Queues and Lists

Thls Chapler q p
““roduces [he ueue aHd € pror [y ueue, two])()I tant (la!a structures
th
1 q y m
A !‘l 1 S. h COIICCptS flhe S[ack d cue ar
often ||SC(I to Sll]"llale]Cal w0 (l situation: I [0 an qu ue are

lhen extendﬁd
to a ne structure
the llSl various (l[l].StS all(l l!lell aSS()(:laled
W N . 1ous fOrmS i
I ! Ed @ nd 56 ral appllcatlons are Presen(ed

41
THE QUEUE AND ITS SEQUENTIAL REPRESENTATION

A queue is an ordered collection of items from which items may be deleted at on¢ end
(called the front of the queue) and into which items may be inserted at the other end
(called the rear of the queue).

Figure 4.1.12 illustrates a queue containing three elements A, B, and C. Aisat
ihe front of the queue and C is at the rear. In Figure 4.1 b an element has been deleted
from the queue. Since elements may be deleted only from the front of the queue, A1is
removed and B is now at the front. In Figure 4.1.1¢, when items D and E are inserted,
they must be inserted at the rear of the queue. .

Since D was inserted into the queue before E, it will be removed earlier. The first
element inserted into a queue is the first element t0 be removed. For this reason aqueue
is sometimes called a fifo (first-in, first-out) list as opposed 10 2 stack, which is @ lifo

f* :

¥

Fromt

(@ Rear
Front
B c
b Rear
Front
B C D E
(©) ' Rear

Figure 4.1.1 Queue

(last-in, first-out) list. Examples of a queue abound in the real world. A line at a bank

or at a bus stop and a group of cars waiting at a toll booth are all familiar examples of

queues. i
: Three primitive operations can be applied to a queue. The operation insert(q.x)
inserts item x at the rear of the queué ¢. The operation x = remove(qg) deletes the front
element from the queue ¢ and sets x to its contents. The third operation. empn(q), re-
turns fulse or true depending on whether or not the queue contains any elements. The
queue in Figure 4.1.1 can be obtained by the follawing sequence of operations. We
assume that the queue is initially empty.

insert(q, A);
insert(q, B);

insert(q, O; (Figure 4.1.1a)

x = remove(q); (Figure 4.1.1b; x is set to A)
insert(q, D);

insert(q, E); (Figure 4.1.1c)

The insert operation can always be performed, since there is no limit to the number
of elements a queue may contain. The remove operation, however, can be applied only
if the queue is nonempty; there is no way to remove an element from a queue containing
no elements. The result of an illegal attempt to femove an element from an empty queue
is called underflow. The empry operation is, of course, always applicable.

Sec. 4.1 The Qqeue and Its Sequential Representation 175

The Queue as an Abstract Data Type

The representation of a queue as an abstract data type is straightforward. We. use
eltype to denote the type of the queue element and parameterize the queue type with

eltype.
abstract typedef <<eltype>> QUEUE(eltype);

abstract empty(q)
QUEUE(eltype) q; 5
postcondition empty == (len(q) == 0);

abstract eltype remove(q)
QUEUE(eltype) q;
precondition empty(q) == FALSE;
postcondition remove == first(q');
‘ g == sub(q', 1, len(q') - 1); 2

abstract insert(q, elt)
QUEUE(eTtype) q;

eltype elt;

postcondition q==q' +<elt>;

C Implementation of Queues

_ How shall a queue be represented in C? One idea is to use an array to hold the
elements of the queue and to use two variables, front and rear, to hold the positions
within the array of the first and last elements of the queue. We might declare a queue g

of integers by

#define MAXQUEUE 100
struct queue {
int items[MAXQUEUE];
int front, rear;

s 14

Of course, using an array to hold a queue introduces the possibility of overflow
" if the queue should grow larger than the size of the array. Ignoring the possibility of
underflow and overflow for the moment, the operation inserr(g, x) could be implemented
by the.statements . *
g.items [++q.rear] = x;

and the operation x = remove(q) could be implemented by

x = q.items [q.front++];

176 Queues and Lists Chap. 4

q. items ; A q. items

4 4
L
3 3
2 2 C Q. rear = 2
1 1 '
of' 4. front = 0 of A q. front = 0
Q. rear = ~|
(@) SRt ol
q. items q. items

4 4 E q.rear = 4
3 3 D
2 € q. front = q.rear =2 3 c q. front = 2
1 1
0 0

(c) ' (d)

Figure a2

Initially, g.rear is set to —1, and g.front.is set to 0. The queue is empty whenever
g.rear < q.front. The number of elements in the queue at any time is equal to the value
of g.rear — g.front + 1. 5 .

Let us examine what might happen under this representation. Figure 4.1.2 illus-
trates an array of five elements used to represent a queue (that is, MAXQUEUE equals
5). Initially (Figure 4.1.2a), the queue is empty. In Figure 4.1.2b items A, B, and C have
been inserted. In Figure 4.1.2c two items have been deleted, and iri Figure 4.1.2d two
new items, D and E, have been inserted. The value of g.front is 2, and the value of
* g.rear is 4, so that there are only 4 — 2 + 1 = 3 elements in the queue. Since the array
contains five elements, there should be room for the queue to expand without the WOITY
of overflow. ‘ : :

However, to insert F into the queue, g.rear must be increased by 1 to 5 and
g.items[5] must be set to the value F. But g.items is an array of only five elements,
so that the insertion cannot be made. It is possible to reach the absurd situation where
the queue is empty, yet no new element can be inserted (see if you can come up with
a sequence of insertions and deletions to reach that situation). Clearly, the array repre-
sentation outlined in the foregoing is unacceptable. ? :

One solution is to modify the remove operation so that when an item is deleted
the entire queue is shifted to the beginning of the array. The operation x = remove(q’
would then be modified (again; ignoring the possibility of underflow) to

Sec. 4.1 The Queue and Its Sequential Representation 177

x = q.items[0];

for (i = 0; i < q.rear; i++)
q.items[i] = q.items[i+1];

g.rear--; -

The queue need no longer contain a front field, since the element at position 0 of the
array is always at the front of the queue. The empty queue is represented by the queue
in which rear equals —1.

This method. however, is too inefficient. Each deletion involves moving every
remaining element of the queue. If a queue contains 500 or 1600 elements, this is clearly
too high a price to pay. Further, the operation of removing an element from a queue
logically involves manipulation of only one element: the one currently at the front of the
queue. The implementation of that operation should reflect this and should not involve
a host of extraneous operations (see Exercise 4.1.3 for a more efficient alternative).

Another solution is to view the array that holds the queue as a circle rather than
as a straight line. That is, we imagine the first element of the array (that is, the element
at position 0) as immediately following its last element. This implies that even if the
last elemerit is occupied, a new value can be inserted behind it in the first element of
the array as long as that first element is empty. '

Let us look at an example. Assume that a queue contains three items in positions
2,3, and 4 of a five element array. This is the situation of Figure 4.1.2d reproduced
as Figure 4.1.3a. Although the array is not full. its last element is occupied. If item F
is now inserted into the queue, it can be placed in position 0 of the array, as shown
in Figure 4.1.3b. The first item of the queue is in g.items|2], which is followed in the
queue by g.items[3], q.items[4] and q.irems|0). Figure 4.1.2¢, d, and e show the status
of the queue as first two items C and D are deleted, then G is inserted, and finally E is
deleted. '

Unfortunately, itis difficult under this representation to determine when the queue
is empty. The condition g.rear < g.front is no longer valid as a test for the empty queue,
since Figure 4.1.3b, c, and d all illustrate situations in which the condition is true yet
the queue is not empty.

One way of solving this problem is to establish the convention that the value of
g.front is the array index immediately preceding the first element of the queue rather
than the index of the firstelement itself. Thus since ¢.rear is the index of the last element
of the queue, the condition g.front == g.rear implies that the queue is empty. A queue
of integers may therefore be declared and mitialized by

#define MAXQUEUE 100-.
struct queue {
int items[MAXQUEUE];
int front, rear;
L
struct queue g;
q.front = q.rear = MAXQUEUE-1; 4
Note that g front and q.rear are initialized to the last index of the array, rather
than to —1 or 0, because the Jast element of the array immediately precedes the first one

Queues and Lists Chap. 4
178

q. items q. items

4 E q. rear = 4 4 E '
3 D 3 D
2 c q. front = 2 2 C qQ. front = 2
| 1
0 0 F q.rear = 0
(a) (b)
q. items q items .
4 E q. front = 4 4 E q. front = 4
3 3
2 2
1 | q. rear = |
0 F q. rear = 0 0 F -
(c) (d)
q. items
4
3
2
1 G q. rear = |
0 F q. from = 0
- (e)
Figure 4.1.3

within the queue under lhlS representation. Since g.rear equals g.front, the queue is
initially empty.

- The empry function may be coded as

int empty(struct queue *pq)

return ((pg->front == pq—>rear) ? TRUE : FALSE);
} /* end empty o

¢
Once this function exists, a test for the empty queue is implemented by the state-
ment

Sec. 4.1 The Queue and Its Sequential Representation : 179 ~

if (empty(8a))

/* queue is empty */
else

/* queue is not empty */

The operation remove(q) may be coded as

int remove(struct queue *pq)
{
if (empty(pg)) {
printf("queue underflow");
exit(l);
} /* end if */ :
if (pg->front == MAXQUEUE-1)
pg->front = 0;
else
(pa->front)++;
return (pg->items[pq- >front]),
} o/* end remove */

Note that pq is already a pointer to a structure of type queue, so the address operator
“&™ is not used in calling empry within reinove. Also note that pg—> fronr must be
updated before an element is extracted.

Of course, often an underflow condition is meaningful and serves as a signal for

a new phase of processing. We may wish to use a function remvandtest, whose header
18

void remvandtest(struct queue *pg, int *px, int *pund)

If the queue is nonempty, this routine sets *pund to FALSE and *px to the element
removed from the queue. If the queue is empty, so that underflow occurs, the routine
sets *pund to TRUE. The coding of the routine is left to the reader.

insert Operation

The insert operation involves testing for overflow, which occurs when the entire
array is occupied by items of the queue and an attempt is made to insert yet another
element into the queue. For example, consider the queue of Figure 4.1.4a. There are
three elements in the queue: C, D, and E in q.items[2], q.items[3). and q.irems[4], re-
speetively. Since the last item of the queue occupies ¢.irems|4), g.rear equals 4. Since
the first element of the queue is in g.items[2], g.front equals 1. In Figure 4.1.4b and c,
items F and G are inserted into the queue. At that point, the array is full and an attempt
to perform any more insertions causes an overflow. But this is indicated by the fact
that g.fronr equals g.rear, which is precisely the indieation for underflow. It seems that
there is no way to distinguish between the empty queue and the full queue under this
implementation. Such a situation is clearly unsatisfactory.

Queues and Lists Chap. 4
180

q. items

q. items
4 E q.rear = 4 4 E
3 D 3 D
2 C 2 C
1 q. front = 1 1 \ q. front = 1
Y -0 F | q.rear = 0
(a) (b)
q. items
4 E
3 D
2 c
1 G q. front = g. rear = 1
g
(<)
Figure 4.1.4

.

One solution is to sacrifice one element of the array and to allow a queue (o grow
only as large as one less than the size of the array. Thus. if an array of 100 elements is
declared as a queue, the queue may contain up to 99 elements. An attempt to insert a

hundredth element into the queue causes an overflow. The insert routine may then be
written as follows:

void insert(struct queue *pq, int x)
{ -
/% make room for new element */
if (pg->rear == MAXQUEUE-1)
pg->rear = 0;
else
(pg->rear)++;
/% check for overflow. */
if (pg->rear == pg->front) {
printf("queue overflow");
exit(1);
} /% end if ¥/
pg->items[pg->rear] = x;
return;
} /* end insert */

The test for overtlow in insert occurs after pg—=rear has been adjusted, whereas
the test for underflow in remove occurs immediately upon entering the routine, before
py—front is updated.

Sec. 4.1 The Queue and Its Sequential Representation 181

Priority Queue

Both the stack and the queue are data structures whose elements are ordered based
on the sequence in which they have been inserted. The pop operation retrieves the last
clement inserted, and the remove operation retrieves the first element inserted. If there
is an intrinsic order among the elements themselves (for example, numeric order or
alphabetic order), it is ignored in the stack or queue operations.

The priority queue is a data structure in which the intrinsic ordering of the ele-
ments does determine the results of its basic operations. There are two types of priority
Queues: an ascending priority queve and a descending priority Gueue. An ascending
priorily queue is a collection of iteins into which items can 'be inserted arbitrarily and
from which only the smallest item can be removed. If arg is an ascending priority
queue, the operation pginsert(apq.x) inserts element x into apq and pgmindelete(apg)
removes the minimum element from apg and returns its value.

A descending priority queue is similar but allows deletion of only the largest
item. The opcrations applicable 1o a descendi ng priority queue. dpg, are pginsert(dpg,x)
and pgmaxdelete(dpq). Ppginsert(dpq.x) inserts element x into dpg and is logically iden-
tical to pginsert for an ascending priority queue. pgmaxdelete{dpg) removes the maxi-
mum element from dpq and returns its value.] y

The operation empry(pg) applies to both types of priority queue and determines
whether a priority queue is empty. pgmindelete or pgmaxdelete can only be applied to
a nonempty priority queue [that is, if empry(pg) is FALSE]).

Once pgmindelete has been applied to retrieve the smallest element of an ascend-
ing priority queue, it can be applied again to retrieve the next smallest, and so on. Thus
the operation successively retrieves elements of a priority queue in ascending order.
(However, if a small element is inserted after several deletions, the next retrieva) will
return that small element, which may be smaller than a previously retrieved element.)
Similarly, pgmaxdelete reirieves elements of a descending priority queue in descend-
ing order. This explains the designation of a priority queue as either ascending or de-
scending.)

The elements of a priority queue need not be numbers or characters that can be
compared directly. They may be complex structures that are ordered on one or sev-
eral fields. For example, telephone-book listings consist of last names, first names, ad-
dresses, and phone numbers and are ordered by last name.

Sometimes the field on which the elements of a priority queue are ordered is
not even part of the elements themselves; it may be a special, external value used
specifically for the purpose of crdering the priority queue. For example, a stack may
be viewed as a descending priority queue whose elements are ordered by time of in-
sertion. The element that was inserted last has the greatest insertion-time value and
is the only item that can be retricved. A queue may similarly be viewed as an as-
cending priority queue whose eleinents are ordered by time of insenion. Ii both cases
the time of insertion is not part of the elements themselves but is used to order the
priority queue.

We leave as an exercise for the reader the development of an ADT specification
for a priority queue. We now look at implementation considerations. '

182
Queues and Lists Chap. 4

Array Implementation of a Priority Queue

As we have seen, a stack and a queue can be |mplemented in an array so that
each insertion or deletion involves accessmg only a single element of the array. Unfor-
tunately, this is not possible for a priority queue.

Suppose that the » elements of a priority queue pg are maintained in positions 0
to n — | of an array pq.items of size maxpq, and suppose that pg.rear equals the first

empty array position, n. Then pginsert(pg, x) would seem to be a fairly straightforward
operation:

if .(pg.rear >= maxpq) {
orintf("priority queue overflow");
exit(1);

} /* end if */

pq.items(pg.rear] = x; .

pq.rear++;

Note that under this insertion method the elements of the priority queue are not kept
ordered in the array.

As long as only insertions take place, this implementation works well. Suppose.
however, that we attempt the operation pgmindelete(pg) on an ascending priority queue.
This raises two 1ssues. First, to locate the smallest element, every clement of the array
from pq.items|0] through pg.items|pg.rear — 1] must be examined. Therefore a deletion
requires accessing every element of the priority queue.

Second, how can an element in the middle of the array be deleted? Stack and
queue deletions involve removal of an item from one of the two ends and do not re-
quire any searching. Priority queue deletion under this implementation requires both
searching for the element to be deleted dnd removal of an element.in the middle of an
array.

There are severa! soiutions to this problem, none of them entirely satisfactory:

1. A special “empty™ indicator can be placed into a deleted position. This indica-
tor can be a value that is invalid as an element (for example, — 1 in a priority
queue of nonnegative numbers), or a separate field can be contained in each array
element to indicate whether it is empty. Insertion proceeds as befire, but when
pq.rear reaches maxpq the array elements are compacted into the .ront of the array
and pq.rear is reset to one more than the number of elements. There are several
disadvantages to this approach. First, the search process to locate the maximum
or minimum element must examine all the deleted array positions in addition.
to the actual priority queue elements. If many items have been deleted but no
compaction has yet taken place. the deletion operation accesses many more ar-
ray elements than exist in the priority queue. Second, once in a while insertion
requires accessing every single position of the array, as it runs out of room and
begins compaction.

The deletion cperation labels a poslllon empty as in the prev:ous solution. but in-
sertion is modified to insert a new item in the first “empty” position. Insertion then

Sec. 4.1 The Queut and lts Sequential Representation : 183

’

involves accessing every array element up to the first one that has been deleted.
This decreased efficiency of insertion is a major drawback to this solution.

Each deletion can compact the array by shifting all elements past the deleted
element by one position and then decre enting pq.rear by 1. Insertion remains
unchanged. On the average, half of all priority queue elements are shifted for each
deletion, so that deletion besomes quite inefficient. A slightly better alternative
is to shift either all preceding elemerits forward or all succeeding elements back-
ward, depepding on which group is smaller. This would require maintaining both

front and rear indicators and treating the array as a circular structure, as we did
for the queue. . ®

w

4. Instead of maintaining the priority queue as an unordered array, maintain it as an
ordered: circular array as follows:

#define MAXPQ 100
struct pqueue{
T int items[MAXPQ]:
int front, rear;
~} :

struct pqueue pg;

Pg.front is the position of the smallest element. Pq-rearis | greater than the posi-
tion of the largest. Deletion involves merely inereasing pe.front (for the ascend-
ing queue) or decreasing pq.rear (for a descending queue). However, insertion
requires locating the proper position of the new element and shifting the preced-
ing or succeeding elements (again, the technique of shifting whichever group is
smaller is helpful). This method moves the work of searching and shifting from
the deletion operation to the insertion operation. However, since the array is or-
dered, the search for the position of the new element in an ordered array is only
half as expensive on the average as finding the maximum or minimum of the un-
ordered array, and a binary search might be used to reduce the cost even more. ,
Other techniques that involve leaving' gaps in the array between elements of the
priority queue to allow for subsequent insertions are also possible. '

We leave the C implementations of painsert. pgmindelete, and pgmaxdelete tor
the urray representation of u priority queue as exercises for the reader. Seurching ordered
and unordered arrays is discussed further in Section 7.1. In general. using an array is not
an efficient method for implementing a priority queue. More efficient implementations
are examined in the next section and in Sections 6.3 and 7.3.

EXERCISES

4.1.1. Write the function remvandtest(py. px. pund) which sets *pund to FALSE and *px to
the item removed from a nonemply queue *pg and sets #pund to TRUE if the queue is
empty.

184 Queues and Lists Chap. 4

4.1.2.

4.1.3.

4.1.4.

4.1.8.

4.1.9.

4.1.10.

4.1.11.

Exercises

What set of conditions is necessary and sufficient for a sequence of inserf and remove
operations on a single empty queue to leave the queue empty without causing under-
flow? What set of conditions is necessary and sufficient for such a sequence to leave a
nonempty queue unchanged?

If an array holding a queue is not considered circular. the text suggests that each remove
operation must shift down every remaining element of a queue. An alternative method
is to postpone shifting until rear equals the Jast index of the array. When that situation,
occurs and an attempt is made to insert an element into the queue, the entire queue is
shified down, so that the first element of the queue is in position 0 of the array. What
are the advantages of this method ‘over performing a shift at each remove operation?

. What are the disadvantages? Rewrite the routines remove, insert, and empty using this

method.

Show how a sequence of insertions and removals from a queue represented by a linear

array can cause overflow 1o occur upon an attempt 10 insert an element into ‘an empty
queue.

We can avoid sacrificing one element of a queue if a field gempry is added to the queue
representation. Show how this can be done and rewrite the queue manipulation routines
under that representation.

How would you implement a queue of stacks? A stack of queues? A queue of queues?
Write routines to implement the appropriate operations for each of these data structures.
Show how to implement a queue of integers in C by using an array.gueue| 100], where
queuel(] is used to indicate the front of the queue, gueue[1] is used 1o indicate its rear,
and queue|2] through queue[99) are used to contain the queue elements. Show how to
initialize such an array to represent the empty queue and write routines remove, insert
and empty for such an implementation.

Show how to implement a queue in C in which each item consists of a variable number
of integers. : :

A deque is an ordered set.of items from which items may be deleted at either end and
into which items may be inserted at either end. Call the two ends of a deque lefr and
right. How can a deque be represented as a C array? Write four C rouftines.

remvieft, remvright, insrtlert, insrtright

to remove and insert elements at the lefi and right ends of a deque. Make sure that the
routines work properly for the empty deque and that they detect overflow and under-
flow.]

Define an input-restricted deque as a deque (see Exercise 4.1.9) for which only the
operations remvieft, remvright, dnd insrtleft are valid, and an output-restricted deque
as a deque for which only the operations remvlefr. insrileft, and insrtright are valid.
Show how each of these can be used to represent both a stack and a queue.

The Scratchemup Parking Garage contains a single lane that holds up to ten cars. Cars
arrive at the south end of the garage and leave from the north end. If a customer arrives
to pick up a car that is not the northernmost, all cais to the north of the car are moved
out. the car is driven out, and the other cars are restored in the same order that they
were in originaliy. Whenever a’car leaves. all cars to the south are moved forward
so that at all times all the empty spaces are in the south part of the garage. Write a
program that reads a group of input lines. Each line contains an A’ for arrival or a

185

‘D’ fpr departure, and a license plate number. Car¥re assumed to arrive and depart in
the order specified by the input. The program should print a message each time that a
car arrives or departs. When a car arrives, the message should specify whether or not
there is room for the car in the garage. If there is no room for a car, the car waits until
there is room or until a departure line is read for the car. When room becomes available,
another message should be printed. When a car departs, the message should include the
number of times the car was moved within the garage, including the departure itself
but not the arrival. This number is 0 if the car departs from the waiting line.

4.1.12. Develop an ADT specification for a priority queue.

4.1.13. Implement an ascending priority qucue and its operations, pginsert, pgmindelete, and
empty. using each of the four methods presented in the text.

4.1.14. Show how to sort a set of input numbers using a priority queuve and the operations
pginsert, pgmindelete. and empry.

4.1.15. Implement a C++ class for a queue using the sequential representation.

4.2 LINKED LISTS

What are the drawbacks of using sequential storage to represent stacks and queues?
One major drawback is that a fixed amount of storage remains allocated to the stack
or queue even when the structure is actually using a smaller amount or possibly n’
storage at all. Further, no more than that fix=d amount of storage may be allocated, thus
introducing the possibility of overflow.

Assume that a program uses two stacks |mp{cmcnted in two separate arrays,
sl.items and s2.items. Further, assume that each of these arrays has 100 elements. Then
despite the {act that 200 elements are available for the two stacks, neither can grow be-
yond 100 ite ms. Even if the first stack contains only 25 items, the sccond cannot contain
more than 100.

One solution to this problem is to allocate a single array irems of 200 elements.
The first stack occupies items|0], irems[1],..., items{topl], while the second stack
is allocatec from the other end of the array; occunying_items[199], items[198],...,
items[7 . 7. Thus when one stack is not occupying ywage the other stack can use that
storage. i course, two distinct sets of pop, push, and empty routines are necessary
for the two stacks. since one grows by incrementing rapl, while the other grows by
decrementing rop2.

Unfortunately, although such a scheme allows two stacks to share a common area,
no such simple solution exists for three or more stacks or even for two queues. Instead,
one must keep track of the tops and bottoms (or fronts and rears) of all the structures
sharing a single large array. Each time that the growth of one structure is about to im-
pinge on the storage currently being used by another, neighboring structures must be
shifted within the single array to allow for the growth.

Ina sequenml representation. the items of a stack or queue are implicitly ordered
by the sequential ordér of storage. Thus. if g.items|x] represents an element of a queue,
the next element will be g.items| x + 1] (or if x equals MAXQUEUE - 1, q.items[0]).
Suppose that the items of a stack or a queue were explicitly ordered, that is, each item

186
Queues and Lists Chap. 4

-

info next info next info mext info next

1eS1 et B ——— e null

node node : node node
Figure 4.2.1 Linear lir:ked list.

contained within itself the address of the next item. Such an explicit ordering gives
rise to a data structure pictured in Figure 4.2.1, which is known as a linear linked list.
Each itenf in the list is called a node and contains two fields. an information field and a
next address field. The information field holds the actual element on the list. The next
address field contains the address of the next node in the list. Such an address. which is
used to access a particular node. is known as a poinfer. The entire linked list is accessed
from an external pointer /ist that points to (contains the address of) the first node in the
list. (By an “external” pointer, we mean one that is not included within a node. Rather
its value can be accessed directly by referencing a variable.) The next address field of
the last node in the list contains a special value, known as null, which is not a valid
address. This null pointer is used to signal the end of a list.

The list with no nodes on it is called the empty list or the null list. The value of
the external pointer /ist 1o such a list is the null pointer. A Jist can be initialized to the
empty list by the operation list = null.

We now introduce some notation for use in algorithms (but not in C programs).
If p is a pointer to a node, node(p) refers to the node pointed to by p, info(p) refers to
the information portion of that node, and next(p) refers to the next address portion and
is therefore a pointer. Thus. if next(p) is not null, info(next(p)) refers to the information
portion of the node that follows node(p) in the list.

Before proceeding with further discussion of linked lists, we should mention that
we are presenting them primarily as a data structure (that i$, an implementation method)
rather than as a data type (that is, a logical structure with precisely defined primitive
operations). We therefore do not present an ADT specification for linked lists here. In
Section 9.1 we discuss lists as abstract structures and present some primitive operations
for them.

In this section, we present the concept of a linked list and show how it is used. In
the next section, we show how linked lists can be implemented in C.

Inserting and Removing Nodes from a List

A list is a dynamic data structure. The number of nodes on a list may vary dra-

- matically as elements are inserted and removed. The dynamic nature of a list may be
contrasted with the static nature of an array, whose size remains constant.

For example, suppose that we are given a list of integers, as illustrated in Figure

4.2.2a, and we desire to add the integer 6 to the front of that list. That is. we wish to

Sec. 4.2 Linked Lists 187

info next info next info mext
T L - 3 8 null
(a)
info next
[i
info next info next info next
TSt i s e | 3 - 8 null
(b)
info next
P o 6
info next info mext info next
I 5 3 8 null
(¢)
info next ~ i
» . 1y info next nfo next info next
5 s . 3 — 8 null
1151 e
(d)
info next info next info nexr info ' next
D i
[157 =t & al 5 3 8 null
(e)
info next info next info next info next
list mgr—tr— 6 - 5 — 3 8 null
(f)

Figure 4.2.2 Adding an element to the front of a list.

change the list so that it appears as in Figure 4.2.2f. The first step is to obtain a node
in wihich to house the additional integer. If a list is to grow and shrink, there must be
some mechanism for obtaining empty nodes to be added onto the list. Note that, unlike
an array, a list does not come with a presupplied set of storage locations into which
elements can be placed.

Let us assume the existence of a mechanism for obtaining empty nodes. The op-

eration

p = getnode();

188

Queues and Lists

Chap. 4

obtains an empty node and sets the contents of a variable named p to the address of
that node. The value of p is then a pointer to this newly allocated node. Figure 4.2.2b
illustrates the list and the new node after performing the getnode operation. The details
of how this operation works will be explained shortly.

The next step is to insert the integer 6 into the mf‘ portion of the newly allocated
node. This is done by the operation

info(p) = 6;

The result of this operation is illustrated in Figure 4.2.2c.

After setting the info portion of node(p), it is necessary to set the next portion of
that node. Since node(p) is to be inserted at the front of the list, the node that follows
should be the current first node on the list. Since the variable list contains the address
of that first node, node(p) can be added to the list by performing the operation

next(p) = Tlist;

This operation places the value of /ist (which is the address of the first node on the list)
into the next field of node(p). Figure 4.2.2d illustrates the result of this operation.

At this point, p points to the list with the additional item included. However, since
list is the external pointer to the desired list, its value must be modified to the address
of the new first node of the list. This can be done by performing the operation

list = p;

which changes the value of list to the value of p. Figure 4.2.2¢ illustrates the result of
this operation. Note that Figure 4.2.2¢ and f are identical except that the value of p is
not shown in Figure 4.2.2f. This is because p is used as an auxiliary variable during
the process of modifying the list but its value is irrelevant to the status of the list before
and after the process. Once the foregoing operations have been performed, the value of
p may be changed without affecting the list.

Putting all the steps together, we have an algorithm for adding the integer 6 to the
front of the list lisz:

p = getnode() ;
info(p) = 6;
next(p) = list;
list = p;

The algorithm can obviously be generalized so that it adds any object x to the front
of a list list by replacing the operation info(p) = 6 with info(p) = x. Convince your-
self that the algorithm works correctly, even if the list is initially empty
(list == null).

Figure 4.2.3 illustrates the process of removing the first node of a nonempty list
and storing the value of its info field into a variable x. The initial configuration is shown
in Figure 4.2.3a, and the final configuration is shown in Figure 4.2.3f. The process itself

Sec. 4.2 Linked Lists 18¢

info next info next info next

list e 7 —— 5 ——— 9 null

(a)

P y
list 5 - 9 nuil

(b)

p=— 2
5 = 9 null
LS [i
(c)
x=17 p4—> "9
5) - 9 null
list so—
(d)
s
x =7 p-—+ | I !
] 1 !
e e]
s s 9 nuil
(e)
o] 1S ! e s -»‘_9 null

1}

Figure 4.2.3 Removing a node from the front of a list.

is almost the exact opposite of the process to add a node to the front of a list. To obtain
Figure 4.2.3d from Figure 4.2.3a, the following operations (whose actions should be
clear) are performed:

p = list; (Figure 4.2.3b)
list = next(p); (Figure 4.2.30)
x = info(p); (Figure 4.2.3d)

190 Queues and Lists Chap. 4

At this point. the algorithm has accomplished what it was supposed to do: the
first node has been rémoved from list, and x has been set to the desired value. However.
the algorithm is not yet complete. In Figure 4.2.3d, p"sull points to the node that was
formerly first on the list. However, that node is currently useless because it 1s no longer
on the list and its information has been stored in x. (The node is not-considered to be on
the list despite the fact that nexr(p) points to a node on the list, since there is no way to
reach node(p) from the external pointer list.)

The variable p is used as an auxiliary variable during the process of removing
the first node from the list. The starting and ending configurations of the list make no
reference to p. It is therefore reasonable to expect that p will be used for some other
purpose in a short while after this operation has been performed. But once the value of
p is changed there is no way to access the node at all, since neither an external pointer
nor a next field contains its address. Therefore the node is currently uscless and cannot
be reused, yet it is taking up valuable storage.

It would be desirable to have some mechanism for making node(p) available for
reuse even if the value of the pointer p is changed. The operation that does this is

freenode(p); (Figure 4.2.3e) .

Once this operation has been performed, it becomes illegal to reference node(p), since
the node is no longer allocated. Since the value of p is a pointer to a node that has been
freed, any reference to that value is also illegal.

However, the node might be realiocated and a pointer to it reassigned to p by
the operation p = getnode(). Note that we say that the node “might be™ reallocated,
since the gemnode operation returns a pointer to some newly allocated node. There is no
guarantee that this new node is the same as the Jone that has just been freed.

Another way of thml\mg of gemode and freenode is that getnode creates a new
node, whereas freenode destroys a node. Under this view, nodes are pot used and
reused but are rather created and destroyed. We shall say more about the two operations
getnode and freenode and about the concepts they represent in a moment, but first we
make the following interesting observation.

Linked Implementation of Stacks

The operation of adding an element to the front of a linked list is quite similar
to that of pushing an element onto a stack. In both cases. a new item is added as the
only immediately accessible item in a collection. A stack can be accessed only through
its top element, and a list can be accessed only from the pointer to its first element.
Similarly, the operation of removing the first element from a linked list is analogous to
popping a stack. In both cases the only immediately accessible item of a collection is
removed from that collection, and the next item becomes immediately accessible.

Thus we have discovered another way of implementing a stack. A stack may
be represented by a linear linked list. The first node of the list is the top of the stack.

If an external pointer s points to such a linked list, the operation pusi(s.x) may be
implemented by

Sec. 4.2 Linked Lists 191

p = getnode();
info(p) = x;
next(p) = s;
s=p;
ki - Y e _
The operauon empty(s) is merely a test of whether s equals null The operanon
X = pop(s) removes the first node from a nonempty list and signals underflow if the list
is empty:

if (empty(s)) {
printf('stack underflow*)H
. exit(l);
} -
else {
p=s;
s = next(p);
x = info(p);
freenode(p);
} /* end if ¥/

Figure 4.2.4a illustrates a stack implemented as a linked list, and Figure 4.2.4b illus-
trates the same stack after another element has been pushed onto it.

S EN N O R D

(a)

LT AT TG 00

b)

gy 3 6 e D g

regr

null

(c)
rear

i

S PR NI e A en e Y e Ry Rpy

)

Figure 4.2.4 Stack and queue as linked lists.

192 Queues and Lists Chap. 4

: . The advanlage of the'list lmplcmcma.uon of stacks is that all stacks being used by
a program can share the'same available list. When any stack needs a riode, it can obtain
it from the single available list. When any stack no longer needs a node, it returns the
node (6 that same dvallable list. As long as the total amount of space needed by all the.

- stacks at any one’time is less than the amount of space initially available to them all;

" each stack is able to grow and shrink to any size. No space has been prcallocated to any
-single stack and no stack is using space that it does not need. Furthermore, other data

- structures such as queue% miy alse share the same st of nodes.

getnode and_froenodc Operations

1 . . " - p . .

We now retumn to a discussion of the getnode and freenode operations. In an ab-
stract, idealized world ‘it is possible to postulate an infinite number of unused nodes
available for use by abstract algorithms. The getnode operation finds one such node
and makes it available to the algorithm. Alternatively, the getnode operation may be re-
garded as a machine that manufactures nodes and never breaks down. Thus, each time

“that gernode is invoked, it presents its caller with a brand new node different from all
the nodes previously in use.

* In such an ideal world, the freenode operation would be unnecessary to make
a node available for reuse. Why use an old second-hand node when u simple call to
getrode can produce a new, never-before-used node? The only harm that an unused

".node can do is to reduce the number of nodes that can possibly be used, but if an infinite

- supply of nodes is available, such a reduction is meamngless ‘Therefore there is no

" redson-to reuse a node.

Unfortunately, we live in a real world. Computers do not have an infinite amount
of storage and cannot manufacture more storage for immediate utilization (at least. not
yet). Therefore there are a finite number of nodes available and it is impossible to use

" more than that number at any given instant. If it is desired to use more than that number
over a given period of time, some nodes must be reused. The function of fregnode is to
make a node that is no longer being used i in its current context available for reuse in a
different context.

_ We might think of a finite pool of empty nodés, existing initially. This pool
cannot be accessed by the programmer except through the getnode and freenode op-
‘erations. gernode removes a node from the pool, whereas freenode returns a node
to the pool. Since any unused node is as good as any other, ‘it makes no differ-
ence which node is retrieved by gémode or where within the pool a node is placed
by freznode.

; The most natural form for this pool to take is that of a linked list acting as a stack.
The listis linked together by the next field in each node. The gernode operation removes
the first node from this list and makes it available for use. The freenode operation adds
a node to the front of the list, making it available for reallocation by the next getmode.

. The list of available nodes is called the available list.

What happens when the available list is empty? This means that all nodes are
currently in use and it is impossible to allocate any more. If a program calls on gemode

Sec. 4.2 Linked Lists 193

. = Al . !
© when the available list is empty, the amount of storage assigned for that program’s data
- structures is too Small. Therefore, overflow occurs, This is similar to the situation of a
*stack implemented in an array pverflowing the array bounds.
As long as data structures are abstract, theoretical concepts in a world of infinite
‘space,-there is no possibility of overflow. It is only when they are implemented as real
.objects in a finité 2 =a that the possibility of overflow arises.

Assume ;h_al,an_'eguemal pointer avail points to a list of avaijlable nodes. Then the
bperation ‘

p = getnode();

. - .. 4 ! ’
is implemented as follows: :

if (avail == mull) {
* printf("overflow");
exit(l);
} "
P = avail;
avail = next(avail);

" Sinze the-possibility of overflow is accounted for in the getnode operation, it need
not be mentioned in the list implementation of push. If a stack is about to overflow all
available nodes, the statement p = getnode() within the push operation results in an
overflow. . ‘

The implementation of freenode(p) is strai ghtforward:

next(p) = avail;
avail = p;

Linked Implementation of Queues .

"Let us now examine how to represent a queue as a linked list. Recall that items
are deleted from the front of a queue and inserted at the rear. Let a pointer to the first
elempent of a list represent the front of the queue. Another poiriter to the last element
of the list represents the rear of the queue, as shown in Figure 4.2.4¢c. Figure 4.2.4d
illustrates the same queue after a new item has been inserted.

Under the list representation, a queue g consists of a list and two pointers. g.front
and q.rear. The operations empty(q) and x = remove(q) are completely analogous to
empiv(s) and x = pop(s), with the pointer ¢.front replacing 5. However. special attention
is required when the last element is removed from a queue. In that case, g.rear must

- also be set to null, since in an empty queue both 4.front and g.rear must be null. The
algorithm for x = remove(q) is therefore as follows:

Queues and Lists Chap. 4
194

i7 (empty(q)) {
printf("queue underflow™);
exit(l);

}

p = q.front;

x = info(p);

g.front = next(p);

if (g.front == null)
q.rear = nyll;

freenode(p);

return(x);

The operation insert(g. x) is implemented by

p = getnode();
info(p) = x;
next(p) = null;
if (g.rear == null)
q.front = p;
else
next(q.rear) = p;
g.rear = p;

What are the disadvantages of representing a stack or queue by a linked list?
Clearly, a node in a linked list occupies more storage than a corresponding element in
an array, since two pieces of information per element are necessary in a list node (info
and next), whereas only one piece of information is needed in the array implementation.
However, the space used for a list node is usually not twice the space used by an array
element, since the elements in such a list usually consist of structures with manv sub-
fields. For example, if each element on a stack were a structure occupying ten words.
the addition of an eleventh word to contain a pointer increases the space requirement by
only 10 percent. Further, it is sometimes possible to compress information and a pointer
into a single word so that there is no space degradation.

Another disadvantage is the additional time spent in managing the available list.
Each addition and deletion of an element from a stack or a queue involves a correspond-
ing deletion or addition to the available list.

The advantage of using linked lists is that all the stacks and queues of a program
have access to the same free list of nodes. Nodes not used by one stack may be used by

another, as long as the total number of nodes in use at any one time is not greater than
the total number of nodes available.

Linked List as a Data Structure

Linked lists are important not only as a means of implementing stacks and queues
but as data structures in their own right. An item is accessed in a linked list by travers-
ing the list from its beginning. An array implementation allows access to the nth item
in a group using a single operation, whereas a list implementation requires 1 operations.

Sec, 4.2 Linked Lists 195

X0 |- X0 X0
X1 Xl Xi
x2 x x2
x X
pY] X X3
Xs X4 X4
X6 XS Xs
X6 X6
(a) ~ ° Figure4.2.5a

It is necessary to pass through each of the first n — | elcnents before reaching the
nth element because there is no relation between the memory location occupied by an
element of 2 list and its position within that list.

The advantage of a list over an array occurs when it is necessary to insert or delete
an clement in the middle of a group of other elements. For example, quppow that we
wished to insert an element x between the third and fourth elements in an array of size
10 that currently contains seven items (x[0] through x[6]). Items 6 through 3must first
be moved one siot and the new element inserted in the newly available position 3. This
process is illustrated by Figure 4.2.5a. In this case insertion of one item involves moving
four items in addition to the insertion itself. If the array contained 500 or 1000 elements,
a correspondingly larger number of elements would have to be moved. Slmz!'.\nv to
delete an element from an array without leaving a gap. all the-elements bevnnd the
element delsted must be moved one position.

On the other hand. suppose the items are stored as a list. If p points to an element
of the list, inserting a new element after node(p) involves allocating a node, inserting the
information. and adjusting two pointers. The amount of work requnccd is mdepe'xdnn.
nfmeﬂwofmehq1%5wﬂhﬁmmdemme4ﬁ5h

-~ Letinsafter(p.x) denote the operation of inserting an item x into a list after a node -
poraied to by p. This operation is implemented as follows:

q = getnode();

info(q) =
rext(q) = next(p):
next(p) = q; '

Queues an Lists = Chap. 4
196

1)

GG Z'y 9inbi4

v

1.4

0x

i

14

| Y

(% ¢

0x

iy

?

s

194

An item can be inserted only after a given node, not before the node. This is
because there is no way to proceed from a given node to its predecessor in a linear list
without traversing the list from its beginning. To insert an item before node(p), the next
field of its predecess.r must be changed to point to a newly allocated node. But, given p,
there is no way to find that predecessor. (However, it is possible 1o achieve the-effect of)
inserting an element before node(p) by inserting the element immediately after node(p)
and then interchanging info(p) with the info field of the newly created successor. We
leave the details for the reader.) ,

Similarly, to delete a node from a linear list it is insufficient to be given a pointer
to that node. This is because the next field of the node's-predecessor must be changed
to point to the node’s successor, and there is no direct way of reaching the predeces-
sor of a given node. The best that can be done is to delete a node following a given
node. (However, it is possible to save the contents of the following node, deléte the
following node, and then replace the contents of the given node with the saved infor-
mation. This achieves the effect of deleting a given node unless the given node is last in
the list.) &5 - :

Let delafter(p,x) denote the operation of deleting the node following nade(p) and
assigning its contents to the variable x. This operation may be implemented as follows:

q = next(p);
x = info(q);
next(p) = next(q);
freenade(q);

-

The freed node is placed onto the available list so that it may be reused in the future.
Examples of List Oherations

We illustrate these two operations, as well as the push and pop operations for lists,
with some simple examples. The first example is to delete all occurrences of the number
4 from a list /ist. The list is traversed in a search for nodes that contain 4 in their info
fields. Each such node must be deleted from the list. But to delete a node from a list, its
predecessor must be known. For this reason two pointers, p and g, are used. p is used to
traverse the list. and g always points t the predecessor of p. The algorithm makes use
of the pop operation to remove nodes fiom the beginning of the list, and the delafier -
operation to remove nodes from the middle of the list,

q

swt

null;
p = list;
while (p '= null) {
if (info(p) == 4)
if (q == null) {
/* remove first node of the 1ist i)
x = pop(list);
p = list;
}

non

198 Queues and Lists Chap. 4

else {
/* delete the node after g and move up p */
p = next(p);
delafter(q, x);
} /% end if ¥/)
else { 5
/* continue traversing the list ¢/
q=0p]
p = next(p);
} /* end if */
} /* end while #/

The practice of using two pointers, one tollowing the other, is very common in
working with lists. This technique is:used in the next example as well. Assume thatalist -
list is ordered so that smaller items precede larger ones. Such a list is called an ordered
list. Tt is desired to insert an item x mto this list in its proper place. The algorithm to do
so makes use of the push operation to add a nnde to the front of the list and the insafter
operation to add a node in the mlddle of the list:

g =null; 5 -
for (p = Tist; p'l= null & x > info(p); p = next(p))
q=0p;

/* at this point, a node containing x must be inserted */
if (g == null) /* insert-x at the head of the Tist %/,
. push(list, x);
else :
insafter(g, x); . - : ‘
This is a very common operation and will be denoted by placelist. x).

Let us examine the efﬁciency of the place operation. How many nodes are ac-
cessed, on the average, in inserting a new element into an ordered list? Let us assume
_ that the list contains /2 nodes. Then x can be placed in one of n + 1 positions; that is. it

can be found to be less than the first element of the list, between the first and the sec*
ond, ...between the (n — 1)stand the nth,-and: sgreater than the ath. If 1 is fess [hdﬂ the
figst, pluce accesses only the first riode of the list (aside from the new nede containing
x); that is, it lmmedmtely determines that x < info(list)-and inserts a node containing .
x using: push, If x is belw;en the kth-and (k + 1)st element, place accesses the first k
nodes; only after finding x io be less than the contents of thie (k + 1)st node is x inserted
using insafter: If x is greater than the nth element, then all n nodes are'accessed.
Now suppose that it is equally likely that x is inserted into any one of the:
n + 1 possible positions. (If this is true, we say that the insertion is random.) Then .
.the probability.of inserting at any particular position is 1/(n + 1), If the elemem is .
inserted between the kth and the (£ + 1)st position, the number of accesses isk+ 1.1F
" the’ element is inserted after the nth element, the number of accesses is n. The average .
numBer of nodes accessed, A, equals the sum, over ull possible insertion positions, of
the progucts of the probabnhly of inserting at a particular position and the humber of
accesses rcqu:red to insert ",\n element at that position. Thus

- Sec.42 Linked Lists - . 199

or

s , n
= U +24 +)+
A (n+l) S ") n+1
n

Now | +2 + ... 4
induction.) Therefore,

= n* “zL (This can be proved easily by mathematical

F | *(;'"+’)+ no non
=. 1 *x £ s Sl
H"‘FI,} 2 Mg 2 o]

When n is large, n/(n +"1) is very close to 1, so'that A is approximately n/2 + 1 or
(n +2) 2. For large n, A_is close enough to #n 2 that wé often say that the operation

of randomly inserting an element into an ordéred list requires approximately » 2 node
accesses on average.

List Iznplementation of Priority Queues

An ordered list can be used to represent a priority queue. For an ascending priority
queue, insertion (pginsert) is impiemented by the place operation. which keeps the list
ordered and deletion of the minimum element (pgmiindelete) is implemented by the
pop operation, which removes the-first clement from the list. A descending priority
queue can beimplemcqted by keeping the list in descending, rather than ascending,
order or by using remove to implement pgmaxdelete. A priority queue implemented as
an ordered linked list requires examining an average of approximately n'2 nodes for
Iinsertion, but only one node for deletion, '

An unordered list may also be used as a priority queue. Such a list requires ex-
amining only one node for insertion (by implementing pginsert using push or inserr)
but always requires examining n elements for deletion (traverse the entire list to find
the minimum or maximum and then delete that node). Thus an ordered list is somewhat
more efficient than an unordered list in implementing a priority queue.

