Chapter 4

Arrays, Records and Pointers

4.1 INTRODUCTION

the elements represented by means of pointers or links. Thesc linear structures are called lined lists ;
they form the main content of Chap. 5. Nonlincar structures such as trees and graphs are treated in
later chapters. '

The operations onc normally performs on any lincar structurc, whether it be an array or a linked .
list, include the following: ;

(a) Traversal. Processing cach element in the list.

(b) Search. Finding the location of the clement with-a given value or the record with a given key.

(c) Insertion. Adding a new clement to the list.

(d). Deletion. Removing an clement from the list.

(e) Sorting. Arranging the elements in some type of order,

(f) Merging. Combining two lists into a single list,
The particular lincar structure that one chooscs for a given situation depends on the relative frequency
with which onc performs these different operations on the structure.

This chapter discusses a very common linear structure called an array. Since arrays arc usually casy
to traversce, search and sort, they are frequently used to store relatively permanent collections of data.

On the other hand, if the size of the structurc and the data in the structurc arc constantly changing,
then the array may not be as uscful a structure as the linked list, discussed in Chap. 5.

4.2 LINEAR ARRAYS

A linear array is a list of a finite number n of homogeneous data elements (i.c., data clements of -
the same type) such that:

(a) The clements of the array are referenced respectively by an index set consisting of n
consecutive numbers, » vi

{b) The elements of the array arc stored respectively in successive memory locations.

The number n of clements is called the length or size of the array. If not cxplicitly stated, we will

assume the index sct consists of the integers 1, 2, . . | ,» n. In general, the length or the number of data
clements of the array can be obtained from the index set by the formula
Length=UB — LB + | (4.1)

=
vhere UB is the largest index., called the upper bound, and LB is the smallest index, called the lower
vound, of the array. Note that length = UB when LB = 1.

The clements of an array A may be denoted by the subscript notation

Ay Ay AL A,
r by the parenthescs notation (used in FORTRAN, PL/1 and BASIC)
A1), A(2),....A(N)
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or by the bracket notation (used in Pascal)
A[1], A[2), A[3), - . . AIN]

We will usually usc the subscript notation or the bracket notation. Regardless of the notation, the
number K in A[K] is called a subscript or an index and A|K] is called a subscripted variable. Note that
subscripts allow any element of A to be referenced by its relative position in A.

EXAMPLE 4.1
(a) Lect DATA be a 6-clcment lincar array of integers such that
DATA[1] = 247 DATA{2] =56 DATA[3]=429 DATA[4]=135 DATA[5] =87 DATA[6] =156
Sometimes we will denote such an array by simply writing
DATA: 247, 56, 429, 135, 87, 156
The array DATA is frequently pictured as in Fig. 4-1(a) or Fig. 4-1(b).

DATA

1 247 DATA

36 247 | s6 | 429 | 135 | 87 | 156
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87

[- LY. U S T ]

156

(a) w)
Fig. 4-1
(b) An automobile company uses an array AUTO to record the number of automobiles sold cach year from 1932
through 1984. Rather than beginning the index sct with 1, it is more uscful to begin the index set with 1932 so

that
AUTO[K] = number of automobiles sold in the year K

Then LB = 1932 is the lower bound and UB = 1984 is the upper bound of AUTO. By Eq. (4.1),
Length=UB — LB +1=1984-1930+ 1= 55
That is, AUTO contains 55 clements and its index sct consists of all integers from 1932 through 1984.

Each programming language has its own rules for declaring a}rays. Each such declaration must
give, implicitly or explicitly, three items of information: (1) the name of the array, (2) the data typc of
the array and (3) the index sct of thc array.

EXAMPLE 4.2

(@) Supposc DATA is a 6-clement lincar array containing real valucs. Vatious programmng languages declarc
such an array as follows: :

FORTRAN: REAL DATA(6)
PL/1: DECLARE DATA(6) FLOAT;
Pascal: VAR DATA: ARRAY|[1..6] OF REAL
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We will declare sich an array, when necessary, by writing DATA(6). (The context will usually indicate the -
data type, so it will not be explicitly declared.)
(b) Consider the intcger array AUTO with lower bound LB = 1932 and upper bound UB = 1984. Various
programming languages declarc such an array as follows:
FORTRAN 77 INTEGER AUTO(1932:1984)
PL/1: DECLARE AUTO(1932:1984) FIXED:
Pascal VAR AUTO: ARRAY([1932 .. 1984] of INTEGLER

We will declare such an array by writing AUTO(1932:1984).

Somec programming languages (c.g., FORTRAN and Pascal) allocatc memory space for arrays
statically, i.c., during program compilation; hence the size ol the array is fixed during program
cxccution. On the other hand, some programming languages allow onc to read an integer 7 and then
declarc an array with n clements; such programming languages arc said to allocate -memory
dynamically.

4.3 REPRESENTATION OF LINEAR ARRAYS IN MEMORY

Lct LA be a lincar array in the memory of the computer. Recall that the memory of the computcer
is simply a scquence of addressed locations as pictured in Fig. 4-2. Let us usc the notation

LOC(LA[K]) = address of the clement LA[K] of the array LA
As previously noted, the clements of LA arc stored in successive memory cells. Accordingly, the

computer docs not nced to keep track of the address of every clement of LA, but nceds to keep track
only of the address of the first element of LA, denoted by

Buase(LA)
and called the base address of LA. Using this address Base(LA), the computer calculates the address of
any clement of LA by the following formula:
LOC(LA[K]) = Base(LA) + w(K — lower bound) (4.2)

where w is the number of words per memory cell for the array LA. Obscrve that the time (o calculate
LOC(LA[K]) is essentially the same for any value of K. Furthermore, given any subscript K, onc can
locate and access, the content of LA[K] without scanning any other clement of LA.

1000

1002

1003

1004

Fig. 4-2 Computer memory.
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EXAMPLE 4.3

Consider the array AUTQO in Example 4.1(5), which records the number of automobiles sold cach ycar from
1932 through 1984. Suppose AUTO appears in memogy as pictured in Fig. 4-3. That is, Base(AUTO) = 200, and
w =4 words per memory cell for AUTO. Then

LOC(AUTO[1932]) = 200, LOC(AUTO[1933]) = 204, LOC(AUTO[1934)) = 208, . . .
The address of the array ¢ 16ént for the year K = 1965 can be obtained by using Eq. (4.2): )
LOC(AUTO[1965]) = Base(AUTO) + w(1965 — lower bound) =200 + 4(1965 — 1932) = 332

Again we emphasize that the contents of this clement can be obtained without scanning any other element in array
AUTO. ;

200
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AUTO[193.]
202

203 j
204

205

AUTO[1933
206 ekl !

207 J

208
209

AUTO[1934
210 [ ]

211

Fig. 4-3

Remark: A collection A of data clements is said to be indexed if any element of A, which-we shall
call Ay, can be located and processed in a time that is independent of K. The above discussion
indicates that lincar arrays can be indexed. This is very a important propeity of linear arrays. In fact,
linked lists, which arc covered in the next chapter, do not have this property

N
4.4 TRAVERSING LINEAR ARRAYS

Let A be a collection of data clements stored in the memory of the computcr. Suppose we want to
print the contents of cach clement of A or Supposc we want to count the number of clements of A with
a given property. This can be accomplished by traversing A, that is, by accessing and processing
(frequently called visiting) cach clement of A cxactly once.

The following algorithm traverses a lincar array LA. The simplicity of the algorithm comes from
the fact that LA is a linear structure. Other lincar structures, such as linked lists, can also be casily
traversed. On the other hand, the traversal of nonlincar structures, such as trces and graphs, is

considerably more complicated.
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\/\lgorithm 4.1: (Traversing a Lincar Array) Here LA is a lincar array with lower bound LB and
upper bound UB. This algorithm traverscs LA applying an opcration PROCESS
to cach elcment of LA.

W 1. [Initialize counter.] Sct K := LB.
2. Repeat Steps 3 and 4 while K < UB.
3. [Visit element.] Apply PROCESS to LA[K].
4. [Increase counter.] Set K:=K + 1.
[End of Step 2 loop.]
5. Exit.

We also state an alternative form of the algorithm which uses a repcat-for loop instcad of the
repcat-while loop.

Algﬁrilhm 4.1': (Traversing a Linear Array) This algorithm traverses a lincar array LA with
N lower bound LB and upper bound UB.

1. Repeat for K=LB to UB:
Apply PROCESS to LA[K].
[End of loop.]
2.  Exit.

Caution: The operation PROCESS in the traversal algorithm may usc certain variables which
must be initialized before PROCESS is applicd to any of the elements in the array. Accordingly, the
algorithm may need to be preceded by sueh an initialization step.

EXAMPLE 4.4

Consider the array AUTO in Example 4.1(b), which rccords the number of automobilcs sold each ycar from
1932 through 1984. Each of the following modules, which carry out the given operation, involves traversing
AUTO. s )

(a) Find the number NUM of yecars during which more than 300 automobilcs were sold.
1. [Initialization step.] Set NUM := 0. ,
2. Repcat for K = 1932 to 1984:
If AUTO[K] > 300, then: Sct NUM:= NUM + 1.
[End of loop.] '
3. Return.
(b) Print each year and the number of automobiles sold in that ycar.
1. Repeat for K = 1932 to 1984:
Write: K, AUTO[K].
[End of loop.]
2. Return.

-(Observe that (a) requires an initialization step for the variable NUM before traversing the array AUTO.)

4.5 INSERTING AND DELETING

Let A be a collection of data clements in the memory of the computer. “Inserting” refers to the
operation of adding another element to the collection A, and “deleting” refers to, the operation of
removing one of the elements from A. This section discusses inserting and deleting when A is a linear
array.

Inserting an element at the “end” of a lincar array can be easily done provided the memory space
allocated for the array is large enough to accommodate the additional element. On the other hand,
Suppose we need to insert an element in the middle of the array. Then, on the avecrage, half of the
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elements must be moved downward to new locations to accommodate thc ncw clement and keep the
order of the other clements. 7
Similarly, delcting an clement at the “cnd” of an array presents no difficultics, but dcleting an
clement somewhere in the middlc of the array would require that cach subscquent.clement be moved
onc location upward in order to “fill up” the array. d
Remark: Sincc lincar arrays arc usually pictured cxtending downward, as in Fig. 4-1, the term
«downward” refers to locations with larger subscripts, and the term *“upward” refers to locations with
smaller subscripts. ; ‘

EXAMPLE 4.5
Suppos;: TEST has been declared to be a s-clement array but data have been recorded only for TEST(1],
TEST[2] and TEST[3]. If X is the value of the next test, then one simply assigns
' TEST[4] : = X
to add X to the list. Similarly, if Y is the valuc of the subscquent test, then we simply assign
TEST[5]:=Y _ 3

to add Y to the list. Now, however, we cannot add any new test scorcs to the list.

EXAMPLE 4.6

Supposc NAME is an 8-clement lincar array, and suppose five namcs are in the array, as in Fig. 4-4(a).
Observe that the names are listed alphabetically, and supposc we want to keep the array names alphabetical at all
times. Supposc Ford is added to the array. Then Johnson, Smith and Wagner must cach be moved downward onc
location, as in Fig. 4-4(b). Next supposc Taylor is added to the array; then Wagncr must be moved. as in Fig.
4-4(c). Last, supposc Davis is removed from the array. “Then the five names Ford, Johnson, Smith, Taylor and
Wagner must cach be moved upward one location, as in Fig. 4-4(d). Clearly such movement of data would be very
expensive if thousands of names werc in the array. .

S N & W » W N

NAME NAME NAME ' NAME
1 Brown. 1 Brown 1 Brown : 1 Brown
Davis 2 Davis 2 | Davis 2 | Ford
Johnson 3 Ford 3 Ford 3 - Jc;hnson
Smith fo” 4 Johnson 4 Johnson 4 Smith
Wagner 5 | Smith 5 | Smith 5 | Taylor
6 Wagner 6 Taylor 6 Wagner
7 7 Wagner i a2
8 8 8
(a) (b) (c) (d)
Fig. 4-4

The following algorithm inserts a data clement ITEM into the Kth position in a lincar array LA
with N clements. The first four steps create space in LA by moving downward onc location cach
clement from the Kth position on. We emphasize that these clements arc moved in reverse order—i.c.,
first LA[N], then LA[N—1], ..., and last LA[K]; otherwise data might be crased. (Sce Prob. 4.3.)
In more detail, we first set J:= N and then, using J as a counter, dccrease J cach time the loop is
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exccuted until J reaches K. The next step, Step 5, inserts ITEM into the array in the space just created.
Before the exit from the algorithm, the number N of clements in LA is increased by 1 to account for

the new elcment.

Algerithm 4.2: (Inscrting into a Lincar Array) INSERT(LA, N, K, ITEM)
Here LA is a linear array with N clcments and K is a positive integer such that
W K =N. This algorithm inserts an clement ITEM into the Kth position in LA.

L. [Initialize counter.] Set J:= N.
2. Rcpeat Steps 3 and 4 while J =K.

d/w, - [Move Jth clement downward.] Sct LA[J + 1]:= LA[J).
4. [Decrease counter.] Set J:=J —1. :

[End of Step 2 loop.)

[Insert clement.] Sct LA[K]:= ITEM.

[Reset N.] Sct N:=N + 1.

Exit.

Novw

The following algorjtfim deletes the Kth element from a linear array LA and assigns it to a variable
ITEM.

Mgorilhvd{ (Decleting from a Lincar Array) DELETE(LA, N, K. ITEM)
Here LA is a Iincarlarray with N clements and K is a positive-integer such that
Q‘\ K =N. This algorithm deletes the Kth clement from LA,

1. Set ITEM:= LA[K].
2. Repeat for J=K to N - 1: ,
[Move J + 1st element upward.] Sct LA[J] = LA[J + 1].
[End of loop.]
3. [Reset the number N of clements in LA.] Sct N:i=N-1. .
4. Exit.

Remark: We emphasize that if many deletions and insertions are to be made in a collection of
data elements, then a linear array may not be the most cfficicnt way of storing the data.

4.6 SORTING; BUBBLE SORT )
Let A be a list of n numbers. Sorting A refers to the opcration of rcarranging the elements of A so
they are in increasing order, i.c., so that
All]<AR2]<A[3)<---< A[N]
For example, suppose A originally is the list 2

8,4,19,2,7,13,5, 16"
After sorting, A is the list
2,4,5,7,8, 13, 16, 19
Sorting may seem to be a trivial task. Actually, sorting efficiently may be quite complicated. In
fact, there are many, many different sorting algorithms; some of these algorithms are discussed in
Chap. 9. Here we present and discuss a very simple sorting algorithm known as the bubble sort.
; Remark: The above definition of sorting refers to arranging numerical data in increasing order;
this restriction is only for notational convenience. Clearly, sorting may also mean arranging numerical
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data in deccreasing order or arranging nonnumerical data in alphabetical order. Actually, A is
frequently a file of records, and sorting A refers to rcarranging the records of A so that the values of a
given key arc ordered.

Bubble Sort

Supposc the list of numbers A1), A[2],. .., A[N]isin memory. The bubblc sort algorithm works
‘as follows: .

Step 1. Compare A[1] and A[2] and arrange them in the desired order, so that A[1] < A[2].

: Then compare A[2] and A[3] and arrange them so that A[2] < A[3]. Then comparc
A[3] and A[4] and arrange them so that A[3] < A[4]. Continuc until we compare
A[N — 1] with A[N] and arrange them 50 that A[N — 1] < A[N].

Obscrve that Step 1 involves n — 1 comparisons. (During Step 1, the largest clement is “bubbled up”
to the nth position or “sinks” to the nth position.) When Step 1 is completed, A[N] will contain the
largest clecment. i

Step 2. Repeat Step 1 with one less comparison; that is, now we stop after we comparc and
possibly rearrange A[N — 2] and A[N — 1]. (Step 2 involves N — Zcomparisons and,
when Step 2 is completed, the second largest elemcnt will occupy A[N-1})

Step 3. Repeat Step 1 with two fewer comparisons; that is, we stop after we compare and
possibly rcarrange A[N — 3] and AN - 2].

Step N — 1. Compare A[l1] with A[2] and arrange them so that A[l] < A[2].

After n v | steps, the list will be sorted in increasing order.

- The process of scquentially traversing through all or part of a list is frcquently called a ‘“pass,” sO
cach of the above steps is called a pass. Accordingly, the bubble sort algorithm rcquires n — 1 passes,
where n is thc number of input items.

EXAMPLE 4.7
SupposcA the following numbers arc stored in an array A:
32, 51, 27, 85, 66, 23, I]3, 57
We apply the bubble sort to the array A. We discuss cach pass scparately.

Pass 1. We have the following comparisons: .
(a) Comparc A, and Aj. Since 32< 51, the list is not altered.
(b) Comparc A, and A;. Since 51> 27, interchange 51 and 27 as follows:

32, @@ gs, 66, 23, 13, 57

(¢) Comparc A, and A,. Sincc 51 < 85, the list is not altered.
(d) Comparc A_and A;. Since 85 > 66, interchange 85 and 86 as follows:

R, 21, 51, 23, 13, 57

(¢) Compare A and N\ . Since 85 > 23, interchange 85 and 23 as follows:

% 21,431, 66@ 13, 57

(/) Compare A, and A, Since 85 > 13, intcrchange 85 and 13 to yicld:

32, 27. 51, 66, 23, @@ 57

(g) Compare A, and A, Since 853> 57, interchange 85 and 57 to yicld:

. v, 21, 51, 66, 23, 13, (57)(85)
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At the end of this first pass, the largest number, 85, has moved to the last position. However, the rest of
the numbers are not sorted, even though some of them have changed their positions.

For the remainder of the passes, we show only the interchanges.
Pass 2. @@ 51, 66 23 13,
27, 33, 51, 78
27,11 33, 451, 23 @ 57, 85

o83, st 13 1% . 85

At the end of Pass 2, the second largest number, 66, has moved its way down to the next-to-last position.
Pass3. 27, 33 3)(51) 13. 57, 66, 85

v I < s @sv, 66, 85
Pass 4. 27, @ 57. 66, 85
e AT K @ 51, 57, 66, 85
Passs.@@ 13, 33, 51, 57, 66, 85
23, @@ 33, 51, 57, 66, 85

Pass 6. @@ 27, 33, S1, 57, 66, 85

Pass 6 actually has two comparisons, A, with A, and A, and A,. The second comparison does not
involve an interchange.

Pass 7. Finally, A, is compared with A,. Since 13 <23, no interchange takes place.

Since the list has 8 elements; it is sorted after the seventh pass. (Observe that in this example, the list was actually
sorted after the sixth pass. This condition is discussed at the end of the section.)

We now formally state the bubble sort algorithm.

Algorithm 4.4: (Bubble Sort) BUBBLE(DATA, N)
Here DATA is an array with N elements. This algorithm sorts the elements in

DATA.

1. Repeat Steps 2 and 3 for K=1 to N— 1.

2 Set PTR := 1. [Initializes pass pointer PTR.}
3. Repeat while PTR =N — K: [Executes pass.]

(a) 1f DATA[PTR]> DATA[PTR + 1], then:
Interchange DATA[PTR] and DATA[PTR + 1]
[End of If structure.]
(b) Set PTR:=PTR + 1.
[End of inner loop.]
[End of Step 1 outer loop.] ,
4. Exit.

Observe that there is an inner loop which is controlled by the variable PTR, and the loop is contained
in an outer loop which is controlled by an index K. Also observe that PTR is used as a subscript but K is
not used as a subscript, but rather as a counter.

Complexity of the Bubble Sort Algorithm

Traditionally, the time for a sorting algorithm is measured in terms of the number of comparisons.
The number f(n) of comparisons in the bubble sort is easily computed. Specifically, there are n — |
comparisons during the first pass, which places the largest element in the last position; there are n — 2
comparisons in the second step, which places the second largest element in the next-to-last position;
and so on. Thus
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n(n—1)
2

In other words, the time required to execute the bubble sort algorithm is proportional to n’, where n is
the number of input items.

Remark: Some programmers use a bubble sort algorithm that contains a 1-bit variable FLAG (or
a logical variable FLAG) to signal when no interchange takes place during a pass. If FLAG = 0 after
any pass, then the list is already sorted and there is no need to continue. This may cut down on the
number of passes. However, when using such a flag, one must initialize, change and test the variable
FLAG during each pass. Hence the use of the flag is efficient only when the list originally is “almost™ in
sorted order.

f)=(n—1)+@n-2)+ - -+2+1= =%-+0(")=0(ﬂ2)

4.7 SEARCHING; LINEAR SEARCH

Let DATA be a collection of data elements in memory, and suppose a specific ITEM of
information is given. Searching refers to the operation of finding the location LOC of ITEM in DATA,
‘or printing some message that ITEM does not appear there. The search is said to be successful if 'ITEM
does appear in DATA and unsuccessful otherwise. .

Frequently, one may want to add the element ITEM to DATA after an unsuccessful search for
ITEM in DATA. One then uses a search and insertion algorithm, rather than simply a search
algorithm; such search and insertion algorithms are discussed in the problem sections.

There are many different searching algorithms. The algorithm that one chooses generally depends
on the way the information in DATA is organized. Searching is discussed in detail in Chap. 9. This
section discusses a simple algorithm called linear search, and the next section discusses the well-known
algorithm called binary search.

The complexity of searching algorithms is measured in terms of the number f(n) of comparisons
required to find ITEM in DATA where DATA contains n elements. We shall show that linear search is
a linear time algorithm, but that binary search is a much more efficient glgorithm, proportional in time
to log, n. On the other hand, we also discuss the drawback of relying only on the binary search
algorithm.

Linear Search

Suppose DATA is a linear array with n elements. Given no other information about DATA, the
most intuitive way to search for a given ITEM in DATA is to compare ITEM with each element of
DATA one by one. That is, first we test whether DATA[1] =ITEM, and then we test whether
DATA[2] = ITEM, and so on. This method, which traverses DATA sequentially to locate ITEM, is

called linear search or sequential search.
To simplify the matter, we first assign ITEM to DATA[N + 1], the position following the last

element of DATA. Then the outcome
LOC=N+1

where LOC denotes the location where ITEM first occurs in DATA, signifies the search is
unsuccessful. The purpose of this initial assignment is to avoid repeatedly testing whether or not we
have reached the end of the array DATA. This way, the search must eventually “‘succeed.”

A formal presentation of linear search is shown in Algorithm 4.5.

Observe that Step 1 guarantees that the loop in Step 3 must terminate. Without Step 1 (see
Algorithm 2.4), the Repeat statement in Step 3 must be replaced by the following statement, which
involves two comparisons, not one:

Repeat while LOC =N and DATA[LOC] # ITEM:

On the other hand, in order to use Step 1, one must guarantee that there is an unused memory location

it
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Algorithm 4.5: (Lincar Search) LINEAR(DATA, N, ITEM, LOC)
Here DATA is a linear array with N elemcnts, and ITEM is a given item of
information. This algorithm finds the location L OC of ITEM in DATA, or scts
LOC := 0 if the search is unsuccessful.

1. [Insert ITEM at thc cnd of DATA.] Set DATA[N + 1] := ITEM.
2. [Initializc counter.] Sct LOC:=1.
3. [Search for ITEM.]

Repcat while DATA[LOC] # ITEM:

Set LOC:=LOC + 1.

{End of loop.]
4. [Successful?] If LOC=N + 1, then: Sct LOC:=0.
5. Exit. .

at the end of the array DATA; otherwise, one must use the linear scarch algorithm discussed in
Algorithm 2.4.

EXAMPLE 4.8
Consider the array NAME in Fig. 4-5(a), where n = 6.

(¢) Suppose we want to know whether Paula appears in the array and, if so, where. Our algorithm temporarily
places Paula at the cnd of the array, as pictured in Fig. 4-5(b), by setting NAME]|7]| = Paula. Then the
algorithm scarchcs the array from top to bottom. Since Paula first appears in NAME[N + 1], Paula is not in
the original array.

(v) Suppose we want to know whether Susan appears in the array and, if so, where. Our algorithm temporarily
places Susan at the end of the array, as pictured in Fig. 4-5(c), by sctting NAME[7] = Susan. Then the
algorithm searches the array from top to bottom. Since Susan first appcars in NAME[4] (where 4 = n), we
know that Susan is in the original array.

NAME NAME NAME
1 Mary 1 Mary 1 Mary
2 Jane 2 Jane 2 Jane
3 Diane 3 Diane 3 Diane
4 Susan 4 Susan 4 Susan
5 Karen 5 Karen S Karen
6 Edith 6 Edith 6 Edith
T Paula 7 Susa}l
8 8 8

(@) (b) ()
Fig. 4-5

Coniplexily of the Linear Search Algorithm

As noted above, the complexity of our search algorithm is mecasured by the number f(n) of
comparisons required to find ITEM in DATA where DATA contains 7 elements. Two important cascs
to consider arc the average case and the worst case.
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Clearly, the worst case occurd when one must search through the entire array DATA, i.c., when
ITEM docs not appear in DATA. In this case, the algorithm requires

fi(n)y=n+1

comparisons. Thus, in the worst case, the running time is proportional to .

The running time of the average case uses the probabilistic notion of cxpectation. (Scc Scc. 2.5.)
Suppose p, is the probability that ITEM appears in DATA[K], and supposc q is the probability that
ITEM does not appear in DATA. (Then p, + p,+ -+ p, + g =1.) Since the algorithm uscs k
comparisons when ITEM appecars in DATA[K], the average number of comparnisons is given by

f)=1:p +2:py+---+n-p,+(ntl)gq
In particular, supposc ¢ is very small and ITEM appcars with equal probability in cach cicment of
DATA. Then g =0 and each p, = 1/n. Accordingly,

1
fin)=1- —+2 %+ --+n-%+(n+1)‘0=(1+2+---+n}-:

2 n 2
That is, in this special casc, the average number of comparisons requircd to find the location of ITEM
is approximately cqual to half the number of elements in the array.

‘4.8 BINARY SEARCH

(Suppose DATA is an array which is sorted in increasing numerical order or, cquivalently,
alphabetically. Then there is an extremely efficient searching algorithm, called binary search )which
can be uscd to find the location LOC of a given ITEM of information in DATA. Before formally
discussing "= algorithm, we indicatc the general idca of this algorithm by mcans of an-idcalized
version of a familiar everyday example.

Suppose one wants to find the location of some name in a telephone directory (or some word in a
dictionary). Obviously, one does not perform a linear search. Rather, onc opens the dircctory in the
middre to determine which half contains the name being sought. Then one opens that half in the middle
to determine which quarter of the directory contains the name. Then onc opens th t quarter in the
middle to determine which eighth of the directory contains the name. And so on. Eventually, one finds
the location of the name, since one is reducing (very quickly) the number of possible locations for it in
the directory.

The binary search algorithm applicd to our array DATA works as follows. During each stage of
our algorithm, our search for ITEM is reduced to a segment of clements of DATA:

DATA[BEG]), DATA[BEG + 1], DATA[BEG +2], ..., DATA[END]

Note that the variables BEG and END denote, respectively, the beginning and e¢nd locations of the
segment under consideration. The algorithm compares ITEM with the middle element DATA[MID]
of the segment, where MID is obtained by

MID = INT(BEG + END)/2)

(We use INT(A) for the integer value of A.) If DATA[MID] = ITEM, then the search is successful and
we set LOC := MID. Otherwise a new segment of DATA is obtalncd as follows:

(a) If ITEM < DATA[MID], then ITEM can appear only in the left half of thc scgment:
DATA[BEG], DATA[BEG + 1], ..., DATA[MID - 1]
So we reset END := MID — 1 and begin searching again.
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(b) If ITEM > DATA[MID], then - ITEM can appear only in the right half of the segment:
DATA[MID + 1! DATAMID +2],..., DATA[END]
So we reset BEG:=MID + 1 and begin searching again.

Initially, we begin with the entire array DATA; i.e., we begin with BEG =1 and END = n, or, more
generally, with BEG = LB and END = UB. .
If ITEM is not in DATA, then eventually we obtain

'END <BEG

This condition signals that the search is unsuccessful, and in such a case we assign LOC:= NULL.
Here NULL is a valuc that lies outside the sct of indices of DATA. (In most cascs, we can choosc
NULL =0.)

We statc the binary scarch algorithm formaily.

Algorithm 4.6: (Binary Scarch) BINARY(DATA, LB, UB, ITEM, LOC)
Here DATA is a sorted array with lower bound LB and upper bound UB, and
ITEM is a given item of information. The variables BEG, END and MID
denote, respectively, the beginning, end and middle locations of a segment of
clements of DATA. This algorithm finds the location LOC of ITEM in DATA or
sets LOC = NULL,

1. [Initialize segmcnt variables. ] N
Set BEG := LB, END := UB and MID = INT((BEG + END)/2).
2. Repecat Steps 3 and 4 while BEG = END and DAl A[MID] # ITEM.
3. If ITEM < DATA[MID], then:
Set END := MID - 1.
Else:
Set BEG:=MID + 1.
[End of If structure.]
4. Set MID := INT((BEG + END)/2).
[End of Step 2 loop.]
5. If DATA[MID] = ITEM, then:
Set LOC:= MID.
Else:
Set LOC:=NULL.
[End of If structure.]
6. Exit.

Remark: Whenever ITEM does not appear in DATA, the algorithm cventually arrives at the
stage that BEG = END = MID. Then the next step yiclds END < BEG, and control transfers to Step 5
of the algorithm. This occurs in part (b) of the next cxample.

EXAMPLE 4.W

Let DATA be the 1ollowing sorted 13-element aniay:
DATA: 11, 22, 30, 33, 40, 44, 53, 60, 66, 77,80, 88, 99
We apply the binary scarch to DATA for different valucs of ITEM.

(¢) Supposc ITEM = 40. The scarch for ITEM in the array DATA is pictured in Fig. 4-6, where the valucs of
DATA|BEG] and DATA[END)] in cach stage of the algorithg arc indicated by circles and the value of
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DATA[MID] by a square. Specifically, BEG, END and MID will have the followmg successive values:
(1) Initially, BEG =1 and END = 13. Hence

MID = INT[(1 + 13)/2] =7 and so DATA[MID] =55
(2) Since 40<55, END has its value changed by END = MID — 1 = 6. Hence
MID = iNT[(l +6)/2]=3 and so DATA[MID] = 30
(3) Since 40> 30, BEG has its value changed by BEG = MID + 1 =4. Hence
MID = INT[(4 +6)/2] =5 and so DATA[MID] = 40
We have found ITEM in location LOC = MID =35.

(1) @ 22, 30, 33, 40, 44, 60, 66, 77, 80, ss,
(2) @ 22, 33, 40,'55, 60, 66, 77, 80, 88, 99

(3) 1, 22, 30, @ 55, 60, 66, 77, 80, 88, 99 [Successful]

Fig. 46 Binary search for ITEM = 40.

(b) Suppose ITEM = 8S. The binary search for lTEM is pictured in Fig. 4-7. Here BEG. END and MID will
- have the following successive values:

(1) Again initially, BEG = 1, END = 13, MID = 7 and DATA[MID] = 55.
(2) Since 85>55, BEG has its value changed by BEG = MID + 1 = 8. Hence

MID = INT[(8 + 13)/2) =10 andso  DATA[MID] =77
(3) Since 85>77, BEG has its value changed by BEG = MID + 1 = i1. Hence
MID = INT[(11 + 13)/2] = 12 and so DATA[MID] = 88
(4) Sincc 85<88, END has its value changed by END = MID — 1 =11. Hence- A
MID = INT[(11 + 11)/2] =11  andso  DATA[MID] =80
(Observe that now BEG = END = MID =11.) '

Since 85> 80, BEG has its value changed by BEG = =MID + 1= 12. But now BEG > END. Hence ITEM does not
belong to DATA.

(1) @ 22, 30, 33, 40, 44,60, 66, 77, 80, 88, @
(2) 11, 22, 30, 33, 40, 44, 55, " 66, .so 88,
(3) 11, 22, 30, 33, 40, 44, 55, 60, 66, 77, .-.

(4) 11, 22, 30, 33, 40, 44, 55, 60, 66, T7, 88, 99 [Unsuccessfull

Fig. 47 Binary search for ITEM = 85.

Complexity of the Binary Search Algorithm

The complexity is measured by the number f(n) of comparisons to locatc ITEM in DATA whcre
DATA contains n clements. Observe that cach comparison reduces the sample size in half. Hence we
requirc at most f(n) comparisons to locate ITEM where

27/ > or equivalently f(n)=llog, n] +1

That is, the running time for thc worst case is approximatcly equal to log, #. Onc can also show that
the running time for the average case is approximately cqual to the running time for the worst case.
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EXAMPLE 4.10
~ Suppose DATA contains 1000000 elements. Observe that
2'"=1024>1000  and hence  2* > 1000% = 1 000 000

Accordingly, using the binary search algorithm, one requires only about 20 comparisons to find the location of an
item in a data array with 1000000 elements.

Limitations of the Binary Search Algorithm -

Since the binary search algorithm is very efficient (e.g., it requires only about 20 comparisons with
an initial list of 1 000 000 elements), why would one want to use any other search algorithm? Observe
that the algorithm requires two conditions: (1) the list must be sorted and (2) one must have direct
access to the middle element in any sublist. This means that one must essentially use a sorted array to
hold the data. But keeping data in a sorted array is normally very expensive when there are many
insertions and deletions. Accordingly, in such situations, one may use a different data structure, such
as a linked list or a binary search tree, to store the data.

4.9 MULTIDIMENSIONAL ARRAYS

The linear arrays discussed so far are also called one-dimensional brrays, since each element in the
array is referenced by a single subscript. Most programming languages allow two-dimensional and
three-dimensional arrays, i.e., arrays where elements are referenced, respectively, by two and three
subscripts. In fact, some programming languages allow the number of dimensions for an array to be as
high as 7. This section discusses these multidimensional arrays.

Ay
Two-Dimensional Arrays

A two-dimensional m x n array A is a collection of m - n data elements such that each element is
specified by a pair of integers (such as J, K), called subscripts, with the property that

I=J=m and I=K=n
The element of A with first subscript j and second subscript k will be denoted by
Ay or All, K]

Two-dimensional arrays are called matrices in mathematics and tables in business applications; hence
two-dimensional arrays are-sometimes called matrix arrays. :

There is a standard way of drawing a two-dimensional m X n array A where the elements of A form
a rectangular array with m rows and n columns and where the element A[J, K] appears in row J and
column K. (A row is a horizontal list of elements, and a column is a vertical list of elements.) Figure 4-8
shows the case where A has 3 rows and 4 columns. We emphasize that each row contains those
elements with the same first subscript, and each column contains those elements with the same second
subscript. : :

Columns )
& 1 2 3 4
1 AL A[L2] A[L3]  A[L 4]
Rows 2 [Al2,1]  A[2,2]  A[2,3] A[2, 4]

3 A[3, 1] Al3, 2] A[3, 3] A[3, 4]
Fig. 4-8 Two-dimensional 3 x 4 array A.
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EXAMPLE 4.11

Suppose each student in a class of 25 students is given 4 tests. Assuming the students are numbered from 1 to
25, the test scores can be assigned to a 25 X 4 matrix array SCORE as pictured in Fig. 4-9. Thus SCORE[K, L]
contains the Kth student’s score on the L\h test. In particular, the second row of the array,

.+ SCORE[2,1], SCORE[2,2], SCORE[2,3], SCORE(?2,4]

contains the four test scores of the second student.

Student Test 1 Test 2 Test 3 Test 4
1 84 73 88 81
95 100 88 96
3 72 66 77 72
25 ~718 82 70 85

prane. Fig. 4-9 Array SCORE.

Suppose A is a two-dimensional m X n array. The first dimension of A contains the index set
1, ..., m, with lower bound 1 and upper bound m; and the second dimension of A contains the index
set 1,2, ...,n, with lower bound 1 and upper bound n. The length of a dimension is the number of
integers in its index set. The pair of lengths m X n (read “m by n") is called the size of the array.

Some programming languages allow one to define multidimensional arrays in which the lower
bounds are not 1. (Such arrays are sometimes called nonregular.) However, the index set for each
dimension still consists of the consecutive integers from the lower bound to the upper bound of the
dimension. The length of a given dimension (i.e., the number ‘of integers in its index set) can be
obtained from the formula :

Length = upper bound — lower bound +1° (4.3)

(Note that this formula is the same as Eq. (4.1), which was used for linear arrays.) Generally speaking,
unless otherwise stated, we will always assume that our arrays are regular, that is, that the lower bound
of any dimension of an array is equal to 1.

Each programming language has its own rules for declaring multidimensional arrays. (As is the
case with linear arrays, all element in such arrays must be of the same data type.) Suppose, for
example, that DATA is a two-dimensional 4 X 8 array with elements of the real type. FORTRAN,
PL/1 and Pascal would declare such an array as follows:

' FORTRAN: = REAL DATA(4, 8)
PL/1: DECLARE DATA(4, 8) FLOAT;
Pascal: VAR DATA: ARRAY[1..4, 1..8] OF REAL;

Observe that Pascal includes the lower bounds even though they are 1.

Remark: . Programming languages which are able to declare nonregular arrays usually use a colon
to separate the lower bound from the upper bound in each dimension, while using a comma to scparate
the dimensions. For example, in FORTRAN,

INTEGER NUMB(2:5, —3:1)

declares NUMB to be a two-dimensional array of the integer type. Here the index sets of the
dimensions consist, respectively, of the integers

v Jebz Y I and =~ -3, -2,-1,0,1
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By Eq. (4.3), the length of the first dimension is cqual to 5 — 2+ 1 =4, and the length of the secoup
dimension is cqual to 1 = (—3) + 1 =5. Thus NUMB contains 4 - 5= 20 elements.

