10/ Medical Statistics

Sometimes we want to explore new information about facts present in the universe. Any information regardless of its motive depends partly on real obecrvations and partly on reasoning. The inference drawn either from observation or reasoning or from both is named as hypotheais. This hypotheris or inference in any case cannot be treated as an absolute result or value. In a large population it is not possible to observe all the items. So statistical methods are developed to estimate the error or deflection from the true or real value wher. we are taking inference from a sample for a population.

The statistical methods are utilised in interpreting the results which are at the mercy of numerous influences and obtained from different experimental procedures. The object of the statistical analysis is to isolate and measure the effects of individual influences. To get a correct statistical analysis we have to see that we are comparing groups like with like that means we have not overlooked any relevant factor which is net present in anyone of the two groups.

Experiment with biological material is much more complex. Most of the biological parameters are interrelated and influenced by many other factors. When we measure a parameter, the readings are scattered over a wide rangè, even when we think that the affecting conditions are constant. Again when the readings are taken after altering some of the affecting conditions, the range of the readings often overlap the former instead of being a completely separate one. Under such circumstances, statistical assessment can help in several ways:

1. To choose a value which is representative of each group of readings.
2. To describe what is the nature of the variability withir the group.
3. To decide whether a difference between two groups is a real one or it could have occurred by chance.

I. Probability

When we are conducting some experimental observations, first of all we have to consider that whether the result is obtained only due to chance or coincidence, or it is appearing as the real or true one. To meet this query, we have to find out the natural probability. First, say, where n is the number of all possible results of some action, which are of equal possibility to occur and r is the number of rocults which will satisfy some particular necessity or condition, then the probability of satisfaction of the requirement will be (r / n). As for example, a die can fall with any of its six sides ($n=6$) keeping uppermost. If the necessity is such that the side marked with 4 should come uppermost then only one of the six sides will satisfy the requirement, i.e., $r=1$. So in this case the probability is $(1 / 6)$. When we consider r and n for an ideal die then any of the numbers from 1 to 6 is equally likely to come upwards. In that case the P is equal to (1/6). This type of preassumed probability is named as a priori probability. But the probability may also be obtained by actual throwing of the die for a number of times (more the number of throwing better or more nearer will be the \mathbf{P} value to the ideal one). The probability obtained with this
process is named as a pasteriori probability. In practice, this is a more complex process than the priori probability. So in the case of a die a priori probability is ($1 / 6$), i.e., (r / n) but a posteriori probǎbility is $\left(r_{x} / n_{x}\right)$ which may not be exactly equal to $(1 / 6)$.

Probability of more than ose event. The probability of occurring multiple events at a time is same as above, i.e., in case of a single event, (r / n), when n is the possible way in which atl the combinations of events can occur and r the number of combinations that fulfils the requirement. These multiple events may be dependent or independent of each other.

Probability of mutzally dependent evests. When the requirement is so that any of the mutually exclusive results (events) satisfy then the individual probabilities are to be added together to get the final probability. In other words, when individual probabilities are ($1 / 6$), ($1 / 6$), ($1 / 6$) for appearing upwards anyone of the numbers more than three of a die, i.e.; 4, 5 and 6 respectively; then probability of appearing anyone number more than three in a dic is $(1 / 6)+(1 / 6)+(1 / 6)=(3 / 6)$. In summary, this can be stated as-if either a or b or c, add the probabilities of a, b and c.

Probability of independent events. If the requirernent is so that the concurrence of two or more events, each of which can occur independent of the other then the probability of concurrent events can be obtained by multiplying the individual probabilities. Say for example, when ons coin and one die are tossed together and the requirement is that the head of the coin and the side of the die containing number 4 should come upward; then individual probabilities are ($1 / 2$) and ($1 / 6$) respectively; and the probability of concurrence of these events is $(1 / 2) \times(1 / 6)=(1 / 12)$. In short this may be stated as-if only a as well as b, as well as c will satisfy the requirement, then multiply the probabilities of a, b and c.

Calculation of n and r to find out the probability of larger systems. In larger complicated systerns it is more corvenient to calculate n and r by the method or formula of permutation and combination.

All possible different arrangements which can be made out of n things by taking some (\dot{m}) or all (n) of them at a time is called their permutation (${ }^{3} P_{m}$ or ${ }^{2} P_{n}$) respectively, which is stated as

$$
\begin{aligned}
& \cdot P_{m}=n(n-1)(n-2) \cdots(n-m+1) \\
& P_{m}=P_{n}=n=n!=n(n-1)(n-2) \cdots 3.2 .1 \text {, when } n=m .
\end{aligned}
$$

Now again, when each combination of m objects from n objects differs only of content and not of inner arrangement, it is called combination (* ${ }^{m}$).

$$
{ }^{*} C_{m}=\frac{P_{m}}{m!}=\frac{n!}{m!(n-m)!} .
$$

For example, the number of ways by which any four cards can be drawn from a packet of playing cards is ${ }^{52} P_{4}=52 \times 51 \times 50 \times 49=$ $64,97,400$, when the inner arrangement or order is considered, ${ }^{52} C_{4}=$ $\frac{52}{} P_{4}!=\frac{52 \times 51 \times 50 \times 49}{4 \times 3 \times 2 \times 1}=2,70,725$, when the inner arrangement or order is not considered.

So the probabilities of getting 4 jacks together, with or withont considering the inner order are $(1 / 64,97,400)$ or $(1 / 2,70,725)$ respectively (as here $r=1$ in both the cases and $n=64,97,400$ and 2,70,725 respectively).

Now in practice, more the number of repetition of the experiment the P value will be more nearer to the theoretical or ideal one. Smaller the number of repetition larger will be the discrepancies which can also be galculated with the following formula:

$$
P=\frac{n!}{r!(n-r)!} \cdot p^{\prime} \cdot(1-p)^{\prime-}!
$$

when p is the probability of a positive result in some situation, the probability, P of getting r positive results in n trials.

For example, in casc of a coin', the probability of getting four times head upwards in 8 trials will be as follows:

$$
P=\frac{8!}{4!(8-4)!} \cdot\left(\frac{1}{2}\right)^{4} \cdot\left(1-\frac{1}{2}\right)^{8-4}=\frac{8!}{4!4!} \cdot\left(\frac{1}{3}\right)^{4} \cdot\left(\frac{1}{2}\right)^{4}=\frac{8!}{4!4!} \cdot\left(\frac{1}{2}\right)^{8}=(35 / 128) .
$$

Much of statistics involves the use of test to work out what is the probability of a particular diffcrence in events occurring by chance. Then with an arbitrary definition it can be stated that the result is whether or not statistically significant. When $P \leqslant 0.05$, i.e., one in twenty trials, is significant and $P \leqslant 0.01$, i.e., one in hundred trials, is taken as highly significant. Still $P \leqslant 0.01$ docs not mean that there is a real difference between two sets of results but only that such a difference can occur one in hundred trials by chance.

II. Frequency distribution

The experimental observations may be divided mainly into two giroups, quantitative, dealing with some property or change of property in quantity and qualitative, somic sort of property (quality). Generally the number of obscrvations is smaller when dealing with qualitative observations, and very large when dealing with quantitative observations. When experimental results are obtained, they appear as mere collection of data. In many cases it is thercfore advisable to prepare smaller groups of them: by dividing the range of data into smaller subdivisions according to some standards and then to obtain a frequency distribution. So frequency distribution of a set of data is the frequency of occurring of the data in different smaller subdivisions of the range of data.