The advantage of a list over an array for implementing a priority queue is that no
shifting of elements or gaps are necessary in a list. An item can be inserted into a list
without moving any other items, whereas this is impossible for an array unless extra
space is left empty. We examine other, more efficiént implementations of the prioity
quete in Sections 6.3 and 7.3. i

Header Nodes

Sometimes it is desirable to keep an extra node at the front of a list. Such a node
does not represent an item in the list and is called a header node or u list header. The
. info portion of such a header node might be unused. as illustrated in Figure 4.2.6a. More ’
_ often. the info portion of such a node could be used 1o keep global information about
the entire list. For example. Figure 4.2.6b illustrates a list in which the info portion
of the header node contains the number of nodes (not including the header) inthe list. In

200 .- : Queues and Lists Chap. 4

‘sepou Japeay yum sisi] 9'Z'y eanbiy

(2)

nu

.M

Jmnu

M)

151

Hnu

£650

ovl

(BOV

17EN | =

1¢88 | *+T- OPLV

et

fnu :

1

59

8 | 1 L4

ynu

201

5iy

15 .

159

such a data structure more work is needed to add or delete an item from the list, since
the count in the header node must be adjusted. However. the number of items in the list
may be obtained directly from the header node without traversing the entire list.

Another example of the use of header nodes is the following. Supposé a factory
assembles machinery out of smaller units. A particular machine (inventory number -
A746) might be composed of a number of different parts (numbers B841, K321, A087,
4492, G593). This assembly could be represented by a list such as the one illustrated in
Figure 4.2.6¢, where each item on the list represents a component and where the header
node repredents the entire assembly. The empty list would no longer be represented by
the null pointer but rather by a list with a single header node, as in Figure 4.2.6d.

Of course, algorithms for operations such as empy, push, pop, insert, and remove
must be rewritten to account for the presence of a header node. Most of the routines
become a bit more complex, but some, like insert, become simpler, since an external
list pointer is never null. We leave the rewriting of the routines as an exercise for the
reader. The routines insafter and delafier need not be changed at all. In fact, when a
header node is used, insafter and delafier can be used instead of push and pop, since
the first itlem in such a list appears in the node that follows the header node, rather than
in the first node on the list. :)

If the info portion of‘a node can contain a pointer, additional possibilities for the
use of a header node present themselves. For example, the info portion of a list header -
might contain a pointer 1o the last node in the list. as in Figure 4.2.6e. Such an imple-
mentation simplifies the representation of a queue. Until now. two external pointers,
front and rear, were necessary for a list to represent 4 queue. However. now only a
single external pointer ¢ ta the header node of the list is necessary. next(¢) points to the
front of the queue. and info(g) 1o its rear.

Another pessibility for the use of the info portion of a list header is as a pointer
toa “current” node in the list during a traversal process. This would eliminate the need
for an external pointer during traveral.

EXERCISES

Write a set of routines for implementing several stacks and queues within a single array.
What are the advantages and disadvantages of representing a group of items as an array
versus a linear linked list? _ f

4.2.3. Write an algorithm 1o perform each of the following operations.

ta) Append an element to the end of 4 list.

(b) Concatenate two lists.

() Free all the nodes in a lisi.

(d) Reverse a list, so that the last element becomes the first, and so on,
(e) Delete the last element from a list.

(f) Delete the mh element from a list.

() Combine two ordered lists into a single ordered list.

(h) Form u list containing the union of the clements of two lists.
(i) Form a list containing the intersection of the clements of two lists.
G) Insertan element afier the nth element of a list.

4.2.1.
4.2.2.

+

’

202 Queues and Lists ~ Chap. 4

(k) Delete every second element from a list.
(1) Place the elements of a list in increasing order.
.- (m) Return the sum of the integers in a list.
* {m) Return the number of elements in a list.
(0) Move node(p) forward n positions in a list.
(p) -Make a second copy of a list.

4.24. Wirite algorithms to perform each of the operationis of the previous exercise on a group
of elements in contiguous positions of an array. ;

4.2.5. What is the average number of nodes accessed in searching for a-particular element in

: an unordered list? In an ordered list? In,an unordered array? In an order-e'd array?
"4.2.6. Write algorithms for pginsért and pgmindelete for an ascending priority queue imple-
" mented as an unordered list and as an ordered list. '
"4.2.7. Write algorithms to perform each of the operations in Exercise 4.2.3, assuming that each
list contains a header node containing the number of elements in the list.

4.2.8. Write an algorithm that returns a poisiter to a node containing element x in a list with
a header node. The info field of the header should contain the pointer that traverses the
list.

4.2.9. Modify the C++ stack template implementation given at the end of Section 2.3 to use
the pointer representation of stacks.

43 LISTSINC

Array Implementation of Lists

How can linear lists be represented in C? Since a list is simply a collection of
nodes, an array of nodes immediately suggests itself. However, the nodes cannot be
ordered by the array ordering; each must contain within itself a pointer to its successor.
Thus a group of 500 nodes might be declared as an array node as follows:

#define NUMNODES 500
- struct nodetype {
int info, next;

L ~ 2

struct nodetype node[NUMNODES];

In this scheme a pointer to a node is represented by an array index. That is, a
pointer is an integer between 0.and NUMNODES - 1 that references a particular ele-
ment of the array node. The null pointer is represented by the integer — 1. Under this
imiplementation, the C expression node(p] is used to reference node(. p). info(p) is ref-

* erenced by node[p).infa, and next(p) is referenced by node|p].next. null is represented
by _—!_ D ’ i % e . i . s

For'example, suppose that the variable /ist represents a pointer to a list. If list has
the value 7, nodef7] is the first node on the list, and node(7].info is the first data item on
the list. The second node of the list is given by,node[7).next. Suppose that node|7).next
equals 385. Then node|385].info is the second data ifem on the list and node|385].next

* points to the third node. C

Sec. 4.3 Lists in C 203

’”

The nodes of a list may be scattered throughout the array node in any arbitrary
order. Each node carries within itself the focation of its successor until the last node jn
the list, whose next field contains —1, which is the null pointer. There is no relation
between the contents of a node and the pointer to it. The pointer, p, to a node merely
specifies which element of the array node is being referenced; it is node(p).info that
represents the information contained within that node.

Figure 4.3.1 illustrates a portion of an.array node that contains four linked fists.
The list list] starts at node[16] and contains the integers 3, 7, 14, 6, 5, 37, 12. The -
nodes that contain these integers in their info fields arc scattered throughout the array.
The next field of each node contains the index within the array of the node containing
the next element of the list. The last node on the list is node[23], which contains the
integer 12 in its info field and the null pointer (—1) in its next field, to indicate that it is
last on the list. : 3

Similarly, lisr2 begins at rode[4] and conains the integers 17 and 26, list3 begins
at node[11] and contains the integers 31. 19, and 32, and list4 begins at node[3] and
contains the integers 1, 18, 13, 11,4, and 15. The variables list1, list2, list3, and list4 are
integers representing external pointers to the four lists. Thus, the fact that the variable
list2 has the value 4 represents the fact that the list to which it points begins at iode[4}.

into next
0 26 -1
1 11 9
2 5 15
istd = 3 1 24
list2 = 4 17 0
5 13 1
6 i s "
5 . 7 19 ARET IS -
8 14 12 s B
o 9 4 21]
10 i N
list3 = 11| = 31~ L ‘ v
12 -6 2
130 3
14
15 37 23
listl = 16 3 20
17
18 32 -1
19
20 7 8
2L, w0 18- -1 "
22 :
23 12 -1
24| 1§ 3
25 ~——_]
26 Figure 4.3.1 Array of nodes contain-

y

ing four linked lists.
H ’

204 Queues and Lists Chap’4

Initially, all nodes are unused, since no lists h.neAyet been formed. Therefore they
must all be placed on the available list. If the global variable gvail is used to point to
the available list, we may initially organize that list as follows:

avail = 0;

for (i = 0; i < NUMNODES-1; i++)
node[i].next = i + 1;

node[NUMNODES-1] .next = -1;

The 500 nodes are initially linked in their natural order, so that node{i] points to
' node[i + 1]. node[0] is the first node on the available list. node[1] is the segend. and so -
forth. node[499] is the last node on the list, since node{499].next equals — 1. There is no
reason other than convenience for initially ordering the nodes in this fashion. We could
just as well have set node[0].next to 499, node[499).next to 1, node(1).next to 498, and
so forth, until node[249].next is set to 250 and node[250).next to —1. The important
point is that the ordering is explicit within the nodes themselves and is not implied by
some other underly:ng structure.

For the remaining functions in this section, we assume that the variables node and
avail are global and can therefore be used by any routine. '

When a node is needed for use in a particular list, it is obtained from the available
list. Similarly, when a.node is no longer necessary, it is réturned to the available list.
These two operations are implemented by the C routines getnode and freenode. getnode
is a function that removes a node from the available list and returns a pointer to it:

int getnode(void)

int p;

y if (avail == -1) {
printf("overflow\n");
exit(l);

g =
p = avail;
avail = node[avail].next; -
return(p);
} /* end getnode */

If avail equals — when this function is called, there are no nodes available. This means
- that the list structures of a particular program have overflowed the available space.

The function freenode accepts a pointer to a node and returns that node to the
available list:

void freenode(int p)

{
node[p] .next = avail;
avail =
return;

} /* end freenode */

Sec. 4.3 Lists in C 205

The >rimitive operations for lists are straightforward C versions of the corresponding
algorithms. The routine insafizr accepts a pointer p 10 a node and an item x as param-
eters. It first ensures that p is not null and then inserts x into a node following the node
pointed to by p: ‘

void insafter(int p, int x)
{
int q;
if (p==-1) {
printf("void insertion\n");
return;
}
q = getnode();
node[q].info
node[q].next
node[p].next
return;
} /* end insafter */

L
node[p).next;
q:

nonon

The routine delafter(p. px), calied by the statement delafter(p; &x), deletes the
node following node(p) and stores its contents in x:

void delafter(int p, int *px)
{
int q; ’
if ((p == -1) || (node[p].next == -1)) {
printf ("void deletion\n");
return;
}
q = node[p].next;
*px = node[q].info;
node[p] .next = node[q].next;
freenode(q);
return;
} /* end-delafter */

Before calling insafter we must be sure that p is not null. Before calling deh;ﬂer
we must be sure that neither p nor node[p].next is null. e ps i

timitations of the Array Implementation

As we saw in Section 4.2, the notion of a pointer allows us to build and manip-
ulate linked lists of various types. The concept of 2 pointer introduces the possibility
of assembling a collection of building blocks, called nodes. into flexible structures. By
altering the values of pointers, nodes can be attached, detached, and reassembled in
patterns that grow and shrink as execution of a program progresses,

Under the array implementation, a fixed set of nodes represented by an array is

established at the start of execution. A pointer to a node is represented by the relative
e :

= Queues and Lists Chap. 4
206

position of the node within the array. The disadvantage of that approach is twofold..
First, the number of nodes that are needed often cannot be predicted when a program is
written. Usually, the data with which the program is executed determines the number
of nodes necessary. Thus no matter how many elements the array of nodes contains, it
is always possible that the program will be executed with input that requires a larger
number. ;

The second disadvantage of the array approach is that whatever number of nodes
are declared must remain allocated to the program throughout its execution. For exam-
ple, if 500 nodes of a given type are declared, the amount of storage required for those
500 nodes is reserved for that purpose. If the program-actually uses only 100 or even
10 nodes in its execution the additional nodes are still reserved and their storage cannot
be used for any other purpose.

The solution to this problem is to allow nodes that are dyramic, rather than static.
That is, when a node is needed, storage is reserved for it, and when it is no longer
needed, the storage is released. Thus the storage for nodes that are no longer in use
is available for another purpose. Also, no predefined limit on the number of nodes is
established. As long as sufficient storage is available to the job as a whole, part of that
storage can be reserved for use as a node.

Aliocating and Freeing Dynamic Variables

In Sections 1.1, 1.2, and 1.3, we examined pointers in the C language. f x is any
object, &x is a pointer to x. If p is a pointer in C, #p is the object to which p points. We can
use C.pointers to help implement dynamic linked lists. First, however, we discuss how
storage can be allocated and freed dynamically and how dynamic storage is accessed
in C. :

In C a pointer variable to an integer can be created by the declaration

int *p; '
Once a variable p has been declared as a pointer to a specific type of object, it
must be possible to dynamically create an object of that specific type and assign its
address to p. .

This may be done in C by calling the standard library function malloc(size). mal-

loc dynamically allocates a portion of memory of size size and returns a pointer to an
item of type char. Consider the declarations

extern char *malloc():
. int *pi;
float *pr;

The statements

pi = (int *) malloc(sizeof (int));
pr = (float *) malloc(sizeof (float));

Sec. 4.3 ListsinC 207

dynamically create the integer variable *pi and the float variable *pr. These variables
are called dynamic variables. In executing these statements, the operator sizeaf returns
the size, in bytes, of its operand. This is used to maintain machine independence. malloc
can then create an object of that size. Thus malloc(sizeofiint)) allocates storage for
an integer, whereas malloc(sizeof{ float)) allocates storage for a floating-point: number.
malloc also returns a pointer to the storage it allocates. This pointer is to the first byte
(for example, character) of that storage and is of type char *. To coerce this pointer so .
that it points to an integer or real, we use the cast operator (int) or (float *).

(The sizeof operator returns a value of type inf, whereas the malloc function ex-
pects a parameter of type unsigned. To make the program “lint free” we should write .

= (int *) malloc ((unsigned)(sizeof (int))):

However, the cast on the szzeof operator is often omitted.)

As an example of the use of pointers and the function malloc, consider the fol- ’
lowing statements: :

int *p, *q;

L ;

2 int X ’

3 = (int *) malloc(sizeof (mt))
4 *p 3 :

5 q= .

6 pr‘intf ("%d %d \n", *p, *qQ);

7 X =7

8 tq = o

9 printf("%d %d \n", *p *q);

10 - p = (int *) malloc (sizeof (int));
s *p = 5;

12 printf("%d %d \n" *p *q);

In line 3, an integer variable is created and its address is plaeed in p. Line 4 sets the

value of that variable to 3. Line 5 sets g to the address of that variable. The assignment
- statement in line S is perfectly valid, since one pointer variable (¢) is being assigned

the value of another (p). Figure 4.3.2a illustrates the situation after line 5. Note that at
this point, *p and *q refer to the same variable. Line 6 therefore prints the contents of
this variable (which is 3) twice.

Line 7 sets the value of an integer variable, x, to 7. Lme 8 changes the value of
*q to the value of x. However, since p and g both point'to the same variable, *p and *g
both,have the value 7. This is illustrated in Figure 4.3.2b. Line 9 lherefore prints the
number 7 twice.)

Line 10 creates a new integer variable and places its address in p. The results are
illustrated.in Figure 4.3.2c. »p now refers to the newly created integer variable that has
not yet been given a value. ¢ has not been changed; therefore the value of *g remains 7.
Note that *p does not refer to a single. specific variable. Its value changes as the vilue
of p changes. Line 11 sets the value of this newly created variable to 5, as 1llusmted in
Figure 4.3.2d, and line 12 prints the values 5 and 7.

Queues and Lists Chap. 4
208

p e
3
(e—
(@) -
- i “\
P —
e 7
C (b
q
N\ x
p s i &= 7 i
(c)
q
N\ x
P — 5 7 7
@ Figure 4.3.2

The function free is used in C to free storage of a dynamically allocated variable.
The statement

free(p):

makes any future references to the variable *p illegal (unless, of course, a new value is
assigned to p by an assignment statement or by a call to malloc). Calling free(p) makes
the storage occupied by *p available for reuse, if necessary.

[Note: The free function, by default, expects a pointer parameter of type char *.
To make the statement “lint free,” we should write

free((char *) p);

However, in practice the cast on the parameter is often omitted.]
To illustrate the use of the free function, consider the following statements:

1 p = (int *) malloc (sizeof (int));
2 *P = §5;

3 q = (int *) malloc (sizeof (int));
4 *q = 8;

5 free(p);

6 p=a;

Sec. 4.3 ListsinC : 209

7 q = (int *) malloc (sizeof (iﬁt)):
8 .t =6
v printf("%d %d \n", 2p. *q);

The values 8 and 6 are printed. Figure 4.3.3a illustrates the situation after line 4,
where *p gnd *g have both been allocated and given values. Figure 4.3.3b illustrates
the effect of line 5, in which the variable to which p points has been freed. Figure 4.3.3¢
illustrates line 6, in which the value of p is changed to point to the variable *¢. In lines
7 and 8, the value of g is changed to point to a newly created variable which is given
the value 6 in line 8 (Figure 4.3.3d).

Note that if malloc is called twice in succession and its value is assigned to the
same variable, as in:

p = (int *) malloc (sizeof (int));

tp = 3;
p = (int *) malloc (sizeof (int));
=T

the first copy of #p is lost since its address was not saved. The space allocated for
dynamic variables can be accessed only through a pointer. Unless the pointer to the
first variable is saved in another pointer, that variable will be lost. In fact, its storage
cannot even be freed since there is no way to reference it in a call to free. This is an
example of storage that is allocated but cannot be referenced.

P — 5 (— 8
(a)
| RS- 1
1
p ——’! : (| — 8
| PSR |
(b
e
g 8
Q —
@
'
q — 6 P — 8
)] Figure 4.3.3

Queues and Lists Chap. 4
210

The value 0 (zero) can be used in'a C program as the null pointer. Any pointer

variable may be set to this value. Usually, a standard header to a C program includes
the definition

#define NULL 0

to allow the zero pointer value to be written as NULL. This NULL pointer value does
not reference a storage location but instead denotes the pointer that does not point to
anything. The value NULL (zero) may be assigned to any pointer variable p, after which
a reference to *p is illegal.

“We have noted that a call to free(p) makes a subsequent reference to *p illegal.
However, the-actual effects of a call to free are not defined by the C language—each
implementation of C is free to develop its own version of this function. In most C imple-
mentations, the storage for *p is freed but the value of p is left unchanged. This means
that although a reference to *p becomes illegal, there may be no way of detecting the il-
legality. The value of p is a valid address and the object at that address of the proper type
may be used as the value of *p. p is called a dangling pointer. It is the programmer’s
responsibility never to use such a pointer in a program Itis good practice to explicitly
set p to NULL after executing free(p).

One other dangerous feature associated with pointers should be menuoned Ifp
‘and q are pointers with the same value, the variables *p and *q are identical. Both *p and
*q refer to the same object. Thus, an assignment to *p changes the value of *q, despite
the fact that neither g nor *q are explicitly mentioned in the assignment statement to

~*p. It is the programmer’s responsibility to keep track of “which pointers are pointing
where” and to recognize the occurrence of such implicit results.

Linked Lists Using Dynamic Variables

Now that we have the capability of dynamically allocating and freeing a variable,
let us see how dynamic variables can be used to implement linked lists. Recall that a
linked list consists of a set of nodes, each of which has two ficlds: an information field
and a pointer to the next node in the list. In addition, an external pointer points to the
first node in the list. We use pointer variables to implement list pointers. Thus, we define
the type of a pointer and a node by

struct node {
int info;
struct node *next;
h
typedef struct node *NODEPTR;

A node of this type is identical to the nodes of the array implementation except
that the next field is a pointer (containing the address of the next node in the list) rather

than an integer (containing the index within an array where the next node in the list is
kept).

Sec. 4.3 Lists in C . 21

Let us employ the dynamic allocation features to implement linked lists. Instead
of declaring an array to represent an aggregate collection of nodes, nodes are allocated
and freed as necessary. The need for a declared collection of nodes is eliminated.

If we declare :

NODEPTR p;
execution of the statement
p = getnode();
should place the address of an a,\'failable node into p. We present the function getnode:

NODEPTR getnade(void)
{

NODEPTR p;
p = (NODEPTR) malloc(sizeof(struct node));
return(p); -

“ . —

Note that sizeof is applied to a structure type and returns the number of bytes required:
for the entire structure. _ : ' :
Execution of the statement s

freenbde(p);

should return the node whose address is at p to available storage. We present the routine
[freenode:

, void freenode(NODEPTR p)
{

free(p);

The programmer need not be concerned with managing available storage. There
is no longer a need: for the pointer avail (pointing to the first available node), since
the system governs the allocating and freeing of nodes and the system keeps track of
the first available node. Note also that there is no test in gemode to determine whether
overflow has occurred. This is because such a condition will be detected during the
execution of the malloc function and is system dependent.

Since the routines getnode and freenode are so simple under this implementation,
they are often replaced by the in-line statements

p = (NODEPTR) malloc(sizeof (struct node));

Queues and Lists Chap. 4

and

free(p);

The procedures insafter(p,x) and delafter(p,px) are presented below using the dy-
uamic implementation of a linked list. Assume that list is a pointer variable that points
iv the first node of a list (if any) and equals NULL in the case of an empty list.

void insafter(NODEPTR p, int x)
{ :

NODEPTR q;

if.(p = NULL) {
printf("void insertion\n");
exit(l);

q = getnode();
q -> info = x;
g -> next = p -» next;
p -> next = qg;
} /% end insafter */

void delafter(NODEPTR p, int *px)
{
NODEPTR q;
if ((p == NULL) || (p -> next == NULL)) {
printf("void deletion\n");
exit(l);
}
qQ=p -> next;
*px = q -> info;
P -> next = g -> next;
freenode(q);
} /* end delafter */

Notice the striking similarity between the preceding routines and those of the
array implementation presented earlier in this section. Both are implementations of
the algorithms of Section 4.2. In fact. the only difference between the two versions
is in the manner in which nodes are referenced.

Queues as Lists in C

As a further illustration of how the C list implementations are used, we present C
routines for manipulating a queue represented as a linear list. We leave the routines for
manipulating a stack and a priority queue as exercises for the reader. For comparison
purposes we show both the array and dynamic implemeniation. We assume that struct
node and NODEPTR have been declared as in the foregoing. A queue is represented as
asstructure:

Sec.43 ListsinC) 213

Array Implementation _ Dynamic Implementation

struct queue { struct queue {

int front, rear; NODEPTR front, rear;
| b
struct queue g; struct queue q;

front and rear are pointers to the first and last nodes of a queue presented as a
list. The empty queue is represented by front and rear both equaling the null pointer.
The function empry need check only one of these pointers since, in a nonempty queue,
neither front nor rear will be NULL.

int empty(struct queue *pq) int empty(struct queue *pq)
(.
return ((pg->front == -1) return ((pq->front == NULL)
? TRUE: FALSE); . ? TRUE: FALSE);
} /* end empty */ e 2 } /* end empty */

The routine to insert an element into a queue may be written as follows:

void insert(struct queue *pq, int x) void insert(struct queue *pg, int X)

{
int p; NODEPTR p;
p = getnode(); . .
nade[p].info = x; . p = getnode();
node[p].next = -1; p->info = x;
if (pg->rear == -1) . p->next = NULL;
pg->front = p; if- (pg->rear == NULL)
else pg->front = p;
node [pg->rear].next = p; else -
pq->rear = p; (pg->rear)->next = 9;
} /* end insert */ ' pg->rear = p;

} /* end insert */

The function remove deletes the first element from a queue and returns its value:

int: remove(struct queue *pq) ' int remove(struct queue *pq)
{ i
int p, x; NODEPTR p;
. int x;
if (empty(pq)) { if (empty(pq)) {
printf("queue underflow\n"); printf(“queue underflow\n");
exit(l); exit(l);
} }
p = pg->front; . p = pg->front;
x = node[p].info; x = p->info;
pq->front = node[p] .next; pg->front = p->next;
if (pq->front == -1) if (pq->front == NULL)
pg->rear = -1; pg->rear = NULL;
freenode(p); freenode(p);
return(x); " return(x);
} /* end remove */ } /* end remove */

e Queues and Lists Chap. 4

Examples of List Operations in C

Let us look at several somewhat more complex list operations implemented in
C. We have seen that the dynamic implementation is often superior (o the array im-
plementation. For that reason the majority of C programmers use the dynamic imple-
mentation to implement lists. From this point on we restrict ourselves to the dynamic
implementation of linked lists, although we might refer to the array implementation
when appropriate.

We have previously defined the operation place(list, x), where list points to a
sorted linear list and x is an element to be inserted into its proper position within the
list. Recall that this opération is used to implement the operation pginsert to insert i;
priority queue. We assume that we have already implemented the stack operation pusi..
The code to implement the place operation follows:

void place(NODEPTR *plist, int x)
i

NODEPTR p, q;
q = NULL;
for (p = *plist; p != NULL && x > p->info; p = p->next)
q=p N
if (q == NULL) /* irsert x at the head of the list */
push(plist, x); ’
else
insafter(q, x);
} /* end place */

Note that plist must be declared as a pointer to the list pointer, since the value
of the external list pointer is changed if x is inserted at the front of the list using the
push routine. The foregoing routine would be called by the statement
place(&list, x);.

As a second example, we write a function insend(plist x) to insert the element x
at the end of a list lisr:

void insend(NODEPTR *plist, int x)
{
NODEPTR p, g;
p = getnode();
p->info = x; "
p->next = NULL; &2
if (*plist == NULL)) ‘ : %
*plist = p;
else {
/* search for last node */
for (g = *plist; gq->next != NULL; q = g->next)
q->next = p; ¥
} /* end if %/
} /* end insend */

Sec. 4.3 Listsin C : 215

We now present a function search(list, x) that returns a pointer to the first occurrence
of x within the list is7 and the NULL pointer if x does not occur in the list:

s

NODEPTR search(NODEPTR Tist, int x) "
{ .

NODEPTR p; ;
for (p = Tist; p = NULL; p = p->next)
if (p->info == x)
return (p);
/* x is not in the list */
return (NULL);
} /*.end search */

The next routine deletes all nodes whose info field contains the value x:

void remvx(NODEPTR *plist, int x) .
{
NODEPTR p, q;
inty;
q = NULL;
p = *plist; .
while (p != NULL)
if (p -> info == x) {
p = p->next;
if (q == NULL) {
/* remove first node of the Tist */

freenode(*plist);
*plist = p;
else £ 4

delafter(q, &y);

else
/* advance to next node of list */
q=p; ; :
p = p->next;

} /% end if %/
} /% end remvx */

Noninteger and Nonhomogeneous Lists

Of course, a node on a list need not represent an integer. For example, to represent
a stack of character strings by a linked list; nodes containing character strings in their

info fields are needed. Such nodes using the dynamic allocation implementation could
be declared by '

struct node {

char info[100];
struct node *next;

. 216 Queues and Lists Chap. 4

A particular application may call for nodes containing more than one itemn of in-
formation. For example, each student node in a list of students nzay contain the follow-
ing information: the student’s name, college identification number, address. grade point
index, and major. Nodes for such an application may be declared as follows:

struct node {
char name[30]; _|’
char id[9];
char address[1007;
“float gpindex;
* char major([20];
struct node *next;

¥

A separate set of C routines must be written to manipulate lists containing each typ-
node. "

To represent nonhomogeneous lists (those that contain nodes of different types),
a union can be used. For example,

#define INTCR 1
#define FLT 2
#define STRING 3
struct node {

int etype; /* etype equals INThk. FLT, or STRING #/

/* depending on the type of the i
. 7* corresponding element. t/
union { .
int jval;
float fval;
char *pval; /* pointer to a string */
} element;

struct node *next;

¥;

defines a node whose items may be either integers, floating-point numbers, or strings,
depending on the value of the corresponding efype. SinceXa union is always large enough
to hold its largest component, the sizeof and malloc fuhctions can be used to allocate
storage for the node. Thus the functions gemode and freenode remain unchanged. Of
course, it is the programmer’s responsibility to use the components of a node as ap-
propriate. For simplicity, in the remainder of this section we assume that a linked list
is declared to have only homogeneous elements (so that unions are not necessary). We

examine nonhomogeneous lists, including lists that can contain other lists and recursive
lists, in‘Section 9.1.

Comparing the Dynamic and Afray Implementations of Lists

Itis instructive o examine the advantages and disadvanitages of the dynamic and
array implementations of linked lists. The major disadvantage of the dynamic imple-
,

Sec. 4.3 Lists in C _ 217

mentation is that it may be more time-consuming to call upon the system to allocate
and free storage than to manipulate a programmer-managed available list. Its major
advantage is that a set of nodes is not reserved in advance.for use by a particular group
of lists. ! ‘

For example, suppose that a program uses two types of lists: lists of integers and
lists of characters. Under the array representation, two arrays of fixed size would im-
mediately be allocated. If one group of lists overflows its array, the program cannot
continue. Under the dynamic representation, two node types are defined at the outset,
but no storage is allocated for variables until needed. As nodes are needed, the system
is called upon to provide them. Any storage not used for one type of node may be used -
for another. Thus as long as sufficient storage is available for the nodes actually present
in the lists. no overflow occurs. ‘

Another advantage of the dynamic implementation is that a reference to *p does
not involve the address computation that is necessary in computing the address of
node(p). To compute the address of node(p), the contents of p must be added to the
base uddn[iss of the array node, whereas the address of *is give:i: by the contents of p
directly. ’ -

.

Implementing Header Nodes

At the end of Section 4.2 we introduced the concept of header nodes that can
contain global information about a list, such as its length or a pointer to the current or
last node on the list. When the data type of the header contents is identical to the type
of the list-node contents, the header cun be implemented simply as just another node at
the beginning of the list. '

[tis also possible for header nodes to be declared as variables separate from the
set of list nodes. This is particularly useful when the header contains information of

a different type than the data in list nodes. For examp.e. consider the following set of
declarations:

struct node {
"~ char info;

struct nedz *next;
struct charstr {

int length;

struct node *firstchar;

struct charstr sl1, s2;

The variables s and 52 of type charstr are header nodes for a list of characters. The
header contains the number of characters in the list (length) and a pointer to the list
(firstchar). Thus, 51 and 52 represent varying-length character strings. As exercises,

you may wish to write routines to concatenate two such character strings or to extract a
substring from such a string.

Queues and Lists Chap. 4

EXERCISES

43.1.
4.3.2.
4.3.3.
434,

4.3.5.
4.3.6.

4.3.7.

4.3.8.

43.9.

4.3.10.

Implement the mulme% empty, push, pop. and popandiest using the array and the dy-
namic storage implementations of a linked stack.

Implement the routines empty, insert, and remove using a dynamic storage implemen-
tation of a linked queue.

Implement the routines empty, pginsert, and pgmindelete using a dynamic storage in-
plementation of a linked priority queue.

Write C routines using both the array and dynamic variable 1mp|emcmauon~ of alinked
list to implement the operations of Excrcise 4.2.3.

Write a C routine to interchange the mth and nth elem - *< of a list.

Write a routine inssub(l1, i1, I2, i2, len) 10 insert tse elements of list /2 beginning ..
the i2th element and continuing fof /en elements into the list /1 beginning at position
i1. No elements of the list /1 are to be removed or replaced. If il > length(l1) + |
(where length(l1) denotes the number of nodc in the list {1). or if i2

length(12), or if il <1, or if i2 < 1, print an error mess= 2. The list 12 shouw 1.0
unchanged. i

Write a C function search(l. x) that accepts a pointer /1o a list of integers and an inteccr x
and returns a pointer to a node containing x. if it exists. and the null pointer otherwise.
Write another function, srchinsri(l, x), that adds x to [if it is not found and always
returns a pointer to a node containing x.

Write a C program to read a group of input lines, each containing one word. Prift each
word that appears in the input and the number of times that it appears.

Suppose that a character string is represented by a list of single characters. Write a set of
routines to manipulate such lists as follows (in the following, /1, /2. and list are pointers
to a header node of a list representing a character string, sir is an array of characters,
and il and i2 are integers):

(a) strenvel(sir) to convert the character string sz to a list. This function returns a
pointer to a header node.

(b) strenvic(list, str) to convert a list into a character string.

(€) strpsi(l1, 12) to perform the strpos function of Section 1.2 on two character cmngﬂ
represented by lists. This functioh returns an integer.

(d) strveful(l1, I2) 10 determine the first positicn, of the string represented by /1 that
is not contained in the string represented by /2. This function returns an integer.

(e) strsbstr(l1. il, i2) to perform the subsrr function of Section 1.2 on a character
string represented by list /1 and integers’ il and 2. This function returns a pointer
to the header node of a list representing a character string, which is the desired
substring. The list /1 remains unchanged.

(F) serpsbl(ll, il, i2, 12) to perform a pseudo-substr assignment to list /1. The ele-
ments of list [2 should replace the i2 elements of /I beginning at position i1, The
list 12 should remain unchanged.

(g) strempl(l1, I2) to compare two character strings represented by lists. This func-
tion returns — 1 if the character string represented by I1 is less than the string

_ represented by /2, 0 if they are equal, and 1 if the string represented by /1 is
greater.

Write a function binsrch that acccpt\ two parameters, an array of pointers to a gmup
of sorted numbers, and a single number. The function should use a binary search (see

Exercises 219

Section 3.!) to return a pointer to the single number if it is in the group. If the number
is not present in the group. rewrn the value NULL.

4.3.11. Assume that we wish to form N lists, where N is a constant. Declare an array list of
pointers by

#define N ...
struct node {

int info

struct node *next
1
typedef struct node *NODEPTR;
NODEPTR list [N};

Read two numbers from each input line, the first number being the index of the list into
which the second number is 1o be placed in ascending order. When there are no more *
input lines, print all the lists.

4.4 EXAMPLE: SIMULATION USING LINKED LISTS

One of the most useful applications of queues, priority queues, and linked. lists is in
simulation. A simulation program attempts to model a real-world situation in order to »
learn something about it. Each object and action in the real situation has its counterpart
in the' program. If the simulation is accurate—that is, if the program successtully mircors
the real world—the result of the program should mirror the result of the actions being
simulated. Thus it is possible to understand what occurs in the real-world situation
without actually observing its occurrence.

‘ Let us ook at an example. Suppose that there is a bank with four tellers. A cus-
tomer enters the bank at a specific time (1) desiring 1o conduct a transaction with any
teller. The transaction may be expected to take a certain period of time (2) before it is
completed. If a teller is free, the teller can process the customer’s transaction immedi-
ately, and the customer leaves the bank as soon as the transaction is completed. at time
11 +12. The total time spent in the bank by the customer is'exactly equal to the duration
of the transaction (r2). ,

However, it is possible that none of the tellers are free; they are all servicing
customers who arrived previously. In that case there is a line waiting at each teller’s
window. The line for a particular teller may consist of a single person—the one cur-
rently transacting business with the teller—or it may be a very long line. The customer
proceeds to the back of the shortest line and waits until all the previous customers have
completed their transactions and have left the bank. At that time the customer may
trafisact his or her business. The customer leaves the bank at 12 time units after reach-
ing the front of a teller’s line. In this case the time spent in the bank is 2 plus the time
spent waiting on line. : _

Given such a system, we would like to compute the average time spent by a cus-
tomer in the bank. One way of doing so is to stand in the bank doorway, ask departing
customers the time of their arrival and recerd the time of their departure, subtract the
first from the second for each customer. and take the average over all customers. How-
ever, this would not be very practical. 1t would be difficult to ensure that no customer

220 ’ Queues and Lists Chap. 4

is overlooked leaving the bank. Furthermore, it is doubtful that most customers would
remember the exact time of arrivai. ‘

Instead, we write a program to simulate the customer actions, Each part of the
real-world situation has its analogue in the program. The real-world action of 4 customer
arriving is modeled by input of data. As each customer arrives 4wo facts are knowr;: the
time of arrival and the duration of the transaction (since, presumably, when a customer
arrives. he or she knows what he or she wishes to do at the bank). Thus the input data
for each customer consists of a pair of numbers: the time (in minutes since the bank
opened) of the customers arrival and the amount of time (again, in minutes) necessary
for the transaction. The data pairs are ordered by increasing arrival time. We assume at
least one input line. 5

The four lines in the bank arc represented by four queues. Each node of the queues
fepresents a customer waiting on a line, and the node at the front of a queue represents
the customer currently being serviced by a teller. i

Suppose that at a given instant of time the four lines each contain a specific num-
ber of customers. What can happen to alter the status of the lines? Either 4 new customer
enters the bank, in which case one of the lines will have an additional customer. or the
first customer on one of the four lines completes a transaction, in which case that line
‘will have one fewer customer. Thus there are a total of five actions (a customer entering
plus four cases of a customer leaving) that can change the status of the lines. Each of
. these five actions is called an event. 3

Simulation Process

The simulation proceeds by finding the next event to occur and effecting the
change in the queues that mirrors the change in the lines at the bank due 1o that event.
To keep track of events, the program uses an ascending priority queue, called the event .
list. This list contains at most five nodes, each representing the next occurrence of one
of the five types of events. Thus the event list contains one node representing the next
customer arriving and four nodes representing each of the four customers at the head
of a line completing a transaction and leaving the bank. Of course, it is possible that
one or more of the lines in the bank are empty, or that the doors of the bank have been
closed for the day, so that no more customers are arriving. In such cases the event Jist
contains fewer than five nodes. ‘

An event node representing a customer’s arrival is called an arrival node, and a
node representing a departure is called a departure node. At each point in the simu-
lation, it is necessary to know the next event to oceur. For this reason, the event list is
ordered by increasing time of event occurrence, so that the first event node on the list
represents the next event to occur. Thus the event list is an ascending priority queue
represented by an ordered linked list.

The firstevent to occur is the arrival of the first customer. The event Jist is therefore
initialized by reading the first input line and placing an arrival node representing the first
customer’s arrival on the event list. Initially, of course. all four teller queues are empty.
The simulation then proceeds as follows: The first node on the event list is removed and
the changes that the event causes are made to the queues, As we shall soon

see. these
changes may also cause additional events to be placed on the event list, The

process of

Sec. 4.4 Example: Simulation Using Linked Lists 221

removing the first node from the event list and effecting the changes that it causes is
repeated until the event list is empty.

When an arrival node is removed from the event list, a node representing the
arriving customer is placed on the shortest of the four teller queues. If that customer is
the nly one on a queue, a node representing his or her departure is also placed on the
event list, since he or she is at the front of the queue. At the same time, the next input
line is read and an arrival node representing the next customer to arrive is placed on
the event list. There will always be exactly one arrival node on the event list (as long
as the input is not exhausted, at which point no more customers arrive), since as soon
as one arrival node is removed from the event list another is added to it.

When a departure node is removed from the cvent list. the node representing the
departing customer is removed from the front of one of the four queueés. At that point
the amount of time that the departing.customer has spent-in the bank is computed and
added to a total. At the end of the simulation, this total will be divided by the number of
customers to yield the average time spent by a customer. After a customer node has been
deleted from the front of its queue, the next customer on the queue (if any) becomes the
one being serviced by that teller and a departure node for that next customer is added
to the évent list.

This process continues until the event list is empty, at which point the average
time is computed and printed. Note that the event list itself does not mirror any partof
the real-world situation. 1t is used as part of the program to control the entire process.
A simulation such as this one, which proceeds by changing the simulated situation in
response 1o the occurrence of one of several events. is called an event-driven simula-
tion.

Data Structures |
We now examine the data structures necessary for this program. The rfodes on the
queues represent customers and therefore must contain fields representing the arrival
time and the transaction duration, in addition to a next field to link the nodes in a list.
The nodes on the event list represent events and therefore must contain the time that
* the event occurs, the type of the event. and any other information associated with the
event, as well as a nexr field. Thus it would seem that two separate node pools are
needed for the two ditferent types of node. Two different types of node would entail
two getnode and freenode routines and two sets of list manipulation routines. To avoid
this cumbersome set of duplicate routines, let us try to use a single type of nbde for both

events and customers.

We.can declare such a pool of m\dcs and a pointer type as follows:

struct node {

int- time;

int duration;

int type;

struct node *next;
h :
typedef struct node *NODEPTR;

Queues and Lists ~ Chap. 4
222 :

In a customer node, time is the customer’s arrival time and duration is the trans-
action’s duration. 1ype is unused in a customer node. nexr is used as a pointer to link
the queue together. For an event node, time is used to hold the time of the event's oc-
currence; duration is used for the transaction duration of the arriving customer in an
arrival node and is unused in a departure node. rype is an integer between —1 and 3,
depending on whether the event is an arrival (fype == —1)ora departure from line 0,
1,2, 0r 3 (rype == 0, 1, 2, or 3). next holds a pointer linking the event list together.

The four queues representing the teller lines are declared as an array by the dec-
laration ; '

struct queue {
NODEPTR front, rear;
int num;

|3

struct queue q[4);

The variable g[i] represents a header for the ith'teller queue. The num field of a queue
contains the number of customers on that queue. .

A variable evlist points to the front of the event list. A variable totrime is used
to keep track of the total time spent by all customers. and counr keeps count of the
number of customers that have passed through the bank. These will be used at the end
of the simulation to compute the average time spent in the bank by the. customers. An

auxiliary variable auxinfo is used to store temporarily the information portion of a node.
These variables are declared by

NODEPTR evlist;
float count,. tottime;
struct node auxinfo;

Simulation Program

The main routine initializes all lists and queues_'and repeatedly removes the next
node from the event list to drive the simulation'until the event Jist is empty. The event list
is ordered by increasing value of the time field. The program uses the call place(&evlist,
&auxinfo) to insert a node whose information is given by auxinfo in its proper place
in the event list. The main routine also calls popsub(&evlist, &auxinfo) to remove the
- first node from the event list and place its information in auxinfo. This routine is equiv-

alent to the function pop. These routines must, of course, be suitably modified from the
examples given in the last section in order to handle this particular type of node. Note
that evlist, piace, and popsub are merely a particular implementation of an ascending
priority quete and the operations pginsert and pgmindelete. A more efficient represen-
“tation of a priority queue (such as we present in Sections 6.3 and 7.3) would allow the
program to operate somewhat more efficiently.
The main program also calls on the functions arrive and deparr, which effect the
changes in the event list and the queues caused by an arrival and a departure. Specif-
ically, the function arrive(atime, dur) reflects the arrival of a customer 2t time atime

Sec. 4.4 Example: Simulation Using Linked Lists 223

with a transaction of duration dur, and the function depart(gindx, dtime) reflects the

departure of the first gustomer frem queue ¢[gindx] at time dtime. The codin

routines will be given shortly.

224

#include <stdio.h>-
#define NULL 0
struct node{
int duration, time, type;
struct node *next;
¥
typedef struct node *NODEPTR;
struct queue {
NODEPTR froat, rear:
int num;

¥

_ struct queue q[4];

struct node auxinfo;

NODEPTR evlist;

int atime, dtime, dur, gindx;
float count, tottime;

void place(NODEPTR *, struct node *):

void popsub(NODEPTR *, struct node *):

void arrive(int, int);

void depart(int, int);

void push(NODEPTR *, struct node *);

void insafter(NODEPTR *, struct node *):
int empty(NODEPTR);

void insert(struct queue *, struct node e I
void remove(struct queve *, struct node *);
NODEPTR getnode(void);

void freenode(NODEPTR);

void main()
{
/* initializations */
evlist = NULL;
count = 0;
tottime = 0;
for (qindx = 0; gindx < 4; gindx++) {
q[gindx].num = 0;
q[qindx].front = NULL;
- qlgqindx]).rear = NULL;
} /% end for %/ 2
/* initialize the event list with the first arrival #/
printf("enter time and duration\n"): :
scanf("%d %d", &auxinfo.time, &auxinfo.duration);
auxinfo.type ="-1; /* an arrivai */
place(&evlist, &auxinfo);

Queues and Lists

g of these

Chap. 4

/* run the simulation as Iong as the event list is not empty */
while (evlist != NULL) {

popsub(&evlist, &auxinfo);
/* check if the next event is an arrival or departure */
if (auxinfo.type == -1) {

o an arrival */

atime = auxinfo.time;

dur = auxinfo.duration;

arrive(atime, dur);

else {
Vi a departure */
gindx = auxinfo.type;
dtime = auxinfo.time;
depart(qindx, dtime);
} /* end if ¥/
} /* end while */
pr1ntf("average time is %4.2f", tomne/counr.).
} /* end main */

The routine arrive(atime, dur) modifies the queues and the event list to reflect 4
new arrival at time atime with a transaction of duration dur. It inserts a new customer
node at the rear of the shortest queue by calling the function insert(&qlj], &auxinfo).
The insert routine must be suitably modified to handle the type of node in this example
and must also increase g[j].num by 1. If the customer is the only one on the queue, a
node representing his or her departure is added to the event list by calling on the function
place(&evlist, &auxinfo). Then the next data pair (if any) is read and an arrival node
is placed on the event list to replace the arrival that has just been processed. If there is
no more input, the function returns without adding a new amival node and the program
processes the remaining (departure) nodes on the event list.

-
or

void arrive(int atime, int dur)
{
int i, j, small;
. /* find the shortest queue w/
i=0;
small = q[0].num;
for (i=1; 1 <4 i++)
if (q[i].num < small) {
small = q[i].num;
i=1;
} /tend for ... if*/ :
/* Queue j is the shortest. Insert 4 new customer node. */
auxinfo.time = atime;
auxinfo.duration = dur;
auxinfo.type = j;
insert(&q[j], &auxinfo);

Sec. 4.4 Example: Simulation Using Linked Lists 225

/* Check if this is the only node on the queve, If it */
/* is, the customer's departure node must be placed on */
a the event list, */
if (q[j].num == 1) {
auxinfo.time = atime + dur;
place(&evlist, &auxinfo);

/* If any input remains, read the next data pair and o

/* place an arrival on the event list. 7

printf("enter time\n");

if (scanf("%d", dauxinfo.time) != EOF) {
printf("enter duration\n");
scanf("%d", &auxinfo.duration); W =
auxinfo. type = -1; ' :
place(8evlist, &auxinfo);

} /* end if ¥/ ; /

} /* end arrive */ /

b

The routine depari(gindx, drime) modifies the queue g[qgindx] and the event list
to reflect the departure of the first customer on the queue .at time dtime. The cus-
tomer is removed from the queue by the call remove(&q|qindx], &auxinfo), which
must be suitably modified to handle the type of node in this example and must «'so
decrement the queue’s num field by 1. The departure node of the next customer on
the queue (if any) replaces the departure node that has Jjust been removed from the
event list.

void depart(int gindx, int dtime)

NODEPTR p;
remove(&q[qindx], &auxinfo);
tottime = tottime + (dtime - auxinfo.time):
count++;
J/* if there are any more customers on the queuve, */
/* place the departure of the next customer onto L
" /* the event list after computing its departure time */
if (algindx].num > 0) {
P = algindx]. front;
auxinfo.time = dtime + p->duration;
auxinfo.type = gindx;
place(&evlist, &auxinfo);
} /*end if ¥/
} /* end depart */

Simulation programs are rich in their use of list structures. The reader is urged
to explore the use of C for simulation and the use of special-purpose simulation
languages. . : '

26 Queues and Lists = Chap. 4

EXERCISES

44.1.

