obtained from the
kinetic theory of gases, eqn 11. That is, the diffusion of a perfect gas is a random walk with
an average step size equal to the mean free path.
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Exercises

24.1 (a) A solid surface with dimensions 2.5 mmx 3.0 mm is
exposed to argon gas at 90 Pa and 500 K. How many collisions do
the Ar atoms make with this surface in 15 s?

24.1 (b) A solid surface with dimensions 3.5 mm x4.0 em is
exposed to helium gas at 111 Pa and 1500 K. How many collisions
do_the He atoms make with this surface in 10 s?

24.2 (a) An effusion cell has a circular hole of diameter 2.50 mm. If
the molar mass of the solid in the cell is 260 gmol ="' and its vapour
pressure is 0.835 Pa at 400 K, by how much will the mass of the solid
decrease in a period of 2.00 h?

24.2 (b) An effusion cell has a circular hole of diameter 3.00 mm. If
the molar mass of the solid in the cell is 300 gmol~' and its vapour
pressure is 0.224 Pa at 450 K, by how much will the mass of the solid
decrease in a period of 24.00 h?

24.3 (a) Calculate the flux of energy arising from a temperature
gradient of 2.5 Km™' in a sample of argon in which the mean
temperature is 273 K.

24.3 (b) Calculate the flux of energy arisin_g from a temperature
gradient of 3.5 Km~' in a sample of hydrogen in which the mean
temperature is 260 K.

24.4 (a) Use the experimental value of the thermal conductivity of
neon (Table 24.1) to estimate the collision cross-section uf Ne atoms
at 273 K

24.4 (b) Use the experimental value of the thermal conductivity of
nitrogen (Table 24.1) to estimate the collision cross-section of N,
molecules at 298 K.

24.5 (a) Ina double-glazed window, the panes of glass are separated
by 5.0 cm. What is the rate of transfer of heat by conduction from the
warm room (25°C) to the cold exterior (—10°C) through a window of
area 1.0 m?? What power of heater is required to make good the loss
of heat?

24.5 (b) Two sheets of copper of area 1.50 m? are separated by
10.0 cm. What is the rate of transfer of heat by conduction from the
warm sheet (50°C) to the cold sheet (—10°C)? What is the rate of loss
of heat?

24.6 (a) A manometer was connected to a bulb containing carbon
dioxide under slight pressure. The gas was allowed to escape through
a small pinhole, and the time for the manometer reading to drop from
75 ¢m to 50 cm was 52 s. When the experiment was repeated using

nitrogen (for which M = 28.01 gmol~') the same fall took place in
42 s. Calculate the molar mass of carbon dioxide,

24.6 (b) A manometer was connected to a bulb containing nitrogen
under slight pressure. The gas was allowed to escape through a small
pinhole, and the time for the manometer reading to drop from
65.1 cm to 42.1 cm was 18.5 5. When the experiment was repeated
using a fluoracarbon gas, the same fall took place in 82.3 s. Calculate
the molar mass of the fluorocarbon.

24.7 (a) A space vehicle of internal volume 3.0 m® is struck.by a
meteor and a hole of radius 0.10 mm is formed. If the oxygen
pressure within the vehicle is initially 80 kPa and its tcmperature
298 K, how long will the pressure take to fall to 70 kPa?

24.7 (b) A container of internal volume 22.0 m® was punctured, and
a hole of radius 0.050 mm was formed. If the nitrogen pressure
within the vehicle is initially 122 kPa and its temperature 293 K, how
long will the pressure take to fall to 105 kPa?

24.8 (a) Use the experimental value of the coefficient of viscosity for
neon (Table 24.1) to estimate the collision cross-section of Ne atoms
at 273 K.

24.8 (b) Use the experimental value of the coefficient of viscosity
for nitrogen (Table 24.1) to estimate the collision cross-section of the
molecules at 273 K.

24.9 (a) Calculate the inlet pressure required to maintain a flow rate
of 9.5x10° Lh™! of nitrogen at 293 K flowing through a pipe of
length 8.50 m and diameter 1.00 cm. The pressure of gas as it leaves
the tube is 1.00 bar. The volume of the gas is measured at that
pressure.

24.9 (b) Calculate the inlet pressure required to maintain a flow rate
of 8.70 cm? s~! of nitrogen at 300 K flowing through a pipe of length
10.5 m and diameter 15 mm. The pressure of gas as it leaves the tube
is 1.00 bar. The volume of the gas is measured at that pressure.
24.10 (a) Calculate the viscosity of air at (a) 273 K, (b) 298 K, (c)
1000 K. Take ¢=0.40 nm>. (The experimental values are 173 uP at
273 K, 182 uP at 20°C, and 394 uP at 600°C.)

24.10 (b) Calculate the viscosity of benzene vapour at (a) 273 K, (b)
298 K, (c) 1000 K. Take ¢ ~0.88 nm?.

24.11 (a) Calculate the thermal conductivities of (a) argon, (b)
helium at 300 K and 1.0 mbar. Each gas is confined in a cubic vessel
of side 10 cm, one wall being at 310 K and the one opposite at

L)
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295 K. What is the rate of flow of energy as heat from one wall to the
other in each case? ]
24.11 (b) Calculate the thegmal conductivities of (a) neon, (b)

nitrogen at 300 K and 15 mbar. £ach gas is confined in a cubic vessel
of side 15 cm, one wall being at 305 K and the one opposite at

295 K. What is the rate of flow of ehergy {s heat from one wall to the

other in each case?

24.12 (a) The viscosity of carbon dioxide was measured by
comparing its rate of flow through a long narrow tabe (using
Poiseuille’s formula) with that of argon. For the same pressure
differential, the same volume of carbon dioxide passed through the
tube in 55 s as that of argon in 83 s. The viscosity of argon at 25°C is
208 uP; what is the viscosity of carbon dioxide? Estimate the
molecular diameter of carbon dioxide.

24.12 (b) The viscosity of a chlorofluorocarbon (CFC) was measured
by comparing its rate of flow through a long narrow tube (using
Poiseuille’s formula) with that of argon. For the same pressure
differential, the same volume of the CFC passed through the tube in
72.0 s as that of argon in 18.0 s. The viscosity of argon at 25°C is
208 uP; what is the viscosity of the CFC? Estimate the molecular
diameter of the CFC. Take M = 200 gmol~".

24.13 (a) Calculate the thermal conductivity of argon (Cy,, =
12.5 JK~" mol~!, ¢ = 0.36 nm?) at room temperature (20°C).

24.13 (b) Calculate the thermal conductivity of nitrogen (Cy,, =
20.8 JK~"mol~!, o = 0.43 nm?) at room temperature (20°C).

24.14 (a) Calculate the diffusion constant of argon at 25°C and (a)
1.00 Pa, (b) 100 kPa, (c) 10.0 MPa. If a pressure gradient of
0.10 atmcm™" is established in a pipe, what is the flow of gas due
to diffusion?

24.14 (b) Calculate the diffusion constant of nitrogen at 25°C and
(a) 10.0 Pa, (b) 100 kPa, (c) 15.0 MPa. If a pressure gradient of
0.20 barm™! is established in a pipe, what is the flow of gas due to
diffusion?

24.15 (a) The mobility of a chloride ion in aqueous solution at 25°C
is 7.91x 1078 m?s~! V-1, Calculate the molar ionic conductivity.

24.15 (b) The mobility of an acetate ion in aqueous solution at 25°C
is 4.24 x 10~% m?s~! V-, Calculate the molar ionic conductivity.

24.16 (a) The mobility of a Rb* ion in agueous solution is
7.92x 10~ m?s~! V-! at 25°C. The potential difference between
two electrodes placed in the solution is 35.0 V. If the electrodes are
8.00 mm apart, what is the drift speed of the Rb* ion?

24.16 (b) The mobility of a Li* ion in aqueous solution is
4,01 x 10® m?s~! v-! at 25°C. The potential difference between
two electrodes placed in the solution is 12.0 V. If the electrodes are
1.00 cm apart, what is the drift speed of the ion?

24.17 (a) What fraction of the total current is carried by Li* when
current flows through an aqueous solution of LiBr at 25°C?

24.17 (b) What fraction of the total current is carried by CI~ when
current flows through an aqueous solution of NaCl at 25°C?

24.18 (a) The limiting molar conductivities of KCI, KNO,, and
AgNO, are 1499 mSm?’mol~!, 14.50 mSm?mol-!, and
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13.34 mSm? mol~!, respectively (all at 25°C). What is the limiting
molar conductivity of AgCl at this temperature?

24.18 (b) The limiting molar conductivities of Nal, NaCH,CO,, and
Mg(CH,C0,), are 12.69 mSm?*mol~!, 9.10 mSm?meol~!, and
18.78 mSm? mol~', respectively (all at 25°C). What is the limiting
molar conductivity of Mgl, at this temperature?

24.19 (a) At 25°C the molar ionic conductivities of Lit, Na*, and K*
are 3.87 mSm?mol~!, 5.01 mSm?mol~!, and 7.35 mS m?mol~!,
respectively. What are their mobilities?

24,19 (b) At 25°C the molar ionic conductivities of F~, CI~, and Br~
are 5.54 mSm?mol~', 7.635 mSm?mol~!, and 7.81 mS m? mol~’,
respectively. What are their mobilities?

24.20 (a) The mobility of a NO3 ion in aqueous solution at 25°C is
7.40 % 10~ m? s~! V-1, Caleulate its diffusion coefficient in water at
25°C.

24.20 (b) The mobility of a CH;CO3 ion in aqueous solution at 25°C
is 4.24 x 10~ m2s~' V-!, Calculate its diffusion coefficient in water
at 25°C.

24.21 (a) The diffusion coefficient of CCl, in heptane at 25°C is
3.17 x 10~ m? s~ . Estimate the time required for a CCl, molecule to
have a root mean square displacement of 5.0 mm.

24.21 (b) The diffusion coefficient of I, in hexane at 25°C is
4.05x 107 m?s~'. Estimate the time required for an iodine
molecule to have a root mean square displacement of 1.0 cm.

24.22 (a) Estimate the effective radius of a sucrose molecule in
water at 25°C given that its diffusion coefficient is
5.2x 1071 m?s~! and that the viscosity of water is 1.00 cP.

24.22 (b) Estimate the effective radius of a glycine molecule in
water at 25°C given that its diffusion coefficient is
1.055 x 10~° m2s~! and that the viscosity of water is 1.00 cP.

24,23 (a) The diffusion coefficient for molecular iodine in benzene is
2.13x 1077 m?s~". How long does a molecule take to jump through
about one molecular diameter (approximately the fundamental jump
length for translational motion)?

24.23 (b) The diffusion coefficient for CCl, in heptane is
3.17x 10~ m?s~! and its viscosity is 0.387 kgm~'s~!. How long
does a molecule take to jump through about one molecular diameter
(approximately the fundamental jump length for translational
mation)?

24.24 (a) What is the root mean square distance travelled by an
iodine molecule in benzene at 25°C in 1.0 s?

24.24 (b) What is the root mean square distance travelled by a
sucrose molecule in water at 25°C in 1.0 s?

24.25 (a) About how long, on average, does it take for the molecules
in Exercise 24.24a to drift to a point (a) 1.0 mm, (b) 1.0 ¢m from their
starting points?

24.25 (b) The diffusion coefficient of a particular kind of t-RNA
molecule is D = 1.0 x 10~"" m?s~! in the medium of a cell interior.
How long does it take molecules produced in the cell nucleus to reach
the walls of the cell at a distance 1.0 um, corresponding to the radius
of the cell?
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Problems

Numerical problems

24.1 Enrico Fermi, the great Italian scientist, was a master at making
good approximate calculations based on little or no actual data.
Hence, such calculations are often called 'Fermi calculations'. Do a
Fermi calculation on how long it would take for a gaseous air-borne
cold virus‘of molar mass 100 kg mol~! to travel the distance between
two conversing people 1.0 m apart by diffusion in still air.

24.2 Calculate the ratio of the thermal conductivities of gaseous
hydrogen at 300 K to gaseous hydrogen at 10 K. Be circumspect, and
think about the modes of motion that are thermally active at the two
temperatures.

24.3 In the Knudsen method for the determination of vapour
pressure, a weighed amount of a sample is heated inside a container,
in the wall of which there is a small hole. The mass loss over a period
of time can be related to the vapour pressure at the temperature of
the experiment. If Aw is the mass lost in an interval Ar through a
circular hole of radius R, find an expression relating the vapour
pressure, p, to Aw and Az. A Knudsen cell was used to determine the
vapour pressure of germanium at 1000°C. During an interval of
7200 s the mass loss through a hole of radius 0.50 mm amounted to
43 pg. What is the vapour pressure of germanium at 1000°C? Assume
the gas to be monatomic.

