
Chapter 1
Introduction and Overview

ii INTRODUCTION

This chapter introduces the subject of data structures and presents an Overview of the content of
the text. Basic terminology and concepts will be defined and relevant examples provided. An overview
of data organization and Certain data structures will be Covered along with a discussion of the different
operations which are applied to these data structures. Last, we will introduce the notion of an
algorithm and its complexity, and we will discuss the time-space tradeoff that ma y occur in choosing a
particular algorithm and data structure for a given problem.

1.2 BASIC TERMINOLOGY; ELEMENTARY DATA ORGANIZATION

Data are simply values or Sets of values. A data item refers to a single unit of values. Data items
that are divided into subitems are called group itenis; those that are not are called ('IC flenta,y itCPflS. For
example, an employee's name may he divided into three stihiterns--fji'st name, middle initial and last
name—but the social security number would normally he treated as it single item.

Collections of data are frequently organized into it 	 of/ic/dc, reeo,-d.c and files. lit 	 tomake these terms more precise , we introduce some additional terminology.
tAn entity is something that has certain attributes or properties which njky h assine&l values. Thevalues i tselss ma ceiThernumericsrncM1nurnerie For example, the following are possible

attributes and their corresponding values for an cut ity, , atf employee Of a given organization:
Attributes:	 Name	 Age	 Sex	 Social Securit y Number
Values:	 ROHLAND, GAIL 34	 F	 134-24-,533

Entities with similar attributes (e.g., all the eniployces in an organization) form an entity set, fach
attribute of an entity set has a,uue of values, the set of all possible values that could be assigned to the
particular attribute.

The term "information'' is sometimes used for data with given attributes, or, in other words,
meaningful or processed data

The way that data arc organized into the hierarchy of fields. rdcords and ' files reflects the
relationship between attributes, entities and entity Sets. That is, a field is it single elementary uti of
information rcprcsentng an attribute of an entity, a record is the collection of field values of a givenentity and a file is the collection of records of the entities in a given entity set.

Each record in a file may contain many field items, but the value lit certain tiiId may uniquely
determine the record in the tile. Such a field K is called a primary key, and the values k 1 , k 2 , . . in sucha field are called ke ys or key, values.

EXAMPLE 1.1

(a) Suppose an automobile dealership maintains art 	 tile where each record Contains the k'llowing data:
Serial Number	 Type,	 Year,	 Price.	 Accessories

The Serial Number icld can serve as it primary key for the lie, since each automobile has a unique serial
number.

(b) Suppose an organization mnaint.tmnc it membership file where each record contains the following dhita:
N,mnie , 	 Address.	 'lelephone Number.	 Dues Owed

Although there are tout data items. Name and Address may he group items. Here the Name field is it

1

lNFl.')l) t i< - l . l ()r'	 .

primary key. Note that the Address and Telephone Number hcldc ma y not serve as primar keys. -iricc some
me m hers may belong to the s a me fa mu y anci have the same address and mc Ic phone ii umber

Records may also be classified according to length. A file can have used-lengthor
variable-length records. In fixed-length records, all the recol (Is contain the same data items v. itli the
same amount of space assigned to each data item. in variable-length records, tile records ma y .or'itaitl

different lengths. For example, student records usually have variable lengths, Si 'flce different ttidciits
take different numbers of courses. Usually, variable-length records have a uiinimuln and a imiaxirlium
length.

The above organization of data into licld, record ,, and tiles may not be complex crnu'li to
maintain arid cfficicntly process certain eol!cvucmns ot data. I-or this reuOn, data arc also.organize.l into
more complex types of structures. The study of such data striicttmris. which fm.:.riims the ubect nuttier of
thk text, includes the following three steps,:	 -.

Logical or mathematical description of the structure
Implementation of the structure on a computer

Quantitative anal y sis of the structure, which klCluci c s deternuniug the aj1u)UIlt ofmemory
needed to store the structure and the time required to process the structure

The next section introduces us to some of these data structures.
Remark: The second and third of the steps in the study of data Structures depend on whether the

data are stored (a) in the main (primary) memory of the computer or (p5) in a secondary externat)
storage unit. This text will mainly cover the fl:st case. This means that, given the address of a uc'nory
toc,,tiori, the time required to access the content of the ijiernory cell ' Ides not depend on the parintuLii

or upon the previous cell accessed. The second case, called fl/c management or Jaw base

management, is a subject unto itself and 'lies beyond the Scope cf this text.

I .3 DATA STRUCTURES•

LData ma y he organized in many different way sth c la:tcal or mathematical model of a particular
organization of data is called a data strr4cz4re)i he choice ol a partic ular da La model depe ni t: m two
considerations. First, it must he rich enough in structure to minor the actual rtlationships of the data in
the real world. On the other hand, the structure should be simple enough that one can cffcticl
process the data when necessary. This section will introduce us io ',Mil l 	 the data sirilctiuc wtJn

will be discussed in detail later in the text.

(1)
(2)
(3)

Arrays
he simplest type of data structure is a linear (Or oei' /i'nai a)
a list of a finite number m of similar data cieimicut

Consecutive numbers, usually I, 2 n. If we choose the n .	 I I'
o f A ate denoted b y subscript notation

a1.	 . a

or by the parenthesis notation
A(I), A(2). A(3). . . . \(Ni

K y I	 l':.ick t notation
A[I]. A[2]. A[31.......

dicsn 01 the notation, the number K in AIKj is called
C.

"I	 parentheses flut3tiOil and the bn ac, ct •e.	 t:n.

r;	 consists of more tha t) One letter or whea the	 ':'

(]'IAP. I)
	

INTRODUCTION AND OVERVIEW	 3

I'Otation Nve will use ordinary upper:as	 me letters for the name and subscripts as indicated above by the A
nd .N N. Othctxvi 	 \c. may use the usial uhscript notation of italics for the name and subscripts and

tease Itters for the suhcui is is Jeated hove b',, the a and it. The former flotation follows the
ract: .- 1 coInputer-orlc i o, J	 hc-_: is the latter notation follows the practice of rnathmatics in

print

EXAMPLE 1.2

A linear irrav SI UI)LNI consisting of the names of six students is pictured in Fig. I-I. Here STUDENT[1]
dcnntcs John Ftrowii S I UI) ENli 21 denois Sandra Gold. and so on

STU DE NTNT

• John Brown

2	 Sandra Child

3	 loni Jones

4	 June Kelly

Mary Reed

Alan Smith

Fig. I-I

Linear arrn s are called onc-dinensiiial an ays because each element in such an array is
referenced bN one subscript. A two dimensional array is it collection of similar data elements where
each element is referenced by Iw o subscripts. (Such arra ys arc called matrices in mathematics, and
tl,Ie.s- in ltitsness applications.) Multidimensional arra ys are defined analogously. Arrays will he
covered in detail in Chap. 4.

EXAMPLE 1.3

A chain of 28 stores, each Stole having 4 departments, max' list its weekly sales (to the nearest dollar) eS in
Fig 1-2. Such dam a cat-i be stated i n

the Computer using a two-dimensional array in which the first subscript denotes
the store and the second suhcrtpt the dcpaitment. If SALES is the natne given to the arra y , then

SALES[1. I = 2872,	 SA I I.S 1 1, 2 — 805.	 SALESII. 3j 3211	 SALLSI2N, 4]

The size of this array is denoted by Z8 X 4 (rea(t 28 b y 4). since it contains 28 rows (the horizontal hues
of numbers) and 4 c-oltonn,c (the veul j cah hues of numbers)

St lre^

S
2	 2196	 1223
3	 3257	 1017

28	 . 2cls	 93I

Fig. 1-2

3	 4

3211	 1560
2525	 1744
3686	 1951

2333	 982

/

lNTIODUClIUN AND OVERVIEW	 ICFIAP. I

Lists

"Linked lists will he introduced by means of an example. Suppose a brokerage firm maintains a file
where each record contains a customer's name and his or her salesperson, and suppose the file contains
the data appearing in Fig. 1-3. Clearly the file could be stored in the computer by such a table, i.e.. by
two columns of nine names. However, this may not be the most useful way to store the data, as the
following discussion shows.

Customer I Salesperson

Adams	 South

2	 1110',', II

3	 ('lark	 Jones

4	 Drew	 Ra'

5	 Evans	 Smith

Farmer	 Jones

Getter	 Ray

Hill	 Smith

Inteld	 Jav

Fig. 1-3

Another way of storing the data in Fig. 1-3 is ta hak e a separate a?-ra' for the salespeople and an
entry (called a p0/titer). in the customer file which gives the location of each customer's salesperson.
This is done in Fig. 1-4, where some of the pointers are pictured by an arrow from the location of the
pointer to the location of the corresponding salesperson. Practically speaking, an integer used as a
pointer requires less space than a name; hence this representation saves space. especially if there are
hundred-'uridred of customers for each salesperson.

Customer]
	

Pointer

1	 Adams [
	

3

2	 Brown	 2

3	 Clark

4	 Drew	 2

5	 Evans	 3

6	 Farmer

7	 Geller	 2

S	 1-till	 3

9	 Infeld	 2 A

Salesperson

Jones

Ray
	 2

Smith
	

3

Fig. 1-4

Su1i' the firm wants the list of customers for a given salesperson. Using the data representation
in Fig. I i tFn. firm 'Aoul.l have to search through the entire customer file. One way to simplify such a

2

3

Link

5

4

6

7

8

(1

9

C)

0)

2

3

4

5

6

7

8

9

Customer

Adams

Brown

Clark

Drew

Evans

Farmer

Ocher

Hill

I nfeld

Salesperson	 Pointer

Jones	 3

Ray	 2

Smith	 I

CHAP. 1]	 INTRODUCTION AND OVERVIEW	 5

search is to have the arrows in Fig. 1-4 point the other way; each salesperson would now have a set of
pointers giving the positions of his or her customers, as in Fig. 1-5. The main disadvantage of this
representation is that each salesperson may have many pointers and the Set of pointers will change as
customers are added and deleted.

Salesperson	 Pointer

Jones	 3,6

2
	

Ray	 2.4,7,9

3
	

Smith	 1,5,8

Fig. 1-5

Another very popular way to store the type of data in Fig. 1-3 is shown in Fig. 1-6. Here each
salesperson has one 1,. inter which points to his Or her first customer, whosc pointer in turn points to
the second customer, and SO ofl, with the salesperson's last customer indicated by it This is pictured
with arrows in Fig. 1-6 for the salesperson Ray. Using this representation one can easily obtain the
entire list of customers for it 	 salesperson nd, as we will see in ChapS, one can easily insert and
delete customers.

Fig. 1-6

The representation of the data in Fig. 1-6 is an example of linked lists. Although the terms
"pointer" and "link" are usually used synonymously, we will try to use the term "pointer" when an
clement in one list points to kill in a different list, and to reserve the term "link" for the case
when an element in it list points to an element in that same list.

Trees

Data frequently contain it hierarchical relationship between various elements. The data structure
which reflects this relationship is called a rooted tree graph or, simply, a tree. Trees will he defined and
discussed in detail in Chap. 7. Here we indicate some of their basic properties by means of two
examples.

6	 INTR0J)uerIoN AND OVERVIEW	 [CHAP. I

EXAMPLE 1.4 Record Structure

Although a tile may be maintained by means of one or more arrays, a record. where one indicates both the
group items and the elementary items, can best he described by means of a tree structure. For example, an
employee personnel record may contain the following data items

	

Social Security Number, 	 Name,	 Address,	 Age.	 Salary.	 Dependents

However. Name may he a group item with the subitcms Last. First and MI (middle initial). Also. Address-may he
a group item with the suhitems Street address and Area address, where Area itself may he a group item having
subitems City, State and ZIP code number. This hierarchical structure is pictured in Fig. 1-7(a). Another way of
picturing such a tree structurc.is in terms of levels, as in Fig. 1-7(h).

Employee

Soc. See. No.	 Name	 Address	 Age	 Salary	 Dependents

Last First MI	 Street	 Area

/
City	 State	 ZIP

(a)

UI Employee
0 4' Social Security Number
(12 None

03 Last
0.3	 First
03 Middle Initial

02 Address
03 Street
03 Area

04 City
04 Stale
04 ZIP

02 Age
02 Salary
02 Dependents

(1)

Fig. 1.7

EXAMPLE 1.5 Algebraic Expressions

Consider the algebraic expression

(21 I- ,)(a -. 7h)

Using a vertical arrow (t) for exponentiation and air (•) for multiplication. we can represent the
expression by the tree in Fig. 1 . 8. Observe that the order in which the operations will be performed is reflected in
the diagram. the exponentiation must take place after the subtraction, and the multiplication at the top of the tree
must be executed last.

(a) Stack of dishes. (b) Queue waiting for a bus.

Cl-lA!'. V	 IN lR(1D)(I ION AND OVERVIEW	 7

+
y

7 /

NN

Fig. 1-8

There are data structures other than arrays, linked lists and trees which we shall study. Some of
these structures are briefly described below.

() Stack A stack, also called a last-in first-out (LIFO) system, is a linear list in which insertions
and deletions can take place only at one end. called the ty This structure is similar in its
operation to a stack of dishes on a spring s ystem, as pictured in Fig. -9(a. Note that new
dishes are inserted only at the top of the stack and dishes call deleted only from the top Of.
the stack.

Boston

\ - /
- \ Philadelphia'

Los Angeles •

(c) Airline flights

11g 1-9

(b) Queue. A queue also called a first-in first-out (FIFO) svstenl is a linear list in which
deletions can take place only at one end of the list, the ''front" of the list, and insertions can
take place only at the other end ol the list, the ''re' of the list This structure operates in
much the si	 ' v as a line o	 cp!c'.auin at a	 is stop, as pictured in Fig. 1-9(b): the
first person if h' is the t p ; t p- ..i I.	 ii;ilogv K with automobiles
waiting to pass thri-oich 111-	 , ru' first ear tliuou'h

8	 INTRODUCTION AND OVERVIEW	 [('HAP. I

(c) Griij,/i Data SOltie(i Ii1CS Containa relationship bC (WCCIt pairs of dc nie IltS which IS not

necessarily hierarchical in nature. For example, suppose an airline flies only between the
cities connected b y lines in Fig. 1-9(e). The data structure which reflects this type of

relationship is called it ,'rapIz. Graphs will be formally defined and studied in Chap. 8.

Remark: Many di ftercn I names m e used for the cicnic ii ts of it structure. Some commonly

used name sure - data c Ic rue itt. " ''data ite ni ," item aggregate. -record,- node and data object."
The 1,artiu1ar name that is used depends on the type of data structure, the context in which the
structure is used and the people using the name. Our preference shall be the term ''data element," but
we will use the term "record when discussing files and the term ''node" when discussing linked fists,

trees and graphs.

1.4 DATA STRUCTURE OPERATIONS

The data appearing in our data Structures arc processed b y means of certain operations. [it the

particular data structure that one chooses for a given situation depends largely on the treq uericy With

which specific operations arc i riorined - 'I'his section introduces the reader to some of the most

frequently used of these operations.
The following four operations play it 	 role itt this text:

(I) i'raversini' : Accessing each record exactly once so that certain items in the record may be
processed. ('This accessing and processing is solnetimes culled ''visiting" the record.)

(2) Sea,'c/,ini,' : Finding the location of the record with it give n key value, or finding the locations

of all records which satisfy one or more conditions.

) (3) Inserting: Adding it 	 record to the structure.

(4) Deleting: Removing a record from the structure.

Sometimes two or more of the operations may he used in a given situatioul; e.g.. we may want to delete

the record with it 	 key, which may mean we first need to search for the location of the record.
The following two operations, which are used in special situations, will also be considered:

I) Sorting: Arranging the records in sonic logical order (e.g., alphabetically according to some
NAME key, or in numerical order according to sonic N UMUER key, such as social 'eeurity
numberher or acco u nt n u nt her)

(2) Merging: Combining the records in two different sorted files into i t single sorted file

Other operations. e.g., copying and concatenation, will be discussed later in the text.

EXAMPLE 1.6
An organi/ItioIt contailts it menibersltip tile in which each record 'oritains the following data for it given

inc in her:

Name.	 Addiess.	 l'elcphoue Nuitiber,	 Age,	 Sex

(a)	 Suppose the organization wants to announce it 	 flu)Ugll a mailing. Ilien one would tiaverse the tile
too 	 Niriie and Address for each ntctiiher.

b) Suppose o ne wants to find the na miles of all mc tubers living
in it 	 area. Again one would t i a vet se the

file to obtain the data.
(c) Suppose one Wants Iii obtain Address for a given Name. 'then one would search the file for the reco, d

coiltititlitig Name.
(d) Suppose :c new person joins the orgattizatioil. 'l'hen one would insert his or her record into the tile.

(e) Scippise a member dies. 'Itien one would delete his or her record trim the tile.

CHAP. t]	 INTRODUCTION AND OVERVIEW
9

(f) Suppose a member has moved and has a new address and telephone number. Given the flame of the
member. one %OUId first nced to search for the record in the file. Then one would perform the-update --i.e.. change items in the record with the new data.

() Suppose one %ar)ts to find the number of members 65 or older. Again one would traverse the file.
Countingsuch niernhers.

1.5 ALGORITHMS: COMPLEXITY, TIME-SPACE TRADEOFF

An algorithm is a Well-defined list of steps for Solving a particular problem. One major purpose of
this text is to develop efficient algorithms for the processing of our data. The time and space it uses are
two major measures of th efficiency of an algorithm. The complexity of an algorithm is the function
which gives the running time and/or space in terms of the input size. (The notion of complexity will hetreated in Chap. 2.)

Fch of our algorithms will involve a particular data structure. Accordingly, we may not always be
able to use the most efficient algorithm. since the choice of data structure depends on

many things,including the t y
pe of data and the frequency with which various data Operations are applied.Sometimes the choice of data structure involves a time-space tradeoff: by increasing the amount of

space for storing the data, one may he able to reduce the time needed for processing the data, or viceversa. We tllustrate these ideas with two examples.

Searching Algorithms

Consider a membership file, as in Example 1.6, in which each record contains, among other data.
the name and telephone number of its member. Suppose we are given the name of a member and we
sant to find his or her tclephonc number. One way to do this is to linearly search through the file, i.e
to apply the following algorithm:

Linear Search:
Search each record of the file, one at a time, until finding the given Name and hence
the corresponding telephone number.

