ntroduction to Data
Structures

/

A computer is a machine that manipulates information. The study of computer science
includes the study of how information is organized in a computer, how it can be ma-
nipulated, and how.it can be utilized, Thus, it is exceedingly important for a student of
computer science to understand the concepts of information organization and manipu-
lation in order to continue study of the field. ' X

1.1 INFORMATION AND MEANING

if computer science is fundamentally the study of information, the first question that

arises is, what is information? Unfortunately, although the concept of inforination is the

bedrock of the entire field, this question cannot be answered precisely. In this sense the .
concept of information in computer science is similar to the concepts of point, line, and

plane in geometry: they are all undefined terms about which statements can be made

but which cannot be explained in terms of more elementar concepts.

In geometry it is possible to talk about the length of a line despite the fact that
the concept of a line is itself undefined. The length of a line is 2 imeasure of quantity.
Similarly, in computer science we can measure quantities of inforination. The basic
unit of information is the bit, whose value asserts one of two mutually exclusive pos-
sibilitiés. For example, if a light switch can be in one of two positions but not in both

| simultaneously, the fact that it is either in the “on™ position or the “off"” position is one
bit of information. If a device can be in more than two possible states, the fact that it
is ina p'lrlluﬂ.ll' state is more than one bit of information. For example, if a dial has

1

eight possible positions, the fact that it is in position 4 rules out seven other possibilities,
whereas the fact that a light switch is on rules out only one other possibility.

Another way of thinking of this phenomenon is as follows. Suppose that we had
only two-way switches but could use as many of them as we needed. How many such
switches would be necessary to represent a dial with eight positions? Clearly, one switch
can represent only two positions (see Figure 1.1.1a). Two switches can represent four
different positions (Figure 1.1.1b), and three switches are required to represent eight
different positions (Figure 1.1.1¢). In general, n switches can represent 2" different
possibilities. :

The binary digits 0 and | are used 10 represent tic two possibie states of a par-
ticular bit (in fact, the word “bit” is a “~ntraction of the words “binary digit”"). Given n
bits, a string of n 1s and Os is used to represent their settings. For example, the string
101011 represents six_switches, the first of which is “on” (1), the second of which is
“off™" (0). the third on, the fourth off, and the fifth and sixth on.

We have seen that three bits are sufficient 1o represent eight possibilities. The
eight possible configurations of these three bits (000, 001, 010, 011, 100, 101, 110,
and 111) can be used to represent the integers 0 through 7. However. there is nothing
about these bit settings that intrinsically implies that a particular setting represents a
particular integer. Any assignment of integer values to bit settings is valid as, long as
no two integers are assigned to the same bit setting. Once such an assignment has been
made. a particular bit setting can be unambiguously interpreted as a specific integer.
Let us examine several widely used methods for interpreting bit settings as integers.

Binary and Decimal integers

The most widely used method for interpreting bit settings as nonnegative in:

is the binary number system. In this system each bit position represents a power of 2.
The rightmost bit position represents 2 which equals 1, the next position to the left
represents 2! which is 2, the next bit position represents 22 which is 4, and so on. An
integer is represented as a sum of powers of 2. A string of all Os represents the number 0.
If a 1 appears in a particular bit position, the power of 2 represented by that bit position
is included in the sum: but if a 0 appears, that power of 2 is not included in the sum. For
example, the group of bits 00100110 has 1s in positions 1, 2, and 5 (counting from right
to left with the rightmost position counted as position 0). Thus 00100110 represents t:.
integer 2! + 2% 4+ 25 = 2 + 4 + 22 = 38. Under this interpretation, any string of bits
of length n represents a unique nonnegative integer between 0 and 2" — 1, and any
nonnegative integer between 0 and 2” — 1 can be represented by a unique string of bits
of length n.

“There are two widely used methods for representing negative binary numbers. In
the first methed, called ones complement notation, a negative number is represented
by chynging each bit in its absolute value to the opposite bit setting. For example.
since 00100110 represents 38, 11011001 is used to represent —38. This means that the
lefumost bit of a number is no longer used to represent a power of 2 but is reserved
for the sign of the number. A bit string starting with a 0 represents a positive number.
whereas a bit string starting with a | represents a negative number. Given n bits. the
range of numbers that can be represented is =2~ " + | (a1 followed by 1 — 1 zeros) to

2 Introduction to Data Structures ~ Chap. 1

Switch 1

OFF

(a) One switch (two possibilties).
Switch 1 Switch 2
[oFf | [orf |
| OFF | [ON |

[on | | orf |
=] [

(b) Two switches (four possibilities).

Switch 1 Switch 2 Switch 3

[ofr | | orr | [oFF

{ orr |

]
]

ON

OFF

|
(o] [
o] |
| |

oN |

OFF

|
|
oN |
|
]

| on |- [oFF

(o] [&]

[
|
l
| on
|

OFF

[o | | ov | | on

(SR T RN el SO PR (SN [PN g

(c) Three switches (eight possibilities).

Figure 1.1.1

Sec. 1.1 Information and Meaning

271 — 1 (a0 followed by n— 1 ones). Note that under this representation, there are two
representations for the number 0: a “*positive” 0 consisting of all Os, and a “negative™ 0
consisting of all 1s.

The second method of represei. g negative binary numbers is called twos com-
plement notation. In this notation, 1 is added to the ones complement representation of
a negative number. For example, since 11011001 represents —38 in ones complement
notation, 11011010 is used to represent —38 in twos complement notation. Given n bits,
the range of numbers that can be represented is —=2"~Y (a 1 followed by n — 1 zerns)
0 2"1 — 1 (a 0 followed by n = 1 ones). Note that —2"~ ") can be represented in twos
complement notation but not in ones complement notation. However, its absolute value
2'*=1 cannot be represented in either notation using n bits. Note also that there is only
one representation for the number 0.using n bits in twos complement notation. To see
this, consider 0 using eight bits: 00000000. The ones complement is 11111111, which
is negative O in that notation. Adding I to produce the twos complement form yields
100000000, which is nine bits long. Since only eight bits are allowed, the leftmost bit
(or “overflow”) is discarded, leaving 00000000 as minus 0.

The. binary number system is by no means the only method by which bits can
be used to represent integers. For example, a string of bits may be uscd to represent
integers in the decimal number system,+as follows. Four bits can be used to represent
a decimal digit between 0 and 9 in the binary notation described previously. A string
of bits of arbitrary length may be divided into consecutive sets of four bits, with each
set vepresenting a decimal digit. The string then represents the number that is formed
by those decimal digits in conventional decimal notation. For example, in this system
the bit string 00100110 is separated into two strings of four bits each: 0010 and 0110.
The first of these represents the decimal digit 2 and the second represents the decimal
digit 6, so that the entire string represents the integer 26. This representation is called
binary coded decimal.

One important feature of the binary coded decimal representation of nonnegative
integers is that pot all bit strings are valid representations of a decimal integer. Four
bits can be used to represent one of sixteen different possibilities, since there are six-
teen possible states for a set of four bits. However, in the binary coded decimal integer
representation, only ten of .those sixteen possibilities are used. That is, codes such as

1010 and 1100, whose binary values are 10 or larger, are invalid in a binary coded
decimal number. ; :

Real Numbers

XThe usual method used by computers to represent real numbers is floating-point
notation. There are many varieties of floating-point notation and ¢ach has individual
characteristics. The key concept is that a real number is represented by a number. called
a mantissa, times a base raised to an integer power, called an exponent. The base is
usually fixed, and the mantissa and exponent vary to represent different real numbers.
For example. if the base is fixed at 10, the number 387.53 could be represented as
38753 X 1072, (Recall that 1077 is .01.) The mantissa is 38753, and the exponent is
—2. Other possible representations are .38753 X 10* and 387.53 X 10", We choose the
representation in which the mantissa is an integer with no trailing Os.

6 Introduction to Data Structures Chap. 1

2%

In the floating-point notation that we describe (which_ is not -necessarily im-
plemented on any particular machine exactly as described), a real number is Tep-
resented by a 32-bit string consisting of a 24-bit mantissa followed by an 8-bit
exponent. The base is fixed at 10. Both the mantissa and the exponent are twos,com-
plement binary integers. For example, the 24-bit. binary representation-of 38753 is
000000001001011101100001, and the 8-bit twos complement binary representation of
—2is 11111110; the representation of 387.53 is 00000000100101110110000111111110.
Other real numbers and their floating-point representations are as follows: '

0 00000000000000000000000000000000.
100 00000000000000000000000100000010

.5 0000000000000000000001011 1111111
000005 0000000000000000000010111111010
12000 000000000000000000001 10000000011
~387.53 11111111011010001001111111111110.,
—12000 1111111111111111111101000000001

The advantage of floating-point notation is that it can be used to represent numbers
with extremely large or extremely small absolute values. For example, in the notation
~resented previously, the largest number that can be represenied is £23-1) x 10'7,
which is a very large number indeed. The smallest positive number that can be rep-
resented is 10~ '2%, which is quite small. The limiting factor on the precision to which
numbers can be represented on a particular machine is the number of significant binary
digits in the mantissa. Not every number between the largest and the smallest can be
represented. Our representation allows only 23 significant bits. Thus, a number such
as 10 million and 1, which requires 24 significant binary digits in the mantissa, would

have to be appro;cimated by 10 million (1 X 107), which only requires one significant
digit.

Character Strings

As we all know, information is not always interpreted numerically. Items such as
names, job titles, and addresses must also be represented in some fashion within a com-
puter. To enable the representation of such nonnumeric objects, still another method of
interpreting bit strings is necessary. Such information is usually represented in charac-
ter string form. For example, in some computers, the eight bits 00100110 are used to
represent the character ‘&'. A different eight-bit pattern is used to represent the char-
acter ‘A, another to represent ‘B’, another to represent ‘C’, and still another for each
character that has a representation in a particular machine. A Russian machine uses
bit p.tterns to represent Russian characters, whereas an Israeli machine uses bit pat-
terns to represent Hebrew characters. (In fact, the characters being used are transparent
1o the machine; the character set car be changed by using a different font set on the
printer.) ‘

If eight bits are used to represent a character, up,to 256 different characters can
be represented. since there are 256 different eight-bit patterns. If the string 11000000 1s

Sec. 1.1 Information and Meaning 5

used to represent the character ‘A’ and 11000001 is used to represent the character ‘B°,
the character string “AB” would be represented by the bit string 110000001 1000001.
In general, a character string (STR) is represented by the concatenation of the bit strings
that represent the individual chara. rs of the string. ‘

As in the case of integers, there is nothing about a particular bit string that makes it
intrinsically suitable for representing a specific character. The assignment of bit strings
to characters may be entirely arbitrary, but it must be adhered to consistently. It may
be that some convenient rule is used in assigning bit strings to characters. For exam-
ple., two bit strings may be assigned to two letters so that the one with a smaller binary
value is assigned to the letter that comes earlier in the alphabet. However, such a rule is
merely a convenience; it is not mandated by any intrinsic relation between characters
and bit strings. In fact, computers even differ over the number of bits used to represent
a character. Some computers use seven bits (and therefore allow only - 110 128 possible
characters), some use eight (up to 256 characters), and some use.le: pto 1024 pos-
sible characters). The number of bits necessary (o represent a character in a particular
computer is called the byte size and a group of bits of that number is called 1 byte.

Note that using eight bits to represent a character means that 256 possible char-
acters can be represented. It is not very often that one finds a computer thar uses so
many different characters (although it is conceivable for a computer to include upper-
and lowercase letters, special characters, italics, boldface, andother type characters),
so that many of the eight-bit codes are not used to represent characters.

Thus we see that iniormation itself has no meaning. Any meaning can be assigned
1 a particular bit pattern, as long as it is done consistently. It is the interpretation of a bit
pattern that gives it meaning. For example, the bit string 00100110 can be interpreted
as the number 38 (binary), the number 26 (binary coded decimal), or the character ‘&’.
A method of interpreting a bit pattern is often called a data type. We have presented
several data types: binary integers, binary coded decimal nonnegative integers, real
numbers. and character strings. The key questions are how to determine what data types

are available to interpret bit patterns and what data type to use in interpreting a particular
bit pattern.

Hardware and Software

The memory (also called Storage or core) of a computer is simply a group of bits
(switches). At any instant of the computer’s operation any particular bit in memory is
either O'or 1 (off or on). The setting of a bit is called its value or its contents.

The bits in a computer memory are grouped together into larger units such as
bytes. In some computers, several bytes are grouped together into units called words.
EachiSuch unit (byte or word, depending on the machine) is assigned an address, that
18, a name identifying a particular unit among all the units in memory. This address is
usually numeric, so that we may speak of byte 746 or word 937. An address is often
called a location, and the contents of a Jocation are the values of the bits that make up
the unit at that location.

-Every computer has a set of “native” data types. This means that it is constructed
with a mechanism for manipulating bit patterns consistent with the objects they repre-
sent. For example, suppose that a computer contains an instruction to add two binary

6
Introduction to Data Structures Chap. 1

integers and place their sum at a given location in memory for subsequent use. Then
there must be a mechanism built into the computer to

1. Extract operand bit patterns from two given locations.

2. Produce a third bit pattern representing the binary integer that is the sum of the
two binary integers represented by the two operands.
3. Store the resultant bit pattern at a given location.

The computer “knows™ to interpret the bit paiterns at the given locations as binary
integers because the hardware that executes that particular instruction is designed to do
so. This is akin 1o a light “knowing™ to be on when the switch is in a particular position.

If the same machine also has an instruction o add two real numbers, there must
be a separate.built-in mechanism to interpret operands as real numbers. Two distinct in-
structions are necessary for the two operations, and each instruction carries within itsell
an implicit identification of the types of its operands as well as their explicit locations.
Therefore it is the programmer’s responsibility to know which data type is contained
in each location that is used. Tt is the programmer’s responsibility to choose between
using an integer or real addition instruction to obtain the sum of two numbers.

A high-level programming language aids in this task considerably. For example,
if a C programmer declares

int x, y;
float a, b;

space is reserved at four locations for four different numbers. These four locations may
be referenced by the identifiers x, y, a, and b. An identifier is used instead of 2 numer-
ical address to refer to a particular memory location because of its convenience for the
programmer. The contents of the locations reserved for x and y will be interpreted as
integers, whereas the contents of @ and b.will be interpreted as floating-pojnt numbers.

The compiler that is responsible for translating C programs into machine language will
translate the “+" in the statement

X=X+Y;
into integer addition, and will translate the “+" in the statement

a=a+b;

into floating-point addition. An operator such as *“+ " is really a generic operator because
it has several different meanings depending on its context. The compiler relieves the
programmer of specifying the type of addition that must be performed by examining
the context and using the appropriate version.

Itis important to recognize the key role plaved by declarations in a high-level lan-
cuage. It is by means of declarations that the programmer specifies how the contents of
the computer memory are to be interpreted by the program. In doing this. a declaration
specities how much memory is needed for a particular entity, how the contents of that

~Sec. 11 Information and Meaning 7

memory are'to be interpreted, and other vital details. Declarations also specify to the
compiler exactly what is meant by the operation symbols that are subsequently used.

Concept of Implementation

Thus far we have been viewing data types as a method of interpreting the memory
contents of a computer. The set of native data types that a particular computer can
support is determined by what functions have been wired into its hardware. However,
we can view the concept of “data type™ from a completely different perspective; not
in terms of what a computer can do, but in terms of what the user wants done. For
example, if one wishes to obtain the sum of two integers, one does not care very much
about the detailed mechanism by which that sum will be obtained. One is interested in
manipulating the mathematical concept of an “integer,” not in m«. sulating hardware
bits. The hardware of the computer may be used to represent an inwger, and is useful
only insofar as the representation is successful. '

Once the concept of “data type” is divorced from the hardware capabilities of
the computer, a limitless number of data types can be considered. A data type is an
abstract concept defined by a set of logical properties. Once such an abstract data type
is defired and the legal operations involving that type are specified, we may implement
that data type (or a close approximation to it). An implementation may be a hardware
implerentation, in which the circuitry necessary to perform the required operations is
designed and constructed as part of a computer; or it may be a software implementation,
in which a program consisting of already existing hardware instructions is written to
interpret bit strings in the desired fashion and to perform the required operations. Thus, a
software implementation includes 2 specification of how an object of the new data type
is represented by objects of previously existing data types, as well as a specification
of how such an object is manipulated in conformance with the operations defined for
it. Throughout the remainder of this text, the term “implementation” is used to mean
“software implementation.”

Example

We illustrate these concepts with an example. Suppose that the hardware of a
computer contains an instruction

MOVE (source,dest, length)

that copies a character string of lerigrh bytes from an address specified by source to an
address specified by dest. (We present hardware instructions using uppercase letters.
The length must be specified by an integer, and for that reason we indicate it with
lowercase letters. source and dest can be specified by identifiers that represent storage
locations.) An example of this instruction is MOVE(a,b,3), which copies the three bytes
starting at location a to the three bytes starting at location b.

Note the different roles played by the identifiers @ and b in this operation. The
first operand of the MOVE instruction is the contents of the location specified by the
identifier a. The second operand, however, is not the contents of location b. since these *

8 Introduction to Data Structures Chap. 1

contents are irrelevant to the execution of the instruction. Rather, the location itself is
the operand, since the Jocation specifies (he destination of the character string. Although
an*identifier always stands for a location, it is common for an identificr to be used to
reference the contents of that location. It is always apparent fram the context whether
an identifier is referencing a location or-its-contents. The identifier appearing as the first
operand of a MOVE instruction refers to the contents of memory, whereas the identifier
appearing as the second operand refers to a location. il

We also assume the computer bardware to contain the usual arithmetic and
branching instructions, which we indicate by using C-like notation. For example, the
instruction :

Z=X4+Y;

interprets the contents of the bytes at locations v and v as binary integers. adds them.
and inserts the binary representation of their sum into the byte at location 2. (We do
not operate on integers greater than one byte in leagth and ignore the possibility of
overflow.) Here again, x and y are used to reference memory contents, whereas 2 is
used to reference a memory location. but the proper interpretation is clear from the
context,

Sometimes it is desirable to-add a quantity to an address to obtain another address.
For example, if @ is a location in memory, we might want to reference the location four
bytes beyond «. We cannot refer to this location as a +4, since that notation is reserved
for the integer contents of location a+4. We (herefore introduce the notation a[4] to
refer fo this Jocation. We also introduce the notation alx] to refer to the address given
by adding the binary integer contents of the byte at.x to the address a.

The MOVE instruction requires the programmer to specil’y the length of the string
to be copied. Thus. its operand is a fixed-length character string (that is, the length of
the string must be known). A fixed-length string and a byte-sized binary integer may
be censidered native data types of this pariicular machine.

Suppose that we wished to implement varying-length character strings on this
machine. That is, we want to enable programmers to use an instruction

MOVEVAR(source, dest)

to move a character string from location source to location dest without being required
to specify any length. '

To implement this new data type. we must first decide on how it is to be repre-
sented in the memory of the machine and then indicate how that representation is to
be manipulated. Clearly, it is necessary to know how many bytes must be moved to
execute this instruction. Since the MOVEVAR operation does not specify this number,
the number must be contained within the representation of the character string itself.
A varying-length character string of length / may be represented by a contiguous set
of I + 1 bytes (I < 256). The first byte contains the binary representation of the length
{ and the remaining bytes contain the representations of the characters in the string.
Representations of three such strings are illustrated in Figure 1.1.2. (Note that the dig-
its S and 9 in these figures do not stand for the bit patterns representing the characters 5’

Sec. 1.1 Information and Meaning 9

(c)

Figure 1.1.2 Varving-le_ngth character strings.

and ‘9" but rather for the patterns 00000161 and 00001001 (assuming eight bits to a
byte). which represent the integers five and nine. Similarly, 14 ifi Figure 1.1.2¢ stands
for the bit pattern 00001110. Note also that this representation is very different from
the way character strings are actually implemented in C.)

The program to implement the MOVEVAR operation can be written as follows (i
is an auxiliary memory location):

MOVE(source, dest, 1);
for (i=1; i < dest; i++)
MOVE(source[i], dest[i], 1);

Similarly, we can implement an operation CONCATVAR(c1,c2.c3) to concate-
nate two varying-length character strings at locations ¢1 and ¢2 and place the result at
3. Figure 1.1.2¢ illustrates the concatenation of the two strings in Figure 1.1.2a and b:

Y i move the length LY
z=cl=+c
MOVE(z, <3, 1);
/* move the first string */
for (i =1; 1 <= cl; MOVE(c1[i], c3[i], 1):
4% move the second string */
for (1 =1; 1 <=¢2) {
x =¢cl+1;
MOVE(c2[i], ¢3[x], 1);
} /* end for */

However, once the operation MOVEVAR has been defined. CONCATVAR can be im-
plemented using MOVEVAR as follows:

10
Introduction to Data Structures Chap. 1

MOVEVAR(c2, ¢3[c1]); /* move the second string 1/
MOVEVAR(cl1, €3); It move the first string t/
z2=cl+c2; /* update the length of the result */
MOVE(z, 3, 1);

Figure 1.1.3 illustrates phases of this operation or: the strings of Figure 1.1.2. Although
this latter version is shorter, it is not really more efficient, since all the instructions used
in implementing MOVEVAR are performed each time that MOVEVAR s used.

The statement z = ¢l + ¢2 in both the preceding algorithms is of particular inter-
est. The addition instruction operates independently of the use of its operands (in this
case, parts of varying-length character strings). The instruction is designed to treat its
operands as single-byte integers regardless of any other use that the programmer has
for them. Similarly, the reference to ¢3[c1] is to the location whose address is given by
adding the contents of the byte at location ¢l to the address ¢3. Thus the byte at ¢l is
treated as holding a binary integer, although it is also the start of a varying-length char-
acter strin 2. This illustrates the fact that a data type is a method of treating the contents
of memory and that those conients have no intrinsic meaning.

Not= that this representation of varying-length character strings allows only
strings wnose length is less than or equal to the largest binary integer that fits into a
single byte. If a byte is eight bits, this means that the largest such string is 255 (that
is, 2% — 1) characiers long. To allow for longer strings, « different representation must
be chosen and a new set of programs must be written. If we use this representation of
varying-length character strings, the concatenation operation is invalid if the resulting
string is more than 255 characters long. Since the result of such an operation is unde-
fined, a wide variety of actions can be implemented if that operation is attempted. One
possibility is to use only the first 255 characters of the result. Another possibility is to
ignore the operation entirely and not move anything to the result field. There is also
a choice of printing a warning message or of assuming that the user wants to achieve
whatever result the implementor decides on. .

In fact, C uses an entirely different implementation of character strings that avoids
this limitation on the length of the string. In C, all strings are terminated by the special
character ‘\ 0". This character, which never appears within a string, is automatically
placed by the compiler at the end of every string. Since the length of the string is not
known in advance, all string operations must proceed a character at a time until ‘\ 0’ is
encountered.

The program to implement the MOVEVAR operation, under this implementation,
can be written as follows:

i=0; "
while (source(i] T= "\0') {
MOVE(source[i], dest{il], 1);
T4+
}
dest[i] = "\0';
/* terminate the destination string with '\0' */

Sec. 1.1 Information and Meaning 1

)
P4

Cc3 C3[C1)
d 99 E|V|E|R|Y|B|]O|D|Y

(a) MOVEVAR (C2, C3[CI]);

C3

SIHIE|LJLIO| E{ V]ENR|XY4B{Q|D]Y

(b) MOVEVAR (Cl, C3);

14HEL'%_OEVERYBODY

(©) Z = Cl1 + C2; MOVE (Z, C3, 1);

' Figure 1.1.3 CONCATVAR operations.

12

Introduction to Data Structures Chap. 1

To implement the concatenation operation, CONCATVAR(c1,c2,c3), we may write

i.= 03 .

/* move the first string */

while (c1[i] !'= "\0") {
MOVE(c1[i], c3[i], 1);
i+

bl ;

/* move the second string */

i=0

while (c2(j] != '\0")
MOVE(c2[j++], 3[i++], 1);

/* terminate the destination string with a \0 */

c3[i] = '"\0';

A disadvantage of the C implementation of character strings is that the length of a char-
acter string is not readily available without advancing through the string one character
at a time until 1 0’ is encountered. This is more than offset by the advantage of not
having an arbitrary limit placed on the length of the string. '

Once a representation has been chosen for objects of a particular data type and
routines have been written to operate on those representations, the programmer is free o
use that data type to solve problems. The original hardware of the machine plus the pro-
grams for implementing more complex data types than those provided by the hardware
can be thought of as a “better” machine than the one consisting of the hardware alone.
The programmer of the original machine need not worry about how the computer is
designed and what circuitry is used to execute each instruction. The programmer need
know only what instructions are available and how those instructions can be used. Sim-
ilarly, the programmer who uses the “extended” machine (that consists of hardware and
software), or ““virtual computer.” as it is sometimes known, need not be concerned with
the details of how various data types are implemented. All the programmer needs o
know is how they can be manipulated.

Abstract Data Types

A useful tool for specifying the logical properties of a data type is the abstract data
type, or ADT. Fundamentally, a data type is-a collection of values and a set of operations
on those values. That collection and those operations form a mathematical construct that
may be implemented using a particular hardware or software data structure. The term
“abstract data type” refers to the basic mathematical concept that defines the data type.

In defining an abstract data type as a mathematical concept, we are not concerned
with space or time efficiency. Those are implementation issues. In fact. the definition.
of an ADT is not concerned with implementation details at all. It may not even be
possible to implement a particular ADT on a particular piece of hardware or using a
particular software system. For example, we have already seen that the ADT inreger is
not universally implementable. Nevertheless. by specifying the mathematical and logi-
cal properties of a data type or structure, the ADT is a useful guideline to implementors
and a useful tool to programmers who wish to use the data type correctly. -

Sec. 1.1 Information and Meaning 13

There are a number of methods for specifying an ADT. The method that we use is
semiformal and borrows heavity from C notation but extends that notation where npec-
essary. To illustrate the concept of an ADT and our specification method, consider the
ADT RATIONAL, which corresponds 1o the mathematical concept of a rational number.
A rational number is a number that can be expressed as the guotient of two integers.
The operations on rational numbers that we define are the creation of a rational number
from two integers, addition, multiplication, and testing for equality. The following is an
initial specification of this ADT:

/*value definition*/
abstract typedef <integer, integer> RATIONAL:
condition RATIONAL[1] i= 0;

/*operator definition*/
abstract RATIONAL makerational(a,b)
int a,b;
precondition b != 0;
postcondition makerational[0] == a;

makerational[l] == b;

abstract RATIONAL add(a,b) /* written a + b */
RATIONAL a,b;
postcondition add[1) == a[1, * b[1];

' add[0] == a[0] * b[1] + b[0] = af1];

abstract RATIONAL mult(a,b) /% written a * b */
RATIONAL a,b;
postcondition mult[0] == a[0] * b[0]:

mult[1] == a[1] * b[1];

abstract equal(a,b) /* written a == b */
RATIONAL a,b:

postcondition equal == (a[0)*b[1] == b[0]*a[1));

An ADT consists of two parts: a value definition and an operator definition. The
value definition defines the collection of values for the ADT and consis!s of two parts: a
definition clause and a condition clause. For example, the value definition for the ADT
RATIONAL states that a RATIONAL value consists of two integers, the second of which
does not equal 0. Of course, the two integers that make up a rational number are the
numerator and the denominator. We use array notation (square brackets) to indicate the
parts of an abstract type.

The keywords abstract typedef introduce a value definition, and the keyword con-
dition is used to specify any conditions on the newly defined type. In this definition, the
condition specifies that the denominator may not be 0. The definition clause is required.
but the condition clause may not be necessary for every ADT.

Immediately following the value definition comes the operator definition. Each
operator is defined as an abstract function with three parts: a header, the opticnal pre-

14 Introduction to Data Structures Chap. 1

conditions, and the postconditions. For example, the operator definition of the ADT RA-
TIONAL includes the operations of creation (makerational), addition (add) and multi-
plication (mulr), as well as a test for equality (equal). Let us consider the specification

for multiplication first, since it is the simplest. It contains a header and postconditions,
but no preconditions:

abstract RATIONAL mult(a,b) /* written a*b */
RATIONAL a,b;

postcondition mult[0] == a[0]*b[0];
mult[1) == a[1]*b[1];

The header of this definition is the first two lines, which are just like a C function header.
The keyword abstract indicates that this is not a C function but an ADT operator defi-
nition. The comment beginning with the new keyword written indicates an alternative
way of writing the function.

The postcondition specifies what the operation does. In a postcondition. the name
of the function (in this case, mulr) is used to denote the result of the operation. Thus,
mult[0] represents the numerator of the result, 'and'mu!rl 1] the denominator of the result.
That is, it specifies what conditions become true afier the operation is executed. In
this example, the postcondition specifies that the numerator of the result of a rational
multiplication equals the integer product of the numerators of the two inputs, and that
the denominator equals the integer products of the two denominators.

The specification for addition (add) is straightforward and simply states that

a0+b0 a0 = bl + al * b0
al bl al * bl

The creation operation (mmakerational) creates a rational number from two inte-
gers and contains the first example of a precondition. In general, preconditions specify
any restrictions that must be satisfied before the operation can be applied. In this ex-
ample, the precondition states that makerational cannot be applied if its second param-
eteris 0. '

The specification for equality (equal) is more significant and more complex in
concept. In general, any two values in an ADT are “equal” if and only if the values
of their components are equal. Indeed, it is usually assumed that an equality (and an
inequality) operation exists and is defined that way, so that no explicit equal operator
definition is required. The assignment operation (setting the value of one object to the
value of another) is another example of an operation that is often assumed for an ADT
and is not specified explicitly.

However, for some data types, two values with unequal components may be con-
sidered equal. Indeed, such is the case with rational numbers: for example, the rational
numbers 1/2,2/4, 3/6, and 18/36 are all equal despite the inequality of their components.
Two rational numbers are considered equal if their components are equal when the num-
bers are reduced to lowest terms (that is. when their numerators and denominators are
both divided by their greatest common divisor). One way of testing for rational equality
is to reduce the two numbers to lowest terms and then test for equality of numerators
and denominators. Another way of testing for rational equality is to check whether the

Sec. 1.1 Information and Meaning ' 15

cross products (that is, the numerator of oné times the denominator of the other) are
equal. This is the method that we used in specifying the abstract equal operation.

The abstract specification illustrates the role of an ADT as a purely logical defi-
nition of a new data type. As collections of two integers, two ordered pairs are unequal
if their components are not equal; yet as rational numbers, they may be equal. It is un-
likely that any implementation of rational numbers would implement a test for equality
by actually forming the cross products; they might be too large to represent as machine
integers. Most likely, an implementation would first reduce the inputs to lowest terms
and then test for component equality. Indeed, a reasonable implementation would in-
sist that makerational, add, and mult only produce rational numbers in lowest terms.
However, mathematical definitions such as abstract data type specifications need not
be concerned with implementation details.

In fact, the realization that two rationals can be equal even if they are component-

wise unequal forces us to rewrite the postconditions for makerational, add. and mult.
That is, if

m() a0 HO

—_— R R e— K e
ml al bl
itis not necessary that m0 equal a0 * b0 and that m1 equal al * b1, only that m0 * gl

* bl equal m1 * a0 = b0. A more accurate ADT specification for RATIONAL is the
following:

/*value definition*/
abstract typedef<int, int> RATIONAL:
condition RATIONAL[1] != 0;

/*operator definition*/

abstract equal(a,b) /* written a == b*/
RATIONAL a,b;

postcondition equal == (a[0]*b[1] == b[0]*a[1]);

abstract RATIONAL makerational(a,b) /% written [a,b]*/
int a,b;

precondition b != 0;

postcondition makerational{0]*b == a*makerationai[1]

abstract RATIONAL add(a,b) /* written a + b */
RATIONAL a,b;

postcondition add == [a[0] * b[1] + b[0] * a[1], a[11*b[1]]

abstract RATIONAL mult(a,b) /* written a * b */
RATIONAL a,b;

postcondition mult == [a[0] * b[0), a[l] * b[1]]

Here, the equal operator is defined first. and the operator = = is extended t¢
rational equality using the written clause. That operator is then used to specify the
results of subsequent rational operations (add and mulr).

Introduction to Data Structures Chap. 1
16

The result of the makerational operation on the integers a and b produces a ratio-
nal that equals a/b, but the definitien does not specify the actual.values of the resulting
numerator and denominator. The specification for makerational also introduces the no-
tation [a,b] for the rational formed from integers a and b, and this notation is then used
in defining add and mulr, : :

The definitions of add and muit specify that their results equal the unreduced re-
sults of the corresponding operation, but the individual components are not necessarily
equal. .

Notice, again, that in defining these operators we are not specifying how they are
to be computed, only what their result must be. How they are computed is determined
by their implementation, not by their specification.

' Sequences as Value Definitions

In developing the specifications for various data types, we often use set-theoratic
notation to specify the values of an ADT. In particular, it is helpful to use the notation
of mathematical sequences that we now introduce.

A sequence is simply an ordered set of elements. A sequence S is sometimes
written as the enumeration of its elements, such as

S <8, 1y 4 L ISni) D>

If S contains n elements, S is said to be of length n. We assume the existence of
a length function len such that len(S) is the length of the sequence S. We also assume
functions first(S), which returns the value of the first element of S (8o in the foregoing
example), and las«(S), which returns the value of the last element of S (sp—; in the
foregoing example). There is a special sequence of length 0, called nilseq, that contains
no elements. firsi(nilseq) and last(nilseq) are undefined.

We wish to define an ADT stpl whose values are sequences of elements. If the
sequences can be of arbitrary length and consist of elements all of which are of the same
type, ip, then stp1 can be defined by

abstract typedef <<tp>> stpl;

Alternatively, we may wish to define ah ADT stp2, whose values are sequences of

fixed length whose elements are of specific types. In such a case, we would specify the
definition

abstract typedef <tp0, tpl, tp2, ..., tpn> stpl;

Of course, we may want to speeify a sequence of fixed length all ef whose elements are
of the same type. We could then write

abstract typedef <<tp,n>> stp3;

In this case s7p3 represents a sequence of length n, all of whose elements are of type ip.

Sec. 1.1 Information and Meaning] i 17

For example, using the foregoing notation we could define the foHowing types:

abstract typedef <<int>> intseq;
/* sequence of integers of %/
/* - any length #
abstract typedef <mteger, char, float> seq3;
/* sequence of length 3 */
/* consisting of an integer, */
/* a character and a t/
/* floating-point number */

abstract typedef <<1nt 10>> intseq;
/* sequence of 10 integers */

abstract typedef <<,2>> pajr;
/* arbitrary sequence of */
Je length 2 oo

Two s€quences are equal if each element of the first is equal to the corresponding el-
ement of the second. A subsequence is a contiguous portion of a sequence. If Sis a
sequence, the function sub(S,i,) refers to the subsequence of=S starting at position { in
S and consisting of j consecutive elements. Thus if T equals sub(S,ik), and T is the se-
quence < 1o, Iy, ...y lg—t >, 00 = Sisl) = Siv1s ooy lk=1 = Sivk-1- lfnsnotbetwaen
0 and len(S) — k, then sub(S,i,k) is defined as mlseq
The concatenation of two sequences, written S + T, is the sequence consisting
of all the elements of S followed by all the elements of T. It is sometimes desirable to
specify insertion of an element in the rﬁsddle of a sequence. place(S,i, x) is defined as
the sequence S with the element x inserted immediately following position i (or into
the first element of the sequence if i is —1). All subsequent elements are shifted by one
position. That is, place(S,i,x) equals sub(§5,0,i + 1) + <x > + sub(S.i +1, len(S) —
i~ 1)
Deletion of an element from a sequence can be specified in one of two ways. [[x is
an element of sequence S, § — < x > represents the sequence S without all occurrences
of element x. The sequence delete(S,i) is equal to S with the element at position i deleted.

delete(S,i) can also be written in terms of other operahons as sub(8,0,i) + sub(S,i +
1,len(S) — i —1).

ADT for Varying-length Character Strings

“* As an illustration of the use of sequence notation in defining an'ADT, we develop
an ADT specification for the varying-length character string. There are four basic oper-

ations (aside from equality and assignment) normally included in systems that support
such strings:

length a function that returns the current length of the string
concat a function that returns the concatenation of its two input strings
substr a function that returns a substring of a given string

18 Introduction to Data Structures Chap. 1

pos a function that returns the first position of ene string as a
substring of another

abstract typedef <<char>> STRING;

abstract Tength(s)
STRING s;
postcondition 1length == len(s);

abstract STRING concat(sl,s2)
STRING s1,5s2;
postcondition concat == sl + s2;

abstract STRING substr(sl,i,j)’
STRING s1;
int 1,3;
precondition 0 <= 7 < len(s1);

0 <= j <= Ten(sl) - i;
postcondition substr == sub($l,7,});

abstract pos(sl,s2)
STRING s1,s2; :
postcondition /*1astpos = len(sl) - len(s2) */
((pos == -1) && (for(i = 0;
; i <= lastpos; i++)
(52 < sub(sl,i,len(s2)))))
I
((pos >= 0) && (pos <= lastpos)
& (s2 == sub(strl,pos, len(s2))
& (for(i = 1; 7 < pos; i++)
(52 < sub(sl,17,1en(s2)))));

The postcondition for pos is complex and introduces some new notation, so we
review it here. First, note the initial comment whose content has the form of a C as-
signment statement. This merely indicates that we wish to define the symbol lastpos as
representing the value of len(s1) — len(s2) for use within the postcondition to simplify
the appearance of the condition. Here, lastpos represents the maximum possible value
of the result (that is, the last position of 51 where a substring whose length equals that
of 52 can start). lastpos is used twice within the postcondition itself. The longer expres-
sion len(s1) — len(s2) could have been used in both cases, but we chose to use a more
compact symbol (lastpos) for clarity. ;

The postcondition itself states that one of two conditions must hold. The two con-
ditions, which are separated by the || operator, are as follows:

1. The function’s value (pos) is —1, and 52 does not appear as a substring of s1.
2. The function’s value is between 0 and /asiposes2 does appear as a substring of s1

beginning at the function value’s position, and 52 does not appear as a substring
of s1 in any earlier position.

Sec. 1.1 Information and Meaning 19

Note the use of a pseudo-for lgop in a condition. The condition

for (i = x; 1 <= y; i++)
(condition(1))

is true if condition(i) is true for all i from x to y inclusive. It is also true if x > y.
Otherwise, the entire for-condition is false.

Data Types inC

The C language contains four basic data types: int, float, char and double. In most
computers, these four types are native to the machine’s hardware. We have already
seen how integers, floats, and characters can be implemented in hardware. A double
variable is a double-precision floating-point number. There are three qualifiers that can
be applied to ints: short, long, and unsigned. A short or long integer variable refers to
the maximum size of the variable’s value. The actual maximum sizes implied by short
int, long,int, or int vary from machine to machine. An unsigned integer is an integer
that is always positive and follows the arithmetic laws of modulo 2", where n is the
number of bits in an integer. . O z

A variable declaration in C specifies two things. First, it specifies the amount of
storage that must be set aside for objects declared with that type. For example, a variable
of type int must have enough space to hold the largest possible integer value. Second, it
specifies how data represented by strings of bits are to be interpreted. The same bits at
a specific storage location can be interpreted as an integer of a floating-point number,
yielding two completely different numeric values.