24.4 In a study of the catalytic properties of a titanium surface it was
necessary to maintain the surface free from contamination. Calculate
the collision frequency per square centimetre of surface made by 0,
molecules at () 100 kPa, (b) 1.00 Pa and 300 K. Estimate the number
of collisions made with a single surface atom in each second. The
conclusions underline the importance of working at very low
pressures (much lower than 1 Pa, in fact) in order to study the
properties of uncontaminated surfaces. Take the nearest-neighbour
distance as 291 pm.

24.5 The nuclide 2*4Bk (berkelium) decays by producing a particles,
which capture electrons and form He atoms. Its half-life is 4.4 h. A
sample of mass 1.0 mg was placed in a container of volume 1.0 cm?
that was impermeable to « radiation, but there was also a hole of
radius 2.0 um in the wall. What is the pressure of helium at 298 K,
inside the container after (a) 1.0 h, (b) 10 h?

24.6 An atomic beam is designed to function with (a) cadmium, (b)
mercury. The source is an oven maintained at 380 K, there being a
small slit of dimensions 1.0 cm 1.0 x 10~ cm. The vapour pressure
of cadmium is 0.13 Pa and that of mercury is 152 kPa at this
temperature. What is the atomic current (the number of atoms per
unit time) in the beams?

24.7 Conductivities are often measured by comparing the resistance
of a cell filled with the sample to its resistance when filled with some
standard solution, such as aqueous potassium chloride. The
conductivity of water is 76mSm™" at 25°C and the conductivity of
0.100 mol L' KCl(aq) is 1.1639Sm™". A cell had a resistance of
33.21 2 when filled with 0.100 mol L' KCI(aq) and 300.0 Q when

filled with 0.100 mol L~' CH;COOH. What is the molar conductivity
of acetic acid at that concentration and temperature?

_ 24.8 The resistances of a series of aqueous NaCl solutions, formed by

successive dilution of a sample, were measured in a cell with cell
constant (the constant C in the relation k = C/R) 0.2063 cm~!. The
following values were found:

¢/(molL~')  0.00050 0.0010 0.0050 0.010 0.020 0.050
R/Q 3314 1669 3421 174.] 89.08 37.14

Verify that the molar condyctivity follows Kohlrausch's law and find
the limiting molar conductivity. Determine the coefficient K. Use the
value of I (which should depend only on the nature, not the identity
of the ions) and the information that A(Na*) = 5.01 mS m? mol~!
and A(17) = 7.68 mS m? mol~' to predict (a) the molar conductivity,
(b) the conductivity, (c) the resistance it would show in the cell, of
0.010 mol L~! Nal(aq) at 25°C.

24.9 After correction for the water conductivity, the conductivity of
a saturated aqueous solution of AgCl at 25°C was found to be
0.1887 mSm~'. What is the solubility of silver chloride at this
temperature?

24.10 What are the drift speeds of Li*, Na*, and K* in water when a
potential difference of 10 V is applied across a 1.00 cm conductivity
cell? How long would it take an ion to move from one electrode to the
other? In conductivity measurements it is normal to use alternating
current: what are the displacements of the ions in (a) centimetres, (b)
solvent diameters, about 300 pm, during a half cycle of 1.0 kHz
applied potential?

24.11 The mobilities of H* and CI- at 25°C in water are
3.623x 107" m?s~' V! and 7.91 x 10~® m2s~! V-1, respectively.
What proportion of the current is carried by the protons in
1.0 mM HCl(aq)? What fraction do they carry when the NaCl is

_added to the acid so that the solution is 1.0 mol L~! in the salt? Note

how concentration as well as mobility governs the transport of
current. '

24.12 In a moving boundary experiment on KCl the apparatus
consisted of a tube of internal diameter 4.146 mm, and it contained
aqueous KCl at a concentration of 0.021 mol L~'. A steady current of
18.2 mA was passed, and the boundary advanced as follows:

At/s 200 400 600 800 1000
x/mm 64 128 192 254 318

Find the transport number of K*, its mobility, and its ionic
conductivity. '
24.13 The proton possesses abnormal mobility in water, but does it
behave normally in liquid ammonia? To investigate this question, a
moving-boundary. technique was used to determine the transport
number of NH} in liquid ammonia (the analogue of H,0% in liquid
water) at —40°C (. Baldwin, J. Evans, and J.B. Gill, . Chem. Soc. A,
3389 (1971)). A steady current of 5.000 mA was passed for 2500 s,
during which time the boundary formed between mercury(ll) iodide
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and ammonium iodide solutions in ammonia moved 286.9 mm in a
0.01365 molkg™! solution and 92.03 mm in a 0.04255 molkg '
solution. Calculate the transport number of NHS at these
concentrations, and comment on the mobility of the proton in
liquid ammonia. The bore of the tube is 4,146 mm and the density of
liquid ammonia is 0.682 gcm ™.

24.14 Adilute solution of potassium permanganate in water at 25°C
was prepared. The Solution was in a horizontal tube of length 10 cm,
and at first there was a linear gradation of intensity of the purple
solution from the left (where the concentration was 0.100 mol L~")
to the right (where the concentration was 0.050 mol L-!). What is
the magnitude and sign of the thermodynamic force acting on the
solute (a) close to the left face of the container, (b) in the middle, (c)
close to the right face? Give the force per mole and force per molecule
in each case.

24.15 Estimate the diffusion coefficients and the effective hydro-
dynamic radii of the alkali metal cations in water from their mobilities
at 25°C. Estimate the approximate number of water molecules that
are dragged along by the cations. lonic radii are given in Table 21.3.

24.16 Nuclear magnetic resonance can be used to determine the
maobility of molecules in liquids. A set of measurements on methane in
carbon tetrachloride showed that its diffusion coefficient is
2.05x10°% m?s~" at 0°C and 2.89 x 10~% m?s~! at 25°C. Deduce
what information you can about the mobility of methane in carbon
tetrachloride.

2417 A concentrated sucrose solution is poured into a cylinder of
diameter 5.0 cm. The solution consisted of 10 g of sugar in 5.0 cm®
of water. A further 1.0 L of water is then poured very carefully on top
of the layer, without disturbing the layer. Ignore gravitational effects,
and pay attention only to diffusional processes. Find the concentra-
tion at 5.0 cm above the lower layer after a lapse of (a) 10 s, (b) 1.0 y.

Theoretical problems

24.18 Show how the ratio of two transport numbers /' and ¢ for two
cations in @ mixture depends on their concentrations ¢’ and ¢”, and
their mobilities o/ and #”.

24.19 Confirm that egn 79 is a solution of the diffusion equation
with the correct initial value.

24.20 The diffusion equation is valid when many elementary steps
are taken in the time interval of interest; but the random walk
calculation lets us discuss distributions for short times as well as for
long. Use eqn 83 to calculate the probability of being six paces
from the origin (that is, at x = 64) after (a) four, (b) six, (c) twelve
steps. .

24 MOLECULES IN MOTION

24.21 Write a program or use mathematical software to calculate P
in a one-dimensional random walk, and evaluate the probability of
being at x = nd for n = 6,10,14,...,60. Compare the numerical
valie with the analytical value in the limit of a large number of
steps. At what value of n is the discrepancy no more than 0.1 per
cent?

Additional problems supplied by Carmen Giunta
and Charles Trapp

24.22 AK. Srivastava,R.A. Samarlt, and S.D. Patankar (/. Chem. Eng. -
Data 41, 431 (1996)) measured the conductance of several salts in a
binary solvent mixture of water and a dipolar aprotic solvent 1,3-
dioxolan-2-one (ethylene carbonate). They report the following
conductances at 25°C in a solvent 80 per cent 1,3-dioxolan-2-one by
mass.

Nal
¢/(mmolL~1) 32.02 20.28 12.06 8.64 2.85 124 0.3
A, /(Scm?mol-1) 50.26 51.99 54.01 55.75 57.99 58.44 58.67
Kl
¢/(mmol L) 17.68 10.88 7.19 2.67 1.28 0.83 0.19
A, /(Scm?mol™") 42.45 45.91 47.53 S1.81 54.09 55.78 57.42

Calculate A7, for Nal and Kl in this solvent and A°(Na) — A°(K).
Compare your results to the analogous quantities in aqueous solution
using Table 24.4 in the Data section.

24.23 A Fenghour, W.A, Wakeham, V. Vesovic, J.T.R. Watson,
J. Millat, and E. Vogel (J. Phys. Chem. Ref. Dato 24, 1649 (1995))
have compiled an extensive table of viscosity coefficients for
ammonia in the liquid and vapour phases. Deduce the effective
molecular diameter of NH; based on each of the following vapour-
phase viscosity coefficients: (a) 7 = 9.08 x 107% kgm™' s~ at 270 K
and 1.00 bar; (b) n=1749%x10"% kgm~'s™' at 490K and
10.0 bar.

24.24 Interstellar space is quite a different medium from the gaseous
environments we commonly encounter on Earth. For instance, a
typical density of the medium is about 1 atomcm™~2 and that atom is
typically H; the effective temperature due to stellar background
radiation is about 10000 K. Estimate the diffusion coefficient and
thermal conductivity of H under these conditions. (Comment. Energy
is in fact transferred much more effectively by radiation.)

24.25 G. Bakale, K. Lacmann, and W.F. Schmidt (J. Phys. Chem. 100,
12477 (1996)) measured the mobility of singly charged Cg, ions in a
variety of nonpolar solvents. In cyclohexane at 22°C, the mobility is
1.1 cm? V-!s~!, Estimate the effective radius of the Cg, ion. The
viscosity of the solvent is 0.93x 107 kgm~'s~!. Comment. The
researchers interpreted the substantial difference between this
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Thischapteris the first of a sequence that explores the rates of chemical reactions. The chapter
begins with a discussion of the definition of reaction rate and outlines the techniques for its
measurement. The results of such measurements show that reaction rates depend on the
concentration of reactonts (and products) in characteristic ways that can be expressed in
terms of differentiol equations known as rate laws, The solutions of these equations are used
to predict the concentrations of species at any time ofter the start of the reaction. The form of
the rate law also provides insight into the serics of elementary steps by which a reaction takes
place. The key task in this connection is the construction of o rate law from a proposed
mechanism and its comparison with experiment. Simple elementary steps have simple rate
laws, and these rate laws can be combined together by invoking one or more approximations.
These approximations include the concept of the mfr-delcrminmg stage of a reaction, the
steady-state concentration of areactionintermediate, and the existence of a pre-equilibrium,

This chapter introduces the principles of chemical kinetics, the study of reaction rates, by
showing how the rates of reactions may be measured and interpreted. The remaining
chapters of this part of the text then develop this material in more detail and apply it to
more complicated or more specialized cases. The rate of a chemical reaction might depend
on variables under our control, such as the pressure, the temperature, and the presence of a
catalyst, and we may be able to optimize the rate by the appropriate choice of conditions.
The study of reaction rates also leads to an understanding of the mechanisms of reactions,
their analysis into a sequence of elementary steps. We saw in Chapter 9 that the Second Law
accounts for the direction of spontaneous change. Here we explore why spontancous
chemical reactions occur at a finite rate and are not simply instantaneous.

Empirical chemical kinetics

The first step in the kinetic analysis of reactions is to establish the stoichiometry of the
reaction and identify any side reactions. The basic data of chemical kinetics are then the
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25.THE RATES OF CHEMICAL REACTIONS

concentrations of the reactants and products at different times after a reaction has been
initiated. The rates of most chemical reactions are sensitive to the temperature, so in
conventional experiments the temperature of the reaction mixture must be held constant
throughout the course of the reaction. This requirement puts severe demands on the design
of an experiment. Gas-phase reactions, for instance, are often carried out in a vessel held in
contact with a substantial block of metal. Liquid-phase reactions, including flow reactions,
must be carried out in an efficient thermostat. Special efforts have to be made to study
reactions at low temperatures, as in the study of the kinds of reactions that take place in
interstellar clouds. Thus, supersonic expansion of the reaction gas can be used to attain
temperatures as low as 10 K. Non-isothermal conditions are sometimes employed. For
instance, the shelf-life of an expensive pharmaceutical may be explored by slowly raising the
temperature of a single sample.

25.1 Experimental techniques

The method used to monitor concentrations depends on the species involved and the
rapidity with which their concentrations change. Many reactions reach equilibrium over
petiods of minutes or hours, and several techniques may then be used to follow the
changing concentrations.

(a) Monitoring the progress of a reaction

A reaction in which at least one component is a gas might result in an overall change in
pressure in a system of constant volume, so its progress may be followed by recording the
variation of pressure with time.

Example 25.1 Monitoring the variation in pressure

Predict how the total pressure varies during the gas-phase decomposition
2N,04(g) — 4NO,(g) + 0,(g).

Mcthod The total pressure (at constant volume and temperature and assuming perfect gas
behaviour) is proportional to the number of gas-phase molecules. Therefore, because each
mole of N,O; gives rise to 3 mol of gas molecules, we can expect the pressure to rise to :
times its initial value. To confirm this conclusion, express the progress of the reaction in
terms of the fraction, a, of N;Og molecules that have reacted.

