
Ii.
Introduction to Data

Structures

A computer is a machine that manipulates information. The study of computer science
includes the study of how information is organized in a computer. how ii can he ma-
nipulated, and how.iE can be utilized. Thus, it is exceedingly important for a student of
compwcr science to understand the concepts of information organization and manipu-
lation in order to continue stud y of the field.

1.1 INFORMATION AND MEANING

If computer science is fundamentally the study of information, the first question that
arises is, what is information? Unfortunately, although the concept of information is the
bedrock of the entire field, this question cannot be answered precisely. In this sense the.
concept of information in computer science is similar to the concepts of point, line, and
plane in geometry: they are all undefined terms about which statements can he made
but which cannot be explained in terms of more elcnicntai concepts.

In geometry it is possible to talk about the length of a line despite the fact that
the concept of a line is itself undefined. The length of a line is a measure of quantity.
Similarly, in computer science we can measure quantities of information. The basic
unit of information is the bit, whose value asserts one of two muttiollY exclusive pos-
ibilities. For example, if a light switch can be in one of two positions but not in both

simultaneously. the fact that it is either in the "on" position of the ''off position is one
bit of information. If a device can he in wore tha'i two P s hlc tittcs. the tact that it
is in it particular state is more than one hit of inlortnat,on. For cxan)ple. if a dial has
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eight possible positions, the tact that it is in position 4 rules out seven other possibilities,
whereas the fact that a light switch is on rules out onl y one other possibility.

Another way of thinking of this phenomenon is as follows. Suppose that we had
only two-way switches but could use as many of them as we needed. Flow many such
switches would be necessary to represent a dial with eight positions? Clearly, one switch
can represent only two positions (see Figure l.l.la). Two switches can represent four
different positions (Figure 1.1.1b), and three switches are required to represent eight
different positions (Figure I.I.M. In general, n switches can represent 2" different
possibilities.

1 he binary digits 0 and I are used to reprcsent ti two possibie shites of a par-
ticular bit (in fact, the word "hit" is  'ntraction of the words "binary digit"). Given n
bits, a string of n Is and Os is used to represent their settings. For example, the string
101011 represents six switches, the first of which is "on"()). the second of which is
"off" ((>). the third on, the fourth oft, and the fifth and sixth on.

We have seen that three bits are sufficient to represent eight possibilities. The
eight possible configurations of these three bits (000, 001, 010, 01!, 100, 101, 110,
and I II) can be used to represent the integers 0 through 7. However, there is nothing
about these hit settings that intrinsically implies that a particular setting represents a
particular integer. Any assignment of integer values to bit settings is valid as long as
no two integers are assigned to the same hit setting. Once such an as signment has been
made, a particular bit setting can be unambiguousl y interpreted as a specific integer.
Let us examine severat widely used methods for interpreting bit settings as integers.

Binary and Decimal Integers

The most widely used method for interpreting bit settings as nonnegative
is the binary number system. In this system each bit position represents a power of 2.
The rightmost bit position represents 20 which equals 1, the next position to the left
represents 21 which is 2, the next hit position represents 22 which is 4, and so on. An
integer is represented as a sum of powers of 2. A string of all Os represents the number 0.
If a I appears in a particular bit position; the power of 2 represented by that bit position
is included in the sum; but if a 0 appears, that power of 2 is not included in the sum. For
example, the group of bits 00 100 110 has is in positions I, 2, and 5 (counting from right
to left with the rightmost position counted as position 0). Thus 00100110 represents t;.
integer 2 1 + 22 + 2 = 2 ± 4 + 32 = 38. Under this interpretation, any string of bits
of length it a unique nonnegative integer between 0 and 2" - 1, and any
nonnegative integer between 0 and 2" - I can be represented by a unique string of bits
of length n.

fhere are two widely used methods for representing negative binar y numbers. In
the first method, called ones complement notat ion, a negative number is represented
by chnino each bit iii its absolute value to the opposite bit setting. For example.
since 00100110 represents 38, 11011001 is used to represent —38. This means that the
leftmost bit of a number is no longer used to represent a power of' 2 but is reserved
for the sign of the number. A hit string starting with a 0 represents a positive fltlfltber.
whereas a bit string startin g with a I represents a negative number. Given it 	 the
range of numbers that can be represented is 	 I + I (a I followed by it - I Zeros) to
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(a)One switch (two possibilities).
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(c)Three switches (eight possibilities).

Figure 1.1.1
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2' 11 -1 (a (I followed by it I ones). Note that under this representation, there are two
representations for the number 0: a "positive" 0 consisting of all Os, and a "negative" 0
Consisting of all Is.

The second method of represe. g negative binary numbers is called twos coin-
ple pnent notation. In this notation, i is added to the ones complement representation of
a negative number. For example, since 11011001 represents —38 in ones complement
notation, 11011010 is used to represent —38 in twos complement notation. Given n bits,
the -ange of numbers that can be represented is —2°' i (a 1 followed by it - I zers)
to 2"' - I (a0 followed by n - ones). Note that —2°'° can he represented in twos
complement notation but not in ones complement notation. However, its absolute value

cannot be represented in either notation using n bits. Note also that there is only
one representation for the number 0 using n bits in twos complement notation. To see
this, consider 0 using eight bits: 0000000. The ones complement is 31111111, which
is negative 0 in that notation. Adding 1 to produce the twos complement form yields
100000000, which is nine bits long. Since only eight bits are allowed, the leftmost bit
(or "overflow") is discarded, leaving 00000000 as minus 0.

The, binary number system is by no means the only method by which bits can
be used to represent integers. For example, a string of bits may be used to represent
integers in the decimal number system,-as follows. Four bits can be used to represent
aL decimal digit between 0 and 9 in the binary notation described previously. A string
of hits of arbitrary length may he divided into Consecutive Sets of four bits, with each
Let representing a decimal digit. The string then represents the number that is formed
by those decimal digits in conventional decimal notation. For example, in this system
the bit string 00100110 is separated into two strings of four bits each: 0010 and 0110.
The first of these represents the decimal digit 2 and the second represents the decimal
digit 6, so that the entire string represents the integer 26. This representation is called
binary coded decimal.

One important feature of the binary coded decimal representation of nonnegative
integers is that not all bit strings are valid representations of a decimal integer. Four
bits can be used to represent one of sixteen different possibilities, since there are six-
teen possible states for a set of four bits. However, in the binary coded decimal integer
representation, only ten of those sixteen possibilities are used. That is, codes such as
1010 and 1100, whose binary values are 10 or larger, are invalid in a binary coded
decimal number.

Real Numbers

Ihe usual method used by computers to represent real numbers is floating-point
notation. There are many varieties of floating-point notation and c:ich has individual
characteristics. The key concept is that a real number is represented by a number, called
a mantissa, times a base raised IC, an integer power, called an exponent. The base is
usuall y fixed, and the mantissa and exponent vary to represent different real numbers.
For example. if the base is fixed at 10, the number 38753 could he represented as
38753 X 10- 2 . ( Recall that 10 is .01.) The mantissa is 38753, and the exponent is
—2. Other possible representations are .38753 X 103 and 387.53 x IOU . We choose the
representation in which the mantissa is an integer with no trailing Os.
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In the floating-point notation that we describe (which is not necessarily im-
plemented on any particular machine exactly as described), a real number is rep-
resented by a 32-hit string consisting of a 24-bit mantissa followed by an 8-bit
exponent. The base is fixed at W. Both the mantissa and the exponent are twos com-
plement binary integers. For example, the 24-bit binary representation of 38753 is
00000000100101 1101100001, and the 8-bit twos complement binary representation of
_2is1lllIll0; the representation of387.53iSO0000000l00l0l1I0ll0fhO
Other real numbers and their floating-point representations are as follows:

,	 ,'s	 I I EIS'EI I'IiI 0off

IS	 SI I ISJJI III S$ S$l $ $$ I$I S $5 $5 $	 S

.5 000000000000000000000101Illlllll

000005 000000000000000000000l01lllH010

12000 00000000000000000000110000000011

—387.53	 1111111 101101000lO011llllllllllO

—12000	 111 lii 111111 llllllll01000000001 I

The advantage of floating-point notation is that it can be used to represent numbers
with extremely large or extremely small absolute values. For example. in the notation
,resented previously, the largest number that can be represented is (2 23 ) X

which is a very large number indeed. The smallest positive number that can be rep-

resented is 10 21 , which is quite small. The limiting factor on the precision to which
numbers can be represented on a particular machine is the number of significant binary
digits in the mantissa. Not every number between the largest and the smallest can be
represented. Our representation allows only 23 significant bits. Thus, a number such
as 10 million and 1, which requires 24 significant binary digits in the mantissa, would
have to be approximated by 10 million (1 x 10), which only requires one significant

digit.

Character Strings

As we all know, information is not always interpreted numerically. Items such as
names, job titles, and addresses most also be represented in some fashion within a com-
puter. To enable the representation of such nonnumeric objects, still another method of
interpreting bit strings is necessary. Such information is usually represented in charac-
ter string form. For example, in some computers, the eight bits 00 100 110 are used to
represent the character '&'. A different eight-bit pattern is used to represent the char-
acter 'A', another to represent 'B', another to represent 'C', and still another for each
character that has a representation in a particular machine. A Russian machine uses

bit F .aterns to represent Russian characters, whereas an Israeli machine uses bit pat-
terns to represent Hebrew characters. (In fact, the characters being used are transparent
to the machine: the character set can be changed b y using a different font set on the

printer.)
If eight bits are used to represent a character. up. to 256 different characters can

be represented. since there are 256 different eight-bit patterns, lithe string 11000000 is
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used to represent the character 'A' and I I X)000I is used to represent the character 'B',
the character string "AU" would be represented by the bit string 110000001 1000001.
In general, a character string (STh' is represented by the concatenation of the bit strings
that represent the individual chara, rs of the string.

As in the case of integers, there is nothing about a particular bit string that makes it
intrinsically suitable for representing a specific character. The assignment of bit strings
to characters may be entirely arbitrary, but it must be adhered to consistently. It may
be that some convenient rule is used in assigning bit strings to characters. For exam-
ple, two bit strings may be assigned to two letters so that the one with a smaller binary
value is assigned to the letter that comes earlier in the alphabet. However, such a rule is
merely a convenience it is not mandated by any intrinsic relation between characters
an.] bit string.. In ftct, computers even differ over the number of bits used to represent
a character. Some computers use seven bits (and therefore allow onl y i to 128 possible
characters), some use eight (up to 256 characters), and some use .tet p to 1024 pos-
sible characters). The number of bits necessary to represent a character in a particular
computer is called the byte size and a group of bits of that number is called a byte.

Note that using eight bits to represent a character means that 256 possible char-
acters can be represented. It is not very often that one finds a computer that uses so
many different characters (although it is conceivable for a computer to include upper-
and lowercase letters, special characters, italics, boldface, and -othei type characters),
so that many of the eight-hit codes are not used to represent characters,

Thus we see that irnormat ion itself has no meaning. An y meaning can be assigned
to a particular bit pattern, as long as it is done consistently. It is the interpretation of a bit
pattern that gives it meaning. For example, the bit string 00100110 can be interpreted
as the number 38 (binary), the number 26 (binary coded decimal), or the character &'.
A method of interpreting a bit pattern is often called a data type. We have presented
several data types: binary inte gers, binary coded decimal nonnegative integers, real
numbers, and character strings. The key questions are how to determine what data types
are available to interpret bit patterns and what data type to use in interpreting a particular
bit pattern.

Hardware and Software

The memory (also called storage or Core) of a computer is simply a group of bits
(switches). At any instant of the computer's operation any particular bit in memory is
either 0 or 1 (off or on). The setting of a bit is called its value or its contents.

The bits in a computer memory are grouped together into larger units such as
bytes. In some computers, several bytes are grouped together into units called words.
Each'uch unit (byte or word, depending on the machine) is assigned an address, thatis, a name identifying a particular unit amon g all the units in memory. This address is
usually numeric, so that we may speak of byte 746 Or word 937. An addressis oftencalled a location, and the contents of a location are the values of the bits that make up
the unit at that location.

Every computer has a set of "native" data types. This means that it is constructed
with a mechanisni for nianipulatin hit patterns consistent with the objects the y repre-
sent. For example, suppose that a computer contains an instruction to add , iwo binary
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integers and place their sum at a given location in memory for subsequent use. Then
there must be a mechanism built into the computer to

1. Extract operand bit patterns from two given locations.

2. Produce a third hit pattern representing the binary integer that is the sum of the
two binary integers represented by the two operands.

3. Store the resultant bit pattern at a given location.

The computer "knows" to interpret the hit paiterns at the given locations as binary
integers because the hardware that executes that particular instruction is designed to do
so. This is akin to a light "knowing" to be on when the switch is in a particular position.

If the same machine also has an instruction to add two real numbers, there must
be a separathuilt . in mechanism to interpret operands as real numbers. Two distinct in-
structions are necessary for the two operations, and each instruction carries within itself
an implicit identification of the types of its operands as well as their explicit locations.
Therefore it is the programmer's responsibility to know which data type is contained
in each location that is used. It is the programmer's responsibilit y to choose between
using an integer or real addition instruction to obtain the sum of two numbers.

A high-level programming language aids in this task considerably. For example,
if a C programmer declares

mt x, y;
float a, D;

space is reserved at four locations for four different numbers. These four locations may
be referenced by the identifiers x, y, a, and b. An identifier is used instead of a numer-
ical address to refer to a particular memory location because of its convenience for the
programmer. The contents of the locations reserved for x and y will be interpreted as
inte gers, whereas the contents of a and i,will be interpreted as floating-point numbers.
The compiler that is responsible for translating C programs into machine language will
translate the "+" in the statement

S S +

into integer addition, and will translate the "+" in the statement

a	 a + b;

into floating-point addition. An operator such as "+" is really a generic operator because
it has several different meanings depending on its context. The compiler relieves the
programmer of specifying the type of addition that must he performed by examining
the context and usin g the appropriate version.

It is important to recognize the key role played by declarations in a high-level lan-
guage. Itis by means of declarations that the programmer specifies how the contents of
the computer memory are to be interpreted b y the program. In doing this, a declaration
specifies how much memors is needed for a particular entity, how the contents of that
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memory are to he interpreted, and other vital details. Declarations also specify to the
compiler exactly what is meant by the operation symbols that are subsequently used.

Concept of Implementation

Thus far we have been viewing data types as a method of interpreting the memory
contents of a computer. The set of native data types that a particular computer can
support is determined by what functions have been wired into its hardware. However,
we can view the concept of "data type" from a completely different perspective; not
in terms of what a computer can do, but in terms of what the user wants done. For
example, if one wishes to obtain the sum of two integers. one does not care very much
about the detailed mechanism by which that sum will be obtained. One is interestec in
manipulating the mathematical concept of an "integer," not in m. - . ulating hardware
bits. The hardware of the computer may he used to represent an it ger, and is useful
only insofar as the representation is successful.

Once the concept of "data type" is divorced from the hardware capabilities of
the corpputer, a limitless number of data types can be considered. A data type is an
abstract concept defined by a set of logical properties. Once such an abstract data type
is defined and the legal operations involving that type are specified, we may implement
that data type (or a close approximation to it). An implementation may be a hardware
implementation, in which the circuitry necessary to perform the required operations is
designed and constructed as part of a computer; or it may be a software implementation,
in which a program consisting of already existing hardware instructions is written to
interpret bit strings in the desired fashion and to perform the required operations. Thus, a
software implementation includes a specification of how an object of the new data type
is represented by objects of previously existing data types, as well as a specification
of how such an object is manipulated in conformance with the operations defined for
it. Throughout the remainder of this text, the term "implementation" is used to mean
"software implementation."

Example

We illustrate these concepts with an example. Suppose that the hardware of a
computer contains an instruction

MOVE (source,dcst, length)

thatcopies a character string of length byte; from an address specified by source to an
address specified by dest. (We present hardware instructions using uppercase letters.
The len gth must be specified by an integer, and for that reason we indicate it with
lowercase letters, source and dest can be specified by identifiers that represent storage
locations.) An example of this instruction is MOVE(a,b,3), which copies the three bytes
startin g at location a to the three bytes starling at location b.

Note the different roles played by the identifiers a and b in this operation. The
first operand of the MOVE instruction is the contents of the location specified by the
identifier a. The second operand, however, is not the contents of location b. since these
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cl)ntcnts are irrelevant to the execution of the iuiStructiOn. Rather, the location itself is
the operand. Since the location specifics the destination of the character string. A It hough

an I tlent i tier alwa y s stands for a location, it is common for 
all identifier  to he used to

reference the contents of that location. It is always apparent from the context whether
an identifier is referencing a location or its contents. The identifier appearing as the first
operand of a MOVE instruction refers to the contents of meiliory. whereas the identifier

appeal' ng OS the second operand refers to a location.
We also assume the computer hardware to contain the usual arithmetic and

branching instructions, which we indicate b y using C-like notation. For example, the

instruction

z = x +

interprets the contents of tIte bytes at locations .c and v s binary integers, adds them.
and inserts the binary representation of their sum into the byte at location (We do

not operate on integers greater than one byte iii h.igth and ignore the possibility of
overflow.) Here again, .v and v ale used to reference memory contents. whereas z is
used to reference a nicnmry location. but the proper interpretation is clear from the

context.
Sometimes it is desirable to add a quantity to an address to obtain another address.

For example, i1 a is a location in memory, we might want to reference the location four

bytes beyond a. We cannot refer to this location as a +4, since that notation is reserved
lot the integer cuntduts of location it We therefore Introduce the notation ('1 4 1 to

refer to this location. We also introduce the notation 1lIrI to refer to the uldress given

by adding the binary integer contents of the byte t .v to the addt-e.s a.
The MOVE instruction requires the programmer to specify the length of the string

to he copied. Thus, its operand is  fixed-length character string (th;!t is, the length of
the string must he known). A fixed-length string and a hVtc-sized binar y integer may

he considered native data types of this particular machine.
Suppose that we wished to impknient varying-length character strings on this

machine. That is, we wa lit to enable programmers to use an instruction

MOVE VAR(source dest)

I,) move a character string from location -s ource to location ,icct without being required

to specify any length.
To implement this new data type, we must first decide on how it is to he repre-

sent ed in the tue mu ry of flue tiiach inc and then indicate h 'w that iepresentalion is to
be manipulated. Clearly, it is necessary to know how many bytes must be moved to
execute this instruction. Since the MOV EVAR operation does not specify this number,
the number tilust be contained Within the representation of the character string itself.

A varying-length character strin g of length / ma y he represented hr a contiguous set

of / +- I bytes (I	 256). The first livie contains the binary representation of tlte length

/ aod the remaining b y tes connui it the representations of the characters in the string.
Representations of three such strings are illustrated in Figure 1.1.2. (Note that the dig-
its 5 and 9 in these tigu res do not stand for t he bit pal tents representing the characters '5'
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L[ s I H kI LHOI)
(a)

M "00000

MMOOMEM010000M
(c)

Figure 1.1.2 Varying-length character strings.

and 9 but rather for the patterns 00000101 and 00001001 (assuming eight bits to a
byte). which represent the integers five and nine. Similarly. 14 i?i Figure 1.I.2c stands
for the bit pattern 00001110. Note also that this representation is very different from
the way character strings are actually implemented in C.)

The program to implement the MOVEVAR operation can be written as follows (i
is an auxiliary memory location):

MOVE(source, dest, 1);
for (i4; i < dest; i++)

MOVE(source[i], dest[i], 1);

Similarly, we can implement an operation CONCATVAR(cl,c2,c3) to concate-
nate two varying-length character strings at locations cl and c2 and place the result at
e3. Figure I.! .2c illustrates the concatenation of the two strings in Figure 1.1 .2a and b:

move the length	 V
z = ci + c2
MOVE(z, c3, 1);
/ move the first string *1
for (i = 1; i <= ci; MOVE(ci[i], c3[i], 1);

move the second string V
for (i = 1; i <= c2)

x = ci + 1;
MOVE(c2[i], c3[x], 1);

/ end for V

However, once the operation MOVEVAR has been defined. CONCAT VAR can be im-
plemented using MOVEVAR as Follows:

10
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t3VEVAR(r2, c3[clfl; 1*	 move the second string
VEVAR(c1, c3);	 /	 move the first string

z ci + c2;	 I' update the length of the result *1
MOVE(z, c3, 1);

Figure 1. 1.3 illustrates phases of this operation oi the strings of Figure 1.1.2. Although
this latter version is shorter, it is not really more efficient, since all the instructions used
in implementing MOVEVAR are performed each time that MOVEVAR is used.

The statement = c  -t c2 in both the preceding algorithms is of particular inter-
est. The addition instruction operates independently of the use of its operands (in this
case. parts of varying-length character strings). The instruction is designed to treat its
operands as single-byte integers regardless of any other use that the programmer has
for them. Similarly, the reference to c3elj is to the location whose address is given by
adding the contents of the byte at location c  to the address c3. Thus the byte at ci is
treated as iolding a binary integer, although it is also the start of a varying-length char-
acter strin z . This illustrates the fact that a data type is a method of treating the contents
of memory and that those contents have no intrinsic meaning.

Note that this representation of varying-length character strings allows only
strings wiose length is less than or equal to the largest binary integer that fits into a
single bve. If a byte is eight bits, this means that the largest such string is 255 (that
is. 2 - l) characters long. To allow for longer strings, different representation must
he chosen and a new set of programs must be written. If we use this representation of
varying-length character strin gs, the concatenation operation is inalid if the resulting
string is more than 255 characters long. Since the result of such an operation is unde-
fined, a wide variety of actions can be implemented if that operation is attempted. One
possibility is to use only the first 255 characters of the result. Another possibility is to
ignore the operation entirely and not move anything to the result field. There is also
a choice of printing a warning message or of assuming that the user wants to achieve
whatever result the implementor decides on.

In fact, C uses an entirely different implementation of character strings that avoids
this limitation on the length of the string. In C. all strings are terminated by the special
character '\ 0'. This character, which never appears within a string, is automatically
placed by thv compiler at the end of every string. Since the length of the string is not
known in advance, all string operations must proceed a character at a time until \ 0' is
encountered.

The program to implement the MOVEVAR operation, under this implementation,
can be written as follows:

i = 0;
while (source[i] 'L \0')

MOVE(source[i], dest[i], 1);

dest[fl =
/ terminate the destination string with '\O'
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C2

C3	 C3(Cl)

TR
(a) MOVEVAR (C, C3[C]]); 	 -

(1,) MOVEVAR (C!, 0);

C3

(C) Z = Cl + C2; MOVE (Z, C3, I);

Figure 1.1.3 CONCATVAR operations.
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To implement the concatenation operation. CONCATVAR(cl.c2,c3), we may write

= 0;
/ move the first string
while (cl[i]	 \0) {

MOVE(cl[i], c3[i], 1);

/ move the second string
j = 0;
while (c2[j]

M0VE(c2[ j++1, c3[++], 1);
/* terminate the destination string with a \0

c3[i] =

A disadvantage of the C implementation of character strings is that the length of a char-
acter string is not readily available without advancing through the string one character
at a time intil '. 0' is encountered. This is more than offset by the advantage of not
having an arbitrary limit placed on the length of the string

Once a representation has been chosen for objects of a particular data type and
routines have been written to operate on those representations, the programmer is free to
use that data type to solve problems. The original hardware of the machine plus the pro-
grams for implementing more complex data types than those provided by the hardware
can he thought of as a "better" machine than the one consisting of the hardware alone.
The programmer of the original machine need not worry about how the computer is
designed and what circuitry is used to execute each instruction. The programmer need
know only what instructions are available and how those instructions can be used. Sim-
ilarly, the programmer who uses the "extended" machine (that consists of hardware and
software), or "virtual computer." as it is sometimes known, need not be concerned with
the details of how various data types are implemented. All the programmer needs to
know is how they can be manipulated.

Abstract Data Types

A useful tool for specifying the logical properties of a data type is the abstract data
type, or ADT. Fundamentally, a data type is  collection of values and a set of operations
on those values. That collection and those operations form a mathematical construct that
may be implemented using a particular hardware or software data structure. The term
"abstract data type" refers to the basic mathematical concept that defines the data type.

In defining an abstract data type as a mathematical concept. we are not concerned
with space or time efficiency. Those are implementation issues. In fact, the definitn.
of an ADT is not concerned with implementation details at all. It may not even he
possible to implement a particular ADT on a particular piece of hardware or using a

particular software s ystem. For example, we have already seen that the ADT integer is
not universally implementable. Nevertheless. by specify ing the mathematical and logi-

cal properties of a data type or structure, the ADT is a useful guideline to iiIenientors
and a useful tool to programmers who wish to use the data type correctly.
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There are a number of methods for specifying an ADT. The method that we use is
semiformal and borrows heavi+y from C notation but extends that notation where pee-
essary. To illustrate the concept of an ADT and our specification method, consider the
ADT RATIONAL, which corresponds to the mathematical concept of a rational number.
A rational number is a number that can be expressed as the quotient of two integers.
The operations on rational numbers that we define are the creation of a rational number
from two integers, addition, multiplication, and testing for equality. The following is an
initial specification of this ADT:

/value defintion/
abstract typedef cinteaer, integer> RATIONAL;
condition RATIONAL[1]	 0;

/*operator definition-/
abstract RATIONAL rnakerational(a,b)
mt a,b;
precondition b	 0;
pqstcondition makeratona1[0] 	 a;

makerational[1]

abstract RATIONAL add(a,b)	 / written a +b V
RATIONAL a,b;
postcondit'ion add[1]	 a[lj

	

add[O]	 a[OJ	 b(1) + b[0)

abstract RATIONAL mult(a,b)	 / written a * b •/
RATIONAL a,b;
postconditjo,, mulr[O] == a[0)	 b[O];

	

rnu7 t[1)	 a[1] * b[1];

abstract equal(a,b)	 / written a	 b
RATIONAL a,b;
postcondit,on equal == (a[01*b[1] == b[01a[1]);

An ADT consists of two parts: a value definition and an operator definition. The
value definition defines the collection of values for the ADT and consis: s of two parts: a
definition clause and a condition clause. For example. the value definition for the ADT
RATIONAL states that a RATIONAL value consists of two integers, the second of which
does not equal 0. Of course, the two integers that make up a rational number are the
num,erator and the denominator. We use arra y notation (square brackets) to indicate the
parts of an abstract type.

The keywords abstract tvpedef introduce a value definition, and the keyword con-
dition is used to specify any conditions on the newl y defined type. In this definition, the
condition specifies that the denominator may not be 0. The definition clause is required.
but the conditiofl clause may not he necessary for every ADT.

Immediately following the value definition comes the operator definition. Each
operator is defined as an abstract function with three parts: a header, the optional pre-
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conditions, and the postconditions. For example. the operator definition of the ADTRA-
TIONAL includes the operations of creation (make raliona!), addition (add) and multi-
plication (mull), as well as a test for equality (equal). Let us consider the specification
for multiplication first, since it is the simplest. It contains a header and posiconditions.
but no preconditions:

abstract RATIONAL iu1t(a,b) 	 1* written ab
RATIONAL a,b;
postcond7tfon mu?t[G]	 a[O]*b[O]:

mul rl l } - 411*bll);

The header of this definition is the first two lines, which are just like a C function header.
The keyword abstract indicates that this is not a C function but an ADT operator defi-
nition. The comment beginning with the new keyword written indicates an alternative
way of writing the function.

The postcondition specifies what the operation does. In a postcondition. the name
of the function (in this case, mu!:) is used to denote the result of the operation. Thus,
rnuIt[O] represents the numerator of the result, 'and multi lithe denominator of the result.
That is, it specifies what conditions become true after the operation is executed. In
this example, the postcondition specifies that the numerator of the result of a rational
multiplication equals the integer product of the numerators of the two inputs, and that
the denominator equals the integer products of the two denominators.

The specification for addition (add) is straightforward and simply states that

aO bO- aQ*bI +al*bO
aI	 bt	 al*bl

The creation operation (makerational) creates a rational number from two inte-
gers and contains the first example of a precondition. In general, preconditions specify
any restrictions that must be satisfied before the operation can be applied. In this ex-
ample, the precondition states that makeralional cannot be applied if its second param-
eter is 0.

The specification for equality (equal) is more significant and more complex in
concept. In general, any two values in an ADT are "equal" if and only if the values
of their components are equal. Indeed, it is usually assumed that an equality (and an
inequality) operation exists and is defined that way. so  that no explicit equal operator
definition is required. The assignment operation (setting the value of one object to the
value of another) is another example of an operation that is often assumed for an ADT
and is not specified explicitly.

However, for some data types, two values with unequal components may be con-
sidered equal. Indeed, such is the case with rational numbers: for example. the rational
numbers 1/2.2/4. 3/6. and 18/36 are all equal despite the inequality of their components.
Two rational numbers are considered equal if their components are equal when the num-
bers are reduced to lowest terms (that is.. when their numerators and denominators are
both divided by their greatest conirno'n divisor). One wayof testin g for rational equality
is to reduce the two numbers to lowest terms and then test for equality of numerators
and denominators. Another way of testing for rational equality is to check whether the
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cross products (that is, the numerator of one times the denominator of the other) are
equal. This is the r.cthod that we used in specifying the abstract equal operation.

The abstract specification illustrates the role of an ADT as a purely logical defi-
nition of a new data type. As collections of two integers, two ordered pairs are unequzl
if their components are not equal: yet as rational numbers, they may be equal. it is un-
likely that any implementation of rational numbers would implement a lest for equality
by actually forming the cross products: they might be too large to represent as machine
integers. Most likely, an implementation would first reduce the inputs to lowest terms
and then lest for component equality. Indeed, a reasonable implementation would in-
sist that makeraijonal add, and malt only produce rational numbers in lowest terms.
However, mathematical definitions such as abstract data type specifications need not
be concerned with implementation details.

In fact, the realization that two rationals can be equal even if they are component-
wise unequal forces us to rewrite the postconditions for snake rational, add, and malt.
That is, if

iu0	 aO hO
tnl	 cii	 b 

it is not necessary that mO equal aO * hO and that ,nl equal al * hI. only that ,nO *
* hi equal ml uO * W. A more accurate ADT speciflation for RATIONAL is the
following:

/va1ue definition/
abstract typedef<int, int> RATIONAL;
condition RATIONAL[1]	 0;

/operator definition/
abstract equal(a,b)	 / written a ==
RATIONAL a,b;
postcondfton equal == (a(0]bE1]	 b[0]*a[1]);

abstract RATIONAL rnakerational(a,b) 	 / written [a,b]*/
mt a,b;
precondition b	 0;
postcondj t ion niakerational [O]*b 	 antakerational[1]

abstract RATIONAL add(a,b)	 / written a + b V
RATIONAL a,b;
postcondit ion add == [a[0] * b[1] + b01	 a[1], a[1Jb[1]]

abstract RATIONAL rnult(a,b) / written a	 b V
RATIONAL a.b;
postcorid j tion muir = [a[0]	 b[0, a[1]	 b[l]

Here, the equal operator is defined first. and the operator = = is extended to
rational equality usin g the written clause. That operator is then used to specify the
results of subsequent rational operations (add and ,nulr).
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The result of the make rational operation on the integers a and b produces a ratio-
nal that equals alb, but the definitiofi does not specify the actual values of the resulting
numerator and denominator. The specification for makerational also introduces the no-
tation [a,b) for the rational ' formed from integers a and b, and this notation is then used
in defining add and mutt.

The definitions of add and mull specify that their results equal the unreduced re-
suits of the corresponding operation, but the individual components are not necessarily
equal.

Notice, again, that in defining these operators we are not specifying how they are
to be computed, only what their result must be. Hov they are computed is determined
by their implementation, not by their specification.

Sequences as Value Definitions

In developing the specifications for various data types, we often use set-theoretic
notation to specify the values of an ADT. In particular, it is helpful to use the notation
of mathematical sequences that we now introduce.

A sequence is simply an ordered set of elements. A sequence S is sometimes
written as the enumeration of its elements, such as

S = < so, s1 .....S,,_ >

If  contains n elements, S is said to be of length n. We assume the existence of
a length function len such that len(S) is the length of the sequence S. We also assume
functions first(S), which returns the value of the first element of S (So in the foregoing
example), and last(S), which returns the value of the last element of S (s,_ i in the
foregoing example). There is a special sequence of length 0, called niiseq, that contains
no elements. firsr(nilseq) and last(nilseq) are undefined.

We wish to define an ADT sip  whose values are sequences of elements. If the
sequences can be of arbitrary length and consist of elements all of which are of the same
type, tp, then sip  can be defined by

abstract typedef <<tp>> stpl;

Alternatively, we may wish to define an ADT stp2, whose values are sequences of
fixed length whose elements are of specific types. In such a case, we would specify the
definition

abstract typedef <tpo, tpl, rp2 .....tpn> stp2;

Of course, we may want to specify a sequence of fixed length all of whose elements are
of the same type. We could then write

abstract typedef <<tp,n>> stp3;

In this case s1p3 represents a sequence of length n, all of whose elements are of type ip.

Sec. 1.1	 Information and Meaning	 .	 17



For example, using the foregoing notation we could define the foHovng types:

abstract typedef <<lot>> intseq;
1* sequence of integers of	 */

1*	 any length
abstract typedef <integer, char, float> seq3;

/	 sequence of length 3 	 */

/ consisting of an integer,
/ a character and a
/	 floating-point number	 */

abstract typedef <-dnt10>> intseq;
1* sequence of 10 integers *1

abstract typede <<,2>> pair;
/	 arbitrary sequence.f	 /
/	 length 2

Two sequences are equal if each element of the first is, equal to the corresponding el-
ement of the Second. A subsequence is a contiguous portion of a sequence. If S is a
sequence, the function sub(S,i.j) refers to the subsequence of-S starting at position i in
Sand consisting of j consecutive elements. Thus if T equals suh(S.i,k), and T is the se-
quence <t0, t I,.... I >, tO = Si, t1 = ..... to-I = 5+k-I If i is not between

o and len(S) - k, then sub(S,i,k) is defined as ni/seq.
The concatenation of two sequences, written S + T. is the sequence consisting

of all the elements of S followed by all ,the elements of T. It is sometimes desirable to
specify insertion of an element in the middle of a sequence. place(S.i,x) is defined as
the sequence S with the element x inserted immediately following position i (or into

the first element of the sequence if i is - I). All subsequent elements are shifted by one

position. That is, place(S,i,x) equals sub(S,O,i + I) + < x > + sub(S.i + I, len(S) -
i - 1).

Deletion of an element from a sequence can be specified in one of two ways. 1 1 x is
an element of sequence S. S - <x> represents the sequence S without all occurrences
of element x. The sequence delete(S,i) is equal to S with the element at position i deleted.
delete(S,i) can also be written in terms of other operations as sub(S,O,i) + sub(S,i +
1,/en(S) - i - 1).

ADT for Varying-length Character Strings

As an illustration of the use of sequence notation in defining an ADT, we develop
an ADT specification for the varying-length character string. There are four basic oper-
ations (aside from equality and assignment) normally included in systems that support
such strings:

length	 a function that returns the current length of the string
concat	 a function that returns the concatenation of its two input strings
subsi,-	 a function that returns a substring of a given string

18	 ntroduction to Data Structures	 Chap. 1



pos	 a function that returns the first position of one string as a
substring of another

abstract typedef <<char> STRING;

abstract length(s)
STRING s;
postcondltion length == len(s);

abstract STRING concat(sl,s2)
STRING sl,s2;
postcondition concat	 sl + s2;

abstract STRING substr(sl,f,j)'
STRING Si;
mt i,j;
precondition 0 <= I < len(si);

0 <= j < len(si) - I;
postconditjon substr == sub(&1,i,5);

abstract pos(si,s2)
STRING si,s2;
postcondition /*lastpos = len(si) - len(s2) */

((pos == -1) && (for(i = 0;
I <= lastpos; i++)

(s2 <> sub(s1,i.len(s2)))))

((pos >= 0) && (pos <= lastpos)
&& (s2	 sub(stri,pos,len(s2))
&! (for(f	 1; 1 < pos; I++)

(s2 <> sub(s1,i,len(s2))fl);

The postcondition for pos is complex and introduces some ne,v notation, so we
review it here. First, note the initial comment whose content has the form of a C as-
signment Statement. This merely indicates that we wish to define the symbol lastpos as
representing the value of len(sl) - len(s2) for use within the postcondition to simplify
the appearance of the condition. Here, lastpos represents the maximum possible value
of the result (that is, the last position of sI where a substring whose length equals that
of s2 can start). lasipos is used twice within the postcondition itself. The longer expres-
sion len(.cl) - len(s2) could have been used in both cases, but we chose to use a more
compact symbol (Iastpos) for clarity.

The postcondition itself states that one of two conditions must hold. The two con-
ditions. which are separated by the 11 operator, are as follows:

1. The functions value (pos) is - I, and s2 does not appear as a substring of sI.
2. The function's value is between 0 and 1as4os2 does appear as a substring ofsl

beginning at the function value's position, and s2 does not appear as a substring
of s  in any earlier position.
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Note the use of a pseudo-for loop in a condition. The condition

for (i	 x; I <- y; i++)
(condition( 0)

is true if condition(i) is true for all i from x to y inclusive. It is also true if x > y.
Otherwise, the entire for-condition is false.

Data Types in C

The C language contains four basic data types: in!,floar, , char and double. In most
computers, these four types are native to the machine's hardware. We have already
seen how integers, floats, and characters can be implemented in hardware. A double

variable is a double-precision floating-point number. There are three qualifiers that can
be applied to ints: short, long, and unsigned. A short or long integer variable refers to
the maximum size of the variable's value. The actual maximum sizes implied by short

mi, long,in:, or mt vary from machine to machine. An unsigned integer is an integer
that is always positive and follows the arithmetic laws of modulo 2, where n is the
number of bits in an integer.

A variable declaration in C specifies two things. First, it specifies the amount of
storage that must be Set aside for objects declared with that type. For example. a 'ariable
of type int niust have enough space to hold the largest possible integer value. Second, it
specifies how data represented by strings of bits are to be interpreted. The same bits at
a specific storage location can be interpreted as an integer of a floating-point number,
yielding two completely different numeric values.

A variable declaration specifies that storage be set aside for an object of the speci-
fied type and that the object at that storage location can be referenced with the specified
variable identifier.