First of all, it is clear that the time required to execute the algorithm is proportional to the number of
comparisons Also, assuming that each name in the file is equally likely to be picked, it is intuitively
clear that the average number of comparisons for a file with n records is equal to ii/2; that is, thecomplexity of the linear search algorithm is given by C(,z) = n/2.

The aho e algorithm would he impossible in practice if we were searching through a list Consisting
of thousa0j5 of names as in a telephone hook. however if the names are sorted

a lphabetically as in
telephone hooks, then we can use an efficient algorithm called binary search This algorithm isdiscussed in detail in Chap. 4, but we briefly describe its general idea helow.
Ri,iar Search: (onlpare the g iven Name with the name in the Middle of the listthk tells shich half

of the list contains Name. Then compare Name with the name 'in the middle of the
correct half to determine which quarter of the list Contains Name. Continue the
process until finding Name in the list.

Oe can show that the complexit y of the binary search algorithm is given by

C(n)	 log, ii

Thus, for example one s ill not require more than 15 comparisons to find a given Name in a listCoI1(ilirifl 2. ()U((names.

Ahhouigh the binary search algorithm is a very efficient algorithm, it has some major drawbacks
Specifically, the algorithm assumes that one has direct access to the middle name in the list or a sublit.
This means that the list must be stored in Some type of array. Unfortunately , inserting all 	 it) auarray requires elements to be moved down the list, and deleting

an element frQifl all 	 requireselements to be moved up the list.

Name	 Pointer

I	 Abbey, Gregory	 2

2	 Brown, John	 4

3	 Carey. Mary	 546

4	 Davis, Earl

5	 Ellis. Susan	 •	 70

10	 INTRODUCTION AND OVERVIEW	
jCHAP. 1

The telephone company solves the above problem by printing a new directory every year while
keeping a separate temporary file for new telephone customers. That is, the telephone company

updates its files every year. Oil other hand, a hank may want to insert a new customer in its file
almost instantaneously. Accordingly, a linearly sorted list may not he the best data structure for a

bank.

An Example of Time-Space Tradeoff
Suppose a file of records contains names, social security numbers and much additional information

among its fields. Sorting the file alphabetically and using a binary search is a very efficient way to find
the record for a given name. On the other hand, suppose we are given only the social security number
of the person. Then we would have to do a linear search for the record, which is extremely
time-Consuming for a very large number of records. How call soiwe such a problem? One way is to
have another file which is sorted numerically according to social security number. This, however,
would double the space required for storing the data. Another way, pictured in Fig. 1-10, is to have the
main flic sorted numerically by social security number and to have an auxiliary array with only two
columns, the first column containing an alphabetized list of the names and the second column
containing pointers which give the locations of the corresponding records in the main file. This is one
way of solving the problem that is used frequently, since the additional space, containing only two
columns, is minimal for the amount of extra information it provides.

Soc- See. No	 Name	 -	 Extra Data

013 .44-5555	 Davis. Earl	 XXXXXXXXXXXXXX

025-55-6198	 Abbey, Gregory

027-73-3961	 Lane. Alice	 XXXXXXXXXXXXXX

174-62-3455	 Brown. John	 XXXXXXNXXXxx

I82-746395	 Smith. Mary	 XXX\XXX\XXXXXX

Auxiliar y array
sorted al phahe t,ally

Fig. I-tO

Main one
sorted by social security number

Remark: Suppose a file is sorted nunierically by social security number. As new records are
inserted into the tile data must be constanthr moved to new locations in order to maintain the sorted
order. One simple way to minimize the movement of data is to have the social security number serve as
the address of each record. Not univ would there he no movement of data when records arc inserted,

CHAP. 11	 INTRODUCTION AND OVERVIEW 	 11

but there would he instant access to any record. However. this method of storing data would require
one billion (lO u) memory locations for only hundreds or possibly thousands of records. Clearly, this
tradeoff of space for time is not worth the expense. An alternative method is to define a function if
from the set K of key values—social security numbers—into the set L of addresses of memory cells,
Such a function If is called a haship, function. Hashing functions and their properties will he covered
in Chap. 9.

Solved Problems

BASIC TERMINOLOGY

1.1.	 A professor keeps a class list containing the following data for each student:

Name,	 Major,	 Student Number.	 Test Scores,	 Final Grade
(a)	 State the entities, attributes and entity set of the list
(/,) -Describc the field values, records and file.
(c) Which attributes can serve as primary keys for the list?

(a) Each student is an entity, and the collection of students is the entity set. The properties, name,
major, and so on. of the Students are the attributes.

(b) The fletct values are the values assigned to the attributes. i.e.. the actual names, test scores, and so
on. The field values for each student constitute a record, and the collection of all the student records
is the file.

(c) Either Name or Student Number can serve a' a primary key, since each uniquely determines the
student's record. Normally the professor uses Ni pe as the primar y key, but the registrar may useStudent Number.

	

1.2	 A hospital maintains a patient file in which each record contains the following data:

Name.	 Admission Date,	 Social Securit y Number,	 Room.	 Bed Number,	 Doctor
(a) Which Items call 	 as primary keys?
(b) Which pair of items can serve as a primary key?
(c) Which Items can be group items?

(a) Name and Social Security Number can serve as primary keys (We assume that no two patients have
the same name.)

(h) Room and Bed Number in combination also uniquely ckie mu ne it given patient.
c) Name Ad mo,.ion Date and Doctor may be group items.

	

1.3	 Which of the following data items may lead to variable-length records when included as items in
the record: (a) age, (b) sex. (c) name of spouse. (d) names of children, (e) education. (1)
previous employers?

Since (d) and (f) may contain a few or many items, they may lead to variable-length records, Also,(e) may contain many items, unless it asks only for the highest level obtained.

12	 INTRODUCTION AND OVERVIEW	 [CHAP. I

1.4	 Data base systems will he only briefl y covered in this text. Why?

"Data base systems refers to data stored in the secondary memory of the computer. The
implementation and analysis of data structures in the secondar y memory are very different from those in
the main memory of the computer. This text is primarily concerned with data structures in main memory,
not secondary memory.

DATA STRUCTURES AND OPERATIONS

1.5	 Give a brief description of (a) traversing, (b) sorting and (c) searching.

(a) Accessing and processing each record exactly once
(5) Arranging the data in some given order
(c) Finding the location of the record with a given key or keys

1.6	 Give a brief description of (a) inserting and (5) deleting.

(a) Adding a new record to the data structure, usually keeping a particular ordering
(b) Removing a particular record from the data structure

1.7	 Consider the linear array NAME in Fig. 1-11, which is sorted alphabetically.

(a) Find NAME[21, NAME[41 and NAME[7].
(b) Suppose Davis is to he inserted into the array. How many names must be moved to new

locations?
(c) Suppose Gupta is to be deleted from the array. How many names must be moved to new

locations?

(a) ' Here NAME[K] is the kth name in the list. Hence,
NAME[2] = Clark. 	 NAME[4] = Gupta. 	 NAME[7] Pace

(b) Since Davis will be assigned to NAME[3], the names Evans through Smith must he moved. I--fence six
names are moved.

(c) The naines Jones through Smith must he moved up the array. Hence four names must be moved.

NAME

I [_Adams

2	 Clark

Evans

4	 Gupta

5	 Jones

6	 Lane

7	 Pace

S	 Smith

Fig. I-Il

CHAP. IJ	 INTRODUCTION AND OVERVIEW	 13

1.8 Consider the linear array NAME in Fig. 1-12. The values of FIRST and LINK!KJ in the figure
determine a linear ordering of the names as follows. FIRST gives the location of the lust name
in the list, and LINKIK] gives the location of the name following NAMEKJ. with U denoting
the end of the list. Find the linear ordering of the names.

The ordering is obtained as 1olLoss
FIRST = 5, so the first name in the list is NAME15. which is Brooks
LINK[SI 2. so the next name is NAME2], which is Clark.
LINK121 S. so the next name is NAME[S], which is Fisher.
LINK[SJ = 4, so the next name is NAME14]. which is Hansen.
LIN KE 4 I = 10. so the next name is NAMEII0], which is Leary.

LINK10] = 6. so the next name is NAME6J. which is Pitt.
LINKf61 = I. so the next name is N AMELI). which is Rogers.
LINK[1] = 7, so the next name is NAME(7], sshich is Walker.
LINK[7] = 0, which indicates the end of the list.

Thus the linear ordering of the names is Brooks. Clark Fisher. Hansen. Lcarv, Pitt, Rogers. Walker. Note
that this is the alphabetical ordering of the names.

FIRST	 NAME	 LINK

Rogers	 7,

2	 Clark	 8

3

4	 Hansen	 It)

5	 Brooks	 2

6	 Pitt

7	 Walker	 (I

8	 Fisher	 4

10	 Leary	 6

Fig. 1-12

+
.	 .

7/\	
3

(5/ \

Fig. 1-13

14	 INTRODUCTION AND OVERVIEW	 [CHAP. I

, i4 Consider the algebraic expression (7x + y)(5a - b) 3. (a) Draw the corresponding tree diagram
as in Example 1.5. (b) Find the scope of the exponential operation. (The scope of a node u in a
tree is the subtree consisting of v and the nodes following v.)

(a) Use a vertical arrow (I) for exponentiation and an asterisk (*) for multiplication to obtain the tree in
Fig. 1-13.

(b) The scope of the exponentiation operation I is the subtree circled in the diagram. It corresponds to
the expression (5n b).

1O The following is a tree structure given by means of level numbers as discussed in Example 1.4:
01 Employee 02 Name 02 Number 02 Hours 03 Regular 03 Overtime ()2 Rate

Draw the corresponding tree diagram.
The tree diagram appears in Fig. 1-14. Here each node u is the successor of the node which precedes u

and has a lower level number thaii v,

Employee

Name	 Number	 Hours	 Rate
/ \\\

Regular	 Overtime

Fig. 1-14

1y1	 Discuss whether a stack or a queue is the appropriate structure for determining the order in
/	 which elements are processed in each of the following situations.

Batch computer programs are submitted to the computer center.
Program A calls subprogram B. which calls subprogram C, and so on.
Employees have a contract which calls for a seniority system for hiring and firing.

Queue. Excluding priority cases, programs are executed on a first come, first served basis.
Stack. The last subprogram is executed first, and its results are transferred to the next-to-last
program, which is then executed, and so on, until the original calling program is executed.
Stack. In a seniority system, the last to be hired is the first to be discharged.

1.12 The daily flights of an airline company appear in Fig. 1-15. CITY lists the cities, and ORIG[K]
and DEST[K] denote the cities of origin and destination, respectively, of the flight
NUMBERIKI. Draw the corresponding directed graph of the data. (The graph is directed
because the flight numbers represent flights from one city to another but not returning.)

The nodes of the graph are the five cities. Draw an arrow from city A to city B if there is a flight from
A to B, and Iale.1 .th arrow with the fli2ht number. The directed graph appears in Fig. 1-16.

(a)
(b)
(c)

(a)

(b)

(c)

CHAP. 11	 rNflYDUCTION AND OVERVIEW

CITY
	

NUMBER ORIG DEST

1

2

3

4

5

Atlanta

Boston

Chicago

Miami

Philadelphia

(a)

Chicago

I
	

701	 2	 3

2
	

702	 3	 2

3
	

705	 5	 3

4
	

708	 - 3	 4

5
	

711	 2	 5

6
	

712	 —__5	 2

7
	

713	 5	 1

8
	

715	 1	 -	 4

9
	

717	 5	 4

10
	

738	 4	 5

(b)

Fig. 1-15

Boston

02	 2
Philadelphia

ta

Miami

Fig. 1-16

COMPLEXITY; SPACETLME TRADEOFFS
Briefly describe the notions of (a) the complexity of an algorithm and (b) the space-time
tradeoff of algorithms.

(ce) The compIcxity of an algorithm is a function 1(n) which measures the time and/or space used by an
algorithm in terms of the input size n.

(b) The space-time tradeoff refers to a choice between algorithmic solutions of a data processing
problem that allows one to decrease the running time of an algorithmic solution by increasing the
space to store the data and vice versa.

1.14 Suppose a data set S contains n elements.

(a) Compare the running time T 1 of the linear search algorithm with the running Time T of
the binary search algorithm when (i) n 1000 and (ii) n = 10000.

16
	

INTRODUCTION AND OVERVIEW	 ICHAP. I

(b) Discuss searching for a given item in S when S is stored as a linked list.

(a) Recall (Sec. 1.5) that the expected running of the linear search algorithm is f(n) = p , i2 and
that the binary search algorithm is J (n)	 log, n. Accordingl y . (I) for a	 1000. 11	 501) hut
T. = log. 101)0	 10 and (ii) for a = 10000. T 1	 51)0(1 but T.	 log. 100(X)	 14.

(h) The binary search uIgorihrn assumes that one can direct] access the middle element in the setS. But
one cannot directly access the middle element in a linked list. Hence one ma y have to use a linear
search algorithm when S is stored as a linked list.

1.15

	

	 Consider the data in Fig. 1-15, which gives the different flights of an airline. Discuss different
ways of storing the data so as to decrease the time in executing the following:

(a)	 Find the origin and destination of it 	 the flight number.

(h) Given city A and city B, find whether there 	 it flight front 	 to B. and if there is, bud its
flight ittimber.

(a) Store the d,ita of Fig. 1-15(b) in arra%s ORIG and DEST where the subscript is the fli g ht number. as
pictured tit Fig. I -17(a)

(b) Store the data of Fig. 1-15(6) in a two-doncrisiottal array FLIGH]'sshere FLIGHTjJ. K] contains the
flight number of the flight from CII 1 J j to C11YIKJ, or contains (I when there is 11LI such Ihight, as
Pictured in Fig 1.17(b).

ORIG	 DES 	 FLIGHT	 I	 2	 3	 4	 5

701
	

2	 3
	

1)	 0	 1)	 715	 0

702
	

3	 2
	

2
	

1)	 1)	 701	 I)	 711

703
	

O	 ()
	

3
	

0	 702	 ()	 708	 0

704
	

I)	 I)
	

4
	 I)	 I)	 I)	 I)	 718

705
	

5	 3
	

5
	

713	 712	 705	 717	 0

706
	

0	 0	 (li)

715
	

4

716
	

(I	 I)

717
	

5	 4

718
	

4	 5

Fig. 1-17

1.16	 Suppose an airline serves it cities with .s flights. Discuss drawbacks to the data represelitiitioits
used iii Fig. 1-17(a) and Fig. 1-17(b).

(a) Suppose the flight uuiiihers are spaced very far apart; i.e., suppose the ratio of the number sot flights
to the number of memory locations is very sminill. e.g., .'mpproxiiiialely 0.05. Then the extra storage
Sp..iCC May not lie svoi I Ii the expense.

b) Suppose the ratio of the number s of flights to the number it of Illeitlory locations iii the •iriav
FLIGHT is very small, i.e.. that the array FLIGHT is one that contains a large number of icros (such
an array is called a sparse matrix). Then the extra storage space mitziy 1101 he worih the expense.

Chapter 2
Preliminaries

2.1 INTRODUCTION

The development of algorithms for the Creation and processing of data structures is a major feature
of this text. This chapter describes, by means of simple examples, the format that will he used to
present our algorithms. The format we have selected is similar to the format used by Knuth in his
well-known text Fundamental Algorithms. Although our format is language-free, the algorithms will
be sufficiently well structured and detailed that they can be easily translated into some programming
language such as Pascal, FORTRAN. PL/ I or BASIC. fit some of our algorithms will be
translated into such languages in the problems sections.

Algorithms may he quite complex. The computer programs implementing the more complex
algorithms can he more easily understood if these programs arc organized into hierarchies of modules
similar to the one in Fig. 2-I. fit 	 an organization, each program contains first a main module,
which gives it description of the algorithm; this main module refers to certain submodules,
which contain more detailed information than the main module; each of the subniodules may refer to
more detailed submodules; and so on. The organization of it program into such a hierarchy of modules
normally requires the use of certain basic flow patterns and logical structures which are usually
associated with the notion of structured programming. These flow patterns and logical structures will
he reviewed in this chapter.

Fig. 2-I A hierarchy of modules.

The chapter begins with a brief outline and discussion of various mathematical functions which
occur in the study of algorithms and in computer science in general, and the chapter ends with a
discussion of the different kinds of variables that can appear in our algorithms and programs.

The notion of the complexity of an algorithm is also covered in this chapter. This important
measurement of algorithms gives us a tool to compare different algorithmic solutions to a particular
problem such as searching or sorting. The concept of an algorithm and its complexity is fundamental
not only to data structures but also to almost all areas of computer science.

17

18	 PRELIMINARIES	 [CHAP. 2

2.2 MATHEMATICAL NOTATION AND FUNCTIONS

This section gives various mathematical functions which appear very often in the analysis of
algorithms and in computer science in general, together with their notation.

Floor and Ceiling Functions
Let x he any real number. Then x lies between two integers called the floor and the ceiling of x.

Specifically,

lxi, called the floor of x, denotes the greatest integer that does not exceed x.

(x l, called, the ceiling of x, denotes the least integer that is not less than x.

	

If x is itself an integer, then lxi	 Fx ; otherwise I.xJ + I = [xl.

EXAMPLE 2.1

13.141 = 3,	 I.V51 = 2,	 1-8.51 —9,	 171 7

13.141 4.	 i"31 = 3,	 1-8.51 = —8,	 [71 = I

Remainder Function; Modular Arithmetic

Let k he any integer and let M he a positive integer. Then

k (mod M)

(read k ,nodulo M) will denote the integer remainder when k is divided by M. More exactly,

k (mod M) is the unique integer r such that

	

k=Mq+r	 where	 O-!^-r<M

When k is positive, simply divide k by M to obtain the remainder r. Thus

25 (mod 7) = 4,	 25 (mod 5) = W	 35 (mod II) = 2,	 3 (mod 8) = 3

Problem 2.2(h) shows a method to obtain k (mod M) when k is negative.
The term "mod" is also used for the mathematical congruence relation, which is denoted and

defined as follows:

a h (mod M)	 if and only if	 M divides b --a

M is called the modulus, and a - b (mod M) is read "a is congruent to h modulo M." The following

aspects of the congruence relation arc frequently useful:

	

() M (mod M)	 and	 a ± Ma(mod M)

Arithmetic modulo M refers to the arithmetic operations of addition, multiplication and
subtraction where the arithmetic value is replaced by its equivalent value in the set

(0,1,2..... M—l)

or in the set

(l,2,1 M)

For example, in arithmetic modulo 12, sometimes called "clock'' arithmetic,

	

6+93,	 7x5I1,	 1-58.	 2+10012

(The use of 0 or M depends on the application.)