Answer Let the initial pressure be pg and the initial amount of N,05 molecules present be n.
When a fraction « of the N,05; molecules has decomposed, the amounts of the components
in the reaction mixture are:

N, 05 NO, 0, Total
Amount: n(l—a)  2an tan  n(1+430)
When a = 0 the pressure is pp, so at any stage the total pressure is
p=(1+3)po

When the reaction is complete, the pressure will have risen to g times its initial value.

Self-test 25.1 Repeat the calculation for 2NOBr(g) — 2NO(g) + Br,(g).
[p=(1+{a)pol

Spectrophotometry, the measurement of the intensity of absorption in a particular
spectral region, is widely applicable, and is especially useful when one substance in the
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25.2 In the stopped-flow technique the reagents
are driven quickly into the mixing chamber by the
driving syringes and then the time dependence of
the concentrations is monitored.
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reaction mixture has a strong characteristic absorption in a conveniently accessible region of
the electromagnetic spectrum. For example, the progress of the reaction

Hy(g) -+ Bry(g) —— 2HBr(g)

can be followed by measuring the absorption of visible light by bromine. If the reaction
changes the number or type of ions present in a solution, then it may be followed by
monitoring the electrical conductivity of the solution. The replacement of neutral molecules
by ionic products can result in dramatic changes in the conductivity, as in the reaction
(CH3)4CCI(ag) + H,0(1) — (CHy);0H(aq) + H* (aq) + I (aq)

If hydrogen ions are produced or consumed, the reaction may be followed by monitoring the
pH of the solution.

Cther methods of determining composition include mass spectrometry, gas chromato-
graphy, nuclear magnetic resonance, and electron spin resonance (for reactions involving
radicals).

(b) Application of the techniques

In a real-time analysis the composition of the system is analysed while the reaction is in
progress. Either a small sample is withdrawn or the bulk solution is monitored. In the
quenching method the reaction is stopped after it has been allowed to proceed for a certain
time, and the composition is analysed at leisure. The quenching (of the entire mixture or ofa
sample drawn from it) can be achieved either by cooling suddenly, by adding the mixture to
a large volume of solvent, or by rapid neutralization of an acid reagent. This method is
suitable only for reactions that are slow enough for there to be little reaction during the
time it takes to quench the mixture. Many current investigations study fast reactions, which
we shall take to be reactions complete in less than about 1 s (and often very much less), and
the present thrust of chemical kinetics is to ever shorter timescales. With special laser
technigques it is now possible to observe processes occurring in a few tens of femtoseconds.

In the flow method the reactants are mixed as they flow together in a chamber
(Fig. 25.1). The reaction continues as the thoroughly mixed solutions flow through the outlet
tube, and observation of the compaosition at different positions along the tube is equivalent
to the observation of the reaction mixture at different times after mixing. The disadvantage
of conventional flow technigues is that a large volume of reactant solution is necessary. This
disadvantage is particularly important for fast reactions, because to spread the reaction over
a length of tube the flow must be rapid. The stopped-flow technique avoids this
disadvantage (Fig. 25.2). The suitability of the stopped-flow technique to the study of small
samples means that it is appropriate for hiochemical reactions, and it has been widely used
to study the kinetics of enzyme action.

In flash photolysis the gaseous or liquid sample is exposed io a brief photolytic flash of
light, and then the contents of the reaction chamber are monitored. Most work is now done
with lasers with flashes of about 10 ns duration, but many studies are carried out at 1 ps,
and some are done on a femtosecond timescale. Either emission or absorption spectroscopy
may be used to monitor the reaction, and the spectra are recorded clectronically at a series
of times following the flash.

25.2 The rates of recactions

Reaction rates depend on the composition and the temperature of the reaction mixture. The
next few sections look at these observations in more detail.
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25 THE RATES OF CHEMICAL REACTIONS

(a) The definition of rate

Consider a reaction of the form A + 2B — 3C + D, in which at some instant the molar
concentration of a participant J is [J], The instantaneous rate of consumption of one of the
reactants at a given time is —d[R]/dr, where R is A or B. This rate is a positive quantity
(Fig. 25.3). The rate of formation of one of the products (C or D, which we denote P) is
d[P|/dt (note the difference in sign). This rate is also positive.

It follows from the stoichinmetry for the reaction A + 2B — 3C + D that

dbj _ ,diC] _ _dA] _ _,d[B]
d: 3 de dr 2 dr

so there are several rates connected with the reaction. The problem of having several
possibly different rates to describe the same reaction is avoided by defining the unique rate
of reaction, v, as

14JJ)
= 7Y 1]
where 1, is the stoichiometric number of substance J, with vy negative for reactants and
paositive for products (recall the notation introduced in Section 2.7b). Now there is a single
rate for the entire reaction (for the chemical equation as written). With molar
concentrations in moles per litre and time in seconds, reaction rates are reported in
moles per litre per second (mol L™"57!),

lllustration

If the rate of formation of NO in the reaction 2NOBr(g) — 2NO(g) + Br,(g) is reported as
1.6x 107 molL="s™', we use 1y =+2 to report that v=8.0x10~5 molL-'s-".
Because uyop, = —2 it follows that d[NOBr]/dr = —1.6x 10~ molL"'s=", The rate of
consumption of NOBr is therefore 1.6 x 10~ mol L =" s,

Sell-test 25.2 The rate of change of molar concentration of CH; radicals in the reaction

2CH;(g) — CH,CHy(g) was reported as d|CH,]/dr = 1.2 molL~"s~' under particular

conditions. What are (a) the rate of reaction and (b) the rate of formation of CH4CH,4?
[ta) 0.60 molL-"s~", (b) 0.60 mol L~ 5]

(b} Rate laws and rate constants

The rate of reaction is often found to be proportional to the concentrations of the reactants
raised to a power. For example, the rate of a reaction may be found to be proportional to the
molar concentrations of two reactants A and B, in which case we write

v = k[A][B] ()

where each concentration is raised to the first power. The coefficient k is called the rate
constant for the reaction. The rate constant is independent of the concentrations but
depends on the temperature. An experimentally determined equation of this kind is called
the rate law of the reaction. More formally, a rate law is an equation that expresses the rate
of reaction as a function of the concentrations of all the species present in the overall
chemical equation for the reaction at some time: ‘ '

v=/(AL[B].... 3l

The rate law of a reaction is determined experimentally, and cannot in general be inferred
from the chemical equation for the reaction. The reaction of hydrogen and bromine, for
50—-B
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example, has a very simple stoichiometry, H,(g) + Br,(g) — 2HBr(g), but its rate law is
complicated:

G ‘fin][Bh]m
[Bry] + k’[HBr]

In certain cases the rate law does reflect the stoichiometry of the reaction, but that is either
a coincidence or reflects a feature of the underlying reaction mechanism (see later).

A practical application of a rate law is that, once we know the law and the value of the
rate constant, we can predict the rate of reaction from the composition of the mixture.
Moreover, as we shall see later, by knowing the rate law, we can go on to predict the
composition of the reaction mixture at a later stage of the reaction. Moreover, a rate law is a
guide to the mechanism of the reaction, for any proposed mechanism must be consistent
with the observed rate law. '

@)

(c) Reaction order
Many reactions are found to have rate laws of the form

v = k[A]°[B]" - -- ()

The power to which the concentration of a species (a product or a reactant) is raised in a rate
law of this kind is the order of the reaction with respect to that species. A reaction with the
rate law in eqn 2is first-order in A and first-order in B. The overall order of a reaction with
a rate law like that in egn 5 is the sum of the individual orders, a + b + - - -. The rate law in
eqn 2 is therefore second-order overall.

A reaction need not have an integral order, and many gas-phase reactions do not. For
example, a reaction having the rate law

v = k[A]'*[B] : (6)

is half-order in A, first-order in B, and three-halves order overall. Some reactions obey a
zero-order rate law, and therefore have a rate that is independent of the concentration of
the reactant (so long as some is present). Thus, the catalytic decomposition of phosphine
(PH,) on hot tungsten at high pressures has the rate law

v==k . (7)

The PH, decomposes at a constant rate until it has almost entirely disappeared. Only
heterogencous reactions can have rate laws that are zero-order overall,

When a rate law is not of the form in eqn 5, the reaction does not have an overall order
and may not even have definite orders with respect to each participant. Thus, although
eqn 4 shows that the reaction of hydrogen and bromine is first-order in H,, the reaction has
an indefinite order with respect to both Br, and HBr and has no overall order.

These remarks point to three problems, First, we must see how to identify the rate law and
obtain the rate constant from the experimental data. We concentrate on this aspect in this
chapter. Second, we must see how to construct reaction mechanisms that are consistent
with the rate law. We shall introduce the techniques of doing so in this chapter and develop
them further in Chapter 26. Third, we must account for the values of the rate constants and
explain their temperature dependence. We shall see a little of what is involved in this
* chapter, but leave the details until Chapter 27.

(d) The determination of the rate law

The determination of a rate law is simplified by the isolation method in which the
concentrations of ail the reactants except one are in large excess. If B is in large excess, for
example, then to a good approximation its concentration is constant throughout the
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reaction. Although the true rate law might be v = k[A|(B), we can approximate [B] by [B],
and write

v=K[A] K =kB|, (8)l

which has the form of a first-order rate law. Because the true rate law has been forced into
first-order form by assuming that the concentration of B is constant, it is called a
pseudofirst-order rate law. The dependence of the rate on the concentration of each of the
reactants may be found by isolating them in turn (by having all the other substances present
in laige excess), and so constructing a picture of the overall rate law.

In the method of initial rates, which is often used in conjunction with the isolation
method, the rate is measured at the beginning of the reaction for several different initial
concentrations of reactants, We shall suppose that the rate law for a reaction with A
isolated is v = k[A]"; then its initial rate, v, is given by the initial values of the
concentration of A, and we write v, = k|A]q. Taking logarithms gives:

logvy = logk + alog [A), 9)

For a series of initial concentrations, a plot of the logarithms of the initial rates against the
logarithms of the initial concentrations of A should be a straight line with slope a.

Example 25.2 Using the method of initial rates
The recombination of iodine atoms in the gas phase in the presence of argon was

investigated and the order of the reaction was determined by the method of initial rates. The
initial rates of reaction of 2I(g) + Ar(g) — 1,(g) + Ar(g) were as follows:

[1l6/(1073 mol L") 1.0 2.0 4.0 6.0

vo/(molL~"s7!) (a) 8.70x 10~ 3.48x107% 139x102 3.13x1072
(b) 435% 10~ 1.74x102 6.96x1072 1.57x10"!
(€ 8.69x10~3 347x107% 138x107' 3.13x107!

The Ar concentrations are (a) 1.0x 1073 molL~!, (b) 5.0x 107 molL~', and ()
1.0 % 1072 mol L', Determine the orders of reaction with respect to the | and Ar atom
concentrations and the rate constant.

Mcthod Plot the logarithm of the initial rate, logu,, against log[l], for a given
concentration of Ar, and, separately, against log [Ar], for a given concentration of L. The
slopes of the two lines are the orders of reaction with respect to | and Ar, respectively. The
intercept with the vertical axis gives log k.

Answer The plots are shown in Fig. 25.4. The slopes are 2 and 1 respectively, so the (initial)
rate law is
2
vp = [l]g[Ar],
This rate law signifies that the reaction is second-order in (1], first-order in [Ar], and third-
order overall. The intercept corresponds to k = 9 x 10° mol =2 L?s™".

Comment The units of k come automatically from the calculation, and are always such as to
convert the product of concentrations to concentration per unit time (for example,
molL~'s~1).



254 The plot of logw, against (a) log|l], for a given
[Ar]. and (b) log[Ar], for a given i],.

250 INTEGRATED RATE LAWS

767

(a) (b) /
(‘// . ¥
-1 a / -1 /
/ #
= P =
'Tul A ,f/ ':'m A
= 7 A -
b ,/ /. / ) / /
© g o -
g -2 J ‘/}/ 4 i -EO _2 B /
FTE 3 /
o 3 oy o
° 7 9 /
7/
Fd
-3% —3.
L 1 1 1 1 1
0 02 04 06 08 10 0 02 04 06 08 1.0
log [llg +5 log [Ar]y + 3

Sclf-test 25.3 The initial rate of a reaction depended on concentration of a substance J as
follows:

[7]o/(10-% molL™") 50 82 17 30
v/(107" molL"'s™1) 36 9.6 41 130

Determine the order of the reaction with respect to J and calculate the rate constant.
[2,1.4%x 1072 Lmol~'57!]

The method of initial rates might not reveal the full rate law, for the products may
participate in the reaction and affect the rate. For example, products participate in the
synthesis of HBr, because eqn 4 shows that the full rate law depends on the concentration of
HBr. To avoid this difficulty, the rate law should be fitted to the data throughout the
reaction. The fitting may be done, in simple cases at least, by using a proposed rate law to
predict the concentration of any component at any time, and comparing it with the data. A
law should also be tested by observing whether the addition of products or, for gas-phase
reactions, a change in thé surface-to-volume ratia in the reaction chamber affects the rate.

