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Differential Calculus

STRUCTURE

INTRODUCTION
DIFFERENTIATION

DERIVATIVE OF A FUNCTION OF ONE VERIABLE
DERIVATIVE OF A POWER FUNCTION

DERIVATIVE OF A CONSTANT WITH ANY FUNCTION
DERIVATIVE OF THE SUM OF FUNCTIONS
DERIVATIVE OF THE PRODUCT OF TWO FUN CTIONS
DERIVATIVE OF THE QUOTIENT OF TWO FUNCT IONS
DERIVATIVE OF A FUNCTION OF A FUNCTION
DERIVATIVES OF TRIGONOMETRIC FUNCTIONS
DERIVATIVE OF LOGARITHMIC FUNCTIONS
DIFFERENTIATION BY THE METHOD OF SUBSTITUTION
LOGARITHMIC DIFFERENTIATION ‘
DIFFERENTIATION OF IMPLICIT FUNCTIONS
DERIVATIVE AS A RATE MEASURE

SUCCESSIVE DIFFERENTIATION

MACLAURIN'S SERIES

INCREASING AND DECREASING FUNCTIONS

POINTS OF INFLEXION

MAXIMA AND MINIMA

PARTIAL DIFFERENTIATION

TOTAL DIFFERENTIATION

OBJECTIVES
After studying this chapter, you should be able to understand :
@ the derivative and write the derivatives of standard functions

@ differentiate functions using standard derivatives and rules of
differentiation
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® higher-order derivatives of functions

@® derivative as a rate measure

@® points of inflexion, maxima and minima
@ partial and total differentiation.

17-0. INTRODUCTION

The world calculus stands for the method of computation. There may be
an arithmetic calculus or a' probability calculus. The most common use of
calculus is in regard to the computation of the rate of change in one variable with
reference to an infinitesimal variation in the other variable. For example, we
know that given the speed, the distance covered is a function of time or given
the distance, the time taken is a function of speed. There is then a dependent
variable which gets an impulse for change by a change in the independent
variable. Calculus gives us the technique for measuring these changes in the
dependent variable with reference to a very small change, approaching almost
zero, in the independent variables or variables. The techniques concerning the
calculation of the average rate of change are studied under differentiation or the
Differential Calculus and the calculation of the total amount of change in the
given range of valucs is studied under integration or Integral Calculus, which we
shall study in the next chapter.

The usefulness of, both these is very great in business. Given certain
functional relations we can find out the average rate of change in the dependent
variable with reference to a change in one or more independent variables. For
example with a given demand function it would be possible to find the degree of
change in demand with reference to a small change in price or income or hoth as
the case may be and also the maximum and the minimum values of the function.

17'1. DIFFERENTIATION

To express the rate of change in any function we have the concept of
derivative which involves infinitesimally small changes in the dependent
variable with reference to a small change in independent variables.

Differentiation we can say is the process of finding out the derivative of a
continuous function. A derivative is the limit of the ratio of the increment in the
function corresponding to a small increment in the argument as the latter tends
to zero.

Let us assume that y has been produced by labour x and that as we
increase x (lavour) by one unit, the amount of y increases by four units. This
relationship is shown by y - 4x; when x is increased by a small increment
dx, then y increases by Sy, and we have

y+08y=4(x+3x) =4x + 45x

Sy = 48x = %=4
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8y . . " : ;
_8%— is the incremental ratio of dependent variable y with respect to the

independent variable x, i.e., we can say ;—;’- is the change in ¥ with res-

pect to a small unit change in x. If the increments are very small tending
to zero, we may write

d dy . (3y )
= (y) or de OF axlin(} (8?

d ) 2
Thus % is the rate of change of ¥ with respect to a change in x and is
called the derivative of the function y with respect to X,

17°2. DERIVATIVE OF A FUNCTION OF ONE VARIABLE

Suppose that the function f{x) denotes a continuous function of x.
Let X receive an increment 8x, then the function becomes

fx4-8x) ssf 1}
Hence the corresponding increment of the function is
x4 8x)—f(x) (2)

The ratio of this increment of the function to the increment of the varia-
ble is

ftdr)—Rx) (3)
3x
The limit of this ratio when 3x approaches zero, i.e.,
i [EEE0D—fx) .(4)
§x-0 dx
is called the derived function of f(x) with respect to x, or the derivative of

f(x) wort, x, or the x-derivative of fix) or the differentlal co-efficient of f(x)
L e

If y is used to denote a function, i.e.,
y=/x)

and X has an increment &x, then » will have a corresponding increment
positive and negative), which may be denoted by 8y so that

y+-8y=fx+6x)
8y=flx+8x)—1(x)

and : 8y =f(x—1"5x)-ﬂx)
Sx Sx
sy . SIx48x)—f(x)
im = |lm ———
8x-0%%  3x=0 8x

he phrase derivative of ¥ with respect to x is symbolically equivalent to



650 BUSINESS MATHEMATICS

d
the lim 4 and is denoted by 2. . Thus
3x+0 Sx dx

"iy—ﬂlim f(x-+8x)—f(x) —=£'(x)
dx 5.0 x

The process is quite general, as indicated in steps (1), (2), (3) and
(4) above. These may be described in words, thus

(@) Let the independent variable have an increment,

(b) find the corresponding increment in the function,

) (¢) write the ratio of the increment in the function to the increment
in the independent variable,

(d) find the limit of this ratio as the increment of the variable
approaches zero.

1 d
It should be noted that % does not mean the product of T with

" . d
Y. In fact dx is not a real number, so the notation 7 stands as a sym-

bol to denote the operation of differentiation. The derivative or differential

s dy . k .
co-eflicient of y w.rt x, J 'S written in many other ways such as
‘ d ot
y » yll d_; [f(x)]!f (X), ‘D.]"; elc.

17°3. DERIVATIVE OF A POWER FUNCTION .

The most important rule is in regard to the differentiation ofa
power function. Let y=/(x)=x* and let there be increment in the function
as follows :

y+dy=(x+8x)*=x2+2x8x 4 (5x)*
Sy=x?+42x . 8x+4(8x)2—x2
dy=2x . §x+(5x)*

lim gév—-——lim (2x+8x)
3x+0°%% §x+0

d;
£'(x) or 2 —~lim (2x+ 8x)=2x
dx  px+0

Now for the general case where y=x", we have for an increment
y+&y=(x+38x)"

Using the binomial expansion, we have

y+8y=x242C, xr=1 (3x) +°Cy x"H8x) ... +"C,.y X(8X)"-"+(8x)"

3y=[x"4"Cy Xx*"1(8x)+ ...+ (8x)"] - x"
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sy [*Cp x ' (3X)+-... ot (3x)"]
3x 8x

5
=> a—i =00 en-ig,. (8%
v WP
> lim 5~:hm ["C, x4 ... F(3X)"1]
8¢+0°% 5x->0
dy o n—1
dx =
Thus the general formula is
dy d ny — n-1
il T e
dy
Illustrations. y=x then E=3x3—1;3x2
— y3 d_y. e -4
y=x% then d% =5
dy 2 ,
yisned f6 AT R -
x%/8 then T 3 x-1i

d
y=x-then f_!{,. =(—8)x"

17'4. DERIVATIVE OF A CONSTANT WITH ANY FUNCTION
Let y=c f(x), where ¢ is a constant.
Let X receive an increment §x, consequently ¥ receives an incremen
8y,
y+48y=c flx+38x)
sy=c[f(x+3x)—f(x)]

&y  [flx+8x)—f1x)
gx t [—“v—]

. &y . Sx438x)—f(x) | .
s,lrl-rPo bx _silino c[ 5x ]“—Cf (x)

dy d .4 -
= c‘{;:g; [CftX)]-AC [33:_ _f(x) ]-—Cf (X) .(1)‘
Thus the derivative of the product of a constant and a function is the
product of the constant and the derivative of the function.

If f{x) is denoted by u, then (1) is written as
du

Illustration. If y=>5x% then

dy d
=5 [a;(x‘):]-—_mx
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Remark. When a function is cqual to a constant say y==a, where

a is constant, then gji =0,
X
17°'5. DERIVATIVE OF A SUM OF FUNCTIONS (SUM RULE)
Let Y=fx)+ $(x)+...

Then on giving x an increment 8x. we have
y+ ay =Slx+8x)+ $(x+8x) ..
= flx 4 5x)— %)+ é(x+5r)-¢(’r)+
Sy _Sx+ 5x)—fix) 95(1+5A)—-¢(x)
5x

8x 3x
Hence on letting §x approach zero, we get
im 2 lim JX 6\’)—f(\) $(x-+ 8x) — ‘ib(x)
sx>0 8X 5.9 ax-»o B
d
. 4 dx f(x)+ - B(X) 4. - (D)
-d
> e [+ () + . 1=/ (x)+ ' (x)+... - (2

Thus the derivative of asum of finite number of jfunctions is the sum
of their derivatives.