44.2.

4.44.

4.4.5.

4.4.6.

4.4.7.

4438.

In the bank simulation program of the text, a departure node on the event list represents
the same customer as the first node on a custiomer queue. Is it possible to use a single
node for a customer currently being serviced? Rewrite the program of the text so that
only a single node is used. Is there any advantage to using two nodes?

The program in the text uses the same type of node for both customer and event nodes.
Rewrite the program using two different types of nodes for these two purposes. Does
this save space’

Revise the bank simulation program of the text to determine the average length of the

four lines. ’

Modify the bank simlation program to compute the standard deviation of the time spent”
by a customer in the bank. Write another program that simulates a single line for all four

tellers with the customer at the head of the single line going to the next available teller.

Compare the means and standard deviations of the two methods.

Modify the bank simulation program so that whenever the length of one line exceeds

the length of another. by more than two, the last customer on the longer line moves to the
rear of the shorter.

Write a C program to simulate a simple multiuser computer system as follows: Each
user has a unique ID and wishes to perform a number of transactions on the computer.
However, only one transaction may be processed by the computer at any given moment.
Each input line represents a single user and contains the user’s [D followed by a starting
time and a series of integers representing the duration of each of his or her transactions.
The input is sorted by increasing starting time, and all times and durations are in seconds.
Assume that a user does not request time for a transaction until the previous transaction
is complete and that the computer accepts transactions on a first-come, first-served basis.
The program should simulate the system snd print a message containing the user ID and
the time whenever a transaction begins and ends. At the end of the simulation it should
print the average waiting time for a transaction. (The waiting time is the amount of time
between the time that the transaction was requested and the time it was started.)

What parts of the bank simulation program would have to be modified if the priority
queue of events were implemented as an array or as an unordered list? How would they
be modified?

Many simulations do net simulate events given by input data but rather generate events
according to some probability distribution. The following exercises expldin how. Most
computer installations have a random number generating function rand(x). (The name
and parameters of the function vary from system to system. rand is used as an example
only.) x is initialized to a value called a seed. The statement x = rand(x) resets the value
of the variable x to a uniform random real number between 0 and 1. By this we mean
that if the statement is executed a sufficient number of times and any two equal-length
intervals between 0 and 1 are chosen, approximately as many of the successive values of
x fall into one interval as into the other. Thus the probability of a value of x falling in an
interval of length ! <= 1 equals /. Find out the name of the random number generating
function on your system and verify that the foregoing is true. Given a random number
generator rand consider the following statements:

X = rand(x);
y = (b-a)*x + a

Exercises 227

(a) Show that, given any two equal-length intervals within the interval from a o b,
if the statements are repeated sufficiently often, an approximately -cqual number
of successive values of y fall into each of the two intervals. Show that if g and b
are integers, the successive values of y truncated to an integer equal each integer
between a and b — 1 an approximately equal number of times. The variable y is
said to be a uniformly distributed random variable. What is the average of the
values of y in terms of @ and b?

(b) Rewrite the bank simulation of the text, assuming that the transaction duration-
is uniformly distributed between 1 and 15. Each data pair represents an arriving
customer and contains only the time of arrival. Upon reading an input line, generate
a transaction duration for that customer by computing the next value according to
the method just outlined.

4.4.9. The successive values of y generated by the following statements are called normally
distributed. (Actually, they are approximately normally distributed, but the approxima-
tion is close enough.)

r

float x[15];

float m, s, sum, y;

int 1;

/* statements initializing the values of s, m and */

A the array x go here ~ %

while (/* a terminating condition goes here */) {
sum = 0;

for (i =0; 1 <15; i++) {
x[1] = rand(x[i]);
sum = sum + x[i];
} /* end for */
y=5%(sum - 7.5) / sqrt(1.25) + m;
/* statments that use the value of y go here */
} /* end while #/

(a) Verify that the average of the values of y (the mean of the distribution) equals m
and that the standard deviation equals s.

(b) A certain factory produces items according to the following process: an item must
be assembled and polished. Assembly time is uniformly distributed between 100
and 300 seconds, and polishing time is normally distributed with a mean of 20
seconds and a standard deviation of 7 secoms (but values below 5 are discarded).
After an item is assembled, a polishing machine must be used, and a worker cannot
begin assembling the next item until the item he or she has just assembled has been
polished. There are ten workers byt only one polishing machine. If the machine
is not available, workers who have finished assembling their items must wait for
it. Compute the average waiting time per item by means of a sirtilation. Do the
same under the assumption of two and three polishing machines.

45 OTHER LIST STRUCTURES

Although a linked linear list is a useful data structure, it has several shortcomings. In
this section we present other methods of organizing a list and show how they can be
used to overcome these shortcomings.

Queues and Lists =~ Chap. 4
228

Figure 45.1 Circular list.

~list
First Last l
Node ' Node

Figure 4.5.2 First and last nodes of a circu‘ja‘r list.

Circular Lists

Given a pointer p to a node in a linear list, we cannot reach any of the nodes that
precede node(p). If a list is traversed, the external pointer to the list must be preserved
to be able to reference the list again. 3

Suppose that a small change is made to the structure of a linear list, so that the
next field in the last node contains a pointer back to the first node rather than the null
pointer. Such a list is called a circular list and is illustrated in Figure 4.5.1. From any
point in such a list it is possible to reach any other point in the list. If we begin at a
given node and traverse the entire list, we ultimately end up at the starting point.

Note that a circular list does not have a natural “first” or “last™ node. We must,
therefore, establish a first and last node by convention. One useful convention is to let
the external pointer to the circular list point to the last node, and to allow the following
node to be the first node. as illustrated in Figure 4.5.2. If p is an external pointer to
a circular list, this convention allows access to the last node of the list by referencing
node(p) and to the first node of the list by referencing node(next(p)). This convéntion
provides the advantage of being able to add or remove an element conveniently from
either the front or the rear of a list. We also establish the convention that a null pointer
represents an empty circular list,

Stack as a Circular List .

A circular list can be used to represent a stack or a queue. Let stack be a pointer
to the last node of a circular list and let us adopt. the convention that the first node is
the top of the stack. An empty stack is represented by a null list. The following isa C
function to determine whether the stack is empty. It is called by empn(&stack).

int empty(NODEPTR *pstack)

return ((*pstack == NULL) ? TRUE : FALSE);
} /* end empty */

Sec. 4.5 Other List Structures 229

The following is a C function to plllsh aﬁ integer x onto the stack. The push function
calls on the function empty, which tests whether its parameter is NULL. It is called by
push(&stack, x), where stack is a pointer to a circular list acting as a stack.

void push(NODEPTR *pstack, int x)
{

NODEPTR p;

P = getnode();

p->info = x;

if (empty(pstack) == TRUE)
*pstack = p;

else
p->next = (*pstack) -> next:

(*pstack) -> next = p;

} /* end push */

Note that the push routine is slightly more complex for circular lists than it is for linear
lists. -

The C pop function for a stack implemented as a circular list calls the function
Jfreenode introduced earlier. pop is called by pop(&stack), "

int pop(NODEPTR *pstack)
{

int x;

NODEPTR p;

if (empty(pstack) == TRUE) {
printf(“stack underflow\n");
exit(1);

} /* end if %/

P = (*pstack) -> next;

X = p->info;

if (p == *pstack)
/* only one node on the stack L7
*pstack = NULL;

else
(*pstack) -> next = p->next;

freenode(p):

return(x);

} /* end pop ¢/

o

Queue as a Circular List

It is easier to represent a Queue as a circular list than as a linear list. As a linear
list, a queue is specified by two pointers, one to the front of the list and the other to its .
rear. However, by using a circular list, a queue may be specified by a single pointer ¢
to that list. node(q) is the rear of the queue and the following node is its front.

The function empry is the same as for stacks. The routine remove(pq) called by
remove(&q) is identical to pop except that all references to psrack are replaced by pq,

Queues and Lists Chap. 4

a pointer to g: 'I'he C routine insert is called by the statement insert(&q, x) and may be
coded as follows:

void insert(NODEPTR *pq, int x)
{

NODEPTR p; :
P = getnode();
p->info = x;
if (empty(pq) == TRUE)
*pq = p;’
else
~ ‘p->next = (*pg) -> next;
(*pq) -> next = p;
*pq = p;
return; ;
} /* end insert */

Note that insern(&gq, x) is equivalent to the code
“push(dq,x);

q = g->next;

That is, to insert an element into the rear of a circular queue, the elem>nt is inserted
into the front of the queue and the circular list pointer is then advanced one element, so
that the new element becomes the rear.

Primitive Operations on Circular Lists

The routine insafter(p, x), which inserts a node containing x after node(p), is sim-
ilar to the corresponding routine for linear lists as presented in Section 4.3. However,
the routine delafter(p, x) must be modified slightly. Looking at the corresponding rou- .
tine for linear lists as presented in Section 4.3, we note one additional consideration in
the case of a circular list. Suppose that P points to the only node in the list. In a linear
list, next(p) is null in that case, making the deletion invalid. In the case of a circular
list, however, next(p) points to node(p), so that node(p) follows itself. The question is
whether or not it is desirable to delete node(p) from the list in this case. It is unlikely that
we would want to do so, since the operation delafter is usually invoked when pointers
to each of two nodes are given, one immediately following another, and it is desired to

delete the second. delafter for circular lists using the dynamic node implementation is
implemented as follows: g

void delafter(NODEPTR p, int *px)
{

NODEPTR q;

if ((p == NULL) || (p == p->next)) {
/* the list is empty or contains only a single node */
printf("void deletion\n");
return;

} /* end if ¥/

Sec. 4.5 Other List Structures ; 231

q = p->next;
*px = q->info;
p->next = g->next;
freenode(q);
return;

} /* end delafter */

Note, however, that insafter cannot be used to insert a node following the last
nede in a circular list and that delafrer cannot be used fo delete the last node of a cir-
cular list. In both cases the external pointer to the list must be modified to point to the
new last node. The routines can be modified to accept list as an additional parameter
and to change its value when necessary. (The actual parameter in the calling routine
would have to be &list, since its value is changed.) An alternative is to write separate
routines insend and dellast for these cases. (insend is identical to'the insert operation
for a queue implemented as a circular list.) The calling routine would be responsible
for determining which routine to calk. Another alternative is to give the calling rou-
tine the responsibility of adjusting the external pointer /ist if necessary. We leave the
exploration of these possibilities to the reader.

If we are managing our own available list of nodes (as for example under the
array implementation), it is also easier to free an entire circular list than to free a linear
list. In the case of a linear list the entire list must be traversed. as one node at a time
is returned to the available list. For a circular list, we can write a routine Sfreelist that
effectively frees an entire list by simply rearranging pointers. This is left as an exercise
for the reader.

Similarly, we may write a routine concar(&list1, &lisr2) that concatenates two
lists; that is, it appends the circular list pointed to by list2 to the end of the circular list
pointed to by list1. Using circular lists, this can be done without traversing either list:

void concat(NODEPTR *plistl, NODEPTR *plist2)
{

NODEPTR 'p;

if (*plist2 == NULL)
return; b

if (*plistl == NULL) {
*plistl = *plist2;
return,

}

p = (*plistl) -> next;

(*plistl) -> next = (*plist2) -> next;

(*plist2) -> next = p;

*plistl = *plist2;

return;

} /* ‘end concat */

- The Josephus Problem

Let us consider a problem that can be solved in a straightforward manner by us-
ing a circular list. The problem is known as the Josephus problem and postulates a group

Queues and Lists Chap. 4
232

of soldiers surrounded by an overwhelming enemy force. There is no hope for victory
without reinforcements, but there is only a single horse available for escape. The sol-
diers agree to a pact to determine which of them is to escape and summon help. They
form a circle and a number n is picked from a hat. One of their names is also picked from
. a hat. Beginning with the soldier whose name is picked, they begin to count clockwise’
around the circle. When the count reaches n, that soldier is removed from the circle, and
the count begins again with the next soldier. The process continues so that each time
the count reaches », another soldier is removed from the circle. Any soldier removed
from the circle is no longer counted. The last soldier remaining is to take the horse and
escape. The problem is, given a number », the ordering of thie soldiers inthe circle, and,
the soldier from whom the count begins, to determine the order in which’soldiers are
eliminated from the circle and which soldier escapes.

The input to the program is the number n and a list of names, which is the clock-
wise ordering of the cirtle, beginning with the soldier from whom the count is to start.
The last input line contains the string “end” indicating the end of the input. The pro-
gram should print the names in the order that they are eliminated and the name of the
soldier who escapes.

For example, suppose that n = 3 and that there are five soldiers named A, B, C,
D, and E. We count three soldiers starting at A, so that C is eliminated first. We then
begin at D and count D, E, and back to A, so that A is eliminated next. Then we count
B, D, and E (C has already been eliminated), and finally B, D, and B, so that D is the
one who escapes.

Clearly, a circular list in which each node represents one soldier is a natural data
structure to use in solving this problem. It is possible to reach any node from any other
by counting around the circle. To represent the removal of a soldier from the circle, a
node is deleted from the circular list. Finally, when only one node remains on the list,
the result is determined.

An outline of the program might be as follows:

‘read(n);

read(name) ;

while (name != END) {
insert name on the circular list;
read(name);

} /* end while #/

while (there is more than one node on the list) {
count through n - 1 nodes on the list;
print the name in the nth node;
delete the nth node:

} /* end while */

print the name of the only node on the list;

We assume that a set of nodes has been declared as before except that the info field
holds a character string (an array of characters) rather than an integer. We also assume at
least one name in the input. The program uses the routines insert, delafter, and freenode.
The routines insert and delafter must be modified, since the information portion of the
node is a character string. Assignment from one character string variable to another is

Sec. 4.5 Other List Structures 233

accomplished via a loop. The prograﬁ'l also makes use of a function egstr(strl, str2),

which returns TRUE if strl is-identical to srr2, and FALSE otherwise. The coding of
this routine is left to the reader. '

void josephus(void)
{

char *end = "end";
char name[MAXLEN] ;
int i, n;
NODEPTR Tist = NULL;
printf("enter n\n");
scanf("%d", &n);
/* read the names, placing each */
/* at the rear of the list */
printf(“enter names\n");
scanf("%s", &name);
/* form the list */
while (legstr(name, end)) {
“* insert(&list, name);
scanf("%s", name);
} /* end while */ - i
printf("the order in which the soldiers are eliminated is:\n");
/* continue counting as long as more */ ’
/* than one node remains on the list */
while (list != Tist->next) {
for (i =1; i <n; i++)
list = list->next;
/* list->next points to the nth node */
delafter(list, name);
printf("%s\n", name);
} /* end while =/
/* print the only name on the list and free its node */
printf("the soldier who escapes is: %s", list->info):
freenode(1list);
} /% end josephus */

Header Nodes

Suppose that we wish to traverse a circular list. This can be done by repeatedly
executing p = p— next, where p is initially a pointer to the beginning of the list. How-
ever, since the list is circular. we will not know when the entire list has been traversed
unless another pointer. /ist. points to the first node and a test is made for the condition
p == list. _

An alternative method is to place a header-node as the first node of a circular list.
This list header may be recognized by a special value in its info field that cannot be
the valid contents of a list node in the context of the problem. or it may contain a flag
marking it as a beader. - The list can then be traversed using a single ‘pointer, with the
traversal halting when the header node is reached. The external pointer to the list is to

234 Queues and Lists Chap. 4

Figure 4.5.3 Circular list with a header node.

its header node, as illustrated in Figure 4.5.3. This means that a node canmot easily be"
added onto the-rear of such a circular list, as could be done when the external pointer

was to the last node of the list. Of course, it is possible to keep a pointer to the last node

of a circular list even when a header node is being used.

If a stationary external pointer to a circular list is used in addition to the pointer
used for traversal, the header node need not contain a special code but can be used
in much the same way as a header node of a liriear list to contain global information
about the list. The end of a traversal would be signaled by the equality of the traversing
pointer and the external stationary pointer.

Addition of Long Positive Integers Using Circular Lists

We now present an application of circular lists with header nodes. The hardware
of most computers allows integers of only a specific maximum length. Suppose that
we wish to represent positive integers of arbitrary length and to write a function that
returns the sum of two such integers.

To add two such long integers. their digits are traversed from right to left, and
corresponding digits and a possible carry from the previous digits” sum are added. This
suggests representing long integers by storing their digits from right to left in a list
so that the first node on the list contains the least significant digit (rightmost) and the
last node contains the most significant (leftmost). However, to save space, we keep
five digits in each node. (Long integer variables are used so that numbers as large as
99999 may be kept in each node. The maximum size of an integer is implementation-
dependent; therefore you may have to modify the routines to hold smaller numbers in
each node.) We may declare the set of nodes by

struct node {
lTong int info:
struct node *next;
o
typedef struct node *NODEPTR;

Since we wish to traverse the lists during the addition but wish to eventually
restore the list pointers to their original values, we use circular lists with headers.
The header node is distinguished by an info value of = 1. For example, the integer
459763497210698463 is represented by the list illustrated in Figure 4.5 4.

Sec. 4.5 Other List Structures 235

-1 =T | 98463 T [72106] 1™ | 76349 T | 49 ')

Figure 4.5.4 Large integer as a circular list.

Now let us write a function addint that accepts pointers to two such lists repre-
senting integers, creates a list representing the sum of the integers, and returns a pointer .
to the sum list. Both lists are traversed in parallel, and five digits are added at a time.
If the sum of two five-digit numbers is x, the low-order five digits of x can be extracted
by using the expression x % 100000, which yields the remainder of x on division by
100000. The carry can be computed by the integer division x/100000. When the end of
one list is reached, the carry is propagated to the remaining digits of the other list. The
function follows and uses the routines getnode and insafier.

NODEPTR. addint(NODEPTR p, NODEPTR q)
{
Tong int hunthou = 100000L;
long int carry, number, total;
NODEPTR s;
/* set p and q to the nodes following the headers */
p = p->next;
q = q->next;
/* set up a header node for the sum */
s = getnode();
s->info = -1;
s->next = S;
/* initially there is no carry */
carry = 0;
while (p->info != -1 & g->info != -1) {
/* add the info of the two nodes */
{* and previous carry */
total = p->info + q->info + carry;
/* Determine the low order five digits of */
/* the sum and insert into the list. *r
number = total % hunthou;
insafter(s, number);
[* advance the traversals L7t
s = s->next;
p = p->next;
q = q->next;
/* determine whether there is a carry */
carry = total / hunthou;
} /* end while */ :
/* at this point, there may be nodes left in one of the */
/% two input lists */

236 Queues and Lists Chap. 4

while (p->info != -1) {
total = p->info + carry;
number = total ¥ hunthou;
insafter(s, number);
carry = total / hunthou;
S = 5->next;
p = p->next;
} /* end while */
while (g->info != -1) {
total = g->info + carry;
number = total ¥ hunthou;
insafter(s, number);
carry = total / hunthou;
S = s->next;
q = g->next;
} /% end while =/
[* check if there is an extra carry from the first */
o3 five digits */
if (carry == 1) {
insafter(s, carry);
s = s->next;
} /* end if ¥/
/* s points to the last node in the sum. s->next points to */
It the header of the sum list. */
return(s->next);
} /* end addint */

Doubly Linked Lists

Although a circularly linked list has advantages over a linear list, it still has sev-
eral drawbacks. One cannot traverse such a list backward, nor can a node be deleted
from a circularly linked list, given only a pointer to that node. In cases where these
facilities are required, the appropriate data structure is a doubly linked list. Each node
in such a list contains two pointers, one to its predecessor and another to its succes-
sor. In fact, in the context of doubly linked lists, the terms predecessor and succes-
sor are meaningless, since the list is entirely symmetric. Deubly linked lists may be
either linear or circular and may or may not contain a header node, as illustrated in
Figure 4.5.5. ! :

We may consider the nodes on a doubly linked list to consist of three fields: an
info field that contains the information stored in the node, and lefr and right fields that
contain pointers to the nodes on either side. We may declare a set of such nodes using
either the array or dynamic implementation, by

Array Implementation Dynamic Implementation
struct nodetype { ~ struct node {
int info; ; int info;
int left, right; struct node *left, *right;
g |5
struct nodetype node[NUMNODES]; typedef struct node *NODEPTR;

Sec. 4.5 Other List Structures \ : : 237

Nun -1 T
b

W | -

ty

]
Pt B

-sail badAnil yiduob resnil A (x)

.

e =
_—

AL LT LT L

-13besr s Jworsiw 121l bednil yiduob 1slunis A (d)

T

i
—

-13bead s driw s2il basdnil ylduob 1slunis A (o)

Figure 45.5 Doubly linked lisis.

Note that the available list for such a set of nodes in the array implementation
need not be doubly linked, since it is not traversed bidirectionally. The available list
may be linked together by using either the left or right pointer. Of course, appropriate
getnode and freenode routines must be written,

We now present routines to opeate on doubly linked circular lists. A convenient
property of such lists is that if p is a pointer to any node, letting left(p) be an abbreviation
for node[pl.left or p—> left, and right(p) an abbreviation for node(p).right or p—>
right, we have : ,

Teft(right(p)) = p = right(left(p))

One operation that can be performed on doubly linked lists but not on ordinary linked
lists is to delete a given node. The following C routine deletes the node pointed to
by p from a doubly linked list and stores its contents in x, using the dynamic node
implementation. It is called by delete(p, &x). .

void delete(NODEPTR p, int *px)
{

NODEPTR g, r;

if (p == NULL) {
printf("void deletion\n");
return;

} /% end if %/

Queues and Lists Chap. 4
238

*px = p->info;
q = p->left;

r = p->right;
g->right = r;
r->left = q;
freenode(p);
return;

} /* end delete */

The routine insertright inserts a node with information field x to the right of
node(p) in a doubly linked list:

void insertright(NODEPTR p, int x) g T v
{ }

NODEPTR q, r;

if (p == NULL) {
printf("void insertion\n");
return;

} /* end if %/

q = getnode();

g->info = x;

r = p->right;

r->left = q;

q->right = r;

g->left = p;

p->right = g;

return;

} /* end insertright */

A routine insertleft to insert a node with information field to the left of node(p) in a
doubly linked list is similar and is left as an exercise for the reader.

When space efficiency is a consideration, a program may not be able to afford
the overhead of swo pointers for each element of a list. There are several techniques
for compressing the left and right pointers of a node into a single field. For example,
a single pointer field ptr in each node can contain the sum of pointers to its left and
right neighbors. (Here, we are assuming that pointers are represented in such a way
that arithmetic can be performed on them readily. For example, pointers represented by
array indexes can be added and subtracted. Although it is illegal to add two pointers
in C, many compilers will allow such pointer arithmetic.) Given two external pointers,
p and ¢, to two adjacent nodes such that p == lefilg), right(q) can be computed as
pitg) = p and left(p) can be computed as prr(p) — ¢. Given p and g, it is possible to
delete either node and reset its pointer to the preceding or succeeding node. It is also
possible to insert a node to the left of node(p) or to the right of node(q) or to insert a
node between node(p) and node(y) and reset either p or g to the newly inserted node.
In using such a scheme, it is crucial always to maintain two external pointers to two
adjacent nodes in the list.

Addition of l.ong Integers Using Doubly Linked Lists

As an illustration of the use of doubly linked lists, let us consider extending the
list implementation of long integers to include negative as well as positive integers.

Sec. 4.5 Other List Structures 239

The header node of a circular list representing a long integer contains an indication of
whether the integer is positive or negative.

“To add a positive and a negative integer, the smaller absolute value must be sub-
tracted from the darger absolute value and the result must be given the sign of the integer
with the larger absolute value. Thus, some method is needed for testing which of two
integers represented as circular lists has the larger absolute value,

The first criterion that may be used to identify the integer with the larger absolute
value is the length of the integers (assuming that they do not contain leading 0s). The
list with more nodes represents the integer with the larger absolute value. However,
actually counting the number of nodes ‘nvolves an extra traversal of the list. Instead of
counting the number of nodes, the count could be kept as part of the header node and
referenced as needed.]

However, if both lists have the same number of nodes, the integer whose most
significant digit is larger has the greater absolute value. If the leading digits of both
integers are equal, it is necessary to traverse the lists from the most significant digit to
the least significant to determine which number is larger. Note that this traversal is in
the direction opposite that of the traversal used in actually adding or subtracting two
integers. Since we must be able to traverse the lists in both directions, doubly linked
lists are used to represent such integers. :

Consider the format of the header node. In addition to a ri ght and left pointer, the
header must contain the length of the list and an indication of whether the number is
positive or negative. These two pieces of information can be combined into a single
integer whose absolute value is the length of the list and whose sign is the sign of
the number being represented. However, in so doing, the ability to identify the header
node by examining the sign of its info field is destroyed. When a positive integer was
represented as a singly linked circular list, an info field of — 1 indicated a header node.
Under the new representation, however, a header node may contain an info field such
as 5 which is a valid info field for any other node in the list. -

There are several ways to remedy this problem. One way is to add another field to
each node to indicate whether or not it is a header node. Such a field could contain the
logical value TRUE if the node is a header and FALSE if it is not. This means, of course,
that each node would require more space. Alternatively, the count could be eliminated
from the header node and an info field of —1 would indicate a positive number and —2
a negative number. A header node could then be identified by its negative info field.
However, this would increase the time needed to compare two numbers, since it would
be necessary to count the number of nodes in each list. Such space/time trade-offs are
common in computing, and a decision must be made about which efficiency should be
" sacrjficed and which retained.

In our case we choose yet a third option, which is to retain an external pointer to
the list header. A pointer p can be identified as pointing to a header if it is equal to the
original external pointer; otherwise node(p) is not a header.

Figure 4.5.6 indicates' a sample node and the representation of four integers as
doubly linked lists. Note that the least significant digits are to the right of the header
and that the counts in the header nodes do not include the header node itself.

Using the preceding representation, we present a function compabs that compares
the absolute values of two integers represented as doubly linked lists. Its two parameters

Queues and Lists Chap. 4
240

- left info | righn =

(a) A sample node.

N 49762 21978 24

(b) The integer 3242197849762,

Header ;
(2 T [7e00] |™T | 6)
| =

(c) The integer 67694 1.

Header

0

L 2

N

(d) The integer 0

Figure 4.5.6 Integers as doubly linkad lists,

are pointers to the list headers and it returns 1 if the first has the greater absolute value,
—1 if the second has the greater absolute value, and 0 if the absolute values of the two
mtegers are equal.

int compabs(NODEPTR -p, NODEPTR q)
{
NODEPTR r, s;
/* compare the counts */
if (abs(p->info) > abs(g- >1nfo))
return(1);
* if (abs(p->info) < abs(g->info))
return(-1);
/* the counts are equal */ *
r = p->left;
s = g->left;
/* traverse the list from the most significant digits */

Sec. 45 Other List Structures 241

}

while (r != p) { e
if (r->info > s->info)
return(1);
if (r->info < s->info)
return(-1);
r = r->left;
s = s->left;
} /* end while */
/* the absolute values are equal */
return(0); «
/* end compabs */

We may now write a function addiff that accepts two pointers to doubly linked
lists representing long integers of differing signs, where the absolute value of the first is
not less than that of the second, and that returns a pointer to a list representing the sum
of the integers. We must; of course, be careful to eliminate leading Os from the sum.
To do this, we keep a pointer zeroptr to the first node of a consecutive set of leading-0
nodes and a flag zeroflag that is TRUE if and only if the last node of the sum generated
so far is 0.

In this function, p points to the number with the larger absolute value and g points
‘to the number with the smaller absolute value. The values of these variables do not
change. Auxiliary variables pptr and gptr are used to traverse the lists. The sum is

- formed in a list pointed to by the variable r.

NODEPTR addi ff (NODEPTR p, NODEPTR q)

{

242

int count;

NODEPTR pptr, qptr, r, s, zeroptr;
Tong int hunthou = 100000L;

long int borrow, diff;

int zeroflag;

/* initialize variables */

count = 0;

.borrow = 0;

zeroflag = FALSE;
/* generate a header node for the sum */
r = getnode();
r->left = r;
r->right = r;
yi traverse the two lists
pptr = p->right;
gptr = g->right;
while (gptr != q) {
diff = pptr->info - borrow - gptr->info;
if {(diff >= 0)
borrow = 0;
else {
diff = diff + hunthou;
borrow = 1;
} /* end if ¥/

Queues and Lists

Chap. 4

/* generate a new node and insert it-*/
/* to the left of header in sum */
insertleft(r, diff);
count += 1;
/* test for zero node */
if (diff=0){
if (zeroflag == FALSE)
zeroptr = r->left;
zeroflag = TRUE;

else
zeroflag = FALSE;
pptr = pptr->right;
Qptr = gptr->right;
} /* end while */
/* traverse the remainder of the p Tist */
while (pptr !=p) {
diff = pptr->info - borrow;
if (diff »>= 0)
borrow = 0;
else { .
diff = diff + hunthou;-
“borrow = 1;
} /* end if #/
insertleft(r, diff);
count += 1;
if (diff == 0) {
if (zeroflag == FALSE)
zeroptr = r->left;
zeroflag = TRUE;
}
else
o - Zeroflag = FALSE;
pptr = pptr->right;
} /* end while */
if (zeroflag == TRUE) /* delete leading zeros */
while (zeroptr !=r) {
s = zeroptr;
zeroptr = zeroptr->right;
delete(s, &diff);
count -= 1;
} /* end if...while */
/* insert count and sign into the header */
if (p->info > 0)
r->info = count;
else
r->info = -count;
return(r); = .
} /* end addiff */

Sec. 45 Other List Structures

We can also write a function addsame to add two numbers with like signs. This is
‘very similar to the function addint of-the previous implementation except that it deals
with a doubly linked list and must keep track of the number of nodes in the sum.

Using these routines we can write a new version of addint that adds two integers
represented by doubly linked lists.]

NODEPTR addint(NODEPTR p, NODEPTR q)

{

/* check if integers are of like sign */
if (p->info * g->info > 0)
return(addsame(p, q));
/* check which has a larger absolute value */
if (compabs(p, q) > 0)
return(addiff(p, q));
else
return(addiff(q, p));

} /* end addint */

EXERCISES

4.5.1.

4.5.2.
4.5.3.

4.54.

4.5.5.

4.5.6.
4.5.7.

- 244

Write an algorithm and a C routine to perform each of the Operations of Exercise 4.2.3
for circular lists. Which are more efficient on circular lists than on linear lists? Which
are less efficient?

Rewrite the routine place of Section 4.3 to insert a new item in an ordered circular list.

Write a program to solve the Josephus problem by using an array rather than a circular
list. Why is a circular list more efficient? d

Consider the following variation of the Josephus problem. A group of people stand in a
circle and each chooses a posifive integer. One of their names and a positive integer n
are chosen. Starting with the person whose name is chosen, they count around the circle
clockwise and eliminate the nth person. The positive integer that that person chose is
then used to continue the count. Each time that a person is eliminated, the number that
he or she chose is used to determine the next person eliminated. For example, suppose
that the five people are A, B, C, D, and E and that they choose integers 3, 4, 6, 2, and
7, respectively, and that the integer 2 is initially chosen. Then if we start from A, the
order in which people are eliminated from the circle is B, A, E, C, leaving D as the last
one in the circle.

Write a program that reads a group of input lines. Each input line except the first and last
contains a name and a positive integer chosen by that person. The order of the names
in the data is the clockwise ordering of the people in the circle, and the count is to start
with the first name in the input. The first input line contains the number of people in
the circle. The last input line contains only a single positive integer representing the
initial count. The program prints the order in which the people are eliminated from the
circle.

Write a C function multint(p. ¢) to multiply two long positive integers represented by
singly linked circular lists.

Write a program to print the 100th Fibonacci number.

Write an algorithm and a C routine to perform each of the operations of Exercise 4.2.3
for doubly linked circular lists. Which are more efficient on doubly linked than on
singly linked lists? Which are less efficient?

Queues and Lists Chap. 4

4.5.8. Assume that a single pointer field in each node of a doubly linked list contains the
sum of pointers to the node's predecessor and successor, as described in thie text. Given
pointers p and ¢ to two adjacent nodes in such a list, write C routines 1o insert a node to
the right of node(q), to the left of node(p), and between node(p) and'node(q) modifying
p 10 point to the newly inserted node. Write an additional routine 1o delete node(y),
resetting g to the node’s successor.

4.5.9. Assume that first and last are external pointers to the first and last nodes of a doubly
linked list represented as in Exercise 4.5.8. Write C routines to implement the opera-
tions of Exercise 4.2.3 for such a list.)

4.5.10. Write a routine addsame to add two long integers of the same sign represented by,

: doubly linked lists. 5

4.5.11. Write a C function multint(p, q) to multiply two long integers represented by doubly
linked circular lists.

4.5.12. How can a polynomial in three variables (x, y, and z) be represented by a circular list?
Each node should represent a term and should contain the powers of x, y, and z as well
as the coefficient of that term. Write C functions to do the following.

(a) Add two such polynomials.

(b) Multiply two such polynomials.

(c¢) Take the partial derivative of such a polynomial with respect to any of its vari-
ables.

(d) Evaluate such a polynomial for gwen values of x, ¥, and z.

(e) Divide one such polynomial by another, creating a quotient and a remainder poly-
nomial. :

(f) Integrate such a polynomial with respect to any of its variables.

(g) Print the representation of such a polynomial.

(h) Given four such polynomials f (x,y,2), g(x..2), h(x,v,2) and i(x,¥,2), compute the
polynomial f (g(x,y.2), h(x,y.2), i(x,y,2)).

4.6 LINKED LISTS IN C++

We now examine the implementation of linked lists in C++. We will look at singly
linked linear lists and leave the details of circular and doubly linked lists to the reader.
Before going into details about lists in C++, we introduce the built-in C++ mech-

anism for allocating and freeing objects of a given type. If T is the name of a type, then
the expression

new T

creates a new object of type T and returns a pointer to the newly created object, IfTisa
class with a constructor with no parameters, then the object created is also automancally
initialized. If T is a class with a constructor with n parameters, then the expression

new T(pl, p2, ..., pn)

creates an object of type 7, initializes it using the constructor with parameters pi
through pn, and returns a pointer to it.

Sec. 4.6 © Linked Lists in C++ 245

If p points to an object created via use of the new operator, then the statement

delete p;

deallocates the object to which p was pointing. If the type has a destructor, the destructor
is invoked prior to the deallocation.

Now we can turn to a discussion of lists in C++. We envision a linked list as a
data structure, with a fixed set of public operations on the list. This means that the user
accesses the list as a whole and is unable to access individual nodes within the list and
individual pointers to those nodes. If a particularoperation is desired on the list, it must
be included in the public intertace of the list class.

For example, the following might be the class definition for a linked list of inte-

gers, with the following operations:

1. Initialize a list to the empty list. This is a constructor, automatically invoked when
a list is defined or created.

2. Free the nodes of a list. This is a destructor, automatically invoked when a list is
freed or the block in which it is declared is exited.

3. Determine whether a list is empty.

4. Add a node with a given value into the list following the first node with another
given value.

5. Add a node with a given value to the front of the list. This is the push operator.
6. Delete the first node with a given value from the list.
7. Delete the first node from the list. This is the pop operator.

The class definition follows:

class List {

protected:
struct node {
int info;
struct node *next;
}
typedef struct node *NODEPTR;
NODEPTR 1istptr; // the pointer to the first node
/[of the list
public:
List();
~List();

int emptylist();
void insertafter(int oldvalue, int newvalue);
void push(int newvalue);
void delete(int oldvalue);
int pop();
}

We now present the implementation of these routines:

246 Queues and Lists Chap. 4

List is a constructor that initializes a newly created list to the empty list.

List::List() {
listptr = 0;
}

~ List is the destructor that traverses the nodes of a list, freeing them one by one.

List::~List() { . oL
. 1f (emptylist())
return 0;
for (p = listptr, q = p->next; p! = 0; p =q, q = p->next)
delete p;
1

emptylist determines if a list is empty.

int List::emptylist() {
return(listptr == 0);
}]

insertafter(oldvalue, newvalue) searches for the ﬁrst occurrence of the value

oldvalue in the list and inserts a new node with value newvalue following the node
containing oldvalue.

List::insertafter(int oldvalue, int newalue) {
NODEPTR p, q:

for (p = listptr; p != 0 & p->info != oldvalue; p = p->next)

if (p = 0)
error("ERROR: value sought is not on the 1ist. el
q = new node;
g->info = newvalue;
g->next = p->next;
p->next = q;

}

push(newvalue) adds a new node with a given value to the front of the list.

List::push(int newvalue) {
NODEPTR p;
p = new node;
p->info = newvalue;
p->next = listptr;
listptr = p;

won

Sec. 4.6 Linked Lists in C++ 247

delete(oldvalue) deletes.the first node containing the value oldvalue from the list.

List::delete(int oldvalue) {
NODEPTR p, q;

for (=0, p=listptr; p!'=0 && p->info!=oldvalue; g=p, p=p->next)

error("ERROR: value sought is not on the Tist.™);
listptr=p->next;
else
g->next=p->next;
delete p;
}

Finally, pop deletes the first node on the list and returns its contents.

int List::pop() {
NODEPTR p;
int x;
if (emptytlist())
error("ERROR: the 1ist is empty.™);
p =listptr; ’
Tistptr = p->next;
x = p->info;
delete p;
return x;

}

Note that the List class does not permit the user to manipulate the nodes of the list;

‘everything must be done via a method of List on the entire list,

EXERCISES

4.6.1. Modify the List class so that it uses a template and can be instantiated o implement a
list of any type. not just integer. What problems may oceur it you instantiate a list of

lists?

4.6.2. Write a class OrderedList to implement a sorted list into which elements can only be

inserted in their proper place. Can QrderedList be a descendant of List?

4.63. Add a method insertafter2(int oldvalue. int i, int newvalue) that inserts a node with

value newvalue after the nth occurrence of oldvalue.
4.6.4. Write a class CircLisg to implement a circular list.
4.6.5. Write a class DoubleList to implement a doubly linked list.

Queues and Lists
| Eme

Chap. 4

Trees

In this chapter we consider a data structure that is useful in many applications: the
tree. We define several different forms of this data structure and-show how they can be
represented in C and how they can be applied to solving a wide variety of problems. As
with lists, we treat trees primarily as data structures rather than as data types. That is,
we are primarily concerned with implementation, rather than mathematical definition.

5.1 BINARY TREES

A binary tree is a finite set of elements that is either empty or is partitioned into three
disjoint subsets. The first subset contains a single element called the roof of the tree.
The other two subsets are themselves binary trees, called the left and right subtrees of

the original tree. A left or right subtree can be empty. Each element of a binary tree is
called a node of the tree.

A conventional method of picturing a binary tree is shown in Figure 5.1.1. This
tree consists of nine nodes with A as its root. Its left subtree is rooted at B and its right
subtree is rooted at C. This is indicated by the two branches emanating from A: to B
on the left and to C on the right. The absence of a branch indicates an empty subitree.
For example, the left subtree of the binary tree rooted at C and the right subtree of the
binary tree rooted at E are both empty. The binary trees rooted at D, G, H. and [have
empty right and left subtrees.

Figure 5.1.2 illustrates some structures that are not binary trees. Be sure that you
understand why each of them is not a binary tree as just defined. =

249

Figure 5.1.1 Binary tree.

(b)

Figure 5.1.2 Structures that are not binary trees.

250 Trees Chap. 5

Figure 5.1.3 Strictly binary tree.

If A is the root of a binary tree and B is the root of its left or right subtree, then A
is said to be the father of B and B is said to be the left or right son of A. A node that has
no sons (such as D, G, H, or I of Figure 5.1.1) is called a leaf. Node n1 is an ancestor
of node n2 (and n2 is a descendant of nl1) if n1 is either the father of n2 or “the father of
some ancestor of n2. For example, in the tree of Figure 5.1.1, A is an ancestor of G, and
H is a descendant of C, but E is neither an ancestor nor a descendant of C. A node n2
is a left descendant of node nl if n2 is either the left son of nl or a descendant of the
left son of n1. A right descendant may be similarly defined. Two nodes are brothers if
they are left and right sons of the same father.

Although natural trees grow with their roots in the ground and their leaves in the
air, computer scientists almost universally portray tree data structures with the root at
the top and the leaves at the bottom. The direction from the root to the leaves is “‘down”
and the opposite direction is “up.” Going from the leaves to the root is called “‘climbing”
the tree, and going from the root to the leaves is called “descending” the tree.

If every nonleaf node in a binary tree has nonempty left and right subtrees, the tree
is termed a strictly binary tree. Thus the tree of Figure 5.1.3 is strictly binary, whereas
that of Figure 5.1.1 is not (because nedes C and E have one son each). A strictly binary
tree with n leaves always contains 2n — 1 nodes. The proof of this fact is left as an
exercise for the reader.

The level of a node in a binary tree is defined as follows: The root of the tree has
level 0, and the level of any other node in the tree is one more than the level of fts father.
For example, in the binary tree of Figure 5.1.1, node E is at level 2 and node H is at
level 3. The depth of a binary tree is the maximum level of any leaf in the tree. This
equals the length of the longest path from the root to any leaf. Thus the depth of the tree
of Figure 5.1.1 is 3. A complete binary tree of depth d is the strictly binary tree all of
whose leaves are at level d. Figure 5.1.4 illustrates the complete binary tree of depth 3.

If a binary tree contains m nodes at level /, it contains at most 2m nodes at level
I+ 1. Since a binary tree can contain at most one node at level O (the root), it can contain
at most 2' nodes at level /. A complete binary tree of depth d is the binary tree of depth
d that contains exactly 2! nodes at each level [between 0 and d. (This is equivalent to
saying that it is the binary tree of depth d that contains exactly 2¢ nodes at level d.) The
total number of nodes in a complete binary tree of depth d, tn, equals the sum of the
number of nodes at each level between 0 and d. Thus

. Sec. 5.1 Binary Trees . 251

Figure 5.1.4 Complete binary tree of depth 3.-

d
”1=2()+2I+22+... +24=$‘2f
=0

By induction, it can be shown that this sum equals 29+' — 1. Since all leaves in such a
t-ee are at level d. the tree contains 2¢ leaves and, therefore, 27 — | nonleaf nodes.

Similarly, if the number of nodes. i, in a complete binary tree is known, we can
compute its depth, d, from the equation rn = 27*! — |_d equals | less than the number
of times 2 must be multiplied by itself to reach rn + 1. In mathematics, logpx is defined
as the number of times & must be multiplied by itself to reach x. Thus we may say that,
in a complete binary tree. d equals loga(tn + 1) — 1. For example, the complete binary
tree of Figure 5.1.4 contains 15 nodes and is of depth 3. Note that 15 equals 2**! — |
and that 3 equals loga(15 + 1) — 1. loga x is much smaller than x [for example. log, 1024
equals 10 and log> 1000000 is less than 20]. The significance of a complete binary tree
is that it is the binary tree with the maximum number of nodes for a given depth. Put
another way, although a complete binary tree contains many nodes, the distance from
the root to any leaf (the tree’s depth) is relatively small.

A binary tree of depth d is an almost complete binary tree if:

1. Any node nd at level less thar d — | has two sons.

2. For any node nd in the tree with a right descendant at level d, nd must have a left
son and every left descendant of nd is either a leaf at level d or has two sons.

The strictly binary tree of Figure 5.1.5a is not almost complete. since it contains leaves
at levels 1. 2. and 3, thereby violating condition 1. The strictly binary tree of Figure
5.1.5b satisfies condition 1, since every leaf is either at level 2 or at level 3. However,
condition 2 is violated. since A has a right descendant at level 3 (J) but also has a left
descendant that is a leaf at level 2 (E). The strictly binary tree of Figure 5.1.5¢ satisfies
both conditions 1 and 2 and is therefore an almost complete binary tree. The binary
tree of Figure 5.1.5d is also an almost complete binary tree but is not strictly binary,
since node E has a left son but not a right son. {We should note that many texts refer to
such a tree as a “complete binary tree™ rather than as an “almost complete binary tree.”

252 ! Trees Chap. 5

(d)

Figure 5.1.5 Node numbering for almost complete binary trees.

253

Still other texts use the term “complete” or “fully binary” to refer to the concept that
we call “strictly binary.” We use the terms “strictly binary,” “complete,” and “almost
complete™ as we have defined them here.)

The nodes of an almost complete binary tree can be numbered so that the root is
assigned the'number 1, a left son is assigned twice the number assigned its father, and a
right son is assigned one more than twice the number assigned its father. Figure 5.1.5¢
and d illustrate this numbering technique. Each node in an almost complete binary tree
is assigned a unique number that defines the node’s position within the tree.

An almost complete strictly binary tree with 7 leaves has 2 — 1 nodes, as does any
other strictly binary tree with n leaves. An almost complete binary tree with n leaves
that is not strictly binary has 2n nodes. There are two distinct almost complete binary
trees with n leaves, one of which is strictly binary and one of which is not. For example,
the trees of Figure 5.1.5¢ and d are both almost complete and have five leaves; however,
the tree of Figure 5.1.5¢ is strictly binary, whereas that of Figure 5.1.5d is nor.

There is only a single almost complete binary tree with n nodes. This tree is strictly
binary if and only if n is odd. Thus the tree of Figure 5.1.5¢ is the only almost complete
binary tree with nine nodes and is strictly binary because 9 is odd, whereas the tree of

. Figure.5.1.5d is the only almost complete binary tree with ten nodes and is not strictly
binary because 10 is even. ;

An almost complete binary tree of depth d is intermediate bétween the complete
binary tree of depth d — 1, that contains 27 — | nodes, and the complete binary tree of
depth d, which contains 2¢*! — 1 nodes. If n is the total number of nodes in an almost
complete binary tree, its depth is the largest integer less than or equal to logstn. For

‘example, the almost complete binary trees with 4, 5, 6, and 7 nodes have depth 2, and
the almost complete binary trees with 8, 9, 10,11, 12, 13, 14, and 15 nodes have depth 3.

Operations on Binary Trees

There are a number of primitive operations that can be applied to a binary tree,
If p is a pointer to a node nd of a binary tree, the function info(p) returns the con-
tents of nd. The functions left(p), right(p), father(p), and brother(p) return pointers
1o the left son of nd, the right son of nd, the father of nd, and the brother of nd, re-
spectively. These functions return the null pointer if nd has no left son, right son, fa-
ther, or brother. Finally, the logical functions isleft(p) and isright(p) return the value’
true if nd is a left or right son, respectively, of some other node in the tree, and false
otherwise. .

