
Queues and Lists

This chapter introduces the queue and the priority queue, two important data structures
often used to simulate real world situations. The concepts of the stack and queue are
then extended to a new structure, the list. Various forms of lists and their associated
operations are examined and several applications are presented.

4.1 THE QUEUE AND ITS SEQUENTIAL REPRESENTATION

A queue 
is an ordered collection of items from which items may be deleted at one end

(called the front 
of the queue) and into which items may be inseied at the other end

(called the rear of the queue).Figure 4.1.1a illustrates a queue containing three elements A, B. and C. A is at

the front of the queue and C 
is at the rear. in Figure 4.1 .lb an element has been deleted

from th queue. Since elements may be deleted only from the front and E are inserted,
of the queues A is

removed and B is now at the front. In Figure 4.1. Ic, when items D 
they must be inserted at the rear of the queue.

iserted into the queue before E, it will be removed earlier. The first

Since D waselemqflt inserted into a queue is the first element to be removed. For this reason a queue

is soCti	 called afifo
 (first-in. first-out) list as opposed to a stack, which IS a 

Jib



Front

A	 1? 

j 
C

Rear

Front

(b)	
Rear

Front

LI	 C	 1)

(C)	 Rear	 Figure 4.1.1 Queue

(last-in, first-out) list, Examples of a queue abound in the real world. A line at a bank
or at a bus stop and a group of cars waiting at a toll booth are all familiar examples of
queues.

Three primitive operations can be applied to a queue. The operation inserr(q_v)
inserts item x at the rear of the queue q. The operation x = remove(q) deletes the front
clement from the queue q and sets x to its contents. The third operation. emprv(q), re-
turns false or true depending on whether or not the queue contains any elements. The
queue in Figure 4. 1.1 can be obtained by the following sequence of operations. We
assume that the queue is initially empty.

insert(q, A);
insert(q, B);
insert(q, C);	 (Figure 4.1.1a)
x	 remove(g);	 (Figure 4.1.1b; x is set to A)
insert(q, D);
insert(q, E);	 (Figure 4.1.1c)

The insert operation can always be performed, since there is no limit to the number
of elements a queue may contain. The remove operation, however, can be applied only
if the queue is nonempty; there is no way to remove an element from a queue containin g-
no elements. The result of an illegal attempt to remove an elemen't from an empty queue
is called underfiow. The e,nj;tv operation is, of course, always applicable.
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The Queue as an Abstract Data Type

The representation of a queue as an abstract data type is straightforward. We. use

eltype to denote the type of the queue element and parameterize the queue type with
eltype.

abstract typedef <<eltype>> QUEUE(eltype);

abstract empty(q)
QUEUE(eltype) q;

postcondition	 empty == (len(q) == 0);

abstract eltype remove(q)
QUEUE(elrype) q;

precondition	 empty(q) == FALSE;

postcondition	 remove == frst(q');

q	 sub(q', 1, len(q') - 1);

abstract insert(q, elt)
QUEUE(eltype) q;

eltype elt;

postcondition	 q	 q' + <elt>;

C Implementation of Queues

How shall a queue be represented in C? One idea is to use an array to hold the
elements of the queue and to use two variables, front and rear, to hold the positions
within the array of the first and last elements of the queue. We might declare, a queue q
of integers by

#define MAXQUEUE 100

struct queue {
mt items[MftQUEUE];
mt front, rear;

Of course, using an array to hold a queue introduces the possibility Qf overflow

if the queue should grow larger than the size of the array. Ignoring the possibility of
underfiow and overflow for the moment, the operation insert(q, x) could be implemented

by the. statements

qitems [++q.'rear] =

and the operation x = remove(q) could be implemented by

x	 q.items [q.front++];
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Initially, q.rear is set to —1, and q.frontis set to 0. The queue is empty whenever
q.rear < q.front. The number of elements in the queue at any time is equal to the value
of q. rear — q.front + I.

Let us examine what might happen under this representation. Figure 41.2 illus-
trates an array of five elements used to represent a queue (that is. MAX QUEUE equals
5). Initially (Figure 4.1.2a), the queue is empty. In Figure 4.1.2b items A, B, and C have
been inserted. In Figure 4.1.2c two items have been deleted, and in Figure 4.1.2d two
new items, D and E, have been inserted. The value of q.fron: is 2, and the value of
q. rear is 4, so that there are only 4 — 2 + 1 = 3 elements in the queue. Since the array
contains five elements, there should be room for the queue to expand without the worry
of overflow.

However, to insert F into the queue, q.rear must be increased by I to 5 and
q.izems[51 must be set to the value F. But q.irems is an array of only five elements,
so that the insertion cannot be made. It is possible to reach the absurd situation Where
the queue is empty, yet no new element can be inserted (see if you can come up with
a sequence of insertions and deletions to reach that Situation). Clearly, the array repre-
sentation outlined in the foregoing is unacceptable.

One solution is to modify the remove operation so that when an item is deleted.
the entire queue is shifted to the beginning of the array. The operation x = remove(q
would then be modified (again: ignoring the possibility of underfiow) to
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x	 q.items[O];
for (1	 0; i < q.rear; ++)

q.tems[] = q.tet1is[i+1];
q.rear--;

The queue need no longer contain a front field, since the element at position 0 of the
array is always at the front of the queue. The empty queue is represented by the queue
in which rear equals - I.

This method, however, is too inefficient. Each deletion involves moving every
remaining element of the queue. If a queue contains 500 or 1000 elements, this is clearly
too high a price to pay. Further, the operation of removing an element from a queue
logically involves manipulation of only one element: the one currentl y at the front of the
queue. The implementation of that operation should reflect this and should not involve
a host of extraneous operations (see Exercise 4.1.3 for a more efficient alternative).

Another solution is to view the array that holds the queue as a circle rather than
as a straight line. That is, we imagine the first element of the array (that is. the element
at position 0) as immediately following its last element. This implies that even if the
last element is occupied, a new value can be inserted behind it in the first element of
the array as long as that first element is empty.

Let us look at an example. Assume that a queue contains three items in positions
2, 3, and 4 of a five element array. This is the situation of Figure 4.1.2d reproduced
as Figure 4.1.3a. Although the array is not full, its last element is occupied. If item F
is now inserted into the queue, it can be placed in position 0 of the array, as shown
in Figure 4.1.3b. The first item of the queue is in q.ife,ns[2], which is followed in the
queue by q.ite,ns(3], q.iteins141 and q.ite,nsLO]. Figure 4.1.3c, d, and e.show the status
of the queue as first two items C and Dare deleted, then  is inserted, and finally E is
deleted.

Unfortunately, it is difficult under this representation to determine when the queue
is empty. The condition q.rear < q.J'ronr is no longer valid as a test for the empty queue.
since Figure 4.1.3b, c, and d all illustrate situations in which the condition is true yet
the queue is not empty.

One way of solving this problem is to establish the convention that the value of
q.fronf is the array index immediately preceding the first element of the queue rather
than the index of the first element itself. Thus since q.reor is the index of the last element
of the queue, the condition q.front = = q. rear implies that the queue, is empty. A queue
of integers may therefore be declared and initialized by

Idefine MAXQUEUE 10.
Struct queue

mt items[MAXQUEIJE];
mt front, rear;

struct queue q;
q.front = q.rear	 MAXQUEUE-1;

Note that q.front and i/.rear are initialized to the last index of the array, rather
than to —1 or 0, because the last element of the array immediately precedes the first one
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within the queue under this representation. Since q.rear equals q.front, the queue is
initially empty.

The empty function may be coded as

mt empty(struct queue *pq)

return ((pq->front	 pq->rear) ? TRUE	 FALSE);
/* end empty *1

Once this function exists, a test for the empty queue is implemented by the state-
ment
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if (empty(&q))
/ queue is empty

else
/ queue is not empty

The operation remove(q) may be coded as

mt remove(struct queue p)

if (empty(pq)) {	 .
printf (queue underfiow');
eit(1);

} / end if
if (pq->front	 MAXQUEUE-1)

pq->front	 0;
else

(pq->front)++;
return (pq->items[pq->front));

} ./ end remove 7

Note that pq is already a pointer to a structure of type queueso the address operator
"&" is not used in calling empty within remove. Also note that pq—> front must be
updated before an element is extracted.

Of course, often an underfiow condition is meaningful and serves as a signal for
a new phase of processing. We may wish to use a function ren1vandtest, whose header
is

void remvandtest(struct queue *pq, mt px, mt pund)

If the queue is nonempty, this routine sets *pumzd to FALSE and *px to the element
removed from the queue. If the queue is empty, so that underfiow occurs, the routine
sets *pund to TRUE. The coding of the routine is left to the reader.

insert Operation

The insert operation involves testing for overflow, which occurs when the entire
array is occupied by items of the queue and an attempt is made to insert yet another
element into the queue. For example, consider the queue of Figure 4.1.4a. There are
three elements in the queue: C. D. and E in q.iremns[21. q.itemns[31. and q.items[4], re-
spectively. Since the last item of the queue occupies q.ue,n.v141, q.rear equals 4. Since
the first element of the queue is in q.items[21, q.fronf equals I. In Figure 4.1.4b and c,
items F and G are inserted into the queue. At that point, the array is full and an attempt
to perform any more insertions causes an overflow. But this is indicated by the fact
that q.front equals q.rear. which is precisely the indication for underfiow. It seems that
there is no way to distinguish between the empty queue and the full queue under this
implementation. Such a situation is clearly unsatisfactory.
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One solution is to sacrifice one element of the array and to allow a queue to grow
only as large as one less than the size of the array. Thus, if an array of 100 elements is
declared as a queue, the queue may contain up to 99 elements. An attempt to insert a
hundredth element into the queue causes an overflow. The insert routine may then be

written as follows:

void nsert(struct queue pq, mt x)

/ make room for new element

if (pq->rear == Mti(QUEUE-1)
pq->rear = 0;

else
(pq->rear)++;

/ check for overflow.
if (pq->rear	 pq->front) {

priitf (queue overflow");
exit (1)

} / end if V
pq->items[pq->rearl =
return;

} /a end insert 7

The test for overflow in in.'.ei't occurs utter pq— rear has been adjusted, whereas

the test for undertlow in remote occurs immediately upon entering the routine, before

p—.Joni is updated.
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Priority Queue

Both the stack and the queue are data structures whose elements are ordered based
on the sequence in which they have been inserted. The pop operation retrieve, the last
clement inserted, and the remove operation retrieves the first element inserted. If there
is an intrinsic order among the elements themselves (for example, numeric order or
alphabetic order), it is ignored in the stack or queue operations.

The priority queue is a data structure in which the intrinsic ordering of the ele-
ments does determine the results of its basic operations. There are two types of priority
queues: an ascending priority queue and a descending priority queue. An ascending
priority Queue is a collection of items into which items can be inserted arbitrarily and
from which only the smallest item can be removed. If aq is an ascending priority
queue, the operation pqinsert(apq.x) inserts element x into apq and pqmindele:e(aj'q)
removes the minimum element from apq and returns its value.

A descending priority queue is similar but allows deletion of only the largest
item. The operations applicable to a descending priority queue. dpq, are pqin.ccrl(dpq,x)
and pq'naxdelete(dpq). pqinserz(dpq.x) inserts element x into dpq and is logically ider,-
tical to jqinserr for an ascending priority queue. pqmaxdelele'(dpq) removes the maxi-
mum element from dpq and returns its value.

The operation empl-v(pq) applies to both types of priority queue and determines

	

whether a priority queue is empty. pqmindelete or jqmaxdelete call 	 be applied to
a nonempty priority queue [that is, if en?pr(pq) is RLSEJ.

Once pqmindelcte has been applied to retrieve the smallest element of an ascend-
ins priority queue, it can be applied again to retrieve the next smallest, and so on. Thus
the operation successively retrieves elements of a priority queue in ascending order.
(However, if a small element is inserted after several deletions, the next retrieval will
return that small element, which may he smaller than a pieviously retrieved element.)
Similarly, pqrnaxdelete retrieves elements of a descending priority queue in descend-
ing order. This explains the designation of a priority queue as either ascending or de-
scending.

The elements of a priority queue need not be numbers or characters that can be
compared directly. They may be complex structures that are ordered on one or sev-
eral fields. For example, telephone-book listings consist of last names, first names, ad-
dresses, and phone numbers and are ordered by last name.

Sometimes the field on which the elements of a priority queue are ordered is
not even part of the elements themselves; it may he a special, external value used
specifically for the purpose of ordering the priority queue. For example, a stack may
be viewed as a descending priority queue whose elements are ordered by time of in-
sertin. The element that was inserted last has the greatest insertion-time value and
is the oniy item that can he ietrived A queue ma y similarl y be viewed as an a-
cending priority queue whose elements are ordered by time of insertion. In both cases
the time of insertion is not part of the elements themselves but is used to order the
priority queue.

	

We leave as an exercise for the reader the development of all 	 specification
for a priority queue. We now look at implementation considerations.
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Array Implementation of a Priority Queue

As we have seen, a stack and a queue can be implemented in an array so that
each insertion or deletion involves accessing only a single element of the array. Unfor-
tunately, this is not possible for a priority queue.

Suppose that the n elements of a priority queue pq are maintained in positions 0
to n - I of an array pq.isems of size maxpq, ar.d suppose that pq.rear equals the first
empty array position. n. Then pqinserz(pq, x) would seem to be a fairly straightforward
operation:

if . (pq.rear > maxpq) {
pri ntf ('priority queue overflow");
exit(1);

) / end if
pq.items[pq.rear]
pg. rear++;

Note that under this insertion method the elements of the priority queue are not kept
ordered in the array.

As long as only insertions take place, this implementation works well. Suppose,
however, that we attempt the operation pqniizde1etel,pq) on an ascending priority queue.
This raises two issuis. First, to locate the smallest element, every .lement of the array
from j'q.iteinslOj throu gh pq.itesn.c[pq.rear - II must be examined. Therefore a deletion
requires accessing every element of the priority queue.

Second, how can an element in the middle of the array be deleted? Stack and
queue deletions involve removal of an item from one of the two ends and do not re-
quire any searching. Priority queue deletion under this implementation requires both
searching for the eenient to he deleted and removal of an element in the middle of an
array.

There are severa l solutions to this problem, none of them entirely satisfactory:

1. A special "empty" indicator can be placed into a deleted position. This indica-
tor can be a value that is invalid as an element (for example, - I in a priority
queue of nonnegative numbers), or a separate field can be contained in each array
element to indicate whether it is empty. Insertion proceeds as heftce. but when
pq. rear reaches nzaxpq the array elements are compacted into the ,t'ont of the array
and pq.rear is reset to one more than the number of elements. Th.r, are several
disadvantages to this approach. First, the search process to locate the maximum
or minimum element must examine all the deleted array positions in addition
to the actual priority queue elements. If man'' items have been deleted but no
compaction has vet taken p!ace, the deletion operation accesses many more ar-
ray elements than exist in the priority queue. Second, once in it while insertion
requires accessin g every single position of the array. as it runs out of room and
begins compaction.

2. The deletion operation labels a position empt y as iii the previous solution, but in-
sertion is modified to insert a new item in the first "empt y" position. Insertion then
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involves accessing every array element up to the first one that has been deleted.
This decreased efficiency of insertion is a major drawback to this solution.

3. Each deletion can compact the array by shifting all elements past the deleted
element by one position and then decretentingpq.,arby I. Insertion remains
unchanged. On the average, half of all priority queue elements are shifted for each
deletion, so that deletion beeomes quite inefficient. A slightly better alternative
is to shift either all preceding elements forward or all succeeding elements back-
ward. depejding on which group is smaller. This would require maintaining both
front and rear indicators and treating the array as a circular structure, as we did
for the queue.

4. Instead of maintaining the priorit y queue as an unordered array, maintain it as an
ordered. circular array as follows:

#define kXPQ 100
struct pqueue{

mt items[MAXPQ];
mt front, rear;

struct pqueue pq;

pq.Jronf is the position of the smallest element. pq.rear is. I greater than the posi-
tion of the largest. Deletion nolvcs merel y increasing pq.mr (for the ascend-
ing queue) or decreasing pq.rear (for a descending queue). Howeser, insertion
requires locating the proper position of the new element and shifting the preced-
ing or succeeding elements (again, the technique of shifting whichever group is
smaller is helpful). This method moves the work of searching' and shifting from
the deletion operation to the insertion operation. However, since the array is or-
dered, the search for the position of the new element in an ordered array is only
half us expensive on the average as findin g the maximum or minimum of the un-
ordered array, and a binary search might be used to reduce the cost even more.
Other techniques that involve leasing gaps in the array between elements of the
priority queue to allow for subsequent insertions are also possible.

We leave the C implementations of pqinse,-t. pqinindeletc, and pq'na.rde/ete for
the array representation of  priority queue as exercises for the reader. Searchin g ordered
and unordered arrays is discussed further in Section 7.1. In general, using all is not
an efficient method for implementing a priority queue. More efficient implementations
are examined in the next Section and in Sections 6.3 and 7.3.

EXERCISES

4.1.1. Write the function ;e#nmmmdtesftpq. px. punil) which sets 'piwd to FALSE and *px tothe item removed from a nonempty queue *pq and sets *pund to TRUE if the queue isempty.
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4.1.2. What set of conditions is necessary and sufficient for a sequence of insert and remove
operations on a single empty queue to leave the queue empty without causing under-
flow? What set of conditions is necessary and sufficient for such a sequence to leave a
nonempty queue unchanged?

4.1.3. If an array holding a queue is not considered circular, the text suggests that each remove
operation must shift down every remaining element of a queue. An alternative method
is to postpone shifting until rear equals the last index of the array. When that situation,
occurs and an attempt is made to insert an element into the queue, the entire queue is
shifted down, so that the first element of the queue is in position 0 of the array. What
are the advantages of this method over performing a shift at each remove operation?
What are the disadvantages? Rewrite the routines remove, insert, and empty using this
method.

4.1.4. Show how a sequence of insertions and removals from a queue represented by a linear
array can cause overflow to occur upon an attempt to insert an element into an empty
queue.

4.1.5. We can avoid sacrificing one element of a queue if a field qemply is added to the queue
representation. Show how this can be done and rewrite the queue manipulation routines
under that representation.

4.1.6. How would you implement a queue of stacks? A stack of queues? A queue of queues?
Write routines to implement the appropriate operations for each of these data structures.

4.1.7. Show how to implement a queue of Integers in  by using an array queuel 1001, where
queuelu is used to indicate the front of the queue. queue[l] is used to indicate its rear.
and queuel21 through queue 199] are used to contain the queue elements. Show how to
initialize such an array to represent the empt y queue and write routines remove. insert
and emptY for such an implementation.

4.1.8. Show how to implement a queue in  in which eactitem consists of a variable number
of integers.

4.1.9. A deque is an ordered setof items from which items may he deleted at either end and
into which items may be inserted at either end. Call the two ends of a deque left and
right. How can a deqtte he represented as a C array? Write four C routines,

rentvleft, rernvright, insrt7e r t, insrtrght

to remove and insert elements at the left and right ends of a deque. Make sure that the
routines work properly for the empty deque and that they detect overflow and under-
flow.

4.1.10. Define an input-restricted degue as a deque (see Exercise 4.1.9) for which onl y the
operations rem ilef't, remri-ighr. a'nd insrtleft are valid, and an output-restricted deqise
as a deque for which only the operations re,nvleft. insrzlefl, and insrtrighr are valid.
Show how each of these can be used to represent both a stack and a queue.

4.1.11. The Scratcheniup Parking Garage Contains a single lane that holds up to ten cars. Cars
arrive at the south end of the garage and leave from the north end. If a customer arrives
to pick up a car that is not the northernmost, all cats to the north of the car are moved
out, the car is driven out, and the other cars are restored in the same order that the'
sere in originali. Whenever a'car leaves, all cars to the south are moved forward
so that at all times all the empt y spaces are in the south part of the garage. Write a
program that reads a group of input lines. Each line contains an 'A' for arrival or a
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1)' fpr departure, and a license plate number. Carre assumed to arrive and depart in
the order specified by the input. The program should print a message each time that a
car arrives or departs. When a car arrives, the message should specify whether or not
there is room for the car in the garage. If there is no room for a car, the car waits until
there is room or until a departure line is read for the car. When room becomes available,
another message should be printed. When a car departs, the message should include the
number of times the car was moved within the garage, including the departure itself
hut not the arrival. This number is  if the car departs from the waiting line.

4.1.12. Develop an ADT specification for a priority queue.
4.1.13. Implement an ascendin g priority queue and ts operationc.pqin.cert, pqminddcte. and

empty. using each of the four methods presented in the text.
4.1.14. Show how to sort a set of input number; using a priority queue and the operations

pqin.cer:, pqminde!ete, and empty.
4.1.15. Implement a C++ class for a queue using the sequential representation.

4.2 LINKED LISTS

What are the drawbacks of using sequential storage to represent stacks and queues?
One major drawback is that a fixed amount of storage remains allocated to the stack
or queue even when the structure is actually using a smaller amount or possibly r
storage at all. Further, no more than that fi> cd amount of storage may be allocated, thus
introducing the possibility of overflow.

Assume that a program uses two stacks implemented in two separate arrays,
sI.iwn:s and s1iiems. Further, assume that each of these arrays has 100 elements. Then
despite the fact that 200 elements are available for the two stacks, neither can grow be-
yond 100 itc ms. Even if the first stack contains only 25 items, the second cannot contain
more than 100.

One s .lution to this problem is to allocate a single array items of 200 elements.
The first stick occupies itemsI0, items[ l}.....itents[topl], while the second stack
is allocatec 4'-om the other end of the array occuoying items[ l99], irems[1981....,
irem.c . Thus when one stack is not occupying gma ge the other stack can use that
storage. .. course, two distinct sets of pop. push. and empty routines are necessary
for the two stacks. since one grows by incrementing top!, while the other grows by
decrementinc top2.

Unfortunately, although such a scheme allows two stacks to share a common area,
no such simple solution exists for three or more stacks or even for two queues. Instead,
one must keep track of the tops and bottoms (or fronts and rears) of all the structures
sharing a sin g le large array. Each time that the growth of one structure is about to im-
pinge on the storage currently being used b y another, neighboring structures must be
shifted within the single array to allow for the growth.

In a sequential representation. the items of a stack or queue are implicitly ordered
by the sequential order of storage. Thus. if q.items1x] represents an element of a queue,
the next element will he q.itemsjx + Fl (or ifx equals MAXQUEUE - I. q.itemslOP.
Suppose that the items of a stack or a queue were explicitly ordered, that is, each item
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contained within itself the address of the next item. Such an explicit ordering gives
rise to a data structure pictured in Figure 4.2.1, which is known as a linear linked list.
Each item' in the list is called a node and contains two fields, an information field and a
next address .field The information field holds the actual element on the list. The next
address field contains the address of the next node in the list. Such an address, which is
used to access a particular node, is known as a pointer. The entire linked list is accessed
from an external pointer list that points to (contains the address of) the first node in the
list. (By an "external" pointer, we mean one that is not included within a node. Rather
its value can be accessed directly by referencing a variable.) The next address field of
the last node in the list contains a special value, known as null, which is not a valid
address. This null pointer is used to signal the end of a list.

The list with no nodes on it is called the empty list or the null list. The value of
the external pointer list to such a list is the null pointer. A list can be initialized to the
empty list by the operation list = null.

We now introduce some notation for use in algorithms (but not in C programs).
If p is a pointer to a node, node(p) refers to the node pointed to by p, info(p) refers to
the information portion of that node, and next(p) refers to the next address portion and
is therefore a pointer. Thus, if next,p) is not null, info(nextp)) refers to the information
portion of the node that follows node(p) in the list.

Before proceeding with further discussion of linked lists, we should mention that
we are presenting them primaril y as a data structure (that is, an implementation method)
rather than as a data type (that is, a logical structure with precisely defined primitive
operations). We therefore do not present an ADT specification for linked lists here, In
Section 9.1 we discuss lists as abstract structures and present some primitiv' operations
for them.

In this section, we present the concept of a linked list and show how it is used. In
the next section, we show how linked lists can be implemented in C.

Inserting and Removing Nodes from a List

A list is a d y namic data structure. The number of nodes on a list may vary dra-
matically as elements are inserted and removed. The dynamic nature of a list may be
contrasted with the static nature of an array, whose size remains constant.

For example, suppose that we are given a list of integers, as illustrated in Figure
4.2.2a. and we desire to add the inteer 6 to the front of that list. That is. we wish to
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Figure 4.2.2 Adding an element to the front of a list.

change the list so that it appears as in Figure 4.2.2f. The first step is to obtain a node
in which to house the additional integer. If a list is to grow and shrink, there must be
some mechanism for obtaining empty nodes to be added onto the list. Note that, unlike
an array, a list does not come with a presupplied set of storage locations into which
elements can be placed.

Let us assume the existence of a mechanism for obtaining empty nodes. The op-
eration

p getnodeO;
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obtains an empty node and sets the contents of a variable named p to the address of
that node. The value of p is then  pointer to this newly allocated node. Figure 4.2.2b
illustrates the list and the new node after performing the getnode operation. The details
of how this operation works will be explained shortly.

The next step is to insert the integer 6 into the inft portion of the newly allocated
node. This is done by the operation

info(p) - 6;

The result of this operation is illustrated in Figure 4.2.2c.
After setting the info portion of nodep), it is necessary to set the next portion of

that node. Since node(p) is to be inserted at the front of the list, the node that follows
should be the current first node on the list. Since the variable list contains the address
of that first node, node(p) can be added to the list by performing the operation

next(p)	 list;

This operation places the value of list (which is the address of the first node on the list)
into the next field of node(p). Figure 4.2.2d illustrates the result of this operation.

At this point, p points to the list with the additional item included. However, since
list is the external pointer to the desired list, its value must be modified to the address
of the new first node of the list. This can be done by performing the operation

list

which changes the value of list to the value of p. Figure 4.2.2e illustrates the result of
this operation. Note that Figure 4.2.2e and f are identical except that the value of p is
not shown in Figure 4.2.2f. This is because p is Used as an auxiliar y variable during
the process of modifying the list but its value is irrelevant to the status of the list before
and after the process. Once the foregoing operations have been performed, the value of
p may be changed without affecting the list.

Putting all the steps together, we have an algorithm for adding the integer 6 to the
front of the list list:

p = getnodeo;
info(p) = 6;
next(p) = list;
list = p;

The algorithm can obviously be generalized so that it adds any object x to the front
of a list list by replacing the operation info(p) = 6 with info(p) = x. Convince your-
self that the algorithm works correctly, even if the list is initially empty
(list == null).

Figure 4.2.3 illustrates the process of removing the first node of a nonempty list
and storing the value of its info field into a variable x. The initial configuration is shown
in Figure 4.2.3a, and the final configuration is shown in Figure 4.2.3f. The process itself
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Figure 4.2.3 Removing anode from the front of a list.

is almost the exact opposite of the process to add a node to the front of a list. To obtain
Figure 4.2.3d from Figure 4.2.3a, the following operations (whose actions should be

clear) are performed:

P = list;	 (Figure 4.2.3b)

list = next(p);	 (Figure 4.2.3c)

x = info(p);	 (Figure 4.2.3d)
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At this point, the algorithm has accomplished what it was supposed to do: the
first node has been removed from list, and .v has been set to the desired value. However.
the algorithm is not yet complete. In Figure 4.2.3d, /?still points to the node that was
formerly first on the list. However, that node is currently useless because it is no longer
on the list and its information has been stored in x. (The node is not considered to be on
the list despite the fact that next(p) points to a node on the list, since there is no way to
reach node(p) from the external pointer list.)

The variable p is used as an auxiliary variable during the process of removing
the first node from the list. The starting and ending configurations of the list make no
reference to p. It is therefore reasonable to expect that p will be used for some other
purpose in a short white after this Operation has been performed. But once the value of
p is changed there i s no way to access the node at all, since neither an external pointer
nor a next field contains its address. Therefore the node is currentl y useless and cannot
be reused, yet it is taking up valuable storage.

It would be desirable to have some mechanism for making node(p) available for
reuse even if the value of the pointer p is changed. The operation that does this is

freenode(p);	 (Figure 4.2.3e)

Once this operation has been performed, it becomes illegal to reference node(p). since
the node is no longer allocated. Since the value of l7 is a poin ter to a node that has been
freed, any reference to that value is also illegal.

However, the node might be reaflocated and a pointer to it reassigned to v by
the operation p = ge:node. Note that we say that the node "might be" reallocated,
since the gelnode operation returns a pointer to some newly allocated node. There is no
guarantee that this new node is the same as the one that has just been freed.

Another way of thinking of gernode and Yreenode is that gelnode creates a new
node, whereas freenode destroys a node. Under this view, nodes are not 'used and
reused but are rather created and destroyed. We shall say more about the two operations
geinode and freenode and about the concepts they represent in a moment, but first we
make the following interesting observation.

Linked Implementation of Stacks

The operation of adding an element to the front of a linked list is quite similar
to that of pushing an element onto a stack. In both cases, a new item is added as the
only immediately accessible item in a collection. A stack can be accessed only through
its top element, and a list can be accessed only front the pointer to its first element.
Similarly, the operation of removing the first element from a linked list is analogous to
popping a stack. In both cases the only immediately accessible item of a collection is
removed from that collection, and the next item becomes immediatel y accessible.

Thus we have discovered anotber way of implementing a stack. A stack may
be represented by a linear linked list. The first node of the list is the top of the stack.
If an external pointer .c points to such a linked list, the operation push(s,x) may be
implemented by
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p. getnode();
WO(P) -
next(p) -
S - p;

The operation empty(s) is merely a test of whether s equals null. The operation
x = pap(s) removes the first node from a nonempty list and signals underllow if the list
is empty:

If (e,ty(5)) {
printf(stack underf1ow)
exir(1);

}
else

P -
$ - next(p);
x - info(p);
freenode(p);

} 7* end if /

Figure 4.2.4a illustrates a stack implemented as a linked list, and Figure 4.2.4b illus-
trates the same stack after another element has been pushed onto it.

fb)
'ear

-i--[_I	 I_:1_H	 I •1-I

rear

(d)

Figure 42.4 Stack and queue as linked lists.
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The advantage of thclist implementation of stacks is that all stacks being used by
a program can .share the'same available list. When any stack needs a node, it can obtain
it froin the single available list. When any stack no longer needs a node, it returns the
nod td that same available list. As long as the total amount of space needed by all the
stacks at any on&time is less than the amount of space initially available to them all,
each stack is able to grow and shrink to any size. No space has been preállocated to any
.single stack and no stack is using space that it does not need. Furthermore, other data
structures such as quetiek may also share the same set of nodes.

getnode and fre.enod. Operations

We now return to a liscussion of the gernode and frecnode operations. In an ab-
stract, idealized world it is possible to postulate an infinite number of unused nodes
available for use by abstract algorithms. The getnode operation finds one such node
and makes it available to the algorithm. Alternatively, the getnode operation may be re-
garded as a in 

that manufactures nodes and never breaks down. Thus, each time
that getnode is invoked, it presents its caller with a brand new node, different from all
the nodes previously in use.

In such an ideal world, the freenode operation would be unnecessary to make
a node available for reuse. Why use an old second-hand node when a simple call to
getnode can produce a new, never-before-used node? The only harin that an unused
node can do is to reduce the number of nodes that can possibly be used, but if an infinite
supply of nodes is available, such a reduction is meaningless. Therefore there is no
reason to reuse a node.

Unfortunately, we live in a real world. Computers do not have an infinite amount
.of storage and Cannot manufacture more storage for immediate utilization (at least, not
yet). Therefore there are a finite number of nodes available and it is impossible to use
more than that number at any given instant. If it is desired to use more than that number
over a given period of time, some nodes must be reused. The function of frcçnode is to
make a node that is no longer being used in its current context available for reuse in a
different context.

We might think of a finite pool of empty nodesexisting initiall y. This pool
cannot be accessed by the programmer except through the getnode and freenode op-
erations. getnode removes a node from the pool, whereas freenode returns a node
to the pool. Since any unused node is as good as any other, it makes no differ-
ence which node is retrieved by guinode or where within the pool a node is placed
byfregnode.

• The most natural form for this pool to take is that of a linked list acting as  stack.
The list is linked together by the next field in each node. The getnode operation removes
the first node from this list and makes it available for use. The freenode operation adds
a node to the front of the list, makin g it available for reallocation hv the next getoodc.
The list of available nodes is called the available list.

What happens when the available list is empty? This means that all nodes are
currently in use and it is impossible to allocate any more. If a program calls on geriwde
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when the available list is empt y, the amount of storage assigned for that program's data
structures is too Small. Therefore, overflow occurs. This is similar to the situation of a
stack implemented in an array verflowing the array bounds.

As long as data structures are abstract, theoretical concepts in a world of infinite
space, .there js no possibility of overflow. It is only when they are implemented as real
objects in a finite	 t that the possibility of overflow arises.

Assume that an external pointer avail points to a list of available nodes. Then the
Operation

P = getnodeQ;

is implemented as follows:

if (avail == null)
printf("overf1o");
exir(1);

P = avail;
avail	 next(avail);

Sin:e the possibility of overflow is accounted for in the gernude operation, it need
not be mentioned in the list implementation of pus/i. If a stack is about to overflow all
available nodes, the sttcrnent p = getnodeO within the push operation results in an
overflow.

The implementation of f-eenode(p) is straightforward:

next(p) = avail;
avail = p;

Linked Implementation of Queues

Let us now examine how to represent a queue as a linked list. Recall that items
are deleted from the front of a queue and inserted at the rear. Let a pointer to the first
element of a list represent the front of the queue. Another pointer to the last element
of the list represents the rear of the queue, as shown in Figure 4.2.4c. Figure 4.2.4d
illustrates the same queue after a new item has been inserted.

Under the list representation, a queue q consists of a list and two pointers, q,fronr
and q.rear. The operations empry(q) and x = remove(q) are completely analogous to
empt y(s) and x = pop(s), with the pointer q.front replacing S . However, special attention
is required when the last element is removed from a queue. In that case. q.rear must
also be set to ,i,/l. since in an empty queue both q.front and q.rew- must be null. The
al gorithm for .v = remove(q) is therefore as foflovs:
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[ (empty(q)) {
printf('queue underf1o');
ext(1);

p	 q. front;
x	 info(p);
g.front	 next(p);
if (q.front == null)

q.rear - null;
freenode(p);
return();

The operation inserl(q. x) is implemented by

p = getriodeQ;
nfo(p) =

next(p)	 null;
if (q. rear = null)

q. front = p;
else

next(q.rear)	 p;
q.rear = p;

What are the disadvantages of representing a stack or queue by a linked list?
Clearly, a node in a linked list occupies more storage than a correspondin g element in
an array, since two pieces of information per element are necessary in a list node (inf
and next), whereas only one piece of information is needed in the array implementation.
However, the space used for a list node is usually not twice the space used by an array
element, since the elements in such a list usually consist of structures with man y sub-
fields. For example, if each element on a stack were a structure occupying ten words.
the addition of an eleventh word to contain a pointer increases the space requirement by
only 10 percent. Further, it is sometimes possible to compress information and a pointer
into a single word so that there is no space degradation.

Another disadvantage is the additional time spent in managing the available list.
Each addition and deletion of an element from a stack or a queue involves a correspond-
ins deletion or addition to the available list.

The advantage of using linked lists is that all the stacks and queues of a program
have access to the same free list of nodes. Nodes not used by one stack ma y he used by
another, as bog as the total number of nodes in use at any One time is not greater than
the total number of nodes available.

Linked List as a Data Structure

Linked lists are important not only as a means of implementing stacks and queues
but as data structures in their own right. An item is accessed in a linked list b travers-
in g the list from its beginnin g . An array implementation allows access to the nih item
in a group using a single operation. whereas a lis t implementation requires n operations.
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It is necessary to pass through each of the first it - i elcrnents before reaching the
'7th element because there is no relation between the memor y location occupied b y an
element of a list and its position within that list.

The advantage of a list over an array occurs when it is necessary to insert or delete
an clement in the middle of a group of other elements. For example, suppose that we
wished to insert an element x between the third and fourth elements in an array of size
JO that currentl y contains seven items (40] through x(61). Items 6 through 3must first
he moved one slot and the new element inserted in the newly available position 3. This
process is illustrated by Figure 4.2.5a. In this case insertion of one item involves moving
four items in addition to the insertion itself. If the array contained 500 or 1000 elements,
a corrcspondingi larger number of elements would have to he moved. Similarl y, to
delete an element from an array without leaving a gap. all the elementsbeyond the
element deleted must he moved one position.

On the other hand. suppose the items are stored as a list. If p points to
-
 an element

of the list, inserting a new element after node(p) involves allocating a node, inserting the
information, and adjusting two pointers. The amount of work required is independent
of the size of the list. This is illustrated in Figure 4.2 5b.

Let i/Lsafrer(p.x) denote the operation of inserting an item x into a list after a ncde
pointed to by p. This operation is implemented as follows:

q = gernode(,);
nfo(q) =

rext(o)	 nexr(p);
r'extp) = 0;
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An item can be inserted only after a given node, not before the node. This is
because there is no way to proceed from a given node to its predecessor in a linear list
without traversing the list from its beginning. To insert an item before node(p), the next
field of its predecessr must be changed to point to a newly allocated node. But, given p,
there is no way to find that predecessor. (However. it is possible to achieve the-effect of
inserting an element before node(p) by inserting the element immediately after nodep
and then interchanging info(p) with the info field of the newly created successor. We
leave the details for the reader.)

Similarly, to delete a node from a linear list it is insufficient to be given a pointer
to that node. This is because the next field of the node's -predecessor must be changed
to point to the node's successor, and there is no direct way of reaching the predeces-
sor of a given node. The best that can be done is to delete a node iollowing a given
node. (However, it is possible to save the contents of the following node, delete the
following node, and then replace the contents of the given node with the saved infor-
mation. This achieves the effect of deleting a given node unless the given node is last in
the list.

Let delafn'op,x) denote the operation of deleting the node following node(p) and
assigning its contents to the variable x. This operation may be implemented as follows:

q	 ne,t(p);
= info(q);

next(p) = next(q);
freenode(q);

The freed node is placed onto the available list so that it may be reused in the future.

Examples of List Operations

We illustrate these two operations, as well as the push and pop operations for lists,
with some simple examples. The first example is to delete all occurrences of the number
4 from a list list. The list is traversed in a search for nodes that contain 4 in their info
fields. Each such node must he deleted from the list. But to delete a node from a list, its
predecessor must be known. For this reason two painters, p and q, are used. p is used to
traverse the List, and q always points to the predecessor of p. The algorithm makes use
of the pop operation to remove nodes from the beginniop of the list, and the delafrer
operation to remove nodes from the middle of the list.

= null;
P = list;
while (p = nu77)

if (info(p)	 4)
if (q == null) {

/ remove first node of the list
X	 pop(list);
P = list;
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•	 else{
/ delete the node after q and move up p
P next(p);
delafter(q, x);

}	 1* end if
else (

/ Continue traversing the list
qp;
p next(p);

} / end if
} / end while

The practice of using two pointers, one following the other. is very common in
working with lists. This technique is-.used in the next example as well. Assume that a list
list is ordered so that smaller items precede larger ones. Such a list is called an ordered
list. It is desired to insert an item x.irito this list in its proper place. The algorithm to do
so makes use of the push operation to add a node to the front of the list and the in.cafter
operation to add a node in the middle of the list:

q = null;
for (p = list: p = null M x , info(p); p next(p))

q
/ at this point, a node containing x must be inserted */
if (q = null) J insert 	 at the head of the list

push(list, x);
else

insafter(q, x);	 -

This is a very common operation and will be denoted by place(list. x). -
Let us examine the efficiency of the place operation. How many nodes are ac-

cessed, on the average, in inserting a new element into an ordered list? Let us assume
that the list contains ii nodes. Then x can he placed in one of n + I position'; that is. it
can be found to be less than the first element of the list, between the first and the sec
ond, . . between the (n - I)st and the nth, and Creater than the nth. If ', than the
tir.st, place accesses only the first node of the list (aside front the new u-i: ontaining
x); that is, it immediately determines that x < info(list) and inserts annd crntaining

using push, If s is between the kth and (k + l)st element, place accesses the first k
nodes; only after finding x to be less than the contents of the (k + I )st node is .r inserted
using insatfrr: If x is greate than the nth element, then all n nodes are' accessed.

Now suppose that it is equally likely that x is inserted into any one ot"the
n + .1 possible positions. (lf.this is true, we say that the insertion is random.) Then.
the pro'babtlity.of inserting an any particular position is l/(n + I). If the element is
inserted between the kth and the (k + l)st position, the number of accesses is k + I. If
the element is inserted after the nth element, the number of accesses is n. The average
.number of nodes accessed, A. equals the sum, over all possible insertion positions, of
the products of the probability of inserting at a particular position and the humber of
accesses required to insertn element at that position. Thus
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A =	 I + (_	 +	 + (—*(._ I) + (* n\n+ I)	 kn -f I)	 \n+ 1/	 n+ l)

P1+1J
or

	

tn±1)	 n+l
Now -- 2 +	 -1- n = n *	 (This can be proved easily by mathematical

induction.) Therefore.

I I	 n+l	 n
+A = 1- *(fl._____)+ _.-. = –

n' i)	 2	 ii ± I	 2	 n + I
When ii is large, ;:/(n + I) is very close to 1, so that A is approximately n/2 ± I or
(it + 2) 2. For large n. Ais close enou gh to n 2 that we often say that the operation
of randomly insertin g an element into an Ordered list requires approximately n 2 node
accesses on average.

List Implementation of Priority Queues

An ordered list can he used to represent a priorit y queue. For an ascending priority
queue, insertion (pqinser,) is implemented by the place operation, which keeps the list
order and deletion of the minimum element (pqinindeieu) is implemented by the
pop operation, which removes the first element from the list. A descending priority
queue can be implemented b y keeping' list in descending, rather than ascending.
order or by usin g remove to implement pqnwxdeletc. A priothy queue implemented as
an ordered linked list requires examinin g an average of approximatel. n • 2 nodes for
insertion, but onl y one node for deletion,

An unordered list ma y also he used asa priority queue. Such a list requires ex-
amining only one node for insertion (by implementing pqinseri using push or insert)
but always requires examining n elements for deletion (traverse the entire list to find
the minimum or maximum and then delete that node). Thus an ordered list is somewhat
more efficient than an unordered list in implementing a priority queue.

The advantage of a list over an array for implementing a priority queue is that no
shifting of elements or gaps are necessary in a list. An item can be inserted into a list
without moving any other items, whereas this is impossible for an array unless extra
space is left empty. We examine other, more efficient implementations of the priority
queue in Sections 6.3 and 7.3.

Header Nodes	 -

Sometimes it is desirable to keep an extra node at the front of a list. Such a node
does no represent an item in the list and is called a header node or a list header. The
i,,f-i portion of such a header node mi ght h unused, as illustrated in Figure 4.2.6a. More
often, the into portion f such a node could he used to keep g lobal information about
the entire list. For example. Figure 4.2.fih illustrates a list in which the info portion
of the header node contains the number of nodes (not ineludia g the heztder) ill the list. In
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such a data structure more work is needed to add or delete an item from the list, since
the count in the header node must be adjusted. However, the number of items in the list
may be obtained directly from the header node without traversing the entire list.

Another example of the use of header nodes is the following. Suppose a factory
assembles machinery out of smaller units. A particular machine (inventory number.
A746) might be composed of a number of different parts (numbers 11841, K32 I, A087.J492•. G593). This assembly could be represented by a list such as the one illustrated in
Figure 4.2.6c, where each item on the list represents a component and where the header
node repreents the entire assembly. The empty list would no longer be represented by
the null pointer but rather by a list with a single header node, as in Figure 4.2.6d.

Of course, algorithms for operations such as enitr.push, /mji, insert, and remotv
must be rewritten to account for the presence of a header node. Most of the routines
become a bit more complex, but some, like insert, become simpler, since an external
list pointer is never null. Weleave the rewriting of the routines as an exercise for the
reader. The routines insajier and delafler need not be changed at all. In tact, when a
header nude i used, insafier and delafter can be used instead of ptts/t and pop, since
the first item in such a list appears in the node that follows the header node, rather than
in the first node on the list.

If the info portion of a node can contain a pointer, additional possibilities for the
use of a header node present themselves. For extmpIe, the info portion of a list header
might contain a pointer to the last node in the list. as in Figure 4.2,6e. Such an imple-
mentation simplifies the representation of' a queue. Until now, two external pointers,
front and rear. were necessary for a list to represent a queue. However, now only a
single external pointer q to the header node of the list is necessary. next(q) points to the
front of the queue, and info(q) to its rear.

Another possibility for the use of the info portion of a list header is as a pointer
to a "current" node in the list during a traversal process. This would eliminate the need
for an external pointer during traveral.

EXERCISES

4,2,1. 'fItc a set ( i t routines for lrnpiementtno several stacks and queues within a single array.
4.2.2. What are the advantas and disadvantatics of representin g a group of items as an array

versus it linear linked- list ?