If the functions be denoted by u, v, w, ..., i.e,, if
Y=u+v+t+w...
the'result (1) may be expressed thus
dy du dv dw
dx ~ dx +dx dx
Hlustrations, }. Ify 2x ]—x’ then
dy 4
F=2. (x)+ T (=24 2x
2. If y.—_4x3._7x4, then

dy d d
=4 gz =T, = (%)=4.3x-7 . 4x0=12x* 28

3. If y= —g- x=—~% X7+ 4x-3, then
dy 4 4 6 d g s
H=7F 2 5. 5@ 3= O
-5 N T
=4x*—6x8—12x-¢
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4. Find the differential coefficient of

Ixt —7x3 4-8x%— Tih {g‘ wrl. x

Solution. y=9x'—7x348x%— § G 29
a’y 8 10
T3 s
- dx( 9x'— T +8x'— — 4 5

d d wod o ds8y d /10
Cax (9-‘""”;;? gy -2 (5 5 (F)
A1 L eyrs. g 008 410, L ey

—=9.4x3-1—T7.3x3 "V} 8.2x* 1 —§(— 1)x~ "1 10.(— ) x—2-L

360 — 21X 163+ - 340 .
5: Le:y--u =3F ﬁ,{
Solution. 0 ';")" 1—2:;— x?
4’%"%*"‘”"2—"2?%1
;’y =(—2)x-3-2(—1)x"? H)——2 + 2

176 DERIVATIVE OF THE PRODUCT OF TWO FUNCTIONS
(Product rule)

Let y=/(x) $(x)

Then, on giving X an increment 8x, we have
y+8y=Ax+8x)¢(x+8x)

57 = S0+ 8x) B (X +8X)—f(x) ()

A =fx+8x)[ (¥ +8x)— S (x)]+ (X[ fx+8x) —f(x)]

2 —flx-+ x) PEAPN 90D 4 4wy ﬂ———___-_x*ai") —fx)

Hence on taking the limits as §x approaches zero, we have

=fx) 3‘*[¢(x)]-1—¢(‘<) [ f1x)] (1)
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Thus the derivative of the product of two functions is equal to the pro-
duct of the first and the derivative of the second plus the product of the second
and the derivative of the first,

If the functions be denoted by & and v, ie,, if y=uy
then (1) may be expressed as
dy dv du
dx Tdx ' dx ~(2)
Remark. The derivative of the product of any finite number of
functions can be obtained by an extension of (2). For example, if
y=uww

then, on regarding vw as a single function

dy du - —

g W) 5, g )
- du dv dw .
S— o o1 u( W 4+ vy )
_oodw o dy u dw
—VWETWUITE+ v =

Similarly if y=uvwz then

dy = VWzZ au uwz J? +uvzd-)f - uvw (—i-
dx ax t dx dx dx

In general, 1o find the derivative of a product of several functions,
multiply the derivative of each function in turn by all the other functions and
add the results,

d
Hlustrations 1. Lef y=(3x2+41) (x*+4-2x), find d%-

Solution. Let us take #=(3x2+41) and v=(x*+2x) then the deriva-
tive of the product function y=uv is

dy dv du
' Hnt o
=4 g =(3x241) (3x*+2) 4 (x*+ 2x) (6x)

=0x' 1 Ox24 2464+ 12x2= 1 5x4 421 %2+ 2.
2. Differentiate (3x34 5) (2x3++x+7) w.r.t, x.

Solution. Let y=(3x245) (2x3+x+47)
By using rule III, regarding the derivative of the product of two
functions, we have

dy d d
= =(3x245) 3;(2x3+x+ N+2x*+x+7) 5 (3x2+5)
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——-(3x1+5)[ 2.5 oy )+dﬂ )]
+ox e 3 0+ 1) |

=(3x%45) (62 4+ 1)+ (2x*+x+47) (6x)
=30x*4-39x2442x 45,

3 Differentiate (V' x +2.3/ x WV x —2. DA x ) wird, x
Solution. Let y=(v x +2. ¥ 0 x(V x —2. /%)

‘( X& +2.Ti )( x& —Exé)

j—i’(\ +2r5\‘1( t w*)( —2x* %( 5-;2x-")

a U f=2¢t (VT 42) (VT 1) fina df(x)
Solution.
f'(x)=(1/x— -|—2)(1/ x _|>3‘£_(2x‘é ) 2%t (ﬂ/—x_——l )‘;g(v = +2)
w2 (VE a2 ) m (V1)

1

= — 3 s =
:(v’ x +2)(\/ X —1 )2.; xt oy (\/ X —1 )gx
N
+2x (\/ X +2>-§— X
=WV E+D (V™ =DV x +x(V * —1)+x(1/ x +2)
=4x+5,\’\/—x-_6W/_x.
17"7. DERIVATIVE OF THE QUOTIENT OF TWO FUNCTIONS

Sx)
Let =
. B(x)
Then on proceeding as before, we have
x43x
pikgyd G180

B (x +3x)



656 BUSINESS MATHEMATICS

oS x+8x)  f(x)
Y=gt TF M
S (x48x) $(x) —f (x) ¢ (x+8x)
. $(x) ¢ (x-3x)
ai _f{x—}-&x) [ (X)——ffx) 95 (I+3x} (”
8x $ (x) & (x+6x) dx

On letting §x—0, right hand side approaches the form '00' In order

to evaluate, introduce
P(x) S(x)—p(x) fx)
in the numerator of right hand side. Then, on combining and arranging
terms, (1) becomes '
S (x+3x)—f (x) P(x+3x)— $(x)
gy $00 [ ]y [ S 0]
dx $(x) $(x+3x)

Hence on proceeding to limit as 8x approaches zero, we have _

‘ d
o P Ol =1 (7 1600) "

dx [$()F
Thus if one function be divided by another, then the derivative of
the fraction thus formed is equal to the product of the denominator and
the derivative of the numerator minus the product of the numerator and
the derivative of the denominator, all divided by the square of the
denominator. B
If the functions be denoted by ¥ and v, i.e,, if

__H
=7
then (1) has the form
Vd—"u udv
d dz 4
S == 0 @

. . - 3__
Ulustrations 1. Find the differential co-efficient of ;ﬁ; w.rt, x

__
Solution. Let y=;-‘,—+i—
T+ 1) (= 1= (o 1)L (e 1
dy dx™" dx

dx = 310
_(x*4+1) 2x—(x2—1) 2x 4x
' DY TR
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2. Differentiate w.r.t, x, the function
(et 1) 2x— 1)

(x—3)
. ’ ) (2x=1)  2x*px-=1
Solution. Let  y- o S
(x--3) i(:zxcaqu.a.:kfl) —f2X 4 % ~-1) .‘i’_(t -3)
Ei'.v. . d"“__ ] o dx ™
dx = (x—3)?
LX) (@) (202 x—1) . |
: (x=3) B
Ll il
7 (x-3)®
x* +2
3. Find the differential co-efficient of :
o
x; +2
Solution. Let - P
x

d ] ¢ !
dy "%Jx_( x)" _}_2)"( x% _Fz)tii?( xi )

dx = ( ¥ i >a

17°'8. DERIVATIVE OF A FUNCTION OF A FUNCTION

657

Here we deal with derivative of a composite function (function
of a function). If y is a function of u, say y=/f{u), where u itself is a
function of x say u=¢(x), then » is called a function of a function or

a composite function of x.

Suppose derivative of ¥ with respect to x is required. [Here f{#) and
$(x) are differentiable functions]. The method, which naturally comes first
to mind, is to substitute $(x) for 4 in first equation, thus getting y =/ [¢(x)],
and then to proceed according to preceding articles. This method,

however, is often more tedious and difficult than the one now explained.
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Let x receive an increment 3%, accordingly, # receives an increment
8t and y receives an increment 8y. Then

Yo+ 3y =f{u-+du)
Sy = flu+ duy— f{1)

8y _Jlutdu)—Jiu) 8x
5x Su &x

Assume §u740 when 8x3£0. When 3x approaches zero, Su also
approaches zero and this relation becomes

- . u-- 5u) — f(u) 3
3x—+0 dx du-0 du Bx—Q BX
dy d du
N dx = au VO
dy dy du
He st LI .l 10
e dz  du dx

Mustrations, 1. Differentiate \/(3x*—7) w.r.t, x.