Note that the functions isleft(p), isright(p), and brother(p) can be implemented

using the functions lefr(p), right(p) and father(p). For example, isleft may be imple- °
mented as follows:)

q = father(p);_
if (q == nul))
return(false); /* p points to the root */
if (left(q) == p}.
return(true);
return(false):

54 Trees. Chap.5

or, even simpler, as father(p) && p == left(father(p)). isright may be implemented

. in a similar manner, or by calling isleft. brother(p) may be implemented using isleft or
isright as follows:

if (father(p) == null)

return(null); /* p points to the root */
if (isleft(p))

return(right(father(p)));
return(left(father(p))):

In.constructing a binary tree, the operations maketree, setleft, and setright are use-
ful. maketree(x) creates a new binary tree consisting of a single node with information
field x and returns a pointer to that node. setleft(p,x) accepts a pointer p to a binary”
tree node with no left son. It creates a new left son of node(p) with information field x.
setright(p,x) is analogous to setleft except that it creates a right son of node(p).

Applications of Binary Trees

A binary tree is a useful data structure when two-way decisions must be made at
each point in a process. For example, suppose that we wanted to find all duplicates in
a list of numbers. One way of doing this is to compare each number with all those that
precede it. However, this involves a large number of comparisons.

The number of comparisons can be reduced by using a binary tree. The first num-
ber in the list is placed in a node that is established as the root of a binary tree with
empty left and right subtrees. Each successive number in the list is then compared to
the number in the root. If it matches, we have a duplicate. If it is smaller, we examine
the left subtree; if it is larger, we examine thc .ight subtree. If the subtree is empty, the
number is not a duplicate and is placed into a new node at that position in the tree. If the
subtree is nonempty, we compare the number to the contents of the root of the subtree
and the entire process is repeated with the subtree. An algorithm for doing this follows.

/* read the first number and insert it */
/* into a single-node binary tree */
scanf("%d", &number); :
tree = maketree(number);
while (there are numbers left in the 1nput) {
scanf("%d", &number);
p=q = tree;
while (number != info(p) & q '= NULL) {
p=q;
if (number < info(p))
q = left(p);
else
q = right(p);
} /* end while */
if (number==info(p))
printf("%d %s\n", number, "is a duplicate");
/* insert number to the right or left of p */

Sec. 5.1 Binary Trees 255

else if (number < info(p))
setleft(p, number);
else
setright(p, number);
} /* end while */

Figure 5.1.6 illustrates the tree constructed from the input 14 15,4,9,7, 18, 3,
5,16, 4,20,17,9, 14, 5.

Another common operation is to traverse a binary tree; that is, to pass through the
tree, enumerating each of its nodes once. We may simply wish to print the contents of
each node as we enumerate it, or we may wish to process it in some other fashion. In
either case, we speak of visiting each node as it is enumerated.

The order in which the nodes of a linear list are visited in a traversal is clearly from
first to last. However, there is no such “natural” linear order for the nodes of a tree. Thus,
different orderings are used for traversal in different cases. We shall define three of these
traversal methods. In each of these methods, nothing need be done to traverse an empty
binary tree. The methods are all defined recursively, so that traversing a binary tree
involves visiting the root and traversing its left and right subtrees. The only difference-

-among the methods is the order in which these three operations are performed.
To traverse a norempty binary tree in preorder (also known as depth-first order),
. -we perform the following three operauon;

1. Visit the root. :
2. Traverse the left subtree in preorder.
3. Traverse the right subtree in preorder.

To traverse a nonempty binary tree in inerder (or symmemc order).

1. Traverse the left subtree in inorder.
2. Visit the root.
3. Traverse the right subtree in inorder.

Figure 5.1.6 Binary tree constructed for finding duplicates.

256 Trees Chap.5

Preorder: ABDGCEHIF e
Inorder: DGBAHEICF
Postorder: GDBHIEFCA

Preorder: ABCEIFJDGHKL
Inorder: EICFIBGDKHLA

Figure 5.1.7 Binary trees and their
Postorder: [EJFCGKLHDBA “traversals. :

To traverse a nonempty binary tree in postorder:

1. Traverse the left subtree m pdstofder.l
2. Traverse the right subtree in postorder.
3. Visit the root.

Figure 5.1.7 illustrates two binary trees and their traversals in preorder, inorder, and
postorder. .

Many algorithms that use binary trees proceed in two phases. The first phase
builds a binary tree, and the second traverses the tree. As an example of such an al-
gorithm, consider the following sorting method. Given a list of numbers in an input
file, we wish to print them in ascending order. As we read the numbers, they can be
inserted into a binary tree such as the one of Figure 5.1.6. However, unlike the previous
algorithm’used to find duplicates, duplicate values are also placed in the tree. When
4 number is compared with the contents of a node in the tree, a left branch is taken if

Sec. 5.1 Binary Trees 257

Figure 5.1.8 Binary tree constructed for sorting.

the number is smaller than the contents of the node and a right branch if it is greater or
equal to the contents of the node. Thus if the inpur list is

1415497183516420179145

the binary tree of Figure 5.1.8 is produced.

Such a binary tree has the property that all elements in the left subtree of a node n
are less than the contents of n, and all elements in the right subtree of n are greater than
or equal to the contents of n. A binary tree that has this property is called a binary search
free. If a binary search tree is traversed in-inorder (left, root, right) and the contents of
each node are printed as the node is visited, the numbers are printed in ascending order.
Copvince yourself that this 1s the case for the binary search tree of Figure 5.1.8. Binary
search trees and their use in sorting and searching are discussed further in Sections 6.3
and 7.2, '

As another application of binary trees, consider the following method of repre-
senting an expression containing operands and binary operators by a strictly binary
tree. The root of the strictly binary tree contains an operator that is to be applied to the
results of evaluating the expressions represented by the left and right subtrees. A node
representing an operator is a nonleaf, whereas a node representing an operand is a leaf,
Figure 5.1.9 illustrates some expressions and their tree representations. (The character
“$” is-again used to represent exponentiation.)

Trees Chap. 5
258

B)(A+B)ec

(d) (A4 +8=C)s (4 +B)s(C)

Figure5.1.9 Expressions and their binary tree representation.

259

Let us see what happens when these binary expression trees are traversed..
Traversing such a tree in preorder means that the operator (the root) precedes its two
operands (the subtrees). Thus a preorder trav >rsal yields the prefix form of the expres-
sion. (For definitions of the prefix and postfix forms of an arithmetic expression, see
Sections 2.3 and 3.3.) Traversing the binary trees of Figure 5.1.9 yields the prefix forms

+A*BC (Figure 5.1.9a)

* + ABC (Figure 5.1.9b)
+A*x—BCS$Dx*EF (Figure 5.1.9¢)
$ + A*BC*+ABC (Figure 5.1.9d)

Similarly, traversing a binary expression tree in postorder places an operator after
its two operands, so that a postorder traversal produces the postfix form of the expres-
sion. The postorder traversals of the binary trees of Figure 5.1.9 yield the postfix forms

ABC =~ + (Figure 5.1.9a)
AB + Cx (Figure 5.1.9b)
ABC — DEF *§ * + (Figure 5.1.9¢)
ABC* +AB+ C *$ (Figure 5.1.9d)

What happens when a binary expression tree is traversed i inorder? Since the
root (operator) is visited after the nodes of the left subtree and before the nodes of the
right subtree (the two operands), we might expect an inorder traversal to yiei 1 the infix
form of the expression. Indeed, if the binary tree of Figure 5.1.9a is traversed, the infix
expression A + B * C is obtained. However. a binary expression tree does not contain
parentheses, since the ordering of the operations is implied by the structure of the tree.
Thus an expression whose infix form requires parentheses to overnde explicitly the
conventional precedence rules cannot be retrieved by a simple inorder traversal. The
inorder traversals of the trees of Figure 5.1.9 yield the expressiot.~:

A+ B=*xC (Figure 5.1.9a)
A+BxC (Figure 5.1.9b)
A+B-C*DS*E~F (Figure 5.1.9¢)
A+B*xCSA+B*xC (Figure 5.1.9d)

which are correct except for parentheses.

EXERCISES ™

5.1.1. Prove that the root of a binary tree is an ancestor of every node ifi the tree except itself.
5.1.2. Prove that a node of a binary tree has at most one faiher.
5.1.3. How many ancestors does a node at level n in a binary tree have? Prove your answer.
5.1.4. Write recursive and nonrecursive algorithms to determine:

(a) The number of nodes in a binary tree

(b) The sum of the contents of all the nodes in a binary tree

(¢} The depth of a binary tree

Ti Chap. 5
— ~Trees Chap

5.1.5. Write an algorithm to determinc if a binary tree is
(a) Strictly binary
(b) Complete
(c) Almost complete
5.1.6. Provc that a strictly binary tree with n leaves contains 2n — 1 nodes.

1
5.1.7. Given a strictly binary tree with n leaves. let level(i) for i between 1 and n equal the
level of the ith leaf. Prove that

” l _ 1
Z 2levelt
i=1

5.1.8. Prove that the nodes-of an almost complete strictly binary tree with n leaves can-be
numbered from 1 1o 2n = 1 in such a way that the number assigned to the left son
of the node numbered i is 2/ and the number assigned to the right son of the node
numbered 7 is 2i + 1.

5.1.9. Two binary trees are similar if they are both empty or if they are both nonempty. their
left subtrees are similar, and their right subtrees are similar. Wnite an algorithm to
determine if two binary trees are similar.

5.1.10. - Two binary trees are mirror similar if they are both empty or if they are both nonempty
and the Jeft subtree of each is mirror similar to the right subtree of the other. Write an
algorithm to determine if two binary trees are mirror similar.

5.1.11. Write algorithms to determine whether or not one binary tree ic similar and mirror
similar (see the previous exercises) o some subtree of another.

5.1.12. Develop an algorithm to find duplicates in a list of numbers without using a binary
tree. If there are n distinct numbers in the hist. how many times must two numbers be
compared for equality in your algorithm? What if all n numbers are equal?

5.1.13. (a) Write an algorithm that accepls a pointer to a binary search tree and deletes the

smallest element from the tree.

(b) Show how to implement an ascending priority queue (see Section 4.1) as a binary
search tree. Present algorithms for the operations pginsert and pgmindelere on a
binary search tree. i

5.1.14. Write an algorithm that accepts a binary tree representing an expression apd returns the
infix version of the expression that contains only those parentheses that are necessary.

5.2 BINARY TREE REPRESENTATIONS

In this section we examine various methods of implementing binary trees in C and
present routines that build and traverse binary trees. We also present some additional
applications of binary trees.

Node Representation of Binary Trees

As is the case with list nodes. tree nodes may be implemented as array elements
or as allocations of a dynamic variable. Each node contains info. left. right, and fathcr
fields. The left. right, and father fields of a node point 1o the node’s left son. right son,

and father. respectively. Using the array implementation, we may declare

Sec. 5.2 Binary Tree Répresenlations 261

#define NUMNODES 500
struct nodetype {
int info;
int left;
int right;
int father;
¥
struct nodetype node[NUMNODES];

Under this representation, the operations info(p), lefi(p), right(p), and
Jather(p) are implemented by references to nodelp).info, node| pl.left, node|p).right,
and node|p).father, respectively. The operations islefi(p), isright(p), and brother(p) can
be implemented in terms of the operations lefi(p), right(p), and father(p), as described
‘in the preceding section. :

To implement isleft and isright more efficiently, we can also include within each
node an additional flag isleft. The value of this flag is TRUE if the node is a left son and
FALSE otherwise. The root is uniquely identified by a NULL value (- 1) in its Jfather
field. The external pointer to a tree usually points 1o its root.

Alternatively, the sign of the father field could be negative if the node is a left son
or positive if it is a right son. The pointer to a node’s father is then given by the absolute
value cf the father field. The isleft or isright operations would then need only examine
the sign of the father field.

To implement brother(p) more efficiently, we can also include an additional
brother field in each node.

Once the array of nodes is declared, we could create an available list by executing
the following statements:

int avail, i;

{
avail = 1;
for (i=0; i < NUMNODES; i++)
node[i].left = i + 1;
node [NUMNODES-1] . Teft = 0;

The functions getrode and freenode are straightforward and are left as exercises. Note
that the available list is not a binary tree but a linear list whose nodes are linked together
by the left field. Each node in a tree is taken from the available pool when needed and
returned to the available pool when no longer in use. This representation is called the
linked array representation of a binary tree.

“Alternatively, a node may be defined by

struct nodetvpe {
int info; ,
. struct nodetype *left;
struct nodetype *right;
struct nodetype. *father;
h
typedef struct nodetype *NODEPTR;
262

Trees Chap. 5

The operations info(p). lefi(p). right(p), and father(p) would be implemented by refer-
ences to p— >info, p— >left. p— >right, and p— >father, respectively. Under this im-
plementation, an explicit available list is not needed. The routines getnode and freenode
simply allocate and frce nodes using the routines malloc and free. This representation
is called the dynamic node representation of a binary tree.

Both the linked array representation and the dynamic node representation are im-
plementations of an abstract linked representation (also called the node representa-
tion) in which explicit pointers link together the nodes of a binary tree. ;

We now present C implementations of the binary tree operations under the dy-
namic node representation and leave the linked array implementations as simple exer-
cises for the reacer. The makerree function, which allocates a node and sets it as the
root of a single-node binary tree, may be written as follows:

NODEPTR maketree(int x)
{
NODEPTR p;

p = getnode();
p->info = x;
p->left = NULL;
p->right = NULL;
return{p); ;
-} /* end maketree */

The routine setlefi(p,x) sets a node with contents x as the left son of node(p):

void setleft(NODEPTR p, int x)
{
if (p == NULL)
printf("void insertion\n");
else if (p-»>left !'= NULL)
printf ("invalid insertion\n");
else
p->left = maketree(x);
} /* end setleft */

The routine setright(p,x) to create a right son of node(p) with contents x is similar
and is left as an exercise for the reader.

It is not always necessary to use father, left, and right fields. If a tree is always
traversed in downward fashion (from the root to the leaves), the father operation is
never used; in that case, a father field is unnecessary. For example, preorder, inorder,
and postorder traversal do not use the father field. Similarly, if a tree is always traversed
in upward fashion (from the leaves to the root), lefr and right fields are not needed. The
isleft and isright operations could be implemented even without left and right fields
by using a signed pointer in the father field under the linked array representation, as
discussed earlier: a right son contains a positive farher value and a left son a negative
father field. Of course. the routines maketree, setleft, and setright must then be suitably
modified for these representations. Under the dynamic node representation, an isleft

Sec. 5.2 Binary Tree Representations 263

logical field is required in addition to father if left and right fields are not present and
it is desired to implement the isleft or isrighi operations.)

The following program uses a binary search tree to find duplicate numbers in
an input file in which each number is on a separate input line. It closely follows the

algorithm of Section 5.1. Only top-down links are used:; therefore no Sather field is
needed.

struct nodetype {
int info;”
struct nodetype *left;
struct nodetype *right;
¥

typedef struct nodetype *NODEPTR;

main()

{

NODEPTR ptree;
NODEPTR p, g;
int number;

scanf("%d", &number);
ptree = maketree(number);
while (scanf("%d", &number) != EOF) {
p = q = ptree;
while (number != p->info & q != NULL) {
p=q;
if (number < p->info)
q = p->left;
else
q = p->right;
} /* end while */
if (number == p->info)
printf("%d is a duplicate\n", number):
else if (number < p->info)
setleft(p, number);
else
setright(p, number);
} /* end while */
} /* end main */

“ Internal and External Nodes

By definition leaf nodes have no sons. Thus, in the linked representation of
binary trees. left and right pointers are needed only in nonleaf nodes. Sometimes |
two separate sets of ‘nodes are used for nonleaves and leaves. Nonleaf nodes con-
tain info, left, and right fields (often no information is associated with nonleaves.
so that an info field is unnecessary) and are allocated as dynamic records or as an
array of records managed using an available list. Leaf nodes do not contain a left or

264 Trees Chap. 5

right field and are kept as a single info array that is allocated sequentially as needed
(this assumes that leaves are never freed, which is often the case)..Alternatively, they
can be allocated as dynamic variables containing only an info value. This saves a great
deal of space, since leaves often represent a majority of the nodes in:a binary tree. Each
(leaf or nonleaf) node can also contain a father field, if necessary. .

When this distinction is made between nonleaf and leaf ncdes, nonleaves are
ca ed internal nodes and leaves are called external nodes. The terminology is also
often used even when only a single type of node is defined. Of course, a son pointer
within an internal node must be identified as pointing to an internal or an external. node.
This can be done in C in two ways. One technique is to declare two different node types
and pointer types and to use a union for internal nodes, with each alternative containing
one of the two pointer types. The other technique is to retain a single type of pointer
and a single type of node, where the node is a union that does (if the node is an internal
node) or does not (if an external node) contain left and right pointer fields. We will see
an example of this latter technique at the end of this section.

'Impiicit Array Representation of Binary Trees

Recall from Section 5.1 that the n nodes of an almost complete binary tree can
be numbered from 1 to n, so that the number assigned a left son is twice the number
assigned its father, and the number assigned aright son is 1 more than twice the number
assigned its father. We can represent an almost complete binary tree without Jather, lef.
or right links. Instead, the nodes can be kept in an array info of size 1. We refer to the
node at position p simply as “node p.” info[p] holds the contents of node p.

In C, arrays start at position 0; therefore instead of numbering the tree nodes from
1 to n, we number them from 0 to n — 1. Because of the one-pesition shift, the two sons
of a node numbered p are in positions 2p + 1 and 2p + 2, instead of 2p and 2p + 1.

The root of the tree is at position 0, so that ree, the external pointer to the tree
root, always equals 0. The node in position p (that is, node p) is the implicit father
of nodes 2p + 1 and 2p + 2. The left son of node p is node 2p + 1 and its right son
is node 2p + 2. Thus the operation lefi(p) is implemented by 2 * p + | and right(p)
by 2 p + 2. Given a left son at position p, its right brother is at p + 1 and, given
a right son at position p, its left brother is at p — 1. father(p) is implemented by
(p — 1) 2. p points to a left son if and only if p is odd. Thus. the test for whether node
p is a left son (the islefr operation) is to check whether p%?2 is not equal to 0. Figure
5.2.1 illustrates arrays that represent the almost complete binary trees of Figure 5.1.5¢
and d.

We can extend this implicit array representation of almost complete binary trees
to an implicit array representation of binary trees generally. We do this by identifying
an almost complete binary tree that contains the binary tree being represented. Figure
5.2.2a illustrates two (non-almost-complete) binary trees, and Figure 5.2.2b illustrates
the smallest almost complete binary trees that contain them. Finally, Figure 5.2.2¢
illustrates the implicit array representations of these almost complete binary trees, and,
by extension, of the original binary trees. The implicit array representation is also called
the sequential representation, as contrasted with the linked representation presented
earlier, because it allows a tree to be implemented in a contiguous block of memory (an

Sec. 5.2 Binary Tree Represantations 265

266

(b)

Figure 5.2.1

Trees

Chap. 5

(a) Two binary trees

0 1 2 3 4 5 6 7 8 9 o 112
A B C D E F |G
o 1.2 3 4 s 6 1 8 9
H|l1 |7]| Kk]|L M
(c) Array representations
Figure 5.2.2
Sec. 5.2 Binary Tree Representations

267

array) rather than via pointers connecting widely separated nodes. Under the sequen-
tial representation, an array element is allocated whether or not it serves ta_contain-
node of a trée. We must, therefore, flag Tnused array elements as nonexistent, or rull,
tree nodes. This may be accomplished by one of two methods. One method is to set
info[p] to a special value if node p is null. This special value should be invalid as the
information content of a legitimate tree node. For example, in a tree containing posi-
tive numbers, a null node may be indicated by a negative info value. Alternatively, we
may add a logical flag field, used, to each node. Each node then contains two fields:
info and used. The entire structure is contained in an array node. used(p), implementea
as node[p).used, is TRUE if node p is not a null node and FALSE if it is a null noge.
info(p) is implemented by node|p).info. We use this latter method in implementing the
sequential representation.

We now present the program to find duplicate numbers in an input list, as well

as the routines -maketree and setleft, using the sequential representation of binary
trees.

#define NUMNODES 500
struct nodetype {
int info;
int used;
} node [NUMNODES] ;

void maketree(int);
void setleft(int, int);
void setright(int, int);

main()
{

int p, q, number;

scanf("%d", &number);

maketree(number); |
while (scanf("%d"; &number) != EOF) {
p=q-= 0;
while (q < NUMNODES & node[q].used && number != node[p]. 1nfu) {
P=aq
if (number < node[p].info)
q=2%p+1;
else
=2*p+2;

} /* end while */
/* if the number is in the tree it is a duplicate */
if (number == node[p].info)
printf("%d is a duplicate\n", number);
else if (number < node[p].info)
setleft(p, number);

268 Trees Chap. 5

else
setright (p, number);
} /* end while */
} /* end main */

void maketree(int x)

{
int p;

node[0].info = x;
node[0].used = TRUE;
/* The tree consists of node 0 alone, */
/* A1l other nodes are null nodes */
for (p=1; p < NUMNODES; p++)
node[p] .used = FALSE;
} /* end maketree */

void setleft(int p, int x)

{
int q;

q=2*p+1; /* Q is the position of the left son */
if (q >= NUMNODES)
error("array overflow");
else if (node[q].used)
error("invalid insertion");
else {
node[q].info = x;
node[q] .used = TRUE;
} -/* end if */
} /% end setleft */

The routine for setright is similar.

Note that under this implementation, the routine maketree initializes the fields info
and used to represent a tree with a single node. It is no longer necessary for maketree to
return a value, since under this representation the single binary tree represented by the
info and used fields is always rooted at node 0. That is the reason that p is initialized
to 0 in the main function before we move down the tree. Note also that under this
representation it is always required to check that the range (NUMNODES) has not been
exceeded whenever we move down the tree.

Choosing a Binary Tree Representation

Which representation of binary trees is preferable? There is no general answer
to this question. The sequential representation is somewhat simpler, although it is nec-
essary to ensure that all pointers are within the array bounds. The sequential representa-

- Sec.5.2 Binary Tree Representations 269

tion clearly saves storage space for trees known to be almost complete, since it elim-
inates the need for the fields feft, right, and father and does not even requite a used
field. It is also space efficient for trees that are only a few nodes short of being al-
most complete, or when nodes are successively eliminated from a tree that originates
as almost complete, although a used field might then be required. However, the se-
quential representation can only be used in a context in which only a single tree is re-
quired, or where the number of trees needed and each of their maximum sizes is fixed in
advance.

By contrast, the linked representation requires left, right, and father fields (al-
though we have seen that one or two of these may be eliminated in specific situations)
but allows much more flexible use of the collection of nodes. In the linked represen-
tation, a particular node may be placed at any location in any tree, whereas in’the se-
quential representation a node can be utilized only if it is needed at a specific location
in a specific tree. In uddition, under the dynamic node representation the total num-
ber of trees and nodes is limited only by the amount of available memory. Thus the
linked representation is preferable in the general, dynamic situation of many trees of
unpredictable shape.”

Thé duplicate-finding program is a good illustration of the trade-offs involved.
The first program presented utilizes the linked representation of binary trees. It requires
left and right fields in addition to info (the father field was not-necéessary in that pro-
gram). The second duplicate-finding program that utilizes the sequential representation
requires only an additional field, used (and this too can be eliminated if only positive
numbers are allowed in the input, so that a null tree node can be represented by a spe-
cific negative info value). The sequential representation can be used for this example
because only a single tree is required.

However, the second program might not work for as many input cases as the
first. For example, suppose that the input is in ascending order. Then the tree formed
by either program has all null left subtrees (you are invited to verify that this is the
case by simulating the programs for such input). In that case the only elements of info
that are occupied under the sequential representation are 0. 2, 6. 14, and so on (each
position is two more than twice the previous one). If the value of NUMNODES is kept
at 500, a maximum of only 16 distinct ascending numbers can be accommodated (the
last one will be at position 254). This can be contrasted with the program using the
linked representation, in which up to 500 distinct numbers in ascending order can be
accommodated before it runs out of space. In the remainder of the text, except as noted
otherwise, we assume the linked representation of a binary tree.

”Binafy Tree Traversals in C

We may implement the traversal of binary trees in C by recursive routines that
mirror the traversal definitions. The three C routines pretrav. intrav. and postrray print
the contents of a binary tree in preorder., inorder. and postorder. respectively. The pa-
rumeter to each routine is a pointer to the root node of a binary tree. We use the dynamic
node representation of a binary tree:

Trees Chap. 5
270

void pretrav(NODEPTR tree)
{
if (tree !'= NULL) {
printf("%d\n", tree->info);
pretrav(tree->left);
pretrav(tree->right);
} /* end if %/
} /* end pretrav */

void intrav(NODEPTR tree)
{
if (tree != NULL) {
)ntrav(tree-ﬂ eft);
printf("%d\n", tree->info);
intrav(tree->right);
} /* end if */
} /* end intrav */

void posttrav(NODEPTR tree)
{ .
if (tree != NULL) {
posttrav(tree->left);
posttrav(tree->right); -
printf("%d\n", tree->info);
} /* end if ¥/
'} /* end posttrav ¥/

/* visit the root .
/* traverse left subtree */
/* traverse right subtree */

s

/* traverse left subtree */
/* visit the root)

/* traverse right subtree */

/* traverse left subtree */
/* traverse right subtree */
/* visit the root *f

The reader is invited to simulate the actions of these routines on the trees of Figures
5.1.7 and 5.1.8.
Of course, the routines could be written nonrecursively to perform the necessary .

stacking and unstacking expllcnly For example, the following is a nonrecursive routine
to traverse a binary tree in inorder:

#define MAXSTACK 100

void intrav2(NODEPTR tree)

{
struct stack {
int top;
NODEPTR item[MAXSTACK];
1s:
NODEPTR p;
s.top = -1;
p = tree;
do {
/* travel down left branches as far as possible */
o saving pointers to nodes passed wf
Sec. 5.2 Binary Tree Representations 271

while (p != NULL) {
push (s, p); .
p= p->'|eft;

.} /* end while */

/* check if finished */

if (lempty(s)) {
/* at this point the left subtree is empty */
p = pop(s);
printf("%d\n", p->info); /* visit the root *f
p = p->right; /* traverse right subtree */

} /* end if */

} while (tempty(s) || p != NULL);
} /* end intrav2 */

Nonrecursive routines to traverse a binary tree in postorder and preorder as well
as nonrecursive traversals of binary trees using the sequential representation are left as
exercises for the reader.

intrav and intrav2 represent an excellent contrast between a recursive routine and
its nonrecursive counterpart. If both routines are executed, the recursive intrav generally
executes much more quickly than the nonrecursive intrav2. This goes against the ac-
cepted “folt wisdom” that recursion is slower than iteration. The primary cause of the in-
efficiency of intrav2 as written is the calls to push, pop, and empty. Even when the code
for these functions is inseried in-line into intrav2, intrav2 is still slower than intrav
because of the often superfluous tests for overflow and underflow included in that code.

Yet. even wher. the underflow/overflow tests are removed, intrav is faster than
intrav2 under a compiler that implements recursion efficiently! The efficiency of the
recursive process in this case is due to a number of factors:

1. There is no “extra” recursion, as there is in computing the Fibonacci numbers,
where f(n — 2) and f(n— 1) are both recomputed separately even though the value
of f(n — 2) is used in computing f(n — 1).

2. The recursion stack cannot be entirely eliminated, as it can be in computing the
factorial function. Thus the automatic stacking and unstacking of built-in recur-
sion is more efficient than the programmed version. (In many systems, stacking
can be accomplished by incrementing the value of a register that points to the
stack top and moving all parameters into a new data area in a single block move.
Program-controlled stacking as we have implemented it requires individual as-
signments and increments.)

3. There are no extraneous parameters and local variables, as there are, for exampie,
in some versions of binary search. The automatic stacking of recursion does not
“stack any more variables than are necessary.

In cases of recursion that do not involve this excess baggage, such as inorder
traversal, the programmer is well advised to use recursion directly.

The traversal routines that we have presented are derived directly from the def-
initions of the traversal methods. These definitions are in‘terms of the left and right
sons of a node and do not reference 2 node's father. For that reason, both the recursive
and nonrecursive routines do not require a father field and do not take advantage of such

Trees Chap. 5
272

]
a field even if it is present. As we shall soon see, the presence of a father field allows
us to develop nonrecursive traversal algorithms without using a stack. However, we
first examine a technique for eliminating the stack in a nonrecursive traversal even if a
father field is not available. ~

Threaded Binary Trees

Traversing a binary tree is a common operation, and it would be helpful to find
a more efficient method for implementing the traversal. Let us examine the function
intrav2 to discover the reason that a stack is needed. The stack is popped when p equals
NULL. This happens in one of two cases. In one case, the while loop is exited after
having been executed one or more: times. This implies that the program has traveled -
down left branches until it reached a NULL pointer, stacking a pointer to each node
as it was passed. Thus, the top element of the stack is the value of p before it became
NULL. If an auxiliary pointer g is kept one step behind p, the value of g can be used
directly and need not be popped.

The other case in which p is NULL is that in which the while loop is skipped
entirely. This occurs after reaching a node with an empty right subtree, executing the
statement p = p— >right, and returning to repeat e body of the do while loop. At this
point, we would have lost our way were it not for the stack whose top points to the node
whose left subtree was just traversed. Suppose, however, that instead of containing a
NULL pointer iniits right field, a node with an empty right subtree contained in its right
field a pointer to the node that would be on top of the stack at that point in the algorithm
(that is, a pointer to its inorder successor.) Then there would no longer be a need for the
stack, since the last node visited during a traversal of a left subtree points directly to its
inorder successor. Such a pointer is called a thread and must be differentiable from a
tree pointer that is used to link a node to its left or right subtree. :

Figure 5.2.3 shows the binary trees of Figuie 5.1.7 with threads replacing NULL
pointers in nodes with empty right subtrees. The threads are drawn with dotted lines
to differentiate them from tree pointers. Note that the rightmost node in each tree still
has a NULL right pointer, since it has no inorder successor. Such trees are called right
in-threaded binary trees. ; y

To implement a fight in-threaded binary tree under the dynamic node implemen-
tation of a binary tree, an extrailogical field, rthread, is incladed within each node to
indicate whether or not its right pointer is a thread. For consistency, the rthread field of
the rightmost node of a tree (that is, the last node in the tree’s inorder traversal) is also
set to TRUE, although its right field remains NULL. Thus a node is defined as follows
(recall that we are assuming that no father field exists):

struct nodetype {
int info;
struct nodetype *left; /* pointer to left son */
struct nodetype *right; /* pointer to right son */

int rthread; : /* rthread is TRUE if */
/* .right is NULL or */

} /* a non-NULL thread */
typedef struct nodetype *NODEPTR; !

Sec. 5.2 Binary Tree Representations 273

Figure 5.2.3 Right in-threaded binary trees.

We present a routine to implement inorder traversal of a right in-threaded binary

tree.

void intrav3(NODEPTR tree)
{

NODEPTR p, q:

274 Trees Chab 5

p = tree;
do {
~ g = NULL;
o o S R R LI LS
LD C YA UV A
q=p
p = p->left;
} /* end while */
if (o != NULL) {
prantf("%d\n", g->1nfo);
p = g->right;
while (g->rthread & p != NULL) {
printf("%d\n N priwiudy
q=p
p = p->right;
T enu winnie /
T /* end if */
} while (g != NULL)
} /* end intrav3 */

In a right in-threaded binary tree the inorder successor of aav node can be found
efficiviny: Suchaaoecuaalso soconsaacted in a straightforwart manner (he routies
maketree, setleft, and serright are as follows. We assume info. left, right, and rthread
fields in each node.

NODEPTR maketree(int x)
{
NODEPTR p;

p = getnode();
p->info = x;
p->left = NULL;
p->right = NULL;
-2 unedy = I RuE,
return(p);

} /* end maketree */

void setleft(HODEPTR p, int X)
{

MANCDTO
i o

if (p == NULL)
error("void insertion");
else if (p->left != NULL)
error("invalid insertion™);

else {
g = getnode();
g->info = x;
p->left = g;

g->1eft = NULL;
/¢ The inorder successor of node(q) is node(p) */

Sec. 5.2 Binary Tree Representations 275

q->right = p;
g->rthread = TRUE;
} /* end if ¥/
} /* end setleft */

‘void setright(NODEPTR p, int x)
{
NODEPTR q, r;

if (p == NULL)
error("void insertion")

else if (!p->rthread)
error("invalid insertion");

else {
q = getnode();
g->info = x;
/* save the inorder successor of node(p) /4
r = p->right;
p->right = q;
p->rthread = FALSE;
.q->Teft. = NULL;
/* The inorder successor of node(q) is the Wl
/* previous successor of node(p) 2/
q->right = r;
g->rthread = TRUE;

} /* end else */

} /* end setright */

In the linked array implementation, a thread can be represented by a negative
value of node[p].right. The absolute value of node[p).right is the index in the array
node of the’inorder successor of node(p]. The sign of node[p).right indicates whether
its absolute value represents a thread (minus) or a pointer to a nonempty subtree (plus).
Under this implementation, the following routine traverses a right in-threaded binary
tree in inorder. We leave maketree, setleft, dnd setright for the linked array representa-

tion as exercises for the reader.

void iptrav4(int tree)
{
int p, q;

p = tree;
do { :

/* travel down Tleft links keeping q behind P

q=0; . :

W'lﬁ! (p 1=0) {

q=p;
+ p = node[p].left;
} /* end while */

Trees

276

Chap.5

if (q !1=0) { /* check if finished */
printf("%d\n", node[q].info);
p = node[g].right;
while (p < 0) {
q=-p;
printf("%d\n", node[q].info);
p = node[g].right;
} /* end while */
} /*endif*}
/* traverse right subtree */
} while (q != 0);
} /* end intravd */

Fie

Under the sequential representation of binary trees, the used field indicates
threads by means of negative or positive values. If i represents a node with a right
son, nodeli].used equals 1, and its right Son is at 2 *i + 2. However, if i represents a
node with no right son, Aode[i].used contains the negative of the index of its inorder
successor. (Note that use of negative numbers allows us to distinguish a node with a
right son from a node whose inorder successor is the root of the tree.) If i is the rightmost
node of the tree, so that it has no inorder successor, node[i].used can contain the special
value +2. If i does not represent a node, node|i].used is 0. We leave the implementation
of traversal algorithms for this representation as an exercise for the reader.

A left in-threaded binary tree may be defined similarly. as one in which each
NULL left pointer is altered to contain a thread to that node’s inorder predecessor. An
in-threaded binary tree may then b&defined as a binary tree that is both left in-threaded
and right in-threaded. However, left in-threading does not yield the advantages of right
in-threading. :

We may also define right and left pre-threaded binary trees, in which NULL right
and left pointers of nodes are replaced by their preorder successors and predecessors
respectively. A right pre-threaded binary tree may be traversed efficiently in preorder
without the use of a zck. A right in-threaded binary tree may also be traversed in

u

preorder without the use of a stack. The traversal algorithms are left as exercises for the
reader.

Traversal Using a father Field

If each tree node contains-a farher field, neither a stack nor threads are necessary
for nonrecursive traversal. Instead, when the traversal process reaches a leaf node, the
Jather field can be used to climb back up the tree. When node(p) is reached from a left
son, its right subtree must still be traversed: therefore the algorithm proceeds to right(p).
When node(p) is reached from its right son, both its subtrees have been traversed and the

algorithm backs up further to father(p). The following routine implements this process
for inorder traversal.

‘void intravS(NODEPTR tree)
{5

NODEPTR p, Q;

Sec. 5.2 Binary Tree Representations 277

q = NULL;
p = tree;
do { e
while (p != NULL) { i
q=p;
p = p->left;
} /* end while */
if (g !'= NULL) {
printf("%d\n", g->info);
p = g->right;
} /* end if */
while (q != NULL & p == NULL) {
do {
" /* node(q) has no right son. Back up until a */
/* left son or the tree root is encountered */
P=gq;
q = p->father;
} while (lisleft(p) & q != NULL);
if (g '= NULL) {
printf("%d\n", g->info);
p = g->right;
} /* end if */
} /* end while */
} while (q != NULL);
} /* end intravs */

Note that we write isleft(p) rather than p— >isleft because an isleft tield is unnec-
essary to determine if node(p) is a left or a right son; we can simply check if the node
is its father’s left son. .

In this inorder traversal a node is visited [printf (“%d\ n", q— >info)] when its
left son is recognized as NULL or when it is reached after backing up from its left son.
Preorder and postorder traversal are similar except that, in preorder, a node is visited
only when it is reached on the way down the tree and, in postorder, a node is visited
only when its right son is recognized as NULL or when it is reached after backing up
from its right son. We leave the details as an exercise for the reader. ;

Traversal using father pointers for backing up is less time efficient than traversal
of a threaded tree. A thread points directly to a node’s successor, whereas a whole series
of father pointers may have to be followed to reach that successor in an unthreaded tree.
It is difficult to compare the time efficiencies of stack-based traversal and father-based
traversal, since the former includes the overhead of stacking and unstacking.

This backup traversal algorithm also suggests a stackless nonrecursive traversal
technique for unthreaded trees, even if no farher field exists. The technique is simple:
simply reverse the son pointer on the way down the tree so that it can be usad to find a
way back up. On the way back up, the pointer is restored to its original value.

For example, in inrravs, a variable f tan be introduced to hold a pointer to the
father of node(q). The statements &

q=0p

p = p->left;

Trees Chap. 5
278

v

S

in the first while loop can be replaced by

f=q

q=p

p = p->left;

if (p != NULL)
g->left = f;

This modifies the left pointer of node(q) to point to the father of node(g) when going
left on the way down [note that p points to the left son of node(g), so that we have not
lost our way]. The statement

p = g->right;
in both of its occurrences can be replaced by

p = g->righti
if (p != NULL)
g->right = f;

to similarly modify the right pointer of node(q) to point 10 its father when going right
on the way down. Finally, the statements

P=a;
q = p->father;

in the inner do-while loop can be replaced by

P=aq;

q=f;

if (q != NULL & isleft(p)) {.
f = left(q);
left(q) = p; ;)

else {
f = right(q);
right(q) = p;'
} /% end if %/

to follow a modified pointer back up the tree and restore the pointer’s value to point to
its left or right son as appropriate.

However, now an isleft field is required, since the isleft operation cannot be im-
plemented using a nonexistent farher field. Also, this algorithm cannot be used in 4
multiuser environment if several users require access 10 the tree simultaneously. If one
user is traversing the tree and temporarily modifying pointers, another user will be un-
able 1o use the tree as a coherent structure. Some sort of lockout mechanism is required
to ensure that no one else uses the tree while pointers ure reversed. &

Sec. 5.2 Binary Tree Representations 279

-

Figure 5.2.4 Binary tree representing 3+ 4 x(6 - 7) 5 + 3.

o

Heterogeneous Binary Trees

Often the information contained in different nodes of a binary tree is not all of the
same type. For example, in representing a binary expression with constant numerical
operands we may wish to use a binary tree whose leaves contain numbers but whose
nonleaf nodes contain characters representing operators, Figure 5.2.4 illustrates such a
binary tree.

To represent such a tree in C we may use a union to represent the information por-
tion of the node. Of course, each tree ncde must contain within itself a field to indicate
the type of object that its info field contains.

#define OPERATOR 0
#define OPERAND 1
struct nodetype {
short int utype; /* OPERATOR or OPERAND */ .
union {
char chinfo;
float numinfo;
} info;
struct nodetype *left;
struct nodetype *right;
¥ :
typedef struct nodetype *NODEPTR;

Trees Chap.5
280

g+ n

P

Let us write a C function evalbintree that accepts a pointer to such a tree and
returns the value of the expression represented by the tree. The function recursively
evaluates the left and right subtrees and then applies the operator of the root to the two
results. We use the auxiliary function oper (symb,opndl,cpnd2) introduced §n Section
2.3. The first parameter of oper is a character representing an operator, and the last two

parameters are real numbers that are the two operands. The function oper Feturns the
result of applying tie operator ta the twn anerande ¢

float evalbintree (NODEPTR tree)

{

’

float opndl, opnd2;
char symb;

&

if (tree->utype == OPERAND) /* expression is a single operand *
return (tree->numinfo); 4

/* tree->utype == OPERATOR %/

/* evaluate the left subtree _ */

opndl = evalbintree(tree->left);

/* evaluate the right subtree */

opnd2 = evalbintree(tree->right);

symb = tree->chinfo; /* extract the operator */

/* apply the operator and return the result 2/

return(oper(symb, opndl, opnd2));

} /* end evalbintree */

Section 9.1 discusses additional metheds of implementing linked Strifctures that
contain heterogeneous elements. Note also that, in this example, all the operand nodes
are leaves and all the operator nodes are nonleaves.

EXERCISES s

5.2.1. Write a C function that accepts a pointer to a node and returns TRUE if that node is the
root of a valid binary tree and FALSE otherwise. -

5.2.2. Wirite a C function that accepts a pointer to a binary tree and a pointer to a node of the
tree and returns the level of the node in the'tree.

5.2.3. Write a C function that accepts a pointer to a binary tree and returns a pointer to a new

binary tree that is the mirror image of the first (that is, all left subtrees are now right
subtrees and vice versa).

5.2.4. Write C functions that convert a binary tree implemented ‘lfsing the linked array rep-
resentation with only a fatker field (in which the left son’s farher field contains the
negative of the pointer to its father and a right son’s father contains a pointer to its
father) to its representation using leff and right fields, and vice versa.

52.5.

Write a C program to perform the following experiment: Generate 100 random num-
bers. As each number is generated, insert it into an initially empty binary search tree.
When all 100 numbers have been inseérted, print the level of the leaf with the largest
level and the level of the leaf with the smallest level. Repeat this process 50 times. Print

1 Exercises : ¢ 281

5.2.6.
5.2.7.

5.2.8.

5.2.9.

5.2.10.

282

out a table-with a count of how many of the 50 runs resulted in a difference between

the maximum and minimum leaf level of 0, 1, 2, 3, and so/on.

Write C routines to traverse a binary tree in preorder and postorder.

Implement inorder traversal, maketree, setleft, and setright for right inthreaded binary

trees under the sequential representation. :

Write C functions to efeate a binary tree given:

(a) The preorder and inorder traversals of that tree

(b) Thé preorder and postorder traversals of that tree

Each function should dccept two character strings as parameters. The tree created

$hould contain a single character in each node.

The solution to the Towers of Hanoi problem for n disks (see Sections 3.3 gnd 3.4) can

be represented by a complete binary tree of level n — 1 as follows.

(a) Let the root of the tree represent a move of the top disk on peg frompeg to peg
topeg. (We ignore the identification of the disks being moved, as there is only
a single disk [the top one] that can be moved from any peg to any other peg.)
If nd is a leaf node (at level less than nn — 1) representing the movement of the
top disk from peg x 10 peg v, let z be the third peg that is neither the source or
target of node nd. Then lefi(nd) represents a move of the top disk from peg x to
peg : and right(nd) represents a move of the top disk from peg z to peg v. Draw
sample solution trees as described previously for n =_1.2,3, and 4, and show that
an inorder traversal of such a tree produces the solution to the Towers of Hanoi
problem. *

(b) Write a retiirsive C procedure that accepts a value for n and generates and tra-
verses the tree as discussed previously.

(¢) Because the tree is complete, it can be stored in an array of size 2”—1. Show
that the nodes of the tree can be stored in the'array so that a sequential traversal
of the array produces the inorder traversal of the tree, as follows: The root of
the tree is in position 2"~!—1; for any level j. the first node at that level is in
position 2"~'~/ —| and each successive node at level j is 2"~/ elements beyond
the previous element at that level.

(d) Write a nonrecursive C program to create the array as described in part ¢ and
show that a sequential pass through the array does indeed produce the desired
solution.

(e) How could the preceding programs be extended to include within each node the
number of the disk being moved? -

In Section 4.5 we introduced a method of representing a doulﬁfy linked list with only a
single pointer field in each node by maintaining its value as the exclusive or of pointers
to the node’s predecessor and successor. A binary tree can be similarly maintained by
keeping cne field in each node set to the exclusive or of Pointers to the node’s father
and lefr son [call this field flefi(p)] and another field in the node set to the exclusive or
of pointers to the node's father and right son [call this field fright(p)).

(@) Given father(p} and flefi(p), show how to compute lefi(p).

- Given father(p) and fright(p). show how to compute righi(p).

(b) Given flef(p) and lefi(p), show how to.compute father(p).
Given fright(p) and right(p). show how to compute father(p).

(c) Assume that a node contains only info. fleft. fright. and islefr fields. Write algo-
rithms for preorder. inorder. and postorder traversal of«a binary tree. given an
external pointer to the tree root. without using a stack or modifying any fields.

(d) Can the islefr ficld be eliminated?

- e
-

Trees Chap.5

5.2.11. An index of a textbook consists of major terms ordered alphabetically. Each major
term is accompanied by a set of page numbers and a set of subterms. The subterms are
\pr'mted on successive lines following the major term and are arranged alphabetically

* within the major term. Each subterm is accompanied by a set of page numbers.,

Design a data structure to represent such an index and write a C program to print an
index from data as follows: Each input line begins with an m (major term) or an s
(subterm). An m line contains an m followed by a major term followed by an integer
n (possibly 0) followed by n page numbers where the major term appears. An s line
is similar except that it contains a subterm rather than a major term. The input lines
appear in no particularorder except that each subterm is considered to be a subferm
of the major term which last precedes it. There may be many input lines for a single
major term or subterm (all page numbers appearing on any line for a particular term
should be printed with that term). .

The index should be printed with one term on a line followed by all the pages on which
the term appears in ascending order. Major terms should be printed in alphabetical
order. Subterms should appear in alphabetical order immediately following their major
term. Subterms should be indented five columns from the major terms.

The set of major ternf should be organized as a binary tree, Each node in the tree
contains (in addition to left and right pointers and the major term itself) pointers to
two other binary trees. One of these represents the set of page numbers in which the
major term occurs, and the other represents the set of subterms of the major term. Each
node on a subterm binary tree contains (in addition to left and right pointers and the
subterm itself, a pointer to a binary tree representing the set of page numbers in which
the subterm occurs.

5.2.12. Write a C function to imﬁlement the s%ﬁing method of Section 5.1 that uses a binary
search tree.

5.2.13. (a) Implement an ascending priority queue using a hinary search tree by writing
C implementations of the algorithms pginserr.and pgmindelete, as in exercise
5.1.13. Modify the routines to count the number of tree nodes accessed.