Representation of Two-Dimensional Arrays in Memory

Let A be a two-dimensional m X n array. Although A is pictured as a rectangular array of elements
with /1 rows and n columns, the array will be represented in memory by a block of i - n sequential
mcmory locations. Specifically, the programming language will store the array A either (1) column by
column, is what is called column-major order, or (2) row by row, in row-major order. Figurc 4-10
shows these two ways when A is a two-dimensional 3 X 4 array. We emphasize that the particular
representation uscd depends upon the programming language, not the user. .

A Subscript A Subscript
(1, )] (L1
(2, 1)} Column 1 (1,2)
Row 1
3, 1)) ‘ (1,3)
(1, 2)) (1, 4) -
(2, 2) ¢ Column 2 2, 1)
(3,2)) (2,2)
Row 2
(1, 3) (2, 3
(2, 3) } Column 3 (2, 4) :
3,3)] 3,1
1, 4 3,2
(1,4 o 2) 1»Row 3
(2, 4) t Column 4 3, )4 ~
(3. 4) ) : (.4
(a) Column-major order. (b) Row-major order.
Fig. 4-10

Recall that, for a lincar array LA, the corﬁpulcr doces not keep track of the address LOC(LA[K])
of cvery clement LA[K] of LA, but doces keep track of Buse(LA), the address of the first clement of
LA. The computer uses the formula

LOC(LA[K]) = Base(LA) + w(K — 1)
to find the address of LA[K] in time indcpendent of K. (Here w is the number of words per. memory
cell for the array LA, and 1 is the lower bound of the index sct of LA.)

A similar situation also holds for any two-dimcnsional m X n array A. That is, thc computcr keeps

track of Base(A)—thc address of the first clement AJl, 1] of A——-and computes the address
LOC(A[J, K]) of A[J, K] using the formula

(Column-major order) LOC(AJ, K]) = Base(A) + w[M(K — 1) + @ -=1)] (4.4)
or the formula
(Row-major order) LOC(A[J, K]) = Base(A) + w[NJ — ll) +(K—1)] (4.5)
)
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|
Again, w denotes the number of words per memory location for the array A. Note that the formulas

are linear in J and K, and that one can find the address LOC(A[J, K]) in time independent of J and K.

. 0
.

EXAMPLE 4.12 ‘ )
Consider the 25 X 4 matrix array SCORE in Example 4.11. Suppose Base(SCORE) =200 and there are

w =4 words per memory cell. Furthermore, suppose the programming language stores two-dimensional arrays
using row-major order. Then the address of SCORE[12, 3], the third test of the twelfth student, follows:

LOC(SCORE[12, 3]) =200 + 4[4(12— 1) + (3 — 1)] = 200 + 4[46] = 384
Observe that we have simply used Eq. (4.5).

Multidimensional arrays clearly illustrate the difference between the logical and the physical views
of data. Figure 4-8 shows how one logically views a 3 X 4 matrix array A, that is, as a rectangular array
of data where A[J, K] appears in row J and column K. On the other hand, the data will be physically
stored in memory by a linear collection of memory cells. This situation will occur throughout the text;
e.g., certain data may be viewed logically as trees or graphs although physncally the data will be stored
linearly in memory cells -

General Multidimensional Arrays

General multidimensional arrays are defined analogously. More specifically, an n-dimensional
m, X m, X --- X m, array B is a collection of m, - m, - - - m, data elements in which each element is

specified by a list of n integers—such as K, K,, . . . , K, —called subscripts, with the property that
1=K, =m,, 1=K,=m,, 1=K, =m,
The element of B with subscripts K,, K,, . . ., K, will be denoted by

BK,.K;....K,; or B[K,, K;, ... ,K\]

The array will be stored in memory in a sequence of memory locations. Specifically, the programming
language will store the array B either in row-major order or in column-major order. By row-major
order, we mean that the elements are listed so that the subscripts vary like an automobile odometer,
i.e., so that the last subscript varies first (most rapidly), the next-to-last subscript varies second (less
rapidly), and so on. By column-major order, we mean that the elements are listed so that the first
subscript varies first (most rapidly), the second subscript second (less rapidly), and so on.

EXAMPLE 4.13

Suppose B is a three-dimensional 2 X 4 X 3 array. Then B contains 2 - 4 -3 = 24 elements. These 24 elements
of B are usually pictured as in Fig. 4-11; i.e., they appear in three layers, called pages, where each page consists of
the 2 X 4 rectangular array of elements with the same third subscript. (Thus the three subscripts of an element in a
three-dimensional array are called, respectively, the row, column and page of the element.) The two ways of
storing B in memory appear in Fig. 4-12. Observe that the arrows in Fig. 4-11 indicate the column-major order of
the elements.

'The definition of general multidimensional arrays also permits lower bounds other than 1. Let C be
such an n-dimensional array. As before, the index set for each dimension of C consists of the
consecutive integers from the lower bound to the upper bound of the dimension. The length L, of
dimension i of C is the number of elements in the index set, and L, can be calculated, as before, from

L,; = upper bound — lower bound + 1 ‘ (4.6)

For a given subscript K,, the effective index E, of L, is the number of indices preceding K, in the mdex
set, and E, can be calculated from

E, =K, — lower bound 4.7)
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BI1, L3 B[1.2.3]  B[1.3,3] B[1.4.3]

TP Wg sy

Page 2 B[2.1.3]  B[2.2,3]  B[2,3,3] B[2.4.3]
= B[1.1.2]  B[(1.2,2] B[1.3.2] B[1.4.2] —)
Page | Bi2.1.2)  B[2.2.2]  B[2,3.2] B[2.4.2)
N

Bl1.1.1]  B{1,2.1]  B[L3.1]  B[1,4.1]
| et Lo )

Bl2.1,J]  B[2.2,1]  B[2.3.1]  B[2.4.1]

Fig. 4-11
B Subscripts ‘ B Subscripts
(1.1.1) (1,1,1)
(2,1, 1) (1,1,2)
(1,.2,1) (1, 1,3)
22.0) - (1.2.1)
(1.3.1) (1.2,2)
(1,4,3) (2,4,2)
(2,4,3) (2,4,3)
(¢) Column-major lordcr. (b) Row-major order.
Fig. 4-12

Then the address LOC(C[K,, K,, . . ., K] of an arbitrary clcment of C can be obtained from the
formula '

Base(C) + w[(((- - - (EnLn_y + En_)Ly_3) + -+ E))L, + E,)L, + E|) (4.8)
or from the formula
Base(C) + w[(-- - ((E,L, + E,))Ly+ E)L + -+ + E,_)L+ E.] (4.9)

according to whether C is stored in column-major or row-major order. Once again, Base(C) denotes
thc address of the first element of C, and w dcnotes the number of words per mcmory location.
EXAMPLE 4.14
Suppose a threc-dimensional array MAZE is declared using
MAZE(2:8, —4:1, 6:10)
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Then the lengths of the three dimensions of MAZE are, respectively,
L,=8-2+1=7, Ly=1-(#)+1=6, L,=10-6+1=5
Accordingly, MAZE contains L, - L, - L, =7" 6 -5 =210 elements.

Suppose the programming language stores MAZE in memory in row-major order, and suppose
Base(MAZE) =200 and there are w =4 words per memory cell. The address of an element of MAZE—for
example, MAZE([S, —1, 8}—is obtained as follows. The effective indices of the subscripts are, respectively,

E,=5—-2=3, E,=—1—-(—4)=3, E,=8—-6=2
Using Eq. (4.9) for row-major order, we have:
EL,=3-6=18
EL,+E,=18+3=21
(E\L,+ E,)L,=21-5=105
(E,L, + Ey)L, + E, = 105 +2 =107
Therefore,

LOC(MAZE[S, —1, 8]) =200 + 4(107) = 200 + 428 = 628

4.10 POINTERS; POINTER ARRAYS

Let DATA be any array. A variable P is called a pointer if P “‘points” to an element in DATA,i.e.,
if P contains the address of an element in DATA. Analogously, an array PTR is called a pointer array if
each element of PTR is a pointer. Pointers and pointer arrays are used to facilitate the processing of
the information in DATA. This section discusses. this useful tool in the context of a specific example.

Consider an organization which divides its membership list into four groups, where each group
contains an alphabetized list of those members living in a certain area. Suppose Fig. 4-13 shows such a
listing. Observe that there are 21 people and the groups contain 4, 9, 2 and 6 people, respectively.

Group 1 Group 2 Group 3 Group 4
Evans Conrad Davis Baker
Harris Felt Segal Cooper
Lewis Glass Ford
Shaw Hill Gray

King Jones
Penn Reed
Silver
Troy
Wagner

Fig. 4-13

Suppose the membership list is to be stored in memory keeping track of the different groups. One
way to do this is to use a two-dimensional 4 X n array where each row contains a group, or to use a
two-dimensional n X 4 array where each column contains a group. Although this data structure does
allow us to access each individual group, much space will be wasted when the groups vary greatly in
size. Specifically, the data in Fig. 4-13 will require at least a 36-element 4 X 9 or 9 X 4 array to store the
21 names. which is almost twice the space that is necessary. Figure 4-14 shows the representation of the
4 % 9 array; the asterisks denote data elements and the zeros denote unused storage locations. (Arrays
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whose rows—or columns—begin with different numbers of data elements and end with unused storage

locations are said to be jagged.)

*® O * * =

* * * 8

0

Ol*|O

#|O|* =

*|O|* *

*|O|*|O

*
=2 3

0 0

Fig. 4-14 Jagged array.

.

(=2 =4k 3 k=]

Another way the membership list can be stored in memory is pictured in Fig. 4-15(a). That is, the
list is placed in a linear array, one group after another. Clearly, this method is space-efficient. Also, the
entire list can easily be processed—one can easily print all the names on the list, for example. On the
other hand, there is no way to access any particular group; e.g., there is no way to find and print only
the names in the third group.

A modified version of the above method is pictured in Fig. 4-15(b). That is, the names are listed in
a linear array, group by group, except now some sentinel or marker, such as the three dollar signs used

w

(S B

14
15
16

21

MEMBER

Evans

Harris

Lewis

Shaw

Conrad

Wagner

Davis

Segal

Baker

Reed

(a)

Group 1

Group 2

Group 3

Group 4

Fig. 4-15

P

B = W &

14
15
16
17
18
19

24

MEMBER

Evans

Harris

Lewis

Group 1

Shaw

$$3%

Conrad

Group 2

Wagner

$3%

Davis

Segal

Group 3

$$%

Baker

Group 4

Reed

388

(b)
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here, will indicate the end of a group. This method uses only a few extra memory cells—one for each
group—but now one can access any particular group. For example, a programmer can now find and
print those names in the third group by locating those names which appear after the second sentinel
and before the third sentinel. The main drawback of this representation is that the list still must be
traversed from the beginning in order to recognize the third group. In other words, the different groups
are not indexed with this representation.

Pointer Arrays

The two space-efficient data structures in Fig. 4-15 can be easily modified so that the individual
groups can be indexed. This is accomplished by using a pointer array (here, GROUP) which contains
the locations of the different groups or, more®specifically, the locations of the first elements in the
different groups. Figure 4-16 shows how Fig. 4-15(a) is modified. Observe that GROUP[L] and
GROUP[L + 1] — 1 contain, respectively, the first and last elements in group L. (Observe that
GROUP[S5] points to the sentinel of the list and that GROUP[5] — 1 gives us the location of the last
element in Group 4.)

MEMBER
S—— | Evans
2 Harris
GROUP Group 1
3 Lewis
1 1
4 Shaw
2 5
—1. 5 Conrad
3 14 @ 5
4 16 Group 2
5 22 ) 13 Wagner
14 Davis
Group 3
15 Segal ¥
16 Baker
Group 4
21 Reed
=22 | 85

Fig. 4-16
EXAMPLE 4.15

Suppose one wants to print only the names in the Lth group in Fig. 4-16, where the value of L is part of the
input. Since GROUP[L] and GROUP[L + 1] — 1 contain, respectively, the locations of the first and last name in
the Lth group, the following module accomplishes our task:

1. Set FIRST:= GROUP[L] and LAST := GROUP[L + 1] - 1.
2. Repeat for K = FIRST to LAST:
Write: MEMBER[K].
[End of loop.]
3. Return.
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The simplicity of the modulc comes from the fact that the pointer array GROUP indexes the Lth group. The
variables FIRST and LAST are used mainly for notational convenicnce.

A slight variation of the data structure in Fig. 4-16 is pictured in Fig. 4-17, where unused memory
cells are indicated by the shading. Observe that now there are some cmpty cells between the groups.
Accordingly, a ncw clement may be inserted in a group without nccessarily moving the elements in any

GROUP MEMBER
1 1 » 1 | Evans
2 7 — 2 Harris
P e Group 1
3 19 P 3 Lewis
4 23 e 4 Shaw
' 5
6
™ 7 | Conrad
8 Felt
Group 2
NUMB
1 4
15 Wagner
2 9
16
5! 2
17
4 6
18 :
N— 19 | Davis
Group 3
20
21
22
FREE ;
: 5 9 , RGN - Baker
_3—” 24 Cooper
2 . G Group 4
3 2
4 4 28 Reed
29 |
30
31
32

Fig. 4-17
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other group. Using this data structure, one requires an array NUMB which gives the number of
clements in cach group. Observe that GROUP[K + 1] —~ GROUP[K] is the total amount of space
available for Group K; hence

FREE[K] = GROUP[K + 1] - GROUP[K] - NUMB[K]

is the number of empty cells following GROUP K. Somectimes it is convenient to explicitly define the
cxtra array FREE.

EXAMPLE 4.16

Suppose, again, onc wants to print only the names in the Lth group, where L is part of the input, but now the
groups are stored as in Fig. 4-17. Observe that

GROUP[L] and  GROUP[L]+ NUMBL] - 1

contain, respectively, the locations of the first and last names in the Lth group. Thus the following module
accomplishes our task:
1. Set FIRST:= GROUP[L] and LAST:= GROUP[L] + NUMB[L] - 1.
2. Repeat for K = FIRST to LAST:
Write: MEMBER([K].
[End of loop.]
3. Return.

The variables FIRST and LAST arc mainly used for notational convenience.

4.11 RECORDS; RECORD STRUCTURES

Collections of data are frequently organized into a hicrarchy ot field, records and files. Specifically,
A record is a collection of related data items, cach of which is called a field or atribute, and afileis a
collection of similar records. Each data item itself may be a group item composed of subitems; those
itcms which are indecomposable are called elementary items or ators ov scalars. The names given 1o
the various data items arc called identifiers.

Although a record is a collection of data items, it differs from a lincar array in the following ways:

(a) A rccord may be a collection of nonhomogencous data; i.c., the data items in a rccord may
have different data types.

(b) The data items in a record are indexed by attribute names, so there may not be a natural
ordering of its clcments.

Under the relationship of group item to subitem, the data items in a record form a hicrarchical
structure which can be described by means of “level” numbers, as illustrated m Examples 4.17 and
4.18.

BROWN, JOHN M. [M 04:16:84 BROWN, ROBERT S. 126] | BROWN, SUSAN B. |22

MIDlY le—————Name ’Jlf - Namg —————" f

Ape

Name—m——» — 4——————— Father ————— OUR—V LT} VL) R

| L
Sex ~) Birthday

e —

Fig. 4-18
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EXAMPLE 4.17

Suppose a hospital keeps a record on each newborn baby which contains the following data itcms: Namc, Sex,
Birthday, Father, Mother. Suppose further that Birthday is a group item with subitems Mon.h, Day and Year, and
Father and Mother are group items, cach with subitems Name and Age. Figure 4-18 shows how such a record

could appear.
The structure of the above record is usually described as follows. (Note that Name appears three times and

Age appears twice in the structure.)

1 Newborn

2 Name
2 Sex
2 Birthday
3 Month
3 Day
3 Year
2  Father
3 Name
3 Age
2 Mother
3 Name
3 Age

The number to the left of each identificr is called a level number. Obscrve that cach group item is followed by its
subitems, and the level of the subitems is 1 more than the level of the group item. Furthermore, an item is a group
item if and only if it is'immediately followed by an item with a greater level number., .- '

Somc of the identificrs in a record structure may also refer to arrays of clements. In fact, suppose
the first line of the above structure is replaced by

1 Newborn(20)

This will indicate a file of 20 records, and the usual subscript notation will be used to distinguish
between different records in the file. That is, we will write

Newborn,, Newborn,, Necwborn,,. ..
or Newborn[1], Newborn[2], Newborn[3], . ..

to denote different records in the file,

EXAMPLE 4.18
A class of student records may be organized as follows:

1, Student(20)
2 Name
3 Last
3 First
3 MI (Middle Initial)
Test(3)
Final
Grade

The identificr Student(20) indicates that there are 20 students. The identifier Test (3) indicates that theye are three
tests per student. Observe that there are 8 clementary items per Student, since Test is counted 3 times.
Altogether, there are 160 clementary items in the entire Student structure.

NN

Indexing Items in a Record

Suppose we want to access some data item in a record. In some cases, we cannot simply write the
data name of the item since the same name may appear in diffcrent places in the record. For example,
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Age appears in two places in the record in Example 4.17. Accordipgly, in order to specify a particular
item, we may have to qualify the name by using appropriate group item names in the structure. This
qualification is indicated by using decimal points (periods) to scparate group items from subitems.

EXAMRLE 4.19 :
(a) Corsider the record structurc Newborn in Example 4.17. Sex and year neced no qualification, since cach
refer to a uniquc item in the structure. On the other hand, suppose we want to refer to the age of the father.

This can bec donc by writing
Newborn.Father. Age or simply Father. Age
The first reference is said to be fully qualificd. Sometimes onc adds qualifying identifiers for clarity.
(b) Suppose the first line in the record structure in Example 4.17 is replaced by
1 Newborn(20)

That is, Newborn is defined to be a file with 20 records. Then cvery item automatically becomes a 20-clement
array. Some languages allow the scx of the sixth newborn to be referenced by writing

Newborn.Sex[6]) or simply Sex[6]
Analogously, the age of the father of the sixth newborn may be referenced by writing
Newborn.Father. Age[6] ur simply Father.Age[6] |

(¢) Consider the record structure Student in Exampic 4.18. Since Student is declared 1o be a file with 20
students, all items automatically become 20-element arrays. Furthermore, Test becomes a two-dimensional
array. In particular, the second test of the sixth student may be referenced by writing

Student.Test[6, 2] or simply Test[6, 2]
The order of the subscripts corresponds to the order of the qualifying identificrs. For example,
Test(3, 1]

does not refer to the third test of the fir * student, but to the first test of the third student.

Remark: Texts somectimes use functional notation instead of the dot notation to denote
qualifying identificrs. For example, one writes
Agc(Father(Newborn)) instcad of Newborn.Father. Age
and
First(Namc(Student[8])) instecad of Student.Name.First[8]
Observe that the order of the qualifying identifiers in the functional notation is the reversc of the order
in the dot notation.

4.12 REPRESENTATION OF RECORDS IN MEMORY; PARALLEL ARRAYS

Sin~e records may contain nonhomogeneous data, the clements of a record cannot be stored in an
array. Some programming languages, such as PL/1, Pascal and COBOL, do have record structures
built into the language.

EXAMPLE 4.20

Consider the record structure Newborn in Example 4.17. One can store such a record in PL/1 by the
following decclaration, which defines a data aggregate called a structure:
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DECLARE 1 NEWBORN,

2 NAME CHAR(20),

2 SEX CHAR(1),

2 BIRTHDAY,
3 MONTH FIXED,
3 DAY FIXED,
3 YEAR FIXED,

2 FATHER,
3 NAME CH * R(20),
3 AGE FIXED,

2 MOTHER
3 NAME CHAR(20),
3 AGE FIXED;

Obscrve that the variables SEX and YEAR are uniquc; hence references to them need not be qualified. On the
other hand, AGE is not unique. Accordingly, one should use

FATHER.AGE or MOTHER.AGE
depending on whether one wants to reference the father's age or the mother's age.

Suppose a programming language does not have available the hicrarchical structures that are
available in PL/1, Pascal and COBOL., Assuming the record contains nonhomogeneous data, the
record may have to be stored in individual variables, one for each of its elecmentary data itcms. On the
other hand, suppose one wants to store an entire file of records. Note that all data clements belonging
to the same identifier do have the same type. Such a file may be stored in memory as a collection of
parallel arrays; that is, where elements in the different arrays with the same subscript belong to the
samc record. This is illustrated in the next two examples.

EXAMPLE 4.21

Suppose a membership list contains the name, age, sex and telephone number of cach mcmber. One can store
the file in four parallel arrays, NAME, AGE, SEX and PHONE, as pictured in Fig. 4-19; that is, for a given
subscript K, the clements NAME[K], AGE[K], SEX[K] and PHONE[K] belong to the same record.

NAME AGE - SEX PHONE
1| John Brown 28 Malc 234-5186
2| PaulCohen .| .| 33 | ‘Male 456-7272
3| Mary Davis ;ﬁ - Female 777-1212
4 —L_,inda l;;ns 27 Female 876-4478
5| Mark Green 31 Male 255-7654
1
Fig. 4-19

EXAMPLE 4.22

Consider again the Newborn record in Example 4.17. One can store a file of such records in nine lincar arrays,
such as

NAME, SEX, MONTH, DAY, YEAR, FATHERNAME:, FATHERAGE, MOTHERNAME, MOTHERAGE

one array for each elementary data item. Here we must usc different variable names for the name and age of the
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father and mother, which was not necessary in the previous example. Again, we assumce that the arrays are
parallel, i.c., that for a fixed subscript K, the clements

NAME[K], SEX[K], MONTH[K], ..., MOTHERAGE[K]

belong o the same recor!

Records with Variable Lengths
Supposc an clementary school keeps a record for cach student which contains the following data:

Namé, Telephone Number, Father, Mother, Siblings. Here Father, Mother and Siblings contain,
respectively, the names of the student’s father, mother, and brothers or sisters atiending the same

school. Three such records may be as follows:

Adams, John; 345-6677; Richard; Mary; Jane, William, Donald
Bailey, Susan; 222-1234;, Steven; Sheila; XXXX
Clark, Bruce; 567-3344 XXXX; Barbara; David, Lisa

Here X XXX means that the parent has died or is not living with the student, or that the student has no
sibling at the school.

The above is an example of a variable-length record, since the data element Siblings can contain zcro
or more names. One way of stoging the file in arrays is pictured in Fig. 4-20, where there arc lincar
arrays NAME, PHONE, FATHER and MOTHER taking care of the first four data items in the
records, and arrays NUMB and PTR giving, respectively, the number and location of siblings in an
array SIBLING.

NAME PHONE FATHER MOTHER NUMB PTR SIBLING
Adams, John 345-6677 Richard Mary g 3 5 S
Bailey, Susan i 222-1234 Steven Sheila l 0 .T' 0 i (>2 David
Clark, Bruce 567-3344 XXXX Barbara 2 X 2 - 3 | Lisa
I i o H0 s o )
5 Jane
6 William

7 Donald

S

Fig. 4-20

4.13 MATRICES

“Vectors' and “matrices’ arc mathematical terms which refer to collections of numbers which are
analogous, respectively, to linear and two-dimensional arrays. That is,
I

(@) An n-clement vector V' is a list of n numbers usually given in the form

v=(V,,Va...., V.,
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(b) Anm X nmatrix A is an array of m - n numbers arranged in 71 rows and n columns as follows:

Ay Ay - A,
Ap Ay - Az

In the context of vectors and matrices, the term scalar is used for individual numbers.

A matrix with one row (column) may be viewed as a vector and, similarly, a vector may be viewed
as a matrix with only one row (column).

A matrix with the same number n of rows and columns is called a square matrix or an n-square
matrix. The diagonal or main -diagonal of an n-squarc matrix A consists of the elements
Ajin Azzs ooy Ay b

The next section will review certain algebraic operations associated with vectors and matrices.
Then the following scction discusses cfficient ways of storing certain types of matrices, called sparsc
matrices.

Algebra of Matrices

Suppose A and B are m X n matrices. The surmn of A and B, written A + B, is the m X n matrix
obtaincd by adding corresponding elements from A and B; and the product of a scalar k and the matrix
A, written k- A, is the m X n matrix obtained by multiplying cach clement of A by k. (Analogous
operations are defined for n-element vectors.)

Matrix multiplication is best described by first defining the scalar product of two vectors. Suppose
Uand V are n-clement vectors. Then the scalar product of U and V, written U - V, is the scalar obtained
by multiplying the elements of U by the corresponding elements of V, and then adding:

U-V=UV,+ UV, + -+ UV, =3 UV,
k=1

We emphasize that U -V is a scalar, not a vector.
Now supposc A is an m x p and suppose B is a p X n matrix. The product of A and B, written AB,

is the m X n matrix C whose ijth element C, is given by 5

Ci,' = Aan + Aiz‘Bzi AR - Aip Pi =E. AikBkj

Thac is, C, is equal to the scalar product of row i of A and column j of B.

¢

EXAMPLE 4.23

(@) Suppose

AR - 3) P(s 0 -—6)
A‘(o 4§ fnd, . B=hoiag v 'y
Then: -
i+3 "i340 3-0-(-—6)):(4 -2 —3)

’“”:((H: TR S

(31 34-20 - 33\ 43 -=6 9)
\3 3.4 3.5 A0 1215,

(b) Suppose U - (1, -3, 4, 5), V=(2, =3, =6, 0) and W= (3, 5, 2, —1). Then:

U-V=1~2+(-—3)-(v—3)+4-(—6)+5-n=24 9—244+0=-13
U-W=1-3+(——3)-(—5)+4-2+5-(~1)-:3 t15+8—-5=21

34
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(¢) Supposc

et AL 3) . 1 (2 0 —4)

a=(3 ) e B=l3 2

The product matrix AB is defined and is a 2 X 3 matrix. The elements in the first row of AB arc obtained,
respectively, by multiplying the first row of A by each of the columns of B:

(;Z)(g (2) f._gv_)=(t-2+3-3 1-:0+3-2 l-(—4)+3-6)=(11 6 '14)

Similarly, the elements in the second row of AB arc obtained, respectively, by multiplying the second row
of A by cach of the columns of B: ‘

(;:)(g 0.‘.‘ v__4)=(2-21+14-3 z-oits-z 2-(-41;+4-6)=(:; g iZ)

B (16 14)
S ’”"(16 8 16

The following algorithm finds the product AB of matrices A and B, which are stored as

two:dimensional arrays. (Algorithms for matrix addition and matrix scalar multiplication, which are

very similar to algorithms for vector addition and scalar multiplication, are left as excrcises for the
rcader.)

Algorithm 4.7: (Matrix Multiplication) MATMUL(A, B, C, M, P, N)
Let A be an M x P matrix array, and let B be a P »% N matrix array. This
algorithm stores the product of A and B in an M x N matrix array C.

-t

Repeat Steps 2 to 4 for 1 =1 to M.
2. Repeat Steps 3 and 4 for J =1 to MN:
3: Set C[I, J}:=0. [Initializes C[I, J}.]
4 Rcpeat for K=1to P:
C[1, J}:=C[1, J] + A[L, K]* B[K, J]
[End of inner loop.] :
[End of Step 2 middie loop.]
[End of Step 1 outer loop.]
5. Exit.

The complexity of a matrix multiplication algorithm is mcasured by counting the number C of
multiplications. The rcason that additions are not counted in such algorithms is that computer

mnltiplication takes 1 «ch more time than computer addition. The complexity of the above Algorithm
4.7 is equal to :

C=m-n-p

This comes from the fact that Step 4, which contains the only multiplication is executed m - n - p times.
Extensive rescarch has been donc on finding algorithms for matrix multiplication which minimize the
number of multiplications. The next example gives an important and surprising rgsult in this area.

EXAMPLE 4.24

Suppose A and B are 2 X 2 matrices. We have:
L fa b) __(e f) =(¢:c+bg af+bh)
A-‘(c d/’ B g h apd AR ce+dg cof +dh

In Algorithm 4.7, the product matrix A B is obtained using C =2-2-2=8 multiplications. (= the nther hand AL
can also be obtained from the following, which uses only 7 multiplications:
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((1+4-5+7) (3+5)
AB‘( (2 +4) (1+3-2+6))

(1) (a+d)e+h)
(2) (c+d)e

(3) a(f—h)

@) d(g-e)

(5) (a+b)h

(6) (c—a)e+))
(M -d)g+h)

Certain versions of the programming language BASIC have matrix operations built into the
language. Specifically, the following are valid BASIC statements where A and B are two-dimensional
arrays that have appropriate dimensions and K is a scalar:

MATC=A +B
MAT D = (K)* A
MATE=A+B

Each statement begins with the keyword MAT, which indicates that matrix operations will be
performed. Thus C will be the matrix sum of A and B, D will be the scalar product of the matrix A by
the scalar K, and E will be the matrix product of A and B.

4.14 SPARSE MATRICES

Matrices with a relatively high proportion of zero entries are called sparse matrices. Two genera!
types of n-square sparse matrices, which occur in various apphcatnons are pictured in Fig. 4-21. (Itis
sometimes customary to omit blocks of zeros in a matrix as in Fig. 4-21.) The first matrix, where all
entrics above the main diagonal are zero or, equivalently, where nonzero entries can only occur on or
below the main diagonal, is called a (lower) triangular matrix. The second matrix, where nonzero
entries can only occur on the diagonal or on elements immediately above or below the diagonal, is
called a tridiagonal matrix.

5 -3
Fro gho 3 :
4 9 -3 6
3 =5 2 4 -7
1 0 6 3 -1 0
-7 8 -1 3 6 -5 8
5 =2 02 -8/ ‘ 3 -1
(@) Triangular matrix. (b) Tridiagonal matrix.
Fig. 4-21

The natural method of representing matrices in memory as two-dimensional arrays may not be
suitable for sparse matrices. That is, one may save space by storing only those entries which may be
nonzero. This is illustrated for triangular matrices in the following example. Other cases will be
discussed in the solved problems. '
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EXAMPLE 4.25

Suppose we want to place in memory the triangular array A in Fig. 4-22. Clearly it would be wasteful to store
those entries above the main diagonal of A, since we know they are all zero; hence we store only the other entries
of A in a linear array B as indicated by the arrows. That is, we let

B(1]=a,,, B[2] = a,,, B[3] = a,,, B[3] = a,,,
Observe first that B will contain only ’
1+2+3+4+---+n= % n(n+1)

elements, which is about half as many elements as a two-dimensional n X n array. Since we will require the value
of a,, in our programs, we will want the formula that gives us the integer L in terms of J and K where

B[L] = a,, _
Observe that L represents the number of elements in the list up to and including a,,. Now there are
1+2+3+---+(J—1)=¥
elements in the rows above a,,, and there are K elements in row J up to and including a,, . Accordingly,
L-20-1)

yields the index that accesses the value a,, from the linear array B.

ayy

.....................

Solved Problems

LINEAR ARRAYS
4.1  Consider the linear arrays AAA(5:50), BBB(—5:10) and CCC(18).

(a) Find the number of elements in each array.
(b) Suppose Base(AAA) =300 and w = 4 words per memory cell fér AAA. Find the address
of AAA[15], AAA[35] and AAA[SS].
- (@) The number of elements is equal to the length; hence use the formula
' Length=UB—-LB + 1
Accordingly, Length(AAA)=50—-5+1=46
Length(BBB) =10 — (=5) + 1 =16
Length(CCC)=18—-1+1=18

Note that Length(CCC) = UB, since LB = 1.
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(b) Use the formula
LOC(AAA|K]) = Buse(AAA) + w(K — LB)

LOC(AAA[15]) = 300 + 4(15 - 5) = 340
LOC(AAA[35]) = 300 + 4(35 — 5) = 420

AAA[55] is not an clement of AAA, since 55 cxceeds UB = 50,
N

Hence:

4.2  Supposc a company kceps a lincar array YEAR(1920: 1970) such that YEAR([K] contains the

M3

number of cmployces born in ycar K. Write a module for cach of the following tasks:
(a) To print each of the years in which no cmployece was born.
(6) To find the number NNN of ycars in which no cmployec was born.

() To find the number N50 of cmployecs who will be at Icast 50 ycars old at the end of the
year. (Assumc 1984 is the current year.)

(d) To find the number NL of cmployces who will be at Icast L years old at the end of the
. year. (Assumc 1984 is the current year.)

Each module traverses the array.

(a) 1. Rcpeat for K = 1920 o 1970:
IT.YEAR[K] =0, then: Write: K. -
. [End of loop.]
2. Return.
(b) 1. Sect NNN:=(. -

2. Repeat for K = 1920 o 1970:
If YEAR[K] =0, then: Sct NNN:=NNN + 1.
[End of loop.]
3. Rcturn.

() We want the number of cmployces born in 1934 or carlicr.

1. Sct N50:=0. -
2. Repeat for K = 1920 to 1934:;
Sct N50:= N50 + YEAR[K].
[End of loop.]
3. Recturn.

(d) We want the number of cmployces born in ycar 1984 — L or carlicr.

I. Sct NL:=0 and LLL:= 1984 - L.
2. Rcpcat for K=1920 to LLL:
Set NL:=NL + YEAR|K].
[End of loop.}
3. Return.

Supposc a 10-clcment array A contains the valucs a,, a,, . . . , a,,. Find the values in A after
cach loop.

(@) Repeat for K=1 to 9:
Set A[K + 1]:= A[K].
[End of loop.]
(b) Repecat for K=9 to 1 by —1:
Set A[K + 1]:= A[9].
[End of loop.]

Note that the index K runs from 1 to 9 in part (@) but in reverse order from 9 back to 1 in part (b).
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First A[2]:= A[1] sets A[2] = a,. the valuc of A[l].

Then A3]:= A[2] sets A[3] = a,, the current value of A[2].

Then A[4]:= A[3] sets Ald] = a,, the current value of A[3]. And so on.

Thus every clement of A will have the value x,, the original value of All].

First A[10]:= A[9] sets A[1U] = a,,.

Then A[Y]:= A[8] sets A[9] = a,.

Then A[8]:= A|7] scts A[8] = a,. And so on. :

Thus every value in A will move to the next location. At the end of the loop, we still have A[1] = x,.

“Remark: This example illustrates the reason thag, in the inscrtion algorithm, Algorithm
the clements arc moved downward in reverse order, as in loop (&) above.

Consider the alphabetized lincar array NAME in Fig. 4-23.

(@)

(b)
©

(@)
(®)
©

NAME
1 Allen
2 Clark
3 Dickens

4 Edwards

5 joodman
6 Hobbs

7 Irwin

8 Klein

9 Lewis

10 Morgan

11 Richards

12 Scott 3

13 Tucker

14 Walton

Fig. 4-23

Find the number of elements that must be moved if Brown, Johnson and Peters are
inserted into NAME at three different times. :
How many elements are moved if the three names are inserted at the same time?

How does the telephone company handle insertions in a telephone directory?

Inserting Brown requires 13 elements to be moved, inserting Johnson requires 7 elements to be
moved and inserting Peters requires 4 elements to be moved. Hence 24 elements are moved.

If the elements are inserted at the same time, then 13 elements need be moved, each only once (with
the obvious algorithm).

.The telephone company keeps a running list of new numbers and then updates the telephone

directory once a year.
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SEARCHING, SORTING

4.5

4.6

4.7

4.3

Consider the alphabetized linear array NAME in Fig. 4-23.

(a) Using the linear search algorithm, Algorithm 4.5, how many comparisons C are used to
locate Hobbs, Morgan and Fisher? ;

(b) Indicate how the algorithm may be changed for such a sorted array to make an
unsuccessful search more efficient. How does this affect part (a)?

(a) C(Hobbs) =6, since Hobbs is compared with each name, beginning with Allen, until Hobbs is found
in NAME[6].
C(Morgan) = 10, since Morgan appears in NAME[10].
C(Fisher) = 15, since Fisher is initially placed in NAME([15] and then Fisher is compared with every
name until it is found in NAMEJ15]. Hence the search is unsuccessful.

(b) Observe that NAME is alphabetized. Accordingly, the linear search can stop after a given name
XXX is compared with a name YYY such that XXX < YYY (i.e., such that, alphabetically, XXX
comes before YYY). With this algorithm, C(Fisher) =5, since the search can stop after Fisher is
compared with Goodman in NAME[5].

Suppose the binary search algorithm, Algorithm 4.6, is applied to the array NAME in Fig. 4-23
to find the location of Goodman. Find the ends BEG and END and the middle MID for the test
segment in each step of the algorithm.

Recall that MID = INT((BEG + END)/2), where INT means integer value.
Step 1. Here BEG =1 [Allen] and END = 14 [Walton], so MID = 7 [Irwin].
Step 2. Since Goodman < Irwin, reset END = 6. Hence MID = 3 [Dickens).
Step 3. Since Goodman > Dickens, reset BEG = 4. Hence MID = 5 [Goodman)].
We have found the location LOC =5 of Goodman in the array. Observe that there were C =3
comparisons.

Modify the binary search algorithm, Algorithm 4.6, so that it becomes a search and insertion
algorithm.

There is no change in the first four steps of the algorithm. The algorithm transfers control to Step 5
only when ITEM does not appear in DATA. In such a case, ITEM is inserted before or after DATA[MID]
according to whether ITEM < DATA[MID] or ITEM > DATA[MID]. The algorithm follows.

Algorithm P4.7: (Binary, Search and Insertion) DATA is a sorted array with N elements, and ITEM is a
given item of information. This algorithm finds the location LOC of ITEM in DATA or
inserts ITEM in its proper place in DATA.