Preparation of a frequency distribution table (Fig. 10 .1). The frequency distribution table can be prepared by jotting down all the numerical values in or'cr of increasing size which are represented in the scries of measurcments in the first column, next the n:can value of cach range. In the accurrence column one vertical stroke is marked for each occurrence of the valuc against the respective range of subgroup and a group of five is

Actual range of groups	Mean. value	Occurrences	Total
1.48-1.50	1.49	1	1
1.50-1.52	1.51	1111	4
1.52-1.54	1.53	WH111	7
1.54-1.56	1.55	以! 1111	9
1.56-1.58	1.57	H! 1	6
1.58-1.60	1.59	111	3

Total number of data is 30 . made with four such verti-

Fic. 10.1. Preparation of frequency distribution chart. cal strokes and a diagonal onc across the first four (Fig. 10.1). As for
example, the results obtained by measuring the height (in metres) of 30 human adults of age group 20-25 years: $1 \cdot 51,1 \cdot 54,1 \cdot 55,1 \cdot 59,1 \cdot 48,1 \cdot 50$, $1.55,1.53,1.50,1.55,1.55,1.52,1.53,1.54,1.53,1.56,1.52,1.57,1.53$, $1.57,1.52,1.54,1.51,1.54,1.55,1.56,1.57,1.56,1.59,1.59$.

The frequency distribution table is prepared with these results by dividing into smaller ranges as 1.48 to $1.50 ; 1.50$ to 1.52 , etc., along with a mean value in each case and the frequency of occurring the results in different subgroups are found.

Frequency polygon. The frequency polygon (Fro. 10.2). is nothing but the graphic representation of the frequency distribution table. The graph is to be drawn with the mean values of the range of subgroups along the abscissa and the frequency distribution along the ordinate. If

Fic. 1c.2. Frequency polygon. we increase the number of results and divide into smaller subgroups then the polygon will be more accurate and smoother one which is then named as frequency distribution curve. When the frequency is equally distributed on the both sides of the midpoint (highest frequency) the curve will be bell-shaped and named as normal, Gaussian or symmetrical distribution curve (Fig. 10.3 A). If there are only two possible alternatives for a parameter (e.g., head and tail of a coin; Rh^{+}and Rh^{-}) and we can precisely statc the number of times one or the other occurs. In such a case the distribution is

Normal or Gaussian symmetrical distribution (Bell-shaped)

Fig. 10.3A.

Asymmetrical positively skewed distribution

Fig. 10.3 B .

Fig. 10.3. Frequency distribution curves (contd.).
named as binomial which may be symmetrical or asymmetrical. When the slope of the curve is less at the positive side (right side) - it is asymmetri. cal, positively skewed (Fig. 10.3 B), the reverse one is the asymmetrical, negatively skewed (Fio. 10.3 C) distribution. When the frequency
polygon is tending to approach a J-shape, i.e., frequency tends from infinity to zero but remains finite as measurement increases, it is J-shapod or Poissomian distribetion (Frg. 10.3 D). When it is infinite to infinite-

Fro. 10.3C.

Measurement
U-sboped distribution

Meosurement J-shoped distribution

Fro. 10.3D.

Fic. 10.3F.

Fio. 10.3. Frequency distribution curves.
U-shaped (Fro. 10.3 E), i.e., at both the highest and lowest values of the parameter the frequency is infinite. When the frequency is equal throughout the groups of data, then the curve will be parallel to the horizontal axis-rectangular (Fig. 10.3 F).

Frequency histogram. The frequency with which each of the values in the series occurs is therefore qualitative stati-, stics, in other words, each refers to the number of individual measurements falling into a class having well-defined limits. The graph can be done by putting the ranges in place of the measurements, e.p., 1.51 metres $1.50-1.52$ metres and forming a rectangle with the frequency, i.e., the rectangle is formed with the range as the

Fig. 10.4. Frequency histogram.
base and the frequency distribution as the height. This type of graphic representation is named as frequency histograma (Fic. 10.4).

The probability of occurring any individual measurement-that lies. within any specific limits, can be inferred from the frequency polygon or histogram drawn from a set of data. The probability is proportional to the frequency for each of the stated values representing the midpoint of the range in case of the frequency polygon. But in case of the histogram the probability is proportional to the rectangle made of the range of values and frequency observed. Now normally the ranges of values are equal to each other and then, the probability is proportional to the frequency observed.

III. Averages (Fig. 10.5)

1. Arithmetic mean. When several readings are obtained from the same parameter (object) or of the similar kind of objects, then usually an average (mean) is taken from all the readings. One of such averages which is most commonly used is the arithmetic mean. Generally the term 'average' or 'mean' is used for the arithmetic mean. Now for example when the set of data is x_{1}, x_{2}, $x_{3}, \cdots, x_{n} ; n$ being the number of data (readings); $\boldsymbol{\Sigma}(\boldsymbol{x})$ stands for summation of the whole set of data (i.e., $x_{1}+x_{2}+x_{3}+\cdots+x_{n}$); then the arithmetic mean ((x) can be obtained with the following formula:

$$
\tilde{x}=\frac{\Sigma(x)}{n}
$$

2. Mode. There are some conditions (requirements) where the arithmetic mean does not serve the purpose. Say for example, one businessman wants to stock ready-to-wear garments of standard size which will fit maximum number of customers. In this case he will be interested of the size of customets most frequently occurring in the population and notin the arithmetic mean. So the mode is the most frequently occurring, value of x; in other words, the mode is the highest point of the frequency polygon.
3. Mediam. It is the third kind of average which divides a set of data into two equal halves, one containing the values lower than this value and the other containing the higher values. The formula to find out the position of the median is $\{(n+1) / 2\}$, in other words, $\{(n+1) / 2\}$ th value of x. For example, there are 107 items in a set of data, then $\{(107+1) / 2\}=54$ th value in the range of data is the median.

If the distribution of the frequency is a symmetrical one then the median coincides with both the mean and the mode. If it is a positively or
negatively skewed one then the median will lie in between the mode and the mean. The mode is the peak of the curve and the mean towards the long tail end.
4. Geometric mean. This kind-of average is used when dealing with ratios, indices or any such other relative numbers.

$$
\mathrm{M} \bar{g}=n^{n} \sqrt{x_{1} \cdot x_{2} \cdot x_{3} \cdot \cdots \cdot x_{n}}
$$

5. Harmonic mean. This is used when dealing with rates and speeds.

$$
\mathrm{M}_{\bar{h}}=\frac{n}{\Sigma(1 / x)} .
$$

In summary, an average can have a variety of proportions, but it is not always possible to show all of them in one value. It may be the one nearest to all experimental values (arithmetic mean), or the value that divides the experimental values into two equal halves of larger and maller values (median), or the value that occurs most frequently (mode).
6. Average of averages. Sometimes it needs to have a grand average of the averages obtained from smaller groups or samples. To get the grand mean the size of each sample must be considered when the sample size is not constant for all of them. Say for example, there are r sets of samples, having means as $m_{1}, m_{2}, m_{3}, \ldots, m_{r}$ with $n_{1}, n_{2}, n_{3}, \ldots, n_{T}$ number of values respectively. Then $\{$ as $S(x)=m . n\}$ the sum of the results of the first sample is $m_{1} \cdot n_{1}$; the sum of all the results of all the samples is

$$
\mathbf{S}(m n)=m_{1} n_{1}+m_{2} n_{2}+m_{3} n_{3}+\cdots+m_{r} n_{r} .
$$

Total number of results or data of all the samples together is

$$
\mathbf{S}(n)=n_{1}+n_{2}+n_{3}+\cdots+n_{r} .
$$

The grand arithmetic mean (M) is then

$$
\mathrm{M}=\frac{\mathrm{S}(m n)}{\mathrm{S}(n)}=\frac{m_{1} n_{1}+m_{2} n_{2}+m_{3} n_{3}+\cdots+m_{r} n_{r}}{n_{1}+n_{2}+n_{3}+\cdots+n_{r}}
$$

If the size of the samples is same for all the cases (i.e., $n_{1} \sqsupset n_{2}=$ $n_{2}=\cdots=n_{r}$) then

$$
\mathrm{M}=\frac{n\left(m_{1}+m_{2}+m_{3}+\cdots+m_{r}\right)}{r n}=\frac{\mathrm{S}(m)}{r} .
$$

7. Averages as ideal values. It is already stated that the larger the number of individual values, the more likely that the mean will attain the ideal value as the dispersed values will balance each other. The averages obtained from the small group of estimates may not be very near to the true mean, so they are denoted by the Roman letters as m_{1}, $\boldsymbol{m}_{\mathrm{p}}$ etc.; to differentiate from the idcal value which is denoted by the Greek letter μ.

