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Object ives
Aj'tcr studying this Chapter, you should be able to rendepstnnd

• Binary composition, various types of Composition, Composition fables.
• Groups, rings and fields.

50. INTRODUCTION

These are some special types of mathematical systems. The purpose
of these is to help in performing certain mathmatjcal operations on a set.
In the first three chapters we studied the algebra of certain binary opera-
tions and in the fourth chapter we acquainted ourselves with the real
number system. Now, we take up some mathematical composition with
certain number systems and the binary operations defined on them. The
two together form a mathematical system. Before coming to certain
special algebraic structures like groups and fields we shall like to discuss
binary compositions.

51 BINARY COMPOSITIONS
A binary composition is a composition set of order pairs of numbers

which are associated under a binary system, observing the rules of opera-
tions of such a system. The operations may be symbolised by say *
(asterisk). What is of importance is the observance of the rules of opera-
tions dealt in earlier chapters. Here these rules are integrated into binary
composition system.
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l)ef Let S he a non-ematy set. A mapping * Sx S-S Is said to be

a -ituJry composition on the set S.
Illustrations 1. Let R be the set of real numbers. Then addition

+is a binary composition in R, since to every ordered pair (a, b) of real
numbers. we get a+h which is also a real number.

Multiplication '.' and subtraction '-' are also binary compositions
in R, since a . h and a—b are also real numbers. But division is not a
binary composition in 1?, since a±O is meaningless.

2. Union U and intersection fl are binary compositions in the
power set of a given set since the union and intersection of two subsets of
a given set are again subsets of the set. Thus

AEP(S) and BEP(S)AUBEP(S)

.IEP(S) an I BC- P(S)=>AflBEP(S)

3. Conjunction (A) and disjunction (V) are binary compositions
in the set of all sentences.

4. Let Q be the set of rational numbers. Then the mapping
%:Q defined by a * ii=a-1- h, where as a, b E Q is an addition

composition on the set Q of rational numbers.
Also, the mapping * QxQ Q defind by a * bab where a, bQ

is a multiplication composition on the set Q of rational numbers.

52. VARIOUS TYPES OF COMPOSITIONS

I. Commutative Composition.Th e binary composition * on a

set S is called i'onnireta(ive (or Abelian), if for every a, hES.

Illustrations 1. Both addition and multiplication compositions on
set V of natural numbers are commutative, because a+hb+0 and

a. b=b. a for every a, h E N.
2. The addition and multiplication compositions on Set Q, of

rational numbers, on set R of real numbers and on set C, of complex

numbers are also commutative.
3. The substraction composition on the set of integers, I, IS riot

commutative, because a--b :p,-^b - a for every a, hE!.

4. The intersection and union compositions in the set of all sub-
sets of a set are both commutative.

II. Associative composition. The binary composition * Ofl a

set S is called associative if for every a. h, cES,

(a*b)*c a* (bc)

Illustrations 1. The addition and multiplication compositions on

set of natural numbers, on set of rational numbers, on set of real numbers
and on set of complex numbers are associative.

2. Both intersection and union compositions on set P or subsets of

a set are associative, because
(4UB)UC,4U(BU
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and	 (4flB)(C_-Afl(BflC) 	 where A, B, C E P3. The subtraction operation on set of integers I is not associativebecause

a—(b----c)34(a-_b)_c, for every a, h, cEI
4. In set Q, the composition defined as

is associative because

(a*b)*c (a+h ±ab)*c
= (a+b +ab)+c-F(ci +b+ab)c

Also

=a+(h +c+bc)±1(/, + c+C)
==a -fb+cfab +-bc-f-acf-a/,c

(ah*)*c
5. In set R of real numbers, the composition defined by

a
is not associative because

(a*b)*c(ab2)*c
(ab2)c 2 = ah2c2

and	 (*(/)*c) a*(bc2)
a(/c2)- ahc4^ (*f,)* c

III. Identity element for a composition. An element, donotedby e, of a set S is called an identity element for the C0nipo5jtj0	 S ifa*e=e*aa,LaES

Illustrations I. Let + be the composition of addition on set k of
real number where 0 is the identity clement for the 

composition becausefor every real number a € R, O+a=af0a

2. Let '.' be the composition
numbers then 1 is the identity	 of multiplication on set R of real

element for the Composition because forevery real number OCR, 1. a=aa . I.
3. 0 is the identity for the addition composition on the sets of

natural numbers, rational numbers and complex numbers. I is the identityfor the multiplication composition on the sets of natural numbers, rationalnumbers and complex numbers.

4. For the union composition on a set S
set S, the null set cES1 , is the identity.	 , out of the subsets of the

IV. Invertible element for a binary conpoj0 having 
anidentity eleen. If a set S contains an identity element e, for the corn-posj tion*afld if	 for every a, bEof b and b is called the Inverse of a.	 S, then a is called the inverse
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Illustrations 1. In the addition composition on set of real
numbers, every real number 'a' has an additive inverse (—a), because

a- (---a)=-O=(—a)+a
where 0 is the identity element

In multiplication composition on the set of real numbers, a has a

multiplicative inverse	 , because

a.	 1	 a, where I is the identity clement.

2. In the multiplication composition on the sets of rational numbers
and complex numbers, every element except 0 is invertible.
53 COMPOSITION TABLES

If S is a finite set consisting of n elements then a composition* in S
can be described by a table consisting of n rows and n columns in which
the entry at the intersection of the row headed by-an element aES and the
column headed by an element bES is a*b . Such tables are called compo-
sition tables.

Illustrations I. Let S=={a, b, c}. The table below gives a com-
position * in S.

*	 a	 b	 c

a 1	 a	 b	 a

h	 b	 b	 c

C	 a	 C	 C

From the table we find that
a*a=a, a*b=b, a*c=a,b*a=b
b*b=b , b*c=c. c*a__a, c*b=c, c*c,c.