1
Solution. Let y=— V(ﬁ:ﬁ:@x’—-?) .

1
Put u=(3x*—7) then y==u’

du d
Now K e (3x2—7)=6x

dy ! —3_1 2 =
and = u =S (3x2—17)
dy dy du
i dx ~dx - dx

==
eg (=D e 2

V37

-1 d
Aliter R 4 I 3x*=-T)

3x :

e
2. Find the differential coefficient of (3x* —5x*4-8)° w.r.t. x.
Solution. ‘Let  y=(3x2—5x248)3=u3,

where u=3x3—5x%48

dy dy du

&= d - & )

== f3x*—7)—* L 6x=

Now
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dy d
But 2‘}- = ;ju (ud):: RITE
=3(3x3—5x74-8)?
d d
and ZIE-:‘}E (3x3—5x3+8)=:9x—10x

Substituting these values in (1), we get

d)’ P 3 ] 5
o= 3(3x3—5x348)(9x*—10x)

3 Differentiate w.r.t, x the following function :
1

i/?x“- x84 9

Solution. Let y=3.—~———l~__.___~="—--(6x5~7x“+9)*”3
/6x% —Tx34-9
Put U=6x5—7x349, then y=u-1/
dy 1 —4/8 __. 1 5 3 -4/3
Now = u-4/ =i (6x5—T7x%49)
du
. ol AL 2
and i 304 —21x
: dy dy du
Hence e T
_,-%- (65 —Tx8— 9)~4/3(30x4 —21x7)
dy 1 " 4 gy @ 3
i A -7 B = (6x5—T7x%+49
Aliter. = 5 (6% TR = (6 +9)
_ _H} (65— Tx8 4 9)~41%(30x8 — 21 x2).
I
_ Differentiate ———=—m=—= W.r.l. X,
4. T Vbt /X
Soluti Let = .
acjutlion. y ‘v/m_l_vrm

Rationalising the denominator, we get

VX at—/xT b
A= a'— bt Tar—

1
dy 1 r1 w2 ' d 5
I% :a‘wbi"[ 3 (x24-a*) e (x24a’)

-1

1

2
—— x’+b2

1 b’[(xﬁ—}-a*)‘f’—(x’+b’)1/']

659

4 ayby ]
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1 [‘ 2x - 2x
=@k _z\/mas—'z\/x—s-+.p,a“]

X [ 1 - 1
= Ry el

179, DERIVATIVES OF TRIGONOMETRIC FUNCTIONS
I, Derivative of sin u. Let Y=—=sin u
Then Y +8y=sin (u+ 3u)
Sy=sin (u-|-3u)—sin u

==2 cos ( u-{-ég-) sin §-g—-

8 5 LA )
S—'\T-“-zl,()s ("'+ i—)sm—i - Bx

s B
== COS (u+§5) 3"‘"21 o
= 51} s

Su " 8x
2
Let 5x—0, then also 540 and
. ou
< sin - -
4 sy . é du ) . 2 . Au
lim -==lim cos | w4 —)lim . lim -
Sx-»0 5x Su+0 5 2 duw»g OU §x»0 bx
2
dy du
~:> (Ec-:'COSu.l.a;
d (85 §) N du
=> d.\‘ sin =COos g Zr-

In particular, if u=x

E;(SIH X)=:c08 x

Thus the rate of change of the sine of an angle with respect to the
angle is equal to the cosine of the angle.

Il. Derivative of cos u. Let y=cos 4, then y—sin (l wu)

dy ) n d T . du
=0 (Fu) (5w )=sinu . %
d% (cos )= —sin u %

dx
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In particular, if y=x

d
~—— (cos x)=—sin x.
dx
N— sin
I1I, Derivative of tan u. Let y=tan u, then y= &
cOs

u d in i g 1
cos U - (sin #4)—sin uJ;(cos )

dy

dx = cos? 4
__(cos? u-sin® u) é[i
B cos2 u tdx
= _l._ {.ii — 21 ‘.E.‘.
Tcostuc dx e My

d " du
= B?(tan u)=sec® U, . g

s B 2
If u—=x, dx (tan x) sec? x.

1V. Derivative of cot u. Substituting e for cot u and differen-

tiating, it can be found that

d _—
e (cot W)= —cosec* U Te

d
U= = = o
If X O (cot x) cosec’ x

V. Derivative of sec u. Let y=sec tie=——, then
cOos U

dy sinu du 1 sin u du
dx " cos'u “dx cosu ‘cosu’ dx

d u u u L,
> v (sec u)==sec U tan o
d
If u=x, — (sec x) =sec x tan x,
dx
V1. Derivative of cosec u. Let y=cosec U=§n—l}, then
dy cos 4 du
dx ~  sin? U dx

. dy —_r du
d—x-—H—cosec CcO _dT
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d
If u=x, = (cosec x)= —cosee x cot x
VII. Derivative of sin™ u. Let ¥=sin~! u so that sin y=u
; o dy du
On differentiation, we get cos y b s
dy du 1 du
dx $ ¥ dx 4/{—ginzy " dx
d 1 du
—— -1 T —
> o (sin™! u) iR
i cmsiom A 1
If u=x, iz (sin~! x)= i

VIII. Derivative of cos™! u. Let y=cos~! u 30 that cos y—u

d
On differentiation, —sin y di j:

dy _ 1 du_ ! du_
dx " siny’ dx _"',/'l__"“'é‘(m‘, < dx
4 cos-! 1 du
= Ex-' (003 u}_. —m' . (E
- d . 1
If u=x, i (cos x)z_m
IX. Derivative of tan"' u. Let y=tan! u so that tan y—u
On differentiation, we get sec® y EX .=.g.’.‘.
d __1 _ du .1 du
dx sec'y dx [ttan?y dx
d -1 1 du
=> T (tan nr)___*__u2 e

In particular if u=x,

d G 1
@ (tan™ x)= |

X. Derivative of cot™' u. On proceeding in a manner similar to

that in (1X), it can be shown that
d a1 du
Zx OV M=~ o
d - 1
= — 1 = ——
If u=x, S (cot™ x) 1T
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X1. Derivative of sec™' u.  Let ¥- see™! ¢ so that sec y=Uu
dy du
On differentiation, we get sec ¥ tan ¥ T
=dx
dy 1 du 1 (u
dx “secytan ¥y dx sec ¥V sect y— | dx
i o | 1 du
. dx (see+! u)- ”\,fu?' - " dx
. i
If t--x, then i(“c—l K) =
dx x\/x2-1

X1l. Derivative of cosec™!

u. On proceeding in a manper similar
to (XI), it can be shown that

( 5 s &
+— (cosec™" U T
/ u \/ w1 dx

. 1
It 4—=x, then ] (cosec™! x)=——— l—-—- -
dx Ray xPea]

17°10. DERIVATIVE OF LOGARITHMIC FUNCTIONS

X1, Derivative of log, u. Let y—logs # and let x reccive an

increment 8x, then & and y conscquently receive increments Suand 8y
respectively.

Then y+ dy--log, (u-+58u)
: Sy =log, (4+6u)—log. u

=log, (!H'S--‘) ( 1+ (&)

5‘;’- =loga ( 1 Fau) . 31;

On introducing -l? 1 $u in the second member, we have

Sy 1 u Su Su
W .loga( l+—a‘) x

M

| Su Su

From this, on letting 8x approach zero and remembering that §u and
8y approach zero with 8x, it follows that

8y 1 . gu Su
ai-?]os_’f:_ lim Iog,\ 1+ ) . lim —

du>0 Bx0 OX
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dy 1 du : b 1/m
% =a-lmeg |- Jim (14m) " e ]
d 1
If 1 =x, then ax (fog, "):‘——x (log, )
d 1 du
If a==e, then - (log u)= S S

d 1
If u=x and a=e, then d—x—(log )= o

XI1V. Derivative of e". If y=¢" then

d}., —e" di..
dx o dx

d
Ifu- TR R
fu-—=x, then 3 e

Ilustrations. 1. Find the differential coefficients of the following
Sfunctions :

(@) sin 6x, (b) tan (5x47), (¢) scc® 4x.
Solution. (a) Let v sin 6x=sin ¥, where u - 6x,

dy dy du

Then =5 s L)
dy du

But —— =cos ¥ and -~ =6
du dx
dy
dy S cos u. 6=16 cos 6x

. d d . d

Aliter, ;i:; =g (sin 6x)==cos 6x ¢ (6x)=6 cos 6x.

(b) Let y=-tan (5x+7)=tan u, where u= 5x47
dy dy dﬂ

Then Z;—z‘??&}— (1)
dy du

But p =sec? ¥ and % =35

d
J;)‘: =sec? U, 5=5 sec? (5x+7).
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(¢) Let y=sec® 4x

! {
(?y ﬁa“— (sec? 4x)-=3 sec® dx t;'x’ (sec 4x)

d

=3 sec® 4x , sec 4% tan 4x, —- (4x)
dx

=12 sec® dx tan <x.

T=sin.x dy
2 If y= Ty find "

d
(14-cos x) (;{_ (1--sin x)—(1—sin w) . (1+cos x)

dy o
de — - (1 Feos x)P

(1 +co5 x)(—cos x)—(1—sin x)(-—sin x)
' (14cos x)*

sin x - cos x—(sin® x+4-cos® x) sin x—cos x -1
(L+cos x)? =7 (14 cos x)®

3. Find the differential co-efficients of :
(i) y=log 5x, (i) y=Ilog (sin x), and (i) y=log (x cos x}
du

Solution. Let 5x=u g that y=log ¥ and T 5
dy dy du

But et il
dy 1 du 1 4 1
dx T u Tdx  S5x X

, du
(i) Let sin x=1u so that I =08 ¥ and y=Ilog u

dy dy du
But dax "du “ dx
dy dl,____L . cos x==cot x.