IV. Deviations or scatters

Suppose we are measuring the systolic blood pressure of a group of male individuals by means of two methods. With the first method the lowest reading (datum) is 96 mm of Hg and highest is 104 mm of Hg ; and with the second process lowest is 45 mm of Hg and highest is 155 mm of Hg . Both the groups are normally distributed with an average 100 mm of Hg . Now what method is to be recommended where only
one sample or reading is possible. To answer this question the following statistical analysis may help us. It is seen that the individual readings in case of the first method are more nearer to the true mean than that of the second one. In that case with the second method, a single reading may give a impression of the situation with a larger error. These differences or distances from the mean are named as deviations or scatters.

1. Range of data. The simplest and commonest measure of scatter is the range, which is the interval between the lowest and the highest value of a set of data, e.g., in the above paragraph the range of data is 96104 with the first method and 45 to 155 in the second one. The end points have got no definite destination. the size of the range to some extent depends on the size of the sample, i.e., a larger sample is more likely to contain more extreme values making the range larger than a smaller sample. So it is not at all a reliable measure of scatter
2. Mean deviation (M.D.). It is a better way of measuring the scatter as it takes account of all the numbers of the sample and its value does not depend on the size of the sample, but on the size of the deviations respectively. The difference between any individual reading and the arithmetic mean in a set of data is named as the deviation. The sum of the deviations without considering the sign (of the difference) divided by the number of values is called the mean deviation.

$$
\text { M.D. }=\frac{\Sigma|x-\bar{x}|}{n} \frac{1}{n}
$$

when and

$$
|x-\bar{x}|=\text { the difference ignoring the sign, }
$$

3. Variance and invariance. The sum of the squared deviations will not be affected by the sign of the individual differences as they are squared. The variance is the sum of the squares of the individual deviations (differences) divided by the number of the values of a set of data,

$$
\mathrm{V}(\text { variance })=\frac{\Sigma(x-\bar{x})^{2}}{n}
$$

It is largest in a population in which the individuals vary a lot.
-The invariance is the reciprocal of the variance which is largest in a population where the individual readings vary minimum,

$$
\text { i.e., I (invariance }{ }^{\prime}=\frac{n}{\bar{\Sigma}(x-\bar{x})^{2}} \text {. }
$$

4. Standard deviation. The standard deviation is the square root of the variance, i.e., standard deviation $(\sigma)=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}$. As the ideal or true mean of a population can be obtained only approximately from a sample so the true standard deviation can be estimated also approximately from the available sample. With this appreciation the standard deviation can best be estimated with the following formula $\sigma=\sqrt{\frac{\sum(x-\bar{x})^{2}}{(n-1)}}$. It is the
most commonly used expression of deviations. It has the advantages as that of the mean deviation, and some other advantages specially when dealing with the samples of a normally distributed population. With such distribution, one standard deviation (σ) at both prsitive and negative side of the mean ($\overline{\mathrm{I}} \pm \sigma$) will cover about two-thirds or 66%

Fic. 10.6. Relationship between the standard deviation and the normal or Gaussian frequency distribution.
of the total number of values, similarly ($\bar{x} \pm 2 \sigma$) will cover 95% and $(\bar{x} \pm 3 \sigma)$ will cover 99% in approximate of the total number of values (Fig. 10.6). The arithmetic labour that is involving in calculating the standard deviation can be minimised with the following systematic tabular form:

No. of observations	Individual observations (x)	Deviation $(x--\bar{x})$	Squared deviations $(x-\bar{x})^{2}$	Calculation of S.D. (σ) [$\sigma=$ sigma (mall)]
1	8	-2	4	$\Sigma(x-\bar{x})^{2}=60$
2	10	0	0	
3	9	-1	1	$\sigma=\sqrt{\frac{\sum(x-\bar{x})^{2}}{(n-1)}}$
4	11	1	1	4
5	12	2	0	
6	10	0	9	$=\sqrt{(60 / 9)}$
7	7	-3	16	$=\sqrt{6 \cdot 66}$
8	6	-4	9	$= \pm 2.58$
9	13	3	16	
10	14	4		
Total	$\Sigma(x)=100$	$\Sigma(x-\bar{x})$	$\Sigma(x-\bar{x})^{2}=60$	
	$\bar{x}=\frac{100}{10}=10$	$=0.0$		

The above-mentioned method for calculating the standard deviation is suitable for smaller groups of results but not for large-sized samples. For large samples the following table is more appropriate:

Mean value of the smaller ranges in cm	Frequenciea	Deviations	Squared deviations	Product of respective deviation and frequency	Product of squared deviation and frequeゅcy	Working
149	4	-5	25	-20	100	Working mean = 154
151	9	-3	9	-27	81	$\begin{aligned} & \text { Mean }=154+0 \cdot 12= \\ & 154 \cdot 12 \end{aligned}$
153	12	-1	1	-12	12	Correction for mean $\left(6^{2} / 50\right)=0.72$
155	14	1	1	14	14	Corrected sum of sq-
157	8	3	9	24	72.	uared deviations... $354-0.72=353 \cdot 28$
159	3	5	25	15	75	sq. cm.
Total	50	-	70	-6	354	$= \pm 2.68 \mathrm{~cm}$

V. Sampling

A true mean is the mean of a infinitely large number of readings of a parameter. In experiments it is not possible for us to collect an infinite number of readings of a parameter, so we have to try to collect a reasonably small number of readings which are representative of the large population and in this way we are sampling the universe of possible readings. A sample should never be selected but coilected randomly. A selected sample is not a representative of the universe and will exhibit higher error of sampling. Errors of sampling are of large consideration in cases where only one or more samples are available as a basis for inductive inference and the total population from which the samples are drawn, is not observable. Obviously we should like that the true mean and the true standard deviation will coincide with the mean and the standard deviation of the sample, which are affected by the following factors:

1. Size of the sample. Greater the ratio of the sample number to the population, more nearer will be the sample to the true population. This accuracy increases as the ratio of the square root of those numbers, i.e., if the sample number increases from 10 to 100 then the increase in accuracy will be $\{\sqrt{ } 100 / \sqrt{ } 10\}$.
2. Variability of the readings. When the range of data is shorter, then there is a possibility that the mean of the sample will vary less from the true mean, but in case of a larger range of data, there is a greater possibility of variation of the sample mean from the true mean. So sampling should be as much large as possible otherwise it may give a different representation of the true population.
3. Frequency distribution of means. Let μ. be the true mean of a normally distributed population and σ the standard deviation. Then
t-TABLE

n^{*}	$\begin{aligned} & \mathrm{P}=0.9 \\ & (90 \%) \end{aligned}$	$\begin{gathered} 0.8 \\ (80 \%) \end{gathered}$	$\begin{gathered} 0 \cdot 7 \\ (70 \%) \end{gathered}$	$\begin{gathered} 0.6 \\ (60 \%) \end{gathered}$	$\begin{gathered} 0 \cdot 5 \\ (50 \%) \end{gathered}$	$\begin{gathered} 0.4 \\ (40 \%) \end{gathered}$	$\begin{gathered} 0.3 \\ (30 \%) \end{gathered}$	$\begin{gathered} 0.2 \\ (20 \%) \end{gathered}$	$\begin{gathered} 0 \cdot 1 \\ (10 \%) \end{gathered}$	$\begin{array}{r} 0.05 \\ (5 \%) \end{array}$	$\begin{gathered} 0.02 \\ (2 \%) \end{gathered}$	$\begin{gathered} 0.01 \\ (1 \%) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.1 \%) \end{gathered}$
1	0.158	0.325	0.510	$0 \cdot 727$	1.000	$1 \cdot 376$	1.963	3.078	6:314	$12 \cdot 706$	$31 \cdot 821$	63.657	636.619
2	0.142	0.289	0.445	0.617	0.816	$1 \cdot 061$	1.386	$1 \cdot 886$	$2 \cdot 320$	$4 \cdot 303$	6.965	9.925	31.598
3	0.137	0.277	0.424	0.584	0.765	0.978	$1 \cdot 2.50$	1.638	$2 \cdot 353$	$3 \cdot 182$	$4 \cdot 541$	$5 \cdot 841$	$12 \cdot 941$
4	0.134	0.271	0.414	0.569	0.741	0.941	$1 \cdot 190$	1.533	$2 \cdot 132$	2.776	3.747	$4 \cdot 604$	8.610
5	0.132	0.267	0.408	0.559	0.727	0.920	$1 \cdot 156$	1.476	2.015	$2 \cdot 571$	3365	$4 \cdot 032$	6.859
6	0.131	$0 \cdot 265$	0.404	0.553	0.718	0.906	1.134	1.440	1.943	2.447	3-143	3.707	5.959
7	0.130	0.263	0.402	0.549	0.711	0.896	$1 \cdot 119$	1.415	1.895	$2 \cdot 365$	$2 \cdot 998$	3.499	5,405
8	0.130	$0 \cdot 262$	0.399	0. 546	$0 \cdot 706$	0.889	1.108	$1 \cdot 397$	$1 \cdot 360$	$2 \cdot 306$	2.896	$3 \cdot 355$	5.041
9	0.129	0.261	0.398	$0 \cdot 543$	$0 \cdot 703$	$0 \cdot 883$	$1 \cdot 100$	$1 \cdot 383$	1.833	2. 262	$2 \cdot 821$	$3 \cdot 2.50$	4.781
10	$0 \cdot 129$	$0 \cdot 260$	0.397	$0 \cdot 542$	0.700	0.879	1-093	$1 \cdot 372$	1.812	$2 \cdot 228$	2.764	3.169	4.587
11	0.129	0.260	0.396	0.540	$0 \cdot 697$	0.876	1.088	1.363	$1 \cdot 796$	$2 \cdot 201$	$2 \cdot 718$	3.106	$4 \cdot 437$
12	0.128	0.259	0.395	0.539	$0 \cdot 695$	0.873	1.083	$1 \cdot 356$	$1 \cdot 782$	$2 \cdot 179$	2.681	3.055	4.318
13	0.128	0.259	0.394	0.538	0.694	0.870	1.079	$1 \cdot 350$	$1 \cdot 771$	$2 \cdot 160$	$2 \cdot 650$	3.012	4.221
14	0.128	0.258	$0 \cdot 393$	$0 \cdot 537$	0.692	$0 \cdot \$ 08$	1.076	$1 \cdot 345$	1.761	$2 \cdot 145$	$2 \cdot 624$	$2 \cdot 977$	$4 \cdot 140$
15	0.128	0.258	0.393	0.536	0.691	0.866	1.074	1.341	1.753	$2 \cdot 131$	$2 \cdot 602$	2.947	4.073
16	0.128	0.258	0.392	0.535	0.690	$0 \cdot 865$	1.071	1.337	1.746	$2 \cdot 120$	$2 \cdot 583$	$2 \cdot 921$	4.015
17.	$0 \cdot 128$	0.257	0.392	0.534	$0 \cdot 689$	$0 \cdot 863$	1.069	1.333	1.740	$2 \cdot 110$	2.567	$2 \cdot 898$	3.965
- 18	0.127	0.257	0.392	0.534	$0 \cdot 688$	$0 \cdot 862$	1.067	1.330	1.734	$2 \cdot 101$	$2 \cdot 552$	$2 \cdot 878$	3.922
19	$0 \cdot 127$	0.257	$0 \cdot 391$	0.533	$0 \cdot 688$	$0 \cdot 861$	$1 \cdot 066$	$1 \cdot 328$	1.729	2.093	$2 \cdot 539$	$2 \cdot 861$	3.883
20	0.127	0.257	0.391	0.533	0.687	$0 \cdot 860$	$1 \cdot 064$	$1 \cdot 325$	1.72 .5	2.086	$2 \cdot 528$	$2 \cdot 845$	3.850
21	0.127	0.257	$0 \cdot 391$	0.532	0.686	0.859	$1 \cdot 063$	$1 \cdot 323$	$1 \cdot 721$	$2 \cdot 080$	$2 \cdot 518$	$2 \cdot 831$	3.819
22	0.127	0.256	0.390	$0 \cdot 532$	$0 \cdot 686$	0.853	1.061	$1 \cdot 321$	1.717	2.074	$2 \cdot 508$	$2 \cdot 819$	3.792
23	0.127	0-256	$0 \cdot 390$	$0 \cdot 532$	$0 \cdot 685$	$0 \cdot 8.58$	1.060	$1 \cdot 319$	1.714	2.069	$2 \cdot 500$	$2 \cdot 807$	3.767
24	0.127	0.256	0.390	0.531	0.685	0.857	$1 \cdot 0.59$	1.318	1.711	2.064	$2 \cdot 492$	$2 \cdot 797$	3.745
25	$0 \cdot 127$	0.256	$0 \cdot 390$	0.531	0.684	0.856	1.058	$1 \cdot 316$	1.708	2.065	$2 \cdot 485$	2.787	3.725
26	$0 \cdot 127$	0.256	0.390	0.531	0.684	0.856	1.058	$1 \cdot 315$	$1 \cdot 706$	2.056	2.479	2.779	$3 \cdot 707$
27	$0 \cdot 127$	$0 \cdot 256$	0.389	0.531	0.684	0.855	1.057	$1 \cdot 314$	$1 \cdot 703$	2.052	2.473	2.771	3.690
28	0.127	0.256	$0 \cdot 389$	$0 \cdot 530$	$0 \cdot 683$	0.855	1.056	$1 \cdot 313$	1.701	2.048	$2 \cdot 467$	$2 \cdot 763$	3.674
29	$0 \cdot 127$	0.256	0.389	0.530	0.683	0.854	1.055	$1 \cdot 311$	1.699	2.045	2.462	2.756	3.659
30	$0 \cdot 127$	0.256	0.389	$0 \cdot 530$	0.683	0.854	1.055	$1 \cdot 310$	$1 \cdot 697$	2.042	2.457	2.750	3.646

m_{1}, m_{2}, etc., the means of the n number of samples, will be normally distributed about μ with a standard deviation $(\sigma / \sqrt{ })$. This is also true for the population not normally distributed but the variations from the normality are not much.
4. Standard error of mean (standard error). This frequency distribution of means is of great importance for practical purpose as it indicates that how much the sample mean is varying from the true mean. In other words, it gives an estimate of the error of sampling for which this standard deviation of the truc mean is also named as standard error of mean or simply as standard error (e). It should be carefully noted that 'standard deviation' represents commonly the standard deviation of the individual values, and 'standard crror' stands for the 'standard deviation of the mean'.

