Chapter 1

Introduction and Overview

1.1 INTRODUCTION

This chapter introduces the subject of data structures and’ presents an overview of the content of
the text. Basic terminology and concepts will be defined and relevant examples provided. An overview
of data organization and certain data structures will be covered along with a discussion of the different
operations which are applied to these data structures. Last, we will introduce the notion of an
algorithm and its complexity, and we will discuss the time-space tradeoff that may occur in choosing a
particular algorithm and data structure for a given problem.

1.2 BASIC TERMINOLOGY; ELEMENTARY DATA ORGANIZATION

Data are simply values or sets of values. A data item refers to a single unit of values. Data items
that are divided into subitems are called group items; those that are not are called elementary items. For
example, an employee’s name may be divided into thrée subitems— first name, middle initial and last
name—>but the social sccurity number would normally be treated as a single item.

Collections of data are frequently organized into a hicrarchy of fields, records and files. In order to
make these terms more precise, we introduce some additional terminology.

{An entity is something that has certain attributes or properties which may be assigned values. The
values themselves may be cither numeric or nonnumcric) For example, the following are possible
attributes and their corresponding values for an entity, ait employee of a given organization:

Attributes: Name Age Sex Social Security Number
Values: ROHLAND, GAIL 34 F 134:24-5533 7“

Entities with similar attributes (c.g., all the employees in an organization) form an entity set. I%ach
attribute of an entity set has a range of values, the set of all possible values that could be assigned to the
particular attribute. ! | ‘

The term “information™ is sometimes used for data with given attributes, or, in other words,
meaningful or processed data. ' ‘ i N

The way that data are organized into the hicrarchy of fields, reécords and files reflects the
relationship between attributes, entities and entity sets. That is, a field is a single elementary unit of
information representing an attribute of an entity, a record is the collection of field values of a given
entity and a file is the collection of records of the entities in a given entity sct. "l 3 J

Each record in a file may contain many field items, but the value in a certain field may uniquely
determine the record in the file. Such a field K is called a primary key, and the values &k, k,, . . . in such
a field are called keys or key values. ' ? &

EXAMPLE 1.1 e

@) Suppose an automobile dealership maintains an inventory file where each record contains the following data;

Serial Number, Type, Year, Price. Accessorics

The Serial Number ficld can serve as a primary key for the file, since each automobile has a unique serial
number.

(£) Suppose an organization maintains a membership file where each record contains the following data:
Name, Address, Telephone Number, Dues Owed

Although there are four data items, Name and Address may be group items. Here the Name field is a

1
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primary key. Note that the Address and Telephone Number ficlds may not serve as primary keys, since some
members may belong to the same family and have the same address and telephone number

Records may also be ‘classified according to length. A file can have fixed-length records or
variable-length records. In fixed-length records, all the records contain the same ‘data items with the
same amount of space assigned to each data item. In variable-length records, filé records may contain
different lengths. For example, student records usually have variable fengths, sihce different students
take different numbers of courses. Usually, variable-length records have a minimum and a maximum
length. ‘

The above organization of data into fields, records and files may not be complex enough to
maintain and efficiently process certain collecuons of data. For this reason, data are also,organized into
maore complex types of structures. The study of such data structures, which fcrms the subject matter of
this text, includes the following three steps: f

(1) Logical or mathematical description of the structure
(2) Implementation of the structure on a computer

(3) Quantitative analysis of the structure, which includes determining the amount of memory
; needed to store the structure and the time required to process the structure

The next ,sé‘ctic“u"i“imroduces us to some of these data structures.

Remark: The second and third of the steps in the study of datd structures depend on whether the
data are stored (@) in the main (primary) memory of the' computer or (0) in a secondary’ {external)
storage unit. This text will mainly cover the first case. This means that, given the address of a memory
location, the time required to access the conteht of the memory cell ddes not depend onthe parngulas
‘cell ‘or upon the previous cell accessed. The seéond case, called file management or data base
management, is a subject unto itself andiies beyond the scope of this'text.

1.3 DATA STRUCTURES : . :

[Data may be organized in many different wayS;\he logical or mathematical model of a particular
organization of data is called a data structure The choice of a particular data model depends on two
considerations, First, it must be rich enough in’structure to mirror the actual relationships of the data in
the real world. On the other hand, the structure should be simple enough that one can effectively
process the data when necessary. This section will introduce us to some of the data structures which
will be discussed in detail later in the text.

Arrays

he simplest type of data structure is a linear (or one-dimensional) array )By a linear array, we
mean a list of a finite number n of similar data elements referenced respectivily by a set of n
consecutive numbers, usually 1.2, 3. .., n. If we choose the name A for the arra the elements

of A are denoted by subscript notation
I S Y R

or by the parenthesis notation _
| A(1)AR), AB). - AN)

or hy the bracket notation

A1}, AL A3 - .. AINY y
Reonrdiess of the notation, the number K in A[K] is called & subserpron | ALK] 1s calleu u subseripted
vartable, : ! : I i
Remark: The parentheses notation and the bracket nojauonar: | juently used v thie

name consists of more than one letter or when the array name app« in ‘nalgorithm, When uging thi

I -
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& “
notation we will use ordinary uppercase letters for the name and subscripts as indicated above by the A
and N, Otherwise, weimay use the usyal subscript nogation of italies for the name and subscripts and -
lowercase letters for the subscripts as indicated above by the a and #. The former notation follows the
practice of gamputer-oricnted texts whereas the Jatter notation follows the practice of mathematics in
print. R 1 4 ; ; e o

| EXAMPLE 1.2

A lincar array STUDENT consisting of the names of six students is pictured in Fig. 1-1. Here STUDENT[1) esiae

denotes John Brown, STUDENT[2] denotes Sandra Gold. and so on.

STUDENT
I. } John Brown !
= Sandra Gold
3 f Tom Jones
4 7 i;:rw Kelly . !
8] M;ry Reed 3
6 Alan Smith

Fig. 1-1

Linear, arrays arc called one-dimensional arrays because each ‘clcmcnl in such an array is
referenced by one subscript. A rwo-dimensional array is a collection of similar data elements where
each ¢lement is referenced by two subscripts. (Such arrays are called matrices in mathematics, and’
rables in business applications.) Multidimensional arrays are defined analogously., Arrays will be
covered in detail in Chap. 4. SN j '

EXAMPLE 1.3

A chain of 28 stores, each store having 4 departments, may list its weekly sales (to the nearest dollar) as in
Fig. 1-2. Such data can be stored in the:computer using a two-dimensional array in which the first subscript denotes
the store and the second subscript the department. 1If SALES is the name given to the array, then

SALES[]l.1] = 2872..  SALES[1,-2] =805.  SALES[}-3]=3211,." - SALES[2K, 4] = 982

The size of this array is denoted by 28 x 4 (readt28 by 4). since it contains 28 rows (the horizontal lincs
of numbers) and 4 colivnns (the vertical lines of numbers). % i

\ Bepi :
| e 4
. . Sl(k\ ! 2

1 2872 g0s | 3211 1560

2 2196 1223 | 2325 © 1744

3 3257 1017 5 iake 1951

28 2618 931 2333 982
Fig. 1-2

iz 5
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d Lists - ‘
Linked lists will be introduced by means of an‘example. Suppose a brokerage firm maintains a file
where each record contains a customer's name and his or her salesperson, and suppose the file contains
the data appearing in Fig. 1-3. Clearly the file could be stored in the computer by such a table. i.c., by
two columns of nine names. However, this may not be the most useful way to store the data, as the

following discussion shows.

Customer Salesperson
1 Adams Smith
2 Brown Ray
3 Clark Jones
4 Drew Ray
] Evans Smith
6 Farmer Jones
a Geller Ray
X Hill Smith
) Inteld Ray
Fig. 1-3

Another way of storing the data in Fig. 1-3 is to have a separate array for the salespeople and an
entry (called a pointer) in the customer file which gives the location of each customer’s salesperson.
This is done in Fig. 1-4, where some of the pointers are pictured by an arrow from the location of the

pointer to the location of the corresponding salesperson. Practically speaking, an integer used as a
pointer requires less space than a name; hence this representation saves space, especially if there are

hundreds ‘of customers for each salesperson.

Customer Pointer Salespc:rson

1 . Adams 3 Jones

2 wml'hv'own | 2 i Ray

3 | Clak | Smith

- Drew 2

5 Evans 3

6 I;armer 1

T Geller 2

8 Hill 3

9 Infecld 2

Suppese the irm wants the list of customers for a given salesperson. Using the data representation
in Fig. 1t the firm would have to search through the entire customer file. One way to simplify such a

Fig. 1-4
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search is to have the arrows in Fig. 1-4 point the other way; each salesperson would now have a set of
pointers giving the positions of his or her customers, as in Fig. 1-5. The main disadvantage of this
representation is that each salesperson may have many pointers and the sct of pointers will change as
customers are added and deleted.

Salesperson Pointer
1 Jones 3,6
2 Ray 2,4,7,9
3 Smith 1. 558
Fig. 1-§

Another very popular way to store the type of data in Fig. 1-3 is shown in Fig. 1-6. Here each
salesperson has onc pointer which points to his or her first customer, whosc pointer in turn points to
the second customer, and so on, with the salesperson’s last customer indicated by a 0. This is pictured
with arrows in Fig. 1-6 for the salesperson Ray. Using this representation one can easily obtain the
entire list of customers for a given salesperson ond, as we will see in Chap. S, one can easily insert and
delete customers.

Custoier T Salesperson Pointer

1 Adams 5 Jones 3 1
2 Brown 4 e T Ray 2 2
3 Clark 6 ) Smith 1 3
4 Drew ‘ 7

5 Evans 8

6 Farmer 0

7 Geller 9

8 Hill 0 >

9 Infeld 0

Fig. 1-6

The representation of the data in Fig. 1-6 is an example of linked lists. Although the terms
“pointer” and “link’" are usually used synonymously, we will try to use the term “‘pointer” when an
element in one list points to an element in a different list, and to reserve the term “link” for the case
when an element in a list points to an element in that same list.

Trees

Data frequently contain a hierarchical relationship between various elements. The data structure
which reflects this relationship is called a rooted tree graph or, simply, a tree. Trees will be defined and
discussed in detail in Chap. 7. Here we indicate some of their basic properties by means of two
examples.
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EXAMPLE 1.4 Record Structure

Although a file may be maintained by means of one or more arrays, a record, where one indicates both the
group items and the elementary items, can best be described by means of a tree structure. For example, an
employee personnel record may contain the following data items:

Social Security Number, Name, Address, Age, Salary, Dependents

However, Name may be a group item with the subitems Last, First and MI (middle initiai). Also. Addressmay be
a group item with the subitems Street address and Area address, where Area itself may be a group item having
subitems City, State and ZIP code number. This hierarchical structure is pictured in Fig. 1-7(a). Another way of
picturing such a tree structure is in terms of levels, as in Fig. 1-7(b).

Employee
Soc. Sec. No; Name Address Age Sélary Dependents y
Last First MI Street Arca\
City State ZIP
(a)

01 Employee
02  Social Security Number
02 Name
03  Last
03  First
03 Middie Initial
02 Address

03 Street
03 Area
04 City
04  State
04 ZIP
02 Age

02 Salary
02  Dependents

(&)
Fig. 1-7

EXAMPLE 1.5 Algebraic Expressions
Consider the algebraic expression
(2x + ¥)(a - 7b)"
Using a vertical arrow (1) for exponentiation and an asterisk {+) for multiplication. we can represent the -
expression by the tree in Fig. 1-8. Observe that the order in which the operations will be performed is reflected in
the diagram. the exponentiation must take place after the subtraction. and the multiplication at the top of the tree
must be executed last. g '
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Fig. 1-8

There are data structures other than arrays, linked lists and trees which we shall study. Some of
these structures are briefly described below.

(2) Srack A stack, also called a last-in first-out (LIFO) system, is a lincar list in which insertions
and deletions can take place only at one end. called the rop . This structure is similar in its
operation to a stack of dishes on a spring system, as pictured in Fig. 1-9(a). Note that new
dishes are inserted only at the top of the stack and dishes can be deleted only from the top of _
the stack. oo .

: \\_—-___/-—"/., - ; < :

BUS
STOP

(@) Stack of dishes. : (b) Queue waiting for a bus.

Boston

PR Phlladclphi7’

Los Angeles @ ——

.Mi.'um
(¢) Airline flights.

Fig. 1-9

(b)  Queue. A queue, also called a first-in first-out (FIFO) system, is a linear list in which
deletions can take piace only at one end of the list. the “front™ of the list, and insertions can
take place only at the other end of the list, the “rear” of the list This structure operates in
much the sam»® way as a line of pecople-waiting at a bus stop, as pictured in Fig. 1-9(4): the
first person in line is the first person to board the bus. Another analogy is with automobiles
wailing ' to pass. through an intersection—the first car in line is the first car through.
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(¢) Graph. Data somctimes contain a relationship between pairs of clements which 1s not
necessarily hierarchical in nature. For example, suppose an airline flies only between the
cities connccted by lines in Fig. 1-9(¢). The data structurc which reflects this type of
relationship is called a graph. Graphs will be formally defined and studied in Chap. 8.

Remark: Many different names are used for the clements of a data structure. Some commonly

used names are “data element,” “data item,” “item aggregate,” “record,” *node™ and “data object.”
The particular name that is used depends on the type of data structure, the context in which the
structure is used and the people using the name. Our preterence shall be the term “data element,” but
we will use the term “record” when discussing files and the term “node™ when discussing linked lists,
trees and graphs.

1.4 DATA STRUCTURE OPERATIONS
The data appearing in our data structures are processed by means of certain operations. In fact, the
particular data structure that one chooses for a given situation depends largely on the frequency with
which specific operations are performed. This section introduces the recader to some of the most
frequently used of these operations.
The following four operations play a major role in this text:
(1) Traversing: Accessing each record exactly once so that certain items in the record may be
\ processed. (This accessing and processing is sometimes called “visiting”" the record.)
} (2)  Searching: Finding the location of the record with a given key value, or linding the logations
of all records which satisty one or more conditions.
) (3) [Inserting: Adding a new record to the structure.
i (4) Deleting: Removing a record from the structure.

Sometimes two of more of the operations may be used in a given situation; ¢.g., we may want to delete
the record with a given key, which may mean we first need to scarch for the location of the record.
The following two operations, which are used in special situations, will also be considered:

(1) Sorting: Arranging the records in some logical order (e.g., alphabetically according to some
NAME key, or in numerical order according to some NUMBER key, such as social security
number or account number)

(2) Merging: Combining the records in two different sorted files into a single sorted file

Other operations, €.g., copying and concatenation, will be discussed later in the text.

EXAMPLE 1.6

An organization contains a membership file in which each record contains the following data for a given
member:
Name. Address, Telephone Number, Age, Sex
(a) Suppose the organization wants to announce i mecting through a mailing. Then one would traverse the file
to obtain Name and Address for each member.
(b) Suppose one wants to find the names of all members living in a certain arca. Again one would traverse the
file to obtain the data,
(¢) Suppose one wants to obtain Address for a given Name. Then one would scarch the file for the record
containing Name.
(d) Suppose a new person joins the organization. Then one would insert his or her record into the file.

(¢) Suppose a member dies. Then one would delete his or her record from the file.
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)

(f) Suppose a member has moved and has a new address and telephone number. Given the name of the

member. one would first nced to search for the record in the file. Then one would perform the
“update”—i.e.. change items in the record with the new data,

of members 65 or older. Again one would traverse the file, counting

.

(&) Suppose one wants to find the number
such members.

1.5 ALGORITHMS: COMPLEXITY, TIME-SPACE TRADEOFF /

An algorithm is a well-defined list of stéps for solving a particular problem. One major purpose of
this text is to develop efficient algorithms for the processing of our data. The time and space it uses arc
‘ asures of the efficiency of an algorithm. The complexity of an algorithm is the function

two major me
g time and/or space in terms of the input size. (The notion of complexity will be

which gives the runnin

treated in Chap. 2.)
Fach of our algorithms will involve a particular data structure, Accordingly, we may not always be

able to use the most efficient algorithm, since the choice of data structure depends on many things,
including the type of data and the frequency with which various data operations are applied.

Sometimes the choice of data structure involves a time-space tradeoff: by increasing the amount of

Searching Algorithms

Consider a membership file, as in Example 1.6, in which cach record contains, among other data '
the name and telephone number of its member. Suppose we are given the name of a member and we
want to find his or her telephone number. One way to do this is to linearly search through the file, i.c.
to apply the following algorithm:

Linear Search: Search cach record of the file, one at a time. until finding the given Name and hence
the corresponding telephone number.

First of all, it is clear that the time required to execute the algorithm is proportional {o the number of
comparisons. Also, assuming that cach name in the file is equally likely to be picked, it is intuitively
clear that the average number of comparisons for a file with n records is equal to n/2; that is. the
complexity of the linear search algorithm is given by C(n) = n/2.

The above algorithm would be impossible in practice if we were searching through a list consisting
of thousands of names, as in a telephone book. However. if the names are sorted alphabetically, as in
telephone books. then we can usc an efficient algorithm called binary search. This algorithm is
discussed in detail in Chap. 4. but we briefly describe its general idea below,

Binary Search: Compare the given Name with the name in the middle of the list; this tells which half
of the list contains Name. Then compare Name with the name in the middle of the
correct half to determine which quarter of the list contains Name. Continue the
process until finding Name in the ljst. ’ i

Ope can show that the complexity of the binary search algorithm is given by
C(n) =log, n

Thus. for example. one will not require more than 15 comparisons to find a given Name in a list
containing 25 000 names,

Although the binary scarch algorithm is a very efficient algorithm, it has some major drawbacks.
Specifically, the algorithm assumes that one has direct access to the middle name in the list or a sublist.,
This means that the list must be stored in some type of array. Unfortunately. inserting an element in an
array requires elements to be moved down the list. and deleting an element from. an array requires

clements to be moved up the list.



