
Chapter 4
Arrays, Records and Pointers

4.1 INTRODUCTION

Data structures are classified as either linear or nonlinear. A data structure is sai to be linear if its
elements form a sequence, or, in other words, a linear list. There are two basic ways of representing
such linear structures in memory. One way is to have the linear relationship between the elements
represented by means of sequential memory locations. These linear structures are called arrays andform the main subject matter of this chapter. The other way is to have the linear relationship 

betweenthe elements represented by means of pointers or links. These linear structures are called 
linked lists;they form the main content of Chap. 5. Nonlinear structures such as trees and graphs are treated inlater chapters.

The operations one normally performs on any linear structure, whether it he an array or a linked
list, include the following:

(a) Traversal. Processing each clement in the list.
(b) Search. 

Finding the location of the clement with a given value or the record with 
it given key.(c) Insertion. Adding a new clement to the list.

(d). Deletion. Removing an clement from the list.
(e) Sorting. Arranging the elements in some type of order.
(f) Merging. Combining two lists into a single list.

The particular linear Structure that one chooses for a given situation depends on the relative frequency
with which one performs these different operations on the structure.

This chapter discusses a very common linear structure called an array. Since arrays are usually easy
to traverse, search and sort, they are frequently used to store relatively permanent collections of data.Oil 	

other hand, if the size of the Structure and the data in the structure are constantly 
changing,then the array may not be as useful a structure as the linked list, discussed In Chap. 5.

4.2 LINEAR ARRAYS

A linear array is a list of a finite number n of homogeneous data elements (i.e., data elements ofthe Same type) such that

(a) The elements of the array are referenced respectively by an index set consisting of iiconsecutive numbers. 	
1	 -(b)

The elements of the array are stored respectively in successive memory locations.
The number it of elements is called the length or size of the array. If not explicitly stated, we willassume the index set Consists of the integers 1, 2.... . n. In general, the length or the number of data
elements of the array can be obtained from the index set by the formula

Length = UB - LB + 1 (4.1)
here UB is the largest index, called the upper bound, and LB is the smallest index, called the loweriound, of the array. Note that length UB when LB =

The elements of an array A may be denoted by the subscript notatIon

A 1 , A 21 A,., A,,
t'v the Parentheses notation (used in FORTRAN PL/1 and BASIC)

A(1), A(2).....A(N)
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or by the bracket notation (used in Pascal)
ALl), A[2), A[31.... . A(N]

We will usually use the subscript notation or the bracket flotation. Regardless of the notation, the
number K in AK] is called a subscript or an index and AIKI is called a subscripted variable. Note that
subscripts allow any element of A to be referenced by its relative position in A.

EXAMPLE 4.1

(a) Let DATA be a 6-cicmcnt linear array of integers such that
DATALIJ = 247 DATA(2) = 56 DATA131= 429 DATAI4.I = 135 DATAI5I 87 DATA161

Sometimes we will denote such all 	 by simply writing
DATA:	 247, 56, 429, 135, 87, 156

The array DATA is Frequently pictured as in Fig. 4-1(a) or Fig. 4.1(17).

DATA

247	 DATA
2	 56	 247 1 56_[429 1 135 87 156
3	 429	 I	 2	 3	 4	 5	 6
4 LJ
5	 87

6	 156

(a)

	

	 (b)

Fig. :4-1

(b) An automobile company uses an array AUTO to record the number of automobiles sold each year from 1932
through 1984. Rather than beginning the index set with 1, it is more useful to begin the index set with 1932 so
that AUTO(K) = number of automobiles sold in the year K
Then LB = 1932 is the lower bound and UB = 1984 is the upper bound of AUTO. By Eq. (4.1),

Length = tJl3 - LB 4- 1 = 1984— 1930 + 1 = 55
That is, AUTO contains 55 elements and its index set Consists of all integers from 1932 through 1984.

Each programming language has its own rules for declaring .arrays. Each such declaration must
give, implicitly or explicitly, three items of information: (1) the name of thc array, (2) the data type of

the array and (3) the index set of the array.

EXAMPLE 4.2

(a) Suppose DATA is a 6-element ' linear array containing real values. Various prograrnnifig languages declare
such an array as follows:

FORTRAN: REAL DATA(6)
PL/l:	 DECLARE DATA(6) FLOAT;
Pascal:	 VAR DATA: ARRAYLI . .6) OF REAL

I
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We will dcclarc such in array, when necessary. by writing DATA(6). (ilie context will usually indicate the
data type, so it will not be explicitly declared.)

(b) Consider the integer array AUTO with lower bound LB 1932 and upper bound UI3 1984. Various
programming languages declare such an array us follows:

FORTRAN 77	 INTEGER AUT0(1932: 1984)
PL/ I:	 DECLARE AU1O(1932: 1984) FIXED:
Pascal	 VAR AUTO: ARRAY( 1932. . 19841 of INTEGER

We will declare such an array by writing AUTO(1932: 1984).

Some programming languages (e.g.. FORTRAN and Pascal) allocate memory space for arrays
statically, i.e., during program compilation; hence the size of the array is fixed during program
execution. On the other hand, some programming languages allow onc to read aninteger it and then

declare art array with it elements; such programming languages are said to allocate memory
dynamically.

4.3 REPRESENTATION OF LINEAR ARRAYS IN MEMORY

Let LA be a linear array in the memory of the computer. Recall that the memory of the computer
is simply a sequence of addressed locations as pictured in Fig. 4-2. Let US USC the notation

LOC(LA[K)) = address of the clement LA[K] of the array LA

As previously noted, the elements of LA arc stored in successive memory cells. Accordingly, the
computer does not need to keep track of the address of every element of LA, hut needs to keep track
only of the address of the first element of LA, denoted by

Base( LA)

and called the base address of LA. Using this address I3ase(LA), the computer calculates the address of

any element of LA by the following formula:

LOC(LAIKJ) = Base(LA) + w(K - lower nound)	 (4.2)

where it' is the number of words per memory cell for the array LA. Observe that the time to calculate
LOC(LA[KJ) is essentially the same for any value of K. Furthermore, given any subscript K, one can
locate and access , the content of LA[K] without scanning any other element of LA.
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Fig. 4-2 Computer memory.
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EXAMPLE 4.3

Coiisklcr the array AUTO in Example 4.1(b). which records the number of automobiles sold each year from
1932 through 1984. Suppose AUTO appears iii mcmoçy as pictured in Fig. 4 .3. That is, Base(AUTO) 200, andw 4 words per memory cell for AUTO. Then

LOC( A UTO[19321) 200,	 LOC(AUTO[ 19331) 204,	 LOC(AUTO[ 1934]) = 208,
The tI(lress of the array c	 tcat for the year 1<	 I965 can be obtained by using Eq. (4.2):

LOC(AUTO[19651) = Basc(AUTO) + w(1965 - lower bound) 200 + 4(1965 - 1932) = 332

Again we emphasize that the contents of this clement can be obtained without scanning any other clement in array
AUTO.

Fig. 4-3

Remark: A collection A of data elements is said to be indexed if any element of A, whichwc_shall
call A K , can be located and processed in a time that is independent of K. The above discussion
indicates that linear arrays can be indexed. This is very a important property of linear arrays. In fact,
linked lists, which are covered in the next chapter, do not have this property

4.4 TRAVERSING LINEAR ARRAYS

Let A be a collection of data elements stored in the memory of the computer. Suppose we waflt to
print the contents of each clement of A or suppose we want to Count the number of cicmcnts of A with
a given property. This can be accomplished by traversing A, that is, by accessing and processing
(frequently called visiting) each clement of A exactly once.

The following algorithm traverses a linear array LA. The simplicity of the algorithm comes from
the fact that LA is a linear structure. Other linear structures, such as linked lists, can also be easily
traversed. On the other hand, the traversal of nonlinear structures, such as trees and graphs, is
considerably more complicated.
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4.1: (Traversing a Linear Array) Here LA is a linear array with lower bound LB and
upper bound UB. This algorithm traverses LA applying an operation PROCESS
to each element of LA.

I. [Initialize counter.] Set K: = LB.
2. Repeat Steps 3 and 4 while K UB.
3. [Visit element.] Apply PROCESS to LA[K].

[Increase counter.] Set K := K + 1.
[End of Step 2 loop.]

5. Exit.

We also state an alternative form of the algorithm which uses a repeat-for loop instead of the
repeat-while loop.

(Traversing a Linear Array) This algorithm traverses a linear array LA with
lower bound LB and upper bound UB.

I. Repeat for K = LB to UB:
Apply PROCESS to LA[K].

[End of loop.]
2.	 Exit.

Algorithm 4.1'

Caution: The operation PROCESS in the traversal algorithm may use certain variables which
nust be ini'ialized before PROCESS is applied to any of the elements in the array. Accordingly, the
algorithm may need to be preceded by such an initialization stcp.

EXAMPLE 4.4

Consider the array AUTO in Example 4.1(b), which records the number of automobiles sold each year from
1932 through 1984. Each of the following modules, which carry Out the given operation, involves traversingAUTO.

(a) Find the number NUM of years during which more than 300 automobiles were sold.
1. [Initialization step.] Set NUM =0.
2. Repeat for K 1932 to 1984:

If AUTO[K]> 300, then: Set NUM := NUM + 1.
[End of loop.]

3. Return.
(b) Print each year and the number of automobiles sold in that year.

I. Repeat for K= 1932 to 1984:
Write: K, AUTO[K].

[End of loop.]
2. Return.

(Observe that (a) requires an initialization step for the variable NUM before traversing the array AUTO.)

4.5 INSERTING AND DELETING

Let A be a collection of data elements in the memory of the computer. "Inserting" refers to the
Jperation of adding another element to the collection A. and "deleting" refers to, the operation of
removing one of the elements from A. This section discusses inserting and deleting when A is a lineararray.

Inserting an clement at the "end" of a linear array can be easily done provided the memory space
allocated for the array is large enough to accommodate the additional element. On the other hand,
suppose we need to insert an element in the middle of the array. Then, on the average, half of the
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elements must he moved downward to new locations to accommodate the new cicmcflt and keep the
order of the other elements.Similarly, deleting an element at the "end" of an array presents no difficulties, but deicting an
element somewhere in the middle of the array would require that each subscqucntclCmCflt be moved
one location upward in order to "liii up" the array.

Remark: Since linear arrays arc usually pictured extending downward, as in Fig. 4-1, the term
"downward" refers to locations with larger subscripts, and the term "upward" rcfcrs to locations with
smaller subscripts.

EXAMPLE 4.5
Suppose TEST has been declared to be a 5-ckrncnt array but data have been recorded only for TESTIII.

TESTI21 and TEST[3J. II X is the value of the next test, tbcn one simply assigns
TEST[4]:=X

to add X to the list. Similarly, if Y is the value of the subsequent test, then we simply assign
TESTI5I := y

to add Y to the list. No'v, however, we cannot add any new test scores to the list.

EXAMPLE 4.6
Suppose NAME is an 8-clement linear array, and suppose five names are in the array, as in Fig. 4-4(a).

Observe that the names arc listed alphabetically, and suppose we want to keep the array names alphabetical at all
times. Suppose Ford is added to the array. Then Johnson, Smith and Wagner must each be moved downward one
location, as in Fig. 44(b). Next suppose Taylor is added to the array; then Wagner must be moved, as in Fig.
4-4(c). Last, suppose Davis is removed from the array. Then the five names Ford, Johnson, Smith. Taylor and
Wagner must each be moved upward one location, as in Fig. 4-4(d). Clearly such movement of data would be very
expensive if thousands of names were in the array.

Fig. 4-4

The following algorithm inserts a data element ITEM into the Kill in a linear array LA
with N elements. The first four steps create space in LA by moving downward one location each
element from the Kth position on. We emphasize that these elements are moved in reverse order—i.e.,

first LAENI, then LAEN - 11.....and last LAIKJ; otherwise data might be erased. (See Prob. 4.3.)

In more detail, we first set J : N and then, using J as a counter, decrease J each tinic the loop is
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executed until J reaches K. The next step, Step 5, inserts ITEM into the array in the space just created.
Before the exit from the algorithm, the number N of elements in LA is increased by I to account 

forthe new element.

Algorithm 4.2: (Inserting into a Linear Array) INSERT(LA, N, K. ITEM)
Here LA is a linear array with N elements and K is a positive integer such that
K N. This algorithm inserts an clement ITEM into the Kth position in LA.
I. [Initialize counter.) Set J := N.
2. Repeat Steps 3 and 4 while I K.
3. [Move Jth clement downward.] Set LA(.J + 1J: LA[J.
4. (Decrease countcr.J Set .1=1— 1.

[End of Step 2 loop.]
5. (Jnscrt clement] Set LA[K] ITEM.
6. (RcsciN.J Set N:=N+1
7. Exit.

The following aIgo)ttn deletes the Kth clement from a linear array LA and assigns it to a variable
ITEM.	 V

45: (Deleting from a Linear Array) DELETE(LA, N, K ? ITEM)Here LA is a linear array with N elements and K is a 'positive -integer such thatK:55 N. This algorithm deletes the Kth clement from LA.
I. Set ITEM: =LA(K)
2. Repeat for I = K to N - 1:

(Move J + 1st clement upward.J Set LA(J) 	 LA[J + I).[End of loop,]
3. (Reset the number N of elements in LA.) Set 4:= N — I.
4. Exit.

Rrmark 
We emphasize that if many deletions and insertions are to be made it, a collection of

data elements, then a linear array may not he the most efficient way of storing the data.

4.6 SORTING; BUBBLE SORT

Let A be a list of it numbers. Sorting A refers to the operation of rearranging the elements of A sothey arc in increasing order, i.e., so that

A[ 1 ] A f 2 J <A[ 3J< ... <AfNJ
For cxarnplc, suppose A originally is the list 	 -

8, 4, 19, 2, 7, 13, S. 16
After sorting, A is the list

2, 4, 5. 7, t, 13, 16, 19
Sorting may seem to be a trivial task. Actually, sorting efficiently may be quite complicated. In

fact, there are many, many different sorting algorithms; some of these algorithms are discussed in
Chap. 9. Here we present and discuss a very simple sorting algorithm known as the bubble Sort.

The above definition of sorting refers to arranging numerical data in increasing order;
this restriction is Only for notational convenience Clearly, sorting may also mean arranging numerical
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data in decreasing order or arranging nonnurnerical data in alphabetical order. Actually, A is
frequently a tile of records, and sorting A refers to rearranging the records of A so that the values &f a
given key arc ordered.

Bubble Sort
Suppose tile list of numbers A(1], A[21.... . ALN] is in memory. The bubblc sort algorithm works

as follows:
Step I. Compare ALil and A[2) and arrange them in the desired order, so that Ail] <A(21.

Then compare Al21 and A[31 and arrange them so that A[21 < A[31. Then compare
A[31 and A[41 and arrange them so that A[31 <A[4]. Continue until we compare
A[N - 11 with AEN] and arrange them so that A[N - 1 1 < A[N].

Observe that Step I involves is - I comparisons. (During Step 1, the largest clement is "bubbled up"
to the nth position or "sinks" to the nth position.) When Step 1 is completed, ALNI will contain the
largest clement.

Step 2. Repeat Step 1 with one less comparison; that is, now we stop after we compare and
possibly rearrange A(N -21 and AI N - 1). (Step 2 involves N - ZcompansOfls and,
when Step 2 is completed, the second largest element willoccupy A(N - I).)

Step 3. Repeat Step I with two fewer comparisons; that is, we stop after we compare and
possibly rearrange AEN - 31 and AEN - 21.

Step N - I. Compare Al 11 with A[21 and arrange them so that A1 1 1 < Al21.

After is -r I steps, the list will be sorted in increasing order.
- The process of sequentially traversing through all or part of a list is frequently called a "pass," so
each of the above steps is called a pass. Accordingly, the bubble sort algorithm requires ii - i passes,
where is is the number of input items.

EXAMPLE 4.7
Suppose the following numbers are stored in an array A:

32, 51, 27, 85. 66, 23, 13, 57
We apply the bubble sort to the array A. We discuss each pass separately.
Pass 1. We have the following comparisons

(a) Compare A 1 and A. Since 32<51, the list is not altered.
(b) Compare A 2 and A 3 . Since 51 >27, interchange 51 and 27 as follows:

32.	 85, 66, 23, 13, 57

(c) Compare A, and A,. Since 51 <85, the list is not altered.
(ii) Compare Aand A, Since 85>66, interchange 85 and 86 as follows

32, 27, 51, 88 23, 13, 57

(c) Compare ,\ • and \,. Since 85 >23, interchange 85 and 23 as follows:
32, 27, 51. &,	 13, 57

C-'inparc A and A,. Since 85> 13, interchange 85 and 13 to yield:
32, 27, 51, 66, 23. 	 57

(g) CoinIu	 A, and A,,. Sinc 85:- 57, interchange 85 and 57 to yield:
12, 27. 51, 66, 23. 13,
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At the end of this first pass, the largest number. 85. has moved to the last position. However, the rest of
the numbers are not sorted, even though some of them have changed their positions.

For the remainder of the passes, we show only the interchanges.

Pass 2.	 5!. 66, 23, 13, 57, 85

::	 : ::	 : ::

27, 33, 51, 23, 13, (!)(!) 85

At the end of Pass 2, the second largest number. 66, has moved its way down to the next-to-last position.
Pass 3. 27, 33,13, 57, 66, 85

27, 33, 23, () (i') 57, 66, 85

Pasa4. 27. ()33. 13, 51, 57. 66, 85

27, 23, 13,	 51, 57, 66, 85

Pass 5.	 13, 33, 51. 57, 66, 85

23,	 33, 51. 57, ôó, 85

Pass 6.	 27, 33, 51, 57, 66, 85

Pass 6 actually has two comparisons, A 1 with A. and A 2 and A,. The second comparison does not
involve an interchange.

Pass 7. Finally. A, is compared with A,. Since 13<23, no interchange takes place.

Since the list has 8 elements; it is sorted alter the seventh pass. (Observe that in this example, the list was actually
sorted after the sixth pass. This condition is discussed at the end of the section.)

We now formally state the bubble sort algorithm.

Algorithm 4.4: (Bubble Sort) BUBBLE(DATA, N)
Here DATA is an array with N elements. This algorithm sorts the elements in
DATA.
I. Repeat Steps 2 and 3 for K= Ito N- I.
2.	 Set PTR := I. [Initializes pass pointer PTR.J
3.	 Repeat while PTR < N - K: [Executes pass.]

(a) If DATA[PTRJ> DATA[PTR + 1], then:
Interchange DATALPTRI and DATA[PTR + 11.

[End of If structure.]
(b) Set PTR : = PTR + 1.

[End of inner loop.]
[End of Step I outer loop.]

4.	 Exit.

Observe that there is an inner loop which is controlled by the variable PTR, and the loop is contained
in an outer loop which is controlled by an index K. Also observe that PTR is used as a subscript but K is
not used as a subscript, but rather as a counter.

Complexity of the Bubble Sort Algorithm

Traditionally, the time for a sorting algorithm is measured in terms of the number of comparisons.
The number f(,) of comparisons in the bubble sort is easily computed. Specifically, there are n - I
comparisons during the first pass, which placçs the largest element in the last position; there are n - 2
comparisons in the second step, which places the second largest element in the next-to-last position:
and SO on. Thus
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f(n)=(n—l)+(n-2)++2+I="2	 =+O(n)=O(n2)

In other words, the time required to execute the bubble sort algorithm is proportional to n 2, where n is
the number of input items.

Remark: Some programmers use a bubble Sort algorithm that contains a 1-bit variable FLAG (or
a logical variable FLAG) to signal when no interchange takes place during a pass. If FLAG = 0 after
any pass, then the list is already sorted and there is no need to continue. This may cut down on the
number of passes. However, when using such a flag, one must initialize, change and test the variable
FLAG during each pass. Hence the use of the flag is efficient only when the list originally is "almost" in
sorted order.

4.7 SEARCHING; LINEAR SEARCH
Let DATA be a collection of data elements in memory, and suppose a specific ITEM of

information is given. Searching refers to the operation of finding the location LOC of ITEM in DATA,
or printing some message that ITEM does not appear there. The search is said to be successful if ITEM
does appear in DATA and unsuccessful otherwise.

Frequently, one may want to add the element ITEM to DATA after an unsuccessful search for
ITEM in DATA. One then uses a search and insertion algorithm, rather than simply a search
algorithm; such search and insertion algorithms are discussed in the problem Sections.

There are many different searching algorithms. The algorithm that one chooses generally depends
on the way the information in DATA is organized. Searching is discussed in detail in Chap. 9. This
section discusses a simple algorithm called linear search, and the next section discusses the well-known
algorithm called binary search.

The complexity of searching algorithms is measured in terms of the numbcrf(n) of comparisons
required to find ITEM in DATA where DATA contains n elements. We shall show that linear search is
a linear time algorithm, but that binary search is a much more efficient qlgorithm, proportional in time
to log, n. On the other hand, we also discuss the drawback of relying only on the binary search
algorithm.

Linear Search
Suppose DATA is a linear array with a elements. Given no other information about DATA, the

most intuitive way to search for a given ITEM in DATA is to compare ITEM with each element of
DATA one by one. That is, first we test whether DATA[I] = ITEM, and then we test whether
DATA[2] = ITEM, and so on. This method, which traverses DATA sequentially to locate ITEM, is
called linear search or sequential search.

To simplify the matter, we first assign ITEM to DATAEN + 11, the position following the last
element of DATA. Then the outcome

LOC = N + I

where LOC denotes the location where ITEM first occurs in DATA, signifies the search is
unsuccessful. The purpose of this initial assignment is to avoid repeatedly testing whether or not we
have reached the end of the array DATA. This way, the search must eventually "succeed."

A formal presentation of linear search is shown in Algorithm 4.5.
Observe that Step 1 guarantees that the loop in Step 3 must terminate. Without Step I (see

Algorithm 2.4), the Repeat statement in Step 3 must he replaced by the following statement, which
involves two comparisons, not one:

Repeat while LOC N and DATA[LOCJ rA ITEM:

On the other hand, in order to use Step 1, one must guarantee that there is an unused memory location

I.
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Algorithm 4.5: (Linear Search) LINEAR(DATA, N, ITEM, LOC)
Here DATA is a linear array with N elements, and ITEM is a given item of
information. This algorithm finds the location I OC of ITEM in DATA, or Sets
LOC =0 if the search is unsuccessful.
1. (insert ITEM at the end of DATA.] Set DATA[N + I]: = ITEM.
2. (Initialize counter] Set LOC:= 1.
3. (Search for ITEM.1

Repeat while DATA[LOCJ s ITEM:
Set LOC:=LOC+1.

(End of loop.]
4. (Successful?] If LOC = N + 1, then: Set LOC : = 0.
5. Exit.

at the end of the array DATA; otherwise, one must use the linear search algorithm discussed in
Algorithm 2.4.

EXAMPLE 4.8
Consider the array NAME in Fig. 4-5(a), where n = 6.

(a) Suppose we want to know whether Paula appears in the array and, if so. where. Our algorithm temporarily
places Paula at the end of the array, as pictured in Fig. 4-5(b), by setting NAMEI71 Paula. Then the
algorithm searches the array from top to bottom. Since Paula first appears in NAMEIN +1], Paula is not in
the original array.

(o) Suppose we want to know whether Susan appears in the array and, if so, where. Our algorithm temporarily
places Susan at the end of the array, as pictured in Fig. 4-5(c), by setting NAME(7] Susan. Then the
algorithm searches the array from top to bottom. Since Susan first appears in NAME]4] (where 4 n), we
know that Susan is in the original array.

NAME

1	 Mary

2	 Jane

3	 Diane

4	 Susan

5	 Karen

6	 Edith

7

8

(a)

NAME

I	 Mary

2	 Jane

3	 Diane

4	 Susan

5	 Karen

6	 Edith

7	 Paula

8

(b)

Fig. 4-5

NAME

1	 Mary

2	 Jane

3	 Diane

4	 Susan

5	 Karen

6	 Edith

7	 Susan

8

(c)

Complexity of the Linear Search Algorithm
As noted above, the complexity of our search algorithm is measured by the number f(n) of

comparisons required to find ITEM in DATA where DATA contains n elements. Two important casc'
to consider are the average case and t he worst case.
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Clearly, the worst case occurs when one must search through the entire array DATA, i.c., when
ITEM does not appear in DATA. In this case, the algorithm requires

f(n)n + 1

comparisons. Thus, in the worst case, the running time is proportional to I'?.
The running time of the average case uses the probabilistic notion of expectation. (Sec Sec. 2.5.)

Suppose p is the probability that ITEM appears in DATALKI, and suppose q is the probability that
ITEM does not appear in DATA. (Then p 1 +p + .. +p,, + q 1.) Since the algorithm uses k
comparisons when ITEM appears in DATA[K], the average number of comparisons is given by

f(n) =	 2p2 +	 +n p, + (n + 1).q

In particular, suppose q is very small and ITEM appears with equal probability in each cicrncnt of
DATA. Then q 0 and each p1 = 1/n. Accordingly,

f(n)=1.!+2++n4 (it +I)O(1+2+	 +n)

- n(n + 1) 1 - n + 1
-	 2	 n	 2

That is, in this special case, the average number of comparisons required to find the location of ITEM
is approximately equal to half the number of elements in the array.

4.8 BINARY SEARCH

Suppose DATA is an array which is sorted in increasing numerical order or, equivalently,
alphabetically. Then there is an extremely efficient searching algorithm, called binary search!Jwhich
can be used to find the location LOC of a given ITEM of information in DATA. Before frmally
discussing algorithm, we indicate the general idea of this algorithm by means of an idealized
version of a familiar everyday example.

Suppose one Wants to find the location of some name in a telephone directory (or some word in a
dictionary). Obviously, one does not perform a linear search. Rather, one opens the directory in the
middfl to determine which half contains the name being sought. Then one opens that half in the middle
to determine which quarter of the directory contains the name. Then one opens th t quarter in the
middle to determine which eighth of the directory contains the name. And soon. Eventually, one finds
the location of the name, since one is reducing (very quickly) the number of possible locations for it in
the directory.

The binary search algorithm applied to our array DATA works as follows. During each stage of
our algorithm, our search for ITEM is reduced to a segment of elements of DATA:

DATA[BEG], DATALBEG + 11, DATA[BEG + 2],..., DATA[END]

Note that the variables BEG and END denote, respectively, the beginning and end locations of the
segment under consideration. The algorithm compares ITEM with the middle clement DATA[Mll)1
of the segment, where MID is obtained by

MID = INT((BEG + END)/2)

(We use INT(A) for the integer value of A.)If DATA[MID] = ITEM, then the search is successful and
we set LOC : = MID. Otherwise a new segment of DATA is obtained as follows:

(a) If ITEM < DATA[MID], then ITEM can appear only in the left half of the segment:

DATA[BEG], DATA[BEG +11 .....DATA[MID —1]

So we reset END : = MID - 1 and begin searching again.
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(b) If ITEM> DATA[MID], then -ITEM can appear only in the right half of the segment:

DATA[MID + fl DATA[MID + 2]..... DATA [END]

So we reset BEG := MID + 1 and begin searching again.

Initially, we begin with the entire array DATA; i.e., we begin with BEG = 1 and END = rz, or, more
generally, with BEG =LB and END=UB.

If ITEM is not in DATA, then eventually we obtain

END <BEG

This condition signals that the search is unsuccessful, and in such a case we assign LOC:= NULL.
Here NULL is it value that lies outsiae the set of indices of DATA. (In most cases, we can choose
NULL = 0.)

We state the binary search algorithm formaily.

Algnthm 4.6: (Binary Search) BINARY(DATA, LB, UB, ITEM, LOC)
Here DATA is a sorted array with lower bound LB and upper bound UB, and
ITEM is a given item of information. The variables BEG, END and MID
denote, respectively, the beginning, end and middle locations of a segment of
elements of DATA. This algorithm finds the location LOC of ITEM in DATA or
sets LOC = NULL..

1. [Initialize segment variables.]
Set BEG := LB. END := UB and MID = INT((BEG+ END)/2).

2. Repeat Steps 3 and 4 while BEG END and DA1 A[MID] 7^ ITEM.
3. If ITEM < DATA[MID], then:

Set END:= MID —I.
Else:

Set BEG := MID + 1.
[End of If structure.]

4. Set MID t= INT((BEG + END)/2).
[End of Step 2 loop.]

5. If DATA[MID] = ITEM, then:
Set LOC:= MID.

Else:
Set LOC: NULL.

[End of If structure.)
6. Exit.

Remark: Whenever ITEM does not appear in DATA, the algorithm eventually arrives at the
stage that BEG = END = MID. Then the next step yields END <BEG, and control transfers to Step 5
of the algorithm. This occurs in part (b) of the next example.

EXAMPLE 4.9sX/
Let DATA be the iollowing sorted 13-clement a,ay:

	

DATA:	 II, 22, 30, 33, 40, 44,	 , 60, 66, 77, 80, 88, 99

We apply the binary search t o DATA for 'different values of ITEM.

(a) Suppose ITEM = 40. The search for ITEM in the array DATA is pictured in Fig. 4-6, where the values of
DATAfI3EGJ and DATA[END] in each stage of the algorithin are indicated by circles and the value of
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DAT.\(MIDI by a square. Specifically, BEG, END and MID will have the following successive values:
(I) Initially, BEG 1 and END = 13. Hence

	

MID = INT((I + 13)12] 7	 and so	 DATA(MIDJ = 55
(2) Since 40< 55, END has its value changed by END = MID - 1 6. Hence

	

MID = IN-I-[(1 + 6)121 = 3	 and so	 DATALMID] = 30
(3) Since 40>30, BEG has its value changed by BEG MID + 1 4. Hence

	

MID INTft4 + 6)12] 5 	 and so	 DATALMIDI 40
We have found ITEM in location LOC MID 5.

(I)	 22, 30, 33, 40, 44,	 j60, 66, 77, 80, 58,
(2) ( 	 22,	 33, 40, () 55, 60, 66, 77, 80, 88, 99
(3) 11, 22, 30, ()[]() 55. 60, 66, 77, 80, 88, 99 [Successful]

Fig. 4-6 Binary search for ITEM = 40.

(b) Suppose ITEM = 85. The binary search for ITEM is pictured in Fig. 4-7. Here BEG. END and MID will
have the following successive values:
(1) Again initially, BEG 1, END 13, MID 7 and DATALMIDI 55.
(2) Since 85>55, BEG has its value changed by BEG = MID + 1 8. Hence

	

MID INTL(8 + 13)/21 10 	 and so	 DATALMIDJ 77
(3) Since 85>77, BEG has its value changed by BEG MID + 1 11. Hence

	

MID = INTI(1 I + 13)/2J= 12	 and so	 DATA(MIDJ 88
(4) Since 85< 88, END has its value changed by END = MID - 1 11. Hence .-	 -

	

MID INT[(1I + 11)/2] 11	 and so	 DATALMIDI 80
(Observe that now BEG = END MID = 11.)

Since 85> 80, BEG has its value changed by BEG = MID + 1 12. But now BEG> END. Hence ITEM does not
belong to DATA.

	

(I)	 22, 30, 33, 40, 44, 	 60,	 66, 77, 80, 88,
(2) II, 22, 30, 33, 40, 44, 55, S66, 	 80, 88,
(3) Il, 22, 30, 33, 40, 44, 55, 60, 66, 77,
(4) 11, 22, 30, 33, 40, 44, 55, 60, 66, 77, () 88, 99 (Unsucccssfull

Fig. 4-7 Binary search for ITEM = 85.

Complexity of the Binary Search Algorithm
The complexity is measured by the numbcrf(n) of comparisons to locate ITEM in DATA where

DATA Contains n elements. Observe that each comparison reduces the sample size in half. Hence we
require at most f(n) comparisons to locate ITEM where

2" > it	 or equivalently	 f(n) = log 2 nj + 1

That is, the running time for the worst case is approximately equal to 1092 n. One can also show that
the running time for the average case is apprbximately equal to the running time for the worst case.
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EXAMPLE 4.10

Suppose DATA contains 1 000 000 elements. Observe that

	

2°=1024>IOW	 and hence	 220>10002=1000000

Accordingly, using the binary search algorithm, one requires only about 20 comparisons to find the location of an
item in a data array with 1000000 elements.

Limitations of the Binary Search Algorithm

Since the binary search algorithm is very efficient (e.g., it requires only about 20 comparisons with
an initial list of 1000000 elements), why would one want to use any other search algorithm? Observe
that the algorithm requires two conditions: (1) the list must be sorted and (2) one must have direct
access to the middle element in any sublist. This means that one must essentially use a sorted array to
hold the data. But keeping data in a sorted array is normally very expensive when there are many
inertions and deletions. Accordingly, in such situations, one may use a different data structure, such
as a linked list or a binary search tree, to store the data.

4.9 MULTIDIMENSIONAL ARRAYS

The linear arrays discussed so far are also called one-dimensional iirrays, since each element in the
array is referenced by a single subscript. Most programming languages allow two-dimensional and
three-dimensional arrays, i.e., arrays where elements are referenced, respectively, by two and thre
subscripts. In fact, some programming languages allow the number of dimensions for an array to be as
high as 7. This section discusses these multidimensional arrays.

Two-Dimensional Arrays
A two-dimensional m X n array A is a collection of m n data elements such that each element isspecified by a pair of integers (such as J, K), called subscripts, with the property that

	

1:5 J:5 	 and	 I:!:- K!s n
The element of A with first subscript j and second subscript k will be denoted by

	

A JA	 or	 A[J, K]
Two-dimensional arrays are called matrices in mathematics and tables in business applications; hencetwo-dimensional arrays are sometimes called matrix arrays.

There is  standard way of drawing a two-dimensional m x n array A where the elements of A form
a rectangular array with ,n rows and n columns and where the element A[J, KJ appears in row J and
column K. (A row is a horizontal list of elements, and a column is a vertical list of elements.) Figure 4-8
shows the case where A has 3 rows and 4 columns. We emphasize that each row contains those
elements with the same first subscript, and each column contains those elements with the same second
subscript.

Columns

	

1	 2	 3	 4

[A13,

Ail, 1]	 A(l, 2]	 A[1, 3]	 All,Rows	 2	 A[2. 1]	 Al2. 2]	 A[2. 31 	 A(2, 4J
3 	 ii	 A(3, 21	 A[3, 31	 A[3, 41

Fig. 4-8 Two-dimensional 3 x 4 array A.
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EXAMPLE 4.11
Suppose each student in a class of 25 students is given 4 tests. Assuming the students are numbered from I to

25, the test scores can be assigned to a 25 x 4 matrix array SCORE as pictured in Fig. 4-9. Thus SCORE[K. U
contains the Kttt student's score on the Lth test. In particular, the second row of the array.

SCORE12. II,	 SCORE12, 2], 	 SCORE12, 31, 	 SCORE12, 4

contains the four test scores of the second student.

Student	 Test 1	 Test 2	 Test 3	 Test 4

1	 84	 73	 88	 81
2	 95	 100	 88	 96
3	 72	 66	 77	 72

25	 78	 82	 70	 85

Fig. 4-9 Array SCORE.

Suppose A is a two-dimensional m X n array. The first dimension of A contains the index set
1, . . , m,  with lower bound I and upper bound m; and the second dimension of A contains the index

set 1, 2.... . n, with lower bound I and upper bound n. The length of a dimension is the number of
integers in its index set. The pair of lengths m x n (read "m by n") is called the size of the array.

Some programming languages allow one to define multidimensional arrays in which the lower
bounds are not 1. (Such arrays are sometimes called nonregular.) However, the index set for each
dimension still consists of the consecutive integers from the lower bound to the upper bound of the
dimension. The length of a given dimension (i.e., the number 'of integers in its index set) can be
obtained from the formula

	

Length = upper bound - lower bound + 1 	 (4.3)

(Note that this formula is the same as Eq. (4.1), which was used for linear arrays.) Generally speaking,
unless otherwise stated, we will always assume that our arrays are regular, that is, that the lower bound
of any dimension of an array is equal to 1.

Each programming language has its own rules for declaring multidimensional arrays. (As is the
case with linear arrays, all element in such arrays must be of the same data type.) Suppose, for
example, that DATA is a two-dimensional 4 x8 array with elements of the real type. FORTRAN,
PL/1 and Pascal would declare such an array as follows:

FORTRAN: REAL DATA(4, 8)
PL/1:	 DECLARE DATA(4, 8) FLOAT;
Pascal:	 VAR DATA: ARRAYII . .4, 1 . . 8j OF REAL;

Observe that Pascal includes the lower bounds even Qiough they are 1.
Remark: - Programming languages which are able to declare nonregular arrays usually use a colon

to separate the lower bound from the upper bound in each dimension, while using a comma to separate
the dimensions. For example, in FORTRAN,

INTEGER NUMB(2:5, —3:1)

declares NUMB to be a two-dimensional array of the integer type. Here the index sets of the
dimensions consist, respectively, of the integers

2, 3, 4. 5	 and	 —3, —2, —1, 0, 1
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By Eq. (4.3), the length of the first dimension is equal to 5 - 2 + 1 = 4, and the length of the secon
dimension is equal to I - ( —.3) + I = 5. Thus NUMB contains 4 5 = 20 elements. 	 -

Represcntation of Two-Dimensional Arrays in Memory
Let A be a two-dimensional its X it array. Although A is pictured as a rectangular array of elements

with in rows and it columns, the array will be represented in memory by a block of in it
memory locations. Specifically, the programming language will store the array A either (I) column by
column, is what is called column-major order, or (2) row by row, in row-major order. Figure 4-10
shows these two ways when A is a two-dimensional 3 x 4 array. We emphasize that the particular
representation used depends UOfl the programming language, not the user.