(b) Use a random number generator 1o test the efficiency of the priority queue im-

‘ plementation as follows: First, create a priority queue with 109 elements by
inserting 100 random numbers in an initially empty binary search tree. Then
call pgmindelete and print the number of tree nodes accessed in finding the min-
imum element, generate a new random number, and call pginser? to insert the
new random number and print the number of tree nodes accessed in the inser-
tion. Note that after calling pginsert, the tree still contains 100 elements. Repeat
the delete/print/generate/insert/print process 1000 times. Note thatthe number
of nodes accessed in the deletion tends to decrease, while the number of nodes
accessed in the insertion tends to increase. Explain this behavior.”

5.3 E&LF THE HUFFMAN ALGORITHM

Suppose that we have an‘alphabet of n symbols and a long message consisting of sym-

bols from this alphabet. We wish to encode the message as a long bit string (a bit is

either 0 or 1) by assigning a bit string code to each symbol of the alphabet and con-

catenating the individual codes of the symbols making up the message to produce an

encoding for the message. For example, suppose that the alphabet consists of the four
. symbols A, B, C, and D and that codes are assigned to these symbols as follows:

Sec.5.3 Example: The Huffman Algorithm 283

Symbol Code

A 010
B 100
i C 000
D 111

The message ABACCDA would then be ericoded as 0101600100000001 11010. Such
an encoding is inefficient, since three bits are used for each symbol, so that 21 bits are
needed to encode the entire message. Suppose that a two-bit code is assi gned to each

symbol, as follows: =

Symbol Code
A 60
B 01
@ 10
D 11

L

Then the code for the message would be 00010010101100, whichrequires only 14 bits.
We wish to find a code that minimizes the length of the encoded message.

Let us reexamine the above example. Each of the letters B and D appears
only once in the message, whereas the letter A appears three :times. If a code is
chosen so that the letter A is assigned a shorter bit string than the letters B and D,
the length of the encoded message would be small. This is because the short code
(representing the letter A) would appear more frequently than the long code. Indeed,
codes can be assigned as follows:

Symbol Code

A 0
B 110
€ 10
D 1l

Using this code, the message ABACCDA is encoded as 0110010101110, which requires
only 13 bits. In very long messages containing symbols that appear very infrequently,
the savings are substantial. Ordinarily. codes are not constructed on the basis of the fre-
quency of characters within a single message alone. but on the basis of their frequency
within a whole set of messages. The same code set is then used for each message. For
example. if messages consist of English words. the known relative frequency of occur-
rence of the letters of the alphabet in the English language might be used, although the
relative frequency of the letters in any single message is not necegsarily the same.

If variable-length codes are used. the code for one symbol may not be a prefix of
the code for another. To see why, assume that the code for a symbol x, c(x), were a prefix

W

284 : T}ées Chap. 5

of the code of another symbol y, c(y). Then when c(x) is encountered in a left-to-right
scan, it is unclear whether c(x) represents the svmbol x or whether it is the first part
of c(y).

In our example, decoding proceeds by scanning a bit string from left to right. If a
0 is encountered as the first bit, the symbol is an A; otherwise it is a B, C, or D, and the
_ next bit is examined. If the second bit is a 0, the symbol is a C; otherwise it must be a

BoraD, and the third bit must be examined. I£thé third'bit is a 0, the symbol is a B; if
itis a 1, the symbol is a D. As soon as the first symbol has been identified, the process
is repeated starting at the next bit to find the second symbol.

This suggests a method for developing an optimal encoding scheme, given the
frequency of occurrence of each symbol in a message. Find the two symbols that ap-
pear least frequently. In our example, these are B and D. The last bit of their codes
differentiates one from the other: 0 for B and 1 for D: Combine these two symbols
into the single symbol BD, whose code represents the knowledge that a symbol is ei-
ther a B or a D. The frequency of occurrence of this new symbol is the sum of the
frequencies of its two constituent symbols. Thus the frequency of BD is;2. There are
now three symbols: A (frequency 3), C (frequency 2) and BD (frequency 2). Again
chopse the two symbols with smallest frequency: C and BD. The last bit of their codes
again differentiates one from the other: 0 for C and 1 fof BD. The two symbols are
then combined into the single symbol CBD with frequency 4. There are now only two
symbols remaining: A and CBD, These are combined into the single symbol ACBD.
The, last bits of the codes for A and CBD differentiate one from the other: 0for A and 1
for CBD.

The symbol ACBD contains the entire alphabet; it is assigned the null bit string of
length Qias its code. At the start of the decoding, before any bits have been examined,
it is certaim that any symbol is contained in ACBD. The two. symbols that make up
ACBD (A and CBD) are assigned the codes 0 and 1, respectively. If a 0 is encountered,
the encoded symbol is an A; if a 1 is encountered, it is a C, a B, or a D. Similarly,
the two symbols that constitute CBD (C and BD) are assigned the codes 10 and 11,
respectively. The first bit indicates that the symbol is one of the constituents of CBD,
and the second bit indicates whether it is a C or a BD. The symbols that make up
BD (B and D) are then assigned the codes 110 and 111. By this process, symbols that
appear frequently in the message are assigned shorter codes than symbols that appear
infrequently.

The action of combining two symbols into one suggests the use of a binary tree,
Each node of the tree represents a symbol and each leaf represents a symbol of the orig-
inal alphabet. Figure 5.3.1a shows the binary tree constructed using the previous ex-
ample. Each node in the illustration contains a symbol and its frequency. Figure 5.3.1b
shows the binary tree constructed by this method for the alphabet and frequency table of
Figure 5.3.1c. Such trees are called Huffman trees after the discoverer of this encodin g
method.

Once the Huffman tree is constructed, the code of any symbol in the alphabet
can be constructed by starting at the leaf representing that symbol and climbing up
to the root. The code is initialized to null. Each time that a left branch is climbed, 0
is appended to the beginning of the code: each time that a right branch is climbed, 1 is
appended to the beginning of the code.

Sec. 5.3 Example: The Huffman Algorithm 285

ACBD, 7

IHIBDEGCA, 91

HFBD, 23

(b)

. Symbol Frequency : Code ISymbol Frequency Code ISymbol Frequency Code

A 15 1 D . 12 011 G 6 T1100
B 6 0101 £ 2 10 H) 01000
c 7 » 4 01001 ! 15 00

1101

Figure 5.3.1 Huffman trees.

286

The Huffman Algorithm

The inputs to the algorithm are 1, the number of symbols in the original alphabet,

and frequency, an array of size at least n such that frequencyli] is the relative frequency

* of the ith symbol. The algorithm assigns values to an array code of size at least n, so that

codeli] contains the code assigned to the ith symbol. The algorithm also constructs an

array position of size at least n such that position|i] points to the node representing the

ith symbol. This array is necessary to identify the point in the tree from which to start

in coastructing the code for a particular symbol in the alphabet. Once the tree has been

constructed, the isleft operation introg:uced earlier can be used to determine whether 0

» or 1 should be placed at the front of the code us we climb the tree. The info portion of

a tree node contains the frequency of the occurrence of the symbol represented by that
node.

A set rootnodes is used to keep pointers to the roots of partial binary trées that
are not yet left or right subtrees. Since this set is modified by removing elements with
minimum frequency, combining them and then reinserting the combined element into
the set, it is implemented ‘as an ascending priority queue of pointers, ordered by the
value of the info field of the pointers’ target nodes. We use the operations Dginsert, to
insert a pointer into the priority queue, and pgmindelete, to remove the pointer to the
node with the smallest info value from the priority queue.

We may outline Huffman’s algorithm as follows:

/* initialize the set of root nodes */
rootnodes = the empty ascending priority queue;
/* construct a node for each symbol */

for (i=0;i<n i+) {
p = maketree(frequency[i]);
position[i] = p;~/* a pointer to the leaf containing */
B the ith symbol */
pqinsert(rootnodes, p);
} /* end for #/
while (rootnodes contains more than one item) {
Pl = pgmindelete(rootnodes):
p2 = pgmindelete(rootnodes);
/* combine pl and p2 as branches of a single tree */
p = maketree(info(pl) + info(p2));
setleft(p, pl);
setright(p, p2):
pqinsert(rootnodes, p);
} /* end while ¥/

/* the tree is now Constructed; use it to find codes */
root = pgmindelete(rootnodes);
for €i=0; i<n jee) {

p = position[i];

code[1] = the null bit string;

.Sec.5.3 Example: The Huffman Algorithm ' 287

while (p != root) {
/* travel up the tree */
if (isleft(p))
code[i] = 0 followed by code[i];
else
code[i] = 1 followed by code[i];
p = father(p);
} /* end while */
} /* end for */ :

“C Pr'ogrqm

Note that the Huffman tree is strictly binary. Thus, if there are n symbols in the
alphabet, the Huffman tree (which has n leaves) can be represented by an array of
nodes of size 2n — 1. Since the amount of storage needed for the tree as known, it may
be allocated in advance in an array node.

In constructing the tree and obtaining the codes, it is only necessary to keep a
link from each node to its father and an indication of whether each node is a left or a
right son; left and right fields are unnecessary. Thus each node contains three fields:
father, isleft, and freq. father is a pointer to the node’s father. If the node is the root, its
Jfarher field is NULL. The value of isleft is TRUE if the node is a left son‘and F4LSE
otherwise. freg (which corresponds to the info field of the algomhm) is the frequency
of occurrence of the symbol represented by that node.

We allocate the array node based on the maximum possible symbols (a constant
maxcsymbs) rather than on the actual number of symbols, r. Thus the array node, that
should be of size 2n — 1, is declared as being of size 2 * MAXSYMBS — 1. This means
that some space is wasted. Of course, n itself could be made a constant rather than a
variable, but then the program must be rhodified every time that the number of symbols
differs. The nodes can also ;¢ represented by dynamic variables without wasting space.
However, we present a linked array implementation. (We could also input the value of
n and allocate arrays of the proper size using malloc dynamically during execution.
Then, no space would be wasted using an array implementation.)

In using the linked array implementation, node[0] through node[n - 1] can be
reserved for the leaves representing the original n symbols of the alphabet, ind node[n)
through node[2 * n — 2} for the n — 1 nonleaf nodes required by the strfctly binary
tree. This means that the array position is not required as a guide to the leaf nodes
representing the n symbols, since the node containing the ith input symbol (where i
goes from O to n — 1) is known to be node[i]. If the dynamic node repfesentation were
used, the array position would be required. |

- The following program encodes a message using Huffman’s alconthm The input
consists of a number n, which is the number of symbols in the alphabet, followed by a
seupf n pairs, each of which consists of a symbol and its relative frequency. The program
first constructs a string alph, consisting of all the.symbols in the alphabet, and an array
code such that code[i] is the code assigned to the ith symbol in alph. The program then
prints each character, its relative frequency and its code.

Since the code is constructed from right to left, we define a structure ;codenpe as
follows:

: Trees - Chap.5
288 e

#define MAXBITS 50

struct codetype {
int bits[MAXBITS);
int startpos;

L

MAXBITS is the maximum number of bits allowed in a code. If a code cd is null,
cd.startpos is equal to MAXBITS. When a bit b is added to ¢d at the left, cd.startpos is
decremented by 1 and cd.bits[cd.startpos] is set to b. When the code cd is completed,
the bits of the code are in positions cd.staripos through MAXBITS — 1 inclusive. .

An important issue is how to organize the priority queue of root nodes. In the
algorithm, this data structure was represented as a priority queue of node pointers. Im-
plementing the priority queue by a linked list, as in Section 4.2, would require a new set
of nodes, each holding a pointer to a root node and a next field. Fortunately the father
field of a root node is unused, so that it can be used to link together all the root nodes
into a list. The pointer roomodes could point to 1 . = first root node on the list. The list
itself can be ordered or unordered, depending on the implementation of pginsert and
pgmindelete. - : :

We make use of this technique in the following program, which implements the
algorithm just presented. ;

#define MAXBITS 50
#define MAXSYMBS 50
#define MAXNODES 99 /* MAXNODES equals 2*MAXSYMBS-1 */

struct codetype {
int bits[MAXBITS];
int startpos;

struct nodetype {

int freq;
int father; [* . If node[p] s not a root node, father points ¥/
- [* to the node's father; if it is, father points ¥/
/* to the next root node in the priority queue t/
int isleft;
h

void pginsert(int, int);
int pgmindelete(int);

. minQ)
{
struct codetype cd, code[MAXSYMBS];"
struct nodetype node[MAXNODES];
int i, k, n, p, pl, p2, root, rootnodes;
char symb, alph[MAXSYMBS];

Sec.5.3 Example: The Huffman Algorithm o 289

for (i = 0; i < MAXSTMBS; i44)
alph[i] = " *;

rootnodes = 0; - ; .

/* input the alphabet and frequencies . +/

scanf("%d"; &n); .

for (i=0;1<n; i) { :
scanf("%s %d", &symb, &node[i].freq);
pqinsert(rootnodes, i):
alph[i] = symb;

} /* end for */

/* we now build the trees */
for (p = n; p < 2*n-1; nee) { r
- .. /* p-points to the next available node. Obtain the */
"~ /* root nodes pl and p2 with smallest frequencies L
pl = pgmindelete(rootnodes); -
P = pqmindelete(rootnodes) ;
/* set left(p) to pl and right(p) to p2 */
node[p1].father = p;
node[pl].isleft = TRUE:
node(p2] . father = p;
node[p2] .isleft = FALSE; ‘
node(p].freq = node[pl].freq + node [p2] . freq;
pqinsert(rootnodes, p);
} /* end for */ i
/* There is now only one node left /4
/* with a null father field *f
root = pgmindelete(rootnodes):
/* extract the codes from the tree =/
for (i =0; i <n;is) { ‘
/* initialize code[i] */
cd.startpos = MAXBITS;
/* travel up the tree */
P =i
while (p != root) {
--cd.startpos;
if (node[p].isleft)
cd.bits[cd.startpos] = 0:
else g
cd.bits[cd.startpos] = 1;
p = node[p].father:;
} /* end while */
for (k = cd.startpos; k < MAXBITS; k++)
code[i].bits[k] = cd.bits[k];
.code[i].startpos = cd.startpos;
} -/* end for */ ‘

Trees

Chap. 5

/% print results */

for (3 =0; i <ny i+s) {
printf("\n%c %d ", alph[i], nodes[i].freq);
for (k = code[i).startpos; k < MAXBITS; k++)

printf("%d", code[i]. blts[k]).

printf("\n");

T /* end for */

} /* end main */

We leave to the reader the coding of the routine encode(alph, code, msge, bitcode).
This procedure accepts the string alph, the array code constructed in the foregoing pro-
gram, and a message msge and sets bitcode to the bit string encoding of the message.

Given the encoding of a message and the Huffman tree’ used in constructing the
code, the original message can be recovered as follows: Begin at the root of the tree.
Each time that a O is encountered, move down a left branch, and each time that a | is
encountered, move down a right branch. Repeat this process until a leaf is encountered.
The next character of the original message . “he symbol that corresponds to that leaf.
See if you can decode 1110100010111011 using the Huffman tree of Figure 5.3.1b.

To decode it is necessary to travel from the root of the tree down to its Jeaves.
This means that instead of father and isleft fields, two fields left and right are needed
to hold the left and right sons of a particular node. 1t is straightforward to compute the
fields left and right from the fields father and isleft. Alternatively, the values lef and

. right can be constructed directly from the frequency information for the symbols of the.

alphabet using an approach similar to that used in assigning the value of father, (Of
course, if the trees are to be identical, the symbol/frequency pairs must be presented
in the same order under the two methods.) We leave these algorithms, as well as the
decoding algorithm, as exercises for the reader. -

EXERCISES

5.3.1. Write a C function encode(alph, code, msge, bitcode). The function accepts the string
alph and the array code produced by the program findcode in the text and a message
msge. The procedure sets bitcode to the Huffman encoding of that message.

5.3.2. Write a C function decode(alph, left, right, bitcode, msge), in which alph is the stfing
produced by the program findcode in the text, left and right are arrays used to represent a
Huffman tree, and bitcode is abit string. The function sets msge to the Huffman dccodmg

‘ of biicode. :

5.3.3. Implement the priority queue roomodes as an ordered list. Write appropriate pqmserr
“and pgmindelete routines.

§.3.4. Is it possible to have two different Huffman trees for a set of symbols with given fre-
quencies? Either give an example in which two such trees exxst or prove that there is
only a single such tree.

5.3.5. Define the Fibonacci binary tree of order n as follows: If n = 0 or n = 1, the tree

: consists of a single node. If n > 1, the tree consists of a root, with the Fibonacci tree of
order n — 1 as the left subtree and the Fibonacci tree of order n — 2 as the right subtree.

(a) .Write a C function that returns a pointer to the Fibonacci binary tree of order ».
(b) . Is such a tree strictly binary?

Exercises : 291

(c) . What is the number of leaves in the Fibonacci tree of order n?
(d) What is the depth of the Fibonacci tree of order n?

5.3.6. Given a binary tree 1, its extension is defined as the binary tree e(r) formed from by
adding a new leaf node at each NULL left and right pointer in 7. The new leaves are
called external nodes, and the original nodes (which are now all nonleaves) are called
internal nodes. e(1) is called an extended binary tree.

(a) Prove that an extended binary tree is strictly binary.

(b) If r has n nodes, how many nodes does e(r) have?

(c) Prove that all leaves in an extended binary tree are newly added nodes.
(d) Write a C routine that extends a binary tree 1.

(e) . Prove that any strictly binary tree with more than one node is an extension of one
and only one binary tree. '

(f) Write a C function that accepts a pointer to a strictly binary tree t1 containing more
than one node and deletes nodes from 11 creating a binary tree 12 such that 11 =
e(12).

(g) Show that the complete binary tree of order n is the nth exiension of the bmary
tree consisting of a single node.

5.3.7, Given a strictly binary tree ¢ in which the n leaves are labeled as nodes 1 through n, let
level(i) be the level of node i and let freq(i) be an integer assigned to node i. Define the
weighted path length of t as the sum of freq(i) * level(i) over all leaves of 1.

(a) Write a C routine to compute the weighted path length, given fields freq and father.

(b) Show that the Huffman tree is the strictly binary tree with minimum weighted path
length.

5.4 REPRESENTING LISTS AS BINARY TREES

Several operations can be performed on a list of elements. Included among these op-
erations are adding a new element to the front or rear of the list, deleting the existing
first or last element of the list, retrieving the kth element or the last element of the lis,
inserting an element following or preceding a given element, deleting a given elemert,
and deleting the predecessor or successor of a given element. Building a list with giv:n
elements is an additional operation that is frequently required.

Depending on the representation chosen for a list, some of these operations nay
or may not be possible with varying degrees of efficiency. For example, a list nay
be represented by successive elements in an array or as nodes in a linked strucure.
Inserting an element following a given element is relatively efficient in a linkedlist
(involving modifications to a few pointers aside from the actual insertion) but ela-
tively inefficient in an array (involving moving all subsequent elements in the rray
one position). However, finding the kth element of a list is far more efficient n an

" array (involving only the computation of an offset) than in a linked structure(that
requires passing through the first k¥ — 1 elements). Similarly, it is not possile to
delete a-specific element in a singly linked linear list given only a pointer t that
element, and it is only possible to do so incfﬁciently in a singly linked circulr list
(by traversing the entire list to reach the previous element, and then performig the.
deletion). The same operation, however, is quite eﬁic:lem in a doubly linked (liear or
cm:ular) list. L

In this section we introduce a tree representation of a linear list in which he op-
erations of finding the kth element of a list and deleting a specific element are reltively

Trees thap. 5

292

efficient. It is also possible to build a list with given elements using this representation.

We also briefly consider the operation of inserting a single new element.

A list may be represented by a binary tree as illustrated in Figure 5.4.1. Figure
5.4.1a shows alist in the usual linked format, while Figure 5.4.1b and ¢ show two binary

by

- B

C

——

D

E

¥

Sec.5.4

Figure 5.4.1 List and two corresponding binary trees.

Representing Lists a; Binary Trees

%

(b)

(©)

G

nil

tree representations of the list. Elements of the original list are represented by leaves of
the tree (shown as squares in the figure), whereas nonleaf nodes of the tree (shown as
circles in the figure) are present as part of the internal tree structure. Associated with
each leaf node are the contents of the corresponding list element. Associated with each
nonleaf node is a count representing the number of leaves in the node’s left subtree.
(Although this count can be computed from the tree structure, it is maintained as a data
element to avoid recomputing its value each time that it is needed.) The elements of
the list in their original sequence are assigned to the leaves of the tree in the inorder

sequence of the leaves. Note from Figure 5.4.1 that several binary trees can represent

the same list.
Finding the kth Element

To justify using so many extra tree nodes to represent a list, we present an algo-
"rithm to find the kth element of a list represented by a tree. Let tree point to the root of
the tree, and let Icount(p) represent the count associated with the nonleaf node pointed
t0 by p [Icount(p) is the number of leaves in the tree rooted at node(left(p))). - The fol-
fowing algorithm sets the variable find to point to the leaf containing the kth element of
the list. «

- The algorithm maintains a variable r containing the number of list elements re-
maining to be counted. At the beginning of the algorithm r is initialized to k. At each
nonleaf node(p), the algorithm determines from the values of r and lcouni(p) whether
the kth element is located in the left or right subtree. If the leaf is in the left-sub-
tree, the aigorithm proceeds directly to that subtree. If the desired leaf is in the right
subtree, the algorithm proceeds to that subtree after reducing the value of r by the

value of lcount(p). k is assumed to be less than or equal to the number of elememsm
the list.

r.="kj
p = tree;
while (p is not a leaf node)
if (r <= lcount(p))
p = Teft(p); ~
else {
.r == Tcount(p);
p = right(p); -
} /* énd if ¥/
find = p;

Figure 5.4.2a illustrates finding the fifth element of a list in the tree of Figure
5.4.1b, and Figure 5.4.2b illustrates finding the eighth element in the tree of Figure
S4.lc. The dashed line represents the path taken by the algonthm down the tree to the
appropriate leaf. We indicate the valuz of r (the remaining number of elements to be
counted) next to each node encountered by the algorithm.

The number of tree nodes examined in finding the kth list element is less than or
equal to 1 more than the depth of the tree (the longest path in the tree from the root to

. aleaf). Thus four nodes are examined in Figure 5.4.2a in finding the fifth element of the

‘ Trees Chap.5
294

-
”' & .
”
ps
or=5 k} 2 ¥
-]
N
N
-
2 r=2 1 1 I
T 2
1 (3 D E F G H 1
b r=1
A B
(n).
5 r=8
\\ -
~
=
>
2 ; 1“ r=13
NG
N
1 2 I 1 r=1
A B | E F G H i X
C D

(b)

Figuﬁ 5:4.2 Finding the nth element of a traa-répres‘ented list.

list, and also in Figure 5.4.2b in finding the eighth element. If a list is represented as
a linked structure, four nodes are accessed in finding the fifth element of the list [that
is, the operation p = next(p) is performed four times) and seven nodes are accessed in
finding the eighth element.

Although this is not a very-impressive saving, consider a list with 1000 elements.
A binary tree of depth 10 is sufficient to represent such a list. since loga 1000 is less

Sec. 5.4 - Representing Lists as Binary Trees 295

than 10. Thus, finding the kth element (regardless of whether k was 3, 253, 708, or
999) using such a binary tree would require examining no more than 11 nodes. Since
the number of leaves of a binary tree increases as 2¢, where d is the depth of the tree,
such a tree represents a relatively efficient data structure for finding the kth element of
a list. If an almost complete tree is used, the kth element of an n-element list can be

found in at most logan + 1 node accesses, whereas k accesses would be required if a
linear linked list were used.

Deleting an Element

How can an element be deleted from a list represented by a tree? The deletion.
itself is relatively easy. It involves only resetting a left or right pointer in the father of
the deleted leaf dl to null. However, to enable subsequent accesses, the counts in all
ancestors of d/ may have to be modified. The modification consists of reducing lcount
by 1 in each node nd of which dl was a left descendant, since the number of leaves in
the left subtree of nd is 1 fewer. At the same time, if the brother of dl is a leaf, it can
be moved up the tree to take the place of its father. We can then move that node up
even further if it has no brother in its new position. This may reduce the depth of the
resulting tree, making subsequent accesses slightly more efficient. % ’

We may therefore present an algorithm to delete a leaf pointed to by p from a tree

(and thus a» element from a list) as follows. (The line numbers at the left are for future
reference.)]

if (p == tree) {
tree = null;
free node(p);

f = father(p);
/* remove node(p) and set b to point to its brother */

1
2
3
4
5 else {
6
7/
8 if (p == left(f)) {

9 left(f) = null;
10 b = right(f);

11 ==Tcount(f);

- e

13 else {

14 right(f) = null;
15 b = left(f);

16 . } /* end if */
17 if (node(b) is a leaf) {

-

18 /* move the contents of node(b) up to its */
19 - YA father and free node(b) ¥
20 info(f) = info(b);

21 Teft(f) = null;

22 right(f) = null;

23 Tcount(f) = 0; *

24 free node(b):;

25} /*end if ¥/

Trees Chap.5
296

26 free node(p); .
27/t climb up the tree */

28 q=f;
29 while (g != tree) {
30 f = father(q):
31 if (q == left(N) {
32 /* the deleted Teaf was a left descendant t/
L5 of node(f) t/
33 -=1count(f);
34 b = right(f);
35 } i A
- 36 else
37 b = left(f); 12
38 /* node(b) is the brother of node(q) */
39 if (b == null & node(q) is & Teaf){
40) /# move up the contents of node(q) */
41 /* to its father and free noce(q) */
42 info(f) = info(q); ‘ 3
43 © left(f) = null; &) ¥
a4 right(f) = null; '
45 1¢ount(f) = 0;
46 free node(q);
Y } /% end if ¥/
48 q= f:

49 } /* end while */
50 } /* end else */

Figure 5.4.3 illustrates the results of this algorithm for a wree in which the nodes
C. D, and: B are deleted in that order. Make sure that you follow the actions of the
algorithm on these examples. Note that the algorithm maintains a 0 count in leat nodes
for consistency, although the count is not-required for such nodes. Note also that the
algorithm never moves up a nonleaf node even if this could be done. (For example.
the father of A and B in.Figure 5.4.3b has not been moved up.)-We can easily modify
* the algorithm to do this (the modification is left to the reader) but have not done so for

reasons that will become apparent shortly.

This deletion algorithm involves inspection of up to two nodes (the ancestor of
the node being deleted and that ancestor’s brother) at each level. Thus, the operation
of deleting the kth element of a list represented by a tree (which involves finding the
element and then deleting it) requires a number of node accesses approximately equal to
three times the tree depth. Although deletion from a linked list requires accesses 10 only
three nodes (the node preceding and following the deleted node as well as the deleted
node), deleting the kth element requires a total of k + 2 accesses (k — 1 of which are-tp
locate the node preceding the kth). For large lists, therefore. the tree representation is
more efficient. £

Similarly we can compare favorably the efficiency of tree-represented lists with
array-represented lists. If an n-element list is maintained in the first 2 elements of an ar-
ray. finding the Ath element involves only a single array access, but deleting it requires
shifting the n — k elements that had followed the deleted element. 1f gaps are allowed in

Sec. 5.4 Representing Lists as Binary Trees : 297

tree

tree

(&)

(b)

()

Figure 5.4.3 Deletion algorithm.

298 _ i Trees Chap.5

e -~

the array so that deletion can be implemented efficiently (by setting a flag in the array
position of the deleted element without shifting: any subsequent elements). finding the
kth element requires at least k array. accesses. The reason is that itis no longer possible
to know the array position of the kth element im the list, since gaps may exist among the
elements in the array. | We should note., howe ver, that if the order of the elements in the
list is irrelevant, the kth element in an array can be deleted cfficiently by overwriting
it with the elentent in position n (the last element) and adjusting the count - n — |
However, it is unlikely that we would want 1o delete the Ath element fromoa list inwhich
the order is-irrelevant, since there would then be no significance in the kth clement over
any of the others. |

Inserting a new Ath element into & tree-represented list [between the (b — lN
and the previous kth] is also a relatively efficient operation. The insertion consists of
locating the Ath element; replacing it with a new nonleaf that has a leaf containing
the new element as its left son and a leaf containing the old ith element as its right
son, and adjusting approprriate counts among its ancestors. We leave the details 10 the
reader. (However, repeate:dly adding a new kth element by this method causes the wee
to become highly unbalanced, since the branch ¢ontaining the kth element becomes dis-
proportionately long comipared with the other branches. This means that the efficiency
of finding the kth element is not as great as it would be in a bulanced tree in which all
paths are approximately the same length. The reader is encouraged to hind a “balanc-
ing™ strategy to alleviate this probiem. Despite this problem. if insertions into the tree
are made randomly. so that it is equally likely for an element to be inserted at any given
position, the resulting @ ee remains fairly balanced and finding the Ath element remains
efficient.)

implementing Tree-Represented Lists in C -

The C implementations of the search and deletion algorithms are stratghtforward
using the linked representation of binary trees. However, such a representation requires
info, lcount, father, left, and right fields for each tree node, whereas a list node requires
only info and next fields. Coupled with the fact that the tree representation requires ap-
proximately twice as many nodes as a linked list, this space requirement may make the
tree representation impractical. We could. of course, utilize external nodes containing
only an info field (and perhaps a father field) for the leaves. and internal nodes con-
taining fcount, father, left, and right fields for the nonleaves. We do not pursue that
possibility here.

Under the sequential representation of a binary tree. the space n:quirem:‘m\: are
not nearly so great. If we assume that no insertions are required once the tree is con-
structed and that the initial list size is known. we can set aside an array 16 hold an almost
complete strictly binury tree representation of the list. Under that representation. furfier,
left.and pight fields are unnecessary. As we shall'soon show. it i1s alwavs possible to
construct an almost complete binary tree representation of a list.

Once the tree has been constructed. the only fields required are info. leownr, and a
field used w indicate whether or not an array element represents an existing or a deleted
tree node. Also. as we have noted betore, lcount is only required for nonleaf nodes of the
tree. so that a structure could actually be used with either the leomn field or the info tield.

Sec. 5.4 Representing Lists as Binary Trees 299

depending on whether or not the node is a leaf. We leave this possibility as an exercise
for the reader. It is also possible to eliminate the need for the used field at some expense
to time efficiency (see Exercises 5.4.4 and 5.4.5). We assume the following definitons
and declarations (assume 100 elements in the list):

#define MAXELTS 100 /* maximum humber of 1ist elements */
#define NUMNODES 2*MAXELTS - 1
#define BLANKS " - - " /* 20 blanks */
struct nodetype {

char info[20];

int 1count;

int used;
} node [NUMNODES] ;

A nonleaf node can be recognized by an info value equal to BLANKS. father(p), left(p),
and right(p) can be implemented in the usual wayas(p=1)2,2*p+1,and 2% p+2,
respéctively, ; ‘

‘ A C routine to find the kth element follows. It uses the library routine stremp,
which returns 0 if two strings are equal.

int findelement(int k)

int p, r;
r=k; : &
p=0; -
while (strcmp(node[p].info, BLANKS) == 0)
if (r <= node[p].lcount)
o p=pi2 4+ 1
-else {
r=~=z_node[p]. count:
p=p* ;
} /* end if ¥/
return(p);
} /* end findelement */

The Croutine to delete the leaf pointed to by p using the sequential representation
: Jis somewhat simpler than the corresponding algorithm presented in the foregoing. We
can ignore all assignments of null (lines 2, 9, 14, 21, 22. 43 and 44), since pointers,
are not used. We can also ignore the assignments of 0 10 an Iccunt field (lines 23 and
45). since such an assignment is part of the conversion of a nonleaf to a leaf, and in
our C representation the lcount field in leaf nodes is unused. A node can be recognized
as a leafe(lines 17and 39) by a nonblank info value, and the pointer b as null (line
39) by a FALSE value for node|b).used. Freeing a node (lines 3, 26, and 46) is accom-
plished by setting its used field to FALSE. The routine uses the library routine strepyv(s.r),,
which assignis string 1 to string s, and the routine stremp to compare two strings for
equality.

300) Trees Chap.5

void delete(int p)
{
int b, f, q:

if (p = 0) - Al
node[p].used = FALSE; /* Algorithm lines 1-4. */
else {
f=(p-1) / 2 /* Algorithm Yine 6 *r
if(p%2!=0){ /* Algorithm line 8 v/
b= 2*f + 2;
--node[f].1count;
}
else ;
b =2%f + 1;
if (strcmp(node[b].info, BLANKS) != 0) {
/* Algorithm lines 17-25 */
strcpy(node[f].info, node[b].info);
node[b].used = FALSE;
} /* end if */

node[p] .used = FALSE; /* Algorithm line 26 i
g /* Algorithm Tine 28 */
while (q !=0) {
f=(¢1/2; /* Algorithm line 30 -y
if (%2 1=0) { "/* Algorithm Tine 31 L'/
--node[f].1count;
b =25f + 2;
}
else
b = 2¢f + 1;

if (!node[b].used && strcmp(node[q].info, BLANKS) != 0) {
/* Algorithm Tines 39-47 */
strcpy(node[f]. 1nfo node[q]. 1nfo),
node[q] .used = FALSE;
} /* end if */ -
q=f;
" } /* end while */
} /% end if */
} /* end delete */

Qur use of the sequential representation explains the reason for not moving a nonleaf
without a brother further up in a tree during deletion. Under the sequential represen-
tation, such a moving-up process would involve copyirig the contents of all nodes in
the subtree within the array, whereas it involves modifying only a single pointer if the
linked representation is used.

Constructing a Tree-Represented List ,
; (

We now return to the claim that, given a list of n elements, it is-possible to con-

struct an almost complete strictly binary tree representing the list. We have aiready seen

Sec. 5.4 Representing Lists as Binary Trees 30m

tn Section 5.1 thatit is possible to construct an almost complete strictly binary tree with
i leaves und 2 » n — 1 nodes, THe leaves of such a tree occupy nodes numbered n — |
through 2 * n ~ 2. If 4 is the smallest integer such that 27 jg greater or equal to n (that
is.if d equals the smullest integer greater than or equal to logan), d equals the depth of
the tree. The number assigned 1o the first node on the bottom level of the tree is 24 — |,
The first elements of the list are assigned to nodes numbered 24 — | through 2 * n — 2,
and the remainder (if any) to nodes numbered 7 — | through 2¢ - 2. In constructing a
tree representing a list with n elements, we can assign elements to the info fields of tree
leaves in this sequence and assign a blank string to the info fields of the nonleaf nodes,
nmmwmemWMQHJ—2.hhahoaﬂmmemmwrmiMﬁmuemeuwdﬁddm{me
in all nodes numbered 0 to 2% p — 2.

Initializing the values of the lcount array is more difficult. Two methods can be
used: one involving more time and a second involving more space. In the first method,
all leount fields are initialized to 0. Then the tree is climbed from each Jeaf to the tree
rool in turn. Each time a node is reached from its left son, 1 is added to its Jcount
field. After this process is performed for each leaf, all Icount values have been properly

assigned. The following routine uses this method to construct a tree.from a list of input
data: * oK ' : ‘

void buildtree(int n)
{ : J ;
int d, f, 1, p, power, size;
/* compute the tree depth d and the value of 29 #/
d=0; .
power = 1;
while (power < n) {
++d;
power *= 7: .
} /% end while #/ ’
/* assign the elements of the Tist, initialize the used flags, */
/* and initialize the lcount field to 0 in all nonleaves xf
size's 2%n - 1;
for (i = power-1; 1 < sizel; i+4) {
scanf("%d", &node[i].info): -
node[i].used = TRUE:
1 /* end for */ &
for (i=n-1; i < power-1; i+4){ !
P scanf("%s", node[i].info);
. .node[i].used = TRUE;
} /% end for %)
for (i=0; i < n-1: 1+4) {
node[i].used = TRUE:
node[i].lcount = 0:
strcpy(noae[i].info, BLANKS):
} /% end for */

!

Trees Chap. 5

/* set the lcount fields */
for (i=n-1; i < size; i++) {
/* follow the path from each leaf to the root */
M
while (p !'=0) {
f=(0D/2
if(p%2!=0)
‘++node[f].1count;
©ope=f;
} /* end while */
} /% end for */
} /* end buildtree */

"The second i'né(hqd uses an additional field, rcount, in'each node to hold the num-

_ ber of leaves in the right subtree of each nonleaf node. This field as well as the lcount
field is set to 1 in each nonleaf that is the father of two leaves. If n is odd, so that there
is a node (numbered (n — 3),'2) that is the father of a leaf and a nonleaf, Jcount in that
node is set to 2 and rcount to 1.

The algorithm then goes through the remaining array elements in reverse order,
setting [count in each node to the sum of lcount and rcount in the node’s left son, and
rcount 10 the sum of Icount and rcount in the node’s right son. We leave to the reader
the C implememation of this technique. Note that rcount can be implemented as a local
array in buildtree rather than as a field in every node, since ltS values are unused once
the tree is built.

This second method has the advantage that it visits each nonleaf once to directly
calculate its lcount (and rcount) value. The first method visits each nonleaf once for
each of its leaf descendants, adding one to lcount exch time that the leaf is found to be a
left descendant. To counterbalance this advantage, the second method requires an extra

“ reount field, whereas the first method needs no extra ﬁelds

The Josephus Problem Revisited

The Josephus problem of Section 4.5 is a perfect example of the urtility of the
binary tree representation of a list. In that problem it was necessary to repeatedly find
the mth next element of a list and then delete that element. These are operations that
can be performed efficiently in a tree-represented list.

If size equals the number of elements currently in a list, the position of the mth
node following the node in position k that has just been deleted is given by 1 +(k—2+m)
% size. (Here we assume that the first node in the list is considered in position |, not
in position 0.) For example, if a list has five elements and the third element is deleted.
and we wish to find the fourth element following the deleted element, size = 4.k = 3,
and m = 4. Then k — 2 + m equals 5 and (k — 2 + m) % size is 1. so that the fourth
. element following the deleted element is in position 2. (After deleting element 3. we
count elements 4. 5, 1, and 2.) We can therefore write a C function follower ta find the
mth node following a node in position & that has jusi been deleted and to reset & to its
position. The routine calls the routine findelement presented earlier.

Sec. 5.4 Representing Lists as Binary Trees ° : 303

int follower(int size, int m, int *pk)

int j.' d;

j': k -2+ m;

*pk = (3 % size) + 1;

return(findelement(*pk)):
} /% end follower */

The following C program implements the Josephus algorithm using a tree-
represented list. The program inputs the number of people in a circle (n), an integer
count (m), and the names of the people in the circle in order, beginning with the person,
from whom the count starts. The people in the circle are counted in order and the person
at whom the input count is reached leaves the circle. The count then begins again from
1, starting at the next person. The program prints the order in which people leave the
circle. Section 4.5 presented a program to do this using a circular list in which (n —)
* m nodes are accessed once the initial list is constructed. The following algorithm
accesses fewer than (n — 1) * logan nodes once the tree is built.

/* definitions of MAXELTS, NUMNODES BLANKS, */ -
/* and nodetype go here */

void buildtree(int);
int follower(int, int, ‘int *)
void delete(int);

main()

int k, m, n, p, size;
struct nodetype node[NUMNODES] ;

scanf("%d%d", &n, &m); $
buildtree(n);
k=na+1; /¢ initially we have "deleted” the (n+1)st person =/ -
for (size = n; size > 2;" -+size) {
/* repeat until one person is left %/
p = follower(size, m, &):
printf("%d\n", node[p].info);
delete(p);
} /* end for */
" printf("%d", node[0].info);
} /% end main */

EXERCISES

$.4.1. Prove that the leftmost node at level i in an almost complete strictly binary tree is as-
signed the number 2",

Trees Chap.5

304

5.4.2. Prove that the extension (see Exercise 5.3.5) of an almost complete binary tree is almost
complete.

5.4.3. For what values of n and m is the solution to the Josephus problem given in this section

faster in execution than the solution given in Section 4.5? Why is this so?

5.4.4. Explain how we can eliminate the need for a used field if we elect not to move up a
newly created leaf with no brother during deletion.

5.4.5. Explain how we can eliminate the need for a used field if we set icount o — 1 ina nonleaf
that is converted to a leaf node and reset info to blanks in a deleted node.

§.4.6. Write a C routine buildtree in which each node s visited only once by using an rcount
array as described in the text.

5.4.7. Show how to represent a linked list as an almost complete binary treg in which each list

element is represented by one tree node. Write a C function to return a pointer to the kth
element of such a list.

5.5 TREES AND THEIR APPLICATIONS

In this section we consider general trees and their representations. We also investigate
some of their uses in problem solving.

A tree is a finite nonempty set of elements in which one element is called the root
and the remaining elements are partitioned into m > = 0 disjoint subsets, each of which
is itself a tree. Each element in a tree is called a node of the tree.

Figure 5.5.1 illustrates some trees. Each node may be the root of a tree with zero or
more subtrees. A node with no subtrees is a leaf. We use the terms father, son, brother,
ancestor, descendant, level, and depth in the same sense that we used them for binary
trees. We also define the degree of a node in a tree as the number of its sons. Thus in
Figure 5.5.1a, node C has degree O (and is therefore a leaf), node D has degree 1, node
B has degree 2, and node A has degree 3. There is no upper limit on the degree of. a
node.

Let us compare the trees of Figure 5.5.1a and c. They are equivalent as trees. Each
has A as its root and three subtrees. One of those subtrees has root C with no subtrees,
another has root D with a single subtree rooted at G, and the third has root B with two
subtrees rooted at £ and F. The only difference between the two illustrations is the order
in which the subtrees are arranged. The definition of a tree makes no distinction among
subtrees of a general tree, unlike a binary tree, in which a distinction is made between
the left and right subtrees.

An ordered tree is defined as a tree in which the subtrees of each node form
an ordered set. In an ordered tree we may speak of the first, second. or last son of a
particular node. The first son of a node in an ordered tree is often called the oldest
son of that node, and the last son is called the youngest. Although the trees of Figures
5.5.1a and c are equivalent as unordered trees, they are different as ordered trees. In the
remainder of this chapter we use the word “tree™ to refer to “ordered tree.” A forest is
an ordered set of ordered trees. '

The question arises whether a binary tree is a tree. Every binary tree except for
the empty binary tree is indeed a tree. However, not every tree is binury. A tree node
may have more than two sons. whereas a binary tree node may not. Even a tree whose

Sec. 5.5 Trees and Their Applications 305

(<)
Figure 5.5.1 Examples of trees.
nodes have at most two sons is not necessarily a binary tree. This is because an only
son in a general tree is not designated as being a “left” or a “right” son, whereas in a
binary tree, exvery son must be either a “left” son or a “right” son. In fact. although a

nonempty binary tree is a tree, the designations of left and right have no meaning within

Joé Trees Chap.5

the context of a tree (except perhaps to order the two subtrees of those nodes with two
sons). A nonempty binary tree is a tree each of whose nodes has a maximum of two
subtrees which have the added designation of “left” or “right.”

C Representations of Trees

How can an ordered tree be represented in C? Two alternatives immediately come
to mind: an array of tree nodes may be declared or a dynamic variable may be allocated
for each node created. However, what should the structure of each individual node be?
In the representation of a binary tree, each node contains an information field and two
pointers to its two sons. But how many pointers should a tree node contain? The number

of sons of a node is variable and may be as large or as small as desired. If we arbitrarily
declare :

#define MAXSONS 20

struct treenode {
int info;
struct treenode *father;
struct treenode *sons[MAXSONS];
| H

we are restricting the number of sons a node may have to a maximum of 20. Although
in most cases this will be sufficient, it is sometimes necessary to create dynamically a
node with 21 or 100 sons. Far worse than this remote possibility is the fact that twenty
units of storage are reserved for each node in the tree even though a node may actually
~ have only 1 or 2 (or even 0) sons. This is a tremendous waste of space.

One alternative is to link all the sons of a node together in a linear list. Thus the
set of available nodes (using the array implementation) might be declared as follows:

#define MAXNODES 500

struct treenode {
int info;
int father;
int son;
int next;
h
struct treenode node(MAXNODES];

node(p}.son points to the oldest son of nade([p], and node[p).next points to the next
younger brother of node|p].

Alternatively, a node may be declared as a dynamic variable:

struct treenode {
int info;.
struct treenode *father;
struct treenode *son;
struct treenode *next;
H
typedef struct treenode *NODEPTR;

Sec.5.5 Trees and Their Applications 307

s0n info next

B R~~~ L& Lol
Q o
el m B~~~
T
L ¥ L0
(% LS
Ea~~ i

'y

L

(D)

LE b

B3~

-~
[
L& 'E L R a3~
W - °
E A~~~ B3~~~
= T
E 3~~~
Q = z
= B~~ E3~~ B3~

L e

B3~

R A~

e

B A~~~

(b)

B a3~

B R~~

B3~~~
Y w
ot £ 3~~
[}
B3~~~
Q (5}
- | B~~~
{
LR Lol i
- o
o R A=~

(e}

Figure 55.2 Tree representations. (See reference on page 309.)

If all traversals are from a node to its sons, the farher field may be omitted. Figure 5.5.2
illustrates the representations of the trees of Figure 5.5.1 under these methods if no
father field is needed. '

Even if it is necessary to access the father of a node, the father field can be omitted
by placing a pointer to the father in the next field of the youngest son instead of leaving
it null. An additional logical field could then be used to indicate whether the next field
points to a “real” next son or to the father. Alternatively (in the array of nodes implemen-
tation), the contents of the next field can contain negative as well as positive indices. A
negative value would indicate that the next field points to the node’s father rather than
to its brother, and the absolute value of the next field yields the actual pointer. This is
similar to the representation of threads in binary trees. Of course, in either of these two
latter methods, accessing the father of an arbm'ary node would require a traversal of the
list of its younger sons.

If we think of son as corresponding to the left pointer of a binary tree node and
next as corresponding to its right pointer, this method actually represents a general
ordered tree by a binary tree. We may picture this binary tree as the original tree tilted
45 degrees with all father—son links removed except for those between a node and its
oldest son, and with links added between each node and its next younger brother. Figure
5.5.3 illustrates the binary trees corresponding to the trees of Figure 5.5.1.

