
Chapter 7
Trees

7.1 INTRODUCTION

So far, we have been studying mainly linear types of data structures: strings, arrays, lists, stacks
and queues. This chapter defines a nonlinear data structure called a tree. This structure is mainly used
to represent data containing a hierarchical relationship between elements, e.g.. records, family trees
and tables of contents.

First we investigate a special kind of tree, called a binary tree, which can be easily maintained in the
computer. Although such a tree may seem to be very restrictive, we will see later in the chapter that
more general trees may be viewed as binary trees.

7.2 BINARY TREES

A binary tree T is defined as a finite set of elements, called nodes, such that:

(a) 1 is empty (called the null tree or empty tree), or
(b) T contains a distinguished node R, called the root of T, and the remaining odcs of Tforni an

ordered pair of disjoint binary trees T and T2.

If T does contain a root R, then the two trcc '1 and T2 arc called, respectively, the left and right
subirees of R. If T 1 is nonempty, then its root is called the left successor of R; similarly, if T2 is
noncmpty, then its root is called the right successor of B.

A binary tree T is frequently presented by means of a diagram. Specifically, the diagram in Fig. 7-1
represents a binary tree Tas follows. (I) Tconsists of 11 nodes, represented by the letters A through L,
excluding 1. (ii) The root of T is the node A at the top of the diagram, (iii) A left-dOwnward slanted
line from a node N indicates a left successor of N, and a right-downward slanted line from N indicates a
right successor of N. Observe that:

(a) B is a left successor and C is a right successor of the node A.
(b) Thdieft subtrce of the root A consists of the nodes B, D, E and F, and the right subtree of A

consists of the nodes C, G, H, I, K and L.

Any node N in a binary tree T has either 0, 1 or 2 successors. The nodes A, B, C and H have two
successors, the nodes E and J have only one successor, and the nodes D, F, G, L and K have no
successors. The nodes with no successors arc called terminal nodes.

D	 E	 G

F	 7	 INK

L

Fig. 7-1

214

CHAP. 71	 TREES	 215

The above definition of the binary tree T is recursive since T is defined in terms of the binary
subtrecs T, and T,. This means, in particular, that every node N of T contains a left and a right
subtree. Moreover, if N is a terminal node, then both its left and right subtrees are empty.

Binary trees T and T' are said to be similar if they have the same structure or, in other words, if
they have the same shape. The trees are said to be copies if they are similar and if they have the same
contents at corresponding nodes.

EXAMPLE 7.1

Consider the four binary trees in Fig. 7-2. The three trees (a), (c) and (d) are similar. In particular, the trees(a) and (c) are copies since they also have the same data at corresponding nodes. The tree (b) is neither similar nora copy of the tree (d) because, in a binary tree, we distinguish between a left successor and a tight successor even
when there is only one successor.

7<
(a)	 (b)

A

/ \

(c)	 (d)

Fig. 7.2

EXAMPLE 7.2 Aigsbr.Ic'Expressions

Consider any algebraic expression E involving only binary operations, such as
E (a - b) /((c • d) + c)

E can be represented by means of the binary tree T pictured in Fig. 7-3. That is, each variable or constant in Eappears as an "internal" node in Twhosc left and right subirees correspond to the operands of the operation. For
example:

(a) In the expression E, the operands of + are c * d and e.
(b) In the tree T, the subtrees of the node + correspond to the subcxprc tions c* d and .
Clearly every algebraic expression will correspond to a unique tree, and vice versa.

a

/• \
Fig. 7-3 E(a—b)I((c.d)+e).

Terminology

Terminology describing family relationships is frequently used to describe relationships between
the nodes of a tree T. Specifically, suppose N is a node in Twith left successor S 1 and right successor S2.
Then N is called the pare,i: (or father) of S and S2 . Analogously, S 1 is called the left child (or son) of N,

216	 TREES	 ICHAP. 7

and S. is called the right child (or son) of N. Furthermore, S 1 and S2 arc said to be siblings (or brothers).
Every node N in a binary tree T, except the root, has a unique parent, called the predecessor of N.

The terms descendant and ancestor have their usual meaning. That is, a node L is called a
descendant of a node N (and N is called an ancestor of L) if there is a succession of children from N to
L. In particular, L is called a left or right descendant of N according to whether L belongs to the left or
right subtrec of N.

Terminology from graph theory and horticulture is also used with a binary tree T. Specifically, the
line drawn from a node N of T to a successor is called an edge, and a sequence of consecutive edges is
called a path. A terminal node is called a leaf, and a path ending in a leaf is celled a branch.

Each node in a binary tree T is assigned a level number, as follows. The root R of the tree T is
assigned the level number 0, and every other node is assigned a level number which is 1 more than the
level number of its parent. Furthermore, those nodes with the same level number are said to belong to
the same generation.

The depth (or height) of a tree T is the maximum number of nodes in a branch of T. This turns Out
to be 1 more than the largest level number of T. The tree T in Fig. 7-1 has depth 5.

Binary trees T and T' arc said to be similar if they have the same structure or, in other words, if
they have the same shape. The trees are said to be copies if they are similar and if they have the same
contents at corresponding nodes.

Complete Binary Trees
Consider any binary tree T. Each node of Tcan have at most two children. Accordingly, one can

show that level r of Tcan have at most 2' nodes. The tree T is said to be complete if all its levels, except
possibly the last, have the maximum number of possible nodes, and if all the nodes at the last level
appear as far left as possible. Thus there is a unique complete tree T. with exactly n nodes (we arc, of
course, ignoring the contents of the nodes). The complete tree T2 with 26jiodcs appears in Fig. 7.4.

4v /\
/ /\A	 /\1 617	 18	 19	 20	 21

/N /N
/\

24	 25

Fig. 7-4 Complete tree T.

The nodes of the complete binary tree T 6 in Fig. 7-4 have been purposely labeled by the integers
1, 2.....26, from left to right, generation • by generation. With this labeling, one can easily
determine the children and parent of any node K in any complete tree T. Specifically, the left and
right children of the node K arc, respectively, 2* K and 2 • K + 1, and the parent of K is the node
IK/21. For example, the children of node 9 are the nodes 18 and 19, and its parent is the node
[9/21 = 4. The depth d of the complete tree T. with n nodes is given by

D. = hog2 is + Ii

This is a relatively small number. For example, if the complete tree T. has n = 1000000 nodes, then its
depth D,=21.

(a) Binary tree T. (b) Extended 2-tree.

Fig. 7-5 Converting a binary tree T into a 2-trcc.

CHAP. 7]	 1TREES	 217

Extended Binary Trees: 2-Trees
A binary tree tree T is said to be a 2-tree or an extended binary tree if each node N has either 0 or 2

children. In such a case, the nodes with 2 children arc called internal nodes, and the nodes with 0
children arc called external nodes. Sometimes the nodes arc distinguished in diagrams by using circles
for internal nodes and squares for external nodes.

The term "extended binary tree" comes from the following operation. Consider any binary tree
T, such as the tree in Fig. 7-5(a). Then T may be "converted" into a 2-tree by replacing each empty
subtrec by a new node, as pictured in Fig. 7-5(b). Observe that the new tree is, indeed, a 2-tree.
Furthermore, the nodes in the original tree Tare now the internal nodes in the extended tree, and the
new nodes are the external nodes in the extended tree.

An important example of a 2-tree is the tree T corresponding to any algebraic expression E which
uses only binary operations. As illustrated in Fig. 7-3, the variables in E will appear as the external
nodes, and the operations in E will appear as internal nodes.

7.3 REPRESENTING BINARY TREES IN MEMORY

Let T be a binary tree. This section discusses two ways of representing T in memory. The first and
usual way is called the link representation of T and is analogous to the way linked lists are represented
in memory. The second way, which uses a single array, called the sequential representation of T. The
main requirement of any representation of T is that one should have direct access to the root R of T
and, given any node N of T, one should have direct access to the children of N.

Linked Representation of Binary Trees

Consider it binary tree T. Unless otherwise stated or implied, T will he maintained in memory by
means of -,I linked representation which uses three parallel arrays, INFO, LEFT and RIGHT, and a
pointer variable ROOT as follows. First of all, each node N of will correspond to a location K such
that:

(I) INFOLKI contains the data at the node N.

(2) LEFTIKI contains the location of the left child of node N.
(3) RIGHTfKJ contains the location of the right child of node N.

Furthermore. ROOT will contain the location of the root R of T. If any suhtrec is empty, then the
corresponding pointer will contain the null valuc if the tree T itself is empty, then ROOT will contain
the null value.

218
	 TREES

	 (CHAP I

Fig. 7-6

INFO LEFT RIGHT

1

ROOT	 2

L5

6LIJL:
8

9

10

11

12

13

14

15

16

17

18

19

70

K	 0	 0

C	 3	 6

0	 0

14

A	 10	 2

H	 17	 1

1	 0	 0

9

4

B	 18	 13

19

F	 0	 - 0

E	 12	 0

15

16

II

J	 7	 0

D	 0	 0

20

0

11

ROOT 2

3

4

5

6

7

8

9

t)

2

3

4

NAME SEX

CHAP, 7)	 TREES	 219

Remark 1: Most of our examples will show a single item of informatio-i at each node N of a
binary tree T. In actual practice, an entire record may be stored at the node N. In other words, INFO
may actually be a linear array of records or a collection of parallel arrays.

Remark 2: Since nodes may be inscrttd into and deleted from our binary trees, we also implicitly
assume that the empty locations in the arrays INFO, LEVI' and RIGHT form a linked list with pointer
AVAIL, as discussed in relation to linked lists in Chap. 5. We will.usually let the LEFT array contain
the pointers for the AVAIL list.

Remark 3: Any invalid address may be chosen for the null pointer denoted by NULL. In actual
practice, 0 or a negative number is used for NULL. (Sec Sec. 5.2.)

EXAMPLE 7.3
Consider the binary tree Tin Fig. 7-I. A schematic diagram of the linked representation of Tappcars in Fig

7-6. Observe that each node is pictured with its three ficlds, and that the empty subirces are pictured by using)(
for the null entries. Figure 7-7 shows how this linked representation may appear in memory. The choice of 20
elements for the arrays is arbitrary. Observe that the AVAIL list is maintained as a one-way list using the array
LEFT.

EXAMPLE 7.4
Suppose the personnel file of a small company Contains the Following data on its nine employees:

Name,	 Social Security Number, 	 Sex,	 Monthly Salary

Figure 7-8 shows how the tile may be maintained in memory as a binary tree. Compare this data structure with Fig.
5-12, where the exact same data are organized as a one-way list.

SSN

19238-7282

165-64-3351

175-56-2251

178-52-1065

181-58-9939

177-44-4557

135-46-6262

168.56-8113

208-56-1654

SALARY	 LEFT	 RIGHT

Jo
226(X)	 0	 12

19 000	 0

27200	 2

14100	 L 0

16400	 I	 3	 10

II

1900()	 6	 -I

IS 5(X)	 0

13

34200	 0	 o -

5

22800	 9	 7

Fig. 7-8

Hiris

Rubin

220	 TREES	 [CHAP. 7

Cohen

Brown	 Green

Dz

/

Evans

Fig. 7-9

TREE

45

/N
22	 77/N

15	 25

29

(a)

	

	
(I,)

Fig. 7-10

1

2

3

4

S

6

7

8

9

10

11

12

13

14

15

16

diAl'. 71	 TREES	 221

Suppose we want to draw the tree diagram which corresponds to the binary tree in Fig. 7-8. For
notational convenience, we label the nodes in the tree diagram only by the key values NAME. We
construct the tree as follows:

(a) The value ROOT = 14 indicates that Harris is the root of the tree.

(b) LEFTII4J 9 indicates that Cohen is the left child of Harris, and RIGHT[141 = 7 indicates
that Lewis is thc right child of Harris.

Repealing Step (b) for each new node in the diagram, we obtain Fig. 7-9.

Sequential Representation or Binary Trees

Suppose T is a binary tree that is complete or ncaily complete. Then there is an efficient way of
maintaining T in memory called the sequential representation of T. This representation uses only a
single linear array TREE as follows:

(a) The root R of T is stored in TREEL1].

(b) If a nodc N occupies TREE[KJ, then its left child is stored in TREEI2 * KI and its right child
is stored in TREE[2 * K 4 11.

Again, NULL is used to indicate an empty suhtrce. In particular. TREE[11 = NULL indicates that the
tree is empty.

The sequential rcprescntation . of the binary tree Tin Fig. 7-10(a) appears in Fig. 7-10(b). Observe
that we require 14 locations in the array TREE even though T has only 9 nodes. In fact, if we included
null entries for the successors of the terminal nodes, then we would actually require TREE[29] for the
right successor of TREE[141. Generally speaking, the sequential representation of a tree with depth d
will require an array with approximately 2"' elements. Accordingly, this sequential representation is
usually inefficient unless, as stated above, the binary tree T is complete or nearly complete. For
example, the tree Tin Fig. 7-I has Ii nodes and depth 5, which means it would require an array with
approximately 26 = 64 elements.

7.4 TRAVERSING BINARY TREES

There are three standard ways of traversing a binary tree T with root R. These three algorithms,
called preorder, inorder and postordcr, are as follows:

Preorder: (1) Process the root R.

(2) Traverse thc left suhtrcc of R in prcordcr.

(3) Traverse the right subticc of R in pre.ordcr.

Inorder: (I) Traverse the left subtree of R in inorder.

(2) Process the root R.

(3) Traverse the right suhtrcc of R in inordci.

PostOrder: (1) Traverse the left subtrec of R in postordcr.

.(2) Traverse the right subtrec of R in postorder.

(3) Process the root R.

Observe that each algorithm contains the same three steps, and that the left suhtrce of R is always
traversed before the right subtrcc. The difference between the algorithms is the time at which the root
R is processed. Specifically, in the "pie" algorithm, the root R is processed before the subtrces are
traversed; in the "in" algorithm, the root R is processed between the ti'avcrsal of the subtrecs; and in
the -rot" algorithm, the root R is processed after the subtrces arc traversed.

"he three algorithms are sometimes called, respectively, the node-left-right (NLR) traversal, the
left- nidc. iight (LNR) traversal and the left-right-node (LRN) traversal.

222	 TREES	 [CHAP. 7

Observe that each of the abtve traversal algorithms is recursively defined, since the algorithm
involves traversing subirecs in the given order. Accordingly, we will expect that a stack will be used
when the algorithms are implemented on the computer.

EXAMPLE 7.5

Consider the binary tree T in Fig. 7-11. Observe that A is the root, that its left subtrce L1. consists of nodes B,
0 and E and that its right subtree R T consists of nodes C and F.

L,,	 C

Fig. 7.11

(a) The prcordcr traversal of processes A, traverses L.r and traverses RT. However, the prcordcr traversal of
L. 1 processes the root B and then 0 and E, and the preorder traversal of R 1 processes the root C and then F.
Hence ABDECF is the preorder traversal of T.

(b) The inordcr traversal of T traverses LT, processes A and traverses R r . However, the inordcr traversal of 1'•r
processes 0, B and then E, and the inordcr traversal of R,. processes C and then F. Hence DBEACF is the
inorder traversal of T.

(c) The postorder traversal of T traverses LT, traverses R 1 , and processes A. However, the postordcr traversal
of Lr processes 0, E and then B, and the postorder traversal of R.r processes F and then C. Accordingly,
DEBFCA is the postorder traversal of T

EXAMPLE 7.6

Consider the tree Tin Fig. 7-12. The prcord*r traversal of T is ABDEFCGHJLK. This order is the same as
the one obtained by scanning the tree from the left as indicated by the path in Fig. 7-12. That is, one "travels"
down the left-most branch until meeting a terminal node, then one backtracks to the next branch, and so on. In the
preorder traversal, the right-most terminal node, node K, is the last node scanned. Observe that the left subtree of
the root A is traversed before the right subtrcc, and both are traversed after A. The same is true for any other
node hiving subtrees, which is the underlying property of a preorder traversal.

/
/

\'	 0	
'o, '
	 E	 I

41	 /

/

-	 IF	 13	 \ K

Lfi
Fig. 7-12

CHAP. 71	 TREES	 223

The reader can verify by inspection that the other two ways of traversing the binary tree in Fig.
7-12 are as follows:	 /

(Inorder) D/B F E A 0 C L 3 H K
(Postorder)	 F E B 0 L 3 K H C A

Observe that the terminal nodes, 	 • 0, L and K, are traversed in the same order, from left to right
in all three traversals. We cmDll 	 that this is true for any binary tree T.

EXAMPLE 7.7
Let F denote the following algebraic expression:

fa+(b—c)).((d--e)I(f+g—h)J
The corresponding binary tree T appears in Fig. 7-13. The reader can verify by inspecti 'O 	the preorder and
postorder traversals of T are as follows:

(Prcordcr)	 * + a - bc I - d 	 —-+ f	 h
(Postorder)	 a fr c - + d e - f g + h - I

The reader can also verily that these orders correspond precisely to the prefix and postlix Polish notation of E as
discussed in Sec. 6.4. We emphasize that this is true for any algebraic expression E.

a	

/\b	 c	 d	 e	 +	 h

I	 g
Fig. 7-13

EXAMPLE 7.8

Consider the binary tree T in Fig. 7-14. The reader can verify that the postorder traversal of T is as follows:
S 3 . S61 S41 S 1 . S,, . S, S, S2 , M

One main property of this traversal algorithm is that every descendant of any node N is processed before the node
N. For example, S. comes before S 4 . S 6 and S. come before S,. Similarly, S, and S. come before S,, and S,. S. and
S, come before S. Moreover, all the nodes S 1 , S 2 ,..., S come before the root M.

VMN
SI	 s

NS,	 S

S.

	

	 S,	 S,
Fig. 7-14

224	 TREES	 ICHAP. 7

Remark: The reader may be able to implement by inspection the three different traversals of a
binary tree T if the tree has a relatively small number of nodes, as in the above two examples.
Implementation by inspection may not be possible when T contains hundreds, or thousands of nodes.
That is, we need some systematic way of implementing the recursively dcfi;icd traversals. The stack is
the natural structure for such an implementation. The discussion of stack-oriented algorithm'; for this
purpose is covered in the next Section.

7.5 TRAVERSAL ALGORITHMS USING STACKS
Suppose a binary tree T is maintained in memory by some linked representation

TREE(INFO, LEFT, RIGHT, ROoT)

This section discusses the implementation of the three standard traversals of T, which were defined
recursively in the last section, by means of nonrccursivc procedures using stacks. We discuss the three
traversals separately.

Preorder Traversal
The preorder traversal algorithm uses a variable PTR (pointer) which will contain the location of

the node N currently being scanned. This is pictured in Fig. 7-15, where L(N) denotes the left child of
node N and R(N) denotes the right child. The algorithm also uses an array STACK, which will hold
the addresses of nodes for future processing.

VFRHm N

L(N)	 R(N)
/\	 /\

Fig. 7-IS

Algorithm: Initially push NULL Onto STACK and then set PTR := ROOT. Then repeat the
following steps untLERNMLL or, equivalently. while PTRN!JLL.

(a) Proceed down the left-most path rooted at PTR, processing each node N on the
path and pushing each right child R(N), if any, onto STACK. The traversing
ends after a node N with no left child L(N) is processed. çlhus PTR is updated
using the assignment •PTR := LEFr[PTRj, and the traversing stops when
LEFT[PTRJ = NULL.)

(b) Backtracking.J Pop and assign to PTR the top element oil 	 If
PTR -- NULL, then return to step (a); otherwise Exit.

(We note that the initial element NULL on STACK is uscd as a ,.ntincI.)

We simulate thc algorithm in the next example. Although th_ example works with the nodes
themselves, in actual practice the locations of the nodes are assigned to PTR and arc pushed onto the
STACK.

EXAMPLE 7.9

	

Consider the binary tree 1 in Fig. 7-16. We suillilate the at,o% . 0 iigiiri'hini 'h h. t10wl	 the colltent,
STACK at each siep.

CHAP. 71	 TREES	 225

	

V	 /
L)	 E	 F

ci	 H

Fig. 7-16

1. Initially push NULL onto STACK:
STACK: 0.

Then set VFR : = A, thc root of T.
2. Proceed down the left-most patW rooted at PTR = A as follows:

(i) iAridpush its right child C onto STACK:
STACK: 0, C.

(ii) Process B. (There is no right child.)
(iii) Process D and push its right child It onto STACK:

STACK: 0, C. H.
(iv) Process C. (There is no right child.)

No other node is processed, since C has no left cliiIU.
3. (Backtracking.] Pop the top element H from STACK, and set PTR H. This leaves:

STACK: 0. C.
Since PTR 0 NULL, return to Step (a) of the algorithm.

4. Proceed down the left-most ph rooted at_PTR=Has follows:
(v) Process I-I and push its right child —K Onto STACK:

STACK: 0, C, K.
No other node is processed, since H has no left child.

5. [Backtracking.Pop KIrbm STACK, and set PTR:= K. This leaves:
STACK: 0, C.

Since PTR v6 NULL, return to Step (a) of the algorithm.
6. Proceed down the left-most path rooted at PTR = K as follows:

(vi) Process K. (There is no right child.)
No other node is processed, since K has no left child.

7. [Backtracking.] Pop C from STACK, and set PTR: — C. This leaves:
STACK: 0.

Since PTR 0 NULL, return to Step (a) of the algorithm.
8. Proceed down the leftmost path rooted at PTR = C as follows:

(vii) Process C and push its right child F onto STACK:
STACK: 0. F.

(viii) Process E. (There is no right.child.)
9. tllacktracking.J Pop F front STACK, and set P1R := F. This leaves:

STACK: 0.
S,iec PTR 76 NULL, return to Step (a) of the algorithm.

1(1. Pr, ' ccd down the left- most path routed at P1R F as follows:
(ix) Process F. (There is no right child.)

No other node is processed, since F has no left child.
H. (Backtracking.I Pop the top clement NULL from STACK, and set PTR:= NULL. Since PTR NULL,

the algorithm is completed.
As seen front Steps 2, 4. 6, 8 and 10, the nodes are processed in tltc order A, B, D, C, H, K, C, E, F. This is the
required prcordcr traversal of T.

226	 TREES	 (CHAP. 7

A formal prcscrttation of our preorder traversal algorithm follows:

Algorithm 7.1: PREORD(INFO, LEFT, RIGHT, ROOT)
A binary tree T is in memory. The algorithm does a preorder traversal of 1',
applying an operation PROCESS to each of its nodes. An array STACK is used
to temporarily hold the addresses of nodes.

1. [Initially push NULL onto STACK, and initialize PTR.J
Set TOP:= 1, STACK[1J:= NULL and PTR:= ROOT,

2. Repeat Steps 3 to 5 while PTR 54 NULL:
3. Apply PROCESS to INFO[PTR].
4. [Right child?]

If RIGHT(PTRJ0NULL, then: [Push on STACK.I
Set TOP:TOP+ 1, and STACK[TOPJ:=RIGHT[PTR).

[End of If structure.]
5. [Left child?]

If LEFF[PTRJ 0 NULL, then:
Set PTR: LEFT[I'TRJ.

Else: [Pop from STACK.]
Set PTR: STACK[TOPJ and TOP: = TOP - 1.

[End of If structure.]
[End of Step 2 loop.]

6. Exit.

Inorder Traversal
The iriorder traversal algorithm also uses a variable pointer PTR, which will contain the location of

the node N currently being scanned, and an array STACK, which will hold the addresses of nodes for
future processing. In fact, with this algorithm, a node is processed only when it is popped from
STACK.
Algorithm: Initially push NULL Onto STACK (for a sentinel) and then set PTR : ROOT. Then

repeat the following steps until NULL is popped from STACK.

(a) Proceed down the left-most path rooted at PTR, pushing each node N onto
STACK and stopping when a node N with no left child is pushed onto STACK.

(b) [Backtracking.] Pop and process the nodes on STACK. If NULL is popped,
then Exit. If a node N with a right child R(N) is processed, set PTR = R(N) (by
assigning PTR :- RIGI-IT[PTR]) and return to Step (a).

We emphasize that a node N is processed only when it is popped from STACK.

EXAMPLE 7.10
Consider the binary tree T in Fig. 7-17. We simulate the above algorithm with T, showing the contents of

STACK.

E

K	 L	 M

Fig. 7-17

Cl-lAP. 71	 TREES	 227

I. Initially push NULL Onto STACK:
STACK: 0.

Then set ITR := A, the root of T.
2. Proceed down the left-most path rooted at PTR A, pushing the nodes A, B, U, G and K onto STACK:

STACK: 0, A, B, D, G, K.
(No other node is pushed Onto STACK, since K has no left child.)

3. [Backtracking.) The nodes K, C, and D arc popped and processed, leaving:
STACK: 0, A, B.

(We stop the processing at D, since D has a right child.) Then set VTR: H, the right child of D.4. Proceed down the left-most path rooted at PTR = II, pushing the nodes H and L onto STACK:STACK: 0, A, B. H, L.
(No other node is pushed onto STACK, since I has no left child.)

5. (Backtracking.J The nodes L and H are popped and processed, leaving:
STACK: 0, A, B.

(We stop the processing at 1-1, since I-I has a right child.) Then set 1'R	 M, the right child of H.6. Proceed down the left-most path rooted at PTR M. pushing node Monto STACK:
STACK; 0, A, 13, M.

(No other node is pushed 0,1(0 STACK, since M has no left child.)
7. IBacktracking.J The nodes M, 13 and A arc popped and processed, leaving:

STACK; 0.
(No other clement of STACK is popped, since A does have a right child.) Set PTR := C. the rightchild of A.

8. Proceed down the left-most path rooted at PTR C, pushing the nodes C and E onto STACK:
STACK: 0, C, E.

9. [Backtracking.] Node E is popped and processed. Since E has no right child, node C is popped and
processed. Since C has no right child, the next clement, NULL, is popped From STACK.

The algorithm is now finished, since NULL is popped from STACK. As seen from Step
I
a 3, 5, 7 and 9, the nodesarc processed in the order K, C, D, L, I-I, M, 13, A, E, C. This is the required inorder traversal of the binarytree T.

A formal presentation of our inordcr traversal algorithm follows:

Algorithm 7.2: INORD(INFO, LEFT, RIGHT, ROOT)
A binary tree is in memory. This algorithm does an inorder traversal of T,
applying an-operation PROCESS to each of its nodes. An array STACK is used
to temporarily hold the addresses of nodes.

1. [Push NULL onto STACK and initialize PTR.J
Set TOP:= 1, STACK(1]:= NULL and PTR:= ROOT.

2. Repeat while PTR 34 NULL: [Pushes left-most path onto STACK.]
(a) Set TOP := TOP + I and STACK[TOPJ : Pi'R. [Saves node.]
(b) Set PTR := LEFT[PTR]. [Updates PTR.J

[End of loop.]
3. Set PTR := STACK[TOP] and TOP : TOP I. [Pops node from STACK.]
4. Repeat Steps 5 to 7 while PTR 96 NULL: [Backtracking.]

	

5.	 Apply PROCESS to INFO[PTRJ.

	

6.	 [Right child?] If RIGI-IT[P1RJ 7^ NULL, then:
(a) Set PTR:= RIGHT[PTR].
(b) Go to Step 3.

[End of If structure.]

	

7.	 Set PTR : STACK[TOPJ and TOP := TOP - 1. [Pops node.]
[End of Step 4 loop.]

	

8.	 Exit.

228	 TREES	 ICI-IAI'. 7

Postorder Traversal
The postordcr traversal algorithm is more complicated than the preceding two algorithms, because

here we may have to save a node N in two different situations. We distinguish between the two cases by
pushing either N or its negative, —N, Onto STACK. (In actual practice, the location of N is pushed
onto STACK, so —N has the obvious meaning.) Again, a variable PTR (pointer) is used which
contains the location of the node N that is currently being scanned, as in Fig. 7-15.

Algorithm; Initially push NULL onto STACK (as a sentinel) and then set PTR : = ROOT. Then
repeat the following steps until NULL is popped from STACK.

(a) Proceed down the left-most path rooted at PTR. At each node N of the path,
push N onto STACK and, if N has a right child R(N), push —R(N) onto
STACK.

(b) [Backtracking.] Pop and process positive nodes on STACK. If NULL is
popped, then Exit. If a negative node is popped, that is, if PTR = —N for some
node N, set PTR N (by assigning PTR : = —PTR) and return to Step (a).

We emphasize that a node N is processed only when it is popped from STACK and it is
positive.

EXAMPLE 7.11
Consider again the binary tree T in Fig. 7-17. We simulate the above algorithm with T, showing the contents

of STACK.

I. Initially, push NULL onto STACK and set P'FR := A, the root ofT:
STACK: 0.

2. Proceed down the left-most path rooted at PTR = A, pushing the nodes A, B, D, 0 and K onto STACK.
Furthermore, since A has a right child C. push —C onto STACK after A but before B, and since D has a
right child If, push —I-I onto STACK after D but before G. This yields:

STACK: 0. A, —C, B, D, —H, C, K.
3. [Backtracking.J Pop and process K, and pop and process G. Since —U is negative, only pop —H. '[his

leaves:
STACK: 0, A, -C, B. D.

Now PTR = -H. Reset PTR H and return to Step (a).
4. Proceed down the left-most path rooted at PTR = H. First push Honto STACK. Since II has a right child

M, push —M onto STACK after H. Last, push L onto STACK. This gives:
STACK: 0, A, —C, B, D, H. —M, L.

5. 1 Baickt racking. 1 Pop and process L, but only pop —M . This leaves:
STACK: 0, A, —C, B. D, H.

Now PTR = -M. Reset P1'R = M and return to Step (a).
6. Proceed down the left-most path rooted at PTR = M. Now, only M is pushed Onto STACK. This yields:

STACK: 0, A, -C, B, I), II, M.
7.[Backtracking.] Pop and process M. I-I. D and B, but only pop —C. This leaves:

STACK: 0, A.
Now l'I'R = —C. Reset l'TR = C. and return to Step (a).

8. l'rocccd down thc left-most path rooted at PTR = C. First C is pushed onto STACK and then E, yielding:
STACK: 0, A, C, E.

9. (I3acktracking.J Pop and process E. C and A. When NULL is popped, STACK is empty and the
algoritlt in is completed.

As sccii from Steps 3. 5. 7 and 9, the nodes are processed in the order K, G, L. M, Li, D, B t. C, A. This is the
required postordcr traversal of the binary tree T.

CHAP. 71	 TREES	 229

A formal presentation of our postorder traversal algorithm follows:

Algorithm 7.3: POSTORD(INFO, LEFT, RIGHT, ROOT)
A binary tree T is in memory. This algorithm does a postordcr traversal of T,
applying an operation PROCESS to each of its nodes. An array STACK is used
to temporarily hold the addresses of nodes.

1. [Push NULL onto STACK and initialize PTR.)
Set TOP := 1, STACK[1] := NULL and PTR ROOT.

2. [Push left-most path onto STACK.]
Repeat Steps 3 to 5 white PTR 76 NULL:

	

3.	 Set TOP: TOP + 1 and STACK[TOPJ := PTR.
[Pushes PTR on STACK.)

	

4.	 If RIGHT(PTR) 0 NULL, then: [Pusli on STACK.I
Set TOP: TOP + I and STACK(TOP]:= —RIGHT(PTRJ.

[End of If structure.]

	

5.	 Set PTR := LEFTLPTRI. [Updates pointer PTR.)
(End of Step 2 loop.]

6. Set PTR : = STACK(TOPJ and TOP: = TOP - 1.
(Pops node from STACK.]

7. Repeat while PTR >0:
(a) Apply PROCESS to INFO[PTRJ.
(b) Set PTR:=STACK[TOP] and TOI': TOP—i:

[Pops node from STACK.]
[End of loop.]

