
Further	 Relations between
information partial derivatives
1

A partial derivative of a function of more than one variable, such as f(x,y), is the slope of
the function with respect to one of the variables, all the other variables being held constant
(see Fig. 2.12). Although a partial derivative shows how a function changes when one
variable changes, it may be used to determine how the function changes when more than
one variable changes by an infinitesimal amount. Thus, if I is a function of x and y, then
when .r and y change by dx and dy, respectively, f changes by

4f= ()+ ()d
For example, if f = ax3y + by2,

`) ay ,
3ax2y	 ()ax3 +2by

Then, when x and y undergo infinitesimal changes. I changes by

df = 3ax2ydx + (ax + 2by)dy

Partial derivatives may be taken in any order:

2j	
2f

ay -

For the function f given above, it is easy to verify that

Qf-)) ^
	 ía /8f\ '\= 32	 3

ax	 5-x ay

(1)

(2)

In the following, z is a variable on which x and y depend (for example, x, y, and might
correspond to p. V. and T).
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Relation no. 1. When x is changed at constant z:

i9 - (
f\	

ay)
	 '\(	 (3)

Relation no. 2 (the inverter).

(8x
')	 (Ey/Ox).

Relation no. 3 (the permuter).

(3x'\	 (x'\ (z
"yL	 :)y

By combining this relation and Relation no. 2 we obtain Eulers chain relation:
(x'\ 

(LY)., (1
Z'\(6)y)	 ax)

Relation no. 4. This relation establishes whether or not df is an exact differential.

41' = g(xy) dx + h(x,y)dy is exact if () = ()
	

(7)

If df is exact, its integral between specified limits is independent of the path.

(4)

(5)



Further	 Differential
information equation's

Ad ifferentia I  equation is a relation between derivatives of a function and the function itself,
as in

d 2 dy
a+b—+cyO	 (1)d,2	 dx

The coefficients a, b, etc. may be functions of r. The order of the equation is the order of the
highest derivative that occurs in it, so eqn i is a second-order equation. Only rarely in
science is a differential equation of order higher than 2 encountered. A solution of a
differential equation is an expression for y as a function of x. The process of solving a
differential equation is commonly termed 'integration', and in simple cases simple
integration can be employed to find y(x). A general solution of a differential equation is
the most general solution of the equation and is expressed in terms of a number of
constants. When the constants are chosen to accord with certain specified initial conditions
(if one variable is the time) or certain boundary conditions (to fulfil certain spatial
restrictions on the solutions), we obtain the particular solution of the equation. A first-
order differential equation requires the specification of one boundary (or initial) condition;
a second-order differential equation requires the specification of two such conditions, and
so on.

First-order differential equations may often be solved by direct integration. For example,
the equation

dy
a. = ax>'

with a constant may be rearranged into

dy
axdx

Y

and then integrated to

my = 1 2 +A



908 FURTHER INFORMATION 2

where A is a constant. If we know that y = Yo when x = 0 (for instance), then it follows that

A = my0 , and hence the particular solution of the equation is

In = ax2 + in

This expression rearranges to

y = yoe/2

First-order equations of a more complex form can often be solved by the appropriate
substitution. For example, it is sensible to try the substitution y = sx, and to change the

variables from x and  to x and s. An alternative useful transformation is to write x = u + a

and y v + h, and then to select a and h to simplify the form of the resulting expression.
Second-order differential equations are in general much more difficult to solve than

first-order equations. The general solutions of many such equations are best found by
referring to tables: the Handbook of mathematical functions, M. Abramowitz and
LA. Stegun, Dover, New York (1965), is a particularly helpful source of such information.
Mathematical software is now capable of finding numerical and, in certain cases, analytical
solutions of a wide variety of differential equations.

One powerful approach commonly used to lay siege to second-order differential
equations is to express the solution as a power series:

y=>c/	 (2)

and then to use the differential equation to find a relation between the coefficients. This
approach results, for instance, in the Hermite polynomials that form part of the solution of
the Schrodinger equation for the harmonic oscillator. All the second-order differential
equations that occur in this text can be found tabulated in compilations of solutions, and
the specialized techniques that are needed to establish the form of the solutions may be
found in mathematical texts.

