Chapter 7

Trees

7.1 INTRODUCTION

So far, we have been studying mainly linear types of data structures: strings, arrays, lists, stacks
and queucs. This chapter defines a nonlinear data structure called a tree. This structure is mainly used
to represcnt data containing a hierarchical relationship between elements, e.g., records, family trees
and tables of contents.

First we investigate a special kind of trec called a binary tree, which can be casﬂy maintained in the
computer. Although such a trec may scem to be very restrictive, we w:ll see later in the chapter that
more general trees may be viewed as binary trees.

7.2 BINARY TREES

A binary tree T is defined as a finite set of elements, called nodes, such that:

“(a) T is empty (called the null tree or empty tree), or ,

(b) T contains a distinguished node R, called the root of T and the rcmammg nodes of T form an
ordered pair of disjoint binary trees T, and T,.

If T docs contain a root R, then the two tree$ T, and T, are called, respectively, the left and right
subtrees of R. If T, is nonempty, then its root is called the left successor of R; similarly, if T, is
nonempty, then its root is called the right successor of R.

A binary tree T is frequently presented by means of a diagram. Specifically, the dlagram in Fig. 7-1
represents a binary tree T as follows. (i) T consists of 11 nodes, represented by the letters A through L,
excluding /. (ii) The root of T is the node A at the top of the diagram; (iii) A left-downward slanted
line from a node N indicates a left successor of N, and a right-downward slantcd linc from N indicates a
right successor of N. Observe that: ‘

(a) B is a left successor and C is a right successor of the node A.

(b) The left subtree of the root A consists of the nodes B, D, E and F, and the right subtrec of A
consists of the nodes C, G, H, J, K and L.

Any node N in a binary tree 7 has either 0, 1 or 2 successors. The nodes A, B, C and H have two
successors, the nodes E and J have only one successor, and the nodes D, F, G, L and K have no
successors. The nodes with no successors are called terminal nodes.

5/ \
ol \E' /

i
/

\
D /u \

K

Fig. 7-1

214

CHAP. 7] : TREES 215

The above definition of the binary tree T is recursive since T is defined in terms of the binary
subtrees T, and T,. This means, in, particular, that every node N of T contains a left and a right
subtree. Moreover, if N is a terminal nod¢, then both its left and right subtrees are empty.

Binary trees T and 7" are said to be similar if they have the same structure or, in other words, if
they have the same shape. The trees are said to be copies if they are similar and if they have the same
contents at corresponding nodes. i

EXAMPLE 7.1

. Consider the four binary trees in Fig. 7-2. The three trees (a), (c) and (d) are similar. In particular, the trees
(a) and (c) arc copies since they also have the same data at corresponding nodes. The tree (b) is neither similar nor
a copy of the tree (d) because, in a binary tree, we distinguish between a left successor and a right successor even
when there is only one successor. '

\B F/E A\B E\F
N N T S g,
(&) (©

(@ (d)

A

Fig. 7-2
EXAMPLE 7.2 Algebraic Expressions ‘ {
Consider any algebraic expression £ involving only binary operations, such as
‘ E=(a~b)/((ced)+e)

E can be represented by means of the binary tree T pictured in Fig. 7-3. That is, cach variable or constant in E
appears as an “internal” node in 7 whose left and right subtrees correspond 1o the operands of the opcration. For
example: ¢

(@) In the expression E, the operands of + are c*d and e.
(b) In the tree T, the subtrees of the node + correspond to the subexprcisions ¢+ d and e.

Clearly every algebraic expression will correspond to a unique tree, and vice versa.

/,
'l \+
R S
(SR s
Fig. 7.3 E=(a—-b)/((c " d) +e).

Terminology

Terminology describing family relationshiPs is frequently used to describe relationships between
the nodes of a tree T Specifically, suppose N is a node in 7 with left successor S, and right successor S,.
Then N is calied the parent (or father) of §, and §,. Analogously, S, is called the left child (or son) of N,

216 TREES [CHAP. 7

and S, is called the right child (ot son) of N. Furthermore, S, and S, are said to be siblings (or brothers).
Every node N in a binary irec T, except the root, has a unique parent, called the predecessor of N.

The terms descendant and ancestor have their usual meaning. That is, a node L is called a
descendant of a node N (and N is called an ancestor of L) if there is a succession of children from N to
L. In particular, L is called a left or right descendant of N according to whether L belongs to the left or
right subtrec of N. ' .

Terminology from graph thecory and horticulture is also used with a binary tree 7. Specifically, the
line drawn from a node N of T to a successor is called an edge, and a scquence of eonsccutive edges is
called a path. A terminal node is called a leaf, and a path ¢nding in a lcaf is called a branch.

Each node in a binary tree T is assigned a level number, as follows. The root R of the tree T is
assigned the level number 0, and every other node is assigned a level number which is 1 more than the
level number of its parent. Furthermore, those nodcs with the same level number are said to belong to
the samec generation.

The depth (or height) of a trce T is the maximum number of nodes in a branch of T. This turns out
to be 1 more than the largest level number of 7. The tree T in Fig. 7-1 has depth 5.

Binary trees T and T arc said to be similar if they have the same structure or, in other words, if
they have the same shape. The trees are said to be copies if they are similar and if they have the same
contents at corresponding nodes.

Complete Binary Trees

Consider any binary trce T. Each node of 7 can have at most two children. Accordingly, one can
show that level r of T can have at most 2" nodes. The tree 7' is said to be complete if all its levels, except
possibly the last, have the maximum number of possible nodes, and if all the nodes at the last level
appear as far lcft as possiblc. Thus there is a unique complete trec T, with cxactly n nodes (we arc, of
course, ignoring the contents of the nodes). The complete tree T, with 26 podes appears in Fig. 7-4.

2/'\3
N N /\//\

TA YA N . O oA

20 26 .,

Fig. 7-4 Complete tree T,,.

The nodes of the complete binary tree Ty in Fig. 7-4 have been purposcly labeled by the integers
1,2,...,26, from left to right, generation by generation. With this labeling, one can easily
determine the children and parent of any node K in any complete tree T',. Specifically, the left and
right children of the node K are, respectively, 2+*K and 2+ K + 1, and the parent of K is the node
LK/2]. For example, the children of node 9 are the nodes 18 and 19, and its parent is the nodc
19/2] = 4. The depth d, of the complcte tree T, with n nodes is given by)

D, = |log,n+1]

This is a relatively small number. For example, if the complete tree T, has n = 1.080 000 nodes, then its
depth D, = 21. ; -

CHAP. 7] " TREES. 217

Extended Binary Trees: 2-Trees

A binary trce tree T is said to be a 2-tree or an extended binary tree if cach node N has cither 0 or 2
children. In such a case, the nodes with 2 children are called intternal nodes, and the nodes with 0
children are called external nodes. Sometimes the nodes are distinguished in diagrams by using circles
for internal nodes and squares for external nodcs. '

The term “extended binary tree” comes from the folfowing operation. Consider any binary tree
T, such as the tree in Fig. 7-5(a). Then T may be “‘converted” into a 2-trec by replacing cach empty
subtrec by a new node, as pictured in Fig. 7-5(5). Obscrvc that the new tree is, indced, a 2-trce.
Furthermore, the nodes in the original trce T arc now the internal nodes in the extended tree, and the
new nodes are the external nodes in the extended tree.

(a) Binary tree T. (b) Extended 2-tree.

Fig. 7-5 Converting a binary tree T into a 2-tree.

An important example of a 2-trec is the tree T corresponding 1o any algebraic expression E which
uses only binary opcrations. As illustrated in Fig. 7-3, the.variables in E will appcar as the cxternal
nodes, and the operations in E will appear as internal nodes.

7.3 REPRESENTING BINARY TREES IN MEMORY

Let T be a binary tree. This section discusses two ways of representing T in memory. The first and
usual way is called the link representation of T and is analogous to the way linked lists arc represented
in memory. The sccond way, which uscs a single array, called the sequential representation of T. The
main requircment of any representation of T is that onc should have direct access to the root R of T
and, given any node N of T, one should have direct access to the children of N.

Linked Representation of Binary Trées

~ Consider a binary tree T. Unless otherwise stated or implied, T will be maintained in memory by
mcans of a linked representation which uses three parallel arrays, INFO, LEFT and RIGHT, and a
pointer variable ROOT as follows. First of all, cach node N of T, will correspond to a location K such
that:

(1) INFO[K] contains the data at the node N.
(2) LEFT[K] contains the location of the left child of node N.
(3) RIGHT[K] contains the location of the right child of node N.
Furthermore, ROOT will contain the location of the root R of T. If any subtree is empty, then the

corresponding pointer will contain the null value: if the tree T itself is empty, then ROOT will contain
the null value.

218 TREES - (CHAF. 7

Fig. 7-6
INFO LEFT RIGHT
1 K 0 0
ROOT 2 c 3 6
5 3 G 0 0
4 14
AVAIL 5 A 10 2
8 6 H 17 1
7 L 0 0
8 9
9 4
10 B 18 13
1 19
12 F 0 0
13 E 12 0
14 15
15 16
16 1
17 3 7 0
18 D 0 0
19 20
20 0

Tie 77

CHAP, 7] TREES ' 219

Remark 1: Most of our cxamples will show a single item of information at cach node N of a
binary trce T. In actual practice, an entire record may be stored at the node N. Jn other words, INFO
may actually be a lincar array of records or a collection of parallcl arrays.

Remark 2: Since nodcs may be inscrtéd into and deleted from our binary trees, we also implicitly
assumc that the cmpty locations in the arrays INFO, LEFT and RIGHT form a linked list with pointer
AVAIL, as discussed in relation to linked lists in Chap. 5. We will.usually let the LEFT array contain
the pointers for the AVAILlist. .

Remark 3: Any invalid address may be chosen for the null pointer denoted by NULL, In actual
practice, 0 or a ncgative number is used for NULL. (Sce Scc. 5.2.)

EXAMPLE 7.3

Consider the binary tree T in Fig. 7-1. A schematic diagram of the linked represcntation of T appcars in Fig:
7-6. Obscrve that cach node is pictured with its three ficlds, and that the empty subirees are pictured by using X
for the null entrics. Figurc 7-7 shows how this linked representation may appear in memory. The choice of 20
elements for the arrays is arbitrary. Observe that the AVAIL list is maintained as a onc-way list using the array
LEFT.)

EXAMPLE 7.4 :
Supposc the personnel file of a small company contains the following data on its ninc cmployces:

Namé, Social Sccurity Number, Sex, Monthly Salary

Figure 7-8 shows how the file may be maintained in memory as a binary tree. Compare this data structure with Fig.
5-12, where the cxact same data are organized as a one-way list.

NAME SSN SEX SALARY LEFT RIGHT
1 | ' 0
ROOT 2 | Davis 192-38-.7282 | | Female 22500 | 0 e
14— 3 | Kelly 165-64-3351 Male 19 000 0 1]
4 {1 Green 175-56-2251 Malce 27 200 2 ()“— E
AVAIL 5 s i
8 6 | Brown 178-52-1065 Female i 14 700 0 h-—"OT‘M
7 | Lewis 181-58-9939 Female 16 400 3 10
8 = - 11 r
o [conen | [177asassr | [mae | [w000 | [6 | [4]
10 - Rubin 135-46-6262 Female 15 500 0 - ‘_
11 e —“13 A
DTN . I DR e e
T Ry (Ve R RSl)
13 S
~———14 | Harris —;(4;;«_5;)-1654 Female 22 HUUm B ‘;—— [~ M';N‘

Fig. 7-8

220 TREES

Hairis
i Cohen wis
Bmwn/ \Gjecn . Kelly Rubin
s
/
De:
\Evans
Fig. 7-9
TREE
1 45
2 22
s |
4 11
5 30
6
45 7 90
/ \ y
22 77 9 15
/ \ \ 0 [
11 30 X 11
\ / / 12
15 25 13
14 88
15
16
29
(a) ()

Fig. 7-10

[CHAP. 7

CHAP. 7) TREES 221

Supposc wc want to draw the trec diagram which corresponds to the binary tree in Fig. 7-8. For
notational convenicnce, we label the nodes in the tree diagram only by. the key values NAME. We
construct the tree as follows: ; ;

(a) The value ROOT = 14 indicates that Harris is the root of the tree.
(b) LEFT[14] =9 indicates that Cohen is the lcft child of Harris, and RIGHT[14] = 7 indicates
that Lcwis is the right child of Harris.

Repcating Step (b) for cach ncw node in the diagram, we obtain Fig. 7-9.

Sequential Representation of Binary Trees

Suppose T is a binary trec that is complete or nearly complete. Then there is an cfficicnt way of
maintaining T in memory called the sequential representation of T. This representation uscs only a
singlc lincar array TREE as follows:

(a¢) The root R of T is stored in TREE[1].

(b) If a nodc N occupics TREE[K], then its left child is stored in TREE[2 * K] and its right child
" is stored in TREE[2% K + 1].

Again, NULL is uscd to indicate an cmpty subtree. In particular, TREE[1] = NULL indicatcs that the
tree is empty.

The scquential representation of the binary tree T in Fig. 7-10(a) appcars in Fig. 7-10(b). Observe
that we require 14 locations in the array TREE even though T has only 9 nodes. In fact, if we included
null entrics for the successors of the terminal nodcs, then we would actually requirc TREE[29] for the
right successor of TREE[14]. Generally spcakmg, the scquential representation of a trec with depth d
will require an array with approximately 29*! elements. Accordingly, this scquential represcntation is
usually incfficicnt unless, as statcd above, the binary trcc T is complcte or ncarly complcte. For
cxample, the tree T in Fig. 7-1 has 11 nodes and depth S, which means it would require an array with
approximatcly 2° = 64 clements.

7.4 TRAVERSING BINARY TREES

There are three standard ways of traversing a binary trec T with root R. Thesc three algorithms,
callcd preorder, inorder and postorder, arc as follows:
Preorder: (1) Process the root R.
(2) Traversce the left subtree of R in preorder.
(3) Traverse the right subtree of R in preorder.

Inorder: (1) Traversc the left subtree of R in inorder.
(2) Process the root R.
(3) ‘Traverse the right subtree of R in inorder.

Postorder: (1) Traverse the left subtrec of R in postorder.
{2) Traverse the right subtree of R in postorder.
(3) Process the root R.

Observe that cach algorithm contains the same three steps, and that the left subtree of R is always
traversed before the right subtree. The difference between the algorithms is the time at which the root
R is processed. Spedifically, in the “pre” algorithm, the root R is processed before the subtrces are
traversed; in the “in’" algorithm, the root R is processed between the traversals of the subtrecs; and in
the “post™ algorithm, the root R is processed after the subtrees are traversed.

The three algorithms are sometimes called, respectively, the node-left-right (NLR) traversal, the
leit-nade-right (LNR) truversal and the left-right-node (LRN) traversal.

222 ge = TREES - [CHAP. 7

Observe that each of the abc&ve traversal algorithms is recursively defined, since the algorithm
involves traversing subtrees in the given order. Accordingly, we will expect that a stack will be used
when the algorithms are implemented on the computer.

EXAMPLE 7.5

Consider the binary tree T in Fig. 7-11. Observe that A is the root, that its left subtree L, consists of nodes B,
D and E and that its right subtree R consists of nodes C and F.

A

Fig. 7-11

(a) The preorder traversal of T proccssés A, traverses L and traverses R,. However, the preorder traversal of
L. processes the root B and then D and E, and the preorder traversal of R processes the root C and then F.
Hence ABDECEF is the preorder traversal of T.

(b) The inorder traversal of T traverses L., processes A and traverses R... However, the inorder traversal of L.
processes D, B and then E, and the inorder traversal of R processes C and then F. Hence DBEACEF is the
inorder traversal of T.

(¢) The postorder traversal of T traverses L, traverses R, and processes A. However, the postorder traversal
of L. processes D, E and then B, and the postorder traversal of R.. processes F and then C. Accordingly,
DEBFCA is the postorder traversal of T.

EXAMPLE 7.6

Consider the tree T in Fig. 7-12. The preorder traversal of T is ABDEFCGHILK. This order is the same as
the onc obtained by scanning the trce from the left as indicated by the path in Fig. 7-12. That is, onc *‘travels”
down the Ieft-most branch until mecting a terminal node, then one backtracks to the next branch, and so on. In the
preorder traversal, the right-most terminal node, node K, is the last node scanned. Observe that the left subtree of
the root A is traversed before the right subtree, and both are traversed after A. The same is true for any other
node having subtrees, which is the underlying property of a preorder traversal.

B C
/ .
y, \ //'/ _
/ P4
(D /’\} E / [\ G/"'\ H
%o L ¥ / 7t /
/ /ﬂ /
/ ¥
{ F// Frongdo v .
L / .
/ By
v LA
__‘//

Fig. 7-12

CHAP. 7] TREES 223

The reader can verify by inspection that the other two ways of travcxsmg the binary tree in Fig.
7-12 are ‘as follows:

(Inorder) D G C L J H K

FE‘_A_"
(Postorder) F EB GULJKHTCA

Observe that the terminal nodes, D,/F, G, L and K, are traversed in the same order, from left to right
in all three traversals. We emphasjze that this is true for any binary tree T.

EXAMPLE 7.7
Let E denote the following algebraic expression:
[e+(B-al*[(d—e)/(f+g~h)]
The corresponding binary tree T appears in Fig. 7-13. The reader can verify by inspectioj
postorder traversals of T are as follows:
(Prcorder) * + a = bc /) - de =+ f g h
(Postorder) a\h\c - +de - fg + h - | =

at the preorder and

~d

The reader can also verify that these orders correspond precisely to the prefix and postfix Polish notation of E as
discussed in Sec. 6.4. We emphasize that this is true for any algebraic expression E,

Fig. 7-13

EXAMPLE 7.8
Consider the binary tree T in Fig. 7-14. The reader can verify that the postorder traversal of T is us follows:
S3» Se» Si Si S, .8, S5 S, M ‘

One main property of this traversal algorithm is that every descengdant of any node N is processed before the node
N. For example, S, comes before S, S and S, come before S,. Similarly, S, and S, come before S,, and §,, S, and
S, come before S,. Moreover, all lhe nodcs S,. S ..., 5, come before the root. M.

224 TREES : [CHAP. 7

Remark: The reader may be able to implement by inspection the three different traversals of a
binary trce T if the tree has a rclatively small number of nodes, as in the above two cxamples.
Implementation by inspection may not be possible when T contains hundreds or thousands of nodes.
That is, we nced some systematic way of implementing the recursively defined traversals. The stack is
the natural structure for such an implementation. The discussion of stack-oricntcd algorithms for this
purpose is covered in the next section.

7.5 TRAVERSAL ALGORITHMS USING STACKS
Suppose a binary tree T is maintained in memory by some linked representation
TREE(INFO, LEFT, RIGHT, ROOT)

This section discusses the implementation of the three standard traversals of T, which were defined
recursively in the last scction, by means of nonrccursive procedures using stacks. We discuss the three
traversals separately.

Preorder Traversal

The preorder traversal algorithm uses a variable PTR (pointer) which will caentain the location of
the node N currently being scanned. This is pictured in Fig. 7-15, where L(N) denotes the left child of
nodec N and R(N) denotes the right child. The algorithm also uses an array STACK, which will hold
the addresses of nodes for future processing. '

WRBLN/
/N

L(N) R(N)
¥ % /N
Fig. 7-15

Algorithm: Initially push NULL onto STACK and then sct PTR:= ROOT. Then repeat the
following steps until PTR = NULL. or, cquivalently, while PTR # NULL.

(a) Procced down the lcft-most path rooted at PTR, processing each node N on the
path and pushing cach right child R(N), if any, onto STACK. The traversing
ends after a node N with no left child L(N) is processed. (Thus PTR is updated
using the assignment PTR := LEFT[PTR], and thc traversing stops when
LEFT[PTR] = NULL)) ’

(b) [Backtracking.] Pop and assign to PTR the top element on STACK. 1If
PTR = NULL, then rcturn to Step (a); otherwise Exit.

(We note that the initial element NULL on STACK is used as a scntinel.)

We simulate the algorithm in the next example. Although the example works with the nodes
themselves, in actual practice the locations of the nodcs arc assigned o PTR and are pushed onto the
STACK.

EXAMPLE 7.9

Consider the binary tree T in Fig. 7-16. We simulate the above algorithm with . shownn, the contents of
STACK at cach step.

CHAP. 7] TREES 225

/‘ o N ! 3
7 b
a
G \l“K‘

v

1. Initially push NULL onto STACK:
STACK: §.
Then sct PTR:= A, the root of T.
2. Proceed down the left-most path'rooted at PTR = A as follows:
(i) “Process A and push its right child C onto STACK:
STACK: ¢, C.
(ii) Process B. (There is no right child.)
(iii) Process D and push its right child H onto STACK:
STACK: @, C, H. -
(iv) Proccss G. (There is no right child.) = «
No other node is processed, since G has no left childl,
3. [Backtracking.] Pop the top element H from STACK; and set PTR := H. This leaves:
STACK: @, C.
Since PTR # NULL, return to Step (a) of the algorithm.
4. Procced down the left-most path rooted at PTR = H as follows:
(v) Process H and push its right child K onto STACK:
STACK: @, C, K.
No other node is processed, since H has no left child.
5. [Backtracking.] Pop K from STACK, and set PTR := K. This leaves:
STACK: ¢, C. : o
Since PTR # NULL, return to Step (a) of the algorithm.
6. Procced down the Icft-most path rooted at PTR =K as follows:
(vi) - Process K. (There is no right child.)
No other node is processed, since K has no left child.
7. |Backtracking.] Pop C from STACK, and set PTR:= C. This leaves:
STACK: #. ' ' '
Since PTR # NULL, return to Stcp (a) of the algorithm.
8. Procced down the leftmost path rooted at PTR = C as follows:
(vii) Process C and push its right child F onto STACK:
STACK: @, F.
(viii) Process E. (There is no right.child.)
9. [Backtracking.] Pop F from STACK, and sct PTR :=F. This lcaves:
STACK: 9. .
Since PTR # NULL, return to Step (a) of the algorithm.
10. Pruceed dowa the Icft-most path rooted at PTR = F as follows:
{ix) Process F. (Therc is no right child.)
No other node is processed, since F has no left child.
1. [Backtracking.] Pop the top element NULL from STACK, and set PTR := NULL. Since PTR = NULL,
the algorithm is complected.]
As sceen from Steps 2, 4, 6, 8 and 10, the nodes are processed in the order A, B, D, G, H, K, C, EE, F. This is the
required preorder traversal of T,

226 i TREES [CHAP. 7

A formal presentation of our preorder traversal algorithm follows:

Algorithm 7.1: PREORD(INFO, LEFT, RIGHT, ROOT)
A binary trec T is in memory. The algorithm does a preorder traversal of T,
applying an operation PROCESS to each of its nodes. An array STACK is used
to temporarily hold the addresses of nodes.

1. [Initially push NULL onto STACK, and initialize PTR.]
Set TOP:=1, STACK[1]:= NULL and PTR := ROOT.
Repeat Steps 3 to 5 while PTR % NULL:
Apply PROCESS to INFO[PTR].
[Right child?]
If RIGHT[PTR]» NULL, then: [Push on STACK.]
Set TOP :=TOP + 1, and STACK[TOP] := RIGHT[PTR].
[End of If structure.]
5. [Left child?)
If LEFT[PTR] # NULL, then:
Sct PTR := LEFT[PTR].
Elsc: [Pop from STACK.] :
Set PTR :=STACK[TOP] and TOP:=TOP — 1.
[End of If structure.]
[End of Step 2 loop.]
6. Exit.

2N

Inorder Traversal

_The inorder traversal algorithm also uses a variable pointer PTR, which will contain the location of
the node N currently being scanned, and an array STACK, which will hold the addresses of nodes for
future processing. In fact, with this algorithm, a node is processed only when it is popped from
STACK.

Algorithm: Initially push NULL onto STACK (for a sentinel) and then set PTR := ROOT. Then
repeat the following steps until NULL is popped from STACK.

(a) Proceed down the left-most path rooted at PTR, pushing each node N onto
STACK and stopping when a node N with no left child is pushed onto STACK.

(b) [Backtracking.] Pop and process the nodes on STACK. If NULL is popped,
then Exit. If a node N with a right child R(N) is processed, set PTR = R(N) (by
assigning PTR := RIGHT[PTR]) and return to Step (a).

We emphasize that a node N is processed only when it is popped from STACK.

EXAMPLE 7.10
Consider the binary tree T in Fig. 7-17. We simulate the ‘above algorithm with T, showing the contents of

STACK.

A
B/ \C
D/ E/
TN
il B e
K L M

Fig. 7-17

CHAP. 7] TREES 227

Initially push NULL onto STACK:
STACK: 8.
Then set PTR := A, the root of T, ;
Proceed down the left-most path rooted at PTR = A, pushing the nodes A, B, D, G and K onto STACK:
STACK: #, A, B, D, G, K. j ;
(No other node is pushed onto STACK, since K has no left ¢hild.) : :
[Backtracking.] The nodes K, G and D are popped and processed, leaving:
STACK: ¢, A, B.
(We stop the processing at D, since D has a right child.) Then set PTR := H, the right child of D.
Procced down the left-most path rooted at PTR = H, pushing the nodes H and L onto STACK:
STACK: @, A, B, H, L. :
(No other node is pushed onto STACK, since L has no left child.)
[Backtracking.] The nodes L and H are popped and processed, leaving:; g
STACK: @, A, B. ; .
(We stop the processing at H, since H has a right child.) Then set PTR =M, thc right child of H,
Proceed down the left-most path rooted at PTR = M, pushing node M onto STACK:
STACK; @, A, B, M.
(No other node is pushed onto STACK, since M has no lecft child.)
[Backtracking.] The nodes M, B and A arc popped and processed, lcaving:
STACK; .

(No other clement of STACK is popped, since A docs have a right child.) Set PTR:=C, the right

child of A.

8. Proceed down the left-most path rooted at PTR = C, pushing the nodes C and E onto STACK:

STACK: ¢, C, E. .

9. [Backtracking.] Node E is popped and processed. Since E has no right child, node C is popped and

processed. Since C has no right child, the next clement, NULL, is popped from STACK.

The algorithm is now finished, since NULL is popped from STACK. As scen from Steps 3, 5, 7 and 9, the nodes
are processed in the order K, G, D, L, H, M, B, A, E, C. This is the required inorder traversal of the binary

treec T,

A formal presentation of our inorder traversal algorithm follows:

Algorithm 7.2: INORD(INFO, LEFT, RIGHT, ROOT) : o

A binary tree is in memory. This algorithm docs an inorder traversal of T,
applying an.operation PROCESS to cach of its nodes. An array STACK is uscd
to temporarily hold the addresses of nodes. iy

1. [Push NULL onto STACK and initialize PTR.)
Set TOP := 1, STACK[1]:= NULL and PTR := ROOT. .
2. Repeat while PTR » NULL: [Pushes left-most path onto STACK.]"
(@) Set TOP:=TOP + 1 and STACK[TOP]:=PTR. [Saves nodc.]
(b) Set PTR:=LEFT[PTR]. [Updatés PTR.] ‘
[End of loop.] Y . 4 ; i
Set PTR := STACK[TOP] and TOP :=TOP -- 1. [Pops node from STACK.]
Repeat Steps 5 to 7 while PTR » NULL: [Backtracking:] ,
Apply PROCESS to INFO[PTR].
[Right child?] If RIGHT[PTR] # NULL, then:
(a) Sct PTR:= RIGHT[PTR].
() Go to Step 3.
[End of If structure.]
% Set PTR := STACK[TOP] and TOP :=TOP — 1. [Pops node.]
[End of Step 4 loop.]
8. Exit,

& Lid W

228

TREES : [CHAP. 7

Postorder Traversal

The postorder traversal algorithm is more complicated thian the preceding two algorithms, because
here we may have to save a node N in two diffcrent situations. We distinguish between the two cases by
pushing cither N or its ncgative, —N, onto STACK. (In actual practice, the location of N is pushed

onto STACK, so —N has the obvious mecaning.) Again, a variable PTR (pointer) is uscd which
contains the location of the node N that is currently being scanned, as in Fig. 7-15.

Algorithm; Initially push NULL onto STACK (as a sentincl) and then set PTR := ROOT. Then

repeat the following steps until NULL is popped from STACK.

(a) Procecd down the left-most path rooted at PTR. At cach node N of the path,
push N onto STACK and, if N has a right child R(N), push —R(N) onto
STACK.

(b) [Backtracking.] Pop and process positive nodes on STACK. If NULL is |
popped, then Exit. If a ncgative node is popped, that is, if PTR = —N for somc
node N, sct PTR =N (by assigning PTR := —PTR) and rcturn to Step (a).

We emphasize that a node N is processed only when it is popped from STACK and it is
positive. - ‘

.EXAMPLE 7.11

Consider again the binai‘y tree T in Fig. 7-17. We simulatc the above algorithm with T, showing the contents
of STACK. '

2.

6.

8.

9:

Initially, push NULL onto STACK and set PTR:= A, the root of T:
STACK: 0.
Proceed down the left-most path rooted at PTR = A, pushing the nodes A, B, D, G and K onto STACK.
Furthermore, since A has a right child C, push —C onto STACK after A but before B, and since D has a
right child H, push —H onto STACK after D but before G. This yiclds: '
STACK: #, A, -C, B, D, —H, G, K.
[Backtracking.] Pop and process K, and pop and process G. Since —H is ncgative, only pop —H. This’

. leaves: .

_STACK: #, A, —C, B, D.
Now PTR = —H. Reset PTR = H and rcturn to Step (a).
Proceed down the left-most path rooted at PTR = H. First push H onto STACK. Sincc H has a right child
M, push —M onto STACK after H. Last, push L onto STACK. This gives:
STACK: ¢, A, —=C, B, D, H, -M, L.
[Backtracking.] Pop and process L, but only pop —M . This leaves:
STACK: §, A, —C, B, D, H,
Now PTR = —M. Reset PTR =M and rcturn to Step (a). .
Procecd down the left-most path rooted at PTR = M. Now, only M is pushcd onto STACK. This yiclds:
STACK: #, A, —C, B, D, H, M. ’
[Backtracking.] Pop and process M, H, D and B, but only pop —C. This lcaves:
STACK: @, A. =~
Now PTR = —C. Reset PTR = C, and return to Step (a).
Proceed down the left-most path rooted at PTR = C. First C is pushed onto STACK and then E, yiclding:
STACK: #, A, C, E.
[Backtracking.] Pop and process E. C and A. When NULL is popped, STACK is cmpty and the
algorithm is completed.

As scen from S'lcf)s 3,5,7and 9, the nodes are processed in the order K,G,L,M,H,D,B ,C, A. Thisis the
requircd postorder traversal of thc binary tree T.

CHAP. 7] TREES 229

A formal presentation of our postorder traversal algorithm follows:

Algorithm 7.3: POSTORD(INFO, LEFT, RIGHT, ROOT)
A binary tree T is in memory. This algorithm docs a postorder traversal of T,
applying an operation PROCESS to each of its nodes. An array STACK is uscd
to temporarily hold the addresses of nodes.

1. [Push NULL onto STACK and initialize PTR.]

Sct TOP:=1, STACK[1]:= NULL and PTR := ROOT.
2. [Push lcft-most path onto STACK.]