8. If PTR<O, then:
(a) Set PTR := —PTR.
(b) Go to Step 2.

(End of If structure.)

	

9.	 Exit.

7.6 HEADER NODES; THREADS
Consider a binary tree T. Variations of the linked representation of T arc frequently used because

certain operations on T are easier to implement by using the modifications. Some of these variations,
which are analogous to header and circular linked lists, are discussed in this section.

Header Nodes
Suppose a binary tree T is maintained in memory by means of a linked representation. Sometimes

an extra, special node, called a header node, is added to the beginning of T. When this extra node is
used, the tree pointer variable, which we will call HEAD (instead of ROOT), will point to the header
node, and the left pointer of the header node will point to the root of T. Figure 7-18 shows a schematic
picture of the binary tree in Fig. 7-1 that uses a linked representation with a header node. (Compare
with Fig. 7-6.)	 -

Suppose a binary tree T is empty. Then 'F will still contain a header node, but the left pointer of the
header node will contain the null value. Thus the condition

LEFT[HEAD] = NULL

will indicate an empty tree.

230	 TREES	 (CHAP. 7

HEAD

Fig. 7-18

Another variation of the above representation of a binary tree T is to USC the header node as a
sentinel. That is, if a node has an empty subtrce, then the pointer field for the subtrcc will contain the
address of the header node instead of the null value. Accordingly, no pointer will ever contain an
invalid address, and the condition

LEFT[HEAD] = HEAD

will indicate an empty subtrcc.

Threads; Inordcr Threading

Consider again the Linked representation of a binary tree T. Approximately half of the entries in
the pointer fields LEFT and RIGHT will contain null elements. This space may be more efficiently
used by replacing the null entries by some other type of information. Specifically, we will replace
certain null entries by special pointers which point to nodes higher in the tree. These special pointers
are called threads, and binary trees with such pointers arc called threaded trees.

The threads in a threaded tree must be distinguished in some way from Ordinary pointers. The
threads in a diagram of a threaded tree are usually indicated by dotted lines. In computer memory, an
extra 1-bit TAG field may be used to distinguish threads from ordinary pointers, or, altertativcly,
Threads may be denoted by negative integers when ordinary pointers are denoted by positive integers.

There are many ways to thread a binary tree T, but each threading will correspond to a par,kular
traversal of T. Also, one may choose a one-way threading or a two-way threading. Unless otherwise
stated, our threading will correspond to the traversal of T. Accordingly, in the one-way
threading of T, a thread will appear in the right field of a node and will point to the next node in the
inorder traversal of T; and in the two-way threading of T, a thread will also appear in the LEVI' field of
a node and will point to the preceding node in the inordcr traversal of T. Furthermore, the lcit pointer
of the first node and the right pointer of the last node (in the inorder traversal of T) will contain the
null value when T does not have a header node, but will point to the header node when T does have a
header nooc.	 -

There is an analogous one-way threading of a binary tree T which corresponds to the prcordcr
traversal ofT. (See Prob. 7.13.) On the other hand, there is no threading ofT which corrcponds to the
postordcr traversal of T.

(a) One-way inorder threading.

(b) Two-way inorder threading.

CHAP. 7)	 TREES

Header node

— — -. - -
-

/	 .'
I
/

-S
-s

S..
-S

C --S.
-S.-

-'	 K3

C-,
(c) Two-way threading with header node.

Fig. 7-19

HEAD1)

AVAIL

2

3

4,

5

6

7

-8

9

10

II

12

13

14

15

16

17

18

19

20

232	 TREES	 (CHAP. 7

EXAMPLE 7.12

Consider the binary tree T in Fig. 7-1.

(a) The one-way inordcr threading of T appears in Fig. 7-19(u). ']'here is a thread from node E to nodc A. since
A is accessed after E in the inordcr traversal our. Observe that every null right pointer has been replaced by
a thread except for the node K, which is the last node in the iiiordcr traversal of T.

(h) Thc two-way inordcr threading of appears in Fig. 7-19(b). There is a left thread From node L to node C.
since 1. is accessed after C in the inorder traversal ofT. Observe that every null left pointer has been replaced
by a thread except for node D, which is the First node in the inorder traversal of T. All the right threads are
the same as in Fig. 7:19(a).

(c) The two-way inordcr threading of T when T has a header node appears in Fig. 7-19(c). here the left thread
of D and the right thread of K point to the header node. Otherwise the picture is the same as that in Fig.
7-19(b).

INFO	 LEFT
	

RIG[IT

K	 —17	 —20

C	 3	 6

0	 —5	 —2

'4

A	 10	 2

1-1	 17	 1

L	 —2	 —17

9-

4

Ii	 18	 13

'9

F	 —TO	 -13

E	 12	 —5

15

16

II

J	 7	 --6

D	 —20	 —10

0

20

Fig. 7-20

CHAP. 7)	 TREES	 233

(d) Figure 7-7 shows how T may be maintained in memory by using a linked representation. Figure 7-20 shows
how the representation should be modified so that T is a two-way inorder threaded tree using INFO[201 as a
header node. Observe that LEFTII21 —10, which means there is a left thread from node F to node B.
Analogously, RIGHTII7) - —6 means there is a right thread from node J to node H. Last, observe that
RIGHT[20] = 20, which means there is an ordinary right pointer from the header node to itself. If T were
empty, then we would set LEFT[20] = —20, which would mean there is a left thread from the header node to
itself.

7.7 BINARY SEARCH TREES

This section discusses one of the most important data structures in computer science, a binary
search tree. This structure enables one to search for and find an element with an average running time
f(n) = 0(Iog2 n). It also enables one to easily insert and delete elements. This structure contrasts with
the following structures:

(a) Sorted linear array. Here one can search for and find an element with a running time
f(n) = 0(log2 n), but it is expensive to insert and delete elements.

(b) Linked list. Here one can easily insert and delete elements, but it is expensive to search for
and find an element, since one must use a linear search with running time f(n) = 0(n).

Although each node in a binary search tree may contain an entire record of data, the definition of the
binary tree depends on a given field whose values are distinct and may be ordered.

Suppose T is a binary tree. Then T is called a binary search tree (or binary sorted tree) if each node
N of has the following property: The value at N is greater than every value in the left subtree of N and
is less than every value in the right subiree of N. (It is not difficult to see that this property guarantees
that the inorder traversal of T will yield a sorted listing of the elements of T.)

EXAMPLE 7.13
(a) Consider the binary tree Tin Fig. 7-21. T is a binary search tree; that is, every node N in Texceeds every

number in its left subtree and is less than every number in its right subtree. Suppose the 23 were replaced by
35. Then T would still be a binary search tree. On the other hand, suppose the 23 were replaced by 40. Then
T would not be a binary search tree, since the 38 would not be greater than the 40 in its left subtree.

8	

14	

23

18.

38 _	

56

45

Fig. 7-21

7/2

(b) Consider the file in Fig. 7-8. As indicated by Fig. 7-9, the file is a binary search tree with respect to the key
NAME. On the other hand, the file is not a binary search tree with respect to the social security number key
SSN. This situation is similar to an array of records which is sorted with respect to one key but is unsorted
with respect to another key.

The definition of a binary search tree given in this section assumes that all the node values are
distinct. There is an analogous definition of a binary search tree which admits duplicates, that is, in
which each node N has the following property: The value at N is greater than every value in the left
subtree of N and is.ie.ss than or equal to every value in the right subtree of N. When this definition is
used, the operations in the next section must be modified accordingly.

234	 TREES	 (CHAP. 7

7.8 SEARCHING AND INSERTING IN BINARY SEARCH TREES

Suppose T is a binary search tree. This section discusses the basic operations of searching and
inserting with respect to T. In fact, the searching and inserting will be given by a single search and
insertion algorithm. The operation of deleting is treated in the next section. Traversing in T is the same
as traversing in any binary tree; this subject has been covered in Sec. 7.4.

Suppose an ITEM of information is given. The following algorithm finds the location of ITEM in
the binary search tree 'I', or inserts ITEM as a new node in its appropriate place .n the tree.

(a) Compare ITEM with the root node N of the tree.
(i) 11 ITEM <N, proceed to the left child of N.

(ii) If iTEM> N, proceed to the right child of N.

(b) Repeat Step (a) until one of the following occurs:
(i) We meet a node N such that ITEM = N. In this case the search is successful.

(ii) We meet an empty subtrcc, which indicates that the search is unsuccessful, and we
insert ITEM in place of the empty subtree.

In other words, proceed from the root R down through the tree T until finding ITEM in To. inserting
ITEM as a terminal nodein T.

EXAMPLE 7.14

(a) Consider the binary search tree Tin Fig. 7-21. Suppose ITEM 20 is given. Simulating the above algorithm,
we obtain the following steps:

1. Compare ITEM 20 with the root, 38, of the tree T. SincE 20< 38, proceed to the left child of 38, which
is 14.

2. Compare ITEM = 20 with 14. Since 20> 14, proceed to the right child of 14, which is 23.
3. Compare ITEM 20 with 23. Since 20<23, proceed to the left child of 23, which is .18.
4. Compare ITEM = 20 with 18. Since 20> 18 and 18 does not have a fight child, insert 20 as the right child

af 18.

Figure 7-22 shows the new tree with ITEM = 20 inserted. The shaded edges . indicate the path down through
the tree during the algorithm.

14	

, 38
	

56

8	 23
	 45	 82

18

	

/

Fig. 7.22 ITEM =20 inserted.

(I') Con'i.le, he binary search tree T in Fig. 7-9. Suppose ITEM = Davis is given. Simulating the above
algot it bin, we obtain the following steps:

1. (onipare ITEM Davis with the root of the tree, Harris. Since Davis < harris, proceed to the left child
of Il;irris, which is Cohen.

2. Compare ITEM = Davis with Cohen. Since Davis> Cohen, proceed to the right child of Cohen. which
is (liven.

CHAP. 71	 TREES	 235

3. Compare ITEM Davis with Green. Since Davis < Green, proceed ;o the IcIt child of Green, which isDavis.
4. Compare ITEM Davis with the left child, Davis. We have found the location of Davis in the tree.

EXAMPLE 7.15

Suppose the following six numbers arc inserted in order into an empty binary search tree:
40, 60, 50, 33, 55, II

Figure 7-23 shows (he six stages of the trce. We emphasize that if the six numbers were given in a different ordci,
then the tree might be different and we might have a different depth.

The formal presentation of our search and insertion algorithm will USC the following procedure,
which finds the locations of a given ITEM and its parent. The procedure traverses down the tree using
the pointer IVFR and the pointer SAVE for the parent node. This procedure will also be used in the
next section, on deletion.

Procedure 7.4: 	 I)IN	 LEFT, RIGHT, ROOT, ITEt, LOC,_PAR)
A binary search tree Tis in memory and —an

ITEM
of information is given. This

procedure finds the location LOC of ITEM in T and also the location PAR of
the parent of ITEM. There arc three special cases:

(i) LOC = NULL and PAR = NULL will indicate that the trcc is
empty.

(ii) LOCO NULL and PAR = NULL will indicate that ITEM is the root
of T.

(iii) LOC = NULL and PAR 94 NULL will indicate that ITEM is not in T
and can be added to T as a child of the node N with location PAR.

.I. ITrec empty?]
'	 1f_ROOT=NULL, then: Set LöC:NULL and PAR:=NULL. and

2. [ITEM at root?)
If ITEM = INFO[ROOTJ, then: Set LOC:= ROOT and PAR:= NULL.

3. fliiaIize pointers PTR and SAVE.)
If ITEM < INFO[ROOT], then:

and SAVE:=ROOT.
Else:

PTRrtrooTi and SAVE := ROOT.
(End of If

4. Repeat Steps 5 and 6 while P1'R NULL:

	

5.	 [ITEM found?]
If ITEM = INFO(VrRj, then: Set LOC: PTR and PAR:= SAVE,

uIn_.

	

6.	 if ITEM < INFO[PTR), then:
—Set SAVE := PTR and TR := LEFT[PTRJ.

—Set SAVE:= PTR and PTR:= RIGHT[PTK.
[End of If structure.)

VEnd of Step 4 loop.)
7. Sc- ch unsucccssful 4Set LOC:= NULL and l'AR:= SAVE.

	

8 . 	----- -

Observe that, in Step 6, we move to the left child or the right child according to whether
ITEM < INFO[PTRJ or ITEM> INFO[PTRJ.

236	 TREES

40	 40	

60	

40	

60

/

ICIIAP. 7

3360

57

(I) ITEM =40.	 (2) 1ITEM=60.
	 (3) ITEM = 50.	 (4) ii EM = 33.

•	

40

33	 60

5j(

55

(5) ITEM 55.

40

/
33	 ('0

7
ss

(()) ITEM Ii.

Hg. 7-23

The formal statement of our search and insertion algorithm ilIows.

Algorithm 7.5: INSBST(INFO, LEFT, RIGHT, ROOT, AVAIL, ITEM, LOC) -.
A binary search tree T is in memory and an ITEM of information is given. This
algorithm finds the location LOC of ITEM in T or adds ITEM as a new node in T
at location LOC.

1. Call FIND(INFO, LEFT, RIGIEr, ROOT. ITEM, LOC. !'AR).
(Procedure 7.4.1

2. If L000 NULL, then Exit.
3. (Copy ITEM into new flOdC in AVAIL list.)

(a) If AVAIL NULL, then: Write: OVERFLOW. and Exit.
(b) Set NEW:= AVAIL. AVA!L:=LEFT[AVAILJ and

INFO(NEWJ:= ITEM.
(c) Set LOC:= NEW, LEFTINEWj := NULL and

RIGIIT[NEWJ := NULL.
4. [Add ITEM to tree.]

If PAR = NULL, then:
Set ROOT:= NEW.

Else if ITEM < INFO(PARI, then:	 -
Set LEF11PARI NEW.

Else:
Set RIGHT[PARI := NEW.

[End of If structure.]
5.	 Exit. •..

Observe that, in Step 4, there arc three possibilities: (I) the tree is cmpty. (2) ITEM is added as-a left-
child and (3) ITEM is added as a right child.

CHAP. 71	 TREES	 237

Complexity of the Searching AIgorIthm..
Suppose we are searching for an item of information in a binary search tree T. Observe that the

number of comparisons is bounded by the depth of the tree. This comes from the fact that we proceed
down a single path of the tree. Accordingly, the running time of the search will be proportional to the
depth of the tree.

Suppose we are given n data items, A 3 , A 2AN , and suppose the items are inserted in order
into a binary search tree T. Recall that there are n! permutations of then items (Sec 2.2). Each such
permutation will give rise to a corresponding tree. It can be shown that the average depth of the it!
trees is approximately c 1092 ii, where c = 1.4. Accordingly, the average running timef(n) to search for
an item in a binary tree T with . n elements is proportional to 1092 n, that is, f(n) = 00092 n).

Application of Binary Search Trees
Consider a collection of n data items, A 1 , A 2 ,..., AN. Suppose we want to find and delete all

duplicates in the collection. One straightforward way to do this is as follows:

Algorithm A: Scan the elements from A 1 to A(that is, from left to right).
(a) Foreach element A K , compare A K with A,, A 2 , A K_ i , that is, compare AK

with those elements which precede AK.
(b) if AK does occur among A 1 , A21 . . . , A K .. I , then delete AK.

After all elements have been scanned, there will be no duplicates.

EXAMPLE 7.16
Suppose Algorithm A is applied to the following list of 15 numbers:

14, 10, 17, 12, 10, 11, 20, 12, 18, 25, 20, 8, 22, 11, 23
Observe that the first four numbers (14, 10, 17 and 12) are not deleted. However,

A3 = 10	 is deleted, since	 A3 = A2
A8 = 12	 is deleted, since	 A8 = A4
A,, 20	 is deleted, since	 A,, A7
A14 = 11	 is deleted, since	 A14 = A.

When Algorithm A is finished running, the 11 numbers

14, 10, 17, 12, 11, 20, 18, 25, 8, 22, 23
which are all distinct, will remain.

Consider now the time complexity of Algorithm A, which is determined by the number of
comparisons. First of all, we assume that the number d of duplicates is very small compared with the
number n of data items. Observe that the step involving A K will require approximately k - I
comparisons, since we compare A K with items A 1 , A21 A K _ i (less the few that may already have
been deleted). Accordingly, the number f(n) of comparisons required by Algorithm A is approxi-
mately

0+1+2+3+...+(fl_2)+(fl_1)()?i 0(n2)

For example, for n = 1000 items, Algorithm A will require approximately 500 000 comparisons. In
other words the running time of Algorithm. - A - is proportional, to n2.

Using a binary search tree, we can give another algorithm to find the duplicates in the set
A,, A 2 1 A N of n data items.

17I0

^Z 14

8 12/
II

L (Z-

20

25

22

23

238	 TREES	 ICHAR 7

Algorithm B: Build a binary search trec T using the elements A,, A 2 ,..., AN. in building the tree,

delete AK from the list whenever the value of A K already appears in the tree.

The main advantage of Algorithm B is that each element A K is compared only with the elements in

a single branch of the tree. It can be shown that the average length of such a branch is approximately
clog 2 k, where c = 1.4. Accordingly, the total numbcrf(n) of comparisons required by Algorithm B is

approximately n 109 2 n, that is, f(n) = O(ii log2 n). For example, for is = 1000, Algorithm B will

require approximately 1 0000 comparisons rather than the 500000 comparisons with Algorithm A.
(We note that, for the worst case, the number of comparisons for Algorithm B is the same as for
Algorithm A.)

EXAMPLE 7.17

Consider again the following list of 15 numbers:

14. tO, 17. 12, 10. II. 20, 12, 18, 25. 20, 8, 22, H. 23

Applying Algorithm fl to this list of numbers, we obtain the tree in Fig. 7-24. The exact iiun,bcr of comparisons is

0+1+1-1-2+2+3+2+3+3+3+ 3+2+4+4+5=38

On the other hand. Algorithm A requires

0+ 1+ 2±3+2+ 4+ 5 +4+ 6+7 +6+ 8+ 9+5+ 10=72

comparisons.

Fig. 7-24

7.9 DELETING IN A BINARY SEARCH TREE
Suppose T is a binary search tree, and suppose an ITEM of information is given. This section gives-

an algorithm which deletes ITEM from the tree T.
The deletion algorithm first uses Procedure 7.4 to find the location of the node N which contains

ITEM and also the location of the parent node P(N). The way N is deleted from the tree depends
primarily on the number of children of node N There are three cases:

Case 1. -N has no children. 'Then Nis deleted from T by simply replacing the location of N in the
parent node P(N) by the null pointer.

CHAP. 71 	 TREES	 239

Case 2. N has exactly one child. Then N is deleted from T by simply replacing the location of N in
P(N) by the location of the only child of N.

Case 3. N has two children. Let S(N) denote the inorder Successor of N. (The reader can verify
that S(N) does not have a left child.) Then Nis deleted from T by first deleting S(N)from
T (by using Case I or Case 2) and then replacing node N in T by the node S(N).

Observe that the third case is much more complicated than the first two cases. In all three cases, the
memory space of the deleted node N is returned to the AVAIL list.

INFO LEFT RIGHT

60

/®N
15	 50	 66

/
33

(a) Before deletions.

ROOT	 •i

AVAIL	 3

10

33	 0	 I
25	 8	 10

602	 7

-__66	 0	 0

6

0

75	 4	 0

15	 0	 0

44	 0	 0

50	 1	 0

(b) Linked representation
Fig. 7-25

INFO LEFT RIGHT

ROOT	 1

EJ2
AVAIL	 3

6

7

U

25
7

/515
66

/
33

(a) Node 44 is deleted.	 (h) Linked representation.

Fig. 7-26

60 2

3

4

5

6

7

8

9

10

N
ROOT

LI1
AVAIL

25'

'5

/
344

240	 TREES	 [CHAP. 7

EXAMPLE 7.18

Consider the binary search tree iii Fig. 7-25(a). Suppose T appears in memory as in Fig. 7-25(b).

Suppose we delete node 44 from the tree 'F in Fig. 7-25. Note that node 44 has no children. Figure 7-26(a)
pictures the tree after 44 is deleted, and Fig. 7-26(b) shows the linked representation in memory. The
deletion is accomplished by simply assigning NULL to the parent node, 33. (The shading indicates the

changes.)	 -
Suppose we delete node 75 from the tree T in Fig. 7-25 instead of node 44. Note that node 75 has only One
child. Figure 7-27(a) pictures the tree after 75 is deleted, and Fig. 7-27(b) shows the linked representation.
The deletion is accomplished by changing the right pointer of the parent node 60, which originally pointed to
75, so that it now points to node 66, the only child of 75. (The shading indicates the changes.)

INFO LEFT RIGHT

(a)

(b)

(a) Node 75 is deleted.

	

	 (b) Linked representation.

Fig. 7-27

(c) Suppose we delete node 25 from the tree Tin Fig. 7-25 instead of node 44 or node 75. Note that node 25 has
two children. Also observe that node 33 is the inorder successor of node 25. Figure 7-28(a) pictures the tree
after 25 is deleted, and Fig. 7-28(b) shows the linked representation. The deletion is accomplished by first
deleting 33 from the tree and then replacing node 25 by node 33. We emphasize that the replacement of node
25 by node 33 is executed in memory only by changing pointers, not by moving the contents of a node from
one location to another. Thus 33 is still the value of !NFO[lJ.

Our deletion algorithm will be stated in terms of Procedures 7.6 and 7.7, which follow. The first
procedure refers to Cases 1 and 2,-where the deleted node N does not have two children; and the
second procedure refers to Case 3, where N does have two children. There arc many subcases
which reflect the fact that N maybe a left child, a right child or the root. Also, in Case 2, N may have a
left child or a right child.

Procedure 7.7 treats the case that the deleted node N has two children. We note that the inorder
successor of N can he found by moving to the right child of N and then moving repeatedly to the left
until meeting a node with an empty left suhtree.

CHAP. 71	 FREES
241

INFO LEFT RIGHT

I	 8	 I	 It)

33 75

V
IS	 50	 66

/
44

(a) Node 25 is deleted.

ROOT •i1E 2

AVAIL	 3LJ 66	 0

6

0

75	 4

15	 0

44	 0

50

7

0

0

0

0

0

(b) Linked representation

Fig. 7-28

Procedure 7.6: CASEA(INFO, LEFT, RIGHT, ROOT, LOC, PAR)
This procedure deletes the node N at location LOC, where N does not have two
children. The pointer PAR gives the location of the parent of N, or else
PAR NULL indicates that N is the root node. The pointer CHILD gives the
location of the only child of N, or cisc CHILD = NULL indicates N has no
children.

I. [Initializes CHILD.]
If LEFT[LOCJ = NULL and RIGHT[LOC] = NULL, then:

Set CHILD:= NULL.
Else if LEFT[LOCJ 96 NULL, then:

Set CHILD:= LEFT[LOCJ.
Else

Set CHILD:=RLGHTLLOCJ
[End of If structure.]

2. If PAR 94 NULL, then:
If LOC = LEFT[PARJ, then:

Set LEFT[PARJ := CHILD.
Else:

Set RIGHT[PARJ := CHILD.
[End of If structure.]

Else:
Set ROOT: = CHILD.

[End of If structure]
3. Return.

242	 TREES	 (CHAP. 7

Procedure 7.7: CASEB(INF0, LEFT, RIGHT, ROOT, LOC. PAR)
This procedure will delete the node N at location LOC, where N has two
children. The pointer PAR gives the location of the parent of N, or else
PAR = NULL indicates that N is the root node. The pointer SUC gives the
loentiOn of the inorder successor of N, and PARSIJC gives the location of the
parent of the inorder successor.

1. [Find SUC and PARSUC.)
(a) Set PTR: RIGHTELOC] and SAVE := LOC.
(b) Repeat while LEFI1VTRI 9A NULL:

Set SAVE:=PTR and PTR:=LEFT[PTRi.
[End of loop.]

(c) Set SUCPTR and PARSUC : =SAVE.

2. [Delete inorder successor, using Procedure 7.6]
Call CASEA(INFO, LEFT, RIGHT, ROOT, SUC, PARSUC).

3. [Replace node N by its inorder successor.]
(a) If PARoNULL, then:

If LOt.' LEFT[PAR], then:
Set LEIT(PARI : SUC.

Else:
Set RIGHT[PARJ: SUC.

(End of If structure.]

Set ROOT := SUC.
[End of 11 structure]

(b) Set LEFT[SUCI : = LEFTILOCI and
RIGHTESUC] : = RIGI-IT1LOCI.

4. Return.

We can now formally state our deletion algorithm, using Procedures 7.6 and 7.7 as building

blocks.

Algorithm 7.8: DEL(INFO, LEFT, RIGHT, ROOT, AVAIL, ITEM)
A binary search tree T is in memory, and an ITEM of information is given. This
algorithm deletes ITEM from the tree.

1. [Find the locations of ITEM and its parent, using Procedure 7.4.1
Call FIND(INFO, LEFT, RiGHT, ROOT, ITEM, LOC, PAR).

2. (ITEM in tree?]
If LOC = NULL, then: Write: ITEM not in tree, and Exit.

3. [Delete node containing ITEM,]
If RIG HT(LOCI 0 NULL.. and LEFT[LOC. 9& NULL, then:

Call CASEB(INFO, I..EFT, RIGHT, ROOT, LOC, PAR).
Else:

Call CASEA(INFO, LEFT, RIGHT, ROOT, LOC. PAR).
(End of If structure.)

4. [Return deleted node to the AVAIL list.]
Set LEFTILO(1 := AVAIL and AVAIL := LOC.

5. Exit. _ -

CHAP. 71 	 TREES	 243

7.10 HEAP; HEAPSORT

This section discusses another tree structure, called a heap. The heap is used in an legant sorting
algorithm called heapsort. Although sorting will be treated mainly in Chap. 9, we giv. the heapsort
algorithm here and compare its complexity with that of the bubble Sort and quicksort aigc rithms, which
were discussed, respectively, in Chaps. 4 and 6.

Suppose H is a complete binary tree with n elements. (Unless otherwise stated, we a.iumc that H
is maintained in memory by a linear array TREE using the sequential representation of H, not a linked
representation.) Then H is called a heap, or a rnaxheap, if each node N of H has the following
property: The value at N is greater than or equal to the value at each of the children of N. Accordingly,
the value at N is greater than or equal to the value at any of the descendants of N. (A ininheap is
defined analogously: The value at N is less than or equal to the value at any of the children of N.)

EXAMPLE 7.19
Consider the complete tree in Fig. 7-29(a). Observe that H is a heaps This means, in particular, that the

largest clement in H appears at the- ­ top" of the heap, that is, at the root of the tree. Figure 7-29(b) shows the
sequential representation of H by the array TREE. That is, TREE(I) is the root of the tree H, and the left and
right children of node TREEIK) arc, respectively, TREEI2KJ.and TREE(2K + I). This means, in particular, that
the parent of any nonrool node TREE(J) is the node TREE[J — 21 (where J 2 means integer division). Observe
that the nodes of H on the same level appear one aftck the other in the array TREE.

97 -

ZN
/\ /3\

18	 40	 3()	 26

88

48	 55

24

- 95

/9.5	 48

/•\\

62	 77	 25	 38

(a) Heap.

TREE

	

I 88 1 95 f6 f	 Li	 55162 I
I	 2	 3	 4	 5	 6	 7	 8	 9 10 11 12 13 14 15 16 17 18 19 20

(b) Sequential representation.
Fig. 7-29

Inserting into a Heap
Suppose I-I is a heap with N elements, and suppose an ITEM of information is given. We insert

ITEM into the heap H as follows:
(1) First adjoin ITEM at the end of I-I so that I-I is still a complete trec, but not necessarily a

heap.
(2) Then let ITEM rise to its "appropriate place" in H so that H is finally a heap.

We illustrate the way this procedure works before stating the procedure formally.

244	 TREES	 [CHAP. 7

EXAMPLE 7.20
Consider the heapH ih Fig. 7'29. Suppose we Want to add ITEM = 70 to H First we adjoin 70 as the next

element in the complete tree; that is, we set TREE(211 = 70. Then 70 is the right child 0ITREE1I01 = 48. The path
from 70 to the root of H is pictured in Fig. 7-30(a). We now find the appropriate place of 70 in the heap as follows:

(a) Compare 70with its parent, 48; Since 70 is greater than 48, interchange 70 and 48; the path will now look
like Fig. 7-30(b).

(b) Compare 70 with its new parent, 55. Since 70 is greater than 55, interchange 70 and 55; the path will now
look like Fig. 7-30(c).

(c) Compare 70 with its new parent, 88. Since 70 does not exceed 88, ITEM 70 has risen to its appropriate
place in H.

Figure 7-30(d) shows the final tree. A dotted line indicates that an exchange has taken piac...

Remark: One must verity that the above procedure does always yield a heap as a final tree, that is, that
nothing cisc has been disturbed. This is easy to see, and we leave this verification to the rcadcr.

97

88	 N
4(7

(a)
	

(b)
	 (c)

97

88

M

V \	 ,_ \
66	 35	 55	 55

/\	 /\
18	 40	 30	 26	 24	 48

95

95	 48

62	 77	 25	 38

(d)

Fig. 7-30 ITEM = 70 is inserted.

CHAP. 71	 TREES	 245

EXAMPLE 7.21

Suppose we want to build a. heap H from the following list of numbers:

44, 30, 50, 22, 60, 55, 77, 55

This can be accomplished by inserting the eight numbers one alter the other into an empty heap H using the above
procedure. Figure 7-31(a) through (h) shows the respective pictures of the heap after each of the eight elements
has been inserted. Again, the dotted line indicates that an exchange has taken place during the insertion of the
given ITEM of information.

44
	

44
	

30
V

30
	

30	 44

(a) ITEM 44.	 (b) ITEM = 30.	 (c) ITEM = 50.

50

30	 44
	

50	 44-

22
	

22	 30

(d) ITEM 22.	 (e) ITEM = 60.

50	 55
/

22	 30	 44

(1) ITEM =55.

77.-..

50	 60

22	 30	 44	 55

(g) ITEM = 77.

55	 60

50	 30	 44	 55
FI/

22

(h) ITEM =55.

Fig. 7-31 Building a heap.

246	 TREES	 [CHAP. 7

The formal statement of our insertion procedure follows:

Procedure 7.9: INSHEAP(TREE, N, ITEM)
A heap H with N elements is stored in the array TREE, and an ITEM of
information is given. This procedure inserts ITEM as a new clement of H. PTR
gives the location of ITEM as itrises in the tree, and PAR denotes the location of
the parent of ITEM.

1. [Add new node to H and initialize PTR.J
Set N:=N+l and PTR:=N.

2. [Find location to insert ITEM.]
Repeat Steps 3 to 6 while PTR < I.

3. Set PAR := l. PTRI21. (Location of parent node.]
4. If ITEM.TREE[PAR], then:

Set TREE(PTR] := ITEM, and Return.
[End of If structure.]

5. Set TREE[PTR] : = TREELPARI. [Moves node down.]
6. Set PTR := PAR. [Updates PTR.1

[End of Step 2 loop.]
7. [Assign ITEM as the root of U.]

Set TREE[fl: = ITEM.
8. Return.

Observe that ITEM is not assigned to an element of the array TREE until the appropriate place for
ITEM is found. Step 7 takes care of the special case that ITEM rises to the root TREELII.

Suppose an array A with N elements is given. By repeatedly applying Proccdu.rc 1.9 to A, that is,
by executing

Call INSHEAP(A, J, A(J + 1])

for J = 1, 2.....N - I, we can build a heap 1-I out of the array A.

Deleting the Root of a Heap
Suppose H is a heap with N elements, and suppose we want to delete the root R of H. This is

accomplished as follows:
(I) Assign the root R to some variable ITEM.
(2) Replace the deleted node R by the last node L of Ii so that H is still a complete tree, but not

necessarily a heap.
(3) (Reheap) Let L sink to its appropriate place in H so that I-I is finally a heap.