2. Let S=-(l w, c) where w is cube root of unity so that w=L

*1	 1

1	 1	 to

(U	 (&)

2	 w	 1	 w
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V. Distributive Laws for the compositions. If * and A be
two compositions on set S and

(0 if a,Mb * c) — (acb) * (aAc), where a, h, c€S, then * and A
are said to satisfy the left -distributive law.

(ii) If (b * c)Aa=(bL\a) * (cAa), where a, b, cES, then * and

are said to satisfy the right-distributive law. The two laws together are
called distributive laws.

Illustration. The Compositions of addition and multiplication on
the set of integers obey both the distributive laws.

We now take t.lp certain special algebraic structures under the head-
ings of groups, rings and fields.

54. GROUPS (G, ED, ®)

Basically, a group is a special type of sot with some relationships
amongst its elements. In previous chapters we have quoted many sets in
which the elements had no clear relationship with each other. We 110W

consider sets which have special properties to allow us to add, multiply
and combine the elements in some specified manner. We shall now
describe, sets which possesses certain properties and form into groups.

Definition. A guoup is an algebric or a mathematical system con-
sisting of a set G of elements a, b, c, ... a nd a single binary composition.
This binary composition gives a rule of combination of the elements, and
should be well defined. The symbol * is used to denote this composition
or operation.

A non-empty set G of elements a, b, c,...on which a binary
operation* is defined, is said to form a group (G, *) if the following
properties are satisfied.

G 1 . Closure. There exists unique element a * bEG for every a, bEG
such that

a bEG a,bEG
This also shows that it is an internal composition

G5. Associative
(a * b) * c=a * (b * c)

for all a, h, cEG.

G3. Identity: There exists an identity element say eEG such that

a e=a=e * a
On the right of a it is right-identity and on the left of a it is the

left- identity.
G4. Inverse : For every element aEG, there corresponds an element

b€G such that
a * b=e=b a
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The element b is called the inverse of a, it can also be denoted by
a	 but that will be confused with a negative index. The symbol (*) can
be substituted by	 for binary addition and GJ for binary multiplication
as the case may ba-

it should be further noted that even though a large number of
groups satisfy the commutative property, this is not a necessary require-
ment for a group.

A group consisting of finite number of elements is called a finite
group. A group which does not restrict itself to a finite number of
elements is called an infinite group. The order of a finite group refers to
the number of elements in the non-empty finite set.

55. AN ABELIAN GROUP

A group (G, *) is said to he co'nmuta j(ve or Abelian group if
a * hz--b a for every a, bEG.

Illustrations I. A set of integers I={..., -3, --2, - I, 0, 1, 2,
3,...) forms a group with respect to addition because there is an identity
element 0 and the inverse say (—a) for aEI. The group (1,+) IS an
Abelian group as it is commutative under addition. But the set of integers
is not a multiplicative group since there is absence of multiplicative
inverses as in the case of 0 and 2.

2. The set of all positive rational numbers Qf is an Abelian group
under multiplication. For

(1) Ir a, bE Qf, then a . b also exists in the set.
(ii) There exists an identity element I

(iii) The composition under multiplication is associative.

(ii') There exists an inverse --- for every aEQ*.

(v) The operation is also commutative and therefore forms an
Abelian group.

3. The set of real numbers with the ordinary addition composition
is an Abelian group.	 -

4. The set of all non-zero rational numbers with the ordinary
multiplication composition is an Abelian group.

5. Prove that set of all integers with the ordinary addition as composi-
lion is a group.

Proof. Let Z be the set of all integers and + be the given binary
composition.

(I) Let a, b be any two elements of Z.
Now a+b EZ, since the sum of any two integers is also an integer.
Therefore+ satisfies the closure law
(ii) Let a, b, c be any three elements of Z.
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Then (a+h)+c=a4-(b+c) is true, since this is valid for all integers
a, h, c.

Therefore+-sat jsfies the aslocjatjvc law.
(iii) Since a+O=a=O+a, 3,1 aEZ, therefore the identity element 0

exists. It is the integer 0.
(iv) Since a+(—a)=0=(—a)+a	 a€Z, therefore every clement

Possesses an rnver&e.
Since Z satisfies all the properties of a group, (Z,-f-) is a group.

6. Show that the set G= (1. w. 1), where 1, w, w2 are cube roots of
Un fIy,fo,g an Abe/fan group with respect to inultlplicatfon composition.

Proof. (1) Closure Froperty

l®wEG;	 u2®1=)2EG
(if) Associativity

(I ®cj)Øu ! = l®(o®(02)

(iii) Identity element Is 1, since

l®(.O—(A),	 1®O)2'-W,	 l®l.-1
(iv) Inverse of each element exists

101=1 for lEG
W®)IWI I, (U20WW31

So, 1, w w are respectively the inverses for 1, w, '.

(v) Commulatfv(ty:

l®Wev- (DO 1, ci®w	 1 c'®
and

(G, 0) satisfies all the properties for Abelian group.

7. The set I of integers with the binary composition * defined as
a * b=a—b ; a, b€I is not a group
because	 a * (b * c)=a—(h—c)=a—b+c
and	 (a* b) c=(a—b)--.c=a---b—c

Therefore a * (b * c) :A(a * h) * c and thus the property G is not
satisfied.ed.

56. PROPERTIES OF A GROUP

1. Uniqueness of Identity. Identity element of a group is unique.
Proof. Let e and e' be the two identity elements of the group

(G,

a * e=a=e * a, Y aeG
and	 a * e '— ae' * a

Subsistituting	 a=e' in (I). we have
* e=e'=e * e 	 (3)
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and putting a-e in (2), we have
e	 e'-ee'	 e

From (3) and (4), we have e'=e
There cannot be two identity elements for (G, A). Hence identity

clement of group is unique.
II. Uniqueness of iiverae. In a group every element possesses a

unique inverse.

Proof. Let a and a' be two inverses of a in G.
a * a'r.-e-=a' * a

and	 a' ae=a ta1
Now	 a'1'=a * e	 [From (G

* (a * a ' ) -'(a * a) * a ' [Associative Law]

* a'	 tFrom (Ga)]

CX

Hence the inverse of a is unique.