Pointers in C

lit fact, C allows the programmer to reference the location of objects as well as
the objects (that is, the contents of those locations) themselves. For example, if x is
declared as an integer, &x refers to the location that has been set aside to contain x.
is called a pointer.

It is possible to declare a variable whose data type is a pointer and whose possible
values are memory locations. For example, the declarations

mt *pi;
float *pf;
char pc;

declare three pointer variables: p1 is a pointer to an integer, pf is a pointer to a float
number, and pc is a pointer to a character. The asterisk indicates that the values of the
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variables being declared are pointers to values of the type specified in the declaration
rather than objects of that type.

A pointer is like any other data type in C in many respects. The value of a pointer
is a memory location in the way that the value of an integer is a number. Pointer v'ues
can be assigned like any other values; For example, the statement pi = &; assi is a
pointer to the integer x to the pointer variable pi.

The notation *pi in C refers to the integer at the location referenced by the pointer
pi. The statement x	 *pi; assigns the value of that inkger to the integer variable x.

Note that C insists that a declaration of a pointer specify the data type to which
the pointer points. In the foregoing declarations, each of the variables pi, pf, and pc are
pointers toa specific data type: int,floaz, and char, respectively. The type of pi is not
simply "pointer" but "pointer to an integer." In fact, the types of p1 and pf are different:
pi is a pointer to an integer, and pf is a pointer to a float number. Each data type di
in C generates another data type, pdt. called "pointer to di." We call di the base type
of pdt.

The conversion of pffrom the type "pointer to a float number" to the type "pointer
to an integer" can be made by writing

p1 = (mt *) pf;

where the cast (ml *) converts the value of pf to the type "pointer to an int," or "ml *."
The importance of each pointer being associated with a particular base type be-

comes clear in reviewing the arithmetic facilities that C provides for pointers. If pi is
a pointer to an integer, then pi + 1 is the pointer to the integer immediately following
the integer *pi in memory, pi - I is the pointer to the integer immediately preceding
*pi. p1 + 2 is the pointer to the second integer following *pi, and so on. For example,
suppose that a particular machine uses byte addressing, an integer requires four bytes,
and the value of pi happens to be 100 (that is, p1 points to the integer *pi at location
100). Then the value of pi - 1 is 96, the value of pi + I is 104 and the value of p1 +
2 is 108. The value of *(pi - I) is the contents of the four bytes 96, 97, 98, and 99
interpreted as an integer; the value of *(pi + 1) is the contents of bytes 104, 105, 106.
and 107 interpreted as an integer; and the value of *(pi + 2) is the integer at bytes 108,
109. 110, and 111.

Similarly, if the value of the variable pc is 100 (recall that pc is a pointer to a
character) and a character is one byte long, pc - I refers to location 99, pc + I to
location 101, and pc + 2 to location 102. Thus the result of pointer arithmetic in C
depends on the base type of the pointer.

Note also the difference between *pi + 1, which refers to I added to the integer
*pi. and *pi + 1), which refers to the integer following the integer at location p1.

One area in which C pointers play a prominent role is in passing parameters to
functions. Ordinarily, paramters are passed to a C function b y value, that is. the values
being passed are copied into the parameters of the culled function at the time the func-
tion is invoked. If the value of a parañieter is changed within the function, the value
in the calling program is not changed. For example, consider the following program
segment and function (the line numbers are for reference only):
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1 x = 5;
2 printf("%d\n, x);
3 funct(x);
4 printf('%d\n", x);

void funct(int y)
6{
7	 ++y;
8	 printf("%d\n", y);
9 } /' end funct /

Line 2 prints 5 and then line 3 invokesfunct. The value of x, which is 5, is copied into
y and funct begins execution. Line 8 then prints 6 and funct returns. However, when
line 7 increments the value of y, the value of x remains unchanged. Thus line 4 prints
5. x and y refer to two different variables that happen to have the same value at the
beginning of funct. y can change independently of x.

If we wish to use fund: to modify the value of x, we must pass the address of x as
follows:

1	 x=5;	 -
2	 printf("%d\n", x);
3	 funct(&x);
4	 printf('%d\n", x);

5	 void funct(int py)
6	 {
7	 ++(py);
8	 printf("%d\n", py);
9 . } f* end funct l

Line 2 again prints 5 and line 3 invokes funci. Now, however, the value passed is not
the integer value of x, but the pointer value &x. This is the address of x. The parameter
of funct is no longer v of type mt but py of type hit *. (It is convenient to name pointer
variables beginning with the letter p as a reminder to both the programmer andth,
program reader that it is a pointer. However, this is not a requirement of the C language
and we could have named the pointer parameter y.) Line 7 now increments the integer
at location py • py , itself, however, is not changed and retains its initial value &x. Thus
pv points to the integer x, so that when *py is incremented, x is incremented. Line 8
prints 6 and when funct returns, line 4 also prints 6. Pointers are the mechanism used
in Cto allow a called function to modify variables in a calling function.

Data Structures and C

A C programmer can think of the C language as defining a new machine with
its own capabilities, data types, and operations: The user can state a problem solution
in terms of the more useful C constructs rather than in terms of lower-level machine-
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language constructs. Thus, problems can be solved more easily because a larger set of
tools is available.

The study of data structures therefore involves two complementary goals. The
first goal is to identify and develop useful mathematical entities and operations and to
determine what classes of problems can be solved by using these entities and opera-
tions. The second goal is to determine representations for those abstract entities and to
implement the abstract operations on these concrete representations. The first of these
goals views a high-level data type as a tool that can be used to solve other problems,
and the second views the implementation of such a data type as a problem to be solved
using already existing data types. In determining representations for abstract entities,
we must be careful to specify what facilities are available for constructing such repre-
sentations. For example, it must be stated whether the full C language is available or
whether we are restricted to the hardware facilities of a particular machine.

In Sections 1.2 and 1.3 we examine several data structures that already exist in C:
the array and the structure. We describe the facilities that are available in C for utilizing
these structures. We also focus on the abstract definitions ofthese data structures and
how they can be useful in problem solving. Finally, we examine how they could be
implemented if C were not available (although a C programmer can simply use the
data structures as defined in the language without being concerned with most of these
implementation details).

In the remainder of the book, we develop more complex data structures and show
their usefulness in problem solving. We also show how to implement these data struc-
tures using the data structures that are already available in C. Since the problems that
arise in the course of attempting to implement high-level data structures are quite com-
plex, this will also allow us to investigate the C language more thoroughly and to gain
valuable experience in the use of this language.

Often no implementation, hardware or software, can model a mathematical con-
cept completely. For example, it is impossible to represent arbitrarily large integers on
a computer, since the size of such a machine's memory is finite. Thus, it i-s not the data
type "integer" that is represented by the hardware but rather the data type "integer be-
tween x and y," where x and  are the smallest and largest integers representable by that
machine.

It is important to recognize the limitations of a particular implementation. Often
it will be possible to present several implementations of the same data type, each with
its own strengths and weaknesses. One particular implementation ma, l Nema,  better than
another for a specific application, and the programmer must be aware of th.: possible
trade-offs that might be involved.

One important consideration in any implementation is its efficiency. In fact, the
reason that the high-level data structures that we discuss are not built into C is the
significant overhead that they would entail. There are languages of significantly higher
level than C that have many of these data types already built into them, but many of
them are inefficient and are therefore not in widespread use.

Efficiency is usually measured by two factors: time and space. If a particu-
lar application is heavily dependent on manipulating high-level data structures, the
speed at which those manipulations can he performed will be the major determinant of
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the speed of the entire application. Similarly, if a program uses a large number of such
structures, an implementation that uses an inordinate amount of space to represent the
data structure will be impractical. Unfortunately, there is usually a trade-off between
these two efficiencies, so that an implementation that is fast uses more storage than one
that is slow. The choice of implementation in such a case involves a careful evaluation
of the trade-offs among the various possibilities.

EXERCISES

1.1.1. In the text, an analogy is made between the length of a line and the number of bits of
information in a bit string. In what ways is this analogy inadequate?

1.1.2. Determine what hardware data types are available on the computer at your particular
installation and what operations can be performed on them.

1.1.3. Prove that there are 2" different settings for n two-way switches. Suppose that we wanted
to have m settings'How many switches would be necessary?

1.1.4. Interpret the following bit settings as binary positive integers, as binary integers in twos
complement, and as binary coded decimal integers. If a setting cannot be interpreted as
a binary coded decimal integer, explain why.
(a) 10011001	 (d) 01110111
(b) 1001	 (e) 01010101
(c) 000100010001	 (f) 100000010101

1.13. Write C functions add, subtract, and multiply that read two strings of Os and Is represent-
ing binary nonnegative integers, and print the string representing their sum, difference,
and product, respectively.

1.1.6. Assume a ternary computer in which the basic unit of memory is a "tnt" (ternary digit)
rather than a bit. Such a tnt can have three possible settings (0, 1, and 2) rather than just
two (0 and 1). Show how nonnegative integers can be represented in ternary notation
using such trits by a method analogous to binary notation using bits. Is there any non-
negati"e integer that can be represented using ternary notation and trits that cannot be
represented using binary notation and bits? Are there any that can be represented using
bits that cannot be represented using tnits? Why are binary computers more common
than ternary computers?

1.1.7. Write a C program to read a string of Os and Is representing a positive integer in binary
and print a string of Os. Is, and 2s representing the same number in ternary notation (see
the preceding exercise). Write another C program to read a ternary number and print the
equivalent in binary.

1.1.8. Write an ADT specification for complex numbers a -t bi, where abs(a + bi) is sqrt(a 2 +
b2),(a+bi)+(c+ di) is(a+c)+(b+d)i,(a+bi).(c+ di) is(a*c—b*d)+
(a .' d + b * c)i, and —(a + bi) is (—a) + (—b)i.

1.2 ARRAYS IN 

In this section and the next we examine several data structures that are an invaluable
part of the C language. We will see how to use these structures and how they can be
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pIemented. These structures are composite or structured data types; that is, they are
made up of simpler data structures that exist m the language. The study of these data
structures involves an analysis of how simple structures combine to form the composite
and how to extract a specific component from the composite. We expect that you have
already seen these data structures in an introductory C programming course and that you
are aware of how they ae defined and used in C. In these sections, therefore, we will
not dwell on the many details associated with these structures but instead will highlight
those features that are interesting from a data-structure point of view.

The first of these data types is the array. The simplest form of array is a one-
dimensional array that may be defined abstractly as a finite ordered set of homogeneous
elements. By "finite" we mean that there is a specific number of elements in the anay.
This number may be large or small, but it must exist. By "ordered" we mean that the

elements of the arra y are arranged so that there is a zeroth, first, second, third, and so
forth. By "homogeneous" we mean that all the elements in the array must be of the
same type. For example, an array may contain all integers or all characters but may not

contain both.
However, specifying the form of a data structure does not yet completely describe

the structure. We must also specify how the structure is accessed. For example, the C
declaration

mt a[100];

specifies an array of 100 integers. The two basic operations that access an array are
extraction and storing. The extraction operation is a function that accepts an array, a,

and an index, i, and returns an element of the array. In C, the result of this operation is
denoted V the expression a [ i I . The storing operation accepts an array, a, an index, i,
and an element, x. in C this operation is denoted by the assignment statement atfl x.

The operations are defined by the rule that after the foregoing assignment statement has

been executed, the value of alil is x Before a value has been assigned to an element of
the array, its value is undefined and a reference to it in an expression is illegal.

The smallest element of an array ' s index is called its lower bound and in C is

always 0, and the highest element is calied its upper bound. If lower is the lower bound

of au array and upper the upper bound, the number of elements in the array. called its

range, is given by upper - lower -4- 1. For example, in the arra y, a, declared previously,

the lower bound is 0, the upper bound is 99, and the range is 100.
An important feature of a C array is that neither the upper bound nor the lower

bound (and hence the range as well) may be changed during a program's execution. The
lower bound is always fixed at 0, and the upper bound is fixed at the time the program
is written.

One very useful technique is to declare a bound as a constant identifier, so that
the work required to modify the size of an array is minimized. For example. consider
the following program segment to declare and initialize an array:

mt a[100);
for(i = 0; i < 100; a[ i ++) = 0);
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To change the array to a larger (or smaller) size, the constant 100 must be changed in
places: once in the declarations and once in thefor statement. Consider the following
equivalent alternative:

#define NUMELTS 100
mt a[NUMELTS];
for(i	 0; i < NUMELTS; a[i++] 	 0);

Now only a single change— in the constant definition is needed to change the upper bound.

The Array as an ADT

We can represent an array as an abstract data type with a slight extension of the
conventions and notation discussed earlier. We assume the function type(arg), which
returns the type of its argument, arg. Of course, such a function cannot exist in C,
since C cannot dynamicall y determine the type of a variable. However, since we are
not concerned here with implementation, but rather with specification, the' use of such
a function is permissible.

Let ARRTYPE(ub,elrype) denote the ADT corresponding to the C array type el-
type array[ub]. This is our first example of a parameterized ADT, in which the pre-
cise ADT is determined by the values of one or more parameters. In this case, ub and
elfype are the parameters; note that elrvpe is a type indicator, not a value. We may
now view any one-dimensional array as an entity of the type ARRTYPE. For example.
ARRTYPE( 1 0,int) would represent the type of the array x in the declaration mt x[ 101.
We may now view any one-dimensional array as an entity of the type ARRTYPE. The
specification follows:

abstract typedef <<eltype, uLr.> ARRTYPE(ub, eltype);
condition type(ub) == int;

abstract eltype extract(a,i)	 /	 written a[i]
ARRTYPE(ub, eltype) a;
mt	 ;
precondition 0 <= I < ub;
postcondition extract == am

abstract store(a, I, elt) 	 / written a[i] = elt *1
ARRTYPE (ub, eltype) a;
let I;

'	 eltype elt;
.precondition 0 <= I < ub;
postcondltion a[i]	 elt;

The store operation is our first example of an operation that modifies one of its
parameters; in this case the array a. This is indicated in the postcondiuon by specifying
the value of the array element to which elt is being assigned. Unless a modified value
is specified in a postcondition, we assume that all parameters retain the same value af-
ter the operation is applied in a postcondition as before. It is not necessary to specify that
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such values remain unchanged. Thus, in this example, all array elements other than the
one to which eli is assigned retain the same values.

Note that once the operation extract has been defind, together with its bracket
notation, a[iJ, that notation can be used in the postcondition for the subsequent store
operation specification. Within the postcondition of extract, however, subscripted se-
quence notation must be used, since the array bracket notation itself is being defined.

Using One-Dimensional Arrays

A one-dimensional array is used when it is necessary to keep a large number of
items in memory and reference all the items in a uniform manner. Let us see how these
two requirements apply to practical situations.

Suppose that we wish to read 100 integers, find their average, and determine by
how much each integer deviates from that average. The following program accom-

plishes this:

#define NUMELTS 100
void main()

mt num[NUMELTS);
mt 1;
mt total;
float avg;
float diff;

/ array of numbers

/	 sum ,f the numbers
1* average of the numbers
1* difference between each
/* number and the average

•1
*1
*1

total = 0;
for (i = 0 I < NUMELTS; i++) (

/ read the numbers into the array and add them

scanf('%d", num[i);
total += num[i];

} /* end for */
avg = (float) total / NUMELTS; 	 /	 compute the average
p rintf('\nnumber difference');	 1* print heading

1* print each number and its difference */

for (1 = 0; 1 < NUMELTS; i++) {
diff = nunl[ i ] - avg;
printf(\n %d Sf", numli], diff);

} 1* end for /
printf("\nave rage is: Sf", avg);

) / end main */

This proram uses two groups of 100 numbers. The first group is the set of input

integers and is represented by the array num, and the second group is the set of differ-

ences that are the successive values assigned to the variable dff in the second loop. The

question arises, why is an array used to hold all the values of the first group simultane-
ously, whereas only a single variable is used to hold one value of the second group at a

time?
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The answer is quite simple. Each difference is computed and printed and is never
needed again. Thus the variable duff can he reused for the difference of the next integer

sand the average. However, the original integers that are the values of the array i nfin
must all be kept in memory. Although each can he added into total as it is input, it most
be retained until after the average is computed in order for the program to compute the
difference between it and the average. Therefore, an array is used. 	 -

Of course, 100 separate variables could have been used to hold the integers. The
advantage of an array, however, is that it allows the prôgramnier to declare only a single
identifier and yet obtain a large amount of space. Furthermore, iii conjunction with the
for loop, it also allows the programmer to reference each element of the group in it
uniform manner instead of forcing him or her to code it 	 such as

scanf("%d%d%d. .%d", &numo, &numl, &num2.....&num99);

A particular element of an array may he retrieved through its index. For example,
suppose that it 	 is using a program in which an array is dechred by

mt sales[1O];

The array will hold sales figures for a ten-year period. Suppose that each line input to
the program contains all from 0 to 9, representing a year as well as a sales figure
for that year, and that it is desired to read the sales figure into the appropriate element
of the array. This call 	 accomplished by executing the statement

scanf(%d%d", &yr, &sales(yrj);

within a loop. In this statement, a particular element of the array is accessed directly by
using its index. Consider the situation if ten variables sO.sl .......9 had been declared.
Then even after executing scanfl"%d",&vr) to set y r to the integer representing the year,
the sales figure could not he read into the proper variable without codin g something like

switch(yr) {
case 0: scanf(%d", &sO);
case 1: scanf("%d", &sl);

case 9: scanf("%d", &s9);
} / end switch /

This is had enough with tell 	 the inconvenience if there were a hun-
dred or a thousand.

Implementing One-Dimensional Arrays

A one-dimensional array can be implemented ea,ily. The C declaration

mt b[100];
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reserves 100 successive memory locations, each large enough to contain a single integer.
The address of the first of these locations is called the base addrçss of the array b and
is denoted by hase(h). Suppose that the size of each individual element of the array
is esize. Then a reference to the element blO] is to the element at location base(b),
a reference to bill is to the element at base(b) + esize, a reference to b2] Is to the
element base(b) + 2 * esize. In general, a reference to bill is to the element at location

base(b) + i * esize. Thus it is possible to reference any element in the array, given its

index.
In fact, in the C language an array variable is implemented as a pointer variable.

The type of the variable bin the above declaration is "pointer to an integer" or in! *. An

asterisk does not appear in the declaration because the brackets automatically imply
that the variable is a pointer. The difference between the declarations ml *b: and mt

b[100]; is thal'the latter also reserves 100 integer locations starting at location b. In
C the value of the variable b is base(b). and the value of the variable h[i], where i is
an integer, is *(b + i). Recall from Section 1.1 that, since h is a pointer to an integer,

*(b + i) is the value of the ith integer following the integer at location h. hI 1], the element

at location base(b) -4- i * esize. is equivalent to the element pointed to b b + i, which

is *(b -i- i.
In  all elements of an array have the same fixed, predetermined size. Some pro-

gramming languages, however, allow arrays of objects of differing sizes. For example,
a language might allow arrays of varying-length character strings, in such cases, the
above method cannot be used to implement the array. This is because this method of
calculating the address of a specific element of the array depends upon knowing the

fixed size (esize) of each preceding element. If not all the elements have the same size,
a diFferent implementation must be used.

One method of implementing an array of varying-sized elements is to reserve
a contiguous set of memory locations, each of which holds an address. The contents
of each such memory location are the address of the varying-length array element in
some other portion of memory. For example. Figure 1.2.1 a illustrates an array of five
varying-length character strings under the two implementations of varying-length in-
tegers presented in Section 1.1. The arrows in the diagram indicate addresses of other
portions of memory. The character 'W indicates a blank. (However, in C astring is it-
self implemented as an array, so that an array of strings is actually an array of arrays—a
two-dimensional rather than a one-dimensional array.)

Since the length of each address is fixed, the location of the address of a particular
element can be computed in the same way that the location of a fixed-length element
was computed in the previous examples. Once this location is known, its contents can
be used to determine the location of the actual array element. This, of course, adds an
extra level of indirection to referencing an array element by involving an extra memory
reference, which in turn decreases efficiency. However, this is a small price to pay for
the convenience of being able to maintain such an array.

A similar method for implementing an array of varying-sized elements is to keep
all fixed-length portions of the elements in the .co'ntiguous array area, in addition to
keeping the address of the var y ing-length portion in the contiguous area. For example,
in the implementation of varying-length character strings presented in the previous
section. each such string contains a fixed-length portion (a one-byte length field) and
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(a)	 4

Figure 1.2.1 Implementations of an array of varying-length strings. Contin-
ues on page 31.



(b)

Figure 1.2.1 Concluded.

a variable-length portion (the character string itself). One implementation of an array
of varying-length character strings keeps the length of the string together with the ad-
dress, as shown in Figure 1.2.lb. The advantage of this method is that those parts of an
element that are of fixed length can be examined without an extra memory reference.
For example, a function to determine the current length of a var ying-length character

string can be implemented with a single memory lookup. The fixed-length information

for an array element of vary ing length that is stored in the contiguous memory area of

the array is often called a header.

Arrays as Parameters

Every parameter of a C function must be declared within the function. However,
the range of a one-dimensional array parameter is only specified in the main program.
This is because in C new storage is not allocated for an array parameter. Rather, the
parameter refers to the original array that was allocated in the calling program. For
example, consider the following function to compute the average of the elements of an

array:

float avg(float a[], mt size)	 / no range is specified for the array a *1

inti;
float sum;
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sum	 0;
for (i"O; I < size; i++)

sum +. af,i];
return(sum / size);

} / end avg *1

In the main program, we might have written

Idefine ARANGE 100
float a[ARMGE];

avg(a, ARANGE);

Note that if the array range is needed in the function, it must be passed separately.
Since an array variable in C is a pointer, array parameters are passed by reference

rather than by value. That is, unlike simple variables that are passed by value, an array's
contents are not copied when it is passed as a parameter in C. Instead, the base address
of the array is passed. If a calling function 'contains the callfunct(a), where a is an array
and the fiinctionfunct has the header

void funct(int b(l)

the statement

b[i] =

inside funct modifies the value of a[i] inside the calling function. b inside func: refers
to the same array of locations as a in the calling function.

Passing an array by reference rather than by value is more efficient in both time
and space. The time that would be required to copy an entire array on invoking afunc-
tion is eliminated. Also the space that would be needed for a second copy of the array
in the called function is reduced to space for only a single pointer variable.

Character Strings in C

A string is defined in C as an array of characters. Each string is terminated by the,
NULL character, which indicates the end of the string. A string constant is denoted by
any set of characters included in double-quote marks. The NULL character is automat-
ically appended to the end of the characters in a string constant when they are stored.
Within a program, the NULL character is denoted by the escape sequence \ 0. Other
escape sequences that can be used are \ n for a new line character, \ t for a tab character,
\ b for a backspace character, \" for the double-quote character, \ \ for the backslash
character, \' for thq single-quote character, \ r for the carriage return character and \ f
for the form feed character.

A string constant represents an array whose lower bound is 0 and whose up-
per bound is the number of characters in the string. For example, the string "HELLO

Introduction to Data Structures 	 Chap. 1



THERE" is all 	 of twelve characters ((he blank and \ 0 each counts as a character).
and "1 DON 'T KNOW HIM" is an array of sixteen characters (the escape sequence

represents the single-quote character).

Character String Operations

Let us present C functions to implement some primitive operations on character
strings. For all these functions, we assume the global declarations

#define STRSIZE 80
char strng[STR5IZE];

The first function finds the current length of a string.

stri en(string)
char string[]

nt I

for (1=0; string[j] = '\O'; i++)

return(i);
} / end strlen

The second function accepts two strings as parameters. The function returns an
integer indicating the starting location of the first occurrence of the second parameter
strin g within the first parameter string. If the second string does not exist within the
first, - 1 is returned.

mt strpos(char slfl, char s2[])

mt leni, 1en2;
mt i, ji, j2;

leni = strlen(sl);
1en2 = strlen(s2);
for (i=0; i+len2	 leni; I)

for (jl=i, j2=0; j2 <= len? && s1[1] 	 s2[12];

if (j2 == len?)
return(j)

return(-1)
} / end srrpos

Another comnion operation oil is colicat011atiun. The result of concatenat-
ills two strings consists of the characters of the Ii rsl tl owed h\ the characters at the
second. The following function sets .s I to the cr'.cllalion O s I and .c2.
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void strcat(char sl[], char s2[])

mt 1,	 ;

for (i=C; situ	 \O'; ')

for (j=O; s2[ j J	 si[++] = s2[j++])

} / erd strcat V

The last operation we present on strings is the substring operation. substr(sl,ij.s2)
sets the stung .s2 to thcj characters beginning at .slliJ.

void suostr(char s1[}, mt i, i,t j, char s[))

mt k, m;

for (k = i, m = 0; rn < j; s2[m++ = s[k++])

s2r] =
} ,' end substr

Two-Dimensional Arrays

The component t ype of an array can be another array. For example. we may define

mt a[3][5]

This defines a new an-av containing three elements. Each of these elements is
itself an arra y containin g five integers. Figure 1.2.2 illustrates such an array. An element
of this array is accessed by specifying two indices: a row number and a column number.
For example. the element that is darkened in Figure 1.2.2 is in row I and column 3 and
may be referenced asall ][31. Such an arra y is called a two-dimensional array. The
number of rows or columns is called the range of the dimension. In the array a. the
ran ge of the first dimension is 3 and the range of the second dimension is 5. Thus array
a has three rows and five columns.

Column Co!umn Columr. Column Column
0	 I	 2	 3	 4

Row 

Row I

Row

Figure 1.2.2 Two-dimensional arrays.
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A two-dimensional arra y elcaily illustrates the differences between a logical and
a physical view of data. A two-dimensional array is it logical data structure that is use[ 'ul
in programming and problem solving. For example, such art array is useful in dcsenhing
an object that i s physical 1V two-Ui inensional. such as a map or a checkerboard It is also
useful in organizing a set of values that are dependent U[)Ofl two inputs. For example.
a program for a department store that has 20 branches, each of which sells 30 items.
might include a two-dimensional arra y declared by

mt sales[20] [39];

Each element .calc.vj iJIjj represents the amount of item j sold in branch 1.
However, althou gh it is convenient for the priierammncr to think of the elements

of such an arra y as being ot'eanzcd in atwo-dmntcnsiun t l table (and programming
langua ges do indeed include facilities for trealitig them as a two-dimensional array).
the hardware of most computers has no such facilities. An arra must he stored in the
memory of a computer, and that memory is usually linear. Rv this we mean that the
memory of a computer is essentially a one-dimensional arra y. A single address (that
may he icwed as a subscript of it one-dimensiona l arra y i is used to retrieve a par-
ticular item ('ruin nlcniorv. To implement a two-diniensiunal arra y, it is nCcessar to
develop a method of ordennu its elenients in a linear fashion and of transtorniin it
two-dimensional reference to the linear representation.

One method of rcpreseninr atwn-dirnensiun tfi array . memory is the row-major
representation. Under this representation, the first row of the aria) occupies tile first set
of mernor locations reserved for the arra). the second row occupies the next set, and
so forth. There may also be several  locations at the start of the ph ysical arra y that serve
as a header and that contain the upper and lower bounds of the two dimensions 'This
header should not he confused with the headers discussed earlier. This header is for the
entire array. whereas the headers mentioned earlier are heaLers tar the individual array
elements.) Fi g ure 1.2.3 illustrates the riiv-major representation of the t' o-dimensional
array a declared above and illustrated in Fi g ure 1.2.2Ajtcrnatj yelv the header iteed
not he contiguous to the arra y elements but could instead contain the address of the
first element of the arra y. Additionall y, if the elements of the two-dimensional arra y are
variablelen gth objects. the elements of the contiguous area could themselves contain
the addresscs of those objects in a form similar to those of Fi gure 1.2.1 for linear arrays.

Let us suppose that it two-dimensional integer array is stored in row-major se-
quence. as in Figure 1.23. and let us suppose that. for an array ur. base(ii) is the
address of the first element of the array. That is. if (it- i s declared by

mt ar[rl][r2j:

where rl and r2 are the ran ges of the first and second dimension. respectivel y. I'ase(a/-)
is the address of cu-jofi 0. Wc also assume that esi:c is the size of each element in the
array. Let us calculale the address olan arbitrary eletneni. wi ll 111 2 1. Since the element
is in i o'.s if. its address can he calculated br computing the address of the first element
of russ if and addin g the quantit y 12 * esize( this quanti-s represents how far into row 11
the elciucn.t at column i2 is). But to reach the first ekntcnt I row II (that is. the element
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Row 

Row 1

Row 2

Figure 1.2.3 Representing a two-
dimensional array.

der

base (a)

ar[il ][O}), it is necessary to pass through ii complete rows, each of which contains r2
elements (since there is one element from each column in each row), so that the address
of the first element of row (I is at base(ar) + il * r2 * esize. Th-erefore the address of
aril ][ i2} is at

base(ar)	 (11 a r2 + 12)	 eslze

As an example, consider the array a of Figure 1.2.2, whose representation is il-
lustrated in Figure 1.2.3. In this array, rI 3, r2 = 5. and base(a) is the address of
a[O][O]. Let us also suppose that each element of the array requires a single unit of
storage, so that esize equals 1. (This is not necessarily true, since a was declared as an
array of integers and an integer may need more than one Unit of memory on a particu-
lar machine. For simplicity, however, we accept this assumption.) Then the location of
a [ 2 1[ 4 1 can be computed by

base[a] + (2 * 5 + 4) * 1

that is.

base(a) + 14

You may confirm the fact that a[21[41 is fourteen units past base(a) in Figure 1.2.3.
Another possible implementation of a two-dimensional arra y is as follows: An

array or, declared with upper bounds u  and u2, consists of ,iI+1 one-dimensional
arrays. The first is an array op of it pointers. The ith element of op is a pointer to a
one-dimensional array whose elements are the elements of the one-dimensional array
ar[i]. For example. Figure 1.2.4 illustrates such an implementation for the arra y a of
Fiture 1.2.2, where tel is 3 and u2 is 5.
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I	
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a21[3	 a(21(41

Figure 1.2.4 Alternative implementation of a two-dimensional array.

To reference ar[i ]iii. the arra y or is first accessed to obtain the pointer c,rli]. The
arra y at that pointer location is then accessed to obtain a! i 11j].

Indeed, this second implementation is the simpler and more strai ghtforw aid of
the two. However, the ul arrays ar(Oj through or[u] - II would usuall y he allocated
contiguously, with arjOJ immediatel y followed by or( Ij. and so on. The first imple-
mentation avoids allocating the extra pointer array, op. and computing the value of an
explicit pointer to the desired row array. It is therefore more efficient in both space and
time.

Multidimensional A'rrays

C also allows arrays with more than two dimensions. For example. a three-
dimensional array may be declared by

'mt b[3]12J[4);

and is illustrated in Figure 1.2.5a. An element of this arra y is specified by three sub-
scripts. such as b[2][01131. The first subscript specifies a plane number, the second sub-
script a row number, and the third a column number. Such an arra y is useful when a
value is determined by three inputs. For example, an array of temperatures might he
indexed by latitude, longitude, and altitude.

For obvious reasons, the geometric analogy breaks down when we go beyond
three dimensions. However, C does allow an arbitrar y number of dimensions. For ex-
ample, a six-dimensional array may be declared by

mt c [7][15][3][5][8i[2];

Referencin g an element of this al-ra y would require six subscripts. such as
c121131[0ll 1 ]16][ I]. The number of different subscripts that are allowed in a pat-licular
position (the ran ge of a particular dimension) equals the upper bound of that diiiicnion.
The number of elements in an array is the product of the ranges of all its dimensions.
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Figure 1.2.5 Three-dimensional array.
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For example, the array b contains 3 * 2 4 = 24 elements, and the array c , contains
7 * 15 * 3 * 5 * 8 * 2 = 25.2(X) elements.

The row-major representation of arrays can he extended to arrays of more than
two dimensions. Figure 1.2.5b illustrates the representation of the array h of Figure
1.2.5a. The elements of the previously described six-dimensional array r are ordered
as follows:

C10310110110][01101
C10110110)(0](01111
([0] [0] ( .0 1101 [1] [0]
C10110110][0)[1](1)
( [0) [0) [0] [0] [2] [0]

C(6) [14][2)(4][5)(01
C(6][14](2][4](5)(11
C[61(141(21[4)(61[01
([63 [1.4] [2) [4) [6] [1]
([6) [14] [2) [4] [7) (0]
([6) [14) [2] [4] [7) [1]

That is, the last subscript varies most rapidly, and a subscript is not increased until all
possible combinations of the subscripts to its right have been exhausted. This is similar
to an odometer (mileage indicator) of a car where the rightmost digit chan ges most
rapidly.

What mechanism is needed to access an element of an arbitrary multidimensional
array? Suppose that ar is an n-dimensional array declared by

mt ar [ rl][ r2) ... [rn];

and stored in row-major order. Each element of AR is assumed to occupy esi:e storage
locations, and base(a;') is defined as the address of the first element of the array (that
is, aijo)[O] ... [01). Then, to access the element

ar [ 1] [12] . . . [in];

it is first necessary to pass through Il complete "hyper-planes," each consisting of r2 *
* ... * rn elements to reach the first element of ar. whose first subscript is /l. Then

it is necessary to pass throu gh an additional 12 groups of r3* r4 * ... ,n elements to
reach the first element of ar, whose first Iwo subscripts are it and C. respectivel y. A
similar process must he carried out through the other dimensions until the first element
whose first n - I subscripts match those of the desired element is reached. Finall y, it
is necessary to pass through in additional elements to reach the element desired.

Thus the address of cirlil 1(121 . . . [in] may be written as !'use(or) -f esice Iii *
*	 ,-n	 12	 ,.,	 - I) * in ± in) 1, whtcli can he evaluated

more cliciently by using the equivalent formula:
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base(ar) + eslze *
[in + rn ' ( i(n - 1) + r( - 1) * (.. + t'3 * (i2 + r2 * 11)	 ) )

This formula may be evaluated by the following algorithm, which computes the address
of the array element and places it into addr (assuming arrays i and r of size n to hold
the indices and the ranges, respectively):

offset = 0;
for (j=O; jn; j++)

offset = r[j] * offset +
addr base(ar) + esze * offset:

EXERCISES

1.2.1. (a) The median of an array of numbers is the element m of the array such that half
the remaining numbers in the array are greater than or equal torn and half are less
than or equal to m, if the number of elements in the array is odd, lithe number of
elements is even, the med i an is the avera ge of the two elements rnj and n?, such
that half the remainin g elements are greater than or equal to nil and and half
the elements are less than or equal to rn1 and m. Write a C function that accepts
an array of numbers and returns the median of the numbers irt the array.

(b) The mode of an array of numbers is the number n in the array that is repeated most
frequently. If more than one number is repeated with equal maximal frequencies,
there is no mode. Write a I.,' f'""!on that accepts an array of numbers and returns
the mode or an indication that the mode does not exist.

1.2.2. Write a C program to do the following: Read a group of temperature readings. A reading
consists of two numbers: an Integer between — 90 and 90, representing the latitude at
which the reading was taken, and the observed temperature at that latitude. Print a table
consisting of each latitude and the average temperature at that latitude. If there are no
readings at a particular latitude, print "NO DATA" instead of an average. Then print the
average temperature in the northern and southern hemispheres (the northern consists
of latitudes I through 90 and the southern consists of latitudes - I through — 90). (This
average temperature should be computed as the average of the averages, not the average
of the original readings.) Also determine which hemisphere is warmer. In making the
determination, take the average temperatures in all latitudes of each hemisphere for
which there are data for both that latitude and the corresponding latitude in the other
hemisphere. (For example, if there is data for latitude 57 but not for latitude -57. then the
average temperature for latitude 57 should be ignored in determining which hemisphe. e
is warmer.)

1.2.3. Write a program for a chain of 20 department Stores, each of which sells 10 different
items. Every month, each store manager submits a data card for each item consistin g of
a branch number (from I to 20), an item number (from I to ID), and a sales figure (less
than $100.000) representing the amount of sales for that item in that branch. However,
some managers may not submit cards forsome items (for example. not all items are sold
in all hranche). You are to write a C program to read these data cards and print a table
with 12 columns. The first column should contain the branch numbers from I to 20 and
the word "TOTAL" in the last line. The next 10 columns should contain the sales figures
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for each of the 10 items for each of the hran:hes, with the total sales of each item in the
last line. The last column should contain the total sales of each of the 20 branches for all
items, with the grand total sales figure for the chain in the lower right-hand corner. Each
column should have an appropriate heading. If no sales were reported fur a particular
branch and item, assume zero sales. Do not assume that your input is in any particular
order.

1.2.4. Show how a checkerboard can be represented by a C array. Show how to represent the
state of a game of checkers at a particular instant. Write a C function that is input to
an array representing such a checkerboard and prints all possible moves that black can
make from that position.

1.2.5. Write a function printara) that accepts an rn-by-n arra y a of integers and prints the
valves of the array on several pages as follows: Each page is to contain 50 rows and
2Q columns of the array. Along the top of each page. headings 'COL 0." COL I, ­ and
so forth, should be printed and along the left margin of each page. headings "ROW 0.'
"ROW I. - and so forth, should be printed. The array should he printed b y subarravs. For
example, if a were a 100-by- 100 array, the first page contains a l O HO] through a 1 49 11 191.
the second page contains a 1 0 ]( 20 1 through u [49 ]( 39 1. the third page contains a1011401
through a [49 ][ 59 1, and so on until the fifth page contains a[0]I01 through u 1 49 11 99 1. the
sixth page contains a(SOI101 through 0 1 99 111 9 1. and so on. The entire printout occupies
ten pages. If the number of rows is not a multiple of 50, or the number of columns is not
a multiple of 20, the last pages of the printout should contain fewer than 100 numbers.