Again we illustrate the way the procedure works before stating the procedure formally.

EXAMPLE 7.22
Consider the heap [I Fig. 7-32(a), where R 95 is the root and L 22 is the last node of the tree. Step I of

the above procedure deletes R = 95, and Step 2 replaces R 95 by L = 22. This gives the complete tree in Fig.
7-32(b), which is not a heap. Observe, however, that both the right and left subtrces of 22 are still heaps. Applying
Step 3, we find the appropriate place of 22 in the heap as follows:

(a) Compare 22 with its two children. 85 and 70. Since 22 is less than the larger child, 85, interchange 22 and
85 so the tree now looks like Fig. 7-32(c).

(b) Compare 22 with its two new children, 55 and 33. Since 22 is less than the larger child, 55, interchange 22
and 55 so the tree now looks like Fig. 7-32(d).

(c) Compare 22 with its new children. 15 and 20. Since 22 is greater than both children, nude 22 has
dropped to its appropriate place in H.

Thus Fig. 7-32(d) is the required heap II without its original root R.

CHAP. 71	 TREES	 247

5533	 3065
	

5533	 30	 65

15	 20 15
	

15	 20 15

	

(a)
	 (b)

	

85
	 85

70/N
55	 33	 30	 65

	
30	 65

IS	 20 15
	

15	 20 15

(c)
	

(d)

Fig. 7-32 Reheaping.
Remark: As with inserting an clement into a heap, one must verify that the above procedure does always

yield a heap as a final tree. Again we leave this verification to the reader. We also note that Step 3 of the procedure
may not end until the node L reaches the bottom of the tree, i.e., until L has no children.

The formal statement of our procedure follows.

Procedure 7.10: DELHEAP(TREE, N, ITEM)
A heap H with N elements is stored in the array TREE. This procedure assigns
the root TREE[]I of H to the variable ITEM and then reheaps the remaining
elements. The variable LAST saves the value of the original last node of H. The
pointers PTR, LEFT and RIGHT give the locations of LAST and its left and
right children as LAST sinks in the tree.

Set ITEM:TREE(1). (Removes root of H.)
Set LAST:=TREE[N] and N:=N—'1. (Removes last node of H.]
Set PTR := 1, LEFT:= 2 and RIGHT:= 3. [Initializes pointers.]
Repeat Steps 5 to 7 while RIGHT:5N:

If LAST TREE[LEFTJ and LAST 2-- TREE[RIGHTJ, then:
Set TREE[PTRJ:= LAST and Return.

[End of If structure.]
IF TREE[RIGHTJ f. TREE[LEFTJ, then:

Set TREE[FTR] : = TREE[LEFTJ and PTR : = LEFT.
Else:

Set TREE[PTRJ:=TREE[RIGHT] and PTR:= RIGHT.
[End of If structure.]
Set LEFT: 2*PTR and RIGHT:= LEFT+ 1.

[End of Step 4 loop.]
If LEFT = N and if LAST < TREE[LEFF}, then: Set PTR: LEFT.
Set TREE[PTR] : = LAST.
Return.

1
2
3
4
5

6.

7

8.
9.

10.

.48	 TREES	 (CHAP. 7

The Step 4 loop repeats as long as LAST has a right child. Step 8 takes care of the special case in
which LAST does not have a right child but does have a left child (which has to be the last node in II).
The reason for the two "if" statements in Step 8 is that TREE[LEFTJ may not be defined when
LEFT> N.

Application to Sorting

Suppose an array A with N elements is given. The hcapsort algorithm to sort A consists of the two
following phases:

Phase A: Build a heal) H out of the elements of A.
Phase B: Repeatedly delete the root element of Fl.

Since the root of H always contains the largest node in H, Phase B deletes the elements of A in
decreasing order. A formal statement of the algorithm, which uses Procedures 7.9 and 7.10, follows.

Algorithm 7.11: L]EAPSORT(A, N)
An array A with N elements is given. This algorithm sorts the elements of A.
I. [Build a heap H, using Procedure 7.9.1

Repeat for J = I to N - 1:
Call INSHEAP(A, J. A[J + 1]).

(End of loop.]
2. (Sort A by repeatedly deleting the root of H, using Procedure 7.10.1

Repeat while N> I:
(a) Call DELHEAP(A, N, ITEM).
(b) Set A[N + 1]:= ITEM.

(End of Loop.]
3. Exit.

The purpose of Step 2(b) is to save space. That is, one could use another array B to hold the sorted
elements of A and replace Step 2(b) by

Set BIN +)J:=ITEM

However, the reader can verify that the given Step 2(b) does not interfere with the algorithm, since
AIN + 11 does not belong to the heap H.

Complexity of Heapsort

Suppose the hcapsort algorithm is applied to an array A with n elements. The algorithm has two
phases, and we analyze the complexity of each phase separately.

Phase A. Suppose U is a heap. Observe that the number of comparisons to find the
appropriate place of a new clement ITEM in H cannot exceed the depth of H. Since H is a
complete tree, its depth is bounded by 1092 m where m is the number of elements in H.
Accordingly, the total number g(n) of comparisons to insert the n elements of A into H is bounded
as follows:

g(n) it log 2 n

Consequently, the running time of Phase A of heapsort is proportional to it log2 n.

Phase B. Suppose H is a complete tree with in elements, and suppose the left and right
subtrccs of H are heaps and L is the root of H. Observe that rehcaping uses 4 comparisons to move
the node Lone step down the tree H. Since the depth of H does not exceed 1092 in, rchcping uses
at most 4 log, in comparisons to find the appropriate place of L in the tree H. This means that the

CHAP. 71	 TREES	 249

total number h(n) of comparisons to delcic the it elements of Afrom H, which requires rchcaping
n times, is bounded as follows:

h(n) 4n 1092 n

Accordingly, the running time of Phase B of hcapsort is also proportional to it log 2 n.

Since each phase requires time proportional to n log2 n, the running time to sort the n-clement
array A.using hcapsort is proportional ton 1092 n, that is,f(n) = 0(n 1092 n). Observe that this gives a
worst-casc complexity of the hcapsort algorithm. This contrasts with the following two sorting
algorithms already studied:

(I) Bubble sort (Sec. 4.6). The running time of bubble sort is 0(n2).
(2) Quicksor: (Sec. 6.5). The average running time of quicksort is 0(n log 2 n), the same as

hcapsort, but the worst-case running time 01 quicksort is 0(n 2), the same as bubble sort.

Other sorting algorithms arc investigated in Chap. 9.

7.11 PATH LENGTHS; HUFFMAN'S ALGORITHM

Recall that an extended binary tree or 2-tree is a binary tree T in which each node ,has either 0 or 2
children. The nodes with 0 children are called external nodes, and the nodes with 2 children are called
internal nodes. Figure 7-33 shows a2-trcc where the internal nodes arc denoted by circles and the
external nodes arc denoted by squares. In any 2-tree, the number NE of external nodes is I more than
the number No of internal nodes; that is,

NE = No + 1

For example, for the 2-tree in Fig. 7-33, No = 6, and NE = No + 1 7.

Fig. 7-33

Frequently, an algorithm can be represented by a 2-tree Twhcrc the internal nodes represent tests
and the external nodes represent actions. Accordingly, , the running time of the algorithm may depend
on the lengths of the paths in the tree. With this in mind, we define the external path length LE of a
2-tree T to he the sum of all path lengths summed over each path from the root R of T to an external
node. The internal p6th length L, of T is defined analogously, using internal nodes instead of external
nodes. For the tree in Fig. 7-33,

L,,2+2+3+4+4+3+3=21	 and	 L,0+ 1+1+2+3+29

Qlt

(a) 7',.

Fig. 7-34

(b) T2 . (c) 7',.

250	 TREES	 ICHAP. 7

Observe that
L,+2n=9+26='9+12'2l-LE

where is = 6 is the number of internal nodes. in fact, the formula

= L, + 2n

is true for any 2-tree with n internal nodes.
Suppose 7' is a 2-tree with n external nodes, and suppose each of the external nods is assigned a

(nonnegative) weight. The (external) weighted path length Pot the tree T is defined to be the sum of
the weighted path lengths; i.e.,

P W1 L 1 '+ W2 L2 + •.• + W.L.

where W and L1 denote, respectively, the weight and path length of an external node N1.
Consider now the collection of all 2-trees with a external nodes. Clearly, the complete tree among

them will have a minimal external path length LE . On the other hand, suppose each tree is given the
same n weights for its external nodes. Then it is not clear which tree will give a minimal weighted path
length P.

EXAMPLE 7.23
Figure 7-34 shows three 2-trees, T1 , T. and T, each having external nodes with weights 2, 3. 5 and 11. The

weighted, path lengths of the three trees we as follows:

P, — 22+32+ 52+ ii 2 —42
P3 -21 +33+53+ll2-48
P, — 2 3+ 3 . 3+ 5 -2 + 11 .1

The quantities P1 and P3 indicate that the complete tree need not give a minimum length P. and the quantities P,
and P, indicate that similar trees aced not give the she lengths.

The general problem that we want to solve is as follows. Suppose a list of weights is given:

W 11 W.. ... , W.

Among all the 2-trees with is external nodes and with the given is weights, find a tree T with a
minimum-wcightcd path length. (Such a tree T is seldom unique.) Huffman gave an algorithm, which
we now state, to find such a tree T.

Observe that the Huffman algorithm is recursively defined in terms of the number of weights and
the solution for one weight is simply the tree with one node. On the other hand, in practice, we use an
equivalent iterated form of the Huffman algorithm constructing the tree from the bottom up rather
than from the top down.

CHAP. 71	 TREES	 251

Huffmai.i Algorithm: Suppose w 1 and w2 are two minimum weights among the n given weights
w 1 , w2 ,w,. Find a tree T' which gives a solution for the n - 1
weights

WI + W21 W31 W41 . . , W.

Then, in the Ircc T', replace the external node

	

w 1 + w2	 by the subtrcc A
The new 2-tree T is the desired solution.

EXAMPLE 7.24

Suppose A, B, C, D, E, F, 0 and H are 8 data items, and suppose they are assigned weights as Follows:

Data itcm:	 A	 B	 .0	 D	 E	 F	 G	 I-I
Weight:	 22 1 5	 II	 19	 2	 It	 25	 5

Figure 7-35(a) through (I.) shows how to construct the tree 1' with minimum-wcightcd path length using the above
data and 1-Ituulman's algorithm. We explain each step separately.

(a)

(I,)

(") to ()

(h)

lJcrc each data item belongs to its own sublrce. Two subtrccs with the smallest possible
combination of weights. the one weighted 2 and one of those weighted 5, are shaded.
Here the subtrccs that were shaded in Fig. 7-35(a) arc joined together to Form a subtrcc with
weight 7. Again, the current two subtrccs of lowest weight are shaded
Each step joins together two subtrccs having the lowest existing weights (always the ones that
were shaded in the preceding diagram), and again, the two resulting sublrcc of lowest weight arc
shaded.
This is the final desired tree T,Formcd when the only two remaining subtrccs arc joined together.

Computer Implementation of Huffman's Algorithm

Consider again the data in Example 7.24. Suppose we want to implement the Huffman algorithm
using the computer. First of all, we require an extra array-WT to hold the weights of the nodes; i.e.,
our tree will be maintained by four parallel arrays, INFO, WT, LEFT and RIGHT. Figure 7-36(a)
shows how the given data may be stored in the computer initially. Observe that there is sufficient room
for the additional nodes. Observe that NULL appeals in the left and right pointers for the initial nodes,
since these nodes will be terminal in the final tree.

During the execution of the algorithm, one must be able to keep track of all the different suhtrccs
and one must also be able to find the subtrccs with minimum weights. This may be accomplished by
maintaining an auxiliary minheap. whcrc each node contains the weight and the location of the root of
a current subtrcc. The initial minhcap appeals in Fig. 7-36(b). (The minhcap is used rather than a
maxhcap since We Want the node with the lowest weight to be on the top of the heap.)

The first step in building the required Huffman tree T involves the following substeps:

(i) Remove the node N 1 = [2, 51 and the nolc N 2 = 15, 2] from the heap. (Each time a
node is deleted, one must rchcap.)

(ii) Use the data in N 1 and N 2 and the first available space AVAIL= 9to .,dd a new node as
follows:

WTI91 = 2 + 5 = 7	 LEFT[9] = 5	 RIGHT191 = 2

Thus N 1 is the left child of the new node and N 2 is the right child of the new node.
(iii) Adjoin the weight and location of the new node, that is, 17, 91, to the heap.

25
31

0

19
12

0

5
7

H

2	 5

E	 B

122

%, -it

252	 TREES

22	 •$	 II	 19	 U	 23	 5

AL C 0	 0 H

(a)

ti

(c)

[CHAP. 7

(b)

49	 25

(d)

t
31

()

25	
31	 44	

2$

(ItLJLi WA 22

EiXL!JLEJ
(I)

(8)	 (I.)

Fig. 7-35 Building a Huffman tree.

CHAP. i i 	 TREES

2

3

4

5

6

7

8

9

10

ii

12

13

14

15

16

INFO WT LEFT RIGHT

A	 22	 0	 0

B	 5	 0	 0

C	 II	 0	 0

D	 19	 0	 0

E	 2	 0	 0

F	 11	 0	 0

G	 25	 0	 0

II	 5	 0	 0

10

II

12

13

14

15

16

0

AVAIL =9

(a)

INFO WT LEFT RIGHT

2

3

4

5

6

7

8

9

10

II

12

'3

14

15

16

ROOT 15, AVAIL= 16

(c)

12,51

15,21	 111.31

15,81	 119,41	 111.61	 125.71

/
122,11

(b)

[5, 81

1 19 . 4 1 	 17.61VN
(22,1)	 125.71	 (11,6)	 (11,3)

(d)

Fig. 7-36 Implementation of Hullman's algorithrnn.

254	 TREES	 ICHAP. 7

The shaded area in Fig. 7-36(c) shows the new node, and Fig. 7-36(d) shows the new heap, which has
one less clement than the heap in Fig. 7-36(b).

Repeating the above step until the heap is empty, we obtain the required tree T in Fig. 7.36(c). We
must set ROOT = 15, since this is the location of the last node added to the tree.

Application to Coding
Suppose a collection of n data items, A, A 2'••' A N' arc to be coded by means of strings of bits.

One way to do this is to code each item by an r-bit string where

2' <n2'

For example, a 48-character set is frequently coded in rncnaory by using 6-bit strings. One cannot use
5-bit strings, since 2 <48<2'.

Suppose the data items do not occur with the same probability. Then memory space may be
conserved by using variable-length strings, where items which occur frequently are assigned shorter
strings and items which occur infrequently arc assigned longer strings. This section discusses a coding
using variable-length strings that is based on the Huffman tree T for weighted data items.

Fig. 7-37

Consider the extended binary tree T in Fig. 7-37 whose external nodcs are the items U, V. W, X. Y
and Z. Observe that each edge from an internal node to a left child is labeled by th bit 0 and each edge
to a right child is labeled by the bit 1. The Huffman code assigns to each external node the sequence of
bits from the root to the node. Thus the tree T in Fig. 7-37 determines the following code for the

external nodes:

U: 00	 V: 01	 W: 100	 X: 1010	 Y: loll	 Z: 11

This code has the"prefix" property; i.e., the code of any item is not an initial substring of the code of
any other item. This means there cannot be any ambiguity in decoding any message using a Huffman
code.

Consider again the 8 data items A, B. C. P. E, F, G and H in Example 7-24. Suppose the weights
represent the percentage probabilities that the items will occur. Then the tree T of minimum-weighted
path length constructed in Fig. 7-35, appearing with the bit labels in Fig. 7-38, will yield an efficient
coding of the data items. The reader can verify that the tree T yields the following code:

A: 00	 B: 11011	 C: 011	 1): lii

E: 11010	 F: 010	 G: 10	 I-I: 1100

CHAP. 71	 TREES	 255

E	 B

Fig. 7-3w

7.12 GNMAL TkES

A general tree (Sometimes called a tree) is defined to be anoncmpty finite act T of elements, callednodes, such that:

(1) T contains a distinguished element R, called the root of T.
(2) The remaining elements of T form an ordered collection of zero or more disjoint trees

T1 T27',,.

The trees T1 , T, . . . , T. arc called subirees of the root R, and the roots of T1 , T2 ,T,, arc calledsuccessors of R.

Terminology from family relationships, graph theory and horticulture is used for general trees in
the same way as for binary trees. In particular, if N is a node with successors S,, S2„,, then N iscalled the parent of the Si 's, the S,'s arc called children of N, and the Si 's are called siblings of eachother.

The term "tree” comes up, with slightly different meanings, in many different areas of
mathematics and computer science. Here we assume that our general tree T is rooted, that is. that Thas a distinguished node R called the root of T; and that T is ordered; that is, that the children of eachnode N of 7' have a specific order. These two properties are not always required for the definition of a
tree.

EXAMPLE 7.25

Figure 7-39 pictures a general tree T with 13 nodes,

B. C, D, E, F, G, H, J, K, L. M, N

RITD
/\	 I

E	 F	 G	 II	 J	 K

Fig. 7-39

256	 TREES	 [CHAP. 7

Unless otherwise stated, the root of a trec l'is the node at the top of the diagram, and the children of a node are
ordered from left to right. Accordingly, A is the root of T, and A has three children; the first child B, the second
child C and the third child D. Observe that:

(a) The node C has three children.
(b) Each of the nodes B and K has two children.

(c) Each of the nodes D and H has only one child.

(d) The nodes E, F, G, L, J, M and N have no children.

The last group of nodes, (hose with no children, are called terminal nodes.

A binary tree T' is not a special case of a general tree T: binary trees and general trees are
different objects. The two basic differences follow:

(1) A binary tree T' may be empty, but a general tree T is nonempty.
(2) Suppose a node N has only one child. Then the child is distinguished as a left child or right

child in a binary tree T', but no such distinction exists in a general tree T.

The second difference is illustrated by the trees T1 and T2 in Fig. 7-40. Specifically, as binary trees, T1

and T. are distinct trees, since B is the left child of A in the tree T 1 but B is the right child of A in the
tree T2 . On the other hand, there is no difference between the trees T1 and T2 as general trees.

(a) Tree T1 .

	

	 (b) Tree 1'2.

Fig. 7-40

A forest Fis defined to be an ordered collection of zero or more distinct trees. Clearly, if we delete
the root R from a general tree T, then we obtain the forest F consisting of the subtrees of R (which may
be empty). Conversely, if F is a forest, then we may adjoin a node R to F to form a general tree T
where R is the root of T and the subtrees of R consist of the original trees in F.

Computer Representation of General Trees
Suppose Tis a general tree. Unless otherwise stated or implied, Twill be maintained in memory by

means of a linked representation which uses three parallel arrays INFO, CHILD (or DOWN) and
SIBL (or HORZ), and a pointer variable ROOT as follows. First of all, each node N of T will
correspond to a location K such that:

(1) INFO[K] contains the data at node N.

(2) CHILD[K] contains the location of the first child of N. The condition CHILDIK] NULL
indicates that N has no children.

(3) SIBL[K] contains the location of the next sibling of N. The condition SIBL[K] = NULL
indicates that N is the last child of its parent.

Furthermore, ROOT will contain the location of the root R of T. Although this representation may
seem artificial, it has the important advantage that each node N of T, regardless of the number of
children of N, will contain exactly three fields.

2

3

4

5

6

7

8

9

10

II

12

13

'4

15

16

2

3

4

-s

6

7

8

9

In

II

12

13

14

CHAP. 71	 TREES	
257

The above representation may easily be extended to represent a forest F Consisting of treesT1 , T2 , . , 'I',,, by assuming the roots of the trees are siblings. In such a case. ROOT will Contain the
location of the root R 1 of the first tree T1 ; or when F is empty, ROOT will equal NULL.
EXAMPLE 7.26

Consider the gcneral tree Tiii Fig. 7-39. Suppose the data of the nodes of Tare stored in an array INFO as inFig. 7-41(a). The structural relationships of Tare obtained by assigning values to the pointer ROOT and thearrays CHILD and SIBL as follows:

(a) Since the root A of T IS stored in INF0121. set ROOT: 2.
(1,) Since the First child of A is the node II, wlüc.h is stored in ! NFOI3J, set CHILD121 : 3. Since A has nosibling, set SIBLI21:= NULL.
(c) Since the First child of B is ihe node If, which is stored in INFO[151. set CHILDI31 : 15. Since node C isthe next sibling of B and C is stored in LNFOI4I. set SIBLI31 =4.

And soon. Figure 7-41(b) gives the final values in CHILD and SIB L. Observe that the AVAIL list of empty noslesis maintained by the first array, CHILD, where AVAIL= 1.

INFO	 CHILD SIBL

ROOT = 2, AVAIL' 13
(a)	 (F,)

Fig. 7-41

Correspondence between General Trees and Binary Trees
Suppose 1' is a general tree. Then we may assign a unique binary tree T' to T as follows. First ofall, the nodes of the binary tree T' will be the same as the nodes of the general tree T, and the root ''I

BINARY TREES

7.1
	 Suppose T is the binary tree stored in memory as in Fig.

7-43. Draw the diagram of T.

258	 TREES	
LCHAP. 7

T' will be the root of T. Let N be an arbitrary node of the binary tree V. Then the left child of N in T'

will be the first child of the node N in the general tree T and the right child of N it T will be the next

sibling of N in the general tree T.

EXAMPLE 7.27
Consider the general tree Tin Fig. 7-39. The readei can verify that the binary tree T' in Fig 7-42 corresponds

to thz general tree T. Observe that by rotating counterclockwise the picture of T in Fig. 7-42 until the edges
pointing to right children are horizontal, we obtain a picture in which the nodes occupy the same relative position

as the nodes in Fig. 7-39. 	 -

8

C

H

j

Fig. 1-42 Binary tree

The computer representation of the general tree T and the linked representation of the

corresponding binary ti-cc T' are exactly the same except that the names of the arrays CHILD and
SIBL for the general tree 1' will correspond to the names of the arrays LEFT and RIGHT for the

binary tree V.
The importance of this correspondence is that certain algorithms that applied to binary

trees, such as the traversal algorithms, may now apply to general trees.

Solved Problems

The tree T is drawn from its root P. downward as follows:
(a) The root R is obtained from the value of the pointer ROOT. Note that ROOT -

5. HeflCC

lNFO(5 60 is the root R of T.

CHAP. 7)	 TREES	 259

INFO LEFT RIGHT

20	 0	 0.

30	 1	 13

40	 0	 0

50	 0	 0

60	 2	 6

70	 0	 8

80	 0	 0

90	 7	 14

10

0

35	 0	 12

45	 3	 4

lip 0 0

ROOT	 1

2

AVAIL	 3

4

5

6

7

8

9

10

11

12

13

14

Fig. 7.43

KE	 70

(a)

30

20	 °55

35

45

40 N
80	 95

(b)

Fig. 7-44

260
	 TREES	 ICHAP. 7

(b) The left child of R is obtained from the left pointer . field of R. Note that LEFTE5I = 2. Hence
INFO(21 30 is the left child of R.

(c) The right child of R is obtained from the right pointer field of R. Note that RLGII115I = 6. Hence
INFO[61 = 70 is the right child of R.

We can now draw the top part of the tree as pictured in Fig. 7-44(a). Repeating the above process with
each new node, we finally obtain the required tree T in Fig. 7-44(b).

7.2	 A binary tree T has 9 nodes. The inordcr and prcordcr traversals of T yield the following
sequences of nodes:

	

murder:	 E A C K(FI il D B G

	

Prcordcr:	 .F A E K C D I-i 0 II

Draw the tree T.
The tree T is drawn from its root downward as follows.

(a) The root of T is obtained by choosing the first node in its preordcr. Thus F is the root of T.
(b) The left child of the node F is ot,taind as follows. First use the inordcr of T to find the nodes in the

left subtree T of F. Thus T, consists of the nodes E, A, C and K. Then the left child of F is obtained
by choosing the first node ini lie prcorder of T,(which appears in the prcordcr of T). Thus A is the
left son of F.

(c) Similarly, the right subiree T, of F consists of the nodes H, 1), B and G, and D is the root of T 2 , that
is, D is the right child of F.
Repeating the above process with each new node, we tinatly obtain the required tree in Fig. 7-45.

F

A D

E	 K

C
/•	 13 /

Fig. 7-45

7.3	 Consider the algebraic expression E = (2x + y)(5a - b)'.

(a) Draw the tree T which corresponds to the expression E.

(b) Find the scope of the exponential operator; i.e., find the subtree rooted at the exponential
operator.

(c) Find the prefix Polish expression P which is equivalent to E, and find the preorder of T.

(a) Use an arrow (T) for cxponefltiatioil and an asterisk (*) for multiplication to obtain the tree shown
in Fig. 7-46.

(b) The scope of I is the tree shaded in Fig. 7-46. It corresponds to the subexpression (5a - b).

(c) There is 00 diffcruncc tic t weet' the prefix Polish expression I' and the preordcr of T. Scan the tree T
from the left, as in Fig. i_12. to obtain:

2 x y	 * 5 o b 3

CHAP. 7 1 	 TREES	 261

+

5a	

b	
-I

Fig. 7-46

7.4
	

Suppose a binary tree T is in memory. Write a recursive procedure which finds the number
NUM of nodes in T.

The number NUM of nodes in T is I more than the number NUML of nodes in the left subtree of
plus the number NUMR of nodes in the right subtrce of T. Accordingly:

Procedure I'7.4: C0UNT(LEFr, RIGHT, ROOT, NUM)
This procedure finds the number NUM of nodes in a binary tree T in memory.

I. If ROOT= NULL, then: Set NUM:=O, and Return.
2. Call COUNF(L.EFF, RIGHT, LEFTEROOTI. NUML).
3. Call COUNT(LEFT, RIGHT, RIGHT(ROOT), NUMR).
4. Set NUM:=NUML+NUMR+ I.
5. Return.

(Observe that the array INFO does not play any role in this procedure.)

7.5
	

Suppose a binary tree T is in memory. Write a recursive procedure which finds lhc depth DEl'
of T.

The depth DEl' of T is I uiiorc than thethe maximum of the depths of the left and right subtrecs of T.
Accordingly:

Procedure P7.5: DEPTII(LEFI, RIGHT, ROOT, DEl')
This procedure fluids the depth DEl' of a binary tree T in memory.

I. If ROOT NULL, then: Set DEl': = 0, and Return.
2. Call DEI'TH(LEFT, RIGHT, LEFI'[ROOT), DEPL).
3. Call E)EPTH(LEFI, RIGHT, RIGHT[ROOTJ, DEPR).
4. If DEPL DEPR, then:

Set DEI':= DEPL + I.
Else:

Set DEP:= DEPR+ 1.
[End of If strueturc.J

5. Return.

(Observe that (tic array INFO does not play any role in this procedure.)

7.6
	

Draw all the possible nonsiniilar trees T where:

(a) T is a binary It-cc with 3 nodes.
(ti) 'F is a 2-tree wills 4 external nodes.

(a) There are five such trees, which arc pictured in Fig. 7-47(a).
(h) Each 2-tree with 4 external nodes is determined by it binary tree with 3 nodes. i.e., by a tree in part

(a). Thus there are live such trees, which are pictured in Fig. 7-47(h).

A.

262	 TREES	 [CHAP. 7

/
L.	 (a) Binary trees with 3 nodes.

(h) Extended binary trees with 4 external nodes.

Fig. 7-41

BINARY SEARCH TREES; HEAPS
7.7 Consider the binary search tree T in Fig. 7-44(b), which is stored in memory as in Fig. 7-43.

Suppose ITEM = 33 is added to the tree T. (a) Find the new tree T. (b) Which changes occur in
Fig. 7-43?

(a) Compare ITEM = 33 with the root, 60. Since 33 <60. move to the left child, 30. Since 33> 30, move
to the right child. 55. Since 33<55, move to the left child, 35. Now 33 <35, but 35 has no left child.
Hence add ITEM 33 as a left child of the node 35 to give the tree in Fig. 7-48. The shaded edges
indicate the path down through the tree during the insertion algorithm.

30

60

20	

351'

\45

4fl/

70	

90

80	 95

Fig. 7-48

(b) First. ITEM = 33 is assigned to the first available node. Since AVAIL 9. set -INFO(9I : 33 and set
LEFTI91 : = 0 and RIGHT191 : 0. Also, set AVAIL: = 10, the next available node. Finally, set
LEFT11 1): 9 so that ITEM = 33 is the left child of INFO(1 I) 35. Figure 7-49 shows the updated
tree T in memory. The shading indicates the changes from the original picture.

Fig. 7-49

ROOT	 I

j12
AVAIL	 3

5

6

7

8

9

10

II

12

13

14

CHAP. 71	 TREES	 -	 263

INFO LEFT RIGHT

7.8	 Suppose the following list of letters is inserted in order into an empty binary search tree:
J,R,D,G,T,E,M,H,P,A,F,Q

(a) Find the final tree T and (b) find the inorder traversal of T.
(a) Insert the nodes one after the other to obtain the tree in Fig. 7-50.
(b) The inorder traversal of T follows: 	 .

A,D,E,F.G,H,J,M,P,Q,R, T

Observe that this is the alphabetical listing of the letters.

J-	

R

M	 TA

N
F

Fig. 7-50

264	 TREES	 ICIIAP. 7

7.9

	

	
Consider the binary search	 tree T in Fig. 7-50. Describe the tree after (a) the node M is deleted
and (b) the node D is also deleted.

(a) The node M has only one child, P. Hence delete M and let P become the left child of R in place of M.
(b) The node I) has two children. Find the murder successor of D, which is the node E. First delete E

from the tree, and then replace D by the node E.

Figure 7-51 shows the updated tree.

I

E

A
	

F	 'XII
Fig. 7-53

7.10 Suppose it data items A 1 , A 2 , . . . , A m are already sorted, i.e.,

(a) Assuming the items are inserted in order into an empty binary search tree, describe the
final tree T.

(b) What is the depth D of the tree T?

(c) Compare D with the average depth AD o('a binary search tree with ii nodes for (i) it = 50,

	

(ii) it = 1O() and (iii) it	 5(X).

(a) The tree will Consist of one branch which extends to the right, as pictured in Fig. 7-52.

(b) Since T has a branch with all n nodes, D n.
(c) It is known that AD c log it, where c 1.4. 11enc D(50) 50, AD(50)9; D(iOO) = 300,

AD(100) 10; 0(500) 500, AD(500) 12.-

A,

A

N

A5

Fig. 7-52

7.11 Consider the minheap h-I in Fig. 7-53(a). (U is a minheap, since the smaller elements are on top
of the heap, rather than the larger elements.) Describe the heap after ITEM = 11 is inserted
into H.

First insert ITEM as the next node in the complete tree, that is, as the left child of node 44. Then
repeatedly comarc ITEM with its parent. Since 31<44. interchange 11 and 44. Since 31<22.
interchange II and 22. Since II >8, ITEM 11 h found its appropriate place in the heap. Figure 7-53(b)
shows the updated heap II. The shaded edges indicate the path of ITEM up the tree.

CHAP. 71	 TREES	 265

8

22

25	 44
	 40	 55

55	 33

(a)

8

40	 55

57
25	 22

 N
(b)

Fig. 7-53

7.12 Consider the complete tree T with N = 6 nodes in Fig. 7-54. Suppose we forma heap out ofT by
applying

Call INSHEAP(A, J, A + Ij)

for J = 1, 2.....N - 1. (Here T is stored sequentially in the array A.) Describe the different
steps.

16

18	 22

20	 IS 40

Fig. 7-54

Figure 7-55 shows the different steps. We explain each step separately.