1
de ~ u ‘dx sinx
(iff) Let u=xX cos X so that

du .
Zx =©0s x—X sin X and y =logu

665
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((y dy  du { du

But de =dw " &= " I

1 . COS X — X sin X
=———"r(C0s.X~~X"sin .t)i-(——----*—ﬂﬂ——)-
X cos X X cos x

More about logarithmic differentiation will be discussed in the later
section of this chapter.

4. Find the differential co-efficient of the followiny Sunctions
(@) cos=t 5x, (b) ran- vVx, (c) log (sec! x),
Solution. (@) let y=cos ! (5x)}=cos~' u, where u=>5x

dy =1 dl

u
Then = _-\7.1,.___——-—“" = and o =35
dy d d - -
Now L - l )

& i = T ST e

(6) - Let y=tan-! 4/ % =tan-1 u, where y—x1/2

dy du 1 -3
then =TT and g =g
dy 1 [ 1
T —— — X T —_—
dx 14w 3 2V x (14x)

(¢) Let y=log (sec! X)=log u, where ¥=sec™! x

dy I du |
Then 4:?!-*'— = -u—- dn d? ':..-.x‘_‘*—'—")\/}c2 =
t_f)' _dy  du ____l_ |
dx du dx wu x\/x’—l
| s l R ——
sec™ X, xy/ X ]

d {
Aliter, agf =é§ (log sec™! x

1 d o
ST x gx G
1 1

Tsectx ;\-/12_
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Example 1. Find the derivative of (x1—4x*-}9) tan X €%,

Solution. Let y==(x'—4x3-+9) tan x e*.

By using rule III, regarding the derivative of the product of three
functions, we have

dy

e e A8 2 : _d‘ T 3 x _“i_ g
Y _(xt—ax9) tan ¥ g (94 (- 49) € 7o (tan x)

q
t tan X €* ;; (xt— dx* +9)

—(x*—4x49) tan X e+ (x" —4x? -4 9)e* sec? x 4 tan x e*(4x® - 12x%)
= (x*—12%2-9) tan x e* 4 (x*—4x*4-9) € v 28
Example 2. Find the differential co-efficient of

7 [ 3 cos i (8% et x
5 )43 cosec x+{-, — w.r.l X,
(cos x) (log x) x (xte)

tan X
Solution. Let y=7 (cos x)(log x)+-3 cosec ¥+ (f‘_gex) :

The first term on the right hand side is the product of two functions
cos x and log x, where 7 is only a constant, therefore, we can apply the
product rule. The second term is the product of a constant and a function
and the third term is the quotient of two functions tan * and (xt¢€%). In
this we shall have to apply the quotient rule.

dy d ) d !
de =T [ cos X. 1= (log x) +log x. cﬁ{cos x)]+3 (;__t(cosec x)

1
(x+e%). i;(tallm x)—tan Xx; 5 x+e*)
+ s BT ——(\l ex)l = =

cos X
X

=T

—log x sin X 1 -3 cosec x cot X
(x-+€e*) sec* x—tan x (1+e")
T (x+e*)? ’
Example 3. Differentiate the following function w.r.t. x :
(@) sin (x*42x—3)", (b) log sin x*.
Solation. (@) Tet y=sin (x*42x—5)7
Put t=(x*+2x—5), v=4", then y=sin v

du dv
7o =0Fd =Pt =T = 3)°
dy

ad o = 08 v=cos u=cos (¥*+2x 5’
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By using the chain rule, we get
dy a’y dv a’u
dx “dv *du Xdx

= COs (x’+2x—-5)7 X 7(ﬂ+2r~ 5% (2x+2)

Aliter, ({,}% =cos (x*+2x—S5)’, T [(Jts +2x — 5)7)
=cos (¥ 2x - 5).7 (x2-4-2x - 5)8 L (13 2 ]
dx
=7 cos (x*+2X—5)" (x*42x— 5)%(2x+2),
(0) Let Y=log sin x?
Put U=Xx? y=gin &, then y-- log v
du dy §
e =2x, du = Cos U=cos X
dy | 1 1
afid 4y = u “ping “sin x?
dy ‘i{ ‘.{”_ df.r_
dx iy X du Xc_!.\'
=gin 7" €08 x* 2x=2x cot x2,
: d; 1 :
Aliter. d.:.‘ m = (sin x')
1 d
——— 2 o _(x?Y
T dx £
zéi%— . COs X*=2x cot x2,

Example 4. Find the differential co-efficient of
(@) tan (log tan-" / x")4tan-1 (sin e**) w.rt. X,
(b) e'nxyrt sinx.

Solution. (@) We shall apply sum rule, chain rule and the standard
results,

Let y=tan (Iog tan™! \/Tx—)-}-tan—l (sin enx)
dy d e
(bzc = g (tan (log tan™! /% I+ 7 [tan=? (sin e*)]

=sec? [log tan-' v/ x x)——[log tan-! y/Xx)

1

ST
-}-—-————l_*_sina e dx (sin e27)
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;o 1 d . -
=sec? (log tan-! v x)—— Vi (tan ‘\/ X)

|

!( )
edy et
T I I:,m‘c'”c“s o

g | 1 d —_—
=sec? (log tan 'V «x e i )
. )l.'m YW 14_(1\/ v)? dx \/
1 o
T T -
- { Fain e - SO RV 8" g (R}
~ Sec? (log tan ! \f 2 1 ae’™ cos (%)

2“‘“‘ J\/ )Vx ) Fx Vi sine (e’

g : d
(&) Let y==e'n* z:=sin x, then we need for which we shall use

o
dz *

chain rule, Now

dy d dz

Z—=€"" ¥ —— (tan x)=sect x glon * -~ -G08 X

dx dx ( )=ssect . R ax e
d cank

(_j.y- _— {!}i _f =—e'tn ¥ S_F_L._I_ elin « cned x

dz dx " dz T cos x o o

R |
Example 5. Find di'{ when x==a cos® t, y -a sin®t,

; dx
Solution. T -3a cos® £ sin ¢
dy
il A N
5 Ja sin? t cos ¢t
dy
dy dt 3asin®fcost —
dv —dx " 3acostsint R &
dt

oy
Examople 6. Find -:—!:‘1 when xea (f--sint), y=a(l —cos )L

Solution. Ditlerentiating w.c.t. £, we obtain

dy )
;\:-:a(l— cos !),%}_—,n sin ¢

dr
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dy
oy dr asin t
dxTdx ﬂ(l-—-cog t)
-d‘l
T ; t
u?.a sin -J?’—cos;i- N t'
=~ e “rcot .

I
2a sin? =
2

EXERCISE (1)

Find the derivatives of the following w.r.t. x :

j 5

10.

11.
12.

(@) \/_,
(@) Txt 1 30 —9x+5, (B) X —

2 _!' 3

X
(a) (x-+a)x+b)x+e), (B) vV x (ax24 bx -+ c)(Ix2+mx+-m)
Ix - 5x (2x + 1(3x+1) 5xVm 63— Tx -8

(@) Tk A" ®) 4x + 1 » (9) 5x—6
(@) (5x3+6x24 [1x+T)7, (b)) Vaxtibxte

1
©) o 2x* F3x°—5x+6
(@) (1—x°) tan X, (b) 3% sinx, (¢) »* tan X

14cos x tan x? log cos X
@ = sin x &) ax+ b © tan (log X)
sin 2x 1-—cos 2X \ cos X
(@) 1+cos 2x' ®) sin 2x ' © cos X-+sin x

d —y2
If y =sin (2 sin™ x), show that &‘;—:2 '\/ﬁf
(a) log sin X, (b) glos #in = (c) log (VX—1—Vx+1)
(a) log sin A/ fb) ‘\/5“1 '\/ X, () plog tan~1 =

() iog\/x+\/x=+a=
1+tan X atbsin x cos X4sin x
() tanr()asinx-i-b'()cosx—-smx
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2-+cos X
14. (a) cos {2 sin~! (cos x)}, (0) tan—! l__fﬁ

S o S
(¢} hian? (7? tan-! ry ) () V'sin (1 sin- ! x)
(&) e F Jog (scc? x%).
15. logsec™® 1%+ log (log cos x?)

— ] L
16. (a) If ym.é_ jog AP L, 2R

Xpxbl \/3 V3’
. dy v
prove that az—:x—aj
Y ! x--1 1 2% 1
DY I e 2 1 rF: a4 gt —1
(O) 1ty 3 Og-f’(\'—\it){v? an™! o,

e ..
prove tha FETE
17. Differentiate sin (log x) w.r.t, tan (e*).