1.2.6. Assume that each element ofan array a stored in row-major order occupies four units of
stora ge. If a is declared by each of the following, and the address of the first element of
a is 100, find the address f the indicated array clement:
a. mt a[100];	 address of	 a[10]
b. 'mt a[200];	 address of	 a[100]
c. mt a[10][20];	 address of	 a[O]O]
d. mt a [ 10 ][20];	 address of	 a[2][1]
e. mt a [ 10 ][ZO];	 address of	 a[5][1]
f. mt a [10][20];	 address of	 a[1][101
g. 'mt a [ 10 ][20];	 address of	 a[2][10]
h. mt a [10)[20J;	 address of	 a[51*[31
I. mt a[101[20]: 	 address of	 a[9][19J

1.2.7. Write a C function 1i.szofJ that accepts t\¼o one-dimensional array parameters of the same
size: range and sub. range represents the range of an integer array. For example, if the
elements of range are

3	 5	 10

range represents an arra y a declared by

mt a[3115J[10][6][31;

The elements of cub represent subscripts to the foregoing array, It' .cub[i] does not lie
between 0 and roni,'1J - I. all subscripts from the ith onwards are missing. In the
foregoing example, if the elements of cub arc
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sub represents the one-dimensional array a( 1113111][21. The function lisloffshould print
the offsets from the base of the army a represented by range of all the elements of a that
are included in the array (or the offset of the single element if all subscripts are within
bounds) represented by sub. Assume that the size (esize) of each element of a is I. In
the foregoing example, !iswff would print the values 4, 5. and 6.

1.2.8. (a) A lower triangular array aisan n-by-n array in which a i i ) Ej ] = 0, if i <j. What
is the maximum number of nonzero elements in such an array? How can these
elements be stored sequentially in memory? Develop an algorithm for accessing
alijiji, where i > = j . Define an upper triangular array in an analogous manner
and do the same for such an array as for the lower triangular array.

(b) A strictly lower c angular array a is an n-by-n array in which a[i]U] = = 0 if
I <= j. Answer tIc questions of part a for such an array.

(c) Let a and b be two n-by-n lower triangular arrays. Show how an n-by-(n + 1) array
c can be used to contain the nonzero elements of the two arrays. Which elements
of c represent the elements a[i][jj and b[i]lj]. respectively?

(d) A fridiagonal array a is an n-by-n array in which a[i flj ] = = 0, if the absolute
value oft - j is greater than I. What is the maximum number of nonzero elements
in such an array? How can these elements he stored sequentially in memory? De-
velop an algorithm for accessing au ]Li ] if the absolute value oft - j is I or less.
Do the same for an array a in which a[i hi I = = 0, if the absolute value of i -
is greater than k.

1.3 STRUCTURES IN C

]it section we examine the C data structure called a structure. We assume that you
are familiar with the structure from an introductory course: In this section we review
some highlights of this data structure and point out some interesting and useful features
needed for a more general study of data structures.

A structure is a group of items in which each item is identified by its own identi-
fier, each of which is known as a member of the structure. (In many other programming
languages, a structure is called a "record" and member is called a "field." We may
sometimes use these terms instead of "structure" or "member," although both terms
have different meanings in C.) For example, consider the following declaration:

struct 1
char first[10);
char midinit;
char last[20];

4 sname, ename;

This declaration creates two structure variables, SnW'W and ena,ne, each of which
contains three members: first. ,nidinit, and last. Two of the members are character
strings, and the third is a single character. Alternatively, we can assign a tag to the
structure and then declare the variables by means of the tag. For example. consider the
following declaration that accomplishes the same thing as the declaration just given:

42
Introduction to Data Structures	 Chap-1



struct nametype {
char firstilo];
char midinit;
char last{20);

Struct naMetype snaMe, ename;

This definition creates a structure tag name type containing three members, first,
midinit, and last. Once a structure tag has been defined, variables sname and ename may
be declared. For maximum program clarit y, it is recommended that a tag be declared
for each structure and variables then be declared using the tag.

An alternative to using a structure tag is to use the rvpedef definition in C. For
example

typedef struct {
char first[10];
char midinit;
char last[20];

} NAMETYPE;

says that the identifier NAMETYPE is synonymous with the preceding structure speci-
fier wherever NAMETYPE occurs. We can then declare

NA11ETYPE sname, enalne;

to achieve the declarations of the structure variables sname and ename. Note that struc-
ture tags are conventionally written in lowercase but typedef specifiers are written in
uppercase in presenting C programs. lypedef is sometimes used to achieve the flavor of
an ADT specification within a C program.

Once a variable has been declared as  structure, each member within that variable
may be accessed by specifying the variable name and the item's member identifier
separated by a period. Thus, the statement

printf('%s', snaine.first);

can be used to print the first name in the structure snarne, and the statement

ename.midinit =

can be used to set the middle initial in the structure ename to the letter ,n. If a member
of a Structure is an array, a subscript may be used to access a particular element of the
array, as in

for (i=0; i < 20; i++)
sname.last[i) = ename.last[i];

A member of a structure may be -declared to be another structure. For example.
given the foregoing definition of namervpe and the following definition of addrtvpe
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struct addr.type {
char straddr[40];
char cty[10];
char state[3;

char zip[6];

/A77ow room for two-character
/	 abbrevarthn and ' \O'/
/*Allow room for five-character */
1*	 zipcode and \0'	 *1

we may declare a new structure tag nmadrvpc by

struct nmadtype {
struct nametype name;
struct addrtype address;

If we declare two variables

struct nrrladtype nmadl, nmad2;

the following are valid statements:

nriadl.name,midjnjt = nmad2.name.midinvt;
nmad2.address.dty[4] = nmadl.name.f-ftst[i];
for (i=1; I < 10; i+)

rirnadlname.first[i) = nniad2.narne.first[I];

ANSI standard C allows the assignment of structures of the same type. For ex-
ample. the statement nmadl = n,nad2: is valid and equivalent to

nniadl.name = nniad2.name:
nrnad2.address = nmad2.address;

These, in turn, are equivalent to

for (1=0; i < 10; i.+)
nmadl.narne.first[i) = nmad2.name.first[i];

nrnadl.narne.midinit 	 nmad2.name.midftdt;
for (1=0; i < 20; i++)

niad1.name.1ast[i] = nrad2.nase.1ast{-];
for (1=0; 1 < 40; i++)

nniadl.address.straddr[i] = nrnad2.address.straddr(i];
for (1=0; i < 10; i-)

nmadl.address.clty[i] = nmad2.address.city[i];
for (i=0; I < 2; i++)

nmadl.address.state[i] = nmad2.address.state[i];
for (1=0; 1 < 5; i++)

nnadl.address.zip[i] = nmad2.address.zip[i];
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The reader is cautioned that many compilers, which are based on the original C lan-
guage as defined by Kernighan and Ritchie, do not permit structure assignment. Thus
it would be necessary to explicitly assign each member of one structure to another. In
the remainder of the text we assume ANSI C compliance.

Consider another example of the use of structures, in which we define structures
describing an employee and a student, respectively:

struct date {
mt month;
mt day;
mt year;

struct position {
char deptno[2];
char jobtitle[20];

struct employee
struct nmadtype nameaddr;
struct position job;
float salary;
mt numdep;
short mt hplan;
struct date datehi red;

struct student
struct nmadtype nmad;
float gpmndx; -
mt credits;
struct date dateadm;

Assuming the declarations

Struct employee e;
struct student s;

a statement to give a 10 percent raise to an employee whose grade point index as a
student was above 3.0 is the following where srrcmp (S, r) returns 0 if strings s and tare
equal.

if ((strccnp(e.nameaddr.name.first,s.nmad.name.first)==Q) &&
(e.nameaddr.name.midinit	 s.nmad.naine.midinit) &&
(strcmp(e.nameaddr.name.last,s.nmad.name.last)==0))

if (s.9piridx > 3.0)
e.salary	 1.10;

This statement first ensures that the employee record and the student reco -rd refer to the
same person by comparing their names. Note that we cannot simpl y write
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if (e,nmaddr,riame	 s.nmad.name)

since two structures cannot be compared for equality in a single operation in C.
You may have noticed that we used two different identifiers nameaddr and nmud

for the name/address members of the employee and student records, respectively.
It is not necessary to do so and the same identifier can he reused to name- mem-
bers of different structure types. This does not cause any ambiguity, since a member
name must always be preceded by an expression identifying a structure of a specific
type.

Implementing Structures

Let us now turn our attention from the application of structures to their implemen-
tation. Any type in C may be thought of as a pattern or a template. By this we mean that
a type is a method for interpreting a portion of memory. When a variable is declared
as being of a certain type, we are saying that the identifier refers to a certain portion
of memory and that the contents of that memory are to be interpreted according to the
pattern defined by the type. The type specifies both the amount of memory set aside for
the variable and the method by which memory is interpreted. 	 -

For example, suppose that under a certain C implementiion an integeris rep-
resented by four bytes, a float number by eight. and an array often characters by ten
bytes. Then the declarations

mt x;
float y;
char z[1O)

specify that four bytes of memory be set aside for x, eight bytes be set aside for v, and
ten bytes for z. Once those b ytes are set aside for these variables, the names .v., and

will always refer to those locations. When .v is referenced, its four bytes will be in-
terpreted as an integer; when v is' referenced, its eight bytes will be interpreted as a
real number; and when z is referenced, its ten bytes will be interpreted as a collection
of ten characters. The amount of storage set aside for each t ype and the method by
which the contents of memory are interpreted as specific types vary from one machine
and C implementation to another. But within a given C implementation. any type al-
ways indicates a specific amount of storage and a specific method of interpreting that
storage.

Now suppose that we defined a structure by

struct structtvpe {
mt fieldi;
float fied2;
char field3[10];
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and declared a variable

struct structtype r;

Then the amount of memory specified by the structure is the sum of the storage spec-
ified by each of its member types. Thus, the space required for the variable r is the
sum of the space required for an integer (4 b ytes), a float number (8 bytes), and an
array of 10 characters (10 bytes). Therefore, 22 bytes are set aside for r. The first 4
of these bytes are interpreted as an integer, the next 8 as a float number, and the lust
10 as an array of characters. (This is not always true. On some computers, objects of
Certain types may not begin anywhere in memory but are constrained to start at cer-
tain "boundaries" For example, an integer of length 4 bytes may have to start at an
address divisible by 4, and a real number of length 8 bytes may have to start at an ad-
dress divisible by 8. Thus, in our example, if the starting address of r is 200, the integer
occupies bytes 200 through 203, but the real number cannot start at byte 204, since
that location is not divisible by 8. Thus the real number must start at location 208 and
the entire record requires 26, rather than 22, bytes. Bytes 204 through 207 are wasted
space.)

For every reference to a member of a structure, an address must be calculated.
Associated with each member identifier of a structure is an offset that specifies how far
beyond the start of the structure the location of that field is. in the foregoing example. the
offset offieldl is 0, the offset of field2 (assuming no boundary restrictions) is 4, and the
offset of Jield3 is 12. Associated with each structure variable is a base address, which is
the location of the start of the memory allocated to that variable. These associations are
established by the compiler and are of no concern to the user. To calculate the location of
a member in a structure, the offset ofthe member identifier is added to the base address
of the structure variable.

For example, assume that the base address of r is 200. Then what really happens
in executing a statement such as

r.field2 = r.fieldl + 3.7;

is the following. First, the location of r.fieldl is determined as the base address pf r (200)
plus the field offset of field! (0), which yields 200. The 4 bytes at locations 200 through
203 are interpreted as an integer. This integer is then converted to a float number that
is then added to the float number 3.7. The result is a float number that takes up S bytes.
The location of r.field2 is then computed as the base address of r (200) plus the field
offset of field2 (4). or 204. The contents of the 8 bytes 204 through 2 Il are set to the
float number computed in evaluating the expression.

Note that the process of calculating the address of a structure component is very
similar to that of calculating the address of an array component. In both cases an off-
set that depends on the c r mponent selector kthe member identifier or the subscript
value is-added to the base address of the compound structure (the Structure or the ar-
ray). In the case ofa structure, the offset is associated with the field identifier by the type
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definition, whereas in the case of an array, the offset is calculated based on the value of
the subscript.

These two types of addressing (structure and array) may be combined. For exam-
ple, to calculate the address ol r.field3[4], we first use structure addressing to determine
the base address of the array r.fie!d3 and then use array addressing to determine the lo-
cation of the fifth element of that array. The base address of r.field3 is given by the base
address of r (200) plus the offset offie!d3 (12), which is 212. The address of r fie1d3[4]
is then determined as the base address of r.fieid3 (212) plus 4 (the subscript 4 minus
the lower array hound 0) times the size of each element of the array (1). which yields
212 + 4* I, or 216

As an additional example, consider another variable, rr, declared by

struct structtype rr{20]

rr is an example of an array of structures. If the base address of rr is 400, then the
address , of rrfl4]e1d316j may be computed as follows. The size of each component
of ,r is 22, so the location of rrf 141 is 400 + 14 * 22, or 708. The base address of
ri-I 14 lfie/d3 is then 708 + 12, or 720. The address of rr[ 141.fie1d3[61 is therefore 720 +
6 * I. or 726. (Again, this ignores the possibilit y of boundary restrictions. For example,
althc'gh the type recrvpe may require only 22 bytes, each recrpe may have to start at
an address divisible by 4. so that 2 bytes are wasted between each element of rr and its
neighbor; If such is the case, then the size of each element of rr is really 24, so that the
address of rr[ 14].ficld3[6] is actually 754 rather than 726.)

Unions

Thus far each structure we have looked at has had fixed members and a single
format. C also allows another type of structure, the union, which permits a variable to
be interpreted in several different ways.

For example, consider an insurance company that offers three kinds of policies:
life, auto, and home. A policy number identifies each insurance policy, of whatever
kind. For all three types of insurance, it is necessar y to have the policyholder's name,
address, the amount of the insurance, and the monthly premium payment. For auto and
home insurance policies, a deductible amount is needed. For a life insurance policy,
the insured's birth date and beneficiary are needed. For an auto insurance policy, 'a
license number, state, car model, and year are required. For a homeowner's policy, an
indication of the age of the house and the presence of any security devices is required.
A policy structure type for such a company may be defined as a union. We first define
two auxiliary structures.

#defne LIFE I
#define AUTO 2
#define HOME 3
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struct addr {
char street(50J;
char city[10];
char state[3];
char zip[6];

struct date {
mt month;
mt day;
mt year;

struct policy {
mt polnumber;
char name[30];
struct addr address;
mt amount;
float premium;
mt kind;	 /* LIFE, AUTO, or HOME */
union {

struct {
char beneficiary[30};
struct date birthday;

life;
struct {

mt autodeduct;
char license[10);
char state[3];
char model [15];
mt year;

'j auto;
struct {

mt homededuct;
mt yearbuilt;
home;

} policyinfo;

Let us examine the union more closely. The definition consists of two parts: a
fixed part and a variable part. The fixed part Consists of all member declarafions up to
the keyword union, while the variable part Consists of the remainder of the definition.

Now that we have examined the syntax or a union definition, let usine its
semantics. A variable declared as being of a union type T (for example, struct policy
p;) always contains all the fixed members of T. Thus, it is always valid to reference
p.name or p.premiurn or p.kind. However, the union members contained in the value of
such a variable depend on what has been stored by the programmer.

It is the programmer's responsibility to make sure that the use of a member is
Consistent with what has been placed into that location. It is a good idea to maintain a
separate -fixed member in a structure containing a union whose value indicates which
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alternative is currently in use. In the foregoing example, the member kind is used for
this purpose. If its value is LIFE (I), then the structure holds a life insurance policy; if
AUTO (2), an auto insurance policy; and if HOME (3), a home insurance policy. Thus
the programmer would be required to execute code similar to the following to reference
the union:

if (p.kind = LIFE)
printf('\n%s %2d//%2d//%4d", P.policyirifo.life.benefjcjary,

P . policyi nfo. life .bi rthday .month,
p.poUcyinfo.life.bi rthday.day,
p . policyillfo.]ife.birthday year)

else if (p.kind = AUTO)
printf("\n%d %s %s %s %d", p.policyinfo,auto.autodeuc

p. policyi nfo. auto. license
p. policyi nfo. auto. state,
p. pol 1 cyinfo. auto. model,
P . policyi nfo.auto. year)

else if (p.kind == HOME)	 -
printf("\n%d %d", p.policyinfo.hOme.homededuc

p . poll cyinfo. home . yearbu I it)
else

printf("\nbad type %d in kind", p.kind);

In the foregoing example, if the value of p.kind is LIFE, p currently Contains
members beneficiary and birthday. It is invalid to reference model or vearbuilt while
the value of kind is LIFE. Similarly, if the value of kind is AUTO, we may reference
auzodeduci, license, state, model, and year but should not reference any other member.
However, the C language does not require a fixed member to indicate the current alter-
native of a union, nor does it enforce using a particular alternative depending on a fixed
member's value.

A union allows a variable to take on several different "types" at different points
in execution. It also allows an array to contain objects of different types. For example,
the array a, declared by

struct policy a[100];

may contain life, auto, and home insurance policies. Suppose that such an array a is
declared and that it is deired to raise the premiums of all life insurance policies and all
hone insurance policiesfor homes built before 1950 by 5 percent. This can be done as
follows:

for (iO; 1<100; i++)
if (a[i}.kjnd == LIFE)

a [i]. p reium	 1.05 * a[j].premium;
else if (a [ i ].kind	 HOME &&

a [ i ] .poiicyjnfo,yearbu j it < 1950)
a[1]. p remium = 1.05 * a[i].prenhium;
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Implementation of Unions

To fully understand the concept of a union, it is necessary to examine its imple-
mentation. A structure may be regarded as a road map to an area of memory. It defines
how the memory is to he interpreted. A union provides several different road maps for
the same area of memory, and it is the responsibility of the programmer to determine
which road map is in current use. In practice, the compiler allocates sufficient storage
to contain the largest member of the union. It is the road map, however, that deter-
mines how that storage is to be interpreted. For example. Consider the simple union and
Structures

Idefjne INTEGER I
#defjne REAL 2

struct stint {
mt f3, f4;

struct stfloat {
float f5, f6;

struct sample {
mt fl;
float f2;
int Utype;
union (

struct stint x;
struct stfloat y;

I funiort;

Let us again assume an implementation in which an integer requires 4 bytes and
a float 8 bytes. Then the three fixed members fI , f2, and urype occupy 16 bytes. The
first member of the union, x, requires 8 bytes, while the second member, v, requires 16.
The memory actually allocated for the union part of such a variable is the maximum of
the space needed by any single member. In this case, therefore, 16 bytes are allocated
for the union part of sample. Added to the 16 bytes needed for the fixed part, 32 bytesare allocated to sample.

The different members of a union overlay each other. In the above example, if
space for sample is allocated starting at location 100, so that sample occupies bytes100 through 131, the fixed members sample.f 1, sample.f2, and sample.urype occupy
bytes 100 through 103, 104 through Ill, and 112 through 115, respectively. If the
value of the member ut)pe is INTEGER (that is, 1), bytes 116 through 119 and 120through 123 are Occupied by samp/e.funjonxp and sample.funion.xf4 respectively,and bytes 124 through 131 are unused. If the value of sarnple.urype is REAL (that is, 2),bytes 116 through 123 are occupied by samp/e.fun ion. yf5 and bytes 124 through 131are occupied by sainple.funion That is why only a sin gle member of a union can
exist at a single instant. All the members of the union use the same space, and that space
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can be used by only one of them at a time. The programmer determines which member
is appropriate,

Structure Parameters

In traditional C a structure may not be passed to a function by means of a call by
value. To pass a structure to a function, we must pass its address to the function and
refer to the structure by means of a pointer (that is, call by reference). The notation p—>
x in C is equivalent to the notation (*p).x and is frequently used to reference a member
of a structure parameter. For example, the following function prints a name in a neat
format and returns the number of characters printed:

mt writename (strict nametype name)
{

mt count, I

printf(\n");
Count = 0;
for (i=0; (i < 10) && (name->first[i]	 '\O'); i++) {

printf%c, name->first[i]);
count++;

} /C end for
pnntf('%c",
Count++;
if (name->nndinit =	 ') {

printf('%c%s", name->midinit, ".
count += 3;

} ja end if /
for (1=0; (1 < 20) && (name->last[iI	 '\O'); i++) {

printf('%c", name->last[i]);
COUflt++

} / end for *1
return (Count)

) / end writename

The following list illustrates the effects of the statement x = writename(&sname) on
two different values of sname:

Value of snarne.fir.cr:	 "Sara"	 "Irene"
Value of snante.m,djnit: 	 M'
Value of snani'.Ias(:	 "Binder"	 "LaClaustr,t"
Printed output: 	 Sara M. Binder	 Irene LaClaustra
Value of X:	 14	 16

Similarly, the statement x = wrirena,ne(&ename) prints the values of ename's fields
and assigns the number of characters printed to x.

The original definition of C (by Kernighan and Ritchie) and many older C com-
pilers do not allow a structure to be passed as an argument even if its value remains
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unchanged. ANSI C. in addition to allowing structure assignment, does allow structures
to be passed by value and returned, without applying the & operator. This involves
copying the value of the entire structure when the function is called. Thus if the structure
is very large it is more efficient to puss the structure by reference (that is, using the &
operator). In the remainder of the text, we therefore pass all structures by reference.

We have already seen that a member of a structure may be an array or another
structure. Similarly we may declare an array of structures. For example, if the types
employee and student are declared as presented earlier, we can declare two arrays of
employee and student structures as follows:

struct employee etlOOJ;
struct student s[100);

The salary of the fourteenth employee is referenced by e [ 13 J .salarv, and the lastname is referenced b y e[ I 3).nameaddr.name. last. Similarly, the admission year of the
first student is sjO].dateadm.year.

As an additional example, we present a function used at the start of a new year
to give a 10 percent raise to all employees with more than ten years seniority and a 5
percent raise to all others. First, we must define a new array of structures.

struct employee empset[loo];

The procedure now follows:

#define THISYEAR
void raise (struct employee e[])

mt 1;

for 'i=O; i < 100; i++)
if (e [ i ].datehired.year < THISYEAR - 10)

e[i).salary *= 1.10;
else

e[iJ.salary = 1.05;
1* end raise *1

As another example, suppose that we add an additional member, sindex, to thedefinition of the enploee structure. This member contains an integer and indicates the
student index in the array s of the particular employee. Let us declare sindex (withinthe employee record) as follows:

struct employee
struct nametype nameaddr;

struct datehi red
•iJIt sindex;
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The number of credits earned by employee i when the employee was a student can then
be referenced by s[e[i].sindex].credits.

The following function can be used to give a 10 percent raise to all employees
whose grade point index was above 3.0 as a student and to return the number of such
employees. Note that we no longer have to compare an employee name with a student
name to ascertain that their records represent the same person (although these names
should be equal if they do). Instead the field sindex can be used directly to access the
appropriate student record for an employee. We assume that the main program contains
the declaration

struct employee emp[100];
struct student stud[100];

mt raise2 (struct employee e[], struct student s[])

mt I, j, count;

count = 0;
for (i=0; i < 100; i++) {

j = e[i].sindex;
if ( s [ j ]. gp indx > 3.0) C

count++;
e[].saary * 1.10;

} / end if *1
} /* end for *7
return(count);

} / end raie2 *1

Very often a large array of structures is used to Contain an important data table
for a particular application. There is generally only one table for each such array of
structures. The student table s and the employee table e of the previous discussion are
good examples of such data tables. In such cases, the unique tables are often used as
static/external variables rather than as parameters, with a large number of functions ac-
cessing them. This increases efficiency by eliminating the overhead of parameter pass-
ing. We could easily rewrite the function raise2 above to access sand e as static/external
variables rather than as parameters by simply changing the function header to

mt raise2Q

The body of the function need not be changed, assuming that the tables s and e are
declared in the outer program.

Representing Other Data Structures

Throughout the remainder of this text, structures are used to represent more com-
plex data structures. Aggregating data into a structure is useful because it enables us
to group objects within a single entity and to name each of these objects appropriately,
according to its function.
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As examples of how structures can be used in this fashion, let us consider the
problems of representing rational numbers.

Rational Numbers

In Section 1.1 we presented an ADT for rational numbers. Recall that a rationalnumber is any number that can be expressed as the quotient of two integers. Thus
1/2, 3/4, 2/3, and 2 (that is, 211) are all rational numbers, whereas sqr(2) and ir are
not. A computer usually represents a rational number by its decimal approximation. If
we instruct the computer to print 1/3, the computer responds with .333333. Although
this is close enough (the difference between .333333 and one-third is only one three-
millionth), it is not exact. If we were to ask for the value of 1/3 + 1/3, the result would
be .666666 (which equals .333333 + .333333), whereas the result of printing 2/3 might
be .666667. This would mean that the result of the test 1/3 + 1/3 = = 2/3 would be
false! In most instances, the decimal approximation is good enough, but sometimes it
is not. It is therefore desirable to implement a representation of rational numbers for
which exact arithmetic can be performed.

How can we represent a rational number exactly? Since a rational number consists
of a numerator and a denominator we can represent a rational number rational using
structures as follows:

struct rational
mt numerator;
mt denominator;

An alternative way of declaring this new type is

typedef struct {
mt numerator;
mt denominator;

RATIONAL;

Under the first technique, a rational r is declared by

struct rational r;

under the second technique by

RATIONAL r;

You might think that we are now ready to define rational number arithmetic for
our new representation, but there is one significant problem. Suppose that we defined
two rational numbers ri and r2 and we had given them values. How can we test if the
two numbers are the same? Perhaps you might want to code

if (rl,numerator	 r2,numerator'	 rl.denoniinator
r2 . denominator)
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That is, if both numerators and denominators are equal, the two rational numbers are
equal. However, it is possible for both numerators and denominators to be unequal, yet
the two rational numbers are the same. For example, the-numbers 1/2 and 2/4 are indeed
equal, although their numerators (1 and 2) as well as their denominators (2 and 4) are
unequal. We therefore need a new way of testing equality under our representation.

Well, why are 1/2 and 214 equal? The answer is that they both represent the same
ratio. One out of two and two out of four are both one-half. To test rational numbers
for equality, we must first reduce them to lowest terms. Once both numbers have been
reduced to lowest terms, we can then test for equality by simple comparison of their
numerators and denominators.

Define a reduced rational number as a rational number for which there is no
integer that evenly divides both the denominator and the numerator. Thus 1/2, 2/3, and
10/1 are all reduced, while 4/8, 12. 1 18,  and 15/6 are not. In our example, 214 reduced to
lowest terms is 1/2, so the two rational numbers are equal.

A procedure known as Euclid's algorithm can be used to reduce any fraction of
the form numerator/denominator into its lowest terms. This procedure may be outlined
as follows:

1. Let a be the larger of the numerator and denominator and let b be the smaller.
2. Divide b into a, finding a quotient q and a remainder r (that is, a = q * b + r).
3. Set a = b and b = r.
4. Repeat steps 2 and 3 until b is 0.
5. Divide both the numerator and the denominator by the value of a.

As an illustration, let us reduce 1032/1976 to its lowest terms.

Step 0
Step 1
Step 2
Step 3
Steps 4 and 2
Step 3
Staps 4 and 2
Step 3
Steps 4 and 2
Step 3
Steps 4 and 2
Step 3
Steps 4 and 2
Step 3
Steps 4 and 2
Step 3
Step 5

numerator = 1032
a=1976 b=1032
a=1976 b=l032
a= 1032 b=944
a= 1032 b=944
a=944 b=88
a=944 b=88
a=88	 b=64
o=88	 b=64
a=64	 b=24
a=64	 b=24
a=24	 b=16
a=24	 h=16
a=16	 b8
a=16	 b=8
a=8	 b=0
1032/8 = 129

denominator= 1976

q=l	 r=944

q=1	 r=88

q=10 r=64

q=1 'r=24

q=2	 r=16

q 	 r=8

q=2 r=0

1976/8 247

Thus 1032/1976 in lowest terms is 129/247.
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Let us write a function to reduce a rational number (we use the tag method for
declaring rationals).

void reduce (struct rational *inra t , struct rational *outrat)

mt a, b, rem;

if (inrat->numerator > inrat->denominator) {
a	 inrat->numerator;
b	 inrat->denominator;

) / end if *1
else {

a	 inrat-denominator;
b	 inrat->numerator;

/* end else */
while (b	 0) {

rem = a % b;
a	 b;
b	 rem;

} / end while *1
outrat->numerator 1= a;
outrat->denogiinator 1= a;

/ end reduce /

Using the function reduce, we can write another function equal that determines
whether or not two rational numbers ri and r2 are equal. If they are, the function returns
TRUE: otherwise, the function returns FALSE.

#define TRUE 1
tdefine FALSE 0

mt equal (struct rational ratl, struct rational *rat2)

struct rational ri, r2;

reduce(ratl, &rl);
reduce(rat2, &r2);
if (rl.numerator == r2.nurnerator &&

r1,denoiinator	 r2.denominator)
return (TRUE)

return(FALSE);
/ end equal V

We may now write functions to perform arithmetic on rational numbers. We
present a function to multiply two rational numbers and leave as an exercise the prob-
lem of writing similar functions to add, subtract, and divide such numbers.

Sec. 1.3	 Structures in C	 57



void multiply (struct rational *rl, struct rational r2, Struct rational *r3)
/* r3 points to the result of multiplying *rl and 'r2

struct rational rat3;

ra t3.numerator . = rl->numerator	 r2->numerator;
rat3.denomjnator = r1->denonnator 	 r2->denominator;
reduce(&rat3 r3);
/ end multiply /

Allocation of Storage and Scope of Variables

Until now we have been concerned with the declaration of variables, that is, the
description of a variable's type or attribute. Two important questions, however, remain
to be answered: At what point is a variable associated with actual storage (that is, Stor-age allocation)? At what point in a program may a particular variable be referenced
(that is, scope of variables)?

In C variables and parameters declared within a function are known as automatic
variables. Such variables are allocated storage when the function is invoked. When the
function terminates, storage assi gned to those variables is deallocated. Thus automatic
variables exist only as long as the function is active. Furlhermd?e, automatic variables
are said to be local to the function. That is, automatic variables are known only within
the function in which they are declare( ! :d may not be referenced b y other functions.

Automatic variables (that is, parameters in a function header or local variables
immediately following any opening brace) can be declared within any block and remain
in existence until the block is terminated. The variable can be referenced throughout the
entire block unless the variable identifier is redeclared within an internal block. Within
the internal block, a reference to the identifier is to the inner-most declaration, and the
outer variable cannot be referenced.

The second class of variables in C are the external variables. Variables that are
declared outside any function are allocated Storage at the point at which they are first
encountered and remain in exisreqee for the remainder of the program's execution. The
scope of an external variable lasts from the point at which it is declared until the end
of its containing source file. Such variables may be referred to by all functions in that
source file lying beyond their declaration and are therefore said to be global to thosefunctions.

A special case is when the programmer wishes to define a global variable in one
source file and to refer to the variable in another source file. Such a variable must he
explicitly declared to be external. For example, suppose that an integer array containhg
grades is declared in source file I and it is desired to refer to that an'av throu g hout a
source file 2. The following declarations would then be necessary:

file 1	 #defjne MAXSTLJDENT5
mt grades [MAXSTIJDEtffS]

end of file 1
58
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file 2	 extern mt grades[];

float average()

} 1* end float *1

float mode()

1* end mode

end of file 2

When file I and file 2 are combined into one program, storage for the array grades
is allocated in file I and remains allocated until the end of file. 2. Since grades is an
external variable, it is global from the point at which it is defined in file I to the end
of file I and from the point at which it is declared in file 2 to the end of file 2. Both
functions average and mode may therefore refer to grades.

Note that the size of the array is specified only once, at the point at which the
variable is originally defined. This is because a variable that is explicitly declared to
be external cannot be redefined, nor can an y additional storage he allocated to it. An
extern declaration merely serves to declare for the remainder of that source file that
such a variable exists and has been created earlier.

Occasionally it is desirable to define a variable within a function for which stor-
age remains allocated throughout the execution of the program. For example, it might
be useful to maintain a local Counter in a function that would indicate the number of
times the function is invoked. This can be done by including the word static in the
variable declaration. A static internal variable is local to that function but remains in
existence throughout the program's execution rather than being allocated and deallo-
cated each time the function is invoked. When the function is exited and reentered, a
static variable retains its value. Similarly, a static external variable is also allocated
storage only once, but may be referred to b y any function that follows it in the source
file.

For purposes of optimization, it might be useful to instruct the compiler to main-
tain the storac'e for a particular variable in a high-speed re gister rather than in ordinary
memory. Such a variable is known as a register variable and is defined by including
the word register in the declaration of an automatic variable or in the formal parameter
of a function. There are many restrictions on register variables that vary from machine
to machine. The reader is urged to consult the appropriate manuals for details on these
restrictions.

Variables may be explicitly initialized as part of a declaration. Such variables
are conceptually given their initial values prior to execution. Uninitialized external and
Static variables are initialized to 0, whereas uninitialized automatic and register vari-
ables have undefined values.

To illustrate these rules consider the following program: (The numbers to the left
of each line are for reference purposes.)
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source filel.c

1	 mt x, y, z;

	

2	 void funcl()

	

3	 {

	

4	 inta,b;

	

5	 x	 1;

	

6	 y=2;

	

7	 z=3;

	

8	 a=1;

	

9	 b2;

	

10	 printf("%d %d %d %d %d\n, X. y, z, a, b);
11 ) / end fund 

	12	 void func2()

	

13	 {

	

14	 mt a;

	

15	 a	 5;

	

16	 printf(%d %d %d %d\n", x, y, z, a);

	

17	 } /* end func2

end of source f1e1,c

source file2.c

	

18	 tinclude <stdio.h>

	

19	 #inc]ude <filel,c>

	

20	 extern mt x, y, z;

	

21	 void main()

	

22	 {

	

23	 funclQ;

	

24	 printf('%d %d %d\n, x, y, z);

	

25	 func2Q;

	

26	 func3Q;

	

27	 func3Q;

	

28	 func4O;

	

29	 printf(%d%d%d\n", x, y, z);
30 } / end main *1

&1 void func3Q

	

32	 {

	

33	 static mt b;	 / b is initialized to 0

	

34	 y++;

	

35	 b++;

	

36	 printf("%d %d %d %d\n", x, y , z b);

	

37	 } / end func3 /
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38 void func4()
39	 {
40	 mtx, y,z;

41	 x10;
42	 y20;
43	 z30;
44	 prntf('%d %d %d\n", X. y, z);
45 } / end func4 V

end of source file2.c

Execution of the program yields the following results:

a	 12312
b	 123
C	 1235
d	 1331
e	 1432
f	 10 20 30
9	 143

L us trace through the program. Execution begins with line 1, in which ex-
ternal integer variables x, v, and z are defined. Being externally defined, they will be
known (global) throughout the remainder of file I .c (lines I through 17). Execution then
proceeds to line 20, which declares by means of the word extern that the external in-
teger variables x, v, and z are to be associated with the variables of the same name in
line I. No new storage is a1loated at this point, since storage is allocated only when
these variables are originally defined (line 1). Being external, x, v, and z will be known
throughout the remainder offile2.c. with the exception of func4 (lines 38 through 45),
where the declaration of local automatic variables x, y, and z (line 40) supersedes the
original definition.

Execution begins with maino, line 21. This immediately invokes func 1. func I
(lines 2 through 4) defines local automatic variables a and b (line 4) and assigns values
to the global variables (lines 5 through 7) and to its local variables (lines 8 through 9).
Line 10 therefore produces the first line of output (line a). Upon termination of fund

(line 11) storage for variables a and b is deallocated. Thus, no othe, function will be
able to refer to these variables.

Control is then returned to the main function (line 24). The output is given in line
b. It then invokes func2. func2 (lines 12 through 17) defines a local automatic variable,
a, for which storage is allocated (line 14) and a value assigned (line 15). Line 16 refers
to the external (global) variables x, v, and z previously defined in line I and assigned
values in lines 5 through 7. The outputisiven in line b. Note th'al it would be illegal
for Jiwc2 to attempt to print a value for b. since this variable no longer exists, being
allocated only withinfuncl.

The main program then invokesfunc3 twice (lines 26 through 27).func3 (lines 31
through 37), when called for the first time, allocates stora ge for the static local variable b
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and initializes it to O(line 33), h will he known only tofunc3 however, it will remain in
existence for the remainder of the program's execution. Line 34 increments the globalvariable v, and line 35 increments the local variable h. Line d of the output is thenprinted. The second time /iinc3 is invoked by the main program, new storage for his not ailocaed thus, when b is increm rued in line 35 the old value of b (from theprevious invocation offum'3) is used. T final value of b thus will reflect the numberof times that fune3 was invoked

Execution then Continues in the maw function that invokes func4 (line 28). As
was mentioned earlier, the definition of internal-automatic integer varjab!es x, y, and z
in line 40 supersedes the defIwtjur, oUr, v. and in lines I and 20. and remains in force
only within the scope of finc4 (lines 38 through 45). Thus the assignment of valuesin lines 41 through 43 and the output (line f) reulfing from line 44 refer only to theselocal variables. As soon as Junc4 terminates (line 45) these variables are destroyed.
Subsequent references lox, v. and 2 (line 29) refer to the global x, v, and z (lines I and20) producing the output of line g.

EXERCISES

1.3.1. Implement complex numbers, as specified in Exercise 1.1.8. using structures with real
and complex parts. Write routine, to add, multiply, and negate such numbers.

1.3.2. Suppose that a real number is represented by a C structure such as

struct realtype {
mt )eft;
mt right;

where left and right represent the digits to the left and right of the decimal point, respec-
tively. If left is a negative integer, the represented real number is negative.
(a) Write a routine to input a real number and create a structure representing that num-

ber.
(b) Write a function that accepts such a structure and returns the real number repre-

sented by it.
(c) Write routines add, subtract, and multiply that accept two such structures and set

the value of a Lhird structure to represent the number that is the sum, difference,
and product, respectively, of the two input records.

1•33A Assume that an integer needs four bytes. a real number needs eight bytes, and a char
needs one byte. Assume the following definitions and declarations:

struct nametype {
char first[1o];
char midinit;
char last[20];
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struct person {
struct nametype name;
mt birthday[2];
struct nametype parents[fl;
mt income;
mt nu.mchildren;
char address[20];
char city[10];
char state[2);

struct person p[100];

If the starting address ofpis 100. what are the starting addresses (in bytes) of each of
the following?
(a) p[1O]
(b) p[20].na,ne.midjnjt
(c) p[20].income
(d) p [20 .address[5]
(e) p [S .parents[1 .last[1O]

13.4. Assume two arrays, one of student records and the other of employee records. Each
student record contains members for a last name, a first name, and a grade point index.
Each employee record contains members for a last name, a first name, and a salary. Both
arrays are ordered in alphabetical order by last name and first name. Two records with
the same last name/first name do not irnpear in the same array. Write a C function to give
a IQ percent raise to every employee who has a student record and whose grade-point
index is greater than 3.0.