10 INTRODUCTION AND OVERVIEW [CHAP. 1

The telephone company solves the above problem by printing a new directory every year while
keeping a separate temporary file for new telephone customers. That is, the telephone company
updates its files every year. On the other hand, a bank may want to insert a new customer in its file
almost instantaneously. Accordingly, a linearly sorted list may not be the best data structure for a
bank.

An Example of Time-Space Tradeoff ’

Suppose a file of records contains names, social security numbers and much additional information
among its fields. Sorting the file alphabetically and using a binary search is a very efficient way to find
the record for a given name. On the other hand, suppose we are given only the social security number
of the person. Then we would have to do a linear scarch for the record, which is extremely
time-consuming for a very large number of records. How can we solve such a problem? One way is to
have another file which is sorted numerically according to social security number. This, however,
would double the space required for storing the data. Another way, pictured in Fig. 1-10, is to have the
main file sorted numerically by social security number and to have an auxiliary array with only two
columns, the first column containing an alphabctized list of the names and the second column
containing pointers which give the locations of the corresponding records in the main file. This is one
way of solving the problem that is used frequently, since the additional space, containing only two
columns, is minimal for the amount of extra information it provides. ‘

Name Pointer Soc. Sec. No Name J Extra Data
1 Abbey, Gregory 7| 1 013-44-5555 Davis, Earl KXXXXXXXXXXXXX
2 | Brown, John 4 2 | 025-55-6198 Abbey, Gregory | XXXXXXXXXXXXXX
3 | Carey, Mary 546 3 | 027-73-3961 Lane. Alice XXX XXXXXXXXXXX
4 Davis, Earl | 4 174-62-3485 Brown. John XX XXX XXXXXXXXX
s | Ellis, Susan  #® 76 s | 182-74-6398 Smith, Mary KX XXXNXXXAXXXX

\‘\
e o
Auxiliary array Main file
sorted alphabetically sorted by social security number
Fig. 1-10

Remark: Suppose a file is sorted numerically by social security number. As new records are
inserted into the file. data must be constantly moved to new locations in order 10 maintain the sorted
order. One simple way to minimize the movement of data is to have the social security number serve as
the address of each record. Not only would there be no movement of data when records are inserted,
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but there would be instant access to any record. However, this method of storing data would require
one billion (10") memory locations for only hundreds or possibly thousands of records. Clearly, this
tradeoff of space for time is not worth the expense. An alternative method is to define a funqtion H
from the set K of key values—social security numbers—into the set L of addresses of memory cells,
Such a function H is called a hashing function. Hashing functions and their properties will be covered

in Chap. 9.

‘ Sqlved Problems

BASIC TERMINOLOGY

1=1.

1.2

1.3

A professor keeps a class list containing the following data for each student:
Name, Major, Student Number, Test Scores, . Final Grade

(@) State the entities. attributes and entity set of the list.

(b) ’[?4)¢scribc the field values, records and file,

(c) Which attributes can serve as primary keys for the list?

(a) Each student is an entity, and the collection of students is the entity set. The propertics, name,

major. and so on. of the students are the attributes.

(b) The field values are the values assigned 1o the attributes. i.c.. the actual names. test scores, and so
on. The field values for cach student constitute a record. and the collection of all the student records
is the file. .
¥
(¢) Either Name or Student Number can serve as a primary key, since each uniquely determines the
student’s record. Normally the professor uses Name as the primary key, but the registrar may use

Student Number.

A hospital maintains a patient file in which each record contains the following data:

Name. Admission Date, Social Security Number, Room. Bed Number, Doctor

(@) Which items can serve as primary kcys?

() Which pair of itcms can serve as a primary Key?

(c)  Which items can be group items?

(a) Name and Social Security Number can serve as primary keys (We assume that no two patients have
the same name.) 5

() Room and Bed Number in combination also uniquely determine a given patient.

(c)  Name. Admission Date and Doctor may be group ilems.

Which of the following data items may lead to variable-length necords when included as items in
the record: (a) age. (b) sex. (¢) name of spouse. (d) names of children, (e) education, (f)
previous employers?

Since (d) and ( f) may contain a few or many items, they may lead to variable-length records. Also,
(e) may contain many items, unless it asks only for the highest level obtained.
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Data base systems will be only briefly covered in this text. Why?

“Data base systems™ refers to data stored in the secondary memory of the computer. The
implementation and analysis of data structures in the secondary memory are very different from those in
the main memory of the computer. This text is primarily concerned with data structures in main memory,
not secondary memory. ’

DATA STRUCTURES AND OPERATIONS

1.5

1.6

1.7

Give a brief description of (a) traversing, (b) sorting and (c) searching.

(@) Accessing and processing each record exactly once
(h) Arranging the data in some given:order .
(¢) Finding the location of the record with a given key or keys

Give a brief description of (&) inserting and (b) deleting.
(a) Adding a new record to the data structure, usually keeping a particular ordering

() Removing a particular record from the data structure

Consider the linear array NAME in Fig. 1-11, which is sorted alphabetically.

(a) Find NAME[2], NAME[4] and NAMEJ[7].

(b) Suppose Davis is to be inserted into the array. How many names must be moved to new
locations?

(¢) Suppose Gupta is to be deleted from the array. How many names must-be moved to new
locations?

(a)° Here NAME[K] is the kth name in the list. Hence,

NAME(2] = Clark, NAME[4] = Gupta, NAME(7] = Pace
(b) Since Davis will be assigned to NAME([3], the names Evans through Smith must be moved. Hence six

names are moved.
(c) The names Jones through Smith must be moved up the array. Hence four names must be moved,

NAME

1 | Adams .

Clark

A

Evans

Gupta

Jones

Lane

<5 8 W

Pace

o]

Smith

Fig. 1-11
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1.8  Consider the lincar array NAME in Fig. 1-12. The values of FIRST and LINK[K] in the figure
" determine a linear ordering of the names as follows. FIRST gives the location of the first name -
in the list. and LINK[K] gives the location of the name following NAME(K]. with 0 denoting

the end of the list. Find the linear ordering of the names.

The ordering is obtained as follows:

FIRST =5, so the first name in the list is NAME[S]. which is Brooks.

LINK[5] = 2, so the next name is NAME(2], which is Clark.

LINK[2] = 8. so the next name is NAME(8]. which is Fisher.

LINK[8] = 4, so the next name is NAME[4]. which is Hansen.

LINK[4] = 10. so the next name is NAME[10), which is Leary.

LINK[10] = 6. so the next name is NAME[6]. which is Pitt.

LINK[6] = 1. so the next name is NAME[1]. which is Rogers.

LINK[1] =7, so the next name is NAME[7]. which is Walker.

LINK[7] = 0, which indicates the end of the list.
Thus the linear ordering of the names is Brooks, Clark. Fisher. Hansen. Leary. Pitt, Rogers, Walker. Note
that this is the alphabetical ordering of the names.

FIRST NAME LINK
5 ; 1 Rogers &
21 Clark 8
3
4 Hansen 10
5 Brooks 2
6 Pitt 1
7 Walker - 0
8 Fisher 4
10 Leary 6

Fig. 1-12
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Consider the algebraic expression (7x + y)(5a — b)’. (a) Draw the corresponding trec diagram
as in Example 1.5. (b) Find the scope of the exponential operation. (The scope of a node vin a
tree is the subtree consisting of v and the nodes following v.)

(a) Use a vertical arrow ( 1 ) for exponentiation and an asterisk (+) for multiplication to obtain the tree in
Eig. 1-13;

(b) The scope of the exponentiation operation T is the subtree circled in the diagram. It corresponds to
the expression (Sa — &)™ ¢

The following is a tree structure given by means of level numbers as discussed in Example 1.4:

01 Employee 02 Name 02 Number 02 Hours 03 Regular 03 Overtime (2 Rate

Draw the corresponding tree diagram.

The tree diagram appears in Fig. 1-14. Here each node v is the successor of the node which precedes v
and has a lower level number than v.

Employee

NarrA)cr Hou'rs Rate
Regular Overtime
Fig. 1-14

Discuss whether a stack or a queue is the appropriate structure for determining the order in
which elements are processed in each of the following situations. .

(a) Batch computer programs are submitted to the computer center.
(b) Program A calls subprogram B, which calls subprogram C, and so on.
(¢) Employees have a contract which calls for a seniority system for hiring and firing.

(@) Queue. Excluding priority cases. programs are executed on a first come, first served basis.

[J(b) Stack.' The last subprogram is executed first, and its results are transferred to the next-to-last
| - program, which is then executed, and so on, until the original calling program is executed.

(c) i\ Stack. In a seniority system, the last to be hired is the first to be discharged.

The daily flights of an airline company appear in Fig. 1-15. CITY lists the cities, and ORIG[K]
and DEST[K] denote the cities of origin and destination, respectively, of the flight
NUMBER[K]. Draw the corresponding directed graph of the data. (The graph is directed
because the flight numbers represent flights from one city to another but not returning.)

The nodes of the graph are the five cities. Draw an arrow from city A to city B if there is a flight from
A to B, and label the arrow with the flight number. The directed graph appears in Fig, 1-16.
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CITY NUMBER ORIG DEST

1 Atlanta 1 701 2 3
2 Boston 2 702 3 2
3 Chicago 3 705 5 3
B Miami . 4 708 3 4
5 Philadelphia 5 711 2 5
(a) 6 712 5 v
7 713 5 1
8 715 1 4

9 7n7 5 4 .
10 718 4 5

(6)
Fig. 1-15

!

Chicago @

COMPLEXITY; SPACE:TIME TRADEOFFS

)d/ Briefly describe the notions of (a) the complexity of an algorithm and (b) the space-time
lradeoff of -algorithms.

(@) ’I'he combplexity of an algorithm is a function f(n) which measures thc time and/or space used by an
algorithm in terms of the input size n.

(b) The space-time tradeoff refers to a choice between algorithmic solutions of a data processing
problem that allows one to decrease the running time of an algorithmic solution by increasing the
space to store the data and vice versa.

1.14 Suppose a data set S contains n elements.

(a) Compare the running time T, of the linear search algorithm with the running time 75 0f
the binary search algorithm when (i) n = 1000 and (ii) n = 10 000.
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(b) Discuss scarching for a given item in § when § is stored as a linked list.

(a)

(b)

Recall (Sec. 1.5) that the expected running of the linear search algorithm is f(n) = n/2 and
that the binary search algorithm is f(n) =log, n. Accordingly. (i) for n = 1000, 7 =500 but
T, = log, 1000 =10; and (ii) for n = 10000, 7, = 5000 but T, = log. 10000 = 14.

The binary search algorithm assumes that one can directly access the middle element in the set 5. But
one cannot directly access the middle element in a linked list. Hence one may have to usc a lincar
search algorithm when S is stored as a linked list. .

1.15 Consider the data in Fig. 1-15, which gives the different flights of an airline. Discuss different
ways of storing the data so as to decrease the time in executing the following: -

(@)

Find the origin and destination of a flight, piven the flight number.

(&) Given city A and city B, find whether there 1s a flight from A to B, and if there is. find its

(a)

(b)

flight number.

Store the data of Fig. 1-15(b) in arrays ORIG and DEST where the subscript is the flight number. as
pictured in Fig. 1-17(a) ‘

Store the data of Fig. 1-15() in a two-dimensional array FLIGHT where FLIGHT([J. K] contains the
Right number of the flight from CITY[J] to CITY[K], or contains 0 when there is no such flight. as
pictured in Fig. 1-17(b).

ORIG DEST FLIGHT 1 2 3 4 5
701 2 I 3 1 0 4] 0 71N 0
702 3 2 2 ) 0 0 701 0 yah!
703 0 0 3 0 702 0 708 0
704 0 0 4 0 0 0 0 718
705 D 3 5 713 712 705 717 0
706 0 0 (h)
J15 1 4
716 0 0
717 el 4
F18 4 k]

(a)
Fig. 1-17

1.16 Supposc an airline serves n cities with s flights. Discuss drawbacks (o the data representations
used in Fig, 1-17(¢) and Fig. 1-17(b).

(a)

(b)

Suppose the flight numbers are spaced very far apart; i.c., suppose the ratio of the number s of ights
to the number of memory locations is very small, e.p., approximately 0.05. Then the extra storage
space may not be worth the expensc.

Suppose the ratio of the number s of flights to the number 1 of memory locations in the array
FLIGHT is very small, i.c., that the array FLIGHT is onc that contains a large number of zeros (such
an array is called a sparse matrix). Then the extra storage space may not be worth the expensc.



Chapter 2

Preliminaries

2.1 INTRODUCTION

. The development of algorithms for the creation and processing of data structures is a major feature

of this text. This chapter describes, by means of simple examples, the format that will be used to
present our algorithms. The format we have selected is similar to the format used by Knuth in his
well-known text Fundamental Algorithms. Although our format is language-free, the algorithms will
be sufficiently well structured and detailed that they can be casily translated into some programming
language such as Pascal, FORTRAN, PL/1 or BASIC. In fact. some of our algorithms will be
translated into such languages in the problems sections.

Algorithms may be quite complex. The computer programs implementing the more complex
algorithms can be more casily understood if these programs arc organized into hicrarchies of modules
similar to the one in Fig. 2-1. In such an organization, each program contains first a main module,
which gives a general description of the algorithm; this main module refers to certain submodules,
which contain more detailed information than the main module: cach of the submodules may refer to
more detailed submodules; and so on. The organization of a program into such a hicrarchy of modules
normally requires the use of certain basic flow patterns and logical structures which are usually
associated with the notion of structured programming. These flow patterns and logical structures will:
be reviewed in this chapter.

Main
module

Fig. 2-1 A hierarchy of modules.

The chapter begins with a brief outline and discussion of various mathematical functions which
occur in the study of algorithms and in computer science in general, and the chapter ends with a
discussion of the different kinds of variables that can appear in our algorithms and programs.

The notion of the complexity of an algorithm is also covered in this chapter. This important
mcasurement of algorithms gives us a tool to compare different algorithmic solutions to a particular
problem such as searching or sorting. The concept of an algorithm and its complexity is fundamental
not only to data structures but also to almost all areas of computer science.

177
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2.2 MATHEMATICAL NOTATION AND FUNCTIONS

This scction gives various mathematical functions which appear very often in the analysis of
algorithms and in computer science in general, together with their notation.

~Floor and Ceiling Functions

Let x be any real number. Then x lies between two integers called the floor and the ceiling of x.
Specifically,

lx]), called the floor of x, denotes the greatest integer that does not exceed x.
[x], called. the ceiling of x, denotes the least integer that is not less than x.

If x is itself an integer, then |x] = x]; otherwise |x] + 1= [x1:

EXAMPLE 2.1

13.14] =3, = V5] =2, 1-8.5)=-9, 17 =7
[3.14] =4, [V3] =3, [-8.5] = -8, MN=7

Remainder Function; Modular Arithmetic
Let k be any integer and let M be a positive integer. Then

k (mod M)

(read k modulo M) will denote the integer réemainder when k is divided by M. More exactly,
k (mod M) is the unique integer r such that

k=Mgqg+r where O=r<M
When k is positive, simply divide k by M to obtain the remainder r. Thus
25 (mod 7) = 4, 25 (mod 5) = (#¥ 35 (mod 11) =2, 3(mod8)=3

Problem 2.2(b) shows a method to obtain k (mod M) when k is negative.
The term “mod"” is also used for the mathematical congruence rclation, which is denoted and
defined as follows:

a=b(mod M) if and only if M divides b —a

M is called the modulus, and a = b (mod M) is read **a is congruent to b modulo M. The following
aspects of the congruence relation are frequently useful:

0= M (mod M) and a*x M=a(mod M)

Arithmetic modulo M refers to the arithmetic operations of addition, multiplication and
subtraction where the arithmetic value is replaced by its equivalent value in the set

{0,1,2,....M—1}
or in the set
{(1,2,3,....M}
For example, in arithmetic modulo 12, sometimes called *‘clock™ arithmetic,
6+9=3, 7x5=11, 1-5=8, 24+10=0=12
(The use of 0 or M depends on the application.),
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Integer and Absolute Value Functions
Let x be any real number. The integer value of x, written INT(x), converts x into an integer by
deleting (truncating) the fractional part of the number. Thus
INT(3.14) =3, INT(VS) =2, INT(—8.5) = —8, INT(7) =7

Observe that INT(x) = |x] or INT(x) = [x] according to whether x is positive or ncgative.

The absolute value of the real number x, writtcn ABS(x) or |x|, is defined as the greater of x or
—x. Hence ABS(0) =0, and, for x #0, ABS(x) = x or ABS(x) = —x, depcending on whether x is
positive or negative. Thus

|-15|=15, |7|=7, |~3.33| =3.33, [|4.44|=4.44, |-0.075| = 0.075
We note that |x| = |—x| and, for x # 0, |x]| is positiyc.

Summation Symbol; Sums

Hcre we introduce the summation symbol I (the Greck letter sigma) Consider a scquence
a,,a,, a,, ... . Then the sums

a, +a,+:--+a, and a, +a,.,+ - +ta,
will be denoted, respectively, by
n "’
2 a, and > a;
j=1 j=m

The lctter j in the above expressions is called a dumny index or dummy variable. Other letters
frequently used as dummy variables are i, k, s and .