A	 Subscript	 A	 Subscript

( I , I)
	

(1, •I)

(2, I) Column I
	

(1, 2)
Row I

(3, I)
	

(1,3)

(1, 2)
	

(1,4)

(2, 2) Column 2
	

(2, I)

(3, 2)

	

	
(2,2)

Row 2
(I, 3)
	

(2,3)

(2, 3) Column 3
	 (2,41)

(3, 3)
	

(3, 1)

(1,4)
	

(3,2) 
)'ROW 3

(2, 4) Column 4
	

(3, 3)..

(3.4)
	

(3,4)

(a) Column-major order.	 (b) Row-major order.

Fig. 4-10

Recall that, for it linear array LA, the computer does not keep track of the address LOC(LA[KJ)
of every element LA[KJ of LA, but does keep track of l3ase(LA), the address of the first clement of
LA. The computer uses the formula

LOC(LA[K]) = Base(LA) + w(K - I)

to find the address of LAIKI in time indcpcndent of K. (Here w is the number of words per memory
cell for the array LA, and 1 is the lower bound of the index set of LA.)

A similar situation also holds for any two-dimensional in x is array A. That is, the computer keeps
track of Ihzse(A)—thc address of the first clement All, 11 of A—and computes the address
LOC(AIJ, K]) of AI.J, K] using the formula

(Column-major order)
	

LOC(AIJ, KJ) = Basc(A) +.wlM(K - I) + (.1 - 1)]
	

(4.4)

or the formula

(Row-major order) 	 LOC(AIJ, K]) = Base(A) + w[N(J - I) + ( K - 1)]	 (4.5)



84	 -	 ARRAYS, RECORDS AND POINTERS	 [CHAP. 4

Again w denotes the number of words per memory location for the array A. Note that the formulas
are linear in J and K, and that one can find the address LOC(A[J, K]) in time independent of  and K.

EXAMPLE 4.12

Consider the 25 x 4 matrix array SCORE in Example 4.11. Suppose Base(SCORE) = 200 and there are
w = 4 words per memory cell. Furthermore, suppose the programming language stores two-dimensional arrays
using row-major order. Then the address of SCORE[12. 31, the third test of the twelfth student, follows:

LOC(SCORE[12. 3]) = 200 + 4(4(12 - 1) + (3– 1)] = 200 + 446] = 384

Observe that we have simply used Eq. (4.5).

Multidimensional arrays clearly illustrate the difference between the logical and the physical views
of data. Figure 4-8 shows how one logically views a 3 x 4 matrix array A, that is, as a rectangular array
of data where A[J, K] appears in row J and column K. On the other hand, the data will be physically
stored in memory by a linear collection of memory cells. This situation will occur throughout the text;
e.g., certain data may be viewed logically as trees or graphs although physically the data will be stored
linearly in memory cells.

General Multidimensional Arrays
General multidimensional arrays are defined analogously. More specifically, an n-dimensional

m 1 X m 2 x x m,, array B is a collection of m 1 m 2 m,, data elements in which each element is
specified by a list of n integers—such as K, K2 .....K,,—called subscripts, with the property that

	

1K1::5ml,	 1:5K2!5m21

The element of B with subscripts K 1 , K21 ....K,, will be denoted by

	

B KK	 K,	 or	 BEKI, K2 ,. . . , KN]

The array will be stored in memory in a sequence of memory locations. Specifically, the programming
language will store the array B either in row-major order or in column-major order. By row-major
order, we mean that the elements are listed so that the subscripts vary like an automobile odometer,
i.e., so that the last subscript varies first (most rapidly), the next-to-last subscript varies second (less
rapidly), and so on. By column-major order, we mean that the elements are listed so that the first
subscript varies first (most rapidly), the second subscript second (less rapidly), and so on.

EXAMPLE 4.13

Suppose B is a three-dimensional 2 x 4 x 3 array. Then B contains 2 43 = 24 elements. These 24 elements
of B are usually pictured as in Fig. 4-11; i.e., they appear in three layers, called pages, where each page consists of
the 2 x 4 rectangular array of elements with the same third subscript. (Thus the three subscripts of an element in a
three-dimensional array are called, respectively, the row, column and page of the element.) The two ways of
storing B in memory appear in Fig. 4-12. Observe that the arrows in Fig. 4-11 indicate the column-major order of
the elements.

The definition of general multidimensional arrays also permits lower bounds other than 1. Let C be
such an n-dimensional array. As before, the index set for each dimension of C consists of the
consecutive integers from the lower bound to the upper bound of the dimension. The length L 1 of
dimension j of C is the number of elements in the index set, and L. can be calculated, as before, from

= upper bound - lower bound + I 	 (4.6)

For a given subscript K 1 , the effective index E. of L, is the number of indices preceding K 1 in the index
set, and E, can be calculated from

E1 = K 1 - lower bound	 (4.7)
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C-1112,1,31

lJl,l,3J	 13(l.2.3J	 1111.3,31	 1311,4.31

Page 2 	1112.2, 3111	 1312.3,31	 1312.4.31
1311. 1,21	 1311.2,21	 1311.3.21	 [if l.4.2j

page I ci	
I	 I	 I

1312. 1.21	 1312.2.2]	 1312.3.21	 1112.4. 21
13 1 1. 1.11	 1311.2.11	 1311.3.11	 1311.4.11

I
1312. I. ii	 1112,2, 11	 1112,3, II	 1312,4. II

Fig. 4.11

Subscripts

(1.1,1)

(2, I, I)

(1,2, I)

(2,2,1)

(1.3,1)

(1,4.3)

(2,4,3)

H Subscripts

(1,2,2)

(2,4,2)

(2,4,3)

(a) Column-major order. 	 (b) Row-major order.
Fig. 4-12

Then the address LOC(C(K, K 2 , - . . , KJ of an arbitrary element of C can be obtained Ironi the
formula

Base(C) + w[(((' . . (EN 'N + EN )LN _ 2 ) + . + EJL2 + E2 )L 1 + E 1 J 	(4.8)
or from the formula

Dase(C)+ w(( ... ((E,L 2 + E2 )L + E)L4 +-• -f EN I ) LN + EN ]	 (4.9)
according to whether C is stored in column-major or row-major order. Once again, Base(C) denotes
the address of the first element of C, and w denotes the number of words per memory location.

EXAMPLE 4.14

Suppose a three-dimensional array MAZE is declared using
MAZE(2:8, —4:1,6:10)
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Then the lengths of the three dimensions of MAZE are, respectively.

L 1 =8–Z+1 =7,	 L2= I –(-4)+ 1=6,	 L,,= 10-6+1=5

Accordingly, MAZE Contains L, L2 L, = 7 - 6 5 = 210 elements.
Suppose the programming language stores MAZE in memory in row-major order, and suppose

Base(MAZE) 200 and there are w = 4 words per memory cell. The address of an element of MAZE—for
example, MAZE[S, –1, 81—is obtained as follows. The effective indices of the subscripts are, respectively.

E1 =5-2'3,	 E2=-1–(-4)3,	 E=8-6=2

Using Eq. (4.9) for row-major order, we have:
E 1 L2 = 3-6 =  18

E 1 L2 + E2 = 18 + 3=21
(E1 L2 + E2 )L = 21 5 = 105

(E,L2 + E3 )L3 + E3 = 105 + 2 = 107

Therefore,
LOC(MAZE[5, –1, 8]) = 200 + 4(107) = 200 + 428 = 628

4.10 POINTERS; POINTER ARRAYS
Let DATA be any array. A variable Pis called a pointer if P "points" to an element in DATA, i.e.,

if P contains the address of an element in DATA. Analogously, an array PTR is called a pointer array if
each element of PTR is a pointer. Pointers and pointer arrays are used to facilitate the processing of
the information in DATA. This section discusses- this useful tool in the context of a specific example.

Consider an organization which divides its membership list into four groups, where each group
contains an alphabetized list of those members living in a certain area. Suppose Fig. 4-13 shows such a
listing. Observe that there are 21 people and the groups contain 4, 9, 2 and 6 people, respectively.

Group I	 Group 2	 Group 3	 Group 4

Evans	 Conrad	 Davis	 Baker
Harris	 Felt	 Segal	 Cooper
Lewis	 Glass	 Ford
Shaw	 Hill	 Gray

King	 Jones
Penn	 Reed
Silver
Troy
Wagner

Fig. 4-13

Suppose the membership list is to be stored in memory keeping track of the different groups. One
way to do this is to use a two-dimensional 4 x n array where each row contains a group, or to use a
two-dimensional n x 4 array where each column contains a group. Although this data structure does
allow us to access each individual group, much space will be wasted when the groups vary greatly in
size. Specifically, the data in Fig. 4-13 will require at least a 36-element 4 x 9 or 9 x 4 array to store the
21 names, which is almost twice the space that is necessary. Figure 4-14 shows the representation of the
4 x 9 array; the asterisks denote data elements and the zeros denote unused storage locations. (Arrays
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whose rows—or columns—begin with different numbers of data elements and end with unused storage
locations are said to be jagged.)

/*	 *	 *	 * lo	 0	 0	 0	 ()

I*	 *	 *	 *	 *	 *	 *	 *1 *	 10 0 	 0	 0	 0	 0	 0
*	 *	 *	 *	 (I	 0

Fig. 4-14 Jagged array.
S

Another way the membership list can be stored in memory is pictured in Fig. 4-15(a). That is, the
list is placed in a linear array, one group after another. Clearly, this method is space-efficient. Also, the
entire list can easily be processed—one can easily print all the names on the list, for example. On the
other hand, there is no way to access any particular group; e.g., there is no way to find and print only
the names in the third group.

A modified version of the above method is pictured in Fig. 4-15(b). That is, the names arc listed in
a linear array, group by group, except now some sentinel or marker, such as the three dollar signs used

kAflk2fltO	 kACkAOCO

21

13

15

16

I

2

3

4
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Fig. 4-15
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here, will indicate the end of a group. This method uses only a few extra memory cells—one for each
group—but now one can access any particular group. For example, a programmer can now find and
print those names in the third group by locating those names which appear after the second sentinel
and before the third sentinel. The main drawback of this representation is that the list still must be
traversed from the beginning in order to recognize the third group. In other words, the different groups
are not indexed with this representation.

Pointer Arrays
The two space-efficient data Structures in Fig. 4-15 can be easily modified so that the individual

groups can be indexed. This is accomplished by using a pointer array (here, GROUP) which contains
the locations of the different groups or, more'specifically, the locations of the first elements in the
different groups. Figure 4-16 shows how Fig. 4-15(a) is modified. Observe that GROUP[L] and
GROUP[L + 11 - I Contain, respectively, the first and last elements in group L. (Observe that
GROUP[5] points to the sentinel of the list and that GROUP(5) - I gives us the location of the last
element in Group 4.)

MEMBER

Evans

Harris

Lewis

Shaw

Conrad

Wagner

Davis

Segal

Baker

Reed

$$s

Group I

Group 2

} Group 3

Group 4

EXAMPLE 4.15

Suppose one wants to print only the names in the Lth group in Fig. 4-16, where the value of L is part of the
input. Since GROUPEL) and GROUP[L + 1]- 1 contain, respectively, the locations of the first and last name in
the Lth group, the following module accomplishes our task:

1. Set FIRST := GROUPILI and LAST:=GROUP[L+ 11-1.
2. Repeat for K = FIRST to LAST:

Write: MEMBERIKI.
(End of loop.)

3. Return.
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The simplicity of the module comes from the fact that the pointer array GROUP indexes the Lth group. The
variables FIRST and LAST are used mainly for notational convenience.

A slight variation of the data structure in Fig. 4-16 is pictured in Fig. 4-17, where unused memory
cells arc indicated by the shading. Observe that now there are some empty cells between the groups.
Accordingly, a new clement may be inserted in a group without necessarily moving the elements in any

GROUP
I	 I	 J.
2	 7
3	 19
4	 .23 I-

N U M 13

219
3J 2

FREE

MEMBER

Evans
2	 Harris

Group I
3	 Lewis -J
4	 Shaw

5

6

7	 Conrad

	

8	 Fell
Group 2

	

15	 Wagner
16

17

18

	

.19	 I)avis
Group 3

	

20	 Segal
21

22

	

23	 Baker

	

24	 Cooper
Group 4

28	 Reed
29
31)

31

32

Fig. 4-17
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.:ther group. Using this data structure, one requires an array NUMB which gives the number of
ckmcnts in each group. Observe that GROUP[K + I J GROIJPIKJ is the total amount of space
available for Group K; hence

FREE[K] = GROUPLK + IJ -- GROUI'[KJ - NUMBK

is the number of empty cells following GROUP K. Sometimes it is convciiient to explicitly define the
extra array FREE.

EXAMPLE 4.16
Suppose, again, one wants to print only the names in the Uli group, where L is p.ut of tt:c hinui. I,nt now ilw

oups arc stored as in Fig. 4-17. Observe that

	

GROUI'[Lj	 and	 GROUI'jI.l + NUMIJIL] - I

contain, respectively, the locations of the first and last narncs in the I .tli group. 'rlius the following module
accomplishes our task:

I. Set FIRST := GROUP[L] and LAST := GROUP(L) + NLIMUjLI
2. Repeat for K FIRST to LAST:

Write: MEMI3ERIK.
(End of loop.]

3. Return.

The variables FIRST and LAST are mainly used for notal.ioiial conve nicIic

4.11 RECORDS; RECORD STRUCTURES

Collections of data are frequently organized into a hierarchy ot field, j cc u	 andliks Specifically

a ree 'rd is a collection of related data items, each of which isallcd a field ot aifrihuic, and it file is a

collection of similar records. Each data item itself may he a group item COlflpOSC(l of subiteitis; (hose

items which are indccomposablc arc called elementary hems or (10-is or scalars. 'Ihe names given to

the various data items are called identifiers.
Although a record is a collection of data items, it differs [rout a linear allay in the following ways:

(a) A record may be a collection of nomtho,nogeneou.s data; i.e., the data items in it iccord may

have different data types.
i ) The data items in a record are indexed by attribti ft ni tics. SO Iti,1k, mimaj not be. a natural

ordering of its elements.

VinIer the relationship of group item to subitcin, the data items iii a rCcOI d mutt a hierarchical
strucltirc which can be described by means of ''level" numbers, as illustrated in Fxamples 4.17 and
4.18.

DROWN, JOHN M
	

NI
	 4	 BROWN, ROBERT S. 126

	 BROWN, SUSAN II. 122

Y
Agc
	 Age - -

hitlter------------- '-I	 I	 ------------Nlaher

t 1LLY
Fig. 4-18

Name --------

Sex-)
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EXAMPLE 4.17

Suppose it hospital keeps a record no each newborn baby which contains the following data items: Name, Sex
Biohday. Fathe , Mother. Suppose further that Birthday is a group item with suhitcms Mon, h, Day and Year, and
Father ar'td Mother are group items, cach with subitems Name and Age. Figure 4-18 shows how such a record
could appear.

The structure (If the dove record is usually described as follows. (Note that Name appears three times and
Age appeals twice in the t ruclure -)

Newborn
2 Name
2 Sex
2 Birthday

3 Month
3 Day
3 Year

2 Father
3 Name
3 Age

2 Mother
3 Name
3 Age

The nuiriber to the Lit of each icierit ilici is called a level number. Observe that each group itcnl is followed by
suhitcuns, and the level of the subitcins is I more than the level of the group item. Furthermore, an item is a group
item if and only if it is immediately followed by an item with a greater level number. 	 -.

Sonic of the identifiers in a record structurc may also refer to arrays of elements. In fact, suppose
the first line of the ab(,ve structure is replaced by

I Newborn(20)

This will indicate it tile of 20 records. and (he usual subscript notation will be used to dist i ogu isli
between different records in the file. That is, we will write

Newborn, Ncwborn 2 , Ncwborn3,
or

Newborn[1J, Ncwborn[21, Newborn[3],.

to denote different iCe ord s in the file.

EXAMPLE 4.18

A class of student records may be organized as follows:

Studcnt(20)
2 Name

3 Last
3 First
3 Ml (Middle Initial)

2 Tcst(3)
2 Final
2 Grade

The idcntitier Stulent( 20) indicates that there arc 20 students. The identifier Test (3) indicates that Uwie are I hr r e
tests Per student. Observc that there are 8 elementary items per Student, since Test is counted 3 tiirc
Altogetlici-, there are IbI) eleincotai-y items in the entire Student structure.
Indexing Items in a Record

Suppose wc Want to access sonic data item in a record. In some cases, we cannot simply write tIre
data ii arise of tli 11c ill si rice the "m 1w- ii a inc may appear in different places in (lie record. For example
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Age appears in two places in the record in Example 4.17. Accordingly, in order to specify a particular
item, we may have to qualify the name by using appropriate group item names in the structure. This
qualification is indicated by using decimal points (periods) to separate group items from subitcms.

EXAMPL..E 4.19

(a) Co ider the record structure Newborn in Example 4.17. Sex and year need no qualification, since each
refci to a unique item in the structure. On the other hand, suppose we want to refer to the age of the father.
This can be done by writing

	

Newborn. Father. Age	 or simply	 FathcrAge

The first reference is said to be fully qualified. Sometimes one adds qualifying identifiers for clarity.

(b) Suppose the first line in the record structure in Example 4.17 is replaced by

I Newborn(20)

That is, Newborn is defined to be a file with 20 records. Then every item automatically becomes a 20-clement
array. Some languages allow the sex of the sixth newborn to he referenced by writing

	

Newborn.Scx(61	 or simply	 Sexifil

Analogously, the age of the lather of the sixth newborn may be referenced by writing

	

Newborn. Father. ,ge6]	 jr simply	 Father.Agc(6] -

(c) Consider the record structure Student in Example 4.18. Since Student is declared to be a file with 20
students, all items automatically become 20-clement arlays. Furtheonorc, Test becomes a two-dimensional
array. In particular, the second test of the sixth student may be rcfcrcnccd by writing

	

Studcnt.Tcst(6, 21	 or simply	 Test[6, 21

The order of the subscripts corresponds to the order of the qualifying identifiers. For example,

Tet(3, 11

does not refer to the third test of the fir ' student, but to the first test of the third student.

Remark: Texts sometimes use functional notation instead of the dot notation to denote
qualifying identifiers. For example, one writes

Age(Fathcr(Newborn))	 instead of	 Newborn. Father. Age

and
First(Namc(Studcnt[81))	 instead of	 Studcnt.Natne.Fir5t18]

Observe that the order of the qualifying identifiers in the functional notation is the, reverse of the order
in the dot notation.

4.12 REPRESENTATION OF RECORDS IN MEMORY; PARALLEL ARRAYS
Since records may contain nonhomogeneous data, the elements of a record cannot be stored in an

array. Some programming languages, such as PL/!, Pascal and COBOL, do have record structures
built into the language.

EXAMPLE 4.20
Consider the record structure Newborn in Exampl,o 4.17. One can store such a record in PLII by the

following declaration, which defines a data aggregate called a structure:
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DECLARE I NEWBORN,
2 NAME CHAR(20),
2 SEX CHAR(1),
2 BIRTHDAY,

3 MONTH FIXED,
3 DAY FIXED,
3 YEAR FIXED,

2 I'AThER,
3 NAME Cl-I R(20),
3 AGE FIXED.

2 MOTHER
3 NAME C}IAR(20),
3 AGE FIXED;

Observe that the variables SEX and YEAR are unique; hence references to them need not be qualified. On the
other hand, AGE is not unique. Accordingly, one should use

FATI-IER.AIJE or MOTHER.AGE
depending on whether one wants to reference the fattier's age or the mother's age.

Suppose a programming language does not have available the hierarchical structures that are
available in PL/1, Pascal and COBOL. Assuming the record contains nonhomogeneous data, the
record may have to be stored in individual variables, one for each of its elementary data items. On the
other hand, suppose one wants to store an entire file of records. Note that all data elements belonging
to the same identifier do have the same type. Such a file may be stored in memory as a collection ofparallel arrays; that is, where elements in the different arrays with the same subscript belong to the
same record. This is illustrated in the next two examples.

EXAMPLE 4.21

Suppose a membership list contains the name, age, sex and telephone number of each member. One can store
the file in four parallel arrays, NAME, AGE, SEX and PHONE, as pictured in Fig. 4-19; that is, for a given
subscript K, the elements NAMEIK], AGEfK], SEXIK) and PIIONEjK] belong to the same iccord.

NAME	 AGE	 SEX	 PHONE
I John Brown_J

H27

	MaleJ L2345J
2	 Cohen .j . 	 Male	 456-7272
3 Mary Dav_j 	 Female_j []77.12J
4	 Linda Evaris 	 Fcma 	 -4478

T T 	 TMided L 25565
Fig. 4-19

EXAMPLE 4.22

Consider again file Newborn record in Example  4 17. One can Store a tile of such record s in nine linear arrays,such as

NAME, SEX, MONTH, DAY, YEAR, FAIl IIiRNAM[, FAII JERAGE, M01I IERNAME, Mon IFRAGE
one an ny for cacti elementary data item. Here we Imist rise (lilferelit variihte names for the name and age of the
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lather and mother, which was ' lot nccessary in the previous example. Again, we assume that the arrays are
parallel, i.e. , that for a fixed SUbSCI Ipt K, th .cicmc nis

NAMELKI, SEXIKI, MONl'IILKI .... . MOTI lIRA(iEtK1

belong po the same re.''

Records with Variable Lengths
Suppose an etc mc u (a ry school keeps a record for cacti stude nt which	 nich c I a i us the following dat a

Na ini, Tc lephonc No in ber, Father, Mother,   Siblings. Here I a1 her, Mother and Siblings contain,   
respectively, the names of the student's father, mother, and brothers or sisters atcndiumg the same
school. Three such records may be as follows:

Adams, John;	 345-6677;	 Richard;	 Mary;	 .1 ane , William. Donald

Bailey, Susan; 	 222-1234;	 Steven;	 Sheila;	 XXXX

Clark, Bruce;	 567-3344	 XXXX;	 Barbara;	 David, Lisa

l-lere X XXX means that the parent has died or is not living with the Student, or that flue student has no
sibling at the school.

The above is an cxaflhl)lC of a variable-length record, since the data clement Siblings can contain zero
or more names. One way of sto.ring the file in arrays is pictured in Fig. 4-20, where there are linear
arrays NAME, Pt lONE, FAThER and MOT1 IER taking care of the lust four data items in the
records, and arrays NUMB and PTR giving, respectively, the number and location of siblings in an
array SIBLING.

NAME	 Ph lONE	 FATHER	 MOTHER	 NUMB	 PER	 SIBLING

I Adams,
Ii;	 222-W4	 _____	 Sheila	 r'	 2 David

3cj	 H L ;ac

6	 William

7	 Donald

8

Fig. 4-20

4.13 MATRICES
"Vectors" and "matrices" arc mathematical terms which refer to collections of muuunbcrs which are

analogous, respectively, to line-ar and two-dimensional arrays. That is,

(a) An n-clement vector V is a list of n numbers usually given iii the form

V-=(V1 , V2 ...., V)
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(b) An tit it 'nairjx A is an array of in ii numbers arranged in in rows and a columns as follows:

/ A 11 A 2 .	 A1,,

A=( 
A 21 A 22 •.. A2,,

	

A.

	 A 2 	A,,,,,

In the context of vectors and matrices, the term scalar is used for individual numbers.
A matrix with one row (column) may he viewed as a vector and, similarly, a vector may be viewed

as it 	 with only one row (column).
A matrix with the same number it of rows and columns is called a square Inatrix or an il-squareliftitrix. The diagonal or main diagonal of an n-square matrix A Consists of the elementsAll,  A 2?'	 A
The next Section will review certain algebraic operations associated with vectors and matrices.Then the following section discusses efficient ways of storing certain types of matrices, called sparsematrices.

Algebra of Matrices
Suppose A and B are in X a matrices. The sum of A and B, written A + B, is the in X ,a matrix

obtained by adding corresponding elements from A and B; and the product of a scalar k and the matrixA, written k- A, is the in x a matrix obtained by multiplying each clement of A by k. (Analogousoperations are defined for n-clement vectors.)
Matrix multiplication is best described by first defining the scalar product of two vectors. Suppose

U and V are u-clement vectors. Then the scalar product of U and V, written U V, is the scalar obtainedby multiplying the ele ments of U by the corresponding elements of V, and then adding:

	

V= UIVI U2 V2 + ..+ U V - 	 UAV

We emphasize that U V is a scalar, not a vector.
Now suppose A is an in x p and suppose B is a p x ii matrix. The product of A and 11, written AB,is the ,n X a matrix C whose ijth clement C, is given by

C,., = AB 1 , -i- A l2 B7, +	 + A 1 B1,, =

That is, c is equal to the scalar product of row i of A and column / of B.

EXAMPLE 4.23
(a) Su PP'SC

A	
-	 )	 and	 't, 

= ( - .1)
hen

	

A4 ,(l +1	 -2+0	 3-I(•-6)\(4 -2 -3
t	 -3	 5-+1 1\2	 I	 6

- ,	 (31	 3-(--T	 3 . 3\	 (3	 -6	 9

	

•	 3	 .0	 12	 t.
	(h) Suppose U (1, -3.4, 5), V=(2, -3, -6,0)	 W=(3. 5, 2, -1). Then:

U . v= 1 -2+(--3) • (--3)+4 . (6)4. 5 . (12 .+ 9-24+0= -13
U - W= I • 3+ (-3) . (-5) +42 -I- 5(---I)=3 15+8-5=21



That is,
6 14\

AB=(16
U 

8 16)
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(c) Suppose	
and	 1)

The product matrix All is defined and is a 2 x 3 mitrix. The elements in the first row of All arc obtained,

rcspcctively, by multiplying the first row of A by each of the columns of B:

(13V2 0	 4\ (l . 2+33 10+32 1 . (-4)F36\ (11 6 14

2 4)\ .	2:	 6)\

Similarly, the elements in the second row of All 21 re obtained, respectively, by multiplying the second row

of A by each of the columns of B:
(1 3\(2•. 0: -4\ (	 Ii	 6	 14	 \ (11 6 14
\.241k3 :2! 6)\22+43 20+4'2 2.(_4)+461\16 8 16

The following algorithm finds the product AB of matrices A and B, which are stored as
two-'dimensional arrays. (Algorithms for matrix addition and matrix scalar multiplication, which are
very similar to algorithms for vector addition and scalar multiplication, are left as exercises for the

reader.)

Algorithm 4.7: (Matrix Multiplication) MATMUL(A, B, C, M, P. N)
Let A be an M x P matrix array, and let B be a P >4N matrix array. This
algorithm stores the product of A and B in an M x N matrix array C.

Repeat Steps 2 to 4 for 1 = I to M:
Repeat Steps 3 and 4 for J 1 to N:

Set C[I, J =0. [Initializes C[I, JJ.I
Repeat for K I to P:

C[I, iJ: = C[I, fi + A[I, KJ 131K, J)
[End of inner loop-1

[End of Step 2 middle loop.]
[End of Step 1 outer loop.]
Exit.

The complexity of a matrix multiplication algorithm is measured by counting the number C of

multiplications. The reason that additions arc not counted in such algorithms is that computer

m"Itiplication takes i tch more time than computer addition. The complexity of the above Algorithm

4.7 is equal to
C = n p

This comes from thc fact that Step 4, which contains the only multiplication is executed m P1 p times.

Extensive research has been done on finding algorithms for matrix multiplication which minimize the
number of multiplications. The next example gives an important and surprisiri, tuIt in this area.

EXAMPLE 4.24

Suppose A and 13 are 2 x 2 matrices. We have:

	

A (a h)	 8(e f)	 and	
fl13_(0	 g uf+bh)

c d '	 g h	 ce+dg cf+dh

1.
2.
3.
4.

5.

In Algol ithin 47, the product matrix A B is obtained using C 222 8 multipliCations. O the lie r hITIL' 'Ui

can also he obtained from the following, which uses only 7 multiplications
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VW

AB—( '457	
(3+5)	

)(2+4)	 (1±3-2+6)

(1) (a + d)(e + h)

(2) (c + d)e

(3) a(f—h)

(4) d( g - e)

(5) (a + b)h

(6) (c—a)(e+f)

(7) (b—d)(g+h)

Certain versions of the programming language BASIC have matrix operations built into the
language. Specifically, the following are valid BASIC statements where A and B arc two-dimensional
arrays that have appropriate dimensions and K is a scalar:

MAT CA± B

MAT D = (K)

MAT E = A * B

Each statement begins with the keyword MAT, which indicates that matrix operations will be
performed. Thus C will be the matrix sum of A and B, D will be the scalar product of the matrix A by
the scalar K, and E will be the matrix product of A and B.

4.14 SPARSE MATRICES
Matrices with a relatively high proportion of zero entries are called sparse matrices. Two general

types of n-square sparse matrices, which occur in various applications, are pictured in Fig. 4-21. (It is
sometimes customary to omit blocks of zeros in a matrix as in Fig. 4-21.) The first matrix, where all
entries above the main diagonal are zero or, equivalently, where nonzero entries can only occur on or
below the main diagonal, is called a (lower) triangular matrix. The second matrix, where nonzero
entries can only occur on the diagonal or on elements immediately above or below the diagonal, is
called a rridiagonal matrix.

C.
•11

1	 06
—7 8 —1 3

\ 5 —2 0 2 —8

(a) Triangular matrix.

—3
4	 3
9 —3 6

2 4 —7
3 —1	 0

6 —5 8
3 —I

(b) Tridiagonal matrix.
).

Fig. 4-21

The natural method of representing matrices in memory as two-dimensional arrays may not he
suitable for sparse matrices. That is, one may save space by storing only those entries which may he
nonzero. This is illustrated for triangular matrices in the fdllowing example. Other cases will he
discussed in the solved problems.



98	 ARRAYS, RECORDS AND POINTERS 	 [CHAP. 4

EXAMPLE 4.25
Suppose we want to place in memory the triangular array A in Fig. 4-22. Clearly it would be wasteful to store

those entries above the main diagonal of A, since we know they are all zero; hence we store only the other entries
of A in a linear array B as indicated by the arrows. That is, we let

	

B[1J=a11,	 B[2]=a21,	 B[31=a22 ,	 B(3]=a31,
Observe first that B will contain only

1+2+3+4++nn(n+l)

elements, which is about half as many elements as a two-dimensional n X n array. Since we will require the value
of a, in our programs, we will want the formula that gives us the integer L in terms of J and K where

B[L]a,K
Observe that L represents the number of elements in the list up to and including °JK Now there are

1 + 2 + 3 +	 +(J - 1)=

elements in the rows above a,,, and there are K elements in row J up to and including 0JK• Accordingly,

L=21'+K
yields the index that accesses the value a from the linear array B.

/	
a22)

	

A -I	 ca3I—.-a32----a33)

	

2	 a)
Fig. 4-22

Solved Problems

LINEAR ARRAYS
4.1	 Consider the linear arrays AAA(5:50), BBB(-5: 10) and CCC(18).

(a) Find the number of elements in each array.
(b) Suppose Base(AAA) = 300 and w = 4 words per memory cell for AAA. Find the address

of AAA[15], AAA[35] and AAA[55].

(a) The number of elements is equal to the length; hence use the formula
Length UB - LB + 1

Accordingly, 	 Length(AAA) 50-5 + 1 46
Length(BBB) = 10– (-5) + 1 = 16
Length(CCC) 18– 1 + 1 18

Note that Length(CCC) = UB, since LB = 1.

\;I:	 L
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(b) Use the formula

Hence:	 LOC(AAAIKI) = Buse(AAA) + w(K - L13)

LOC(AAA[I5J) = 300 + 4(15-5) = 340
LOC(AAAI351) 300 + 4(35 —5) = 420

AAA[55] is not an clement of AAA, since 55 exceeds UB = 50.

4.2 Suppose a company keeps a linear array YEAR(1920: 1970) such that YEAR[KJ contains the
number of employees born in year K. Write a module for each of the following tasks:

(a) To print each of the years in which no employee was born.
(b) To find the number NNN of years in which no employee was born.
(c) To find the number N50 of employees who will be at least 50 years old at the end of the

year. (Assume 1984 is the current year.)
(d) To find the number NL of employees who will be at least L years old at the end of the

year. (Assume 1984 is the current year.)

Each module traverses the array.

(a) I. Rcpcat for K 1920 to 1970:
If YEAR[KJ 0, then: Write: K.

[End of loop.]
2. Return.

(b) I. Set NNN : = 0.
2. Repeat For K == 1920 to 1970:

If YEAR[K] 0. then: Set NNN := NNN + 1.
[End of loop.J

3. Return.

(c) We want the number of employees born in 1934 or earlier.

1. Set N50:=0.
2. Repeat for K = 1920 to 1934:

Set N50:= N50 + YEAR(KJ.
[End of loop.]

3. Return.

(d) We want the number of employees born it year 1984 - L or earlier.

I. Set NL : = 0 and LLL : = 1984 - L.
2. Repeat for K = 1920 to LLL:

Set NL:= NL+ YEAR[KJ.
[End of loop.]

3. Return.

3	 Suppose a 10-clement array A contains the values a 1 , a 2 , . . . , a. Find the values in A after
each loop.

(a) Repeat for K = 1 to 9:
Set A[K+ lJ:=A[K].

(End of loop.)
(b) Repeat for K=9 to I by —1:

Set A[K+ I] := A[91.
(End of loop.)

Note that the index K runs from 1 to 9 in part (a) but in reverse order from 9 back to I in part (b).
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(u) First Al21: All I sets Al21 = a,. the value of Af II.
Then A131: Al21 Sets A 1 31 a, the current value of Al21.
Then Al-ti	 A131 sets A141 a, the current value of A 1 3 1 . And so on.
Thus every element  of A will have tile value x,, the original value of Al II.

(b) First Al 101	 A191 sets Al 101	 a9.
Then A191: A181 sets A 1 9 1 =
Then A181: = , 171 sets A 1 8 1 = a. And so on.
Thus every value in A will move to the next location. At the end of the loop, we still have Ai II =

Rc,,wrk: This eaiuplc illustrates the reason that, in the insertion algorithm, Algorithm
4.4, the elements are moved dowi;ward in reverse order, as in loop (b) above.

14	 Consider the alphabetized linear array NAME in Fig. 4-23.

NAME

Allen

2
	

Clark

3
	

Dickens

4
	

Idwards

5
	

(ondinaii

6
	

I 101)1)5

7
	

Irwin

8
	

Klein

9
	

Lewis

10
	

Morgan

II
	

Richards

12
	

Scott

13
	

Tucker

14
	

Walton

Fig. 4.23

(a) Find the number of elements that must be moved if Brown, Johnson and Peters are
inserted into NAME at three different times.

(b) How many elements are moved if the three names are inserted at the same time?

(c) How does the telephone company handle insertions in a telephone directory?

(a) Inserting Brown requires 13 elements to be moved, inserting Johnson requires 7 elements to be
moved and inserting Peters requires 4 elements to be moved. Hence 24 elements are moved.

(b) If the elements are inserted at the same time, then 13 elements need be moved, each only once (with
the obvious algorithm).

(c) The telephone company keeps a running list of new numbers and then updates the telephone
directory once a year.
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SEARCHING, SORTING

	

4.5	 Consider the alphabetized linear array NAME in Fig. 4-23.

(a) Using the linear search algorithm, Algorithm 4.5, how many comparisons C are used to
locate Hobbs, Morgan and Fisher?

(b) Indicate how the algorithm may be changed for such a sorted array to make an
unsuccessful search more efficient. How does this affect part (a)?

(a) C(Hobbs) = 6, since Hobbs is compared with each name, beginning with Allen, until Hobbs is found
in NAME[6].

C(Morgan) 10, since Morgan appears in NAMEIIO).
C(Fisher) = 15, since Fisher is initially placed in NAME[ 151 and then Fisher is compared with every

name until it is found in NAME[151. Hence the search is unsuccessful.
(b) Observe that NAME is alphabetized. Accordingly, the linear search can stop after a given name

XXX is compared with a name YYY such that XXX < YYY (i.e., such that, alphabetically, XXX
comes before YYY). With this algorithm, C(Fisher) = 5, since the search can stop after Fisher is
compared with Goodman in NAMEI5).

