

Second Edition

DATA STRUCTURES
USING C AND C++

Yedidyah Lan gsam
Moshe J. Augenstein
Aaron M. Tenenbaum

Brooklyn College

Prentice -HcLll_QUn
,New Delhi -hO 001

2000

/

This Nineteenth Indian Reprint—Rs. 225.00
(Original U.S. Edition—Rs. 2964.00)

DATA STRUCTURES USING C AND C++, 2nd Ed.
by Yedidyah Langsarn, Moshe J. Augenstein and Aaron M. Tenenbaum

C) 1996 by Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458, U.S.A. All rights reserved.
No part of this book may be reproduced in any form, by mimeograph or any other means, without
permission in writing from the publisher.

The authors and publisher 01 this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of the theories and programs to determine their effectiveness. The authors
and publisher make no waaanty of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book. The authors and publisher shall not be liable in any event for Incidental or consequential
damages in connection with, or arising out of, the furnishing. performance. or use of these programs.

ISBN-81-203-1177-9

The export rights of this book are vested solely with the publisher.

This Eastern Economy Edition is the authorized, complete and unabridged photo-offset reproduction
of the latest American edition specially published and priced for sale only in Bangladesh, Burma,
Cambodia, China, Fiji, Hong Kong, India, Indonesia, Laos, Malaysia, Nepal, Pakistan, Philippines,
Singapore, South Korea, Sri Lanka, Taiwan, Thailand, and Vietnam.

Reprinted in India by special arrangement with Prentice-Hall, Inc., Upper Saddle River, New
Jersey 07458, U.S.A.

Nineteenth Printing (Second Edition) 		 December, 2000

Published by Asoke K. Ghosh, Prentice-Hall of India Private Limited, M-97, Connaught Circus,
New Delrri . 1 10001 and Printed by Syndicate Binders, 8-187, Okhla Industrial Area, Phase I,
New Dnlni . 1 10020.

a

	

Preface
	 'U:

I Introduction to Data Structures

	

1.1	 Information and Meaning I

Binary and Decimal Integers, 2
Real Numbers, 4
Character Strings, 5
Hardware and Software. 6
Concept of implementation. 8
Example. 8
Abstract Data Types, 13
Sequences as Value Definitions, 17
ADT for V vi,t-h'ngth Character Strings, 18
Data Tvpes in C. 20
Pointers in C. 20
Data Structures and C. 22

Exercises 24

	

1.2	 Arrays inC 24

The Arra y as an .4DT 26
Usht.' O,ic-Di,nrt:siv'ial Arra ys, 27

Iff

Implementing One-Dimensional Arra ys, 28
Arrays as Parameters, 31
Character Strings in C. 32
Character String Operations. 33
Two-Dimensional Arrays, 34
Multidimensional Arra ys, 37

Exercises 40

	

1.3	 Structures in C 42

Implementing Structures, 46
Unions, 48
Implementation of Unions. SI
Structure Parameters, 52
Representing Other Data Structures, 54
Rational Numbers. 55
Allocation of Storage and Scope of Variables, 58

Exercises 62

	

1.4	 Classes in C++ 63

The Class Rational, 64
Using the Class Rational, 65
Implementing the Methods. 67
Overloading. 72
Inheritance, 72
Constructors, 74

Exercises 76

,2' The Stack
	

77

	

2.1	 Definition and Examples 77

Primitive Operations, 80
Example, 81
The Stack as an Abstract Data Type, 84

Exercises 85

	

2.2	 Representing Stacks in C 86

Implementing the pop Operation. 90
Testing for Exceptional Conditions, 91
Implementing the Push Operation, 92

Exercises 95

	

2.3	 Example: Infix. Postfix. and Prefix 95

Basic Definitions and Examples, 95
Evaluating a Posrfix Expression. 98
Program to Evaluate u Postfix Expression. 99
Limitations of the Program, 102

Contents

Converting an Exprc.csianfrnm Infix to Post fix, 102
Paigrain to Convert an Expression from Infix to Post/ix. 106
Stackc in C+ + Using Templates, lOU

Exercises 115

Recursion	 117

3.1	 Recursive Definition and Processes Ill

Factorial Function. 117
Multiplication of Natural Numbers, 120
Fibonacci Sequence, 121
lJiiian Search, 122
Properties of Recursive Definitions or A ltorjthms. 125

Exercises 126

3.2	 Recursion in C 127

Factorial in C. 127
Fibonacci Numbers in C, 131
Binary Search in C. 132
Recur.cive Chains, 134
Recursive Definition of Algebraic Expressions, 135