EXAMPLE 2.2

z ab,=a b, +ab,+- -+ wb

n
s

2 =22 +32 442 +52 =449+ 16+25="54
j=2

2 j=142+--+n
j=1
The last sum in Example 2.2 will appear very often. It has the value n(n + 1)/2. That is,

; n(n+1)

14243+ --4n 5

Thus, for cxample,

= 1275

1+2+---’+50=~5—0-£25—1)-

Factorial Function

The product of the posmvc intcgers from 1 to n, inclusive, is denoted by n! (read *‘n factorial™).
That is, :
n!'=1:2-3---(n=2)(n—1n

It is also convenient to define 0! = 1.

- EXAMPLE 2.3 ;
(a) 2W=1-2=2; 31=1.2:3=6; 41=1-2:34=24
(b) For n>1, we have n!=n-(n — 1)! Hence

5!=5-41=5-24 = 120; 6!=6-5!=06-120=720
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Permutations .
A permutation of a sct of n elements is an arrangement of the clements in a given order. For
cexample, the permutations of the sct consisting of the clements a, b, ¢ arc as follows:

abc, ach, bac, bca, cab, cba

Onc can prove: There are n! permutations of a set of n clements. Accordingly, therc are 4! =24
permutations of a sct with 4 clements, 5! = 120 permutations of a sct with 5 clements, and so on.

Exponents and Logarithms
Recall the following definitions for integer cxponents (where m is a positive integer):

m

a”"=a-a---a (mtimes), a’=1, a " =—

Exponents arc cxtended to include all rational numbers by dcfining, for any rational number m/n,
amln " ,n/—nu T = (cfa)m

For example,

11

ZA_TE,

In fact, exponcnts arc extended to includc all real numbers by defining, for any rcal number x,

2'=16, 27'= 125%% = 5* =25

a*=lima" where 7 is a rational number
r—sx

Accordingly, the exponential function f(x) = a* is defined for all rcal numbers.
Logarithms arc rclated to exponcnts as follows. Let b be a positive number. The logarithm of any
positive number x to the basc b, written

log, x
represents the exponent to which b must be raiscd to obtain x. That is,
y=log, x and bY=x
arc cquivalent statcments. Accordingly,
log,8=3  sincc 2'=8; log,,100=2  sincc  10%: 100
log,64=6  sincc  2°=64; . log,,0.001=-3  sincc  107*=0.001
Furthermore, for any basc b, 7
log,1=0  since b°=1
log, b =1 since b'=b

The logarithm of a ncgative number and the logarithm of 0 arc not defined.
One may also view the exponcntial and logarithmic functions

S(x)=b" and g(x) =log, x

as inverse functions of cach other. Accordingly, the graphs of these two functions arc related. (Sce
Prob.-2.5.)

Frequently, logarithms arc cxpressed using approximate valucs. For cxample, using tables or
calculators, onc obtains ; ’

log,, 300 = 2.4771 and log, 40 = 3.6889

as approximatc answers. (Here ¢=2.718281---.)
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v
»

Logarithms to the base 10 (called cormmon logarithims), logarithms to the base ¢ (called natural
logarithms) and logarithms to the basc 2 (called binary logarithms) arc of special importance. Some
texts write:

In x instcad of log, x
Ig x or Log x instcad of log, x

This text on data structures is mainly concerned with binary logarithms. Accordingly,

The term log x shall mcan log, x unless otherwisc specified.

Frequently, we will require only the floor or the ceiling of a binary iogarithm. This can be obtained
by looking at thc powers of 2. For cxample,

[log, 100) =6  since  2°=064  27=128
“082 1000] =9 SanC 2"l = 5[2 and 2"' = 1024

and so on.

2.3 ALGORITHMIC NOTATION

An algorithm, intuitively spcaking, is a finite step-by-step list of well-defined instructions for
solving a particular problem. The formal definition of an algorithm, which uses the notion of a Turing
machinc or its equivalent, is very sophisticated and lies beyond the scope of this text. This scction
describes the format that is used to present algorithms throughout the text. This algorithmic notation is
best described by means of examples.

EXAMPLE 2.4

An array DATA of numerical values is in memory. We want to find the location LOC and the value MAX of
the largest clement of DATA. Given no other information about DATA, one way tosolve the problem is as
follows: vp

Initially begin with LOC =1 and MAX = DATA(1]. Then compare MAX with each successive clement
DATAI[K] of DATA. If DATA[K] cxcceds MAX, then update LOC and MAX so that LOC =K and
MAX = DATA[K]. The final valucs appearing in LOC and MAX give the location and value of the largest
clement of DATA.

A formal prescntation of this algorithm, whose flowchart appcars in Fig. 2-2, follows.

: Afgorithm 2.1:  (Largest Element in Array) A noncmpty array DATA with N numerical valucs is given.
This algorithmn finds the location LOC and the value MAX of the largest element of DATA.
The variable K is uscd as a counter.

Step 1. [Initialize.] Set K:=1, LOC:= 1 and MAX:= DATA[1].
Step 2. [Increment counter.] Set K:=K + 1.
Step 3. [Test counter.] If K> N, then:
Write: LOC, MAX, and Exit.
Step 4. [Compare and update.] If MAX < DATA([K], then:
Sct LOC:=K and MAX := DATA[K].
Step 5. [Repeat loop.] Go to Step 2.

The format for the formal presentation of an algorithm consists of two parts. The first part is a
paragraph which tclls the purposc of the algorithm, identifics the variables which occur in the
algorithm and lists the input data. The sccond part of the algorithm consists of the list of steps that is to
be executed. -
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K1
LOC«1
MAX « DATA[1]

l KeK+1

Write: LOC, MAX -

( STOP ,

LOC+K

MAX «— DATA[K]

J

Fig. 2-2

The following summarizes certain conventions that we will use in presenting our algorithms. Some
control structurcs will be covered in the next section. .

Identifying Number

Each algorithm is assigncd an identifying number as follows: Algorithm 4.3 rcfers to the third
algosithm in Chap. 4; Algorithm P5.3 refers to the algorithm in Prob. 5.3 in Chap. 5. Note that
the letter “P” indicatcs that the algorithm appears in a problem.

Steps, Control, Exit

The steps of the algorithm are cxecuted onc after the other, beginning with Stcp 1, unless
indicated otherwise. Control may be transferred to Step n of the algorithm by the statement “Go to
Step n.” For example, Step 5 transfers control back to Step 2 in Algorithm 2.1. Gencrally speaking,
these Go to statements may be practically climinatcd by using certain control structures discussed in
the next scction.

If scveral statements appear in the same step, e.g.,

Sct K:=1, LOC:=1 and MAX := DATA[1].

then they are execcuted from left to right.
The zlgorithm is completed when the statcment

Exit.

is encountered. This statement is similar to the STOP statement used in FORTRAN and in flowcharts.
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Comments
Each step may contain a comment in brackets which indicates the main pt ,posc of the step. The
comment will usually appcar at the beginning or the end of the step.

Variable Names

Variable names will use capital letters, as in MAX and DATA. Singlc-lctter names of variables
used as counters or subscripts will also be capitalized in the algorithms (K and N, for cxample), cven
though lowercase may be used for these same variables (k and ) in the accompanying mathematical
description and analysis. (Recall the discussion of italic and lowercasc symbols in Sec. 1.3 of Chap. 1,
undcr “Arrays.”)

Assignment Statement
Our assignment statcments will use the dots-equal notation := that is used in Pascal. For cxample,

Max := DATA[1]

assigns the valuc in DATA[1] to MAX. Some texts usc the backward arrow « or the cqual sign = for
this operation.

Input and Output
Data may bc input and assigned to variables by means of a Read statement with the following
form:
Recad: Variables names.

Similarly, mcssages, placed in quotation marks, and data in variables may be output by mcans of a
Write or Print statcment with the following form:

Write: Messages and/or variable namcs.

Procedures 4

The term “‘procedure” will be used for an independent algorithmic module which solves a
particular problem. The usc of the word “procedure” or “‘module” rather than “algorithm™ for a given
problem is simply a matter of taste. Generally speaking, the word *“algorithm™ will be reserved for the
solution of general problcms “The term “procedurc” will also be used to describe a certain type of
subalgorithm which is discussed in Secc. 2.6. -

2.4 CONTROL STRUCTURES

Algorithms and their equivalent computer programs are morc casily understood if they mainly use
sclf-contained modules and three types of logic, or flow of control, called '

(1) Scquence logic, or scquential flow
(2) Sclcction logic, or conditional flow

(3) Iteration logic, or repetitive ﬂow

These three types of logic arc discussed bclow and in cach case-we show the gquivalent Nlowchart.

Scequence Logic (Sequential Flow)

Scquence logic has alrcady been discussed. Unless instructions arc given to the contrary, the
modules are exccuted in the obvious scquence. The scquence may be presented explicitly, by means of
numbered steps, or implicitly, by the order in which the modules arc written. (Sce Fig. 2-3.) Most
processing, cven of complex problems, will gencrally follow this clementary flow pattern.
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Algorithm Flowchart equivalent

Modulc A Module A
Module C Module C

Fig. 2-3 Scquence logic.

Selection Logic (Conditional Flow)
Selection logic employs a number of conditions which Icad to a sclection of one out of several

alternative modules. The structures which implement this logic arc called conditional structures or If
structures. For clarity, we will frequently indicate the end of such a structure by the statement

[End of If structure.]

or some cquivalent.
These conditional structures fall into three types, which arc discussed separately.
-

(1) Single alternative. This structurc has the form
If condition, then:,
[Module A]
[End of If structure.]
The logic of this structure is picturcd in Fig. 2-4(a). If the condition hol«is, then Module A,
which may consist of onc or more statements, is exccuted; otherwise Module A is skipped
and control transfers to the next step of the algorithm.

Condition? 2
Yes Yes
Module A Module A Module B

v 1
(a) Single alternative. - (b) Double alternative.

Fig. 2-4
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- (2) Double alternative. This structurc has the form

* If condition, then:
[Module A]
Else:
[Module B]
[End of If structure.] i
The logic of this structure is pictured in Fig. 2-4(b). As indicated by the flowchart, if the
condition holds, then Module A is exccuted; otherwise Module B is executed.
(3) Muliiple alternatives. ‘This structure has the form:

If condition(1), then:
[Module A,]

Elsc if condition(2), then:
[Module A,]

Elsg if condition(M), then:
[Modulc A,,]
Else:
[Module B}
[End of If structure.]
~ -+ The logic of this structure allows only one of the modules to be executed. Specifically, either
the module which follows the first condition which holds is cxecuted, or the module which

- follows the final Else statement is exccuted. In practice, there will rarely be more than three
alternatives. '

EXAMPLE 2.5

The solutions of the quadratic cquation
ax® + bx + c=0.

where @ # 0, are given by the quadratic formula .
e ~b*Vb®—4dac
A 2a

The quantity D = b* —4ac is called the discriminant of the cquation, If D is negative, then there arc no real
solutions. If D = 0, then there is only onc (doublc) real solution, x = —b/2a. If D is positive, the formula gives the
two distinct real solutions. The following algorithm finds the solutions of a quadratic equation. '

Algorithm 2.2: (Quadratic Equation) This algorithm inputs the coefficients A, B, C of a quadratic cquation
and outputs the zeal solutions, if any.

Step 1. Read: A, B, C.
Step 2. Sct D:=B?-4AC.
Step 3. If D >0, then:
(@) Set X1:=(-B+ VD)/2A and X2:=(—-B - VD)/2A.
(b) Write: X1, X2. ;
Elsc if D =0, then:
(@) Sct X:=—B/2A.
(b) Writc: "UNIQUE SOLUTION', X.
Elsc: ;
' Write: '"NO REAL SOLUTIONS'.
[End of If structure.]
Step 4. Exit.
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Remark: Observe that there are three mutually exclusive conditions in Step 3 of Algorithm 2.2 that depend
on whether D is positive, zero or negative. In such a situation, we may alternatively list the different cases as
follows:

Step3. (1) 1If D>0, then:

(3) 1f D <0, then:

This is similar to the use of the CASE statement in Pascal.
Iteration Logic (Repetitive Flow)

The third kind of logic refers to either of two types of structurcs involving loops. Each type begins
with a Repeat statement and is followed by.a module, called the body of the loop. For clarity, we will
indicate the end of the structure by the statemcnt

[End of loop.]

or some equivalent.

Each type of loop structure is discussed separately.

The repeat-for loop uses an index variable, such as K, to control the loop. The loop will usually
have the form:

Repeat for K=R to S by T:
[Module] -
[End of loop.]

The logic of this structure is pictured in Fig. 2-5(a). Here R is called the initial valug, S the end value or
test value, and T the increment. Observe that the body of the lpop is executed rirst with K = R, then
with K=R + T, then with K=R + 2T, and so on. The cycling ends when K>S. The flowchart

K+R
Yes c
Is K> 8?7 Condition?
No
Module Module
(body of loop) . (body of loop)
K«—K+T
Quie
! o
(a) Repeat-For structure. (b) Repeat-While structure.

Fig. 2-5
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assumes that the increment T is positive; if T is negative, so that K decrcases in value, then the cycling

ends when K <S.
The repeat-while loop uses a condition to control the loop. The loop will usually have the

form
Repeat while condition:
[Module]
[End of loop.]
The logic of this structure is pictured in Fig. 2-5(b). Observe that the cycling continues until the
condition is false. We en.phasize that there must be a statement before the structure that initializes the

condition controlling the loop, and in order that the looping may eventually ccasc, there must be a
statcment in the body of the loop that changes the condition,

EXAMPLE 2.6

Algorithm 2.1 is rewritten using a repeat-while loop rather than a Go to statement:

Algorithm 2.3: (Largest Element in Array) Given a noncmpty array DATA with N numerical values, this
algorithm finds the location LOC and the value MAX of the largest clement of DATA.
1. [Initialize.] Set K:=1, LOC:= 1 and MAX:= DATA[1].

2. Repcat Steps 3 and 4 while K= N:
3. If MAX < DATAIK], then:
Sct LOC:=K and MAX:= DATA[K].
|End of If structurc. ]
4. Set Ki=K+ 1.
[End of Stép 2 loop.]
5. Write: LOC, MAX. |
6. Exit.

Algorithm 2.3 indicates some other properties of our algorithms. Usually we will omit the word
“Step.” We will try to use repeat structurcs instead of Go to statements. The repeat statement may
explicitly indicatc the steps that form the body of the loop. The “End of loop™ statement may exj -icitly
indicate the step where the loop begins. The modules contained in.our logic structures will normaily be
indented- for easier rcading. ‘This conforms to the usual format in structurcd programming. '

Any other new notation or convention either will be sclf-cxplanatory or will be explained when it
occurs.

L3

2.5 COMPLEXITY OF ALGORITHMS

The analysis of algorithms is a major task in computer science. In order 1o compare algorithins, we
must have some criteria to measure the cfficiency of our algorithms. This scction discusses this
important topic.

Supposc M is an algorithm, and supposc # is the size of the input data. The time and space uscd by
the algorithm M arc the two main mecasures for the efficiency of M. The time is mcasurcd by counting
the number of key operations—in sorting and searching algorithms, for example, the number of
comparisons. That is because key operations are so defined that the time for the other operations is
much less than or at most proportional to the time for the key operations. The space is measured by
counting the maximum of memory nceded by the algorithm.

The complexity of an algorithm M is the function f(1) which gives the running time and/or storage
space requirecment of the algorithm in terms of the size n of the input data. Frcquently, the storage
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spacc required by an algorithm is simply a multiple of the data size n. Accordingly, unless otherwisc
stated or implicd, the term “complexity™ shall refer to the running time of the algorithm.

The following example illustrates that the function f(n), which gives the running timc of an
algorithm, depends not only on the size n of the input data but also on the particular data.

EXAMPLE 2.7

Suppose we arc given an English short story TEXT, and supposc we want to scarch through TEXT for the
first occurrence of a given 3-letter word W, If W is the 3-letter word “the,” then it is likely that W occurs ncar the
beginning of TEXT, so f(n) will be small. On the other hand, if W is the 3-letter word *200." then W may not
appear in TEXT at all, so f(n) will be large. o5 i )

The above discussion lcads us to the question of finding the complexity. function f{(n) for ccrtain
cascs. The two cases onc usually investigates in complexity theory are as. follows: '

(1) Worst case: the maximum value of f(n) for any possible input
(2) Average case: the expected value of f(n)

Sometimes we also consider the minimum possible valuc of f(n), cillcd the best case.

The analysis of the average case assumes a certain probabilistic distribution for the input data; one
such assumption might be that all possible permutations of an input,data sct arc cqually likely. The
average casc also uses the following concept in probability thcory. Supposc thc numbers
My, My, ..., Wy, occur with respective probabilitics p,, p,, ..., p,. Then the expectation or average
value I is given by

E=nmp +nmp,+---+np,

Thesc idcas arc illustrated in the following cxample.

EXAMPLE 2.8 Linear Search

Supposc a lincar array DATA contains n elements, and suppose a specific ITEM of information is given. We
want cither to find the location LOC of ITEM in the array DATA, or to send some message, such as LOC =0, to
indicate that ITEM does not appear in DATA. The lincar scarch algorithm solves this problem by comparing
ITEM, onc by one, with cach element in DATA. That is, we comparc ITEM with DATA[1], then DATAJ2), and
so on, until we find LOC such that ITEM = DATA[LOC]. A formal presentation of this algorithm follows.