Steps 1 through 4. Same as in Algorithm 4.6.
5. If ITEM <DATA[MID)], then:
Set LOC := MID.
Else:
Set LOC:=MID + 1.
[End of If structure.]
6. Insert ITEM into DATA[LOC] using Algorithm 4.2.
7. Exit. )

Suppose A is a sorted array with 200 elements, and suppose a given element x appears with the

same probability in any place in A. Find the worst-case running time f(n) and the average-case

running time g(n) to find x in A using the binary search algorithm.

For any value of k, let n, denote the number of those elements in A that will require k comparisons to

be located in A. Then:
5 6 7 8

16 32 64 73

k:

1 2 3 4
ne: 1 2 4 8
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The 73 comes from the fact that 1 + 2+ 4+ - - + 64 = 127 s0 there arc only 200 -~ 127 = 73 elements left.
The worst-case running time f(n) = 8. The average-case running time g(n) is obtained as follows:

g(n) =~ > k-n,
o=
‘ 11 +2-243-4+4-8+5-16+6-32+7-64+8-73
B 200
1353
= 355 =6.765

Obscrve that, for the binary scarch, the average-case and worst-case running times arce approximatcly
cqual.

Using the bubble sort algorithm, Algorithm 4.4, find the number C of comparisons and the
number D of interchanges which alphabetize the n = 6 lctters in PEOPLL,

The sequences of pairs of letters which are compared in cach of the n — 1 = 5§ passcs follow: a square

indicates that the pair of letters is compared and interchanged, and a cirele indicates that the pair of lctiers
is compared but not interchanged.

Pass 1. |P EJOP L E, E|P O|P L E, EO@LE

E O P|P L|E, EOPL|PE EOPLE?P

Pass 2. PLEP, ELEP, EO|PLIEP

EOL|IPE|P EOLEPP

msss.LEPP. EloLlErr, ELloE[lPP

ELEOPP

l"ass4.@EOPl’. E[LEjOPP, EELOPP

PussS.@LOPP, EELOPP

Since n = 6, the number of comparisons willbe C =5+ 4 +3 + 2 + 1 = 15. The number D of interchanges
depends also on the data, as well as an the number n of clements. In this case D =9,

Prove thc felluwing idcentity, which is uscd in the analysis of various sorting and scarching
algorithms:
~n(n+1)

- 14243+ -+n 3

Writing the sum § forward and backward, we obtain:

S;l+2+3+~--+(n—l)+n
S=n+n-D+n—-2)+--+2+1

We find the sum of the two values of § by adding pairs as follows: _
2S=(n+D+n+D)+(+D)+-+(n+1)+(n+1)

There arc n such sums, so 25 = n(n + 1). Dividing by 2 gives us our rcsult.
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MULTIDIMENSIONAL ARRAYS; MATRICES

Supposc multidimensional arrays A and B arc dcclared using

4.11

4.12

(@)
(&)

(a)

(®)

A(—2:2, 2:22) and B(1:8, —5:5, —10:5)
Find the length of cach dimension and the number of clements in A and B.

Consider the element B[3, 3, 3] in B. Find the effcctive indices E,, E,, E; and the address
of the clement, assuming Base(B) = 400 and there are w = 4 words per memory location.

The length of a dimension is obtained by:
Length = upper bound — lower bound + 1
Hence the lengths L, of the dimensions of A are:
L,=2-(-2)+1=5 and L,=22-2+1=2I
Accordingly, A has 5-21 = 105 clements. The lengths L, of the dimensions of BB arc:
L,=8—-1+1=8 L,=5-(-5)+1=11 L,=5-(-10)+1=106
Thercfore, B has 8- ll: 16 = 1408 clemcnts.

The effective index E, is obtained from £, = k, — LB, where k, is the given index and LB is the lower
bound. Hence

E,=3-1=2 E,=3-(-5)=8 E,=3-(-10)=13
The address depends on whether the programming language stores B'in row-major order or
column-major order. Assuming B is stored in column-major order, we usc Eq. (4.8):
E,L,=13-11=143 E\L,+ £,=143 + 8 =151
(E,L, + E,)L, =151-8=1208 (E\L, + E))L,+ E, =1208+2=1210

Thercfore, LOC(B(3, 3, 3]) = 400 + 4(1210) = 400 + 4840 = 5240

Let A be an a1 X i square matrix array. Write a module which

(@)
(®)
(©
(@)

)

(©

Finds thc number NUM of nonzero clements in A
Finds the SUM of the clements above the diagonal, i.c., clements A[l, J] where 1<)
Finds the product PROD of the diagonal clements (a,,, a,,, .. ., a,,

1. Set NUM:=0.
2. Rcepeat for =1 to N:
3 Repeat for J =1 to N:
If A[I, J] #0, then: Sct NUM:= NUM + 1.
[End of inner loop.]
[End of outer loop.}

4. Return.
1. Set SUM:=0.
2. Repeat for J =2 to N:
3. Repcat for [=1to J - 1:
Set SUM :=SUM + A[l, J].
[End of inner Step 3 loop.)
4. Return.

1. Sct PROD:= 1. [This is analogous (o sctting SUM = 0.]
2. Rcpeat for K=1 to N: -
Sct PROD := PROD * A[K, K].
[End of loop.]
3. Rcturn.
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4.13 Consider an n-square tridiagonal array A as shown in Fig. 4-24. Note that A has n elements on
the diagonal and n — 1 elements above and n — 1 elements below the diagonal. Hence A
contains at most 37 — 2 nonzero elements. Suppose we want to store A in a linear array B as
indicated by the arrows in Fig. 4-24; i.e.,

B[1]=a,,, B[2]=a,,, B[3]=a,, B{4] = a,,,
Find the formula that will give us L in terms of J and K such that
| B[L] = A[J, K]
(so that one can access the value of A[J, K] from the array B).

Note that there are 3(J — 2) + 2 elements above A[J, K] and K — J + 1 elements to the left of Al K]
Hence

L=[30—-2)+2]+[K-J+1]+1=2J+K -2

Fig. 4-24 Tridiagonal array.

414 An n-square matrix array A is said to be symmetric if A[J, K] = A[K, J] for all J and K.

(@) Which of the following matrices are symmetric?

2 =3 5 1111 1 3 -7
-3 -2 4 1. 1.1 1 3 6 —1
5 6 8 1111 -7 —i 2

(b) Describe an efficient way of storing a symmetric matrix A in memory.

(¢) Suppose A and B are two n-square symmetric matrices. Describe an efficient way of
storing A and B in memory.

(a) The first matrix is not symmetric, since a,, = 4 buta,, = 6. The second matrix is not a square matrix
so it cannot be symmetric, by definition. The third matrix is symmetric.

(b) Since A[J, K] = A[K, J], we need only store those elements of A which lie on or below the diagonal.
This can be done in the same way as that for triangular matrices described in Example 4.25.

(c) First note that, for a symmetric matrix, we need store only either those elements on or below the
diagonal or those on or above the diagonal. Therefore, A and B can be stored in an n X (n + 1) array
C as pictured in Fig. 4-25, where C[J, K] = A[J, K] when ] = K but C[J, K]} =B[J,K — 1]when J <K.

I~

ay~ bu bu bu e bl.n—l bu.

Sy
a, ay; b by - by .= Dau
a,, ay,; day ~by by ey . B3
R N LR L 3O
T <
a,, a,2 a,s a,. L a,.: - bnn
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4.15 Three lawyers, Davis, Levinc-and Nelson, share the same office. Each lawyer has his own
clients. Figurc 4-26 shows three .ways of organizing the data.

(a) Here there .is an alphabetized array CLIENT and. an..array LAWYER such that
LAWYER(K] is the lawyer for CLIENT[K].

(b) Here there are three scparate arrays,

containing the list of the lawyer's clicats.

(c) Hcre there is a LAWYER array,

105

DAVIS, LEVINE and NELSON, cach array

and arrays NUMB and PTR giving, resp.ccli-vcly, the

number and location of cach lawyer’s alphabetized list of clients in an array CLIENT.

Which data structure is most useful? Why? v
CLIENT  LAWYER DAViS LEVINE - NELSON
1 | Adams Nelson 1| Brown-} & ] Diron f 1 | Adams |.
2 | Brown -} | Davis 2 | Cohen |2 | Fischer | 2 | Gibson | -
3 Cohen Dm 3 Eisen 2 Harris
4 Dixon Levine
5 Eisen 4 Davis
6 | Fischer Levine
7 | Gibson Nelson )
8 | Harris Nelson LAWYER NUMB PIR CLIENT
J 1 Davis ‘94 1 : 1 Brown
2 Levine 72 125 2 Cohen
(a) 3 | Netson 86 275 : '
125 Dixon
126 Fischer
=275 | Adams
276 Gibson
(c)
Fig. 4-26
mcdmusl useful data structure depends on “tow the office is organized and how the clients are
(Tracessed. ’

Suppose there arc only one secrctary and one telephone number, and suppose there is a single

ionthly billing of the clients. Also, su

I'lg. 4-26(a) would probably be the most useful data structure.

ppose clients frequently change from one lawyer to another. Thep
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4.17
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Suppose the lawyers operate completely independently: each lawyer has his own sccretary and his
own telephone number and bills his clients differcatly. Then Fig. 4-26(b) would likely be the most useful
data structurc. :

Suppose the office processes all the clicnts frequently and each lawyer has to process his own clients
frequently. Then Fig. 4-26(c) would likely be the most useful data structure.

The following is a list of entrics, with level numbers, in a student’s record:

1 Student 2 Number 2 Name 3 Last 3 First 3 Ml (Middle Initial) 2 Sex
2 Birthday 3 Day 3 Month 3 Year 2 SAT 3 Math 3 Verbal

(a) #*Draw the corresponding hierarchical structure.

(b) Which of the items are clementary itcms?

. (a) Although the items are listed linecarly, the level numbers describe the hierarchical rclationship

between the items. The corresponding hicrarchical structurc follows:

1 Studcnt

2 Number

2 Name
3 Last
3 First
3 Ml

2 Scx

2 Birthday
3 Day
3 Month
3 Year

2 SAT
3 Math
3 Verbal

(b) The clementary items are the data items which do not contain subitems: Number, Last, First, Ml,
Sex, Day, Month, Year, Math and Verbal. Obscrve that an item is elementary only if it is not
followed by an item with a higher level number.

A professor keeps the following data for cach student in a class of 20 studcnts:
Namec (Last, First, MI), Three Tests, Final, Gradce

Here Gradec is a 2-character entry, for cxample, B+ or Cor A—. Decscribe a PL/1 structure to
store the data.

An element in a record structure may be an array itself. Instcad of storing the three tests scparately,
we store them in an array. Such a structure follows:

DECLARE - 1 STUDENT(20),

2 NAME,
3 LAST CHARACTER(10),
3 FIRST CHARACTER(10),
3 Ml CHARACTER(1),

2 TEST(3) FIXED,

2 FINAL FIXED,

2 GRADE CHARACTER(2);
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4.18

1.19

A college uses the following structure for a graduating class:

1 Student(200)

2 Name
3 Last
3 First
3 Middle Initial
2 Major
2 SAT
3  Verbal
3 Math
2 GPA(4)
2 CUM

Here, GPA[K] refers to the grade point average during the kth year and CUM rcfers to the
cumulative grade point average.

(@) How many clementary items are there in the file?
(). How does onc access (i) the major of the eighth student and (ii) the sophomorc GPA of
the forty-fifth student?
(¢) Find cach output:
(i) Write: Name[15]
(ii) Write: CUM
(iii) Write: GPA[2].
(iv) Write: GPA[1, 3].
(a) Since GPA is counted 4 times per student, there are 11 elementary itcms per student, so there are
altogether 2200 elementary items.
(b) (i) Student.Major[8] or simply MAJOR(8]. (ii) GPA[45, 2].
(¢) (i) Here Namc[15] refers to the name of the fifteenth student. But Name is a group item. Hence
LAST[15], First[15] and MI[15] are printed.
(ii)  Here CUM refers to all the CUM values. That is,

JCUM[1),  CcuM[2], cump), S..,  CUM[200)

'arc printed.
(iii) GPA|2] refers to the GPA array of the second student. Hence,

GPA[2, 1], GPA[2,2], GPA[2,3], GPA[2, 4]

are printed.
(iv) GPA[1, 3] is a single item, the GPA during the junior year of the first student. That is, only
GPA[1, 3] is printed.

An automobile dcalership keeps track of the serial number and price of ecach of its automobiles
in arrays AUTO and PRICE, respectively. In addition, it uses the data structure in Fig. 4-27,
which combines a record structure with pointer variables. The new Chevys, ncw Buicks, new
Oldsmobilcs, and used cars are listed together in AUTO. The variables NUMB and PTR under
USED give, respectively, the number and location of the list of used automobiles.

(a) How does one index the location of the list of new Buicks in AUTO?
{b) Write a procedure to print serial numbers of all new Buicks: under $10 000.



108 ARRAYS, RECORDS AND POINTERS : [CHAP. ¢

‘I’ PEALER .
2 “NEW 1
"3 CHEVY 2
4 NUMB
4 PTR o— 1
3 ~BUICK i : : 4
4 NUMB ' ‘ |
4 PTR o '
3 OLDS
4 NUMB
4 PTR
2 USED
3 NUMB . ;
3 PIR = -

AUTO PRICE

Fig. 4-27

(a) Since PTR appears morc than oncc in the record structure, one must use BUICK.PTR to refercnce
the location of the list of new Buicks in AUTO.

(b) One must traverse the list of new Buicks but print out only those Buicks whosc price is Iess than
$10000. The procedure follows:

“ Procedure P4.19: The data are Stored in the structure in Fig. 4-27. This procedure outpuls those
new Buicks whosc price is less than $10000.

1. Set FIRST:= BUICK.PTR. [Location of first clement in Buick list.]
2. Set LAST:=FIRST + BUICK.NUMB — 1, [Location of last elecment in
list. ]
3. Repeat for K = FIRST to LAST.
1If PRICE[K] < 10000, then:
Write: AUTO[K], PRICE[K].
[End of If structure.]
“[End of loop.]

4. Exit.
POINTFR ACCESSORIES
I 1 1
S
P 2

| e

Air-conditioning
- : JSB AM-FM radio
g : "~ 84 | Rustproofing

2 85 | sss
1 ’

Fig o F
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4.20 Suppose in Prob. 4.19 the dealership had also wanted to keep track of the accessories of cach

automobile, such as air-conditioning, radio, and rustproofing. Since this involves variable-
length data, how might this be done?

This can be accomplished as in Fig. 4-28. That is, besides AUTO and PRICE, there is an array

POINTER such that POINTER[K] gives the location in an array ACCESSORIES of the list of accessories
“(with sentinel '$$$") of AUTO[K].

Sdpplemcntary Problems

ARRAYS

4.21

4.22

4.23

4.24

4.25

Consider the lincar arrays XXX(-10:10), YYY(1935:1985), ZZZ(35). («) Find the number of clements
in.cach array. (b) Supposc Base(YYY) = 400 and w = 4 words per memory cell for YYY. Find the address
of YYY[1942], YYY[1977] and YYY[1988].

Consider the following multidimensional arrays:
X(—5:5,3:33) Y(3:10, 1:15, 10:20)

(a) Find the length of cach dimension and the number of clements in X and Y.

(&) Suppose Base(Y) =400 and there arc w = 4 words per memory location. Find the effective indices
E,, E,, E, and the address of Y[5, 10, 15] assuming (i) Y is stored in row-major order and (ii) Y is
stored in column-major order.

An array A contains 25 positive integers. Write a module which

(@) Finds all pairs of clements whose sum is 25

(b) Finds the number EVNUM of clements of A which are even, and the number ODNUM of elements
of A which are odd

Suppose A is a lincar array with n numeric values. Write a procedurc

MEAN(A, N, AVE)

which finds the average AVE of the values in A. The arithmetic mean or average X of the values
Xys X3, <. ., X, is defined by
Ay iy S R

n

X=

- Each student in a class of 30 students takes 6 tests in which scores range betwecen 0 and 100. Supposc the

test scores are stored in a 30 X 6 array TEST. Write a module which

(a) Finds the average grade for each test

(b) Finds the final grade for cach student where the final grade is the avcmgc-of the student’s five highest
test scores

() Finds the number NUM of students who have failed, i.c., whose final grade is less than 60
(d) Finds the average of the final grades

POINTER ARRAYS; RECORD STRUCTURES

4.26

Consider the data in Fig. 4-26(c). (@) Write a procedure which prints the list of elients belonging to
LAWYER[K]. (b) Assuming CLIENT has space for 400 clements, define an array FREE such that
FREE[K] contains the number of cmpty cells following the list of clicnts belonging to LAWYER[K].
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4.27  The following is a list of entries, with level numbers, in a filc of employee records:
1  Employcc(200), 2 SSN(Social Security Number), 2 Name,
3 Last, 3 First, 3 MI (Middle Initial), 2  Addrcss, 3 Sireet,
3 Area, 4 City, 4 State, 4 ZIP, 2 Age, 2 Salary, 2 Dcpendents

(@) Draw the corresponding hierarchical structure.

(b) Which of the items are clementary items?

(¢) Describe a record structure—for example, a PL/1 structure or a Pascal record—to store the data,
4.28 Consider the data <'ructure in Fig. 4-27. Writc a procedure to carry out cach of the following:

(a) Finding the number of new Oldsmobiles sclling for under $10 000,

(») Finding thc number of new automobiles sclling for under $10000.

(¢) Finding the number of automobiles sclling for under $10000.

(d) Listing all automobiles sclling for under $10 000.

(Note: Parts (¢) and (d) require ‘only the arrays AUTO and PRICE together witn the number of

auwtomobiles.)
4.29 A class of student records is organized as follows: .

1 Student(35), 2 Name, 3 Last, 3 First, 3 MI (Middle Initial), 2 Major
2 Test(4), 2 Final, 2 Grade

(a) How many clementary items are there?

() Describe a record structure—for example, a PL/1 structure or a Pascal record, to store the data.

(c) Describe the output of cach of the following Write statements: (i) Write: Final[15], (i) Write:

Name[15] and (iii) Write: Test[4].

4.30 Consider the data structure in Prob. 4.18. Write a procedure which

(a) Finds the average of the sophomore GPA scorcs

(b) Finds the number of biology majors

(¢) Finds the number of CUM scorcs exceeding K

Programming Problems

ARRAYS

Assume that the data in Table 4-1 are stored in lincar arrays SSN, LAST, GIVEN, CUM and YEAR (with

space for 25 students) and that a variable NUM is defined which contains the actual number of students.

'4.31

4.32

4.33

Writc a program for each of the following:

(a) Listing all students whose CUM is K or higher. (Test the program using K= 3.00.)
(b) Listing all students in year L. (Test the program using L =2, or sophomore.)

Translate the linear search algorithm into a subprogram LINEAR(ARRAY, LB, UB, ITEM, LOC) which
cither finds the location LOC where ITEM appears in ARRAY or returns LOC = 0.

Translate the binary search and insertion algorithm into a subprogram BINARY(ARRAY, LB, UB,
ITEM, LOC) which finds either the location LOC where ITEM appears in ARRAY or the location LOC
where ITEM should be inserted into ARRAY.
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4.34

4.35

4.36

4.37

4.38

Table 4-1
Social Security
Number Last Name Given Name CUM Ycar
211-58-1329 Adams Bruce § 2.85 2
169-38-4248 Bailey Irenc L. 3.25 4
166-48-5842 Cheng Kim 3.40 1
187-52-4076 Davis John C. 2.85 2
126-63-6382 Edwards Steven 1.75 3
135-58-9565 Fox Kcnneth 2.80 2
172-48-1849 Green Gerald S. 2.35 2
192-60-3157 Hopkins Gary 2.70 2
160-60-1826 Klein Decborah M. 3.05 1
166-52-4147 Lee John 2.60 3
186-58-0430 Murphy William 2.30 2
187-58-1123 Newman Ronald P. 3.90 4
174-58-0732 Osborn Paul 2.05 3
183-52-3865 Parker David 1.55 2
135-48-1397 Rogers Mary J. 1.85 1
182-52-6712 Schwab Joanna 2.95 2
184-48-8539 Thompson David E. 3.15 3
187-48,2377 Whitc Adam 2.50 2

Write a program which reads the social security number SOC of a student and uses LINEAR to find and
print the student’s record. Test the program using (a) 174-58-0732, (b) 172-55-5554 and (c) 126-63-6382.

7

Write a program which rcads the (last) NAME of a student and uses BINARY to find and print the
student’s record. Test the program using (a) Rogers, (b) Johnson and (c) Bailey.

Write a program which reads the record of a student
SSNST, LASTST, GVNST, CUMST, YEARST
and uses BINARY to insert the record into the list. Test the program using:

(a) 168-48-2255, Quinn, Michael, 2.15, 3
(b) 177-58-0772, Jones, Amy, 2.75, 2

Write a program which reads the (last) NAME of a student and uses BINARY to delete the student's
record from the list. Test the program using (a) Parker and (b) Fox.

Wirite a program for cach of the following:

(a) Using the array SSN to definc arrays NUMBER ahd PTR such that NUMBER s a sorted array of
the elements in SSN and PTR[K] contains the location of NUMBER[K] in SSN.

(£) Reading the social security number SOC of a student and using BINAR and the array NUMBER to
find and print the student’s record. Test the program using (i) 174-58-0732, (ii) 172-55-5554 and (iii)
126-63-6382. (Compare with Prob. 4.34))
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POINTER ARRAYS

Assume the data in Table 4-2 are stored in a single lincar array CLASS (with space for 50 narmes). Also
assume that there are 2 empty cells between the sections, and that there are lincar arrays NUMB, PTR and FREE
defined so that NUMB([K] contains the number of clements in Section K, PTR[K] gives the location in CLASS of
the first name in Scction K, and FREE[K] gives the number of empty cells in CLASS following Section K.

Table 4-2
Section | Section 2 Section 3 Section 4
Brown Abrams Allen Burns -
Davis Collins Conroy Cohen
Jones Forman Damario Evans
Samuels Hughes Harris Gilbert
Klein Rich Harlan
Lee Sweency Lopez
Moorc Mcth
Quinn L Ryan
Rosen Williams
Scott
Taylor
" Weaver

4.39  Write a program which rcads an integer K and prints the names in Section K. Test the program using
(a) K=2 and (b) K=13.

4.40  Write a program which reads the NAME of a student and finds and prints the location and section number
of the student. Test the program using (a) Harris, (b) Rivers and (c) Lopez.

4.41 - Write a program which prints the namcs in columns as they appear in Table 4-2.

4.42 Write a program which reads the NAME and scction number SECN of a student and inserts the student
intu CLASS. Test the program using (a) Eden, 3; (b) Novak, 4; (c) Parker, 2; (d)-Vaaghn, 3; and
(e) Bennett, 3. (The program should handle OVERFLOW.)

4.43  Write a program which rcads the NAME of a student and deletes the student from CLASS. Test the
program using (a) Kicin, (») Daniels, (¢) Mcth and (d) Harris. !

MISCELLANEOUS
4.44  Supposc A and B are n-clement vector arrays in memory and X and Y arc sealars. Write a program to find

(a) XA + YB.and (b) A - B. Test the program using A = (16, =6, 7), B=(4, 2, —3),X=2and Y= -5.
4.45 Translate the matrix multiplication algorithm, Algorithm 4.7, into a subprogram

MATMUL(A, B, C, M, P, N)
. which finds the product C of an m X p matrix A and a p X n matrix B. Test the prdgmm using
2. .3 =27 -3
4 =5 5
0 T (5 & S z)

0 3 =2 1
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4.46 Consider the polynomial
fx)=ax"+ax"""'+ ---+ax+a,,,

- . . - ’ -
Evaiuating the:-polynomial in the obvious way would require

. +
a1kt ls -'1(—'3—5—'—)
muluphcmnons and n additions. Howcvcr onc can rewrite the polynomial by succcsswc#y l'ac.lormg oul x

“as follows:

*

fix) = (- ((aX+"z)x+a Jx+--)xta)xta,,

This uses only n multiplications and n additions. This sccond way of cvalualmg a polynomlal ts called
Horner's method. <

(@) Rewritc the polynomial f(x) =5x* —6x* + 7x? + 8x — 9 as it would be cvnlualcd using Horner's -

method.
(b) Suppose the cocfficients of a polynomial arc in memory in a lincar array A(N + 1). (That is, A[1] is.
the coefficient of x", A[2] is the cocfficient of x"~',. .., and A[N + 1] is the constant.) Write a

procedure HORNER(A N+1,X,Y) whu:h finds the value Y = F(X) for a given value X using
Horner's method.
Test the program using X =2 and f(x) from part (a).

.



Chapter 5

Linked Lists

5.1 INTRODUCTION

The everyday usage of the term “list” refers to a linear collection of data items. Figure 5-1(a)
shows a shopping list; it contains a first element, a second clement, ..., and a last clement.
Frequently, we want to add items to or dclete items from a list.” Figure 5-1(b) shows the shopping list
Aafter three items have been added at the end of the list and two others have beea deleted (by being’
crossed out). o A ok

milk miLk
0995 Soh

fomatopes
tematoes
App &)

- adng i
eanqdd

breaj;l, cb;ﬁzk%
o
lu‘fm

(a) (b)
Fig. 5-1

Data processing frequently involves storing and processing data organized into lists. Onc way to
store such data is by means of arrays, discussed in Chap. 4. Recall that the lincar rclationship between
the data elements of an array is reflected by the physical relationship of the data in memory, not by any
information contained in the data clements themsclves. This makes it casy to compute the address of
an clement in an array. On the othier hand, arrays have certain disadvantages—e.g., it is rclatively
expensive to insert and delete elements in an array. Also, since an array usually occupics a block of
memory space, one cannot simply double or triplc the size of an array when additional spacc is
required. (For this rcason, arrays arc called dense lists and arc said to be siatic data structures.)

Another way of storing a list in memory is to have each element in the list contain a ficld, called a
link or pointer, which contains the address of the next element in the list. Thus successive elements in
the list nced not occupy adjacent space in memory. This will make it easier to insert and delcte
clements in the list. Accordingly, if one were mainly interested in scarching through data for inserting
and deleting, as in word processing, one would not store the data in an array but rather in a list using
pointers. This latter type of data structure is called a linked list and is the main subjcct matter of this
chapter. We also discuss circular lists and two-way lists—which are natural generalizations of linked
lists—and their advantages and disadvantages.

114



CHAP. 5] LINKED LISTS 115

5.2 _1TINKED LISTS b

A linked list, or one-way list, is i ction of data clements, called nodes, where the linear
order is given by means of pointers. That is, cach node is divided into two parts: the first part contains
the information of the clement, and the 'second part, Lallcd the link field or nexipointer field, contains
the address of the next node in the list. _

Figure 5-2 is a schematic diagram of a linked list with 6 nodes, Each node is pictured with two
parts. The left part represents the information part of the node, which may contain an entirc record of
data itcms (c.g., NAME, ADDRESS, . . .). The right part represents the nextpointer ficld of the node,
and there is an arrow drawn from it to the next node in the list. This follows the usual practice of
drawing an arrow from a ficld to a node when the address of the node appears in the given ficld. The
pointer of the last node contains a special value, called the null pointer, which is any invalid address.

NAME
or

START

LB gl ' [l ] ]

Nextpointer ficld of third: node
Information part of third node .

-

Fig. 5-2 Linked list with 6 nodes.

K Bed ;
Number Paticnt Next
START 5 5 1 Kirk 7
2
3 Dean 1
4 [~ Maxwel—_ | 12
5 Adams 3 >
6
7 Lane 4
8 Green 1
<’\9\__._Samucls ,__(l/—
%\\5
C 11 Fields 8
12 ‘Neison 9

Fig. 5-3
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(In actual practice, O or a negative number is used for the null pointer.) The null pointer, denoted by x
in_the diagram, signals the end of the list. The linked list also contains a list pointer variable—called
START or NAME—which contains the address of the first node in the list; hence there is an arrow
drawn from START to the first node. Clearly, we nced only-this address in START to tracc through
the list. A spccial casc is the list that has no nodes. Such a list is called the mull list of empty list andis
denotéd by the null pointer in the yariable START.

EXAMPLE 5.1

. A hospital ward contains 12 beds, of which 9 are ocewpicd as shown in Fig. 5-3. Supposc we want an
alphabcticzl listing of the paticnts. This listing may be given by the pointer ficld, called Next in the figure.:We use
the -variable START to point to the first paticnt. Hence START contains ‘5, since the first paticnt, Adams, |
occupies bed 5. Also, Adams's pointer is cqual to 3, since Dcan, the nextpaticnt, occupics bed 3; Dean's pointer is
11, since Ficlds, the next paticnt, occupics bed 11; and so on. The entry for the last paticnt (Samucls) contains the
null pointer, denoted by 0. (Some arrows have been drawn to indicate the listing of the first few patients.)

A

5.3 * REPRESENTATION OF LIN_KEDAL'ISTS IN MEMORY

Let LIST be a linked list. Then LIST will be maintained in memaory, inless otherwise specified or
implied, as follows. First of all, LIST requires two lincar arrays-—wé will call them here INFO and
LINK—such that INFO[K] and LINK[K] contain, respectively, the information part and the
nextpointer field' of a node of LIST. As noted above, 1LIST also requires a variable name—such as
START-which contains thelocation of the beginning of the Ilst and a nextpointer sentinel—denoted
by NULL—which indicates the end of the fist. Since the subscripts of the arrays INFO and LINK will
usually be positive, we will choose NULL = 0, unless otherwise stated.

The following examples of linked lists indicate that the nodes of a list nced not- ouupy adjacent
clements in the arrays INFO and LINK, and that more than one list may be maintained in the same
linear arrays INFO and LINK. However, cach list must have its own pointcr variable giving the
location of its first node. ;

INFO LINK

1 N
2
START E\ »3 | O 6
’ 4 b7 0.
_——-"'1—"_4/_
o 11
7.1 % 10
8 >
L——«; N 3 )
Cﬁ' 1 4
1| E 7
12
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EXAMPLE 5.2

Figure 5-4 pictures a linked list in memory where cach node of the list contains 3 single character. We can
obtain the actual list of characters, or, in other words, the string, as follows:

START =9, so INFO[9] = N is the first character.

LINK[9] = 3, so INFO[3] = O is thc second character.

LINK([3] = 6, so INFO[6] = (I (blank) is the third character.

LINK[6] = 11, so INFO[11] = E is the fourth character.

LINK[11] =7, so INFO[7] = X is the fifth character.

LINK[7] = 10, so INFO[10] = I is the sixth character.

LINK][10] = 4, so INFO[4] = T is thc seventh character.

LINK[4] =0, thc NULL value, so the list has caded. 3 .

* In other words, NO EXIT is the character string.

SEXAMPLE 5.3

Figure $-5 pictures how twe lists of test scores, here ALG and GEOM, may be maintained in memory where
the nodes of both lists are stored in the same linear arrays TEST and LINK. Obscrve that the namcs of the lists are
also used as the list pointer variables. Here ALG contains 11, the location of its first nede, and GEOM contains 5,
the location of its first node. Following the pointers, we sec that ALG consists of the tesu scores

88, 74, 93, 82
TEST LINK
1
7 2 74 14 Node 2 of ALG
3
ALG | 11 |———— 4 82 0 Node 4 of ALG
— 5 84 12 Node 1 of GEOM
6 78 0
| 7 74 8 Node 3 of GEOM
GEOM 5
8 | 100 13
9
10 :
Lvll 88 2 Node 1 of ALG
12 62 7.| Node 2 of GEOM
13 74 6
14 93 4 Node 3 of ALG
e
15
16

Fig. 5-5
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and GEOM consists of the test scores
84, 62, 74, 100, 74, 78
(The nodes’of ALG and some of the nodes of GEOM are explicitly labeled in the diagram.)

EXAMPLE 5.4

Suppose a brokerage firm has four brokers and cach broker has his own list of customers. Such data may be
organized as in Fig. 5-6. That is, all four lists of customers appear in the samc array CUSTOMER, and an array
LINK contains the nextpointer ficlds of the nodes of the lists. There is also an array BROKER which contains the
list of brokers, and a pointer array P{)lNT such that POINT[K] points to the beginning of the list of customers of
BROKERI[K].

Accordingly, Bond's list of customers, as indicated by the arrows, consists of

Grant, Scott, Vito, Katz

BROKER POINT CUSTOMER  LINK
1 Bond 12 i sy Q Vito 4 )
2 | Kelly 3 2 = e
3 | Hal 0 CJ/ Hunter -~ \1?**\
4 Nclson 9 4 Katz 0

5
6 Evans 0
7
8 Rogers 15
9 Teller 10
10 Jones 19
11

=12 | Grant 17
5o S Tl
14 7| McBride 6
15 Weston 0
16

= 17 Scott 1 —-)

18
19 Adams 8
20_

Fig. 5-6
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Similarly, Kelly’s list consists of

and Nclson’s list consists of

LINKED LISTS

Hunter, McBride, Evans

Teller, Jones, Adams, Rogers, Weston

Hall’s list is the null list, since the null pointer 0 abpcars in POINT(3].

119

Gencrally speaking, the information part 6f a node may be a record with more thanone data item.
In such a case, the data must be stored in some type of record structure or in a colicction of parallel

sarrays, such as that iHustrated in the following cxample.

EXAMPLE 5.5

Supposc the personnel file of a small company contains the following data on its ninc employces:

Name, Social Sccurity Number, Sex, Monthly Salary

Normally, four parallcl arrays, say NAME, SSN, SEX, SALARY, arc required 1o store the data as discussed in

Scc. 4.12. Figurc 5-7 shows how the data may be stored as a sorted
additional array LINK for the nextpointer ficld of the list and the variabl

list. Observe that 0 is uscd as the null pointer.

(=

S w»m /A W N

o

10
1
12
13
14

NAME SSN SEX SALARY LINK
Davis 192-38-7282 Female 22 800 12
Kelly 165-64-3351 Male 19 000 7
Green 175-56-2251 Male 27200 14

B e i O RRNEE
Brown 178-52-1065 Female 14700 9
Lewis 181-58-9939 Female lﬁ 400 10
Cohen 177-44-4557 Male 19000 p 2
\
Rubin 135-46-6262 Female 15500 | 0
vans 168-56-8113 Male 34200 4
Harris 208-56-1654 Female 22800° 3

Fig. 5-7

(alphabetically) linkcd list using only an
¢ START to point to the first record in the
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WAVERSING A LINKED LIST

Let LIST be a linked list in memory stored in lincar arrays INFO and LINK with START pointing
to the first clement and NULL indicating the end of LIST, Suppose we waut Lo traverse LIST in order
to process cach node exactly once. This section presents an algorithm that does so and then uscs the
algorithm in somec applications. : : 2 " i '

Our traversing algorithm usecs a pointer vatiible PTR which points to the nodc that is currently
being processed. Accordingly, LINK[PTR] points to the next node to be processed. Thus the
assignment .

PTR := LINK[PTR]

moves the pointer to the next node in the list, as pictured in Fig. 5-8.

PTR

R

Fig. 5-8 PTR:= LINK|PTR].

The dctails of the algorithm arc as follows. Initialize PTR or START. Then process INFO[{PTR],
the information at the first node. Update PTR by the assignment PTR := LINK[PTR], so that PTR
points to the sccond node. Then process INFO[PTR], thc information at thc sccond node. Again
update PTR by the assignment PTR 1= LINK[PTR], and then process INFO[PTR], the information at
the third node. And so on. Continuc until PTR = NULL, which signals the cnd. of the list.

A formal presentation of the algorithm follows.

Algé'ithm 5.1: (Traversing a Linked List) Let LIST be a linked list in memory. This algorithm
traverses LIST, applying an operation PROCESS to cach clement of LIST. The
variable PTR points-to the node currently being processed.

1. Sct PTR:= START. [Initializes pointer PTR.}

2. Repeat Steps 3 and 4 while PTR # NULL.

3. Apply PROCESS to INFO[PTR]. . . :

4. Sct PTR := LINK[PTR]. [PTR now points to the next nodc.]
[End of Step 2 loop.] J

5. "Exit. -

Observe the similarity between Algorithm 5.1 and Algorithm 4.1, which traverses a lincar array.
The similarity comes from the fact that both are linear structures which contain a natural lincar
ordering of the elements,

Caution: As with lincar arrays, the operation PROCESS in Algorithm 5.1 may use ccrtain
variables which must be initialized before PROCESS is applied to any of the clements in LIST.
Consequently, the algorithm may be preceded by such an initialization step.

EXAMPLE 5.6

The following procedure prints the information at each node of a linked list. Since the procedure must
traverse the list, it will be very similar to Algorithm 5.1
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Procedure: PRINT(INFO, LINK, START)
This procedure prints the information at each node of the list.

Set PTR := START.
Repeat Steps 3 and 4 while PTR # NULL:
Write: INFO[PTR].
Set PTR : = LINK[PTR]. [Updates pointer.]
[End of Step 2 loop.]
S. Return.

g s

In other words, the procedure may be obtained by simply substituting the statement

.

Write: INFO[PTR]

for the processing step in Algorithm 5.1.

EXAMPLE 5.7
The following procedure finds the number NUM of elements in a linked list.
Procedure: COUNT(INFO, LINK, START, NUM) ,

Set NUM := 0. [Initializes counter.]
Set PTR := START. [Initializes pointer.)
Repeat Steps 4 and 5 while PTR = NULL.
Sct NUM :=NUM + 1. [Increases NUM by 1.]
Set PTR := LINK[PTR]. [Updates pointer.]
[End of Step 3 loop.]
Return.