A variable declaration specifies that storage be set aside for an object of the speci-

fied type and that the object at that storage location can be referenced with the specified
variable identifier.

Pointers in C

In fact, C allows the programmer to reference the location of objects as well as
the objects (that is, the contents of those locations) themselves. For example, if x is
declared as an integer, &x refers to the location that has been set aside to contain x. &x
is called a pointer.

" Ttis possible to declare a variable whose data type is a pointer and whose possible
values are memory locations. For example, the declarations

int *pi;
float *pf;
char *pc;

declare three pointer variables: pi is a pointer to an integer, pf is a pointer to a float
number, and pc is a pointer to a character. The asterisk indicates that the values of the

20 Introduction to Data Structures Chap. 1

variables being declared are pointers to values of the type spccnﬁcd in the declaration
rather than ob_;ect% of that type.

A pointer is like any other data type in C ininany respecls The value of a pomter
is a memory location in the way that the value of an integer is a number. Pointer values
can be assigned like any other values. For example, the statement pi = &x; assi: 1s a
pointer to the integer x to the pointer variable pi.

The notation =pi in C refers to the integer at the location referenced by the pointer
pi. The statement x = #*pi; assigns the value of that mteger to the integer variable x.

Note that C insists that a declaration of a pointer specify the data type to which
the pointer points. In the foregoing declarations, each of the variables pi, pf, and pc are
pointers to a specific data type: int, float, and char, réspectively. The type of pi is not
simply “pointer” but “pointer to an integer.” In fact, the types of pi and pf are different:
pi is a pointer to an integer, and pf is a pointer to a float number. Each data type dr
in C generates another data type, pdt, called “pointer to dt.” We call dr the base type
of pdt.

The conversion of pf from the type “pointer to a float number to the type “pointer
to an integer” can be made by writing

= (int *) pf;

where the cast (inf *) converts the value of pf'to the type “pointer to an int,” or “int *.”

The importance of each pointer being associated with a particular base type be-
comes clear in reviewing the arithmetic facilities that C provides for pointers. If pi is
a pointer to an integer, then pi + 1 is the pointer to the integer immediately following
the integer *pi in memory, pi — 1 is the pointer to the integer immediately preceding
*pi. pi + 2 is the pointer to the second integer following *pi, and so.on. For example,
suppose that a particular machine uses byte addressing, an integer requires four bytes,
and the value of pi happens to be 100 (that is, pi points to the integer *pi at location
100). Then the value of pi — 1 is 96, the value of pi + 1 is 104 and the value of pi +
2 is 108. The value of *(pi — 1) is the contents of the four bytes 96, 97, 98, and 99
interpreted as an integer; the value of *(pi + 1) is the contents of bytes 104, 105, 106,
and 107 interpreted as an integer; and lhe value of *(pi + 2) is the integer at bytes 108,
109, 110, and 111.

Similarly, if the value of the variable pc is 100 (recall that pc is a pointer to a
character) and a character is one byte long, pc — 1 refers to location 99, pc + 1 to
location 101, and pc + 2 to location 102. Thus the result of pointer arithmetic in C
depends on the base type of the pointer.

Note also the difference between *pi + 1, which refers to 1 added to the mleger
*pi. and *(pi + 1), which refers to the integer following the integer at location pi.

One area in which C pointers play a prominent role is in passing parameters to
functions. Ordinarily, param=ters are passed to a C function by value, that is, the values
being passed are copied into the parameters of the called function at the time the func-
tion is invoked. If the value of a parameter is changed within the function, the value
in the calling program is not changed. For example, consider the following program
segment and function (the line numbers are for reference only):

Sec. 1.1 Information and Meaning 21

1 x=5;

2 printf("%d\n", x);
3 funct(x);

4 printf("%d\n", x);

S void funct(int y)

6 {

7 e

8 printf("%d\n", v);
9 } /* end funct */

Line 2 prints 5 and then line 3 invokes funct. The value of x, which is 5, is copied into
y and funct begins execution. Line 8 then prints 6 and funct returns. However, when
line 7 increments the value of y, the value of x remains unchanged. Thus line 4 prints
5. x and y refer to two different variables that happen to have the same value at the
beginning of funct. y can change independently of x.

If we wish to use funct to modify the value of x, we must pass the address of x as
follows:

1 =i =~
2 printf("%d\n", x);
3 funct(&x);
4 printf("%d\n", x);
S void funct(int *py)
6
e +(*py);
8 printf("%d\n", *py);
9. } /* end funct */

Line 2 again prints 5 and line 3 invokes funct. Now, however, the value passed is not
the integer value of x, but the pointer value &x. This is the address of x. The parameter
of funct is no longer y of type int but py of type int *. (It is convenient to name pointer
variables beginning with the letter p as a reminder to both the programmer and’thg
program reader that it is a pointer. However, this is not a requirement of the C language
and we could have named the pointer parameter y.) Line 7 now increments the integer
at location py. py, itself, however, is not changed and retains its initial value &x. Thus
py points to the integer x, so that when #py is incremented, x is incremented. Line 8
prints 6 and when funct returns, line 4 also prints 6. Pointers are the mechanism used
in C4o allow a called function to modify variables in a calling function.

Data Structures and C

A C programmer can think of the C language as defining a new machine with
its own capabilities, data types, and operations: The user can state a problem solution
in terms of the more useful C constructs rather than in terms of lower-level machine-

()

22
Introduction to Data Structures Chap. 1

language constructs. Thus, problems can be solved more easily because a larger set of
tools is available.

The study of data structures therefore involves two complementary goals. The
first goal is to identify and develop useful mathematical entities and operations and to
determine what classes of problems can be solved by using these entities and opera-
tions. The second goal is to determine representations for those abstract entities and to
implement the abstract operations on these concrete répresentations. The first of these
goals views a high-level data type as a tool that can be used to solve other problems,
and the second views the implementation of such a data type as a problem to be solved
using aiready existing data types. In determining representations for abstract entities,
we must be careful to specify what facilities are available for constructing such repre-
sentations. For example, it must be stated whether the full C language is available or
whether we are restricted to the hardware facilities of a particular machine.

In Sections 1.2 and 1.3 we examine several data structures that already exist in C:
the array and the structure, We describe the facilities that are available in C for utilizing
these structures. We also focus on the abstract definitions of*these data structures and
how they can be useful in problem solving. Finally, we examine how they could be
implemented if C were not available (although a C programmer can simply use the _
data structures as defined in the language without being concerned with most of these
implementation details).

In the remainder of the book, we dévelop more complex data structures and show
their usefulness in problem solving. We also show how to implement these data struc-
tures using the data structures that are already available in C. Since the problems that
arise in the course of attempting to implement high-level data structures are quite com-
plex, this will also allow us to investigate the C language more thoroughly and to gain
valuable experience in the use of this language.

’ Often no implementation, hardware or software, can model a mathematical con-
cept completely. For example, it is impossible to represent arbitrarily large integers on
a computer, since the size of such a machine’s memory is finite. Thus, it is not the data
type “integer” that is represented by the hardware but rather the data type “integer be-
tween x and y,” where x and y are the smallest and largest integers representable by that
machine.

It is important to recognize the limitations of a particular implementation. Often
it will be possible to present several implementations of the same data type, each with
its own strengths and weaknesses. One particular implementation may be better than
another for a specific application, and the programmer must be aware of th: possible
trade-offs that might be involved.

One important consideration in any implementation is its efﬁcxency In fact, the
reason that the high-level data structures that we discuss are not built into C is the
significant overhead that they would entail. There are languages of significantly higher
level than C that have many of these data types already built into them, but many of
them are inefficient and are therefore not in widespread use.

Efficiency is usually measured by two factors: time and space. If a particu-
lar application is heavily dependent on manipulating high-level data structures. the
speed at which those manipulations can be performed will be the major determinant of

Sec. 1.1 Information and Meaning 23

the speed of the entire application. Similarly, if a program uses a large number of such
structures, an implementation that uses an inordinate amount of space to represent the
data structure will be impractical. Unfortunately, there is usually a trade-off between
these two efficiencies, so that an implementation that is fast uses more storage than one
that is slow. The choice of implementation in such a case involves a careful evaluation
of the trade-offs among the various possibilities. -

EXERCISES

1.1.1. In the text, an analogy is made between the length of a line and the number of bits of
information in a bit string. In what ways is this analogy inadequate?

1.1.2. Determine what hardware data types are available on the computer at your particular
installation and what ¢ operations can be performed on them.

1.1.3. Prove that there are 2" different settings for n two-way switches. Suppose lhat we wanted
to have m settings."How many switches would be necessary?

1.1.4. Interpret the following bit settings as binary positive integers, as binary integers in twos
complement, and as binary coded decimal integers. If a setting cannot be interpreted as
a binary coded decimal integer, explain why.
(a) 10011001 (d) 01110111
(b) 1001 (e) 01010101
(c) 000100010001 (f) .100000010101

1.1.5. 'Write C functions add, subtract, and multiply that read two strings of Os and 1s represent-
ing binary nonnegative integers, and print the string representing their sum, difference,
and product, respectively.

1.1.6. Assume a ternary computer in which the basic unit of memory is a “trit” (ternary digit)
rather than a bit. Such a trit can have three possible settings (0, 1, and 2) rather than just
two (0 and 1). Show how nonnegative integers can be represented in ternary notation
using such trits by a method analogous to binary notation using bits. Is there any non-
negative integer that can be represented using ternary notation and trits that cannot be
represented using binary notation and bits? Are there any that can be represented using
bits that cannot be represented using trits? Why are binary computers more common
than ternary computers?

1.1.7. Write a C program to read a string of Os and 15 representing a positive integer in binary
and print a string of Os, 1s, and 2s representing the same number in ternary notation (see
the preceding exercise). Write another C program to read a ternary number and print the
equivalent in binary.

1.1.8, Write an ADT specification for complex numbers a + bi, where abs(a + bi) is sqrt(a* +
b?), (a + bi) + (¢ + di)is (a + ¢) + (b + d)i, (a + bi) » (c+d¢)ls(a*c~b*d) +
(@*d + b+*c)i,and —(a + bi) is (—a) + (=b)i.

1.2 ARRAYSINC

In this section and the next we examine several data structures that are an invaluable
part of the C language. We will see how to use these structures and how they can be

24 Introduction to Data Structures Chap. 1

lemented. These structures are composite or structured data types; that is, they are
made up of simpler data structures that exist in the language. The study of these data
structur€’s involves an analysis of how simple structures combine to form the composite
and how to extract a specific component from the composite. We expect that you have
already seen these data structures in an introductory C programming course and that you
are aware of how they age defined and used in C. In these sections, therefore, we will
not dwell on the mariy details associated with these structures but instead will highlight
those features that are interesting from a data-structure point of view.

" The first of these data types is the array. The simplest form of array is a one-
dimensional array that may be defined abstractly as a finite ordered set of homogeneous
elements. By “finite” we mean that there is a specific number of elements in the array.
This number may be large or small, but it must exist. By “ordered” we mean that the
elements of the array are arranged so that there is a zeroth, first, second, third, and so
forth. By “homogeneous” we mean that all the elements in the array must be of the
same type. For example, an array may contain all integers or all characters but may not
contain both.

P However, specifying the form of a data structure does not yet completely describe

the structure. We must also specify how the structure is accessed. For example, the C
declaration i

int a[100];

specifies an array of 100 integers. The two basic operations that access an array are
extraction and storing. The extraction operation is a function that accepts an array, a,
and an index, i, and returns an element of the array. In C, the result of this operation is
denoted w the expression a[i]. The storing operation accepts an array, a, an index, i,
and an element, x. In C this operation is denoted by the assignment statement a[i] = x.

* The operations are defined by the rule that after the foregoing assignment statement has
been executed, the value of ali] is x. Before a value has been assigned to an element of
the array, its value is undefined and a reference to it in an expression is illegal.

The smallest element of an array’s index is called its lower bound and in C is
always 0, and the highest element is called its upper bound. If lower is the lower bound
of am array and upper the upper bound, the number of elements in the array. called'its |
range, is given by upper — lower + 1. For example, in the array, @, declared previously,
the lower bound is 0, the upper bound is 99, and the range is 100.

An important feature of a C array is that neither the upper bound nor the lower
bound (and hence the range as well) may be changed during a program’s execution. The
lower bound is always fixed at 0, and the upper bound is fixed at the time the program
is written. :

One very useful technique is to declare a bound as a constant identifier, so that
the work required to modify the size of an array is minimized. For example, consider
the following program segment to declare and initialize an array:

. int a[100]; } i
for(i = 0; 1 < 100; afi+] = 0); ,

Sec. 1.2 Arrays in C 25

»

To change the array to a larger (or smaller) size, the constant 100 must be changedin t¢

places: once in the declarations and once in the for statement. Consider the following
equivalent alternative: 1

#define NUMELTS 100
int a[NUMELTS];
for(i = 0; 1 < NUMELTS; a[i++] = 0);

Now only asingle change in the constant definition is needed to change the upper bound.

The Array as an ADT

We can represent an array as an abstract data type with a slight extension of the
conventions and notation discussed earlier. We assume the function type(arg), which
returns the type of its arguinent, arg. Of course, such a function cannot exist in C,
since C cannot dynamically determine the type of a variable. However, since we are
not concerned here with implementation, but rather with specification, the use of such
afunction is permissible. .

Let ARRTYPE(ub,eltype) denote the ADT corresponding to the C array type el-
type array[ub]. This is our first example of a parameterized ADT, in which the pre-
cise ADT is determined by the values of one or more parameters. In this case, ub and
elrype are the parameters; note that eltvpe is a type indicator, not a value. We may
now view any one-dimensional array as an entity of the type ARRTYPE. For example,
ARRTYPE(10,int) would represent the type of the array x in the declaration int x[10]. -

We may now view any one-dimensional array as an entity of the type ARRTYPE. The
specification follows:

abstract typedéf <<eltype, ub>> ARRTYPE(ub, eltype);
condition type(ub) == int;

abstract eltype extract(a,i) /¥ written a[i] %/
ARRTYPE(ub, eltype) a;

int 1;

precondition 0 <= i < ub;

postcondition extract == a;

abstract store(a, i, elt) /* written a[i] = elt */

ARRTYPE (ub, eltype) a;

int 1;

eltype elt; :
~sprecondition 0 <= 71 < ub;

postcondition a[i] == elt;

.

The store operation is our first example of an operation that modifies one of its
parameters; in this case the array a. This is indicated in the postcondition by specifying
the value of the array element to which elr is being assigned. Unless a modified value
is specified in a postcondition, we assume that all parameters retain the same value af-
ter the operation is applied in a postcondition as before. It is not necessary to specify that

vy Introduction to Data Structures Chap. 1

such values remain unchanged. Thus, in this example, all array elements other than the
one to which elr is assigned retain the same values.

Note that once the operation extract has been defincd, together with its bracket
notation, a[i], that notation can be used in the postcondition for the subsequent store
operation specification. Within the postcondition of extract, however, subscripted se-
quence notation must be used, since the array bracket notation itself is being defined.

Using One-Dimensional Arrays

A one-dimensional array is used when it is necessary to keep a large number of
items in memory and reference all the items in a uniform manner. Let us see how these
two requirements apply to practical situations. :

Suppose that we wish to read 100 integers, find their average, and determine by
how much each integer deviates from that average. The following program accom-
plishes this:

#define NUMELTS 100
void main()

{ .
int num[NUMELTS]; /* array of numbers : *f
int i;
int total; /% sum of the numbers */
float avg; /* average of the numbers */
float diff; /* difference between each %/
/* number and the average _ */

total = 0; ,
for (i = 0; i < NUMELTS; i++) {

/* read the numbers into the array and add them =

scanf("%d", num[i]);
total += num[i];
} /% end for */ :
avg = (float) total / NUMELTS; /* compute the average */
printf("\nnumber difference!’); /* print heading */
/* print each number and its difference */

for (i = 0; i < NUMELTS; i++) {
diff = num[i] - avg;
printf("\n %d %f", num[i], diff);
} /* end for */
printf(*\naverage is: %f", avg);
} /* end main */

This program uses two groups of 100 numbers. The first group is the set of input
integers and is represented by the array num, and the second group is the set of differ-
ences that are the successive values assigned to the variable diff in the second loop. The
question arises, why is an array used to hold all the values of the first group simultane-
ously, whereas only a single variable is used to hold one value of the second group at a~
time? -

Sec. 1.2 Arrays in C 27

The answer is quite simple. Each difference is computed and printed and is never
,needed again. Thus the variable diff can be reused for the difference of the next integer
"and the average. However, the original integers that are the values of the array num

must all be kept in memory. Although each can be added into roral as it is input, it must
be retained until after he average is computed in order for the program to compute the
difference between it and the average. Therefore. an array is used. ’

Of course, 100 separate variables could have been used to hold the integers. The
advantage of an array, however, is that it allows the programmer to declare only a single
identifier and yet obtain a large amount of space. Furthermore, in conjunction with the
Jor loop, it also allows the programmer to reference each element of the group in a
uniform manner instead of forcing him or her to code a statement such as

scanf("%d%d%d...%d", &num0, &numl, &num2, ..., &num99) ;

A particular element of an array may be retrieved through its index. For example,
suppose that 2 company is using a program in which an array is declored by

int sales[10];

The array will hold sales figures for a ten-year period. Suppose that each line input to
the program contains an integer from 0 to 9, representing a year as well as a sales figure
for that year, and that it is desired to read the sales figure into the appropriate element
of the array. This can be accomplished by executing t,hc statement

scanf("%d%d", &yr, &sales [yrD);

within a loop. In this statement, a particular element of the array is accessed directly by
using its index. Consider the situation if ten variables 50, s1, ... , 59 had been declared.
Then even after executing seanfi**%d”,&yr)to set yrto the integer representing the year,
the sales figure could not be read into the proper variable without coding something like

switch(yr) {

case 0: scanf("%d", &s0);
case 1: scanf("%d", &sl);

case .9: scanf("%d", &s9); .
} /* end switch #/

This is bad enough with ten elements—imagine the inconvenience if there were a hun-
dred or a thousand.

Implementing One-Dimensional Arrays
- A one-dimensional array can be implemented easily. The C declaration

int b[100];

28 . Introduction to Data Structures Chap. 1

reserves 100 successive memory locations, each lirge enough to contain a single integer.
The address of the first of these locations is called the base address of thé array b and
is denoted by base(b). Suppose that the size of each individual element of the array
is esize. Then a reference to the element b{0] is to the element at location base(b),
a reference to b[1] is to the element at base(b) + esize, a reference to b[2] is to the
element base(b) + 2 * esize. In general, a reference to b[i] is to the element at location
base(b) + i * esize. Thus it is possible to reference any element in the array. given its
index.

In fact, in the C language an array v.mdble is lmplememed asa pomler variable.
The type of the variable b in the above declaration is “pointer to an integer™ or int *. An
asterisk does not appear in the declaration 'because the brackets‘automatically imply
that the variable is a pointer. The difference between the declarations int *b; and int
b[100]; is that-the latter also reserves 100 integer locations starting at location b. In
C the value of the variable b is base(b), and the value of the variable b[i], where i is
an integer, is *(b + i). Recall from Section 1.1 that, since b is a pointer to an integer,
*(b + i) is the value of the ith integer following the integer at location b. b[i], the element
at location base(b) + i * esize. is equivalent to the element pointed to by b + i, which
is =(b + i). 2

In C all elements of an array have the same fixed, predetermined size. Some pro-
gramming languages, however, allow arrays of objects of differing sizes. For example,
a language might allow arrays of varying-lengih character strings. In such cases, the
above method cannot be used to implement the array. This is because this method of
calculating the address of a specific element of the array depends upon knowing the
fixed size (esize) of each preceding element. If not all the elements have the same size,
a different implementation must be used. -

One method of implementing an array of varying-sized elements is to reserve
a contiguous set of memory locations, each of which holds an address. The contents
of each such memory location are the address of the varying-length array element in
some other portion of memory. For example, Figure 1.2.1a illustrates an array of five
varying-length character strings under the two implementations of varying-length in-.
tegers presented in Section 1.1. The arrows in the diagram indicate addresses of other
portions of memory. The character ‘¥’ indicates a blank. (However, in C astring is it-
self implemented as an array, so that an array of strings is actually an array of arrays——a
two-dimensional rather than a one-dimensional array.)

Since the length of each address is fixed, the location of the address of a pamcular
element can be computed in the same way that the location of a fixed-length element
was computed in the previous examples. Once this location is*known, its contents can
be used to dejermine the location of the actual array element. This, of course, adds an
extra level of indirection to referencing an array element by involving an extra memory
reference, which in turn decreases efficiency. However, this is a small price to pay for
the convenience of being able to maintain such an array.

A similar method for 1mplememmo an array of varying-sized elements is to keep
all fixed-length portions of the elements in the contiguous array area. in addition to
keeping the address of the varying-length portion in the contiguous area. For example,
in the implementation of varying-length character strings presented in the previous _
section. each such string contains a fixed-length portion (a one-byte length field) and

Sec. 1.2 Arrays in C 29

wiciolo|p|p|(N|I|G|H|T

A1\

/i)]

21

\O

J U 1IN

//\\

Al T|\O

(a)

Figure 1.2.1 ‘Implementations of an array of varying-length strings. Contin-
ues on page 31.

3 /HELLO
-
10
—!G|lo|o|lp|s|N|1|G|H]|T
L]
8
10
S
5 nlo|s|s|s|e|s|8|B]|s
-
- .'
AT

(b)

Figure 1.2.1 Concluded.

a variable-length portion (the character string itself). One implementation of an array
of varying-length character strings keeps the length of the string together with the ad-
dress, as shown in Figure 1.2.1b. The advantage of this method is that those parts of an
element that are of fixed length can be examined without an extra memory reference.
For example, a function to determine the current length of a varying-length character
string can be implemented with a single memory lookup. The fixed-length information
for an array element of varying length that is stored in the contiguous memory area of -
the array is often called a header.

Arrays as Parameters

Every parameter of a C function must be declared within the function. However,
the range of a one-dimensional array parameter is only specified in the main program.
This is because in C new storage is not allocated for an array parameter. Rather, the
parameter refers to the original array that was allocated in the calling program. For

examplé, consider the following function to compute the average of the elements of an
array: !

float avg(float a[], int size) /* no rangé is specified for the array a */
{ ; -

nt i;

float sum;

Sec. 1.2 ArraysinC _ ' 31

sum = 0;
for (i=0; i < size; i++)
sum += afil; : v
return(sum / size);
} /* end avg */

In the main program, we might have written

#define ARANGE 100
float a[ARANCE];

avg(a, ARANGE);

Note that if the array range is needed in the function, it must be passed separately.

Since an array variable in C is a pointer, array parameters are passed by reference
rather than by value. That is, unlike simple variables that are passed by value, an array’s
contents are not copied when it is passed as a parameter in C. Instead, the base address
of the array is passed. If a calling function contains the call JSunct(a), where a is an array
and the function funct has the header

void funct(int b[])
the statement

b(i] = x; -
inside funct modifies the value of a[i] inside the calling function. b inside funct refers
to the same array of locations as a in the calling function. -

Passing an array by. reference rather than by value is more efficient in both time
and space. The time that would be required to copy an entire array on invoking a func-
tion is eliminated. Also the space that would be needed for a second copy of the array
in the called function is reduced to space for only a single pointer variable.

Character Strings in C

A sgn'ng'is defined in C as an array of characters. Each string is terminated b.y, the,

NULL character, which indicates the end of the string. A string constant is denoted by

any set of characters included in double-quote marks. The NULL character is automat-
ically appended to the end of the characters in a string constant when they are. stored.
Within a program, the NULL character is denoted by the escape sequence \ 0. Other
escape sequences that can be used are \ n for a new line character, \ t for a tab character,
\ b for a backspace character, \ " for the double-quote character, \ \ for the backslash
character, \ * for the single-quote character, \ r for the carriage return character and \ f
for the form feed character. P

- A string constant represents an array whose lower bound is 0 and whose up-
per bound is the number of characters in the string. For example, the string “HELLO

32 Introduction to Data Structures :Chap. 1

THERE" is an array of twelve characters (the blank and \ 0 each counts as a character),
and “I DON\ T KNOW HIM™ is an array of sixteen characters (the escape sequence
\" represents the single-quote character).

Character String Operations

Let us present C functions to implement some primitive operations on character
strings. For all these functions, we assume the global declarations

#define STRSIZE 80
char string[STRSIZE];

The first function finds the current length of a string.

strlen(string)
char string[];

int 1;
for (i=0; string[i] != "\0'; i++)

return(i);
} /* end strien */

The second function accepts two strings as parameters. The function returns an
integer indicating the starting location of the first occurrence of the second parameter

string within the first parameter string. If the second string does not exist within the
first, =1 is returned.

int strpos(char s1[], char s2[])

int lenl, len2;
int 1, j1, j2;

lenl = strlen(sl);

len2 = strlen(s2);

for (i=0; i+1en2 <= Tenl; i++)

for (j1=1, j2=0; j2 <= len2 & s1[j1] == s2[j2];
jl**v jZ‘.'-)
if (32 == len2)

return(i);

return(-1);

} /% end strpos */

Another common operation on strings is concatenation. The result of concatenat-

ing two strings consists of the characters of the first followed by the characters of the
second. The following function sets 51 to the concatenation of s1 and s2.

Sec. 1.2 Arrays in C 33

void strcat(char s1[], char s2{])
{

int i, j;
for (i=0; s1[i] != '\0'; 144)
for (3=0; s2[3] = "\0'; s1li++] = s2js+)

Y /F er-d strcat */

) The last operation we present on strings is the substring operation. subsir(s1,i j.s2)
sets the string 2 to the j characters beginning at s1|i].

void substr(char s1{], int i, int j, char s2{]) -
{

int k, m;
for (k =i, m=0; m<j; s2{m+] = s1{k++])

s2(m] = "\0";
} /% end substr */

Two-Dimensional Arrays
The component type of an array can be another array. For example, we may define
int a[3][5];

This defines a new array containing three elements. Each of these elements is
itself an array contzining five integers. Figure 1.2.2 illustrates such an array. An element -
of this array is accessed by specifying two indices: a row number and a column number.
For example. the element that is darkened in Figure 1.2.2 is in row | and column 3 and
may be referenced as al1][3]. Such an array is called a two-dimensional array. The
number of rows or columns is called the range of the dimension. In the array a. the
range of the first dimension is 3 and the range of the second dimension is 5. Thus array .
a has three rows and five columns.

Column Column Columr Column Column
0 1 2 3 4

Row 0 —

Row | ———

N

Row 2 ———f

Figure 1.2.2 Two-dimensional arrays.

34 Introduction to Data Structures Chap. 1

A two-dimensional array clearly illustrates the differences between a logical and
aphysical view of duta. A two-dimensional array is a logical data structure that is useful
in programming and problem solving. For example, such an array is useiul in describing
an object that is physically two-dimensional., such as a map or a checkerboard. Itis also
uscful in organizing a set of values that are dependent upon two inputs. For example,
a program for a department store that has 20 branches, each of which sells 30 items,
might include a two-dimensional array declared by

int sales[20][30];

Euch clement sales|i||}] represents the amount of item j sold in branch /.

However, although it is convenient for the programmer to think of the elements
of such an array as being organized in a two-dimensional table (and programming
languages do indeed include facilities for treating them as a two-dimensional array),
the hardware of most computers has no such facilities. An arrg: must be stored in the
memory of a computer, and that memory is usually linear. By this we mean that the
memory of a computer is essentially a one-dimensional array. A single address (that
may be viewed as a subscript of a one-dimensional array) 1s used o retrieve a par-
ticular item from memory. To implement a two-dimensional array, it is necessary o
develop a4 method ef ordering its elements in a linear fashion and of transforming a
two-dimensional reference 1o the linear representation.

One method of representing a two-dimensiondfl array . memory is the row-major
representation. Under this representation, the first row of the array occupies the first set
of memory locations reserved for the array, the second row occupies the next set, and
so forth. There may also be several locations at the start of the physical array that serve
as a header and that contain the upper and lower bounds of the two dimensions. (This
header shouid not be confused with the headers discussed earlier. This header is for the
entire array. whereas the headers mentioned earlier are headers for the individual array
elements.) Figure 1.2.3 illustrutes the row-major representation of the two-dimensional
array a declared above and illustrated in Figure 1.2.2. Alternatively, the header need
not be contiguous to the array elements but could instead contain the address of the
first element of the array. Additionally, if the elements of the two-dimensional array are
variable-length objects. the elements of the contiguous area could themselves contain
the addresses of those objects in a form similar to those of Fi gure 1.2.1 for linear arrays,

Let us suppose that a two-dimensional integer array is stored in row-major se-
quence, as in Figure 1.2.3, and let us suppose that. for an array ar. base(ar) is the
address of the first element of the array. That is. if ar is declared by

int ar[r1]ir2];

where r1 and 72 are the ranges of the first and second dimension. respectively. base(ar)
is the address of ar{0][0]. We also assume that esize is the size of each element in the
array. Let us calculate the address of an arbitrary clement. ar{i1][i2]. Since the element
is inrow /1. its address can be calculated by computing the address of the first element
of row i1 and adding the quantity 2 » esize (this quantity represents how far into row /1
the element at column 72 is). But 1o reach the first element of row 71 (that is. the element

Sec. 1.2 Arrays inC 35

header

a[0] [0] ~+———— base (a)
af0] (1]
Row 0

al0] [2]
al0] [3]
a(0] [4]
a(1] [0]
a(l] [1]
Row 1 < all] 2]
all] [3)
a(l) [4
a(2] [0]
al2] [1]
Row 2 al2] [2]
af2) [3] ; -

Figure 1.2.3 Representing a two-
~ ai2] 4] di?nensionai arra%. ¢

ar{i1][0)), it is necessary to pass through i1 complete rows, each of which contains r2
elements (since there is one element from each column in each row), so that the address

of the first element of row il is at base(ar) + i1 * r2 x esize. Therefore the address of
arlil][i2] is at

base(ar) + (i1 * r2 + i2) * esize

As an example, consider the array a of Figure 1.2.2, whose representation is il-
lustrated in Figure 1.2.3. In this array, r1 = 3, 72 = 5, and base(a) is the address of
al0][0]. Let us also suppose that each element of the array requires a single unit of
storage. so that esize equals 1. (This is not necessarily true, since @ was declared as an
array of integers and an integer may need more than one unit of memory on a particu-

lar machine. For simplicity, however, we accept this assumption.) Then the location of
a[2][4] can be computed by

base[a] + (2 *5+4) *1
that is,

base(a) + 14
You may confirm the fact that a[2][4] is fourteen units past base(a) in Figure 1.2.3,
Another possible implementation of a two-dimensional array is as follows: An
array ar, declared with upper bounds «1 and u2, consists of «1+1 one-dimensional
arrays. The first is an array ap of u1 pointers. The ith element of ap is a pointer to a
one-dimensional array whose elements are the elements of the one-dimensional array

ari]. For example. Figure 1.2.4 illustrates such an implementation for the array a of
Figure 1.2.2. where ul is 3 and «2 is 5.

36 Introduction to Data Structures Chap. 1

/ a[0}[0] al0](1] a[0][2) a[0](3) al0][4]

Row 1 : + allll0) .| a1} al1)2) a[1)(3) a[1][4]

\ a(2)[0] al2}(1] af2}{2)

Figure 1.2.4 Alternative implementation of a two-dimensional array.

Row (=t -

Row 2 ——s- -~

al2](3] | af2](4)

To reference ari][j]. the array ar is first accessed to obtain the pointer ar|i]. The
array at that pointer location is then accessed to obtain ali][].

Indeed, this second implementation is the simpler and more straightforward of
the two. However. the ul arrays ar[0] through ar{ul — 1] would usually be allocated
contiguously, with ar[0] immediately followed by ar{1]. and so on. The first imple-
mentation avoids allocating the extra pointer array, ap. and computing the value of an

explicit pointer to the desired row array. It is therefore more efficient in both space and
time.

Multidimensional Afrays

C also allows arrays with more than two dimensions. For example. a three-
dimensional array may be declared by

int b[3][2][4);

and is illustrated in Figure 1.2.5a. An element of this array is specified by three sub-
scripts, such as b[2][0](3]. The first subscript specifies a plane number. the second sub-
script a row number, and the third a column number. Such an array is vseful when a
value is determined by three inputs. For example, an array of temperatures might be
indexed by latitude, longitude, and altitude.

For obvious reasons, the geometric analogy breaks down when we go bevond
three dimensions. However, C does allow an arbitrary number of dimensions. For ex-
ample, a six-dimensional array may be declared by

int ¢ [7)(15](3](5][81(2];
Referencing an element of this array would require six subscripts. such as
c[2][3][0][1][6]{ 1]. The number of different subscripts that are allowed in a particular

position (the range of a particular dimension) equals the upper bound of that dimension.
The number of elements in an array is the product of the ranges of all its dimensions.

Sec. 1.2 Arrays inC 37

?’Ilml%/‘/:‘
Pllnel——7/ ,4--—-/1‘-'%__ _al -
Plane 0 —= ‘;,’,/i/__ 5

” ”
Row 0 — # - - i

\
W
\
\

I . . -~ >
Row | —» - “ ~

Column Column Column Column
0 1 2 3

(a)

0 2
Header 0 1
0 3

O 10T [0] —— base b
50) 10 [1)
510) (0] [2]
510) (0) B} -

Plane 0 < 501 1] 10)
510 (11 [1]
Row 1 5i0) (1) 2]
b(0) (1] B}
5(1 10) (0}
B(1] 101 [1)
5111 [0) (2]
B11] 101 3]
Plane 1 b1} (1] 10}
B(1) (1) 1]
B 1) 12)
bl1] [1] {3}
52) 10) [0)
521 10) [1)
, 521))
5121 (0] 3]
Plane 2 b2) (1] 10)
52) 1) (1)
el b12) (1) [2)
= : 512 (1) 13}

Row 0

Row 0

 Row |

Row 0

Figure 1.2.5 Three-dimensional array.

38 -
introduction to Cata Structures Chap. 1

For example, the array b contains 3 * 2 * 4 = 24 elements, and the array ¢ contains
T*15%3%5*%8*2 = 25200 clements.

The row-major representation of arrays can be extended to arrays of more than
two dimensions. Figure 1.2.5b illustrates the representation of the array b of Figure

1.2.5a. The elements of the previously described six-dimensional array ¢ are ordered
as follows:

€[003 [01[0]{0] [0] S 1
c{oj[oj[o1(01(0]{1)
C{0J{0] (03 [0][1]{0)
Cfo][0J{0][0]1(11[1]
Cfojfo]fo1fo1r21(0]

C[6][14]{21 (4] (51(0]
C[6][14] [2][41(5] (1]
C[6][14] [2][4]{6110]
C(6(14] (2] (4] (6] (1]
C[6][14](21(4)[7](0)
Cl6][14] (2] (4] (71 (1]

That is, the last subscript varies most rapidly, and a subscript is not increased until zl!
" possible combinations of the subscripts to its right have been exhausted. This is similar
to an odometer (mileage indicator) of a car where the rightmost digit changes most
rapidly. |

What mechanism is needed to access an element of an arbitrary multidimensional
array? Suppose that ar is an n-dimensiona! array declared by

int ar(r1][r2]...[rn];
and stored in row-major order. Each element of AR is assumed to occupy esize storage
locations, and base(ar) is defined as the address of the first element of the array (that
is, ar{0][0] ... [0]). Then, to access the element

ar[i11][i2)...[in];

it is first necessary to pass through i) complete “hyper-planes,” each consisting of r2 %
r3 % ... % m elements to reach the first element of ar, whose first subscript is il. Then
it is necessary to pass through an additional i2 groups of r3% r4 # ... % rn elements to
reach the first element of ar, whose first two subscripts are i1 and 2. respectively. A
similar process must be carried out through the other dimensions until the first element
whose first n — 1 subscripts match those of the desired element is reached. Finally. it
1s necessary to pass through in additional elements to reach the element desired.

Thus the address of ar{il][i2] ... [in] may be written as base(ar) + esize * [il =
2wk 2% 3% ok + L+ (in = 1) % mm + in)), which can be evaluated
more efficiently by using the equivalent formula:

Sec. 1.2 Arrays in C 39

base(ar) + esize *
Lin+rn*(@G(n-21)+r(n-1)*(..+r3*(i24+0r2*il) N

This formula may be evaluated by the following algorithm, which computes the address
of the array element and places it into addr (assuming arrays i and r of size n to hold
the indices and the ranges, respectively): '

offset = 0;
for (j =05 j < n; j++)

offset = r(j] * offset + i[j];
addr = base(ar) + esize * offset:

EXERCISES

1.2.1. (a) The median of an array of numbers is the element m of the array such that half
the remaining numbers in the array are greater than or equal to m and half are less
than or equal to m, if the number of elements in the array is odd. If the number of
elements is even. the median is the average of the two elements m,; and m; such

» that half the remaining elements are greater than or equal to m, and m,, and half
the elements are less than or equal to m; and m,. Write a C function that accepts
an array of numbers and returns the median of the numbers in the array.

(b) The mode of an array of numbers is the number m in the array that is repeated most
frequently. If more than one number is repeated with equal maximal frequencies,
there is no mode. Write a U fi*=~tion that accepts an array of numbers and returns
the mode or an indication that the mode does not exist.

1.2.2. Write aC program to do the following: Read a group of temperature readings. A reading
consists of two numbers: an integer between —90 and 90, representing the latitude at
which the reading was taken, and the observed temperature at that latitude. Print a table
consisting of each latitude and the average temperature at that katitude. If there are no
readings at 2 particular latitude, print “NO DATA" instead of an average. Then print the
average temperature in the northern and southern hemispheres (the northern consists
of latitudes 1 through 90 and the southern consists of latitudes — 1 through —90). (This
average temperature should be computed as the average of the averages, not the average
of the original readings.) Also determine which hemisphere is warmer. In making the
determination, take the average temperatures in all latitudes of each hemisphere for
which there are data for both that latitude and the corresponding latitude in the other
hemisphere. (For example. if there is data for latitude 57 but not for latitude — 57, then the

" average temperature for latitude 57 should be ignored in determining which hemisphe:e
is warmer.)

1.2.3. Write a program for a chain of 20 department stores, each of which sells 10 differeat

items. Every month, each store manager submits a data card for each item consisting of

a branch number (from 1 to 20), an item number (from [to 10), and a sales figure (less

than $100,000) representing the amount of sales for that item in that branch. However,

some managers may not submit cards for some items (for example. not all items are sold
in all branches). You are to write a C program to read these data cards and print a table
with 12 columns. The first column should contain the branch numbers from 1 to 20 and
the word “TOTAL” in the last line. The next 10 columns should contain the sales figures

40 Introduction to Data Structures Chap. 1

1.2.4.

1.2.5,

1.2.6.

1.2.7.

for each of the 10 items for each of the branzhes, with the total sales of each item in the
last line. The last column should contain the total sales of each of the 20 branches for all
items, with the grand total sales figure for the chain in the lower right-hand corner. Each
column should have an appropriate heading. If no sales were reported for a particular

branch and item, assume zero sales. Do not assume that your input is in any particular
order.

Show how a checkerboard can be represented by a C array. Show how to represent the
state of a game of checkers at a particular instant. Write a C function that is nput o
an array representing such a checkerboard and prints all possible moves that black can
make from that position.