4.2.3. Write an algorithm to pertorm each of the fol lowinc operations.
la)	 Append all lenient to the end of a list.
(b) Concatenate two lists.
(ci	 Free all the nodes iii it
(d) Reverse a IN. 	 that the last element becomes the first, and so on.
(ci	 Delete the last eletitnt front it
(f) Delete the nth clement front a list.
ig 1 Combine two ordered lists into a sin g le ordered list.
(hi	 Form it list containing the union of the Clettlents of two lists
(i) hum it lis t containing the Intersection of thc elements of two list,
lj)	 litseti all 	 otter the ,itlt clentent of it list.
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(k) Delete every second element from a list.
(I) Place the elements of a list in increasing order.

(in) Return the sum of the integers in a list.
(it) Return the number of elements in a list.
.(o) Move node(p) forward n positions in a list.
(p) Make a second copy of a list.

4.14. Write algorithms to perform each of the operations of the previous exercise on a group
of elements in contiguous positions of an array.

4.2.5. What is the average number of nodes accessed in searching for a-particular element in
an unordered list? in an ordered list? lnan unordered array? In an ordered array?

4.2.6. Write algorithms for pqin.cért and pqrnindeleze for an ascending priority queue imple-
mented as an unordered list and as an ordered list.

4.2.7. Write algorithms to perform each of the operations in Exercise 4.2.3, assuming that each
list contains a header node containing the number of elements in the list.

4.2.8. Write an algorithm that returns a pointer to a node containing element x in a list with
a header node. The info field of the header should contain the pointer that traverses the
list.

4.2.9. Modify the C++ stack template implementation given at the end of Section 2.3 to use
the pointer representation of stacks.

4.3 LISTS IN •C

Array Implementation of Lists

- - How can linear lists be represented in C? Since a list is simply a collection of
nodes, an array of nodes immediatel y suggests itself. However, the nodes cannot be
ordered by the array ordering; each must contain within itself a pointer to its succe.ssor.
Thus a group of 500 noçles might be declared as an array node as follows:

Idefine NUMNODES 500
struct nodetype {

mt info, next;

struct nodetype node(NUMNOOES);

In this scheme a pointer to a node is represented by all array index. That is,
pointer is an integer between Oand NUMNODES - I that references a particular cle-
ment of the array node. The null pointer is represented by the integer - I. Under this
implementation, the C expression node[p] is used to reference node(p), info(p) is ref-
erenced by tiode[p].inj, and neAnj') is referenced by node[l] next. null is represented
by —t	 -	 .	 -

Forexainple, suppose that the variable list represents a pointer to a list, if list has
the value 7, node [7] is the first node on the list, and node[7 j.inf, is the first data item on
the list. The second node ot'the list is given by.nodf71.,e,t. Suppose that nodel71.next
equals 385. Then node[3851.inft, is the second data ieetn on the list and node[3851.nexi
points to the third node.
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The nodes of a list may be scattered throughout the array node in any arbitrary
order. Each node carries within itself the location of its successor until the last node in
the list, whose next field contains - I, which is the null pointer. There is no relation
between the contents of a node and the pointer to it. The pointer, p, to a node merely
specifies which element of the array node is being referenced; it is node[pJ.itfo that
represents the inform.tion contained within that node.

Figure 4.3.1 illustrates a portion of an array node that contains four linked tists.
The list listl starts at nodell6I and contains the integers 3, 7, 14, 6, 5, 37, 12. The
nodes that contain these integers in their info fields are scattered throughout the array.
The next field of each node contains the index within the array of the node containing
the next element of the list. The last node on the list is node23), which contains the
integer 12 in its info field and the imli pointer (-1) in its next field, to indicate that it is
last on the list.

Similarly, Iist2 begins at ,;ode4 and contains the integers 17 and 26, !is13 begins
at node[ II) and contains the integers 31. 19,' and 32, and list4 begins at rzode[31 and
contains the integers I, 18, 13. 11. 4, and IS. The variables list], lis12, !ist3, and lis:4 are
integers cepresenting external pointers to the tour lists. Thus, the tact that the variable
lisr2 has the value 4 represents the fact that the list to which it points begins at nodel4l.

Into	 next

	

0	 2t,	 —1
II	 9

	

2	 S	 15

	

tIs43	 I	 24

	

Iist24	 17	 0

	

5	 13	 I

	

7	 19	 IS
814	 12

	

9	 4	 21
10

	

11t13 = II	 )t—	 '	 7

	

12	 •6	 2
13
14

	

15	 31	 23
list!	 16	 3	 20

17

	

18	 32	 —1
19

	

20	 7	 8

Figure 4.3.1 Array of nodes contain-
ing four linked lists.
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Initially. all nodes are unused, since no lists have yet been formed. Therefore they
must all be placed on the available list. If the global variable avail is used to point to
the available list, we may initiall y organize that list as follows:

avail = 0;
for (i = 0 i < NUMNODES-1; i++)

node(i] .ne xt	 I + 1;
node[ NU MNODES-1].next = -1;

The 500 nodes are initially linked in their natural order. so that nodei1 points to
nodei + 1]. node[0] is the first node on the available list. node[l] is the secp nd, and so
forth. node[4991 is the last node on the list, since nodej4991.next equals - I. There is no
reason other than convenience for initially ordering the nodes in this fashion. We could
just as well have set node[0 ] .next to 499, node[499].nexr to 1. nodet 1 ].next to 498, and
so forth, until node[249].nexr is set to 250 and node[250.next to —I. The important
point is that the ordering is explicit within the nodes themselves and is not implied by
some other underlying structure.

For the remaining functions in this section, we assume that the variables node and
avail are global and can therefore be used by any routine.

When a node is needed for use in a particular list, it is obtained from the available
list. Similarly, when a node is no longer necessary, it is returned to the available list.
These two operations are implemented by the C routines getnode and freenode. gernade
is a function that removes a node from the available list and returns a pointer to it:

mt getnode(void)

intp;
if (avail == -1) {

printf("overflow\n");
exit(1);

p = avail;
avail	 node[avail].next;
return(p);

} / end getnode V

If avail equals - when this function is called, there are no nodes available. This means
that the list structures of a particular program have overflowed the available space.

The function freenode accepts a pointer to a node and returns that node to the
available list:

void freenode(int p)

node[ p . ne xt = avail;
avail = p;
return;

/ end freenode V
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The .rimitive operations for lists are straightforward C versions of the corresponding
algorithms. The routine insaf,r accepts a pointer p to a node and an item x as param-
eters. It first ensures that p is not null and then inserts x into a node following the node
pointed to by p:

void insafter(jnt p, mt )

mt q;
if(p=-3) {

printf("vod insertion\n');
return

q = getnodeQ;
node{q).info
node[q] next = node[ p ] .next;
node[p].next
return;

} /. end insafter /

The routine delafrer(p. px), called by the s tatement de!after(p: &x), deletes the
node following node(p) and stores its Contents in x:

void delafter(int p, mt px)

intq;
if ((p == -1) II (node[pJ.next == -1))

printf ("void delet,on\n");
return;

q = node[p].next;
px = node[q.info;

node[p).next = node[q].next;
freenode(q);
return;

} / end delafrer *1

Before calling insafter we must be sure that p is not null. Before calling delafter
we muL be sure that neither p nor node [p].nex: is null,

timitations of the Array Implementation

As we saw in Section 4.2, the notion of a pointer allows us to build and manip-
ulate linked lists of various types. The concept of a pointer introduces the possibility
of assembling a collection of building blocks, called nodes, into flexible structures. By
altering the values of pointers, nodes can be attached, detached, and reassembled in
patterns that grow and shrink as execution of a program progresses.

Under the array implementation, a fixed Set of nodes represented b y an array is
established at the start of execution. A pointer to a node is represented by th€ relaive

•
20€	
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position of the node within the array. The disadvantage of that approach is twofold.
First, the number of nodes that are needed often cannot be predicted when a program is
written. Usually, the data with which the program is executed actermines the number
of nodes necessary. Thus no matter how many elements the array of nodes contains, it
is always possible that the program will be executed with input that requires a larger
number.

The second disadvantage of the array approach is that whatever number of nodes
are declared must remain allocated to the program throughout its execution. For exam-
ple, if 500 nodes of a given type are declared, the amount of storage required for those
500 nodes is reserved for that purpose. If the program -actually uses only 100 or even
JO nodes in its execution the additional nodes are still reserved and their storage cannot
be used for any other purpose.

The solution to this problem is to allow nodes that are dynamic, rather than static.
That is, when a node is needed, storage is reserved for it, and when it is no loner
needed, the storage is released. Thus the storage for nodes that are no longer in use
is available for another purpose. Also, no predefined limit on the number of nodes is
established. As long as sufficient storage is available to the job as a whole, part of that
storage can be reserved for use as a node.

Allocating and Freeing Dynamic Variables

In Sections Il, 1.2, and 1.3, we examined pointers in the C language.ifx is any
object, &x is a pointer to x. If p is a pointer in C, *p is the object to which p points. We can
use C pointers to help implement dynamic linked lists. First, however, we discuss how
storage can be allocated and freed dynamically and how dynamic storage is accessed
in C.

In C a pointer variable to an integer can be created by the declaration

mt p;

Once a variable p has been declared as a pointer to a specific type of object, it
must be possible to dynamically create an object of that specific type and assign its
address top.

This may be done in C by calling the standard library function rna/loc(size). ma!-
lc dynamically allocates a portion of memory of size size and returns a pointer to an
item of type char. Consider the declarations

extern char *malioco;
mt *Pi;
float *pr;

The statements

Pi	 (mt *) ivalloc(sizeof On));
pr = (float ) malloc(sizeof (float));
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dynamically create the integer variable .pi and the float variable *pr. These variables
are called dynamic variables. In executing these Statements, the operator sizeofrcturn.
the size, mbytes, of its -operand. This is used to maintain machine independence. malloc
can then create an object qf that size. Thus rnaIloc(sizeof(nt)) allocates storage for
an integer, whereas inalloc(sizeof(floaf)) allocates storage for a floating-point number.
pnu/Ioc also returns a pointer to the storage it allocates. This pointer is to the first byte
(for example, character) of that storage and is of type char *. To coerce this pointer so
that it points to an integer or real, we use the cast operator (ml *) or (float *).	 -

(The sizeof operator returns a value of type in!, whereas the nialloc function ex-
pects a parameter of type unsigned. To make the program "lint free" we should write

p1	 (mt ) malloc ((unsigned)(sizeof (nt)));

However, the cast on the sizeof operator is often omitted.)
As an example of the use of pointers and the function ,nalloc, consider the fol-

lowing statements:

I	 jut p , q;
2	 lntx
3	 p = (jut *) malloc(sizeof (jut));
4
5	 q=p;
6	 printf ("%d %d \n', p ,	 q);
7	 x = 7;
8
9	 printf('%d %d \n", *p	 q);
10	 p = (mt ) malloc (sizeof (int));
11
12	 printf("%d %d \n", p	 q);

In line 3, an integer variable is created and its address is placed in n. Line 4 sets the
value of that variable to 3. Line  sets qto the address of that variable. The assignment
statement in line 5 is perfectly valid, since one pointer variable (q) is being assigned
the value of another (p). Figure 4.3.2a illustrates the situation after line s: Note that at
this point, p and *q refer to the same variable. Line 6 therefore prints the contents of
this variable (which is 3) twice.

Line 7 Sets the value of an integer variable, x. to 7. Line 8 changes the value of
*q to the value of x. However, since p and q both point 'to the same variable, *p and *q
both,tave the value 7. This is illustrated in Figure 4.3.2b. Line 9 therefore prints the
number 7 twice.

Line 10 creates a new integer variable and places its address in p. The results are
illustrated.in Figure 4.3.2c. *p now refers to the newl y created integer variable that has
not yet been given a value. q has not been changed; therefore the value of *q remains 7.
Note that *p does not refer to a single, specific variable. Its value changes as the value
ofp changes. Line 11 sets the value of this newly created variable to 5. as illustrated in

	

Figure 4.3.2d. and line 12 prints the values 5 and 7.	 -

Queues and Lists	 Chap. 4
208



P

q ____	
3 I

(a)
a

7	 7
q.

(b

q

P
	

L 1__II
(C)

P

(d)	 Figure 4.3.2

The functionfree is used in C to free storage of a dynamically allocated variable.
The statement

free(p);

makes any future references to the variable 'p illegal (unless, of course, a new value is
assigned top by an assignment statement or by a call to ,nalloc). Calling free(p) makes
the storage occupied by ap available for reuse, if necessary.

[Note: The free function, by default, expects a pointer parameter of type char *.
To make the statement "lint free," we should write

free((char *) p);

However, in practice the cast on the parameter is often omitted.]
To illustrate the use of the free function, consider the following statements:

1
	 p = (mt *) malloc (sizeof (int));

2
	

5;
3
	 q = (mt *) malloc (sizeof (int));

4
5
	

free(p);
6
	

p=
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q	 (mt ) ra110 (sizeof (lot));
• 6;

printf('%d %d \n", ..!p. °q);

The values 8 and 6 are printed. Figure 4.3.3a illustrates the situation after line 4,
where *p 4nd *q have both been allocated and given values. Figure 4.3.3b illustrates
the effectof line 5, in which the variable to whichp points has been freed. Figure 4.3.3c
illustrates line 6, in which the value of p is changed to point to the variable *q. In lines
7 and 8. the value of q is changed to point to a newly created variable which is given
the value 6 in line 8 (Figure 4.3.3d).

Note that if ma/Foe is called twice in succession and its value is assigned to the
same variable, as in:

P	 (mt ) malloc (sizeof (jot));
3;

P = (mt ) malloc (sizeof (lot));
p, = 7;

the first copy of *, is lost since its address was not saved. The space allocated for
dynamic variables can be accessed only through a pointer. unless the pointer to the
first variable is saved in another pointer, that variable will he lost. In fact, its storage
cannot even be freed since there is no way In reference it in a call to free. This is an
example of storage that is allocated but cannot be referenced.

-H1 q—ø- 8

0)

—

	
-ø- 8

(h)

p—
S

q	 •

(C)

0$)	 Figure 4.3.3
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The value 0 (zero) can be used in a C program as the null pointer. Any pointer
variable may be set to this value. Usually, a standard header to a C program includes
the definition

Sdefine NULL 0

to allow the zero pointer value to be written as NULL. This NULL pointer value does
not reference a storage location but instead denotes the pointer that does not point to
anything. The value NULL (zero) may be assigned to any pointer variable p, after which
a reference to *p is illegal.

-We have noted that a call tofree(p) makes a subsequent reference to *p illegal.
However, the actual effects of a call to free are not defined by the C language—each
implementation of C is free to develop its own version of this function. In most C imple-
mentations, the storage for *p is freed but the value of p is left unchanged. This means
that although a reference to *p becomes illegal, there may be no wa y of detecting the il-
legality. The value of p is a valid address and the object at that address of the proper type
may be used as the value of *p. p is called a dangling pointer. It is the programmer's
responsibility never to use such a pointer in a program. It is good practice to explicitly
set p to NULL after executing free(p).

One other dangerous feature associated with pointers should be mentioned. If p
and q are pointers with the same value, the variables *p and *q are identical. Both *p and
*q refer to the same object. Thus, an assignment to sp changes the value of *q, despite
the fact that neither q nor are explicitly mentioned in the assignment statement to
*p. It is the programmer's responsibility to keep track of "which pointers are pointing
where" and to recognize the occurrence of such implicit results.

Linked Lists Using Dynamic Variables

Now that we have the capability of dynamically allocating and freeing a variable,
let us see how dynamic variables can be used to implement linked lists. Recall that a
linked list consists of a set of nodes, each of which has two fields: an information field
and a pointer to the next node in the list. In addition, an external pointer points to the
first node in the list. We use pointer variables to implement list pointers. Thus, we define
the type of a pointer and a node by

struct node {
mt info;
struct node next;

typedef struct node *NQEPTR;

A node of this t ype is identical to the nodes of the array implementation except
that the next field is a pointer (containing the address of the next node in the list) rather
than an integer (containing the index within an arra y where the next node in the list :5
kept).
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Let us employ the dynamic allocation features to implement linked lists. Instead
of declaring an array to represent an aggregate collection of nodes, nodes are allocated
and freed as necessary. The need for a declared collection of nodes is eliminated.

If we declare

NODEPTR p

execution of the statement

p getnodeQ;

should place the address of an available node into p. We present the function getnode:

NOOEPTR getnodé (void)

NODEPTR p;
p	 (NOOEPTR) malloc(sizeof(struct node));
return(p);

Note that sizeof is applied to a structure type and returns the number of bytes required.
for the entire structure.	 -

Execution of the statement

freenode(p);

should return the node whose address is at p to available storage. We present the routine
freenode:

void freenode(NODEPTR p)

free(p);

The programmer need not be concerned with managing available storage. There
is no longer a need for the pointer avail (pointing to the first available node), since
the system governs the allocating and freeing of nodes and the system keeps track of
the first available node. Note also that there is no test in getnode to determine whether
overflow has occurred. This is because such a condition will be detected during the
execution of the inalloc function and is system dependent.

Since the routines getnode and freenode are so simple under this implementation,
they are often replaced by the in-line statements

P	 (NODEPTR) malloc(sizeof (struct node));
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and

free(p);

The procedures insafter(p,x) and /e!after(p,px) are presented below using the dy-
amic implementation of a linked list. Assume that /is, is a pointer variable that points
the first node of a list (if any) and equals NVLL in the case of an empty list.

void insafter(NooE pTR p, mt x)

NODEPTR q;
if.(p	 NULL) (

printf("void insertion\n);
exit(1);

q getnodeQ;
q -> info =
q -> next = p -> next;
P -> next =

} /	 end insafrer

void deafter(NODE pTR p, mt ipx)

NODEPTR q;
if ((p == NULL) J1 (p -> next == NULL))

printf(ojd deletion\n);
exit(1);

q	 p -> next;
px = q -> info.;

P -> next = q -> next;
freenode(q);

} / end deJa fter

Notice the striking similarity between the precedin g routines and those of the
an-ay implementation presented earlier in this section. Both are implementations of
the algorithms of Section 4.2. In fact, the only difference between the two versions
is in the manner in which nodes are referenced.

Queues as Lists in C

As a further illustration of how the C list implementations are used, we present C
routines for manipulating a queue represented as a linear list. We leave the routines for
manipulating a stack and a priorit y qpeue as exercises for the reader. For comparison
purposes we show both the arra y and dvriairijc in1pletI)enatjon We assume that structnode and NODE/'TR have been declared as in the folecoing. A queue is represented asa Structure:	 -
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Array Implementation
	

Dynamic Implementation

struct queue {
	

struct queue f

mt front, rear;
	

Ifl'TR front, rear;

struct queue q;
	 struct queue q;

front and rear are pointers to the first and last nodes of a queue presented as a
list. The empty queue is represented by front and rear both equaling the null pointer.
The function empty need check only one of these pointers since, in a nonempty queue,
neitherfron: nor rear will be NULL.

mt eupty(struct queue tpq)

return ((pq-,.front	 -1)
? TRUE: FALSE);

} 1* end empty *1

mt empty(struct queue *pq)
C

return ((pq->front	 NULL)
? TRUE: FALSE);

} /* end empty /

The routine to insert an element into a queue may be written as follows:

void insert(struct queue *pq, mt x)

mt p;
p getnodeG;
node[p).info
node[p]. ne xt - -1;
if (pq->rear	 -1)

pq->front =
else

node[ pq -> rear ] .next	 p;
pq-rear	 p;

} / end Insert *1

void insert(struct queue pq, mt x)

NOOEPTR p;

p = getnodeO;
p->info
p->next	 NULL;
if. (pq->rear	 NULL)

pq->front
else

(pq->rear)->next = 2;
pq->rear
1* end insert

The function remove deletes the first element from a queue and returns its value:

mt remove(struct queue *pq)

mt p, x;

if (empty(pq)) {
printf("queue underflow\n');
exit(1);

p	 pq->front;
x = node(p].info;
pq->front	 node[ p] next;
if (pq->front == -1)

pq->rear
freenode(p);
return(x);

1* end remove

mt remove(struCt queue pq)

NODEPTR p;
mt x;
if (empty(pq)) {

prmntf(queue underflow\n");
exit (1)

p = pq->front;
x	 p->info;
pq->frant = p->next;
if (p->front == NULL)

pq->rear	 NULL;
freenode(p);
return (x);

/* end remove
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Examples of List Operations In C

Let us look at several somewhat more complex list operations implemented in
C. We have seen that the dynamic implementation is often superior to the array im-
plementation. For that reason the majority of C programmers use the dynamic imple-
mentation to implement lists. From this point on we restrict ourselves to the dynamic
implementation of linked lists, although we might refer to the array implementation
when appropriate.

We have previously defined the operation place(list, .t), where list points to a
sorted linear list and x is an element to be inserted into its proper position within the
list. Recall that this operation is used to implement the operation pqinsert to insert I;
priority queue. We assume that we have already implemented the stack operation pu.
The code to implement the place operation follows:

void place(NOOEPTR *plist, let x)

NOOEPTR p, q;
q = NULL;
for (p =*pl.ist; p = NULL && x > p->info; p	 p->next)

q	 p;
if (q	 NULL)	 /* ir'sert x at the head of the list

push(plist, x);
else

insafter(q, x);
/ end place *1

Note that plist must be declared as a pointer to the list pointer, since the value
of the external list pointer is changed if x is inserted at the front of the list using the
push routine. The foregoing routine would be called by the statement
place(&list. x);.

As a second example. we write a function i,zsend(plist.x) to insert the element x
at the end of a list list:

void insend(NODEPTR *piist, jet x)

NODEPTR p, q;
p getnodeQ;
p->info	 x;
p->next = NULL;	 S

if (*pljst == NULL)	 -
*pUst = p:

else{
/ search for last node V
for (q = *plist; q->next != NULL; q	 q->next)

q->next = p;
} ,' end if V

I / end insend V
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We now present a function searvi(/jst, x) that returns a pointer to. the first occurrence
of x within the list list and the NULL pointer if .r does not occur in the list:

NODEPIR search(NODEPTR list, mt x)

NODEPTR p;
for (p = list; p != NULL; p = p->next)

	

if (p->info	 x)
return (p);

/ x is not in the list *7
return (NULL);

/end search *7

The next routine deletes all nodes whose info field contains the value x:

	

void remvx(NODE pT	 plist, mt x)

NODEPTR p, q;
mt y;
q = NULL;
P = plist;
Mile (p != NULL)

if (p -> info == x)
p = p->next;
if (q = NULL)

/ remove first node of the list
freenode(*plst);
plist = p;

else	 .
delafter(q, &y);

else
7* advance to next node of list Vq=p;

p = p->next;
} / end if V

} 1* end remvx

Noninteger and Nonhomogeneous Lists

Of course, a node on a list need not represent an integer. For example, to represent
a stack of character strings by a linked list, nodes containing character strings in their
info fields are needed. Such nodes using the dynamic allocation implementation could
be declared by

Struct none {
char info[100);
struct node *next;
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A.particular application may call for nodes containing more than one item of in-
formation. For example, each student node in a list of students may contain the follow-
ing information: the student's name, college identification number, addres'. grade point
index, and major. Nodes for such an application may be declared as follows:

Struct node
char namef30);
char id[93;
char address[100;
f1ot gpindex;
char major[20];
struct node *next;

A separate set of .0 routines must he written to manipulate lists containing each tvr	 -
node.

To represent nonhomogeneous lists (those that contain nodes of different types),
a union can be used. For example,

#define INTGR	 1
tdefine FLT	 2
#define STRING	 3
struct node {

mt etype: I etype equals INT' R, FLT, or STRING
/ depending on the type of the
/	 corresponding element.

union
mt ival;
float fval;
char pval; / pointer to a string	 *1

element;
struct node next;

defines a node whose items may be either integers, floatin-pint numbers, or strings,
depending on the value of the corresponding ercpe. Since'si union is always large enough
to hold its largest component, the sizeof and ma/lc fuhdtjons can be used to allocate
storage for the node. Thus the functions getn ode and freiode remain unchanged. Of
course, it is the programmer's responsibility to use the components of a node as ap-
propriate. For simplicity, in the remainder of this section we assume that a linked list
is declared to have only homogeneous elements (so that unions are not necessar y ). We
examine nonhomogeneous lists, including lists that can contain other lists and recursive
lists, in Section 9.1.

Comparing the Dynamic and Array Implementations of Lists

It is instructive to examine the advantages and disadvantages of the dynamic and
array implementations of linked lists. The major disadvantage of the dynamic implé-
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mentatjon is that it may be more time-consuming to call upon the system o allocate
and free storage than to manipulate a programmer-managed available list. Its majoi
advantage is that a set of nodes is not reserved in advance for use by a particular groupof lists.

For example, suppose that a program uses two types of lists: lists of integers and
lists of characters. Under the array representation, two arrays of fixed size would im-
mediatel y be allocated. If one group of lists overflows its array, the program cannot
continue. Under the dynamic representation, two node types are defined at the outset,
but no stora ge is allocated for variables until needed. As nodes are needed, the system
is called upon to provide them. Any storaee not used for one type of node may be used
for another. Thus as long as sufficient storage is available for the nodes actually present
in the lists, no overflow occurs.

Another advantage of the dynamic implementation is that a reference to *p does
not involve the address computation that is necessary in computing the address of
nodepl. To compute the address of node[p, the contents of p must be added to the
base addrss of the array node, whereas the address of *j, is givi by the contents of pdirectly. r

Implementing Header Nodes

At the end of Section 4.2 we introduced the concept of header nodes that can
contain global information about a list, such as its length or a pointer to the current or
last node on the list. When the data type of the header contents is identical to the type
of the list-node contents, the header can be implemented simply as just another node at
the beginning of the list.

It is also possible for header nodes to be declared as variables separate from the
set of list nodes. This is particularly useful when the header contains information of
a different tv, pe than the data in list nodes. For examp ' e. consider the following set of
declarations:

struct node {
char info;
str:ct nr	 next;

struct charstr
mt length;
struct node frztchar;

struct charstr si, s2;

The variabies s I and s2 of type char.str are header nodes for a list of characters. The
header contains the number of characters in the list (len.t,'th) and a pointer to the list(firsic/tar). Thus, .i I and s2 represent varying-length character strings. As exercises,
you may wish to write routines to concatenate two such character strings or to extract a
substring from such a string.
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EXERCISES

4.3.1. Implement the routines ernprt. push. pop. and popand:e.ct usingihe array and the dy-
namic storage implementations of a linked stack.

43.2. Implement the routines empty. insert, and remove using a dynamic storage implemen-
tation of a linked queue.

4.3.3. Implement the routines empty. pqinceri, and pqmindele:e using a dynamic storage im-
plementation Of a linked priority queue.

4.3.4. Write C routines using both the array and dynamic variable implemenlationsofa link"
list to implement the operations of Exercise 4.2.3.

4.3.5. Write a C routine to interchange the mth and nth elem 	 of a list.
4.3.6. Write a routine inssub(1l. Il. 12, i2, lent to insert :,c elements of list 12 heginnin

the 12th element and continuing for len elements into the list Il beginning at position
it. No elements of the list 11 are to he removed or replaced. If it > lenyth(/ I I
(where length(ll ) denotes the number of no(!,. in the list 11). or if i2
iength(12). or if Il < I. or 1112 < I. prim an error mes 	 . The list 12 snoi.
unchant,

4.37. Write a C function .cearrh(/.x) that accepts a pointer /to a list of integers and an intc'crx
and returns a pointer to a node containing x. if it exists, and the null pointer otherwise.
Write another function, sn-hin.crt(/, x. that adds x to / if it is not found and always
returns a pointer to a node containing x.

4.38. Write a C program to read a group of input lines, each containing one word. Pritit each
word that appears in the input and the number of times that it appears.

43.9 Suppose that a character string is representedby a list of single characters. Write a set of
routines to manipulate such lists as follows (in the following. 11, 12. and list are pointers
to a header node of a list representing a character string, sir is an array of characters.
and Il and 12 are integers):
(a) strcns'cl(str) to convert the character string sir to a list. This function returns a

pointer to a header node.
(b) strcnrk(list, so') to convert a list into a character string.
(&) st rp.c/(11,12 ) to perform the .clrpos function of Section 1.2 on two character strings

represented by lists. This functiofl returns an integer.
(d) .crrrsfr/(ll, 12) to determine the tiis positicn. of the string represented by Il that

is not contained in the string represented by 12. This function returns an integer.
(e) strsh.ctr(l I. 1. 12) to perform the .cubsfr function of Section 1.2 on a character

string represented by list 11 and integers (I and i2. This function returns a pointer
to the header node of a list representing a character string, which is the desired
substring. The list Il remains unchanged.

(1) su'psbl(ll, Il, 12. 12) to perform a pseudo-subsrr assignment to list It. The ele-
ments of list 12 should replace the 12 elements of 11 beginning at position Il ;The
list 12 should remain uncharwed.

(g) slrcmpl(I1. 12) to compare two character strings represented by lists. This func-
tion returns - I if the character string represented by Il is less than the string
represented by 12. 0 if they are equal, and I if the string represented by I  is
greater.

4.3.10. Write a function i'insrch that accepts two parameters, an arra y of pointers to a group
of sorted numbers, and a single number. The function should use a binary search (see
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Section 3.! to return a pointer to the single niinthcr ii it	 in Ilic group. If the number
is not present in the group, return the value NULL.

4.3.11. Assume that we wish to form N lists, where N is a constant. DcLire an array list of
pointers by

ldefine N
struct node

mt info
struct node next

typedef struct node NODEPTR;
NODEPTR list [N];

Read two numbers from each input line, the first number being the index of the list into
which the second number is to he placed in ascending order. When there are no more
input lines, print all the lists.

4.4 EXAM PLE:$IMUL•ATION USING LINKED LISTS

One of the most useful applications of queues, priority queues and linked, lists is in
simulation. A simulation program attempts to model a real-world 'situatiOn in order to
learn somethin g about it. Each object and action in the real situation has its counterpart
in the program, lithe simulation is accurate—that is. if the program successfully mirrors
the real world—the result of the program should mirror the result of the actions being
simulated. Thus it is possible to understand what occurs in the teal-world situ,tion
without actually observing its occurrence.

Let us look at an example. Suppose that there is a hank with four tellers. A cus-
tomer enters the bank at a specific time (ti) desiring to conduct a transaction with any
teller. The transaction ma y be expected to take a certain period of time (t2) before it is
completed. If a teller is free, the teller can process the customer's transaction immedi-
ately, and the customer leaves the bank as soon as the transaction is completed. at time
r  ± r2. The total time spent in the bank by the customer is exactly equal to the duration
of the transaction (r2).

However, It IS possible that none of the tellers are free; they are all servicing
customers who arrived previously. In that case there is a line waiting at each teller's
window. The line for a particular teller ma y consist of a single person—the one cur-
rently transacting business with the teller—or it may be a very long line. The customer
proceeds to the back of the shortest line and waits until all the previous customers have
completed their transactions and have left the hank. At that time the customer may
trasact his or her business. The customer leives the bank at t2 time units after reach-
ins the front of a teller's line. In this case the time spent in the hank is t2 plus the time
spent waiting on line.

Given such it system, we would like to compute the average time spent by a cus-
tomer in the hank. One way of doin g so is to stand in the bank doorway. ask departine
customers the time of their arrival and record the time of their departure, subtract the
first I't'orn the second for each customer, and take the avera ge over all custorn gt-s. Hos -
ever, this would not he very practical. It would be dit'ticitlt to ensure that no customer
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is overlooked leaving the bank. Furthermore, it is doubtful that most customers would
remember the exact time of at-rival.

Instead, we write a program to simulate the customer actions. Each part of tlic
real-world situation has its analogue in the program. The real-world action of a cu'aonlcr
arriving is modeled by input of data. As each customer arrivcs.4wo facts are knwi-: the
time of arrival and the duration of the transaction (since, presumably, when a customer
arrives, he or she knows what he or she wishes to do at the bank. Thus the input data
for each customer consists of a pair of numbers: the time (in minutes since the hank
opened) of the customer's arrival and the amount of time (again,

	

	 tyin minutes) necessa
for the transaction. The data pairs are ordered by increasin arrival time. We assume at
least one input line.

The four lines in the bank are represented by four queues. Each node of the queues
represents a customer waiting on a line, and the node at the front of a queue represents
the customer currently being serviced by a teller.

Suppose that at a given instant of time the four lines each contain a specific num-
ber of customers. What can happen to alter the status of the lines? Either a new customer
enters the bank, in which case one of the lines will have an additional customer or the
first customer on one of the four lines completes a transaction, in which case that line
will have one fewer customer. Thus there are a total of five actions (a customer entering
plus four cases of a customer leaving) that can change the status of the lines. Each of
these- five actions is called an event.

Simulation Process

The simulation proceeds by finding the next event to occur and effecting the
change in the queues that mirrors the change in the lines at the bank due to that event.
To keep track of events, the program uses an ascending priority queue, called the eventlist. This list contains at most five nodes, each representing the next occurrene of one
of the five types of events. Thus the event list contains one node representing the next
customer arriving and four nodes representing each of the four customers at the head
of a line completing a transaction and leaving the bank. Of course, it is possible that
one or more of the lines in the bank are empty, or that the doors of the hank have been
closed for the day, so that no more customers are arriving. In such casesthe event list- contains fewer than live nodes. 	 -

An event node representing a customer's arrival is called an arrival node, and a
node representing a departure is called a departure node. At each point in the simu-
lation, it is necessary to know the next event to occur. For this reason, the event list is
ordered by increasing time of event occurrence, so that the first event node on the list
represents the next event to occur. Thus the event list is an ascending priority queue
represented by an ordered linked list.

The first event to occur is the arrival of the first customer. The event list is therefore
initialized by reading the first input line and placing an arrival node representin g the first
customer's arrival on the event list. Initially, of course, all four teller queues are empty.
The simulation then proceeds as follows: The first node on the event list is removed and
the changes that the event causes are made to the queues. As we shall soon see, these
changes may also cause additional events to he placed on the event list. The process of
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removing the tiist node from the event list and effecting the changes that it causes is
repeated until the event list is empty.

When an arrival node is removed from the event list, a node representing the
arriving customer is placed on the shortest of the four teller queues. If that customer is
th nly one on a queue, a node representing his or her ' departure is also placed on the
event list, since he or she is at the front of the queue. At the same time, the next input
line is read and an arrival node representing the next customer to arrive is placed on
the event list. There will always be exactly one arrival node on the event list (as long
as the input is not exhausted, at which point no More customers arrive), since as soon
as one arrival node is removed from the event list another is added to it.

When a departure node is removed from the event list, the no representing the
departing customer is removed from the front of one of the four queues. At that point
the amount of time that the departing cu s

tomer has spent in the bank is computed and
added to a total. At the end of the simulation, this total will he divided by the number of
customers to yield the average time spent by a customer. After a customer node has been
deleted from the front of its queue, the next custorneron the queue (if an) becomes the
one being serviced by that teller and a departure node for that next customer is added
to the event list.

This process continues until the event list is empty, at which point the average
time is computed and printed. Note that the event list itself does not mirror any part of
the real-world situation. It is used as part of the program to control the entire process.
A simulation such as this one, which proceeds by changing the simulated situation in
response to the occurrence of one ot several events, is called an event-driven simula-
lion,

Data Structures

We now examine the data structures necessary for this program. The nodes on the
queues represent customers and therefore must contain fields representin the arrival
time and the transaction duration, in' addition to a next field to link the nodes in a list.
The nodes on the event list represent events and therefore must contain the time that
the event occurs, the type of the event, and any other information associated \k ith the
event, as well as a next field. Thus it would seem that two separate node pools are
needed for the Two different t y pes of node. Two different types of node would entail
two getnode and freenode routines and two sets of list manipulatibn routines. To avoid
this cumbersome set of duplicate routines, let us try to use a single type of nhde for both
events and customers.

We can declare such a pool of nodes and a pointer type as follows:

struct node {
int- time;
mt duration;
mt type;
struct node next;

typedef struct node NODEPTR;
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In a customer node, time is the customer's arrival time and duration is the trans-
action's duration. type is unused in a Customer node. next is used as a pointer to link
the queue together. For an event node, time is used to hold the time of the event's oc-
currence; duration is used for the transaction duration of the arriving customer in an
arrival node and is unused in a departure node, type is an integer between - I And 3,
depending on whether the event is an arrival (type = = - I) or a departure from line 0.
1, 2, or 3 (type == 0, 1, 2, or 3). next holds a pointer linking the event list together.

The four queues representing the teller lines are declared as an array by the dec-
laration

struct queue
NODEPTR front, rear;
j ilt num;

struct queue q[4];

The variable q(i] represents a header for the .ithteller queue. The nurn field of a queue
contains the number of customers on that queue.

A variable ev!is, points to the front of the event list. A variable rorrime is used
to keep track of the total time spent by all customers, and count keeps count of the
number of customers that have passed through the bank. These will he used at the end
of the simulation to compute the average time spent in the bank by the customers. An
auxiliary variable auxinfo is used to store temporarily the. informaiioii portion of a node.
These variables are declared by

NODEPTR evlist;
float count, tottime;
struct node auxinfo;

Simulation Program

The main routine initializes all lists ano queues and repeatedly removes the next
node from the event list to drive the simulation until the event list is empty. The event list
is ordered by increasing value of the time field. The program uses the call place(&evlist.
&aaxinfo) to insert a node whose information is given by auxinfo in its proper place
in the event list. The main routine also calls popsub(&e'list, &auxinfo) to remove the
first node from the event list and place its information in auxinfo. This routine is equiv-
alent to the function pop. These routines must, of course, be suitably modified from the
examples given in the last section in order to handle this particular type of node. Note
that er/is:, place, and popsub are merel y a particular implementation of an ascending
priority queue and the operations pqinscrt and pqmindelete. A more efficient represen-
tation of a priority queue (such as we present in Sections 6.3 and 7.3) would allow the
program to operate somewhat more efficiently.

The main program also calls on the functions arrive and depart. which effect the
chan ges in the event list and the queues caused by an arrival and a departure. Specif-
ically, the function arrire(atime, dur) reflects the arrival of a customer at time utime
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with a transaction of duration dur, and the function deparr(qindx, dtime) reflects the
departure of the first customer from queue q [qindx j at time dii,ne. The coding of these
routines will be given shortly.

linclude <stdio.h>
tdefine NULL 0
struct node{

mt duration, time, type;
struct node • next;

typedef struct node *NODEPTR;
struct queue

NODEPTR front, rear;
mt 'urn;

struct queue q[4];
struct node auxinfo;
NOQEPTR evlist;
mt atime, dtirne, dur, qindx;
float count, tottime;

void place(NODEPTR , struct node );
void popsuo(NODEPTR , struct node *);
void arrive(int, it);
void depart(int, int);
void push(NODEPTR , struct node );
void insafter(NODEPTR 1 , struct node );
mt entpty(NOOEPTR);
void insert(struct queue , struct node *);
void remove( truct queue 	 struct node *);
NODEPIR getnode(void);
void freenode(NODEPTR);

void main(

/ initializations V
evlist = NULL;
Count = 0;
tottime = 0;
for (qindx	 0; qindx < 4; qindx++) {

q[qindx].num = 0;
q[qindx].front	 NULL;
qqindx].rear = NULL;

} /I end for /
/ initialize the event list with the first arrival V
printf ('enter time and duration\n').;
scanf(%d %d", &auxinfo.tirne, &auxinfo.duration);
auxinfo.type = -1; /* an arrivai
place(&evlist, &auxinfo);
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1* run the simulation as long as the event list is not er*itY
while (evlist - NULL) (

popsub(&evlist, Lauxinfo);
/* check if the next event is an arrival or departure */
it (auxinfo.type	 -1) {

	

an arrival	 *1
atime auxinfo.time;
dur - auxinfo.duration;
arrive(atime, dur);

else {
1*	 a departure
qindx	 auxinfo.type;
dtime	 auxinfo.time;
depart(qindx, dtime);

} /* end jf*/
} 1* end while *1
printf ("average time is %4.2f', toUime/courz);
/* end main /

The routine arrive(atilne, dur) modifies the queues and the event list to reflect a
new arrival at time atime with a transaction of duration dur. It inserts a new customer
node at the rear of the shortest queue by calling the function insert(&q[j1. &auxinfo).
The insert routine must be suitably modified to handle the type of node in this example
and must also increase q[j}.num by 1. If the customer is the only one on the queue, a
node representing his or her departure is added to the event list by calling on the function
p!ace(&evlist, &auxinfo). Then the next data pair (if any) is read and an arrival node
is placed on the event list to replace the arrival that has just been processed. If there is
no more input, the function returns without adding a new aival node and the program
processes the remaining (departure) nodes on the event list.

void arrlve(int atime, mt dur)

mt i, j, small;
/* find the shortest queue
j	 0;
small = q(0].num;
for (i-1;i<; i++)

if (q [ i ].num <small) {
small	 q[i].num;
j	 1;
/ end for ... if

/ Queue j is the shortest, Insert a new customer node.
auxinfo.time	 atime;
auxinfo.duration - dur;
äuxinfo.type -
insert(&q[j, &auxinfo);
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/* Check if this is the only node on the queue. If it *1
1* is, the customer's departure node must be placed on *1
/	 the event list.	 'Iif (q [j ] . nur	 1) {

auxinfo.tj.e - atime + dur;
place(&evlist, &auxinfo);

}
/* If any input remains, read the next data pair and *1
/	 place an arrival on the event list.
printf("enter time\n");
If (scanf("%d, &auxinfo.time) !. EOF) {

printf("enter duratjon\n');
scanf('%d", &auxinfo.duratjon); 	 J "-auxinfo.type - -1;
place(&evljst, &auxinfo);

J / end if *1
/ end arrive /	 I

The routine deparr(qindx, dtime) modifies the queue q[qindx] and the event list
to reflect the departure of the first customer on the queue .at time drime The cus-
tomer is removed from the queue by the call remove(&q[qipvi.x], &auxinfo), which
must be suitably modified to handle the type of node in this example and must !so
decrement the queue's nurn field by 1. The departure node of the next customer on
the queue (if any) replaces the departure node that has just been removed from the
event list.

void depart(int qindx, mt dtime)

NODEPTR p;
remove(&q[qindx], &auxinfo);
tottime tottime + (dtime - auxinfo,time);
Counts-f;
/* if there are any more customers on the queue, *1
/* place the departure of the next customer onto
/* the event list after corçuting its departure time *f
if (q [q indx].ni >0) {

p	 q[qindx].front;
auxinfo.tjme dtime + p->duration;
auxinfo.type - qindx;
p1ace(&ev1ist &auinfo);
/* end f*/

} 1* end depart

Simulation programs are rich in their use of list structures. The reader is urged
to explore the use of C for simulation and the use of special-purpose simulation
languages..
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EXEHISES

4.4.1. In the bank simulation program of the text, a departure node on the event list represents
the same customer as the first node on a customer queue. Is it possible to use a single
node for a customer currently being serviced? Rewrite the program of the text so that
Only a single node is used. Is there any advantage to using two nodes?

4.4.2. The program in the text uses the same type of node for both customer and event nodes.
Rewrite the program using two different types of nodes for these two purposes. Does
this save space?

4.43. Revise the bank simulation program of the text to determine the average length of the
four lines.

4.4.4. Modify the bank similation program to compute the standard deviation of the time spent
by a Customer in the bank. Write another program that simulates a single liie for all four
tellers with the customer at the Iead of the single line going to the next available teller.
Compare the means and standard deviations of the two methods.

4.43. Modify the bank simulation program so that whenever the length of one line exceeds
the length of another.by more than two, the last customer mi the longer line moves to the
rear of the shorter.

4.4.6. Write a C program to simulate a simple multiuser computer system as follows: Each
user has a unique ID and wishes to perform a number of transactions on the computer.
However, only one transaction may be processed l'v the computer at any given moment.
Each input line represents a single user and contains the user's ID followed by a starting
time and a series of integers representing the duration of each of his or her transactions.
The input is sorted by increasing starting time, and all times and durations are in seconds.
Assume that a user does not request time for a transaction until the previous transaction
IS Complete and that the computer accepts transactions on a first-come, first-served basis.
The program should simulate the system 'id print a message containing the user ID and
the time whenever a transaction begins and ends. At the end of the simulation it should
print the average waiting time for a transaction. (The waiting time is the amount of time
between the time that the transaction was requested and the time it was started.)

4.4.7. What parts of the bank simulation program would have to be modified if the priority
queue of events were implemented as an array or as an unordered list? How would they
be modified?