A partial differential equation is a differential in more than one variable. An exar;pIe is

a2  -aly	 (3)

with  a function of the two variables x and I. In certain cases, partial differential equations

may be separated into ordinary differential equations. Thus, the Schrödinger equation for a
particle in a two-dimensional square well (Section 12.2) may be separated by writing the
wavefunction, k(x,y), as the product X(x)Y(y), which results in the separation of the
second-order partial differential equation into two second-order differential equations in
the variables x and y. A good guide to the likely success of such a separation of variables
procedure is the symmetry of the system.

A common approach to the solution of awkward differential equations that appear to
have no analytical solutions is to adopt a numerical procedure. Software packages are now
readily available that can be used to solve almost any equation numerically. The general
form of such programs to solve df/dx = g(x), for instance, replaces the infinitesimal
quantity df = g(x) dx by the small quantity 15f = g(x) i5x, so that

f(x + c5x) f(x) +g(x) 5x	 (4)

and then proceeds to step along the x-axis numerically, generating f(x) as it goes. The

actual algorithms adopted are much more sophisticated than this primitive scheme, but

stem from it.
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Undetermined
multipliers

Suppose we need to find the maximum (or minimum) value of some function / that depends
on several variables x 1 , x2 . . , x. When the variables undergo a small change from x1 to
x + Ox1 the function changes from f to f + Of, where

of = 
ft (af

At a minimum or maximum, Of = 0, so then

U0,5-axi ,= o

If the x1 were all independent, all the 6x i would be arbitrary, and this equation could be
solved by setting each (af/ax1 ) = 0 individually. When thex1 are not all independent, thex1
are not all independent, and the simple solution is no longer valid. We proceed as follows.

Let the constraint connecting the variables be an equation of the form g = 0. For
example, in Chapter 19, one constraint was no + n 1 +•.. = N. which can be written

g=0, with g= (no +n1+...)—N

The constraint g = 0 is always valid, so ,g remains unchanged when the x i are varied:

= (Lg 6xi = 0
ax)

Because Og is zero, we can multiply it by a parameter, A. and add it to eqn 2:

{() 
+z()}ox=o

Further
information
3

[0]

(2)

(3)

(4)

This equation can be solved for one of the Ox, 0; for instance, in terms of all the other 6x1.
All those other Ox, (i = 1, 2.... n - I) are independent, because there is only one constraint
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on the system. But here is the trick; A is arbitrary; therefore we can choose it so that the
coefficient of i5s,, in cqn 4 is zero. That is, we choose A so that

(L" +A(	 =0
\êX,,J	 \ax,,J

Then eqn 4 becomes

It) +()}ox=o

Now the n - I variations i5x are independent, so the solution of this equation is

(L) + A () = 0	 1 = 1,2,.. . n - 1	 (7)
Ex,	 axi

But eqn 5 has exactly the same form as this equation, so the maximum or minimum off can
be found by solving

([-) 4A(-) =0	 1= 1,2,...n	 (8)

The use of this approach was illustrated in the text for two constraints and therefore two
undetermined multipliers A 1 and A 2 (a and -a).

The multipliers A cannot always remain undetermined. One approach is to solve eqn S
instead of incorporating it into the minimization scheme. In Chapter 19 we used the
alternative procedure of keeping A undetermined until a property was calculated for which
the value was already known. Thus, we found that f3 = I/kT by calculating the internal
energy of a perfect gas.

(5)

(6)



dV
(LC

(2)

Further	 Classical mechanics
information	 El

1H

We shall see how classical mechanics describes the behaviour of objects in terms of two
equations. One equation expresses the fact that the total energy is constant in the absence
of external forces. The other equation expresses the response of particles to the forces acting
on them.

I The trajectory in terms of the energy

The total energy of a particle is the sum of the kinetic energy, EK , the energy arising from
the motion of the particle, and potential energy. V(x). the energy arising from the position
of the particle in a field of force:

F = EK + V(x)
	

UI

The force, F, is related to the potential energy by

According to this expression, the direction of the force is towards decreasing potential
energy (Fig. 1). The kinetic energy of a particle of mass m travelling with a speed v is

EK = rnV	 (3)

It is often convenient to express kinetic energy in terms of the linear momentum, p. The
linear momentum is a vector quantity (that is, it has direction as well as magnitude, like
the velocity, v). The magnitude of the linear momentum,p, is related to the speed, v, of the
particle by

p=mv	 (4)
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harmonic motion is found by substituting the expression for the force, eqn 16, into
Newton's equation, eqn 10. The resulting equation is

d2x
01—

dt2 
= - - kx	 (17)

and a solution is

/2
x(t) = A sin cat	 p(z) = mw	 k

ACOSW(	
U) = (;)	

( 18)

(To verify the solution for x, substitute it into the differential equation; the expression for
the momentum is obtained from p = mdx/dt.) These expressions show that the position of
the particle varies harmonically (that is, as sin cot) with a frequency v = w/21r. They also
show that the particle is stationary (p = 0) when the displacement, x, has its maximum
value, A, which is called the amplitude of the motion.