(a) J = I and ITEM Al21 18. Since 18> 16, interchange 18 and 16.
(b) 3 = 2 and ITEM = A131 22. Since 22> 18. interchange 22 and 18.
(c) 3 3 and ITEM = A141 20. Since 20> 16 but 20<22, in(crchangc only 20 and 16.
(d) .J 4 and ITEM = AI51 = 15. Since 15<20, no interchanges take place.
(e) 3 5 and ITEM = A161 = 40. Since 40> 1$ and 40>22. first interchange 40 and IS and then

interchange 40 and 22.

The tree is now a heap. The dotted edges indicate that an exchange has taken place. The unshaded area
indicates that part of the tree which forms a heap. Observe that the heap is created 1mm the top down
(although individual elements move up the tree).

266	 TREES	 (CHAP. 7

16

IS

Is

(a) ITEM = 18.

1618

(b) ITEM =22.

22

20	 18

16,
	. ..7 1'4O

(c) ITEM = 20.

	

22	 40

20 	 20	 '22

l	 51	 16	 15 1

(d) ITEM 15.	 (e) ITEM 40.

Fig. 7.55

MISCELLANEOUS PROBLEMS

7.13 Considcr the binary tree Tin Fig: 7-1. (a) Find the one-way prcordcr threading of T. (b) Find
the two-way preorder threading of T.
(a) Replace the right null subtree of a terminal node N by a thread pointing to the successor of N in the

prcordcr traversal of T. Thus there is a thread from 0 to E, since E is visited after 0 in the preordcr
traversal of T. Similarly, there is a thread from F to C. from G to H and from L to K. The threaded
tree appears in Fig. 7-56. The terminal node K has no thread, since it is the last node in the prcordcr
traversal of T. (On the other hand, if Thad a header node Z. then there would be a thread from A
back to Z.)

(b) There is no two-way prcorder threading of Tthal is analogous to the two-way inonler threading of

D- -----

— — —

Fig. 7-56 Preorder threaded tree.

CHAP. 71	 TREES 267

7.14 Consider the weighted 2-tree T in Fig. 7-57. Find the weighted path length P of the tree T.
Multiply each weight li's by the length L of the path from the root of T to the nodc containing theweight, and then sum all such products to obtain P. Thus:

P = 42 + 154 + 25•4 + 5 • 3 + 82 + 16•2 8 + 60 + 100 + 15 + 16 + 32 231

Fig. 7.37

7.15 Suppose the six weights 4, 15, 25,5, 8, 16 are given. Find a 2-trcc Twitli the given weights and a
minimum weighted path length P. (Compare T with the tree in Fig. 7-57.)

Use the Huffman algorithm. That is, repeatedly combinc.thc two subtrccs with minimum weights into
a single subtrec as follows:
(a) 4, 15, 25, 5,	 8. 16
(b) 15, 25, 90, 8, 16
(c) 15, 25,	 c::II 	 16
(d) 25,	 17,

(e) 31
(1)

Fig. 7-38

268	 TREES	 ICIIAP. 7

(The circled number indicates the root of the new subtrcc in the step.) The tree Tis drawn from Step (f)
backward, yielding Fig. 7-58. With the tree T, compute

P25.2+4 . 4+5 . 4+83+ 152+ 16250+ 16+20+24+30+32=172

(The tree in Fig. 7-57 has weighted path length 231.)

7.16 Consider the general tree T in Fig. 7-59(a). Find the corresponding binary tree V.

The nodes of V will he the same as the nodes of the general tree T, and in particular, thc root of V
will be the same as the root of T. Furthermore, if N is a node in the binary tree V. then its left child is the
first child of N in T and its right child is the next sibling of N in T. ConstructingT' from the root down, we
obtain the tree iii Fig. 7.59(b).

CE

A

G	 Fl

(a) General tree T.

KLMN/N

C	 F

E	 I I
N

L

/N
'N.	

N

(b) Binary tree V.

Fig. 7-59

7.17 Supjosc T is a general tree with root Rand subtrecsl 1 , T2 ,..., TM . The prcordcr traversal

and the postordcr traversal of T are defined as follows:

Prcordcr:	 (1) Process the root R.
(2) Traverse the subtrees T 1 , T2 TM in prcordcr.

Postordcr: (I) Traverse the subtrces T 1 . T21 . . . , TM in posordcr
(2) Process the root R.

CHAP. 71	 TREES	 269

Let T be the general tree in Fig. 7-59(a). (a) Traverse T in prcordcr. (b) Traverse T in

postorder.

Note that T has the root A and subtrccs T, T and T, such that:

T 1 consists of nodes B, C, D and E.
T. consists of nodes F. G and H.
T, consists of nodes J, K, L. M, N. P and Q.

(a) The prcordcr traversal of 1' consists of the following steps:
(I) Process root A.
(ii) Traverse T 1 in prcorder:	 Process nodes 13, C, D, E.

(iii) Traverse T. in preordcr:	 Process nodes F, 0, H.
(iv) Traverse T3 in prcordcr:	 Process nodes J, K, L. M, P. Q. N.

That is, the prcordcr traversal of T is as follows:

A. 13, C, 0, E, F, 0, H, J. K, L, M, P. 0, N

(h) The postordcr traversal of T consists of the following steps:
(i) Traverse T in postordcr:	 Process nodes C, 0, E, B.

(ii) Traverse T 2 in postorder:	 Process nodes 0, H, F.
(iii) Traverse T in postorcjcr: 	 Process nodes K, L, I', 0, M, N, J.
(iv) Process root A.

In other words, the postordcr traversal of T is as follows:

C, D, E, B, 0, H, F. K, L, P, Q. M, N, J, A

7.18 Consider the binary tree V in Fig. 7-59(b). Find the prcordcr, inordcr and postordcr traversals
of V. Compare them with the preorder and postorder traversals obtained in Prob. 7.17 of the
general tree T in Fig. 7-59(a).

Using the binary tree traversal algorithms in Sec. 7.4, we obtain the following traversals of T':

Prcordcr:	 A, B, C, 0, E, F, 0, II, J, K, L, M, P. Q, N
murder:	 C, 0, E, B, 0, II, F. K. L, I', 0, M. N.
Postorder:	 E, 0, C, I-I, 0, 0, P. N, M, L, K. J. F, L, A

Observe that the prcordcr of the binary tree V is identical to the prcordcr of the general T, and that the
inordcr traversal of the binary tree V is identical to the postordcr traversal of the general tree T. There is
no natural traversal of the general tree T which corresponds to the postorder traversal of its corresponding
binary tree -r'.

SupIementary Problems

BINARY TREES

	

7.19	 Consider the tree •J in Fig. 7-60(a).

(a) Fill in the values for ROOT. LEFT and RIG I-IT in Fig. 7-60(h) so that Twill be stored in memory.

(L') Find (i) the depth 0 of T. (ii) the number of null suhtrccs and (iii) the descendants of node B.

	

7.20	 List the nodes of the tree T in Fig. 7-60(a) in (a) prcordcr, (b) inorder and (c) postordcr

	

7.21	 Draw the diagram of the treeT in Fig. 7-61.

270	 TREES	 (CHAP. 7

Fig. 7-61

I
2
3
4
5 -
6

7
8
9

10

(a)	 (b)
Fig. 7-60

INFO LEFT RIGHT

AVAIL

El

ROOT

1
2
3
4

5
6

7
8
9

10
11
12
13
14
15
16
17
18
-

INFO LEFT RIGHT

ROOT

LII
AVAIL

LII
/B\	

C\F

CHAP. 71	 TREES	 271

7.22 Suppose the following sequences list the nodes of a binary tree T in preorder and inor)nrtively.
Preorder:	 0,8,0, A, C, K, F, P, D. E, R, H
Inorder:	 0, 8, K. C, F. A, 0, P, E, D. H,

Draw the diagram of the tree.

7.23 Suppose a binary tree T is in memory and an ITEM of information is given.
(a) Write a procedure which finds the location LOC of ITEM in T (assuming the elements of T aredistinct).
(b) Write a procedure which finds the location LOC of ITEM and the location PAR of the parent ofITEM in T.
(c) Write a procedure which finds the number NUM of times ITEM appears in T (assuming the elements

of T are not necessarily distinct).
Remark: T is not necessarily a binary search tree.

7.24 Suppose a binary tree T is in memory. Write a nonrecursive procedure for es,.' if the following:
(a) Finding the number of nodes in T.
(b) Finding the depth D of T.
(c) Finding the number of terminal nodes in T.

7.25 Suppose a binary tree T is in memory. Write a procedure which deletes all the terminal nodes in T.
7.26 Suppose ROOTA points to a binary tree T 1 in memory. Write a procedure which makes a copy T, of thetree T 1 using ROOTB as a pointer.

BINARY SEARCH TREES

7.27 Suppose the following eight numbers are inserted in order into an empty)jnry search tree T:
50, 33, 44, 22, 77, 35, 60, 40

Draw the tree T.

7.28 Consider the binary search tree T in Fig. 7-62. Draw the tree T if each of the following operations is
applied to the original tree T. (That is, the operations arc applied independently, not successively.)

(a) Node 20 is added to T. 	 (d) Node 22 is deleted from T.
(b) Node 15 is added to T. 	 (e) Node 25 is deleted frqm T.
(c) Node 83 is added to T. 	 (f) Node 75 is deleted from T.

50

25

22 60

15
44

33

Fig. 7-62

272 TREES	 tCHAP. 7

7.29 Consider the binary search tree T in Fig. 7-62. Draw the final tree T if the six operations in Problem 7.28
are applied one after the other (not independently) to T.

7.30 Draw the binary search tree T in Fig. 7-63.

ROOT

i1
AVAIL

INFO
	

LEFT

I
	

Jones
	 7

2
	

Fox
	 II

3
	 8

4
	

Murphy
	 2

5
	 13

6
	

Thomas
	 ()

7
	

Green
	 0

8
	 9

9
	 10

10
	 5

11
	

Conroy
	 0

12
	

Parker
	 0

13
	 14

14
	 0

15
	

Rosen
	 12

RIGHT

0

15

0

0

0

0

6

Fig. 763

Consider the binary search tree Tin Fig. 7;63. Describe the changes in INFO, LEFT, RIGHT. ROOT and
AVAIL if each of the following operations is applied independently (not successively) to T.

(a) Davis is added to T.	 (d) Parker is deleted from T.

(b) Harris is added to T.	 (e) Fox is deleted from T.

(c) Smith is added to T. 	 (f) Murphy is deleted from T.

Consider the binary search tree T in Fig. 7-63. Describe the final changes in INFO, LEFT, RIGHT.
ROOT and AVAIL if the six operations in Problem 7.31 arc applied one after the other (not

independently) to T.

MISCELLANEOUS PROBLEMS
7-33	 Consider the binary tree T in Fig. 7-60(a).

(a) Draw the one-way inordcr threading of T.

(b) Draw the one-Way prcordcr threading of T.

(c) Draw the two-way inordcr threading of T.

In cachi case • show how the threaded tree will appear in memory using the
(]; I t ; t in Fig. 7-60(b).

7.3*

7.32

CHAP. 7]	 TREES	 273

7.34 Consider the complete tree T with N 10 nodes in Fig. 7-64. Suppose a maxheap is formed Out of by
applying

Call INSHEAP(A, J, A + 11)

for J 1,2.....N— 1. (A..sumc T is stored cqucntially in the array A.) Find the final maxhcap.

30—

-
22

33	 4()	 tt

60	 2	 55

Fig. 7-64

7.35 Repeat Problem 7.34 for the tICC Tin Fig. 7-64, except now form a rninhcap out of T instead of a maxi..ap.

7.36 Draw the 2-tree corresponding to each of the Following algebraic expressions:

(a) E, '(a-3b)(2x—y)'
(b) E = (2a + Sb)3(x - 7y)4

7.37	 Consider the 2-tree in Fig. 7-65. Find the Huffman coding for the seven letters determined by the tiec T.

Fig. 7.65

7.38	 Surp sc the 7 data items A, 13, 	 - , C, are assigned the following weights:
(A. Ii)	 (13, 2),	 (('. 191.	 (1), 23),	 (E, 29),	 (F, S)	 (0, 9)

Find the weighted path length P of the tree in Fig. 7-65.

7.39 Using the data in Problem 7.38, find a 2-tree with, a minimum weighted path length P. What is the Llufimaii
coding for the 7 letters using this new tree?

274	 TREES	 (CHAP. 7

7.40 Consider the forest F in Fig-7-66, which consists of three trees with roots A. B and C, respectively.

(a) Find the binary tree F' corresponding to the forest F.

(b) Fill in values for ROOT, CHILD and SIB in Fig. 7-67 so that F will be stored in memory.

B	 C

L
	 j	 E	 G

H	 0

Fig. 7.66 Forest F

1(00'I
	

INFO	 CHILD	 SIB

LII	 A

2
	

C

3
	

E

4
	

U

5
	

J

6

7

S
	

K

9
	

I-,

to
	

F

It
	

I)

12
	

U

Hg. 7-67

7.41	 Suppose 7 is a complete tree with n nodes and depth D. Prove (a) 2 0 -1 -- <P1 2" - 1 and (b)

D log 2 ,l.
Hint: Use the following identity with x =2:

2	

I + .t + x + X •	+ X" = x — I

7.42 Suppose T is an extended binary tree. Prove-

(a) N. N, + I, where NF is the number of external nodes and N, is the number of internal nodes.

(b) L,. = L, + 2n, where L. is the external path length, L, is the internal path lcngtl and n is the number

of internal nodes.

CHAP. 71	 TREES	 275

Programming Problems

Problems 7.43 to 7.45 refer to the tree Tin Fig. 7-1, which is stored in memory as in Fig. 7-68.

7.43 Write a program which prints the nodes of T in (a) prcorder, (b) inorder and (c) postorder.

7.44 Write a program which prints the terminal nodes of T in (a) prcordir (b) murder and (c) postordcr.
(Nose: All three lists should be the same.)

7.45 Write a program which makes a copy T' of Tusing ROOTE3 as a pointer. Test the program by printing the
nodes of T' in preorder and inordcr and comparing the lists with those obtained in ProLi. 7.43.

INFO LEFT RIGHT

ROM

AVAIL	 3

U'
I0

II

12

13

'4

21)

21

23

24

K	 0	 0

C	 3	 6

G	 0	 0

14

A	 10	 2

II	 17	 1

1	 0	 t)

4

II	 18	 13

19

0	 Ii

E	 12	 (I

15

16

o
-- - T.

Fig. 74$

276	 TREES	 [CHAP. 7

7.46 Translate heapsori in(,, a subprogram HEAPSORT(A, N) which sorts the array A with N elements. Test
the program using
(a) 44, 33, Ii, 55, 77, 90, 40, 60, 99, 22, 88,66 (b) D, A, T, A, S, T, K, U. C. T, U. K, E, S

Problems 7.47 to 7.52 refer to the list of employee records which arc stored either as in Fig. 7-8 or as in Fig.
7-69. Each is a binary search trtc with respect 16 the NAME key, but Fig. 7-69 uses a header node, which also acts
as a sentinel. (Compare these problems with Probs. 5.41 to 5.46 in Chap. 5.)

NAME	 SSN	 SEX	 SALARY	 lEFT	 RIGHT

0

5

5

2

44

5

3

11

6

5

13

.5

9

HEAD 1

E11Th2
AVAIL

L5

3

9

10

II

12

13

14

192-38-7282

165-64-3351

175-56-2251

178-52-1065

181-58-9939

177-44-4557

135-46-6262

168-56-8113

208-56-1654

Fig. 7-69

=

	7.47	 Write a program which prints the list of employee records in alphabetical order. (flint: Print the records in
iiiordcr)

7.48 Writ- a program which reads the name NNN of an employee and prints the emplo ac's record. Test the
program using (a) Evans. (h) Smith and (c) Lewis.

7.49 Write a program which reads the social security number SSS of an employee and prints the employee's
record. Test the program using (a) 165-64-3351, (b) 135-46-6262 and (c) 177-44-5555.

730 Write a program which reads an integer K and prints the name of each male employee when K I or of
each female employee when K = 2. Test the program using (a) K 2, (b) K 5 and (c) K 1.

7.51 Write a program which reads the name NNN of an employee and deletes the employees record from the
structure. Test the program using (a) Davis, (b) Jones and (c) Rubin.

	

7.52	 Write a program which icads the record of a new employee and inserts the record into the tile. Test the
program using:
(a) Fletcher; 168. 52-3388; Fcmale. 21000
(b) Neison; 175-32.-248. M,'c'. 19000

Chapter 8
Graphs and Their Applications

8.1 INTRODUCTION

This chapter investigates another nonlinear data structure: the graph. As we have done with other
data Structures, we discuss the representation of graphs in memory and present various operations and
algorithms on them. In particular, we discuss the breadth-first search and the depth-first search of our
graphs. Certain applications of graphs, including topological sorting, are also covered.

8.2 GRAPH THEORY TERMINOLOGY

This section summarizes some of the main terminology associated with the theory of graphs.
Unfortunately. there is no standard terminology in graph theory. The reader is warned, therefore, that
our definitions may be slightly different from the definitions used by other t ' :xts oil structures and
graph theory.

Graphs and Multlgraphs

A graph C consists of two things:

(1) A set V of elements called nodes' (or points or vertices)
(2) A set E of edges such that each edge e in E is identified with a unique (unordered) pair [u, u]

of nodes in V, denoted by e = [u, 1

Sometimes we indicate the parts of a graph by writing G = (V. E).
Suppose e = Eu, vJ. Then the nodes u and v are called the endpoints of e, and u and u arc said to be

adjacent nodes or neighbors. The degree of a node u, written dcg(u), is the number of edges containing
u. If deg(u) = 0—that is, if 14 does not belong to any edge—then u is called all 	 node.

A path P of length n from a node u to a node u is defined as a sequence of ii + I nodes.

P=(v0,v1,v2,..., u,,)
such that u ii,; v,_ is adjacent to v, for i = 1,2......., and v = v. The path P is said to be closed if
v0 = u. The path P is said to be simple if all the nodes are distinct, with the exception that u, may equal
v,,; that is, P is simple if the nodes v0 , v1 ,..., v,, are distinct and the nodes t' 1 , v, . . . , v,, are distinct.
A cycle is a closed simple path with length 3 or more. A cycle of length k is called a k-cycle.

A graph G is said to be connected if there is a path between any two of its nodes. We will show (in
Prob. 8.18) that if there is a path P from a node u to a node v, then, by eliminating unnecessary edges,
one can obtain a simple path Q from u to u; accordingly, we can state the following proposition.

Proposition 8.1: A graph G is connected if and only if there is a simple path between any two nodes
in G.

A graph (I is said to he complete if every node u in G is adjacent to every other node v in G.
Clearly such a graph is connected. A complete graph with 'n nodes will have n(n - 1)/2 edges.

A connected graph T without any cycles is called a tree graph or free tree or, simply, a tree. This
means, in particular, that there is a unique simple path P between any two nodes u and o in T (Prob.
8.18). Furthermore, if 7' is a finite tree with in nodes, then Twill have m - 1 edges (Prob. 8.20).

A graph G is said to be labeled if its edges are assigned data. In particular, G is said to he weighted
..h edge e in C is assigned a nonnegative numerical value w(e) called the weight or length of e. In

277

(a) Graph. (b) Multigraph.

C'..

BIC

278	 GRAPHS AND THEIR APPLICATIONS	 ICI lAP. 8

such a case, each path P in G is assigned a weight or length which is the sum of the weights of the edges

along , hc path P. If we are given no other information about weights, we may assume any graph G to

be weighted by assigning the weight w(e) = 1 to each edge a in G.
The definition of a graph may be generalized by permitting the following:

(I) Multiple edges. Distinct edges e and a' are called multiple edges if they connect the same

	

endpoints, that is, if a = [u, v] and a'	 (U, vJ.

(2) Loops. An edge e is called a loop if it has identical endpoints, that is, if e 1u, UI.

Such a generalization M is called a inultigraph. In other words, the definition 01 a grapn usuaiiy uocs

not allow either multiple edges or loops. 	 -
A multigraph M is said to be finite if it has a finite number of nodes and ,a finite number of edges

Observe that a graph G with a finite number of nodes must automatically have a finite number of edges
and so must be finite; but this is not necessarily true for a inultigraph M, since Al may have multiple
edges. Unless otherwise specified, graphs and multigaphs in this text shall be finite.

EXAMPLE 8.1

(a) Figure 8-1(a) is a picture of a connected graph with 5 nodes—A, 13, C. D and E—and 7 edges:

L, 13 1,	 (8, C,	 (C, D(,	 (D, Ej,	 (A. El,	 (C, El	 (A. Cl

There arc two simple paths of length 2 from 13 to E: (13, A, E) and (B, C. E). There is only one simple path

of length 2 from //to D: (/3, C, D). We note that (/3. A, D) is not a path, since LA, DI is not an edge. There

arc two 4-cycles in the graph:

	

(A. B, C, E. Al	 anti	 (A, C, D, E, AJ.

Note that deg(A) = 3, since A belongs to 3 edges. Similarly, deg(C) = 4 and deg(D) = 2.

(b) Figure 8-1(b) is not a graph but a mulligraph. The reason is that it has multiple cdges—c 4 = (Ii. Cl and

(II, Cj—and it has a mop, e, = (L). Dj. The definition of a graph usually does not allow either multiple

edges or loops.

(c) Figure 8-1(c) is a tree graph with in = 6 nodes and,conscquently. rn— I = 5 cdgcs. The reader can verify that
there is a unique simple path between any two nodes of the tree graph.

:ii: *

	 A	 3 —EBf73
(c) Tree.

	

	 (d) Weighted graph.

Fig. 8-1

Fig. 8-2

CHAP. 81	 GRAPHS AND THEIR APPLICATIONS	 279

(d) Figure 8-1(d) is the same graph as in Fig. 8-1(a), except that now the graph is weighted. Observe that
(B, C. D) and P. (B, A, E, D) arc both paths from node B to node D. Although P. contains more

edges than P,, the weight w(P2) 9 is less than the weight w(P,) 10.

Directed Graphs

A directed graph G, also called a digraph Or graph, is-the same as a multigraph except that each
edge e in G is assigned a direction, or in other words, each edge e is idenfficdwiih an ordered pair
(u, v) of nodes in G rather than an unordered pair [u, v].

Suppose G is a directed graph with a directed edge e = (u, v). Then e is also called an arc.
Moreover, the following terminology is used:

(1) e begins at u and ends at v -

(2) u is the origin or initial point of e, and u is the destination or terminal point of e.

(3) u is a predecessor of v, and v is a successor or neighbor of u.

(4) u is adjacent to v, and v is adjacent to u.

The outdegrec of a node u in G, written outdeg(u), is the number of edges beginning at u. Similarly,
the indegree of u, written indcg(u), is the number of edges ending at u. A node u is called a source if it
has a positive outdegree but zero indcgrcc. Similarly, u is called a sink if it has a zero outdegree but a
positive indegree.

The notions of path, simple path and cycle carry over from undirected graphs to directed graphs
except that now the direction of each edge in a path (cycle) must agree with the direction of the path
(cycle). A node t' is said to be reachable from a node a if there is a (directed) path from u to

A directed graph G is said to be connected, or strongly connected, if for each pair u, v of nodes in G
there is a path from u to u and there is also a path from v to a. On the other hand, G is said to be
unilaterally connected if fur any pair u, u of nodes in G there is a path from u to u or a path from v to u.

EXAMPLE 8.2

hgulc h 2 ShOW. a d._cLcd graph G with 4 nodes and 7 (directed) edges. The edges*, and e, are said to be
parallel, since each hcgin, at It and ends at A. The edge e, is a loop, since it begins and ends at the same point, B.
The sequence 1. (1). C. B. A) is not a path. since (C, B) is not an edge—that is, the direction of the edge

(B, C) dues not agree with the direction of the path P1 . On the other hand, P. = (D, B, A) is a path from D
to A, since (I), B) and (II. A) are edges. Thus A is reachable from D. There is no path from C to any other node.
so G is not strongly conncttd. However, G is unilaterally connected. Note that indeg(D) = 1 and outdeg(D) = 2.
Node C is a sink. since indeg(C) = 2 but outdeg(C) = 0. No node in G is a source.

Let T he any nonempty tree graph. Suppose we choose any node R in T. Then T with this

designated node R is called a rooted tree and R is called its root. Recall that there is a unique simple
path from the root R to any other node in T. This defines a direction to the edg in T, so the rooted
tree Tmay be viewed as a directed graph. Furthermore, suppose we also ordcr'the successors of each

280	 GRAPHS AND THEIR APPLICATIONS 	 JCtIAP. 8

node u in T. Then T is called an ordered rooted tree. Ordered rooted trees arc nothing more than the
general trees discussed in Chap. 7.

A directed graph G is said to be simple if G has no parallel edges. A simple graph G in have
loops, but it cannot have more than one loop at a given node. A nondirccted graph G may be icwcd as
a simple directed graph by assuming that each edge Lu, uJ in G represents two directed eds, (u, v)
and (v, u). (Observe that we use the notation [u, u] to denote an unordered pair and f . notation
(u, v) to denote an ordered pair.)

Warning: The main subject matter of this chapter is simple directed graphs. Accordingly, unless
otherwise stated or implied, the term "graph" shall mean simple directed graph, and the term "edge"
shall mean directed edge.

83 SEQUENTIAL REPRESENTATION OF GRAPHS;
ADJACENCY MATRIX; PATH MATRIX

There are two standard ways of maintaining a graph G in the memory of a computer. One way,
called the sequential representation of G, is by means of its adjacency matrix A. The other way, called
the linked representation of G, is by means of linked lists of neighbors. This sectioa covers the first
representation, and shows how the adjacency matrix A of G can be used to csiIy answer certain
questions of connectivity in G. The linked representation of G will be covered in Sec. 8.5.

Regardless of the way one maintains a graph G in the memory of the computer, the graph G is
normally input into the computer by using its fdrmal definition: a collection of nodes and a collection of
edges.

Adjacency Matrix

Suppose G is a simple directed graph with in nodes, and suppose the nodes of G have been ordered
and are called u, u..........Then the adjacency inatrir A = (a,,) of the graph G is the in x in matrix
defined as follows:

- fl	 if o, is adjacent to v,, that is, if there is all 	 (v,, u,)
a - 10 otherwise

Such a matrix A, which contains entries of only 0 and 1, is called a bit matrix or a Boolean matrix.
The adjacency matrix A of the graph G does depend on the ordering of the nodes of G; that is, a

different ordering of the nodes may result in a different adjacency 'matrix. However, the matrices
resulting from two different orderings are closely related in that one can be obtained from the other by
simply interchanging rows and columns. Unless otherwise stated, we will assume that the nodes of our
graph G have a fixed ordering.

Suppose G is an undirected graph. Then the adjacency matrix A of G will be a symmetric matrix,
i.e., one in which a,, = a,, for every i and 1 . This follows from the fact that each undirected edge (u, oJ
corresponds to the two directed edges (u, u) and (u. u).

The above matrix representation of a graph may he extended to multigraphs. Specifically. if G is a
multigraph, then the adjacency matrix of G is the in x in matrix A = (a,,) defined by setting a, equal to
the number of edges from v, to v1.

EXAMPLE 8.3

Consider the graph G in Fig. 8-3. Suppose the nodes are stored in memor y iii a lineai array DATA as follows:

DATA:	 X, Y, Z, W

Then we assume that the ordering of the nodes in G is as follows: u1 X, v2 - Y, v3 = Z and u, W. The aJaccncy
matrix A of G is as follows:

Fig. 8-3

Y X

W

/0 0 I 0
1 0 1 2

0 I 1
\i 0 0 1

-(1 0 0 1
1022'
10111
0 () 1 I/

'0 0 I I'
A4— 202 3\

(0 1 Il
- 10121

CHAP Of	 GRAPHS AND THEIR APPLICATIONS

/0 0 0 I
_I I 0 1 I

1	 o
\o o i o

Note that (he number of I's in A is equal to the number of edges in G.

Consider the powers A, A 2, A. . . of the Adjacency' matrix A of a graph G. Let

a(i, j) the ij entry in the matrix A'

Observe that a 1 (i, j) a,1 gives the number of paths of length I from node t to node i.. One can show
that a2(i, j) gives the number of paths of length 2 from v, to u,. In fact, we prove in Prob. 8.19 the
following general result.

Proposition 8.2: • Let A be the adjacency matrix of a graph G. Then aA(i , j), the ij entry in the matrix
AA, gives the number of paths of length K from u, to u,.

Consider again the graph G in Fig. 8-3. whose adjacency matrix A is given in Example 8.3. The
2, A 3 and A 4powers A 	 of the matrix A follow:.

288 1

Accordingly, in particular, theris a path of length 2 from v4 to u1 , there are two paths of length 3 from
v2 to u, and there are threc$ths of kngth 4 from i', to u4 . (Here, V1 = X, v2 = Y, v- = Z and v4 = W.)

Suppose we now defiré the matrix B, as follows:
/

B,A+A2+A3+1+A'

Then the ii entry of	 matrix B, gives the number of paths of length r or less from node v, to

Path Matrix	 -

Let G be a simple directed graph with m nodes, v 1 , v2 ,v,,,. The path matrix or reachability
matrix of G is the rn-square matrix P = (p 11) defined as follows:

	

— fi	 if there is a path from V1 to

	

" I. 0	 otherwise

Suppose there is a path from v to v,. Then there must be a simple path from v, to v, when v1 5'& v,, or
there must be a cycle from u1 to vj when v = u1 . Since G has only m nodes, such a simple path must have
length m — I or less, or such a cycle must have length m or less This means that there is a nonzero ij

282	 GRAPHS AND THEIR APPLICATIONS 	 [CHAP. 8

entry in the matrix B,,,, defined at the end of the preceding subsection. Accordingly, we have the
following relationship between the path matrix P and the adjacency matrix A.

Proposition 8.3 Let A be the adjacency matrix and let P = (p11) be the path matrix of a digraph G.
Then p i, = 1 if and only if there is a nonzero number in the ij entry of the matrix

B,,, = A+ A'+	 A'"

Consider the graph G with n = 4 nodes in Fig. 8-3. Adding the matrices A, A 2, A3 and A 4, we
obtain the following matrix B4 , and, replacing the nonzero entries in 8 4 by I, we obtain the path matrix
I' of the graph G:

8	

'1 0 2 3'	 /1 0 1 1'
(5068 \ 	(1(11 1'

4	 30351	 and	 i°
\2 0 3 3/	 \i 0 1 1!

Examining the matrix P. we see that the nodc v2 is not reachable from any of the other nodes.
Recall that a directed graph G is said to be strongly connected if, for any pair of nodes u and v in G,

there are both a path from u to u and a path from u to u. Accordingly, G is strongly connected if and
only if the path matrix P of G has no zero entries. Thus the graph G in Fig. 8-3 is not strongly
onnccted.

The transitive closure of a graph G is defined to be the graph G' such that G ..as the same nodes as
G and there is an edge (v,, t) in G' whenever there is a path from v, to v, in G. Accordingly, the path
matrix 1' of the graph U is precisely the adjacency matrix of its transitive closure G'. Furthermore, a
graph U is strongly connected if and only if its transitive closure is a complete graph.

Remark: The adjacency matrix A and the path matrix P of a graph U may be viewed as logical
(Boolcan) matrices, where 0 represents "false" and I represents "true." Thus, the logical operations of
A(AND) and v(OR) may be applied to the entries of A and P. The values of A and v appear in Fig.
8-4. These operations will be used in the next section.