Write a function printar(a) that accepts an m-by-n array a of integers and prints the
valves of the array on several pages as follows: Each page is to contain 50 rows and
20 columns of the array. Along the top of each page, headings “COL 0. “COL 1,” and
so forth, should be printed and along the left margin of each page, headings “ROW 0.”
“ROW I.," and so forth. should be printed. The array should be printed by subarrays. For
example, if @ were a 100-by-100 array, the first page contains alOH O] through a[49]]19],
the second page contains «|0]|20] through «[49](39), the third page contains «|0]]40]
through a[49](59], and so on until the fifth page contains «[0][80] through a[49]{99], the
sixth page contains a[50][0] through a[99]{19]. and so on. The entire printout occupies
ten pages. If the number of rows is not a multiple of 50, or the number of columns is not
a multiple of 20, the last pages of the printout should contain fewer than 100 numbers.
Assume that each element of an array a stored in row-major order occupies four units of
storage. If a is declared by each of the following. and the address of the first element of
ais 100, find the address of the indicated array element:

a. int a[100]; address of a[10]

b. int a[200]; address of a[100]

c. int a[10][20]; address of a[0][0]
d. int a[10][20]; " address of a[2][1]
e, int a[10][20]; address of a[5][1]
f. int a[10)[20]; address of a[1][10]
g. int a[10][20]; address of a[2][10]
h. int a[10][20]; address of a[ST[3]
i. int a[10][20]; address of a[9][19]

Write a C function listoff that accepts two one-dimensional array parameters of the same

size: range and sub. range represents the range of an integer array. For example, if the
elements of range are

3 5 10 6 3

range represents an array a declared by
int a[3][S](10](6](3];

The elements of sub represent subscripts to the foregoing array. If subli] does not lie
between 0 and range[i] — 1. all subscripts from the ith onwards are missing. In the
foregoing example. if the elements of sub are

| 3 1

(1]
s

Exercises a1

sub represents the one-dimensional array a{11[31[1][2). The function /istoff should print

the offsets from the base of the array a represented by range of all the elements of « that

are included in the array (or the offset of the single element if all subscripts are within
bounds) represented by sub. Assume that the size (esize) of each element of @ is 1. In

the foregoing example, listoff would print the values 4, 5, and 6.

1.2.8. (a) A lower triangular array a is an n-by-n array in which a[i](j] = = 0.if i <j. What
is the maximum number of nonzero elements in such an array? How can these
elements be stored sequentially in memory? Develop an algorithm for accessing
ali][j}, where i > = j. Define an upper triangular array in an analogous manner
and do the same for such an array as for the lower triangular array.

(b) A sirictly lower 1 iangular array a is an n-by-n array in which alil(j] = = 0 if
i <= j. Answer the questions of part a for such an array.

(c) Letaand b be two n-by-n lower triangular arrays. Show how an n-by-(n + 1) array
¢ can be used to contain the nonzero elements of the two arrays. Which elements
of ¢ represent the elements a[i][j] and b[i][,]. respectively?

(d) A tridiagonal array a is an n-by-n array in which ali J(j] = = 0, if the absolute
value of i — j is greater than 1. What is the maximum number of nonzero elements
in such an array? How can thesc elements be stored sequentially in memory? De-

., velop an algorithm for accessing a[i](j] if the absolute value of i — jis 1 or less.
Do the same for an array a in which ali J[j] = = 0, if the absolute value of i — f
is greater than k.

1.3 STRUCTURES IN C

In this section we examine the C data structure called a structure. We assume that you
are familiar with the structure from an introductory course: In this section we review
some highlights of this data structure and point out some interesting and useful features
needed for a more general study of data structures.

A structure is a group of items in which each item is identified by its own identi-
fier, each of which is known as a member of the structure. (In many other programming
languages, a structure is called a “record” and & member is called a “field.” We may
sometimes use these terms instead of “structure” or “member,” although both terms
have different meanings in C.) For example, consider the following declaration:

struct {
char first[10];
char midinit;
char last[20];
-4 sname, ename;

This declaration creates two structure variables, sname and ename, each of which
contains three members: first. midinit, and last. Two of the members are character
strings. and the third is a single character. Alternatively, we can assign a fag to the
structure and then declare the variables by means of the tag. For example, consider the
following declaration that accomplishes the same thing as the declaration just given:

42
Introduction to Data Structures ~ Chap,.1

struct nametype {
char first[10];
char midinit;
char last[20];
4
struct nametype sname, ename;

This definition creates a structure tag nametype containing three members, first,
midinit, and last. Once a structure tag has been defined, variables sname and ename may
be declared. For maximum program clarity. it is recommended that a tag be declared
for each structure and variables then be declared using the tag.

An alternative to using a structure tag is to use the rvpedef definition in C. For
example

typedef struct {
char first[10];
© char midinit;
char last[20];
} NAMETYPE;

says that the identifier NAMETYPE is synonymous with the preceding structure speci-
fier wherever NAMETYPE occurs. We can then declare

NAMETYPE sname, ename;

to achieve the declarations of the structure variables sname and ename. Note that struc-
ture tags are conventionally written in lowercase but typedef specifiers are written in

uppercase in presenting C programs. fypedef is sometimes used to achieve the flavor of
an ADT specification within a C program. .

Once a variable has been declared as a structure, each member within that variable

may be accessed by specifying the variable name and the item’s member identifier
separated by a period. Thus, the statement

printf("%s", sname.first);
can be used to print the first name in the structure sname, and the statement
ename.midinit = 'm'
carl: be used to set the middle initial in the structure ename to the letter m. lf a member
of a structure is an array, a subscript may be used to access a pamcular element of the

array, as in

for (i=0; 1 < 20; i++)
sname.last[i] = ename.last[i];

A member of a structure may be-declared to be another structure. For example.
given the foregoing definition of namerype and the following definition of addrivpe

Sec. 1.3 Structures in C ' 43

struct addrtype {

char straddr[40];

char city[10]

char state[3]; /*Allow room for two-character */

char zip[6];
b

/* abbreviation and '\0' */
/*Allow room for five-character */
i Zipcode and '\0' */

we may declare a new structure tag nmadnpe by

struct nmadtype {

struct nametype name;
struct addrtype address;

¥

If we declare two variables

struct nmadtype nmadl, nmad2;

the following are valid statements: .

nmadl.name.midinit = nmad2.name.midinit;
nmad2.address.city(4]) = nmadl.name.first{1];

for (i=1; i < 10;

144)

nmadl.name.first[i] = nmad2.name.first[i];

ANSI standard C allows the assignment of structures of the same type. For ex-
ample. the statement nmadl = nmad?; is valid and equivalent to

nmadl.name = nmad2.name;
nmad2.address = nmad2.address;

These. in turn, are equivalent to

44

for (i=0; i < 10;

T4++)

nmadl.name.first{i] = nmad2.name.first(i];
nmadl.name.midinit = nmad2.name.midinit;

for (i=0; 1 < 20;

i+4)

nmadl.name.last[i] = nmad2.name.last[i];

“for (i=03 i < 40;
nmadl.address.

for (i=0; i < 10;
nmadl.address.

for (i=0; 1 < 2;
nmadl.address.

for (i=0; i < 5
nmadl.address.

44+)

straddr[i] = nmad2.address.straddr[i];
i+4)

city[i] = nmad2.address.city[i];

i44)

state[i] = nmad2.address.state[i];
144)

zip[i] = nmad2.address.zip[i];

Introduction to Data Structures

Chap. 1

The reader is cautioned that many compilers, which are based on the original C lan-
guage as defined by Kernighan and Ritchie, do not permit structure assignment. Thus
it would be necessary to explicitly assign each member of one structure to another. In
the remainder of the text we assume ANSI C compliance.

Consider another example of the use of structures, in which we define structures
describing an employee -and a student, respectively:

struct date {
int month;
int day;
int year;
108
‘struct position {
char deptno[2];
char jobtitle[20];
Y :
struct employee {
struct nmadtype nameaddr;
struct position job;
float salary;
int numdep;
short int hplan;
struct date datehired;
h
struct student {
struct nmadtype nmad;
float gpindx;
int credits;
struct date dateadm;
h

Assuming the declarations

struct employee e;
struct student s;

a statement to give a 10 percent raise to an employee whose grade point index as a -
student was above 3.0 is the following where stremp (s, 1) returns 0 if strings s and ¢ are
equal.

if ((strcmp(e.nameaddr.name.first,s.nmad.name.first)==0) &
(e.nameaddr.name.midinit == s.nmad.name.midinit) &&
(strcmp(e.nameaddr.name. last,s.nmad.name.last)==0))
if (s.gpindx > 3.0) .
e.salary *= 1.10;

This statement first ensures that the erhployee record and the student recorgd refer to the
same person by comparing their names. Note that we cannot simply write

Sec. 1.3 Structures in C 45

if (e.nmaddr.name == s.nmad.name)

re

since two structures cannot be compared for equality in a single operation in C.

You may have noticed that we used two different identifiers nameaddr and nmad
for the name/address members of the employee and student records, respectively.
It is not necessary to do so and the same identifier can be reused to name. mem-
bers of different structure types. This does not cause any ambiguity, since a member
name must always be preceded by an expression identifying a structure of a specific
type.

Implementing Structures

Let us now turn our attention from the application of structures to their implemen-
tation. Any type in C may be thought of as a pattern or a template. By this we mean that
a type is a method for interpreting a portion of memory. When a variable is declared
as being of a certain type, we are saying that the identifier refers to a certain portion
of memory and that the contents of that memory are to be interpreted according to the
pattern defined by the type. The type specifies both the amount of memory set aside for
the variable and the method by which memory is interpreted. . :

For example, suppose that under a certain C implementation an integer-is rep-
resented by four bytes, a float number by eight, and an array of ten characters by ten
bytes. Then the declarations

int x;
float y;
char z[10]%

specify that four bytes of memory be set aside for x, eight bytes be set aside for v, and
ten bytes for z. Once those bytes are set aside for these variables, the names x, v, and
2 will always refer to those locations. When x is referenced, its four bytes will be in-
terpreted as an integer; when y is referenced, its eight bytes will be interpreted as a
real number; and when : is referenced, its ten bytes will be interpreted as a collection
of ten characters. The amount of storage set aside for each type and the method by
which the contents of memory are interpreted as specific types vary from one machine
and C implementation 10 another. But within a given C implementation, any type al-
ways indicates a specific amount of storage and a specific method of interpreting that
storage. '
,Now suppose that we defined a structure by

struct structtype {
int fieldl;
float field2;
char field3[10];
h

46 Introduction to Data Structures Chap. 1

and declared a variable

struct structtype r;

Then the amount of memory specified by the structure is the sum of the storage spec-
- ified by each of its member types. Thus, the space required for the variable 7 is the
sum of the space required for an integer (4 bytes), a float number (8 bytes), and an
array of 10 characters (10 bytes). Therefore, 22 bytes are set aside for r. The first 4
of these bytes are interpreted as an integer, the next 8 as u float number, and the last
10 as an array of characters. (This is not always true. On some computers, objects of
certain types may not begin anywhere in memory but are constrained to start at cer-
tain “boundaries.” For example. an integer of length 4 bytes may have to start at an
address divisible by 4, and a real number of length 8 bytes may have 1o start at an ad-
dress divisible by 8. Thus, in our example, if the starting address of r is 200, the integer
occupies bytes 200 through 203, but the real number cannot start at byte 204, since
that location is not divisible by 8. Thus the real number must start at location 208 and
the entire record requires 26, rather than 22, bytes. Bytes 204 through 207 are wasted
space.) :

For every reference to a member of u structure, an address must be calculated.
Associated with each member identifier of a structure is an offsef that specifies how far
beyond the start of the structure the location of that field is. in the foregoing example, the
offset of fieidl is 0, the offset of field2 (assuming no boundary restrictions) is 4, and the
offset of field3 is 12. Associated with each structure variable is a base address, which is
the location of the start of the memory allocated to that-variable. These associations are
established by the compiler and are of no concern to the user. To calculate the location of
a member in a structure, the offset of the member identifier is added to the base address
of the structure variable. ’ '

For example, assume that the base address of r is 200. Then what really happens
in executing a statement such as

r.field2 = r.fieldl + 3.7;

is the following. First, the location of rfield| is determined as the base address of r (200)
plus the field offset of field1 (0), which yields 200. The 4 bytes at locations 200 through
203 are interpreted as an integer. This integer is then converted to a float number that
is then added to the float number 3.7. The result is a float number that takes up 8 bytes.
The location of rfield?2 is then computed as the base address of r (200) plus the field
offset of field2 (4). or 204. The contents of the 8 bytes 204 through 211 are set to the
float number computed in evaluating the expression.

Note that the process of calculating the address of a structure component is very
similar to that of calculating the address of an array component. In both cases an off-
set that depends on the component selector (the member identifier or the subscript
value) is.added to the base address of the compound structure (the structure or the ar-
ray). In the case of a structure. the offset is associated with the field identifier by the type

Sec. 1.3 Structures in C 47

definition, whereas in the case of an array, the offset is calculated based on the value of
the subscript. '

These two types of addressing (structure and array) may be combined. For exam-
ple, to calculate the address of r field3[4], we first use structure addressing to determine
the base address of the array rfield3 and then use array addressing to determine the lo-
cation of the fifth element of that array. The base address of r.field3 is given by the base
address of r (200) plus the offset of field3 (12), which is 212. The address of rfield3[4)
is then determined as the base address of rfield3 (212) plus 4 (the subscript 4 minus
the lower array bound 0) times the size of each element of the array (1), which yields
212 + 4 % 1, 0r 216. '

As an additional example, consider another variable, rr, declared by

struct structtype rr[20];

rris an example of an array of structures. If the base address of rr is 400, then the
address of rr{14].field3|6] may be computed as follows. The size of each component
of rris 22, so the location of rr{14] is 400 + 14 * 22, or 708. The base address of
rr{14].field3 is then 708 + 12, or 720. The address of rr(14].field3[6) is therefore 720 +
6 * 1. or 726. (Again, this ignores the possibility of boundary restrictions. For example,
althongh the type recrype may require only 22 bytes, each rectype may have to start at
an address divisible by 4, so that 2 bytes are wasted between each element of rr and its
neighbor. If such is the case, then the size of each element of rr is really 24, so that the
address of rr{ 14].field3(6] is actually 754 rather than 726.)

Unions

Thus far each structure we have looked at has had fixed members and a single
format. C also allows another type of structure, the union, which permits a variable to
be interpreted in several different ways.

For example, consider an insurance company that offers three kinds of policies:
life, auto, and home. A policy number identifies each insurance policy. of whatever
kind. For all three types of insurance, it is necessary to have the policyholder’s name,
address, the amount of the insurance, and the monthly premium payment. For auto and
home insurance policies, a deductible amount is needed. For a life insurance policy,
the insured’s birth date and beneficiary are needed. For an auto insurance policy, a
license number, state, car model, and year are required. For a homeowner’s policy, an
indication of the age of the house and the presence of any security devices is required.
A policy structure type for such a company may be defined as a union. We first define
two auxiliary structures.

#define LIFE 1 .
#define AUTO 2 -
#define HOME 3

48 Introduction to Data Structures Chap. 1

struct addr {
char street[50]; i
char city[10];
char state[3];
char zip[6];

struct date {
int month;
int day;
int year;
struct policy {
int polnumber;
char name[30];
struct addr address;
int amount;
float premium;
int kind; /* LIFE, AUTO, or HOME */
union { :
struct {
char beneficiary[30];
struct date birthday;
} life;
struct {
int autodeduct;
char license[10];
char state[3];
char model[15];
int year;
} auto;
struct {
int homededuct;
int yearbuilt;
} home;
} policyinfo;

Let us examine the union more closely. The definition consists of two parts: a
fixed part and a variable part. The fixed part consists of all member declarafions up to
the keyword union, while the variable part consists of the remainder of the definition.

Now that we have examined the syntax of a union definition, let usssséiune its
semantics. A variable declared as being of a union type T (for example, struct policy
p:) always contains all the fixed members of T. Thus, it is always valid to reference
p-name or p.premium or p.kind. However, the union members contained in the value of
such a variable depend on what has been stored by the programmer.

It is the prograrnmer’s responsjbility to make sure that the use of a member is
consistent with what has been placed into that location. It is a good idea to maintain a -
separate fixed member in a structure containing a union whose value indicates which

Sec. 1.3 Structures in C 49

alternative is currently in use. In the foregoing example, the member kind is used for
this purpose. If its value is LIFE (1), then the structure holds a life insurance policy; if
AUTO (2), an auto insurance policy; and if HOME (3), a home insurance policy. Thus

the programmer would be required to execute code similar to the following to reference
the union:

if (p.kind == LIFE)
printf("\n%s %2d//%2d/ /%4d" p.policyinfo. life.beneficiary,
p.policyinfo.life.birthday.month,
p.policyinfo.life.birthday.day,
p.policyinfo.life.birthday.year);
else if (p.kind == AUTO)
printf("*\n%d %s %s %s %d", p.policyinfo.auto.autodeduct,
p.policyinfo.auto.license,
p.policyinfo.auto.state,
p.policyinfo.auto.model,
p.policyinfo.auto.year);
else if (p.kind == HOME) 4
printf("\n¥%d %d", p.policyinfo.home.homededuct,
p.poTicyinfo.home.yearbuilt);
else
printf("\nbad type %d in kind", p.kind);

In the foregoing example, if the vajue of p-kind is LIFE, p currently contains
members beneficiary and birthday. It is invalid to reference model or yearbuilt while
the value of kind is LIFE. Similarly, if the value of kind is AUTO, we may reference
autodeduct, license, state, model, and year but should not reference any other member.
However, the C language does not require a fixed member to indicate the current alter-
native of a union, nor does it enforce using a particular alternative depending on a fixed
member's value. '

A union allows a variable to take on several different “types” at different points

in execution. It also allows an array to contain objects of different types. For example,
the array a, declared by
]

struct policy a[lOOj ‘

may contain life, auto, and home insurance policies. Suppose that such an array a is
declared and that it is desired to raise the premiums of all life insurance policies and all

home insurance policies for homes built before 1950 by 5 percent. This can be done as
follows: . y :

for (i=0; 1<100; i++)
if (a[i].kind == LIFE)
afi].premium = 1.05 * a[i].premium;
else if (a[i].kind == HOME &&
a[i].policyinfo.yearbuilt < 1950)
ali].premium = 1,05 * a[i].premium;

50 . Introduction to Data Structures. Chap. 1

Implementation of Unions

To fully understand the concept of a union, it is necessary to examine its imple-
mentation. A structure may be regarded as a road map to an area of memory. It defines
how the memory is to be interpreted. A union provides several different road maps for
the same area of memory, and it is the responsibility of the programmer to determine
which road map is in current use. In practice, the compiler allocates sufficient storage
to contain the largest member of the union. It is the road map, however, that deter-

mines how that storage is to be interpreted. For example, consider the simple union and
structures :

#define INTEGER 1
#define REAL 2

struct stint {
int 3, f4;
struct stfloat {
float £S5, fo;
struct sample {
int f1;
float f2;
int utype;
union {
struct stint x;
struct stfloat y;
} funion:
b

Let us again assume an implementation in which an integer requires 4 bytes and
a float 8 bytes. Then the three fixed members J1, £2, and utype occupy 16 bytes. The
first member of the union, X, requires 8 bytes, while the second member, y, requires 16.
The memory actually allocated for the union part of such a variable is the maximum of
the space needed by any single member. In this case, therefore, 16 bytes are allocated
for the union part of sample. Added to the 16 bytes needed for the fixed part, 32 bytes
are allocated to sample. '

The different members of a union overlay each other. In the above example, if

bytes 100 through 103, 104 through 111, and 112 through 115, Tespectively. If the
value of the member utype is INTEGER (that is, 1), bytes 116 through 119 and 120
through 123 are occupied by sample. funion.x.f3 and sample.funion.x.f4, respectively,
and bytes 124 through 131 are unused. If the value of sample.utype is REAL (that is, 2);
bytes 116 through 123 are occupied by sample.funion.y.f5, and bytes 124 through 131
are occupied by sample. funion.y. f6. That is why only a single member of a unjon can
exist at a single instant. All the members of the union use the same space, and that space

Sec. 1.3 Structures in C : .5

can be used by only one of them at a time. The programmer determines whlch member
is appropriate.

Structure Parameters

In traditional C a structure may not be passed to a function by means of a call by
value. To pass a structure to a function, we must pass its address to the function and
refer to the structure by means of a pointer (that is, call by reference). The notation p—>
x in C is equivalent to the notation (*p).x and is frequently used to reference a member
of a structure parameter. For example, the following function prints a name in a neat
format and returns the number of characters printed:

int writename (struct nametype *name)
{

int count, i;

printf("\n");
count = 0;
"for (i=0; (i < 10) & (name->first[i) != "\0'); i++) {
printf("%c", name->first[i]);
count++; : -
} /* end for */
printf("%c", ' ');

count++;

if (name->midinit != ' ') {
printf("%c%s", name->midinit, ". ");
count += 3;

} /* end if */
for (i=0; (i < 20) & (name->last[i] != '\0'); i++) {
printf("%c", name—>1ast[1]).
count++;
} /* end for */
return(count);
} /* end writename */

The following list illustrates the effects of the statement x = writename(&sname) on
two different values of sname:

Value of sname.first: “Sara” “Irene™
e Value of sname.midinit: ‘M’ g
Value of sname.last: “Binder” “LaClaustra™
Printed output: Sara M. Binder Irene LaClaustra
~— Valueof x: 14 16

Similarly, the statement x = writename(&ename) prints the values of ename’s fields
and assigns the number of characters printed to x.

The original definition of C (by Kernighan and Ritchie) and many older C com-
pilers do not allow a structure to be passed as an argument even if its value remains

52 ; : Introduction to Data Structures Chap. 1

unchanged. ANSI C, in addition to allowing structure assignment, does allow structures
to be passed by value and returned, without applying the & operator. This involves
copying the value of the entire structure when the function is called. Thus if the structure
is very large it is more efficient to pass the structure by reference (that is, using the &
operator). In the remainder of the text, we therefore pass all structures by reference.

We have already seen that a member of a structure may be an array or another
structure. Similarly we may declare an array of structures. For example, if the types
employee and student are declared as presented earlier, we can declare two arrays of
employee and student structures as follows:

struct employee e[100];
struct student s[100];

The salary of the fourteenth employee is referenced by e[13].salary, and the last
name is referenced by e[13).nameaddr.name. last. Similarly, the admission year of the
first student is s[0).dateadm.year.

As an additional example, we present a function used at the start of a new year
to give a 10 percent raise to all employees with more than ten years seniority and a 5
percent raise to all others. First, we must define a new array of structures.

struct empl{oyee empset[100];
The procedure now follows:

#define THISYEAR ... _
void raise (struct employee e[])

{

int 1i;

for “i=0; i < 100; i++)
if (e[i].datehired.year < THISYEAR - 10)
e[i].salary *= 1.10;
else ¥
e[i].salary *= 1,05;
} /% end raise */

As another example, suppose that we add an additional member, sindex, to the
definition of the employee structure. This member contains an integer and indicates the

student index in the array s of the particular employee. Let us declare sindex (within
the employee record) as follows:

struct employee {
struct nametype nameaddr;

.

struct datehired ...;
“int sindex;

3

Sec. 1.3 " Structures in C 53

The number of credits earned by employee i when the employee was a student can then
be referenced by sleli].sindex).credits.

The following function can be used to give a 10 percent raise to all employees
Wwhose grade point index was above 3.0 as a student and to return the number of such
employees. Note that we no longer have to compare an employee name with a student
name to ascertain that their records represent the same person (although these names
should be equal if they do). Instead the field sindex can be used directly to access the

appropriate student record for an employee. We assume that the main program contains
the declaration

struct employee emp[100];
struct student stud[100];

int raise2 (struct employee e[], struct student s[D
{

int i, j, count;

count = 0;
for (i=0; i < 100; i+4) {
j = e[i].sindex;
if (s(j1.gpindx > 3.0) {
count++;
e[i].sa’ary *= 1.10;
} /* end if */
} /* end for */
return(count);
} /* end raise2 ¥/

Very often a large array of structures is used to contain an important data table
for a particular application. There is generally only one table for each such array of
structures. The student table s and the employee table ¢ of the previous discussion are
good examples of such data tables. In such cases, the unique tables are often used as
static/external variables rather than as parameters, with a large number of functions ac-
cessing them. This increases efficiency by eliminating the overhead of parameter pass-
ing. We could easily rewrite the function raise2 above to access s and e as static/external
variables rather than as parameters by-simply changing the function header to

int raise2()

The body of the function need not be changed, assuming that the tables s and e are
declared in the outer program. :

Representing Other Data Structures

Throughout the remainder of this text, structures are used to represent more com-
plex data structures. Aggregating data into a structure is useful because it enables us

to group objects within a single entity and to name each of these objects appropriately,
according to its function.

54 Introduction to Data Structures Chap. 1

As examples of how structures can be used in this fashion, let us consider the
problems of representing rational numbers.

Rational Numbers

In Section 1.1 we presented an ADT for rational numbers, Recall that a rational
number is any number that can be expressed as the quotient of two integers. Thus
172, 3/4, 2/3, and 2 (that is, 2/1) are all rational numbers, whereas sqr(2) and 7 are
not. A computer usually represents a rational number by its decimal approximation. If
we instruct the computer to print 1/3, the computer responds with .333333. Although
this is close enough (the difference between .333333 and one-third is only one three-
millionth), it is not exact. If we were to ask for the value of 1/3 + 1/3, the result would
be .666666 (which equals .333333 + .333333), whereas the result of printing 2/3 might
be .666667. This would mean that the result of the test 1/3 + 1/3 = = 2/3 would be
false! In most instances, the decimal approximation is good enough, but sometimes it
is not. It is therefore desirable to implement a representation of rational numbers for
which exact arithmetic can be performed.

How can we represent a rational number exactly? Since a rational number consists

of a numerator and a denominator we can represent a rational number rational using
structures as follows:

struct rational {
int numerator;
int denominator;

b
An alternative way of declaring this new type is

typedef struct {
int numerator;
int denominator;
} RATIONAL;

Under the first technique, a rational r is declared by‘
struct rational r; 3

under the second technique by

RATIONAL r;

You might think that we are now ready to define rational number arithmetic for
our new representation. but there is one significant problem. Suppose that we defined
two rational numbers r1 and 72 and we had given them values. How can we test if the
two numbers are the same? Perhaps you might want to code ’

if (rl.numerator == r2,numerator&& rl.denominato[- ==
3 r2.denominator)

Sec. 1.3 Structures in C 55

That is, if both numerators and denominators are equal, the two rational numbers are
equal. However, it is possible for both numerators and denominators to be unequal, yet
the two rational numbers are the same. For example, the numbers 1/2 and 2/4 are inderd
equal, although their numerators (1 and 2) as well as their denominators (2 and 4) are
unequal. We therefore need a new way of testing equality under our representation.

Well, why are 1/2 and 2/4 equal? The answer is that they both represent the same
ratio. One out of two and two out of four are both one-half. To test rational numbers
for equality, we must first reduce them to lowest terms. Once both numbers have been
reduced to lowest terms, we can then test for equality by simple comparison of their
numerators and denominators. ; .

Define a reduced rational number as a rational number for which there is no
integer that evenly divides both the denominator and the numerator. Thus 1/2, 2/3, and
10/1 are all reduced, while 4/8, 12/18, and 15/6 are not. In our example, 2/4 reduced to
lowest terms is 1/2, so the two rational numbers are equal.

A procedure known as Euclid’s algorithm can be used to reduce any fraction of

the form numerator/denominator into its lowest terms. This procedure may be outlined
as follows: '

- Let a be the larger of the numerator and denominator and let b be the smaller.
- Divide b into a, finding a quotient g and a remainder r (thatis,a = g * b + r).
. Seta = bandb = r.

- Repeat steps 2 and 3 until b is 0.
- Divide both the numerator and the denominator by the value of a.

hn & Wi -

As an i]lustljation. let us reduce 1032/1976 to its lowest terms.

Step 0 numerator = 1032 denominator = 1976
Step 1 a=1976 b= 1032

Step 2 a=1976 b = 1032 g=1 r=944
Step 3 a=1032 b =944

Steps 4 and 2 a=1032 b =944 g =1 r = 88
Step 3 a=94 b=288

Stgps 4 and 2 a=94 b=288 g=1i0 r=64
Step 3 a = 88 b =64

Steps 4 and 2 a = 88 b =64 g=1 r=24
Step 3 a=64 b=24
Steps 4 and 2 a =64 b=24 g=2 r=16
Step 3 a=24 b=16

“Steps 4 and 2 a=24 b =16 g=1 r=38
Step 3 a =16 b=28

Steps 4 and 2 a=16 b=28 g=2 r=0

* Step 3 a=8 b=20

Step 5 1032/8 = 129 1976/8 = 247

Thus 1032/1976 in lowest terms is 129/247.

- Introduction to Data Structures Chap. 1

Let us write a function to reduce a rational number (we use the tag method for
declaring rationals).

void reduce (struct rational *inrat, struct rational *outrat)
.[a

int a, b, rem;

if (inrat->numerator > inrat->denominator) {
a = inrat->numerator;
b = inrat->denominator:
} /* end if ¥/
else {
a =-inrat->denominator;
b = inrat->numerator;
} /* end else */
whiie (b != 0) {
rem=a%b;
a=b;
b = rem;
} /* end while */
outrat->numerator /= a;
outrat->denominator /= a;
} /* end reduce */

Using the function reduce, we can write another function equal that determines
whether or not two rational numbers r1 and r2 are equal. If they are, the function returns
TRUE; otherwise, the function returns FALSE.

#define TRUE 1
#define FALSE 0

int equal (struct raticnal *ratl, struct rational *rat2)
struct rational rl, r2;

reduce(ratl, &rl);
reduce(rat2, &r2);
if (rl.numerator == r2.numerator &%
rl.denominator == r2.denominator)
return(TRUE) ;
return(FALSE) ;
} /* end equal */

We may now write functions to perform arithmetic on rational numbers. We
present a function to multiply two rational numbers and leave as an exercise the prob-
lem of writing similar functions to add. subtract, and divide such numbers.

Sec. 1.3 Structures in C 57

void multiply (struct rational *rl, struct rational *r2, struct rational *r3)
/* r3 points to the result of multiplying *rl and *r2 */
{

struct rational rat3:

-

rat3.numerator: = rl->numerator * r2->numerator;

rat3.denominator = rl-sdenominator * r2->denominator;

reduce(&rat3, r3);
} /% end multiply */

Aliocation of Storage and Scope of Variables

Until now we have been concerned with the declaration of variables. that is, the -
description of a variable’s type or attribute. Two important questions, however, remain
to be answered: At what point is a variable associated with actual storage (that is, stor-
age allocation)? At what point in a program may a particular variable be referenced
(that is, scope of variables)?)

In C variables and parameters declared within a function are known as automatic
variables. Such variables are allocated storage when the function is invoked. When the
function terminates, storage assigned to those variables is deallocated. Thus automatic
variables exist only as long as the function is active. Furthermorte, automatic variables
are said to be local to the function. That is, automatic variables are known only within
the function in which they are declared :nd may not be referenced by other functions.

Automatic variables (that is. parameters in a function header or local variables
immediately following any opening brace) can be declared within any block and remain
in existence until the block is terminated. The variable can be referenced throughout the
entire block unless the variable identifier is redeclared within an internal block. Within
the internal block, a reference to the identifier is to the inner-most declaration, and the
outer variable cannot be referenced. ,

The second class of variables in C arc the external variables. Variables that are
declared outside any function are allocated storage at the point at which ttey are first
encountered and remain in existence for the remainder of the program’s execution. The
scope of an external variable lasts from the point at which it is declared until the end
of its containing source file. Such variables may be referred to by all functions in that
source file lying beyond their declaration and are therefore said to be global to those
functions. :

A special case is when the programmer wishes to define a global variable in one
source file and to refer to the variable in another source file. Such a variable must be
expli’ciitly declared to be external. For example, suppose that an integer array containing
grades is declared in source file 1 and it is desired to refer to that array throughout a
source file 2. The following declarations would then be necessary:

file 1 #define MAXSTUDENTS ...
int grades [MAXSTUDENTS]:

end of file 1
58

Introduction to Data Structures Chap. 1

file 2 extern int grades[];

float average()
{

} /* end float ¥/

float mode() : "
{

| ¥ er.'u.! mode */
end of. file 2

Whenfile 1 and file 2 are combined into one program, storage for the array grades
is allocated in file | and remains allocated until the end of file 2. Since grades is an
external variable, it is global from the point at which it is defined in file] to the end
of file 1 and from the point at which it is declared in file 2 to the end of file 2, Both
- functions average and mode may therefore refer to grades.

Note that the size of the array is specified only once, at the point at which the
variable is originally defined. This is because a variable that is explicitly declared to
be external cannot be redefined, nor can any additional storage be allocated to it. An
extern declaration merely serves to declare for the remainder of that source file that
such a variable exists and has been created earlier.

Occasionally it is desirable to define a variable within a function for which stor-
age remains allocated throughout the execution of the program. For example, it might
be useful to maintain a local counter in a function that would indicate the number of
times the function is invoked. This can be done by including the word static in the
variable declaration. A static internal variable is local to that function but remains in
existence throughout the program’s execution rather than being allocated and deallo-
cated each time the function is invoked. When the function is exited and reentered, a
static variable retains its value. Similarly, a static external variable is also allocated
storage only once, but may be referred to by any function that follows it in the source
file.

For purposes of optimization, it might be useful to instruct the compiler to main-
tair. the storage for a particular variabie in a hi gh-speed register rather than in ordinary
memory. Such a variable is known as a register variable and is defined by including
the word register in the declaration of an automatic variable or in the formal parameter
of a function. There are many restrictions on register variables that vary from machine
to machine. The reader is urged to consult the appropriate manuals for details on these
restrictions.

Variables may be explicitly initialized as part of a declaration. Such variables
are conceptually given their initial values prior to execution. Uninitialized external and
static variables are initialized to 0, whereas uninitialized automatic and register vari-
ables have undefined values.

To illustrate these rules consider the following program: (The numbers to the left
of each line are for reference purposes.)

Sec. 1.3 -~Structures in C 59

source filel.c
1 dntx, vy, z;

2 void funcl()
{

3

4 int a, b;

5 X=1;

6 y=2;

7 Z=3;

8 a=1

9 b=2;
10 printf("%d %d %d %d %d\n", x, Y, 2z, 2, b);
11 '} /* end funcl #/
12 void func2()

13 {

14 int a;

15° aes;

16 printf("%d % % %\n", x, y, z, a);
17} /* end func? */

end of source filel.c

source file2.c

18 #include <stdio.h>
19 #include <filel.c>

20 extern int x, vy, z;
21 void main()

23 funcl(Q);

24 printf("%d %d %d\n", x, y, z):
25 func2Q);

26 func3();

27 func3();

28 funcd();

29 printf("%d %d %d\n", x, y, 2);
300} /* end main */

31 void func3()
{

32

33 static int b; /* b is initialized to 0 */
34 Y4+

35 b++;

36 printf("%d %d %d %d\n", x, y, z, b);
37 '} /* end func3 */

Introduction to Data Structures Chap. 1

“

38 void funcd()
{

3

40 10t %, ¥y .2
41 x = 10;

42 y = 20;

43 z = 30;

44 prmtf('%d %d %d\n", x, Y» z);
45 '} /* end funcd */

end of source file2.c
Execution of the program yields the following results:

-

12

PR N S
WO W W W W W
W N

~

02
4

o - an oW
[

Lei us trace through the program. Execution begins with line 1, in which ex-
ternal integer variables x, v, and z are defined. Being externally defined, they will be
known (global) throughout the remainder of file1.c (lines 1 through 17). Execution then
proceeds to line 2Q, which'declares by means of the word extern that the external in-
teger variables x, y, and z are to be associated with the variables of the same name in
line 1. No new storage is allocated at this point, since storage is allocated only when
these variables are originally defined (line 1). Being external, x, y, and z will be known
throughout the remainder of file2.c, with the exception of func4 (lines 38 through 45),
where the declaration of local automatic vanables % y, and z (line 40) supersedes the
original definition.

Execution begins with main(), line 21. This 1mmed1alely invokes funcl. funcl
(lines 2 through 4) defines local automatic variables @ and b (line 4) and assigns values
to the global variables (lines 5 through 7) and to its local variables (lines 8 through 9).
Line 10 therefore produces the first line of output (line a). Upon termination.of funcl
(line 11) storage for variables a and b is deallocated. Thus, no other function will be
able to refer to these variables.

Control is then returned to the main function (line 24). The output is given in line
b. It then invokes func2. func2 (lines 12 through 17) defines a local automatic variable,
a, for which storage is allocated (line 14) and a value assigned (line 15). Line 16 refers
to the extermal (global) variables x, y, and z previously defined in line 1 and assigned
values in lines 5 through 7. The output-is iven in line b. Note thal it would be illegal
for func2 to attempt to print a value for b, since this variable no longer exists, being
allocated only within funcl.

The main program then invokes func3 twice (lines 26 through 27). func3 (lines 31
through 37), when called for the first time, allocates storage for the static local variable b

Sec. 1.3 Structures in C 61

and initializes it 10 0 (line 33). b will be known only to func3; however, it will remain in
existence for the remainder of the program’s execution. Line 34 increments the global
variable v, and line 35 increments the local variable b. Line d of the output is then
printed. The second time Junc3 is invoked by the main program, new storage for b
is not allocated; thus, when b is increm nted in line 35 the old value of b (from the
previous invocation of furic3) is used. T final value of b thus will reflect the number
of times that func3 was invoked.

Execution then continues in the main function that invokes func4 (line 28). As
was mentioned earlier, the definition of internal-automatic integer variables x, yoand z°
in line 40 supersedes the definition of x, y.and z in lines 1 and 20, and remains in force
only within the scope of func4 (lines 38 through 45). Thus the assignment of values
in lines 41 through 43 and the output (line f) resulting from line 44 refer only to these
local variables. As soon as Junc4 terminates (line 45) these variables are destroyed.
Subsequent references 1o X, ¥, and z (line 29) refer to the global x, y, and z (lines 1 and
20) producing the output of line g.

EXERCISES

L3.1. Implement complex numbers. as specified in Exercise 1.1.8, using structures with real
and complex parts. Write routine to add, multiply, and negate such numbers.
1.3.2. Suppose that a real number is represented by a C structure such as

struct realtype {
int left;
int right;

where left and right represent the di gits to the left and right of the decimal point, respec-

tively. If left is a negative integer, the represented real number is negative.

(a) Write a routine to input a real number and create a structure representing that num-
ber.

(b) Write a function that accepts such a structure and returns the real number repre-

* sented by it.

(c) Write routines add. subtract, and mulriply that accept two such structures and set
the value of a third structure 1o represent the number that is the sum, difference,
and product. respectively., of the two input records.

1.3.3, Assume that an integer needs four bytes, a real number needs eight bytes, and a char
needs one byte. Assume the following definitions and declarations:

struct nametype {
char first[10]:
char midinit;
char last[20);

Introduction to Data Structures Chap. 1
62

1.3.4.

1.3.5.
1.3.6.