Exercises 138

3.3	 Writing ccursive Programs 140

The Towers of Hanoi Problem, 142
Translation from Prefix to l'ostfix Using Recursion, 146

Exercises ISO

3.4	 Simulating Recursion 153

Heturwfivrn a Function. 155
Implementing Recursive Functions. 156
Simulation of Factorial, 157
Improving the Simulated Routine. 16
Eliminating gobs, 163
Simulating the Towers of Hanoi. 165

Exercises 170

3.5	 Efficiency of Recursion 172

Exerciss 173

4f Queues and Lists 	 174

4.1	 The Queue and its Sequential Representation 174

The Queue as an Abstract Data Type. 176
C Implementation of Queues, 176
insert Operation. 180

Contents	 V

Priority Queue. 182
Array implementation of Priority Queue, 183
Exercises 184

	

4.2	 Linked Lists 186

Inserting and Removing Nodes from a List. 187
Linked Implementation of Stacks. /9/
get node and freenode Operations. 193
Linked Implementation qf Queues. 194
Linked List as a Data Structure. 195
Examples of List Operations. 198
List Implementation f Priority Queues, 200
Header Nodes, 200

Exercises 202

	

4.3	 Lists in C 203

Array Implementation of Lists. 203
Limitations of the Arra y Implementation, 206
Allocating and Freeing Dynamic Variables, 207
Linked Lists Using Dynami'. Variables, 211
Queues as Lists in C. 213
Examples of List Operations in C. 215
Noninteger and Nonhomogeneous Lists, 216

the Dy namic and Arra y Implementations of List.. 217
Implementing Header Nodes. 218

Exercises 219

	

4.4	 Example: Simulation Using Linked Lists 220

Simulation Process. 221
Data Structures, 222
Simulation Program. 223

Exercises 227

	

4.5	 Other List Structures 228

Circular Lists. 229
Stack as a Circular List, 229
Queue as a Circular List, 230
Primitive Operations on Circular Lists. 231
The Josephus Problem, 232
Header Nodes, 234
Addition of Long Positive Integers Using Circular Lists, 235

- Daub/v Linked Lists, 237
Addition of Long Integers Using Daub/v Linked Lists. 239
Exercises 244

	

4.6	 The Linked List in C++ 245

Exercises 248

Contents

Trees	 249

5.1	 Binary Trees 249

Operations on Binary Trees. 254
Applications of Binary Trees. 255

Exercises 260

5.2	 Binary Tree Representations 261

Node Representation of Binary Trees, 261
Internal and External Nodes. 264
Implicit Array Representation of Binary Trees. 265
Choosing a Binary Tree Representation, 269
Binar Tree Traversals in C. 270
Threaded Binary Trees, 273
Tratersal Using , father Field, 277
/1etengerioux Binary Trees, 280

Exercises 281

5.3	 Example: The Huffman Algorithm 283

The Ruffian Algorithm. 287
C Program. 288

Exercises 291

5.4	 Representing Lists as Binary Trees 292

Finding the kth Element. 294
Deleting an Element. 296
Implementing Tree-Represented Lists in C. 299
Constructing a Tree-Represented List, 301
The Josephus Problem Revisited, 303

Exercises 304

5.5	 Trees and Their Applications 305

C Representations of Trees, 307
Tree Traversals, 309
General Expressions as Trees, 312
Evaluating an Expression Tree, 315
Constructing a Tree. 317

Exercises 319

5.6	 Example: Game Trees 321

Exercises 327

Sorting	 329

6.1	 General Background 329

El iencv Considerations. 331

Contents	 vii

o Notation. 334
Efficiency of Sorting, 336

Exercises 338

	

6.2	 Exchange Sorts 339

Bubble Sort, 339
Quicksort, 342
Efficiency of Quicksort, 348

Exercises 350

	

6.3	 Selection and Tpe Sorting 35 I

Straight Selection Sort, 352
Binary Tree Sorts, 353
Heapsort, 356
Heap as a Priority Queue, 357
Sorting Using a Heap, 359
Heap.sori Procedure, 362

Exercises 364

	

6.4	 Insertion Sorts 365

Simple Insertion, 365
Shell Sort, 366
Address Calculation Sort, 370

Exercises 372

	

6.5	 Merge and Radix Sorts 373

Merge Sorts, 373
The Cook—Kim Algorithm, 377
Radix Sort, 377

Exercises 381

./ Searching	 .	 384

	