A	 0	 1	 v	 0	 1
0	 0	 0	 0	 0	 1
I	 0	 I	 I	 I	 I

(a) AND,	 (b) OR.
Fig. 8-4

8.4 WARSHALL'S ALGORITHM; SHORTEST PATHS

Let G be a directed graph with in nodes, u1 , v2 ,..., v,,,. Suppose we want'tb find the path matrix
P of the graph G. Warshall gave an algorithm for this purpose that is much more efficient than
calculating the powers of the adjacency matrix A and using Proposition 8.3. Th, algorithm is described
in this section, and a similar algorithm is used to find shortest paths in G when G is weighted.

First we define ,n-square Boolean matrices P0 , P 1 ,..., P. as follows. Let P,ji, j] denote the ij
entry of the matrix 1 4 . Then we define:

I	 if thcfc is a simple path from v, to
=	 which does not use any other nodes

AL t ' h	 except possibly v1 , v2 ,..., V4

0	 otherwise

CHAP. 81	 GRAPHS AND THEIR APPLICATIONS	 283

In other words,
P0(i, jJ 1	 if there is an edge front 	 to
P 1 [i, 1] = 1	 if there is a simple path from t to

which does not USC any other nodes
except possibly o

P21i, /] = I if there is a simple path from u to v,
which does not use any other nodes
except possibly v1 and v2

First observe that the matrix P. = A, the adjacency matrix of G. Furthermore, since G has only nnodes, the last matrix P,,, = P. the path matrix of G.
Warshafl observed that PA[i , /1 = I can occur only if one of the following two cases occurs:
(1) There is a simple path from v, to u, which does not use any other nodes except possibly

V1, u2 , . . . , u; hence

(2) There is a simple path from t to VA and a simple path from v to v, where each path does not
use any other nodes except possibly u1 , v2 , - - - , vk - ,; hence

PA . I[i , k]	 I	 and	 lk.l[k, 1] = I
These two cases are pictured, respectively, in Fig. 8-5(a) and (b), where

denotes part of a simple path which does not use any nodes except possibly v, u, . 0	 -

U, •-t -,	 U, -* ---. U• -+ - --.
(a)

	

	 (b)
Fig. 8-5

Accordingly, the elements of the matrix J can be obtained by

Pk[i , j]	 P_ 1[i , jJ v (P -11 i , k] A 1'.1I k . / 1)
where we use the logical operations of A(AND) and v(OR). In other words we can obtain cach entry
in the matrix PA by looking at only three entries in the matrix P	 Wirshall's algorithm follows.

Algorithm Li: (Warshall's Algorithm) A directed graph G with M nodes is maintained in
memory by its adjacency matrix A. This algorithm finds the (Boolean) Path
matrix P of the graph G.

Repeat for I, J = 1,2.....M: [Initializes P.]
If A[1, JJ=O, then: Set P[1, JJ:=O;
Else: Set P[1, 3] := 1.

[End of loop.]
Repeat Steps 3 and 4 for K= 1,2.....M: [Updates I'.)

Repeat Step 4 for I = 1,2.....M:
Repeat for i=1,2.....M:

Set P[i, 3] := P[I, J 1 ' (P[I, KJ A P(K, i]).
[End of loop.]

[End of Step 3 loop.]
[End of Step 2 loop.]
Exit.

2.
3.
4.

5.

Fig. 8-6
ii

LI

284	 GRAPHS AND THEIR APPLICATIONS 	 [CHAP. 8

Shortest-Path Algorithm
Let G be a directed graph with ?it nodes, v 1 , U2 ,..., v,,, Suppose G is weighted; that is, suppose

each edge e in G is assigned a nonnegative number w(e) called the weight or length of the edge e. Then
C may be maintained in memory by its weight matrix W (we), defined as follows:

I w(e)	 if there is an edge e from u to u1

wil = tO	 if there is no edge from v, to
The path matrix F' tells us whether or not there arc paths between the nodes. Now we want to find a
matrix Q which will tell us the lengths of the shortest paths between the nodes or, more exactly, a
matrix Q = (q 1) where

qq = length of a shortest path from u to v,

Next we describe a modification of Warshalt's algorithm which finds us the matrix Q.
I-lcrc we define a sequence of matrices Q0, Q 1 , . 	Q,,, (analogous to the above matrices

F'0 , !' P,) whose entries arc defined as follows:

Q[i, JJ = the smaller of the length of the preceding
path from u, to v, or the sum of the lengths of
the preceding paths from v, to Uk and from vk

to
More exactly,

Qk[i, jJ = MIN(Q_ 1 [i, /1.	 Q,I i . kJ + Q.. 1 (k, fl)
The initial matrix Q, is the same as the weight matrix W except that each (I in W is replaced by = (or a
very, very large number). The final matrix Q,,, will be the desired matrix Q.

EXAMPLE 8.4

Consider the weighted graph G in Fig. 8-6..Assumc v, = R. v, S, u, = T and t, U.iThcn the weight matrix
W of C is as follows:

/7 5 0 0
17002

W=(0 3 0 0
4 0 1 0

Applying the modified Wirshall's algorithm, we obtain the following matriccs Q0. Q1, Q,, Q3 and Q4 Q. To the
right of cach matrix Q,, we show the matrix of paths which correspond to the lengths in the matrix Q.

CHAP. 81	 GRAPHS AND THEIR APPLICATIONS - 	 285

/7 5 00 00

Qo- 00 3 00 00

I 00

5 00Qj
7 12 00 2

(® 1
00 3	 00

4
	

J

/7 ® 7\

(4
712	 2

91 11/
10 3 00 5

/ 7 5 00

3 	 '

12 00 2\
30051

4 () I 6/

/RR RS	 -
ISR -	 -1-	 'l's	 -
\uR	 UT

/RR RS	 -
ISR	 SRS -
(-.	 TS	 -\ UR URS UT

/RR RS -
tSR	 SRS -
(TSR TS	 -
\UR URS UT

/RR RS -
tSR	 SRS -
ITSR TS	 -
\ UR UTS UT

SU

su)

RSU
SU
TSU
URS

RSu
Su
TSU
UTSU.

	

/7 5 8 7\ 	 (RR	 RS	 RSUT i If

	

1,..'kJj-.. 3 2, 1	 SR	 SURS SUT	 SU

	

1 ® 3 6 5 J	 TSUR TS	 TSUT Tsu

	

41 6/	 uR	 UTS UT	 UTSU
We indicate how the circled entries are obtained:

Q 1 {4, 2J = MIN(Q014, 2), Q014, IJ + Q.11, 21) = MIN(-, 4 + 5) = 9
122 [1,3] = MIN(Q 1 (1, 31, Q11, 21 + Q.12,31) MIN(00, 5 + 00) 00

Q3f4, 21 = MIN(Q 2 [4, 21, Q 2 14, 31 + Q 2 (3, 21) = MIN(9, 3 + 1) = 4
Q4 13, 11 MIN(Q3[3, 1 1, Q 3 13,41 + Q3 14. I)) = MIN(Io. s + 4) = 9

The formal statement of the algorithm follows.

Algorithm 8.2: (Shortest-Path Algorithm) A weighted graph G with M nodes is maintained in
memory by its weight matrix W. This algorithm finds a matrix 0 such that 0(1, JJ
is the length of a shortest path from node V 1 to node V,. INFINITY is a very
large number, and MIN is the minimum value function.

1. Repeat for I, J	 1, 2, . .. , M: [Initializes Q.]jf W[I, ii 0, then: Set QfI, ii : ' INFINITY;
Else: Set 0(1, JJ := w[I, JJ.

[End of loop.]
2. Repeat Steps 3 and 4 for K= 1,2.....M: [updates Qi
3. Repeat Step 4 for l=1,2.....M:
4. Repeat fori=1,2.....M:

Set Q(I,JJ:= MIN(Q[1, 3], 0(1, K) + Q[K, J]).
[End of loop.]

(End of Step 3 loop.)
[End of Step 2 loop..]

5. Exit.	 ---

Obscrvc the similarity between Algorithm 8.1 and Algorithm 8.2.

Fig. 8-8

S

286	 GRAPHS AND THEIR APPLICATIONS 	 (CHAP. 8

Algorithm 8.2 can also be used for a graph G without weights by simply assigning the weight
w(e) = 1 to each edge e in G

8.5 LINKED REPRESENTATION OF A GK,.H

Let G be a directed graph with m nodes. The sequential representation of C in memory—i.e., the
representation of C by its adjacency matrix A—has a number of major drawbacks. First of all, it may
be difficult to insert and deleiè nodes in G. This is because the size of A may need to be changed and
the nodes may need to be reordered, so there may be many, many changes ip the matrix A.

Furthermore, if the number of cdges , is 0(m) or 0(m 1092 m), then the matrix A will be sparse (will
contain many zeros); hence a great deal of space will be wasted. Accordingly, C is usually represented
in memory by a linked represenlalion, also called an adjacency structure, which is described in this

section.
Consider the graph G in Fig. 8-7(a). The table in Fig. 8-7(b) shows each node in G followed by its

adjacency list, which is its list of adjacent nodes, also called its successors or neighbors. Figure 8-8
shows a schematic diagram of a linked representation of G in memory. specifically, the linked
representation will contain two lists (or tiles), a node list NODE and an edge list EDGE, as follows.

(a) Graph G.

Node	 Adjacency List

A	 B,C.D
B	 C
C
D	 C.E
E	 C

(b) Adjaccncy lists of G.

Fig. 8-7

NODE list	 EDGE list

NODE NEXT ADJ

START

AVAILNLIk;
6

7

8

9

10

CHAP. 81	 GRAPHS AND THEIR APPLICATIONS

(a) Node lt.ti. Each element in the list NODE will correspond to a node in G, and it will be a
record of the form:

NODE
J	

NEXT	
j	

ADJ	:..	
.....

Here NODE will be the name or key value of the node, NEXT will be a pointer to the next
node in the list NODE and ADJ will be a pointer to the first clement in the adjacency list of
the node, which is maintained in the list EDGE. The shaded area indicates that there may be
other information in the record, such as the indcgrcc INDEG of the node, the outdcgrec
OLJTDEG of the node, the STATUS of the node during the execution of an algorithm, and
so on. (Alternatively, one may assume that NODEis an array of records containing fields
such as NAME, INDEG, OUTDEG, STATUS.....) The nodes themselves, as pictured i"
Fig. 8-7, will he organized as a linked list and hence will have a pointer variable START for
the beginning of the list and a pointer variable AVAILN for the list of available space.
Sometimes, depending on the application, the nodes may be organized as a sorted array or a
binary search tree instead of a linked list.

(b)
Edge list. Each clement in the list EDGE will correspond to an edge of G and will be a recordof the form:

DEST I LINK

The field DEST will point to the location in the list NODE of the destination or terminal
node of the edge. The field LINK will link together the edges with the same initial node, that
is, the nodes in the same adjacency list. The shaded area indicates that there may be other
information in the record corresponding to the edge, such as a ficld.EDGE containing the
labeled data of the edge when G is a labeled graph, a field WEIGHT containing the weight of
the edge when G is weighted graph, and soon. We also need a pointer variable AVAILE for
the list of available space in the list EDGE.

Figure 8-9 shows how the graph G in Fig. 8-7(a) may appear in memory. The choice of 10 locations
for the list NODE and 12 locations for the list EDGE is arbitrary.

DEST LINK	 AVAILE

2 (C).	 7.	 2

-	 5

7 (13)	 10

9 (D)	 0

8

2 (C)

6 (E)	 0

9

2 (C)

2 (C)	 0

12	 0

288	 GRAPHS AND THEIR APPLICATIONS 	 (CHAP. 8

The linked representation of a graph G that we have been discussing may be denoted by

GRAPH(NODE, NEXT, ADJ, START, AVAILN, DEST, LINK, AVAILE)

The representation may also include an array WEIGHT when G is weighted or may include an array

EDGE when G is a labeled graph.

EXAMPLE 8.5
Suppose Friendly Airways has nine daily flights as follows:

103 Atlanta to Houston	 203 Boston to Denver 	 305 Chicago to Miami

106 Houston to Atlanta	 204 Denver to Boston	 308 Miami to Boston

201 Boston to Chicago	 301 Denver to Reno	 402 Rena 10 Chicago

Boston
Chicago

Rena

Denver

Houston ,'Mlanta

Fig. 8.10

EDGE list

NUMBER ORIG DEST LINK

I
	

103	 2	 4	 0

2
	

106	 4	 2	 0

3
	

201	 12	 3	 4

4
	

203	 12	 ii	 0

5
	

204	 II	 12	 6

(I
	 301	 ii	 10	 0

7
	

305	 3	 7	 0

8
	

308	 7	 12	 0

9
	

402	 10	 3	 0

ii

II
	 12

12
	 (1

AVAILE 10

NODE list

CITY	 NEXT ADJ

I
	

0

2
	

Atlanta	 12

3
	

Chicago	 II	 7

4
	

Houston	 7	 2

5
	

6

6
	

8

7
	

Miami	 JO	 8

8
	 9

9

10
	

Reno	 0	 9

11
	 I)cnvcr	 4	 5

12
	

Boston	 3	 3

START 2, AVAILN 5

Fig. 8-li

CHAP. 81	 GRAPHS AND THEIR APPLICATIONS	 289

Clearly, the data may be stored efficiently in a file where each record contains three fields:

Flight Number,	 City of Origin,	 City of Destination

However, such a representation does not easily answer the Following natural questions:

(a) Is there a. direct flight front 	 X to city Y?
(b) Can one fly, with possible stops, from city X to city Y?
(c) What is the most direct route, i.e., the route with the smallest number of stops, from city X to city Y?

To make the answers to these questions more readily available, it may be very useful for the data to be organized
also as a graph G with the cities as nodes and with the flights as edges. Figure 8-10 is a picture of the graph G.

Figure 8-1I shows how the graph G may appear in memory using the linked representation. We note that G is
a labeled graph, not a weighted graph, since the flight number is simply for identification. Even though the data
are organized as a graph, one still would require some type of algorithm to answer qucstions (b) and (c). Such
algorithms are discussed later in the chapter.

8.6 OPERATIONS ON GRAPHS

Suppose a graph G is maintained, in memory by the linked representation

GRAPH(NODE, NEXT, ADJ, START, AVAILN, DEST, LINK, AVAILE)

as discussed in the preceding section. This section discusses the operations of searching, inserting and
deleting nodes and edges in the graph G. The operation of traversing is treated in the next Section.

The operations in this section use certain procedures from Chap. 5, on linked lists. For
completeness, we restate these procedures below, but in a slightly different manner than in Chap. 5.
Naturally, if a circular linked list or a binary search tree is used instead of a linked list, then the
analogous procedures must be used.

Procedure 8.3 (originally Algorithm 5.2) finds the location LOC of an ITEM in a linked list.
Procedure 8.4 (originally Procedure 5.9 and Algorithm 5.10) deletes a given ITEM from a linked

list. Here we use a logical variable FLAG to tell whether or not ITEM originally appears in the linked
list.

Searching In a Graph
Suppose we Want to find the location LOC of a node N in a graph C. This can be accomplished by

using Procedure 8.3, as follows:

Call FIND(NODE, NEXT, START, N, LOC)

That is, this Call statement searches the list NODE for the node N.
On the other hand, suppose we want to find the location LOC of an edge (A, B) in the graph G.

First we must find the location LOCA of A and the location LOCB of B in the list NODE. Then we
must find in the list of successors of A, which has the list pointer ADJELOCAL the location LOC of
LOCB. This is implemented by Procedure 8.5, which also checks to see whether A and B are nodes in
C. Observe that LOC gives the location of LOCB in the list EDGE.

Inserting In a Graph
Suppose a node N is to be inserted in the graph G. Note that N will be assigned to

NODE[AVAILNJ, the first available node. Moreover, since N will be an isolated node, one must also
set ADJIAVAILNI := NULL. Procedure 8.6 accothplihes this task using a logical variable FLAG to
indicate overflow.

Clearly, Procedure 8.6 must be modified if the list NODE is maintained as a sorted list or a binary
search tree.

290	 GRAPHS AND THEIR APPLICATIONS 	 (CHAP. 8

Procedure 8.3: FIND(INFO, LINK START, ITEM, LOC) (Algorithm 5.2, -
Finds the location LOC of the first node containing ITEM, or sets
LOC := NULL.

I. Set PTR:= START.
2. Repeat while PTR ' NULL:

If ITEM = INFO[PTR], then: Set LOC:= PTR, and Return.
Else: Set PTR : = LINK[PTR].

[End of loop.]
3. Set LOC:= NULL, and Rcturn

Procedure 8.4: 1)ELETE(INFO, LINK, START, AVAIL, ITEM, FLAG) (Algorithm 5.101
Deletes the first node in the list containing ITEM, or sets FLAG.— FALSE
when ITEM does not appear in the list.

1. (List empty?] If START= NULL, then: Set FL.G := FALSE, and Return.
2. (ITEM in first node?) If INFO[STARTJ = ITEM, then:

Set PTR := START, START := LINK[START],
LINK[PTRJ:= AVAIL, AVAIL:= PTR,
FLAG:= TRUE, and Return.

[End of If structure.]
3. Set PTR := LINK(STARTJ and SAVE := START. [lnitiplizes pointers.]
4. Repeat Steps 5 and 6 while PTR 96 NULL:
5. If INFO[PTR] = ITEM, then:

Set LINK[SAVEJ : = LINK[PTR), LINK[PTR] : =AVAIL,
AVAIL:= PTR, FLAG := TRUE, and Return.

[End of If structure.]
6. Set SAVE: = PTR and PTR : = LINK[VrRJ. [Updates pointers]

[End of Step 4 loop.]
7. Set FLAG := FALSE, and Return.

Procedure 8.5: FINDEDGE(NODE, NEXT, ADJ, START, DEST, LINK, A,B, LOC)
This procedure finds the locatio LOC of an edge (A, I)) in the graph G, or sets
LOC:= NULL.

I. Call FIND(NODE, NEXT, START, A, LOCA).
2: CALL FIND(NODE, NEXT, START, B, LOCh).
3. If LOCA = NULL or LOCI3 = NULL, then: Set LOC := NULL.

Else: Call FIND(DET, LINK, ADJ(LOCA). LOCB, LOC).
4. Return.

Procedure 8.6: INSNODE(NODE, NEXT, ADJ, START, AVAILN, N, FLAG)
This procedure inserts the node N in th graph G.

I. [OVERFLOW?] If AVAILN = NULL, then: Set FLAG =FALSE, and
Return.

2. Set ADJ[AVAILNJ : =NULL.
3. [Removes node from AVAILN list.]

Set NEW := AVAILN and AVAILN := NEXT[AVAILNJ.
4. [Inserts node N in the NODE list.]

Set NODE [NEW] := N, NEXT[NEW] := START and START:= NEW.
5. Set FLAG:= TRUE, and Return.	 -

CHAP 81	 GRAI'US AND rlfEJR APPLICATIONS 	 292

Suppose an edge (A. B) is to he inserted in the graph G. (The procedure will assume that both A
and B arc already nodes in the graph G.) The procedure first finds the location L..00A of A and the
location LOCH of B in the node list. Then (A. B) is inserted as an edge in G by inserting LOCH in thc
list of successors of A, which has the list pointer AF)JILOCAJ. Again, a logical variable H AG is usedto indicate overflow. The procedure follows.

Procedure 8.7: INSEDGF(NODE NEXT, ADJ,
FLAG)
This proccduit' unscits the edge (A

START, DEST, LINK, AVAILE, A, B,

B) in the graph G.
1.
2.
3.

4.

5.

6.

Call FINI)(NODE, NEXT, START. A, LOCA).
Call FIND(NODE, NEXT, START, 13, LOCH).
IOVFRFL.Ow?J If AVAILE = NULL, then: Set FLAG : FAI.SE, and
Return.
[Rcmove node fjoin AVAI LE list.] Set NEW := AVAIl F and
AVAILE LINKIAVAII.EJ.
(Insert L(CIi in list of Successors of A.
Set DEST I NEW I LOCH, LINKINEWI : Al)J I L(X'A l and
ADJ I LOCA I NEW.
Set FLAG := TRUE, and Return.

The procedure must be modified by using Procedure 8.6 if A or 13 is not a node in the graph G.

Deleting from a Graph

Suppose an edge (A, B) is to be deleted from the graph G. (Our procedure will assume that A and
B arc both nodes in the graph G.) Again, we must first find the location LOCA-of A and the location
LOCH of II in the node list. Then we simply delete LOCH from the list of successors of A, which has
the list pointer ADJ[L.00Aj. A logical variable FLAG is used to indicate that there is no such edge in
the graph G. The procedure follows.

Procedure 8.8: [)ELEI)GF(NQI)E, NEXT, ADJ, START, DEST, LINK, AVAILE, A. U,
FLAG)
This procedure deletes the edge (A, B) from the gra ph G.

I. Call FIND(NODE, NEXT, START, A, LOCA). [Locates node A.J
2. Call FIND(NODE, NEXT, START, B. LOCB). [Locates node B.J
3. Call DELETE(DEST, LINK, ADJELOCA], AVAILE, LOCH, FLAG).

[Uses Procedure
4. Return.

SUPpOSC a node N is to he deleted from the graph G. This operation is more complicated than the
search and insertion operations and the deletion of an edge, because we must also delete all the edges
that contain N. Note these edges come in iwo kinds; those that begin at N and those that end at N.
Accordingly, our procedure will consist mainly of the following four steps:

(1) Find the location LOC of the node N in G.
(2) Delete all edges ending at N; that is, delete LOC from the list of successors of eath node M in

G. (This step requires traversing the miade list of G.)

292	 GRAPHS AND THEIR APPLICATIONS 	 (CHAP. 8

(3) Delete all the edges beginning at N. This is accomplished by finding the location BEG of the
first successor and the location END of the last successor of N, and then adding the successor
list of N to the lice AVAILE list.

(4) Delete N itself from the list NODE.

The procedure follows.

Procedure 8.9: DELNODE(NOI)E, NEXT, ADJ, START, AVAILN, DEST. LINK,
AVAILE, N, FLAG)
This procedure deletes the node N from the graph G.

Call FIND(NODE, NEXT, START, N, LOC). [Locates node N.)
I LOC = NULL, then: Set FLAG := FALSE, and Return.
)Dcletc edges ending at N.]
(a) Set PTR:= START.
(b) Repeat while PTR 0 NULL:

(i) Call DELETE(DEST, LINK, ADJ(PTRI. AVAILL, LOC.
FLAG).

(ii) Set PTR NEXT[PTRJ.
lEnd of loop. I

(Successor list cnity'!j if ADJILOCI =• NULL, then: Go to Step 7.
[Find the first and last suc.csor of N.J
(a) Set BEG = AD.J(LO('. F.1-413 := ADJ[LOCJ and

PTR := LIK1END1.
(b) Repeat while I'TR ' NULL:

Set EN!)	 I'TR and l'TR:= LINKLI'FK1.
[End of loop.)

(Add successor list of N to AVAILE list.]
Set LINKLEND] := AVAILE and AVAILE BEG.
(Delete N using Procedure 8.4.1
Call DELETE(NODE, NEXT, START, AVAILN, N, FLAG).
Rcturn.

2.
3.

4
5

6.

7.

8.

EXAMPLE 8.6
Consider the (undirected) graph Gin Fig. 8-12(a), whose adjacency lists appear in Fit 8 . 12(b). Observe tIiit

G has 14 directed edges, since there arc 7 undirected edges.

(a)

Fig. 8I2

Adjacency Lists

A: L3.C,D
B: A,D,E
C: A,!)
1): A,B,C.L
E: 13,1)

(b)

Suppose G is maintained in niemoly as in Fig. 8 . 13(a). Furthermore, suppose node 13 is deleted from G by
ii Procedure M	 We (phialiul the following steps:

CHAP. 81	 GRAPHS AND THEIR APPLICATIONS 	 •293

NODE NEXT ADJ	 NODE NEXT ADJ

I	 1

2
	

2

3	 3

4	 4

5
	

5

6-	 6

7	 7

8	 8

START -I I
	

START= I
AVAILN = 6	 AVAILN = 2

DEST LINK

2

2
	

3	 3

3
	

4	 0

4
	

® .5

5 _ 6

6
	

0

7
	

1	 8

8
	

4	 0

9
	

1	 10

10
	

II

II
	

3	 12

12
	

5	 0

13
	

14

14
	

4	 0

15
	

16

16
	

0

AVAILE 16
(a) I3cCorc deletion.

DEST LINK

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

AVAILE 4
(b) After dcictiiig B.

Fig. 8-13

294	 GRAPHS AND THEIR APPLICATIONS 	 [CHAP. 8

Step 1. finds LOC = 2, the location of B in the node list.
Step 3. Deletes LOC - 2 from the edge list, that is, from each list of successors.
Step 5. Finds BEG 4 and END 6, the first and last successors of B.
Step 6. Deletes the list of successors from the edge list.
Step 7. Deletes node B from the node list.
Step 8. Returns.

The deleted elements are circled in Fig. 8-13(a). Figure 8-13(b) shows G in memory after node B (and its edges)
are deleted.

8.7 TRAVERSING A GRAPH
Many graph algorithms require one to systematically examine the nodes and edges of a graph G.

There are two standard ways that this is done. One way is called a breadth-first search, and the other is
called a dcpth-first search. The breadth-first search will use a queue as an auxiliary structure to hold
nodes for future processing, and analogously, the depth-first search will use a stack.

During the execution of our algorithms, each node N of G will be in one of three states, called the
status of N, as follows:

STATUS = 1: (Ready state.) The initial State of the node N.
STATUS = 2: (Waiting state.) The node N is on the queue or stack, waiting to be processed,

STATUS = 3: (Processed state.) The node N has been processed.

We now discuss the two searches separately.

Breadth-First Search
The general idea behind a breadth-first search beginning at a starting node A is as follows. First we

examine the starting node A. Then we examine all the neighbors of A. Then we examine all the
neighbors of the neighbors of A. And so on. Naturally, we need to keep track of the neighbors of a
node, and we need to guarantee that no node is processed more than once. This is accomplished by
using a queue to hold nodes that are waiting to be processed, and by using a field STATUS which tells
us the current status of any node. The algorithm follows.

Algorithm A: This algorithm executes a breadth first search on a graph 0 beginning at a starting
node A.

1. Initialize all nodes to the ready state (STATUS 1).
.. Put the starting node A in QUEUE and change its status to the waiting state

(STATUS = 2).
3. Repeat Steps 4 and 5 until QUEUE is empty:
4. Remove the front node N of QUEUE. Process N and change the status of N

to the processed state (STATUS = 3).
5. Add to the rear of QUEUE all the neighbors of N that arc in the steady state

(STATUS = 1), and change their status to the waiting state (STATUS = 2).
[End of Step 3 loop.]

6. Exit.

The above algorithm will process only those nodes which are reachable from the starting node A.
Suppose one wants to examine all the nodes in the graph G. Then the algorithm must be modified so
that it begins again with another node (which we will call 13) that is still in the ready state. This node B
can be obtained by traversing the list of nodes.

CHAP. 81	 GRAPHS AND THEIR APPLICATIONS
295

EXAMPLE 8.7
Consider the graph G in Fig. 8-14(a). (The adjacency lists of the nodes appear in Fig. 8-14(b).) Suppose Grepresents the daily flights between Cities of some airline, and suppose we want to fly from city A to city J with theminimum number of stops. In other words, we want the minimum path P from A to J (where each edge haslength 1).

A

rAdsts

B
13

J

(a)

	

	
(b)

Fig. 8-14

The minimum path P can be found by using a breadth-first search beginning at city A and ending when J is
encountered. During the execution of the search, we will also keep track of the origin of each edge by using an
array ORIG together with the array QUEUE. The steps of our search follow.

(a) Initially, add A to QUEUE and add NULL to ORIG as follows:
FRONT =i	 QUEUE A
REAR =1	 ORIG: Ø

(b) Remove the front clement A from QUEUE by setting FRONT: FRONT + I, and add to QUEUEthe neighbors of A as follows:

FRONT=2	 QUEUE: A, F, C, B
REAR =4	 ORIG: 0, AA, A

Note that the origin A of each of the three edges is added to ORIG
(c) Remove the front element F from QUEUE by setting FRONT: FRONT + 1, and add to QUEUE theneighbors of F as follows:

FRONT =3	 QUEUE: A, F, C. B, D
REAR 5	 ORb: 0, A, A, A,!

(d) Remove the front clement C from QUEUE, and add to QUEUE the neighbors of C (which arc in theready state) as follows:

FRONT =4	 QUEUE: A, F. C, B, D
REAR =5	 ORb: 0, A. A. A. F

Note that the neighbor F of C is not added to QUEUE, since F is not in the ready State (because F hasalready been added to QUEUE).

296	 GRAPHS AND THEIR APPLICATIONS 	 (CHAP. 8

(e)
Remove the front clement I) from QUEUE, and add to QUEUE the ncighbors of B (the ones in the
ready state) as follows:

	

FRONT = 5	 QUEUE: A. F, C. B, D, G

	

REAR6	 ORIG: O, A. A. A, F. B

Note that only 0 is added to QUEUE, since the other ncighbor. C is not in the ready state.

(f) Remove the front cicmcflt D front 	 and add to QUEUE (he neighbors oft) (the ones in tile

ready state) as follows:

	

FRONT = (QUEUE: A F. C, B. 0, 0

	REAR6	 ORIG: 0, A, A, A. F. B

(g) Remove the front elciiicnt 0 From QUEUE and add to QUEUE the neighbors of 0 (the ones in the

ready state) as follows:

	

FRONT =7	 QUEUE: A. F, C. B. D, 0, E

	

REAR = 7	 ORIG: 0, A. A. A. F, B, 0

(Ir)
Remove the Front element E from QUEUE and add u QUEUE the ncighbors of E (the ones in the

ready sjtc) as follows:
FRONT 8	 QUEUE: A. F. C. B, I), 0, Ii, J

REAR '=8	 ORIG: 0, A. A, A, F, II. G. Ii

We stop as soon as J is added to QUEUE, since 3 is our final destination We now backtrack Irons 3, using the

array ORIG to Find the path I'. Thus

is the required path P.

Depth-First Search
The general idea behind a depth-first SCarh beginning at a starting node A is as follows. First we

examine the starting node A. Then we examine each node N along a path P which begins at A; that is,

we process a neighbor of A. then a neighbor of a neighbor of A. and so on. After coming to a "dead

end," that is, to the end of the path 11, we backtrack on P until we can continue along another path I".

And so o. (This algorith m is similar to the murder traversal of a binary tree, and the algorithm is alson
similar to the way one might travel through a mazc.) l'he algorithm is very similar to the breadth-first
search except now we use a stack instead of the queue. Again, a field STATUS is used to tell us the

current status of a node. The algorithm follows.
Algorithm B: This algorithm executes a depth-first search on a graph G beginning at

it starting node

A.
Initialize all nodes to the ready state (STATUS = I).

2. Push the starting node A onto STACK and change its status to the waiting state

(STATUS = 2).
3. Repeat Steps 4 and 5 until smc:(is empty.

4.
Pop the top node N of STACK. Process N and change its status to the

processed state '(STATUS= 3).

5.
Push onto STACK all the ncighhors of N that are still in the ready state
(STATUS = I), and change their status to the wailing state (STATUS = 2).

End of Step 3 loop.)
6. Exit.

Again, the above algorithm will process only those nodes which are reachable front starting
node A. Suppose one wants to examine all the nodes in G. Then the algorithm must be modified so
that it begins again with another node which we will call B—that is still in the ready state. This node B

can be obtained by traversing the list of nodes.

CHAP. 81	 GRAPHS AND THEIR APPLICATIONS 	 297

EXAMPLE 8.8

Consider the graph Gin Fig. 8-14(a). Suppose we want to find and print all the nodes reachable from the node
J (including J itself). One way to do this is.to use a depth-first search of G starting at the node J. The steps of our
search follow.