CHAP. 21	 PRELIMINARIES	 19

Integer and Absolute Value Functions
Let x be any real number. The integer value of x, written 1NT(x), converts x into an integer by

dcicting (truncating) the fractional part of the number. Thus

INT(3.14)=3,	 lNT(v')=2,	 INT(-8.5)= — 8,	 INT(7)=7

Observe that INT(x) = [xJ or INT(x) = [11 according to whether x is positive or negative.
The absolute value of the real number x, Written ABS(x) or l x i, is defined as the greater of x or

—x. Hence ABS(0) = 0, and, for x j4 0, ABS(x) = x or ABS(x) = —x, depending on whether x is
positive or negative. Thus

1-151	 15,	 1 7 1 = 7,	 1- 3.33 1 = 3.33,	 14.441 = 4.44,	 1-0.0751 = 0.075

We note that lxi = J —xj and, for x 0 0, lxi is positiyc.

Summation Symbol; Sums
Here we introduce the summation symbol E (the Greek letter sigma) Consider a sequence

a 1 , a 2 , a......Then the sums

a 2 +	 + a,	 and	 a,,,+a,,,1+	 +a,,

will be denoted, respectively, by

and
I- I

The letter j in the above expressions is called a dummy index or dummy variable. Other letters
frequently used as dummy variables are i, k, s and 1.

EXAMPLE 2.2
ab = u,b, ± a 2 b 2 + . + ab

= 2 2 + 32 + 42 +52 = + 9 + 16 + 25 = 54

The last sum in Example 2.2 will appear very often. It has the value n(n + 1)/2. That is.

n(n ± 1)
2

Thus, for example,

1+2+"+50=
50(5 1) =1275

2
Factorial Function

The product of the positive integers from 1 to n, inclusive, is denoted by n! (read "n factorial").
That is,

n!=1'2.3 ... (n-2)(n-1)n

It is also convenient to detIne 0! = 1.

EXAMPLE 2.3

(a) 2! 1-2=2;	 3!= 1'23=6;	 4!= 1 -234=24

(b) For n> I. we haven! = n- (n —1)! Hence

5! = 54! = 5-24 = 120; 	 6! = 65! = 6 120 = 720

20	 PRELIMINARIES	 [CHAP. 2

Permutations
A permutation of a set of n elements is an arrangement of the elements in a given order. For

example, the permutations of the set consisting of the elements a, 1,, c arc as follows:
abc,	 acb,	 bac,	 bca,	 cab,	 cba

One can prove: There are n! permutations of a set of ii elements. Accordingly, there are 4! = 24
permutations of a set with 4 elements, 5! = 120 permutations of a set with 5 elements, and so on.

Exponents and Logarithms
Recall the following definitions for integer exponents (where in is a positive integer):

aaa	 a(,ntimes),	 a°=1,	 a=

Exponents are extended to include all rational numbers by defining, for any rational number rn/n,

a"""' =	 = (''iy"
For example,

2 = 16,	 2 =	 =125' = 52 = 25

In fact, exponents are extended to include all real numbers by defining, for any real number x,

a' = ILrn a'	 where r is a rational number

Accordingly, the exponential function f(x) a is defined for all real numbers.
Logarithms are related to exponents as follows. Let b be a positive number. The logarithm of any

positive number x to the base b, written

logs x
represents the exponent to which b must be raised to obtain x. That is,

ylogx	 and	 b3'=x
are equivalent statements. Accordingly,

109 2 8=3	 since	 2-' = 8;	 1og10100=2	 since	 102100
log 2 64 = 6	 since	 2 = 64;	 log10 0.001 —3	 since	 10	 0.001

Furthermore, for any base b,

logo I = 0	 since	 b° I
log, b=I	 since	 b1=b

The logarithm of a negative number and the logarithm of 0 are not defined.
One may also view the exponential and logarithmic functions

f(x) = b'	 and	 g(x) = logs X

as inverse functions of each other. Accordingly, the graphs of these two functions are related. (Sec
Prob. 2.5.)

Frequently, logarithms arc expressed using approximate values. For example, using tables or
calculators, one obtains

log 10 300 = 2.4771	 and	 log, 40 = 3.6889
as approximate answers. (Here e = 2.718281

CHAP. 21	 PRELIMINARIES	 21

Logarithms to the base 10 (called common logarithms), logarithms to the base c (called natural,
logarithms) and logarithms to the base 2 (called binary logarithms) are of special importance. Some
texts write:

	

In x	 instead of	 loge x

	

Ig x or Log x	 instead of	 log2 x

This text on data structures is mainly concerned with binary logarithms. Accordingly.

The term log x shall mean 1092 x unless otherwise speci8ed.

Frequently, we will require only the floor or the ceiling of a binary logarithm. This can be obtained
by looking at the powers of 2. For example,

	

log 2 100] = 6	 since	 2" = 64	 2 = 128

	

11092 1000] = 9	 since	 2" 5.12	 and	 2 = 1024

and so on.

2.3 ALGORITHMIC NOTATION

An algorithm, intuitively speaking, is a finite step-by-step list of well-defined instructions for
solving it particular problem. The formal definition of an algorithm, which uses the notion of a Turing
machine or its equivalent, is very sophisticated and lies beyond the scope of this text. This section
describes the format that is used to present algorithms throughout the text. This algorithmic notation is
best described by means of examples.

EXAMPLE 2.4

An array DATA of numerical values is in memory. We want to find the location LOC and (tic value MAX of
the largest element of DATA. Given no other information about DATA, one way Uolvc the problem is as
follows:

Initially begin with LOC = I and MAX = DATA(11. Then compare MAX with each successive element
DATAIKJ of DATA. If DATA(K) exceeds MAX, then update LOC and MAX so that LOC K and
MAX DATAIKJ. The final values appearing iii LOC and MAX give the location and value of the largest
clement of DATA.

A formal pscntation of this algorithm, whose flowchart appears in Fig. 2-2, follows.

-ftorithm 2.1: (Largest Element in Array) A nonemj;ty array DATA with N numerical values is given.
This I Igorithin finds the location LOC and the value MAX of the largest element of DATA.
The variable K is used as a counter.

Step I. [Initialize.) Set K: = 1, LOC := I and MAX := DATAIIJ.
Step 2. (Increment counter.) Set K := K + I.
Step 3. (Test counter.) If K> N, then:

Write: LOC. MAX, and Exit.
Step 4. (Compare and update.] If MAX <DA'UA(KJ, then:

Set LOC:K and MAX:=DATA(K1.
Step 5. (Repeat loop.) Go to Step 2.

The format for the formal presentation of an algorithm consists of two parts. The lust part is a
paragraph which tells the purpose of the algorithm, identifies the variables which occur in the
algorithm and lists the input data. The second part of the algorithm consists of the list of steps that is to
be executed.	 -.

22'	 /ELIM1NARIES	 (CHAP. 2

(Th
K- 1

LOC-1
MAX .—DATALII

K .- K + I

Is K > N?	 LOC, MAX

No

STOP

MAX < DATAIKI?

LOC — K
MAX.— DATAIKI

Fig. 2-2

The following summarizes Certain conventions that we will USC in presenting our algorithms. Some
control structures will be covered in the next section.

Identifying Number
Each algorithm is assigned an identifying number as follows: Algorithm 4.3 refers to the third

algorithm in Chap. 4; Algorithm P5.3 refers to the algorithm in Prob. 5.3 in Chap. 5. Note that
the letter "P" indicates that the algorithm appears in a problem.

Steps, Control, Exit
The steps of the algorithm are executed one after the other, beginning with Step 1, unless

indicated otherwise. Control may be transferred to Step n of the algorithm by the statement "Go to
Step n." For example, Step 5 transfers control back to Step 2 in Algorithm 2.1. Generally speaking,
these Go to statements may be practically eliminated by using certain control structures discussed in
the next section.

If several statements appear in the same step, e.g.,

Set K:1, LOC:-=1 and MAX: =DATA[lJ.

then they are executed from left to riht.
The algorithm is completed when the statement

Exit.

is encountered. This statement is similar to the STOP statement used in FORTRAN and in Iloweharts.

CHAP 21
	

23

Comments
Each step may contain a comment in brackets which indicates the main pt pose of the step. The

comment will usually appear at the beginning or the end of the step.

Variable Names
Variable names will USC capital letters, as in MAX and DATA. Single-letter names of variables

used as counters or subscripts will also be capitalized in the algorithms (K and N, for example), even
though lowercase may be used for these same variables (k and ,,) in the accompanying mathematical
description and analysis. (Recall the discussion of italic and lowercase symbols in Sec. 1.3 of Chap. I,
under "Arrays.")

Assignment Statement
Our assignment statements will use the dots-equal notation : = that is used in Pascal. For example,

Max := DATA[11

assigns the value in DATA[IJ to MAX. -Some texts use the backward arrow i- or the equal sign = for
this operation.

Input and Output
Data may be input and assigned to variables by means of a Read statement with the following

form:

Read: Variables names.

Similarly, messages, placed in quotation marks, and data in variables may be output by means of a
Write or Print statement with the following form:

Write: Messages and/or variable names.

Procedures
The term "procedure" will be used for an independent algorithmic module which solves a

particular problem. The use of the word "procedure" or "module" rather than "algorithm" for it given
problem is simply a matter of taste. Generally speaking, the word "algorithm" will be reserved for the
solution of general problems. The term "procedure" will also be used to describe a Certain type of
subalgorithm which is discussed in Sec. 2.6.

2.4 CONTROL STRUCTURES

Algorithms and their equivalent computer programs arc more easily understood if they mainly use
self-contained modules and three types of logic, or flow of control, called

(1) Sequence logic, or sequential flow
(2) Selection logic, or conditional flow

- (3) Iteration logic, or repetitive flow

These three types of logic arc discussed below, and in each case-we show the pquivalcni flowchart.

Sequence Logic (Sequential Flow)
Scqticucc logic has already been discussed. Unless instructions are given to the contrary, the

modules are executed in the obvious sequence. The sequence may be presented explicitly, by means of
numbered steps, or implicitly, by the order in which the modules arc written. (Sec Fig. 2-3.) Most
processing, even of complex problems, will generally follow this elementary now pattern.

Fig. 2-4
(a) Single alternative. (b) Double alternative.

24	 PRELIMINARIES	 ICUAP.. 2

Algorithm	 Flowchart equivalent

.1
Module A	 LMOdUIC A

'I
Module B	 1Module B

Module C	 LModuk C

Fig. 2.3 Sequence logic.

Selection Logic (Conditional Flow)
Selection logic employs a number of conditions which lead to a selection of one out of several

alternative modules. The structures which implement this logic are called conditional structures or If
structures. For clarity, we will frequently indicate the end of such a structure by the statement

[End of If structure.]
or some equivalent.

These conditional structures fall into three types, which are discussed separately.
(1) Single alternative. This structure has the form

If condition, then:
EModule Al

[End of If structure.]
The logic of this structure is pictured in Fig. 24(a). If the condition holds, then Module A,
which may consist of one or more statements, is executed; otherwise Module A is skipped
and control transfers to the next step of the algorithm.

CHAP. 21	 PRELIMINARIES	 25

(2) Double alternative. This structure has the form
If condition, then

[Module A]
Else:

[Module 13]
[End of If structure.]

The logic of this Structure is pictured in Fig. 2-4(h). As indicated by the flowchart, if the
condition holds, then Module A is executed; otherwise Module 9 Is executed.

(3) Multiple alternatives. This structure has the form:
If condition(1), then:

[Module A1)
Else if condition(2), then:

(Module A21

Elsç if condition(M), then:
[Module AMJ

Else:
[Module .BJ

[End of If structure.]
The logic of this structure allows only one of the modules to be executed. Specifically, either
the module which follows the first condition which holds is executed, or the module which
follows the final Else statement is executed. In practice, there will rarely be more than three
alternatives.

EXAMPLE 2.5

Thc solutions of the quadratic equation
ax' + bx + c = 0.

where a vA 0, arc given by the quadratic formula

—b ± Vb2 --4.,
2a

The quantity 1) = b 2 - 4ac is called the discriminant of the equation. If D is negative, then there are no realsoliitioiis. If D 0, then there is only one (double) real solution, x = - b/2a. If D is positive, the formula gives thetwo distinct real solutions. The following algorithm finds the solutions of a quadratic equation.

Mgorithni 2.2: (Quadratic Equation) This algorithm inputs the coefficients A. B, C of a quadratic equation
and outputs the wad solutions, if any.
Step I. Read: A, B, C.
Step 2. Set D:= 132 —4AC.
Step 3. If D>O, then:

(a) Set Xl :=(—E3 + V15)/2A and X2:= (—B - V)/2A.
(b) Write: Xl, X2.

Else if D = 0 then:
(a) Set X:= —13/2A.
(h) Write:'UNIQUE SOLUTION', X.

Else:
Write: 'NO REAL SOLUTIONS'.

[End of If structure]
Step 4. Exit.

26	 PRELIMINARIES	 -	 ClIAP. 2

Remark: Observe that there are three- mutually exclusive conditions in Step 3 of Algorithm 2.2 that depend
oii whether 0 is positive, zero or negative. In such a situation, we may altcriiatively list the different cases as
follows:

Step 3. (1) 11 D>0, then:

(2) If 0 0, then:

(3) If 0<0, then:

This is similar to the use of the CASE statement in Pascal.

Iteration Logic (Repetitive Flow)
The third kind of logic refers to either of two types of structures involving loops. Each type begins

with a Repeat statement and is followed by.a module, called the body of the loop. For clarity, we will

indicate the end of the structure by the stateme-if

[End of loop.

or some equivalent.
Each type of loop structure is discussed separately.
The repeat-for loop uses an index variable, such as K, to control the loop. The loop will usually

have the form:

Repeat for K = R to S by T:
[ModuIc

[End of loop.]

The logic of this structure is pictured in Fig. 2-5(a). Here R is called the initial voJU, S the end value or
test value, and T the increment. Observe that the body of the loop is executed fist with K = R, then
with K = R + T, then with K = R + 2T, and so on. The cycling ends when K> S. The flowchart

K.-R	
1

IsK>S?	
Yes

No

Modulc
(body of loop)

(a) Repeal-For structure.

Fig. -5

(b) Repeat-While structure.

CHAP. 21	 PRELIMINARIES	 27

assumes that the increment T is positive; if T is negative, so that K decreases in value, then the cycling
ends when K<S.

The repeat-while loop uses a condition to control the loop. The loop will usually have the
form

Repeat while condition:
[Module]

[End of loop.)

The logic of this structure is pictured in Fig. 2-5(b). Observe that the cycling continues until the
conthtnm is false. We en.phasize that there must he a statement before the structure that initializes the
condition controlling the loop, and in order that the looping may eventually cease, there must he a
statement in the body of the loop that changes the condition.

EXAMPLE 2.6

Algorithm 2.1 is rewritten using a repeat-while loop rather than a Go to statement:

Algorithm 2.3 (Largest Element in Array) Given a noncmpty array DATA with N numerical values, this
algorithm finds the location [DC and the value MAX of the largest clement of DATA.

I. (Initialize] Set K: = l. LOC: I and MAX:= DATA[II.
2. Repcat Steps 3 and 4 white K N:
3. If MAX < DATAIKI, then:

Set LOC: K and MAX:= DATA(KJ.
lEnd of If s(ructurc.J

4. Set K:=K+l.
tEnd of SIp 2 loop]

5. Write: LOC. MAX.
6. Exit.

Algorithm 2.3 indicates some other properties of our algorithms. Usually we will omit the word
"Step." We will try to use repeat structures instead of Go to statements. The repeat statement may
explicitly indicate the steps that form the body of the loop. The "End of loop" statement may cxi .icitly
indicate the step where the loot) begins. The modules contained in.our logic structures will normally be
indented- for easier reading. This conforms to the usual format in structured programming.

Any other new notation or convention either will be self-explanatory or will he explained when it
Occurs.

S

2.5 COMPLEXITY OF ALGORITHMS

The analysis of algorithms is a major task in computer science. In order to compare algoi itlimn', we
must have some criteria to measure the efficiency of our algorithms. This section discusses this
important topic.

Suppose M is an algorithm, and SUOSC ,i is the size of the' input data. The time and space used by
the algorithm M are the two main measures for the efficiency of M. The time is measured by counting
the number of key operations—in sorting and searching algorithms, for example, the number of
comparisons. That is because key operations are So defined that the lime for the other operations is
much less than or at most proportional to the time for the key operations. The space is measured by
counting the maximum of memory needed by the algorithm.

	

The complexity of art 	 M is the function f(n) which gives the running time and/or storage
space rcqtlircmcnt of the algorithm in terms of the size ,, of the input data. Frequently, the storage

28	 PRELIMINARIES	 (CHAP. 2

space required by an algorithm is simply a multiple of the data size n. Accordingly, unless othcr'isc
stated or implied, the term "complexity" shall refer to the running time of the algorithm.

The following example illustrates that the function f(n). which gives the running time of an
algorithm, depends not only on the size it of the input data but also on the particular data.

EXAMPLE 2.7

Suppose we are given all short story TEXT, and suppose we want to search through TEXT for (tic
first occurrence of a given 3-letter word W. If W is the 3-letter word "the." then it is likely that W occurs near (he
beginning of TEXT, so f(n) will be small. On the other hand, if W is the 3-letter word "zoo." then may not
appear in TEXT at all, so f(n) will be large.	 -

The above discussion leads us to the question of finding the complexity function fii) for certain
cases. The two cases one usually investigates in complexity theory are as follows:

(I) Worst case: the maximum value of f(n) for any possible input
(2) Average case: the expected value of f(n)

Sometimes we also consider the minimum possible value of f(n), ellcd the best ease.
The analysis of the average case assumes a certain probabilistic distribution for the input data; one

such assumption might be that all possible permutations of an input,data set arc equally likely. The
average case also uses the following concept in probability theory. Suppose the numbers
n 1 , n 2 _ . . , it occur with respective probabilities p,1 p 21 ... , p. Then the expectation or average
value E is given by

E =	 + 112l2 + ' - + fl,,f),,

These ideas are illustrated in the following example.

