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Objectives

After studying this Chapter, you should be able to understand -

®  Binary composition, various types of composition, composition tables.
® Groups, rings and fields.

50. INTRODUCTION

These are some special types of mathematical systems.

of these is to help in performing certain mathmatical operations on a set.

n the first three chapters we studied the algebra of certain binary opera-
tions and in the fourth chapter we acquainted ourselves with the real
number system. Now, we take up some mathematical composition with
certain number systems and the binary operations defined on them. The
two together form a mathematical system. Before coming to certain
special algebraic structures like groups and fields we shall like to discuss
binary compositions.

51 BINARY COMPOSITIONS

A binary composition is a composition set of order pairs of numbers
which are associated under a binary system, observing the rules of opera-
tions of such a system. The operations may be symbolised by say *
. (asterisk). What is of importance is the observance of the rules of opera-

tions dealt in earlier chapters. Here these rules are integrated into binary
composition system.

The purpose
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Def ILet S be a non-emnty set. A mapping * : SXS=Sis said to be
a hinary composition on the set S.

Ilustrations 1. Let R be the set of real numbers. _Then addition
+is a binary composition in R, since to cvery ordered pair (a, b) of real
numbers. we get a+ b which is also a real number.

Multiplication ‘.’ and subtraction ‘—’ are also binary qompositions
in R,sincea . b and a—b are also real numbers. But division is nota
binary composition in R, since a0 is meaningless.

2. Union U and intersection M are binary compositions in the
power set of a given set since the union and intersection of two subsets of
a given set are again subsets of the set. Thus

AE P(S) and BE P(S)=AUBE P(S)

AE P(S) an} BEP(S)=>ANBEP(S)
) 3. Conjunction (/\) and disjunction (\/) are binary compositions
in the set of all sentences.

4. Let Q be the set of rational numbers. Then the mapping
*.0x Q=0 defined by a* b=a-b, whereas a, b € Qis an addition
composition on the set Q of rational numbers. ‘

Also, the mapping * : Ox Q= Q defind by a * b=ab where 4, be 0,
is a multiplication composition on the set Q of rational numbers.

5'2. VARIOUS TYPES OF COMPOSITIONS

I. Commutative Composition. The binary composition * on a
set S is called commutative (or Abelian), if for every &, bES.

a*bh=:b*a

Ilustrations 1. Both addition and multiplication compositions on
set N of natural numbers are commutative, because a+b=>b+a and
a.b=b.aforeverya, b € N.

2. The addition and multiplication compositions on set 0, of
rational numbers, on set R of real numbers and on set C, of complex
numbers are also commutative. )

3. The substraction composition on the set of integers, I, is not
commutative, because a—b#b - a for every a, bel

4. The intersection and union compositions in the set of all sub-
sets of a set are both commutative.

1. Associative composition. The binary composition * on a
set S is called associative if for every a, b, cES,

(a*b)*c= a* (b*c)

IMlustrations 1. The addition and multiplication compositions on
set of natural numbers, on set of rational numbers, on set of real numbers
and on set of complex numbers are associative.

2. Both intersection and union compositions on set P or subsets of
a set are associative, because

(AUB)YUC=AU(BLC)
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and (Ar‘\B)ﬁC=Ar'1(BﬂC),

where 4, B, C € P.
3. The subtraction operation on set of integers I is not associative
because

a—(b—c)#(a—b)—c, for every a, b, c& f
4. Inset Q, the composition defined as
a*b=a+b+ab
is associative because
(a*b)*c=(a+b-+ab)*c
=(a+4-b +ab)+t-e(a+b +ab)c
=a+b+ctab+be+ac +-abe
Also a*(b*c)=a*(b+c+be)
=a+(b+c+bc)+-alb +c+be)
=a-+b+c+ab+bc+ac tabe
=(a*b$)*c
5. In set R of real numbers,
a*b=aqa . b?
is not associative because
(a*b)*c=(ab?*)*c
=(ab®)c?==qh?c?
and a*(b*c)=a*(bc?)
=a(be? ) =ab3ci54(a*b)*¢

III. Identity element for a

composition. Ap element, donoted
by e, of a set S is called an identity element for the comiposition®, on S if

a*e=e*a=avac§

the composition defined by

Illustrations 1. Let + be the composition of addition on set R of
real number where 0 is the identity element for the

composition because
for every real number ¢ € R, 0+a=a+0=q.

2. Let ‘. be the composition of multiplication on set R of real
numbers then | is the identity

element for the composition because for
every real number a€R, |, g=g=g ‘

.

ntity for the addition composition on the sets of
natural numbers, rational numbers and complex numbers, | is the identity
for the multiplication composition on the sets of natural numbers, rational
numbers and complex numbers.

4. For the union composition on a set S, out of the subsets of the
set S, the null set $ES,, is the identity.

IV. Invertible element for i position having an
identity element. Ifa set § contain i i
position*and if g*h=e= p*y for every g, be 5,
of b and b is called the inverse of a,
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Ilustrations 1. In the addition composition on set of real
numbers, every real number ‘a’ has an additive inverse (—a), because

a+(—a)=0=(—a)+a
where 0 is the identity element

In multiplication composition on the set of real numbers, g has a

., 1
multiplicative inverse 5 because
[¢

1 i .
.~ =]= ;— a, where | is the identity element.

2. In the multiplication composition on the sets of rational numbers
and complex numbers, every element except 0 is invertible.

53 COMPOSITION TABLES

If §'is a finite set consisting of n elements then a composition* in §
can be described by a table consisting of n rows and n columns in which
the entry at the intersection of the row headed by.an element a&€ S and the

column headed by an element b€ S is a*h. Such tables are called compo-
sition tables.

Mustrations 1. Let S={ag, b, ¢}. The table below gives a com-
position * in .

b b b ¢

c a c c

From the table we find that
a*a=a, a*b="b, a*c=a,b*a=b
b*b=b, b*c=c, c*a=a, c*b=c, c*c=c.
2. Let S={l, w, w*} where w is cube root of unity so that wi=1

* 1 pe o?