1.3.7.

struct person {
struct nametype name;
int birthday[2];
struct nametype parents[2];
int income;
int numchildren;
char address{20];
char city[10];
char state[2];

Y

struct person p[100];

If the starting address of p is 100, what are the starting addresses (in bytes) of each of
the following?

(a) p(10]

(b) p[20].nane.midinit

(c) p[20].income

(d) p[20].address[5]

(e) plS].parents[1].7ast[10]

Assume two arrays. one of student records and the other of employee records. Each
student record contains members for a last name, a first name, and a grade point index.
Each employee record contains members for a last name, a first name, and a salary. Both
arrays are ordered in alphabetical order by last name and first name. Two records with
the same last name/first name do not appear in the same array. Write a C function to give
a 10 percent raise to every employee who has a student record and whose grade-point
index is greater than 3.0.

Write a function as in the preceding exercise. but assuming that the employee and student
records are kept in two ordered external files, rather than in two ordered arrays.

Using the rational number representation given in the text, write routines to add, subtract,
and divide such numbers.

The text presents a function equal that determines whether or not two rational numbers
rl and r2 are equal by first reducing r1 and r2 to lowest terms and then testing for
equality. An alternative method would be to multiply the denomirator of each by the
numerator of the other and test the two products for equality. Write a function equai? to
implement this algorithm. Which of the tvo methods is preferable?

1.4 CLASSES IN C++

In this section, we introduce the C++ language and the concept of a C++ class. A
class embodies the concept of an abstract data type by defining both the set of values of
a given type and the set of operations that can be perforiied on those values. A variable
of a class type is known as an object and the operations on that type are called methods.
When one object:A invokes a fnethod m on another object B, we sometimes say that “A
is sending message m to B.” B is viewed as receiving that message and carrying out a
transformation in response to that message.

Sec. 1.4 Classes in C++ 63

The Class Rational

To illustrate the concept of a C++ class, consider the abstract data type RA-
.TIONAL that we introduced in Section 1.1. That ADT modeied a rational number as

consisting of two components, a numerator and a denominator, and defined methods
to check'if two rational numbers were equal, to add two rationals, to multiply two ra-
tionals and to create a rational from two integers. In Section 1.3 we implemented the
ADT RATIONAL as a C structure and presented C functions to implement its opera-
tions. We recommend that you reread the portions of Sections 1.1 and 1.3 dealing with
the definition and implementation of the ADT RATIONAL before proceeding.

A C++ class builds on the concept of a C structure. Whereas a C structure is a
collection of named fields, a C++ class is a collection of named fields and methods
(or-functions) that apply to objects of that class type. Additionally, the C+ + language
implements the concept of information hiding, restricting access to certain members
of the class to methods of the class itself.

For example, the C++ definition of a class to implement the ADT RATIONAL
might he the following:

class Rational{
Tong numerator;
long denominator;
void reduce (void);
public: .
Rational add(Rational);
Rational mult(Rational);
Rational divide(Rational):
int equal(Rational);
void print(void);
void setrational(long, Tong);

}

This class, named Rational, contains two data members, numerator and denom-
inator, and seven method members, reduce, add, mult, divide, equal, print, and set-
rational. These seven methods are merely defined here; their actual implementations
must be provided subsequently.

The methods add, mult, and equal implement the ADT functions of the same
name. We have added a method divide to divide one rational number by another. While
the corresponding ADT furctions take two parameters, the methods in the class Ra-
tional explicitly mention only one. This is because the class object for which they
are invoked is an implicit parameter for each routine. We will see how this is done
shortly.

The method setrational is used to set the value of a Rational to the rational number
formed by a particular numerator and denominator. Further, the members are divided
into two groups: numerator, denominator and reduce are private. That is, they can be

referenced only from within the methods of the class Rational. This could have been
made explicit by stating:

64 . - Inirod;j&tion to Data Structures Chap. 1

class Rational {
private:
long numerator;

but. by default, the members defined at the beginning of « class definition are private
without the need for explicitly stating this. The members setrational, add, mult. divide,
equai, and print, by contrast, are public. This means that they can be referenced outside
the methods of the class Rational.

The reasons for doing this are simple. We do not want “outsiders™ manipulating
either the rationul or denominator members. They are merely a way of implementing
a rational number and are to be used solely for that purpose. An external function ma-
nipulates a Rational; only within the internal methods of Rational should we be able
to access numerator and denominator. Similarly, the method reduce is a function to
reduce the internal representation of the Rational (that is, the numerator and denomi-
nator) to lowest terms. We intend to use reduce to ensure thai every rational number is
kept in Jowest terms. The outside worid has no cause to call reduce. Every method that
manipulates the internal numerator and denominator (that is, setrational, add, mult, and
divide) is a member of the class Rational and will automatically ensure that the result-
ing number 1s in reduced form by calling reduce. We will see this when we present the
implementations of these methods. There is no need for anyone else to call reduce. and
therefore reduce is defined as private. .

On the other hand. the methods setrational. add, mult, equal, and print are public.
These functions form the public interface for the class Razional. That is, they are the
methods by which the outside world can manipulate and use objects of type Rational.

Using the Class Rational

We now present an example of the use of the class Rational. Suppose that the class
Rational. together with the implementations of its methods, were defined in a header

file rational h. Then, suppose that we wanted to write a program to do the foilowing:
Input lines, of the form

op ra rb;

where op is the character -+ or =, and ra and rb are either integers or of the form
a / b

wherc a and b are integers. For example, the following are all valid input lines:
TR

This asks 10 ud(i the integers 3 and 7 to produce 10.

+ 3 / 4 5

Sec. 1.4 Classes in C++ 65

This asks to add the rational 3/4 and the integer 5 to produce the rational 23/4.

3 4) 8

This asks to multiply the integer 3 and the rational 4/8 to produce the rational 3/2.
+ 3/ 4 5] 6

This asks to add the rationals 3/4 and 5/6 to produce the rational 19/12. The program
should read the line, perform the indicated computation, and print out the resulting
rational. ,

To assist with the 1/0, we assume three routines: int readtokent{char * *), long
atol(char *), and void error(char *). The function readtoken reads the next operator or
integer in character form (for example, “/” or “389"). allocates storage for the string
using the stdlib function calloc, and sets a pointer of type char * 1o it. Should the end
of file be encountered, readtoken returns a value of EOF: otherwise. it returns 'EOF.
The sidlib function atol converts a numerical string to an integer. The function void

error(char *) prints its parameter as an error message and halts execution. The program
is as follows: s 3 '
#include "rational.h"
#include <iostream.h>
#include <string.h>
#include <stdlib h>

void main()

{
int readtoken(char * *);
void error(char *);

char *optr, *tokenl, *token2, *tcken3;
int intl, int2;
Rational opndl, opnd2, result;

while (readtoken(&optr) != EOF) { // read the operator

readtoken(&tokenl); // read the first integer's
// character string
intl = atol(tokenl): // convert the first token

// to an integer
readtoken(&token2);
if (stremp(token2, "/") 1= 0
// convert the integer operand to a Rational
opndl.setrational(intl, 1);
else { :
// get the denominator of the Rational operand
readtoken(&token3);
int2 = atoi(token3);
// convert the numerator and deneminator to a Rational
opndl.setrational(intl, int2);

66 Introduction to Data Structures Chap. 1

readtoken(&token2);
} /* end if %/
// get the second operand
intl = atol(token2);
readtoken(&token2);
if (strcmp(token2, "/") !=0)
// convert the integer operand to a Rational
oprd2. setrational(intl, 1);
else {
// get the denominator of the Rational operand
readtoken(&token3);
int2 = atol(token3);
// convert the numerator and denominator to a Rational
opnd2.setrational(intl, int2);
readtoken(&token2J;
} /% end if %/
if (strcmp(token2, “;") !=0)
error ("ERROR: ; expected, not found.™);
// apply the operator to the Rational operands
if (*optr == '4+')
result = opndl.add(opnd2);
else if (®optr == '*')
result = opndl.mult(opnd2);
else
error("ERROR: illegal operator; must be * or + ");
resuit.print();
} /* end while ¥/ y X
Y /% end main */ v v

In the declarations, the variables opnd1, opnd2. and result are declared as of type
Rational. This makes them objects of that class. That is, each one contains a numeraior
and denominator, and can be used to call the methods of class Ratignal, including add,
mult. setrational, and print.

Note how the methods of Rational are called. If opid] and opnd? are Rationals,
then the call opnd1.add(opnd?) adds the two rational numbers represented by opnd]
and opnd? and produces a Rational representing the result. We say that the program
“sends the message” add g opnd|1. Similarly, the call resulr.prini() sends the message

print 10 result and the call opnd].setrational(intl, int2) sends the message setrational
o opndl.

Implementing the Methods d

The methods of a class can be implemented within the declaration of the class or
outside it. For example, the method setrarional. which sets an object of tvpe Rarionai
to a particular value, can be implemented within the class declaration as foliows:

class Rational
long numerator;

Sec. 1.4 Classes in' C++ 67

public:
Rational add(Rational);

void print(void);

void setrational (long n, long d)

{
if (d ==0)

error ("ERROR: denominator may not be zero");

numerator = n;
denominator = d;
reduce(); // reduce to lowest terms

} /* end setrational */

} /* end Rational */

The body of the function setrational appears within the declaration of Ratio-
nal. Note that setrational references the members numerator and denominator. Private
members of a class, such as numerator and denominator, can be referenced directly,
with no needed qualification, from a method of that class, but they cannot ordinarily be
referenced by a function outside the class. Similarly, the method reduce is called within
the method serrational with no qualification. This refers to the method reduce defined
within the method Rational.

When setrational is called, as in the statement opnd|.setrational(int], int2);, re.-
erences to numerator and denominator within setrational will refer to opnd|.numerator
and opndl.denominator, and the call reduce() is to opndl.reduce(). Alternatively, set-

rational can be defined outside the declaration for Rarional. Rational must still contain
the header of the function

void setrational(long, Tong);

but it need not contain its body. The body can be provided after the decfiration for
Rational is completed, as follows:

wﬁRnhmhmamﬁﬁﬂﬂmgm1mg®
{
if' (d ==0)
error("ERROR: denominator may not be zero");
numerator = n;
derominator = d;

1

- reduce(); // reduce to Towest terms
} /* end setrational */

Note the header line
void Rational::setrational(long n, Tong d)

which specifies that we are defining one of the methods within the type*Rational. The
notation “Rational::" introduces a scope and specifics that the function serrarional be-

68 Introduction to Data Structures Chap. 1

ing defined is a method of class Rarional. Once this scope has been opened, we can
utilize the private members numerator and denominator and the private method redicce.

Hete are the specifications of the remaining methods of RATIONAL. The routine
for reduce follows closely the algorithm of Section 1.3. We first make sure that mmumer-
ator and denominator are both positive, keeping track of the sign.

void Raticnal::reduce (void)
{

int a, b, rem, sign;

if (numerator == 0)
denominator = 1;
sign = 1; //assume positive
/! check if any negatives
if (numerator < 0 && denominator < 0) {
~ numerator = -numerator;
denominator = -denominator;
}
if (numerator < 0) {
numerator = -numerator;
sign = -1;
y .
if (denominator < 0) {
denominator = -denominator:
sign = -1;
}
if (numerator > denominator) {
a = numerator;
denominator;

o
i

a = denominator;
b = numerator;

I
while (b != 0) {

rem=a % b;
a = b}
b = rem;

3
numerator = Sign * numerator / a;
denominator = denominator / a;

} /* end reduce */

To add two rational numbers, we could first reduce euch to Jowest term, then
multiply the two denominators to preduce a resulting denominator, then multiply each
numerator by the denominator of the other rational numbers and add the two products
to produce the numerator. The result can then be reduced to lowest terms. However, this
provides the danger that the product of the two denominators may be o large even for
a long variable.

Sec. 1.4 Classes in C++ 69

isicad, we usc the following algorithm to add a/b to ¢/d. We assume that the
value rden(x, y) denotes the denominator of xly reduced to lowest terms:

k = rden(b, d);
denom = b*k; // the resulting denominator
num = a*k + c*(denom/d); // the resulting numeratcr

nurm is the numerator of the sum, denom is the denominator, We Jeave it as an cxercise
to show that this algorithm is correct.

Implementing this ulgorithm in the context of the class Rational provides the fol-
lowing definition of the method add:

Rational Pational::add(Rational r)
{

int k, denom, num;

JRational rnl;

/] first reduce both rationals to lowest tarme
reduce(); =
r.reduce():

// implement the Tine k = rden(b, d); of the algorithm
rnl.setrational{denominator, r.denominator);
rnl.reduce();

k = rnl.dencminator;

// compute the denominator of the result
// algorithm 1ine denom = b*k;
denom = denominator * k;

/! computs the numerator of the result
// algorithm Tine num = a*k + c*a(denom/d);
num = numerator*k + r.numerator*(dencm/r.denominator);

// form a Rational from the result and reduce
// the resuit to Towest terms
rnl.setrational (num, denom):

rni.reduce();

return rnl;
} /* end add */

In multiplying two reduced rationals a/6 and ¢/df. the straightforward method is to
compute (axc)/(b=d). However, here again we want to avoid the multiplication of a=¢
and bd if at all possible. since their intermediate results may be too large. The solution
is first to reduce a/b and /el 1o lowest terms, then to reduce a/d and /b, In that way we

are certain that ¢+ has no terms in common with b#d and that the products are as small
as possible,

Introduction to Data Structures Chap. 1
70

Here is the method mudt implementing these ideas:
Rational Rational::mult(Rational r)

Rational rnl, rnll, rnl12;
int num, denom;

// reduce both inputs to Jowest terms
reduce();
r.reduce();

// switch numeraters and denominators and reduce
rnl1l.setrational (numerator, r.denominator);
,rnl.reduce();
rn12.setrationa](r,numerator,denominator);
rnl2.reduce();

// compute result
num = rnll.numerator * rnl2.numerator;
denom = rnll.dencminator ¥ rnl12.denominator;
rnl.setrational{num, denom);
return rnl;

} /* end mult */

The method divide simply multiplies by a reciprocal.

Rational Rational::divide(Rational r)
{ 2

Rationai rnl;

// Compute the reciprocal of r
rnl.setrational(r.denominator, r.numerator);

/] Multiply by the reciprocal
return mult(rnl);

} .

. The method equal reduces both rationals to lowest terms and then checks for
equality of both numerators and denominators. :

int Rational::equal(Rational r)
{
reduce();
. r.reduce();
if (numerator == r.numerator &
denominator == r.dencrinator)
return TRUE;
else .
return FALSE:
} /¥ end equal */

- Sec. 1.4 Classes in C++ 71

To implement the method print we first must decide on a format for the out; ut. A
reasonable format might be to print the numerator followed by a siash followed by the
denominator. We adopt this fo mat in the routine below:

void Rational::print(void)

cout << numerator << "/" << denominator << endl;
} /% end print */

This utilizes the C+ + 1/0 facilities of the header file iostream.h. cout is an output
Stream and the operator << is used to send data values to the output.

Overioading

While we have a routine for adding two rational numbers, we cannot vet add a
rational r and an integer i without first converling the integer (o a rational using the call
setrational(i, 1).

Fortunately, C++ allows function names to be overloaded. That is. the same
function name can apply to different functions if their parameters are of different tvpes.

Specifically, we can define another method add in the class Rational by including the
line

Rational add(long);

in the public section. There are now two methods named add: one applied to Rutionals
and one applied to integers. Implementation of the new method is straightforward:

Rational Rational::add(long 1)

{
Rational r;
r.setrational(i, 1);
return add(r):

}

The implementation is as follows: First. form a new rational out of the integer using
setrational, then call the existing add routine on rationals to add r to the rational number
of the current object.

IFiis an integer, the call rradd(i) is a call to the second add method to add an
integer to the rational »r. If ris a rational, the call rradd(r) is a call 1o the original add
method to add a rational to - :

Inheritance

However, this technique for adding an integer is not entirely satisfactory. Un-
der the method we have presented. the rationul number of the current object is the first

12 * Introduction to Data Structures Chap. 1

‘operand, so we can implement the concept r+i. However, we cannot implement i+7
equally directly. For addition, this is not a real problem since r+i equals i+ r because
of the commutative law. But consider the case of division, which is not commutative.
We can write a method Rational divide(int) to compute #/i, but how do we compute i//?

Of course. we could write a separate routine that is not part of a class. with two
parameters. as follows:

Razienal divide(long i, Rational r)

{
Rational rr;
rr.setrational (i, 1);
return rr.divide(r);
}

However. this makes the division operator nonsymmetrical and breaks the concept of
class operations.

Instead, we can note that integers are a form of rationals. We can therefore rep-
resent every integer by a rational. We do this by defining a new class nteger which
inherits the members of the class Rarional. In this new class, we wuat to make sure
that 'the denominator is always 1, so we redetine the method serrarional. In fact. we
define two versions of setrattonal.

Here is the definition of the new class:

class Integer:public Rational {

public:)
void setrational(long, long);
~21d setrational(leng);

H
The class Rational is called the bese class of the class Infeger.

However. in order for sefrational to access the Kational members numerator and
denominator, those members cannot have been defined as private. A private member
can only be accessed by the methods of the class itself, not even by the methods of
an inherited class. To allow Rarional to serve as a base class for Jareger and give In-
teger access to its members, yet to keep those members inaccessible from the rest of
the program, the members must be defined as protected rather than private. The new
definition of Rational would then be

class Ratignal {
protected:
long numerator;
long denominator;
void reduce/void);
public:
}.

)

Sec. 1.4 Classes in C++ 4 73

Let us now implement the two methods named setrational in the definition of
Integer. The first setrational is included to override the routine setrational in the class

Rational so that a noninteger rational is not accidentally assigned 10 an object of type
Integer. It is implemented as follows:

void Integer::setrational(long num, long denom)

{
if(denom != 1)
error("ERROR: non-integer assigned to Integer variable");
numerator = num;
denominator = 1;
}

The more usual version of Integer::setrational, with one parameter, is as follows:

void Integer::setrational(long num)
[.

numerator = num;

denominator = 1;

Now if ris a Rational and i is an Integer, then any of the following calls are valid:

r.add(i)
i.add(r)
r.divide(i)
i.divide(r)

The methods add and divide. defined for Rational. are inherited by Integer and
can be invoked for an Integer variable,

Note that the definition of the class Integer begins with the line
class Integer:public Rational {

The indication public in this line specifies that Integer has access to the protected and
public members of Rational, and they become, in turn, protected and public members of
Integey, However, if Rational were a protected base class (that s, protected appeared
instead of public in the opening line of the /nreger definition), the public members
of Rarional would become protected members of Integer. Similarly, if Rational were a

private base class, the public and protected members of Rational would become private
members of Integer.

Constructors

A'constructor is a special method of a class that is invoked whenever an object
of that class is created. A constructor always is named with the same name as the class .

74 Introduction to Data Structures Chap. 1

itself. In our example above, we used the method setrational to initialize a Rational
object. We could have used a constructor instead. ;

¥ For example, suppose that we include in the class definition of Rational the fol-
lowing three members, all public and all named Rational. -

Rational(void);
Rational(long);
Rational(long, long);

They are implemented as follows:

Rational::Rational(void)

{
// assume the rational number is 0
numerator = 0;
denominator = 1;
})
Rational::Rational(long i)
{
numerator = i;
denominator = 1;
} j
Rational::Rational(long num, long denom)
{
numerator = num;
denominator = denom;
}

Then when we declare an object to be a Rational. the appropriate constructor is
invoked. The declaration

Rational r;

automatically initializes r to the rational zero (0/1) since that is what the constructor
Rational does with no parameters. The declaration

Rational r(3);

sets r to the rational 3/1, since it invokes the sccond version of the constructor. Finally.
the declaration

Rational r(2,5);
sets r to the rational 2/5, invoking the third version of Rational, with two parameters.

Sec. 1.4 Classes in C++ 75

The operator wew in C+ + applied to a type designator, allocates a new object of

the given tvpe and returns a pointer to it. When new is called. the constructor is also
invoked automatically. Thus the statement

Rational *p = new Rational; -

declares a pointer variable p. allocates a new object of type Rational. initializes it to 0-
(since that is what the constructor with no arguments does), and sets p to point to the
object.

The statement

Rational *p = new Rational(2,5):

Sets p to point to a newly allocated Rational object with value 2/5.

We can also use the constructor in o statement such as

r = Rational(7);

which sets r to the rational number 7/1.

EXERCISES

141, Write a method nevare for the class Rational that returns the negative of a rational num-
ber.

L4.2. Write a method subiract for the class Rational that rewrns the result of subtracting one
rativnal number from another. ’

1.4.3. Define a ciass String that represents a string by a length and a pointer to a siring of

characters. .

(a) Write a constructor for String to allocate appropriate storage for it and to initialize
itto a given C string. To allocate storage for an array of characters of length N, use
the C++ operation

new char[N]

(b) Write a constructor for String to allocate storage of a given size for the string but
not to initialize its characters.

{e) Write u method concat to concatenate one String with another.

L44. Rewrite the routines of this section to use the constructors Rational rather than the
method serrational.
76

Introduction to Data Structures Chap. 1

The Stack

One of the most useful concepts in computer science is that of the stack. In this chapter
we shall examine this deceptively simple data structure and see why it plays such a
preminent role in the areas of programming and programming languages. We, shall
define the abstract concept of a stack and show how that concept can be made into a
concrete and valuable tool in problem solving.

/

.1 DEFINITION AND EXAMPLES

A stack is an ordered collection of items into which new items may be inserted and
from which items may be deleted at one end, called the top of the stack. We can picture
a stack as in Figure 2.1.1.]

Unlike that of the array, the definition of the stack provides for the insertion and
deletion of items, so that a'stack is a dynamic, constantly changing object. The question
therefore arises, how ‘does a stack change? The definition specifies that a single end
of the stack is designated as the stack top. New items may be put on top of the stack
(in which case the top of the stack moves upward to correspond to the new highest
element), or items which are at the top of the stack may be removed (in which case the
top of the stack moves downward to correspond to the new hi ghest element). To answer

- the question, which way is up? we must decide which end of the stack is designated
as its top—that is, at which end items are added or deleted. By drawing Figure 2.1.1
so that F is physically higher on the page than all the other items in the stack. we
imply that F is the current top element of the stack. If any new items are added to the
stack.'they are-placed on top of F, and if any items are deleted, F isthe first to be deleted.

77

Lmﬁbiﬁ‘n

Figure 2.1.1 Stack containing stack
terms.

This is also indicated by the vertical lines that extend past the items of the stack in the
direction of the stack top. ;

Figure 2.1.2 is a motion picture of a stack as it expands and shrinks with the
passage of time. Figure 2.1.2 a shows the stack as it exists at the time of the snapshot of
Figure 2.1.1. In Figure 2.1.2 b, item G is added to the stack. According to the definition,
there is only one place on the stack where it can be placed—on the top. The top element
on the stack is now G. As the motion picture progresses through frames ¢, d, and e, items
7 I and J are successively added onto the stack. Notice that the last item inserted (in
wils case /) .. at the top of the stack. Beginning with frame f, however, the stack begins
to shrink, as first J, then I, H, G, and F are successively removed. At each point, the
top element is removed, since a deletion can be made only from the top. Item G could
not be removed from the stack before items J, I, and H were gone. This illustrates the
most important attribute of a stack, that the last element inserted into a stack is the first
element deleted. Thus J is deleted before / because J was inserted after /. For this reason
a stack is sometimes called a last-in, first-out (or LIFO) list.

Between frames j and k the stack has stopped shrinking and begins to expand
again as item K is added. However, this expansion is short-lived, as the stack then
shrinks to only three items in frame n.

Note that there is no way to distinguish between frame a and frame i by looking
at the stack’s state at the two instances. In both cases the stack contains the identical
items in the same order and has the same stack top. No record is kept on the stack of
the fact that four items had been pushed and popped in the meantime. Similarly, there
is no way to distinguish between frames d and f, or jand L. If a record is needed of the
intermediate items having been on the stack, that record must be kept elsewhere; it does
not exist within the stack itself, .

In fact, we have actually taken an extended view of what is really observed in a
stack. The true picture of a stack is given by a view from the top looking down, rather
than from a side looking in. Thus, in Figure 2.1.2, there is no perceptible difference
between frames h and o. In each case the. element at the top is G. Although the stack
at frame h and the stack at frame o are not equal, the only way to det~rmine this is
to remove all the elements on both stacks and compare them individually. Although
we have been'looking at cross sections of stacks to make our understanding clearer, it

should be noted that this is an added liberty, and there is no real provision for taking
such a picture.

The Stack Chap. 2
78

‘yoejs e jo aamaid uolow Z'L°Z aunbyy

L dO)

© W w o) 0] 0] W) (3) w (3) () ©) @ (e)
% 2 v v Vv 2 4 Vv v Z Vv 7 v 2 [Z
q]] g] q g g q [} I g]] g
) > 5] > 5 5])) %) SER R 5] R)]
p) a 7] a a a [7] a a a a a 7] a
E] E] 7 |3] E] 7 7 7 7 3 ;

v 4 e[4 Fi 4 4 4 E] 4 4

Dt D D) G}) 0 G}
H |~ H H H H
7 |« 1]
T

79

Primitive Operations

The two changes which can be made to a stack are given special names. When
an item is added to a stack, it is pushed onto the stack, and when an item is removed, it
is popped from the stack. Given a stack s, and an item i, performing the operation push
(s, i) adds the item i to the top of stack s. Similarly. the operation pop(s) removes the
top element and returns it as a function value. Thus the assignment operation

i = pop(s);

removes the element at the top of s and assigns its value to i.
For example, if s is the stack of Figure 2.1.2, we performed the operation push

(s, G) in going from frame a to frame b. We then performed, in turn, the following
operations:

push (s,H); (frame (c))
pysh (s,I); (frame (d))
push (s,71); (frame (e))

pop (8); (frame (f))
pop (8); (frame (g))
pop (s); (frame (h))
pop (s); (frame (i))
pop (s); (frame (3))
push (s,K); (frame (k))
pop (s); (frame (1))
pop (s); (frame (m))
pop (s); (frame (n))

push (s,8); (frame (0))

Because of the push operation which adds elemems to a stack, a stack is some-
times called a pushdown list.

There is no upper limit on the number of items that may be kept in a stack, since
the definition does not specify how many items are allowed in the collection. Pushing
another item onto a stack merely produces a larger collection of items. However, if a
stack contains a single item and the stack is popped, the resulting stack contains no
items and is called the empty stack. Although the push operation is applicable to any
stack, the pop operation cannot be applied to the empty stack because such a stack has
no elements to pop. Therefore, before applying the pop operator to a stack, we must
ensyre that the stack is not empty. The operation empry(s) determines whether or not a
stack s is empty. If the stack is empty, empry(s) returns the value TRUE; otherwise it
returns the value FALSE.

Another operation that can be performed on a stack is to determine what the top
item on a stack is without removing it. This operation is written stacktop(s) and returns
the top element of stack s. The operation stacktop(s) is not really a new operation, since
it can be decomposed into a pop and a push.

i = stacktop(s);

b : ‘ The Stack Chap. 2

is equivalent to

i = pop(s);
push (s,7);

Like the operation pop, stacktop is not defined for an empty stack. The result of an illegal
attempt to pop or-access an item from an empty stack is culledd underflow. Underflow
can be avoided by ensuring that empty(s) is false before attempting the operation pop(s)
or stacktop(s). T e

Example

Now that we have defined a stack and have indicated the operations that can be
performed on it, let us see how we may use the stack in problem solving. Consider a
mathematical expression that includes several sets of nested parentheses; for example,

T-(X* X+ /T-3)+Y/@-2.5)

We want to ensure that the parentheses are nested correctly; that is, we want to check
that

1. There are an equal number of right and left parentheses.
2. Every right parenthesis is preceded by a matching left parenthesis.

Expressions such as
((A+B) - or A+ B(

violate condition 1, and expressions such as

JA + B(—C or (A+B)—(C+D
violate condition 2.

To solve this problem, think of each left parenthesis as opening a scope and each
right parenthesis as closing a scope. The nesting depth at a particular point in an ex-
pression is the number of scopes that have been opened but not yet closed at that point.
This is the same as the number of left parentheses encountered whose matching right
parentheses have not yet been encountered. Let us define the parenthesis count at a
particular point in an expression as the number of left parentheses minus the number
of right parentheses that have been encountered in scanning the expression from its left
end up to that particular point, If the parenthesis count is nonnegative, it is the same as

the nesting depth. The two conditions that must hold if the parentheses in an expression
form an admissible pattern are as follows:

L. The parenthesis count at the end of the expression is 0. This implies that no scopes
have been left open or that exactly as many right parentheses as left parentheses
have been found. ‘ g

2. The parenthesis count at each point in the expression is nonnegative. This implies
that no right parenthesis is encountered for which a matching left parenthesis had
not previously been encountered.

Sec. 2.1 Definition and Examples 81

(A+B)) -
11110-1-1
Figure 2.1.3 Parenthesis count at various points of sirings.

In Figure 2.1.3 the count at each point in each of the previous five strings is given
directly bélow that point. Since only the first string meets the foregoing two conditions,
it is the only one among the five with a correct parentheses pattern. 5

Let us now change the problem slightly and assume that-three different types
of scope delimiters exist. These types are indicated by parentheses ((and)). brackets

(Iand]), and braces ({ and }). A scope ender must be of the same type as its scope opener.
Thus, strings such as

(A + B] [(A + B]),{A — (B)}

are illegal. :
It is necessary to keep track of not only how many scopes have been opened but
also of their types. This information is needed because when a scope ender is encoun-
tered, we must know the symbol with which the scope was opened to ensure that it is
being closed properly.

A stack may be used to keep track of the types of scopes encountered. Whenever
a scope opener is encountered, it is pushed onto the stack. Whenever a scope ender is
encountered, the stack is examined. If the stack is empty, the scope ender does not have
amatching opener and the string is therefore invalid. If, however, the stack is nonempty,
we pop the stack and check whether the popped item corresponds to the scope ender.
If a match occurs, we continue. If it does not, the string is invalid. When the end of the
string is reached, the stack must be empty; otherwise one or more scopes have been
opened which have not been closed, and the string is invalid. The algorithm for this
procedure follows. Figure 2.1.4 shows the state of the stack after reading in parts of the
string{x +(y=[a+ b *c~ [+ e) }h - (= (k- [I - n])).

valid = true; /* assume the string is valid #/.
= the empty stack;
while (we have not read the entire string) {
read the next symbol (symb) of the string;
f (symb == "(* || symb == '[' || symb == ")
push(s, symb) ;

-] The Stack Chap. 2

=
((
{ { {
[(- {x+(... (x+(y-[...
> (
([
1 NS W i o {
esly=lasbl.... (x+ly{asb))... x+(y-[asbec-1(...
(
{
: (
(
 xe-tasbec-l@rall.. (xsly-(asbhec=l(d+e) V-G~ Kk-I...

(
(x+(y-(a+b)ec=1(d+0) 1 }n=(=(k=[I=n]))... (x+(y~la+))ec~[(d+e)]}Nn=(j~te=[/=n]

Figure 2.1.4 Parenthesis stack at various stages of processing.

Sec. 2.1 Definition and Examples 83

if (symb == ')' || symb == ')" || symb ==
if (empty(s))
valid = false;
else {
= pop(s);
if (i is not the matching opener of symb)
valid = false;
} /* end else */
} /* end while */
if (lempty(s))
valid = false;

if (valid)

printf("%s", "the stnng is valid");
else

printf("%s", "the string is invalid");

Let us see why the solution to this problem calls for the use of 4 stack. The last
scope to-be opened must be the first to be closed. This is simulated by a stack in which
the last element arriving is the first to leave. Each item on the stuck represents a scope
that has been opened but that has not yet been closed. Pushing an item onto’the stack
corresponds to opening a scope, and popping an item from the stack corresponds to
closin: a scope, leaving one less scope open.

Notice the correspondence between the number of elements on the stack in this
example and the parenthesis count in the previous example. When the stack is empty
(parenthesis count equals 0) and a scope ender is encountered, an attempt is being made
to close a scope which has never been opened, so that the parenthesis pattern is invalid.
In the first example, this is indicated by a negative parenthesis count, and in the second
example by an inability to pop the stack. The reason that a simple parenthesis count
is inadequate for the second éxample is that we must keep track of the actual scope
openers themselves. This can be done by the use of a stack. Notice also that at any
point, we examine only the element at the top of the stack. The particular configuration
of parentheses below the top element is irrelevant while examining this top element. It
is only after the top element has been popped that we concern ourselves with subsequent
elements in a stack.

In general a stack can be used in any situation that calls for a last-m first-out
discipline or that displays a nesting pattern. We shall see more examples of the use of
stacks in the remaining sections of this chapter and, indeed, throughout the text.

~The Stack as an Abstract Data Type

The representation of a stack as-an abstract data type is straightforward. We use
elrype to denote the type of the stack element and parameterize the stack type with
eltype.

abstract typedef <<eltype>> STACK (eltype);

84 The Stack Ch:

abstract empty(s)
STACK(eltype) s;
postcondition empty == (len(s) == 0);

abstract eltype pop(s)

STACK(eTtype) s; :
precondition empty(s) == FALSE:
postcondition pop == first(s');
s == sub(s', 1, len(s') - 1);
abstract push(s, elt) % ANIATE DY
STACK(eltype) s;
eitype elt;
postcondition s ==<elt>+ s'; A
EXERCISES

2.1.1. Use the operations push. pop- stacktop. and empiy to construct operzmom which do each
of the following.

(a)

(b)
(c)

(d)

(e)
(N

(@)

Set i to the secand element from the top of lhe stack, leaving the stack without its
top two elements.
Set i to the second element from the top of the stack. leaving the Stack unchanged.

Given an integer n, set i to the nth element from the top ol"thc stack. Ieavmu the
stack without its top n elements.

Given an integer n. set i to the nth element from the top of the stack. leaving the
stack unchanged.

Set i to the bottom clement of the stack. Ie.n ing the stack emptv

Set i to the bottom clement of the stack. leaving the stack unchanged. (Hini: Use
another. auxiliary stack.)

Set i to the third element from the bottom of the sla(.l\

2.1.2. Simulate the action of the algorithm in this section for each of the following strings by
showing the contents of the stack at each point.

(a)
(b
(¢)
(d)
(e)

(A + B)

{IA + Bl - |(C — D))

A+ B)-{C+D}~-|F+G)
(CHy = {(1J + KD}

(((A)))

2.1.3. Write an algorithm to determine it 2n input character slrlng is of the form

X Gy

where v is a string consisting of the letters *A” and *B°, and where v is the reverse of
x (thatis, if x = "ABABBA.” y must equal "TABBABA™). At euch point you may read
only the next character of the string.

2.1.4. - Write an algorithm to determine it an input character string is of the form

Etxercises

xDHDcD...D:

85

where each string a, b, . . ., z is of the form of the string defined in Exercise 2.1.3. (Thus
a string is in the proper form if it consists of any number of such strings separated by
the character ‘D".) At each point you may read only the next character of the string.

2.1.5. Design an algorithm that does not use a stack to read a sequence of push and pop opera-
tions, and determine whether or not underflow occurs dn some pop operation. Implement
the algorithm as a C program.

2.1.6. What set of conditions are necessary and sufficient for a sequence of push and pop op-
erations on a single stack (initially empty) to leave the stack empty and not cause un-
derflow? What set of conditions are necessary for such a sequence to leave a nonempty
stack unchanged?

2.2 REPRESENTING STACKS IN C

Before programming a problem solution that uses a stack. we must decide how to rep-
resent a stack using the data structures that exist in our programming language. As we
shall see, there are several ways to represent a stack in C. We now consider the simplest
of these. Throughout this text, you will be introduced to other possible representations.
Each of them, however, is merely an implementation of the concept introduced in Sec-
tion 2.1. Each has advantages and disadvantages in terms of how close it comes to
mirroring the abstract concept of a stack and how much effort must be made by the
programmer and the computer in using it.

A stack is an ordered collection of items, and C al ready contains a data type that is
an ordered collection of items: the array. Whenevér a problem solution calls for the use
of a stack, therefore, it is tempting to begin a program by declaring a variable stack as
an array. However, a stack and an array arc two entirely different things. The number of
elements in an array is fixed and is assigned by the declaration for the array. In general,
the user cannot change this number. A stack, on the other hand. is fundamentally a
dynamic object whose size is constantly changing as items are popped and pushed.

However, although an array cannot be a stack. it can be the home of a stack. That
is, an aray can be declared large enough for the maximum size of the stack. During the
course of program execution, the stack can grow and shrink within the space reserver!
for it. Onhe end of the array is the fixed bottom of the stack, while the top of the stack
constantly shifts as items are popped and pushed. Thus, another field is needed that, at
each point during program execution, keeps track of the current position of the top of
the stack. .

A stack in C may therefore be declared as a structure containing two objects:
an array to hold the elements of the stack, and an integer to indicate the position of
the current stack top within the array. This may be done for a stack of integers by the
declarations

#define STACKSIZE 100
struct stack {

int top;

int items[STACKSIZE];
h .

86 The Stack. Chap. 2

Once this has been done. an actual stack s may be declared by

struct stack s;

Here, we assume that the elements of the stack s contained in the array s.items are
integers and that the stack will at no time contain more than STACKSIZE integers.
In this example STACKSIZE is set to 100 to indicate that the stack can contain 100
elements (items([0] through items[99)).

There is, of course, no rcason to restrict a stack to contain only integers; items
could just as easily -have been declared as floar items|STACKSIZE] or char
irems|STACKSIZE), or whatever other type we might wish to give to the elements
of the stack. In fact, should the need arise, a stack can contain objects of different types
by using C unions. Thus

#define STACKSIZE 100
#define INT 1
#define FLOAT 2
#define STRING 3
struct stackelement {

int etype; /* etype equals INT, FLOAT, or STRING ¢/

/* depending on the type of the uf
/¥ corresponding element. ¢/
union {
int ival;
float fval;
char *pval; /* pointer to a string */
} element; -
Y
struct stack {
int top;
struct stackelement items[STACKSIZE];

b

defines a stack whose items may be either integers, floating-point numbers, or strings,
depending on the value of the corresponding etype. Given a stack s declared by

struct stack s;

we could print the top element of the stack as follows:
struct stackelement se;

se = s.items[s.top];

switch (se.etype) {
case INTGR : printf("% d\n", se.ival);
case FLT : printf("% f\n", se.fval);
case STRING : printf("% s\n", se.pval);

} /*end switch */

Sec. 2.2 Representing Stacks in C - 87

For simplicity. in the remainder of this section we assume that a stack is declared
to have only homogeneous elements (so that unions are not necessary). The identifier rop
must always be declared as an integer, since its value represents the position within the
array irems of the topmost stack element, Therefore. if the value of s.r0p is 4. there are
five elements on the stack: s.itemsl|0). s.items[1], s.items(2). s.items(3]. and s.irems|4].
When the stack is popped. the value of s.top is changed to 3 to indicate that there are)
now only four elements on the stack and that . items|3] is the top element. On the other
hand. if a new object is pushed onto the stack. the value of s.top must be increased by
1 to 5 and the new object inserted into s. irems|5].

The empty stack contains no elements and can therefore be indicated by top
equalling —1. To initialize a stack s to the empty state. we may initially execute
s.iop = —1..