18. Differentiate (14 x?) cot™! x w.r.t. log {e* (1-+x)}

. . ‘ X
19.  Differentiate {x2- ax4-a?)" log cot =~ w.r.t. tan~! (a cos bx)
5

20.  Differentiate x" log tan™! x w.r.t. sin 1\"/" X

!
Find % in the following cascs :
dx

21, x=a(t—sin 1), y=-a(l--cos t)
3at Jar?
T+ 77T
2}, x=logt+sint, y=e'+4-cos?
24. x=a (cos ¢} sin 0), y=-a (sin #— cos ¢)
25. x=3cosI—2cos®!, y==3 sin f—2 sind ¢,

22. x=

ANSWERS
L (@) —}x7%%, (b) Tx-10B, 2. (a) 2894 9x2_9,
4 14

.Y . 2 1 1 1
() 1 A e 3 (@) 2"‘—_:‘.‘3-- (b)lq-ﬁ“*';z'ﬁ“;sﬁ
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4. (a) 3x“+2u.\c+2bx-§-2¢:x+ab + be-ca,
(b) \/“_ (I Fmx4nm)(ax?4-hx {-¢) |- v xX(Ix? pmx 4-n)(2ax4-b)
4 X (axt §bx +e)(2lx—+m)

21x*4-24x 420 24x*+12x+ 1

5. LHEET ® :
@ —Gerar @ Tamy
T5x4 :I 20x8 - 3()x' +- 72.15-1—2
=y (5x—6
2ax--b
6. LL(5X 4652+ L1x+T)O(15x® 112X 4 L1, (B) ——mmc——
L Pl ®) 2/ ax 4 bx-+te
8x349x?-
¢ e 7. {(8) (l—xY) see? x—2xtan X,
@ = 1. V(x4 +3x* 5x-16)"
b) — (2x cos X-+sin x), (¢) x* (3 tan X +x sec? x)
( 2\/x

X (b 2x(ax +b) sec? x* —da tan »?
.2'. ( ) (a’{ f_b)-z =4

8. (a) — ¢} cosect

(tan (log x) x) tan x+x~* log cos x sec® (log x)]
{6 tan? (log X)

9. (a) sec? x, (b) scct x, (¢) use cos 2x==(cos X —sin x) X (cos X -8in xY;

—(sin x+cos x) 1L (a) cct x, (b) cos %, (c) 2\/;:__1

(coty/ X) cosV x eijl_i::": %
12. (a -‘2—‘\7—‘ (%) W__—_x \/5|an , (©) e t(——“l 5

1 2 sec’ x (b*—a?) cos x
@) somm= B3 @ e @ @sinx oy
2 ; . -
(c) (T —sin 29 14. (a) 2 sin {2 sin”* (cos )}

Isin ¥ ab [ L X ax ]
by T —_— tan=! — +=5—=
(%) S cos® x +8 cos t+5( )a'*+x (tan“ i) a +a*+x"

m cos (m sin™? x)‘ 1 (e log (sec"x“) L6xt tanx-"]
24/ sin(m sin™* x) V1—x2 1+x
2 2x sin x?

15. :
2v/x'—1 sec~! x?  cos x* log cos X"
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1 c_(lsﬁ(__l_gix)fx 8 (—1-}2x cot™! x)(x--1)
* sect (e") e* 24
—(1+a? cos? bx)(x*+ax+a2)"-!
x[ n(2x+a) log cot —g— —cosec x (xiax-+a?) J
19. =
ab sin bx
5 n(14x?) tan—" _\'_l_og tan“mx—l—x . xnean
(14+x2) tan~! x (V" X cos 4 x —3sind x)
t (2t —1%) t(e' - sin ()
S Ll sl =L 2l ¢
21. cot 5 22, =359 23, {57 c0s F 24. tan § 25. cot

17'11. DIFFERENTIATION BY THE METHOD OF SUBSTITUTION

Sometimes we can reduce the given expression to be differentiated
to a much simpler form by making a suitable substitution. To hit at the
proper substitution, a fair knowledge of trigonometry and algebra, together
with a good amount of practice is ngeded. We illustrate the method by

the following solved examples :

I:Ixample 7. Find the derivative of sin™! I-:xz'

X
Solution. Let y=sin! l_ixg and put x=tan §.

2tan 6@

then y=sin™! mz—azsin“l (sin 29)=24

Now x==tan 0 gives §=tan™! X,
20=2 tan™ x (1
Therefore, instead of finding the derivative of the given expression,

ve find the derivative of 2 tan”? x which is in much simpler form than the -
siven expression.  Differentiating (1) with respect to X, we get

@ L

dx 7 T+x?
. o Doy B
Hence pr (sm 1+x2)=}_+}2

2
Example 8. [f y=tan™ (I_J;, ) prove that % :I_-f_xh‘

Solution. Put x==tan @ so that §=tan™! x

. 5 2 tan @
= 1 —an=y [ e
J=an = g (I—-tan‘ ]
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then y=2 tan~' x. Differentiating w.r.t. X, we get

dy B 2 "
dx T 14x?
! . T 3x—x3
Example 9, Find the derivative of tan-1 o
—3x

. o 3x—a7 -

Solution. Let y=tan™! 13,8 Put x=tan 0 so that f=tan™! x
3 tan 6 —tan® 0
then =tan~! ...__..____.J— 1 (s -z
y=tan [ e tan~! (tan 30)=30
y=3tanlx

Differentiati 7 to X W et -

ntiating w.r.t. X, we get = EEE
Example 10. Find the derivative of tan-! mii :

1— & ax
S x+vVa
Solution, Let y= tan ' —m—m——— = = Pt \/’x =tan 0 andv d=tan a
=~ ax:
Then y=tan™ M_lzmn I tan (042)] =04«
I—tan 0 tan «

Now \/? =tan 0 = 0O=tan™! \/_.'\'_ and \/;—ztan 'x=>r;.=mn“\/na_

y=tan-'v/ x 4tan! v/ a. Diffcrentiating w.r.t, x, we geu

dy’ . I_ | 1
dx TTHx 2% T2V E (14
14 x2—1
"Example 1. Find the derivative of tan-! -1'/————;1— A
Toxtim
Solution Let y=tan™! \ll—i;c—“—-l

Put x=tan 0 so hat §==tan~! x then we have

'\/1+tan’ —1 ] e ['sec 0—1

Toam ey o tan B

.y [l—cosh "I__mn_1 [ 2 sin? (0/2)
= [ sin0 | 2 sin (6/2) cos (0/2)

[0 (£)]- 5

y=tan™?
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1
y= o tan~' X

- . dy | 1
Differentiating, we get P o Rl et

145 - PR
Example 12. [fy—=sec™! 1—x2! show that dy " I14x%°

Solution. Put x=tan 0 so that 0=tan™! x

1 +a? I+tan®0 1 A E s AR
—cec— . - —1 = -1 ——. =2 & 20 —29
L (If.\'ﬂ) See ( l—tan? 0 ) s (cos 2 l)) s Hgiee 20

then y=:2 tan=! x. Differentiating, we get

dy 2
dx 1 4x%

a sin x+b cos x )' find dy

i ; =g~ =
Example 13, [f y==tan ( T T dx
Solution. Let a=r cos «, b=r sin « so that

sin x-+h cos X __sin (x-}a) —tan (x+x)
acos x—bsin x cos (x-+a)

y=tan™! [tan (x }a)]=X+a

d .
Hence (% =1, « being a constant.

Example 14. Differentiate with respect to x the function :

V{l+x)—V(1-X)

V{I+0+ VI—x)

Solution, Put x=cos 20, then

V 1+x=1/1+cos 20=4/2 cos 0, V1 -x= Vv 1—cos 20=V 2 sin 0
AV IEX=A/T—x ; _1(cos f—sin 0)

18 o TR e A os 0+ sin 0

s ({5 s ()} -

ran !

Y =tan

y=}r—4cosTt x

dy 1 1
H T = e —
€nce P = 3 . ‘\/1 =
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Example 15. Differentiate

VItxt—+/T—

VIxxi++/T—x2

Solution. Let cos~! x?*=u so that x*=cos u, hence
A/ 1 +x%=4/1+cos u==1/2 cos ju
2/T—x'="v/ 1—cos u=4/2 sin }u

tan-! w.r.t, cos—' x2,

T =2 /] = S
Now y=tan~! \/ 14+x2—4/1—x? - Egs_iu SI.II iﬂ]
V x4y 1—x cos ju +sin u
= 1 L______tan *_u. - —1 P kAN 1
tan (I-i—tan iu)~tan tan ( i u)
1 1
=g "
dy
= =3

EXERCISE (1I)

Differentiate with respect to x the following :
1. (@) sin~' (2xv/ 1—x%), (b) cos™* (1—2x%), (€) sin™! (3IXx—4x%)
2. (a) sin™? ("\/ 1-x7),  (b) cos™ (2x*—1), (€) cos™ (4x°—3x)

= Y B " 2x
3. (a)sint(; i—x' ) (P cos (1+x2 ) (€) tan~ ( T—xt
a1+ Xt - [
4. (a) sec 1(1————) (b) se (m , (9) tan”! (1—3x"~')
5. (a) tan.‘I JHRZL ) (b) tan™! ( s )
) l+cos x /7 14-cos x
(c) tan! i\/l—tﬁ-'_ .4 !-:ii
o TAxt—= /1550
[Tt 3 tx—x
6. (a) sec-! L2 +x , (b) tan (Gx ‘giz ) 7. tan™! 361_1‘3(1;:

ANSWERS

2 3
1 Hint. Putx sin0;(a)and () \/——, (c) T

2. Hlnt Put xX=C08 0 (a) VI . (b) vl ! i (C) v;—‘-_s.—x—i'
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2 =
3. Hint. Put x=tan 0 ; ——- in each case.