1 1 w w?
w w w? 1
w? w? 1 w
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V. Distributive Laws for the compositions, If * and A be
two cempositions on set S and

(i) ifaA(b * )=(anb) x (aAc), where a, b, cE€S, then *and A
are said to satisfy the left-distributive law.

) If (b* c)Aa=(bAa) * (cAa), where a,b, cES, then * and
A are said to satisfy the right-distributive law. The two laws together are
called distributive laws.

Illustration. The compositions of addition and multiplication on
{he set of integers obey both the distributive laws.

We now take up certain special algebraic structures under the head-
ings of groups, rings and fields.

54, GROUPS (G, &, ®)

Basically, a group is a special type of set with some relationships
amongst its elements. In previous chapters we have quoted many sets in
which the elements had no clear relationship with each other. We now
consider sets which have special properties to allow us to add, multiply
and combine the elements in some specified manner. We shall now
describe, sets which possesses certain properties and form into groups.

Definition. A group is an algebric or a mathematical system con-
sisting of a set G of elements a, b, ¢, ...and a single binary composition,
This binary composition gives a rule of combination of the elements, and
should be well defined. The symbol * is used to denote this composition
or operation.

A non-empty set G of elements a, b, ¢,...on which 2 binary
operation* is defined, is said to form a group (G, *) if the following
properties are satisfied.

G,. Closure. There exists unique element a * b€ G for every g, beG
such that

a®bhbeG ¥ a, beG
This also shows that it is an internal composition
G,. Associative :
(awb) wc=axn(bxc)
for all a, b, cEG.
G,. Identity : There exists an identity clement say e€G such that
aye=a=exa

On the right of a it is right-identity and on the left of a itisthe
left-identity.

G,. [Inverse : For every element aE G, there corresponds an element
bE G such that

aab=e=b,a
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The element b is called the inverse of a, it can also be denoted by
a~' but that will be confused with a negative index. The symbol (*) can

be substituted by @ for binary addition and ® for binary multiplication
as the case may ba.

It should be further noted that even though a large number of

groups satisfy the commutative property, this is not a necessary require-
ment for a group.

A group consisting of finite number of eclements is called a finite
group. A group which does not restrict itself to a finite number of
elements is called an infinite group. The order of a finite group refers to
the number of elements in the non-empty finite set.

5'5. AN ABELIAN GROUP
A group (G, *) is said to be commutaitve or Abelian group if
a * b=b * q for every a, bEG.

_ Illustrations 1. A set of integers I={..., —3, —2, —1,0, 1,2,
3,...} forms a group with respect to addition because there is an identity

element 0 and the inverse say (—a) for ac /. "The group (I,+) is an
Abelian group as it is commutative under addition. But the set of integers

is not a multiplicative group since there is absence of multiplicative
Inverses as in the case of 0 and 2.

2. The set of all positive rational numbers Q% is an Abelian group
under multiplication. For

(i) If a, bE Q*, then a . b also exists in the set.
(ii) There exists an identity element 1.
(iif) The composition under multiplication is associative.

(iv) There exists an inverse % for every ag Ot

(v) The operation is also commutative and therefore forms an
Abelian group. i

3. The set of real numbers with the ordinary addition composition
is an Abelian group.

4. Theset of all non-zero rational numbers with the ordinary
multiplication composition is an Abelian group. 3

5. Prove that set of all integers with the ordinary addition as composi-
* tion is a group.
-Proof. Let Z be the set of all integers and -+ be the given binary
composition.
(1) Let a, b be any two elements of Z.

Now a+b €Z, since the sum of any two integers is also an integer.
Therefore + satisfies the closure law.

(i) Let a, b, ¢ be any three elements of Z.
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2 Then (a+b)+c=a+4-(b+c) is true, since this is valid for all integers
a, b, c.

Therefore -+ satisfies the associative law.

(i) Since a+0=a=0+a, ¥a€ Z, therefore the identity element 0
exists. It is the integer 0.

(i) Since a+(—a)=0=(—a)+a, ¥aEZ, therefore every olement
possesses an inverse.

Since Z satisfies all the properties of a group, (Z,-}-) is a group.
6. Show that the set G={I. w. wl}, where 1, w, w? are cube roots of
unigy, forms an Abelian group with respect to multiplicatfon composition.

Proof. (i) Closure Froperty :

IQuw=wElG; s@wi=uw?=]1EG WP @1 =w?EG
(il) Associativity :

(1Pw)®w*=10(v@®@w?)

(iii) Identity element is 1, since

1@ wew, 1®w?=wi 1@1=
(iv) Inverse of each element exists

1®l=1forl1€CG

w@u'=uw=, WVOw=w?=

So, 1, w?, w are respectively the inverses for I, w, «?.

(v) Commutativity :
|@Qov=a=w@®], e@wl=uw=] =w?@®w
and @] =w=]@uw?
(G, ®) satisfies all the properties for Abelian group.

7. The set I of integers with the binary composition * defined as
a*b=a—b;a bElis nota group
because a*®b*c=a—(b—c)=a—b+c
and (d*b) * c=(@a—b)—c=a—b—c

Therefore a * (b * c)7#(a * b) * c and thus the property G, is not
satistied.
§'6. PROPERTIES OF A GROUP

I. Uniqueness of Identity. Idenfity element of a group is unique.

Proof. Lete ande’' be the two identity elements of the group
(G, *).

ook a*e=ag=¢*g, ¥YaeG s {1)
and a*e'=qg=¢ *qg -(2)
Subsistituting a=c¢"in (1). we have

g *emp'=ghy (3
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and putting a=e in (2), we havo
e*e'=e=e *e ()
From (3) and (4), we have e'=¢

There cannot be two identity elements for (G, *). Hence identity
element of group is unique.