13.5. Write a function as in the preceding exercise, but assuming that the employee and student
records are kept in two ordered external files, rather than in two ordered arrays.

1,3.6. L'siii g the rational number representation given in the text, write routines to add, subtract.
and divide such numbers.

1.3.7. The text presents a function equal that determines whether or not two rational numbers
ri and r2 are equal by first reducing ri and r2 to lowest terms and then testing for
equality. An alternative method would be to multiply the denominator of each by the
numerator of the other and test the two products for equality. Write a function equul2 to
implement this algorithm. Which of the t'vo methods is preferable?

1.4 CLASSES IN C++

In this section. we introduce the C+ + language and the concept of a C+ + class. A
class embodies the concept of an abstract data type by defining both the set of values of
a given type and the set of operations that can be performed on those values. A variable
of a class type is known as an object and the operations on that type are called methods.
When one object A invokes a Method in on another object B, we sometimes say that "A
is sending message In to B." B is viewed as receiving that message and carrying out a
transformation in response to that message.
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The Class Rational

To illustrate the concept of a C++ class, consider the abstract data type RA-
TIONAL that we introduced in Section II. That ADT modeled a rational number as
consisting of two components, a numerator and a denominator, and defined methods
to check-if two rational numbers were equal, to add two rationals, to multiply two ra-
tionals and to create a rational from two integers. In Section 1.3 we implemented the
ADT RATIONAL as a C structure and presented C functions to implement its opera-
tions. We recommend that you reread the portions of Sections 1.1 and 1.3 dealing with
the definition and implementation of the ADT RATIONAL before proceeding.

A C+ + class builds on the concept of a C structure. Whereas a C structure is a
collection of named fields, a C+ + class is a collection of named fields and methods
(or functions) that apply to objects of that class type. Additionally, the C+ + language
implements the concept of information hiding, restricting access to certain members
of the class to methods of the class itself.

For example, the C++ definition of a class to implement the ADT RATIONAL
might be the following:

class Rational{
long numerator;
long denominator;
void reduce (void);

public:
Rational add(Rational);
Rational mult(Rational);
Rational divide(Rational);
mt equal (Rational);
void print(void);

-	 void setrational(long long);

This class, named Rational, contains two data members, numerator and 'denom-
inator, and seven method members, reduce, add, pnulf, divide, equal, print, and set-
rational. These seven methods are merely defined here; their actual implementations
must be provided subsequently.

The methods add, mu/f, and equal implement the ADT functions of the same
name. We have added a method divide to divide one rational number by another. While
the corresponding ADT functions take two parameters, the methods in the class Ra-
tional explicitly mention only one. This is because the class object for whichthey
are invoked is an implicit parameter for each routine. We will see how this is done
shortly.

The method setrational is used to set the value of a Rational to the rational number
formed by a particular numerator and denominator. Further, the members are divided
into two groups: numerator, denominator and reduce are private. That is. they can be
referenced only from within the methods of the class Rational. This could have been
made explicit by stating:
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class Rational
private:

long nunerator;

hut, by default, the members defined at the beginning of a class definition are private
without the need for explicitly stating this. The members set rational, add, molt. divide,
equa., and print, by contrast, are public. This means that they can he referenced outside
the methods of the class Rational.

The reasons for doing this are simple. We do not want "outsiders" manipulating
either the rational or denominator members. The y are merely a way of implementing
a rational number and are to he used solely for that purpose. An external function ma-
nipulates a Rational; only within the internal methods of Ratio,wl should we he able
to access numerator and denominator. Similarly, the method retha e is a func

t
ion to

reduce the internal representation of the Rational (that is, the numerator and denomi-
nator) to lowest terms. We intend to use reduce to ensure that every rational number is
kept in lowest terms. The outside world has no cause to call reduce. Every method that
manipulates the internal numerator and denominator (that add, malt, and
divide) is a member of the class Rational and will automaticall y ensure that the result-
ing number is in reduced form by calling reduce. We will see this when we present the
implementations of these methods. There is no need for anyone else to call reduce. and
therefore reduce is defined as private.

On the other hand, the mcthod.s .cetrationat, add, molt, equal, and print are public.
These functions form the public interface for the class Rational. That is, they are the
methods by which the outside world can manipulate and use objects of t y pe Rario,,al

Using the Class Rational

We now present an example of the use of the class Rational. Suppose that the class
Rational, together with the implementation s, of its methods, were defined in it header
file ,-ational.h. Then, suppose that we wanted to write a program to do the following:
Input linesof the form

op	 ra	 rb;

where op is the character -i or . and ra and rb are either integers or of the form

a / b

where a and b are integers. For example, the follow ins are all valid input lines:

+	 3	 7;

This asks to add the integers 3 and 7 to produce 10.

+	 3	 /	 4	 5;
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This asks to add the rational 3/4 and the integer 5 to produce the rational 23/4.

*	 3	 4	 /

This asks to multiply the integer 3 and the rational 4/8 to produce the rational 3/2.

+	 3	 /	 4	 5	 /	 6;

This asks to add the rationals 3/4 and 5/6 to produce the rational 19/12. The program
should read the line, perform the indicated computation, and print out the resulting
rational.

To assist with the 110, we assume three routines inr read:oke,;( char * ), long
toI(char ), and void crror(char *)• The function readioken reads the next operator or

integer in character form (for example. "1' or "389"). allocates storage for the string
using the sid! ib function cal/oc, and sets a pointer of type char to it. Should the end
of file be encountered, readtoke,j returns a value of EOF: otherwise, it returns !EOF.
The .vic//ib function atol converts a numerical string to an integer. The junction void
crmr(c/iar ) prints its parameter as an error message and halts execution. The program
is as follows:

#include "rational,h"
#nclude <iostrean.h>
#nc1ude <stnn.h>
#include <stdlib.h>

void mainO

mt readtoken(char
void error(char	 ;

char *optr , 'tokeal, *token , token3;
mt intl. int2;
Rational opndl, opnd2, result;

while (readtoken(&optr)	 EOF) {	 1/ read the operator
readtoken(&tokenl); 	 II read the first integer's

II character string
intl = atol(toker.l);	 1/ convert the first token

to an Integer
readtoken(&token2)
if (strcmp(token2, "/")	 0

II convert the integer operand to a Rational
opnd1.setrationai(ntl, 1);

else{
1/ get the denor'inator of the Rational operand
readtoken(&tokeri3)
nt2 = at&(token3);

/1 convert the numerator and denominator to a Rational
opndl.setrational(intl, int2);
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- -

readtoken(&toen2);
} / end if /
II get the second operand
intl	 atol(token2);
readtoken(&token2);
if (strcmp(token2. 7") 1= 0)

II convert the integer operand to a Rational

oprd2.setrational(ifltl. 1);
else

// get the denominator of the Rational operand

readtoken(&token3);
int2	 atol(tokenl);

// convert the numerator and denominator to a Rational
opnd2.tetrational(ifltl int?);
readtoken(&token2);

) i end if
if (strcmp(token2. ";•')	 0)

error ('ERROR: ; expected, not found.");
apply the operator to the Rational operands

if ('optr
result = opndl.a6d(opnd2);

else if (ioptr	 '

	

result	 opndl.mult(opnd2);
else

er rorCERR OR: illegal operator; must be	 or +

resu'it.printO;
} / end while

/ end main /

In the declarat ions. the variables o1mdl. opnd2. and result are declared as of type

Rational. This makes them objects of that class. That is, each one contains a numerator
and denominator, and can be used to call the methods of class Rariqiwl. including add.
molt .se trational. and print.

Note how the methods of Rational are called. If optdl and opnd2 are Rarionals.

then the call opndl .add(opnd2) adds the two rational numbers represented by o1mdl

and opnd2 and produces a Rational representing the result. We say that the program

"sends the message*' add tQ opndl. Similarly, the call result.print() sends the message

print to result and the call opndl .setrational(intl, int2) sends the message set rational

to op) it! l

Implementing the Methods

The methods of a class can he implemented within the dcc lajatiori ui the class or

outside it. For example. the method seIrationcil. which sets an object of lypo Rariono'

to a particular vIue. can he implemented within the class clarauon as totows:

class Rational
long numerator;
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public:
Rational add(Rational);

void print(void):
void setrational (long n, long d)

if (d	 0)
error ("ERROR: denominator may not be zero);

numerator	 n;
denominator = d;
reduceQ;	 /1 reduce to lowest terms

} /* end setrarional V
/ end Rational V

The body of the function setrational appears within the declaration of Ratio-
nal. Note that set rational references the members numerator and dc,w,ninator. Private
members of a class, such as numerator and denominator, can he referenced directly.
with no needed qualification. from a method of that class, but the y cannot ordinaril y he
referenced by a function outside the class. Similarly, the method reduce is called within
the method setrarional with no qualification. This refers to the method reduce defined
within the method Rational.

When seti-anonal is called, as in the statement opndl .setrutional(inrl, int2);, re-
erences to numerator and denominator within selratwna/ will refer to opiidl numerator
and opndl.dcno,nina,or, and the call reduce() is to opndl.reduceO. Alternatively, set-
rational can be defined outside the declaration for Rational. Rational must still contain
the header of the function

void setrationa'1(long long);

but it need not Contain its body. The body can be provided after the dcctration for
Rational is completed, as follows:

void Rational;:setratjonal (long ri, long d)

if (d	 0)
error(ERROR: denominator may not be zero');

numerator = n;
denominator = d;
reduceQ;	 II reduce to lowest terms

} / end setratiortal -/

Note the header line

void Rational::.setrational (long n, long d)

Which specifies that we are defining One of the methods within the typeRrional. The
notation 'Rario 0/:: ' introduces a scope and specifics that the j unction sen-arional he-
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ins defined is a method of class Rational. Once this scope has been opened. we can
utilize the private members uwnerator and denominator and the private inethd ,rduce.

Hete are the specifications of the remainin g methods of R4TlO.V-L. The routine
for reduce follows closely the al gorithm of Section 13. We first make sure that wooer-
aror and denominator are both positive, keeping track of the sign.

void Rational::reduce (void)

mt a, b, rem, sign:

if (numerator	 0)
denominator = 1;

sign = 1;	 1/assume positive
check if any negati'es

jf (numerator < 0 && denominator < 0) {
numerator = -numerator;
denominator = -denominator;

if (numerator < 0)
numerator = -numerator;
sign

if (denominator < 0)
denominator	 -denominator;
sign

if (numerator > denominator)
a	 numerator;
b = denominator;

else
a = denominator;
b	 numerator;

while (b = 0)
'em	 a % b;
a =
b	 rem;

numerator = sign	 numerator / a:
denominator = denominator / a;

/ end reduce Y

To add two rational numbers, we could first reduce each to lowest term, then
multipl y the two denominators to produce a resulting denominator, then multiply each
numerator by the denominator of the other rational numbers and add the two products
to produce the numerator. The result caii then he reduced to lowest terms. However, this
provides the danger that the product ot the two IlenonhinatoN ma\ be uto large even for
a long variable.
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JnsLea, we use the following algorithm to add a/b to c/d. We assume that the
value '-de(, y) denotes the denominator of Iv reduced to lowest terms:

k = rden(b, i;
d'nom	 b'k;	 // the resulting denominator
num	 ak + c*(denorn/d);	 If the resulting numerator

niun is the numerator ofthe sum, drnoni is the denominator. We leave it as an exercise
to show that this algorithm is correct.

Implementing this algorithm in the context of the class Raiio,,al provides the fol-
lowing definition of the method add:

Rational Rational: :add(Ratiorial r)

mt k, denorn, num;
Rational ml;

/1 first reduce both rationals to lowest terms
reduce();
r. meduceQ;

II irPlement t i e line k = rden(b, d); of the algorithm
rnl.setratiorai(denominator, r.denomnator);
ml reduce()
k = rnl.denorninaror;

/1 compute the denominator of the result
/7 algorithm line denont =
denoni = denominator

comput2 the numerator of the result
al gorithm line n'jrn = ak + ca(denom/d);

nunt = numeratork + r.numerator(denoni/r,dPnominatom);

form a Rational from the result and reduce
the result to lowest terms

ml .setratjona](num, denom);
ml reduceo

return ml
1' end add 7

In niultipiviog two reduced rationais alb and C/Cl, the strai g htforsard method is to
compute ( a*( th Iovever, here again we want to avoid the multiplication of ac
and I'd if at all possible. since their intermediate results ma y he too large. The solution
is first to reduce all' and c// to lowest terms, then to reduce (del and c/b. In that way we
are certain that a*c has no terms in common with h : d and that the products are as mall
as possible.
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Here is the method nm/i implementing these ideas:

Rational Ratonal: :mult(Rational r)

Rational ml, mu, rnl2;
mt num, denon;

/1 reduce both inputs to lowest terms
reduccO;
r.reduceQ;

I,' switch numerators and denominators and reduce

rnll.setrational(flumeratom, r.denominator)

ml reduceO;
ml? . setrational (r . numerator ,denominator);

rnl2.reduceO

// compute result
num = rnll.numerator 	 rnl2.numerator;
denom = mnil.dencmflatOr 	 mnl2.denomlflatOfl

ml .setrational(nurt, denom);
return ml;

} / end rnult !

The method divide simply multiplies by a reciprocal.

Rational Rational :divide(RatiOflal r)

Rational ml;

1/ Compute the reciprocal of r
ml .setrational(r.deflomir.ator, r.nunierator);

,'/ Multiply by the reciprocal
return mult(mnl);

The method equal reduces both rationals to lowest terms and th checks for

equality of both numerators and denominators.

mt Rational :egual(Rational r)

reduce 0;
r.reduce0
if (numerator	 r.numerator &&

denominator == r.den:TnatOr)

return TRUE;
else

return FALSE;

} / end equal V
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To implement the method print we first must decide on a format for the out;Jt. Areasonable format might he to print the numerator followed by a slash followed by the
denominator. We adopt this fr mat in the routine below:

void Rational: :print(vojd)

cout << numerator <<	 << denominator << endl;
/ end print *1

Thi5 utilizes the C-^ ± 1/0 facilities of the header file lost rean2.h. Coot is an outputstream and the operator << is used to send data values to the output.

Overloading

While we have a routine for adding two rational numbers, we cannot vet add arational r and an inte ger i without first converting the inte ger to a rational using the callref rat j oflj/( i, I ).
Forttjnatelv. C+ allows function names to he overloaded That is: the samefunction name can appl y to different functions if the

i
r parameters are ofdifferert types.

Specifically, we can define another method add in the class Rational by including the

Rational add(long);

in the public section. There are now two methods mimed add: one applied to Rationals
and one applied to integers. Implementation of the flew method is straightforward:

Rational R ational::add(ong i)

Rational r;

r.setrationaj(i	 1);

return add(r-);

The implementation is as follows: First, form a new rational out of the integer using.setratjona/, then call the existing add routine on rationals to add r to the rational numberof the current object.

If i is an integer, the call rr.add(ji isa call to the second add method to add aninteger to the rational ii. If r is a rational, the call ui:ath/(i-) is a call to the original addmethod to add a rational to rr.

Inheritance

HO -e , Cr. this technique for addin g an integer is not entirel y saiisiactorv. Un-
der tile method we have presented, the rational tin tuber of the current object is the first
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operand, so we can implement the concept r+i. However, we cannot implement i--r
equally directl y. For addition, this is not a real problem since r+i equals 1+1 because
Of the commutative law. But consider the case of division, which is not comniLitat ive.
We can write a method Raji oiai thr,ile(int) to compute i/i, but how do we compute iii?

Of course, we could write a separate routine that is not part of a class, ith t'.vO
parameters. as follows:

Ra:onal divde(long i, Rational r)

Rational rr;

rr.setrational(i, 1);
return rr.divide(r);

However, this makes the division operator nonsymmetrical and breaks the concept of
class operations.

Instead, we can note that inte gers are a form of rationals. We can therefore rep-
resent every integer by a rational. \e do this by defining a new class Integer which
inherits the members of the class Rational. In this new class, we waat to make sure
that the denominator is alwa ys I. so we redefine the method setrciiio,tal. In fact, we
define two versions of set ratwnal.

Here is the definition of' the new class:

class Integer:public Rational
public:

void setrational(ionq, long);
.1d setratorial(1cng);

The class Rational is called the base class of the class l,iteer.
However, in order for set ratir,nol to access the Rational members numerator and

denominator, those members cannot have been defined as private A private member
can only he accessed by the methods of the class itself, iot even by the methods of
all class. To allow Rational to serve as a base class for Integer and give In-
teger access to its members, yet to keep those members inaccessible from the rest of
the program, the members must be defined as protected rather than private. The new
definition of Rational would then he

class Rational
protected:

long numerator;
long denominator;
void reduce(vojd);

public:
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Let us now Implement the two methods named setrational in the definition of
Integer. The first seirational is included 10 override the routine seirational in the class
Rational so that a noninteger rational is not accidentally assigned to an object of type
Infrger. It is implemented as follows:

void Integer::setratiorta](long num, long denom)

if(denom	 1)
error(ERROR: non-integer assigned to Integer variable");

numerator = num;
denominator = 1;

The more usual version of Integer::se!rationaf with one parameter, is as follows:

void Integer:: setrational (long nuni)

numerator	 num;
denominator = 1;

Now if r is a Rational and i is an integer, then any of the following calls are valid:

r. add (1)
i .add(r)
r.divide(i)
i .divide(r)

The methods add and divide, defined for Rational, are inherited by Integer and
can be invoked for an integer variable.

Note that the definition of the class Integer begins with the line

class Integer:public Rational {

The indication public in this line specifies that Integer has access to the protected and
public members of Rational, and they become, in turn, protected and public members of
In!egcj; However, if Rational were a protected base class (that is. protected appeared
instead of public in the opening line of the integer definition), the public members
of Rational would become protected members of Integer. Similarly, if Rational were a
private base class, the public and protected members of Rational would become private
members of integer.

Constructors

A constructor is a special method of a class that is invoked whenever an object
of that class is created. A contruclor alwa y s is named with the same name as the class
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itself. In our example above, we used the method setraliwuzI to Intl jali,.e a Rotit,,ui!
object. We could have used a constructor instead.

For example, suppose that we include in the class definitionlion of kolio,usl the fol-

lowing three members, all public and all named Rational.

Rational (void);
Rational (long);
Rational(long, long);

They are implemented as follows:

Rational: :Rational (void)

assume the rational number is 0
numerator = 0;
denominator	 1;

}

Rational: :Rational(long i)

numerator
denominator	 1;

Rational::Rational(lOflg flue, long denom)

numerator = flue;
denominator = denorn;

}

Then when we declare an object to be a Rntio,wI, the appnpri ate c n'trttctor Is

invoked. The declination

Rational r;

automatically initializes r to the ranonal zero (0/I) since that is	 hat the coostwctor

Rational does with no paraiiieters. I'hc declaration

Rational r(3);

sets r to the i-ational 3/I, sittee it invokes the second vcrsiun Ofthe construetol, Finally.

the declaration

Rational r(Z,S);

sets rIo the rational 2/5. invoking the third ver'.ion of Raiu,uil. with To pir:tInetcr.
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The operator new in C++, applied to a type desinatur, allocates a new object ofthe given t y pe and reltirus a pointer to it. When new is called, the constructor is also
invoked auto matically. Thus the statement

Rational p	 new Rational;

declares a pointer variable p. allocates a new object of type Rational, initializes it to 0
(since that is what the constructor with no areujflents does, and Sets p to point to the
object

The statement

Rational p	 new Rational (2,5);

sets p to point to a newl y allocated Rational object with value 2/5.
We can also use the constructor in a statement such as

r = Rational(7

which sets ito the rational number 7/I.

EXERCISES

1.4.1. Write a nethod iiecirle for the class Rational that returns the ne gative of a rational num-
ber.

1.4.2.	 Write .r ritethod subtra,t for the class Rational that returns the result of subtracting one
rational nun her Ira a another.

1.4.3. Dcliae a class Soon that represents a string by a length and a pointer to a string of
character,.

Go Write a constructor for Siring to allocate appropriate storage for it and to initialize
It to a ci sen C stri rig. To allocate stora ge br an array of characters of length N. use
the C--	 operation

new char[4]

(h)	 Write a ci instructor [or Sin/ic' to allocate storage of a g iven size for the string but
no( to initialize its characters

let \VrIle a method co?t('ot to concatenate one Siriiti,' with another.
1.4.4. Rewrite the routines of this section to use the constructors Rational rather than the

method .velrwio,wI
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The Stack

One of the most useful concepts in computer science is that of the stack. in this chapter
we shall examine this deceptively simple data structure and see why it plays such a
prcminent role in the areas of programming and programming languages. We shall
define the abstract concept of a stack and show how that concept can be made into a
concrete and valuable tool in problem solving.

.1 DEFINITION AND EXAMPLES

A slack is an ordered collection of items nto which new items may be inserted and
from which items may be deleted at one end, called the top of the stack. We can picture
a stack as in Figure 2.1.1.

Unlike that of the array. the definition of the stack provides for the insertion and
deletion of items, so that astack is a dynamic, constantly changing object. The question
therefore arises, how does a stack change? The definition specifies that a single end
of the stack is designated as the stack top. New items may be put on top of the stack
(in which case the top of' the stack moves upward to correspond to the new highest
element), or items which are at the top of the stack may be removed (in which case the
top of the stack moves downward to correspond to the new highest element). To answer
the question, which way is up? we must decide which end of the stack is designated
as its top—that is. at which end items are added or deleted. By drawing Fi gure 2.1.1
so that F is physically higher on the page than all the other items in the stack, we
imply that F is the current top element of the stack. If any new items are added to the
stack:they are-placed on top ofF, and if an y items are deleted. F ithe first to he deleted.
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a

A	 Figure 2.1.1 Stack containing stack
terms.

This is also indicated by the vertical lines that extend past the items of the stack in the
direction of the stack top.

Figure 2.1.2 is a motion picture of a stack as it expands and shrinks with the
passage of time. Figure 2.1.2 a shows the stack as it exists at the time of the snapshot of
Figure 2.1.1. In Figure 2.1.2 b, item G is added to the stack. According to the definition,
there is only one place on the stack where it can be placed—on the top. The top element
on the stack is now G. As the motion picture progresses through frames c, d, and e, items

I and J are successively added onto the stack. Notice that the last item inserted (in
uilS .ase J) ., at the top of the stack. Beginning with frame f ., however, the stack begins
to shrink, as first J. then I, H, G, and F are successively removed. At each point, the
top element is removed, since a deletion can be made only from the top. Item G could
not be removed from the stack before items J. 1. and H were gone. This illustrates the
most important attribute of a stack, that the last element inserted into a stack is the first
element deleted. Thus J is deleted before! because J was inserted after!. For this reason
a stack is sometimes called a last-in, first-out (or LIFO) list.

Between frames j and k the stack has stopped shrinking and begins to expand
again as item K is added. However, this expansion is short-lived, as the stack then
shrinks to only three items in frame n.

Note that there is no way to distinguish between frame a and frame i by looking
at the stack's state at the two instances. In both cases the stack contains the identical
items in the same order and has the same stack top. No record is kept on the stack of
the fact that four items had been pushed and pofped in the meantime. Similarly, there
is no way to distinguish between frames d and f, orj and 1. If a record is needed of the
intermediate items having been on the stack, that record must be kept elsewhere; it does
not exist within the stack itself.

In fact, we have actually taken an extended view of what is really observed in a
stack. The true picture of a stack is given by a view from the top looking down, rather
than from a side looking in. Thus, in Figure 2.1.2, there is no perceptible difference
between frames h and o. In each case the, element at the top is G. Although the stack
at frame h and the stack at frame o are not equal, the only way to de r rrnine this is
to remove all the elements on both stacks and compare them individually. Although
we have beenlooking at cross sections of stacks to make our understanding clearer, it
should be noted that this is an added liberty, and there is no real provision for taking
such a picture.
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PrimitiVe Operations

The io changes which can be made to a stack are given special names. When
an item is added to a stack, it is pushed onto the stack, and when an item is removed, it
is popped from the stack. Given a stack s, and an Item 1, performing the operation push
(s, i) adds the item ito the top of stack s. Similarly, the operation pop(s) removes the
top element and returns it as a function value. Thus the assignment operation

pop(s);

removes the element at the top of .c and assigns its value to i.
For example, if .s is the stack of Figure 2.1.2, we performed the operation push

(.s. G) in going from frame a to frame h. We then performed, in turn, the following
operations:

push (s,I);	 (frame (c))
push (si);	 (frame (d))
pish (s,J);	 (Frame (e))
pop (s);	 (frame (f))
pop (s);	 (frame (g))
pop (s);	 (frame (h))
pop (s);	 (frame (i))
pop (s);	 (frame (j))
push (s,/O;	 (frame (k))
pop (s);	 (frame (1))
pop (s);	 (frame (m))
pop (s);	 (frame (n))
push (sC);	 (frame (o))

Because of the push operation which adds elements to a stack, a stack is some-
times called a pushdown list.

There is no upper limit on the number of items that may be kept in a stack, since
the definition does not specify how many items are allowed in the collection. Pushing
another item onto a stack merely produces a larger collection of items. However, if a
stack contains a single item and the stack is popped, the resulting stack contains no
items and is called the empty stack. Although the push operation is applicable to any
stack, the pop operation cannot be applied to the empty stack because such a stack has
no elements to pop. Therefore, before applying the pop operator to a stack, we must
ensure that the stack is not empty. The operation empty(s) determines whether or not a
stack s is empty. If the stack is empty, empty(s) returns the value TRUE; otherwise it
returns the value FALSE.

Another operation that can b performed on a stack is to determine what the top
item on a stack is without removing it. This operation i5 written staczop(s) and returns
the top element of stacks. The operation siackiop(s) is not really a new operation, since
it can be decomposed into a pop and a push.

i = srackrop(s);
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is equivalent to

= pop(s);
push (5,1);

Like the operationpop, .Vlacktop is not defined for an empty stack. The result of an illegal
attempt to pop or access an item from an empty stack is calh underfiow. Underfiow
can be avoided by ensuring that empty(s) is false before attempting the operation pop(s)Or .vtark top(s).

Example

Now that we have defined a stack and have indicated the operations that can be
performed on it, let us see how we may use the stack in problem solving. Consider a
mathematical expression that includes several sets of nested parentheses; for example.

7- ((X e ((X+	 / (3- 3)) +

We want to ensure that the parentheses are nested correctly; that is, we want to check
that

1. There are an equal number of right and left parentheses.
2. Every right parenthesis is preceded by a matching left parenthesis.

Expressions such as

	

((A+B)	 or	 A -t- B(
violate condition 1, and expressions such as

)A+B(—C	 or	 (A+B))—(C+D
violate condition 2.

To solve this problem, think of each left parenthesis as opening a scope and each
right parenthesis as closing a scope. The nesting depth at a particular point in an ex-
pression is the number of scopes that have been opened but not yet closed at that point.
This is the same as the number of left parentheses encountered whose matching right
parentheses have not yet been encountered Let us define the parenthesis count at a
particular point in an expression as the number of left parentheses minus the number
of right parentheses that have been encountered in scanning the expression from its left
end up to that particular point. If the parenthesis count is nonnegative, it is the same as
the nesting depth. The two Conditions that must hold if the parentheses in an expression
form art 	 pattern are as follows:

1. The parenthesis count at the end of the expression is 0. This implies that no scopes
have been left open or that exactly as many ri ght parentheses as left parentheseshave been found.

2. The parenthesis count at each point in the expression is nonne gative. This implies
that no right parenthesis is encountered for which a matching left Parenthesis had
not previously been encountered.
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(4-2.5))
0 0 1 2 2 2 3 4 4 4 4 3 3 4 4 4 4 322211 222 2 10

((A+R)
122221

A + B (
000 1

)	 A + B 
-1 -1-1-1000

(A+8) ) - (C+0
1 1 11 0 -1 -1 0 0 0 0

Figure 2.1.3 Parenthesis count at various points of strings.

In Figure 2.1.3 the count at each point in each of the previous five strings is given
directly blow that point. Since only the first string meets the foregoing two conditions,
it is the only one among the five with a correct parentheses pattern.

Let us now change the problem slightly and assume tharthreè different types
of scope delimiters exist. These types are indicated by parentheses ((and)). brackets
(Iandj), and braces ({ and }). A scope ender must be of the same type as its scope opener.
Thus, strings such as

(A + B], I(A + B]), {A - (B)J
are illegal.

It is necessary to keep track of not only how many scopes have been opened but
also of their types. This information is needed because when a scope ender is encoun-
tered, we must know the symbol with which the scope was opened to ensure that it is
being closed properly.

A stack may be used to keep track of the types of scopes encountered. Whenever
a scope opener is encountered, it is pushed onto the stack. Whenever a scope ender is
encountered, the stack is examined. If the stack is empty, the scope ender does not have
a matching opener and the string is therefore invalid. If, however, the stack is nonempty,
we pop the stack and check whether the popped item corresponds to the scope ender.
If a match occurs, we continue. If it does not, the string is invalid. When the end of the
string is reached, the stack must be empty; otherwise one or more scopes have been
opened which have not been closed, and the string is invalid. The algorithm for this
procedure follows. Figure 2.1.4 shows the State of the stack after reading in parts of the
string { x ().- [a + b]) *c - [(d+ 01)1(h/(h (j - (k -

valid true;	 /* assume the string is valid
S	 the empty stack;
while (we have not read the entire string) {

read the next symbol (symb) of the string;
if(syrnb-_= ( I 1 synib== '[• H symb	 '{')

push(s,symb);

82	 The Stack	 Chap. 2



k	 I	

(x . (
	 (x.(y-(..

Li
(x+ (y(a+bI)
	

(x • (y - (a • bi) • C-[  (.

1 •
(x+(y-a.b1).c-I(d.a)J)...	 (x + (y - ( a . bl) • c-( (d. e) )/(h-(/- (k-I...

	

Li.	 Li
(r , (y- (a +1,)) • c-I (ci + .) 3 )/(p,-(J- (k- ('_ nfl)... (x + (y- (a .bJ) • c-C Cd. .31 /(h-(J- (k- Cl-ni

1gw. 2.1.4 Parenthesis stack at various stag" of processing.
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if (symb	 ')' II sysnb ==	 II syrnb
if (empty(s))

valid = false;
else {

= pop(s);
if Ci is not the matching opener of symb)

valid = false;
/ end else V

I / end while V
if (!empry(s))

valid = false;

if (valid)
printf("%s", 'the string is valid');

else
printf("%s", the string is invalid');

Let us see why the solution to this problem calls for the use of a stack. The last
scope to-he opened must be the first to be closed. This is simulated by a stack in which
the last element arriving is the first to leave. Each item on the stack represents a scope
that has been opened but that has not yet been closed. Pushing an item unto the stack
corresponds to opening a scope, and popping an item from the stack corresponds to
clositt a scope, leaving one less scope open.

Notice the correspondence between the number of elements on the stack in this
example and the parenthesis count in the previous example. When the stack is empty
(parenthesis count equals 0) and a scope ender is encountered, an attempt is being made
to close a scope which has never been opened, so that the parenthesis pattern is invalid.
In the first example, this is indicated by a negative parenthesis count, and in the second
example by an inabilit y to pop the stack. The reason that a simple parenthesis count
is inadequate for the second example is that we must keep track of the actual scope
openers themselves. This can be done by the use of a stack. Notice also that at any
point, we examine only the element at the top of the stack. The particular configuration
of parentheses below the top element is irrelevant while examining this top element. It
is only after the top element has been popped that we concern ourselves with subsequent
elements in a stack.

In general a stack can be used in any situation that calls for a last-in, first-out
discipline or that displays a nesting pattern. We shall see more examples of the use of
stacks in the remaining sections of this chapter and, indeed, throughout the text.

-The Stack as an Abstract Data Type

The representation of a stack as abstract data type is straightforward. We use
e!rvpe to denote the type of the stack element and parameterie the stack type with
eltype.

abstract typedef <<eltype>> STACK (eltype);
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I.	 •'ifl:q:-- t.

abstract empty(s)	 1-	 - . s-	 •.'.
STACK(eltype)
postcondition	 empty	 (len(s) == 0);	 --.--''-L

abstract eltype pop(s)	 .	 .• .	 t .
STACKeltype) s;	 •
precondition	 empty(s) == FALSE;	 .	 ,... .........
postconditwn	 pop = first(s);

s == sub(s, 1, 1en(s) - 1);

abstract push(s, elt)
STACK(elrype) s;
etvpe elt:
postcondition	 5	 <elt> +

EXERCISES

•	 Tt.i"I	 •Fi

2.1.1. Use the operations push. pop. suicklop. and empty to construct operations which do each
of the following.
(a) Set ito the second element from the top of the stack, leasing the stack without its

top two elements.
bi Set ito the second element from the top of the stack, leaving the stack unchanged.
(c) Given an integer 0. set ito the nth element from the top of the stack, leaving the

stack without its top if elements.
(d) Given an integer o. set ito the nth element from the top of the stack. Teavng the

stack unchunied.
(e) Set ito the bottom element of the stack. leaving the stack empty.
(f) Set ito the bottom clement of the stack, leaving the stack unchanged. (Him: Use

another, auxiliary stack.)
(g) Set ito the third element from the bottom of the stack.

2.1.2. Simulate the action of the algorithm in this section for each of the following strings by
showinQ the contents of the stack at each point.
(a) (A + Bit
fbi	 [A - BI 	 (C - D)]

(c) (A-,-B)—{C+D}—IF-r-GI

Id	 oH)	 (IJ --

(C)	 (((A)))

2.1.3. Write an algorithm to determine if an input character string is of the tirrn

-v C v

where v is a string consisting of the letters 'A' and B'. and where v is the reverse of
N (that is. &x = "ABABA." v must equal "ABBABA'). At each point you may teud
onl y the next character of the string.

2.1.3. Write all 	 to determine if an input character strin g is of the form

1:DbDCD ... D:
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where each string a. b., z is of the form of the string defined in Exercise 2.1.3. (Thus
a string is in the proper form if it consists of any number of such strings separated by
the character 'D'.) At each point you may read only the next character nf the string.

2.13. Design an algorithm that does not use a stack to read a sequence of push and pop opera-
tions, and determine whether or not underfiow occurs in some pop operation. Implement
the algorithm as a C program.

2.1.6. What set of conditions are necessary and sufficient for a sequence of push and 'op op-
erations on a single stack (initially empty) to leave the stack empty and not cause un-
derfiow? What set of conditions are necessary for such a sequence to leave a nonempty
stack unchanged?

2.2 REP ESENTING STACKS IN C

Before programming a problem solution that uses a stack, we must decide how to rep-
resent a stack using the data structures that exist in our programming language. As we
shall see, there are several ways to represent a stack iii C. We now consider the simplest
of these. Throughout this text, you will be introduced to other possible representations.
Each of them, however, is merely an implementation of the concept introduced in Sec-
tion 2. I. Each has advantages and disadvantages in terms of how close it comes to
mirroring the abstract concept of a stack and how much effort must be made by the
programmer and the computer in using it.

A stack is an ordered collection of items, and C already contains a data t ype that is
all collection of items: the array. Whencvr a problem solution calls for the use
of a stack, therefore, it is tempting to begin a program by declaring a variable stack as
all 	 However, a stack and an array arc two entirely different things. The number of
elements in all fixed and is assigned by the declaration for the array. In general.
the user cannot change this number. A stack, on the other hand, is fundamentally a
dynamic object whose size is constantly changing as items ae popped and pushed.

However, although all array cannot be it stack, it can be the home of it stack. That
is, an aray can be declared large enough for the maximum size of the stack. During the
course of program execution, the stack call and shrink within the space reserv"!
for it. Oiic end of the array is the fixed bottom of the stack, while the top of the stack
constantly shifts as items are popped and pushed. Thus, another field is needed that, at
each point during program execution, keeps track of the current position of the top of

the stack.
A stack in C may therefore be declared as a structure containing two objects:

an array to hold the elements of the stack, and an integer to indicate the position of
the current stack top within the array. This ma y be done for a stack of integers by the
declarations

#define STIICKSIZE 100
struct stack

mt top;
mt items(STACKSIZE);
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Once this has been done, an actual stack .c may be declared by

struct stack s;

Here, we assume that the elements of the stack s contained in the array s.i:ems are
integers and that the stack will at no time Contain more than STACKSIZE integers.
In this example STACKSIZE is set to 100 to indicate that the stack can contain 100
elements (items(0) through izeinsL991).

There is, of course, no reason to restrict a stack to contain only integers; items
could just as easily have been declared as float iZemsISTACKSIZEJ or char
iICmsISTACKSJZEJ, or whatever other type we might wish to give to the elements
of the stack. In fact, should the need arise, a stack can contain objecLs of different types
by using C unions. Thus

ldefine STACKSIZE 100

	

#define INT	 1
tdefine FLOAT 2
Wine STRING 3
struct stackelement {

mt etype; / etype equals INT, FLOAT, or STRING
/ depending on the type of the	 *1
/	 corresponding element. 	 *1

union {.
hit	 ival;
float fval;
char pval; / pointer to a string
element;

struct stack
hit top;
struct stackelement items[STACKSIZE];

defines a stack whose items may be either integers, floating-point numbers, or strings,
depending on the value of the corresponding errpe. Given a stack s declared by

stl•uCt stack s;

we could print the top element of the stack as follows:

struct stackelement se;

se = s.tems[s.top];
switch (se.etype) {

case INTGR : printf(% d\n, se.ivafl;
case FLT : pnntf(% f\n', se.fval);
case STRING : printf("% s\n', se.pval);

} /end switch /
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For simplicit y in the remainder of this section we assume that a stack is declared
to have onl y IlOfliO geneotis elements (so that unions are not necessary). The identifier top
must a!wavs be declared as an irneer. since its value represents the position within the
arra y heals of the topmost stack element. Therefore, if the value of stop is 4. there arefive elements on the stack: s. ite?nsIO] s. iten,s[ I .s. iu',,,.c( 2] ,s. itelnsl3 . and s. irents[4].
When the stack is popped, the value of stop is chaned to 3 to indicate that there are
now onl y four c le-ments on the stack and that sJ!emsJ31 is the top element. On the other
hand. if a new object is pushed onto the stack, the value of stop must.be increased by
I to 5 and the new object inserted into s.iten.s[5].