Algorithkm 2.4:  (Lincar Scarch) A lincar array DATA with N clements and a specific ITEM of information

arc given. This algorithm finds the location LOC of ITEM in the array DATA or scts
LOC = 0. L]
1. [Initialize] Sct K:=1 and LOC:=0.
2. Repeat Steps 3 and 4 while LOC=0 and K=<N,
3. If ITEM = DATA[K], then: Set LOC:=K.
4. Set K:= K+ 1. [Incrcments counter.]
[End of Step 2 loop.]
5. [Successful?]
If LOC =0, then:
Write: ITEM is not in the array DATA.
Else: . -
Write: LOC is the location of ITEM.
[End of If structure.]
6. Exit.

The complexity of the scarch algorithm is given by the number C of comparisons between ITEM
and DATA[K]. We seek C(n) for the worst casc and the avcrage casc. '
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Worst Case

Clearly the worst case occurs when ITEM is the last element in the array DATA or is not there at
all. In cither situation, we have ?

C(n)=n

Accordingly, C(n) = n is the worst-case complexity of the lincar scarch algorithm.

Average Case ‘

Here we assume that ITEM doces appear in DATA, and that it is cqually likely to occur at any
position in the array. Accordingly, the number of comparisons can be any of the numbers
1,2,3,...,n, and cach numbecr occurs with probability p = 1/n. Then

=1L 42 g gyt
n n n

l.
=(l+2+-~+n)-;

n(u+l)_l=n+l
2 n 2

This agrees with our intuitive feeling that the avcrage number of comparisons nceded to find the
location of ITEM is approximatcly cqual to half thc number of clements in the DATA list.

Remark: The complexity of the average casce of an algorithm is usually much more complicatcd
to analyze than that of the worst casc. Morcover, the probabilistic distribution that onc assumes for the
average case may not actually apply to rcal situations. Accordingly, unless otherwisc stated or implicd,
the complexity of an algorithm shal! mean the function which gives the running time of the worst case
in terms of the input size. This is not too strong an assumption, sincc the complexity of the average casc
for many algorithms is proportional to the worst casc.

Rate of Growth; Big O Notation

Supposc M is an algorithm, and supposc # is the size of the input data. Clearly the complexity f(n)
of M increascs as n increascs. It is usually the rate of increasc of f(#) that we want to examine. This is
usually donc by comparing f(n) with some standayd function, such as

log, n, n, n log, n, n’ n’, 2"
The rates of growth for these standard functions are indicated in Fig. 2-6, which gives their
approximatc values for certain valucs of #n. Obscrve that the functions arc listed in the order of their
ratcs of growth: the logarithmic function log, # grows most slowly, the cxponential function 2" grows
most rapidly, and the polynomial functions n® grow according to the cxponent ¢. Onc way to compare
the function f(n) with these standard functions is to use the functional O notation defined
as follows:

(n) 2 s .
o logn n nlogn n n 2
5 3 5 15 25 125 32 .
10 4 10 40 100 10° 10°
100 7 100 700 10* 10¢ 10*
1000 10 10° 10* 10¢ 10° 10°°°

Fig. 2-6 Ratc of growth of standard functions.
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Suppose f(n) and g(n) are functions defined on the positive intcgers with the property that f(n)is
bounded by some multiple of g(#) for almost all n. That is, suppose there exist a positive integer nyand
a positive number M such that, for all n > n,, we have

| f(m)| = M|g(r)]

Then we may write

fin) = O(g(n))
which is read “f(n) is of order g(n)." For any polynoiaial P(n) of degree m, we show in Prob. 2.10 that
P(n) = 0(n"); c.g.,
8n' — 5760 + 832n — 248 = O(n’)
We can also wiite
f(n) = h(n) + O(g(n)) when f(n) — hn) = O(g(n))
(This is called the “big O™ notation since f(n) = o( g(n)) has an cntircly different meaning.)

To indicate the convenience of this notation, we give the complexity of certain well-known
searching and sorting algorithms: '

(a) Linear search: O(n)
(b) Binary scarch: O(log n)
(c) Bubble sort: O(n”)
(d) Mecrge-sort: O(n log n)

These results are discussed in Chap. 9, on sorting and scarching.
}

2.6 SUBALGORITHMS

A subalgorithm is a complete and independently defined algorithmic module which is used (or
invoked or called) by some main algorithm or by sone other subalgorithm. A subalgorithm receives
values, called arguments, from an originating (calling) algorithm; performs computations; and then
sends back the result to the calling algorithm. The¥ubalgorithm is defined independently so that it may
be called by many different algorithms or called at different times in the samc algorithm. The
relationship between an algorithm and a subalgorithm is similar to the rclationship between a main
program and a subprogram in a programming language.

The main difference between the format of a subalgorithm and that of an algorithm is that the
subalgorithm will usually have a hcading of the form .

NAME(PAR,, PAR,, . . . , PARy)

Here NAME refers to the name of the subalgorithm which is used when the subalgorithm is called,
and PAR,, PAR,,...,PAR refer to paramcters which arc used to transmit data between the
subalgorithm and the calling algorithm:

Another diffcrence is that the subalgorithm will have a Return statement vather than an Exit
statement; this emphasizes that control is transferred back to the calling program when the execution
of the subalgorithm is completed.

Subalgorithms fall into two basic categories: function subalgorithms and procedure subalgorithms.
The similaritics and differences between thesc two types of subalgorithms will be examined below by
means of examples. One major difference between the subalgorithms is that the function subalgorithm
rcturns only a single valuc to the calling algorithm, whercas the procedure subalgorithm may send back

more than one value.
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EXAMPLE 2.9
The following function subalgorithm MEAN finds the average AVE of three numbers A, B and C.
Function 2.5: MEAN(A, B, C)

1. Set AVE:=(A +B + C)/3.
2. Return(AVE).

Note that MEAN is the name of the subalgorithm and A, B and C are the parameters. The Return statcment
includes, in parentheses, the variable AVE, whose value is returned to the calling program.

* The subalgorithm MEAN is invoked by an algorithm in the same way as a function subprogram is
invoked by a calling program. For examplc, supposc an algorithm contains the statcment

Sct TEST := MEAN(T,, T,, T,)

where T, T, and T, are test scores. The argument values T,, T, and T, arc transferred to the
parameters A, B, C in the subalgorithm, the subalgorithm MEAN is cxccuted, and then the value of
AVE is returncd to the program and replaces MEAN(T,, T,, T,) in the statcment. Hence the avcrage
of T,, T, and T, is assigned to TEST. °

EXAMPLE 2.10 )
The following procedure SWITCH interchanges the values of AAA and BBB.
Procedure 2.6: SWITCH(AAA, BBB)

1. Sct TEMP:= AAA, AAA :=BBB and BBB := TEMP.
2. Return.

The pmccdﬁrc is invoked by mcans of a Call statement. For example the Call statement
Call SWITCH(BEG, AUX) #

has the net effect of interchanging the values of BEG and AUX. Specifically, when the procedure SWITCH is
invoked, the argument of BEG and AUX are transferred to the parameters AAA and BBB, respectively; the
procedurc is exccuted, which interchanges the values of AAA and BBB; and then the new values of AAA and
BBB are transferred back to BEG and AUX, respectively, '

Remark: Any function subalgorithm can be casily translated into an cquivalent proccdure by
simply adjoining an extra parameter which is used fo return the computed valuc to the calling
algorithm. For example, Function 2.5 may be translated into a procedure

MEAN(A, B, C, AVE)
where the parameter AVE is assigned the avc}agc of A, B, C. Then the statement
Call'MEAN(T,, T,, T,, TEST)

also has the cffect of assigning the average of T,, T, and T, to TEST. Generally speaking, we will use
procedures rather than function subalgorithms.

2.7 VARIABLES, DATA TYPES

Each variable in any of our algorithms or programs has a data t

'ype which determines.the code that
is used for storing its value. Four such data types follow: '

(1) Character. Here data are coded using some character code such as EBCDIC or ASCII, The
8-bit EBCDIC code of some characters appears in Fig. 2-7. A single character is normally
stored in a byte.
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Char. Zone Numeric Hex Char. Zone Numeric Hex Char. Zone Numecric | Hex
s 1110 0010 E2 blank 0100 0000 40

A 1100 0001 Cl1 T 0011 E3 1011 4B
B 0010 C2 U 0100 E4 < 1100 4C
C 0011 | 3 Y 0101 ES . ( | 1101 ap
D 0100 C4 w 0110 E6 + 0100 1110 4E
E 0101 Cs X 0111 E7 & 0101 0000 50
F 0110 c6 Y 1000 ES $ 1011 5B
G 0111 C7 Z 1110 1001 EY9 “ 1100 sC
H [ - 1000 Ccs8 | ) | 1101 5D
1 1100 1001 9 0 1111 0000 FO : 0101 1110 SE
J 1101 0001 D1 1 0ol F1 - 0110 0000 &
K 0010 D2 2 0010 F2 / 0001 61
3 0011 D3 3 00t 1 F3 . 1011 6B
M 0100 D4 4 0100 F4 % 1100 6C
N 0101 DS 5 0101 FS > 1110 6E
O 0110 D6 6 0110 F6 2 o110 1111 6F
P 0111 D7 ||°7 OHIRY F7 : 0111 1010 7A
Q | 1000 D8 8 ] 1000 F8 " 1011 7B
R 1101 1001 D9 9 i 1001 F9 @ 1100 7C
= 01l 1110 TE

Fig. 2-7 Part of the EBCDIC code.

{2) Real (or floating point). Here numerical data are coded using the exponcential form of the
data.

(3) Integer (or fixed point). Here positive integers arc coded using binary representation, and
ncgative intcgers by some binary variation such as 2's complement.

/4) Logical. Here the variable can have only the value truc or falsc; hence it may be coded using
only one bit, 1 for true and 0 for false. (Sometimes the bytes 1111 1111 and 0000 0000 may be
used for truc and false, respectively.) : : :

The data types of variables in our algorithms will not be explicitly stated as with compulter programs
but will usually be implied by the context. . ‘

EXAMPLE 2.11
Supposc a 32-bit memory location X contains the folloWing sequence of bils.;
0110 1100 11000111 11010110 01101100
There is no way to know the content of the cell unless the data type of X is known.
(¢) Suppose X is declared to be of character type and EBCDIC is used. Then the four characters %GO% are

stored in X.

(b) Suppose X is declared to be of some other type, such as integer or real. Then an inicgcr or real number is
stored in X. :

f.ocal and Global Variables

.
The organization of a computer program into a main program and various subprograms has lcd to

the notion of local and global variables. Normally, cach program module contains its own list of

variables, called local variables, which can be accessed only by the given program module. Also,
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“subprogram modules 'may. contain parameters; variables which-transfer data. between: a subprogram
and its-calling program. ;

EXAMPLE 2.12

Consider the procedure SWITCH(AAA., BBB) in" Example 2.10. The variables AAA and BBB are
parameters; they are used to transfer data between the procedure and a calling algorithm. On the othei hand, the
variable TEMP in the procedure is a local variable. It **lives® only in the procedure; i.e., its value can be accessed
and changed only during the execution of the procedure. In fact. the name TEMP may be used for a variable in
any other module and the use of the name will not interfere with the execution of the procedure SWITCH.

Language designers realized that it would be convenient to have certain variables which can be
accessed by some or cven all the program modules in 4 .computer program. Variables that can be
accessed by.all program modules are called global -variables, and variables that can be accessed by

“some program modules are called nonlocalivariables. Each. programming language has its own syntax
+ for deelaring such variables. For example, FORTRAN uses a COMMON statement to declare global
“variables, and ‘Pascal .uses-scope rules to declare global and nonlocal variables.

Accordingly, there are two basic ways for modules to communicate with each other:

(1) Directly, by means of well-defined parameters

(2) Indirectly, by means of nonlocal and global variables
The indirect change of the value of a variable in one module by another module is called a side effect.
Readers should be very careful when using nonlocal and global variables, since errors caused by side
effects may be difficult to deteet. .

Solved Problems

MATHEMATICAL NOTATION AND FUNCTIONS

2.1 Find (a) |7.5], [-7.5), [-18], V30, [V30), [7]; and (b) [7.51, [=7.5], [=18], [V30],

(a) By definition, | x| denotes the greatest integer that does not exceed x, called the floor of x. Hence,
7.5} =7 1-7.5] = -8 |—18] = —18
|V30] =5 |V30) =3 l7)=3
(b) By definition, [x] denotes the least integer that is.nm less than x, called the ceiling of x. Hence,
[7.5]1 =8 [x7.5]'=~7 [—18] = —-18
[V30] =6 = [V30]=4 [7] =4

2.2 (a) Find 26 (mod 7), 34 (mod 8), 2345 (mod 6), 495 (mod 11),
(h) Find —26 (mod 7), —2345 (mod 6), —371 (mod 8), -39 (mod 3).
(¢) Using arithmetic modulo 15, evaluate 9+ 13, 74+ 11,4 -9, 2 — 0.

(a) Since k is positive, simply divide k by the modulus M to obtain the remainder r. Then r = k (mod M).
Thus

5=26 (mod 7) 2 =34 (mod 8) 5 =2345 (mod 6) 0=495 (mod 11)



34

2.3

2.4

25

PRELIMINARIES [CHAP. 2

.~ (b) . When k is ncgative, divide | k| by the:modulus-to-obtain the:remainder 7', Then k= —r'(mod M).

Hence k (mod M) = M —r' when r' # 0. Thus

—26 (mod 7)=T7—5=2 —371 (mod 8) =8-3=35
—2345 (mod 6)=6—5=1 -39 (mod 3) =0
(o) UséaA.tMl‘-'a (mod M): \
‘ ‘ 9+ 13=202=22—-15=7 7+11=18=18—-15=3
" 4-9=-5=~-5+15=10 2-10= ~8="-B+15=7

List all the permutations-of the“aumbers 1, 2, 3, 4.
Note first that therc are 41=24 such’ permutations:
1234 1243 1324 1342 - 1423 1432
2134 2143 2314 2341 2413 2431
3124 3142 3214 3241 3412 3421
4123 4132 4213 4231 4312 4321

‘Obscrve that the first row contains the six permutations beginning with 1, the sccond row those beginning

~with 2, and-so on.

Find: (a) 2%, 8% 257%%; (b) log, 32, log,, 1000, log; (1/16); (c) Liog, 1000}, llog, 0.01].

(@) "2 3=1/2°=1/%2; 87" = (VB) =2%=4; 2572 = 1/25"* = 1/5" = 11125.

(b) = log, 32 = 5 since 2° = 32; log,, 1000 = 3:sincc 10° =-1000; log,(1716) = —4 since 27 * =1/2" = 1/16.

(€) llog, 1000] =9:since 2° =512 but 2" = 1024,
llog, 0.01] = =7 since 277 = 1/128 <0.01 <27* = 1/64.

Plot the graphs of the cxponential function f(x) = 2% the logarithmic function g(x) = log, x and
the linear function h(x) = x on the same coordinate axis. (a) Describe a-gcometric property of
the graphs f(x) and g(x). (b) For any positive number ¢, how are f(¢), g(¢c) and h(c) related?

Figure 2-8 pictures the three functions.

G

f(x)=g"
h(x) = x

glx) = log, x

I
v
=N
-

= Y

Fig. 2-8
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(a) Since f(x)=2" and g(x) = log;.x are inversc. functions; they-are: sy;nmema wnh-respcctrm theline -
y=x t
(&) For any-positive-number ¢, we_have
8(c) < h(c) <Afe)
In fact, as ¢ increasecs in value, the vertical distances- bqlween the [uncunns.
h(c)—g(c) and J(c) = h(e),

increase in value. Moreover, the logarithmic.function g(x): sgrows very slowly. compamd with the
lincar function=h(x), and:the- cxpomnulkﬁmmlon £(x) grows. very quickly compared with A(x).

ALGORITHMS, COMPLEXITY

2.6

2.7

Consider Algorithm 2.3, which finds the location LOC and the value MAX of the largest
clement in an array DATA with n elements, Consider the complcxlty function C(n), which
measurcs the number . of times LOC and MAX are updalcd in Step 3. {The number of
comparisons is independent of the order of the clcments in DATA )

(a) Describe and find C(n) for the worst case.
(b) Describe.and find C(n) for the best case.

(¢) Find C(n) for the average case when n = 3, assuming all arrangements of the clements i in
DATA are equally likely. ; £

(a) The worst case occurs when the clements of DATA are in increasing order, where cach compan.son
of MAX with DATAIK] forces LOC and MAX to be updated. In this. case, C(n)= n'-.1,

(b) The best case occurs when the largest clement appcars first and so when the comparison of MAX
with DATA[K] ncver forces LOC and MAX to be updated. Accordingly, in this case, C(n) = 0.

(¢) Let 1, 2 and 3 denote; respectively, the largest, second largesf and smallest elements of DA'!A.
There are six possible ways‘the clements can appear in DATA, which correspond to the 3! =
permutations of 1, 2, 3, For each pcrmutauon p, let n, denote the number of times LOC and MAX
arc updated when the - algorithm is ¢xecuted wnh input p. The six pecrinutations p and the
corresponding values n, follow:

Permutation p: 123 132 213 231 312 321,
Valueofn : 0 im0 1 1 1 2

Assuming all pcrmutations p are equally likely,

0+0-+14+1+ 1+2 5
£83)~ 6 %

(The cvaluation of the average value of C(n) for atbitrary n lics' ‘beyond the scope of this text. Once
purpose of this problem is to illustrate the dlfﬁcully that may oceur, in finding the complexity of the
average case of an dlgomhm)

Suppose Module A requires M units of time to be cxecuted, where M is a constant. Find the
complexity C(n) of each algorithm, where n is the size of the input data and b is a positive
integer greater than 1.