4.4.8. Many simulations do not simulate events given by input data but rather generate events
according to some probability distribution. The following exercises explain how. Most
computer installations have a random number generating function rand(x). (The name
and parameters of the function vary from system to system. rand is used as an example
only.) .r is initialized to a value called a seed. The statement x = rand(x) resets the value
of the variable x to a uniform random reel number between 0 and I. By this we mean
that if the statement is executed a sufficient number of times and any two equal-length
intervals between 0 and I are chosen, approximately as many of the successive values of
x fall into one interval as into the other. Thus the probability of a value ofx falling in an
interval of length I <= I equals!. Find out the name of the random number generating
function on your system and verify that the foregoing is true. Given a random number
generator rand consider the following statements:

x	 rand(x);
y = (b_a)*x +
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(a) Show that, given any two equal-length intervals within the interval from a to b,
if the statements are repeated sufficiently often, an approximately -equal number
of successive values of  fall into each of the two intervals. Show that if a and b
are integers, the successive values of y truncated to an integer equal each integer
between a and b - I an approximately equal number of times. The variable y is
said to be a uniformly distributed random variable. What is the average of the
values of y in terms of a and b'!

(b) Rewrite the bank simulation of the text, assuming that the transaction duration'
is uniformly distributed between I and 15. Each data pair represents an arriving
customer and contains only the time of arrival. Upon reading an input line, generate
a transaction duration for that customer by computing the next value according to
the method just outlined.

4.4.9. The successive values of y generated by the following statements are called normally
distributed. (Actually, they are approximately normally distributed, but the approxima-
tion is close enough.)

float x[15];
float a, s, sum, y;
j ilt i ;
/ statements initializing the values of s, a and *7
/	 the array x go here
while (/* a terminating condition goes here *7)

sum = 0;
for (i	 0; 1 < 15; i++)

x[ i J = rand(x[i));
sum sum +

} /* end for
y	 s	 (sum - 7.5) / sqrt(1.25) + m;
/ statments that use the value of y go here */

} / end while /

(a) Verify that the average of the values of) , (the mean of the distribution) equals m
and that the standard deviation equals s.

(b) A certain factory produces items according to the following process: an item must
be assembled and polished. Assembly time is uniformly distributed between 100
and 300 seconds, and polishing time is normally distributed with a mean of 20
seconds and a standard deviation of 7 secorith (but values below 5 are discarded).
After an item is assembled, a polishing machine must be used, and a worker cannot
begin assembling the next item until the item he or she hasjust assembled has been
polished. There are ten workers bt only one polishing machine. If the machine
is not available, workers who have finished assembling their items must wait for
it. Compute the average waiting time per item by means of a simulation. Do the
same under the assumption of two and three polishing machines.

4.5 OTHER LIST STRUCTURES

Although a linked linear list is a useful data structure, it has several shortcomings. In
this section we present other methods of organizing a list and show how they can be
used to overcome these shortcomings.
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Figure 4.5.1 Circular list.
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Figure 4.5.2 First and last nodes of a cireu,Ja'r list.

Circular Lists

Given a pointer p to a node in a linear list, we cannot reach any of the nodes that
precede nndc.p). If a list is traversed, the external pointer to the list must be preserved
to be able to reference the list again.

Suppose that a small change is made to the structure of a linear list, so that the
next field in the last node contains a pointer back to the first node rather than the null
pointer. Such a list is called a circular list and is illustrated in Figure 4.51. From any
point in such a list it is possible to reach any other point in The list. If we begin at a
given node and traverse the entire list, we ultimately end up at the starting point.

Note that a circular list does not have a natural 'first" or "last" node. We must,
therefore, establish a first and last node by convention. One useful convention is to let
the external pointer to the circular list point to the last node, and to allow the following
node to be the first node, as illustrated in Figure 4.5.2. If p is an external pointer to
a circular list, this convention allows access to the last node of the list by referencing
nodep) and to the first node of the list by referencing node(nexrp)). This convention
provides the advantage of being able to add or remove an element conveniently from
either the front or the rear of a list. We also establish the convention that a null pointer
represents an empty circular list.

Stack as a Circular List

A circular list can be used to represent a stack or a queue. Let stack be a pointer

to the last node of a circular list and let us adopt the convention that the first node is
the top of the stack. An empty stack is represented by a null list. The following is a C
function to determine whether the stack is empty. It is called by ernpiy(&stack).

mt empty(NODEPTR *pstack)

return ((pstack == NULL) ? TRUE : FALSE);
/ end empty /
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The following is a C function to push an integerx onto the stack. The push functioncalls on the function empty, which tests whether its parameter is NULL. It is called bypush(&stk x), where stack is a pointer to a circular list acting as a stack.

void push(NQOEPTR pstack, let x)
{

PEPTR p;
P - getnodeo;
p->info -
if (ety(pstack) — TRUE)

•pstack •
else

p->next • (*pstack) -> next;
(*psrack) -> next -

1 / end push *1

Note that the push routine is slightly more complex for circular lists than it is for linearlists.
The C pop function for a stack implemented as a circular list calls the function

freenode introduced earlier, pop is called by pop(&stack),

mt POP(NODEPTR pstack)
{

mt x;
NOOEPTR p;
if (empty(pstack) - TRUE) {

printf('stack underflow\n");
exit(1);

}/ end if *1
P - (*pstack) -> next;
x • p->info;
if (p	 *pstack)

/* only one node on the stack *1
*pstack = NULL;

else
(pstack) -> next p->next;

freenode(p);
return(x);

1 / end pop *1

Queue as a Circular List

It is easier to represent a queue as a circular list than as a linear list. As a linear
list, a queue is specified by two pointers, one to the front of the list and the other to its
rear. However, by using a circular list, a queue may be specified by a single pointer q
to that list. node(q) is the rear of the queue and the following node is its front.

The function empty is the same as for Stacks. The routine re?nove(pq) called byrelnove(&q) is identical to pop except that all references to psrack are replaced by pg.
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a pointer to q The c routine insert is called by the statement insert(&q, x) and may becoded as follows:

void insert(NODEPfl •pq, mt x)

NODEPTRp;
p -getnode();
p->info -
if (ety(pq) - TRUE)

*pq •
else

p->next - (*pq) -> next;
(tpq) -> next •
*PQ •
return;

1 /* end insert *1

Note that inserz(&q, x) is equivalent to the code

push(&q,x);
q • q->next;

That is, to insert an element into the rear of a circular queue, the elemnt is inserted
into the front of the queue and the circular list pointer is then advanced one element, so
that the new element becomes the rear.

Primitive Operations on Circular Lists

The routine insafter(p, x), which inserts a node containing x after node(p), is sim-
ilar to the corresponding routine for linear lists as presented in Section 4.3. However,
the routine delafter(,p, x) must be modified slightly. Looking at the corresponding rou-
tine for linear lists as presented in Section 4.3, we note one additional consideration in
the case of a circular list. Suppose that p points to the only node in the list. In a linear
list, next(p) is null in that case, miking the deletion invalid. In the case of a circular
list, however, next(p) points to node(p), so that node(p) follows itself. The question is
whether or not it is desirable to delete node(p) from the list in this case. It is unlikely that
we would want to do so, since the operation delafter is usually invoked when pointers
to each of two nodes are given, one immediately following another, and it is desired to
delete the second, delafter for circular lists using the dynamic node implementation is
implemented as follows:

void de1after(NoE pTR p, mt *px)

NODEPIR q;
if ((p	 NULL) I I ( p - p->next)) {

/* the list is empty or contains only a single node *1
printf("vojd deletion\n);
return;

} / end if *1
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q - p->next;
px	 q->info;

p->next	 q->next;
freenode(q);
return;

) 1* end delafter •/

Note, however, that insafter cannot be used to insert a node following the lass
node in a circular list and that delafter Cannot be used to delete the last node of a cir-
cular list. In both cases the external pointer to the list must be modified to point to the
new last node. The routines can be modified to accept list as an additional parameter
an to change its value when necessary. (The actual parameter in the calling routine
would have to be &Ii.t. since its value is changed.) An alternative is to write separate
routines insend and dellast for these cases. (insend is identical to-the insert operation
for a queue implemented as a circular list.) The calling routine would be responsible
for determining which routine to calF. Another alternative is to give the calling rou-
tine the responsibility of adjusting the external pointer list if necessary. We leave the
expinrtion of these possibilities to the reader.

If we are managing our own available list of nodes (as for example under the
array implementation), it is also easier to free an entire circulr list.than to free a linear
list. In the case of a linear list the entire list must be traversed, as one node at a time
is returned to the available list. For a circular list, we can write a routine freelist that
effectively frees an entire list by simply rearranging pointers. This is left as an exercise
for the reader.

Similarly, we may write a routine concar(&li.crl , &list2) that concatenates two
lists; that is. it appends the circular list pointed to by llst2 to the end of the circular list
pointed to by list]. Using circular lists, this can be done without traversing either list:

void concat(NOOEPTR *p1 .iStl NOOEPTR *pl.15t2)

NODEPTR p;
if (*pj	 — NULL)

return;
if (*P I	 NULL) {

plist1 = *pst2;
return;

P	 (*plistl) -> next;
(*pl j stl) -> next = (*pl.jst2) -> next;
(p1ist2) -> next = p;
= pl'istl = *pl.jst2;
return;

} / end concat

The Josephus Problem

Let its consider a problem that can be solved in a straightforward manner by us-
ing a circular list. The problem is known as the Josephus problem and postulates a group
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of soldiers surrounded by an overwhelming enemy force. There is no hope for victory
without reinforcements, but there is only a single horse available for escape. The sol-
diers agree to a pact to determine which of them is to escape and summon help. They
form a circle and a number n is picked from a hat. One of their names is also picked from
a hat. Beginning with the soldier whose name is picked, they begin to count clockwise
around the circle. When the count reaches n, that soldier is removed from the circle, and
the count begins again with the next soldier. The process continues so that each time
the count reaches n, another soldier is removed from the circle. Any soldier removed
from the circle is no longer counted. The last soldier remaining is to take the horse and
escape. The problem is, given a number n, the ordering of the soldiers in the circle, and,
the soldier from whom the count begins, to determine the order in whicirsoldiers are
eliminated from the circle and which soldier escapes.

The input to the program is the number n and a list of names, which is the clock-
wise ordering of the cirUe, beginning with the soldier from whom th& count is to start.
The last input line contains the string "end' indicating the end of the input. The pro-
gram should print the names in the order that they are eliminated and the name of the
soldier who escapes.

For example, suppose that n = 3 and that there are five soldiers named A, B, C,
D, and E. We count three soldiers starting at A, so that C is eliminated first. We then
begin at D and count D, E. and back toA.so that A is eliminated next. Then we count
B. D. and E (C has already been eliminated), and finally B, D, and B. so that D is the
one who escapes.

Clearly, a circular list in which each node represents one soldier is a natural data
structure to use in solving this problem. It is possible to reach any node from any other
by counting around the circle. To represent the removal of a soldier from the circle, a
node is deleted from the circular list. Finally, when only one node remains on the list,
the result is determined.

An outline of the program might be as follows:

read(n);
read(naine);
while (name !. END)

insert name on the circular list;
read(nane);

/ end while /
while (there is more than one node on the list)

count through n - 1 nodes on the list;
print the name in the nth node;
delete the nth node;

} / end while */
print the name of the only node on the list;

We assume that a set of nodes has been declared as before except that the inJ6 field
holds a character string (an array of characters) rather than an integer. We also assume at
least one name in the input. The program uses the routines insert, delafter, and freenode.
The routines insert and delofter must be modified, since the information portion of the
node is a character string. Assignment from one character string variable to another is
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accomplished via a loop. The program also makes use of a function eqstr(ssrl, sia-2),
which returns TRUE if strl is-identical to sir2, and FALSE otherwise. The coding of
this routine is left to, the reader.

void )osephus(void)

char*end end;
char naie(MAXLEN);
hit 1, n
NODEPIR list • NULL;
printf("enter n\n);
scanf(%d", &n);
/ read the names, placing each
/	 at the rear of the list
printf("enter names\n');
scanf("%s", £naae);
1* form the list *1
while ('eqstr(name, end)) {

insert(&list, name);
scanf("%s', name);

} / end while •/
printf("the order in which the soldiers are eliminated is:\n');
I continue counting as long as more
/ than one node remains on the list
while (list ! list->next) {

for (i1;i<n;j++)
list - list->next;

/ list-.next points to the nth node *1
delafter(list, name);
pr intf(%s\n", name);

/	 end while */
/ print the only name on the list and free its node '1
printf(the soldier who escapes is: %s", list->info);
freenode(ljst);

} I end josephus

Header Nodes

Suppose that we wish to traverse a circular list. This can be done by repeatedly
executin g p = p next, where p is initially a pointer to the beginning of the list. How
everjnce the list is circular, we will not know when the entire list has been traversed
unless another pointer. list, points to the first node and it test is made for the condition
I) == list.

An alternative method is to place a header nodeas the first node of a circular list.
This list header may be recognized by it special value in its inft field that cannot be
the valid contents of a list node in the context of the problem, or it may contain a flag
markin g it as a header.-The list can then be traversed using a single pointer. with the
traversal halting when the header node is reached. The external pointer to the list is to

234 Queues and Lists	 Chap. 4



'is'

Header
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Figure 4.5.3 Circular list with a header 'de.

its header node, as illustrated in Figure 4.5.3. This means that a node cannot easily be
added onto the rear of such a circular list, as could be done when the external pointer
was to the last node of the list. Of course, it is possible to keep a pointer to the last node
of a circular list even when a header node is being used.

If a stationary external pointer to a circular list is used in addition to the pointer
used for traversal, the header node need not contain a special code but can be used
in much the same way as a header node of a linear list to contain global information
about the list. The end of a traversal would be signaled by the equality of the traversing
pointer and the external stationary pointer.

Addition of Long PositIv. Integers Using Circular Lists

We now present an application of circular lists with header nodes. The hardware
of most computers allows integers of only a specific maximum length. Suppose that
we wish to represent positive integers of arbitrary length and to write a function that
returns the sum of two such integers.

To add two such long integers, their digits are traversed from right to left, and
corresponding digits and a possible carry from the previous digits sum are added. This
suggests representing long integers by storing their digits from right to left in a list
so that the first node on the list contains the least significant digit (rightmost) and the
last node contains the most significant (leftmost). However, to save space, we keep
five digits in each node. (Long integer variables are used so that numbers as large as
99999 may be kept in each node. The maximum size of an integer is implementation.
dependent: therefore you may have to modify the routines to hold smaller numbers in
each node.) We may declare the set of nodes by

struct node {
long mt info;
struct node next;

typedef struct node *NOOEPIR;

Since we wish to traverse the lists during the addition but wish to eventually
restore the list pointers to their original values, we use circular lists with headers.
The header node is distinguished by an in/h value of - I. For example, the integer
4597634972 l()698463 is represented by the list illustrated in Figure 4.5.4.
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list

I	 f' 1721061	 + 1 76349 1

Figure 4.5.44.5.4 Large integer as a circular list.

Now let us write a function addint that accepts pointers to iwo such lists repre-
senting integers, creates a list representing the sum of the integers, and returns a pointer
to the sum list. Both lists are traversed in parallel, and five digits are added at a time.
If the sum of two five-digit numbers is x, the low-order five digits of x can be extracted
by using the expression x % 100000, which yields the remainder of x on division by
100000. The carry can be computed by the integer division x1l00000. When the end of
one list is reached, the carry is propagated to the remaining digits of the other list. The
function follows and uses the routines getnode and insafter.

NOOEPTR addint(NOOEPTR p, NODEPTR q)

long mt hunthou - 1000001;
long mt carry, number, total;
NOOEPTR s;
/ set p and q to the nodes following the headers */
p	 p->next;
q	 q->next;
/ set up a header, node for the sun, *1

s	 getnodeo;
s->info	 -1;
s->next
1* initially there is no carry *1
carry • 0;
while (p->info	 -1 6& q-.info	 -1) (

/ add the info of the two nodes */
and previous carry

total	 p->info + q->info + carry;
1* Determine the low order five digits of
/	 the sun, and insert into the list.
number total % hunthou;
insafter(s, number)
1*	 advance the traversals
S	 s->next;
p	 p->next;
q = q->next;
/ determine whether there is a carry
carry = total / hunthou;

} / end while */
/* at this point, there may be nodes left in one of the */
1*	 two input lists	 *1
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while (p->info 1= -1) {
total . p->info + carry;
number total S hunthou;
insafter(s, number);
carry - total / hunthou;
S - s->next;
p - p->next;

} /* end while *1
while (q->info !- -1) {

total	 q->info + carry;
number = total S hunthou;
insafter(s, number);
carry total / hunthou;
S	 s-next;
q q->next;

} / end while
1* check if there is an extra carry from the first *1

five digits	 V
if (carry - 1) {

insafter(s, carry);
S	 s->next;

} / end if /
1* s points to the last node in the sum. s->next points to
f*	 the header of the sure list.	 *1
return(s->next);
/* end addint •/

Doubly Linked Lists

Although a circularly linked list has advantages over a linear list, it still has sev-
eral drawbacks. One cannot traverse such a list backward, nor can a node be deleted
from a circularly linked list, -given only a pointer to that node. In cases where these
facilities are required, the appropriate data structure is a doubly linked list. Each node
in such a list contains two pointers, one to its predecessor and another to its succes-
sor. In fact, in the Context of doubly linked lists, the terms predecessor and succes-
sor are meaningless, since the list is entirely symmetric. Doubly linked lists may be
either linear or circular and may or may not contain a header node, as illustrated in
Figure 4.5.5.

We may consider the nodes on a doubly linked list to consist of three fields: an
info field that contains the information stored in the node, and left and right fields that
contain pointers to the nodes on either side. We may declare a set of such nodes using
either the array or dynamic implementation, by

Array Implementation

struct nodetype (
let info;
jet left, right;

struct nodetype node (NUMNODES];

Dynamic Implementation

struct node {
jet info;
struct node left, right;

typedef struct node NOOEPTR;
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Figure 4.5.5 Doubly linked llst.

Note that the available list for such a set of nodes in the array implementation
need not be doubly linked, since it is not traversed bidirectional ly. The available list
may be linked together by using either the left or right pointer. Of course, appropriate
getnode and freenode routines must be written.

We now present routines to opt,-ate on doubly linked circular lists. A convenient
property of such lists is that if p is a pointer to any node, letting lef:(p) be an abbreviationfor node[pJ../efr or p — > left, and right(p) an abbreviation for node(pJ.righ: or p—>right, we have

lefr(righr(p)) = p	 right(left(p))

One operation that can be performed on doubly linked lists but not on ordinary linked
lists is to delete a given node. The following C routine deletes the node pointed to
by p from a doubly linked list and Stores its contents in x, using the dynamic node
implementation. It is called by delete(p, &x).

void delete(NOOE pTR p, mt *px)
{

NODEPTR q, r;
if (p == NULL) {

printf("vojd deletiori\n");
return;

} / end if *1
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•px - p->irifo;
a - p->left;
r - p->right;
q->right
r->1eft -
freenode(p);
return;

/* end delete V

The routine insertrigh: inserts a node with information field x to the right ofnode(p) in a doubly linked list:

void insertright(NOOEPTR p, mt x)

NODEPIR q, r;
if (p — NULL) {

printf("void insertion\n");
return;

} / end if
q - getnodeO;
q->nfo
r - p->right;
r->left
q->right	 r;
q->left
p->right	 a;
return;

} / end insertright *1

A routine inserrieft to insert a node with information field .r to the left of node(p) in a
doubly linked list is similar and is left as an exercise for the reader.

When space efficiency is a consideration, a program may not be able to afford
the overhead of-two pointers for each element of a list. There are several techniques
br compressing the left and right pointers of a node into a single field. For example,
a single pointer field pi r in each node can contain the sum of pointer to its left and
right neighbors. (Here, we are assuming that pointers are represented in such a way
that arithmetic can be performed on them readily. For example, pointers represented by
array indexes can be added and subtracted. Although it is illegal to add two pointers
in C. many compilers will allow such pointer arithmetic.) Given two external pointers,
p and q, to two adjacent nodes such that p = = !eft(q), right(q) can be computed as
pt'lq) - p and left(p) can be computed as prr(p) - q. Given p and q, it is possible to
delete either node and reset its pointer to the preceding or succeeding node. It is also
possible to insert a node to the left of node(p) or to the right of node(q) or to insert a
node between node(p) and node(q) and reset either p or q to the newly inserted node.
In using such a scheme, it is crucial alwa to maintain two external pointers to two
adjacent nodes in the list.

Addition of long Integers Using Doubly Linked Lists

As an illustration of the use of doubly linked lists, let us consider extending the
list i mplementation of long integers to include negative as well as positive integers.
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The header node of a circular list representing a long integer contains an indication of
whether the integer is positive or negative.

To add a positive and a negative integer, the smaller absolute value must be sub-
tracted from the larger absolute value and the result must be given the sign of the integer
with the larger absolute value. Thus, some method is needed for testing which of two
integers represented as circular lists has the larger absolute value.

The first criterion that may be used to identify the integer with the larger absolute
value is the length of the integers (assuming that they do not contain leading Os). The
list with more nodes represents the integer with the larger absolute value. However,
actually counting the number of nodes nvolves an extra traversal of the list. Instead of
counting the number of nodes, the Count could be kept as part of the header node and
referenced as needed.

However, if both lists have the same number of nodes, the integer whose most
significant digit is larger has the greater absolute value. If the leading digits of both
integers are equal, it is necessary to traverse the lists from the most significant digit to
the least significant to determine which number is larger. Note that this traversal is in
the direction opposite that of the traversal used in actually adding or subtracting two
integers. Since we must be able to traverse the lists in both direc%ions, doubly linked
lists are used to represent such integers.

Consider the format of the header node. In addition to a right and left pointer, the
header must contain the length of the list and an indication of whether the number is
positive or negative. These two pieces of information can be combined into a single
integer whose absolute value is the length of the list and whose sign is the sign of
the number being represented. However, in so doing, the ability to identify the header
node by examining the sign of its info field is destroyed. When a positive integer was
represented as a singly linked circular list, an info field of - I indicated a header node.
Under the new representation, however, a header node may contain an info field such
as 5 which is a valid info field for any other node in the list.

There are several ways to remedy this problem. One way is to add another field to
each node to indicate whether or not it is a header node. Such a field could contain the
logical value TRUE if the node is a header and FALSE if it is not. This means, of course,
that each node would require more space. Alternatively, the count could be eliminated
from the header node and an info field of — 1 would indicate a positive number and —2
a negative number. A header node could then be identified by its negative info field.
However, this would increase the time needed to compare two numbers, since it would
be necessary to count the number of nodes in each list. Such space/time trade-offs are
common in computing, and a decision must be made about which efficiency should be
saciij1ced and which retained.

In our case we choose yet a third option, which is to retain an external pointer to
the list header. A pointer p can be identified as pointing to a header if it is equal to the
original external pointer; otherwise node(p) i6 not a header.

Figure 4.5.6 indicates a sample node and the representatiOn of four integers as
doubly linked lists. Note that the least significant digits are to the right of the header
and that the counts in the header nodes do not include the header node itself.

Using the preceding representation, we present a function compabs that compares
the absolute values of two integers represented as doubly linked lists. Its two parameters
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(a) A sample node.

Header(

49762	 21978UEj:
(b) The integer -3242197849762.
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Header?

112 1 	 ___

(c) The integer 6l694l.

Header

IIo
(d)The integer 0

Figure 4.5.8 Integers as doubly linked lists.

are pointers to the list headers and it returns 1 if the first has the greater absolute value,
- I if the second has the greater absolute value, and 0 if the absolute values of the two
integers are equal.

jut coispabs(NOOEPTR p. NODEPTR q)

NOOEPTR r, s;
/ compare the counts	 */
if (abs(p->info) > abs(q->info))

return(1);
if (abs(p->info) < abs(q->info))

return(-1);
/* the counts are equal 1
r	 p-left;
sq->left;/. 

traverse the list from the most significant digits */
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while (r	 p)	 -

if (r->info > s->info)

return(1);

if (r->info < s->info)

return(-1);

r = r->left;

s = s->left;

/* end while

/ the absolute values are equal

return (0)

/ end cornpabs *1

We may now write a function addiff that accepts two pointers to doubly linked
lists representing long integers of differing signs, where the absolute value of the first is
not less than that of the second, and that 'returns a pointer to a list representing the sum
of the integers. We must, of course, be careful to eliminate leading Os from the sum.
To do this, we keep a pointer zeroptr to the first node of a consecutive set of leading-O
nodes and a flag zeroflag that is TRUE if and only if the last node of the sum generated
so far is 0.

In this function, p points to the number with the larger absolute value and q points
to the number with the smaller absolute value. The values of these variables do not
change. Auxiliary variables pptr and qptr are used to traverse the lists. The sum is
formed in a list pointed to by the variable r.

NOOEPTR addiff(NODEPTR p. NODEPTR q)

mt Count;

NODEPTR pptr, qptr, r, s, zeroptr;

long mt hunthou	 100000L;

long mt borrow, diff;

mt zeroflag;

/. initialize variables *1

count	 0;

borrow 0;

zeroflag = FALSE;

1* generate a header node for the sum V
r getnodeQ;

r->left = r;

r->right	 C;

/* traverse the two lists

pptr = p->right;

qptr q->right;

while (qptr != q) {

diff	 pptr->info - borrow - qptr->info;

if diff >= 0)

borrow = 0;

else

diff	 diff + hwithou;

borrow = 1;

} / end if /
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/ generate a new node and insert it

/	 to the left of header in sum

insertleft(r, diff);

count += 1;

/ test for zero node V

if (diff == 0) {

if (zeroflag == FALSE)
zeroptr	 r->left;

zeroflag= TRUE;

else

zeroflag = FALSE;
pptr = pptr->right;

qptr = qptr->right;

} / end while */

traverse the remainder of the p list *1

while (pptr != p) {

diff = pptr->info - borrow;

if (diff >= 0)

borrow	 0;

else{

diff = diff + hunthou;

borrow = 1;

} / end if *f

insertleft(r, diff);

count +- 1;

if (diff == 0) {

if (zeroflag == FALSE)
zeroptr = r->left;

zeroflag	 TRUE;

else

Zroflag	 FALSE;
pptr	 pptr->right;

/* end while *1

if (zeroflag	 TRUE) /* delete leading zeros *1
while (zeroptr = r) {

s = zeroptr;

zeroptr = zeroptr->right;

delete(s, Miff);

count - 1;
/* end if.. .while *1

1* insert count and sign into the header *1

if (p->info > 0)

r->info = count;

else

r-,,info	 -count;

return(r);

} / end addiff*/
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We can also write a function addsame to add two numbers with like signs. This is

very similar to the function addint of the previous implementation except that it deals
with a doubly linked list and must keep track of the number of nodes in the sum.

Using these routines we can write a new version of addini that adds two integers

represented by doubly linked lists.

NODEPTR addint(NEPTR p, NOOEPTR q)

1* check if integers are of like sign *1
if (p->info * q->info > 0)

returit(addsame(p, q));
/ check which has a larger absolute value */
if (compabs(p, q) > 0)

return(addiff(p, q));
else

return(addiff(q, p));
} / end addint /

EXERCISES

4.5.1. Write an algorithm and a C routine to perform each of the ldperations of Exercise 4.2.3
for circular lists. Which are more efficient on circular lists than on linear lists? Which
are less efficient?

4.5.2. Rewrite the routine place of Section 4.3 to insert a new item in an ordered circular list.

4.53. Write a program to solve the Josephus problem by using an array rather than a circular
list. Why is a circular list more efficient?

4.5.4. Consider the following variation of the Josephus problem. A group of people stand in a
circle and each chooses a positive integer. One of their names and a positive integer n
are chosen. Starting with the person whose name is chosen, they Count around the circle
clockwise and eliminate the nth person. The positive integer that that person chose is
then used to Continue the count. Each time that a person is eliminated, the number that
he or she chose is used to determine the next person eliminated. For example, suppose
that the five peop17 are A. B. C. D. and E and that they choose integers 3, 4, 6, 2, and

7. respectively, and that the integer 2 is initially chosen. Then if we start from A, the

order in which people are eliminated from the circle is B, A, E. C, leaving D as the last

one in the circle.
Write a program that reads a group of input lines. Each input line except the first and last
contains a name and a positive integer chosen by that person. The order of the names
in the data is the clockwise ordering of the people in the circle, and the count is to start
with the first name in the input. The first input line contains the number of people in
the circle. The last input line contains only a single positive integer representing the
initial count. The program prints the order in which the people are eliminated from the
circle.

4.5.5. Write a C function nultinrip. q) to multiply two long positive integers represented by
singly linked circular lists.

4.5.6. Write a program to print the 100th Fibonacci number.
4.5.7. Write an algorithm and a C routine to perform each of the operations of Exercise 4.2.3

for doubly linked circular lists. Which are more efficient on doubly linked than on
singly linked lists? Which are less efficient?
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4.58. Assume that a single pointer held in each node of a doubly linked list contains the
sum of pointers to the node's predecessor and successor, as described in the text. Given
pointers p and q to two adjacent nodes in such a list, write C routines to insert a node to
the right of nodc(q). to the left of node(p). and betwçen node(p) and node(q) modifying
p to point to the newly inserted node. Write an additional routine to delete node(q),
resetting q to the node's successor.

43.9. Assume that first and last are external pointers to the first and last nodes of a doubly
linked list represented as in Exercise 4.5.8. Write C routines to implement the opera-
tions of Exercise 4.23 for such a list.	 -

4.5.10. Write a routine addsame to add two long integers of the same sign represented by
doubly linked lists.

4.5.11. Write a C function multhu(p, q) to multiply two long integers represented by doubly
linked circular lists.

4.5.12. How can a polynomial in three variables (x, y, and z) be represented by a circular list?
Each node should represent a term and should contain the powers of x, v, and: as well
as the coefficient of that term. Write C functions to do the following.
(a) Add two such polynomials.
(b) Multiply two such polynomials.
(C) Take the partial derivative of such a polynomial with respect to any of its vari-

ables.
(d) Evaluate such a polynomial for given values of x, Y. and:.
(e) Divide one such polynomial by another, creating a quotient and a remainder poly-

nomial.
(I) Integrate such a polynomial with respect to any of its variables.
(g) Print the representation of such a polynomial.
(h) Given four such polynomials f(x.y.:), g(x.y.:), h(x,), ,z) and i(x,)-,z), compute the

polynomialf(g(x.y.z), h(x,y.z), i(x.y,z)).

4.6 LINKED LISTS IN C++

We now examine the implementation of linked lists in C++. We will look at singly
linked linear lists and leave the details of circular and doubly linked lists to the reader.

Before going into details about lists in C++, we introduce the built-in C++ mech-
anism for allocating and freeing objects of a given type. If T is the name of a type, then

the expression

new T

creates a new object of type T and returns a pointer to the newly created object, If T is a

class with a constructor with no parameters, then the object created is also automatically
initialized. If T is a class with a constructor with n parameters. then the expression

new T(pl, p2, ..., pn)

creates an object of type T. initializes it using the constructor with parameters pt
through pit, and returns a pointer to it.
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If p points to an object created via use of the new operator, then the Statement

delete p;

deallocates the object to which p was pointing. If the type has a destructor, the destructor
is invoked prior to the deallocation.

Now we can turn to a discussion o'f lists in C++. We envision a linked list as a
data structure, with a fixed set of public operations on the list. This means that the user
accesses the list as a whole and is unable to access individual nodes within the list and
individual pointers to those nodes. If a particular *operation is desired on the list, it must
be included in the public interface of the list class.

For example, the following might be the class definition for a linked list of inte-
gers, with the following operations:

1. Initialize a list to the empty list. This is a constructor, automatically invoked when
a list is defined or created.

2. Free the nodes of a list. This is a destructor, automatically invoked when a list is
freed or the block in which it is declared is exited.

3. Determine whether a list is empty.

4. Add a node with a given value into the list following the first node with another
given value.

5. Add a node with a given value to the front of the list. This is the push operator.

6. Delete the first node with a given value from the list.

7. Delete the first node from the list. This is the pop operator.

The class definition follows:

class List
protected:

struct node
mt info;
struct node *next.

typedef struct node NODEPTR;
NODEPTR Ustptr; 	 1/ the pointer to the first node

II of the list
public:

LstQ;
-ListO;
mt emptylistO;
void irsertafter(int oldvaue, mt newvalue);
void push(int newvaue);
void delete(int oldvalue);
mt popO;

Ne now present the implementation of these routines:

246	 Queues and Lists	 Chap. 4



List is a Constructor that initializes a newly created list to the empty list.

List::List() {
liStptr - 0;

List is the destructor that traverses the nodes of a list, freeing them one by one.

List::-List( {
NOOEPTRp,q;
if (mptylistQ)

	

return 0;	 -
for (p	 listptr, q	 p->next; P! =0;p =q, q = p->next)

	

delete p;	 .	 . 1

emprylist determines if a list is empty. 	 1

mt List::emptylist() {
return(ljstptr = 0);

insertafter(oldva/ue, newvalue) searches for the first occurrence of the value
o!dvalue in the list and inserts a new node with value newvalue following the node
containing oldtalue.

Lisr.::insertafter(jnt oldvalue, mt newvalue) {
NODEPIR p, q;
for (p = listptr; p != 0 && p->info 1= oldvalue; p = p->next)

if (p	 0)
error("ERROR: value sought is not on the list.');

q = new node;
q->info = newvalue;
q->next = p->next;
p->next = q;

}

push(newvalue) adds a new node with a given value to the front of the list.

List::push(jnt newvalue) {
NODEPTR p;
p	 new node;
p->info = nebwalue;
p->next = listptr;
listptr = p;
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detete(oldvalue) deletes-the first node containing the value oldvalue from the list.

list::delete(lnt oldvalue) {
NODEPTR p, q;
for (q--O, p1istptr; p'=O	 p->infoo1dvalue; qp, pp->next)

if(p=-O)
error("ERROR: value sought is not on the list.");

if(qO)
listptr"'p->next;

else
q->nextp->neXt;

delete p;

Finally, pop deletes the first node on the list and returns its contents.

mt List::pop() {
NODEPTR p;
mt x;
if (emptytli.stO)

error("ERROR: the list is empty.");
p 1istptr;
listptr = p->next;
x	 p->info;
delete p;
return x;

Note that the List class does not permit the user to manipulate the nodes of the list;

everything must be done via a method of List on the entire list.

EXERCISES

4.6.1. Modify the List class so that it uses a template and can he instantiated to implement a
list of any type, not just integer. What problems may oceur'if you instantiate a list ot

lists?
4.6.2. Write a class OrderedLisl to implement a sorted list into which elements can ooly be

inserted in their proper place. Can Order'dLixl be a descendant of List?

4.6.3. Add a method inserrofter2(int oldvalue, mt ,, mt newttilue) that inserts a node with

value newt'alue after the nth occurrence of ,ldva!ue.
4.6.4. Write a class CinLis( to implement a circular list.

4.6.5. Write a class DtubleLisl to implement a doubly linked list.
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5
Trees

In this chapter we consider a data structure that is useful in many applications: the
tree. We define several different forms of this data structure and show how they can be
represented in C and how they can be applied to solving a wide variety of problems. As
with lists, we treat trees primarily as data structures rather than as data types. That is,
we are primarily concerned with implementation, rather than mathematical definition.

5.1 BINARY TREES

A binary tree is a finite Set of elements that is either empty or is partitioned into three
disjoint subsets. The first subset contains a single element called the root of the tree.

The other two subsets are themselves binary)fs, called the left and right subtrees of

the original tree. A left or right subtree can be empty. Each1ement of a binary tree is

called a node of the tree.
A conventional method of picturing a binary tree is shown in Figure 5.1.1. This

tree consists of nine nodes with A as its root. Its left subtree is rooted at B and its right

subiree is rooted at C. This is indicated by the two branches emanating from A: to B

on the left and to C on the right. The absence of a branch indicates an empty suhtree.

For example, the left subtree of the binary tree rooted at C and the right subtree of the

binary tree rooted at E are both empty. The binary trees rooted at D. G. H. and I have

empty right and left subtrees.
Figure 5.1.2 illustrates some structures that are not binary trees. Be sure that you

understand why each of them is not a binary tree as just defined.
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(a)

(h)
LVA

Figure 5.1.1 Binary tree.

Figure 5.1.2 Structures that are riot binary trees.
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Figure 5.1.3 Strictly binary tree.

If A is the root of a binary tree and B is the root of its left or right suhtree, then A
is said to be the father of B and B is said to be the left or right con of A. Anode that has
no sons (such as D, G, H, or! of Figure 5.1.1) is called a leaf. Node it is an ancestor
of node n2 (and n2 is a descendant of n I) if n I is either the father of n2 or the father of
some ancestor of n2. For example, in the tree of Figure 5.1.1. A is an ancestor of G, and
H is a descendant of C, but E is neither an ancestor nor a descendant of C. A node n2
is a left descendant of node n 1 if n2 is either the left son of n I or a descendant of the
left son of n 1. A right descendant may be similarly defined. Two nodes are brothers if
they are left and right sons of the same father.

Although natural trees grow with their roots in the ground and their leaves in the
air, computer scientists almost universally portray tree data structures with the root at
the top and the leaves at the bottom. The direction from the root to the leaves is "down"
and the opposite direction is "up." Going from the leaves to the root is called "climbing"
the tree, and going from the root to the leaves is called "descending" the tree.

If every nonleaf node in a binary tree has nonempty left and right subtrees, the tree
is termed a strictly binary tree. Thus the tree of Figure 5.1.3 is strictly binary, whereas
that of Figure 5. 1.1 is not (because nodes C and E have one sort each). A strictly binary
tree with n leaves always contains 2n - 1 nodes. The proof of this fact is left as an
exercise for the reader.

The level of a node in a binary tree is defined as follows: The root of the tree has
level 0, and the level of any other node in the tree is one more than the level of Its father.
For example, in the binary tree of Figure 5.1.1, node E is at level 2 and node H is at
level 3. The depth of a binary tree is the maximum level of any leaf in the tree. This
equals the length of the longest path from the root to any leaf. Thus the depth of the tree
of Figure 5.1.1 is 3. A complete binary tree of depth d is the strictly binary tree all of
whose leaves are at level d. Figure 5.1.4 illustrates the complete binary tree of depth 3.

If a binary tree contains m nodes at level 1, it contains at most 2m nodes at level
1 + 1. Since a binary tree can contain at most one node at level 0 (the root), it can contain
at most 2' nodes at level 1. A complete binary tree of depth d is the binary tree of depth
d that contains exactly 21 nodes at each level I between 0 and d. (This is equivalent to
saying that it is the binary tree of depth d that Contains exactly 2" nodes at level d.) The
total number of nodes in a complete binary tree of depth d, rn, equals the sum of the
number of nodes at each level between 0 and d. Thus
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Figure 5.1.4 Complete binary tree of depth 3.

in = 2° + + 2  +	 +2 d = 02j

Bv induction, it can be shown that this sum equals 2" - I. Since all leaves in such a
ee are at level d. the tree contains 2" leaves and, therefore. 2S - I nonleaf nodes.

Similarly, if the number of nodes, in, in a complete binary tree is known, we can
compute its depth, d, from the equation in 2 f ' 1 - I. d equals I less than the number
of times 2 must be multiplied by itself to reach in + I. In mathematics, loghx is defined
as the number of times b must be multiplied by itself to reach x. Thus we may say that,
in a complete binary tree. d equals log,(tn ± I) - I. For example, the complete binary
tree of Figure 5.1.4 contains IS nodes and is of depth 3. Note that 15 equals 23+1 -
and that 3 equals log( 15 + 1 ) - I. log2 x is much smaller than x [for example. lo-, 1024
equals 10 and log 1000000 is less than 201. The significance of a complete binary tree
is that it is the binary tree with the maximum number of nodes for a given depth. Put
another way, although a complete binary tree contains many nodes, the distance from
the root to any leaf (the tree's depth) is relatively small.

A binary tree of depth d is an almost complete binary free if:

L Any node nd at level less than d - I has two sons.
2. For any node nd in the tree with a right descendant at level d, izd must have a left

son and every left descendant of nd is either a leaf at level d Cr has two Sons.

Thstrictly binary tree of Figure 5.1.5a is not almost complete. since it contains leaves
at levels 1. 2. and 3, thereby violating condition 1. The strictly binary tree of Figure
5.1.5b satisfies condition I. since ever y leaf is either at level 2 or at level 3. However,
condition 2 is violated. since A has a right descendant at level 3 (J) but also has a left
descendant that is a leaf at level 2(E). The strictly binary tree of Figure 5.1.5c satisfies
both conditions I and 2 and is therefore an almost complete binary tree. The binary
tree of Figure 5.1.5d is also an almost complete binary tree but is not strictly binary,
since node E has a left son but not a right son. We should note that many texts refer to
such a tree	 'complete binary tree" rather than as an 'almost complete binary tree."
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Figure S.1.5 Node numbering for almost complete binary trees.

25

5



Still other texts use the term "complete" or "fully binary" to refer to the concept that
we call "strictly binary." We use the terms "strictly binary," "complete," and "almost
complete" as we have defined them here.)

The nodes of an almost complete binary tree can be numbered so that the root is
assigned the number 1, a left son is assigned twice the number assigned its father, and a
right son is assigned one more than twice the number assigned its father. Figure 5.1.5c
and d illustrate this numbering technique. Each node in an almost complete binary tree
is assigned a unique number that defines the node's position within the tree.

An almost complete strictly binary tree with n leaves has 2n - I nodes, as does any
other strictly binary tree with n leaves. An almost complete binary tree with n leaves
that is not strictly binary has 2n nodes. There are two distinct almost complete binary
trees with n leaves, one of which is strictly binary and one of which is not. For example,
the trees of Figure 5.1.5c and d are both almost complete and have five leaves; however,
the tree of Figure 5.1.5c is strictly binary, whereas that of Figure 5.1.5d is not.

There is only a single almost complete binary tree with n nodes. This tree is strictly
binary if and only if n is odd. Thus the tree of Figure 5.1.5c is the only almost complete
binary tree with nine nodes and is strictly binary because 9 is odd, whereas the tree of
Figure.5.1.5d is the only almost complete binary tree with ten nodes and is not strictly
binary because 10 is even.

An almost complete binary tree of depth d is intermediate between the complete
binary tree of depth d - 1, that contains 2" - 1 nodes, and the complete binary tree of
depth d, which contains 2 d1l - I nodes. If in is the total number of nodes in an almost
complete binary tree, its depth is the largest integer less than or equal to 

1092 tn. For
example, the almost complete binary trees with 4, 5, 6, and 7 nodes have depth 2, and
the almost complete binary trees with 8,9, 10, 11, 12, 13, 14, and 15 nodes have depth 3.

Operations on Binary Trees

There are a number of primitive operations that can be applied to a binary tree.
If p is a pointer to a node nd of a binary tree, the function info(p) returns the con-tents of nd. The functions left(p), rightp), fat her(p), and brother(p) return pointersto the left son of nd, the right son of nd, the father of nd, and the brother of nd, re-
spectively. These functions return the null pointer if nd has no left son, right son, fa-
ther, or brother. Finally, the logical functions islefr(p) and isrigh:(p) return the valuetrue if nd is a left or right son, respectively, of some other node in the tree, and falseotherwise.

Note that the functions islefz(p), isrighz(p), and brother(p) can be implementedusin, the functions left(p), right(p) and fatherp). For example, isleft may be imple-mented as follows:

q = farher(p);
if (q	 null)

return(false);	 /* p points to the rootif (7efr(q)= p),
return(rrue);

re:urn(false);
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or, even simpler, asfa:herI,p) && p = lefz(father(p)). isright may be implemented
in a similar manner, or by calling islefi. brother( p) may be implemented using isle!t or
isright as follows:

if (father(p)	 null)
reçurn(null);	 1* p points to the root

if (isleft(p))
return(rfght(father(p)));

return(lefr(father(p)));

In.constructing a binary tree, the operations ,nakezree, sesleft, and setright are use-
ful. maketree(x) creates a new binary tree consisting of a single node with information
field x and returns a pointer to that node. setleft( p,x) accepts a pointer p to a binary
tree node with no left son. It creates a new left son of node( p) with information field x.
setrigh:( px) is analogous to setleft except that it creates a right son of node( p).

Applications of Binary Trees

A binary tree is a useful data structure when two-way decisions must be made at
each point in a process. For example, suppose that we wanted to find all duplicates in
a list of numbers. One way of doing this is to compare each number with all those that
precede it. However, this involves a large number of comparisons.

The number of comparisons can be reduced by using a binary tree. The first num-
ber in the list is placed in a node that is established as the root of a binary tree with
empty left and right subtrees. Each successive number in the list is then compared to
the number in the root. If it matches, we have a duplicate. If it is smaller, we examine
the left subtree; if it is larger, we examine thc .ight subtree. If the subtree is empty, the
number is not a duplicate and is placed into a new node at that position in the tree. If the
subtree is nonempty, we compare the number to the contents of the root of the subtree
and the entire process is repeated with the subtree. An algorithm for doing this follows.