II. Uniqueness of inverse. [n a group every element possesses 3
unique inverse,

Proof. Leta ! and a’ be two inverses of a in G.

a*a =e=a *a ssa(il)

and al*gee=ag*g? oo (2
Now al=agl*e [From (G,)]
=al*(a*q)=(a1*a)*a [Associative Law]

=g ® g’ [From (G,)]

’

=a
Hence the inverse of a is unique.
111. Cancellation Property. For any group (G, *)
(a*b=a*c = h=c
(i) b* a=c*a = b=e¢, where a, b, c€G
Proof. (i) Consider
a*b=a*c
The operation with inverse a~! will give

a ¥*(a%p)=a1*(a*c)

£ (a-1*a)b= (a” 1*a)¥c (By associative law)
> e*b=e%*c
= b=¢
(i) b#a=c¥*a=(b¥a)*a 1= (c*a)*a!
= b#*(a®a ) =c*(a%a™?)
= h*e=c¥*e
= b=c

1V. For every a, bEG, each of the eguations a*x=ph, y*a=>0 have
unigue solutions.

Prof. Consider the equations
a*x="h y*a=>

Pre-multiplying and post-multiplying by a-?, we get

a lu(axx)=a *b (ywa)na  =bga™
2> (a7 %a)ex=a'eb =  yu(aga V)=b%*a"}
5 exx=a lgb = y*e=bhpa !

= x=qg %) > y=bya™?



122 BUSINESS MATHEMATICS

This shows the existence of solutions of the above two equestions.
To show uniqueness, let there be another Xy, ¥, such that

a¥*x,;=b Yisa=-b
then AxXx=axx;, y¥*a=y *q,
By Cancellation law, x=x,, y=y,, uniqueness follows.

V. Ina Group (G*). (@) '=a,% aEG. In other words, for every
a€ G, the inverse of an inverse of a is ‘a’ only, i.e., the inverse of an inverse
of the element of a group is the element itself.

Proof. We know that
b7lybh=e
Replacing & by a-1, we get
(@) 'yat=e¢
Operating on the right by a, we get
(@) ea " xa=eya

= (@) 'w(a 7 4a) =a [Associative property}
= (a-1)ge=qa e

e (@) '=a (Using 'I?lcntity law]
VI. Inagroup (G, *),

(ad) = b"%a v g be G

In other words the inverse of the product of two elements of @ group is
the product of their inverses taken in the reverse order.

Proof. Let e be the identity element of the group G,
Now
O pa ) u(anb)=b"1,[a ' 4(a4b)]
=b"4[(a wa)xb]=b Yy(exb)
-b‘l'b=¢

Also (anb)*(5™1%a71) =g *{(h*p~1)*4-1)
=d*(e*a" )
=a*al=¢

Soo (BT*ET)¥(g*h)=e=(a%*b) (b wa ™)

§ = By def of the inverse element of a group, b7 1ga™? is an inverse of
a0,

Hence (aub)~1=b"14a"1

. Example 1. Prove that the numbers 1, i,—1,—i, where i= —1 with
ordinary multiplication as the composition is an Abelian group.
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Solution, Let us form the composition table for multiplication.

@) 1 — i —i
1 T —1 i i
-1 —1 1 —i i
i i —i =1 1
- =i P 3 =l

(i) From the above table it is clear that multiplication is a binary
operation as all the elements inside the above table are elements of G.

(i) Also

1®(@—1)=(l®i)®—I; since
1O(®—)=(1® 1N=I and (1®H® —i=({®@—=1
Associative property is satisfied.
(#ii) 1 is the identity element, since
101=1, 1@(—1)=—1, l@—i=—i

(iv) We can verify that inverses of every element exit. Sup
want to find inverse of i.

Look to the row in which leading element is i,
the identity element 1 in that row then the number at
column, i.e, —i will be the inverse of i. Thus (i) 1= —I.

Similarly () t=1, (—i)?*=i

(v) Again 1@i=i®I|, —i@i=i® —i, etc., Le, the composition is
commutative.

Hence.the above set is an abelian group for multiplication.

Ezample 2. Prove that the set Q% of all positive rational numbers
forms an Abelian group for the compositionx defind as
ab
2

Solution. (i) Closure property. Let a, b be the two elements of the
above set.

|.t a*b': "'az“b“‘ e Q‘-

pose We

i.e., the third TOW. Se_e
the head of this

a;.b =

(ii) Associative property. Let a, b, ¢ € Q0+ then

R
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={la . (b* )]
=a*(b*c)
Hence *b)*c = a*(b*c)
(#ii)  Identity. 2€ Q* serves as an identity because

a*¥) = aé?. =a, ¥ a € Q¢

<« Identity element exists and belongs to the set.

() Inverse. For a S Q*.—g—-e Q% is the inverse as

a L R

.« Inverse element exists and belongs to the set.
(v)  Commuaative property.
ab ba

a*b= - = = =g

2
Hence O+ is an Abelian group.

Example. 3. Prove that the set Q of all rational numbers other than 1
with the operation defined by

a*b=a+-b—- ab
constitutes an Abelian group.

Solution. ({) Closure property. Let a, b€ Q so that both g and b are
rational numbers other than unity.
a*b=a+b—ab is also a rational number.
(i1)  Associative property. Forall g, b, c€Q
(a*bY*c=(a+b-- ab)*c
=(a+b—ab)+c—(a+b—ab)c
=a+b+c-ab—ac—bc+abe
Also a*(b*c)=a*(b+c—bc)
=a+(b+ c—be)—a(b+c—bc)
=a+b+c—ab -ac—bc+abe

& (a*b)*c=a*(b*c)

(ii7) Identity. If e be the identity then
a*ewg => a4 e—ae=aqa

= e(l—a)=0

= e==(), as gg&|

i 0€Qis the identity element.
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(iv) Inverse. If bis the inverse of a, then

a*h=e
= at+b—ab=0
a
= b
a

i € Q is the inverse element.