4.6 Suppose the binary search algorithm, Algorithm 4.6, is applied to the array NAME in Fig. 4-23
to find the location of Goodman. Find the ends BEG and END and the middle MID for the test
segment in each step of the algorithm.

Recall that MID = INT((BEG + END)/2), where INT means integer value.
Step I. Here BEG 1 [Allen] and END = 14 [Walton], so MID 7 [Irwin].
Step 2. Since Goodman <Irwin, reset END 6. Hence MID = 3 [Dickens].
Step 3. Since Goodman > Dickens, reset BEG = 4. Hence MID = 5 [Goodman].

We have found the location LOC 5 of Goodman in the array. Observe that there were C = 3
comparisons.

	

4.7	 Modify the binary search algorithm, Algorithm 4.6, so that it becomes a search and insertion
algorithm.

There is no change in the first four steps of the algorithm. The algorithm transfers control to Step 5
only when ITEM does not appear in DATA. In such a case, ITEM is inserted before or after DATA[MID}
according to whether ITEM < DATA[MID] or ITEM > DATA[MIDJ. The algorithm follows.

Algorithm P4.7: (Binary, Search and Insertion) DATA is a sorted array with N elements, and ITEM is a
given item of information. This algorithm finds the location LOC of ITEM in DATA or
inserts ITEM in its proper place in DATA.
Steps 1 through 4. Same as in Algorithm 4.6.
5. If ITEM < DATAIMIDI. then:

Set LOC:= MID.
Else:

Set LOC:= MID + 1.
[End of If structure.]

6. Insert ITEM into DATA[LOC] using Algorithm 4.2.
7. Exit.

4.8 Suppose A is a sorted array with 200 elements, and suppose a given element x appears with the
same probability in any place in A. Find the worst-case running timef(n) and the average-case
running time g(n) to find x in A using the binary search algorithm.

For any value of k, let n 5 denote the number of those elements in A that will require k comparisons to
be located in A. Then:

k:	 1 2 3 4 5 6 7 8
flk:	 1 2 4 8 16 32 64 73

I
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The 73 Collies front the fact that I + 2 + 4 + ... + 64 = 127 SO tlicrc arc only 2(X) -- 127 = 73 cicrncnts left.
The worst-case running linic f(n) 8. The avcragc-case running time g(n) is obtained as Inflows:

	

An ) =	 k

= 11 +22+3 • 4+4•8+5• 16+6•32+7•64+8.73

1353

	

=	 = 6.765

Observe that, for the binary search, the average-case and worst-case running IiWCS are approximately
equal.

4.9	 Using the bubble sort algorithm, Algorithm 4.4, find the number C of comparisons and the
number 0 of interchanges which alphabetize the it 6 letters in PEOPLE.

The sequences of pairs of letters which are compared in each of the is - I 5 passes follow: a square
indicates that (lie pair of letters is compared and interchanged, and it circle indicates that the pair of letters
is compared but not interchanged.

	

Pass l.IPEIOlLE,	 EfJILE.	 EOjLE

	

EOPEJ E.	 EOIiLIPEI	 EOI'LEI'

	Pass 2.O P L E P,	 E	 L E P,	 E O	 E I'

E 0 L[Jr. E 0 L E P P

	Pass 3. cL E PP.	 E1113 P P.	 E LE1P I'

ELEOPP

	Pass 4.EO p P.	 MLE 	 EELOPI'

	

Pass 5. EELOPP,	 EELOPP

Since is = 6, the number of comparisons will be C = 5 + 4 + 3 + 2 + 1 = 15. The number 1) of interchanges
depends also oil the data, as well as on the number a of elements. In this case D = 9.

4.10 Prove the following identity, which is used in the analysis of various sorting and searching
algorithms:

n(n+1)

2
Writing the sum S forward and backward, we obtain:

S = 1+2 + 3 + ... +(n - 1)+ is
S=n+ (it —l)+(n-2)+ ... +2+l

We find the sum of the two values of S by adding pairs as follows:
2S=(n+1)+ (it +1)+ (is +l)+...i-(n+l)+ (it +1)

There arc is 	 sums, so 25 = n(n + I). Dividing by 2 gives us our result.
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MULTIDIMENSIONAL ARRAYS; MATRICES

4.11 Suppose multidimensional arrays A and B are declared using

A(-2:2,2:22)	 and	 B(1:8, — 5:5, —10:5)
(a) Find the length of each dimension and the number of elements in A and Ii.
(b) Consider the clement B[3, 3 1 31 in B. Find the effective indices E 1 , E2 , E3 and the address

of thc clement, assuming Base(B) = 400 and there arc w = 4 words per memory location.
(a) The length of a dimension is obtained by:

Length = upper bound - lower bound + I

ticncc the lengths L, of the dimensions of A arc:

L12—(-2)+I=5	 and	 L2=22-2+l=21
Accordingly, A has 5 21 = 105 elements. The lcngth5 L of the dimensions of B arc:

L, = 8—l+1=8	 L2=5—(-5)+I=Jl

Thcrclorc, II has 8 11-16 1408 clements.

(b) The effective index E, is obtained from E = k 1 - LB, where k is the given index and LU is the lower
bound. Hence

= 3— 1 = 2	 E2 = 3 — (-5) 8	 E3= 3— (-10) = 13

The address depends on whether the programming language stores B in row-major order or
column-major order. Assuming B is stored in column-major order, WC use Eq. (4.8):

E,L2 = 13' 11 143	 EL, ± E2 = 143+8=151
(E, L, + E2 )L1 151 -8 = 1208	 (EL2 + !)L 1 + E	 1208 + 2 = 1210

Therefore,	 LOC(B[3, 3 , 31) 400 + 4(1210) = 400 + 4840 5240

4.12 Let A be all X is square matrix array. Write a module which

(a) Finds the number NUM of nonzero elements in A
(b) Finds the SUM of the e lements above the diagonal, i.e., elements A(I, Jj where I< i
(c) Finds the product PROD of the diagonal elements (a 11 , a22 . ....a,,,,)

(a) 1. Set NUM:=0.
2. Repeat for l=iioN:
3. Repeat for J I to N:

11 All, JJ0, then: Set NUM: = NUM + 1.
(End of inner loop.]

[End of outcr loop.]
4. Return.

(b) I. Set SUM:=O.
2. Repeat for J=2 to N:
3. Repeat for 1=1 toi — I:

Set SUM := SUM + A[1, JJ.
(End of inner Step 3 loop.)

4. Return.

(c) 1. Set PROD := 1. (This is analogous to setting SUM 0.J
2. Repeat for K= ito N:

Set PROD: = PROD *A(K, K).
[End of loop.]

3. Return.
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4.13 Consider an n-square tridiagonal array A as shbwn in Fig. 4-24. Note that A has n elements on

the diagonal and it - i elements above and it - I elements below the diagonal. Hence A
contains at most 3n - 2 nonzero elements. Suppose we want to store A in a linear array B as
indicated by the arrows in Fig. 4-24; i.e.,

B111a11, B[2]a 12 , B[3] = a21 , B(4]a22,

Find the formula that will give its L in terms of J and K such that

B[L] = A[J, K]

(so that one can access the value of A[J, K] from the array B).

Note that there are 3(3 - 2) + 2 elements above A(J, KI and K - J + 1 elements to the left of A(J, K].

Hence
L=[3(J_2)+2]+(K-J+I]+I2J+K-2

aIva21 — a22 —a23I a32	 034

V
S

Fig. 4-24 Tridiagonal array.

4.14 An n-square matrix array A is said to be symmetric if A[J, K] = ALK, 51 for all J and K.

(a) Which of the following matrices are symmetric?

/ 2 -3 5) 	1 1 1\	 / 1	 3 -7'

(-3 -2 4	 (i 1 1 11 ( 3	 6 -.1

\ 5	 6 8)	 \i 1 1 iJ \-7 -1	 2/

(h) Describe an efficient way of storing a symmetric matrix A in memory.

(c) Suppose A and B are two n .sqliare symmetric matrices. Describe an efficient way of
storing A and B in memory.

(a) The first matrix is not symmetric, since 023 4 but 0 32 = 6. The second matrix is not a square matrix
so it cannot be symmetric, by definition. The third matrix is symmetric.

Since A[J, K] = AEK. J], we need only store those elements of A which lie on or below the diagonal.
This can be done in the same way as that for triangular matrices described in Example 4.25.
First note that, for a symmetric matrix, we need store only either those elements on or below the
diagonal or those on or above the diagonal. Therefore, A and B can be stored in an n X (n + I) array

C as pictured in Fig. 4-25, where C(J, K) = All, K) when J ^- K but Cfi. K1= B(J, K - 1)when .1 <K.

b,,	 b 12	 b 13	 .	 b, , _,	 b1

a 21	 •.-'32	 b,	 b7,,1	 b,,

L•

33 •• .b 3&	 .

a,, 1	 a,, 2	a 3	 0,.l	 a,,.. 	 b,,,,

Fig. 4-25

(b)

(c)



Adams

2
	

Brown

3 Cohen

4	 Dixon

5	 Eisen

6	 Fischer

7	 Gibson

8
	

Harris

(a)

Nelson1

Davis

Davis

Levine 
J

Davis

Levine

Nelson

Nelson

DAVIS

I	 Brown..

2 Cohen

3	 Eisen

LAWYER NUMB

I	 Davis	 94

2	 Levine	 72

3	 Nelson	 86

CLIENT [AWYFR
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POINTER ARRAYS; RECORD STRUCTURES
4.15 Three lawyers, Davis, Levine and Nelson, share the same office. Each lawyer has his own

clients. Figure 4-26 shows three ways of organizing the data.
(a) Here there is an alphabetized array CLIENT and an array.. LAWYER such that

LAWYERfKJ is the lawyer for CLIENT[K].
(b) Here there, are three separate arrays, DAVIS, LEVINE and NELSON, each array

containing the list of the lawyer's clients.
(c) Here them is a LAWYER array, and arrays NUMB and PTR giving, respectively, the

number and location of each lawyer's alphabetized list of clients in an array CLIENT.
Which data structure is most useful? Why?

LEVINE	 NELSON

1	 Dixon . I	 Adams

2	 Fischer,	 2	 Gibson:

3 Hams

(b)
PTR

125

1L
 2

125

CLIENT

Brown

Cohen

Dixon

Fischer

Adams

276 I Gibson

((.)
Fig. 426

c most useful data structure depends or 'K)w the office is organized and how the clients are4SSCd.
Su ppose there arc only one secretary and one telephone number, and suppose there is a single

ii-ithly hilling of the clients. Also, suppose clients frequently change from one lawyer to another. Thci'
t.g. 4-20(u) would probably be the most useful data structure.
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Suppose the lawyers tperatC completely indcpcildcntly: each lawyer has his own secretary and his
own telephone number and bills his clients differently. Then Fig. 4-26(b) would likely be the most useful

data structure.
Suppose the oflcc processes all the clients frequently and each lawyer has to pIOcCss his own clients

frequently. Then Fig. 4-26(c) would likely be th most useful data structure.

4.16 The following is a list of entries, with level numbers, in a student's record:

1 Student 2 Number 2 Name 3 Last 3 First 3 MI (Middle Initial) 2 Sex

2 Birthday 3 Day 3 Month 3 Year 2 SAT 3 Math 3 Verbal

(a) Draw the corresponding hierarchical structure.

(b) Which of the items are elementary items?

(a) Although the items arc listed linearly, the level numbers describe the hierarchical relationship
between the items. The corresponding hiciarchical structure follows:

I Student
2 Number
2 Name

3 Last
3 First
3 Ml

2 Sex
2 Birthday

3 Day
3 Month
3 Year

2 SAT
3 Math
3 Verbal

(b) The elementary items are the data items which do not contain suhitcms: Number, Last, First, Ml,
Sex, Day, Month, Year, Math and Verbal. Observe that an item is elementary only if it is not
followed by an item with a higher level number.

4.17 A professor keeps the following data for each student in a class of 20 students:

Name (Last, First, MI), Three Tests, Final, Grade

Here Grade is a 2-character entry, for example, B+ or Cor A — . Describe a I'L/l structure to

store the data.

An clement in a record structure may be an array itself. Instead of storing the three tests separately,
WC Store them in an array. Such a structure follows:

DECLARE	 I s-rUDEN'r(20),
2 NAME,

3 LAST CHARACTER(IO),
3 FIRST CHARACIER(1O),
3 MI	 CHARACTER(1),

2 TEST(3) FIXED,
2 FINAL FIXED,
2 GRADE CHARACrER(2);
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4.18 A college uses the following structure for a graduating class:

Studcnt(200)
2 Name

3 Last
3 First
3 Middle Initial

2 Major
2 SAT

3 Verbal
3 Math

2 GPA(4)
2 CUM

Here, GPA I K J refers to the gradc point average during the kth year and CUM refers to the
cumulative grade point average.

(a) flow many elementary items arc there in the file?
(b) How does one access (1) the major of the eighth student and (ii) the sophomore ("PA of

the forty-fifth student?
(c) Find each output:

(i) Write: Narnc[15J
(ii) Write: CUM
(iii) Write: GPA[2].
(iv) Write: GPA[1.3].

(a) Since GPA is counted 4 times per student, there are 11 cicmcntry items per student, so ihcre arc
altogether 2200 elementary items.

(h) (I) StUdent.Major[8) or simply MAJOR[81. (ii) GPA145, 21.
(c)	 (i) t-Icrc Name[ 151 refers to the name of the fifteenth student. But Name is a group item. Hence

LASTII51, First[15J and MI5) are printed.
(ii) Here CUM refers to all the CUM values. That is,

CUM[1J,	 CUM12j,	 CUM131,	 CUM[200J
arc printed.

(iii) GPAI2I refers to the OPA array of the second student. Hence,
GPA[2, l,	 GPAI2, 2],	 GPAI2, 3J,	 GPAE2, 4]

are printed.
(iv) GPAl, 31 is a single item, the (JPA during the junior year of the first student. That is, only

GPAEI, 31 is printed.

.19 An automobile dealership keeps track of the serial number and price of each of its automobiles
in arrays AUTO and PRICE, respectively. In addition, it uses the data structure in Fig. 4-27,
which combines a record structure with pointer variaJes. The new Chevys, new Buieks, new
Oldsmobiles, and used cars are listed together in AUTO. The variables NUMB and PTR under
USED give, respectively, the number and location of the list of used automobiles.
(a) How does one index the location of the list of new Buicks in AUTO?
(F') Write a procedure to print serial numbers of all new Buicks under $100W.



AUTO PRICE

I

2
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I DEALER
2 NEW

3 CHEVY
4 N1
4 rr

3 BUICK
4 NI-
4 PT

3 OLDS
4 NI
4 PT

2 USED
3 NUMB
3 PTR

Flu. 4-27

(a) Since PTR appears more than once in the record structure, one must USC BUICK.PTR to reference
the location of the list oncw Buicks in AUTO.

(b) One must traverse the list of new Buicks but print Out only those Buicks whose price is less than
$10000. The procedure follows:

1%	 mm P4.19: The data are Stored in the structure in Fig. 4-27. This procedure outputs those
new Buicks whose price is less than $10000. 	 -

1. Set FIRST: BUICK.PTR. (Location of First clement in Buick list.]
2. Set LAST:= FIRST+ BUICK.NUMB —1. [Location of last element in

list.]
3. Repeat for K FIRST to LAST.

If PRICELKI <10000, then:
Write: AUTO(KJ, PRICELKI.

(End of If Structure.
(End of loop.]

4. Exit.

POINT17 R	 ACCESSORIES

2

82	 Air-conditioning

83 AM-FM radio

84	 Rusipcoofing

85	 $$$
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4.20 Suppose in Prob. 4.19 the dealership had also wanted to keep track of he accessories of each
automobile, such as air-conditioning, radio, and rustproofing. Since this involves variable-
length data, how might this be done?

This can be accomplished as in Fig. 4-28. That is, besides AUTO and PRICE, there is an array
POINTER such that POINTERIKI gives the location in an array ACCESSORIES of the list of accessories
(with sentinel 'S$$') of AUTO[KJ.

Supplementary Problems

ARRAYS

4.21 Consider the linear arrays XXX(— 10: 10), YYY(1935 1985), ZZZ(35). (a) Find tire number of cicmcntsin each array. (b) Suppose flase(YYY) = 4(X) and 'v = 4 words per memory cell for YYY. Find ihc address
of YYY(1942J, YYY) 1977) and YYYf 1988).

	

4.22	 Consider the following inultidi,ncnsional arrays:

X(-5:5, 3:33)	 \'(3:10, 1:15, 10:20)
(a) Find the length of each dimension and the number of elements in X and Y.
(b) Suppose Base(Y) = 4(X) and there ale w = 4 words per memory location. Find the effective indices

E1 , E1 , £3 and the address of Y15, 10, 151 assuming (i) Y is stored in row-major order and (ii) Y is
stored in column-major order.

	

4.23	 An array A contains 25 positive integers. Write a module which

(a) Finds all pairs of elements whose sum is 25
(b) Finds the number EVNUM of elements of A which arc even, and the number ODNLJM of elements

of A which arc odd

4.24 Suppose A is a linear array with n numeric values. Write a procedure

MLAN(A,N,AvE)

which finds the average AVE of the values in A. The arithmetic mean or average I of the valuesX 1 , x2 , . . . , x,, is defined by

-	 .v +	 -1....+
x —

'I
	4.23	 Each student in a class of 30 students takes 6 tests in which scores range between 0 and 100. Suppose the

test scores are stored in a 30 x 6 array TEST. Write a module which

(a) Finds the average grade for each test
(b) Finds the final grade for each student where the final grade is the average- f the student's five highest

test scores
(c) Finds the number NUM of students who have (ailed, i.e., whose final grade is less than 60
(d) Finds the average of the final grades

POINTER ARRAYS; RECORD STRUCTURES

4.26 Consider the data in Fig. 4-26(c). (a) Write a procedure which It Its (he list of clients belonging 10
LAWYER(KJ. (b) Assuming CLIENT has space for 400 elements, define an array FREE such that
FREE)KJ contains the number of empty cells following the list of clients belonging to LAWYER(K).
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4.27	 The following is a list of entries, with level numbers, in a Iilc of employee records:

1 Eniploycc(200).	 2 SSN(Social Security Numbcr),	 2 Name,

3 Last,	 3 First,	 3 Ml (Middle Initial),	 2 Address,	 3 Street,

3 Area,	 4 City,	 4 State,	 4 ZIP,	 2 Age,	 2 Salary,	 2 Dependents

(a) Draw the corresponding hierarchical structure.

(b) Which of the items arc elementary items?
(c) Describe a record strucurc—for example, a PL/1 structure or a Pascal record—to store the data.

	

4.28	 Consider the data ',ucturc in Fig. 4-27. Write a procedure to carry out each of the following:

(a) Finding the number of new Oldsmobiles selling for under $ It) 000.

(h) Finding the number of new automobiles selling for under $10000.

(c) Finding the number of automobiles selling for under $10 000.

(d) Listing  all autoniobi les selling for under $10 (XX).

(Note: Parts (c) and (II) rcquirc 'only the arrays AUTO and PRICE together wrtn the number of
automobiles.)

	

4.29	 A class of student records is organized as follows:

I Studcnt(35), 2 Name, 3 Last, 3 First, 3 MI (Middle Initial). 2 Major
2 Tcst(4),	 2 Final,	 2 Grade

(a) ] low many elementary items are there?
(b) Describe a record structure—for example, a I't.f I structure or a Pascal record, to store the data.

(c) Describe the output of each of the following Write statements: (i) Write: Final[ 151, (ii) Write:
Namcl I5J and (iii) Write: Tcst(41.

	

4.30	 Consider the data structure in Prob. 4.18. Write a procedure which

(a) Finds the average of the sophomore CPA scores

(b) Finds the number of biology majors

(c) Finds the number of CUM scores exceeding K

Programming Problems

ARRAYS
Assume that the data in Table 4-1 are stored in linear arrays SSN. LAST, GIVEN, CUM and YEAR (with

space for 25 students) and that a variable NUM is defined which contains the actual number of students.

	

4.31	 Write a program for each of the following:

(a) Listing all students whose CUM is K or higher. (Test the program using K = 3.00.)

(b) Listing all students in year L. (Test the program using L 2, or sophomore.)

4.32 Translate the linear search algorithm into a subprogram [.INEAR(ARRAY. LB , UB, ITEM, LOC) which
either finds the location LOC where ITEM appears in ARRAY or returns LOC 0.

4.33 Translate the binary search and insertion algorithm into a subprogram IIINARY(ARRAY, LB, JII,
ITEM, LOC) which finds either the location LOC where ITEM appears in ARRAY or the location LOC
where ITEM should be inserted into ARRAY.
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Table 4-1

Social Security
NumberLast Name	 Given Name	 CUM	 Year

	

211-58-1329	 Adams	 Bruce	 2.55	 2

	

169-38-4248	 Bailey	 Irene L.	 3.25	 4

	

166-48-5842	 Chcng	 Kim	 3.40

	

187-52-4076	 Davis	 John C.	 2.aS	 2

	

126-63.6382	 Edwards	 Steven	 1.75	 3
	135-58-9565	 Fox	 Kenneth	 2.8(1	 2

	

172-48-1849	 Green	 Gerald S.	 2.35	 2

	

192-60-3157	 Hopkins	 Gary	 2.71)	 2

	

160-60-1826	 Klein	 Deborah M.	 3.05

	

166-52-4147	 Lee	 John	 2.60	 3

	

186-58-0430	 Murphy	 William	 2.30	 2

	

187-58-1123	 Newman	 Ronald P.	 3.90	 4

	

174-58-0732	 Osborn	 Paul	 2.05	 3

	

183-52-3865	 Parker	 David	 1.55	 2

	

135-48-1397	 Rogers	 Mary J.	 1.85	 1

	

182-52-6712	 Schwab	 Joanna	 2.95	 2

	

184-48-8539	 Thompson	 David E.	 3.15	 3

	

L 187-48,2377	 White	 Adam	 2.50	 2

4.34 Write a program which reads the social security number SOC of a student and uses LINEAR to find and
print the student's record. Test the program using (a) 174-58-0732, (b) 172-55.-5554 and (c) 126-63-6382.

4.35 Write a program which reads the (last) NAME of a student and uses BINARY to find and print the
student's record. Test the program using (a) Rogers, (b) Johnson and (c) Bailey.

4.36 Write a program which reads the record of a student

SSNST, LASTST, GVNST, CUMST, YEARST

and uses BINARY to insert the record into the list. Test the program using:
(a) 168-48-2255, Quinn, Michael, 2.15, 3
(b) 177-58-0772, Jones, Amy, 2.75, 2

4.37 Write a program which reads the (last) NAME of a student and uses BINARY to delete the student's
record from the list. Test the program using (a) Parker and (b) Fox.

4.38 Write a program for each of the following:

(a) Using the array SSN to define arrays NUMBER atid PTR such that NUMBER is a sorted array of
the elements in SSN and PTR[KJ contains the location of NUMBER[K] in SSN.

(b) Reading the social security number SOC of a student and using BINAR and the array NUMBER to
find and print the student's record. Test the program using (i) 174-58-0732, (ii) 172-55-5554 and (iii)
126-63-6382. (Compare with Prob. 4.34.)
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POINTER ARRAYS
Assume the I 8a in Table 4-2 arc ;wred in a single linear array CLASS (with space for 50 names). Also

assume that there are 2 empty cells hctwcei' the sections, and that there are linear arrays NUMB. PTR and FREE
defined so that NUMBIKI contains the number of elements in Section K, FrRLKI gives the location in CLASS of
the lirst name ill Section K. and El EL[KI gives the number of empty cells in CLASS following Section K.

Table 4-2

Section I	 Section 2	 Section 	 Section 4

Brown	 Abrams	 Burns
Davis	 Collins 	 Cohen

Jones	 Forman	 Evans
Sainuels	 t lughcs	 Gilbert

Klein	 Rich	 Harlan
Lee	 Sweeney	 Lopez
Moore	 Mcth
Ouinmi	 Ryan
Rosen	 Williams
Scott
Taylor
Weaver

	

4.39	 Write a program which reads an integer K and prints the names in Section K. Test the program using
(a) K = 2 and (1) K 3.

4.40 Write a program which reads the NAME of a student and finds and prints the location and section number
of the student. Test the program using (a) Harris. (b) Rivers and (c) Lopez.

4.41 - Write a program which prints the names in columns as they appear in Table 4-2.

4.42 Write a program which reads the NAME and section nunibcrSECN of a student and inserts the student
into CLASS. Test the program using (a) Eden. 3; (h) Novak, 4; (c) Parker, 2; (d) Vaughn, 3; and

(e) Bennett, 3. (The program should handle OVERFLOW.)

4.43 Write a program which reads the NAME of a student and deletes the student from CLASS. Test the
program usingusing (a) Klein, (b) Daniels, (c) Meth and (d) Harris.	 -

MISCELLANEOUS

	4.44	 Suppose A and B inc it-clement vector arrays in memory and X and Y arc scalars. Write a program to find
(a) XA ± YB.and (6) A B. Test the program using A (16. -6, 7), B (4, 2. -3), X = 2 and Y = -5.

	

4.45	 Translate the matrix multiplication algorithm. Algorithm 4.7, into a subprogram
MATMUL(A, B, C, M, I', N)

- which finds the product C of an in x p matrix A and a p x ii matrix B. Test the program using

4 -	 S\	
(2	 3 —7 —3

A (	 B =5 —i	 6	 2
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4.46 Consider the polynomial

f(x) a,f +a 2x' + ... +a,x+a,,,,

Evaua(ing the-polynomial in the obvious way would require

n(n-f I)
2

multiplications and is additions. However, one can rewrite the polynomial by successively factoring out x
as follows:

f(x) ((	 ((a x+a )x +a )x +	 +a )x +a

This uses only is multiplications and a additions. This second way of evaluating a polynomial is called

	

I lorncr's method.	 -

(a) Rewrite the polynomial f(x) = 5x — 6x + 7x 3 + 8x — 9 as it would be evaluated using Homer's
method.

(b) Suppose the coefficients of a polynomial arc in memory in a linear array A(N + I). (That is, All) is
the coefficient of x, Al2J is the coefficient of x ' - ' ,. . . , and A I N + I) is the constant.) Write a
procedure HORNER(A, N + I. X, Y) which finds the value Y = F(X) for a given value X using
Homer's method.	 -

Test the program using X = 2 and f(x) from part (a).
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".Chapter 5

Linked Lists
5.1 INTRODUCTION

The everyday usage of the term "list" refers to a linear collection of data items. Figure 5-1(a)
shows a shopping list; it contains a first clement, a second element, . . . , a nd a last clement.
Frequently, we want to add items to or delete items from a list: Figure 5-1(b)shows the shopping list
after three items have been added at the end of the list and two others have been deleted (by being
crossed out).

(a)	 (b)

Fig. 5-1

Data processing frequently involves staring and processing data organized into lists. One way to
store such data is by means of arrays, discussed in Chap. 4. Recall that the linear relationship between
the data elements of an array is reflected by the physical relationship of the data in memory, not by any
information contained in the data elements themselves. This makes it easy to compute the address of
an element in an array. On the other hand, arrays have certain disadvantages—e.g., it is relatively
expensive to insert and delete elements in an array. Also, since an array usually occupies a block of
memory space, one cannot simply double or triple the size of an array when additional space is
required. (For this reason, arrays arc called dense lists and are said to he static data structures.)

Another way of storing a list in memory is to have each clement in the list contain a field, called a
link or pointer, which Contains the address of the next element in the list. Thus successive elements in
the list need not occupy adjacent space in memory. This will make it easier to insert and delete
elements in the list. Accordingly, if one were mainly interested in searching through data for inserting
and deleting, as in word processing, one would not Store the data in an array but rather in a list using
pointers. This latter type of data structure is called a linked list and is the main subject matter of this
chapter. We also discuss circular lists and two-way lists—which arc natural generalizations of linked
lists--and their advantages and disadvantages.

114
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5.2 INKED LISTS

A linked list, or one-way list- is a linear co llection of data elements, called nodes, where the linear
order is given by means of pointers. That is, each node is divided into two parts: the first part contains
the information of the clement, and the second part, called the link field or nextpointer field, contains
the address of the next node in the list.

Figure 5-2 is a schematic diagram of a linked list with 6 nodes, Each node is Pictured with two
parts. The left part represents the information part of the node, which may contain an entire record of
data items (e.g., NAME, ADDRESS, . ..). The right part represents the ncxtpointcr field of the node,
and there is an arrow drawn from it to the next node in the list. This follows the usual practice of
drawing an arrow from a field to a node when the address of thq node appears in the given field. The
pointer of the last node contains a special value, called the null pointer, which is any invalid address.

NAME
or __

START

Nextpointcr field of third node
L^Information part of third node

Fig. 5-2 Linked list with 6 nodes.

S

6

7

8

Paticnt	 Next

Ku-k	 7

Dean	 ' .11

Maxwel4-_ .	 12

Adams	 3

Lane	 4

Green

Samucis	 L1

Bed
Nunit,cr

START I 5

2

3

II	 Fields	 8

12	 Nelson	 9

Fig. 5-3
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(In actual practice, 0 or a negative number is used for the null pointer.) The null pointer, denoted by x
in the diagram, signals the end of the list. The linked list also contains a list pointer variable—callcd
START or NAME—which contains the address of the first node in the list; hence there is an arrow
drawn from START to the first node. Clearly, we need only this address in START to trace through
the list. A special case is the list that has no nodes. Such a list is called thc null list of empty list and is
denoted by the null pointer in the variable START.

EXAMPLE 5.1
A hospital ward contains 12 beds, of which 9 are ocied as shown in Fig. 5-3. Suppose we want an

aIphabcticI listing of the patients. This listing may be given by the pointer held, called Next in the figure. We USC

the variable START to point to the first patient. Hence START contains 5. since the lust patient. Adams,
occupies bed 5. Also, Adams's pointer is equal to 3, since Dean, the next patient, occupies bed 3; E)cauis pointer is
II , since Fields, the next patient, occupies hcd 11; and so on The entry for the last patient (Sam ucts) contains the
null pointer, denoted by 0. (Some arrows have been drawn to indicate the listing of the first few patients.)

5.3 REPRESENTATION OF LINKED LISTS IN MEMORY

Let LIST he a linked list. Then LIST will be maintained in memory. unlcss otherwise specified Or
implied, as follows. First of all, LIST requires two linear arrays—we will call them here INFO and
LINK—such that INFO[K] and LINK[K] contain, respectively, the information part and the
nextpointcr field of a node of LIST. As noted above, LIST also requires a variable namc----such as
START—which Contains the location of the beginning of tile list, and a ncxtpointcr seiitiuwl—denotcd
by NULL—which indicates the end of the list. Since the subscripts of the arrays INFO and LINK will
usually be positive, we will choose NULL = 0, unless otherwise stated.

The following examples of linked lists indicate that the nodes of a list iiccd not occupy adjacent
elements in the arrays INFO and LINK, and that more than one list may be maintained in the same
linear arrays INFO and LINK. However, each list must have its own pointer variable giving (he
location of its first node.

INFO	 LINK

START

L:H L7
Fig. 54
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EXAMPLE 5.2
Figure 5-4 pictures a linked list in memory where each node of the list contains a single character. We can

obtain the actual list of characters, or, in other words, the string, as follows:

START = 9, so INFO[9] = N is the first character.
LINKLO] = 3, so 1NF0131 0 is the second character.
LINK(31 = 6, so INFO(6] = Li (blank) is the third character.

LINK161 11, so INFO[ II) E is the fourth character.

LINKI! 11 = 7, so INFOI71 = X is the fifth character.
LINK[7] = 10, so INFOLIOJ = I is the sixth character.

LINK[ 101 4, so INFO[41 = T is the seventh character.
LINK(4] = 0. the NULL value, so the list has cniIcd.

In other words, NO EXIT is the character string.

EXAMPLE 5.3

Figure 5-5 pictures how two lists of test scores, here ALG and GEOM, may be maintained in memory where
the nodes of both lists are stored in the same linear arrays 1ES1' and LINK. Observe that the names of the lists are
also used as the list pointer variables. Here ALG contains II, the location of its first node, and GEOM contains 5,
the location of its first node. Following the pointers, we sec that ALG consists of tbe . test scores

88, 74, 93, 82

TEST	 LINK

2	 74	 14	 Node 2 of ALG

3

4	 82	 (I	 Node 4 of ALC;

5	 84	 12	 Node 1 of GEOM

6	 78	 0

7	 74	 8	 Node 3 of GEOM

8	 100	 13

9

10

11	 88	 2	 Node I of ALG

12	 62	 7, Node 2ofGEOM

13	 74	 6

14	 93	 4	 Node 3 of ALG

15

16

Fig. -5
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and (JEOM consists of the test scores

84, 62,, 74, 100, 74, 78

(The nodcs'of ALG and some of the nodes of GEOM are explicitly labeled in the diagram.)

EXAMPLE 5.4

Suppose a brokerage firm has four brokers and each broker has his own list of customers. Such data maybe
organized as in Fig. 5-6. That is, all four lists of Customers appear in the same array CUSTOMER, and an array
LINK contains the ncxlpoillter fields of the nodes of the lists. There is also an array BROKER which contains the
list of brokers, and a pointer array POINT such that POINT[K] points to the beginning of the list of customers of
BROKERIKJ.

Accordingly, Bond's list of customers, as indicated by the arrows, consists of

Grant, Scott, Vito, Katz

CUSTOMER LINK

2

BROKER POINT

1	 Bond

2	 Kelly

3	 lIall

4	 Nelson

-3--	 Hunter

4	 Katz

5

6	 Evans

7

8	 Rogers

9	 Teller

10	 Jones

11

12	 Grant

13

14	 McBride

15	 Weston

16

17	 Scott

18

19	 Adams

20

Fig. 5-6

IIII
I
I
I
IIIIr
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Similarly, Kelly's list consists of

Hunter, McBride, Evans
and Nelson's list consists of

Teller, Jones, Adams, Rogers, Weston
Hall's list is the null list, since the null pointer 0 appears in l'OINT[3].

Generally speaking, the information part of a node niv be a record with more thanonc data item.
In such a case, the data must be stored in some type of record structure or in a collection of parallel

'arrays, such as thai iI1utsated in the following example.

EXAMPLE 5.5

Suppose the personnel ilIc of a small company contains the following data oii its nine employees:

Name, Social Security Number, Sex, Monthly Salary

Normally, four parallel arrays, say NAME, SSN, SEX, SALARY, are required to stoic the data as discussed in
Sec. 4.12. Figure 5-7 shows how the data may he stored as a sorted (alphabetically) linked list using only an
additional array LINK for the ncxpoinicr field of the lust and the variable START to point to the first record in the
list. Observe that 0 is used as (he null pointer.

NAME	 SSN	 SEX	 SALARY LINK

2	 Davis

3	 Kelly

4	 Green
-

5

6	 Brown

7	 Lewis

8

9	 Cohen

10	 Rubin

12	 Evans

13

14	 Harris

	

192-38-7282	 Female

	

165-64-3351	 Male

	

175-56-2251	 Male
-

	

178-52-1065	 Female

	

181-58-9939	 Female

	

177-44-4557	 Male

	

135-46-6262	 Female

	

168-56-8113	 Male

	

208-56-1654	 Female

Fig. 5-7

22800	 12

190(K)	
_.i!

27200	 14

-
147(X)	 9

16400	 10

19000	 2

15500	 0

34200	 4

22 800'	 3
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\43RAVERS J NG A LINKED LIST

Let LIST be a liir ed list in memory stored in linear arrays INFO arid LINK with START pointing
to the first clement and NULL indicating the end of LIST. Suppose we wai,t to traverse LIST in order
to process each node exactly once. This section presents an algorithni that does s' -and then uses the
algorithm in sonic applications. 	 -	 -

Our traversing algorithm uses a pointer vaiiible PTR which points to the node that is currently
being processed. Accordingly, LINK[I'TRI points to the next node to be processed. Thus the
assignment

I'TR : = LINK[PTRI

moves the pointer to the next node in the list, as pictured in Fig. 5-8.

PTR

Fig. 5-8 PTR:=LJNK(PTRI.

The details of the algorithm are as follows. Initialize I'TR or START. Then process LNEOIPTRI,
the information at the first node. Update PTR by the assignment VFR := UNK[PTR), so that I'TR
points to thc second node. Then process INFO(PTRJ, the information at the second node. Again
update_PTR by the assignment l'TR : LINK[PTRJ, and then process INFO(PTRI, the information at
the third node. And so on. Continue until PTR = NULL, which signals the end of the list.

A formal presentation of the algorithm follows.

Alrithm 5.1: (Traversing a Linked List) Let LIST be a linked list in memory. This algorithm
traverses LIST, applying an operation PROCESS to each clement of LIST. The
variable PTR points-to the node currently being processed.