» l+x2
. 2 —2 3
4. Hint Put x= tan 0 3 (ﬂ) 1——4—_-1—’- & (b) r;-;‘ % (C) "—_1 +x‘
sin x Xx 1
5. (¢) Hint Express m——tan 5 57

() Hint. Express J: —cosx _ [25sin? (%/2) _¢n X,

+cos x v 2 cos? (x/2) 2
(¢) Hint. Put x*=cos 0.

The bracketed exp.==tan (7:— A %) : \/_:"" =
—X
a & 6 . . 3a
6. (a) a2+x72‘, (b) l+4x—’ 7. Hint. x=atan, G—'—{-T

17'12. LOGARITHMIC DIFFERENTIATION

677

In order to find the derivative of (f) a function which is the product
or quotient of a number of factors or (ii) a function of the form
(variable)'*'***, ie., of the form [ f{x))**), where f(x) and g(x) are both
derivable, it is often advisable to take the logarithms of the function first
and then differentiate. The process of taking logarithm and then differen-
tiating is known as logarithmic differentiation. The following examples

will illustrate the method of logarithmic differentiation.

— 313
Example 16. Differentiate log [e”‘, (ii+ ;) ] w.rt, x.

Solution. Let y=log [e". (f—ii—g)”s]
Sx—3 \1/
4x+2 )
log L
4x+-2
=3x+4} [log (5x—3)—log (4x+2)]
Differentiating w.r.1. x, we get

d
5 = 7¢ [5x4 3 (10g (5x—3)~log (4x-+2))]

=log €3*+log (

=3x log e+;—

d \rd d
~7 (3x)+~3—[&- log (5¥—3)— ;- log (4x+2)]

¥

1 I d
=34 T{‘sx__a'ﬁ(s"‘?’)‘—""a (4x+2) }

4x+2

L8 .8 4
'3+T{5x—3“4x+2E
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Example 17, Differentiate (ax*--bx--c)* e°* tan (Ix+4m) cos™ x w.r.t, X,
Solution. Let v=/(ax%+bx-{-c)" e~ tan (Ix+m) cos~! x (D)
Taking logarithms of both sides, we get

log y=n log (ax34hx+4-c)+cx+log tan (Ix+m)+log cos—! x

Differentiating w.r.f. x, we get

1 dy n d
Y Ix Tax*ybx+tc " dx (ax*+bx+4c)+c
l d ; l d ~
'I't;ﬂ"(!x+ m) dx tan (Ix-4-m)+ cosix dx (cos~! x)
e - S
:axl_l_bx_l_c k! (za"'+b)+c+tan (’x+m) . SCC (Ix-!‘m) B {
1 —1
toosTx V1i—x2
£ { nQax4+b) | Isec? (lx-+m) ,
o i bt tan (IX-+m)  cos1 x x/i—_x'ii

where y is given in (1).

(x2—1)4/5 (3x 4 5)2/17 &3+
(x— Ntz (2x—7)*

" _ =10 QxS0 e

Solution. Let y= G—9)' 2 2x—7)"

Taking logarithms of both sides and using the theorems on logarithms,
we get

log y=14 log (x*—1)+3 log (3x+5)+3x—} log (x—9)—4 log (2x—7)
Differentiating w.r.t. x, we get

1 2 1 1
‘2x+7f 3‘;;"5.3'{‘3—-2 -

Example 18. Differentiare

w.rt X,

1
x—9

ulk
T2x—T7°

=i 2

dy ‘(xz_ 1)4rs (3x+5):;7 3%
dx = x—9) (2x—T)*

8x 6 1 8
& 5(x*—1)+7(3x+5)+3_2(X—9)_(2""-7)

Example 19. (a) If y=x*, find g-.
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Solution. We have y=x~*
Taking logarithms of both sides, we have
log y=x log x
Differentiating w.r.t. x, we get
1 dy

1
5 ¢ gy =108 XX =14log x

d .
= =y(l +log x)=x* (1+log X)
dx
gy B g™, il
y=xo. dx ”
Solution. Taking logarithms of both sides. we have

log y=log xx‘=x‘ log x

Differentiating w.r.t. x, we get

1 dy _, d , -
y oy % g o X tlog X g ()
1
But (.;‘_t. (x)=x" (1 +log x) [From Example 19(a)]
1 dy « |1 x
7 . (K_-_x.-;%—logx.x (I'{"lOSx)
dy  x* *
= a}- — o [X '1+log X 5 (I‘l"‘log x)]

dy _ log x
dx "(1-1- ]gg x)!.
[L.C.W.A., June 1985

Example 20. If x?=e*=’ prove that

Solution, Taking logarithms of both sides, we have
ylog x=(x—y)loge = ¥(l+logx)=x (. loge=1)
__x
1-+log x

Y
(1+4log x) . l-—-xx-l—
; dy _ x  logx
t dx — (l4log x)? " (14log x)¥
Example 21. Differentiate x'on *--(sin x)*°** wrt, x,

Solution. Let y=x'on * 4 (sin x)****

Here we cannot take logarithms directly because
log (m+4-m)s~log m+log n
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We now find the differential coefficient of each term on R.H.S.
separately.

Let u=Xx""* and v==_sin xX)*** * so that y=u-tv
i B
dx =dx tax
Now u=x'""* Taking logarithms of both sides, we get
log u=log (x'*" *)=tan x . log x

Differentiating w.r.f. X, we have

1 du

- ,‘E—!anx. ?-{—logx.sec X

- —ylan % tan x 2 ]
= & =X [ +log x . sec? x (1)

Again p=(sin x)****, Taking logarithms of both sides, we get

log v=Ilog (sin x)*°* *=cos X log sin x
Differentiating, — qu ==CO0S X - cos x—log sin v . sin X
G ot e = x—log . sin :

cos? x . I
gt —Ilog sin x . sin x | = (2)

= z—% =(sin x)°**

d x )
- Hence (—% = X' [tan -+log x . sec? xJ

+(sin x)eor= [Ci-—- —log sin x . sin x :I
EXERCISE (I11)

1. If y=sin x cos x (log X) . e*. tan~! x , x", find d—i.

2. Find the derivative of (a) UH':; §i+g; Ei+g g"":g
x\/ x*—d4at
AV x3 gt

r 3 1/3
3. 1y=-x({33) , find 2

Differentiate the following functions w.r.t, x :

4. (a) 103 [ez (i_-;g)sli]' (b) esl, (\/ ZX"—I),

© %
@Bx41008 2x—108

(&)
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10.

10,

XY (52x)200

(4—3x)38 (T—4x)'s 6. X'
(@ (L2, (0) 7%, () ()
(ﬂ) xlvl 3 (b) xlog log x)

x°4-a*+4x*+a°, (a is constant)
l“) (sin x)"" l+(x)sin l" (b) (CO( X)‘r' '—l—(tﬂll x)eu x
ANSWERS

1 1 | n
y{ cot x—tan X+ — gt i o +_x_}

()V[ P 1 1 1 1
x+a Txyb T x+d "x—ad x—b x—e¢

by P —2a°x" 1 da")
(‘C ﬂ )3!!()‘3__4(:2)113

= [fa ﬂ” §Y_2 '*'2(;~3)‘2(11+x)§

2x3~10x%+5
. l+( -2y 4(‘c-|—3) By ., vy 2x0—1

(© xle5* [:5-!— 3,_ 3 - 2 ]
Bx+1)2(2x—1)18 x 203x+1) 7 3(2x—1)
X\ (5—2x)e 2 1 4 9 16
@—Ix)PR(T—ax) 7 3x ~35—2x) T A@—3%) 3T 40
x*(1+log x)

@ 204+0 [ 55

1—log x
+log (x+I)_] (b) x1i* __ifg

+1

tx’+l fog -1
(¢) x " (l+2logx) B, (2x log x,
(b) xlet (Tos = ('+Tog (log x))

X

axo—i+a" log a+4x* (1 +]0g X)

(@) (sin x)'os = ( cot x . log Jc+log i x)

+(x)lfr| x I—COS x Iog x..l._su]_.x ]

(b) (cot x)*™™ * [cos x (log cot x)—sec x] ;
+(tan x)*** * [cosec X—sin x log tan x].