To determine, during the course of execution. whether or not a stack is empty the
condition s.7op = = —1 may be tested in an if statement as follows:

if (s.top == -1)

/* stack is empty */
else : .
/* stack is not empty %/

This test ci)n'csponds to the operation empryv(s) that was introduced in Section 2.1. Al-
ternatively, we may write a function that returns TRUE if the stack is empty and FALSE
if it is not empty, as toilows:

int empty(struct stack *ps)
1
if (ps->top == -1)
return(TRUE) :
else
return(FALSE);
} /% end empty */

Once this function exists, a test for the cmpty stack is implemented by the statement
if (empty (&s))
/* stack is empty */

else
/* stack is not empty */

Note the difference between the syntax of the call to empty in the algorithm of
Section 2.1 and in the program segment here. In the algorithm, s represented a stack
and the call to empry was expressed as

empty(s)

In this section, we are concerned with the actual implementation of the stack and
its"operations. Since parameters in C are passed by value, the only way to modify the

88 . The Stack Chap. 2

argument passed 1o a function is to pass the address of the argument rather than the
argument itself. Further, the original definition of C (by Kernighan—Ritchie) and many
older C compilers do not allow a structure te be passed as an argument even if its value
remains unchanged. (Although this restriction has been omitted in ANSI C, it is gener-
ally more efficient to pass a pointer when the structure is large.) Thus in functions such
as pop and push (which modify their structure arguments), as well as empry (which does
not), we adopt the convention that we pass the address of the stack structure, rather than
the stack itself. g

You may wonder why we bother to define the function empty when we could just
as easily write if s.top = = —1 each time that we want to test for the.empty condition.
The answer is that we wish to make our programs more comprehensible and to make
the use of a stack independent of its implementation. Once we understand the stack
concept, the phrase “empry(&s)” is more meaningful than the phrase “s.top = = ~1."
If we should later introduce a better implementation of a stack. so that “siop = = —=1"
becomes meaningless, we would have to change every reference 1o the field identifier
s.top throughout the entire program. On the other hand, the phrase “empry(&sj” would
still retain its meaning, since it is an inherent attribute of the stack concept rather than
of an implementation of that concept. All that would be required to revise a program
to accommodate a new implementation of the stack would be a possible revision of the
declaration of the structure stack in the main program and the rewriting of the function
empry. (It is also possible that the form of the call to empry would have to be modified
so that it does not use an address.) '

Aggregating the set of implementation-dependent trouble spots into small, easily
identifiable units is an important method of making a program more understandable and
modifiable. This concept is known as modularization, in which individual functions are
isolated into low-level modules whose properties are easily verifiable. These low-level
modules can then be used by more complex routines, which do not have to concern
themselves with the details of the low-level modules but only with their function. The
complex routines may themselves then be viewed as modules by still higher-level rou-
tines that use them indeperndently of their internal details.

A programmer should always be concerned with the readability of the code he or
she produces. A small amount of attention to clarity will save a large amount of time
in debugging. Lurge- and medium-sized programs will almost never be correct the first
time they are run. If precautions are taken at the time that a program is written to ensure
that it is easily modifiable and comprehensible, the total time needed to get the program
to run correctly is reduced sharply. For example, the if statement in the empry function
could be replaced by the shorter, more efficient statement

return (ps->top == -1);
This statement is precisely equivalent to the longer statement

if (ps->top == -1)
return(TRUE) ;
else return(FALSE);

Sec.2.2 Representing Stacks in C T 89

90

This is because the value of the exXpression ps— >top == —1is TRUE if and only if the
condition ps— >top == —| is TRUE. However, someone who reads a program will
probably be much more comfortable reading the if statement. Often you will find that
if you use “tricks” of the language in writing programs, you will be unable to decipher
your own programs after putting them aside for a day or two.

Although it is true that the C programmer is often concerned with economy of
code, it is also important to consider the time that will no doubt be spent in debugging.
The mature professional (whether in C or other language) is constantly concerned with
the proper balunce between code economy and code clarity.

Implementing the pop Operation

The possibility of underflow must be considered in implementing the pop opera-
tion, since the user may inadvertently attempt to Pop an element from an empty stack.
Of course. such an attempt is iliegal and should be avoided. Howevcr. if such an attempt
should be made the user should be informed of the underflow condition. We therefore
introduce a function pap that performs the following three actions:

1. If the stack is empty. print a warning message and halt execution.
2. Remove the top element from the stack. ~
3. Return this element to the calling program.

We assume that the stack consists of integers. so that the pop operation cun be imple-
mented as a function. This would also be the case if the stack consisted of some other
type of simple variable. However, if a stack consists of a more complex structure (for
example. a structure or a union), the pop operation would e¢ither be implemented as
returning a pointer to a data element of the proper type (rather than the data element
itself). or the operation would be implemented with the popped value as a parameter
(in which case the address of the parameter would be passed rather than the parameter,
so that the pop function could modify the actual argument).

int pop{struct stack *ps)

if (empty(ps)) {
printf("%", "stack underflow");
exit(l);
b /% end if £/
return(ps->items[ps->top--]1);

} /% end pop #/

.

Note that ps is already a pointer to a structure of type stack: therefore. the address
operator “"&™ is not used in calling empry. In all applications in C, one must always
distinguish betweén pointers and actual data objects.

-t us look at the pop function more closely. If the stack is not empty, the top
element of the stack is retained as the returned value. This element is then removed
from the stack by the expression ps —> top—~. Assume that when pop is called,

The Stack Chap. 2

ps —> top equals 87, that is, there are 88 items on the stack. The value of ps = items[87)
is returned, and the value of ps —> rop is changed to 86. Note that ps —> items[87]
still retains its old value; the array ps > ifems remains unchanged by the call to pop.
However, the stack is modified, since it now contains only 87 elements rather than 88.
Recall that an array and a stack are two different objects. The array only provides a
home for the stack. The stack itself contains only those elements between the zeroth
element of the array and the ropih element. Thus reducing the value of ps —> top by 1
effectively removes an element from the stack. This is true despite the fact that ps —>
items[87] retains its old value.
To use the pop function, the programmer can declare inf x and write

x = pop (&s);

x then contains tne value popped from the stack. If the intent of the pop operation is not
to retrieve the element on the top of the stack but only to remove it frum the stack, the
value of x will not be used again in the program.

Of course, the programmer should ensure that the stack is not empty when the

pop operation is called. If the programmer is unsure of the state of the stack, its status
may be determined by coding

if (tempty(&s))

x = pop (&3);
else

/* take remedial action */

If the programmer unwittingly does call pop with an empty stack, the function
prints the error message stack underflow and execution halts. Although this is an un-
fortunate state of affairs, it is far better than what would occur had the if statement in
the pop routine been omitted entirely. In that case, the value of s.top would be —i and
an attempt would be made to access the nonexistent element s.items[—1].

A programmer should always provide for the almost certain possibility of error.
This can be done by including diagnostics that are meaningful in the context of the prob-
lem. By doing so, if and when an error does occur, the programmer is able to pinpoint
its source and take corrective action immediately.

Testing for Exceptional Conditions

Within the context of a given problem, it may rot be necessary to halt execu-
tion immediately upon the detection of underflow. Instead, it might be more desirable
for the pop routine to signal the calling: program that an underflow has occurred. The
calling routine, upon detecting this signal, can take corrective action. Let us call the pro-

cedure that peps the stack and returns an indication whether underflow has occurred,

popandtesr:

Sec. 2.2 Representing Stacks in C ‘ 91

void popandtest(struct stack *ps, int *px, int *pund)
{

if (empty(ps)) {
*pund = TRUE;
return;
} /% end if ¥/
*pund = FALSE;
*px = ps->items[ps->top--];
return;
} /% end popandtest */

In the calling program the programmer would write

popandtest(&s, &x, &und):
if (und)

/* take corrective action */
else

/* use value of x #/

Implementing the Push Operation

Let us now examine the push operation. It seems that this operation should be
yuite easy to implement using the array representation of a stack. A first attempt at a
push procedure might be the following:

void push(struct stack *ps, int x)

ps->items[++(ps-. top)] = x;
return;
} /* end push =/

This routine makes room for the item x to be pushed onlo the stack by incrementing
s.top by 1, and then inserts x into the Array . items.

The routine directly implements the push operation introduced in Section 2.1.
Yet. as it stands. it is quite incorrect. It allows a subtle error to creep in, caused by using
the array representation of the stack. Recall that a stack is a dynamic structure that is
constantly allowed o grow and shrink and thus change its size. An array. on the other
hand. is a fixed object of predeteriined size. Thus, it is quite conceivable that a stack
may outgrow the array that was set aside to contain it. This occurs when the array is
full, that is, when the stack contains as many elements as the array and an altempt is
made 1o push yet another element onto the stack. The result of such an attempt is called
an overflow.

Assume that the array s.items is full and that the C push routine is called. Re-
member that the first array position is 0 and the arbitrary. size (STACKSIZE) chosen
for the array s.items is 100, The full array is then indicated by the condition slop ==
99, so that position 99 (the 100th element of the array) is the current top of the stack.

” The Stack Chap. 2

When push is called. s.rop is increased to 100 and an attempt is made to insert x into
s.items] 100]. Of course. the upper bound of s.items is 99, so that this attempt at insertion
results in an unpredictable error, depending on the contents of the memory location
following the last array position. An error message may be produced that is unlikely to
relate to the cause of the error.

The push procedure must therefore be revised so that it reads as follows:

void push(struct stack *ps, int x)
{
if (ps->top == STACKSIZE-1) {
“printf("%s"; “stack overflow");
exit(1);

else
os->items [++(ps->top)] =
return;
} /* end push */

Here, we check whether the array is full before attempting to push another element onto
the stack. The array is full if ps => top == stacksize — 1.

You should again note that if and when overflow is detected in push. execution
halts immediately after an error message is printed. This action, as in the case of pop,
may not be the most desirable. It might, in some cases. make more sense for the calling
routine to invoke the push operation with the instructions

pushandtest (&s, x, & overflow);
if (overflow)

/* overflow has been detected, x was not */

/* pushed on stack. take remedial action. *
else

/* x was successfully pushed on the stack */
i continue processing. */

This allows the calling program to proceed after the call to pushandrest, whether or not

overflow was detected. The subroutine pushandtrest is left as an exercise for the reader.
' Although the overflow and underflow conditions are treated similarly in push and
pop, there is a fundamental difference between them. Underflow indicates that the pop
operation cannot be performed on the stack and may indicate an error in the algorithm or
the data. No other implementation or representation of the stack will cure the underflow
condition. Rather, the entire problem must be rethought. (Of course, an underflow might
occur as a signal for ending one process and beginning another But in such a case
popandrest rather than pop should be used.) !

Overflow. however, is not a condition that is applicable to a stack as an abstract
data structure. Abstractly. it is always possible to push an element onto a stack. A stack
is just an ordered set, and there is no limit to the number of elements that such a set can
contain. The possibility of overflow is introduced when a stack is implemented by an
array with only a finite number of elements, thereby prohibiting the &rowth of the stack -

Sec. 2.2 Representing Stacks in C 93

beyond that number. It may very well be that the algorithm that the programmer used
is correct, just that the implementation of the algorithm did not anticipate that the stack
would become 5o large. Thus, in some cases an overflow condition can be corrected by
changing the value of the constant STACKSIZE so that the array field items contains
mare eiements. There is no need to change the routines Pop or push, since they refer
to whatever data structure was declared for the type stack in the program declarations.
push also refers to the constant STACKSIZE. rather than to the actual value 100,

However, more often than not, an overflow does indicate an error in the program
that cannot be attributed to a simple lack of space. The program may be in an infinite
loop in which items are constantly being pushed onto the stack and nothing is ever
popped. Thus the stack will outgrow the array bound no matter how high that bound is
set. The programmer should always check that this is not the case before indiscrimi-
nately raising the array bound. Often the maximum stack size can be determined easily
from the program and its inputs, so that if the stack does overflow there is probably
something wrong with the algorithm that the program represents,

Let us now look at our Jast operation on stacks, stacktop(s), which returns the
top element of a stack without removing it from the stack. As noted in the last section,

stackiop is not really a primitive operation because it can be decomposed into the two
operations:

X = pop(s);
push (s,x);

However, this is a rather awkward way to retrieve the top element of a stack. Why not
ignore the decomposition noted above and directly retrieve the proper value? Of course,
a check for the empty stack and underflow must then be explicitly stated, since the test
is no longer handled by a call to pap.

We present a C function stacktop for a stack of integers as follows:

int stacktop(struct stack *ps)

if (empty(ps)) {
printf("%s", “stack underflow");
exit(l);

else
return(ps->items[ps->top]);
} /*end stacktop */
L

\;ou'may wonder why we bother writing a separate routine stacktop when a ref-
erence to s.items[s.rop] would serve Just as well. There are several reasons for this.
First, the foutine stackrop incorporates a test for underfiow, so that no mysterious error
occurs if the stack is empty. Second, it allows the programmer to use a stack without
worrving about its internal makeup. Third. if a different implementation of a stack is
introduced. the programmer need not comb through all the places in the program that re-
fer to s.items{s.10p] 10 make those references compatible with the new implementation.
Only the szackrop routine would need to be changed.

. The Stack Chap. 2
94

EXERCISES

2.2.1. Write C functions that use the routincs presented in this chapter to-implement the oper-
ations of Exercise 2.1.1.

2.2.2. Given a sequence of push and pop operations and an integer representing the size of an
array in which a stack is to be implemented. design an algorithm to determine whether
or not overflow occurs. The algorithm should not use a stack. Implement the algorithm
as a C program. y

2.2.3. Implement the algorithms of Exercises 2.1.3 and 2.1.4 as C programs.

2.2.4. Show how to implement a stack of integers in C by using an array int 5| STACKSIZE],
where $[0] is used 10 contain the index of the top clement of the stack. and where s{ 1]
through s|STACKSIZE — 1] contain the clements on the stack. Write a declaration and
routines pop, push, empiy. popandtest. stacktop. and pushandtest for this implementa-
tion.

2.2.5. Implement a stack in C in which each item on the stack is a varying number of integers.
Choose a C data structure for such a stack and design push and pop routines for it

2.2.6. Consider a language that does not have arrays but does have stacks as a data type. That
is, one can declare ;

stack s;

and the push. pop. popandtest. and stacktop operations are defined. Show how a one-
dimensional array can be implemented by using these operations on twu stacks.

2.2.7. Design a method for keeping two stacks within a single linear array $[spacesize] so that
ncither stack overflows until all of memory is used and an entire stack is never shifted
to a different location within the array. Write C routines pusih1. push2. popl and pop2
to manipulate the two stacks. (Hint: The two stacks grow toward cach other.)

2.2.8. The Bashemin Parking Gurage contains a single lane that holds up te ten cars. Therc is
only a single entrance/exit to the garage at one end of the lane. If a customer arrives to
pick up a car that is not nearest the exit. all cars blocking its path are moved out, the
customer's car is driven out, and the other cars are resiored in the same order that they
were in originally. Write a program that processes a group of input lines. Each input line
contains an A’ for arrival or a *D’ for departure. and a license plate number. Cars are
assumed to arrive and depart in the order specified by the input. The program should print
a message whenever a car arrives or departs. When a car arrives. the message should
specify whether or not there is room for the car in the garage. It there is no room. the car
leaves without entering the garage. When a car departs, the message should include the
number of times that the car was moved out of the garage to allow other cars to depart.

2.3 EXAMPLE: INFIX, POSTFIX, AND PREFIX
-Basic Definitions and Examples

This section examines a major application that illustrates the different types of
stacks and the various operations and functions defined upon them. The example is
also an important topic of computer science in its own right.

Sec. 2.3 Example: Infix, Postfix, and Prefix 9"

Consider the sum of A and B. We think of applying the operator “+" to.the
operands A and B and write the sum as A + B. This particular representation is called

infix. There are two alternate nolations for expressing the sum of A and B using the
symbols A, B, and +. These are

+AB prefix
AB + postfix

The prefixes “pre-,” “post-,” and “jn-* refer 1o the relative position of the oper-
ator with respect to the two operands. In prefix notation the operator precedes the two .
operands, in postfix notation the operator follows the two operands, and in infix notation
the operator is between the two operands. The prefix and postfix notations are not really
as awkward to use as they might at first appear. For example, a C function to return the
sum of the two arguments A and B is invoked by add(A, B). The operator add precedes
the operands A and B.

Let us now consider some additional examples. The evaluation of the expression
A + B = C, as written in standard infix notation, requires knowledge of which of the
two operations, + or *, is to be performed first. In the case of + and * ‘we “know”
that multiplication is to be done before addition (in the absence of parentheses to the
contrary). Thus A + B * C is interpreted as A + (B * C) unless otherwise specified.
We say that multiplication takes precedence over addition, Suppose that we want to
rewrite A + B * C in postfix. Applying the rules of precedence, we first convert the
portigh of the expression that is evaluated first, namely the multiplication. By doing
this conversion in stages we obtain

A+ B=*xQC) parentheses for emphasis
A + (BC %) convert the multiplication
A (BC x) + convert the addition

ABC * + postfix form

The only rules to remember during the conversionprocess are that operations with
highest precedence are converted first and that after a portion of the expression has been
converted to postfix it is to be treated as a single operand. Consider the same example
with the precedence of operators reversed by the deliberate insertion of parentheses.

(A+B)xC infix form

{(AB +) = C convert the addition
(AB +)C convert the multiplication
AB + C=x . postiix form

theses. In going from (A4 + B) * C to (AB+) * C. A and B are the operands and + is the
operator. In going from (AB +)* Cto(AB +)C *, (AB +) and C are the operands and *
is the operator. The rules for converting from infix to postfix are simple, providing that
you knew the order of precedence.

We consider five binary operations: addition, subtraction. multiplication, division,
and exponentiation. The first four are available in C and are denoted by the usual op-

In this example the addition is converted before the multiplication because of the paren-

96 " The Stack Chap. 2

.

erators +, —, *, and /. The fifth, exponentiation, is represented by the operator $. The
value of the expression A $ B is A raised to the B power, so that 3 $ 2 is 9. For these
binary operators the following is the order of precedence (highest to lowest): -

Exponentiation
Multiplication/division
Addition/subtraction

4 When unparenthesized operators of the same precedence are scanned, the order

is assumed to be left to right except in the case of exponentiation, where the order is

assumed to be from right to left. Thus A + B + C means (A + B) + C, whereasA$ B

$ Cmeans A $ (B $ C). By using parentheses we can override the default precedence.

We give the following additional examples of converting from infix to postfix. Be

sure that you understand each of these examples (and can do them on your own) before
proceeding to the remainder of this section.

Infix Postfix
A+B AB +
A+B-C , ' AB +C -
(A+B)*(C-D) AB + CD — * -
A$SB+*C—-D+E/F/(G+H) ABSC*D -EF/GH + /+
(A+B)*xC-D-E)NSF+Q AB+C*DE—-——FG + §
A-B/(C*DSE) ABCDE $ =/ —

The precedence rules for converting an expressmn from infix to prefix are iden-
tical. The only change from postfix conversion is that the operator is placed before the
operands rather than after them. We present the prefix forms of the foregoing expres-
sions. Again, you should attempt to make the transformations on your own,

Infix Prefix
A+B + AB
A+B-C - + ABC

(A+B)*(C-D) * + AB — CD
A$SB+*C-D+E/F/(G+H) +—-*$ABCDI/EF+GH
(A+B)*C-(D-E)$F+G) $ — = + ABC - DE + FG
A-B/(C*DSE) - A/B*CS$DE

Note that the prefix form of a complex expression is not the mirror image of the postfix
form, as can be seen from the second of the foregoing examples, A + B — C."We will
henceforth consider only postfix transformations and leave to the reader as exercises
most of the work involving prefix.

One point immediately obvious about the postﬁx form of an expression is that it
requires no parentheses. Consider the two expressions A + (B * C) ‘and (A + B) = C.
Although the parentheses in one of the two expressions is superfluous [by convention
A+ B*C = A + (B * ()], the parentheses in the second expression are necessary (0
avoid confusion with the first. The postfix forms of these expressions are

Sec. 2.3 Example: Infix, Postfix, and Prefix 97

Infix Postfix
A+ ((Bx*xC) ABC * +
(A+B)*xC . AB+Cx

There are no parentheses in either of the two transformed expressions. The order
of the operators in the postfix expressions determines the actual order of operations in
evaluating the expression, making the use of parentheses unnecessary.

In going from infix to postfix we sacrifice the ability to note. at a glance the
operands associated with a particular operator. We gain, however, an unambiguous form
of the original expression without the use of cumbersome parentheses. In fact, the post-
fix form of the original expression might look simpler were it niot for the fact that it
appears difficult to evaluate. For example, how do we know that if A = 3,B =4, and

.C = 5 in the foregoing examples, then 34 5 * + equals 23 and 3 4 + 5 * equals 357

Evaluating a Postfix Expression

The answer to the foregoing question lies in the development of an algorithm for
evaluatihg expressions in postfix. Each operator in a postfix string refers to the previous
two operands in the string. (Of course, one of these two operands may itself be the result
of applying a previous operator.) Suppose that each time we read an operand we push
it onto a stack. When we reach an operator, its operands will be the top two elements
on the stack. We can then pop these two elements, perform the indicated operation on
them, and push the result on the stack so that it will be available for use as an operand

of the next operator. The following algorithm evaluates an expression in postfix using
this method:

opndstk = the empty stack;
/* scan the input string reading one */
/* element at a time into symb L
while (not end of input) {
symb = next input character:
if (symb is an operand)
push(opndstk, symb);
else {
/* symb is an operator */
opnd?2 = pop(opndstk) ;
opndl = pop(opndstk);
value = result of applying symb to opndl and opnd2;
push(opndstk, value):
= } /*'end else */
} /* end while */
return(pop(opndstk)):

" Let us now consider an example. Suppose that we are asked to evaluate the fol-
lowing postfix expression:

AT 48 TR S < T o 0 0 S 0 T

We show the contents of the stack opndstk and the variables symb, opndl, opnd2, and
value after each successive iteration of the loop. The top of opndstk is to the right.

.

98 r The Stack Chap. 2

symb opndl opnd2 valie opndstk

6 6

2 y 6.2

3 62,3
+ ? 3 5 6.5

- 6 5 1 1

3 6 5 | 1,3

8 6 5 1 1,3.8
2 6 5 1 1,3.8.2
/ 8 2 4 13,4
+ 3 4 o 1,7

B 1 7% 7 7

2 1 7 7 7.2

$ 7 2 49 49
3) 2 49 493

+ 49 3 52 52

Each operand is pushed onto the operand stack as it is encountered. Therefore the
maximum size of the stack is the number of operands that appear in the input expression.
However, in dealing with most postfix expressions the actual size of the stack needed is
less than this theoretical maximum, since an operator removes operands from the stack.
In the previous example the stack neve- contained more than four elements, despite the
fact that eight operands appeared in the postfix expression.

Program to Evaluate a Postfix Expression

There are a number of questions we must consider before we can actually write a.
program to evaluate an expression in postfix notation. A primary consideration, as in all
programs, is to define precisely the form and restrictions, if any, on the input. Usually
the programmer is presented with the form of the input and is required to design a
program to accommodate the given data. On the other hand, we are in the fortunate
position of being able to choose the form of our input. This enables us to construct
a program that is not overburdened with transformation problems that overshadow the
actual intent of the routine. Had we been confronted with data in a form that is awkward
and cumbersome to work with, we could have relegated the transformations to various
functions and used the output of these functions as input to our primary routine. In the
“real world,” recognition and transformation of input is a major concern.

Let us assume in this case that each input line is in the form of a string of digits and
operator symbols. We assume that operands are single nonnegative digits, for example,
0, 1,2, ..., 8, 9. For example, an input line might contain 3 4 5 * + in the first 5
columns followed by an end-of-line character (‘\ n"). We would like to write a program
that reads input lines of this format. as long as there are any remaining, and prints for
each line the original input string and the result of the evaluated expression.

Since the symbols are read as characters, we must find a method to convert the
operand characters to numbers and the operator characters to operations. For example,

we must have a method for converting the character *5* to the number 5 and the char-
acter *+" to the addition operation.

Sec. 2.3 Example: Infix, Postfix, and Prefix 99

The conversijon of a character to an integer can be handled easily in C. If intf x
is a single digit character in C, the expression x — ‘0" yields the numerical vatue of
that digit. To implement the operation corresponding to an operator symbol, we use a
function oper that accepts the character representation of an operator and two operands
as input parameters, and returns the value of the expression obtained by applying the
operator to the two operands. The body of the function will be presented shortly.

The body of the main program might be the following. The constant MAXCOLS
is the maximum number of columns in an input line.

#include <stdio.h>
#include <stdlib.h>
#include <math.hs

#define MAXCOLS 80
#define TRUE 1
#define FALSE 0

doubTe eval(char[]);

double pop(struct stack *);

void push(struct stack *, double);
int empty(struct stack *);

int isdigit(char);

double oper(int, double, double);

void main()

char expr[MAXCOLS]; K
int position = 0;

while((expr(positions+] = getchar()) != "\n")

expr[--position] = '\0';‘.
printf("%s%s", "the original postfix expression is", expr);

printf("\n%f", eval(expr));
} /% end main ¥/

The miain part of the program is, of course, the function eval, which follows. That
function is merely the C implementation of the evaluation algorithm, taking into account
the spgcific environment and format of the input data and calculated outputs. eval calls
on a function isdigit that determines whether or not its argument is an operand. The.
declaration for a stack that appears below is used by the function eval that follows it as
well as by the routines pop and push that are called by eval.

struct stack {

int top; !

double 1items[MAXCOLS]:
¥

The Stack Chap. 2
100)

double eval(char expr(])

{
int ¢, position;
double opndl, opnd2, value;
struct stack opndstk;

opndstk.top = -1;

for (position = 0; (c = exprposition]) != '\0'; position+ +)

if (isdigit(c))
/* operand-- convert the character representation */

7 /* of the digit into double and push it onto A g
L . I the stack . o
push(&opndstk, (dolble) (c-'0"));
else {
7 operator #/

opnd2 = pop(&opndstk);
opndl = pop(&opndstk);
value = oper(c, opndl, opnd2);
push(&opndstk, value);
} /* end else */
return(pop(&opndstk));
} /* end eval ¥/

For completeness we present isdigit and oper. The function isdigit simply checks

if its argument is a digit:
int isdigit(char symb)

return(symb >= '0' && symb <= '9');
} : ’

This function is available as a predefined macro in most C systems.

The function oper checks that its first argument is a valid operator and,

if it is,

determines the results of its operation on the next two arguments. For exponentiation,

we use the function pow(opl, op2) as defined in math.h.

double oper(int 'symb. double opl, double op2)

switch(symb) {
case '+' : return (opl + op2);
case '-' : return (opl - op2);
case '*' : return (opl * op2);
case '/' : return (opl / 0p2);
case '$' : return (pow(opl, op2));
default : printf("%s", "i1legal operation");
: exit(l);
} /% end switch */
} /* end oper */

Sec. 2.3 Example: Infix, Postfix, and Prefix

101

Limitations of the Program

Before we leave the program, we should note some of its deficiencies. Under-
standing what a program cannot do is as importantas knowing what it can do. It should
be obvious that attempting to use a program to solve a problem for which it was not
intended leads to chaos. Worse still is attempting to solve a problem with an incorrect
program, only to have the program produce incorrect results without the slightest trace
of an error message. In these cases the programmer has no indication that the results
are wrong and may therefore make faulty judgments based on those results, For this
reason, it is important for the programmer to understand the limitations of the program.

A major criticism of this program is that it does nothing in terms of error detec-
tion and recovery. If the data on each input line represents a valid postfix expression,
the program works. Suppose, however, that one input line has too many operators or
operands or that they are not in a proper sequence. These problems could come about
as a result of someone innocently using the program on a postfix expression that con-
tains two digit numbers, yielding an excessive number of operands. Or possibly the
user of the program is under the impression that the program handles negative numbers
and that they are to be entered with the minus sign, the same sign that is used to repre-
sent subtraction. These minus signs are treated as subtraction operators, resulting in an
excess number of operators. Depending on the specific type of error, the computer may
take one of several actions (for example, halt execution or print erroneous results),

Suppose that at the final statement of the program, the stack opndstk is not empty,
We get no error messages (because we asked for none), and eval returns a numerical
value for an expression that was probably incorrectly stated in the first place. Suppose
that one of the calls to the pop routine raises the w:1derflow condition. Since we did
not use the popandtest routine to pop elements from the stack, the program halts. This
Seems unreasonable, since faulty data on one line should not prevent the processing of
additional lines. By no means are these the only problems that could arise. As exercises,
you may wish to write programs that accommodate less restrictive inputs and some
others that detect some of the aforementioned errors.

e
v

By
Converting an Expression from Infix to Postfix

We have thus far presented routines to evaluate a postﬁx.!eipression. Although we
have discussed a method for transforming infix to postfix, we have not as yet presented
an algorithm for doing so. It is to this task that we now direct our attention. Once such
an algorithm has been constructed, we will have the capability of reading an infix ex-
pression and evaluating it by first converting it to postfix and then evaluating the postfix
expression.

In our previous discussion we mentioned that expressions within innermost paren-
theses must first be converted to postfix so that they can then be treated as single
operands. In this fashion parentheses can be successively eliminated until the entire
expression is converted. The last pair of parentheses to be opened within a group of
parentheses encloses the first expression within that group to be transformed. This last-
in, first-out behavior should immediately suggest the use of a stack.)

102 ;
The Stack Chap. 2

Consider the two infix expressions A + B * Cand (A + B) * C, and their respective
postfix versions ABC » + and AB + C *. In each case the order of the operands is the
same as the order of the operands in the original infix expressions. In scanning
the first expression, A + B * C. the first operand, A, can be inserted immediately
into the postfix expression. Clearly the + symbol cannot be inserted until after its
second operand, which has not yet been scanned, is inserted. Therefore, it must be
stored away to be retrieved and inserted in its proper position. When the operand B is
scanned, it is inserted immediately after A. Now, however, two operands have been
scanned. What prevents the symbol + from being retrieved and inserted? The answer
is, of course, the * symbol that follows, which has precedence over +. In the case of
the second expression the closing parenthesis indicates that the + operation should be
performed first. Remember that in postfix, unlike infix, the operator that appears earlier
in the string is the one that is applied first. '

Since precedence plays such an important role in transforming infix to postfix, let
us assume the existence of a function prcd(opl,0p2), where opl and op2 are characters
representing operators. This function returns TRUE if opl has precedence over op2
when opl appears to the left of op2 in an infix expression without parentheses. prcd
(opl,0p2) returns FALSE otherwise. For example, pred(*¥',*+') and pred(*+’,'+’) are
TRUE, whereas pred(‘+’,'*") is FALSE. : .

Let us now present an outline of an algorithm to convert an infix string without
parentheses into a postfix string. Since we assume no parentheses in the input string, the
only governor of the order in which operators appear in the postfix string is precedence,
(The line numbers that appear in the algorithm will be used for future reference.)

1 opstk = the empty stack;
2 while (not end of input) {
3 symb = next input character;
4 if (symb is an operand)
_add symb to the postfix string

5 else {

6 while(!empty(opstk) && prcd(stacktop(opstk), symb)) {
7 topsymb = pop(opstk); :
8 add topsymb to the postfix string;

} /* end while */
9 push(opstk, symb);
} /* end else */
} /* end while ¥/
/* output any remaining operators */
10 while (!empty(opstk)) {
11 topsymb = pop(opstk);
12 add topsymb to the postfix string;
} /* end while */

Simulate the algorithm with such infix strings as “A * B + C*D” and A + B
+C DE” [where ‘$’ represents exponentiation and pred (‘$°, *$ ") equals FALSE | to

Sec. 2.3 Example: Infix, Postfix, and Prefix 103

convince yourself that it is correct, Note that at each point of the simulation, an operator
on the stack has a lower precedence than all the operators above it. This is because the
intial empty stack trivially satisfies this condition, and an operator is pushed onto the
stack (line 9) only if the operator currently on top of the stack has a lower precedence
than the incoming operator.

What modification must be made to this algorithm to accommodate parenthe-
ses? The answer is, surprisingly little. When an opening parenthesis is read, it must be
pushed onto the stack. This can be done by establishing the convention that pred(op,‘(’)
equals FALSE, for any operator symbol op other than a right parenthesis. In addition,
we define pred(‘(‘,0p) to be FALSE for any operator symbol op. [The case of op==")
will be discussed shortly.] This ensures that an operator symbol appearing after a left
parenthesis is pushed onto the stack’

When a closing parenthesis is read, all operators up to the first opening parenthesis
must be popped from the stack into the postfix string. This can be done by defining

parenthesis, the loop beginning at line 6 is skipped, so that the opening parenthesis is
not inserted in‘o the postfix string. Execution therefore proceeds to line 9. However,

since the closing parenthesis should not be pushed onto the stack, line 9 is replaced by
the statement

9 _if (empty(opstk) [symb 1= *)")
push(opstk, symb);
else /* pop the open parenthesis and discard it */
topsymb = pop(opstk); .

“With the foregoing conventions for the pred function and the revision to line 94
the algorithm can be used to convert any infix string to postfix. We summarize the
precedence rules for parentheses:

pred(' (", 0p) = FALSE for any operator op

pred(op, ' (') = FALSE for any operator op other than ')
prcd(op,')') = TRUE for any operator op other than s
prcd(*)',0p) = undefined for any operator op (an attempt

to compare the two indicates an
error),

We illustrate this algorithm on some examples:.
Example 1: A + B« (&)

The contents of symb, the postfix string, and opstk are shown after scanning each
symbol. opstk is shown with its top to the right.

104 ” : The Stack Chap. 2

symb postfix string opstk

| A A

2 + A -
3 B - AB +
4 * W AB + =
5 C ABC +*
6 ABC» E
7 ABC * +

Lines 1, 3, and 5 correspond to the scanning of an operand; therefore the symbol (symb)
is immediately placed on the postfix string. In line 2 an operator is scanned and the
.stack is found to be empty, and the operator is therefore placed on the stack. In line 4
the precedence of the new symbol (*) is greater than the precedence of the symbol on
the top of the stack (+); therefore the new symbol is pushed onto the stack. In steps 6

and 7 the input string is empty, and the stack is therefore popped and its contents are
placed on the postfix string.

- Example2: (A+ B)*C

symb postfix string . opstk

A

A
AB
AB +
AB+ *
AB+C *
AB + C+

A,
+ +

D~ + >~

In this example, when the right parenthesis is encountered the stack is popped
until a left parenthesis is encountered, at which point both parentheses are discarded.
By using parentheses to force an ordet of precedence different than the default, the
order of appearance of the operators in the postfix string is different than in example 1.

Example3: ((A — (B + O)) * D) $ (E + F) (See example 3 on top of page 106.)

Why does the conversion algorithm seem so involved, whereas the evaluation al-
gorithm seems so simple? The answer is that the former converts from one order of
precedence (governed by the pred function and the presence of parentheses) to the nat-
ural order (that is, the operation to be executed first appears first). Because of the many
combinations.of elements at the top of the stack (if not empty) and possible incoming
symbol, a large number of statements are necessary to ensure that every possibility is
covered. In the latter algorithm. on the other hand, the operators appear in precisely
the order they are to be executed. For this reason the operands can be stacked until an
operator is found, at which point the operation is performed immediately.

Sec. 2.3 Example: Infix, Postfix, and Prefix 105 .

EXAMPLE 3

symb postfix siring opstk
((
(((
A A ((
- A (=
(A G~
B AB = ¢
+ AB ((=(+
€, ABC (C=(+
) ABC + (=
) ABC + - (
* ABC + - (*
D ABC + =D (=
) ABC + —D~*
$ ABC + =D * $
(ABC + =D = $(
E ABC + —D+E 5(
+ ABC + -D=*E G
F ABC + -D*EF S(+
) ABC + =D*EF + $

ABC + -D*EF + %

The motivation behind the conversion algorithm is the desire to output the oper-
ators in the order in which they are to be executed. In solving this problem by hand
we could follow vague instructions that require us to convert from the inside out. This
works very well for humans doing a problem with pencil and paper (if they do not be-
come confused or make a mistake). However, a program or an algorithm must be more
precise in its instructions. We cannot be sure that we have reached the innermost paren-
theses or the operator with the highest precedence until additional symbols have been
scanned. At the time, we must backtrack to some previous point.

Rather than backtrack continuously, we make use of the stack to “remember” the
operators encountered previously. If an incoming operator is of greater precedence than
the one on top of the stack, this new operator is pushed onto the stack. This means that
when all the elements in the stack are finally popped, this new operator will precede
the former top in the postfix string (which is correct since it has higher precedence).
If, on the other hand, the precedence of the new operator is less than that of the top of
the stack, the operator at the top of the stack should be executed first. Therefore the top
of the stack is popped and the incoming symbol is compared with the new top, and so
on. Parentheses in the input string override the order of operations. Thus when a left
p.uenthesn is scanned., it is pushed on the stack. When its associated right parenthesis
is found, all the operators between the two parentheses are placed on the output string,
because they are to be executed before any operaters appearing ifter the parentheses.

Program to Convert an Expression from Infix to Postfix

There are two things that we must do before we actually start writing a pro-
gram. The first is to define precisely the format of the input and output. The second is
to construct, or at least define, those routines that the main routine denends upon. We

106 The Stack Chap. 2

assume that the input consists of strings of characters, one string per input line. The
end of each string is signaled by the occurrence of an end-of-line character (‘\ n’).
For the sake of simplicity, we assume that all operands are single-character letters or
digits. All operators and parentheses are represented by themselves, and *$ * represents
exponentiation. The output is a character string. These conventions make the output of
the conversion process suitable for the evaluation process, provided that all the single
character operands in the initial infix string are digits.

In transforming the conversion algorithm into a program, we make use of several
routines. Among these are emprv, pop. push and popandtest, all suitably modified so
that the elements on the stack are characters. We also make use of a function isoperand
that returns TRUE if its argument is an operand and FALSE otherwise. This simple
function is left to the reader.

" Similarly, the pred function is left to the reader as an exercise. It accepts two
single-character operator symbols as arguments and returns TRUE if the first has prece-
dence over the second when it appears to the left of the second in an infix string and
FALSE otherwise. The function should, of course, incorporate the parentheses conven-
tions previously introduced. -

Once these auxiliary functions have been written, we can write the conversion
function postfix and a program that calls it. The program reads a line containing an

expression in infix. calls the routine postfix, and prints the postfix string. The body of
the main routine follows:

#include <stdio.h>
#include <stdlib.h>

#define MAXCOLS 80
#define TRUE 1
#define FALSE 0

void postfix(char *, char *);

int soperand(char);

void popandtest(struct stack *, char *, int *);

int prcd(char, char); ¢
void push(struct stack *, char);

char pop(struct stack *);

void main()

{
char infix[MAXCOLS];
char postr[MAXCOLS];
int pos = 0;

while ((infix[pos++] = getchar()) != '\n");
infix[--pos) = '\0';
printf("%s%s", "the original infix expression is ", infix);
postfix(infix, postr);
printf("%s\n", postr);
} /* end main */

Sec. 2.3 Example: Infix, Postfix, and Prefix 107

The declaration for the operator stack and the postfix routine follows:
¥ |

struct stack {

int top;

char items [MAXCOLS];
5

postfix(char infix[], char postr(])’

{ ; /
int position, und; :
int outpos = 0;
char topsymb = '+';
char symb;
struct stack opstk;
opstk.top = -1; /* the empty stack */

for (position=0; (symb = infix[position]) != "\0'; position++)
if (isoperand(symb))
postr{outpos++] = symb;
else {
popandtest(&opstk, &topsymb, &und);
while (fund & prcd(topsymb, symb)) {
postr[outpos++] = topsymb;
popandtest(&opstk, &topsymb, &und);
} /* end while */
if (lund)
push(&opstk, topsymb);
if (und || (symb != ')"))
push(&opstk, symb);
else
topsymb = pop(&opstk);
} /* end else */
while (!empty(&opstk))
postrloutpos++] = pop(&opstk);
postr[outpos] = '\0';
return;

} /% end postfix */

»

The program has one major flaw in that it does not check that the input string is a
valid infix expression. In fact, it would be instructive for you to examine the operation
of this program when it is presented with a valid postfix string as input. As an exercise
vou are asked to write a program that checks whether or not an input string is a valid
infix expression.