The empty stack contains no elements and can therefore be indicated by top
equalling - I. To initialize a stack s to the empty state, we may initially execute
S.tOp = — I:.

To determine, during the course of execution, whether or not a stack is empty the
condition s.iop	 - I may be tested in an if statement as follows:

if (s.top == -1)
I stack Is empty

else
I stack is not empty •/

This tcst corresponds to the operation c'lnf,rv(v) that was introduced in Section 2.1. Al-
ternativel y, we ma y write a function that returns TRUE if the stack is empty and FALSEif it is not empty. as toilows:

nt ernpty(struct stack ps)

if (Ps->top	 -1)
return(TRIJE);

else
return(FALS[);
/ end empty Y

Once this function exists, a test for the empty stack is i i1iplemnicd by the statement

if (empty (&s))
/ stack is empty 7

else
/ stack is not empty V

	

Note the difference	 cn the syntax of the call to e,optv in the algorithm of
Section 2.1 and in the program seg mite lit here. In the al gorithm, . represented a stack
and the call to en,p:v was expressed as

empty(s)

In Ill's  sect loll, we are concerned with the actual implementation of the stack and
i topei imtioll. Since parameters in C are passed by cal tie, the only Way to modify the
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argument passed to a function is to pass the address of the argument rather than the
argument itself. Further. the original definition of C (by Kernighan—Ritchie) and many
older C compilers do not allow a structure to be passed as an argument even if its value
remains unchanged. (Although this restriction has been omitted in ANSI C, it is gener-
ally more efficient to pass a pointer when the structure is large.) Thus in functions such
as pop and push (which modify their structure arguments), as well as emprt' (which does
not), we adopt the convention that we pass the address of the stack structuie, rather than
the stack itself.

You may wonder why we bother to define the function empty when we could just
as easily write if s.top = = - I each time that we want to test for the empty condition.
The answer is that we wish to make our programs more comprehensible and to make
the use of a stack independent of its implementation. Once we understand the stack
concept, the phrase "emprv(&s)' is more meaningful than the phrase "stop = = - I
If we should later introduce a better implementation of a stack, so that "s.top = = - I"
becomes meaningless, we would have to change every reference to the field identifier
s.top throughout the entire program. On the other hand, the phrase "enlpry(&s)" would
still retain its meaning, since it is an inherent attribute of the stack concept rather than
of an implementation of that concept. All that would be required to revise a program
to accommodate a new implementation of the stack would be a possible revision of the
declaration of the structure stack in the main program and the rewriting of the function
empty. (It is also possible that the form of the call to empty would have to be modified
so that it does not use an address.)

Aggregating the Set of implementation-dependent trouble spots into small, easily
identifiable units is an important method of making a program more understandable and
modifiable. This concept is known as modularization, in which individual functions are
isolated into low-level modules whose properties are easily verifiable. These low-level
modules can then be used by more complex routines, which do not have to concern
themselves with the details of the low-level modules but only with their function. The
complex routines may themselves then he viewed as modules by still higher-level rou-
tines that use them indepeiidentiv of their internal details.

A pro grammer should always be concerned with the readability of the code he or
she produces. A small amount of attention to clarity will save a large amount of time
in debugging. Large- and medium-sized programs will almost never be correct the first
time they are run. If precautions are taken at the time that a program is written to ensure
that it is easily modifiable and comprehensible, the total time needed to get the program
to run correctly is reduced sharply. For example, the ifstatement in the empty function
could he replaced by the shorter, more efficient statement

return (ps->top	 -1);

This statement is precisely equivalent to the longer statement

if (PS->top	 -1)
return(TRE);

else return(FALSE);
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This is because the value of the expression ps — >iop = = -I is TRUE if and only if thecondition ps— >,op = = - I is TRUE. However, someone who reads a program will
probably he much more comfortable reading (hef statement. Often 

YOU will find that
if you use "tricks" of the language in writing programs, you will be unable to decipher
your own programs after putting them aside for a day or two.

Although it is true that the C programmer is often concerned with economy of
code, it is also important to consider the time that will no doubt be spent in debugging.
The mature professional (whether in C or other language) is constantly concerned with
the proper balance between code economy and code clarity.

Implementing the pop Operation

Th possibility of underfiow must be considered in implementing the pop Opera-
tion, since the user may inadvertently attempt to pop an element from an empty stack.
Of course, such an attempt is illegal and should be avoided. However, if such an attempt
should he made the user should he informed of the unclerfiow condition. We therefore
introduce a function pop that performs the following three actions:

1. If the stack is empt y, print a warning message and halt execution.
2. Remove the top element from the stack. 	 -
3. Return this element to the callin g program.

We assume that the stack consists of integers, so that the pop operation can be imple-
mented as a function. This would also he the case if the stack consisted of some other
type of simple variable. However, if a stack consists of a more complex structure (for
example, a structure or a union), the pop operation would either be implemented as
returning a pointer to a data element of the proper type (rather than the data element
itself), or the operation would be ' implemented with the popped value as a parameter
(in which case the address of the parameter would be passed rather than the parameter,
so that the pop function could modify the actual argument).

mt pop(struct stack ps)

if (empty(ps)) {
printf("%", 'stack underfiow");
exit(1);

) / end if V
return(ps->items(ps_)top__J).
/ end pop '7

Note that ps is aireadva pointer to a structure of t ype stack; therefore, the address
operator "&" is Out used in callin g empty. Ill applications in C. one must always
distinguish between pointers and actual data objects.

LtM us look at the pop function more closely. If the suck is not empty, the top
element of the stacL is retained as the returned value. This element is then

.
hen removed

from the stack by the expression p.c —> top— . Assume that when pop is called.
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ps —> top equals 87; that is, there are 88 items on the stack. The value of ps —> items[87]
is returned, and the value of p.c —> toji is ciianged to 86. Note that ps —> iIenss(87
still retains its old value; the array ps —> items remains unchanged by the call to pop.
However, the stack is modified, since it now contains only 87 elements rather than 88.
Recall that an array and a stack are two different objects. The array only provides a
home for the stack. The stack itself contains only those elements between the zeroth
element of the array and the lopih element. Thus reducing the value of ps —> top by I
effectively removes an element from the stack. This is true despite the fact that ps —>
items[871 retains its old value.

To use the pop function, the programmer can declare mi x and write

x	 pop (&s);

x then contains the value popped from the stack. If the intent of the pop operation is not
to retrieve the clement on the top of the stack but only to remove it from the stack, the
value of x will not be used again in the program.

Of course, the programmer should ensure that the stack is not empty when the
pop operation is called. If the programmer is unsure of the slate of the stack, its status
may be determined by coding

if (impty(&s))
x	 pop (&s);

else
/ take remedial action

If the programmer unwittingly does call pop with an empty stack, the function
prints the error message stack unde,flow and execution halts. Although this is an un-
fortunate state of affairs, it is far better than what would occur had the if statement in
the pop routine been omitted entirely. In that case, the value of s.top would be —1 and
an attempt would he made to access the nonexistent element s. items[ —I].

A programmer should always provide for the almost certain possibilit y of error.
This can be done by including diagnostics that are meaningful in the context of the prob-
lem. By doing so. if and when an error does occur, the programmer is able to pinpoint
its source and take corrective action immediately.

Testing for Exceptional Conditions

Within the context of it problem, it may not be necessar,' to halt execu-
tion immediately upon the detection of uriderfiow. Instead, it might he more desirable
for the pop routine to signal the calling' program that an undertiow has occurred. The
calling routine, upon detecting this signal. can take corrective action. Let us call the pro-
cedure that pops the stack and returns an indication whether underfiow has occurred,
popanthest:
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void popandtest(strt stack -ps, mt px, mt pund)

if (empty(ps)) {
pund TRUE;

return;
} / end if
*pund	 FALSE;
px = PS->irenis[ps->top--];

return;
} / end popandtest

In the calling program the pro grammer would write

popandtest(&s, &x, &und);
if (und)

/ take corrective action
else

use value of x

Implementing the Push Operation

Let its now examine the push operation. It seems that this operation should be
quite easy to implement using the array representation of a stack. A first attempt at a
push procedure mi g ht be the following:

void pasn(struct stack ps , mt x)

PS->items[,-.i-(ps-. top)]
return;

7* end push /

Thi.', routine makes room for the item t to he pushed onto the stack by incrementing
stop by 1, and then mnserts x into the arra y s. items.

The routine directly implements the pu.,/, operation introduced in Section 2.1.
Yet, as it stands, it is quite incorrect. It allows a subtle error to creep in, caused by usingthe arra y representation of the stack. Recall that it stuck is a dynamic structure that is
constantl y allowed to grow and shrink and thus chan ge its size. An array, on the other
hand, is if object of predetermined size. Thus, it is quite conceivable that it stack
may outgrow the array that was set aside to contain it. This occurs when the array is
full, that is, when the stack contains as many elements as the array and an attempt is
made to push yet another element onto the stack. The result of such an attempt is called
an n'erflow.

Assume that the array s.items is full and that the C push routine is called. Re-
member that the first arra y position is 0 and the arbitrary Si/C (STACKSIZE) chosenfor the array s. Items is IOU. The full array is then indicated by the condition .c. top =
09, so that position 99 Wie 100th element of the array) is the current top of the stack.
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When push is called, s.top is increased to 100 and an attempt is made to insert x into
s.ircnrcl l()0l. Of course. the upper bound of s.ite,ns is 99, so that this attempt at insertion
results in an unpredictable error. depending oil contents of the memory locution
following the last array position. An error message may be produced that is unlikel y to
relate to the cause of the error.

The posh procedure must therefore be revised so that it reads as follows:

void push(struct stack *p5 'mt x)

if (ps->top = STACKSIZE-1) {
'pr'mntf("%s; stack overflow");
exit (1)

else
Ps -> i t ems[*+(ps - >top)] =

return;
/ end push */

Here, we check whether the array is full before attempting to push another element onto
the stack. The array is full if ps —> top = = stacksize — I.

You should again note that if and when overflow is detected in push. execution
halts immediately after all message is printed. This action, as in the case of pop.
may not be the most desirable. It might. in some cases, make more sense for the calling
routine to invoke the push operation with the instructions

pushandtest(&s, x, & overflow);
if (overflow)

/ overflow has been det9cted, x was not
/' pushed on stack, take remedial action.

else
/ x was successfully pushed on the stack
Ile	 continue processinq.	 V

This allows the calling program to proceed after the call to pushandiest. whether or not
overflow was detected. The subroutine pushcindtesr is left as an exercise for the reader.

Although the 6verfloxv and underflow conditions are treated similarly in push and
pop, there is a fundamental difference between them. Underfiow indicates uiat the pop
operation Cannot he performed on the stack and may indicate an error in the algorithm or
the data. No other Implementation or representation of the stack will cure the underfiow
condition. Rather, the entire problem must be rethought. (Of course. an underfiow might
occur as a signal for ending one process and beginning another. But in such a case
jopandresr rather than pop should be used.

Overflow, however, is not a condition that is applicable to a stack as an abstract
data structure. Abstractl y, it is always poss ible to push an element onto a stack. A stack
is just an ordered set, and there is no limit to the number of elements that such a set can
contain. The possibilit y of overflow is introduced when a stack is implemented by an
array with only a finite number of elements. thereby prohibiting the rowth of the stack

Sec. 2.2	 Representing Stacks in C	 93



beyond that number. It may very well be that the algorithm that the programmer used
is correct, just that the implementation of the algorithm did not anticipate that the stackwould become SO large. Thus, in some cases an overflow condition can he corrected by
changing the value of the constant STACKSJZE so that the array field items contains
more elements. There is no need to change the routines pop or push, since they referto whatever data structure was declared for the type stack in the program declarations.push also refers to the constant STA CKS/ZE. rather than to the actual value 100.

However, more often than not, an overflow does indicate an error in the program
that cannot he attributed to a simple tack of space. The program ma y he in an infinite
loop in which items are constantly being pushed onto the stack and nothing is ever
popped. Thus the stack will outgrow the array hound no matter how high that bound is
set. The programmer should always check that this is not the case before indiscrimi-
nately raising the arra y bound. Often the maximum stack size can be determined easily
from the program and its inputs, so that if the stack does overflow there is probably
something wrong with the algorithm that the program represents.

Let us now look at our last operation on stacks, stack!op(s), which returns the
tot element of a stack without removing it from the stack. As noted in the last section,
stackiop 

is not really a primitive operation because it can be decomposed into the two
operations:

X	 pop(s);
push (s, X);

However, this is a rather awkward way to retrieve the top element of a stack. Wh y not
ignore the decomposition noted above and directly retrieve the proper value? Of course,
a check for the empty stack and underfiow must then be explicitly stated, since the test
is no lon ger handled by a call to pop.

We present a C function slackrop for a stack of integers as follows:

mt stacktop(struct stack "ps)

if (enlpty(ps)) {
printf('%s" "stack under-flow");
exit(1);

else
return(ps->j tems [ps->top]);

} /*	 stacktop

You may wonder why we bother writing a separate routine stackiop when a ref-erence to .c.irems[s.top] would serve just as well. There are several reasons for this.
First, the routine slack! op incorporates a test for underfiow, so that no m y sterious error
occurs if the stack is empty. Second, it allows the programmer to use a stack without
worrying about its internal makeup. Third. if a different implementation of a stack is
introduced, the programmer need not comb through all the places in the program that re-
fer to s.iten.s[s.,op} to make those references compatible with the new implementation.
Onl y the siackiop routine would need to he changed.
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EXERCISES

2.2.1. Write C functions that use the routines presented in this chapter to implement the oper-
ations of Exercise 2.1.1.

2.2.2. Given a sequence of push and pop operations and an integer representing the sue of an
array in which it is to be implemented. design an algorithm to determine whether
or not overflow occurs. The algorithm should not use a stack. Implement the algorithm
as a C program.

2.2.3. Implement the algorithms of Exercises 2.1.3 and 2.1.4 as C programs.

2.2.4. Show how to implement a stack of integers in C by using an array inS xIS7ACKS(7E].
where x[Ol is used to contain the index of the top clement of the stack, and where sill
through .cISTACKSIZE.— II contain the elements on the stack. Write a declaration and
routines pop, push, eniptv. popw,dtesl. stacklop. and pu.shu,zdtest [or this implementa-
tion.

2.2.5. Implement a stack in C in which each item on the slack is varying number of integers.
Choose a C data structure for such a stack and design pinii and pop rotilines for it.

2.2.6. Consider a !anguagc that does not have arra y s but does have stacks as a data t ype. That
is. one can declare

stack 5;

and the push. pop. popandles:. and .czacklop operations are defined. Show how a one-
dimensional array can be implemented by using these operations on two stacks.

2.2.7 Design a method for keeping two stacks within a single linear array Sl.cpacesi:el so that
neither stack overflows until all of memory is used and an entire stack is never shifted
to a different location within the assay. Write C routines push]. push2. popl and pa,;2
to manipulate the two stacks. (Hint: The two stacks crow toward each other.)

2.2.8. The Bashcnuin Parking Garage contains a single lane that holds up to ten cars. There is
only a single entrance/exit to the garage at one end of the lane. If a customer arrives to
pick up a car that is not nearest the exit, all cars blocking its path are moved out, the
customer's car is driven out, and the other cars are restored in the same order that they
were in originally. Write a program that processes a group of input lines. Each input line
contains an A' for arrival or a 'D' for departure, and a license plate number. Cars are
assumed to arrive and depart in the order specified by the input. The program should print
a message whenever a car arrives or departs. When a car arrives., the message should
specify whether or not there is room for the car in the garage. Iltherc is no room, the car
leaves without entering the garage. When a car departs. the message should include the
number of times that the car was moved out of the garage to allow other cars to depart.

2.3 EXAMPLE: INFIX, POSTFIX, AND PREFIX

-aic Definitions and Examples

This section examines it application that illustrates the different types of
stacks and the various operations and functions defined upon them. The example is
also an important topic of computer science in its own riht.
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Consider the sum of A and B. We think of applying the operator "+" to theoperands A and B and write the sum as A + B. This particular representation is calledinfix. There are two alternate notations for expressing the sum of A and B using thesymbols A B, and +. These are

+AB	 prefix
A B +	 postflx

The prefixes "pre-," 'post-," and "in-" refer to the relative position of the oper-
ator with respect to the two operands. In prefix notation the operator precedes the two
operands, in postflx notation the operator follows the two operands, and in infix notation
the operator is between the two operands. The prefix and postflx notations are not really
as awkward to use as they might at first appear. For example, a C function to return the
sum of the two arguments A and B is invoked by add(A, B). The operator add precedesthe operands A and B.

Let us now consider some additional examples. The evaluation of the expressionA + B * C, as written in standard infix notation, requires knowledge of which of the
two operations, + or *, is to be performed first. In the case of -I- and * we "know"
that multiplication is to be done before addition (in the absence of parentheses to the
contrary). Thus A + B * C is interpreted as A + (B C ) unless otherwise specified.
We say that multiplication takes precedence over addition. Suppose that we want torewrite A + B * C in postfix. Applying the rules of precedence, we first convert the
Portico of the expression that is evaluated first, namely the multiplication. By doing
this conversion in stages we obtain

A ± (B * C)	 parentheses for emphasis
A + (BC *)	 convert the multiplication
A (BC *) +	 convert the addition

	

ABC * +.	 postflx form

The only rules to remember during the conversion process are that Operationswjth
highest precedence are converted first and that after a portion of the expression has been
converted to postflx it is to be treated as a single operand. Consider the same example
with the precedence of operators reversed by the deliberate insertion of parentheses.

	

(A + B) * C	 infix form
(AB +) * C	 convert the addition
(AB +) C *	 convert the multiplication

AB + C *	 postflx form

In this example the addition is converted before the multiplication because of the paren-
theses. In going from (A + B) * C to (AB+) C. .4 and B are the operands and + is theoperator. In 2oing from (All +) C to (4B +)C t, (All ±) and C are the operands and *
is the operator. The rules for converting from infix to postfix are simple. providing that
YOU know the order of precedence.

We consider five binary operations: addition, subtraction multiplication, division,
and exponentiation The first four are a'ailable in C and are denoted by the usual op-
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erators +, -. *, and I. The fifth, exponentiation, is represented by the operator S. The
value of the expression A $ B is A raised to the B power, so that 3 $ 2 is 9. For these
binary operators the following is the order of precedence (highest to lowest):

Exponentiation

Multiplication/division

Addition/subtraction

When unparenthesized operators of the same precedence are scanned, the order
is assumed to be left to right except in the case of exponentiation, where the order is
assumed to be from right to left. Thus A + B + C means (A + B) + C. whereas A $ B
$ C means A $ (B S C). By ung parentheses we can override the default precedence.

We give the following additional examples of converting from infix to postfix. Be
sure that you understand each of these examples (and can do them on your own) before
proceeding to the remainder of this section.

Infix

A + B

A+B — C

(A + B) * (C - D)

A $ B * - D + E/Fl(G + H)

((A + B)*C —(D - E))$(F + G)

A - B/(C * D $ E)

Postuix

AB +

AB+C —

AB + CD - *

AB$C*D—EF/GH+/+

AB + C DE -- FG + $

ABCDE $ / -

The precedence rules for converting an expression from infix to prefix are iden-
tical. The only change from postflx conversion is that the operator is placed before the
operands rather than after them. We present the prefix forms of the foregoing expres-
sions. Again, you should attempt to make the transformations on your own.

Infix

A + B

A±B — C

(A + B) * (C - D)

A $ B * C - D + El F/ (G + H)

((A + B) *C — (D — E))$(F+ G)

A - Bl(C * D $ E)

Prefix

+ AB

- + ABC

*+AB —CD

+ - $ABCD//EF+GH

$ - * + ABC - DE + FG

- A / B * C $ DE

Note that the prefix form of a complex expression is not the mirror image of the postflx
form, as can be seen from the second of the foregoing examples, A + B - C. We will
henceforth consider only postfix transformations and leave to the reader as exercises
most of the work involving prefix.

One point immediately obvious about the postfix form of an expression is that it
requires no parentheses. Consider the two expressions A + (B * C)and (A + B) * C.
Although the parentheses in one of the two expressions is superfluous (by convention
A + B C = A + (B * C)), the parentheses in the second expression are necessar y to
avoid confusion with the first. The postfix forms of these expressions are
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Infix	 Postfjx

A+(H"C)	 ABC*+
(A+B)*C	 AB+C

There are no parentheses in either of the two transformed expressions. The order
of the operators in the postfix expressions determines the actual order of operations in
evaluating the expression, making the use of parentheses unnecessary.

In going from infix to postfix we sacrifice the ability to note at a glance the
operands associated with a particular operator. We gain, however, an unambiguous form
of the original expression without the use of cumbersome parentheses. In fact, the post-
fix form of the original expression might look simpler were it not for the fact that it
appears difficult to evaluate. For example, how do we know that if A = 3, B = 4, andC = 5 in the foregoing examples, then 3 4 5 * + equals 23 and 3 4 + 5 * equals 35?

Evaluating a Postf ix Expression

The answer to the foregoing question lies in the development of an algorithm for
evaluatihg expressions in postfix. Each operator in a postfix string refers to the previous
two operands in the string. (Of course, one of these two operands may itself be the result
of applying a previous operator.) Suppose that each time we read an operand we push
it onto a stack. When we reach an operator, its operands will be the top two elements
on the stack. We can then pop these two elements, perform the indicated operation on
them, and push the result on the stack so that it will be available for use as an operand
of the next operator. The following algorithm evaluates an expression in postfix using
this method:

opndstk the empty stack;
/ scan the input string reading one
/* element at a time into symb	 *1
while (not end of input)

syrnb = next input character;
if (syrnb is an operand)

push(opndstk, syinb);
else {

/ symb is an operator */
opnd2 = pop(opndstk);
opodi pop(opndstk);
value = result of applying syrnb to opndl and opnd2;
push(opndstk, value);

} /* end else
/ end while /

return(pop( opndstk));

Let us now consider an example. Suppose that we are asked to evaluate the fol-
lowing postfix expression:

623 + — 382 - f-* 2$ 3 +

We show the contents of the stack opndstk and the variables .cvnib, opndl , opnd2, andvalue after each successive iteration of the loop. The top of opndstk is to the right.
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svmb	 opndl	 opnd2	 valu,	 opndsik

6	 6
2	 6.2
3	 6,2,3
+	 2	 3	 5	 6.5
-	 6	 5
3	 6	 5	 I	 1,3
8	 6	 5	 I	 1.3.8
2	 6	 5	 I	 1,3.8,2

$	 2	 4	 1.3.4
±	 3	 4	 7	 1.7
*	 I	 7.	 7	 7
2	 1	 7	 7	 7,2
$	 7	 2	 49	 49
3	 7	 2	 49	 49,3
+	 49	 3	 52	 52

Each operand is pushed onto the operand stack as it is encountered. Therefore the
maximum size of the stack is the number of operands that appear in the input expression.
However, in dealing with most postfix expressions the actual size of the stack needed is
less than this theoretical maximum, since an operator removes operands from the stack.
In the previous example the stack never contained more than four elements, despite the
fact that eight operands appeared in the postfix expression.

Program to Evaluate a Postfix Expression

There are a number of questions we must consider before we can actually write a.
program to evaluate an expression in postfix notation. A primary consideration, as in all
programs, is to define precisely the form and restrictions, if any, on the input. Usually
the programmer is presented with the form of the input and is required to design a
program to accommodate the given data. On the other hand, we are in the fortunate
position of being able to choose the form of our input. This enables us to construct
a program that is not overburdened with transformation problems that overshadow the
actual intent of the routine. Had we been confronted with data in a form that is awkward
and cumbersome to work with, we could have relegated the transformations to various
functions and used the output of these functions as input to our primary routine. In the
'real world," recognition and transformation of input is a major concern.

Let us assume in this case that each input line is in the form of a string of digits and
operator symbols. We assume that operands are single nonnegative digits, for example,
0, 1. 2.....8, 9. For example, an input line might contain 3 4 5 ± in the first 5
columns followed by an end-of-line character ('\ n'). We would like to write a program
that reads input lines of this format, as long as there are any remaining, and prints for
each line the original input string and the result of the evaluated expression.

Since the symbols are read as cl)aracters, we must find a method to convert the
operand characters to numbers and the operator characters to operations. For example.
we FiIUSI have a method for converting the character 5' to the number 5 and the char-
acter '+' to the addition operation.
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The conversion of a character to an integer can be handled easily in C. if int x
is a single digit character in C, The expression x - '0' yields the numerical value of
that digit. To implement the operation corresponding to an operator symbol, we use a
function oper that accepts the character representation of an operator and two operands
as input parameters, and returns the value of the expression obtained by applying the
operator to the two operands. The body of the function will be presented shortly.

The body of the main program might be the following. The constant MAXCOLS
is the maximum number of columns in an input line.

#include <stdio.h>
#include <stdl'jb,h>
#include <math.h>

#defjne MAXCOLS 80
#define TRUE 1
#define FALSE 0

double eval (char []);
double pop(struct stack );
void push(struct stack *, double);
'mt ernpty(struct stack );
mt lsdigit(char);
double oper(jrtt double, double);

void main()

char expr[MAXCOLS];
mt position = 0;

while((expr[posjtjon.J = getcharQ)

expr[--position]	 '\O';'	 -
p rintf('%s%", the original postfix expression is, expr);

printf(\n%f", eval (expr));
} / end main *1

The main part of the program is, of course, the function eva!, which follows. That
function is merely the C implementation of the evaluation algorithm, taking into account
the scific environment and format of the input data and calculated outputs. eval callson a function isdigir that determines whether or not its argument is an operand. The.
declaration for a stack that appears below is used by the function eva/ that follows it aswell as by the routines pop and push that are called by eval.

struct stack {
mt top;
double items[t't&XCOLS
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double eval (char expr[])

mt c, position;
double opndl, opnd2, value;
struct stack opndstk;

opndstk.top	 -1;
for (position	 0; Cc = expr[position]) 1= 1 \0'; posltion+ +)

if (isdigit(c))
/ operand-- convert the character representation

1* of the digit into double and push It onto
the stack

•	 push(&opndStk, (double) (c-'O'));
else

operator	 *1

opnd2	 pop(&opndstk);
opndl	 pop(&opndstk);
value	 oper(c, opndl opndz);
push(&opndstk, value)

/ end else /
return(pop(&opfldstk))

) / end eval /

For completeness we present isdigit and oper. The function isdigir simply checks

if its argument is a digit:

mt 'isdigit(char symb)

{
return(symb >= '0' && symb <= '9');

This function is available as a predefined macro in most C systems.

The function oper checks that its first argument is a valid operator and, if it is.

determines , the results of its operation on the next two arguments. For exponentiation,

we use the function pow(op, op2) as defined in rnath.'h.

double oper(int symb, double opi, double op2)

switch(symb) {
case '+' : return (opi + op2);
case -' : return (opi - op2);
case	 : return (op1	 op2);

case '/ : return (opi / op2);
case ''	 return (pow(opl op2));
default : printf(%s", "illegal operation');

exit(1);

} / end switch 'J
} / end oper V
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Limitations of the Program

Before we leave the program, we should note some of its deficiencies Under-
standing what a program cannot do is as importanrs knowing what it can do. It should
be obvious that attempting to use a program to solve a problem for which it was not
Intended leads to chaos. Worse still is attempting to solve a problem with an intorrect
program, only to have the program produce incorrect results without the slightest trace
of an error message. In these cases the programmer has no indication that the results
are wrong and may therefore make faulty judgments based on those results. For this
reason, it is important for the programmer to understand the limitations of the program.

A major criticism of this program is that it does nothing in terms of error detec-
tion and recovery. If the data on each input line represents a valid postflx expression,
the program works. Suppose, however, that one input line has too man y operators or
operands or that they are not in a proper sequence. These problems could conic about
as a result of someone innocently using the program on a postflx expression that con-
tains two digit numbers, yielding an excessive number of operands. Or possibly the
user of the program is under the impression that the program handles negative numbers
and that they are to be entered with the minus sign, the same sign that is used to repre-
sent subtraction. These minus signs are treated as subtraction operators, resulting in an
excess number of operators. Depending on the specific type of error, the computer may
take one of several actions (for example, halt execution or print erroneous results).

Suppose that at the final statement of the program, the stack opndstk is not empty.
We get no error messages (because we asked for none), and eval returns a numerical
value for an expression that was probably, incorrectly stated in the first place. Suppose
that one of the calls to the pop routine raises the w condition. Since we didnot use the popandrest routine to pop elements from the stack, the program halts. This
seems unreasonable, since faulty data on one line should not prevent the processing of
additional lines. By no means are these the only problems that could arise. As exercises,
you may wish to write programs that accommodate less restrictive inputs and some
others that detect some of the aforementioned errors.

Converting an Expression from Infix to Postf ix

We have thus far presented routines to evaluate a postfix .expressjon Although we
have discussed a method for transforming infix to postfix, we have not as yet presented
an al gorithm for doing so. It is to this task that we now direct our attention. Once such
an ahorithm has been constructed, we will pave the capability of reading an infix ex-
presion and evaluating it by first converting it to postflx and then evaluating the postfix
expression.

In our previous discussion we mentioned that expressions within innermost paren-
theses must first be converted to postfix so that they can then be treated as single
operands. In this fashion parentheses can be successively eliminated until the entire
expression is converted. The last pair of parentheses to be opened within a group of
parentheses encloses the first expression within that group to he transformed. This last-
in, lit-st-out behavior should immediatel y su g gest the use of a stack.
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Consider the two infix expressions A + B * C and (A + B) * C. and their respective
postfix versions ABC * + and AB + C *. In each case the order of the operands is the
same as the order of the operands in the original infix expressions. In scanning
the first expression. A + B * C. the first operand. A, can be inserted immediately
into the postfix expression. Clearly the + symbol cannot be inserted until after its
second operand, which has not yet been scanned, is inserted. Therefore, it must be
stored away to be retrieved and inserted in its proper position. When the operand B is

scanned, it is inserted immediately after A. Now, however, two operands have been
scanned. What prevents the symbol + from being retrieved and inserted? The answer
is, of course, the * symbol that follows, which has precedence over +: In the case of
the second expression the closing parenthesis indicates that the + operation should be
performed first. Remember that in postfix, unlike infix, the operator that appears earlier
in the string is the one that is applied first.

Since precedence plays such an important role in transforming infix to. postfix, let
us assume the existence of a function prcd(op 1 .op2), where op I and op2 are characters
representing operators. This function returns TRUE if op  has precedence over op2

when op 1 appears to the left of op2 in an infix expression without parentheses. prcd

(9pl,op2) returns FALSE otherwise. For example, prcd('*',+')and prcd(±',+') are
TRUE, whereas prcd('+','*') is FALSE.

Let us now present an outline of an algorithm to convert an infix string without
parentheses into a postfix string. Since we assume no parentheses in the input string, the
only governor of the order in which operators appear in the postfix string is precedence.
(The line numbers that appear in the algorithm will be used for future reference.)

1 opstk = the empty stack;
2 while (not end of input) {
3	 syrnb = next input character:
4	 if (symb is an operand)

add syrnb to the postfix string
5	 else(
6	 while('ernpty(opstk) && prcd(stacktop(opstk), symb)) (
7	 topsymb = pop(opstk);
8	 add topsymb to the postfix string;

/ end while */
9	 push(opstk, synib);

} / end else */

} / end while */
/ output any remaining operators

10 while (!einpty(opstk)) {
11	 topsymb = pop(opstk);
12	 add topsymb to the postfix string;

} / end while */

Simulate the algorithm with such infix strings as A * B + C * D" and "A + B
* C $ D $ E" twhere '5' represents exponentiation and prcd ('$'. I') 	 FALSE I to
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convince yourself that it is correct Note that at each point of the simulation, an operator
on the stack has a lower precedence than all the operators above it. This is because the
intial empty stack trivially satisfies this condition, and an Operator is pushed onto the
stack (line 9) only if the operator currently on top of the stack has a lower precedence
than the incoming operator.

What modification must be made to this algorithm to accommodate parenthe-
ses? The answer is, surprisingly little. When an opening parenthesis is read, it must be
pushed Onto the stack. This can be done by establishing the convention that prcd(op,'(')equals FALSE, 

for any operator symbol op other than a right parenthesis In addition,
we define prcd('(' op) to be FALSE for any operator symbol op. [The case of op = =
will be discussed shortly.} This ensures that an operator symbol appearing after a left
parenthesis is pushed onto the stack:

When a closing parenthesis is read, all operators up to the first opening parenthesis
must be popped from the stack into the postfix string. This can be done by definingprcd(op, ')') as TRUE for all operators op other than a left parenthesis. When these
operators have been popped off the stack and the opening parenthesis is uncovered,
special action must be taken. The opening parenthesis must be popped off the stack and
it and the closing parenthesis discarded rather than placed in the postfix string or on the
stack. Let us set prcd('(',')') to FALSE. This ensures that upon reaching an opening
parenthesis, the loop beginning at line 6 is skipped, so that the opening parenthesis is
not inserted ilro the postfix string. Execution therefore proceeds to line 9. However,
since the closing parenthesis should not be pushed onto the stack, line 9 is replaced bythe statement

if (erapty(opstk) II syn,b
push(opstk svmb);

else / pop the open parenthesis and discard it */
topsy,nb = pOp(opsrk);

With the foregoing conventions for the prcd function and the revision to line 9,
the algorithm can be used to convert any infix string to postfix. We summar
precedence rules for parentheses: 	 ize the

prcd('(' ,op)	 FALSE
prcd(op,( 1 ) = FALSE
prcd(op,))	 TRUE
prcd() op) = undefined

for any operator op
for any operator op other than )
for any operator op other than ('
for any operator op (an attempt
to compare the two indicates an
error).

We illustrate this algorithm on some examples:

Example 1: A + B* C

The contents of s'n,b the postfix string, and opsrk are shown after scanning eachsymbol. opsik is shown with its top to the right.
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v,nI,	 ,o.rJix String	 o,'.Ok

I	 A	 A
2	 +	 A
3	 B	 Au	 +
4	 *	 I AB	 +.
5	 C	 ABC	 +.
6	 ABC.	 +
7	 ABC '+

Lines 1, 3, and 5 correspond to the scanning of an operand; therefore the symbol (symb)
is immediately placed on the postfix string. In line 2 an operator is scanned and the
stack is found to he empty, and the operator is therefore placed on the stack. In line 4
the precedence of the new symbol (-) is greater than the precedence of the symbol on
the top of the stack (+); therefore the new symbol is pushed onto the stack. In steps 6
and 7 the input string is empty, and the stack is therefore popped and its contents are
placed on the posffix string.

Example 2: (A + B) * C

symb	 postfix string - opstk

A	 A
+	 A
B	 AB
)	 AB+
.	 AB+
C	 AB+C

AR + C

In this example, when the right prenIhesis is encountered the stack is popped
until a left parenthesis is encountered, at which point both parentheses are discarded.
By using parentheses to fotce an order of precedence different than the default, the
order of appearance of the operators in the postfix string is different than in example I.

Example 3: ((A - (B + C)) * D) $ (E + F) (See example 3 on top of page 106.)

Why does the conversion algorithm seem so involved, whereas the evaluation al-
gorithm seems so simple? The answer is that the former converts from one order of
precedence (governed by the prcd function and the presence of parentheses) to the nat-
ural order (that is, the operation to be executed first appears first). Because of the many
combinations, of elements at the top of the stack (if not empty) and possible incoming
symbol, a large number of statements are necessary to ensure that ever)' possibility is
covered. In the latter algorithm, on the other hand, the operators appear in precisely
the order they are to he executed. For this reason the operands can be stacked until an
operator is found, at which point the operation is performed immediately.
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EXAMPLE 3

.csn,b	 j'octfix siring	 upsik

A	 A	 N
-	 A	 N-

A
B	 AB
+	 AR
C	 ABC

ABC*	 ((-
ABC
ABC f-

I)	 ABC +-1)
ARC

$	 AHC+ —D"	 $
ABC*—D.

F	 ABC+ —D-E
+	 ABC-i- —1)E
F	 ABC - ,-—fl*EF

ABC+ —DEF±	 $
ABC* —D * EF +$

The motivation behind the conversion algorithm is the desire to output the oper-
ators in the order in which they are to be executed. In solving this problem by hand
we could follow vague instructions that require us to convert from the inside out. This
works very well for humans doing a problem with pencil and paper (if they do not be-
come confused or make a mistake). However, a program or an algorithm must be more
precise in its instructions. We cannot be sure that we have reached the innermost paren-
theses or the operator with the highest precedence until additional symbols have been
scanned. At the time, we must backtrack to some previous point.

Rather than backtrack continuously, we make use of the stack to "remember" the
operators encountered previously. If an incoming operator is of greater precedence than
the one on top of the stack, this new operator is pushed onto the stack. This means that
when all the elements in the stack are finally popped, this new operator will precede
the former top in the postflx string (which is correct since it has higher precedence).
If, on the other hand, the precedence of the new operator is less than that of the top of
the stack, the operator at the top of the stack should be executed first. Therefore the top
of the stack is popped and the incoming symbol is compared with the new top, and so
on. Parentheses in the input string override the order of operations. Thus when a left
parenthesis is scanned, it is pushed on the stack. When its associated right-parenthesis
is found, all the operators between the two parentheses are placed on the output string,
because they are to be executed before any operators appearing after the parentheses.

Program to Convert an Expression from Infix to Postf ix

There are two things that we must do before we actually start writing a pro-
gram. The first is to define precisely the format of the input and output. The second is
to construct, or at least define, those r outines that the main routine d--'ends upon. We
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assume that the input consists of strings of characters, one String per input line. The
end of each string is signaled by the occurrence of an end-of-line character ('\ n').
For the sake of simplicity, we assume that all operands are single-character letters or
di g its. All operators and parentheses are represented by themselves, and '$' represents
exponentiation. The output is a character string. These conventions make the output of
the conversion process suitable for the evaluation process, provided that all the single
character operands in the initial infix string are digits.

In transforming the conversion algorithm into a program, we make use of several
routines. Among these are eniptv, pop, push and popandte.st, all suitably modified so
that the elements on the stack are characters. We also make use of a function isoperand
that returns TRUE if its argument is an operand and FALSE otherwise. This simple
function is left to the reader.

Similarly, the prcd functioi is left to the reader as an exercise. It accepts two
single-character operator symbols as arguments and returns TRUE if the first has prece-
dence over the second when it appears to the left of the second in an infix string and
FALSE otherwise. The function should, of course, incorporate the parentheses conven-
tions previously introduced.