7.1	 Basic Search Techniques 384

Dictionary as an Abstract Data Type, 385
Algorithmic Notation, 386
Sequential Searching, 387
Efficiency of Sequential Searching. 389
Reordering a List for Maximum Search Efficiency, 390
Searching an Ordered Table, 392
Indexed Sequential Search, 392
Binary Search. 394
Interpolation Search, 397

Exercises 398

	

7.2	 Tree Searching 401

viii	 Contents

Inserting into a Binar Search Tree, 404
Deleting front a Uinarv Search Tree, 404
1tii'IUY o[Binarv Search Tree Operations, 407
Ef7iciencv of Noiiunhlorni Binary Search Trees, 409
Oplonum Search Trees. 411
Balanced Trees. 413

Exercises 421

7,3	 General Search Trees 423

Multiwu y Search Trees. 423
Searching a Multiwav Tree. 42
Implementing a Mu!tiwav Tree. 427
Traversing a Mu(tiway Tree, 428
Insertion in a Mu/tin av Search Tree, 430
B-Trees, 435
Algorithimts for B-Tree Insertion, 439
Computing father and index. 445
Deletion in Multiwav Search Trees, 449
Efficiency of Multi" try Search Trees. 453
Improving the B-Tree 456
B+Tr',es , 460
Digital Search Trees. 461
Tries, 465

Exercises 467

	

7.4	 Hashing 468

Resolving Hash Clashes by Open Addressing, 470
Deleting items from a Hash Table, 473
Efficiency of Rehashing Method.c, 474
Hash Table Reordering, 476
Brentc Method, 477
Binary Tree Hashing. 480
improvements with Additional Memory 482
Coalesced Hashing. 485
Separate Chaining, 488
Hashing in External Storage, 491
Separator Method, 493
Dynamic Hashing and Extendible Hashing, 494
Linear Hashing. 499
Choosing a Hash Function. 505
Perfect Hash Functions. 508
Universal Classes of Hash Functions. 512

Exercises 513

,4 Graphs and Their Applications

	

8.1	 Graphs 515

Application of Graphs. 517

515

ix
Contents

C Representation of Graphs. 520
Transitive Closure, 521
Warshall :c Algorithm, 525
Shortest-Path Algorithm, 526

Exercises 528

8.2	 A Flow Problem 529

Improving a Flow Function, 531
Example, 535
Algorithm and Program. 537

Exercises 541

8.3	 Linked Representation of Graphs 541

Dijkstra c Algorithm Revisited, 547
Organizing the Set of Graph Nodes, 549
Application to Scheduling. 550
C Program, 554

Exercises 557

8.4	 Graph Traversal and Spanning Forests 560

Traversal Methods for Graphs, 560
Spanning Forests, 563
Undirected Graphs and Their Traversals, 566
Depth-First Traversal, 568
Applications of Depth-First Traversal, 571
Efficiency of Depth-First Traversal, 572
Breadth-First Traversal, 573
Minimum Spanning Trees, 574
Kruskalc Algorithm, 576
Round-Robin Algorithm, 577

Exercises 577

9/ Storage Management 	 579

9.1	 General Lists 579

Operations That Modify a List, 582
Examples, 583
Linked List Representation of a List, 584
Representation of Lists, 587
Mist Operation. 588
Use of List Headers, 591
Freeing List Nodes, 593
General Lists in C. 594
Programming Languages and Lists. 597

Exercises 599

9.2	 Automatic List Management 599

X	
Contents

Reference Count Method. 599
Garl,a.'e Collection. 605
Al .e,rit!zit,xtQr Garbage Collection. 606
Collection and Compaction. 61.3
Variations of Garbage Collection. 619

Exercises 620

9.3	 Dynamic Memory Management 621

Compaction of Blocky of Storage. 622
Firs! Fix, Best Fit, and Worst Fit, 625
Improvements in the First-Fit Method, 631
Freeing Storage Blocks. 632
Boundary Thg Method. 633
Buddy System. 636
Other Buddy Svctems, 643

Exercises 645

Bibliography and References
	 647

Index
	 663

xl
Contents

Preface

This text is designed for a two-semester course in data structures and programming.
For several years, we have taught a course in data structures to students who have had a
semester course in high-level language programming and a semester course in assembly
language programming. We found that a considerable amount of time was spent in
teaching programming techniques because the students had not had sufficient exposure
to programming and were unable to implement abstract structures on their own. The
brighter students eventually caught on to what was being done. The weaker students
never did. Based on this experience, we have reached the firm conviction that a first
course in data structures must go hand in hand with a second course in programming.
This text is a product of that conviction.