Repeat for-I =1 to N:

(a) Algorithm P2:7A: 1
2. Repeat for J =1 to N:
. 3; Repeat for K=1 to N:
4 Module A.

[End of Step 3.loop.]
|End of Step 2 loop.]
[End of Step 1 loop.]
o EEXi
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1. SetlJ:=1.
2. Recpeat Steps 3 and 4 while J =N:
3. Module A.
<4 Set J:=B x J.
[End of Step-2 loop.]
§: Bt

Observe that the algomhms use N for n und B-for b.)

(a) . Here : Cinn S 3 S M

(b) Algorithm P2.7B:

im] gm | k=]

The number of times M occurs in the sum is equal to the number of triplets (i, j, k), where i, j, k arc
integers from 1 to n inclusive. There are n' such triplets. Hence

C(n) = Mn* = O(n")

(b) Observe that the valucs of the loop index J are the powers of b

B B AR
Thercfore, Module A will be repeated exactly 7 times, where T is the first exponent such that
» b">n
Hence, T = |log, n) + 1
Accordingly, C(n) = MT = O(log, n)

(@) Writc a procedure FIND(DATA, N, LOCI, 1.0C2) which finds the location LOCL of the
largest element and the location LOC?2 of the sccond largest clement in an array DATA
with n > 1 clements.

(b) Why not let FIND afso find the values of the largest and sccond largest elements?

(a) The clements of DATA ure examined one by one. During the exccution of the proccdure, FIRST
and SECOND will denote, respectively, the values of the largest and sccond largest clements that
have alrecady been examined. Each new element DATA[K] is tested as follows. If

SECOND = FIRST < DATA[K]

then FIRST becomes the new SECOND clement and DATA[K] becomes the new FIRST clement.
On the other hand, if
SECOND < DATA[K] = FIRST

then DATA[K] becomes the new SECOND element. Initially, set FIRST:=DATA[1] and
SECOND := DATA[2], and check whether or not they are in the right order. A formal presentation
of the procedure follows:

Procedure #2.8:.  FIND(DATA, N, LOCI, LOC2)

1. Sct FIRST:= DATA([1], SECOND := DATA[2], LOC]}:=1, LOC2:=2.
2. |Are FIRST and SECOND initially correct?]
If FIRST <SECOND, then:
(@) Interchange FIRST and SECOND,
(b) Set LOC1:=2 and LOC2:= 1.
|End of If structure.]
3. Rcpeat for K=3 to N;
If FIRST < DATA[K], then:
(a) Sct SECOND :=FIRST and FIRST :DATA[K].
(b) Sct LOC2:=10OCI] and LOCIl:=K
Elsc if SECOND < DATA[K], then:
Sct SECOND := DATA[K] and LOC2:=K
[End of If structure.]
|End of loop.]
4. Return.
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2.9

(b) Using additional parameters FIRST and SECOND would be redundant, since LOC1 and LOC2
automatically tell the calling program that DATA[LOCI] and DATA[LOC2] are, respectively, the
values of the largest and sccond largest clements of DATA.

Anintegera > 1is called a prime number if its only positive divisors are 1 and n; otherwisc, n is
called a composite number. For example, the following are the primc. numbers less than 20:

2,.3, 5, 75 1L, 135 1719

If n>1isnotprime,i.c.,if nis composite, then 2 must have a divisor & # 1 such that & < Vi or,
in other words, k*> = n.

Supposce we want to find all the prime numbers less than a given number m, such ., 50. This
can be done by the “sicve mcthod,” which consists of the following steps. First list the 30
numbers:

1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15
16, 17, 18, 19, 20, 21, 22,23, 24, 25, 26, 27, 28, 29, 30

Cross out 1 and the multiples of 2 from the list as follows:

4,2, 3.4, 5.8 78938, V&, 1, 13,3415
A6, 17, 38,19, 20, 21, 27, 23, 24, 25, 26, 27, 26, 29. 3¢

‘Since 3 is the first number following 2 that has not been climinated, cross out the multiples of 3

from the list as follows:

AT 2030 AL 5 T BN O, LN AR
36, 17, 3819, 20, 21, 22 23, 24, 25, 26, 27, 26, 29,

Since 5 is the first number following 3 that has not been eliminated, cross out the multiples of 5
from the list as follows: ‘

AT 2, 3,475, 677, 8.9, 00, 11, 1Z, 13, J47 A5
36, 17, 38, 19, 20, 247, 27, 23, 24, 25, 26, 27, 28, 29, 36

Now 7 is the first number following 5 that has not been climinated, but 7% > 30. This mcans the
algorithm is finished and the numbers left in the list are the primes less than 30:

25T RS VIR 19,123 1199

Translate the sicve method into an algorithm to find ali prime numbers less than a given
number #n.

First define an array A such that

All] =1, Al2] =2, A[3] =3, Ald]=4,. . . JA[N-1]=N-1, A[N] =
We cross out an integer L from the list by assigning A[L] = 1. The following procedure CROSSOUT tests
whether A[.K] =1, and if not, it sets
A[2K] =1, A[3K] =1, AldK]=1,...

That is, it climinates the multiples of K from the list
Procedure P2.9A: CROSSOUT(A, N, K)

1. If A[K]=1, then: Rewin.
Repeat for L =2K to N by K:
Sct A[L]:= 1.
[End of loop.]
3. Return.

The sicve method can now be simply written:
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Al ithin P2.9B:  This algorithme prints the prime.numbers less. than-N..

1. Initialize array A.] Repeat for K =1 to N:
Set A[K)}i=K. -
2 |Eliminate mult'ples of K.} Repeat for K=2 to VN
. Call CROSSOUT(A, N, K).
3. [Print the primes.] Repeat for K =2 to'N:
If A[K]# 1, then: Write: A[K].

4. Exit.
Suppose P(n) = a, + a\n+ an’ + 1 a,n"; that is, supposc degree P(n) = m. Prove that
P(n) = O(n™).
Let b, =la,|, b,=la,|,....b,, =la,|. Then, forn=1,

b !
P(n)< by byn+ bynt 4o kb= (284 ke b, )"
n

=(b,+b, +- -+ b " =Mn"

where M = |ag| + |a,| + - +|a,|. Hence P(n) = ¢(n™).
For example, '+ 3x = O(x") and x* — 4 00 000x" = o(xY).

ARIABLES, DATA TYPES

2.11

2.12

2.13

Describe briefly the difference between local variables, parameters and global variables.

Local variabics ure variables which can be accessed only within a particular program or subprogram.
Parameters are variables which are used to transfer data between a subprogram and its calling (wrogram.
Global variables are variables which can be accessed by all of the program modules in a computer
program. Each programming language which allows global variables has its own syntax for declaring them.

5\

Supposc NUM denotes the number of records in a file. Describe the advantages in defining
NUM: to be a global variable. Describe the disadvantages in using global variables in general.

Many of the procedures will process all the records in the file using some type of Toop. Since NUM will
be the same for all these procedures, it would be advantageous to have NUM declared a global variable.
Generally speaking, global and nonlocal variables may lead to crrors caused by side cffects which may be
difficult to detect.

Suppose a 32-bit memory location AAA contau.is the following sequence cf bits:
0100 1101 1100 0001 1110 1001 0101 1101

Determine the data stored in AAA.

There is no way of knowing the data stored in AAA unlcss one knows the data typc of AAA. I AAA
is a character variable and the EBCDIC code is used for storing data, then (AZ) is stored in AAA. I
AAA is an intcger variable, then the integer with the above binary rcprescntation is stored in AAA.

Mathcmatically speaking, integers may also be viewed as rcal numbers. Give some reasons for
having two different data types.
The arithme.ic for integers, which arc stored using some type of binary representation, is much

simpler than the arithmetic for real numbers, which are stored using some type of exponential form. Also,
certain round-off crrors occurring in real arithmetic do not occur in integer arithmetic.
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Supplementary Problems
MATHEMATICAL NOTATION AND FUNCTIONS
2.15 Find (a) |3.4), |-3.4), |-7], LVT75}, V73], lel; (b) [3.41, [—3.4], [-71, [VT3], [VT5) [el.

2.16 (a) Find 48 (mod 5), 48 (mod 7), 1397 (mod 11), 2468 (mod 9).
(b) Find —48 (mod 5), —152 (mod 7), —358 (mod 11), —1326.(mod 13).
(¢) Using arithmctic modulo 13, evaluate
O+10,, 8+ 12,  3+4, 34,7 °2<7 s_8
2.17° Find (a) |3+ 8], |3-8|, |-3+8]|, |-3—8|; (&) 7!, 8!, 141/12!, 15!/16!

2.8 Find (a) 37% 47’2 27°'3; (b) log, 64, log,, 0.001, log; (1/8): (¢) l1g 1 000000], Hg0:001].

RITHMS, COMPLEXITY

9  Consider the complexity function C(n) which measures the number of times LOC is upélalc_d in Step 3 of
Algorithm 2.3.:Find C(a) for the -average case when n-= 4,.assuming. all arrangements-of the given-four
clements-arc equally likely: (Compare-with Prob. 2.6.)

2.20 Consider Procedure P2.8, which finds:the docation LOC1 of the largest clement and the location LOC2 of
* the second-largest clement ‘in-an array DATA ‘with n>1 elements. L¢t C(n) denote the number of
comparisons during the execution of the procedure.

(@) Find C(n) for the best casc.
(b) Find C(n) for the worst case.

(c) Find C(n) for the average case for n = 4, assuming all arrangcments of the given elements in DATA
are equally likely.

2.21 - Repeat Prob. 2.20, except now let C(n) denote the number of times the values of FIRST and SECOND (or
LOCI1 and LOC2) must be updated.

2.22  Suppose the running time of a Module A is a constant M. Find the order of magnitude of the complexity
function C(1) which measures the execution time of cach of the following algorithms, where n is the size of
the input data (denoted by N in the algorithms).

(a) Procedure P2.22A: 1. Repeat for I=1 to N:
Repeat for J=1 to I:
Repeat for K=1 to J:
Module A.
[End of Step 3 loop.]
[End of Step 2 loop.]
[End of Step 1 loop.]
b Y - 4 |

1. SectJ:=N.
2. Rcpeat Steps 3 and 4 while J> 1.
3. Module A.
4 Set J:=J/2,
[End of Step 2 loop.]
5. Return.

o

(b) Procedure P2.22B:
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2.23

2.24

2.25

-2.26

2.27
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Programming Problems

Write a function subprogram DIV(J, K); where § and K are positive-integers such that DIV, K= if F
divides K but otherwise DIV(J, K) = 0. (For example, DIV(3; 15) =1 but DIV(3,16) =1.)

Write a program using DIV(J, K) which reads a positive integer N > 10 and determines whether or not N is
a prime number. ({lint: Nois prime if (i) DIV(2, N) =0 (i.c., Nis odd) and (ii) DIV(K, N) =0 for all odd
integers K where 1< K*=N.)

Translate Procedure 2.8 into a computer program; i.c., write & program which-finds the lecation LOCI of
the largest clement and the location LOC2 of the sccond largest clement in an array DATA with N> |
clements. Test the program using 70, 30, 25, 80, 60, 50, 30, 75, 25, and 60.

“Franslate the sicve method for finding prime:numbers, described in ' Prob. 2:9,/imtaa program to find the

prime numbers less than ‘N2 Test the program-using (¢) N =1000-and (b) N = 10000.

Let C denote the number of times LOC is updated using Algorithin 2.3 to find the largest elementiinan
array A with N clements.

(@) Write a subprogram COUNT(A, N, C) which finds C.

(b) Write a Procedure 2.2/ which (i) reads N random numbers between 0 and 1 into an array A and (ii)
uses COUNT(A, N, C) to find the value of C.

(¢) Write a program which repeats Procedure P2.27 1000 times and finds the average of lhc ](K)() (“
(i) Test the program for N = 3 and compare the result with the value obtained in Prob.
(ii) Test the program for N =4 and compare the result-with the value in Prob. 2.19.

-



Chapter 3

String Processing ‘

3.1 INTRODUCTION

Historically, computers were first ‘used for processing numecrical data. Today, computers are
frequently used for processing nonnumerical data, called character data. - This chapter discusses how
such data are stored and processed by the computer.

Onc of thc primary applications of computers today is in the ficld of word processing. Such
processing usually involves some type of pattern‘matching, as in checking to sce if a particular word S
appears in a given text T. We discuss this pattern matching problem in dctail and, moreover, present
two diffcrent pattern matching algorithms. The complexity of these algorithms is also investigated.

Computer terminology usually uses the term “string” for a scquence of characters rather than the
term “‘word,” since “word" has another meaning in computer sciénce. For this reason, many texts
sometimes usc the expression “'string processing,” “string manipulation™ or “‘text cditing” instcad of
the expression “word processing.” :

The material in this chapter is cssentially tangential and indcpendent of the rest of the text.
Accordingly, the rcader or instructor may choose to omit this chapter on a first reading or cover this
chapter at 2 later time.

3.2 BASIC TERMINOLOGY

Each programming language contains a character set that is used to communicate with the
computer. This sct usually includes the following:

Alphabgt: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Digits: O 1 2 3nd 5678 9
Special characters: Feodvn o w00 Y e =0 Ml

The set of special characters, which includes the blank space, frcquently denoted by [, varies
somewhat from onc language to another.

A finite sequence S of zero or more characieys is called a string. The number of characters in a
string is called its length. The string with zero characters is called the empty string or the null string.

Specific strings will be denoted by enclosing their characters in single quotation marks. The quotation
marks will also serve as string delimigers. Hence

'THE END" "TO BE OR NOT TO BE a0

arc strings with lengths .7, 18, 0 and 2, respectively. We emphasize that the blank space is a character
and hence contributes to the length of the string. Sometimes the quotation marks may bc omitted when
the context indicatcs that the expressign is a string. :
Let S, and S, be strings. The string consisting of the characters of S, followed by the characte_s of
¢S, is called the concatenation of S, and S,; it will be denoted by S, //S,. For example,
'"THE' /| '"END"' = 'THEEND' but . 'THE'//'O')/'END = 'THE END
Clearly the length of S, //S, is cqual to the sum of the lengths of the strings S, and S,.
A string Y is called a substring of a string S if there exist strings X and Z such that
_S=X/Y[lZ

If X is an empty string, then Y is called an initial substring of S, and if Z is an empty string then Y is
called a terminal substring of S. For example,

41
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'BE OR NOT' is a substring of 'TO BE OR NOT TO BE'
"THE' is an initial substring of '"THE END"-

Clearly, if Y is a substring of S, then the length of Y cannot cxcced the length of S.

Remark: Characters arc stored in the computer using either a'6-bit, a 7-bit or an 8-bit code. The
unit equal to the number of bits nceded to represent a character is called a byre. However, unless
otherwise stated or implied, a byte usually means 8 bits. A computer which can access an individual
byte is called a byte-addressable machine.

3.3 STORING STRINGS

Generally speaking, strings are stored in three types of structures: (1) fixed-length structures, (2)
variable-length structures with fixed maximums and (3) linked structures. We discuss cach type of
structure separately, giving its advantages and disadvantagcs.

Record-Oriented, Fixed-Length Storage

In fixed-length storage cach line of print is viewed as a record, where all records have the samc
length, i.e., where each record accommodates the same number of characters. Since data arc
frequently input on terminals with 80-column images or using 80-column cards, we will assume our
‘records have length 80 unless otherwisc stated or implied.

EXAMPLE 3.1

Supposc the input consists of the FORTRAN program in Fig. 3-1. Using a rccord-oricntcd, fixed-length
storage medium, the input data will appear in memory as pictured in Fig. 3-2, where we assuine that 200 is the
address of the first character of the program.

The main advantages of the above way of storing strings are:
(1) The case of accessing data from any given record

(2) The casc of updating data in any given record (as long as the length of the new data does not
exceed the record length) : '

The main disadvantages are:

(1) Time is wasted reading an entire record if most of the storage consists of incssential blank
spaces.
(2) Certain records may rcquire more space than available.

(3) When the correction consists of more or fewer characters than the original text, changing a
misspclled word requires the entire record to be changed.

C  PROGRAM PRINTING TWO INTEGERS IN INCREASING ORDER
READ », J, K
IF(J.LE.K) THEN
PRINT =, 1, K
ELSE
PRINT », K, J
ENDIF
STOP
END .

Fig. 3-1 Input data.
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Fig. 3-3 Records stored using pointers.
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Remark: Suppose we wanted to insert a new record in Example 3.1. This would require that ail
succeeding records be moved to new memory locations. However, this disadvantage can be casily,
remedied as indicated in Fig. 3-3. That is, one can usc a lincar array POINT which gives the address of
each successive record, so that the rccords necd not be stored in consccutive locations in memory.
Accordingly, inserting a knew record will require only an updating of the array POINT.

Variable-Length Storage with Fixed Maximum

Although strings mgay be stored in fixed-length memory locations as above, there are advantages in
knowing the actual length of each string. For example, onc then docs not have to read the entire record
when the string occupies only the beginning part of thc memory location. Also, certain string
operations (discussed in Sec. 3.4) depend on having such variable-length strings.

The storage of variable-length strings in memory cells with fixed lengths can be done in twosgencral

. ways:

(1) One can use a marker, such as two dollar signs ($3$), to signal the end of the string.

€2) One can list the length of the string—as an additional item in the pointer array, for example.
Using the data in Fig. 3-1, the first mcthod is pictured in Fig. 3-4(a) and the second method is picturcd
in Fig. 3-4(b).

\ /

(& PROGRAM PRINTING TWO INTEGERS IN INCREASING ORDERSS l

1 .____f_—! READ =, J, K$$ |
2 o ;
Y v PRI o | IF(J.LE.K) THENS$ ' g
4 >
1,{ PRINT *, J, K$$ |
9 - - -
N[  EnDsS l

(a) Records with scntincls.