We can now write a program to read an infix string and compute its numerical
value. If the original string consists of single-digit operands with no letter operands, the,
following program reads the original string and prints its value.

108 The Stack Chap. 2

‘#define MAXCOLS 80
void main()
{

char instring[MAXCOLS], postring[MAXCOLS];
int position = 0;
double eval();

whi.le(.(instring[posit'iqnﬂ] = getchar()) != "\n")

1)
instring[--position] = '\0';
printf("%s%s\n", "infix expresson is ", instring);
postfix(instring, postring);
printf("%s%f\n", "value is ", eval(postring));
} /* énd main */]

« . Two different versions of the stack manipulation routines (pop, push, and so forth).
and associated function prototypes, are required because posifix uses a stack of character
operators (that is, opstk), whereas eval uses a stack of float operands (that is, opndstk).
Of course, it is possible to use a single stack that can contain both reals or characters
by defining a union as described earlier in Section 1.3.

Most of our attention in this section has been devoted to transformations involv-
ing postfix expressions. An algorithm to convert an infix expression into postfix scans
characters from left to right, stacking and unstacking as necessary. If it were necessary
to convert from infix to prefix, the infix string could be scanned from right to left and the
appropriate symbols entered in the prefix string from right to left. Since most algebraic
expressions are read from left to right, postfix is a more natural choice.

The foregoing programs are merely indicative of the type of routines one could
write to manipulate and evaluate.postfix expressions. They are by no means compre-

_hensive or unique. There are many variations of the fdregoing routines that are equally
acceptable. Some of the early high-level language compilers actually used'routines such
as eval and postfix to handle algebraic expressions. Since that time, more sophisticated
techniques have been developed to handle these problems.

Stacks in C++ Using Templates

There are a number of drawbacks to the solution that-we just presented. First,
although two stacks are used in the complete solution (a stack of operators in the postfix
routine and a stack of operands in the eval routine), only a single stack is used at any one
time. Nevertheless, in the implementation of the solution that we presented, both stacks
were created and remained in memory throughout the entire program. Second, because
the stacks are not of the same type, it is necessary to declare them separately. And with
the separate declarations, it is necessary to provide separate sets of primitive routines
(that i8, push, pop, empty, etc.). This, in turn, implies that when the implementation of
a stack is to be changed it must be changed for each type of stack that we have created.

It would be more efficient if we could design a system around a stack of indeter-
minate type and define the primitive routines on such a stack. We would then create
and destroy instances of such a stack as necessary. This would eliminate the need for_

Sec. 2.3 Example: Infix, Postfix, and Prefix - 109

us to create separate primitive routines, as well as serve the purpose of allowing us to
destroy a stack when it is no longer needed.

The C++ feature that supports the definition of an object of undetermined type is
called a template. Using a template allows the programmer to define the features of the
class, while reserving the option of binding the type of the class to the class itself until a
class of a particular type is actually needed. The creation of a class of a particular type
is called instantiation.

Let us now consider how we could create a template for stacks-and then illustrate
how this template could be used in the previous example: accepting an infix string,
converting the infix string to a postfix string (using a stack of operators), and then eval-
uating the postfix string (using a stack of operands). We begin by defining the class that
we shall use (in our example, the stack); however, this definition is parameterized in the
snese that it depends on the attributes of a specific paramter. We denote this by using

template <class T>

as a prefix to the remainder of the definition of the class. This prefix indicates that ~
T is a parameter in the subsequent definition and will vary from one use to another.
The construct that allows us to create a class of (as yet) undetermined type is called a
template. g - M

Thus the template definition is as follows:

template <class T>
// T is of ordinal type
class Stack {

private: ‘ -
int top; // top points to the next top element
T *nodes;

public: _
Stack (); // default constructor

int empty (void);
void push(T &);
T pop(void);

T pop(int &); // example of overloading pop to
// handle the functions of popandtest
~Stack (); // default destructor

} 5

Within the same file, we would also provide the implementation ofthe stack tem-
plate.For example, the constructor for Stack would be implemented as follows:

// Implementation of templates
template <class T> Stack<T>::Stack (0]
{

top = -1;

nodes = new T[STACKSIZE];
¥

110 The Stack Chap. 2

.

In the example above, the maximum size of the stack is predetermined to be
STACKSIZE and the top (a private variable) is initialized 1o —1. An array of nodes
of type T is created when the stack is instantiated. Thus a stack of integers would result
in an array of integers, while a stack of double would result in an array of double. Each

stack of a particular type would be instantiated with an array of that type. A destructor
for a stack could be implemented by

template <class T> Stack<T>::~Stack ()
{ .

b

-delete nodes;

The primitive routines empty, push, and pop are straightforward. (Note that
we also overload the function pop by incorporating into it the functionality of
popandtest.)

template <class T> int Stack<T>::empty (void)

{
return top> =0;
I
template <class T> void Stack<T>::push(T & j)
{ - V)
if (top == STACKSIZE) {
cout << “Stack overflow". << endl;
return;
}
nodes [++top] = j;
}
template <class T> T Stack<T>::pop(void)
{ :
Tp :
if (empty ()) {
cout << "Stack underflow" << endl;
return p;
}
p = nodes[top--1;
return p;
Y

// The tasks of this function were formérly performed by popandtest
template <class T> T Stack<T>::pop(int & und)
{

Tp;

Sec. 2.3 Example: Infix, Postfix, and Prefix 11

if (empty Q) {
und = 1;
return p;

}

und = 0; y
= nodes[top--]; .

return p;

b

To make use of the stack template, it would be necessary to include all of the
prototype definitions above in a file as follows:

// stackt.h

#ifndef STACKT_H
@ #define STACKT_H

#include <stdio.h>
#include <stdlib.h>
#include <alloc.h>
#include <mem.h>
#include <iostream.h>

#define STACKSIZE 100 -

These statements would be followed by all of the above (template definition and proto- -
type functions) and ended with '

#endif

The above constitute a definition for the template stack.

The meaning of the expression #ifndef. .. is that if the operand STACKT_H is not
already defined, it should be defined here; otherwise, the definition may be bypassed.
This is a precaution against a double definition (which might occur if there was an
#include within an #include).

To make use of a stack of a particular type, it would first be necessary to instan-
tiate it. This is done simply by declaring a stack of a particuler type. By declaring such
a stack, the stack class wili create an instance of a stack of the specified type. Thus we
could build a file that contains the following routines:

-#define MAXCOLS 52
.void postfix(char *infix, char ’;postr);
int prcd(char opl, char opZ);'

int isoperand(char op);
int isoperator(char op);

112 The Stack Chap. 2

long double .eval(char *postr);
Tong double oper(int symb, long double opl, long double 0p2);

int prcd(char opl, char op2)
// body of prcd goes here

int isoperator(char op)
// body of isoperator goes here

int isoperand(char op)
// body of isoperand goes here

void ‘postfix(char *infix, char *postr)
{

int position, und;

int outpos=0;

char topsymb="+";

char symb;

Stack<char> opstk;

for (position=0; (symb=infix[position]) != "\0'; position++) {
if (isoperand(symb))
postr[outpos++]=symb;
else {
topsymb=opstk.pop(und) ;
while (lund 8& prcd(topsymb, symb)) {
postr{outpos++] = topsymb;
topsymb=opstk.pop(und) ;

}

if (lund)
opstk.push(topsymb) ;

if (und || (symb !'= ")'))
opstk.push(symb);

else

topsymb=opstk.pop();

}
1 /* end for */
while (lopstk.empty())
postr[outpos++]=opstk.pop();
postrloutpos]="\0";
} /* end postfix */

long double oper(int symb, Tong double opl, Tong double 0p2)
// body of isoperator goes here

Tong double eval(char *postr)

{
int ¢, position;
long double opndl, opnd2, value;
Stack<long double> opndstk;

Sec. 2.3 Example: Infix, Postfix, and Prefix

for (position=0; (c=postrposition]) != '\0'; position++)
if (isoperand(c))
opndstk.push((fleat) (c-'0'));

else {
opnd2=opndstk.pop();
opndl=opndstk.pop();
value=oper(c, opndl, opnd2);
opndstk.push(value);

} 2

return (opndstk.pop());
} /% end eval */

Notice that the statements that instantiate the stacks contain the type of the stack as a
parameter. Thus the statement

stack<long double> opndstk;

within the function eval creates a stack of long double, while the statement

‘stack<char> opstk;

within postfix crea.es a stack of type char. As we mentioned earlier, one set of routines
for a template class stack is sufficient to manipulate a stack of any type.
Finally, all of the above could be followed by a main routine:

void main(void)
-
char 1n[250], post[250];:
long double res;

cin >> in;

cout << in << endl;
postfix (in, post);
res = eval(post);
cout << res << end!;

Two points should be noted regarding the method that we just presented. First, the
set of programs above creates two classes of type stack: a stack of char and a stack of
long touble. The existence of these two classes is based on declarations that use them.
Thus. since the stack of characters is present in the postfix routine, a class of that type
will be created; and because a stack of double long is present in the eval routine. a class
of that type will be created. The existence of these classes is really independent of the
existence of any objects of- the fgspective types. Of course, we did declare a stack of
each type. But you should note thit the two stack classes exist regardless of whether or

not the objects of those types are declared (that is. the routines in which they are created
may never be called).

1a The Stack Chap. 2

="

The second point deals with the destructor. Although we defined a default de-
structor, ‘we never really called it explicitly. This is because the default destructor is

called automatically when control is returned from the routine in which an object was
created.

EXERCISES

233.

2.34.

2.3.5.

Transform each of the following expressions to prefix and postfix.
@ A+B-C

(b) A+B»(C-D)SE*F

(€ A+B*CS(D-E)+F)-G

d A+((B-OxD—-E)+F)IGSH-T)

Transform each of the following prefix expressions to infix.

(a) +- ABC

(b) +A-BC

(¢) ++A—-=*=$BCD/+ EF*GHI

(d) +-$ABC*D+ EFG

Transform each of the following postfix expressions to infix.

(@) AB+C-

(b) ABC +-

(c) AB-C+ DEF-+§$

(d) ABCDE —+ $+EF=* -

Apply the evaluation algorithm in the text to evaluate the following postfix expressions.
Assume A=1,B=2,C=3. ‘

(@ AB+C~-BA+CS-—

(b) ABC + *CBA — +*

Modify the routine eval to accept as input a character string of operators and operands
representing a postfix expression and to create the fully parenthesized infix form of
the original postfix. For example, AB + would be transformed into (4 + B) and AB +
C — would be transformed into (.2 + B) — C).

Write a single program combining the features of eval and postfix to evaluate an infix
string. Use two stacks, one for operands and the other for operators. Do not first convert

the infix string to postfix and then evaluate the postfix string, but rather evaluate as you
go along.

Write a routine prefix to aceept an infix string ang create the prefix form of that string,

assuming that the string is read from right to left and that the prefix string is created
from right to left.

. © Write a C program to convert

(a) A prefix string to postfix
(b) A postfix string to prefix
(c) A prefix string to infix
(d) A postfix string to infix

Write a C routine reduce that accepts an infix string and forms an equivalent infix string
with all superfluous parentheses removed. Can this be done without using a stack?

Exercises 115

2.3.10.

2.3.11.

2.3.12.

116

Assume a machine that has a single register and six instructions.

LD A Places the operand A into the register

ST A Places the contents of the register into the variable A
AD A Adds the contents of the variable A (o the register

SB A Subtracts the contents of the variable A from the register
ML A Multiplies the contents of the register by the variable A
nv A Divides the contents of the register by the variable A

Write a program that accepts a postfix expression containing single-letter operands
and the operators +, =, *, and / and prints a sequence of instructions to evaluate the
expression and leave the result in the register. Use variables of the form TEMPn as
temporary variables. For example. using the postfix expression ABC * + DE ~/ should
print the following: :

.

LD B
ML ¢
ST TEMP1
Lo A
AD TEMPL
ST . TEMP2
LD D
S8 E
ST TEMP3
LD TEMP2
ov TEMP3
ST TEMP4

The template definition of a stack can be expanded to allow the size of the stack to be
a parameter as well. Show how to define a stack template in which each nstantiation
of the stack will have buth the element type and the size of the stack as a parameter.

Can a template be used to store elements of different types on the same stack? Why or
why not?

The Stack Chap. 2

Recursion

This chapter introduces recursion. a programming tool that is one of the most power-
ful and one of the least understood by beginning students of programming. We define
recursion, introduce its use in C. and present several examples. We also examine an
implementation of recursion using stacks. Finally, we discuss the advantages and dis-
advantages of using recursion in problem solving.

3.1 RECURSIVE DEFINITION AND PROCESSES

Many objects in mathematics are defined by presenting a process to produce that object.
For example. 7 is defined as the ratio of the circumference of a circle to its diameter.
This is equivalent to the following set of instructions: obtain the circumference of a
circle and its diameter. divide the former by he latter. and call the result 77. Clearly, the
process specified must terminate with a definite result.

Factorial Function
Another example of a definition specitied by a process is that of the factorial

function. which plays an important role in mathematics and statistics. Given a posi-
tive integer n. 1 factorial is defined as the product of all integers between n and 1. For

117

example, 5 factorial equals S * 4% 3% 2+ | = 120, and 3 factorial equals3+2x] =6,
0 facrorial is defined as 1. In mathematics, the exclamation mark (!) is often used to

denote the factorial function. We may therefore write the definition of this funetion as
follows:

nl=1ifpna==0 .
AMl=n*(-1)*M-2)*,..*1ifn>0

The three dots are really a shorthand for all the numbers bétween # — 3 and 2 multiplied
together. To avoid this shorthand in the definition of n! we would have to list a formula
for n! for each value of n separately, as follows: '

0l =1

1'=1

2122 *]
a3t
4l =4*3%20+¢]

Of course, we cannot hope to list a formula for the factorial of each integer. To
avoid any shorthind and to avoid an infinite set of definitions, yet to define the function

precisely, we may present an algorithm that accepts an integer n and returns the value
of n'.

prod = 1;

for (x = n; x> 0; x--)
prod *= x;

return(prod) ;

Such an algorithm is called iterative because it calls for the explicit repetition of
some process until a certain condition is met. This algorithm can be translated readily
into a C function that returns n! when # is input as a parameter. An algorithm may be
thought of as a program for an “ideal” machine without any of the practical limitations
of a real computer and may therefore be used to define a mathematical function. A C
function. however, cannot serve as the mathematical definition of the factorial function
because of such limitations as precision and the finite size of a real machine.

Let us look more closely at the definition of n! that lists a separate formula for
each value of n. We may note, for example, that 4! equals 4 * 3 * 2 « |, which equals
4+ 3! In fact, for any n > 0, we see that n! equals n * (n — 1)!. Multiplying n by the
product of all integers from n — 1 to 1 yields the product of all integers from n to 1. We
may therefore define '

0! =1

1! =1+~ 0!

2! =2 *]l

a3

41 = 4+ 3

or, using the mathematical notation used earlier,

118 Recursion Chap. 3

This defimitivi 00y appear quite strange, since it defines the factorial function in
terms of itself. This secms io be a circular definition and totally unacceptable until we
realize that the mathematical notation is only a concise way of writing out the infinite
number of equations necessary to define ! for each n. 0! is defined directly as 1. Once
0! has been defined, defining 1! as 1 * 0! is not circular at all. Similarly, once 1! has
been dtfined, defining 2! as 2 = 1! is equally straightforward. It may be argued that the
latter notation is more precise than the definitionof n! asn* (n = 1)+ -- = 1 forn >0
because it does not resort to three dots to be filled in by the (it is hoped) logical intuvition
of the reader. Such a definition, which defines an object in terms of a simpler case of
itselt, is called a recursive definition. '

Let us see how the recursive definition of the factorial function may be used to
evaluate 5!. The definition states that 5! equals 5 * 4!. Thus, before we can evaluate
5!, we must first evaluate 4!, Using the definition once more, we find that 4! =
4 * 31. Therefore. we must evaluate 3!. Repeating this process, we have that

150=5*4!

Z 4! = 4 * 3!

3 M =3*2!

4 20 =2*1 :

5 U =10k .
6 ' 0t =1

Each case is reduced to a simpler case until we reach the case of 0!, which is
derined directly as 1. At line 6 we have a value that is defined directly and not as the
factorial of another number. We may therefore backtrack from line 6 to line 1, returning
the value computed in one line to evaluate the result of the previous line. This produces

]

40 =1
5'1l=1*0l=1*1=1
42 =2%11=2%1=2
'3 =3+2U=3%2=6
2'41 =4%31 =4%6=24
1'51=5%40=5*24=120

Let us attempt to incorporate this process into an algorithm. Again, we want the
algorithm to input a nonnegative integer n and to compute in a variable fact the non-
negative integer that is n factorial.

1 if (n == 0)

2 fact = 1;

3 else §{

& x=n-1; i

5 find the value of x!. Gall it y; -
6 fact=n*y;

7 } /* end else */

Sec. 3.1 Recursive Definition and Processes 118

This algorithm exhibits the process used to compute n! by the recursive definition.
The key to the algorithm is, of course, linc 5, where we are told-to “find the value of x!.”
This requires reexecuting the algorithm with input x, since the method for computing
the factorial function is the algorithm itself. To see that the algorithm eventually halts,
note that at the start of line. 5, x equafls n — |. Euach time the algorithm is executed,
its input is one.less than the preceding time, so that (since the original input n was a
nonnegative integer) 0 is eventually input to the algorithm. At that point, the algorithm
simply returns 1. This value is returned to line 5, which asked for the evaluation of
0!. The multiplication of Yy (which equals 1) by n (which equals 1) is then executed
and the result is returned, This sequence of multiplications and returns continues until

‘the original n! has been evaluated. In the next section we will see how to convert this
algorithm into a C program. J :

Of course, it is much simpler and more straightforward to use the jterative method
for evaluation of the factorial function, We present the recursive method as a simple
example to introduce recursion, not as a moré effective method of solving this particular
problem. Indeed, all the problems in this section can'be solved more efficiently by
iteration. However, later in this chapter and in subsequent chapters, we will come across
eaamples that are more easily solved by recursive methods.

Multiplication of Natural Numbers

Another example of a recursive definition is the definition of multiplication of
natural numbers. The product a * b, where a and b are positive integers, may be defined

as a added to itself b times. This is an iterative definition. An equivalent recursive .
definition is)

*b=aif b==1
b=a(b-1)+aifb>1l

To evaluate 6 3 oy this definition. we first evaluate 6 * 2 and then add 6. To
evaluate 6 * 2, we first evaluate 6 * | and add 6. But 6 * | equals 6 by the first part of
the definition. Thus

6*3=6*2+6=6*1+6+6=6+6+6=18

The reader is urged to convert the definition above to a recursive algorithm as a simple
exercise.

Note the pattern that exists in recursive definitions. A simple case of the term to
be défined is defined explicitly (in the case of factorial, 0! was defined as 1; in the case
of multiplication, a * 1 =). The other cases are defined by applying some operation
to the result of evaluating a simpler case. Thus ! is defined in terms of (n - 1)! and
@ = binterms of @ * (b — 1). Successive simplifications of any particular case must
eventually lead to the explicitly defined trivial case. In the case of the factorial function,
successively subtracting | from n eventually yields 0. In the case of multiplication.
successively subtracting 1 from b eventually yields JI. If this were not the case, the
definition would be invalid. For example, if we defined

120 - Recursion Chap. 3

nlf=(+1'/(n+1)
or
a*b=a*(b+1) -a

we would be unable to determine the value of 5! or 6 * 3. (You are lnvued to attempt
to determine these values using the foregoing dehnmom) This is true despite the fact
that the two equations are valid. Continually adding one to n or b does not eventually |

-produce an explicitly defined case. Even if 100! was defined exphutly, how could the
value of 101! be determined?

Fibonacci Sequence

Let us examine a less fdmlhdr example. The F ibonacci sequence is lhc \equem.e
of integers i

0.1,1,2,3/5.8,13,21,34, ...

Each element in this sequence is the sum of the two preceding elements (for example,
O+1=11+1=2142=32+3 =5 ...).1fweletfib(0)=0, fib(1}=1, and so
on, then we may define the Fibonacc™ sequence by the following recursive definition:

fib(n) =nif n==00r n==1
fib(n) = ib(n -2) + fib(n - 1) if n>=2

To compute ﬁb('6).‘ for example, we may apply.the definition recursively to obtain

fib(6) = fib(4) + fib(5) = fib(2) + fib(3) + fib(5) = .
fib(0) + fib(1) + fib(3) + fib(5) = 0 + 1 + fib(3) + fib(5) =
1+ fib(1) + fib(2) + fib(5) =

141+ Fib(0) + fib(1) + Fib(5) = .

2+ 0+ 1+ fib(5) =3+ fib(3) + fib(4) =

3+ fib(1) + fib(2) + fib(4) =

3+ 1+ fib(0) + fib(1) + fib(4) =

4+ 0+ 1+ fib(2) + fib(3) = 5 + fib(0) + fib(1) + fib(3) =
5+ 0+ 1+ fib(l) + fib(2) = 6 + 1 + fib(0) + fib(1) =
7+0+1=28

Notice that the recursive definition of the Fibonacci numbers differs from the re- -
cursive definitions of the factorial function and multiplication. The recursive definition
of fib refers to itself twice. For example, fib(6) = fib(4) + fib(5). so that in computing
fib(6), fib must be applied recursively twice. However, the computation of fib(5) also
involves determining fib(4), so that a grelt deal of computational redundancy occurs
in applying the definition. In the foregoing example, fib(3) is computed three separate
times. It wouldbe much more efficient to “remember’ the value of fib(3) the first time
that it is evaluated and reuse it each time that it is needed. An iterative method of com-
puting fib(n) such as the following is much more efficient:

Sec. 3.1 Recursive Definition and Processes 121

if (n < 1)
return(n);
lofib = 0;
hifib = 1;
for (i =2; 7 <=n; i+s) {
x = lofib;
lofib = hifib;
hifib = x + lofib;
} /* end for */
return(hifib);

Compare the number of additions (not including increments of the index variable
i) that are performed in computing fib(6) by this. algorithm and by using the recursive
definition. In the case of the factorial function, the same number of multiplications must
be performed in computing n! by the recursive and iterative methods. The same is true
of the number of additions in the two methods of computing multiplication. However,
in the case of the Fibonacci numbers, the recursive method is far more expensive than

the iterative. We shall have more to say about the relative merits of the two methods in
a later section. ‘

Binary Search

You may have received the erroneous impression that recursion is a very handy
tool for defining mathematical functions but has no influence in more practical com-
puting activities. The next example illustrates an application of recursion to one of the
most common activities in computing: that of searching. .

Consider an array of elements in which objects have been placed in some order.
For example, a dictionary or telephone book may be thought of as an array whose entries
are in alphabetical order. A company payroll file may be in the order of employees
social security numbers. Suppose that such an array exists and that we wish to find a
particular element in it. For example, we wish to look up a name in a telephone book,
a word in a dictionary, or a particuiar employee in a personnel file. The process used to
find such an entry is called a search.

Since searching is such a common activity in computing. it is desirable to find an
efficient method for performing it. Perhaps the crudest search method is the sequential
or linear search, in which each item of the array is examined in turn and compared with
the item being searched for until a match occurs. If the list is unordered and haphazardly
constructed, the linear search may be the only way to firid anything in it (unless, of
course, the list is first rearranged). However, such a method would never be used in
looking up a name in a telephone book. Rather, the book is opened to a random page
and the names on that page are examined. Since the names are ordered alphabetically,
such an ¢xamination would determine whether the search should proceed in the first or
second half of the book.

Let us apply this idea to searching an array. If the array contains only one element,
the problem is trivial. Otherwise, compare the item being searched for with the item
at the middle of the array. If they are equal, the search has been completed successtully.

122 Recursion Chap. 3

If the middle element is greater than the item being searched for, the search process is
repeated in the first half of the array {since if the item appears anywhere it must appeas
in the first half); otherwise, the process is repeated in the second half. Note that each
time a comparison is made, the number of clements yet to be searched is cut in half. For
large arrays, this method is superior to the sequential search in which each comparison
reduces the number of elements yet to be scarched by only one. Because of the division
of the array to be searched into two equal parts, this search method is called the binary
search.

Notice that we have quite naturally defined a binary search recursively. If the item
being searched for is not equal to the middle element of the array, the instructions are to
search a subarray using the same method. Thus the search method is defined in terms of
itself with a smaller array as input. We are sure that the process will terminate hecuuse
the input arrays become smaller and smaller, and the search of a one-element array is
defined nonrecursively, since the middle element of such an array is its only element.

We now present a recursive algorithm to search 4 sorted array « for an element
x between aflow] and alhigh). The algorithm returns an index of a such that afindex]
equals x if such an index exists between low and high. If x is not found in that portion
of the array, binsrch returns — | (in C, no element a{ — 1] can exist).

1 if (low > high)

2 return(-1);

3 mid = (low + high) / 2;

4 f (x == a[mid])

5 return(mid);

6 if (x < a[mid])

s search for x in a[low] to a[mid - 1];
8 else

9 search for x in a[mid + 1] to alhigh);

Since the possibility of an unsuccessful search is included (that is, the element
may not exist in the array). the trivial case has been altered somewhat. A search on a
one-element array is not defined directly as the appropriate index. Instead that element
is compared with the item being searched for. If the two items are not equal, the search
continues in the “first” or “second™ half—each of which contains no elements. This
case is indicated by the condition Jow > high, and its result is defined directly as — 1.

Let us apply this algorithm to an example. Suppose that the array a centains the
elements 1, 3.4, 5,17, 18, 31, 33, in that order. and that we wish 1o search for 17 (that
is, x equals 17) between item O and item 7 (that is, low is O. high is 7). Applying the
algorithm, we have

Line 1: Is low > high? It is not, so execute line 3.

Line 3: mid = (0 + 7)/2 = 3.

Line 4: Is x == a[3]? 17 is not equal to 5. so execute line 6.

Line 6: Is x < @[3]? 17 is not less than 3, so perform the else clause at line 8.

Line 9: Repeat the algorithm with low = mid + | = 4 und high = high = 7.
i.e., search the upper half of the array.

Sec. 3.1 Recursive Definition and Processes 123

Line 1: Is 4 > 7?7 No, so execute line 3.
Line 3: mid = (4 + 7)/2 = 5,

Line 4: Is x == ¢|5]? 17 does not equal 18, so execute line 6.
Line 6:Isx < al5]? Yes, since 17 < 18, so search for x in allow] to
almid - 1].

Line 7: Repeat the algorithm with low = low = 4 and high = mid — | = 4,
We have isolated x between the fourth and the fourth elements of a.

Line 1:1s 4 > 4? No, so execute line 3.

Line 3: mid = (4 + 4)12 = 4.

Line 4: Since al4] == 17, return mid = 4 as the answer. 17 is indeed the
fourth element of the array.

Note the pattern of calls to and returns from the algorithm. A diagram tracing this
pattern appears in Figure 3.1.1. The solid arrows indicate the flow of control through
the algarithm and the recursive calls. The dotted lines indicate returns. Since there are
no steps to be executed in the algorithm after line 7 or 9, the returned result is returned
intact to the previous execution. Finally, when control returns to the original execution,
the answer is returned to the caller.

Let us examine how the algorithm searches for an item that does not appear in the
array. Assume the array « as in the previous example and assume that it is searching
for x, which equals 2.

In ~
Line |
Line 3
Line 6

Line 9

Out 4/‘

)
Answer 1 Line 1
i
: Line 3
E Line 4
)
1
SREET YO, T T B (Answer is found)
Answer

Figure 3.1.1 Diagrammatic representation of the binary search algorithm.

124
Recursion Chap. 3

Line 1: Is low > high? 0 is not greater than 7, so execute line 3.

Line 3: mid = (0 + 7)[2 = 3.

Line 4: Is x == a[3]? 2 does not équul 5, so execute line 6.

Line 6: Is x < a[3]? Yes, 2 < 5, so search for x in allow] to almid — 11.

Line 7: Repeat the algorithm with low = low = 0 and high = mid — 1 = 2.

_ If 2 appears in the array, it must appear between a[0] and al2] inclusive.

Line 1: Is 0 > 27 No, execute line 3.

Line 3:mid = (0+202=1.

Line4: 1s 2 == a[1]? No, execute line 6. S

Line 6: Is 2 < a[1]? Yes, since 2 < 3. Search for x in allow] to almid — 1}.

Line 7: Repeat the algorithm with low = low = 0-and high = mid — 1 = 0.
If x exists.in a it must be the first element.

Line 1: Is 0 > 07 No, execute line 3.

Line 3: mid = (0 + 02 = 0.

Line 4: Is 2 == a[0]? No, execute line 6.)

Line 6: Is 2 < a[0]? 2 is not less than 1, so perform the else clause at line 8.

Line 9: Repeat the algorithm with low = mid + 1 = 1 and high = high = 0.

Line 1: Is low > high? 2 is greater than 1, so — is returned. The item 2 does
not exist in the array.

Properties of Recursive Definitions or Algorithms

Let us summarize what is involved in a recursive definition or algorithm. One
important requirement for a recursive algorithm to be correct is that it not generate
an infinite sequence of calls on itself. Clearly, any algorithm that does generate such
a sequence can never terminate. For at least one argument or group of arguments, a
recursive function f must be defined in terms that do not involve f. There must be a “way
out” of the sequence of recursive calls. In the examples of this section the nonrecursive
portions of the definitions were

factorial: of =1
multiplication: a*1l=a
Fibonacci seq.: fib(0) = 0; fib(l) =1
binary search: if (low > high)
- return(-1);
if (x == a[mid])
return(mid);
Without such a nonrecursive exit, no-recursive function can ever be computed. Any
instance of a recursive definition or invocation of a recursive algorithm must eventually
reduce to some manipulation of one or more simple, noprecursive cases.

Sec. 3.1 Recursive Definition and Processes 125

EXERCISES

3.1.8.

126

Write an iterative algorithm to cvaluate o * b by -using addition, where ¢ and b are
nonnegative integers, i

Write a recursive definition of a + b, where a and b are nonncgative integers, in terms
of the successor function succ, defined as

succ(x)
int x;
{
return(x++);
} /% end succ ¢/

Let @ be an array of integers. Present recursive algorithms to compute:
(a) The maximum element of the array

(b) The minirnum element of the array

(¢) The sum of the elements of the array

td) The product of the elements of the array

(e) The average of the elements of the array

Evaluate each of the following. using both the iterative and recwrsive definitions.
(1) 6! '

(b) 9

(c) 100 3
d) 6+4

(e) fib(10)
(N fib(11)

Assume that an array of ten integers conains the elements
1,3,7, 15,21, 22, 36,78, 95, 106

Use the recursive binary search to find each of the following items in the array.

(a) 1

(b; 20

(¢) 36

Write un iterative version of the binary search algorithm. (Hint: Modify the values of
low and high directly.) :

Ackerman’s function is defined recursively on the nonnegative integers as follows:

almn) = n+1 ifm==
aim,n) = a(m—1,1) ifm! =0,n==0
a(m.n) = a(m — 1, a(m, n — 1)) ifm! =0,n' =0

(a) Using the above definition. show that a(2,2) equals 7.

(h} Prove that a(m.n) is defined for all nonnegative integers m and n.

(¢) Can you find an iterative method of computing a(m.n)?

Count the number of additions necessary to compute fib(n) for 0 <= n <= 10 by the
iterative and recursive methods. Does a pattern emerge?

If an array contains n elements, what is the maximum number of recursive calls made
by the binary search algorithm?

Recursion Chap. 3

3.2 RECURSION IN C

Factorial in C

The C language allows a programmer to write subroutines and funclmns that call
themselves. Such routines are called recursive.

The recursive algorithm to compute n! may be directly translaled into a C function
as follows: Sogky

int fact(int n)
{

int x, ‘y;

if (n == 0)
return(1);
X =n-1;
y = fact(x);
return(n. * y);
} /% end fact */

In the statement y = fact(x); the function fact calls itself. This is the essential
ingredient of a recursive routine. The programmer assumes that the function being com-
puted has already been written and uses it in its own definition. However, the program-
mer must ensure that this does not lead to an endless series of calls.

Let us examine the execution of this function when it is called by another program.
For example, suppose that the calling program contains the statement

printf("%d", fact(4));

When the calling routine calls fact, the parameter n is set equal to 4. Since n is not 0,
x is set equal to 3. At that point, fact is called a second time with an argument of 3.
Therefore, the function fact is reentered and the local variables (x and y) and parameter
(n) of the block are reallocated. Since execution has not yet left the first call of facr,
the first allocation of these variables remains. Thus there are two generations of each of
these variables in existence simultaneously. From any point within the second execution
of fact, only the most recent copy of these variables can be referenced.

; In general, each time the function fact is entered recursively, a new set of local
variables and parameters is allocated, and only this new set may be referenced within
that call of fact. When a return from facr to a point in a previous call takes place, the
most recent allocation of these variables is freed, and the previous copy is reactivated.
This previous copy is the one that was allocated upon the original entry to the previous
call and is local te that call.)

This description suggests the use of a stack to keep the successive generations
of local variables and parameters. This stack is maintained by the C system and is
invisible to the user. Each time that a recursive function is entered, a new allocation of
its variables is pushed on top of the stack. Any reference to a local variable or parame-
ter is through the current top of the stack. When the function returns, the stack is popped,

Sec. 3.2 Recursion in C . 127

UL,

2 . L]
i 53 2 .
. 4 3
X ¥ n x oy noox y
(a) (Initially). (b) fact (4). (¢) facr (3) ., (d) facr(2).
D L] ; -
| = ® | 0 . 1 0 1 .
2 | “ 2 | - 2 ! . 2 1 1
3 2 2 3 2 . k]) * 3 2 .
4 3 L4 4 3 . 4 3 . 4 3 -
n x y n x . ¥y no ox y n.x _y
(e¢) fact (). () fact (0) ®) v = facr (0). (h) ¥ = facr (1).
3 2 2
4 03 |- 41316 ’
n x y n o x y n ox y

() v = faet (2) () ¥ = fact (3). .. (k) printf (%d, faci (4)).

Figure 3.2.1 Stack at various times during execution. (An asterisk indicates
an uninitialized value.)

the top allocation is freed, and the previous allocation becomes the current stack top to
be used for referencing local variables. This mechanism is examined more closely in
Section 3.4, but for now, let us see how it is applied in computing the factorial function.

Figure 3.2.1 contains a series of snapshots of the stacks for the variables . v, and
¥ as execution of the fact function proceeds. Initially, the stacks are empty, as illustrated
by Figure 3.2.1a. After the first call on Jfact by the calling procedure, the situation is as
shown in Figure 3.2.1b, with n equal to 4. The variables x and y are allocated but not
ifitialized. Since n does not equal O, xissetto3 andfact(B) is called (Figure 3.2.1¢).
The new value of n does not equal 0; therefore x is set 1o 2 and facr(2) is called (Figure
3.2.1d).

This continues until 7 equals 0 (Figure 3.2.1f). At that point the value 1 is returned
trom the call to fac/(0). Execution resumes from the point at which fact(0) was called,

Recursion Chap. 3
128

which is the assignment of the returned value to the copy of y declared in Saci(1). This
is illustrated by the status of the stack shown in Figure 3.2.1g, where the variables
allocated for fact(0) have been freed and vis set to],

The statement return(n * y) is then executed, multiplying the top values of n
and y to obtain 1 and returning this value to facr(2) (Figure 3.2:1h). This process is
repeated twice more, until finally the value of y in fact(4) equals 6 (Figure 3.2.1j). The
statement refurn(n * y) is executed one more time. The product 24 is returned to the
calling procedure where it is printed by the statement

printf("%d", fact(4)):

Note that each time that a recursive routine returns, it returns to the point imme-
diately following the point from which it was called. Thus, the recursive call to Jacr(3)
returns to the assignment of the result to y within Jfact(4), but the recursive call to facr(4)
returns to the printf statement in the calling routine.

Let us transform some of the other recursive definitions and processes of the pre-
vious section into recursive C programs. It is difficult to conceive of a C programmer
writing a function to compute the product of two positive integers in terms of addition,
since an asterisk performs the multiplication directly. Nevertheless, such a function
can serve as another illustration of recursion in C. Following closely the definition of
multiplicatio. in the previous section, we may write:

int mult(int a, int b)

return(b = 17 a : mlt(a, b-1) 4 a); __ -
} /* end mult */

.

Notice how similar this program is to the recursive definition of the last section, We
leave it as an exercise for you to trace through the execution of this function when it is
called with two positive integers. The use of stacks is a great aid in this tracing process.

This example illustrates that a recursive function may invoke itself even within
a statement assigning a value to the function. Similarly, we could have written the re-
cursive fact function more compactly as

int fact(int n)
{

return(n == 0?2 1 : n * fact(n-1));
} /% end fact #/

This compact version avoids the explicit use of local variables x (to bold the value
of n—1)and y (to hold the value of Jacr(x)). However, temporary locations are set aside
anyway for these two values upon each invocation of the function. These temporaries
are treated just as any explicit local variable. Thus, in tracing the action of a recursive

routine. it may be helpful to declare all temporary variables explicitly. See if it is any
easier to trace the following more explicit version of mul;-

Sec. 3.2 Recursionin C 129

int mult(int a, int b)
{

int ¢, d, sum;

if (b==1
return(a);
¢ = b-1;
d = muit(a, c);
sum = d+a;
return(sum);
} /% end mult */

Another point that should be made is that it is particularly important to check for
the validity of input parameters in a recursive routine. For example, let us examine the
execution of the facr function when it is invoked by a statement such as

printf("\n%d", fact(-1));

3

Of course, the fact function is not designed to produce a meaningful result for negative
input. However, one of the most important things for a programmer to learn is that
a function invariably will be presented at some time with invalid input and, unless
provision is made for such input, the resultant error may be very difficult to trace.

For example, when — | is passed as a parameter to fact, so that n equals — 1, x is set
to —2 and —2 is passed to a recursive call on fact. Another set of n, x, and y is allocated,
n is set to —2, and x becomes —3. This process continues until the program either runs
out of time or space or the value of x becomes too small. No message indicating the true
cause of the error is produced.