/* read the first number and insert it
/*	 into a single-node binary tree	 V
scanf("%d", &number);
tree niaketree(number);
while (there are numbers left in the input) {
scanf("%d", &number);
p q - tree;
while (number ! info(p) && q .. NULL) {

p -
if (number < fnfo(p))

q	 left(p);
else

q = righr(p);
) / end while */
if (nurnber=4nfo(p))

prfntf("Xd Xs\n", number, "is a duplicate");
/* insert number to the right or left of p *1
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else if (number < iitfo(p))
setleft(p, number);

else

serrighr(p, number);

} / end while */

Figure 5.1.6 illustrates the tree constructed from the input 14, 15, 4, 9, 7, 18, 3,
5, 16. 4, 20, 17, 9, 14, 5.

Another common operation is to traverse a binary tree; that is, to pass through the
tree, enumerating each of its nodes once. We may simply wish to print the contents of
each node as we enumerate it, or we may wish to process it in some other fashion. In
either case, we speak of visiting each node as it is enumerated.

The order in which the nodes of a linear list are visited in a traversal is clearly from
first to last. However, there is no such "natural" linear order for the nodes of a tree. Thus,
different orderings are used for traversal in different cases. We shall define three of these
traversal methods. In each of these methods, nothing need be done to traverse an empty
binary tree. The methods are all defined recursively, so that traversing a binary tree
involves visiting the root and traversing its left and right subtrees. The only difference
among the methods is the order in which these three operations are performed.

To traverse a nor.ernpty binary tree in preorder (also known as depth-firs: order),
we perform the following three operations:

1. Visit the root.
2. Traverse the left subtree 4 n oreorder.
3. Traverse the right subtree in preorder.

To traverse a nonempty binary tree in inorder (or symmeUic order):

1. Traverse the left subtree in inorder.
2. Visit the root.
3. Traverse the right .subtree in inorder.

Figure 5.1.6 Binary tree constructed for finding duplicates.
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Preorder: ABDGCEHIF
Inorder: DGBAHEICF
Postorder: GDBHIEFCA

Preorder: A BCEIFJDGHKL
Inorder: EICFJBGDKHLA
Postorder: IEJFCGKLHOBA Figure 5.1.7 Binary trees and their

traversals.

To traverse a nonempty binary tree in postorder:

1. Traverse the left subtree in postorder.
2. Traverse the right subtree in postorder.
3. Visit the root.

Figure 5.1.7 illustrates two binary trees and their traversals in preorder, inorder, and
postorder.

Many algorithms that use binary trees proceed in two phases. The first phase
builds a binary tree, and the second traverses the tree. As an example of such an al-
gorithm, consider the following sorting method. Given a list of numbers in an input
file, we wish to print them in ascending order. As we read the numbers, the y can he
inserted into a binary tree such as the one of Figure 5.1.6. However, unlike the previous
atgorithm'used to find duplicates, duplicate values are also placed in the tree. When
a number is compared with the contents of a node in the tIee, a left branch is taken if
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Figure 5.1.8 Binary tree constructed for sorting.

the number is smaller than the contents of the node and a right branch if it is greater or
equal to the contents of the node. Thus if the input list is

14 15497 1835 16420 179 145

the binary tree of Figure 5.1.8 is produced.
Such a binary tree has the property that all elements in the left subtree of a node n

are less than the contents of n, and all elements in the right subtree of n are greater than
or equal to the contents of a. A binary tree that has this property is called a binary search
tree. If a binary search tree is traversed in-inorder (left, root, right) and the contents of
each node are printed as the node is visited, the numbers are printed in ascending order.
Civince yourself that this is the case for the binary search tree of Figure 5.1.8. Binary
search trees and their use in sorting and searching are discussed further in Sections 6.3
and 7.2.

As another application of binary trees, consider the following method of repre-
senting an expression containing operands and binary operators by a strictly binary
tree. The root of the strictly binary tree contains an operator that is to he applied to the
results of evaluating the expressions represented by the left and right subtrees. A node
representing an operator is a nonleaf. whereas a node representing an operand is a leaf.
Figure 5.1.9 illustrates some expressions and their tree representations, (The character
"i" is again used to represent exponentiation.)
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Figure 5.1.9 Expressions and their binary tree representation

(c) .4 + (5 - C) • DS(,, • F)

(d) (A	 cs(M 45)C)

()4 +8.c
(b) (4 + 5) •



Let us see what happens when these binary expression trees an traversed.
Traversing such a tree in preorder means that the operator (the root) precedes its two
operands (the subtrees). Thus a preorder tra :rsal yields the prefix form of the expres-
sion. (For definitions of the prefix and postfix forms of an arithmetic expression, see
Sections 2.3 and 3.3.) Traversing the binary trees of Figure 5.1.9 yields the prefix forms

* BC	 (Figure 5.1.9a)
* + ABC	 (Figure 5.1.9b)

+A —BC $ D * EF	 (Figure 5.1.9c)
$ + A * BC * +ABC	 (Figure 5.1.9d)

Similarly, traversing a binary expression tree in postorder pIacs an operator after
its two operands, so that a postorder traversal produces tbe postfix form of the expres-
sion. The postorder traversals of the binary trees of Figure 5.1.9 yield the postflx forms

ABC' 4-	 (Figure 5.I.9a)
AB C*	 (Figure 5.I.9b)

ABC - DEF * $ *+	 ( Figure 5.1.9c)
ABC* +AB+C*S	 (Figure 5.1.9d)

What happens when a binary expression tree is traversed i.i inorder? Since the
root (operator) is visited after the nodes of the left subtree and before the nodes of the
right subtree (the two operands), wt might expect an inordertravral to yiei I the infix
form of the expression. Indeed, if the binary tree of Figure 5.1 .9a is traversed, the infix
expression A + B * C is obtained. However, a binary expression t'ee does not contain
parentheses, since the ordering of the operations is implied by the structure of the tree.
Thus an expression whose infix form requires parentheses to override explicitly the
conventional precedence rules cannot be retrieved by a simple i.içrder traversal. The
inorder traversals of the trees of Figure 5.1.9 yield'the expressiol

A±B*C	 (FigureS.l.9a)
A + B * C	 (Figure 5.1.9b)

A + B C * D$ X E* F	 (Figure 5.1.9c)
.4 + B*CSA + B * C	 (Figure 5.1.9d)

which are correct except for parentheses.

EXERCISES

5.1.1. Prove that the root of a binary tree is an ancestor of every node lathe tree except itself.
5.1.2. Prove that a node of a binary tree has at most one father.
5.1.3. How many ancestors dues a node at level n in a binary tree have'! Prove your answer.
5.1.4. Write recursive and nonrecursivé algorithms to determine:

(a) The number of nodes in a binary tree
(b) The sum of the contents of all the nodes in a binary tree
(c) The depth of a binary tree
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5.1.5. Write an algorithm to determine if a binary tree is
(a) Strictl y binary
(h) Complete
(c) Almost complete

5.1.6. Prove that a strictly binar y tree with n leaves contains 2n - I nodes.

S1.7. Given a strictly binary tree with n leaves, let level(i) for i between I and n equal the
level of the ith leaf. Prove that

______ = I

5.1.8. Prove that the nodes of an almost complete strictly binary tree with n leaves can'be
numbered from 1 to 2n - I in such a way that the number assigned to the left son
of the node numbered i is 21 and the number assigned to the right son of the node
numbered i is 21 + I.

5.1.9. Two binary trees are similar if they are both empty or if they are both nonenlptv. their
left suhtrees are similar, and their right subtrees are similar. Write an algorithm to
determine if two binary trees are similar.

5.1.10. Two binary trees are mirror similar if they are both empty or if they are both nonempty
and the left subtree of each is mirror similar to the right suhtree of the other. Write an
algorithm to determine it two binary trees are mirror similar.

5.1.11. Write algorithms to determine whether or not one binary tree i similar and mirror
similar (see the previous exercises) to some suhtree of another,

5.1.12. Develop an algorithm to find duplicates in a list of numbers without using a binary
tree. If there are it distinct numbers in the list. how many times must two numbers he
compared for equality in your algorithm? What if all n numbers are equal?

5.1.13. (a .) Write an algorithm that accepts a pointer to a binary search tree and deletes the
smallest element from the tree.

(b) Show how to implement an ascending priority queue (see Section 4.1) as a binary
search tree. Present algorithms for the operations pqi?iserl and pqmindeleie on a
binary search tree.

5.1.14. Write an algorithm that accepts a binary tree representing an expression and returns the
infix version of the expression that contains only those parentheses that are necessary.

5.2 BINARY TREE REPRESENTATIONS

In this section we examine various methods of implementing binary trees in C and
present routines that build and traverse binary trees. We also present some additional

applications of binary trees.

Node Representation of Binary Trees

As is the case with list nodes, tree nodes may be implemented as array elements
or as allocations of a dynamic variable. Each node contains infr, let!, right. and father
fields. The lt'fr. rig/it. and father fields of it point to the nodes left son, right son,
and father, respectively. Using the array implementation, we may declare
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•define NU100ES 500
struct nodetype {

mt info;
j ilt left;
lt right;
jilt father;

struct nodetype node(Nt1'00ES);

Under this representation, the operations info(p). left(p), rigMp), and
father(p) are implemented by references to nodelp).info, node[ p].left, node[p].righ:,
and nodeIp1.father. respectively. The operations islefz(.p), isrigh:(p), and brother(p) can
be implemented in terms of the operations Iefz(p), righ:(p), and fa:her(p). as described
in the preceding section.

To implement isleft and isrigh: more efficiently, we can also include within each
node an additional flag isleft. The value of this flag is TRUE if the node is a left son and
MISE otherwise. The root is uniquely identified by a NULL value (—I) in its father
field. The external pointer to a tree usually points to its root.

Alternatively, the sign of the father field could be negative if the node is a left son
or positive if it is  right son. The pointer to a node's father is then given by the absolute
value of the father field. The isleft or isright operations would then need only examine
the sign of the father field.

To implement brother(p) more efficiently, we can also include an additional
brother field in each node.

Once the arra y of nodes is declared, we could create an available list by executing
the following statements:

jilt avail, i;

avail = 1;
for ('=0; , < NtJMNODES; i++)

node[ i ]. l eft = i + 1;
node[NUMNODES-1].left = 0;

The functions getr,ode and freenode are straightforward and are left as exercises. Note
that the available list is not a binary tree but a linear list whose nodes are linked together
by the left field. Each node in a tree is taken from the available pool when needed and
returned to the available pool when no longer in use. This representation is called the
linked array representation of a binary tree.

lternativelv, a node may be defined by

Struct iiodetype {
mt info;
struct nodetype 'left;
struct nodetype *right;
struct nodetype. *father;

typedef struct nodetype N0DEPTR;
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The operations info(P). left(p). right(p). andfather(p) would be implemented by refer-
ences top— >into. p — >left. p — >righ:, and p — >father. respectively. Under this im-
plementation, an explicit available list is not needed. The routines getnode and freenode
simply allocate and free nodes using the routines malloc andfree. This representation
is called the dynamic node representation of a binary tree.

Both the linked array representation and the dynamic node representation are im-
plementations of an abstract linked representation (also called the node representa-
tion) in which explicit pointers link together the nodes of a binary tree.

We now present C implementations of the binary tree operations under the dy-
namic node representation and leave the linked array implementations as simple exer-
cises for the reaGer. The maketree function, which allocates a node and sets it as the
root of a single-node binary tree, may be written as follows:

NOOEPTR maketree(int x)

NOOEPTR p;

p getnodeQ;
p->info -
p->left	 NULL;
p->riaht	 NULL;
return(p);
/ end maketree

The routine set! eft( p.x) sets a node with contents x as the left son of node( p):

void setleft(NODEPTR p, mt x)

if (p = NULL)
printf(void insertion\n');

else if (p->left !- NULL)
printf ("invalid insertion\n);

else
p->left = inaketree(x);

} / end setleft *1

The routine .cetright( p,x) to create aright son of node(p) with contents xis similar
and is left as an exercise for the reader.

It is not always necessary to use father, left, and right fields. If a tree is always
traversed in downward fashion (from the root to the leaves), the father operation is
never used; in that case, a father field is unnecessary. For example. preorder, inorder,
and postorder traversal do not use thefather field. Similarly, if a tree is always traversed
in upward fashion (from the leaves to the root), left and right fields are not needed. The
islefi and isright operations could be implemented even without left and right fields
by using a signed pointer in the father field under the linked array representation, as
discussed earlier: a right son contains a positive father value and a left son a negative
father field. Of course, the routines inaketree. set left. and serrigh: must then be suitably
modified for these representations. Under the dynamic node representation, an is! eft
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logical field is required in addition to father if left and right fields are not present and
it is desired to implement the isleft or isrighi operations.

The following program uses a binary search tree to find duplicate numbers in
an input file in which each number is on a separate input line. It closely follows the
algorithm of Section 5.1. Only top-down links are used; therefore no father field is
needed.

Struct nodetype {
mt info;
struct nodetype *left;
struct nodetype *right;

typedef Struct nodetype *NODEPTR;

main()

NODEPTR ptree;
IODEPTR p, q;
mt number;

scanf("%d", &number);
ptree	 maketree(n.jmber)
while (scanf("%d", &number) 	 EOF)

P = q = ptree;
while (number	 p->info && q 1= NULL)

p=
if (number < p->info)

q = p->left;
else

q = p->right;
/* end while /

if (number == p->info)
printf('%d is a dupU c ate\n", number);

else if (number < p->info)
seteft(p, number);

else
setright(p, number);
/ end while

} / end main /

Internal and External Nodes

By definition leaf nodes have no sons. Thus, in the linked representation of
binary trees, left and right pointers are needed only in nonleaf nodes. Sometimes
two separate sets of'nodes are used for nonleaves and leaves. Nonleaf nodes con-
tain info, left, and right fields (often no information is associated with nonleaves,
so that an info field is unnecessry) and are allocated as d y namic records or as an
array of records managed using all 	 list. Leaf nodes do not contain a /ft or
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right field and are kept as a single info array that is allocated sequentially as needed
(this assumes that leaves are never freed, which is often the case). Alternatively, they
can be allocated as dynamic variables containing only an info value. This caves a great
deal of space, since leaves often represent a majority of the nodes in , a binary tree. Each
(leaf or nonleaf) node can also contain a father field, if necessary.

When this distinction is made between nonleaf and leaf nodes, nonleaves are
ca ed internal nodes and leaves are called external nodes. The terminology is also
often used even when only a single type of node is defined. Of course, a son pointer
within an internal node must be identified as pointing to an internal or an external. node.
This can be done in  in two ways. One technique is to declare two different node types
and pointer types and to use a union for internal nodes, with each alternative containing
one of the two pointer types. The other technique is to retain a single type of pointe'r
and a single type of node, where the node is a union that does (if the node is an internal
node) or does not (if an external node) contain left and right pointer fields. We will see
an example of this latter technique at the end of this section.

lmpicit Array Representation of Binary Trees

Recall from Section 5.1 that the n nodes of an almost complete binary tree can
be numbered from I to n. so that the number assigned a left son is twice the number
assigned its father, and the number assigned a right son is I more than twice the number
assigned its father. We can represent an almost complete binary tree withoutfathe,; lefi.
or right links. Instead, the nodes can be kept in an array inj'o of size n. We refer to the
node at position p simply as "node p." info[ p] holds the contents of node p.

In C, arrays start at position 0; therefore instead of numbering the tree nodes from
ito n, we number them from 0 to n - 1. Because of the one-position shift, the two sons
of a node numbered pare in positions 2p + I and 2p + 2, instead of 2p and 2p + I.

The root of the tree is at position 0. so that tree, the external pointer to the tree
root, always equals 0. The node in position p (that is, node p) is the implicit father
of nodes 2p + I and 2p + 2. The left son of node p is node 2p + I and its right son
is node 2p + 2. Thus the operation left(p) is implemented by 2 * p + I and right(p)
by 2 * p + 2. Given a left son at position p, its right brother is at p + I and, given
a right son at position p, its left brother is at p - I. father(p) is implemented by
(p - 1) 2. p points to a left son if and only if p is odd. Thus, the test for whether node
p is a left son (the isleft operation) is to check whether p%2 is not equal to 0. Figure
5.2.1 illustrates arrays that represent the almost complete binary trees of Figure 5.1.5c
and d.

We can extend this implicit array representation of almost complete binary trees
to an implicit array representation of binary trees generally. We do this by identifying
an almost complete binary tree that contains the binary tree being represented. Figure
5.2.2a illustrates two (non-almost-complete) binary trees, and Figure 5.2.2b illustrates
the smallest almost complete binary trees that contain them. Finally. Figure 5.2.2c
illustrates the implicit array representations of these almost complete binary trees, and,
by extension, of the original binary trees. The implicit array representation is also called
the sequential representation, as contrasted with the Iin+ed representation presented
earlier, because it allows a tree to be implemented in a contiguous block o memory (an
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array) rather than via pointers connecting widel y separated nodes. Under the sequen-
tial representation, an array element is allocated whether or not it se rves to-contain a
node of a We must, therefore, figiiiüed array elements as nonexistent, or null,
tree nodes. This may be accomplished by one of two methods. One method is to set
info I1 to a special value if node p is null. This special value should be invalid as the
information content of a legitimate tree node. For example. in a tree containing posi-
tive numbers, a null node may be indicated by a negative info value. Alternatively, we

may add a logical flag field, used, to each node. Each node then contains two flelds:

info and used. The entire structure is contained in an array node. used(,p), implementea

as node[p}.used. is TRUE if node p is not a null node and FALSE if it is a null nole.

info(p) is implemented by node[p.info. We use this latter method in implementing the
sequential representation.

We now present the program to find duplicate numbers in an input list, as well
as the routines 'niakeiree and seileft, using the sequential representation of binary

trees.

#define NUMN0DES 500
struct nodetype {

mt info;
mt used;

} node[NUMNODES];

void maketree(int);
void setleft(int, int);
void setright(int int);

main()

mt p, q, number;

scanf("%d', &number);
maketree(number);
while (scanf('%d', &nuimber) 	 EOF)

p = q = 0;
while (q < NIJYNODES && node[ q ].used && number 1= node[p].info)

p =
if (number < node[p].info)

q = 2	 p + 1;
else

q = 2	 p + 2;
/ end while

/ if the number is in the tree it is a duplicate */

if (number == nodep].irifo)
printf("%d is a duplicate\ri", number);

else if (number < node[p].info)
setleft(p, number);

269	 Trees	 Chap. 5



else
setright (p. number);

} 7* end while •/
} 7* end main *1

void rnaketree(int x)

mt p;

nade[OJ.info =
node[O] .used = TRUE;
1* The tree consists of node 0 alone. */
1* All other nodes are null nodes *7
for (p=l; p < NUMNtXES; p++)

node[pJ . used = FALSE;
} / end maketree *1

void setleft(int p, let x)

mt q;

q 2	 1;	 /* Q is the position of the left son
if (q > NUO0ES)

er ror("array overflow");
else if (node[qJ.used)

error("invalid insertion");
else

node(qJ.info

	

node(q) .used	 TRUE;
} /* end if *7
/ end setleft *1

The routine for seiright is similar.
Note that under this implementation, the routine ,naketree initializes the fields info

and used to represent a tree with a single node. It is no longer necessary for inaketree to
return a value, since under this representation the single binary tree represented by the
info and used fields is always rooted at node 0. That is the reason that p is initialized
to 0 in the main function before we move down the tree. Note also that under this
representation it is always required to check that the range (NUMNODES) has not been
exceeded whenever we move down the tree.

Choosing a Binary Tree Representation

Which representation of binary trees is preferable? There is no general answer
to this question. The sequential representation is somewhat simpler, although it is nec-
essary to ensure that all pointers are within the array bounds. The sequential representa-
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tion clearly saves storage space for trees known to be almost complete, since it elim-
inates the need for the fields lrft, rig/u, and father and does not even requite a used
field. It is also space efficient for trees that are only a few nodes short of being al-
most complete, or when nodes are successively eliminated from a tree that originates
as almost complete, although a used field might then be required. However, the se-
quential representation can only he used in a context in which only a single tree isie-
quired. or where the number of trees needed and each of their maximum sizes is fixed in
advance.

By contrast, the linked representation requires left, right, and father fields (al-
though we have seen that one or two of these may be eliminated in specific situations)
but allows much more flexible use of the collection of nodes. In the linked represen-
tation, a particular node may be placed at any location in any tree, whereas in the se-
quential representation a node can he utilized only if it is needed at a specific location
in a specific tree. In addition, under the dynamic node representation the total num-
ber of trees and nodes i' limited only by the amount of available memory. Thus the
linked representation is preferable in the general, dynamic situation of many trees of
unpredictable shape:

The duplicate-finding program is a good illustration of the trade-offs involved.
The first program presented utilizes the linked representation of binary trees. It requires
left and right fields in addition to info (the father field was not-necessary in that pro-
gram). The second duplicafe-finding program that utilizes the sequential representation
requires only an additional field, used (and this too can be eliminated if only positive
numbers are allowed in the input, so that a null tree node can be represented by a spe-
cific negative info value). The sequential representation can be used for this example
because only a single tree is required.

However, the second program might not work for as many input cases as the
first. For example, suppose that the input is in ascending order. Then the tree formed
by either program has all null left subtrees (you are invited to verify that this is the
case by simulating the programs for such input). In that case the only elements of info
that are occupied under the sequential representation are 0. 2. 6. 14, and so on (each
position is two more than twice the previous one). If the value of NUMNODES is kept
at 500, a maximum of onl y 16 distinct ascending numbers can he accommodated uhe
last one will be at position 254). This can be contrasted with the program using the
linked representation, in which up to 500 distinct numbers in ascendine order can he
accommodated before it runs Out of space. In the remainder of the text, except a noted
otherwise, we assume the linked representation of a binary tree.

Binary Tree Traversals in C

We may implement the traversal of binary trees in C by recursive routinCs thJ
mirror the traversal definitions. The three C routines prenav. intro. and pus urav print
the contents of a binary tree in preorder, inorder, and postorder. respecti el y . The pa-
rameter to each routine is a pointer to the root node of a binary tree. We ue the dynamic
node representation of a binary tree:
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void pretrav(NOOEPTR tree)

if (tree	 MULL)
printf("%d\n", tree-info);
pretrav(tree->left);
pretrav(tree->right);

} / end if */

1 / end pretrav *1

void intrav(NODEPTR tree)

if (tree	 NULL) {
ntrav(tree->1 eft);

printf("%d\n", tree->info);
intrav(tree->right);

1 / end if *1
} / end intrav *1

void posttrav(NODEPTR tree)

if (tree 1= NULL) {
posttrav(tree->left);
posttrav(tree->right);
printf('%d\n", tree-info);

} / end if */
} / end posttrav *1

1* visit the root	 *1
/ traverse left subtree *1
1* traverse right subtree

1* traverse left subtree V
/ visit the root	 V

/ traverse right subtree V

/ traverse left subtree
1* traverse right subtree

1* visit the root	 V

The reader is invited to simulate the actions of these routines on the trees 'of Figures
5.1.7 and 5.1.8.

Of course, the routines could be written nonrecursively to perform the necessary
stacking and unstacking explicitly. For example, the following is a nonrecursive routine
to traverse a binary tree in inorder:

Idefine MAXSTACK 100

void intrav2(NOOEPTR tree)

struct stack
mt top;
NODEPTR item[MASTACK1;

} s;
NODEPTR p;

s. top
p = tree;
do(

/ travel down left branches as far as possible */
P	 saving pointers to nodes passed
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while (p	 NULL) {
push (s, p);
p	 p->left;

}. / end while *1
/* check if finished *1
if (!empty(s)) {

/ at this point the left subtree is empty *1
p	 pop(s);
printf('%d\n", p->info); / visit the root
p p->right;	 / traverse right subtree

} 1* end if */
} while (!empty(s) II p	 NULL);
/ end intrav2 •1

Nonrecursive routines to traverse a binary tree in postorder and preorder as well
as nonrecursive traversals of binary trees using the sequential representation are left as
exercises for the reader.

intrav and intrav2 represent an excellent contrast between a recursive routine and
its nonrecursive counterpart. If both routines are executed, the recursive intrav generally
executes much more quickly than the nonrecursive intrav2. This goes against the ac-
cepted "foil wisdom" that recursion is slower than iteration. The primary cause of the in-
efficiency of intrav2 as written is the calls to push, pop, and empi. Even when the code
for these functions is inserted in-line into intrav2, intrav2 is still slower than infrav

because of the often superfluous tests for overflow and underfiow included in that code.
Yet, even when the underfiow/overflow tests are removed, intrav is faster than

intrav2 under a compiler that implements recursion efficiently! The efficiency of the
recursive process in this case is due to a number of factors:

1. There is no "extra" recursion, as there is in computing the Fibonacci numbers,
wheref(n —2) andf(n— 1) are both recomputed separately even though the value
of f(n - 2) is used in computingf(n - I).

2. The recursion stack cannot be entirely eliminated, as it can be in computing the
factorial function. Thus the automatic stacking and unstacking of built-in recur-
sion is more efficient than the programmed version. (In many systems, stacking
can be accomplished by incrementing the value of a register that points to the
stack top and moving all parameters into a new data area in a single block move.
Program-controlled stacking as we have implemented it requires individual as-
signments and increments.)

3. There are no extraneous parameters and local variables as there are, for exampie,
in some versions of binary search. The automatic stacking of recursion does not
Stack any more variables than are necessary.
In cases of recursion that do not involve this excess baggage, such as inorder

traversal, the programmer is well advised to use recursion directly.
The traversal routines that we have presented are derived directly from the def-

initions of the traversal methods. These definitions are in terms of the left and right
sons of a node and do not reference a nodes father. For that reason, both the recursive
and nonrecursive routines do not require afather field and do not take advantage of such
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a field even if it is present. As we shall soon see, the presence of a father field allows
us to develop nonrecursive traversal algorithms without using a stack. However, we
first examine a technique for eliminating the stack in a nonrecursive traversal even if a
father field is not available.

Threaded Binary Trees

Traversing a binary tree is a common operation, and it would be helpful to find
a more efficient method for implementing the traversal. Let us examine the function
intrav2 to discover the reason that a stack is needed. The stack is popped when p equals
NULL. This happens in one of two cases. In one case, the while loop is exited after
having been executed one or more times. This implies that the program has traveled
down left branches until it reached a NULL pointer, stacking a pointer to each node
as it was passed. Thus, the top element of the stack is the value of p before it became
NULL. If an auxiliary pointer q is kept one step behind p, the value of q can be used
directly and need not be popped.

The other case in which p is NULL is that in which the while loop is skipped
entirely. This occurs after reaching a node with an empty right subtree, executing the
statement p = p — >righr, and returning to repeat ie body of the do while loop. Al this
point, we would have lost our way were it not for the stack whose iop points to the node
whose left subtree was just traversed. Suppose, however, that instead of containing a
NULL pointer in its right field, a node with an empty right subtree contained in its right
field a pointer to the node that would be on top of the stack at that point in the algorithm
(that is, a pointer to its inorder successor.) Then there would no longer be a need for the
stack, since the last node visited during a traversal of a left subtree points directly to its
inorder successor. Such a pointer is called a thread and must be differentiable from a
tree pointer that is used to link a node to its left or right subtree.

Figure 5.2.3 . shows the binary trees of Rgui'e 5.1.7 with threads replacing NULL
pointers in nodes with empty right subtrees. The threads are drawn with dotted lines
to differentiate them from tree pointers. Note that the rightmost node, in each tree still
has a NULL right pointer, since it has no inorder successor. Such trees are called right
in-threaded binary trees.

To implement a right in-threaded binary tree under the dy-narnic node implemen-
tation of a binary tree, an extra logical field, rthread, is included within each node to
indicate whether or not its right pointer is a thread. For consistency, the rthread field of
the rightmost node of a tree (that is, the last node in the tree's inorder traversal) is also
set to TRUE, although its right field remains NULL. Thus a node is defined as follows
(recall that we are assuming that no father field exists):

struct nodetype {
mt info;
Struct nodetype *left; 	 / pointer to left son
struct nodetype *right; 	 / pointer to right son *1
mt rthread;	 /	 rthread is TRUE if

right is NULL or

/* a non-NULL thread
typedef struct nodetype *NODEPTR;
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Figure 5.2.3 Right in-threaded binary trees.

We present a routine to implement inorder traversal of a right in-threaded binary
tree.

void intrav3(NOOEPTR tree)

NOQEPIR p , q;
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p • tree;
do{

qNUL1;
..••.''-y._,..-.-J I	

•s•4t!L?

q=
P p-1e.ft:

} /o end while
if ( c 1= NULL)

pnntt("%d\n, q-.,nto);
p	 q->riaht;
while (q->rthread && p 	 NULL) {

printf(%d\n
qp;

- p	 p->right;

I	 I	 ttt'

} / end if
} while ( q	NULL)

end irtrav3 /

In a right in-threaded binary tree the inorde-r uccessor of any node _as, be round

efficy in a straightforwar rrtnner The ruuriec

makeiree, setlef:. and setright are as follows. We assume info. 'f:, right, and rthread

fields in each node.

NODEPTR raketree(int x)

NOOEPTR p;

p getrt3deO;
p->info =
p->left	 NULL;
p->rigt	 NULL;

Curtai/ - uISUt,

rettrn(p);/, 
end maketree '

void setleft(NODEPTR p, i, nt x)

iIflrrtDrn

if (p	 NULL)
error('void insertion");

	

else if (p-,left	 NULL)
error("invalid insertion');

else
q = getnodeQ;
q->info = K;

p->left
q->left = NULL:
/' The inorder successor of node(q) is node( p) *!
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q->right
q->rthread - TRUE;

} 1* end if /
} 1* end setleft *1

void setright(NODE pTR p, mt x)

NOOEPTR q, r;

If (p	 NULL)
error('vojd insertion')

else if (!p->rthread)
error("invaljd insertion);

else {
q = getnodeQ;
q->info =
/* save the inorder successor of node(p) 	 *7
r = p->right;
p->right
p->rthread = FALSE;
q->left	 NULL;
7* The inorder successor of node(q) is the 	 *1
1*	 previous successor of node(p)	 *1
q->right = r;
q->rthread	 TRUE;
/* end else *1

/* end setright *1

In the linked array implementation, a thread can be represented by a negative
value of node[pj.right. The absolute value of node[pI.righz is the index in the array
node of the inorder successor of node(pJ. The sign of node[pJ.righ: indicates whether
its absolute value represents a thread (minus) or a pointer to a nonempty subtree (plus).
Under this implementation, the following routine traverses a right in . threaded binary
tree in inorder. We leave mqke:ree, seilef:, ind seirigh: for the linked array representa-
tion as exercises for the reader.

void thtrav4(jnt tree)

mt p, q;

p - tree;
do{

1* travel down left links keeping q behind p
q	 0;
while (p 1. 0) {

q=
p	 node[p].left;
/* end while *1
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if (q != 0) {	 /* check if finished
printf ( %d\n", node[q].info)
P	 node[q].right;
while (p	 0)

q-
printf("%d\n", node[q J .info);
p	 node[q].right;
/* end while *1

} / end if *1
1* traverse right subtree *1

} while (q !- 0);
/ end intrav4 *1

Under the sequential representation of binary trees, the used field indicates
threads by means of negative or positive values. If i represents a node with a right
son, node[i].used equals I, and its right son is at 2 * i + 2. However, if i represents a
node with no right son, node[i].used contains the negative of the index of its inorder
successor. (Note that use of negative numbers allows us to distinguish a node with a
right son from a node whose inorder successor is the root of the tree.) If i is the rightmost
node of the tree, so that it has no inorder successor, node[ i].used can contain the special
value +2. If i does not represent a node, node[i].used isO. We leave the implementation
of traversal algorithms for this representation as an exercise for the reader.

A left in-threaded binary tree may he defined similarly, as one in which each
NULL left pointer is altered to contain a thread to that node's inorder predecessor. An
in-threaded binary tree may then bedefined as a binary tree that is both left in-threaded
and right in-threaded. However, left in-threading does not yield the advantages of right
in-threading.

We may also define right and left pre-threaded binary trees, in which NULL right
and left pointers of nodes are replaced by their preorder successors and predecessors
respectively. A right pre-threaded binary tree ma y be traversed efffciently in preorder
without the use of a spick. A right in-threaded binary tree may also be traversed in
preorder without the use of a stack. The traversal algorithms are left as exercises for the
reader.

Traversal Using a father Field

If each tree node containsa father field, neither a stack nor threads are necessary
for nonrecursive traversal. Instead, when the traver sal process reaches a leaf node, the
father field can be used to climb back up the tree. When node(p) is reached from a left
son, its right subtree must still be tversed: therefore the algorithm proceeds to rig/u(p).
When node(p) is reached from its right son, both its subtrees have been traversed and the
algorithm backs up further to fatherp). The following routine implements this process
for inorder traversal.

void intrav5(NODEPTR tree)

NODEP1R p, q;
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qNULL;
p	 tree;
do{

while (p 1. NULL) {
q • p;
P - p->left;

} / end while *1
if (q !- NULL)

printf("%d\n", q->info):
p	 q->right;

} / end if */
while (q	 NULL && p	 NULL)

do{
/ node(q) has no right son. Back up until aV
/* left son or the tree root is encountered */
pq;
q = p-father;

} while (!isleft(p) && q	 NULL);
if (q != NULL)

printf("%d\n", q->info);
p = q->right;

} / end if */
P end while */

while (q != NULL);
I" end inrrav5 *1

Note that we write is!eft(p) rather than p — >isleft because an isleft field is unnec-
essary to determine if node(p) is a left or a right son; we can simply check if the node
is its father's left son.

fit inorder traversal a node is visited lpriotf ("%d\ n". q >info)J when its
left son is recognized as NULL or when it is reached after backing up from its left son.
Preorder and postorder traversal are similar except that, in preorder, a node is vsited
only when it is reached on the way down the tree and, in postorder, a node is visited
only when its right son is recognized as NULL or when it is reached after backing up
from its right son. We leave the details as an exercise for the reader.

Traversal usingfiither pointers for hacking up is less time efficient than traversal
of a threaded tree. A thread points directly to a node's successor, whereas a whole series
of father pointers may have to he followed to reach that successor in an unthreaded tree.
It is difficult to compare the lime efficiencies of stack-based traversal and father-based
traversal, since the former includes the overhead of stacking and unstacking.

This backup traversal algorithm also suggests a staekless nonrecursive traversal
technique for unthreaded trees, even if no father field exists. The technique is simple:
simply reverse the son pointer on the way down the tree so that it can be usd to find a
way back up. On the way hack up, the pointer is restored to its original value.

For example, in intrai5, a variable f can be introduced to hold a pointer to the
father of ,Iode(q). The Statements

q=
P = p->left;
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in the first while loop can be replaced by

f • q;

q •

P - p->left;

if (p !- NULL)

q->left -

This modifies the left pointer of node(q) to point to the father of node(q) when going
left on the way down [note that p points to the left son of node(q), so that we have not
lost our way]. The statement

P - q->right;

in both of its pccurrences can be replaced by

p	 q->right'

if (p !- NULL)

q->right	 f;

to similarly modify the right pointer of node(q) to point to its father when going right
on the way down. Finally, the statements

P

q 7 p->father;

in the inner do-while loop can be replaced by

p
q =

if (q != NULL && isleft(p)) {.

f = left(q);

left(q)	 p;

else {

f	 right(q);

right(q)	 p;

} / end f/

to follow a modified pointer back up the tree and restore the pointer's value to point to
its left or right son as appropriate.

However, now an isleft field is required, since the isleft operation cannot be im-
plemented using a nonexistent father field. Also, this algorithm cannot be used in a
mtiuser environment if several users require access to the tree simultaneously. If one
user is traversing the tree and temporarily modifying pointers, another user will be un-
able to use the tree as a coherent structure. Some sort of lockout mechanism is required
to ensure that no one else uses the tree while pointers are reversed.
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Figure 5.2.4 Binary tree representing 3 ± 4 • (6 - 7) 5 -4 3.

Heterogeneous Binary Trees

Often the information contained indifferent nodes of a binary tree is not all of the
same type. For example, in representing a binary expression witfl constant numerical
operands we may wish to use a binary tree whose leaves contain numbers but whose
nonleaf nodes contain characters representing operators, Figure 5.2.4 illustrates such a
binary tree.

To represent such a tree in  we may use a union to represent the information por-
ion of the node. Of course, each tree node must contain within itself a field to indicate
the type of object that its info field contains.

#defirte OPERATOR 0
4define OPERAND 1
struct nodetype {

short mt utype;	 / OPERATOR or OPERAND */
union

char chinfo;
--	 float numinfo;

info;
struct nodetype *left;
struct nodetype fright;

typedef struct nodetype NODEPTR;
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Let us write a C function evalbin tree that accepts a pointer to such a trçe and
returns the value of the expression represented by the tree. The function recursively
evaluates the left and right subtrees and then applies the operator of the root to the two
results. We use the auxiliary function oper (synib,opndl,pnd2) introduced in Section
2.3. The first parameter of oper is a character reppesentinE an operator, and the last two
parameters are real numbers that are the two operands. The function oper fturns the
result of applying tie onrtn n th iu	 n'l

float evalbintree (NOOEPTR tree)

float opndl, opnd2;
char symb;

if (tree->utype == OPERAND) /* expression is a single operand /
return (tree->numinfo);

/ tree->utype	 OPERATOR	 */
/* evaluate the left subtree	 *1
opndl	 evalbintree(tree->left);
/* evaluate the right subtree
opnd2	 evalbintree(tree->right);
symb = tree->chinfo;	 /* extract the operator

apply the operator and return the result	 V
return(oper(symb, opndl, opnd2));

} /' end evalbintree *1

Section 9.1 discusses additional methods of implementing linked structures that
contain heterogeneous elements. Note also that, in this example, all the operand nodes
are leaves and all the operator nodes are nonleaves.

EXERCISES

5.2.1. Write a C function that accepts a pointer to a node and returns TRUE if that node is the
root of a valid binary tree and FALSE otherwise.

5.2.2. Write a C function that accepts a pointer to a binary tree and a pointer to a node of the
tree and returns the level of the node in the tree.

5.2.3. Write a C function that accepts a pointer to a binary tree and returns a pointer to a new
binary tree that is the mirror image of the first (that is, all left subtrees are now right
subtrees and vice versa).

5.2.4. Write C functions that convert a binary tree implemented using the linked array rep-
resentation with only a father field (in which the left son's father field contains the
negative of the pointer to its father and a right son's father contains a pointer to its
father) to its representation using left and P-ighz fields, and vice versa.

5.2.5. Write a C program to perform the following experiment: Generate 100 random num-
bers. As each number is generated, insert it into an initially empt y binary search tree.
When all 100 numbers have been insetted, print the level of the leaf with the largest
level and the level of the leaf with the smallest level Repeat this process 50 times. Print
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out a table-with a count of how many of the 50 runs resulted in a difference between
the maximum and minimum leaf level of 0. 1, 2, 3. and soon.

5.2.6. Write C routines to traverse a binary tree in preorder and postorder.
5.2.7. Implement inorder traversal. makeirèe, .cetleft, and set right for right in,.threaded binary

trees under the sequential representation.

5.2.8. Write C functions to ctate a binary tree given
(a) The preordcr and inorder traversals of that tree
(h) The preorder and postorder traversals of that tree

Each function should accept two character strings as parameters. The tree created
s'hould contain a single character in each node.

5.2.9. The solution to the Towers of Hanoi problem for n disks (see Sections 3.3 Vind 3.4) can
be represented by a comp'ete binary tree of level n - 'I as follows.
(a) Let the root of the tree represent a move of the top disk on peg fry.irnpeg to peg

topeg. (We ignore the identification of the disks being moved, as there is only
a single disk Ithe top onel that can be moved from any peg to any other peg.)
If nd is a leaf node tat level less than n - I) representing the movement of the
top disk from peg x to peg v. let z be the third peg that is neither the source or
target of node nd. Then Iefz(ndt represents a move of the top disk from peg x to
peg z and right(nd) represents a move of the top disk from peg z to peg '.'. Draw
sample solution trees as described previously for n l, 2. 3. and 4. and show that
an inorder traversal of such a tree produces the solution to the Towers of Hanoi
problem.

(b) Write a rcrsive C procedure that accepts a value for n and generates and tra-
verses the tree as discussed previously.

(c) Because the tree is complete, it can be story in an array of size 2"— I. Show
that the nodes of the tree can be stored in the array so that a sequential traversal
of the array produces the inorder traversal of the tree, as follows: The root of
the tree is in position 2"'—l; for any level j. the first node at that level is in
position 2" -j - I and each successive node at level us elements beyond
the previous element at that level.

(d) Write a nonrecursive C program to create the array as described in part c and
show that a sequential pass through the array does indeed produce the desired
solution.

(e) How could the preceding programs he extended to include within each node the
number of the disk being moved?

5.2.10. In Section 4.5 we introduced a method of representing a doubi y linked list with only a
single pointer field in each node by maintaining its value as the exclusive or of pointers
to the node's predecessor and successor. A binary tree can be iiinnilarly maintained by
keeping one field in each node set to the exclusive or of pointers to the node'sfuzher
and left son [call this field fleftQ] and another held in the node set to the exclusive or
of pointers to the nodes father and rig/i! son }call this field frighrp)j.
(a) Given faiher(p) and flef(p). show how to compute left(p).

Given far/zer(p) and f'-iglu(p), show how to compute 'ie/i!,i,).
(b) Given fleft p ) and left(p), show how to. compute /iithciip).

Given fright(p) and rig/lop), show how to compute father(p).
(c) Assume that a node contains onl y in/h, ule/. fright, and isleft fields. Write algo-

rithms fir preorder. inordet, and poscorder traversal ofa binary tree, given an
external pointer to the tree root, without using a stack or modifying an y fields.

(d) Can the is/cIt field be eliminated?
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5.2.11. An index of a textbook consists of major terms ordered alphabetically. Each major
term is accompanied by a set of page numbers and a set of suhtcrms. The subtcrms are
printed on successive lines following the major term and are arranged alphabetically
within the major term. Each subterm is accompanied by a set of page numbers.

Design a data structure to represent such an index and wore a C program to print an
index from data as follows: Each input line begins with an m (major term) or an s
(subterm). An m line contains an m followed by a major term followed by an integer
n (possibly 0) followed by n page numbers where the major term appears. An .c line
is similar except that it contains a subtrm rather than a major term. The input lines
appear in no particular order except that each subterm is considered to be a subterm
of the major term which last precedes it. There may be many input lines for a single
major term or subterm (all page numbers appearing on any line for a particular term.
should be printed with that term).

Te index should be printed with one term on a line followed by all the pages on which
the term appears in ascending order. Major terms should be printed in alphabetical
order. Subterms should appear in alphabetical order immediately following their major
term. Subterms should be indented five columns from the major terms.

The set of major terms should be organized as a binary tree. Each node in the tree
contains (in addition to left and right pointers and the major term itself) pointers to
two other binary trees. One of these represents the set of page numbers in which the
major term occurs, and the other represents the set of subterms of the major term. Each
node on a subterm binary tree contains (in addition to left and right pointers and the
subterm itself, a pointer to a binary tree representing the set of page numbers in which
the subterni occurs,

5.2.12. Write a C function to implement the sorting method of Section 5.1 that uses a binary,
search tree.

5.2.13. (a) Implement an ascending priority queue using a binary search tree by writing
C implementations of the algorithms pqimverl and pqmindelete, as in exercise
5.1.13. Modify the routines to count the number of tree nodes accessed.

(b) Use a random number generator to test the efficienc y of the priority queue im-
plementation as follows: First, create a priority queue with 100 elements by
inserting 100 random numbers in an initially empt y binary search tree. Then
call pqrninde!eze and print the number of tree nodes accessed in finding the min-
imum element, generate a new random number, and call pqinsert to insert the
new random number and print the number of tree nodes accessed in the inser-
tion. Note that alter calling pqinsert. the tree still contains 100 elements. Repeat
the delete/print/generate/insert/print process 1000 times. Note thx• the number
of nodes accessed in the deletion tends to decrease, while the number of nodes
accessed in the insertion tends to increase. Explain this behavior.

5.3 EXAMPLF THE HUFFMAN ALGORITHM

Suppose that we have an alphabet of n symbols and a long message consisting of sym-
bols from this alphabet. We wish to encode the message as a long bit string (a bit is
either 0 or I) by assigning a bit string code to each symbol of the alphabet and con-
catenating the individual codes of the symbols making up the message to produce an
encoding for the message. For example, suppose that the alphabet consists of the four
symbols A, B. C. and I) and that codes are assigned to these symbols as follows:
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Symbol	 Code

A	 010
100

C	 000
D	 lii

The message AJ3ACCDA would then be encoded as 010I0001000000o1 11010. Such
an encoding is inefficient, since three bits are used for each symbol, so that 21 bits are
needed to encode the entire message. Suppose that a two-bit code is assigned to each
symbol, as follows:

Symbol	 Code

A	 00
B	 01

10
1)	 II

Then the code for the message would be 00010010101100, whichrequires only 14 bits.
We wish to find a code that minimizes the length of the encoded message.