A R 8D e

&

Observe that the procedure traverses the linked list in order to count the number of elements; hence the procedure
is very similar to the above traversing algorithm, Algorithm 5.1. Here, however, we require an initialization step
for the variable NUM before traversing the list. In other words, the procedure could have been written as follows:

Procedure: COUNT(INFO, LINK, START, NUM)

1. Set NUM:=0. [Initializes counter.]

2. Call Algorithm 5.1, replacing the processing step by:
Set NUM:= NUM + 1.
3. Return.

Most list processing procedures have this form. (See Prob. 5.3.)

5.5 SEARCHING A LINKED LIST

Let LIST be a linked list in memory, stored as in Secs. 5.3 and 5.4. Suppose a specific ITEM of
information is given. This section discusses two searching algorithms for finding the location LOC of
the node where ITEM first appears in LIST. The first algorithm does not assume that the data in LIST
arc sorted, whereas the second algorithm does assume that LIST is sorted.

If ITEM is actually a key value and we are searching through a file for the record containing ITEM,
then ITEM can appear only once in LIST.

" LIST Is Unsorted

Suppose the data in LIST are not necessarily sorted. Then one searches for ITEM in LIST by
traversing through the list using a pointer variable PTR and comparing ITEM with the contents
INFO[PTR] of each node, one by one, of LIST. Before we update the pointer PTR by

PTR := LINK[PTR]
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we require two tests. First we have to check to see whether we have reached the end of the list; i.e.,
first we check to see whether

PTR = NULL

If not, then we check to see whether
INFO[PTR] =ITEM

The two tests cannot be performed at the same time, since INFO[PTR] is not defined when
PTR = NULL. Accordingly, we use the first test to control the execution of a loop, and we let the
second test take place inside the loop. The algorithm follows.

Algorithm 5.2 SEARCH(INFO, LINK, START, ITEM, LOC)
LIST is a linked list in memory. This algorithm finds the location LOC of the node
where ITEM first appears in LIST, or sets LOC = NULL.

1. Set PTR:=START.
2. Repeat Step 3 while PTR s NULL:
3, If ITEM = INFO[PTR], then:
Set LOC:=PTR, and Exit.
Else:
Set PTR := LINK[PTR]. [PTR now points to the next node.]
[End of If structure.]
[End of Step 2 loop.]
4. [Search is unsuccessful.] Set LOC:= NULL.
5. Exit.

The complexity of this algorithm is the same as that of the linear search algorithm for linear arrays
discussed in Sec. 4.7. That is, the worst-case running time is proportional to the number n of elements
in LIST, and the average-case running time is approximately proportional to n/2 (with the condition
that ITEM appears once in LIST but with equal probability in any node of LIST).

EXAMPLE 5.8

Consider the. personnel file in Fig. 5-7. The following module reads the social security number NNN of an
employee and then gives the employee a 5 percent increase in salary.

1. Read: NNN.
2. Call SEARCH(SSN, LINK, START, NNN, LOC).
3. If LOC# NULL, then:
Set SALARY[LOC] := SALARY[LOC] + 0.05* SALARY([LOC],
Else:
Write: NNN is not in file.
[End of If structure.]

4. Return.

(The module takes care of the case in which there is an error in inputting the social security number.)

LIST Is Sorted ¢

Suppose the data in LIST are sorted. Again we search for ITEM in LIST by traversing the list using
a pointer variable PTR and comparing ITEM with the contents INFO[PTR] of each nade, one by one,
of LIST. Now, however, we can stop once ITEM exceeds INFO[PTR]. The algorithm follows on
page 123.

The complexity of this algorithm is still the same as that of other linear search algorithms; that is,
the worst-case running time is proportional to the number n of elements in LIST, and the average-case
running time is approximately proportional to n/2.
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Algorithm 5.3:° SRCHSL(INFO, LINK, START, ITEM, LOC)
LIST is a sorted list in memory. This algorithm finds the location LOC of the
node where ITEM first appears in LIST, or sets LOC=NULL.

1. Set PTR:=START.
2. Repeat Step 3 while PTR # NULL:*
3 If ITEM < INFO[PTR], then:
Set PTR := LINK[PTR]. [PTR now points to next node.]
Else if ITEM = INFO[PTR], then:
Set LOC:= PTR, and Exit. [Search is successful.]
Else: :
Set LOC:=NULL, and Exit. [ITEM now exceeds INFO[PTR].]
[End of If structure.]
[End of Step 2 loop.]
Set LOC:= NULL.
Exit.

i,

Recall that with a sorted linear array we can apply a binary search whose running time is
proportional to log, n. On the other hand, a binary search algorithm cannot be applied to a sorted
linked list, since there is no way of indexing the middle element in the list. This property is one of the
main drawbacks in using a linked list as a data structure.

EXAMPLE 5.9

Consider, again, the personnel file in Fig. 5-7. The following module reads the name EMP of an employee
and then gives the employce a 5 percent increase in salary. (Compare with Example 5.8.)

1. Read: EMPNAME.
2. Call SRCHSL(NAME, LINK, START, EMPNAME, LOCQC).
3. If LOC# NULL, then:
Set SALARY[LOC]):= SALARY[LOC] + 0.05* SALARY|[LOC].
Else:
Write: EMPNAME is not in list.

[End of If structure.]

4. Return.

Observe that now we can use the second search algorithm, Algorithm 5.3, since the list is sorted alphabetically.

5.6 MEMORY ALLOCATION; GARBAGE COLLECTION

The maintenance of linked lists in memory assumes the possibility of inserting new nodes into the
lists and hence requires some mechanism which provides unused memory space for the new nodes.
Analogously, some mechanism is required whereby the memory space of deleted nodes becomes
available for future use. These matters are discussed in this section, while the general discussion of the
inserting and deleting of nodes is postponed until later sections.

Together with the linked lists in memory, a special list is maintained which consists of unused
memory cells. This list, which has its own pointer, is called the list of available space or the free-storage
list or the free pool.

Suppose our linked lists are implemented by parallel arrays as described in the preceding sections,
and suppose insertions and deletions are to be performed on our linked lists. Then the unused memory
cells in the arrays will also be linked together to form a linked list using AVAIL as its list pointer
variable. (Hence this free-storage list will also be called the AVAIL list.) Such a data structure will
frequently be denoted by writing

LIST(INFO, LINK, START, AVAIL)



124 LINKED LISTS [CHAP. 5

EXAMPLE 5.10

Suppose the list of patients in Example 5.1 is stored in the linear arrays BED and LINK (so that the patient in
bed K is assigned to BED[K]). Then the available space in the linear array BED may be linked as in Fig. 5-9.
Observe that BED[10] is the first available bed, BED[2] is the next available bed, and BED[6] is the last available
bed. Hence BED[6] has the null pointer in its nextpointer field; that is, LINK[6] = 0.

i

_ BED LINK
START | s 1| ik 7|
2 6
3 Dean 11
Maxwell ’%
—
5 | Adams -
AVAIL |10 "5 | 0
7 Lane 4
8 Green 1
9 Samuels 0
10 2
11 Fields 8
12 Nelson 9
Fig. 5-9

EXAMPLE 5.11

(a) The available space in the linear array TEST in Fig. 5-5 may be linked as in Fig. 5-10. Observe that each of
the lists ALG and GEOM may use the AVAIL list. Note that AVAIL = 9, so TEST[9] is the first free node in
the AVAIL list. Since LINK[AVAIL] = LINK[9] = 10, TEST[10] is the second free node in the AVAIL list.
And so on. f

(b) Consider the personnel file in Fig. 5-7. The available space in the linear array NAME may be linked as in Fig.
5-11. Observe that the free-storage list in NAME consists of NAME[8], NAME[11], NAME[13], NAME[5]
and NAME[1]. Moreover, observe that the values in LINK simultaneously list the free-storage space for the
linear arrays SSN, SEX and SALARY.

(¢) The available space in the array CUSTOMER in Fig. 5-6 may be linked as in Fig. 5-12. We emphasize that
each of the four lists may use the AVAIL list for a new customer.

EXAMPLE 5.12

Suppose LIST(INFO, LINK, START, AVAIL) has memory space for n =10 nodes. Furthermore, suppose
LIST is initially empty. Figure 5-13 shows the values of LINK so that the AVAIL list consists of the sequence

INFO[1], INFO[2], ..., INFO[10]

that is, so that the AVAIL list consists of the elements of INFO in the usual order. Observe that START = NULL,
since the list is empty. )



ALG

GEOM

AVAIL

START

o
L =D T - U V. R N * N v

TEST LINK

1 16

2 74 14

3 1

11 4 82 0

5 84 12

6 78 0

7 74 8

-

8 100 13

—— 9 10

10 3

Y 1] 88 2

12 62 7

13 74 6

14 93 4

15 0

16 15

Fig. 5-10
NAME SSN SEX SALARY LINK

' 0
Davis 192-38-7282 Female —;2 800 12
Kclly 165-64-3351 Male 19 000 7
Green 175-56-2251 Male 27200 14
1
Brown 178-52-1065 Female 14 700 9
Lewis 181-58-9939 Female 16 400 10
11
Cohen 177-44-4557 Male 19 000 2
Rubin 135-46-6262 Female 15 500 0
13
Evans 168-56-8113 Malc 34 200 4
5
Harris 208-56-1654 Female 22 800 3

Fig. 5-11




BROKER POINT

1 Bond 12 1
2 Kelly 3 2
3 Hall 0 3
4 Nclson 9 4
5
AVAIL 11 .
- 7
8
9
10
L————— 11
12
13
14
15
16
17
18
19
20

Fig, 5-12
START 0 i
2
3
4
AVAIL 1 2
6
7
8
9
10

Fig. 5-13

CUSTOMER  LINK
Vitu 4
16
Hunter 14
Katz 0
20
Evans 0
Sl eianiinceis]
13
Rogers 15
Teller 10
Jonces 19
18
Grant 17
- [l .u..
McBride 6
Weston 0
5
Scott 1
5
Adams 8
7
INFO LINK

2

3

4

5

6

7

8

9

10

0
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Garbage Collection .

Supposc some memory space becomes reusable because a node is delcted from a list or an entire
list is declcted from a program. Clearly, we want the space to be available for futurc usc. Onc way to
bring this about is to immediately reinscrt the spacc into the free-storage list. This is what we will do
when we impicment linked lists by means of lincar arrays. However, this mcthod may be’too
time-consuming for the operating system of a computer, which may choose an altcriiitive method, as
follows. ! :

The opcrating system of a computer may periodically collect all the deleted spiace onto the
frce-storage list. Any technique which docs this collection is called garbage collection. Garbage -
collcction usually takes place in two steps. First the computer runs through all lists, tagging those cells
which arc currently in use, and then the computer runs through the memory, collecting all untagged
space onto the free-storage list. The garbage collection may take place when there is only some
minimum amount of space or no space at all left in the free-storage list, or when the CPU s idle and
has time to do the collcction. Generally speaking, the garbage collection is invisible to the
programmer. Any further discussion about this topic of garbage collection lics beyond the scope of this
text.

e tmv——

{Ovcrllow and Underflow |

Somctimes ncw data are to be inscrted into a data structure but there is no available space, i.c., the
free-storage list is cmpty. Tiis situation is usually called overflow. The programmer may handle
overflow by printing the message OVERFLOW. In such a case, the programnrer may then modify the
program by adding spacc to the underlying arrays. Obscrve that overflow will occur with our linked
lists when AVAIL = NULL and therc is an insertion.

Analogously, the term underflow refers to the situation where one wants to delete data from a
data structurc that is cmpty. The programmer may handle underflow by printing the mcssage
UNDERFLOW. Obscrve that underflow will occur with our linked lists when START = NULL and
there is a delction. :

INSERTION INTO A LINKED LIST

Let LIST be a linked list with successive nodes A and B, as pictured in Fig. 5-14(a). Supposc a
node N is to be inscrted inte the list between nodes A and B. The schematic- diigram of such an

START
Node A Node B
I o A o N [ 0 O e
START (a) Before insertion.

Node A Node B

o e

Node N
(b) After insertion./ 2
Fig. 5-14
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insertion appears in Fig. 5-14(b). That is, node A now points to the new node N, and node N points to
node B, to which A previously pointed.
Suppose our linked list is maintained in memory in the form

LIST(INFO, LINK, START, ‘AVAIL)

Figure 5-14 does not take into account that the memory space for the new node N will come from the
AVAIL list. Specifically, for easier processing, the first node in the AVAIL list will be used for the new
node N. Thus a more exact schematic diagram of such an insertion is that in Fig. 5-15. Observe that
three pointer fields are changed as. follows:

(1) The nextpointer field of node A now points to the new node N, to which AVAIL previously
pointed. -

(2) AVAIL now points to the second node in the free pool, to which node N previously pointed.

(3) The nextpointer field of node N now points to node B, to which node A previously pointed.

There are also two special cases. If the new node N is the first node in the list, then START will point
to N; and if the new node N is the last node in the list, then N will contain the null pointer.

START Data list

[<]

Free-storage list

Fig. 5-15

EXAMPLE 5.13

(a) Consider Fig. 5-9, the alphabetical list of patients in a ward. Suppose a patient Hughes is admitted to the
ward. Observe that

(i) Hughes is put in bed 10, the first available bed. ]
(ii) Hughes should be inserted into the list between Green and Kirk.
The three changes in the pointer fields follow.

1. LINK][8] = 10. [Now Green points to Hughes.]
2. LINK[10] = 1. [Now Hughes points to Kirk.] -
3. AVAIL = 2. [Now AVAIL points to the next available bed.]

(b) Consider Fig. 5-12, the list of brokers and their customers. Since the customer lists are not sorted, we will
assume that each new customer is added to the beginning of its list. Suppose Gordan is a new customer of
Kelly. Observe that

(i) Gordan is assigned to CUSTOMER([11], the first available node.
(ii) Gordan is inserted before Hunter, the previous first customer of Kelly.
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The three changes in the pointer fields follow:

1. POINT(2] = 11. [Now the list begins with Gordan.]
2. LINK[11] = 3. [Now Gordan points to Hunter.]
3. AVAIL = 18. [Now AVAIL points to the next available node.]

(c) Suppose the data elements A, B, C, D, E and F are inserted one after the other into the empty list in Fig.
5-13. Again we assume that each new node is inserted at the beginning of the list. Accordingly, after the six
insertions, F will point to E, which points to D, which points.to C, which points to B, which points to A; and
A will contain the null pointer. Also, AVAIL =7, the first available node after the six insertions, and
START = 6, the location of the first node, F. Figure 5-16 shows the new list (where n = 10.)

INFO LINK

START 6 | 1 A 0
2 B 1

AVAIL | 7 3]C 2
4 D 3

S| E 4

Mo F 5

2 8

8 9

9 10

10 0

Fig. 5-16

Insertion Algorithms

Algorithms which insert nodes into linked lists come up in various situations. We discuss three of
them here. The first one inserts a node at the beginning of the list, the second one inserts a node after
the. node with a given location, and the third one inserts a nede into a sorted list. All our algorithms
assume that the linked list is in memory in the form LIST(INFO, LINK, START, AVAIL) and that the
variable ITEM contains the new information to be added to the list.

Since our insertion algorithms will use a node in the AVAIL list, all of the algorithms will include
the following steps:

(@) Checking to see if space is available in the AVAIL list. If not, that is, if AVAIL = NULL, then
the algorithm will print the message OVERFLOW.

(b) Rempving the first node from the AVAIL list. Using the variable NEW to keep track of the
location of the new node, this step can be implemented by the pair of assignments (in this
order)

NEW := AVAIL, AVAIL := LINK[AVAIL]
(c) Copying new information into the new node. In other words,
INFO[NEW]:=ITEM

The schematic diagram of the latter two steps is pictured in Fig. 5-17.
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NEW

Free-storage list

- ) Fig. 5-17

Inserting at the Beginning of a List

Supposc our linked list is not necessarily sorted and there is no rcason to inscrt a new node in any
special place in the list. Then the easiest place to insert thz node is at the begining of the list. An
algorithm that does so follows.

Algorithm 5.4: INSFIRST(INFO, LINK, START, AVAIL, ITEM)
This algorithm inserts ITEM as the first node in the list.

1. [OVERFLOW?] If AVAIL = NULL, then: Writc: OVERFLOW, and Exit.
2. [Remove first node from AVAIL list.]

Set NEW := AVAIL and AVAIL := LINK[AVAIL].

Sct INFO[NEW]:= ITEM. [Copies new data into new node.]

Set LINK[NEW] := START. [New node now points to original first node.]
Sct START := NEW. [Changes START so it points to the ncw node.|
Exit.

QL bW

Steps 1 to 3 have alrcady been discussed, and the schematic diagram of Stcps 2 and 3 appears,in
Fig. 5-17. The schematic diagram of Steps 4 and 5 appears in Fig. 5-18.

START

Fig. 5-18 Insertion at the beginning of a list.

EXAMPLE 5.14

Consider the lists of tests in Fig. 5-10. Supposc the test score 75 is to be added to the beginning of the
_geometry list. We simulate Algorithm 5.4. Observe that ITEM =75, INFO = TEST and START = GEOM.
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INSFIRST(TEST, LINK, GEOM, AVAIL, ITEM)

Since AVAIL # NULL, control is transferred to Step 2.
NEW =9, then AVAIL = LINK[9] = 10.

TEST(9] =75.

LINK[9] =5.

GEOM =9.

Exit.-

PUIA O b 1o

Figure 5-19 shows the data structurc after 75 is added to the geometry list. Obscrvdithat only three pointers are
changed, AVAIL, GEOM and LINK[9].
: TEST LINK

1 16
2 74 14
3 1
ALG | 11 4 82 0
5 84 12
6 78 0
; 7 74 8
GEOM | 9
g w00 | |13
Lvy 75 5
A o 75 A 3
AVAIL | 10 o —— | 88 2
12 62 5} -5
13 74 6
14 93 4
15 0
16 15

Fig. 5-19

Inscrting after a Given Node :

Supposc we are given the value of LOC where cither LOC is the location of a node A in a linked
LIST or LOC = NULL. The following is an algorithm which inserts ITEM into LIST so that ITEM
follows nodc A or, when LOC = NULL, so that ITEM .is the first node, ‘

Let N denote the new node (whose location is NEW). If LOC = NULL, then N is inscrted as the
first node in LIST as in Algorithm 5.4. Otherwise, as pictured in Fig. 5-15, we Ict node N point to node
B (which originally followed node A) by the assign_ment

LINK[NEW] : = LINK[LOC]
and we let node A point to the new node N by the assignment
LINK[LOC]:= NEW

A formal statement of thc algorithm follows.
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Algorithm 5.5: INSLOC(INFO, LINK, START, AVAIL, LOC, ITEM)
This algorithm inserts ITEM so that ITEM follows the node with location LOC
or inserts ITEM as the first node when LOC = NULL.

1. [OVERFLOW?] If AVAIL = NULL, then: Write: OVERFLOW, and Exit.
i2. [Remove first node from AVAIL list.] -
Set NEW := AVAIL and AVAIL := LINK[AVAIL].
3. Set INFO[NEW]:=ITEM. [Copies new data into new node.]
4. If LOC = NULL, then: [Insert as first node.]
Set LINK[NEW]:=START and START := NEW.
Else: [Insert after node with location LOC.] '
Set LINK[NEW]:= LINK[LOC] and LINK[LOC]:= NEW.
[End of If structure.]
5. Exit.

Inserting into a Sorted Linked List

Suppose ITEM is to be inserted into a sorted linked LIST. Then ITEM must be inserted between
nodes A and B so that :

INFO(A) <ITEM = INFO(B)

The following is a procedure which finds the location LOC of node A, that is, which finds the location
LOC of the last node in LIST whose value is less than ITEM.

Traverse the list, using a pointer variable PTR and comparing ITEM with INFO[PTR] at each
node. While traversing, keep track of the location of the preceding node by using a pointer variable
SAVE, as pictured in Fig. 5-20. Thus SAVE and PTR are updated by the assignments

SAVE := PTR and PTR := LINK[PTR]

The traversing continues as long as INFO[PTR] > ITEM, or in other words, the traversing stops as
soon as ITEM = INFO[PTR]. Then PTR points to node B, so SAVE will contain the location of the
node A.

The formal statement of our procedure follows. The cases where the list is empty or where
ITEM <INFO[START], so LOC =NULL, are treated separately, since they do not involve the
variable SAVE. ’

Procedure 5.6: FINDA(INFO, LINK, START, ITEM, LOC)
This procedure finds the location LOC of the last node in a sorted list such that
INFO[LOC] < ITEM, or sets LOC = NULL.

1. [List empty?] If START = NULL, then: Set LOC:= NULL, and Return.
2. [Special case?] If ITEM < INFO[START], then: Set LOC:=NULL, and
Return. ' ‘
3. Set SAVE:=START and PTR := LINK[START]. [Initializes pointers.)
4. .Repeat Steps 5 and 6 while PTR = NULL.
5 If ITEM < INFO[PTR], then:
Set LOC := SAVE, and Return.
[End of If structure.]
6. Set SAVE := PTR and PTR := LINK[PTR]. [Updates pointers.]
[End of Step 4 loop.] '
7. Set LOC:=SAVE.
8. Return.
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START SAVE PTR

=

Fig. 5-20

Now we have all the components to present an algorithm which inserts ITEM into a linked list. The
simplicity of the algorithm comes from using the previous two procedures.

Algorithm 5.7: INSSRT(INFO, LINK, START, AVAIL, ITEM)
This algorithm inserts ITEM into a sorted linked list.

1. [Use Procedure 5.6 to find the location of the node preceding ITEM.]
Call FINDA(INFO, LINK, START, ITEM, LOC).

2. [Use Algorithm 5.5 to insert ITEM after the node with location LOC.]
Call INSLOC(INFO, LINK, START, AVAIL, LOC, ITEM).

3. Exit.

EXAMPLE 5.15

Consider the alphabetized list of patients in Fig. 5-9. Suppose Jones is to be added to the list of patients. We
simulate Algorithm 5.7, or more specifically, we simulate Procedure 5.6 and then Algorithm 5.5. Observe that
ITEM = Jones and INFO = BED.

(a) FINDA(BED, LINK, START, ITEM, LOC)

. Since START # NULL, control is transferred to Step 2.
Since BED[5] = Adams < Jones, control is transferred to Step 3.
SAVE = § and PTR = LINK[5] = 3.
Steps 5 and 6 are repeated as follows:
(@) BEDI[3] = Dean < Jones, so SAVE = 3 and PTR = LINK[3] = 11.
(b) BEDI[11] = Fields < Jones, so SAVE = 11 and PTR = LINK[11] = 8.
(¢) BED[8] = Green < Jones, so SAVE = 8 and PTR = LINK|[8] = 1.
(d) Since BED[1] = Kirk > Jones, we have:

LOC =SAVE = 8 and Return.

(b) INSLOC(BED, LINK, START, AVAIL, LOC, ITEM) [Here LOC = 8.]
1. Since AVAIL # NULL, control is transferred to Step 2.
2. NEW=10 and AVAIL = LINK][10] = 2.
3. BED[10] = Jones.
4. Since LOC # NULL we have:
LINK[10] = LINK[8] = 1 and LINK[8] = NEW = 10.
5. Exit.

Figure 5-21 shows the data structure after Jones is added to the patient list. We emphasize that only three pointers
have been changed, AVAIL, LINK[10] and LINK[8].

swn -

Copying

Suppose we want to copy all or part of a given list, or suppose we want to form a new list that is the
concatenation of two given lists. This can be done by defining a null list and then adding the
appropriate elements to the list, one by one, by various insertion algorithms. A null list is defined by
simply choosing a variable name or pointer for the list, such as NAME, and then setting
NAME := NULL. These algorithms are covered in the problem sections.
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BED LINK

START 5 1 Kirk 7
2 6

3 Dcan 1!

4 Maxwell 12

5 Adams 3

AVAIL L 2 6 0
7 Lanc ' 4

8 Green 10

9 Samucls 0

10 Jones 1

1 Ficlds 8

12 Nelson 9

Fig. 5-21

5.8 DELETION FROM A LINKED LIST

Let LIST be a linked list with a node N bectween nodes A and B, as picturcd in Fig. 5-22(a).
Supposc node N is to be deleted from the linked list. The schematic diagram of such a deletion appears
in Fig. 5-22(b). Thc dclction occurs as soon as the nexipointer ficld of node A is changed so that it
points to node B. (Accordingly, when performing dclctions, one must keep track of the address of the
node which immediatcly precedes the node that is to be dcleted.)

Supposc our linked list is maintaincd in memory in the form

LIST(INFO, LINK, START, AVAIL)

Figurc 5-22 docs not take into account the fact that, when a node N is deleted .rom our list, we will

START

El‘r NuchA NodclN Nodcl ‘ l ,_!__*r l:l

(a) Before dclction.

START

BLF ¢ Lﬂj;raLr T i

(b) After delction. .

Fig. 5-22
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immediately return jts memory space to the AVAIL list. Specifically, for casicr processing, it will be
returncd to the beginning of the AVAIL list. Thus a morc cxact schematic diagram of such a delction is
the onc in Fig. 5-23. Observe that thrce pointer ficlds are changed as follows:

(1) The nextpointer field of nodc A now points to node B, wherc node N previously pointed.

(2) The nextpointer ficld of N now points to the original first node in the free pool, where AVAIL
previously pointed.

(3) AVAIL n-w points to thc deleted node N,

There are also two special cascs. If the deleted node N is the first node in the list, then START will
point to node B; and if the deleted node N is the last node in the list, then node A will contain the
NULL pointer. !

START i : Data list

i) 7L—L | N

AVAIL
—1=<
N
\ .
Free-storage list
. Fig. 5-23
EXAMPLE 5.16

(a) Consider Fig. 5-21, the list of paticnts in the hospital ward. Suppose Green is discharged, so that BED([8] is
now empty. Then, in order to maintain the linked list, the following three changes in the pointer liclds must
be cxccuted: ’

LINK[11] = 10 LINK[8] = 2 AVAIL = 8

By the first change, Ficlds, who originally preceded Green, now points to Joncs, who originally followed
Green. The sccond and third changes add the new empty bed to the AVAIL list. We emphasize that, before
making the delction, we had to find the node BED[11], which originally pointed to the deleted node BED([B).

(b) Consider Fig. 5-12, the list of brokers and their customers. Suppose Teller, the first customer of Nelson, is
delcted from the list of customers. Then, in order to maintain the linked lists, the following threc changes in
the pointer ficlds must be exccuted:

POINT[4] = 10 LINK[9) = 11 AVAIL =9

By the first change, Nelson now points to his original sccond custdmer, Jones. The second and third changes
add the new empty node to the AVAIL list.

(c) Supposc the datarclements E, B and C are deleted, onc after the other, from the list in Fig. 5-16. The ncw list
“is pictured in Fig. 5-24. Observe that now the first three available nodes are:
INFO(3], which originally contained C
INFO[2], which originally containcd B
INFO[5], which originally contained E
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INFO LINK
START | 6 |— 1] A (]
2 5

AVAIL | 3 - 3 2
4| D 1

5 7

N &= 6] F 4

2 8

8 9

9 10

10 0

Fig. 5-24

Observe that the order of the nodes in the AVAIL list is the reverse of the order in which the nodes have been
deleted from the list.

Deletion Algorithms

Algorithms which delete nodes from linked lists come up in various situations. We discuss two of
them here. The first one delectes the node following a given node, and the second one deletes the node
with a given ITEM of information. All our algorithms assume that the linked list is in memory in the
form LIST(INFO, LINK, START, AVAIL). ’

All of our deletion algorithms will return the memory space of the deleted node N to the beginning
of the AVAIL list. Accordingly, all of our algorithms will include the following pair of assignments,
where LOC is the location of the deleted node N:

LINK[LOC] := AVAIL and then AVAIL :=LOC

These two operations are pictured in Fig. 5-25.

LOC

Free-storage list

Fig. 5-25 LINK[LOC]:= AVAIL and AVAIL := LOC.

Some of our algorithms may want to delete either the first node or the last node from the list. An
algorithm that does so must check to see if there is a node in the list. If not, i.e., if START = NULL. -
then the algorithm will print the message UNDERFLOW.
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Deleting the Node Following a Given Node

Let LIST be a linked list in memory. Supposc we are given the location LOC of a node N in LIST.
Furthermore, supposc we are given the location LOCP of the node preceding N or, when N is the first
node, we arc given LOCP = NULL. The following algorithm deletes N from the list.

Algorithm 5.8: DEL(INFO, LINK, START, AVAIL, LOC, LOCP)
This algorithm dcletes the node N with location LOC. LGCP is the location of
thc nodc which preccdes N or, when N is the first node, LOCP = NULL.
1. If LOCP = NULL, then:
Sct START := LINK[START]). [Deletes ﬁrst node.]
Elsc:
Sct LINK[LOCP]:= LINK[LOC]. [Deletes node N.]
[End of If structure.]
2. _[Rcturn delcted node to the AVAIL list.]
Sct LINK[LOC]:= AVAIL and AVAIL := LOC.
3. Exit.

Figurce 5-26 is the schematic diagram of thc assignmcni
START := LINK[START]

which effectively deletes the first node from the list. This covers the case when N is the first node.

START

Node 3

H—-L I

Fig. 526 START:= LINK[START].

Figure 5-27 is the schematic diagram of tilc assignment
LINK[LOCP] := LINK[LOC]

which cffectively delctes the node N when N is not the first nodc.
The simplicity of the algorithm comcs from the fact that we are already given the location LOCP of
the node which precedes node N. In many applications, we must first find LOCP.

START LOCP LOC

Fa]

Fig. 5-27 LINK[LOCP]:= LINK[LOC].
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Deleting the Node with a Given ITEM of Information

Let LIST be a linked list in memory. Suppose we are given an ITEM of information and we want to
delete from the LIST the first node N which contains ITEM. (If ITEM is a key value, then only one
node can contain ITEM.) Recall that before we can delete N from the list, we need to know the
location of the node preceding N. Accordingly, first we give a procedure which finds the location LOC
of the node N containing ITEM and the location LOCP of the node preceding node N. If N is the first
node, we sct LOCP = NULL, and if ITEM does not appear in LIST, we sct LOC = NULL. (This
procedure is similar to Procedure 5.6.) ,

Traverse the list, using a pointer variable PTR and comparing ITEM with INFO[PTR] at cach
node. While traversing, keep track of the location of the preceding node by using a pointer variable
SAVE, as pictured in Fig. 5-20. Thus SAVE and PTR arc updated by the assignments

SAVE:=PTR = and  PTR:=LINK[PTR]

The traversing continues as long as INFO[PTR] # ITEM, or in other words, the traversing stops as
soon as ITEM = INFO[PTR]. Then PTR contains the location LOC of node N and SAVE contains the
location LOCP of the node preceding N.

The formal statement of our procedure follows. The cases where the list is empty or where
INFO[START] = ITEM (i.e., where node N is the first node) are treated scparatcly, since t'icy do not
involve the variable SAVE. a

Procedure 5.9: FINDB(INFO, LINK, START, ITEM, LOC, LOCP)
This procedure finds the location LOC of the first node N which contains ITEM
' and the location LOCP of the node preceding N. If ITEM does not appear in the
list, then the procedure sets LOC = NULL; and if 1TEM appcars in the first
node, then it sets LOCP = NULL.

1. [List empty?] If START = NULL, then:
Set LOC:=NULL and LOCP:=NULL, and Rcturn.
[End of If structure.]
2. [ITEM in first node?] If INFO[START] = ITEM, then:
Set LOC:=START and LOCP = NULL, and Rcturn.
[End of If structure.]
Sct SAVE :=START and PTR := LINK[START]. [Initializcs pointers.]
Rcpeat Steps 5 and 6 while PTR »# NULL.
If INFO[PTR] = ITEM, then:
Set LOC:=PTR and LOCP := SAVE, and Return.
|End of If structure.]
6. Sct SAVE :=PTR and PTR := LINK[PTR]. [Updates pointers.]
[End of Step 4 loop.]
7. Set LOC:=NULL. [Secarch unsuccessful.]
8. Rcturn.

oA

Now we can casily present an algorithm to delete the first node N from a linked list which contains
a given ITEM of information. The simplicity of the algorithm comes from the fact that the task of
finding the location of N and the location of its preceding node has alrcady been done in
Procedure 5.9.
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Algorithm 5.10:

DELETE(INFO, LINK, START, AVAIL, ITEM)
This algorithm deletes from a linked list the first node N which contains the
given ITEM of information.

1.

2:
3.

[Usc Procedure 5.9 to find the location of N and its preceding node. ]
ﬁall FINDB(INFO, LINK, START, ITEM, LOC, LOCP)
LOC = NULL, then: Write: ITEM not in list, and Exit.

[Delete node.]
If LOCP = NULL, thcn:

Set START := LINK[START]. [Deletes first nodc.]
Else:

Sct LINK[LOCP]:= LINK[LOC].
[End of If structure.]
[Return deleted node to the AVAIL list. |
Set LINK[LOC]:= AVAIL and AVAIL:= LOC.
Exit.

Remark: The reader may have noticed that Steps 3 and 4 in Algorithm 5.10 already appear in
Algorithm 5.8. In other words, we could replace the steps by the following Call statcment:

Call DEL(INFO, LINK, START, AVAIL, LOC, LOCP)

This would conform to the usual programming style of maodularity.

EXAMPLE 5.17

Consider the list of paticnts in Fig. 5-21. Supposc the paticnt Green is discharged. We simulate Procedure 5.9
to find the location LOC of Green and the location LOCP of the patient preceding Green. Then we simulate
Algorithm.5.10 to delete Green from the list. Here ITEM = Green, INFO = BED, START =5 and AVAIL = 2.

BED LINK
START | 5 ey 1 Kirk 7
2 "6
3 Dean 11
4 Maxwell 12
N~ 5 Adams 3
AVAIL 8 [ 6 0
. 7 Lane 4
N 5.3 9
9 Samuels 0
10 | Jones 1 d
11 Fields 10
12 Nelson 9

Fig. 5-28



140 LINKED LISTS [CHAP. 5

(¢) FINDB(BED, LINK, START, ITEM, LOC, LOCP)
Since START # NULL, control is transferred to Step 2.
Since BED[5] = Adams # Green, control is transferred to Step 3.
SAVE =5 and PTR = LINK[5] =3.
Steps 5 and 6 arc repeated as follows:
(a) BED|3] = Dcan # Green, so SAVE =3 and PTR = LINK[3] = 11.
(b) BED[11] = Ficlds # Grecn, so SAVE = 11 and PTR = LINK[11] = 8.
(¢) BED|8] = Green, so we have: y
LOC = PTR =8 and LOCP = SAVE = 11, and Rcturn.

(b) DELLOC(BED, LINK, START, AVAIL, ITEM)
1. Call FINDB(BED, LINK, START, ITEM, LOC, LOCP). [Hence LOC=8 and LOCP = 11.]
2. Since LOC # NULL, control is transferred to Step 3.
3. Sincc LOCP # NULL, we have:
LINK[11] = LINK|&] = 10.
4. LINK[8] =2 and AVAIL =8.
5. Exil,

Figure 5-28 shows the data structure after Green is removed from the patient list. We emphasize that only three
pointers have been changed, LINK[11], LINK[8] and AVAIL. '

AN~

5.9 HEADER LINKED LISTS

A header linked list is a linked list which always contains a special nodc, called the header node, at
the beginning of the list. The following are two kinds of widely uscd hecader lists:

(1) A grounded header list is a hcadcr list where the last node contains the null pointer. (The
term “grounded” comes from the fact that many texts usc the clcctrical ground symbol to
indicate the null pointer.)

(2) -A circular header list is a header list where the last node points back to the hcader nodce.

Figurc 5-29 contains schematic diagrams of these header lists. Unless otherwisc stated or implicd, our
hcader lists will always be circular. Accordingly, in such a case, the hcader nodc also acts as a scntincl
indicating the cnd of the list.

Observe that the list pointer START always points to the header node. Accordingly,
LINK[START] = NULL indicates that a grounded header list is cmpty, and LINK[START] = START
indicates that a circular hecader list is empty.

START

Header
node

BC R ECE C N C S T S e

(a) Grounded header list.

START

Hceader
node

N C T S T SR N C e T BT

(b) Circular header list.
Fig. 5-29
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Although our data may be maintained by header lists in memory, the AVAIL list will always be
maintained as an ordinary linked list.

EXAMPLE 5.18

Consider the personhel file in Fig. 5-11. The data may be organized as a header list as in Fig. 5-30. Observe
that LOC =35 is now the location of the header record. Therefore, START =5, and since Rubin is the last
employee, LINK[10] = 5. The header record may also be used to store information about the entire file. For
example, we let SSN[5] = 9 indicate the number of employees, and we let SALARY(S] = 191 600 indicate the total
salary paid to the employees. . .

NAME SSN SEX SALARY LINK
START N g
5 —— 2 Davis 192-38-7282 Female 22 800 12
3 Kelly 165-64-3351 Male 19 000 7
4 Green 175-56-2251 Male 14
AVAIL 009 : 6
8 6 Brown 178-52-1065 Female 9
7 Lewis 181-58-9939 Female 16 400 10
~—8 p 11
9 Cohen 172444-4557 Male 19 000 2
10 Rubin L 1‘.{5-46-6262 Female 15 500 5
11 13
12 Evans 168-56-8113 Male 34 200 4
13 1
14 Harris 208-56-1654 Female 22 800 3
Fig. 5-30

The term “node,” by itself, normally refers to an ordinary node, not the header node, when used
with header lists. Thus the first node in a header list is the node following the header node, and the
location of the first node is LINK[START], not START, as with ordinary linked lists.