1. Set PTR := START. [Initializes pointer PTR.J
2. Repeat Steps 3 and 4 while PTR 0 NULL.
3. Apply PROCESS to !NF0LPTRI..
4. Set PTR:=LINK[PTRJ. (PFR now points to the next node.]

[End of Step 2 loop.]
5. Exit.	 --

Observe the similarity between Algorithm 5.1 and Algorithm 4.1, which traverses a linear array.
The similarity comes from the fact that both are linear structures which contain a natural linear
ordering of the elements.

Caution: As with linear arrays, (lie operation PROCESS in Algorithm 5.1 may use certain
variables which must be initialized before PROCESS is applied to any of the elements in LIST.
Consequently, the algorithm may be preceded by such an initialization step.

EXAMPLE 5.6
The following procedure prints tile information at each node of a linked list. Since the proccdrtr ' niusi

traverse the lsi it will he very similar to Algorithm 5.1.
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Procedure: PRINT(INFO, LINK, START)
This procedure prints the information at each node of the list.

1. Set PTR:= START.
2. Repeat Steps 3 and 4 while PTR 0 NULL:
3. Write: INFO(PTRJ.
4. Set PTR: LINK[PTR]. [Updates pointer.]

(End of Step 2 loop.]
5. Return.

In other words, the procedure may be obtained by simply substituting the statement

Write: INFO[PTR]

for the processing step in Algorithm 5.1.

EXAMPLE 5.7

The following procedure finds the number NUM of elements in a linked list.

Procedure: COUNT(INFO, LINK, START, NUM)

1. Set NUM: = 0. [Initializes counter.]
2. Set PTR := START. [Initializes pointer.]
3. Repeat Steps 4 and 5 while PTR 76 NULL.
4. Set NUM: = NUM + I. [Increases NUM by 1.1
5. Set PTR := LINK(rrR]. (Updates pointer.]

[End of Step 3 loop.]
6. Return.

Observe that the procedure traverses the linked list in order to count the number of elements; hence the procedure
is very similar to the above traversing algorithm, Algorithm 5.1. Here, however, we require an initialization step
for the variable NUM before traversing the list. In other words, the procedure could have been written as follows:
Procedure: COUNT(INFO. LINK, START, NUM)

1. Set NUM: =O. (Initializes counter.]
2. Call Algorithm 5.1, replacing the processing step by:

Set NUM: = NUM + I.
3. Return.

Most list processing procedures have this form. (See Prob. 5.3.)

5.5 SEARCHING A LINKED LIST

Let LIST be a linked list in memory, stored as in Secs. 5.3 and 5.4. Suppose a specific ITEM of
information is given. This section discusses two searching algorithms for finding the location LOC of
the node where ITEM first appears in LIST. The first algorithm does not assume that the data in LIST
are sorted, whereas the second algorithm does assume that LIST is sorted.

If I1'EM is actually a key value and we are searching through a file for the record containing ITEM,
then ITEM can appear only once in LIST.

LIST Is Unsorted

Suppose the data in LIST are not necessarily sorted. Then one searches for ITEM in LIST by
traversing through the list using a pointer variable P1'R and comparing ITEM with the contents
INFO(PTR] of each node, one by one, of LIST. Before we update the pointer PTR by

PTR:= LINK[PTJ
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we require two tests. First we have to check to see whether we have reached the end of the list; i.e.,
first we check to sec whether

PTR = NULL
If not, then we check to see whether

INFO[PTR] = ITEM

The two tests cannot be performed at the same time, since INFO[PTR] is not defined when
PTR = NULL. Accordingly, we use the first test to control the execution of a loop, and we let the
second test take place inside the loop. The algorithm follows.

Algorithm 5.2 SEARCH(INFO, LINK, START, ITEM, LOC)
LIST is a linked list in memory. This algorithm finds the location LOC of the node
where ITEM first appears in LIST, or Sets LOC = NULL.

1. Set PTR:START.
2. Repeat Step 3 while PTR NULL:
3. If ITEM INFO[PTR], then:

Set LOC:=PTR, and Exit.
Else:

Set PTR:=LINK[PTR]. [PTR now points to the next node.I
[End of If structure.]

[End of Step 2 loop.]
4. [Search is unsuccessful.] Set LOC: NULL.
5. Exit.

The complexity of this algorithm is the same as that of the linear search algorithm for linear arrays
discussed in Sec. 4.7. That is, the worst-case running time is proportional to the number n of elements
in LIST, and the average-case running time is approximately proportional to n/2 (with the condition
that ITEM appears once in LIST but with equal probability in any node of LIST).

EXAMPLE 5.8
Consider the personnel file in Fig. 5-7. The following module reads the social security number NNN of an

employee and then gives the employee a 5 percent increase in salary.

1. Read: NNN.
2. Call SEARCH(SSN, LINK, START, NNN, LOC).
3. If LOC,& NULL, then:

Set SALARY[LOC] : = SALARY[LOC] + 0.05 * SALARY[LOC],
Else:

Write: NNN is not in tile.
[End of If structure.]

4. Return.

(The module takes care of the case in which there is an error in inputting the social security number.)

LIST Is Sorted
Suppose the data in LIST are sorted. Again we search for ITEM in LIST by traversing the list using

a pointer variable PTR and comparing ITEM with the contents INFO[PTR) of each node, one by one,
of LIST. Now, however, we can stop once ITEM exceeds INFO[PTR]. The algorithm follows On
page 123.

The complexity of this algorithm is still the same as that of other linear search algorithms; that is,
the worst-case running time is proportional to the number n of elements in LIST, and the average-case
running time is approximately proportional to n/2.
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Algorithm 5.3: SRCHSL(INFO, LINK, START, ITEM, LOC)
LIST is a sorted list in memory. This algorithm finds the location LOC of the
node where ITEM first appears in LIST, or Sets LOC = NULL.

1. Set PTR : =START.
2. Repeat Step 3 while PTR 0 NULL;'
3. If ITEM < INFO[PTR], then;

Set PTR := LINKEPTRJ. [PTR now points to next node.]
Else if ITEM = INFO[PTR], then:

Set LOC := PTR, and Exit. [Search is successful.]
Else:

Set LOC;= NULL, and Exit. [ITEM now exceeds INFO[PTR].]
[End of If structure.]

[End of Step 2 loop.]
4. Set LOC;= NULL.
5. Exit.

Recall that with a sorted linear array we can apply a binary search whose running time is
proportional to 1092 n. On the other hand, a binary search algorithm cannot be applied to a sorted
linked list, since there is no way of indexing the middle element in the list. This property is one of the
main drawbacks in using a linked list as a data structure.

EXAMPLE 5.9

Consider, again, the personnel file in Fig. 5-7. The following module reads the name EMP of an employee
and then gives the employee a 5 percent increase in salary. (Compare with Example 5.8.)

I. Read: EMPNAME.
2. Call SRCHSL(NAME, LINK, START, EMPNAME, LOC).
3. If LOC 3-6 NULL, then:

Set SALARYILOCI : = SALARY[LOCJ + 0.05 * SALARYLLOCI.
Else:

Write: EMPNAME is not in list.
LEnd of If structure.]

4. Return.

Observe that now we can use the second search algorithm. Algorithm 5.3, since the list is sorted alphabetically.

5.6 MEMORY ALLOCATION; GARBAGE COLLECTION

The maintenance of linked lists in memory assumes the possibility of inserting new nodes into the
lists and hence requires some mechanism which provides unused memory space for the new nodes.
Analogously, some mechanism is required whereby the memory space of deleted nodes becomes
available for future use. These matters are discussed in this section, while the general discussion of the
inserting and deleting of nodes is postponed until later sections.

Together with the linked lists in memory, a special list is maintained which consists of unused
memory cells. This list, which has its own pointer, is called the list of available space or the free-storage
list or the free pool.

Suppose our linked lists arc implemented by parallel arrays as described in the preceding sections,
and suppose insertions and deletions are to be performed on our linked lists. Then the unused memory
cells in the arrays will also be linked together to form a linked list using AVAIL as its list pointer
variable. (Hence this free-storage list will also he called the AVAIL list.) Such a data structure will
frequently be denoted by writing

L1ST(INFO, LINK, START, AVAIL)
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EXAMPLE 5.10

Suppose the list of patients in Example 5.1 is stored in the linear arrays BED and LINK (so that the patient in
bed K is assigned to ED[KI). Then the available space in the linear array BED may be linked as in Fig. 5-9.
Observe that BED[10] is the first available bed, BED[21 is the next available bed, and BED[6] is the last available
bed. Hence BED[61 has the null pointer in its ncxtpointer field; that is, LINK[6] = 0.

START

AVAIL

BED	 LINK

1	 Kirk	 7

2	 6

3	 Dean	 11

Maxwell	 9/
5 Adams

0

Lane	 4

Green	 1

Samuels	 0

2

11	 Fields	 8

12	 Nelson	 9

Fig. 5-9

EXAMPLE 5.11

(a) The available space in the linear array TEST in Fig. 5-5 may be linked as in Fig. 5-10. Observe that each of
the lists ALG and GEOM may use the AVAIL list. Note that AVAIL = 9, so TEST[91 is the first free node in
the AVAIL list. Since LINK[AVAILJ = LINK[9] 10, TEST[ 101 is the second free node in the AVAIL list.
And so on.

(b) Consider the personnel file in Fig. 5-7. The available space in the linear array NAME may be linked as in Fig.
5-11. Observe that the free-storage list in NAME consists of NAME[81. NAME[1 1], NAMEI13I, NAME[5]
and NAME[11. Moreover, observe that the values in LINK simultaneously list the free-storage space for the
linear arrays SSN, SEX and SALARY.

(c) The available space in the array CUSTOMER in Fig. 5-6 may be linked as in Fig. 5-12. We emphasize that
each of the four lists may use the AVAIL list for a new customer.

EXAMPLE 5.12

Suppose LIST(INFO, LINK, START, AVAIL) has memory space for n 10 nodes. Furthermore, suppose
LIST is initially empty. Figure 5-13 shows the values of LINK so that the AVAIL list consists of the sequence

INFO[1],	 INFO(2),	 ....	 INFO[10]

that is, so that the AVAIL list Consists of the elements of INFO in the usual order. Observe that START = NULL,
since the list is empty.



ALG

GEOM

AVAIL

2

3

4

5

6

7

8

9

10

II

12

13

'4

IS

16

AVAIL

START
2

3

4

5

7

9

10

Ii

12

13

14

TEST LINK

Fig. 5-10

NAME	 SSN	 SEX	 SALARY LINK

Davis	 192-38-7282	 Female	 22 8(X)

Kelly	 165-64-3351	 LIc	 19000

Green	 175-56-2251	 Male	 27200

Brown	 178-52-1065	 Female	 14 7(X)

Lewis	 181-58-9939	 Female	 164(8)

Cohen	 177-44-4557	 Male	 19 (XX)

Rubin	 135-46-6262	 Female	 15500

Evans	 168-56-8113	 Male	 34200

Harris	 208-56-1654	 Female	 22 800

Fig. 5-Il



BROKER POINT

I	 Bond	 12

2	 Kelly	 3

3	 Hall	 0

4	 Nelson	 9

AVAIL

START [ -

AVAIL

CUSTOMER LINK

I	 Viii,

2 	 [16

3	 Hunter	 14

4	 Katz	
f o

5 . _

6	 Evans	 0

7	 13

8	 Rogers	 15

9	 Tcllcr	 10

10	 Jones	 19

II	 18

12	 Grant _J 	17

13	 1)

14	 McBride	 6

15	 Weston	 0

16	 S

17	 Scott

18	 5

19	 Adams	 8

20 	 I
Fig. 5-12

INFO LINK

0

7
8

9
10

Fig. 513
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Garbage Collection

Suppose some memory space becomes reusable because a nodc is deleted From a list or an entire
list is deleted from a program. Clearly, we want the space to be available for future use. One way to
bring this about is to immediately reinsert the space into the frcc-storagc list. This is what we will do
when we iinpicment linked lists by means of linear arrays. However, this method may be' too
time-consuming for the operating system of a computer, which may choose an altctffttivc method, as
follows.

The operating system of a computer may periodically collect all the tklctcd SOC Onto thefree-storage list. Any technique which does this collection is called garbage collection. Garbage
collection usually takes place in two steps. First the computer runs through all lists, tagging those cells
which arc currently in use, and then the computer runs through the memory, collecting all untaggcd
space onto the free-storage list. The garbage 

collection may take jlacc when there is only some
minimum amount of space or no space at all left in the frce-storagc list, or when the CPU is idle and
has time to do the collection. Generally speaking, the garbage collection is invisible to the
programmer. Any further discussion about this topic of garbage collection lies beyond the scope of this
text.

Overflow and Underflowr

Sometimes n ati'e to be inserted into a data structure but there is no available space, i.e., the
frcc-storagc list is empty. T&s situation is u5ually called overflow. The programmer may handle
overflow by printing the message OVERFLOW. In such a case, the programmer may (hen modify the
program by adding space to the underlying arrzys. Observe that overflow will occur with our linked
lists when AVAIL = NULL and there is an insertion.

Analogously, the term underfiow refers to the situation where one wants to delete data from a
data structure that is empty. The programmer may handle underfiow by printing the message
UNDERFLOW Observe that underfiow will occur with our linked lists when START NULL and
there is a deletion,

, ñ INSERTION INTO A LINKED LIST

Let LIST be a linked list with successive nodes A and B, as pictured in Fig. 5-14(a). Suppose a
node N is to be inserted into the list between nodes A and B. The schematic dHgramn of such an

START

START	 (a) Before insertion.

Node A	 Node fl

Node N

(b) After insertion.,"

Fig. 5-14
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insertion appears in Fig. 5-14(b). That is, node A now points to the new node N, and node N points to

node B, to which A previously pointed.
Suppose our linked list is maintained in memory in the form

LIST(INFO, LINK, START, AVAIL)

Figure 5-14 does not take into account that the memory space for the new node N will come from the
AVAIL list. Specifically, for easier processing, the first node in the AVAIL list will be used for the new
node N. Thus a more exact schematic diagram of such an insertion is that in Fig. 5-15. Observe that
three pointer fields are changed as follows:

(1) The nextpointer field of node A now points to the new node N, to which AVAIL previously
pointed.

(2) AVAIL now points to the second node in the free pool, to which node N previously pointed.

(3) The nextpointer field of node N now points to node B, to which node A previously pointed.

There are also two special cases. If the new node N is the first node in the list, then START will point
to N; and if the new node N is the last node in the list, then N will Contain the null pointer.

START
	 Data list

Node A	 Node B

AVAIL

Node N	

MMMW

Free-storage list

Fig. 5-IS

EXAMPLE 5.13
(a) Consider Fig. 5-9, the alphabetical list of patients in a ward. Suppose a patient Hughes is admitted to the

ward. Observe that

(I) Hughes is put in bed 10, the first available bed.
(ii) Hughes should be inserted into the list between Green and Kirk.

The three changes in the pointer fields follow.

1. LINK181 = 10. [Now Green points to Hughes]
2. LINK[I0] = 1. [Now Hughes points to Kirk.]
3. AVAIL 2. [Now AVAIL points to the next available bed.]

(b) Consider Fig. 5-12, the list of brokers and their customers. Since the customer lists are not sorted, we will
assume that each new customer is added to the beginning of its list. Suppose Gordan is a new customer of
Kelly. Observe that

(I) Gordan is assigned to CUSTOMER[11], the first available node.
(ii) Gordan is inserted before Hunter, the previous first customer of Kelly.
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The three changes in the pointer fields follow:

1. POINT[21 11. [Now the list begins with Gordan.]
2, LINK[1I] = 3. [Now Gordan points to Hunter.)
3. AVAIL = 18. [Now AVAIL points to the next available node.J

(c) Suppose the data elements A, B, C, D, E and F are inserted one after the other into the empty list in Fig.
5-13. Again we assume that each new node is inserted at the beginning of the list. Accordingly, after the six
insertions, F will point to E, which points to D, which points to C. which points to B, which points to A; and
A will contain the null pointer. Also, AVAIL = 7, the first available node after the six insertions, and
START 6, the location of the first node, F. Figure 5-16 shows the new list (where n 10.)

INFO LINK

START

AVAIL

10

Fig. 5-16

Insertion Algorithms

Algorithms which insert nodes into linked lists come up in various situations. We discuss three of
them here. The first one inserts a node at the beginning of the list, the second one inserts a node after
the, node with a given location, and the third one inserts a node into a sorted list. All our algorithms
assume that the linked list is in memory in the form LIST(INFO, LINK, START, AVAIL) and that the
variable ITEM contains the new information to be added to the list.

Since our insertion algorithms will use a node in the AVAIL list, all of the algorithms will include
the following steps:

(a) Checking to see if space is available in the AVAIL list. If not, that is, if AVAIL = NULL, then
the algorithm will print the message OVERFLOW.

(b) Removing the first node from the AVAIL list. Using the variable NEW to keep track of the
location of the new node, this step can be implemented by the pair of assignments (in this
order)

NEW: = AVAIL,	 AVAIL: = LINK[AVAIL]
(c) Copying new information into the new node. In other words,

INFO[NEWJ: ITEM
The schematic diagram of the latter two steps is pictured in Fig. 5-17.



130	 LINKED LISTS	 (CHAP. 5

NEW

AVAIL
	 Free-storage list

- - ----_;;_	 ----

Fig. 517

Inserting at the Beginning of a List
Suppose our linked list is not necessarily sorted and there is no reason to insert a new node in any

special place in the list. Then the easiest place to insert tl' node is at the bcgining of the list. An
algorithm that does so follows.

Algorithm 5.4: INSFIRST(INFO, LINK, START, AVAIL, ITEM)
This algorithm inserts ITEM as the first node in the list.

I. [OVERFLOW?] If AVAIL = NULL, then: Write: OVERFLOW, and Exit.
2. [Remove first node from AVAIL list.]

Set NEW:= AVAIL and AVA1L:'LINK(AVAILj.
3. Set INFO[NEWI := ITEM. [Copies new data into new node.]
4. Set LINK[NEW] := START. [New node now points to original first node.]
5. Set START:= NEW. [Changes START so it points to the new nodc]
6. Exit.	 -

Steps I to 3 have already been discussed, and the schematic diagram of Steps 2 and 3 appcars1n
Fig. 5-17. The schematic diagram of Steps 4 and 5 appears in Fig. 5-18.

START

Fig. 5I8 Insertion at the beginning of a list.

EXAMPLE 5.14

Consider the lists of tests in Fig. 5 . 10. Suppose the test score 75 is to be added to the beginning of the
geometry list. We simulate Algorithm 5.4. Observe that ITEM = 75, INFO TEST and START GEOM.
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INSFIRST(TEST, LINK, GEOM, AVAIL, ITEM)

1. Since AVAIL 0 NULL, control is transferred to Step 2.
2. NEW = 9, then AVAIL = LINK[91 = ID.
3. TEST191 = 75.
4. LINK[9]5.
5. GEOM9.
6. Exit.-

Figure 519 shows the data structure after 75 is added to the geometry list. Obscrvhat only three pointers are
changed, AVAIL, GEOM and LINKI91. 	

TEST	 LINK

Fig. 5.19

Inserting after a Given Node
Suppose we arc given the value of LOC where either LOC is the location of a node A in a linked

LIST or LOC = NULL. The following is an algorithm which inserts ITEM into LIST so that ITEM
follows node A or, when LOC NULL, so that ITEM is the first node.

Let N denote the new node (whose location is NEW). If LOC NULL, then N is inserted as the
first node in LIST as in Algorithm 5.4. Otherwise, as pictured in Fig. 5-15, we let node N point to node
B (which originally followed node A) by the assignment

LINK[NEW) := LINK[LOCJ

and we let node A point to the new node N by the assignment

LINKELOC) NEW

A formal statement of the algorithm follows.
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Algorithm5.5: INSLOC(INFO, LINK, START, AVAIL, LOC, ITEM)
This algorithm inserts ITEM so that ITEM follows the node with location LOC
or inserts ITEM as the first node when LOC = NULL.

1. [OVERFLOW?] If AVAIL = NULL, then: Write: OVERFLOW, and Exit.
2. [Remove first node from AVAIL list.]

Set NEW : = AVAIL and AVAIL: = LINKEAVAIL].
3. Set INFO[NEW] := ITEM. [Copies new data into new node.]
4. If LOC = NULL, then: [Insert as first node.]

Set LINK[NEW):= START and START:= NEW.
Else: [Insert after node with location LOC.]

Set LINK[NEW] : = LINK[LOC] and LINK[LOC] : = NEW.
(End of If structure.]

5
	

Exit.

Inserting into a Sorted Linked List
Suppose ITEM is to be inserted into a sorted linked LIST. Then ITEM must be inserted between

nodes A and B so that

INFO(A) < ITEM :5- INFO(B)

The following is a procedure which finds the location LOC of node A, that is, which finds the location
LOC of the last node in LIST whose value is less than ITEM.

Traverse the list, using a pointer variable PTR and comparing ITEM with INFO[PTRJ at each
node. While traversing, keep track of the location of the preceding node by using a pointer variable
SAVE, as pictured in Fig. 5-20. Thus SAVE and PTR are updated by the assignments

SAVE : = PTR and PTR : = LINK[PTR]

The traversing continues as long as INFO[PTR) > ITEM, or in other words, the traversing stops as
soon as ITEM!!:- INFO[PTRJ. Then PTR points to node B, so SAVE will contain the location of the
node A.

The formal statement of our procedure follows. The cases where the list is empty or where
ITEM < INFO[START], so LOG = NULL, are treated seprately, since they do not involve the
variable SAVE.

Procedure 5.6: FINDA(INFO, LINK, START, ITEM, LOC)
This procedure finds the location LOC of the last node in a sorted list such that
INFO[LOC] < ITEM, or sets LOG = NULL.

1. [List empty?] If START= NULL, then: Set LOC:= NULL, and Return.
2. [Special case?] If ITEM < INFO[START], then: Set LOC := NULL, and

Return.
3. Set SAVE := START and PTR := LINK[STARTJ. (Initializes pointers.)
4. Repeat Steps 5 and 6 while PTR 96 NULL.
5. If ITEM <INFO[PTR], then:

Set LOC:= SAVE, and Return.
[End of If structure.]

6. Set SAVE: = PTR and PTR : = LINK[PTR]. [Updates pointers.]
[End of Step 4 loop.]

7. Set LOC := SAVE.
8. Return.
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START	 SAVE	 PT

Fig. 5-20

Now we have all the components to present an algorithm which inserts ITEM into a linked list. The
simplicity of the algorithm comes from using the previous two procedures.

Algorithm 5.7: INSSRT(INFO, LINK, START, AVAIL, ITEM)
This algorithm inserts ITEM into a sorted linked list.

1. [Use Procedure 5.6 to find the location of the node preceding ITEM.]
Call FINDA(INFO, LINK, START, ITEM, LOC).

2. [Use Algorithm 5.5 to insert ITEM after the node with location LOC.]
Call INSLOC(INFO, LINK, START, AVAIL, LOC, ITEM).

3. Exit.

EXAMPLE 5.15

Consider the alphabetized list of patients in Fig. 5-9. Suppose Jones is to be added to the list of patients. We
simulate Algorithm 5.7, or more specifically, we simulate Procedure 5.6 and then Algorithm 5.5. Observe thatITEM = Jones and INFO BED.

(a) FINDA(BED, LINK, START, ITEM, LOC)
I. Since START O NULL, control is transferred to Step 2.
2. Since BED151 = Adams <Jones, control is transferred to Step 3.
3. SAVE 5 and PTR = LINK[5] 3.
4. Steps 5 and 6 are repeated as follows:

(a) BED[3]= Dean <Jones, so SAVE 3 and PTR = LINK[3] 11.
(b) BED[I11 Fields <Jones, so SAVE = 11 and PTR = LINK[11]=8.
(c) BED[8J Green <Jones, so SAVE 8 and PTR LINK[81 = 1.
(d) Since BED[ 11 Kirk > Jones, we have:

LOC SAVE = 8 and Return.
(b) INSLOC(BED, LINK, START, AVAIL, LOC, ITEM) [Here LOC=8.]

1. Since AVAIL 0 NULL, control is transferred to Step 2.
2. NEW = 10 and AVAIL LINK[10) =2.
3. BED[101 = Jones.
4. Since LOC 0 NULL we have:

5.
Exit. LINK[10] LINKI81 1 and LINK[81 NEW 10.

Figure 5 .21 shows the data structure after Jones is added to the patient list. We emphasize that only three pointers
have been changed, AVAIL, LINK[I0) and LINK[8].

Copying

Suppose we want to copy all or part of a given list, or suppose we want to form a new list that is the
concatenation of two given lists. This can be done by defining a null list and then adding the
appropriate elements to the list, one by one, by various insertion algorithms. A null list is defined by
simply choosing a variable name or pointer for the list, such as NAME, and then setting
NAME: NULL. These algorithms are covered in the problem sections.
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- 1	 LINK

Fig. 5-21

5.8 DELETION FROM A LINKED LIST

Let LIST bebe a linked list with a node N between nodes A and B. as pictured in Fig. 5-22(a).
Suppose node N is to be deleted from the linked list. The schematic diagram of such a deletion appears

in Fig. 5-22(b). The deletion occurs as soon as the ncxpointcr field of node A is changed so that it
points to node B. (Accordingly, when performing deletions, one must keep track of the address of the
node which immediately precedes the node that is to be deleted.)

Suppose our linked list is maintained in memory in the form

LIST(INFO. LINK, START, AVAIL)

Figure 5-22 does not take into account the fact that, when a node N is deleted .rom our list, we will

START

(a) Before deletion.

START

Node A	 Node	 Node 

IIIEH L i.
(b) After deletion.

Fig. 5-22
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immediately rcturn)ts memory space to the AVAIL list. Specifically, for easier processing, it will be
returned to the beginning of the AVAIL list. Thus a more exact schematic diagram of such a deletion is
the one in Fig. 5-23. Observe that three pointer fields arc changed as follows:

(1) The ncxtpointcr field of node A now points to node B, where node N previously pointed.
(2) The nextpointer field of N now points to the original first node in the free 1)001, where AVAIL

previously pointed.

(3) AVAIL n.- ,v points to the deleted node N.

There are also two special cases. If the deleted node N is the first node in the list, then START will
point to node B; and if the deleted node N is the last node in the list, then node A will contain the
NULL pointer.

START	 Data hat

Free-storage list

Fig. 5-23

EXAMPLE 5.16

(a) Consider Fig. 5-21, the list of patients in the hospital ward. Suppose Green is discharged, so that BED181 is
now empty. Then, in order to maintain the linked list, the following three changes in the pointer fields must
be executed:

LINKIIII= JO	 LINK[8]=2	 AVAIL =8

By the first change, Fields, who originally preceded Green, now points to Jones, who originally followed
Green. The second and third changes add the new empty bed to the AVAIL list. We emphasize that, before
making the deletion, we had to find the node BED[I I], which originally pointed to the deleted node BED18].

(h) Consider Fig. 5-12, the list of brokers and their customers. Suppose Teller, (he first customer of Nelson, is
deleted from the list of customers. Then, in order to maintain the linked lists, the following thrcc changes in
the pointer fields must be executed:

POINTI4I 10	 LINKI91 = II	 AVAIL = 9

By the first change, Nelson now points to his original second customer, Jones. The second and third changes
add the new empty node to the AVAIL list.

(c) Suppose the data elements E, B and Care deleted, one after the other, from the list in Fig. 5 . 16. The new list
is pictured in Fig. 5-24. Observe that now the first three available nodes arc:

INF0131, which originally contained C
INFO[21, which originally contained B
INFOESI, which originally contained E
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INFO LINK

START

AVAIL

Fig. 5-24

Observe that the order of the nodes in the AVAIL list is the reverse of the order in which the nodes have been
deleted from the list.

Deletion Algorithms
Algorithms which delete nodes from linked lists come up in various situations. We discuss two of

them here. The first one deletes the node following a given node, and the second one deletes the node
with a given ITEM of information. All our algorithms assume that the linked list is in memory in the
form LIST(INFO, LINK, START, AVAIL).

All of our deletion algorithms will return the memory space of the deleted node N to the beginning
of the AVAIL list. Accordingly, all of our algorithms will include the following pair of assignments,
where LOC is the location of the deleted node N:

LINK[LOC] : = AVAIL and then AVAIL: = LOC

These two operations are pictured in Fig. 5-25.

LOC

Fig. 5-25 LINK[LOCJ : = AVAIL and AVAIL: = LOC.

Some of our algorithms may want to delete either the first node or the last node from the list. An
algorithm that does so must check to see if there is a node in the list. If not, i.e., if START = NULL.
then the algorithm will print the message UNDERFLOW.
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Deleting the Node Following a Given Node
Let LIST be a linked list in memory. Suppose we are given the location LOC of a node N in LIST.

Furthermore, suppose we arc given the location LOCP of the node preceding N or, when N is the first
node, we arc given LOCP NULL. The following algorithm deletes N from the list.

Algorithm 5.8: DEL(INFO, LINK, START, AVAIL, LOC, LOCP)
This algorithm deletes the node N with location LOC. LOCP is the location of
the node which precedes N or, when N is the first node, LOCP = NULL.
1. If LOCP NULL, then:

Set START:= LINK[STARTI. (Deletes first node.)
Else:

Set LINK[LOCPJ := LINK(LOC]. [Deletes nodc N.)
(End of if structure.)

2. (Return deleted node to the AVAIL list.)
Set LINK(LOC) := AVAIL and AVAIL:=LOC.

3. Exit.

Figure 5-26 is the schematic diagram of the assignment

START: = LINK[START]

which effectively deletes the first node from the list. This covers the case when N is the first node.

START

Nodc\

No 

J'l	 I	 1.1
de 2	 Node 3

Fig. 5-26 START: — LINKISTARTI.

Figure 5-27 is the schematic diagram of the assignment

LINK[LOCPJ := LINK[LOC)

which effectively deletes the node N when N is not the first node.
The simplicity of the algorithm comes from the fact that we are already given the location LOCP of

the node which precedes node N. in many applications, we must first find LOCP.

START	 10Cr	 LOC

Fig. 5 .27 LJNK(LOCPI:=LINKILOCJ.
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Deleting the Node with a Given ITEM of Information
Let LIST be a linked list in memory. Suppose we are given an ITEM of infornition and we want to

delete from the LIST the first node N which contains ITEM. (If ITEM is a key value, then only one
node can contain ITEM.) Recall that before we can delete N from the list, we need to know the
location of the node preceding N. Accordingly, first we give a procedure which finds the location LOC
of the node N containing ITEM and the location LOCP of the node preceding node N. If N is the first
node, we set LOCP = NULL, and if ITEM does not appear in LIST, we set LOC = NULL. (This
procedure is similar to Procedure 5.6.)

Traverse the list, using a pointer variable PTR and comparing ITEM with 1NFO[PTRJ at each
node. While traversing, keep track of the location of the preceding node by using a pointer variable
SAVE, as pictured in Fig. 5-20. Thus SAVE and PTR arc updated by the assignments

SAVE : = PTR and PTR : = LINK[PTR]

The traversing continues as long as INFO[PTRJ 96 ITEM, or in other words, the traversing stops as
soon as ITEM = INFO[PTRJ. Then PTR contains the location LOC of node N and SAVE contains the
location LOCP of the node preceding N.

The formal statement of our procedure follows. The cases where the list is empty or where
INFO[START] = ITEM (i.e., where node N is the first node) are treated separately, since t'cy do not
involve the variable SAVE.

Procedure 5.9: FINDB(INFO, LINK, START, ITEM, LOC, LOCP)
This procedure finds the location LOC of the first node N which contains ITEM
and the location LOCP of the node preceding N. If ITEM does not appear in the
list, then the procedure sets LOC NULL; and if ITEM ppears in the first
node, then it Sets LOCI' = NULL.

I. [Lis( empty?] If START = NULL, then:
Set LOC : = NULL, and LOCP: NULL, and Return.

[End of If structure.]
2. [ITEM in first node?] If INFO[START] = ITEM, then:

Set LOC := START and LOCP = NULL, and Return.
[End of If structure.]

3. Set SAVE := START and PTR:= LLNK[STARTJ. [Initializes pointers.J
4. Repeat Steps 5 and 6 while PTRNULL.
5. If INFO[PTR] ITEM, then;

Set LOC:=PTR and LOCP:= SAVE, and Return.
[End of If structure.]

6. Set SAVE:=PTR and PTR = LINK[PTRI. [Updates pointcrs.j
[End of Step 4 loop.

7. Set LOC:= NULL. (Search unsuccessful.J
8. Return.

Now we can easily present an algorithm to delete the first node N from a linked list which contains
a given ITEM of information. The simplicity of the algorithm comes from the fact that the task of
finding the location of N and the location of its preceding node has already been done in
Procedure 5.9.
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Algorithm 5.10: DELETE(INFO, LINK, START, AVAIL, ITEM)
This algorithm deletes from a linked list the first node N which contains the
given ITEM of information.
1. [Use Procedure 5.9 to find [fie location ,.f NI	 1- ............	 JflL.4tliiig iiUUC.W FINDB(INFO, LINK, START, ITEM, LOC, LOCP)
2. if LOC = NULL, then: Write: ITEM not in list, and Exit.
3. [Delete node.]

If LOCP = NULL, then:
Set START:= LINKISTART]. [Deletes first node.]

Else:
Set LINK[LOCPJ := LINK[LOC].

lEnd of If structure.]
4. [Return deleted node to the AVAIL list.]

Set LINK[LOC]:= AVAIL and AVAIL:= LOC.
5. Exit.

Remark: The reader may have noticed that Steps 3 and 4 in Algorithm 5.10 already appear in
Algorithm 5.8. In other words, we could replace the steps by the following Call statement:

Call DEL(INFO, LINK, START, AVAIL, LOG, LOCP)
This would conform to the usual programming style of modularity.

EXAMPLE 5.17

Consider the list of patients in Fig. 5-21. Suppose the patient Green is discharged. We sillILilate Procedure 5.9
to find the location LOC of Green and the location LOCP of the patient preceding Green. Then we simulate
AIgori1hi5.I0 to delete Green from the list. Here ITEM = Green, INFO BED, START = 5 and AVAIL = 2.
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(a) FINDB(BED, LINK. START. ITEM, LOC, LOCP)
I. Since START/ NULL, control is transferred Io Step 2.
2. Since BED151 = Adams 0 Green, control is transferred to Step 3.
3. SAVE = 5 and I'TR LINK15J = 3.
4. Stcps S and 6 are repeated as follows:

(a) BED 131 Dean A Green, so SAVE 3 and I'TR LINK(31 II.
(h) I3ED(I ii = Fields 94 Green, so SAVE II and rr = LINKL3 I) = S.
(c) BED181 Green, so we have:

LOC= 11fR8 and LOCP=SAVE II, and Return.

(b) DELLOC(I3ED, LINK, START, AVAIL, ITEM)
I. Call FINDI3(BED. LINK, START, ITEM, LOC, LOCP). (Hence LOCS and LOCI'= II.)
2. Since LOC 0 NULL, control is transferred to Step 3.
3 Since LOCI' 0 NULL, we have:

LINKII U I = LINKI81 10.
4. LlNK8 = 2 and AVAIL = S.
5. Exit.

Figure 5-28 shows the data structure after Green is removed frontthe patient list. We emphasize that onli three
pointers have been changed. LINK[ III, LINK18] and AVAIL.

5.9 HEADER LINKED LISTS

A header linked list is a linked list which always contains a special node, called the header ,,ode, at

the beginning of the list. The following are two kinds of widely used header lists:

(1) A grounded header list is a header list where the lost node contains the null pointer. (The
term "grounded" comes from the fact that many texts use the electrical ground symbol to
indicate the null pointer.)

(2) A circular header list is a header list where the last node points bock to the header nodc.

Figure 5-29 contains schematic diagrams of these header lists. Unless otherwise stated or implied, our
header lists will always be circular. Accordingly, in such a case, the header nodc also acts as a sentinel
indicating the end of the list.

Observe that the list pointer START always points to the header node. Accordingly.
LINK[STARTJ = NULL indicates that a grounded header list is empty, and LINKISTARTI START
indicates that a circular header list is empty.

START

(a) Grounded header list.

START

I-leader
node

(b) Circular header list.

Fig. 5.29
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Although our data may be maintained by header lists in memory, the AVAIL list will always be
maintained as an ordinary linked list.

EXAMPLE 5.18
Consider the personiel file in Fig. 5-11. The data may be organized as a header list as in Fig. 5-30. Observe

that LOC 5 is now the location of the header record. Therefore. START 5, and since Rubin is the last
employee, LINK(IOJ = 5. The header record may also be used to store information about the entire file. For
example, we let SSN[5] = 9 indicate the number of employees, and we let SALARYI5I 191 600 indicate the total
salary paid to the employees.