Let us reexamine the above example. Each of the letters B and D appears
only once in the message, whereas the letter A appears three times. If a code is
chosen so that the letter A is assigned a shorter bit string than the letters B and D,
the length of the encoded message would be small. This is because the short code
(representing the letter A) would appear more frequently than the long code. Indeed,
codes can be assigned as follows:

Symbol	 Code

A	 0
B	 HO
C	 10
D	 Ill

Using this code, the message ABA CCDA is encoded as 0110010101110. which requires
only 13 hits. In very long messages containin g symbols that appear very infrequentiv.
the savings are substantial. Ordinarily, codes are not constructed on the basis of the frer
quency of characters within a sin g le messa ge alone. but on the basis of their frequency
within a -hole set of messages. The same code set is then used for each message. For
example. if messages consist of English words, the known relative frequency of occur-
rence of the letters of the alphabet in the English language might he used, although the
relative frequency of the letters in any single messa ge is not necessarily the same.

If variable-len gth codes are used, the code for one s ymbol may not be a prefix of
the code for another. To see wh y, assume that the code for a svmholx. c(v). were a prefix
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of the code of another symbol y, c(y). Then when c(x) is encountered in a left.-toright
scan, it is unclear whether c(s) represents the sv'nhol x or whether it is the first partof c(y).

In our example, decoding proceeds by scanning a bit sing from left to right. If a
o is encountered as the first bit, the symbol is an A; otherwise it is a B, C. or D, and the
next bit is examined. If the second bit is a 0, the svxnbol is a C; otherwise it must be aB or aD, and the third bit must be examined. lftj* thirc#bjt is a 0, the symbol is a B; ifit is  I, the symbol is a D. As soon as the first symbol has been identified, the process
is repeated starting at the next bit to find the second symbol.

This suggests a method for developing an optimal encoding scheme, given the
frequency of occuireitce of each symbol in a message. Find the two symbols that ap-
pear least frequently. In our example, these are B and P. The last bit of their codes
differentiates one from the other: 0 for B and I for D Combine these two symbols
into the single symbol B!), whose code represents the knowledge that a symbol is ei-
ther a B or a D. The frequency of occurrence of this new symbol is the sum of the
frequencies of its two constituent symbols. Thus the frequency of B!) is2. There are
now three symbols: A (frequency 3), C (frequency 2) and SD (frequency 2). Again
choose the two symbols with smallest frequency: C and B!). The last bit of their codes
again differentiates one from the other: 0 for C and I for BD. The two symbols are
then combined into the single symbol GB!) with frequency 4. There are now only two
symbols remaining: A and CBIJ. These are combined into the single symbol ACRD.
The last bits of the codes for A and GB!) differentiate one front other: 0 for A and Ifor CBD.

The symbol AC'BD contains the entire alphabet; it is assigned the null hit string of
length Gas its code. At the start of the decoding, before any bits have been examined,
it is ce1ain' that any symbol is contained in ACBD. The two symbols that make up
ACBD (A and ('B!)) are assigned the codes 0 and 1, respectively. If a 0 is encountered,
the encoded symbol is an A; if a I is encountered, it is a C, a B, or a D. Similarly,
the two symbols that constitute CBD (C and SD) are assigned the codes 10 and It.
respectively. The first bit indicates that the symbol is one of the constituents of CS!),
and the second bit indicates whether it is a C or a RD. The symbols that make up
RD (B and D) are then assigned the codes 110 and Ill. By this process, symbols that
appear frequently in the message are assigned shorter codes than symbols that appear
infrequently.

The action of combining two symbols into one suggests the use of a binary tree.
Each node of the tree represents a symbol and each leaf represents a symbol of the orig-
inal alphabet. Figure 5.3.1a shows the binary tree constructed using the previous ex-
ample. Each node in the illustration contains a symbol and its frequenc y. Figure 5.3.1b
shows the binary tree constructed by this method for the alphabet and frequency table of
Figure 5.3.1c. Such trees are called Huffman trees after the discoverer of this encoding
method.

Once the Huffman tree is constructed, the code of any symbol in the alphabet
can be constructed by starting at the leaf representing that symbol and climbing upr
to the root. The code is initialized to na/I. Each time that a left branch is climbed, 0
is appended to the beginning of the code; each time that a right branch is climbed, I is
appended to the beginning of the code.
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(b)

Code I Symbol	 Fqoency	 Code	 I Symbol	 Fquency	 Code

Ill I	 D	 12	 on	 I	 6	 1100
0101	 E	 23	 10	 H	 I	 o;000
1101	 F	 4	 Q)	 I	 15	 00

ax

Figure 5.3.1 Huffman trees.
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The Huffman Algorithm

The inputs to the algorithm are n, the number of symbols in the original alphabet,
and frequenc '. an an-ay of size at least n such that frequency i] is the relative frequency
of the ith symbol. The algorithm assigns values to an array code of size at least n. so thatcodefi] contains the code assigned to the ith s ymbol. The algorithm also constructs an
array position of size at least n such that position Ii] points to the node representing the
ith symbol. This array is necessary to idettify the point in the tree from which to start
in cc istructing the code for a particular symbol in the alphabet. Once the tree has been
constructed, the isleft operation introduced earlier can be used to determine whether 0
or I should be placed at the front of the code as we climb the tree. The info portion of
a tree node contains the frequency of the occurrence of the symbol represented by that
node.

A set rootnodes is used to keep pointers to the roots of partial binar y trees that
are not yet left or right subtrees. Since this set is modified by removing elements with
minimum frequency, combining them and then reinserting the combined element into
the set, it is implemented as an ascending priority queue of pointers, ordered by the
value of the info field of the pointers' target nodes. We use the operations pqinser:, to
insert a pointer into the priority queue, and pqmindeleie, to remove the pointer to the
node with the smallest info value from the priority queue.

We may outline Huffman's algorithm as follows:

/*	 initialize the set of root nodes /
rootnodes the empty ascending priority queue;
1* construct a node for each symbol /

for (i=ij; i<n; i++) {
P = maketree(frequency[i]);
positon(i) = p;./* a pointer to the leaf containing

/	 the ith symbol
pq thsert(rootnodes, p);

} / end for V
while (rootgtodes contains more than one item) f

P1 = pqmindelete(rootnodes);
P2 = pqmindelete(rootnodes);
1* combine p1 and 02 as branches of a single tree V
P = rnaketree(fo(p1) + info(p2));
serleft(p, p1);
setrght(p, pz);
pqinsert(rootnode, p);
/ end while /

/ the tree is now constructed.; use it to find codes V
root pqriinde7ere(roo00);
for (=O;	 1.cn;j+,){

P = position[)
coje[ j )	 the null bit string;
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while (p 1. root) {
7* travel up the tree
if (s1eft(p))

code[i)	 0 followed by code[i];
else

code[i)	 1 followed by code[i];
p	 father(p);

} 7* end while *1
/* end for /

C Program

Note that the Huffman tree is strictly binary. Thus, if there are n symbols in the
alphabet, the Huffman tree (which has n leaves) can be represented by an array of
nodes of size 2n - I Since the amount of storage needed for the tree is known, it may
be allocated in advance in an array node.

In constructing the tree and obtaining the codes, it is only necessary to keep a
link from each node to its father and an indication of whether each node is a left or a
right son; left and right fields are unnecessary. Thus each node contains three fields:
father, isleft, and freq.father is a pointer to the node's father. If the node is the root, its
father field is NULL. The value of isleft is TRUE if the node is a left son Sand FSE
otherwise. freq (which corresponds to the info field of the algorithm) is the frequency
of occurrence of the symbol represented by that node.

We allocate the array node based on the maximum possible symbols (a constant
mzcsymbs) rather than on the actual number of symbols, n. Thus the array node, that
should be of size 2n - 1, is declared as being of size 2 * MAXSYMBS - 1. This means
that some space is wasted. Of course, n itself could be made a constant rather than a
variable, but then the program must be thodified every time that the number of symbols
differs. The nodes can also IjC represented by dynamic variables without wasting space.
However, we present a linked arra y implementation. (We could also input the value of
n and allocate arrays of the proper size using ma/lc dynamically during execution.
Then, no space would be wasted using an array imp)ementation.)

In using the linked array implementation, node[01 through node[n 11 can be
reserved for the leaves representing the original n symbols .of the alphabet, 6d node[n]

through node[2 * ii - 2) for the n - I nonleaf nodes required by the strictly binary
tree. This means that the array position is not required as a guide to thq leaf nodes
representing the n symbols, since the node containing the ith input symbol (where i

goes from 0 to n - 1) is known to be node[i]. If the dynamic node repfsentation were
used, the array position would be required.

.. The following program encodes a message using Huffman's algorithm. The input
consists of a number n, which is the number of symbols in the alphabet, followed by a
secfn pairs, each of which Consists of a symbol and its relative frequency. The program
first Constructs a string a/ph, consisting orall the symbols in the alphabet, and an array
code such that codeliJ is the code assigned to the ith symbol in a/ph. The program then
prints each character, its relative frequency and its code.

Since the code is constructed from right to left, we define a structure pcodeApe as
follows:
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ldeflne MXBITS 50

struct codetype {
mt bits(tAX8jTS];
mt startpos;

MAXBJTS is the maximum number of bits allowed in a code. If a code cd is null,
cd.starrpos is equal to MAXBITS. When a bit b is added to cd at the left, cd.siartpos is
deremented by I and cdbirs[cd.siartpos) is set to b. When the code cd is completed,
the bits of the code are in positions cd.srarrpos through MAXBITS - I inclusive.

An important issue is how to organize the priority queue of root nodes. In the
algorithm, this data structure was represented as a priority queue of node pointers. Im-
plementing the priority queue by a linked list, as in Section 4.2, would require a new set
of nodes, each holding a pointer to a root node and a next field. Fortunately the father
field of a root node is unused, so that it can be used to link together all the root nodes
into a list. The pointer roolnodes could point to first root node on the list. The list
itself can be ordered or unordered, depending on the implementation of pqinsert and
pqmindele:e.

We make use of this technique in the following program, which implements the
algorithm just presented.

#define MAXBITS 50
#define MAXSYMBS 50
#deflne MAXNODES 99 / l4P(N00ES equals 2*MAX5YIIB5_1 *1

struct codetype {
mt bits[MAXBITS];
mt startpos;

struct nodetype {
mt freq;
mt father;	 /* If node[p] is not a root node, father points

/* to the node's father; if it is, father points

mt isleft;	
1* to the next root node in the priority queue	 *1

void pqinsert(int, int);
mt pqmindelete(int);

main(
{

struct codetype cd, code[MAXSYMBS];
struct nodetype node[NAXNODES);
mt i, k, n, p, p1, p2, root, rootnodes;
char symb, alph(MAXSYNBS);
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for(i - O; I <MAXSThBS; i++)
alph[i] -

rootnodes - 0;
Input the alphabet and frequencies */

scanf("%d"; &n);
for (ii..o; I <n; is-i.) {

scanf("%s %d", &symb, &node[i],freq);
pq insert(rootnodes, I);
alph[i]	 symb;

} /endfor/

/ we now build the trees
for (p n; p 24_1; n++) {

1* ppoints to the next available node. Obtain the *1
/ root nodes p1 and p2 with smallest frequencies *1
P1 pqmindelete(rOotne5);
P2	 pqmindelete(roonoe$);
/	 set left(p) to p1 and right(p) to p2 *1
node[p l].father	 p;
node[pl].isleft	 TRUE;
node[p2J.father	 p;
node[p2).icleft	 FALSE;
node[p).freq	 node(pl).freq + node[p2].freq;
pq insert(rootnodes, p);

} / end for *1
1* There is now only one node left

with a null father field	 *1
root pqmlndelete(rootnodes);
/ extract the codes from the tree *1
for (iO;i<n;j++){

/ initialize code[] *1
cd.startpos MAXBITS;
/ travel up the tree *1
P	 i;
while (p	 root)

--cd.startpos;
if (node[p].isleft)

cd.bits[cd.startpos]	 0;
else

cd.bits[cd.startpos]	 1;
p	 node[p].father;
/* end while *1

for (k - cd.startpos; k MAXBITS; ks-+)
code [fl.bits[k] = cd.bits(k);

code [ i ].startpos - cd.startpos;
/ end for V
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1* print results /
for (1	 0; i < n; is-i.) {

printf(\n%c %d ", alph[i], nodes[i].freq);
for (k = code(i).start pos; k < MAXBITS; ks-i.)

pnntf("%d, code[fl.bits[k]);
printf("\n");

I / end for*/
/* end main /

We leave to the reader the coding of the routine encode(a!ph, code, lusge. bücode).
This procedure accepts the string a/ph, the array code constructed in the foregoing pro-
gram, and a message msge and sets bitcode to the bit string encoding of the mcssge.

Given the encoding of a message and the Huffman tree used in constructing the
code, the original message can be recovered as follows: Begin at the root of the tree.
Each time that a 0 is encountered, move down a left branch, and each time that a I is
encountered, move down a right branch. Repeat this process until a leaf is encountered.
The next character of the original message e symbol that corresponds to that leaf.
See if you can decode ll10100010111011 using the Huffman tree of Figure 5.3.lb.

To decode it is necessary to travel from the root of the tree down to its leaves.
This means that instead of father and isleft fields, two fields left and right are needed
to hold the left and right sons of a particular node. It is straightforward to compute the
fields left and right from the fields father and isleft. Alternatively, the values left and
right can be constructed directly from the frequency information for the symbols of the
alphabet using an approach similar to that used in assigning the value of father. (Of
course, if the trees are to be identical, the symbollfrequency pairs must be presented
in the same order under the two methods.) We leave these algorithm g, as well as the
decoding algorithm, as exercises for the reader.

EXERCISES

53.1. Write a C function encode(alph, code, insge. bitcode). The function accepts the string
a/ph and the array code prolluced by the program Jinticode in the text and a message
msge. The procedure sets bitcode to the Huffman encoding of that message.

5.3.2. Write a C function decode(alph, left, right, bircode, msge), in which a/ph is the string
produced by the pro gram findcode in the text, left and right are arrays used to represent a

-	 Huffman tree, and bitcode is a-bit string. The function sets ln.cge to the Huffman decoding
of biicode.	 -	 -

5.3.3. Implement the priority queue roornodes as an ordered list. Write appropriate pqin.cert
and pqmindeieze routines.

5.3.4. Is it possible to have two different Huffman trees for a set of symbols with given fre-
quencies? Either give an example in which two such trees exist or prove that there is
only a single such tree.

53.5. Define the Fibonacci binary tree of order in as follows: If i 0 or n = I. the tree
consists of a single node, if ,i > I, the tree consists of a root, with the Fibonacci tree of
order n - I as the left subtree and the Fibonacci tree of order a - 2 as the right sub;ree.
(a) Write a C function that returns a pointer to the Fibonacci binary tree of order a.
(b) Is such a tree strictly binary?
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(c) What is the number of leaves in the Fibonacci tree of order it?

(d) What is the depth of the Fibonacci tree of order n?
5.3.6. Given a binary tree:, its extension is defined as the binary tree e(t) formed from : by

adding a new leaf node at each NULL left and right pointer in 1. The new leaves are
called external nodes, and the original nodes (which are now all nonleaves) are called
internal nodes. e(l) is called an extended binary tree.
(a) Prove that an extended binary tree is strictly binary.
(b) If: has it nodes, how many nodes does e(t) have?
(c) Prove that all leaves in an extended binary tree are newly added nodes.
(d) Write a C routine that extends a binary tree:.
(e) Prove that any strictly binary tree with more than one node is an extension of one

and only one binary tree.
(f) Write a C function that accepts a pointer to a strictly binary tree 11 containing more

than one node and deletes nodes from it creating a binary tree :2 such that £1 =
e(12).

(g) Show that the complete binary tree of order it is the nth extension of the binary
tree consisting of a single node.

5.3.7. Given a strictly binary tree sin which the n leaves are labeled as nodes I through n, let
level(i) be the level of node i and letfreq(i) be an integer assigned to node i. Define the
weighted path length oft as the sum of freq(i) * level(i) over all leaves of:.
(a) Write a C routine to compute the weighted path lenglh, given fieldsfreq and father.
(b) Show that the Huffman tree is the strictly binary tree with minirrturn weighted path

length.

5.4 REPRESENTING LISTS AS BINARY TREES

Several operations can be performed on a list of elements. Included among these op
erations are adding a new element to the front or rear of the list, deleting the existing
first or last element of the list, retrieving the kth element or the last element of the lis,
inserting an element following or preceding a given element, deleting a given elemeit,
aud deleting the predecessor or successor of a given element. Building a list with given
elements is an additional operation that is frequently required.

Depending on the representation chosen for a list, some of these operations nay
or may not be possible with varying degrees of efficiency. For example, a list nay
be represented by successive elements in an array or as nodes in a linked strucure.
Inserting an element following a given element is relatively efficient in a linkedlist
(involving modifications to a few pointers aside from the actual insertion) but ela.
tively inefficient in an array (involving moving all subsequent elements in the sTay
one position). However, finding the kth element of a list is far more efficient it
array (involving only the computation of an offset) than in a linked structure(that
requires passing through the first k - I elements). Similarly, it is not possile to
delete a specific element in a singly linked linear list given only a pointer t that
element, and it is only possible to do so inefficiently in a singly linked circuir list
(by traversing the entire list to reach the previous element, and then performig the
deletion). The same operation, however, is quite efficient in a doubly linked (hear or
circular) list.

In this section we introduce a tree representation of a linear list in which he op-
erations of finding the kth element of a list and deleting a specific element are rektively
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efficient. It is also possible to build a list with given element'; using this representation.
We also briefly consider the operation of inserting a single new element.

A list may be repre.te '1	 a binary tree as illustrated in Figure 5.4.1. Figure
5.4.1a shows alist	 inked format, while Figure 5.4. lb and  show two binary

FH8JTh_ HI WI

(HcI fH	 4iJ.
(a)

(h)

Figure 5.4.1 List and two corresponding binary trees.
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tree representations of the list. Elements of the original list are represented by leaves of
the tree (shown as squares in the figure), whereas nonleaf nodes of the tree (shown as
circles in the figure) are present as part of the internal tree structure. Associated with
each leaf node are the contents of the corresponding list element. Associated with each
nonleaf node is a count representing the number of leaves in the node's left subtree.
(Although this Count can be computed from the tree structure, it is maintained as a data
element to avoid recomputing its value each time that it is needed.) The elements of
the list in their original sequence are assigned to the leaves of the tree in the inorder
sequence of the leaves. Note from Figure 5.4.1 that several binary trees can represent
the same list.

Finding the kth Element

To justify using so many extra tree nodes to represent a list, we present an algo-
rithm to find the kth element of a list represented by a tree. Let free point to the root of
the tree, and let lcount(p) represent the count associated with the noñleaf node pointed
to by p [lcount(p.flthe number of leaves in the tree rootedãtnódè(eff(p]. The fol-
1'iTdihrn sets the variablefind to point to the leaf containing the kth element of
the list.

The algorithm maintains a variable r containing the number of list elements re-
maining to be counted. At the beginning of the algorithm r is initialized to k. At each
nonleaf node(p), the algorithm determines from the values of r and lcounf(p) whether
the kth element is located in the left or right subtree. If the leaf is in the left sub-
tree, the algorithm proceeds directly to that subtree. If the desired leaf is in the right
subtree, the algorithm proceeds to that subtree after reducing the value of r by the
value of lcounrp). k is assumed to be less than or equal to the number of elements ti

	

the list.	 -	 -

r =

	

P	 tree;
while (p is not a leaf node)

if (r	 = lcount(p))
P = 1efr(p;

else {
r - lcount(p);

p= right(p);
} / End if V

find = p;

Figure 5.4.2a illustrates finding the fifth element of a list in the tree of Figure
5.4.1b, and Figure 5.4.2b illustrates finding the eighth element in the tree of Figure
5.4. Ic. The dashed line represents the path taken by the algorithm down the tree to the
appropriate leaf. We indicate the valu of r (the remaining number of elements to be
counted) next to each node encountered by the algorithm.

The number of tree nodes examined in finding the kth list element is less than or
equal to 1 more than the depth of the tree (the longest path in the tree from the root to
a leaf). Thus four nodes are examined in Figure 5.4.2a in finding the fifth element of the
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Figure 54.2 Finding the 0th element of a tree-represented list.

list, and also in Figure 5.4.2b in finding the eighth element. If a list is represented as
a linked structure, four nodes are accessed in finding the fifth element of the list Ithat
is, the operation p = next(p) is performed four times) and seven nodes are accessed in
finding the eighth element.

Although this is not a very-impressive saving, consider a list with 1000 elements.
A binary tree of depth 10 is sufficient to represent such a list, since log: 1000 is less
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than 10. Thus, finding the kth element (regardless of whether k was 3. 253, 708. or
999) using such a binary tree would require examining no more than 11 nodes. Since
the number of leaves of a binary tree increases as 2, where d is the depth of the tree,
such a tree represents a relatively efficient data structure for finding the kth element of
a list. If an almost complete tree is used, the kth element of an n-element list can be
found in at most 1092n + 1 node accesses, whereas k accesses would be required if a
linear linked list were used.

Deleting an Element

How can an element be deleted from a list represented by a tree? The deletion.
itself is relatively easy. It involves only resetting a left or right pointer in the father of
the deleted leaf dl to null. However, to enable subsequent accesses, the counts in all
ancestors of dl may have to be modified. The modification consists of reducing icount
by I in each node nd of which dl was a left descendant, since the number of leaves in
the left subtree of nd is 1 fewer. At the same time, if the brother of dl is a leaf, it can
be moved up the tree to take the place of its father. We can then move that node up
even further if it has no brother in its new position. This may reduce the depth of the
resulting tree, making subsequent accesses slightly more efficient.

We may therefore present an algorithm to delete a leaf pointed to by p from a tree
(and thus a i element from a list) as follows. (The line numbers at the left are for future
reference.)	 -

1 ff(p - tree) {
2	 tree - null;
3	 free node(p);
4}
5 else
6	 f= father(p);
7	 / remove node(p) and set b to point to its brother *1
8	 if (p	 left(f)) {
9	 left(f)	 null;
10	 b	 righr(f);
11	 --lcount(f);
12	 }
13	 else{
14	 right(f)	 null;
15	 b	 lefr(f);
16. } /* end if*/
17	 if (node('b) is a leaf)
18	 /* move the contents of node(b) up to its *1
19	 /.*	 father and free node(b)	 *1
20	 info(f) = info(b);
21	 left(f)	 null;
22	 right(f)	 null;
23	 lcount(f) = 0;
24	 free node(b);
25	 } /* end if V
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26	 free node(p);
27	 / climb up the tree
28	 q - f;
29	 while (q !. tree) {
30	 f father(q);
31	 if (q - left(f')) {
32	 f* the deleted leaf was a left descendant */

of node(f)	 *1

33	 --lcount(f);
34	 b	 right(f);
35	 }
36	 else
37	 b	 left(f);
38	 / node(b) is the brother of node(q) *1

39	 if (b	 null && node(q) is a leaf){

40	 / move up the contents of node(Q)

41	 / to its father and free node(q)

42	 info(f)	 info(q);

43	 left(f)	 null;
44	 right(f)	 null;
45	 lc'ount(f) - 0;
46	 free node(q);
47	 ) /* end if
48	 qf;
49	 } / 1 end while *1
SO } 1* end else *f

Figure 5.4.3 Illustrates the results of this algorithm fora tree in which the nodes

C. D. and B are deleted in that order. Make sure that you follow the actions of the
algorithm on these examples. Note that the algorithm maintains a 0 count in leaf nodes
for consistency, although the count is not-required for such nodes. Note also that the
algorithm never moves up a nonleaf node even if this could be done.. (For example.

the father of A and B in.Figure 5.4.3b has not been moved up.)-We can easily modify

the algorithm to do this (the modification is left to the reader) but have not done so for

reasons that will become apparent shortly.
This deletion algorithm involves inspection of up to two nodes (the ancestor of

the node being deleted and that ancestor's brother) at each level. Thus, the operation
of deleting the kth element of a list represented by a tree (which involves finding the
element and then deleting it) requires a number of node accesses approximately equal to
three times the tree depth. Although deletion from a linked list requires accesses to only
three nodes (the node preceding and following the deleted node as well as the deleted

node), deleting the kth element requires a total of k + 2 accesses (k - I of which are to

locate the node preceding the kth). For large lists, therefore. the tree representation is

more efficient.
Similarly we can compare favrably the efficiency of tree-represente d lists with

array-represented lists. If an it-element list is maintained in the first it elements of an ar-
ray. finding the &Th element involves only a single array access, but deleting it requires

shifting then - k elements that had followed the deleted elenieht. If gaps are allowed in
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Figure 5.4.3 Deletion algorithm.
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the array so that deletion can be implemented eTheiently (b y setting a flag in the array
position of the deleted element without shihing an y subsequent clements), finding the
kth element requires at least k array accesses. The reason is that it i s no longer possible
to know the array position of the kth element i!,1 the list. since gaps may exist among the
elements in the array. jWe should note, however, that if the order of the elements in the
list is irrelevant, the kill element in an array can he deleted efficiently bN overwriting
it with the element in position n (the last element) and adjusting the count to n - I.
However, it is unlikely that we would want to delete the /th element from u list in hich
the order is irrelevant, since there would then he no significance in the kill over
any of the others. I

Inserting a new kill into a tree-represented list jhetween the (. - l)st
and the previous kthl is also a relatively efficient operation. The InsCrtion çon,ists of
locating the kth element, replacing it with a new nonicaf that ha it leaf containing
the new element as its left son and a leaf containing the old kth element as its right
son, and adjusting appropriate counts among its ancestors. We leuvc the details to the
reader. (However, repeatedly adding a new kth element b y this method causes thetrcc
to become highly unbalanced, since the branch contuinuig the /.111 element benme dis-
proportionately lvng compared with the other branches. This means that the efficiency
of finding the kth demerit is not as great as it would be in it balanced tree in which all
paths are approximately the same length. The reader is encouraged to find it

 strategy to alleviate this prohem. Despite this problem, if insertions into the tree
are made randomly. SO Jat it is equally likely for an element to be inserted at afl' iztvcii
position, the resulting 'cee remains fairly balanced and finding the kth element remains
efficient.)

Implementing Tree-Represented Lists in C

The C implementations of the search and deletion algorithms are straghtlorward
using the linked representation of binary trees. However, such a represetitution requires
info, Icount, farliet, left, and right fields for each tree node, whereas a list node requires
only info and next fields. Coupled with the fact that the tree representation requires ap-
proximately twice as many nodes as a linked list, this space requirement may make the
tree representation impractical. We could, of course, utilize external nodes containing
only an info field (and perhaps afother field) for the leaves. and internal nodes con-
taintin g lcowir, father left. and rig/it fields for the nonleaves. We do not pursue that
possibility here.

Under the sequential representation of a binary tree, the space requirements are
not nearly so great. If we assume that no insertions are required once the tree is con-
structed and that the initial list size is known, we can set aside an ';j' 	 h 'ia,;;.
complete strictl y binary tree representation of the list. Under that representation.'/ar/le?;
left. and right fields are unnecessar . As we shall-soon show, i is alwa ys possible to
construct an almost complete hinary tree representation of a liSt.

Once the tree has been constructed, the onl y fields required are info. 1100:!!. and a
field used to indicate whether or not an arra y element represent- an extstn g or a deleted
tree node. Also, as we have noted before .huruu is onl y requited for nnIaf node, of the
tree, so that a structure could acIuall he used witheitherthe	 I 'e 'i/'' tield.

Sec. 5.4	 Representing Lists as Binary Trees 	 299



depending on whether or not the node is a leaf. We leave this possibility as an exercse
for the reader. It is also possible to eliminate the need for the used field at some expelse
to time efficiency (see Exercises 5.4.4 and 5.4.5). We assume the following definitions
and declarations (assume 100 elements in the list):

Sdefine NAXELTS 100	 1* maximum ,umber of list elements
#define NUMNODES 2*UAXELTS - 1
Idefine BLANKS	 / 20 blanks
struct nodetype {

char info(20J;
mt icount;
mt used;

} node[NUMNOOES];

A nonleaf node can be recognized by an info value equal to BLANKS.faiher(p), ieftp),
and right(p) can be implemented in the usual way as (p 1)/2,2 * p + Land 2 * p + 2,
respectively.

A C routine to find the kth element follows. It uses the library routine szrc,np
which returns 0 if two strings are equal.

mt findelement(jnt k)

•int p, r;

r=k;
p0;
while (strcmp(node[p).info, BLANKS)	 0)

if (r <= node[pJjcount)
pp2+1;

else {
r ­R node[p] .count;
p = p2-2;

} I' end if
return(p);
/* end findeleqient

The C routine to delete the leaf pointed to by p using the sequential representation
is somewhat simpler than the corresponding algorithm presented in the foregoing. We
can ignore all assignments of null (lines 2. 9. 14, 21. 22,43 and 44), since pointers
are not used. We can also ignore the assignments of 0 to an lcouui field (lines 23 and
45). since such an assignment is part of the conversion of it to a leaf, and in
our C representation the leoiint field in leaf nodes is unused. A node can be recognized
as a leaf-(lines 17'and 39) by a nonblank into value, and the pointer h as null (line
39) by a FALSE value for iiodelb}.used. Freeing a node (lines 3. 26. and 46) is accom-
plished by setting its used field to E4 LSE. The routine uses the library routine strepv(s.,),
which assigns string Ito string s, and the routine stIr,,,f, to compare two strin gs for
equality.
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void delete(int p)
{.

mt b, f, 'I;

if(p-.0)
node[p].used	 FALSE;	 / Algorithm lines 1-4.

else {
f - (p-i) / 2;	 /* Algorithm line 6
if (p % 2 !- 0) {	 /* Algorithm line 8	 *1

b • 2*f + 2;
--node(f].lcount;

else
b	 2f + 1;

if (strcmp(no4e[b].i nfc, BLANKS)	 0)
/* Algorithm lines 17-25 */

strcpy(node[f] .info, node[b] .info);
node[b].used	 FALSE;

} 1* end if */
node[ p].used FALSE;	 / Algorithm line 26	 1
q	 f;	 / Algorithm line 28	 */

while (q	 0) {
f - (q-1) I 2;	 /* Algorithm line 30
if (q % 2	 0) {	 7 Algorithm line 31	 f

--node[f].lcount;
b - 2*f + 2;

el se
b	 2*f + 1;

if (!node[b].used && strcmp (node[ q]. info, BLANKS) !- 0) {
/* Algorithm lines 39-47 */

strcpy (node[f].info, node[q].info);
node[q).used FALSE;

} / end if */
q	 f;

} / end while */
} /* end if
1* end delete

Our use of the sequential representation explains the reason for not moving a nonleaf
without a brother further up in a tree during deletion. Under the sequential represen-
tation, such a moving-up process would involve copying the contents of all nodes in
the subtree within the array, whereas it involves modifying only a single pointer if tl'
linked representation is used.

Constructing a Tree-Represented List

We now return to the claim that, given a list of n elements, it is-possible to con-
struct an almost complete strictly binary tree representinghe list. We have already seen
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in SCCtJLOI .l that it is possible to construct an almost Complete strictly binary tree withii leaves and 2 * n - I nodes ThZ leaves of such a tree occupy nodes numbered it -through 2 - 2. If d is the smallest integer such that 2d 
is greater or equal to n (thatis. if d equals the smallçst integer greater than or equal to log2 n), d equals th' depth of

the tree. The number assigned to the first node on the bottom level of the tree is 2 - I.The first elemeits of the list are assigned to nodesnumbered 2d - I through 2 * n —2.and the remainder (u any) to nodes numbered n - I through 2d - 2. In constructing atree repreenhing a list with it elements,we can assign elements to the info fields of tree
leaves in this sequence and assign a blank string to the info fields of the nonleaf nodes.numbered 0 through n - 2. It is also a simple matter to initialize the used field to true	in all nodes numbered 0 to 2 * it	 2.

Initializing the values of the /cmi,,f array is more difficult. Two methods can be
used: one involving more time and a second involving more space. In the first method,
all leowi, fields are initialized to 0. Then the tree is climbed from each leaf to the tree
root in turn. Each time a node is reached from its left son, I is added to its Icoun!field. After this process is performed for each leaf, all/count values have been properlyassi gned. The following routine uses this method to construct a tree from a list of input
data:

void buildtree(int n)

irit d, F, i, p, power, size;

/ compute the tree depth d and the value of 2d *1
d=0;
Dower = 1;
while (power < n)

power = 2;
/ end while

I assign the elements of the list, initialize the used fizgs,/ and initialize the icount field to 0 in all nonleaves
size S 2n - 1;
for (1	 power-I; I < size),; i++)

scanf(%d", &rsode[i].irtfo);
node t i ] .used	 TRUE;

} /* end for
for (i=n-1; I < power-I; i++){

scanf(%s" node[i],jnfo);
nodeli].used = TRUE;

} /endfor/
for 0=0:(1=0; 1	 n-i; 1.,..)

node[i].used	 TRUE;
node [ i ll,lcount = 0;
strcpy(noae[j] info,BLANKS);

} / end for i
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/ set the Icount fields */
for (in-1; I < size; i+.*) {

/	 follow the path frot,, each leaf to the root f
p • I;
witfie (p	 0) {

f(p-1)/2;
if (p % 2	 0)

++node [f} .1 count;
p.f;

} /* end while *1
/* end for /

/* end buildtree *1

The second method uses an additional field, rcount. ineach node to hold the num-
ber of leaves in the right subtree of each nonleaf node. This field as well as the Ic Punt
field is set to I in each nonleaf that is the father of two leaves. 11,1 is odd, so that there
is a node (numbered (n - 3); ' 2) that is the father of a leaf and a nonleaf. icoun: in that
node is set to 2 and rcount to I.

The algorithm then goes through the remaining array elements in reverse order.
setting Icount in each node to the sum of /count and rcouni in the node's left son, and
rcounr to the sum of Icount and rcounr in the node's right son. We leave to the reader
the C implementation of this technique. Note that rcounr can be implemented as a local
array in build: ree rather than as a field in every node, since its values are unused once
the tree is built.

This second method has the advantage that it visits each nonleaf once to directly
calculate its Icount (and rCount) value. The first method visits each nonleaf once for
each of its leaf descendants, adding one to icount e.ch time that the leaf is found to be a
left descendant. To counterbalance this advantage, the second method requires an extra
rcoun: field, whereas the first method needs no extra fields.

The Josephus Problem Revisited

The Josephus problem of Section 4.5 Is a perfect example of the utility of the
binary tree representation of a list. In that problem it was necessary to repeatedly find
the tnth next element of a list and then delete that element. These are operations that
can be performed efficiently in a tree-represented list.

If size equals the number of elements currently in a list, the position of the rnth
node following the node in position k that has just been deleted is given by 1 +(k  —2 +11))

% size. (Here we assume that the first node in the list is considered in position I. not
in position 0.) For example, if a list has five elements and the third element is deleted.
and we wish to find the fourth element following the deleted element. size - 4. k = 3.
and in = 4. Then k - 2 + in equals 5 and (k - 2 + ,n) 9e size is 1, so that the fourth
element following the deleted element is in position 2. (After deleting element 3. we
count elements 4, 5, I. and 2.) We can therefore write a C functionJ//ower to find the
thth node following a node in positin k that has just been deleted and to reset / to its
position. The routine calls the routine Jindelenjent presented earlier.
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mt follower(int size, mt m, mt -pk)

mt j, d;

j= k - 2 +
*pk	 ( S size) + 1;
return(fjnde1ent(*pk)).
/ end follower *1

The following C program implements the Josephus algorithm using a tree-
represented list. The program inputs the number of people in a circle (n), an integer
Count (m), and the names of the people in the circle in order, beginning with the person
from whom the count starts. The people in the circle are counted in order and the person
at whom the input count is reached leaves the circle. The count then begins again from
I. starting at the next person. The program prints the order in which people leave the
circle. Section 4.5 presented a program to do this using a circular list in which (11 - I)
* ,n nodes are accessed once the initial list is constructed. The following algorithm
accesses fewer than (n - I) * lo,-2n nodes once the tree is built.

/ definitions of WELTS, NUMNODES, BLANKS,
/	 and nodetype go here

void bui1dtree(jnt)
mt follower(jnt int, mt *):
void delete(jnt);

main()

mt k, iii, n, p, size;
struct nodetype node[NUMNODE5];

scanf("%d%d", &n, &4n);
buildtree(n);
k = n + 1; / initially we have "deleted" the (n+1)st person Vfor (size	 n; size > 2;'--size) {

/* repeat until one person is left
P	 follower(size, m, &k):
printf("%d\n', node(p),info):
delete(p);
/ end for *1

printf("%d", node[O).info);
/' end stain *,'

EXERCtF$

.4.1. Prove that the leftmost node at level U in an almost complete strictly binary tree is as-
signed the number 2".
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5.41. Prove that the extension (see Exercise 5.3.5) of an almost complete binary tree is almost
complete.

5.4.3. For what values of n and n. is the solution to the .Josephus problem given in this section
faster in execution than the solution given in Section 4.5? Why is this so?

5.4.4. Explain how we can eliminate the need for a used field if we elect not to move up a
newly created leaf with no brother during deletion.

5.4.5. Explain how we can eliminate the need for a used field if we set /count to 1 in a nonleaf
that is converted to a leaf node and reset info to blanks in a deleted node.

5.4.6. Write a C routine hui!dlrc'e in which each node is visited Only once by using an rcount
array us described in the text.

5.4.7. Show how to represent a linked list as an almost complete binary tree in which each list-
element is represented by one tree node. Write a C function to return a pointer to the kth
element of such a list.

5.5 TREES AND THEIR APPLICATIONS

In this section we consider general trees and their representations. We also investigate
some of their uses in problem solving.

A tree is a finite nonempty set of elements in which one element is called the root
and the remaining elements are partitioned into in > = 0 disjoint subsets, each of which
is itself a tree. Each element in a tree is called a node of the tree.

Figure 5.5.1 illustrates some trees. Each node may be the root of a tree with zero or
more subtrees. A node with no subtrees is  leaf. We use the termsfather, son, brother,
ancestor, descendant, level, and depth in the same sense that we used them for binary
trees. We also define the degree of a node in a tree as the number of its sons. Thus in
Figure 5.5.1 a. node C has degree 0 (and is therefore a leaf), node D has degree I, node

B has degree 2, and node A has degree 3. There is no upper limit on the degree of a
node.

Let us compare the trees of Figure 5.5.1 a and c. They are equivalent as trees. Each
has A as its root and three subtrees. One of those subtrees has root C with no subtrees,

another has root D with a single subtree rooted at G. and the third has root B with two

subtrees rooted at  and F. The only difference between the two illustrations is the order
in which the subtrees are arranged. The definition of a tree makes no distinction among
subtrees of a general tree, unlike a binary tree, in which a distinction is made between
the left and right subtrees.

An ordered tree is defined as a tree in which the subtrees of each node form
an ordered set. In an ordered tree we may speak of the first. second, or last son of a
particular node. The first son of a node in an ordered tree is often called the oldest
son of that node, and the last son is called the youngest. Although the trees of Figures
5.5.1 a and care equivalent as unordered trees, they are different as ordered trees. In the
remainder of this chapter we use the word "tree" to refer to "ordered tree.' A forest is
an ordered set of ordered trees.

The question arises whether a bintry tree is a tree. Every binary tree except for
the empty binary tree is indeed a tree. However, not every tree is binary. A tree node
may have more than two Sons. whereas a binary tree node may not. Even a tree whose
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Figure 5.5.1 Examples of trees.

nodes have at most two sons is not necessarily a binar y tree. This is because an only
son in a general tree is not desi gnated as being a left" or a "right" son, whereas in a
binary tree, every son must be either a left" son or a right" son. In fact, although a
nonempty binary tree is a tree, the designations of left and right have no meaning within
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the context of a tree (except perhaps to order the two subtrees of those nodes with two
sons). A nonempty binary tree is a tree each of whose nodes has a maximum of two
subtrees which have the added designation of "left" or "right."

C Representations of Trees

How can an ordered tree be represented in C? Two alternatives immediately come
to mind: an array of tree nodes may be declared or a dynamic variable may be allocated
for each node created. However, what should the structure of each individual node be?
In the representation of a binary tree, each node contains an information field and two
pointers to its two sons. But how many pointers should a tree node contain? The number
of sons of a node is variable and maybe as large or as small as desired. If we arbitrarily
declare

*define UAXS0NS 20

struct treenode {
nt info;

struct treenode father;
struct treenode *sons[MXS0NS].

we are restricting the number of sons a node may have to a maximum of 20. Although
in most cases this will be sufficient, it is sometimes necessary to create dynamically a
node with 21 or 100 sons. Far worse than this remote possibility is the fact that twenty
units of storage are reserved for each node in the tree even though a node may actually
have only I or 2 (or even 0) sons. This is a tremendous waste of space.

One alternative is to link all the Sons of a node together in a linear list. Thus the
set of available nodes (using the array implementation) might be declared as follows:

Mefine MAXNOOES 500

struct treenode {
mt info;
mt father;
lt Son;
mt next;

struct treenode node( I4J(N00E5];

node(pI .son points to the oldest son of nodeIp , and node[p].nexr points to the next
younger brother of node[p].

Alternatively, a node may be declared as a dynamic variable:

Struct treenode {
mt info;
struct treenode *father.
struct treenode son;
struct treenode *next.

typedef Struct treenode *N(X)EPTR;
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If all traversals are from a node to its sons, thefather field may be oifiitted. Figure 5.5.2
illustrates the representations of the trees of Figure 5.5.1 under these methods if no
father field is needed.

Even if it is necessary to access the father of a node, the father field can be omitted
by placing a pointer to the father in the next field of the youngest son instead of leaving
it null. An additional logical field could then be used to indicate whether the next field
points to a"real" next son or to the father. Alternatively (in the array of nodes implemen-
tation), the contents of the next field can contain negative as well as positive indices. A
negative value would indicate that the next field points to the node's father rather than
to its brother, and the absolute value of the next field yields the actual pointer. This is
similar to the representation of threads in binary trees. Of course, in either of these two
latter methods, accessing the father of an arbitrary node would require a traversal of the
list of its younger sons.

If we think of son as corresponding to the left pointer of a binary tree node and
next as corresponding to its right pointer, this method actually represents a general
ordered tree by a binary tree. We may picture this binary tree as the original tree tilted
45 degrees with all father—son links removed except for those between a node and its
oldest son, and with links added between each node and its next younger brother. Figure
5.5.3 illustrates the binary trees corresponding to the trees of Figure 5.5.1.

In fact, a binary tree may be used to represent an entire forest, since the next
pointer in the root of a tree can be used to point to the next tree of the forest. Figure
5.5.4 illustrates a forest and its corresponding binary tree.

Tree Traversals

The traversal methods for binary trees induce traversal methods for forests. The
preorder, inorder, or postorder traversals of a forest may be defined as the preorder,
inorder, or postorder traversals of its corresponding binary tree. If a forest is represented
as a set of dynamic variable nodes with son and next pointers as previously, a C routine
to print the contents of its nodes in inorder may bewritten as follows:

void intrav(NOOEPTR p)

if (p !- NULL) {
intrav(p->son);
printf("%d\n', p-.info)j.
intrav(p->next);

} / end if
} / end intrav

Routines for preorder and postorder traversals are similar.
These traversals of a forest may also be defined directly as follows:
PREORDER

1. Visit the root of the first tree in the forest.

2. Traverse in preorder the forest formed b y the subtrees of the first tree. if any.

3. Traverse in preorder the forest formed by the remaining trees in the forest. if any.
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(b)

(C)

Figur. 5.5.3 Binary trees corresponding to trees of Figure 5.5.1.
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(b)

Figure 5.5.4 Forest and its corresponding binary tree.
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INORDER

1. Traverse in inorder the forest formed by the subtrees of the first tree in the forest,
if any.

2. Visit the root of the first tree.

3. Traverse in inorder the forest formed by the remaining trees in the forest, if any.

POSTORDER

1. Traverse in postorder the forest formed by the subtrees of the first tree in the forest,
if any.

2. Traverse in postorder the forest formed by the remaining trees in the forest, if any.

3. Visit the root of the first tree in the forest.

The nodes of the forest in Figure 5.5.4 a may be listed in preorder as ABCDE-
FGHI)KLMPRQNO, in inorder as BDEFCA!JKHGRPQMNOL and in postorder as
FED CBKJIHRQPONMLGA. Let us call a traversal of a binary tree a binary traver-
sal, and a traversal of an ordered general tree a general traversal.

General Expressions as Trees

An ordered tree may be used to represent a general expression in much the same
way that a binary tree may be used to represent a binary expression. Since a node may
have any number of sons, nonleaf nodes need not represent only binary operators but
can represent operators with any number of operands. Figure 5.5.5 illustrates two ex-
pressions and their tree representations. The symbol "%" is used to represent unary
negation to avoid confusing it with binary subtraction that is represented by a minus
sign. A function reference such asf(g,h,i,j) is viewed as the operator! applied to the
operands g,h,i, andj.