So standard error $=(\sigma / \sqrt{ })$.
Standard error of the sum of two means

$$
e_{\left(m_{1}+m_{2}\right)}=\sqrt{\left(e_{m_{1}}\right)^{2}+\left(c_{m_{2}}\right)^{2}}
$$

Standard error of the difference of two means

$$
e_{\left(m_{1}-m_{2}\right)}=\sqrt{\left(e_{m_{1}}\right)^{2}+\left(e_{m_{2}}\right)^{2}}
$$

Standard crror of product of the two means

$$
e_{\left(m_{1} m_{2}\right)}=\sqrt{\left(m_{1}\right)^{2}\left(e_{m_{2}}\right)^{2}+\left(m_{2}\right)^{2}\left(e_{m_{1}}\right)^{2}}
$$

Standard error of quotient of the two means

$$
e_{\left(m_{1} / m_{2}\right)}=\sqrt{\frac{\left(e_{m_{1}}\right)^{2}}{\left(m_{2}\right)^{2}}+\frac{\left(e_{m_{2}}\right)^{2}}{\left(m_{1}\right)^{2}}}
$$

When the true standard error (e) is known then the range, within which the probability (F) of the true mean, may be given by the expression $\bar{x} \pm k e$, where \bar{x} is the mean, k is a suitable constant.

When, $\mathrm{P}=66$ out of 100 , then k is approximately equal to 1 ,
$\mathrm{P}=95$ out of 100 , then k is approximately equal to 2 ,
$\mathrm{P}=99$ out of 100 , then k is approximatcly equal to 3 .
The stated probability can also be applied to the range $\bar{x} \pm t t_{\bar{x}}$, where factor t has a value which is largest with the smallest sample size and approaches k as the sample size increases, and $e_{\bar{x}}$ is the standard error of the mean.

Now if the arbitrary range be known then probability can be calculated out and in the reverse way, if the probability is fixed (known), the range can be worked out, with the help of the t-table (vide page 10.11).
5. Degrees of freedom. Degrees of freedom is the number of values of a sample which are freely variable without affecting the mean. For example, say, 3, 5 and 7 are forming a set of sample. So the mean (\bar{x}) is equal to 5 and total number of values (n) is 3 . Now any two of them can vary freely (i.e., the value may alter) and then the original mean ($\bar{x}) 5$ can be restored by necessary alteration of the third value. So normally the degrees of freedom (n^{*}) is equal to ($n-1$) but in more complicated situation n^{*} may have a lesser valuc. In the t-table, the t value is given at different probability against the degrees of freedom (n^{*}) for each set of sample.
6. Fidacial limit. With the t value we can estimate the accuracy of the mean of a set of sample. If we choose a value of probability of
occurrence of the true mean to lie in a range on either side of the sample mean and then we con find out the corresponding t values with the degree of freedom. Now we can have the limits with this t value, sample mean and the standard error with the following formula $\bar{x}_{ \pm} t_{\bar{x}}$; and this is named as fiducial limits of the mean. For example, suppose we want to find out the limits for 95% probability of occurring of the true mean; it can also be stated in the other way that the limit for 5% chance of non-occurrence of the true mean. So here the $\mathrm{P}=0.05$ or $(5 / 100) . n^{*}=9$ and with reference to the t-table, the $t=2 \cdot 262$.

No. of obecrvations	Blood pressure at systole of the heart, mm of Hg ,	Deviations $(x-\bar{x})$	Squared deviations $(x-\bar{x})^{2}$	Working
,	123	0.1	0.01	No. of observations $=10$
2	130	$7-1$	50.41	Mean $(\bar{x})=122.9$
3	116	, -6.9	47.61	S.D $=\sqrt{\Sigma(x-\bar{x})^{2}}$
4	118	-4.9	24.01	S.D. $=\sqrt{\frac{\sum(x-1)}{(n-1)}}$
5	126	$3 \cdot 1$	09.61	$= \pm 4.7246 \mathrm{~mm}$
6	124	$1 \cdot 1$	$1 \cdot 21$	of Hg
7	120	-2.9	$8 \cdot 41$	
8	128	$5 \cdot 1$	26.01	Standard error $=\frac{0}{\sqrt{n}}$
9	126	$3 \cdot 1$	$9 \cdot 61$	$=(\pm 4.72461) \sqrt{10})^{n}$
10	118	-4.9	24.01	$\begin{aligned} & =(\pm 4 \cdot 7246 / \sqrt{10}) \\ & = \pm 1.49 \mathrm{~mm} \text { of } \mathrm{Hg} \end{aligned}$
Total	1229	0	200.90	
Mean	$122 \cdot 9$			

The 95% fiducial limits of the mean for the above example are therefore

$$
\begin{aligned}
\bar{x} \pm t_{\bar{x}} & =122 \cdot 9 \pm(2.262 \times 1.49) \\
& =122 \cdot 9 \pm 3.46 \\
& =119.44 \text { and } 126.36 .
\end{aligned}
$$

In other words,

$$
\begin{aligned}
& \bar{x}-t_{\bar{x}}=119 \cdot 44, \\
& \bar{x}+t_{\bar{x}}=126.36 .
\end{aligned}
$$

Fiducial limit of the mean is $119 \cdot 44$ to $126 \cdot 36$.
7. Probability of a difference. Just in the reverse way by putting a value of the stated range in the previously calculated fiducial limit's equation of the mean; we can find out the t value. Now with the help of the
t-table we can have the frequency probability that the value is expected to lie. For example, by putting one person's blood pressure (116 mm of Hg) in the above calculated fiducial limits, we may have the t value,
$\bar{x}-116=t e_{\bar{x}}$, by putting the values of $\bar{x}, t e_{\bar{x}}$ we can have

$$
\begin{aligned}
& 122 \cdot 9-116=1 \cdot 49 t \\
& \therefore t=(6 \cdot 0) /(1 \cdot 49)=4 \cdot 63 .
\end{aligned}
$$

Now consulting the t-table with the t value (4-63) and the 9 degrees of freedom, it can be found out that $0.01>P>0.001$. So by obscrving the P value in this case, it can be stated that the difference between the expected value and our result (116 mm of Hg) is much for happening due to chance. In other words, there might have some influencing factor which actually carrying this difference. So in such cases we have to revise the expected value or look for some modification of this experimental method adopted for that work.

8 Significance. The difference between the experimental results and the control resuilt, may be stated as 'significant' or 'insignificant' by finding the P value. The term 'significance' is used'in the sense that it is unlikely to occur due to chance and in the reverse way 'insignificant' means that it is just due to a chance. This significance test is of great importance for the judgement of the scientific investigations. It is customary to regard unlikely to be by chance when $\mathrm{P}<0.05$ (i.e., one trial in twenty) as being significant and $\mathrm{P}<0.01$ (i.e.. one trial in hundred) as highly siguiñcant.
9. Significance test of a difference between two groups of quantitative measurements. When the same parameter (c.g., blood pressure) is studied in two conditions (e.g., normal and drug treated), then this t test can answer whether the change due to the drug treatment is significant or not. We can determine the probability from the t value obtained from the following formula:

$$
t=\frac{\text { difference between means }}{\text { standard error of difference between means }}
$$

i.e., $t= \pm \frac{(\bar{a}-\bar{b})}{e_{(a-b)}}$ when first mean $=a$; second mean $=\bar{b}$.