III. Caiicellation Property. For any group (G, A)

(i)a*ha*c'

(ii) h a-c-c * a	 •	 h=c, where a, b, cEG
Proof. (i) Consider

a * h=a ' c

The operation with inverse a 1 will give

a 1 *(a*b) .,,al*(a*c)
(fly associative law)

e*he*c
b==c

(Ii)
b*(a*a) c*(a*a1)

b'=c

IV. For every a, bEG, each of the equations a*x=h, y*ah have
Unique .wlutions.

Prof. Consider the equations
a*.x=h	 y*a=b

Pre-multiplying and post-multiplying by a', we get

aa(a*\) - a	 (v*a)*a
(a*a)*x=a*h	 y*(a*a I)=b*a1

e*x=a'* h	 v*e==hal
-
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This shows the existence of solutions of the above two equestions.
To show uniqueness, let there be another x 1 , ;' such that

a*xi=b	 y1*a=-b
then	 a*x=a*xj,	 y*a_yj*a

By Cancellation law, x=x 1 , Y=yl , uniqueness follows.
V. In a Group (G,*). (a'=a, V aEG. In other words, for everyaG, the inverse of an inverse of a is 'a' only, i.e., the inverse of an inverse

of the element of a group i the element Itself.

Proof. We know that

b'*b=e

Replacing b by	 we get
(a) l*a_ 1 -=e

Operating on the right by a, we get
[(a_1)1*a1]ae*a

(a-')'*(a	 a) =a [Associative property)

	

(a') 1=a	 [Using Identity law]
VT. In a group (G, *)

(ab)'= bl*aa,bEG

In other words the inverse of the product of two elements of  group is
the product of their inverses taken in the reverse order.

Proof. Let e be the identity element of the group G.
Now

(b'*a')*(a*b)= b'*[a'*(a*h)]

=h'.[(a'*a)*b}=h '*(e*b)
b *b= e

Also	 (a*b)*(b1*a) a*11(b*1r1)*a_ 1)

=a(e*a1)

(bJ*a1)*(a*b) e==(a*b)(1r1*a1)

a*b.	
By def of the inverse element of a group, b'*a 1 is an inverse of

Hence	 (a*b)1=b1*a-1

Example 1. Prove that the numbers 1, 1,—!, —1, where 1= —1 with
ordinary multiplication as the composition Li an Abelian group.
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Solution, Let us form the composition table for multiplication.

(I) From the above table it is clear that multiplication is a binary
operation as all the elements inside the above table are elements of G.

(ii) Also
l®(j®--i)=(l®i)®--i; since

l®(i®--i) =(l® l)r==l and (l(Di)® ---j=(I®—i) 1

Associative property is satisfied.
1 is the identity element, since

1®11 1®(-1) — 1, 10.--i—i

(iv) We can verify that inverses of every element exit. Suppose we
want to find inverse of I.

Look to the row in which leading element is i, i.e., the third row. See
the identity element I in that row then the number at the head of this
column, Le, —i will be the inverse of i. Thus (i)= -

Similarly	 (1 )' 1, (-1) =1

(v) Again 1®ii®l, —i®ii(.) —1, etc., i.e., the comPOSltiOfl I

commutative,
Hence-the above set is an abelian group for multiplication.

Example 2. Prove that the set Q+ of all positive rational numbers
formi an AbeiWn group for the composition * defind as

ab

Solution. (i) Closure property. Let a, h be the two elements of the

aboe set.

(ii) A3socialive property. Let a, b, c EQ 4 then

( a.b
(a*b)*c=I--- ).c

[( a
.b \	 -1

=

r=[a. (4E-)]
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(b * c)1
=a*(b*c)

Hence	 r*b)*c a*(b*c)
(iii) Identity. 2e Q serves as an identity because

	a 2	 a, IwL a E Q

Identity element exists and belongs to the set,

(iv) Irnerse. For a E Q+. --

	

	 Q+ is the inverse as

4

o-- ----—=2

	

a	 2	 2

Inverse element exists and belongs to the set.

(v) Coinmulailve property.

	

*	 ab	 ha

	

a b-= 2
	 -- b a

Hence Q + is an Abelian group.

Example. 3. Prove that the set Q of all rational numbers other than 1with the operation defined by
a*h.af/,_. ab

conatitutes an Abelian group.

Solution. (I) Closure property. Let a, h  Q so that both a and b arerational numbers other than unity.
a* b==a+b_ah is also a rational number.

(ii) Associative property. For all a, b, CEQ
(a*b)*c=(a+b. ab)*c

=a+h+c— ab—ac—bc+ahc
Also	 a*(h*c) a*(b + c—bc)

a + (h + c—bc) —a(b + c—bc)
=a-l-b+c--a/, —ac—bc+abe

(a*b)*c=a*(b*c)
(iii) identity. If e be the identity then

a*e_a	 a+e—ae=a

eO, as aI
O EQ is the identity clement.
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(iv) Inverse. If b is the inverse of a, then
a*b=re

a+h—ab=O

a
a--I

EQ is the inverse element,

(v) Commutative properly, For all a, hE Q
a'b --a+b—af,

f-a--at)
- a+  I' - a/) = a * b

Hence the set Q with the above composition forms an Abelian
group.

Example 4. Let an ordered palm of real numbers be called a complex
number, and let addition ED of complex numbers be defind by

(a, b)(c, (I) = (a+C, b-f-il)
Show that the set of complex numbers together with binary operation ED

forms a group.

Solution. Let C be the set ofcomp!ex number, I e.,
C=a, h) I a, hER}

where R is the set of real numbers.