C PROGRAM PRINTING TWO INTEGERS IN lNCREA‘S.lNG ORDER

POINT .
1 |ss »—-_/_.[ READ +, J, K i B
2 18 ®-——|
= Gl
3 |21 - IF(J.LE.K) THEN —]
.4 24 [ —
_ ——\-———] PRINT », J, K |

END ‘ 2 ]

(b) Records whose lengths are listed.

Fig. 3-4
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Remark: Onc might be tempted to store strings onc after another by using some scparation
marker, such as the two dollar signs ($$) in Fig. 3-5(a), or by using a pointer array giving the location
of the strings, as in Fig. 3-5(b). These ways of storing strings will obviously save space and arc -
sometimes uscd in secondary memory when records arc relatively permanent and requirc little change.
However, such methods of storage arc usually incfficicnt when the strings and their lengths are °
frequently being changed.

| C  PROGRAM...ORDERSSS  READ =, J, KS$  IF(J.LE.K) THENSS ... J
(a)
END
1 0—le PROGRAM ... ORDER I READ =, J, K ] IFQJ.LE.K) THEN ] ]
- [}
2 %, Jj J
3 ®
-
-
®
)

Fig. 3-5 Reccords stored one after another.

Linked Storage

Computers arc being used very frequently today for word processing, i.c., for inputting, processing
and outputting printcd matter. Thercfore, the computer must be able to correct and modify the printed
matter, which usually mcans deleting, changing and inserting words, phrases, sentences and cven
paragraphs in the text. However, the fixed-length memory cells discussed above do not casily lend
themsclves to these operations. Accordingly, for most extensive word processing applications, strings
are stored by means of linked lists. Such linked lists, and the way data arc inscrted and deleted in them,
arc discussed in detail in Chap. 5. Here we simply look at the way strines appear in these data
structures. '

By a (onc-way) linked list, we mean a linearly ordered sequence of memory cells, called nodes,
where cach node contains an item, called a link, which points to the next node in the list (i.c., which
contains the address of the next node). Figure 3-6 is a schematic diagiam of such a linked list.

= poxx | o xxxlq——lxxxlﬁ——{xxxl-{‘-— coe

Fig. 3-6 Linked list.

: 0 Bl [ [ [ [f— -+

(@) One character per node,

Lol TsTd—{e] To[r [F—{N[o[x[ T~={we[ [[F—~{E[-] [f[-}—» ==

(&) Four characters per node.

Fig. 3-7 .




46 STRING PROCESSING [CHAP. 3

Strings may be stored in linked lists as follows. Each memory ccll is assigned one character or a
fixed number of characters, and a link contained in the cell gives the address of the cell containing the
next character or group of characters in the string. For cxample, consider this famous quotation:

To be or not to be, that is the question,

Figurc 3-7(a) shows how the string would appcar in memory with one character per node, and Fig.
3-7(b) shows how it would appear with four characters per node.

CHARACTER DATA TYPE

This section gives an overview of the way various programming languages handle the character
data type. As noted in the preceding chapter (in Sec. 2.7), cach data type has its own formula for
decoding a sequence of bits in memory.

Constants
Many programming languages denote string constanty by placing the string in cither single or
double quotation marks. For example, .

'THE END' and 'TO BE OR NOT TO BE'

arc string constants of lengths 7 and 18 characters respectively. Our algorithms will also define
character constants in this way.

Variables

Each programming language has its own rules for forming character variables. However, such
variables fall into onc of three catcgorics: static, scmistatic and dynamic. By a static character variable,
we mean a variable whosc length is defined before the program is cxccuted and cannot change
throughout the program. By a semistatic character variable, we mean a variable whose length may vary
during the cxccution of the program as long as the length docs not cxceed a maximum value
determined by the program before the program is cxecuted. By a dynamic character variable, we mean
a variable whose length can change during the exccution of the program. These thrce categorics
correspond, respectively, to the ways the strings arc stored in the memory of the compuicr as discussed
in the preceding scction.

EXAMPLE 3.2
(¢) Many versions of FORTRAN use static CHARACTER variables. For cxample, consider the following
FORTRAN program scgment: :
CHARACTER ST1%10, ST2+14
ST1="THE END'
§r2="'TO BE OR NOT TO BE'
The first statement declares ST1 and ST2 to be CHARACTER variables with lengths. 10 and 14,
respectively. After both assignment statements arc executed, ST and $T2 will appcar in memory as follows:

s (e[ [e[NE[ ] 1] s [Flo] e[ Tolel [N[o[7[ T

That is, a string is stored left-justified in memory. Either blank spaces are added on the right of the string, or
the string is truncated on the right, depending on whether the length of the string is less 4hun or exceeds the
length of the memory location. i

(b) BASIC dcfines character variables as those variables whose namc ends with a dollar sign. Generally
spcaking, the variables are semistatic ones whose lengths cannot cxceed a fixed bound. For example, the
BASIC program segment :



CHAP. 3] STRING PROCESSING 47

A$="'"'THE BEGINNING"'
B$="'THE END"'
defines A$ and B$ to be character variables, When the segment is exccuted, the lengths of A$ and IB$ will be
13 and 7, respectively.
Also, BASIC uses double quotation marks to denote string constants.
(¢) SNOBOL uses dynamic character variables. For cxample, the SNOBOL program scgment

WORD = 'COMPUTER '

TEXT = "IN THE BEGINNING '
defines WORD and TEXT as character variables, When the scgment is cxecuted, the lengths of WORD and
TEXT will be 8 and 16, respectively. However, the lengths may change Jater in the program.

(d) PL/1 uses both static and semistatic CHARACTER variables. For cxample, the PL/1 statement

DECLARE NAME CHARACTER(20),
WORD CHARACTER(15) VARYING:

designates NAME as a static CHARACTER variable of length 20 and designates WORD as a semistatic
CHARACTER variable whose length may vary but may not cxceed 15.

(¢) In Pascal, a character variable (abbreviated CHAR) can represent only a single character, and hence a string
is represented by a lincar array of characters. For cxample,

VAR WORD: ARRAY][I . .20] OF CHAR

declares WORD to be a string of 20 characters. Furthcrmore, WORDI[1] is the first character of the string,
WORDJ2] the sccond character and so on. In particular, CHAR arrays have fixed lengths and hence are
static variables. '

3 TRING OPERATIONS

Although a string may be viewed simply as a scquence or hwcar array of characters, there is a
fundamental difference in use between strings and other types of arrays. Specifically, groups of
consccutive clements in a string (such as words, phrases and sentences), called substrings, may be units
unto themsclves. Furthermore, the basic units of access in a string arc usually these substrings, not
individual characters.

Consider, for cxample, the string

'"TO BE OR NOT TO BE'

W¢e may view the string as the 18-character sequenee T, O, [0, B, . . ., EE. However, the substrings TO,
BE, OR, ... have their own meaning. ’ '
On the other hand, consider an 18-clement lincar array of 18 integers,

4, 8,6, 15,9, 5, 4, 13, 8, 5, 11, 9, 9, 13, 7, 10, 6, 11

The basic unit of access in such an array is usually an individual clement. Groups of consecutive
elements normally do not have any special mecaning. : ;

For the above reason, various string operations have been devcloped which are not normally used
with other kinds of arrays. This scction discusses these string-oricnted opctitions.. The next section
shows how thesc operations are used in word processing. (Unless otherwise stated or implied, we
assume our character-type variables are dynamic and have a variable length determincd by the context
in which the variable is used.) \

Substring

Accessing a substring from a given string requires three picces of information: (1) the name of the
string or the string itself, (2) the position of the first character of the substring in the given string an¢
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(3) the length of the substring or the position of the last character of the substring. We call this
operation SUBSTRING. Specifically, we write

% SUBSTRING (string, initial, lcngth)

to denote the substring of a string S beginning in a position K and having a length L.

EXAMPLE 3.3

(@) Using the above function we have:

SUBSTRING('TO BE OR NOT TO BE', 4, 7) = '"BE OR N'
SUBSTRING('THE END', 4, 4) = "0END'

() OQur function SUBSTRING(S, 4, 7) is denoted in some programming languages as follows:

PL/1: SUBSTR(S, 4, 7)
FORTRAN 77: S(4:10)

UCSD Pascal: COPY(S, 4, 7)
BASIC: MIDS(S, 4, 7)

Indexing

Indexing, also called pattern matching, rcfers to finding the position where a string pattern P first
appears in a given string text T. We call this operation INDEX and write

INDEX(tcxt, pattern)

If the pattern P docs not appear in the text T, then INDEX is assigned the value 0. The arguments
“text” and “pattern” can be cither string constants or string variables.

EXAMPLE 3.4
(a) Supposc T contains the text
"HIS FATHER IS THE PROFESSOR'
« Then,
INDEX(T, "THE"), INDEX(T, "THEN') and INDEX(T, '"OTHEO")

have the values 7, 0 and 14, respectively.

\

(b) The function INDEX(text, pattern) is denoted in some of the programming languages as follows:

PL/1: INDEX(text, pattern)
UCSD Pascal: POS(pattern, text)

Observe the reverse order of the arguments in UCSD Pascal.

Concatenation

Let S, and S, be strings. Recall (Sec. 3.2) that the concatenation of S, and S,, which we denote by
S, JIS,, is the string consisting of the characters of S, followed by the characters of S,.

EXAMPLE 3.5
(@) Supposc S, = "MARK' and S, = "TWAIN". Then:
S, /IS, = 'MARKTWAIN' but  S,//'0'[/S,="MARK TWAIN'
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(b) Concatenation is denoted in some programming languages as follows:

PL/1: S, IS,
FORTRAN 77: s, /s,
BASIC: S, +S,
SNOBOL.: S, S, (juxtaposition with a blank space between S, and S,)
Length !
The number of characters in a string is called its length. We will writc
LENGTH(string)
for the length of a givcn‘string. Thus
LENGTH('COMPUTER') =8 LENGTH('OQ')=0 LENGTH('")=0
Some of the programming languages denote this function as follows: ‘
‘ * L PLIL: LENGTH(string) '
BASIC: LEN(string)
UCSD Pascal: LENGTH(string)
SNOBOL.: SIZE(string)

FORTRAN and standard Pascal, which use hixed-length string variables, do not have any built-in
LENGTH functions for strings. However, such variables may be viewed as having variable length if
onc ignores all trailing blanks. Accordingly, onc could write a subprogram LENGTH in these
languages so that

LENGTH('MARC ')=4
In fact, SNOBOL has a built-in string function TRIM which omits trailing blanks:

TRIM('ERIK ') = "ERIK'

This TRIM function is occasionally used in our ulgorithms%

3.6 WORD FROCESSING

In carlicr times, character data processed by the computer consisted mainly of data items, such as
names and addresses. Today the computer also processes printed matter, such as letters, articles and
reports. It is in this latter context that we use the term “‘word processing.”’

Given some printed text, the opcrations usually associated with word processing are the following:

(a)  Replacement. Replacing one string in the text by another.

(b)  Insertion. Inserting a string in the middie of the text.

(¢) - Deletion. Deleting a string from the text,

The above opcrations can be exccuted by using the string operations discussed in the preccding
section. This we show below when we discuss cach operation scparately. Many of these opcrations are
built into or can casily be defined in cach of the programming languages that we have cited.

Insertion
Suppose in a given text T we want to insert a string S so that S begins in position K. We denote this
Loperation by

INSERT(text, position, string)
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For cxample,
INSERT(' ABCDEFG', 3, "XYZ") = ' ABXYZCDEFG'
INSERT(' ABCDEFG', 6, 'XYZ') = ' ABCDEXYZFG'
This INSERT function can be implemented by using the string opcrations defined in the previous
section as follows: - .
INSERT(T, K, S) = SUBSTRING(T, 1, K — 1)//S//SUBSTRING(T, K, LENGTH(T)—-K+1)

That is, the initial substring of T before the position K, which has length K — 1, is concatenated with
the string S, and the result is concatenated with the remaining part of T, which begins in position K and
has length LENGTH(T) — (K — 1) = LENGTH(T) - K + 1. (We are assuming implicitly that T is a
dynamic variable and that the size of T will not become too large.)

Deletion

Suppose in a given text T we want to delete the substring which begins in position K and has length
L. We denote this operation by

UELETE(text, position, length)
For example,
DELETE(' ABCDEFG', 4, 2) = ' ABCFG'
DELETE(' ABCDEFG', 2, 4) = ' AFG'
We assume that nothing is deleted if position K = 0. ‘Ihus
DELETE(' ABCDEFG', 0, 2) = ' ABCDEFG .

The importance of this *‘zero casc” is scen later.
The DELETE function can be implemented using the string operations given in the preceding
scction as follows:

DELETE(T, K, L) =
SUBSTRING(T, 1, K- 1) //SUBSTRING(T, K+ L, LENGTH(T)—-K~-L+1)

That is, the initial substring of T before position K is concatenated with the tcrminal substring of T
beginning in position K + L. The length of the initial substring is K — 1, and the length of the terminal
substring is:

LENGTH(T) — (K + L — 1) = LENGTH(T) — K=L+1
We also assumc that DELETE(T, K, L) =T when K= 0.

Now suppose text T and pattern P are given and we want to delete from T the first occurrence of
the pattern P. This can be saccomplished by using the above DELETE function as follows:

DELETE(T, INDEX(T, P), LENGTH(P))

That is, in the text T, we first compute INDEX(T, P), the position where P first occurs in T, and then
we compute LENGTH(P), the number of characters in P. Recall that when INDEX(T, P) =0 (i.e.,
whén P does not occur in T) the text T is not changed.

EXAMPLE 3.6
(a) Suppose T = " ABCDEFG"' and P = "CD"'. Then INDEX(T, P)=3 and LENGTH(¥; = 2. Hence
DELETE(' ABCDEFG', 3, 2) = ' ABEFG i
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(b) Suppose T="ABCDEFG' and P = 'DC". Then INDEX(T, P) =0 and LENGTH(P) = 2. Hence, by the
“zero case,” .

DELETE(' ABCDEFG', 0, 2) = ' ABCDEFG '
as expeceted. )

Suppose after reading into the computer a text T and a pattern P, we want to dclete cvery
occurrence of the pattern P in the text T. This can be accomplished by repeatedly applying

DELETE(T, INDEX(T, P), LENGTH(P))

until INDEX(T, P)=0 (i..c., until P docs not appear in T). An algorithm which accomplishes this
follows.

Algerithm 3.1: A text T and a pattern P arc in memory. This algorithm deletes every occurrence
of PinT. ;
1. [Find index of P.] Set K := INDEX(T, P).
2. Repcat while K #0:
(a) [Declete P from T.]
Set T:=DELETE(T, INDEX(T, P), LENGTH(P))
(b) [Update index.] Sct K:= INDEX(T, P).
[End of loop.]
3. Write: T,
4. Exit.

We emphasize that after cach deletion, the length of T decrcases and henee the algorithm must stop.
However, the number of times the loop is exceuted may exceed the number of times P appears in the
original text T, as illustrated in the following cxample.

EXAMPLE 3.7
(a) Supposc-Algorithm 3.1 is run with the data

T=XABYABZ, P=ADB

Then the loop in the algorithm will be executed twice. During the first execution. the first occurrence of AB
in T is deleted, with the result that T= XYABZ. During the second exccution, the remaining occurrence of
AB in T is deleted, so that T = XYZ. Accordingly, XYZ is the dutput.
(h) -Supposc Algorithm 3.1 is run with the data
T=XAAABBBY, P=AB 4

Obsci . e that the pattern AB occurs only once in T but the loop in the algorithm will be exccuted three times.
Specifically, after AB is deleted the first time from T we have T = XA A BBY, and henee A appears again in
T. After AB is deleted a second time from T, we sec that T=XABY and AB still pccurs in T, Finally,

after AB is deleted a third time from T, we have T =XY and AB docs not appear in T, and thus
INDEX(T, P)=0. Hence XY is the output.

The above cxample shows that when a text T is changed by a deletion, patterns may occur that did
not appear originally. :

Replacement .
Suppose in a given text T we want to replace the first occurrence of a pattern P, by a pattern P,. We
will denote this operation by

REPLACE(text, pattern,, pattern,)
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For example : g
REPLACE('XABYABZ', 'AB', 'C')= 'XCYABZ'
) REPLACE('XABYABZ', 'BA"', 'C')="XABYABZ'
In the sccond case, the pattern BA does not occur, and hence there is no change.

We note that this RTPLACE function can be cxpressed as a deletion followed by an inscrtion if we
usc the preceding DELETE and INSERT functions. Spccifically, the REPLACLE function can be
cxccuted by using the following three steps:

K= INDEX(T, P,)
T:= DELETE(T, K, LENGTH(P,))
INSERT(T, K, P,)
The first two steps delete P, from T, and the third step inserts P, in the position K from which P, was

dcleted.
Supposc a text T and patterns P and Q are in the memory of a computer. Supposc we want to

replace every occurrence of the pattern P in T by the pattern Q. This might be accomplished by
repcatedly applying ‘
REPLACE(T, P, Q)

until INDEX(T, P) =0 (i.c., until P docs not appear in T). An algorithm which docs this follows.

Algorithm 3.2: A text T and patterns P and © are in memory. This algorithm replaces every
occurrence of P in T by Q.
1. [Find index of P.] Sct K:i=INDEX(T, ).
2. Repecat while K# 0: i ;
(«) [Replace P by Q.] Sct T:= REPLACE(T, P, Q).
(b) [Update index.] Sct K:= INDEX(T, P).
|End of loop.]
3. Write: T.
4. Exit.