Algorithm 5.11, which uses a pointer variable PTR to traverse a circular header list, is esscentially
the same as Algorithm 5.1, which traverses an ordinary linked list, except that now the algorithm (1)
begins with PTR = LINK[START] (not PTR =START) and (2) ends when PTR = START (not
PTR = NULL).

Circular header lists are frequently used instead of ordinary linked lists because many operations
are much easier to state and implement using header lists. This comes from the following two
properties of circular header lists:

(1) The null pointer is not used, and hence all poimcrs contain valid addresses.
(2) Every (ordinary) node has a predecessor, so the first node may not require a special case.

The next example illustrates the usefulness of these properties.
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Algorithm 5.11: (Traversing a Circular Header List) Let LIST be a circular header list in
memory. This algorithm traverses LIST, applying an operation PROCESS to
cach node of LIST.

1. Sct PTR := LINK[START]. [Initializes the pointer PTH.]

2. Repeat Steps 3 and 4 while PTR # START:

3. Apply PROCESS to INFO[PTR].

4. Sct PTR:= LINK[PTR]. [PTR now points to the next node.]
|End of Step 2 loop.]

5. Exit.

EXAMPLE 5.19

Supposc LIST is a linked list in memory, and suppose a specific ITEM of information is given.

(a) Algorithm 5.2 finds the location LOC of the first node in LIST which contains 'TEM when LIST is an

(»)

ordinary linked list. The following is such an algorithm when LIST is a circular header list.

Algorithm 5.12: SKCHHL(INFO, LINK, START, ITEM, LOC)
LIST is a circular header list in memory. This algorithm finds the location LOC of the
node where ITEM first appears in LIST or sets LOC = NULL.

1. Set PTR:=LINK[START].
2. Repcat while INFO[PTR] # ITEM and PTR # START:
Set PTR := LINK[PTR]. [PTR now points to the next node. |
[End of loop.]
3. If INFO[PTR] = ITEM, then:
Sct LOC:=
Else:
Set LOC:= NULL.
[End of If structure.}
4. Exit.

The two tests which control the scarching loop (Step 2 in Algorithm 5.12) were not performed at the same
time in the algorithm for ordinary linked hists; that is, we did not let Algorithm 5.2 use the analogous
statement

Repeat while INFO[PTR] # ITEM and PTR # NULL:
because for ordinary linked lists INFO[PTR] is not defincd when PTR = NULL.

Procedure 5.9 finds the location LOC of the first node N which contains ITEM and also the location LOCP of
the node preceding N when LIST is an ordinary linked list. The following is such a procedure when LIST is a
circular hcader list.

Procedure 5.13: FINDBHL(INFO, LINK, START, ITEM, LOC, LOCP)

1. Set SAVE:=START and PTR:= LINK[START]. [Initialzes pointers.]
2. Repeat while INFO[PTR]# ITEM and PTR # START.
Set SAVE = PTR and PTR := LINK[PTR]. [Updates pointers. ]
[End of loop.]
3. If INFO[PTR] = ITEM, then:
: Set LOC:=PTR and LOCP :=SAVE.
Else:
Sct LOC:=NULL and LOCP := SAVE.
[End of If structure.}
4. Exit.
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- -
Observe the simplicity of this procedure compared with Procedure 5.9. Here we did not have to consider the
special case when ITEM appears in the first nodc, and here we can perform at the same time the two tesis
which control the loop.

(c) Algorithm 5.10 deletes the first node N which cor.tains ITEM when LIST is an ordinary linked list. The
following is such an algorithm when LIST is a circular header list.

Algorithm 5.14: DELLOCHL(INFO, LINK, START, AVAIL, ITEM)

1. [Use Procedure 5,13 to find the location of N and its preceding node. )
Call LINDBHL(INFO, LINK, START, ITEM, LOC, LOCP).

2. If LOC = NULL, then: Write: ITEM not in list, and Exit.

3. Sct LINK[LOCP] := LINK[LOC]. [Dcletes node.]

4. [Return deleted node to the AVAIL list.]
Sct LINK[LOC] := AVAIL and AVAIL:= LOC,

5. Exit.

Again we did not have to consider the special case when ITEM appears in the first node, as we did in
Algorithm 5.10, :

Remark: There are two other variations of linked lists which sometimes appcar in the literature:

(1) A linked list whose last node points back to the first node instcad of containing the null
pointer, called a circular list

(2) A linked list which contains both a special hecader node at the beginning of the list and a
special trailer node at the end of the list

Figure 5-31 contains schematic diagrams of these lists.

E%EB——CB% Caemciunc i

(a) Circular linked list.

START

Header Trailer

(b) Linked list with header and traijer nodes.

Fig. 5-31

Polynomials

Header linked lists are frequently uscd for maintaining polynomials in memory. The header node
plays an important part in this representation, since it is nceded to represent the zero polynomial. This
representation of polynomials will be presented in the context of a specific cxample.
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EXAMPLE 5.20
Let p(x) denote the following polynomial in one variable (containing four nonzero terms):
p(x)=2x"—5x" = 3x* +4

Then p(x) may be represented by the header list pictured in Fig. 5-32(a), where each node corresponds to a
nonzero term of p(x). Specifically, the information part of the node is divided into two fields representing,
respectively, the coefficient and the exponent of the corresponding term, and the nodes are linked according to
decreasing degree.

Observe that the list pointer variable POLY points to the header node, whose exponent field is assigned a
negative number, in this case —1. Here the array representation of the list will require three linear arrays, which
we will call COEF, EXP and LINK. One such representation appears in Fig. 5-32(b).

POLY
Coefficient of term
Exponent of term

(a)
LINK
3
5
POLY 4
6
8
AVAIL

7
1
9
n 0

(b)

Fig. 5-32 p(x)=2x"-5x" —3x"+4.
5.10 TWO-WAY LISTS )

Each list discussed above is called a one-way list, since there is only one way that the list can be
traversed. That is, beginning with the list pointer variable START, which points to the first node or the
header node, and using the nextpointer field LINK to point to the next node in the list, we can traverse
the list in only one direction. Furthermore, given the location LOC of a node N in such a list, one has
immediate access to the next node in the list (by evaluating LINK[LOC]), but one does not have access
to the preceding node without traversing part of the list. This means, in particular, that one must
traverse that part of the list preceding N in order to delete N from the list.
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This section introduces a new list structure, called a two-way list, which can be traversed in two
directions: in the usual forward dircction from the beginning of the list to the end, or in~the backward
dircction from the end of the list to the beginning. Furthermore, given the location LOC of anode N in
the list, onc now has immediate access to both the next node and the preceding node in the list. This
means, in particular, that one is able to delete N from the list without traversing any part of the list.

A two-way list is a lincar collection of data clements, called nodes, where cach node N is divided
into threc parts: e

(1) An information ficld INFO which contains the data of N
(2) A pointer ficld FORW which contains the location of the next node in the list
(3) A pointer field BACK which contains the location of the preceding node in the list

The list also requires two list pointer variables: FIRST, which points to the first node in the list, and
LAST, which points to the last node in the list. Figure 5-33 contains a schematic diagram of such a list.
Observe that the null pointer appears in the FORW field of the last node in the list and also in the
BACK field of the first node in the list.

FIRST LAST
INFO ficld of node N
BACK pointer ficld of node N

l (——FORW pointer ficld of node N

Node N n,

Fig. 5-33 Two-way list.

Obscrve that, using the variable FIRST and the pointer ficld FORW, we can traverse a two-way list
in the forward dircction as before. On the other hand, using the variable LAST and the pointer field
BACK, we can also traverse the list in the backward dircction. .

Suppose LOCA and LOCB are the locations, respectively, of nodes A and B in a two-way list.
Then the way that the pointers FORW and BACK are defined gives us the following:

Pointer property: FORW[LOCA]=LOCB - if and only if BACﬁ)[,LOCB] = LOCA

In other words, the statement that node B follows node A is.cquivalent to the statement that node A
precedes node B. . 4

Two-way lists may be maintained in memory by means of lincar arrays in the same way as onc-way
lists except that now we require two pointer arrays, FORW and BACK, instcad of one pointer array
LINK, and we require two list pointer variables, FIRST and LAST, instcad of onc list pointer variable
START. On the other hand, the list AVAIL of available space in the arrays will still be maintained as a
onc-way list—using FORW as the pointer ficld—since we delete and insert nodes.only at the beginning
of the AVAIL list.

EXAMPLE 5.21

Consider again the data in Fig. 5-9, the 9 patients in a ward with 12 beds. Figure 5-34 shows how the
alphabetical listing of the patients can be organized into a two-way list. Observe that the values of FIRST and the
pointer field FORW are the same, respectively, as the values of START and the array LINK; hence the list can be
traversed alphrabetically as before. On the other hand, using LAST and the pointer array BACK, the list can also
bc.truvcrsed in reverse alphabetical order. That is, LAST points to Samuels, the pointer field BACK of Samuels
points to Nelson, the pointer ficld BACK of Nelson points to Maxwell, and so on.
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FIRST BED FORW BACK
5 1 Kirk - 7 8
2 6
LAST 3 Dean 11 5
9 sy 4 Maxwell 12‘ *+7
D Adams 3 0
AVAIL 6 0
10 7 Lane - 4 |
8 | Green 1 11
N—— 3 | Samuels 0 12
10 2
11 Fields | 8 3
12 Nelson 9 4
. Fig. 5-34

Two-Way Header Lists

The advantages of a two-way list and a circular header list may be combincd into a two-way
circular header list as pictured in Fig. 5-35. The list is circular because the two end nodes point back to
the header node. Observe that such a two-way list requires only one list pointer variable START,

. which points to the header node. Thls is because the two pom(ers in the header nodce point to the two
ends of the list.

START
Header
node

Node N

Fig. 5-35 Two-way circular header Tist.

’

EXAMPLE 5.22

Consider the personnel file in Fig. 5-30, which is organized as a circular header list. The data may be
organized into a two-way circular header list by simply adding another array BACK which gives the locations of
preceding nodes. Such a structure is pictured in Fig. 5-36, where LINK has been renamed FORW. Again the
AVAIL list is maintained only as a one-way list.
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START

AVAIL

w L]
.

w

A I -

10
11
12
13
14

Operations on Two-Way Lists

Supposc LIST is a two-wa

LIST.
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NAME SSN SEX SALARY FORW BACK
' 0
* Davis 192-36.7282 Female 22800 12 9
Kelly 165-64-3351 Male 7 14
175-56-2251 Male 14 12
6 | | 10
el
Brown 178-52-1065 Female 9 5
Lewis ‘181-58-9939 Female 16 400 10 3
T
Cohen 177-44-4557 Malc 19 000 2 6
Rubin 135-46-6262 Female 15 500 5 7
' | 13 _
Evans 168-56-8113 Male 34200 4 2
; | 1
Harris 208-56-1654 Female 22 80D 3 4
Fig. 5-36

y list in memory. This subsection discusscs a number of opcrations on

Traversing. Suppose we want to traverse LIST in order to process each node exactly once. Then

we can use Algorithm 5.1 if LIST is an ordi
contains a header node. Here it is of no
than as a onc-way list. .

Searching. Suppose we arc given an ITEM of informat
location LOC of ITEM in LIST. Then we can usc Algorith
we can use Algorithm 5.12 if LIST has a header node. He
for ITEM in the backward direction if we have reason to
the list. For example, suppose LIST is a list of names sorte
would search LIST in the backward direction,
forward dircction.

Deleting.
delcte N from t
and FORW[LOC] are the locations, respectively,
Accordingly, as picturcd in Fig. 5-37, N

pointers:

FORW[BACK[LOC]]:= FORW[LOG]  and

The deleted node N is then returned to the AVAIL list by the assignments:
AVAIL := LOC

FCRW[LOC]:= AVAIL  and

The formal statement of the algorithm follows.

nary two-way list, or we can use Algorithm 5.11 if LIST
advantage. that the data are organized as a two-way list rather

ion—a key value—and we want to find the
m 5.2 if LIST is an ordinary two-way list, or
re the main advantage is that we can search
suspect that ITEM appears near the end of
d alphabetically. If ITEM = Smith, then we
but if ITEM = Davis, thcn we would scarch LIST in the

Suppose we are given the location LOC of a node N in LIST, and suppose we want to

he list. We assumc that LIST is a two-way circular header list.
of the nodes which precede, and follow node N.

is deleted from the list by changing"the following pair of

Note that BACK[LOC]

 BACK[FORW[LOC]] : = BACK[LOC]
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Algorithm 5.15: * DELTWL(INFO, FORW, BACK, START, AVAIL, LOC)

1. [Delete node.]
Set FORW[BACK[LOC]]:= FORW[LOC] and
BACK[FORW[LOC]]:= BACK[LOC].
2." [Return node to AVAIL list.]
Set FORW[LOC] = AVAIL and AVAIL := LOC.
3. Exit.

. Here we see one main advantage of a two-way list: If the data were organized as a one-way list, then, in
order to delete N, we would have to traverse the one-way ifst to find the location of thc node
preceding N. '

LOC

Fig. 5-37 Deleting node N.

Inserting. Suppose we arc given the locations LOCA and LOCB of adjacent nodes A and B in
LIST, and suppose we want to inscrt a given ITEM of information betwecn nodes A and B. As with a
one-way list, first we remove the first node N from the AVAIL list, using the variable NEW to keep
" track of its location, and then we copy the data ITEM into the node N; that is, we set:

NEW := AVAIL, AVAIL := FORW[AVAIL], INFO[NEW]:= ITEM

Now, as pictured in Fig. 5-38, the node N with contents ITEM is inserted into the list by changing the
following four pointers: - aus

FORW[LOCA]:= NEW, = FORW[NEW]:=LOCB
BACK[LOCB]:=NEW,  BACK[NEW]:=LOCA

The formal statement of our algorithm follows.

LOCA " LOCB

Fig. 5-38 Inserting node N.
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Algorithm 5.16: INSTWL(INFO, FORW, BACK, START, AVAIL, LOCA, LOCB, ITEM)

1. [OVERFLOW?]If AVAIL = NULL, then: Writc: OVERFLOW, and Exit.
2. [Remove node from AVAIL list and copy ncw data into node. |
« Sct NEW:= AVAIL, AVAIL := FORW[AVAIL], INFO[NEW]:= ITEM.
3. [Insert nodc into list.]
Sct FORW[LOCA]:= NEW, FORW|NEW]:= LOCB,
BACK[LOCB]:= NEW, BACK[NEW]:= LOCA.
4. Exit.

Algorithm 5.16 assumecs that LIST contains a header node. Hence LOCA or LOCB may point to
the header node, in which casc N will be inscrted as the first node or the last node. If LIST does not
contain a hcader node, then we must consider the case that LOCA = NULL and N is inscrted as the
first node in the list, and the casc that LOCB = NULL and N is inserted as the last nodc in the list.

Remark: Gencerally speaking, storing data as a two-way list, which requires cxtra space for the
backward pointers and extra time to change the added pointers, rather than as a onc-way list is not
worth the expense unless one must frequently find the location of the node which precedes a given
node N, as in the deletion above.

Solved Problems

LINKED LISTS
5.1 Find the character strings stored in the four linked lists in Fig. 5-39.

Here the four list pointers appear in an array CITY. Beginning with CITY([ 1], traverse the
list, by following the pointers, to obtain the string PARIS. Beginning with CITY[2], traverse the
list to obtain the string LONDON. Since NULL appears in CITY[3], the third list is empty, so it
dcnotes A, thc empty string. Beginning with CITY[4], traverse the list to obtain_the string
ROME/In othcr words, PARIS, LONDON, A and ROME arc the four strings.

5.2 he following list of names is assigned (in order) to a lincar array INFO:
Mary, Junc, Barbara, Paula, Diana, Audrey, Karen, Nancy, Ruth, Eilcen, Sandra, Helen
That is, INFO[1] % Mary, INFO[2] = June, . . . , INFO[12] = Helen. Assign values to an array

LINK and a variable START so that INFO, LINK and START form an alphabectical listing of
the namecs.

The alphabetical listing of the names follows:
Audrey, Barbara, Diana, Eilcen, Helen, Junc, Karcn, Mary, Nancy, Paula, Ruth, Sandra
The values of START and LINK are obtained as follows:
(a) INFO{G] = Audrey, so assign START = 6.
(&) INFO[3] = Batbara, so assign LINKiG] =3,

(¢) INFO[5] = Diana, so assign LINK|[3] =
(d) INFO[10] = Eilecn, so assign L]NK[S] = 10.

And s0 on. Since INFO[1]] = Sandra is the last name, assign LINK[11] = NULL. Figure 5-40 shows the
data structure where, assuming INFO has space for only 12 elements, we set AVAIL = NULL.
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CITY CHAR LINK
1 12— 1 A 14
2 2 D 9
3 0 3 E 0
4 13— 4 I 15
. 5 L 11
6 M 3
7 N 0
8 N 2
| e 7
10 o 6
11 110 8
N—a12 | P 1
S“—s13 | R 10
14 R 4
15 S 0
16
Fig. 5-39
INFO ' LINK
START 1 Mary 8
) 6 | 2 | June 7
3 Barbara 5
AVAIL 4 Paula 9
.0 5 Diana 10
6- | Audrey 3
7 Karen 1
8 Nancy ‘4
9 Ruth 11
. 10 Eileen 12
11 Sandra 0
12 Ielen 2
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5.3 Let LIST be a linked list in mcmory. Write a procedure which

(a) Finds the number NUM of times a given ITEM occurs in LIST
(b) Finds the number NUM of nonzero clements in LIST
(¢) Adds a given value K to each clement in LIST

Each procedure uses Algorithm 5.1 to traverse the list.

(@) Procedure P5.3A: 1. Set NUM := 0. [Initializes counter.]
2. Call Algorithm 5.1, replacing the proccessing step by:
If INFO[PTR] = ITEM, then: Set NUM:=NUM + 1.
3. Return

(b) Procedure P5.3B: |. Sct NUM := 0. [Initializes counter.]
2. Call Algorithm 5.1, replacing the processing step by:
If INFO[PTR] # 0, then: Sct NUM:=NUM +1. -
3. Return. e

(¢) Procedure P5.3C: 1. Call Algorithm 5.1, replacing the processing step by:
Set INFO[PTR]:= INFO| PTR] + K. .
2. Return.

5.4  Consider the alphabetized list of patients in Fig. 5-9. Dectermine the changes in the data
structure if (a) Walters is added to the list and then (b) Kirk is deleted from the list.

(a) Observe that Walters is put in bed 10, the first available bed, and Walters is inscrted after Samucls,
who is the last paticnt on the list. The thrce changes in the pointer ficlds follow:

1. LINK[9] = 10. [Now Samucls points to Walters.)
2. LINK[10] =0. [Now Waltcrs is the last patient in the list.]
3. AVAIL =2. [Now AVAIL points to the next available bed. ]

START - BED LINK
5 1 2
i :
3 Dean 11
4 Maxwell 12
AVAIL —— 5 Adams 3
5 ] 6 ]
¢ Lane 4
I 8 Green 7
9 Samuels 10
10 Walters 0
11 Ficlds Ny 8
12 Nglson ‘9

Fig. 5-41
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Since Kirk is discharged, BED[1] is now empty. The following three changes in the pointer ficlds
must be executed: F .

LINK([8] = 7 LINK[1] =2 AVAIL = 1

By the first change, Green, who originally preceded Kirk, now points te Lane, who originally
followed Kirk. The second and third changes add the new cmpty bed to the AVAIL list. We
emphasize that before making the deletion, we had to find the node BED([8], which originally
pointed to the deleted node BED[1].

Figure 5-41 shows the new data structure.

5.5  Suppose LIST is in memory. Write an algorithm which dcletes the last node from LIST.

The last node can be deleted only when onc also knows, the location of the next-to-last node.

Accordingly, traverse the list using a pointer variable PTR, and keep track of the preceding node using a
pointer variable SAVE. PTR points to the last node when LINK[PTR] = NULL, and in such'a case, SAVE
points to the next to tast node. The case that LIST has only onc node is treated scparately, since SAVE can
be defined only when the list has 2 or more clements. The algorithm follows.

Algorithin P5.5: DELLST(INFO, LINK, START, AVAIL) :

NAME2

1. [List empty?] If START = NULL, then Write: UNDERFLOW, and Exit.
2. |List contains only one clement?]
If LINK[START]=NULL, then:
(@) Sct START:=NULL. [Removes only node from list.]
(b) Set LINK[START]:= AVAIL and AVAIL:=START.
[Returns node to AVAIL list.]
(¢) Exit. ;
[End of If structure.] .
3. Sct PTR:= LINK[START] and SAVE := START. [Initializes pointers.]
4. Repecat while LIN K[PTR] # NULL. [Traverses list, sccking last node.]
el SAVE -= PTR and PTR := LINK[PTR]. [Updatcs SAVE and PTR.]
[End of loop.] i
5. Set LINK[SAVE]:= LINK[PTR]. [Removes last node.]
6. Sct LINK[PTR]:=AVAIL and AVAIL :=PTR. [Returns node to AVAIL list.]
1. EXkir.

‘E‘_ﬂ(_{ _gl"—"L?fE‘E,J_j—’FCC »| DDD l:}———vﬁLL [}—e

LOC

MJ\HJ\WA I:}——b{i BBB lo-

Fig. 5-42
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S

Suppose. NAMEI is a list in memory. Write an’algorithm which copics NAME! into a list
NAME2.

First sct NAME2 := NULL to form an empty list. Then traverse NAME] using a pointer variable
PTR, and while visiting each node of NAMEI, copy its contents INFO[PTR] into a new node, which is
then inscrted at the end of NAME2. Use LOC to kecp track of the last node of NAME2 during the
traversal. (Figure 5-42 pictures PTR and LOC before the fourth node is added to NAME?2.) Inserting the
first node into NAME2 must be treated scparateiy, since LOC is not defined until NAME2 has at Icast one
node. The algorithm follows:

Algorithm P5.6: COPY(INFO, LINK, NAMEI, NAME2, AVAIL)
This algorithm makes a copy of a list NAME1 using NAME2 as the list pointer variable
of the new list.

Sct NAME2 = NULL. [Forms cmpty list.]
(NAMELI empiy?] If NAMEI = NULL, then: Exit.
(Insert first node of NAME]! into NAME2.]
Call INSLOC(INFO, LINK, NAME2, AVAIL, NULL, INFO[NAMEI]) or:.
(@) If AVAIL = NULL, then: Write: OVERFLOW, and Exit.
(b) Set NEW:= AVAIL and AVAILL:= LINK[AVAIL]. [Removes first node from
AVAIL list.]
() Sct INFO[NEW] := INFO[NAMEI]. [Copics data into new node. ]
(d) [Insert new node as first node in NAME2. ]
Sct LINK[NEW]:= NAME2 and NAME2: = NE W.
4. [luitializes pointers PTR and LOC.)
Set PTR := LINK[NAMEI] and LOC:= NAME2.
5. Repeat Steps 6 and 7 while PTR # NULL:
6. Call INSLOC(INFO, LINK, NAME2, AVAIL, LOC, INFO[PTR]) or:
(a) If AVAIL = NULL, then: Write: OVERFLOW, and Exit.
(b) Set NEW := AVAIL and AVAIL := LINK[AVAIL].
(c)  Set INFO[NEW]:= INFO[PTR]. [Copies data into new node.)
(d) [Insert new node into NAME2 after the node with location LOC.]
Sct LINK[NEW]:= LINK[LOC], and LINK[LOC]:= NEW.
% Set PTR := LINK[PTR] and LOC : = LINK[LOC]. [Updates PTR and LOC.]
[End of Step S loop.] :
8. Exit.

W =

HEADER LISTS, TWO-WAY LISTS

5.7

Form header (circular) lists from the one-way lists in Fig. 5-11.

Choose TEST[1] as a header node for the list ALG, and TEST[16] as a hcader node for the list
GEOM. Then, for each list:

(@) Change the list pointer variable so that it points to the header node.
(6) Change the header node so that it points to the first node in the list.
(c) Change the’last node so that it points back to the header node.

Binall rcorganize the AVAIL list. Figure 5-43 shows the updated data structure.

Find the polynomials POLY1 and POLY?2 stored in Fig. 5-44.
Beginning with POLY, traverse the list by following the pointers to obtain the polynomial

p(x)=3x"=4x* +6x -5
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TEST LINK

1 "
2| 74 14
3 15
ALG | 1 a| 82 ||
s | 84 12
6| 78 16
GEOM |16 L 8
=] 8 | 100 13
9 10
10 3
AVAIL | 9 i | s8 2
12 | 62 7
13| 74 6
14 | 93 4
15 0
S 5
Fig. 5-43

COEF EXP LINK

I 5
2
POLY1 1 3 6 1 7
.POLYZ 110 ¢ . 2 5
S 3 <] 8
6 2 8 9
7 =5 0 1
8 -4 3 3
9 5 4
) LOIO 6
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Beginning with POLY2, traverse the list by following the pointcrs to obtain the polynomial
py(x) =2x"+ 7x* = 3x?

Here COEF[K] and EXP[K] contain, respectively, the cocfficient and exponcnt of a term of the
polynomial. Obscrve that the header nodes are assigned —1 in the EXP ficld.

5.9 Consider a polynomml p(x, y, z) in variables x, y and z. Unless otherwisc stated, the terms in
p(x, y, z) will be ordered lexicographically. That is, first we order the Acrms according to
decreasing dcgrees in x; those with the same degree in x we order according to decreasing
degrees in y; those with the same degrees in x and y we order according to decreasing degrees in
z. Suppose )

p(x, y, z) =8x’y’z — 6yz" + 3x’yz + 2xy"z — 5x%y* — dxy’z
(a) Rewritc the polynomial so that the terms are ordercd.

(b) Supposc the terms arc stored in the order shown in the problem statement in the lincar
arrays COEF, XEXP, YEXP and ZEXP, with thec HEAD nodc first. Assign valucs to
LINK so that the linked list contains the ordered sequence of terms.

(a) Note that 3x’yz comes first, since it has the highest degree in x. Note that 8x’y’z and -5x%" both
have the same degrec in x but —5x’y” comes before 8x%y’z, since,its degree in y is higher. And so on.
Finally we have ‘

p(x, y, 2)= 3x’yz — Sx’y® + Bxly'z — dxy’z’ + 2xy"z — Gy2*
(b) Flgurc 5-45 shows the desired data structure.

COEF XEXP  YEXP ZEXP  LINK

1 =1 ] |4
2 i 7
POLY | 1 |- 3] -6 0 1 8 1
4 3 3 1 1 6
5 2 1 7 1 3
6 | -5 2 3 0 2
2l ~4 1 7 3 5
8 ”
Fig. 5-45

5.10 Discuss the advantages, if any, of a two-way list over a onc-way list for cach of the following
operations:
(a) Traversing the list to proccss each node
(b) Deleting a node whose location LOC is given
(c) Searching an unsorted list for a given clement ITEM
(d) Searching a sorted list for a given clement ITEM
(e) Inserting a node before the node with-a given location LOC
(f) Inserting a nodc after the node with a given location LOC
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(a) There is no advantage.

(b) The location of the preceding node is needed. The two-way list contains this information, whereas
with a one-way list we must traverse the list.

(¢) There is no advantage.

(d) There i5 no advantage unless we know that ITEM must appear at the engl of the list, in which case we
traverse the list backward. For example, if we are searching for Walker in an alphabetical listing, it
may be quicker to traverse the list backward.

(e) As in part (b), the two-way list is more efficient.

(f) There is no advantage.

Remark: Generally speaking, a two-way list is not much more useful than a one-way list except in
special circumstances.

Suppose LIST is a header (circular) list in memory. Write an algorithm which deletes the last
node from LIST. (Compare with Prob. 5.5.)

The algorithm is the same as Algorithm P5.5, except now we can omit the special case when LIST has
only one node. That is, we can immediately define SAVE when LIST is not empty.

Algorithm P5.11: DELLSTH(INFO, LINK, START, AVAIL)
This algorithm deletes the last node from the header list.

1. [List empty?] If LINK[START] = NULL, then: Write: UNDERFLOW, and Exit.
2. Set PTR:= LINK[START] and SAVE := START. [Initializes pointers.]
3. Repeat while LINK[PTR] # START: [Traverses list seeking last node.]
Set SAVE := PTR and PTR := LINK[PTR]. [Updates SAVE and PTR.]

[End of loop.]
4. Set LINK[SAVE]:= LINK[PTR]. [Removes last node.]
Set LINK[PTR]:= AVAIL and AVAIL :=PTR. [Returns node to AVAIL list.]
6. Exit.

W

Form two-way lists from the one-way header lists in Fig. 5-43.

Traverse the list ALG in the forward direction to obtain:

We require the backward pointers. These are calculated node by node. For example, the last node (with
location LOC = 4) must point to the next-to-last node (with location LOC = 14). Hence

BACK[4] = 14

The next-to-last node (with location LOC = 14) must point to the preceding node (with location LOC = 2).
Hence

BACK[14] =2
And so on. The header node (with location LOC = 1) must point to the last node (with location 4). Hence
BACK]J[1] =4

A similar procedure is done with the list GEOM. Figure 5-46 pictures the two-way lists. Note that
there is no difference between the arrays LINK and FORW. That is, only the array BACK need be
calculated.
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TEST FORW BACK"*

1 ' 1 4
2 74 14 1
’ 3 15
ALG | 1 4 82 I 14
5 84 12 16
6 7 16 13
GEOM | 16 | s - N -
8 | 10 13 ra
[ 10, i
rm 3
AVAIL | 9
‘ 1 88 2 1
12 62 7 5
13 | 74 6 8
14 93 4 2
15 0
K—-—l() 3 6
Fig. 5-46

Supplementary Problems

LINKED LISTS

5.13  Figure 5-47 is.a list of five hospital patients and their room numbers. (a) Fill in values for NSTART and
NLINK so that they form an alphabctical listing of the names. (b) Fill in values for RSTART and RLINK
so that they form an ordcring of the room numbers.

NSTART NAME ROOM NLINK RLINK
' 1 Brown 650
2 Smith 422
RSTART
3 Adams 704
4 Jones 46?
5 Burns 632

Fig. 5-47
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5.14  Figurc 5-48 picturcs a linked list in memory.

START INFO  LINK
E: 1 A 2
2 B 8
AVAIL 3 6
IR
5 D 0
6 0
7 E 1
8 F 5
Fig. 5-48

(a) Find the sequence of characters in the list.

[CHAP. 5

(h) Suppose Fand then Care deleted from the list and then G is inserted at the beginning of the list. Find

the final structurce.

(¢) Supposc C and then Fare deleted from the list and then G is inserted at the beginning of the list. Find

the final structurc.

(d) Suppose G is inserted at the beginning of the list and then F and then C are’ deleted from the

structure. Find the final structure. .

5.15  Supposc LIST is a linked list in memory consisting of numerical values. Write a procedure for cach of the

following: 3 ;
(a) Finding thc maximum MAX of the values in LIST

(h) Finding the average MEAN of the values in LIST

(¢) Finding the product PROD of the clements in LIST

5.16 Given an integer K, write a proccdure which dcletes the Kth clement from a linked list.

5.17  Writc a procedure which adds a given ITEM of information at the end of a list.

5.18 Writc a procedure which removes the first clement of a list and ‘adds it to the end of the list without

changing any values in INFO. (Only START and LINK may be changed.)

5.19  Write a procedure SWAP(INFO, LINK, START, K) which interchanges the Kth aad K + 1st clements in

the list without changing any values in INFO.

5.20 Write a procedure SORT(INFO, LINK, START) which sorts a list without changing any values in INFO.

(Hint: Use the procedure SWAP in Prob. 5.19 together with a bubble sort.)

5.21 Supposc AAA and BBB are sorted linked lists with distinct clements, both maintained in INFO and
LINK. Write a procedure which combines the lists into a singlc sorted linked list CCC without changing

any values in INFO.

Problems 5.22 to 5.24 refer to character strings which are stored as linked lists with one character per nodc

and use the same arrays INFO and LINK.
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5.22  Supposc STRING is a character string in memory.

(a) Write a procedure which prints SUBSTRING(STRING, K, N), which is the substring of STRING
beginning with the Kth character and of length N, ’

(b) Write a procedure which crcates a new string SUBKN in memory where
SUBKN = SUBSTRING(STRING, K, N)

5.23  Supposc STR1 and STR2 are character strings in memory. Writce a procedure which creates a new string
STR3 which is thc concatenation of STR1 and STR2.

5.24  Suppose TEXT and PATTERN arc strings in memory. Write a procedure which finds the value of
INDEX(TEXT, PATTERN), the position where PATTERN first occurs as a substring of TEXT.
HEADER LISTS; TWO-WAY LISTS

5.25  Character strings arc stored in the three linked lists in Fig. 5-49. (a) Find the three strings. (b) Form
circular header lists from the one-way lists using CHAR|[20], CHAR[19] and CHAR([18] as header nodcs.

STATE CHAR LINK
o7 T 4
2| s 2 |1 14
3110 f— 3| A 16

‘ 4| o0 0
s M| |2
6 | s 0
~— 7 | O 9
AVAIL
8 | E 13
9 | u 1!
N—10 | T 8
1| E 0
12 | A 2
13 | x 3
14 | N 11
15 0
16 s
17 .| 16
17 16
18 17
19 18
20 19

Fig. 5-49
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5.26

5.27

5.28

5.29

5.30

LINKED LISTS ' [CHAP. >

Find the polynomials stored in the three header lists in Fig. 5-50.

POLY COEF EXP LINK
1 1 b1 0 -1 9
2 2 2 0 —q 2
3 3 b—»3 0 =ik 6
4 =5 3 7
5 -9 2 8
6 6 3 5
i/ 1 1 10
AVAIL
8 4 3
11
9 3 4 4
10 -8 0 1
11 12
12 13
13 14
49 - 50
50 0
Fig. 5-50

Consider the following polynomial:
p(x, y, z) = 2xy’z* + 3x%yz’ + dxy’z + 5x%y" + 6y*z +7x'z + 8xy’z* +9

(a) Rewrite the polynomial so that the terms are ordered lexicographically.

(b) Suppose the terms are stored in the order shown here in parallel arrays COEF, XEXP, YEXP and
ZEXP with the header node first. (Thus COEF[K] =K for K =2, 3,....,9.) Assign values to an
array LINK so that the linked list contains the ordered sequence of terms. (See Prob. 5.9.)

Write a procedure HEAD(INFO, LINK, START, AVAIL) which forms a header circular list from an
ordinary one-way list.

Redo Probs. 5.16—5.20 using a header circular list rather than an ordinary onc-way list. (Observe that ‘the
algorithms are notv much simpler.)

Suppose POLY1 and POLY?2 are polynomials (in one variable) which are stored as header circular lists
using the same parallel arrays COEF, EXP and LINK. Write a procedure
ADD(COEF, EXP, LINK, POLY1, POLY2, AVAIL, SUMPOLY)

which finds the sum SUMPOLY of POLY1 and POLY2 (and which is also stored in memory using COEF,
EXP and LINK).
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5.31  For the pblynomials POLY! and POLY2 in Prob. 5.30, write.a procedure
MULT(COEF, EXP, LINK, POLY!, POLY2, AVAIL, PRODPOLY)
which finds the product PRODPOLY of the polynomials POLY1 and POLY2.

5.32  Form two-way circular header lists from the one-way lists in Fig. 5-49 using, as in Prob. 5.25, CHAR[20],
CHAR([19) and' CHAR[18] as hcadcr nodes. 4 ’

5.33  Given an integer K, write a procedure
DELK(INFO, FORW, BACK, START, AVAIL, K)
which deletes the Kth clement from a two-way circular header list.

5.34  Supposc LIST(INFO, LINK, START, AVAIL) is a onc-way circular hcader list in memory. Write a
procedurc . ‘

TWOWAY(INFO, LINK, BACK, START)

which assigns Palucs 10 a lincar array BACK to form a two-way list from the one-way list.

Programming Problems

Problems 5.35 to 5.40 refer to the data structure in Fig. 5-51, which consists of four alphabetized lists of clients
and their respective lawyers. : :

5.35  Write a program which reads an integer K and prints the list of clients of lawyer K. Test the program for
each K. i

5.36 Writc a program which prints thc name and lawyer of each clicnt whose age is L or higher. Test the
program using (¢) L =41 and (b) L= 48. )

5.37 Write a program which. reads the name LLL of a lawyer and prints the lawyer’s list of clicnts. Test the
program using (a) Rogers, (b) Baker and (c) Levine.

5.38  Writc a program which rcads the NAME of a client and prints the clicnt’s name, age and lawycr, Test the
program using (@) Newman, (b) Ford, (c) Rivers and (d) Hall.

5.39  Writc a program which reads,thc NAME of the client and deletes the client’s record from the structure.
~ Test the program using (@) Lewis, (b) Kicin and (c) Parker.

5.40  Writc a progriﬁn which reads the record of a new client; consisting of the clicnt’s namc, age and lawyer,
and inserts the record into the structure. Test the program using (a) Jones, 36, Levinc; and (b) Olsen, 44,
Nelson.

Problems 5.41 to 5.46 refer to the alphabetized list of employee records in Fig. 5-30, which arc 'stored as a
circular header list.