Repcat Steps 3 to 5 while PTR # NULL:

3. Set TOP :=TOP + 1 and STACK[TOP) := PTR.
[Pushes PTR on STACK.]
4. If RIGHT[PTR] # NULL, thcn: [Push on STACK.]

Set TOP:=TOP + 1 and STACK[TOP]:= —RIGHT[PTR].
[End of If structurc.]
5 Sct PTR := LEFT[PTR]. [Updates pointer PTR.]
[End of Step 2 loop.]
6. Sect PTR:=STACK[TOP] and TOP :=TOP — 1.
[Pops node from STACK.]
7. Repeat while PTR > 0:
(a) Apply PROCESS to INFO[PTR].
(b) Sct PTR:=STACK[TOP] and TOP:=TOP — 1.
[Pops node from STACK.]
[End of loop.]
8. If PTR <O, then:
(¢) Sct PTR:=-PTR.
(b) Go to Step 2.
|End of If structure.]
9. Exit,

7.6 HEADER NODES; THREADS

Considcr a binary tree T. Variations of the linked representation of T are frequently uscd because
certain operations on T arc casicr to implement by using the modifications. Some of these variations,
which arc analogous to hcader and circular linked lists, are discussed in this scction.

Header Nodes

Supposc a binary tree T is maintained in memory by means of a linked rcprescntation. Sometimes
an extra, special node, called a header node, is added to the beginning of T. When this extra node is
used, the tree pointer variable, which we will call HEAD (instcad of ROOT), will point to the header
node, and the left pointer of the header node will point to the root of T. Figurc 7-18 shows a schematic
picturc of the binary tree in Fig. 7-1 that uscs a linked represcntation with a hcader node: (Compare
with Fig. 7-6.) N

Supposc a binary tree T is empty. Then T will still contain a header node, but the left pointer of the
header node will contain the null value. Thus the condition

LEFT[HEAD] = NULL

will indicate an ecmpty tree.

230 TREES [CHAP. 7

HEAD

= Header node

X
H

4

(X} %]

Fig. 7-18

Another variation of the above representation of a binary tree T is to use the header node as a
sentinel. That is, if a node has an empty subtrce, then the pointer field for the subtree will contain the
address of the hcader node instead of the null leue Accordingly, no pointer will ever contain an
invalid address, and the condition

LEFT[HEAD] = HEAD

will indicatc an empty subtree.

Threads; Inorder Threading

Consider again the linked representation of a binary tree T. Approximately half of the entries in
the pointer ficlds LEFT and RIGHT will contain null elements. This spacc may be more efficicntly
used by replacing the null entrics by some other type of information. Specifically, we will replace
certain null entrics by special pointers which point to nodes higher in the tree. These special pointers
are called threads, and binary trees with such pointers arc called threaded trees.

The threads in a threaded tree must be distinguished in some way from ordinacy pointers. The
threads in a diagram of a threaded tree are usually indicated by dotted lines. In computer memory, an
cxtra 1-bit TAG ficld may be used to distinguish threads from ordinary pointers, or, alternatively,
‘threads may be denoted by negative integers when ordinary pointers are denoted by positive integers.

There are many ways to thread a binary tree T, but each threading will correspond to a pariicular
traversal of T. Also, one may choose a one-way threading or a two-way threading. Unless otherwise
stated, our threading will correspond to the inorder traversal of T. Accordingly, in the one-way
threading of T, a thread will appear in the right field of a node and will point to thc next node in the
inorder traversal of T; and in the two-way threading of T, a thread will also appear in the LEFT ficld of
a node and will point to the preceding node in the inorder traversal of T. Furthermore, the leit pointer
of the first node and the right pointer of the last node (in the inorder traversal of T) will contain the
null value when T does not have a header node, but will point to the header node when T docs have a
header noac.

There is an analogous one-way threading of a binary tree T which corrcsponds to the preorder
traversal of T. (Sce Prob. 7.13.) On the other hand, there is no threading of T which corresponds to the
postorder traversal of T.

CHAP. 7)

TREES

(¢) Two-way threading with header node.
Fig. 7-19

231

232 TREES [CHAP. 7

EXAMPLE 7.12
Consider the binary trec T in Fig. 7-1.

(a) The onc-way inorder threading of T appears in Fig. 7-19(a). There is a thread from node E to node A, sincc
A is accessed after E in the inorder traversal of T. Obscrve that cvery null right pointer has been replaced by
a thread except for the node K, which is the last node in the inorder traversal of T. ' “

(b) ‘Thc two-way inorder threading of T appears in Fig. 7-19(b). Therc is a left thread from node L to nade C,
since L is accessed after C in the inorder traversal of T, Observe that cvery null left pointer has been replaced
by a thread except for node D, which is the first node in thé inorder traversal of T. All the right threads are
the same as in Fig. 7:19(a).

(¢) The two-wa'y inorder threading of T when T has a hecader node appears in Fig. 7-19(c). Here the left thread
of D and the right thread of K point to the hcader node. Otherwisc the picture is the same as that in Fig.
7-19(b).

INFO LEFT RIGHT

1 K -17 -20
HEAD 2 c 3 6
20 3 G =5 -2
4: 14
AVAIL 3 A 10 2
E—— 6 H 17 1
T L -2 -17
8 9 ¥
9 4
10 B 18 13
i1 19
12 Fr =10 13
13 E 12 -5 ¥
14 15
15 16
16 11
17 J T -0
18 D =20 -10
0
5 20

Fig. 7-20

CHAP. 7) TREES 233

(d) Figure 7-7 shows how T may be maintained in memory by using a'linked representation. Figure 7-20 shows
how the representation should be modified so that T is a two-way inorder threaded tree using INFO[20] as a
header node. Observe that LEFT[12] = —10, which means there is a l=ft thread from node F to node B.
Analogously, RIGHT[17] = —6 means there is'a right thread from node J to node H. Last, observe that
RIGHT(20] = 20, which means there is an ordinary right pointer from the header node to itself. If T were
empty, then we would set LEFT[20] = —20, which would mean there is a left thread from the header node to
itself.

7.7 BINARY SEARCH TREES

This section discusses one of the most.important. data; structures in computer science, a binary
search tree. This structure enables one to search for and find an element with an average running time
f(n) = O(log, n). It also enables one to easily insert and delete elements. This structure contrasts with
the following structures: :

(a) Sorted linear array. Here one can search for and find an element with a -ruhning time
f(n) = O(log, n), but it is expensive to insert and delete elements.

(b) Linked list. Here one can easily insert and delete elements, but it is expensive to search for
and find an element, since one must use a linear search with running time f(n) = O(n).

Although each node in a binary search tree may contain an entire record of data, the definition of the
binary tree depends on a given field whose values are distinct and may be ordered.

Suppose T is a binary tree. Then T is called a binary search tree (or binary sorted tree) if each node
N of T has the following property: The value at N is greater than every value in the left subtree of N and
is less than every value in the right subtree of N. (It is not difficult to see that this property guarantees
that the inorder traversal of T will yield a sorted listing of the elements of T.) .

EXAMPLE 7.13

(a) Consider the binary tree T in Fig. 7-21. T is a binary search tree; that is, every node N in T exceeds every
number in its left subtree and is less than every number in its right subtree. Suppose the 23 were replaced by
35. Then T would still be a binary search tree. On the other hand, suppose the 23 were replaced by 40. Then
T would not be a binary search tree, since the 38 would not be greater than the 40 in its left subtree.

) / 38 \
/ \23 : / e
/ s

8

18

Fig. 7-21

(b) Consider the file in Fig. 7-8. As indicated by Fig. 7-9, the filc is a binary search tree with respect to the key
NAME. On the other hand, the file is not a binary search tree with respect to the social security number key
SSN. This situation is similar to an array of records which is sorted with respect to one key but is unsorted
with respect to another key.

The definition of a binary search tree given in this section assumes that all the node values are
distinct. There is an analogous definition of a binary search tree which admits duplicates, that is, in
which each node N'has the following property: The value at N is greater than every value in the left
subtree of N and isdess than or equal to every value in the right subtree of N. When this definition is
used, the operations in the next section must be modified accordingly. ;

234 TREES [CHAP. 7

7.8 SEARCHING AND INSERTING IN BINARY SEARCH TREES

Suppose T is a binary search trce. This section discusses the basic opcrations of searching and
inserting with respect to T, In fact, the scarching and inscrting will be given by a single scarch and
inscrtion algorithm. The operation of deleting is treated in the next section. Traversing in T is the same
as lraversing in any binary trec; this subjcct has been covered in Sec. 7.4.

Supposc an ITEM of information is given. The following algorithm finds the location of ITEM in
the binary search tree T, or inscrts ITEM as a new node in its appropriate place in the tree.

(a) Compare ITEM with the root node N of the tree.
(i) If ITEM <N, proceed to the left child of N.
(iri) If ITEM> N, proceed to the right child of N.

(b) Rcpeat Step (a) until one of the following occurs:
(i) We meet a node N such that ITEM = N. In this casc the scarch is successful.
(ii) We mcct an empty subtree, which indicates that the scarch is unsuccessful, and we
insert ITEM in place of the empty subtrece.

in other words, proceed from the root R down through the tree T until finding ITEM in T or inserting
ITEM as a terminal node’in T. .

EXAMPLE 7.14
{a) Consider the binary scarch tree T'in Fig. 7-21. Suppose ITEM = 20 is given. Simulating the above algorithm,

we obtain the following steps: :

1. Comparc ITEM = 20 with the root, 38, of the trce T. Sincg 20 < 38, proceed to the left child of 38, which
is 14,

Comparc ITEM = 20 with 14. Since 20> 14, procced to the right child of 14, which is 23.

Compare ITEM =20 with 23. Since 20 <23, proceed to the left child of 23, which is:18.

Compare I'TEM = 20 with 18. Sincc 20> 18 and 18 does not have a right child, inscrt 20 as the right child
of 18. 7L it

i

Figure 7-22 shows the new tree with ITEM = 20 insertcd. The shaded cdges indicate the path down through
the tree during the algorithm. '

S 4 \ ‘
S

23 45 82

4

18
N o

0

8

]

Fig. 7-22 ITEM = 20 inserted. '

#

(b) Consider the binary scarch tree T in Fig. 7-9. Suppose ITEM = Davis is given. Simulating the above
algorithm, we obtain the following steps:

- 1. Compare ITEM = Davis with'the root of the tree, Harris. Since Davis < Harris, proceed to the left child
of Harris, which is Cohen. ;
2. Compare ITEM = Davis with Cohen. Since Davis > Cohen, proceed to the right child of Cohen, which
<rois Gireen.

CHAP. 7) TREES 235

3. Comparc ITEM = Davis with Green. Since Davis < Green, procced to the left child of Green, which is
Davis.
4. Compare ITEM = Davis with the lcft child, Davis. We have found the location of Davis in the trec.

EXAMPLE 7.15
Suppose the following six numbers are inserted in order into an cmpty binary scarch tree:
40, 60, 50, 33, 55, 11

Figure 7-23 shows the six stages of the trec. We emphasize that if the six numbers were given in a different order,
then the trec might be different and we might have a diffcrent depth.

The formal presentation of our search and insertion algorithm will use the following proccdure,
which finds the locations of a given ITEM and its parent. The procedure traverses down the tree using
the pointer PTR and the pointcr SAVE for the parent node. This procedure will also be uscd in the
next scction, on deletion.

Procedure 7.4: _FIND(INFO, LEFT, RIGHT, ROOT, ITEM, LOC, PAR)
A binary scarch tree Tis in memory and an ITEM of information is given. This
procedure finds the location LOC of ITEM in T and also the location PAR of
the parcent of ITEM. There arc three special cascs:
(i) LOC=NULL and PAR=NULL will indicatc that the tree is
cmpty.
(ii)) LOC# NULL and PAR = NULL will indicate that ITEM is the root
of T.
(iii) LOC=NULL and PAR % NULL will indicatc that I'TEM is not in T
and can be added to T as a child of thc node N with location PAR.
1. [Trec empty?]) - °* o
zIf ROOT=NULL, then: Set LOC:= NULL and PAR:=NULL, and
Returp., '
2. [ITEM at root?] '
If ITEM = INFO[ROOT], then: Sct LOC:= ROOT and PAR:= NULL,
and Rcturn. TEE
[Thitializc pointers PTR and SAVE.]
If ITEM < INFO[ROOT], then:

" Sct PTR := LEFT[ROOT] and SAVE :=ROOT.
Else:

<" _Sct PTR:= RlGHT[ROO’I“} and SAVE := ROOT.
[End of If structurc.]
Repeat Steps 5 and 6 while PTR »# NULL:
[ITEM found?]
If ITEM = INFO[PTR], then: Sct LOC:=PTR and PAR:=SAVE,
and - ' -
6. =If ITEM <INFO|PTR], then: ~
—Sct SAVE := PTR and PTR := LEFT[PTR].
~Elsec: i
~—Set SAVE :=PTR and PTR := RIGHT[PTR .
[End of If structure.]

End of Step 4 loop.] :
Search unsuccessful. | Set LOC:= NULL and PAR := SAVE.
<T BT L T et et Y KR

Obscrve that, in Step 6, we move to the left child or the right child according to whether
ITEM <INFO[PTR] or ITEM > INFO[PTR].

A\

»

» s

bl

0

236 TREES [CHAP. 7

A m\ i / ‘0\
60 \/w - /m
. 50 e 50
%

(1) ITEM =40. 2> !TEM = 60. (3) ITEM =50. (4) I'NEM = 33.
33/ \w E ; ‘ 33/ \ 0
¥ VAN T
N,

b

.55 ' 55

(5) ITEM=55. . A (6) ITEM = I1.
Fig. 7-23

' The formal statcment of -our search and inscrtion algorithm follows.

Algorithm 7.5: INSBST(INFO, LEFT, RIGHT, ROOT, AVAIL, ITEM, L.OC)
A binary scarch trce T is in memory and an ITEM of information’is given. This
algorithm finds the location LOC of ITEM in T or adds lTEM asancwnodcinT
at location LOC.

1. Call FIND(INFO, LEFT, RIGHT, ROOT, ITEM, LOL PAR).
[Procedure 7.4.] /
If LOC # NULL, then Exit.
[Copy ITEM into ncw node in AVAIL hst]
(a) If AVAIL = NULL, then: Write: OVERFLOW, and Exit.
. (b) Sct NEW := AVAIL, AVAIL:= LEFT[AVAIL] and
5 " INFO[NEW]:= ITEM. -
(¢) Sct LOC:=NEW, LEFT[NEW]:= NULL and
RIGHT[NEW] := NULL. i
4. |Add ITEM to trce.]
If PAR= NULL, then:
Sct ROOT := NEW.
Else if ITEM < INFO[PAR], then:
Sct LEFT[PAR] = NEW.
Elsc:
Scl RIGHT[PAR] = NEW. .
[End of If structurc.j
" 5. Exit. ks i

oo

QObserye that, in Stcp 4, there arc lhrcc posssbnlmcs (1) lhc trec is cmply. (2) ITI.‘.M is .ufded as-a Icﬁtc
child and (3) ITEM is added as a right child.

CHAP. 7) TREES S 237

Complexity of the Searching Algorithm:. .

Suppose we are searching for an item of information in a binary search tree T. Observe that the
number of comparisons is bounded by the depth of the tree. This comes from the fact that we proceed
down a single path of the tree. Accordingly, the running time of the search will be proportional to the
depth of the tree.

Suppose we are given n data items, A,, A,, . . ., Ay, and suppose the items are inserted in order
into a binary search tree T. Recall that there are n! permutations of the.n items (Sec: 2:2). Each:such"
permutation will give rise to a.corresponding:tree. It can be shown: that the-average depth-of the-n!
trees is approximately c log, n, where ¢ = 1.4. Accordingly, the average running time f(n) to search for
an item'in a binary tree T with n elements is proportional to log, n, that is, f(n) = O(log, n).

Application of Binary Search Trees

Consider a collection of n data items, A, A,,..., A,. Suppose we want to find and delete all
duplicates in the collection. One straightforward way to do this is as follows:

Algorithm A: Scan the elements from A, to A (that is, from left to right).

(a) For each element A, , compare A, with A, Ay, ..., Ag_,, thatis, compare A ¢
with those elements which precede A .
(b) 1f Ay does occur among A, A,, ..., A, ,, then delete Ag.

After all elements have been scanned, there will be no duplicates.

EXAMPLE 7.16
Suppose Algorithm A is applied to the following list of 15 numbers:

| 14, 10,.17, 12, 10, 11, 20, 12, 18, 25, 20, 8, 22, 11, 23
Observe that the first four numbers (14, 10, 17 and 12) are not deleted. However,

As=10 is deleted, since A=A,
A;=12 . is deleled, since A
A,, =20 is deleted, since A,=
A, =11 s deleted, since A

When Algorithm A is finished running, the 11 numbers
14, 10, 17, 12, 11, 20, 18, 25, 8, 22, 23

which are all distinct, will remain.

Consider now the time complexity of Algorithm A, which is determined by the number of
comparisons. First of all, we assume that the number d of duplicates is very small compared with the
number » of data items. Observe that the step involving Ay will require approximately k — 1
comparisons, since we compare A, withitems A, A,, . . ., A (less the few that may already have
been deleted). Accordingly, the number f(n) of comparisons required by Algorithm A is approxi-
mately
C0+14+243+ -+ (r-2)+(n—-1)= gﬂ—i-l)—"

For example, for n = 1000 items, Algorithm A will require approximately 500 000" comparisons: In
other words, the running time of ‘Algorithm:A: is.proportional- to n’

Using a binary search tree, we can give another algorithm to find the duplicates in the set
AL A,, ..., Ay of n data items.

= 0(n?)

238 TREES [CHAP. 7

Algorithm B: Build a binary scarch tree T using the clements A, A,, . . ., Ay In building the tree,
delete A, from the list whenever the value of Ay alrcady appears in the trec.

The main advantage of Algorithm B is that cach clement A is comparcd only with the elcmentsin
a single branch of the tree. It can be shown that the average length of such a branch is approximatcly
c log, k, where ¢ = 1.4. Accordingly, the total number f(n) of comparisons required by Algorithm B is
approximatcly ‘n log, n, that is, f(n)="O(nlog; n). For-example, for n = 1000, Algorithmn B will
require approximately 10000 comparisons rather than the 500000 comparisons with Algorithm A.
(We note that, for thc worst casc, the number of comparisons for Algorithm B is the same as for
Algorithm A.)

EXAMPLE 7.17
Consider again the following list of 15 numbers:
14, 10, 17, 12, 10, 11, 20, 12, 18, 25, 20, 8, 22, 11, 23
Applying Algorithm B to this list of numbers, we obtain the trec in Fig. 7-24. The exact number of comparisons is

0+14+1+24+2+3+24+3+3+3+3+24+44+4+5=38

On the other hand, Algorithm A requires
0+ 14+243+2+4+5+4+6+7+6+8+9+5+10=72

/\ ¢ L

17 \ g
: e g

11 "

comparisons.

S
A

22

N
(™)

Fig. 7-24

7.9 DELETING IN A BINARY SEARCH TREE

Suppose T is a binary scarch tree, and suppose an I'TEM of information is given. This scction gives
an algorithm which deletes ITEM from the tree T.

The dcletion algorithm first uses Procedurc 7.4 to find the location of the node N which contains
ITEM and also the. location of the parent node P(N). The way N is delcted from the tree depends
primarily on-the number- of children of node N. There-are three cascs:

Case 1. -N has no children. Then N is deleted from T by simply replacing the location of N in the
parent node P(N) by the null pointer.

CHAP. 7]

Casc 2. N has exactly one child. Then N is dcleted from T by simply rcplacing the location of N in

TREES

P(N) by the location of the only child of N.

Casc 3. N has two children. Let S(N) denote the inorder successor o
that S(N) does not have a lcft child.) Then N is dcleted from
T (by using Case 1 or Case 2) and then replacing node T

Obscrve that the third case is much more complicated than the first two
memory space of the dcleted node N is returned to the AVAIL list.

i

i M

15 66

&
33/50

(a) Before deletions.

SRy
/ e | /75

15
50 66

'

33

(@) Node 44 is deleted.

)

INFO LEFT RIGHT

ROOT 1 3 0 9
3 2 25 8 10
AVAIL 3 60 2 7
5 4 66 0 0
5 6
S) 0
7 75 4 0
8 15 0 0
9 44 0 0
10 50 1 0
(6) Linked representation.
Fig. 7-25
INFO LEFT RIGHT
ROOT 1 33 0
3 2 25 8 10
AVAIL 3 60 2 7
4 66 0 0
5 6
6 0
7 75 4 0
8 15 0- 0
9
HY;
{6) Linked representation.

Fig. 7-26

f N. (The reader can verify
T by first deleting S(N) from
1in T by the node S(N).

cascs. In all three cascs, the

240 TREES [CHAP. 7

EXAMPLE 7.18

Consider the binary search tree in Fig. 7-25(a). Suppose T appears in memory as in Fig. 7-25(b).

(a) Suppose we delete node 44 from the tree T in Fig. 7-25. Note that node 44 has no children. Figure 7-26(a)
pictures the tree after 44 is deleted, and Fig. 7-26(b) shows the linked representation in memory. The
deletion is accomplished by simply assigning NULL to the parent node, 33. (The shading indicates the
changes.) 3 :

(b) Suppose we delete node 75 from the tree T in Fig. 7-25 instead of node 44. Note that node 75 has only one
child. Figure 7-27(a) pictures the tree after 75 is deleted, and Fig. 7-27(b) shows the linked representation.
The deletion is accomplished by changing the right pointer of the parent node 60, which originally pointed to
75, so that it now points to node 66, the only child of 75. (The shading indicates the changes.)

INFO LEFT RIGHT

ROOT 1 33 0 9
60 3 2 25 8 10
/ \ 3 60 2
25 66
/ \ 4 66 0
15 50 5 6
r 4 6 0
33 :
\ T
44 8
9 44 0 0
10 50 1 0
(a) Node 75 is dcleted. (b) Linked representation.

Fig. 7-27

{c) Suppose we delete node 25 from the tree T in Fig. 7-25 instead of node 44 or node 75. Note that node 25 has
two children. Also observe that node 33 is the inorder successor of node 25. Figure 7-28(a) pictures the tree
after 25 is deleted, and Fig. 7-28(b) shows the linked representation. The deletion is accomplished by first
deleting 33 from the tree and then replacing node 25 by node 33. We emphasize that the replacement of node
25 by node 33 is executed in memory only by changing pointers, not by moving the contents of a node from
one location to another. Thus 33 is still the value of INFO[1].

Our deletion algorithm will be stated in terms of Procedures 7.6 and 7.7, which follow. The first
procedure refers to Cases 1 and 2,-where the deleted node N does not have two children; and the -
second procedure refers to Case 3, where N does have two children. There are many subcases
which reflect the fact that N may be a left child, a right child or the root. Also, in Case 2, N may have a
left child or a right child. :

Procedure 7.7 treats the case that the deleted node N has two children. We note that the inorder
successor of N can be found by moving to the right child of N and then moving repeatedly to the left
until meeting a node with an empty left subtree.

CHAP. 7) TREES 241
INFO LEFT RIGHT

ROOT | :

60 SRS
/ \ 66 0 0

K /33 75 6

15 50 66 -
‘ / 75 4 0
i 15 0 0
44 0 0
10 50 0

“(a) Node 25 is deleted., ' (b) Linked representation
Fig. 7-28
Procedure 7.6: CASEA(INFO, LEFT, RIGHT, ROOT, LOC, PAR)

This procedure deletes the node N at locati
children. The pointer
PAR = NULL indicates that N is the root

children,

L. [Initializes CHILD.]
If LEFT[LOC] = NULL and RIGHT]
Set CHILD := NULL, |
Else if LEFT[LOC] % NULL, then:
Set CHILD := LEFT[LOC].
Else :
Set CHILD := RIGHT[LOC].
[End of If structure.]
If PAR # NULL, then:
If LOC = LEFT[PAR], then:
Sct LEFT[PAR]) := CHILD.
Else: .
Set RIGHT[PAR]:= CHILD
[End of 1f structure.]
Else:
Set ROOT := CHILD.
[End of If structure. |

3. Return.

location of thg only child of N, or eclse CHIL

on LOC, where N does not have two

PAR gives the location of the parcnt of N, or else

node. The pointer CHILD gives the
D = NULL indicates N has no

LOC] = NULL, then:

242 TREES [CHAP. 7

Procedure 7.7: CASEB(INFO, LEFT, RIGHT, ROOT, LOC, PAR) ‘
- This procedure will delete the node N at location LOC, where N has two
children. The pointer PAR gives the location of the parent of N, or else
PAR = NULL indicates that N is the root node. The pointer SUC gives the
loeation of the inorder successor of N, and PARSUC gives the location of the
parent of the inorder successor.

1. [Find SUC and PARSUC.]
(a) Set PTR:= RIGHT[LOC] and SAVE := LOC.
(b) Repeat while LEFT{PTR] # NULL:
Set SAVE := PTR and PTR := LEFT[PTR}.
{End of loop.] N
(c) Set SUC:=PTR and PARSUC := SAVE.
2. |[Delete inorder successor, using Procedure 7.6.]
Call CASEA(INFO, LEFT, RIGHT, ROOT, SUC, PARSUC).
3. [Replace node N by its inorder successor.]
(a) 1f PAR# NULL, then:
If LOC = LEFT[PAR], then:
Sct LEFT[{PAR]:= SUC.
Else:
Set RIGHT[PAR]:=SUC.
[End of If structure.]
Else: =
Sct ROOT := SUC.
[End of If structure.]
(b) Set LEFT[SUC]:= LEFT[LOC] and
RIGHT[SUC]:= RIGHT{LOC].
4. Return.

. ‘ t
We can now formally state our deletion algorithm, using Procedures 7.6 and 7.7 as building
blocks. "

. Algorithm 7.8: DEL(INFO, LEFT, RIGHT, ROOT, AVAIL, ITEM)
A binary scarch tree T is in memory, and an ITEM of information is given. This
algorithm deletes ITEM from the tree.)

1. [Find the locations of ITEM and its parent, using Procedure 7.4.]
Call FIND(INFO, LEFT, RIGHT, ROOT, ITEM, LOC, PAR).
2. [ITEM in tree?]
If LOC = NULL, then: Write: ITEM not in tree, and Exit.
3. [Delete node containing ITEM.]
If RIGHT[LOC] # NULL and LEFT[LOC] # NULL, then:
Call CASEB(INFQO, LEFT, RIGHT, ROOT, LOC, PAR).
Llse:
Call CASEA(INFO, LEFT, RIGHT, ROOT, LOC, PAR).
[End of If structure.] :
4. [Return deleted node to the AVAIL list.]
Sct LEFT|LOC):= AVAIL and AVAIL :=10C.
5. - EXit

CHAP. 7) TREES ‘ 243

7.10 HEAP; HEAPSORT

This section discusses another tree structure, called a heap. The heap is used in an ‘lcgant sorting
algorithm called heapsort. Although sorting will be treated 'mainly in Chap. 9, we giv. the heapsort
algorithm here and compare its complexity with that of the bubble sort and quicksort aigc rithms, which
were discussed, respectively, in Chaps. 4 and 6.

Suppose H is a complete binary tree with n clements. (Unless otherwise stated, we assumec that H
is maintained in memory by a linear array TREE using the sequential representation of H, not a linked
represcntation.) Then H is called a heap, or a maxheap, if each node N of H has the following
property: The value at N is greater than or equal to the value at each of the children of N. Accordingly,
the value at N is greater than or cqual to the value at any of the descendants of N. (A minheap is
defined analogously: The value at N is less than or equal to the value at any of the children of N.)

EXAMPLE 7.19

Consider the complete tree H in Fig. 7-29(a). Observe that H is a heap: This mcans, in particular, that the
largest clement in H appears at the-*“top” of the heap, that is, at the root of the trec. Figure 7-29(b) shows the
sequential representation of H by the array TREE. That is, TREE[1] is the root of the trece H, and the left and
right children of node TREE[K] arc, respectively, TREE[2K] and TREE[2K + 1}. This mcans, in particular, that
the parent of any nonroot node TREE[]] is the node TREE[J + 2] (where J + 2 means integer division). Observe
that the nodes of H on the same lcvel appear onc after the other in the array TREE.

97 <
) // \qs

T T N
AN

/ / 55\ = *
/66\ /35 /43' 55 62 77 zs/ \33
18 40 30 26 24
(@) Heap.
TREE

97188[95|166)55[95[48 6635|4855 62|77]25]38] 18] 40] 30|26 24}

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(b) Sequential representation.

Fig. 7-29

Inserting into a Heap
Supposc H is a heap with N clements, and suppose an ITEM of information is given. We insert
ITEM into the heap H as follows:
(1) First adjoin ITEM at the end of H so that H is still a complete tree. but not necessarily a
heap. ‘ i
(2) Then let ITEM rise to its “appropriate place™ in H so that H is finally a heap.

We illustrate the way this procedure works before stating the procedurc formally.

244 TREES [CHAP. 7

EXAMPLE 7.20

Consider the heap*H in Fig. 7+29. Suppose we want to add ITEM = 70 to H: First we adjoin 70 as the next
element in the complete tree; that is, we set TREE[21] = 70. Then 70 is the right child of TREE[10] = 48. The path
from 70 to the root of H is pictured in Fig. 7-30(a). We now find the appropriate place of 70 in the heap as follows:

(a) Compare 70 with its parent, 48. Since 70 is greater than 48, interchange 70 and 48; the path will now look
like Fig. 7-30(b).

(b) Compare 70 with its new parent, 55. Since 70 is greater than 55, interchangc 70 and 55; the path will now
look like Fig. 7-30(c).

(c) Compare 70 with its new parent, 88. Since 70 does not excced 88, ITEM = 70 has risen Lo its appropriate
place in H.

Figure 7-30(d) shows the final tree. A dotted line indicates that an cxchange has taken placc.

Remark: One must verify that the above procedure does always yicld a hcap as a final tree, that is, that
nothing clsc has been disturbed. This is casy to see, and we leave this verification to the reader.

‘97 97 97

_ 38/ '
M . o
s O 5
<

20

@ e @
88/97\ 95
) / \) ; / \
66/ \35 .55//’ \55 62/ \77 / \
18/ \40 30/\26 24/ .\\;8
(d)

Fig. 7-30 ITEM = 70 is inserted.

CHAP. 7] TREES 245

EXAMPLE 7.21
Suppose we want to build a.hcap H from the following list of numbers:
44, 30, 50, 22, 60, 55, 77, 55
This can be accomplished by inserting the eight numbers one after the other into an empty heap H using the above
procedure. Figure 7-31(a) through (k) shows the respective pictures of the heap after each of the cight elements

has been inserted. Again, the dotted line indicates that an exchange has taken place during the insertion of the
given ITEM of information.

44 44 50 -
~ < N
30 30 44
(@) ITEM =44, (b) ITEM =30, (c) ITEM = 50.

30 44 50 44
~
o s o
2 22 30
(d) 1TEM =22, (¢) ITEM = 60.

50 55 50 60
4 N\
/ \ . / p 7 e
22 30 44 22 130 44 55
(g) ITEM=77.

(f) ITEM=55.

:55/ \ 60
P T ™

44 55
’
d
7

22

(h) ITEM =55.

Fig. 7-31 Building a hclap.

246 TREES [CHAP. 7

The formal statcment of our insertion procedure follows:

Procedurc 7.9: INSHEAP(TREE, N, ITEM)
A heap H with N elements is stored in the array TREE, and an ITEM of
information is given. This procedure inserts ITEM as a new clement of H. PTR
gives the location of ITEM as it.rises in the trec, and PAR dénotes the location of
the parcnt of ITEM.

1. [Add new nodc to H and initialize PTR.]
Set N:=N+1 and PTR:=N.

2. [Find location to insert ITEM.]
Repeat Steps 3 to 6 while PTR < 1.