(a) Initially, push J Onto the stack as follows:

STACK: J

(b) Pop and print the top element J, and then push onto the stack all the neighbors of .1 (those that are in
the ready state) as follows:

	

Print 3	 STACK: D, K

(c) Pop and print the top element K, and then push onto the stack all the neighbors of K (those that are in
the ready state) as follows:

Print K	 STACK: D, E. G
(1) Pop and print the top element G, and then push onto the stack all the neighbors of G (those in the ready

state) as follows:

Print G	 STACK: D, E, C

Note that only C is pushed onto the stack, since the other neighbor, E, is not in the ready state (because
E has already been pushed onto the stack).

(e) Pop and print the top element C, and then push Onto the stack all the neighbors of C (those in the ready
state) as follows:

Print C	 STACK: D, E, F

(f) Pop and print the top element F, and then push onto the stack all the neighbors of F (those in the ready
state) as follows:

	

Print F	 STACK: D, E

Note that the only neighbor D of F is not pushed onto the stack, since D is not in the ready state
(because D has already been pushed onto the stack).

(g) Pop and print the top element E, and push onto the stack all the neighbors of E (those in the ready
state) as follows

	

Print E	 STACK: D

(Note that none of the three neighbors of E is in the ready state.)
(h) Pop and print the top element D, and push onto the stack all the neighbors of D (those in the ready

state) as follows:

Print D	 STACK:

The stack is now empty, so the depth-first search of G starting at J is now complete. Accordingly, the nodes which
were printed,

J. K, G, C, F, E, D

are precisely the nodes which are reachable from J.

8.8 POSETS; TOPOLOGICAL SORTING

Suppose S is a graph such that each node v of S represents a task and each edge (u, v) means that
the completion of the task u is a prerequisite for starting the task v. Suppose such a graph S contains a
cycle, such as

P = (u, V. W, 14)

This means that we cannot begin v until completing u, we cannot begin w until completing v and we

298	 GRAPHS AND THEIR APPLICATIONS	 (CHAP. 8

cannot begin u until completing w. Thus we cannot complete any of the tasks in the cycle. Accordingly,
such a graph S, representing tasks and a prerequisite relation, cannot have cycles.

Suppose S is a graph without cycles. Consider the relation < on S defined as follows:

u < v	 if there is a path from u to v

This relation has the following three properties:

(1) For each element u in S, we have u 4: u. (Irreflexivity.)

(2) if u < v, then v 4: u. (Asymmetry.)

(3) If u < u and v < w, then u < w. (Transitivity.)

Such a relation <on S is called a partial ordering of S, and S with such an ordering is called a partially

ordered set, or pose!. Thus a graph S without cycles may be regarded as a partially ordered set.
On the other hand, suppose S is a partially ordered set with the partial ordering denoted by <.

Then S may be viewed as a graph whose nodes are the elements of S and whose edges are defined as
follows:

(u, u)	 is an edge ut S if	 u < v

Furthermore, one can show that a partially ordered set 5, regarded as a graph, has no cycles.

EXAMPLE 0.9
Let S be the graph in Fig. 8-15. Observe that S has no cycles. Thus S may be regarded as a partially ordered

set. Note that U <C, since there is a path From U to C. Similarly, B <F and B <C. On the other hand, B 4: A,
since there is no path From B to A. Also, A 4: B.

ci

H

Adjacency Lists

A: C
B: D,F

C	 C:
D: C
E: C
F:
G: A, F

(a)

	

	 (b)

Fig. 8.15

Topological Sorting
Let S be a directed graph without cycles (or a partially ordered Set). A topological sort Tof S is a

linear ordering of the nodes of S which preserves the original partial ordering of S. That is: If u < v ins

(i.e., if there is a path from u to v in S), then u comes before u in the linear ordering T. Figure 8-16 shows
two different topological sorts of the graph S in Fig. 8-15. We have included the edges in Fig. 8-16 to
indicate that they agree with the direction of the linear ordering.

The following is the main theoretical result in this section.

Proposition 8.4: Let S be a finite directed graph without cycles or a finite partially ordered set. Then
there exists a topological sort T of the set S.

CHAP. 81	 GRAPHS AND THEIR APPLICATIONS	 299

(a)

(b)

Fig. 8-16 Two topological sorts.

Note that the proposition states only that a topological sort exists. We now give an algorithm which will
find such a topological sort.

The main idea behind our algorithm to find a topological srt T of a graph S without cycles is that
any node N with zero indcgree, i.e., without any predecessors, may be chosen as the first clement in
the sort T. Accordingly, our algorithm will repeat the following two steps until the graph S is empty:

(1) Finding a node N with zero indegrce
(2) Deleting N and its edges from the graph S

The order in which the nodes are deleted from the graph S will use an auxiliary array QUEUE which
Will temporarily hold all the nodes with zero indegree. The algorithm also uses afield INDEG such that
INDEG(N) will contain the current indegrce of the node N. The algorithm follows.

Algorithm C: This algorithm finds a topological sort T of a graph S without cycles.

1. Find the indegree INDEG(N) of each node N of S. (This can be done by traversing
each adjacency list as in Prob. 8.15.)

2. Put in a queue all the nodes with zero indegree.
3. Repeat Steps 4 and 5 until the queue is empty.

	

4.	 Remove the front node N of the queue (by setting FRONT:= FRONT+ 1).

	

5.	 Repeat the following for each neighbor M of the node N:
(a) Set INDEG(M) : INDEG(M) - 1.

(This deletes the edge from N to M.]
(b) If INDEG(M) = 0, then: Add M to the rear of the queue.

[End of loop.]
[End of Step 3 loop.]

6. Exit.

0 dcicid.

/
,

I)
(c)

0

B

300	 GRAPHS AND THEIR APPLICATIONS 	 (CHAP. S

EXAMPLE 8.10
Consider the graph Sin Fig. 8-15(a). We apply our Algorithm C to find a topological sort Tot the graph S. The

steps of the algorithm follow.

Find the indegrec INDEG(N) of each node N of the graph S. This yields:
INDEG(A) = I	 INDEG(S) 0	 INDEG(C) 3	 INDEG(D) = 1
INDEG(E)=0	 INDEG(F)=2	 JNDEG(G)=O

[This can be done as in Problem 8.1.5.1
2.	 Initially add to the queue each node with zero indcgrce as follows:

FRONT= I,	 REAR3	 QUEUE: 13, E, 0
3a. Remove the front clement B from the queue by setting FRONT:= FRONT+ 1, as follows:

FRONT =2,	 REAR =3	 QUEUE: B, E, .G
3,,. Decrease by I the indcgrcc of each neighbor of B, as follows:

INDEG(D)= I - 1=0	 and	 INDEG(F)=2— 1 = I
(The adjacency list of B in Fig. 8-15(b) is used to find the neighbors D and F of the node 13.1 The
neighbor D is added to the rear of the queue, since its indcgrec7 is now zero:

FRONT =2,	 REAR =4	 QUEUE: B, E, 0, D
[The graph Snow looks like Fig. 8-17(a), where the node Band the edges from B have been deleted, as
indicated by the dotted lines.]

4a. Remove the front element E from the queue by setting FRONT: FRONT+ 1, as follows:
FRONT =3,	 REAR =4	 QUEUE: B, E, G. D

A

0

F

D
(a) B deleted.

A
,

/
C; 1<

(b) E deleted.

A
/

,

,
/

/
/,

/
,

\ ,

(d) Ddeleted.

Fig. 8-17

CHAP. 81	 GRAPHS ,AND THEIR APPLICATIONS	 391

4h. Decrease by I the indcgrcc of each neighbor of E, as follows:
INDEG(C)=3—l=2

[Since the indcgrcc is nonzero, QUEUE is not changed. The graphs now looks like Fig. 8-17(b), where
the node E and its edge have been deleted.)

5a. Remove the front element G from the queue by setting FRONT:= FRONT + 1, as follows:
FRONT =4, REAR =4	 QUEUE: B, E, G, D

5b. Decrease by I the indegrec of each neighbor of C, as follows:
INDEG(A) = I - I = 0	 and	 INDEG(F) I - I = ()

Both A and F arc added to the rear of the queue, as follows:
FRONT =4,	 REAR =6	 QUEUE: B, E, C, D, A, F

[The graph S now looks like Fig. 8-17(c), where G and its two edges have been deleted.]
6a. Remove the front clement D from the queue by setting FRONT:= FRONT 4- 1, as follows:FRONT =5,	 REAR =6	 QUEUE: B, E. G. D, A. F
(.b. Decrease by I the indcgrec of each neighbor of D. as follows:

JNDEG(C)=2— I I
[Since the indegree is nonzero. QUEUE is not changed. The graph Snow looks like Fig. 8-17(d), where
L) and its edge have been deleted.]

7a. Remove the front element A from the queue by setting FRONT:= FRONT+ I, as follows:
FRONT =6.	 REAR =.6	 QUEUE: B, E. G, D. A, F

7h. Decrease by I the indcgrcc ofcach neighbor of A, as follows:
INDEG(C) I - I = 0

Add C to the rear of the queue, since its indegrcc is now zero:
FRONT =6,	 REAR =7	 QUEUE: B, B, G. D. A. F,'C

•	 8a. Remove the front element F from the queue by setting FRONT: FRONT + I as follows:
FRONT =7,	 REAR =7	 QUEUE: B, E, G, D, A, F, C

8b. The node F has no neighbors, so no change takes place.
9a. Remove the front clement C from the queue by setting FRONT: FRONT + I. as follows:

FRONT =8,	 REAR =7	 QUEUE: B, E. 0, D, A. F, C
9/• The node C has no neighbors, so no other changes take place.

The queue now has no front clement, so the algorithm is completed. The elements in the array QUEUE give the
required topological sort T of S as follows:

T:	 B,E,G,D,A.F,C
The algorithm could have stopped in Step 7b, where REAR is equal to the number of nodes in the graph S.

302	 GRAPHS AND THEIR APPLICATIONS	 [CHAP. 8

Solved Problems

GRAPH TERMINOLOG'V
Consider the (undirected) graph G in Fig. 8-18. (a) Describe G formally in terms of its set V of

nodes and its set E of edges. (b) Find the degree of each node.

a.c

Fig. 8-18

(a) There are 5 nodes, a, b, c, d and e; hence V (a, b, c, d, e). There are 7 pairs [x, y] of nodes such
that node x is connected with node y; hence

E = ([a, bJ, [a. cj, [a, d). [b, c], [b, el, [c, d], [C, el)

(b) The degree of a node is equal to the number of edges to which it belongs; for example. deg(a) = 3,
since a belongs to three edges, [a, bl, [a, C) and [a, d). Similarly, deg(b) 3, dcg(c) = 4,
deg(d) 2 and deg(e) 2.

Consider the multigraphs in Fig. 8-19. Which of them re (a) connected; (b) loop-free (i.e.,

without loops); (c) graphs?

Ac mop

(1) 1	
(2)
	 (3)
	 (4)

Fig. 8-19

(a). Only multigraphs I and 3 are connected.
(b) Only multigraph 4 has a loop (i.e.. an edge with the same endpoints).
(c) Only multigraphs 1 and 2 are graphs. Multigraph 3 has multiple edges, and multigraph 4 has multiple

edges and a loop.

8.3 Consider the connected graph G in Fig. 8-20. (a) Find all simple paths from node A to node F.

(1) Find the distance between A and F. (c) Find the diameter of G. (The diameter of G is the
maximum distance existing between any two of its nodes.)

At	 B

D 4	 'IF

Fig. 8-20

8.1

8.2

Fig. 8-21

X

Z W

CHAP. 81	 GRAPHS AND THEIR APPLICATIONS	 303

(a) A simple path from A to Fis a path such that no node and hence no edge is repeated. There are seven
such simple paths: 	 -

(A, B, C, F)	 (A, B, E. F)	 (A, D, E. F)	 (A, D, E, C. F)
(A, B, C. E. F)	 (A, B,,E, C, F)	 (A, D. E, B. C, F)

(b) The distance from A toFequals 3, since there is a simple path, (A, B, C. F), from A to Fol length 3
and there is no shorter path from A to F.

(c) The distance between A and F equals 3, and the distance between any two nodes does not exceed 3;
hence the diameter of the graph G equals 3.

8.4 consider the (directed) graph Gin Fig. 8-21. (a) Find all the simple paths from X to Z. (b) Find
all the simple paths from Y to Z. (c) Find indeg(Y) and outdeg(Y). (d) Ave there any sources or
sinks?	 -

(a) There are three simple path$ fro, X to Z: (X, Z). (X, W, Z) and (X, Y, W, Z).
(b) There is only one simple palh from Y to Z: (Y, W, Z).
(c) Since two edges enter Y (i.e., end at Y), we have indeg(Y) 2. Since only one edge leaves Y (i.e.,

begins at Y), outdeg(Y)" 1.
(d) X is a source, since no edge enters X (i.'e., indeg(X) 0) but some edges leave ,X (i.e.,

outdeg(X) > 0). There are no sinks, since each node has a nonzero outdegçce (i.e., each node is the
initial point of some edge).

8.5	 Draw all (nonsimilar) trees with exactly 6 nodes. (A graph G is similar to a graph G' if thet is a
one-to-one correspondence between the set V of nodes of G and the set V' of nodes of C' su
that (u, v) is an edge in G if and only if the corresponding pair (u', v') of nodes is an edge in
G'.)

There are six such trees, which are exhibited in Fig. 8.22. The first tree has diameter 5, the next two
diameter 4, the next two diameter 3 and the last one diameter 2. Any other tree with 6 nodes will be similar
to one of these trees.

1 •
	

1•
	 p

Fig. 8-22

304	 GRAPHS AND THEIR APPLICATIONS	 [CHAP. 8

8.6 Find all spanning trees of the graph G shown in Fig. 8-23(a). (A tree T is called a spanning free
of a connected graph G if T has the same nodes as G and all the edges of Tare contained among
the edges of G.)

WPAF LNYV
(a)	 (b)

Fig. 8-23

There arc eight such spanning trees, as shown in Fig. 8-23(b). Since G has 4 nodes, each spanning tree
T must have 4 - I - 3 edges. Thus each spanning tree can be obtained by deleting 2 of the 5 edges of G.
This can be done in 10 ways, except that two of them lead to disconnected graphs. Hence the eight
spanning trees shown are all the spanning trees of G.

SEQUENTIAL REPRESENTATION OF GRAPHS
8.7	 Consider the graph G in Fig. 8-21. Suppose the nodes arc stored in memory in an array DATA

as follows:
DATA: .X,Y,Z,W

(a) Find the adjacency matrix A of the graph G.
(b) Find the path matrix P of G using powers of the adjacency matrix A.
(c) Is G strongly connected?
(a) The nodes are normally ordered according to the way they appear in memory; that is, we assume

v, = X. v, Y, u = Z and u = W. The adjcency matrix A of G follows:

/ 0 1	 1 i\
A=(0 0 0 1

01OI
() 0 i 0/

Here a,1 = I if there is a node from v, to v,; otherwise, a,1 = 0.
(b) Since G has 4 nodes, compute A 2, A 7, A' and 13, = A + A 2 + A 2 + A':

I	 I 2\
A2	 0 0 1

- 0 0 1 I
0 1 0 iJ

/0 2 2 3\
1()	 0	 I	 1,1,,

A' = I	I
1 01	 121

o	 i 1/

1 2 2
A3— 010

(0	 \

-	 0111
0 0 1 1

)\,
/() 5 6	 -lu 123B.	 0 3 3 5
0 2 3 5

CHAP. 81	 GRAPHS AND THEIR APPLICATIONS 	 305

The path matrix P is now obtained by setting p, 1 = I wherever there is a nonzero entry in the matrix
B. Thus

/0 1 1 1
P—I

0 1 1 1
0 1	 1 1

\ o i i i

(c) The path matrix shows that there is no path from u2 to v In fact, there is no path from any node to
u. Thus G is not strongly connected.

8.8	 Consider the graph G in Fig. 8-21 and its adjacency matrix A obtained in Prob. 8.7. Find the
path matrix P of G using Warshall's algorithm rather than the powers of A.

Compute the matrices Pn . P, P,. P., and P where initially P = A and

PkI ' 1] = P ._d i. j] v (Pk.,[i. 1] A P 1 [k. j])

That is,
PAL E . j) = 1	 if	 11 1	 or both	 P,,. ,i, kJ = 1	 and	 P. -, [k, jJ=l

Then:

/0
P. =f o

(0
\o

(0

1)/0 1 1 1\
1	 (000	 \

0 1 0 1)
0	 \o 0 1 0/

(
0
0

0 1 1 1
p.,	 o i	 1

1

II
00
1 0
01
II
00
10
11

Observe that P,, = P, = P2 = A. The changes in P1 occur for the following reasons:
P3(4,2)1	 because	 P2(4,3')l	 and	 P,(3,2)1
P.,(4,4)=1	 because	 P,(4,3)1	 and	 P,(3,4)1

The changes in P4 occur similarly. The last matrix, P,, is the required path matrix P of the graph G.

8.9
	 Consider the (undirected) weighted graph G in Fig. 8-24. Suppose the nodes are stored in

memory in an array DATA as follows: 	 .
DATA:	 A, B, C, X, Y

Find the weight matrix W= (wi,) of the graph G.

1^	 8	 2

Fig. 8-24

306	 GRAPHS AND THEIR APPLICATIONS	 [CHAP. 8

Assuming v1 = A, v2 = B, u3 C, u = X and v = Y, we arrive at the following weight matrix
WofG:

/0 6 0 4 1
160508

0 5 0 0 2
4 0003

\i 8 2 3 0

Here w denotes the weight of the edge from v to v,. Since G is undirected, W is a symmetric matrix, that
is, w

8.10 Suppose G is a graph (undirected) which is cycle-free, that is, without cycles. Let P (p1,) be
the path matrix of G.

(a) When can an edge k, v,] be added to G so that G is still cycic.frcc?
(b) How does the path matrix P change when an edge (t, v,] is added to G?
(a) The edge I u, vj will form a cycle when it is added to G if and only if there already is a path between

v, and u,. Hence the edge may be added to G when p, = 0.
(h) First set p,, I, since the edge is a path from v, to v,. Also, Set p,, = 1 if p, I and p1, = 1. In other

words, if there arc both a path P 1 from v, to u and a path P2 from v, to u,, then P1 , (v,, tJ, P2 will
form a path from u, to v,.

8.11 A minimum spanning tree Tof a weighted graph G is a spanning tree of G (sec Prob. 8.6) which
has the minimum weight among alL.thc spanning trees of G.

(a) Describe an algorithm to find a minimum spanning tree T of a weighted graph G.
(b) Find a minimum spanning tree T of the graph in Fig. 8-24.

(a) Algorithm P8.11: This algorithm finds a minimum spanning tree T of a weighted graph G.

I. Order all the edges of 0 according to increasing weights.
2. Initialize T to be a graph consisting of the same nodes as G and no edges.
3. Repeat the following M - 1 times, where M is the number of nodes in G:

Add to T an edge E of 0 with minimum weight such that E does not
form a cycle in T.

[End of loop.J
4. Exit.

Step 3 may he implemented using the results of Prob. 8.10. Problem 8.10(a) tells us which edge e may
he added to Tso that no cycle is formed—i.e., so that T is still cycle-free—and Prob. 8.10(b) tells us
how to keep track 01 the path matrix P of T as each edge e is added to T.

(/) Apply Algorithm P8.11 to obtain the minimum spanning tree Tin Fig. 8-25. Although (A, XJ has less
weight than 113, C), we cannot add (A. X to T, since it would form a cycle with IA, Y) and (Y, Xj.

Fig. 8.25

CHAP. 81	 GRAPHS AND THEIR APPLICATIONS	 307

8.12 Suppose a weighted graph G is maintained in memory by a node array DATA and a weight
matrix W as follows:

DATA:	 X. Y. S, T

/0 0 30

w=(5 0 17
0 04

'0 6 8 0

Draw a picture of G.

The picture appears in Fig. 8-26. The nodes are labeled by the entries in DATA. Also, if w,,. .' 0. then
there is an edge from v, to u, with weight w,,. (We assume u X, u Y, v S and T, the order in
which the nodes appear in the array DATA.)

X -21>i}
Fig. 8-26

LINKED REPRESENTATION OF GRAPHS
8.13 A graph G is stored in memory as follows:

NODE A BE	 I) C

NEXT	 7 4 0 6 8 -0 2

ADJ	 1 2	 5	 79J
I	 2345678

START -= 1, AVAII.N 5

DEST	 2 1 6 1 4 	 1 4	 6
LINK 1 tO	 3	 6	 0	 0	 1)	 0	 4 1 0	 0

1	 2	 3	 4	 5	 6	 7	 8	 9	 10

AVAILE = 8

Draw the graph G.

First find the neighbors of each NODE[K] by traversing its adjacency list, which has the pointer
ADJIKI. This yields:

A: 2(13) and 6(D)	 C: 4(E)	 E: 6(D)
13: 6(D), 4(E) and 7(C)	 D: 4(E)

Then draw the diagram as in Fig. 8-27.

0

Fig. 8-27

A

308	 GRAPHS AND THEIR APPLICATIONS 	 ((HAP. 8

8.14 Find the changes in the linked representation of the graph G in Prob. 8.13 if the following
operations occur: (a) Node F is added to G. (b) Edge (B, E) is deleted from G. (c) Edge (A, F)
is added to G. Draw the resultant graph G.

(a) The node list is not sorted, so F is inserted at the beginning of the list, using the first available free
node as follows:

START =5

	

NODE A B	 I F t) IC
	NEXT	 7 4 0 o 1 0 2 3

AVA!LN = 8
ADJ	 1 2	 Jo[i _9

1	 2	 3	 4	 5	 0	 7	 8

Observe that the edge list does not change,

(b) Delete LOC = 4 of node E from the adjacency list of node. B as follows:

DEST	 2 6	 6 74	 4 6
AVAILE3

LINK	 10 1 6 S 0 0 0 0 4 0 0

	

l	 2	 3	 4	 5	 6	 7	 8	 9	 10

Observe that the node list does not change.

(c) The location LOC S of the node F is inserted at the beginning of the adjacency list of the node A,
using the first available free edge. The changes are as follows:

ADJ[1] = 3	 DE ST	 2	 n	 6 7 4	 4 6 j

AVAILE = 8	 LINK	 10 0 1 () 0 0 0 4 0 oj

	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10

B
A —	p 	 p

FW	 DU

Fig. 8-28

CHAP. 81	 GRAPHS AND THEIR APPLICATIONS	 309

The only changb in the node list is the AD[I] 3. (Observe that the shading indicates the
changes in the lists.) The updated graph G appears in Fig. 8-28.

8.15 Suppose a graph G is maintained in memory in the form

GRAPH(NODE, NEXT, ADJ, START, DEST, LINK)

Write a procedure which finds the indcgrcc INDEG and the outdcgrce OLJTE)EG of each node
of G.

First we traverse, the node list, using the pointer PFR in order to initialize the arrays INDEG and
OUTDEG to zero. Then we traverse the node list, using the pointer PTRA, and for each value of PTRA,
we traverse the list of neighbors of NODEII'TRA], using the pointer PTRI3. Each tumc an edge is

cncountcrcd. PTRA gives the location of its initial node and DESTIPTRBI gives the location of its
terminal node. Accordingly, each edge updates the arrays INDEG and OUT[)EG as follows:

0UTDEGIVrRAJ = OUTOEG[PTRAJ + I

and

INDEG(DESTIPTRB][:= INDEGEDESTI P -rRl3fl + I

The formal procedure follows.

Procedure P8.15: I)EGREE(NODE, NEXT, AD.I, START, DEST. LINK, IN1)EG, OUTDEG)
ibis procedure finds thc itidegice INDEG and outdcguee OUTI)EG of each
node in the graTh 6 in memory.	 -

1. [Initialize arrays INDEG and OUTDEG.j
(a) Set I1R = S .ART.
(b) Repeat while PUR 0 NULL: [Traverses node list.I

(i) Set INDEGIPTRJ =0 and OUTDEG[J'FR] :
(ii) Set PTR:= NEXT[PTRI.

[End of loop.]
2. Set PTRA := START.
3. Repeat Steps 4 to 6. while PTRA 0 NULL: [Travcrscs node list.]
4.	 Set PTRI3:=ADJ[l'TRA[.
5.	 Repeat while PTRB 76 NULL: [Traverses list of neighbors.]

(a) Set OUTDFGIPTRAI := OUTDEGII'TRAJ + I and
INDEG[DEST(PTRI3IJ : = JNDEG[DEST(PTRBJI + 1.

(b) Set PTRB:=LINKjPTRI3j.
[End of inner, loop using pointer PTRB.J

6.	 Set VTRA:=NEXT[PTRAI.
[End of Step 3 outer loop using the pointer I'TRA.j

7. Return.	 .

8.16 Suppose C is a finite undirected graph. Then C consists of a finite number of disjoint connected
components. Describe an algorithm which finds the number NCOMP of connected components
of C. Furthermore, the algorithm should assign a c.nponcnt number COMP(N) to every node
N in the same connected component of C such that the component numbers range from I to
N CO MV.

Thc general idea of t he algorithm is to use a breadth-first or depth-first search to find all nodes N
reachable from a starting node A and to assign them the same component number. The algorithm
follows.

C'

Fig. 8-29

310	 GRAPHS AND THEIR APPLICATIONS	 (CHAP. 8

Algorithm £8.16; Finds the connected components of an undirected graph G.
1. Initially set COMP(N): 0 for every node N in 0, and initially set L =0.
2. Find a node A such that COMP(A) 0. If no such node A exists, then:

Set NCOMI':= L, and Exit.
Else:

Set L:= L+ I and set COMP(A):= L.
3. Find all nodes N in G which arc reachable From A (using a orcadlh-first search or a

dcpth. iirst search) and set COMP(N) L for each such node N.
4. Return to Step 2.

MISCELLANEOUS PROBLEMS
	8.17 Suppose G is an undirected graph 	 with in nodes u 1 , v2 ,	 v_ and it edges e 1 ,e	 e,,. The

	

incidence matrix of G is the in X 	 it 	 M = (rn,,) where

	

1 1	 if node v belongs to edge c,

	

()	 otherwise

Find the incidence matrix M of the graph G in Fig. 8-29.

Since G has 4 nodes and 5 edges, M is a 4 x 5 matrix. Set in,1 I if u, bclongs to e,. This yields the
following matrix M:

/1 0 0 0 j\
M— ii 1 0

- 0 0 1 I 0 J

(0 I 0 1

8.18 Suppose u and v arc distinct nodes in an undirected graph G. Prove:

(a) If there is a path P from u to u, then there is a simpid path Q from u to v.

(b) If there are two distinct paths P1 and P2 from u to u, then G contains a cycle.

P.

U

Fig. 8-30

CHAP. 81	 GRAPHS AND THEIR APPLICATIONS	 311

(a) Suppose	 ,v,,) where u=u., and uu. Ifv,=v., then

P''(v0,...,v,, u, i,..., u,,)
is a path from u to u which is shorter than t Repeating this process, we finally obtai a path Q from ato v whose nodes are distinct. Thus Q is a simple path from u to u.

(b) Let w be a node in P1 and P such that the next nodes in P and Pz are distinct. Let w' be the firstnode following w which lies on both P 1 and P2 . (Sec Fig. 8.30.) Then the subpaths of P 1 and Pbetween w and w' have no nodes in common except w and w'; hence these two subpaths form a
cycle.

8.19 Prove Proposition 8.2: Let A be the adjacency matrix of a graph G. Then a (i, j), the ij entry in
the matrix A 5, gives the number of paths of length K from t to v,.

The proof is by induction on K. Note first that a path of length 1 from u to v, is precisely an edge
(u,, u,). By definition of the adjacency matrix A. a1(i, J) = a, gives the number of edges from u to
Hence the proposition is true for K I.

Supose K>I. (Assume G has m nodes.) Since A 5 = AKIA,

a50, I)	 a,(i, s)a,(s, j)

By induction, a 5 _,(i, s) gives the number of paths of length K — I from u to v,, and a 1 (s, j) gives the
number of paths of length I from v to a1 . Thus a,(i, s)a1(s, j) gives the number of paths of length Kfrom u to a1 where v, is the next-to-last node. Thus all the paths of length K from i. ti, u, can be obtained bysumming up the a ,(i, s)a1(s, j) for all s. That is, a 5 (i, j) is the number of paths of length K from a, toa. Thus the proposition is proved.

8.20 Suppose G is a finite undirected graph without cycles. Prove each of the following:

(a) If G has at least one edge, then G has a node v with degree 1.
(b) If C is connected—so that C is a tree—and if C has in nodes, then C has in - 1 edges.
(c) If C has m nodes and in - 1 edges, then C is a tree.

(a) Let P = (an , ui ,..., a.,) be a simple path of maximum length. Suppose dcg(v 0) 1, and assume
fu, v1] is an edge and u a,. If u = a, for i> 1, then C= (a,, a0a) is cycle. If u 0 a,, then
P' (a, a0 ,a,) is a simple path with length greater than P. Each case leads to a contradiction.
Hence deg(v0) 1.

(b) The proof is by induction on rn Suppose in = I. Then G consists of an isotztcd node and C has
in - 1 0 edges. Hence the result is true form = 1. Suppose rn> 1. Then - has a node a such that
deg(v) = 1. Delete a and its only edge v, u'J from the graph C to obtain the graph G'. Then C is still
connected and G is a tree with m - 1 nodes. By induction, C' has in - 2 edges. Hence C has in -
edges. Thus the result is true.

(c) Let T,, T, •. , T, denote the connected components of C. Then each T, is a tree. Hence each T,
has one more node than edges. Hence C bass more nodes than edges. But C has only one more node
than edges. Hence s I and G is a tree.

312	 GRAPHS AND THEIR APPLICATIONS	 (CHAP. 8

U

Supplementary Problems

GRAPH TERMINOLOGY

8.21	 Consider the undirected graph G it Fig. 8-31. Find (a) all simple paths From node A to node H. (b) the

diameter of G and (c) the degree of each node.

ErJL
Fig. 8-31

8.22	 Which of the multigraphs in Fig. 8-32 are (a) connected, (b) loop-frcc (i.e.. without loops) and (c) graphs?

(i)	 (ii)	 (iii)

Fig. 8-32

	

8.2.3	 Consider the directed graph Gin Fig. 8 .33. (a) Find the indegrec and outdcgrcc of each node. (h) Find the

number of simple paths from v 10 v. (c) Are there any sources or sinks?

Fig. 8-33

	

.24	 Draw all (nonsiniilar) trccs with S or fewer nodes. (There
are eight such trees.)

	

8.25	 Find the number of spanning trees of the graph G in Fig. 8-34.

Fig. 8-34

S

X

T

z

7

Fig. 8-36

x

T

Y

2

S

CHAP. 81	 GRAPHS AND THEIR APPLICATIONS	
313

SEQUENTIAL REPRESENTATION OF GRAPHS; WEIGHTED GRAPHS

8.26 Consider the graph G in Fig. 8-35. Suppose the nodes are stored in memory in an array DATA as follows:

DATA:	 X, Y, Z, S. T
(a) Find the adjacency matrix A of G. (b) Find the path matrix P or G. (c) Is G strongly connected?

Y

Fig. 8-35

8.27 Consider the weighted graph G in Fig. 8-36. Suppose the nodes are stored in an array DATA as follows:

DATA:	 X, Y, S, 1'
(a) Find the weight matrix W of G. (b) Find the matrix Q of shortest paths using WarshaU's Algorithm 8.2.

8.28	 Find a minimum spanning tree of the graph G in Fig. 8-37.

Lt-T
Fig. 8.37

314	 GRAPHS AND THEIR APPLICATIONS 	 [CHAP. 8

8.29 The following is the incidence matrix M of an undirected graph G:

(0 0 i () o i i
0 .1 0 1 0 0 1 ()

Al	 I	 (I	 1	 (1	 0	 ()	 (.)
I)	 0	 0 (1	 1	 0 ()	 I

	

I	 I	 0	 ()	 I	 I	 0	 ()

(Note that G has 5 nodes and 8 edges.) [)raw G and find its adjacency matrix A.