START	 -
[2
LJ!3

AVAIL
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SSN

192-38-7282

165-64-3351

175-56-2251
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27200	 14

191600	 6

14700	 9
16400	 10

11

19000	 2

15500	 5

13

34200	 4

22800	 3

Fig. 5-30

The term "node," by itself, normally refers to an ordinary node, not the header node, when used
with header lists. Thus the first node in a header list is the node following the header node, and the
location of the first node is LJNK[START], not START, as with ordinary linked lists.

Algorithm 5. 11, which uses a pointer variable PTR to traverse a circular header list, is essentially
the same as Algorithm 5.1, which traverses an ordinary linked list, except that now the algorithm (1)
begins with PTR = LINK[START] (not PTR = START) and (2) ends when PTR START (not
PTR = NULL).

Circular header lists are frequently used instead of ordinary linked lists because many operations
are much easier to state and implement using header lists. This comes from the following two
properties of circular header lists:

(1) The null pointer is not used, and hence all pointers contain valid addresses.
(2) Every (ordinary) node has a predecessor, so the first node may not require a special case.

The next example illustrates the usefulness of these properties.
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Algorithm 5.11: (Traversing a Circular Header List) Let LIST be a circular header list in
memory. This algorithm traverses LIST, applying an operation PROCESS to
each node of 1. 1ST.

I. Set 1"FR : = LLNK[STARTJ. [initializes the pointer PTR.
2, Repeat Steps 3 and 4 while I'TR START:
3. Apply PROCESS to INFO[I'TR].
4. Set PTR:= LINK[PTR]. [l'TR now points to the next node.)

[End of Step 2 loop.]
5. Exit.

EXAMPLE 5.19

Suppose LIST is a linked list in memory, and suppose a specific ITEM of information is given.

(a) Algorithm 5.2 finds the location LOC of the first node in LIST which contains ITEM when LIST is an
ordinary linked list. The following is such an algorithm wlicii LIST is a circular header list.

Algorithm 5.12: SiCiIFIL(INFO, LINK, START, ITEM, LOC)
LIST is a circular header list in memory. This algorithm finds the location LOG of the
node where ITEM first appears in LIST or sets LOC = NULL.

1. Set l'TR := L1NK1STARE'I.
2. Repeat while INFO[PTRJ 96 ITEM and PTR ?6 START:

Set I"FR : LINK(PTR]. [I"FR now points to the ricO nude.
[End of loop,j

3. If INFOII'TRI ITEM, then:
Set LOC : PTR.

Else:
Set LOC:=NUt.1..

(End of If structure.)
4. Exit.	 I

The two tests which control the searching loop (Step 2 in Algori thm 5.12) were riot per loi med at the same
time in the algorithm for ordinary linked lists; that is, we did not let Algorithm 5.2 use the analogous
statement

Repeal while INFO(PTR] o ITEM and P'I'R NULl.:

because for ordinary linked lists INFO[PTR] is not defined when P'R NULL.

(h) Procedure 5.9 finds the location LOC of the first node N which contains ITEM and also the location LOCP of
the node preceding N when LIST is an ordinary linked list. The following is such a procedure when LIST is a
circular header list.

Procedure 5.13: FINDI3IIL(INFO, LINK, START, ITEM, LOC, 1.00')

1. Set SAVE := START and PTR:= LINK[START]. [Initializes pointers.]
2. Repeat while INFO[PTR) ^, ITEM and FiR ,-START.

Set SAVE PTR and PTR:= LINK[P'FRJ. [Updates pointers)
[End of loop.]

3. 11 INFO[PTR] = ITEM, then:
Set LOC = PTR and LOCP:=SAVE.

Else:
Set LOC:= NULL and LOCP:= SAVE,

[End of If structure.
4. Exit.
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Observe the simplicity of this procedure compared with -Procedure 5.9. Here we did not have to consider the
special case when ITEM appears in the first node, and here we can perform at the same time the two tests
which control the loop.

(c) Algorithm 5.10 deletes the first node N which col.tains ITEM when LIST is an ordinary linked list. The
following is such an algorithm when LIST is a circular header list.

Algorithm 5.14: DELIOCI1L(INF0 LINK, START, AVAIL, ITEM)

I. Risc Procedure .13 to find the location of N and its preceding node.]
Call LINDI3HL(INFO, LINK, START, ITEM, LOC, LOCP).

2. If LOC = NULL, then: Write: ITEM not in list, and Exit.
3. Set LINK(LOCl'J := LINKILOCJ [Deletes node.]
4. [Return deleted node to the AVAIL list.]

Set LINK[LoCJ:= AVAIL and AVAIL:=LOC.
5. Exit.

Again we did not have to Consider (he special case when ITEM appears in the first noc, as we did in
Algorithm 5.10.

Rc,p,ark	 l'hcrc are two other variations of linked lists which sometimes appear in the literature:
(1) A linked list whose last node points back to the first node instead of containing the null

pointer, called a circular lLg
(2) A linked list which contains both a special header node at the beginning of the list and a

special trailer node at the end of the list

Figure 5-31 contains schematic diagrams of these lists.

START

(a) Circular linked list.

START

(b) Linked list with header and trailer nodes.

Fig. 5-31

Polynomials

Header linked lists are frequently used for maintaining polynomials in memory. The header node
plays an import ant part in this representation, since it is needed to represent the zero polynomial. This
representatior t of polynomials will be presented in the context of a specific example.
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EXAMPLE 5.20

Let p(x) denote the following polynomial in one variable (containing four nonzero terms):

p(x)2x5X-3X2+4

Then p(x) may be represented by the header list pictured in Fig. 5-32(a), where each node corresponds to a
nonzero term of p(x). Specifically, the information part of the node is divided into two fields representing,
respectively, the coefficient and the exponent of the corresponding term, and the nodes are linked according to

decreasing degree.
Observe that the list pointer variable POLY points to the header node, whose exponent field is assigned a

negative number, in this case —1. Here the array representation of the list will require three linear arrays, which
we will call COEF, EXP and LINK. One such representation appears in Fig. 5-32(b).

Coefficient of term
Exponent of term

COEF EXP LINK

POLY

(a)

(b)

Fig. 5.32 p(x) = 2x" - Sx ' - 3x 2 + 4.

5.10 TWO-WAY LISTS
Each list discussed above is called a one-way list, since there is only one way that the list can be

traversed. That is, beginning with the list pointer variable START, which points to the first node or the
header node, and using the nextpointcr field LINK to point to the next node in the list, we can traverse
the list in only one direction. Furthermore, given the location LOC of a node N in such a list, one has
immediate access to the next node in the list (by evaluating LINKLLOCD, but odoes not have access
to the preceding node without traversing part of the list. This means, in particular, that one must
traverse that part of the list preceding N in order to delete N from the list.
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This section introduces a new list structure, called a two-way list, which can tic traversed in two
directions: in the usual forward direction from the beginning of the list to the end, or in—tic—backward
direction from the end of the list to the beginning. Furthermore, given the location LOC of ii node N in
the list, one now has immediate access to both the next node and the preceding node in the list. This
means, in particular, that one is able to delete N from the list without traversing any part of the list.

A two-way list is a linear collection of data elements, called nodes, where each node N is divided
into three parts:

(I) An information field INFO which contains the data of N
(2) A pointer field FORW which contains the location of the next node in the list
(3) A pointer field BACK which contains the location of the preceding node in the list

The list also requires two list pointer variables: FIRST, which points to the first node in the list, and
LAST, which points to the last node in the list. Figure 5-33 contains it schcmaticaiagram of such a list.
Observe that the null pointer appears in the FORW field of the last node in the list and also in the
BACK field of the first node in the list.

FIRST	 INFO field of node N
	 LAST

BACK pointer held of node N
FORW pointer field of node N

Node N

Fig. 5-33 Two-way list.

Observe that, using the variable FIRST and the pointer field FORW, we can traverse a two-way list
in the forward direction as before. On the other hand, using the variable LAST and the pointer field
BACK, we can also traverse the list in the backward direction.

Suppose LOCA and LOCB are the locations, respectively, of nodes A and 13 in a two-way list.
Titeti the way that the pointers FORW and BACK are defined gives us the following:

Pointer property: 	 FORW[LOCAI = LOCU	 if and only if	 BAC(ILOCB1 = LOCA
In other words, the statement that node 13 follows node A is equivalent to the o ., i tenient that node A
precedes node B.

Two-way lists may be maintained in memory by means of linear arrays in the same way as one-way
lists except that now we require two pointer arrays, FORW and BACK, instead of one pointer array
LINK, and we require two list pointer variables, FIRST and LAST, instead of one list pointer variable
START. On the other hand, the list AVAIL of available space in the arrays will still be maintained as a
one-way list—using FORW as the pointer field—since we delete and insert nodcs.only at the beginning
of the AVAIL list.

EXAMPLE 5.21

Consider again the data in Fig, 5-9. the 9 patients in it ward with 12 beds. Figure 5-34 shows how the
alphabetical listing of the patients can he organized into a two-way list. Observe that the values of FIRST and the
pointer field FORW are the same, respectively, as the values of START and Ihe array LINK: hence the list can be
traversed alplmbetically as before. On the other hand, using LAST and the pointer array BACK, the list can ao
he traversed in reverse alphabetical order. That is. LAST points to Samuels, the pointer field BACK of Samuels
points to Nelson, the pointer field RACK of Nelson points to Maxwell, and so On.
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- 1•.

Kirk

Dean

Maxwell

Adams

Lane

Green

Samuels

Fields

Nelson

FORW BACK

Fig. 5-34

Two-Way Header Lists

The advantages of a two-way list and a circular header list may be combined into a two-way
circular header list as pictured in Fig. 5-35. The list is circular because the two end nodes point back to
the header node. Observe that such a two-way list requires only one list pointer variable START,
which points to the header node. This is because the two pointers in the header node point to the two
ends of the list.

START
header
node

Node N

Fig. 5-35 Two-way circular header list.

EXAMPLE 5.22

Consider the personnel tile in Fig. 5-30, which is organized as a circular header list. The data may be
organized into a two-way circular header list by simply adding another array BACK which gives the locations of
preceding nodes. Such a structure is pictur.d in Fig. 5-36, where LINK has been renamed FORW. Again the
AVAIL list is maintained only as a one-way list.
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SSN	 SEX

192-36-7282	 [ Female

165-64-3351	
L±1e
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009
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SALARY FORW BACK

22 800

19000

27200

91 600

14700

16.400

19(XX)

15500

34 200

22 800

Fig. 5-36
Opera tions on Two-Way Lists

Suppose LIST is a two-way list in memory. This subsection discusses a number of operations on
LIST.

Traversing. Suppose We want to traverse LIST in order to process each node exactly once. Thenwe can USC Algorithm 5.1 if LIST is an ordinary two-way list, or we can USC Algorithm 5.11 if LIST
contains a header node. Here it is of no advantage, that the data are organized as a two-way list rather
than as a one-way list.

Searching. Suppose we are given an ITEM of information—a key value—and wç want to find thelocation LOC of ITEM in LIST. Then we can use Algorithm 5.2 if LIST is an ordinary two-way list, or
we can use Algorithm 5.12 if LIST has a header node. Here the main advantage is that we can search
for ITEM in the backward direction if we have reason to suspect that ITEM appears near the end of
the list. For example, suppose LIST is a list of names sorted alphabetically. If ITEM = Smith, then we
would search LIST in the backward direction, but if ITEM = Davis, then we would search LIST in the
forward direction.

Deleting. Suppose we are given the location LOC of a node N in LIST, and suppose we want to
delete N from the list. We assume that LIST is a two-way circular header list. Note that I3ACK[LOC]and FORW[LOCJ are the locations, respectively, of the nodes which preced-eand follow node N.
Accordingly, as pictured in Fig. 5-37, N is deleted from the list by changing the following pair of
pointers:

FORW[BACK[LOCJ] FORW[LocJ and BACK[F0RW[LocI]: BACKILOC]
The deleted node N is then returned to the AVAIL list by the assignments:

FCRW[LOCJ:=AvAIL and AVAIL:=LOC
The formal statement of the algorithm follows.
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Algorithm 5.15: DELTWL(INFO, FORW, BACK, START, AVAIL, LOC)

I. (Delete node.J
Set FORWLBACK[LOCI] : = FORW(LOC] and
BACK[FORW[LOCJJ := BACK(LOC]

2. [Return node to AVAIL list.]
Set FORW(LOCI : = AVAIL and AVAIL: = LOC.

3. Exit.

Here we see one main advantage of a two-way list: If the Jata were organized as a one-way list, then, in
order to delete N, we would have to traverse the one-way l?st to find the location of the node
preceding N.

LOC

Fig. 5.37 Deleting node N.

Inserting. Suppose we are given the locations LOCA and LOCB of adjacent nodes A and B in
LIST, and suppose we want to insert a given ITEM of information between nodes A and B. As with a
one-way list, first we remove the first node N from the AVAIL list, using the variable NEW to keep
track of its location, and then we copy the data ITEM into the node N; that is, we set:

NEW := AVAIL,	 AVAIL := FORW[AVAILJ,	 INFO[NEWJ := ITEM

Now, as pictured in Fig. 5-38, the node N with contents ITEM is inserted into the list by changing the
following four pointers:

FORW[LOCA) := NEW, FORW(NEWJ := LOCB
BACK(IOCB] := NEW, BACK[NEWJ: LOCA

'Hie formal statement of our algorithm follows.

LOCA	 LOCB

Fig. 3-38 Inserting node N.
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Algorithm 5.16: JNSTWL(INFO, FORW, BACK, START, AVAIL, LOCA, LOCH, ITEM)

1. [OVERFLOW?] If AVAIL = NULL, then; Write; OVERFLOW, and Exit.
2. j Remove node from AVA I 1. list and copy new data into node.

Set NEW:= AVAIL, AVAIL:=FORW[AVAILj, INFOINFWI := FFEM.
3. (Insert node into list.]

Set FORW[LOCAJ:= NEW, FORWINEW]:= LOCH,
BACK(LOCBJ:= NEW, BACKINEWJ := LOCA.

4. Exit.

Algorithm 5.16 assumes that L.IST contains a header node. Hence IflCA or LOCH may point to
the header node, in which case N will be inserted as the first node or the last node. If LIST does not
contain a header node, then we must consider the case that LOCA = NULL and N is inserted as the
first node in the list, and (lie case that LOCB = NULL and N is inserted as the last node in the list.

Remark: Generally speaking, storing data as it two-way list, which requires extra space for the
backward pointers and extra time to change the added pointers, rather than as a One-way list is not
worth the expense unless one must frequently find the location of the node which precedes a given
node N, as in the deletion above.

Solved Problems

LINKED LISTS

	5.1	 Find the character strings stored in the four linked lists in Fig. 5-39.

Here the four list pointers appear in an array CITY. Beginning with CITYI l, traverse the
list, by following the pointers, to obtain the. string PARIS. Beginning with CITYI2I, traverse the
list to obtain the string LONDON. Since NULL appears in CITY[3], the third list is empty, so it
denotes A, the empty string. Beginning with CITYI41, traverse the list to ol,tain, the string
ROM .' in other words, PARIS, LONDON, A and ROME are the four stings.

	

5.2	 I following list of names is assigned (in order) to a linear array INFO;

Mary, June, Barbara, Paula, Diana, Audrey, Karen, Nancy, Ruth, Eileen, Sandra, Helen

That is, INFOII] Mary, INFO[2J = June.....INFOIJ2J = Helen. Assign values to an allay
LINK and a variable START so that INFO, LINK and START form an alphabetical listing of
the names.

The alphabetical listing of the names follows;

Audrey, Barbara, Diana, Eileen, Helen, June, Karen, Mary, Nancy, Paula, Ruth, S,uinlra

The values of START and LINK are obtained as follows:

(a) INFOI6] = Audrey, so assign START = 6.
(h) INFOI3I Baibara, so assign LINKI61 = 3.
(c) INFO151 = Diana, so assign LINK[31 5.
(d) INFO[ 101 Eileen, so assign LINKI51 = 10.

And SO On. Since INFO[ Ill Sandra is the last nanlc,assign LINK 1111— NULL. Figure 540 shows the
data structure where, assirning INFO has space for only 12 elements, we set AVAIL NULL.
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CITY
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Fig. 5-39
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Fig. 5-40
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5.3	 Let LIST be a linked list in memory. Write a procedure which

(a) Finds the number NUM of times a given ITEM occurs in LIST
(b) Finds the number NUM of nonzero elements in LIST
(c) Adds a given value K to each element in LIST

Each procedure uses Algorithm 5.1 to traverse the list.
(a) Procedure P5.3A: 1. Set NUM:=0. [Initializes counter.)

2. Call Algorithm 5.1, replacing the processing step by:
If INFO[PTRJ = ITEM, then: Set NUM: = NUM + I.

3. Return
(b) Procedure P5.311: I. Set NUM = 0. [initializes countcr.J

2. Call Algorithm 5.1, replacing the processing step by:
If INFO[PTRJ0o then: Set NUM: = NUM + 1.3. Return.

(c) Procedure P5.3C: 1. Call Algorithm 5.1, replacing the processing step by:
Set INFO[PTRJ := INFOJPTR] + K.

2. Return.

5.4	
Consider the alphabetized lisi of patients in Fig. 5-9. Determine the changes in the data
structure if (a) Walters is added to the list and then (b) Kirk is deleted from the list.
(a) Observe that Walters is put in bed 10, the first available bed, and Walters is inserted after Samucl,

who is the last patient oil 	 list. The three changes in the pointer fields follow:
1. LINK[91 = 10. (Now Samuels points to Walicrs.J
2. LINK[IoJ =0. [Now Walters is the last patient in the list.]
3. AVAIL = 2. [Now AVAIL points to the next available bed.]

Fig. 5.41
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(I.') Since Kirk is iiiscil.lrgC(l. l3liD[ 11 is now empty. The following three changes in the pointer fields

must he executed:

LINKjS] = 7	 LINK[t] = 2	 AVAIL= I

By the first change. Green, who originally preceded Kirk, now points to Lane, who originally
followed Kirk. 'Flie second and third changes add the new empty bed to the AVAIL list. We
cniphasii.e that before making thc deletion, we had to find the node BED(8), which originally
pointed to the deleted nude BEI)L I).

Figure 5-41 shows the new data structure.

5.5	 Suppose l.lSl' is in memory. Write an algorithm which deletes the last node from LIST.

The l;ist node can tic deleted only when one also knows the location of the next-to-last node.
Accordingly, tInvCrsc the list using a pointer variable PTR, and keep track of the preceding node using a

apointer vriable SAVE. PiR points to the last node when LINK[PTR] = NULL, and in such a case. SAVE
points to the next to last node - 'Ilic case that LIST has only one node is treated separately, since SAVE can
be defined only when the list hats 2 or more elements. The algorithm follows.

Algorithm I'S.S DEI.I.s't(INFO, LINK, START, AVAIL)

lI.ist c;Pl)iy' ? j If START NULL, then Write: UNI)ERFLOW, and Exit.

[List con Liii 115 Only One cicnicnt?)
If LINK[STARII = NULL, then;

(a) Set START :=- NULL. )Removcs only node from list.)
(b) Set LINK(STARTJ : AVAIL and AVAIL: START.

Returns node to AVAIL. list.
(c) Exit.

[End of If sti tmcture.]
Set P1k ; LINK[STARTI and SAVE: START. [Initialkes pointers.)
Repeat while LINK[PTRI NULL. [Traverses list, seeking last node.)

Set SAVF I'TR and l"I'R := LINK(PIRI. (Updates SAVE and PTR.)

jEnd of loop.)
Set I .INK[SAVE) : = LINK(PTR). [Removes last node.]
Set L.INK[PTR) := AVAIL and AVAIL := PTh. tRetu rmis node to AVAIL list.)

1 sit.

1.
2.

3.
4.

S
6.
7.

NAMLI	 PTR

DD

NtME2	 LOC

Fig. 5-42
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S.i,	 Suppose. NAME] is a list in memory. Write an algorithm which copies NAMEI into a list
NA M E2.

First set NAME2	 NULL to form an empty list. Then traverse NAMEI using a pointer variable
R and white visiting each node of NAMEI, copy its contc,lts INFO(PTRJ into a new node, which is

then inserted at the end of NAME2. Use LOC to keep track of the last node of NAME2 during the
traversal. (Figure 5-42 pictures P'FR and LOC before the fourth node is added to NAME2.) Inserting the
first node into NAME2 must be treated separatciy. since LOC is not defined until NAME2 has at least one
node. The algorithm follows:

Algorilhni P5.6: COPY(INFC), lINK, NAMLI, NAME2, AVAIL)
This algorithm nj.tkcs a copy of a list NAME! using NAME2 as the list pointer Variable
of the new list.

I . SCt NAME2 : =- NULL.. (Forms empty list.J
2. (NAML I empty?] If NAMEI = NULL, then: Exit.
3. (Insert first node of NAMEI into NAME2.1

Call INSLOC(INFO, LINK, NAME2, AVAIL, NULL, INFO(NAMEIJ) or:.
(a) If AVAIL = NULL, then: Write: OVERFLOW, and Exit.
(h) Set NEW: = AVAIL and AVALL: LINK[AVAILJ. [Removes first node from

AVAIL list.]
(c) Set INFOrNEW] := INFO(NAMEIJ. [Copies dala into new node.]
(d) [Insert new node as first node ii, NAME2.J

Set LINK(NEW:=NAME2 and NAME2:= NEW.
4. thitialics pointers PTR and LOC.I

Set PTR := LINKLNAMEIJ and LOC:= NAME2.
5. Repeat Steps 6 and 7 while PTR 0 NULL:

	

6.	 Call INSLOC(INFO LINK, NAME2, AVAIL, LOC, INFOIPTRJ) or:
(a) If AVAIL NULL, then: Write: OVERFLOW, and Exit.
(b) Set NEW:= AVAIL and AVAIL:= LINK[ AVAJL].
(c) Set INFO(NEW] := INFO(PTRJ. (Copies data into new node.)
(d) (insert new node into NAME2 after the node with location LOC.]

Set LINK(NEW) := L!NK(LOCJ, and LINK(LOCJ := NEW.

	

7,	 Set PTR:= LINK[PTRJ and LOC:= LINK[LOCJ. (Updates PTR and LOC.]
[End of Step 5 loop.]

	

8.	 Exit.

HEADER LISTS, TWO-WAY LISTS

57	 Form header (circular) lists front 	 One-way lists in Fig. 5-11.

Choose TEST[]] as a header node for the list ALG, and TEST[161 as a header node for the list
GEOM. Then, for each list:

(a) Change the list pointer variable so that it points to the header node.
(h) Change the header node so that it points to the first node iii the list.
(e) Change thc'last node so that it points back to the header node.

linl	 leorganize the AVAIL list. Figure 5 .43 shows the updated data structure.

5.8	 Find the polynomials POLY1 and POLY2 stored in Fig. 5-44.

13 " 0 1111111 9 with l'OIX I , traverse the list by following the pointers to obtain the polynomial
S	 3= 3x -..4x + óx -. 5
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Beginning with POLY2, traverse the list by following the pointers to obtain the polynomial

p2 (x)=2x +7x 2 -3x 2

Here COEFIKI and EXP(KJ contain, respectively, the coefficient and exponent ol a term of the
polynomial. Observe that the header nodes arc assigned - I in the EXP field.

5.9 Consider a polynomial p(x, y, z) in variables x, y and z. Unless otherwise stated, the terms in
p(x, y, z) will be ordered lexicographically. That is, first we order the #tcr tns according to
decreasing degrees in x; those with the same degree in x we order according to decreasing
degrees in y; those with the same degrees in x and  we order according to decreasing degrees in
Z. Suppose

p(x, y, z) = 8x 2y 2z - 6yz + 3i'yz + 2xy 7z - 5x 2y 3 - 4xy7z

(a) Rewrite the polynomial so that the terms are ordered.

(b) Suppose the terms are stored in the order shown in the problem statement in the linear
arrays COEF, XEXP, YEXP and ZEXP, with the HEAD node first. Assign values to
LINK so that the linked list Contains the ordered sequence of terms.

(a) Note that 3x 3yz comes first, since it has the highest degree in x. Note that 8x 2y 2z and —x 2y' both
have the same degree in x but —5x 2y comes before 8x 2y 2z. sincc.its degree in y is higher. And so on.
Finally we have

p(x, y, z) 3xyz - x'y 3 + 8x 2y 2 z - 4xy 7 z 3 + 2xy'z - fiyz"

(b) Figure 5-45 shows the desired data structure.

COEF XEXP YEXP ZEXP LINK

4

2	 8	 2	 2	 I	 7

POLY	 I	 3	 —o	 01	 8	 I

4	 3	 3	 1	 I	 6

5	 2	 I	 7	 I	 3

6	 —5	 2	 3	 0	 2

7	 -4	 1	 7	 3	 5

8

Fig. 5-45

5.10 Discuss the advantages, if any, of a two-way list over a one-way list for each of the following
operations:

(a) Traversing the list to process each node

(b) Deleting a node whose location LOC is given
(c) Searching an unsorted list for a given clement ITEM
(d) Searching a sorted list for a given clement ITEM
(e) Inserting a node before the node with a given location LOC

(1) Inserting a node after the node with a given location LOC
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(a) There is no advantage.
(b) The location of the preceding node is needed. The two-way list contains this information, whereas

with a one-way list we must traverse the list.
(c) There is no advantage.
(d) There is no advantage unless we know that ITEM must appear at the enti of the list, in which case we

traverse the list backward. For example, if we are searching for Walker in an alphabetical listing, it
may be quicker to traverse the list backward.

(e) As in part (b), the two-way list is more efficient.

(f) There is no advantage.

Remark: Generally speaking, a two-way list is not much more useful than a one-way list except in
special circumstances.

5.11 Suppose LIST is a header (circular) list in memory. Write an algorithm which deletes the last
node from LIST. (Compare with Prob. 5.5.)

The algorithm is the same as Algorithm P5.5, except now we can omit the special case when LIST has
only one node. That is, we can immediately define SAVE when LIST is not empty.

Algorithm P5.11: DELLSTH(INFO, LINK, START, AVAIL)
This algorithm deletes the last node from the header list.

1. [List empty?] If LINKISTART] NULL, then: Write: UNDERFLOW, and Exit.
2. Set PTR:=LINK[START] and SAVE:= START. [Initializes pointers.]
3. Repeat while LINK[PTR] & START: [Traverses list seeking last node.]

Set SAVE:.PTR and PTR:=LINK[PTRJ. [Updates SAVE and PTR.I
[End of loop.]

4. Set LINK[SAVE] := LINKIP1'R]. [Removes last node.]
5. Set LINK[PTR]:= AVAIL and AVAIL:= PTR. [Returns node to AVAIL list.]
6. Exit.

5.12 Form two-way lists from the one-way header lists in Fig. 5-43.

Traverse the list ALG in the forward direction to obtain:

ALG	 I	 ii	 2 LILj-- 14	 4

We require the backward pointers. These are calculated node by node. For example, the last node (with
location LOC = 4) must point to the next-to-last node (with location LOC = 14). Hence

BACK[41 = 14

The next-to-last node (with location LOC = 14) must point to the preceding node (with location I..00 = 2).
Hence

BACK[141 = 2

And so on. The header node (with location LOC = 1) must point to the last node (with location 4). Hence

BACK[1]=4

A similar procedure is done with the list GEOM. Figure 5-46 pictures the two-way lists. Note that
there is no difference between the arrays LINK and FORW. That is, only the array BACK need be
calculated.
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Supplementary Problems

LINKED LISTS
5.13	 Figure 5-47 is a list of five hospilal patients and their room numbers. (a) Fill in values for NSTART and

NLINK SO that they form an alphabetical listing of the names. (b) Fill in values for.RSTART and RLINK
so that they form an ordering of the room numbers.

Fig. 5-47
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5.14	 Figure 5-45 pictures it linked list in memory.

Fig. 5-48

Find the sequence of characters in the list.
Suppose F and then C are deleted from the list and then G is inserted at t i le bcgin lung of the list. Find

the final structure.
Suppose C and then F are deleted from the list and the ii 0 is inserted at the beginning of the list. Find

the final structure.
Suppose 0 is inserted at the beginning of (he list and then F and then C are deleted front the
structure. Find the final structure.

	

5.15	 Suppose LIST is it linkcd list in memory consisting of numerical values. Write a procedure for each of the

following:
(a) Finding the maximum MAX of the values in LIST
(I;) Finding the average MEAN of the values in LIST

(c) Finding the product PROD of the elements in LIST

	

5.16	 Given an integer K, write a procedure which deletes the Kth clement from a linked list.

	

5.17	 Write a procedure which adds a given ITEM of information at the end of a list.

	

5.18	 Write a procedure which removes the first element of a list and adds it to the end of the list without
changing any values in INFO. (Only START and LINK may be changed.)

	

5.19	 Write a procedure SWAP(INFO, LINK, START. K) which interchanges the Kill a.id K + 1st elements in

the list without changing any values in INFO.

5.20 Write a procedure SORT(INFO, LINK. START) which sorts a list without changing any values in INFO.

(Hint: Use the procedure SWAP in Prob. 5.19 together with a bubble sort.)

	

5.21	 Suppose AAA and BBB are sorted linked lists with distinct elements, both maintained in INFO and
LINK. Write a procedure which combines the lists into a single sorted linked list CCC without changing

any values in INFO.
Problems 5.22 to 5.24 refer to character strings which are stored as linked lists with one character per node

and use the same arrays INFO and LINK.

(a)

(1)

(c)

(d)
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5.22 Suppose STRING is a character string in memory.

(a) Write a procedure which prints SUBSTRIKG(STRING, K, N), which is the substring of STRING
beginning with the Kth character and of length N.

(b) Write a procedure which creates a new string SUBKN in memory where

SUBKN SVE3STRING(STRING, K, N)

5.23 Suppose STRI and STR2 arc character strings in memory. Write a procedure which creates a new string
STR3 which is the concatenation of STRI and STR2.

5.24 Suppose TEXT and PATTERN arc strings in memory. Write a procedure which finds the value of
INDEX(TEXT, PA1TERN), the position where PATTERN first occurs as a substring of TEXT.

HEADER LISTS; TWO-WAY LISTS

5.25	 Character Strings arc stored in the three linked lists in Fig. 5-49. (a) Find the tttrcc strings. (h) Form
circular header lists from the one-way lists using CIIAR(20J. Cl-IAR[I9J and CI-IARIIHJ as header nodes.

STATE	 CHAR LINK

2

3

'-... 10

11

12

13

14

15

16

17

17

18

19

---o-20

Fig. 5-49

33

I'

HI

C
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5.26	 Find the polynomials stored in the three header lists in Fig. 5-50.

POLY	 COEF EXP LINK

	

0	 —I	 9

	

0	 —I	 2

4	 —5	 3	 7

5	 —9	 2	 8

6	 6	 3	 5

7	 1	 1	 10
AVAIL

8	 4	 0	 3

44

	

—8	 0	 1

12

12	 13

13	 14

49

50

Fig. 5-50

	

5.27	 Consider the following polynomial;

p(x, y, z) = 2xy 2z + 3xyz 2 + 4xyz + 5x 2y 2 + 6y 3 Z + 7x'z + 8xyz ± 9

(a) Rewrite the polynomial so that the terms are ordered lexicographically.

(b) Suppose the terms are stored in the order shown here in parallel arrays COEF, XEXP, YEXP and
ZEXP with the header node first. (Thus COEFIKI K for K = 2, 3.... . 9.) Assign values to an
array LINK so that the linked list contains the ordered sequence of terms. (See Prob. 5.9.)

5.28 Write a procedure HEAD(INFO, LINK, START. AVAIL) which forms a header circular list from an
ordinary one-way list.

	

5.29	 Redo Probs. 5.16-5.20 using it header circular list rather than an ordinary one-way list. (Observe that Ihe

algorithms are nos' much simpler.)

	

5.30	 Suppose POLY] and I'OLY2 are polynomials (in one variable) which are stored as header circular lists
using the same parallel arrays COEF, EXP and LINK. Write a procedure

ADD(COEF, EXP, LINK, POLYI, POLY2, AVAIL. SUMPOLY)

which finds the sum SUMPOI.Y of POLY  and POLY2 (and which is also stored in memory using COEF,
EXP and LINK).
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5.31 For the polynomials POLYI and POLY2 in Prob. 5.30, write a procedure

MULT(COEF, EXP, LINK, POLYI, POLY2, AVAIL, PRODPOLY)

which finds the product PRODPOLY of the polynomials POLY1 and POLY2.

5.32

	

	 Form two-way circular header lists from the one-way lists in Fig. 5-49 using, as in Prob. 5.25, CUAR[201,
CIIARII9) and CHAR[ 181 as header nodes.

5.33 Given an integer K, write a procedure

DELK(INFO. FORW, BACK, START, AVAIL, K)

which deletes the Kth clement from a two-way circular header list.

5.34 Suppose LIST(INF0, LINK, START, AVAIL) is a one-way circular header list in memory. Write a
procedure	 -

TWOWAY(INFO, LINK, BACK, START)

which assigns Values to a linear array BACK to form a two-way list from thethe one-way list.

Programming Problems

Problems 5.35105.40 refer to the data structure in Fig. 5-51, which Consists of four alphabetized lists ol clients
and their respective lawyers.

	

5.35	 Write a program which rcads an integer K and prints the ' list of clients of lawyer K. Test the program for
each K.

5.36 Write a program which prints the name and lawyer of each client whose age is L or higher. Test the
program using (a) L = 41 and (b) L 4.

	

5.37	 Write a program which reads the name LLL of a lawyer and prints the lawyer's list of clients. Test the
program using (a) Rogers, (b) Baker and (c) Lvinc.

	

5.38	 Write a program which reads the NAME of a client and prints the client's name, age and lawyer. Test the
program using (a) Newman, (b) Ford, (c) Rivers and (d) Hall.

	

5.39	 Write a program which reads. the NAME of the client and deletes the client's record from the structure.
Test the program using (a) Lewis, (b) Klein and (c) Parker.

	

5.40	 Write a program which reads the record of a new client, consisting of the client's flame, age and lawyer,
and inserts the record into the structure. Test the program using (a) Jones, 36, Levine; and (b) Olsen. 44,
Nelson.

Problems 5.41 to 5.46 refer to the alphabetized list of employee records in Fig. 5-30, which arc'storcd as a
circular header list.

	

5.41	 Write a program which prints out the entire alphabetized list of employee records.

	

5.42	 Write a program which reads the name NNN of an employee and prints ti	 -	 's record. 'rest the
program using (a) Evans, (b) Smith and (c) Lewis.



AGE LINK

16

13

2$

22

'4

29

26

3

0

28

0

24

6

30

7

27

21

0

C

5

20

19

18

II

to

9

17

0

2
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F,

2

3

4

S

6

7

8

9

10

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

LAWYER POINT

I	 Davis	 4

2	 Levine	 12

3 • Nelson	 21

4	 Rogers	 $

AVAIL

CLIENT

Hall

Moss

Ford

Brown

Ginn

Pride

Berk

White

Todd

Dixon

Newman

Harris

Jackson

Roberts

Eisen

Adams

Cohefl

Fisher

Graves

Parker

Singer

Lewis

Fig. S-SI
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5.43 Write a program which reads the social security number SSS of an employee and prints the employee's
record. Test the program using (a) 165-64-3351, (b) 136-46-6262 and (c) 177-44-5555.

5.44 Write a program which reads an integer K and prints the name of each male es-.ployec when K — I or or
each female employee when K 2. Test the program using (a) K 2, (b) K 5 and (c) K - I.

5.45 Write a program which reads the name NNN of an employee and deletes the employee's record From the
structure. Test the program using (a) Davis, (b) Jones and (c) Rubin.

5.46 Write a program which reads the record of a new employee and inserts the record into the file. Test the
program using (a) fletcher, 168-52.3388, Female, 21000; and (b) Nclsøn, 175-32-2468, Male, 19000.

Remark: Remember to update the header record whenever there is an insertion or i deletion.

r t	 ,•

r	

.

-,.



Chapter 6
Stacks, Queues, Recursion

6.1 INTRODUCTION

The linear lists and linear arrays iscussed in the previous chapters allowed one to insert and delete
elements at any place in the list —at the'beginning, at the end, or in the middle. There are certain
frequent situations in computer science when one wants to restrict insertions an'd deletions so that they
can take place only at the beginning or the end of the list, not in the middle. Two of the data structures
that are useful, in such situations are stacks ang queues.

A stack is a linear structure in which items may be added or removed only at one end. Figure 6-1
pictures three everyday examples of such a structure: a stack of dishes, a stack of pennies and a stack of
folded towels. Observe that an item may be added or removed only from the top of any of the stacks.
This means, in particular, that the last item to be added to a stack is the first item to be removed.
Accordingly, stacks are also called last-in first-out (LIFO) lists. Other names used for stacks arc
"piles" and "push-down lists." Although the stack may seem to be a very restricted type of data
structure, it has many important applications in computer science.

