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Preface

This text is designed for a two-semester course in data structures and programming.
For several years, we have taught a course in data structures to students who have had a
semester course in high-level language programming and a semester course in assembly
language programming. We found that a considerable amount of time was spent in
teaching programming techniques because the students had not had sufficient exposure
to programming and were unable to implement abstract structures on their own. The
brighter students eventually caught on to what was being done. The weaker students
never did. Based on this experience, we have reached the firm conviction that a first
course in data structures must go hand in hand with a second course in programming.
This text is a product of that conviction.

The text introduces abstract concepts. shows how those concepts are useful in
problem solving, and then shows how the abstractions can be made concrete by us-
ing a programming language. Equal emphasis is placed on both the abstract and the
concrete versions of a concept. so that the student learns about the concept it.self, its
implementation, and its application.

The languages used in this text are C and C++. C is well suited to such a course
since it contains the control structures necessary to make programs readable and allows
basic data structures such as stacks, linked lists, and trees to be implemented in a variety
of ways. This allows the student to appreciate the choices and tradeoffs which face a
programmer in a real situation. C is also widespread on many different computers and
it continues to grow in popularity. As Kernighan and Ritchie indicate, C is "a pleasant,
expressive, and versatile language."
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We have included information on C-- - in the curl y chapters. intruducinri the fea-
tures of C+ + and showing how the y can he used in implementing data structures. No
specilic background in C+ - is needed. Classes in C+ are introduced in a new Sec-
non 1.4. This section discusses classes. including function members It also introduces
inheritance and object orientation. The section includes an example of implementing
abstract data t ypes in C+ -, as well as polymorphism. To Section 2.3 we have added an
implementation of stacks iii C-i- ± using templates. This shows how Complex data struc-
tures can he poruineteri,.ed br different base t ypes.A new Section 4.6 has been added.
showin how linked lists can be implemented )it Such an implementation shows
the limitations, as well as the power. of encapsulation in implementing data structures.
The point should he mode that encapuIaicd data structures must be designed carefully
to allow users to do hut the need in a data structure. Also discussed in this COfltCXt
are C + dynamic allocation and freeing of storage.

The only prerequisite for students using this text is a one-semester course in pro-
gramming. Students who have had a course in prograniming using such languaues as
FORTRAN, Pascal. or PL/i can use this text together with one of the elementary C or
C+ + texts listed in the Biblio graph y. Chapter I also provides information necessary
for such students to acquaint themselves with C.

Chapter I is an introduction to data structures. Section 1.1 introduces the concept
of an abstract data structure and the concept of an implementation. Sections 1.2 and
1.3 introduce arrays and structures in C. The implementations of these two data struc-
tures as well as their applications are covered. Chapter 2 discusses stacks and their
C implementation. Since ths is the first new data structure introduced, considerable
discussion of the pitfalls of implementing such a structure is included. Section 2.3 in-
troduces postfix, prefix, and infix notations. Chapter 3 covers recursion, its application.
and its implementation. Chapter 4 introduces queues, priority queues, and linked lists
and their implementations both using an array of available nodes as well as using dy-
namic storage. Chapter 5 discusses trees, Chapter 6 introduces 0 notation and covers
sorting, while Chapter 7 covers both internal and external searching. Chapter 8 intro-
duces graphs, and Chapter 9 discusses storage management. At the end of the text, we
have included a large Bibliograph y with each entry classified by the appropriate chapter
or section of the text.

A one-semester course in data structures consists of Section I .1, Chapters 2
through 7. and Sections 8. 1, 8.2, and part of Section 8.4. Parts of Chapters 3.6.7. and
8 can be omitted if time is pressing.

This text is suitable for courses based upon the Algorithms and Data Structures
knowledge unit (AL 1-6,8) as well as sections of the Programming Languages knowl-
edge unit (PL 3-6, 10, Il) as described in the report Computing Curricula 1991 of the
ACM/IEEE-CS Joint Curriculum Task Force. It follows closely the sample Data Struc-
tures and Analysis of Algorithms course presented in the report and may be used in
second- and third-tier classes of a typical computer science curriculum for both majors
and nonmajors.

The text is suitable for course C82 and parts of courses C87 and C813 of Cur-
riculum 78 (Cwnmunjca,jo,zs of the ACM. March 1979). courses UCI and UC8 of
the Undergraduate Programs in Information Systems (Coniniu,iicatio,is of the ACjf.
December 1973) and course II of Curriculum 68 (Conw,z,njcatio i.s of the .4C1. March
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I 968). in particular, the text covers parts or all of topics P1, P2, P3, P4. P5, S2. Dl. D2.
D3, and D6 of Curriculum 78.