Warning: Although this algorithm looks very much like Algorithm 3.1, there is no guarantce that
this algorithm will terminate. This fact is illustrated in Example 3.8(5). On the other hand, suppose the
length of Q is smaller than the length of P. Then the length of T after cach replacement decrcases. This
guarantces that in this special case where Q is smaller than P the algorithm must terminate.

EXAMPLE 3.8
(a) Supposc Algorithm 3.2 is run with the data
T=XABYABZ, P=AB, Q=C
Then the loop in the algorithm will be executed twice. During the first execution, the first occurrence of AB
in Tis replaced by C to yicld T = XCYABZ. During the sccond exccution, the remaining AB in T is replaced
by C to yicld T = XCYCZ. Hence XCYCZ is the output.
(b) Suppose Algorithm 3.2 is run with the data
T = XAY, P=A, Q=ADB
Then the algorithm will never terminate. The reason for this is that P will always occur in the text T, no
matter how many times the loop is executed. Specilically, :
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T=XABY at the end of the first exccution of the loop
T =XAB?Y at the end of the second execution of the loon

T =XAB"Y at the end of the nth execution of the loop

The infinite loop ariscs here since P is a substring of Q.
I g

3.7 PATTERN MATCHING ALGORITHMS

Pattern matching is the problem of deciding whether or not a given string pattern P appears in a
string text T. We assume that the length of P does not exceed the length of T. T'his scction discusses two
pattern matching algorithms. We also discuss the complexity of the algorithms so we can compare their
efficiencics.

Remark: During the discussion of pattern matching algorithms, characters are sometimes
denoted by lowercase letters (a, b, ¢, .. .) and cxponents may be uscd to denote repetition; e.g.,

a’bab’ for aubbbabb and (cd)’ for cdeded

In addition, the empty string may be denoted by A, the Greek letter lambda, and the concatcnation of
strings X and Y may be denoted by X+ Y or, simply, XY.

ﬁsl Pattern Matching Algorithm

"~ The first pattern matching algorithm is the obvious onc in which we compare a given pattern P with
cach of the substrings of T, moving from left to right, until we get a match. In detail, lct

W, = SUBSTRING(T, K, LENGTH(P))

That is, let W, denote the substring of T having the same length as P and beginning with the Kth
character of T. First we comparce P, characler by character, with the first substring, W,. If all the
characters are the same, then P = W, and so P appcars in T and INDEX(T, P)= 1. On the other hand,
suppose we find that some character of P is not the same as the corresponding character of W,. Then
P W, and we can immediately move on to the next substring, W, .. That is, we next compare P with
W,. If P # W,, then we compare P with Wy, and so on. The process stops («) when we find a match of P
with some substring W, and so P appears in T and INDEX(T, P) = K, or () when we exhaust all the
Wy 's with no match and hence P docs not appear in T. The maximum valuec MA X of the subscript K is
cqual to LENGTH(T) — LENGTH(P) + 1.

Let us assume, as an illustration, that P is a 4-character string and that T is a 20-character string,
and that P and T appear in memory as lincar arrays with one character per element. That is,

P=P{1IP[2]P[3]P[4]  and T =TT[2|T(3]- - - T[19]T[20]
Then P is compared with cach of the following 4-character substrings of T:
W, = T[1]JT[2]T[3]T[4], W, = T[2]T[3]T[4]T[5], Ly W, =T[17]T[18]T[19]T[20]

- Note that there are MAX =20 — 4 + 1 = 17 such substrings of T.
A formal presentation of our algorithm, where P is an r-character string and T is an s-character
string, is shown in Algorithm 3.3.
Observe that Algorithm 3.3 contains two loops, one inside the other. The outer loop runs through
cach successive R-character substring

W, = TIKJT[K + 1) - - T[K + R — 1]

of T. The inncr loop compares P with W, , character by character. If any character does not match,
-then control transfers Lo Step 5, which increases K and then leads to the next substring of T. 1f all the R
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Algorithm 3.3:  (Pattcrn Matching) P and T are strings with lengths R and S, respectively, and
re stored as arrays with onc character per clement. This algorithm finds the
INDEX of P in T.
1. [Initialize.] Set K:=1 and MAX:=§ - R + 1.
2. Repeat Steps 3 to 5 while K=MAX:
3z Repeat for L =1 to R: [Tests cach character of P.]
If P[L] # T[K + L — 1], then: Go to Step 5.
[End of inner loop.]

4, [Success.] Set INDEX = K, and Exit.
5. Set K=K+ 1.
[End of Step 2 outer loop.]
6. [Failure.] Sct INDEX = 0.
To JERXILs

characters of P do match those of some W, , then P appears in T and K is the INDEX of P in T. On the
other hand, if the outer loop complctes all of its cycles, then P does not appear in T and so INDEX = 0.

The complexity of this pattern matching algorithm is mcasurced by the number C of comparisons
between characters in th pattern P and characters of the text T. In order to find C, we let N, denote
the number of comparisons that take place in the inner loop when P is compared with Wy. Then

C=N|+N2+"'+N'L

where L is the position L in T where P first appears or L = MAX if P docs not appcear in T, The next
example computes C for some specific P and T where LENGTH(P) = 4 and LENGTH(T) = 20 and so
MAX=20—-4+1=17.

EXAMPLE 3.9

(a) Suppose P = aaba and T = cded -+ - cd = (cd)"". Clearly P does not occur in T. Also, for cach of the 17 cycles,
N, = 1, since the first character of I’ does not match W,.. Hence

Co=1+ litubd - +1=17
(b) Suppose P = aaba and T = ababaaba. . . . Observe that P is a substring of T. In fact, P =W and so Ny = 4.
Also, comparing P with W, = abab, we sce that N, = 2, since the first letters do match; but comparing I with
W, = baba, we sce that N, =1, sincc the first letters do not match. Similarly, Ny =2 and N =1.
Accordingly,
C=2+1+2+1+4=10
(¢) Supposc P = aaab and T = @a - - - a = a*". Here P docs not appear in T. Also, every Wy = aaaa; henee every
N, =4, since the first three letters of P do match. Accordingly,
. C=4+4+ - +d=17-4=68
in general, when P is an r-character string and T is an s-character string, the data size for the
algorithm is
n = Frris
The worst case occurs when cvery ‘character of P except the last matches every substring Wy, as in
Example 3.9(c). In this case, C(n) = r(s — r + 1). For fixed n, we have s = n — r, so that
C(n)=r(n—2r+1)
The maximum value of C(n) occurs when r = (n + 1)/4. (Sec Prob. 3.19.) Accordingly, substituting
this valuc for r in the formula for C(n) yiclds
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C(n) = —(!E—;i on?)

The complexity of the average casc in any actual situation depends on certain probabilitics which are
usuaily unknown. When the characters of P and T are randomly sclected from son:e finite alphabet, the
complcxity of the average casc is still not casy to analyze, but the complexity of the average case is still

a factor of the worst casc. Accordmgly. we shall state the following: The complexity of this pattern
nmlchmg algun!hm is equal to O(n*). In other words, the time requircd to execute this algorithm is

proportional to n (Compare this result with the onc on page 57.) {
4:! Pattern Matching Algorithm
The sccond pattern matching algorithm uses a table which is derived from a particular pattern P
but is independent of the text T. For dcfinitencss, suppose

P = aaba
First we givc the reason for the table entries and how they are used. Supposc T =T, T,T,. . ., where T,
denotcs the ith character of T; and suppose the first two characters of T match lhosc ol‘ P i ¢., supposc
T =aa. ... Then T has onc of the following thrce forms:

(i) T=aab..., (ii) T=aaa..., (iti) T = aax

where x is any character different from ¢ or b, Suppose we read T, and find that T, = b. Then we next
rcad T, to sce if T, = a4, which will give a match of P with W,. On the other hand, supposc T, = a. Then
we know that P#= W,; but we also know that W, = aa. ..., i.c., that the [irst two characters of the
substring W, match thosc of P. Hence we next read T, to sce if T, = b. Last, supposc. T, = x. Then we
know that P W, but we also know that P # W, and P # W,, since x does not appear in P. Henee we
next read T, to sce if T, = a, i.c., to sce if the first character of W, matches the first character of P.

There arc two important points to the above procedure. First, when we read T, we need only
compare T, with those characters which appear in P. If nonc of these match, then we are in the last
casc, of a character x which does not appear in P. Second, after reading and checking T, we next read
T,; we do not have to go back again in the text T.

Figurc 3-8(a) contains the table that is used in our second pattern matching algorithm for the
pattern P = aaba. (In both the table and the accompanying graph, the pattern P and its substrings Q

a b x
QU Ql Q(l Qﬂ
o, Q, Qo Q,
Q. 0, Q, Q,
Q, P Qu Q,

(a) Pattern matching table.

(b) Pattern matching graph.
Fig. 3-8
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will be represented by italic capital letters.) The table is obtained as follows. First of all, we let Q,
denotc the initial substring of P of length i; hence .

Os=A, "0,=a/" O,=a’ " O,=db, ' Q,=dba="r
(Here Q, = A is the cmpty string.) The rows of the table are labeled by these initial substrings of P,

excluding P itsclf. The columns of the table are labeled a, b and x. where x represents any character
that docsn’t appear in the pattern P. Let f be the function determined by the table; i.c., let

Qi 1)

denote the cnlry in the table in row Q, and column ¢ (where ¢ is any character). This entry f(Q,, 1) is
defined to be the largest O that appears as a terminal substring in the string Q,1, the concatenation of
Q; and 1. For cxample,

a’ is the largest Q that is a terminal substring of Q,a = a’, so (Q,, a)=Q,
A is the largest Q 'that is a terminal substring of Qb =ab, so f[(Q,, b)=Q,
a is the largest Q that is a terminal substring of Q.a = a, so f(Q,, a) = Q,

~ A is the largest Q that is a terminal substring of Q,x = a’bx, so 0, x)=¢@Q,

and so on. Although Q, =ais a tcrmlndl substring of Q,a = «”, we have f(Q,, a) = Q, because Q, is
also a terminal sub-;tnng of Q,a = a’and Q, is larger than Q,. Wc note that f( Q,, .l) =, for any Q,
since x does not appcar in the pattern P. Accordingly, the column corresponding to x is usually omitted
from the table,

Our table can also be pictured by the labeled directed graph in Fig. 3-8(b). The graph is obtained
as follows. First, there is a node in the graph corresponding to cach initial substring Q,of P. The Q's
are called the states of the system, and Qs called the initial state. Second, there is an arrow (a dirccted
edge) in the graph corresponding to cach entry in the table. Specifically, if

Q.. 0=0,
then there is an airow labeled by the character ¢ from Q, to Q,. For cx.}.mplc Q,, b)=Q,,s0thcreis

an arrow labeled b from Q, to Q,. For notational convenience, we have omitted all arrows labeled %,
which must Icad to the initial state Q,,.

We arc now rcady to give the second pattern matching algorithm for the pattern P = aaba. (Note
that in the following discussion capital lctters will be used for all single-letter variable names that
appear in the algorithm.) Let T =T, T, T, - - - Ty, denote the n-character-string text which is scarched
for the pattern P. Beginning with the initial state Q, and using the text T, we will obtain a scquence of
states §, §,, S5, . . . as follows. We let S, = Q, and wc read the first character T,. From cither the
table or the graph in Fig. 3-8, the pair (S,, T)) yiclds a second state S,; that is, F(S,, T,) =S,. We
read the next character T,. The pair (S,, T,) yiclds a state S, and so on. There arc two posslbllmcs

(1) Some state Sy = P, the desired pattern. In this case, P docs appear in T and its -index is
K — LENGTH(P).
(2) Nostate S, S,, ..., Sy,, is cqual to P. In this case, P does not appear in T,

We illustrate the algorithm with two differént texts using the pattern P = aaba.

EXAMPLE 310

(@) Suppose T = aabcaba. Beginning with Q,, we use the characters of T and the graph (or table) in Fig. 3-8 o0
obtain the following sequence of states:

Ce Ca Ch Ca
’Qu » Qa'"_"'" Qu ’ Ql

Ca Ca Ch
Qur——0Q, Q-
We do not obtain the state P, so P does not appear in T.

(b) Suppose I = abcaabacua. Then we oblain the following sequence of states:
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Qu—= Q,— Q,—% Q, <2 Q0,—Q,—Q, % p
Here we obtain the pattern P as the state S,.. Hence P does appear in T and its index is 8 — LENGTH(P) = 4.
The formal statement of our sccond pattern matching algorithm follows:

l Adgorithm 3.4: (Pattern Matching). The pattern matching table F(Q,, T) of a pattern P is in
I L mcmory, and the input is an N-character string T = T, T, --Ty. This algorithm
finds the INDEX of P in T.

[Initialize.] Set K:=1 and §, = Q,.

Repeat Steps 3 to 5 while S, # P and K <N,
Read Ty. :
Set Sy, i=F(Sy, Tg). [Finds next state.)
Sct K:=K + 1. [Updates counter.)

[End of Step 2 loop.)

6. [Successful?]
If S =P, then:

INDEX = K — LENGTH(P).

DN B LN -

Elsc:
INDEX = 0.
[End of If structurc.)
7. Exit.

The running time ot the above algorithm is proportional to the number ot times the Step 2 loop is
executed. The worst case occurs when all of the text T is read, i.c., when the loop is executed
n = LENGTH(T) times. Accordingly, we can state the following: The complexity of this pattern
matching algorithm is equal to O(n). ‘ ' :

Remark: A combinatorial problem is said to be solvable in polynomial time if there is an
algorithmic solution with complexity cqual to O(n™) for some m, and it is said to be solvable in linear
time if there is an algorithmic solution with complexity equal to O(n), where n is the size of the data.
Thus the sccond of the two pattern matching algorithms described in this section is solvable in linear
time. (The first pattern matching algorithm was solvable in polynomial time.)

Solved Probiems

TERMINOLOGY; STORAGE OF STRINGS

3.1 Let W be the string ABCD. (@) Find the fength of W. (b) List all substrings of W. (c) List all thc
' initial substrings of W.

(@) Thec number of characters in W is its length, so 4 is the lcngth of W.
(b) Any subsequence of characters of W is a substring of W. There arc 11 such substrings:

Substrings: AB(AID.. ABC, BCDJ. AB, BC, CD, A, B, C, D, A

Lengths: 4 3 2 1 0

(Here A dcenotes the empty string.) )

{¢) Theinitial substrings arc ABCD, ABC, AB, A, A; that is, both the cmpty string and thosc substrings
that begin with A,
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3.2

3.3

3.4
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¥

Assuming a programming lanpaage uscs at lcast 48 characters--26 lctters, 10 digits and a
minimum of 12 special characters—give the minimum number and the usual number of bits to
represent ‘a character in the memory of the computer.

Since 2" < 48 < 2% onc requires at lcast a 6-bit code to represent 48 characters. Usually a computer:
uscs a 7-bit code, such as ASCII, or an 8-bit code, such as EBCDIC, to represent characters. This allows
many more .s"pccjal characters to be represented and processed by the computer.

Describe bricfly the three types of structurcs uscd for storing strings.
(a) Fixed-length-storage structures. Here strings arc stored in memory cells that are all of the same
length, usually space for 80 characters.

(b) Variable-length storage with fixcd maximums. Here strings arc also stored in memory cells all of the
same length; however, onc also knows the actual length of the string in the cell.

(¢) Linked-list storage. Here each cell is divided into two parts; the first part stores a single character (or
a fixed small number of characters), and the sccond part contains the address of the cell containing
the next character.

Find the string stored in Fig. 3-9, assuming the link value 0 signals the end of the list.

-

START CHAR LINK
4 1 JoYF | 10
2 | ING 7
3
4 | ATH 2
o
6 | ER 0
7 JOFB | 11
8| Al i
9
10 | OREV | 6
11 | EAUT | 12
2 lyYrs 8
Fig. 3-9

Here the string is stored in a linked-list structure with 4 characters per node. The value of START
gives the location of the first node in the list:

g

The link value in this node gives 1he docation of the next node in ‘the list:

2 finG
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Continuing in this manner, we obtain the following sequence of nodes:

7[oFB | 1t f—=EAUT H1zl——lv15]sl-> [ AJ[Tb
C,OYF [10}——|0REV ’6'——-—IER. Io]

"
Thus the string is: <

¢ :
A THING OF BEAUTY IS A JOY FOREVER.

3.5 '\&VG some («¢) advantages and (b) disadvantages of using linked storage for storing strings.

(@) One can casily insert, delete, concatenate and rearrange substrings when using linked storage.
(h) Additional space is used for storing the links. Also, one cannot dircctly access a character in the
middic of the list.

3.6  Describe bricfly the mcaning of (@) static, (b) semistatic and (¢) dynamic character variables.
(@)  The length of the variable is defined before the program is exccuted and cannot change during the
cxceution of the program.

(b)Y The length of the variable may vary during the cxecution of the program, but the length cannot
exceed a maximum value defined before the program is exccuted. !

{c) The lengih of the variable may vary during the exceution of the program.

3.7  Supposc MEMBER is a character variable with fixed length 20. Assume a string is storcd
left-justificd in a memory cell with blank spaces padded on the right or with the right-most
characters truncated. Deseribe MEMBER () if JOHN PAUL JONES® is assigned to
MEMBER and (b) if ‘ROBERT ANDREW WASHINGTON’ is assigned to MEMBER.