In fact, a binary tree may be used to represent an entire forest, since the nexr
pointer in the root of a tree can be used to point to the next tree of the forest. Figure
5.5.4 illustrates a forest and its corresponding binary tree. '

Tree Trﬁmuls

The traversal methods for binary trees induce traversal methods for forests. The
preorder, inorder, or postorder traversals of a forest may be defined as the preorder,
inorder, or postorder traversals of its corresponding binary tree. If a forest is represented
as a set of dynamic variable nodes with son and next pointers as previously, a C romme
to print the contents of its nodes in inorder may be:written as follows:

void intrav(NODEPTR p)
{

if (p '= NULL) {
intrav(p->son);
printf("%d\n", p->info);
intrav(p->next);
} /% end if %/
} /* end intrav */

Routines for preorder and postorder traversals are similar.
These traversals of a forest may also be defined directly as follows:

PREORDER
1. Visit the root of the first tree in the forest.
2. Traverse in preorder the forest formed by the subtrees of the first tree. if any.
3. Traverse in preorder the forest formed by the remaining trees in the forest, if any.

Sec. 55— Trees and Their Applications . 309

Figure 5.5.3 Binary trees corresponding to trees of Figﬁrc 5.5.1.

oLe ' Trees » Chap.5

(b)

Figure 5.5.4 Forest and its corresponding binary tree.

Sec.5.5 Trees and Their Applications mn

INORDER

1. Traverse in morder the forest formed by the subtrees of the first tree in the forest,
- if any.

2. Visit the root of the first tree.
3. Traverse in inorder the forest formed by the remaining trees in the forest, if any.
POSTORDER

1. Traverse in postorder the forest formed by the subtrees of the first tree in the forest,
if any. .

2. Traverse in postorder the forest formed by the remaining trees in the forest, if any.

3. Visit the root of the first tree in the forest.

The nodes of the forest in Figure 5.5.4 a may be listed in preorder as ABCDE-
FGHIJKLMPRQNO, in inorder as BDEFCAIJKHGRPQMNOL and in postorder as
FEDCBKJIHRQPONMLGA. Let us call a traversal of a binary tree a binary traver-
sal, and a traversal of an ordered general tree a general traversal.

‘General Expressions as Trees

An ordered tree may be used to represent a general expression in much the same

‘way that a binary tree may be used to represent a binary expression. Since a node may

have any number of sons, nonleaf nodes need not represent only binary operators but
" can represent operators with any number of operands. Figure 5.5.5 illustrates two ex-
pressions and their tree representations. The symbol “%" is used to represent unary
negzation to avoid confusing it with binary subtraction that is represented by a minus
sign. A function reference such as f(g,h,i,j) is viewed as the operator f applied to the
operands g,h,i, and j. '

A general traversal of the trees of Figure 5.5.5 in preorder results in the strings _
*% + AB — +C log +D'EFGHIJ and g + AB sinC = X + YZ, respectively.
These are the prefix versions of those two expressions. Thus we see that preorder gen-
eral ‘traversal of an expression tree produces its prefix expression. Inorder general
traversal yields the respective strings AB + % CDE ! + log + GHIJF — * and
AB + C sin XYZ + * q, which are the postfix.versions of the two expressions.’

The fact that an inorder general traversal yields a postfix expression might be
surprising at first glance. However, the reason for it becomes clear upon examination
of the transformation that takes place when a general ordered tree is represented by a
binary tree. Consider an ordered tree in which each node has zero or two sons. Such a
tree is shown in Figure 5.5.6a. and its binary tree equivalent is shown in Figure 5.5.6b.
Traversing the binary tree of Figure 5.5.6b is the same as traversing the ordered tree of
Figure 5.5.6a. However, a tree such as the one in Figure 5.5.6a may be considered as a
binary tree in its own right. rather than as an ordered tree. Thus it is possible to perform
a binary traversal (rather than a general traversal) directly on the tree of Figure 5.5.6a.
Beneath that figure-are the binary traversals of that tree, and opposite Figure 5.5.6b are
the binary traversals of the tree in that figure, which are the same as the traversals of
the tree of Figure 5.5.6a if it is considered as an ordered tree. '

Note that the preorder traversals of the two binary trees are the same. Thus if a
preorder traversal on a binary tree representing a binary expression yields the prefix of

Trees Chap.5
312

(@) ~(A+B)e(C+ilog(D+EN-f(G.HIN)

(b) (A + B, sin(C), X o (Y + Z))

Figure 555 Tree representation of an arithmetic expression:

Sec. 55 Trees and Their Applications 313

Preorder: + * AB + CDE
Inorder;: AsB+CeD+E
Postorder: AB* CD s E + +

Preorder: +a AB + » CDE
Inorder: AB+CDsE + +
Postorder: BADCE = + = +

(b)

Figure 5.5.6

the expression, that traversal on an ordered tree representing a general expression that -
happens to have only binary operators yields prefix as well. However, the postorder
traversals of the two binary trees are not the same. Instead, the inorder binary traversal
of the second (which is the same as the inorder general traversal of the first if it is
considered as an ordered tree) is the same as the postorder binary traversal of the first.
Thus the inorder general traversal of an ordered tree representing a binary expression

314 Trees Chap.5

is equivalent to the postorder binary traversal of the binary tree representing that ex-
pression, which yields postfix. .

Evaluating an Expression Tree

Suppose that it is desired to evaluate an expression whose operands are all nu-
merical constants. Such an expression can be represented in C by a tree each of whose
nodes is declared by

#define OPERATOR 0
#define OPERAND 1 ¥
_struct treenode { -
short int utype; /* OPERATOR or OPERAND */
union {
char operator[10];
float val;
} info; ;
struct treenode *son;
struct treenode *next; .
|5 :
‘typedef treenode *NODEPTR;

Ti.e son and next pointers are used to link together the nodes of a tree as previously
illustrated. Since a node may contain information that may be either a number (operand)
or a character string (operator), the information portion of the node is a union component
of the structure.

We wish to write a C function evaltree(p) that accepts a pointer to such a tree
and returns the value of the expression represented by that tree. The routine evalbinrree
presented in Section 5.2 performs a similar function for binary expressions. evalbintree
utilizes a function oper, which accepts an operator symbol and two numerical operands
and returns the numerical result of applying the operatof to the operands. However, in
the case of a general expression we cannot use such a fiinction, since the number of
operands (and hence the number of arguments) varies with the operator. We therefore
introduce a new function, apply(p), which accepts a pointer to an expression tree that
contains a single operator and its numerical operands and returns the result of applying
the operator to its operands. For example, the result of calling the function apply with
parameter p pointing to the tree in Figure 5.5.7 is 24. If the root of the tree that is
passed to evaltree represents an operator, each of its subtrees is replaced by tree nodes
representing the numerical results of their evaluation so that the function apply may be
called. As the expression is evaluated, the tree nodes representing operands are freed
and operator nodes are converted to operand nodes. . ; '

We present a recursive procedure replace that accepts a pointer to an expression
tree and replaces the tree with a tree node containing the numerical result of the expres-
sion’s evaluation.]

void replace(NODEPTR p)

{

'ﬂut value;
" NODEPTR q, r;

Sec.55 Trees and Their Applications 315

316

son next tag operator/val

! " oprtr .
son next tag operator/val
null ‘ opnd 4 '

son next tag operator/val

null null opnd

if (p->utype == OPERATOR) {
/* the tree has an operator */
It as its root */
q = p->son;
while (g !'= NULL) {

/* replace each of its subtrees
T by operands
replace(q);

q = g->next;
} /* end while */ ~
/* apply the operator in the root to
/* the operands in the subtrees
value = apply(p);
/* replace the operator by the result
p->utype = OPERAND;
p->val = value;
It fre® 911 the subtrees
q = p->son;
“~p=->son = NULL;
while (g != NULL) {
r=gq;
q = g->next;
free(r);
} /* end while */

-

Figure 5.5.7 Expression tree.

Trees ~ Chap. 5

} /* end if %/
} /* end replace */

The function evaltree may now be written as follows:

float evaltree(NODEPTR p)

{
NODEPTR q;

replace(p);
return(p->val);
free(p);
} /* end evaltree */
After calling evaltree(p) the tree is destroyed and the value of p is meaningless.
This is a case of a dangling pointer in which a pointer variable contains the address of
a variable that has been freed. C programmers who use dynamic variables should be
careful to recognize such pointers and not to use them subsequently.

Mg a Tree

A number of operations are frequently used in constructing a tree. ‘We now present
some of these operations and their C implementations. In the C representation, we as-
sume that father pointers are not needed, so that the father field is not used and the next
pointer in the youngest node is null. The routines would be slightly more complex and
less efficient if this were not the case.)

The first operation that we examine is setsons. This operation accepts a pointer
to a tree node with no sons and a linear list of nodes linked together through the next
field. setsons establishes the nodes in the list as the sons of the node in the tree. The
C routine to implement this operation is straightforward (we use the dynamic storage
implementation): ' '

void setsons(NODEPTR p, NODEPTR list)
{ p
/* p points to a tree node, 1ist to a list */
/* of nodes linked together through their */
VAd next fields t/
if (p == NULL) {
printf("invalid insertion\n");
exit(l);
} /* end if */ ‘
if (p->son != NULL) {
printf("invalid insertion\n"); y
exit(l); {
} /* end if */ .
p->son = 1ist;
} /* end setsons */

Sec. 5.5 Trees and Their Applications 317

Another common operation is addson(p,x), in which p points to a node in a tree and
it is desired to add a node containing x as the youngest son of node(p). The C routine
to implement addson is as follows. The routine calls the auxiliary function getnode,
which allocates a node and returns a pointer to it.)

void addson(NODEPTR p, int x)
{ :
NODEPTR q;

if (p == NULL) {
printf(“void insertion\n"):
exit(l);
} /* end if */ . ’
/* the pointer q traverses the list of sons */
J® of p. r is one node behind q v/
r=NULL;
q = p->son;
, while (q != NULL) {
r=q;
q = g->next; ’
} /* end while */ .
/* At this point, r points to the youngest */
/* son of p, or is null if p has no sons */
q = getnode();
g->info = x;
g->next = NULL;
if (r == NULL) /* p has no sons */
p->son = q;
else
r->next = q;
} /* end addson */

Note that to add a new son 10 a node, the list of existing sons must be traversed.
Since adding a son is a common operation, a representation is often used that makes this
operation more efficient. Under this alternative representation, the list of sons is ordered
from youngest to oldest rather than vice versa. Thus son(p) points to the youngest son:
of node(p), and next(p) points to its next older brother. Under this representation the
routine addson may be written as follows:

" void addson(NODEPTR p, int x)
{
NODEPTR q;

if (p == NULL) {
printf("invalid insertion\n");
exit(l); . ;

} /* end if %/

318 Trees Chap.5

q = getnode();
g->info = x;
g->next = p->son;
p->son = q;

} /* end addson */

EXERCISES

5.5.1.
5.5.2,
55.3.

5.54.

5.5.5.

5.5.6.

5.5.7.

5.5.8.

5.5.9.

How many trees exist with n nodes?
How many trees exist with n nodes and maximum level m?

Prove that if m pointer fields are set aside in each node of a general tree to point to a
maximum of m sons, and if the number of nodes in the tree is n, the number of null son
pointer fieldsisn* (m— 1) + 1.

If a forest is represented by a binary tree as in the text, show that the number of null
right links is 1 greater than the number of nonleaves of the forest.

Define the breadth-first order of the nodes of a general tree as the root followed by all
nodes on level 1, followed by all nodes on level 2, and so on. Within each level, the
nodes should be ordered so that children of the same father appear in the same order as
they appear in the tree and, if n1 and n2 have different fathers, n1 appears before n2 if
the father of nl appears before the father of n2. Extend the definition to a forest. Write
a C program to traverse a forest represented as a binary tree in breadth-first order.
Consider the following method of transforming a general tree, gz, into a strictly binary
tree, br. Each node of gr is represented by a leaf of bt. If &t consists of a single node, b
consists of a single node. Otherwise bz consists of a new root node and a left subtree
Ir, and a right subtree, r. It is the strictly binary tree formed recursively from the oldes

‘subtree of gr, and 7 is the strictly binary tree formed recursively from gr without its

oldest subtree. Write a C routine to convert a general tree into a strictly binary tree.

Write a C function compute that accepts a poinier to a tree representing an expression
with constant operands and returns the result of evaluating the expression without de-
stroying the tree.

Write a C program to convert an infix expression into an expression tree. Assume that
all nonbinary operators precede their operands. Let the irfput expression be represented
as follows: an operand is represented by the character ‘N* followed by a number, an
operator by the character ‘T" followed by a character representing the operator, and a
function by the character ‘F’ followed by the name of the function.

Consider the definitions of an expression, a term, and a factor given at the end of Sec-
tion 3.2. Given a string of letters, plus signs, asterisks and parentheses that forms a valid
expression, a parse tree can be formed for the string. Such a tree is illustrated in Figure
5.5.8 for the string “(A + B) » (C + D)". Each node in such a tree represents a substring
and contains a letter (E for expression, T for term, F for factor, or § for symbol) and
two integers. The first is the position within the input string where the substring repre-
sented by that node begins. and the second is the length of the substring. (The substring
represented by each node is shown below that node in the figure.) The leaves are all §
nodes and represent single symbols of the original input. The root of the tree must be
an E node. The sons of any'non-S node N represent the substrings which make up the
grammatical object represented by N. Write a Q routine that accepts such a string and
constructs a parse tree for it.

Exercises 319

(@ + 2) » (8 + V) Bumis 8y} Joj 831} 8sied 8'5'g sanByy

(a + 2) & (a + v)
Q, ! d

. J g 4
g+ v >
a+o(€703 £y

: . @+

+ g+
e @+2N=@+V)

@+ g+ V)

@® ,

5.6 EXAMPLE: GAME TREES

One application of trees is to game playing by computer. We illustrate this application
by writing a C program to-determine the “best” move in tic-tac-toe from a given board
position.

Assume that there is a function evaluate that accepts a board position and an
indication of a player (X or O) and returns a numerical value that represents how “good”

“the position seems to be for that player (the larger the value returned by evaluate, the
better the position). Of course, a winning position yields the largest possible valué, and
a losing position yields the smallest. An example of such an evaluation function for tic-
tac-toe is the number of rows, columns, and diagonals remaining open for one player
minus the number remaining open for his or her opponent (except that the value 9 would
be returned for a position that wins, and —9 for a position that Joses). This function
does not “look ahead™ to consider any possible board positions that might result from
the current position; it merely evaluates a static board position.

Given a board position, the best next move ould be determined by considering
all possible moves and resulting positions. The move selected should be the one that
results in the board position with the highest evaluation. Such an analysis, however,
does not necessarily yield the best move. Figure 5.6.1 illusirates a position and the five
possible moves that X can make from that position. Applying the evaluation function
Just described to the five resulting positions yields the values shown. Four moves vield
the same maximum evaluation, although three of them are distinctly inferior to the
fourth. (The fourth position yields a certain viciory for X, whereas the other three can
be drawn by O.) In fact, the move that yields the smallest evaluation is as good or better
than the moves that yield a higher evaluation. The static evaluation function, therefore,
is not good encugh to predict the outcome of the game. A better evaluation function
could easily be produced for the game of tic-tac-toe (even if it were by the brute-force
method of listing all positions and the appropriate response). but most games are too
complex for static evaluators to determine the best response.

Suppose that it were possible to look ahead several moves. Then the choice of
a move could be improved considerably. Define the look ahead level as the number
of future moves to be considered. Starting at any position, it is possible to construct
a tree of the possible board positions that may result from each move. Such a tree is
called a game tree. The game tree for the opening tic-tac-toe position with a look-ahead
level of 2 is illustrated in Figure 5.6.2, (Actually other positions do exist, but because of

X|0
11X
0
X{o|Xx X|0 X|0 0 X|o
X X{X X X XX
] 0 Xl0 Xl lo 8]
2 2 2 2 1

FLgure 5.6.1

Sec. 5.6 Example: Game Trees 321

‘-

-80)-0u}-01 10} 9011 BweED T9'S 8B

- 7 |

Mias

symmetry considerations these are effectively the same as the positions shown.) Note
that the maximum level (called the depth) of the nodes in such a tree is equal to the
look-ahead level.

Let us designate the player who must move at the root’s game position as plus
and his or her opponent as minus. We attempt to find the best move for plus from the
root’s game position. The remaining nodes of the tree may be designated as plus nodes
or minus nodes, depending upon which player must move from that node’s position.
Each node of*Figure 5.6.2 is marked as a plus or as a minus node.

Suppose that the game positions of all the sons of a plus node have been evaluated
for player plus. Then clearly, plus should choose the move that yields the maximum
evaluation. Thus, the value of a plus node to player plus is the maximum of the values
of its sons. On the other hand, once plus has moved, minus will select the move that
yields the minimum evaluation for player plus. Thus the value of a minus node to player
plus is the minimum of the values of its sons.

Therefore to decide the best move for playe; 'us from the root, the positions in
the leaves must be evaluated for player plus using a static evaluation function. These
values are then moved up the game tree by assigning to each plus node the maximum
of its sons’ values and to each minus node the minimum of its sons’ values, on the
assumption that minus will select the move that is worst for plus. The value assigned to
each node of Figure 5.6.2 by this process is indicated in that figure immediately below
the node.

The move that plus should select, given the board position in the root node, is
the one that maximizes its value. Thus the opening move for X should be the middle
square, as illustrated in Figure 5.6.2. Figure 5.6.3 illustrates the determination of O’s
best reply. Note that the designation of “plus” and “minus” depends on whose move is
being calculated. Thus, in Figure 5.6.2 X is designated as plus, whereas in Figure 5.6.3

x| %O

Figure 5.6.3 Computing O’s reply.

Sec.5.6 Example: Game Trees 323

\
O is designated as plus. In applying the static evaluation function to a board position,
the value of the position to whichever player is designated as plus is computed. This
method is called the minimax method, since, as the tree is climbed the maximum and
minimum functions are applied ajternately.

The best move for a player from a given position may be determined by first
constructing the game tree and applying a static evaluation function to the leaves. These
values are then moved up the tree by applying the minimum and maximum at minus
and plus nodes, respectively. Each node of the game tree must include a representation
of the board and an indication of whether the node is a plus node or a minus node. Nodes
may therefore be declared by

struct nodetype {
char board[3][3);
int turn;
struct nodetype *son;
) struct nodetype *next;
}; ‘

typedef struct nodetype *NODEPTR;

p— >boardli][j] has the value ‘X", ‘O’, or * ’, depending on whether the square in
row i and column j of that node is occupied by either of the players or is unoccupied.
p— >turn has the value +1 or -1, depending on whether the node is a plus or minus
node, respectively. The remaining two fields of a node are used to position the node
within the tree. p— >son points to the aldest son of the node, and p— >next points to
its next younger brother. We assume that the foregoing declargtion is global, that an
available list of nodes has been established, and that appropriate getnode and freenode
routines have been written.

The C function nextmove(brd, player, looklevel, newbrd) computes the best next
move. brd is a 3-by-3 array representing the current board position, player is ‘X’ or
‘Q’, depending on whose move is being computed (note that in tic-tac-toe the value of
player could be computed from brd, so that this parameter is not strictly necessary),
and looklevel is the look-ahead level used in constructing the tree. newbrd is an output
parameter that represents the best board position that can be achieved by player from
position brd.

nextmove uses two auxiliary routines, buildtree and bestbranch. The function
buildtree builds the game tree and returns a pointer to its root. The function bestbranch
computes the value of two output parameters: best, which is a pointer to the tree node

representing the best move, and value, which is the evaluation of that move using the
minimax technique.

void nextmove(char brd[][3], int looklevel, char player, char newbrd[]1[3])
{

NODEPTR ptfee, best;
int i, j, value;

Trees Chap.5

ptree = buildtree(brd, looklevel);
bestbranch(ptree, player, &best, fvalue);
for (i=0; i < 3; ++1)
for (j=0; j < 3; ++j) J
newbrd[i][j] = best->board[i](j];
} /* end nextmove */

The function buildtree returns a pointer to the root of a game tree. It uses the
auxiliary function getnode, which allocates storage for a node and returns a pointer o
it. It also uses a routine expand(p, plevel, depth), in which p is a pointer’to a node in
a game tree, plevel is its level, and depth is the depth of the game tree that is to be
constructed. expand produces the subtree rooted at p to the proper depth. :

NODEPTR buildtree(char brd[1(3], int looklevel)
{

NODEPTR ptree;
int 1, j;

/* create the root of the tree and initialize it %/
tree = getnode();
for (i=0; i < 3; ++i)
for (3=0; j < 3; +j)
ptree->board[i](j] = brd(i][j];
/* the root is a plus node by definition */
ptree->turn = 1;
ptree->son = NULL;
ptree->next = NULL;
/* create the rest of the game tree */
expand(ptree, 0, looklevel);
return(ptree); ;
} /* end buildtree */

expand may be implemented by generating all board positions that may be ob-
tained from the board position pointed to by p and establishing them as the sons of p
in the game tree. expand then calls itself recursively using these sons as parameters
until the desired depth is reached. expand uses an auxiliary function generate, which
accepts a board position brd and returns a pointer to a list of nodes containing the board
* positions that can be obtained from brd. This list is linked together by the next field.
We leave the coding of generate as an exercise for the reader.

void expand(NODEPTR p, int plevel, int éeptﬁ)
{ FiE
NODEPTR q;

if (plevel < depth) {

* /* p is not at the maximum level */
q = generate(p->board); _ !
p->son = q; :

Sec.56 Example: Game Trees . 325

while (q != NULL) { :
/* traverse the list of nodes */
if (p->turn == 1)
g->turn = -1;
else
g->turn = 1;
g->son = NULL;
expand(q, plevel+1, depth);
q = g->next;
} /* end while */
} /* end if ¥/
} /* end expand */

Once the game tree has been created, bestbranch evaluates the nodes of the tree.
When a pointer to a leaf is passed to bestbranch, it calls a function evaluate that stat-
ically evaluates the board position of that leaf for the player whose move we are de-
termining. The coding of evaluate is left as an exercise. When a pointer to a nonleaf
is passed (o0 bestbranch, the routine calls itself recursively on each of its sons and then
assighs the maximum of its sons’ values to the nonleaf if it is a plus node, and the
minimum if it is a minus node. bestbranch also keeps track of which son yielded this
minimum or maximum value. :

If p— >turn is —1, the node pointed to by p is a minus node and it is to be as-_
signed the minimum of the values assigned to its sons. If, however, p—>turnis +1, the
node pointed to by p is a plus node and its value should be the maximum of the values
assigned to the sons of the node. If min(x,y) is the minimum of x and y, and max(x,y)
is their maximum, min(x,y) = —max(—x,~y) (you are invited to prove this as a triv-
ial exercise). Thus, the correct maximum or minimum can be found as follows: in the
case of a plus node, compute the maximum; in the case of a minus node, compute the
maximum of the negatives of the values and then reverse the sign cf the result. These
ideas are incorporated into bestbranch. The output parameters *pbest and *pvalue are,
respectively, a pointer to that son of the tree’s root that maximizes its value and the
value of that son that has now been assigned to the root.

void bestbranch(NODEPTR pnd, char player, NODEPTR *pbest,
int *pvalue)
{

NODEPTR p, pbest2;
int val;

if (pnd->son == NULL) {

/* pnd is a leaf */

*pvalue = evaluate(pnd->board, player);
" “*pbest = pnd; ;
1

J

else { .
/* the node is not a leaf, traverse the list of sons Er
p = pnd->son;
bestbranch(p, player, pbest, pvalue);

Trees Chap. 5
326

*pbest = p;
if (pnd.turn == -1)
*pvalue = -*pvalue; k
p = p->next; | , ‘
while (p != NULL) { .
‘bestbranch(p, player, &pbestZ, &val);
if (pnd->turn == -1) L
val = -val; -
if (val'> *pvalue) {
*pvalue = val;
*pbest =.p;
} /* {end if */ °
p = p->next; '
} /* end while */
if (pnd->turn == -1)
*pvalue = -‘pva'lue;
} /* end if */
} /* end bestbranch */

.

EXERCISES 4 i

5.6.1. . Examine the routines of this section and determine whether all the parameters are ac-
1ally necessary. How would you revise the parameter lists? ’

5.6.2. Write the C routines generate and evaluate as described in the text.

5.6.3. Rewrite the programs of this and the preceding section under the implementation in
which each tree node includes a field father containing a pointer 1o its father. Under
which implementation are they more efficient? ;

5.6.4. Write nonrecursive versions of the routines expand and bestbranch given in the text.

5.6.5. Modify the routine bestbranch in the text so that the nodes of the tree are freed after
they are no longer needed. :

564%. Combine the processes of building the game tree and evaluating its nodes into a single
process so that the entire game tree need not exist at any one time and nodes are freed
when no longer necessary. . % '

5.6.7. Modify the program of the previous exercise so that if the evaluation of a minus node

. is greater than the minimum of the values of its father's older brothers, the program
does not bother expanding that minus node's younger brothers, and if the evaluation of
a pls node is less than the maximum of the values of its father’s older brothers, the
program does not bother expanding that plus node’s younger brothers. This methed is

: called the alpha-beta minimax method. Explain why it is correct.

5.6.8. The game of kalah is played as follows: Two players each have seven holes, six of
which are called pits and the seventh a kalah. These are arranged according to the
following diagram.

Player 1

. KPPPPPP
PPPPPPK

Player 2

- Exercises 327

5.6.9,

5.6.10.

5.6.11.

328

Initially there are 8ix stones in each pit and no stones in either kalah, so that the opening
position looks like this: >

0666666
6666660

The players alternate turns, each turn consisting of one or more moves. To makea move,
a player chooses one of his or her nonempty pits. The stones are removed from that
pit and are distributed counterclockwise into the pits and into that player’s kalah (the
opponent’s kalah is skipped), one stone per hole, until there are no stones remaining. Fer

example, if player 1 moves first, a possible opening move might result in the following
board position:

1777770
6666660

If a player's last stone lands in his or her own kalah, the player gets another move. If
the last stone lands in one of the player’s own pits that is empty, that stone and the
stones in the opponent’s pit directly opposite are removed and placed in the player’s
kalah. The game ends when either player has no stones remaining in his or her pits. At
that point, all the stones in the opponent’s pits are placed in the opponent’s kalah and
the game ends. The player with the most stones in his or her kalah is the winner.
Write a program that accepis a kalah board position and an indication of whose tumn it
is and produces that player's best move.

How would you modify the ideas of the tic-tac-toe program to compute the best move
in a game that contains an element of chance, such as backgammon?

Why have computers been programmed to play perfect tic-tac-toe but not perfect chess
or chec}&ers?

The game of nim is played as follows: Some number of sticks are placed in a pile.
Two players altemate in removing either one or two sticks from the pile. The player to
remove the last stick is the loser. Write a C function to determine the best move in nim.

Trees = Chap.5

Sorting

Sorting and searching are among the most common ingredients of programming sys-
tems. In the first section of this chapter we discuss some of the overall considerations in-
volved in sorting. In the remainder of the chapter we discuss some of the more common
sorting techniques and the advantages or disadvantages of one technique over another.
In the next chapter we discuss searching and some applications.

6.1 GENERAL BACKGROUND

The concept of an ordered set of elements is one that has considerable impact on our
daily lives. Consider, for example, the process of finding a telephone number in a tele-
phone directgry. This process, called a search, is simplified considerably by the fact
that the names in the directory are listed in alphabetical order. Consider the trouble you
might have in alempting to locate a telephone number if the names were listed in the
order in which the customers placed their phone orders with the telephone company.
In such a case, the names might as well have been entered in random order. Since
the entries are sorted in alphabetical rather than in chronological order, the process
of searching is simplified. Or consider the case of someone searching for a book in a
library. Because the books are shelved in a specific order (Library of Congress, Dewey
System, and so forth), each book is assigned a specifi¢ position relative to the others
and can be retrieved in a reasonable amount of time (if it is there). Or consider a set

329

of numbers sorted sequentially in a computer’s memory. As we shall see in the next
chapfer, it is usually easier to find a particular element of such a set if the numbers are
maintained in sorted order. In general, a set of itengs is kept forted in order to either
produce a report (to simplify manual retrieval of information, as in a telephone book or
a library shelf) or to make machine access to data more efficient. .

We now present some basic terminology. A file of size n is a sequence of n items
r{0], A1], ..., rln = 1]. Each item in the file is called a record. (The terms file and
record are not being used here as in C terminology to refer to specific data stryctures.
Rather, they are being used in a more general sense.) A key, k[i], is associated with
each record rli]. The key is usually (but not always) a subfield of the entire record.
The file is ‘said to be sorfed on the key if i < j implies that] precedes k[j] in some
ordering on the keys. In the example of the telephone book, the file consists of all the
entries in the book. Each entry is a record. The key upon which the file is sorted is the
name field of the record. Each record also contains fields for an address and a telephone
number: : “ .

A sort can be classified as being internal if the records that it is sorting are in main
memgry, or external if some of the records that it is sorting are in auxiliary storage. We .
restrict our attention to internal sorts.

It is possible for two records in a file 10 have the same key. A sorting technique
is called stable if for all records i and j such that k[i] equals (], if r{i] precedes r{j] in
the original file. r{i] precedes r[j] in the sorted file. That is, a stable sort keeps records
with the same key in the same relative order that they were in before the sort.

A sort takes_place either on the records themselves or on an auxiliary table of
pointers. For example; tonsider Figure 6.1.1a, in which a file of five records is shown.
If the file is sorted in increasing order on the numeric key shown, the resulting file is as
shown in Figure 6.1.1b. In this case the actual records themselves have been sorted.

Suppose, however, that the amount of data stored in each of the records in the -
file of Figure 6.1.1a is so large that the overhead involved.in moving the actual data is
prohibitive. In this case an auxiliary table of pointers may be used so that these pointers
are moved instead of the actual data, as shown in Figure 6.1.2. (This is called sorf--
ing by address.) The table in the center is the file, and the table at the left is the initial
table of pointers. The entry in position j in the table of pointers points to record j. During

Key Other fields
Record 1 | 4 DDD 1 AAA
Record 2 | 2 BBB 2 BBB
Record 3 | 1 AAA 3 Cf C
Record 4 | § EEE 4 _DDD
Record 5 | 3 cce 5 EEE
File File
(a) Original file. (b) Sorted Tile.

330

Sorting

Figure 6.1.1 Sorting actual records.

Chap. 6

Original " Sorted

pointer pointer
table File table

Record | b 7
& 4 DDD

Record 2 2 BBB —
———

[

Record 3, 3 b
2 Y 1 AAA

Record 4 e
_ cor 5 EEE

| Record 5 3 cee .. ¥

Flgm:e 6.1.2 Sorting by using an auxiliary table of pointers.

the sorting process, the entries in-the pointer table are adjusted sc that the final table’
is as shown at the right. Originally, the first pointer was to the first entry in the file;
upon completion the first pointer is to the fourth entry in the table. Note that none of
the original file entries are moved. In most of the programs in this chapter we illustrate
techniques of sorting actual records. The extension of these techniques to sorting by
address is straightforward and will be left as an exercise for the reader. (Actually, for
the sake of simplicity, in the examples presented in this chapter we sort only the keys:
we leave to the reader to modify the programs to sort full records.) ;
Because of the relationship between sorting and searching, the first question to
ask in any application is whether or not a file should be sorted. Sometimes there is
less work involved in searching a set of elements for a particular one than to first sort
the entire set and to then extraci the desired element. On the other hand, if frequent
use of the file js required for the purpose of retrieving specific eiements, it might be
more efficient to sort the file. This is because the overhead of successive searches may
far exceed the overhead involved in sorting the file once and subsequently retrieving
elements from the sorted file. Thus it cannot be said that it is more efficient either to sort
or not to sort. The programmer must make a decision based on individual circumstances.
Once a decision to sort has been made, other decisions must be made, inchiding what
is to be sorted and what methods are to be used. There is no one sorting method that is
universally superior to all others. The programmer must carefully examine the problem

and the desired results before deciding these very important questions.

Efficiency Considerations

As we shall see in this chapter, there are a great number of methods that can be
used to sort a file. The programmer must be aware of several interrelated and often
conflicting efficiency consideritions to make an intelligent choice about which sorting
method is most appropriate to a particular problém. Three of the most important of
these considerations include the length of time that must be spent by the programmer in
coding a particular sorting program, the amount of machine time nécessary for running
the program. and the amount of space necessary for the proaram. 3

Sec. 6.1 General Background 331

If a file is small, sophisticated sorting techniques designed to minimize space and
time requirements are usually worse or only marginally better in achieving efficiencies
than simpler, generally less efficient methods. Similarly, if a particular sorting program
is to be run only once and there is sufficient machine time and space in which to run it,
it would be ludicrous for a programmer to spend days investigating the best methods
of obtaining the last ounce of efficiency. In such cases the amount of time that must be
spent by the programmer is properly the overriding consideration in determining which
sorting method to use. However, a strong word of caution must be inserted. Program-
ming time is never a valid excuse for using- an incorrect program. A sort which is run
only once may be able to afford the luxury of an inefficient technigque, but it cannot
afford an incorrect one. The presumably sorted data may be used in an application in
which the assumption of ordered data is crucial. :

However, a programmer must be able to recognize the fact that a particular sort

 is inefficient and must be able to justify its use in a particular situation. Too often, pro-
grammers take the easy way out and code an inefficient sort, which is then incorporated
into a larger system in which the sort is a key component. The designers and planners
of the system are then surprised at the inadequacy of their creation. To maximize his
or her own efficiency, a programmer must be knowledgeable of @ wide range of sorting
techniques and be cognizant of the advantages and disadvantages of each, so that when
the need for a sort arises he or she can supply the one which is most appropriate for the
particular situation.

This brings us to the other two efficiency considerations: time and space. As in
most computer applications, the programmer must often optimize one of these at the
expense of the other. In consideriag the time necessary to sort a file of size n we do
not concern ourselves with actual time units, as these will vary from one machine to
another, from one program to another, and from one set of ‘data to another. Rather, we
are interested in the corresponding change in the amotint of time required to sort a file
induced by a change in the file size n. Let us see if we can make this concept more
precise. We say that y is proportional to x if the relation between y and x is such that
multiplying x by a constant multiplies y by that same constant. Thus if y is proportional
to x, doubling x will double y, and multiplying x by 10 will multiply y by 10. Similarly,
if y is proportional to x2, doubling x will multiply y by 4 and multiplying x by 10 will
multiply- y by 100.

Often we do not measure the time efficiency of a sort by the number of time units
required but rather by the number of critical operations performed. Examples of such
critical operations are key comparisons (that is, the comparisons of the keys of two
records in the file to determine which is greater), movement of records or pointers to
recerds, or interchanges of two records. The critical operations chosen are those that take
the most time. For example, a key comparison may be a complex operation, especially
if the keys themselves are long or the ordering among keys is nontrivial. Thus a key
comparison requires much more time than say, a simple increment of an index variable
in a for loop. Also, the number of simple operations required is usually proportional to
the number of key comparisons. For this reason, the number of key comparisons is a
useful measure of a sort’s time efficiency.

There are two ways to determine the time requirements of a sort, neither of which
yields results that are applicable to all cases. One method is to go through a sometimes

‘ Sorting Chap. 6
332 ,

a+b

n a=00l"r b=10n s "(_:—)

10 1 100 101 101

50 25. 500 . 525 021

100 100 1,000 1,100 0.1

500 2,500 5,000 7,500 0.03

1,000 10,000 10,000 20,000 0.02

5,000 . 250,000 50,000 300,000 0.01

10,000 1,000,000 100,000 1,100,000 0.01

50,000 25,000,000 500,000 25,500,000 0.01

100,000 100,000,000 1,000,000 101,000,000 0.01

500,000 2,500,000,000 5,000,000 2,505,000,000 001
Figute 6.1.3

intricate and involved mathematical analysis of various cases (for example, best case,
worst case, average case). The result of this analysis is often a formula giving the aver-
age time (or number of operations) required for a particular sort as a function of the file
size n. (Actually the time requirements of a sort depend on factors other than the file
size; however, we concern ourselves here only with the dependence on the file size.)
Suppose that such a mathematical analysis on a particular sorting program results in
the conclusion that the program takes 0.0172+ 10n time units to execute. The first and
fourth columns of Figure 6.1.3 show the time needed by the sort for various values of
n. You will notice that for small values of n, the quantity 10n (third column of Figure
6.1.3) overwhelms the quantity 0.012? (second column). This is because the difference
between #2 and n is small for small values of n and is more than compensated for by
the difference between 10 and 0.01. Thus, for small values of », an increase innbya
factor of 2 (for example, from 50 to 100) increases the time needed for sorting by ap-
proximately that same factor of 2 (from 525 to 1100). Similarly, an increase in n by a
factor of 5 (for example, from 10 to 50) increases the sorting time by approximately 5
(from 101 to 525).

However, as n becomes larger, the difference between n? and n increases so
quickly that it eventually more than compensates for the difference between 10 and
0.01. Thus when n equals 1000 the two terms contribute equal ly to the amount of time
“needed by the program. As n becomes even larger, the term 0.01n* overwhelms the
term 10n and the contribution of the term 10n becomes almost insignificant. Thus.
for large values of n, an increase in n by a factor of 2 (for example, from 50.000 to
100,000) results in an increase in sorting time of approximately 4 (from 25.5 million
to 101 million) and an increase in n by a factor of § (for example, from 10,000 to
50,000) increases the sorting time by approximately a factor of 25 (from 1.1 million
t0 25.5 million). Indeed, as n becomes larger and larger, the sorting time becomes
more closely proportional to n?, as is clearly illustrated by the last column of Fig-
ure 6.1.3. Thus for large n the time required by the sort is almost proportional to n,
Of course, for small values of n, the sort may exhibit drastically different behav-
jor (as in Figure 6.1.3), a situation that must be taken into account in analyzing its

efficiency.

Sec. 6.1 General Background . 333

O Notation

| To capture the concept of one function becoming proportional to another as it
grows, we introduce some terminology and a new notation. In the previous example,
the function 0.01n2+ 10n is said 1o be “on the order of™ the function n? because, as n
becomes large, it becomes more nearly proportional to n?.

To be precise, given two functions f(n) and g(n), we say that f(n) is on the or-
der of g(n) or that f(n) is O(g(n)) if there exist positive integers « and b such that
f(n) = a * g(n) for all n = p. For example, if f(n) = n2+ 100n and g(n) = n?,
Jn) is O(g(n)), since n2+ 100n is less than or equal 10 2n” for all n greater than
or equal to 100. Inthis case a equals 2 ‘and b equals 100. This same fln) is also
O(n*), since n+ 100n is less than or equal to 2n* for all n greater than or equal
to 8. Given a function f(n). there may be many functions &(n) such that f(n) is
O(g(n)). -

If f(n) is O(g(n)), “eventually” (that is, for n = b) f(n) bedomes permanently
smaller or equal to some multiple of g(n). In a sense we are saying thé('f(n) is bounded
by g(n) from above, or that f(n) is a “smaller” function than &(n). Another formal way
of saying this is that f(n) is asymplotically bounded by g(n). Yet another interpretation
is that f(n) grows more slowly than g(n), since, proportionately (that is, up to a factor
of a), g(n) eventually becomes larger.

Itis easy to show that if f(n) is O(g(n)) and 8(n) is O(h(n)), f(n) is O(h(n)). For
example; n>+ 100n is O(n%), and n? is O(n3) (10 see this, set @ and b both equal to 1):
consequently n+ 100n is O(n*). This is called the transitive property.

Note that if f(n) is a constant function [that is, f(n) = ¢ for all n], f(n) is O(1),
since, setting a to ¢ and b to I, we have thatc < ¢ % | foralln = 1. (In fact, the value
of b or n is irrelevant, since a constant function’s value is independent of 5.)

* ltis also easy to show that the function ¢ * n is O(n*) for any constants ¢ and k. To
see this, simply note that ¢ * n is less than or e ual to ¢ * n* for any n = | (that is, set
a = cand b =]) It is also obvious that 1+ is O(n**) Yor any j = O(usea = |1,
& = 1). We can also show that if f(n) and g(n) are both O(h(n)), the new function fin) +
g(n) is.also O(h(n)). All these facts together can be used to show that if f(n)is any poly-
nomial whose leading power is k [that is,fln) = ¢;%nf+cuphb=ty . 4 Ci*n+ ey,
fin)is O(n*). Indeed, f(n) is O(n**J) for anyj = 0. : :

Although a function may be asymptotically bounded by many other functions {as
for example, 10n° + 37n + 153 is O(?), 0O(10n%), 0371 + 10n) and 0(0.051%)], we
usually look for an asymptotic bound that is a single term with a leading coefficient of
I and that is as “close a fit” as possible. Thus we would say that 10n° + 37n + 153 is
O(n*), although it is alsg asymptotically bounded by many other functions. Ideally, we
would like to find a function &(n) such that f(n) is O(g(n)) and &(n) is O(f(n)). If f(n)
is w constant or a polynomial, this can always be done by using its highest term with a
coefficientof 1. For more complex functions, however, it is not always possible to find
such & tight fit. :

An important function in the study of algorithm efficiency is the logarithm func-
tion. Recall that log,, » is the value x such that m" equals n. m is called the base of
the logarithm. Consider the functions logn 17ind log; n. Lei X be log,, n and vk be
log; n. Then T

Sorting Chap. 6
334 ‘ :

m™ =n and k* =n
so that

m™" = kxk

Taking the log,, of both sides,
xm = log,, (k")
Now it can easily be shown than log. (x*) equals y * log. x for any x, y, and z, so that
the last equation can be rewritten as (recall that xm = log,,n)
~ log,,n = xkx*log, k
or as (recaM that xk = log; m)

_ log,, n = (log,, k) * log, n
Thus log,,n,, and log; n are constant multiples of each other.

It is easy to show that if f(n) = c * g(n), where c is a constant, f(n) is O(g(n))
[indeed, we have already shown that this is true for the function f(n) = n*]. Thus log,,
n is O(log, n) and log; n is O(log , n) for any m and k. Since each logarithm function
is on the order of any other, we usually omit the base when speaking of functions of
logarithmic order and say that all such functions are O(log n).

The following facts establish an order hierarchy of functions:
cis O(1) for any constant c.

c is O(log n), but log # is not O(1).

cxlog, n is O(log n) for ény constants ¢, k.

cxlog; n is O(n), but n.is not O(log n).

¢ * n* is O(n*) for any constants ¢, .

¢ * n* is O(n**7), but n**J is not O(n*).

¢ * n*log; n is O(n log n) for any constants ¢, k.

¢ * nxlog n is O(n?), but n? is not O(n log n).

¢ * ni*log; n is O(n’log n) for any constants c, j, k.

c*nixlogy nis O(n’*"), but n/*! is not O(n’/ log n).

¢ *nix(logy) is O(n? (log n)") for any constants c, j, k; L.

e nix(logg n) i is O(u’”) but n/*! is not O(n7(log n)').

c* nh(log,\) is O(g/(log m)'*") but n/ (log m)'* " is not O(n’ (log n)’)
c*n* is O(d"). but d" is not O(n*) for any constants ¢ and k, and d > 1.

The hierarchy of functions established by these facts, with each function of lower order
than the next. is ¢, log n. (log n)*, n. n(log n)%, n*, n*(log n)!, n**!, and d".

Functions that are O(n*) for some k are said to be of polynomial order, whereas
functions that are O(d") for some d > | but not O(n*) for any k are said to be of expo-
nential order.

The distinction between polynomial-order functions and exponential-order func-
tions is extremely important. Even a small exponential-order function. such as 2", grows

Sec. 6.1 General Background ; 335

far larger than any polynomial-order function, such as n*, regardless of the size of k.
As an illustration of the rapidity with which exponential-order functions grow, consider
that 2'% equals 1024 but that 2'% (that is, 1024'%) is greater than the number formed by
a] followed by 30 zeros. The smallest k for which 10* exceeds 2'° is 4, but the smallest
k for which 100* exceeds 2'% is 16. As n becomes larger, larger values of are needed
for n* :o keep up with 2". For any single k, 2" eventually becomes permanently larger
than n*. .

Because of the incredible rate of growth of exponential-order functions, problems
that require exponential-time algorithms for solution are considered to be intractable on

current computing equipment; that is, such problems cannot be solved precisely except
in the simplest cases.

Efficiency of Sorting

Using this concept of the order of a sort, we can compare various sorting tech-
niques and classify them as being “good” or “bad” in general terms. One might hope to
discoyer the “optimal” sort that is O(n) regardless of the contents or order of the input.
Unfortunately, however, it can be shown that no such generally useful sort exists. Most
of the classical sorts we shall consider have time requirements that range from O(n log n)
to O(n?). In the former, multiplying the file size by 100 will multiply the sorting time by
less than 200; in the latter, multiplying the file size by 100 multiplies the sorting time
by a factor of 10,000. Figure 6.1.4 shows the comparison of n log n with n? for a range
of values of ». It can be seen from the figure that for large n, as n increases, n? increases
at a much more rapid rate than n log n. However, a sort should not be selected simply
because it.is O(n log n). The relation of the file size n and the other terms constituting
the actual sorting time must be known. In particular, terms which play an insignificant
role for large values of n may play a very dominant role for small values of n. All these
issues must be considered before an intelligent sort selection can be made.

A second method of determining time requirements of a sorting technique is to
actually run the program and measure its efficiency (either by measuring absolute time
units or the number of operations performed). To use such results in measuring the ef-
ficiency of a sort the test must be run on “‘many” sample files. Even when such statistics

n nlog,n n?

1 %10 1.0x 10 1.0 x 107

5x 10 8.5 x 10' 2.5x10°

1 x.10% 2,0 x 10* 1.0 x 10*

5% 10? 1.3 % 10° 25 % 10°

1 %10 3.0x 10 1.0 x 10®

5x10° 1.8 x 10* 25%107

1x10¢ 4.0 x 10¢ 1.0 x 10%

5x 104 _ 23X 10¢ 2.5x10°

1 X 10° 5.0 x 10* 1.0 x 10"

5 x 10° 2.8 x 10° 2.5 x 10"

1x10° 6.0 x 10° 1.0 x 10"

5x 100 3.3x 107 2.5 x 10 Figure §.1.4 Comparison of nlog n
1x107 7.0x 107 1.0 x 10* and n? for various values of n.

Sorting Chap. 6

336

have been gathered, the application of that sort to a specific file may not yield results
that follow the general pattern. Peculiar attributes of the file in question may make the
sorting speed deviate significantly. In the sorts of the subsequent sections we shall give
an intuitive explanation of why a particular sort is classified as O(n?) or O(n log n); we
leave mathematical analysis and sophisticated testing of empirical data as exercises for
the ambitious reader.