Algorithms are presented as intermediaries between English language dcsciip-
tions and C programs. They are written in C style interspersed with English. These
algorithms allow the reader to locus on the method used to solve a problem without
concern about declaration of variables and the peculiarities of real language. In trans-
forming an algorithm into a program. we introduce these issues and peint out thc pitfalls
that accompany them.

The indentation pattern used for programs and algorithms is based loosel y on a
format suggested by Kernighan and Ritchie (The C ProgrammingLanguage. Prentice
Hall. 1978) which we have found to be quite useful. We have also adopted the con-
vention of indicating in comments the construct being terminated by each instance of
a closin g brace (}). Together with the indentation pattern, this is a valuable tool in im-
proving program comprehensibilit y. We distinguish between algorithms and programs
by presenting the former in italics and the latter in roman.

Most of the concepts in the text are illustrated by several examples. Some of
these examples are important topics in their own right (e.g., posthx notation, multiword
arithmetic. etc.) and may be treated as such. Other examples illustrate different ita-
plemenunion techniques (such as sequential storage of trees). The instructor is free to
cover as many or as few of these examples as he or she wishes. Examples may also
he assigned to stu.ients as independent readin g . It is anticipated that an instructor will
be unable to cover all the examples in sufficient detail within the confinc of a one- or
two-semester course. We feel that at the stage of a student's development for which the
text is designed, it is more important to cover several examples in great detail than to
cover a broad range of topics cursorily.

All the programs and algorithms in this text have been tested and debugged. We
wish to thank Miriam Binder and Irene LaClaustra for their invaluable assistance in this
task. Their zeal for the task was above and beyond the call of duty and their suggestions
were always valuable. Of course. any errors that remain are the sole responsibility of
the authors.

The exercises vary widely in type and difficulty. Some are drill exercises to en-
sure comprehension of topics in the text. Others involve modifications of programs or
algorithms preented in the text. Still others introduce new concepts and are quite chal-
lenging. Often, a group of successive exercises includes the complete development of
a new topic which can be used as the basis for a term project or an additional lecture.
The instructor should use caution in assigning exercises so that an assignment is suit-
able to the student's level. We consider it imperative for students to be assigned several
(from five to twelve, depending on difficulty) programming projects per semester. The
exercises contain several projects of this type.

We have attempted to use the C language, as specified in the second edition of
the Kernighan and Ritchie text. This corresponds to the C ANSI Standard. Programs
given in this book have all been developed using Borland C+ + but have onlymade
use of features as described in th evolvin g ANSI C+ ± draft standard. 'They should
run without change on a wide variet y of C-i- + compilers. See the reference manual for
your particular system or consult the "Working Paper for Draft Proposed International
Standard for Information Svsietn—Pro gramming, Language C+ -i-," available from the
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American National Standards Institute (ANSI) Standards Secretariat; CBEMA, 1250
Eye Street NW, Suite 200, Washington, DC 20005. You should, of course, warn your
students about any idiosyncrasies of the particular compiler the y are using. We have
also added some references to several personal computer C and C+ -f compilers.

Miriam Binder and Irene LaClaustra spent many hours typing and correcting the
original manuscript as well as managing a large team of students whom we mention
below. Their cooperation and patience as we continually made up and changed our
minds about additions and deletions are most sincerely appreciated.

We would like to thank Shaindel Zundel-Margulis, Cynthia Richman, Gittie
Rosenfeld-Wertenteji, Mindy Rosman-Schreiber, Nina Silverman, Helene Turry, and
Devorah Sadowsky-Wcinschneider for their invaluable assistance.

Vivienne Esther Langsam and Tziyonah Miriam Langsam spent many hours re-
vising the index for the second edition of this book. We would like to thank them for
helping us complete the book in the face of a fast approaching deadline.

The staff of the City University Computer Center deserves special mention. They
were extremely helpful in assisting us in using the excellent facilities of the center. The
same can be said of the staff of the Brooklyn College Computer Center.

We would like to thank the editors and staff at Prentice Hall and especially the
reviewers for their helpful comments and suggestions.

Finally, we thank our wives, Vivienne Esther Langsam, Gail Augenstein, and
Miriam Tenenbaum, for their advice and encouragement during the long and arduous
task of producing such a book.
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