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Preface

In preparing this edition, I have been conscious of the need to retain
rigour but to make the text more accessible. I have also aimed to keep
track of the ever-evolving subject of physical chemistry without
producing an over-bloated text or failing to deliver an authoritative
account of the subject's largely unchanging core. As usual, I have
taken the opportunity that a new edition provides to rework the text
at all levels of presentation. Whatever laurels may have accrued from
earlier editions, I have not found them soft enough to rest on.

The pedagogical devices have been thoroughly overhauled. Each
chapter retains the Synopsis that started the chapters in the fifth
edition, but now it is more succinct. The conceptual framework of
each chapter is now summarized in the Checklist of key ideas at the
end of the chapter. The actual check boxes can be used to record
mastery of, or at least familiarity with, a topic. The Further reading
sections now follow the chapters they aim to enrich, and I give
references to recent accessible articles as well as to more
authoritative texts and sources of data. As well as the numerous
Worked examples, each with their mind-focusing Method section
and accompanying Self-test (note the new name), there are now, a
number of Illustrations. These succinct components provde a no-
fuss demonstration of how an equation is used (units always seem to
give students trouble), and a brief Illustration should help to show
how a calculation is done without all the fuss and pomp of a full
Worked example. Some of the Illustrations are also accompanied by
Self-tests.

There are major innovations in the end-of-chapter Exercise and
Problem sections. The idea behind the two categories remains: an
Exercise is a straightforward, direct application of an item in the
text. A Problem is more complex and may draw on the literature. In
addition to the scattering of literature-based problems, there is now
an additional section provided by Carmen Giunta and Charles Trapp
that draws explicitly on the literature. There has always been a
problem about how to apportion solutions in the Solutions Manual
for this text: some users welcome solutions to all Exercises and
Problems; others consider that only half should be answered. In an
attempt to please both camps, I have almost doubled the number of
Exercises by providing a second linked companion Exercise in each
case. All the 'a' set are answered, as before, in the Student's
Solutions Manual; the solutions to the b set, however, are given
only in the (new) Instructor's Solutions Manual. Answers to the
Problems are now divided approximately equally between the
Student's Manual and the Instructor's Manual.

There is a further point concerning the Problems. As well as
suggesting deletions of tired problems and providing new
replacements. Charles Trapp has collaborated with Marshall Cady
to develop a series of over-arching problems, which will be found at
the end of each Part. These MicroProjects are designed to draw on

knowledge from all the chapters in each Part, and to make use of
literature data. The MicroProjects are intended to be helpful when
reviewing the material of each Part of the text, and also provide
some interesting applications. Some of them require quite
challenging numerical techniques, such as non-linear regression,
iterative solutions of sets of coupled equations, numerical
integralihn and differentiation, and a variety of graphing
procedures. It is therefore strongly recommended that they are
solved by using mathematical software, such as MathCad,
Mathematica, or similar programs.

Another obvious change, apart from the design, is the complete
refurbishment of the zrtwork. The producers of the drawing software
I use (Corel) produce new versions at more than twice the rate that I
produce new editions of this text, so by the time that a revision is
due, I am sorely tempted to use the new opportunities that their new
version provides. My taste 0150 changes as the years go by. So. I have
redrawn all the line art, and have added many new pieces. The
second colour has been used more extensively and rationally. Broadly
speaking, colour denotes a more abstract component of the
illustration: black is closer to reality.

The contents of the chapters themselves have undergone
considerable revision. The lowest level of subheadings are now
numbered to make assignments easier to specify precisely. The
Introduction and orientation ('Chapter 0') has been completely
rewritten with a change in philosophy. Now I use it to introduce
some of the principal background concepts, such as the Boltzmann
distribution. In that way the Molecular interpretations can
become more meaningful. Those interpretations, which were
introduced in the fifth edition, have been extended in this edition.
They enrich the presentation of thermodynamics and go some way
towards helping users who wish to emphasize quantum concepts
early in the course.