(I) Closure property. Let (a, b), (c, d)E C, as the sum of the complex
numbers is a complex number. Therefore

(a, h)ED(c, d)(a+c, b-f-d)EC

(ii) A isociauve law. Y (a, h), (c+d), (c -f-f)E C
(a, b) ((C, d) (e, f)} (a, b) tB {(c ±e), (d-f-f)}

=((a+c4-e), (b+dff)}
and ((a, h)(c, d)1ED(e,f)={(a4-c), (b±d))ED(ef)

=4a4-c--e), (h+d+f);
(I)=-(2)

(iii) identity element. The element (0, WE C is the identity elementas
(a, h) ED (0, 0) = (a. b)—(0, 0)ED (a, h)

(iv) Existence of inverse. (—a, ---h)EC is an inverse of (a, b) as
(a, b)ED(—a, —b)(0, O)=(—n, —h)ED(a, b)v all (a, h)EC

(v) commutative law. For all (a, b), (c, d) E C
(a, b) (D d ) = (a+c, h -I- d) = ( C+a, d+h)=(c, d) (B 	 b)

Hence (C, () is an abelian group.
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Example 5. Show that the set
G(x+/2y : x,yEQ)

is an abelian group with respect to addition, Q being the set of rationals.
(CA. Entrance December 1983)

Solution. Since x, yEQ, set of rational numbers, therefore,
x-l-'1 2y is a set of irrational numbers, G.

Let us see whether the set G satisfies the requisites of an abelian
group.

1. Closure property. The addition of any two irrational numbers
is also a irrational number of the same form, e.g., let x 1 , Yi and , yEQ,
then

(x1 + / 2y 1) + (x,+¼/2y,)- (x 1 -f x2)+ ,/2(y+ y)

and

	

	 (x2-i- ./2Y2 )+ (x 1 4 /?y	 (x+x1)+V2(y2+y1)

The set G is closed.

2. Associative law. The addition of irrational numbers is
associative, therefore, the set G satisfies the associative law.

3. Wentity element. O' is the identity element of the given set.

4. Inverse element. --x---2Jy is the inverse of the element
x+12y because

(x+ ,/2y)-F(-x- '12y) (—x—v'2y)-F-(x+ /2y)O

. Commutative law. The addition of any two irrational
numbers is commutative, the set G satisfies the commutative law.

Hence	 G=={x+.,/2y: x, yQ}
forms an abelian group.

Example 6. G is a group in which every element is its Own inverse,
so that,for example, x3 =y2 =(xy)2 =-e. Show that xy=.yx.

(CA. Intermediate May, 1981)
Solution. We have

x—exx--e, i.e., x=x'
y2 eyyr=e, i.e., y=y'	 -(2)

(xy)2 =e(xy) (xy)==e

i.e.,	 (xy)==(x),Y1

y__1. x
ryx [From (I) and (2)]

Xy=yX

51. MODULO
We are familiar with the operations on sets which are concerned

with union, intersection or complementation. We now take up some new
type of operations on sets. Let us take a set G O, 1, 2, 3, 4, 51. We
have to define the operation which we want to have on this set. The
formal instruction is like this

"Select any element of the set, say 4 and then select another element
of the set, say 5 ; with this ordered pair of elements the operation
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associates exactly one number according to the rule; determine the sum
of 4 and 5 ; divide the sum by 5 and find the number.

Let this remainder be the number that the operation associates with
4 and 5. This is indicated by 4 55-4. We can say that the remainder
4 associa tes 4 and 5 through a certain operation. Similarly other associa-
tions can he expressed as 2i3-=0, 3b4 7 2, etc. The results of the
operation on a set of element {0, 1, 2, 3, 4, 51 has been Shown in the
tabular form

	

I 0	 1	 2	 3	 4	 5

	

00	 1	 2	 3	 4	 0
1	 1	 2	 3	 4	 0	 1

	

22	 3	 4	 0	 I	 2
3	 3	 4	 0	 1	 2	 3
4	 4	 0	 I	 2	 3	 4
5	 0	 1	 2	 3	 4	 ()

The above table shows a binary composition with the addition
operation on a set of numbers 0, L 2, 3, 4, 9fld the composition is
called addition modulo 5.

Definition of Addition modulo m. Let a and h be any two
integers and in he a positive integer. Then the addition modulo in denoted
by a(0,,,h is defined as

ac33mb= r,

where r is the least non-negative remainder obtained by dividing the
ordinary sum of a and b, viz., a-I-b by in. In other words, for finding
we add a and h in the ordinary nay and then from the sum we remove the
integral multiples of in in such a manner that the remainder r left out is either
zero or apositive integer less than in. e.g.,

96=0, since	 9+6— 5(3)

2,	 12®18=6, since	 12+8-7(2)+6
3. —10(9 44=2, since ---10+4--(-2)4+2

Multiplication modulo p. The multiplication modulo p of any
two integers a and h is denoted by aGDb and is defined as

a@ ph = r,

where r is the least non-negative remainder obtained by dividing the
ordinary product of oh by p. In other words, we find ordinary product of
two numbers a and b, viz., oh and foin this product we remove the multiples
of p In such a nay that remainder r left out is a positive integer less than p,
e.g.,

1. 4®7=4, since 4x7=6(4)+4,

2. 8®65==4, since 8x5=6(6)+4.

Example 7. Prove that the set G=O, 1, 2, 3, 4-5) is afinite Abelian
group under ordinary addition with modulo 6 as the composition.
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Solution. Here we shalL make the following composition table.

EI	 0	 1	 2	 3 	 4--5

	

0	 0	 1	 2	 3	 4	 5
1	 2	 3	 4	 5	 0

	

2	 2	 3	 4	 5	 0	 1

	

3	 3	 4	 5	 0	 1	 2

	

4	 4	 5	 0	 1	 2	 3

	

5	 5	 0	 1	 2	 3	 4

	

(i) Closure property. The system is closed under 	 because all the
elements resulting from the operation	 in the set 10, 1, 2, 3, 4, 51 are
also the elements of the set.

(ii) Associative. The composition is associative because (a . b)+c
and a+-(h-f-c) both will have the same positive remainder when divided by
6, e.g.,

(3c.6)E 5=0 =3(4S)

(iii) Identity element. Clearly the element 0 of the set is the identity
element for the composition.