A eeneral traversal of the trees of Figure 5.5.5 in preorder results in the strings
* % + AB - +C log --D ! EFGHIJ and q i- AD sinC " X + YZ, respectively.
These are the prefix versions of those two expressions. Thus we see that preorder gen-
eral traversal of an expression tree produces its prefix expression. Inorder general
traversal yields the respective strings AB + % CDE + log + GHIJF - * and
AB + C sin XYZ + q, which are the postfix versions of the two expressions.

The fact that an inorder general traversal yields a postfix expression might be
surprising at first glance. However, the reason for it becomes clear upon examination
of the transformation that takes place when a general ordered tree is represented by a
binary tree. Consider an oroered tree in which each node has zero or two sons. Such a
tree is shown in Fi gure 5.5.6a. and its binary tree equivalent is shown in Figure 5.5.6b.
Traversing the binary tree of Figure 5.5.6b is the same as traversing the ordered tree of
Figure 5.5.6a. However, a tree such as the one in Figure 5.5.6a may be considered as a
binary tree in its own ri ght, rather than as an ordered tree. Thus it is possible to perform
a binary traversal (rather than a generai traversal) directly on the tree of Figure 5.5.6a.
Beneath that figure-are the binary traversals of that tree, and opposite Figure 5.5.6b are
the binary traversals of the tree in that figure, which are the same as the traversals of
the tree of Figure 5.56a if it is considered as an ordered tree.

Note that the preordej- traversals of the two binary trees are the same, Thus if a
preorder traversal on a binary tree representing a binary expression yields the prefix of
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(a) -(.4 +B).(C+icg(D+E!)-f(G.H.I,/)

(b) q(A + 8,irn(C). X • (V + 1))

Flqur. 5.5.5 Tres representation of an arithmetic sxpcession
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Preorder: + • .48 + • CDE
Inorder: .48.CD.E++
Postorder BADCE • + +

(a)
Preorder + • .48 + . CDE
Inorder A.8+C.D+E
Poatorder: A8 • CD • E + +

(b)

Figure 5.5.6

the expression, that traversal on an ordered tree representing a general expression that
happens to have only binary operators yields prefix as well. However, the postorder
traversals of the two binary trees are not the same. Instead, the inorder binary traversal
of the second (which is the same as the inorder general traversal of the first if it is
considered as an ordered tree) is the same as the .postorder binary traversal of the first.
Thus the inorder general traversal of an ordered tree representing a binary expression
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is equivalent to the postorder binary traversal of the binEy tree representing that ex-
pression, which yields postfix.

Evaluating an Expression Tree

Suppose that it is desired to evaluate an expression whose operands are all nu-
merical constants. Such an expression can be represented in C by a tree each of whose
nodes is declared by

SdefiNe OPERATOR 0
tdefine OPERAND 1
struct treenode {

short mt utype;	 / OPERATOR or OPERAND f
union f

char operator(10);
float val;

} info;
struct treenode son;
struct treenode *next;

'typedef treenode *EP.

TLe son and next pointers are used to link logether the nodes of a tree as previously
illustrated. Since a node may contain information that may be either a number (operand)
or a character string (operator), the information portion of the node is a union component
of the structure.

We wish to write a C function evaftree(p) that accepts a pointer to such a tree
and returns the value of the expression represented by that tree. The routine evalbintree
presented in Section 5.2 performs a similar function for binary expressions. evalbintree
utilizes a function oper, which accepts an operator symbol and two numerical operands
and returns the numerical result of applying the operatof to the operands. However, in
the case of a general expression we cannot use such a function, since the number of
operands (and hence the number of arguments) varies with the operator. We therefore
introduce a new function, apply(p), which accepts a pointer to an expression tree that
contains a single operator and its numerical operands and returns the result of applying
the operator to its operands. For example, the result of calling the function apply with
parameter p pointing to the tree in Figure 5.5.7 is 24. If the root of the tree that is
passed to evaltree represents an operator, each of its subtrees is replaced by tree nodes
representing the numerical results of their evaluation so that the function apply may be
called. As the expression is evaluated, the tree nodes representing operands are freed
and operator nodes are converted to operand nodes.

We present a recursive procedure replace that accepts a pointer to an expression
tree and replaces the tree with a tree node containing the numerical result of the expres-
sion's evaluation.

void replace(M€pTR p)

float value;
NODEPTR q, r;
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ion	 next	 tag	 operator/Val

sadl	 oprir
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null opnd	 4

I
son	 neat	 tag	 operator/val

juill	 null	 opnd	 6

F1urs 5.5.7 Expression tree.

if (p->utype	 OPERATOR) {
/* the tree has an operator *1
/	 as Its root
q - p-son;
while (q !. NULL) {

/* replace each of its subtrees
by operands

replace(q)
q - q->next;

} / end while */
/* apply the operator in the root to
/*	 the operands in the subtrees
value apply(p);
/5 replace the operator by the result *1
p->utype = OPERAND;
p->val	 value;
/	 fre1ll the subtrees
q - p->son;

- NULL;
while (q I- NULL)

r -
q • q->next;

•	 free(r);
•	 } / end while 5/
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} / end if */
} / end replace */

The function evaltree may now be written as follows:

float evaltree(I(JOEPTR p)

NODEPIR q;

replace(p);
retur,i(p->val);
f rep (p);

:i / end evaltree •/

After calling eval:ree(p) the tree is destroyed and the value of p is meaningless.

This is a case of a dangling pointer inwhich a pointer variable contains the address of
a variable that has been freed. C programmers who use dynamic variables should be
careful to recognize such pointers and not to use them subsequently.

Constructing a Tres

A number of operations are frequently used in constructing a tree. We now present
some of these operations and their C implementations. In the C representation, we as-
sume that father pointers are not needed, so that the father field is not used and the next
pointer in the youngest node is null. The routines would be slightly more complex and
less efficient if this were not the case.

The first operation that we examine is setsons. This operation accepts a pointer
to a tree node with no sons and a linear list of nodes linked together through the next

field. setsons establishes the nodes in the list as the sons of the node in the tree. The
C routine to implement this operation is straightforward (we Use the dynamic storage
implementation):

void setsons(NODEPTR p. NOOEPTR list)
{
/ p points to a tree node, list to a list
1* of nodes linked together through their

next fields	 *1
jf(p-. NULL) {

printf ('invalid insertion\n");
exit(1);

} 1* end if */
If (p->son ! NULL) {

printf ('invalid insertion\n');
exit(1);

) /endift/
p->son - list;

I / end setscns *1
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Another common operation is addson(p,x)in whichp points to anode in a tree and
it is desired to add a node containing x as she youngest son of node(p). The C routineto implement addson is as follows. The routine calls the auxiliary function getnode,
which allocates a node and returns a pointer to it.

void addson(NODEpTR p, mt x)
{

NODEPTR q;

if (p . NULL)
printf(' void inSertion\n");
exit(1);

} / end if *1
/ the pointer q traverses the list of sons

of p. r is one node behind q
r	 NULL;
q	 p->son;
while (q	 NULL)

r
q = q>next;
/. end while *1

/ At this point, r points to the youngest
/* son of p, or is null if p has no Sons
q getnodeQ;
q->info =
q->next NULL;
if (r - NULL)	 / p has no Sons V

p->son
else

r->next	 q;
/* end addson *1

Note that to add a new son to a node, the list of existing Sons must be traversed.
Since adding a son is a common operation, a representation is often used that makes this
operation more efficient. Under this alternative representation, the list of sons is ordered
from youngest to oldest rather than vice versa. Thus son(p) points to the youngest son
of node(p), and next(p) points to its next older brother. Under this representation the
routine a44son may be written as follows

void addsOn(NOOEPTR p, jut x)

NOOEPTRq;

if (p	 NULL)
printf('jnvaljd insertjon\n);
exit(1);

} / end if *1
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q - getnode();
q->info	 x;
Q->next • p>son;
p->son
/* end acldson *1

EXERCISES

.5.1. How many trees exist with a nodes?
5.5.2. How many trees exist with a nodes and maximum level m?
5.53. Prove that if m pointer fields are set aside in each node of a general tree to point to a

maximum of m Sons, and if the number of nodes in the tree is a, the number of null son
pointerfleldsisn.(m — I) + 1.

5.5.4. If a forest is represented by a binary tree as in the text, show that the number of null
right links is I greater than the number of nonleaves of the forest.

5.5.5. Define the breadth-first order of the nodes of a general tree as the root followed by all
nodes on level I, followed by all nodes on level 2, and so on. Within each level, the
nodes should be ordered so that children of the same father appear in the same order as
they appear in the tree and, if a I and n2 have different fathers. a I appears before n2 if
the father of n  appears before the father of n2. Extend the definition to a forest. Write
a C program to traverse a forest represented as a binary tree in breadth-first order.

5.5.6. Consider the following method of transforming a general tree, gi, into a strictly binar)
tree. b. Each node of gt is represented by a leaf of hi. If gi consists of a single node, b
consists of a single node. Otherwise bi consists of a new root node and a left subtree
It, and a right subiree. rt. it is the strictly bloat3' tree formed recursively from the oldes
subtree of gi, and ,i is the strictly binary tree formed recursively from gi without itt
oldest subtree. Write a C routine to convert a general tree into a strictly binary tree.

5.5.7. Write a C function compute that accepts a pointer to a tree representing an expression
with constant operands and returns the result of evaluating the expression without de-
stroying the tree.

5.5.8. Write a C program to convert an infix expression into an expression tree. Assume that
all nonbinary operators precede their operands. Let the input expression be represented
as follows: an operand is represented by the character 'N' followed by a number, an
operator by the character "I" followed by a character representing the operator, and a
function by the character 'F' followed by the name of the function.

53.9. Consider the definitions of an expression, a term, and a factor given at the end of Sec-
tion 3.2. Given a string of letters, plus signs, asterisks and parentheses that forms a valid
expression, a parse tree can be formed for the string. Such a tree is illustrated in Figure
5.5.8 for the string "(A + B) • (C + D)". Each node in such a tree represents a substring
and contains a letter (E for expression, T for term. F for factor, or S for symbol) and
two integers. The first is the position within the input string where the substnng repre-
sented by that node begins, and the second is the length of the substring. (The substring
represented by each node is shown below that node in the figure.) The leaves are all S
nodes and represent single symbols of the original input. The root of the tree must be
an E nude. The sons of any'non-S node N represent the substrings which make up the
grammatical object represented by N. Write a C routine that accepts such a string and
constructs a parse tree for it.
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5.6 EXAMPLE: GAME TREES

One application of trees is to game playing by computer. We illustrate this application
by writing a C program to determine the "best" move in tic-tac-toe from a given board
position.

Assume that there is a function evaluate that accepts a board position and an
indication of a player (X or 0) and returns a numerical value that represents how "good"
the position seems to be for that player (the larger the value returned by evaluate, the
better the position). Of course, a winning position yields the largest possible value, and
a losing position yields the smallest. An example of such an evaluation function for tic-
tac-toe is the number of rows, columns, and diagonals remaining open for one player
minus the number remaining open for his or her opponent (except that the value 9 would
be returned for a position that wins, and --9 for a position that loses). This function
does not look ahead" to consider any possible board positions that might result from
the current position; it merely evaluates a static hoard position.

Given a board position, the best next mov. 3uld be determined by considering
all possible moves and resulting positions. The move selected should he the one that
results in the board position with the highest evaluation. Such an analysis. however,
does not necessarily yield the best move. Figure 5.6.1 illustrates a position and the five
possible moves that X can make from that position. Applying the evaluation function
just described to the five resulting positions yields the values shown. Four moves yield
the same maximum evaluation, although three of them are distinctly inferior to the
fourth. (The fourth position yields a certain victory for X, whereas the other three can
be drawn by 0.) In fact, the move that yields the smallest evaluation is as good or better
than the moves that yield a higher evaluation. The static evaluation function, therefore,
is not good enough to predict the outcome of the game. A better evaluation function
could easily be produced for the game of tic-tac-toe (even if it were bv the brute-force
method of listing all positions and the appropriate response). but most games are too
complex for static evaluators to determine the best response.

Suppose that it were possible to look ahead several moves. Then the choice of
a move could be improved considerably. Define the look ahead level as the number
of future moves to be considered. Starting at any position, it is possible to construct
a tree of the possible board positions that may result from each move. Such a tree is
called a game tree. The game tree for the opening tic-tac-toe position with a look-ahead
level of 2 is illustrated in Figure 5.6.2. (Actually other positions do exist, but because of
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symmetry considerations these are effectively the same as the positions shown.) Note
that the maximum level (called the depth) of the nodes in such a tree is equal to the
look-ahead level.

Let us designate the player who must move at the root's game position as plus
and his or her opponent as minus. We attempt to find the best move for plus from the
root's game position. The remaining nodes of the tree may be designated as plus nodes
or minus nodes, depending upon which player must move from that node's position.
Each node of Figure 5.6.2 is marked as a plus or as a minus node.

Suppose that the game positions of all the sons of a plus node have been evaluated
for player plus. Then clearly, plus should choose the move that yields the maximum
evaluation. Thus, the value of a plus node to player plus is the maximum of the values
of its Sons. On the other hand, once plus has moved, minus will select the move that
yields the minimum evaluation for player plus. Thus the value of a minus node to player
plus is the minimum of the values of its Sons.

Therefore to decide the best move for playe. 'us from the root, the positions in
the leaves must be evaluated for player plus using a static evaluation function. These
values are then moved up the game tree by assigning to each plus node the maximum
of its Sons' values and to each minus node the minimum of its Sons' values, on the
assumption that minus will select the move that is worst for plus. The value assigned to
each node of Figure 5.6.2 by this process is indicated in that figure immediately below
the node.

The move that plus should select, given the board position in the root node, is
the one that maximizes its value. Thus the opening move for X should be. the middle
square, as illustrated in Figure 5.6.2. Figure 5.6.3 illustrates the determination of 0's
best reply. Note that the designation of "plus" and "minus" depends on whose move is
being calculated. Thus, in Figure 5.6.2 Xis designated asp/us, whereas in Figure 5.6.3

xl

01XI	 01 I x 	01 1	 01 1	 X101	 101
7x7- 4F -1-d-, 7x-r 7x-r -rx rx 40W #

Figure 5.6.3 Computing 0's reply.
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o is designated as plus. In applying the static evaluation function to a board position,
the value of the position to whichever player is designated as plus is computed. This
method is called the asiaimax method, since, as the tree is climbed the maximum and
minimum functions are applied alternately.

The best move for a player from a given position maybe determined by first
constructing the game tree and applying a static evaluation function to the leaves. These
values are then moved up the tree by applying the minimum and maximum at minus
and plus nodes, respectively. Each node of the game tree must include a representation
of the board and an indication of whether the node is  plus node or a minus node. Nodes
may therefore be declared by

strt nodetype (
char board(3)(3);
lilt turn;
struct nodetype 'son'
struct nodetype 'next;

typsdsf struct nodetype 'NOOEPTR;

p— >board[i[jj has the value 'X', '0', or ' ',depending on whether the square in
row i and column j of that node is occupied by either of the players or is unoccupied.
p— >:urn has the value + I or I, depending on whether the node is a plus or minus
node, respectively. The remaining two fields of a node are used to position the node
within the tree. p— >son points to the oldest son of the node, and p — >nexr points to
its next younger brother. We assume that the foregoing declartion is global, that an
available list of nodes has been established, and that appropriate getnode and freenode
routines have been written.

The C function nextmove(brd player, lookievel, newbrd) computes the best next
move. brd is a 3-by-3 array representing the current board position, player is 'X' or
'0'. depending on whose move is being computed (note that in tic-tac-toe the value of
player could be computed from bnl, so that this parameter is not strictly necessary),
and lookievel is the look-ahead level used in constructing the tree. newbrd is an output
parameter that represents the best board position that can be achieved by player from
position bni.

neximove uses two auxiliary routines, buildiree and besthranch. The function
buiidtree builds the game tree and returns a pointer to its root. The function besibranch
computes the value of two output parameters: best, which is a pointer to the tree node
representing the best move, and value, which is the evaluation of that move using the
ininimax technique.

void nextmove(char brd(](3], mt lookievel, char player, char newbrd[][3])

NODEPTR ptree, best;
mt 1, j, value;

Trees	 Chap. 5

324



ptree bulldtree(brd, looldeve);
bestbranch(ptree, player, best, 4value);
for (iO; I < 3; ++i)

for (j-O; j < 3; ++j)
newbrd(i](j) • best-.board[i](j);

} / end nextaove /

The function build:ree returns a pointer to the root of a game tree. It uses the
auxiliary function gernode, which allocates storage for a node and returns a pointer to
it. It also uses a routine expand(p. plevel, depth), in which p is a pointerto a node in
a game tree, plevel is its level, and depth is the depth of the game tree that is to be
constructed, expand produces the subtree rooted at plo the proper depth.

NOOEPTR buildtree(char brd[][3], mt lookievel)

IOEPTR ptree;
mt 1, j;

/ create the root of the tree and initialize it
tree • getnodeo;
for (iO; I < 3; ++i)

for (j-O; j < 3; .+j)
ptree->board[i](j) • brd(i)[j];

/ the root is a plus node by definition
ptree->turn - 1;
ptree->son NULL;
ptree->next • NULL;
1* create the rest of the game tree
expand(ptree, 0, lookievel);
return(ptree);
/* end bufldtree

expand may be implemented by generating all board positions that maybe ob-
tained froni the board position pointed to by p and establishing them as the Sons of p
in the game tree, expand then calls itself recursively using these sons as parameters
until the desired depth is reached, expand uses an auxiliary function generate, Which
accepts a board position brd and returns a pointer to a list of nodes containing the board
positions that can be obtained from brd. This list is linked together by the next field.
We leave the coding of generate as an exercise for the reader,

void expand(NOOEPTR p, mt plevel, mt depth)

NODEPIR q;

if (plevel < depth) {
/ p is not at the maximum level
q generate(p->board);
p-"son •

Sec. 5.16	 Example: Game Trees	 -	 325



while (q	 NULL)
/ traverse the list of nodes
if (p->turn	 1)

q->turn
else

q->turn - 1;
q->son	 NULL;
expand(q, plevel+1, depth);
q • q->next;

} / end while *1
} / end if */
/ end expand *1

Once the game tree has been created, bestbranch evaluates the nodes of the tree.
When a pointer to a leaf is passed to bestbranch, it calls a function evaluate that stat-
ically evaluates the board position of that leaf for the player whose move we are de-
termining. The coding of evaluate is left as an exercise. When a pointer to a nonleaf
is passed to besibranch, the routine calls itself recursively on each of its sons and theii
assighs the maximum of its sons' values to the nonleaf if it is- a plus node, and the
minimum if it is a minus node. besrbranch also keeps track of which son yielded this
minimum or maximum value. 	 -

If p— >turn is - I, the node pointed to by p is a minus node and it is to be as-
signed the minimum of the values assigned to its sons. If, however, p — > turfl is + 1, the
node pointed to by p is a plus node and its value should be the maximum of the values
assigned to the sons of the node. If min(x,v) is the minimum of x and y, and rnaxx,y)
is their maximum, min(x,v) = — mar( — x, — y) (you are invited to prove this as a triv-
ial exercise). Thus, the correct maximum or minimum can be found as follows: in the
case of a plus node, compute the maximum; in the case of a minus node, compute the
maximum of the negatives of the values and then reverse the sign cf the result. These
ideas are incorporated into besibranch. The output parameters *pbest and *pvalue are,
respectively, a pointer to that son of the tree's root that maximizes its value and the
value of that son that has now been assigned to the root.

void bestbranch(NODE pTR pnd, char player, NODEPTR pbest,
mt *pvalue)

NODEPTR p, pbest2;
mt val;

if (pnd->son	 NULL) {
/ pnd is a leaf /
*pvalue	 evaluate(pnd->board, player);
pbest	 pnd;

else{
/ the node is not a leaf, traverse the list of sons *1
p	 pnd->son;
bestbranch(p, player, pbest, pvalue);
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*pbest •
if (pnd.turn - -1)

'pva1ue	 _*pvalue;
p • p->next;
while (p !. NUI.L) {

bestbranch(p, player, &pbest2, êval);
if (pnd->turn	 -1)

val - -val;
If (val> tpvalue)

*pvalue • val;
*pbest • p;

1 1* {end if •/
p - p->next:

} / end wlnle •/
if (prid->turn ..= -1)

*pvalue	 ..*pvalue;
/* end ifI

1 /* end bestbranch

EXERCISES

5.6.1. Examine the routines of this section and determine whether all the parameters are ac-
nlly necessary. How would you revise the parameter lists?

5.6.2. Write the C routines generate and evaluate as described in the test.
5.6.3. Rewrite the programs of this and the preceding section under the implementation in

which each tree node includes a field father containing a pointer to its father. Under
which implementation are they more efficient?

5.6.4. Write nonrecursive versions of the routines expand and besrbranch given in the text.

5.6.5. Modify the routine best branch in the text so that the nodes of the tree are freed after
they are no longer needed.

54.6. Combine the processes of building the game tree and evaluating its nodes into a single
process so that the entire game tree need not exist at any one time and nodes are freed
when no longer necessary.

5.6.7. Modify the program of the previous exercise so that if the evaluation of a minus node
is greater than the minimum of the values of its father's older brothers, the program
does not bother expanding that minus node's younger brothers, and if the evaluation of
a plus node is less than the maximum of the values of its father's older brothers, the
program does not bother expanding that plus node's younger brothers. This method is
called the alpha-beta minimax method. Explain why it is correct.

1.6,8. The game of kalah is played as follows: Two players each have seven holes. six of

which are called pits and the seventh a kalah. These are arranged according to the

following diagram.

Player I

KPPPPPP
PPPPPPK

Player 2
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Initially there are six stones in each pit and no stones in either kalah, so that the opening
Position looks like this:

0666666
6666660

The players alternate turns, each turn consisting of one or more moves. To make -a move,
a player chooses one of his or her nonemply pits. The stones are removed from that
pit and are distributed counterclockwise into the pits and into that player's kalah (the
opponent's kalah is skipped), one stone per hole, until there are no Stones remaining. For
example, if player I moves first, a possible opening move might result in the following
board position:

1777770
6666660

If a player's last stone lands in his or her own kalah, the player gets another move. If
the last stone lands in one of the player's own pits that is empty, that stone and the
stones in the opponent's pit directly opposite are removed and placed in the player's
kalah. The game ends when either player has no stones remaining in his or her pits. At
that point, all the stones in the opponent's pits are placed in the opponent's kalah and
the game ends. The player with the most stones in his or her kalah is the winner.
Write a program that accepts a kalah board position and an indication of whose turn it
is and produces that player's best move.

How would you modify the ideas of the tic-tac-toe program to compute the best move
in a game that contains an element of chance, such as backgammon?

Why have computers been programmed to play perfect tic-tac- toe but not perfect chess
or checkers?
The game of nim is played as follows: Some number of sticks are placed in a pile.
Two players alternate in removing either one or two sticks from the pile. The pla yer to
remove the last stick is the loser. Write a C function to determine the best move in nim.

- , '•'!	 ...

......

H

H

5.6.9.

5.6.10.

5.6.11
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Loo'ki

Sorting

Sorting and searching are among the most common ingredients of programming sys-
tems. In the first section of this chapter we discuss some of the overall considerations in-
volved in sorting. In the remainder of the chapter we discuss some of the more common
sorting techniques and the advantages or disadvantages of one technique over another.
In the next chapter we discuss searching and some applications.

6.1 GENERAL BACKGROUND

The concept of an ordered set of elements is one that has considerable impact on our
daily lives. Consider, for example, the process of finding a telephone number in a tele-
phone directory. This process, called a search, is simplified considerably by the fact
that the names in the directory are listed in alphabetical order. Consider the trouble you
might have in Attempting to locate a telephone number if the names were listed in the
order in which the customers placed their phone orders with the telephone company.
In such a case, the names might as well have been entered in random order. Since
the entries are sorted in alphabetical rather than in chronological order, the process
of searching is simplified. Or consider the case of someone searching for a book in a
library. Because the books are shelved in a specific order (Library of Congress. Dewey
System, and so forth), each book is assigned a specific position relative to the others
and can be retrieved in a reasonable amount of time (if it is there). Or consider a set
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of numbers sorted sequentially in a computer's memory. As we shall see in the next
chapter, it is usually easier to find a particular element of such a set if the numbers are
maintained in sorted order. In general, a set of itens i kept lorted in order to either
produce a report (to simplify manual retrieval of information, as in a telephone book or
a library shelf) or to make machine access to data more efficient.

We now present some basic terminology. Afile of size n is a sequence of n items
r101. rf I] .....rin - 1). Each item in the file is called a record. (The terms file and
record are not being used here as in C terminology to refer to specific data strictures.
Rather, they are being used in a more general sense.) A key, k I iJ, is associated with
each record nil. The key is usually (but not always) a subfield of the entire record.
The tile is said to be sorted on the key if I < j implies that ku] precedes k[j] in some
ordering on the keys. In the example of the telephone book, the file consists of all the
entries in the book. Each entry is a record. The key upon which the file is sorted is the
name field of the record. Each record also contains fields for an address and a telephone
number.

A sort can be classified as being inlernalif the records that it is sorting are in main
memçry, or external if some of the records that it is sorting are in auxiliary storage. We
restrict our attention to internal sorts.

It is possible for two records in a file to have the same key. A sorting technique
is called stable if for all records I andj such that k(i1 equals k[jj, if rji] precedes 4J] in
the original file, rji] precedes r[j] in the sorted file. That is, a stable son keeps records
with the same key in the same relative order that they were in before the sort.

A sort tkesplace either on the records themselves or on an auxiliary table of
pointers. For exampiteider Figure 6.1.1 a, in which a file of five records is shown.
If the file is sorted in increasing order on the numeric key shown, the resulting file is as
shown in Figure 6.1.1 b. In this case the actual records themselves have been sorted.

Suppose, however, that the amount of data stored in each of the records in the
file of Figure 6.1.1 a is so large that the overhead involved in moving the actual data is
prohibitive. In this case an auxiliary table of pointers may be used so that these pointers
are moved instead of the actual data, as shown in Figure 6.1.2. (This is called sort-
ing by address.) The table in the center is the tile, and the table at the left is the initial
table of pointers. The entry in positionj in the table of pointers points to record). During

tecord I

Record 2

Record 3

Record 4

Record S

Key Other fields

4	 ODD	 I	 AAA

2	 88B	 2	 RRB

I	 .44A	 3	 CCC

5	 EEE	 4	 DOD

3	 CCC	 5	 EEE

File	 File
(a) Original tile. 	 M Sorted file.	 Figure 6.1.1 Sorting actual records.
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Sorted
pointer

Original
pointer

table	 File

Record I	 4DOD

Record 2	 2	 888

Record 3, 	 AA,

Record 4	 5	 FEE

Record 5	 3	 ccc

Figure 6.1.2 Sorting by using an auxiliary table of pointers.

the sorting process, the entries in the pointer table are adjusted so that the final table••
is as shown at the right. Originally, the first pointer was to the first entry in the file;
upon completion the first pointer is to the fourth entry in the table. Note that none of
the original file entries are moved. In most of the programs in this chapter we illustrate
techniques of sorting actual records. The extension of these techniques to sorting by
address is straightforward and will be left as an exercise for the reader. (Act-ally, for
the sake of simplicity, in the examples presented in this chapter we sort only the keys
we leave to the reader to modify the programs to sort full records.)

Because of the relationship between sorting and searching, the first question to
ask in any application is whether or not a file should be sorted. Sometimes there is
less work involved in searching a set of elements for a particular one than to first sort
the entire set and to then extract the desired element. On the other hand, if frequent
use of the file is required for the purpose of retrieving specific eiements, it might be
more efficient to sort the file. This is because the overhead of successive searches may
far exceed the overhead involved in sorting the file once and subsequently retrieving
elements from the sorted file. Thus it cannot be said that it is more efficient either to sort
or not to sort. The programmer must make a decision based on individual circumstances.
Once a decision to sort has been made, other decisions must be made, including what
is to be sorted and what methods are to be used. There is no one sorting method that is
universally superior to all others. The programmer must carefully examine the problem
and the desired results before deciding these very important questions.

Efficiency "onsiderations

As we shall see in this chapter, there are a great number of methods that can be
used to sort a file. The programmer must be aware of several interrelated and often
conflicting efficiency consideliitions to make an intelli gent choice about which sorting
method is most appropriate to a particular prohIm. Three of the most important of
these considerations include the length of tune that must he spent by the programmer in
coding a particular sortin g program, the amount of machine time necessary for running
the program. and the amount of space necessary for the program.
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If a file is small, sophisticated sorting techniques designed to minimize space and
time requirements are usually worse or only marginally better in achieving efficiencies
than simpler, generally less efficient methods. Similarly, if a particular sorting program
is to be run only once and there is sufficient machine time and space in which to run it,
it would be ludicrous for a programmer to spend days investigating the best methods
of obtaining the last ounce of efficiency. In such cases the amount of time that must be
spent by the programmer is properly The overriding consideration in determining which
sorting method to use. However, a strong word of caution must be inserted. Program-
ming time is never a valid excuse for using. an incorrect program. A son which is run
only once may be able to afford the luxury of an inefficient technique, but it cannot
afford an incorrect one. The presumably sorted data may be used in an application in
which the assumption of ordered data is crucial.

However, a programmer must be able to recognize the fact that a particular sort
is inefficient and must be able to justify its use in a particular situation. Too often, pro-
grammers take the easy way out and code an inefficient sort, which is then incorporated
into a larger system in which the sort is a key component. The designers and planners
of the system are then surprised at the inadequacy of their creation. To maximize his
or her own efficiency, a programmer must be knowledgeable of a wide range of sorting
techniques and be cognizant of the advantages and disadvantages of each, so that when
the need for a sort arises he or she can supply the one which is most appropriate for the
particular situation.

This brings us to the other two efficiency considerations: time and space. As in
most computer applicatiois, the programmer must often optimize one of these at the
expense of the other. In conderig the time necessary to sort a file of size n we do
not concern ourselves with actual time units, as these will vary from one machine to
another, from one program to another, and from one set of data to another. Rather, we
are interested in the corresponding change in the amount of time required to sort a file
induced by a change in the file size n. Let us see if we can make this concept more
precise. We say that y is proportional to x if the relation between y and x is such that
multiplying x by a constant multiplies y by that same constant. Thus if y is proportional
to x, doubling x will double y, and multiplying x by 10 will multiply y by 10. Similarly,
if y is proportional to x2 , doubling x will multiply y by 4 and multiplying x by 10 will
multiply v by 100.

Often we do not measure the time efficiency of a sort by the number of time units
required but rather by the number of critical operations performed. Examples of such
critical operations are key comparisons (that is, the comparisons of the keys of two
records in the file to determine which is greater), movement of records or pointers to
recards, or interchanges of two records. The critical operations chosen are those that take
the most time. For example, a key comparison may be a complex operation, especially
if the keys themselves are long or the ordering among keys is nontrivial. Thus a key
comparison requires much more time than say, a simple increment of an index variable
in afor loop. Also, the number of simple operations required is usually proportional to
the number of key comparisons. For this reason, the number of key comparisons is a
useful measure ofa sort's time efficiency.

There are two ways to determine the time requirements of a sort, neither of which
yields results that are applicable to all cases. One method is to go through a sometimes
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(a + b)

	

001n 2 	b	 IOu

	

10	 I	 100	 lOt	 1.01

	

50	 25.	 500	 • 525 0.21

	

100	 100	 1.000	 1.100	 0,11

	

500	 2.500	 5,000	 .	 7.500 0.03

	

1,000	 10,000	 10.000	 20.000 0.02

	

5,000	 250,000	 50,000	 300.000 0.01

	

10.000	 1,000,000	 100,000	 1.100.000 0.01

	

50,000	 25,000.000	 500.000	 25.500.000 0.01

	

100.000	 100,000.000	 1.000,000	 101,000.000 0.01

	

500.000	 2.500.000.000	 5.000,000	 2.505.000.000 0.01

Figure 6.1.3

intricate and involved mathematical analysis of various cases (for example, best case,
worst case, average case). The result of this analysis is often a formula giving the aver-
age time (or number of operations) required for a particular sort as a function of the file

size n. (Actually the time requirements of a sort depend on factors other than the file
size; however, we concern ourselves here only with the dependence on the file size.)
Suppose that such a mathematical analysis on a particular sorting program results in

the conclusion that the program takes 
0.0 1 112 + I On time Units to execute. The first and

fourth columns of Figure 6.1.3 show the time needed by the sort for various values of

n. You will notice that for small values of n. the quantity IOn (third column of Figure

6.1.3) overwhelms the quantity 0.01 11 2 (second column). This is because the difference

between ,2 and n is small for small values of n and is more than compensated for by

the difference between 10 and 0.01. Thus, for small values of,,, an increase inn by a
factor of 2 (for example, from 50 to 100) increases the time needed for sorting by ap-
proximately that same factor of 2 (from 525 to 1100). Similarly, an increase in n by a
factor of 5 (for example, from 10 to 50) increases the sorting time by approximately 5

(from 101 to 525).
However, as n becomes larger, the difference between ,2 and n increases so

quickly that it eventually more than compensates for the difference between 10 and

0.01. Thus when it equals 1000 the two terms contribute equally to the amount of time

needed by the program. As n becomes even larger, the term 0 .01,1 2 overwhelms the

term ]On and the contribution of the term IN becomes almost insignificant. Thus.

for large values of n, an increase in n by a factor of 2 (for example, from 50.000 to

100.000) results in an increase in sorting time of approximately 4 (from 25.5 million

to ,10I million) and an increase in n by a factor of 5 (for example. from 10.000 to

50,000) increases the sorting time by approximately a factor of 25 (from 1.1 million

to 25.5 million). Indeed, as it becomes larger and larger, the sorting time becomes

more closely proportional to ,,2, as is clearly illustrated by the last column of Fig-

ure 6.1.3. Thus for large n the time required by the sort is almost proportional to n2.

Of course, for small values of n, the sort may exhibit drastically different behav-
ior (as in Figure 6.1.3). a Situation that must be taken into account in analyzing its

efficiency.
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0 Notation

To capture the concept of one function becoming proportional to another as it
grows, we introduce some terminology and a new notation. In the previous example.
the function 0.01n 2 + IOn is said to be "on the order of" the function n2 because, as nbecomes large, it becomes more nearly proportional to n2.

To he precise, given two functionsf(nj and g(n), we say that f(n) is on the or-
der of g(n) or thatf(n) is O(g(n)) if there exist positive integers a and b such that[(n)	 a * g(n) for all n 2! b. For example, if f(n)	 112+ 100,i and g(n) = n2,n) is 0(g(n)), since n 2 + lOOn is less than or equal to 212 2 for all n greater than
or equal to IOU. In this case a equals 2 and h equals 100. This same fin) is also0(73 ), since n 2 + lOOn is less than or equal to 2n 3 for all it 	 than or equalto 8. Given a function fin), there may be many functions g(n) such that 1(n) is0(g(n)).

lffin) is Og(n)), 'eventually" (that is, for,) ^! b)f(n) bcoes permanentlysmaller or equal to some multiple ofg(n). In a sense we are saying tha(f(n) is boundedby g(n) from above, or tha(f(,z) is a "smaller" function than g(n). Another formal way
of saying this is thatfin) is asymptotically bcunded by g(n). Yet another interpretation
is thatf(n) grows more slowly than g(n), since, proportionately (that is, up to a factor
of a), g(n) eventually becomes larger.

It is easy to show that iff(,t) is 0(g(n)) and g(n) is 0(/z(n)), f(n) is 0(h(n)). Forexample, 11 2 -j- lOOn is 0(112), and n 2 is 0(1) (to see this, set a and b both equal to 1):consequently ,2+ 1001, is 0(n). This is called the transitive properly.
Note that iff(n) is a constant function [that is,f(n) 	 c for all n],f(n) is 0(1),since, setting a to c and b to 1, we have that c	 c * 1 for all n =-: 1. (In fact, the valueof b or it irrelevant, since a constant function's value is independent of n.)
It is also easy to show that the function c * n is 0(n") for any constants c and k. Tosee this, simply note that c * a is less than or equal to c * flL for any a ^! 1 (that is. seta = c and b = 1). It is also obvious that at is 00)Thr any j ^:t 0 (use a	 I,b = I). We can also show that iff(n) and g(n) are both 0(h(n)), the new functionf(n) +g(n) i s also 0(h(n)). All these facts together can be used to show that iff(n) is any poly-

nomial whose leading power is k [that is,f(n) = c 1 *n + c2 * n it + - + * a + ii,f(n) is 0(nL). lndeed,f(n) is Q(1t+J) for anyj ^: 0.
Although a function may be asymptotically bounded by many other functions [as

for example, iOn 2 + 37n + 153s 0(n 2 ), 0(10n2 ), 0(37,2 + IOn) and 0(0.05n 3 )1, we
usually look for an asymptotic bound that is a single term with a leading coefficient of
I and that is as "close a fit" as possible. Thus we would say that 10, 1 2 + 37n + 153 isQ(') although it is also asS' mptotically bounded by many other functions. Ideally, we
would like to find a function g(n) such thatf(n) is 0(g(n)) and g(n) is 0(f(n)) lff()
is a constant or a polynomial, this can always be done by using

	

	
n.

its highest term with a
coefficiejrof I. For more complex functions, however, it is not always possible to find
suchU tight fit.

An important function in the study of algorithm efficiency is the logarithm func-
tion. Recall that log,, it 	 the value .v such that Pit' equals a. rn is called the base
the logarithm. Consider the functions log,,, a

a. Then	
'and log a. Let xsv be log,,, it aud.- he

logA
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FA

&=n and k=n

so that

= k1L

Taking the log,,, of both sides.

.xm = log,(kU)

Now it can easily be shown than log. C?) equals y * log, x for any x, v, and z, so that
mthe last equation can be rewritten as (recall that x = log n)

log,,,n - xk*log,,,k

or as (recaH that xk = log A n)

log,., n = (log k) * log n

Thus log,n,,, and logk n are constant multiples of each other.
It is easy to show that iff(n) = c g(n), where c is a constant, f(n) is 0(g(n))

[indeed, we have already shown that this is true for the functionf(n) = n 1 ) . Thus log,,
n is O(logk n) and log A n is 0(log,,, n) for any m and k. Since each logarithm function
is on the order of any other, we usually omit the base when speaking of functions of
logarithmic order and say that all such functions are 0(log ii).

The following facts establish an order hierarchy of functions:

c is 0(1) for any constant c.

c is 00og n), but log n is not 0(1).
c*log n is 0(log it) for any constants c, k.

c*log L n is 0(n), but n.is not 0(lcg n).

C * nt is 0(nk) for any constants c, k.

c * nA is 0(n')), but I.+J is not O(W).
c * n*log & n is 0(n logo) for any constants c, k.

C * n*Iog k n is 0(n). but i is not 0(n log n).

c * nJslog n is 00n•'log n) for any constants c,j, k.
c* n i * logk n is 00 J4. 1 ). but 0Jf is not 0(n i log it).
c * n J *(log fl)' is 0(,i' (log n)') for any constants c,j, k; I.
c* n J *(logk n)' is 0(u') but ii	 is not 0(n I(log 01).

c * n J *(log k n)' is 0(g'(log 0)1* but n (loI*n)' is not O(n (log it)').
C * 11 1 is 0(d'). but d" is not 0(n') for any constants c and k, and d > 1.

The hierarchy of functions established by these facts, with each function of lower order
than the next, is c, log n. (log )k, n• n(log )k, A , n 1 (log n, Pik. I, and d".

Functions that are 0(1,1.) for some k are said to be of polynomial order, whereas
functions that are 0(d") for some d> I but not 0(it 4 ) for any k are said to be of expo-
nential order.

The distinction between pol ynomial-order functions and exponential-order func-
tions is extremely important. Even a small exponent iul-orderfunction. such as 2". grows
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far larger than any polynomial-order function, such as n k , regardless of the size of k.
As an illustration of the rapidity with which exponential-order functions grow, consider
that 2 10 equals 1024 but that 2 (that is, 1024 1 °) is greater than the number formed by
a I followed by 30 zeros. The smallest.k for which 10" exceeds 210 is 4, but the smallest
k for which lOO& exceeds 2100 is 16. As n becomes larger, larger values of k are needed
for n & to keep up with 20. For any single k. 21 eventually becomes permanently larger
than nk.

Because of the incredible rate of growth of exponential-order functions, problems
that require exponential-time algorithms for solution are considered to be inuactabk on
current computing equipment; that is, such problems cannot be solved precisely except
in the simplest cases.

Efficiency of Sorting

Using this concept of the order of a sort, we can compare various sorting tech-
niques and classify them as being "good" or "bad" in general terms. One might hope to
discoyer the "optimal" sort that is 0(n) regardless of the contents or order of the input.
Unfortunately, however, it can be shown that no such generally useful sort exists. Most
of the classical sorts we shall consider have time requirements that range from 0(n log n)
to 0(n 2 ). In the former, multiplying the file size by 100 will multiply the sorting time by
less than 200; in the latter, multiplying the file size by 100 multiplies the sorting time
by a factor of 10,000. Figure 6. L4 shows the comparison of n log n with n2 for a range
of values of n. It can be seen from the figure that for large n, as n increases, n2 increases
at a much more rapid rate than n log n. However, a sort should not be selected simply
because it is 0(n log n). The relation of the file size n and the other terms constituting
the actual sorting time must be known. In particular, terms which play an insignificant
role for large values of n may play a very dominant role for small values of n.. All these
issues must be considered before an intelligent son selection can be made.

A second method of determining time requirements of a sorting technique is to
actually run the program and measure its efficiency (either by measuring absolute time
units or the number of operations performed). To use such results in measuring the ef-
ficiency of a sort the test must be run on "many" sample files. Even when such statistics
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Figure 3.1.4 Comparison of it log n
and it' for various values of n.
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have been gathered, the application of that sort to a specific file may not yield results
that follow the general pattern. Peculiar attributes of the file in question may make the
sorting speed deviate significantly. In the sorts of the subsequent sections we shall give
an intuitive explanation of why a particular sort is classified as 0(n2 ) or 0(n tog n); we
leave mathematical analysis and sophisticated testing of empirical data as exercises for
the ambitious reader.

In most cases the time needed by a sort depends On the original sequence of the
data. Fot some sorts, input data which is almost in sorted order can be completely sorted
in time 0(n). whereas input data that is in reverse order needs time that is 0(n2 ). For
other sorts the time required is O(n log a) regardless of the original order of the data.
Thus, if we have some knowledge about the original sequence of the data we can make
a.more intelligent decision about which sorting method to select. On the other hand, if
we have no such knowledge we may wish to select a sort based on the worst possible
case or based on the "average" case. In any event, the only general comment that can
be made about sorting techniques is that there is no "best" general sorting technique.
The choice of a sort must, of necessity, depend on the specific circumstances.

Once a particular sorting technique has be selected, the programmer should
then proceed to make the program as efficient as possible. In many programming appli-
cations it is often necessary to sacrifice efficiency for the sake of clarity. With sorting,
the situation is usually the opposite. Once a sorting program has been written and test ' d,
the programmer's chief goal is to improve its speed, even if it becomes less readable.
The reason for this is that a sort may account for the major part of a program's effi-
ciency, so that any ithprovement in sorting time significantly affects overall efficiency.
Another reason is that a sort is often used quite frequently, so that a small improvement
in its execution speed saves a great deal of computer time. It is usually a good idea to
remove function calls, especially from inner loops, and replace them with the code of
the function in line, since the call-return mechanism of a language can be prohibitively
expensive in terms of time. Also, a function call may involve the assignment of storage
to local variables, an activity that sometimes requires a call to the operating system. In
many of the programs we do not do this so as not to obfuscate the intent of the program
with huge blocks of code.

Space constraints are usually less important than time considerations. One rea-
son for this is that, for most sorting programs, the amount of space needed is closer
to 0(n) than to 0(n2 ). A second reason is that if more space is required it cah almost
always be found in auxiliary storage. An ideal sort is an in-place sort whose additional
space requirements are 0(l). That is, an in-place sort manipulates the elements to be
sorted within the array or list space that contained the original unsorted input. Addi-
tional space that is required is in the form of a constant number of locations (such as
declared individual program variables) regardless of the size of the Set to be sorted.

Usually, the expected relationship between time and space holds for sorting al-
gorithms: those programs that require less time usually require more space, and vice
versa. However, thereare clever algorithms that utilize both minimum time and min-
imum space; that is, they are 0(n log n) in-'place sorts. These may, however, require
more programmer time to develop and verify. They also have higher constants of pro-
portionality than many sorts that do use more -space or that have higher time-orders and
so require more time to sort small sets.

Sec. 8.1	 General Background	 337



In the remaining sections we investigate some of the more popular sorting tech-
niflucs and indicate some of their advantages and disadvantages.