3. Sct PAR := |PTR/2]. [Location of parcnt nodc.]
4, If ITEM = TREE[PAR], then:
Sct TREE[PTR]:=ITEM, and Return.
[End of If structure.]
S Sct TREE[PTR]:= TREE[{PAR]. [Moves node down.]
6. Sct PTR := PAR. [Updates PTR.]

|End of Step 2 loop.] :
7. [Assign ITEM as the root of H.]
Set TREE[1]:=ITEM.
8. Return.

Obscrve that ITEM is not assigned to an element of the array TREE until the apprbprialc place for
ITEM is found. Step 7 takes carc of the special casc that ITEM rises to the root TREE[1].
Suppose an array A with N clemcnts is given. By repeatedly applying Procedurg 7.9 to A, that is,

by exccuting
Call INSHEAP(A, J, A[J +1])

for J=1,2,...,N—1, we can build a hcap H out of thc array A.

Deleting the Root of a Heap |

Supposc H is a hcap with N clements, and supposc we want to delete the root R of H. This is
accomplished as follows: '

(1) Assign the root R to some variable ITEM.

(2) Replace the deleted node R by the last node L of H so that H is still a complete tree, but not

nccessarily a heap. - :

(3) (Rcheap) Lect L sink to its appropriate place in H so that H is finally a heap.

Again we illustratc the way the procedure works before stating the procedure formally.

EXAMPLE 7.22

Consider the heap H in Fig. 7-32(a), where R = 95 is the root and L = 22 is the last node of the tree. Step 1of
the above procedure deletes R =95, and Step 2 replaces R =95 by L = 22. This gives the complete tree in Fig.
7-32(b), which is not a heap. Obscrve, however, that both the right and left subtrees of 22 are still heaps. Applying
Step 3, we find the appropriate place of 22 in the heap as follows: 2

(¢) Compare 22 with its two children, 85 and 70. Since 22 is less than the larger child, 85, interchange 22 and

85 so the tree now looks like Fig. 7-32(¢).
(b) Compare 22 with its two new children, 55 and 33. Since 22 is less than the larger child, 55, interchange 22
and 55 so the tree now looks like Fig., 7-32(d).
(¢) Compare 22 with its new children, 15 and 20. Since 22 is greater than both children, node 22 has
dropped to its appropriatc place in H.
Thus Fig. 7-32(d) is the required heap H without its original root R.

CHAP. 7)

/\
NN

/\ /

15 20 15
(a)

N

PN

/N /

TREES 247

(b)

N
/\33 30/ \65

15 20 15 15 20 15

(c) (d)

Fig. 7-32 Reheaping.

Remark: As with inserting an element into a heap, one must verify that the above procedure does always
yield a heap as a final tree. Again we leave this verification to the reader. We also note that Step 3 of the procedure
may not end until the node L reaches the bottom of the tree, i.e., until L has no children.

The formal statement of our procedure follows.

Procedure 7.10: DELHEAP(TREE, N, ITEM)
A heap H with N elements is stored in the array TREE. This procedure assigns
the root TREE[1] of H to the variable ITEM and then reheaps the remaining
clements. The variable LAST saves the value of the original last node of H. The
pointers PTR, LEFT and RIGHT give the locations of LAST and its left and
right children as LAST sinks in the tree.

Set ITEM := TREE[1}. [Removes root of H.]
Set LAST := TREE[N] and N:= N —'1. [Removes last node of H.]
Set PTR:=1, LEFT:=2 and RIGHT := 3. [Initializcs pomtcrs]
Repeat Steps 5 to 7 while RIGHT = N:
If LAST = TREE[LEFT] and LAST = TREE[RIGHT], then:
Set TREE[PTR]:= LAST and Return.
[End of If structure.]
6. IF TREE[RIGHT] = TREE[LEFT], then:
Set TREE[PTR] := TREE[LEFT] and PTR := LEFT.
Else:
Set TREE[PTR]:= TREE[RIGHT] and PTR := RIGHT.
[End of If structure.]
s Set LEFT:=2*PTR and RIGHT := LEFT + 1.
[End of Step 4 loop.]
8. If LEFT =N and if LAST < TREE[LEFT}, then: Set PTR:= LEFT.
9. Set TREE[PTR]:=LAST.
10. Return.

A TR ot

248 TREES [CHAP. 7

The Step 4 loop repeats as long as LAST has a right child. Stcp 8 takes carc of the special casc in
which LAST does not have a right child but docs have a left child (which has to be the last node in H).
The reason for the two “If** statements in Step 8 is that TREE[LEFT] may not be defined when
LEFT > N. .

Application to Sorting

Suppose an array A with N clements is given. The heapsort algorithm to sort A consists of the two
following phases:

Phase A: Build a heap H out of the clements of A.

Phase B: Rcpeatedly delete the root element of H.

Sincc the root of H always contains the largest node in H, Phase B dclctes the elements of A in
decrcasing order. A formal statement of the algorithm, which uses Procedures 7.9 and 7.10, follows.

Algorithm 7.11: HEAPSORT(A, N)
An array A with N clements is given. This algorithm sorts the clements of A.
I. [Build a hecap H, using Procedure 7.9.]
Repeat for J=1to N—1:
Call INSHEAP(A, J, A[J + 1]).
[End of loop.]
2. [Sort A by repeatedly deleting the root of H, using Procedure 7.10.]
Repeat while N> 1:
(a) Call DELHEAP(A, N ITEM).
(b) Set AN+ 1]:=ITEM.:
[End of Loop.]
3. Exit.

The purposc of Step 2(b) is to save space. That is, one could use another array B to hold the sorted
elcments of A and replace Step 2(b) by

Sct B[N +1]:= ITEM

However, the recader can verify that the given Step 2(b) does not interfere with the algorithm, since
A[N + 1] docs not belong to the heap H.

Complexity of Heapsort
Supposc the heapsort algorithm is applied to an array A with n elements. The algorithm has two
phases, and we analyzc the complexity of each phase scparately.

Phase A. Supposc H is a heap. Obscrve that the number of comparisons to find .thc
appropriate place of a new clement ITEM in H cannot cxceed the depth of H. Since H isa .
complete tree, its depth is bounded by log, m where m is the number.of clements in H.
Accordingly, the total number g(n) of comparisons to insert the # elements of A into H is bounded
as follows:

gn)y=nlog, n

Conscquently, the running time of Phase A of heapsort is proportional to nlog, n

Phase B. Suppose H is a complete tree with m clements, and suppose the left and right
subtrees of H are heaps and L is the root of H. Observe that rehcaping uses 4 comparisons to move
the node L one step down the tree H. Since the depth of H does not exceed log, m, rcheaping uses
at most 4 log, m comparisons to find the appropriate place of L in the tree H. This mcans that the

CHAP. 7) TREES - 249

total number h(n) of comparisons to delctc the 1 clements of Afrom H, which requires rchéaping
n times, is bounded as follows: ’ i
. h(n)<4nlog, n

Accordingly, the running time of Phase B of heapsort is also proporliqnal to n log, n.

Since cach phase requires time proportional to n log, n, the running time to sort the n-clement
array Ausing heapsort is proportional to n log, n, that is, f(n) = O(n log, n). Obscrve that this gives a
worst-case complexity of the hcapsort algorithm. This contrasts with the following two sorting
algorithms alrcady studied:

(1) Bubble sort (Sec. 4.6). The running time of bubble sort is O(n?).
(2) Quicksort (Sec. 6.5). The avcrage running time of quicksort is O(n log, n), the same as
hcapsort, but the worst-casc running time of quicksort is O(n?), the same as bubblc sort.

Other sorting algorithms arc investigated in Chap, 9.

7.11 PATH LENGTHS; HUFFMAN'S ALGORITHM

Rccall that an extended binary tree or 2-tree is a binary tree¢ T in which each node haseither O or 2
children. The nodes with 0 children are called external nodes, and the nodes with 2 children are called
internal nodes. Figurc 7-33 shows a“2-trce where the internal nodes are denotcd by circles and the
cxternal nodes are denoted by squares. In any 2-tree, the number N, of external nodes is 1 more than
thc number N, of internal nodes; that is,

Ng=N, +1
For example, for the 2-trece in Fig. 7-33, N, =6, and No =N, + 1=7.

Fig. 7-33

Frequently, an algorithm can be represented by a 2-trec T where the intcrnal nodes represent tests
and the external nodes represent actions. Accordingly,'the running time of the algorithm may depend
on the lengths of the paths in the tree. With this in mind, we definc the external path length Lg of a
2-tree T 10 be the sum of all path lengths summed over each path from the root R of T to an cxternal
nodc. The internal pAth length L, of T is defined analogously, using internal nodcs instcad of external
nodes. For the trce in Fig. 7-33, ! :

Ly=2+2+3+4+4+3+3=21 and L,=0+1+1+2+3+2=9

250 TREES [CHAP. 7

Observe that '
¢ L,+2n=9+2-6=9+12=21= L, J

where # = 6 is the number of internal nodes. In fact, the formula
Le=L,+2n

is true for any 2-tree with .# internal nodes.

Suppose T is a 2-tree with a1 external nodes, and suppose each of the external nodes is assigned a
(nonnegative) weight. The (external) weighted path length P of the tree T is defined to be the sum of
the weighted path lengths; i.e.,

X P=W,L/'+W,L,+---+W,L,k

where W, and L, denote, respectively, the weight and path length of an external node N,.
Consider now the collection of all 2-trecs with n external nodes. Clearly, the complete trce among

them will have a minimal external path length L,. On the other hand, suppose each trce is given the

same n weights for its external modes. Then it is not clear which tree will give a minimal weighted path
length P.

EXAMPLE 7.23 .
Figure 7-34 shows three 2-trees, T,, T, and T,, each having external nodes with weights 2, 3, S and 11. The
weighted path Iengths of the threc trees arc as follows:
) P-2 243:24+5:2411:'2=42
P,=2-1+3-3+5-3+11:2=48
P,=-2'3+3-3+5-2+ 11-1=36
The quantities P, and P, indicate that the complete trec need not give a minimum length P, and the quantities P,
and P, indicate that similar trecs nced not give the same lengths.

(@) T,

The general problem that we want to solve is as follows. Suppose a list of weights is given:
: w',Wz,-..,w

Among all the 2—lrccs with n external nodes and with the given n weights, find a tree T with a
minimum-wcighted path length. (Such a tree T is scldom unique.) Huffman gave an algorithm, which
we now state, to find such a tree T,

Obscrve that the Huffman algorithm is recursively defined in terms of the number of weights and
the solution for one weight is simply the tree with one node. On the other hand, in practice, we use an
cquivalent iterated form of the Huffman algomhm constructing the tree from the bottom up rather
than from the top down.

CHAP. 7] TREES 251

Huffman’s Algorithm: Supposc w, and w, arc two minimum wcights among the n given wcights
W, W,,...,w,.. Find a tree T' which gives a solution for thc n — 1
weights

Witw,, Wy, w,, L., W,

Then, in the tree T, replace the external node

by the subtree m m

The new 2-trec T is the desired solution.

EXAMPLE 7.24 t
Supposc A, B, C, D, E, F, G and H arc 8 data items, and suppose they arc assigned weights as follows:

Data itcm: A B C D E F G H
Weight: 22 1 5§ 1 19 2 11 25 5

Figure 7-35(a) through () shows how to construct the tree T with minimum-wceighted path length using the above
data and Huffman's algorithm. We explain cach step scparately.

(a) Here cach data item belongs to its own subtrec. Two subtrecs with the smallest possible
combination of weights, the one weighted 2 and onc-of those weighted 5, arc shaded.
») Here the subtrees that were shaded in Fig. 7-35(a) arc joincd together 1o form a subtreec with

weight 7. Again, the current two subtrees of lowest weight are shaded

te)to (g) Each step joins together two subtrees having the lowest cxisting wcigllts' (always the oncs that
werc shaded in the preceding diagram), and again, the two resulting subtree of lowest weight arc
shaded.

(D] This is the final desired tree T, formed when the only two remaining subtrees are joined together.

Computer Implementation of Huffman's Algorithm

Consider again the data in Example 7.24. Supposc we want to implement the Huffman algorithm
using the computer. First of all, we requirc an extra array- WT to hold the weights of the nodcs; i.c.,
our tree will be maintained by four paralicl arrays, INFO, WT, LEFT and RIGHT. Figurc 7-36(a)
shows how the given data may be stored in the computer initially. Observe that there is sufficicnt room
for the additional nodes. Obscrve that NULL appears in the left and right pointers for the initial nodes,
since these nodes will 'be terminal in the final tree. . ‘ :

During the cxecution of the algorithm, onc must be able to keep track of all the diffcrent subtrees
and one must zlso be ablc to find the subtrecs with minimum wcights. This may be accomplished by
maintaining an auxiliary minhcap. where cach node contains the weight and the location of the root of
a currcnt subtree. The initial minheap appears in Fig. 7-36(b). (The minhcap is used rather than a
maxhcap sincc we want the node with the lowest weight to be on the top of the heap.)

The first step in building the required Huffman tree T involves the following substcps:

(i) Remove the node N, =[2, 5] and the nogde N, =[5, 2] from the heap. (Each time a
node is delcted, onc must rcheap.)

(ii) Usc thc data in N, and N, and the first available space AVAIL =9 to .dd a new nodc as
follows: ~

WT[9]=2+5=7 LEFT[Y] =5 RIGHT[9] =2
Thus N is the left child of the new node and N, is the right child of the new nodc.
(iii) Adjoin the weight and location of the new nodc, that is, [7, 9], to the heap.

252 TREES [CHAP, 7

i
¥ 4 @ ¥
. -

(&) 3 .)
' Fig. 7-35 Building a Huffman tree.

CHAP. 7] : TREES 253

INFO WT. LEFT = RIGHT INFO WT LEFT RIGHT
1 A 22 0 0 1 A 22 0 0
2 B 5 TS 0 2 B 5 0 0
3 C 11 0 0 3 C 11 0 0
4 D 19 0 0 4 D 19 0)
5 E 2 0 0 5 E 2 0 0
6 F 11 0 0 6 F 11 0 0
7 G 25 0 0 7 G 25 0 0
'8 H 5 0 0 8 I 5 0 0
9 10 9
10 11 10
1 12 11 22 6 3
12 13 12 31 10 4
13 14 13 44 1 11
14 15 14 56 7 12
15 16 15 100 13 14
16 0 16
AVAIL =9 ROOT = 15, AVAIL = 16
(a))
12, Sl\ [5, 8]
15.2) (11,3) (19, 4) 17. 6]
(5. 8] © 19,4 11,6 (25, 7] (22, 1] 125,71 [11,6] (11, 3]
(22, 1)
) (d)

Fig. 7-36 Implementation of Huffman's algorithmn.

254 TREES [CHAP. 7

The shaded area in Fig. 7-36(c) shows the new node, and Fig. 7-36(d) shows the new heap, which has
one less clement than the heap in Fig. 7-36(b).

Repcating the above step until the heap is cmpty, we obtain the required tree T in Fig. 7-36(c). We
must set ROOT = 15, since this is the location of the last node added to the tree.

Application to Coding
Suppose a collection of n data items, A, A,, ..., Ay,arctobe coded by mcans of strings of bits.
One way to do this is to code ecach item by an r-bit string where

27V n=s2

For example, a 48-character set is frequently coded in memory by using 6-bit strings. Onc cannot use
5-bit strings, since 2° <48 <2"

Suppose the data items do not occur with the same probability. Then memory space may be
conscrved by using variablc-length strings, where items which occur frequently arg assigned shorter
strings and items which occur infrequently arc assigned longer strings. This scction discusses a coding
using variable-length strings that is based on thc Huffman tree T for weighted data items.

Fig. 7-37

Consider the extended binary tree T in Fig. 7-37 whose cxternal nodes are the items U, VWX, Y
and Z. Observe that cach cdge from an internal nodc to a left child is labeled by th bit 0 and cach edge
to a right child is labelcd by the bit 1. The Huffman code assigns to cach cxternal node the scquence of
bits from the root to the node. Thus the tree T in Fig. 7-37 determincs the following code for the
cxternal nodes: \

u: 00 Vv: 0Ol w: 100 X: 1010 Y: 1011 Z: 11

This code has the “prefix’ property; i.e., the code of any itcm is not an initial substring of the code of
any othcr item. This mcans therc cannot be any ambiguity in decoding any message using a Huffman
code.

Consider again the 8 dataitems A, B,C,. D, E, F, G and H in Example 7-24. Supposc the weights
represent the percentage probabilities that the items will occur. Then the tree T of minimum-weighted
path length constructed in Fig. 7-35, appcaring with the bit labels in Fig. 7-38, will yicld an cfficient
coding of the data items. The rcader can verify that the tree T yiclds the following code:

A: 00 B: 11011 C: 011 D: 111
E: 11010 F: 010 G: 10 H: 1100

CHAP. 7] TREES 255

Fig. 7-38

7.12 GENERAL TREES

A general tree (sometimes called a tree) is defined to be a noncmpty finite sct 7 of elements, called
nodes, such that:

(1). T contains a distinguished clement R, called the root of T.

(2) The remaining clements of T form an ordered collection of zero or more disjoint trees

! T R o
Thetrees T\, T,, . . ., T, are called subtrees of the root R, and thcrootsof 7', T,,, . . . , T,, arc called
successors of R.)

Terminology from family relationships, graph theory and horticulture is used for genceral trecs in
the same way as for binary trees. In particular, if N is a node with successors 3,8,,9,,,thecn Nis
called the parent of the S,’s, the 3,’s are called children of N, and the S;’s are called siblings of each
other. : g

The term “trec” comes up, with slightly different meanings, in many diffcrent arcas of
mathematics and computer science. Here we assume that our gencral trce T is rooted, that is, that T
has a distinguished node R called the root of T’ and that T is ordered, that is, that the children of each
node N of T have a specific order. These two properties are not always required for the definition of a
tree.

EXAMPLE 7.25
Figure 7-39 pictures a gencral tree T with 13 nodes,
A B.C,D,E F.G H,1,K L MN

ST

- SR e S .

K

| / \

L M N
Fig. 7-39

256 TREES [CHAP. 7

Unless otherwise stated, the root of a trec T is the node at the top of the diagram, and the children of a node are
ordered from left to right. Accordingly, A is the root of T, and A has three children; the first child B, the second
child C and the third child D. Observe that:

(a) The node C has three children.

(b) Each of the nodes B and K has two children.

(c) Each of the nodes D and H has only one child.

(d) The nodes E, F, G, L, J, M and N have no children.

The last group of nodes, those with no children, are called terminal nodes.

A binary tree T' is not a special case of a general tree T: binary trees and general trees are
different objects. The two basic differences follow:

(1) A binary tree T' may be empty, but a general tree T is. nonempty.
(2) Suppose a node N has only one child. Then the child is distinguished as a left child or right
child in a binary tree 7', but no such distinction exists in a general tree T.

The second difference is illustrated by the trees T, and T, in Fig. 7-40. Specifically, as binary trees, T
and T, are distinct trees, since B is the left child of A in the tree T, but B is the right child of A in the
tree T,. On the other hand, there is no difference between the trees T, and T, as general trees.

A A

B / \ B
A oy

(a) Tree T,. (b) Tree T,.

Fig. 7-40 .

A forest F is defined to be an ordered collection of zero or more distinct trees. Clearly, if we delete
the root R from a general tree T, then we obtain the forest F consisting of the subtrees of R (which may
be empty). Conversely, if F is a forest, then we may adjoin a node R to F to form a general tree T
where R is the root of T and the subtrees of R consist of the original trees in F.

Computer Representation of General Trees

Suppose T is a general tree. Unless otherwise stated or implied, T will be maintained in memory by
means of a linked representation which uses three parallel arrays INFO, CHILD (or DOWN) and
SIBL (or HORZ), and a pointer variable ROOT as follows. First of all, each node N of T will
correspond to a location K such that:

(1) INFOI[K] contains the data at node N.

(2) CHILD[K] contains the location of the first child of N. The condition CHILD[K] = NULL
indicates that N has no children.

(3) SIBL[K] contains the location of the next sibling of N. The condition SIBL[K]=NULL
indicates that N is the last child of its parent. °

Furthermore, ROOT will contain the location of the root R of T. Although this representation may
seem artificial, it has the important advantage that each node N of T, regardless of the number of
children of N, will contain exactly three fields.

CHAP. 7] TREES : 257

The above representation may casily be cxtended (o rcpresent a forest F consisting of trecs

T,,T,,..., T, byassuming the roots of the trees are siblings. In such a case, ROOT will contain the
location of the root R, of the first tree T; or when F is empty, ROOT will equal NULL.

EXAMPLE 7.26

Consider the general tree T in Fig. 7-39. Supﬁusc the data of the nodes of T are stored in an array INFO as in
Fig. 7-41(a). The structural relationships of T are obtained by assigning values to the pointer ROOT and the
arrays CHILD and SIBL as follows:

(a) Since the root A of T is stored in INFO[2], set ROOT:=2,

(b) Since the first child of A is the nodc B, which is stored in INFO[3], set CHILD[2):= 3. Since A has no
sibling, set SIBL[2]:= NULL. .

(¢) Since the first child of B is the node E, which is stored in INFO[15], set CHILD[3]:= 15. Since node C is
the next sibling of & and C is stored in INFO[4], set SIBL[3]:=4.

And so on. Figure 7-41(b) gives the final values in CHILD and SIBL. Observe that the AVAIL list of cmpty nodes
is maintained by the first array, CHILD, where AVAIL = 1.

INFO CHILD SIBL

1 1 1 5

2 2 3 0
3l B 3 15 4
4 4 6 16
5 : 5 13

6 | G 6 0 7
71 n 7 1 8
8] 8 0 0
9 N 9.‘ 0 0
10 M 10 0 9
11 L 11 . 0 0
12 K 12 10 0
13 13 0

wlr | 14 0 0
s | e 15 0 14
16 D 16 12 0

RQOT =2, AVAIL =13
(a) (b)
Fig. 7-41

Correspondcnc_e between General Trees and Binary Trees

Suppose Tis a gencral trec. Then we may assign a unique binary trec T' to T as follows. First of
all, the nodes of the binary trec T* will be the same as the nodes of the general tree T, and the root ot

258 TREES , [CHAP. 7

T will be the root of T. Let N be an arbitrary node of the binary tree 7. Then the lcft childof Nin T’
will be the first child of the node N in the general tree T and the right child of Nir T will bc the next
sibling of N in the general tree T. :

EXAMPLE 7.27

Consider the general tree T in Fig. 7-39. The reader can verify that the binary tree T in Fig. 7-42 corresponds
to the general tree T. .Observe that by rotating counterclockwise the picture of T’ in Fig. 7-42 until the edges
pointing to right children are horizontal, we obtain a picture in which the nodes occupy the same relative position
as the nodes in Fig. 7-39. .

\

c/ \D
\H ’ / ‘
gt

B

C

-

\ A

v
.\N

Fig. 7-42 Binary tree T".

The computer representation of the general tree T and the linked representation of the
corresponding binary tree T' are exactly the same except that the names of the arrays CHILD and
SIBL for the general tree T will correspond to the names of the arrays LEFT and RIGHT for the
binary tree T'. The importance of this correspondence is that certain algorithms that applied to binary
trees, such as the traversal algorithms, may now apply to general trees. : ‘

Solved Problems

BINARY TREES
7.1 Suppose T is the binary tree stored in memory as in Fig. 7-43. Draw the diagram of T.

The tree T is drawn from its root R downward as follows:

(a) The root R is obtained from the value of the pointer ROOT. Note that ROOT = 5. Hence
INFO[5] = 60 is the root Rof T. ‘

CHAP. 7] TREES

INFO LEFT RIGHT

ROOT 1 20 0 0
5 2| 3 1 13
AVAIL 3 40 0 0
E' a| so 0 0
s| oo 2 6
6| 70 0 8
7] 80 0 0
8| 90 7 14

9 10

10 0
1 35 0 12
"2 s 3 4
13| 55 1 0
14 | os 0 0

Fig. 7-43
60

(®)

Fig. 7-44

260

7.2

7.3

TREES [CHAP. 7

(b) The left child of R is obtained from the left pointer, ficld of R. Note that LEFT[S] = 2. Hence
INFO[2] = 30 is the left child of R. :

(¢) The right child of R is obtained from the right pointer ficld of R. Note that RIGHT][5] = 6. Hence
INFO[6] = 70 is the right child of R.

We can now draw the top part of the tree as pictured in Fig. 7-44(a). Repcating the above process with
cach new nodel we finally obtain the required tree T in Fig. 7-44(b).

A binary tree T has 9 nodes. The inorder and preorder traversals of T yicld the following
sequences of nodes:
’H D B G

Inorder: E A C K
F A E K D HGB

| &
e
Preorder: C

Draw the trec T.
The tree T is drawn from its root downward as follows.

(¢) ‘The root of T is obtained by choosing the first node in its preorder. Thus F is the root of T.

(b) The left child of the node F is obtaingd as follows. First usc the inorder of T to find the nodcs in the
left subtree T, of F. Thus T, consists of the nodes E, A, C and K. Then the left child of Fis obtained
by choosing the first node in the preorder of T, (which appears in the preorder of T). Thus Ais the
left son of F.

(¢) Similarly, the right subtrec ', of F consists of the nodes H, D, B and G, and D is the root of T,, that
is, D is the right child of F.

Repeating the above process with cach new node, we finally obtain the required tree in Fig. 7-45.

Fig. 7-45

Consider the algebraic expression £ = (2x + y)(5a — b)’.

(a) Draw the tree T which corresponds to the expression E.

(b) Find the scope of the cxponential operator; i.e., find the subtrec rooted at the cxponential
operator.

(¢) Find the prefix Polish expression P which is cquivalent to E, and find the prcorder of T.

“"(a) Use an arrow (1) for cxponentiation and an asterisk (*) for multiplication to obtain the tree shown

in Fig. 7-46.
(b) Thc scope of T is the wrec shaded in Fig. 7-46. It corresponds to the subexpression (5a — b)".
(¢) There is no diffcrence hetween the prefix Polish expression P and the preorder of 7', Scan the tree T
from the left, as in Fig. 7-12. to obtain: ' :

*+*2_I‘_yf"*5«!b3

CHAP. 7] TREES

7.4

7.5

7.6

~\,

¥y

g

2

Fig. 7-46

Supposc a binary tree T is in mcmory. Write a rccursive procedure which finds the number
NUM of nodes in T.

The number NUM of nodes in T is 1 more than the number NUML of nodes in the lcft subtree of T
plus the number NUMR of nodcs in the right subtrce of T. Accordingly:

Procedure P7.4: COUNT(LEFT, RIGHT, ROOT, NUM)
This procedure finds the number NUM of nodes in a binary tree T in mcmory.

If ROOT = NULL, then: Set NUM :=0, and Return.
Call COUNT(LEFT, RIGHT, LEFT[ROQT]. NUML).
Call COUNT(LEFT, RIGHT, RIGHT|ROOT]|, NUMR).
Sct NUM := NUML + NUMR + 1.

Rcturn.

g e

(Obscrve that the array INFO does not play any role in this procedure.)

Supposc a binary tree T is in memory. Write a recursive procedure which finds the depth DEP
of T.

The depth DEP of T is 1 morc than thc maximum of the depths of the left and right subtrees of T.
Accordingly:
Procedure P7.5: DEPTII(LEFI, RIGHT, ROOT, DEP)
This procedure finds the depth DEP of a binary tree T in mgmory.

1. 1f ROOT = NULL, then: Set DEP:=(, and Rcturn.
2. Call DEPTH(LEFT, RIGHT, LEFT[ROOT], DEPL).
3. Call DEPTH(LEFT, RIGHT, RIGHT[ROOT]|, DEPR).
4. If DEPL = DEPR, then:
Sct DEP:= DEPL + 1.
Elsc:
Sct DEP:= DEPR + 1.
|End of If structure.]
5. Return.

(Obscrve that the array INFO does not play any rolc in this procedure.)

Draw all the possible nonsimilar trees T where:
(@) T is a binary trce with 3 nodes.
(b) T is a 2-trce with 4 cxternal nodes.

(a) There arc five such trees, which are pictured in Fig. 7-47(a).

(b) Each 2-tree with 4 external nodes is determined by a binary trec with 3 nodes, i.e., by a tree in part
(a). Thus there arc five such trces, which are pictured in Fig. 7-47(b).

262

-

-L(;.

pE
¥

>

TREES [CHAP. 7

AR SRR I

(a) - Binary trees with 3 nodcs.

S et Al So N

(b) Extendcd binary treces with 4 external nodes.

Fig. 7-47

BINARY SEARCH TREES; HEAPS

7.7 Consider the binary scarch tree T in Fig. 7-44(b), which is stored in memory as in Fig. 7-43.
Suppose ITEM = 33 is added to the tree T. (a) Find the new tree T. (b) Which changes occur in
Fig. 7-43?

(@)

(b)

Compare ITEM = 33 with the root, 60. Since 33 < 60, move to the left child, 30. Since 33 > 30, move
to the right child, 55. Sincc 33 <55, move to the lcft child, 35. Now 33 < 35, but 35 has no left child.
Hence add ITEM = 33 as a lcft child of the node 35 to give the tree in Fig. 7-48. The shaded edges
indicate the path down through the trec during the inscrtion algorithm.

Fig. 7-48

First. ITEM = 33 is assigned to the first available node. Since AVAIL =9, sct' INFO[9] := 33 and set
LEFT[9]:=0 and RIGHT[9]:=0. Also, set AVAIL := 10, the next available node. Finally, set
LEFT[11]:=9 so that ITEM = 33 is the left child of INFO[11] = 35. Figure 7-49 shows the updated
trec T in memory. The shading indicates the changes from the original picture.

CHAP. 7] TREES ‘ 263

INFO LEFT RIGHT

1 % - 0
2 > : 3
3 o : 0
4 po - 0
5 50 - 6
6 = - 8
7 5 - :
T m L 14
10
: 1 = -
12 e : :
13 s - :
14 - : 0

Fig. 7-49

7.8 Suppose the following list of letters is inserted in order into an empty binary search tree:
J,R,D,G, T,E,M,H,P,A,F,Q
(a) Find the final tree T and (b) find the inorder traversal of T.

(a) Insert the nodes one after the other to obtain the tree in Fig. 7-50.
(b) The inorder traversal of T follows: ’

A.D,E,F,G, H J,MP.Q,R T
Obscrve that this is the alphabetical listing of the letters. -

/ ~\.\R

,./D\c e
E./ \u \P ‘
o N,

Fig. 7-50

264

7.9

TREES [CHAP. 7

Considcr the binary scarch tree T in Fig. 7-50. Describe the tree after (a) the node M is deleted
and (b) the nodc D is also deleted.

(@) The node M has only one child, . Hencc delete M and let P become the left child of R in place of M.

(b) The node D has two children. Find the inorder successor of D, which is the node E. First delete E
from the tree, and then replace D by the node E.

Figure 7-51 shows the updated trec.

Fig. 7-51

7.10 Supposc n data items A,, A,, . .., A arc alrcady sorted, i.c.,

7.11

A <A,< - <Ay

(@) Assuming the items are inscrted in order into an cmpty bindry scarch tree, describe the
final trec T. ’ :

(b) What is the depth D of the tree T?

(¢) Compare D with the average depth AD ofia binary scarch tree with n nodes for (i) n =50,
(ii) 7 = 100 and (iii) n = 500.

(a) The tree will consist of one branch which extends to the right, as pictured in Fig. 7-52.

(b) Since T has a branch with all n nodes, D = n.

(c) It is known that AD =c log, n, where ¢~ 1.4. Hence D(50)=50, AD(50)=9; D(100) = 100,
AD(100) = 10; D(500) = 500, AD(500) ~ 12

Fig. 7-52

Consider the minheap H in Fig. 7-53(a). (H is a minheap, since the smallc: clements arc on top
of the hecap, rather than the larger clements.) Describe the heap after ITEM = 11 is inserted
into H.