EXAMPLE 2.8 Linear Search

Suppose a linear array DATA contains it elements, and suppyse a specific ITEM of information is given. We
want either to find the location LOC of ITEM in the array DATA, or to send some message, such as LOC 0, to
indicate that ITEM does not appear in DATA. The linear search algorithm solves this problem by comparing
ITEM, one by one, with each clement in DATA. That is, we compare ITEM with DATA[II, then DA'I'Al21, and
so on, until we find LOC such that ITEM = DATAILOCJ. A formal presentation of this algorithm follows.

AIgricItrn 2.4: (Linear Search) A linear array DATA with N elements and a specific ITEM of information
arc given. This algorithm finds the location LOC of ITEM in the array DATA or sets
LOC=O.

I. Itnitializel Set K: = I and LOC : = 0.
2. Repeat Steps 3 and 4 while LOC = 0 and K :5 N.
3. 11 ITEM = DATA(KJ. then: Set IOC := K.
4. Set K: = K + I. [increments counter.]

(End of Step 2 loop.]
5. (Successful?)

If LOC = 0, then:
Write: ITEM is not in the array DATA.

Else:	 -
Write: LOC is the location of ITEM.

[End of If structure.]
6. Exit.

The complexity of the search algorithm is given by the number C of comparisons between ITEM
and DATA[KJ. We seek C(n) for the Worst case and the average case. 	 .

CHAP. 21	 PRELIMINARIES 29

Worst Case

Clearly the worst case occurs when ITEM is the last clement in the array DATA or is not there at
all. In either Situation, we have

C(n) = is

Accordingly, C(n) = n is the worst-case complexity of the linear search algorithm.

Average Case

Ucrc we assume that ITEM does appear in DATA, and that it is equally likely to occur at any
position in the array. Accordingly, the number of comparisons call any of the numbers
1,2,3.... . n, and each number occurs with probability p = I In. Then

=(l+2+...+n).!
It

= is(,i + 1) 1 = ii + 1
2	 it	 2

This agrees with our intuitive feeling that the average number of comparisons needed to find the
location of ITEM is approximately equal to half the number of cicmcnts in the DATA list.

Remark: The complexity of the average case of an algorithm is usually much more complicated
to analyze than that of the worst case. Moreover, the probabilistic distribution that one assumes for the
average case may not actually apply to real situations. Accordingly, unless otherwise stated or implied,
the complexity of an algorithm shall mean the function which gives the running time of the worst case
in terms of the input size. This is not too strong an assumption, since the complexity of the average case
for many algorithms is proportional to the worst ease.

Rate of Growth; Big 0 Notation
Suppose M is ail and suppose ii is the size of the input data. Clearly the complexityf(n)

of M increases as is increases. It is usually the rate of increase of Alt) that we want to examine. This isusually done by comparing f(n) with some standd function, such as
log 2 it,	 it •	 11 109211, 	 n2,	 n3,	 2"

The rates of growth for these standard functions arc indicated in Fig. 2-6, which gives their
approximate values for certain values of is. Observe that the functions are listed in the order of their
rates of growth: the logarithmic function log 2 is grows most slowly, the exponential function 2" grows
most rapidly, and the polynomial functions n grow according to the exponent c. One ay to comparethe function f(n) with these standard functions is to use the functional 0 notation definedas follows:

n)
,	 log ii	 n	 n log n	 n2	 n3	 2'

	

5	 3	 5	 15	 25	 125	 32

	

10	 4	 10	 40	 100	 10	 10

	

100	 7	 100	 700	 10	 10	 10"

	

1000	 10	 10'	 10*	 10'	 l0	 1O"''

Fig. 2-6 Rate of growth of standard functions.

30	 PRELIMINARIES	 (CHAP. 2

Suppose f(n) and g(n) are functions defined oil positive integers with the property that f(n) is
bounded by some multiple of g(n) for almost all ii. That is, suppose there exist a positive integer n0and
a positive number M such that, for all ii > ,i,, we have

If(n)I Mg(n)

Then we may write

An) 0(g(ii))

which is read "f(n) is of order g(n)." For any polynoi.ial P(n) of degree in, we show in l'rob. 2.10 that
P(n) 0(n");c.g.,

- 576n"+ 832,: - 248 -- O(,)

We can also write

f(n) /:(n) + 0(g(n))	 when	 f(n) -- /:(n) = 0(g(n))

(This is called the "big 0" notation since f(n) = o(g(n)) has an entirely different meaning.)
To indicate the convenience of this notation, we give the complexity of certain well-known

searching and sorting algorithms:

(a) Linear search: 0(n)
(b) Binary search: 0(log ii)
(c) Bubble sort: 0(n')
(d) Merge-sort: 0(n log ii)

These results are discussed in Chap. 9, oil 	 arid searching.

2.6 SUBALGORITIIMS

A subalgvru/:n: is i t complete and independently defined algorithmic module which is used (or

invoked or called) by some main algorithm or by some other subalgorithm. A subalgorithin receives

values, called arguments, from all (calling) algorithm; performs computations; and then
sends back the result to the calling algorithm. Thcubalgorithni is defined independently so that it may
be called by many different algorithms or called at different times in the same algorithm. The
relationship between air 	 and a subalgorithm is similar to the relationship between a main
program and a subprogram in a programming language.

The main difference between the format of a subalgorithm and that of an algorithm is that the
subalgorithm will usually have a heading of the form

NAME(PAR 1 , PAR,,..., PARK)

Here NAME refers to the name of the subalgorithm which is used when the subalgorithmn is called,
and PAR,, PAR 2 , . . , PAR K refer to parameters which are used to transmit data between the
subalgorithni and the calling algorithm;

Another difference is that the subalgorithm will have a Return statement tather than an Exit
statement; this emphasizes that control is transferred back to the calling program when the execution
of the subalgorithm is completed.

Subalgorithins fall into two basic categories: function subalgorithnis and procedure subalgorithms.
The similarities and differences between these two types of subalgorithms will be examincti below by
means of examples. One major difference between the subalgorithms is that the function .suhalgorithm
returns only a single value to the calling algorithm, whereas the procedure subalgorithrn may send back
more than one value.

CHAP. 21	 PRELIMINARIES	 I
31

EXAMPLE 2.9

The following function subalgorithm MEAN finds thc average AVE of three numbers A, B and C.
Function 2.5; MEAN(A, B, C)

1. Set AVE:(A±IJ+C)/3
2. Rcturn(AVE).

Note that MEAN is the name of the subalgorithni and A, B and C are the parameters. The Return statement
includes, in parentheses, the variable AVE, whose value is returned to the calling program.

The subalgorithm MEAN is invoked by an algorithm in the same way as a function subprogram is
invoked by a calling program. For example, suppose an algorithm Contains the statement

Set TEST:= MEAN(T 1 , T2 , T3)
where T) , T2 and T. are test scores. The argument values T 1 , 1'2 and T. are transferred to the
parameters A, B, C in the subalgorithni, the subalgorithm MEAN is executed, and then the value of
AVE is returned to the program and replaces MEAN(T 1 , T2 , T3) in the statement. Hence the average
of T, T2 and T is assigned to TEST.

EXAMPLE 2.10

The following procedure SWITCH interchanges the values of AAA and BBB.

Procedure 2.6: SWITCH(AAA, BBB)

1. Set TEMP:=AAA, AAA:=BBB and BBB:TEMp.
2. Return.

The procedure is invoked by means of a Call statement. For example the Call statement

Call SWITCH(BEG, MiX)

has the net effect of interchanging the values of BEG and AUX. Specifically, when the procedure SWITCH is
invoked, the argument of BEG and AUX arc transferred to the parameters AAA and BBB, respectively; the
procedure is executed, which interchanges the values of AAA and BBB; and then the new values of AAA and
BBB are transferred back to BEG and AUX, respectively.

• Remark: Any function subalgorithm can be easily translated into an equivalent procedure by
simply adjoining all parameter which is used fu return the computed value to the calling
algorithm. For example, Function 2.5 may be translated into a procedure

MEAN(A, B, C, AVE)

where the parameter AVE is assigned the average of A, B, C. Then the statement

Cafl'MEAN(T 1 , T2 , T., TEST)

also has the effect of assigning the average of Ti, 'r and T to TEST. Generally speaking, we will USC
procedures rather than function subalgorithms.

2.7 VARIABLES, DATA TYPES

Each variable in any of our algorithms or programs has a data type which determines.thc code that
is used for storing its value. Four such data types follow:

(I) Chiuiatte, Here data aic coded using some character code such as EBCDIC.or ASCII. The
8-hit LBCI)IC code of some characters appears in Fig. 2-7. A single character is normally
stored in a byte.

32	 PRELIMINARIES	 (CHAP. 2

Char.	 Zone Numeric Flex	 Char.	 Zone Numeric	 Hex Char.	 Zonc Nun,cric Hci

S	 1110 0010	 E2	 blank	 0100 0000	 40

A	 1100 0001	 C 	 T	 0011	 E3	 iou	 40

ii	 0010	 C2	 U	 0100	 E4	 1100	 4C

C	 0011	 C3	 V	 0101	 ES	 (1101	 4D

D	 0100	 C4	 W	 0110	 E6	 +	 0100 1110	 4E

E	 0101	 C5	 X	 0111	 E7	 &	 0101 0000	 50

F	 0110	 C6	 Y	 10(X)	 ES	 $1 Oil	 50

G	 0111	 C7	 Z	 1110 1001	 E9	 s	 1100	 5C

H	 1000	 C8)	 i WI	 50

I	 1100 10()1	 C9	 0	 1111 0000	 FO	 0101 1110	 SE

j	 1101 0001	 Dl	 I	 0001	 Fl	 -	 0110 0000	 60

	

0010	 02	 2	 0010	 F2	 /	 0001	 61
L	 (1011	 03	 3	 0011	 F3	 1011	 60

M	 0100	 1)4	 4	 0100	 F4	 1100	 6C

N	 0101	 1)5	 5	 0101	 ES	 >	 1110	 6E
o	 0110	 06	 6	 0110	 F6	 0110 liii	 oF

P	 0111	 D7	 7	 0111	 F7	 :	 0111 1010	 7A

o	 1000	 D8	 8	 1000	 ES1011	 70
It	 1101 1001	 1)9	 9	 till 1001	 F9	 S j,	 Iwo	 7C

0111	 1110	 7E

Fig. 2-7 Part of the EBCDIC code.

2) Real (or floating point). Here numerical data arc coded using the exponential form of the

data.

(3) Integer (or fixed point). Here positive integers arc coded using binary representation, and
ncgativc integers by some binary variation such as 2's complement.

(4) Logical. Here the variable can have only the value true or false; hence it may be coded using
only onc bit, 1 for true and 0 for false. (Sometimes the bytes 1111 liii and 0000 0000 may be
used for true and false, respectively.)

'[he data types of variables in our algorithms will not be explicitly stated as with computer programs
but will usually be implied by the context.

EXAMPLE 2.11

Suppose a 32-bit memory location X contains the following sequence of hits:

011011(X)	 11000111	 11010110	 01101100

There is no way to know the content of the cell unless the data type of X is known.

(a) Suppose X is declared to be of character type and EI3CDIC is used. Then the four characters %GO% are
stored in X.

(b) Suppo'sc X is declared to be of sonic other type, such as integer or real. Then an integer or real number is
stored in X.

Local and Global Variables

The organization of a computer program into a main program and various subprograms has led to
the notion of local and global variables. Normally, each program module Contains its o wl, list of

variables, called local variables, which call 	 accessed only by the given pioglaill module. Also,

CHAP. 21	 PRELIMINARIES	 33

subprogram modules may contain parameters, variables Whichtrnnsfer data between a-subprogram
and its calling program.

EXAMPLE 2.12

Consider the procedure SWITCH(AAA. BBB) in Example 2.10. The variables AAA and BBB are
parameters; they are used to transfer data between the procedure and a calling algorithm. Oil other hand, the
variable TEMP in the procedure is a local variable. It ''lives" only in the procedure; i.e.. its value can he accessed
and changed only during the execution of the procedure. In fact, the name TEMP may be used for a variable in
any other module and the use of the name will not interfere with the execution of the procedure SWITCH.

Language designers realized that it would be convenient to have certain variables which call
accessed by some or even all the program modules in a.computcr program. Variables that can he
accessed by all -program modules are called global- variables, and variables that can be accessed by
some program modules are called nonlocal variables. Each programming language has its own syntax
for declaring such variables. For example. FORTRAN uses a COMMON statement to declare global
variables, and Pascal uses scope rules to declare global and nonlocal variables.

Accordingly, there are two basic ways for modules to communicate with each other:

I) Directly, by means of well-defined parameters
(2) Indirectly, by means of nonlocal and global variables

The indirect -change of the value of a variable in one module by another module is called a side effect.
Readers should he very careful when using nonlocal and global variables, since errors caused by side
effects may he difficult to detect.

A
	 t	

4

Solved Problems

MATHEMATICAL NOTATION AND FUNCTIONS

	2.1	 Find (a) [7.5j, [-7.5], H l8j, [v'ij, [/ij, [,j ; and (b) [7.5}. (-- 7.5 1, 1-181, [Vi,f'i). Hi.
(a) By definition, [xi denotes the greatest integer that does not exceed x, called the floor o I x. Hence,

[7.5] =7	 [-7.5] = —8	 [-181 = —18
1v'iJ =5	 =3	 lid =3

(b) By definition, fri denotes the least integer that is not less than x, called thc ceiling of x. Hence,
[7 .51 = 8	 1-7.51 = 7	 [-181 = --18

1V'i1= 6	 [,'1=4	 1i=4

	

2.2	 (a) Find 26 (mod 7), 34 (mod 8), 2345 (mod 6), 495 (mod II).
(h) Find — 26 (mod 7), — 2345 (mod 6), —371 (mod 8), --39 (mod 3).
(c) Using arithmetic modulo 15, evaluate 9 + 13, 7 + 11, 4 - 9. 2 - ID.
(a) Since k is positive, simply divide k by the modulus Al to obtain the remainder r. Then r = k (mod M).Thus

5 26 (mod 7)	 2 = 34 (mod 8)	 5 2345 (mod 6)	 0 = 495 (mod 11)

Fig. 2-8

X

34
	 PRELIMINARIES	 Id-lAP. 2

(b) When k is negative, divide IkI by the modulus to obtain the remainder r'. Then k -r' (mod M).

Hence k (mod M) M - r' when r' 9A 0. Thus

	

26 (mod 7)=7-52	 -371 (mod 8)8-35

-2345 (mod 6)6-5 1	 -39 (mod 3)0

(c) Ust a ± Ma (mod M):

	9+13=2222-157	 7+11=-18"l8—l53

	

4-9=-5--5+15=10	 2-10--8-8+l57

2.3	 List all the permutations of the-numbers 1, 2, 3, 4.

Note liNt that there are 4! 24 such permutations:

1234	 1,243	 1324	 1342	 1423	 1432

2134	 2143	 2314	 2341	 2413	 2431

3124	 3142	 3214	 3241	 3412	 3421

4123	 4132	 4213	 4231	 4312	 4321

Observe that the first row contains the six permutations beginning with 1, the second row those beginning
with 2, and so n.

2.4,	 Find: (a) 2, 8213, 25 3 / 2 ; (b) 1092 32 logs, 1000, log2 (1/16); (c) L iogz 1000], 1092 0.01].

(a) 2	 = 1/2'	 1/32; 82 = (./)2	 = 4; 25	 = I /25"	 115' =1/125.

(b) . log 2 32 = 5 since 2 =32; Iog 1 , 1(100=3 since 103= 1000; I0920/16) -4 since 2' 1/2' = 1/16.

(c) hlog 2 I0()()1 = 9since 2' = 512 but 2'" 1024;

	

Uog 2 0.011 = -7 since 2' = 11128<0.01 <2	 1/64.

2.5 Plot the graphs of the exponential function f(x) 2', the logarithmic [unction g(.) = log 2 x and

the linear function h(x) = x on the same coordinate axis, (a) Describe a geometric property of

the graphs f(x) and g(x). (b) For any positive number c, how are f(c), g(c) and /i(c) related?

Figure 2-8 pictures the three functions.

CHAP. 2)	 PRELIMINARIES	 35

(a) Since f(.*) = 2' and g(x) = log.x are inverse functions, they -are symmetric.- wth.rcspcct to the -line
Y X.

(b) For any- positive number c, we have

g(c) < h(c) <f(c)

In fact, as c increases in value, the vertical , distances between the functions,

	

- g(c)	 and	 f(c) -

increase in value. Moreover, the Logarithmic function g(x) grows very slowly- -compared--with the
linear function h(x). and the exponential function-J(x) grows very quickly compared with h(x).

ALGORITHMS, COMPLEXITY

2.6 Consider Algorithm 2.3, which finds the location LOC and the value MAX of the largest
clement in an array DATA with n elements. Consider the complexity function C(n), which
measures the number of times LOC and MAX are updated in Step 3. ¶Thc number of
comparisons is independent of the order of the elements in DATA.)	 -

(a) Describe and find C(n) for the worst case. 	 -
(b) Describe and find C(n) for the best case.
(c) Find C(n) for the average case when n = 3, assuming all arrangements of the elements in

DATA are equally likely. 	 -

(a) The worst case occurs when the elements of DATA are in increasing order s Where each comparison
of MAX with DATA[KJ forces LOC and MAX to be updated. In this case, C(n) n - 1.

(b) The best case occurs when the largest clement appears first and so when the comparison of MAX
with DATA[K] never forces LOC and MAX to be updated. Accordingly, in this case, C(n) 0.

(c) Let 1, 2 and 3 denote: respectively, the largest, second largcsf and smallest elements of DATA.
There are six possible ways*the elements can appear in DATA, which correspond to the 3! = 6
permutations of 1, 2, 3, For each permutation p. let n,, denote the number of times LOC and MAX
arc updated when the algoritliir. is executed with input p. The six permutations p and the

- corresponding values it, follow:

Permutation j:	 123
	

132	 213	 231	 312	 321
Value of n:	 0

	
0
	

2

Assuming all permutations j are equally likely,

	

0-f'-0±1+1±1+2	 5
6	 -

(The evaluation of the average value of C(n) for arbitrary n lies beyond the scope of this text. One
purpose of this problem is to illustrate the difficulty that may occur in finding the complexity of the
average case of an algorithm.)