EXERCISES

6.1.1. Choose any sorting technique with which you are familiar,
(a) Write a program for the sort.
(b) Is the son stable?
(c) Determine the time requirements of the sort as a function of the tile size, both

mathematically and empirically.
(d) What is Ahe order of the son?
(e) At what file size does the most dominant term begin to overshadow the others?

6.1.2. Show that the function tiog,,, or)' is 0(n) for a1 in and k but that n is not O((log n) 5 ) for
any k.

6.13. Suppose that a time requirement is given by the formula a 	 + h iilog 2 n. where
• a and h are constants. Answer the following questions by both proving your results

mathematically and wrting a program to validate the results empirically.
(a) For what values of,i (expressed in terms of a and b) does the first term dominate

the second?
(b) For what value of n (expressed in terms of a and b) are the two terms equal?
(c) For what values of n (expressed in terms of a and b) does the second term domi-

nate the first?

6.1.4. Show that any process that sorts a file can be extended to find all duplicates in the file.
6.1.5. A sort decision tree is a binary tree that represents a sorting method based on com-

parisons. Figure 6.1.5 illustrates such a decision tree for a file of three elements. Each
nonleaf of such a tree represents a comparison between two elements. Each leaf repre-
sents it completely sorted file. A left branch from a nonleaf indicates that the first key
was smaller than the second; a right branch indicates that it was larger. (We assume
that all the elements in the file have distinct keys.) For example, the tree of Figure 6.1.5
represents a sort on three elements xI O l . vi II. .j2] that proceeds as follows:
compare 40) with 41]. If 40) < 4 lJ, compare x[ I with 421. and if .s[ I] < 421.
the sorted order of the file isxi Ol. xf 11.42]; otherwise if4O] <42), the sorted order is

1.2

2,3	 )	 (	 1,3

1<2<31 ( 1. 3 ) 1 2<t<3 (

I< I <2	 2 <3 < I j <2 < t	 Figure 6.1.5 Decision tree for a file of3<2

	

	 f
three elements.
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xI O I. 421.41 h and if xIOI >421. the sorted order is x l 2 1 . 40 1 . 411. If 40! > 'III.
proceed in a similar fashion down the right suhtree.
(a) Show that a sort decision Irec that never makes a redundant comparison (that is.

never compares .dll and .sljI if the relationship between IllI and 4j1 is known)

has ,z leaves.
(b) Show that the depth of such a decision tree is at least Iog In!).
IC) Show that it! a (n / 2)" 2, so that the depth of such a tree is 0th log n)
(d) Explain why this proves that any sorting method that uses comparisons on a tile

of size ii must make at least On log n) comparisons.
6.1.6. Given a sort decision tree for a tile as in the previous cxerc;sc, show that if the tile

contains some equal elements, the result of applying the tree to the file (where either a
left or right branch is taken whenever two elements are equal) is a sorted tile.

6.1.7. Extend the concept of the binary decision trec of the previous exercises to a ternary
tree that includes the possibility of equality. ' lt is desired to determine which elements
of the tile are equal, in addition to the order of the distinct elements of the tile. How
many comparisons are necessary?

6.1.8. Show that if k is the smallest integer greater than or equal to it + log2 it - 2, k com-

parisons are necessary and sufficient to find the 'rgest and second largest elements of

a set of Pi distinct elements.

6.1.9. How many comparisons are necessary to find the largest and smallest of a set of it

distinct elements?
6.1.10. Show that the function fin) defined by

f(l)

f(n— 1)+ I ,zfor 11>1

is 000g Ii).

6.2 EXCHANGE SORTS

Bubble Sort

The first sort we present is probably the most widely known among beginning

students of programming: the bubble sort. One of the characteristics of this sort i'

it is easy to understand and program. Yet, of all the sorts we shall consider, it is pi

the least efficient.
In each of the subsequent exaniples.x is an array of integers of which the first it

are to be sorted so that nfl 4fl for 0 5 I <j < n. It is straightforward to extend this

simple format to one which is used in sorting n records, each with a subfield key k.

The basic idea underlying the bubble sort is to pass through the tile sequentially
several times. Each pass consist-, of comparing each element in the file with its Successor

(Ail with x[i + I I) and interchanging the two elements if they are not in proper order.

Consider the following file:

25 57 48 37 12 92 86 33
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The following comparisons are made on the first pass:

401 with x[I]	 (25 with 57)	 No interchange
41] with 421	 (57 with 48)	 Interchange
421 with 431	 (57 with 37)	 Interchange
43] with 441	 57 with 12)	 Interchange
x 14j with 451	 (57 with 92)	 No interchange
xI S ] with 461	 (92 with 86)	 Interchange
4 6] with 471	 (92 with 33)	 Interchange

Thus, after the first pass, the file is in the order

25 48 37 12 57 86 33 92

Notice that after this first pass, the 1argeelement (in this case 92) is in its proper
position within the array. In general. 4n - i] Mll he in its proper position after iteration
i. The method is called the bubble sort because each number slowly "bubbles" up to its
proper position. After the second pass the file is

25 37 12 48 57 33 86 92

Notice that 86 has now found its way to the second highest position. Since each iteration
places a new element into its proper position, a file of n elements requires no more than
n - I iterations.

The complete set of iterations is the following:

Iteration 0 (original file)	 25 57 48 37 12 92 86 33
Iteration I	 25 48 37 12 57 86 33 92
Iteration 2	 25 37 12 48 57 33 86 92
Iteration 3	 25 12 37 48 33 57 86 92
Iteration 4	 12 25 37 33 48 57 86 92
Iteration 5	 12 25 33 37 48 57 86 92
Iteration 6	 12 25 33 37 48 57 86 92
Iteration 7	 12 25 33 37 48 57 86 92

On the basis of the foregoing' discussion we could proceed to code the bubble sort.
However, there are some obvious improvements to the foregoing method. First, since
all the elements in positions greater than or equal ton - i are already in proper position
after iteration i, they need not be considered in succeeding iterations. Thus on the first
pass n - 1 comparisons are made, on the second pass n - 2 comparisons, and on the
(n - l)th pass only one comparison is made (between 401 and x[I]). Therefore the
process speeds up as it proceeds through successive passes.

We have shown that it - I passes are sufficient to sort a file of size n. However,
in the preceding sample file of eight elements, the file was sorted after five iterations,
making the last two iterations unnecessary. To eliminate unnecessary passes we must
be able to detect the fact that the file is already sorted. But this is a simple task. since in
a sorted file no interchanges are made on any pass. By keeping a record of whether or
not any interchanges are made in a given pass it can be determined whether any further
passes are necessary. Under this method, if the file can be sorted in fewer than it -
passes, the final pass makes no interchanges.
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Using these improvements, we present a routine bubble that accepts two variables
x and n. xis an array of numbers, and n is an integer representing the number of elements
to be sorted. (n may be less than the number of elements in x.)

void bubble(jnt tEl, mt n)

mt hold, j, pass;
mt switched TRUE;

for (pass 0; pass < n-i && switched	 TRUE; pass++) {
1*	 outer loop controls the number of passes 	 */
switched	 FALSE;	 /* initially no interchanges have */

been made on this pass. 	 *1
for (j = 0; j < n-pass-1; j++)

1*	 inner loop governs each individual pass
if (x[j) > x[j+i]) (

/V ,	 elements out of order
an interchange is necessary

switched	 TRUE;
hold
x[j] =
x[j+i]	 hold;

) / .ndif/
) /* end for
/ end bubble

What can be said about the efficiency of the bubble sort? In the case of a sort
that does not include the two improvements outlined previously, the analysis is simple.
There are it 	 I passes and it 	 I comparisons on each pass. Thus the total number
of comparisons is (n - I) * (it I) = n2 - 2n + I, which is 002 ). Of course, the
number of interchanges depends on the original order of the file. However, the number
of interchanges cannot be greater than the number of comparisons. It is likel y that it
is the number of interchanges rather than the number of comparisons that takes up the
most time in the program's execution.

Let us see how the improvements that we introduced affect the speed of the bubble
sort. The number of comparisons on iteration i is it i. Thus, if there are k iterations the
total number of comparisons is (n - I) + ( n — 2) + ( it 	 + . . + ( n - k), which equals
(2k)i - - k) 2. It can be shown that the average number of iterations. k. is 0(n),
so that the entire formula is still 0(2), although the constant multiplier is smaller than
before. Ho'4r. there is additional overhead involved in testing and initializing the
variable ,twie4 (Once per pass) and setting it to TRUE (once for every interchange).

The only redeeming features of the bubble sort are that it requires little additional
space (one additional record to hold the temporary value for interchanging and several
simple integer variables) and that it is 0(n) in the case that the file is completely sorted
(or almost completely sorted). This follows from the observation that only one pass of
it - I comparisons (and no interchanges) is necessary to establish that a sorted tile is
sorted.
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There are some other ways to improve the bubble sort. One of these is to observe
that the number of passes necessary to sort the file is the largest distance by which a
number must move "down" in the array. In our example, for instance. 33, which starts
at position 7 in the array, ultimately finds its way to position 2 after five iterations. The
bubble sort can be speeded up by having successive passes go in opposite directions so
that the small elements move quickly to the front of the file in the same way that the
large ones move to the rear. This reduces the required number of posses. This version
is left as an exercise.

Quicksort

The next sort we consider is the partition exchange spri (or quicksor:). Let x be
an array, and n the number of elements in the array to be sorted. Choose an element
a from a specific position within the array (for example, a can be chosen as the first
element so that a = x I OI) . Suppose that the elements of x are partitioned so that a is
placed into position j and the following conditions hold:

1. Each of the elements in positions 0 through j - I is less than or equal to a.
2. Each of the elements in positions j + I through a - I is greater than or equal

to a.

Notice that if these two conditions hold for a particular a andj, a is the jth srnJlest
element of x, so that a remains in position  when the array is completely sorted. (You
are asked to prove this fact as an exercise.) If the foregoing process is repeated with
the subarrays xtOJ through x[j - I] and xjj + I) through x[n - I) and any subarrays
created by the process in successive iterations, the final result is a sorted file.

Let us illustrate the quicksort with an example; If an initial array is given as

25 57 48 37 12 92 86 33

and the first element (25) is placed in its proper position, the resulting array is

12 25 57 48 37 92 86 33

At this point, 25 is in its proper position in the array (xii)), each element below
that position (12) is less than or equal to 25, and each element above that position (57,
48, 37, 92, 86, and 33) is greater than or equal to 25. Since 25 is in its final position the
original problem has been decomposed into the problem of sorting the two subarrays

(12) and (57 48 37 92 86 33)

Nothing need be done to sort the first of these subarray's; a file of one element is
already sorted. To sort the second subarray the process is repeated and the subarray is
further subdivided. The entire array may now be viewed as

12 25 (57 48 37 92 86 33)

where parentheses enclose the ubarrays that are yet to be sorted. Repeating the process
on the subarray .v21 through 471 yields

12 25 (48 37 33) 57 (92 86)
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and further repetitions yield

12 25 (37 33) 48 57 (92 86)
12 25 (33) 37 48 57 (92	 6)

12 25 33 3,7 48 57 (92 86)
12 25 33 37 48 57 (86) 92

12 25 33 37 48 57 86 92

Note that the final array is sorted.
By this time you should have noticed that the quicksort may be defined most

conveniently as a recursive procedure. We may outline an algorithm quick(Ib.ub) to

sort all elements in an array x between positions lb and ub (lb is the lower boun!, ub

the upper bound) as follows:

If (lb > ub)
return;	 array is sorted	 *1

	

artition(x,lb,ub,j); 1* partition the elements of the 	 1

1*	 barray such that one of the
/* elements (possibly 4Th)) is

,J	now at x[j] (j is an output

/	 parameter) and:
1* 1. xLi] <. x[ j] for lb <	 <
/* 2. x[1] >- x[j] for j c f <- ub *1

x[j] is now at its final
1*	 positiOn	 •1

quick(x.lb.i - 1);	 /	 recursively Sort the subarray
/* between Positions lb and j - I

qufck(x,j + 1,ub);	 /	 recursively sort the subarray
/* between positions j + 1 and ub

There are now two problems. We must produce a mechanism to implement 
partition

and produce a method to implement the entire process nonrecurSivelY.

The object of partition is to allow a specific element to find its proper position

with respect to the others in the subarray. Note that the manner in which this partition
is peiformed is irrelevant to the sorting method. All that is required by the sort is that
the elen1ents be partitioned properly. In the preceding exampe, the elements in each
of the two subiules remain in the same relative order as they appear in the original file.
Howeer, such a partition method is relatively inefficient to implement.

One way to effect a partition efficiently is the following: Let a xI!bl be the

element whose final position is sought. (There is no appreciable efficiency gained by
selecting the first element of the subarray as the one which is inserted into its proper
position; it merely makes some of the programs easier to code.).Two pointers, up and

down, 
are initialized to the upper and lower bounds of the subarray. respectively. At any
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point during execution, each-element in a position above up is greater than or equal to
a. and each element in a position below down is less than or equal to a. The two pointers
up and down are moved towards each other in the following fashion.

Step I: Repeatedly increase the pointer down by one position until x[down] > a.
Step 2: Repeatedly decrease the pointer up by one position until x[Up] < a.
Step 3: Içup > down, interchange x(down) with x[upj.

The process is repeated until the condition in step 3 fails (up <= down) at which pointx[up] is interchanged with 4!bJ (which equals a), whose final position was sought, and
j is set to up.

We illustrate this process on the sample file, showing the positions of up and down
as they are adjusted. The direction of the scan is indicated by an arrow at the pointer
being moved. Three dsterisks on a line indicates that an interchange is being made.

ax[7b]	 25

down-->	 up
• 25	 57	 48	 37	 12	 92	 86	 33

down	 up
25	 57	 48	 37	 12	 92	 86	 33

down	 <--up
25	 57	 48	 37	 12	 92	 86	 33

down	 <--up
25	 57	 48	 37	 12	 92	 86	 33

down	 <--up
25	 57	 48	 37	 12	 92	 86	 33

down	 up
25	 57	 48	 37	 12	 92	 86	 33

down	 up
• 25	 12	 48	 37	 57	 92	 86	 33

down-->	 up
25	 12	 48	 37	 57	 92	 86	 33

down	 up
25	 12	 48	 37	 57	 92	 86	 33

down	 <--up
25	 12	 48	 37	 57	 92	 86	 33

down <--up
25	 12	 48	 7	 57	 92	 86	 33
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<--up,dovm
25	 12	 48	 37	 57	 92	 86	 33

up	 down
25	 12	 48	 37	 57	 92	 86	 33

up	 down
12	 25	 48	 37	 57	 92	 86	 33

At this point 25 is in its proper position (position I), and every element to its left is less
than or equal to 25, and every element to its right is greater than or equal to 25. We
could now proceed to sort the two subarrays (12) and (48 37 57 92 86 33) by applying
the same method.

This particular algorithm can be implemented by the following procedure.

void partition (mt x[], mt lb, mt ub, mt *pj)

mt a, down, temp, up;

a - x[lb];	 / a is-the element whose final *1
/*	 PQSt1Ofl is sought	 *1

up - ub;	 .
down = lb;
while (down <up) {

while (x[down] <- a && dawn < ub)
down++;	 move up the array

while (X[up] > a)
up--;	 move down the array	 *1

if (down up) {
1*	 interchange x[down) and x[up) */
temp - x[down];
x[down) - x[up];

} / end if *1
} 1* end while *1	 -
x[lb]	 x[up];
X[up] - a;
*pj - up;

} / end partition *1

Note that if k equals ub - lb + 1 • so that we are rearranging a subarray of size k,
the routine uses Ic key comparisons (of x[down] with a and x[tip] with a) to perform the
partition.

The routine can be made slightly more efficient by eliminating some of the re-
dundant tests. You are asked to do this as an exercise.

Although the recursive quicksort algorithm is relatively clear in terms of what it
accomplishes and how, it is desirable to avoid the overhead of routine calls in programs
such as sorts in which execution efficiency is a significant consideration. The recursive
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calls to quick can easily be eliminated by usinga stack as in Section 3.4. Once partition
has been executed, the current parameters to quick are no longer needed, except in
computing the arguments to the two subsequent recursive calls. Thus instead of stacking
the current parameters upon each recuisive call, we can compute and stack the new
parameters or each of the two recursive calls. Under this approach, the stack at any
point contains the lower and upper bounds of all subarrays that must yet be sorted.
Furthermore, since the second recursive call immediately precedes the return to the
calling program (as in the Towers of Hanoi problem), it may be eliminated entirely and
replaced with a branch. Finally, since the order in which the two recursive calls are
made does not affect the correctness of the algorithm, we elect in each case to stack the
larger suhamiy and process the smaller sUbarray immediately. As we explain shortly,
this technique keeps the size of the stack to a miiimum.

We may now code a function to implement the quicksort. As in the case of bubble,
the parameters are the array .r and the number of elements of x that we wish to sort. it.
The routine push pushes lb and ub onto the stack. popsub pops them from the stack,
and enlprv determines if the stack is empty.

#define MAXSTACK ... 	 / maximum stack size
void quicksort(ntgfl, mt n)

mt i, j;
struct bndtype

lift lb;
mt ub;

} newbnds;
/ stack is usedby . theop, push and empty functions
struct

mt top;
struct bndtype bounds(MitStACK);

stack;

stack.top	 -1;
newbnds.lb = 0
newbnds.ub = n-i;
push(&stack, &newbnds);
f repeat as long as there are any
1* unsorted subarrays on the stack
while (!empty(&stack))

popsub(&stack, &newbnds);
while (newbnds.ub > newbnds.lb)

/* process next subarray *1
partition(x, newbnds.lb, newbnds.ub, &j);
/* stack the larger subarray *1
if (j-newbnds.lb > newbnds.ub-j) {

/ stack lower subarray V
I = newbnds.ub;
newbnds.ub	 j-i;
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push(&Stack, &newbnds);
1* process upper subarray *1
nends.1b	 j+1:
newbnds.ub - 1;

else {
/ stack upper subarray
i - newbnds.lb;
newbnds.lb j+1;
push(&s.tack, &newbnds);
P process lower subarray *1
newbnds.lb	 1;
netbnds.ub	 j-1;

} 1* end if */
} / end t.l,fle

) 1* end while *1
) / end quicksort /

The routines partition, empty . popsub, and push should be inserted in line for

maximum efficiency. Trace the action of quicksort on the sample file.
Note that we have chosen to use x t lb l as the element around which to partition

each subfile because of programming convenience in the proc'dure partition, but any
other element could have been chosen as well. The element around which a file is par-
titioned is called a pivot. It is not even necessary that the pivot be an element of the

subfile; partition can be written with the header

pardtion(lb, ub, x, j, pivot)

to partition x[lb] through x[ub] so that all elements between x[lb] and xlj - 11 are

less than pivot and all elements between xUj and x[ubl are greater than or equal to

pivot. In that case the element x[jI is itself included in the second subtile (since it
is not necessarily in its proper position), so that the second recursive call to quick is
quick(x,j, ub) rather than quick(x, j + I. ub).

Several choices for the pivot value have been found to improve the efficiency of
quicksort by guaranteeing more nearly balanced subtiles. The first techniqtic uses the
median of the first, last, and middle elements of the subflle to he sorted (that is. the
median of x[ Ib ] . x[ub], and x[(lb + ub)12]) as the pivot value. This median-of-three
value is closer to the median of the subflle being partitioned than 41b1. so that the two

partitions of the subfile are more nearly equal in size. In this method the pivot value is an
element of the file, so that quick (x, j + I, ub) can he used as the second recursive call.

A second method, called meansort, utilizes x[lbI or the median-of-three as pivot
when partitioning the original file but adds code in partition to compute the means
(averages) of the two suhflles being created. In subsequent partitions the mean of each
subflle, calculated when the subtile was created, is used as a pivot value. Again, this
mean is closer to the median of the subtile than .'4jb] and results in more nearly balanced
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files. The mean is not necessarily an element of the file, so that quick (x, j, ub) must
be used as the second recursjveall. The code to find the mean does not require any
additional key comparisons but does add some extra overhead.

Another technique, called Bsorg, uses the middle element of a subfile as the pivot.
During partition, whenever the pointer up is decieased, x[upj is interchanged with
x[up + I] if x[up] > x[up + 1J. Whenever the pointer down is increased, x[down]
is interchanged with .rtdown - I] if x[down) < x [down - II. Whenever xlup] and
x[down] are interchanged x(up]. is interchanged with x [ up 4 II if xlup] > x[Up + I],and x[down] is interchanged with xjdown - I] if x[ down] <x[down - I]. This guaran-
tees that 4up] is always the smallest element in the right subtile (from x[upj to xlub])and that xldown] is always the largest element in the left subfile (from xlIhl to x[down]).

This allows two optimizations: It no interchanges between x[up] and x[up + I]
were required during the partition, the right subfile is known to be sorted and need not
be stacked, and if no interchanges between x[down] and x[down - I] were required, the
left subfile is known to be sorted and need not be stacked. This is similar to the technique
of keeping a flag in bubblesort that detects that no interchanges have taken place during
an entire pass so that no additional passes are necessary. Second, a subtile of size 2 is
known to be orted and need not be stacked. A subfile of size 3 can be directly sorted
with just a single comparison and possible intercharge (between the first two elements
in a left subfile and between the last two in a right subfile). Both optimizations in Bsort
reduce the number of subfiles that must be processed.

Efficiency of Quicksort

How efficient is the quicksort? Assume that the file size n is a power of 2, Say
n = 2", so that rn = log, n. Assume also that the propor position for the pivot always
turns out to be the exact middle of the subarray. In that case there will be approximately
n comparisons (actually n - I) on the first pass, after which the file is split into two
subfiles each of size n/2, approximately. For each of these two files there are approx-
imately n/2 comparisons, and a total of four files each of size n/4 are formed. Each of
these files requires ,,/4 comparisons yielding a total of n18 subflles. After halving the
subfiles m times, there are n files of size I. Thus The total number of comparisons for
the entire sort is approximately 	 -

or

fl+fl +fl +fl +	 + n(rn terms)

comparisons. There are in terms because the file is subdivided in times. Thus the total
number of comparisons is O(n * in) or O(n log n) (recall that tit 	 log, n). Thus if the
foregoing properties describe the file, the quicksort is O(n log ii),which is relatively
efficient.

For the unmodified quicksort in which x[lb] iF used as the pivot value, this anal-
ysis assumes that the original array and all the resulting subarrays are unsorted, so
that the pivot value .v(!b] always finds its proper position at the middle of the subarray.
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Suppose that the preceding conditions do not hold and the original array is sorted (or
almost sorted). If, for example, x[lb] is in its correct position, the original file is split
into subflles of ii' 0 and n - I. if this process continues, a total of n - I subfiles are
sorted, the first of size n. the second of size n - 1, the third of size n - 2. and so on.
Assuming k comparisons to rearrange a file of size k, the total number of comparisons
to sort the entire file is

which is 0(n2 ). Similarly, if the original file is sorted in descending order the final posi-
tion of xl lb] is ub and the file is again split into two subfiles that are heavily unbalanced
(sizes a - I and 0). Thus the unmodified quicksor( has the seemingly absurd property
that it works best for files that are "completely unsorted" and worst for files that are
completely sorted. The situation is precisely the opposite for the bubble sort, which
works best for sorted files and worst for unsorted files.

It is possible to speed up quicksort for sorted files by choosing a random element
of each subfile as the pivot value. If a file is known to be nearly sorted, this might be
a good strategy (although, in that case choosing the middle element as a pivot would
be even better). However, if nothing is known about the file, such a strategy does not
improve the worst case behavior, since it is possible (although improbable) that the
random element chosen each time might consistently be the smallest element of each
subfile. As a ?ractical matter, sorted files are more common than a good random number
generator happening to choose the smallest element repeatedly.

The analysis for the case in which the file size is not an integral power of 2 is
similar but slightly more complex: the results, however, remain the same. It can be
shown, however, that on the average (over all files of size a), the qoicksort makes ap-
proximately 1.386n 1092 a comparisons even in its unmodified version. In practical
situations, quicksort is often the .fastest available because of its low overhead and its
average 0(n log n) behavior.

If the median-of-three technique is used, quicksort can be 0(n log 'n) even if the
file is sorted (assuming that partition leaves the subfiles sorted). However, there are
pathological files in which the first, last, and middle elements of each subfile are al-
ways the three smallest or largest elements. In such cases, quicksort remains 0(112).
Fortunately, these are rare.

Meansort is 00 log n) as long as the elements of the file are uniformly distributed
between the largest and smallest. Again, some rare distributions may make it 0(n2 ), but
this is less likely than the worst case of the other methods. Forrandom files, meansort does
not offer any significant reductions in comparisons or interchanges over standard quick-
sort. Its significant overhead for computing the mean requires far more CPU time than
standard quicksort. For a file known to be almost sorted, meansort does provide signif-
icant reduction in comparisons and interchanges. However, the mean-finding overhead
makes it slower than quicksort unless the file is very close to being complejely sorted.

Bsort requires far less time than quicksort or meansort on sorted or nearly sorted
input, although it does require more comparisons and interchanges than meansort
for nearly sorted input (but meansort has significant overhead in finding the mean). It
requires fewer comparisons but more interchanges than meansort and more of both than
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quicksort for randomly sorted input. However. its CPU requirements are far lower than
meansort's, although somewhat greater than quicksort for random input.

Thus Bsofl can be recommended if the input is known to be nearly sorted or if we
are willing to forgo moderate increases in average sorting time to avoid very large in-
creases in worst-case sorting time. Meansort can be recommended only for input known
to be very nearly sorted and standard quicksort for input likely to be random or if aver-
age sorting time must be as fast as possible. In Section 6.5, we present a technique that
is faster than either Bsort or meansort on nearly sorted files.

The space requirements for the quicksort depend on the number of nested recur-
sive calls or on the size of the stack. Clearly, the stack can never grow larger than the
number of elements in the original file. How much smaller than n the stack grows de-
pends on the number of suhfiles generated and on their sizes. The size of the stack is
somewhat contained by always stacking the larger of the two suharrays and applying
the routine to the smaller of the two. This guarantees that all smaller subarrays are sub-
divided before larger subarrays, giving the net effect of having fewer elements on the
stack at any given time. The reason for this is that a smaller subarray will be divided
fewer times than a larger suharray. Of course, the larger suharray will ultimately be
processed and subdivided, but this will occur after the smaller subarrays have already
been sorted and therefore removed from the stack.

Another advantage of quicksort is locality of reference. That is, over a short period
of time all array accesses are to one or two relatively small portions of the array (a
subfile or portion thereof). This insures efficiency in the virtual memory environment,
where pages of data are constantly being swapped back and forth between external
and internal storage. Locality of reference results in fewer page swaps being required
for a particular program. A simulation study has shown that in such an environment,
quicksort uses less space-time resources than any other sort considered.

EXERCISES

6.2.1. Prove that the number of passes necessary in the bubble sort of the text before the file is
in sorted order (not including the last pass, which detects the fact that the file is sorted)
equals the largest distance by which an element must move from a larger index to a
smaller index.

6.2.2. Rewrite the routine bubble so that successive passes go in opposite directions.
6.2.3. Prove that, in the sort of the previous exercise, if two elements are not interchanged

during two consecutive passes in opposite directions, they are in their final position.
6.2.4. A sort by counting is performed as follows. Declare an array count and set countii] to

the number of elements that are less than xjiJ. Then place x[i] in position coun:[il of an.
output array. (However, beware of the possibility of equal elements.) Write a routine
to sort an array .v of size it 	 this method.

6.2.5. Assume that a file contains integers between a and b. with,many numbers repeated
several times. A distribution sort proceeds as follows. Declare an arra y number of size
b -. a + I. and set nuntherji - a] to the number of times that integer i appears in the
file, and then reset the values in the file accordingly. Write a routine to sort an array .v
of size it 	 integers between a and I' by this method.

Sorting	 Chap. 6

350



The odd-even transposition sort proceeds as follows. Pass through the tile several

times. On the first pass. compare xlii with xl i + I] for all odd I. On the second pass,

compare xlii with 4, + II for all even i. Each time that xlii > 4i + II. interchange

the two. Cuni ,ue alternating in this fashion until the tile is sorted.
(a) What is the condition for the termination of the Sort?
(b) Write a C routine to implement the sort.
(c) On the average what is the efficiency of this sort?
Rewrite the program for the quicksort by starting with the recursive algorithm and
applying the methods of Chapter 3 to produce a nonrecursive version.
Modify the quicksort program of the text so that if a subarray is small, the bubble sort
is used. Determine, by actual computer runs, how small the subarray should be so that
this mixed strategy will be more efficient that an ordinary quicksort.

Modify partition so that the middle value of x L lh l, xl ub l, and xlindl (where 
a

id =
(ub + lb)12) is used to partition the array. In what cases is the quicksort using this
method more efficient than the version of the text? In what cases is it less efficient?

Implement the meansort technique. partition should use the mean of the subtile be-
ing partitioned, computed when the subtile was created, as the pivot value and should
compute the mean of each of the two subfiles that it creates. When the upper and lower

bounds of a subfile are stacked, its mean should be stacked as well.

Implement the Bsort technique. The middle element of each file should he used as the

pivot, the last element of the left subtile being created should be maintained as the
largest in the left subtile, and the first element of the right subtile should be maintained
as the smallest in the right subtile. Two bits should be used to keep track of whether the

two subtiles are sorted at the end of the partition. A sorted subfile need not be processed
further. If a subtile has three or fewer elements, sort it directly by a single interchange.

at most.
6.2.12. (a) Rewrite the routines for the bubble sort and the quicksort as presented in the text

(b)

(c)

(d)

6.3 SELECTION AND TREE SORTING

A selection sort is one in which successive elements are selected in order and placed
into their proper sorted positions. The elements of the input may have to be preprocessed
to make the ordered sglection possible. Any selection sort can be conceptualized as the
following general algorithm that uses a descending priority queue (recall that pqinsert

inserts into a priority queue and pqinaxdelete retrieves the largest element of a priority

queue).

6.2.6.

6.2.7.

6.2.8.

6.2.9.

6.2.10.

6.2.11.
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set dpq to the empty descending priority queue;
/ preprocess the elements of the input array *1
/* by inserting them into the priority queue
for (1	 0; i < n; i++)

pqrnsert(dpq, x[f]);
/* select each successive element in order 	 *1
for (n-1; i >-0; i--)

x[i]	 pqmaxdelete(dpq);

This algorithm is called the general selection sort.
We now examine several different selection sorts. Two features distinguish a spe-

cific selection sort. One feature is the data structure used to implement the priority
queue. The second feature is the method used to implement the general algorithm. A
Particular data structure may allow significant optimization of the general selection sort
algorithm.

Note also that the general algorithm can be modified to use an ascending priority
queue apq rather than dpq. The second loop that implements the selection phase would
be modified to

for (I	 0; i < it; f.'+)
x[i] = pqmindelete(apq);

Straight Selection Sort

The straight selection sort, or push-down sort, implements the descending pri-
ority queue as an unordered array. The input array x is used to hold the priority queue,
thus eliminating the need for additional space. The straight selection sort is, therefore,
an in-place sort. Moreover, because the input array x is itself the unordered array that
will represent the descending priority, the input is already in appropriate format and the
preprocessing phase is unnecessary.

Therefore the straight selection sort consists entirely of a selection phase in which
the largest of the remaining elements, large, is repeatedly placed in its proper position,i. at the end of the array. To do so, large is interchanged with the element x[i]. The initial
n-element priority queue is reduced by one element after each selection. After n - 1
selections the entire array is sorted. Thus the selection process need be done only from
n - I down to I rather than down to 0. The following C function implements straight
selection:

void selectsort(jnt XE], mt n)

i,tt i, mdx, j, large;

for 0 ­ n-I.; i s 0; 1--) {
I place the largest number of x(0). through */
1* x[i] into large and its index into mdx *1
large
indx=O;

—
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for (j = 1: j <= 1; j+')
if (4j] > large) {

large

mdx	 j;
} /* end for ... jf*/

x[indx]

x[i]	 large;

/ end for /

) /' end selectsort •/

Analysis of the straight selection sort is straightforward. The first pass makes
n - I comparisons, the second pass makes n - 2, and so on. Therefore, there is a total
of

(n—l)-4-(n-2)+(--3)+.+	 1 n*(n-1)/2

comparisons, which is 0(n 2 ). The number of interchanges is always it I (unless a test
is added to preveIi the interchanging of an elethent with itself) There is little additional
storage required (except to hold a few temporary variables). The sort nay therefore be
categorized as 0(n2 ). although it is faster than the bubble sort. There is no improvement
if the input file is completely sorted or unsorted, since the testing proceeds to completion
without regard to the makeup of the file. Despite the fact that it is simple to code, it is
unlikely that the straight selection sort would be used on any files but those for which
it is small.

It is also possible to implement a sort by representing the descending priority
queue by an ordered array. Interestingly, this leads to a sort consisting of a preprocess-
ins phase that forms a sorted array of n elements. The selection phase is, therefore.
superfluous. This sort is presented in Section 6.4 as the simple insertion sort; it is not
a selection sort, since no selection is required.

Binary Tree Sorts

In the remainder of this section we illustrate several selection sorts that represent
a priority queue by a binary tree. The first mchod is the binary tree sort of Section
5.1. which uses a binary search tree. The reader is advised to review that sort before
proceeding.

The method involves scanning each element of the input file and piacing it into
its proper position in a binary tree. To find the proper position of an element. y, a left or
right branch is taken at each, node, depending on whether v is less than the element in
the node or greater than or equal to it. Once each input element is in its proper position
in the tree. .the sorted file can be retrieved by an border traversal of the tree. We present
the algorithm for this sort, modifying it to accommodate the input as a preexisting array.
Translating the algorithm to a C routine is straightforward.

J* 
establish the first element as root

tree makerree(x[O]);

/ repeat for each successive element *1
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for (1=1; i<n;.j++) {
Y	 x[iJ;
of = tree;
P=
/ travel down the tree until a leaf is reached */
while (p != null)

q p;
if (y < lnfo(p))

P	 left(p);
else

P	 right(p);
/ end while

if (y < info(q))
setleft(q,y);

else
setrght(q,y);

/ end for
/ the tree is bu i lt, traverse it in inorder V
intrav(tree);

To convert the algorithm into a routine to sort an array, it is necessary to revise
rn/ray so that visiting a node involves placing the contents of the node into the next
Pos ition of he original array.

Actually, the binary search tree represents an ascending priority queue, as de-
scribed in Exercises 5.1.13 and 5.2.13. Construct inc the tree represents the preprocess-
ing phase, and the traversal represents the selection phase of the general selection Sort
algorithm.

Ordinarily. cxtIactiii" the minimum element (J'qminde/ete) of a priority queuerepresented by if 
search tree involves traveling dowii the left side of the tree

from the root. Indeed, that is the first s tep of the inorder traversal process. However.
since no new elements are inserted into the tree once the tree is constructed and the
nit iii mum element does not actuall y have to he deleted, the inorder traversal efficiently
implements the successive selection process.

The relative efficiency of this method depends 
( )if original order of the data.

If the original array is completely sorted (or sorted in reverse order), the resulting tree
appears as a sequence of only right (or left) links, as in Figure 6.3.1. In this case the
insertion of the first node requires no comparisons, the second node requires two com-
parisons. the third node three comparisons, and so on. Thus the total number of com-
parisons is

2+3+•.•+,, = 11*(lI-f 1)2—I
which is 0(1,2).

On the other hand, if' the data in the original array is organized 
SO that approxi-inately half the numbers following any given number a in the array are less than a and

half are greater than a, balanced trees such as those in Figure 6.3.2 result. In such a
case thc depth of the resulting binar y tree is the smallest integer it greatcr than or equal
to log (n + I) - I. The number of nodes at any level / (except possibly for the last) is
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:

Orugin.d data	 Original d;ta

4	 8	 12	 17	 26
	

26	 17	 12	 g	 4

Number olcompansonc 14
	

Number of comparisons. 14

(a)
	 {b)

	 Ite

Figure 6.3.1

2' and the number of comparisons necessary to place a nodcat level I (except when
/ = 0) is / + I. Thus the total number of comparisons is between

d	 21	 / ± I) and \' 2' * / + I,

Original data.	 Original data

12	 8	 17	 4	 26
	

17	 8	 12	 4	 26

Number of compansons 10	 Number of comparisons: 10

(a)
	

(h)

Figure 6.3.2
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It can be shown (mathematically inclined readers might be interested in proving this
fact as an exercise) that the resulting sums are 0(n log n).

Fortunately, it can be shown that if every possible ordering of the input is consid-
ered equally likely, balanced trees result more often than not. The average sorting time
for a binary tree sort is therefore O(n log n), although the constant of proportionality is
larger on the average than in the best case. However, in the worst case (sorted input), the
binary tree sort is 0(n2 ). Of course, once the tree has been created, time is expended in
traversing it. If the tree is threaded as it is created, the traversal time is reduced and the
need for a stack (implicit in the recursion or explicit in a nonrecursive inorder traversal)
is eliminated.

This sort requires that one tree node be reserved for each array element. Depend-
ing on the method used to implement the tree, space may be required for tree pointers
and threads, if any. This additional space requirement, together with the poor 0(n2)
time efficiency for sorted or reverse-order input, represents the primary drawback of
the binary tre sort.

• Heapsort

The drawbacks of the binary tree sort are remedied by the heapsort, an in-place
sort that requires only O(n log n) operations regardless of the order of the input. Define
a descending heap (also called a max heap or a descending partially ordered tree) of
ize n as an almost complete binary tree of n nodes such that the content of each node

is less than or equal to the content of its father. If the sequential representation of an
almost complete binary tree is used, this condition reduces to the inequality

info[jJ	 info[(j - 1)/2] for 0 :5 ((j - 1)1'2) < .1	 n -

It is clear from this definition of a descending heap that the root of the tree (Or the
first element of the array) contains the largest element in the heap Also note that any
path from the root to a leaf (or indeed, any path in the tree that includes no more than
one node at any level) is an ordered list in descending order, it is also possible to define
an ascending heap (or a nun heap) as an almost complete binary tree such that the
content of each node is greater than or equal to the content of its father. In an ascending
heap. the root contains the smallest element of the heap, and any path from the root to
a leaf is an ascending ordered list..

A heap allows a very efficient implementation of a priority queue. Recall from
Section 4.2 that an ordered list containing n elements allows priority queue insertion
(pqinserr) to be implemented using an average of approximately n/2 node accesses,
and deletion of the minimum or maximum (pq,nindeletc or pq,naxd9lete) using only
one node access. Thus a sequence of.n insertions and it dektios from an ordered list
such as is required b y a selection sort could require 00t2 ) operations. Although priority
queue insertion using a binary search tree could require only as few as 1092 n node
accesses. it could require as many as it accesses if the tree is unbalanced. Thus a
selection sort using a binary search tree could also require 0(n2 ) operations, although
on the average only O(n log n) are needed.
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As we shall see, a heap allows both insertion and deletion to be implemented
in O(iog n) operations. Thus a selection sort consisting of ii insertions and,, deletions
can be implemented using a heap in O(n log n) operations, even in the worst case. An
additional bonus is that the heap itself can be implemented within the input array x using
the sequential implementation of an almost complete binary tree. The only additional
space required is for program variables. The heapsert is, therefore, an O(n log n) in-
place sort.

Heap as a Priority Queue

Let us now implement a descending priority queue using a descending heap. Sup-
pose that dpq is an array that implicitly represents a descending heap of size k. Because
the priority queue is contained in array elements 0 to k — I, we add k as a parameter of
the insertion and deletion opeiations. Then the operation pqinserf(dpq. k, eli) can be im-
plemented by simply inserting eh i nto its proper position in the descending list formed
by the path from the root of the heap (dpq[0]) to the leaf dpqk. Once pcjinsert(dpq, k.
elf) has been executed, dpq becomes a heap of size k + 1.

The insertion is done by traversing the path from the empty position k to position
O (the root), seeking the first element greater than or equal to eli. When that element
is found, elf is inserted immediatel y preceding it in the path (that is, elf is inserted as
its son). As each eleient less than elf is passed during the traversal, it is shifted down
one level in the tree to make room for eli. (This shifting is necessary because we are
using the sequential representation rather than a linked representation of the tree. A
new element cannot be inserted between two existing elements without shifting some
existing elements.)

This heap insertion operation is also called the siftup operation because eli sifts
its way up the tree. The following.algorithm implements pqinserl (dpq, k. elf):

S
f= Cs- 1)12; /	 f is the father of s
thfle (s 0 &! dpq [f] < elt) {

dpq[s] = dpq[f];
s = f; /' advance up the tree
f= (s - 1)12;

/* end while *1
dpq [s] = elr;

Insertion is clearly O(log n), since an almosj complete binary tree with ,: nodes
has 1092 n +1 levels, and at most, one node per level is accessed.

We now examine how to implement pqmaxdelete (dpq,k) for a descending heap
of size k. First we define sithirec (pan), where in is geater than p. as the subtree
(of the descçndin heap) rooted at position p within the eIememspq[p.l through
dpql,nl. For example. subzr'e(3. 10) consists of the root dpq[31 and its two chil-
dren dpq[7) and dpq ISl . siibrree(3: 17) consists of dpq[3]. dpq[7 J, dpqf Sj. dj',I 151.
djq[ 16]. and dpq( 171. If dpqlil is included in sithtn.et,p,in), dpq2 I + I] is in-
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eluded if and only if 2 * i + 1 <= m, and dpq[2 * i + 21 is included if and only if2 * i + 2 < m. If m is less than p, suh:reep,m) is defined as the empty tree.
To implement pqnuadelele(dpq,k), we note that the maximum clement is always

at the root of a k-element descending heap. When that clement is deleted, the remain-
ing k - I elements in positions I through k - 1 must be redistributed into positions
0 through k - 2 so that the resulting array segment from dpqlO] through dpq[k - 21remains a descending heap. Let adjustheap(rooz.k) be the operation of rearranging the
elements dpq[rooz + I] through dpq[kJ into dpqlroot] through dpq[k - I] so that sub-
tree(mo,,k - I) forms a descending heap. Then pq?na.xde/ete(dpq,k) for a k-element
descending heap can be implemented by

P dpq[O);
adjustheap(o,k 	 1);
rettq'n(p);

In a descending heap, not only is the root element the largest element in the
tree, but an element in an y position p must be the largest element in .cubtreepk).Nov, subu-eep,ki consists of three groups of elements: its root. dpq lpj : its left sub-tree, sub:ree(2 * p + I. k); and its right subtree, .cubiree(2 * p + 2, k). dpq[2 * p + 1],
the left son of the root, is the largest element of the left subtree. and dpq[2 * p + 2, the
right son of the root, is the largest element of the right subtree. When the root dpq[p] is
deleted, the larger of these two Sons must move up to take its place as the new largest
element of suhtree(,p,k). Then the subtree rooted at the position of the larger element
moved up must be readjusted in turn.

Let us define largesoni, n) as the larger son of dpqlpj within subtree(p, ,n). Itmay be implemented as

5 2 * p + 1;
if (S + 1 < a && x(s) < x[s + 1])

S	 S + 1;
/* check if out of bounds J
if(s>m)

return(-1);
else

return(s);

Then udjustheap(root, k) may be implemented recursively by

f = root;
S	 largeson(f, k - 1);
if (s	 0 && dpq[k] < dpq{s)) {

dpq[f]	 dpq[s];
adjusrheap(s, k);

else
dpq[fj	 dpq[k);
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The following is an iterative version of wIiusthea. The alorithni uses it
 variable kva!ue to hold the value (if dpqtkl:

f root;
kvalue - dpq(k);
s	 7argeson(f, k - 1);
,.n1e (s > 0 && kvalue . dpq[s])

dpq(f)	 dpqs);
f=
S	 largeson(f, k - 1);

doq[f) = kvalue;

Note that we traverse a path of the tree from the root toward a leaf, shiftin g up
by one position all elements in the path greater than dpq lkl and inscrtinV dpqjkl in its
proper position in the path. Again, the shifting is necessary because we are using the
sequential representation rather than a linked implementation of the tree. The adjust-
ment procedure is often called the .cifidon'i opetation because dpqk I sifts its way from
the root down the tree.

This heap deletion algorithm is also O(Iog ,l). since [here are log it I levels
in the tree and at most two nodes are accessed at each level. However, the overhead of
shifting and Computing lar'eso,i is significant.

Sorting Using a Heap

Heapsort is simpIN an implementation of the general selection Sort using the input
array x as a heap representing a descending priority queue. The preprocessing phase
Creates a heap of size n using the siftup operation, and the selection phase redistributes
the elements of the heap in order as it ucletes elements from the priorit y queue using the
siftdown operation. In both phases the loops need not include the case whcre i equals
0. since x10 1 is already a one-element priority queue and the arra y is sorted once rI I
through xln - 11 are in proper position.

f Create the priority queue; before each loop iteration
/ the priority queue consists of elements 40) through
/ x(i- 1]. Each iteration adds 4f) to the Queue.
for1; i<n; ++)

pqinsert(x, 1, x[iJ);
/ select each successive element in order
for (i - n - i; i>O; i--)

x[fl m pqsnade1ere(x, i + 1);

Figure 6.3.3 illustrates the creation of a heap of size 8 from the original file

25 57 48 37 12 92 86 33

The dotted hoc, in that [leure indicate an element heine sliiflcd dwn the tree.
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A
25 48

7

Figure 6.33• Creating a heap of size 8.