First inscrt ITEM as the ncxt node in the complcte trec, that is, as the left child of node 44, Then
repeatcdly compare ITEM with its parent. Since 11<44, interchange 11 and 44, Since 11<22,
interchange 11 and 22. Since 11 > 8, ITEM = 11 h2s found its appropriate place in the heap. Figurce 7-53(b)
shows the updated heap M. The shaded edges indicate the path of ITEM up the tree.

CHAP. 7) TREES 265

7.12

(@)

(b)
Fig. 7-53

Considcr the complete trce T with N = 6 nodcs in Fig. 7-54. Supposc we form a heap out of T by
applying
Call INSHEAP(A, J, A[J +1])

forJ=1,2,...,N-1. (Herc T is storcd scquentially in the array A.) Dcscribe the different
steps.

16
13/ \22
> il

20 15 40

Fig. 7-54

Figure 7-55 shows the different steps. We cxplain cach step separatcly.

(@) J=1 and ITEM = A|2] = 18. Since 18> 16, interchange 18 and 16.

(b)Y J=2 and ITEM = A[3] = 22. Since 22 > 18, interchangc 22 and 18.

(¢) J=3 and ITEM = A[4] = 20. Since 20> 16 but 20 <22, interchange only 20 and 16.

(d) J=4 and ITEM = A[5] = 15. Since 15 <20, no interchanges take placc.

(¢) J=5 and ITEM = A[6] = 40. Since 40> 18 and 40>>22, first interchange 40 and 18 and then
interchange 40 and 22,

The tree is now a heap. The dotted cdges indicate that an exchange has taken placc. The unshaded arca
indicates that part of the trce which forms a heap. Observe that the heap is created from the top down
(although individual clements move up the tree).

266 TREES [CHAP. 7

v ot ’i' & - o R A
(@) ITEM = 18. (6) ITEM =22, _ (¢) ITEM =20,
2 “0_
’ 20:::j ‘\\\ls ’//,20'//’. "oz
M// lsa@/ 16 \\slf’
(d) ITEM =15. (e) ITEM = 40.

Fig. 7-55

MISCELLANEOUS PROBLEMS

7.13 Consider the binary tree T in Fig. 7-1. (a) Find the onc-way preorder threading of 7' (b) Find
the two-way preorder threading of T.

(a) Replace the right null subtree of a terminal node N by a thread pointing to the successor of N in the
preorder traversal of 7. Thus there is a thread from D to E, since E is visited after D in the preorder
traversal of 7. Similarly, there is a thread from F to C, from G to H and from L to K. The threaded
tree appears in Fig. 7-56. The terminal node K has no thread, since it is the last node in the preorder
traversal of 7. (Qn the other hand, if T had a header node Z, then there would be a thread from K
back to Z.)

(b) There is no two-way preorder threading of T that is analogous to the two-way inorder threadingof T

B ’—-"'-.C
. l’
~

P

’/
/ \ ! /.\
Disma - *E / G~ae e __ __eH

/

r K

/ \ /
7
_-
—/
J
td
: 7
-
/ S
-
-
—‘/ ‘

L~ ===

Fig. 7-56 Prcorder threaded tree.

CHAP. 7]

TREES

267

7.14 Consider the weighted 2-trce T in Fig. 7-57. Find the weighted path length P of the tree 7.

Multiply each weight W, by the length L, of the

weight, and then sum all such products to obtain P. Thus:

7.15 Suppose the six \;veights 4,15,25,5, 8, 16 are given. Find a 2-
minimum weighted path length P. (Compare T with the tr

Use the Huffman algorithm. That is, re

P=4-2+15-4+25-4+5'3+8'2+16-2-8+60+100+15+l6+32=231

a single subtree as follows:

@ 4,
®)
©
(@)
(e)
(£

15, 25, 5, 8, 16

Fig. 7-57

cc in Fig. 7-57.)

path from the root of T to the node containing the

tree T with the given weights and a

peatedly combine.the two subtrees with minimum weights into

Fig. 7-58

268 TREES [CHAP. 7

-

(The circled number indicates the root of the new subtrce in the step.) The aree T is drawn from Step N
backward, yielding Fig. 7-58. With the tree T, compute

P=25-2+4~4+s-4+8-34ls'-2+16.2-50+16+20+z4+30+32;172
(The tree in Fig. 7-57 has weighted path length 231.)

7.16 Consider the general tree T in Fig. 7-59(a). Find the corrcsponding binary trec T

The nodes of T* will be the same as the nodes of the general tree T, and in particular, the root of T
will be the same as the root of T. Furthermore, if N is a node in the binary tree T, then its lcft child is the
first child of N in T and its right child is the next sibling of Nin T. Constructing T’ from the root down, we

" obtain the trec in Fig. 7-59(b).

C/]Z\!: G/F\H K%J\\M\N
el

A

P Q
(a) General tree T.
/ ?
B
C\/ B ¥
D G J
N B N
E H K
N
L\
e
P \ N
Q
(b) Binary tree T'.
Fig. 7-59 ,)
7.17 Supposc T is a general tree with root R and subtrecs T,, T, . . . , Ty. The preorder traversal
and the postorder traversal of T are defined as follows:
Prcorder: (1) Process the root R.
(2) Traverse the subtrees Ty, T, . .., Ty in precorder.

Postorder: (1) Traverse the subtrees Ty, T, . .., Ty in postorder.

(2) Process the root R.

CHAP. 7) TREES 269

7.18

Let T be the gencral tree in Fig. 7-59(a). (a) Traverse T in prcorder. (b) Traverse T in
postorder.

Note that T has the root A and subtrees T,, T, and T, such that:

T, consists of nodes B, C, D and E.
T, consists of nodes F, G and H.
T, consists of nodes J, K, L, M, N, P and Q.

(a) The preorder traversal of T (.onsmts of the following stcps:
(i) Process root A.
(ii) Traverse T, in preorder: Process nodes B, C, D, E.
(iii) Traverse T, in preorder: Process nodes F, G, H.
(iv) Traverse T, in preorder: Process nodes J, K, L, M, P, Q, N.

That is, the preorder traversal of T is as follows:
"A,B,C,D,E,F,G,H,J,K,L,M, P, Q, N

(b) The postorder traversal of T consists of the following steps:
(i) Traverse T, in postorder: Process nodes C, D, E, B.
(ii) Traverse T, in postorder: Process nodes G, H, F.
(iii) Traverse T, in postorder: Process nodes K, L, P, Q, M, N, J.
(iv) Process root A.)

In other words, the postorder traversal of T is as follows:
C,D,E,B,G,H,F,K,L,P,Q M N,J A

Consider the binary tree T’ in Fig. 7-59(b). Find the prcordcr, inorder and postorder traversals
of T'. Compare them with the preorder and postorder traversals obtainced in Prob. 7.17 of the
gencral tree T in Fig. 7-59(a).
Using the binary trec traversal algorithms in Sce. 7.4, we obtain the following traversals of T':
Preorder: A,B,C,D,EFG HJKLMPQN
Inorder: C,D,EB,G H,F, K, LLP,Q, M/N, s A
Postorder: E,D,C,H, G, QPN MLK,JFL,A
Obscerve that the preorder of the binary tree T* is identical to the preorder of the general T, and that the
inorder traversal of the binary trec T’ is identical to the postorder traversal of the general tree T. There is

no natural traversal of the gencral tree T which corresponds to the postorder traversal of its coriesponding
binary trec T".

Supplementary Problems

BINARY TREES

7.19

7.20

7.21

Consider the tree T in Fig. 7-60(a).

(a) Fill in the values for ROOT, LEFT and RIGHT in Fig. 7-60(b) so that T will be stored in memory.
(b) Find (i) the depth D of T, (ii) the number of null subtrees and (iii) the descendants of node B.

List the nodes of the tree T in Fig. 7-60(a) in (@) preorder, (b) inorder and (¢) postorder’

Draw the diagram of the tree T in Fig. 7-61.

270 TREES [CHAP. 7

INFO LEFT RIGHT

1 A
ROOT 2 c
N l:] 3 D
/ \- 4 G
B c AVAIL 5 6
V. e (5]
D E F ' 6 o
/ \ 7| H
G H "
9
0] B
(a) (b)
Fig. 7-60
INFO LEFT RIGHT
1 H 4 1
ROOT 3 R 0 0
14 3 17
4 0 0
5 B 18 7
AVAIL 6 3 ‘
I—_s__—] 7 E 1 0
8 6
9 c 0 10
10 F 15 16
1 Q 0 12
12 s 0 0
13 0
14 A 5 9
15 2 0
6 | L 0 0
il 13
18 D 0 0

Fig. 7-61

CHAP. 7] TREES 271

7.22

7.24

7.25

7.26

Suppose the following sequences list the nodes of a binary tree T in preorder and inor

Preorder: G,B,Q,A,C,K,F,P,D,E,R, H
Inorder: Q,B,K,.C,F,A,G,P, E,D,H, R

Draw the diagram of the tree.

» respectively:

Suppose a binary tree T is in memory and an ITEM of information is given.

(a) Write a procedure which finds the location LOC of ITEM in T (assuming the clements of T are
distinct). »

(b) Write a procedure which finds the location LOC of ITEM and the location PAR of the parent of
ITEM in T.

(c) Write a procedure which finds the number NUM of times ITEM appears in T (assuming the elements
of T are not necessarily distinct). ;

Remark: T is not necessarily a binary secarch tree.

Supposc a binary tree T is in memory. Write a nonrecursive procedure for es.! Of the following:

(a) Finding the number of nodes in T.
(b) Finding the depth D of T.'
(c) Finding the number of terminal nodes in T.

Suppose a binary tree T is in memory. Write a procedure which deletes all the terminal nodes in T.

Suppose ROOTA points to a binary tree T, in memory. Write a procedure which makes a copy T, of the
tree T, using ROOTB as a pointer.)

BINARY SEARCH TREES '

7.27

7.28

Suppose the following eight numbers are inserted in order into an empty bj Ty seat::in tree T:
50, 33, 44, 22, 77, 35, 60, 40
Draw the tree T. '
Consider the binary search tree T in Fig. 7-62. Draw the tree T if cach of the following operations is
applied to the original tree T. (That is, the operations are applied independen_tl)', not successively.)
(@) Node 20 is added to T. (d) Node 22 is deleted from T.

(b) Node 15 is added to T. (¢) Node 25 is deleted frqm T.
(c) Node 88 is added to T. (f) Node 75 is deleted from T.

75/”\75
m/ \90
so/

22

15 30

\
./\/
o

Fig. 7-62

272 TREES |ICHAP. 7

7.29 Consider the binary search tree T in Fig. 7-62. Draw the final tree T if the six operations in Problem 7.28
are applied one after the other (not independently) to T.

7.30 Draw the binary scarch tree T in Fig. 7-63.

INFO LEFT RIGHT

ROOT 1 Jones 7 0
4 2 | Fox 11 1
AVAIL 3 8
3 4 Murphy 2 15
5 13
6 Thomas 0 0
i Green 0 0
8 9
9 10
10 5
11 Conroy 0 0
12 Parker 0 0
13 14
14 0
15 Rosen 12 6
Fig. 7-63

7.31 Consider the binary scarch trce Tin Fig. 7-63. Describe the changes in INFO, LEFT, RIGHT, ROOT and

L)

AVAIL if cach of the following opcrations is applicd independently (not successively) to T.

(a) Davis is added to T. (d) Parkeris deleted from T.
(b) Harris is added to i B (e) Fox is deleted from T.
(c) Smith is added to T. (f) Murphy is dclcted from T.

7.32 Consider the binary search tree T in Fig. 7-63. Describe the final changes in INFO, LEFT, RIGHT,
ROOT and AVAIL if the six operations in Problem 7.31 are applicd onc after the other (not
independently) to T. 2 ’

MISCELLANEQUS PROBLEMS .

7.33 Consider the binary tree T in Fig. 7-60(a).

(@) Draw the onc-way inorder threcading of T.
(b) Draw the onc-way preorder threading of T.
(¢) Draw the two-way inorder threading of T.

In cach case, show how the threaded trec will appear in memory using the data in Fig. 7-60(b).

CHAP. 7] _ TREES 273

7.34 Consider the complcte tree T with N = 10 nodes in Fig. 7-64. Supposc a maxheap is formed out of T by

applying
Call INSHEAP(A, J, A[J + 1))

forJ=1,2,...,N~-1. (Assume T is stored sequentially in the array A.) Find the final maxheap.

o 30
/ \2 > 60 \l 1

Fig. 7-64
7.35 Repeat Problem 7.34 for the tree T in Fig. 7-64, cxcept now form a minhcap out of T instead of a maxhcap.

7.36 Draw the 2-trec cotrcspondin.g fo each of the following algcbraic expressions:

(@ E,=(a-3b)2x—-y)
(b) E,=(2a+5b)(x - Ty)*

7.37 Consider the 2-tree in Fig. 7-65. Find the Huff:nan coding for the seven letters determined by the trec T.

[+]

Fig. 7-65

7.38 Supposc the 7 data items A, B, ..., G arc assigned the following wcights: ,
(A, 13), (B, 2), (C. 19y, (D, 23), (E,29), (F, 5), (G, 9)
Find the weighted path length P of the tree in Fig. 7-65.

7.39 Using the data in Problem 7.38, find a 2-tree with.a minimum weighted path length P. What is the Huffman
coding for the 7 letters using this new tree?

274 TREES [CHAP. 7

7.40 Consider the forest F in Fig.7-66, which consists of three trees with roots A, B and C, respectively.

(@) Find the binary tree F' corresponding to the forest F.
(b) Fill in values for ROOT, CHILD and SIB in Fig. 7-67 so that F will be stored in memory.

& B c

PN | .

L K F] E G
H D

Fig. 7-66 Forest F.

ROOT INFO CHILD SiB
1 A
2 c
3 E
s |l G
S J
6 [
e
8 K
9 H
10 F
11 D
al 8. |7 b
Fig. 7-67

7.41 Suppose T is a complele tree with n nodes and depth D. Prove (a) 2P ' —1<n=2"-1 and (b)
D =log, n
Hint: Use lhe following identity with x =
xn»l e l
x—1

1+x+x +x’+---+x“'=
7.42 Suppose T is an extended binary tree. Prove:

(@) Ng=N,+1, where Ny is the number of external nodes and N, is the number Of internal nodes.

(b) L, =L,+2n, where Lgisthe external path length, L, is the internal path lengtl and n is the number
of internal nodes.

CHAP. 7) TREES 275

Programming Problems
Problems 7.43 to 7.45 refer to the tree 7 in Fig. 7-1, which is stored in memory as in Fig. 7-68.
7.43 Write a program which prints the nodes of T in (@) preorder, (b) inorder and (¢) postorder.

7.44 Writc a program which prints thc terminal nodes of T in (a) prcorder (b) inorder and (c) postorder.
(Note: All three lists. should be the same.)

7.45 Write a program which makes a copy T’ of T using ROOTB as a pointer. Test the program by printing the
nodes of T’ in preorder and inorder and comparing the lists with thosc abtained in Proh, 7.43.

; INFO LEFT RIGHT

ROQTA ! K 0 0
5 2 C 3 6
AVAIL 3 G 0 0
8 4 14 |
\I k——s A 10 2
g‘ 6 H 17 1
I
! 7 L 0]
—=] 9
9 4
10 B 18 13
1 19
12 1 0 1]
13 E 12 0
id 15
5 16
ey
1
—— ————
J J 7]
f—~—— - ~
ix (] 0]
H 20
20 21
21 2
22 23 v
23 24
—— 4
24 0

276 TREES [CHAP. 7

7.46 Translate heap:on intar a subprogram HEAPSORT(A, N) which sorts the array A with N elements. Test
. the program using :
(a) 44, 33, 11, 55, 77, 90, 40, 60, 99, 22, 88,66 () D, A, T,A,S, T,R,U,C, T, U . R,E, S

Problems 7.47 to 7.52 rcfcr to the list of employee recocds which are stored either as in Fig. 7-8 or as in Fig.
7-69. Each is a binary search tréc with respect 16 the NAME kcy, but Fig. 7-69 uses a header node, which also acts
as a sentinel. (Cnmparc these problems with Probs. 5.41 to 5,46 in Chap. 5.)

NAME . SSN SEX « SALARY LEFT RIGHT

HEAD l 0
5 2 Davis 192-38-7282 . Female 22 800 5 12
AVAIL 3 Kelly 165-64-3351 Male 19 000 - S
8 4 175-56-2251 Male 27200 2 5
3 o i4 5
6 178-52-1065 5 S
7 Lewis 181-58-9939 16 400 3 10

8 11 ‘
-

9 Cohen 177-44-4557 Male 19 000 6 4
10 Rubin 135-46-6262 Fem?le 15 500 5 §

11 13
12 Evans 168-56-8113 Y Male 34200 - 5

13 ; 1
14 Harris 208-56-1654 Female ' 22 800 9 7

Fig. 7-69

7.47 Write a program which prints the list of employee records in alphabetical order. (Hins: Print the records in
inorder)

7.48 Writ a program which rcads the name NNN of an cmployee and prints the emplo cc’s record. Test the
program using (a) Evans, (#) Smith and (c) Lewis.

7.49 Write a program which rcads the social sccurity number SSS of an ecmployee and prints thc employec’s
record. Tcst the program using (a) 165-64-3351, (b) 135-46-6262 and (c) 177-44-5555.

7.50 Write a program which reads an integer K and prints the name of cach male employcc when K = 1 or of
each female employee when K = 2. Test the program using (a) K=2, (b) K=5 and (c) K=1.

7.81 Write a program which reads the name NNN of an cmployee and deletes the employee’s record from the
structure. Test the program using (a) Davis, (b) Jones and (c) Rubin.

7.52 Write a program which reads the record of a new cmployce and inserts the record into the file. Test the
program using:
(@) Fletcher; 168-52-3388; Female, 21 000
(b) Necison; 175-32-2468, Ma'e, 19000

Chapter 8

Graphs and Their Applications

8.1 INTRODUCTION

This chapter investigates another nonlincar data structurc: the graph. As we have donce with other
data structurcs, we discuss the represcntation of graphs in memory and present various opcrations and
algorithms on them. In particular, we discuss the breadth-first search and the depth-first scarch of our
graphs. Certain applications of graphs, including topological sorting, arc also covered.

\

8.2 GRAPH THEORY TERMINOLOGY

This scction summarizes some of the main terminology associated with the thcory of graphs.
Unfortunatcly, there is no standard terminology in graph theory. The reader is warned, therefore, that
our dcfinitions may be slightly diffcrenit from the definitions uscd by other t-:xts on data structures and
graph theory.

Graphs and Multigraphs
A graph G consists of two things:

(1) A sct V of elcments called nodes’ (or points or vertices)

(2) A sct E of edges such that each edge e in E is identificd with a uniquc (unordered) pair [u, v]
of nodes in V, denoted by e = [u, v]

Sometimes we indicate the parts of a graph by writing G = (V, E).

Suppose e = [u, v]. Then the nodes u and v arc called the endpoints of e, and u and v arc said to be
adjacent nodes or neighbors. The degree of a node u, written deg(u), is the number of cdges containing
u. If dcg(u) = 0—that is, if u does not belong to any edge—then u is called an isolated node.

A path P of length n from a node u to a node v is defined as a scquence of 7 + 1 nodes.

P=(y,v,v,...,v,)
such that u = u,; v,_, is adjacent toy, fori = 1,2, ..., n; and v, = v. The path P is said to be closed if
¥ = v,. The path P is said to be simple if all the nodes arc distinct, with the exception that v, may cqual
v,; thatis, P is simplc if the nodes v, v,, . . ., v, _, arc distinct and the nodes v, v,, . . . , v, are distinct.

A cycle is a closed simplc path with length 3 or more. A cycle of length & is called a k-cycle.

A graph G is said to be connected if there is a path between any two of its nodes. We will show (in
Prob. 8.18) that if there is a path P from a node u to a node v, then, by eliminating unneccssary cdges,
onec can obtain a simple path Q from u to v; accordingly, we can statc the following proposition.

Propesition 8.1: A graph G is connected if and only if there is a simple path between any two nodes
in G.

A graph G is said to be complete if cvery node u in G is adjacent to every other node v in G.
Clearly such a graph is connected. A complete graph with n nodes will have n(n —1)/2 edges.

A connected graph T without any cycles is called a tree graph or free tree or, simply, a tree. This
mcans, in particular, that there is a unique simple path P between any two nodes u and v in T (Prob.
8.18). Furthermore, if 7 is a finite trce with m nodcs, then T will have m — 1 edges (Prob. 8.20).

A graph G is said to be labeled if its edges are assigned data. In particular, G is said to be weighted

*ch edge e in G is assigned a nonnegative numecrical valuc w(e) called the weight or length of e. In

"o

278 - GRAPHS AND THEIR APPL!CATIONS [CHAP. 8

such a casc, cach path P in G is assigned a weight or length which is the sum of the wcights of the edges
along the path P. If we are given no other information about weights, we may assumc any graph G to
be weighted by assigning the weight w(e) = 1 to each edge e in G.
The definition of a graph may be generalized by permitting the following:
(1) Multiple edges. Distinct edges e and e’ are called multiple edges if they conncct the same
cndpoints, that is, if e = [«, v] and e’ = [u, v].

(2) Loops. An cdge e is called a loop if it has identical endpoints, that is, if e =Tu, u).

Such a gencralization M is called a mudtigraph. In other words, the definition of a graph usually docs
not allow either multiple edges or loops. :

A multigraph M is said to be finite if it has a finite number of nodes and a finite number of edges
Observe that a graph G with a finite number of nodes must automatically have a finitc number of edges
and so must be finite; but this is not nccessarily true for a multigraph M, since M may have multiple
edges. Unless othcrwise specificd, graphs and multigaphs in this text shall be finitc.

EXAMPLE 8.1 {
(a) Figure 8-1(a) is a picturc of a connccted graph with 5 nodes—A, B, C, D and E—and 7 cdges:
(A, B8], [B.C], I[c, D), [D.E), [AE] [CE] [A.C)

There are two simple paths of length 2 from B to E: (B, A, E) and (B, C, E). There is only one simple path
of length 2 from B to D: (B, C, D). We note that (B, A, D) is not a path, since [A, D] is notan edge. There
are two 4-cycles in the graph:

[A, B, C, E. A] and [A, C, D, E, A
Note that deg(A) = 3, since A belongs to 3 edges. Similarly, deg(C) =4 and deg(D) = 2.

(b) Figurc 8-1(h) is not a graph but a multigraph. The reason is that it has multiple edges—e, =8, C] and
¢.=[B, C]—and it has a loop, ¢, = [D, D]. The definition of a graph usually does not allow cither multiple
edges or loops.

(¢) Figurc 8-1(c) is a trcc graph with m = 6 nodes and, consequently, #:— 1 =5 cdges. The reader can verify that
there is a unique simple path between any two nodes of the trce graph.

A E
B
C D
(a) Graph.
Ae B (&
D& E F
(c¢) Tree. (d) Weighted graph.

Fig. 8-1

CHAP. 8| GRAPHS AND THEIR APPLICATIONS 279

(d) Figure 8-1(d) is the same graph as in Fig. 8-1(a), except that now the graph is weighted. Observe that
P,=(B,C,D)and P,=(B, A, E, D) are both paths from node B to node D. Although P, contains more
edges than P,, the weight w(P,) =9 is less than the weight w(P,) =10.

Directed Graphs

A directed graph G, also called a digraph or graph, is-the same as a multigraph except that each
edge e in G is assigned a direction, or in other words, each edge e is identificd"with an ordered pair
(u, v) of nodes in G rather than an unordered pair [u, v].

Suppose G is a directed graph with a directed edge e = (u, v). Then e is also called an arc.
Moreover, the following terminology is used:

(1) e begins at u and ends at v.

(2) u is the origin or initial point of e, and v is the destination or terminal point of e.
(3) u is a predecessor of v, and v is a successor or neighbor of u.

(4) u is adjacent to v, and v is adjacent to u.

The outdegree of a node u in G, written outdeg(u), is the number of edges beginning at «. Similarly,
the indegree of u, written indeg(u), is the number of edges ending at u. A node u is called a source if it
has a positive outdegree but zero indegree. Similarly, u is called a sink if it has a zero outdegree but a
positive indegree. ‘

The notions of path, simple path and cycle carry over from undirected graphs to directed graphs
except that now the direction of each edge in a path (cycle) must agree with the direction of the path
(cycle). A node v is said to be reachable from a node u if there is a (dirccted) path from « to v.

A directed graph G is said to be connected, or strongly connected, if for cach pair u, v of nodes in G
there is a path from u« to v and there is also a path from v to u. On the other hand, G is said to be
unilaterally connected if for any pair u, v of nodes in G there is a path from u to v or a path from v to u.

EXAMPLE 8.2

Figure 8-2 shows a duwcted graph G with 4 nodes and 7 (directed) edges. The edges &, and e, are said to be
parallel, since cach begins at 1§ and ends at A. The edge e, is a loop, since it begins and ends at the same point, B.
The sequence £, = ([). . B, A) is not a path, since (C, B) is not an edge—that is, the direction of the cdge
e, = (B, C) does not agree with the direction of the path P,. On the other hand, P, = (D, B, A) is a path from D
to A, since (17, B) and (B. A) are edges. Thus A is reachable from D. There is no path from C to any other node,
so G is not strongly conncé®d. However, G is unilaterally connected. Note that indeg(D) = 1 and outdeg(D) = 2.
Node C is a sink. since indeg(C) = 2 but outdeg(C) = 0. No node in G is a source.

D

Fig. 8-2

Let 7 be any nonempty tree graph. Suppose we choose any node R in 7. Then T with this
designated node R is called a rooted tree and R is called its root. Recall that there is a unique simple
path from the root R to any other node in T. This defines a direction to the edges in T, so the rooted
tree T may be viewed as a directed graph. Furthermore, suppose we also order'the successors of each

280 GRAPHS AND THEIR APPLICATIONS [CHAP. 8

node v in 7. Then T is called an ordered rooted tree. Ordered rooted trees are nothing more than the
general trees discussed in Chap. 7.

A dirccted graph G is said to be simple if G has no parallcl edges. A simple graph ¢ my have
loops, but it cannot have more than one loop at a given node. A nondirected graph G may be vicwed as
a simple directed graph by assuming that cach edge [u, v] in G represents two dirccted cdy cs, (u, v)
and (v, u). (Observe that we usc the notation [u, v] to denote an unordered pair and ! notation
(u, v) to denote an ordered pair.) ‘

Warning: The main subject matter of this chapter is simple directed graphs. Accordingly, unless
otherwise stated or implicd, the term *“‘graph” shall mcan simple dirccted graph, and the terin “edge”
shall mecan dirccted edge.

8.3 SEQUENTIAL REPRESENTATION OF GRAPHS;
ADJACENCY MATRIX; PATH MATRIX

There are two standard ways of maintaining a graph G in thc memory of a computer. One way,
. called the sequential representation of G, is by means of its adjacency matrix A. The other way, called
the linked representation of G, is by means of linked lists of ncighbors. This section covers the first
representation, and shows how the adjacency matrix A of G can be used to ezsily answer certain
questions of connectivity in G. The linked representation of G will be covered in Scc. 8.5.
Regardless of the way one maintains a graph G in the memory of the computer, the graph G is
normally input into the computer by using its formal definition: a collection of nodes and a collection of
edges. i

Adjacency Matrix

Supposc G is a simplc directed graph with m nodes, and suppose the nodes of G have been ordered
and are called v, v,, . . . , v,,. Then the adjacency matrix A = (a,,) of the graph G is the m X m matrix
defined as follows:

_{ L if v, is adjacent to v, that is, if there is an edge (v;, v)
% =10 otherwise

Such a matrix A, which contains entries of only 0 and 1, is called a bit matrix or a Boolean matrix.

The adjacency matrix A of the graph G does depend on the ordering of the nodes of G; that is, a
different ordering of the nodes may result in a different adjacency ‘matrix. However, the matrices
resulting from two different orderings arc closcly related in that one can be obtained from the other by
simply intcrchanging rows and columns. Unless otherwisc stated, we will assume that the nodes of our
graph G have a fixed ordering.

Suppose G is an undirccted graph. Then the adjacency matrix A of G will be a symmetric matrix,
i.e., onc in which a, = a, for cvery i and j. This follows from the fact that cach undirccted edge [u, v)
corresponds to the two directed edges («, v) and (v, u).)

The above matrix representation of a graph may be cxtended to multigraphs. Specifically, if Gis a
multigraph, then the adjacency matrix of G is the m X m matrix A = (a,,) defined by sctting a, equal to
the number of edges from v, to v,. “

EXAMPLE 8.3
Consider the graph G in Fig. 8-3. Supposc the nodes are stored in memory in a lincar array DATA as follows:
DATA: XY, Z, W

Then we assume that the ordering of the nodcs in G is as follows: v, = X, v, = Y, v, = Zand v, = W. The adjacency
matrix A of G is as follows:

CHAP. 8] GRAPHS AND THEIR APPLICATIONS 281

S = -
SCeCoC
- e O
[~ T

- Note that the number of I's in A is equal to the number of edges in G.

Y

Fig. 8-3

Consider the powers A, A% A''. .. of the adjacéncy matrix A of a graph G. Let
ax(i, j) = the ij cntry in the matrix A*
Observe that a, (i, j) = a,, gives the number of paths of length 1 from node vy, Lo node ;. Onc can show

that a,(i, j) gives thc number of paths of length 2 from v, to v,. In fact, we prove in Prob. 8.19 the
following general result.

Proposition 8.2: - Lct A be the adjacency matrix of a graph G. Then a (i, j), the ij entry in the matrix
A“.‘ gives the numbcer of paths of length K from v, to v,.

Consider again the graph G in Fig. 8-3, whose adjacency matrix A is given in Example 8.3. The
- powers A%, A’ and A® of the matrix A follow:,

0 010 1 0 0 1 00 1 1
A2_1012 - 310 272 A,_zozs
001 1 “\1 0 11 {101 2
1 001 00 1 1 1 01 1

Accordingly, in particular, therg’is a path of length 2 from v, to v,, there are two paths of length 3 from
v, to vy, and there are three¢ paths of léngth 4 from v, to v,. (Here, v, =X, v, =Y, v, = Z and v, =W.)
Suppose we now definé the matrix B, as follows:

B=A+A"+A +. -+ A

Then the jj entry of the matrix B, gives the number of paths of length r or less from node v, to v;.

Path Matrix 2
Let G be a simple directed graph with m nodes, v,, v,, . . . , v,.. The path matrix or reachability
matrix of G is the m-square matrix P = (p,) defined as follows:
p. ={ 1 if there is a path from_v, to v,
Y. 0 otherwise
Suppose there is a path from v, to v,. Then there must be a simple path from v, to v; when v, # v, or

there must be a cycle from v, to v, when v, = y;. Since G has only m nodes, such a simple path must have
length m — 1 or less, or such a cycle must have length m or less. This means that there is a nonzero ij

282 GRAPHS AND THEIR APPLICATIONS [CHAP. 8

entry in the matrix B,,, defined at the end of the preceding subsection. Accordmgly. we have the
following rclationship betwccn the path matrix P and the adjacency matrix A.

Proposition 8.3: Let A be the adjacency matrix and Ict P = (p,;) be the path matrix of a digraph G.
Then p,; =1 if and only if there is a nonzero number in the ij entry of the matrix
B,=A+ A+ A’+.-- + A"

Consider the graph G with m = 4 nodes in Fig. 8-3. Addmg the matrices A, A%, A and A, we
obtain the following matrix B,, and, replacing the nonzero entries in B, by 1, we oblam the path matrix
P of the graph G:

102 3 101 1
[5 0 6 8 1011
Bi={3 03 s fnd - P 8 5§

2 0 3 3 101 1

Examining the matrix P, we sec that thc nodc v, is not rcachable from any of the other nodes.