5.41  Write a program which prints out thc cntire alphabetized list of cmployce records.

5.42  Write a program which rcads the name NNN of an cmployce and prints the ’ 's record. Test the
program using (a) Evans, (b) Smith and (¢) Lecwis.
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LAWYER POINT ' CLIENT AGE LINK
1 Davis 4 1 Hall 35 16
-2 Levine 12 2 Moss | 28 13
* 3 | Neison 21 3 | Ford 47 25
4 Rogers 8 4 Brown 54 22
5 Ginn a8 14
6 Pride 42 29
7 26
8 Berk 38 3
AVAIL
’ 9 White 45 0
15
10 28
11 Todd 25 0
12 Dixon 32 24
13 Newman ' 46 A 6
14 | Harris 42 30
TR 7
16 Jackson - 52 27
17 23
18 | Roberts 40 0
19 0
il
20 Eisen 32 1
21 Adams 48 5
22 Cohen 36 20
. 23 19
; 24 | Fisher | | 33 18
3y =) Graves 42 11
Tt 26 10
27 Parker 50 9
28 17
'29 Singer 45 0
30 Lewis 28 2

Fig. 5-51
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5.43  Write a program which reads the social sccurity number SSS of an cmployce and prints the employce's
record. Test the program using (a) 165-64-3351, (b) 136-46-6262 and (c) 177-44-5555.

5.44  Write a program which reads an integer K and prints the name of each male er-.ployee when K = 1 or of
cach female employce when K = 2. Test the program using (a) K = 2, (b) K=5and (c) K=1.

5.45  Writc a program which reads the name NNN of an employce and deletes the cmploycc s record from the
structure. Test the program using (a) Davis, (b) Jones and (c) Rubm

5.46  Write a program which reads the record of a new employce and inscrts the record into the file. Test the
program using (a) Fletcher, 168-52-3388, Femalc, 21 000; and (b) Nclsgn, 175-32-2468, Male, 19 000.

Remark: Rcmember to update the hcader record whencver there is an insertion or a deletion.

vy



Chapter 6

Stacks, Queues, Recursion

6.1 INTRODUCTION

The linear lists and linear arrays aiscusse_d in the previous chapters allowed one to inscrt and delete
elements at any place in the list—at the beginning, at the end, or in the middle. There are certain
frequent situations in computer scicnce when onc wants to restrict insertions and delctions so that they
can take place only at the beginning or the end of the list, not in the middlc. Two of the data structures
that are useful in such situations are stacks ang queues.

A stack is a linear structure in which items may be added or removed only at ene end. Figure 6-1
pictures three everyday examples of such a structure: a stack of dishes, a stack of pennics and a stack of
folded towels. Observe that an item may be added or removed only from the top of any of the stacks.
This means, in particular, that the last item to be added to a stack is the first item to be removed.
Accordingly, stacks arc also called last-in first-out (LIFO) lists. Other namcs uscd for stacks arc
“piles” and “‘push-down lists.” Although the stack may scem to be a very restricted type of data
structure, it has many important applications in computer science. q &

Stack of Stack of Stack of
dishes_ * pennies folded towels

Fig. 61

A queuc is a lincar list in which items may be added only at onc end and items may be rcmoved
only at the other end. The name *‘qucue” likely comes from the cveryday use of the term. Consider a
qucue of pcople waiting at a bus stop, as pictured in Fig. 6-2. Each ncw person who comes takes his or
her place at the end of the line, and when the bus comes, the people at the front of the linc board first.
Clearly, the first person in the linc is the first person to leave. Thus qucucs arc also called first-in
first-out (FIFO) lists. Another example of a queue is a batch of jobs waiting to be processcd, assuming
no job has higher priority than thc' others.

The notion of recursion is fundamental in computer science. This topig is introduced in this chapter
because one way of simulating rccursion is by means of a stack structure,

BUS
S10P

Fig. 6-2 Queue waiting for a bus.

164
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6.2 STACKS

A stack is a list of clements in which an clement may be inserted or deleted only at onc end, called
the top of the stack. This means, in particular, that clements arc removed from a stack in the reverse
order of that in which they were inserted into the stack.

Special terminology is uscd for two basic operations associated with stacks:.

(@) *“Push™ is the term used to insert an clement into a stack.

(b) “Pop” is the term used to delcte an clement from a stack.

We emphasizc that thesc terms arc used only with stacks, not with other data structurcs.

EXAMPLE 6.1
Supposc the following 6 clements are pushed, in order, onto an cmpty stack:
AAA, BBB, CCC, DDD, EEE, FFF _

Figurc 6-3 shows three ways of.picturing such a stack. For notational convenience, we will frequently designatc the
stack by writing:

STACK: AAA, BBB, CCC, PDD, EEE, FFF
The implication is that the right-most clcment is the top clement. We emphasize that, regardless of the way a stack
is described, its underlying property is that insertions and deletions can occur only at the top of the stack. This
means EEE cannot be deleted before FFF is delcted, DDD cannot be deleted before EEE and FFF are delcted,

and so on. Conscquently, the clements may be popped from the stack only in the reverse order of that in which
they were pushed onto the stack.

1 AAA
2 BBB
3 CCcC
TOP 4 DDD

TOP 5 EEE

L—»G FFF

FFF
EEE I
DDD 8
5 8 d
BBB
AAA N-1
N
(a) ; )
AAA | BBB CCC | DDD | EEE FFF
1 2 3 4, 5 6 7 8 - 9 s+ N-1 N

TOP ‘%——)

()
Fig. 6-3 Diagrams of stacks.
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* . .Consider again the AVAIL list of availablc nodes discussed in Chap. 5. Recall that frcc nodes were

*“removed only from the beginning of the AVAIL list, and that new available nodes were inscrtcd only at
the beginning of the AVAIL list. In other words, the AVAIL list was implemented as a stack. This
implementation of the AVAIL list as a stack is only a matter of convenicnce rather than an inherent
part of the structure. Inthe following subscction we discuss an important situation where the stack is an
cssential tpol of the processing algorithm itsclf. #

Postponed Decisions

Stacks arc frequently used to indicate the order of the processing of data when certain steps of the
processing must be postponed until other conditions arc fulfilled. This is illustrated as follows.

Supposc that while processing some project A we arc required to move on to project B, whose
completion is required in order to complete project A, Then we place the folder containing the data of
A onto a stack, as pictured in Fig. 6-4(a), and begin to process B. However, supposc that while
processing B we arc led to project C, for the samce rcason. Then we place B on the stack above A, as
picturcd in Fig. 6-4(b), and begin to process C. Furthermore, supposc that while processing C we are
likewisc fed to project D. Then we place Con the stack above B, as pictured in Fig. 6-4(c), and begin to
process D.

C ‘
B e ol e
A A ' A A A
(@) (b) © () () e
Fig. 6-4

On the other hand, supposc we are ablc to complete the processing of project D. Then the only
project we may continuc to process is project C, which is on top of the stack. Hence we remove folder
C from the stack, leaving the stack as pictured in Fig 6-4(d), and continuc 0 process C. Similarly,
after completing the processing of C, we remove folder B from the stack, lcaving the stack as pictured
in Fig. 6-4(c), and continuc to process B. Finally after complcting the processing of B, we remove the
last folder, A, from the stack, lcaving the cmpty stack pictured in Fig. 6-4( f), and continuc the
processing of our original project A. ‘

Observe that, at cach stage of the above processing, the stack automatically maintains the order
that is required to complete the processing. An important example of such a processing in computer
science is where A is a mai. program and B, C and D arc subprograms called in the order given.

6.3 ARRAY REPRESENTATION OF STACKS

Stacks may be represented in the computer in various ways, usually by means of a one-way listora
lincar array. Unless otherwise stated or implicd, cach of our stacks will be maintaincd by a lincar array
STACK; a pointer variable TOP, which contains the location of the top clement of the stack; and a
variable MAXSTK which gives thc maximum number of elements that can be held by the stack. The
condition TOP =0 or TOP = NULL will indicate that the stack is empty.

Figurc 6-5 pictures such an array represcntation of a stack. (For notational convenience, the array
is drawn horizontally rather than vertically.) Since TOP =3, the stack has three clements, XXX, YYY
and ZZZ; and since MAXSTK = &, there is room for 5 more items in the stack
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STACK
XXX | yyy | zzz
1 2 3 4 s 6 1 8
TOP | 3 ——J MAXSTK | 8

Fig. 6-5

The operation of adding (pushing) an item onto a stack and the operation.of removing (popping)
an item from a stack may be implemented, respectively, by the following procedurcs, called PUSH and
POP. In exccuting the procedurc PUSH, one must first test whether there is rooin in the stack for the
new item; if not, then we have the condition known as overflow. Analogously, in cxccuting the
proccdure POP, onc must first test whether there is an clement in the stack to be deleted; if not, then
we have the condition known as underflow.

Procedure 6.1: PUSH(STACK, TOP, MAXSTK, ITEM)-
This proccdure pushes an ITEM onto a stack.

1. [Stack already fillcd?]
If TOP = MAXSTK., then: Print: OVERFLOW, and Return.
2. Sct TOP:=TOP + 1. [Incrcases TOP by 1.]
3. . Set STACK[TOP]:= ITEM. [Inserts ITEM in new TOP position.]
4. Rcturn,

Procedure 6.2: POP(STACK, TOP, ITEM)
This procedure deletes the top clement of STACK and assigns it to the variable
ITEM.

1. [Stack has an ittm to be removed?]
If TOP =0, then: Print: UNDERFLOW, and Return.
2. Set ITEM :=STACK[TOP]. [Assigns TOP clement to ITEM.]
3. Sct TOP:=TOP - 1. [Dccreases TOP by 1.)
4. Recturn.

Frcquently, TOP and MAXSTK arc global variables; hence the procedures may be called using
only

PUSH(STACK, ITEM) and POP(STACK, ITEM)
réspcclivcly. We note that the value of TOP is changed before the inscrtion in PUSH but the value of
TOP is changed after the delction in POP. :
EXAMPLE 6.2
(a) Consider the stack in Fig. 6-5. We simulate the operation PUSH(STACK, WWW):

1. Since TOP = 3, control is transferred to Step 2.
2. TOP=3+1=4,

3. STACK|[TOP) = STACK[4] = WWW.

4. Return.

Note that WWW is now the top element in the stack.
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-

(b) Consider again the stack in Fig. 6-5. This time we simulate .the operation POP(STACK, ITEM):
Since TOP = 3, control is transferred to Step 2.

ITEM =ZZZ.

TOP=3-1%2.

Rcturn. ) X

Obscrve that STACK[TOP] = STACK[2] = YYY is now the top clement in the stack.

ol il vl

Minimizing Overflow i '

There is an essential difference between underflow and overflow in dcaling with stacks. Underflo
depends exclusively upon the given algorithm and the given input data, and hence there is no dircct
control by the programmer. Overflow, on the other hand, depends upon the arbitraty choice of the
programmer for the amount of memory space reserved for cach stack, and this choicc does‘influence
the number of times overflow may occur.

Generally speaking, the number of elements in a stack fluctuates as elements arc added to or
removed from a stack. Accordingly, the particular choice of the amount of memory for a given stack
involves a time-spacce tradeoff. Specifically, initially reserving a great deal of space for each stack will
decreasc the number of times overflow may occur; however, this may be an cxpensive usc of the space
if most of the space is scldom used. On the other hand, rescrving a small amount of space for cach
stack may incrcase the number of times overflow occurs; and thc time required for resolving an
overflow, such as by adding space to the stack, may be more expensive than the space saved.

Various techniques have been developed which modify the array representation of stacks so that the
amount of space reserved for more than one stack may bc more efficiently uscd. Most of these
techniques lic beyond the scope of this text. We do illustrate pne such technique in the following
example.

EXAMPLE 6.3

Suppose a given algorithm requircs two stacks, A and B. Onc can definc an array STACKA with n, clements
for stack A and an array STACKB with n, clements for stack B. Overflow will occur when cither stack A contains
more than n, clements or stack B contains more than 2, clements.

Suppose instcad that we define a single array STACK with n = n, + n, clements for stacks A and B together.
As pictured in Fig. 6-6, we define STACK[ 1] as the bottom of stack A and let A *grow’’ to the right, and we define
STACK([n] as the bottom of stack B and lct B “*grow” to the left. In this casc, overflow will occur only when A and
B together have more than a = n, + n, clements. This technique will usually dccrease the numbcer of times
overflow occurs even though we have not increased the total amount of space reserved for the two stacks. In using
this data structure, the operations of PUSH and POP will nced to be modificd. =

SO

1 2 3 4 n-3 n—2 n-1 n

p e -]

Stack A Stack B
Fig. 6-6

6.4 ARITHMETIC EX[’RESS]ONS; POLISH NOTATION

Let Q be an arithmetic cxpression involving constants and opcrations. This scction gives an
algorithm which finds the value of Q by using reverse Polish (postfix) notation. We will sce that the
stack is an essential tool in this algorithm.

Recall that the binary operations in Q may have differcnt levels of precedence. Specifically, we
assume the following threc levels of precedence for the usual five binary operations:
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i Highest: Exponentiation ( 1)
Next highest: Multiplication (*) and division (/)
Lowest: Addition (+) and subtraction (—)

(Observe that we use the BASIC symbol for exponentiation.) For simplicity, we assume that Q
contains no unary operation (e.g., a leading minus sign). We also assume that in any parenthesis-free
expression, the operations on the same level are performed from left to right. (This is not standard,
since some languages perform exponentiations from right to left.)

EXAMPLE 6.4
Suppose we want to evaluate the following parenthesis-free arithmetic expression:
213 %5®2912—12.156
First we evaluate the exponentiations to obtain
8+ 5*x4-12/6

Then we evaluate the multiplication and division to obtain 8 + 20 — 2. Last, we evaluate the addition and
subtraction to obtain the final result, 26. Observe that the expression is traversed three times, each time
corresponding to a level of precedence of the operations.

Polish Notation
For most common arithmetic operations, the operator symbol is placed between its two operands.
For example, g
A+B Cc=D ExF G/H
This is called infix notation. With this notation, we must distinguish between
(A+B)*C and A+ (B*C)

by using either parentheses or some operator-precedence convention such as the usual precedence
levels discussed above. Accordingly, the order of the operators and operands in an arithmetic
expression does not uniquely determine the order in which the operations are to be performed.

Polish notation, named after the Polish mathematician Jan Lukasiewicz, refers to the notation in
which the operator symbol is placed before its two operands. For example,

+AB —-CD *EF /GH

We translate, step by step, the following infix expressions into Polish notation using brackets [ | to
indicate a partial translation:

(A + B).*C =[+AB]*C=*+ABC
A+ (B*C)=A + [*BC] = +A*BC
(A +B)/(C—-D)=[+AB)/[-CD] = /+AB—CD

The fundamental property of Polish notation is that the order in which the operations are to be
performed is completely determined by the positions of the operators and operands in the expression.
Accordingly, one never needs parentheses when writing expressions in Polish notation.

Reverse Polish notation refers to the analogous notation in which the operator symbol is placed after
its two operands:

AB+ CD—- EF* GH/

Again, one never nétds parentheses to determine the order of the operations in any arithmetic
expression written in reverse Polish notation. This notation is frequently called postfix (or suffix)
notation, whereas prefix notation is the term used for Polish notation, discussed in the preceding
paragraph.
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The computer usually evaluates an arithmetic expression written in infix notation in two steps.
First, it converts the expression to postfix notation, and then it evaluates the postfix cxpression. In cach
step, the stack is the main tool that is used to accomplish the given task. We illustrate thesc applications
of stacks in reverse order. That is, first we show how stacks are used to cvaluate postfix expressions,
and then we show how stacks are used to transform infix expressions into postfix expressions.

Evaluation of a Postfix Expression

Suppose P is an arithmetic expression written in postfix notation. The following algorithm, which
uses a STACK to hold operands, cvaluates P.

Algorithm 6.3: ‘This algorithm finds the VALUE of an arithmetic expression P written in postfix
notation.

1. Add a right parenthesis *“)” at the end of P. [This acts as a sentinel.]
2. Scan P from left to right and repeat Steps 3 and 4 for each element of P until
the sentincl )" is encountered.
3. If an operand is encountered, put it on STACK.
4, If an operator & is encountered, then:
(a) Remove the two top clements of STACK, where A is the top
clement and B is the next-to-top clement.
(b) Evaluatc B®A.
(¢) Place the result of (b) back on STACK.
[End of If structure.] ; :
[End of Step 2 loop.]
Set VALUE equal to the top element on STACK.
6. Exit.

o

We note that, when Step 5 is exccuted, there should be only one number on STACK.

EXAMPLE 6.5
Consider the following arithmetic expression P written in postfix notation:
P: 5. r’, 2. +|. ®, 12| 4: /1 S

(Commas arc used to separatc the clements of P so that 5, 6, 2 is not interpreted as the nuinber 562.) The

Symbol Scanned STACK
") -5 5
(2) 6 5,6
(3 "2 536,02
@) + 5,8
5) = 40
) 12 40, 12
7 4 40, 12, 4
®) / 40, 3
(9).,. . = 37
(1) )

Fig. 6-7
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equivalent infix expression Q follows:
Q: 5*(6+2)-12l’*

Note that parentheses are necessary for the infix expression Q but not for the postfix expression P.
We evaluate P by simulating Algorithm 6.3. First we add a sentinel right parenthesis at the end of P 1o obtain

P: 5, 6, 2, *; *, 12, 4, /, =5 )
M @ & @ & ©® D (8 (9 (10$)
The elements of P have been labeled from left to right for easy reference. Figure 6-7 shows the contents of STACK
as each element of P is scanned. The final number in STACK, 37, which is assigned to VALUE when the sentinel
“)" is scanned, is the value of P

Transforming Infix Expressions into Postfix Expressions

Let Q be an arithmetic expression written in infix notation. Besides operands and operators, O
may also contain left and right parentheses. We assume that the operators in Q consist only of
exponentiations ( T ), muitiplications (x), divisions (/), additions (+) and subtractions (—), and that
they have the usual three levels of precedence as given above. We also assume that opcrators on the
same level, including cxponentiations, are performed from left to right unless otherwise indicated by
parentheses. (This is not standard, since expressions may contain unary operators and somc languages
perform the exponentiations from right to left. However, these assumptions simplify our algorithm.)

The following algorithm transforms the infix expression Q into its equivalent postfix expression P.
The algorithm uses a stack to temporarily hold operators and left parentheses. The postfix expression P
will be constructed from left to right using the operands from Q and the operators which arc removed
from STACK. We begin by pushing a lIcft parenthesis onto STACK and adding a right parenthesis at
the end of Q. The algorithm is completed when STACK is empty.

Algorithun 6.4: POLISH(Q, P)
Suppose Q is an arithmetig expression written in infix notation. This algorithm
finds the equivalent postfix expression P.

1. Push “(” onto STACK, and add )" to the end of €

2. Scan Q from left to right and repeat Steps 3 to 6 for each element of ) until
the STACK is empty: ‘

3. If an operand is encountered, ' to P
4. If a left parenthesis is encounterod, prush at onto STACK.
5. If an operator ® is encountered, then:

(4) Repeatedly pop from STACK and add to P cach opcrator (un
the top of STACK) which has the same precedence as o1
higher precedence than ®.
(b) Add ® to STACK.
[End of If structure. ]
6. If a right parenthesis is encountered, then:
(@) Repeatedly pop from STACK and add to P cach operator (on
the top of STACK) until a left parenthesis is cncountered.
(b) Remove the left parenthesis. [Do not add the lcft parcnthesis
to P.] :
[End of If structure.]
[End of Step 2 loop.}
7. Exit.

The terminology sometimes used for Step 5 is that ¢o will “'sink™ to its own level.
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EXAMPLE 6.6
Consider the following arithmetic infix expression Q:
O: A+(B*C—(D/ETF)*G)-§H

We simulate Algorithm 6.4 to transform Q into its cquivalent postfix cxpression P.
First we push ("’ onto STACK, and then we add ") to the end of Q to obtain:

Q:A+(B*C~(.D/ETF)*G)*,H)
(1) (2) (3) @) (5) (6) (D (B) (9) (10) (1) (12) (13) (14) (15) (16) (17) (18) (19) (20)

The clements of Q have now been labeled from left to right for casy reference. Figure 6-8 shows the status of
STACK and of the string P as each clement of Q is scanned. Observe that

(1) Each opecrand is simply added to P and docs not change STACK.
(2) The subtraction operator (=) in row 7 sends * from STACK to P before it () is pushed onto STACK.

(3) The right parenthesis in row 14 sends 1 ‘and then / from STACK to P,"and then removes the left
' parenthesis from the top of STACK.

(4)* The right parcnthesis in row 20 scnds * and then + from STACK to P, and then removes the left
parcnthesis from the top of STACK.

After Step 20 is cxccuted, the STACK is cmpty and
P A BC = DETF 1 I/ G * - H « +

which is the required postfix equivalent of Q.
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6.5 QUICKSORT, AN APPLICATION OF STACKS

Lct A be a list of n data items. “Sorting A” refers to the operation of rearranging the clements of
A so that th. y are in some logicatorder, such as numerically ordercd when A contains numerical data,
or alphabetically ordered when A contains character data. The subject of sorting, including various
sorting algorithms, is treated mainly in Chap. 9. This scction gives only one sorting algorithm, called
quicksort, in order to illustrate an application of stacks. '

Quicksort is an algorithm of the divide-and-conquer type. That is, the problem of sorting a set is
reduced to the problem of sorting two smaller sets. We illustrate, this “‘reduction step™ by means of a
specific example. )

Supr§c A is the following list of 12 numbers:

3. 1. S5, 77, 9. 40, © 60, 9, 22, 8, @

The reduction step of the quicksort algorithm finds the final position of onc of the numbers; in this
illustration, we usc the first number, 44. This is accomplished as follows. Beginning with the last
number, 66, scan the list from right to left, comparing each number with 44 and stopping at the first
number lcss than 44. The number is 22. Interchange 44 and 22 to obtain the list

@ 33, 11, 55, 77, 90, 40, 60, 99, 88, 66

(Observe that the numbers 88 and 66 to the right of 44 arc cach greater than 44.) Beginning with 22,
next scan the list in the opposite dircction, from left to right, comparing cach number with 44 and
stopping at the first number greater than 44. The number is 55. Interchange 44 and 55 to obtain the list

92. 33, . %L - 77, 90, 40, 60, 99, (55) - 88, 66

(Observe that the numbers 22, 33 and 11 to the left of 44 are cach less than 44.) Bcginning this time
_with 55, now scan the list in the originai direction, from right to left, until mccting the first number less
than 44. It is 40. Interchange 44 and 40 to obtain the list

2. 33, 1i, 77, 90, 60, 99, S5, 88, 66

: (Agnin,.lhc numbers to the right of 44.arc cach greater than 44.) Beginning with 40, scan the list from
left to right. The first number greater than 44 is 77. Interchange 44 and 77 to obtain the list

v.o ORI . & WTER) | SRR ) @ 96, @ 60, . 99, 55, 88, 66

(Again, the numbers to the Ieft of 44 are cach less than 44.) Beginning with 77, scan the Iist from right
to left secking a number less than 44. We do not meet such a number before mecting 44. This means all
numbers have been scanned and compared with 44, Furthermore, all numbers less than 44 now form
the sublist of numbers to the left of 44, and all numbcrs greater than 44 now form the sublist of
numbers to the right of 44, as shown beclow:

o SRR T T B ) UM AN TR AT, | PCR RO

First sublist Second sublist

Thus 44 is correctly placed in its final position, and the task of soiting the originat list A has now been
reduced to the task of sorting cach of the above sublists.

The above reduction step is repeated with cach sublist containing 2 or more élements. Since we can
process only onc sublist at a time, we must be able to keep track of some sublists for future processing.
This is accomplished by using two stacks, called LOWER and UPPER, to temporarily “hold” such
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sublists. That is, the addresscs of the first and last elements of each sublist, zalied its boundary values,
arc pushed onto the stacks LOWER and UPPER, respectively; and the reduction step is applicd to a
sublist only after its boundary values are removed from the stdcks. The following example nlluslmtcs
the way the stacks LOWER and UPPER are used. -

EXAMPLE 6.7

Consider the above list A with n = 12 elements. Thc algorithm begins by pushing the boundary values 1 and
12 of A onio the stacks to yield

LOWER: 1 UPPER: 12
In order to apply the reduction step, the algorithm first removes the top values 1 and 12 from the stacks, leaving
LOWEIL  (empty) UPPER: (cmpty)

and then applics the chucuon step to the corresponding list A[l1], A[2],..., A[12]. The reduction step. as
cxccuted above, finally pl.wca the first clement, 44, in A[5]. Accordingly, lhc dlgumhm pushes the boundary
values 1 and 4 of the first sublist and the boundary values 6 and 12 of the second sublist onto the stacks to yicld

LOWER: 1,6 UPPER: 4, 12
In order to apply the reduction step again, the algorithny removes the top values, 6 and 12, from tlic stacks, leaving
LOWER: 1 UPPER: 4

and then applics the reduction step to the corresponding sablist A[6], A[7],..., A[12]. 'Thc reduction step
changes this list as in Fig. 6-9. Observe that the second sublist has only one clt.mcm Accordingly, the algorithm
pushes only the boundary values 6 and 10 of the first sublist onto the stacks to yield

LOWER: 1,6 UPPER: 4, 10

"And so on. The algorithm ends when the stacks do not contain any sublist to be processed by the reduction siep:

Al6], A[7]. Al8], A[9], A[10], A[ll], A[12],

@ 71, 60, 99, 55; 88, @
66, 17, 60, @ 55, 88, @
60, 77, 60, @ 55, 99

88 99

First sublist . Sccond sublist

66, 7 60,

7
v

Fig. 6-9

The formal statement of our quicksort algorithm follows (on page 175). For notational
convenicnce and pedagogicai considerations, the algorithm is divided into two paris. The first part
gives u procedure, called QUICK, which executes the above reduction step of the algorithm, and the
second part uses QUICK to sort the entire list.

Observe that Step 2(c) (i) is unnecessary. It has been added to cmphasize the symmetry between
Step 2 and Step 3. The procedure does not assume the elements of A arc distinct. Otherwisc, the
condition LOC # RIGHT in Step 2(a) and the condition LEFT ## LOC in Step 3(a) could be omitted.

The second part of the algorithm follows (on page 175). As noted above, LOWER and UPPER
are stacks on which the boundary values of the sublists are stored. (As usual, we use NULL =0.)
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Procedure 6.5:

QUICK(A, N, BEG, END, LOC)

Hecre A is an array with N clements. Parameters BEG and END contain the
boundary values of the sublist of A to which this procedure applics. LOC keeps
track of the position of the first element A[BEG] of the sublist during the
procedure. The local variables LEFT and RIGHT will contain thc boundary
values of the list of elements that have not been scanned.

1. [Initialize.] Set LEFT = BEG, RIGHT := END and LOC := BEG.
2. [Scan from right to left |
(a) Repeat while AJLOC] = A[RIGHT] and LOC # RIGHT:
RIGHT .= RIGHT — 1.
[End of loop.]
(b) If LOC = RIGHT, then: Return.
(¢) If A[LOC]> A[RIGHT], then:
(1) llnerchange A[LOC] and A[RIGHT].]
TEMP:= A|LOC], A[LOC]:= A[RIGHT],
A[RIGHT]: = TEMP.
(ii) Set LOC:= RIGHT.
i) Go to Step 3.
[End of If structure. ]
3. |Scan from left to right |
(@) Rcpeat while A[LEFT] = A[LOC] and LEFT # LOC:
LEFT := LEFT + 1.
[End of loop.} -
(b) If LOC = LLFT, then: Return
(c) If A[LEFT]> A[LOC], then
(i) [Interchange A[LEFT] and A}LOC].]
TEMP := A[LOCJ, A[LOC]:= A[LEFT],
A[LEFT] := TEMP.
(ii) Sect LOC:=LEFT.
(iii) Go to Step 2.
[End of If structurc.]

Algorithm 6.6:

(Quicksort) This algorithm sorts an array A with N clements.

i. [Initialize.] TOP:= NULL.
2. [Push boundary values of A onto stacks when A has 2 or more clements.]
If N> 1, then: TOP:=TOP + 1, LOWER[1]:= 1, UPPER[1]:=N
3. Repeat Steps 4 to 7 while TOP # NULL.
4, |Pop sublist from stacks.]*
Set BEG:= LOWER|TOP], END := UPPER([TOP],
TOP:=TOP —1.
S Call QUICK(A, N, BEG, END, LOC). |Proccdure 6.5.]
6. [Push left sublist onto stacks when it has 2 or morc elements.]
If BEG <LOC -1, then:
F'OP:=TOP +1, LOWER[TOP]:= BEG,
UPPER|TOP] = LOC — 1
[End of If structure.]
7 [Push right sublist onto stacks when it has 2 or morc clcmcms ]
If LOC + 1 < END, then:
TOP:=TOP + 1, LOWER|TOP):=LOC+ 1,
UPPER[TOP] := END.
[End of If structure.]
[End of Step 3 loop.]
8. Exit.

175
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Complexity of the Quicksort Algorithm

The running time of a sorting algorithm is usually measured by the number.f(n) of comparisons
required to sort n elements. The quicksort algorithm, which has many variations, has been studied
extensively. Generally speaking, the algorithm has a worst-case running time of order n?/2, but an
average-case running time of order a log n. The rcason for this is indicated below.

The worst case occurs when the list is already sorted. Then the first element will require n
comparisons to recognize that it remains in the first position. Furthcrmore, the first sublist will be
cmpty, but the sccond sublist will have n — 1 clements. Accordingly, the sccond clement will require
n — 1 comparisons to rccognize that it remains in the second position. And so on. Consequently, there
will be a total of.

n(n+1 n’
f(n)=n+(n—-1)+--+2+1= —(2—2 = i G} = on?)
comparisons. Obscrve that this is cqual to the complexity of the bubble sort algorithm (Scc. 4.6).
The complexity f(n) = O(n log n) of the average case comes from the fact that, on the average,
cach reduction step of the algorithm produces two sublists. Accordingly:

(1) Rcducing the initial list places 1 element and produces two sublists.

(2) Reducing the two sublists places 2 elements and produces four sublists.

(3) Reducing the four sublists places 4 clements and produces eight sublists.
(4) Reducing the eight sublists places 8 clements and produces sixteen sublists.

And so on. Observe that the reduction step in the kth level finds the location of 2" 7" clements; hence
there will be approximately log, n levels of reductions steps. Furthermore, cach level uses at most n
comparisons, so f(n) = O(n log n). In fact, mathematical analysis and cmpirical evidence have both
shown that

f(n)=1.4[nlog n]

is the expected number of comparisons for the quicksort algorithm.

66 RECURSION

Recursion is an important concept in computer science. Many algorithms cande best dcscribeq in
terms of recursion. This section introduces this powerful tool, and Sec. 6.8 will show how recursion
may be implemented by means of stacks.

Suppose P is a procedure containing either a Call statement to itself or a Call statement to a sccon.d
procedure that may eventually result in a Call statement back to the origmallprocec_lure P. Then P is
called a recursive procedure. So that the program will not continue to run indefinitely, a recursive
procedure must have the following two’ properties:

(1) There must be certain criteria, called base criteria, for which the procedure does not call
itself.
(2) Each time the procedure does call itself (directly or indirectly), it.must be closer to the base
criteria.
A recursive procedure with these two properties is said to be well-defined.
Similarly, a function is said to be recursively defined if the function definition refers to itself. Again,
in order for the definition not to be circular, it must have the following two properties:

(1) There must be certain arguments, called base values, for which the function does not refer to
itself.
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(2) Each timc the function does refer to itsclf, the argument of the function must be closer to a
base value.

A recursive function with these two propertics is also said to be well-defined.
The following examples should help clarify thesc ideas.

Factorial Function
The produce of the positive integers from 1 to n, inclusive, is called “n factorial™ and is usually
denoted by n!:
n!=1:2-3---(n=2)(n—1)n
. It is also convenient to define 0! = 1, so that the function is defined for all nonnegative integers. Thus
we have :
0'=1 1'=1 21=1:-2=2 3I=1-2-3=6 4'=1:2:3-4=24
S!'=1-2-3-4-5=120 6!'=1-2-3-4-5-6=720
and so on. Obscrve that
5!'=5-41=5-24=120 and 6!=6:5'=6-120= 720
This is true for every positive inlcgcan; that is,
nl=n-(n-1)
Accordingly, the factorial function ﬁlay also be dcfined as follows:
Definition 6.1: - (Factorial Function)
(a) Ifn=0, then n!=1.
(b) Ifn>0, thenn!'=n-(n—1)!

Obscrve that this definition of #! is recursive, since it refers to itself when it uscs (n — 1)! However,
(a) the value of n! is explicitly given when n = 0 (thus 0 is the basc valuc); and (b) the value of n! for
arbitrary n is defined in terms of a smaller valuc of n which is closer to the base valuc 0. Accordingly,
the definition is not circular, or in other words, the procedure is well-defined.

EXAMPLE 6.8

Let us calculate 4! using the recursive definition. This calculation requires the following nine steps:

(1) 41=4-31
2) - 31=3-2!
3) 21=2:1!
(4) ‘ 11=1-0!
(5) 0r=1
(6) =1-1=1
(7) 21=2.1=2
(8) 3!1=3-2=6
(9) 4l=4-6=24
That is:
Step I.  This defines 4! in terms of 3!, so we must postpone evaluating 4! until we evaluate 3! This
postponement is indicated by indenting the next step.
Step 2. Here 3! is defined in terms of 2!, so we must postpone evaluating 3! until we evaluate 2!

Step 3. This defines 2! in terms of 1!
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Step 4. This defines 1! in terms of 0!
Step 5. This step can explicitly cvaluate 0!, since 0 is the base value of the rccursive definition.

Steps 6 to 9. We backtrack, using 0! to find 1!, using 1! to find 2!, using 2! to find 3!, and finally using 3! to
find 4! This backtracking is indicated by the “reverse” indention.

Obscrve that we backtrack in the reverse order of the original postponed evaluations. Recall that this type of
postponed processing lends itsclf to the use of stacks. (See Sec. 6.2.)

The following arc two procedures that cach calculate n factorial.

Procedure 6.7A: FACTORIAL(FACT, N)
This procedure calculates N! and returns the value in the variable FACT.

1. If N=0, then: Set FACT:=1, and Return.
2. Sct FACT := 1. [Initializes FACT for loop.]
3. Recpeat for K=1 to'N.
Set FACT := K*FACT.
[End of loop.]
4. Rcturn.

Procedure 6.7B: FACTORIAL(FACT, N)
This procedurc calculates N! and returns the value in the variable FACT.

1. If N=0, then: Set FACT:=1, and Return.
2. Call FACTORIAL(FACT, N—-1).
3. Sct FACT:=N*FACT.

4. Recturn.

Obscrve that the first procedure evaluates N! using an iterative loop process. The sccond procedure,
on the other hand, is a recursive procedure, since it contains a call to itsclf. Some programming
languages, notably FORTRAN, do not allow such recursive subpiograms.

Suppose P is a recursive procedure. During the running of an algorithm or a program which
contains P, we associatc a level number with cach given exccution of procedurc P as follows. The
original exccution of procedure P is assigned Icvel 1; and cach time procedure P is cxecuted because of
a recursive call, its level is 1 more than the level of thd execution that has made the recursive call. In
Example 6.8, Step 1 belongs to level 1. Hence Step 2 belongs to level 2, Step 3 to level 3, Step 4 to level
4 and Step 5 to level 5. On the other hand, Step 6 belongs to level 4, since.it is the result of a return
from level 5. In other words, Step 6 and Step 4 belong to the same level of exccution. Similarly, Step 7
belongs to level 3, Step 8 to level 2, and the final step, Step 9, to the original fevel 1.

The depth of recursion of a recursive procedurc P with a given sct of argumeznts refers o the
maximum level number of P during its exccution.

Fibonacci Sequence
The celebrated Fibonacci secquence (usually denoted by F,, F,, F,,...) is as follows:

0; 1, 15 2, 3; 55,8 13,2134, 55, .5

That is, F, =0 and F, =1 and cach succecding term is the sum of thc two preceding terms. For
example, the next two terms of the sequence are

34+55=89 and 55+ 89 = 144
A formal dcfinition of this function follows:
Definition 6.2: (Fibonacci Sequence)

(@) Ifn=0o0rn=1, then F, =n.
b)Y Mfn>1,then F,=F,_,+F,_:
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This is another example of a recursive definition, since the definition refers to itself when it uses
F,-; and F, . Here (a) the base valucs arc 0 and 1, and (b) the valuc of F, is dcfined in terms of

smaller values of n which arc closcr to the basc valucs. Accordingly, this functio: is well-defined.
A procedure for finding the nth term F, of the Fibonacci scquence follows.

Procedure 6.8: FIBONACCI(FIB, N)
This procedure calculates Fy and returns the value in the first paramcter FIB.

If N=0 or N=1, then: Sct FIB:= N, and Rcturn.
Call FIBONACCI(FIBA, N - 2).

Call FIBONACCI(FIBB, N — 1).

Sct FIB := FIBA + FIBB.

Recturn.

"J!-BLHN‘-—-

This is another example of a recursive procedure, since the proccdure contsins a call to itself. In
fact, this procedurce contains two calls to itself. We note (scc Prob. 6.16) that onc can also write an
iterative procedure to calculate #, which docs not use recursion.

Divide-and-Conquer Algorithms

Consider a problem P associatcd with a sct S. Supposc A is an algorithm which partitions S into
smaller scts such that the solution of the problem P for § is reduced to the solution of P for onc or more
of.the smaller scts. Then A is called a divide-and-conquer algorithm. .

Two examples of divide-and-conquer algorithms, previously treated, arc the quicksort algorithm in
Scc. 6.5 and the binary scarch algorithm in Sec. 4.7. Recall that the quicksort algorithm uscs a
reduction step to find the location of a single clement and to reduce the problem of sorting the entire
set to the problem of sorting smaller scts. The binary scarch algorithm divides the given sorted set into
two halves <o that the problem of scarching for an item in the entire set is reduced to the problem of
searching for the itcm in onc of the two halves.