Stack of	 Stack of	 Stack of
dishes ' pennies	 folded towels

-2

Fig. 6.1

A queue is a linear list in which items may be added only at one end and items may be removed
only at the other end. The name "queue" likely comes from the everyday use of the term. Consider a
queue of people waiting at a bus stop, as pictured in Fig. 6-2. Each new person who comes takes his or
her place at the end of the line, and when the bus comes, the people at the front of the line board first.
Clearly, the first person in the line is the first person to leave. Thus queues arc also called first-in
first-out (FIFO) lists. Another example of a queue is a batch of jobs waiting to be processed, assuming
no job has higher priority than the others.

The notion of recursion is fundamental in computer science. This topic is introduced in this chapter
because one way of simulating recursion is by means of a stack structure.

Fig. 6-2 Queue waiting for a bus.

164
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62 STACKS
A stack is a list of elements in which an cicmc,t may be inserted or deleted only at one end, called

the lop of the stack. This means, in particular, that cknicnts arc removed from a stack in the reverse
order of that in which they were inserted into the stack.

Special terminology is used for two basic operations associated with stacks:.

(a) "Push" is the term used to insert an element into a stack.
(b) "Pop" is the term used to delete an element front stack.

We emphasize that these terms arc used only with stacks, not with other data structures.

EXAMPLE 6.1

Suppose the following 6 elements arc pushed, in order, onto an empty stack:

AAA, BBB, CCC, ODD, EEE, FFF
Figure 6-3 shows three waxs of-picturing such a stack. For notational Cstack by writing:	 OflvcniCncC, we will frequently designate the

STACK:	 AAA, Bill), CCC, ODD, EEE, FFF

The implication is that the right-most clement is the top clement. We cmphasie that, rcgardlcss of the way a stack
is described, its underlying ploperty is that insertions and deletions can occur only at the top of the stack. This
means EEE cannot he deleted before FFF is deleted, DOD cannot be deleted before EEE and FFF are 

deleted.and so on. Consequently, the cicments may be popped from the stack only in the reverse order of that in which
they were pushed onto the stack.

(a)	
(b)

AAA I 13111) I CCC I DDD

2	 3	 4

JEEE J FFF

8

TOP -__J 
(c)

Fig. 6-3 Diagrams of stacks.

9	 N—I	 N



(e)
(a) (b)

L-
M(f)(c)	 ('I)

Fig. 6-4
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-Consider again the AVAIL list of available nodes discussed in Chap. 5. Recall that free nodes were

removed only from the beginning of the AVAIL list, and that new available nodes were inserted only at
the beginning of the AVAIL list. In o(hci words, the AVAIL list was implemented as a stack. This
implementation of the AVAIL list as a stack is only it 	 of convenience rather than all

part of the structure. In the following subsection we discuss an important situation where the stack is an
essential toi of the processing algorithm itself.

Postponed Decisions
Stacks arc frequently used to indicate the order of the processing of data when certain steps of the

processing must he postponed until other conditions are fulfilled. This is illustrated as follows.
Suppose that while processing some project A we are required to move on 10 project 13, whose

completion is required in order to complete project A. Then we place the folder containing the data of

A onto a stack, as pictured in Fig. 64(a). and begin to process B. However, SUPI)OSC that while

processing 13 we arc led to project C, for the same reason. Then we place 13 oil stack above A, as
pictured in Fig. 6-4(h), and begin to process C. Furthermore, suppose that while processing C we arc
likewise led to project 1). Then we place Con the stack above 13, as pictured in Fig. 6-4(c), and begin to

OCCSS D.

On the other hand, suppose we are able to complete the roce.ssil1g of project D. Thcii the only
project we may continue to process is project C. which is t)ij top of the stack. Hence we remove folder

C from the stack, leaving the stack as pictured in Fig 6-4(d), and continue to process C. Similarly,
after completing the processing of C, we remove foldcr 13 frotii the stack, leaving the stack as pictured

in Fig. 64(e), and continue to process B. Finally ifter completing the processing of 13, we remove the
last folder, A. from the slack, leaving the empty stack pictured in Fig. 6-4(f), and continue the

processing of our original project A.
Observe that, at each stage of the above processing, the stack automatically maintains the order

that is required to complete tlr' processing. An important example of such aprocessing in computer
science is where A is a mai., program and B, C and 13 arc subprograms called in the ordcr given.

6.3 ARRAY REPRESENTATION OF STACKS
Stacks may be represented in the computer in various ways, usually by means of a one-way list or a

linear array. Unless otherwise stated or implied, each of our stacks will be maintained by a linear array
STACK; a pointer variable TOP, which contains the location of the top clement of the stack; and a
variable MAXSTK which gives the maximum number of elements that can be held by the stack. The
condition TOP = 0 or TOP = NULL will indicate that the stack is empty.

Figure 6-5 pictures.
 such an array representation of it (For notational convenience, the array

is drawn horizontally rather than vertically.) Since TOP 3, the stack has three demerits, XXX, YYY
and ZZZ; and since MAXSTK = 8, there is room for 5 more items in the stack
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STACK

•xxx I YYY I zzz

TOP	 MAXSTK Ej-^
Fig. 6-S

The operation of adding (pushing) an item onto a stack and the operation . of removing (popping)
an item from a stack may be implemented, respectively, by the following procedures, called PUSH and
POP. In executing thc procedure PUSH, one must first test whether there is room in the stack for the
new item; if not, then we have the condition known as overflow. Analogously, in executing the
procedure POP, one must first test whether there is an clement in the stack to be deleted; if not, thenwe have the condition known as underfiow.

Procedure 6.1: PUSH(STACK, TOP, MAXSTK, ITEM)
This procedure pushes an ITEM onto a stack.

I. [Stack already flllcd?J
If TOP = MAXSTK. then: Print: OVERFLOW, and Return.

2. Set TOP: TOP + 1. I Increases TOP by I.
3. Set STACKLTOPJ := ITEM. [Inserts ITEM in new TOP position.]
4. Return.

Procedure 6.2: POP(STACK, TOP, ITEM)
This procedure deletes the top element of STACk and assigns it to the variable
ITEM.

I. [Stack has an itthn to be removcd7j
If TOP = 0, (hcii: Print: UNDERFLOW, arid Return.

2. Set ITEM := STACK[TQPJ. [Assigns TOP element to ITEM.]
3. Set TOP:= TOP — i. [Decreases TOP by 1.1
4. Return.

only Frequently, TOP and MAXSTK arc global variables; hence the procedures may be called using

PUSH(STACK, ITEM) and	 POP(STACK, ITEM)

respectively. We note that the value of TOP is changed before the insertion in PUSH but the value of
TOP is changed after the deletion in POP.

EXAMPLE 6.2

(a) Consider the stack in Fig. 6-5. We simulate the operation PUSH(STACK, WWW):
I. Since TOP = 3, control is transferred to Step 2.
2. TOP=3+1=4.
3. STACK[TOPJ STACK[4] WWW.
4. Return.

Note that WWW is now (lie top element in the stack.
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(b) Consider again the slack in Fig. 6-5. This time we simulate thc operation POP(STACK, ITEM):

I. Since TOP 3, control is translcricd to Step 2.
2. ITEM = ZZZ.
3. TOP=3—I2.
4. Return.

Observe that STACK(10PJ = STACK121 = YYY is now the lop element in the stack.

Minimizing Overflow
There is an essential difference between undcrflow and overflow iii dealing with stacks. Undcrflow

depends exclusively upon the given algorithm and the given input data, and hence there is no direct
control by the programmer. Overflow, on the other hand, depends upon the arbitraty choice of the
programmer for the amount of memory space reserved for each stack, and this choice does influence
the number of times overflow may occur.

Generally speaking, the number of elements in a stack fluctuates as elements arc added to or
removed from a stack. Accordingly, tç particular choice of the amount of mcwiory for a given stack
involves a time-space tradeoff. Specifically, initially reserving a great deal of space for each stackwill
decrease the number of times overflow may occur; however, this may be an expensive use of the space
if most of the space is seldom used. On the other hand, reserving a small amount of space for each
stack may increase the number of times overflow occurs; and the time required for resolving an
overflow, such as by adding space to the stack, may be more expensive than the space saved.

Various techniques have been developed which modify the array representation of stacks so that the
amount of space reserved for more than one stack may be more efficiently used. Most of these
techniques lie beyond the scope of this text. We do illustrate pne such technique in the following
example.

EXAMPLE 6.3
Suppose a given algorithm requires two stacks, A and B. One can define an array S .TACKA with n, elements

for stack A and an array ST.CKB with n 2 elements for stack B. Overflow will occur when either stack A contains

more than n, elements or stack B contains more than n elements.
Suppose instead that we define a single array STACK with it n, + n 2 elements for stacks A and B together.

As pictured in Fig. 6-6, we define STACK( I  as the bottom of stack A and let A "grow" to the right, and we define
STACK(nI as the bottom of stack 13 and let B "grow" to the left. In this case, overflow will occur only when A and

B together have more than it + n 2 elements. This technique will usually decrease the number of times
overflow occurs even though we have not increased the total amount of space reserved for the two stacks. In using
this data structure, the operations of PUSI-1 and POP will need to be modified.

2	 3	 4	 n-3	 n-2	 n—I	 it

Stack A	 Stack B

Fig. 6.6

6.4 ARITHMETIC EXPRESSIONS; POLISH NOTATION
Let 0 be an arithmetic expression involving constants and operations. This section gives an

algorithm which finds the value of 0 by using reverse Polish (posifix) notation. We will see that the
stack is an essential tool in this algorithm.

Recall that the binary operations in 0 may have different levels of precedence. Specifically, we
assume the following three levels of precedence for the usual five binary operations:
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I!
Highest:	 Exponentiation (1)

Next highest:	 Multiplication (*) and division (I)
Lowest:	 Addition (+) and subtraction (-)

(Observe that we use the BASIC symbol for exponentiation.) For simplicity, we assume that Q
contains no unary operation (e.g., a leading minus sign). We also assume that in any parenthesis-free
expression, the operations on the same level are performed from left to right. (This is not standard,
since some languages perform exponentiations from right to left.)

EXAMPLE 6.4

Suppose we want to evaluate the following parenthesis-free arithmetic expression:

2 T 3 + 5 * 2 T 2 - 12 I 6

First we evaluate the exponelitlations to obtain

8 + 5 * 4 - 12 / 6

Then we evaluate the multiplication and division to obtain 8 + 20— 2. Last, we evaluate the addition and
subtraction to obtain the final result, 26. Observe that the expression is traversed three times, each time
corresponding to a level of precedence of the operations.

Polish Notation

For most common arithmetic operations, the operator symbol is placed between its two operands.
For example,

A+B	 C—D	 E*F	 G/H

This is called infix notation. With this notation, we must distinguish between

(A+B)*C	 and	 A+(B*C)

by using either parentheses or some Operator-precedence convention such as the usual precedence
levels discussed above. Accordingly, the order of the operators and operands in an arithmetic
expression does not uniquely determine the order in which the operations are to be performed.

Polish notation, named after the Polish mathematician Jan Lukasiewicz, refers to the notation in
which the operator symbol is placed before its two operands. For example,

+AB	 —CD	 *EF	 /GH

We translate, step by step, the following infix expressions into Polish notation using brackets II to
indicate a partial translation:

- (A+B)*C=I+AB]*C=*+ABC
A +(B*C)= A + ["BC]= ±A*BC

(A + B)/(C - D) = [+AB)/[—CD] = /+AB—CD

The fundamental property of Polish notation is that the order in which the operations are to be
performed is completely determined by the positions of the operators and operands in the expression.
Accordingly, one never needs parentheses when writing expressions in Polish notation.

Reverse Polish notation refers to the analogous notation in which the operator symbol is placed after
its two operands:

AB+	 CD—	 EF*	 GH/

Again, one never n.ds parentheses to determine the order of the operations in any arithmetic
expression written in reverse Polish notation. This notation is frequently called postfix (Or suffix)
notation, whereas prefix notation is the term used for Polish notation, discussed in the preceding
paragraph.
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The computer usually evaluates an arithmetic expression written in infix nolatK)i1 in two Steps.

First, it converts the expression to postlix notation, and then it evaluates the postfix CXPtCSSIOfl. III each
step, the stack is the main tool that is used to accomplish the given task. We illustrate these applications
of stacks in reverse order. That is, first we show how stacks are used to evaluate posl lix cxprcssiofls,
and then we show how stacks are used to transform infix expressions into postliX expressions.

Evaluation of a Post6x Expression
Suppose I' is an arithmetic expression written in pos(Iix notation. The following algorithm, which

uses a STACK to hold operands, evaluates P.

Algorithm 6.3: This algorithm finds the VALUE of an arithmetic expression P written in postlix
notation.

Add a right parenthesis ")" at the end of P. [This acts as a sentincl]
Scan P fromleft to right and repeat Steps 3 and 4 for each element of P until

the sentinel")" is encountered.
If an operand is encountered, put it on STACK.
If an operator ® is encountered, then:

(a) Remove the two top elements of STACK, where A is the top
clement and B is the next-to-top element.

(b) Evaluate BOA.
(c) Place the result of (b) back on STACK.

[End of If structure.]
[End of Step 2 loop.]
Set VALUE equal to the top clement oil
Exit.

We note that, when Step 5 is executed, there should be only one number on STACK.

EXAMPLE 6.5

Consider the following arithnic(ic expression P NNsiRcii in postliX notation:

I':	 5,	 6,	 2,	 f,	 *,	 12.	 4,	 I,

(Commas are used to separate the cicmcnls of P so that 5, 6, 2 is not interpreted as the number 562.) Ihc

Symbol Scanned I STACK

(I)
	

5
	

5
(2) 6
	

5, 6
(3) 2
	

5, 6, 2
(4) +
	

5, 8
(5) *	 40

	

(7)	 12
	

40, 12
(7) 4
	

40, 12, 4
(8) /
	

40, 3
(9) 37

	

(to)
	

)

2

3.
4.

5
6

Fifl. 6 -7
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equivalent infix expression Q follows:

Q:	 5 • ( 6 F 2 ) - 12 I

Note that parentheses are necessary for the infix expression 0 but not for the postfix cxpr . ssiotl P.
We evaluate P by simulating Algorithm 6.3. First we add a sentinel right parenthesis at the end of I' to clt:ou

I':	 5,	 6,	 2,	 +,	 *,	 12,	 4.
(1)	 (2)	 (3)	 (4)	 (5)	 (6)	 (7)	 (8)	 (9)	 (10)

The elements of P have been labeled from left to right for easy reference. Figure 6-7 shows the contents .1 SLACK
as each element of P is scanned. The final number in STACK. 37, which is assigned to VALUE when the sentinel
")" is scanned, is the value of P

Transforming Infix Expressions into I'ostfix Expressions
Let Q be an arithmetic expression Written in infix notation. Besides operands and operators, 0

may also contain left and right parentheses. We assume that the operators in Q consist only of
CxpOflCfltiations (1). multiplications (), divisions (/), additions (+) and subtractions (—), and that
they have the usual three levels of precedence as given above. We also assume that Operators on the
same level, including cxponcntiations, are performed from left to right unless otherwise indicated by
parentheses. (This is 1101 standard, since expressions may contain unary operators and some languages
perform the exponentiations from right to left. However, these assumptions simplify our algorithm.)

The following algorithm transforms the infix expression Q into its equivalent posifix cxpresion P.
The algorithm uses a stack to temporarily hold operators and left parentheses. The posttix expression 1'
will be constructed front left to right using the operands from 0 and the operators which ale removed
from STACK. We begin by pushing a left parenthesis onto STACK and adding it right parenthesisthe end of Q. The algorithm is completed when STACK is empty.

Algorittun 6.4: POLISH(Q, P)
Suppose 0 is an arithmetic expression written in infix notation. This algorithm
finds the equivalent posttix expression P.

1. Push ''(" onto STACK, and acid'')" to the end of Q.
2. Scan Q from left to right and rcp :l Steps 3 to 6 for each clement of 0 until

the STACK is empty:
3	 If an operand is encountered.	 . to I'.
4.	 If a left parenthesis is cncou:,te	 ish it onto STACK.
5.	 If an operator ® is encountered, then:

(a) Repeatedly pop from STACK and add to 1' each operator (ciii
the top of STACK) which has the Same precedence as or
higher precedence than ®.

(b) Add 0 14.) STACK.
(End of If structure.)

6.	 If a right parenthesis is encountered, then:
(a) Repeatedly pop from STACK and add to P each operator (on

the top of STACK) until a left parenthesis is encountered.
(b) Remove the left parenthesis. [Do not add the left parenthesis

to P.1
[End of If structure.]

[End of Step 2 loop.)
7.	 Exit.

The terminology sometimes used for Step 5 is that ® will 'sink'' to it	 wii level.



Expression I'

I

It
/	 I

H
H . +

/G
1G .

-IGs -

1G. -

STACK

+

+(

+(

+ ( -

+ (•

+ ( - (

+ (• - *

+(_*
+

+ *

+ .

Symbol Scanned

(I)	 A
+

(3) (
(4) B
(5) *
(6) C
(7) -.

(8) (
(9) D

(10) /
(II)	 E

(12) 1
(13) F
(14) )
(IS)	 *
(16) G
(17) )
(18)
(19) II

(20) )

A
A
A
AB
AB
ABC
ABC*
ABC*
ABC*D
A BC*D
A BC*D
A BC . D E
A BC. D E 
ABC . DEFt
A B C * D E F
A B C * D E F I
A B C * D E F t

A B C * D E F 1

A B C * D E F I

A B C * D E F f
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EXAMPLE 6.6

Consider the following arithmetic  infix expression 0:

0:	 Af(E3*C_(D/EtF)G)*H

We simulate Algoiithm 6.4 to transform 0 into its equivalent postlix cxprcsion P.
First we push "(" onto STACK, and then we add ")" to the end of Qto obtain:

0:	 A + ( H * C - ( . D	 /	 E	 T	 F	 )	 *	 G	 )	 *	 II	 )

(I) (2) (3) (4) (5) (6) (7) (8) (9) (tO) (II) (12) (13) (14) (15) (16) (17) (18) (19) (20)

The elements of 0 have now been labeled from left to right for easy reference. Figure 6-8 shows the status of
STACK and of the string I' as each element of 0 is scanned. Observe tIt:iI

(I) Each operand is simply added to P and does not change STACK.

(2) The subtraction operator (-) in row 7 sends * front 	 to P before it (-) is pushed onto STACK.

(3) The right parenthesis in row 14 scnds t and then / from STACK to P. and then removes the left
parenthesis Ironi he top of STACK.

(4) The right parenthesis in row 20 sends * and then + from STACK to P. and (lien removes the left
parenthesis from the top of STACK.

After Step 20 is executed, the STACK is empty and

P:	 ABCI)EF 1/G	 - 11* +

which is the required postlix equivalent of 0.

Fig. 6.8
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6.5 QUICKSORT, AN APPLICATION OF STACKS

Let A be a list of n data items. "Sorting A" refers to the operation of rearranging the elements of
A so that th ' are in some logicalordcr, such as numerically ordered when A contains numerical data,
or alphabetically ordered when A contains character data. The subject of sorting, including various
sorting algorithms, is treated mainly in Chap. 9. This section gives only one sorting algorithm, called
quicksorl, in order to illustrate an application of stacks.

Quicksort is an algorithm of the divide-and-conquer type. That is; the problem of sorting a set is
reduced to the problem of sorting two smaller sets. We illustrate, this "reduction step" by means of a
specific example.

Suppose A is the following list of 12 numbers:

33,	 II,	 55,	 77,	 90,	 40,	 60,	 99,	 22,	 88,

The reduction step of the quicksort algorithm finds the final position of one of the numbers; in this
illustration, we use the first number, 44. This is accomplished as follows. Beginning with the last
number. 66, scan the list from right to left, comparing each number with 44 and stopping at the first
number less than 44. The number is 22. Interchange 44 and 22 to obtain the list

33,	 Il,	 55,	 77,	 90,	 40,	 60,	 99,	 88,	 66

(Observe that the numbers 88 and 66 to the right of 44 are each greater than 44.) Beginning with 22,
next scan the list in the opposite direction, front to right, comparing each number with 44 and
stopping at the first number greater than 44. The number is 55. Interchange 44 and 55 to obtain the list

	

22,	 33,	 Ii,	 77,	 90,	 40,	 60,	 99,	 88,	 66

(Observe that the numbers 22,33 and II to the left of 44 are each less than 44.) Beginning this time
with 55, now scan the list in the origina' direction, from right to left, until ricting the first number less
than 44. It is 40. Interchange 44 and 40 to obtain the list

	

22,	 33,	 II,	 77,	 90,	 8	 60,	 99,	 55,	 88,	 66	 a

(Again, the numbers to the right of 44,arc each greater than 44.) Beginning with 40, scan the list from
left to right. The first number greater than 44 is 77. Interchange 44 and 77 to obtain the list

	

22,	 33,	 II,	 40,	 90,	 60, .	 99,	 55.	 88,	 66

(Again, the numbers to the left of 44 are each less than 44.) Beginning with 77, scan the list front
to left seeking a number less than 44. We do not meet such it before meeting 44. This me-ins all
numbers have been scanned and compared with 44. Furthermore, all numbers less than 44 now form
the sublist of numbers to the left of 44. and all numbers greater than 44 now form the sublist of
numbers to the right of 44, as shown below:

	

22,	 33,	 11,	 40,	 90,	 77,	 60,	 99,	 55,	 88,	 66

First sublist	 Second sublist

Thus 44 is correctly placed in its final position, and the task of suiting the origina4 list A has now been
reduced to the task of sorting each of the above sublists.

The above reduction step is repeated with each sublist containing 2 or more elements. Since we can
process only one sublist at a time, we must be able to keep track of some sublists for future processing.
This is accomplished by using two stacks, called LOWER and UPPER, to temporarily "hold" such
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sublists. That is, the addresses of the first and last elements of each sublist, allcd its bunda,-y values,
are pushed Onto the stacks LOWER and UPPER, respectively; and the reduction step is applied to a
sublist only after its boundary values are removed from the stacks. The following cx:iroplc illustrates
the way the stacks LOWER and UPPER are used.

EXAMPLE 6.7

Consider the above list A with it = 12 elements. The algorithm begins by pushing the boundary values I and
12 of A onto the stacks to yield

	

LOWER: I	 UPPER: 12

In order to apply the reduction step, the algorithm first removes the top values I and I2 from the stacks, leaving

	

LOWER: (empty)	 UPPER: (empty)

and then applies the reduction step to the corresponding list Aill, A[21,. .., A1121. The reduction step, as
executed above, finally places the first clement, 44, in A 1 5 1 . Accordingly, the algoritlun pushes the boundary
values I and 4 of the first sublist and the boundary values 6 and 12 of the second subli.st onto the stacks to yield

	

LOWER: 1, 6	 UPPER: 4, 12

In order to apply the reduction step again, the algorhhni removes the iop values, 6 and 12, 1mm tIme stacks, leaving

	

LOWER: I	 UPPER: 4

and then applies the reduction tcj) to the corresponding subhist A[6], A[11.....A[12. The reduction step
changes this list as in Fig. 6-9. Observe that the second sublist has only one clement. Accordingly, the algorithm
pushes only the boundary values 6 anmi tO of the first sublist onto the stacks to yield

	

LOWER: I, 6	 LtPPER. 4, Ii)

And so on. The algorithm ends when the stacks do' not contain any sublkt to be processed by the reduction stcp

	

•	 A161, A171, A81. A191,	 A1101, A l li l, A[I21,

()	
77,	 60,	 99,	 55.	 88.

66,	 77,	 60,	 55,	 88,	 (D-
66.	 77.	 60, ()

	
55.

66,	 77,	 60,	 88,	 55,	 99

	

First sublist	 Second sublist

Fig. 6-9

The formal statement of our quicksort algorithm follows (on page 175). For notational
convenience and pedagogical considerations, the algorithm is divided into two parrs. The first part
gives a procedure, called QUICK, which executes the above reduction step of the alorithrn, and the
second part uses QUICK to sort the entire list.

Observe that Step 2(c) (iii) is unnecessary. It has been added to emphasize the symmetry between
Step 2 and Step 3. The procedure does not assume the elements of A are distinct. Otherwise, the
condition LOC RIGHT in Step 2(a) and the condition LEFT 9A LOC in Step 3(a) could be omitted.

The second part of the algorithm follows (on page 75). As noted above, LOWER and UPPER
are stacks on which the boundary values of the stiblists are stored. (As usual, we use NULL =



Procedure 6.5: OUICK(A, N, BEG, END, LOC)
Here A is air with N elements. Parameters BEG and ENE) cntaiii the
boundary values of the sublist of A to which this proecdurc applies. LOC keeps
track of the position of the first clement ALBEGJ of the sublist during the
procedure. The local variables LEFT and RIGHT will contain the boundary
values of the list of elements that have not been scanned.

I. Initialize-1 Set LEI--I': = BEG, RIG1iT:= END and LOC:= BEG.
2. [Scan from right to left

(a) Repeat while Af LOC] A[RIGIITJ and I..00 RIGHT:
RIGHT. = RIGHT I.

[End of loop.]
(b) If LOC = RIGHI, then: Return.
(c) If Al LOCI > A( RIGHFJ, then:

(i) (I uteichange A (LOG] and A( RIGIITJ .
'FI.MP : AILOC], A[1.00J := ARlGl-lTI,
AjRIGIITJ := TEMP.

(ii) Set LOC:= RIG! IT.
ciii) (;o to Step 3.

lEnd of If structure
3	 (Scan from Icit to right I

(a) Rpcaf while AILEFI] A(LOCJ and LEVU7 1 LOG:
LEFI' : = LEFT 4 1.

(End of 1001).
(b) It LOG = I.EFF, then: Return
(c) If AILEFT] > .ALOC, then

(I) (Interchange AILEFTI and A(LOCJ.J
iEMP:= A[LOCJ, AJ LOCI: = A(LEFTJ,
AILEFTJ := 'lEMI'.

(ii) Set LOC := LEFT.
(iii) Go to Step 2.

(End Of If structure

Algoi-itbni 6.6: (Ouicksort) This algorithm sorts an array A with N elements.

I. (Initialize.] TOP: NUlL
2. [Push boundary values of A onto stacks when A has 2 or more elements.]

If N>1, then: 1'OP:=TOI' + 1, LOWER[ IJ := I, UPI'ER[IJ := N.
3. Repeat Steps 4 to 7 while TO!' 9A NULL.
4. [Pop subl ist from stacks. J'

Set BEG : = LOWER('FOP]. END : = UPPERITOP!,
TOP: i'()P -_
Call QUICK(A, 14, BEG, END, LOU). [ p rocedure 65.1

6	 (Push left sublisi onto stacks when it has 2 or more elements.]
If BEG LOC - 1. then:

TOP +A, LOWE RITOP] : BEG.
U E'l'ERITOPJ -

(End of If structure.
7.	 [Push right sublist onto stacks when it has 2 or more elements.]

If LOC + I END, (hell:
TOP: FOl'-t I, LOWE R(TOI'J	 LOU-f I,
(JPI'ER(TOI'] : -

(End of If structure
l[iid of Step 3 loop.]
Lxi'

175
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Complexity of the Quicksort AIg'rithm

The running time of a sorting algorithm is usually measured by the number-f(n) of comparisons
required to Sort fl elements. The quicksort algorithm, which has many variations, has been studied
extensively. Generally speaking, the algorithm has a worst-case running time of order n 2/2, but an
average-case running time of order it log n. The reason for this is indicated below.

The worst case occurs when the list is already sorted. Then the first element will require a
comparisons to recognize that it remains in the first position. Furthermore, the first sublist will be
empty, but the second sublist will have is - 1 elements. Accordingly, the second element will require
it -- I comparisons to recognize that it remains in the second position. And SC) Ofl. Consequently, there
will be a total of.

-
f(n) n + (a - fl +	 4-2-f I =	 2	 -	

+ 0(n) = 0(n2)

comparisons. Observe that this is equal to the complexity of the bubble sort algorithm (Sec. 4.6).
The complexity f(n) = 0(n log a) of the average case conies from the fact that, on the average,

each reduction step of the algorithm produces two sublists. Accordingly:

(I) Reducing the initial list places I clement and produces two sublists,

(2) Reducing the two sublists places 2 elements and produces four sublists.

(3) Reducing the four sublists places 4 elements and produces eight sublists.

(4) Reducing the eight sublists places 8 elements and produces sixteen sublists.

And so on. Observe that the reduction step in thc kth level finds the location of 2 ' elements; hence
there will be approximately 1092 a levels of reductions steps. Furthermore, each level uses at most it
comparisons, so f(n) = O(n log it). In fact, mathematical analysis and empirical evidence have both
shown that

f(n) 1.4[n log a]

is the expected number of comparisons for the quicksort algorithm.

6 6 RECURSION

- Recursion is an important concept in computer science. Many algorithms canibe best described in
terms of recursion. This section introduces this powerful tool, and Sec. 6.8 will show how recursion
may be implemented by means of stacks.

Suppose P is a procedure containing either it Call statement to itself or a Call statement to a second
procedure that may eventually result in a Call statement back to the original procedure P. Then P is

called a recursive procedure. So that the program will not continue to run indefinitely, a recursive
procedure must have the following two' properties:

(1) There must be certain criteria, called base criteria, for which the procedure does not call

itself.

(2) Each time the procedure does call itself (directly or indirectly), it-must be closer to the base
criteria.

A recursive procedure with these two properties is said to he well-defined.

Similarly, a function is said to he recursively defined if the function definition refers to itself. Again,
in order for the definition not to he circular, it must have the following two properties;

(I) There must be certain arguments, called base values, for which the function does not refer to

itself.
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(2) Each time the function does refer to itself, the argument of the function must he closer to it
base value.

A recursive function with these two properties is also said to be well-defined.
The following examples should help clarify these ideas.

Factorial Function

The product of the rositivc integers from I to n, inclusive, is called "n factorial" and is usually
denoted by n!:

it! = I-2'3 ... (it —2)(n-1)n

It is also convenient to define 0! = 1, so that the function is defined for all nonnegative integers. Thus
we have

0!=1	 I!=1	 2!=l2=2
	

3!=l23=6	 4!=I•2•3•4=24

	

5!	 I -23-4-5= 120
	

6!= I 2-3•4-5-6=720

and so on. Observe that

5! = 5 4! = 524 = 120	 and	 6! 6 5! = 6- 120 = 720

This is true for every positive integer it; that is,

= n (pi - 1)!

Accordingly, the factorial function may also be defined as follows:

Definition 6.1: (Factorial Function)

(a) If it	 0, then n! = 1.
(b) If n>0, then n! = fl . ( fl —1)!

Observe that this definition of n! is recursive, since it refers to itself when it uses (n	 1)! However,
(a) the value of n! is explicitly given when n = 0 (thus 0 is the base value); and (b) the value of n! for
arbitrary n is defined in terms of a smaller value of it 	 is closer to the base value 0. Accordingly,
the definition is not circular, or in other words, the procedure is well-defined.

EXAMPLE 6.8

Let us calculate 4! using the recursive definition. This calculation requires Mic following nine steps:

(I)
(2)
(3)
(4)
(5)
(6)
(7)

(8)

(9)

That is:

4! =4 . 3!
3!=3'2!

2! = 2 I!
I!	 I	 0!

0! = I
I!	 II

2! = 2 I •= 2
3! 3•2 = 6

4' = 4 - 6 =  24

Step 1. This defines 4! in terms of 3!. so we must postpone evaluating 4! until we evaluate 3! This
postponement is indicated  by indenting the next step.

Step 2. Here 31 is defined in terms of 21, so we must postpone evaluating 3! until we evaluate 21
Step 3. This defines 2! in terms of I!
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Step 4. This defines I in terms of 0!
step 5. This step can explicitly evaluate 0!. since 0 is the base value of the recursive definition.
Steps 6 to 9. We backtrack, using 0! to find I!, using 1! to find 2!, using 2! tojind 3!, and finally using 3! to

find 4! this backtracking is indicated by the "reverse" indention.

Observe that we backtrack in the reverse order of the original postponed evaluations. Recall that this type of
postponed processing lends itself to the use of stacks. (Sec Sec. 6.2.)

The following are two procedures that each calculate n factorial.

Procedure 6.7A: FACTORIAL(FACT, N)
This procedure calculates N! and returns the value in the variable FACT.

1. If N =0, then: Set FACF:= I, and Return.
2. Set FACT:= 1. [Initializes FACT for loop.]
3. Repeat for K=1 to N.

Set FACT:= K * FACT.
[End of loop.]

4. Rctirn.

Procedure 6.711: FACTORIAL(FACT, N)
This procedure calculates N! and returns the value in the variable FACT.

1. If N = 0, then: Set FACT:= 1, and Return.
2. Call FACTORIAL(FACF, N — 1).
3. Set FACT:=NxFACT.
4. Return.

Observe that the first procedure evaluates N! using an iterative loop process. The second procedure,
on the other hand, is a recursive procedure, since it contains a call W itself. Some programming
languages, notably FORTRAN, do not allow such recursive subpograrns.

Suppose P is a recursive procedure. During the running of an algorithm or a program which
contains P, we associate a level number with each given execution of procedure P as follows. The
original execution of procedure P is assigned level 1; and each time procedure P is executed because of
a recursive call, its level is 1 more than the level of sh, execution that has made the recursive call. In
Example 6.8, Step I belongs to level 1. Hence Step 2 belongs to level 2, Step 3 to level 3. Step 4 to level
4 and Step 5 to level 5. On the other hand, Step 6 belongs to level 4, sincc.it is the result of a return
from level 5. In other words, Step 6 and Step 4 belong to the same level of execution. Similarly, Step 7
belongs to level 3, Step 8 to level 2, and the final step, Step 9, to the original level I.

The depth of recursion of a recursive procedure P with a given set of arguments refers to thc
maximum level number of P during its execution.

Fibonacci Sequence
The celebrated Fibonacci sequence (usually denoted by F, F1 , b',, . . .) is as follows:

0, 1, I, 2, 3, 5, 8, 13, 21, 34. 55,

That is. F0 = 0 and F1 = 1 and each succeeding term is the sum of the two preceding terms. For
example, the next two terms of the sequence are

34 + 55 = 89	 and	 55 + 89 = 144

A formal definition of this function follows:

Definition 6.2: (Fibonacci Sequence)

(a) If it = 0 or n I, then F =
(b) If n > 1, then b, = r,-2 +
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This is another example of a recursive definition, since the definition refers to itself when it uses
F,,_ 2 and I',. Here (a) the base values are 0 and 1, and (b) the value of F, is defined in terms of
smaller values of n which arc closer to the base values. Accordingly, this functio.. is well-defined.

.A procedure for finding the nth term b of the Fibonacci sequence follows.

Procedure 6.8: FIBONACCI(FIB, N)
This procedure calculates FN and returns the value in the first parameter FIB.

I. If N () or N = 1, then: Set FIB:= N, and Return.
2. Call FJBONACCI(FIBA, N-2).
3. Call FIBONACCI(FIBB, N - 1).
4. Set FIB: = FIBA + FIBB.
5. Return.

This is another example of it recursive procedure, since the procedure convins it call to itself. In
fact, this procedure Contains two calls to itself. We note (sec Prob. 6.16) that one call write an
iterative procedure to calculate /, which does not use recursion.

Divide-and-Conquer Algorithms
Consider it P associated with a set S. Suppose A is an algorithm which partitions S into

smaller Sets sticli that the solution of the problem P for S is reduced to the solution of I' for one or more
of. the smallci- Sets. Then A is called a divide-and-conquer algorithm.

Two examples of divide-and-conquer algorithms, previously treated, are the quicksort algorithm in
Sec. 6.5 and the binary search algorithm in Sec. 4.7. Recall that the quicksort algorithm uses a
reduction step to find the location of a single clement and to reduce the problem of sorting the entire
set to the problcni of sorting smaller sets. The binary search algorithm divides the given sorted set into
two halves so that the problem of searching for an item in the entire set is reduced to the problem of
searching for the item in one of the two halves.

A divide-and-conquer algorithm A may be viewed as a recursive procedure. The reason for this is
that (lie algorithm A may he viewed as calling itself when it is applied to the smaller sets. The base
criteria for these algorithms arc usually the one-clement sets. For example, with it sorting algorithm, a
one-element set is automatically sorted; and with a searching algorithm, a one-element set requires
only a single comparison.

Ackermanu Function

The Ackcrmann function is a function with two arguments each of which can be assigned any
nonnegative integer: 0, I, 2.....This function is defined as follows:

Definition 6.3: (Ackcrrnann Function)

(a) If in = 0, then A(in, n) = n + 1.
(b) If in 0 but it 0, then (in, n) = A(ni - 1, 1).
(c) If in 96 0 and it 94 0, then A(,n, n)= A(,n - 1, 4(m, it 	 1))

Once more, we have a recursive definition, since the definition refers to itself in parts (b) and (c).
Observe that A(,n, n) is explicitly given only when in = 0. The base criteria arc the pairs

(0, 0),	 (0, 1),	 (0, 2)	 (0, 3).....(0, n),
Although it is not ObViOUS from the definition, the value of any A(ni, it) may eventually be expressed n
terms of the value of the function on one or' more of the base pairs.