2.7 Suppose Module A requires M units of time, to be executed, where M is a constant. Find the
complexity C(n) of each algorithm, where n is the size of the input data and b is a positive
integer greater than 1.

1. Repeat for -I = Ito N:
2. Repeat for J = 1 to N:
3. Repeat for K= ito N:
4. Module A.

[End of Step 3 loop.]
[End of Step 2 loop.]

[End of Step 1 loop.]
5. Exit.

(a) Algorithm. P2.7A:

36	 PRELIMINARIES	 [CHAP. 2

(b) Algorithm P27B: I. Set J : = 1.
2. Repeat Steps 3 and .4 while J 7s N:
3. Module A.
4. Set J:=BxJ.

[End of Step 2 loop.J
5. Exit.

Observe that the algorithms use N for n and B for h.)

(a) Here	 C(n) =	 M

The number of times M occurs in the sum is equal to the number of triplets (i. J. k), where i.j, k are
integers front 	 to n inclusive. There are is' such triplets. Ilcncc

C(n) Mn' = O(n')

(b) Observe that the values of the loop index J arc the powers of b:

I, b, h 2 , b', b,

Therefore, Module A will be repeated exactly T times, where T is the first exponent such that

1"> is

l-lcncc.	 T= [log, n + I

Accordingly,	 C(n) = MT O(log,, is)

2.8 (a) Write a procedure FIND(DATA. N. LOCI, [.0(12) which finds the location LOCI. of the
largest clement and the location LOC2 of the second largest clement in an array DATA
with is > I elements.

(Li) Why not let FIND also find the values of the largest and second largest elements?

(a) The cicnients of DATA arc examined one by one. During the execution of the procedure, FIRST
and SECOND will denote, respectively, the values of the largest and second largest clenients (bat
have already been exaiiiincd. Each new element DATALKI is tested as follows, If

SECOND ni FIRST< DATAIKJ

then FIRST becomes the new SECOND clement and t)Ai'A[Kj becomes the new FIRST clement.
On the oilier hand, if

SECOND < DATA(KJ FIRST

then DAI'AIKJ becomes the new SECOND element. Initially, set FIRST: DATAIIJ and
SECOND = DA'l'A[21, and check whether or not they are in the right order. A formal presentation
of (lie procedure follows:

Procedure P2.8: FIND(DATA, N. LOCI, LOC2)

I. Set FIRST:= DATA[IJ, SECOND:=DATA[2J, LOCI := I, LOC2:=2.
2. IArc FIRST and SECOND initially correct?I

If FIRST < SECONI), then:
(a) Interchange FIRST and SECOND,
(b) Set LOCI :=2 and LOC2:= I.

[End of If structure.
3. Repeat for K = 3 to N:

If FIRST < DA'FA[KJ, then:
(a) Set SECOND : = FIRST and FlRST:—,DATAjKj.
(b) Set LOC2 := LOCI and LOCI := K.

Use if SECOND < DATAIKI. (lien:
Set SECOND: = DATAI KJ and LOC2 : = K.

[End of If structure.]
[End of loop.I

4. Return.

CHAP. 21	 PRELIMINARIES	 37

(b) Using additional paransctcrs FIRST aiiJ SECOND would be redundant, since LOCI and LOC2
automatically tell the calling program that DA1'A(LOCIJ and DA1AILOC2J arc. respectively, the
values of the largest and second largest :k'ments of DATA.

2.9	 An integer . n > I is called a prime number if its only positive divisors are I and i; otherwise, it is
called a composite number. For example, the following are the prime numbers less than 20:

2, 3, 5, 7, ii, 13, 17, 19

un >1 is not prime, i.e., if,i is composite, then ,z must have a divisor k io' 1 such that k	 v71 or,
in other words, k 2 n.

Suppose we want to find all the prime numbers less tItan a give n number fit, such . . M. This
can he done by the "sieve method," which consiSts of the following steps. First list the 30
numbers:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
16, 17 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30

Cross out I and the multiples of 2 front 	 list as follows:

-(, 2, 3, 4, 5.M 7, X, 9,)4f,!Ij, l3,)4' 15
A(', 17.), 19-26, 21, .2'2, 23, ,.24 ', 25, X, 27, X 29

Since 3 is the first number following 2 that has not been climittated, cross Out thc multiples of 3front 	 list as follows:

11,)- 13,J40
.14c 17, X 19,)ti .2-1',	 23, 2, 25, 26, .2'7 X, 29,)(1

Since 5 is the first number following 3 that has 1101 been eliminated, ci o s it th. iii till iples Of 5front 	 list as follows:

A 2. 3, A' 5, .X< 7,	 ,J	 11,)-	 13,)< t
y 17,	 19, .2<2< 23,)4 ...25' 2<2<2< 29, ..Mc"

Now 7 is the first n umber following 5 that has not bccn cli uti natcd , but 7 > 30. This inca i:s the
algorithm is finished and the numbers left in the list are the primes less tItan 30:

2, 3, 5, 7, ii, 13, 17, 19, 23, 29

Translate the sieve method into all algorithm to find all prime numbers less than it
number n.

First define an array A such that

All] =I,	 Al2]=2,	 A1313,	 A{4]4A(N-1J=N--I.	 AINJ.
We cross out an Integer L front 	 list by assigning A [L] 1. The rollowirg produrc CR()SSOI.JT tests
whether A], (]	 1, and if not, it Sets

A[2K]= 1,	 A13KJ = 1,	 A]4K]	 I,..
That is, it eliminates the multiples of K front 	 list

Procedure 112.9A: CROSSOUT(A, N, K)

1. If A[K] = I. then: RCLUI ii.
2. Repeat for L 2K to N by K:

Set AILI := 1.
[End of tool).]

3. Return.

The sieve method can now be simply written:

PRELIMINARIES	 (CHAP. 2

AI,—djmP.2.9H: This algorithm prints the prime numbers less than N.

I	 Initialize array A.} Repeat for K	 I to N:
Set A(Kl.K.

.2	 Eliminate mult pies of K Repeat for K 2 to 'IN.
Call CROSSOU F(A, N. K).

3. (Print[he primes.] Repeat foi K 2 to N:
If A[K] ^ I, ihen. Write: A[K].

4	 Exit.

2.10 Suppose P(n)	 a, 4- a 1 n -+- a 2 I 2 4- --	 ai.	 that is. suppose degree I'(n) = in. Prove that

P(n) =

Let b 0 = Ia,I, b,	 IaJ.... . b.,	 IuI. 'I bell, for n ^ 1,

P(n)b4 bn+b 2 n±-

(+ b, + . . + b,)i'" = Mit"

where M = JaI + la, l '-	 + j aj. hence I-'(n) =
For example,	 ' 3. = O(r') and x' –4 (XX) 000x = O(x').

J4:ABLES, DATA TYPES

2.11	 Describe briefly the difference bctceii local variables, parameters and global variables.

Local variabies -a re variables which ca ll i)c accessed only with in a particular program or subprogram.

Parameters arc variables which are used to transfer data between a subprogram and its calling rograni
Global variables are variables whi h can be accessed by all of the program modules in a computer
program. Each programming language which allows global variables has its own syntax for declaring them.

2.12 Suppose NUM denotes the nuntbcr of records in a tile. Describe the advantages in defining

NUN, 10 be a global variable. Describe the disadvantages in using global variables in general.

Many of the procedures will process all the records in the file using some type orroop. Since NUM will

be the same for all these procedures, it would be advantageous to have NUM declared a global variable.
Generally speaking, global and nonlocal variables may lead to errors caused by side effects which may be
difficult to detect.

2.13 Suppose a 32-bit memory location AAA conta,.Is the following sequence of bits:

')100 1101	 11000001	 1110 1001	 0101 1101

Determine the data stored in AAA.

There is no way of knowing the data stored in AAA unless one knows the data type of AAA. If AAA
is a character variable and the EbCDIC code is used for storing data, then (AZ) is stored in AAA. If

AAA is an integer variable, then the integer with the above binary representation is stored in AAA.

2.14 Mathematically speaking, integers may also be viewed as real numbers. Give '.onic reasons for

having two different data types.

The arithmc .ic for integers, which are Iorcd using some type of binary representation, is much
simpler than the arithiiietic for real numbers, which are stored using some type of exponential form. Also,
certain round-off errors oc'urring in real arithmetic do not occur in iittcgcr arithctic.

CHAP. 2)	 PRELIMINARIES	 39

Supplementary Problems

MATHEMATICAL NOTATION AND FUNCTIONS

	2.15	 Find (a) [3.4J, [-3.4], I-71, iv'71. 1'73J, [e]; (b) [3.41, 1-3.41, 171, 1V31, 1l11: Eel.

2.16 (a) Find 48 (mod 5), 48 (mod 7), 1397 (mod 11), 2468 (mod 9).
(b) Find —48 (mod 5), —152 (mod 7), —35S (mod 11), —1326 (mod 13).
(c) Using arithmetic modulo . 13, evaluate

9+10,	 8+12,	 3+4,	 3-4,	 2-7
	

5-8

	

2.11
	

Find (a) 13 + 81, 13 —81, J-3 + 81, 1-3-81; (b) 7', 8!, 14!/12!, 15!116!

	2.18
	

Find (a) 3', 4", 27"; (b) 1082 64, Iog 0.001, log2 (118); (c) hg 1000000J, tlg 0.00 11.

ARITHMS, COMPLEXITY

9 Consider the complexity function C(n) which measures he number of times LOC is updated in Step 3 of
Algorithm 2.3. Find C(n) for the average case when n 4 .assuming all arrangernentsof tie given four
elements are equally likely. (Compare with Prob. 2,6.)

2.20 Consider Procedure P2.8, which finds the location LOCI of the largest clement and the location LOC2 of
the second largest element in an array DATA with n > 1 elements. Lct C(n) denote the number of
comparisons during the execution of the procedure.

(a) Find C(n) for the best case.
(b) Find C(n) for the Worst case.
(c) Find C(n) for the average case for n = 4, assuming all arrangements of the given elements in DATA

are equally likely.

2.21 Repeat Prob. 2.20, except now let C(n) denote the number of times the values of FIRST and SECOND (or
LOCI and LOC2) must be updated.

2.22 Suppose the running time of a Module A is a constant M. Find the order of magnitude of the complexity
function C(n) which measures the execution time of each of the following algorithms, where n is the size of
the input data (denoted by N in the algorithms).

(a) Procedure P2.22A:

(b) Procedure P2.228:

1. Repeat for 1'1 to N:
2. Repeat for Jl to 1:
3. Repeat for K'= ito J:
4. Module A.

[End of Step 3 loop.)
[End of Step 2 loop.]

[End of Step I loop.)
5. Exit.

1. Set J:=N.
2. Repeat Steps 3 and 4 while J> 1.
3. Module A.
4. SctJ:J/2.

[End of Step 2 loop.]
5. Return.

40'	 FREUM.,\1UES	 ICHAP. 2

Programming Problems

2.23	 Write it 	 subprogram DJV(J, K), where J and K are positive integers such that DIV(J. K) I if 3.

divides K but otherwise DJV(J, K) 0. (For example. DIV(3, 15) 1 but DIV(3. 16) = 0.)

2.24	 Write it program using DIV(J, K) which reads it positive integer N> 10 and determines whether or not N is
a print,., nuunbcr (Flint: Nis prime if (I) DIV(2, N) 0 (i.e., Nis odd) and (ii) DIV(K. N) = 0 for all odd
integers K where I K	 N.)

2.2 1; Translate l'roceduue P2.8 into a computer program; i.e., write a program which finds the location LOCI of
the largest cleinctit and the location LOC2 of the second largest clement in an array DATA with N > I
cleanetits. Test the program using 70, 30, 25, 80, 60, 50, 30, 75, 25, and 60.

2.26	 Translate the sieve method for finding prime numbers, described inProb. 2.9. into a program to find the
prime numbers less than N. Test the program using (a) N 1000 and (b) N = 10000.

2.27	 Jet C denote the number of times LOC is updated using Algorithm 2.3 to find the largest clement in an
array A with N cleiuients.

(a) Write it 	 (OUNT(A, N. C) which finds C.

(/') Write it 	 P2.2; which (I) reads N random numbers between 0 and I into an array A and (ii)
uses COIJNT(A, N, C) to find the value of C.

(c) Write a program which repeats Procedure P2.27 1000 times and finds the average of the 1(XX) C's.
(i) Test the program for N = 3 and compare the result with the value obtained in Prob. 2.6.

(ii) Test the program for N = 4 and compare the result with the value in Prob. 2.19.

Chapter 3
String Processing

3.1 INTRODUCTION

Historically, computers were First used for processing numerical data. Today, computers are
frequently used for processing nonnumcrical data, called character data. This chapter discusses how
such data are stored and processed by the con puter.

One of the primary applications of computers today is in the ticid of word processing. Such
processing usually involves some type of patterrimatching, as in checking to sec if a particular word S
appears in a given text T. We discuss this pattern matching problem in detail and, moreover, present
two different pattern matching algorithms. The complexity of these algorithms is also investigated.

Computer terminology usually uses the term "string" for a sequence of characters rather than the
term "word," since "word" has another meaning in computer science. For this reason, many texts
Sometimes USC the expression "string processing, ""string manipulation" or "text editing" instead of
the expression "word processing."

The material in this' chapter is essentially tangential and independent of the rest of the text.
Accordingly, the reader or instructor may choose to omit this chapter on a first reading or cover this
chapter at a later time.

3.2 BASIC TERMINOLOGY

Each programming language Contains a character .wt that is used to communicate with the
computer. This set usually includes the following:

Alphabqt:	 A B C D'E F 0 H I J K L M N 0 P Q R S T U V W X Y Z
Digits:	 0123456789
Special characters:	 + - / * ()	 $	 o

The set of special characters, which includes the blank space, frequently denoted by 0, varies
somewhat from one language to another.

A finite sequence S of zero or more charades is called a siring. The number of characters in a
string is called its length. The string with zero characters is called the empty siring or the null string.Sp,ccific strings will be denoted by enclosing their characters in single quotation marks. The quotation
marks will also serve as string dclinailcrs. Hence

'THE END'	 'TO BE OR NOT TO BE	 rJ0

are strings with lcngths3, 18, 0 and 2, respectively. We emphasize that the blank space is a character
and hence contributes to the length of the string. Sometimes the quotation marks may be omitted when
the context indicates that the cxpressicLn is a string.

Let S and S 2 be strings. The string consisting of the characters of S, followed by the characte .s of•S 2 is called the concatenation of S, and S 2 ; it will be denoted by S 1 //S 2 . For example,
'THE'll' END ' = 'THEEND' 	 but	 'THE'll'D'll'END 'THE END

Clearly the length of S, 11 S 2 is equal to the sum of the lengths of the strings S, and S2.
A string Y is called a subsiring of a string S if there exist strings X and Z such that

s=x//Y//z
If X is an empty string, (hen Y is called an initial subsiring of S, and if Z is an empty string then Y is
called a terminal vubstring of S. For example,

41

42	 STRING PROCESSING	 ICIIAP. 3

'BE OR NOT'	 is a substriug of 	 'TO BE OR NOT TO BE'

'THE'	 is an initial substring of	 THE END'

Clearly, if Y is a substring of S. then the length of Y cannot exceed the length of S.
Remark: Characters arc stored in the computer using either a6-bit, a 7-bit or an 8-bit code. The

Unit equal to the number of bits needed to represent a character is called a byte. However, unless
otherwise stated or implied, a byte usually means 8 bits. A computer which can access an individual
byte is called a byte-addressable machine.

3.3 sroRIN(; STRINGS

Generally speaking, strings are stored in three types of structures: (1) fixed-length structures, (2)
variable-length structures with fixed maximums and (3) linked stnictures. We discuss each type of
structure separately, giving its advantages and disadvantages.

Record-Oriented, Fixed-Length Storage
In fixed-length storage each line of print is viewed as a record, where all records have the same

length, i.e., where each record accommodates the same number of characters. Since data are
frequently input on terminals with 80-column images or using 80-column cards, we will assume our
records have length 80 unless otherwise stated or implied.

EXAMPLE 3.1

Suppose the input consists of the FORTRAN program in Fig. 3-1. Using a record-oricntcd, lixcd-length
storage medium, the input data will appear in memory as pictured in Fig. 3-2, where we assu.ic that 200 is the
address of the first character of the program.

The main advantages of the above way of storing strings are:

(1) The ease of accessing data from any given record

(2) The case of updating data in any given record s long as the length of the new data does not
exceed the record length)	 -

The mails disadvantages arc:

(1) Time is wasted reading an entire record if most of the storage Consists of inessential blank
spaces.

(2) Certain records may require more space than available.

(3) When the correction consists of more or fewer characters than the original text, changing a
misspelled word requires the entire record to be changed.

C PROGRAM PRINTING TWO INTEGERS IN INCREASING ORDER
READ ., .1. K
IF(J.LE.K) THEN

PRINT . , .1, K
ELSE

PRINT . , K. .1
ENDIF
STOP
END

Fig. 3-I Input data.

CHAP. 31	 STRING PROCESSING	 43

20(1	 210	 220

FM I I I R I E I A I D I 1I . l lL! JK	 IJIjJJjI	 I	 I280	 290	 300

IJI1IiI 1 ! F ILL . I L J E J . 1 K 111 11 u ! n J N jIJIjI	 II	 I	 I360	 370	 380

flhi IIllI . IIJ P I R I I I N I r IJ . ! , IJ J I . JI KIJ! 	 1I	 I	 I440	 450	 460

W L_11 E I N J D I I II!II!III	 I III!!	 1I	 I	 I840)S(l	 860

Fig. 3-2 Records storcd sequci,. "y in thc cornputcr.

Fig. 3-3 Rccords stçred using pointcrs.

44	 STRING PROCESSING	 LCIIAP. 3

Remark: Suppose we wanted to insert a new record in Example 3.1. This would require that all
succeeding records be moved to new memory locations. However, this disadvantage can be easily,
remedied as indicated in Fig. 3-3. That is, one can use a linear array POINT which gives the address of
each successive record, so that the records need not be stored in consecutive locatibns in memory.
Accordingly, inserting a knew record will require only an updating of the array POINT.