There has been a number of changes in the content of the
chapters. To some extent, these changes are a consequence of
incorporating what was Further information material into the body
of the text, The Further information sections now provide accounts
of globally important background material (such as classical
mechanics and partial differentiation) rather than acting as
appendages for individual chapters. Thus, Chapter 1 (gases) now
includes a fuller discussion of kinetic theory and collisions and
Chapter 10 (electrochemistry) contains an account of the Debye-
Hückel theory. I have also redistributed material over the chapters:
liquid surfaces have been transferred to Chapter 6 (pure substances)
and colloids to Chapter 23 (macromolecules), both from their logical
but pedagogically rather awkward home among solid surfaces
(Chapter 28) in the fifth edition.

The reorganization of other material (such as the relocation of
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adiabatic changes into Chapter 4) has avoided a certain amount of
repetition, and thus has saved space too. I have managed to find more
space by adopting a more succinct style of presentation where I
thought it would be acceptable. I hope my readers will distinguish the
length of the actual text from the wealth of pedagogical aids and
end-of-chapter material that is intended to help the student in all
manner of different ways.

Finally, I would like to emphasize that the central layout of the
text, its division into three parts and the order of chapters, which has
remained unchanged over all its editions, is there more as a
trademark than as a rigidly imposed structure. I am well aware that
different instructors have different views about the order in which
the subject is best presented. I have always taken care to present the
material in a flexible way, and know from experience that instructors
have no difficulty in adapting the text to their inclinations. This
edition should suit them even more than previous editions through
the reorganization of material and the greater number of
subheadings.

There are two supplements for this text. The Student's Solutions

Manual has been fully revised and contains full solutions to the 'a'
Exercises and half the Problems. The Instructor's Solution Manual is
new to this edition. As indicated above, it contains full solutions to all
the 'b Exercises, and the other half of the Problems.

So much for the description of this new edition. It would not
have come about without the input of so many well-wishers, both
commissioned and non-commissioned. I try to acknowledge the
suggestions from individuals as they arrive, and apologize for not
having space to thank them more publicly here. I . hope they realize
that they are part of the lifeblood of the text. Many were specifically
consulted in the course of the preparation of this edition, and I
would like to thank all those listed on p vii.

As to the third component of the production of a text, the first
two being the author and the advisors, I would like to thank my
publishers for their advice and support throughout the planning,
execution, and production phases of this vast and demanding
project.

Oxford, September 1997 	 P.WA
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Conventions

SI units and IIJPAC conventions are used throughout, except in a small
number of cases.
The default numbering of equations is fn); however, in (is used to denote
a definition and {n} is used to indicate that a variable x should be
interpreted as x/x (for instance, p/pe), where x"" is a standard value.
The {n} convention simplifies the appearance of many expressions.
A subscript r attached to an equation number indicates that the equation
applies only to a reversible change.
A superscript ° attached to an equation number indicates that the
equation applies only to an ideal system, such as a perfect gas or an ideal
solution.

Cross-references of the form eqn ii are to equations within the current
chapter; those of the form eqn N.n are to equations in Chapter N.
The symbol p° denotes I bar (10 5 Pa) exactly and be denotes
1 moIkg exactly.
When referring to temperature T denotes a thermodynamic
temperature (for example, on the Kelvin scale) and 0 a temperature on
the Celsius scale.