The value of A( 1, 3) is calculated in Prob. 6.17. Even this simple case requires IS steps. Generally
speaking, the Ackcrmann function is too complex to evaluate on any but a trivial example. Its
importance comes from its use in mathematical logic. The function is stated here mainly to give
another example of a classical recursive function and to show that the recursion part of a definition may
he complicated.
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6.7 TOWERS OF HANOI

The preceding section gave examples of some recursive definitions and procedures. This section
shows how recursion may be used as a tool in developing an algorithm to solve a particular problem.
The problem we pick is known as the Towers of Hanoi problem.

Supposc.thrcc pegs, labeled A, B and C, are given, and suppose on peg A there arc placed a finitc
number ii of disks with decreasing size. This is pictured in Fig. 6-10 for the case n = 6. The object of the
game is to move the disks from peg A to peg C using peg B as an auxiliary. The rules of the game arc as
follows:

(a) Only one disk may be moved at a time. Specifically, only the top disk on any peg may be
moved to any other peg.

(h) At no time call 	 larger disk be placed oil smallcr disk.

A
	

B
	 C

Fig. 6-10 Initial setup of Towers of Hanoi with n = 6.	 -

Sometimes we will write X—*Y to denote the instruction "Move top disk from peg X to peg Y," wh rc
X and Y may be any of the three pegs.

The solution to the Towers of Hanoi problem for n = 3 appears in Fig. 6-I1. Observe that it
consists of the following seven moves:

n = 3: Move top disk from peg A to peg C.
Move top disk from peg A to peg B.
Move top disk from peg C to peg B.
Move top disk from peg A to peg C.
Move top disk from peg 13 to peg A.
Move top disk from peg B to peg C.
Move top disk from peg A to peg C.

A! 1,
(a) Initial.

I I A C^-
(4) A—.C.

1 4 1B

	

l

(I) A—.C.

(5)

^ C^ I
 B—.A.

ICLLIJ
(2) A—"B.

ABC

(6) B—'C.

cUJ
(3)

AD

(7) A—.C.

Fig. 6-It



(c) Move top disk from pcg A to peg C. (d) Move top five disks from peg It to peg C.

A	 U	 C	 A	 B	 C

A	 13	 C	 A	 K	 C

Fig. 6-12

(a) Initial: n	 6. (b) Move top five disks ([0111 peg A to peg B.
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In other words,

,,=3:	 A–C,	 A–.13,	 C-.-'lJ,	 A–.C,	 B— A,	 11

For complctencss, we also give the solution to thc Towers of IlaIR,i problem for it I and it 2:

	n= l:	 A–'C

	

n=2:	 A–.B,	 A–C,	 B–C

Note that n = I uses only one move and that n = 2 uses three movcs
Rather than finding a separate solution for each it, WC USC the technique of recursion tO (IeVCIOp it

general solution. First we observe that the solution to the Towers of Hanoi problem fain 1> 1 disks may
be reduced to the following subproblems:

(1) Move the top it - I disks front 	 A to peg 13.
(2) Move the top disk front 	 A to peg C: A–'C.
(3) Move the top it I disks from peg B to peg C.

This reduction is illustrated in Fig. 6-12 torn = 6. That is, lirsi we mOVC the 101) live disks front peg A to
peg B, then we move the large disk from peg A to peg C, and then we move the (op live disks from
B to peg C.

Let us now introduce the general flotation

TOWER(N, BEG, AUX, END)

to denote a procedure which moves the top  disks from the initial peg BEG to thc final peg END using
the peg AUX as art 	 When n = I, we have the following obvious solutioui:

1'OWER(l, BEG, AUX, END)	 consists of the single instruction 	 BEG—END

Furthermore, as discussed above, when is I, the solution may be reduced to thc solution of the
following three subproblems:
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(1) TOWER(N -1, BEG, END, AUX)

(2) T0WER ( 1 , BEG, AUX, END) or BEG-END
(3) TOWER(N - 1, AUX, BEG, END)

Observe that each of these three subproblems may be solved directly or is essentially the same as the
original problem using fewer disks. Accordingly, this reduction process does yield a recursive solution
to thic Towers of Hanoi problem.

Figure 6-13 contains a schematic diagram of the above recursive solution for

TOWER(4, A, B, C)

Observe that the recursive solution for n = 4 disks consists of the following 15 moves:

A-.13 A-C B-*C A-+B C-'.A C-*B A-'B A-C
B-*C B-A C-'A B-C A-'B A-.0 B-IC

In general, this recursive solution requires f(n) 2" - 1 moves for n disks.

TOWLR(l. A, C. Ii) . 'A -.11

TOWER(2, A, Ii, C)	 A-'.0 ........ . A-.0

/	

OwI.I(l, Ii, A, C) ''•.

TOWIiR(3, A, C, B)	 A-.B .......................

/
\	 TOWER(I,C,B,A) .... C-*A

/

	

/	 TOWER(2, C, A, B)--C-.B ........... -.13
I

/
TOWER(], A. C, B) ....

	

TOWER(4, A, B, C)	 A-.0 ............................................

TOWER(I. B, A, C)	 B-.0

TOWER(2, B, C. A)	 13-.A .........

/

TOWER(], C, B, A) ....

TOWER(3, B, A, C)	 B-.0........................... B-.0

OWER(l, A, C, B) ... . AB

TOWER(2, A, ,	A-.0 ....... . A-.0

TOWER(I, B. A, C)....

Fig. 6-13 Recursive solution to Towers of Hanoi problem for n 4.
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We summarize our investigation with the following formally written procedure.

Procedure 6.9: T'OWER(N, BEG, AUX, END)
This procedure gives a recursive solution to the Towers of I-lanai problem for N
disks.

1. If N = 1, then:
(a) Write: BEG— END.
(b) Return.

(End of If structure.)
2. [Move N - 1 disks from peg BEG to peg AUX.]

Call TOWER(N - 1, BEG, END, AUX).
3. Write: BEG— END.
4. [Move N - 1 disks from peg AUX to peg END]

Call TOWER(N— I, AUX, BEG, END).
5. Return.

One eali view this solutioti as a divide-and-conquer algorithm, since the solution for,, disks is reduced
to a solution for ii - I disks and a solution for ii = I disk.

6.8 IMPLEMENTATION OF RECURSIVE PROCEDURES BY STACKS

The preceding sections showed how recursion may he it useful tool in developing algorithms for
specific problems. This section shows how stacks may be used to implement recursive procedures. It is
instructive to first discuss subprograms in general.

Recall that a subprogram can contain both parameters and local variables. The parameters are the
variables -which receive values froni objects in the calling program, called arguments, and which
transmit values back to the calling program. Besides the parameters and local variables, the
subprogram must also keep track of the return address in the calling program. This return address is
essential, since control must be transferred back to its proper place in the calling program. At the time
that the subprogrni is finished executing and control is transferred back to the calling program, the
values of the loci variables and the return address arc no longer needed.

Suppose our subprogram is a recursive program. Then each level of execution of the subprogram
may contain diffcnt values for the parameters and local variables and for the return a'ddcss
Furthermore, if 4hc recursive program does call itself, then these current values must he saved, Since
they will be ucd again when the program is reactivated.

Suppose a programmer is using a high-level language which admits recursion, such as Pascal. Then
the computer handles the bookkeeping that keeps track of all the values of the parameters, local
variables and return addresses. On the other hand, if a programmer is using a high-level language
which does not admit recursion, such as FORTRAN, then the programmer must set up the necessary
bookkeeping by translating the recursive proccdure into a nonrecursive one. This bookkeeping is
discussed below.

Translation of a Recursive Procedure into a Nonrecursive Procedure
Suppose P is a recursive procedure. We assume that P is a subroutine subprogram rather than a

function subprogram. (This is no loss in generality, since function subprograms can easily be written as
subroutine subprograms.) We also assume that a recursive call to P comes only from the l)rOCCdUre P.
(The treatment of indirect recursion lies beyond the scope of this text.)

The translation of the recursive procedure P into a nonrccursivc procedure works as follows. First
of all, one defines:
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() A stack STPAR for each parameter PAR

(2) A stack STVAR for each local variable VAR

(3) A local variable ADD and a stack STADD to hold return addresses

Each time there is a recursive call to F, the current values of the parameters and local variables are
pushed onto the corresponding stacks for future processing, and each time there is a recursive return to
P. the values of parameters and local variables for the current execution of P are restored from the
stacks. The handling of the return addresses is more complicated; it is done as follows.

Suppose the procedure P Contains a recursive Call P in Step K. Then there are two return
addresses associated with the execution of this Step K:

(1) There is the current return address of the procedure P, which will be used when the current
level of execution of P is finished executing.

(2) There is the new return address K + 1, which is the address of the step following the Call P
and which will be used to return to the current level of execution of procedure P.

Some texts push the first of these two addresses, the current return address, onto the return address
stack STADD, whereas some texts push the second address, the new return address K + 1, onto
STADD. We will choose the latter method, since the translation of P into a nonrecursive procedure
will then be simpler. This also means, in particular, that an empty stack STADD will indicate a return
to the main program that initially called the recursive procedure P. (The alternative translation which
pushes the current return address onto the stack is discussed in Prob. 6.20.)

The algorithm which translates the recursive procedure P into a nonrecursive procedure follows. It
consists of three parts: (1) preparation, (2) translating each recursive Call P in procedure P and (3)
translating each Return in procedure P.

(I) Preparation.
(a) Define a stack STPAR for each parameter PAR, a stack STVAR for each local variable

VAR, and a local variable ADD and a stack STADD to hold return addresses.
(b) Set TOP:= r NULL.

(2) Translation of "Step K. Call P."
(al, Push the current values of the parameters and local variables onto the appropriate

stacks, and pusi) the new return address [Step] K+ 1 onto STADD.
(h) Jcset the par meters using the new argument values.
(c) Go to Step 1. [lie beginning of the procedure P.

(3) Translation of "Step J. Return."
(a) If STADD is crnrt y . then: Return. [Control is returned to the main program.]
(h) Restore the top values of the stacks. That is, set the parameters and local variables

equal to the top values on the stacks, and set ADD equal to the top value on the stack
STADD.

(c) Go to Step AL)l).

Observe that the translation of "Step K. Call P" does depend on the value 01 K, but that the
translation of "Step J. Return - does not depend on the value of J. Accordingly, one need translate
onl y one Return statement, for example, by using

Step L. Return.

as above and then replace every other Return statement by

Go to Step L.

This will simplify the translation of the procedure.
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Towers of Hanoi, Revisited
Consider again the Towers of Hanoi problem. Procedure 6.9 is a recursive solution to the problem

for n disks. We translate the procedure into a nonrecursive solution. In order to keep the steps
analogous, we label the beginning statement TOP: = NULL as Step 0. Also, only the Return statement
in Step 5 will be translated, as in (3) on the preceding page.

Procedure 6.10: TOWER(N, BEG, AUX, END)
This is a nonrecursive solution to the Towers of Hanoi problem for N disks
which is obtained by translating the recursive solution. Stacks STN, STBEG,
STAUX, STEND and STADD will correspond, respectively, to the variables
N, BEG, AUX, END and ADD.

0. Set TOP:=NULL.
1. If N = 1, then:

(a) Write: BEG—END,
(b) Go to Step 5.

[End of If structure.]
2. [Translation of "Call TOWER(N - 1, BEG, END, AUX)."]

(a) [Push current values and new return address onto stacks.]
(i) Set TOP' TOP +1.
(ii) Set STN[TOPIN, STBEG[TOP]:=BEG,

STAUXITOP] : = AUX, STEND[TOP) : = END.
STADD[TOP] =3.

(b) [Reset parameters.]
Set N:=N-1, BEG: =BEG, AUX:=END, END: =AUX.

(c) Go to Step 1.
3. Write: BEG— END.
4. [Translation of "Call TOWER(N - 1, AUX, BEG, END)."]

(a) [Push current values and new return address onto stacks.]
(i) Set TOP: = TOP +l.
(ii) Set STN[TOP]:=N, STBEG[TOP]:= BEG,

STAUX[TOP] := AUX, STEND[TOP] := END,
STADD[TOP] : = 5.

(b) [Reset parameters.]
Set N:=N — 1, BEG:=AUX, AUX:=BEG, END:=END.

(c) Go to Step 1.
5. [Translation of. "Return.'']

(a) If TOP: = NULL, then: Return.
(b) [Restore top values on stacks.]

(i) Set N: = STN[TOPI, BEG: = STBEG[TOP].
AUX := STAUX[TOP], STEND[TOP].
ADD := STAE)D(TOP].

(ii) Set TOP:=TOP-1.
(c) Go to Step ADD.

Suppose that a main program does contain the following statement:

Call TOWER(3, A, B, C)

We simulate the execution of the solution of the problem in Procedure 6. 10, emphasizing the different
levels of execution of the procedure. Each level of execution will begin with an initialization step where
the parameters are assigned the argument values from the initial calling statement or from the
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STN:	 3	 3,2	 3	 3,2	 3	 3	 3,2	 3	 3,2	 3

	

STBEG:	 A	 A,A	 A	 A,A	 A	 A	 A,B	 A	 A,B	 A

	

STAUX:	 B	 B, C	 B	 B, C	 H	 B	 B, A	 H	 I), A	 13

	

STEND:	 C	 C, B	 C	 C, B	 C	 C	 C, C	 C	 C, C	 C

	

STADD:	 3	 3,3	 3	 3,5	 3	 5	 5,3	 5	 5,5	 5

(a)I	 (b)	 (c)	 (d)	 (e)	
....!_ _________ 	

(k)	 (1)

Fig. 6-14 Stacks for TOWER(3, A, H, Q.

recursive call in Step 2 or Step 4. (Hence each new return address is either Step 3 or Step 5.) Figure
6-14 shows the different stages of the stacks.

(a) (Level 1) The initial Call TOWER(3, A, H, C) assigns the following values to the
parameters:

N:=3,	 BEG:=A,	 AUX:=B,	 END:=C
Step I. Since N 0 1, control is transferred to Step 2.
Step 2. This is a recursive call. Hence the current values of the vhriables and the new

return address (Step 3) are pushed onto the stacks as pictured in Fig. 6-14(a).
(b) (Level 2) The Step 2 recursive call [TOWER(N — 1, BEG, END, AUX)] assigns the

following values to the parameters:

N:= N - 1=2,	 BEG := BEG = A, AUX:= END= C,	 END:= AUX= 13
Step 1. Since N 0 1, control is transferred to Step 2.
Step 2. This is a recursive call. Hence the current values of the variables and the new

return address (Step 3) are pushed onto The stacks as pictured in Fig. 6-14(b).
(c) (Level 3) The Step 2 recursive call [TOWER(N - 1, BEG, END, AUX)] assigns the

following values to the parameters:

N: = N-1 = 1,	 BEG:=BEG = A, AUX:= END = B,	 END: =AIJX=C
Step 1. Now N = 1. The operation BEG—* END implements the move

A—C

Then control is transferred to Step 5. [For the Return.]
Step 5. The stacks arc not empty, so the top values on the stacks are removed, leaving Fig.

6-14(c), and are assigned as follows: 	 -

N:=2,	 BEG:=A,	 AUX:=C	 END:=B,	 ADD:=3

Control is transferred to the preceding Level 2 at Step ADD.
(d) (Level 2) [Reactivated at Step ADD 3.]

Step 3. The operation BEG—* END implements the move

A - B

Step 4. This is a recursive call. Hence the current values of the variables and the new
return address (Step 5) are pushed onto the stacks as pictured in Fig. 6-14(d).

(e) (Level 3) The Step 4 recursive call (TOWER(N - 1, AUX, BEG, END)] assigns the
following values to the parameters:

N:=N —1 = 1, BEG:= AUX= C, AUX BEG =A,
END := END = B
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Step I. Now N = 1. The operation BEG–. END implements the move

C–. II

Then control is transferred to Step 5. [For (he Return.]
Step 5. The stacks arc not empty; hence the top values on the stacks are removed, leaving

Fig 6-14(e), and they arc assigned as follows:

N:=2,	 BEG:=A,	 AUX:=C,	 END:=B,	 ADD:=5

Control is transferred to the preceding Level 2 at Step ADD.

(f) (Level 2) IRcactivation at Step ADD = 5.1
Step 5. The stacks are not empty; hence the top values on the stacks arc removed, leaving

Fig. 6-14(f), and they are assigned as follows:

N:=3,	 BEG:=A.	 AUX:=B.	 END: C,	 ADD =3

Control is transferred to the preceding Level I at Step ADD.

(g) (Level I) IRcac(iv1tion at Step ADD 3.1
Step 3. '[he operation BEG–. END implements the move

Step 4. This is a recursive call. Hence the current values of the variables and the new
return address (Step 5) arc pushed onto the stacks as pictured in Fig. 6-14(g).

(h) (Level 2) The Step 4 recursive call [TOWER(N 1, AUX, BEG, END)) assigns the
following values to the parameters:

N:=N--1=2.	 BEG:=AUX=B,	 AUX:= BEG =A,	 END:= END =C

Step 1. Since N 54 1, control is transferred to Step 2.
Step 2. This is a recursive call. Hence the current values of the variables and the new

return address (Step 3) arc pushed onto the stacks as pictured in Fig. 6-14(h).

(i) (Level 3) The Step 2 recursive call [TOWER(N - 1, BEG, END, AUX)] assigns the
following values to the parameters:

N:=N-1=1, BEG:= BEG =B, AUX:= END =C, END:=AUX=A

Step 1. Now N = 1. The operation BEG —END implements the move

B–. A

Then control is transferred to Step 5. [For the Return.]
Step 5. The stacks are not empty; hence the top values on the stacks arc removed, leaving

Fig. 6-14(i), and they are assigned as follows:

N:=2,	 BEG:=B,	 AUX:=A,	 END:=C,	 ADD:=3

Control is transferred to the preceding Level 2 at Step ADD.

	

. (I)	 (Level 2) [Reactivation at Step ADD 3.] -
Step 3. The operation BEG–. END implements the move

B–'C

Step 4. This is a recursive call. Hence the current values of the variables and the new return
address (Step 5) are pushed onto the stacks as pictured in Fig. 6-14(j).

(k) (Level 3) The Step 4 recursive call [TOWER(N - 1, AUX, BEG, END)] assigns the
following values to the parameters:	 -

N:=N - 1 = I,	 BEG:= AUX=C,	 AUX:= BEG= B,	 END: ENI) = C
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Step 1. Now N = 1. The operation BEG— END implements the move

Then control is transferred to Step 5. [For the Return.]
Step 5. The stacks arc not empty; hence the top values on the stacks are removed, leaving

Fig. 6-14(k), and they are assigned as follows:

N:=2, BEG:=B,	 AUX:=A,	 END:=C,	 ADD:=5

Control is transferred to the preceding Level 2 at Step ADD.
(1)	 (Level 2) [Reactivation at Step ADD = 5.1

Step 5. The stacks are not empty; hence the top values on the stacks are removed, leaving
Pig. 6-14(1), and they are assigned as follows:

N:=3, I3EG:=A,	 AUX:=13,	 END:=C,	 A[)D:=5
Control is transferred to the preceding Level I at Step ADD.

(m) (Level I) [Reactivation at Step ADD = 5.]Step 5. The stacks are now empty. Accordingly, control is transferred to the original main
program containing the statement

Call TOWER(3, A, 13, C)
Observe that the output consists of the following seven moves:

A—+ C,	 A—* B,	 C—.B,	 A^C,	 B—*A,	 B—.0
This agrees with the solution in Fig. 6-11.

Summary

The Towers of Hanoi problem illustrates the power of recursion in thc'solution of various
algorithmic problems. This section has shown how to implement recursion by mcns of stacks when
using a programming language—notably FORTRAN or COBOL—which does not allow recursive
programs. In fact, even when using a programming language —such as Pascal—which does support'
recursion, the programmer may want to use the nonrecursive solution, since it may be much less
expensive than using the recursive solution.

/

QUEUES

 queue is a linear list of elements in which deletions can take place only at one end, called the/ front, and insertions can take place only at the other end, called the rear. The terms "front" and "rear"
are used in describing a linear list only when it is implemented as a queue.)

Queues are also called first-in first-out (FIFO) lists, since the first clement i1 a queue will be the
first element Out of the queue. In other words, the order in which elements enter a queue is the order in
which they leave. This contrasts with stacks, which are last-in first-out (LIFO) lists.

d'ueucs abound in everyday life. The automobiles waiting to pass through an intersection form a
queue, in which the first car in line is the first car through; the people waiting in line at a bank form a
lueue, where the first person in line is the first person to be waited on; and so on. An important
example of a queue in computer science occurs in a timesharing system, in which programs with the
same priority form a queue white waiting to be executed. (Another structure, called a priority queue, is
discussed in Sec. 6.11.)
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EXAMPLE 6.9

Figure 6-15(a) is a schematic diagram hi a queue wilts 4 elements, where AAA is the front clement and DDD
is the rear element. Observe that the front and rear elements of the queue are also, respectively, the first and last
elements of the list. Suppose an element is deleted from the queue. Then it must he AAA. This yields the queue in
Fig. 6-15(b), where BBB is now the front clement. Next, suppose EEE is added to the queue and then FEF is
added to the queue. Then they must be added at the rear of the queue, as pictured in Fig. 6-15(c), Note that FFF is
now the rear clement. Now suppose another element is deleted from the queue; then it must he BBB, to yield the
queue in Fig. 6-15(d). And soon. Observe that in such a data structure, EEE will he deleted before FFF because it
has been placed in the queue before FFF. However, EEE will have to wait until CCC and DDI) are deleted.

Lj-4IH----4cCDlD
(a)

(b)

(c)

(d)

Fig.-6-15

Representation of Queues

Queues may be represented in the computer in various ways, usually by means of one-way lists or
linear arrays. Unless otherwise stated or implied, each of our queues will be maintained by a linear
array QUEUE and two pointer variables: FRONT, containing the location of the front element of the
queue: and REAR, containing the location of the rear element of the queue. The condition
FRONT = NULL will indicate that the queue is empty.

Figure 6-16 shows the way the array in Fig. 6-15 will be stored i's memory using an array QUEUE
with N elements. Figure 6-16 also indicates the way elements will be deleted from the queue and the
way new elements will be added to the queue. Observe that whenever all is deleted from the
queue, the value of FRONT is increased by 1; this can he implemented by the assignment

FRONT: = FRONT + I

Similarly, whenever an element is added to the queue, the value of REAR is increased by 1; this can be
implemented by the assignment

REAR:=REAR+ 1

This rnc'ans that after N insertions, the rear clement of the queue will occupy QUEUENJ or, in other
words, eventually the queue will occupy the last part of the array. This occurs even though the (IUCUCitself may not Contain many elements.

Suppose we want to insert an clement ITEM into a queue at the time the queue does occupy the
last part of the array, i.e., when REAR = N. One way to do this is to simply move the entire queue to
the beginning of the array, changing FRONT and REAR accordingly, and then inserting ITEM is
above. This procedure may be very expensive. The procedure we adopt is to assume that the array
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0 U EU Ii

	

llU)NF: 1	 [A BHB CCC DDD	 I	 I	 IREAR: 4

	

1	 2	 3	 4	 5	 6	 7	 N

(a)

QUEUE

	

FRONT: 2	
[	

E3HH (CC DDI)	 I	 I	 IREAR: 4

	

I	 2	 3	 4	 5	 6	 7	 N

(b)

QUEUE

FN	 2	
[	

111313 CCC Dl)D FEE I EFF	 I
	I 	 2	 3	 4	 5	 6	 7	 N

(c)

QUEUE

	

FRONT: 3	 [	 CCC DDD ELF FFF	 I	 I
	REAR: 6	 I

2	 3	 4	 5	 6	 7	 N

(ii)

Fig. 6-16. Array representation of a queue.

QUEUE is circular, that is, that QUEUELIJ comes alter QUEUEINI in the array. With this
assumption, we insert ITEM into the queue by assigning ITEM to QUEUE[ IJ. Specifically, instead of
increasing REAR to N + 1, we reset REAR = I and then assign

QUEUEIREAR] := ITEM

Similarly, if FRONT = N and an clement of QUEUE is deleted, we reset FRONT = I instead of
increasing FRONT to N ± 1. (Some readers may recognize this as modular arithmetic, discussed in

Sec. 2.2.)
Suppose that our queue contains only one clement, i.e., supposc that

FRONT = REAR Y6 NULL

and suppose that the clement is deleted. Then we assign

FRONT: = NULL and REAR=NULL

to indicate that the queue is empty.

EXAMPLE 6.10
Figure 6-17 shows how a queue may be maintained by a circular array QUEUE with N 5 memory locations.

Observe that the queue always occupies consecutive locations except when it occupies locations at the beginning
and at the end of the array. If the queue is viewed as a circular array, this means that it still occupies cOflsCCutiVC

locations. Also, as indicated by Fig. 6-17(m), the queue will be empty only when FRONT' REAR and an
clement is deleted. For this reason, NULL is assigned to FRONT and REAR in Fig. 6-17(m).
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QUEUE
(a)	 Initially empty: FRONT: 0	 I	 I

REAR: 0
2	 3	 4	 5

(b) A, B and then  inserted: FRONT: IA 
B CREAR: 3	 ___________

(c) A deleted: FRONT: 2 Li B CREAR: 3

(d) I) and then F inserted: FRONT: 2	
II 

C j 
I) J iIJREAR: 5

(e) B and C deleted: FRONT: 4 LI I I D I E JREAR: 5

if) F inserted: * FRONT: 4 
[F I I	 DREAR: I

(g) D deleted:	 FRONF: 5
REAR: I II±1	 I

(It)	 G and then H inserted: FRONT:
REAR: 3 _______________

(i) E deleted: FRONT: I J F G II	 I 1REAR: 3

(j) F deleted: FRONT: 2 [J G ElREAR: 3

(k) K inserted: FRONT: 2	
[	 I ii I	 1 1REAR: 4

(I)	 G and U deleted: FRONT: 4 LI	 HIlREAR: 4

On) K deleted, QUEUE empty:	 FRONT: 0

	

LI.	 I	 I	 I	 IREAR: 0

Fig. 6-17

We are now prepared to formally state our procedure QINSERT (Procedure 6.11), which inserts a
data ITEM into a queue. The first tiling we do in the procedure is to test for overflow, that is, to test
whether or not the queue is filled.

Next we givca procedure QDELE'FE (Procedure 6.12), which deletes the first clement from a
queue, assigning it to the variable ITEM. The first thing we do is to test for undcrflow, i.e., to test
whether or not the queue is empty.
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6.11: QINSER1'(QULUL, N, FRONT, REAR, ITEM)
This procedure inserts an element ITEM into a qUCUC.

1. (QucUC already tillcd?j
If FRONT= I and REAR = N, or if FRONT = REAR 4 1. then:

Write: OVERFLOW, arid :Return.

2. [Find new value of REAR]
If FRONT: = NULL, then: IQucuc initially empty.]

Set FRONT I and REAR I.
Else if REAR = N, then:

Set REAR	 I.
Else:

Set REARREAR+ I.
lEnd of If structure.]

3. Set QL.EUEIREAR1	 ITEM. (This inserts new e1cmcnt.1

4. Return.

Procedure 6.12: QDELEi'E(QUEUL N, FRONT, REAR, ITEM)
This procedure deletes an clement from a queue and assigns it to the variable

ITEM.

1.[Queue already empty"]
If FRONT: = NULL, then: Write: UNDERFL0', and Return.

2. Set ITEM:QUEUE(FRONT]

3. (Find new value of FRONT.
If FRONT= REAR, then: (QUCUC has only one element to start.]

Set FRONT : NULL and REAR := NULL.

Else if FRONT = N then:
Set FRONT: = 1.

Else:
Set FRONT:=FRONT+ I.

(End of If structure.]
4. Return.

6.10 J)EQUES

A dequc 
(pronounced either "deck" or "dcqueuC") is a linear list in which elements call be added

or removed at either end but not in the middle. The term dcquc is a contraction of the name

(I(,lJblt'-ell(Ie(I queue.
variousways of represent

a dequc in a computer. Unless it is otherwise stated or
There are  

implicd. we will assume our dcque is maintained by a circular array DI3QUE with pointers LE
	 and

RIG1 II', which point to the two ends of the dequc. We assume that the elements extend from the left

end to be right end in the array. The term 'circul	
comes from the fact that we assume that

DEQUEL 1] comes after l)EQUEIN] in the array. Figure 6-18 pictures two dcqucs. cach with 4

elements maintained in all 	 with •N = 8 memory locations. The condition LEFT NULL will he

used to indicate that a dcquc is empty.There are two vtriatioflS of a dequc—namcly an inputrcstrictcd dcquc and an outputrcstrictCd

deuuc_Whict1 are intermediate between a dcque and a queu 	
input-restricted deque isC. Specifically. an inpui 

a	 uC 

which allows insertions at only one end of the list but allows deletions at both ends of the list-,

and an outpul-restrictr4 deque is 
a dcque which allows deletions at only one end of the list but allows

iscrtiofls at both el' 	 of the list.
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DEQUE
LEFT:4

	

RtGUT: 7	 I	 I	 I	 AAA J 111311 I CCC I DDD J
I	 2	 3	 4	 5	 6	 7	 8

(a)

DEQUE

	

LEFT: 7	 L	 I

	RIGHT: 2	 I 
YYY J ZZZ	 J	 I1 www 

J 
Xxx

1	 2	 3	 4	 5	 6	 7	 8

	

•	 (b)

Fig. 6-IS

The procedures which insert and delete elements in dcqucs and the variations on those procedures
arc given as sLlpplcmcntary problems. As with queues, a complication may arise (a) when there is
overflow, that is, when an clement is to he inserted into a dequc which is already lull, or (b) when there
is underfiow, that is, when an clement is to be deleted from a dcquc which is empty. The procedures
must consider these possibilities.

1R1TY QUEUES

A

	

6

priority queue is a collection of elements such that each clement has been assigned if 	 and
such that the order in which elements arc deleted and processed comes from the following rules:

(I) An CiCflIeflt of higher priority is processed before any clement of lower priority.

(2) Two elements with the same priority arc processed according to the order in which they were
added to the queue.

A prototype of a priority queue is a timesharing system: programs of high priority are processed first,
md programs with the same priority form a standard' queue.

There arc various ways of maintaining a priority queue in memory. We discuss two of them here:
.me uses a one-way list, and the other uses multiple queues. The ease or difficulty in adding elements to
or deleting them from a priority queue clearly depends on the representation talat one chooses.

One-Way List Representation or a Priority Queue

One way to maintain a priority queue in memory is by means of a one-way list, as follows:

(a) Each node in the list will contain three items of information: an information field INFO, a
priority number PRN and a link number LINK.

(b) A node X precedes a node Y in the list (1) when X has higher priority than Y or (2) when
both have the same priority but X was added to the list before Y. This means that the order in
the one-way list corresponds to the order of the priority queue.

Priority numbers will operate in the usual way: the lower the priority number, the higher the priority.

LE 6.11

Figure 6-19 shows a chcmatic diagram of a priority queue with 7 elements. The diagram does not tell us
whether 131311 was adcd to the list before or after DDD. On the other hand, the diagram does Icli us that 13BE3
was inserted before CCC. because BBB and have the same priority number and 131113 appears before CCC in
the list. Figure 6-20 she vs the way the priorty queue may appear in memory using linear u- .ys INFO. ('RN and
LINK. (See Sec. 5.2.)
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Fig. 6-19
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Fig. 6-20

The main property of the one-way list representation of a priority queue is thatihe clement in the
queue that should be processed first always appears at the beginning of the one-way list. Accordingly,
it is a very simple matter to delete and process an clement from our priority queuc. The outline of the
algorithm follows.

Algorithm 6.13: This algorithm deletes and processes the first clement in a priority queue which
appears in memory as a one-way list.

1. Set hEM : = INFO[START1. [This saves the data in the first node.!
2. Delete first node from the list.
3. Process ITEM.
4. Exit.

The details of the algorithm, including the possibilityof underilow, arc left as all
Adding an element to our priority queue is much more complicated than deleting an clement from

the queue, because we need to find the Correct place to insert the element. An outline of the algorithm
follows.
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Algorithm 6.14: This algorithm adds an ITEM with priority iWmber N to a priority queue which is
maintained in memory as a one-way list.

(a) Traverse the one-way list Until finding a node X whose priority number exceeds
N. Insert ITEM in front of node X.

(h) If no such node is found, insert ITEM as the last clement of the list.

The above insertion algorithm may be pictured as a weighted object "sinking" through layers of
elements until it meets an element with a heavier weight.

The details of the above algorithm arc left as an exercise. The main difficulty in the algorithm
comes from the fact that ITEM is inserted before node X. This means that, while traversing the list,
one must also keep track of the address of the node preceding the node being accessed.

EXAMPLE 6.12

Consider the priority queue in Fig. 6-19. Suppose an item XXX with priority number 2 is to be inserted into
the queue. We traverse the list, comparing priority numbers. Observe that ODD is the first clement in the list
whose priority number exceeds that of XXX. Hence XXX is inserted in The list in front of ODD, as pictured in Fig.
6-21. Observe that XXX comes alter 81113 and CCC, which have the same priority as XXX. Suppose now that an
clement is to he deleted rorn the queue. It will he AAA, the first clement in the list. Assuming no other
insertions, thcnext clement to he deleted will be 131313, then CCC, then XXX, and so on.

START	 XILJ)

AAA	 cc

Fig. 6-21

Array Representation of a Prioritj_Queue

Another way to maintain a priority queue in memory is to use a separate queue for each level of
priority (or for each priority number). Each such queue will appear in its own circular array and must
have its own pair of pointers, FRONT and REAR. In fact, if each queue is allocated the same amount
of space, a two-dimensional array QUEUE can be used instead of the linear arrays. Figure 6-22
indicates this representation for the prior,ity queue in Fig. 6-21. Observe that FRONT(K] and
REAR[K] contain, respectively, the front and rear elements of row K of QUEUE, the row that
maintains the queue of elements with priority number K.

FRONT REAR

HI

2	 3

AAA

2	 BBB CCC XXX

3

4	 FFF

5

Fig. 6-22

4	 5	 6

DIM)	 EFF

(jOG
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The following are outlines of algorithms for deleting and inserting elements in a priority queue that
is maintained in memory by a two-dimensional array QUEUE, as above. The details of the algorithms
are left as exercises.
Algorithm 6.15: This algorithm deletes and processes the first clement in a priority qUCUC maintained

by a two-dimcnsiqnal array QUEUE.
I. (Find the first no!icmpty queue.]

Find the smallest K such that FRONT[KJ NULL.
2. Delete and process the front clement in row K of QUEUE.
3. Exit.

Algorithm 6.16: This algorithm adds an ITEM with priority number M to a priority queue
maintained by a two-dimensional array QUEUE.

1. Insert ITEM as the rear clement in row M of QUEUE.
2. Exit.

Summary
Once again we see the time-space tradeoff when choosing between different data structures for a

given problem. The array representation of ,a 	 queue is more time-efficient that; the one-way
list. This is because wheat an element to a one-way list, one must perform a linear search on the
list. On the other hand, the one-way list representation of tie priority queue may be more
space-efficient than the array representation. This is because in using the array representation,
overflow occurs when the number of elements in any single prerity level exceeds the capacity for that
level, hut ill using the one-way list, overflow occurs only whcri the total number of cicmcnts exceeds
the total capacity. Another alternative is to use a linked list for each priority level.

Solved Problems

STA91'
Consider the following stack of characters, where STACK is allocated N = 8 memory cells:

STACK:	 A, C, D, F, K, , -, -

(For notational convenience. WC USC ""to denote an empty memory cell.) Describe the stack
as the following operations take place:

(a) POP(STACK, ITEM)
(h) l'oI'(sTAçK, ITEM)
(c) PUSH(STACK, L
(d) PUSI-I(STACK, I')

(e) E'OP(STACK, ITEM)
(f) PIJSII(STACK, R)
(g) PUSI-{(STACK, S)
(Ii) POI'(STACK, ITEM)

The POP procedurealways deletes the top element trout the stack, and the I'USI I procedure always
adds the new clement to the top of the stack. Accordingly:

(a) STACK:	 A, C, D, F,
(h) STACK:	 A. C, D, -.
() STACK:	 A. C, D. L,
(d) STACK:	 A, C, D, L, P. -'

(,') STACK:	 A, C. D, L, , -' -, -
(f) STACK:	 A, C, D, L, R, - -. -
(g) STACK:	 A,C,D,L,R,S._,_
(/t) STACK: - A, C, D, L, R, -. -. -
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6.2,VConsidcr the data in Prob. 6.1. (a) When will overflow occur? (b) When will C be dctctcd
-'	 before D?