Standard error of the difference of two means $= \pm^{\ell}(a-\bar{b})$
or $t= \pm \frac{(\bar{a}-\bar{b})}{\sqrt{\left(e_{b}\right)^{2}+\left(e_{b}\right)^{2}}}$ as $e_{(a-\bar{b})}=\sqrt{\left(\imath^{\imath}\right)^{2}+\left(c_{b}\right)^{2}}$
Now let us have an example, where blood pressure is recorded of ten normal persons and ten drug treated persons. The records are stated in the following table from which the significance test is done:

6-30

No. of expt.	Blood pressure in mm of Hg		$(a-\bar{a})^{2}$	$(b-b)^{2}$	Working
	Normal (a) (control)	Treated (b) (experimental)			$\begin{gathered} t=\frac{(\bar{a}-\bar{b})}{\sqrt{\left(e_{-}\right)^{2}+\left(e_{\bar{b}}\right)}} \\ 8 \end{gathered}$
1	225	210	4	81	$\sqrt{7 \cdot 896+7 \cdot 617}$
2	220	215	49	16	8
3	230	205	9	196	$\sqrt{15 \cdot 513}$
4	- 220	220	49	1	$= \pm 2.397$
5	- 240	230	169	121	
${ }^{2} 6$	215	225	144	36	Degrees of freedom
- 7	235	210	- 64	81	$=\left(n_{4}-1\right)+\left(n_{b}-1\right)$
8	220	230	49	121	$=(10-1)+(10-1)$
9	. 240	225	169	36	$=20-2$
10	225	220	4	1	$=18$
Total	2270	2190	710	690	
Mean	$a=227 \cdot 0$	$\bar{b}=219.0$	$e_{\bar{a}}= \pm 2.81$	${ }^{e} b^{\prime}= \pm 2.76$	
			$\left(e_{\bar{a}}\right)^{2}=7.896$	$\left(e_{6}\right)^{2}=7 \cdot 617$	

Consulting the t-table we find that there is a probability $0.05>\mathrm{P}>$ 0.02 . That means the drug has produced a significant change in blood pressure. If in some other case it appears that the cnange is not significant but still there is some change then the technique of the experiment may be altered to have a more significant result.

VI. χ^{2} test

In many occasions we want to compare two or more groups to find out the efficiency or suitability of the methods, or drugs or something else, i.e., qualitative statistics in which we are not dealing with finer variations but with the quality (attribute) concerned. In such cases the number of individuals in each class is very high but the number of classes is limited or small.

For a single observed value:

$$
x^{2}=\frac{(\text { observed frequency }- \text { expected frequency })^{2}}{\text { expected frequency }}
$$

and for a number of values

$$
\chi^{\mathbf{2}}=\mathrm{S}\left\{\frac{(\text { observed frequency }- \text { expected frequency })^{2}}{\text { expected frequency }}\right\}
$$

Suppose we want to compare the different doses of a vaccine for a particular disease. Three groups are taken, 1st without vaccine, 2nd with low dose vaccine and 3rd with high dose vaccine. Now the rases
Fisher＇s $\chi^{\text {P－thele }}$

戸ヲに塄人

子苟

以

 －

of occurrence and non-occurrence of the disease are represented in the following table:

	Without vaccine (Placebo)	With low dose vaccine	With high dose vaccine	Total
Attacked with the disease	78	62	60	: 00
Not attacked	60	68	72	200
Total	138	130	132	$4 a^{3}$
Expected attacks 50\%	69	65	66	
(obs.-exp.) ${ }^{2}$	81	9	36	
(obs. - exp.) ${ }^{2} /($ exp.)	$1 \cdot 17$	0.14	0.55	$1 \cdot 86$

It is assumed that if the vaccine has no effect then the 50% of cach group should be the expected case number as it is seen in the table tha out of total 400,200 persons are attacked with the disease.

For the above table the χ^{2} values for single olservation are $1 \cdot 17,0 \cdot 14$, 0.55 . When these three numbers of χ^{2} values are summated together, then

$$
x^{2}=1 \cdot 86 \text {, i.e., }\left(1 \cdot 17+0 \cdot 14+0 \cdot 55=\chi^{2} \text { for a number of values }\right) \text {. }
$$

Wc now have to detcrmine n^{*}, the degrecs of freedom in the sample. It is seen that two of the observed values can alter or vary frecly, so that by necessary alteration of the 3rd one, the total 200 may be maintained. So the degree of frecdom (n^{*}) in this case is $(3-1)=2$. Now by using the χ^{2}-table the P value may be obtained which in this case is lying in between $0.5>\mathrm{P}>0.3$ which means that the above observed results can occur 3 to 5 times in 10 trials. This indicates that the vaccine has a definite or posilive protective action though not significant statistically in the above observations which may be statistically significant when is trialed with larger number of observations.

VII. Regreasion

When we measure two attributes of each of the individuals in a group, e.g., height and weight of a group of human beings, or height of blood pressure and different doses of epinephrine in rats. Now there is possibility of having some correlation between these two attributes. Before considering about the correlation, first of all we have to plot the results graphically by putting controlled variable (epinephrine) as the abscissa and the other as the ordinate. This controlled variable is also known as the independent variable in contrast to the dependent variable. Now if there is any relation between these two variable observations, there will be more or less some regularity in the arrangement of the points; but if there is no such relation between them, the points will be scattered. Now there will have a probability of fitting a straight or curved line (at
least approximately) to the points representing somewhat related observations.

Mathematical expression of the best fitting lines. Say, the independent variable be x and y be the dependent variable and when these values are plotted graphically, then the shape of the fitting line will depend on nature of the equation.

Thus the equation $y=a+b x$, when a and b are the intercept on the y axis and slope of the line respectively and x and y are variables. This equation will always represent a straight line. When the value of b is positive the line will slope downwards and to the left and will lie in the upper right and lower left quadrants. If the units for x and y are put to equal lengths then the slope of the line will be given by $b=\operatorname{ian} \theta$, where θ is the angle enclosed by the line and the abscissa on the side of the positive value of x.

That will be the best fitting line for which the sum of deviations of the observed value y from the predicted value Y is zero and the sum of the square of the deviations is minimum (similar to the best or ideal value). It can be shown that the line passing through the mean values of x and y will have the coefficient b of the following value:

$$
b=\frac{S\{(x-\bar{x})(y-\bar{y})\}}{S(x-\bar{x})^{2}} .
$$

The value of a can be obtained by putting this value of b and values of x and y at a particular point whose cu-ordinates are \bar{x} and \bar{y} (since it is known that the line must pass through the mean valucs of x a: $i d y$).

The best fitting line so obtained for the observed value of x and y is known as regression line relating x and y and the coefficient b is known as the regression coefficient. The equation for the best fitting line may also be named as the regression equation.

The calculations may be shortened by using method as that used for shortening the calculation of standard deviation by putting, i.e.,

$$
S(x-\bar{x})^{2}=S\left(x^{2}\right)-\frac{S^{2}(x)}{n} \text { and } S(x-\bar{x})(y-\bar{y})=S(x y)-\frac{S(x) \cdot S(y)}{n} .
$$

In some cases we may have a priori reason to know that the best fitting line (regression line) passes through the origin; in other words, the equation of the line is such that when $x=0$ then y is als, equal to zero. In such cases the method of determination of the regression equation is still easier as $b=\begin{aligned} & \dot{\Delta}(x y) \\ & S\left(x^{2}\right)\end{aligned}$ and the equation is $y=b x$.

The other formula for regression coefficient is

$$
b=r=\begin{aligned}
& \text { standard deviation of } y \\
& \text { standard deviation of } x
\end{aligned}
$$

wher * is the correlation coefficient.