For numerical calculations, unless otherwise specified, assume that 2eros
in data like 10, 100. 1000, etc. are significant that is, interpret such data
as 10., 100., 1000,, etc.).
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Physical chemistry is the branch of chemistry that establishes and develops the principles of
the subject. Its concepts are used to explain and interpret observations on the physical and
chemical properties of matter. Physical chemistry is also essential for developing and
interpreting the modern techniques used to determine the structure and properties of
matter, such as new synthetic materials and biological macromolecules.
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The structure of science
The observations that physical chemistry organizes and explains are summarized by scientific
laws. A law is a summary of experience. thus, we shall encounter the laws of
thermodynamics, which are summaries of the relations between bulk properties, and
particularly observations on the transformations of energy. We shall also encounter the laws
of quantum mechanics, which summarize observations on the behaviour of individual
particles, such as molecules, atoms, and subatomic particles. The first step in accounting for
a law is to propose a hypothesis, which is essentially a guess at an explanation in terms of
more fundamental concepts. Dalton's atomic hypothesis, which was proposed to account for
the laws of chemical composition, is an example. When a hypothesis has become established,
perhaps as a result of the success of further experiments it has inspired or by a more
elaborate formulation (often in terms of mathematics) that puts it into the context of
broader aspects of science, it is promoted to the status of a theory. We shall encounter a
number of theories in this text: among them will be the theories of chemical equilibrium,
atomic structure, and the rates of reactions.

A characteristic of physical chemistry (like other branches of science) is that, to develop
theories, it adopts models of the system it is seeking to describe. A model is a simplified
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version of the system that focuses on the essentials of the problem. Once a successful model

has been constructed and tested against known observations and any experiments the
model inspires, it can be made more sophisticated and incorporate some of the
complications that the original model ignored. Thus, models provide the initial framework
for discussions, and reality is captured rather like a building is completed, decorated and
furnished. We shall encounter a number of such models. One example is the kinetic model of
gases, in which a gas is regarded as a collection of particles in ceaseless, random motion.
Another example is the nuclear model of an atom, and in particular a hydrogen atom, which
is used as a basis for the discussion of the structures of all atoms. A third very important type
of example is that of a perfect gas, which is an idealized model of the gaseous state of
matter. This model, which is also the starting point of the discussion of real gases, or actual

gases, is the basis of many thermodynamic expressions.
It is often convenient to preserve the form of equations developed on the basis of a

simple model in any elaboration of the model. The advantage of such a procedure is that the
appearance of many equations is then preserved and they remain familiar. An example of
such a modification is the replacement of a concentration term in certain thermodynamic
expressions (such as an equilibrium constant) by an effective concentration called an
activity. Physical chemistry helps to make this a practically useful procedure by establishing
a relation between the effective concentration and the true concentration.

Matter
A substance is a distinct, pure form of matter. The amount of substance, n (more

colloquially 'number of moles' or chemical amount), in a sample is reported in terms of a
unit called a mole (mol). The formal definition of I mol is that it is the amount of substance
that contains as many objects (atoms, molecules, ions, or other specified entities) as there are
atoms in exactly 12g of carbon-12. This number is found experimentally to be

approximately 6.02 x 1023.1 If a sample contains N entities, the amount of substance it

contains is it = NINA , where NA is the Avogadro constant: NA = 6.02 x 10 23 mol Note

that NA is a quantity with units, not a pure number. Conversely, if the amount of substance

is  (for example, 2.0mol0 2 ), then the number of entities present is n/VA (in this example,

1.2 x 10 24 0 2 molecules).
A distinction is made in chemistry between extensive properties and intensive properties.

An extensive property is  property that depends on the amount of substance in the sample.
An intensive property is a property that is independent of the amount of substance in the
sample. Two examples of extensive properties are mass and volume. Examples of intensive

properties are temperature, mass density (mass divided by volume), and pressure. A molar

property, Xm, is the value of an extensive property, X. of the sample divided by the amount
of substance present in the sample. A molar property is intensive because the value of an
extensive property X is proportional to the amount of substance, it, so X. X/n 15

independent of the amount of substance in the sample. An example is the molar volume, Vm,

the volume of a sample divided by the amount of substance in the sample (the volume per
mole). The one exception to the notation X. is the molar mass, which is denoted simply M.