Variable-Length Storage with Fixed Maximum
Although strings mjy be stored in fixed-length memory locations as above, there are advantages in

knowing the actual length of each string. For example, one then does not have to read the entire record
when the string occupies only the beginning part of the memory location. Also, certain string
operations (discussed in Sec. 3.4) depend on having such variable-length strings.

The storage of variable-length strings in memory cells with fixed lengths can be done in twgencral
ways:

(1) One can use a marker, such as two dollar signs ($$), to signal the end of the string.
(2) One can list the length of the string—as an additional item in the pointer array, for example.

Using the data in Fig. 3-1, the first method is pictured in Fig. 3-4(a) and the second method is pictured
in Fig. 3-4(b).

C PROGRAM PRINTING TWO INTEGERS IN INCREASING ORDER$$

I	 -I----"	 READ .. J, K$S

3	 •	 y	 IF(J.LE.K) THEN$S

IPRINT . ,J, KSS

Lt m...___l,..1END$$	 -	 I

(a) ReLords with sentinels.

C PROGRAM PRINTING TWO INTEGERS IN INCREASING ORDER
POINT

1	 55 READ .. .J, K

4 24
PRINT ., J, K

919
END

(b) Records whose lengths are listed.

Fig. 3-4

Cl-lAP 3)	 STRING PROCESSING	 45

Remark: One might be tempted to store strings one after another by using some Separation
marker, such as the two dollar signs ($$) in Fig. 3-5(a), or by using a pointer array giving the location
of the strings, as in Fig. 3-5(b). These ways of storing strings will obviously save space and arc
sometimes used in secondary memory when records are relatively permanent and require little change.
However, such methods of storage are usually inefficient when the strings and their lengths are
frequently being changed.

IROGRAM.. ORI)ERS$$ 	 REAL) ., J, K$$	 ll(J.LE.K) IHEN$$..

(a)

C	 PROGRAM . ORDER I READ., J. K I IF(J.LE.K) TIIENL..

(b)

Fig. 3-5 Records stored one altet- another.

Linked Storage

Computers are being used very frequently today for word processing, i.e., for inputting, processing
and outputting printed matter. Therefore, the computer must be able to correct and modify the printed
matter, which usually means deleting, changing and inserting words, phrases, sentences and even
paragraphs in the text. However, the Iixcd-length memory cells discussed above do not easily lend
themselves to these operations. Accordingly, for most extensive word processing applications, strings
arc stored by means of linked lists. Such linked lists, and the way data arc inserted and deleted in them,
arc discussed in detail in Chap. 5. Here we simply look at the way striui's appear in these data
structures.

By a (one-way) linked list, we mean a linearly ordered sequence of memory cells, called nodes.
where each node Contains an item, called a li,,k, which points to the next node in the list (i.e.. which
contains the address of the next node). Figure 3-6 is a schematic diagram of such it linked list.

Fig. 3-6 Linked list.

(a) One iaractcr per node.

• • •

(b) Four characters per node.

Fig. 3-7

END

3

STRING PROCESSING	 IC1Il'. 3

Strings may be stored in linked lists as follows. Each memory cell is assigned one character or a
fixed number of cliaracicis, and a link contained in the cell gives the address of the cell containing the
next character or group of characters in the string. For example, consider this famous quotation

To be or not to be, that is the question.
Figure 3-7(a) shows how the string would appear in memory with one character per node, amid Fig.
3-7(b) shows how it would appear with four characters per node.

CHARACTER DATA TYPE
This section gives an overview of the way various programming languages handle the character

data type. As noted in the preceding chapter (in Sec. 2.7), each data type has its own formula for
decoding a sequence of bits in memory.

Constants
Many programming languages denote string constant by placing the string in either single or

double quotation marks. For example,
'THE END'	 and	 'To BE OR NOT TO BE'

are string constants of lengths 7 and 18 characters respectively. Our algorithms will also define
character constants in this way.

Variables
Each programming language has its own rules for forming character variables. However, such

variables fall into one of three categories: static, senaistatic and dynamic. By a static character variable,
we rncami a variable whose length is defined before the program is executed and cannot change
throughout the program. By a sennst(Uic character variable, we mean a variable whose length may vary
during the execution of the program as long as the length does not exceed a maximum value
determined by the program before the program is executed. By a dynamic character variable, we mean
a variable whose length can change during the execution of the program. These three categories
correspond, respectively, to the ways the strings arc stored in the memory of the computer as discussed
in the preceding section.

EXAMPLE 3.2

(a) Man' versions of FORTRAN use static ChARACtER variables. For example, consider the following
FORTRAN program segment:

CI-IARAC1ER STI*lO, ST2*14
STI = 'THE END'
ST2 = 'TO BE OR NOT TO BE

The first statement declares STI and ST2 to be CI-LARACrER variables with lengths. 10 and 14,
respectively. Alter both assignment statements are executed, STI and ST2 will appear in memory as follows:

	

[. 111 1 1 E l I E l N I Dl I I I ST2 1.1101 JB J
E_

L I01 11 1	 INI oj ri _L:i
That is, a string is stored left-justified in memory. Either blank spaces are added on the right of the string, or
the string is truncated on the right, depending on whether the length of the string is lcs.th n or exceeds the
length of the memory location.

(b) BASIC defines character variables as those variables whose name ends with a dollar sign. Generally
speaking, the variables are scniistatic ones whose lengths cannot exceed a fixed bound. For example, the
BASIC program segment

CHAP. 31	 STRING PROCESSING	 47

AS = ''THE BEGINNING'
B$ ''THE END''

defines AS and 13$ to be character variables. When the 5Cgmcflt is exccutcd, the lengths of AS and It $ will he
13 and 7, respectively,

Also. BASIC uses double quotation marks to denote string constants.

(c) SNOI3OL uses dynamic character variables. For example, the SNOBOL progratil segment

WORD = 'COMPUTER'
TEXT 'IN TUE BEGINNING'

dclliics WORE) and TEXT as character variables. When the segment is executed, the lengths of WORD and
TEXT will be 8 and 1 0, respectively. J-Iowvcr, the lengths may change later in the program.

(d) PL/ 1 uses both static and sernistatic CHARACTER variables. For example, the PL/ I statement

DECLARE NAME ClIARAcT1(20),
WORD Ct IARACTER(IS) VARYING;

designates NAME as it static CHARACTER variable of length 20 and designates WORD as a semistatic
Cl IARAC1ER variable whose length may vary but may not exceed 15.

(c) In Pascal, a character variable (abbreviated CII AR) call 	 only it single cl,a tact c r , a nd hence a siring
is represented by a linear array of characters. For example

VAR WORD: ARRAYI I 20J OF Cl IAR

declares WORD to be a string of 20 characters. Furthermore, WORDI I
J is the first character of the string,

WORI)121 the second character and so on. [it CHAR arrays have fted lengths and hcncc are
static variables.

^^-j OPERATIONS

Although a string may be viewed simply as a sequence or l,,.ear array of characters, there is a
fundamental difference in use between strings and other types of arrays. Specifically, groups of
Consecutive elements in a string (such as words, phrases and sentences), called substrings, may be units
Unto themselves. Furthermore, the basic units of access in a string arc usually these substrings, not
individual characters.

Consider, for example, the string

'TO BE OR NOT TO BE'
Wd may view the strinas the 18-character sequence 1', 0, D, B, 	 However, the substrings TO,
BE, OR, . . . have their own meaning.

Oil 	 other hand, consider an 18-clement linear array of 18 integers,

4, 8, 6, 15, 9, 5, 4, 13, 8, 5, 11, 9, 9, 13, 7, 10, 6, 11

The basic unit of access in such all 	 is usually an individual element. Groups of consecutive
elements normally do not have any special meaning. 	 -

For the above reason, various string operations have been developed which arc not normally used
with other kinds of arrays. This section discusses these string-oriented opcfibns. The next section
shows how these operations are used in word processing. (Unless otherwise stated or implied, we
assume our character-type variables are dynamic and have a variable length detcrrrincd by the context
in which the variable is used.)

Substring

Accessing a substring from a given string requires three pieces of information: (I) the name of the
string or the string itself, (2) the position of the first character of the substring in the givers string an

48	 STRING PROCESSING	 (ClIAI' 3

(3) the length of the substring or the position of the last character of the substring. We call this
operation SUI3STRING. Specifically, we write

SUBSTR1NG(string, initial, length)

to denote the substilug of a string S beginning in a position K and having a length L.

EXAMPLE 3.3

(a) Using the above function we have:

SUBSTRING('TO BE OR NOT TO BE, 4, 7)= 'BE OR N'
SUBSTRING('THE END', 4, 4) = 'EDEND'

(h) Our function SUI3STRING(S. 4, 7) is denoted in some programming languages as follows:

PL/ 1:	 SUBSTR(S, 4, 7)
FORTRAN 77: S(4: 10)
UCSD Pascal:	 COPY(S, 4, 7)
BASIC:	 MID$(S, 4, 7)

Indexing
Indexing, also called pattern ,nutcl,i,ig, refers to finding the position where a string pattern P first

appears in a given string text T. We call this operation INDEX and write

INDEX(text, pattern)

If the pattern P does not appear in the text T, then INDEX is assigned the value 0. The arguments
"text" and "pattern - call 	 either string constants or string variables.

EXAMPLE 3.4

(a) Suppose T contains the text

'HIS FATHER is THE PROFESSOR'

• Then.

INDEX(T. 'THE'),	 INDEX(T, 'THEN')	 and	 INDEX(T, 'DTHED')

have the values 7, 0 and 14, respectively.

(b) The function INDEX(tcxt, pattern) is denoted in some of the programming languages as fàllows:

PL/1:	 INDEX(tcxt, pattern)
UCSD Pascal:	 POS(pattcrn, text)

Observe the reverse order of the arguments in UCSD Pascal.

Concatenation

Let S 1 and S 2 be strings. Recall (Sec. 3.2) that the concatenation of S 1 and S 2 . which we denote by

S 1 //S 2 , is the string consisting of the characters of S, followed by the characters of S2.

EXAMPLE 3.5

(a) Suppose 5, 'MARK' and S 2 'TWAIN'. Then:

S,flS 2 'MARKTWA1N'	 but	 S,//'D'//S2 'MARK TWAIN'

LI

CHAP. 3)	 STRING PROCESSING	
49

(/i) Concatenation is denoted in some programming languages as follows:
PL/ 1:	 SAS,
FORTRAN 77:	 S,11S2
BASIC:
SNOBOL	 S S 2 (juxtaposition with a blank space between S and S,)

Length

The number of characters in a string is called its length. We will write

LENGTH(string)
for the length of a given string. Thus

LENGTH('COMPUTER') = 8	 LENGTH('0') = 0	 LENGTH('' ')= 0
Some of the programming languages denote this function as -follows:

•	 PL/1:	 LENGTH(string)
BASIC:	 LEN(string)
UCSD Pascal:	 LENGTH(string)
SNOBOL:	 SIZE(string)

FORTRAN and standard Pascal, which use fixed-length string variables, do not have any built-in
LENG1'lI functions for strings. I'lowcvcr, such variables may be viewed as having variable length if
one ignores all trailing blanks. Accordingly, one could write a subprogram LENGTH in these
languages so that

LENGT[I('MARC ')=4

In fact, SNOBOL has a built-in string function TRIM which omits trailing blanks:

TRIM('ERIK ')= 'ERIK'
This TRIM function is occasionally used in our algorithms ' _—V -

3.6 WORD PROCESSING

In earlier times, character data processed by the computer consisted mainly of data items, such asIlaifles
and addresses. Today the computer also Processes printed matter, such as letters, articles and

reports. It is in this latter context that we use the term "word processing."
Given some printed text, the operations usually associated with word processing are the following:
(a) Repluce,ne,,j Replacing one string' in the text by another.
(b) Iflscrlion. Inserting a string in the middle of the text.
(C) De/cjfr,in Deleting a string front 	 text.

The above operations can be executed by using the string operations discussed iii the preceding
section. ""is we show below when we discuss cacti operation separately. Many of these operations arc
built i n to or can easily be defined in each of the programming I it ii gu ages thatat we have cited.
I uSC !! H 'ii

Suppose in it given text T we want to iuise
Opel ttion by	

it it stringS so that S begins in position K. Vc denote this

INSERT(text , position, string)

50	 STRING PROCESSING	 [CHAP. 3

For example,
1NSERT(.' ABCDEFG', 3, 'XYZ') = 'ABXYZCDEFG
INSERT('ABCDEFG', 6, 'XYZ') = 'ABCDEXYZFG'

This INSERT function can be implemented by using the string operations defined in the previous
section as follows:

INSERT(T, K, S) = SUBSTRING(T, 1, K - 1)//SIISUBSTRING(T, K, LENGTH(T) - K + 1)

That is, the initial substring of T before the position K, which has length K - 1, is concatenated with
the string S, and the result is concatenated with the remaining part of T, which begins in position K and
has length LENGTH(T) - (K - 1) = LENGTH(T) - K + 1. (We are assuming implicitly that T is a
dynamic variable and that the size of T will not become too large.)

Deletion
Suppose in a given text T we want to delete the substring which begins in position K and has length

L. We denote this operation by
i ILETE(text, position, length)

For example,
DELETE(• ABCD.EFG', 4, 2) = 'ABCFG'
DELETE('ABCDEFG', 2, 4) = 'AFG'

We assume that nothing is deleted if position K = 0. lhua 	 -

DELLTE(' ABCDEFG', 0, 2) = 'ABCDEFG'

The importance of this "zero case" is seen later.
The DELETE function can be implemented using the string operations given in the preceding

section as follows:
DELETE(T, K, L) =

SUBSTRING(T. 1, K— 1)//SUBSTRING(T, K+L, LENGTH(T)—KL+1)
That is, the initial substring of T before position K is concatenated with the terminal substring of T
beginning in position K + L. The length of the initial substring is K - 1, and the length of the terminal
substring is:

LENGTH(T) - (K + L —1) = LENGTH(T) - K - L +1

We also assume that DELETE(T, K, L) = T when K 0.
Now suppose text T and pattern P arc given and we want to delete from T the first occurrence of

the pattern P. This call

	

	 by using the above DELETE function as follows:

DELETE1', INDEX(T, P), LENGTH(P))

That is, in the text T, we first compute INDEX(T, P), the position where P first occurs in T, and then
we compute LENGTH(P), the number of characters in P. Recall that when INDEX(T, P) 0 (i.e.,
when P does not occur in T) the text T is not changed.

EXAMPLE 3.6

(a) Suppose 1	 ABCDEFG' and P = 'CD. Then INDEX(T, P) 3 and LENGTH(t, 2. Hence

DELLTE('ABCDEFG'. 3, 2) = ABEFG

CHAP. 31	 STRING, PROCESSING	 51

(b) Suppose T 'ABCDEFG' and I'	 DC', Then INDEX(T, P) = I) and LENGTH(P) = 2. Hence, by thc
"zero case,"

DELETE(AI3CDEFG. 0, 2) 'ABCDEFG'
as expected.

Suppose after reading into the computer it
	 T and a pattern 1', we want to delete every

occurrence of the pattern P in the text T. This can be accomplished by repeatedly applying

DELETE(T, 'JNDEX(T, P), LENGTH(['))

until INDEX(T, P) = 0 (i.e., until P does not appear in 1'). An algorithm which accomplishes this
follows.

Algt.thrn 3.1: A text T and it 	 P ac in memory. This algorithm deletes every occurrence
of I' in T.
1. (Find index of l'.J Set K := INDEX(T, P).
2. Repeat while K 9& 0:

(a) (Delete I' from T.)
Set T:= DELETE(T, INDEX(T, P), LENGTII(l'))

(b) (Update indcx.J Set K : = INDEX(T. I').
[End of loop.]

3. Write: T.
4. Exit.

We eml)lIasIzc that after each deletion, (he length of 'F decreases and hence the algorithm 11:51st stop.
However, the number of times he loop is executed may exceed the number of times P appears iii the
original text 1', as illustrated in the following example

EXAMPLE 3.7
(a) Suppose. Algorithm 3.1 is lum: with the data

	

T = XABYAItZ.	 I' = AB

Then the loop in the algorithin will he executed twice. During I lie first cxecuuon . the first occurrence of AB
in T is deleted, with the result that T XYABZ. During the sceund execution, the remaining occurrence of
All ill'I' is deleted, so that 'F XYZ. Accordingly, XYZ is the i3utput.

(b) -Suppose Algorithm 3.1 is run with the data

	

T = XAAAUI3BY,	 I'= All

Obsi . c tl:.it the pattern AU occurs only once in 1' but the loop in the algorithm will he executed three times.
Spccilically, , after AB is deleted the first time Iron: 'I' we have 'I 	 XA A lillY, and hence A13 appears again in
T. After AD is deleted a second time front'I', we see that 1' XAI3Y and AU still occurs ill Finally,
alter AR is dde ted a third time from T, we have T = X Y and AB does not appear ut l, and thus
INDEX(T, P) 0. l-kncc XY is the output.

The above example shows that wicn a text T is changed by a deletion, patterns may occur that did
not appear originally.

Replacement
Suppose in a given text 'I .' we want to replace the first occurrence of a pattern l-' by a pattern P 2 . We

will denote this Operation by

REPLACE(text, pattern patter112)

52	 STRING PROCESSING	 [cAl'. 3

For example

REPLACE(-XABYABZ', 'AB', C')='XCYABZ1
REPLACE(• XABYABZ', 'BA', 'C') = 'XABYABZ'

In the second case, the pattern BA does not occur, and hence there is no change.
We note that thB RPLACE function can be expressed as a deletion followed by an insertion if we

USC the preceding DELETE and INSERT functions. Specifically, the REPLACE (unction can be
executed by using the following three steps:

K:= INDEX(T, P1)

T: = DELETE(T, K, LENGTII(PI))
INSERT(T, K, P2)

The first two steps delete P 1 from T, and thc third step inserts P 2 in the position K from which I', was

deleted.
Suppose a text T and patterns P and 0 are in the memory of a computer. Suppose we want to

replace every occurrence of the pattern P in T by the pattern Q. This might be accomplished by
repeatedly applying

REI'LACE(T, P, 0)

until INI)EX(T. I') = 0 (i.e., until P does not appear in T). An algorithm which does this follows.