The regression coefficient may be calculated with less complication following the table:

No. of obs.	Epinephrine ($\mu \mathrm{gm}$)	$\%$ Change (rise) in blood pressure y	Dev $(x-\bar{x})$	tions $(y-\bar{y})$	Product of deviations $\left\|\begin{array}{c} (x-\bar{x}) \\ \times(y-\bar{y}) \end{array}\right\|$	Squared deviation $(x-\bar{x})^{2}$	Working
1	5	20	-22.5	-74	1665.0	$506 \cdot 25$	$S(x-\bar{x})(y-\bar{y}$
2	10	35	-17.5	-59	$1032 \cdot 5$	$306 \cdot 25$	$n=\frac{s(x)}{s(x-\bar{x})^{x}}$
3	15	45	-12.5.	-47	$587 \cdot 5$	157.25	71600
4	20	65	-7.5	-29	217.5	56.25	$=2064.5$
5	25	82	-2.5	-12	30.0	6.25	
6	30	102	+2.5	+8	20.0	6.25	$=3.47$
7	35	120	+7.5	+26	195.0	56.25	
8	40	142	+12.5	+48	$600 \cdot 0$	$157 \cdot 25$	
9	45	159	+17.5	+63	$1102 \cdot 5$	$306 \cdot 25$	
10	50	170	+22.5	+ 76	$1710 \cdot 0$	506.25	
$\begin{gathered} \text { Total } \\ 10 \end{gathered}$	$\begin{aligned} & 275 \\ & \bar{x}=27 \cdot 5 \end{aligned}$	$\begin{gathered} 940 \\ \tilde{y}=94 \cdot 0 \end{gathered}$	0.0	0.0	$\begin{array}{\|c\|} \hline 7160.0 \\ S(x-\bar{x}) \\ \times(y-\tilde{y}) \\ -716.0 \end{array}$	$\begin{gathered} 2064 \cdot 50 \\ S(x-\bar{x})^{2} \\ =2064 \cdot 5 \end{gathered}$	

Now putting the values of b, \bar{x} and \dot{y} (as the line must pass through. \bar{x} and \bar{y}) in the regression equation $y=a+b x$

$$
94 \cdot 0=a+3 \cdot 47 \times 27 \cdot 5=a+95 \cdot 42
$$

$$
\therefore a=94 \cdot 0-95 \cdot 42=-1 \cdot 42 \text {. }
$$

So the desired equation for the best fitting line is $y=-1.42+3.47 x$ (Frg. 10.7).

Fic. 10.7. Graphical represcntation of the regression equation (best fitting line) with the help of the previous table.

Goodness of fitting of a regression line. The goodness of fitting of a regression line can be tested by calculating the squares of the deviations of the observed vaiues (x) from the expected values (X) and then dividing by the expected values (X), i.e., $\frac{x-X}{X}$. Thus values are obtained and are distributed as χ^{2}. The probability of their occurrence by chance can be obtained by summating them and seeking the valuc so obtained in a table of χ^{2}, with, in the case of a straight line, two less degrees of freedom than there are points on the line.

Variance and standard deviation from regression. When the deviations of x are measured from the expected values of X , which is calculated from the corresponding values of y and the regression equation but not from their own mean. Then the sum of squared deviations of x from X divided by the degree of frecdom (n^{*}) will give the variance of \boldsymbol{x}. from regression. The number of degree of freedom is determined with the usual method.

Variance of x from regression

$$
=S^{2} x \cdot y=\frac{S(x-\mathrm{X})^{2}}{(n-2)} .
$$

Similarly standard deviation from regression

$$
=S_{x \cdot y}=\sqrt{\frac{S(x-X)^{2}}{(n-2)}} .
$$

Standard error of the mean of one dependent variable say, e.g., \tilde{x} can be obtained with the following formula $e_{\bar{x}}=\frac{S_{x \cdot y}}{\sqrt{n}}$; and then the significance test of the regression line may be performed.

VIII. Correlation

In the situations where one variable is independent, i.e., in our control and the other is dependent on the former, then we have to consider the relationship with the regression equation. But there are also situations where both the variables are beyond our control and one is dependent or independent on the other. Now to consider whether they have any real or only apparent relationship, we have to go through the term correlation (a modification of regression).

The ccrrelation coefficient (r) is that coefficient which relates x and y when these are measured in standard measure and it also measures the association or correlation between the variables, e.g., children who are above average body weight to be more resistant to a certain disease.

In such cases we can assess the relationship by calculating the r with the following formula:

$$
r=\frac{S(x-\bar{x})(y-\bar{y})}{\sqrt{S(x-\vec{x})^{2} \cdot S\left(y^{2}-\vec{y}\right)^{2}}} .
$$

The alternate formula for correlation coefficient is

$$
r=b \frac{\text { standard deviation of } x}{\text { standard deviation of } y}
$$

where b is the regression coefficient.
The value of correlation coefficient be treated as similar to probability. When $r=1.0$ there is a rigid (definite) connection between the two variables and when $r=0$ there is absolutely no connection or relation.

IX. Amalysis of variance

The significance of test- t-test is convenient for quantitative measurements when the data are divisible into two groups. But if the data are of more extensive or of subsidiary divisions then the mathod known as amalyais of variance is more convenient, where the t-test is not directly applicabie. For example, suppose we want to study the effect of three different ergogenic aids on human subjects of both sexes five male and five female in each group. So with the control or dummy (Placebo). groups, there are four (three experimental and one control) male and four female human subject groups, from which we can calculate the number of mean values. First, the grand mean of whole set of measurements which may be named as \bar{x}, secondly, the two mean values of male and female subjects as \bar{x}_{M} and \bar{x}_{p}, and thirdly, mean values of the four groups comprising of both male and female subjects- $\bar{x}_{A}, \bar{x}_{B}, \bar{x}_{C}$ and \bar{x}_{D}. The last set of mean values can be obtained from the four male and four female groups separately as $\bar{x}_{A M}, \bar{x}_{B M}, \bar{x}_{C M}, \bar{x}_{D M}$ and $\bar{x}_{A F}, \bar{x}_{B F}, \bar{x}_{C F}, \bar{x}_{D F}$ respectively.

Now if we put the working hypnthesis as that the subjects are devoid of any effect due to the ergogenic aid or sex. Then all the means calculated. are the estimates of true mean μ of the population from where the sample is collected, with variance $(\sigma / \sqrt{ } n)$, when $\sigma=$ true standard deviation of the population and $n=$ number of subjects in a particular estimate of the mean. So all the calculated variances are the estimates of the true variance and the difference in these two will be the effect of random sampling. The ratio of two estimates of variance of a normally distributed population is denoted as the statistic F or e^{22} (here e is the base of naturai logarithms and not the standard error). Similarly the distribution is known as the statistic z, which is half the differenco between two natural logarithm of two estimates of the variance. The values of $e^{2 z}$ and z for common values of n (size of the samples) and the corresponding value of P (probability can be obtained from the table of $e^{2 x}$. Similarly the probability of ratio of the variances of grand mean (\underline{x}) and this group of males can be determined from the table of e^{22}. The value of P will indicate whether the results are drawn from a single normally distributed population

Example: If $m=$ number of groups, $n=$ number of individuals in each group, $\bar{x}=$ grand mean, $\bar{x}_{L}=$ general term for group mean, $\bar{x}_{S}=$ general term for sex mean and x_{1}, x_{2}, x_{8}, etc., i.e., x are the individual values. Then the following table will show the method of calculation of variance for the above mentioned vet of data:

Item. nu" beps	Items (included in the calcutation of variance)	Dearee of freedom	Sum of the squared deviations	$\begin{aligned} & \text { Varinace } \\ & \left(\frac{\delta(y))^{2}}{(k-1)}\right) \end{aligned}$
1	Betwees graups	$\begin{aligned} & a-1 \\ & 4-1=3 \end{aligned}$	$\begin{aligned} & s\left(s-\bar{x}_{L}\right)^{2} \\ & \text { fbecwee grand mean } \\ & \text { and treataneat means) } \end{aligned}$	$\frac{s\left(x-f_{k}\right)^{2}}{(m-1)}$
2	theneman meses	2-1-1	$s\left(x-x_{s}\right)^{2}$ (betwoen grand mean and sex means)	$\frac{s\left(z_{i}-\bar{x}_{k}\right)^{3}}{1}$
3	As a whale	$\begin{aligned} & m n-1 \\ & 4 \times 10-1 \\ & =39 \end{aligned}$	$S(x-\bar{x})^{2}$ (bctween grand mean and individual values)	$\frac{S(x-2)^{2}}{m x-1}$
4	Within zroupa	$\begin{aligned} & m(n-1) \\ & 4(10-1) \\ & -36 \end{aligned}$	$S\left(x_{L}-x\right)^{2}$ (between treatment meanz and individual values)	$\frac{s\left(\bar{x}_{l}-x\right)^{2}}{m(n-1)}$
5	Residual (within groups)	$\begin{aligned} & (m n-m-1) \\ & 40-4-1 \\ & =35 \end{aligned}$	$\begin{aligned} & S(x-\bar{x})^{2}-\{S(\bar{x}- \\ & \left.\left.\bar{x}_{L}\right)^{2}+S\left(\bar{x}-\bar{x}_{s}\right)^{2}\right\} \\ & =S\left(x-\bar{x}_{L}\right)^{2}- \\ & S\left(\bar{x}-\bar{x}_{S}\right)^{2} \end{aligned}$ (by difference, item 3. -1 . -2 .	$\frac{S\left(x-\bar{F}_{L}\right)^{2}-S\left(\bar{x}-\bar{x}_{S}\right)^{2}}{m n-m-1}$

X. Experimental design

Under the previous headings we have considered how to analyse or interpret the experirnental results when they have been obtained. But this analysis or interpretation of the results or observations depends mostly on the method or way by which they are obtained. Because it is quite possible that the observations, obtained out of a long laborious experiment, may not have any useful information. So it is preferred that the question of design of experiment and analysis of observations should be considered at the same time. The analysis of observations has already been considered in the previous pages, here we have to consider the experimental design only. During consideration of the experimental design the following factors are to be kept in mind:

1. Range of reliable induction. The design of the experiment depends upon the type of problem we want to study and the type of inference we wish to make. To have a more general inference the sample (observation) should be taken from a hypothetical infinite population and the method of sampling would have to afford a random sample
and not one biased to suit the convenience of the experiments. Say for example, it is observed that the administration of epinephrine causes rise of blood pressure in cats, dogs and rabbits; from this the inference may be drawn that the epinephrine causes rise- of blood pressure in all mammals. This inference may be correct but to justify the inference, the observations should be performed on more number of mammalian group of animals which will make the interence more reliable.
2. Null hypothesis. When some inferences are drawn on some common features present in the observed facts-then the inference drawn is named as hypothesis. During setting up of the experimental design, one control and another experimental groups always be set up, i.e., one group without the factor X (control) and other group with the factor \mathbf{X} (experimental). Now during analysis the statistical tests are always concerned with the difference between the observations (control and experimental) and not with the isolated observation. So the control observation is equally important along with the experimental one. By considering the difference in observations, all other factors except the factor X are eliminated. So the result obtained is expecied to be due to the factor X only. There is one hypothesis that two or more sets of measurements are likely to have drawn by chance from the same population. This can well be tested with the statistical methods. So according to this hypothesis the observed differences are likely to be due to errors of sampling and there is not necessarily any confirmable differeace between the groups. This hypothesis is named as the null hypothesis. This is specially suitable for rigid deductions and practical use.
3. Segregation of camees of variation. During consideration of the experimental design we should be justified that the results or differences obtained in the group-containing factor X , is due to the presence of the factor X only and in that case only. We can attribute the function (effect) to \mathbf{X}. But it is inevitable that a large number of other factors (known or unknown) will effect the experimental subjects, e.g., age, height, weight, physical condition, etc. And we cannot say that these small or minor differences will not affect the observed results. So we should have an eye that any small variation in between the subjects is to be avoided as far as practicable. The experiment must be so performed that the non-specific factors may affect the result contributing to the residual variance but not to the variance related to the factor X . This may be achieved by random allocation.
4. Random allecation. The selection of the experimental animals (or human subjects) should be made at randon, i.e., all the weaker or stronger animals should not be placed in the same group but the groups should contain the animals of both weak and strong groups equally. This may be done by numbering the individual animal and the numbered cards were shuffled well. Then by puiling one card at a time at random and putting that numbered animal to one group, the purpose of random allocation may be served.
5. Reductioan of experimental error. When all the above factors are considered in an experimental design, the significance of the results will depend directly on the magnitude difference produced by the factor \mathbf{X} (i.e., difference between the experimental and the control), on the number of observations and inversely on the standard deviation or error.

The first factor, i.e., the difference produced by the factor X is beyond our control yet in medical experiments this may be affected by the alteration of the dosage and duration of the drug. For a more reliable inference, the number of observation should be as high as possible. The experimental material should be made as homogeneous as possible and experimental conditions should be rigidly controlled and statistical analysis should be performed to estimate the cause of variation not attributable to the experimental factors. This may be summarised in the following headings: (a) Replication-The experiment should be conducted repeatedly in identical condition. This will reduce the experimental error and give precise to the observation. (b) Error control-Any factor, e.g., age, sex, temperature, etc., which may affect the experimental observation should be considered strictly. The experimental and the control experiment should be performed on the same condition from evcry aspect. (c).RandomisationBy selecting the subject, the validity to the data may be increased.

XI. Nemogram

It is the graphical representation of mathematical laws which are expressed analytically by means of equations. The term is sometimes restricted to a special type of chart which is used by bringing the points of these scales into alignments. The theory of nomogram is based mostly on analytical geometry. If the nomogram is once prepared with some labour, complicated problems of that system can be solved with speed and with slight labour, though the solutions are not of high accuracy. This is particuiarly helpful when many similar numerical problems are to be solved. Say for a simple example, it is well known that the height, weight and body surface of a person have got some definite relationship, so when the nomogram is prepared with that definite relationship, the value of anyone of these threc parameters can be solved out from the remaining two (Figs. $10.9 \& 10.10$).

The nomograms of equations of many variables are prepared by using a sequence of scale alignments or by employing networks of scales. They can be used by a person of ordinary knowledge or experience. These graphic representations are used widely in the problems of engineering, industry, natural and physical sciences.

In the more general forms of nomogram, the alignment chart for the solutions ranged in various ways, and one or more of the scales may be curved. The nature of the resulting scale-curved or straight depends upon the parametric equations. Only three scales need be drawn and they can be used by interpolating a straight line

Fic. 10.8. It presents a nomogram for the equation. $x^{2}+y^{2}=z^{2}$.
over these scales, i.e., interpolating the straight line drawn through the two known points ($\mathrm{X}_{1}=6, \mathrm{Y}_{1}=8$ as Fig. 10.8), corresponding third (unknown) value ($\mathrm{Z}_{\mathrm{i}}=10$, Fic. 10.8)-point of intersection-can be obtained. Now in actual practice if these lines are really drawn, a few lines will mar the graph. This can be avoided by stretching a fine thread or by
placing a straight line of a transparent scale in position across the chart (Fic. 10.8).

Fig. 10.9. Nomogram for estimating surface area of infants and young children. To determine the surface area of the individual it can be drawn a straight line between the point representing his height on the left-hand vertical scale to the point representing his weight on the right-hand vertical scale. The point at which this line intersects the middle vertical scale
represents the individual's surface area in square metres.

Fio.10.10. Nomogram for estimating surface area of older children and adults.
The description is same as in Fig. 10.9.