The data will appear in MEMBER as follows:

@ wewver [[o[WN] TP[Jo e[ [[o]s[eF[ [T TT]

@ wenwer [R[o]s [E]R 7] ]AJN[DMEJWI ]w|A|s_|H|',|Nj

STRING OPERATIONS
In Probs. 3.8 to 3.11 and 3.13, let S and T be character variables such that .. ‘

S="JOHN PAUL JONES' - &1
T="A THIIG OF BEAUTY IS A JOY FOREVER.

3.8 Recall that we use LENGTH(string) for the length of a string.
(@) How is this function denoted in (i) PL/T, (i'i) BASIC, (iii) UCSD Pas.cal, (iv) SNOBOL
and (v) FORTRAN? - 2
(6) Find LENGTH(S) and LENGTH(T).

(@) (i) LENGTH(siring). (ii) LEN(string). (iii) LENGTH(string). (iv) SIZE(string). (v) FORTRA}
has no length function for strings, since the language uses only fixed-length variablcs.



3.9

3.10

3.11

3.13

.

STRING PilOC ESSING [CHAP. 3

(b) Assuming there is only one blank space character between words,

LENGTH(S) =15 and LENGTH(T) =35

Recall that we use SUBSTRING(string. position, length) to denote the substring of string
beginning in a given position and having a given length. Determine (a) SUBSTRINGS(S, 4, 8)
and (b) SUBSTRING(T, 10, 5).

(a) Beginning with the fourth character and recq;ding 8 characters, we obtain
SUBSTRING(S, 4. 8) = '"NOPAULOY'
(b) Similarly, SUBSTRING(T. 10, 5) = 'FOBEAU'

Recall that we use INDEX(text, pattern) to denote the position where a pattern first appears in
a text. This function is assigned the value 0 if the pattern does not appear in the text. Determine
(a) INDEX(S, 'JO'), (b) INDEX(S, 'JOY ), (¢) INDEX(S, '0JO"), (d) INDEX(T,
'A'). (¢) INDEX(T, 'OAO") and (f) INDEX(T, "THE').

(@) INDEX(S, 'JO')=1, (b) INDEX(S. 'JOY' )=0, (c¢) INDEX(S, '0NO')=10, (d)

INDEX(T, "A')=1, (¢) INDEX(T, '0AO") =2l and (f) INDEX(T, 'THE')=0. (R',-cal] that O is
used to denote a blank spacc.)

Recall that we use S, //S, to denote the concatenation of strings S, and S,.

(a) How is this function denoted in (i) PL/1, (ii) FORTRAN, (iii) BASIC, (iv) SNOBOL and
(v) UCSD Pascal?

(b) Find (i) "THE'//'END" and (ii) "THE' /'D' [/ 'END".

(¢) Find (i) SUBSTRING(S, 11, 5)/’ ,0' J/SUBSTRING(S, 1, 9) and
(ii) SUBSTRING(T, 28, 3)// ' GIVEN Y

(@) (@) S,|IS,, (ii) S, [/S.. (iii) S, + S,. (iv) S, S, (juxtaposition with a blank space between S, and S,)
and (v) CONCAT(S,. S,).

(b) S,//S, refers to the string consisting of the characters of S, followed by the characters of S,. Hence,
(i) THEEND and (ii) THE END.

(;': (i) JONES, JOHN PAUL and (ii) FORGIVEN.

S

Recall that we use INSERT(text, position, string) to denote inserting a string Sin a given text T

beginning in position K.

(a) Find (i) INSERT('AAAAA', 1, "BBB"), (ii) INSERT(' AAAAA", 3, "BBB') and
(iii) INSERT(' AAAAA', 6, 'BBB').

(b)~ Suppose T is the text 'THE STUDENT IS ILL. ' Use INSERT to change T so that it

reads: (i) The student is very ill. (ii) The student is ill today. (iii) The student is very ill
today.

(a) (B BBBAAAAA, (ii) AABBBAAA and (iii) AAAAABBB.

.(b) Be careful to include blank spaces when necessary. (i) INSERT(T. I5. 'OVERY"'). (ii)

INSERT(T, 19, 'OTODAY '). (iii) INSERT(INSERT(T, 19, 'TJTODAY '), 15, '"OVERY") or
INSERT(INSERT(T, 15, 'OVERY "), 24, 'CITODAY').

‘Find

(a) DELETE('AAABBB'. 2, 2) and DELETE('JOHN PAUL JONES', 6, 5)

(b) REPLACE('AAABBB'. 'AA', 'BB') and
REPLACE( 'JOHN PAUL JONES', "PAUL'. 'DAVID")
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(a) DELETE(T, K. L) deletes from a text T the substring which begins in position K and has length L.
Hence the answers are
ABBB and JOHN JONES

(b) REPLACE(T, P,. P,) replaces in a text T the first occurrence of the pattern P, by the pattern P,.
Hence the answers arc
BBABBB and JOHN DAVID JONES

RD PROCESSING

In Probs. 3.14 to 3.17, S is a short story stored in a linear array LINE with n elements such that
cach LINE[K] is a static character variable storing 80 characters and representing a line of the story.
Also, LINE[1], the first line, contains only the title of the story, and LINE[N], the last line, contains
only the name of the author. Furthermore, each paragraph begins with 5 blank spaces, and there is no

. other indention except possibly the title in LINE([1] or the name of the author in LINE([N].

3.14 Write a procedure which counts the number NUM of paragraphs in the short story S.

Beginning with LINE[2] and ending with LINE[N — 1], count the ~imber of lines beginning with 5
blank spaces. The procedure follows.

Procedure P3.14: PAR(LINE, N, NUM)

Set NUM:=0 and BLANK := 'O00000".
[Initialize counter.] Set K :=2.
Repeat Steps 4 and 5§ while K<N — 1.
[Compare first 5 characters of each line with BLANK.]
If SUBSTRING(LINE[K], 1, 5) = BLANK, then:
Set NUM := NUM + 1.
[End of If structure.]
5 Set K:=K + 1. [Increments counter.]
[End of Step 3 loop.]
6. Return.

P RSENE

3.15  Write a procedure which counts the number NUM of times the word “‘the’” appears in the short

story S. (We do not count “the” in “mother,” and we assume no sentence ends with the word
“the.”)

Note that the word ‘‘the" can appear as THE at the beginning of a line, as (JTHE at the end of a
line, or as OTHED elsewhere in a line. Hence we must check these three cases for each line. The
procedure follows.

Procedure P3.15: COUNT(LINE, N, NUM)

1. Set WORD:= '"THE' and NUM :=0,

2. [Prepare for the three cases.]
Set BEG:= WORD//'0', END:= '(0" /WORD and
MID:='00"' fWORD// '03".

3. Repeat Steps 4 through 6 for K=1 to N:

4, [First case.] If SUBSTRING(LINE[K], 1, 4) = BEG. then:
Set NUM:= NUM + 1.

S. [Second case.] If SUBSTRING(L 'NE[K], 77. 4) = END. then:
Set NUM:= NUM + 1.

6. [General case.] Repeat for J =2 ta 76.

If SUBSTRING(LINE[K], 1, 5) = MID, then:
Set NUM:=NUM + 1.
[End of If structure.]
[End of Step 6 loop.]
[End of Step 3 loop.]
7. Return.
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3.16 Discuss the changes that must be made in Procedure P3.15 if one wants to count the number of
occurrences of an aribitrary word W with length R. '

There are three basic types of changes.

(a) Clearly, 'THE' must be changed to W in Step 1.
(b) Since the length of W is r and not 3, appropriate changes must be made in Steps 3 to 6.
(¢) One must also consider the possibility that W will be followed by some punctuation, €.g.,

W, w; W w2

Hence more than the three cases must be treated.

3.17 Outline an algorithm which will interchange the kth and [th paragraphs in the short story S.

The algorithm reduces to two procedures:
Procedure A. Find the values of arrays BEG and END where

LINE[BEG[K]] and = LINE[END[K]]
contain, respectively, the first and last lines of paragraph K of the story S.

Procedure B. Using the values of BEG[K] and END[K] and_the values of BEG[L] and END[L],
interchange the block of lines of paragraph K with the block of lines of paragraph L.

TERN MATCHING

.18 For each of the following patterns P and texts T, find the number C of compariisons to find the
INDEX of P in T using the “slow’ algorithm, Algorithm 3.3:

(@) P=abc, T=(ab)’ = ababababab (¢) P=aaa, T= (aabb)’ = aabbaabbaabb
(b) P=abe, T = (ab)™ (d) P = aaa, T = abaabbaaubbbaaaabbbb

Recall that C = N, + N, + -+ - + N, where N, denotes the number of comparisons that take place in
the inner loop when P is compared with W, ..’

(a) * Note first that there are
‘ LENGTH(T) — LENGTH(P) + 1 =10 =3+ 1. - 8
substrings W,. We have
C=2+14+2+1+2+1+2+1=4(3)=12
and INDEX(T, P) =0, since P does not appear in T
(b) There are 2n — 3+ 1 =2(n — 1) subwords W,.. We have
C=2+142+1+--424+1=(n+1)3)=3n+3
and INDEX(T, P)=0.
(¢) There are 12 -3+ | = 10 subwords W,. We have
C=34+2+1+14+3+2+1+1+3+2=19
and INDEX(T, P)=0.
(d) We have
C=2+1+3+2+1+1+3=13
and INDEX(T, P)=17. . : ]
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3.19 Suppose P is an r-character string and T is an s-character string, and suppose C(n) denotes the
number of comparisons when Algorithm 3.3 is applied to P and T. (Here n=r+s.)
(a) Find the complexity C(n) for the best case.
(b) Prove that the maximum value of C(n) occurs when r =(n + 1) /4,

(a) The best case occurs when P is an initial substring of T, or, in other words, when INDEX(T, P)=1.
In this case C(n) = r. (We assume r<3s.)

(b) By the discussion in Sec. 3.7,
‘ L C=Cm)y=rn =2+ 1) mnr -2 4 5 ‘ .

Here n is fixed, so C = C(n) may be viewed as a function of r. Calculus tells us that the maximum
value of C occurs when C’ = dC/dr =0 (here C’ is the derivative of C with respect to r). Using
calculus, we obtain:

C'=n-—4r+1

Setting C’ =0 and solving for r gives us the required result,

3.20 Consider the pattern P = aaabb. Construct the table and the corresponding labeled directed
graph used in the ‘‘fast,”” or second pattern matching, algorithm.

First list the initial segments of P:
Q. =A, 0, =a, Q,=a’t “0=a Q,=a'h, Q.=a't’

For each character ¢, the entry f(Q,, t) in the table is the largest Q which appears as a terminal substring in
the string Q,1. We compute:

f(A, a) = a, fa, a)=a?, fla*, @) =a’, f(a®, a) = a’, fla'b. a)=a
f(A, b)=A, fa, b)=A, f(@, b)=A, f(a®, b) = a’b, fa'b, b)=P
Hence the required table appears in Fig. 3-10(a). The corresponding graph appears in Fig. 3-10(b), wherg

there is a node corresponding to each @ and an arrow from Q, to Q, labeled by the character ¢ for each
entry f(Q,. 1) = Q, in the table.

a b
Qll Q| Q(l
QI Q_‘ Qn
Q;‘ Q_} Q“
Q_\ Q_\ Q4
Q, Q, P
(a)

(b)

Fig. 3-10



64 STRING PROCESSING [CHAP. 3

3.21 Find the table and corresponding graph for the second pattern matching algorithm where the
pattern is P = ababab. : .

The initial substrings of P are:
Q, = A, Q, =a, Q,=ab, Q, =aba, Q, = abab, Q. = ababa, Q, = ababab = P

The function f giving the entries in the table follows:

fA, a)=a f(A, B)=A

fla, a)=a f(a, b)=ab
f(ab, a) = aba flab, b)=A
flaba, a) = a f(aba, b) = abab
f(abab, a) = ababa f(abab, b) = A
f(ababa, a) = a f(ababa, b) =P

The table appears in Fig. 3-11(a) and the corresponding graph appears in Fig. 3-11(b).

a b
0. 10 "9
Q, Q, 0,
QZ Q.\ Qu
Q. | @ o,
Q4 Q5 Qﬂ
Qs Q, P

(a)

(b)
Fig. 3-11

Supplementary Problems
STRINGS
3.22  Find the string stored in Fig. 3-12.
3.23  Consider the string W= "XYZST"'. List (a) all substrings of W and (b) all initial substrings of W.

3.24  Supposc W is a string of length n. Find the number of (a) substrings of W and (b) initial substrings of W.
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START CHAR LINK

5 1+ | UNIT 11
2 |HEP 8
3
41]s 0
S |WET 2
6 THE s |
, . ;
8 | EOPL 12
9 | TATE 4
10
1 |eEDs 9
12 |E OF 6

Fig. 3-12

3.25 Supposc STATE is a character variable with fixed lcngl_h 12. Dcscribe the contents of STATE after the
assignment (a) STATE:= "NEW YORK', (b) STATE:= 'SOUTH CAROLINA' and (c)
STATE := '"PENNSYLVANIA'

¥

STRING OPERATIONS
In Probs. 3.26 to 3.31, lct S and T be character variables such that
* 8="WE THE PEOPLE' and T="OF THE UNITED STATES'

3.26  Iind the length of S and T.
3.27  Find (a) SUBSTRING(S, 4, 8) and (b) SUBSTRING(T, 10, 5).

3.28  Find («) INDEX(S, "P'), (b) INDEX(S, 'E'), () INDEX(S, '"THE"), (d) INDEX(T, 'THE").
(¢) INDEX(T, "THEN") and (f) INDEX(T, '"TE").

3.29  Using S,//S, to stand for the concatecnation of S, and S,, find (a) 'NO'['EXIT", (b)
"NO'/J/'O" ["EXIT' and (c) SUBSTRING(S, 4, 10)// "OAREQ" JJSUBSTRING(T. 8, 6).

¢ J (

3.30  Fi (@) DELETE(' AAABBB', 3, 3), (b) DELETE(' AAABBB ', 1, 4), (c) D=LETE(S, 1, 3) and (d)
DELETE(T, 1, 7). -

331  Find (a) REPLACE('ABABAB', 'B', 'BAB'), (b) REPLACE(S, 'WE£"', "ALL') and (¢)
REPLACE(T, 'THE', 'THESE'). .

3.32  Find (a) INSERT('AAA', 2, "BBB"), (b) INSERT('ABCDE"', 3, 'XYZ"') and () INSERT( ' THE
BOY', s, 'BIGO").

3.33  Suppose U is the text ' MARC STUDIES MATHEMATICS. ' Use INSERT to change U so that it rcads:
(¢) MARC STUDIES ONLY MATHEMATICS. (b) MARC STUDIES MATHEMATICS AND
PHYSICS. (¢) MARC STUDIES APPLIED MATHEMATICS.
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PATTERN MATCHING

3.34  Consider the pattern P = abc. Using the “slow” pattern matchihg algorithm, Algorithm 3.3, find the
number C comparisons to find the INDEX of P in each of the following texts T:
(a) a'’, (b) (aba)'’, (c) (cbab)'’, (d) ¢'° and (6) d" where n > 3.

3.35 Coansider the pattem P = a’b. Repeat Prob. 3.34 with each of the followmg texts T:
(a) a*°, (b) a" where n>6, (c) d*° and (d) d” where n > 6.

3.36 Consider the pattern P = a’ba. Construct the table and the corresponding labeled directed graph used in
the “‘fast’” pattern matching algorithm,

3.37  Repeat Prob. 3.36 for the pattern P = aba’h.

Programming Probleins

In Probs. 3.38 to 3. 40 assume the preface of this text is stored in a linear array LINE such that LINE[K] is a
static charuacter variable storing 80 characters and represents a line of the preface. Assume that cach paragraph
begins with 5 blank spaces and there is no other indention. Also, assume therc is a variable NUM which gives the
number of lines in the preface.

3.38  Writc a program which defines a linear array PAR such that PAR[K] contains the location of the Kth
paragraph, and which also defines a variable NPAR which contains the number of paragraphs.

-3.39  Write a program which reads a given WORD and then counts the number C of times WORD occurs in
LINE. Test the program using (@) WORD = 'THE' and (b) WORD = 'HENCE'.

3.40  Write a program which interchanges the Jth and Kth paragraphs. Test the program using J =2 and K = 4,

-In Probs. 3.41 10 3.46, assume the preface of this text is stored in a single character variable TEXT. Assume 5
blank spaces indicates a new paragraph.
3.41  Write a program which constructs a lincar array PAR such that PAR{K] contains the location of the Kth
paragraph in TEXT, and which finds the value of a variable NPAR which contains the number of
paragraphs. (Compare with Prob. 3.38.)

3.42  Writc a program which recads a given WORD and then counts the number C of times WORD occurs in
TEXT. Test the program using (¢) WORD = 'THE'.and (b) WORD = "HENCE'. (Contpare with
Prob. 3.39.)

3.43  Write a proggam which interchanges the Jth and Kth paragraphs in TEXT. Test the program using J =2
and K = 4. (Compare with Prob. 3.40.) 4

3.44  Write a program which reads words WORD1 and WORD?2 and then replaces each occurrence of WORDI1
in TEXT by WORD2. Test the program using WORD1 = 'HENCE' and WORD2 = 'THUS'

3.45 Write a subprogram INST(TEXT, NEW, K) which inserts a string NEW into TEXT beginning at
TEXT[K].

3.46  Write a subprogram PRINT(TEXT, K) which prints the character string TEXT in lines with at most K
characters. No word should be divided in the middle and appear on two lings, so some lincs may contain
trailing blank spaces. Each paragraph should begin with its own line and be indented using 5 blank spaces.
Test the program using (a) K =80, (b) K=70 and (¢) K = 60.