(iv) Inverse element. In order to find the inverse of element, say 5,
look to the row headed by 5 where 0 is there, then the element at the head
of this column, I.e.. 1 will be the inverse of 5. Similarly we can show
that the inverse of the elements 0, 1, 2, 3, 4, 5 are 0 5, 4, 3, 2, 1
respectively.

(v) Commutative, It can be seen from the table that
0 6bbg3 for any a, bEG

Hence the set C under ordinary addition with modulo 6 is a finite
Abelian group.

Example 8. Is the set {I, 2, 3, 4, 5, 6, 7) a group under addition
modulo 8.

S olution.

1	 2	 3	 4	 5	 6	 7

	

1	 2	 3	 4	 5	 6	 7	 0

	

2	 3	 4	 5	 6	 7	 0	 1

	

3	 4	 5	 6	 7	 0	 1	 2

	

4	 5	 6	 7	 0	 1	 2	 3

	

5	 6	 7	 0	 1	 2	 3	 4

	

6	 7	 0	 1	 2	 3	 4	 5

	

7	 0	 1	 2	 3	 4 	 56

The abobe operation is not a binary operation because 0 or additive
identity element does not belong to the set.

Example 9. On the set Z, we introduce a operation * defined as
follows

a*b=a+b+l, where + is the ordinary addition.
Show that (Z.*) Is a group.
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Solution. We list the following properties to show that (Z, ) is
group.

(1) Closure. If a, h are any two elements from (Z, *) then
a * h'a--1,4-1EZ

(ii) Associativity. If a, b, c, are any three elements from (Z, *) then
(a*b)*c=(aIb+I)* c=(a+b±1)±c4- I

=(a+b+l-f-c)+ I
'=(a-f-b-l-c+ 1)-f-I
=(a-I-b+c)+1+ I
== (a + h + c) + 2

Similary, it can be shown that
a*(b*0=(a+b4c)+2
(a*b)*ca*(b*c)

(iii) identity. If e is the identity for (Z,*), then we must have
a*e=av aEZ

a-e+1=a
e+ 1 =0, where 0 is the additive identity of Z

e=--1, which is an element from (Z, *)

Thus —I is the identity for (Z,*)
(iv) Inverse, if h is the inverse of a, then

a*l, e

a+h -F-1 —1

b= —2—a
Thus —2-a is an inverse of all aEZ
Hence (Z,*) forms a group.
Example 10. Prove that the Set {I, 2, 3, 4, 5, 6} is afinite Abelian

oup of order 6 under multiplication modulo 7.
Solution. The composition table is shown below,

®7	 123	 4	 5	 6T 1	 2	 3	 4	 5	 6
2	 2	 4	 6	 I	 3	 5
3 , 3	 6	 2	 5	 1	 4
4	 4	 1	 5	 2	 6	 3
5	 5	 3	 1	 6	 4	 2
6	 6	 5	 4	 3	 2	 1

(i) Closure property. From the composition table, we can see that
all the entries are the elements of the Sec.

(ii) Associative law. We can verify for any three elements of the
above se,

(a®7b)®7c= a®7(b®7c)
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e g.,	 (3®75)t74=4='3®7(5®74)
(Ili) Identity element. Clearly 1 E G is the identity, element, since

	

l® 7a=a=a®7 1	 (a=], 2, .,6)

(iv) Existence of inverse. The inverses of 1, 2, 3, 4, 5, 6 are 1, 4, 5,
2, 3, 6, respectively.

(v) Gornrn:jtative law. The correspondin2 rows and columns in
the composition table are identical, as such the commutative law holds
good.

ifence (G, ®) is a unite Abelian group of order 6 under multiplica-
tion modulo 7.

Example 11. State giving proof or counter examples, whether the
following statements are true or false.

(i) Given a set S and a commutative binary operation 0 on it, then
aO(hOc) =-(c0h)Oa for all a, h, c in S.

(ii) A group may have more than one identity element.
(iii) Everj'fi,zlle group of three elements is Abelian.
(iv) A set A (1, 2. ... ... a— l} with the operation of multiplication

(modulo n) forms agroup for all positive integral values of a.

Solution.

(I) True, using commutative property along with associativity.
aO(bOc) (bOc)Oa	 (associativity)

=(cob)Oa	 (commutativity)

(ii) No, it cannot have two identity elements.

(iii) True, a group of three elements say (e, a, b} is an Abelian as
shown below:

*	 e	 a	 b

e	 e	 a	 b
a a	 h	 e
b	 b	 e	 a

(a) In the above composition, e is an identity element. Since
a*e=a, b*c=b

(h) The inverse of a is b because

ah = e --

(c) The composition is dommutative, since
a.b=ba

(d) The composition is associativc, since
(a*b)*e a*(b*e)
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(iv) True, a Set of positive integers given with modulo n has a multi-
plicative inverse.

58 RINGS (R, ,®)

The algebraic structure of rings has two binary compositions viz.
and ®. We recall that the groups dealt earlier had only one binary opera-
tion either T or ®. As regards notations there is no rigidity, some authors
use * for OT and 6 for ®. It is common practice to use the symbols '+'
and '.' respectively for and A and call these compositions addition and
multiplication respectively. An operation is known by its properties.

\Ve can now ckitne a ring as a non-empty set R with two binary
operations e and ® and indicate it as (R, ,) if the following eight
propertics hold

-	 R1. Closure law for

abETR, V a, bER
R 4. Associative law for

Va, b, cER

R.3. Identit y element for g3. There exists an element CER, called
the identity of the composition such that

aE3O a=Oa
0, the identity of R for the composition EB, is called the zero of the
ring.

R 4 . Inverse element for C . For every element aE R, there exists an
element 1 ER such that

a b 0=1, a

Then h is called inverse of a. The inverse of any element a will be denoted
by (—a).

R. Commutative law for . The composition	 is commutative
in R, i.e.,

a(bba, ya,hER
R. Closure law for ®

a®bER,a,bER
R 7. Associative law for ®

(a®h)®c=a®(b®c), Va, b, cER
It may be noted that for ring there is no necessity for the existence of

multiplicative identity, inverse and commutativity.