	8.30	 Ilie following is the adjacency matrix A of an undirected graph G:

IOU I I

	

A	 0 0 0 1 I
1	 101

(U I 0 I 0

1
()I	 I	 I	 (I

(Note that G has 5 nodes.) Draw G and find its incidence matrix M.

LINKED REPRESENTATION OF GRAPHS

	8.31	 Suppose .a graph G is stored in memory as follows:

NODE (A CE	 DI
- *

B
NEXT	 4 0 8 0 7
ADJ	 6	 1Jw	 2

	

I	 2	 3	 45	 6	 7	 8

START = (I, AVAILN = 5

DEST 8 8	 1 4.3 3	
6Tq0LINK 1517 181 0	 I)	 0	 0	 (1	 4

I	 2	 3	 4	 5	 6	 7	 8	 9	 It)

AVAILE3

Draw the graph G.

	

8.32	 Find the changes in the linked representation of the graph G in Prob. 8.31 if edge (C, E) i deleted and
edge (I). E) is inserted.

	

8.33	 Find the changes in the linked representation of the graph G in Paoli. 8.31 if it node F and the edges (E. F)

and (F. I)) arc inserted into -

	

8.34	 Find the changes in the linked reprcnta1ion of the graph G in Prob. 8.31 if the node E is deleted front G.
l'r ol items 8.35 to 8.38 rcfc r to a graph c; which is maintained in memory by a linked representation:

c;RAI'l I(NODL. NEXT, AM, START, AVAILN, DESI', LINK. AVAILL)

8.35	 v\ !U a 1 11,c kjo i c to supplement each of the following:

(a) I 'oat it e list of successors of a given node NI).
,) Print the lilt of predecessors of a given node N!).

J

CHAP. 81	 GRAPHS AND THEIR APPLICATIONS 	 315

8.36 Write a procedure which determines whether or not G is an undirected graph.

8.37 Write a procedure which finds the number M of nodes of G and then finds the M x M adjacency matrix A
of G. (The nodes are ordered according to their order in the node list of G.)

8.38 Write a procedure which determines whether there are any sources or sinks in G.

Problems 8.39 to 8.40 refer to a weighted graph G which is stored in memory using a linked representation as
follows:

GRAPH(NODE, NEXT, AE)J, START, AVAILN, WEIGHT, DEST, LINK, AVAILE)

8.39 Write a procedure which finds the shortest path from a given node NA to a given node NH.

8.40 Write a procedure which finds the longest simple path from a given node NA to a given node NH.

Programming Problems

8.41

	

	 Suppose a graph G is input by means of an integer M, representing the nodes 1.2.....M, and a list of N
ordered pairs of the integers, representing the edges of G. Write a procedure for each of the following:
(a) To find the M x M adjacency matrix A of the graph G.
(b) To use the adjacency matrix A and Warshall's algorithm to find the path matrix P of the graph G.

Test the above using the following data:

(i) M = 5; N	 8; (3, 4), (5, 3), (2, 4), (1, 5), (3, 2), (4, 2), (3, I). (5, I),
(ii) M = 6; N	 10; (1, 6), (2, 1), (2, 3), (3, 5), (4, 5), (4, 2), (2, 6), (5, 3), (4, 3), (6, 4)

8.42	 Suppose a weighted graph G is input by means of an integer M, representing the nodes 1, 2, . - , , M, and a
list of N ordered triplets (a,, b,, w,.) of integers such that the pair (a, b) is an edge of G and j ', is its
weight. Write a procedure for each of the following:

(a) To find the M x M weight matrix W of the graph G.
(b) To use the weight matrix W and Warshall's Algorithm 8.2 to find the matrix Q of shortest paths

between the nodes.

Test the above using the following data:

(I) M 4; N = 7; (1, 2, 5), (2. 4, 2), (3, 2, 3), (1, 1, 7) (4, 1, 4), (4, 3, I). (Compare with Example
8.4.)

(ii) M

	

	 5; N8; (3,5,3). (4, 1, 2), (5,2,2), (1,5.5), (1, 3, 1), (2, 4, 1). (3. 4. 4), (5,4,4).

8.43 Suppose an empty graph G is stored in memory using the linked representation

GRAP}-I(NODE, NEXT, ADJ, START, AVAILN, E)EST, LINK, AVAILE)

Assume NODE has space for 8 nodes and DEST has space -tol'2 edges. VM le a program which executesthe following operations on G
(a) Inputs nodes A. B, C and D
(b) Inputs edges (A, B), (A, C), (C, B), (D, A), (13. D) and (C, 0)
(c) Inputs nodes E and F

CITY
	 LL-'!T	 RIGHT	 AI)J

Atlanta	 0	 2	 12

2
	

Boston	 0	 0	 1

3
	

Houston	 0	 (1	 14

4
	

New York	 3	 8	 4

5
	

6

(,	 0

7
	

Washington	 0	 0	 10

8
	

Philadelphia	 0	 7	 6

9
	

Denver	 10	 4	 8

10
	

Chicago	 0	 2

srART=9, AVAILN=5

NUMBER PRICE ORIG DEST LINK

201	 80	 2	 10	 3

2
	

202	 80	 10	 2	 0

3
	

301	 50	 2	 4	 0

4
	

302	 50	 4	 2	 5

5
	

303	 .40	 4	 8	 7

6
	

304	 40	 8	 4	 9

7
	

305	 120	 4	 9	 0•

8
	

306	 120	 9	 4	 13

9
	

401	 40	 8	 7	 0

10
	

402	 40	 7	 8	 11

II
	

403	 80	 7	 I	 0

12
	

404	 80	 1	 7	 16

13
	

501	 80	 9	 3	 15

14
	

502	 80	 3	 9	 0

15
	

503	 140	 9	 I	 0

16
	

504	 140	 I	 9	 0

'7
	

18

18
	

19

19
	

20

20
	

0

NUM l, AVAILE = 17

Fig. 8-3S

316

4HAP. 8]
	

GRAPHS AND THEIR APPLICATIONS 	 317

(d) Inputs edges (13, E), (F. E), (D, F) and (F. B)
(e) Deletes edges (D, A) and (B, D)

(f) Deletes node A

Problems 8.44 to 8.48 icier to the data in Fig. 8-38, where the cities are stored as a binary search tree.

8.44 Write a procedure with input CITYA and CITYB which finds the flight number and cost of the flight from
city A to city B. if a flight exists. Test the procedure using (a) CITYA = Chicago, CITYB = Boston; (h)
CITYA = Washington. CITYB Denver; and (c) CITYA = New York. CITYB = Philadelphia.

8.45 Write a procedure with input CITYA and CITYI3 which finds the way to fly from city A to city B with a
minimum number of sops, and also finds its cost. Test the procedure using (a) CITYA = Boston,
CITYB Houston; (b) CITYA Denver, CFrYB = Washington: and (C) CITYA = New York, CITYB
Atlanta.

8.46 Write a procedure with input CITYA and CITYB which finds the c'capest way to fly fiont city A to city B
and also finds the cost. Test the procedure using the data in Prob. 8.45. (Compare the results.)

Write a procedure which deletes a record from 1he file given the flight number NUMB. Test the program
using (a) NUMB = 503 and NUMB = 504 and (b) NUMB 303 and NUMB = 304.

Write a procedure which inputs a record of the form

(NUMBNEW, PRICENEW, ORIGNEW, DESTNEW)

Test the procedure using the following data:

(a) NUMBNEW = 505. PRICENEW = 80. ORIGNEW = Chicago. DESTNEW = Dciivcr
NUMBNEW = 506, PRICENEW = 80, ORIGNEW = Dcnvcr, DESTNEW = Chicago

(b) NUMBNEW = 01, PRICENEW 70, ORIGNEW = AIlant., 1)FSTNEW= Miami

	

NUMI3NEW=o02, PRICENEW=70, ORIGNEW= Miami.	 l)ESTEW= Atlanta

(Note that a new city may have to be inserted into the binary search tree of cities.)

8.49 Translate the topological sort algorithm into a program which sorts a graph G. Assume G is input by its set
V of nodes and its set E of edges. Test the program using the nodes A, B, C. D. X. Y. Z, SandT and the
edges

(a) (A. Z), (S, Z), (X, D), (B. T), (C, i3, (Y, X), (Z. X), (S, C) and (Z, B)
(b) (A. Z), (D. Y). (A. X), (Y. B), (S. Y), (C, T), (X, S). (B. A). (C, S) and (X. T)
(c) (A, C). (B, Z), (Y, A). (Z, X), (0, Z), (A, S). (B, T). (Z, Y), (h Y) and (X, A)

8.50 Write a program which finds the number of connected components of an unordered graph G and also
assigns a component number to each of its nodes. Assume G is input by its set V of nodes and its set EoI
(undirected) edges. cst the program using the nodes A, II, C, 0, X, Y, Z, S and T and the edges:

(a) [A, X], [13. TJ. [Y, C], [S. Z], [D. TJ, [A, SJ, [Z, A]. [0, [3) and [X, S)
(b) [Z, C], (0, B), [A, X], [S. C), [D, 'F), Ix. 5], [Y. B). [T, B] and [S. ZJ

8.47

8.48

Chapter 9
Sorting and Searching

9.1 INTRODUCTION

Sorting and searching are fundamental operations in computer science. Sorting refers to the
operation of arranging data in some given order, such as increasing or decreasing, with numerical data,
or alphabetically, with character data. Searching refers to the operation of finding the location of a
given item in a collection of items.

There are many sorting and searching algorithms. Some of them, such as heapsort and binary
search, have already been discussed throughout the text. The particular algorithm one chooses
depends on the properties of the data and the operations one may perform on the data. Accordingly,
we will want to know the complexity of each algorithm; that is, we will want to know the running time
f(n) of each algorithm as a function of the number n of input items. Sometimes, we will also discuss the
space requirements of our algorithms.

Sorting and searching frequently apply to a file of records, so we recall some standard terminology.
Each record in a file F can contain many fields, but there may be one particular field whose values
uniquely determine the records in the file. Such a field K is called a primary key, and the values
k 1 , k 2 , . . . in such a field are called keys or key values. Sorting the file F usually refers to sorting F with
respect to a particular primary key, and searching in F refers to searching for the record with a given
key value.

This chapter will first investigate sorting algori!hms and then investigate searching algorithms.
Some texts treat searching before sorting.

9.2 SORTING

Let A he a list of n elements A 1 , A,,..., A,, in memory. Sorting A refers to the operation of
rearranging the contents of A so that they are increasing in order (numerically or lexicographically),
that is, so that

Since A has,, elements, there are n! ways that the contents can appear in A. These ways correspond
precisely to the n! permutations of 1, 2.... . n. Accordingly, each sorting algorithm must take care of
these n! possibilities.

EXAMPLE 9.1

Suppose an array DATA contains 8 elements as follows:

DATA:	 77, 33, 44, 11, 88, 22, 66, 55

After Sorting, DATA must appear in memory as follows:

DATA:	 II, 22, 33, 44, 55, 66, 77, 88

Since DATA consists of 8 elements, there are 8! = 40320 ways that the numbers II, 22...., 88 can appear in
DATA.

Complexity of Sorting Algorithms
The complexity of a sorting algorithm measures the running time as it 	 of the number n of

items to be sorted. We note that each sorting algorithm S will be made up of the following operations,
where A	 A ,,..., A,, contain the items to he sorted and B is an auxiliary location:

318

CHAP. 9 1 	 SORTING AND SEARCHING	 319

(a) Comparisons, which test whether A, < A, or test whether A, < B
(b) Interchanges, which switch the contents of A. and A, or of A 1 and B
(c) Assignments, which set B:= A 1 and then set A,	 B or A,:= A,

Normally, the complexity function measures only the number of comparisons, since the number of
other operations is at most a constant factor of the number of comparisons.

There are two main cases whose complexity we will consider; the worst case and thc average case.
In studying the average case, we make the probabilistic assumption that all then! permutations of the
given it items arc equally likely. (The reader is referred to Sec. 2.5 for a more detailed discussion of
complexity.)

Previously, we have studied the bubble sort (Sec. 4.6), quicksort (Sec. 6.5) and hcapsort (Sec.
7.10). The approximate number of comparisons and the order of cornpicxity of these algorithms arc
summarized in the following table:

Algorithm	 Worst Case	 Average Case

fl(n - I)	 11 -(n	 1)2Bubble Sort	 ___ 0(n2)	 - (n)2	 2	 -n(n + 3) =Quicksort	
2

0(112)	 1.4n log n = 0(n log n)
Hcapsort	 3n log it 0(n log n)	 3n log n = 0(n log ii)

Note first that the bubble sort is a very slow way of sorting; its main advintage is the simplicity of the
algorithm. Observe that the average-case complexity (n log n) of hca sort is the same as that of
quicksort, but its worst-case complexity (n log ti) seems quicker than quicksort (n'). However,
empirical evidence seems to indicate that quicksort is superior to hcaps.'rt except on rare occasions.

Lower Bounds

The reader may ask whether there is an algorithm which can sort it .ms in time of order less than
0(n log n). The answer is no. The reason is Indicated below.

Supposes is all which sorts n items a 1 , a 2 ,..., a,,. We assume there is a decision tree T
corresponding to the algorithm S such that 7' is an extended binary sc3rch tree where the external
nodes correspond to the n! ways that n items can appear in memory and where the internal nodes
correspond to the different comparisons that may take pL.tcc during the xecution of the algorithm S.
Then the number of comparisons in the worst case for tc algorithm S is equal to the length of the
longest path in the decision tree T or, in otcr words, the depth D of the tree, T. Moreover, the
average number of comparisons for the algor.i.hm S is equal to the average external path length E ofthe tree T.

Figure)-1 shows it 	 tree 7' for sor: rtg it 	 3 items. Observe that T has it! = 3! 6 external
nodes. The values of /) and E for the tree follow:

D = 3	 and	 E= (2+3+3+3+3+2)=2.667

Consequently, the corresponding algorithm S requires at most (worst case) D 3 comparisons and, on
the average, E = 2.667 comparisons to Sort the it 3 items.

Accordingly, studying the worst-case and average-case complexity of a sorting algorithm S is
reduced to studying the values of D and E in the corresponding decision tree 71 First, however, we
recall some facts about extended binary trees (Sec. 7.11). Suppose Tis an extended binary tree with N
external nodes, depth I) and external path length E(T). Any such tree cannot have more than 2'
external nodes, and so

21 ^ N	 or equivalently	 D log N

320	 SORTING AND SEARCHING 	 [CHAP. 9

Furthermore. T will have a minimum external path length E(L) among all such trees with N nodes

when T is a complete tree. In such a case,

E(L) = N log N + 0(N)^- N log N

The N log N comes from the fact that there are N paths with length log N or log N + 1, and the 0(N)

comes from the fact that there are at most N nodes on the deepest level. Dividing E(L) by the number

N of external paths gives the average external path length E. Thus, for any extended binary tree Twith

N external nodes,

E(L) N log N
= log N

Now suppose T is the decision tree corrcspondmg to a sorting algorithm S which sorts n items.

Then T has pi! external nodes. Substituting n! for N in the above formulas yields

D a log n! n log n	 and	 E ^- log n! n log n

The condition log n! n log n comes from Stirling's formula, that

1

el \

Thus n log n is a lower bound for both the worst case and the average case. In other words. O(n log n)

is the best possible for any sorting algorithm which sorts n items.

Fig. 9-I Decision tree T for sorting n = 3 items.

Sorting Files; Sorting Pointers

Suppose a file Fof records R 1 , R....., R is stored in memory. "Sorting F" refers to sorting F

with respect to some field K with corresponding values k, k 2 , . . . , k,,. That is, the records are

ordered so that

The licId K is called the sort key . (Recall that K is called a primar y key if its values uniquely determine

the records in F.) Sorting the file with respect to another key will order the records in another way.

CHAP. 91	 SORTING AND SEARCHING	 321

EXAMPLE 9.2
Suppose the personnel file of a company contains the following data on each of its employees:

Name	 Social Security Number	 Sex	 Monthly Salary
Sorting the file with respect to the Name key will yield a different order of the records than sorting the file with
respect to the Social Security Number key. The company may want to sort the file according to the Salary field
even though the field may not uniquely determine the employees. Sorting the file with respect to the Sex key will
likely be useless; it simply separates the employees into two subflles, one with the male employees and one with
the female employees.

Sorting a file F by reordering the records in memory may be very expensive when the records arc
very long. Moreover, the records may be in secondary memory, where it is even more time-consuming
to move records into different locations. Accordingly, one may prefer to form an auxiliary array
POINT containing pointers to the records in memory and then sort the array POINT with respect to a
field KEY rather than sorting the records themselves. That is, we sort POINT so that

KEY[POINT[I]J KEYIPOINTE21I s . . . --- KEYEPOINTINII

Note that choosing a different field KEY will yield a different order of the array POINT.

EXAMPLE 9.3
Figure 9-2(a) shows a personnel file of a company in memory. Figure 9-2(b) shows three arrays. POINT,

PTRNAME and PTRSSN. The array POINT contains the locations of the records in memory, PTRNAME shows
the pointers sorted according to the NAME field, that is,

NAME(PTRNAME[1]1< NAME(PTRNAMEI2J] < ... < NAME[PTRNAME(9)J

NAME	 SSN.	 SEX SALARY	 POINT PTRNAME VTRSSN
I	 I

2	 Davis	 192-38-7282	 Female	 22800	 2

3	 Kelly	 165-64-3351	 Male	 19000	 3

4	 Green	 175-56-2251	 Male	 27200	 4

5	 5

6	 Brown	 178-52-1065	 Female	 14 700	 6

-7	 Lewis	 181-58-9939	 Female	 16400	 7

8	 8

9	 Cohen	 17744-4557	 Male	 19000	 9

10	 Rubin	 135-46-6262	 Female	 15500
II

12	 Evans	 168-56-8113	 Male	 34200

13

14	 Harris	 208-56-1654	 Female22800

(a)	 (1,)
Fig. 9-2

322	 SORTING AND SEARCHING	 [CHAP, 9

and i'l F SSN shows the pointers sorted according to the SSN field, that is,

ssNlvrRssNl l lI <SSN(PTRSSN[2JJ <SSNIPTRSSN19I)
Given 0w name (EMP) of an employee, one can easily find the location of NAME in memory using the array
I'iP,NAME and the binary search algorithm. Similarly, given the social security number NUMB of an employee,
one call easily find the location of the employee's record in memory by using the array I'TRSSN and the binary
search algorithm. Observe, also, that it is not even necessary for the records to appear in successive memory
locations. Thus inserting and deleting records can easily be done.

9.3 INSERTION SORT

	

Suppose all 	 A with n elements All], Al21,..., AINI is in memory. The insertion sort
algorithm scans A from A l l] to AIN], inserting each element A[K] into its proper position in the
previously sorted subarray A[l], A l 21,..., A[K--I]. That is:

	

Pass I.	 All) by itself is trivially sorted.
Pass 2, Al21 is inserted either before or after A l l] so that: A[11, Al21 is sorted.
Pass 3. A[31 is inserted into its proper place in A[I], A[2], that is, before A[.1], between

A l l] and Al21, or after A l 2 1, so that: A E I], A[21, A131 is sorted.
Pass 4. A 1 4 1 is inserted inlo!ils proper place in Af lJ, A [2 1, A131 So that:

All]. Al21. A 1 31, A 1 4 1 is sorted.

Pass N. AIN] is inserted into its proper place in All), A[21.....AIN - I] so that:
A l l j, P 1 21..... A [N J is sorted.

ibis ,or('zig algorithm is frequently used when n is small. For example, this algorithm is very popular
with h i'Jgc PIaYCI'S when they are first sorting their cards.

'll.era remains only the problem of dccliiig how to insert A[KJ in its proper place in the sorted
subarray Al fl, Al21, Al K IJ. This can be accomplished by Comparing A(K] with A(K- 11,
cornj at iit A[K] with A I K-' 2 1 . cumpring Al KI with A[K-31, and so on, until first meeting an
t'lemct .'l J l such that A I J I A[KJ. Then each of the elements A[K- I], A[K-21..... A(J+ 1] is
moved f rw,tr&l one location, and A[K] is then inserted in (lie J + 1St position in the array.

'tue ahor,tli:n is simplified if tlicrc always is an element Af.IJ such that A[JJ :!^— A[KJ; otherwise we
[iust constantly check to see if we arc comparing AEKJ with All]. This condition can be accomplished
by iiltroiiiciiig a setititiel cletiicnt Aft)]	 -'v' (or a very small number).

,\101	 A111	 i\(2]	 AJ	 "]I

-	 33	 44	 II

-..	 44	 II
.-.	 33	 II

44	 77
-

II	 33	 44

-	 II	 -44. 77
It	 22	 33	 44
II	 22	 33	 44

A151	 AI6J	 A17)	 A181

8888	 22	 66	 55

88	 22	 66	 55

88	 22	 66	 55

88	 22	 66	 55

1 88)	 22	 66	 55

88	 22	 66	 55

^8615 55

66	 77	 88

Pass

K= I:

K = 2:

K 3:

K 4:

K = 5:

K

K 7:

K

Noted: I --	 II	 22	 33	 44	 55
	

66	 77	 88

Fig. 9-3 Ii use F tioui sort for 1 1 - 8 items.

CHAP. 91	 SORTING AND SEARCHING	 23

EXAMPLE 9.4
Suppose an array A contains 8 elements as follows:

77, 33, 44, II, 88, 22, 66, 55

Figure 9-3 illustrates the insertion sort algorithm. The circled element indicates the AIKJ in each pass of ihalgorithm. and the arrow indicates the proper place for inserting AIKI.

The formal statement of our insertion sort algorithm follows.
Algorithm 9.1: (Insertion Sort) INSERTION(A, N).

This algorithm sorts the array A with N elements.
I. Set A 1 0 1 : = -. [Initializes sentinel clement.
2. Repeat Steps 3 to 5 for K = 2,3,...., N:
3. Set TEMP:= A[K] and PTR:= K 1.
4. Repeat while TEMP < AfPTRJ:

(a) Set A[PTR + I]: = A[PTR]. (Moves elenictit forwagd.
(b) Set PTR:=. PTR— 1.

[End of loop.]
S.

	

	 Set A[PTR + 11: TEMP. [Inserts element in proper pl:icc. I[End of Step 2 loop.]
6. Return.

Observe that there is an inner loop which is essentially controlled by the variablc l'lR, and there is anOuter loop which uses K as an index.

Complexity of Insertion Sort
The numberf(n) of comparisons in the insertion sort algorithm can he easily COmpLIICd. First of alL

the Worst case occurs when the array A is in reverse order and the inner loop must use the maxiuIum
number K - I of comparisons. I-knee

Furthermore, one can show that, on the average, there will be approximately (K - i)/2 colliparisinsin the inner loop. Accordingly, for the average case,

I + +	 +
2	

=- I	 ,,(,, - 1)	 2f(n)=——...--_____ U(n)

Thus the insertion sort algorithm is a very slow algorithm when 'i is very large.
The above results are summarized in the following table:

Algorithm	 Worst Caw I Average Case

0(1, 2)	 =[Insertion Sort J n(n 2 - 1)	 0(n1)
4

Remark: Time may be saved by performing a binary search, rather than a linear sc;rcli, to titid
the location in which to insert A[K] in the subarray All], A[21,. . . , A[K -- IJ. This requires, on the
average, log K comparisons rather than (K - 1)/2 comparisons. However, one slid r,ccds to move
(K - 1)/2 elements forward. Thus the order of complexity is not changed. Furthermore, insertion sort
is usually used only when U in small, and in such a case, the linear search is about as efficient as thebinary search.

324	 SORTING AND SEARCHING	 tCHAP 9

9.4 SELECTION SORT

'Supose an array A with n elements A[11, A l2J.... . AI N] is in memory. The selection sort
algorithm for sorting A works as follows. First find the smallest clement in the list and put it in the first
position. Then find the second smallest clement in the list and put it in the second position. And so on.
More precisely:

Pass 1.	 Find the location LOC of the smallest in the list of N elements
All], A[2].... ,A(NJ, and then interchange AILOC) and All]. Then:

ALl) is sorted.
Pass 2.	 Find the location LOC of the smallest in the sublist of N - I elements

Al21, A[3],.. . , AENI, and then interchange AILOCI and A(2]. Then:
All), A[21 is sorted, since Ati) :5 Al2J.

Pass 3.	 Find the location LOC of the smallest in the sublist of N - 2 elements
A(3), A 14), .. . ,A(N), and then interchange ALLOCI and A131. Then:

All], A[2).... . A13] is sorted, since A[21 :5 AJ.

Pass N - I. Find the location LOC of the smaller of the elements AIN - 11. A(N), and then
interchange AILOC) and AEN - I). Then:

All], A[21,,. . . , A(N] is sorted, since AEN IJ^-- AN).

Thus A is sorted after N - 1 passes.

EXAMPLE 9.5

Suppose an array A contains 8 elements as follows:

77, 33, 44, II. 88, 22, 66, 55

Applying the selection sort algorithm to A yields the data in Fig. 94. Observe that LOC gives the location of the
smallest among A[K1. A[K + lJ.... . A(N) during Pass K. The circled elements indicate the elements which are
to be interchanged.

There remains only the problem of finding, during the Kth pass, the loction LOC of the smallest
among the elements A[K], ALK + 1).....A[NJ. This may be accomplished by using a variable MIN to
hold the current smallest value while scanning the subarray from AIK) to AIN). Specifically, first set
MIN : = A[K] and LOC: K, and then traverse the list, comparing MIN with each other clement AIJI
is follows:	 -

Pass

K= I, LOC=4

K=2, LOC = 6

K=3, LOC=6

K 4, LOC = 6

K 5. LOC =8

K 6. LOC 7

K =7. LOC =7

A(3J	 A14)

44	 77

®77

-33	 44

33	 44

33	 44

A151	 A161	 A171	 A(8)

88	 22	 66	 55

88	 66	 55

88	 66	 55

88	 66	 55

77	 66

55	 ()	 ()	 88

55	 66	 88

A(I)
	

Al21

11 T
Sorted:	 11
	

22	 33	 44
	

55	 66	 77	 88

Fig. 9-4 Selection sort for n 8 items.

CHAP. 91	 SORTING AND SEARCHING 	 325

(a) If MIN A[JJ, then simply move to the next clement.
(b) U MIN >A[J], then update MIN and LOC by setting MIN := A[i] and LOC:=J.

After comparing MIN with the last clement A[N], MIN will contain the smallest among the elements
A(KJ, A[K + 1)... , A[N] and LOC will contain its location.

The above process will be stated separately as a 1 procedure.

Procedure 9.2: MIN(A, K, N, LOC)
An array A is in memory. This procedure finds the location LOC of the smallest
clement among A[K], A[K+ 1],. . . , A[N].

1. Set MIN	 A[KJ and LOC:= K. [initializes pointers.]
2. Repeat for J K + I, K+2,.. . N:

If MIN >A[J), then: Set MIN:=A[iJ and LOC:=A[JJ and LOC:=J.
[End of loop.]

3. Return.

The selection sort algorithm can now be easily stated:

Algorithm 9.3: (Selection Sort) SELECTION(A, N)
This algorithm sorts the array A with N elements.

1. Repeat Steps 2 and 3 for K=I, 2.....N—I:
2. Call MIN(A, K, N, LOC).
3. [Interchange AIKJ and A[LOCJ.J

Set TEMP := AIKI, A[KJ:=A[LOC) and A(LOCJ:= TEMP.
SEnd of Step 1 loop.).

4. Exit.

Complexity of the Selection Sort Algorithm

First note that the numbcrf(n) of comparisons in the selection sort algorithm is independent of the
original order of the elements. Observe that MIN(A. K, N, L fOC) requires n - K comparisons. That
is, there arc n - I comparisons during Pass I to find the smallest clement, there arc is - 2 comparisons
during Pass 2 to find the second smallest clement, and so on. Accordingly,

n(n - I) =
0(112)2

The above result is summarized in the following table:

Algorithm	 Worst Case	 Average Case

Selection Sort = 0(n).	 n(n— I)
0(11

2)

Remark: The number of interchanges and assignments does depend on the original order of the
elements in the array A, but the sum of these operations does not exceed a Factor of ,,2

9.5 MERGING

Suppose A is a sorted list with r elements and B is a sorted list with s elements. The operation that
combines the elements of A and B into a single sorted list C with ,s r + s elements is called ?nerging.
One simple way to merge is to place the elements of B after the elements of A and then use some

(a)

(c)

cfE

70

1y
(b)

55

344.

((I)

326	 SORTING AND SEARCHING	 (CHAP. 9

sorting algorithm on the entire list. This method does not take advantage of the fact that A and B are
individually sorted. A much more efficient algorithm is Algorithm 9.4 in this section. First, however,
we indicate the general idea of tic algorithm by means of two examples.

Suppose one is given two so. ted decks of cards. The decks are merged as in Fig. 9-5. That is, at
each step, the two front cards ai compared and the smaller one is placed in the combined deck. When
one of the decks is empty, a't of the remaining cards in the other deck are put at the end of the
combined deck. Similarly, SUPOSC we have two lines of students sorted by increasing heights, and
suppose we want to merge ll!'m into a single sorted line. The new line is formed by choosing, at each
step, the shorter of the two students who are at the head of their respective lines. When one of the lines
has no more students, the remaining students line up at the end of the combined line.

Fig. 9-5

The above discussion will now be translated into a formal algorithm which merges a sorted
r-cicmcnt array A and a sorted s-element array B into a sorted array C, with ii = r + s elements. First
of all ,wc must always keep track of the locations of the smallest clement of A and the smallest element
of B which have not yet been placed in C. Let NA and NB denote these locations, respcctively. Also,
let PTR denote the location in C to be filled. Thus, initially, WC Set NA : 1, NB 1 and PTR := 1. At
each step of the algorithm, we compare

AINAJ	 and	 B(NBJ

and assign the smaller element to C(P1'RI. Then we increment PTR by setting PTR:= PTR + 1, and
we either increment NA by setting NA: = NA -I- 1 or increment NB by setting NB:= NB + 1, according
to whether the new clement in C has come from Aor from B. Furthermore, if NA> r, then the
remaining elements of B arc assigned to C; or if NB >s, then the remaining elements of A are assigned
to C.

The formal statement of the algorithm follows.

CHAP 91	 SORTING AND SEARCHING 327

Algorithm 9.4: MERGING(A, R, B, S, C)
Let A and 13 be sorted arrays with R and S elements, respectively. This algorithm
merges A and B into an array C with N = R + S elements.
1. [Initialize.J Set NA := 1, NB := 1 and PTR := 1.
2. [Compare.] Repeat while NA='.R and NB:r.S:

If A[NA) < B[NBJ, then:
(a) [Assign element from A to C.) Set C[PTRI:=A[NAJ.

Else:
(b) [Update pointers.) Set PTR := PTR ± I and NA NA + 1.

(a) [Assign element from B to C.) Set CLPTRJ := B(NBJ.
(b) [Update pointers.) Set PTR:=PTR+ 1 and NB:=NB+1.

(End of If structure.)
[End of loop.]

3. [Assign remaining elements to C.)
If NA> R, then:

Repeat for KO,1,2,...,S_NB.
Set C(PTR + KJ:= B[NB + KJ;

(End of loop.)
Else:

Repeat for K=O, 1,2,..., R — NA:
Set C[PTR+KJ:=AINA+KJ

(End of loop.)
(End of If structure.)