Reccall that a directed graph G is said to be strongly connected if, for any pair of nodes u and v in G,
there arc both a path from u to v and a path from v to 4. Accordingly, G is strongly connccted if and
only if the path matrix P of G has no zero entries. Thus the graph G in Fig. 8-3 is not strongly
connected.

The transitive closure of a graph G is defined to be the graph G’ such that G ..as the same nodcs as

G and there is an edge (v;, v)) in G’ whenever there'is a path from v, to y; in G. Accordingly, the path

matrix P of the graph G is prcmscly the adjacency matrix of its lransullvc closure G'. Furthermore, a
graph G is strongly connected if and only if its transitive closure is a complcte graph.

Remark: The adjacency matrix A and the path matrix P of a graph G may be vicwed as logical
(Boolcan) matrices, where 0 represents “false” and 1 represents *true.” Thus, the logical opcrations of
A(AND) and v(OR) may be applicd to the entrics of A and P. The values of A and v appear in Fig.

8-4. These opcrations will be used in the next section.
1

A 0 | v 0 1
0 0 0 0 0 1
i 0 1 1 1 1
(a) AND. (b) OR
Fig. 8-4

8.4 WARSHALL’S ALGORITHM; SHORTEST PATHS

Let G be a directed graph with m nodes, v, v,, . . . , v,,. Suppose we want b find the path matrix
P of the graph G. Warshall gave an algorithm for this purpose that is much more efficicnt than
calculating the powers of the adjacency matrix A and using Proposition 8.3. This algorithm is described
in this scction, and a similar algorithm is used to find shortest paths in G when G is weighted.

First we define rm-square Boolcan matrices Py, P,, ..., P, as follows. Let P,[i, j] denote the ij
entry of the matrix P,. Then we define: '

1 if thete is a simplc path from vy; to y;
which does not use any other nodes
except possibly v, v,, . .., vy,

0 otherwise

P i, j1=

CHAP. 8] GRAPHS AND THEIR APPLICATIONS 283

In other words, :
Pyli, jl=1 if there is an edge from v, to v,
P\, jl1=1 if there is a simple path from v, to y;
o which does not usc any other nodes
except possibly v,
P,li, jl=1 if there is a simplc path from v, to Yy
which does not use any other nodes
except possibly v, and v,

First obscrve that the matrix P, = A, the adjacency matrix of G. Furthermore, since G has only m
nodes, the last matrix P,, = P, the path matrix of G.
. Warshall observed that P,[i, j]=1 can occur only if onc of the following two cases occurs:

(1) There is a simple path from Y, to y; which does not use any other nodes except possibly
Uiy ¥y, ..., Y5 hence ;
Pk—l['il]] =1

(2) There is a simple path from v, to v, and a simple path from vy, to v; where cach path does not
use any other nodes except possibly v, v,, . . ., v _,; hence

P i k]=1 and Py _\lk, jl1=1

These two cascs are pictured, respectively, in Fig. 8-5(a) and (b), where

denotes pari of a simple path which does not use any nodes except possibly v, v, ..., v, _,.
e T p— L TGP
(a) (b)
Fig. 8-5

Accordingly, the elements of the matrix P"l can be obtained by
Pli, j1=P,_\[i, j] v (Pe_\li, k) A P _ [k, j])

where we use the logical operations of A(AND) and v (OR). In other words we can obtain each entry
in the matrix P, by looking at only threc cntrics in the matrix P, ,. Warshall's algorithm follows.

Algorithm 8.1: (Warshall’s Algorithm) A dirccted graph G with M nodes is maintained in
memory by its adjacency matrix A. This algorithm finds the (Boolean) path
matrix P of the graph G.

1. Repeat forl,J=1,2,...,M: [Initializes P.]
If A[1,J]=0, then: Set P[I, J]:=0; -
Else: Set P[I, J]:=1,
[End of loop.]

2. Repeat Steps 3 and 4 for K=1, 2, ..., M: [Updates P.]
3. Repeat Step4 for 1=1,2,..., M:
4. Repeat forJ=1,2,..., M:

* Set P[1, J]:= P[1, J]'v (P[I, K] A P[K, J]).
[End of loop.]
[End of Step 3 loop.]
[End of Step 2 loop.] .
5. Exit.

284 GRAPHS AND THEIR APPLICATIONS |CHAP. 8

Shortest-Path Algorithm

Let G be a directed graph with m nodes, v, v,, . . ., v,,, Suppose G is weighted; that is, suppose
cachedgeein Gis assxgncd anonncgative number w(e) called the weight or length of the cdge e. Then
G may bc maintained in memory by its weight matrix W= (w;), dcfincd as follows:

{w(e) if there is an cdge e from v, o y;
4 1o if there is no edge from v, to
The path matrix P tells us whether or not there are paths betwecn the nodes. Now we want to find a .
matrix Q which will tell us the lengths of the shortest paths between the nodes or, more exactly, a
matrix Q = (g;) where .

‘g, = length of a shortest path from v, to v,
Next we describe a-modification of Warshall's algorithm which finds us the matrix Q.

Here we define a scquence of matrices Q,, Q,, . . ., @,, (analogous to thc above matrices
P,, P,, ..., P,) whosc entrics arc defined as follows:

Q,[i, j] = the smaller of the length of the preceding
path from v, to y; or thc sum of the lengths of
the preceding paths from v, to v, and from v,
to vy

M:)rc cxactly,
Q.li, jl=MIN(Q, _,[i, j1. Qi k) + @[k, jD

‘The initial matrix Q, is the samc as the weight matrix W e¢xcept that each 0 in W is replaced by = (or a
very, very large number). The final matrix @, will be the desired matrix Q.

EXAMPLE 8.4 ®

Consider the weighted graph G in Fig. 8-6..Assumc v, = R, v, = §, v, = T and v, = U:iFhen the weight matrix
W of G is as follows: L

[
soNuN
cwow
—~ooc
cowno

Applying the modified Warshall's algorithm, we obtain the following matrices Q,, @, @, Qs and 0, = Q. To the
right of cach matrix Q,, we show thc matrix of paths which correspond to the lengths in the matrix Q,.

CHAP. 8} GRAPHS AND THEIR APPUCAT'[“\IS 5 285

7 5 © o RR RS 2 =
7, 0 @ 2 - SR — — SuU
Qo= ® 3 o o —_— TS — —_—
4% I "w UR - — uT —
y 7 § o o RR RS —_ —_
7 12 = 2 [SR SRS — sU
4 ®1 = UR URS UT —
7 5 7 RR RS — RSU
4 7 12 ©» 2 SR SRS — SuU
=10 3 o s TSR TS - TSU
4 9 1 11 UR URS UT URS
7 5 o 7 RR RS — RSU
712 @ 2° SR SRS — suU ‘
=l 10 3 = 5 TSR TS - TsuU
4 @1 6 UR UTsS UT UTSU.
7 58 7 RR RS RSUT + .U
Y A T3) W SR SURS SUT suU
2= ® 36 s TSUR TS TSUT TSU
4 4.1 6 UR UTS = UT UTSU

We indicate how the circled entries are obtained:
Q,[4, 2] = MIN(Q,[4, 2], Q,l4, 1] + Qq[1,2]) = MIN(, 4 + 5) =9
Q.[1, 3] = MIN(Q,[1, 3], Q,[1,2] + Q,[2, 3]) = MIN(®, 5 + =) =
0,(4, 2] = MIN(Q,[4, 2], Q,[4, 3] + ©,[3,2]) = MIN(9,3 + 1) = 4
Q.[3, 1] = MIN(Q,[3, 1], Q,[3, 4] + @,[4, 1)) = MIN(10, 5+ 4) =9

The formal statement of the algorithm follows.

Algorithm 8.2: (Shortest-Path Algorithm) A wcighted graph G with M nodes is maintained in
: memory by its weight matrix W. This algorithm finds a matrix Q such that Q[I, J]
is the length of a shortest path from node V, to node V,. INFINITY is a very

large number, and MIN is the minimum value function.

1. - Repcat for [,J=1,2,. .., M: [Initializes Q.]
4P W1, J] =0, then: Sct Qf, J] :=INFINITY;
Else: Set Q[I, J]:=W[I, J].

. [End of loop.]
2. Repcat Steps 3 and 4 for K=1,2, ..., M: [Updates Q.]
3. Repecat Step 4 for1=1,2, ..., M:
4. Repeat for J=1,2,...,M:

-Set QfI, J]:=MIN(Q[I, J], Q[I, K] + Q[K, J]).
[End of loop.]
[End of Step 3 loop.]
[End of Step 2 loop.]
5. Exit.

" Obscrve the similarity between Algorithm 8.1 and Algorithm 8.2.

286 GRAPHS AND THEIR APPLICATIONS [CHAP. 8

Algorithm 8.2 can also be used for a graph G without weights by simply assigning the weight
w(e) =1 to each edge e in G.

8.5 LINKED REPRESENTATION OF A GR.TH

Let G be a directed graph with m nodes. The sequential representation of G in memory—i.e., the
representation of G by its adjacency matrix A—has a number of major drawbacks. First of all, it may
be difficult to insert and deleté nodes in G. This is because the size of A may nced to be changed and
the nodes may need to be reordered, so therc may bc many, many changes in thc matrix A.
Furthermore, if the number of edges is O(m) or O(m log, m), then the matrix A will be sparse (will
contain many zeros); hence a great deal of space will be wasted. Accordingly, G is usually represented |
in memory by a linked representation, also called an adjacency structure, which is described in this
section. : ’

Consider the graph G in Fig. 8-7(a). The table in Fig. 8-7(b) shows cach node in G followed by its
adjacency list, which is its list of adjacent nodcs, also called its successors or neighbors. Figurc 8-8
shows a schematic diagram of a linked representation of G in memory. Specifically, the linked
representation will contain two lists (or files), a node list NODE and an cdge list EDGE, as follows.

A D
Node Adjacency List
E A B,C.D
B C
C
B C D C,.E
E (&
(a) Graph G. (b) Adjacency lists of G.
Fig. 8-7
NODE list EDGE list

START ‘{Alj I'} = = '

s

_J
e[y [+
——— J
o]y [F——+ ({31
* x

Fig. 3-8

CHAP. 8] GRAPHS AND THEIR APPLICATIONS 287

(a)

(b)

Node list. Each element in the list NODE will correspond to a node in G, and it will be a
record of the form:

| NODE NEXT | ADJ

Here NODE will be the name or key value of the node, NEXT wili be a pointer to the next
node in the list NODE and ADJ will be a pointer to the first clement in the adjacency list of
the node, which is maintained in the list EDGE. The shaded area indicates that there may be
other information in the record, such as the indegree INDEG of the node, the outdcgree
OUTDEG of the node, the STATUS of the node during the execution of an algorithm, and
so on. (Alternatively, one may assume that NODE is an array of records containing ficlds
such as NAME, INDEG, OUTDEG, STATUS,....) The nodcs themselves, as pictured ir
Fig. 8-7, will be organized as a linked list and hence will have a pointer variablc START for
the beginning of the list and a pointer variable AVAILN for the list of available space.
Sometimes, depending on the application, the nodes may be organized as a sorted array or a
binary scarch tree instead of a linked list,

Edge list. Each clement in the list EDGE will correspond to an edge of G and will be a record
of the form:

| DEsT | LNk

The field DEST will point to the location in the list NODE of the destination or terminal
node of the edge. The field LINK will link together the edges with the same initial node, that
is, the nodes in the same adjacency list. The shaded area indicates that there may be other
information in the record corresponding to the edge, such as a ficld, EDGE containing the
labeled data of the edge when G is a labeled graph, a fiecld WEIGHT containing the weight of
the edge when G is a weighted graph, and so on. We also nced a pointer variable AVAILE for
the list of available space in the list EDGE.

Figure 8-9 shows how the graph G in Fig. 8-7(a) may appcar in mcmory. The choice of 10 locations

for the list NODE and 12 locations for the list EDGE is arbitrary.
NODE NEXT ADJ DEST LINK - AVAILE
START 1 ' 3 ‘ 1|12 (0. 7 |- — 2
4 2 C 9 0) r—.2 - 5 J
o mene 3 8 —=3 | 7 (B) 10
= 4 A 7 g ., 4 | 9 (D) 0
i N 1 5 8
6 2 0 1 j—--ﬁ 2 () o
7 B 2 6 7| 6 (E) 0
8 10 J 8 Y
9 D 6 1 9 K2
10 0 10]2 (o p
——=i1 | 2 (C) 0
12 0

288 GRAPHS AND THEIR APPLICATIONS

[CHAP. .8

The linked represcatation of a graph G that we have been discussing may be denoted by

GRAPH(NODE, NEXT, ADJ, START, AVAILN, DEST, LINK, AVAILE)

The rcpresentanon may also i
EDGE when G is a labeled graph.

EXAMPLE 8.5
Suppose Friendly Airways has nine daily flights, as follows:
103 Atlanta to Houston 203 Boston to Denver 305 Chicago to Miami
106 Houston to Atlanta 204 Denver lo Boston 308 Miami to-Boston
201 Boston to Chicago 301 Denver to Reno 402 Reno to Chicago

Boston
Chicago
————

include an array WEIGHT when G is weighted or may includc an array.

Reno @
k_
D:nver
Houston ‘Ox"a"“ |
Miami
Fig. 8-10
NODE list s EDGE list
CITY NEXT ADJ] NUMBER ORIG - DEST LINK
1 0 1 103 L 2 4 0
i Atlanta 12 | 2 106 -4 2 0
3 | Chicago 1 7 3 201 12 -t 3 4
4 | Houston 7 2 4 203 1 12 n=k- o
5 6 5 204 11 12 6
6 8] 6 301 11 10 0
7 Miami 10 8 7 305 3 7 0
-
8 9 8 308 7 12 0
9 1 9 402 10 3 0
10 Reno 0 9 10 11
11 Denver 4 5 11 L 12
12 i}oslun 3 3 12 0
START =2, AVAILN = AVAILE = 10

Fig. 8-11

CHAP. 8) GRAPHS AND THEIR APPLICATIONS 289

Clearly, the data may be stored efficiently in a file where cach record contains three fields:
Flight Numbecr, City of Origin, City of Destination
However, such a representation docs not casily answer the following natural questions:

(a) Is there a dircct flight from city X to city Y?
(b) Can one fly, with possible stops, from city X to city Y?
(c) What is the most d|rcct routc, i.c., the route with the smallest number of stops, from city X to city Y?

To make the answers to thesc quuttons more readily available, it may be very uscful for the data to be organized
also as a graph G with the cities as nodes and with the flights as edges. Figure 8-10 is a picture of the graph G.

Figure 8-11 shows how the graph G may appear in memory using the linked representation. We note that G is |
a labeled graph, not a weighted graph, since the flight number is simply for identification.'Even though' the data
arc organized as a graph, one still would require some type of algorithm to answer questions (b) and (c). Such
algorithms are discussed later in the chapter.

8.6 OPERATIONS ON GRAPHS
Supposc a graph G is maintaincd, in memory by the hnkcd represcntation
GRAPH(NODE, NEXT, ADJ, START, AVAILN, DEST, LINK, AVAILE)

as discussed in the prcccdlng sccuon This section discusses the opeuhons of scarching, inscrting and
delcting nodes and edges in the graph G. The operation of traversing is trcatcd in the next scction.

The operations in this section usec certain procedures from Chap. 5, on linked lists. For
completencss, we restate these procedures bejow, but in a shghtly diffcrcnt manner than in Chap. 5.
Naturally, if a circular linked list or a binary scarch tree is used instead of a linked list, then the
analogous procedures must be used.

Proccdure 8.3 (originally Algorithm 5.2) finds the location LOC of an ITEM in a linked list.

Proccdure 8.4 (originally Proccdure 5.9 and Algorithm 5.10) delctes a given ITEM from a linked
list. Herc we use a Ioglcal variable FLAG to tcll whether or not ITEM originally appears in the linked
list.

Searching in a Graph

Suppose we want to find the location LOC of a node N in a graph G. This can be accomplished by
using Proccdurc 8.3, as follows:

Call FIND(NODE, NEXT, START, N, LOC)

That is, this Call statement searches the list NODE for the node N.

On the other hand, suppose we want to find the location LOC of an edgc (A, B) in the graph G.
First we must find the location LOCA of A and the location LOCB of B in the list NODE. Then we.
must find in the list of successors of A, which has the list pointer ADJ[LOCAY], thce location LOC of
LOCB. This is implecmented by Procedure 8.5, which also checks to sce whether A and B are nodes in
G. Obscrve that LOC gives the location of LOCB in the list EDGE.

Inserting in a Graph

Suppusc a node N is to be inserted in the graph G. Nete that N will be assigned to
NODE[AVAILN], the first available node. Morcover, since N will be an isolated nodc, onc must also
set ADJ[AVAILN]:= NULL. Proccdure 8.6 accomplishes this task using a logical variable FLAG to
indicate overflow.

Clearly, Procedure 8.6 must be modificd lf the list NODE is mamlamcd as a sorted list or a binary
scarch tree. .

290

GRAPHS AND THEIR APPLICATIONS [CHAP. 8

Procedure 8.3:

FIND(INFO, LINK START, ITEM, LOC) [Algorithm 5.2,
Finds thc location LOC of thc first node containing ITEM, or sets
LOC:=NULL.

1. Set’PTR:=START.
2. Rcpeat while PTR # NULL:
If ITEM = INFO[PTR], then: Sct LOC:= PTR, and Return.
Else: Sct PTR := LINK[PTR].
[End of loop.]

3. Set LOC:=NULL, and Return:

Procedure 8.4:

'DELETE(INFO, LINK, START, AVAIL, ITEM, FLAG) [Algorithin 5.10]

- 6. Sct SAVE := PTR and PTR := LlNK[PTR] [Updates pointers]

7." Set FLAG := FALSE, and Return.

Dcletes the first node in. the list containing ITEM, or scts FLAG := FALSE
when ITEM does not appear in the list.

1. [List empty?] If START = NULL, then: Set FL.AG : = FALSE, and Return.
2. [ITEM in first node?] If INFO[START] = ITEM, then:
Set PTR:= START, START := LINK[START],
LINK[PTR]:= AVAIL, AVAIL := PTR,
FLAG = TRUE, and Return.
[End of If structure.]
3. Set PTR:= LINK[START] and SAVE := START. [lnluphzes pointers.]
4. Rcpeat Steps 5 and 6 while PTR » NULL:
5. If INFO[PTR] = ITEM, then:
Sct LINK[SAVE] := LINK[PTR], LlNK[PTR] = AVAIL,
AVAIL := PTR, FLAG = TRUE, and Return.
[End of If structure.]

[End of Step 4 loop.]

Procedure 8.5:

FINDEDGE(NODE, NEXT, ADJ, START, DEST, LINK, A, ‘B, LOC)
This procedure finds the location LOC of an cdge (A, B) in the graph G, or sets
LOC:=NULL.

1. Call FIND(NODE, NEXT, START, A, LOCA).

2. CALL FIND(NODE, NEXT, START, B, LOCB).

3. If LOCA =NULL or LOCB = NULL, then: Set LOC:=NULL.
Else: Call FlND(DEST LINK, ADJ[LOCA] LOCB, LOC).

4. Return,

Procedure 8.6:

INSNODE(NODE, NEXT, ADJ, START, AVAILN, N, FLAG)
This'procedure inserts the node N in the graph G.

1. [OVERFLOW?] If AVAILN = NULL, then: Set FLAG '=FALSE, and
Return.
2. Sct ADIJ[AVAILN]:=NULL.
3. [Removes node from AVAILN list.]
Sct NEW := AVAILN and AVAILN: NEXT[AVAILN]
4. [Inserts node N in the NODE list.]
.Set NODE[NEW]:=N, NEXT[NEW]:=START and START:=NEW.
5. Set FLAG:=TRUE, and Recturn. -

CHAP 8] GRAPHS AND THEIR APPLICATIONS 291

Suppose an edge (A, B) is to be inserted in the graph G. (The procedure will assume that both A
and B arc already nodes in the graph G.) The procedure first finds the location LOCA of A and the
location LOCB of B in the node list. Then (A, B) is inscrted as an cdge in G by inserting LOCB in the
list of successors of A, which has the list pointer ADI[LLOCA]. Again,a logical variable FI.AG is used

" to indicate overflow. The procedure follows.

Procedure 8.7: INSEDGE(NODE, NEXT, ADJ, START, DEST, LINK. AVAILE, A, B,
FLAG)
This procedure inscrts the edge (A, B) in the graph G.

1. Call FIND(NODE, NEXT, START, A, LOCA).

2. Call FIND(NODE, NEXT, START, B, LOCB).

3. [OVERFLOW?] If AVAILE =NULL, then: Set FLAG := FALSE, and
Rcturn. ‘

4. [Remove node from AVAILE list.] Set NEW := AVAIL I and
AVAILE = LINK[AVAILL).

5. [Insert LOCB in list of successors of A.|
Set DESTINEW]:= LOCB, LINK[NEW]:= ADJ[LOCA| and
ADJ[LOCA]:= NEW. ~

6. Sct FLAG = TRUE, and Return.

The procedure must be modificd by using Procedure 8.6 if A or B is not a nodc in the graph G.

Deleting from a Graph

Supposc an cdge (A, B) is to be deleted from the graph G. (Our procedure will assume that A and

B arc both nodes in the graph G.) Again, we must first find the location LOCA~of A and the location

LOCB of B in the node list. Then we simply delcte LOCB from the list of successors of A, which has

 the list pointer ADJ[LOCA]. A logical variable FLLAG is used to indicate that there is no such cdge in
the graph G. The procedure follows. : ;

Procedure 8.8: DELEDGE(NODE, NEXT, ADJ, START, DEST, LINK, AVAILE, A, B,
' FLAG)
This procedure deletes the edge (A, B) from the granh G.

1. Call FIND(NODE, NEXT, START, A, LOCA). [Locates node A.]

2. . Call FIND(NODE, NEXT, START, B, LOCB). [Locates node B.)

3. Call DELETE(DEST, LINK, ADIJ[LOCA], AVAILE, LOCB, FLAG).
[Uses Procedure 8.4.]

4. Recturn.

Supposc a node N is to be deleted from the graph G. This operation is more complicatéd than the
search and inscrtion operations and the deletion of an edge, because we must also delete all the cdges
that contain N. Note these cdges come in two kinds; those that begin at N and those that end at N.
Accordingly, our procedure will consist mainly of the following four steps: '

(1) Find the location LOC of the node N in G.

(2) Delete all edges ending at N; that is, delete LOC from the list of successors of cach node M in
G. (This step requires traversing the node list of G)

292 GRAPHS AND- THEIR APPLICATIONS [CHAP. 8

(3) Delcte all the edges beginning at N. This is accomplished by finding the location BEG of the
first successor and the location END of the last successor of N, and then adding the successor
list of N to the frce AVAILE list.

(4) ~Declete N itself from the list NODE.

The procedure follows. S

i

Procedure 8.9: DELNODE(NODE, NEXT, ADJ, START, AVAILN, DEST. LINK,
AVAILE, N, FLAG) !
This procedure deletes the node N from the graph G.

1. Call FIND(NODE, NEXT, START, N, LOC). [Locates node N.|
2. If LOC = NULL, then: Sct FLAG := FALSE, and Return.
3. [Declete cdges ending at N.]
(a) Sct PTR:=START.
(b) Repeat while PTR # NULL.:
(i) Call DELETE(DEST, LINK, ADJ[PTR]. AVAILL, LOC,
FLAG). 3
(ii) Sct PTR:= NEXT[PTR].
[End of loop.]
4. [Successor list empty?] it ADJ[L.OC] = NULL, then: Go to Step 7.
5. - [Find the first and last successor of N.] e
(«) Sct BEG := ADJ[LOC}; END:= ADJ[LOC] and
 PTR:= LINK|END]. .
(h) Repeat while PTR = NULL.:
Set END :=PTR and PTR:= LINK|PTR].
[End of loop.] ;
6. [Add successor list of N to AVAILE list.]
Sct LINK|END]:= AVAILE and AVAILE := BEG.
7. [Dclete N using Procedurc 8.4.]
Call DELETE(NODE, NEXT, START, AVAILN, N, FLAG). -
8. Recturn.

EXAMPLE 8.6

Consider the (undirected) graph G in Fig. 8-12(a), whose adjacency lists appearin Figl 8-12(0). Observe that
.G has 14 dirceted edges, since there arc 7 updirected cdges.

Adjaccncy Lists
i A: B.C,D
B: A, DE
C: A, D
D: A,B,CE
C D E: B,D
(a) (b)

Fig. 8-12

suppose G is maintained in memory as in Fig. 8-13(a). Furthermore, suppose node B is delcted from G by
wsing Procedure 8.9. We obtain the following steps:

CHAP. 8] ‘ GRAPHS AND THEIR APPLICATIONS 293

ﬂooe NEXT ADJ Tt NODE = NEXT ADJ
1 A 2 1 1 A 3 2
2 3 4 2 6
3 C 4 7 3 G 4 7
4 D 5 9 4 5 9
5 E -0 13 5 E 0 14
6 - 7 6 7
7 8 7 8
8 0 8 .
START = 1 START=1"
AVAILN =6 ‘ AVAILN =2
DEST LINK DEST LINK
1 @) 2 1 15
2 3 3 2 3‘ 3
3 4 0 3 4 0
N O] 5 4 5
s) 6 5 6
6 OF 0 6 13
7 1 8 ¥ 1 8
8 4 0 8 4 0
9 1 10 9 1 1
10 @ 1 10 1
11 3 12 1 3 12
12 5 (] 12 5 0
Bl ® 14 13 10
14 4] 14 4 0
15 16 15 16
16 0 16 0
AVAILE = 16 AVAILE = 4
(a) Before dcletion. (b) After deleting B.

Fig. 8-13

294 GRAPHS AND THEIR APPLICATIONS [CHAP. 8

Step 1. “Finds LOC = 2, the location of B in thc node list.

Step 3. Deletes LOC =2 from the edge list, that is, from each list of successors. |
Step 5. ‘Finds BEG =4 and END = 6, the first and last successors of B.

Step 6. Delctes the list of successors from the edge list.

Step 7. Deletes node B from the node list.

Step 8. Returns.

The deleted elements are circled in Fig. 8-13(a). Figurc 8-13(b) shows G in memory after node B (and its edges)
are deleted.

8.7 TRAVERSING A GRAPH

Many graph algorithms requirc one to systematically examinc the nodes and edges of a graph G.
There are two standard ways that this is done. Onc way is called a breadth-first search, and the other is
callcd a dcpth-first scarch. The breadth-first search will use a qucue as an auxiliary structure to hold
nodes for future processing, and analogously, the depth-first scarch will usc a stack.

During the execution of our algorithms, each node N of G will be in one of three statces, called the
status of N, as follows:

STATUS =1: (Ready state.) The iﬁitial state of the node N.
STATUS =2: (Waiting state.) The node N is on thc qucue or stack, waiting to bc processed.
STATUS =3: (Processed state.) The node N has been processed.

»

We now discuss the two searches scparatcly.

Breudth-First Search

The general idea behind a breadth-first search beginning at a starting node A is as follows. First we
examinc the starting node A. Then we examinc all the ncighbors of A. Then we cxaminc all the
ncighbors of the neighbors of A. And so on. Naturally, we need to kecp track of the neighbors of a
node, and we need to guarantee that no node is processed more than once. This is accomplished by
using a qucuc to hold nodes that arc waiting to be processcd, and by using a field STATUS which tells
us the current status of any node. The algorithm follows.

Algorithm A: This algorithm cxecutes a breadth first scarch on a graph G beginning at a starting
node A.

1. Initialize all nodes to the recady statc (STATUS = 1).
2. Put the starting node A in QUEUE and change its status to thc waiting state
(STATUS =2).
3. Repeat Steps 4 and 5 until QUEUE is empty:
4 Rcmove the front node N of QUEUE. Process N and change the status of N
to the processed state (STATUS = 3).
5: Add to the rear of QUEUE all the ncighbors of N that are in the steady state
(STATUS = 1), and change their status to thc waiting statc (STATUS = 2).
[End of Step 3 loop.]
6. Exit.

The above algorithm will process only those nodes which are reachable from the starting node A.
Suppose onc wants to cxamine all the nodes in the graph G. Then the algorithm must bec modificd so
that it begins again with another node (which we will call B) that is still'in the ready statc. This node B
can be obtained by traversing the list of nodes.

CHAP. 8] GRAPHS AND THEIR APPLICATIONS 295

EXAMPLE 8.7

Consider the graph G in Fig. 8-14(a). (The adjacency lists of the nodes appear in Fig. 8-14(b).) Suppose G
represents the daily flights between cities of some airline, and suppose we want to fly from city A to city J with the
minimum number of stops. In other words, we want the minimum path P from A to J (where each cdge has
length 1).

A

Adjacency Lists
A:' F,C, B
B: G, C
C: F
D~ C
E: ‘p. C.d
F: D
G: C,E
J: DK
K: E, G

) (a))

Fig. 8-14

The minimum path P can be found by using a breadth-first search beginning at city A and ending when J is
encountercd. During the execution of the scarch, we will also keep track of the origin of each cdge by using an
array ORIG together with the array QUEUE. The steps of our séarch follow.

(a) ' Initially, add A to QUEUE and add NULL to ORIG as follows:
FRONT = | QUEUE: A
REAR = | ORIG: @,
(6) Remove the front element A from QUEUE by setting FRONT := FRONT + 1, and add to QUEUE
the ncighbors of A as follows: :
FRONT=2 . QUEUE: A F,C B |]
REAR =4, ORIG: ¢, AcA A -
Note that the origin A of each of the three édgcs is added to ORIG.
(c) Remove the front element F from QUEUE by setting FRONT := FRONT + 1, and add to QUEUE the
neighbors of F as follows: j :
FRONT =3 QUEUE: A,F,C,B,D-
REAR =5 ORIG: 9, A, A, A, F

(d) Remove the front element C from QUEUE, and add to QUEUE the neighbors of C (which are in the
ready state) as follows:

i

‘FRONT =4 QUEUE: ‘\A, F.C,B,D
REAR =5 ORIG: @, A, A, A, F

Note that'the neighbor F of C is not added to QUEUE, since F is not in the ready state (because F has
alrecady been added to QUEUE). .

296 GRAPHS AND THEIR APPLICATIONS [CHAP. 8

(¢) Rcmove thc front clement B from QUEUE, and add to QUEUE the ncighbors of B (the oncs in the
' ready statc) as follows: .

FRONT =5 QUEUE: A,F,C,B,D,G
REAR =6 ORIG: 9, A, A, A F. B

Note that only G is added to QUEUE, since the other ncighbor, C is not in the rcady stalc.