If fact were originally called with a complicated expression as its argument and
the expression erroneously evaluated to a negative number, a programmer might spend
hours searching for the cause of the error. The problem can be remedied by revising the
fact function to check its input explicitly, as follows:

int fact(int n)
{

int x, y; % .

if (n < 0) { ‘
printf("%s", "negative parameter in the factorial function");
exit(l);

} /% end if */
return(1);

X = n-1;

y = fact(x);

return(n * y);.

37t end fact */

130 - Recursion Chap. 3

Similarly, the function mult must guard against a nonpositive value in the second pa-
rameter.

Fibonacci Numbers in C

We now turn our attention to the Fibonacci sequence. A C program to compute
the nth Fibonacci number can be modeled closely after the recursive definition:

nt fib(int n)
{
int x, y;

if (n <= 1)
return(n);
x = fib(n-1);
y = fib(n-2);
return(x + y);
} /* end fib */

Let us trace through the action of this function in computing the sixth Fibonacci number.
‘You may compare the action of the routine with the manual computation we performed
in the last section to compute fib(6). The stacking process is illustrated in Figure 3.2.2.
When the program is first called, the variables n, x, and y are allocated, and 7 is set to
6 (Figure 3.2.2a). Since n > 1, n — 1 is evaluated and fib is called recursively. A new
~ .setof n, x, and y is allocated, and n is set to 5 (Figure 3.2.2b). This process continues
(Figure 3.2.2¢c-f) with each successive value of n being one less than its predecessor,
until fib is called with n equal to 1. The sixth call to fib returns 1 to its caller, so that the
fifth allocation of x is set to 1 (Figure 3.2.2g).

The next sequential statement, > = fib(n — 2), is then executed. The value of n
that is used is the most recently allocated one, which is 2. Thus we again call on fib
with an argument of 0 (Figure 3.2.2h). The value of 0 is immediately returned, so that
y in fib(2) is set to O (Figure 3.2.2i). Note that each recursive call results in a return to
the point.of call, so that the call of fib(1) feturns to the assignment to-x, and the call of
fib(0) returns to the assignment to y. The next statement to be executed in fib(2) is the
statement that returns x + y = 1 + 0 = 1 to the statement that calls fib(2) in the gen-
eration of the function calculating fib(3). This is the assignment to x, so that x in fib(3)
is given the value fib(2) = 1 (Figure 3.2.2j). The process of calling and pushing and
returning and popping continues until finally the routine returns for the last time to the
main program with the value 8. Figure 3.2.2 shows the stack up to the point where fib(5)
calls on fib(3), so that its value can be assigned to y. The reader is urged to complete
the picture by drawing the stack states for the remainder of the program execution.

This program illustrates that a recursive routine may call itself a number of times
with different arguments. In fact, as long as a recursive routine uses only local variables,
the programmer can use the routine just as he or she uses any other and assume that it
performs its function and produces the desired value. He or she need not worry about
the underlying stacking mechanism.

Sec. 3.2 Recursionsin C _) 131

n X y ' S (AR n x y n x ¥ BV K y
2 . .
3 - . 3 . L]
4 L4 L4 4 L] L] 4 L] .
5 L] . 5 - . 5 - . 5 . .
6 . Ll 6 . L3 6 - L] 6 - . 6 - -
(a) (b) (c) (d) (e)
)
n X ¥ n x y H L5 y n x y n X y
I .. - 0 - - Ly
2" X 2 1 * 2 1 . 2 Ji = @
3 - - 3 - . 3 - . 3 . . 3] .
4 . L 4 - - 4 - - 4 L L3 4 L .
5 . - s L] . 5 - - 5 . . 5 . .
6 . . 6 . . 6 . e 6 . . 6 . .
N (g) L th) (i) i
n X y n X y n x y n x ‘y n x y
l - . 'I L] -
3 1 L] 3 1 1 2 L] . 2 . L
4 - . 4 - L 4 2 L] 4 2 L] 4 2 .
S - . 5 - . s . . 5 . L] S . .
6 - . 6 . L 6 - - 6 . - 6 . -
(k) m (m) (n} (o)
n x ¥y n X y ' L ¥y n x y a x y
i
0 - .
2 .1 " 2 P PR
4 2 b 4 2 . 4 2 I 3 » ¥
S - i I 3 S S 3 5 W
6 - . 6, .* . 6 - 6 » 6 . .
- -
(p) (q) (14} i (1)

- Figure 3.2.2 The recursion stack of the Fibonacei function.

Binary Search in C

Let us now present a C program for the binary search. A function to do this accepts
an array @ and an element x -as input and returns the index i in @ such that ai] equals

X, or -1 if no such i exists. Thus the function binsrch might be invoked in a statement
such as

i = binsrch(a, x)

\ Recursion Chap. 3
132 :

However, in looking at the binary search algorithm of Section 3. as a model for a
recursive C routine, we note that two other parameters are passed in the recursive calls.
Lines 7 and 9 of that algorithm call for a binary search on only part of the array. Thus,
for the function to be recursive the bounds between which the array is to be searched
must also be specified. The routine is written as follows:

int binsrch(int a[], int X, int Tow, int high)
{
int mid;

if (low > high)
* return(-1);
mid = (low '+ high) / 2;
return(x == a[mid] ? mid : x < a[mid] ?
binsrch(a, x, low, mid-1) :
binsrch(a, x, mid+1, high));
} /% end binsrch %/

When binsrch is first called from another routine to search for x in an array de-
clared by

int a[ARRAYSIZE]

of which the first n elements are occupied. it is called by the statement

i = binsrch(a, x, 0, n-1);

You are urged 1o trace the execution of this routine and follow the stacking and
unstacking using the example of the preceding section, where a is an array of 8 elements
(n = 8) containing 1,3,4. 5,17, 18, 3. 33, in that order. The value being searched for
is 17 (x equals 17). Note that the array a is stacked for each recursive call. The values
of low and high are the lower and upper bounds of the array a, respectively.

In the course of tracing through the binsrch routine. you may have noticed that
the values of the two parameters @ and x do not change throughout its execution.
Each time that binsrch is called the same array is searched for the same element;
it is only the upper and lower bounds of the search that change. It therefore seems
wasteful to stack and unstack these two parameters each time the routine is called
recursively.

One solution is to allow @ and x to be global variables, declared before the program
by

int a[ARRAYSIZE];
int x; 5

The routine is called by a statement such as

i = binsrch(0, n-1)

Sec. 3.2 Recursion in C ; 133

In this case, all references to a and x are to the global allocations of a and x declared at
the beginning of the source file. This enables binsrch to access a and x without allocat-
ing additional space for them. All multiple allocations and freeings of space for these
parameters are eliminated.’

We may rewrite the binsrch function as follows:

int binsrch(int low, int high)
{
int mid;

if (low > high)
return(-1);. i
mid = (low + high) / 2;
return (x == a[mid] ? mid : x < a[mid] ? binsrch(low, mid-1) :

binsrch(mid+1, high));
} /* end binsrch */

Using this scheme, the variables a and x are referenced with the extern attribute and are
not passed with each recursive call to binsrch. a and x do not change their values and are
not stacked. The programmer wishing to make use of binsrch in a program only needs

to pass the parameters low and high. The routine could be invoked with a statement
such as -

i = binsrch(low, high);
Recursive Chains

A recursive function need not call itself directly. Rather, it may call itself indi-
rectly, as in the following examiple: .

a(formal parameters) b(formal parameters)
{
b(;"'QU"'EﬂtS): a(;rguments) :
} /rend 2/ } /*end bs/

In this example function a calls b, which may in turn call a, which may again call b.
Thus both a and b are recursive, since they indirectly call on themselves. However,
the fact that they are recursive is not evident from examining the body of either of the
routines individually. The routine a seems to be calling a separate routine b and it is
impossible to determine, by examining a alone, that it may call itself indirectly.

More than two routines may participate in a recursive chain. Thus a routine a
may call b which calls ¢, ... which calls z, which calls a. Each routine in the chain may

134
Recursion Chap. 3

potentially call itself and is therefore recursive. Of course, the programmer must ensure
that such a program does not generate an infinite sequence of recursive calls.

Recursive Definition of Algebraic Expressions

As an example of a recursive chain, consider the following recursive group of
definitions:

1. An expression is a term followed by a plus sign followed by a term, or a term
alone.

2. A term is a factor followed by an asterisk followed by a factor, or a factor alone.

3. A factor is either a letter or an expression enclosed in parentheses.

Before looking at some examples, note that none of the foregoing three items is
defined directly in terms of itself. However, each is defined in terms of itself indirectly. .
An expression is defined in terms of a term, a term in terms of a factor, and a factor in
terms of an expression. Similarly, a factor is defined in terms of an expression, which
is defined in terms of a term, which is defined in terms of a factor. Thus the entire set
of definitions forms a recursive chain.

Let us now give some examples. The simplest form of a factor is a letter. Thus
A B. C, Q. Z M are all factors. They are also terms, since a term may be a factor
alone. They are also expressions, since an expression may be a term alone. Since A is
an expression, (A) is a factor and therefore a term as well as an expression. A + B is
an example of an expression that is neither a term nor a factor. (A + B), however, is all
three. A * B is a term and therefore an expression, but it is not a factor. A * B + C is an
expression that is neither a term nor a factor, A * (B + C)is aterm and an expression
but not a factor.

Each of the foregoing examples is a valid expression. This can be shown by ap-
plying the definition of an expression to each of them. Consider, however, the string
A + =B. It is neither an expression, term, nor factor. It would be instructive for you
to attempt to apply the definitions of expression, term, and factor to see that none of
them describe the string A + *B. Similarly, (4 + B%)C and A + B + C are not valid
expressions according to the preceding definitions.

Let us write a program that reads and prints a character string and then prints
“valid” if it is a valid expression and “invalid” if it is not. We use three functions to
recognize expressions, terms, and factors, respectively. First, however, we present an
auxiliary function gersymb that operates on three parameters: str, length, and ppos. str
contains the input character string. length represents the number of characters in sr.
Ppos points to an integer pos whose value is the position in szr from which we last
obtained a character. If pos < length, getsymb returns the character str{pos] and incre-
ments pos by 1. If pos > = length, getsymb returns a blank. '

int getsynb(char str[], int length, int *ppos)
{

char c;

Sec. 3.2 RecursioninC - 135

if (*ppos < length)
¢ = str[*ppos];

else
="t
(*ppos)++;
return(c);
} /% end getsymb

ki §

The function that recognizes an expression is called expr. It returns TRUE (or 1)
if a valid expression begins at position pos of str and FALSE (or 0) otherwise. It also
resets pos to the position following the longest expression it can find. We also assume a
function readstr that reads a string of characters, placing the string in str and its length

in length.

Having described the functions expr and readstr, we can write the main routine
as follows. The standard library ctype.h mcludes a function xsalpha called by one of the

functions below,

#include <stdio.h>
#include <ctype.h>

#define TRUE 1
#define FALSE 0

#define MAXSTRINCSIZE 100

void readstr(char *, int);
int expr(char *, int, int *);

int term(char *,

int, dint *);

int getsymb(char *, int, int *);
int factor(char *, int, int *);

void main() -

{

char str[MAXSTRINGSIZE];
int length, pos;

readstr(str, &length);

pos = 0;

if (expr(str, length, &pos) == TRUE & pos >= length)

printf("%s",

A else

e

“valid");

printf("%s", "invalid™);
/* The condition can fail for one (or both) of two
/* reasons. If expr(str, length, &pos) ==
/* then there is no valid expression beginning at

FALSE

/¥ pos. If pos < length there may be a valid

/* expression starting at pos but it does not
% occupy the entire string.

} /* end main */

136

¥
i}
*/
*/
4
*

Chap. 3

The functions facror and term are much like expr except that they are responsible
for recognizing factors and terms, respectively. They also reposition pos to tht position
following the longest factor or term within the string str that they can find.

The code for these routines adheres closely to the definitions given earlier. Each
of the routines attempts to satisfy one of the criteria for the entity being recognized. If
one of these criteria is satistied. TRUE is returned. If none of these criteria are satisfied,
FALSE is returned. i

int expr(char str(], int length, int *ppos)

{
Vi look for a term ®/
if (term(str, length, ppos) == FALSE)
return(FALSE); ’
VA We have found a term; Took at the L
/% next symbol. b/}

if (getsymb(str, length, ppos) != '+') {
/* We have found the longest expression */
/* (a single term). Reposition pos so it */

A refers to the last position of ¥/
7 the expression. &/
(*ppos)--;

return(TRUE) ;

} /* end if 2/
/* At this point, we have found a term and a */
/¥ plus sign. We must look for amother term. */
return(term(str, length, ppos));

} /* end expr */

The routine rerm that recognizes terms is very similar, and we present it without
comments.

int term(char str], int length, int *ppos)

if (factor(str, length, ppos) == FALSE)
return(FALSE) ;

if (getsymb(str, length, ppos) != '#') {
(*ppos)--;
return(TRUE);

} /* end if %/

return(factor(str, length, ppos));

} /* end term %/

The function factor recognizes factors and should now be fairly straightforward.
It uses the common library routine isalpha (this function is contained in the library

ctype.h), which returns nonzero if its character parameter is a letter and zero (or FALSE)
otherwise.

Sec. 3.2 Recursion in C 137

int factor(char str[], int length, int *ppos)
{

int ¢

if ((c = getsymb(str, length, ppos)) != '(")
return(isalpha(c));
return(expr(str, length, ppos) &

getsymb(str, length, ppos) == ')');
} /* end factor */ .

All three routines are recursive, since each may call itself indirectly. For example,
if you trace through the actions of the program for the input string

“axb+ cxd) + (e*(f) + g),” you will find that each of the routines expr; rerm, and
facror calls on itself,

EXERCISES

3.2.1. Determine what the following recursive C function computes. Wmc an iterative function
to accomplish the same purpose. N

int func(int n)

if (n == 0)
return(0);
return(n + func(n-1));
} /* end func */

3.2.2. The Cexpressionm % n yields the remainder of m upon division by . Define the greatest
common divisor (GCD) of two integers x and v by

gcd(x,y) =y if (y<=x8 x%y==0)
ged(x,y) = gcd(y,x) if (x<y)
ged(x,y) = ged(y, x % y) otherwise

Write a recursive C function to compute ged(x.y). Find an iterative method for computing
this function.
3.2.3. Let comm(n.k) represent the number of different commitiees of & people that can be
formed. given n people from whom to choose. For example, comm(4,3) = 4, since given

four people A. B, C. and D there are four possible three-person committees: ABC, ABD,
ACD. and BCD. Prove the identity:

comm(n,k) = comm(n - 1,k) + comm(n - 1,k - 1)
Write and test a recursive C program to compute comm(n.k) forn, k >= 1.

3.2.4. Define a generalized fibonacci sequence of {0 and f 1 as the sequence gfib(£0, f1,0).
O L1, g ib(f0,£1.2). where

138 Recursion Chap. 3

3.2.5.

3.2.6.

gfib(f0, f1, 0) = f0
gfib(f, f, 1) = fl- '
gfib(f0, f1, n) = gfib(f, f1, A - 1)
+ gfib(f, fl, n:2) ifn>1

Write a recursive C function to compute gfib(f0, f1,n). Find an iterative method for
computing this function. b

Write a recursive C function to compute the number of sequences of n binary digits that
do not contain two 1s in a row. (Hint: Compute how many such sequences exist that start
with 0, and how many exist that start with a I.).

An order n matrix is an n X n array of numbers. For example,

3)
isal X | marrix,
1 3
-2 8
is a2 X 2 matrix and
| 3 4 6
2 -5 0 8
3 7 6 4
2 0 9 -1

is 2 4 X 4 matrix. Define the m zzor of an element x in a matrix as the submatrix formed’
by deleting the row and column containing x. In the preceding example of a 4 X 4 matrix,
the minor of the element 7 is the 3 X 3 matrix

14 6
2 0 8
2 9 =l

Clearly the order of a minor of any element is 1 less than the order of the original matrix.
Denote the minor of an element a[i,j] by minor(a(ij]). ‘

Define the determinant of a matrix a (written det(a)) recursively as follows:

1. Ifaisal X | matrix (x), der(a) = x.
2. If a is of an order greater than |, compute the determinant of u as follows:

(a) Choose any row or column. For each element a[ij] in this row or column form the
product

power(-1,7 +) * ali,j] * det(minor(ali,j1))

where i and j are the row and column positions f the element chosen, ali,] is the
element chosen, ded{(minor(alij])) is the determinant of the minor of aliy], and
power(m,n) is the value of m raised to the nth power.

{(b) der(a) = sum of all these products.
(More concisely, if n is the order of a,

Exercises 139

det(a) = Zpower(-l, i+ 7)) * a[i,j] * det(minor(a[i,}])), for any j

or

-

det(a) = > power(-1, i + j) * ali,7] * det(minor(al 1,71)), for any 7).
J

Write a C program that reads «, prints @ in matrix form, and prints the value of det(a),
where det is a function that computes the determinant of a matrix. _

3.2.7. Write a recursive C progre : to sort an array q as follows:

1. Letk be the index of the middle element of the array.
2. Sort the elements up to and including afk].

3. Sort the elements past a[k].

4. Merge the two subarrays into a single soried array.

This method is called a merge sort.

3.2.8. Show how 1o transform the following iterative procedure into a recursive procedure. f{i)
is a function returning a logical value based on the value of i, and g(i) is a function that
returns a value with the same attributes as /. =

void iter(int n)
{

int 1;

1= n;
while(f(i) == TRUE) {
/* any group of C statements that *
/* does not change the value of i
i =g(i);
} /* end while */
} /% end iter */

*
S~

3.3 WRITING RECURSIVE PROGRAMS

In the last section we saw how to transform a recursive definition or algorithm into a
C program. It is a much more difficult task to develop a recursive C solution to a prob-
lem specification whose algorithm is not supplied. It is not only the program but also
the original definitions and algorithms that must be developed. In general. when faced
with the task of writing a program to solve a problem there is no reason to look for
a recursive solution. Most problems can be solved in a straightforward manner using
nonrecursive methods. However, some problems can be solved logically and most el-
cgantly by recursion. In this section we shall try to identify those problems that can
be solved recursively. develop a technique for finding recursive solutions, and present
some examples.

Let us reexamine the factorial function. Factorial is probably a prime-example of a
problem that should not be solved recursively. since the iterative solution is so direct and

140 Recursion Chap. 3

simple. However, let us examine the elements that make the recursive solution work.
First of all, we can recognize a large number of distinct cases to solve. That is, we want
to write a program to compute 0!, 1!, 2!, and so on. We can also identify a “trivial” case
for which a nonrecursive solution is directly obtainable. This is the case of 0!, which
is defined as 1. The next step is to find a method of solving a “complex™ case in terms
of a “'simpler” case. This allows reduction of a complex problem to a simpler problem.
The transformation of the complex case to the simpler case should eventually result in -
the trivial case. This would mean that the complex case is ultimately defined in terms
of the trivial case. ' 3

Let us examine what this means when applied to the factorial function. 4! is a*”
more “complex™ case than 3!. The transformation that is applied to the number 4 to
obtain the number 3 is simply the subtraction of 1. Repeatedly subtracting 1 from 4
eventually results in 0, which is a “trivial” case. Thus if we are able to define 4! in
terms of 3!, and in general n! in terms of (n — 1)!, we will be able to compute 4! by
first working our way down to 0! and then working our way back up to 4! using the

definition of n! in terms of (n — 1)!. In the case of the factorial function we have such
a definition, since

nl=n*{n-1)!

Thus4! = 453! =4x3%x2! = 4*3x2 %! =4%3 2% | %0 =4%3%x2x]%
1 =24. _

These are the essential ingredients of a recursive routine—being able to define
a “‘complex™ case in terms of a “simpler” case and having a directly solvable (nonre-
cursive) “trivial” case. Once this has been done, one can develop a solution using the
assumption that the simpler case has already been solved. The C version of the factorial
function assumes that (n — 1)! is defined and uses that quantity in computing n'.

Let us see how these ideas apply to other examples of the previous sections. In
defining a * b, the case of & = 1 is trivial, since in that case, a * b is defined as a. In
general, a * b may be defined in terms of a * (b — 1) by the definitiona * b = a = (b
— 1) + a. Again the complex case is transformed into a simpler case by subtracting
1, eventually leading to the trivial case of b = 1. Here the recursion is based on the
second parameter, b, alone.

In the case of the Fibonacci function, two trivial cases were defined: fib(0) = 0
and fib(1) = 1. A complex case, fib(n), is then reduced to two simpler cases: fib(n — 1)
and fib(n — 2). It is because of the definition of fib(n) as fib(n — 1) + fib(n — 2) that two
trivial cases directly defined are necessary. fib(1) cannot be defined as fib(0) + fib(—1),
because the Fibonacci function is not defined for negative numbers.

The binary search function is an interesting case of recursion. The recursion is
based on the number of elements, in the array that must be searched. Each time the
routine is called recursively; the number of elements to be searched is halved (approxi-
mately). The trivial case is the one in which there are either no elements to be searched
or the element being searched for is at the middle of the array. If low > high, the first
of these two conditions holds and — 1 is returned. If x=a|mid], the second condition
holds and mid is returned as the answer. In the more complex case of high — low + |
elements to be searched, the search is reduced to taking place in one of two subregions.

Sec. 3.3 Writing Recursive Programs ‘ ; 141

1. The lower half of the array from low to mid — }
2. The upper half of the array from mid + 1 to high

Thus a complex case (a large area to be $earched) is reduced to a simpler case (an
area to be searched of approximately half the 'size of the original area). This eventually

-reduces to a comparison with a single element (a[mid]) or a search within an array of
no elements.

The Towers of Hanoi Problem

“Thus far we have been looking at recursive definitions and examining how they
fit the pattern we have established. Let us now look at a problem that is not specified in
terms of recursion and see how we can use recursive techniques to produce a logical and
elegant solution. The problem is the “Towers of Hanoi” problem whose initial setup is
shown in Figure 3.3.1. Three pegs, A, B, and C, exist. Five disks of differing diameters
are placed on peg A so that a larger disk is always below a smaller disk. The object is
to move the five disks to peg C, using peg B as auxiliary. Only the top disk on any peg
may be moved to any other peg, and a larger disk may never rest on a smaller one. See
if you can produce a solution. Indeed, it is not even apparent that a solution exists.

Let us see if we can develop a solution. Instead of focusing our attention on a

" solution for five disks, let us consider the general case of n disks. Suppose that we had a

. solution for 2 ~ 1 disks and could state a solution for n disks in terms of the solution for

n = 1 disks. Then the problem would be solved. This is true because in the trivial case

of one disk (continually subtracting 1 from n will eventually produce 1}, the solution

- is simple: merely move the single disk from peg A to peg C. Therefore we will have

developed a recursive solution if we can state a solution for n disks in terms of n — 1.

See if you can find such a relationship. In particular, for the case of five disks, suppose

that we knew how to move the top four disks from peg A to another peg according to

the rules. How could we then complete the job of moving all five? Recall that there are
three pegs available.

Suppose that we could move four disks from peg A to peg C. Then we could move

them just as easily to B, using C as auxiliary. This would result in the situation depicted

- in Figure 3.3.2a. We could then move the largest disk from A to C (Figure 3.3.2b) and

finally again apply the solution for four disks to move the four disks from B to C, using

B .

Figure 3.3.1 Initial setup of the Towers of Hanoi.

142 : Recursion Chap. 3

(a)

i
4 g__:%L
=\

(b)

>
=

(<)

Figure 3.3.2 Recursive solution to the Towers of Hanoi.

the now empty peg A as an auxiliary (Figure 3.3.2¢). Thus, we may state a recursive
solution to the Towers of Hanoi problem as follows:

To move n disks from A to C, using B as auxiliary:

L Ifn == 1, move the single-disk from A to C and stop.

2. Move the top » — 1 disks from A to B, using C as auxiliary.
3. Move the remaining disk from A to C.

4. Move the n — 1 disks from B to C, using A as auxiliary.

Sec. 3.3 Writing Recursive Programs 143

We are sure that this algorithm will produce a correct solution for any value of
nlfn == i, step I will result_in the correct solution. If n == 2, we know that we
already have a solution forn — | == 1, so-that steps 2 and 4 will perform correctly.
Similarly, whenn == 3, we already have produced a solution forn = | == 2, so that
steps 2 and 4 can be performed. In this fashion, we can show that the solution-works
forn == |, 2 3,4,5 ...upto any value for which we desire a solution, Notice that
we developed the solution by identifying a trivial case (n == 1) and a solution for a
general complex case () in terms of a simpler case (n — 1),

How can this solution be converted into a C program? We are no longer dealing
with a mathematical function such as factorial, but rather with concrete actions such as
“move a disk.” How are we to represent such actions in the computer? The problem is
not completely specified. What are the inputs to-the program? What are its outputs to
be? Whenever you are told to write a program, you must receive specific instructions
about exactly what the program is expected to do. A problem statement such as “Solve
the Towers of Hanoi problem™ is quite insufficient. What is usually meant when such
a problem is specified is that not only the program but also the inputs and outputs must
be designed, so that they reasonably correspond to the problem description.

The design of inputs and outputs is an important phase of a solution and should
be given as much attention as the rest of a program. There are_two -reasons for this.
The first is that the user (who must ultimately evaluate and pass Judgment on your
work) will not see the elegant method that you incorporated in your program but will
struggle mightily to decipher the outputor to adapt the input data to your particular input
conventions. The failure to agree early on input and output details has been the cause of
much grief to programmers and users alike. The second reason is that a slight change
in the input or output format may make the program much simpler to design. Thus,
the programmer can make the job, much easier if he or she is able to design an input
or output format compatible with the algorithm. Of course these two considerations,
convenience to the user and convenience to the programmer, often conflict sharply, and
some happy medium must be found. However, the user as well as the programmer must
be a full participant in the decisions on input and output formats. ‘

Let us, then, proceed to design the inputs and outputs for this program. The only
input needed is the value of n, the number of disks. At least that may be the program-
mer’s view. The user may want the names of the disks (such as “red.” “blue,” “green,”
and so forth) and perhaps the names of the pegs (such as “left.” “right,” and “middle”)
as well. The programmer can probably convince the user that naming the disks 1, 2, 3,

- »nand the pegs A, B, Cis just as convenient, If the user is adamant, the programmer
can write a small function to convert the user's names 10 his or her own and vice versa.

A reasonable form for the output would be a list of statements such as

move disk nnn from peg yyy to peqg zzz

where nnn is the number of the disk to be moved. and yvy and zz: are the names of the
pegs involved. The action to be taken for a solution would be to perform each of the
output statements in the order that they appeur in the output.

The programmer then decides to write a subroutine Towers (being purposely vague

" about the parameters at this point) to print the aforementioned output. The main program
vould be

Recursion Chap. 3
144

void main() .
int n;

scanf("%d", &n);
towers(parameters);
}* end main *+/

-Let us assume that the user will be satisfied to name the disks 1, 2,3, »n

3 =y)y

and the pegs A, B, and C. What should the parameters to towers be? Clearly, they

using a recursive call to rowers. Thus, on the recursive call, the first parameter to
towers will be n — 1. But this implies that the top n ~ | disks are numbered 1, 2,
3,n = 1 and that the smallest disk is numbered 1. This is a good example of
programming convenience determining problem representation. There is no a priori
reason for labeling the smallest disk 1; logically the largest disk could have been la-
beled | and the smallest disk n. However, since it leads to a simpler and more di-
rect program, we choose to label the disks so that the smallest disk has the smallest
number.

What are the other parameters to towers? At first glance, it might appear that
no additional parameters are necessary, since the pegs are named A, B, and C by
default. However, a closer look at therecursive solution leads us to the realization
that on the recursive calls disks will not be moved from A to € using B as auxil-
iary but rather from A to B using C (step 2) or from B 1o € using A (step 4), We
therefore include three more paramelters in fowers. The first, frompeg, represents
the peg from which we are removing disks; the second, fopeg, represents the peg
to which we will take the disks; and the third, au.\-pég. represents. the auxiliary peg. .
This situation is one which is quite typical of recursive routines; additional parame-
ters are necessary to handle the recursive call situation. We already saw one exam-
ple of this in the binary search program where the parameters low and high“were
necessary.

The complete program to solve the Towers of Hanoi problem, closely following
the recursive solution, may be written as follows:

#include <stdio.h»
void towers(int, char, char, char);
void main()

int n;

sca-nf("%d", &n);

towers(n, 'A', 'C', 'B');

}/* end main */

Sec. 3.3 Writing Recursive Programs 145

void towers(int n, char frompeg, char wopeg char auxpeg)
{ :

/* If only one disk, make the move and retyrn, */

printf("\nXsXcXsXc", "move disk 1 from peg ", frompeg, " to peg ", topeg); -
return;)

} /* end if %/

/* Move top n-1 disks from A to B, using C as */

4 auxiliary */

towers(n-1, frompeg, auxpeg, topeg);

id move remaining disk from A to C */

printf("\nXsXdXsXcXs¥c", "move disk ", n, " from peg ",
frompeg, “ to peg “, topeg);
/* Move n-1 disk from B to C using A as */
/*) auxiliary */
towers(n-1, auxpeg, topeg, frompeg);
}/* end towers */ -

£ Trace the actions of the foregoing program when it reads the value 4 for n. Be
* careful to keep track of the changing values of the paramelers frompeg, auxpeg, and
topeg. Verify that it produces the following output: =

move disk 1 from peg A to peg B

move disk 2 from peg A to peg C
move disk 1 from peg B to peg C
move disk 3 from peg A to peg B
move disk 1 from peg C to peg A
J"'move disk 2 from peg C to peg 8
move disk 1 from peg A to peg B
move disk 4 from peg A to peg
meve disk 1 from peg B to peg C
move disk 2 from peg B to peg A
move disk 1 from peg C to peg A
move disk-3 from peg B to peg C
move disk 1 from peg A to peg B
move disk 2 from peg A to peg €
move disk 1 from peg B to peg C

Verify that the foregoing solution actvally works and does not violate any of the rules.
Transiation from Prefix to Postfix Using Recursion

Let us examine another problem for which the recursive soiution is the most
direct and elegant one. This is the problem of converting a prefix expression to post-
fix. Prefix and postfix notation were discussed in the last chapter. Briefly, prefix and
postfix notation are methods’of writing mathematical expressions without parentheses.
In prefix notation each operatér immediately precedes its operands. In postfix notation

Recursion Chap. 3
146

cach operator immediately follows its operands. To refresh your memory, here are

a few conventional (infix) mathematical expressions with their prefix and postfix
equivalents:

infix prefix postfix
A+ B +AB AB+
A+RB+C +A* BC ABC+ +
A*(B+) *A + BC ABC + »
AsB+C +*ABC AB+C+
A+BsC+D—E*F =~ 4+ +A*BCDsEF ABC*» +D 4+ EF e -

(A+B)»(C+D-E)*F **+AB - +CDEF ' AB+CD + E - sFs

-

The most convenient way to define postfix and prefix is by using recursion. As-
suming no constants and using only single letters as variables, a prefix expression is
a single letter, or an operator followed by two prefix expressions. A postfix expression

. may be similarly defined as a single letter, or os an operator preceded by two postfix
expressions. The above definitions assume that all operations are binary—that is, that
each requires two operands. Examples of such operations are addition, subtraction, mul-
tiplication, division, and exponentiation. It is easy to extend the preceding definitions
of prefix and postfix to include unary operations siich as negation or factorial, but in the
interest of simplicity we will not do so here. Verify that each of the above prefix and
postfix expressions are valid by showing that they satisfy the definitions and make sure
that you can identify the two operands of each operator. .

We will put these recursive definitions to use in a moment, but first let us return to
our problem. Given a prefix expression, how can we convert it into a postfix expression?
We can immediately identify a trivial case: if a prefix expression. consists of only a
single variable, that expression is its own postfix equivalent. That is, an expression
such as A is valid as both a prefix and a postfix expression.

Now consider a longer prefix string. If we knew how to convert any shorter prefix
string 10 postfix, could we convert this longer prefix string? The answer is yes, with
one proviso. Every prefix string longer than a single variable contains an operator, a
first operand, and a second operand (remember we are assuming binary operators only).
Assume.that we are able to identify the first and second operands, which are necessarily
shorter than the original string. We can then convert the long prefix string to postfix
by first converting the first operand to postfix, then converting the second operand to
postfix and appending it to the end of the first converted operand, and finally appending
the initial operator to the end of the resultant string. Thus we have developed a recursive
algorithm for converting a prefix string to postfix, with the single provision that we must
specify a method for identifying the operands in a prefix expression: We can summarize
our algorithm as follows:

L. If the prefix string is a single variable, it is its own postfix equivalent.
2. Let op be the first operator of the prefix string.
3. Find the first operand, opnd|1, of the string. Convert it to postfix and call it post].

Sec.3.3 Writing Recursive Programs 147

4. Find the second operand, opnd2, of the string. Convert it to postfix and call it
post2,

5. Concatenate postl, post2, and op.

One operation that will be required in this program is that of concatenation. For
example, if two strings represented by « and b represent the stnngs “abcde” and “xyz”
respectively, the function call

strcat(a, b)

places into a the string “abcdexyz” (that is, the string consisting of all the elements of a
followed by all the elements of b). We also require the functions strlen and substr. The
function strlen(str) returns the length of the string str. The substr(sl,ij,s2) function
sets the string s2 to the substring of s1, starting at position i containing j characters.
For example, after executing substr(*abcd”,1,2,s), s equals “bc”. The functions streat,
strlen, and substr are usually standard C string library functions.

Before transforming the conversion algorithm into a C program, let us examine
its inputs and outputs. We wish to write a procedure convert that accepts a character
string. This string represents a prefix expression in which all variables are single letters
and the allowable operators are ‘+’, ‘=", “+', and */*. The procedure produces a string
that is the postfix equivalent of the preﬁx parameter. £

Assumeé'the existence of a function find that accep.s a string and returns an integer
that is the length of the longest prefix expression contained within the input string that
starts at the beginning of that string. For example, find (“A + CD”) réturns |, since “A"”
is the longest prefix string starting at the beginning of “A + CD". find(“+ * ABCD +
GH™) returns 5, since “+ * ABC™ is the longest prefix string starting at'the beginning
of “+ = ABCD + GH™. If no such prefix string exists within the input string starting at
the beginning of the input string, find returns 0. (For example, find (“** + AB”) returns’
0.) This function is used to identify the first and second operands of a prefix operator.
convert also calls the library function‘isalpha, which determines if its parameter is a

letter. Assuming the existence of the function find, a conversign routine may be written
as follows.

void convert (char prefix[], char postfix[])
{ : LE
* char opnd1[MAXLENGTH], opnd2[MAXLENGTH]; .
char post1[MAXLENGTH], post2[MAXLENGTH];
char temp[MAXLENGTH] ;
char op[1];
int length;
et i, gm0

if ((length = strlen(prefix)) == 1) {
if (isalpha(prefix[0])) {
/* The prefix string is a single letter. */
postfix[0] = prefix[0];

1498 Recursion Chap. 3

postfix[1] = '\0';
return; - .
} /*end if */ i]
pri ntf("\nillegal .prefix string");
exit(l); e o
3 /* end if */
/* The prefix string is Tonger than a single */
/* character. Extract the operator and the v/
/* two operand Tengths. ‘ L
op[0] = prefix[0];
op[1] = "\0';
substr(prefix, 1, length-1, temp);
m = Find(temp); Y
substr(prefix, m + 1, length-m-1, temp) ;
n = find(temp); V)i 08Q :
if ((op[0] != '+' && op[0] != ' & op[0] 1= "' && op[0] 1= /")
[T (M ==0)..1| (n==0) Lk (m+ns 1= Tlength)) {
printf("\nillegal prefix string"); > 03
exit(l); '
} /% end if %/
substr(prefix, 1, m, opndl);
substr(prefix, m1, n, opnd2); i
convert(opndl, postl);
convert(opnd2, post2):
strcat(postl, post2);
strcat(postl, op); 3
substr(postl, 0, length, postfix);
}/* end convert */.

Note that several checks have been incorporated into convert to ensure that the
parameter is a valid prefix string. One of the most difficult classes of errors to detect are
those resulting from invalid inputs and the programmer’s neglect to check for validity.

We now turn our attention to the function find, which accepts a character string and
a starting position and returns the length of the longest prefix string that is contained
in that input string starting at that position. The word *“longest” in this definition is
superfluous, since there is at most one substring starting at a given position of a given
string that is a valid prefix expression. .

We first show that there is at most one valid prefix expression starting at the
beginning of a string. To see this.'note that it is trivially true in a string of length 1. As-
sume that it is true for a short string. Then a long string that contains a prefix expression
as an initial substring must begin with either a variable, in which case that variable is
the desired substring. or with an operator. Deleting the initial operator, the remaining
string is shorter thin the original string and can therefore have at most a single initial
prefix expression. This expression is the first operand of the initial operator. Similarly,
the remaining substring (after deleting the first operand) can only have a single initial
substring that is a prefix expression. This expression must be the second operand. Thus
we have uniquely idgmitied the operator and operands of the prefix expression starting

‘Sec.3.3 Writing Recursive Programs 149

at the first character of an arbitrary string, if such an expression exists. Since there is
at most one valid prefix string starting at the beginning of any string, there is at most
one such string starting at any position of an arbitrary string. This is obvious when we
consider the substring of the given string starting at the given position.

Notice that this proof has given us a recursive method for finding a prefix expres-
sion in a string. We now incorporate this method into the function find:

iat find(cher str(])
{

char temp[MAXLENGTH) ;
int length;)
int i, j, @, n;

if ((length = strlen(str)) == 0)
retern (0);
if (isalpha(str[0]) != 0)
/* -First character is a letter. */
/* That letter is the initial */
¥ il substring. *f
return (1);
/* otherwise find the first operand */
if (strlen(str) < 2)
retura (0); ;
substr(str, 1, length-1, temp);
-m = find(temp);
if (m== 0 || strien(str) ==m)
/* no valid prefix operand or */
1 no second operand */
- raturn (0);
substr(str, m+1, length-u-1, temp);
n = find(temp);
if (n == 0)
" ratern (0);
return (m+n+l);
} /* end find */

Make sure that you understand how these routines work by tracing their actions
on both valid and invalid prefix expressions. More important, make sure that you un-
derstand how they were developed and how logical analysis led to a natural recursive
solution that was directly translatable into a C program.

EXERCISES

3.3.1. Suppose that another provision were added to the Towers of Hanoi problem: that one
disk may not rest on another disk that is more than one size larger (for example, disk
| may only rest on disk 2 or on the ground, disk 2 may only rest on disk 3 or on the
ground, and so on). Why does the solution in the text fail to work? What is faulty about
the logic that led to it under the new rules?

i Recursion Chap. 3

3.33.

3.34.

3.3,

3.3.6.

33.7.

3.38.

3.39.

Prove that the number of moves performed by towers in moving n disks equals 2" — 1.
Can you find a method of solving the Towers of Hanoi problem in fewer moves? Either
find such a method for some n or prove that none exists.

. Define a postfix and prefix expression to include the possibility of unary operators.

Write a program to convert a prefix expression possibly containing the unary negation
operator (represented by the symbol ‘@’) to postfix.

Rewrite the function find in the text so that it is nonrecursive and computes the length
of a prefix string by counting the number of operators and single-Ictter operands.
Write a recursive funciion that accepts a prefix expression consisting of binary opera-
tors and single-digit integer operands and returns the valuc of the expression.
Consider the following procedure for converting a prefix expression to posifix. The
routine would be called by conviprefix.posifix).