The molar mass of an element is the mass per mole of its atoms. The molar mass of a
molecular compound is the mass per mole of molecules, and the molar mass of an ionic
compound is the mass per mole of formula units. 2 The names atomic weight' and 'molecular
weight' are still widely used in place of molar mass, but we shall not use them in this text

More precon values of the fundamental quantities and c000css,00 factors introduced in this chapter are given inside the

front cover.
A formula unit is an assembly of roes cocrespondrnq in the chemical formula of the compound; so the formula unit liaCI

consists of one Na ion and one Cl-jon



01 A schematic indication of the relative sizes of

ions and molecules and the average separation of
ions in a I M NaCI aqueous solution. There are
typically about three H0 molecules between ions.

Cations tend to be found near anions, and vice
versa. Cations are hydrated by weak bonding with
the 0 atoms of neighbouring H 2 0 molecules: anions
are hydrated by weak bonding through the H

atoms.

0.1 CONTRIBUTIONS TO THE ENERGY

The molar concentration ('molarity') of a solute in a solution refers to the amount of
substance of the solute divided by the volume of the solution. Molar concentration is usually
expressed in moles per litre (mol L ' or n-tot dm ; I L is identical to I dm 3 ). A solution in

which the molar concentration of the solute is I mol L 1 is prepared by dissolving I mol of
the solute in sufficient solvent to prepare II, of solution. Such a solution is widely called a
I molar solution and denoted I M. The term motality refers to the amount of substance of

solute divided by the mass of solvent used to prepare the solution. Its units are typically
motes of solute per kilogram of solvent (inol kg I)

The development of an appreciation of events on an atomic scale is a valuable talent in
physical chemistry. In a I M NaCl(aq) solution, the average separation between oppositely
charged ions is about I nm, which is enough to accommodate about three lt 2 0 molecules
(Fig. 0.1). A dilute solution typically means a solution of molar concentration of no greater
than about 0.01 mntL. In such solutions, the ions are separated by about 10 H20
molecules.

Energy
The central concept of all explanations in physical chemistry, as in so many other branches of
physical science, is that of energy. A formal definition of this quantity will be given in Part 1;
here we shall make use of the somewhat bald definition: energy is the capacity to do work.

We shall often make use of the apparently universal law of nature that energy is conserved;

that is, energy can be neither created nor destroyed. Therefore, although energy can be
transferred from one location to another (as when water in a beaker is heated by electricity
generated in a power station), the total energy available is constant.

0.1 Contributions to the energy
There are two contributions to the total energy of a system from the matter it contains.
The kinetic energy, EK , of a body is the energy it possesses as a result of its motion. For a
body of mass rn travelling at a speed v, the kinetic energy is 1 mr,2 , so a heavy body travelling
rapidly has a high kinetic energy. A stationary body has zero kinetic energy. The potential
energy, 1 1 , of a body is the energy it possesses as a result of its position. The zero of potential
energy is arbitrary. For example, the gravitational potential energy of a body is often set to
zero at the surface of the Earth; the electrical potential energy of two charged particles is set
to zero when their separation is infinite.

No universal expression for the potential energy can be given because it depends on the
type of interaction the body experiences. However, there are two common types of
interaction that give rise to simple expressions for the potential energy. One is the potential
energy of a body of mass in in the gravitational field close to the surface of the Earth (a
gravitational field acts on the mass of a body). If the body is at a height Ft above the surface
of the Earth, then its potential energy is mg/i, where g is a constant called the acceleration
of free fall, g = 9.91 m s , and V = 0 at h = 0 (the arbitrary zero mentioned previously).
Of greater importance in chemistry is the potential energy of a charged body in the vicinity
of another charged body (an electric field acts on the charge carried by a body). If a particle
(a point-like body) of charge q 1 is at a distance r in a vacuum from another particle of

charge q 2 , then their potential energy is given by the expression

V

	

	 (I)
4,ti;1r

The constant ;,ij is the vacuum permittivity, a fundamental constant with the value
885 x ltY 11 ('? J m '. Note that, as remarked previously, V = 0 at infinite separation.
This very important relation is called the Coulomb potential energy and the interaction it
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describes is called the Coulomb interaction of two charges. The Coulomb interaction is
important in chemistry because we deal frequently with the interactions between the
charges of etectrçins, nuclei, and ions.