(f) Recmove the front clement D from QUEUE, and add to QUEUE:the ncighbors of D (the oncs in the
ready state) as follows:

’

FRONT =06 QUEUE: A,F,C,B. D G
REAR =0 ORIG: #, A,A, A F.B

(g) Remove the front clement G from QUEUE and add to QUEUE the ncighbors of G (the ones in the
rcady state) as follows:

FRONT =7 QUEUE: A,F,C.B,D,G,E
REAR =7 ORIG: 0, A, A, A F, B, G
(h) Remove the front element I from QUEUE and add 10 QUEUE the ncighbors of E (the oncs in the
rcady state) as follows: .
FRONT ='8 QUEUE: A.F.C.B,D,G,EJ
REAR =8 ORIG: #, A, A, A F, B G, L

We stop as soon as J is added to QUEUE, since J is our final destination. Wc now backirack from J, using the
array ORIG to find the path P. Thus

Je~E—G+—B+—A
is the required path P. ’

Depth-First Search

The general idca behind a depth-first-scarch beginning at a starting nodc A is as follows. First we
examinc the starting node A. Then we examinc cach node N along a path P which begins at A; that is,
we process a ncighbor of A, then a neighbor of a ncighbor of A, and so on. After coming to a *“dead
end.” that is, to the cnd of the path P, we backtrack on P until we can continuc along anothcr path /',
And so on. (This algorithm is similar to the inorder traversal of a binary tree, and the algorithmn is also
similar to the way onc might travel through a maze.) The algorithm is very similar to the breadth-first
scarch except now we usc a stack instead of the qucuc. Again, & ficld STATUS is uscd to tell us the
current status of a node. Thc algorithm follows.

Algorithm B: This algorithm exceutes a depth-first scarch on a graph G beginning at a starting node
A. - .

1. Initialize all nodcs to the rcady state (STATUS = 1).

2. Push the starting nodc A onto STACK and change its status 10 thc waiting statc
(STATUS =2). :
3. Repeat Steps 4 and 5 until STACXK is cmpty.
4. Pop the top node N of STACK. Proccss N and change its status to the
. processed state (STATUS =3).
5. Push onto STACK all the ncighbors of N that arc still in the rcady state

(STATUS = 1), and change their status to __l'hc wailing state (ST-A"I‘US =2).
{End of Step 3 loop.] Jr 0 '
6. Exit.

Again, the above algorithm will process only thosc nodes whieh arc reachable from the starting
node A. Supposc onc wants to examine all the nodes in G. Then the algorithm must be modificd so
that it begins again with another node which we will call B—that is still in the rcady statc. This nodc B
can be obtained by traversing the list of nodes.

CHAP. 8] GRAPHS AND THEIR APPLICATIONS 297

EXAMPLE 8.8

Consider the graph G in Fig. 8-14(a). Suppose we want to find and print all the nodes reachable from the node)
J (including J itself). One way to do this is.to use a depth-first search of G starting at the node J. The steps of our
search follow. '

(a) Initially, push J onto the stack as follows:
STACK: J

(b) Pop and print the top element J, and then push onto the stack all the neighbofs of J (those that are in
the ready state) as follows: . P

Print J STACK: D, K

(c) Pop and print the top element K, and then push onto the stack all the neighbors of K (those that are in
the ready state) as follows:

Print K STACK: D,E, G

-« (d) - Pop and print the top element G, and then push onto the stack all the neighbors of G (those in the ready
state) as follows:
' Print G STACK: D, E, C

Note that only C is pushed onto the stack, since the other neighbor, E, is not in the ready state (because
E has already been pushed onto the stack).

(e) Pop and print the top element C, and then push onto the stack all the neighbors of C (those in the ready
state) as follows: :

Print C STACK: D, E, F

(f) Popand prin\l the top element F, and then push onto the stack all the neighbors of F (those in the ready
state) as follows: ;

Print F STACK: D, E

Note that the only neighbor D of F is not pushed onto the stack, since D is not in the ready state
(because D has already been pushed onto the stack).

(o) Pop and print the top element E, and push onto the stack all the neighbors of E (those in the ready
state) as follows: a

Print E STACK: D
(Note that none of the three neighbors of E is in the ready state.)
(h) Pop and print the top element D, and push onto the stack all the neighbors of D (those in the ready

‘state) as follows:
Print D STACK: (D

The stack is now empty, so the depth-first search of G starting at J is now complete. Accordingly, the nodes which
were: printed, ')

J,K.G,C,F,E, D

are precisely the nodes which are reachable from J.

8.8 POSETS; TOPOLOGICAL SORTING

Suppose S is a graph such that each node v, of S represents a task and each edge (u, v) means that

the completion of the task u is a prerequisite for starting the task v. Suppose such a graph S contains a
cycle, such as

P=(u, v, w, u)

This means that we cannot begin v until completing u, we cannot begin w until completing v and we

298 - GRAPHS AND THEIR APPLICATIONS [CHAP. 8

cannot begin u until completing w. Thus we cannot complete any of the tasks in the cycle. Accordingly,
such a graph S, representing tasks and a prerequisite relation, cannot have cycles.
Suppose S is a graph without cycles. Consider the relation < on § defined as follows:

u<v if there is a path from u to v
This relation has the following three properties:

(1) For each element u in S, we have u < u. (Irreflexivity.)

(2) If u<wv, then v < u. (Asymmetry.) '
", (3) Ifu<vandv<w,then u<w. (Transitivity.)
Such a relation < on S is called a partial ordering of S, and S with such an ordering is called a parti'ally
ordered set, or poset. Thus a graph S without cycles may be regarded as a partially ordered set.

On the other hand, suppose S is a partially ordered sct with the partial ordering denoted by <.
Then S may be viewed as a graph whose nodes are the elements of S and whose edges are defined as
follows: '

(u,v) isanedgeinSif u<v

Furthermore, one can show that a partially ordered set S, regarded as a graph, has no cycles.

EXAMPLE 8.9 |

Let S be the graph in Fig. 8-15. Observe that S has no cycles. Thus S may be regarded as a partially ordered
sct. Note that G < C, since there is a path from G to C. Similarly, B <F and B <C. On the other hand, B< A,
since there is no path from B to A. Also, A <B. ‘ '

A
. Adjacency Lists

A: C
B: D, F
| &
D: C
E: C
F: .
G: A, F

(a) (b)

Fig. 8-15

Topological Sorting

Let S be a directed graph without cycles (or a partially ordered set). A topological sort T of S is a
linear ordering of the nodes of S which preserves the original partial ordering of S. Thatis: Ifu <vin S
(i.e., if there is a path from u to v in S), then u comes before v in the linear ordering T. Figure 8-16 shows
two different topological sorts of the graph § in Fig. 8-15. We have included the edges in Fig. 8-16 to
indicate that they agree with the direction of the linear ordering.

The following is the main theoretical result in this section.

Proposition 8.4: Let S be a finite directed graph without cycles or a finite partially ordered set. Then
there exists a topological sort T of the set S.

CHAP. 8] GRAPHS AND THEIR APPLICATIONS 299

(b)
Fig. 8-16 Two topological sorts.

Note that the proposition states only that a topological sort cxists. We now give an algorithm which will
find such a topological sort.

The main idea behind our algorithm to find a topological sért T of a graph S without cycles is that
any node N with zero indegree, i.c., without any predecessors, may be chosen as the first clement in
the sort T. Accordingly, our algorithm will repeat the following two steps until the graph S is empty:

(1) Finding a node N with zero indegree
(2) Deleting N and its edges from the graph S

The order in which the nodes are delcted from the graph S will usc an auxiliary array QUEUE which
will temporarily hold all the nodes with zero indegree. The algorithm also uscs a ficld INDEG such that
INDEG(N) will contain the current indegree of the node N. The algorithm follows.

Algorithm C: This algerithm finds a topological sort T of a graph S without cycles.

1. Find the indegree INDEG(N) of each node N of S. (This can be donc by traversing
ceach adjacency list as in Prob. 8.15.)
Put in a queue all the nodes with zcro indegree.
Repeat Steps 4 and 5 until the queue is empty.
Remove the front node N of the qucue (by setting FRONT := FRONT + 1).
Repeat the following for each neighbor M of the node N:
(a) Set INDEG(M):=INDEG(M) — 1.
[This deletes the edge from N to M.]
(b) 1f INDEG(M) =0, then: Add M to the rcar of the qucue.
[End of loop.]
[End of Step 3 loop.]
6. Exit.

P i

300 GRAPHS AND THEIR APPLICATIONS [CHAP. 8

EXAMPLE 8.10

Consider the graph S in Fig. 8-15(a). We apply our Algorithm C to find a topological sort T of the graph S. The
steps of the algorithm follow.

1. Find thc indegree INDEG(N) of each node N of the graph S. This yiclds: .
INDEG(A) =1 INDEG(B) = 0 INDEG(C)=3 INDEG(D) =1
INDEG(E)=0 INDEG(F) = INDEG(G) =0

[This can be donc as in Problem 8.15.]
2: Initially add to the queue each node with zero mdcgrcc as follows: ,

FRONT =1, REAR=3, QUEUE: B, E,G
3a. Remove the front clement B from the queue by setting [-RONT =FRONT + 1, as l’ollows

FRONT =2, REAR =3 QUEUE: B, E, G ' .
3b. Dcercase by 1 the indegrec of cach ncighbor of B, as fullows.

INDEG(D)=1-1=0 and lNDEG(F) -1=1

[The adjaccncy list of B in an 8-15(b) is used to ﬁnd the ne:ghbors D and F of the node B.] The

x neighbor D is added to the rear of the queue, since its indegrec is now zero:

FRONT =2, REAR =4 QUEUE: B,E,G,D

[The graph S now looks like Fig. 8-17(a), where the node B and the edges from B have been deleted, as

indicated by the dotted lines.] |
4a. Remove the front element E from the queue by setting FRONT := FRONT + 1, as follows:

FRONT = 3, REAR =4 QUEUE: B, E, G,D
A A/\
G
&
7/
7
Ba
N
N
(a) B deleted. (b) E deleted.
A
$ e
7 7/
(/
G G
o «
N N
S N
BF Ee- — BC
/ .
/ /
P 7
B & B e
N N
~
N Wy A
D D%
(¢) G deleted. (d) D deleted.

Fig. 8-17

CHAP. §)

4h.

S5a.

Ta.

7b.

8a.

8b.
9a.

9b.

GRAPHS AND THEIR APPLICATIONS 301

Decrease by 1 the indegree of each neighbor of E, as follows:

INDEG(C)=3~1=2
[Since the indegrece is nonzero, QUEUE is not changed. The graph S now looks like Fig. 8-17(b), where
the node E and its edge have been deleted.] .
Remove the front element G from the qucue by setting FRONT := FRONT + 1, as follows:

FRONT = 4, REAR =4 QUEUE: B, E,G,D .
Decrease by 1 the indegrec of each ncighbor of G, as follows:

INDEG(A)=1-1=0 and INDEG(F)=1-1=0
Both A and F are added to the rear of the queue, as follows:

'FRONT =4, REAR =6 QUEUE: B,E,G,D, A, F
[The graph S now looks like Fig. 8-17(c), where G and its two cdges have been deleted. |
Remove the front element D from the queue by setting FRONT := FRONT + I, as follows:

FRONT =5, REAR =6 QUEUE: B, E,G,D, A, F
Decrease by 1 the indegree of cach neighbor of D, as follows:

INDEG(C)=2-1=1)
[Since the indegree is nonzero, QUEUE is not changed. The graph S now looks like Fig. 8-17(d), whcre
D and'its edge have been deleted.] .
Remove the front clement A from the qucue by sctting FRONT := FRONT + 1, as follows:

FRONT =6, REAR =6 QUEUE: B,E,G,D, A, F
Deccrease by 1 the indegrec of cach neighbor of A, as follows:

INDEG(C)=1-1=0
Add C to the rear of the queue, since its indegree is now zcro:

FRONT =6, REAR =7 QUEUE: B,E,G,D, A, F, C »
Remove the front element F from the queue by setting FRONT := FRONT + 1, as follows:
FRONT =7, REAR =7 QUEUE: B,E,G,D, A, F, C

The node F has no neighbors, so no change takes place.

Remove the front clement C from the ‘queuc by setting FRONT := FRONT + 1, as follows:
FRONT =8, REAR =7 QUEUE: B,E,G,D, A,F,C ;

The node C has no ncighbors, so no other changes take place.

The qucue now has no front element, so the algorithm is completed. The elements in the array QUEUE give the
requircd topological sort T of § as follows: |,

i i B,E,G, D A FC

The algorithm could have stopped in Step 7b, where REAR is equal to the number of nodes in the graph S.

302 GRAPHS AND THEIR APPLICATIONS [CHAP. 8

Solved Problems

GRAPH TERMINOLOGY

" 8.1 Consider the (undirected) graph G in Fig. 8-18. (a) Describe G formally in terms of its sct V of
nodes and its set E of edges. (b) Find the degree of each node.

i

e d
Fig. 8-18

(a) There are 5 nodcs, a, b, c, d and e; hence V={a, b, c, d, e). There are 7 pairs [x, y] of nodes such
that node x is connected with node y; hence
E = ([a, b), la, c], [a, d), [b, <], [&, €], [c, d}, [c, €]}

(b) The degree of a node is equal to the number of edges to which it belongs; for example, deg(a) = 3,
since a belongs to three edges, [a, b], [a, c] and [a, d]. Similarly, deg(b) =3, deg(c)=4,

deg(d) =2 and deg(e) = 2. ®

8.2 Consider the multigraphs in Fig. 8-19. Whiéh of them are (a) connected; (b) loop-free (i.c.,.
without loops); (c) graphs? :

XA ®

(ON) &
Fig. 8-19
(a) Only multigraphs 1 and 3 are connected.

(b) Only multigraph 4 has a loop (i.e., an edge with the same endpoints).

(¢) Only multigraphs 1 and 2 are graphs. Multigraph 3 has multiple edges, and multigraph 4 has multiple
edges and a loop. ’

8.3 Consider the connected graph G in Fig. 8-20. (a) Find all simple paths from node A to node F.
(b) Find the distance between A and F. (c) Find the diameter of G. (The diameter of G is the
maximum distance existing between any two of its nodes.)

D i F

Fig. 8-20

CHAP. 8]
(a)
(»)
(o)
8.4

8.5

GRAPHS AND THEIR APPLICATIONS 303

A simple path from A to Fis a path such that no node and hence no edge is repeated. There are seven
such simple paths:
(A,B,C, F) (A, B, E, F) (A, D, E, F) (A, D, E, C, F)
(ABCEF)_(AB,ECF) (A, D, E, B, C, F)
The distance from A to F equals 3, since there is a simple path, (A, B, C, F), [rom A to Fof length 3
and there is no shorter path from A to F.

The distance between A and F equals 3, and the distance between any two nodes does not exceed 3;
hence the diameter of the graph G equals 3.

&onsider the (directed) graph G in Fig. 8-21. (a) Find all the simple paths from X to Z. (b) Find
all the simple paths from Y to Z. (c) Find indeg(Y’) and outdeg(Y). (d) Are there any sources or

sinks? _ .
X - Y
z w
Fig. 8-21
(@) There are three simple path} from X to Z: (X, Z), (X, W, Z) and (X, Y, W, Z).

(&)
()

(@)

There is only one simple path from Y to Z: (Y, W, Z).

Since two edges enter Y (i.e., end at Y), we have indeg(Y) = 2. Since only one edge leaves Y (i.e.,
begins at Y), ouldeg(Y) =1.

X is a source, since no edge enters X (i.e., indeg(X) = 0) but some edges leave X (i.c.,
outdeg(X) > 0). There are no sinks, since each node has a nonzero outdeggge (i.e., each node is the
initial point of some edge).

Draw all (nonsimilar) trees with exactly 6 nodes. (A graph G is similar to a graph G’ if thei_ is a
one-to-one oorrespondence between the set V of nodes of G and the sct V' of nodes of G’ s\.:h

- that (u, v) is an edge in G if and only if the corresponding pair (u', v’) of nodes is an edge 1n
.G')

There are six such trees, which are exhibited in Fig. 8-22. The first tree has diaméter 5', the next two

diameter 4, the next two diameter 3 and the last one diameter 2. Any other tree with 6 nodes will be.similar
to one of these trees.

- T Ek

Fig. 8-22

304

8.6

- GRAPHS AND THEIR APPLICATIONS [CHAP. 8

Find all spanning trees of the graph G shown in Fig. 8-23(a). (A trce T is called a spanning tree
of a connected graph G if T has the same nodes as G and all the edges of T are contained among

N NN

There are eight such spanning trees, as shown in Fig. 8-23(b). Since G has 4 nodes, each spanning tree
T must have 4 — 1 = 3 edges. Thus each spanning trec can be obtained by deleting 2 of the 5 edges of G.
This can be done in 10 ways, cxcept that two of them lead to dnsconnecled graphs. ‘Hence the eight
spanning trces shown arc all the spanning treecs of G. '

(a)
Fig. 8-23

SEQUENTIAL REPRESENTATION OF GRAPHS

8.7 -

Consider the graph G in Fig. 8-21. Suppose the nodes are stored in memory in an array DATA
as follows:

DATA X, Y,Z, W
(a) Find the adjacency matrix A of the graph G. .
(b) Find the path matrix P of G using powers of the adjacency matrix A.
(c) Is G strongly connccted?

(@) The nodes are normally ordered according to thc way they appear in memory; that is, we assume '
v, =X, v, =Y, v, =Z and v, = W. The adjucency matrix A of G follows:

(=l =)
—_—0 O =
O b ot

1
0
1
0 0

Here a,; =1 if there is a node from v, to v;; othcrwisc, a,=0.
(b) Since G has 4 nodes, compute A% A*, 4" and B,=A+ A"+ A> + A"

01 1.2 ¢-¥ 2 2
0010 a- T 0 |

2 3 __

A=l o p.al » A=lg 1 1 i
010 1 0011
-2 .2] 3 05 6 8

- 00 1Y 0 L 2.3

“t+01+1-2 +— 10 33 5§
i 1 T O | 0 23 5

CHAP. 8] GRAPHS AND THEIR APPLICATIONS 305

8.9

The path matrix £ is now obtained by setting p,; = 1 wherever there is a nonzero entry in the matrix
B,. Thus

1
1
1
1

(=1 = = R =
—
—

(¢) The path matrix shows that there is no path from v, to v,. In fact, there is no path from any node to
v,. Thus G is not strongly connected.

Consider the graph G in Fig. 8-21 and its adjacency matrix A obtained in Prob. 8.7. Find the
path matrix P of G using Warshall’s algorithm rather than the powers of A.

Compute the matrices P,, P,, P,, P, and P, where initially P, = A and
P.li, j1= P, _ [, j1v (Pooylis 1A Pk, D)

That is,

C P, jl=1 if P, i[i, j1=1 or both P._.li, k]=1 and P, _\lk, j1=1
Then:

01 1 1 01 1 1
00 01 00 0 1

P: =

: 010 1 P20101
0010 0010
0111 01 1 1
000 1 a 171 1

P,= =

10101 P‘0111
011 1 D 1 1 1

Observe that P, = P, = P, = A. The changes in P, occur for the following reasons:
P,(4,2)=1 because P,(4,3)=1 and P,(3,2)=1
Piy(4,4)=1 because P,(4,3)=1 and Py(3,4)=1

The changes in P, occur similarly. The last matrix, P,, is the required path matrix P of the graph G.

Consider the (undirected) welghted graph G in F|g 8-24. Suppose the nodes are stored in
memory in an array. DATA as follows:

DATA: A,B,C X, Y

. Find the weight matrix W= (w) of the graph G.

306

8.10

8.11

GRAPHS AND THEIR APPLICATIONS [CHAP. 8

Assuming v, = A, v,=B, v,=C, v,=X and v,=Y, we arrive at the following weight matrix
Wof G: '

h
-5 O Q
o oOWnmoe
NOOWnoO
W o oo s
S W N =

Here w denotes the weight of the edge from v, to v,. Since G is undirected, W is a symmetric matrix, that
is, w

Suppose G is a graph (undirected) which is cycle-frec, that is, without cycles. Let P = (Py) be
the path matrix of G.

(a) When can an edge [v;, v;] be added to G so that G is still cycle-free?
(b) How does the path matrix P change when an edge [y, y] is added to G?

(@) The edge |v,, v,] will form a cycle when it is added to G if and only if there alrcady is a path between
v, and v,. Hence the cdge may be added to G when p,, =0.

(b) First sct p, = 1, since the cdge is a path from v, to v,. Also, set p,, = 1if p,, =1 and p,, = 1. In other
words, if there are both a path P, from v, to v, and a path P, from v, 1o v, then Py, (v, y], P, will
form a path from v, to v,.

A minimum spanning trcc T of a weighted graph G is a spanning tree of G (sce Prob. 8.6) which
has the minimum weight among all.the spanning trces of G.

(a) Describe an algorithm to find a minimum spanning trec T of a weighted graph G.
(b) Find a minimum spanning tree T of the graph in Fig. 8-24.
(@) Algorithm P8.11: This algorithm finds a minimum spanning tree T of a weighted graph G.

1. Order all the edges of G according to incrcasing weights.
2. Initialize T to be a graph consisting of the same nodes as G and no edges.
3. Repeat the following M — 1 times, where M is thc number of nodes in G:
Add to T an edge E of G with minimum weight such that E does not
form a cycle in T.
[End of loop.]
4. Exit.

Step 3 may be implemented using the results of Prob. 8.10. Problem 8.10(a) tells us which edge e may
be added to T so that no cycle is formed—i.c., so that T is still cycle-free—and Prob. 8.10(b) tells us
how to keep track of the path matrix P of T as each edge e is added to T.

(h) Apply Algorithm P8.11 to obtain the minimum spanning tree T in Fig. 8-25. Although [A, X] has less
weight than [B, C], we cannot add [A, X] to T, since it would form a cycle with [A, Y] and [Y, X].

A C

CHAP. 8] GRAPHS AND THEIR APPLICATIONS 307

8.12 Supposc a weighted graph G is maintained in mcmory by a node array DATA and a wcight
matrix W as follows: ‘

DATA: X,Y,S, T
003 0
w=[5 0 17
2 0 0 4
0 6 8 0

Draw a picture of G.

The picture appcars in Fig. 8-26. The nodecs are labcled by the entrics in DATA. Also, if w,, # 0, then
therc is an edge from v, to v; with weight w,. (We assume v, =X, v, =Y, v, =S$ and 1, = T, the order in
which the nodes appear in the array DATA.)

LINKED REPRESENTATION OF GRAPHS

8.13 A graph G is stored in memory as follows:

NODE | A| B E D|C
NEXT 714l0|6|8|-0]2]|3
ADJ 1] 2 5 719
I* 203l 4t g g g g
START =1, AVAILN =5
“DEST 21 6| 4 6|7 |4 4| 6

LINK Wi3|6|[ofo]oflo|a|o0o] o0
1 2.3 4 5 6 T 8.9 W

AVAILE = 8

Draw the graph G.

First find the neighbors of cach NOD |K] by traversing its adjacency list, which has the pointer
ADIJ[K]. This yiclds: ‘

A: 2(B) and 6(D) C: 4(E) E: 6(D)
B: 6(D), 4(E) and 7(C) D: 4(E)
Then draw the diagram as in Fig. 8-27.

308 GRAPHS AND THEIR: APPLICATIONS : [CHAP. 8

Fig. 8-27

8

8.14 - Find the changes in the liiked representation of the graph G in Prob. 8.13 if the following
operations occur: (@) Node F is added to G. (b) Edge (B, E) is deleted from G. (¢) Edge (A, F)

is added to G. Draw the resultant graph G.
(a) The node list is not sorted, so F is inserted at the beginning of the list, using the first available free
node as follows:

NODE A| B C
START =35
NEXT 71410 213
AVAILN =8
‘ g ADJ 1.1 2 9
. "2 3 7 8

Observe that the edge list does not change,
(b) Delete LOC =4 of node E from the adjacency list of node B as follows:

DEST 216 6|71 4 4 | 6
- AVAILE =3
LINK 10] 6 0 0

Observe that the node list does not change.
(c) The location LOC = 5 of the node F is inserted at the beginning of the adjacency list of the node A,
using the first available free edge. The changes are as follows:

ADIJ[1]=3 - 'DEST 2 6

AVAILE =8 LINK 10 6

CHAP:. 8] GRAPHS AND THEIR APPLICATIONS 309

8.15

8.16

The only changt in the node list is the AD4[1] = 3. (Observe that the shading indicates the
changes in the lists.) The updated graph G appears in Fig. 8-28.

Suppose a graph G is maintained in memory in the form
GRAPH(NODE, NEXT, ADJ, START, DEST, LINK)

Write a procedure which finds the indegree INDEG and the outdegree OUTDEG of cach node
of G.

.. First wec (raverse. the node list, using the pointer PTR in order to initialize the arrays INDEG and

‘OUTDEG 10 zero. Then we traverse the node list, using the pointer PTRA, and for cach valuc of PTRA,

we traverse the list of ncighbors of NODE[PTRA], using the pointer PTRB. Each time an cdge is
encountered, PTRA gives the location of its initial node and DEST[PTRB]| gives the location of its
terminal node. Accordingly, cach cdge updates the arrays INDEG and OUTDEG as follows:

OUTDEG|PTRA]:= OUTDEG[PTRA] + 1
and]
INDEG|DEST{PTRB]] := INDEG[DEST[PTRB]] + |

The formal procedure follows.

Procedure P8.15: | DEGREE(NODE, NEXT, ADJ, START, DEST, LINK, INDEG, OUTDLG)
This procedure “finds thes indegree INDL(: and outdegree OUTDEG of cach
nodc in the grafli"G in memory.

"1, [Initialize arrays INDEG and OUTDEG.]
ta) Sct PTR:=S8TART.
(b) Rcpeat while PI'R # NULL: [Traverses node list. |
(i) Set lNDEGIl‘TRI =0 and OUTDEG[I"I'R]:= 0.
(ii) Sct PTR:=NEXT[PTR].
[End of loop. |
Sct PTRA :=S8TAR'I,
Repeat Steps 4 to 6. while PTRA # NULL: [Traverses nodc list.]
Set PTRB := ADJ[PTRA].
Repeat while PTRB # NULL: [Traverses list of ncighbors.]
(@) Sct OUTDEG|PTRA]:= OUTDEGIPTRA]+ 1 and
INDEG|DEST[PTRB]] := INDEG|DEST[PTRB]| + 1
(b) Sct PTRB:= LINK[PTRB].
[End of inner. loop using pointer PTRB.]
6. Sct PTRA := NEXT[PTRA]. °*
[End of Step 3 outer loop usmb thc pointer PT RA |
7. Rcturn.

bl o o

Suppose G is a finite undirccted graph. Then G consists of a finitc number of disjoint connccted

- components. Describe an algorithm which finds the number NCOMP of connccted components

of G. Furthcrmore, the algorithm should assign a coinponent number COMP(N) to cvery node
N in the same connected componcnl of G such that the component numbers range from 1 to
NCOMP.

The general idea of the algorithi is to usc a breadth-first or depth-first scarch to find all nodes N
recachable from a starting nodc A and to assign them the same component numbcer. The algorithm
{ollows.

310 GRAPHS AND THEIR APPLICATIONS [CHAP. 8

Algorithm P8.16: Finds the connected components of an undirected graph G.

1. Initially set COMP(N) =0 for cvery node N in G, and initially set L:=0.
2. Find a node A such that COMP(A) = 0. If no such node A exists, then:
Sct NCOMP := L, and Exit.
Elsc:
Sct L:=L + 1 and set COMP(A):=L.
3. Find all nodes N in G which arc reachable from A (using a orcadth-first scarchora
. dcpth-first search) and sct COMP(N) = L for cach such node N.
4. Return to Step 2.

MISCELLANEOUS PROBLEMS

8.17 Suppose G is an undirected graph with m nodes v, v,, . . ., v, and n cdges e, ,.ez, ...,e,. The
incidence matrix of G is the m X n matrix M = (m,;) where

1 { 1 if node v, belongs to edge ¢,
i 0 othcrwisc

Find thc incidence matrix M of the graph G in Fig. 8-29.

€
v, L v,

e,

v,
Fig. 8-29
Since G has 4 nodes and 5 edges, M is a 4 x § matrix. Sct m,; =1 if v, belongs to e,. This yiclds the
following matrix M:
1 0 0 01
1-9-1 0.0
Mko 91 16
0.0 L 1

8.18 Supposc u and v arc distinct nodes in an undirccted graph G. Prove:

(a) If there is a path P from u to v, then there is a simple path Q from u to v.
(b) If therc are two distinct paths P, and P, from « to v, then G contains a cycle.

CHAP. 8] GRAPHS AND THEIR APPLICATIONS 31

8.19

8.20

(a) Suppose P = (v, v,,...,v,) wherc u=vy,and v=u,. If v, = v, then
P=(y,...,u, Vigss oy V,)

isa path from u to v which is shorter than #, Repeating this process, we finally obtair a path Q from u
to v whose nodes are distinct. Thus Q is a simple path from u to v.

(b) Let wbe a ndde in P, and P, such that thc next nodes in P, and P, are distinct. Let w' be the first
node following w which lics on both P, and P,. (See Fig. 8-30.) Then the subpaths of P, and 5
between w and w’ have no nodes in common except w and w’; hence thesc two subpaths form a
cycle,

Prove Proposition 8.2: Let A be the adjacency matrix of a graph G. Then a,(i, j), the ij entry in
the matrix A*, gives the number of paths of length K from v, to v,

The proof is by induction on K. Note first that a path of length 1 from v, to v, is precisely an cdge
(v;, v;). By definition of the adjacency matrix A, a,(i, j) = a, gives the number of edges from v; to v,.
Hence the proposition is true for K =1,

Supose K > 1. (Assume G has m nodes.) Since AX = AX"'4,

ax(i, j)= 2. ax_,(i,)a,(s, j)

By induction, a, _, (i, s) gives the number of paths of length K — 1 from v, to v,, and a,(s, j) gives the
number of paths of length 1 from v, to y,. Thus a,_ (i, s)a,(s, j) gives the number of paths of length K
from v, to y, where v, is the next-to-last node. Thus all the paths of length K from v, tu v, can be obtained by
summing up the a,._ (4, s)a,(s, j) for all 5. That is, a (i, j) is thc number of paths of length K from v, to
v,. Thus the proposition is proved.

-— -

Suppose G is a finitc undirccted graph without cycles. Prove cach of the following:

(a) If G has at least one cdge, then G has a node v with degree 1.

(b) If G is connected—so that G is a tree—and if G has m nodes, then G has m — 1 cdges.
(c) If G has m nodes and m — 1 edges, then G is a trec.

(@) Let P= (v, v,...,v,) be asimple path of maximum length. Suppose deg(v,) # 1, and assumc

{u, v,] is an cdge and u# v,. If u= v, for i > 1, then C = (Y, vy, . .., v)is a cycle. If u # v,, then
P'=(u, v, ..., v,)is asimple path with lcngth greater than P. Each casc leads to a contradiction.
Hence deg(v,) = 1. s

(6) The proof is by induction on m. Suppose m = 1. Then G consists of an isolzted node and G has
m — 1 =0 edges. Hence the result is true for m = 1. Supposc m > 1. Then . has a node v such that
deg(v) = 1. Delete v and its only edge [v, v’] from the graph G to obtain the graph G'. Then G is still
connected and G is a trec with m — 1 nodes. By induction, G’ has m — 2 edges. Hence G has m — 1
edges. Thus the result is true.

(¢) LetT,, T,,...,T,denote thc connected components of G. Then cach T,is a trce. Hence each T,
has one more node than edges. Hence G has s more nodes than edges. But G has only one more node
than edges. Hence s =1 and G is a tree.

312 GRAPHS AND THEIR APPLICATIONS |CHAP. 8

Supplementary Problems

GRAPH TERMINOLOGY

8.21 Consider the undirccted graph G i Fig. 8-31. Find (a) all simplc paths from rode A 10 node H, (b) the
diameter of G and (¢) the degree of cach node. .

A 8 c D

Fig. 8-31

8.22 Which of the multigraphs in Fig. 8-32 are (a) connected, (b) loop-frec (i.e., without loops) and (c) graphs?

&> &)

(ii) (iii)

Fig. 8-32
8.23 Consider the directed graph G in Fig. 8-33. (a) Find the indegree and outdegree of each node. (b) Find the

number of simple paths from v, to v,. (¢) Arc there any sources or sinks?