In most cases the time needed by a sort depends on the original sequence of the
data. For some sorts, input data which is almost in sorted order can be completely sorted
in time O(n), whereas input data that is in reverse order needs time that is O(n*). For
other sorts the time required is O(n log.n) regardless of the original order of the data.
Thus, if we have some knowledge about the original sequence of the data we can make
a more intelligent decision about which sorting inethod to select. On the other hand, if
we have no such knowledge we may wish to select a sort based on the worst possible
case or based on the “average” case. In any event, the only general comment that can
be made about sorting techniques is that there is no “best” general sorting technique.
The choice of a sort must, of necessity, depend on the specific circumstances.

Once a particular sorting technique has be -~ selected, the programmer should
then proceed to make the program as efficient as possible. In many programming appli-

_cations it is often necessary to sacrifice efficiency for the sake of clarity. With sorting,
the situation is usually the opposite. Once a sorting program has been written and teste d,
the programmer’s chief goal is to improve its speed, even if it becomes less readable.
The reason for this is that a sort may account for the major part of a program’s effi-
ciency, so that any ifiprovement in sorting time significantly affects.overall efficiency.
Another reason is that a sort is often used quite frequently, so that a small improvement
in its execution speed saves a great deal of computer time. It is usually a good idea to
remove function calls, especially from inner loops, and replace them with the code of
the function in line, since the call-return mechanism of a language can be prohibitively
expensive in terms of time. Also, a function call may involve the assignment of storage
to local variables, an activity that sometimes requires a call to the operating system. In
many of the programs we do not do this so as not to obfuscate the intent of the program
with huge blocks of code.

Space constraints are usually less important than time considerations. One rea-
son for this is that, for most sorting programs, the amount of space needed is closer
to O(n) than to O(n?). A second reason is that if more space is required it cah almost
always be found in auxiliary storage. An ideal sort is an in-place sort whose additional
space requirements are O(1). That is, an in-place sort manipulates the elements to be
sorted within the array or list space that contained the original unsorted input. Addi-
tional space that is required is in the form of a constant number of locations (such as
declared individual program variables) regardless of the size of the set to be sorted.

Usually, the expected relationship between time and space holds for sorting al-
gorithms: those programs that require less time usually require more space, and vice
versa. However, there are clever algorithms that utilize both minimum time and min-
imum space; that is, they are O(n log n) in-place sorts. These may, however, require
more programmer time to develop and verify. They also have higher constants of pro-
pomonnhty than many sorts that do use more space or that have higher time-orders and
50 requlrc more lime to sort small sets.

Sec.8.1 General Background - , a3

In the remiaining sections we investigate some of the more popular sorting tech-
rinues and indicate some of their advantages and disadvantages.

‘EXERCISES

6.1.1.

6.1.2.

6.1.3.

6.14.
6.1.5.

Choose any sorting technique with which you are familiar.

(a) Write a program for the sort.

(b) Is the sort stable?

(c) Determine the time requirements of the sort as a function of the file size. both
mathematically and empirically.

(d) What is the order of the sort?

(e) At what file size does the most dominant term begin to overshadow the others?

Show that the function (log,, n)* is O(n) for ail m and k but that is not O((log n)*) for

any k.

Suppose that a time requirement is given by the formula a * »* + b * n*log> n. where

a and b are constants. Answer the following questions by both proving your results

mathematically and writing a program to validate the results empirically.

(@) For what values of n (expressed in terms of @ and b) does the first term dominate
the second? i

(b) For what value of # (expressed in terms of a and b) are the two terms equal?

{c) For what values of n (expressed in terms of & and b) does the second term domi-
nate the first?

Show that any process that sorts a file can be extended to find all duplicates in the file.
A sort decision tree is a binary tree that represents a sorting method based on com-
parisons. Figure 6.1.5 illustrates such a decision tree for a file of three elements. Each
nonleaf of such a tree represents a comparison between two elements. Each leaf repre-
sents 4 completely sorted file. A left branch from a nonleaf indicates that the first key
was smaller than the second; a right branch indicates that it was larger. (We assume
that all the elemens in the file have distinct keys.) For example, the tree of Figure 6.1.5
represents a sort on three elements x{0). x{1]. x[2] that proceeds as follows:

Compare x{0] with x[1]. If x[0] < afl], compare x{1] with x[2), and if x{1] < x[2].
the sorted orde/l; of the file is x{0). x| 1], x[2]; otherwise if x[0] < x[2]. the sorted order is

Vs

LI <3 <?‘ [3<} <?| Iﬁ 3< :] |L< 1< q Figure 6.1.5 Decision tree for a file of

338

three elements.

Sorting Chap. 6

0. x12). x{11. and if ¥{0] > x{2]. the sorted order is x{2}, x{0}, x{1]. 1f x{0] > x{1],

proceed in a similar fashion down the right subtree. ;

(@) Show that a sort decision tree that never makes a redundant comparison {that is,
never compares x1i] and x{j] if the relationship between .x{i] and x(j} is knowm)
has n! leaves.

(b) Show that the depth of such a decision trec is at least log; (n!).

(€) Show thatn! = (n/2)" 2, so that the depth of such a tree is O(n log n).

(d) Explain why this proves that any sorting method that uses comparisons on a file
of size n must make at least O(n log n) comparisons.

6.1.6. Given a sort decision trec for a fil as in the previous exercisc, show that if the file
contains some equal elements. the result of applying the tree 1o the file (where either a
left or right branch is taken whenever two elements are equal) is a sorted file.

6.1.7. Extend the concept of the binary decision trec of the previous exercises lo a lernary
tree that includes the possibility of equality. 1t is desired 0 determine which elements
of the file are equal. in addition to the order of the distinct elements of the file. How
many comparisons are necessary? ;

6.1.8. Show that if k is the smallest integer greater than or equal ton + log> n = 2, k com-
parisons are necessary and sufficient o find the 'wrgest and second largest elements of
a set of n distinct elements. ’

6.19. How many comparisons are necessary to find the largest and smallest of a set of n
distinct elements?

6.1.10. Show that the function f(n) defined by

fthy =1

fim)y= fin—=1+1 nfor n> 1

]

is O(log n).

6.2 EXCHANGE SORTS

Bubkle Sort

The first sort we present is probably the most widely known among beginning
students of programming: the bubble sort. One of the characteristics of this sort i« " -
it is easy to understand and program. Yet. of all the sorts we shall consider, it is pr
the least efficient.

In each of the subsequent examples. x is an array of integers of which the first n
are to be sorted so that x{i] < xj) for0 =< i <j<n. Itis straightforward to extend this
simple format to one which is used in sorting n records, each with a subfield key k.

The basic idea underlying the bubble sort is to pass through the file sequentially
several times. Each pass consists of comparing each element in the file with its successor
(x{i] with x[i + 1]) and interchanging the two elements if they are not in proper order.
Consider the following file:

25 57 48 37 12 92 86 33

Sec.6.2 Exchange Sorts 339

The following comparisons are made on the first pass:

x[0]. with x[1] (25 with 57) No interchange
x[1] with x[2] (57 with 48) Interchange
x[2] with x[3] (57 with 37) Interchange
x[3] with x[4] (57 with 12) Interchange
x[4]. with x(5] (57 with 92) No interchange
x{5] with x[6] (92 with 86) Interchange
x{6] with x[7)] (92 with 33) Interchange

Thus, after the first pass, the file is in the order
25 48 37 12 57 86 33 92

Notice that after this first pass, the largeﬁelemem (in this case 92) is in its proper
position within the array. In general, x[n — {] Will be in its proper position after iteration
i. The method is called the bubble sort because each number slowly “bubbles™ up to its
proper position. After the second pass the file is

’ 25 37912 48 S7 33 86 92

Notice that 86 has now found its way to the second highest position. Since each iteration

places a new element into its proper position, a file of n elements requires no more than
n — 1 iterations.

The complete set of iterations is the following:

fteration O (original file) "25 57 48 37 12 92 86 33

Iteration | 25 48 37 12 57 86 33 92
fteration 2 25 37 12 48 57 33 8 92
Iteration 3 25 12 37 48 33 57 86 92
Iteration 4 12 25 37 33 48 57 86 92
Iteration 5 12 25 33 37 48 57 8 92
lteration 6 12 25 33 37 48 57 86 92
lteration 7 12 25 33 37 48 S7 86 92

On the basis of the foregoing discussion we could proceed to code the bubble sort.
However, there are some obvious improvements to the foregoing method. First, since
all the elements in positions greater than or equal to n — i are already in proper position
after iteration i, they need not be considered in succeeding iterations. Thus on the first
pass n — 1 comparisons are made, on the second pass n — 2 comparisons, and on the
(n — 1)th pass only one comparison is made (between x[0] and x[1]). Therefore the
process speeds up as it proceeds through successive passes.

We have shown that n — 1 passes are sufficient to sort a file of size n. However,
in the preceding sample file of eight elements, the file was sorted after five iterations,
making the last two iterations unnecessary. To eliminate unnecessary passes we must
be able to detect the fact that the file is already sorted. But this is a simple task, since in
a sorted file no interchanges are made on any pass. By keeping a record of whether or
not any interchanges are made in a given pass it can be determined whether any further
passes are necessary. Under this method, if the file can be sorted in fewer than i1 — |
passes, the final pass makes no interchanges.

Sorting Chap. 6

. 340

L \
Using these improvements, we present a routine bubble that accepts two variables
xand n. xis an array of numbers, and n is an integer representing the number of elements
to be sorted. (n may be less than the number of elements in x.)

void bubble(int x[], int n)
{

int hold, j, pass;

int switched = TRUE;

for (pass = 0; pass < n-1 & switched == TRUE:' pass++) {

e outer loop controls the number of passes * -
switched = FALSE; /* initially no interchanges have */
;) been made on this pass, tf
for (j = 0; j < n-pass-1; j++) |
/* inner Tloop governs each individual pass */
if (x[3] > x[§+1]) { Al
/¥ elements out of order ¥/
It an interchange is necessary *

switched = TRUE; ik
v hold = x[j];
- x[3] = x[3+1);
x[j+1] = hold;
} /% ond if %/
} /* end for */
} /* end bubble */

What can be said about the efficiency of the bubble sort? In the case of a sort
that does not include the two improvements outlined previously, the analysis is simple.
There are n — 1 passes and n — 1 comparisons on each pass. Thus the total number
of comparisons is (n — 1) * (n = 1) = n* = 2n + 1, which is O(n?). Of course, the
number of interchanges depends on the original order of the file. However. the number
of interchanges cannot be greater than the number of comparisons. It is likely that it
is the number of interchanges rather than the number of comparisons that takes up the
most time in the program’s execution. :

Let us see how the improvements that we introduced.affect the speed of the bubble
sort. The number of comparisons on iteration i is n — i. Thus, if there are k iterations the
total number of comparisons is (n — 1)+ (n — 2) + (n - 3)+ -+ 4 (n= k), which equals
(2kn — k* — k) /2. It can be shown that the average number of iterations, &, is O(n),
so that the entire formula is still O(n?), although the constant multiplier is smaller than
before. However, there is additional overhead involved in testing and initializing the
variable ywilched (once per pass) and setting it to TRUE (once for every interchange).

The only redeeming features of the bubble sort are that it requires little additional
‘space (one additional record to hold the temporary value for interchanging and several
simple integer variables) and that it is O(n) in the case that the file is completely sorted
(or almost completely ‘sorted). This follows from the observation that only one pass of

n — 1 comparisons (and no interchanges) is necessary to establish that a sorted file is
sorted. :

Sec.6.2 Exchange Sorts ' an

There are some other ways to improve the bubble sort. One of these is to pbserve
that the number of passes necessary 10 sort the file is the largest distance by which a
number must move “down” in the array. In our example, for instance, 33, which starts:
at position 7 in the array, ultimately finds its way to position 2 after five itergtions. The
bubble sort can be speeded up by having successive passes go in opposite directions so
that the small elements move quickly to the front of the file in the same way that the

large ones move to the rear. This reduces the required number of passes. This version
is left as an exercise.

Quicksort

The next sort we consider is the partition exchange sort (or quicksort). Let x be
an array, and n the number of elements in the array to be sorted. Choose an element
a from a specific position within the array (for example, a can be chosen as the first
element so that @ = x[0]). Suppose that the elements of x are partitioned so that « is
placed into position j and the following conditions hold:

1. Each of the elements in positions O through j — 1 is less than or equal to a.
2. Each of the elements in positions j + 1 through n ~ | is greater than or equal
toa. :

Notice that if these two conditions hold for a particular a and j, a is the jth smallest
element of x; so that a remains in position j when the array is completely sorted. (You
are asked to prove this fact as an exercise.) If the foregoing process is repeated with
the subarrays x[0] through x[j — 1] and x[j + 1] through x[n — 1] and any subarrays
created by the process in successive iterations, the final result is a sorted file.

' Let us illustrate the quicksort with an example: If an initial array is given as

25 57 48 37 12 92 86 33
and the first element (25) is placed in its proper position, the resulting array is
12 25 57 48 37 92 86 33

At this point, 25 is in its proper position in the array (x[1]), each element below
that position (12) is less than or equal to 25, and each element above that position (57,
48, 37,92, 86, and 33) is greater than or equal to 25. Since 25 is in its final position the
original problem has been decomposed into the problem of sorting the two subarrays

(12) and (57 48 37 92 86 33)

‘ Nothing need be done to sort the first of these subarrays; a file of one element is
already sorted. To sort the second subarray the process is repeated and the subarray is
further subdivided. The entire array may now be viewed as

12 25 (57 48 37 92 86 33)

where parentheses enclose the subarrays that are yet to be sorted. Repeating the process
on the subarray x[2] through x([7] vieids

12 25 (48 37 33) 57 (92 86)

Sorting Chap, 6
342

and further repetitions yield

12 25 (37 33) 48 57 (92 86)
12 25 (33) 37 48 57 (92 §6)

122 25 33 37 48 57 92 86)

12 25 33 37 48 57 (86) 92
1225 33 37 48 57 86 92

‘Note that the final array is sorted.

‘By this time you should have noticed that the quicksort may be defined most
conveniently as a recursive procedure. We may outline an algorithm quick(lb,ub) to
sort all elements in an array x between positions /b and ub (Ib is the lower boun:!, ub

the upper bound) as follows:

~if (1b>= ub)
return; - /* array is sorted *f

partition(x, 1b,ub, 7); /* partition the elements of the */
/* subarray such that one of the */

/* elements (possibly x(16]) is %/

/* now at x[j] (j is an output */

> parameter) and: L

J* 1. x(i] <= x{j] for 1b <= Bred, 2

J* 2. x[i] >= x(j] for jei<=ub ¥/

/* x[7] is now at its final i

Vid position */

“quick(x,Tb,j - 1); /* recursively sort the subarray */
/* between positions 1b and j-1 */

quick(x,j + 1,ub); /* recursively sort the subarray */
/* between positions j+1land ub */

There are now two problems. We must produce a mechanism to implement partition
and produce a method to implement the entire process nonrecursively.

The object of partition is 10 allow a specific slemeiit to find its proper position
with respect to the others in the subarray. Note that the manner in which this partition
is performaed is irrelevant to the sorting method. All that is required by the sort is that
the elements be partitioned properly. In the preceding example, the elements in each
of the two subfiles remain in the same relative order as they appear in the original file.
However, such a partition method is relatively inefficient to implement.

One way to effect a partition efficiently is the following: Let a = x[Ib] be the
element whose final position is sought. (There is no appreciable efficiency gained by
selecting the first element of the subarray as the one which is inserted into its proper
position; it merely makes some of the pregramns easier to code.). Two pointers, up and
down, are initialized to the upper and lower bounds of the subarray, respectively. Atany

|

Sec.8.2 Exchange Sorts 34 .

point during e;(ecution. eachelement in a position above up is greater ihan or equal to
a, and each element in a position below down is less than or equal 1o a. The two pointers
up and down are moved towards each other in the following fashion.
Step 1: Repeatedly increase the pointer down by one position until x[down] > a.
Step 2: Repeatedly decrease the pointer up by one position until x[up] <= a.
Step 3: If up > down, interchange x[down] with x[up).
The process is repeated until the condition in step 3 fails (up <= down), at which point

x{up] is interchanged with x[(b] (which equals a), whose final position was sought, and
Jis set to up.

We illustrate this process on the sample file, showing the positions of up and down
as they are adjusted. The direction of the scan is indicated by an arrow at the pointer
being moved. Three dsterisks on a line indicates that an intcr_changc_: is being made.

a=x[Tb] = 25

up
‘25 57 8 ¥ 12 92 86 33

down ‘ ' up
25 57 48 37 12 92 86 33

down . <--up
25 57 48 37 12 92 86 33

down . <=-up
25 57 48 37 12 92 86 33

down ' <==up)
25 57 48 37 12 92 86 33

down up
25 57 48 37 12 92 86 33

down up
- 25 12 48 37 57 92 86 33 ax

down--> up
! down up

25 12 48 37 - 57 92 86 3
down <--up

25 1 48 37 57 R 86 33

25 12 48 37 57 92 86 33

Sorting Chap. 6
344

: <--up, down :
25 12 48 37 57 92 86 EX]

up down
25 12 48 37 57 92 86 33

up down
12 25 48 37 57 92 86 33 ARE

At this point 25 is in its proper position (position 1), and every element to its left is less

than or equal to 25, and every element to its right is greater than or equal to 25. We

could now proceed to sort the two subarrays (12) and (48 37 57 92 86 33) by applying
" the same method.

This particular algorithm can be implemented by the following procedure.

void partition (int x[], int b, int ub, int *pj)
{ .
int a, down, temp, up;

a = x[1b]; /* a is'the element whose final */
" pesition is sought */

up = ub; go i = ’

down = 1b;

" while (down < up) {
while (x[down] <='a & down < ub)
down++; Y ol . move up the array */.
while (x[up] > a) '
up--; i move down the array */
if (down < up) { :
/t interchange xfdown] and x[up] */
temp = x[down] ;
x[down] = x[up];
x[up}-=-temp;
} /* end if ¥/ '
} /* end while #/ » "
x[1b] = x[up];
" x[up] = a;
*pj = up;
} /* end partition */

Note that if k-equals ub — Ib + 1, so that we are rearranging a subarray of size k,
the routine uses k key comparisons (of x[down] with a and x[up] with a) to perform the
partition. 3
The routine can be made slightly more efficient by eliminating some of the re-
dundant tests. You are asked to do this as an exercise.

Although the recursive quicksort algorithm is relatively clear in terms of what it
accomplishes and how, it is desirable to avoid the overhead of routine calls in programs
such as sorts in which execution efficiency is a significant consideration. The recursive

Sec.6.2 Exchange Sorts ‘ 345

calls to quick can easily be eliminated by using"’a stack as in Section 3.4, Once partition
has been executed, the current paramelers to quick are no longer needed, except in
computing the arguments to the two subsequent recursive calls. Thus instead of stacking
the current parameters upon each recuisive call, we can compute and stack the new
parameters ‘or each of the two recursive calls, Under this approach, the stack at any
point contains the lower and upper bounds of all subarrays that must yet be sorted.
Furthermore, since the second recursive call immediately precedes the return to the
calling program (as in the Towers of Hanoi problem), it may be eliminated entirely and
replaced with a branch. Finally, since the order in which the two recursive calls are
made does not affect the correctness of the algorithm, we elect in each case to stack the
larger subarruy and process the smaller subarray immediately. As we explain shortly,
this technique keeps the size of the stack to a minimum.

We may now code a function to implement the quicksort. As in the case of bubble,
the parameters are the array x and the number of elements of x that we wish to sort, 7.
The routine push pushes b and ub onto the stack, popsub pops them from the stack,
and empry determines if the stack is empty.

#define MAXSTACK ... /* maximum stack size */

void quicksort(intxf], int n)

h [4l PO
struct bndtype {
int 1b;
int ub;
} newbnds; .
/* stack is used‘by‘tuggop. push and empty functions */
struct { ’
int top;
struct bndtype bounds [MAXSTACK];
} stack;

stack.top = -1;
newbnds.1b = 0
newbnds.ub = n-1;
push(&stack, &newbnds);
/* repeat as long as there are any */
/* unsorted subarrays on the stack */
while (lempty(&stack)) { .
popsub(&stack, &newbnds);
while (newbnds.ub > newbnds.1b) {
/* process next subarray */
partition(x, newbnds.1b, newbnds.ub, &j);
/* stack the larger subarray */ .
if (j-newbnds.1b > newbnds.ub-j) {
/* stack lower subarray */
i = newbnds.ub;
newbnds.ub = j-1;

Sorting Chap. 6
346

push(&stack, &newbnds);
/* process upper subarray */
newbnds.Tb = j+1;
newbnds.ub = i;
}
else {
/* stack upper subarray */
i = newbnds.1b;
newbnds.1b = j+1;
push(&stack, &newbnds);
/* process lower subarray */
newbnds.1b = i; *
newbnds.ub = j-1;
} /* end if */
} /* end while */
} /% end while */
} /* end quicksort */

The routines partition, empty, popsub, and push should be inserted in line for
maximum efficiency. Trace the action of quicksort on the sample file.

Note that we have chosen to use x{Ib] as the elément around which to partition
each subfile because of programming convenience in the proc.dure partition, but any
other element could have been chosen as well. The element around which a file is par-
titioned is called a pivor. It is not even necessary that the pivot be an element of the
subfile; partition can be written with the header

partition(1b, ub, X, j. pivot)

to partition x{/b] through x[ub] so that all elements between x[/b] and x[j — 1] are
less than pivoi and all elements between x[j] and x{ub] are greater than or equal to
pivor. In that case the element x{j] is itself included in the second subfile (since it
is not necessarily in its proper position), so that the second recursive call to quick is
quick(x, j, ub) rather than quick(x, j + 1, ub).

Several choices for the pivot value have been found to improve the efficiency of
quicksort by guaranteeing more nearly balanced subfiles. The first technique uses the
median of the first, last, and middle elements of the subfile to be sorted (that is. the
median of x{/b]. x{ub], and x[(Ib + ub)/2]) as the pivot value. This median-of-three
value is closer to the median of the subfile being partitioned than x[/b]. so that the two
partitions of the subfile are more nearly equal in size. In this method the pivot value is an
element of the file, so that quick (x, j + 1, ub) can be used as the second recursive call.

A second method, called meansort, utilizes x[/5] or the median-of-three as pivot
when partitioning the original file but adds code in partition to compute the means
(averages) of the two subfiles being created. In subsequent partitions the mean of each
subfile, calculated when the subfile was created, is used as a pivot value. Again, this
mean is closer to the median of the subfile than x{/b) and results in more nearly balanced

Sec. 6.2 Exchange Sorts 347

files. The mean is-not necessarily an element of the file, so that quick (x, J» ub) must
be used as the second recursive Tall. The cade to find the mean does not require any
additional key comparisons but does add some extra overhead.

Another technique, called Bsort, uses the middle element of a subfile as the pivot.
During partition, whenever the pointer up is decieased, x[up] is interchanged with
x{up + 1] if x{up] > x[up + 1]. Whenever the pointer down is increased, x{down)
is interchanged with x[down — 1] if x[down] < x{down — 1]. Whenever x[up] and
x[down] are interchanged x{up] is interchanged with x[up + 11if x[up] > x[ufp + 1],
and x[down)] is interchanged with x{down — 1}if x{down] < x{down - 1]. This guaran-
tees that x[up] is always the smallest element in the right subfile (from x[up] to x{ub])
and that x[down] is always the largest element in the left subfile (from x[1b] to x[down]).

This allows two optimizations: lf' no interchanges between x[up] and x[up + 1
were required during the partition, the right subfile is known to be sorted and need not
be stacked, and if no interchanges between x[down] and x{down — 1] were required, the
left subfile is known to be sorted and need not be stacked. This is similar to the technique
of keeping a flag in bubblesort that detects that no interchanges have taken place during
an entire pass so that'no additional passes are necessary. Second, a subfile of size 2 is
known to be sorted and need not be stacked. A subfile of size 3 can be directly sorted
with just a single comparison and possible interchange (between the first two elements
in a left subfile and between the last two in a right subfile). Both optimizations in Bsort
reduce the number of subfiles that must be processed.

Efficiency of Quicksort

How efficient is the quicksort? Assume that the file size n is a power of 2, say
n = 2", sothat m = log, n. Assume also that the proper position for the pivot always
turns out to be the exact middle of the subarray. In that case there will be approximately
n comparisons (actually n — 1) on the first pass. after which the file is split into two
subfiles each of size n/2, approximately. For each of these two files there are approx-
imately n/2 comparisons, and a total of four files each of size n/4 are formed. Each of
these files requires n/4 comparisons vielding a total of n/8 subfiles. After halving the
subfiles m times, there are n files of size 1. Thus the total number of comparisons for
the entire sort is approximately i

n+2%x(n/2)+4%(n/4) 8= n/8) + -+ nx (n/'n)
or

n+n+n+an+-+ n(miterms)

- comparisons. There are m terms because the file is subdivided m times. Thus the total
number of comparisons is O(n * m) or O(n log n) (recall that m = loga n). Thus if the
foregoing properties describe the file, the quicksort is O(n log n), which is relatively
efficient. ;

For the unmodified quicksort in which x[/b] is used as the pivot value, this anal-
ysis assumes that the original array and all the resulting subarrays are unsorted, 30
that the pivot value x{lb] always finds its proper position at the middle of the subarray.

Sorting Chap. 6
348

Suppose that the preceding conditions do not hold and the original array is sorted (or
almost sorted). If, for example, x[/b] is in its correct position, the original file is split
into subfiles of sizes 0 and n — 1. if this process continues, a total of n — 1 subfiles are
sorted, the first of size n, the second of size n — 1, the third of size n — 2, and so on.

Assuming k comparisons to rearrange a file of size k, the total number of comparisons
to sort the entire file is

n+t@@-D+=2)+--+2

which is O(?). Similarly, if the original file is sorted in descending order the final posi-
tion of x{1b] is ub and the file is again split into two subfiles that are heavily unbalanced
(sizes n — 1 and 0). Thus the unmodified quicksort has the seemingly absurd property
that it works best for files that are “completely unsorted” and worst for files that are
completely sorted. The situation is precisely the opposite for the bubble sort, which
works best for sorted files and worst for unsorted files. :

Itis possible to speed up quicksort for sorted files by choosing a random element
of each subfile as the pivot value. If a file is known to be nearly sorted, this might be
a good strategy (although, in that case choosing the middle element as a pivot would
be even better). However, if rothing is known about the file, such a strategy does not
improve the worst case behavior, since it is possible (although improbable) that the
random'element chosen each time might consistently be the smallest element of each
subfile. As a practical matter, sorted files are more common than a good random number
generator happening to choose the smallest element repeatedly.

The analysis for the case in which the file size is not an integral power of 2 is
similar but slightly more complex; the results, however, remain the same. It can be
shown, however, that on the average (over all files of size n}, the quicksort makes ap-
proximately 1.386n log, n comparisons even in its unmodified version. In practical
situations, quicksort is often the fastest available because of its low overhead and its
average Q(n log n) behavior.

If the median-of-three technique is used, quicksort can be O(n log) even if the
file is sorted (assuming that partifion leaves the subfiles sorted). However, there are
pathclogical files in which the first, last, and middle elements of each subfile are al-
ways the three smallest or largest elements. In such cases, quicksort remains O(n?).
Fortunately, these are rare.

Meansort is O(n log n) as long as the elements of the file are uniformly distributed
between the largest and smallest. Again, some rare distributions may make it O(n?), but
thisis less likely than the worst case of the other methods. Forrandom files, meansort does .
not offer any significant reductions in comparisons or interchanges over standard quick-
sort. Its significant overhead for computing the mean requires far more CPU time than
standard quicksort. For a file known to be almost sorted, meansort does provide signif-
icant reduction in comparisons and interchanges. However, the mean-finding overhead
makes it slower than quicksort unless the file is very close to being complegely sorted.

Bsort requires far less time than quicksort or meansort on sorted or nearly sorted
~ input, although it does require more comparisons and interchanges than meansort

for nearly sorted input (but meansort has significant overhead in finding the mean). It
requires fewer comparisons but more interchanges than meansort and more of both than

Sec. 6.2 Exchange Sorts : 349

quicksort for randomly sorted input. However, its CPU requirements are far lower than
meansort’s, although somewhat greater than quicksort for random input.

Thus Bsort can be recommended if the input is known to be nearly sorted or if we
are willing to forgo moderate increases in average sorting time to avoid very large in-
creases in worst-case sorting time. Meansort can be recommended only for input known
to be very nearly sorted and standard quicksort for input likely to be random or if aver-
age sorting time must be as fast as possible. In Section 6.5, we present a technique that
is faster than either Bsort or meansort on nearly sorted files.

The space requirements for the quicksort depend on the number of nested recur-
sive calls or on the size of the stack. Clearly. the stack can never grow larger than the
number of elements in the original file. How much smaller than n the stack grows de-
pends on the number of subfiles generated and on their sizes. The size of the stack is
somewhat contained by always stacking the larger of the two subarrays and applying
the routine to the smaller of the two. This guarantees that all smaller subarrays are sub-
divided before larger subarrays, giving the net effect of having fewer elements on the
stack at any given time. The reason for this is that a smaller subarray will be divided
fewer times than a larger subarray. Of course, the larger subarray will ultimately be
procéssed and subdivided, but this will occur after the smaller subarrays have already
been sorted and therefore removed from the stack.

Another advantage of quicksort is locality of reference. That is, over a short period
of time all array accesses are to one or two relatively small portions of the array (a
subfile or portion thereof). This insures efficiency in the virtual memory environment,
where pages of data are constantly being swapped back and forth between external
and internal storage. Locality of reference results in fewer page swaps being required
for a particular program. A simulation study has shown that in such an envtronment,
quicksort uses less space-time resources than any other sort considered.

EXERCISES

6.2.1. Prove that the number of passes necessary in the bubble sort of the text before the file is
in sorted order (not including the last pass, which detects the fact that the file is sorted)
equals the largest distance by which an element must move from a larger index to a
smaller index.

6.2.2. Rewrite the routine bubble so that successive passes go in opposite directions.

6.2.3. Prove that. in the sort of the previous exercise, if two elements are not interchanged
during two consecutive passes in opposite directions, they are in their final position.

6.24. A sort by counting is performed as follows. Declare an array count and set count{i] to
the number of elements that are less than x[#]. Then place x[i] in position count[i] of an.
output array. (However. beware of the possibility of equal elements.) Write a routine
to sort an array x of size n using this method.

6.2.5. Assume that a file contains integers between @ and b, with,many numbers repeated
several times. A distribution sort proceeds as follows. Declare an array member of size
b - a + 1, and set number|i — a) to the number of times that integer i appears in the
file. and then reset the values in the file accordingly. Write a routine to sort an array x

of size n containing inicgers between a and b by this method.
»

Sorting Chap. 6
350

6.2.6. The odd-even transposition sort procecds as follows. Pass through the file several
times. On the first pass. compare x[i] with x{i + 1] for all odd i. On the second pass,
compare x[i] with x[i + 1] for all even i. Each time that x{i] > x|i + 1]. interchange
the two. Conti ue alternating in this fashion until the file is sorted.

(a) What is the condition for the termination of the sort?

(b) Write a C routine to implement the sort.

f(c) On the average what is the cfficiency-of this sort?

6.2.7. Rewrite the program for the quicksort by starting with the recursive algorithm and
applying the methods of Chapter 3 to produce a nonrecursive version.

6.2.8. Modify the quicksort program of the text so that if a subarray is small. the bubble sort
is used. Determine, by actual computer runs, how small the subarray should be so that
this mixed strategy will be more efficient that an ordinary quicksort.

6.2.9. Modify partition so that the middle value of x{ib), x{ub]), and x{ind | (where ind =
(ub + Ib)2) is used to partition the array. In what cases is the quicksort using this
method more efficient than the version of the text? In what cases is it less efficient?

6.2.10. Implement the meansort technique. partition should use the mean of the subfile be-

ing partitioned, computed when the subfile was created, as the pivot value and should

compute the mean of each of the two subfiles that it creates. When the upper and lower
bounds of a subfile are stacked, its mean should be stacked as well.

6.2.11. Implement the Bsort technique. The middle element of each file should be used as the

pivot, the last element of the left subfile being created should be maintained as the

Jargest in the left subfile. and the first element of the right subfile should be maintained

as the smallest in the right subfile. Two bits should be used to keep track of whether the

two subfiles are sorted at the end of the partition. A sorted subfile need not be processed
further. If a subfile has three or fewer elements, sort it directly by a single interchange,
at most.

6.2.12. (a) Rewrite the routines for the bubble sort and the quicksort as presented in the text
and the sorts of the exercises so that a record is kept of the actual number of
comparisons and the actual number of interchanges made.

_(b) Write a random-number generator (or use an existing one if your installation has
one) that generates integers between 0 and 999. i

(¢) Using the generator of part (b). generate several files of size 10, size 100, and size
1000. Apply the sorting routines of part (a) to measure the time requirements for
each of the sorts on each of the files.

(d) Measure the results of part (c) against the theoretical values presented in this
section. Do they agree? If not, explain. In particular, rearranige the files so that
they are completely sorted and in reverse order and see how the sorts behave with
these inputs.

6.3 SELECTION AND TREE SORTING

A selection sort is one in which successive elements are selected in order and placed
into their proper sorted positions. The elements of the input may have to be preprocessed
to make the ordered selection possible. Any selection sort can be conceptualized as the
following general algorithm that uses a descending priority queue (recall that pginsert
inserts into a priority queue and pgmaxdelete retrieves the largest element of a priority
queue).

Sec. 6.3 Selection and Tree Sorting 351

set dpq to the empty descending priority queue;
/* preprocess the elements of the input array */
/* by inserting them into the priority queue */
for (i=0; i <n; iws)

pqinsert(dpg, x[i]);
/* select each successive element in order v/
for (i =n-1; i>=0; j--)

x[7} = pgmaxdelete(dpq);

This algorithm is called the general selection sort.

We now examine several different selection sorts. Two features distinguish a spe-
cific selection sort. One feature is the data structure used to implement the priority
queue. The second feature is the method used to implement the general algorithm. A
particular data structure may allow significant optimization of the general selection sort
algorithm. : ‘ :

Note also that the general algorithm can be modified to use an ascending priority

queue apq rather than dpg. The second loop that implements the selection phase would
be modified to

for (i=0; 7<n ise)
x[7) = pgmindelete(apq); .

Straight Selection Sort

The straight selection sort, or push-down sort, implements the descending pri-
ority queue as an unordered array, The input array x is used to hold the priority queue,
thus eliminating the need for additional ‘space. The straighr selection sort is, therefore,
an in-place sort. Moreover, because the input array x is itself the unordered array that
will represent the descending priority, the input is already in appropriate format and the
preprocessing phase is unnecessary.

Therefore the straight selection sort consists entirely of a selection phase in which
the largest of the remaining elements, large, is repeatedly placed in its proper position,
i, at the end of the array. To do so, large is interchanged with the element x[i]. The initial
n-element priority queue is reduced by one element after each selection. After n — 1
selections the entire array is sorted. Thus the selection process need be done only from

n — 1 down to 1 rather than down to 0. The following C function implements straight
selection: i

void selectsort(int x[], int n)
int i, indx, j, large;

for (i =n-1; i > 0; i--) {
/* place the' largest number of x[0]. through */
/* x[i] into large and its index into indx */
large = x[0]; '
indx = 0;

Sorting Chap. 6

for (3 =1; j <= 1; j++)
if (x[j] > large) {
large = x[j];
indx = j;
} /* end for ... if ¥/
x[indx] = x[i];
x[1] = large;
} /* end for */
} /* end selectsort */

Analysis of the straight selection sort is straightforward. The first pass makes

n — 1 comparisons, the second pass makes n — 2, and so on. Therefore, there is a total
of -

(n=D+=2)+(m=3)++. =n*x(n—1)/2

comparisons, which is O(n*). The number of interchanges is always n — | (unless a test
is added to prevenc the interchanging of an elerhent with itself). There is little additional
storage required (except to hold a few temporary variables). The sort may therefore be
categorized as O(n?), although it is faster than the bubble sort. There is no improvement
if the input file is completely sorted or unsorted, since the testing proceeds to corapletion
without regard to the makeup of the file. Despite the fact that it is simple to code, it is
unlikely that the straight selection sort would be used on any files but those for which
n is small.

It is also possible to implement a sort by representing the descending priority
queue by an ordered array. Interestingly, this leads to a sort consisting of a preprocess-
ing phase that forms a sorted array of n elements. The selection phase is, therefore,
superfluous. This sort is presented in Section 6.4 as the simple insertion sort; it is not
a selection sort, since no selection is required. . ~

Binary Trce Sorts

In the remainder of this section we illustrate several selection sorts that represent
a priority queue by a binary tree. The first method is the binary tree sort of Section
5.1, which uses a binary search tree. The reader is advised to review that sort before
proceeding.

The method involves scanning each element of the input file and piacing it into
its proper position in a binary tree. To find the proper position of an element; »,aleftor
right branch is taken at each.node, depending on whether y is less than the eiement in
the node or greater than or equal to it. Once each input element is in its proper position
in the tree, the sorted file can be retrieved by an inorder traversal of the tree. We present
the algorithm for this sort, modifying it to accommodate the inputas a preexisting array.
- Translating the algorithm to a C routine is straightforward.

/* establish the first element as root *)
tree = maketree(x[0]);
/* repeat for each successive element */

Sec.6.3 Selection and Tree Sorting 353

for (i =1; 7<n:iss) {
y = x[il;
q = tree;
p=gq
/* travel down the tree until a leaf is reached */
while (p '= null) {
q=p;
if (y < info(p))
p = left(p);
else
p = right(p);
} /* end while */
if (y < info(q))
setleft(q,y);
else
setright(q,y);
} /% end for #/
/* the tree is built, traverse it in inorder */
intrav(tree);

To convert the algorithm into a routine to SOTt an array, it is necessary to revise
intrav so that visiting a node involves placing the contents of the node into the next
position of the original array.

Actually, the binary search tree represents an ascending priority queue, as de-
scribed in Exercises 5.1.13 and 5.2.13. C onstructing the tree represents the preprocess-
ing phase, and the traversal represents the selection phase of the general selection sort
algorithm,

Ordinarily, extracting the minimum element (pgmindelete) of a priority queue
represented by a binary search tree involves traveling down the left side of the tree
from the root. Indeed. that is the first step of the inorder traversal process. However.
since no new clements are inserted into the trec once the tree is constructed and the
mmimum element does not actually have to be deleted, the inorder traversal efticiently
implements the successive selection process, L

The relative efficiency of this.method depends on the original order of the data.
If the original array is completely sorted (or sorted in reverse order), the resulting tree
appears as a sequence of only right (or left) links. as in Figure 6.3.1. In this case the
insertion of the first node requires no comparisons, the second node requires two com-
parisons. the third node three comparisons, and so on. Thus the total number of com-

parisons is
243440 = n*(n+1):2—-1

which is O(n?).

On the other hand, if the data in the original array is organized so that approxi-
mately half the numbers following any given number « in the array are less than a and
half are greater than a, balanced trees such as those in Figure 6.3.2 result. In such a
case the depth of the resulting binary tree is the smallest integer o greater than or equal

tologa (1 + 1) = 1. The number of nodes atany level / (except possibly for the last) is

354 . . Sorting Chap. 6

Origina! data: Original data:
4 8 12 F7 126 w1712 8 4

Number of comparisons: 14 Number of comparisons: 14

(a) (b)
Figure 6.3.1

- L]
2! and the number of comparisons necessary to place a node at level / (except when
! = 0)is { + 1. Thus the total number of comparisons is between

d=1 d
d+> 2w+ Dand > 2=l +1)
i=1 =1
Original data: Original data:

12 "8 17 " 4 26 17 8 125w 3k

Number of comparisons: 10 Number of comparisons: 10

(a) A (b)

Figure 6.3.2

Sec. 6.3 Selection and Tree Sorting 355

It can be shown (mathemancally inciined readers might be ingerésted in proving this
fact as an exercise) that the resulting sums are O(n log n).

Fortunately. it can be shown that if every possible ordering of the input is consid-
ered equally likely, balanced trees result more often than not. The average sorting time
for a binary tree sort is therefore O(n log n), although the constant of proportionality is
larger on the average than in the best case. However, jn the worst case (sorted input), the
binary tree sort is O(n?). Of course, once the trec has been created, time is expended in
traversing it. If the tree is threaded as it is created, the traversal time is reduced and the
need for a stack (1mphcu in the recursion or explicit in a nonrecursive inorder traversal)
is eliminated.

This sort requircs that one tree node be reserved for each array element. Dcpcnd- 3
ing on the method used to'implement the tree, space may be required for tree pomters
and threads, if any. This additional space requirement, together with the poor O(n?)

time efficiency for sorted or reverse-order input, represents the primary drawback of
the binary treg sort.

* Heapsort

The drawbacks of the binary tree sort are remedied by the heapsort an in-place
sort that requires only O(n'log n) operations regardless of the order of the input. Define
adescending heap (also called a max heap or a descending partially ordered tree) of
size n as an almost complete binary tree of n nodes such that the content of each node
is less than or equal to the content of its father. If the sequential representation of an
almost complete binary tree is used, this condition reduces to the inequality

infolj] < infol(j ~ 1)/2] for 0= ((-1)/D<jsn-1

It is clear from this definition of a descending heap that the root of the tree (or the
first element of the array) contains the largest element in the heap: Also note that any
path from the root to a leaf (or indeed, any path in the tree that includes no more than
one node at any level) is an ordered list in descending order. It is also possible to define
an ascending heap (or a min heap) as an almost complete binary tree such that the
content of each node is greater than or equal to the content of its father. In an ascending
heap. the root contains the smallest element of the heap, and any path from the root to
a leaf is an ascending ordered list.

A heap allows a very efficient implementation of a priority queue Recall from
Section 4.2 that an ordered list containing n elements allows priority queye insertion
(pginsert) to be implemented using an average of approximately n/2 node accesses,
and deletion of the minimum or maximum (pgmindelete or pamaxdelete) using only
one node access. Thus a sequence of n insertions and # deletious from an ordcred list
such as is required by a selection sort could require O(n?) operations. Although priority
queue insertion using a binary search tree could require only as few as log> n node
accesses. it could require as many as n node accesses if the tree is unbalanced. Thus a
selection sort using a binary search tree could also require O(n?) operauons although
on the average only O(n log n) are needed.

Sorting Chap. 6

356

As we shall see, a heap allows both insertion and delc‘tibjn‘to be implemented
in. O(log n) operations. Thus a selection sort consisting of n insertions and n deletions
can be implemented using a heap in O(n log n) operations, even in the worst case. An
additional bonus is that the heap itself can be implemented within the input array x using
the sequential implementation of an almost complete binary tree. The only additional

space required is for program variables. The heapscit is, lhemfore, an O(n log n) in-
place sort.

Heap as a Priority Queue

Let us how implement a descending priority queue using a descending heap. Sup-
pose that dpg is an array that implicitly represents a descending heap of size k. Because
the priority queue is contained in array elements O to k — 1, we add k as a parameter of
the insertion and deletion operations. Then the operation pginsert(dpg. k, elr) can be im-
plemented by simply inserting eir into its proper position in the descending list formed
by the path from the root of the heap (dpg[0]) to the leaf dpglk]. Once pginsert(dpg. Ic
elt) has been executed, dpg becomes a heap of size k + 1.

The insertion is done by traversing the path from the empty position k to position
0 (the root), seeking the first element greater than or equal to elt. When that element

.is found, elr is inserted inmediately preceding it in the path (that is, elt is inserted as’
its son). As each ele.nent less thar elr is passed during the traversal, it is shifted down
one level in the tree to make room for eir. (This shifting is necessary because we are
using the sequential representation rather than a linked representation of the tree. A
new eiement cannot be inserted between two exmmg elements without shifting some
existing elements.) -

_ This heap insertion operation is also called the siftup operalmn because elr sifts
its way up the tree. The following.algorithm implements pginsert (dpg, k, elt):;

s =k; ;

f={s-1)/2; /* fis the father of s */
while (s > 0 & dpgif] < elt) -{
dpgls] = dpalf];
s = f; /% advance up the tree */
f=(s-1/2;
} /* end while #/
dpq(s] = elt;

Insertion is clearly O(log n), since an almost complete binary tree with n nodes
has loga n 71 levels, and at most, one node per level is accessed.

We now examine how to implement pgmaxdelete (dpg k) for a descendmlY heap
of size k. First we define subtree (p.m), where m is greater than p. as-the subtree
(of the descending heap) rooted at position p within the elements dpg[p] through
dpglm). For example. subrree(3,10) consists of the root dpq|3] and its two chil-
dren dpg[7] and dpq[8). subtree(3;17) consists of dpg(3). dpg[7). dpq|8): dpgl15].
dpq(18]). and dpg[17). If dpgli) is included in subtree(pan), dpg|2 « i +'1] is in-

Sec. 6.3 Selection and 'i'ree Sorting 357

cluded if and only if 2% i + | <= m, and dpg(2 = i + 2] is included if and only if
2%i+2 <= m.If mis less than p, subtree(p,m) is defined as the empty tree.

To implement pgmaxdelete(dpg k), we note that the maximum element is always
at the root of a k-element descending hcap. When that element is deleted, the remain-
ing k — 1 elements in positions 1 through k — I must be redistributed into positions
0 through & ~ 2 50 that the resulting array segment from dpg|0) through dpg[k — 2]
remains a descending heap. Let adjustheap(root k) be the operation of rearranging the
elements dpg[roor + 1] through dpg(k] into dpg[roor) through dpglk — 1] so that sub-
tree(rootk — 1) forms a descending heap. Then pqmaxdelete(dpg k) for a k-element
descending heap can be implemented by

p = dpqg[0];
adjustheap(0,k - 1);
retyrn(p);

In a descending heap, not only is the root element the largest element in the
tree, but an element in any position P must be the largest element in subtree(p k).
Now, subtree(p,k) consists of three groups of elements: its root. dpglp]; its left sub-
tree, subtree(2 * p + 1, k); and its right subtree, subtree(2 p+2k).dpg[2*p + 1],
the left son of the root, is the largest element of the left subtree, and dpg[2 * p + 2), the
right son of the root, is the largest element of the right subtree. When the root dpg(p] is
deleted, the larger of these two sons must move up to take its place as the new largest
element of subrree(p,k). Then the subtree rooted at the position of the larger element
moved up must be readjusted in turn.