(v) Commutative property. For all a, beQ
a*b—=a+b—ab
b*a=bta—abh
=a-t+b—ab=a*h
Hence the set QO with the above composition forms an Abclian
group.
Example 4. Lef an ordered pair of real numbers be called a complex
number, and let addition @ of complex numbers be defind by
(a, 5)B(c, d)=(a+c, b+d)

Show that the set of complex numbers fogether with binary operation @
Jorms a group,

Solution. Let C be the set of complex number, {e.,
C={(a, b) | a, bER)
where R is the set of real numbers.

(i) Closure property. Let (a, b), (¢, d)EC, as the sum of the complex
numbers is a complex number. Therefore

(a, b)&(c, d)=(a+c, b+d)eC
(i) Associative law. (a, b), (c+d), (e+fNeC
(a, b)Bi(c, d)B (e, f)} =(a, b)B{(c+e), (d+1))

={(atc+te), (b+d+f)} (1)
and {(a, H)S (c, d)}®B(e, f)={(a+c), (b+d)i@(e, 1)
={(atc+te), (b+d-+f) «s(2)
(1=(2)

(jii) Identity element. The element (0, 0)&eCis the identity element
as

(a, HYB(O, 0)=(a, b)=(0, 0)B(a, b)
(iv) Existence of inverse. (—a, —b&)E C is an inverse of (a, b) as
(a, b)YB(—a, —b)=(0, 0)=(—a, —b)B(a, b) ¥ all (a, b)eC
(v) Commutative law. For all (a, b), {e.diEC

(a, )S(c, d)=(a+tc, b+d)=(c+a, d+b)=(c, d)B(a, b)
Hence (C, @) is an abelian group.
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Example 5.  Show that the set
G=+(x4/2y : x, yEQ)
is an abelian group with respect to addition, Q being the set of rationals.
(C.A. Entrance December 1983)

Solution. Since_ x, yeQ, set of rational numbers, therefore,
x-+#2yis a set of irrational numbers, G.

Let us see whether the set G satisfies the requisites of an abelian
group.

1. Closure property. The addition of any two irrational numbers
is also a irrational number of the same form, e.g., let x,, y, and x,, €0,
then

(1‘1-‘—\4’2)’1)4‘(3\'2‘*'*./2)’2):(x1+xz)+vlz(}’1+y2)
and (X2 /2y2)+ (x4 o/ 23))= (o x,) 4+ 2(ye+31)
The set G is closed.

2. Associative law. The addition of irrational numbers is
associative, therefore, the set G satisfies the associative law.

3. Identity element. ‘O’ is the identity element of the given set.

4. Inverse element. —x—2./y is the inverse of the element
x+ ¥ 2y because

(x+ V2 H(—x—¥2p)=(—x—V2y)+(x4+v2y)=0

5. Commutative law. The addition of any two irrational
numbers is commutative, the set G satisfies the commutative law.

Hence G={x+2y: x, ye 0}
forms an abelian group.

Example 6. G is a group in which every element is its own inverse,
so that, for example, x?=y*=(xy)*=e. Show that xy=yx.

(C.A. Infermediate May, 1981)
Solution. We have

X2=¢=xx=e, {.e., x=x"1 (D)
Yi=e>yy=ce, ie., y=y71 il 2)
(xyl=e=(xy) (xy)=e
ie., (x9)=(xy)?
=yl x71
=ypx [From (1) and (2)]
xXy=yx

%7, MODULO

We are familiar with the operations on sets which are concerned
with union, intersection or complementation. We now take up some new
type of operations on sets. Let us take a set G={0,1,2,3,4,5}. We
have to define the operation which we want to have on this set. The
formal instruction is like this :

“Select any element of the set, say 4 and then select another element
of the set, say 5; with this ordered pair of elements the operation
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associates exactly one number according to the rule; determine the sum
of 4 and 5 ; divide the sum by 5 and find the number.”

Let this remainder be the number that the operation associates with
4 and 5. This is indicated by 4(z5=4. We can say that the remainder
4 associates 4 and 5 through a certain operation. Similarly other associa-
tions can be expressed as 2@;3=0, 3@,4=2, etc. The results of the
operation @; on a set of element {0, 1, 2, 3, 4, 5} has been shown in the
tabular form :

T Y N
0T 0 1T 2 3. # 0
i } % 3 4 Bs 1
2i{2 3 4 p 3§ .2
3/ 3% 4 o0 1 2 3
4l 4 @ 1 2 3 4
510 1 2 3 4 o

The above table shows a binary composition with the addition
operation on a set of numbers {0, 1, 2, 3, 4, 5} and the composition is
called addition modulo 5.

Definition of Addition modulo m. Iet ¢ and » be any two
integers and m be a positive integer. Then the addition modulo m denoted
by a®mb is defined as

ﬂ@mf:’:r;

where ris the least non-negative remainder obtained by dividing the
ordinary sum of a and b, viz., a+b by m. In other words, for finding a® mb,
we add a and b in the ordinary way and then from the sum we remove the
integral multiples of m in such a manner that the remainder r left out is either
zero or a positive integer less than m, e.g.,

1. 9@ ,6=0, since 9+6=5(3)
2. 12®,8=6, since 124-8=7(2)+6
3; —10®4=2, since —10+4=(—2)442

Multiplication modulo p. The multiplication modulo p of any
two integers @ and b is denoted by a® b and is defined as

a®ph=r,

where ris the least non-negative remainder obtained by dividing the
ordinary product of ab by p. Tn other words, we find ordinary product of
two numbers a and b, viz., ab and from this product we remove the multiples
of p in such away that remainder r left out is a positive integer less than p,
eg.,

1. 4®,7=4, since 4 x T=6(4)44,

2. 8®y5=4, since 8x5=6(6)+4.

Example 7. Prove that the set G={0, I, 2, 3, 4, 5} is a finite Abelian
group under ordinary addition with modulo 6 as the composition.
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Solution. Here we shall make the following composition table.