Once these auxiliary functions have been written, we can write the conversion
function postJix and a pro gram that calls it. The program reads a line containing an
expression in infix, calls the routine posffix, and prints the postfix string. The body of
the main routine follows:

#include <stdo.h>
#include <stdlib.h>

#define MAXCOLS 80
#define TRUE 1
#defioe FALSE 0

void postfix(char , char );
mt isoperand(char);
void popandtesz(struct stack , char , mt *);
mt prcd(char. char);
void push(struct stack , char);
char pop(struct stack );

void mainO

char infix [MiXC0LS];
char postr[MAXCOLS];
mt pos = 0;

while ((inf i x[pos++] = getcharo) !=
infix[--pos] =
printf("%s%s", 'the original infix expression is ", infix);
postfix(infix, postr);
printf("%s\n", postr);
/ end main /
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The declaration for the operator stack and the postfix routine follows:

struct stack {
mt top;
char items[MCOLS);

postfix(char infix(], char postr[))

mt position, und;
mt outpos = 0;
char topsymb =
char symb;
struct stack opstk;
opstk.top	 -1;	 /1 the empty stack

for (positiori=0; (symb	 i n fi x[ pos i t i on))	 '\O'; position++)
if (isoperand(symb))

postr[outpos++] = synib;
else{

popandtest(&opstk, &topsymb, &und);
while (und && prcd(topsyntb, synib))

postr[outpOS++) = topsymb;
popandtest(&opstk, &topsymb, &und);

/ end while */

if (iund)
push(&opstk, topsymb);

if (und 11 (sytnb !=
push(&opstk, symb);

else
topsymb = pop(&opstk);

/ end else
while (!empty(&opstk).)	 -;

postr[outpos++J = pop(&opstk);
postr[out pos ] =
return;

} / end postfx /

The program has one major flaw in that it does not check that the input string is a
valid infix expression. in fact, it would be instructive for you to examine the operation
of this program when it is presented with a valid postfix string as input As an exercise

you are asked to write a program that checks wnether or not an input string is a valid

infix expression.
We can now write a program to read an infix string and compute its numerical

value. If the original string consists of single-digit operands with no letter operands, the

following program reads the original string and prints its value.
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ldefine MAXCOLS 80
void main()

char instring[MAXCOLS], postring(MAXCOLS);
mt position = 0;
double evalQ;

while((instring[position++] = getcharO) != \n')

inst i ng [-- position] =
printf("%s%s\n", "infix expresson is ", instring);
póstfix(instring, postring);
printf(%s%f\n", "value is ", eval(postring));

/ end main *1

Two different versions of the stack manipulation routines (pop, push, and so forth).
and associated function prototypes, are required because postfix uses a stack of character
operators (that is, opstk), whereas eval uses a stack of float operands (that is. opndstk).
Of course, it is possible to use a single stack that can contain both reals or characters
by defining a union as described earlier in Section 1.3.

Most of our attention in this section has been devoted to transformations involv-
ing postfix expressions. An algorithm to convert an infix expression into postfix scans
characters from left to right, stacking and unstacking as necessary. If it were necessary
to convert from infix to prefix, the infix string could be scanned from right to left and the
appropriate symbols entered in the prefix string from right to left. Since most algebraic
expressions are read from left to right, postfix is a more natural choice.

The foregoing programs are merely indicative of the type of routines one could
write to manipulate and evaluate postfix expressions. They are by no means compre-
hensive or unique. There are many variations of the foregoing routines that are equally
acceptable. Some of the early high-level language compilers actually used'routines such
as eval and postflx to handle algebraic expressions. Since that time, more sophisticated
techniques have been developed to handle these problems.

Stacks in C++ Using Templates

There are a number of drawbacks to the solution that we just presented. First,
although two stacks are used in the complete solution (a stack of operators in the postfix
routine and a stack of operands in the eval routine), only a single stack is used at any one
time. Nevertheless, in the implementation of the solution that we presented. both stacks
were created and remained in memory throughout the entire program. Second, because
the stacks are not of the same type, it is necessary to declare them separately. And with
the separate declarations, it is necessary to provide separate sets of primitive routines
(that is, push, pop, empt), etc.). This, in turn, implies that when the implementation of
a stack is to be changed it must be changed for each type of stack that we have created.

It would be more efficient if we could design a system around a stack of indeter-
minate type and define the primitive routines on such a stack. We would then create
and destroy instances of such a stack as necessary. This would eliminate the need for..
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us to create separate primitive routines, as well as serve the purpose of allowing us to
destroy a stark when it is no longer needed.

The C+ + feature that supports the definition of an object of undetermined type is
called a template. Using a template allows the programmer to define the features of the
class, while reserving the option of binding the type of the class to the class itself until a
class of a particular type is actually needed. The creation of a class of a particular type
is called Instantiation.

Let us now consider how we could create a template for stacks-and then illustrate
how this template could be used in the previous example: accepting an infix string,
converting the infix string to a postfix string (using a stack of operators), and then eval-
uating the posifix string (using a stack of operands). We begin by defining the class that
we shall use (in our example, the stack); however, this definition is parameterized in the
snese that it depends on the attributes of a specific paramter. We denote this by using

template <class T>

as a prefix to the remainder of the definition of the class. This prefix indicates that
T is a parameter in the subsequent definition and will vary from one use to another.
The construct that allows us to create a class of (as yet) undetermined type is called a
template.	 -

Thus the template definition is as follows:

template <clas's T>
// T is of ordinal type
class Stack
private:

mt top;	 /7 top points to' the next top element
I nodes;

public:
Stack Q;	 7/ default Constructor
mt empty (void);
void push(I &);
I pop(void);
I pop(int &);	 7/ example of overloading pop to

handle the functions of popandtest
Stack ();	 /7 default destructor

Within the same file, we would also provide the implementation of the stack tern-
plate.'For example, the constructor for Stack would be implemented as io!lows:

II	 Implementation of templates
template <class 1> Stack<T>::Stack C)

top
nodes	 new T[5TACKSIZ[];
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In the example above, the maximum size of the stack is predetermined to be
STACKSJZE and the top (a private variable) is initialized to - I An array of nodes
of type Tis created when the stack is instantiated- Thus a stack of integers would result
in an array of integers, while a stack of double would result in an array of double. Each
stack of a particular type would be instantiated with an array of that type. A destructor
for a stack could be implemented by

template <class T> Stack<T>:: .-Stack ()
{

delete nodes;

The primitive routines empty, push, and pop are straightforward. (Note that
we also overload the function P0/) by incorporating into it the functionality of
popandiest.)

template <class T> 'mt Stack<T>::emçty (void)

return tops =0;

template <class 1> void Stack<T>::pu,h(T & j)

if (top == STACKSIZE) f
cout << "Stack overflow" << endi;
return;

nodes[++top] =

template <class 1> 1 Stack<T>::pop(void)

Tp;
if (empty 0) {

cout << 'Stack underflow' << endi;
return p;

p = nodes[top--];
return p;

If The tasks of this function were formerly performedby popandtest
template <class T> T Stack<T>::pop(int & and)

T p;
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if (empty Q) {
und = 1;
return p;

und=O:
p	 nodes[top--];
return p;

To make use of the stack template, it would be necessaiy to include all of the
prototype definitions above in a file as follows:

II stackt.h

#ifndef STACKT_H
#define STACKIJI

#include <stdio.h>
#include <stdlib.h>
#include <alloc.h>
#include <mem.h>
#include .iostream.h>

#define STACKSIZE 100

These statements would be followed by all of the above (template definition and proto-
type functions) and ended with

#endif

The above constitute a definition for the template stack.
The meaning of the expression #/idef... is that if the operand STACKTJ-I is not

already defined, it should be defined here; otherwise, the definition may be bypassed.
This is a precaution against a double definition (which might occur if there was an
#include within an #indude).

To make use of a stack of a particular type, it would first be necessary to instan-
tiate it. This is done simply by declaring a stack of a particular type. By declaring such
a stack, the stack class will create an instance of a stack of the specified type. Thus we
could build a file that contains the following routines:

.#defjne MAXCOLS 52

void postfix(char *infix, char *postr);

mt prcd(char opi, char ap2);
mt isoperand(char op);
mt isoperator(char op);
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long double .eval(char *postr);
long double oper(int symb, long double opi, long double o2);

mt prcd(char opi, char op2)
If body of prcd goes here

mt isoperator(char op)
// body of lsoperator goes here

mt isoperand(char op)
// body of isoperand goes here

void postfix(char *infix, char postr)

(
mt position, und;
mt outpos-O;
char topsymb"+';
char symb;
Stack<char> opstk;

	

for (position-0; (symbinfix[ pos ition])	 '\O'; position++) {

if (isoperand(syfiib))
postr[outpos++)=symb;

else {
topsymb=opstk.pop(und);
while (iund && prcd(topsymb, symb)) {

postr[outpos++]	 topsymb;
topsymb=opstk pop(und);

if ('und)
opstk. push(topsymb);

if (urtd II (synb
opstk.push(symb);

else
topsymb=opstk.popO;

}/ end for
while (!opstk.emptyO)

postr[outpos++ J opstk . popO;
postr[outposl='\O'

} / end postfix I

long double oper(int symb, long double opi, long double op2)
// body of isoperator goes here

long double eval(char postr)

mt c, position;
long double opndl, opnd2, value;
Stackdong double> opndstk;
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for (position-0; (c"postr[positlon]) !" \O'; positiort++)
if (isoperand(c))

opndstk.push((float) (c-'O'));
else {

opnd2=opndstk.pop();
opndl.opndstk . poO;
va1ueoper(c, oprtdl, opnd2);
opndstk.push(value);

return (opndstk.popQ);
} / end eval *1

Notice that the statements that instantiate the slacks contain the type of the stack as a
parameter. Thus the statement

stackdong doub'e> opndstk;

within the function eval creates a stack of long double, while the statement

stack<char> opstk;

within po.ctfix creaes a stack of type char. As we mentioned earlier, one set of routines
for a template class stack is sufficient to manipulate a stack of any type.

Finally, all of the above could be followed by a main routine:

void main(void)

char in[250], post[250);
long double res;

(in >> in;
ccut << in << endi;
postfix (in, post);
res = eval (post);
coct << res << endi

Two points should be noted regarding the method that we just presented. First, the
set of programs above creates two classes of type stack: a stack of char and a stack of
long th,uh/e. The existence of these two classes is based on declarations that use them.
Thus. since the stack of characters is present in the posrfix routine, a class of that type
will be created: and because a stack of double long is present in the eval routine, a class
of that t ype will he created. The existence of these classes is really independent of the
existence of any objects of the Nspective types. Of course, we did declare a stack of
each t ype. Bth you should note th the two stack classes exist regardless of whether or
not the objects of those types are declared (that is. the routines in which they are created
may never he called).
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The second point deals with the destructor. Although we defined a default de-
structor, we never really called it explicitly. This is because the default destructor is
called automatically when control is returned from the routine in which an object was

created.

EXERCISES

2.3.1. Transform each of the following expressions to prefix and postlix.
(a) A+B — C
(b) ' (A+B)*(C—D)$E*F
(c) (A + f3).(C$(D - E)+ F) — G

(d) A +(((B - C)-(D - E) + F) / G)S (H - J)

23.2. Transform each of the following prefix expressions to infix.
(a) + — ABC
(b) +A—BC

(c) ++A—.$BCD/+EF*GHI

(d) +—$ABC*D..EFG

23.3. Transform each of the following postfix expressions to infix.
(a) AB+C-

(b) ABC +-
(c) AB—C+DEF—+$

(d) ABCDE—+$.EF*-

2.3.4. Apply the evaluation algorithm in the text to evaluate the following postfix expressions.
Assume A = I. B= 2, C= 3.
(a) AB+C — BA+CS -

(b) ABC+"CBA—+

2.33. Modify the routine eval to accept as input a character string of operators and operands
representing a postfix expression and to create the fully parenthesized infix form of
the original postfix. For example. AB + would be transformed into (A + B) and AB +

C - would be transformed into ( . + B) - C).

2.3.6. Write a single program combining the features of eval and posijix to evaluate an infix
string. Use two stacks, one for operands and the other for operators. Do not first convert
the infix string to posthx and then evaluate the postfix string, but rather evaluate as you
go along.

2.3.7. Write a routine prefix to accept an infix string anl create the prefix form of that string.
assuming that the string is read from right to left and that the prefix string is created
from right to left.

2.3.8. Write a C program to convert
(a) A prefix string to postfix
(b) A postfix string to prefix
(c) A prefix string to infix
(d) A postfix string to infix

2.3.9. Write a C routine reduce that accepts an infix string and forms an equivalent infix string
with all superfluous parentheses removed. Can this be done without using a stack?
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2.3.10. Assume a machine that has a single register and six instructions.

U)	 A	 Places the operand A into the register
ST	 A	 Places the contents of the register into the variable A
AL)	 A	 Adds the contents of the variable A to the register
SB	 A	 Subtracts the contents of the variable A from the register
ML	 A	 Multiplies the contents of the register by the variable A
DV	 A	 Divides the contents of thc register by the variable A

Write a program that accepts a postlix expression containing single-letter operands
and the operators +. -. *, and /and prints a sequence of instructions to evaluate the
expression and leave the reulm in the register. Use variables of the form TE/ilPn as
temporary variables. For example. usi.ig the postlix expression ABC * - DE / should
print the following:

LD	 B
ML	 C
ST	 TEMPI
LD	 4
AD	 TEMPI
ST	 TEMP2
LD	 D
SB	 E
ST	 TE5P3
LD	 TEMP2
DV	 TEMP3
ST	 TEMP4

2.3.11. The template definition of a stack can be expanded to allow the size of the stack to be
a parameter as well. Show how to define a stack template in which each instantiation
of the stack will have both the element type and the size of the stack as a parameter.

2.3.12. Can a template be used to store elements of different types on the same stack? Why or
why not?
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Recursion

This chapter introduces recursion. a programming tool that is one of the most power-
ful and one of the least understood by beginning students of programming. We define
recursion, introduce its use in C. and present several examples. We also examine an
implementation of recursion using stacks. Finall y, we discuss the advantages and dis-

advantages of using recursion in problem solving.

3.1 RECURSIVE DEFINITION AND PROCESSES

Many objects in mathematics are defined by presenting a process to produce that object.

For example. ir is defined as the ratio of the circumference of a circle to its diameter.
This is equivalent to the following set of instructions: obtain the circumference of a
circle and its diameter, divide the former by he latter, and call the result 7T. Clearly, the

process specified must terminate with a definite result.

Factorial Function

Another example ot it definition specified by a process is that of the factorial
function, which iltYs an important role in mathematics and statistics. Given it

 integer n. nfaewruxl is cktined as the product of all integers between ii and 1. For
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example, 5 factorial equals 5 4 * 3 * 2 * I = 120, and 3 factorial equals 32* I = 6.
0 factorial is defined as I. In mathematics, the exclamation mark (!) is often used to
denote the factorial function. We may therefore write the definition of this function as
follows:

• 1 if n •. 0

The three dots are really a shorthand for all the numbers between n - 3 and 2 multiplied
together. To avoid this shorthand in the definition of n! we would have to list a formulafor n! for each value of n separately, as follows:

0' - 1
1! - 1
2! • 2 * 1
3' = 3 * 2 * 1
4! - 4 * 3 * 2 * 1

Of course, we cannot hope to list a formula for the factorial of each integer. To
avoid any shorthand and to avoid an infinite set of definitions, yet to define the function
Precisely, we may present an algorithm that accepts an integer n and returns the value
of n!.

prod 1;
For (x	 n; x > 0; r--)

prod
return(prod);

Such an algorithm is called iterative because it calls for the explicit repetition of
some process until a certain condition is met. This algorithm can be translated readily
into a C function that returns n! when n is input as a parameter. An algorithm may be
thought of as a program for an "ideal" machine without any of the practical limitations
of a real computer and may therefore be used to define a mathematical function. A C
function, however, cannot serve as the mathematical definition of the factorial function
because of such limitations as precision and the finite size of a real machine.

Let us look more closely at the definition of n! that lists a separate formula for
each value of n. We may note, for example, that 4! equals 4 * 3 * 2 * I, which equals
4 * 3!. In fact, for any n >0, we see that ii! equals n * (n - W. Multiplying n by the
product of all integers from n - ito I yield:; the product of all integers from n to I. We
may therefore define

0! - 1
1! • 1 * 0!
2! • 2	 1!
3! • 3 * 2!
4! • 4 * 3!

or, using the mathematical notation used earlier,
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This dclinttio,, .;pear quite strange, since it defines the factorial function in
terms of itself. This secim, io be a circular definition and totally unacceptable until we
realize that the nmthematkt! notation is only a concise way of writing out the infinite
number of equations necessary to define n! for each n. 0! is defined directly as I. Once
0! has been defined, defining I! as I * 01 is not circular at all. Similarly, once I! has
been dtined, defining 2! as 2 * ! is equally straightforward. It may be argued that the
latter notation is more precise than the definition of n! as n * (n - I) *. * I for n >'O
because it does not resort to three dots to be filled in by the (it is hoped) logical intuition
of the reader. Such a definition, which defines an object in terms of a simpler case of
itself, is called a recursive defiaUion.

Let us see how the recursive definition of the factorial function may be used to
evaluate 5!. The definition states that 5! equals 5 * 4!. Thus, before we can evaluate
5% we must first evaluate 4!. Using the definition once more, we find that 4! =
4 * 3!. Therefore, we must evaluate M. Repeating this process, we have that

15! • S	 4!
2	 4!.4*3!
3	 31.3*21

5	 1!=1*OI
6	 .	 0!-1

Each case is reduced to a simpler case until we reach the case of 0!, which is
detined directly as I. At line 6 we have a value that is defined directly and not as the
factorial of another number. We may therefore backtrack from line 6 to line I, returning
the value computed in one line to evaluate the result of the previous line. This produces

4 . 0! • 1
1! .1* 0= 1* 1.1

4' 21 = 2 * 1!	 2	 1 • 2
3' 3! • 3 * 21 = 3	 2 • 6
2' 4' =4 *3! =4*6=24
1 51*415*24.120

Let us attempt to incorporate this process into an algorithm. Again., we want the
algorithm to input a nonnegative integer n and to compute in a variable fact the non-
negative integer that is ii factorial.

1	 iF(n==0)
2	 fact	 1;
3	 else(
4	 x=n-1;
5	 find the value of x!. Call it y;
6	 fact =n*y;
7	 ) / end else *1
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This algorithm exhibits the process used to compute n! by the recursive definition.
The key to the algorithm is, of course, line .5 , where we are told4o "find the value of x!."
This requires reexecuting the algorithm with input x, since th methOd for computing
the factorial function is the algorithm itself. To see that the algorithm eventually halts.
note that at the start of line 5, x equals n - I. Edell the algorithm is executed,
its input is one less than the preceding time, so that (since the original input n was a
nonnegative integer) ü is eventually input to the algorithm. At that point, the algorithm
simply returns 1. This value is returned to line 5, which asked for the evaluation of
0!. The multiplication of (which equals 1) by ii (which equals I) is then executed
and the result is returned. This sequence of multiplications and returns Continues until
the original n! has been evaluated. In the next section we will see how to Convert this
algorithm into a C program.

Of course, it is much simpler and more straightforward to use the iterative method
for evaluation of the factorial function. We present the recursive method as a simple
example to introduce recursion, not as a more effective method of solving this particular
problem. indeed, all the problems in this section can'be solved more efficiently by
Iteration. However, later in this chapter and in subsequent chapters, we will Come across
e.mples that are more easily solved by recursive methods.

Multiplication of Natural Numbers

Another example of a recursive definition is the defihition of multiplication of
natural numbers The product a * b, where a and hare positive integers. may be defined
as a added to itself h times. This is an iterative definition. An equivalent recursive
definition is

a b = aif b == 1
a	 b= a	 (b - i) + a if b. 1

To evaluate 6 3 by this definition, we first evaluate 6 * 2 and theb add 6. To
evaluate 6 * 2, we first evaluate 6 * I and add 6. But 6 * I equals 6 by the first part of
the definition. Thus

6 3 = 6 * 2 + 6 6 1 + 6 + 6 = 6 + 6 + 6 = 18

The reader is urged to convert the definition above to a recursive algorithm as a simple
exercise.

Note the pattern that exists in recursive definitions. A simple case of the term to
be (Wined is defined explicitl y (in the case of factorial. 0! was defined as I: in the case
Of multiplication, ci * I = ci). The other cases are defined by applying some operation
to the result of evaluating a sinpler case. Thus z! is defined in terms of (n - I)! anda * b in terms of a * (b - I). Successive simplifications of any particular case must
eventually lead to the explicitly defined trivial case. In the case of the factorial function,
successively subtracting I from , eventually yields 0. In the case of multiplication.
successively subtracting I from h eventually yields J. If this were not the case, the
definition would he invalid. For example, if we defined
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n!	 (n + 1)!/(n + 1)

or

a * b	 a * (b + 1) - a

we would be unable to determine the value of 5! or 6 * 3. (You are invited to attempt
to determine these values using the foregoing definitions.) This is true despite the fact
that the two equations are valid. Continuall y adding one to n or ft does not eventually
produce an explicitly defined case. Even if 100! was defined explicitly, how could the
value of 101! he determined?

Fibonacci Sequence

Let us examine a less familiar example. The Fibonacci sequence is the sequence
of inogers

0,1,1,2,3,58. 13.21,34,...

Each element in this sequence is the sum of the two preceding elements (for example,
0+1 = 1,1+1 = 2,1+2 = 3,2+3 5. ...).lfwcletfih(0)=O,fibtl)=1. and so
on, then we may define the Fihonacc sequence by the following recursive definition:

fib(n)	 n if n==0 or ri== 1
fib(n) = t9b(n -2) + fb(n -1) if n>= 2

To compute flb(6). for example, we may apply the definition recursively to obtain

fib(6)	 fib(4) + fib(5) = fib(2) + fib(3) + fib(S)
fib(0) + fib(1) + fib(3) + fib(S)	 0 + 1 + fib(3) + fib(S) =
1 + fib(1) + fib(2) + fib(S) =
1 + 1 + fib(0) + fib(1) + fib(5) =
2 + 0 + 1 + fib(S)	 3 + fib(3) + fib(4)
3 + fib(1) + fib(2) + fib(4) =
3 + 1 + fib(0) + fib(1) + fib(4)
4 + 0 + 1 + fib(2) + fib(3) 	 5 + fib(0) + fib(1) + fib(3) =
5 + 0 + 1 + fib(1) + fib(2) = 6 + 1 + fib(0) + fib(1) =
7+0+1=8

Notice that the recursive definition of the Fibonacci numbers differs from the re-
cursive definitions of the factorial function and multiplication. The recursive definition
of fib refers to itself twice. For example, fib(6) = fib(4) + fib(S). so that in computing
fih(6). fib must be applied recursively twice. However, the computation of fi/(5) also
involves determining fib(4), so that agre1t deal of computational redundancy occurs
in applying the definition. In the foregoing exampk.fib(3) is computed three separate
times, it would-be much more efficient to*'remember" the value of fihi(3) the first time
that it is evaluated and reuse it each time that it is needed. An iterative method of corn-
putingfib(n ) such as the following is much more efficient:
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If (ii <- 1)
return(n);

,.fib - 0;
hifib - 1;
for (i	 2: i <- n; i++) {

x . lofib;
1 fib = hifib;
hifib • r	 lofib;

} /* end for =1
return(hifib);

Compare the number of additions (not including increments of the index variable
i) that are performed in computing fib(6) by this, algorithm and by using the recursive
definition. In the case of the factorial function, the same number of multiplications must
be performed in computing n! by the recursive and iterative methods. The same is true
of the number of additions in the two methods of computing multiplication. However,
in the case of the Fibonacci numbers, the recursive method is far more expensive than
the iterative. We shall have more to say about the relative merits of the two methods in
a later section.

Binary Search

You may have received the erroneous impression that recursion is a very handy
tool for defining mathematical functions but has , no influence in more practical com-
puting activities. The next example illustrates an application of recursion to one of the
most common acti'ities in computing: that of searching.

Consider an array of elements in which objects have been placed in some order.
For example, a dictionary or telephone book may be thought of as an array whose entries
are in alphabetical order. A company payroll file may be in the order of employees'
social security numbers. Suppose that such an array exists and that we wish to find a
particular element in it. For example, we wish to look up a name in a telephone book,
a word in a dictionary, or a particular employee in a personnel file. The process used to
find such an entry is called a search.

Since searching is such a common activity in computing, it is desirable to find an
efficient method for performing it. Perhaps the crudest search method is the sequential
or linear search, in which each item of the array is examined in turn ano compared with
the item being searched for until a match occurs. If the list is unordered and haphazardly
constructed, the linear search may be the only way to (hid anything in it (unless, of
course, the list is first rearranged). However, such a method would never be used in
looking up a name in a telephone book. Rather, the book is opened to a random page
and the names on that page are examined. Since the names are ordered alphabetically,
such an examination would determine whether the search should proceed in the first or
second half of the book.

Let us apply this idea to searching an array. lithe array contains only one clement,
the problem is trivial. Otherwise, compare the item being searched for with the item
at the middle of the array. If they are equal, the search has been completed successfully.
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If the middle element is greater than the item being searched for, the search process is
repeated in the first half of the array'since if the item appears anywhere it must appea:
in the first half); otherwise, the process is repeated in the second half. Note that each
time a comparison is made, the number of elements yet to be searched is cut in half. For
large arrays, this method is superior to the sequential search in which each comparison
reduces the number of elements yet to be searched by only one. Because of the division
of the array to be searched into two equal parts, this search method is called the binary
search.

Notice that we have quite naturally defined a binary search recursively. If the item
being searched for is not equal to the middle element of the array, the instructions are to
search a subarray using the same method. Thus the search method is defined in terms of
itself with a smaller array as input. We are sure that the process will tcrminate because
the input arrays become smaller and smaller, and the search of a one-clement array is
defined nonrecursively, since the middle element of such an array is its only element.

We now present a recursive algorithm to search a sorted array a for an element
x between a[!owj and a[highl. The algorithm returns an index of a such that alindexl
equals x if such an index exists between low and high. If x is not found in that portion
of the array, binsrch returns - I (in C. no elemental - Ii can exist).

1 if (low > high)
2	 return(-1);
3 mid (low + high) / 2;
4 if ( - a(mid])
S	 return(i,,id);
6 if (x < a[id))
7	 search for x in a[low) to a(mfd - 1];
8 else
9	 search for x in a[mid + 1] to a[high];

Since the possibility of an unsuccessful search is included (that is, the element
may not exist in the array). the trivial case has been altered somewhat. A search on a
one-element array is not defined diTectly as the appropriate index. Instead that element
is compared with the item being searched for. If the two items are not equal, the search
continues in the "first" or "second" half—each of which contains no elements. This
case is indicated by the condition low> high, and its result is defined directly as —1.

Let us apply this algorithm to an example. Suppose that the array a contains the
elements 1, 3.4,5, 17, 18, 31, 33, in that order, and that we wish to search for 17 (that
is.x equals 17) between item 0 and item 7 (that is. Ion is 0. high is 7). Applying the
algorithm, we have

Line I: Is low > high? It is not, so execute line 3.

Line 3: mid = (0 + 7)/2 = 3.

Line 4: lsx == a131? 17 is not eual to 5. so execute line 6.

Line 6: Is x < a 1 3 1 ? 17 is not less than 5, so perform the cisc clause at line S.

Line 9: Repeat the al2orithnl with low = mid + 1	 4 and high = high = 7:
i.e., search the upper half of the array.
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Line I: Is 4 > 7? No, so execute line 3.

Line 3: mid = (4 + 7)/2 = 5.

Line 4: Is  == a151? 17 does not equal 18, so execute line 6.

Line 6: Is  < a[51? Yes, since 17< 18, so search forx in a[lowl to
almid — I].

Line 7: Repeat the algorithm with lost' = low = 4 and high = mid - 1 = 4.
We have isolated x between the fourth and the fourth elements of a.

Line I: Is 4 > 4? No, so execute line 3.

Line 3: mid = (4 + 02 4.

	Line 4: Since a[4] =	 17, return mid = 4 as the answer. 17 is indeed the
fourth element of the array.

Note the pattern of calls to and returns from the algorithm. A diagram tracing this
pattern appears in Figure 3. 1.1. The solid arrows indicate the flow of control through
the alg'ithm and the recursive calls. The dotted lines indicate returns. Since there are
no steps to be executed in the algorithm after line 7 or 9. the returned result is returned
intact to the previous execution. Finally, when control returns to theoriginal execution.
the answer is returned to the caller.

Let us examine how the algorithm searches for an item that does not appear in the
array. Assume the arra y a as in the previous example and assume that it is searching
for x. which equals 2.

In

Line I
Line 3
Line 6

Line 9

Out Line I
Line 3
Line 4
Line 6
Line

Answer Line I
Line 3

Line 4

(Answer is found)
Answer

Figure 3.1.1 Diagrammatic representation of the binary search algorithm.
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Line I: Is low > high? 0 is not greater than 7, so execute line 3.

Line 3: mid = (0 + 7)12 = 3.

Line 4: Is 	 a]3]? 2 does not equal 5, so execute line 6.

Line 6: Is x < aL 3 1 ? Yes. 2 < 5, so search for jr in at /owl to al mid - I .

Line 7: Repeat the algorithm with low = low = 0 and high = mid - I = 2.
If 2 appears in the array, it must appear between a!O] and a[2] inclusive.

Line 1: IsO> 2? No, execute line 3.

Line 3: mid = (0 + 2)/2 = 1.

Line 4: Is 2 == a i l l ? No, execute line 6..

Line 6: Is 2 < a(l] ? Yes, since 2 < 3. Search for  in a l low ] to ajmid -. I].

Line 7: Repeat the algorithm with low = low 0 and high = mid - I = 0.
If x exists in a it must be the first element.

Line 1: Is  > 0? No, execute line 3.

Line 3: mid (0+0)/20.

Line 4: Is 2 == aIO] ? No, execute line 6.

Line 6: Is 2< alO]? 2 is not less than 1, so perform the else clause at line 8.

Line 9: Repeat the algorithm with low = mid + I = I and high = high	 0.

Line I: Is low > high? 2 is greater than I, so - is returned. The item 2 does
not exist in the array.

Properties of Recursive Definitions or Algorithms

Let us summarize what is involved in a recursive definition or algorithm. One
important requirement for a recursive algorithm to be correct is that it not generate
an infinite sequence of calls on itself. Clearly, any algorithm that does generate such
a sequence can never terminate. For at least one argument or group of arguments, a
recursive functionf must be defined in terms that do not involve!. There must be a "way
out" of the sequence of recursive calls. In the examples of this section the nonrecursive
portions of the definitions were

factorial:	 01 = 1
multiplication: a * 1 = a
Fibonacci seq.: fib(0) = 0;	 fib(1) = 1
binary search:	 if (low> high)

return(-1);
if (x == a(mid))

return (mid)

Without such a nonrecursive exit, no-recursive function can ever be computed. Any
instance of a recursive definition or invocation of a recursive algorithm must eventually
reduce to some manipulation of one or more simple, norecursive cases.
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EXERCISES

3.1.1. Write an iterative algorithm to evaluate a h by using addition, where a and b arenonnegative integers.

3.1.2. Write a recursive definition of a + h, .whcre a and bare nonnegative integers, in terms
of the successor function xuec, defined as

succ(x)
flt x;

return(x++);
} / end succ /

3.1.3. Let a be an array of integers. Present recursive algorithms to compute:
(a) The maximum element of the array
(b) The minimum clement of the array
ici The sum of the elements of the array
(d) The product of the elements of the array
tel The average of the elements of the array

3.1.4. EN aluate each of the following. using both the iterative and recmmrcive definitions.
(a) 6
(b) 9'
(c) 100 3
Id) 6*4
(e)	 fil,( 10
(1) fib( ll)

3.1.5. Assume that an array often integers contains the elements

1,3,7, 15, 21, 22, 36, 78. 95, 106

Use the recursive binary search to find each of the following items in the array.
(a) I
(b) 20
(C) 36

3.1.6. Write an iterative version of the binary search algorithm. (Hint: Modify the values oflow and high directly.)

3.1.7. Ackerman's function is defined recursively on the nonnegativentegers as follows:

if,n==O
a(m, 11) = a(m - I, 1)	 if pa! = 0,n = = 0
a(ni. n) = a(m - 1. a(,n. it - I))	 if rn! = 0, n! = 0

(a) IJstlkg the above definition, show that a(2,2) equals 7.
(Ii; Prove that rnm,n) is defined for all nonnegative integers in and ,,.
(c) Can you find an Iterative method of coTnputin a(u.n)?

3.1.8. Count the number of additions necessary to computefib(n) for 0 <= It < tO by the
iterative and recursive methods. Does a pattern emerge?

3.1.9. If an array contains it 	 what is the Inasinlum number of recursive calls made
by the binary search algorithm'!
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3.2 RECURSION IN C

Factorial in C

The C language allows a programmer to write subroutines and functions that call
themselves. Such routines are called recursive.

The recursive algorithm to compute n! may be directly translated into a C function
as follows:

intfact(int n)

jilt X, y;

If (n .. 0)
return(1);

x	 n-i;
Y	 fact(x);
return(n *
/ end fact *1

In the statement i = fact(x): the function fact calls itself. This is the essential
ingredient of a recursive routine. The programmer assumes that the function being com-
puted has already been written and uses it in its own definition. However, the program-
mer must ensure that this does not lead to an endless series of calls.

Let us examine the execution of this function when it is called by another program.
For example, suppose that the calling program contains the statement

printf(%d", fact(4));

When the calling routine calls fact, the parameter n is set equal to 4. Since n is not 0,
x is set equal to 3. At that point, fact is called a second time with an argument of 3.
Therefore, the functionfact is reentered and the local variables (x and v) and parameter
(n) of the block are reallocated. Since execution has not yet left the first call of foci,
the first allocation of these variables remains. Thus there are two generations of each of
these variables in existence simultaneously. Front point within the second execution
of fact, only the most recent copy of these variables can be referenced.

In general, each time the function fact is entered recursively, a new set of local
variables and parameters is allocated, and only this new set may be referenced within
that call of fact. When a return from fact to a point in a previous call takes place, the
most recent allocation of these variables is freed, and the previous copy is reactivated.
This previous copy is the one that was allocated upon the original entry to the previous
call and is local to that call.

This description suggests the use of a stack to keep the successive generations
of local variables and parameters. this stack is maintained by the C system and is
invisible 10 the user. Each time that a recursive function is entered, a new allocation of
its variables is pushed on top of the stack. Any reference to a local variable or parame-
ter is through the current top of the stack. When the function returns, the stack is popped,
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:

U) V = fact (3). (k) pr,ntf (-Y.d. foci (4)).

(a) (Initially).

LH!H
(el fact i I)

(i) -v = fr i (2)

(b) fact (4)

0
0

2	 I
3	 1
4	 3

n	 x	 y

(1) fact (0)

(c) fact (3)

I	 0	 I
2
3	 1
4	 3	 .

n	 x	 y

(g) y = fact (0)

(d) fact 2)

3	 .
n	 x	 y

((1) y	 foci (I).

Figure 32.1 Stack at various times during execution. (An asterisk indicates
an uninitialized value.)

the top allocation is freed, and the previous allocation becomes the current stack top to
be used for referencing local variables. This mechanism is examined more closely in
Section 3.4, but for now, let us see how it is applied in computing the factorial function.

Figure 3.2.1 contains a series of snapshots of the stacks for the variables vi, .v, and
Y as execution of thefac, function proceeds. Initially, the stacks are empty, as illustrated
by rigure 3.2.Ia. After the first call onfact by the calling procedure, the situation is as
shown in Figure 3.2.1b, with n equal to 4. The variables  and y are allocated but not
initialized. Since vi does not equal 0. x is set to 3andfticr(3) is called (Figure 3.2. 10.
The new value of it does not equal 0; therefore xis set to 2 and facr(2) is called (Figure
3.2. Id).

This continues until vi equals 0 (Figure 3.2. If). At that point the value 1 is returned
from the call tofact(0). Execution resumes from the point at which fact(0) was called.
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which is the assignment of the returned value top the copy of y declared infaca'( I). This
is illustrated by the status of the stack shown in Figure 3.2.lg. where the variables
allocated forfacr(0) have been freed and r is set to I.

The statement relurn(p, * v) is then executed, multiplying the top values of n
and  to obtain I and returning this value tofacs(2) (Figure 3.2.1h). This process is
repeated twice more, until finally the value of v infacz(4) equals 6 (Figure 3.2. lj). The
statement return(n * v) is executed one more time. The product 24 is returned to the
calling procedure where it is printed by the statement

printf('%d', fact(4));

Note that each time that a recursive routine returns, it returns to the ?oint imme-
diately following the point from which it was called. Thus, the recursive call tofiwi(3)
returns to the assignment of the result to v withinfact(4), but the recursive call tofi,cr(4)
returns to the prinrf statement in the calling routine.

Let us transform some of the other recursive definitions and processes of the pre-
vious section into recursive C programs. It is difficult to conceive of a C programmer
writing a function to compute the product of two positive integers in terms of addition,
since an asterisk performs the multiplication directly. Nevertheless, such a function
can serve as another illustration of recursion in C. Following closely the definition of
multip!icatio.j in the previous section, we may write:

mt mult(int a, lot b)
{

retucn(b == 1 ? a : mult(a, b-i) A a);
} /* end miilt /

Notice how similar this program is to the recursive definition Of the last section. We
leave it as an exercise for you to trace through the execution of this function when it is
called with two positive integers. The use of stacks is a great aid in this tracing process.