25.3 Integrated rate laws

Rate laws are differential equations. Therefore, we must integrate them if we want to find
the concentrations as a function of time. Even the most complex rate laws may be integrated
numerically. However, in a number of simple cases analytical solutions are easily obtained,
and prove to be very useful. We shall examine a few of these simple cases here, and illustrate
the computational approach in Chapter 26.

(a) First-order reactions

As shown in the Justification below, the first-order rate law for the' consumption of a
reactant A

L

= k(A (10a)
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has the solution

(D) =k W= (108)

These two equations are versions of an integrated rate law, the integrated form of the rate
law.

Justification 25.1

Equation 10a rearranges to
il _
(Al
which can be integrated directly because & is a constant independent of «. Initially (at
t = 0) the concentration of A is [A],, and at a later time ¢ it is [A], so we make these values
the limits of the integrals and write

fo =

Because the integral of 1/x is Inx, eqn 10b is obtained immediately.

~kdr

Equation 10b shows that, if In ((A]/[A],) is plotted against 1, then a first-order reaction
will give a straight line of slope —k. Some rate constants determined in this way are given in
Table 25.1. The second expression in eqn 10b shows that in a first-order reaction the
reactant concentration decreases exponentially with time with a rate determined by &

(Fig. 25.5).
1.0
Example 25.3 Analysing a [irst-order reaction
The variation in the partial pressure of azomethane with time was followed at 600 K, with
0.8 the results given below. Confirm that the decomposition
. CH;N,CH;(g) —— CH3CH,(g) + No(a)
<
§ 0.6 is first-order in azomethane, and find the rate constant at 600 K.
Ksman t/s 0 1000 2000 3000 4000
p/(107% Torr) 820 572 399 278 1.9
0.4
Method As indicated in the text, to confirm that a reaction is first-order, plot In ([A]/[A],)
against time and expect a straight line. Because the partial pressure of a gas is proportional
to its concentration, it is equivalent to plot In (p/p,) against . If a straight line is obtained,
0.2 its slope can be identified with —k.
Table 25.1* Kinetic data for first-order reactions
0 i Reaction Phase o/°c k/s! 2
0 1 2 3
Kyt 2N,05 — 4N0, + 0, g 25 3.38x 108 5.70h
2N;04 — 4NO, + 0, Bra(l) 25 4.27x 1073 451h
25.5 The exponential decay of the reactant in a C,Hg — 2CH, g ‘ 700 536x107* . 21.6 min

, first-order reaction. The larger the rate constant,
the more rapid the decay: here Kiarge = Hhyma- *More values are given in the Data section at the end of this volume.
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25.6 The determination of the rate constant of a
first-order reaction: a straight line is obtained when
In[A] (or, as here, Inp) is plotted against r; the slope
gives k.
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Answer We draw up the following table:

t/s 0 1000 2000 3000 4000
In(p/py) 1 —0.360 -0.720 -1.082 —1.441

Figure 25.6 shows the plot of In (p/p,) against «. The plot is straight, confirming a first-order
reaction, and its slope is —3.6 x 107*. Therefore, k = 3.6 x 1074 s™".

Self-test 25.4 In a particular experiment, it was found that the concentration of N, O in
liquid bromine varied with time as follows:

t/s 0 200 400 600 1000
[N,Og]/molL~"  0.110 0.073 0.048 0.032 0.014

Confirm that the reaction is first-order in N,Og and determine the rate constant.
[k=2.1x1073571]

(b) Half-lives

A useful indication of the rate of a first-order chemical reaction is the half-life, t, 5, of a
substance, the time taken for the concentration of a reactant to fall to half its initial value.
The time for [A] to decrease from [A], to § [A], in a first-order reaction is given by eqn 10b
as

YA
kty; =—In (—21&]1") =—Inl=1In2
0

Hence

In2
t = — 11
12 = (11)
(In2 = 0.693.) The main point to note about this result is that, for a first-order reaction, the
half-life of a reactant is independent of its initial concentration. Hence, if the concentration
of A at some orbitrary stage of the reaction is [A], then it will have fallen to 1 [A] after a

further interval of (In2)/k. Some half-lives are given in Table 25.1.

(c) Second-order reactions
We show in the Justification below that the integrated form of the second-order rate law

%:—kiﬁx]z (124)
is

11 (A

WA W T (125)

Justification 25.2

Equation 120 is integrated by rearranging it to

_dial_
Ty
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of a reactant in a second-order reaction. The grey
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labic 24.2° Kinetic data for second-order reactions

Reaction Phase 8/°Cc k/(Lmol~'s™t)
2NOBr — 2NO+Br, q 10 0.80

21, g 23 7% 10°
CH;CI+CH;0™ CH;0H(1) 20 2.29x10°¢

*More values are given in the Data section.

The concentration of A is [A], at r = 0 and [A] at a general time ¢ later. Therefore, this
expression integrates as follows:

Al gra '
_f __L_Z]. = kjf dr
(Al [A] 0
Because the integral of 1/x* is —1/x, we obtain eqn 12b by substitution of the limits.

The first expression in eqn 126 shows that to test for a second-order reaction we should
plot 1/[A] against ¢ and expect a straight line. The slope of the graph is k. Some rate
constants determined in this way are given in Table 25.2. The second expression lets us
predict the concentration of A at any time after the start of the reaction. It shows that the
concentration of A approaches zero more slowly than in a first-order reaction with the same
initial rate (Fig. 25.7).

It follows from eqn 12b by substituting ¢ = t,, and [A] = [A], that the half-life of a
species A that is consumed in a second-order reaction is

ip= mf;]; (13)

Therefore, unlike in a first-order reaction, the half-life of a substance in a second-order
reaction varies with the initial concentration. A practical consequence is that species that
decay by second-order reactions (which includes some environmentally harmful substances)
may persist in low concentrations for long periods because their half-lives are long when
their concentrations are low.

Anather type of second-order reaction is one that is first-order in each of two reactants
A and B:

N kgare (19

Such a rate law cannot be integrated until we know how the concentration of B is related to
that of A. For example, if the reaction is A + B — P, where P denotes products, and the
initial concentrations are [A], and [B],, then it is shown in the Justification below that at a
time ¢ after the start of the reaction, the concentrations satisfy the relation

BY/Bl o
In ([—Am)—ualo [Alo)kt (15)

Therefore, a plot of the expression on the left against ¢ should be a straight line from which k
can be obtained. Note that, if [A], = [B],, the solutions are those already given in eqn 12b
(but this solution cannot be found simply by setting [A], = [B], in eqn 15).
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Justification 25.3

It follows from the reaction stoichiometry that, when the concentration of A has fallen to
[A], — x, the concentration of B will have fallen to [B], — x [because each A that
disappears entails the disappearance of one B). It follows that

d(A
A (Al ~ (Bl -0
Then, because d[A]/dr = —dx/dt, the rate law is

= = (Al ~ 2)([B, - )

The initial condition is that x = 0 when t = 0, so the integration required is

fo'u—aﬁjﬁm“f"'

The integral on the right is simply t. It follows that
kt = / 4_ixﬁ,_k
o ([Aly —x)([B]p —x)
o), (= m )
= - dx
Bly — [AlgJo L[Alp—x [Bl—=x

=Bl L AL {‘" ([Allflf ) - ([ﬂflE x)} :

This expression can be simplified and rearrangcd into eqn 15 by combining the two
logarithms and noting that [A] = [A], — x and [B] = [B], — x.

Similar calculations may be carried out to find the integrated rate laws for other orders,
and some are listed in Table 25.3.

25.4 Reactions approaching equilibrium

Because all the laws considered so far disregard the possibility that the reverse reaction is
impartant, none of them describes the overall rate when the reaction is close to equilibrium.
At that stage the products may be so abundant that the reverse reaction must be taken into
account. In practice, however, most kinetic studies are made on reactions that are far from
equilibrium, and the reverse reactions are unimportant.

(a) First-order reactions close to equilibrium

We can explore the variation of the composition with time close to chemical equilibrium by
considering the reaction in which A forms B and both forward and reverse reactions are
first-order (as in some isomerizations). The scheme we consider is

A——B = k|A
v = k[A] (16)
B—— A v =k'[B]
The concentration of A is reduced by the forward reaction (at a rate k[A]) but it is increased
by the reverse reaction (at a rate #'[B]). The net rate of change is therefore

95_?_] = —k|A] + K'[B] - ()
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Table 25.3 Integrated rate laws

Order Reaction Rate law*® b
B _ Al
0 A—P v==k =7
kt = x for 0 < x < [A],
. In2
1 A—P v =k[A] &
(Aly
kt =1In
[Alp —x 1
2 A—P v = k[A]? —
o A,
K= —
[Alg([Aly —x)
A+B—P v = k[A](B]
kt = i n [Alg((Bl, — x)
[Blo — [Aly  ([A]y — x)[B],
A+2B P  »=kA]B
1 [Alp([B], — 2x)

=Bl =2, ™ (Al — OBl

A — P with autocatalysis

v =k[A][P]
&t = 1 i [A]u“p]o +x)
[Alg + [Ply  ([A]y — x)[P]o
3 A+2B-P v = k[A][B]? *
a 2x
- (2[A)g - [Blo)([Bl, - 2)[B],
& ! 1n [Alo([B]y — 2¢)
(2[Al, - [B],)® ([l —%)[B],
n>2  A—P v = k(A" e O
(n— L)k[A]G

S S
n=1{([Aly-x)""  [Alg

*x = [P}, and v = dx/dr.

If the initial concentration of A is [A],, and no B is present initially, then at all times
[A] + [B] = [A],. Therefore,

d_([!_’:‘_] = —k[A] + K ([A], — [A]) = —(k + K)[A] + K [A], l (18)

The solution of this first-order differential equation (as may be checked by differentiation) is

K + ke~ k+EN

I = (A

(19)
The time dependence predicted by this equation is drawn in Fig. 25.8.

As t — ao, the concentrations reach their equilibrium values, which are given by eqn 19
as:

K
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25.9 The relaxation to the new equilibrium
compaosition when a reaction initially at equilibrium
at a temperature T, is subjected to a sudden
change of temperature, which takes it to T;.
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It follows that the equilibrium constant of the reaction is

Bl, &
K=—3=_ (21)
Alg ¥
Exactly the same conclusion can be reached—more simply, in fact—by noting that, at
equilibrium, the forward and reverse rates must be the same, so

k[Al, = K'[B], (22)

This relation rearranges into eqn 21.

Equation 21 is very important, because it relates the thermodynamic quantity, the
equilibrium constant, to quantities relating to rates. The practical importance of eqn 21 is
that, if one of the rate constants can be measured, then the other may be obtained if the
equilibrium constant is known,

For a more general reaction, the overall equilibrium constant can be expressed in terms of
the rate constants for all the intermediate stages of the reaction mechanism:
kb ko

ky  ky
where the ks are the rate constants for the individual steps and the k's are for the
corresponding reverse steps.

(b) Relaxation methods

The term relaxation derates the return of a system to equilibrium. It is used in chemical
kinetics to indicate that an externally applied influence has shifted the equilibrium position
of a reaction, normally suddenly, and that the reaction is adjusting to the equilibrium
composition characteristic of the new conditions (Fig. 25.9). We shall consider the response
of reaction rates to a temperature jump, a sudden change in temperature. We know from
Section 9.3a that the equilibrium composition of a reaction depends on the temperature
(provided A_H ® is nonzero), so a shift in temperature acts as a perturbation on the system.
One way of achieving a temperature jump is to discharge a capacitor through a sample made
conducting by the addition of ions, but laser or microwave discharges can also be used.
Temperature jumps of between 5 and 10 K can be achieved in about 1 pus. Some equilibria
are also sensitive to pressure, and pressure-jump techniques may then also be used.

When a sudden temperature increase is applied to a simple A = B equilibrium that is
first-order in each direction, we show in the Justification below that the composition
relaxes exponentially to the new equilibrium composition:

1
x=xpe™* = ky + ky ©(23)

where x is the departure from equilibrium at the new temperature and x; is the departure
from equilibrium immediately after the temperature jump.

Justification 25.4

In the following analysis, we need to keep track of the fact that rate constants depend on
temperature. At the initial temperature, when the rate constants are k, and kj, the net rate
of change of [A] is

d[A]

o= KA+ K [B)
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At equilibrium under these conditions, d{A]/dt = 0, and the concentrations are [A];‘ and
(B, Therefore,

k[Ale, = K [Ble,
When the temperature is increased suddenly, the rate constants change to k, and &, but
the concentrations of A and B remain for an instant at their old equilibrium values. As the
system is no longer at equilibrium, it readjusts to the new equilibrium concentrations,
which are now given by
ky[Aleq = ko [Bleg
and it does so at a rate that depends on the new rate constants,
We write the deviation of [A] from its new equilibrium value as x, so [A] = x + [A],,
and [B] = [B],, — x The concentration of A then changes as follows:
dlA] _
dr
because the two terms involving the equilibrium concentrations cancel. Because
d[A]/dt = dx/dr, this equation is a first-order differential equation with the solution
given in eqn 23. ¢

_kn(x Ly [Aleq) =+ kb(kx + [B]nq) = _(ka I kb)x

Equation 23 shows that the concentrations of A and B relax into the new equilibrium at
a rate determined by the sum of the two new rate constants. Because the equilibrium
constant under the new conditions is K = k,/k,, its value may be combined with the
relaxation time measurement to find the individual k, and k.