@D, | 0 1 p 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
. 2 2 3 4 5 0 l
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

(1) Closure property. The system is closed under @ because all the
elements resulting from the operation @, in the set {0, 1, 2, 3, 4, 5} are
also the elements of the set.

(ii) Associative. The composition is associative because (a - b)+¢
and a (b +c) both will have the same positive remainder when divided by
6, e.g.,

(3(‘93“')@55=023@s(4@s5)

(éit) Identity element. Clearly the element 0 of the set is the identity
element for the composition,

(iv) Inverse element. In order to find the inverse of element, say 5,
look to the row headed by 5 where O is there, then the element at the head
of this column, ife., | will be the inverse of 5. Similarly we can show
that the inverse of the elements 0, I, 2, 3, 4, SareQ 5, 4, 3, 2, 1
respectively.

(v) Commutative. Tt can be seen from the table that
a®Degh=bBa for any a, bEGC

Hence the set G under ordinary addition with modulo 6 is a finite
Abelian group.

Example 8, Istheset {I,2, 3,4,5, 6,7} a group under addition
modulo 8.

S olution,

qmmauu~9
O hWN—-

O N W R
N-—-C-—lO\Un.n.Iw

v

WR=O 3 &
BLN—ONW
NEWR— Ol
AL B W — O

1

The abobe operation is not a binary operation because 0 or additive
identity element does not belong to the set.

Example 9. On the set Z, we introduce a operation * defined as
follows :

a*b=a+b-+1, where - is the ordinary addition.
Show that (Z,*) is a group.
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Solution. We list the following properties to show that (Z, *) is
group.
(i) Closure. 1If a, b are any two elements from (Z, *) then
a*b=atb+1€2 )
(ii) Associativity. If a, b, ¢, are any three clements from (Z, *) then
(@*b)*c=(a+b+1)* c=(a+b+1)+c+1
=(a4b+14c)41
=(a+b+c+1)+1
=(a+b+tc)+1+1

- =(a+b+c)+2
Similary, it can be shown that

a*(h*c)=(a+b+c)+2
, (a*b)*c=a*(b*c)
(ru) Identity. If e is the identity for (Z,*), then we must have

a*e=avaceZ
= atet+l=a )
= e+1=0, where 0 is the additive identity of Z
= e=-—1, which is an element from (Z, *).

Thus—1 is the identity for (Z,*)
(iv) Inverse. 1f b is the inverse of @, then

a*th=e
= at-b+l=—|
= at+b=-—2
= b=—2—a

Thus —2 —ais an inverse of alla€ Z
Hence (Z,*) forms a group.

Example 10. Prove that the set {I, 2,3, 4, 5, 6} is a finite Abelian
oup of order 6 under multiplication modulo 7.

Solution. The composition table is shown below,

@1 3 % 4 8 6
1|1 2 3 4 5 6
342 4 & 1- 3 3
303 6 2 5 1 4
4 4 1 s 2 6 3
s |5 3 1 & 4 2
6l & 4 3 2 1

(i) Closure property. From the composition table, we can see that
all the entries are the elements of the set.

(i) Associative law. We can verify for any three elements of the

above set,
(a®:b)®,c=a®,(b®c)
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eg., (3®:5)®,4=4=3©,(5®,4)
(1ii) Identity element. Clearly 1 & G is the identity, element, since
1®a=a=a®;,] ' (a=1,2, ., 6)

(iv) Existence of inverse. The inverses of 1,2,3,4,5,6 arel, 4,5,
2, 3, 6, respectively.

(v) Commutative law. The corresponding rows and columns in
the composition table are identical, as such the commutative law holds
good.

Hence (G, ®,) is a finite Abelian group of order 6 under multiplica-
tion modulo 7.

Example 11. State giving proofs or counter examples, whether the
Sfollowing statements are true or false.

(i) Given a set S and a commutative binary operation 0 on it, then
a0(b0c)=(c0b)0a for all a, b, c in S.

(ii) A group may have more than one identity elenent.
(1ii) Every finite group of three elements is Abelian.

(iv) Aset A={I, 2, ... .. ,n—1I} with the operation of multiplication
(modulo n) forms a group for all positive integral values of n.

Solution.
(1) True, using commutative property along with associativity.
a0(b0c) = (b0¢)0a (associativity)
=(c05)0a (commutativity)
(ii) No, it cannot have two identity elements.

(iify True, a group of threeelements say {e, a, &} is an Abelian as
shown below :

e a b
e € a b
al wa b e
b b e a

(a) In the above composition, e is an identity element. Since
a*e=a, b¥c=b
(b) The inverse of a is b because
agb=e=b,a
(¢) The composition is commutative, since
apb=0b.a
(d) The composition is associative, since
(a*b)*e=a*(b*e)
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(iv) True, a set of positive integers given with modulo » has a multi-
plicative inverse.

58 RINGS (R, &, ®)

The algebraic structure of rings has two binary compositions viz.. &
and . We recall that the groups dealt earlier had only one binary opera-
tion either ® or (. As regards notations there is no rigidity, some authors
use * for ® and A for ®. Itis common practice to use the symbols ‘+°’
and *’ respectively for * and A and call these compositions addition and
multiplication respectively. An operation is known by its properties.

We can now define a ring as a non-empty set R with two binary
operations @ and ® and indicate it as (R, @, @) if the following eight
properties hold;

R,. Closure law for & :
a®bER, ¥ a, bER

R,. Associative law for @ :
(a®b)Bc=a®(bDc)va, b, cER

R, [Identity element for @. There exists an element 0ER, called
the identity of the composition such that

a®B0=a=0Ba

0, the identity of R for the composition &, is called the zero of the
ring.

R,. Inverse element for ®. For every element a€ R, there exists an
element 5 & R such that

a®b=0=hPa

Then b is called inverse of a. The inverse of any element a will be denoted
by (—a).