This example illustrates that a recursive function may invoke itself even within
a statement assigning a value to the function. Similarly, we could have written the re-
cursivefi,ct function more compactly as

lot fact(jnt n)

return(n	 0 ? 1 : n	 fact(n-1));
} /* e.d fact *1

This compact version avoids the explicit use of local variables x (to hold the value
of it - 1) andv (to hold the value ofjctx)). However, temporary locations are set aside
anyway for these two values upon each invocation of the function. These temporaries
are treated just as any explicit local variable. Thus, in tracing the action of a recursive
routine, it ma y be helpful to declare all temporar y variables explicitly. See if it is any
easier to trace the following more explicit version of nm/i:
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mt mult(int a, mt b)

mt c, d, sum;

if (b	 1)
return (a)

c = b-i;
d	 mult(a, c);
sum	 d+a;
return ( sum)

) /I end niult V

Another point that should be made is that it is particularly important to check for
the validity of input parameters in a recursive routine. For example, let us examine the
execution of the fact function when it is invoked by a statement such as

printf(\n%d", fact(-I));

Of course, the fact function is not designed to produce a meaningful result for negative
input. However, one of the most important things for a programmer to learn is that
a function invariably will be presented at some time with invalid input and, unless
provision is made for such input, the resultant error may be very difficult to trace.

For example, when - I is passed as a parameter to fact, so that n equals —1 ,xis set
to —2 and —2 is passed to a recursive call on fact. Another set of n, x, and v is allocated,
n is set to —2, and x becomes —3. This process continues until the program either runs
Out of time or space or the value of .x becomes too small. No message indicating the true
cause of the error is produced.

If fact were originally called with a complicated expression as its argument and
the expression erroneously evaluated to a negative number, a programmer might spend
hours searching for the cause of the error. The problem can be remedied by revising the
fact function to check its input explicitly, as follows:

mt fact(int n)
{

intx,y;

• if(n<O){
printf("%s", negative parameter in the factorial function");
exit;

} / end if V
if.(n == 0)

return(i);
x = n-i;
y = fact(x);
return(n * y);

_ / end fact
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Similarly, the function mu!: must guard against a nonpositive value in the second pa-
rameter.

Fibonacci Numbers in C

We now turn our attention to the Fibonacci sequence. A C program to compute
the nth Fibonacci number can be modeled closely after the recursive definition:

mt fib(int n)
{

mt x, y;

if (n <. 1)
return(n);

x	 fib(n-1);
y = fib(n-2);
return(x +

7* end fib *1

Let us trace through the action of this function in computing the sixth Fibonacci number.
You may compare the action of the routine with the manual computation we performed
in the last section to compute fib(6). The stacking process is illustrated in Figure 3.2.2.
When the program is first called, the variables n, x, and  are allocated, and n is set to
6 (Figure 3.2.2a). Since n > 1, n - 1 is evaluated and fib is called recursively. A new
set of n, x, and  is allocated, and n is set to 5 (Figure 3.2.2b). This process continues
(Figure 3.2.2c—f) with each successive value of n being one less than its predecessor,
until fib is called with n equal to I. The sixth call tofib returns Ito its caller, so that the
fifth allocation of x is set to I (Figure 3.2.2g).

The next sequential statement,
'

= fib(n - 2), is then executed. The value of n
that is used is the most recently allocated one, which is 2. Thus we again call on fib
with an argument of 0 (Figure 3.2.2h). The value of 0 is immediately returned, so that
y infib(2) is set to 0 (Figure 3.2.2i). Note that each recursive call results in a return to
the point.of call, so that the call of fib(l) returns to the assignment tor, and the call of
fib(0) returns to the assignment toy. The next Statement to be executed infib(2) is the
statement that returns x + y = I + 0 = Ito the statement that calls fib(2) in the gen-
eration of the function calculatingfib(3). This is the assignment to x, so that x inJib(3)
is given the value fib(2) = I (Figure 3.2.2j). The process of calling and pushing and
returning and popping continues until finally the routine returns for the last time to the
main program with the value 8. Figure 3.2.2 shows the stack up to the point wherefib(5)
calls onfib(3), so that its value can be assigned toy. The reader is urged to complete
the picture by drawing the stack states for the remainder of the program execution.

This program illustrates that a recursive routine may call itself a number of times
with different arguments. In fact, as long as a recursive routine uses only local variables,
the programmer can use the routine just as he or she uses any other and assume that it
performs its function and produces the desired value. He or she need not worry about
the underlying stacking mechanism.
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Figure 3.2.2 The recursion stack of the Fibonacci function.

Binary Search in C

Let us now present a C program for the binary search. A function to do this accepts
an array a and an element xas input and returns the index i in a such that alil equals
x. or —I if no such i exists. Thus the function binsrch might be invoked in a statement
such as

i	 binsrch(a, x)

132	
Recursion	 Chap. 3



However, in looking at the binary search algorithm of Section 3.1 as a model for a
recursive C routine, we note that two other parameters are passed in the recursive calls.
Lines 7 and 9 of that algorithm call for a binary search on only part of the array. Thus,
for the function to be recursive the bounds between which the array is to he searched
must also be specified The routine is written as follows:

mt binsrch(jnt a[], mt X. jut low, mt high)

mt mid;

if (low	 high)
return(-I);

mid = (low+ high) / 2;
return(x	 a [mid] ? mid : x< a[mid] ?

binsrch(a, x, low, mid-1)

/ end binsrch
binsrch(a, x, mid+1, high));

}	 /

When binsrdi is first called from another routine to search for x in an array de-
clared by

mt a[ARRAY5Iz]

of which the first it 	 ate occupied, it is called by the statement

I	 binsrch(a, x, 0, n-i);

You are urged to trace the execution of this routine and follow the stacking and
unstacking using the example of the preceding section, where a is an array of 8 elements
(ii = 8) containing 1,3,4. 5, 17, 18,31.33, in that order. The value being searched for
is 17 (x equals 17). Note that the array a is stacked for each recursivecall. The values
of low and high are the lower and upper bounds of the array a, respectively.

In the course of tracing through the hin.srch routine, you may have noticed that
the values of the two parameters a and x do not change throughout its execution.
Each time that hinsrch is called the same array is searched for the same element;
it is only the upper and lower bounds of the search that chan ge. It therefore seems
wasteful to stack and unstack these two parameters each time the routine is called
recursively.

by One solution is to allow a and .r to he global variables, declared before the program

jut afARRAYSIZE];
ifltx;

The routine is called by a statement such as

= binsrch(0, n-I)
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In this case, all references to a and x are to the global allocations of a and x declared at
the beginning of the source file. This enables binsrch to access a and x without allocat-
ing additional space for them. All multiple allocations and freeings of space for these
parameters are eliminated.

We may rewrite the binsrch function as follows:

mt binsrch(int low, mt high)

mt mid;

if (low > high)
return(-l);,

mid	 (low + high) / 2;
return Cx	 a[mid] ? mid	 x < a[mid] ? binsrch(low, mid-1)

binsrch(mid+1, high));
} / end bfnsrch

Using this scheme, the variables a and x are referenced with the extern attribute and are
not passed with each recursive call to binsrch. a and x do not change their values and are
not stacked. The programmer wishing to make use of binsrch in a program only needs
to pass the parameters low and high. The routine could be invoked with a statement
such as

binsrch(low, high);

Recursive Chains

A recursive function need not call itself directl y. Rather, it may call itself indi-
rectly, as in the following example:

a(fornial parameters)	 b(formal parameters)
{	 C

b(arguments);	 a(argurnents);

} /end a/	 } /*1 .j b*/

In this example function a calls b, which may in turn call a, which may again call b.
Thus both a and b are recursive, since they indirectly call on themselves. However,
the fact that they are recursive is not evident from examining the body of either of the
routines individually. The routine a seems to be calling a separate routine b and it is
impossible to determine, by examining a alone, that it may call itself indirectly.

More than two routines may participate in a recursive chain. Thus a routine a
may call h which calls c, . . . which calls z, which calls a. Each routine in the chain may
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potentially call itself and is therefore recursive. Of course, the programmer must ensure
that such a program does not generate an infinite sequence of recursive calls.

Recursive Definition of Algebraic Expressions

As an example of a recursive chain, consider the following recursive group of
definitions:

1. An expression is a term followed by a plus sign followed by a term, or a term
alone.

2. A term is afactor followed by an asterisk followed by a factor. or a factor alone.
3. A factor is either a letter or an expression enclosed in parentheses.

Before looking at some examples, note that none of the foregoing three items is
defined directly in terms of itself. However, each is defined in terms of itself indirectly.
An expression is defined in terms of a term, a term in terms of a factor, and a factor in
terms of an expression. Similarly, a factor is defined in terms of an expression, which
is defined in terms of a term, which is defined in terms of a factor. Thus the entire set
of definitions forms a recursive chain.

Let us now give some examples. The simplest form of a factor is a letter. Thus
A, B. C. Q, Z, M are all factors. They are also terms, since a term may be a factor
alone. They are also expressions, since an expression may be a term alone. Since A is
an expression, (A) is a factor and therefore a term as well as an expression. A + B is
an example of an expression that is neither a term nor a factor. (A + B), however, is all
three. A * B is a term and therefore an expression, but it is not a factor. A * B + C is an
expression that is neither a term nor a factor. A * ( B + C) is a term and an expression
but not a factor.

Each of the foregoing examples is a valid expression. This can be shown by ap-
plying the definition of an expression to each of them. Consider, however, the string
A + *B. It is neither an expression, term, nor factor. It would be instructive for you
to attempt to apply the definitions of expression, term, and factor to see that none of
them describe the string A + *B. Similarly, (A + B*)C and A + B + C are not valid
expressions according to the preceding definitions.

Let us write a program that reads and prints a character string and then prints
'IV

alid" if it is a valid expression and "invalid" if it is not. We use three functions to
recognize expressions, terms, and factors, respectively. First, however, we present an
auxiliary function getsv,nb that operates on three parameters: sr, length, and ppos. str
contains the input character string, length represents the number of characters in .str.ppos points to an integer pos whose value is the position in str from which we last
obtained a character. If pos < length, getsv,nb returns the character sir[pos] and incre-
ments pos by I. If pos > = length, gets vmb returns a blank.

mt getsymb(char str[], mt length, mt ppos)

char C;
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if (*pp	 < length)
c - str[ppos];

else

(*ppOS)++;

return(c);
} / end getsymb */

The function that recognizes an expression is called expr. It returns TRUE (or 1)
if a valid expression begins at position pos of sir and FALSE (or 0) otherwise. It also
resets pos to the position following the longest expression it can find. We also assume a
function readstr that reads a string of characters, placing the string in sir and its length
in length.

Having described the functions expr and readstr, we can write the main routine
as follows. The standard library ctvpe.h includes a function isaipha called by one of the
functions below.

#include <stdio. h>
#include <ctype.h>	 -
#define TRUE 1
#define FALSE 0
#define MAXSTRINGSIZE 100

void readstr(char *
mt expr(char , mt. mt *);
mt term(char , int, mt );
mt getsymb(char , mt. mt *);

mt factor(char , mt. mt );

void mainQ

char str[MSTRINGSIZEJ;
mt length, p05;

readstr(str, &length);
P05

if (epr(str, length, &pos) == TRUE && pos > length)
printf("%s", "valid');

else
printf("%s", "invalid");

/ The condition can fail for one (or both) of two 'I
/	 reasons. If expr(str, length, &pos) == FALSE
/	 then there is no valid expression beginning at *1
/	 pos. If POS < length there may be a valid	 */
/	 expression starring at pos but it does not
/	 occupy the entire string.	 *1

) / end main /
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The functionsfiicror and term are much like expr except that they are responsible
for recognizing factors and terms, respectively. They also reposition pos to tht position
following the longest factor or term within the string .str that they can find.

The code for these routines adheres closely to the definitions given earlier. Each
of the routines attempts to satisfy one of the criteria for the entity being recognized. If
one of these criteria is satisfied. TRUE is returned. If none of these criteria are satisfied,
FALSE is returned.

mt expr(char str[], mt length, mt *ppos)

/	 look for a term	 *1
if (term(str, length, ppos) 	 FALSE)

return ( FALSE)
We have found a term; look at the

next symbol.
if (getsymb(str, length, ppos)	 +') (

/*	 We have found the longest expression
/	 (a single term). Reposition pos so it *1
/	 refers to the last position of 	 *1

the expression.	 *1
(*ppo)__;

return(TRUE);
} / end if /
/ At this point, we have found a term and a V
1* plus sign. We must look for another term.
return(term(str, length, ppos));

} / end expr V

'he routine term that recognizes terms is very similar, and we present it without
comments.

mt term(char str[), mt length, mt ppos)

if (factor(str, length, ppos) == FALSE)
return(FALSE);

if (getsymb(str, length, ppos)
(ppos)--;
return (TRUE)

} / end if V
return(factor(str, length, ppos));

/ end term /

The function factor recognizes factors and should now be fairly straightforward.
It uses the common library routine Lw/phil (this function is contained in the library
crvpe.h), which returns nonzero if its character parameter is a letter and zero (or FALSE)
otherwise.
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mt factor(char str[], mt length, mt *ppos)

mt c;

if ((c - getsymb(str, length, Ms))
return(isalpha(c));

return(expr(str, length, ppos) &&
getsymb(str, length, ppos) .

/* end factor /

All three rouline.S are recursive, since each may call itself indirectly. For example,
if you trace through the actions of the program for the input string
"((t * b + c * d) + (e * (f) + g)," you will find that each of the routines expi; term, and
Jacwr calls on itself.

EXERCISES

3.2.1. Determine what the following recursive C function computes. Write an iterative function
to accomplish the same purpose.

mt func(int n)

if (n -= 0)
return (0)

return(n + func(n-1));
} / end func *1

3.2.2. The C expression in n yields the remainderofm upon division by n. Define the greatest
common divisor (GCD) of two integers .r and v by

gcd(x,y)y	 if(y<=x&&x%y.=O)
gcd(x,y) = gcd(y,x)	 if (x < y)
gcd(x,y) = gcd(y, x % y)	 otherwise

Write a recursive C function to compute gcd(x.). Find an iterative method for computing
this function.

3.2.3. Let eon,n(n,k) represent the number of different committees of k people that can be
formed. given it people from whom to choose. For example. coinin(4,3) = 4. since given
four people A. B. C. and D there are four possible three-person committees: ABC, ABD.
AG). and BCD. Prove the identity:

conat(n,k)	 corrun(n - 1,k) + contn(n - 1,k - 1)

Write and test a recursive C program to compute c'omm( .k) for it. k >= I.
3.2.4. Define a generalized fibonacci sequence of ./'O andf I as the sequence gJib(fo.f 1.0),

i'fzh( ft).] I, I )., fib(/O,f 1.2). ... . where
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gfib(fO, fl, 0) -
gfib(m, ti, 1) =	

l,	 1)
fl—	

. I.
gfib(fi), fl, n)	 9f1b q), fl,

 fl, n 2) if n

Write a recursive C function to compute gfib(fO, fl .n). Find an iterative method for
computing this function.

3.2.5. Write a recursive C function to compute the number of sequences of n binary digits that
do not contain two Is in a row. (Hint: Compute how many such sequences exist that start
with 0, and how many exist that start with a 1.).

31.6. An order n matrix is an n X n array of numbers. For example.

(3)

is a I x I matrix,

1	 3
—2 8

is a 2 x 2 matrix and

I	 3	 46
2 —5 0 8
3	 7	 64
2	 0 9 —1

is a 4 )< 4 matrix. Define the maur of an element x in a matrix as the submatnx formed
by deleting the row and column containing x. In the preceding example of a 4 x 4 matrix,
the minor of the element 7 is the 3 x 3 matrix

1	 4	 6
2 0	 8
2	 9 —I

Clearly the order of a minor of any element is I less than the order of the original matrix.
Denote the minor of an element u [ i ,j I by ,nirwr(a[i.jI).
Define the determinant of a matrix a (written det(a)) recursively as follows:

1. If a is a I x I matrix (x), der(a) = x.
2. If a is of an order greater than I, compute the determinant of a as follows:

(a) Choose any row or column. For each element a[ij) in this row or column form the
product

power(-1,i + j) * afi,]] * det(ininor(a[i,j]))

where i and] are the row and column positions (-f the element chosen, a(i.JI is the
element chosen, det(minorutijI)) is the determinant of the minor of a(ij, and
power(m,n) is the value of m raised to the nth power.

(b) det(a)	 sum of all these products.
(More concisely, if n is the order of a.
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det(a)	 power(-1, i + j)	 a[i,j] * det (mino r(a[,j])), for any 3

or

det(a) =	 power(-1, i + j) * a[i,j] 	 det(minor(a[ i,j])), for any	 .

Write a C program that reads a. prints a in matrix form, and prints the value of det(a),where th't is a functio,, that computes the determinant of a matrix.
3.2.7. Write a recursive C progr	 to sort an array a as follows:

1. Let k be the index of the middle element of the array.
2. Sort the elements up to and including a[kj.
3. Son 'he elements past alkl.
4. Merge the two subarrays into a single sorted array.

This method is callc'd a merge Sort.

3.2.8. Show how to transform the following iterative procedure into a recursive procedure. /i)Is a function returning a logical value based on the value of i. and R( i ) is a Function that
returns a value with the same attributes as i.

will iter(int n)

mt i;

i=n;
while(f(i) == TRUE)

/ any group of C statements that V
/ does not change the value of I

} / end while V
} / end iter /

3.3 WRITING RECURSIVE PROGRAMS

In the last section we saw flow to transform a recursive definition or algorithm into a
C program. It is a much more difficult task to develop a recursive C solution to a prob-
lem Zecification whose algorithm is not supplied. It is not onl y the program but also
the original definitions and algorithms that must be developed. In general, when faced
with the task of writing a program to solve a problem there is no reason to look for
a recursive solution. Most problems can be solved in a straightforward manner using
nonrecursive methods. However, some problems call 	 solved logicall y and most el-
etzantiv by recursion. In this section we shall try to identify those problems that can
be solved recursively, develop a technique for finding recursive solutions, and present
sonic examples.

Let us reexamine the factorial function. Factorial i probably it 	 of a
problem that should not be solved recursively, since the iterative solution is so direct and
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simple. However, let us examine the elements that make the recursive solution work.
First of all, we can recognize a large number of distinct cases to solve. That is, we want
to write a program to compute 0!. I!. 2!. and SO Ofl. We can also identity it case
for which a nonrecursive solution is directly obtainable. This is the case of 0!, which
is defined as I. The next step is to find a method of solving a "complex" case in terms
of a "simpler" case. This allows reduction of a complex problem to a simpler problem.
The transformation of the complex case to the simpler case should eventually result in
the trivial case. This would mean that the complex case is ultimately defined in terms
of the trivial case.

Let us examine what this means when applied to the factorial function. 4! is a'
more "complex" case than 3!. The transformation that is applied to the number 4 to
obtain the number 3 is simply the subtraction of 1. Repeatedly subtracting I from 4
eventually results in 0, which is a "trivial" case. Thus if we are able to define 4! in
terms of 3!, and in general 11! in terms of (n - I)!, we will be able to compute 4! by
first working our way down to 0! and then working our way hack up to 4! using the
definition of n! in terms of (it I)!. In the case of the factorial function we have such
a definition, since

= n * (n - 1)'

Thus 4! = 4*3! = 4*3*2' = 4 * 3 * 2 * 	 = 4 * 3 * 2 * 1*0! = 4 * * 2 * I *
I = 24.

These are the essential ingredients of a recursive routine—being able to define
a "complex" case in terms of a "simpler" case and having a directly solvable (nonre-
cursive) "trivial" case. Once this has been done, one can develop a solution using the
assumption that the simpler case has already been solved. The C version of the factorial
function assumes that (n - 1)! is defined and uses that quantity in computing W.

Let us see how these ideas apply to other examples of the previous sections. In
defining a * b, the case of h = I is trivial, since in that case, a * b is defined as a. In
general, a * b may be defined in terms of a (b - I) by the definition ci h a * (h
- 1) + a. Again the complex case is transformed into a simpler case by subtracting
I, eventually leading to the trivial case of b = I. Here the recursion is based on the
second parameter, b, alone.

In the case of the Fibonacci function, two trivial cases were defined: fib(0) = 0
andfib( I) = I. A complex case,fib(n), is then reduced to two simpler cases: fib(n - 1)
and fib(n - 2). It is because of the definition offib(n) asfib(n - I) + fib(n - 2) that two
trivial cases directly defined are necessary.fib( I) cannot be defined asfib(0) + fib( - I),
because the Fibonacci function is not defined for negative numbers.

The binary search function is an interesting case of recursion. The recursion is
based on the number of elements in the array that must be searched. Each time the
routine is called recursively the number of elements to be searched is halved (approxi-
mately). The trivial case is the one in which there are either no elements to be searched
or the element being searched for is at the middle of the array. If low > high, the first
of these two conditions holds and - I is returned. If x = aI,nidl, the second condition
holds and ,nid is returned as the answer. In the more complex case of high - low ±
elements to be searched. the search is reduced to taking place in one of two subregions.
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1. The lower half of the array from low to mid -
2. The upper half of the array from mid + I to high

Thus a complex case (a large area to be searched) is reducd to a simpler case (an
area to be searched of approximately half the size of the original area). This eventually
reduces to a comparison with a single element ( almidj ) or a search within an array of
no elements.

Th. Towers of Hanoi Problem

Thus far we have been looking at recursive definitions and examining how they
fit the pattern we have established. Let us now look at a problem that is not specified in
terms of recursion and see how we can use recursive techniques to produce a logical and
elegant solution. The problem is the "Towers of Hanoi" problem whose initial setup is
shown in Figure 3.3.1. Three pegs, A, B, and C, exist. Five disks of differing diameters
are placed on peg A so that a larger disk is always below a smaller disk. The object is
to move the five disks to peg C, using peg B as auxiliary. Only the top disk on any peg
may be moved to any other peg, and a larger disk may never rest on a smaller one. See
if you can produce a solution. Indeed, it is not even apparent that a solution exists.

Let us see if we can develop a solution. Instead of focusing our attention on a
• solution for five disks, let us consider the general case of n disks. Suppose that we had a

solution for n I disks and could state a solution for n disks in terms of the solution for
n - I disks. Then the problem would be solved. This is true because in the trivial case
of one disk (continually subtracting I from n will eventually produce I), the solution
is simple: merely move the single disk from peg A to peg C. Therefore we will have
developed a recursive solution if we can state a solution for n disks in terms of n - I.
See if you can find such a relationship. In particular, for the case of five disks, suppose
that we knew how to move the top four disks from peg A to another peg according to
the rules. How could we then complete the job of moving all five? Recall that there are
three pegs available.

Suppose that we could move four disks from peg A to peg C. Then we could move
them just as easily to B, using Cas auxiliary. This would result in the situation depicted
in Figure 3.3.2a. We could then move the largest disk from A to C (Figure 3.3.2b) and
finally again apply the solution for four disks to move the four disks from B to C, using

Figure 3.3.1 Initial setup of the Towers of Hanoi

14	 Recursion	 Chap. 3



Sec. 3.3	 Writing Recursive Programs 	 143

A	 B	 C

(a)

B	 C

(b)

A	 B	 C

[tv]

Flgur. 3.3.2 Recursive solution to the Towers of Hanoi.

the now empty peg A as an auxiliary (Figure 3.3.2c). Thus, we may state a recursivc
solution to the Towers of Hanoi problem as follows:

To move n disks from A to C. using B as auxiliary:

1. If n == 1, move the single'dislc from A to C and stop.
2. Move the top n - I disks from A to B. using C as auxiliary.
3. Move the remaining disk from A to C.
4. Move then - I disks from B to C. using A as auxiliary.

I



We are sure that this algorithm will produce a correct solution for any Value of
n. If n = = 1, step I will result in the correct solution, if a = = 2, we know that we
already have a solution for  - I == I, so, that steps 2 and 4 will perform correctly.
Similarly, when n = = 3, we already have produced a solution for n - I = = 2, so that
steps 2 and 4 can be performed. In this fashion, we can show that the solution worksfor a == 1, 2, 3,4, 5. . . . up to any value for which we desire a solution. Notice that
we developed the solution by identifying a trivial case (n == I) and a solution for a
general complex case (n) in terms of a simpler case (a -

How can this solution be converted into a C program? We are no longer dealing
with a mathematical function such as factorial, but rather with concrete actions such as
"move a disk." How are we to represent such actions in the computer? The problem is
not completely specified. What are the inputs to the program? What are its outputs to
he? Whenever you are told to write a program, you must receive specific instructions
about exactly what the program is expected to do. A problem statement such as "Solve
the Towers of Hanoi problem" is quite insufficient. What is usually meant when such
a problem is specified is that not Only the program but also the inputs and outputs must
be designed, so that they reasonably correspond to the problem description.

The design of inputs and outputs is an important phase of a solution and should
he given as much attention as the rest of a program. There are—two -reasons for this.
The first is that the user (who must ultimately evaluate and pass judgment on your
work) will not see the elegant method that you incorporated in your l.ro gram but will
struggle mightily to decipher the output or to adapt the input data to your particular input
conventions. The failure to agree early on input and output details has been the cause of
much grief to programmers and users alike. The second reason is that a slight change
in the input or output format may make the program much simpler to design. Thus,
the programmer can make the job much easier if he or she is able to design an input
or output format compatible with the algorithm. Of course these two considerations,
convenience to the user and convenience, to the programmer, often conflict sharply, and
some happy medium must be found. However, the user as well as the programmer must
be a full participant in the decisions on input and output formats.

Let us, then, proceed to design the inputs and outputs for this program. The only
input needed is the value of a, the number of disks. At least that may be the program-
mer's view. The user may want the names of the disks (such as "red." "blue," "green."
and so forth) and perhaps the names of the pegs (such as "left." "right," and "middle")
as well. The programmer can probably Convince the user that naming the disks 1, 2, 3,

to and the pegs A, B, Cis just as convenient. If the user is adamant, the programmer
can write a small function to convert the user's names to his or her own and vice versa.

4 reasonable form for the output would he a list of statements such as

move disk non from peg yyy to peg zzz

where nun is the number of the disk to he moved, and nv and 	 are the names of the
pegs involved. The action to be taken for a solution would he to perform each of the
output statements in the order that they appeal. 	 the output.

The programmerthen decides to write a subroutine !ouer,r(being purposely vague
about the parameters at this point) to print the aforementioned output. The main program
"ould be
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void majnQ
{

mt n;

scanf("%d", &n);
towers(paral,,eters).

}/ end main •/

-Let us assume that the user will be satisfied to name the disks 1, 2,3,...,
and the pegs A, B, and C. What should the parameters to towers be? Clearly, they
should include n, the number of disks to be moved. This not only includes informa-
tion about how many disks there are but also what their names are. The program-
mer then notices that, in the recursive algorithm, n - I disks will have to he moved
using a recursive call to towers. Thus, on the recursive call, the first parameter to
towers will be ii - I. But this implies that the top n - I disks are numbered I. 2.
3.....n - I and that the smallest disk is numbered I. This is a good example of
programming convenience determining problem representation. There is no a priori
reason for labeling the smallest disk I; logically the largest disk could have been la-
beled I and the smallest disk ii. However, since it leads to a simpler and more di-
rect program, we choose to label the disks so that the smallest disk has the smallest
number.

What are the other parameters to lowers? At first glance, it might appear that
no additional parameters are necessary, since the pegs are named A. B. and C by
default. However, a closer look at the 'recursive solution leads us to the realization
that on the recursive calls disks will not be moved from A to C using B as auxil-iary but rather from A to B using C (step 2) or from B to C using A (step 4). Wetherefore include three more parameters in lowers. The first. frompeg, represents
the peg from which we are removing disks; the second, lopeg, represents the. peg
to which we will take the disks; and the third, au.vpeg, represents the auxiliary peg,
This situation is one which is quite typical of recursive routines; additional parame-
ters are necessary to handle the recursive call situation. We already saw one exam-
ple of this in the binary search program where the parameters low and high Werenecessary.

The complete program to solve the Towers of Hanoi problem, closely following
the recursive solution, may be written as follows: 	 -

#include <stdiø.fl>

void towers(int, char, char, char);

void main()

mt n;

scanf("%d", &n);
towers(fl, 'A'. 'C,
end main /
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void towers(lnt n, char froeg, char Ljpeg, clime auxpeg)

/* If only one disk, make the move and return. •1

printf("\n%s%c%s%c", .ove disk 1 from peg
	

freg, to peg ", toØeg);
return;

1 end if
/ Move top n-i disks from A to B, using C as V

auxiliary	 *1
towers(n-1, froeg, auxpeg, topeg);
1*	 move romalning disk from A to C
printf(\n%s%s%c%s%c, .ove disk ", n, " from peg

/	 Move n-i disk from B to C using A as
auxiliary

towers(n-1, auxteg, topeg, froeg);
}/* end towers

fro ,eg,	 to peg ", topeg);
*1
'I

Tr'ace the actions of the foregoing program when it reads the value 4 for n. Be
careful to keep track of the changing values of the parameters frompeg, auxpeg, and
iopeg. Verify that it produces the following output:

move disk 1 from peg A to peg B
move disk 2 from peg A to peg C
move disk 1 from peg I to peg C
move disk 3 from peg A to peg B
,n #e disk 1 from pig C to peg A
rnove disk 2 from peg Cto peg B
move disk 1 fri. pq A to peg I
move disk 4 from peg A to peg C
move disk 1 from peg I to peg C
move disk 2 fro. peg S to peg A
move disk 1 fri. peg C to peg A
move disk 3 from peg B to peg C
move disk 1 from peg A to peg I
move disk 2 fri. peg A to peg -(
move disk 1 from peg B to peg C

Verify that the foregoing solution actually works and does not violate any of the rules.

Translation from Prefix to Postfix Using Recursion

Let us examine another problem for which the recursive solution is the most
direct and elegant one. This is the problem of converting a prefix expression to post-
fix. Prefix and posttix notation were discussed in the last chapter. Briefly, prefix and
postfix notation are methods of writing mathematical expressions without parentheses.
In prefix notation each operator immediately precedes its operands. In postfix notation
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each operator immediately follows its operands. To refresh your memory, here are
a few conventional (infix) mathematical expressions with their prefix and postfix
equivalents:

•flfLr	 prrfix	 postfix -
A+R	 +A8	 A8+
A+A.0	 +ARC	 ARC.+

•A+RC	 ABC +.
AD+C	 4•fl8C
A.B.C+D_E.F	 -++A.BCD.p	 ARC.+Ø.EF._

•+A8-+CDEF	 AR+CD+E-.p.

The most convenient way to define posttix and prefix is by using recursion. As-
suming no constants and using only single letters as variables, a prefix expression is
a single letter, or an operator followed by two prefix expressions. A postfix expression
may be similarly defined as a single letter, or as an operator preceded by two postfix
expressions. The above definitions assume that all operations are binary-_-that is, that
each requires two operands. Examples of such operations are addition, subtraction, mul-
tiplication, division, and exponentiation. It is easy to extend the preceding definitions
of prefix and postfix to include unary operations such as negation or factorial, but in the
interest of simplicity we will not do so here. Verify that each of the above prefix and
postfix expressions are valid by showing that they satisfy the definitions and make sure
that you can identify the two operands of each operator.

We will put these recursive definitions to use in a moment, but first let us return to
our problem. Given a prefix expression, how can we convert it into a postfix expression?
We can immediately identify a trivial case: if a prefix expression. consists of only a
single variable, that expression is its own postfix equivalent. That is, an expression
such as A is valid as both a prefix and a posflix expression.

Now consider a longer prefix string. If we knew how to convert any shorter prefix
string to postfix, could we convert this longer prefix string? The answer is yes, with
one proviso. Every prefix string longer than a single variable contains an operator, a
first operand, and a second operand (remember we are assuming binary operators only).
Assume.that we are able to identify the first and second operands, which are necessarily
shorter than the original string. We can then convert the long prefix string to postfix
by first converting the first operand to postfix, then converting the second operand to
postfix and appending it to the end of the first converted operand, and finally appending
the initial operator to the end of the resultant string. Thus we have developed a recursive
algorithm for Converting a prefix string to posttix, with the single provision that we must
specify a method for identifying the operands in a prefix expression. We can summarize
our algorithm as follows:

1. If the prefix string is a single variable, it is its own postfix equivalent.
2. Let op be the first operator of the prefix string.
3. Find the first operand. opndl,of the string. Convert it to postfix and call it post I.
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4. Find the second operand, opnd2, o f the string. Convert it to postfix and call it
posi2.

5. Concatenate post I, post2, and op.

One operation that will be required in this program is that of concatenation. For
example, if two strings represented by a and b represent the strings "abcde" and "xyz"
respectively, the function call

strcat(a, b)

places into a the string "abcdexyz" (that is, the string consisting of all the elements of a
followed by all the elements of h). We also require the functions .ctrlen and subsir. The
function strlen(str) returns the length of the string sir. The subsIrsl,ij,s2) function
sets the string s2 to the substring of sl, starting at position I containingj characters.
For example, after executing suhstr("abcd", 1,2,$), .s equals "be". The functions sircat,
sirlen, and subsir are usually standard C string library functions.

Before transforming the conversion algorithm into a C program, let us examine
its inputs and outputs. We wish to write a procedure convert that accepts a character
string. This string represents a prefix expression in which all variables are single letters
and the allowable operators are '+', '-', '*'. and 'I'. The procedure produces a string
that is the po.stfix equivalent of the prefix parameter.

Assun1he existence of a function find that accepts a string and returns an integer
that is the length of the longest prefix expression contained within the input string that
starts at the beginning of that string. For example,find ("A + CD") returns I, since "A"
is the longest prefix string starting at the beginning of "A + CD". find("+ * ABCD +
GB") returns 5, since "+ * ABC"' is the longest prefix string starting at the beginning
of "+ * ABCD + GB". If no such prefix string exists within the input string starting at
the beginning of the input string, find returns 0. (For example, find ("* + AB") returns
0.) This function is used to identify the first and second operands of a prefix operator,
convert also calls the library function isaipha, which determines if its parameter is a
letter. Assuming the existence of the functionfind, a conversion routine may be written
as follows.

void convert (char prefix[], char postfix[))

char opndl[MAXLENGTH], opnd2[MAXLENGTHJ;
char postl[MAXLENGTH], post2[MAXLENGTH];
char temp[NLENGTH];
char op(1);
mt length;
inti, j, m, n;

if ((length	 strlen(prefix))	 1)
if (isalpha(preflxtO])) {

/* The prefix string is a single letter.
postfix[O] = prefix[O);
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postfix[i)	 \0';	 "I	 -'	 '''
return;•'oq r- k.	 Jfl

} 
/*	 if V	 : •t	 ,	 ^- z mu

printf("\nillegai prefix string);	 .j.,
exit(]);	

-
	

as I 'm	 tfl.' -
/ end if //* 
The prefix string is longer than a single

1* character. Extract the operator and the	 */
1*	 two operand lengths.

op [0]	 prefix[0];

op[i) = '\O;	 -

substr(pref-ix, 1, length-1, temp);

it = 'find(ternp);

substr(prefix, it + i, length-m-1, temp);
n = find(temp);

if ((op[Oj	 '+ && op[0] 1= '- &&. op [01	 ' && op[0]	 '/)

	

II (rn'==O) I (n	 0) 1 , ! (it	 n + i	 length))
printf("\nillegal prefix string");

exit(J.);

}/ end if
substr(prefix, 1, rn, opndl); 	

.
substr(prefjx, rn .+i, n, oprv12);
convert(opndi posti); 	

,.
convert(opnd2, post2);

Strcat(postl, post2);

strcat(postl op);

substr(postl, 0, length, postfix);

end convert *1.

Note that several checks have been incorporated into convert to ensure that the
parameter is a valid prefix string. One of the most difficult classes of errors to detect are
those resulting from invalid inputs and the programmer's neglect to check for validity.

We now turn our attention to the functionfind, which accepts a character string and
a starting position and returns the length of the longest prefix string that is contained
in that input string Starting at that position. The word 'lon gest" in this definition issuperfluous, since there is at most one substring starting at a given position of a given
string that is a valid prefix expression.

We first show that there is at most one valid prefix expression starling at the
be g inning of a string. To see this, note that it is trivially true in a string of length I. As-sume that it is true for a short string. Then a long string' contains a prefix expression
as an initial substring must begin with either a variable, in which case that variable is
the desired substring. or with an operator. Deleting the initial operator, the remaining
strin g

 is shorter thin the original string and can therefore have at most a single initial
prefix expression. This expression is the first operand of the initial operator. Similarly,
the remaining substring (after deletin the first operand) can onl y have a single initialsuhstrin g that is a prefix expression. This expression must be the second operand. Thus
we have unique))' identified the operator and operands of the prefix expression starling
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at the first character of an arbitrary string, if such an expression exists. Since there is
at nst one valid prefix string starting at the beginning of any string, there is at most
one such string starting atany position of an arbitrary string. This is obvious when we
consider the substring of the given string starting at the given position.

Notice that this proof has given us a recursive method for finding a prefix expres-
sion in a string. We now incorporate this method into the flmcdon find:

find(clar
{

char tXLEITHJ;
i.t length;
lit i, j , M. a;

if ((length • strlea(str)) — 0)
.--- (0);

If (isaplia(str(0)) I. 0)
/ First character is a letter,
/	 That letter Is the initial
1*	 Slê$ttil'9.
KE (1);

I' otherwise find the first operand */
If (strlen(str) 2)

ratars (0);
substr(str, 1, length-1, t);
a • find(te);
if (a	 0 II strlen(str)	 .)

/	 no valid prefix operand or
/	 no second operand
return (0);

substr(str, .4, length-.-i, t);
A - find(teap);
If (n — 0)

retwi'i (0);
return (isn+i);

/ end find /

Make sure that you understand how these routines work by tracing their actions
on both valid and invalid prefix expressions. More important, make sure that you un-
derstand how they were developed and how logical analysis led to a natural recursive
solution that was directly translatable into a C program..

EXERCISES

3.3.1. Suppose that another provision were added to the Towers of Hanoi problem: that one
disk may nol rest on another disk that is more than one size larger (for example, disk
I may only rest on disk 2 or on the ground, disk 2 may only rest on disk 3 or on the
ground, and so on). Why does the solution in the text tail to work? What is faulty about
the logic that led to it under the new rules?
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33.2. Prove that the number of moves performed by towers in moving n disks equals 2' - I.
Can you find a method of solving the Towers of Hanoi problem in Fewer moves? Either
find such a method for some n or prove that none exists.

333. Define a posefix and prefix expression to include the possibility of unary operators.
Write a program to convert a prefix expression possibly containing the unary negation
operator (represented by the symbol '(W,)topostflx.

33.4. Rewrite the Fwictionfind in the text so that it is nonrecursive and computes the length
of a prefix string by counting the number of operators and single-letter operands.