The total energy of a classical harmonic oscillator is proportional to the square of the
amplitude of its motion. To confirm this remark we note that the kinetic energy is

,2	 (mwA cos wI)2	 2 2	 2EK = 
2in 

=	
2m	

= mw A cos wi	 (19a)

Then, because w	 (k/m) 1 ' 1 , this expression may be written
= 

2 4 COT 2 (01 (19b)

The force on the oscillator isF = —kx, so it follows from the relation F = —dV/dx that the
potential energy of a harmonic oscillator is

V = kx2 = k4 2 i2
	

(20)

The total energy is therefore

/? = kACOS2W( + 'kA 2 sin 2wx kA' (21)
(We have used ens 2 nit + sin 2 nit = 1.) That is, the energy of the oscillator is constant and,
for a given force constant, is determined by its maximum displacement. It follows that the
energy of an oscillating particle can be raised to any value by stretching the spring to any
desired amplitude A. It is important to note that the frequency of the motion depends only
on the inherent properties of the oscillator (as represented by k and m) and is independent of
the energy; the amplitude governs the energy, through E = I kA 2 , and is independent of the
frequency. In other words, the particle will oscillate at the same frequency regardleth of the
amplitude of its motion.



Further	 Electrical quantities
information

The fundamental expression in electrostatics, the interactions of stationary electric charges,
is the Coulomb potential energy of one charge of magnitude q at a distance r from another
charge q:

(1)
4izc0r

That is, the potential energy is inversely proportional to the separation of the charges.
The fundamental constant c0 is the vacuum permittivity; its value is

= 8.854 x 10-11 j-1 C 2 m'. (Note that with r in metres, m, and the charges in
coulombs, C, the potential energy is in joules, J.) The potential energy is equal to the work
that must be done to bring up a charge q from infinity to a distance r from a charge q'. In a
medium other than a vacuum, the potential energy of interaction between two charges is
reduced, and the vacuum permittivity is replaced by the permittivity, F., of the medium. It is
common to express the permittivity as a multiple of the vacuum permittivity, and to write
e = CrCO, where e is the relative permittivity (or dielectric constant) of the medium. For
water at 25°C, C r = 78.54.

The potential energy of a charge q in the presence of another charge q1 can be expressed
in term; of the Coulomb potential, :

V=qq

	

	 (2)4ni;0r

The units of potential are joules per coulomb, J C so, when j is multiplied by a charge in
coulombs, the result is in joules. The combination joules per coulomb occurs widely in
electrostatics, and is called a volt, V:

I V = I JC1
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(which implies that I VC = I J). If there are several charges q 1 ,q2 ,... .'r't in the
system, the total potential experienced by the charge q is the sum of the potential itrierated
by each charge:

= + 02 +
	

(3)

The electrical force, F, exerted by a charge q on a second charge q' has magnitude

F=-
4itcr- 	(4)

The force is a vector quantity (that is, has direction), and is directed along the line joining the
two charges. With charge in coulombs and distance in metres, the force is obtained in
newtons.

The motion of charge gives rise to an electric current, I. Electric current is measured in
amperes, A, where

I A = I Cs

If the electric charge is that of electrons (as it is for conduction in metals and
semiconductors), then a current of I A represents the flow of 6 x lOis electrons per
second. If the current flows from a region of potential 4 to 4, through a potential
difference i4 = - 4,, the rate of doing work is the current (the rate of transfer of
charge) multiplied by the potential difference, Mçb. The rate of doing work is called power,
P, so

P=IAcb	 (5)

With current in amperes and the potential difference in volts, the power works Out in joules
per second, or watts, W:

1 W= 1 Js

The total energy, E, supplied in an interval At is the power (the energy per second) multiplied
by the duration of the interval:

E = PAt = IAOAt	 (6)

The energy is obtained in joules with the current in amperes, the potential difference in
volts, and the time in seconds.