R,. Commutative law for @. The composition @ is commutative
in R, ie.,

a®@b=b@a,va,hbER
Rg.  Closure law for ® :
a®bE R, ¥a,bER
R,. Associative law for ®
(a®b)@c=a®(b@®c), ¥ a, b, cER

It may be noted that for ring there is no necessity for the existence of
multiplicative identity, inverse and commutativity.

R,. Distributive Laws. The composition @ is distributive with
respect to @, i.e., foralla, b, cER

a® (bdc)=(a@b) B (a®c)
and (bBe)®a= (bEa)@(c®a)
In other words, we may define a ring as follows :
(i) Ris an Abelian group under &,
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(if) R is a semi-group under @, and
(iii) @ is distributive with respect to @ in R.

Illustrations 1. The set I of all integers with ordinary addition and
multiplication composition is not a ring,

2. The set of natural numbers with ordinary addition and multipli-
cation composition is a ring. :

3. The set consisting of the two elements 0, 1 with the following
addition and multiplication composition tables :

@] 0 1 ®ji 0 1 . _
i and —f———— — is a ring.
o] o 1 01 0 0
1 1 0 1{ 0 1

4. The following two tables have been prepared for both the opera-
tions on a set of integers {0, 1, 2, 3, 4). The modulo in thxs_casc will be
5 so the ring can formally be called (S, ®;, ®,}. The respective tables of
the two operations ou the same set are :

@1 0 1 2 3 4 @ 0 1 2 3 4
0| 0 I 2 3 4 0/ 0 0 0 0 0

1 I 2 3 4 0 1 0 1 2 3 4
2 2 3 4 0 | 2 0 2 4 1 3
3 3 4 0 I 2 3 , 0 3 1 4 2
474 0 1 2 3 dfo .4 3 2 1
Example 12. State if the set compositions S=1{a, b} with addition

and multiplication defind as follows is of a ring.

N @ I a b (i) ® a b
a a b al a a
b b a bl a b

Solution. In the (I) a is the additive identity and 5 is the additive
inverse.

Similarly, in (i) both the closure and associative properties are there.
The latter for example is

(@®h)®a=a®@(b®a)=a
On checking all the properties of the ring we find that it is a ring.

Example 13. Stare if the set R={a, b, c, d} with the operations
defined as follows s of aring :

@| a b ¢ d ®| a h c d
a a b c d a a a a po
b b a d C b a b a b
c c d a b c a c a ¢
d d c b a d a d a d
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Solution. The set R={a, b, c, d} constitutes a composition of ring
because all the eight properties listed above are satisfied. It can be checked
taking note of the fact that a is an identity element in (i) and there is no
need of identity element for ®.

Sub-Rings. The sub-ring is the ring composition formed by a sub-
set of a set with a ring composition. As shown above §={a, &} constituted
a sub-ring of the ring sct of R={q, b, ¢, d}.

Commutative Ring. Ring for which multiplication composition is
commutative is called commutative ring In other words, a ring (R, ®, ®)
is said to be commutative if the (® composition in R is commutative, i.e.,

a®bh=b@®a ¥+ a, bER
Ring with Unity. A ring (R, @, ®) is said to be a ring with
unity if it contains an element denoted by | such that
1®a=a=a®]1 ¥ aER
For example the ring of all integers is a ring with unity, 1 being the
unity of the ring.
Rings with Zero Divisors. In aring R an element a #0 of R is
called a divisor of zero if there exists element b0 of R such that
a®b=0 and b®a=0.
For example, rings I, O, R, C have no divisors of zero, i.c., have
no non-zero element a where a@®@h =0 for some b@0. In fact a®b=0
always implies that a=0 or 5 =0.

We can prove that if Ris a ring with a zero divisor then for all
aER. a®0=0®a=0.

Since a@®0=qa

a®a=(a®0)®a=(a@a)@(0®a)

But a®a=(a®a)®0

Hence (a®a)P(0®a)=(a®a)®0

= 0®a=0 (Cancellation law)
Similarly a®@a=a®(@@0)=(a®a)&(a@0)

Also aBa=(aa®)®0

(e®a)®(¢®0)=(a®a)®0
By cancellation law
a®0=0
Integral Domain. An integral Domain is a commutative ring D

with unity but having no divisors of zero. For example, the ring I, O, R
and C are all integral domains.

The cancellation law for addition holds in every ring since every
element has its inverse. The cancellation law of multiplication holds in
every integral domain, as shown below :

If a®e=b@®c and c#0
then a=b
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We have ~ a@c=b®c=(a—b)@c=0
Now since D has no divisor of zero
a—b=0 = a=p

Example 14. Prove that if R is a ring with zero element z, then for
‘allaEK, a.z=z.a=1z.

Solution. Since a+z=a
then a.a=(a+z).ta=(@.a)+z.a

Hence (a.a)‘z.a=(a.a)+z

Now using the cancellation law, we have

zZ.a=z
Similarly a.a=a. (a+z)
=a.a+ta.z
=a.z
=z

Example 15. The two binary compositions *, A in the set of I of all
integers are defined as follows :

a*b=a+b—1
alAb=a+b—ab, for all a, bE I
Show that (1, * ) is a ring.
(C.A. Entrance June 1984)

_ Solation. The set of all integers, I, is a ring for the given two
binary compesitions *, /\ because.

1. Closure for *. The composition is closed because
a*b=a+b-1€1
and b*a=bta—-1€1,
for all a, bE 1.

2. Associative for * The composition is associative because
a*(b*c)=(a*b)*c for all a, b, cE I
a*(b*c)=a*(b+e—1)=a+(b+c—1)—1
=a+b+ec—2
and (@a*b)*c=(a+b—1) * c=(a+b—1)tc—1
=a-+b+c—2
" 3. Identity element for *. There exists. an element |E[ such
that
a*l=1 *g=a, forallacl.