02 Eni'rjy units

The S1 3 unit of energy is the joule (3), which is defined 354

3 -= I kg m 2 2

A joule Is quite a small unit of energy: for instance, each beat of the human heart consumes
about I J. Thr unit is named after the nineteenth-century scientist J.P. Joule, who helped to
establish di role of energy in science. The molar energy is the energy of a sample divided by
the amou't of substance; it is normally expressed in joules per mole (J mo!') or a multiple
of this unit most commonly kilojoules per mole (kJmol).

Although the joule is the SI unit of energy, it is sometimes convenient to employ other
units. One of the most useful alternati'.': ':sergy units in chemistry is, the etectronvolt (eV):
I eV is defined as the kinetic energy acquired when an electron is accelerated through a
potential difference of I V. The rel3tion between electronvolts and joules is
I eV 1.6 x I0 19 J. Many processes in chemistry involve energies of a few electronvolts.
Forexample, to remove an electron front a sodium atom requires about 5ev. Calories (cat) and
kilocalories (kcal) are still encountered in the chemical literature: by definition,
I cal = 4.1(143. An energy oft cat is enough to raise the temperature of I g of water by I °C.

0.3 Eqiiipai'tition

A molecule has a certain number of degrees of freedom, such as its ability to. translate lie
motion of its centre of mass through space), rotate around its centre of mass, or vibrate (as
its bond lengths and angles change). Many physical and chemical properties depend on the
energy associated with each of these modes of motion. For instance, a chemical bond might
break if a lot of energy becomes concentrated in it.

[he equipartition theorem is a useful guide to the average energy associated with each
degree of freedom when the sample is at a temperature T. 5 There are two parts to the
theorem, one qualitative and the other quantitative. The qualitative part of the theorem tells
us that all degrees of freedom have the same average energy. That means that tEte average
kinetic energy of motion parallel to the c-axis is the same as the average kinetic energy of
motion parallel to the y-axis and to the z-axis, and each rotational degree of freedom also
has the same energy. That is, in a normal sample, the total energy is equally 'partitioned over
all the available modes of motion. One mode of motion is not especially rich in energy at the
expense of another.

To introduce the quantitative part of the theorem we have to be more precise about what
we mean by 'degree of freedom'. From now on, we shall refer to a quadratic term in the
energy, a term for the kinetic or potential energy that appears as the square of a coordinate
or a velocity (or momentum). For example, because the kinetic energy of a body of mass in
free to move in three dimensions is + nrv + (ntv, there are three quadratic terms.
The fquipartition theorem then goes on to say that the average energy associated with each
quadratic term is equal to AT, where T is the temperature and A is a fundamental constant
called (lit' Boltzmann constant. This constant has the value 1.38 x 10_ 21 J K . The

use Si onus Ihrnoqhuroi thin lent: St stands for Sbsseurse untennOtiuniat, a systematic. coherent set of unit based on ther,reir- system. Convemsuons to al ter native units will be yorn where appropriate.
4	 Eqoaiic,o numbers in nivare brackets indi:ate a definition.

HUT and 11imoo9n00 this tent. the svnrtmol C will denote temperature on a scale that begins at 010, the lowest attainablelrmm'pr,aiurr, with is found empirically in tie at --273 Ii C. Later we sliati ncr that this scale corresponds to the kelvinscale

5.

V	 -5

lid A representation ofof the quantization of the
energy of different types of 050110,1. Free
translational motion in an infinite region is not
quantized, and the permitted energy levels form
Continuum. Rotation is quantized, and the
separation increases as the state of excitation
increases. The separation between levels depends on
the moment of inertia of the molecule. Vibrational
motion is quantized, but note the change in scale
between the ladders. The separation of levels
depends on the masses of atoms in the molecule
and the rigidities of the tionds linking them.
Electronic energy lends arc quantized, and the
separations are typically very large lof the order of

eV).
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Boltzmann constant is related to the gas constant by R = NA k. In passing, it should be noted

that one reason why R occurs in so many formulas, including those apparently wholly

unrelated to gases, is that it is really the fundamental constant k appearing in disguise. The

quantity U. which has the value 4 x 10- 21 J (more briefly 42J, where z, zepto, is the
uncommon but useful SI prefix for 10 ) at 25'C, or 26meV, is an indication of the average
energy carried by a mode of motion at a temperature 7'.