A divide-and-conquer algorithm A may be viewed as a recursive procedure. The reason for this is
that the algorithm A may be viewed as calling itsclf when it is applicd to the smaller scts. The base
criteria for these algorithms are usually the one-clement scts. For examplc, with a sorting algorithm, a
onc-clement sct is automatically sorted; and with a scarching algorithm, a onc-element sct requires
only a single comparison. ' .

Ackermann Function

The Ackermann funetion is a function with two arguments cach of which can be assigned any
nonncgative integer: 0, 1, 2, . . . . This function is dcfincd as follows:

Definition 6.3: (Ackcrmann Function)
(a) If m =0, then A(rﬁ, n)y=n+1.
(b) M m##0but n=0, then 4(m, n)= A(m—1, 1).
(¢) If m#0 and n#0, then A(m, n)= A(m—1, A(m, n— 1))
Once more, we have a recursive definition, since the definition refers to itsclf in parts (b) and (c).
Observe that A(m, n) is explicitly given only when m = 0. The base criteria are the pairs
€0, 0), . €0y L)y (0 2)3<40; 3); . 40, Ry

Although it is not obvious from the definition, the valuc of any A(m, n) may cventually be expressed in
terms of the valuc of the function on one or more of the basc pairs. 3

The value of A(1, 3) is calculated in Prob. 6.17. Even this simple case requires 15 steps. Generally
speaking, the Ackermann function is too complex to cvaluate on any but a trivial example. _lls
importance comes from its usc in mathematical logic. The function is stated hecre mainiy to give
another cxamplc of a classical recursive function and to show that the recursion part of a dcfinition may

be complicated. ’
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6.7 TOWERS OF HANOI

The precgding scction gave examples of some recursive definitions and proccdures. This scction
shows how recursion may be used as a tool in developing an algorithm to solve a particular problem.
The problem we pick is known as the Towers of Hanoi problem.

Supposc.three pegs, labeled A, B and C, arc given, and suppose on peg A therc arc placed a finite
number n of disks with dccreasing size. This is pictured in Fig. 6-10 for the casc n = 6. The object of the
game is to move the disks from peg A to peg C using peg B as an auxiliary. The rules of the game arc as
follows:

(a) Only onc disk may be moved at a time. Specifically, only the top disk on any pcg may be
moved to any other peg. .
(b) At no time can a larger disk be placed on a smaller disk.

A B i C

i =

C )
C : D)

Fig. 6-10 [Initial sctup of Towers of Hanoi with n = 6.

Sometimes we will write X — Y to denote the instruction ‘“Move top disk from peg X to peg Y,” whre
X and Y may be any of the thrcc pegs. = .

The solution to the Towers of Hanoi problecm for n =3 appears in Fig. 6-11. Obscrve that it~
consists of the following seven moves: ol

n=3: Move top disk from pcg A to peg C.
Move top disk from peg A to peg B.
Move top disk from peg C to peg B.
Move top disk from peg A to peg C.
Move top disk from peg B to peg A.
Move top disk from pecg B to peg C.
Move top disk from peg A to peg C.

AllAall il Ll

(a) Initial. (1) A—C. (2) A—B. ’ (3) C—B.
A B C A B c A Ii € A B C
[ | 0 5 e 13451 J L
(4) A—C. (5) B—A. (6) B—C. (7) A-C.

Fig. 6-11
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In other words,.
n=23: A—C, A—B, C—B, A—C, B—A, B—C, A—C
For complcteness, we also give the solution to the Towers of Hanoi problem for n =1 and n = 2:
n=1: A—C
n=2: A—B, A—C, B—C
Notc that n =1 uscs only onc movc and that n =2 uscs lthrecc movces.

Rather than finding a scparate solution for cach n, we usc the technique of recursion to develop a
gencral solution. First we observe that the solution to the Towers of Hanoi problem for it = | disks may
be reduced to the following subproblems:

(1) Move the top n — 1 disks from peg A to peg B.

(2) Move the top disk from peg A to peg C: A—C.

(3) Move the top n — 1 disks from peg B to peg C.

This reduction is illustrated in Fig. 6-12 for n = 6. That is, tirst we movce the top five disks from peg A to
peg B, then we move the large disk from peg A to peg C, and then we move the top five disks from peg

B to peg C.
A B C A B
| ]
(a) Initial: n =6. (b) Move top five disks from peg A to peg B.
A B C A B C
| ]
(c) Move top disk from pcg A to peg C. (d) Movec top five disks from peg B to peg C.

Fig. 6-12

Lct us now introduce the general notation
TOWER(N, BEG, AUX, END)

to denote a procedurce which moves the top n disks from the initial peg BEG to the final peg END using
the pcg AUX as an auxiliary. When n =1, we have the following obvious solution:

TOWER(1, BEG, AUX, END)  consists of the singlc instruction BEG — END

Furthermore, as discussed above, when n>1, the solution may be reduced to the solution of the
following thrce subproblems:
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(1) TOWER(N - 1, BEG, END, AUX)
(2) TOWER(1, BEG, AUX, END) or BEG — END
(3) TOWER(N - 1, AUX, BEG, END)

Observe that cach of thesc three subproblems may be solved directly or is essentially the same as the
original problem using fewer disks. Accordingly, this reduction process docs yicld a recursive solution
to the Towers of Hanoi problem.

Figurc 6-13 contains a schematic diagram of the above recursive solution for

TOWER(4, A, B, C)
Obscrve that the recursive solution for n = 4 disks consists of the following 15 mévcs:

A—DB A—C B—C A—B C— A C—B A—B A—-C
B—C B— A C—A B—C A—B A—-C B—-C

In general, this recursive solution requires f(n) = 2" — 1 moves for n disks.

TOW[LR('. A.C. B)----A=B

TOWER(2, A, B, C) Y (AT | I ArsiC

TOWER(1, B, A, C) ---- B—=C

TOWER(3, A, C, B) Aw B - qrioheiofs « ¢ o ARSI N RERERES A—B
\ /T()WER(I.C, B,A)----C—A

TOWER(2; C, A, B)—————~C=B +++¢srsus C—B

TOWER(1, A,C,B) ---- A—B

TOWER(4 A B, )l = B 5% Gaieidin § 6 ¥ et Btk |« n wossmmcrmmonibin s b 045 v A
/TOWER(I, B, A, € .t B—C

= WER(2, B, { B AnGss « aus o B—A
/ TOWER(1,C, B, A) ----C—A

TOWER(3, By Ay C) i BB sialiiuntasis o o = sissmiiieiowis s as s bisle B—C
\ /TOWER(I.A, C,B).... A=B

A—C .00 A—C

TOWER(2, A, B, C)

TOWER(1, B, A, C) - -« B—C

Fig. 6-13 Recursive solution to Towers of Hanoi problem for n = 4,
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We summarize our investigation with the following formally written procedure.

Procedure 6.9: TOWER(N, BEG, AUX, END)
This procedure gives a recursive solution to the Towers of Hanoi problem for N

disks.

1. If N=1, then:
(a) Write: BEG— END.
(b) Return. :
[End of If structure.]
2. [Move N — 1 disks from peg BEG to peg AUX.]
Call TOWER(N -1, BEG, END, AUX).
3. Writc: BEG— END.
4. [Move N — 1 disks from peg AUX to peg END.]
Call TOWER(N ~ 1, AUX, BEG, END).
5. Recturn.

Onc can view this solution as a divide-and-conquer algorithm, since the solution for n disks is reduced
to a solution for n — 1 disks and a solution for 7 =1 disk.

6.8 IMPLEMENTATION OF RECURSIVE PROCEDURES BY STACKS

The preceding sections showed how recursion may be a uscful tool in developing algorithms for
specific problems. This section shows how stacks may be used to implement recursive procedures. It is
instructive to first discuss subprograms in general.

Recall that a subprogram can contain both paramcters and local variables. The parameters arc the
variables -which reccive valucs from objects in the calling program, called arguments, and which
transmit values back to the calling program. Besides the paramcters and local variables, the
subprogram must also kecp track of the return address in the calling program. This rcturn address is
essential, since control must be transferred back to its proper place in the calling program. At the time
that the subprogram is finished cxceuting and control is transferred back to the calling program, the
valucs of the local variables and the return address are no longer nceded. : s

Suppose our subprogram is a recursive program. Then cach level of exccution of the subprogram
may contain diff@cnt valucs for the paramcters and local variables and for the return dddress
Furthecrmore, if the recursive program does call itself, then these current values must be saved, since
they will be used again when the program is rcactivated.

Suppose a programmer is using a high-level language which admits recursion, such as Pascal. Then
the computer handles the bookkeeping that keeps track of all the values of the parameters, local
variables and return addresses. On the other hand, if a programmer is using a high-level language
which does not admit recursion, such as FORTRAN, then the programmer must sct up the necessary
bookkeeping by translating the recursive procedure into a nonrccursive one. This bookkceping is
discussed below.

Translation of a Recursive Procedure into a Nonrecursive Procedure &

Suppose P is a recursive procedure. We assume that P is a subroutine subprogram rather than a
function subprogram. (This is no loss in generality, since function subprograms can casily be written as
subroutine subprograms.) We also assume that a recursive call to P comcs only from the procedure P.
(The treatment of indircct recursion lics beyond the scope of this text.)

The translation of the recursive procedure P into a nonrecursive procedure works as follows. First
of all, one defines:
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(1) A stack STPAR for each parameter PAR
(2) A stack STVAR for each local variable VAR
(3) A local variable ADD and a stack STADD to hold return addresses

Each time there is a recursive call to P, the current values of the parameters and local variables are
pushed onto the corresponding stacks for future processing, and each time there is a recursive return to
P, the values of parameters and local variables for the current execution of P are restored from the
stacks. The handling of the return addresses is more complicated; it is done as follows.

Suppose the procedure P contains a recursive Call P in Step K. Then there are two return
addresses associated with the execution of this Step K:

(1) There is the current return address of the procedure P, which will be used when the current
level of execution of P is finished executing.

(2) There is the new return address K + 1, which is the address of the step following the Call P
and which will be used to return to the current level of execution of procedure P.

Some texts push the first of these two addresses, the current return address, onto the return address
stack STADD, whereas some texts push the second address, the new return address K + 1, onto
STADD. We will choose the latter method, since the translation of P into a nonrecursive procedure
will then be simpler. This also means, in particular, that an empty stack STADD will indicate a return
to the main program that initially called the recursive procedure P. (The alternative translation which
pushes the current return address onto the stack is discussed in Prob. 6.20.)

The algorithm which translates the recursive procedure P into a nonrecursive procedure follows. It
consists of three parts: (1) preparation, (2) translating each recursive Call P in procedure P and (3)
translating each Return in procedure P. :

(1) Preparation.
(a) Define a stack STPAR for each parameter PAR, a stack STVAR for each local variable
VAR, and a local variable ADD and a stack STADD to hold return addresses.
(b) Set TOP:=NULL.

(2) Translation of “Step K. Call P.” ;
(a¥ Push the current values of the parameters and local variables onto the appropriate
stacks, and push the new return address [Step] K + 1 onto STADD.
(b) Reset the parameters using the new argument values. ;
(¢) Go to Step 1. [The beginning of the procedure P.]

(3) ‘Translation of *‘Step J. Return.”
(a) 1f STADD is empty, then: Return. [Control is returned to the main program.]
(b) Restore the top values of the stacks. That is, set the parameters and local variables
equal to the top values on the stacks, and set ADD equal to the top value on the stack
STADD.
(c) Go to Step ADD.

]
Observe that the translation of “Step K. Call P” does depend on the value of K, but that the
translation of “Step J. Return” does not depend on the value of J. Accordmgly, one need translate
only one Return statement, for example, by using

Step L. Return.
as above and then replace every other Return statement by
Go to Step L.

This will simplify the translation of the procedure.
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Towers of Hanoi, Revisited

Consider again the Towers of Hanoi problem. Procedure 6.9 is a recursive solution to the problem
for n disks. We translate the procedure into a nonrecursive solution. In order to keep the steps
analogous, we label the beginning statement TQP := NULL as Step 0. Also, only the Return statement
in Step 5 will be translated, as in (3) on the preceding page.

Procedure 6.10: TOWER(N, BEG, AUX, END)
This is a nonrecursive solution to the Towers of Hanoi problem for N disks
which is obtained by translating the recursive solution. Stacks STN, STBEG,
STAUX, STEND and STADD will correspond, respectively, to the variables
N, BEG, AUX, END and ADD.

0. Set TOP:=NULL.
1. If N=1, then:
(@) Write: BEG— END.
(b) Go to Step 5.
[End of If structure.]
2. [Translation of “Call TOWER(N — 1, BEG, END, AUX)."”]
(a) [Push current values and new return address onto stacks.]

(i) Set TOP:=TOP + 1.

(ii) Set STN[TOP]:=N, STBEG(TOP]:= BEG,
STAUX|TOP]:= AUX, STEND[TOP]:= END,
STADD[TOP]:= 3.

(b) [Reset parameters.]
Set N:=N — 1, BEG:= BEG, AUX := END, END := AUX.
(¢) Go to Step 1.
Write: BEG— END.
[Translation of “Call TOWER(N -1, AUX, BEG, END).”]
(a) [Push current values and new return address onto stacks.]

(i) Set TOP:=TOP + 1. :

(ii) Set STN[TOP]:= N, STBEG[TOP] := BEG,
STAUX[TOP]:= AUX, STEND[TOP]:= END,
STADD|TOP] :=5.

(b) [Reset parameters.]
Set N:=N—1, BEG:= AUX, AUX:=BEG, END := END.
(¢) Go to Step 1.
5. [Translation of “Return.”]
(a) *If TOP:=NULL, then: Return.
(b) [Restore top values on stacks.]
(i) Set N:=STN[TOP], BEG :=STBEG[TOP],
AUX := STAUX[TOP], STEND[TOP].
ADD := STADD|[TOP].
(ii) Set TOP:=TOP — 1.
(¢) Go to Step ADD.

£ L

Suppose that a main program does contain the following statement:
Call TOWER(3, A, B, C)

We simulate the execution of the solution of the problem in Procedure 6.10, emphasizing the different
levels of execution of the procedure. Each level of execution will begin with an initialization step where
the parameters are assigned the argument values from the initial calling statement or from the
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STN:
STBEG:
STAUX:
STEND:
STADD:

recursive call in Step 2 or Step 4. (Hence cach
6-14 shows the different stages of the stacks.

(a)

®).

()

(d)

(o)
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Fig. 6-14 Stacks for TOWER(3, A, B, C).

new rewurn address is cither Step 3 or Step 5.) Figure

(Level 1) The initial Call TOWER(3, A, B, C) assigns the following valucs to the
parameters:
N:i=3, BEG:= A, AUX:=B, END:=C

Step 1. Since N # 1, control is transferred to Step 2.
Step 2. This is a recursive call. Hence the current values of the variables and the new
return address (Step 3) are pushed onto the stacks as pictured in Fig. 6-14(a).

(Level 2) The Step 2 recursive call [TOWER(N - 1, BEG, END, AUX)] assigns the
following values to the parameters: :
N:i=N-1=2, BEG:=BEG = A, AUX:=END=_C, END:= AUX =B

Step 1. Since N # 1, control is transferred to Step 2.
Step 2. This is a recursive call. Hence the current values of the variables and the new
return address (Step 3) arc pushed onto the stacks as pictured in Fig. 6-14(b).

(Level 3) The Step 2 recursive call [TOWER(N - 1, BEG, END, AUX)] assigns the
following values to the parameters:

Ni=N-1=1, BEG:=BEG=A, AUX:=END=B, END:=AUX=C
Step 1. Now N = 1. The operation BEG — END implements the move
A—C

Then control is transferred to Step 5. [For the Return.]
Step 5. The stacks arc not ecmpty, so the top values on the stacks are removed, leaving Fig.

6-14(c), and are assigned as follows:
Ni=2, BEG := A, AUX:=C, END:=B, ADD:=3
Control is transferred to the preceding Level 2 at Step ADD.
(Level 2) [Reactivated at Step ADD =3.]
Step 3. The operation BEG — END implements$ the move
' A—B
Step 4. This is a recursive call. Hence the current values of the variables and the new
return address (Step 5) are pushed onto the stacks as pictured in Fig. 6-14(d).
(Level 3) The Step 4 recursive call [TOWER(N - 1, AUX, BEG, END)] assigns the
following values to the parameters:
N:=N-1=1, BEG:= AUX = C, AUX:=BEG = A,
END:=END =B
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Step 1. Now N = 1. The opcration BEG— END implements the move
C—+B

Then control is transferred to Step 5. [For the Return.]
Step 5. The stacks are not empty; hence the top values on the stacks arc removed, lcaving
Fig. 6-14(e), and they are assigned as follows:

N:i=2, BEG:= A, AUX:=C, END:= B, ADD:=

Control is transferred to the preceding Level 2 at Step ADD.

(f) (Level 2) [Rcactivation at Step ADD =5.] '
Step 5. The stacks arc not cmpty; hence the top valucs on the stacks are removed, leaving
Fig. 6-14(f), and they arc assigned as follows:

N:=3, BEG:= A, AUX:=B, END:: C, ADD =3
Control is transferred to the preceding Level 1 at Step ADD.

(g) (Level 1) [Reactivation at Step ADD =3.]

Step 3. The operation BEG— END implements the move

A—C

Step 4. This is a recursive call. Hence the current valucs of the variables and the new
. return address (Step 5) arc pushed onto thc stacks as pictured in Fig. 6-14(g).
(k) (Level 2) The Step 4 recursive call [TOWER(N — 1, AUX, BEG, END)] assigns thc

following valucs to the parameters:

N:=N-1=2, BEG = AUX =B, AUX:=BEG= A, END:=END=C

Step 1. Since N # 1, control is transferred to Step 2.
Step 2. This is a recursive call. *Hence the current values of the variables and the new
return address (Step 3) are pushcd onto the stacks as pictured in Fig. 6-14(h).

(i) (Level 3) The Step 2 recursive call [TOWER(N — 1, BEG, END, AUX)] assigns the
following values to the paramcters:
N:i=N-1=1, BEG := BEG =B, AUX:=END=C, END:= AUX = A
Step 1. Now N = 1. The operation BEG — END implements the move
B— A

Then control is transferred to Step 5. [For the Return.]
Step S. The stacks are not empty; hence the top values on the stacks arc removed, lcaving
Fig. 6-14(i), and they arc assigned as follows:
N:=2, BEG:= B, AUX:=A, END:=C, ADD:=3
Control is transferred to the preceding Level 2 at Step ADD.

¢ (j) (Level 2) [Reactivation at Step ADD =3.]
Step 3. The operation BEG— END implements the move

B—C
Step 4. This is a recursive call. Hence the current values of the variables and the new return
address (Step S) are pushed onto the stacks as pictured in Fig. 6-14(j).
(k) (Level 3) The Step 4 recursive call [TOWER(N — 1, AUX, BEG, END)] assigns the
" following values to the parameters:

N:=N-1=1, BEG:=AUX=C, AUX:=BEG=B, END:=END=C
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Step 1. Now N = 1. The operation BEG— END implements the move
o O

Then control is transferred to Step 5. [For the Return.]
Step 5. The stacks are not empty; hence the top values on the stacks are removed, leaving
' Fig. 6-14(k), and they are assigned as follows:

N:=2, BEG:= B, AUX:= A, END:=C, ADD:=5

Control is transferred to the preceding Level 2 at Step ADD.

(1) (Level 2) [Reactivation at Step ADD =5.]
Step 5. The stacks are not empty; hence the top values on the stacks are removed, lcaving
) Fig. 6-14(/), and they arc assigned as follows:

N:=3, BEG:= A, AUX:=B, END :=C, ADD:=5

Control is transferred to the preceding Level 1 at Step ADD.

(m) (Level 1) [Reactivation at Step ADD =5.]
Step 5. The stacks are now empty. Accordingly, control is transferred to the original main
program containing the statement

Call TOWER(3, A, B, C)
Observe that the output consists of the following seven moves:
A—->C, A—B, C— B, A—C, B— A, B—C, A—C

This agrees with the solution in Fig. 6-11.

Summary

The Towers of Hanoi problem illustrates the power of recursion in the'solution of various
algorithmic problems. This section has shown how to implecment recursion by means of stacks when
using a programming language—notably FORTRAN or COBOL—which does aot allow recursive,
programs. In fact, everi when using a programming language—such as Pascal—which docs support’
recursion, the programmer may want to use the nonrecursive solution, since it may be much lcss
cxpensive than using the recursive solution.

QUEUES

queue is a lincar list of clements in which deletions can take placc only at onec end, called the
front, and insertions can take place only at the other end, called the rear. The terms “‘front’’ and “rear”
are used in describing a linear list only when it is implemented as a queue. 2

Queues are also called first-in first-out (FIFO) lists, since the first element jh a quecuc will be the
first element out of the queue. In other words, the order in which clements enter a qucue is the order in
which they leave. This contrasts with stacks, which are last-in first-out (LIFO) lists.

ueucs abound in everyday life. The automobiles waiting to pass through an intersection form a

queue, in which the first car in line is the first car through; the people waiting in linc at a bank form a
Jueue, where the first person in line is the first person to be waited on; and so on. An important
example of a queue in computer science occurs in a timesharing system, in which programs with thc
same priority form a queue while waiting to be executed. (Another structure, called a priority qucuc, is
discussed in Sec. 6.11.)
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EXAMPLE 6.9

Figure 6-15(a) is a schematic diagram bf a qucuc with 4 elements, where AAA s the front element and DDD
is the rear element. Observe that the front and rear clements of the queuc are also, respectively, the first and last
clements of the list. Supposc an clement is deleted from the qucuc. Then it must be AAA. This yiclds the qucuc in
Fig. 6-15(b), wherc BBB is now the front clement., Ncxt, suppose EEE is added to the qucuc and then FFF is
addcd to the qucue. Then they must be added at the rear of the qucuc, as pictured in Fig. 6-15(c). Note that FFF is
now the rear element. Now supposc another clement is deleted from the queue; then it must be BBB, to yicld the
queue in Fig. 6-15(d). And so on. Obscrve that in such a data structure, EEE will be deleted before FFF becausc it
has been placed in the queue before FFF. However, EEE will have to wait until CCC and DDD are dcleted.

(a)

m—'| cce HDDD |
()

L 238 f—+f ccc }—+{Too0 }—f erE | v )
(c)

CCC DDD EEE F FFF

()
Fig..6-15

Representation of Queues

Queuces may be represented in the computer in various ways, usually by mcans of onc-way lists or
linear arrays. Unless otherwise stated or implicd, cach of our queucs will be maintained by a lincar
array QUEUE and two pointer variables: FRONT, containing the location of the front element of the
qucuc; and REAR, containing the location of the rear clement of the qucuc. The condition
FRONT = NULL. will indicate that the qucuc is empty.

Figure 6-16 shows the way the array in'Fig. 6-15 will be stored in memory using an array QUEUE
with N elements. Figure 6-16 also indicates the way clements will be deleted from the queue and the
way new clements will be added to the queue. Obscrve that whenever an clement is deleted from the
queue, the value of FRONT is increased by 1; this can be implemented by the assignment

FRONT := FRONT + 1

Similarly, whenever an element is added to the qucue, the value of REAR is increased by 1; this can be
implemented by the assignment

REAR := REAR + 1

This means that after N insertions, the rear element of the queuc will occupy QUEUE!N] or, in other
words, eventually the queue will occupy the last part of the array. This occurs even though the queue
itself may not contain many elemcents.

Suppose we want to insert an element ITEM into a queue at the time the qucuc docs occupy the
last part of the array, i.c., when REAR = N. One way to do this is to simply move the entire queuc to
the beginning of the array, changing FRONT and REAR accordingly, and then inserting ITEM 4s
above. This procedure may be very expensive. The procedure we adopt is to assume that the array



190 STACKS, QUEUES, RECURSION [CHAP. 6
QUEUE
FRONT: 1
ol AAA | BBB | ccc | pDD
1 2 3 4 5 PRI S
(a)
QUEUE
FRENES € BBB | CCC | DDD
REAR: 4 :
i 2 3 4 5 P TRPICRRY,
h)
QUEUE
FRENT 2 BB | ccc | bpD | BEE | FFF
REAR: 06 e
I 2 3 4 5 & F s M
(c)
QUEUE L
i ccc | ppp | EEE | FFF
REAR: 6 s
1 5 3 4 T g T e M
(d)

Fig. 6-16. Array rcpresentation ol a qucuc.

QUEUE is circular, that is, that QUEUE]|1] comes after QUEUE|[N] in the array. With this
assumption, we insert ITEM into the queue by assigning ITEM to QUEUE]1]. Specifically, instcad of
increasing REAR to N + 1, we resct REAR =1 and then assign :

QUEUE[REAR]:= ITEM

Similarly, if FRONT =N and an clement of QUEUE is deleted, we resct FRONT =1 instead of
increasing FRONT to N + 1. (Some readers may recognize this as modular arithmetic, discussed in
Sec. 2.24) ;

Supposc that our queuc contains only one clement, i.c., supposc that

FRONT = REAR # NULL
and supposc that the clement is deleted. Then we assign

FRONT := NULL and REAR = NULL

to indicate that the qucue is empty.

EXAMPLE 6.10

Figure 6-17 shows how a queue may be maintained by a circular array QUEUE with N = 5§ memory locations.
Observe that the queue always occupies consecutive locations except when it occupies locations at the beginning
and at the end of the array. If the queuc is viewed as a circular array, this means that it still occupies consecutive
locations. Also, as indicated by Fig. 6-17(m), the queue will be empty only when FRONT = REAR and an
element is deleted. For this reason, NULL is assigned to FRONT and REAR in Fig. 6-17(m).
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QUEUE
(a) Initially empty: r::l?:lli 3
I urgia g T
(b) A, B and then C inserted: r::l(:):; _1 Al B|C
(¢) A delcted: F::S:: ; 1B C
(d) D and then E inserted: F::g:';j 2 B|C|D|E
(e) B and C dcleted: F:(E):;‘ ; ] D|E
(f) F inserted: . i F:g:: ‘: F D|E
(8) D deleted: F::g;; : f F E |
(k) G and then H inserted: Fsg:;j : Flo|u E
(i)  E deleted: F:g:;: 3' F|G|H '
' G) ¥ ateed e s B R P
(k) K inscried: Ff:g :; j G| H| K
(5~ "G and B detoted- F ::g::; : K
() ‘K deleted, QUEUE empty: B 22::; 3
Fig. 6-17

We are now prepared to formally state our procedure QINSERT (Procedure 6.11), which inserts a
data ITEM into a queue. The first thing we do in the procedure is to test for overflow, that is, to test
whether or not the qucue is filled.

Next we give a procedure QDELETE (Procedure 6.12), which deletes the first element from a
queue, assigning it to the variable I'TEM. The first thing we do is to test for underflow, i.e., to test
whether or not the queue is empty.
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F«:c:lurc 6.11: OINSERT(QUEUE, N, FRONT, REAR, ITEM)

This proccdure inscrts an clement ITEM into a qucuc.

1. [Quecuc alrcady filled?]
If FRONT =1 and REAR = N, or if FRONT = REAR + 1, then:
Write: OVERFLOW, and :Return.
2. [Find new valuc of REAR.]|
If FRONT := NULL, then: [Qucuc initially cmpty.]
Sct FRONT =1 and REAR:= 1.
Elsc if REAR =N, then:
Sct REAR:= 1.
Elsc: ‘
Sct REAR := REAR + 1.
[End of If structurc. |
3. Set QUEUE[REAR]:=ITEM. [This inscrts ncw clement.]
4. Rcturn.

Procedure 6.12: QDELETE(QUEUE, N, FRONT, REAR, ITEM)
This proccdurc deletes an clement from a qucue and assigns it to the variable
ITEM.

1. |Qucuc alrcady cmpty?]
If FRONT :=NULL, then: Write: UNDERFLOW, and Return.
2. Sct ITEM := QUEUE[FRONT].
3. [Find ncw valuc of FRONT.]
If FRONT = REAR, then: [Qucuc has only onc clement to start.]
Sct FRONT:=NULL and REAR:= NULL.
Elsc if FRONT = N, then:
Set FRONT := 1.
Else:
Set FRONT := FRONT + 1.
[End of If structure. ]
4. Recturn.

6.10 DEQULS

A deque (pronounced cither “deck ™ or “dequeuc”) is a linear list in which elements can be added
or removed at cither end but not in the middle. The term decquc is a contraction of the namc
double-ended queue. ’ :

There arc various ways of rcpresenting a dequc in a computer. Unless it is otherwise stated or
implicd, we will assume our dcque is maintained by a circular array DEQUE with pointers LEFT and
RIGHT, which point to the two cnds of the deque. We assumce that the clements cxtend from the left
end to the right end in the array. The term “‘circuldf”’ comes from the fact that we assume that
DEQUE[1] comes after DEQUE[N] in the array. Figurc 6-18 picturcs two deques. cach with 4
clements maintained in an array with N = 8 memory locations. The condition LEFT = NULL will be
used to indicate that a deque is cmpty.

There are two variations of a deque—namecly, an input-restricted deque and an output-restricted
deauc—which are intermediate between a deque and a queuc. Specifically, an input-restricted deque is
a dugue which allows insertions at only onc end of the list but allows dcletions at both cnds.of the list:
and an output-restricted deque is 8 deque which allows deletions at only one end of the list but allows

wertions at both er - of the list.
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DEQUE
il AAA | BBB | ccc | ppp
RIGHT: 7
1 7. 3 4 s 6 7 8
. . (a)
DEQUE
LEFT: 7
: ' wWW
B iliey YYY | zzz w XXX
) 2 3 4 5 6 7 8
(b)
Fig. 6-18

The procedures which insert and dcelete clements in deques and the variations on thosc procedures.
arc given as supplementary problems. As with qucucs, a complication may arisc (¢) when there is
overflow, that is, when an element is to be inserted into a deque which is alrcady full, or (b) when there
is underflow, that is, when an element is to be deleted from a deque which is empty. The procedures
must consider thesc possibilities. '

6 PRIORITY QUEUES

A priority queue is a collection of elements such that cach clement has been assigned a priority and
such that the order in which elements are deleted and processed comes from the following rules:

(1) An clement of higher priority is processed before any element of lower priority. \

(2) Two clements with the same priority arc processed according to the order in which they were
addced to the queue.

A prototype of a priority queuc is a timesharing system: programs of high priority arc processed first,
and programs with the same priority form a standard qucuc.

There are various ways of maintaining a priority queuc in memory. We discuss two of them here:
one uscs a onc-way list, and the other uses multiple queucs. The casc or difficulty in adding clements to
or deleting them from a priority queuc-clcarly depends on the representation mat one chooses.

One-Way List Representation of a Priority Queue
* One way o maintain a priority qucuc in memory is by means of a onec-way list, as follows:

(@) Each node in the list will contain three items of information: an information ficld INFO, a
priority number PRN and a link number LINK. ¥t

(b) A nodc X precedes a node Y in the list (1) when X has higher priority than Y or (2) when
both have the same priority but X was added to the list before Y. This means that the order in
the onc-way list corresponds to the order of the priority qucue.

Priority numbers will operate in the usual way: the lower the priority number, the higher the priority.

MPLE 6.11

Figurc 6-19 shows a schematic diagram of a priority qucuc with 7 elements. The diagram docs not tell us
whether BBB was added to the list before or after DDD. On the other hand, the diagram does tcll us that BBB
was inscrted before CCC, because BBB an‘l CC have the same priority number and BBB appcars before CCC in
the list. Figure 6-20 shews the way the priority qucuc may appear in memory using lincar = .ys INFO, PRN and
LINK. (Sce Scc. 5.2) b

[}
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START

nal [ oh—~{a 2]} fecelE [5}—~mol< )
- Cfemla g e [+ [F—~focels[]

Fig. 6-19
. INFO PRN LINK
1 | BBB 2 6

START | 5 2 7
3 | pop 4 4

AVAIL | 2 o s . :
s | AAA 1 1
6| ecc 2 3
7 10
8 | coc | | s 0
o | FFF 4 8
10 1
i 12
12 0o
Fig. 6-20

The main property of the one-way list representation of a priority queuc is that'the element in the
queue that should be processed first always appears at the beginning of the one-way list. Accordingly,
it is a very simple matter to delete and process an-element from our priority queuc. The outline of the
algorithm follows.

Algorithm 6.13: This algorithm deletes and processes the first element in a priority qucue which
appears In mcmory as a onc-way list.

Set ITEM := INFO[START]. [This saves the data in the first node.]
Declete first node from the list.

Process ITEM.

Exit.

Al

The details of the algorithm, including the possibility of underflow, are left as an cxcrcisc.
Adding an element to our priority queue is much more complicated than deleting an element from

the queue, because we need to find the correct place to inscrt the element. An outline of the algorithm

follows.

Ay
]
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Algorithm 6.14: This algorithm.adds an ITEM with priority guember N to a priority queuc which is
maintained in memory as a one-way list. ’

(a) Traversc the onc-way list until finding a node X whose priority number exceeds
N. Inscrt ITEM in front of node X.

(b) I no such node is found, insert ITEM as the last element of the list.

The above insertion algorithm may be pictured as a weighted object “sinking™ through layers of
clements until it meets an element with a heavier weight.

The details of the above algorithm are Icft as an exercisc. The main difficulty in the algorithm
comes from the fact that ITEM is inserted before node X. This mecans that, while traversing the list,
one must also keep track of the address of the node preceding the node being accessed.

EXAMPLE 6.12

. Consider the priority qucuc in Fig. 6-19. Suppose an item XXX with priority number 2 is to be inserted into
the queue. We traverse the list, comparing priority numbers. Obscrve that DDD is the first element in the list
whose priority number exceeds that of XXX. Hence XXX is inserted in the list in front of DDD, as pictured in Fig.
6-21. Observe that XXX comes after BBB and CCC, which have the same priority as XXX. Supposc now that an
element is to be deleted from the queue. It will be AAA, the first clement -in the list. Assuming no other
inscrtions, the'next element to be deleted will be BBB, then CCC, then XXX, and so on.

START EL ]>
(AAAT T ef—fmwn [2[o}—+{ccc ] gom-b

Cfeme [« J—{rme [o]o}—~fooe] 3]

Fig. 6-21

Array Representation of a Priority-Queue

Another way to maintain a priority queuc in memory is to use a separate qucue for cach level of
priority (or for each priority number). Each such queue will appear in its own circular array and must
have its own pair of pointers, FRONT and REAR. In fact, if cach queue is allocated the same amount
of space, a two-dimensional array QUEUE can be used instead of the lincar arrays. Figurc 6-22
indicates this representation for the priority queue in Fig. 6-21. Observe that FRONT[K] and
REAR[K] contain, respectively, the front and rear elements of row K of QUEUE, the row that
maintains the qucue of elements with priority number K.

FRONT REAR B O 2 3 4 s 6
1 2 o) 1 AAA
2 1 3 2 BBB ccc XXX
3 0 0 3
4 5 1 4 FFF DDD  EEE
5 4 4 g by S - GGG 3

Fig. 6-22
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The following are outlines of algorithms for deleting and inserting clements in a priority queuce that
is maintained in memory by a two-dimensional array QUEUE, as abaye. The detaiis of the algorithms
are left as cxcrcises..

Algorithm 6.15: This algorithm deletes and processes the first element in a priority qucuc maintained

by a two-dimensignal array QUEUE.

1. [Find the first nonempty qucuc.] i

Find the smallest K sucl that FRONT[K] # NULL.
2. Delete and process the front clement in row K of QUEUE.
3.4 Exit, o

This ulgori(hm adds an ITEM with priority number M to a priority qucuc
maintained by a two-dimensional array QUEUE.

1. Insert ITEM as the rear clement in row M of QUEUE.
2. Exit; : \

Algorithm 6.16:

Summary :

Once again we see the time-space tradeoff when-choosing between different data structurcs for a
given problem. The array representation of a priority queuc is more time-cfficient thar the onc-way
list. This is because when adding an element to a one-way list, onc must perform a linear search on the
list. On the other hand, the one-way list representation of (he priority quecuc may be more
spacc-cfficicnt than the array representation. This is because in using the array representation,
overflow occurs when the number of elements in any single pricrity level exceeds the capacity for that
level, but in using the one-way list, overflow occurs only when the total number of clements exceeds
the total capacity. Another alternative is to use a linked list for cach priority level.

Solved Problems .

Consider the following stack of characters, where STACK is allocated N = 8 memory cclls:
STACK: A, C, D, E; K

(For notational convenicnce, we use “__" to denote an empty memory cell.) Describe the stack
as the following operations take place:

(a) POP(STACK, ITEM)  (e)

? —? —) —

POP(STACK, ITEM)

(b)) POP(STACK, ITEM)  (f) PUSH(STACK, R)
(¢) PUSH(STACK, L) (g) PUSH(STACK, S)
(d) PUSH(STACK, P) (h) POP(STACK, ITEM)

The POP procedure z'xlways deletes the top element from the stack, and the PUSH procedure always
adds the new clement to the top of the stack. Accordingly: ‘

() BBRCKS | AICDEF i) Nede, SERCK: " 8 G Dybey sy L
R T o O e G Tl SRR CHNBBACK: 4 A C, DL'Ry- .
() 3 STAGK:™ . AR Loy, o (g) STACK: A, C,D,L,R,S, _,_
() _STACK: WAL, Pl oo ()~ STRCK: "AGD L Re_y 2y
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G%OMidcr the data in Prob. 6.1. (a) When will overflow occur? (b) When will C be deleted
before D?