4. Inverse element for * There exists an element (2 ~a)E [
such that

a*(2—a)=(2—a) *a=]1, for all ac 1.
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5. Commutative for *. The composition is commutative because
a*b=b*a,
for all a, bE L.
6. Closure for A. The composition is closed because
aAb=a+b—abEl
apd bAa=b+a—bacl
for alla, bE L

7. Associative for A. The composition is associative because
a N (bAc)=a Alb+c—bc)
=a+(b+c—bc)—a(b-+c—bc)
=a+b+c—ab—ac—bc+abce
(aab)ac=(a+b—ab) Ac
=(a+b—ab)+c—(atb—ab).c
=a+b +c—ab—ac—bc+abe.
foralla, b, cE1.
8. Distributive Laws The composition * is distributive with
respect to A, le.,
a*(bAc)=(@*b) Ala*c)
(BAC *a=(b*a) Alc* a)
foralla, b, cEL
Therefore (7, * A) is a ring.

59. FIELDS (F,&, ®)
Fields are special types of rings. They also have an algebraic
structure with two binary operations, @ and (.

Let F={a,b, ¢} be a non-empty set with two binary compositions @
and @ If F atisfies the following properties then it is called a field
(F, ®, @)

F,. Closue law for ® ra@bEF, ¥a, bEF
F,. Assciative law for @ :
(a®b)Bc=aPD(b®c), ¥ a, b, cEF

F,. Idetity law for ® : There exists an element 0 in F, called the

identity for tie composition @ such that
0@a=a=a@®0, ¥ aEF

F,. [nverse law for ® : There exists an element —a in F, called

the negatie of a, such that
(—a)Pa=0=a®(—a), ¥ aEF
F, Commutative law for &:
a®b=b&Ba, v a, bEF
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Fy. Closure law for ® :
a@bEF, ¥ a, bEF

F,. Associative law for ® :
(a®@b)®c= a®(b@c), + a, b, cEF

Fy. Identity law for ® : There exists an element | in F such that
a®@l=a =1@®a, ¥ aEF

Fy. Inverse law for G : For every non-zero clement @ in £ there
exists an element a-! in F called the inverse of a such that

a'®a=1=a@®aq !
Fio. Commurative law for ® :
a®b=b@a, ¥+ a, bEF
F.1.  Distributive laws - For all a, b, ceF,
a@b® )= (a@®h)® (c@®c)
(b®)@a=(bCa)®(c@a)

In other words, a ring (F, @, ®) is called a field if it has the follow-
ing three additional properties :

(i) itis commutative, (i) it has a unity and
(fii) it is such that every non-zero element has an inverse for the
composition & in F. ‘
~ IMustrations. 1. The ring of rational, real and complex numbers
with respect to the operations of addition and multiplication is a field.

.. We are giving below a list of number sets which can have the com-
positions of a field.

0. ®. ®} sets of rational numbers
{R, ®, @&} set of real numbers
{C, @, @Y  set of complex numbers.

2. Theset 7 of all integers forms a ring with respectto addition and
multiplication. We can say ([, @, ®)is aring. But this ring is not field
Jccause with the exception of —| and 1 no other element of 1 bas an
Inverse with respect to multiplication.

3. The following composition of a set S={a, b, ¢, d, e, f, g, h} with

:;._d;:ldiuou and multiplication as compositions defined by the following, is a
leld.

D ja b ¢ d e f g h
ala b e d e [ g h
bl b a d ¢ e h g
¢ | e d a b g h e f
d|d ¢ b a h g o e
ele v g h a b & -
£1 F e h g b a d g
gleg h e il & d a b
hh g s 2 e 0 i b a
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Wle B 2 @ "w g A
ala a a a a a a a
b a b ¢ d e f g h
Cla c h f g e b d
d| g d I g c b h e
el a e g c d h V)
fla f e b h c d g
gla z h h i d e ¢
hla h d e b g c f

The various properties of the field can be verified. It may be
remembered that a is an additive unity or zero element and is a multiplica-

tive unity or 1. Also non-zéro elements of the set form an Abelian
multiplicative group.

Example 16. Define a ring and a field. Give an example of ring which
is not a field.

Solution. For definitions sce the tezt. The set

I={...,, =3, =2, 0, L2 B}
constitutes a ring but not a field because multiplicative inverses are not
there.
Example 17. (@) Define a field and give two examples of a field. (b)
Given that a, b are two members of a field, show that
a(—b)=—(ah) and (—a)(—-d)=ab

Solution. (@) Definition and properties are given in the text. The

set of rational (Q) and real (R) numbers constitute the compositions of a
field.

{h) Let there be an element ¢ such that A+ c==0

So that c=—h

But we have 0=a0=a(b+c)=abh+tac

= ac= —(abh)

=> al—b)=—(ab)

and (-(I)(—*fl)=—~fﬂ)(*b)=={afh)]=ab
EXERCISES

. . (a) Define a ‘group’. Give one example each of a finite and an
infinite group.

(5) Define a ‘group. When is it Abelian ? Show that the set of all
integers, positive or negative, including zero with additive binary operation
is an infinite Abelian group.

(c)  Define a grovp and examine whether the set N of rational
numbers is a greup with respect to addition,

(C.A. Intermediate Nov. 1982)
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2. Istheset of all positive rational numbers, a group in multipli-

cation ? What would be the case ifitis a set of all non-zero rational
numbers 7

3. (i) State if the following is a group in multiplication :
S={x:xERAx>0}

(ii) State if the followifig is a group in addition and multiplication;
R={2x:x€2Z}

4. State with reasons which of the following sets form a group :
In addition

(i) G={x:x€El, x<0}
(ii) G={3x:x€l}
In multiplication
(i) G={x: x&1, is odd}
) G={—2,—1, 1, 2}
5. (a) Define ring and give two examples.
(b) Define a field and give two examples.

6. (a) State whether (N, @, ®) is a ring where N stands for set of
natural numbers.

(b) State formally the property of a division ring.