Let us define largeson(p, m) as the larger son of dpg[p) within subtree(p, m). It
may be implemented as

S=2%p+1;

if (s +1 <= m&& x[s] < x[s + 1])
S=5+1;

/* check if out of bounds */

if (s > m)
return(-1);

else
return(s);

Then adjustheap(roor, k) may be implemented recursively by

f = root;

s =-largeson(f, k - 1):

if (5 >= 0 & dpg(k] < dpg(s)) {

© dpq[f] = dpq(s]; .
adjustheap(s, k):

else
dpa(f] = dpq[];

Sorting Chap. 6
358

The following is an iterative version of adjustheap. The algorithm uses a tempo-
rary variable kvalue 10 hold the value of dpglk):

f = root;

kvalue = dpg[k];

s = largeson(f, k - 1);

while (s >= 0 8& kvalve < dpg[s]) {
dpq[f) = dpgls];
f= s
s = largeson(f, k - 1);

}
dog[f] = kvalue; -

Note that we traverse a path of the tree from the root toward a leaf, shifting up
by one position all elements in the path greater than dpgk] and inserting dpgjk| in its
proper position in the path. Again, the shifting is necessary because we are using the
sequential representation rather than a linked implementation of the tree. The adjust-
ment procedure is ofien called the sifrdown operation because dpglk] sifts its way from
the root down the tree.

‘This heap deletion algorithm is also O(log n), since there are loga n + | levels
in the tree and at most two nodes are accessed at each level. However, the overhead of
shifting and computing largeson is significant.

Sorting Using a Heap

Heapsort is simply an implementation of the general selection sort using the input
array x as a heap representing a descending priority queue. The preprocessing phase
creates a heap of size n using the siftup operation. and the selection phase redistributes
the elements of the heap in order as it ueletes elements from the priority queue using the
siftdown operation. In both phases the loops need not include the case where 7 equals
0. since x[0] is already a one-element priority queue and the array is sorted once x| 1!
through x| = 1] are in proper position.

/* Create the priority queue; before each loop iteration *
/* the priority queue consists of elements x[0] through *
/* x[i - 1]. Each iteration adds x[i] to the queue. ¢
for (1 =1; 1 <m i+s)

pqinsert(x, i, x[il);
/* select each successive element in order */
for (1=n-1; 1>0; i--)

x[1] = pgmaxdelete(x, i + 1);

~ S

/

Figure 6.3.3 illustrates the creation of a heap of size 8 from the original file
25 57 48 37 12 92 86 33

~ The dotted lines ir that ficure indicate an element being shifted down the tree.

Sec.6.3 Selection and Tree Sorting 359

Figure 6.3.3 . Creating a heap of size 8.

.

Figure 6.3.4 illustrates the adjustment of the heap as x[0] is repeatedly selected

[

260 _ Sarting Chap. 6

(a) Original tree.

(Q) xI3): = pgmuxaelete x, 6) (e) xl4]: = pgmaxaelete (x, 5)

Figure 6.3.4 Adjusting a heap.
361

(»)
ORR OB
[l W) ()]
()

'
(M) x|4]: = pgmaxdelete (x, 4)

(g) x[3): = pgmaxdeieie (x, 3 (h) «[2): = pqqurlet} (x, 2). The array is soried.

Figure 6.3.4 (cont.)

Heapsort Procedure

We now present a heapsort procedure with all subprocedures (pginsert, pq-
maxdelere. adjustheap, and largeson) expanded in-line and intégrated for maximal
etficiency. v

void heapsort (int x[], int n)

int i, elt,’s, f, ivalue;

Sorting Chap. 6
362

/* preprocessing phase; create initial heap */
for (1 = 1; 1 <n; iss) {
elt = x[i];
/* painsert(x, i, elt) */
5 =1;
f= (s-1)/2;
while (s > 0 & x[f] < elt) {
x[s] = x[f];
Sraif
f=(s-1)/2;
} /* end while */
x[s] = elt;
} /* end for */
/* selection phase; repeatedly remove x[0], insert it */
1% in its proper position and adjust the heap »
for (i =n-1; i >0; i--) {
/* pgmaxdelete(x, i+1) */
ivalue = x[i];
x{i] = x[0];
f='0;
/* s = largeson (0, i-1) #/
if (i =1)
s= -1;
else
s =1;
if (1> 28 x[2] > x[1])) i
s =2;
while (s »= 0 && ivalue < x[s]) {
x[f] = x[s];
f=s5;
/* s = largeson(f, i-1) */
s = 2%f4];
if (s+1 <= i-1 && x[s] < x[s+1])
s = §+1;
if (s > i-1)
s = +]1;
} /* end-while */
x[f] = ivalue;
} /* end for */
} /* end heapsort */

To analyze the heapsort, note that a complete binaty tree with » nodes (where n is
one less than a power of two) has log (n + 1) levels. Thus if each element in the array
were a leaf, requiring it to be filtered through the entire tree both while creating and
adjusting the heap. the sort would still be O(n log n).

In the average case the heapsort is not as efficient as the quicksort. Experiments
indicate that heapsort requires twice as much time as quicksort for randomly sorted
input. However, heapsort is far superior to quicksort'in the worst case. In fact, heapsort

~Sec. 6.3 Selection and Tree Sorting 363

remains O(n log n) in the worst case. Heapsort is also not very efficient for small n be-

cause of the overhead of initial heap creation and computation of the location of fathers
and sons. - -

The space requirement for the heapsort (aside from array indices) is only one ad-

ditional record 10 hold the temporary for switching, provided the array implementation
of an almost complete binary tree is used. o

EXERCISES

' 6.3.1.
6.3.2.

.

6.3.3.

- 6.3.4.

6.3.5.

6.3.6.

Explain wny the straight selection son is more efficient than the bubble sor.

Consider the following quadratic selection sort: Divide the n elements of the file into
J/n groups of J/n elements each. Find the largest element of &ach group and insert it
into an auxiliary array. Find the largest of the elements in this auxiliary array. This is
the largest element of the file. Then replace this element in the array by the next largest
clement of the group rrom which it came. Again find the largest element of the auxiliary
array. This is the second largest element of the file. Repeat the process until the file has
been sorted. Write a C routine to implement a quadratic selection sort as efficiently as
possible. :
A tournament is an almost-eomplete strictly binary tree in which each nonleaf contains
the larger of the two elements in ity sons. Thus the contents of 2 tournament's leaves
completely determine the contenis of all its nodes. A tournament with n leaves represents
asetof melements. . v ' ' i
a) Develop an algorithm pginseri(1, n, elr) to add a new element elr to a tournament
g containing n leaves represented implicitly by an array r.
(b) Develop an algorithm pgmaxdelere(t.n) 1o delete the maximum element from a
tournament wiih n elements by replacing the leaf containing the maximum element
with a dummy value smaller than any possible element (for example, —1 in a
tournament of nonnegative integers) and then readjusting all values in the path
. from that leaf to the root. L x
(c) ~ Show how to simplify pgmaxdelere-by maintaining a pointer to a leaf in each non-
leaf info field. rather than an actual element value. .
(d) Write a C program to implement a selection sort using 2 tournament. The prepro-
© cessing phase builds the initial tournament from the array x and the selection phase
applies pgmaxdelete repeatedly. Such a sort is called a tournament sort.
(e) How does the efficiency of the tournament sort compare with that of the heapsort?
() Prove that the tournament sort is G(n log a) for all input.
Define an almost complete ternary tree as a tree in which every node has at most three
sons. and in which the nodes can be numbered from 0 to n — 1. so that the sons of node(i]
are node|3 * i + 1]. node(3 * i + 2], and node[3 * i + 3]. Define a ternary heap as an
almost complete ternary tree in which the content of each node is greater than or equal to
the contents or all its descendants. Write a sorting routine similar 10 the heapsont using
i ternary heap.
Write a routine combine(x) that accepts an array x in which the subirees rooted i A
and x[2] are heaps and that modities the array x so that it represents a single heap.
Rewrite the program of Section 5.3 that implements the Huffnian algorithm so thut the
set of root nudes forms a privrity gueue implemented by an ascending heap.

Sorting Chap. 6

6.3.7. Write a C program that uses an ascending heap to merge n |i|p|1| files, each sorted in
ascending order, into a single output file. Each node of the heap centains a file number’
and a value. The value serves as the key by which the heap is organized. Initially, one

- value is read from each file, and the n values are formed into an ascending heap, with
the file number from which each value came kept together with that value in a node.
The smallest value is then in the root of the heap and it is the output, with the next value
of its associated file input to take its place. That value, together with its associated file
number, is sifted down to find its proper place in the heap, and the new root value is
output. This process ofoutput/input/sifidown is repeated until no iami remains,

6.3.8. Develop an algorithm using a heap of k clemcnls to find the largest k numbersin a Inrge.

" unsorted file of n numbcrs

6.4 INSERTION SORTS
Simple Insertion

An insertion sort is one that sorts a set of records by inserting records into an
existing sorted file. An example of a simple insertion sort is the following procedure:

void insertsort(int x[], int n)

{
int i, k, y;

/* initially x[0] may be thought of as a sorted file of #/
/* one element. After each repetition of the following */
/* loop, the elements x[0) through x[k] are in order. */
for (k = 1; k <n; ke+) {
/* Insert x[k] into the sorted file */
y = x[k];
/* Move down 1 position all elements greater than y */
for (i = k-1; i >= 0 && y < x[i]; i--) .
x[i+1] = x[i];
/* Insert y at proper position */
x[i+1] = y;
} /% end for */ v '
} /* end insertsort */ : :

As we noted at the beginning of Section 6.3, the simple insertion sort may be viewed
as a general selection sort in which the priority queue is implemented as an ordered
array. Only the preprocessing phase of inserting the elements into the priority queue
is necessary; once the elements have been inserted, they are already sorted, so that no
selection is necessary. ;

If the initial file is sorted, only one comparison is made on each pass, so that the
sort is O(n). If the file is mmally sorted in the reverse order, the sort is Q(n>), since lhc
total number of comparisonsis °

(n=D+m=2+- - +3+2+1=t(n—1)*n/2.

Sec. 6.4 Insertion Sorts &3) 365

which is O(n?), However, the simple insertion sort is still usually better than the bubble
sort. The closer the file is to sorted order, the. more efficient the simple insertion sort-be-
comes. The average number of comparisons in the simple insertion sort (by considering
all possible permutations of the input array) is also O(n2). The space requirements for
the sort consist of only one temporary variable, y.

The speed of the soft can be improved somewhat by using a binary search
(see Sections 3.1, 3.2, and 7.1) to find the proper position for x[k] in the sorted file
x{0),.... xlk = 1].. This reduces the total number of comparisons from O(n?) to
O(n log n). However, even if the correct position i for x[k] is found in O(log n) steps,
each of the elements x[i + 1, ... X[k = 1] must be moved one position. This latter oper-
ation performed n times requires O(n*) replacements. Unfortunately, the binary search
technique does not, therefore, significantly improve the overall t:me requirements of
the sort,

Another improvement to the simple insertion sort can be made by using list inser-
tion. In this method there is an array link of pointers, one for each of the ori ginal array
elements. Initially link[i] = i + | for0 <= j < n = 1 and link[n = 1] = —1. Thus the
array may be thought of as a linear list pointed to by.an external pointer first initialized
to 0. To insert the kth element the linked list is traversed until the proper position for
x{k] is found. or until the end of the list is reached. At that point x[k] can be inserted into
the list by merely adjusting the list pointers without shifting any elements in the array.
This reduces the time required for insertion but not the time required for searching for
the proper position. The space requirements are also increased because of the extra link
array. The number of comparisons is still om?), altheugh the number of replacements
in the link array is O(n). The list insertion sort may be viewed as a general selection
sort in which the priority queue is represented by an ordered list. Again, no selection is
needed because the elements are sorted as soon as the preprocessing, insertion phase is
complete. You are asked to code both the binary insertion sort and the list insertion sort
as exercises. ;

Both the straight selection sort and the simple insertion sort are more efficient
than bubble sort. Selection sort requires fewer assignments than insertion sort but more
comparisons. Thus selection sort is recommended for small files when records are large,
so the assignment is inexpensive, but keys are simple. so that comparison is cheap. If
the reverse situation holds. insertion sort is recommended. If the input is initially in a
linked list, list insertion is recommended even if the records are large, since no data
mavement (as opposed to pointer modification) is required.

Of course. heapsort and quicksort are both more efficient than insertion or selec-
tion for large n. The break even point is approximately 20~30 for quicksort; for fewer
than 30 elements use insertion sort; for more than 30 use quicksort. A useful speedup of
quicksort uses insertion sort on any subfile of size less than 20. For heapsort, the break
even point with insertion sort is approximately 60-70.

Shell Sort

More significant improvement on simple insertion sort than binary or list insertion
can be achieved by using the Shell sort (or diminishing increment sort), named after
its discoverer. This method sorts separate subfiles of the original file. These subfiles

Sorting Chap. 6

366

contain every kth element of the original file. The value of k is called an increment.
For example, if & is'S, the subfile consisting of x{0], x[S), x{10]. ... is firs{ sorted. Five
subfiles, each containing one fifth of the elements of the original file are sorted in this
manner. These are (reading across)

Subfile | =-> x[0] x[5] x[10]
Subhile 2 -> x]1] x[6]) x[11})
Subfile 3 -> x12] x{7) . x[12)
Subfile 4 = x[3) x{8]) x{13]
Subtile § -> x[4] x|9] x[14]

The ith element of the jth subfile is x{(i — 1)*5 + j - 1]. If a different increment £ is

chosen, the k subfiles are divided so that tne ith element of the Jth subfile is x[(i — 1)
k+ j—1j.

After the first k subfiles are sorted (usually by simple insertion). a new smaller
value of k is chosen and the file is again pantitioned into a new set of subfiles. Each
of these larger subfiles is sorted and the process is repeated yet again with an even
smaller value of k. Eventually, the value of k is set to 1 o that the subfile consisting of
the entire file is sorted. A decreasing sequence of increments is fixed at the start of the
entire process. The last value in this sequence must be 1.

For example, if the original file is

25 57 48 37 12 92 86 33

and the sequence (5.3,1) is chosen, the following subfiles are sorted on each iteration:
First iteration (increment = 5)

(x[0], x{5])
(x[1]. x{6])
(x(2). x[7])
(x[3];
(x[4])

Second iteration (increment = 3)

(x[0], x{3]. x{6])
(x[1], x[4], x[7]
(x(2]. x(5])

Third iteration (increment = 1)
(x[OL. x[1], x[2], x{3), x[4], x[5], x[6}. x[T])

Figure 6.4.1 illustrates the Shell sort on this sample file. The lines underneath
each array join individual elements of the separate subfiles. Each of the subfiles is sorted
using the simple insertion sort.

We present below a routine to implement the Shell sort. In addition to the standard
parameters v and . it requires an array incrmnts. containing the diminishi ng increments
of the sort. and numinc, the number of elements in the array incrmnts.

Sec. 6.4 Insertion Sorts 367

Original ~ 25 57 48 37 12 92 86 33

file
Pass] 25 57 48 37 12 92 86 33
wan=5 | _
| ™ e
| _J
. N ;,
Pas2 25 57 33 31 12 92 86 48
span =3 | | |
| | |
| e

PRETACRAT G TSl St T Sl 2 TR T 1

: W_"l‘lll b]

Sorted 12 25 33 A7 48 57 86 92
file

Figure 6.4.1

void shellsort(int x[], int n, int incrmnts[], int numinc)

{

int incr, j, k, span, y;

for (incr = 0; incr < numinc; incr++) {
/* span is the size of the increment */
span = incrmnts(incr];
for (j =-span; j < n; j+)
/* Insert element x[j] into its proper */
"/* position within its subfile R
y = x[j1;
for (k = j-span; k >= 0 & y < x[k]; k -= span)
x[k+span] = x[kJ; * ‘
x[k+span] =y
}. /* end for */
}./* end for */
} /* end shellsort */

Be sure that you can trace the actions of this program on the sample file of Figure
6.4.1. Notice that on the last iteration, where span equals 1, the sort reduces to a simple
insertion. ¢ :

Sorting Chap. 6

The idea behind the Shell sort is a simple one. We have already noted that the
simple insertion sort is highly efficient on a file that is in almost sorted order. It is also
important to realize that when the file size n is small, an O(x%) sort is often more efficient
than an O(n log n) sort. The reason for this is that O(n?) sorts are generally quite simple
to program and involve very few actions other than comparisons and replacements on
each pass. Because of this low overhead, the constant of proportionality is rather small.
An O(n log n) sort is generally quite complex and employs a large number of extra
operations on each pass in order to reduce the work of subsequent passes. Thus its
constant of proportionality is larger. When £ is large, n? overwhelms n*log (n), so that
the constants of proportionality do not play a major role in determining the faster sort,
However, when n is small. n? is not much larger than n*log (n), so that a large difference
in those constants often causes an O(n?) sort to be faster.

Since the first increment used by the Shell sort is large, the individual subfiles are
quite small, so that the simple insert on sortc on those subfiles are fairly fast, Each sort of
a subfile causes the entire file to be more nearly sorted. Thus. although successive passes
of the Shell sort use smaller increments and therefore deal with larger subfiles, those
subfiles are almost sorted due to'the actions of previous pa =s. Thus, the insertion sorts
on those subfiles are also quite efficient. In this connection, it is significant to note that if
a file is partially sorted using an increment & and is subsequently partially sorted using
an increment j, the file remains partially sorted on the increment k. That is, subsequent
partial sorts do not disturb earlier ones.

The efficiency analysis of the Shell sort is mathematically involved and beyond
the scope of this book. The actual time requirements for a specific sort depend on the
number of elements in the array incrmnts and on their actoal values. One requirement
that is intuitively clear is that the elements of incrmnrs should be relativelv prime (that
is, have no common divisors other than 1). This guarantees that successive iterations
intermingle subfiles so that the entire file is indeed almost sorted when span equals |
on the last iteration.

It has been shown that the order of the Shel! sort can be approximated by
O(n(log n)*) if an appropriate sequence of increments is used. For other series of
increments, the running time can be proven to be O(n!). Empirical data indicates that
the running time is of the form a * n®, where a is between 1.1 and 1.7 and b is approxi-
mately 1.26, or of the form ¢ * n * (In(n))* = d = n=In(n), where c is approximately 0.3
and d is between 1.2 and 1.75. In general the Shell sort is recommended for moderately
sized files of several hundred elements.

Knuth recommends choosing increments as follows: define a function h recur-
sively so that A(1) = 1 and h(i+1) = 3% h(i)+ 1. Let x be the smallest integer such
that h(x) = n. and set numinc. the number of increments, to x — 2 and incrmnts|i] to
hinumine — i + 1) for i from 1 to numinc.

A technique similar to the Shell sort can also be used to improve the bubble sort.
In practice, a major source of the bubble sort’s inefficiency is not the number of com-
parisons but the number of interchanges. If a series of increments are used to define
subfiles to be bubble sorted individually. as in the case of the Shell sort, the initial bub-
ble sorts are on small files and the fater ones are on more nearly sorted files in which

few interchanges are necessary. This modified bubble sort, which requires very little
overhead, works well in practical situations.

Sec.6.4 Insertion Sorts 369

Address Calculation Sort

As a final example of sorting by insertion, consider the following technique called
sorting by address calculation (sometimes called sorting by hashing). In this method
a function f is applied to each key. The result of this function determines into which
of several subfiles the record is to be placed. The function should have the property
that if x =y, f(x) = f(). Such a function is called order-preserving. Thus all of the
records in one subfile will have keys that are less than or equal to the keys of the records
in ‘another subfile. An item is placed into a subfile in correct sequence by using any
sorting method; simple insertion is often used. After all the items of the original file
have been placed into subfiles, the subfiles may be concatenated to produce the sorted
result.

For example, consider again the sample file

25 57 48 37 12 92 86 33

Let us create ten subfiles, one for each of the ten possible first digits. Initially, each of
these subfiles is empty. An array of pointers f110] is declared, where 1] points to the
first tlement in the file whose first digit is i. Aftér scanning the first element (25)itis
placed into the file headed by f{2]. Each of the subfiles is maintained as a sorted linked
list of the original array elements. After processing each of the elements in the original
file. the subfiles appear as in Figure 6.4.2.

We present a routine to implement the address calculation sort. The routine as-
sumes an array of two-digit numbers and uses the first digit of each number to assign
that number to a subfile.

#define NUMELTS ...

addr(int x[], int n)
{
int f[10], first, i, J. Py Vi
struct {
int info;
int next;
} node[NUMELTS];

/* Initialize available Tinked list */
int avail = 0;
for (i =051 <n-1; i+)
node[i].next = i+1;
node[n-1) .next = -1;
/* Initialize pointers */
for (i = 0; i< 10; i+t)
(3] = -1;

for (i =0; 1 <n; i+) {

/* We successively insert each element into its */
/* ‘respective subfile using 1ist insertion. \Ji

Sorting Chap. 6

370

F(0) = nult

F() ——— |12, null

F2) =———— 25 null

F(3) _ﬁ 33 37 null
F(4) ———— 48 null

F(5) =t 57 null

F(6) = null

F(7) = null

F(8) —————a 86 null

F(9) = 92 null

Figure 6.4.2 Address calculation sort.
y = x[i);»

first = y/10; /* Find the 1st digit of a two digit number */
/* Search the linked list */
place (&f[first], y):
/* place inserts y into its proper position */
/* in the linked Tist pointed to by f[f':rst] «f
} /* end for */
/* Copy numbers back into the array x ¥/
1 =0;
for (3 = 0; j < 10; j++) {
p = f(31;
‘while (p != -1) {
x[i#+] = node[p].info;
p = node[p].next;
} /* end while */
} /* end for */
} /* end addr */

Sec. 6.4 Insertion Sorts 371

The space requirements of the address calculation sort are approximately 2 = n
(used by the array node) plus some header nodes and temporary variables, Note that if
the original data is given in the form of a linked list rather than as a sequential array, it
is not necessary to maintain both the array x and the linked structure node.

To eva]uate the time requirements for the sort, note the following: If the origi-
nal elements are approximately uniformly distributed over the m subfiles and the value
of n/m is approximately 1, the time of the sort is nearly O(n), since the function as-
signs each element to its proper file and little extra work is required to place the el-
ement within the subfile itself. On the other hand, if n/m is much larger than 1, or if
the original file is net uniformly distributed over the m subfiles, signiﬁcant work is

requxrcd to insert an' element into its proper subfile, and the time is thcrefore closer
to O(n?).

EXERCISES

6.4.1, The two-way insertion sort is a modification of the simple inscrtion sort as follows: A
separate output array of size n is set aside. This output array acts as a circular structure
as in Section 4.1. x[0] is placed into the middle element of the array. Once a contiguous
group of elements are in the array, room for a new element is made by shifting all smaller
elements one step to the left or all larger elements one step to the right. The choice of
which shift to perform depends on which would cause the smallest amount of shifting.
Write a C routine to implement this technigue.

6.4.2. The merge insertion sort proceeds as follows:

Step 1: For all even i between 0 and n — 2, compare x[i] with x[i + 1]. Place the larger in
the next position of an array [arge and the smaller in the next position of an array smail.
If # is odd. place x[n — 1] in the last position of the array small. (Large is of size ind,
where ind = (n — 1)/2; small is of size ind or ind + 1, depending on whether n is even
or odd.) '

Step 2: Sort the array large using merge insertion recursively. Whenever an element
largelj] is moved to largelk), small(j] is also moved to small[k]. (At the end of this step,
large(i] <= large[i + 1] for all i less than ind. and small[i} <= large[i]-for all i less
than or equal to ind.

Step 3: Copy small[0] and all the elements of /arge into x[0] through x{ind].

Step 4: Define the integer num[i] as (2"*' + (—1)')/3. Beginning with i = 0 and pro-
ceeding by 1 while num[i] <= (n/2) + 1, insert the elements small[num[i + 1]] down
to smalllnum[i] + 1] into x in turn, using binary insertion. (For example, if n = 20,
the successive values of num are num([0] = 1. num([1] = 1, num[2] = 3, num[3] =
and num(4] = 11, which equals (n/2) + 1. Thus the elements of small are inserted in
the following order: small[2]. small[1]: then small[4), small[3]: then smali[9], small[8),
small[7), small[6]. small[5). In this example, there is no smali[10].)

Write a C rowine to implement this technique.

6.4.3. Modify the quicksort of Section 6.2 so that it uses a simple insertion sort when a subfile
is below some size s. Determine by experiments what value of s should be used for
maximum efficiency.

Sorting Chap. 6

372

64.4.. vac that if a file is pamally sorted using an increment j in the Shell sort, it remains

partially sorted on that increment even after it is partially sorzed on another incre-
ment, k.

L]
6.4.5. Explain why it is desirable to chouse ull the increments of the Shell sort so that they are
relatively prime. .
6.4.6. What is the number of comparisons and interchanges (in terms of file size n) performed
" by each of the following sorting methods (a—j) for the following files:
1. A sorted file
2. A file that is sorted in reverse order (that is, from largest to smallest)
3. Afile in which the eiements x{0], x[2], x{4], ... are the smallest elements and are in
sorted order, and in which the elements x[1], x[3], x[5].. .. are the largest elements
and are in reverse soried order (that is, x[0] is the smallest, x[1] is the largest, 1]2]
is next to smallest, a{3] is the next to the largest, and so on)
4. A file in which x{0] through x[ind] (where ind = (n — 1)/2) are the smallest el-
_ements and are sorted, and in which x{ind + 1] through xin — 1] are the largest
eiements and are in reverse soned order
5. A file in which x[0], x{2), x[4], ... are the smallest elements in sorted order, and in
which x[1], x{3]. x[5],... are the largest elements in sorted order

(a) Simple inseruion sort

(b) lnsenion son using a binary search

(¢) List insertion sort

(d) Two-way insertion sort of Exercise 6.4.1

(¢) Merge insertion sort of Exercise 6.4.2

() Shell sort using increments 2 and |

() Shell sort using increments 3, 2, and 1

(h) Sheil sort using increments 8, 4, 2, and 1

(i) Shell sort using hcrements 7, 5, 3, and | ; i '

(J) Address calculation sort presented in the text i/
6.4.7. Under what circumstances would you recommend the use of each of the following sorts ™

over the others?

(a) Shell sort of this section

(b) Heapsort of Section 6.3

(c) Quicksort of Section 6.2
6.4.8. Determine which of the following sorts is most efficient.

(@) SimplEinsertion sort of this section

(b) Straight selection sort of Section 6.3

(¢) Bubble sort of Section 6.2

6.5 MERGE AND RADIX SORTS

Merge Sorts o

Merging is the process of combining two or more sorted files ino a third sorted
file. An example of a routine thar-accepts two sorted arrays « and b of n1 and 12 ele-
ments, respectively, and merges them into a third array ¢ conwining #3 elements is the
following:

Sec. 6.5 Merge and Radix Sorts ' 373

void mergearr(int a[], int-b[], int c[], int nl, int n2, int n3)
{ &

int apoint, bpoint, cpoint;

int alimit, blimit, climit;

alimit = nl-1;
blimit ='n2-1;
climit = n3-1;
if (n1 +n2 !=n3) {
. printf("array bounds incompatible/n");
exit(1);
Y}/ end if */
/* apoint and bpoint are indicators of how far */
/* we are in'arrays a and b respectively.)
apoint = 0;
bpoint = 0; . .
for (cpoint = 0; apoint <= alimit && bpoint <= blimit; cpoint++)
if (a[apoint] < b{bpoint])
c[cpoint] = alapoint++];

else .
c[cpoint] = b(bpoint++];
. while (apoint <= alimit)

c[cpoint++] = afapoint++];
while (bpoint <= blimit)
c[cpoint++] = b[bpoint++];
} /* end mergearr */

We can use this technique to sort a file in the following way. Divide the file into
n subfiles of size | and merge adjacent (disjoint) pairs of files. We then have approxi-
mately n/2 files of size 2..Repeat this process until there is only one file remaining of size
n. Figure 6.5.1 illustrates how this process operates on a sample file, Each individual
file is contained in brackets. :

We present a routine to implement the foregoing description of a straight merge
sort. An auxiliary array aux of size n is required to hold the results of merging two
subarrays of x. The variable size contains the size of the subarrays being merged. Since
at any time the two files being merged are both subarrays of x, lower and upper bounds
are required to indicate the subfiles of x being merged. /1 and 1 represent the lower
and upper bounds of the first file, and /2 and u2 represent the lower and upper bounds
of the second file, respectively. i and j are used to reference elements of the source files
being mierged, and k indexes the destination file aux. The routine follows:

#define NUMELTS ...
void mergesort(int x[], int n)

,int aux[NUMELTS); 4, 3, k, 11,012, size, ul, u2;

Sorting Chap. 6
374 3 e

Ontinal 1251 (571 (a8) (37 1120 921 (861 [33)

Py 125 57) (37 48) (2 921 (33 ’86)

ra (25,37 48, ..ST0 002 335086 592)
P;“ $121 TpgieaRy Logend geom i RugErd0 T

Figure 6.5.1 Successive passes of the merge sort.

size = 1; ./ Merge files of size'l *f
while (size < n) { !
11 =0; /% Initialize lower bounds of first ﬁ Te =/
k =0; /* ki is index: for auxiliary array.. %/
while (11+size < n) { /* Check to see if there! */
/* are two files to -merge */
is Compute remaining indices */ ;
12 = Tl+size;
ul = 12-1;
u2 = (12+4size-1 < n) 7 12+size-1 : n-1
/% Proceed through the two subfiles */
for (1 =11, 5 =12; 1<=u1&&]<-u2 k++)
/% Enter' smaller-into the array aux */
if (x[i] <= x[4]) ' !
aux[k]. = x[i++];
else
. aux[k] = x[j++];
[/* At this point, one of the subfiles %/
/* has been exhausted. Insert any 2/
/* remammg portions of the other file */
for (; 1 <= ul; k++)
E aux[K] = x[i+];
s for (; § <= u2; 'kis)
‘ aux[k] = x[j+];
/* Advance 11 to the start ‘'of the nextr pavr ‘of files. */
o= u2s+l;
}.7/* end while ¥/

Se¢. 65 Merge and Radix Sorts 375

/* Copy any remaining single file */
for (i =11; k < n; i+4)
aux(k++] = x[i];
/* Copy aux into x and adjust size */
for (i =0; i <n; j++)
x{i] = aux[i];
size *= 2; :
} /* end while */
} /* end mergesort */

There is one deficiency in the foregoing procedure that is easily remedied if the
program is to be practical for sorting large arrays. Instead of merging each set of files
into the auxiliury array aux and then recopying the array aux into x, alternate merges
can be performed from x to aux and from aux to x. We leave this modification as an
exercise for the reader,

There are obviously no more than log, n passes in merge sort, each involving n or
fewer comparisons. Thus, mergesort requires no more than n » log, n comparisons. In
fact,dt can be shown that mergesort requires fewer than n * loga n1— 21+ 1 comparisons,
on the average, compared with 1.386 * n = log, n average comparisons for quicksort. In
addition, quicksort can require O{n?) comparisons in the worst case, whereas mergesort
never réquires more than n x log, n. However, mergesort does require approximately
wice as many assignments as quicksort on the average, even if alternating nerges go
from x to aux and from aux 10 x.

Mergesort alse requires O(n) additional space for the auxilizry array, whereas
quicksort requires only O(log n) additional space for the stack. An algorithn: has been
developed for an in-place merge of two sorted subarrays in O(n) time. This algorithm
would allow mergesort to become an in-place O(# log n) sort. However. that technique
does require a great deal many more assignments and would thus not be as practical s
finding the O(n) extra spuce.

There are two modifications of the foregoing procedure that can result in more ef-
ficient sorting. The first of these is the natural merge. In the straight merge. the files ure

all the same size (except perhaps for the last file). We can, however, exploit any order
that may already exist among the elements and let the subfiles be defined as the longest
subarrays of increasing elements. You are asked to code such a routine as an exercise.

The second: modification uses linked allocation instead of sequential allocation.

- By adding a single pointer field to each record, the need for the second array aux can be
eliminated. This can be done by explicitly linking together each input and output sub-
file. The modification can be applied to both the straight merge and the natural merge.
You are asked to implement these in the exercises. :

Note that using mergesort on a linked list eliminates both of its drawbacks relative
to quicksort: 1t no longer requires signiticant additional space and does not require sig-
nificant data element movement. Generally, data elements can be large and complex, so
that assignment of data elements requires more work than the reassignment of pointers
that is still required by a list-based mergesort. .

Mergesort can also be presented quite nawrally as « recursive process in which
the two halves of the array are first recursively sorted using mergesort and, once sorted.

Soning Chap. 6

\

are joined by merging. For details, see Exercises 6.5.1 and 6.5.2. Both mergesort and
quicksort are methods that involve splitting the file into two parts, scrting the two parts
separately, and then joining the two sorted halves together. In mergesort, the splitting is
trivial (simply taking two haives) and the joining is hard (merging the two sorted files).
In quicksort, the splitting is hard (partitioning) and the joining is trivial (the two halves
and the pivot 2utomatically form a sorted array).

Insertion sort may be considered a special case of mergesort in which the two
halves consist of a single element and the remainder of the array. Selection sort may
be considered a special case of quicksort in which the file is partitioned into one half

consisting of the largest element alone and a second half consisting of the remainder of
the array.

The Cook-Kim Algorithm

Frequently, it is known that a file is almost sorted with only a few elements out of
order. Or it may be known that an input file is likely to be sorted. For small files that are
very nearly sorted or for sorted files, simple insertion is the fastest sort (considering both
comparisons and assignments) that we have encountered. For large files or files that are
slightly less sorted, quicksorz using the middle element as pivot is fastest. (Considering
only comparisons, mergesort is fastest.) However, another hybrid algorithm discovered
by Cook and Kim is faster “han both insertion sort and middle-element quicksort for
nearly sorted input. ! ‘ :

The Cook-Kim algorithm operates as follows: The input is examined for un-
ordered pairs of elements (for example, x[k] > x{k + 1]). The two elements in an
unordered pair are removed and added to the end of a new array. The next pair ex-
amined after an unordered pair is removed consists of the predecessor and successor
of the removed pair. The original array, with the unordered pairs removed, is now in
sorted order. The array of unordered pairs is then sorted using middle-elementquicksort
if it contains more than 30 elements, and simple insertion otherwise. The two arrays are
then merged. ‘

The Cook-Kim algorithm takes more advantage of the sortedness of the input than
any other sorts and is significantly better than middle-element quicksort, insertion sort,
merge sort, or Bsort on nearly sorted input. However, for randomly ordered input, Cook-
Kim is less efficient than Bsort (and certainly than quicksort or merge sort). Middle- -
element quicksort, merge sort, or Bsort is therefore preferable when large sorted input
files are likely but good random-input behavior is also required.

- Radix Sort

The next sorting method that we consider is called the radix sort. This sort is
based on the values of the actual digits in the positional representations of the numbers
being sorted. For example, the number 235 in decimal notation is written with a 2 in the
hundreds position, a 3 in the tens pasition, and 2 § in the units position. The larger of two
such integers of equal length can be determined as follows: Start at the most-significant
digit and advance through the least-significant digits as long as the corresponding digits

Sec. 6.5 Merge and Radix Sorts 377

in the two numbers match. The number with the larger digit in the first position in which
the digits of the two numbers do not match is the larger of the two numbers. Of course,
if all the digits of both numbers match, the numbers are equal.

We can write a sorting routine based on the foregoing method, Using the decimal
base, for example, the numbers can be partitioned into ten groups based on their most-
significant digit. (For simplicity, we assume that all the numbers have the same number
of digits, by padding with leading zeros, if necessary.) Thus every element in the “0"
group is less than every element in the “1” group, all of whose elements are less than
every element in the “2” group. and 50 on. We can then sort within the individual groups
based on the next significant digit. We repeat this process until each subgroup has been
subdivided so that the least-significant digits are sorted. At this point the original file
has been sorted. (Note that the division of a subfile into groups with the same digit in a
given position is similar to the partition operation in'the quicksort, in which a subfile is
divided into two groups based on comparison with a particular'element.) This method
is sometimes called the radix-exchange sort; its coding is left as an exercise for the
reader. .

Let us now consider an alternative to the foregoing method. It is apparent from
the foregoing discussion that considerable bookkeeping is involved in constantly sub-
dividing files and distributing their contents into subfiles based on particular digits. It
would certainly be easier if we could process the entire file as a whole rather than deal
with many individual files. '

Suppose that we perform the following actions 6n the file for each digit, beginning
with the least-significant digit and ending with the most-significant digit. Take each
number in the order in-which it appears in the file and place it into one of ten queues,
depending on the value of the digit currently being processed. Then restore each queue
to the original file starting with the queue of numbers with a 0 digit and ending with
the queue of numbers with a 9 digit. When these actions have been performed for each
digit, starting with the least significant and‘ending with the most significant, the file is
sorted. This sorting method is called the radix sort.

Notice that this scheme sorts on the less-significant digits first. Thus when all the
numbers are sorted on a more significant digit, numbers that have the same digit in that
position but different digits in a less-significant position are already sorted on the less-
significant position. This allows processing of the entire file without subdividing the
files and keeping track of Where each subfile begins and ends. Figure 6.5.2 illustrates
this sort on the sample file ;

25 -57.1A8 . 37,:7421,92:.186:133

Be sure that you can follow the actions depicted in the two passes of Figure 6.5.2.
We can therefore outline an algorithm to sort in the foregoing fashion as follows:

for (k = Jeast significant digit; k <= most significant digit; k+) {
for (i =0; 1 <n; i+s) {
y = x[1];
J = kth digit of y;
place y at rear of quepe[jl;
} /% end for ¥/

Sorting Chap. 6
378

Original file

25 57 48 37 12 92 86 33
Queues based on least significant digit. ;

Front Rear
queue [0]
queue (1]
queuc 2] 12 92
queue 3] 33
queue [4]
quene [S] 25
quene |6] 86
queue[T) 57 37
queue [8] 48
queue 9]
After first pass:

12 92 13 25 86 57 37 48

Queuges based on most significant digit.

Front Rear
gqueue (0]
queue(l) 12
queue [2) 25
queue 3] 33 37
queue [4] 48
yueue [5) 57
queue|6] -
queue(7)]
queue [8] 86

queue [9) 92

Sorted file: 12 25 33 37 48 57 86 92

Figure6.5.2 |Iliustration of the radix sort.

for (qu = 0; qu < 10; qu++)
place elements of queuve[qu] in next sequential position of x;
} /* end for */

We now present a program to implement the foregoing sort on m-digit numbera
“In order to save a considerable amount of work in processing the queues (especially in
the step where we retumn the queue elements to the original file) we write the program
using linked allocation. If the initial input to the routine is an array, that input is first
converted into a linear linked list; if the ongmdl input is already in linked format, this
step is not necessary and, in fact, space is saved. This is the same’ situation as in the
routine addr (address calculation sort) of Section 6.4. As in previous programs, we do
not make any internal calls to routines but rather perform their actions in place.

Sec. 6.5 = Merge and Radix Sorts 379

#define NUMELTS ...

void radixsort(int x[], int n)
{
int front[10], rear[10];
struct {
int info;
int next;
} node [NUMELTS];
int exp, first, i, j, k, p, q, y;
/* Initialize linked list */
for (i =0; 1 <n-1; i+4) {
node[i].info = x[i];
node[i].next = i+1;
} /% end for ¥/
node(n-1].info = x[n-1];
node[n-1].next = -1;
» first =0; /* first is the head of tne iinked 1ist */
for (k = 1; k < 5; k++) {
/* Assume we have four-digit numbers */
for (i =0; 1 <10; i++) {
/¥ Initialize queues */
rear[i] = -1;
front[i] = -1;
} /* end for %/
/* Process each element on the list */
while (first != -1) { ~
p = first:
first = node[first].next;
y = node[p].info;
/* Extract the kth digit =/
exp = power(10,k-1); /* raise 10 to (k-1)th power */
j = (y/exp)%10;
/* Insert y into queue[j] */
q = rear[j);
if (@ = -1)
front[j] = p;
else .
node[g] .next = p;
rear(j] = p;
} /* end while */

nou

/* At this point each record is in its proper queue based on digit k. We now */
(* form a single Tist from all the queve elements. Find the first element.

for (j = 0; j < 10 & front[j] == -1; j++)

fir;t = front[j];

Sorting
280

/% Link up remaining queues */
while (j <= 9) { /* Check if finished */
/* Find the next element */
for (i = j+1; i < 10 && front[i] == -1; i+4)

if (<=9 {

p=1;

node[rear(j]].next = front[i];
Yix end 1F %/

j= i;
} /* end while */
node{rear[p]].next = -1;
1 /* end for */
/% Copy back to original array */
for (1 =0; i <n;iss) {
x[1] = node[first].info;
first = node[first).next;
} /* end for */
} /% end radixsort */

The time requirements for the radix sorting method clearly depend on the
number of digits (m) and the number of elements in the file (n). Since the outer
loop for (k = |; k <= m: k++) is traversed m times (.nce for each digit) and
the inner loop » times (once for each element in the file), the sort is approximately
O(m = n). Thus the sort is reasonably efficient if the number of digits in the keys is not
too large. It should be noted, however that many machines have the hardware facilities
to order digits of a number (particularly if they are in binary) much more rapidly than
they can execute a compare of two full keys. Therefore it is not reasonable to com-
pare the O(m * n) estimate with some of the other results we arrived at in this chapter.
Note also that if the keys are dense (that is, if almost every number that can possi-
bly be a key is actually a key), m approximates log n, so that O(m * n) approximates
O(nlog n). The sort does require space to store pointers to the fronts and rears of the queues
in addition to an extra field in each record to be used as a pointer in the linked lists. If the
number of digits is large it is sometimes more efficient to sort the file by first applying the
radix sort to the most-significant digits and then using straight insertion on the rearranged
file. In cases where most of the records in the file have differing most-significant digits,
this process eliminates wasteful passes on the least-significant digits.

=XERCISES

6.5.1. Write an algorithm tor a routine merge(x, Io1, ub1, ub2) that assumes that x{{b1] through
x[ub1] and x[uh 1.+ 1] through x[ub2] are sorted and merges the two inte x{/b1] through
x{ub2).)

6.5.2. Consider the following recursive version of the merge sort that uses the routine merge
of Exercise 6.5.1. It is initiglly called by msort2(x, 0. n — 1). Rewrite the routinc by

eliminating recursion and simplifving. How does the resulting routine differ from the
one in the text?

Exercises 381

6.5.3.

6.5.4.

6.5.6.

382

void msort2(int x[], int 1b, int ub)
{
if (1b != ub) {
mid = (ub+1b)/2;
msort2(x, 1b, mid);
msort2(x, mid+1l, ub);
merge(x, 1b, mid, ub);
} /% end if */
} /* end msort2 ¥/

Leta(l1.12) be the average number of comparisons necessary to merge two sorted arrays
of length {1 and /2. respectively. where the elements of the arrays are chosen at random
from among /1 <+ [2 elements.

(a) What arc the values of «(/1.0) and a(0.02)?

(b) Show that for /1 = 0 and 12 > 0, a(l1,(2) is equal o (/11 + 12))=
b+ alll = 102y + (271 + 2yl + a(ll2 = 1)). (Hint: Express the
average number of comparisons. in terms of the average number of comparisons
after the first comparison.)

(c) Show that a(/1,(2) equals (ll*l"*(ll + 02+ 2T + D=2 + 1)),
(d) Verify the formuia in part ¢ for two arrays, one of sizc 2 and one of size I.
Consider the following method of merging two arrays « and b into ¢: Perform a binary
search for [0] in the array a. If b[0] is between ali] and afi + 1], output a| 1} through
ali] to the array ¢, then output »[0] to the array ¢. Next perform a binary search ror b[1]
in the subarray a(i + 1] 10 alla) (where la is the number of elements in the array a) and
repeat the output process. Repeat this procedure for every element of the array b.
(a) Write a C routine to implement this method.
(b) In which cases is this method more efficient than the method of the text? In which
cases is it less etficient?

Consider the following method (called binary merging) of merging 1wo sorted arrays
a and b into ¢: Let la and b be the number of elements of a and b. respectively, and
assume that la >= [h. Divide a into [b + 1 approximately equal subarrays. Compare
b[0] with the smallest element of the second shbarray of a. If 0] is smaller, find «li])
such that a[i] <= b[0] <= a[i + 1] by a binary search in the first subarray. Output
all elements of the first subarray up to and including ali] into ¢. and then output »1?
into ¢. Repeat this process with-b[1].5[2], .. ., b[j]. where b[/] is found to be larger ti.an
the smallest element of the second subarray. Output all remaining elements of the first
subarray and the first element of the second subarray into ¢. Then compare b{;j} with the
smallest element of the third subarray of a, and so on.
(a) Write a program to implement the binary merge.
(b) Show that if la = [b, thé binary merge acts like the merge described in the text.
(¢) Show thatif /b = 1, the binary merge acts like the merge of the previous exercise.
Determine the number of comparisons (as a function of n and m) that are performed in
merging two ordered files « and b of sizes i and 1, respectively, by euch of the following
merge methods, on each of the following sets of ordered files:

Merge Methods:

(a) the merge method presented in the text

tb) the merge of Exercise 6.5.4

(¢} the binary merge of Exercise 6.5.5

Sorting Chap. 6

65.’7.

6.5.8.

6.59.

Sets of Files:
(@)= n.and ali] < bli] < ali + 1] forall i
(b)y m=n andalnl(hll] ST R e —
(¢) m = nand aln/2] < b[1] < bim] < al(n/2)+ 11
(d) n=2+mandali}< bli] < ali + 1] for all i between O and m — 1

(e) n=2xmandalm+i] < bli] < alm + i + 1] for all i between 0 and m =
N n=2+mandal2*i] < pli) < al2*i+ 1] forall ibetween O and m — 1
(g m = land b[0] = aln,'2)
(h) m = 1and b{0] < al0}

AR =

)=) nd ain) < HIOT |
"('vi:néra?e‘i\;'b random sorted tlesof size 100 and merge them by cach of the methods of
the previous exercise, keeping track of the number of comparison, made. Do the same
for two files of size 10 and two files of size 1000, Repeat the experiment ten times. What
do the results indicate about the average efficiency of the merge methods?

Write a routine that sorts a file by first applying the radix sort to the most significant r
digits (where ris a given constant) and then uses straight insertion to sort the entire hile.
This eliminates excessive passes on Jow-order digits that may not be necessary. ¢

“Suchthat

~ Write a program that prints all sets of six positive integers al, a2. a3, a4, aS. and 46

al <= a2 <= a3 <=2
al < a4 <= a5 <= ab <= 20

and the sum of the squares of al. 42, and a3 equals the sum of the squares of a4, a5,

and a6. (Hint: Generate all possible sums of three squares. and use a sorting procedure
to find duplicates.)

Exercises