AIrithm 3.2: A text T and patterns P and 0 are in nicinory. This algorithm replaces every
occurrence of P in T by Q.
I.	 Find index of 11.1 Set K: = lNDLX'I ,
2. Repeat while K 0:

(a) [Replace P by 0.1 Set T:= REPLACE(T, P, .).
(b) [Update index.] Set K := INDEX(T, P).

[F.nd of loop.]
3. Write: T.
4.	 Exit.

Warning: Although this algorithm looks very much like Algorithm 3. 1, there is no guarantee that
this algorithm will terminate. This fact is illustrated in Example 3.8(b). On the other hand, suppose the
length of 0 is smaller than the length of P. Then the length of 1' uftei each rcplucenicnt decreases. rliis
guarantees that in this special case where 0 is smaller than I' the algo nth in must terminate.

EXAMPLE 3.8

(a) Suppose Algorithm 3.2 is run with Ihe data

T=XABYAIJZ. r=AB, Q=C

The,, the loop in the algorithm will be executed twice. During the first execution, the first occurrence of All

in 'F is replaced by C to yield T = XCYAI3Z. During the second execution, the remaining All in i',s replaced
by C to yield T = XCYCZ. Hence XCYCZ is the output.

(i') Suppose Algorithm 3.2 is run with the data

= XAY,	 P A.	 0= All

Then the algorithm will never teninin.ite. ihe reason for this is that I' will always occur in the text 'I, no
flatter how ntziny times the loop is executed. Specihically,

CHAP 31	 STRING PROCESSING	 53

T = XAI3Y at the end of (lie first execution of the loop
T XAJ3 2 Y at the end of the second execution of the loop

T XA Ii" Y at the end of the nth execution of the loop

(The infinite loop arises here Since P is a substritig of 0.)

3.7 PATTERN MATCHING ALGORITHMS
Pattern matching is the problem of decid tog whet her or not a given string pat (cr11 I' appears in a

string text T. We assume that the length of I' does not exceed the length of T. • ih is section discusses two
pattern matching algorithms. We also discuss the complexity of the algorithms so we call their
efficiencies.

Remark: During the discussion of Pattern matching algorithms, characters are sometimes
denoted by lowercase letters (a, b, c, . .) and exponents may bc used to denote repetition; e.g.,

a 2b 3al, 2 for aabbbal,/,	 and	 (cd)3 for cdcdcd

In addition, the empty string may he denoted by A, the Greek letter lambda, and the concatenation of
strings X and Y may be denoted by X Y or, simply, XY.

First Pattern Matching AllLpritbin__
The first pattern matching a Igo itt h in is the obvious one in which we compare a given pattern I' with

caclL of the substrings of '1', moving front left to right, until we get a match I ñ detail, let

Wi SUBSURING(1', K, LENGTII(I'))

That is, let WK denote the stIt)tlmg of 1' having the same length as P and beginning with the Kth
character of T. First we c niipa ic I', clia racte r by character, with the first stibstri ng, w,. If all the
characters are the same, then P W 1 and so I' appears in T and INI)EX(T, I') = I. Oil other hand,
suppose we find that Some chat aeter of I' is not the same as (lie corresponding character of W 1 Then
I' Y- W 1 and we can i mmcd iatc Iy iiiovc on to the next substning, W, -ThatThat is, we next compare P with
W2 . if I' W21 then we compare I' with W 3 , and so oil. The process stops (a) when we find a match of P
With some substring W K and so I' appears in '1' and INDEX(T, I') = K, or (b) when we exhaust all the
WK 's With no match and hence P does not appear in T. The maximum value MAX of the subscript K is
equal to LENGTII(T) — LENGT1J(F) + I.

Le t us assume, as an illustration, that P is a 4-character string and that T is a 20-character string,
and that 1' and T appear in memory as linear arrays with one character per clement. That is,

P	 P[I J l '1 2 1 P 1 3 J P 1 4 }	 and	 1' = 'I'll]T[21'1[3] I 19]T[20]

Then P is compared with each of the following 4-character substrings of T:

Wi= r[1 1 1' [21j3] "14],	 ''2	 i' [2] [1 3] 1 [4 1 1 1 5 1, 	 '	 '	 ' ' 17 = F(17 1 1 I 181-1-[19]T[201
Note that there are MAX = 20 -- 4 +	 17 such substrings of T.

A formal presentation of on t algorithm. vhc re I' is all r- cli a ractcr string andd]' is an s-character
string, is shown in Algorithm 3.3.

Observe that Algorithm 3.3 contains two loops, one inside the other. The outer loop itt tis through
each successive R-charactcr substring

WK = T[KJT[K I l I[K + U. - I]

of T. The inner loop compares I' Wit Ii 	 , chin racte r by character. It any clia riteter does not tiiatch
then control transfers to Stcj, 5, which increases K and then leads to the next stibst ring ofT. If all tile R

54	 STRING PROCESSING	 ICHAP. 3

tgorithm 3.3: (Pattern Matching) I' and 1' are strings with lengths R and S. respectively, and
Are storcd as arrays with one character per clement. This algorithm finds the
INDEX of P in T.
I. [Initialize.] Set K:= I and MAX :=S - R + I.
2. Repcat Steps 3 to 5 while K MAX:
3. Repeat for L = I to R: [Tests each character of P.]

If PILl ?6 T[K + L 11, then: Go to Step 5.
[End of inner loop.]

4. [Success.] Set INDEX = K, and Exit.
5. Set K:=K±I.

[End of Step 2 outer loop.]
6. [Failure.] Set INDEX 0.
7. Exit.

characters of P do match those of some W K , then P appears in T and K is the INDEX of P in T. On the
other hand, if the outer loop complctcs all of its cycles, then P does not appear in T and so INDEX = 0.

The complexity of this nattern matching algorithm is measured by the number C of comparisons
between characters in fit 1 ,attcrn P and characters of the text T. In order to find C, we let N. dcntte
the number of comparisons that take place in the inner loop when I' is comjircd with WK. Then

C=N1-+-N2++N,

where L is the position L in T where I' first appears or L MAX if I' does not appeal in T. The next
example computes C for some specific 1' and '1' where LENGTH(P) = 4 and LENGTH(T) 20 and so
MAX = 20 - 4 ± I 17.

EXAMPLE 3.9
(a) Suppose P = aaba and i• cdc,./<I = (cd)'°. Clearly P does not occur in T. Also, for each of the 17 cycles.

N5 = I, since the first character of I' does not match WK . Hence
C=l+l+l i- 1=l7

(b) Suppose P = aaba and F ababauba.... Observe that P is it substring of T. In tact, I' = W and so N, = 4.
Also, coinpari ug I' with \V, = aba/i, we sec that N	 2, Since tile first letters do match; but comparing P with

= baba, we see that N2 = 1, since the first letters do not match. Similarly, N = 2 and N =
Accordingly,

C = 2 + I + 24 I + 4 = 10

(c) Suppose P aaab and F =	 a = a 20. Here P does not appear in T. Also, every W, = aaua ; hence every
N5 = 4, since the first three letters of P do match. Accordingly,

C=4+4++4=174=65

	In general, when P is all 	 string and T is all 	 string, the data size for the
algorithm is

= r ± S

The worst case occurs when every character of P except the last matches every substring WK, as in
Example 3.9(c). In this ease, C(n) = r(s - r + I). For fixed ,i, we li:ivc s = fl	 ,, so that

C(,i)=r(n —2r+ 1)

The maximum value of C(n) occurs when r = (ii + 1)14. (See Prob. 3.19.) Accordingly, substituting
this value for ,- in the formula for C(n) yields

CHAP. 31	 STRING PROCESSING
	

55

(+
C(n)	

a
0(n2)

8

The complexity of the avcragc case in any actual situation depends oil probabilitics which arc
usually unknown. When the characters of P and Tare randomly selected from some f i nite alphabet, the
complexity of the average case is still not easy to analyze, but the complexity of the average case is still
a factor of the worst case. Accordingly, we shall state the following: The complexity (If this putter,,
matching a/guru/un is equal to 0(n 2). in other words, the time required to execute this algorithm is
pro ortional to ,,2 (Compare this result with the one oil 	 57.)

econd Pattern Matching Algorithm
The second pattern matching algorithm uses a table which is derived from a particular pattern P

but is independent of the text T. For definiteness, suppose

P = (1(1/Ui

First we give the reason for the table entries and how they are used. Suppose T = 1',T 2T.....where T,
denotes the ith character ofT; and suppose the first two characters of T match those of I'; i.e., suppose
1' aa...... .hen T has one of the following three forms:

	

(i) 1'= aab. . . ,	 (ii) T = twa. . . ,	 (iii) T	 nax

where x is any character different From a or b. Suppose we read 1' and find that T, = /. Then we next
read T4 to See ifT4 = a, which will give amatch of P with W, Oil other hand, suppose T a. Then
we know that P 76 W 1 ; but we also know that W 2 = aa.....i.e., that the first two characters of the
substring W2 match those of 11. I-Icncc we next read T to see if 1 4 = 1'. Lust, supposci' .v. Then we
know that P zO W,, but we also know that P 5#' W2 and P YA W, since x does not appear in I'. Hence we
next read 1 4 to sec if T4 = a, i.e., to see if the first character of W4 matches the First character of P.

There are two important points to the above procedure. First, when we read 1'. we need only
compare T with those characters which appear in P. If none of these match, then we are in the, last
case, of a character x which does not appear in P. Second, after reading and checking T, we next read

we do not have to go back again in the text T.
Figure 3-8(a) contains the table that is used in our second pattern matching algorithm for the

pattern I' = anba. (In both the table and the accompanying graph, the pattern I' and its substrings 0

_ a b x

	

Q I,	 Q,	 Q,,	 QI,

Q2	 Qc)	 Q.

02	 03	 00
P

(a) Pattern matching table.

(b) Pattern matching graph.

Fig. 3-8

56	 STRING PROCESSING	 ICIIAP. 3

will be represented by italic capital letters.) The table is obtained as follows. Iirst of all, we let Q
denote the initial substi-ing of P of length i; hence

Q0 = A,	 Q=a	 Q2=a2	 Q3a2b,	 Q,1a2ba=I'

(Here Q1, = A is the empty string.) The rows of the table are labeled by these initial substrings of I',
excluding P itself. The columns of the table are labeled a, b and x. where x represents any character
that doesn't appear in the pattern I'. Let f be the function determined by f ile table; i.e., let

f(Q,, 1)

denote the entry in the table in row Q, and column I (where t is any character). This entry f(Q,, i) is
defined to be the largest Q that appears as a terminal substring in the string Q,t, the Concatenation of
Q j and I. For example,

a 2 is the largest Q that is it terminal substring of Q 2 a = a 3, so f(Q 2 , a) =
A is the largest Q that is a terminal substring of Q b = ab, so f(Q1 , b) =
a is the largest Q that is a terminal substring of Q0a = a, so f(Q,, a) = Q1
A is the largest Q that is a terminal substring of Q 3x = a 2bx, so f(Q31 x) =

and SC) Ofl. Although Q1 = a is a terminal substring of Q 2 a = a, we have f(Q 2 1 a) = Q2 because Q 2 is
also a terminal substring of Q 2a = a and Q 2 is larger than Q, We note that f(Q,, x) = Q for any Q,
since x does not appear in the pattern I' Accordingly, the column corresponding to x is usually omitted
from the table.

Our table can also be pictured by the labeled directed graph in Fig. 3-8(b). The graph is obtained
as follows. First, there is a node in the graph corresponding to each initial substring Q j of P. The Q's
are called the stales of the system, and Q0 is called the initial state. Second, there is all (a directed
edge) in the graph corresponding to each entry in the table. Specifically, if

f(Ql,I)=Qi

then there is all row labeled by the character from Q j to Q 1 . For cxamilc,f(Q .,, b) = Q, so there is
an arrow labeled b from Q2 to Q3. For notational convenience, we have omitted all arrows labeled x,
which must lead to the initial state Q,.

We are now ready to give the second pattet It matching algorithm for the pattern I' = aaba. (Note
that in the following discussion capital letters will be used for all single-letter variable names that
appear in the algorithm.) Let T = T 1 T 2T3 N denote the n-character-string text which is searched
for the pattern I'. Beginning with the initial state Q and using the text T, we will obtain a S C(I UCI ICC of
states , S21 S 31 . . as follows. We let S 1 = Q. and we read the first character T 1 . Front either the
table or the graph in Fig. 3-8, the pair (S,, T 1) yields a second state S 2 ; that is, F(S 1 , T 1) S.,. We
read the next character 1'2. The pair (S 2 , T2) yields a state S 3 , and so on. There are two possibilities:

(1) Some state S K = P, the desired pattern. In this case, P does appear in T and its -index is
K LENGTI-I(P).

(2) No state S 1 , S_,,..., S., is equal to P. lit this Case, P does not appear iii T.

We illustrate the algorithsn with two diffcrdnt texts using the pattern I' = aaba.

EXAMPLE 310

(a) Suppose T = aabeaba. Beginning with Q., we use the characters of '1 and the graph (or table) in Fig. 1-8 to
obtain the following sequence of states:

Ca	 C,.	 (1.	 ((-.1 	(h	 Ca
0,,	 0, -* 0, -. 0 3 -----) 0 0 -' Q I	 OIl - 0,

We do not obtain the state P, so P does not appear in T.

(b) Suppose = abeaahaca. then we Obtain the following sequence of states:

CHAr. 31	 STRING PROCESSING	 57

	

0,,	 Q -. 0 — *Q.	 0, - 0 1 -- 03	 I'

Hero we obtain the pattern P as the state S. Hence P does appear in T and its index is - LENGTH(P) 4.

Tbc formal statement of our second pattern matching algorithm follows:

Algorithm 3.4: (Pttcrn Matching). The pattern matching table F(Q 1 . T) of a pattern P is in
memory, and the input is an N-character string T = T 1 T2	TN . This algorithm
finds the INDEX of P in T.

I. [Initialize.] Set K:= 1 and S 1	 Q0.
2. Repeat Steps 3 to 5 while S K 9A P and K N.
3. Read TK.
4. Set S K + l	F(SK , TK). fFinds next statc.j
5. Set K: = K + I. fUpdaics counter.]

(End of Step 2 loop.)
6. [Successful?]

If S < = P. then:
INDEX = K - LENGTI-1(P).

Else:
INDEX = 0.

lEnd of If structure.]
7. Exit.

The running time of the above algorithm is proportional to the numoer 01 times the Step 2 loop is
executed. The worst case occu,-s when all of the text T is read, i.e., when the loop is executed
n = LENGTH(T) times. Accordingly, we can state the following: The complexity of this patternmatching algorithm is equal to 0(n).

Remark: A combinatorial problem is said to be solvable in polynomial time if there is an
algorithmic solution with complexity equal to 0(n") for some in, and it is said to he solvable in lineartime if there is an algorithmic solution with complexity equal to 0(n), where n is the size of the data.
Thus the second of the two pattern matching algorithms described in this section is solvable in linear
time. (The first pattern matching algorithm was solvable in polynomial time.)

Solved Problems

TERMINOLOGY; STORAGE OF STRINGS
3.1	 Let W be the string ABCD. (a) Find the length of W. (b) List all substrings of W. (c) List all the

initial substrings of W.

(a) The number of characters in W is its length, 50 4 is the length of W.
(h) Any subsequence of characters 61 W is a substring of W. There arc II such substrings:

Substriiigs:	 AI3CD	 ABC, BCD,	 AD, BC, CD,	 A,B.C.I).	 A

Lengths:	 4	 3	 2	 I	 U

(Here A denotes the empty string.)
(c) The initial .suhsirings are ABCD. ABC, AD, A, A; that is, both the empty string and those substrings

that begin with A.

58	 STRING PROCESSING	 [CHAP. 3

3.2 Assuming a programming language uses at least 48 characters--26 lcttcrs, 10 digits and a
minimum of 12 special characters--give the minimum number and the usual number of bits to
represent a character in the memory of the computer.

Since 2' <48 <2 k, one requires at least a 6-bit code to represent 48 characters. Usually a computer -
uses a 7-bit cod, suh as ASCII, or an 8-bit code, such as EL3CDIC, to represent characters. This allows
many more special characters to be represented and prOCCSSCd by the computer.

	

3.3	 Describe briefly the three types of structures used for storing strings.

(a) Fixed-length-storage structures. Here strings arc stored in memory cells that arc all of (lie sailic
length, usually space for 80 characters.

(b) Variable-length storage with fixed maximums. Here strings arc also stored in lncmory cells all of the
same length; however, one also knows the actual length of the string in the cell.

(c) Linked-list storage. Here each cell is divided into two parts; the first part stores a single character (or
a fixed small number of characters), and the second part contains the address of thc cell containing
the next character.

	

3.4	 Find the string stored in Fig. 3-9, assuming the link value () signals the end of the list.

START ClAfl LINK

OYF	 10

ING	 7

ATII	 2

5

6 ER.	 0

7	 0F13	 II

8	 A

9

10 OREV 6

II	 EAUT 12

12	 YIS	 8

Fig. 39

Here the string is stored in a linked-list structure with 4 characters per node. The value of START
gives the location of the first node in the list:

4 fATI4	 j

The link value in this node gives The location of the next node in -the list:

2j

FA

CHAP. 31	 STRING PROCESSING	 59

Continuingitiuiitg in (his manner, we oblaiji the following sequence of nodes:

Thus the string is:
A THING OF BEAUTY IS A JOY FOREVER.

3$	 some (a) advantages and (b) disadvantages of using linked storage for storing strings.
(a) One can easily insert, delete, concatenate and rearrange suhstrings when using linked storage.
(b) Additional space is uscd for storing the links. Also, one cannot çlircctly access a character in the

middle of the list

3.6	 Describe briefly the meaning of (a) static, (I,) sclilislut jc and (c) dynamic character variables.
(a) The length of the variable is defined before the program is executed and cannot change during the

execution of the program.
(b) The length of the variable may vary during the execution of the program, but the lcngth cannot

exceed it maximum value defined before the program is executed.
(c) The length of the vaijablc may vary duringrig the execution of the program.

3.7	 Suppose MEMBER is it character variable with fixed length 20. Assume a string is stored
left-justified in a memory cell with blank spaces padded on the right or with the right-most
characters truncated. Describe MEMBER (a) if 'JOHN PAUL JONES' is assigned to
MEMBER and (b) if 'ROBERT ANDREW WASHINGTON' is assigned to MEMBER.