The text introduces abstract concepts. shows how those concepts are useful in
problem solving, and then shows how the abstractions can be made concrete by us-
ing a programming language. Equal emphasis is placed on both the abstract and the
concrete versions of a concept. so that the student learns about the concept it.self, its
implementation, and its application.

The languages used in this text are C and C++. C is well suited to such a course
since it contains the control structures necessary to make programs readable and allows
basic data structures such as stacks, linked lists, and trees to be implemented in a variety
of ways. This allows the student to appreciate the choices and tradeoffs which face a
programmer in a real situation. C is also widespread on many different computers and
it continues to grow in popularity. As Kernighan and Ritchie indicate, C is "a pleasant,
expressive, and versatile language."

XIII

We have included information on C-- - in the curl y chapters. intruducinri the fea-
tures of C+ + and showing how the y can he used in implementing data structures. No
specilic background in C+ - is needed. Classes in C+ are introduced in a new Sec-
non 1.4. This section discusses classes. including function members It also introduces
inheritance and object orientation. The section includes an example of implementing
abstract data t ypes in C+ -, as well as polymorphism. To Section 2.3 we have added an
implementation of stacks iii C-i- ± using templates. This shows how Complex data struc-
tures can he poruineteri,.ed br different base t ypes.A new Section 4.6 has been added.
showin how linked lists can be implemented)it Such an implementation shows
the limitations, as well as the power. of encapsulation in implementing data structures.
The point should he mode that encapuIaicd data structures must be designed carefully
to allow users to do hut the need in a data structure. Also discussed in this COfltCXt
are C + dynamic allocation and freeing of storage.

The only prerequisite for students using this text is a one-semester course in pro-
gramming. Students who have had a course in prograniming using such languaues as
FORTRAN, Pascal. or PL/i can use this text together with one of the elementary C or
C+ + texts listed in the Biblio graph y. Chapter I also provides information necessary
for such students to acquaint themselves with C.

Chapter I is an introduction to data structures. Section 1.1 introduces the concept
of an abstract data structure and the concept of an implementation. Sections 1.2 and
1.3 introduce arrays and structures in C. The implementations of these two data struc-
tures as well as their applications are covered. Chapter 2 discusses stacks and their
C implementation. Since ths is the first new data structure introduced, considerable
discussion of the pitfalls of implementing such a structure is included. Section 2.3 in-
troduces postfix, prefix, and infix notations. Chapter 3 covers recursion, its application.
and its implementation. Chapter 4 introduces queues, priority queues, and linked lists
and their implementations both using an array of available nodes as well as using dy-
namic storage. Chapter 5 discusses trees, Chapter 6 introduces 0 notation and covers
sorting, while Chapter 7 covers both internal and external searching. Chapter 8 intro-
duces graphs, and Chapter 9 discusses storage management. At the end of the text, we
have included a large Bibliograph y with each entry classified by the appropriate chapter
or section of the text.

A one-semester course in data structures consists of Section I .1, Chapters 2
through 7. and Sections 8. 1, 8.2, and part of Section 8.4. Parts of Chapters 3.6.7. and
8 can be omitted if time is pressing.

This text is suitable for courses based upon the Algorithms and Data Structures
knowledge unit (AL 1-6,8) as well as sections of the Programming Languages knowl-
edge unit (PL 3-6, 10, Il) as described in the report Computing Curricula 1991 of the
ACM/IEEE-CS Joint Curriculum Task Force. It follows closely the sample Data Struc-
tures and Analysis of Algorithms course presented in the report and may be used in
second- and third-tier classes of a typical computer science curriculum for both majors
and nonmajors.

The text is suitable for course C82 and parts of courses C87 and C813 of Cur-
riculum 78 (Cwnmunjca,jo,zs of the ACM. March 1979). courses UCI and UC8 of
the Undergraduate Programs in Information Systems (Coniniu,iicatio,is of the ACjf.
December 1973) and course II of Curriculum 68 (Conw,z,njcatio i.s of the .4C1. March

Preface

xiv

I 968). in particular, the text covers parts or all of topics P1, P2, P3, P4. P5, S2. Dl. D2.
D3, and D6 of Curriculum 78.