7. Determine whether each of the following sets is a ring for

ordinary addition and multiplication. In each case justify your answer by
proof or by counter-examples :

(i) The set of all positive integers,
(i) the set {3n: neZ).
(i) {a-+ib: a, bEQ}, and
(lv) {a+b/2:a, beZ}.
8. Let * be an operation on the set of real numbers defined by
a* b=a+b+a*h, ¥ a,bER
Show that (R, *) is not a group.
9. Prove that the set °
Gemf .y 274,279, 3-3, 0720, 1,2,25.22. 28, _}
forms an infinite Abelian group w.r.rz. multiplication.

10. Prove that the set Q of all rational numbers other that—1I with
the operation defind by

a*b=a+b+abva, bEQ.
form a groub with respect to binary operation *
11. Prove that the following sets are groups :
() G={0, 3, 6, 9 for addition modulo 9,
(i) G={1, 5,7, 11} - for multiplication modulo 12.

12. Show that the numbers 1, 2, 3, 4, 6 form a group with respect
to the operation of multiplication modulo 7
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13. Define an Abelian group.
In the set S={(1, 2, 3, 4}, let ® be the composition ‘multiplication
modulo 5°. Prove that (S, ®) is an Abelian group.

14. (@) Prove that the following operation tabie defines a group
under*.

* 1 3 5 7
1 1 3 5 T
3 3 1 1 5
5 5 7 1 3
7 q 5 3 1
(b) Show that * a b c d
a a b € d
b b a d c
C & d b a
d d c a b

is group under*.
15. State whether a field possesses more properties than a ring.
16. Do the following sets constitute a field ?
(i) The set of all rational numbers.
(it) The set of all integers.
(#ii) The set ot all real numbers.
(iv) The set of all complex numbers.

17. Show that {0, 1}, @, ®) is a field if the compositions &, ©® are
given by the tables :

®@| 0 | @y O
0 0 1 0|70 1
1o 1o

18. Let R be the set of ordered pairs (a, b) of the real numbers. Let
addjtion and multiplication compositions be defined as

(a, b)+(c, d)=(a+c, b+4d) and
(a, b)(c, d)=(ac—bd, bc+ad)
Show that R is a field.
19. Prove that the set of all real numbers of the form a+ b+/2, where
a and b are rationals forms a field under addition and multiplication.
20. Show that the set {a, b, ¢, d} in which addition and multiplica-
tion are defined by the tollowing tables is a finite field.
@D | b c
a

a

d 9
d a
¢ b
b c
a d

e onls
ol < WY

F~T N R~ R
caab|a
o CRb R

b a
b a a
& d a
d c a
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21. Prove that the set of integers /={0, 1, 2, 3, 4} with addition
modulo 5 and multiplication modulo 5 is a composition of a field.

22. Let us define to binary compositions*, A in the set Z of all
integers as follows :

; a*b=atbh—1

afb=a+tab—ab v a, beZ
Show that (Z, * A) is a commutative ring with unity. What is the zero of
this ring ?  What is the unity of this ring ?

ANSWERS

1. (a) A setof integers forms an infinite group. The following is
an example of a group composition with a finite set S={s, m, ¢, r} which is
an Abelian group.

m t
m 5 m 14 r
5 m t r 5
! t r iy nt
r r s m !

(b) See the text.

2. No, for the first part, and yes, for the second part,
3. (i) Yes, it is set a of non-zero real numbers.
(7i) Yes in addition and not in multiplication.
4. (i) No, as inverse of each integer is positive,
(i) Yes.
(i) No, as inverse of each element is not there.
(iv) No, as product of —2 and 2 is not there.
5. (a) The set of integers, real, rational or complex numbers is a
Ting.
. (b) The set of real, rational or complex numbers constitute
ring.
6. (a) No, the additive inverse —a for a is not there.
(b) See text.
7. In all except the (i) for the reason given in 6(a) above
15 Yes.

16. (i) Yes, (ii) No, (ifi) Yes. (iv) Yes.

21. Hint. If we denote the two compositions by ®; and @, respec-

tively, the composition tables for the two compositions are as shown
below.

@s| 01 2 3 4 @] 0 1 2 3 4
001 2 3 4 0170 00 0 0
i1 1L 2 34 9 11<0 12 3 4
2123 40 ) 21 02 41 3
313 & 0% 3 3103142
4 4 01 2 3 4l 04 3 21
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From the table, we conclude that
(i) Fis closed under @,
(ii) @ is associative in F
1ii) 0 is the additive identity
(i) The additive inverse of 0, 1, 2, 3, 4, are 0,4, 3,2, 1 respec-
tively.

(v) @, is commutative as the table is symmetric in rows and
columns.

(vi) Fis closed with respect to @,
(vii) @y is associative in F.
(viii) 1 is the multiplicative identity

(ix) The inverse of the non-zero elements 1,2,3,4€ F are 4, 3, 2,1
respectively.

(x) @ is commutative as the table is symmetric in rows and
columns. '

(xi) Distributive law holds good in F as

a@5(b@5c) = (4@ ,b) D y(a®;c)
Similarly, (0D 50)@5a) = (b®:a) D 4(c®a)
Hence (F, ®;, @,) is field.

22. Hint. (i) It can be shown that the set Z is an Abelian group
for the composition * defined as given,

(i1)  The composition A is binary and associative
Since (anb)A=(a+b—ab)pc

=gq-+b —ab+c—ac—be+abe
Similarly an(bac)=aA(b+c—be)=a+b+c—be-ab

—ac-tabc
(iit) A is distributive over *

o anb* c)=aN\(b+c—1)
=a+f}+c—l—(f(b'{"C—l)=d+b+€*l—&‘b‘-aC+a
Again (@aAb) * (alhc)=(a+b—ab) * (a+c—ac)

=a+b—ab+a+c—ac—|

alA(b* c)=(anb) * (apnc)

© (iv) Commutative.
& ag},b=a+b-ab=-b+a—bu=b{_\,a
(v) Unity : .

aA0=a+40--q. 0=g
0Aa=04a—0. g=g
aA0=a=0Ac

Hence, the set is a commutative ring with unity for the two com-
positions defined as given.