An important point is that the eguipartition theorem is derived from classical physics,
and when quantization is important (see below) the theorem is inapplicable. Broadly
speaking, we can be confident about using it for average translational motion in gases,
guardedly confident about applying it to the rotation of most molecules, and not apply it to

their vibrational 'motion.

0.4 111C qU dii liia( Riti of ciicrgy

The great revolution in physics that occurred in the opening decades of the twentieth
century and which introduced quantum mechanics is of crucial importance to chemistry.
Chemistry is concerned with the behaviour of subatomic particles, particularly electrons, and
it is essential to use quantum mechanics when dealing with such small particles. The feature
of quantum mechanics that distinguishes it from the classical mechanics of Newton and his
immediate successors is that matter has a wave-like character. That is, instead of particles
and waves being distinct entities, particles have some of the properties of waves and waves
have some of the properties of particles. For instance, if a particle has a linear momentum p
(the product of mass and velocity, p = ?nv), then according to quantum mechanics it also
has (in some sense) a wavelength, ., given by the de Broglie relation:

(3)
ft

where h is the Planck constant, a fundamental constant with the value 6.6 x 10 - is.

Another feature of quantum mechanics is that energy is quantized, or confined to
certain discrete values. These permitted energies are called energy levels and their values
depend on the species. The quantization of energy is most important—in the sense that the
allowed energies are widest apart—for particles of small mass confined to small regions of
space. Consequently, quantization is very important for electrons in atoms and molecules,
but usually unimportant for macroscopic bodies.

(a) The energies of material objects
For particles in containers of macroscopic dimensions the sepaLtion of translational energy
levels is so small that for all practical purpes their translatioria( .'hotion is unquantized
(Fig. 0.2). The separation between energy levels is small for molewl y otational motion,

larger for molecular vibrational motion, and greatest for the energies o e tt.etrons in atoms

and molecules. The separations of energy levels for a small molecule are about 10_ 23 .1

(0.01 '.1) for rotational motion (which corresponds to 0.01 kJ moL 1 ), l0 20 J (lOzJ) for

vibrational motion (10 kJ niol I), and 10 5 J (I aJ, where a is another uncommon but

useful SI prefix, standing for attn, and denoting lO) for electronic excitation

(It) kJ 1001 ') The relative values are consistent with the validity of the equipartition
theorem for translational and rotational motion, but not for the other modes.

A final point in this connc ction is that we need to be aware that more than one state can
correspond to a given energy level. For example, a molecule can rotate in one plane at a
certain energy, but it may also be able to rotate in a different plane with the same energy;
each different orientation of rotational motion corresponds to a distinct rotational state of
the molecule. The number of individual states that belong to one energy level is called the
degeneracy of that level [Fig. 0.3). If there is only one state of motion corresponding to a

Degeneracy = 5

>.
0)

w
	

C) y

Degeneracy = 3

Individual
states

Non-degenerate

5 5 Several distinct states may correspond to the
same energy. That is, each energy level may be
degenerate. Three energy levels are chown here,
possessing one, three, and five Fstinrt stales
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0.4 (a) The wavelength, A, of a wave is the peak-	 (IS The regions of the electromagnetic spectrum
to-peak distance. (b) The wave is shown travelling 	 and the types of excitation that give rise to each
to the right at a speed c; at a given location the 	 region.
instantaneous amplitude of the wave changes
through a complete cycle (the four dots show half
a cycle) as it passes a given point, and the
frequency, i., is the number of cycles per second
that occur at a given point. Wavelength and
frequency are related by tv = c.

particular energy, then we say that the level is non-degenerate. Be very careful to
distinguish the energy levels (the ladder of possible energies) from the states that
correspond to each 'rung' of the ladder.