4. Exit.

Complexity of the Merging Algorithm
The input consists of the total number nr + s of elements in A and D. Each comparison assignsan element to the array C, which eventually has n e

lements. Accordingly, the number 1(n) ofcomparisons cannot exceed n:	
,9 /

f(n)n = 0(n)
In other words, the merging algorithm can be run in linear time.

Nonlegular Matrices

Suppose A, B and C are matrices, but not ncccssirily regular matrices. Assume A is sorted, with r
elements and lower bound LBA; B is sorted, with s elements and lower bound LBB; and C has lowerbound LBC. Then UBA = LBA + r - I and UBB = LI3B + s - 1 arc, respectively, the upper bounds
of A and B. Merging A and B now may he accomplished by modifying the above algorithm as follows.

Procedure 9.5: MERGE(A, R, LBA, S, LBB, C, LBC)
This procedure merges the sorted arrays A and B into the array C.
1. Set NA:=LBA NB:= LBB, PTR: = LBC, UBA:=LBA+R_ I,

UBB := LBB + S - 1.
2. Same as Algorithm 9.4 except R is replaced by UBA and S by UBI3.
3. Same as Algorithm 9.4 except R is replaced by UBA and S by UBB.
4. Return.

Observe that this procedure is called MERGE, whereas Algorithm 9.4 is called MERGING. 'I'lic
reason for stating this special case is that this procedure will be used in the next section, on merge-sort

328	 SORTING AND SEARCHING	 [CHAP. 9

Binary Search and Insertion Algorithm
Suppose the number r of elements in a sorted array A is much smaller than the number s of

elements in a sorted array B. One can merge A with B as follows. For each clement A(K) of A. use a
binary search on B to find the proper location to insert A[K] into B. Each such search requires at most
logs comparisons; hence this binary search and insertion algorithm to merge A and B requires at most
r log s comparisons. We emphasize that this algorithm is more efficient than the usual merging
Algorithm 9.4 only when r < <s. that is, when r is much less than s.

EXAMPLE 9.6
Suppose A has 5 elements and suppose B has 100 elements. Then merging A and B by Algorithm 9.4 uses

approximately 100 comparisons. On the other hand, only approximately log 100 7 comparisons are needed to
find the proper place to insert an clement of A into B using a binary search. Hence only approximately 5.7-35
comparisons are need to merge A and B using the binary search and insertion algorithm.

The binary search and insertion algorithm does not take into account the fact that A is sorted.
Accordingly, the algorithm may be improved in two ways as follows. (Here we assume that A has S
elements and B has 100 elements.)

(1) Reducing the target set. Suppose after the first search we find that All I is to be inserted after
111 16]. Then we need only use a binary search on 111171, DI 1001 to find the proper
location to insert Al21. And so on.

(2) Tabbing. The expected location (or inserting All) in B is near B[20) (that is, BlsIrI), not
near B(50). Hence we first use a linear search on B[20), 13 140 1 , 13160 1 . B1801 and 11(100)

to find B[KJ such that ALl)B[KJ, and then we use a binary search onBIK-201.

B I K - 191.... . BjKJ. (This is analogous to using the tabs in a dictionary which indicate
the location of all words with the same first letter.)

The details of the revised algorithm arc left to the rcadcr.

9.6 MERGE-SORT

Suppose an array A with is elements A I l J 412).... . A[NJ is in memory. The merge-sort
algorithm which sorts A will first be described by means of a specific example.

EXAMPLE 9.7

Suppose the array A contains 14 elements as follows:

66. 33, 40, 22, 55, 88, 60, II, 80, 20, 50, 44,77,30

Each pass of the merge-sort algorithm will start at the beginning of the array A and merge pairs of sorted subarrays
as follows:

Pass I. Merge each pair of elements to obtain the following list of sorted pairs:

33, 66	 22, 40	 55, 88	 11, 60	 20.80	 44. .	 30,77
---	 ---	 -

Pass 2. Merge each pair of pairs to obtain the following list of sorted quatIruplct:

22,33,40,66	 11,55,60,88	 20, 44, 50, 80	 30,77

Pass 3. Mcrge each pair of sorted quadrupicts to obtain the following two sorted suharrays:

11, 12, 33, 40, 55, 60, 66.88 	 20, 30. 44,50._77.jKU

Pass 4. Merge the IWO sorted subarrays to obtain the single sorted array

II, 20, 22, 30, 33, 40. 44, 50, 55, 60, 66, 77, 80, 88

The original array A is now sorted.

CHAP. 91	 SORTING AND SEARCHING	 329

The above merge-sort algorithm for sorting an array A has the following important property. After
Pass K, the array A will be partitioned into sorted subarrays where each subarray, except possibl y the
last, will contain exactly L = 2K elements. Hence the algorithm requires at most log n passes to sort an
n-element array A.

The above informal description of merge-sort will now be translated into a formal algorithm which
will be divided into two parts. The first part will he a procedure MERGEIASS, which uses Procedure
9.5 to execute a single pass of the algorithm; and the second part will repeatedly apply MERGEPASS
until A is sorted.

The MERGEPASS procedure applies to an n-element array A which consists of a sequence of
sorted suharrays. Moreover, each subarray consists of L elements except that the last subarray may
have fewer than L elements. Dividing n by 2 * L, we obtain the quotient 0, which tells the number
pairs of L-element sorted subarrays; that is,

0 = 1NT(N/(2*L))

(We use INT(X) to denote the integer value of X.) Setting S = 2*L*Q, we get the total number S of
elements in the 0 pairs of suharrays. Hence R = N - S denotes the number of remaining elements.
The procedure first merges the initial 0 pairs of L-element suharrays. Then the procedure takes care of
the case where there is an odd number of subarrays (when R L) or where the last subarray ha fewer
than L elements.

The formal statement of MERGEPASS and the merge-sort algorithm follow:

Procedure 9.6: MERGEPASS(A, N, L, B)
The N-element array A is composed of sorted subarrays where each subarray has
L elements except possibly the last subarray, which may have fewer than L
elements. The procedure merges the pairs of subarrays of A and assigns them to
the array B.
1. Set 0: = INT(N/(2*1,)), S:= 2*L*Q and R :=N - S.
2. [Use Procedure 9.5 to merge the 0 pairs of subatrays.]

Repeat for J = 1,2.....0:
(a) Set LB := I ± (2*J - 2)*L. [Finds lower hound of first arra y .I
(b) Call MERGE(A, L, LB, A, L, LB ± L, B, [.B).

[End of loop.
3. [Only one suharray left?]

If R	 L, then:
Repeat for .1 = 1,2

Set B(S +-J):=A(S•i J)
End of loop.]

Else:
Call MERGE(A, L, St 1, A, R, L -t-S±I, [3, S-f 1).

[End of If structure.]
4. Return.

Algorithm 9.7: MERGE SORT(A, N)
This algorithm sorts the N-clement array A using an auxili ...:r ray

I. Set L . =. 1. [Initializes the number of elements in the suharrays. I
2. Repeit Steps 3 to 6 while L. <N:
3. Call MERGEI'ASS(A, N, L, B).
4. Call MERGE- 	 N. 2 * L. A).

Set L:=4*I..
lEnd of Step 2 loop.]

h	 ixit.

330	 SORTING AND SEARCHING	 [CHAP. 9

Since we want the sorted array to finally appear in the original array A, we must v loccute the
procedure MERGEPASS an even number of times.

Complexity of the Merge-Sort Algorithm

Let f(n) denote the number of comparisons needed to sort an n-clement array A using the

merge-sort algorithm. Recall that the algorithm requires at most log n passes. Moreover, each pa ss

merges a total of ,i elements, and by the discussion on the complexity of merging, each pass will require

at most tz comparisons. Accordingly, for both the worst case and average case,

J(n) n^ ft log n

observe that this algorithm has the same order as heapsort and the same average order as quicksort.

The main drawback of merge-sort is that it requires an auxiliary atray with n elements. Each of the

ttici sorting algorithms we have studied requires only a finite number of exti a locations, which is

Independen t of it.
The above results are sumtiiariLC(l in the following table:

Algorithm	 Worst Case	 Average Case	 Extra Memory

Merge-Sort	 n log a = O(m log a)	 pm log a G(n toga)	 0(n)_—

9.7 RADIX SORT

Radix sort is the method that many people intuitively use or begin to use when alphabetizing a

I irge list of names. (Here the radix is 26, the 26 letters of the alphabet.) Specifically, the list of names is
i l l , 1 som tl according to the first letter of each name. That is, the names are arranged in 26 classes,
s licie the first class consists of those names that begin with "A," the second class consists of those

ilatnes that begin with "B," and soon. During the second pass, each ass is alphabetized according to
the second letter of the name. And so on. If no name contains, for example, more than 12 letters, the
ji,imcs are alphabetized with at most 12 passes.

the radix sort s the method used by a card sorter. A card sorter contains 13 receiving pockets
iitcicd as follows:

9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 11, 12, R (reject)

i ach pocket other than IZ corresunds to it 	 on a card in which it 	 call 	 punched. Decimal

tihcrs. where the radix is 10 are punched in the obvious way and hence use onl y the first 10 pockets

1 Otesorter. The sorter uses it 	 reverse-digit sort oil 	 That is, suppose it card sorter is

given it collection of cards where each card contains a 3-digit number punched in columns I to 3. The
ate lust soiled according to the units digit. On the second pass, the cards arc sorted according to

the tens digit Oil 	 third and last pass, the cards are sorted accoidir9', t	 iigit. We

ml losti ate Wit h all example.

EXAMPLE 9.8

Sit i,se) caids are punched as follows:

348, 143, 361, 423, 538. 128, 321, 543, 366

to :	 id soiL';, the nuinhcrs scould be sorted ill 	 phases, as pictund in Fig. ')

lii	 Iitsi ia	 the 11111t5 digits ate ',ort,j ifliO pockets. (The pockets are pietured upside	 v-;t.	 34t is at

i,Ito;fl ol ;kct S.) the caltIs arc collected pocket by pockc, flora pocket 9 to pocket 0. (Note that 361

ios he at he hottoimi of thc pile sad :5 i't the top of the pile) Ihic :aids arc now reitiput to the suite;

I;; th. co;;I pa:.:., the lc II diiLs ate sti;t.'.l ill to'je.e5. Again th - a y (Is are co)lctcd p ''-ket b y poket and

iciliput to the StII tel.

k.

CHAP. 91	 SORTING AND SEARCHING	 331

	

Input	 0	 2	 2	 •3	 4	 5	 6	 7	 8	 9

	

348	 348

	

143	 243

	

361	 361

	

423	 423

	

538	 538

	

12$	 128

321	 121

	

543	 543

	

3(,6	 364,

(a) First pass.

	

Input
	 I)	 I	 2	 3	 4	 5(7	 8	 9

	

361
	 362	 I

	321
	

321

	

243
	

243

	

423
	

423

	

543
	

543

	

366
	

543

	

366
	 166

	

348
	

348

	

538
	

538

	

128
	

128

(h) Sceond pass,

(e) Third pass

Fig. 9-(.

332	 SORTING AND SEARCHING	 [CHAP. 9

(c)]it 	 third and final pass, the hundreds digits are sorted into pockets.

When the cards are collected alter the third pass, the numbers are in the following order:

128, 143, 321, 348, 361, 366, 423, 538, 543

Thus the cards are now sorted.
The number C.' of comparisons nccdcd to sort nine such 3-digit numbers is bounded as follows:

C 9-3- 10

Ilic 9 conies front the nine cards, the 3 COmCS from the three digits tit 	 number, and the 10 comes front
d	 It) digits.

Complexity of Radix Sort

Suppose a list A of it Items A . A 2 1 .., A,, is given. Let d denote the radix (e.g., d = 10 for
decimal digits, d = 26 for letters and d = 2 for bits), and suppose each item A, is represented by means
of S of the digits:

A, = d, 1 d,,	 ' d,,

1 tic radix sort algorithm will require .v passes, the number of digits in each item. Pass K will compare
each il, with each of the d CIIgUS. I lence the number ('(n) of comparisons for the algorithm is bounded
as follows:

C(n)

Although d is independent of n, the number s does depend on n. In the worst CilSC, S = n, so
C(n) = 0(,,2) In the best case, s = log 1 n, so C(n) 9(p j Icig ,i). In other words, radix Sort performs
well only when thc number s of digits in the representation of the A,'s is small.

Another di awback of radix sort is that one may need d*n memory locations. This comes from the
fact that all the items may he "sent to the same pocket" during a given pass. This drawback may be
minimized by using linked lists rather than arrays to Store the items during a given pass. However, one
will still require 2*,, memory locations.

9.8 SEARCHING AND DATA MODIFICATION

Suppose S is a collection of data maintained in memory by a table using soric ,typc of data
structure. Searching is the operation which finds the location LOC in memory of some ivcn ITEM of
information or sends some message that ITEM does not belong to S. The search is said -to be successful
or unsuccessful according to whether ITEM does or does not belong to S. The searching algorithm that
is used depends mainly oil 	 type of data structure that is used to maintain S in memory.

Data modification refers to the operations of inserting, deleting and updating. Here data
modification will mainly refer to inserting and deleting. These operations are closely related to
searching, since usually one must search for the location of the ITEM to he deleted or one must search
for lie proper place to insert ITEM iii the table. The insertion or deletion also requires a certain
amount of execution time, which also depends mainly oil 	 type of data structure that . is used.

(;cnerall)' speaking, there is it between data structures with fast searching algorithms and
data si r:uct ii ics with fast modification algorithms. This situation is illustrated below, where we
summarize the searching and data modification of three of the data structures previously studied in the
text.

(1) Sol It'd (iflo y . I-fete one Call use a binary search to find the location LOC of a given ITEM in
time 0(log

V.
 On the other hand, inserting and deleting are very slow, since, on the average,

W2 0(n) elements must be moved for it given insertion or dcletion. Thus it array
would likely be used when (here is a great deal of searching but only very little data
modification.

CHAP. 91	 SORTING AND SEARCHING
	

333

(2) Linked list. Here one can only perform a linear search to find the location LOC of a given
ITEM, and the search may he very, very slow, possibly requiring time 0(n). Oil 	 other
hand, inserting and deleting requires only a few pointers to be changed. Thus a linked list
would he used when there is it 	 deal of data modification, as in word (string) processing.

(3) Binary search tree. This data structure combines the advantages of the sorted array and the
linked list. That is, searching is reduced to searching only a certain path P in the tree T,
which, on the average, requires only 0(log n) comparisons. Furthermore, the tree 1' is
maintained in memory by a linked representation, so only certain pointers need he changed
after the location of the insertion or deletion is found. The main drawback of the binary
search tree is that the tree may he very unbalanced, so that the length of a path I' may he
0(n) rather than 0(log n). This will reduce the searching to approximately a linear search.

Remark: The above worst-case scenario of a binary search tree may be eliminated by using a
height-balanced binary search tree that is rebalanced after each insertion or deletion. The algorithms
for such rebalancing are rather complicated and lie beyond the scope of this text.

Searching Files, Searching Pointers
Suppose a file F of records R!, R_	 R,, is stored in memory. Searching F usually refers to

finding the location LOC in memory of the record with a given key value relative to it key field
K. One way to simplify the searching is to use an auxiliary sorted array of pointers, as discussed in Sec.
9.2. Then a binary search can he used to quickly find the location LOC of the record with the given
key. In the case where there is a great deal of inserting and deleting of records in the file, one might
want to use an auxiliary binary search tree rather than an auxiliary sorted array. In any case, the
searching of the file F is reduced to the searching of a collection S of items, as discussed above.

,9 HASHING

The search time of each algorithm discussed so far depends on the number n of elements in the
collection S of data. This section discusses a searching technique, called hashing or hash addressing,
which is essentially independent of the number n.

The terminology which we use in our presentation of hashing will he oriented toward file
management. First of all, we assume that there is a file F of n records with a set K of keys which
uniquely determine the records in F. Secondly, we assume that Fis maintained in memory by a table T
of rn memory locations and that L is the set of memory addresses of the locations in T. For notational
convenience, we assume that the keys in K and the addresses in L are (decimal) integers. (Analogous
methods will work with binary integers or with keys which arc character strings, such as names, since
there are standard ways of representing strings by integers.)

The subject of hashing will he introduced by the following example.

EXAMPLE 9.9
Suppose a company with 68 employees assigns a 4-digit employee number to each employee which is used as

the primary key in the company's employee file. We can, in fact, use the employee number as the address of the
record in memory. The search will require no comparisons at all. Unfortunately, this technique will require space
for 10 000 memory locations, whereas space for fewer than 30 such locations would actually be used. Clearly, this
tradeoff of space for time is not worth the expense.

The general idea of using the key to determine the address of a record is an excellent idea, but it
must he modified so that a great deal of space is not wasted. This modification takes the form of a
function H from the set K of keys into the Set L of memory addresses. Such it function.

Ii: K-.L

is called it hash function or /ias/n,iç function. Unfortunately, such a function I-I may not yield

334	 SORTING AND SEARCI-liNCi	 ICIIAP. 9

distinct values: it is possible that two different keys k 1 and k 2 will yield the same hash address. 'I'll is

situation is called Collision. and some method must he used to resolve it. Accordingly, the topic of
hashing is divided into two parts: (I) hash functions and (2) collision resolutions We discuss these two
parts separately.

Hash Functions

The two principal criteria used ill selecting a hash function H: K-. L arc as kfp-s. First ' all, the

function ii should hc very easy and quick to compute. Second the function H si3ould, as far as possible,

uniforml y distribute the hash addresses throughout the set L SO that there rrc a minimum number of
collisions. Nafu rally there is no guarantee that the second condition can be completely fulfilled
without actuall y knowing beforehand the keys and addresses. I iowcvcr, , certain general techniques rio

help. One technique is to c hop' a key A into ICCCS and cor'ibinc the picccs in some way to form the

hash address 11(k). (The term 'hashing' coitics front this technique of "chopping" a key into pieces.)
We next illustrate some popular hash functions We emphasize that each ef tlicsi: lialt functions

can he easily and quickly evaluated by time computer.

(a) !)ic,. ion ,,;ctijoI. Choose .a flu iii her in IalL dUln the n U riibct it of keys iii K. (The number in
is usually chosen to be a prime ii umber or a number without small divisors,

s ince his
frequently minimizes the number of collisions.) The hash function II i ,, defined by

11(k) = k (mod in)	 or	 11(k) k (mud in) 4 1

I le ic k (mod ,n) denotes the remainder when k is divided by in. The second formula is used
when we want the hash addresses to range frort I to in ra t her than from 0 to iii -

(b) Mia'suurc mci/run. ihie key A is squared. Then the hash function 11 is defined 1w

11(1<) = I

where / is Obtained by deleting 1.1 igi Is from both ends of k ' . We emphasize that the same

positions of k 2 must he used for all of the keys.

(c) loIdznç method. the key k is partitioned into a fiLl ill her of parts, k,, k, , where each
part, except possibly tire last, has the same number of digits as the required address. Then the
parts are added together, ignoring the last carry. That is,

.................I-k,

where the icar.ling-digit carries. it any, are ignored. Sometimes, for extra ''milling, the

even-numbered palls, k,, k 1 ,.., a re each reversed before the addition.

EXAMPLE 9.10

Consider the company in Lairiplc 9.9, each of whose (18 employees is assigned a umimnjnic 4-digit employee
number. Suppose 1. consists of 100 two-digit addresses: 00, 01, 02.....99. We ripply the above hash functions to
erich of the following cimipluyec numbers:

3705,	 7148,	 2345

(a)	 I)i,isio,z method. Choose a prime niiimiber in close to 99, such as in	 97. their

	

11(3205)	 4,	 11(7148) 67.	 11(2345)	 17

tlirrt is, dividing 3205 b y 97 gives arerr1rimhler of 4, dividing 7148 1 1)' 97 gives a remainder of 67, and dividing

2345 by 97 gives a renr.ri I ide r of 17. In the case that the nicinary addresses begin Wit Ii AU,; ,tilmer titan (n), we
choose ttiiit the function I1(/)	 k(iiiod in) 1- 1 to obtain;

	

11(3205) 4 + 1 = 5,	 11(7148) 67 + 1	 68.	 11(2345)	 17 4	 IS

ChAP 9J	 SORTING AND SEARChING	 335

(b) Midsqs€ire ,,tciIWd. ' I tic following calculations are performed

	

k:	 3205	 7148	 2345
10272025	 51 093 904	 5 499 025

	

11(k):	 72	 93	 99

Obscr\0 that the fourth and fifth digits, counting from the right, are chosen for the hash address.
(e) Folding method. Chopping ihc' key k into (5) parts and adding yields the following hash addresses:

11(3205) 32 4-05 37,	 //(7148) 71 + 4	 19,	 11(2345) = 23 -+ 45 = 68

()I 'sc,ve tfit the leading digit I iii 11(7148) is ignored. Alternatively, one inuiy 'varit to reverse the second
pail hcfoie adding, thus producing the following hash addresses:

32 1 50 82
	

11(7148) 71 + t4(55, 	 11(2345) 2-34-54 77
I'

Collision Resolution

Suppose we want to add it record 1? with key k to our tile F, but suppose the memory location
address /1 1 A) is alread y occupied. This situation IS called coll,.cwn. This subsection discusses two
general ways of rcsolvi tig collisions. The particular procedure that one chooses depends on many
factors. f)uic important factor is the ratio of the number n of keys iii K (which is the number of records
in F) to the number in of hash addresses in L. This rati',, A = ps/ni. is called the load factor.

First we show that collisions arc almost impossible to avoid. Specifically, suppose it class
has 24 students and suppose the table has space for 365 records, One random hush function is to choose
the student's birthday as the hash address. Although the load factor A 24 / 365 7% is very small, it
can be shown that there is a better than fifty-filly chance that two of the students have the same
hi t h lay.

The efficiency of it hash function with it resolution iroceduie is measured by the average
number of prO/ic's (key comparisons) needed to hind the location of the record with a given key k. The
efficiency depends mainly oii the load factor A. Specifically, we are interested in the following two
quantities:

S(A) = average number of probes for it 	 search

U(A) average number of probes for an unsuccessful search

These quantities will be discussed for our collision procedures.

Open Addressing: Linear Probing and Modifications
Suppose that it new record I? with key k is to be added to he menlo ry table / but t hat t lie memory

location with hash address 11(k) It is alread y tilled. One natural way to resolve the collision is to
assign R to the first available location following TI/si. (We assume that the 'able T with in locations is
circular, so that T[I I comes after T[,n) Accordingly, with such a collision ptoccdure, we will search
for the record R in the table 1' by lincarly searching the locations 'IL/'J, i[/i + 11, T[Ii -t- 2], - until
finding I? or meeting an empty location, which indicates an unsuccessful search.

The above collision resolution is called linear probing. The average numbers of probes for it
successful search and for an unsuccessful search are known to he the following respective quantities:

S(A)	 1 f -j---)	 md
	

(

(Here A ii/nn is the load factor.)

EXAMPLE 9.11
Su11,se the table 1 has (I inenlory IIsTIO5S T[fl. /121.....1l] and suppose the hie F consists 01 5

records, A. l, C, I), E, X, V and Z with the following hash addrcssc

336	 SORTING AND SEARCHING	 [CHAP. 9

	

Record:	 A, B, C, I), E, X, Y,	 Z
11(k):	 4,	 8,	 2,	 II,	 4,	 II,	 5

Suppose the 8 records are entered lilti, the table T in the above order. then the tile F will appear in Irienlory as
follows:

Table T:	 X, C, Z, A, E, Y,	 . B,	 , I)
Address:	 1.	 2,	 3,	 4,	 5,	 6,	 7,	 8,	 9,	 tO, II

Although Y is the only record with hash address 11(k) 5, the record is not assigned to 7 1 5 1. since T(51 has
already been tilled by F because 01 a previous collision at 1'[4). Similarly, Z does not appear ill 	 U

The average number S of probes Ii. a i cecssful search follows:

S1 6

	

' Is I1-1e22t23	 t3_: --- -----------8
	 - 8

The average no inbe U of probes for an u risuccessful search follows:

	

2+11 I8 	40	
1

The first sumadds the ii titriber of probes to lind each of the 8 records, and the second sum adds the number of
probes to find an empt y l,,caiinn for each of the II locations.

One main disadvantage of linear probing is that reeods tend to cluster, that is, appear next to one
another, when the load (actor is greater than 50 percent. Such it substantially increases the
average search time for it recurd . Two techniques to minimize clustering are as follows

(I) Quadratic probing. Suppose it record 1? with key k has the hash address 11(k) h. Then,
instead of searching the locations with addresses h. h 1- 1. It 1 2, we linearly search the
locations with addresses

It, Ii -I . I, h t.4, It

	

9, If 	 16,	 .	 . ' i t i

If the number rn of locations in the table 'I i a prime iiiiiitber, then the above sequence will
access half of the locations in 1.

	

(2) Double hashing. I lere it second hash function 11' is used for resolving it 	 as follows.
5&ippos. it 	 R with key k has the hash addresses 11(k) = If and Ii'(k) h' ,n. Then
we linearl y search the locations "ith addresses

It, It 4- /i', It i 2/i', If + 3/,',

If ,n is it prime number, then the above sequence will access all the locations in the table T.

Remark: One major disadvantage in any type of open addressing procedure is in the implemen-
tation of deletion. Specifically, suppose a record 1? is deleted from the location i'[rI. Afterwards,
suppose we meet 1 [r] while searching for another record i?. 'l his 'ioes not necessarily mean that the
search is unsuccessful. Thus, when deleting the record R, we In:st label the location ![iJ to ifldC.LtC
that it previously diet contain it Accordingly, open addressing may seldom be used when it tile F
;s constantly changing.

Chaining

Chaining involves nlaititainlng two tables in memory. Hrst of all, as before, there is a table 7' it-,
ittenierv 11

f e ll contains the records ill i'. except that 1 now has an additional field LINK which is us-1
so that all reeoi-d.s ill 1 itIi the s:iriic hashiddrcs.s Ii ma y be linked together to form a linked list.
Second, there is it hush address table LISTwhich contains pointers to the linked lists in T

Suppose it new record R with key k is added to the tile F. We place I? in the first available l'eation
in the table 1 and then add 1? to the linked list with pointer LAS l[1i(k)j. If the linked lists of records
Ire not si,rtc'eI, tItan 1? i, iiiiply inserted at tIme beginning of Its linked list. Searching for it 	 or

1

2

'-3

4.

5

6

7

8

9

10

II

12

13

14

CHAP. 91	 SORTING AND SEARCHING	 337

ieleting a record is nothing more than searching for a node or deleting a node from a linked list, as
discussed in Chap. 5.

The average number of probes, using chaining, for a successful search and for au unsuccessful
search are known to be the following approximate values:

	

S(A)=1 + A	 and	 LI(A)e + A

Here the load factor A = ti/ pu may be greater than 1, since the nunibcr m of hash addresses in L (not
the number of locations in T) may be less than the number ii of records in F.

EXAMPLE 9.12
Consider again the data in Example 9. 11, where the 8 records have the following hash addresses:

	

Record:	 A. B. C, I), E, X, Y,	 Z

	

H(k):	 4,	 8,	 2.	 II,	 4.	 11,	 5,	 I

Using chaining, the records will appear in memory as pictured in Fig. 9-7. Observe that the location of a record R
in table Tis not related to its hash address. A record is simply put in the first node in the AVAIL list of table T. In
fact, table T need not have the same number of elements as the hash address table.

Table T

LIST	 INFO LINK

AVAIL 9

Fig. 9.7

338	 SORTING AND SEARCHING	 (CHAP. 9

The main disadvantage to chaining is that one needs 3m memorx, cells for the data. Specifically,
there arc m cells for the information field INFO, there arc in cells for the link field LINK, and there are
in cells for the Pointer array LIST. Suppose each record requires only 1 word for its information field.
Then it may be more useful to use open addressing with a table with 3m locations, which has the load
factor As 1/3, than to USC chaining to resolve collisions.

Supplementary Problems

SORTING

	

9.1	 Write a subprogram RANDOM(DATA, N, K) which assigns N random integers between I and K to the
array DATA.

	

9.2	 Tanslate insertion sort into a subprogram INSERTSORT(A, N) which soi . 	 array A with N elements.
Test the program using:

(a) 44, 33, 11, 55. 77, 90, 40, 6, 99, 22, 88, 66
(Ii) D,A,T,A,S,T,R.U,C,T.U,R,E.S

	

9.3	 Translate insertion sort into a subprogram INSER'ICUUNT(A. N. NUMB) which sorts the array A with
N cicmcnts and which also counts the number NUMB of comparisons.

9.4 Write a program TESTINSERF(N, AVE) which repeals 500 times the procedure INSERTCOUNT(A. N.
NUMB) and which finds the average AVE of the 500 values of NUMB. (Theoretically. AVE N 1 /4.) Use
RANDOM(A, N, 5.N) from Prob. 9.1 as each input. Test the program using N = lOt) (so. theoretically,
AV 	 N/4 = 25(X)).

	

9.5	 Translate quicksort into a subprogram QUICKCOUNT(A, N, NUMB) which sorts the array A with N
elements and which also counts the number NUMB of comparisons. (See Sec. 6.5.)

9.6 Write it program TESTQUICKSORT(N, AVE) which repeats QUICKCOUNT(A, N, NUMB) 5(X) times
and which finds the average AVE of the 500 values of NUMB. (Theoretically. AVE N kig 2 N.) Use
RANDOM(A, N, 5'N) from Prob. 9.1 as each input. Test the program using N = 100 (so, theoretically,
AVE 70O).

	

•7	 Translate Procedure 9.2 into a subprogram MIN(A, LB, UB, LOC) which finds the location LOC of the
smallest elements among A[LB], A(LB + IJ.....ALUBI.

	

9.8	 Translate selection sort into a subprogram SELECTSORT(A, N) which sorts the array with N elements.
Test the program using:

(a) 44, 33, 11, 55, 77, 90, 40, 60, 99, 22, 88, 66-

(1) D,A,T. A,S.T, R,U,C,T, U,R,E.S

SEARCHING, HASHING

	

9.9	 Suppose an unsorted linked list is in memory. Write a procedure

SEARCI-l(INFO. LINK, START, ITEM, LOCI

which (a) ljnt.Is the location LOC of ITEM in the list or sets LOC : NULL for an unsuccessful search and
(b) when the search is successful, interchanges ITEM with the clement in front of it. (Such a list is said to
be self-organizing. It has the property that elements which are frequently accessed tend to move to the
beginning of the list.)

CHAP. 91	 SORTING AND SEARCHING 	 339

9.10 Consider the following 4-digit employee numbers (5cc Example 9.10):

9614,	 5882,	 6713,	 4409,	 1825

Find the 2-digit hash address of each number using (a) the division method, with m 97; (b) the
midsquare method; (c) the folding method without reversing; and (d) the folding method with reversing.

9.11 Consider the data in Example 9.11. Suppose the 8 records are entered into the table Tin the reverse order
Z, Y, X, E, D, C. B, A. (a) Show how the tile F appears in memory. (b) Find the average number S of
probes for a successful search and the average number U of probes for an unsuccessful search. (Compare
with the corresponding results in Example 9.11.)

9.12 Consider the data in Example 9.12 and Fig. 9-7. Suppose the following additional records are added to the
file:

(P. 2),	 (0.7).	 (R, 4),	 (S,9)

(Here the left entry is the record and the right entry is the hash address.) (a) Find the updated tables Tand
LIST. (b) Find the average number S of probes for a successful search and the average number U of probes
for an unsuccesful search.

9.13 Write a subprogram MID(KEY, HASI-l) which uses the midsquarc method to find the 2-digit hash address
HASH of a 4-digit employee number key.

9.14 Write a subprogram FOLD(KEY, HASH) which uses the folding method with reversing to find t 2-digit
hash address HASI-! of a 4-digit employee number key.