Ra, Distributive Laws. The composition ® is distributiv e with

respect to T, i.e., for all a, I', c  R
a®(hc) = (a®b) (a®c)

and	 (bc)®a (b®a)(c®a)
In other words, we may define a ring as follows

(1) R is an Abelian group under	 ,
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(II) R is a semi-group under ®, and

(III) ® is distributive with respect to 	 in R.

Illustrations 1. The set 1 of all integers with ordinary addition and
multiplication composition is not a ring.

2. The set of natural numbers with ordinary addition and multipli-
cation composition is a ring.

3. The set consisting of the two elements 0, 1 with the following
addition and multiplication composition tables

ED	 0	 I	 ®	 0	 1

0 0
and	

- 00
-	 is a ring.

1	 0
I	 1	 0	 1	 0	 1

4. The following two tables have been prepared for both the opera-
tions on a set of integers {0, 1, 2, 3, 4 1J . The modulo in this case will be
5 so the ring can formally be called {S 	 ®}. The respective tables of

	

the two operations oil 	 same set are

(0	 1	 2	 3	 4	 06	 0	 1	 234
1	 2	 3	 4	 0	 0	 0	 0	 0	 0

1	 1	 2	 3 4 0	 1  1 2 3 4
2	 2	 3	 4	 0	 1	 2	 0	 2	 4	 1	 3
3	 3	 4	 0	 1	 2	 3	 0	 3	 1	 4	 2
44	 0	 1	 2	 3	 4,0	 4	 3	 2	 1
Example 12. State if the set Compositious S a, b} with addition

and inultipiicatiw; dejind as follows is of a ring.

(i)	 i	 a 	 (ii) ®	 a	 b

a a	 b	 a a	 a
b 1—b	 a	 b a	 b

Solution. In the (I) a is the additive identity and h is the additiveinverse.

Similarly, in (ii) both the closure and associative properties are there.
The latter for example is

(a®b)®a=a®(b®)0

On checking all the properties of the ring we find that it is a ring.
Example 13. State if the set R={a, h, c, d} with the operationsdefined as follows is of a ring:

ED Ja	 b	 c	 d	 a	 h	 C	 da	 a	 b	 c	 d	 ab	 b	 a	 d	 c	 h	 a	 b	 a	 bC	 c	 d	 a	 h	 c	 a	 e	 a	 C
C	 b	 a	 d	 a	 d	 a	 d
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Solution. The set R = a, b, c, d) constitutes a composition of ring
because all the eight properties listed above are satisfied. It can be checked
taking note of the fact that a is an identity element in (i) and there is no
need of identity element for ®.

Sub-Rings. The sub-ring is the ring composition formed by a sub-
set of a set with a ring composition. As shown above S=a, b} constituted
a sub-ring of the ring set of R	 a, b, C, d}.

Commutative Ring. Ring for which multiplication composition is
commutative is called commutative ring In other words, a ring (R, (, ()
is said to be commutative if the ® composition in R is commutative, i.e.,

a, bER
Ring with Unity. A ring (R, (Es, ®) is said to be a ring with

unity if it contains an element denoted by I such that
l®u=a=a®l	 V (IER

For example the ring of all integers is a ring with unity, I being the
unity of the ring.

Rings with Zero Divisors. In a ring R an element a 1 0 of R is
called a divisor of zero if there exists clement bho of R such that

a®b=0 and b()ar=0.
For example, rings 1, Q, R, C have no divisors of zero, i.e., have

no non-zero element a where a()b r0 for SOme b®0. In fact a®b0
always implies that	 U or I, == 0.

We can prove that if R is a ring with a zero divisor then for all
R. a®0=OØa-0.

Since
a®a=(aBO)®a(a®a)(O®a)

But	 (1®a=(a(a)EO
Hence (a®a)(0®i)=((1®a)O
=	 0®a=O	 (Cancellation law)

Similarly	 a®a = a®(a0) = (a®a) (a®0)
Also

	

	 aa(aaO)O
(a®a)(a®0)=(a®a)0

B' cancellation law
a®0O

Integral Domain. An integral Domain is a commutative ring D
with uniy but having no divisors of zero. For example, the ring I, Q, R
and Care all integral domains.

The cancellation law for addition holds in every ring since every
element has its inverse. The cancellation law of multiplication holds in
every integral domain, as shown below

If	 a®cr=b®c	 and	 c^0
then	 a=b
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We have

Now since D has no divisor of zero
a—b=O ab

Example 14. Prove that if R is a ring with zero element z, then for
a11 aER, a. ZZ . (Z.

Solution. Since a+z=a
then	 a . a=(a+z).H-a=(a. a)-4-z. a

Hence (a a)+z. a(a . a)+z
Now using the cancellation law, we have

z • a=z
Similarly	 a . a=a . (a±z)

a+a. z
= a . z
=z

Example 15. The two binary compositions ,	 in the set of I of all
integers are defined as follows:

a ' b=a+b-1
aExb—a+b—ah, for all a, bE!

Show that (1, *	 ) is a ring.
(CA. Entrance June 1984)

Solution. The set of all integers, i, is a ring for the given two
binary compositions , / because.

1. Closure for *• The composition is closed because
a * b=a+b-1I

and	 b*a__b+a_1E1,
for all a, bEI.

2. Associative for * The composition is associative because
a*(b*c)==(a*b)*c for all a, b, eEl.
a*(b*c)=a*(b+c_1)=a+(b+c_l)_l

-=a +-b+c-2
and	 (a * b) * c=(a-j-b----l) * c=(a-}-b—l)+c-1

=a+b+c-2

3. Identity element for . There exists an element I El such
that

a * i=i • a=a, for all aEI.

4. Inverse clement for ' There exists an element (2 -.a)EI
such that

* (2—a)= (2 —a) * a==I, for all eEL
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5. Commutative for '. The composition is commutative because
a * b==b * a,

for all a, hEi.

6. Closure for A. The composition is closed because
a A b == a + b—abEl

ajd	 bAa—b+a—baE1
for allia, bE!.