The data will appear iii MEMBER as follow,:

(a) MEMBER n1 O ! H f N I fPIAIiJii H O H E I S I I I II
() MEMBER H O I B I E H[T I H N I D I E H J[SIHIllN1

STRING OPERATIONS

In Pm'ol,s, 3.8 to 3.11 and 3.13, let S and T be character variables such that
S = ' JOHN PAUL JONES
T= 'A THU:G OF BEAUTY IS A JOY FOREVER

3.8	 Recall that we use LENGTH(string) for the length of a string.
(a) how is this function denoted in (I) PL/1, (i'i) BASIC:, (iii) UCSD Pascal, (iv)SNOBOL

and (v) FORTRAN?
(b) Find LENGTH(S) and LENGTH(T).
(a) (i) LENGTH(string). (ii) LEN(strinj). (iii) LENGTH(string). (iv) SIZE(string). (v) FORTRAI'

has no length function for strings, since the language uses only fixed-length variables.

	

60
	 STRING PROCESSING

	 [CHAP. 3

(b) Assuming there is Ainly one blank space character between words,

LENGTH(S) 15	 and	 LENGTH (T) = 35

3.9 Recall that we use SUBSTRING(string, position, length) to denote the substring of string

beginning in a given position and having a given length. Determine (a) SUBSTRINGS(S. 4, 8)
and (b) SUBSTRING(T, 10. 5).

(a) Beginning with the fourth character and rcc%ding 8 characters, we obtain
SUBSTRING(S, 4. 8) = 'NDPAULEIJ

(b) Similarly.	 SUBSTIUNG(T. 10. 5) = 'FDBEAU'

3.10 Recall that we use INDEX(text, pattern) to denote the position where a pattern first appears in
a text. This function is assigned the value 0 if the pattern does not appear in the text. Determine
(a) INDEX(S, 'JO'). (b) INDEX(S, 'JOY'), (c) INDEX(S, 'OJO'), (d) INDEX(T,
'A'), (e) INDEX(T. 'DAD') and (f) INDEX(T. 'THE').

(a) INDEX(S, 'JO ') = I. (b) INDEX(S. 'JOY') 0, (c) INDEX(S, 'CIJO') = 10, (d)
INDEX(T, 'A) I, (e) INDEX(T. 'EIAD •) = 21 and (0 INDEX(T, 'THE') = 0. (IcalI that 0 is

	

-	 used to denote a blank space.)

3.11 Recall that we use S f/S 2 to denote the concatenation of strings S, and S2.

(a) How is this function denoted in (i) PL/1, (ii) FORTRAN, (iii) BASIC, (iv) SNOBOL and
(v) UCSD Pascal?

(b) Find (i) 'THE'//'END' and (ii) 'THE'//'D'll'END'.
(c) Find (I) SUBSTRING(S. 11, 5)/f '.0' //SUBSTRING(S, 1,9) and

(ii) SUBSTRING(T. 28, 3)/f 'GIVEN'.

(a) (i) S II S2, (ii) Sj/S, (iii) S 1 + S 2 . (iv) S, S. (juxtaposition with a blank space between S and S7)

and (v) CONCAT(S 1 . S.).
(b) S, //S 2 refers to the string consisting of the characters of S, followed by the characters of S 2 . Hence.

(i) THEEND and (ii) THE END.
(c) (i) JONES. JOHN PAUL and (ii) FORGIVEN.

Recall that we use INSERT(text, position, string) to denote inserting a string Sin a given text T
beginning in position K.

(a) Find (i) INSERT('AAAAA, 1, 'BBB'). (ii) INSERT(' AAAAA', 3, 'BBB') and
(iii) INSERT('AAAAA'. 6, BBB').

(b) Suppose T is the text 'THE STUDENT IS ILL.' Use INSERT to change T so that it
reads: (i) The student is very ill. (ii) The student is ill today. (iii) The student is very ill
today.

(a) (i) BBBAAAAA. (ii) AABBBAAA and (iii) AAAAABBB.
(b) Be careful to include blank spaces when necessary. (i) INSERF('l. 15. 'DVERY). (ii)

INSERT(T, 19, 'DTODAY'). (iii) INSERT(INSERT(T, 19, 'DTODAY'), 35, 'DVERY')or
!NSERT(INSERT(T. 15, 'DVERY'), 24, 'LJTODAY').

3.13 Find

(a) DELETE('AAABBB. 2. 2) and I5ELETE('JOHN PAUL JONES', 6, 5)

(b) REPLACE('AAABBB'. 'AA'. 'BB') and
REPLACE('JOHN PAUL JONES'. 'PAUL'. 'DAVID')

CHAP. 31	 STRING PROCESSING	 61

(a) DELETE(T. K. L) deletes from a text T the substring which begins in position K and has length L
Hence the answers are

ABBB and JOHN JONES

(b) REPLACE(T, P 1 . P,) replaces in a text T the first occurrence of the pattern P 1 by the pattern p,.Hence the answers are

//RD
BBABBB and JOHN DAVID JONES

PROCESSING

In Probs. 3.14 to 3.17, S is a short story stored in a linear array LINE with n elements such that
each LINE[K] is a static character variable storing 80 characters and

. representing a line of the story.
Also, LINE[I], the first line, contains only the title of the story, and LINE[N], the last line, contains
only the name of the author. Furthermore, each paragraph begins with 5 blank spaces, and there is no
other indention except possibly the title in LJNEE1J or the name of the author in LINE[N].

3.14 Write a procedure which counts the number MUM of paragraphs in the short story S.

Beginning with LINEI21 and ending with LINE[N - 11, count the , ;mher of lines beginning with S
blank spaces. The procedure follows.

Procedure P3.14: PAR(LIN}. N, NUM)

1. Set NUM:=O and I3LANK:= 'DDDDD'.
2. (Initialize cottnter.J Set K: 2.
3. Repeat Steps 4 and 5 while K N - 1.
4. [Compare first 5 characters of each line with BLANK.]

If SUBSTRING(LINE(KJ, I, 5)BLANK, then:
Set NUM:= NUM + I.

[End of If structure.]
5. Set K: = K + I. [Increments counter.]

[End of Step 3 loop.]
6. Return.

3.15 Write a procedure which counts the number MUM of times the word "the" appears in the short
story S. (We do not count "the" in "mother," and we assume no sentence ends with the word
"the.")

Note that the word "the" can appear as THEU at the beginning of a line, as LITHE at the end of a
line, or as LITHELJ elsewhere in a line. Hence we must check these three cases for each line. The
procedure follows.

Procedure P3,15: COIJNT(LINE N, NUM)

Set WORD:= 'THE' and MUM :=O.
[Prepare for the three eases.]
Set BEG := WORDII'fl', END: 'El'//WORD and
MID:= 'L]'IIWORDII'LJ'
Repeat Steps 4 through 6 for K I to N:

[First case.] If SUHSTRING(LINE[K] I, 4) = BEG, then:
Set NUM:= NUM + I.

[Second case.] If SUBSTRING(I NEIK], 77, 4) = END, then:
Set NUM: = NUM + I.

6.	 (General case.] Repeat for J = 2 to 76.
If SUBSTRING(LINE{K] J, 5) MID, then:

Set MUM := NUM + I.
(End of If structure.]

[End of Step 6 loop.]
]End of Step 3 loop.]

7. Return.

1.
2.

3.
4.

5.

62	 STRING PROCESSING	 (CHAP. 3

3.16 Discuss the changes that must be made in Procedure P3.15 if one wants to count the number of
occurrences of an aribitrary word W with length R.

There :re three basic types of changes.

(a) Clearly, 'THE' must be changed to W in Step 1.

(b) Since the length of W is r and not 3, appropriate changes must he made in Steps 3 to 6.

(c) One must also consider the possibility that W will be followed by some punctuation, e.g..

W,	 W:	 W.

Hence more than the three cases must he treated.

3.17 Outline an algorithm which will interchange the kth and Ith paragraphs in the short story S.

The algorithm reduces to two procedures:
Procedure A. Find the values of arrays BEG and END where

LINEIBEGEKI]	 and	 LINEIENDIK)1
contain, respectively, the first and last lines of paragraph K of the story S.

Procedure B. Using the values of BEG(K1 and END[K] anti the values of BEG[L] and END[L),
interchange the block of lines of paragraph K with the block of hues of paragraph L.

TERN MATCHING

For each of the following patterns P and texts T, find the number C of comparisons to find the
INDEX of P in T using the "slow" algorithm, Algorithm 3.3:

(a) P = abc, T = (ab) = al,abababab	 (c) P = aaa, T = ((jabb)' = aabbaabbaabb

(b) P = abc, T = (ab) 2"	 (ti) P = aaa, T = ahaabbaaabbhaaaabbbb

Recall that C N + N, 4	 + N, where N5 denotes the number of comparisons that take place in

the inner loop when P is compared with WK.

(a) Note first that there are

LENGTH(T) — LENGTH(P) + 1 10— 3 + 1 S

substrings W,5 . We have

C 2 + I + 2 ± 1 + 2 + I ± 2 + I = 4(3) 12

and INDEX(T, I') = 0, since P does not appear in T.

(b) There are 2,i —3 + I 2(n — I) subwords W,5 . We have

	

C=2+l+2±1+ ...	 2±I(n+I)(3) 	 'I n 13

and INDEX(T, P) = ().

(c) There are 12 — 3 -+- I = 10 subwords WK . We have

C=3+2-I-1 4-I 3+2+1+ 1+3 f219

and INDEX(T, I') = (I.

(d) We have

C = 2 + I + 3 + 2 + I + I + 3 13

anti INDEX(T. F) 7.

CHAP. 31	 STRING PROCESSING	 63

3.19 Suppose P is an r-character string and T is an s-character string, and suppose C(n) denotes the
number of comparisons when Algorithm 3.3 is applied to P and T. (Here pi = r + s.)
(a) Find the complexity C(n) for the best case.
(b) Prove that the maximum value of C(n) occurs when r = (n + 1)14.
(a) The best case occurs when P is an initial suhstring of T, or, in other words, when JNDEX(T. P)

In this case C(n) = r. (We assume r s.)
(b) By the discussion in Sec. 3.7,

CC(n)=r(n_2r±1)nr2r2+r
Here n is fixed, so C C(n) may be viewed as a function of r. Calculus tells us that the maximumvalue of C occurs when C' = dC/dr = 0 (here C' is the derivative ofus' with respect to r). Usingcalculus, we obtain:

C' n - 4r + I
Setting C' = 0 and solving for r gives us the required result.

3.20 Consider the pattern P aaabb. Construct the table and the corresponding labeled directed
graph used in the "fast," or second pattern matching, algorithm.

First list the initial segments of P:

Q,,=A,	 Q, = a,	 Q2=a2,	 Q, = a',	 Q, = a'b,	 Q, = aW
For each character:, the entryf(Q, z) in the table is the largest Q which appears as a terminal substring inthe string Qt. We compute:

f(A, a) a,	 f(a, a) a 2,	 f(a1, a) = a 1,	 f(a', a) a',	 f(a'b. a) = a
f(A, h) = A,	 f(a, h)= A,	 f(a', h) A,	 f(a1, 1,) a 1!,,	 f(ah, b) = P

Hence the required table appears in Fig. 3- M(a). The corresponding graph appears in Fig. 3-10(h), wherethere is a node corresponding to each Q and an arrow from Q, to Q, labeled by the character t for eachentry f(Q,. 1) = Q, in the table.

a	 h

Q 11	 Q,	 Qo
Q,	 Q Q.
Q.	 Q3	 Q
Q1	 Q.	 Q.,
Q.	 Q,	 P

(a)

F,

C).) '	 ______	 a (Qh

(b)

3-!0

64
	 STRING PROCESSING	 [CHAP. 3

3.21 Find the table and corresponding graph for the second pattern matching algorithm where the

pattern is P = ubabab.

The initial substrings of P are:

Qa,	 Q,=ab.	 Qaba,	 Qabab,	 Q.ababa,	 QabababP

The function f giving the entries in the table follows:

f(A,a)'a	 f(A,b)A

f(a, a)=a	 f(a, b)=ab

f(ah, a) = aba	 f(ab. b) = A

f(aba, a) a	 f(aba. b) = abab

f(abah, a) = abaha	 f(abab, b) A

f(ahaha, a) a	 f(ababa, b) = P

The table appears in Fig. 3-11(a) and the corresponding graph appears in Fig. 3-11(b).

a	 b

Qo	 Qi	 Qo
Q,	 Q.	 Q2
Q2	 Q3	 Q
Q, 	 Q4

Q	 ci,	 1211
Q:	 Q	 P

(a)

(b)

Fig. 3.11

Supplementary Problems

STRINGS

3.22	 Find the string stored in Fig. 3-12.

	3.23	 Consider the string W = ' XYZS1" . List (a) all substrings of W and (b) all initial suhstrings of W.

	

3.24	 ips. W is strin' Feii'th ,, Find the numher of (a) substrings of W and (b) initial substrings of W.

CHAP. 3	 STRING PROCESSING	 65

START
	

CHAR LINK

	

UNIT	 11

HE 8

S	 0

WE 	 2

6
	

THE	 I

7

	

8 EOPL	 12

	

9 TATE	 4

10'

	

11 ES	 9

	

12 EOF	 6

Fig. 3-12

3.25 Suppose STATE is a character variable with fixed length 12. Describe the contents of STATE after the
assignment (a) STATE:= NEW YORK', (b) STATE:= 'SOUTH CAROLINA' and (c)
STATE: = 'PENNSYLVANIA

STRING OPERATIONS
In Probs. 3.26 to 3.31. let Sand T be character variables such that

S= 'WE THE PEOPLE'	 and T= 'OF THE UNITED STATES'

3.26 Find the length of S and T.

3.27 Find (a) SUI3STRING(S. 4, 8) and (b) SUBSTRING(T, 10, 5).

3.28	 Fi&d (a) INDEX(S, '1''), (b) INDE,X(S, 'E'), (c) INDEX(S. 'THE'), (d) INDEX(I', 'TIlE'),
(c) INDEX(T, 'THEN') and (f) INDEX(T, TE').

3.29	 Using S,//S 1 to stand for the concatenation of S, and S 2 . find (a) 'NO'// 'EXIT', (I,)
•	 'NO' // 'D' // 'EXIr' and (c) SUI3STRING(S, 4, 10)11 'DARED' IISUI3STRING(T. 8, 6).

3.30 Find (a) DELETE('AAAI3BB' , 3,3), (b) DELEFE('AAAIJBB', 1. 4), (c)	 LETE(S, 1,3) and (d)
DELETE(T, 1, 7).

3.31 Find (a) REPLACE('ABABAH'. B, 'BAB'), (b) REPLACE(S, 'WE'. 'ALL') and (c)
REPLACE(T, 'THE', 'THESE')

3.32 Lind (a) INSERT('AAA', 2, 'BBB'), (b) INSERT('ABCDE' .3. XYZ') and (c) INSERT('THE
BUY'. 5, 'BIGD').

3.33 Suppose U is the text 'MARC STUDIES MA I'HEMATICS.' Use INSERT to change U so that it reads:
(a) MARC STUDIES ONLY MATHEMATICS. (b) MARC STUDIES MATHEMATICS AND
PHYSICS. (c) MARC STUDIES APPLIED MATHEMATICS.

(,6
	

STRING PROCESSING	 [CHAP.

PATTERN MATCHING

3.34	 Consider the pattern P abc. Using the "slow" pattern matching algorithm, Algorithm 3.3, find the
number C comparisons to find the INDEX of P in each of the following texts T:
(a) a"', (b) (aba)'°, (c) (cbab)'°, (d) d'° and (m) d" where ri >3.

3.35	 Consider the pattern P ab. Repeat Prob. 3.34 with each of the following texts T:
(a) a°, (b) a" where is >6. (c) d" and (d) d" where ii >6.

3.36	 Consider the pattern P a 3ba. Construct the table and the corresponding labeled dirctcd graph used in
the "fast" pattern matching algorithm.

3.37	 Repeat Prob. 3.36 for the pattern P = aba2h.

Programming Problems

In Probs. 3.38 to 3.40, assume the preface of this text is stored in a linear array LINE such that LINE[K] is a
static character variable storing 80 characters and represents a line of the preface. Assume that each paragraph
begins with S blank spaces and there is no other indention. Also, assume there is a variable NUM which gives the
number of lines in the preface.

3.38	 Write a program which defines a linear array PAR such that PAR[K] contains the location of the Kth
paragraph, and which also defines a variable NPAR which contains the number of paragraphs.

3.39 Write a program which reads a given WORD and then counts the number C of times WORD occurs in
LINE. Test the program using (a) WORD 'THE' .and (b) WORD 'HENCE'.

3.40 Write a program which interchanges the Jth and Kth paragraphs. Test the program using J 2 and K 4.

In Probs. 3.41 to 3.46. assume the preface of this text is stored in a single character variable TEXT. AssumeS
blank spaces indicates a new paragraph.

3.41 Write a program which constructs a linear array PAR such that PAREKI contains the location of the Kth
paragraph in TEXT, and which finds the value of a variable NPAR which contains the number of
paragraphs. (Compare with Prob. 3.38.)

3.42 Write a program which reads a given WORD and then counts the number C of times WORD occurs in
TEXT. Test the prograrit using (a) WPRD = 'THE'. and (b) WORD = 'HENCE'. (Compare with
Prob. 3.39.)

3.43 Write a progçam which interchanges the ith and Kth paragraphs in TEXT. Test the program using .1 = 2
and K 4. (Compare with Prob. 3.40.)

3.44 Write a program which reads words WORD1 and WORD2 and then replhces each occurrence of WORD1
in TEXT by WORD2. Test the program using WORDI 'HENCE' and WORD2 'THUS'

3.45 Write a subprogram INST(TEXT, NEW, K) which inserts a string NEW into TEXT beginning at
TEXTI KJ.

3.46 Write it subprogram PRINT(TEXT, K) which prints the character string TEXT in lines with at most K
characters. No word should be divided in the middle and appear on two Im ps, so some lines may contain
trailing blank spaces. Each paragraph should begin with its own line and be indented using 5 blank spaces.
Test the program using (a) K	 0, (b) K 70 and (c) K 60.