3.33. Write a recursive function that accepts a prefix expression consisting of binary opera-
tors and single-digit integer operands and returns the value of the expression.

3.34. Consider the following procedure for convening a prefix expression to posifix. The
routine would be called by conv(prefix.pustfix).

void conv(cher prefix[), tir postfixfl)
{

char first(Z);
char t1tMAXIENCIK]. t2 (MAXI.ENCN];

first(O] - prefia(0);
first[l] •
substr(prefix, 1, str1en(prefx) . 1, prefix);
if (first(0)	 II first() —	 II first(0) •- ,., II

	first[0]	 •/') (
conv(prefix, ti);
conv(prefix, t2);
strcat(tl, U);
strcat(tl, first);
substr(tl, 0, strlen(tl), postfix);
return;

} / end if
postfix[0) - first[0];
postfix(1] =
/ end cony *1

Explain how the procedure works. Is it better or worse than the method of the text?
What happens if the routine is called with an invalid prefix string as input? Can you
incorporate a check, for such an invalid string within convert? Can you design such a
check for the calling program after convert has returned? What is the value of n after
convert returns?

3.3.7. Develop a recursive method (and program it) to compute the number of different ways
in which an integer k can be written as a sum, each of whose operands is less than ii.

33.8. Consider an array a containing positive and negative integers. Define conhigsum(i.j)
as the sum of the contiguous elements alil through ajjJ for all array indexes ij.
Develop a recursive procedure that determines i andj such that wnrisuni(i.j) is max-
imized. The recursion should consider the two halves of the array a.

33.9. Write a recursive C program to find the kih smallest element of an array a of numbers
by choosing any element a(i) of  and partitioning a into those elements smaller than,
equal to, and greater than aIi.
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3.3.10. The eight-queens problem is to place eight queens on a chessboard so that no queen is
attacking any other queen. The following is a recursive program to solve the problem.
board is an eight by eight array that represents a chessboard. board[ i ][ j TRUEif there is a queen at position tiff j], and FALSE otherwise. good() is a function thatreturns TRUE if no two queens on the chessboard are attacking each other and FALSE
otherwise. At the end of the program, the routine drawboardQ displays a solution tothe problem.

#define TRUE 1
$define FALSE 0

mt try(int);
void drawboard(vojd);

static short mt board (8)[81;

void mainQ

nt i, j;

for(i0; i<8; i++)
for(0; j<8; j++)

board[i][j) = FALSE
if (try(0) == TRUE)

drawboardQ;
end stain

mt try(int n)

mt 1;

for(i=0; i<8; i++) {
board[n][i] = TRUE;
if (n == 7&& 900d() == TRUE)

return(TRIJE);

if (n < 7 && good() == TRUE && try(n#1) == TRUE)
return (TRUE)

board[n][ j ] = FALSE;
/ end for V

return(FALSE);
/* end try V

The recursive function try returns TRUE if it is possible, given the hoard at the timethat it is called, to add queens in rows n through 7 to achieve a solution. try returnsFALSE if there is no solution that has queens at the positions in board that alreadycontain TRUE. If TRUE is returned, the function also adds queens in rows 

"
through 7

to produce a solution. Write the foregoing functions good and draw/,oard, and verify
that the program produces a solution. (The idea behind the solution is as follows hoard
represents the global situation during an attempt to find a solution. The next step toward
finding a solution is chosen arbitrarily (place a queen in the next untried position in row
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n), Then recursively test whether it is possible to produce a solution that includes that
step. If it is, return. If it is not, backtrack from the attempted next slep—boqrd[,;)[jJ =
FALSE—and try another possibility. (This method is called backtracking.)

3.3.11. A JO x JO array maze of Os and Is represents a maze in which a traveler must find
a path from nza:e[O][O] to maze[9][9]. The traveler may move from a square into any
adjacent square in the same row or column, but may not skip over any squares or move
diagonally. In addition, the traveler may not move into any square that Contains a I.
maze [ O][O] and maze [ 9][9 ] contain Os. Write a routine which accepts such a maze andei ther prints a message that no path through the maze exists or which prints a list of
positions representing a path fiom (O]lO) to [9119].

3.4 SIMULATING RECURSION

In this section we examine more closely some of the mechanisms used to implement re-
cursion so that we can simulate these mechanisms using nonrecursive techniques. This
activity is important for several reasons. First of all, many commonly used program-
ming languages (such as FORTRAN, COBOL, and many machine languages) do not
allow recursive programs. Pioblems such as the Towers of Hanoi and prefix-to-postlix
conversion, whose solutions can be derived and stated quite simply using recursive
techniques, can be programmed in these languages by simulating the recursive solu-
tion using more elementary operations. if we know that the recursive solution is correct
(and it is often fairly easy to prove such a solution correct) and we have established
techniques for converting a recursive solution to a nonrecursive one, we can Create a
correct solution in a nonrecursive language. It is not uncommon for a programmer to be
able to state a recursive solution to a problem. The ability to generate a nonrecursive
solution from a recursive algorithm is indispensable when using a compiler that does
not support recursion.

Another reason for examining the implementation of recursion is that it will allow
us to understand the implications of recursion and some of its hidden pitfalls. Although
these pitfalls do not exist in mathematical definitions that employ recursion, they seem
to be an inevitable accompaniment of an implementation in a real language on a real
machine.

Finally, even in a language such as C that does support recursion, a recursive
solution to a problem i often more expensive than a nonrecursive solution, both in
terms of time and space. Frequently, this expense is a small price to pay for the logical
simplicity and self-documentation of the recursive solution. However, in a production
program (such as a compiler, for example) that may be run thousands of times, the
recurrent expense is a heavy burden on the system's limited resources. Thus, a program
may be designed to incorporate a recursive solution in order to reduce the expense of
design and certification, and then carefully converted to a nonrecursive version to be
put into actual day-to-day use. As we shall see, in performing' a conversion it is
often possible to identify parts of the jmplementation of recursion that are superfluous
in a particular application and thereby significar.tly reduce the amount of work that the
program must perform.

Before examining the actions of a recursive routine, let us take a step back and
examine the action of a nonrecursjve routine. We will then be able to see what mech-
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anisms must be added to support recursion. Before proceeding we adopt the following
convention. Suppose that we have the statement

ro4Jt(x);

where mu: is dcJined as a function by the header

rout(a)

x is referred to as an argument (of the calling function), and a is referred to as a pa-
rameter (of the called function).

What happens when a function is called? The action of calling a function may be
divided into three parts:

I. Passing arguments

2. Allocating and initializing local variables

3. Transferring control to the function

Let us examine each of these three steps in turn.

1.Passing arguments. For a parameter in C. a copy of the argument is made
locally within the function, and any changes to the parameter are made to that local
copy. The effect of this scheme is that the original input argument cannot be altered. In
this method, storage for the argument is allocated within the data area of the function.

2. Allocating and initializing local variables. After arguments have been
passed. the local variables of the function are allocated. These local variables include all
those declared directly in the function and any temporaries that must be created during
the course of execution. For example, in evaluating the expression

x+y+z

a storage Location must be set aside to hold the value of .v + y so that z can be added to
it. Another storage location must be set aside to hold the value of the entire expression
after it has been evaluated. Such locations are called temporaries, since they are needed
only temporarily during the course of execution. Similarly, in a statement such as

fact(n)

a temporary must be set aside to hold the value of fact(n) before that value can be
assi gned to x.

3.Transferring control to the function. At this point control may still not he
passed to the function because provision has not yet been made for saving the return
address. If a function is given control, it must eventually restore control to the calling -
routine by means of a branch. However, it cannot execute that branch unless it knw
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the location to which it must return. Since this location is within the calling routine
and not within the fànction, the onls way that the function can know this address is to
have it passed as an argument. This is exactly, what happens. Aside from the explicit
arguments specified by the programmer, there is also a set of implicit arguments that
contain information necessary for the function to execute and return correctly. Chief
among these implicit arguments is the return address. The function stores this address
within its own data area. When it is ready to return control to the calling program, the
function retrieves the return address and branches to that location.

Once the arguments and the return address have been passed, control may be
transferred to the function, since everything required has been dofle to ensure that the
function can operate on the appropriate data and then return to the calling routine safely.

sturn tram a Function

When a function returns, three actions are performed. First, the return address is
retrieved and stored in a safe location. Second. the function's data area is freed. This
data area contains all local variables (including local copies of arguments), temporaries.
and the return address. Finally, a branch is taken to the return address, which had been
previously saved. This restores control to the calling routine at the point immediately
following the instruction that initiated the call. In addition, if the function returns a
value, that value is placed in a secure location from which the calling program ma
retrieve it. Usually this location is a hardware register that is set aside for this purpose.

Suppose that a main procedure has called a function b that has called c that
has, in turn, called d. This is illustrated in Figure 3.4.1 a. where we indicate that control
currently resides somewhere within d. Within each function, there is a location set aside

main program	 procedure b	 procedure r 	 Procedure d
I	 I Return	

j	
Reum	

jAd	 Rdd
eturn

-	 I	 ra	 address	 aress
call on d

call onb	 I	 call onc

(a
main program	 procedure b	 procedure c	 Control

Return Return
address 

call on d

call on b

 

Control

call on c

(b)

Figure 3.4.1 Series of procedures calling one another.
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for the return address. Thus the return address area of d Contains the address of theinstruction in  immediately following the call to d. Figure 3.4.1b shows the situationimmediately following d's return to c. The return address within d has been retrieved
and control has been transferred to that address.

You may have noticed that the string of return addresses forms a stack; that is, the
most recent return address to be added to the chain is the first to be removed. At any
point, we can only access the return address,from within the function that is currently
executing, which represents the top of the stack. When the stack is popped (that is, when
the function returns), a new top is revealed within the calling routine. Calling a function
has the effect of pushing an element onto the stack, and returning pops the stack.

Implementing Recursive Functions

What must be added to this description in the case of a recursive function? The
answer is, surprisingly little. Each time a recursive function calls itself, an entirely new
data area for that particular call must be allocated. As before, this data area contains all
parameters, local variables, temporaries, and a return address. The point to remember
is that in recursion a data area is associated not with a function alone but with a par-
ticular call to that function Each call causes a new data area to be allocated, and each
reference to an item in the function's data area is to the data area of the most recent call.
Similarly, each return causes the current data area to be freed, and the data area allo-
cated immediately prior to the current area becomes current. This behavior, of course,
suggests the use of a stack.

In Section 3.1.2, where we described the action of the recursive factorial function,
we used a set of stacks to represent the successive allocations of each of the local vari-
ables and parameters. These stacks may he thought of as separate stacks, one for each
local variable. Alternatively, a-'d closer to reality, we may think of all of these stacks as
a single large stack. Each element of this large stack is an entire data area containing
subparts representing the individual local variables or parameters.

Each time that the recursive routine is called, a new data area is allocated. The pa-
rameters within this data area are initialized to refer to the values of their corresponding
arguments. The return address within the data area is initialized to the address follow-
ing the call instruction. Any reference to local variables or parameters is via the Current
data area.

When the recursive routine returns, the returned value (if an y ) and the return
address are saved, the data area is freed, and a branch to the return address is executed.
The calling function retrieves the returned value (if any), resumes execution, and refers
to its own data area that is now on top of the stack,

..Let us now examine how we can simulate the actions of a recursive function. We
will need a stack of data areas defined by

#detine MAXSTACK 50;
struct stack

mt top;
struct dataarea item[MA)sTAcK];
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The dataarea is itself a structure containing the various items that exist in a data
area and must be defined to contain the fields required for the particular function being

simulated.

Simulation of Factorial

Let us look at a specific example: the factorial function. We present the code for
that function, including temporary variables explicitly and omitting the test for negative
input as follows:

mt fact(int n)

mt x, y;

if (n	 0)
return(fl;
n-i;

y	 fact(x);
return(n

1 /* end fact V

How are we to define the data area for this function? It must contain the parameter
it and the local variables x and v. As we shall see, no temporaries are needed. The data
area must also contain a return address. In this case, there are two possible points to
which we might want to return: the assignment of facr(.) to v, and the main program

that calied .fact. Suppose that we had two labels and that we let the label lahe12 he the

label of a section of	 code.	 -

label2: y = result;

within the simulating program. Let the label lal,ell be the label of a statement

label 1: return(result);

This reflects a convention that the variable result contains the value to be returned by an

invocation of the fact function. The return address will be stored as an integer i (equal
to either I or 2). To effect a return from a recursive call the statement

switch(i) {
case i: goto labell;
case 2: goto label2;

/ end case V

is executed. Thus, if I = = I. a return is eeeLIIed to the main proeral i that called fact.
and if I = = 2, a return is simulated to the a'.sitnmenl of the returned value to the

variable v in the previous execLition 01 lcic!.
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The data area stack for this example can be defined as follows:

Sdef in. MAXSTACX 50
struct dataarea {

mt paraa;
mt x;
long mt y;
short mt retaddr;

struct stack {
mt top;
struct dataarea ite.[MASTACK);

The field in the data area that contains the simulated parameter is called param, rather
than n, to avoid confusion with the parameter n passed to the simulating function. We
also declare a current data area to hold the values of the variables in the simulated
"current" call on the recursive function. The declaration is:

struct dataarea currarea;

In addition, we declare a single variable result by

long mt result;

This variable is used to communicate the returned value of fact from one recursive call
of fact to its caller, and fromfact to the outside calling function. Since the elements on
the stack of data areas are structures and, as we mentioned earlier, it is more efficient
to pass structures by reference, we do not use the function pop to pop a data area from
stack. Instead, we write a function popsub defined by

void popsub(struct stack *p, struct dataarea 'i,area)

The call popsub(&s. &area) pops the stacks and sets area to the popped element. We
leave the details as an exercise.

A return fromfacr is simulated by the code

result - value to be returned;
I - currarea.retaddr;
popsub(&s, &currarea);
switch(i) {

case 1: goto labell;
case 2: goto label2;

} 1 end switch V
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A recursive call onfacf is simulated by pushing the current data area on the stack,
reinitializing the variables currarea.param and currarea.re:uddr to the parameter and
return address of this call, respectively, and then transferring control to the start of the
simulated routine. Recall that currarea.x holds the value of n - I that is to be the new
parameter. Recall also that on a recursive call we wish to eventually return to label 2.
The code to accomplish this is

push(&s, &currarea);
currarea.param	 currarea.x;
currarea.retaddr - 2;
goto start; /	 Start is the label of the	 1

I' stair of the simulated routine.

Of course, the popsub and push routines must be written so that they pop and push
entire structures of type dataarea rather than simple variables. Another imposition of
the array implementation of stacks is that the variable currarea.v must be initialized to
some value or an error will result in the push routine upon assignment of currarea.y to
the corresponding field of the top data area when the program starts.

When the simulation first begins the current area must be initialized so that cur-
rarea.pararn equals n and currarea.reiaddr equals 1 (indicating a return to the calling
routine). A dummy data area must be pushed onto the stack so that when popsub is
executed in returning to the main routine, an underfiow does not occur. This dummy
data area must also be initialized so as not to cause an error in the pus)! routine (see the
last sentence of the preceding paragraph). Thus, the simulated version of the recursive
fact routine is as follows:

struct dataarea {
mt param;
intx;
long mt y;
short mt retaddr;

struct stack {
mt top;
struct dataarea item(MAXSTACKJ;

mt simfact(int n)

struct dataarea currarea;
struct stack s;
short mt i;
long mt result;
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s. top
1*	 initialize a du,y data area
currarea.paraiu	 = 0;
currarea.x	 = 0;
currarea.y	 0;
currarea.retaddr 	 0;
1*	 push the duirry data area onto the stack
Push (&s, &currarea);
/	 set the parameter and the return address of *1
/	 the current data area to their proper values.
currarea.param	 =
Currarea,retaddr 	 = 1;

start: /*	 this is the beginning of the simulated 	 *1
1*	 factorial routine.	 V
if (currarea.param	 0) {
/

	

	 simulation of return(1); 	 *1
result • 1;
i	 currarea.retaddr;
popsub(&s, &currarea);
sIitch(i) {

case 1: goto labell;	 -
case 2: goto label2;

}	 end switch
} / end if V
currarea.x = currarea.param	 1;

simulation of recursive call to fact	 V
push(&s &currarea);
currarea.param	 currarea.x;
currarea.retaddr	 2:
goto start;

label2: /	 This is the point to which we return
7'	 from the recursive call. Set currarea.y	 *1
1*	 to the returned value. 	 *1
currarea.y = result;
1*simulation of return(n * y)	 *1
result	 currarea.param* currarea.y;

currarea,retaddr;
popsub(&s, &currarea);
switch(i) {

case 1: goto labell;
case 2: goto label2;

} / end swirch V
labell: /' At this point we return to the main routine. '7

return(result);
) / end simfact /

Trace through the execution of this program for n = 5 and be sure that you un-
derstand what the program does and how it does it.

Notice that no space was reserved in the data area for temporaries, since they
need not be saved for later use. The temporary location that holds the value of a
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in the original recursive routine is simulated by the temporary for currarea.param *

currarea.y in the simulating routine. This is not the case in general. For example, if a
recursive function funct contained a statement such as

x	 a * funct(b) + C * funct(d);

the temporary fora *funcf(b) must be saved during the recursive call onfunct(d). How-
ever, in the example of the factorial function, it is not required to stack the temporary.

Improviog the Simulated Routine

The foregoing discussion leads naturally to the question of whether all the local
variables really need to be stacked at all. A variable must he saved on the stack only if
its value at the point of initiation of a recursive call must be reused after return from that
call. Let us examine whether the variables n, x, and v meet this requirement. Clearly n

does have to he stacked. In the statement

y	 * fact(x);

the old value of n must be used in the multiplication after return from the recursive call

on fact. However, this is not the case for x and Y. In fact, the value of v is not even
defined at the point of the recursive call, so clearly it need not be stacked. Similarly,
although x is defined at the point of call, it is never used again after returning, so why
bother saving it?

This point can be illustrated even more sharply b the following realization. If x
and  were not declared within the recursive functionfact, but rather were declared as
global variables, the routine would work just as well. Thus, the automatic stacking and
unstacking action performed by recursion for the local variables, . andy is unnecessary.

Another interesting question to consider is whether the return address is really
needed on the stack. Since there is only one textual recursive call tofacr ,.there is only

one return address within fact. The other return address is to the main routine that orig-
inally called fact. But suppose a dummy data area had not been stacked upon initial-
ization of the simulation. Then a data area is placed on the stack only in simulating a
recursive call. When the stack is popped in returning from a recursive call, that area is
removed from the stack. However, when an attempt is made to pop the stack in sim-
ulating a return to the main procedure, an underfiow will occur. We can test for this
underfiow by usi.ng popandte.st rather than papsub, and when it does occur we can re-
turn directly to the outside calling routine rather than through a local label. This means
that one of the return addresses can be eliminated. Since this leaves only a single pos-
sible return address, it need not be placed on the stack.

Thus the data area has been reduced to contain the parameter alone, and the stack

may be declared , by

define MAXSTACK SO
struct stack

j ilt top;
j ilt param[MAXSTACK);
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The current data area is reduced to a single variable declared by

•int currparam;

The program is now quite compact and comprehensible.

mt simfact(int n)

struct stack s;
short mt und;
long mt result, y;
mt currparam, x;

s.top = -1;
currparam

start:	 /* This is the beginning of the simulated */
factorial routine. 	 *7

if (currparam == 0) {
/	 simulation of return(l)	 *7
result = 1;
popandtest(&s, &currparam, &und);
switch(und) {

case FALSE: goto label2;
case TRUE:	 goto labell;

7* end switch
} / end if /
/ currpararn = 0

currparam - 1;
7* simulation of recursive call to fact	 *7
push(&s, currparam);
currparam =
goto start;

labell: 7* This is the point to which we return *1

	

from the recursive call. Set 	 *7

	

y to the returned value.	 *7
	y	 result;

	

7*	 simulation of return (n * y) ;	 *7
result = currparam * y;
popandtest(&s, &currparam, &und);
switch(und) {

case TRUE: goto labeJi;
case FALSE: goto labeJ2;

} 7* end switch /
Jabell: / At this point we return to the main

	

1*	 routine.
return(result);	 -

} /* end simfact *7
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Eliminating gotos

Although the preceding program is certainly simpler than the previous one, it is
still far from ideal. If you were to look at the program without having seen itS derivation.
it is probably doubtful that you could identify it as computing the factorial function. The
statements

goto start;

and

goto abeU;

are particularly irritating, since they interrupt the P'w of thought at a time that one
might otherwise come to an understanding of what is ,Iappening. Let us see if we can
transform this program into a still more readable version.

Several transformations are immediately apparent. First of all, the statements

popandtest(&s, &currparam, &und);
switch(und) {

case FALSE: goto label?;
case TRUE: goto labell;

1 /* end switch */

are repeated twice for the two cases currparain = = 0 and currparwn = 0. The two
sections can easily be combined into one.

A further observation is that the two variables x and currparam are assgned val-
ues from each other and are never in use simultaneously; therefore they may be com-
bined and referred to as one variable x. The same is true of the variables result and y,
which may be combined and referred to as the single variable v.

Performing these transformations leads to the following version of si*?fact:

struct stack
mt top;
mt param[MAXSTACK];

mt simfact(int n)

struct stack s;
short mt und;
mt x;
long mt y;
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S. top - -1;
x = n;

start: /* This is the beginning of the simulated
1*
	

factorial routine.
if (x == 0)

y.1;
else{

push(&s, x--);
goto start;

} / end else
labeul: popandtest(&s, Lx, Lund);

if (und = TRUE)
return(y);

label2: y
goto labell;

} / end sirnfact

We are now beginning to approach a readable program. Note that the program
Consists of two loops:

1. The loop that consists of the entire if statement, labeled start. This loop is exited
when x equals 0, at which point v is set to I and execution proceeds to the label
IaheIl.

2. The loop that begins at label/abe/I and ends with the statement goto label]. This
loop is exited when the stack has been emptied and underfiow occurs, at which
point a return is executed.

These loops can easily be transformed into explicit while loops as follows:

/ subtraction loop
start: while (x	 0)

push(&s, x--);
Y	 1;
popandtest(&s, &x, Lund);

labell: while (und	 FALSE)
y=
popandtest (&s, Lx, Lund);

} / end while * /
return(y);

Let us examine these two loops more closely. . starts off at the value of the input
parameter n and is reduced by I each time that the subtraction loop is repeated. Each'
time .v is set to a new value, the old value of .v is saved on the stack. This Continues
until x is 0. Thus, after the first loop has been executed the stack contains, from top to
bottom, the integers I to a.

The multiplication loop merely removes each of these values from the stack and
sets v to the product of the popped value and the old value of v. Since we know what
the stack contains at the start of the multiplication loop, why bother popping the stack?
We can use those values directly. We can eliminate the stack and the first loop entirely
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and replace the multiplication loop with a loop that multiplies y by each of the integers
from lion in turn. The resulting program is

mt simfact(int n)

mt x;
long mt y;

for (y-x-1; x < n; x++)
y

return(y);
} / end simfact *1

But this program is a direct C implementation of the iterative version of the factorial
function as presented in Section 3.1. The only change is that x varies front toil rather

than from n to I.

Simulating the Towers of Hanoi

We have shown that successive transformations of a nonrecursive simulation of
a recursive routine may lead to a simpler program for solving a problem. Let us now
look at a more complex example of recursion, the Towers of Hanoi problem presented
in Section 3.3. We will simulate its recursion and attempt to simplify the simulation
to produce a nonrecursive solution. We present again the recursive program of Section

3.3:

void towers(int n, char froepeg, char topeg, char auxpeg)

/ If only one disk, make the move and return. *1
if (n == 1) {

printf('\n%s%c%s%c", move disk 1 from peg , frompeg,
to peg ", topeg);

return;
} 1* end if
/ Move top n-i disks from A to B, using C as *1
1*	 auxiliary
toweis(n-1, frompeg, auxpeg, topeg);

Move remaining disk from A to C.	 */

pdntf('\n%s%d%s%c%s%c", move disk ",-"from peg
frompeg,	 to peg	 topeg);

/* Move n-i disk from B to C using A as
1*	 auxiliary
towers(n-1, auxpeg, topeg, frompeg);
/ end towers *1

Make sure that you understand the problem and the recursive solution before proceed-

ing. If you do not, reread Section 3.3.
There are four parameters in this function, each of which is subject to change in

a recursive call. Therefore the data area must contain elements representing all four.
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There are no local variables. There is a single temporary that is needed to hold the value
of n - I, but this can be represented by a similar temporary in the simulating program
and does not have to be Stacked. There are three possible points to which the function
returns on various calls: the calling program and the two points following the recursive
calls. Therefore four labels are necessary:

start:
labell;
label2:
label3:

The return address is encoded.as an integer (either 1, 2, or 3) within each data
area.

Consider the following nonrecursive simulation of lowers:

struct dataarea {
mt nparam;
char fromparam;
char toparam;
char auxparam;
short mt retaddr;

struct stark {
mt top;
struct dataarea item[MAXSTACK];

void simtowers(int n, char frompeg, char topeg, char auxpeg)

struct stack 5;
struct dataarea currarea;
char temp;
short mt I

s.top = -1;
currarea.nparam	 0;
currarea.fromparam =
currarea.toparam
currarea.auxparam =
currarea.retaddr = 0;

Push dummy data area onto stack. 	 */
push(&s, &currarea);
/* Set the parameters and the return addresses
/* of the current data to their proper values.
currarea.nparam =
currarea.frbmparam = froeipeg;
currarea.toparam	 topeg;
currarea.auxparam = auxpeg;
currarea.retaddr	 1;
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start:	 / This is the start of the simulated routine.
if (currarea.npara	 1) {

printf("\n%s%c%s%C", "move disk 1 from peg
currarea.frolTipeg, 	 to peg ", currarea.toparam);

i = currarea.retaddr;
pop(&s, &currarea);
switch(i) {

case 1: goto labell;
case 2: goto labelZ;
case 3: goto label3;

} / end switch */
} / end if *1
/	 This is the first recursive call.	 */

push(&s, &currarea);
-<urrarea.flParam
temp • currarea.auxparafl
currarea.auxparafl'	 currarea.toparam:
currarea.tOParam	 temp;
currarea.retaddr = 2;
goto start;

label2: /	 We return to this point from the first 	 */

recursive call.
printf("\n%s%d%s%c%s%C, "move disk ', currarea.nparam,	 from peg

	

currrea.fromparam,	 to peg ", currarea.toparam

/	 This is the second recursive call.	 'I
push(&s, &currarea);
--cur rarea.nparam;
temp currarea.fromparam;
currarea.fromparam = currarea.auxparani;
currarea.auXparafl = temp;
currarea.retaddr = 3;
goto start;

label3: 1*'	 Return to this point from the second
1*	 recursive call.	 -

currarea.retaddr;
pop(&s, &currarea);
switch(i) {

case 1: got* labell;
case 2: goto label2;
case 3: goto label';

} / end switch
labell: . return;	 -

} / end simrowers

We now simplify the program. First, notice that, three labels are used for return
addresses: one for each of the two recursive calls and one for the return to the main
program. However, the return to the main program can he signaled by an underfiow in

the stack, exactly as in the second version uf sinifact. This leaves two return labels. If we
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could eliminate one more such label it would no longer be necessary to stack the return
address, since there would be only one point remaining to which control may be passed
if the stack is popped successfully. We focus our attention on the second recursive call
and the statement

towers(n-1, auxpeg, topeg, frompeg);

The actions that occur in simulating this call are as follows:

1. Push the current data area, at, Onto the stack.
2. Set the parameters in the new current data area, a2, to their respective values,

n - 1. auxpeg, topeg, and frompeg.
3. Set the return label in the current data area, a2, to the address of the statement

immediately following the call.
4. Branch to the beginning of the simulated routine.

After the simulated routine has completed, it is ready to return. The following
actions occur:

S. Save the return label, 1, from the current data area, a2.
6. Pop the stack and Set the current data area to the popped data area. al .
7. Branch to 1.

But I is the label of the end of the block of code, since the second call to towers
appears as the last statement of the function. Thus, the next step is to pop the stack again
and return once more. We never again make use of the information in the current data
area al, since it is immediately destroyed by popping the stack as soon as it has been
restored. Since there is no reason to use this data area again, there is no reason to save
it on the stack in simulating the call. Data need be saved on the stack only if it is to be
reused. Therefore the second call to towers may be simulated simply by

1. Changing the parameters in the current data area to their respective values
2. Branching to the beginning of the simulated routine

When the simulated routine returns it can return directly to the routine that called
the current version. There is no reason to execute a return to the current version, only
to return immediately to the previous version. Thus we have eliminated the need for
stacking the return address in simulating the external call (since it can be signaled by
underfiow) and in simulating the second recursive call (Since there is no need to save and
restore the calling routine's data area at that point). The only remaining return address
is the one following the first recursive call.

Since there is only one possible return address left, it is unnecessary to keep it in
the data area, to be pushed and popped with the rest of the data. Whenever the stack is
popped successfully, there is only one address to which a branch can be executed: the
statement following the first call. If an undertlow is encountered, the routine returns to
the calling routine. Since the new values of the variables in the current data area will
he obtained from the' old values in the current data area, it is necessary to declare an
additional variable, temp, so that values can be interchanged.
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A revised nonrecursive simulation of towers follows:

struct dataarea {
mt nparam;
char fromparam;
char toparam;
char auxparam;

struct stack {
mt top;
struct dataarea item[MXSTACK]

void simtowers(int n, char frompeg, char topeg, char auxpeg)

struCt stack s;
struCt dataarea currarea;
short mt und;
char temp;

s.top = -1;
currarea.nparam = n;	 -
currarea.froirparam = frompeg;
currarea.toparam = topeg;
currarea.auxparam = auxpeg;

start: / This is the start of the simulated routine.
if (currarea.nparafll .= 1) {

printf(\n%s%cXs%c, "move disk 1 from peg
currarea.froimpeg, " to peg " currarea.toparam);

	

/	 simulate the return
popandtest(&S, &currarea &und);
if (und == TRUE)

return;
goto retaddr;

) / end if /

	

/	 simulate the first recursive call
push(&s, &currarea);
--currarea.flparam;
temp	 currarea.tOparam
currarea.tOparam	 currarea.auxparam;
currarea.auxparam = temp;
goto start;

	

retaddr: /	 return to this point from the first
recursive call 	 *1

printf(\n%s%d%S%c%S%C" move disk ", currarea.nparam,
from peg	 currarea.fromparam, " to peg

- currarea.toparam);

	

/	 simulation of second recursive call	 */

--currarea.nPara1l

Sec. 3.4	 Simulating Recursion 	 169



temp - currarea.froqiparam;
currarea. fromparam = currarea.auxparam;
currarea.auxparam	 temp;
goto start;

} / end simtowers *1

Examining the structure of the program, we see that it can easily be reorganized
into a Simpler format. We begin from the label start.

while (TRUE) {
while (currarea.nparam != 1) {

push(&s, &curra.rea);
--currarea.nparam;
temp = currarea.toparam;
currarea.toparani	 currarea.auxparam;
currarea.auxpar'am = temp;

} / end while /
printf("\n%s%c%s%c", move disk 1 from peg

currarea.fromparam,	 to peg	 currarea.toparam)
poparidtest(&s, &currarea, &und):
if (und == TRUE)

return;
printf('\n%s%d%s%c%s%c', "move disk ", currarea.nparam,•

from ", currarea.fromparam, " to peg
currarea. toparam)

--currarea.nparam;
temp = currarea.Fromparam;
currarea.fromparam = currarea.auxparam;
currarea.auxparam = temp;

} /* end while *1

Trace through the actions of this program and see how it reflects the actions of the
original recursive version.

EXERCISES

3.4.1. Write a nonrecursj ye simulation of the functions convert and find presented in Section
3.3.

3.4.2. - Write a nonrecursive simulation of the recursive binary search procedure, and transform
it into an iterative procedure.

3.4,3• Write a nonrecursive simulation offib. Can you transform it into an iterative method?
3.4.4. Write nonrecursive simulations of the recursive routines of Sections 3.2 and 3.3 and the

exercises of those sections.

3.4.5. Show that any solution to the Towers of Hanoi problem that uses a minimum number
of moves must satisfy the conditions listed below. Use these facts to develop a direct
iterative al porithiii for Towers of Hanoi. Implement the aiorithni as a C program.
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I. The first move involves moving the smallest disk.

2. A minimum-move solution consists of alternately moving the smallest disk and a
disk -that is not the smallest.

3. At any point, there is only one possible move involving a disk that is not the smallest.

4. Define the cyclic direction from fromi,cg to topeg to auxpeg tofronipeg as clock-
wise and the opposite direction (from frompeg to auxpeg to topeg to frompeg) as
counterclockwise. Assume that a minimum-move solution to move a k-disk tower
from frompeg to lopeg always moves the smallest disk in one direction. Show that
a, minimum' move solution to move a (k + 1)-disk tower from fmmpeg to lopeg
would then always move the smallest disk in the other direction. Since the solution
for one disk moves the smallest disk clockwise (the single move from frornpeg to
topeg), this means that for an odd number of disks the smallest disk always moves
clockwise, and for an even number of disks the smallest disk always moves coun-
terclockwise.

5. The solution is completed as soon as all the disks are on a single peg.

3.4.6. Convert the following recursive program scheme into an iterative version that does ndt
use a stack, tin) is a function that returits TRUE or FALSE based on the value of n. and

g(n) is a function that returns a value of the same type as n (without modifying n).

mt rec(int n)

if (f(n)	 FALSE) {
/ any group of C statements that */
/* do not change the value of n
rec(g(n));

} / end if
}/* end rec/

Generalize your result to the case in which rec returns a value.

3.4.7. Letf(n) be a function and g(n) and Ii(n) be functions that return a value of toe same type
as n without modifying n. Let (stoits) represent any group of C statements that do not
modify the value of n. Show that the recursive program scheme rec is equivalent to the
iterative scheme tier:

void rec(int n)

if (f(n) == FALSE)
(stnts);
rec(g(n));
rec(h(n));

} / end if
} / end rec /

struct stack
-mt top;
mt nvalues [tA)(STACK;
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void iter(int n)

struct stack s;

s. top = -1;
push(&s, n);

	

while(empty(&s)	 FALSE
n	 pop(&s);
if (f(n) = FALSE)

(stnrrs);
push(&s, h(n));
push(&s, g(n));

} / end if
/' end while

} / end iter V

Show that the if statements in i/er can be replaced by the following loop:

while (f(n) = FALSE)
(stmts)

-

) / end voile V

3.5 EFFICIENCY OF RECURSION

In general a nonrecursive version of a program will execute more efficientl y in terms
of time and space than a recursive version. This is because the overhead involsed in
enterin g and exitin g a block is avoided in the nonrecursive version. As we have seen,
it is often possible to identify a good number of local variables and temporaries that do
not have to be saved and restored through the use of a stack. In a nonrecursive program
this needless stackin g activity can be eliminated. However, in a recursive procedure,
the compiler is usually unable to identify such variables, and they are therefore stacked
and unstacked to ensure that no problems arise.

However, we have also seen that sometimes a recursive solution is the most nat-
ural and logical way of solvin g a problem. It is doubtful whether a programmer could
have developed the noni'ecursive solution to the Towers of Hanoi problem directly from
the problem statement. A similar comment ma y he made about the problem ot'convert-
ing prefix to postfix, where the recursive solution flows directly from the definitions. A
nonrecursive solution involvin g stacks is more difficult to develop and more prone to
error.

Thus there is a conflict between machine efficiency and programmer efficiency.
With the cost tit'pi-o gntmrnirt g increasing steadily, and the cost of computation decreas-
in g . ss e have reached the point where in most cases it is not worth a programmer's
time to laboriousl y construct a nonrecursive solution to a problem that is most naturally
solved recursively. Of course an incrnpetent, overly clever programmer may come up
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with a complicated recursive solution to a simple problem that.can be solved directly by
nonrecursive methods. (An example of this is the factorial function or even the binary
search.) However, if a competent programmer identifies a recursive solution as being
the simplest and most traightforward method for solving a particular problem, it is
probably not worth the time and effort to discover a more efficient method.

However, this is not always the case. If a program is to be run very frequently
(often entire computers are dedicated to continually running the same program), so that
increased efficiency in execution speed significantly increases throughput, the extra
investment inprogramming time is worthwhile. Even in such cases, it is probably better
to create a nonrecursive version by simulating and transforming the recursive solution
than by attempting to create a nonrecursive solution from the problem statement.

To do this most efficiently, what is required is to first write the recursive routine
and then its simulated version, including all stacks and temporaries. After this has been
done, eliminate all stacks and variables that are superfluous. The final version is a refine-
ment of the original program and is certainly more efficient. Clearly, the elimination of
each superfluous and redundant operation improves the efficiency of the resulting pro-
gram. However, every transformation applied to a program is another opening through
which an unanticipated error may creep in.

When a stack cannot be eliminated from the nonrecursive version of a program
and when the recursive version does not contain any extra parameters or local vari-
ables, the recursive version can be as fast or faster than the nonrecursive version under
a good compiler. The Towers of Hanoi is an example of such a recursive program. Fac-
torial. whose nonrecursive version does not need a stack, and calculation of Fibonacci
numbers, which contains an unnecessary second recursive call (and does not need a
stack either), are examples where recursion should be avoided in a practical implemen-
tation. We examine another example of efficient recursion (in order tree traversal) in
Section 5.2.

Another point to remember is that explicit calls to pop, push, and e,np,rc, as well as
tests for underfiow and overflow, are quite expensive. In fact, they can often outweigh
the expense of the overhead of recursion. Thus, to maximize actual run-time efficiency
of a nonrecursive translation, these calls should be replaced by in-line code and the
overfiow/underfiow tests eliminated when it is known that we are operating within the
array bounds.

The ideas and transformations that we have put forward in presenting the factorial
function and in the Towers of Hanoi problem can be applied to more complex problems
whose nonrecursive solution is not readily apparent. The extent to which,a recursive
solution (actual or simulated) can be transformed into a direct solution depends on the
particular problem and the ingenuity of the programmer.

EXERCISES

3.5.1. Run the reursivc and nom ecursive versions (if the factorial function of Sections 12 an:
3.4. and examine how n:ucli space and time each requires as,: becomes larger.

3.5.2. Do the same as in Exercise 3.5.1 fi:i the Towers of Hanoi problem.
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