(b) The energy of the electromagnetic field
An electromagnetic field is an oscillating electric and magnetic disturbance that spreads as
a wave through empty space, the vacuum. The wave travels t a constant speed called the
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C
LU

0.5 THE POPULATIONS OF STATES

speed of light, c, which is about 3 x 10
8
 s 1 . As its name suggests, an electromagnetic

field has two components, an electric field that acts on charged particles (whether
stationary or moving) and a magnetic field that acts only on moving charged particles. The
electromagnetic field is characterized by a wavelength, )., the distance between the
neighbouring peaks of the wave, and its frequency, ii, the number of times per second at
which its displacement at a fixed point returns to its original value (Fig. 0.4; the frequency is
measured ip hertz, where I Hz = 1s). The wavelength and frequency of a wave are

related by

Au=c	 (4)

Therefore, the shorter the wavelength, the higher the frequency. The characteristics of a
wave are also reported by giving the wavcnumber, £, of the radiation, where

(5)

The wavenumber can be interpreted as the number of complete wavelengths in a given
length. Wavenumbers are normally reported in reciprocal centimetres (cm'), so a
wavenumber of 5 cm indicates that there are 5 complete wavelengths in 1 cm. It is

useful to note that the relations E = ,hri and ti = & can be combined to convert energies to
wavenumbers; it turns out, for instance, that I eV8066 cm. The classification of the
electromagnetic field according to its frequency and wavelength is summarized in Fig. 0.5.

Quantum mechanics adds to this wave-like description of electromagnetic radiation by
introducing the concept of particle-like packets of electromagnetic energy called photons.
The intensity of the radiation is determined by the number of photons in the ray: an intense
ray consists of a large number of photons; a feeble ray consists of only a few photons. A
human eye can respond to a single photon; a lamp rated at 100 W (where 1 W = 1 is ; W
denotes the watt) generates about 10 19 photons each second, but even so takes several
hours to generate 1 mol of photons. The energy of each photon is determined by its

frequency, ii, by

E=hti	 (6)

This relation implies that photons of microwave radiation have lower energy than photons
of visible light (which consists of shorter wavelength, higher frequency radiation). It also

implies tha p the energies of photons of visible light increase as the light is changed from red
(longer wavelength) to violet (shorter wavelength).

0.5 The populations of states
The continuous thermal agitation that the molecules experience in a sample at T >0 ensures

that they are distributed over the available energy levels. One particular molecule may be in
one low energy state at one instant, and then be excited into a high energy state a moment
later. Although we cannot keep track of the energy state of a single molecule, we can speak
of the average numbers of molecules in each state; these average numbers are constant in
time provided the temperature remains the same. The average number of molecules in a
state is called the population of the state.

Only the lowest energy state is occupied at T = 0. Raising the temperature excites some
molecules into higher energy states, and more and more states become accessible as the
temperature is raised further (Fig. 0.6). Nevertheless, whatever the temperature, there is
always a higher population in a state of low energy , than one of high energy. The only
exception occurs when the temperature is infinite: then all states of the system are equally

populated.
The formula for calculating the populations of states of various energies is called the

Boltzmann distribution and was derived by the Austrian scientist Ludwig Boltzmann

Population

(a)	 (b)

0.6 The Boltzmann distribution predicts that the
population of a state decreases exponentially with
the energy of the state. (x) At low temperatures,
only the lowest states are significantly populated;
(b) at high temperatures, there is significant
population in high-energy states as well as in tow-
energy states. At infinite temperature (not shown),
all states are equally populated.
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Ii / The Boltzmann distribution for three types of
motion at a single temperature. There is a change
in scale between the three stacks of levels (recall
Fig. 02). Only the ground electronic state is
populated at room temperature in most systems,
and the hulk of the molecules are also in their
ground vibrational state. Many rotational states are
populated at room temperature as the energy
ley ls are so close. The peculiar shape of the
distribution over rotational states arises front the
fact that each energy level actually corresponds to
a number of degenerate states in which the
molecule is rotating at the same speed but in
different orientations. Each of these states is
populated according to the Boltzmann distribution.
and the shape of the distribution reflects the total
population of each level.