(a) Since STACK has been allocated N = 8 memory cells, overflow will occur when STACK contains 8
clements and there is a PUSH operation to add another clement to STACK.

(b) Since STACK is implemented as a stack, C will never be deleted before D.

6.3  Consider the following stack, where STACK is aHocated N = 6 mcmory cclls:
STACK: AAA, DDD, EEE, FFF, GGG, ___

Describe the stack as the following opcrations take plaicc: (a) PUSH(STACK, KKK),
(h) POP(STACK, ITEM), (¢) PUSH(STACK, LLL), (d) PUSH(STACK, SSS),
(¢) POP(STACK, ITEM) and (f) PUSH(STACK, TT T).

(a) KKK is added to the top of STACK, yiclding
STACK: AAA, DDD, EEE, FFF, GGG, KKK
() The top element is removed from STACK, yiclding
STACK: AAA, DDD, EEE, FFF, GGG,
(¢)  LLL is added to the top of STACK, yiclding
STACK: AAA, DDD, EEE, FFF, GGG, LLL
(d) Overflow occurs, since STACK is full and another clement $SS is to be added to STACK.

No further operations can take place until the overflow is resolved—by adding additional space for
STACK, for cxample,

QA/Suppusc STACK is allocated N =6 mcmory ccells and initially STACK is cmpty, or, in other
words, TOP = 0. Find the output of the following module:

1. Sct AAA:=2 and BBB:=5.
* 2. Call PUSH(STACK, AAA).
Call PUSH(STACK, 4).
2 Call PUSH(STACK, BBB + 2). . .
Call PUSH(STACK, 9).
Call PUSH(STACK, AAA + BBB).
3.~ Repeat while TOP # 0: 3
Call POP(STACK, ITEM).
Write: ITEM.
-[End of loop.]
4. Recturn.

Step 1. Scts AAA =2 and BBB =5. ’
Step 2.7 Pushes AAA=2,4, BBB+2=7,9 and AAA + BBB =7 onto STACK, yiclding
STACK: e A s 4 SR

Step 3. Pops and prints the clements of STACK until STACK is empty. Since the top element is always
popped, the output consists of the following sequence:

7,9,7,4,2

Obscrve that this is the reverse of the order in which the clements were added to STACK.
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Suppose a given space S of N contiguous memory cells is allocated to K = 6 stacks. Decscribe
ways that the stacks may be maintained in S. '

Suppose no prior data indicate that any onc stack will grow more rapidly than any of the other stacks.
Then one may reserve N/K cells for each stack, as in Fig. 6-23(a), where B,,. B,, ..., B, denote,
respectively, the bottoms of the stacks. Alternatively, one can partition the stack into pairs and reserve
2N/K cells for each pair of stacks, as in Fig. 6-23(b). The second method may decreasc the number of
times overflow will occur.

e e e = =
(a)

B,

.

B,

B, B, B, B,
s T B ]
(b)
Fig. 6-23

POLISH NOTATION

6

Translate, by inspection and hand, cach infix expression into its cquivalent postlix expression:
a (A*B)*(DIE) : (A+B 1T D) (E-F)+G
() A+*(B+D)/E—F*(G+ H/K) ' ¥

Using the order in which the opcrators are executed, translate each operator from infix to postfix
notation. (We usc brackets [ | to denote a partial translation.)

(a) (A = B)*(D/E) = [AB—]+[DE/] = AB—DE/+

() (A +B 1 D)/(E —F)+G = (A +[BD1])/{EF-] + G = [ABD{ + J/[EF- ] + G
=[ABD1+EF - /] + G = ABD1+EF—/G+

(©) A+(B+D)/E - F*(G +H/K) = A+[BD+]/E - F+(G + [HK/])

= [ABD+#]/E — F*[GHK/+]
= [ABD++E/) - [FGHK/+ #]
/ = ABD ++E/FGHK/+ * —

bsérve that we did translate more than ofic operator in a single step when the operands did not overlap.

Consider the following arithmetic expression P, written in postfix notation:
P: ]2, 7. 3, iRl /s 2, 1, 5’ +, *; +
(a) Translate P, by inspection and hand, into its equivalent infix expression.

() Evaluate the infix expression.

(@) Scanning from left to right, translate each operator from postfix to infix notation. (We use brackets

[ } to denote a partial translation.)

P=12.[7-3},/,2, 1,5, +, % +
=[12/(T=3)},2, 1,5, +, *
=[12K7=3)], 2, [1+ 5], *,
= (127 = 3)), 2% (1 + 5)].
=12/(7T=3) +2+(1 +5)

5
e
+
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(b) Using the infix expression, we obtain:
P=12/(7T-3)+2»(14+5)=12/4+2+6=3+12=15

Wtonsider the postfix expression P in Prob. 6.7. Evaluate P using Algorithm 6.3.
First add a sentinel right parenthcsis at the end of P to obtain:
P: 12, 7,3, =, 1,2, 1,5, +, %, +,)

Scan P from left to right. If a constant is encountered, put it on a stack, but if an operator is encountered,
cvaluate the two top constants on the stack. Figure 6-24 shows the contents of STACK as cach clement of
P is scanned. The final number, 15, in STACK, when the sentinel right parenthesis is scanned, is the value
of P. This agrees with the result in Prob. 6.7(b).

Symbol STACK
12 12
74 12, 7
3 12, 7, 3
= 12, 4
/ 3
2 3,2
1 3,2, 1
5 3, 2. 1.5
+ 3,2,6
* 3,12
+ 15
) 15

Fig. 6-24

6.9  Consider the following infix vxpression Q:
Q: (A+B)*D) 1 (E-F)
Use Algorithm 6.4 to translate Q into its cquivalent postfix cxpression P.
First push a lcft parcnthesis onto S:FACK, and then add a right parenthesis to the end of Q to obtain
Q4 (A + B )« DYt L.E -~ F))

(Note that Q now contains 16 clements.) Scan Q from left to right. Recall that (1) if a constant is
encountered, it is added to P; (2) if a left parenthesis is encountered, it is put on the stack; (3) if an
operator is encountered, it “‘sin¥%s” to its own level; and (4) if a right parenthesis is encountered, it “‘sinks”
to the first left parenthesis. Figure 6-25 shows picturcs of STACK and the string P as cach clement of Q is
scanned. When STACK is empty, the final right parenthesis has been scanned and the result is

P: A B + D 4 E'F = ¢

which is the required postfix cquivalent of Q.

.

MO/ Translate, by inspection and hand, each infix expression into its cquivalent prefix expression:

(@) (A -B)*(D/E) :
(6) (A+B 1 D)(E—-F)+G
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Symbol STACK Expression P

( C (

( ¢ ¢«

A Qi Ol A

+ (e (ot A

B (.0 A B

) {1 A B +

* ( ( * A B +

D (. C.* A.B  A5.D

) ( A B +°'D » '
1 O | A B + D =

( (.1« A B + D %

E T A B + D * E

- g = A~B & D » E

F ¢ 1 '= A B + D » E F
) [ § A B + D * EF -
) A B + D+ EF -

Fig. 6-25

Is therc any relationship between the prefix cxpressions and the cquivalent postfix cxpressions
obtainced in Prob. 6.6. :

Using the order in” which the operators arc executed, translate each operator from infix to p_rcﬁx~

notation.
(a) (A—B)*(DIE)=[—/\B]*[IDE]: Fge A B / D E
(b) (A+B 1 D)/(Eﬂ-F)+G=(A+[TBD])I{—EF|+G

=[+A1BD})/[-EF] + G
=[/+A1BD -EF]+G ’
= pil *A £ B D= "E F G
The péclix expression is not the reverse of the postfix expression. Howcever, thc order of the
operands—A, B, D and E in part (¢) and A, B. D, E, F and G in part (b)—is the same for all three
expressions, infix, postfix and prefix.

QUICKSORT
6.11 Suppose S is the following list of 14 alphabetic characters:

@ATASTRUCTU-RE@_

Suppose the characters in S are (o be sorted alphabetically. Usc the quicksort algorithm to find
the final position of the first character D.

Beginning with the last character S, scan the list from right to left until finding a character which:
precedes D alphabetically. It is C. Interchange D and C to obtain the list:

@ATASTRQ@'TURES

Beginning with this C, scan the list toward D, i.c., [rom left to right, until finding a %o
succeeds D alphabetically. It is T. Interchange D and T to obtain the list:
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6.12

6.13

CA@AS@RUTTURES

Beginning with this T, scan the list toward D until finding a character which precedes D. It is A.
Interchange D and A to obtain the list:

CA@@STRUTTURES

Beginning with this A, scan the list toward D until finding a character which succeeds D. There is no such
letter. This means D is in its final position. Furthermore, the letters before D form a sublist consisting of all
letters preceding D alphabetically, and the letters after D form. a sublist consisting of all the letters
succeeding D alphabetically, as follows:

CAA@STR_UTTURES

R 3
Sublist Sublist

Sorting S is now reduced to sorting each sublist.

Suppose S consists of the following n =5 letters:

@BCD@

Find the number C of comparisons to sort $ using quicksort. What general conclusion can one
make, if any?

Beginning with E, it takes n — 1 = 4 comparisons to recognize that the first letter A is already in its
correct position. Sorting S is now reduced to sorting the following sublist with n — 1 = 4 letters:

AC D@

Beginning with E, it takesn —2=3 comparisons to recognize that the first letter B in the sublist is already
in its correct position. Sorting S is now reduced to sorting the following sublist with n — 2 = 3 letters:

A 8O o (E)

Similarly, it takes n — 3 = 2 comparisons to recognize that the letter Cis in its correct position, and it takes
n — 4 =1 comparison to recognize that the letter D is in its correct position. Since only one letteris left, the

-list is now known to be sorted. Altogether we have:

C=4+3+2+ 1= 10 comparisons

Similarly, using quicksort, it takes
2
c=(n71)+(n—2)+---+2+1="—("2—1) = %+ 0n) = O(n*)

comparisons to sort a list with n elements when the list is already sorted. (This can be shown to be the
worst case for quicksort.) .

Consider the quicksort algorithm. (a) Can the arrays LOWER and UPPER be implemented as
queues rather than as stacks? Why? (b) How much extra space is needed for the quicksort
algorithm, or, in other words, what is the space complexity of the algorithm?

(a) Since the order in which the subsets are sorted does not matter, LOWER and UPPER can be
implemented as queues, or even deques, rather than as stacks.

(b) ' ‘Quicksort algorithm is an “in-place” algorithm; that is, the elements remain in their places except for
interchanges¥ The extra space is required mainly for the stacks LOWER and UPPER. On the

average, the extra space required for the algorithm is proportional to log n, where 7 is the number of
elements to be sorted. '
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Lect a and & denote positive integers. Supposc a function Q is defincd recursively as follows:

0 ifa<b
Q(“'b’={Q(a—b,b)+1 i b=

(a) Find thc value of Q(2, 3) and Q(14, 3).

(b) What docs this function do? Find Q(5861, 7).

(a) ‘ Q(2,3)=0 since 2<3

(14, 3)= Q(11,3) + 1

=[Q(8,3)+1]+1=0Q(8,3)+2
=[Q5, 3)+ 1] +2=0(53)+3
=[Q(2,3)+1]+3=0(2,3)+4
=0+4=4

. /}"
(b) Each time b issubtracted from a, the valucs of Q is increascd by 1. Hence Q(a, b) finds the quotient
when a is divided by b. Thus, :

P Q(5861, 7) = 837

‘

§ Let n denote a positive integer. Suppose a function L is defined recursively as follows:

0 ifn=1
L(")={L([n/zj)+.1 it =1

(Here | k] denotes the “flodr” of k, that is, the greatest integer which does not exceed k. See
Sec. 2.2))
(@) Find L(25).
() What does this function do?
(a) L(25) = L(12) + 1
=[L(6) + 1]+ 1= L(6) +2
=[L(3)+1]+2=L(3)+3
=[L(1)+1]+3=L(1)+4

=0+4=4
(b) Each time n is divided by 2, the value of L is increased by 1. Hence L is the greatést integer such that
2“=n -
Accordingly, this function finds

L = |log, n}

r

6.16 Suppoéc the Fibonacci numbers F,, = 89 and F,, = 144 are given.

(a) Should one use recursion or iteration to obtain F,,? Find Fi,.
(b) Write an iterative procedure to obtain the first N Fibonacci numbers
F[1], F[2], . . . , F[N], where N>2. (Compare this with the recursive Procedure 6.8.)

(@) The Fibonacci numbers should be evaluated by wsing iteration (that is, by evaluating from the bottom
up), rather than by using recursion (that is, evaluating from the top down).
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6.17

6.18

Rccall that cach Fibonacci number is the sum of the two preceding Fibonacci numbers.
Beginning with F,, and F,, we have

F,=89+144=233, F, =144+233=377, F,,=233+377=610

and hence
F,, =377 + 610 =987

(b) Procedure P6.16: FIBONACCI(F, N)
This procedure finds the first N Fibonacci numbers and assigns them to an

array F.

1. Sct F[1]:=1 and F[2]:=1I.
2. Recpeat for L=3 to N:
Set F[L]:=F[L — 1] + F[L - 2].
[End of loop.]
3. Recturn.

(We emphasize that this iterative procedure is much more cfficient than the recursive Procedurc 6.8.)

Use the dcfinition of the Ackermann function (Dcfinition 6.3) to find A(l, 3).
We have the following 1S steps:
(1) A(1, 3) = A0, A(1, 2))

2) A(1, 2) = A0, AL, 1))
3) AL, 1) = A0, A(1, 0))
4) A1, 0) = A0, 1)
(5) A0, 1) =1+ =2
(6) AQ,0)=2

(7 A(l, 1) = A0, 2)

(8) A(0,2)=2+1=3
) AL, 1)=3

(10) A(l, 2) = A(0, 3)

(1) A(0.3)=3+1=4
(12) A(1,2)=4

(13) A(1, 3) = AU, 4)

(14) A0, 4)=4+1=5

(15) A(1,3)=5

The forward indention indicates that we are postponing an evaluation and arc rccalling the definition, and
the backward indention indicates that we arc backlrackmg

Obscrve that the first formula in Definition 6.3 is used in Steps 5, 8, 11 and 14, the second formula in
Step 4 and the third formula in Steps 1, 2 and 3. In the other Steps we are backtracking with substitutions.

Suppose a recursive procedurc P contains only one rccursive call:
Step K. Call P.
Indicate the rcason that the stack STADD (for the return addresses) is not nccessary.

Since therc is only onc recursive call, control will always be transferred to Step K + 1 on a Return,
except for the final Return to the main program. Accordingly, instead of maintuining the stack STADD
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(and the local variable ADD), we simply write

(¢) Go to Step K+ 1
instead of

(¢) Go to Step ADD

in the translation of “Step J. Return.” (See Sec. 6.8.)

Rewrite the solution to the Towers of Hanoi problem so it uses only one recursive call instead of
two.

One may view the pegs A and B symmetrically. That is, we apply the steps
Move N — 1 disks from A to B, and then apply A—C
Move N — 2 disks from B to A, and then apply B— C
Move N —3 disks from A to B, and then apply A— C
Move N —4 disks from B to A, and then apply B— C

and so on. Accordingly, we can iterate a single recursive call, interchanging BEG and AUX after each
iteration, as follows:

Procedure P6.19: TOWER(N, BEG, AUX, END)

1. If N=0, then: Return.

2 RepeatSteps3!oSforK=N,N—I,N—2,...,l.
3. Call TOWER(K - 1, BEG, END, AUX).

4 Write: BEG — END.

5 [Interchange BEG and AUX.]

Set TEMP := BEG, BEG:= AUX, AUX := TEMP.
[End of Step 2 loop.]
6. Return.

Observe that we use N = 0 as a base value for the recursion instead of N = 1. Either one may be used to
yield a solution.

Consider the stack implementation algorithm in Sec. 6.8 for translating a recursive procedure
into a nonrecursive procedure. Recall that, at the time of a recursive call, we pushed the new
return address rather than the current return address onto the stack STADD. Suppose we
decide to push the current return address onto the stack STADD. (Many texts do this.) What
changes must then take place in the translation algorithm? {

The main change is that, at the time of a Return to the preceding execution level, the current value of
ADD determines the location of the Return, not the valué of ADD after the stack values have been
popped. Accordingly, the value of ADD must be saved, by setting SAVE := ADD, then the stack values
are popped, and then control is transferred to Step SAVE. Another change is that one must initially assign
ADD := Main and then Return to the main calling program when ADD = Main, not when the stacks are
empty. The formal algorithm follows. ‘ / :

(1) Preparation. ;
- (a) Define a stack STPAR for each parameter PAR, a stack STVAR for each local variable VAR
and a local variable ADD and a stack STADD to hold return addresses.
(b) Set TOP:=NULL and ADD := Main.

(2) Translation of “Step K. Call P.""
(a) Push the current values of the parameters and local variables and the current return address
ADD onto the appropriate stacks.
(b) Reset the parameters using the new argument values, and set ADD := [Step] K + 1.
(¢) Go to Step 1. [The beginning of the procedure P.]



CHAP. 6) > STACKS, QUEUES, RECURSION 205

(3) Translation of “‘Step J. Return.”
(a) If ADD =Main, then* Return. [Control is transferred to the main program.]
(b) Set SAVE := ADD.
(¢)  Restore the top values of the stacks. That is, set the parameters and local variables equal to the
top values on the stacks, and set ADD equal to the top value on the stack STADD.
(d) Go to Step SAVE.

(Compare this translation algorithm with the algorithm in Sec. 6.8.)

+6.21 Consider the following queue of characters, where QUEUE is a circular array which is allocated
‘ six memory cells:

FRONT =2, REAR=14 QUEYE:: . As, D, o, o

(For notational convenience, we use “__" to denote an empty memory cell.) Describe the
queue as the following operations take place: q

(a) F is added to the queue. (f) two letters are deleted.
(b) two letters are deleted. (8) S is added to the queue.
() K, L and M are added to the queue. (h) two letters are deleted.
(d) two letters are deleted. (i) one letter is deleted.

(e) R is added to the queue. (/) one letter is deleted.

(@) F is added to the rear of the queue, yielding
FRONT=2, REAR=5 QUEUE: ““|"A, C, Dj'E; "-
Note that REAR is increased by 1.
(b) The two letters, A and C, are deleted, leaving
FRONT =4, REAR=5 QUEUE: _ |

Note that FRONT is increased by 2.

(¢) K, L andM are added to the rear of the queue. Since K is placed in the last memory cell of QUEUE,
L and M are placed in the first two memory cells. This yields

D, F,

—_— ===

FRONT =4, REAR=2 QUEUE: L, M, __, l‘)’, I{K'
Note that REAR is increased by 3 but tfi arithmetic is modulo 6:
REAR=5+3=8=2 (mod 6)

(d) The two front letters; D and F are deleted, leaving \ :

FRONT =6, REAR =2 QUEUE: L, Qﬂ,_ LS & ‘K”
(e) R is added to the rear of the queue, yielding & e

FRONT =6, REAR =? QUEUE: /L, MR, U K _
(f) The two front letters, K and L, are deleted, leaving

FRONT =2, REAR=3 QUEUE: . ; , M;R, _.; ., -

Note that FRONT is increased by 2 but the arithmetic is modulo 6:
FRONT =6 +2=8=2 (mod 6)
(g) S is added to the rear of the queue, yielding
FRONT =2, REAR =4 QUEUE: __, M, R, S,
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() The two tront letiers, M and R, arc dcleted, lcaving
FRONT =4, REAR =4 QUBBE. ., v Si

(i) The front letter S is deleted. Since FRONT = REAR, this means that the qucu. 15 cmipty; henee we
assign NULL to FRONT and REAR. Thus :

FRONT =0, REAR=0 QUEUE: _, v v —v —v —

iwice FRONT = NULL, no deletion can take place. That is, underflow has oceurred.

(i)

Suppose each data structure is stored in a circular array with N memory cells.

(4) Find the number NUMB of clements in a qucuc in terms of FRONT and REAR.
(b) Find the number NUMB of clcments in a deque in terms of LEFT and RIGHT. -
(¢) When will the array be filled?

(a) 1f FRONT = REAR, then NUMB = REAR — FRONT + 1. For cxample, consider the following
qucue with N = 12: ‘

FRONT =3, REAR=9 QUEUE:

Then NUMB =9 =3+ 1 =7, as pictured.
If REAR < FRONT, then FRONT — REAR — 1 is the number of empty cclls, so

 NUMB = N - (FRONT - REAR - 1) =N t REAR — FRONT + |

___,'___i'l‘!""!"*!“ Y e ¥ c—

For example, consider the following qucuc with N = 12 * -
FRONT =9, REAR=4 QUEUE: », *, », % __,_ o+ . .

Then NUMB=12+4=-9+ 1=8, as pictured.
Using arithmetic modulo N, we need only onc formula, as follows:

NUMB = REAR — FRONT + 1 (mod N)
(b) The same result holids for deques cxcept that FRONT is replaced by RIGHT. That is,

NUMB = RIGHT — LEFT + 1 (mod N)
1
(¢) With a queue, the array is full when

(i) FRONT =1 and REAR =N or (ii) FRONT = REAR +1
Similarly, with a deque, the array is full when .
(i) LEFT =1 and RIGHT =N or (ii) LEFT=RIGKT+1
Each of these conditions implics NUMB = N.

6.23 Consider the following deque of characters where DEQUE is a circular array which is allocatcd
six memory cells:

LEFT =2, RIGHT=4 DEQUE: _,A,C D, _, _
Describe the deque while the following operations take place.

(a) F is added to the right of the deque.

(b) Two letters on the right arc deleted.

(¢) K, L and M are added to the left of the deque.
(d) Onc letter on the left is deleted.

(¢) R is added to the left of the deque.



CHAP. 6] STACKS, QUEUES, RECURSION 207

(f) .S is added to the right of the deque.
" (g) T is added to the right of the deque.
(@) F is added on the right, yielding
LEFT=2, RIGHT=5 DEQUE: _,A,C,D,F, _
Note that RIGHT is increased by 1.
(b) The two right lctters, F and D, are deleted, yielding
LEFT =2, RIGHT=3 DEQUE: __,A,C

Note that RIGHT is dccreased by 2.

(c) K, L and M are added on the left. Since K is placed in the first memory cell, L is placed in the last -
memory ccll and M is placed in the next-to-last memory cell. This yiclds

LEFT=5, RIGHT=3 DEQUE: K,A,C, __,M,L
-Note that LEFT is decreascd by 3 but the arithmetic is modulo 6:
LEFT=2-3=-1=5 (mod 6)
(d) The left letter, M, is dcleted, lcaving
LEFT=6, RIGHT=3 DEQUE: K, A, C,
Note that LEFT is increased by 1.
() R is added on the left, yiclding
LEFT=35, RIGHT=3 DEQUE: K, A,C, _,R,L
Notc that LEFT is decreased by 1.
(/) S is added on the right, yielding
LEFT =5, RIGHT=4 DEQUE: K, A,C,S, R, L

(g) Since LEFT = RIGHT + 1, the array is full, and hence T cannot be added to the deque. That is,
overflow has occurred.

L

- —t

6.24 Consider a deque maintaincd by a circular array with N mcmory cells.

(a) Supposc an clement is added to the deque. How is LEFT or RIGHT changed?
(b) Supposc an clement is deletcd. How is LEFT or RIGHT changed?

(a) If the clement is added on the left, then LEFT is decreased by 1 (mod N). On the other hand, if the
clement is added 6n the right, then RIGHT is increased by 1 (mod N).

(b) 1f the element is deleted from the left, then LEFT is increased by 1 (mod N). However if the element
is deleted from the right, then RIGHT is decreased by 1 (mod N). In the case that LEFT = RIGHT
before the deletion (that is, when the dequc has only one element), then LEFT and RIGHT are both
assigned NULL to indicate that the deque is empty.

PRIORITY QUEUES

6.25 Consider the priority queue in Fig. 6-20, which is maintained as a onc-way list. (a) Describe the
structure after (XXX, 2), (YYY, 3), (ZZZ, 2) and (WWW, 1) are added to the queue. (b)
Describe the structure if, after the preceding insertions, three clements arc dcleted.

(@) Traverse the list to find the first element whose priority number excceds that of XXX, It is DDD, so
insert XXX beforc DDD (after CCC) in the first empty cell, INFO[2]. Then traverse the list to find
the first clement whose priority number exceeds that of YYY. Again it is DDD. Hence insert YYY
before DDD (after XXX) in the next empty cell, INFO[7]. Then traverse the list to find the first
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element whose priority number exceeds that of ZZZ. It is YYY. Hence insert ZZZ before YYY
(after XXX) in the next empty cell, INFO[L0]. Last, traversc the list to find the first element whose
priority number exceeds that of WWW. It is BBB. Hencc inscrt WWW before BBB (after AAA) In
the next empty cell, INFFO[11]. This finally yields the structure in Fig. 6-26(a).

1
2
START 3
5 | 4
_ _\__ .
AVAIL 6
22—
8
9
10
11
L—12
T 1
2
START, 3
6 4
AVAH ?
6

1
7
8
9
10
11
12

INFO PRN LINK
BBB 2 6
XXX 2 10
DDD 4 4
EEE 4 9
AAA 1 1
i o e 2 2
YYY 3 3
GGG 5 0
FFF 4 8
ZZZ 2 7
wWwW 1 1
0
(a)
INFO PRN . LINK
1
XXX 2 10
DDD 4 4
EEE 4 9
12
ccc 2 2
YYY 3 3
GGG 5 0
FFF 4 8
727 2 7
5
0
()

Fig. 6-26
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(b) The first threc clements in the one-way list are deleted. Specifically, first AAA is deleted and its
memory cell INFO[S5] is added to the AVAIL list. Then WWW is deleted and its memory cell
INFO[11] is added to the AVAIL list. Last, BBB is deleted and its memory cell INFO[1] is added to
the AVAIL list. This finally yields the structure in Fig. 6-26(b).

Remark: Obscrve that START and AVAIL asc changed accordingly.

6.26 Consider the priority qucue in Fig. 6-22, which is maintained by a wwo-dimensional array
QUEUE. (a) Describe the structure after (RRR, 3), (SSS, 4), (TTT, 1), (UUU, 4) and
(VVYV, 2) are added to the queue. (b) Describe the structure if, after the preceding insertions,
three clements arc deleted.

(«) Inscrt each element in its priority row. That is, add RRR as the rear element in row 3, add SSS as the
rear element in row 4, add TTT as the rear clement in row 1, add UUU as the rear clement in row 4
and add VVYV as the rear clement in row 2. This yiels the structurc in Fig. 6-27(a). (As noted
previously, inscrtions with this array ‘representation: arc wsually simpler than inscrtions with the
one-way list representation.) :

.

' QUEUE ,
FRONT . REAR 1 2 -3 4 5 6
1 2 ¥ s AAA TTT ' .
2 1 4 2 | BBB CCC XXX VVV
3 1 1 3| RRR
4 5 3 4 FFF 88§ UUU DDD EEE
5 4 4 5L : GGG J
(@)
QUEUE
FRONT REAR 1 7 3 4 5 1405 11
1 (] 0 . _ iy
2 2 4 2 CCC XXX VWV
3 1 1 3 | RRR
4 5 3 4 | FFF S§§§ UUU . DDD EEE
s |4 4 5 L GGG !
(b)
Fig. 6-27

(h) First delete the clements with the highest priority in row 1. Since row 1 contains only two eclements,
AAA and TTT, then the front element in row 2, BBB, must also be delcted. This finally leaves the
structure.in Fig. 6-27(b). ;

Remark: Observe ihat, in both cases, FRONT and REAR are changed accordingly.
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Supplementary Problems

STACKS
6.27 Consider the following stack of city names: \
STACK: lL.ondon, Berlin, Rome, Paris,
(a) Descril;c the stack as the following operations take place: )

‘(i) PUSH(STACK, Athens), (iii) POP(STACK, ITEM)  (v) PUSH(STACK, Moscow)
(i) POP(STACK, ITEM)  (iv) PUSH(STACK, Madrid) (vi) POP(STACK, ITEM)

(&) Describe the stack if the operation POP(STACK, ITEM) deletes London.

6.28 Consider the following stack where STACK is allovi.ed N = 4 memory cells:

STACK: ~ AAA, BBB, ;
Describe the stack as the following operations take place: R , .
(a) P(STACK, ITE"™ (c) PUSH(STACK, EEE) (¢) POP(STACK, ITEM)
POP(STACK, ITEM) (d) POP(STACK, ITEM) (f)- PUSH(STACK, GGG)

Suppose the following stack ot integers is in memory where STACK is allocated N = 6 memory cells:
TOP =3 STACK: 52,3, 3.5
Find the output of the following progran  gu... :
1. Call POP(STACK, ITEMA).
Call POP(STACK, ITEMB).
“Call PUSH(STACK, ITEMB + 2).

Call PUSH(STACK, 8).
Call PUSH(STACK, ITEMA + ITEMB).

/2. Repeat while TOP # 0:
Call POP(STACK, ITEM).
Write: ITEM.
[End of loop.]

6.30 Suppose stacks A[1] and A[2] are stored in a lincar array STACK with N elements, us pictured in Fig. 6-28.
Assume TOP[K] denotes the top of stack A[K].

(a) Writc a procedure. PUSH(STACK, N, TOP, ITEM, K) which pushes ITEM onto stack A[K].

(b) Writc a procedure POP(STACK, TOP, ITEM, K) which deletes the top element from stack AlK]
and assigns the clement to the variable ITEM.

- M Y G| [ — —T T 1 [ |

Stack A[l} Stack Al2]

Fig. '6-28

ETIC EXPRESSIONS; POLISH EXPRESSIONS _
Translate, by inspection and hand, each infix expression into its equivalent pus'!!i{( expression:

@ (A-B)@ED+E)*F) (b)) ((A+B)/D)1(E-F)*G)
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Gm by inspection and l}and. cach infix cxpression in Prob. 6.31 into its equivalent prefix expression.

6% cach of the following parenthesis-free arithmetic expressions:

(@ 5 + 3 1 2 - 8/ 4 ¢ 3 + ¢
b)) 8 + 2 1 3 + 9 / 3 — 4 « 5§

6.34  Consider the following parenthesis-frec arithmetic éxpression:
E: 6 + 2131 2 - 4 ¢ 5§

Evaluate the cxpression E, (a) assuming that exponcntiation is. performed from left to right, as are the
other operations, and (b) assuming that exponentiation is performed from right to left.

6.35  Consider each of the following postfix expressions:

oo Ble FanZe 60 N Ts irve by

PI: 3. 5. +, 6. ‘. =h ' ‘n l- y 2- ’- +

P 3, 1, +, 2,1, 7, a, -y 2, * 4, 5 -

Translate, by inspection and hand, cach expression into infix notation and then evaluate.
6.36  Evaluate each postfix expression in Prob.+6.35, using Algorithm 6.3.

6.37 . Use Algorithm €.4, to translate cach infix expression into its cquivalent postfix expression: -
(@) (A-B)/((D+E)+F) (6) ((A+B)/D)I((E~F)+G)
(Compare with Prob. 6.31.)

RECURS B . -
6. Let J and K be integers and suppose Q(J, K) is recursively defined by

ifI<K
Qs Ky = {Q(J K,K+2)+J  ifJ=K

Find Q(2, 7), Q(5, 3) and Q(15, 2).

G.JW and B be nonnegative integers: Suppose a fynction GCD ' is rccursivcly'deﬁncd as follows:

\

GCD(B, 4) ifA<B .
GCD(A,B) =1 A if B=0
GCD(B, MOW(A, B)) otherwise

(Here MOD(A, B), read “A modulo B,” denotes the remainder when' A is divided by B.) (a) Find
GCD(6, 15), GCD(ZO 28) and GCD(540, _168). (b) What does this function do?

% be an integer and suppose H(N) is recursively’ defined by

3»N ifN<S
H(N) ™ {ZfH(N -5)+7 otherwise

(a) Find the base critcria of H and (b) find H(2), H(8) and H(24).

"

.41 Usc Definition 6.3 (of the Ackermann function) to find A(2, 2).
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6.43

6.44

6.45
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Let M and N be intcgers and suppose F(M, N) is recursively defined by
1 ifM=0or M=N=1
F(IM=1,N)+F(M~-=1,N—-1) otherwise
(a) Find F(4, 2), F(1, 5) and F(2, 4). (b) When is F(M, N) undefined?

—

F(M, N) = {

\

Let A be an integer array with N elements. Suppose X is an integer function defined by

0 ) ifK=0
X(K) = X(A, N, K)=[ X(K~-1)+A(K) if0<K=N
X(K - 1) ifK>N

Find X(5) for each of the following arrays:
(@) N=8, A: 3,7,-2,5,6,-4,2,17 (b) N=3, A: 2,7, -4

What does this function do?

Show that the recursive solution to the Towers of Hanoi problem in Sec. 6.7 requires f(n) = 2" — 1 moves
for n disks. Show that no other solution uses fewer than f(n) moves.

Suppose S is a string with N characters. Let SUB(S, J, L) denote the substring of § beginning in the
position J and having ‘length L. Let A /B denote the concatenation of strings A and B. Suppose
REWV(S, N) is recursively defined by

| S Vi N=1
. REMS, N)= {SUB(S. N. )//REV(SUB(S, I, N~ 1), N-1) othcrwise
(a) Find REV(S, N) when (i)N=3,S=abcand (i) N=5,8 = ababe. (b) What does this function do?

QUEUES; DEQUES

6.46

6.47

6.48

6.49

Consider the following queue where QUEUE is allocated 6 memory cells:

FRONT =2, REAR =5 QUEUE: - , London, Berlin, Rome, Paris,
Describe the queue, including FRONT and REAR. as the following operations take place: (a) Athens is
added, (b) two cities are deleted, (¢) Madrid is added, (d) Moscow is added, (e) three citics are deleted
and (f) Oslo is added.
Consider the following deque where DEQUE is allocated 6 memory celis:

LEFT =2, RIGHT =35 DEQUE:
Describe the deque, including LEFT and RIGHT, as the following operations take place:

, London, Berlin, Rome, Paris,

(a) Athens is added on the left. (e) ' Two cities are delcted from the right.
(b) Two cities are deleted from the right. (f) A city is deleted from the left.
(¢) Madrid is added on the left. (g) Oslo is added on the left.

{d) Moscow is added on the right.

Suppese a queue is maintained by a circular array QUEUE with N = 12 memory cells. Find the number of
clements in QUEUE if (a) FRONT = 4, REAR = 8; (b) FRONT = 10, REAR = 3; and (¢) FRONT =5,
REAR = 6 and then two elements are deleted. ‘

Consider the priority qucue in Fig. 6-26(b), which is maintained as a one-way list.

(a) Describe the structure if two elements are deleted.

(b) Describe the structure if, after the preceding delctions, the elements (RRR, 3), (SSS, 1), (TTT, 3)
and (UUU, 2) are added to the queue. e

(¢) Describe the structure if, after the preceding insertions, three clements are déleted.
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6.50

6.51

6.52

6.53

6.54

6.55

v

Consider the priority queue in Fig. 6-27(b), which is maintained by a two-dimensional array QUEUE.

"  J .
(a) Describe the structurc if two elements :are deleted. :
(b) Describe the structure if, after the preceding deletions, the elements (334, 3), (KKK, 1), (LLL, 4)
and (MMM, 5) arc added to the queue.
(c) Describe the structure if, after the preceding insertions, six elements are deleted.

Programming Problems

Translate Quicksort into a subprogram QUICK(A, N) which sorts the array A with N elements. Test the
program using ;

< (a) 44, 33, 11, 55, 77, 90, 40, 60, 99, 22, 88, 66

(b)) D, A, T, A, S, T, R, U, C, T, U, R, E, S

. Write a program which gives the solution to the Towers of Hanoi problem for n disks. Tcst the program

using (@) n =3 and (b) n=4. .

Translate Algorithm 6.4 into a subprogram POLISH(Q, P) whictransforms an infix expression Q into its
cquivalent postfix expression P. Assume each operand is a single alphabetic character, and use the usual
symbols for addition (+), subtraction (—), multiplication (+) and division (/), but usc the symbol § or §
for exponcntiation. (Some programming languages do not accept f.) Test the program using

"@((A+B)sD)S(E-F (b)A+(B*»C-(D/ESF)+G)=*H

Suppose a priority queue is maintained as a one-way list as illustrated in Fig. 6-20.
(a) Write a procedure
INSPQL(INFO, PRN, LINK, START, AVAIL, ITEM, N)
which adds an ITEM with priority number N to the queue. (Sce Algorithm 6.14.)
(b) Write a procedure
DELPQL(INFO, PRN, LINK, START, AVAIL, ITEM)

which removes an element from the queue and assigns the element to the variable ITEM. (Sce
Algorithm 6.13.) :

“Test the procedures, using the data in Prob. 6.25.

Su;ﬁposc a priority queue is maintain. by a two-dimensiosial array as illustrated in Fig.. 6-22.
(a) Write a procedure ‘
INSPQA(QUEUE, FRONT, REAR, ITEM, M)
which adds an ITEM with priority‘number M to the queue. (See Algorithm 6,16.)
(&) Write a procedure
DELPQA(QUEUE, FRONT, REAR, ITEM)

which removes an clement from the queue ‘and assigns the element to the variable ITEM. (See
Algorithm 6.15.)

Test the procedures, using the data in Prob. 6.26. (Assume that QUEUE has ROW number of rows and
COL number of columns, where ROW and COL are global variables.)