Figure 6.3.4 illustrates the adjustment of the heap as xlOJ is repeatedl y selected
and placed into its proper position in the array and the heap is readjusted, until all the
heap elements are processed. Note that after an element has been deletd" from the
heap, it remains in the artay; it is merely ignored in subsequent processing.
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X10)

(C) 46]: = pqinaxaele:e (x, 7)

Figure 6.3.4 A0justing a heap.
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(a) Original tree. (0) 471 = pqrnuxo.'le,e (x. 8

(a) 451: = pqmuxaele:e (x, 6) (e) 441 = pqmxae/rie (x. 5)



(g)x(3) 

(f)r141 - pq..xdrl,) (x, 4)

xiii

AIX16 I

(h) x(2 - pq	 thklr x, 2). TM array i aorld.

Figure 6.3.4 (cont.)

H..psort Procedure

We now present a heapsort procedure with all subprocedures (pqinsert, pq-
nwxde!e:e. cidjustheap. and kirgeson) expanded in-line and integrated for maximal
efficiency.

void heapsort (mt x[3, mt n)

hit 1, elt, s, f, ivalue;
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1* preprocessing phase; create initial heap V
for (in 1; ic n; i++) {

elt =
1* pqinsert(x, 1, elt) *1
$
f
while (S ' 0 && x[f] < elt) {

x[s] = x[fJ;
S = f;
f	 (s-1)/2;

} / end while V
x[s]	 elt;
/ end for *1

/* selection phase; repeatedly remove [0), insert it *1
/	 in its proper position and adjust the heap 	 */
for (i n-i; I > 0; i--)

/ pgmaxdelete(x, i+1)
ivalue
x{i) =
f =0;
/ s = largeson (0, i-i) V
if (i == 1)

S

else
S	 1;

if (i > 2 && x[2) > X[i])

s = 2;
while (s >= 0 && ivalue 	 s[s]) {

x[f]	 x[sJ;
f
/ $	 largeson(f, i-i) */
s	 2*f+1;
if (5+1	 i-i && x{s) < [5+11)

s=s+1;
if(s>i-1)

S = - 1;
} 1* end while */
X[f] = ivalue;

end for
} / end heapsort tl

To analyze the heapsort, note that a complete binary tree with n nodes (where ii is
one less than a power of two) has log (n + I) levels. Thus if each element in the array
were a leaf, requiring it to be filtered through the entire tree both while creating and
adjusting the heap, the sort would still be O(n log n).

In the average case the heapsort is not as efficient as the quicksort. Experiments
indicate that heapsort requires twice as much time as quicksort for randoml y sorted
input. However, heapsort is far superior to quicksort in the worst case. In fact. heapsort
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remains O(n log it) in the worst case. Heapson is also not very efficient for small a be-
cause of the overhead of initial heap creation and Computation of the location of fathers
and sons.	 -

The space requirement for the heapsort (aside from array indices) is only one ad-
ditional record to hold the temporary for switching, provided the array implementation
of an almost complete binary tree is used.

EXERCISES

6.3.1. Explain why the straight selection son is more efficient than the bubble son.
6.3.2. Consider the following quadratic selection sort: Divide the,, elements of the file into

groups of elements each. Find the largest element of each group and insert it
into an auxiliary array. Find the largest of the elements in this auxiliary array. This is
the largest element of the tile. Then replace this element in the array by the next largest
element of the group from which it came. Again find the largest element of the auxiliary
array. This is the second largest element of the file. Repeat the process until the tile has
been sorted. Write a C routine to implement a quadratic selection sort as efficiently as
possible.

63.3. A tournament is an almôSt-emplete strictly binary tree in which each nonleaf contains
the larger of the two eIementsIuit',wo Sons. Thus the contents of a tournament's leaves
completely determine the contenis of all its nodes. A tournament with it leaves represents
a set of 17 elements.
(a) Develop an algorithm pqinseri(i, it. eli) to add a new element ci, to a tournament

containing it 	 represented implicitly by an array,.
(b) Develop an algorithm ptpnaxde!ere(r.n) to delete the maximum element from a

tournament with n elements by replacing the leatcontaining the maximum element
with a dummy value smaller than any possible element (for example, - I in a
tournament of nonnegative integers) and then readjusting all values in the path
from that leaf to the root.

(c) Show how to simplify pqmaxdelete•by maintaining a pointer to a leaf in each non-
leaf info field, rather than an actual element value.

(d) Write a C program to implement a selection sort using a tournament. The prepro-
cessing phase builds the initial tournament from the array x and the selection phase
applies pqnzci.rdelere repeatedly. Such a sort is called a tournament sort.

(e) How does the efficiency of the tournament son compare with that of the hei*psurr?
(1) Prove that the tournament sort is O(,, log n) for all input.

6.3.4. Define an almost complete ternary tree as a tree in Which every node has at most three
sons, and in which the nodes can be numbered horn (ito it - I. so mat the sons of not/eli]
are node[3 i + I]. ,uidel3 • i -s 2], and node[3 i + 31. Define a ternary heap its
almost complete ternary tree in which the Content of each node is greater than or equal to
the contents of all its descendants. Write a sorting routine similar to the heapsort using
a ternary heap.

6,3.5. Write a routine ci.nssb jfle(x) that accepts an array x in which the subirees tooted at ti I]
d .v[2] are heaps and that modifies the array x so that it represents a single hiCIh).

6.3.6. Rewrite the program of Section 5.3 that implements the Huffman ulorjjl,rn so that the
set of root nodes forma priority queue implemented by an ascending heap.
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63.7. Write a C program that uses an ascending heap to merge n input fiIe, each coned in
ascending order. into a single output file. Each node of the heap contains aille number-
and a value. The value serves as the key by which the heap is organized. Initially, one
value is read from each file, and the it values are formed into an ascending heap. with
the file number from which each value came kept together with that value in a node.
The smallest value is then in the root of the heap and it is the output, with the nest value
of its associated file input to lake its place. That value, together with its associated file
number, is sifted down to find its proper place in the heap, and the new root value is
output. This process oLoutput/input/siftdown is repeated until no inni" —mains.

6.3.8. Develop an algorithm using a heap of k elements to find the largest k numbers in a large,
unsorted file of n numbers.

6.4 INSERTION SORTS

Simple Insertion

An insertion sort is one that sorts a set of records by inserting records into an
existing sorted file. An example of a simple insertion sort is the following procedure:

void insertsort(int x[], mt n)

mt i, k, y;

1* initially x[O) may be thought of as a sorted file of *1
/ one element. After each repetition of the following *1
/ loop, the elements x[O] through x[k] are in order.	 */
for (k1; k< n; k++) {

f* Insert x(k) into the sorted file */
y-x[k];
/* Move do.tn 1 position all elements greater than y
for (i	 k1 i > 0 && y < x [ i ); 1--)

x(i+i)
/ Insert y at proper position *1
x [i+i] . y;

/* end for
} / end insertsort

As we noted at the beginning of Section 6.3, the simple insertion sort may be viewed
as a general selection sort in which the priority queue is implemented as an ordered
array. Only the preprocessing phase of inserting the elements into the priority queue
is necessary; once the elements have been inserted, they are already sorted, so that no
selection is necessary.

If the initial file is sorted, only one comparison is made on each pass. so that the
sort is 0(n). If the file is initially sorted in the reverse order, the sort is 0(n2 ). since the
total number of comparisons is 	 -

(n—l)+(n-2)+"+3+2+l=(n--1)*n.'2.
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which is 002 ). However, the simple insertion sort is still usually better than the bubble
sort. The closer the file is to sorted order, the more efficient the simple insertion sort -be-
comes. The average number of comparisons in the simple insertion son (by considering
all possible permutations of the input array) is also 0(n 2 ). The space requirements for
the sort consist of only one temporary variable, y.

The speed of the sort can he improved somewhat by using a binary search
(see Sections 3.1, 3.2. and 7.1) to find the proper position for x[k] in the sorted tile401.....4k - 11 . This reduces the total number of comparisons from 0(n2 ) to0(n log it). However, even if the correct position i for x[k] is found in O(log n) steps,each of the elements .41 + lJ......4k - 1) must he moved one position. This latter oper-
ation performed it times requires 0(n2 ) replacements. Unfortunately, the binary search
technique does riot, therefore, significantly improve the overall tmc requirements of
the SW-I.

Another Improvement to the simple insertion sort can be made by using list inser-tion, In this method there is an arra y link of pointers, one for each of the original array
elements Initially ljiikj] = i I for 0 <= I < ii - I and link[,, - I] = —I Thus thearray may be thought of as a linear list pointed to b y .an external pointerfirst initialized
to 0. To insert the kth element the linked list is traversed until the proper position for
.v[kI is found, or until the end of the list is reached. At that point x[k] can be inserted into
the list by merely adjusting the list pointers without shifting any elements in the array.
This reduces the time required for insertion but not the time required for searching for
the proper position. The space requirements are also increased because of the extra link
array. The number of comparisons is still 0(n2 ), although the number of replacements
in the link array is 0(n). The list insertion sort may be viewed as a general selection
sort in which the priority queue is represented by an ordered list. Again, no selection is
needed because the elements are sorted as soon as the preprocessing, insertion phase is
complete. You are asked to code both the binary insertion sort and the list insertion sort
as exercises.

Both the straight selection sort and the simple insertion sort are more efficient
than bubble sort. Selection sort requires fewer assignments than insertion sort but more
comparisons. Thus selection sort is recommended for small files when records are large,
so the assignment is inexpensive, but keys are simple. so that comparison is cheap. If
the reverse situation holds, insertion sort is recommended If the input is initiall y in a
linked list, list insertion is recommended even if the records are large, since no data
movement (as opposed to pointer modification) is required.

Of course. heapsort and quicksort are both more efficient than insertion or selec-
tion for large n. The break even point is approximately 20-30 for quicksort; for fewer
than 30 elements use insertion sort: for more than 30 use quicksort. A useful speedup of
quicksort uses insertion sort on any subtile of size less than 20. For heapsort, the break
even point with insertion sort is approximately 60-70.

Shell Sort

More si gnificant improvement on simple insertion sort than binary or list insertion
can he achieved bN usin g the Shell sort (or diminishing increment sort), named after
its discoverer. This method sot-is separate suhfiks of the original file. These suhfiles
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contain every kill 	 of the original file. The value of k is called an increment.
For example, jfk is 5, the süblile consisting of 40J.45], x) 101. is first sorted. Five
suhfile.s. each containing one fifth of the elements of the original file are sorted in this
manner. These are (reading across)

Subtile I	 - >	 40)	 451	 4101
Suhhle2	 ->	 xlii	 461	 X1 11)
Suhfile3	 •->	 421	 471	 4121
SuhfiIc4	 —>	 431	 48]	 413)
SublikS	 ->	 441	 X1 91	 414)

The ith elemerñ of the jth suhflle is 4(1	 I; * 5 ± j - I]. It a different increment k is
chosen, the k suhfjles are divided so that tile ith element of the fib subtile is xfii - I i*
kj - ij.

Alter the first k subfiles are sorted (usuall y by simple insertion). a new smaller
value of k is chosen and the file is again partitioned into a new set of siihfiles. Each
of these larger subtijes is sorted and the process is repeated yet again with an even
smaller value of k. Eventually, the value of k is set to I so that the subfile consisting of
the entire file is sorted. A decreasing sequence of increments is fixed at the start of the
entire process. The last value in this sequence must be 1.

For example, if the original file is

25 57 48 37 12 92 86 33

and the sequence (53, 1) is chosen, the following subflles are sorted on each iteration:
First iteration (increment	 5)

(40]. xIS))
(41]. 46))
(42],47J

(431;
(44))

Second iteration (increment = 3)

(x[0], x[31, x(6))

( x l i ), x(41, x(71)
(x(2]. x[5])

Third iteration (increment = I)

(X[01. X[ Ii, 421, .*[3]. x[4j, 45). x16]. x[71)

Figure 6.4.1 illustrates the Shell sort on this sample file. The lines underneath
each arravjoin individual elements of the separate subfiles. Each ofthc suhfiles is sorted
using the simple insertion sort.

We present below a routine to implement the Shell sort. In addition to the standard
parametersx and n. it requires an array incrmnrs. containine the diminishine increments
of the sort, and nun;jnc. the number of elements in the arra y i,,cnnnrc
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Odgln.l	 25	 57-	 48	 37	 12	 92	 86	 33

file

	

P.,.1	 25	 57	 48	 3'	 12	 92	 86	 33

n_5 I
•	 I	 I

	

PM 	 25	 57	 33	 37	 12	 92	 86	 48$	 I	 I
I	 I	 I

•	 I	 I

	

Pus 3	 25	 12	 33	 37	 48	 02	 86	 57

	

pan . I 	 I	 I	 I	 I	 I	 I	 I	 I

	

Soiled	 12	 25	 33 - 37	 48	 57	 86	 92
file

FIgure 6.4.1

void shellsort(int xfl mt n, mt incrmnts(], mt numinc)

mt incr, j, k, span, y;

	

for (incr	 0; incr < numinc; incr++)
/	 span is the size of the increment
span	 incrants[incr];

	

for (i	 span; j < n; j++) {
/ Insert element x[j] into its proper *1
/ position within its subfile
y	 x[j];

	

for (k = i-span: k >= 0 && y 	 x[k]; k - span)
x[k+s panj	 x[k);

	

x(k+soan]	 y;
}. / end for

LP end for /
1 /* end shellsort

Be sure that you can trace the actions of this program on the sample file of Figure
6.4.1. Notice that on the last iteration, where span equals I, the sort reduces to a simple

insertion.	 -
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The idea behind the Shell sort is a simple one. We have already noted that the
simple insertion sort is highly efficient on a file that is in almost sorted order. It is also
important to realize that when the file size n is small, an 0(,2) sort is often more efficientthan an O(n log n) sort. The reason for this is that 0(i2 ) sorts are generally quite simple
to program and involve very few actions other than comparisons and replacements on
each pass. Because of this low overhead, the constant of proponionalit ' is rather small.An O(n log n) sort is generally quite complex and employs it large number of extra
operations on each pass in order to reduce the work of subsequent passes. Thus its
constant of Proportionalit y is larger. When n is large, n 2 overwhelms n*log (a). so that
the constants of proportionality do not pl;tv a major role, in determining the faster sort.
However, when a is small. 11 2 is not much larger than nlog (H), so that a large difference
in those constants often causes an 0(n2 ) sort to be faster.

Since the first increment used by the Shell sort is large, the individual suhflles are
quite small, so that the simple insert on sorts on those subliks are fairl y fast. Each sort of
a subfile causes the entire file to he more nearly sorted. Thus. although s'.'ccessjvc passes
of the Shell sort use smaller increments and therefore deal with larger suhfiles, those
subflles are almost sorted due to the actions of previous pa s. Thus, the insertion sorts
on those subfiles are also quite efficient. In this connection, it is significant to note that if
a file is partiall y sorted using an increment k and is subseq uently partially sorted using
an incrementj the file remains partiall y sorted on the increment k. That is. subsequentpartial sorts do not disturb earlier ones.

The efficiency analysis of the Shell sort is mathematically involved and be yond
the scope of this book. The actual time requirements for a specific sort depend on the
number of elements in the array incr,nnf c and on their actual values One requirement
that is intuitively clear is that the elements of incrpnnt.s should be relatively prime (that
is, have no common divisors other than i). This guarantees that successive iterations
intermingle subfiles so that the entire file is indeed almost sorted when span equals Ion the last iteration.

It has been shown that the order of the Shell sort can he approximated byO(n(log a)2 ) if an appropriate sequence of increments is used. For other series of
increments, the running time can be proven to he On'-. Empirical data indicates that
the running time is of the form a * n', where a is between 1,1 and 1.7 and his approxi-
mately  1.26, or of the form c * n * (In(n))2 - d * a ' In(n), where c is approximatel y 0.3and d is between 1.2 and 1,75. In general the Shell sort is recommended for moderately
sized files of several hundred elements.

Knuth recommends choosing increments as follows: define a function Ii recur-sively so that Ii(l) = I and h(i + 1) = 3 " h(i) + 1. Lets be the smallest integer suchthat h(x)	 a. and set nu,n Inc. the number of increments to x - 2 and Incrntnts[j] toh(nun,jc - i + 1) for i from I to nu,ninc.
A technique similar to the Shell sort can also be used to improve the bubble sort.

In practice, a major source of the bubble sort's inefficiency is not the number of com-
parisons but the number of interchanges, if a series of increments are used to define
suhfijes to be bubble sorted individually as in the case of the Shell sort, the initial bub-
ble sorts are on small files and the later ones are on more nearly, sorted files in which
few interchanges are necessary. This modified bubble sort, which requires very little
overhead, works well in practical situations.
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Address Calculation Sort

As a final example of sorting by insertion, consider the following technique called

sorting by address cakulali.on (sometimes called sorting by hashing). In this method

a function  is applied to each key. The result of this function determines into which
of several subfiles the record is to be placed. The function should have the property

that if x ts y,f(x) f(y). Such a function is called order-preserving. Thus all of the

records in one subflle will have keys that are less than or equal to the keys of the records
in another subtile. An item is placed into a subtile in correct sequence by using any
sorting method; simple insertion is often used. After all the items of the original file
have been placed into suhfiles, the subfiles may be concatenated to produce the sorted

result.
For example, consider again the sample file

25 57 48 37 12 92 86 33

Let us create ten subflles. one for each of the ten possible first digits. Initially, each of

these subfiles is empty. An array of pointers f[ 101 is declared, where f[il points to the

first element in the file whose first digit is i. After scanning the first element (25) it is

placed into the file headed bvfI2l. Each of the subflles is maintained as a sorted linked
list of the original array elements. After processing each of the elements in the original

file, the subfiles appear as in Figure 6.4.2.
We present a routine to implement the address calculation sort. The routine as-

sumes an array of two-digit numbers and uses the first digit of each number to assign

that number to a subfile.

*define NUMELTS

addr(int x[), mt o)

mt f[101. first, ', i, p , Y;
struct {	 -

mt info;	 II1

mt next;	 ,mji 'r	 .
} node[NUMELTS]; 	. 	 ,t

/ Initialize available linked list */	
.-Tht'd	 1 .	 b\v

mt avail	 0;	
LIHtA

for (iO;i<fl-1; i)
node[ i ) .next	 i+1;

node[n -1] .next
/ Initialize pointers /	 .	 II t	 inu jJ flI!.	 A

for (i w 0; i< 10; i++)	 .	 11

'.t

for (1	 0; j < n; i++) {	 •> ic	 m
We successively insert each element into its *1

/. respective subfile using list insertion.
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F(0) • null
,-,•..	 _.1	 C-q	 LU :41J	 1
A	 ..;	 'il I 1 n,	 . iib kniiio ,i Ii

F(l)	 a-	 12	 null	 IL / e. k	 M ri'd •siuw ro	 lOrt ?
i dl	 T

	

_________	 qql	 nornh im
F(2)	 [_	 I	 I	 .Iiiintx;iq. i

M)	 33

)nrrr' 1bf

IIIIIII1IIIIII1-••-'- I 	
"u"	 •hJ 110

F(4)	 null

F(S)	
(	

57 j null

F(6) = null

F(7) w null

F(S)	 1-	 86	 null

F(9)	 92	 null

1^r 
in 

$[!'I uii	 ..	 -
i) iti	 ol	 rl.-

) .ttfi III t'(jth '	 ) ii

Figure 6.4.2 Address calculation sort.
I

y -

first = y/10; / Find the 1st digit of a two di git number
/ Search the linked list

place (&f[first], y);

/ place inserts y into its proper position 'I

/ in the linked list pointed to by f[first]
}/endfor*f

/* Copy numbers back into the array x	 V

for	 = 0; ) < 10; )++) (
	 . 

p -
while (p != -1) {	 .	 CtJI) j 'ii ii

= node [p] .info;	 .F, J. .
p	 node[p].next;

} 
/* end while

/ end for V
} / end addr /
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The space requirements of the address calculation sort are approximately 2 n
(used by the array node) plus some header nodes and temporary variables. Note that if
the original data is given in the form of a linked list rather than as a sequential array, it
is not necessary to maintain both the array x and the linked structure node.

To evaluate the time requirements for the sort, note the following: If the n origi-
nal elements are approximately uniformly distributed over the rn subflles and the value
of n/rn is approximately 1, the time of the sort is nearly 0(n), since the function as-
signs each element to its proper file and little extra work is required to place the el-
ement within the subfile itself. On the other hand, if n/rn is much larger than I, or if
the original file is net uniforml y distributed over the m subfiles, significant work is
required to insert an element into its proper suhfile, and the time is therefore closer
to O(nL

EXERCISES

6.4.1. The two-way insertion sort is a modification of the simple insertion sort as follows: A
separate output array of size n is set aside. This output array acts as a circular structure
as in Section 4.1. xl01 is placed into the middle element of the array. Once a contiguous
group of elements are in the array, room for a new element is made by shifting all smaller
elements one step to the left or all larger elements one step to the right. The choice of
which shift to perform depends on which would cause the smallest amount of shifting.
Write a C routine to implement this technique.

6.4.2. The merge insertion sort proceeds as follows:

Step I: For all even i between 0 and n - 2. compare x(i] with 41 ± I]. Place the larger in
the next position of an array large and the smaller in the next position of an array small.
If it odd, place xln - I I in the last position of the array small. (Large is of size md,
where md = (n - 1)12; small is of size md or md + I. depending on whether n is even
or odd.)
Step 2: Sort the arra y large using merge insertion recursively. Whenever an element
largetj] is moved to /argelk), smallLjl is also moved to .cmall(k). (At the end of this step,
largei1 <= !arge[i + II for all i less than md. and smali[i) <= !argetil4or all i less
than or equal to md.
Step 3: Copy small[0] and all the elements of large into x[0] thorough xlind].
Step 4: Define the integer numli) as (2' + (—I) i )/3. Beginning with i = 0 and pro-
ceeding by I while num[i] <= (n/2) + I. insert the elements .cmalltnum[i + I]) down
to snallnum[i] + I] into x in turn, using binary insertion. (For example, if n = 20,
the successive values of nun: are num[O] = 1, nun:[ I] I. nwn[21 3, num[3] = 5.
and nurn[4] = II, which equals (n/2) + I Thus the elements of sinail are inserted in
the following order: sinaI/I 21. sniall[ I): then .c,nai/[4], srnai!131: then .crnalit9), srnall(8],
.c:naliE71. .cmali[6]. smallI5l. In this example, there is no small[ 101.)

Write a C rowine in implement this technique.
6.43. Modify the quickson of Section 6.2 so that it uses a simple insertion sort when a subfile

is below some size c. Determine by experiments what value of s should be used for
maximum efficiency.
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6.4.4.. Prove that if a file is partially sorted using an increment) in the Shell son, it remains
partially sorted on that increment even after it is partially sorted on another incre-
ment. k.

6.4.5. Explain why it is desirable to choose all the increments of the Shell sort so that they are
relatively prime.

6.4.6. What is the number of comparisons and interchanges (in terms of file size n) performed
by each of the following sorting methods (a—j) for the following tiles:
1. A sorted file
2. A file that is sorted in reverse order (that is. from largest to smallest)
3. A file in which the elements 40]. 421, x14).... are the smallest elements and are in

sorted order, and in which the elements 411, 431, x(5).. are the largest elements
and are in reverse sorted order (that i. 40] is the smallest. .41) is the largest, ti?)
is next to smallest. 1 3 1 is the next to the largest, and so on)

4. A file in which 40) through x{indj (where md (n - 1)/2) are the smallest el-
ements and are sorted, and in which xImnd + I) through .4n - I) are the largest
elements and are in reverse sorted order

5. A file in which .401. 421, x[41,... are the smallest elements in sorted order, and in
which 411.43). 451,..- are the largest elements in sorted order

(a) Simple insertion sort
(b) Insertion sort using a binary search
(C) List insertion sort
W Two-way insertion son of Exercise 6.4.1
(e) Merge insertion sort of Exercise 6.4.2
(1) Shell sort using increments 2 and I
(g) Shell sort using increments 3, 2, and I
(Ii) Shell sort using increments 8, 4. 2, and I
(I) Shell sort using Increments 7.5,3. and I
U) Address calculation sort presented in the text

6.4.7. Under what circumstances would you recommend the use of each of the following sorts
over the others?
(a) Shell sort of this Section
(b) Heapsort of Section 6.3
(c) Quicksot's of Section 6.2

6.4.8. Determine which of the following sorts is most efficient.
(a) Simple insertion sort of this section
(b) Straight selection sort of Section 6.3
(c) Bubble sort of Section 6.2

6.5 MERGE AND RADIX SORTS

Merge Suns

Merging is the process of combining two or more sorted tiles into a third sorted
file. An example of a routine that-accepts two sorted arra ys a and b of nl and ,,2 ele-
ments, respectivel y, and merges them into a third array c containing :3 elements is the
following:
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void mergearr(int a(), inLb[), mt c[], tnt ni, mt nZ, mt n3)

irit apoint, bpoint, cpoint;
mt alimit, blimit, climit;

alimit ni-1;
blimit - n2-1;
cliiint - n3-1;
if (ni + n2	 n3) {

printf('array bounds incompatible/n")
exit(i)

} / end if
/ apoint and bpoint are indicators of hOw far
/ we are in arrays a and b respectively.	 *1
apoint	 0;
bpoint	 0;
for (cpoint	 0; apoint < alimit && bpoint <- blimit; cpoint++)

if (a [apo int] < bbpointJ)
c[cpoi nt]	 a[apoint++];

else
c[cpo nt] = b(bpoint++);

while (apoint <= alimit)
c[cpoi nt++3 = atapoint++1;

while (bpoint <= blimit)
c[cpoint++]	 b[bpoint++];

} /I end mergearr V

We can use this technique to sort a tile in the following way. Divide the file into
n subfiles of size 1 and merge adjacent (disjoint) pairs of flies. We then have approxi-
mately n12 files of size 2. Repeat this process until there is only one file remaining of size
n. Figure 6.5.1 illustrates how this process operates on a sample file. Each individual
file is contained in brackets.

We present a routine to implement the foregoing description of a straight merge
sort. An auxiliary array au.x of size n is required to hold the results of merging two
subarrays of x. The variable size contains the size of the subarrays being merged. Since
at any time the two files being merged are both subairays of x, lower and upper bounds
are required to indicate the subfiles of x being merged. 11 and Ul represent the lower
and upper bounds of the first file, and 12 and u2 represent the lower and upper bounds
of the second file, respectively. i andj are used to reference elements of the source files
being merged, and k indexes the destination file aux. The routine follows:

#define NIJMELTS

void mergesort(int x [], mt n)

mt aux[NIJMELTS], i, j, k, 11, 12, size, Ui, u2;

314	
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Figure 6.5.1 Successive passes of the merge sort.	 IS ri
•.ffl!d,

!!	 rrt

size = 1; / Merge files of size I V	 1 't

mollwhile (size < n)	 ti i moll
11	 0;	 / Initialize lower bounds of first file *1
k	 0;	 / k is index for auxiliary array.
while (11+size < n) {	 /* Check to see if there

/ are two files to merge / 'Ai g ljlvf)#1

/ Compute remaining indices *1
12	 11*size;	 1rt3nt
ul = 12-1;	

,1T
U2 = (12+size-1 < n) ? 12+sjze-].	 n-i;
/ Proceed through the two subfiles
for (i =11, j =12; i <=ui&&j <- u2; k-i.+)

/ Enter smaller-into the array aux
if (x[]

aux[k]	 x[i++];
else	 •.riILL-L

aux[k]	 x[j++];
/ At this point, one of the subfiles	 *1	 .t-.jbnt'i1! •i
/I has been exhausted. Insert any	 V	 ij 1 (iit	 u"1
/ remaining portions of the other file

	

for C; i <= Ui; k++)	 - -	 ;U(tJt
aux[k]	 x[i++);

	

for (; j <= u2; k++)	
,.

aux[k] = x[j++);
/* Advance 11 to the start of the next pair of files. V

I 7 end while */

Original

file

Pass

Pass

Pass
3
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/I Copy any remaining single We
for (i - 11; k < n; i++)

aux[k+ .]' -
/ Copy aux into x and adjust size
for (1 - 0; 1	 n; i,+)

x[i]	 aux[fl;
size	 2;

} / end wiile
} 1 end mergesorr

There is one deficiency in the foregoing procedure that is easily remedied if the
program is to be practical for sorting large arrays. instead of merging each set of files
into the auxiliary array aux and then recopying the array aux into x, alternate merges
can be performed from x to aux and from aux to x. We leave this modification as an
exercise for the reader.

There are obviousl y no more than 1092 n passes in merge sort, each involving n or
fewer comparisons. Thus, mergesort requires no more than n 1092 n comparisons, in
fact. can be shown that mergesort requires fewer than n * log2 n - ii + I comparisons,
on the average, compared with 1.386 n * log 2 n average comparisons for quicksort. In
addition, quicksort can require O(n 2 ) comparisons in the worst case, whereas mergesort
never reuires more than n Iog2 n. However, mergesort does require approxinuely
twice as many assignments as qwcksort on the average, even if alternating merges go
from ,x to aia and from aux to x.

Mergesort also requires 0(n) additional space for the auxiliary array, whereas
quicksors requires only 0(log n) additional space for the stack. An algorithm has been
developed for an in-place merge of two sorted subai-rays in 0(n) time. This algorithm
would allow mergesort to become an in-place 0(n log n) sort. However, that technique
does require a great deal many more assignments and would thus not be as practical as
finding the 0(n) extra space.

There are two modifications of the foregoing procedure that can result in more ef-
ficient sorting. The first of these is the natural merge. In the straight merge. the tiles are
all the same size (except perhaps for the last file). We can, however, exploit any order
that may already exist among the elements and let the subfiles be defined as the longest
subarrays of incteasing elements. You are asked to code such a routine as an exercise.

The second modification uses linked allocation instead of sequential allocation.
By adding a single pointer field to each record, the need for the second array aux can be
eliminated. This can be done by explicitly linking together each input and output sub-
file. The modification can be applied to both the straight merge and the natural merge.
You are asked to implement these in the exercises.

Note that using mergesort on a linked list eliminates both of its drawbacks relative
to quicksors: It no longer requires significant additional space and does not require sig-
nificant data element movement. Generally, data elements can be large and complex, so
that assignment of data elements requires more work than the reassignment of pointers
that is still required by a list-based mergesort.

Mergesort can also be presented quite naturally as a recursive process in which
the two halves of the array are first recursively sorted using mergesorm and, 011cc sorted.
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are joined by merging. For details, see Exercises 6.5.1 and 6.5.2. Both mergesort and
quicksort are methods that involve splitting the file into two parts, sorting the two parts
separately, and then joining the two sorted halves together. In mergesort, the splitting is
trivial (simpl y taking two halves) and thejoining is hard (merging the two sorted files).
In quicksort, the splitting is hard (partitioning) and the joining is trivial (the two halves
and the pivot automatically form a sorted array).

Insertion sort may be considered a special case of mergeson in which the two
halves consist of a single element and the remainder of the array. Selection sort may
be considered a special case of quicksort in which the file is partitioned into one half
consisting of the largest element alone and a second half consisting of the remainder of
the array.

The Cook—Kim Algorithm

Frequently, it is known that a file is almost sorted with only a few elements out of
order Or it may be known that an input file is likely to be sorted. For small files that are
very nearly sorted or for sorted files, simple insertion is the fastest sort (considering both
comparisons and assignments) that we have encountered. For large files or files that are
slightly less sorted, quicksort using the middle element as pivot is fastest. (Considering
only comparisons, mergesort is fastest.) However, another hybrid algorithm discovered
by Cook and Kim is faster -ban both insertion sort and middle-element quicksort for
nearly sorted input.

The Cook—Kim algorithm operates as follows: The input is examined for un-
ordered pairs of elements (for example, 4k] > 4k + I]). The two elements in an
unordered pair are removed and added to the end of a new array. The next pair ex-
amined after an unordered pair is removed consists of the predecessor and successor
of the removed pair. The original array, with the unordered pairs removed, is now in
sorted order. The array of unordered pairs is then sorted using middle-element quicksort
if it contains more than 30 elements, and simple insertion otherwise. The two arrays are
then merged.

The Cook—Kim algorithm takes more advantage of the sortedness of the input than
any other sorts and is significantly better than middle-element quicksort, insertion sort,
merge sort. or &ort on nearly sorted input. However, for randomly ordered input, Cook—
Kim is less efficient than Bsort (and certainly than quicksort or merge sort). Middle-
element quicksort, merge sort, or Bsort is therefore preferable when large sorted input
files are likely but good random-input behavior is also required.

Radix Sort

The next sorting method that we consider is called the radix sort. This sort is
based on the values of the actual digits in the positional representations of the numbers
being sorted. For example, the number 235 in decimal notation is written with a 2 in the
hundreds position, 13 in the tens position, and a  in the units position. The larger of two
such integers of equal length can be determined as follows'. Start at the most-significant
digit and advance through the least-significant digits as long as the corresponding digits
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in the two numbers match. The number with the larger digit in the first position in which
the digits of the two numbers do not match is the larger of the two numbers. Of course,
if all the digits of both numbers match, the numbers are equal.

We can write a sorting routine based on the foregoing method. Using the decimal
base, for example, the numbers can he partitioned into ten groups based on their most-
significant digit. (For simplicity, we assume that all the numbers have the same number
of digits, by padding with leading zeros, if necessary.) Thus every element in the "0"
group is less than every element in the "I" group, all of whose elements are less than
every element in the "2" group. and so on. We can then sort within the individual groups
based on the next significant digit. We repeat this process until each subgroup has been
subdivided so that the least-significant digits are sorted. At this point the original file
has been sorted. (Note that the division of a subtile into groups with the same digit in a
given position is similar to the partition operation in the quicksort, in which a subtile is
divided into two groups based on comparison with a particular'element.) This method
IS sometimes called the radix-exchange sort; its coding is left as an exercise for the
reader.

Let us now consider an alternative to the foregoing method. It i apparent from
the foregoing discussion that considerable bookkeeping is involved in constantly sub-
dividing files and distributing their contents into subflles based on particular digits. It
would certainly be easier if we could process the entire file as a whole rather than deal
with many individual files.

Suppose that we perform the following actions On the tile for each digit, beginning
with the least-significant digit and ending with the most-significant digit. Take each
number in the order in which it appears in the file and place it into one often queues,
depending on the value of the digit currently being processed. Then restore each queue
to the original file starting with the queue of numbers with a 0 digit and ending with
the queue of numbers with a 9 digit. - When these actions have been performed for each
digit, starting with the least significant ' d ending with the most significant, the file is
sorted. This sorting method is called the radix sort.

Notice that this scheme sorts on the less-significant digits first. Thus when all the
numbers are sorted on a more si gnificant digit, numbers that have the same digit in that
position but different digits in a less-significant position are already sorted on the less-
significant position. This allows processing of the entire file without subdividing the
tiles and keeping track of where each subfile begins and ends. Figure 6.5.2 illustrates
this sort on the sample file

25 57 48 37 12 92 86 33

Be sure that you can follow the actions depicted in the two passes of Figure 6,5.2.
We can therefore outline an al gorithm to sort in the foregoing fashion as follows:

for (k = least significant digit; k <= most significant digit; k+)
for (i=O; i<n; ++){

Y=
j = kth digit of v;
place y at rear of queue[j];
/* end for
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Original We
25	 57	 48	 37

Queues based on lcat significant digit.

Front	 Rear
queue [0]
qui'u,' [I
queui'[2]	 12	 92
qu.'ue[3)	 33
queue [4]
qu 't,il5l	 25
qu 'ue[6)	 86
queu'[71	 57	 37
queue 181	 48
queue 19]

After first pass
12	 92	 33	 25

Queues based on most significant digit.

Front	 Rear

12	 92	 Ho	 33

:tn1.
trli
ri

i HI(

86	 5757	 37	 48

4	 'so!
queue 101	 -

qi.rur ti	 J
queue [3)	 33	 37
queue [4]	 48
queue (5)	 57
queue (61
queue 171
queue (8)	 86
queue 19)	 92

Sorted file: 12	 25	 33	 37	 48	 57	 86	 92

Figure 6.5.2 Illustration of the radix Sort.

for (qu - 0; qu < 10; qu++)
place elements of QlJeue(qu) in next sequential position of x;

/* end for *1

We now present a program to implement the foregoing sort on ,n-digit numbers.
'In order to save a considerable amount of work in processing the queues (especially in
the step where we return the queue elements to the original file) we write the program
using linked allocation. If the initial input to the routine is an array, that input is first
converted into a linear linked list; if the original input is already in linked format, this
step is not necessary and, in fact, space is saved. This is the same Situation as in the
routine add, (address calculation sort) of Section 6.4. As in previous programs, we do
not make any internal calls to routines but rather perform their actions in place.
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ldefine NIJMELTS

void radixsort(int x[J, mt n)

mt front[10], rear[iO);
struct {

mt info;
mt next;

} node[NIJMELTS];
mt exp, first, 1, j , k, p, q, y;

/ Initialize linked list *1
for (i	 0; i < n-i; i++)

node[fl.info	 x[iJ;
node[i:j.next = i+i;

/ end for /
node [ n -1]. i nfo	 x[n-11;
node [ n -1].next = -1;
first	 0;	 / first is the head of me linked list J
for (k=1; k<5; k+) {

7* Assume we have four-digit numbers
for (i=0; i<1O;i++){

/ Initialize queues
rear[i)
front[i]
/ end for

/* Process each element on the list *1
while (first = -1) {

p	 first;
first	 node[first].next;
y	 node[p].info;
/ Extract the kth digit
exp power(10,k-1);	 / raise 10 to (k-1)th power V
j = (Y/exp)%10;
/* Insert y into queuej] V
q	 rear[j];
if (q == -1)

front[j]
else

nodetqJ.next =
rear[j) = p;

7* end while *1
I At this point each record is in its proper queue based on digit k. We now V
/ form a single list from all the queue eements. Find the first element. 	 */
for (j = 0; j < 10 && front[j] 	 -1; j+)

first	 front[jJ;
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/ Link up remaining queues *1
while (j <= 9)	 /* Check if finished

7* Find the next eie.nent /
for (i	 j+1; I . 10 && front[ 	 -1; i+*)

if (i <= 9) {
p = 1;

	

node[ rear [ j J] .next	 front[i];
} I' end if
j = I;

I / end while /
node [ rea r [ p ]] .next	 -1;

7* end for
/ Copy back to original array *7
for (,=0;i<n; i++) (

x[i) = node[first).info;
first = node[frst).next;

/I end for *1
I / end radixsort

The time requirements for the radix sorting method clearly depend on the
number of digits (ni) and the number of elements in the file (n). Since the outer
loop for (k = I; k <= in: k-1-+) is traversed in times (nce for each digit) and
the inner loop i times (once for each element in the file), the sort is approximately
O(rn n). Thus the sort is reasonably efficient if the number of digits in the keys is not
too large. It should be noted, however that many machines have the hardware facilities
to order digits of a number (particularly if they are in binary) much more rapidly than
they can execute a compare of two full keys. Therefore it is not reasonable to com-
pare the O(m * ii) estimate with some of the other results we arrived at in this chapter.
Note also that if the keys are dense (that is. if almost every number that can possi-
bly be a key is actually a key), in approximates log n, so that O(m * n) approximates
O(i, log n). The sort does require space to store pointers to the fronts and rears of the queues
in addition to an extra field in each record to be used as a pointer in the linked lists. If the
numberof digits is large it is sometimes more efficient to sort the file by first applying the
radix sort to the most-significant digits and then using straight insertion on the rearranged
file. In cases where most of the records in the file have differing most-significant digits,
this process eliminates wasteful passes on the least-significant digits.

EXERCISES

6.5.1. Write an algorithm (nra routine r,ze?e(x. IbI. ubl.nb2)that assumes thatx[Ib] I through
.v[ubl] and4u'l..4_ 11 throughx(ub] are sorted and merges the two into4/bl] through
.v[uh).

63.2. Consider the following recursive version of the merge sort that uses the routine merge
of Exercise 6.5.1. It is initilIy called by ,nsori2(x, 0. it - I). Rewrite the routine by
eliminating recursion and simplify ing. How does the resulting routine differ from the
one in the text?
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void msort2(int x[], mt lb, mt ub)

if (lb '= ub) {
mid = (ub4lb)/2;
msort2(x, lb, mid);
msort2(x, mid,1, ub);
mere(x, lb, mid, ub);

} / end if
} / end msort2

6.5.3. Let aOl. 121 he the average number of comparisons necessary to nterge two sorted arrays
of length it and 12. respective)), where the elements of the arrays are chosen at random
from among /I - 12 elements.
(a) What are the values of a(l .0) and a(0,12)?
(b) Show that for 11 > 0 and 12 > 0, a(11.1-2 ) is equal to (111(11 + 120*

(I al/I - I. 12 - (121(11 -f 12*( I - aUl.12 - 1)). (Flint: Express the
average number of einiarisons. its terms of the average number of cornpartsnfls
after the first comparison.)

(c) Show that a( 11.12) equals (1 *12*0) + 12 + 2)/( (I I	 I (/2 .-- 1 1).
d) Verif y the fisrniuia in part c for two arrays, one of si,.c 2 and one of size I.

6.5.4. Consider the followinc method of merging two arrays a and b into c: Perform a binary
search for bIO] in the arra y a. If b!O) is between alit and a)i + I, output at I I through
a(i) to the array e, then output h)O) to the array c. Next perform a binar y search tor hl II
in the suharraya)i ± t )to al/al (where In is the number of elements in the array a) and
repeat the output process. Repeat this procedure for every element of the array b.
(a) Write a C routine to implement this method.
(b) In which cases is this method more efficient than the method of the text? In which

cases is it less efficient?
6.5.5. Consider the following method (called binars merging) of merging isso sorted arrays

a and h into C: Let la and lb he the number of elements of a and 1'. respectively, and
assume that la >= lb. Divide (I lb + I approximately equal suharrays. Compare
b)0) with the smallest element of the second subarrav of a. If hifil is smaller, find aIi]
such that au) <= MO ) <= al l + I] by a binary search in the first suharray, Output
all elements of the first subarray up to and including alit into c, and then outpt" J,r'

into c. Repeat this process with b[ I). h12] ..... Mi). where h[/) is found to be larger ti.u,
the smallest element of the second subarray. Output all remaining elements of the first
subarray and the first element of the second subarray into c. Then compare b[i1 with the
smallest element of the third subarray of a, and so on.
(a) Write a program to implement the binary merge.
(b) Show that if /a = lb. thebinary merge acts like the merge described in the text.
(C) Show that if lb	 1, the binary merge acts like the merge of the previous exercise.

6.5.6. Determine the number of comparisons (as a function of n and nt) that are performed in
merging two ordered files a and 1) of sizes it in, respectivel y, by e;ch of the following
merge methods, on each of the following sets of ordered files;

Merge Methods:
(a) the merge method presented in the text
(b) the merce of Exercise 6.5.4
(C) the binary mer g e of Exercise 6.5.5
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Sets of Files:
a) nI	 11 and 	 <Mi ] < a)i + I] for all

(b) ,n. = It and am) <141)
(c) it	 n and a( n2I <1411< blot) < a)(n/2) + Ii

(d) n = 2 in and a[fl <b)i] < aji ± 11 for all i between 0and ri p - I

(e) o = 2 * ,0 and al in+il<h[hl< ili m +I+ ll for all i between (m0	 I

(rI	 2,n and al2 * i1<hl1)<c1l2* i	 kir ll I be t ween 0 andm	 I

(g) in	 I and h)0)	 at" 21

(h) in	 I and 1401 < a)O]
(i) in	 I and a)n) < 140)

Generate two random sorted tiles of sic 100 and melge them by each ol the methods of
the previous eSercise, keeping track of the number at comparison.. made. Do the same
for two files of size 10 and two files of si,.e 10(X). Repeat the experiment ten times. What
do the results indicate about the average efficiency of the merge methods!
Write a routine that Sorts a file by first applying the radix sort to the most s

i gnificaat r

digits (where r is a given constant) and then uses straight insertion to sun the entire tile.
This eliminates excessive passes on low-order digits that may not be necessary.

Write a program that prints all sets of six positive integers al, a2, a3, a4, a5. and u6

such that
al <= a2 < a3 < 20

al <a4 < a5 < af' < 20

and the sum of the squares of al. a2. and a3 equals the sum of the squares of 
o4, a5,

and ab. (Hint: Generate all possible sums of three squares. and use a sorting procedure

to find duplicates.)
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