Example 25.4 Analysing a temperaturc-jump cxperiment

The H,0(l) — H* (aq) + OH™(aq) reaction relaxes to equilibrium with a time constant
37 us at 298 K and pH=7, and pK,, = 14.01. Given that the forward reaction is first-order
and the reverse is second-order overall, calculate the rate constants for the forward and
reverse reactions.

Method We need to derive an expression for the relaxation time, 1, in terms of k, (forward,
first-order reaction) and k; (reverse, second-order reaction). We can proceed as above, but it
will be necessary to make the assumption that the deviation from equilibrium (x) is so small
that terms in x? can be neglected. Relate k, and k, through the equilibrium constant, but be
careful with units because K, is dimensionless.

Answer The forward rate at the final temperature is k,[H,0] and the reverse rate is
ky[H*][OH™]. The net rate of formation of H,0 is

d[H,0]

T ~k [Hy0] + ky[H* ][OH"]

We write [H,0] = H,0],, + x [H*] = [H*],, — x, and [OH™] = [OH"].; — x, and obtain
dx =
=~k +hal[H | + [OH )

— ki [H0) g + ka[H*] i [OH™ ] + ko
~ — {k; + ky([H],, + [OH ] ,)}x
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where we have neglected the term in x* and used the equilibrium condition to eliminate the
terms that are independent of x. It follows that

==y hol(HY),y + [OHT)
The equilibrium condition is

ki[H;0]q = ky[H] 4 [OH ]
From this expression it follows that

- =132
ﬂ = [H*]NIOH ]w . K, (molL™") - & mol L=!
ky [Hzo]cq [HZOL’q 55.6

because the molar concentration of pure water is 55.6 molL™'. If we write
K =K,/55.6 = 1.8x 107", we obtain

% =k {(K molL™") + [H'], + [OH |}

=l (K + KLY+ KV mol L™ = (2.0 x1077) x ky mol L™!

Hence,

ky = =1.4x10" Lmol™!s™!
2= 37x105 5) x (20x 107 molL-1) X =

It follows that
k = kK molL™' =2.4x 1075 57!

Comment Notice how we keep track of units: K and K, are dimensionless; k; is expressed
in Lmol~'s™'; and k, is expressed in s~'. The reaction is faster in ice, where
ky =8.6x10"2 Lmol~'s~".

Sclf-test 25.5 Derive an expression for the relaxation time of a concentration when the
reaction A + B+=C 4 D is second-order in both directions.
(1/7 = k([A] + [B])eq + K([C] + [D])g]

25.5 The temperature dependence of reaction rates

The rate constants of most reactions increase as the temperature is raised. Many reactions in
solution fall somewhere in the range spanned by the hydrolysis of methyl ethanoate (where
the rate constant at 35°C is 1.82 times that at 25°C) and the hydrolysis of sucrose (where
the factor is 4.13).

(a) The Arrhenius parameters

It is found experimentally for many reactions that a plot of Ink against 1/T gives a straight
line. This behaviour is normally expressed mathematically by introducing two parameters,
ane representing the intercept and the other the slope of the straight line, and writing the
Arrhenius equation

lﬂk:mf\fi (24)
RT

The parameter A, which is given by the intercept of the line at 1/T = 0 (Fig. 25.10), is called
the pre-exponential factor or the frequency factor. The parameter E,, which is obtained
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Table 25.4% Arrhenius parameters

(1) First-order reactions Afs~! E,/(kJmol™!)
CH;NC — CH4CN 3.98 x 10" 160

2N,05 — 4NO,+0; 4.94 » 10" 103.4

(2) Second-order reactions A/(Lmol~'s71) E,/(kJmol1)
OH+H, = H,0+H 8.0x 10 42

NaC,Hs0 + CH,l in ethanol 2.42x 10" 81.6

*More values are given in the Dato section.

from the slope of the line (—E,/R), is called the activation energy. Collectively the two
quantities are called the Arrhenius parameters (Table 25.4).

Example 25.5 Determining the Archenius parameters

The rate of the second-order decomposition of acetaldehyde (ethanal, CH;CHO) was
measured over the temperature range 700-1000 K, and the rate constants are reported
below. Find £, and A.

T/K 700 730 760 790 810 840 910 1000
k/{Lmol~'s™') 0.011 0035 0.105 0343 0789 2.17 200 145

Method According to eqn 24, the data can be analysed by plotting In{k/Lmol~'s™!)
against 1/(T/K) and getting a straight line. The slope of this line is (—£,/R)/K and the
intercept at 1/T = 0 is In A).

Answer We draw up the following table:

10° K/T 143 137 132 127 123 119 110 1.00
In(k/Lmol~'s™") —451 -335 -225 —107 -024 077 3.00 498

Now plot Ink against 1/T (Fig. 25.11). The least-squares best fit of the line is with slope
—2.27 % 10* and intercept 27.7. Therefore,
E, = (2.21 x 10* K) x (8.3145 JK~' mol~') = 188 kJmol™’

A=e" Lmol™'s™' = 1.1 x10'* Lmol™' 57!

Comment Note that 4 has the same units as k. The slopes and intercepts of graphs are
always dimensionless, and care must be taken to relate the numerical value to the physical
quantity by noting how the data have been plotted. In practice, A is obtained from one of
the midrange data values rather than by using a lengthy extrapolation.

Self-test 25.6 Determine A and E, from the following data:

T/K 300 350 400 450 500
k/(Lmol~'s™")  79x10° 3.0x10" 79x107 1.7x10® 3.2x10®

[8x 10" Lmol~'s™!, 23 kmol~']

The fact that E, is given by the slope of the plot of In k against 1/T means that the higher
the activation energy, the stronger the temperature dependence of the rate constant (that
is, the steeper the slope). A high activation energy signifies that the rate constant depends
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strongly on temperature. If a reaction has zero activation energy, its rate is independent of
temperature. In some cases the activation energy is negative, which indicates that the rate
decreases as the temperature is raised. We shall see that such behaviour is a signal that the
reaction has a complex mechanism.

The temperature dependence of some reactions is not Arrhenius-like, in the sense that a
straight line is not obtained when Ink is plotted against 1/T. However, it is still possible to
define an activation energy as

,dink
dr

This definition reduces to the carlier one (as the slope of a straight line) for a temperature-
independent activation energy. However, the definition in eqn 25 is more general than
eqn 24, because it allows £, to be obtained from the slope (at the temperature of interest)
of a plot of Ink against 1/T even if the Arrhenius plot is not a straight line. Non-Arrhenius
behaviour is commonly a sign that quantum mechanical tunnelling is playing a significant
role in the reaction.

E, =RT (25]

(b) The interpretation of the parameters

For the present chapter we shall regard the Arrhenius parameters as purely empirical
quantities that enable us to discuss the variation of rate constants with temperature.
However, it is worth anticipating the interpretation of E, in Section 27.1, which is
motivated by writing eqn 24 as

k= Ae E/RT (26)

There we shall see that the activation energy is the minimum kinetic energy that reactants
must have in order to form products. For example, in a gas-phase reaction there are
numerous collisions each second, but only a tiny proportion are sufficiently energetic to lead
to reaction. The fraction of collisions with a kinetic energy in excess of an energy E, is given
by the Boltzmann distribution as ¢=5/A", Hence, the exponential factor in eqn 26 can be
interpreted as the fraction of collisions that have enough kinetic energy to lead to reaction.

The pre-exponential factor is a measure of the rate at which collisions occur irrespective
of their energy. Hence, the product of A and the exponential factor, e5/AT, gives the rate
of successful collisions. We shall develop these remarks in Chapter 27 and see that they have
their analogues for reactions that take place in liquids.

Accounting for the rate laws

We now move on to the second stage of the analysis of kinetic data, their explanation in
terms of a postulated reaction mechanism.

25.6 Elementary reactions

Most reactions occur in a sequence of steps called elementary reactions, each of which
involves only a small number of malecules or ions. A typical elementary reaction is

H + Br, —— HBr + Br

(We do not specify the phase of the species in the chemical equation for an elementary
reaction.) This equation signifies that an H atom attacks a Br, molecule to produce an HBr
molecule and a Br atom. The molecularity of an elementary reaction is the number of
molecules coming together to react in an elementary reaction. In a unimolecular reaction, a
single molecule shakes itself apart or its atoms into a new arrangement, as in the
isomerization of ceyclopropane (1) to propene (2). In a bimolecular reaction, a pair of
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molecules collide and exchange energy, atoms, or groups of atoms, or undérgo some other
kind of change. It is most important to distinguish molecularity from order:

Reaction order is an empirical quantity, and obtained from the experimental rate
law.

The molecularity refers to an elementary reaction proposed as an individual step
in a mechanism.

The rate law of a unimolecular elementary reaction is first-order in the reactant:

Ay Al —k[A] (27)
dr
where P denotes products (several different species may be formed). A unimolecular reaction
is first-order because the number of A molecules that decay in a short interval is
proportional to the number available to decay. (Ten times as many decay in the same interval
when there are initially 1000 A molecules than when there are only 100 present.) Therefore,
the rate of decomposition of A is proportional to its molar concentration.
An elementary bimolecular reaction has a second-order rate law:

dlA] _
A+B—— P  SZ= —kA]B) (28)

A bimolecular reaction is second-order because its rate is proportional to the rate at which
the reactant species meet, which in turn is proportional to their concentrations. Therefore, if
we believe that a reaction is a single-step, bimolecular process, we can write down the rate
law (and then go on to test it). Bimolecular elementary reactions are believed to account for
many homogeneous reactions, such as the dimerizations of alkenes and dienes and reactions
such as

CH,l(alc) + CH,CH,0 (alc) —— CH,0CH,CHy(alc) + 1 (alc)

(where ‘alc’ signifies alcohol solution). The mechanism of this reaction is believed to be the
single elementary step

CH;l 4+ CH3CH,07 —— CHy0CH,CH,y + 17
This mechanism is consistent with the observed rate law
v = k[CH,41][CH,CH,07] (29)

We shall see below how to string simple steps together into a mechanism and how to
arrive at the corresponding rate law. For the present we emphasize that, if the reaction is on
elementary bimolecular process, then it has second-order kinetics but, if the kinetics are
second-order, then the reaction might be complex. The postulated mechanism can be
explored only by detailed detective work on the system, and by investigating whether side
products or intermediates appear during the course of the reaction. Detailed analysis of this
kind was one of the ways, for example, in which the reaction H,(g) + i,(g) — 2HI(g) was
shown to proceed by a complex reaction. For many years the reaction had been accepted on
good, but insufficiently meticulous evidence, as a fine example of a simple bimolecular
reaction in which atoms exchanged partners during a collision.

25.7 Consccutive clementary rcactions

Some reactions proceed through the formation of an intermediate (I), as in the consecutive
unimolecular reactions

K, K
A—[— P
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An example is the decay of a radioactive family, such as

239U 23.5 min J?BNP 2.35 day n’Pu

(The times are half-lives.) We can discover the characteristics of this type of reaction by
setting up the rate laws for the net rate of change of the concentration of each substance.

(a) The variation of concentrations with time
The rate of unimolecular decomposition of A is

dA]

ZE 30

= k(A (30)

and A is not replenished. The intermediate I is formed from A (at a rate k, [A]] but decays to
P (at a rate ky|l]). The net rate of formation of 1 is therefore

dfi]
— = k,[A] = k[I 31
o = kAl = &1 (31)
The product P is formed by the unimolecular decay of I:
d[P]
- 3
dr kel (.2)

We suppose that initially only A is present, and that its concentration is [A],.
The first of the rate laws, eqn 30, is an ordinary first-order decay, so we can write

[A] = [Aloe™® (33)

When this equation is substituted into eqn 31, and we set [T}, = 0, the solution is .
k
= (™ = el (34
k'h - kl
At all times [A] + [I] + [P] = [A],, so it follows that
—kyt _ ~kgt
Pl=11+ u}wo (35)
kb - kl

The concentration of the intermediate I rises to a maximum, and then falls to zero
(Fig. 25.12). The concentration of the product P rises from zero towards [A],.

Example 25.6 Analysing consecutive reactions

Suppose that in an industrial batch process a substance A produces the desired compound I
which goes on to decay to a worthless product C, each step of the reaction being first-order.
At what time will I be present in greatest concentration?