Speed

11 
it The essential content of the Maxwell

distribution of molecular speeds is summarized by
this diagram. Note how the maximum in the
distribution moves to higher speeds as the
temperature is increased or, at constant
temperature, we consider species of decreasing
mass. The distribution also becomes wider as its
peak moves to higher speeds.

towards the end of the nineteenth century. This formula gives the ratio of the numbers of
particles, .V,/N. in states with energies E, and F1 as

= e
	

(7)

An important point concerning the interpretation of the Boltzmann distribution is that it
refers to the populations of stotes, not levels. Because the Boltzmann distribution refers to
states, all the members of a degenerate set of states belonging to the same energy level will
have the same population. We shall see a consequence of this feature shortly.

A typical energy separation between the ground state and the first electronically excited
state of an atom or molecule is about 3 eV, which corresponds to 30) kJ mol. In a sample
at 25CC (298 K) the ratio of the populations of the two states is about e 121 , or about
IO". Therefore, essentially every atom or molecule in a sample is in its electronic ground
state. the population of the upper state rises to about I per cent of the population of the
ground state only when the temperatur2 reaches 10 4 °C. The separation of vibrational
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energy levels is very much less than that of electronic energy levels (about 0.1 eV,
corresponding to It) kJmol), but nevertheless at room temperature only the lowest
energy level is significantly populated. Only about line4 60 molecules is not in its ground

state. Rotational energy levels are much more closely spaced than vibrational energy levels
(typically, about 100 to 1000 times closer), and even at room temperature we can expect
many rotational states to be occupied. Therefore, when considering the contribution of
rotational motion to the properties of a sample, we need to take into account the fact that
molecules occupy a wide range of different states, with some rotating rapidly and others

slowly.
The important features of the Boltzmann distribution to bear in mind are that the

distribution of populations is an exponential function of energy and temperature, and that
more states are significantly populated if they are close together in comparison with AT (like

rotational and translational states), than if they are far apart (like vibrational and electronic
states). Moreover, more states are occupied at high temperatures than at low temperatures.
The illustration (Fig. 0.7) summarizes the form of the Boltzmann distribution for some

typical sets of energy levels.
The Boltzmann distribution takes a special form when we consider the free translational

motion of noninteracting gas molecules. Different energies now correspond to different
speeds (because the kinetic energy is equal to 1 awl ), so the Boltzmann formula can be used

to predict the proportions of molecules having a specific speed at a particular temperature.
The expression giving the proportion of molecules that have a particular speed is called the
Maxwell distribution, and has the features summarized in Fig. 0.8. The bulge in the
distribution represents the fact that the kinetic energy of a molecule depends on its speed,
and there are many ways of obtaining a given value of the speeds with different values of

the components r', v, and v. relative to the three axes, particularly when the speed is high.
In other words, translational energy levels are highly degenerate, and the degeneracy
increases with energy. Therefore, although the populations of individual states decrease with
increasing energy (and hence speed), there are many more states of a given energy at high
energies and the product of this rising degeneracy and the falling exponential function has a
bulge at an intermediate energy.

Notice how the tail towards high speeds is longer at high temperatures than at low,
which indicates that at high temperatures more molecules in a sample have speeds much
higher than avenge. The speed corresponding to the maximum in the graph is the most
probable speed, the speed most likely to be found for a molecule selected at random. The
illustration also shows how the distribution varies with mass for some components of air at
25 'C. The lighter molecules move, on average, much faster than the heavier ones.
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