_void conv(char prefix[], char postfix([])
{
char first[2);
char t1{MAXLENGTH], t2{MAXLENGTH];

first(0] = prefix[0];

first{l] = '\0';

substr(prefix, 1, strien(prefix) - 1, prefix);

i€ (First[0]) == '+' || first[V) == '=' || first{0) == '-' ||

L first[0) == '/*) {

conv(prefix, tl);
conv(prefix, t2);
strcat(tl, t2);
strcat(tl, first);
substr(tl, 0, strien(tl), postfix);
return;

} /* end if */

postfix[0] = first[0];

postfix[1] = '\0';

} /* end conv */

Explain how the procedure works. Is it better or worse than the method of the text?
What happens if the routine is called with an invalid prefix string as input? Can you
incorporate a check for such an invalid string within convert? Can you design such a

check for the calling program after convert has returned? What is the value of n after
convert returns?

Develop a recursive method (and program it) to compute the number of different ways
in which an integer & can be written as a sum, each of whose operands is less than n.
Consider an array « containing positive and negative integers. Define contigsum(i,j)
as the sum of the contiguous elements ali) through al;] for all array indexes i<=j.
Develop a recursive procedure that determines i and j such that conrigsum(i,j) is max-
imized. The recursion should consider the two halves of the array «.

Write a recursive C program to find the kth smallest element of an array « of numbers

by choosing any element a[i] of « and partitioning « into those elements smaller than,
equal to, and greater than ali].

Exercises 151

3.3.10.

152

The eight-queens problem is 1o place eight queens on a chessboard so, that no queen is
attacking any other queen. The following is a recursive program to solve the problem.
board is an eight by eight array'that represents a chessboard. board[i][j| == TRUE
if there is a queen at position [f][j], and FALSE otherwise. good() is a function that
returns TRUEif no two queens on the chéssboard are attacking each other and FALSE

otherwise. At the end of the program, the routine drawboard() displays a solution t6
the problem. R 8

#define TRUE 1
#define FALSE 0

int try(int);
void drawboard(void):

static short int board (8] (8]:

void main()
{

int i, i

for(i=0; i<8; i++)
for(j=0; j<B; j++)
board(i](j] = FALSE;
if (try(0) == TRUE)
drawboard();
}/* end main */

int try(int n)
}
int 1i;

for(i=0; i<8; i++) {
board(n][i] = TRUE;
if (n == 7-8& good() == TRUE)
return(TRUE);
if (n < 7 & good() == TRUE && try(n+l) == TRUE)
return(TRUE) ;
board[n][i] = FALSE;
} /* end for */
return(FALSE);
} /% end try */

The recursive function try returns TRUE if it is possible, given the board at the time
that it is called, to add queens in rows n through 7 to achieve a solution. Iry returns
FALSE if there is no solution that has queens at the positions in board that already
contain TRUE. If TRUE is returned, the function also adds queens in rows through 7
to produce a solution. Write the foregoing functions good and drawboard, and verify
that the program produces a solution. (The idea behind the solution is as follows: board
represents the global situation during an attempt to find a solution. The next step toward
finding a solution is chosen arbitrarily (place a queen in the next untried position in row

Recursion Chap. 3

n). Then recursively test whether it is possible to produce a solution that includes that
step. If it is, return. If it is not, backtrack from the altempled next step—board|n}]i] = -

‘ FALSE—and try another possibility. (This method is called backtracking.) ;

3.3.11. A 10 x 10 array maze of Os and Is represents a maze in which a traveler must find
a path from maze[0j[0] to maze[9)[9). The traveler may move from a square into any
adjacent square in the same row or column, but may not skip over any squares or move
diagonally. In addition, the traveler may not move into any square that contains a 1.
maze[0][0] and maze[9][9] conwin Os. Write 4 routine which accepts such a maze and
either prints a message that no path through the maze exjsts or which prints a list of
positions representing a path fiom [0][0] to [9][9]. .y

3.4 SIMULATING RECURSION

In this section we examine more closely some of the mechanisms used to implement re-
cursion so that we can simulate these mechanisms using nonrecursive techniques. This
activity is important for scveral reasons. First of all. many commonly used program-
ming languages (such as FORTRAN, COBOL. and many machine Janguages) do not
allow recursive programs. Problems such as the Towersiof. Hanoi and prefix-to-postfix
conversion, whose solutions can be derived and stated quite simply using recursive
techniques, can be programmed in these langiages by simulating the recursive solu-
tion using more elementary operations. if we know that the recursive solution is correct
(and it is often- fairly easy to prove such a solution correct) and we have established
techniques for converting a recursive solution to a nonrecursive one, we can create a
correct solution in a nonrecursive language. It is not uncommon for a programmer to be
able to state a recursive solution to a problem. The ability to generate a nonrecursive
solution from a recursive algorithm is indispensable when using a compiler that does
not support recursion. : ' ks

Another reason for examining the implemeritation of recursion is that it will allow
us to understand the implications of recursion and some of its hidden pitfalls. Although
these pitfalls do not exist in mathematical definitions that employ recursion, they seem
to be an inevitable accompaniment of an implementation in a real language on a real
machine.

Finally, even in a language such as C that does support recursion, a recursive
solution to a problem i often more expensive than a nonrecursive solution, both in
terms of time and space. Frequently, ihis expense is a small price to pay for the logical
simplicity and self-documentation of the recursive solution. However, in a production
program (such as a compiler, for example) that may be run thousands of times, the
recurrent expense is a heavy burden on the system's limited resources. Thus, a program
may be designed to incorporate a recursive solution in order to reduce the expense of
design and certification, and then carefully converted to a nonrecursive version to be
put into actual day-to-day use. As we shall see. in performing such a conversion it is
often possible to identify parts of the implementation of recursion that are superfluous
in a particular application and thereby significantly reduce the amount of work that the
program must perform. :

Before examining the actions of a recursive routine, let us take a step back and
examine the action of a nonrecursive routine. We will then be able to see what mech-

Sec. 3.4 Simulating Recursion 153

anisms must be added to support recursion. Before proceeding we adopt the following
convention. Suppose that we have the statement

rout(x);
where rour is defined as a function by the header

rout(a)

x is referred 10 as an argument (of the calling function). and a is referred to as a pa-
rameter (of the called function).

What happens when a function is called? The action of calling a function may be
divided into three parts:
1. Passing arguments
2. Allocating and initializing local variables
3. Transferring control to the function

Let us examine each of these three steps in turn.

1. Passing arguments. For a parameter in C, a copy of the argument is made
locally within the function, and any changes to the parameter are made to that local
copy. The effect of this scheme is that the original input argument cannot be altered. In
this method, storage for the argument is allocated within the data area of the function.

2. Ailocating and initializing local variables. After arguments have been
passed. the local variables of the function are allocated. These local variables include all
those declared directly in the function and any temporaries that must be created during
the course of execution. For example, in evaluating the expression

X+y+2

a storage location must be set aside to hold the value of x + y so that z can be added to

it. Another storage location must be set aside to hold the value of the entire expression
. after it has been evaluated. Such locations are called temporaries, since they are needed
- only temporarily during the course of execution. Similarly, in a statement such as

x = fact(n)

L

a temporary must be set aside to hold the value of fact(n) before that value can be
assigned to x.

3.Transferring control to the function. At this point control may still not be
passed to the function because provision has not yet been made for saving the return
address. If a function is given control, it must eventually restore control 10 the calling
routine by means of a branch. However, it cannot execute that branch unless it knw@_&

o4 Recursion Chap. 3

the location to which it must return. Since this location is within the calling routine
and not within the function, the only way that the function can know this address is to
have it passed as an argument. This is exactly what happens. Aside from the explicit
- arguments specified by the programmer, there is also a set of implicit arguments that
contain information necessary for the function to execute and retum correctly. Chief
among these implicit arguments is the return address. The function stores this address
within its own data area. When it is ready to return control to the calling program, the
function retrieves the return address and branches to that location.
Once the arguments and the retum address have been passed, control may be
transferred to the function, since everything required has been done to ensure that the
function can operate on the appropriate data and then return to the calling routine safely.

Return from a Function

When a function returns, three actions are performed. First, the return address is
retrieved and stored in a safe location. Second. the function's data area is freed. This
data area contains all local variables (including local copies of arguments), temporaries,
and the return address. Finally, a branch is taken to the return address, which had been
previously saved. This restores control to the calling routine at the point immediately
following the instruction that initiated the call. In addition, if the function returns a
value, that value is placed in a secure location from which the calling program may
retrieve it. Usually this location is a hardware register that is set aside for this purpose.

Suppose that a main procedure has called a function b that has called ¢ that
has, in turn, called d. This is illustrated in Figure 3.4.1a, where we indicate that control
. currently resides somewhere within 4. Within 5ach function, there is a location set aside

main program procedure & 3 procedure ¢ procedure d
Retum L Retum = Retum
address address / address

» 1 callond __J
—-—
callon b A callon ¢
(a)) T c i
main program procedure b procedure ¢ gl _—
i Retum o Retum
address address
call on d
iy
‘ \— Control
callon b __4 callonc o 4

(b)

Figure 3.4.1 Series of procedures calling one another.

Sec. 3.4 Simulating Recursion 155

for the return address. Thus the return address area of d contains the address of the |
instruction in ¢ immediately following the call to d. Figure 3.4.1b shows the situation
immediately following d's return to c. The return address within ¢ has been retrieved ¢
and control has beén transferred to that address, " 5 «

You'may have noticed that the string of return addresses forms a stack; that is, the
most'recent return address to be added to the chain is the first to be removed. ‘At any
point, we can only access the return address from within the.function that js currently |
executing, which represents the top of the stack. When the stack is popped (tMat is, when
the function returns), a new top is revealed within the.calling routine. Calling a function
has the effect of pushing an element onto the stack, and returning pops the stack.

Implementing Recursive Functions : v

What must be added to this description in the case of a recursive function? The
answer is, surprisingly Tittle, Each time a recursive function-calls itself. an entirely new
data area for that particular call must be. allocated. As before, this data areacontains all
parameters, local variables, temporaries, and.a return address. The ‘point to' remember
is that in recursion a data area is associated not with a function alone but with'a pa-
ticular call to that function. Each call causes a new data area to be allocated, and each
reference to an item in the function’s data area is.to the data area of the most retentcall.
Similarly, each return causes the current data area to be freed, and the data area allo-
‘cated immediately prior to the current area becomes current. This behavior, of course,
suggests the use of a stack.

In'Section 3.1.2, where we described the action of the recursive factorial function,
we used a set of stacks to represent the successive allocations of each of the local vari-
ables and parameters. These stacks may be thought of as ‘separate stacks. one for each
local variable. Alternativel ¥, a~d closer to reality, we may think of all of these stacks as
a single large stack. Each element of this large stack is an entire data area containing
subparts representing the individual local variables or parameters.

Each time that the recursive routine is called, a new data area is allocated. The pa-
rameters within this data-area are initialized to refer to the values of their corresponding
arguments. The return address within the data area is initialized to the address follow-
ing the call instruction. Any reference to local variables or parameters is via the current
data area. '

When the recursive routine returns. the returned value (if any) and the return
address are saved, the data area is freed, and a branch to the return address is executed.
The calling function retrieves the returned value (if any), resumes execution, and refers
to its own data area that is now on top of the stack.

~Let us now examine how we can simulate the actions of a recursive function. We
will need a stack of data areas defined by

#define MAXSTACK 50:
struct stack {

int top;

struct dataarea item[MAXSTACK];
k

B8 Recursion Chap. 3

The dataarea is itself a structure containing the various items that exist in a data
area and must be defined to contain the ficlds required for the particular function being
simulated. ;i v

"

Simulation of Factorial

Let us look at a specific example: the factorial function. We present the code for

that function. including temporary variables explicitly and omitting the test for negative
input. as follows: :

int fact(int n)
{

int x, vy;

if (n == 0)
return(1); .
x=n-1; {
y = fact(x); X
return(n * y);
} /% end fact */

How are we to define the data area for this function? It must contain the parameter
n and the local variables x and v. As we shall see. no temporaries are needed. The data
area must also contain a return address. In this case, there are two possible points to
which we might want to return: the assignment of facr(x) to v, and the main program

that called fact. Suppose that we had two Iabelc and that we let the label Jabel2 be the
label of a section of code,

label2: y = result; : J :

within the simulating program. Let the label label1 be the label of a statement

labell: return(result);

This reflects a convention that the variable resulr contains the value to be returned by an
invocation of the facr function. The return address will be stored as an integer i (equal
1o either 1 or 2). To effect a return from a n.curswe call the statement

switch(i) {
case 1: goto labell;
case 2: goto label2;
} /* end case */

is executed. Thlh if i == 1. arcwurn is executed o the main progran that called facr,
and if i == 2. a return is simulated to the assignment of the returned value lhc:
variable v in lhe previous execution of fucr.

Sec. 3.4 Simulating Recursion 157

The data area stack for this example can be defined as follows:

#define MAXSTACK 50 -
struct dataarea {

int param;

int x;

Tong int y;

short int retaddr;
K
struct stack {

int top;

struct dataarea item[MAXSTACK];
}i .

The field in the data area that contains the simulated parameter is called param, rather
than n, to avoid confusion with the parameter n passed to the s:mulanng function. We
also declare a current data area to hold the values of the variables in the simulated
“current” call on the recursive function. The declaration is:

struct dataarea currarea;
In addition, we declare a single variable result by
Tong int result;

This variable is used to communicate the returned value of fact from one recursive call
of fact to its caller, and from fact to the outside calling function. Since the elements on
the stack of data areas are structures and, as we mentioned earlier, it is more efficient

to pass structures by reference, we do not use the function pop to pop a data area from
stack. Instead, we write a function popsub defined by

void popsub(struct stack ;ps. struct dataarea *parea)

The call popsub(&s, &area) pops the stacks and sets area to the popped clemenl We
leave the details as an exercise,

A return from fact is simulated by the code

result = value to be returned;
i = currarea.retaddr;
popsub(&s, &currarea);
switch(i) {

case 1: goto labell;

case 2: goto label2;
} /* end switch ¢/

158 : Recursion Chap. 3

A recursive call on fact is simulated by pushing the current data area on the stack,
reinitializing the variables currarea.param and currarea.retaddr o the parameter and
return address of this call, respectively, and then transferring control to the start of the
. simulated routine. Recall that currarea.x holds the value of n — 1 that is to be the new

parameter. Recal] also that on a recursive call we wish to eventually return to label 2.
The code to accomplish this is

push(&s, &urrarea);

currarea.param = currarea.x;

currarea.retaddr = 2; s

goto start; /* start is the label of the %/
/* start of the simulated routine. */

Of course, the popsub and push routines must be written so that they pop and push
entire structures of type dataarea rather than simple variables. Another imposition of
the array implementation of stacks is that the variable currarea.y must be initialized to
some value or an error will result in the push routine upon assignment of currarea.y to
the corresponding field of the top data area when the program starts.

When the simulation first begins the current area must be initialized so that cur-
rarea.param equals n and currarea.retaddr equals 1 (indicating a return to the calling
routine). A dummy data area must be pushed onto the stack so that when popsub is
executed in returning to the main routine, an underflow does not occur. This dummy
data area must also be initialized so as not to cause an error in the pus/k routine (see the

last sentence of the preceding paragraph). Thus, the simulated version of the recursive
fact routine is as follows:

struct dataarea {
int param;
int x;
Tong int y;
short int retaddr;
5
struct stack {
int top;
struct dataarea item[MAXSTACK];
|

int simfact(int n)
{
struct dataarea currarea;
struct stack s;
short int 1;
Tong int result;

Sec. 3.4 Simulating Recursion 159

start:

label2:

labell: /* At this point we return to the main routine.

}

s.top = -1;

It initialize a dummy data area
currarea.param = 0;
currarea.x = 0;
currarea.y om0

currarea.retaddr = 0;
I push the dummy data area onto the stack
push (&s, &currarea);

/* set the parameter and the return address of

¥/

*/
*

/* the current data area to their proper values, */

currarea.param = n;
currarea.retaddr = 1;
/" this is the beginning of the simulated

/* factorial routine.
if (currarea.param == 0) {
1* simulation of return(l);

result = 1;
i = currarea.retaddr;
popsub(&s, &currarea);
switch(i) {
case 1: goto labell;
case 2: goto label?;
} +" end switch */
} /% end if ¥/
currarea.x = currarea.param - 1;
I* simulation of recursive call to fact
push(&s, &currarea):
currarea.param = currarea.x;
' currarea.retaddr = 2;

goto start;

fa This is the point to which we return
Vs from the recursive call. Set currarea.y
i to the returned value.
currarea.y = result;

i simulation of return(n * y)

result = currarea.param * currarea.y:
i = currarea.retaddr;
popsub(&s, &currarea);
switch(i) {
case 1: goto labell;
case 2: goto label2;
} /* end switch */

return(result);
/* end simfact */

Yy
f

i/

t/ =
*

4

g i

Trace through the execution of this program for n = 5 and be sure that you un-
derstand what the program does and how it does it.

Notice that no space was reserved in the data area for t

need not be s

160

emporaries, since they
aved for later use. The temporary location that holds the value of n * ¥

Recursion

Chap. 3

in the original recursive routine is simulated by the temporary for currarea.param *
currarea.y in the simulating routine. This is not the case in general. For example, if a
recursive function funct contained a statement such as

x=at fpnct‘(b) + ¢ * funct(d);

the temporary for a * funct(b) must be saved during the recursive call on funct(d). How-
ever, in the example of the factorial function, it is not required to stack the temporary.

Improviog the Simulated Routine

The foregoing discussion leads naturally to the question of whether all the local
variables really need to be stacked at all. A variable must be saved on the stack only if
its value at the point of initiation of a recursive call must be reused after return from that
call. Let us examine whether the variables n, x, and y meet this requirement. Clearly n
does have to be stacked. In the statement

y=n?t fact(x);

the old value of n must be used in the multiplication after return from the recursive call
on fact. However, this is not the case for x and y. In fact, the value of y is not even
defined at the point of the recursive call, so clearly it need not be stacked. Similarly,
although x is defined at the point of call, it is never used again after returning, so why
bother saving it?

_ This point can be illustrated even more sharply by the following realization. If x
and y were not declared within the recursive function fact, but rather were declared as
global variables, the routine would work just as well. Thus, the automatic stacking and
unstacking action performed by recursion for the local variables x and v is unnecessary.

Another interesting question to consider is whether the return address is really
needed on the stack. Since there is only one textual recursivé call to fact,-.there is only
one return address within fact. The other return address is to the main routine that orig-
inally called fact. But suppose a dummy data area had not been stacked upon initial-
ization of the simulation. Then a data area is placed on the stack only in simulating a
recursive call. When the stack is popped in returning from a recursive call, that area is
removed from the stack. However, when an attempt is made to pop the stack in sim-
ulating a return to the main procedure, an underflow will occur. We can test for this
underflow by using popandiest rather than popsub, and when it does occur we can re-
turn directly to the outside calling routine rather than through a local label. This means
that one of the return addresses can be eliminated. Since this leaves only a single pos-
sible return address, it need not be placed on the stack.

~ Thus the data area has been reduced to contain-the parameter alone, and the stack
may be declared by '

#define MAXSTACK 50
struct stack {

int top;

int param[MAXSTACK];
b

Sec. 3.4 Simulating Recursion 161

The current data area is reduced to a single variable declared By

The program is now quite compact and comprehensible.

162

int ‘currparam;

int simfact(int n)

start:

Tabel2:

1abell:

struct stack s;
short int und;
Tong int result, y;
int currparam, x;

s.top = -1;
currparam = n;

/* This is the beginning cf the simulated */

P factorial routine.
if (currparam == 0) { :
/* simulation of return(1)
result = 1;
popandtest(&s, &currparam, &und):
switch(und) {
case FALSE: goto label2;
case TRUE: goto labell;
} /* end switch */
} /% end if ¥/
/* currparam '= 0 */
X = currparam - 1;
/* simulation of recursive call to fact
push(&s, currparam);
currparam = x;
goto start; ,
/* This ‘is the point to which we return
Vi from the recursive call. Set

i y to the returned value.
y = result;
Vad simulation of return (n * y);

result = currparam * y;
popandtest(&s, &currparam, &und):
switch(und) {

case TRUE: goto labell;

case FALSE: goto Tabel2:
} /% end switch */
/* At this point we return to the main
/% routine.
return(result);

} /* end simfact */

#/
i

*/

/]

*/
a

4

o
¥/

Recursion Chap. 3

Eliminating gotos _

Although the preceding program is certainly simpler than the previous one, it is
still far from ideal. If you were to look at the program without having seen its derivation,
it is probably doubtful that you could identify it as computing the factorial function. The
statements

goto start;
and
goto label2;

are particularly irritating, since they interrupt the f"ow of thought at a time that one
might otherwise come to an understanding of what is aappening. Let us see if we can
transform this program into a still more readable version. i

Several transformations are immediately apparent. First of all, the statements

popandtest(&s, &currparam, &und);
switch(und) {

case FALSE: goto Tlabel?;

case TRUE: goto labell;
} /* end switch */

are rcpgted twice for the two cases currparam == 0 and currparam != 0. The two
sections can easily be combined into one. :

A further observation is that the two variables x and currparam are assigned val-
ues from each other and are never in use simultaneously; therefore they may be com-
bined and referred to as one variable x. The same is true of the variables result and y,
which may be combined and referred to as the single variable y.

Performing these transformations leads to the following version of sismfact:

struét stack {

int top;

int param[MAXSTACK].
|

int simfact(int n)
{
struct stack s;
short int und;
int x;
Tong int y;

Sec. 3.4 Simulating Recursion 163

s.top = -1;
X =n; \
start: /* This is the beginning of the simulated */
I factorial routine. +/
if (x = 0)
y=1;
else {
push(&s, x--);
goto start;
} /* end else */
labell: popandtest(&s, &, &und);
if (und == TRUE)
return(y);
label2: vy *= x;
goto labell;
} /* end simfact */
We are now beginning to approach a readable program. Note that the program
consists of two loops:

1. The loop that consists of the entire if statement, labeled start. This loop is exited
when x equals 0, at which point y is set to | and execution proceeds to the label
labell.

2. The loop that begins at label labell and ends with the statement goto labell. This

loop is exited when the stack has been emptied and underflow occurs, at which
point a return is executed.

These loops can easily be transformed into explicit whiie loops as follows:

/* subtraction loop */
start: while (x !=0)
: push(&s, x--);
y=1
popandtest(&s, &x, &und);
labell: while (und == FALSE) {
y *= x;
popandtest (&s, &x, &und);
} /* end while * /
return(y);

Let us examine these two loops more closely. .x starts off at the value of the input
parameter n and is reduced by | each time that the subtraction loop is repeated. Each*
time x is set to a new value, the old value of x is saved on the stack. This continues
until x is 0. Thus, after the first loop has been execuled the stack contains, from top to
bottom, the integers 1 to n.

The multiplication loop merely removes each of these values from the stack and
sets v to the product of the popped value and the old value of v. Since we know what
the stack contains at the start of the multiplication loop, why bother popping the stack?
We can use those values directly. We can eliminate the stack and the first loop entirely

- . i0 hap.
164 Recursion Chap. 3

and replace the multiplication loop with a loop that multiplies y by each of the integers
from 1 to n in turn. The resulting program is

int ;imfact(int n)

{ .
int x;
long int y;

for (y=x=1; x <= n; x++)
Yy *=x; '
return(y);
} /* end simfact */

But this program is a direct C implementation of the iterative version of the factorial
function as presented in Section 3.1. The only change is that x varies from | to n rather

than fromnto 1.
Simulating the Towers of Hanoi

We have shown that successive transformations of a nonrecursive simulation of
a recursive routine may lead to a simpler program for solving a problem. Let us now
look at a more complex example of recursion, the Towers of Hanoi problem presented
in Section 3.3. We will simulate its recursion and attempt to simplify the simulation
to produce a nonrecursive solution, We present again the recursive program of Section

3.3:

void towers(int n, char frompeg, char topeg, char auxpeg)
{
/* If only one disk, make the move and return. */
if (n==1) {
printf("\n¥%s%c¥s%c", "move disk 1 from peg ", frompeg,
" to peg ", topeg);
return;
} /% end if */
/* Move top n-1 disks from A to B, using C as */

* auxiliary L7
towars(n-1, frompeg, auxpeg, topeg);
1® Move remaining disk from A to C. LA

printf("\n¥skd¥%s¥c¥s¥c", "move disk ",-" from peg ",
frompeg, " to peg ", topeg):
/* Move n-1 disk from B to C using A as L7
/%) auxiliary £/
towers(n-1, auxpeg, topeg, frompeg);
} /* end towers */ ¥

Make sure that you understand the problem and the recursive solution before proceed“-

ing. If you do not, reread Section 3.3.
There are four parameters in this function, each of which is subject to change in

a recursive call. Therefore the data area must contain elements representing all four.

-Sec. 3.4 Simulating Recursion 165

There are no local variables. There is a single temporary that is needed to hold the value
of n — 1, but this can be represented by a similar temporary in the simulating program
and does not have to be stacked. There are three possible points to which the function
returns on various calls: the calling program and the two points following the recursive
calls. Therefore four labels are necessary:

area.

166

start:

Tabell:
label2:
label3:

The return address is encoded.as an integer (either 1, 2, or 3) within each data

Consider the following nonrecursive simulation of towers:

struct dataarea {

¥;

int nparam;

char fromparam;
char toparam;
char auxparam;
short int retaddr;

struct stack {

¥

int top;
struct dataarea item[MAXSTACK];

void simtowers(int n, char frompeg, char topeg, char auxpeg')

{

struct stack s;

struct dataarea currarea;
char temp;

short int i;

s.top = -1;
currarea.nparam = 0;
currarea.fromparam = ' ';

currarea.toparam = " ';

currarea.auxparam = ' ';

currarea.retaddr = 0;

It Push dummy data area onto stack. */

push(&s, &currarea);

/* Set the parameters and the return addresses */
/* of the current data to their proper values. */
currarea.nparam =

currarea. fr‘omparam frompeg;

currarea.toparam = topeg;

: currared.auxparam = auxpeg,

currarea,retaddr =

S

Recursion

Chap. 3

start: /* This is the start of the simulated routine. */
‘ if (currarea.nparam™e= 1) { :
printf(“\n¥s¥cks%c", "move disk 1 from peg ", :
currarea.frompeg, " to peg ", currarea.toparam);
i = currarea.retaddr;
pop(&s, &currarea);
switch(i) {
case 1: goto labell;
case 2: goto label2;
case 3: goto labeld;
} /* end switch */
} /* end if */
Ix This is the first recursive call. +/
push(&s, &currarea);
~~Currarea.nparam;
temp = currarea.auxparam;
currarea.auxparam = currarea.toparam;
currarea.toparam = temp;
currarea.retaddr = 2;

goto start;
label2: /* We return to this point from the first */
/* recursive call. */

printf("\n¥skd¥%s%cks%c", "move disk ", currarea.nparam, " from peg ",
currarea.fromparam, " to peg ", currarea.toparam

/* This is the second recursive call. +/

push(&s, &currarea);

--currarea.nparam;

temp = currarea.fromparam;

currarea.fromparam = currarea.auxparam;

currarea.auxparam = temp;

currarea.retaddr = 3;

' goto start; ,
label3: /* Return to this point from the second ~ */
/* recursive call. = t/

3 = currarea.retaddr;
pop(&s, &currarea);
switch(i) {
case 1: goto labell;
case 2: goto label2;
case 3: goto label3;
} /* end switch */
Tabell:. return;
} /* end simtowers */

We now simplify the program. First, notice that three labels are used for return
addresses: one for each of the two recursive calls and one for the return to the main
program. However, the return to the main program can be signaled by an underflow in
the stack, exactly as in the second version of simfact. This leaves two return labels. If we

Sec.3.4 Simulating Recursion | : . 167

could eliminate one more such label it would no longer be necessary to stack the return
address, since there would be only one point remaining to which control may be passed

if the stack is popped successfully. We focus our attention on the second recursive call
and the statement

towers(n-1, auxpeg, topeg, frompeg);

The actions that occur in simulating this call are as follows:

L. Push the current data area, al, onto the stack.

2. Set the parameters in the new current data area, a2, to their respective values,
n — 1, auxpeg, topeg, and frompeg. ‘

3. Set the return label in the current data area, a2, to the address of the statement
immediately following the call,

4. Branch to the beginning of the simulated routine.

After the simulated routine has completed, it is ready to return. The following
actions occur:

S. Save the return label, /, from the current data area, a2.

6. Pop the stack and set the current data area to the popped data area, al.
7. Branch to L.

But [is the label of the end of the block of code, since the seconu call to rowers
appears as the last statement of the function. Thus, the next step is to pop the stack again
and return once more. We never again make use of the information in the current data
area al, since it is immediately destroyed by popping the stack as soon as it has been
restored. Since there is no reason to use this data area again, there is no reason to save
iton the stack in simulating the call. Data need be saved on the stack only if it is to be

reused. Therefore the second call to rowers may be simulated simply by

L. Changing the parameters in the current data area to their respective values
2. Branching to the beginning of the simulated routine

When the simulated routine returns it can return directly to the routine that called

- the current version. There is no reason to execute a return to the current version, only

to return immediately to the previous version. Thus we have eliminated the need for

stacking the return address in simulating the external call (since it can be signaled by

underflow) and in simulating the second recursive call (since there is no need to save and

restore the calling routine’s data area at that point). The only remaining return address
is the one following the first recursive call.

Since there is only one possible return address left, it is unnecessary to keep it in
the data area, to be pushed and popped with the rest of the data. Whenever the stack is
popped successfully, there is only one address to which a branch can be executed: the
statement following the first call. If an underflow is encountered, the routine returns to
the calling routine. Since the new values of the variables in the currént data area will
be obtained from the old values in the current data area, it is necessary to declare an

_ additional variable, temp, so that values can be interchanged.

168 Recursion Chap. 3

A revised nonrecursive simulation of towers follows:

struct dataarea {
int nparam;
char fromparam;
char toparam;
char auxparam;
h
struct stack {
int top;
struct dataarea 1tem[MAXSTACK].
B

void simtowers(int n, char frompeg, char topeg, char auxpeg)
{

struct stack s; "

struct dataarea currarea;

short int und;

char temp;

s.top = -1;
currarea.nparam = n;
currarea.fromparam = frompeg;
currarea.toparam = topeg;
currarea.auxparam = auxpeg:
start: /* This is the start of the simulated routine. £/
if (currarea.nparam == 1) {
printf("\n¥skckskc", "move disk 1 from peg "
currarea.frompeg, " to peg ", currarea. toparam),
simulate the return L
popandtest(&s, &urrarea, &und);
if (und == TRUE)
return;
goto retaddr;
} /% end if */
A simulate the first recursive call &/
push(&s, &currarea);
--currarea.nparam;
temp = currarea.toparam;
currarea.toparam = Currarea.auxparam;
currarea.auxparam = temp;

/ﬁ

goto start;
retaddr: /* return to this point from the frrst LIS
/* recursive call '/

pr1ntf(“\n%s%d%s%c%s%c“ "move disk ", currarea. nparam.
" from peg ", currarea.fromparam, " to peg "
s _currarea. toparam) ;
/* simulation of second recursive call Ly
--currarea.nparam;

Sec. 3.4 Simulating Recursion

temp = currarea.fromparam;
currarea. fromparam = currarea.auxparam;
currarea.auxparam = temp;
goto start;
} /% end simtowers */

Examining the structure of the program, we see that it can easily be reorganized

"into a simpler format. We begin from the label start.

while (TRUE) {- '
while (currarea.nparam != 1) {
push(&s, &currarea);
--currarea.nparam;
temp = currarea.toparam;
currarea.toparam = currarea.auxparam;
currarea.auxparam = temp;
Y /* end while #/ S
printf("\n¥s%c%s%c", "move disk 1 from peg ",
currarea. fromparam, " to peg “, currarea,toparam)
popandtest(&s, &currarea, &und):
if (und == TRUE)
return; .
printf("\n¥s%d%skckskc", “move disk ", currarea.nparam;
" from ", currarea.fromparam, " to peg ",
currarea.toparam)
--currarea.nparam;
temp = currarea.fromparam;
currarea.fromparam = currarea.auxparam;
currarea.auxparam = temp;
} /* end while */

Trace through the actions of this program and see how it reflects the actions of the
original recursive version.

EXERCISES .
3.4.1. Write a nonrecursive simulation of the functions convert and find presented in Section
3.3
3.4.2. " Write a nonrecursive simulation of the recursive binary search procedure, and transform
it into an iterative procedure.
3.4.3. Write a nonrecursive simulaticn of fib. Can you transform it into an iterative method?
3.4.4. Write nonrecursive simulations of the recursive routines of Sections 3.2 and 3.3 and the
. exercises of those sections.
3.4.5. Show that any solution to the Towers of Hanoi problem that uses a minimum number
of moves must satisfy the conditions listed below. Use these facts to develop a direct
‘iterative algorithm for Towers of Hanoi. Implement the algorithm as a C program.
170 .

Recursion Chap. 3

3.4.6.

34.7.

Exercises

1

3.

5.

The first move involves moving the smallest disk,

A minimum-move solution consists of alternately moving the smalicst disk and a
disk that is not the smallest.

Atany point, there is only one possnblc move mvolvmg adisk that is not the <mallesl

Define the cyclic direction from frompeg 10 topeg to auxpeg 1o frompeg as clock-
wise and the opposite direction (from frompeg o auxpeg to topeg to frompeg) as
counterclockwise. Assume that a minimum-move solution to move a k-disk tower
from frompeg to topeg always moves the smallest disk in one direction. Show that
a, minimum*move solution to move a (k + 1)-disk tower from jrompeg to topeg
would then always move the smallest disk in the other direction. Since the solution
for one disk moves the smallest disk clockwise (the single move from frompeg to
topeg), this means that for an odd number of disks the smallest disk always moves
clockwise, ard for an even number of disks the smallest disk always moves coin-
terclockwise.

The solution is completed as soon as all the disks are on a single peg.

Convert the following recursive program scheme into an iterative version that does nat
use a stack. fin) is a function that returns TRUE or FALSE based on the value of n, and
g(n) is a function that returns a value of the same type as n (without modifying n).

int rec(int n)

if (f(n) == FALSE) {
/* any greup of C statements that */
/* do not change the value of n */
rec(a(n));
} /* end if */
} /* end rec */

Generalize your result to the case in which rec returns a value. -

Let f(n) be a funciion and g(n) and h(n) be functions that return a value of the same type
as n without modifying n. Let (stmts) represent any group of C statements that do not
modify the value of 7. Show that the recursive program scheme rec is equivalent to the
iterative scheme iter:

void rec(int n)

if (f(n) == FALSE) {
(stmts);
rec(g(n));
rec(h(n));
'} /*end if ¥/
} /% end rec */

Struct stack {

int top;

int nvalues[MAXSTACK];
Y

1717

void iter(int n)
struct stack s;

s.top = -1;
push(&s, n);
while(empty(&s) == FALSE) {
n = pop(&s);
if (f(n) == FALSE) {
(stmzs);
push(&s, h(n));
push(&s, g(n));
} /% end if #/ ')
} /* end while */
} /* end iter %/

Show that the if statements in iter can be replaced by the following loop:

while (f(l’l) == FALSE) {
(stmts)
push(&s,~ ;
n= g(n);Mn.D\‘

} /% end waile */

3.5 EFFICIENCY OF RECURSION

In general a nonrecursive version of a program will execute more efficiently in terms
of time and space than a recursive version. This is because the overhead involved in
entering and exiting a block is avoided in the nonrecursive version. As we have seen,
it is often possible to identity a good number of local variables and temporaries that do
not have to be suved and restored through the use of a stack. In a nonrecursive program
this needless stacking activity can be eliminated. However, in a recursive procedure,
the compiler is usually unable to identify such variables, and they are therefore stacked
and unstacked to ensure that no problems arise.

However., we have also seen that sometimes a recursive solution is the most nat-
ural and logical way of solving a problem. It is doubtful whether a programmer could
have developed the nonrecursive solution to the Towers of Hanoi problem directly from
the problem statement. A similar comment may be made about the problem of convert-
ing prefix to postfix, where the recursive solution flows directly from the definitions, A
nonrecursive solution involving stacks is more difficult to develop and more prone to
ITOr. :

Thus there is a contlict between machine efficiency and programmer efficiency.
With the cost of programming increasing steadily, and the cost of computation decreas-
ing. we have reached the point where in most cases it is not worth a programmer’s
time to laboriously construct a nonrecursive solution to a problem that is most naturally
solved recursively. Of course an incompetent, overly clever programmer may come up

172 Recursion Chap. 3

with a complicated recursive solution to a simple problem that can be solved directly by
nonrecursive methods. (An example of this is the factorial function or even the binary
search.) However, if a competent programmer identifies a recursive solution as being
the simplest and most straightforward method for solving a particular problem, it is
probably not worth the time and effort to discover a more efficient method.

However, this is not always the case. If a program is to be run very frequently
(often entire computers are dedicated to continually running the same program), so that
increased efficiency in execution speed significantly increases throughput, the extra
investment in'‘programming time is worthwhile. Even in such cases, it is probably better
to create a nonrecursive version by simulating and transforming the recursive solution
than by attempting to create 2 nonrecursive solution from the problem statement.

To do this most efficiently, what is required is to first write the recursive routine
and then its simulated version, including all stacks and temporaries. After this has been
done, eliminate all stacks and variables that are superfluous. The final version is a refine-
ment of the original program and is certainly more efficient. Clearly, the elimination of
each superfluous and redundant operation improves the efficiency of the resulting pro-
gram. However, every transformation applied to a program is another opening through
which an unanticipated error may creep in.

When a stack cannot be eliminated from the nonrecursive version of a program
and when the recursive version does not contain any extra parameters or local vari-
ables, the recursive version can be as fast or faster than the nonrecursive version under
a good compiler. The Towers of Hanoi is an example of such a recursive program. Fac-
torial, whose nonrecursive version does not need 2 stack, and calculation of Fibonacci
numbers, which contains an unnecessary second recursive call (and does not need a
stack either), are examples where recursion should be avoided in a practical implemen-
tation. We examine another example of efficient recursion (in order tree traversal) in
Section 5.2.

Another point to remember is that explicit calls to pop, push, and empry, as well as
tests for underflow and overflow, are quite expensive. In fact, they can often outweigh
the expense of the overhead of recursion. Thus, to maximize actual run-time efficiency
of a nonrecursive translation, these calls should be replaced by in-line code and the
overflow/underflow tests eliminated when it is known that we are operating within the
array bounds.

The ideas and transformations that we have put forward in presenting the factorial
function and in the Towers of Hanoi problem can be applied to more complex problems
whose nonrecursive solution is not readily apparent. The extent to which.a recursive
solution (actual or simulated) can be transformed into a direct solution depends on the
particular problem and the ingenuity of the programmer.

EXERCISES

3.5.1. Run the recursive and nonrecursive versions of the factorial function of Sections 3.2 anc

3.4, and examine how much space and time each requires as n becomes larger.
3.5.2. Do the same as in Exercise 3.5.1 for the Towers of Hanoi problem.

Exercises N 173