682 BUSINESS MATHEMATICS

17'13. DIFFERENTIATION OF IMPLICIT FUNCTIONS
Sometimes y is not given directly in terms of X, the value of

d|
Eécan be found by differentiating the given equation term by term and

d
then separating d—i .

Example 22. Find % If x34 y3=3axy.
[I.C.W.A., December, 1990]
Solution, We have
x3-y*=3axy
Differentiating with respect to x, we have

dy
3x2}-3y2 —“30 ( +x :%—)

d
or (7‘; (3y*—3ax)=3ay—3x2

dy ay—x?

o dx =y2—ax .

Example 23. If xV/ Ity 4 y+/I4x=0, prove that
dy 1
T

Solution. From the given equation, we get
*¥4/T+y=—yv/14x, which on squaring and rearranging gives
X2yt x2y—yix=0, ie., (x—y){x+y+4xp)=0

Thus x+xy+y=0 [ xz72y 2 x—yz:0]
x
dy (4% .1—x.1 -l
dx —~ (i+x)* “u+x)"

Example 24. Find from the followmg equation :

'—-y'+3x=5y,
dy
Solution. Differentiating, we get 2x—2y . d +3 5
di wfly, .
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d

> T Qy+5)=2x43
" dy 2x43
=2 dx_Zer.S

Example 25, Fmd tfx“ xyr43yr4-2=0,
Solution, Dlﬁ'crcnthting each term w.r.t. x, we get
dy
3\'+(—x 2y—— —y")+6y T-=0.

dy d y

= —2xy by — Y46y =0
> (6y—20) 0 —y2— 31
dx
dy  y*—3x%
Hence Ewmy

d
Example 26. Find 5,% if axt4-2hxy + by*+2gx+ 2fy+c=0.

Solution. Differentiating the equation w.r.t. X, we get

dy
2ax+2h( = +y)+2byd +28+2f %
> (hx+by+f) —;i—————(ax+hy+g)
N dy _ax+hy+g
dx = “hxtby+f
x.r...OO
Example 27. [fy=x , prove that
ay.
X dx =I=ylog x
X...
Solution. y=x" =X
; log y=y log x
Differentiating both sides w.r.t. x, we get
1 @, dy.
y dx +1 OB dx
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» @ .
dx  x(1—y log x)
d 2
Hence 4 %

o dx ~ l—ylog x *
EXERCISE (1V)

;i a
Find {—]% of the following :

1. (@) x*4-y*—2x=0, (b) x¥43xy4y*=4.
2. x45xy4yx=5 3. sin y=xsin (a+y).
4. (x+y)ymtr—=xmyn 5. yr=xiny

6. If y:‘/[sin X+ 4/sin x+1/sin X+ ...co, prove that
dy cosx
dx ~2y—1
‘ANSWERS

I—x 2x4-3y
@5s 0 555

2. Y (X+10xy4y) o sin(a+y)
Tdx T x(5x+1) ; sin a

—log y+x-~1siny
cos y log x—y-t x

17°14. DERIVATIVE AS A RATE MEASURE

Differcntiation is employed to mecasure the rate of change in a
dependent variable with reference to a minute change in the independent
variable. Let, the relation between two variable X and ¥ be y=f (%)
and let 5X represent a given increase in X, theu 8y will be consequent
increase in y.

& L
X

. 8
For a unit change in X, the change iny is %

% represents the ‘average’ change in y per unit change in x in

the interval (x, x4-8x),

Sy . :
Now, as 8x approaches zero, the average rate S‘% in the interval
(x, X48x) becomes the actual rate at x.

ie, lim §£ becomes the actual rate at x.
ax»Q Ox
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d,
ie, é- becomes the actual rate at x.

dy . ;
Hence . represents the actual rate of change in y per umt

change in x for the particular value of Xx.

ly . g ; ; :
Or ok, is the rate at which y is changing with respect to x.

dx

Now, to find out a change in the dependent variable, i.e., 8y when x,
necd not approach 0, we can use differentiation as an approximate
measure of change so that

dy
y = % * 5x
P . 3y dy
This is because, E;_(E o

where £ is a small quantity which vanishes in the limit.
dy
Proof. 5}':(;{? +e )a.'(

dy _
:(_f; 5X+€5_\.

= 48X

This is because £56x approach zero as x>0,

1
Hence Sy.—_-% . 8x

Velocity. It is defined as a change in a given phenomenon with
respect to time. In business economics there is use of income velocity,
money velocity, credit velocity, etc. In science, this refers to the rate of
displacement or change of position with respect to time. For example,

If AV)=3t+13 (D)
Then, f'(V)or 4{%}534—31’ ...(i)

(if) above refers to velocity.

Again if, f{¥)=2¢%+3t (where t stands for time units)
dfiv

Then  f'(¥)or —{}t—-}=4r+3

Therefore, the velocity after 4 units of time is 4(4)+3= 19
per unit of time.
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Acceleration. It refers to the rate of change in velocity or a change
in the rate of change. Therefore, if velocity is expressed by

dv .
—— , acceleration is expressesd

L
dxVv
hy '{—1‘;'2-
This is because
dV d d (dV drv
T =a Wad (57 )=am

Illustration. Given the function of speed as f(S)=23t4-1%in t seconds,
calculate both velocity and acceleration after 2 seconds.

Salution. If AS)=3t 413
dfisy i
‘—L”—' =343
EfS)
and = 6t
Therefore, after 2 seconds
Velocity=3+43(2)*=15
and Acceleration=6%x2 =12

17'15. SUCCESSIVE DIFFERENTIATION

As observed in many of the preceding examples, the derivative of a
function of X is, in general, also a function of x. This derivative, which
may be called the first derived function, or the first derivative (of the func-
tion). may itself be differentiated, the result is accordingly called the
second derived function or the second derivative (of the original function).
If the second derivative is differentiated, the result is called the third
derived function, or the third derivative and so on. If the operation of
differentiation is performed on a function 7 times in succession, the final
result is called the nth derived function or the nth derivative of the
function,

NOTATIONS

1. If ¥y denotes the function of x, then

d
the first derivative, namely v (»). is denoted by :'%,

d?y

d
the second derjvative, namely ﬁ—(a—;), is denoted by B’

dd
the third derivative, namely ‘E{{E— %)] is denoted by %’;

and so on. On this way of writing,
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dny

the nth derivative is denoted by =

II. The letter D is frequently used to denote both the operations and
; - 1
the result of the operation indicated by the symbol —(-—. The successive

derivatives of y are then Dy, D(Dy), D{D(Dy)], ..., these are respectively
denoted by

IMI. Instead of the symbols shown in [ and II, for the successive

dxn’

dax

Dy, D2y, D3y, ..., D%,

derivatives of p, the following are sometimes used, namely

I¥.

P B vony PW0

If the function be denoted by f(x), its first, second, third, ...,

and nth derivatives (with respect to x) are generally denoted by

[¢
also by

THE nth DERIVATIVE OF SOME SPECIAL FUNCTIONS

|
Then
and
1L,
Then

and
111

Then

V.

L1(x), f(x), S7(x), ..., fm(x) respectively,

dn

(PR o3 ; v
(?; f(‘\): {'f_)'j".f(x)) :"r‘—‘; f("}! e dxn ﬂ'\)‘

pE=mr
yy==nxn-l y,=n(n—1)x""2, ...
y.=n(n—1)(n—2)...3.2.1 x""=n!
y=(ax--b)"
y,=n(ax4b)y"! a,

Yo=n(n—1) (ax-+by=2a* ...
y,=n(n—1)(n—2)...3.2.1 (a.\w}-b)".-';.d"':n ! gn
y=e J

yy=ae’*, y,==a? e, py=a*e*", ..., y,=an e**

e
y_ax—l—b
(—1)a _(=1)(—2)a?
yl -_':(W, y2 = ————_(ax+b)a 3 eetesiasans
_(—1)(—2)(——-3)...(-—!:)0" (—=1)nlan
= (ax4-b)yn+l = (ax 4 b)n+?

y=sin (ax+b)

y,=a cos (ax+b)=asin [17 n+(ax4-b) ]
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¥,=a* cos [— n+(ax+b) ] -al Slﬂ[ 5 n-(ax+b) :l
dx [ sin (ax -H))—]fﬂ sin [n L n+(ax+b)]
VI y=e"" cas (hx-c)

(4
X

Here —ae™ cos (bx -t ¢) —be** sin (bx+¢)

=e** [a cos (hx+4 ¢)—b sin (bx-t ¢))

Put a=rcos 0, b=rsin 0,
then Pz ’v‘ul-}-b" and tan Oz-—:-
dy ; )
& =e°* [r cos 0 cos (bx +c)—r sin 0 sin (bx+¢))

=re** cos (bx4-c+40)
b
=e?*(az- b)11® cos (bx+c+tan—‘ T)

We see that to differentiate once, we multiply with (a®+56%)1/* and

b
add tan™! = to {bx+4¢). To differentiate second time we shall have to

multiply with the square of (a?-+b%)'/? und add 2 tan~! -i— to (bx-+c) so

that we get

d’y ax [ 12 1 I -1 ,i

=5 il A (a + b ) cos( bx+4c+2 tan - )
Therefore, to differentiate n times, we have to multiply by (a*+5%)!/2

b
n times and add n tan™! -t (bx+c).

d’ y = . : LI 1‘!2 " i
Thus 5 =€ (02+b } cos ( bx+c+ntan~ — )
Example 28. If y=a sin nx++b cos nx, prove that
2y
B Fr=y.