Method The time dependence of the concentration of 1is given by eqn 34. We can find the
time at which [I] passes through a maximum, f,,,,, by calculating d[T}/dr and setting the
resulting rate equal to zero.

Answer It follows from egn 34 that

dll)  kJAlg(ke™ — ke™)
T ky — k,

This rate is equal to zero when

ket = ke b
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25.13 The basis of the steady-state approximation,

It is supposed that the concentrations of
intermediates remain small and hardly change
during most of the course of the reaction.
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Therefore,
1 k

=— |In2
Tmax k —ky In %,
Comment For a given value of k,, as k, increases both the time at which [[] is a maximum
and the yield of I increase.

Scif-test 25,7 Calculate the maximum concentration of I and justify the last remark.
[mmn”A]u il {kl/kh)cl c= kb/(kb . ku)]

(b) The rate-determining step

Suppose now that &, > k,; then, whenever an I molecule is formed, it decays rapidly into P.
Because '

e ek -k ok,
eqn 35 reduces to
[P] = (1 = e™™N)[A], . (36)

which shows that the formation of the final product P depends on only the smaller of the
two rate constants. That is, the rate of formation of P depends on the rate at which 1 is
formed, not on the rate at which I changes into P. For this reason, the step A — I is called
the ratc-determ‘ming step of the reaction. Its existence has been likened to building a six-
lane highway up to a single-lane bridge: the traffic flow is governed by the rate of crossing
the bridge. Similar remarks apply to more complicated reaction mechanisms, and in general
the rate-determining step is the one with the smallest rate constant.

(c) The steady-state approximation

One feature of the calculation so far has probably not gone unnoticed: there is a
considerable increase in mathematical complexity as soon as the reaction mechanism has
more than a couple of steps. A reaction scheme involving many steps is nearly always
unsolvable analytically, and alternative methods of solution are necessary. One approach is
to integrate the rate laws numerically. An alternative approach, which continues to be
widely used because it leads to convenient expressions and more readily digestible results, is
to make ‘an approximation.

The steady-state approximation assumes that, after an initial induction period, an
interval during which the concentrations of intermediates, I, rise from zero, and during the
major part of the reaction, the rates of change of concentrations of all reaction
intermediates are negligibly small (Fig. 25.13):

% =0 (37)

This approximation greatly simplifies the discussion of reaction schemes. For example, when
we apply the approximation to the consecutive first-order mechanism, we set d[l}/dr=0in
eqn 31, which then becomes

ky[A] — k[l = 0
Then

0~ f‘k-:[AJ (38)

51—B
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On substituting this value of [I] into eqn 32, that equation becomes

d(P] _ -
S = blll = k(4] (39)

and we see that P is formed by a first-order decay of A, with a rate constant k,, the rate
constant of the slower, rate-determining, step. We can write down the solution of this
equation at once by substituting the solution for [A], eqn 33, and integrating:

1
P = kAl [ ear= (1 =)l (40)
0
This is the same [approximate) result as before, eqn 36, but much more quickly obtained.

Example 25.7 Using the steady-state approximatioh

Devise the rate law for the decomposition of N,0s,
2N,05(g) — 4NO,(g) + 0,(9)
on the basis of the following mechanism:

N,0, —— NO, + NO; &,
NO, + NO; — N,0, &,
NO, + NO; —— NO, + 0, +NO k&,
NO + N,0, —— 3NO, &,

Methad First identify the intermediates (the species that occur in the reaction steps but do
nat appear in the overall reaction) and write expressions for their net rates of formation.
Then, all net rates of change of the concentrations of intermediates are set equal to zero and
the resulting equations are solved algebraically.

Answer The intermediates are NO and NO5; the net rates of change of their concentrations
are

di;?.]. = ky[NOy|[NO;3] — & [NOJ[N,05) =~ 0

d[NOs]
dr

= ky[N, O3] — k;[NO,|[NO;] — &, [NO,][NO;] =~ 0

The net rate of change of concentration of N,0; is

le;fosl = —k,[N,04] + K,[NO,}[NO;] — & [NOJ[N,O5]

and replacing the concentrations of the intermediates by using the equations above gives

d[N2O5] _  2kk[N,O5]
dr ki 4+ ky,

Comment The decomposition of N,Og is problematic because its rate decreases more
quickly than expected at low pressures. It is believed that this decrease is due to chan@es in
the rate constants themselves (particularly k). *
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Self-test 25.8 Derive the rate law for the decomposition of ozone in the reaction
204(g) — 30,(g) on the basis of the (incomplete) mechanism
0, — 0,+0 &
0, +0 —— 0, &
040, — 20, &
[d(05]/dr = —kky 03]/ (K3 [05] + ky [O5])]

(d) Pre-equilibria
From a simple sequence of consecutive reactions we now turn to a slightly more complicated
mechanism in which an intermediate I reaches an equilibrium with the reactants A and B:

ALB=I P (41)

The rate constants are k, and k, for the forward and reverse reactions of the equilibrium and
ky, for the final step. This scheme involves a pre-equilibrium, in which an intermediate is in
equilibrium with the reactants. A pre-equilibrium arises when the rates of formation of the
intermediate and its decay back into reactants are much faster than its rate of formation of
products; thus, the condition is possible when &} > k, but not when k, > k. Because we
assume that A, B, and I are in equilibrium, we can write

.
" ATE] ki,
In writing these equations, we are presuming that the rate of reaction of I to form P is too

slow to affect the maintenance of the pre-equilibrium (see the example below). The rate of
formation of P may now be written:

TPkl = kKA B (43)

(42)

This rate law has the form of a second-order rate law with a composite rate constant:

d(P] kyky

& =HAIBl  k=kK = v (44)

TEm e e mmrme

Examplc 25.8 Ahalysmg a pr:-cqumbnum

Repeat the pre-equilibrium calculation but without ignoring the fact that I is slowly leaking
away as it forms P.

Method Begin by writing the net rates of change of the concentrations of the substances
and then invoke the steady-state approximation for the intermediate . Use the resulting
expression to obtain the rate of change of the concentration of P.

Answer The net rates of change of P and 1 are

ek

dfI ;
-[-]- =k, [A][B] — k3[I] — &u[I] = 0
The second equation solves to

~ kalAl[B]
M=t



25.14 The basis of the Michaclis-Menten mechanism
of enzyme action, Only a fragment of the large
enzyme molecule E is shown.
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25.15 The variation of the effective rate constant k
with substrate concentration according to the
Michaelis-Menten mechanism.
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When we substitute this into the expression for the rate of formation of P, we obtain

d[P] k ki

- »k[A][B] k=2

=~ K[A)[B] e

Comment This expression reduces to thatin eqn 44 when the rate constant for the decay of
I into products is much smaller than that for its decay into reactants, k, < k|.

Self-test 25.9 Show that the pre-equilibrium mechanism in which. 2A =1 (K) followed
by I +B — P (k) results in an overall third-order reaction.
[d[P)/ds = kK [A]'[B]

(e) The Michaelis-Menten mechanism

An example of a rcPctiun in which an intermediate is formed is the Michaelis-Menten
mechanism of enzyme action. The rate of an enzyme-catalysed reaction in which a substrate
S is converted into products P is found to depend on the concentration of the enzyme E
even though the enzyme undergoes no et change. The proposed mechanism, which is
illustrated in Fig. 25.14, is

E+S=ES—P+E k.Kik (45)
In this mechanism, ES denotes a bound state of the enzyme and its substrate. This
mechanism has the same form as that treated in Example 25.8, so we can conclude at once
that

ku[E][S]

ES| = 2 46

BSI= %7 (46)
[E] and [S) are the concentrations of the free enzyme and free substrate. If [E], is the total
concentration of enzyme, then

E] + [ES] = [E], (47)
Because only a little enzyme is added, the free substrate concentration is aimost the same as
the total substrate concentration, and we can ignore the fact that [S] differs slightly from
[S)iouar- Therefore,

ky((E], — [ES])[S]
] (e ' R i [ 48
[Bs] ===k (48)
which rearranges to
ku[Eo[S]
ES|=—"—"= 49
B8 = Bk + 1.8 o
It follows that the rate of formation of product is
d[P| ky[S]
— =k[E =2 50
where the Michaelis constant, K, is
ky + k
M= —'k—b [51]

]

According to eqn 50, the rate of enzymolysis varies linearly with the enzyme concentration,
but in a more complicated manner with the coneentration of substrate (Fig. 25.15). Thus,
when [S] » Ky, the rate law in eqn 50 reduces to

P kel (52
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1/k Slope = Ky/k,

1K 1k,

0 1181

25.16 A Lineweaver-Burk plot for the analysis of
an enzymolysis that proceeds by a Michaelis-

Menten mechanism, and the significance of the
intercepts and the slope,

Le
\A(

Products

25.17 A representation of the Lindemann-
Hinshelwood mechanism of unimolecular reactions.
The species A is excited by collision with A, and the
excited A molecule (A*) may either be deactivated
by a collision with A or go on to decay by a
unimolecular process to form products.
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and is zero-order in §. This result means that under these conditions the rate is constant:
there is so much S present that it remains at effectively the same concentration even though
products are being formed. Moreover, the rate of formation of products is a maximum, and
ky[E], is called the maximum velocity of the enzymolysis: ky, itself is called the maximum
turnover number. When so little S is present that [S] < K, the rate of formation of
products is ’

dp] _

= [ Jols] (53)

Now the rate is proportional to [S] as well as to [E,.
It follows from eqn 50 that

1 1 K

i + &lS] (54)
Hence, a Lineweaver-Burk plot of 1/k against 1/[S] will give k, (from the intercept at
1/[S] = 0) and Ky (from the slope, Kp,/k,, Fig. 25.16). However, the plot cannot give the
individual rate constants k, and k] that appear in Ky,. The stopped-flow technique can give
the additional data needed, because the rate of formation of the enzyme-substrate complex
can be found by monitoring its concentration after mixing enzyme and substrate. This
procedure gives k,, and k; can then be found by combining this result with the value of Ky

25.8 Unimolecular reactions

A number of gas-phase reactions follow first-order kinetics, as in the isomerization of
cyclopropane mentioned earlier:

cyclo-C3Hg —— CH,CH=CH, v = k[cyclo-CyHg) (55)

The problem with the interpretation of first-order rate laws is that presumably a molecule
acquires enough energy to react as a result of its collisions with other molecules. However,
collisions are simple bimolecular events, so how can they result in a first-order rate law?
First-order gas-phase reactions are widely called ‘'unimdlecular reactions’ because they also
involve an elementary unimolecular step in which the reactant molecule changes into the
product. This term must be used with caution, thodgh, because the overall mechanism has
bimolecular as well as unimolecular steps.

(a) The Lindemann-Hinshelwood mechanism

The first successful explanation of unimolecular reactions was provided by Frederick
Lindemann in 1921 and then elaborated by Cyril Hinshelwood. In the Lindemann-
Hinshelwood mechanism it is supposed that a reactant molecule A becomes energetically
excited by collision with another A molecule (Fig. 25.17):

d[A 1_

Bk e a k(A2 (56)

The energized molecule might lose its excess energy by collision with another molecule: -

A+A" — A+A d[AI

K [A][A"] . (57)
Alternatively, the excited molecule might shake itself apart and form products P. That is, it
might undergo the unimolecular decay

d[A®)

A'—— P S

= —ky[A"] (58)
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25.18 The pressure dependence of the unimolecular
isomerization of trans-CHD=CHD showing a
pronaunced departure from the straight line
predicted by eqn 65 based on the Lindemann-
Hinshelwood mechanism.
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If the unimolecular step is slow enough to be the rate-determining step, the overall reaction
will have first-order kinetics, as observed. This conclusion can be demanstrated explicitly by
applying the steady-state approximation to the net rate of formation of A”:

AN AR~ KIAIAT - kAT =0 (59)

This equation solves to

k(A
At = —2 60
(A ky + ki [A] (60)
so the rate law for the formation of P is
d[p| koky[A]®
Ll At =
dr blA’] ky + Ki[A] (1)

At this stage the rate law is not first-order. However, if the rate of deactivation by
(A*,A) collisions is much greater than the rate of unimolecular decay, in the sense that

K[A*][A] > ky[A"] or k,[A] » ky

then we can neglect k, in the denominator and obtain

g ks (62)

d[P|
F i i k.

Equation 62 is a first-order rate law, as we set out to show.

The Lindemann-Hinshelwood mechanism can be tested because it predicts that, as the
concentration (and therefore the partial pressure) of A is reduced, the reaction should
switch to overall second-order kinetics. Thus, when K;[A] < k- the rate law ineqn 61 is

dp] _
5 kAT _ (63)

The physical reason for the change of order is that at low pressures the rate-determining
step is the bimolecular formation of A®. If we write the full rate law in eqn 61 as

d[P ko ky (A

WP _pa] k=R lA) (64)
dr ky -+ ki[A]

then the expression for the effective ratc-constant, k, can be rearranged to
R i (65)

k kky o k[A]

Hence, a test of the theory is to plot 1/k against 1/[A], and to expect a straight line.
Whereas the Lindemann-Hinshelwood mechanism agrees in general with the switch in
order of unimolecular reactions, it does not agree in detail. A typical graph of 1/k against
1/[A] is shown in Fig. 25.18. The graph has a pronounced curvature, corresponding to a
larger value of k (a smaller value of 1/k) at high pressures (low 1/[A]) than would be
expected by extrapolation of the reasonably linear low pressure (high 1/[A]) data.