Algorithms are presented as intermediaries between English language dcsciip-
tions and C programs. They are written in C style interspersed with English. These
algorithms allow the reader to locus on the method used to solve a problem without
concern about declaration of variables and the peculiarities of real language. In trans-
forming an algorithm into a program. we introduce these issues and peint out thc pitfalls
that accompany them.

The indentation pattern used for programs and algorithms is based loosel y on a
format suggested by Kernighan and Ritchie (The C ProgrammingLanguage. Prentice
Hall. 1978) which we have found to be quite useful. We have also adopted the con-
vention of indicating in comments the construct being terminated by each instance of
a closin g brace (}). Together with the indentation pattern, this is a valuable tool in im-
proving program comprehensibilit y. We distinguish between algorithms and programs
by presenting the former in italics and the latter in roman.

Most of the concepts in the text are illustrated by several examples. Some of
these examples are important topics in their own right (e.g., posthx notation, multiword
arithmetic. etc.) and may be treated as such. Other examples illustrate different ita-
plemenunion techniques (such as sequential storage of trees). The instructor is free to
cover as many or as few of these examples as he or she wishes. Examples may also
he assigned to stu.ients as independent readin g . It is anticipated that an instructor will
be unable to cover all the examples in sufficient detail within the confinc of a one- or
two-semester course. We feel that at the stage of a student's development for which the
text is designed, it is more important to cover several examples in great detail than to
cover a broad range of topics cursorily.

All the programs and algorithms in this text have been tested and debugged. We
wish to thank Miriam Binder and Irene LaClaustra for their invaluable assistance in this
task. Their zeal for the task was above and beyond the call of duty and their suggestions
were always valuable. Of course. any errors that remain are the sole responsibility of
the authors.

The exercises vary widely in type and difficulty. Some are drill exercises to en-
sure comprehension of topics in the text. Others involve modifications of programs or
algorithms preented in the text. Still others introduce new concepts and are quite chal-
lenging. Often, a group of successive exercises includes the complete development of
a new topic which can be used as the basis for a term project or an additional lecture.
The instructor should use caution in assigning exercises so that an assignment is suit-
able to the student's level. We consider it imperative for students to be assigned several
(from five to twelve, depending on difficulty) programming projects per semester. The
exercises contain several projects of this type.

We have attempted to use the C language, as specified in the second edition of
the Kernighan and Ritchie text. This corresponds to the C ANSI Standard. Programs
given in this book have all been developed using Borland C+ + but have onlymade
use of features as described in th evolvin g ANSI C+ ± draft standard. 'They should
run without change on a wide variet y of C-i- + compilers. See the reference manual for
your particular system or consult the "Working Paper for Draft Proposed International
Standard for Information Svsietn—Pro gramming, Language C+ -i-," available from the

Preface xv

American National Standards Institute (ANSI) Standards Secretariat; CBEMA, 1250
Eye Street NW, Suite 200, Washington, DC 20005. You should, of course, warn your
students about any idiosyncrasies of the particular compiler the y are using. We have
also added some references to several personal computer C and C+ -f compilers.

Miriam Binder and Irene LaClaustra spent many hours typing and correcting the
original manuscript as well as managing a large team of students whom we mention
below. Their cooperation and patience as we continually made up and changed our
minds about additions and deletions are most sincerely appreciated.

We would like to thank Shaindel Zundel-Margulis, Cynthia Richman, Gittie
Rosenfeld-Wertenteji, Mindy Rosman-Schreiber, Nina Silverman, Helene Turry, and
Devorah Sadowsky-Wcinschneider for their invaluable assistance.

Vivienne Esther Langsam and Tziyonah Miriam Langsam spent many hours re-
vising the index for the second edition of this book. We would like to thank them for
helping us complete the book in the face of a fast approaching deadline.

The staff of the City University Computer Center deserves special mention. They
were extremely helpful in assisting us in using the excellent facilities of the center. The
same can be said of the staff of the Brooklyn College Computer Center.

We would like to thank the editors and staff at Prentice Hall and especially the
reviewers for their helpful comments and suggestions.

Finally, we thank our wives, Vivienne Esther Langsam, Gail Augenstein, and
Miriam Tenenbaum, for their advice and encouragement during the long and arduous
task of producing such a book.

YEDIDYAH LANGSAM
MOSHE J. AUGENSTEIN

AARON M. TENENBAUM

To my wife, Vivienne Esther
YL

To my wife, Gait
MA

To my wife, Miriam
AT

Preface

xvi