Y, v;

Uy
Fig. 8-33

8.24 Draw all (ndnsimilur) trees with 5 or fewer nodes. (There are cight such trees.)

8.25 Find the number of spannix;g trees of the graph G in Fig. 8-34.

A B c

Fig. 8-34

CHAP. 8] GRAPHS AND THEIR APPLICATIONS 313

- SEQUENTIAL REPRESENTATION OF GRAPHS; WEIGHTED GRAPHS

8.26 Consider the graph G in Fig. 8-35. Suppose the nodes are stored in memory in an array DATA as follows:

DATA: X‘ Y, Zs sv T
(a) Find the adjacency matrix A of G. (b) Find the path matrix P or G. (¢) Is G strongly connected?

S T
X z
Y
Fig. 8-35
8.27 Consider the weighted graph G in Fig. 8-36. Suppose the nodes are stored in an array DATA as follows:
DATA: X Y8, T
(a) Find the weight mutrix Wof G. (b) Find the matrix Q of shortest paths using Warshall’s Algorithm 8.2.
7
X Y
6 2
T 5>
Fig. 8-36
8.28

Find a minimum spanning tree of the graph G in Fig. 8-37.

Fig. 8-37

314

8.29

§.30

GRAPHS AND THEIR APPLICATIONS [CHAP. 8

The following is the incidence matrix M of an undirected graph G:

1 0481 ol
g .10 100 1 0
QLR | S ¢ SN0 S 0
0.0 @0 1
10 011 0’0

(Note that G has 5 nodes and 8 edges.) Draw G and find its adjaccney matrix A.

The following is the udjuccncy‘ matrix A of an undirected graph G:

QL0 - EL
1599 31 'l
A=f 0 0 0 1 1
=11 0=
01110

(Note that & has 5 nedes.) Draw G and find its incidence matrix M.

LINKED REPRESENTATION OF GRAPHS

8.31

8.32

8.33

8.34

PProblems 8.

Supposc a graph G is stored in memory as follows:

NODE A CE D B
NEXT 4 0] 8 017 3 2 1
AD]J 6 1|10 2

¥ R RZEATEY 4 5 6 7
START =0, AVAILN =5

.DEST | 8 | & 1. .31 3 6 | 3
LINK § sl 7]8loloflojoflold4]o0
] 4. 8 @& 7 8 9 10

AVAILE =3 ..
Draw the graph G.

Find the changes in the linked representation of the graph G in Prob. 8.31 if cdge (C, E) is deleted and
cdge (D, E) is inscried.

Find the changes in the linked representation of the graph G in Prob. 8.31 il a node FF and the cdges {E, F)
and (F, D) are inserted inte 7

Find the changes in the linked repre<entation of the graph G in Prob. 8.31 il the node B is deleted from G

35 10 8.38 refer to graph (i which is maintained in mcmory by a linked representation:

GRAPH(NODE, NEXT, ADJ, START, AVAILN, DEST, LINK, AVAILL)

8.35 Write u precedure to supplement cach of the following:

(@) Print the list of successors of a given node ND.

(h) Print the dist of predecessors of a given node ND.

CHAP.

8.38

8] GRAPHS AND THEIR APPLICATIONS 315

Write a procedure which determines whether or not G is an undirected-graph. -

Write a procedure which finds the number M of nodes of G and then ﬁnd"s the M X M adjacency matrix A
of G. (The nodes are ordered according to their order in the node list of G.))

Write a procedure which determines whether there are any sources or sinks in G.

Problems 8.39 to 8.40 refer to a weighted graph G which is stored in memory using a linked representation as

follows:

8.39

8.40

8.41

8.42

8.43

GRAPH(NODE, NEXT, ADJ, START, AVAILN, WEIGHT, DEST, LINK, AVAILE)
Write a procedure which finds the shortest path from a given node NA to a given node NB.

Write a procedure which finds the longest simpie path from a given node NA to a given node NB.

Programming Problems

Suppose a graph G is input by means of an integer M, representing the nodes 1,2, . . ., M, and a list of N
ordered pairs of the integers, representing the edges of G. Write a procedure for each of the following:

(@) To find the M x M adjacency matrix A of the graph G. :
(b) To use the adjacency matrix A and Warshall’s algorithm to find the path matrix P of the graph G.

Test the above using the following data:
(i) M=5 N=8;(3,4).(5.3) (2.4), (1.5). (3,2), (4,.2). (3. 1), 5, 1)/
(i) M=6; N=10; (1,6), (2, 1), (2,3), (3,5). (4. 5), (4, 2), (2, 6), (5,3), (4, 3), (6, 4)

Suppose a weighted graph G is input by means of an integer M, representing the nodes 1,2, . . . , M, and a
list of N ordered triplets (a,, b,, w,) of integers such that the pair (a,, b;) is an edge of G and w, is its
weight. Write a procedure for each of the following:

(a) To find the M X M weight matrix W of the graph G.

(b) To use the weight matrix W and Warshall's Algorithm 8.2 to find the matrix O of shortest paths
between the nodes.

Test the above using the following data:

(]) M=d; N=70(1,2)5), 42,4, 2), 3.2, 3), (1, 1, 7), (4.1, 4), (4.3, 1). (Compare with Example
8.4.) .

(i) M=5;N=8;(3,5,3), (4,1,2), (5, 2,2), (1,5,5), (1,3, 1), (2.4,1), (3,4, 4), (5, 4, 4).

Suppose an empty graph G is stored in memory using the linked representation
GRAPH(NODE, NEXT, ADJ, START, AVAILN, DEST, LINK, AVAILE)

Assume NODE has space for 8 nodes and DEST has space for 12 cdges. ‘Wite a program which executes
the following operations on G:

(@) Inputs nodes A, B, C and D

(b) Inputs edges (A, B), (A, ©), (C, B), (D, A). (B, D) and (C, D)

(¢) Inputs nodes E and F

CITY LEFT RIGHT ADJ
1 Atlanta 0 2 12
2 Boston 0 ({] 1
3 Houston 0 0 l4.
4 New York 3 8 4
3 6
6 0
7 Wnshinglon 0 0 10
8 | Philadelphia 0 7 6
9 Denver 10 4 8
10 Chicago : 0 2
START =9, AVAILN=5
NUMBER PRICE ORIG . DEST LINK

201 80 2 10 3

202 80 10 2 0

301 50 . 4 0

302 50 4 2 5

303 . 40 4 8 7

304 40 8 4 9

305 120 4 9 0

306 120 9 4 13

401 40 8] 0

402 40 7 8 11

403 80 7 1 0

404 80 1 7 16

501 80 9 3 15

502 80 3 9 0

503 140 9 1 0

504 140 1 9 0

18

19

20

0

NUM = 16, AVAILE = 17

Fig. 8-38

316

CHAP. 8] GRAPHS AND THEIR APPLICATIONS 317

(d) Inputs edges (B, E), (F. E), (D, F) and (F, B)
(e) Decletes edges (D, A) and (B, D)
(f) Decletes node A

Problems 8.44 to 8.48 rcfer to the data in Fig. 8-38, where the citics arc stored as a binary scarch trce.

8.44. . Writc.a procedurc with input CITYA and CITYB which finds the flight number and cost of the flight from
city A to city B, if a flight cxists. Test the proccdure using (@) CITYA = Chicago, CITYB = Boston; (b)
CITYA = Washington, CITYB = Dcnver; and (¢) CITYA = New York, CITYB = Philadclphia.

8.45 Write a procedure with input CITYA and CITYB which finds the way to fly from city A to city B with a
minimum number of stops, and also finds its cost. Test the procedure using (a) CITYA = Boston,
CITYB = Houston; (&) CITYA = Dcnver, CITYB = Washington; and (c) CITYA = New York, CITYB =
Atlanta.

... 8.46 . Writc a procedure with input CITYA and CITYB which finds the 'chcapcst way to fly fiom city A tocity B
and also finds the cost. Test the procedure using the data in Prob. 8.45. (Compare the results.)

8.47 Writc a procedure which deletes a record from Yhe file given the flight number NUMB. Test the program
using (a) NUMB = 503 and NUMB = 504 and (b) NUMB = 303 and NUMB = 304.

8.48 Wiritc a proccdure which inputs a record of the form
(NUMBNEW, PRICENEW, ORIGNEW, DESTNEW)
Test the procedurc using the following data:
(a) NUMBNEW =505, PRICENEW =80, ORIGNEW = Chicago, DESTNEW = Denver
NUMBNEW =506, PRICENEW =80, ORIGNEW =Decnver, DESTNEW = Chicago
(b)) NUMBNEW =601, .PRICENEW =70, ORIGNEW = Atlanta, - DESTNEW = Miami
NUMBNEW =602, PRICENEW =70, ORIGNEW = Miami, DLS‘FI\JEW = Atlanta

(Notc that a new city may have to be inserted into the binary search tree of cities.)

8.49 Translate the topological sort algorithm into a program which sorts a graph G. Assume G is input by its sct
V of nodes and its sct £ of cdges. Test the program using the nodes A, B, C. D, X, Y. Z. S and T and the
edges .
(@) (A, 2),(5,2), (X,D), (B.T), (C,B), (Y, X), (Z, X), (S, C) and (Z, B)
(&) (A, 2), (D, Y), (A, X), (Y,B), (5.Y), (C, T), (X.8), (B, A), (C,S) and (X.T)
(@ (A, O) (B, Z), (Y, A). (Z,X), (D, Z), (A, S), (B, T), (Z, Y). (T, Y) and (X, A)

8.50 Writc a prégram which finds thc number of connected components of an unordered graph G and also
assigns a componcnt number to cach of its nodes. Assume G is input by its sct V of nodes and its sct E of
(undirected) cdges. Test the program using the nodes A, B, C, D, X, Y, Z. S and T and the cdges:
(@) [A,X], [B,T][Y.C] I[S, 2], [D,T), [A,S] [Z, Al, [D, B] and [X, S]

) [Z,C], [D,B], (A, X]. [S,C], [D,T], [X, S], [Y, B], [T, B| and [S, Z]

Chapter 9

Sorting and Searching

9.1 INTRODUCTION

Sorting and searching are fundamental operations in computer science. Sorting refers to the
operation of arranging data in some given order, such as increasing or decreasing, with numerical data,
or alphabetically, with character data. Searching refers to the operation of finding the location of a
given item in a collection of items.

There are many sorting and searching algorithms. Some of them, such as heapsort and binary
search, have already been discussed throughout the text. The particular algorithm one chooses
depends on the properties of the data and the operations one may perform on the data. Accordingly,
we will want to know the complexity of each algorithm; that is, we will want to know the running time
f(n) of cach algorithm as a function of the number n of input items. Sometimes, we will also discuss the
space requirements of our algorithms.

Sorting and searching frequently apply to a file of records, so we recall some standard terminology.
Each record in a file F can contain many fields, but therc may be one particular ficld whose values
uniquely determine the records in the file. Such a field K is called a primary key, and the values

ky, k,, . . .insuch a field are called keys or key values. Sorting the file F usually refers to sorting F with
respect to a particular primary key, and searching in F refers to searching for the record with a given
key value. :

This chapter will first investigate sorting algorithms and then investigate searching algorithms.
Some texts treat searching before sorting.

9.2 SORTING

Let A be a list of n elements A, A,, ..., A, in memory. Sorting A refers to the operation of
rearranging the contents of A so that they are increasing in order (numerically or lexicographically),
that is, so that :

ASA,=A;=---=A4,

Since A has n elements, there are n! ways that the contents can appear in A. These ways correspond
precisely to the n! permutations of 1, 2, . . ., n. Accordingly, each sorting algorithm must take care of
these n! possibilities.

EXAMPLE 9.1
Supposc an array DATA contains 8 clements as follows:
DATA: 77, 33, 44, 11, 88, 22, 66, 55
After sorting, DATA must appear in memory as fullo;vs:
DATA: 11, 22, 33, 44, 55, 66, 77, 88

Since DATA consists of 8 elements, there are 8! = 40 320 ways that the numbers 11. 22, . . ., 88 can appear in
DATA. ‘

Complexity of Sorting Algorithms

The complexity of a sorting algorithm measures the running time as a function of the number n of
items to be sorted. We note that each sorting algorithm § will be made up of the following operations,
where A, A,, A, contain the items to be sorted and B is an auxiliary location:

318

CHAP. 9] SORTING AND SEARCHING) 319

(@) Comparisons, which test whether A < A; or test whether A, < B
(b) Interchanges, which switch the contents of A, and A;orof A, and B
(c) Assignments, which set B:= A, and then sct A;i=Bor A=A,

Normally, thc complexity function mcasures only the number of comparisons, since the number of
_other operations is at most a constant factor of the number of comparisons.

There are two main cascs whose complexity we will consider; the worst case and the average casc.
In studying the average casc, we make the probabilistic assumption that all the n! permutations of the
given n items arc cqually likely. (The reader is referred to Sec. 2.5 for a more detailed discussion of
complexity.) i

Previously, we have studicd the bubble sort (Scc. 4.6), quicksort (Sec. 6.5) and hecapsort (Sec.
7:10). The approximate number of comparisons and the order of complcexity of these algorithms are
summarized in the following tablc: g

Algorithm Worst Case Avcrage Casc
Bubble Sort A e Oaty i'(—"zfﬁ = O(n?)
+
2 Quicksort ﬂ”—zﬁ = O(n?) 1.4nlog n = O(n log n)
: " Heapsort 3nlog n= O(nlogn) 3n log n = O(n log n)
1

Notc first that the bubble sort is a very slow way of sorting; its main advantage is the simplicity of the
algorithm. Obscrve that the average-case complexity (s log 1) of hcassort is the samc as that of
quicksort, but its worst-case complexity (n log n) scems quicker than quicksort (n?). However,
empirical evidence scems to indicate that quicksort is superior to hcaps:rt except on rare occasions.

Lower Bounds

The reader may ask whether there is an algorithm which can sort 7 it :ms in timc of order less than
O(n log n). The answer is no. The reason is indicated below.

Suppose § is an algorithm which sorts n items a, ay, . . ., a,. We assumc there is a decision tree T
corresponding to the algorithm § such that 7 is an extended binary scarch trce where the cxternal
nodes correspond to the n! ways that # items can appcar in memory and where the internal nodcs
correspond to the different comparisons that may take place during the cxccution of the algorithm §.
Then the number of comparisons in the worst casc for the algorithm § is cqual to the length of the
" longest path in the decision tree T or, in other words, the depth D of the tree, T. Morcover, the
average numbcer of comparisons for the algorithm S is cqual to the average external path length £ of
the tree T.

Figurc 9-1 shows a decision tree 7 for sor ng n =3 items. Observe that T has n! = 3! = 6 external
nodes. The values of D and E for the tree follow:

D=3 and E=é(2+3+3+3+3+2)=2.667

Conscquently, the corresponding algorithm § requires at most (worst casc) D = 3 comparisons and, on
“the average, £ = 2.667 comparisons to sort the n =3 itcms.

Accordingly, studying the worst-case and avcrage-case complexity of a sorting algorithm S is
reduced to studying the values of D and £ in the corresponding decision tree 7 First, however, we
recall some facts about extended binary trees (Secc. 7.11). Supposc T is an extended binary tree with N
external nodes, depth /2 and external path length £(T). Any such treec cannot have more than 2”
external nodes, and so

2= N or cquivalently D=log N

320 SORTING AND SEARCHING [CHAP. 9

Furthermore, T will have a minimum external path length E(L) among all such trees with N nodes
when 7T is a complete tree. In such a case,

E(LY=Nlog N+ O(N)=Nlog N

The N log N comes from the fact that there are N paths with length log N or log N + 1, and the O(N)
comes from the fact that there are at most N nodes on the deepest level. Dividing E(L) by the number
N of external paths gives the average external path length E. Thus, for any extcnded binary trec 7 with
N external nodes, . :

=_E(L) NloghN _
E—-————N =y =log N

Now suppose T is the decision trce correspondimg to a sorting algorithm S which sorts n itcms.
Then T has n! external nodes. Substituting n! for N in the above formulas yiclds

D=zlogn!=nlogn and E=logn!=nlogn

The condition log n! = n log n comes from Stirling’s formula, that

n\" 1)
| o - i,
n! 21rn(e) (1+ 12”-0—

Thus n log n is a lower bound for both the worst case and the avcrage case. In other words, O(n log n)
is the best possible for any sorting algorithm which sorts n items.

a,<a,<a, a,<a;<a,
a,<a,<a, ay<a,<a, a,<a ,<a, a,<a,<a,
Fig. 9-1 Deccision trec T for sorting # = 3 items.
Sorting Files; Sorting Pointers
Suppose a file F of rccords R, R,, . . ., R, is stored in memory. “Sorting F'' refcrs to sorting F
with respect to some field K with corresponding values k,, kyy . .., k,. That is, the rccords arc

ordered so that
kisk,=---sk,

The ficld K is calicd the sort key. (Recall that K is called a primary key if its valucs uniqucly determine
the records in F.) Sorting the filc with respect to another key will order the records in anothcr way,

CHAP. 9] SORTING AND SEARCHING 321

EXAMPLE 9.2
Suppose the personnel file of a company contains the following data on cach of its employces:

Name Social Sccurity Number Sex Monthly Salary

Sorting the file with respect to the Name key will yicld a different order of the records than sorting the file with
respect to the Social Security Number key. The company may want to sort the file according to the Salary ficld
even though the ficld may not uniquely dctermine the employees. Sorting the file with respect to the Sex key will
likely be uscless; it simply scparates the cmployees into two subfilcs, one with the malc employccs and one with
the female employces.

Sorting a filc F by rcordering the rccords in nicmory may be very expensive when the records are
very long. Morcover, the records may be in sccondary memory, where it is cven morc time-consuming
to move records into different locations. Accordingly, onc may prefer to form an auxiliary array
POINT containing pointers to the rccords in memory and then sort the array POINT with respect to a
field KEY rather than sorting the records themselves. That is, we sort POINT so that

KEY[POINT(1]] = KEY[POINT(2]] = - - - = KEY[POINT|N]|
Note that choosing a different field KEY will yicld a different order of the array POINT.

EXAMPLE 9.3

Figure 9-2(a) shows a personnel file of a company in memory. Figure 9-2(5) shows thrce arrays, POINT,
PTRNAME and PTRSSN. The array POINT contains the locations of the records in memory, PTRNAME shows
the pointers sorted according to the NAME field, that is,

NAME[PTRNAME(1]] < NAME[PTRNAME[2]] < - - - < NAME[PTRNAME|Y]}

NAME . SSN. SEX SALARY , . POINT . PTRNAME PTRSSN
1 _ 1 2 | 6 10
2 Davis 192-38-7282 Female | 22 800 2 3 9 3
3 | Kely 165-64-3351 | Male 19 000 3 4 2 12
4 | Green | 175-56-2251 | Male 27200 4 6 12 4
5 5 7 4 9
6 | Brown | 178-52-1065 | Female | 14700 6 9 14 6
7 | Lewis | 181-58-9939 | Female | 16400 7 | 10 3 7
8 3 8 | 12 7 2%
9 | Cohen | 177-44-4557 | Male 19 000 9 | 14 10 14
10 | Rubin | 135-46-6262 | Female | 15500
11
12 Evans 168-56-8113 Male 34200
13 ‘
14 Harris 208-56-1654 Female 22 800

(a) (b)
Fig. 9-2

322 SORTING AND SEARCHING [CHAP. 9

and PTRSSN shows the pointers sorted according to the SSN ficld, that is,
SSN[PTRSSN[1]] < SSN[PTRSSN[2]] < - < SSN[PTRSSN[9]]

Given the name (EMP) of an employee, one can casily find the location of NAME in memory using the array
PTRNAME and the binary search algorithm. Similarly, given the social security number NUMB of an employee,
one can easily find the location of the employee's record in memory by using the array PTRSSN and the binary
search algorithm. Observe, also, that it is not even necessary for the records to appear in successive memory
Incations. Thus inserting and deleting records can easily be done.

9.3 INSERTION SORT

Suppose an array A with n clements A[1], A[2], ..., A[N] is in memory. The inscrtion sort
algorithm scans A from A[1] to A[N], inserting cach clement A[K] into its proper position in the
previously sorted subarray A[1], A[2], ..., A[K—1]. That is:

Pass 1. A[1] by itsclf is trivially sorted,)

Pass 2. A[2] is inserted cither before or after A[1] so that: A[1], A[2] is sorted.

Pass 3. A[3] is inserted into its proper place in A[1], A[2], that is, before A[1], between

Al1] and A[2], or after A[2]. so that: A[1], A[2], A[3] is sorted.

Pass 4. A[4] is inserted intolits proper place in A[1], A[2], A[3] so that:
All], A[2], A[3], A[4] is sorted.

Pass N. A[N] is inscrted into its proper place in A[1], Al2],..., AN — 1] so that:
All], A[2], ..., A[N] is sorted. i

This surtng algorithm is frequently used when 2 is small. For example, this algorithm is very popular
with bridge players when they are first sorting their cards. '

Thers remains only the problem of deciding how to insert A[K] in its proper place in the sorted
subarray A[1], A[2],. .., A[K -1]. This can bc accomplished by comparing A[K] with A[K--1],
comparing A[K] with A[K=2|. comparing A[K] with A[K—3], and so on, until first mectling an
clement AlJ] such that A[J] = A[K]. Then cach of the elements A[K—1], A[K-2],...,A[J+1]is
moved forward once location, and A[K] is then inscrted in the J+1st position in the array.

The algorithm is simplificd if there always is an element A[J] such that A[J] = A[K]; otherwise we
must constantly check to sce if we are comparing A[K] with A[1]. This condition can be accomplished

by introuucing a sentinel clement A[0] = == (or a very small number).

Pass Al Al AR AL AL A[S] Al6] A7) AlS)
K=1 —w @ 13 44 1 88 22 6 55
K=2 iy ARG 44 i 88 22 66 55
K=3 —o 33 -7 @ 1 88 22 66 55
K=4 ~oo *33 44 77 ~(1) 8 22 66 55
K=5 o 1 33 44 77 @ 22 66 55
K =6 — i =735 4 - ., 77 88 22 66 55
K=7 - i 22 33 a4 77 88 @ 55
K- 8 » " 22 33 44 %6 77 88\®
Sorted: — o0 11 22 33 44 55 66 T7 88

Fig. 9-3 Inscrtion sort for n =8 itcms,

<HAP. 9] SORTING AND SEARCHING 323

EXAMPLE 9.4
Suppose an array A contains 8 elecments as follows:
77, 33, 44, 11, 88, 22, 66, 55
Figure 9-3 illustrates the insertion sort algorithm. The circled element indicates the A[K] in cach pass of ike

algorithm, and the arrow indicates the proper place for inscrting A[K].

The formal statement of our insertion sort algorithm follows.

Algorithm 9.1: (Insertion Sort) INSERTION(A, N).
This algorithm sorts the array A with N clements,
. Set A[0]:= —co, [Initializes sentinel clement.)

2. Rcpeat Steps 3 to S for K=2,3,....,N:
3. Set TEMP:= A[K] and PTR:=K - 1. _
4 Repeat while TEMP < A[PTR]: :

(a) Set A[PTR + 1]:= A[PTR]. [Moves clement forward. |
(b) Set PTR:=PTR - I. :
[End of loop.]

5. Set A[PTR + 1]:=TEMP. f!nscrts element in proper place. |
[End of Step 2 loop.]
6. Recturn.

Observe that there is an inner loop which is essentially controlled by the variable PTR, and there is an
outer loop which uses K as an index.

Complexity of Insertion Sort

The number f(n) of comparisons in the insertion sort algorithm can be casily computed. First of ali,
the worst casc occurs when the array A is in reverse order and the inner loop must use the maximum
number K — 1 of comparisons. Hence ¢

n(n—1))
JR)=14+2+---+(n—1)= Tt O)
Furthermore, one can show that, on the average, there will be approximately (K - 1)/2 comparisons
in the inner loop. Accordingly, for the average case,
2 n—1 Jl(rt-])

f(n)=:,zl-+i+---+ 5 < 3 = O(n’)

Thus the insertion sort algorithm is a very slow algorithm when n is very large.
The above results are summarized in the following tablc:) o7

Algorithm Worst Case Average Case

Insertion Sort n—(ﬂz;l—) = O(n?) -'-‘—(nq;ll = O(n?)

Remark: Time may be saved by performing a binary scarch, rather than a linear scarch, to 1ind
the location in which to insert A[K] in the subarray A[1], A(2], ..., A[K — 1]. This requires, on the
average, log K comparisons rather than (K = 1)/2 comparisons. However; one stiil needs to move
(K = 1)/2 elements forward. Thus the order of complexity is not changed. Furthermore, inscrtion sort
is usually used only when # in small, and in such a case, the lincar search is about as cfficient as the
binary search.

324 SORTING AND SEARCHING : [CHAP. 9

9.4 SELECTION SORT

'Suf)pos'e an array A with n elements A[l], A[2], ..., A[N] is in memory. The selection sort
algorithm for sorting A works as follows. First find the smallest clement in the list and put it in the first
position. Then find the second smallest clcmcnl in the list and put it in the second position. And so on.
More precisely:

Pass 1. Find the location LOC of the smallest in the list of N clements

All], A[2],..., A[N], and then interchange A[LOC] and A[l] Then:
A[1] is sorted.
Pass 2. Find the location LOC of the smallest in the sublist of N — 1 clements
¢ Al2], A[3],...,A[N], and then interchange A[LOC] and A[2] Then:
s A[l1], A[2] is sorted, since A[1] =< A[2].

Pass 3. Find thc location LOC of the smallest in the sublist of N — 2 clements
A[3], A[4], ..., A[N], and then interchange A[LOC] and A[3}. Then:

All], A[2],. .., A[3] is sorted, since A[2] = A[3).

..

Pass N — 1. Find the location LOC of the smaller of the elements A[N — 1], A[N], and then
' intcrchange A[LQC] and A[N —1]. Then:
' A[l], A[2],..., A[N] is sorted, sincc A[N — 1] = A[N].

Thus A is sorted after N — 1 passes.

EXAMPLE 9.5
Suppose an array A contains 8 clements as follows:
77, 33, 44, 11, 88, 22, 66, 55
Applying the selection sort algorithm to A yields the data in Fig. 9-4. Obscrve that LOC gives the location of the
smallest among A[K], A[K + 1], . . . , A[N] during Pass K. The circled clements indicate the clements which are
to be interchanged.

There remains only the problem of finding, during the Kth pass, the location LOC of the smallest
among the clements A[K], A[K + 1], . A[N] This may be accomplished by using a variable MIN to
hold the current smallest value while scanmng the subarray from A[K] to A[N]. Spccifically, first set
MIN := A[K] and LOC := K, and then traversc the list, comparing MIN with cach other clement A[J]
as follows: s

, Pass Alll A2l Al Al] AlS) A6l A7) Al8)
K=1.L0C=4| (77) ~ 3 - 4 QD) s 2 . 66 55
k=2t0c=6 | n (). 4 .7 & (@ 6 5
K=3,LOC=6 | 11 22 77 8 (33) 6 55
K=4,LOC=6 | 11 22 5§ ° @ 88 (1) 66 55
K=5L0C=8 | 11 22 33 44 77 66 @
K=6,LOC=7 1 2 33 44 55 @ 88
K=7,LOC=7| n 22 33 44 55 6 @ 88

Sorted: 11 22 33 44 55 66 1 88

Fig. 9-4 Sclection sort for n = 8 itcms.

CHAP. 9] SORTING AND SEARCHING 325

(@) If MIN = A[J], then simply move to the next clement.
b)) If MIN>A[J] then update MIN and LOC by sctting MIN:= A[J] and LOC:=].
After comparing MIN with the last element A[N], MIN will contain the smallest among the elements

A[K], A[K + 1], ..., A[N] and LOC will contain |ls location.
The above process will be stated separately as a' procedure.

Procedure 9 2: MIN(A, K, N, LOC) ;
An array A is in memory. Thls proccdure finds the location LOC of the smallest

clement among A[K], A[K+1],..., A[N]. .
1. Set MIN:= A[K] and LOC:= K. [Initializes pointers.]
2. Repeatfor J=K+1,K+2,...,N:
If MIN > A[J], then: Sct MIN := A(J] and LOC:= A[J] and LOC:=].
[End of loop.]
3. Rcturn.

The sclection sort algorithm can now be easily stated:

Algorithm 9.3: (Sclcction Sort) SELECTION(A, N)
This algorithm sorts thc array A with N clemecnts.

1. Rcpeat Steps 2 and 3for K=1,2,... , N—1:
. Call MIN(A, K, N, LOC).
3. [Interchange A[K] and A[LOC].]
Set TEMP := A[K], A[K]:= A[LOC] and A[LOC]:= TEMP.
[End of Step 1 loop.],
4. Exit.

Complexity of the Selection Sort Algorithm

First note that the number f(n) of comparisons in the sclection sort algorithm is indcpcndcm of the
original order of the elements. Observe that MIN(A, K, N, LOC) rcquires n — K comparisons. That
is, there arc n — 1 comparisons during Pass 1 to find the smallest clement, there are n — 2 comparisons
during Pass 2 to find the second smallest clement, and so on. Accordingly,

FOng i = Ll =) oo sk b T o DAY By

2
The above result is summarized in the following tablc:
Algorithm Worst Case Avcrage Case
Selection Sort n(nz D) = 0(n?). m—;—l)z O(n’_)

Remark: The numbecr of intcrchanges and assignments docs depend on the original ordcr of the
clements in the array A, but the sum of thesc operations does not exceed a factor of n’.

9.5 MERGING

Suppose A is a sorted list with r elements and B is a sorted list with s clcments. The opcration that
combines the clements of A and B into a single sorted list C with n = r + 5 elcments is called merging.
One simple way to merge is to place the clements of B after the clements of A and then usc some

326 SORTING AND SEARCHING [CHAP. 9

sorting algorithm on the entire list. This method does not take advantage of the fact that A and B are
individually sorted. A much more cfficicnt algorithm is Algorithm 9.4 in this scction. First, however,
we indicate the general idea of the algorithm by means of two examples.

Suppose one is given two so. ted decks of cards. The decks are merged as in Fig. 9-5. That is, at
each step, the two front cards ai compared and the smaller one is placed in the combined deck. When
one of the decks is cmpty, a'l of the remaining cards in the other deck are put at the end of the
combined deck. Similarly, supposc we have two lines of students sorted by increasing hcights, and
suppose we want to merge them into a single sorted line. The new line is formed by choosing, at each
step, the shorter of the two students who are at the head of their respective linecs. When onc of the lines
has no more studcnts, the remaining students linc up at the end of the combined linc.

T

[22
___J

*"’“ f‘TJ .
o

The above discussion will now be translated into a formal algorithm which merges a sorted
r-clement array A and a sorted s-clement array B into a sorted array C, with n = r + 5 clements. First
of all, we must always kcep track of the locations of the smallest element of A and the smallest element
of B which have not yct been placed in C. Let NA and NB denote these locations, respectively. Also,
let PTR dcnote the location in C to be filled. Thus, untlally, we setNA:=1,NB:=1and PTR:=1. At
cach stcp of the algorithm, we compare .

A[NA] and B[NB]

and assign the smaller clement to C[PTR]. Then we increment PTR by sctting PTR:= PTR + 1, and

we cither increment NA by sctting NA:= NA + 1 or increment NB by sctting NB:= NB + 1, according

to whether the new clement in C has come from A or from B. Furthermore, if NA > r, then the

remaining clements of B arc assigned to C; or if NB > s, then the remaining clements of A are assigned

to C. "
The formal statement of the algorithm follows.