(b) The activation energy of a composite reaction

Although the rate of each step of a complex mechanism might increase with temperature
and show Arrhenius behaviour, is that true of a compasite reaction? To answer this question,
we consider the high-pressure limit of the Lindemann-Hinshelwood mechanism as
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25.19 For a reaction with a pre-equilibrium, there
are three activation energies to take into account,
two referring to the reversible steps of the pre-
equilibrium and one for the final step. The relative
magnitudes of the activation energies determine
whether the overall activation energy is (a) positive or
(b) negative.
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Ela  Ela) Ela)  Ela)

Elb

Potential energy
Potential energy

(a) (b)

Reaction coordinate Reaction coordinate

expressed in egn 62. If each of the rate constants has an Arrhenius-like temperature
dependence, we can use eqn 26 for each of them, and write

i tak _ (Ala)e 5/HT) (4(p)e-Ei0)/AT)

Ky (A (a)e~Eala)/RT) (66)
—AAAD) e @) +5,0)-E @y /AT
A'(a)

That is, the composite rate constant k has an Arrhenius-like form with activation
energy
E, = El(a) 7 El(b) = E:(a) (67)

Moreover, provided E,(a) + £,(b) > E.(a), the activation energy is positive and the rate
increases with temperature. However, it is conceivable that E,(a) + E,(b) <E.(a)
(Fig. 25.19), in which case the activation energy is negative and the rate will decrease as
the temperature is raised. There is nothing remarkable about this behaviour: all it means is
that the reverse reaction (corresponding to the deactivation of A*) is so sensitive to
temperature that its rate increases sharply as the temperature is raised, and depletes the
steady-state concentration of A*. The Lindemann-Hinshelwood mechanism is an unlikely
candidate for this type of behaviour because the deactivation of A* has only a small
activation energy, but there are reactions with analogous mechanisms in which a negative
activation energy is observed. i

When we examine the general rate law given in eqn 61, it is clear that the temperature
dependence may be difficult to predict because each rate constant in the expression for k
increases with temperature, and the outcome depends on whether the terms in the
numerator dominate those in the denominatar, or vice versa. The fact that so many reactions
do show Arrhenius-like behaviour with positive activation energies suggests that their rate
laws are in a ‘simple’ regime, like eqn 63 rather than egn 61, and that the temperature
dependence is dominated by the activation energy of the rate-determining stage. An
€nzyme reaction can show an even more complicated tcmpcr}ature dependence, because
the enzyme may become denatured as the temperature is raised, and hence cease to
function. b .
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Exercises

25.1 (a) The rate of the reaction A + 28~ 3C + D was reported as
1.0 mol L~" s™". State the rates of formation and consumption of the
participants.

25.1 (b) The rate of the reaction A + 3B — C + 2D was reported as
1.0 molL™" s™". State the rates of formation and consumption of the
participants.

252 (a) The rate of formation of C in the reaction
2A+B — 2C+3Dis 1.0 molL™' s, State the reaction rate, and
the rates of formation or consumption of A, B, and D.

25.2 (b) The rate of consumption of B in the reaction
A+3B — C+2Dis 1.0 molL~! 57!, State the reaction rate, and
the rates of formation or consumption of A, C, and D.

25.3 (a) The rate law for the reaction in Exercise 25.1a was found to
be v = k[A][B]. What are the units of k? Express the rate law in terms
of the rates of formation and consumption of (a) A, b) C.

25.3 (b] The rate law for the reaction in Exercise 25.1b was found to
be v = k[A][B]>. What are the units of ? Express the rate law in terms
of the rates of formation and consumption of (a) A, (b) C,

25.4 (a) The rate law for the reaction in Exercise 25.2a was reported
as d[C]/dr = k[A][B][C]. Express the rate law in terms of the reaction
rate; what are the units for & in each case?

25.4 (b) The rate law for the reaction in Exercise 25.2b was reported
as d[C]/dr = k[A][B][C]™". Express the rate law in terms of the
reaction rate; what are the units for & in each case?

25.5 (a) At518°C, the rate of decomposition of a sample of gaseous
acetaldehyde, initially at a pressure of 363 Torr, was 1.07 Torrs—!
when 5.0 per cent had reacted and 0.76 Torrs=' when 20.0 per cent
had reacted. Determine the order of the reaction.

25.5 (b) At 400 K, the rate of decomposition of a gaseous
compound initially at a pressure of 12.6 kPa, was 9.71 Pas~! when
10.0 per cent had reacted and 7.67 Pas~! when 20.0 per cent had
reacted. Determine the order of the reaction.

25.6 (a) At518°C, the half-life for the decomposition of a sample of
gaseous acetaldehyde (ethanal) initially at 363 Torr was 410 s. When
the pressure was 169 Torr, the half-life was 880 s. Determine the
order of the reaction,

25.6 (b) At400 K, the half-life for the decomposition of a sample of
a gaseous compound initially at 55.5 kPa was 340 s. When the
pressure was 28.9 kPa, the half-life was 178 s. Determine the order of
the reaction.

25.7 (a) The rate constant for the first-order decomposition of N,0
in the reaction 2N,05(g) — 4NO,(g) + 0,(g) is k = 3.38 x 10~5 s~!
at 25°C. What is the half-life of N,0,? What will be the pressure,
initially 500 Torr, (a) 10s, (b) 10 min after initiation of the
reaction?

25.7 (b) The rate constant for the first-order decomposition of a
compound A in the reaction 2A — Pisk = 2.78 x 10~7 s~ at 25°C.
What is the half-life of A? What will be the pressure,
initially 32.1 kPa, (a) 10h, (b) 50 h after initiation of the
reaction?

25.8 (a) Asecond-order reaction of the type A + B — P was carried
out in a solution that was initially 0.050 molL™' in A and
0.080 molL~" in B. After 1.0 h the concentration of A had fallen
t0 0.020 mol L-". (a) Calculate the rate constant. (b) What is the half-
life of the reactants?

25.8 (b) A second-order reaction of the type A +2B — P was
carried out in a solution that was initially 0.075 molL~! in A and
0.080 molL~" in B. After 1.0 h the concentration of A had fallen to
0.045 mol L~". (a) Calculate the rate constant. (b) What is the half-
life of the reactants? .
25.9 (a) If the rate laws are expressed with (a) concentrations in
moles per litre, (b) pressures in kilopascals, what are the units of the
second-order and third-order rate constants?

25.9 (b) If the rate laws are expressed with (a) concentrations in
molecules per metre cubed, (b) pressures in newtons per metre
squared, what are the units of the second-order and third-order rate
constants?

25.10 (a) The half-life for the (first-order) radioactive decay of '*C is
5730y (it emits B rays with an energy of 0.16 MeV). An
archaeological sample contained wood that had only 72 per cent of
the ™C found in living trees. What is its age?

25.10 (b) One of the hazards of nuclear explosions is the generation
of %Sr and its subsequent incorporation in place of calcium in bones.
This nuclide emits f rays of energy 0.55 MeV, and has a half-life
of 28.1y. Suppose 1.00 ug was absorbed by a newly born child.
How much will remain after (a) 18y, (b) 70 y 'if none is lost
metabolically?

25.11 (a) The second-order rate constant for the reaction

CH,C00C,Hy(aq) + OH™ (ag) —
CH,C0; (aq) + CH,CH,0H(aq)



PROBLEMS

is0.11 Lmol~!s~!. What is the concentration of ester after (a) 10 s,
(b) 10 min when ethyl acctate is added to sodium hydroxide so that
the initial concentrations are [NaOH] = 0.050 molL=" and
[CH,CO0C, Hy] = 0.100 mol L~'7

25.11 (b) The second-order rate constant for the reaction
A+2B - C+D is 021 Lmol~!'s~!. What is the concentration
of C after (a) 10 s, (b) 10 min when the reactants are mixed with
initial concentrations of [A] =0.025 molL™' and [B] =
0.150 molL-'?

25.12 (a) A reaction 2A — P has a second-order rate law with
k =3.50%10~* Lmol~'s~'. Calculate the time required for the
concentration of A to change from 0.260 molL~! to 0.011 mol L™,
25.12 (b) A reaction 2A — P has a third-order rate law
with & = 3.50 x 10~* L2 mol~2s~!. Calculate the time requiréd for
the concentration of A to change from 0.077 molL™' to
0.021 mol L~

25.13 (a) The rate constant for the decomposition of a certain
substance is 2.80x107*Lmol~'s™' at 30°C  and
1.38 x 102 L mol ™' s~! at 50°C. Evaluate the Arrhenius parameters
of the reaction.

25.13 (b) The rate constant for the decomposition of a certain
substance” is  1.70x 102 Lmol~'s™! at 24°C  and
2.01 x 10~2 Lmol~!s~! at 37°C. Evaluate the Arrhenius parameters
of the reaction.

25.14 (a) The reaction mechanism
A, m 2A (fast)
A+B——P (slow)

involves an intermediate A. Deduce the rate law for the reaction.
25.14 (b) Consider the following mechanism for renaturation of a
double helix from its strands A and B:

A + B & unstable helix

unstable helix —— stable double helix

(fast)
(slow)
Derive the rate equation for the formation of the double helix and

express the rate constant of the renaturation reaction in terms of the
rate constants of the individual steps.
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25.15 (a) Show that s, o 1/[A]™"" for a reaction that is nth-order
in A.

25.15 (b) Deduce an expression for the time it takes for the
concentration of a substance to fall to one-third its initial value in an
nth-order reaction.

25.16 (a) The enzyme-catalysed conversion of a substrate at 25°C
has a Michaelis constant of 0.035 mol L~!. The rate of the reaction is
1.15%x 10~ molL~'s=! when the substrate concentration is
0.110 molL~'. What is the maximum velocity of this
enzymolysis?

25.16 (b) The enzyme-catalysed conversion of a substrate at 25°C
has a Michaelis constant of 0.042 mol L~'. The rate of the reaction is
245%10~" molL~'s~! when the substrate concentration is
0.890 molL~!, What is the maximum velocity of this
enzymolysis?

25.17 (a) The effective rate constant for a gaseous reaction which
has a Lindemann-Hinshelwood mechanism is 2.50 x 1074 s~! at
1.30 kPa and 2.10 x 10~3 s~! at 12 Pa, Calculate the rate constant
for the activation step in the mechanism.

25.17 (b) The effective rate constant for a gaseous reaction which
has a Lindemann-Hinshelwood mechanism is 1.7x1073 s7! at
1.09 kPa and 2.2x 10~* s~' at 25 Pa. Calculate the rate constant
for the activation step in the mechanism.

25.18 (a) The pK, of NH} is 9.25 at 25°C. The rate constant at 25°C
for the reaction of NHf and OH- to form aqueous NH; is
4.0x% 10 Lmol~'s~!. Calculate the rate constant for proton
transfer to NH,. What relaxation time would be observed if a
temperature jump were applied to a solution of
0.15 mol L~! NH,(aq) at 25°C?

25.18 (b) The equilibrium A =t B 4 C at 25°C is subjected to a
temperature jump. The measured relaxation time is 3.0 ps. The
equilibrium constant for the system is 2.0 x 107! at 25°C, and the
equilibrium concentrations of B and C at 25°C are both'
2.0 107* mol L~ Calculate the rate constants for the first-order
forward and second-order reverse reactions.

Problems

Numerical problems

25.1 The data below apply to the formation of urea from ammonium
cyanate, NH,CNO — NH,CONH,. Initially 22.9 g of ammonium
cyanate was dissolved in enough water to prepare 1.00 L of solution.
Determine the order of the reaction, the rate constant, and the mass
of ammonium cyanate left after 300 min.

t/min 0 200 500 65.0 150
m(urea)/g 0 7.0 12.1 13.8 17.7
25.2 The data below  apply to  the reaction,

(CH;);CBr + H,0 — (CH,;);COH + HBr. Determine the order of the

reaction, the rate constant, and the molar concentration of (CH;),CBr

after 43.8 h.

t/h 0 3.15 6.20 10.00

[(CH;),CBr)/ 1039 896 7.76 639
(1072 molL™")

25.3 The thermal decomposition of an organic nitrile produced the

following data:

/(10 s) 0 2.00 400 6.00 8.00 10.00 12.00 0

[nitrile]/(mol L=')  1.10 0.86 0.67 0.52 0.41 032 025, 0

1830 30.80
353 207
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Determine the order of the reaction and the rate constant.