7. Associative for A. The composition is associative because

a n (btxc)-=a A(b+c—bc)
=a±(b+c—bc)—a(b+C—bC)

a+bf c—ab—ac —bc+abc

(a6b)6c=(a+b—ab) c
=(a+b—ab)-l-c---(a+b--ab). c
rr-+-b *c—ab—ac—bc -I-abc.

for all (1, b, cEi.

8. Distributive Laws The composition * is distributive with
respect to A, i.e.,

a*(bAc) (a*b)A(a*c)

(bAc) * a(b a) 7\(c * a)

for all a, h, cEl.

Therefore (1, * A) is a ring.

59. FIELDS (F,, ®)

Fields are special types of rings. They also have an algebraic
structure with two binary operations,	 and ®.

Let F{a,b, c} be a non -empty set with Iwo binary compositions
and 0 if F arisfies the following properties then it is called afield

(F, (D, 0)
F1. Clow e law for B : abEF, Y a, b  F

F2. Assoiative law for 0
(alb)0c=aEB(h(Dc), V a, b, cEF

F. ideUify laiv for 0 : There exists an clement 0 in F, called the
identity for tie composition Ce such that

00a = a =a0 O, V aEF

F4 Inverse law for 0	 There exists an element —a in F, called
the negati e of a, such that

(—a)0a=0a0(—a), Y aEF

F1 Commutative law for 0:
a0b=b0a, a, bEF
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F0 . Closure law for
a, he 

F7. Associative law for 0
(a®b)®c z aO(b®c), V- a, b, cEF

F9. Identity law for 0 : There exists an element I in F such that
ti®l (l 10(1, V (1EF

F9. Inverse mw for ® For every non-zero clement a in F, thereexists an element a- a' in F called the inverse of a such that	 -
aia-==j r=acl)a 1

F10. Con-injiitat j ve law for G
-i a, /E/

F11. D is tributive laws : For all a, h, cEF,
a®(bc)= (a®b)®(c®c)
(1) c)®u = (bOa) tD (cØa)

In other words, a ring (F, ED, ®) is called a field if it has the follow-
ing three additional properties

(1) it is conlrnutatjve (ii) it has a unity and
(iii) it is such that every non-zero element has an inverse for the

Composition ® in F.
Illustralioris. 1. The ring of rational, real and complex numbers

with respect to the Operations of addition and multiplication is a field.
We are giving below a list of number sets which can have the com-

Pos i tions of a field.

{Q, D. ®}	 sets of rational numbers
{R, E, 0)	 set of real numbers

	

{C, e, ®}	 set of complex numbers.
2. The set I of all integers forms a ring with respect to addition andmu ltiplication. We can say (I, El), 0) is a ring. But this ring is not field

because with the exception of —1 and I no other element of 1 has an
Inverse with respect to multiplication.

3. The following composition of a set S={a, b, c, d, e, f, g, h' withaddition and mu ltiplication as compositions defined by the following is afield.

	

a	 Li	 c	 d	 e	 I	 g	 h

	

a a	 b	 C	 d	 e f g	 h

	

b I'	 a	 d	 c	 /	 e	 Li	 g

	

c c	 d	 a	 b	 g	 Ii	 e	 f

	

d d	 c	 b	 a	 h	 g	 f	 e

	

e e	 f	 g	 Ii	 a	 b	 c	 d

	

/ f	 e	 h	 g	 h	 a	 d	 c
9  h e f c d a h
h 	 9	 / e	 d	 c	 b	 a
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The various properties of the field can be verified. It may beremembered that a is an additive unity or zero clement and is a multiplica-
tive unity or 1. Also non-zero elements of the set lorin an Abelian
multiplicative group.

Eanip1e 16. Define a ring and afield. Give an example of ring whichis not afield.

Soluti on.For dc6nit ions see the tczt. The set

I={..., —3, —2,0, 1, 2. 3,...}
constitutes a ring but not a field because 

multi P licitivc inverses are notthere.

Example 17. (a) Define a field and give two examples of afield. (b)Given That a, b are two members 01 a field, show that

	

a(— -I,) = - (a/i)	 and	 ( -- -a) (--5) =ah
Solution. (a) Definition and properties are given in the text. Theset of rational (Q) and real (R) numbers constitute the compositions of afield.

(/i) Let there he an element c such that h-h c-=O
So that	 c=— h

But we have	 O=aO= a(b-c)a/,Jac
ac= —(a/i)
a(--l;) --(a/i)

and	 (--a)(-- 14 = —(a)( - h) [a(b)] =ab

EXERCISES
I. (a) Define a 'group'. Give one example each of a finite and aninfinite group.

(!i) Define a 'group. When is it Abelian ? Show that the set of all
integers, Positive or negative, including zero with additive binar y operationis an infinite Abelian group.

(c) Define a group and cxaminc whether the set Nof rationalnumbers is a group with respect to addition.

(CA. intermediate Nov. 1982)
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2. Is the set of all positive rational numbers, a group in multipli-
cation? What would be the case if it is a set of all non-zero rational
numbers 7

3. (1) State if the following is a group in multiplication

xE Rt\x> 0)
(ii) State if the followifg is a group in addition and multiplication;

R=-{2x: xEZ}
4. State with reasons which of the following sets form a group

In addition
(i) G={x:xE1,x<0}
(ii) G={3 : XE!)
In multiplication
(iii) G=={x xEl, is odd)
(iv) G=(-2,--1, 1, 2)
5. (a) Define ring and give two examples.
(b) Define a field and give two examples.
6. (a) State whether (N,	 , ®) is a ring where N stands for set of

natural numbers.
(5) State formally the property of a division ring.
7. Determine whether each of the following sets is a ring for

ordinary addition and multiplication. In each case justify your answer by
proof or by counter-examples

(1) The set of all positive integers,
(ii) the set 3n : nEZ).
(lii) (a±th a, bEQ), and
(Iv) {a-t-b.,/2 a, b€Z).
8. Let * be an operation on the set of real numbers defined by

a * b='a+b±a 2h, a,bER
Show that (R, *) is not a group.
9. Prove that the set

G =( .., 2 1, 2, 2- 2. 21, 1, 2, 2', 23, 2, . }
forms an inCinite Abelian group w.r.t. multiplication.
10. Prove that the set Q. of all rational numbers other that— 1 with

the operation defind by
a * b = a-f b+aha, bE:Q.

form a group with respect to binary operation *
11. Prove that the following sets are groups

(1) G .-{0, 3, 6, 91	 for addition modulo 9,
(ii) G=={ l, 5, 7, 11)	 for multiplication modulo 12.