(a) Since STACK has been allocated N = 8 IliCrilory cells, overflow will occur when STACK contOn5 8
elements and there is a PUSH operation to add another element to STACK.

(1) Since STACK is implemented as a slack, C will never he deleted before D.

6.3	 Consider the following stack, where STACK is aHocated N = 6 memory cells:

STACK: AAA, DDD, FEE, FFF, GGG.	 -
Describe the stack as the following operations take place: (a) PUSH (STACK, KKK).
(I,) POP(STACK. ITEM), (c) PUSI-I(STACK, LLL), (il) I'USH(STACK, SSS),
(e)POP(STACK, ITEM) and (f) PUSI-1(STACK, Tfl').
(a) KKK is added to the top of STACK, yielding

STACK: AAA, DDD, EEE. FFF. GGG, KKK
(b) The top clement is rcinoved from STACK, yielding

STACK:	 AAA. DDI), FEE, FF1:, (IGG,
(e) LLI is .l(IdC(I to the top of STACK, yielding

STACK:	 AAA, 1)DD, FEE, FFF, GGG, LLL
(d) Overflow occurs, since STACK is lull and another clement SSS is to he added to STACK.

No further operations can take place until the overflow is rcsolvcd—by adding addilional space for
STACK, For example.

SUppOSC STACK is allocated N = 6 memory cells and initially STACK is empty, or, in other
words, TOP 0. Find the output of the following module:

1. Set AAA : = 2 and 131313:=5.
2. Call PUSIl(STACK, AAA).

Call PUSIJ(Si'ACK, 4).
Call PUSI-1(sTACK, 131311 + 2).
Call PUSI-I(STACK, 9).
Call PUSI-1(STACK, AAA + 111313).

3.— Repeat while TOP / 0:
Call POP(STACK, ITEM).
Write: ITEM.

(End of loop.]
4. Return.

Step I. Sets AAA 2 and 131313 = 5.
Step 2. Pushes AAA = 2, 4, B1313 + 2 = 7, 9 and AAA + 111311 = 7 onto STACK, yielding

STACK:	 2, 4, 7, 9, 7, -

Stcp 3. Pops and pilots the elements of STACK until STACK is empty- Since the top element is always
popped, the output consists of the following sequence:

7, 9, 7, 4, 2

Observe that this is (he reverse of the order in which (lie elements were a(l(Icd to STACK.
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6.5	 Suppose a given space S of N contiguous memory cells is allocated to K = 6 stacks. Describe
ways that the stacks may be maintained in S.

Suppose no prior data indicate that any one stack will grow more rapidly than any of the other stacks.
Then one may reserve N/K cells for each stack, as in Fig. 6-23(a), where B,,. B, ' . - . , B. denote,
respectively, the bottoms of the stacks. AItcrnatively, one can partition the stack into pairs and reserve
2NIK cells for each pair of stacks, as in Fig. 6-23(b). The second method may decrease the number of
times overflow will occur.	 -

II	 B,	 U,	 It,

I	 --	 I	 •-	 I	 -	 I	 I	 I	 -III
(a)

B.	 8,

P•'	 ,.	 .	 I —p-	 I
(6)

Fig. 6-23

POL1&f NOTATION

Translate, by inspection and hand, each infix expression into its equivalent posthx expression:

_-A--B)*(D/E)

(c) A*(B+D)/E-F*(G+H/K)

Using the order in which the operators arc executed, translate each operator from infix to pstfix
notation. (We use brackets ( J to denoe a partial translation.)

(a) (A - B) * (DIE) [AB-1 IDE/I = AU-DEl.

(b) (A + B T D)/(E --- F)+ 0 (A -i- II3DCD/!EF-1+ 0 =(ABDf -1-J/[EF-J+ 0

IABDTfEF - / 1 0 ABDT+EF-/G+

(()	 A*(B+D)/E_F*(G+HIK)A*IBD+1/E_F*(0+(}41)
=IABD+*1IEF*IGF+1
= [ABD+* E/i - [FGHK/+ 1

=ABD+.EIFGflK/4-

Ohsrvc that we did translate more than otc operator iii a single step when the operands did not overlap.

Consider the following arithmetic expression P. written in postfix notation:

P:	 12, 7, 3, .-.-, I, 2, 1, 5, +, *, +

(a) Translate P, by inspection and hand, into its equivalent infix expression.

(b) Evaluate the infix expression.

(a) Scanning from left to right, translate each operator from postfix to infix notation. (We use brackets
to denote a partial translation.)

P	 12, [7- 31, I, 2, 1, 5, +. 4', +

= 112/(7 - 3)], 2, 1, 5, +, •. +
= [12/(7 - 3 )1, 2, [I :f 51, •. +
= 112/(7 - 3)1. j2 1, ( 1 + 5)1. +
= 12/(7-_3)-+-2.*(1 f 5)
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(b) Using the infix expression, we obtain;

P=I2/(7-3)+2*(I+5)=I2,4+2so3+I2Is

9.—Consider the postfix expression P in Prob. 6.7. Evaluate P using Algorithm 6.3.

First add a sentinel right parenthesis at the end of P to obtain:

I':	 12.7,3,—,/,2,1,5,+,.,+,)

Scan P from left to right. If a constant is encountered, put it on a stack, but if an operator is encountered,
evaluate the two top constants on the stack. Figure 6-24 shows the contents of STACK as each clement of
P is scanned. The final number, IS. in STACK, when the sentinel right parenthesis is scanned, is the value
of P. This agrees with the result in Prob. 6.7(b).

Symbol	 STACK

	

12	 12

	

7	 12,7

	

3	 12,7,3
12,4

	

I	 3

	

2	 3.2
3,2,1

	

5	 3, 2, '.5

	

+	 3,2.6

	

•	 3.12

	

+	 15

	

)	 15

Fig. 6-24

6.9	 Consider the following infix txprcssion 0:

	0: 	 ((A-4	 B)*D) 1' (E — F)

Use Algorithm 6.4 to translate 0 into its equivalent potfix expression I'.

First push a left parenthesis onto SFACK, and then add a right parenthesis to the end of 0 to obtain

0:	 ((A+B)*p)(E--I))

(Note that Q now contains 16 elements.) Scan Q from left to right. Recall that (I) if it is
encountered, it is adcd to P; (2) if a left parenthesis is encountered, it is put on the stack; (3) if an
operator is encountered, it "sin!s" to its own level; and (4) if a right parenthesis is encountered, it "sinks"
to the first left parenthesis. Figure 6-25 shows pictures of STACK and the string P as each cicrnci,t of 0 is
scanned. When STACK is empty, the Final right parenthesis has been scanned and the result is

	

1':	 A B +	 D * E F -

which is the required posuix equivalent of Q.

ii Translate, by inspection and hand, each infix expression into its equivalent prefix expression:

(a) (A - B) * (D / E)

(1,) (A + B T D)/(E -- F) f U
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Fig. 6-25

Is there any relationship between the prefix expressions and the equivalent posthix cxprcssiofls
obtained in Prob. 6.6.

Using the order in which the operators are executed, translate each operator from infix to prefix
flOtatiOlL
(a) (A - 13) • (DIE) = [—AB) * [/DEj	 * - A B I I) E

(b) (A - f-li t D)/(E -F) + G (A + IIBDD/VEF I + G
1+AIUDI/( - EF I + G

=I/+AIBD-EFi+G
+ / + A I B D - F F (1

The ptcfix expression is not the revcrsc of the postfix expression. lIowevcr, thc order of t 
operands—A. 13, 11) and E in part (a) and A, 13, 1), Ii. F and 0 in part (b)—is the same for all three
expressions, infix, postlix and prefix.

QUICKSORT

6.11 Suppose S is the following list of 14 alphabetic characters:
®ATASTRUCLURE®

Suppose the characters in S are to be sorted alphabetically. Use the quicksort algorithm to find
the final position of the first character D.

Beginning with the last character S. scan the list From right to left until finding a charter whk'
precedes D alphabetically. It is C. Interchange I) and C to obtain the list:

ØA TA ST R U®T U RE S
Beginning with this C. scan the list toward I), i.e.. Front left to right, until finding
succeeds I) alphabetically. It is T. Interchange D and 'r to obtain the list
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CAASR UTTU RES
Beginning with this T, scan the list toward D until finding a character which precedes D. It is A.
Interchange D and A to obtain the list:

C A ® e S T R U r T U R E S
Beginning with this A, scan the list toward D until finding a character which succeeds D. There is no such
letter. This means D is in its final position. Furthermore, the letters before D form a sublist consisting of all
letters preceding D alphabetically, and the letters after D form a sublist consisting of all the letters
succeeding D alphabetically, as follows:

CAA®STRUTTURES

Sublist	 Sublist
Sorting S is now reduced to sorting each sublist.

6.12 Suppose S consists of the following n = 5 letters:

®BCD.®
Find the number C of comparisons to sort S using quicksort. What general conclusion can one
make, if any?

Beginning with E, it takes n - 1 4 comparisons to recognize that the first letter A is already in its
correct position. Sorting S is now reduced to sorting the following sublist with n - 11 = 4 letters:

Beginning with E, it takes n - 2 = 3 comparisons to recognize that the first letter B in the sublist is already
in its correct position. Sorting S is now reduced to sorting the following sublist with n - 2 = 3 letters:

AB®D®

Similarly, it takes n - 3 = 2 comparisons to recognize that the letter C is in its correct position, and it takes
n —4 = 1 comparison to recognize that the letter D is in its correct position. Since only one letter is left, the

-list is now known to be suited. Altogether we have:
C = 4 + 3 + 2 + 1 = 10 comparisons

Similarly, using quicksort, it takes

	

C(fl_l)+(fl_^)+...+2±l=n(?1)	 +0(n)=O(n2)

comparisons to sort a list with n elements when the list is already sorted. (This can be shown to be theworst case for quicksort.)

6.13 Consider the quicksort algorithm. (a) Can the arrays LOWER and UPPER be implemented as
queues rather than as stacks? Why? (b) How much extra space is needed for the quicksort
algorithm, or, in other words, what is the space complexity of the algorithm?
(a) Since the order in which the subsets are sorted does not matter, LOWER and UPPER can he

implemented as queues, or even deques, rather than as stacks.
(b) Quick-sort algorithm is an "in-place" algorithm; that is, the elements remain in their places except forinterchange . 2 The extra space is required mainly for the stacks LOWER and UPPER. On the

average, the extra space required for the algorithm is proportional to log ,i, where a is the number ofelements to be sorted.



202	 STACKS, QUEUES, RECURSION	 (CHAP. 6

SIONREC
Let a and h denote positive integers. Suppose a (unction Q is defincd recursively as follows:

10	 ifa<b
Q(ab)1.Q (a _b , b)+1	 ifba

(a) Find the value of Q(2, 3) and Q(14, 3).

(b) What does this function do? Find Q(5861, 7).

(a) Q(2, 3) =0	 since	 2<3
Q(14,3)=Q(l1,3)+l

=IQ,3)+lJ+l=Q,3)+2
=(Q(5,3)+11+2Q(5,3)+3
=[Q(2,3)+1]+3='Q(2,3)+4
=0+4=4

(b) Each time b is'sibiractcd from a, the values of Q is increased by I. Hence Q(a, b) finds the quotient
when a is divided by b. Thus,

Q(5861, 7) = 837

Let n denote a positive integer. Suppose a function L is defined recursively as follows:

10	 ifn'I

	

L(n)='[L([fl,21)+l	 if n>1

(Here Lk] denotes the "flo6r" of k, that is, the greatest integer which does not exceed k. Sec

Sec. 2.2.)

(a) Find L(25).

(b) What does this function do?

(a) L(25)L(12)+1
(L(6) IJ + I L(6) + 2

=[L(3)+I]+2L(3)+3
= (L(1) + lj + 3 L(I) + 4
=0+4=4

(b) Each time n is divided by 2, the value of L is increased by 1. Hence L is the grcâIst integer such that

2' :5 n

Accordingly, this function finds
L = [10g2 nJ

6.16 Suppose the Fibonacci numbers F11 89 and F, 2 = 144 are given.

(a) Should one use recursion or iteration to obtain F16 ? Find F16.

(b) Write an iterative procedure to obtain the first N Fibonacci numbers
F[IJ, F[21.....FENI, where N >2. (Compare this with the recursive Procedure 6.8.)

(a) The Fibonacci numbers should be evaluated by using iteration (that is, by evaluating from the bottom
up), rather than by using rc.ursion (that is, evaluating from the top down).
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Recall that each Fibonacci number is the sum of the two preceding Fibonacci numbers.
Beginning with F,, and F, 2 we have

	

F,,=89+144233.	 F,=144+233=377
	

F,, = 233 + 377 610

and hence

F,6 = 377 + 610 987
(b) Procedure I'6.116: FIBONACCI(F, N)

This procedure finds the first N Fibonacci numbers and assigns them to an
array F.

Set F(IJ:1 and F12J:= I.
2 Repeat for 1=3 to N:

Set F[L):=FIL—lJ+F(L-21.
[End of loop.)

3. Return.

(We emphasize that this iterative procedure is much more efficient (hall 	 recursive Procedure 6.8.)

6.17 Use the definition of the Ackcrmann function (Definition 6.3) to find A(I, 3).

We have the Following IS steps:

(I) A(l,3).A(0.A(l,2))
(2) ,t( I. 2)= 4(0. 4(1, I))
(3) 4(1, I)	 4(0, 4(1,0))
(4) 4(1,0)	 4(0, I)
(5) 4(t), I)= I + =2
(6) 4(1, ())2
(7) 4(1. 1)=A(0,2)
(8) 4(0, 2) 2 + I = 3
(9) 4(I, l)=3

(10) 4(1, 2)= 4(0,3)
(II)
	

4(0, 3) 3 + I = 4

(12) 4(1, 2)=4
(13) .4(1, 3)= ,1(0, 4)

(14) A(0, 4) 4 + 1 5
(15) .4(1, 3)=5

The Forward indention indicates that we are postponing an evaluation and arc recalling the definition, and
the backward indention indicates that we are backtracking.

Observe that the first formula in Definition 6.3 is used in Steps 5, 8, II and 14, the second Formula in
Step 4 and the third formula in Steps 1. 2 and 3. In tile other Steps we arc backtracking with substitutions.

6.18 Suppose a recursive procedure P contains only one recursive call:

Steil 	 Call P.

Indicate the reason that the stack STADD (for the return addresses) is not necessary.

Since there is only one recursive call, control will always be transferred to Step K + I on a Return.
except For the final Return to the main program. Accordingly, instead of maintaining the stack STADI)
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(and the local variable ADD), we simply write

(c) Goto Step K+1

instead of

(c) Go to Step ADD

in the translation of "Step J. Return." (See Sec. 6.8.)

6.19 Rewrite the solution to the Towers of Hanoi problem so it uses only one recursive call instead of
two.

One may view the pegs A and B symmetrically. That is, we apply the steps

Move N - I disks from A to B, and then apply A-. C
Move N-2 disks from B to A, and then apply B-.0
Move N —3 disks from A to B, and then apply A-.0
Move N-4 disks from B to A, and then apply B--.0

and so on. Accordingly, we can iterate a single recursive call, interchanging BEG and AUX after each
iteration, as follows:

Procedure P6.19: TOWER(N, BEG, AUX, END)

I. If N=O, then: Return.
2. Repeat Steps 3 to 5 for K= N, N—I, N-2.....1.
3. Call TOWER(K - 1, BEG, END, AUX).
4. Write: BEG-. END.
5. [Interchange BEG and AUX.]

Set TEMP := BEG, BEG: = AUX. AUX : TEMP.
[End of Step 2 loop.]

6. Return.

Observe that we use N = 0 as a base value for the recursion instead of N 1. Either one may be used to
yield a solution.

6.20 Consider the stack implementation algorithm in Sec. 6.8 for translating a recursive procedure
into a nonrecursive procedure. Recall that, at the time of a recursive call, we pushed the new
return address rather than the current return address onto the stack STADD. Suppose we
decide to push the current return address onto the stack STADD. (Many texts do this.) What
changes must then take place in the translation algorithm?

The main change is that, at the time of a Return to the preceding e,ecution level, the current value of
ADD determines the location of the Return, not the value of ADD after the stack values have been
popped. Accordingly, the value of ADD must be saved, by setting SAVE:= ADD, then the stack values
are popped, and then control is transferred to Step SAVE. Another change is that one must initially assign
ADD : = Main and then Return to the main calling program when ADD Main, not when the stacks are
empty. The formal algorithm follows.

(I) Preparation.
(a) Define a stack STPAR for each parameter PAR, a stack STVAR for each local variable VAR

and a local variable ADD and a stack STADD to hold return addresses.
(b) Set TOP := NULL and ADD := Main.

(2) Translation of "Step K. Call P."
(a) Push the current values of the parameters and local variables and the current return address

ADD Onto the appropriate stacks.
(b) Reset the parameters using the new argument values, and set ADD := [Step] K + 1.
(c) Go to Step I. [The beginning of the procedure P.]
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(3) Translation of "Step J. Return."
(a) If ADD Main, then' Return. [Control is transferred to the main program.]
(b) Set SAVE:= ADD.
(c) Restore the top values of the stacks. That is, set the parameters and local variables equal to the

top values on the stacks, and set ADD equal to the top value on the stack STADD.
(d) Go to Step SAVE.

(Compare this translation algorithm with the algorithm in Sec. 6.8.)

QUEUESDEuJEs

.63fronsider the following queue of characters, where QUEUE is a circular array which is allocated
six memory cells:

FRONT = 2, REAR = 4	 QUEUE: _, A, C, D,

(For notational convenience, we use "...._" to denote an empty memory cell.) Describe the
queue as the following operations take place:

(a) F is added to the queue.	 (f) two letters are deleted.
(b) two letters are deleted. 	 (g) S is added to the queue.
(c) K, L and M are added to the queue. 	 (h) two letters are deleted.
(d) two letters are deleted.	 (i) one letter is deleted.
(e) R is added to the queue. 	 (j) one letter is deleted.
(a) F is added to the rear of the queue, yielding

	

FRONT=2, REAR =5	 QUEUE:	 , A, C, D, F, -
Note that REAR is increased by 1.

(b) The two letters, A and C, are deleted, leaving

	

FRONT 4, REAR = 5	 QUEUE:	 , -, , D, F, -
Note that FRONT is increased by 2.

(c) K, Land Marc added to the rear of the queue. Since K is placed in the last memory cell of QUEUE,
L and M are placed in the first two memory cells. This yields

	

FRONT = 4, REAR 2	 QUEUE: L, Mi
, -, 0, F, K

Note that REAR is increased by 3 but the arithmetic is modulo 6:

REAR 5+382(mod 6)
(d) The two front letters D and F are deleted, leaving

	

FRONT6, REAR =2	 QUEUE:
(e) R is added to the rear Of the queue, yielding  

FRONT =6, REAR = 3	 QUEUE: L, M, R, -, -. K
(f) The two front letters, K and L, are deleted, leaving

FRONT'=2 REAR =3	 QUEUE: ., M, R, -,
Note that FRONT is increased by 2 but the arithmetic is modulo 6:

FRONT=6+2=8=2 (mod 6)
(g) S is added to the rear of the queue, yielding

FRONT =2, REAR =4 QUEUE: -, M, R, S, -, -
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(h) The two tront letters, M and R, arc deleted, leaving

FRONT4, REAR4	 QUEUE: -. -, -, S,

(I) The front letter S is dcletcd. Since FRONT= REAR, this means that the qucu is empty; hcncc wc
assign NULL to FRONT and REAR. Thus

FRONTO, REAR()	 QUEUE:

(J)
Sincc1RONT = NULL, no deletion can lake place. That is. uiidcrlloW has occurred.

Zose6.22 Stipp each data structure is stored in a circular array with N memory cells.

(a) Find the number NUMBof elements in a queue in terms of FRONT and REAR.

(b) Find the number NUMB of elements in a dcque in terms of LEFT and RIGHT.

(c) When will the array be filled?

(a) If FRONT-5, REAR, then NUMB REAR - FRONT + I. For cxaniplc. conside r (lie following

queue with N = 12:

FRONT3, REAR9	 QUEUE: -. .*. *. *, *, •. , *, -, -. -

Then NUMB = 9— 3 + I 7, as pictured.
If REAR < FRONT, then FRONT- REAR - 1 is. the number of cnipty cells , so

- NUMB = N — (FRONT — REAR - l) = N t- REART FRONT 4- I

For example, consider the following queue with N 12:

FRONT9. REAR4	 QUEUE: •, •, •, , . _, -. -	 •. •,

Then NUMB 12 + 4-9 + I = 8, as piqurcd.
Using arithmetic modulo N. we need only one formula, as follows:

NUMB = REAR - FRONT + 1 (mod N)

(b) The same result holds for dcqucs except that FRONT is replaced by RiGhT. That is,

NUMB = RIGHT - LEI--T+ I (mod N)

(c) With a queue, the array is full when

(i) FRONT = I and REAR = N	 or	 (ii) FRONT = REAR + I

Similarly, with a dcquc, the array is full when

(i) LEFT I and RIGHT N	 or	 (ii) LEFT IGIfl' -4- 1

Each of these conditions implies NUMB N.

6.23 Consider the following dcque of characters where DEQUE is a circular array which is allocated

six memory cells:

LEFT = 2, RIGHT '4	 DEQUE: -, A, C, D, -,

Describe the dcque while the following operations take place.

(a) F is added to the right of the dcquc.

(b) Two letters on the right arc deleted.

(c) K, L and M are added to the left of the deque.

(d) One letter on the left is deleted.

(c) R is added to the left of the dcquc.
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(f) S is added to the right of the deque.

(g) T is added to the right of the dcque.

(a) F is added on the right, yielding

LEFT=2, RIGHT=5
	

DEQUE: _, A. C, D, F, -

Note that RIGHT is increased by 1.
(b) The two right letters, F and D, are deleted, yielding

LEFT-2, RIGHT3	 DEQUE: -, A. C,

Note that RIGHT is decreased by 2.
(c) K, L and M are added on the left. Since K is placed in the first memory cell, L is placed in the last

memory cell and M is placed in the next-to-last memory cell. This yields

LEFT=5, RlGLlT3	 DEQUE: K, A, C,_, M, L

Note that LEFT is decreased by 3 but the arithmetic is modulo 6:

LEFT2-3--15 (mod 6)

(d) The left letter, M, is deleted, leaving

LEFF'6, RIGHT='3

Note that LEFT is increased by 1.
(e) R is added on the left, yielding

LEFT 5, RIGHT-3

DEQUE: K, A, C, _,_,L

DEQUE: K, A, C, -. R, L

Note that LEFT is decreased by 1.

(f) S is added on the right, yieidbg

LEFT5, RIGHT=4	 DEQUE: K, A. C. S. R, L

(g) Since L1iET= RIGHT+ I, the array is full, and hence 1 cannot be added to the deque. That is,
overflow has occurred.

6.24 Consider a dcquc maintained by a circular array with N mcinory cells.

(a) Suppose an element is added to the dcquc. How is LEVI` or RIGIIT changed?
(b) Suppose an clement is deleted. How is LEVI' or RIGHT changed?

(a) If the clement is added on the left, then LEFT is decreased by 1 (mod N). On the other hand, if the
clement is added on the right, then RIGHT is increased by 1 (mod N).

(!i) lithe element is deleted from the left, then LEVI' is increased by I (mod N). However if the clement
is deleted from (lie right, then RIGHT is decreased by I (mod N). in the case that LEFT - RIGhT
before the deletion (that is, when the dequc has only one element), then [.EFT and RIGIIT arc both
assigned NULL to indicate that the dcque is empty.

PRIORITY QUEUES
6.25 Consider the priority queue in Fig. 6-20, which is maintained as a one-way list. (a) Describe the

structure after (XXX. 2). (YYY. 3), (ZZZ, 2) and (WWW, I) arc added to the queue. (b)
Describe the structure if, after the preceding insertions, three elements arc deleted.

(a) Traverse the list to find the first element whose priority number exceeds that of XXX. It is DDD. so
insert XXX before DDD (after CCC) in the first empty cell, INFO[2]. Then traverse the list to find
the first clement whose priority number exceeds that of YYY. Again it is DDD. Ilence insert YYY
before DDD (after XXX) in the next empty cell, INFO17. Then traverse the list to find the first
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element whose priority number exceeds that or zzz. It is YYY. Hence insert ZZZ before YYY
(alter XXX) ill next empty cell, I N FOt 101. Last, traverse the list to timid the first element whose
priority number exceeds that of WWW. It is B8. Hence insert WWW before BBB (after AAA) in
time next empty cell, INIOL hIJ. 'Ilmis finally yields tire structure ill 	 6-26(a).

INFO	 PRN	 LINK

2

START	 3

r i	 4

5
AVAIL

6

7

8

9LJLio
II

12

OnKT	 I 17011

STA'R1

AMA U

II

2 Xxx	 10

3 DDD
	

4

4	 IEEE
	

9

5
	 12

6 CCC
	 2

7 YYY
	 3

8 GGG
	 0

9	 FFF
	 8

10 zzz	 7

11
	 5

12
	 0

(b)

Fig. 6-26
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(b) The first three elements in the one-way list are deleted. Specifically, first AAA is deleted and its
memory cell INFO[51 is added to the AVAIL list. Then WWW is deleted and its memory cellINFOE1II is added to the AVAIL list. Last, BBB is deleted and its memory cell INFOIII is added tothe AVAIL list. This finally yields the Structure in Fig. 6-26(b).

Remark: Observe that START and AVAIL are changed accordingly.

6.26 Consider the priority queue in Fig. 6-22, which is maintained by a two-dimensional array
QUEUE. (a) Describe the structure after (RRR, 3), (SSS, 4), (TTT, 1), (UUU, 4) and(VVv, 2) are added to the queue. (b) Describe the structure if, after the preceding insertions,three elements arc deleted.
(a) Insert each element in its priority row. That is, add RRR as the rear element in row 3, add SSS as the

rear element in row 4, add iTt as the rear clement in row 1, add UUU as the rear clement in row 4
and add VVV as the rear element in row 2. This yields the structure in Fig. 6-27(a). (As noted
previously, insertions with this array representation are usually simpler than insertions with theone-way list representation.)

FRONT - REAR

FRONT	 REAR

0

21	 2

I
4[5

U1113

3 RRR
4	 FFF
$

(a)

2

3 RRR

4 FEF
5

QUEUE
2	 .3

AAA ••ITr
CCC XXX VVV

sss iiuu

000

QUEUE
2	 •3	 4

CCC XXX Vvv

SS UUU

000

5	 6

DDD EEEJ

5	 6

DDDI LEE]

(b)

Fig. 6.27

(h) First delete the elements with the highest priority in row I. Since row! contains only two elements,
AAA and rrr, then the front clement in row 2, 1113B, must also be deleted. This finally leaves thestructure, in Fig. 6-27(b).

Remark: Observe tht, in both cases, FRONT and REAR are changed accordingly.
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Supplementary Problems

STACKS
6.27 Consider the following stack of city names:

STACK:	 London, Berlin, Rome. Paris, -_______
(a) Describe the stack as the following operations take place:

(i) PUSH(STAC, Athens), (iii) POP(STACK, ITEM)	 (v) PIJSH(STACK, Moscow)
(ii) POP(STACK, ITEM)	 (iv) PUSH(STACK, Madrid) (vi) POP(STACK, ITEM)

(b) Describe the slack it the operation POP(STACK, ITEM) deletes London.

6.2$ Consider the following stack where STACK is allo..ed N 4 memory cells:
STACK: AAA, DUB,

Describc)Ie stack as the following operations take place:
(a) ,P6P(STACK, lTE') 	 (c) PUSH(STACK, EEE) 	 (e) POP(STACK. ITEM)
5b) POP(STACK, ITEM)	 (d) POP(STACK, ITEM)	 (f) PUSH(STACK, GGG)

Suppose the following stack 01 integers is in memory where STACK is allocated N = 6 memory cells:

TOP = 3	 STACK:	 5, 2, 3,
Find the output of the following progran 	 i....-.

I. Call POP(STACK, ITEMA).
CoN OP(STACK, ITEMB).
Call PUSH(STACK, ITEMB + 2).
Call PUSH(STACK, 8).
Call PUSH(STACK, ITEMA + ITEMB).

,/2. Repeal while TOP 0:
Call POP(STACK, ITEM).
Write: ITEM.

(End of loop.I

6.30 Suppose stacks All I and A l 2 1 are stored in a linear array STACK with N elements, as pictured in Fig. 6.28.
Assume TOPLKI denotes tiac top of stack A(KI.
(a) Write a procedure PUSII(STACK, N, TOP, ITEM, K) which pushes ITEM onto stack A(K1.
(b) Write a procedure I'OP(STACK, TOP, ITEM, K) which deletes the top element from stack AIK)

and assigns the element to the variable ITEM.

I	 2	 3	 4	 5	 11-3 N-2 N—i	 N

STACK	 I	 I	 I.	 I	 -	 I	 I	 I
Slack AIlI	 Stack Al21

11$. 6-28

ARITMEIIC EXPRSSlONS; POLISH EXPRESSIONS
6.	 Translate, by inspection and hand, each infix expression mb its equivalent posttix explession:

(a) (A B)i(.L) + E) • F) 	 (b) ((A ± D)ID) ((E - F) * G)
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by inspection and hand, each infix expression in Prob. 6.31 into its equivalent prefix expression.

each of the following parenthesis-free arithmetic expressions:

(a) 5 + 3 1 2 - 8 / 4 • 3 + 6
(b)6+213+9/3_45

6.34 Consider the following parenthesis-free arithmetic expression;

E:	 6 + 2f3f 2-4.5

Evaluate the expression E. (a) assuming that exponentiation is performed from left to right, as are the
other operations, and (b) assuming that exponentiation is performed from right to left.

6.35 Consider each of the following postfix expressions:

P1 :	 5, 3, +, 2, a, 6, 9, 7.
I',:	 3, 5, +, 6. 4, -. e, 4, 1, —, 2, T. +
P3 :	 3, 1, +, 2, t, 7, 4. -. 2, ., +, 5, -

Translate, by inspection and hand, each expression into infix notation and then evaluate.

6.36 Evaluate each postflx expression in Prob.'6.35, using Algorithm 6.3.

6.37 Use Algorithm 6.4, to translate each infix expression into its equivalent posltix expression;

(a) (A — D)I((D + E) • F)	 (b) ((A + B)ID)t((E - F) • G)
(Compare with Prob. 6.31.)

RCURJ9N

6.	 Let .1 and K be integers and suppose Q(J. K) is recursively defined by

f5	 ifJ<K
itJK

Find 0(2, 7), 0(5, 3) and 0(15, 2).

6.3)e(A and B be nonnegative integers: Suppose a function GCD is recursively defined as follows:I GCD(B. 6.)	 it A <B.
GCD(A , B ) = A	 ifB'O

 GCD(B, MO1)(A, B)) 	 otherwise

(here MOD(A, B), read "A modulo 8," denotes the remainder when A is divided by B.) (a) Find
GCD(6, 15).G(D(20, 28) and GCD(540. 168) (b) What does this function do?

6.40 ,,) Nbc an integer and suppose 11(N) is recursivcly'dcfined by

f3.N	 ifN<5
—5)+7	 otherwise

(a) Find the base criteria of H and (b) find 11(2), 11(8) and H(24).

1.41 Use Definition 6.3 (of the Ackcrmann function) to find 4(2. 2).
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Z.42Lt M and N be integers and suppose F(M. N) is recursively defined by

N	
itM=Oor MNa1

FM F(M-1,N)+F(M-l.N-l)	 otherwise

(a) Find F(4, 2), 1(1, 5) and F(2, 4). (b) When is F(M. N) undefined?

6.43 Let A be an integer array with N elements. Suppose X is an integer Function defined by

10	 ifK=O
X(K)=X(A, N, K)	 X(K- I)+A(K)	 if0<KN

1 X(K-I)'if K>N

Find X(5) for each of the Following arrays:

(a) N''8,	 A 3, 7, -2,5,6, -4, 2,7	 (b) U3,	 A: 2.7. -4

What does this Function do?

6.44 Show that the recursive solution to the Towers of Hanoi problem in Sec. 6.7 requires f(n) 2" - I moves
for it disks. Show that no other solution uses Fewer than f(n) moves.

6.45 Suppose S is a string with N characters. Let SUB(S, J. L) denote the substring of S beginning in the
position .1 and having length L. Let AIIB denote the concatenation of strings A and B. Suppose
REV(S. N) is recursively defined by

'iFN"I
REV( S, N)" IsuB(s, N. 

l)IIREV(SIJFt(S, I, N- L). N - I)	 otherwise

(a) Find REV(S, N) when (i) N = 3, S abc and (ii) N 5, S = abahc. (b) What does this function do?

QUEUES; DEQUES

6.46 Consider the following queue where QUEUE is allocated 6 memory cells:

FRONT2, REAR5	 QUEUE:	 , London, Berlin, Rome. Paris,

Describe the queue, including FRONT and REAR, as the following operations take place: (a) Athens is
added, (b) two cities are deleted, (c) Madrid is added, (d) Moscow is added, (e) three cities are deleted
and (f) Oslo is added.

6.47	 Consider the following dequc where DEQUE is allocated 6 memory cells:

LEFT =2, RIGHT =5	 DEQUE:	 .	 , London, Berlin, Rome, Paris,

Describe the deque, including LEVI' and RIGHT, as the following operations take place:

(a) Athens is added on the left. 	 (e) Two cities are deleted from the right.

(b) Two cities are deleted from the right. 	 (f) A city is deleted from the left.

(c) Madrid is added on the left. 	 (g) Oslo is added on the left.

(d) Moscow is added on the right.

6.48 Suppose a queue is maintained by a circular array QUEUE with N = 12 memory cells. Find the number of
clenents in QUEUE if (a) FRONT = 4, REAR = 8; (b) FRONT 10, REAR 3; and (c) FRONT 5,
REAR = 6 and then two elements are deleted.

649 Consider the priority queue in Fig. 6-26(b), which is maintained as a one-way list.

(a) Describe the structure if two elements aredeleted.
(b) Describe the structure ii, after the preceding deletions, the elements (RRR. 3). (SSS, 1). (TIT. 3)

and (UUU. 2) are added to the queue. 	 -.
(c) Describe the structure if, after the preceding insertions, three elements are dLeted.
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6.50 Consider the priority queue in Fig. 6-27(b), whichis maintained by a two-dimensional array QUEUE.

(a) Describe the Structure if two elemcns Are deleted.
(b) Describe the structure if, after the preceding deletions, the elements (JJJ, 3), (KKK, I), (LLL, 4)

and (MMM, 5) are added to the queue.
(c) Describe the structure if, after the preceding insertions, six elements are deleted.

Programming Problems

6.51 Translate Quicksort into a subprogram QUICK(A, N) which sorts the array A with N elements. Test the
program using

(a) 44, 33, 11, 55, 77, 90, 40, 60, 99, 22, 88, 66
(b) D, A. T, A, S, T, R, U, C, T, U, R, E, S

6.52 Write a program which gives the solution to the Towers of Hanoi problem for n disks. Test the program
using (a) n 3 and (b) n 4.

6.53 Translate Algorithm 6.4 into a subprogram POLISH(O. P) whic6'transforms an infix expression 0 into its
equivalent postfix expression P. Assume each operand is a single alphabetic character, and use the usual
symbols for addition (+), subtraction (-), multiplication ( i') and division (/), but use the symbol t or $
for exponentiation. (Some programming languages do not accept t .) Test the program using
(a)((A+B)SD)$(E—F)	 •(b)A+(B.C—(D/E$F).o)sn

634 Suppose a priority queue is maintained as a one-way list as illustrated in Fig. 6-20.

(a) Write a procedure

INSPQL(INFO, PRN, LINK, START, AVAIL, ITEM, N)

which adds an ITEM with priority number N to the queue. (Sec Algorithm 6.14.)
(b) Write a procedure

DELPQL(INFO, PRN, LINK, START, AVAIL, ITEM)

which removes an element from the queue and assigns the element to the variable ITEM. (See
Algorithm 6.13.)

.,rest the procedures, using the data in Prob. 6.25.

6.55	 Suppose a priority queue is maintain 	 by a two-dimensional array as illustrated in Fig. 6-22.

(a) Write a procedure

INSPQA(QUEUE, FRONT, REAR, ITEM, M)

which adds an ITEM with priority number M to the queue. (Sec Algorithm 6.16.)
(b) Write a procedure

•DELPQA(QUEUE, FRONT, REAR, ITEM)

which removes an clement from the queue and assigns the clement to the variable ITEM. (See
Algorithm 6.15.)

Test the procedures, using the data in Prob. 6.26. (Assume that QUEUE has ROW number of rows and
COL number of columns, where ROW and COL are global variables.)