25.4 The following data have been obtained for the decomposition
of NyOg(g) at 67°C according to the reaction
2N,05(g) — 4NO,(g) + O,(g). Determine the order of the reaction,
the rate constant, and the half-life. It is not necessary to abtain the
result graphically; you may do a calculation using estimates of the
rates of change of concentration.

t/min 0 1 2 3 4 5
[NOg]/(mol L=')  1.000 0.705 0.497 0.349 0246 0.173

25.5 A first-order decomposition reaction is observed to have the
following rate constants at the indicated temperatures, Estimate the
activation energy.

k/(1073s7') 246 451 576
6/°c 0 200 400

25.6 The gas-phase decomposition of acetic acid at 1189 K proceeds
by way of two parallel reactions:

(1) CH;CO0H —— CH, +C0, &k, =3.74 ¢!
(2) CHyCO0H —— H,C=C=0+H,0 &, =4.655""

What is the maximum percentage yield of the ketene CH,CO
obtainable at this temperature?

25.7 The composition of a liquid-phase reaction 2A — B was
followed by a spectrophotometric method with the following
results:

t/min 0 10 20 30 40 ]
[B]/(mol L") 0 008 0153 0200 0230 0312

Determine the order of the reaction and its rate constant.

25.8 Sucrose is readily hydrolysed to glucose and fructose in acidic
solution. The hydrolysis is often monitored by measuring the angle of
rotation of plane-polarized light passing through the solution. From
the angle of rotation the concentration of sucrose can be determined.
An experiment on the hydrolysis of sucrose in 0.50 M HCl(aq)
produced the following data:

t/min 0 14 39 60 80 110 © 140 170 210
[sucrose]/  0.316 0.300 0.274 0.256 0.238 0.211 0.190 0.170 0.146
(molL~")

Determine the rate constant of the reaction and the average lifetime
of a sucrose molecule,

25.9 The ClO radical decays rapidly by way of the reaction,
2CI0 — Cl, + 0,. The following data have been obtained:

/(1073 s) 0.12 0.62 096 1.60 3.20 400 5.75
[CIO}/(107 molL~") 8.49 8.09 7.i0 579 520 4.77 3.95
Determine the rate constant of the reaction.

25.10 _C\}clapropane isomerizes into propene when heated to 500°C
in the gas phase. The extent of conversion for various initial pressures
has been followed by gas chromatography by allowing the reaction to
proceed for a time with various initial pressures:

Po/Torr 200 200 400 400 600 600
t/s 100 200 100 200 100 200
p/Torr 186 173 373 347 559 520
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where p, is the initial pressure and p is the final pressure of
cyclopropane. What are the order and rate constant for the reaction
under these conditions?

25.11 The addition of hydrogen halides to alkenes has played a
fundamental role in the investigation of organic reaction mechan-
isms. In one study (M.]. Haugh and D.R. Dalton, J. Amer. Chem. Soc.
97, 5674 (1975]), high pressures of hydrogen chloride {up to 25 atm)
and propene [up to S atm) were examined over a range of
temperatures and the amount of 2-chloropropane formed was
determined by NMR. Show that if the reaction A + B — P proceeds
for a short time &f the concentration of product follows
[P)/[A] = k[A]"""[B]"5¢ if the reaction is mth-order in A and nth-
order in B. in a series of runs the ratio of [chloropropane]-to [propene]
was independent of [propenc] but the ratio of [chloropropane] to
[HCI] for constant amounts of propene depended on [HCI|. For
dt=100 h (which is short on the timescale of the reaction) the latter
ratio rose from zero to 0.05, 0.03, 0.01 for p(HCI) = 10 atm, 7.5 atm,
5.0 atm, respectively. What are the orders of the reaction with respect
to each reactant?

25.12 Show that the following mechanism can account for the rate
law of the reaction in Problem 25.11:

2HCl == (HCI), K,
HCl + CH;CH=CH, = complex K,

(HCI), + complex —— CH,CHCICH, + 2HCI  k (slow)

What further tests could you apply to verify this mechanism?

25.13 In the experiments described in Problems 25.11 and 25.12 an
inverse temperature dependence of the reaction rate was observed,
the overall rate of reaction at 70°C being roughly one-third that at
19°C. Estimate the apparent activation energy and the activation
energy of the rate-determining step given that the enthalpies of the
two equilibria are both of the order of —14 kImol~!,

25.14 The second-order rate constants for the reaction of oxygen
atoms with aromatic hydrocarbons have been measured (R. Atkinson
and J.N. Pitts, J. Phys. Chem. 79, 295 (1975)). In the reaction with
benzene the rate constants are 1.44 x 107 Lmol~' s~ at 300.3 K,
3.03x 107 Lmol~'s™! at 341.2 K, and 6.9x 10’ Lmol~'s~' at
392.2 K. Find the pre-exponential factor and activation energy of the
reaction.

25.15 In Problem 25.10 the isomerization of cyclopropane over a
limited pressure range was examined. If the Lindemann mechanism of
first-order reactions s to be tested we also need data at low pressures.
These have been obtained (H.O. Pritchard, R.G.Sowden, and
A.F. Trotman-Dickenson, Proc. R. Soc. A217, 563 (1953)):

289  0.569
1.54 0857

11.0
223

0.120
0.392

p/Torr 84.1
10 kye/s™' 2.98

0.067
0.303

Test the Lindemann theory with these data,

25.16 The initial rate of 0, production by the action of an enzyme
on a substrate was measured for a range of substrate concen-
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trations; the data are below. Evaluate the Michaelis constant for the
reaction.

1S}/ (mol L")
v/(mm? min~")

0.010 0.0050 0.0020
10.1 6.6 33

0050 0.017
166 124 °

Theoretical problems

25.17 The equilibrium A = B is first-order in both directions. Derive
an expression for the concentration of A as a function of time when
the initial molar concentrations of A and B are [A], and [B],. What is
the final composition of the system?

25.18 Derive an integrated expression for a second-order rate law
v = k[A](B] for a reaction of stoichiometry 2A + 3B — P.

25.19 Derive the integrated form of a third-order rate law
v=k[A]’[B] in which the stoichiometry is 2A + B — P and the
reactants are initially present in (a) their stoichiometric proportions,
(b) with B present initially in twice the amount.

25.20 Set up the rate equations for the reaction mechanism:
k Ky
A .?' Be—=C
Show that the mechanism is equivalent to

ke
A C
.l"'

under specified circumstances.

25.21 Show that the ratio 11/2/t34. Where 1, ,, is the half-life and 34
is the time for the concentration of A to decrease to % of its initial
value (implying that r3,, <1, ) can be written as a function of » alone,
and can therefore be used as a rapid assessment of the order of a
reaction.

25.22 Many enzyme-catalysed reactions are consistent with a
modified version of the Michaelis-Menten mechanism in which the
second step is also reversible. For this mechanism obtain an expression
for the rate of formation of product and find its limiting behaviour for
large and small concentrations of substrate.

25.23 Derive an equation for the steady-state rate of the sequence
of reactions A2 B 2 C 2D, with [A] maintained at a fixed value
and the product D removed as soon as it is formed.

Additional problems supplied by Carmen Giunta
and Charles Trapp

25.24 Prebiotic reactions are reactions that might have occurred
under the conditions prevalent on the Earth before the first living
creatures emerged and that can lead to analogues of molecules
necessary for life as we now know it. To qualify, a reaction must
proceed with favourable rates and equilibria. M.P. Robertson and
S.l. Miller {Science 268, 702 (1995)) have studied the prebiotic
synthesis of 5-substituted uracils, amang them 5-hydroxymethyl-
uracil (HMU). Amino acid analogues can be formed from HMU under
prebiotic conditions by reaction with various nucleophiles, such as
H,S, HCN, indole, imidazole, etc. For the synthesis of HMU (the uracil
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analogue of serine) from uracil and formaldehyde (HCHO), the rate of
addition is given by log k/(L mol~'s™') = 11.75 — 5488/(T/K) (at
pH=7), and logK = —1.36 + 1794/(T/K). For this reaction,
calculate the rates and equilibrium constants over a range of
temperatures corresponding to possible prebiotic conditions, such as
0-50°C, and plot them against temperature. Also, calculate the
activation energy and the standard reaction Gibbs energy and
enthalpy at 25°C. Prebiotic conditions are not likely to be standard
conditions. Speculate about how the actual values of the reaction
Gibbs energy and enthalpy might differ from the standard values. Do
you expect that the reaction would still be favourable?

25.25 For the second-order reaction A + B — Products, the rate of
reaction, v, may be written

s ‘;_J: = k([A], = 2)([B], + %)

where x is the decrease in concentration of A or B as a result of
reaction. What are the conditions for the rate to be a maximum and a
minimum? Draw a graph of v against x and, noting that v and x
cannot be negative, identify the portion of the curve that corresponds
to reality,

25.26 For the consecutive reaction A — I — P, Fig. 25.12 shows [1]
plotted against time for k, = 10k, For [A], = 1.0 molL~! and
k, = 1.0 min~", plot [I] against ¢ for k, /k, = 5, 1, and 0.5. For each
case determine the time at which [I] reaches a maximum.

25.27 For the only A+ B — P reaction in Table 25.3, find an
expression for x as a function of time.

25.28 T. Gierczak, RK. Talukdar, S.C. Herndon, G.L Vaghjiani, and
A.R. Ravishankara (/. Phys. Chem. A 101, 3125 (1997)) measured the
rate constants for the elementary bimolecular gas-phase reaction of
methane with the hydroxyl radical over a range of temperatures of
importance to atmospheric chemistry. Deduce the Arrhenius
parameters A and E, from the following measurements.

T/K 295 295 223 218
k/(108 Lmol's™!) 370 355 0494 0452
T/K 213 206 200 195
k/(10° L'mol™'s™') 0379 0295 0241 0217

25.29 The oxidation of HS03 by 0, in agueous solution is a reaction
of importance to the processes of acid rain formation and flue gas
desulfurization. R.E. Connick, Y.-X. Zhang, S. Lee, R. Adamic, and
P. Chieng (Inorg. Chem. 34, 4543 (1995)) report that the reaction
2HS0; +0, — 250§~ + 2H*  follows  the  rate  law
v = k{HSO;*[H*)". Given a pH of 5.6 and an oxygen molar
concentration of 2.4 x 107 molL~! (both presumed constant), an
initial HSO37 molar concentration of 5x 1073 molL-, and a rate
constant of 3.6x 10 L¥*mol~3s~!, what is the initial rate of
reaction? How long would it take for HSO; to reach half its initial
concentration?

25.30 Chlorine atoms react rapidly with ozone in the gas-phase
bimolecular reaction C+0, - Cl0O+0, with
k= (1.7 x 10'® L mol~' s"1)e~2%/(T/K) (W B. DeMore, S.P. Sander,
D.M. Golden, R.F. Hampson, M.J. Kurylo, CJ. Howard,
A.R. Ravishankara, C.E. Kolb, and M.J. Molina, Chemicai kinetics and
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photochemical data for use in stratospheric modeling: Evaluation
Number 11, JPL Publication 94-26 (1994)). Estimate the rate of this
reaction at (a) 20km, where [Cl] =5x10""7 molL~',
[0;] =8x 10" molL™', and T=220K; (b) 45km, where
[C1] =3 x 107" molL~",[05] = 8x 10~"" molL~",and T = 270 K.

25.31 T. Gierczak, R.K. Talukdar, S.C. Herndon, G.L Vaghjiani, and
AR. Ravishankara (/. Phys. Chem. A 101, 3125 (1997)) measured the
rate constants for the bimolecular gas-phase reaction of methane
with the hydroxyl radical CH,(g) + OH(g) — CH,(g) + H,0(g) and
found A = 1.13x 10° Lmol~'s™! and E, = 14.1 kImol~' for the
Arrhenius parameters. Reaction with OH is the main path by which
CH, is removed from the lower atmosphere. (a) Estimate the rate of
consumption of CH,. Take the average OH concentration to be
1.5x 10~2' mol L', that of CH, to be 4.0 x 10~ molL"', and the
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°

temperature to be —10°C. (b) Estimate the global annual mass of CH,
consumed by this reaction (which is slightly less than the amount
introduced to the atmosphere) given an effective volume for the
Earth's lower atmosphere of 4 x 10*' L.

25.32 P.W. Seakins, M.. Pilling, LT. Niiranen, D. Gutman, and
LN. Krasnoperov (/. Phys. Chem. 96, 9847 (1992)) measured the
forward and reverse rate constants for the gas-phase reaction
C,Hs(g) + HBr(g) — C;Hg(g) + Br(g) and used their findings to
compute thermodynamic parameters for C,Hg The reaction is
bimolecular in both directions with Arrhenius parameters
A=10x10° Lmol~'s™!, E, = -42 K mol™" for the forward
reaction and ¥ = 1.4x 10" Lmol~'s~!, E, = 53.3 kJmol~' for
the reverse reaction. Compute AH®, S, and AG™ of CyHg at
298 K.