12. Show that the numbers I, 2, 3, 4, 6 form a group with respect
to the operation of multiplication modulo 7
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13. Define an Ab2lian group.
In the set S=(l, 2, 3, 4}, let ® be the composition 'multiplication

modulo 5'. Prove that (S, 0) is an Abelian group.

14. (a) Prove that the following operation tabte defines a group
under*.

*	 1	 3	 5	 7
1	 3	 5	 7

3	 3	 1	 7	 5
5	 5	 7	 1	 3
7	 7	 5	 3	 1

	

(b) Show that *	 a	 b

	

a	 a	 b

	

6	 1)	 a

	

C	 C	 d

	

d	 d	 c

C	 d
C	 d
d	 c
b	 a
a	 b

is group under*.
15. State whether a field possesses more properties than a ring.
16. Do the following sets constitute a held !

(1) The set of all rational numbers.
(ii) The set of all integers.

(iii) The set ot' all real numbers.
(iv) The set of all complex numbers.

17. Show that (0, 1), (E, 0) is a field if the coiT]positions e, € are
given by the tables

- (9 1	
0	 1	 Or 0-- 1

18. Let R be the set of ordered pairs (a, 6) of the real numbers. Let
addition and multiplication compositions be defined as

(a, b)+(c, d)=(a+c, b + d)	 and
(a, b)(c, d)=(ac—bd, bc+ad)

Show that R is a field.
19. Prove that the set of all real numbers of the form a+b,/2, where

a and 6 are rationals forms a field under addition and multiplication.
20. Show that the set (a, b, c, d) in which addition and multiplica-

tion are defined by the following tables is a finite field.
a	 b	 c	 d	 0	 a	 6	 c	 d

a	 a	 b	 c	 d	 a	 a	 a	 a	 a
6	 b	 a	 d	 c	 b	 a	 6	 c	 d
C	 c	 d	 a	 6	 C	 a	 c	 d	 6
d	 d	 c	 b	 a	 d	 a	 d	 6	 C
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21. Prove that the set of integers l={0, I, 2, 3, 4} with addition
modulo 5 and multiplication modulo 5 is a composition of a field.

22. Let us define to binary compositions", t, in the set Z of allintegers as follows
a *
aAh=a-fab--ah v a, hEZ

Show that (Z, * A) is a commutative ring with unity What is the zero of
this ring ? What is the unity of this ring ?

ANSWERS
I. (a) A set of integers forms an infinite group. The following is

an example of a group composition with a finite set S=-{s, in, t, r} which isan Abelian group.

m
I	 s	 in

S I	 in	 t	 r	 SI	 t	 r	 S	 ill
r	 S	 in	 I

(b) See the text.
2. No, for the first part, and yes, for the second part.
3. (I) Yes, it is set a of non-zero real numbers.

(ii) Yes in addition and not in multiplication.
4. (i) No, as Inverse of each integer is positive,

(ii) Yes
(iii) No, as inverse of each element is not there.
(iv) No, as product of —2 and 2 is not there.

ring. 5. 
(a) The set of integers, real, rational or complex numbers is a

ring.	
(b) The set of real, rational or complex numbers constitute

6. (a) No, the additive inverse —a for a is not there.
(b) See text.

7. In all except the (I) for the reason given in 6(a) above
15 Yes.
16. (i) Yes, (ii) No, (iii) Yes. (i)) Yes.
21. Hint. If we denote the two compositions by and ®& respec-

tively, the composition tables for the two compositions are as shown
below.

JcLL 2 3 4	 ® 0 1 2 3 4
0	 0 1 2 3 4	 0	 0 0 0 0 0
1	 12340	 1	 01234
2	 23401	 2	 02413
3	 34012	 3	 03142
4	 4 0 1 2 3	 4. 0 4 3 2 1
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From the table, we conclude that
(1) F is closed under $

(ii) ®s is associative in F
(iii) 0 is the additive identity

tively.
(i	 additive inverse of 0, I, 2, 3, 4, are 0, 4, 3, 2, 1 respec-

(v) is commutative as the table is symmetric in rows and
columns.

(vi) F is closed with respect to ®
(vii) ® 5 is associative in F.
(viii) 1 is the multiplicative identity
(ix) The inverse of the tion-zero elements I ,2,3,4E F are 4, 3, 2, 1respectively.

(x) ® is commutative as the table is symmetric in rows and
columns.

(xi) Distributive law holds good iii F as
a®5(bc)

Similarly,	 (b$5c)05a) =(b®sa)$s(c®a)
Hence (F, (D, ®) is field.
22, Hint. (i) It can be shown that the set Z is an Abelian groupfor the composition defined as given.
(ii) The cornposil'io,2 A is binary and assocjoj lie
Since	 (aAh)A =(a+f,—afi)c

—a+b —ab+c—ac_bc+abc
Similarly	 CA(bAc) =a A(b +c_ be) a±h -I-c--bc ab

A is distributive over *	 —ac -1-abc

aA(b*c)=a((b+cI)
...
Again	 (aAb) * (aAc)-=r(a+h—a/,) * (a+c—ac)

c - ac—i
aA(b*c)=(aAb)*(aAc)

(ii') Commutative

(v) Unity
aAO=a+O--(l O=a
OAa=04-a-0.
aAQa-OAc

Hence, the set is a c ommutative ring with unity for the two com-positions delned as given.