Fig. 9-5

CHAP. 9] SORTING AND SEARCHING 327

Algorithm 9.4: MERGING(A, R, B, S, C)
Let A and B be sorted arrays with R and S elements, respectively. This algorithm
merges A and B into an array C with N=R + § elements.

1. [Initialize.] Set NA := 1, NB:=1 and PTR:=1.
2. [Compare.] Repeat while NA <R and NB =8S:
If A[NA]<B[NB], then:
(a) [Assign element from A to C.] Set C[PTR]:= A[NA].
(b) [Update pointers.] Set PTR :=PTR + 1 and NA := NA + 1.
Else: :
(a) [Assign element from B to C.] Set C[PTR]:= B[NB].
(b) [Update pointers.] Sct PTR:=PTR + | and NB := NB + 1.
[End of If structure.]
[End of loop.]
3. [Assign remaining clements to C.]
If NA >R, then:
Repeat for K =0, 1,2,...,S—NB:
Set C[PTR + K] := B[NB + K].
[End of loop.) J

Else: .
Repcat for K =0, 1,2,...,R—NA:
Set C[PTR + K] := A[NA + K].
[End of loop.] "
[End of If structure.]
4. Exit.

Complexity of the Merging Algorithm
The input consists of the total number 5 = r+ 5 of elements in A and B. Each comparison assigns_ .
an element to the array C, which cventually has n elements. Accordingly, the number f(n) o

comparisons cannot excced n: - /
f(n) % n = 0O(n)

In other words, the merging algorithm can .be run in lincar time.

~

Nontegular Matrices

bound LBC. Then UBA = LBA + r — 1 and UBB = LBB + 5 — 1 are, respectively, the upper bounds
of A and R. Merging A and B now may be accomplished by modifying the above algorithm as follows.

Procedure 9.5: MERGE(A, R, LBA, S, LBB, C, LBC)
This procedure merges the sorted arrays A and B into the array C.

I. Set NA:=LBA, NB:=LBB, PTR:=LBC, UBA:=LBA +R - |,
UBB:=LBB +S— 1.)

2. Samec as Algorithm 9.4 cxcept R is replaced by UBA and S by UBB.

3. Same as Algorithm 9.4 except R is replaced by UBA and S by UBB.

4. Rcturn.

Obscrve that this procedure is called MERGE. whercas Algorithm 9.4 is called MERGING. The
reason for stating this special case is that this procedure will be uscd in the next scction, on merge-sort.

328 SORTING AND SEARCHING [CHAP. 9

Binary Search and Insertion Algorithm ,

Suppose the number r of elements in a sorted array A is much smaller than the number s of
elements in a sorted array B. One can merge A with B as follows. For each clement AlK]of A, use a
binary search on B to find the proper location to insert A[K] into B. Each such search requires at most
log s comparisons; hence this binary search and insertion algorithm to merge A and B rcquires at most
rlogs comparisons. We cmphasize that this algorithm is more efficicnt than the usual merging
Algorithm 9.4 only when r < <s, that is, when r is much less than s.

EXAMPLE 8.6

Suppose A has 5 clements and suppose B has 100 elements. Then merging A and B by Algorithm 9.4 uses
approximately 100 comparisons. On the other hand, only approximatcly log 100 = 7 comparisons are necded to
find the proper placc to inscrt an clement of A into B using a binary search. Hence only approximately 5+7 =35
comparisons arc need to merge A and B using the binary scarch and insertion algorithm.

The binary scarch and insertion algorithm docs not take into account the fact that A is sorted.
Accordingly, the algorithm may be improved in two ways as follows. (Here we assumc that A has 5
clements and B has 100 clements.)

(1) Reducing the target set. Suppose after the first scarch we find that A[1] is to be inserted after
B[16]. Then we nced only usc a binary scarch on B[17], . . ., B[100] to find the proper
location to insert A[2]. And so on.

(2) Tabbing. The cxpected location for inserting A[1] in B is ncar B[20] (that is, B[s/r]), not
ncar B[50]. Hence we first use a linear scarch on B[20), B[40], B[60], B[80] and B[100]
to find B[K] such that A[1]=B[K], and then we use a binary scarch on-B[K — 20],
B[K —19], . . ., B[K]. (This is analogous to using the tabs in a dictionary which indicate
the location of all words with the same first letter.) : -]

The details of the revised algorithm ar;: left to the rcader.

9.6 MERGE-SORT
Supposc an array A with n clements A[1].A[2], ..., A[N] is in memory. The merge-sort
algorithm which sorts A will first be described by means of a specific example.
EXAMPLE 9.7
Supposc the array A contains 14 clements as follows:
66, 33, 40, 22, 55, 88, 60, 11, 80, 20, 50, 44, 77, 30

Each pass of the merge-sort algorithm will start at the beginning of the array A and merge pairs of sorted subarrays
as follows:

Pass 1. _Mcrge each pair of clements to obtain the [oilowing list of soried pairs:

33, 66 22, 40 55, 88 11, 60 20, 80 44, 54 30, 77
L]
. Pass 2. Merge cach pair of pairs to obtain the following list of sorted quadruplets:
22, 33, 40, 66 11, 55, 60, 88 20, 44, 50, 80 30, 77
—_——— S’
Pass 3. Merge each pair of sorted quadruplets to obtain the following two soricd subarrays:
11,.22, 33, 40, 55, 60, 6§. 88 20, 30, 44, 50, 77, 80

Pass 4. Merge the two sorted subarrays to obtain the single sorted array
11, 20, 22, 30, 33, 40, 44, 50, 55, 60, 66, 77, 80, 83

The original array A is now sorted.

CHAP. 9] SORTING AND SEARCHING 329

The above merge-sort algorithm for sorting an array A has the following important property. After
Pass K, the array A will be partitioned into sorted subarrays where each subarray, except possibly the
last, will contain exactly L = 2* elements. Hence the algorithm requires at most log n passes to sort an
n-element array A.

The above informal description of merge-sort will now be translated into a formal algorithm which
will be divided into two parts. The first part will be a procedure MERGEPASS, which uses Procedure
9.5 to execute a single pass of the algorithm; and the second part will repeatedly apply MERGEPASS
until A is sorted. !

The MERGEPASS procedure applies to an n-element array A which consists of a secquence of
sorted subarrays. Moreover, each subarray consists of L elements except that the last subarray may
have fewer than L elements. Dividing n by 2 * L, we obtain the quotient Q, which tells the number of
pairs of L-element sorted subarrays; that is,

Q = INT(N/(2xL))

(We use INT(X) to denote the integer value of X.) Setting S = 2+L*Q, we get the total number S of
elements in the Q pairs of subarrays. Hence R = N — S denotes the number of remaining elements.
The procedure first merges the initial Q pairs of L-element subarrays. Then the procedure takes care of
the case where there is an odd number of subarrays (when R = L) or where the last subarray has fewer
than L elements.

The formal statement of MERGEPASS and the merge-sort algorithm follow:

Procedure 9.6: MERGEPASS(A, N, L, B)
The N-element array A is composed of sorted subarrays where each subarray has
L elements except possibly the last subarray, which may have fewer than L
elements. The procedure merges the pairs of subarrays of A and assigns them to
the array B.
1. Set Q:=INT(N/(2%L)), S:=2+L*Q and R:=N - §.
2. [Use Procedure 9.5 to merge the Q pairs of subarrays. |
Repeat for J=1,2,...,0:
(a) Set LB:=1+ (2+) —2)*L. [Finds lower bound of first array. |
(b) Call MERGE(A, L, LB, A, L, LB+L, B, LB).
[End of loop.|
3. [Only one subarray left?]
If R=L, then:
Repeat for J=1,2,. .., R:
Set B(S+ 1) :=A(S+ J).
[End of loop.]
Else:
Call MERGE(A, L, S +1, A, R, L+S+1, B, S+ 1).
[End of If structure.]
4. Return.

Algorithm 9.7: MERGESORT(A, N)
This algorithm sorts the N-element array A using an auxili..y array B,

. Set L:= 1. [Initializes the number of elements in the subarrays. |
2. Repeat Steps 3 to 6 while L << N:
3 Call MERGEPASS(A, N, L, B).
4 Call MERGEPASS(B, N, 2 « L, A).
5 Set L:=4 % L.
[End of Step 2 loop.]
§] Exit.

330 SORTING AND SEARCHING [CHAP. 9

Since we want the sorted array to finally appear in the original array A, we must execute the
procedure MERGEPASS an even number of times.

Complexity of the Merge-Sort Algorithm

Let f(n) denote the number of comparisons nceded to sort an n-element array A using the
merge-sort algorithm. Recall that the algorithm rcquires at most log n passes. Morcover, cach pass
merges a otal of n elements, and by the discussion on the complexity of merging, cach pass will require
at most n comparisons. Accordingly, for both the worst case and average case,

f(n)=nlogn
Observe that this algorithm has the same order as heapsort and the same average order as quicksort.
The main drawback of merge-sort is that it requires an auxiliary array with n elements. Each of the
other sorting algorithms we have studicd requires only a finite number of extra locations, which is

independent of n.
The above results are sumniarized in the following table:

Algorithm Worst Case Average Case Extra Mcmory

Merge-Sort nlogn= 0(}; log n) nlogn= O(nlogn) O(n)

9.7 RADIX SORT

Radix sort is the method that many pecoplc intuitively use or begin to use when alphabetizing a
large list of names. (Here the radix is 26, the 26 letters of the alphabel.) Specifically, the list of names is
first sorted according to the first letter of each name. That is, the names are arranged in 26 classes,
where the first class consists of those names that begin with “A,” the second class consists of those
names that begin with “B,” and so on. During the second pass, each class is alphabetized according to
the second letter of the nhame. And so on. If no name contains, for example, more than 12 letters, the
names are alphabetized with at most 12 passes.

The radix sort is the method used by a card sorter. A card sorter contains 13 receiving pockets
labeled as follows:

0 8. 7.6.5.4,3; 2, 1,0; 115 12; R (reject)

Fach pocket other than R corresonds to a row on a card in which a hole can be punched. Decimal
numbers, where the radix is 10, are punched in the obvious way and hence use only the first 10 pockets
of the sorter. The sorter uses a radix reverse-digit sort op numbers. That is, suppose a card sorter is
given a collection of cards where cach card contains a 3-digit number punched in columns 1 to 3. The
cards arc first sorted according to the units digit. On the second pass, the cards arc sorted according to
the tens digit. On the third and last pass, the cards are sorted according to the hundreds digit. We
illustrate with an example.

EXAMPLE 9.8
Suppose 9 cards are punched as {ollows:
348, 143, 361, 423, 538, 128, 321, 543, 366

Given (o a card sorter, the numbers would be sorted in three phases, as pictured in Fig. 9-6:

(&) Inthe tirst pass, the units digits are sorted iniv pockets, (The pockets-are pictured upside down, so 348 is at
the bottom of pocket 8.) The cards are collected pocket by pocket, from pocket 9 to pocket 0. (Note that 361
will now be at Uie bottom of the pile and 128 at the top of the pile.) The cards are now reinput 10 the sorter

L) Inthe second pass, the tens digits ire sor ted into pockets. Again the cards are collected nocket by po ket and

reinput to the sorter.

CHAP. 9]

SORTING AND SEARCHING

Input

6

348
143
361
423
538
128
321
543
3066

361

143

423

366

348

S38
128

(a) First pass.

Input

6

361

321,

143
423
543
366
366
348
538
128

321

423

128

538

143

543
543

48

361

366

()

Sceond pass.

Input

(28]

321
423
128
538
143
543
348
361
366

128 -

143

348
361
366

423

538

543

()

Third pass

Fig. 9-6

331

332 SORTING AND SEARCHING [CHAP. 9

(c) In the third and final pass, the hundreds digits are sorted into pockets,
When the cards are collected after the third pass, the numbers arc in the following order:
128, 143, 321, 348, 361, 3066, 423, 538, 543

Thus the cards are now sorted.
The number C of comparisons nceded to sort nine such 3-digit numbers is bounded as follows:

C =9*3x10

The 9 comes from the nine cards, the 3 comes from the three digits in cach number, and the 10 comes from radix
d =10 digits.

Complexity of Radix Sort

Suppose a list A of nitems A, A,,. .., A, is given. Let d denote the radix (e.g., d = 10 for
decimal digits, d = 26 for letters and d = 2 for bits), and suppose each item A, is represented by means
of s of the digits:

An - drldnz e d:.«
The radix sort algorithm will require s passes, the number of digits in cach item. Pass K will compare
cach d, with each of the d digits. Hence the number C(n) of comparisons for the algorithm is boundcd
as follows:
C(n) = d*s*n

Although d is independent of n, the number s does depend on #. In the worst casc, s = n, so
C(n) = O(n*). In the best case, s = log, n, so C(n) = &(n log n). In other words, radix sort pcrforms
well only when the number s of digits in the representation of the A,’s is small.

Another drawback of radix sort is that one may need d*n memory locations. This comes from the
fact that all the items may be “scnt to the same pocket” during a given pass. This drawback may be
minimized by using linked lists rather than arrays to store the items during a given pass. lHowever, one
will still require 2*n memory locations.

9.8 SEARCHING AND DATA MODIFICATION

Suppose S is a collection of data maintained in memory by a table using somg type of data
structure. Scarching is the operation which finds the location LOC in memory of some given ITEM of
information or sends some message that ITEM docs not belong to S. The scarch is said to be successful
or unsuccessful according to whether ITEM does or does not belong to S, The scarching algorithm that
is used depends mainly on the type of data structurc that is used to maintain S in mcmory.

Data modification rcfers to the operations of inscrting, deleting and updating. Here data
modification will mainly refer to inserting and deleting. These operations arc closcly rclated to
scarching, since usually one must scarch for the location of the ITEM to be deleted or one must scarch
for the proper place to insert ITEM in the table. The insertion or deletion also requires a ccrtain
amount of exccution (ime, which also depends mainly on the type of data structure that is used.

Generally speaking, there is a tradeoff between data structures with fast scarching algorithms and
data structures with fast modification algorithms. This situation is illustrated below, where we
summarize the searching and data modification of three of the data structures previously studicd in the
text.

(1) Sorted array. Here one can usc a binary scarch to find the location LOC of a given ITEM in
time O(log). On the other hand, inscrting and deleting arc very slow, since, on the average,
n/2 = 0(n) elements must be moved for a given inscrtion or delction. Thus a sorted array
would likely be used when there is a great deal of scarching but only very little data
modification.

CHAP. 9] SORTING AND SEARCHING 333

(2) Linked list. Here one can only perform a linear search to find the location LOC of a given
ITEM, and the search may be very, very slow, possibly requiring time O(n). On the other
hand, inserting and deleting requires only a few pointers to be changed. Thus a linked list
would be used when there is a great deal of data modification, as in word (string) processing.

(3) Binary search tree. This data structure combines the advantages of the sorted array and the
linked list. That is, searching is reduced to searching only a certain path P in the tree T,
which, on the average, requires only O(log n) comparisons. Furthermore, the tree 7T is
maintained in memory by a linked representation, so only certain pointers need be changed
after the location of the insertion or deletion is found. The main drawback of the binary
search tree is that the tree may be very unbalanced, so that the length of a path P may be
O(n) rather than O(log n). This will reduce the searching to approximately a lincar secarch.

Remark: The above worst-case scenario of a binary search tree may be eliminated by using a
height-balanced binary search tree that is rebalanced after each insertion or deletion. The algorithms
for such rebalancing are rather complicated and lie beyond the scope of this text.

Searching Files, Searching Pointers

Suppose a file F of records R, R,, . . . , Ry is stored in memory. Searching F usually refers to
finding the location LOC in memory of the record with a given key value relative to a primary key field
K. One way to simplify the searching is to use an auxiliary sorted array of pointers, as discussed in Sec.
9.2. Then a binary search can be used to quickly find the location LOC of the record with the given
key. In the case where therce is a great deal of inserting and deleting of records in the file, one might
want to use an auxiliary binary search tree rather than an auxiliary sorted array. In any case, the
searching of the file F is reduced to the searching of a collection S of items, as discussed above.

9.9 HASHING

The search time of each algorithm discussed so far depends on the number n of elements in the
collection § of data. This section discusses a searching technique, called hashing or hash addressing,
which is essentially independent of the number 7.

The terminology which we use in our presentation of hashing will be oricnted toward file
management. First of all, we assume that there is a file F of n records with a set K of keys which
uniquely determine the records in F. Secondly, we assume that Fis maintained in memory by a table T
of m memory locations and that L is the set of memory addresses of the locations in 7. For notational
convenicence, we assume that the keys in K and the addresses in L are (decimal) integers. (Analogous
methods will work with binary integers or with keys which are character strings, such as names, since
there are standard ways of representing strings by integers.)

The subject of hashing will be introduced by the following example.

EXAMPLE 9.9

Suppose a company with 68 employecs assigns a 4-digit employce number to cach employee which is used as
the primary key in the company’s employee file. We can, in fact, use the employee number as the address of the
record in memory. The search will require no comparisons at all. Unfortunately, this technique will require space
for 10 000 memory locations, whereas space for fewer than 30 such locations would actually be used. Clearly, this
tradeoff of space for time is not worth the expense.

The general idea of using the key to determine the address of a record is an excellent idea, but it
must be modified so that a great deal of space is not wasted. This modification takes the form of a
function H from the set K of keys into the set L of memory addresses. Such a function,

H: K— L

is called a hash function or hashing function. Unfortunately, such a function H may not yield

334 SORTING AND SEARCHING [CHAP. 9

distinct values: it is possible that two diffcrent keys &, and &, will yicld the same hash address. This
situaticn is called collision, and some method must be used to resolve it. Accordingly, the topic of
hashing is divided into two parts: (1) hash functions and (2) collision resolutions. We discuss these two
- parts separately.

. Hash Functions ik
The two principal criteria used in selecting a hash function H: K— L arc as follows. First of all, the
function [should be very easy and quick to compute. Second the function /4 should, as far as possible,
uniformly distribute the hash addresses throughout the set L so that there arc a minimum number of
¢ollisions. Narurally, there is no guarantce that the sccond condition” can be completely fulfilled
without actually knowing beforchand the keys and addresses. However, certain general techniques do
help. One technique is to “chop™ a key & into picces and combine the picees in some way to form the
hash address FI(k). (The term “hashing” comes from this téchnique of “chopping” a key into pieces.)
We next illustrate some popular hash functions. We emphasize that cach of these hash functions
can be casily and quickly evaluated by the computer.
!
(¢) Division method. Choosc.a number m larger chan the number # of keys in K. (The number m
is usually chosen to be a prime number or a number without small divisors, since this
frequently minimizes the number of collisions.) The hash function H is definced by

H(k) =k (mod m) or H(k) =k (mod m) + 1
Here k& (mod 1) denotes the remainder when & is divided by m. The second formula is used
when we want the hash addresses to range from 1 to m rather than from 0 to m — 1.
(b) Midsquare method. The key A is squared. Then the hash function H is defined by
H(k) =

where [is obtained by deleting digits from both ends of k*. We emphasize that the same
positions of &* must be used for all of the keys.

(¢) Folding method. The key k is partitioned into a number of parts, k,, ..., k,, where cach
part, except possibly the last, has the same number of digits as the required address. Then the
parts arc added together, ignoring the last carry. That is,

Hk) = ke & kg o wws 4 ke

where the lcading-digit carries, if any, are ignored. Sometimes, for extra “milling,” the
even-numbered parts, k,, ky, . .., arc cach reversed before the addition.

EXAMPLE 9.10
Consider the company in Example 9.9, cach of whose 68 employces is assigned a unigque 4-digit employee
number, Suppose L consists of 100 two-digit addresses: 00, 01, 02, . .., 99. We apply the above hash functions to
cach of the following employec numbers:
3205, 7148, 2345
(a) Division method, Choose a prime number e close to 99, such as m =97. Then
J1(3205) = 4, H(7148) = 67, H(2345) =17

That is, divi(iing 3205 by 97 gives a remainder of 4, dividing 7148 by 97 gives a remainder 0f 67, and dividing
2345 by 97 gives a remainder of 17, In the casc that the memory addresses begin with 04, yather than 00, we
choose that the function H(k) = k(mod m) + 1 to obtain:

H(3205)=4+1=35, H(7148) = 67 + 1 =08, H(2345) =17 + 18

CHAP. 9] SORTING AND SEARCHING 335

(b) Midsquare method. The following calculations are performed:

k: 3205 7148 2345
k*: 10272 025 51093 904 5499 025
H(k): 72 93 99

Observe that the fourth and fifth digits, counting from the right, are chosen for the hash address.
(c) [Folding method. Chopping the key & into two parts and adding yields the following hash addresses:

1(3205) = 32 + 05 = 37, H(7148) =71 + 48 = 19, H(2345) = 23 + 45 = 68

Obscrve that the leading digit 1in H(7148) is ignored. Allernatively, one iay want (o reverse the sécond
part before adding, thus producing the following hash addresscs:

F1(3205) = 32 + 50 = 82, H(7148) =71 + 84 =[55, H(2345) = 234-54 = 77

R
Collision Resolution

Suppose we want to add a new record R with key & to our file F, but suppose the memory location
address M(k) is already occupied. This situation is called collision. This subscction discusses (wo
general ways of resolving collisions. The particular procedure that one cheoses depends on many
factors. One important factor is the ratio of the number # of keys in K (which is the number of records
in F) to the number m of hash addresses in L. This ratio, A = n/m, is called the load factor.

First we show that collisions are almost impossible to avoid. Specifically, suppose a student class
has 24 students and suppose the table has space for 365 records. One random hash function is to choose
the student’s birthday as the hash address. Although the load factor A = 24/365 = 7% is very small, it
can be shown that there is a better than fifty-fifty chance that two of the students have the same
birthday.

The efficiency of a hash function with a collision resolution procedure is measured by the average
number of probes (key comparisons) nceded to find the location of the record with a given key k. The
efficiency depends mainly on the load factor A. Specifically, we arc interested in the following two
quantitics:

S(A) = average number of probes for a successful scarch
U(A) = average number of probes for an unsuccessful search

These quantities will be discussed for our collision procedures.

Open Addressing: Linear Probing and Modifications

Suppose that a new record R with key & is to be added to the memory table 77, but that the memory
location with hash address H(k) = h is already filled. One natural way to resolve the collision is to
assign R to the first available location following T[h]. (We assume that the table T with m locations is
circular, so that T[1] comes after T[m].) Accordingly, with such a collision procedure, we will search
for the record R in the table 7 by linearly secarching the locations 7'[A], T{h + 1), T[h +2], . .. until
finding R or mceting an empty location, which indicates an unsuccessful search.

The above collision resolution is called linear probing. The average numbers of probes for a
successful scarch and for an unsuccessful secarch are known to be the following respective quantities:

- |
—
L |
.l
Il
> |
- |
|

L
S(A) = ;’ (1 + l—l—;) and U(A) = 3\

(Here A = n/m is the load factor.)

EXAMPLE 9.11

Suppose the table T has 11 memory locations, T[1], 7(2], . , T'|11], and suppose the file F consists of 8
records, A. B, C, D, E; X, Y and Z, with the following hash addresses

336 SORTING AND SEARCHING [CHAP. 9

Record: A, B, €. D E, X. ¥ Z
H(k): 4, & 2, 1L, 4, 11, 5, 1

Suppose the 8 records are entered into the table 7 in the above order. Then the file F will appear in memory as
follows: ‘

Table T X, & Z. A B Y v Ba o . D

Address: L 23 4, 3% 6 4 8 9,40 I
Although Y is the only record with hash address f{(k) = 5, the record is not assigned to T'[5], since T[5] has
alrcady been filled by I because of a previous collision at 7T°[4]. Similarly, Z does not appear in T[1].
The average number § of probes for a suceessful search follows:

bl Tl LleZedesdal 3
PR ARRESA RA sk hd L 30 B

8 b

The average number U of probes for an unsuccesstul search tollows:

THEEHS & +2+142+14+1+8 4
ti= 4+3 “i‘___Z_Al_t :1_(1)'2“’

The first sum adds the number of probes to (ind each of the 8 records, and the second sum adds the number of
probes to find an empty location for each of the 11 locations.

One main disadvantage of lincar probing is that records tend to cluster, that is, appear next to one
another, when the load factor is greater than 50 percent. Such a clustering substantially increases the
average search time for a redord. Two techniques to minimize clustering are as follows:

(1) Quadratic probing. Suppose a record R with key & has the hash address H(k) = h. Then,

instead of searching the locations with addresses A, h + 1. h + 2, ..., we linearly search the
locations with addresses
B, Bdl, hed, h 49, 5+16,. . .. ¢ i, ...

If the number m of locations in the table 7 is a prime number, then the above sequence will
access half of the locations in 7.

(2) Double hashing. Here a second hash function #1” is used for resolving a collision, as follows.
Supposc a record R with key & has the hash addresses H(k) = h and H'(k) = h' # m. Then
we lincarly search the locations with addresses

Ay, R b, h+ 2R, b+ 30", .. .

If rn is a prime number, then the above sequence will access all the locations in the table T.

Remark: One major disadvantage in any type of open addressing procedure is in the implemen-
tation of deletion. Specifically, suppose a record R is deleted from the location T'[r|. Afterwards,
suppose we meet 7{r] while scarching for another record R'. This does not necessarily mean that the
scarch is unsuccessful. Thus, when deleting the record R, we meist label the location T[r] to indicate
that it previously did contain a record. Accordingly, open addressing may seldom be used when a file F
is constantly changing.

Chaining

Chaining involves maintaining two tables in memory. First of all, as before, there is a table T in
memery which contains the records in £, except that 7 now has an additional field LINK which is uscd
so that all records in 7" with the same hash address A may be linked together to form a linked list.
Second, there is a hash address table LIST which contains pointers to the linked lists in 7.

Suppose a new record R with key & is added to the file F. We place R in the first available location
in the table 7 and then add R o the hinked list with pointer LIST[f(k)]. If the linked lists of records
are not sorted, than R is simply inserted at the beginning of its linked list. Searching for a record or

CHAP. 9] _ SORTING AND SEARCHING 337

deleting a record is nothing more than searching for a node or deleting o node from a linked list, as
discussed in Chap. 5. ,

The average number of probes, using chaining, for a successful scarch and for an unsuccessful
search are known to be the following approximate valucs:

1 -
S(A)==I+§A and U(A)=e "+ A

Here the load factor A = n/m may be greater than 1, since the nuinber m of hash addresses in L (not
the number of locations in T') may be less than the number n of records in I, :

EXAMPLE 9.12
Consider again the data in Example 9.11, where the 8 records have the following hash addresses:
Record: A, B, C, 'D, E, X, Y, Z
H(k): 4, 8, 2, 11, 4, 11, 5 1

Using chaining, the records will appear in memory as pictured in Fig. 9-7. Observe that the location of a record R
in table T is not related to its hash address. A record is simply put in the first node in the AVAIL list of table 7. In
fact, table T necd not have the same number of clements as the hash address table.

Table T

LIST INFO LINK
1|8 — 1 A 0
2 |3 2 B 0

-31o] -3 | i 0
4]s 4 D 0
514 \-s E 1
6 | o 6 X 4
710 —7 Y 0
8|2 |—— “ =38 Z 0
9 1o 9 { 10
10 |o 10 1
n|ep——/ n 12

12 13
13 114
14 0

AVAIL =9
Fig. 9-7 '

338 SORTING AND SEARCHING [CHAP. 9

The main disadvantage to chaining is that one needs 3/m memory, cells for the data. Specifically,
there arc m cells for the information ficld INFO, there are m cells for the link field LINK, and there are
m cells for the pointer array LIST. Suppose each record requires only 1 word for its information field.
Then it may be more uscful to use open addressing with a table with 3m locations, which has the load
factor A = 1/3, than to usc chaining to resolve collisions. '

Supplementary Problems

SORTING _
9.1 Write a subprogram RANDOM(DATA, N, K) which assigns N random integers between 1 and K to the
array DATA.

9.2 Translate insertion sort into a subprogram INSERTSORT(A, N) which soi s ihe array A with N clements.
Test the program using: "
(a) 44, 33, 11, 55, 77, 90, 40, 6?, 99, 22, 88, 66
() DA, T,A,S, T,R,UCT UR,E,S

2.3 Translate inscrtion sort into a subprogram INSERTCOUNT(A, N, NUMB) which sorts the array A with
N clements and which also counts the number NUMB of comparisons.

2.4 Write a program TESTINSERT(N, AVE) which repeats 500 times the procedure INSERTCOUNT(A, N,
NUMB) and which finds the average AVE of the 500 values of NUMB. (Theoretically, AVE = N?%/4.) Use
RANDOM(A, N, 5#N) from Prob. 9.1 as cach input. Test the program using N = 100 (so, theoretically,
AVE = N*/4 = 2500).

9.5 Translate quicksbn into a subprogram QUICKCOUNT(A, N, NUMB) which sorts lhc'urruy A with N
clements and which also counts the number NUMB of comparisons. (See Scc. 6.5.)

N

9.6 Write a program TESTQUICKSORT(N, AVE) which rcpeats QU[CKCOUNT(A. N, NUMB) 500 times
and which finds the average AVE of the 500 valucs of NUMB. (Thcoretically, AVE = N log, N.) Usc
RANDOM(A, N, 5#N) from Prob. 9.1 as cach input. Test the program using N = 100 (so, thcorctically,
AVE = 700). ‘

1 9.7 Translate Procedure 9.2-into a subprogram MIN(A, LB, UB, LOC) which finds the location LOC of the
smallest clements among A[LB], A[LB +1],. .., A[UB].

9.3 Translatc sclection sort into a Suiwprogrnrn SELECTSORT(A, N) which sorts the array with N clements.
Test the program using:
(a) 44, 33, 11, 55, 77, 90, 40, 60, 99, 22, 88, 66-
) D,ATASTRUCTUR,ES

SEARCHING, HASHING
2.9 Suppose an unsorted linked list is in memory. Write a procedure
' SEARCH(INFO, LINK, START, ITEM, LOC)
which («) tinds the location LOC of ITEM in the list or sets LOC := NULL for an unsuccessful scarch and
(b) when the scarch is successful, interchanges ITEM with the clement in front of it. (Such a list is said to

be seif-organizing. It has the property that clements which arc frequently accessed tend to move to the
beginning of the list.)

CHAP. 9] : SORTING AND SEARCHING . 339

9.10

9.11

9.12

92.13

9.14

Consider the following 4-digit employcc numbers (sce Example 9.10):
9614, 5882, 6713, 4409, 1825

Find the 2-digit hash address of cach number using (@) the division mcthod, with m =97; (b) the
midsquare method; (c) the folding method without reversing; and (d) the folding method with reversing.

Consider the data in Example 9.11. Suppose the 8 records arc entcred into the table T in the reverse order
Z, Y, X,E, D, C, B, A. (a) Show how the file Fappears in memory. (b) Find the average number S of
probes for a successful scarch and the average number U of probes for an unsuccessful scnrch (Compare
with the corresponding results in Example 9.11.) :

Consider the data in Example 9.12 and Fig. 9-7. Supposc the following additional records are added lollhe
file:

(P.2), (Q.7). (R, 4), (59
(Here the left entry is the record and the right entry is the hash address.) (@) Find the updated tables T and

LIST. (b) Find the average number S of probes for a successful scarch and the average number U of probes
for an unsuccesful scarch.

Write a subprogram MID(KEY, HASH) which uscs the midsquare mclhod to find the 2-digit hash address
HASH of a 4-digit employee number key.

Write a subprogram FOLD(KEY, HASH) which uses the folding method with reversing to find t.¢ 2-digit
hash address HASH of a 4-digit employcc number key.