/. i
Solution. We have ;—i— =an cos nx—>Dbn sin nx

Differentiating again, we get
4 (dry &y

dx \dx /" dx*

— —n? (a sin nx+b cos nx)=—n'y

-S=—an® sin nx—bn? cos nx
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42 :
o ;}—fé-i—ﬂ' '== (), the required result,

Example 29. Find the fourth derivative of log vV 3Ix 1+ 4.
Solution. Let y=log V' 3x+4= vé— log (3x+4)

dy 1 1 L& i
J:x-:—zw . 3—):—'_?4 . 3——-2 (3x +-4)

Again differentiating, we have

Ay )-T2 =2 nesro. 3=—2 (xt3)?

dx \dx )= dx?
Differentiating again, we have .
24y 3 -
@)= F oo smmoerar

Differentiating again, we have

v Ay 3= - 243(3x-44) 4= — ot
5 = 27(—=3)(3x+4)"* . 3= —243(3x =T Bx19)¢

dxt ™
2 .
Example 30. Find A when x ==a cos 0, y=>b sin 0.
dx*®
dy
dy do  bcosH b
. i o S ) (. e to
Solution. We have - in —fi_",' e o co
de
' @y b b L
Bl =g, hsosean ) dx “asin?@ " dx
do
dx ) 12 b
But > e —a sin 0, therefore :E)-;—z_ e

dty
Example 31, If x=a (0—sin 0) and y==a (! —cos 0), find =

d 2
Solution. We have g% =a(l—cos 0) and &'yé’=“ sin @

0
2a sin = €0S —
dy dy/de _ asin® "2 2 4

dr = dx/dd a(l—cos 0)

2a sin? ~28—
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dy . 0 1 do L4 1 1
Then b e T e - G e I
el
s 1 . 1
RR— oo ) T oo B
;i L ¢ Pheoill
2 sin ) 2a sin 3 4a sin 3

1
Example 32. Ify= o (sin—! x)'“. show that

(I —xNp,,—xp,=1
Solution. We have y1==~l— 280 x, ‘—l——'—-—-——
2 V' 1—x?
& V1=X% y,=sin-! x
Squaring both sides, we have
(1 =x%)y,*=(sin"1 x)2=2yp
Differentiating both sides, we get
(1—%%) . 2y,y,—2xy,* =2y,
Cancelling out the common factor 2y,, we get
(1—=x%)p,—~xp,=1.
Example 33. if}’=(-"'+‘\/i-+_x—’)”‘, show that
(14+x")y,+ xp, =m?y,

X

V14Xt

Solution. We have y,=m(x+1/ | +x?)m~1 [ I+

VIiFxi4x
Vi
= (x—}-‘\/l-l_x‘jm i
Vit Tyite
> VI4x? y=my
Squaring both sides, we have (1 +x)y t=my?
Differentiating, we have (1+4x2)2y,y,4-2xp,2=m?* 2,

=4/ THem (

Cancelling out the common factor 2y,, we get
(1+x0)y,+xp, =mty,
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4
Example 34. If y—=2x+—x~, prove that

'zdﬂy dy

X (7)?5+xdT—y:
[I.C.W.A., June 1990]
Solution. We have
4
=2X+ — = |
y=2r4— (1)
dy 4
o R w2
dx 2 x8 @)
or xﬂfQ,- =2x2 4
dax

Differentiating again, we have

al Y, s, W
dr* +2x 4x

dx
2
o, ax 24 4x=0

1 _ - o =3
or x fx2+ Te -+ X o

{2y 1 4
or - x ;,t! +x +x ( 2—;2- )—4x:0 [From (2)]

dzy{_ dy
or o G~ L

or j;);+ (2x—f— 4 ) =0

a2y xa‘y
or Brati gy

Example 35. If 2x=y1f‘-l~y‘”" then prove that

-1y g e ,+x— — 16y=0.,

+2x m-; —4x =0
—y=0. [From (1)]

(C.A., May 1991]

Solution. We have
2x=yl{l+y-lf4 ...(1)
dy

I IR ) S SR YRR )
V= W g s 0 ¢ e

S (ytH—yy

4
= | dv
or D=

d
or By==(y'H *y‘”‘).&f (2)
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But (ylié—y-1j4y1— PB4 y-188 g —gxd_4 [From (1)]
YU —y 1= 2/ X7
Substituting this in (2), we have

.  F —r
8y=24//x1_1 !

55— dy
L 2
4y= /x| . 3

dy \?
- P i ——
o=y ()
Differentiating again, we have

dy

d de
32y F=2x ”)+(x= 1)2“"; 4

dy 2y
16y m X +("2“‘l)'ﬁ!
dfy . oy
(x2—1). dxi ‘[—x‘?‘;— 16y=10.
Example 36. If y--x iag-im, then prove that

dy 2 dy
i Ix— [C.A., November 1991)

Solution. We have
y=x3 los-i—
dy d | S 1
T =3x% Iog}——{-x 3 x.(_—;,-)
or % =3xt Iog-l— —x2 a1}
g =6x | 3x?
3;2 x og-—+ X (~~—) 2%
==6x log %——Bx—h
=6x log —i— ~ 8%

| (20 T [
__x[Sx logx X 32

d;
=_%_ ?il—ax [From (1)]
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2
5—{ 22 13x=0
Example 37. If p=log (x++/ Btx3), show that
(I*+x2) yod-xp,=0, {(I.C.W A., December 1990)
Solation. We have
y=log (x4 /"1 x3)

M= Wxnﬂ(fw*) 1, 9x]

X
grev-Likagve ol

e 1 «/WH]_
AV R U Bra 4 /B
or ‘\/I"{'xgyl"-—‘o
or (P +x2) y,2=0

Differentiating again, we have
(B4x?) . 2y,p,+2xp,2=0

(" +x%)y,+xy, =0,
=3
Example 38. If y= e’ e ¥, then show that
(I—=x"y, —xp,=a'y.
. asin"1x a
Solution. We have y,=e BT+
—— 1 1
@ vV I=xty,=ae” " “=ay
- (1—x*)y *=a"y?
(1= %")2p,y,—2xy,*= 2a%yy,
Hence (l -—-x!)y‘II .__xylza!y

Example 39. If  y=sin (m sin-1 x), then
(I—=x)y, —xp,+ miy=0
1

"%

Solution We have y,=cos (m sin~* x) . m

> V' 1—x2 y,=m cos (m sin~! x)
> (I—x*)y,*=m? cos? (m sin-1 x)
=m?* [1—sin*(m sin~1 xX)]=m3(1—y%)
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(1—x2)2y,y,—2xy,%= —2mdyy,
Hence (1+xM)y,—xy, +m?y =
EXERCISE (V)

-

d2 :
Find 22 in the following :

(@) y=(@2+x)sin™" x, (b) y=xmen*, (c) y=x? tan~! x
2. (@) fy=ax*+4-bx*-tcx +d, find y, and y,.

__108 dZy 2log x—3
(&) If y- , show that e

2

3. (a) If y=ae™"+be-m* prove that gx)‘: =m?ly

2
(b) If y=a cos m0+b sin m0, prove that ge—':i +m?y=0

; dy
4. If y==sin ax, prove that s +a?y—=0

5. (a) [fy=/‘ Sin (IOg x)' proVe thﬂt x't‘sz‘_X‘yl +y=0
(b) If y=sin (sin X), prove that Y. +¥ tan x p-Y cos? x=0
6. (a) If y=e* cos x, then y,+4y=0

(b) If y=e* cos 2x, then show that
d?y dy
g 2 g+ =0
7. If y=Ae*™+Bxe*™, where 4 and B are any constants, then
diy dy
show that 7—;—4 o +4y-0
8. W y=A(x+vx2_T)n4 B(x— 4/ X*=T)", then prove that
(x*— 1)y +xp,— n2y=0
9. Ify=xsin (log x) Fx log x, then
d?y dy
I'd '—xa-+2y—-x log x
10. Ify=+x 1+\/x-—1 prove that
s R |
_ —_—
(x l)d’,rg +xd Ty

11. (@) y=sin-! x, show that

ax =9
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tan lx
(b) Ify=e , prove that (1+x2) y,+(2x-1) y,=0
12. If y=log (x+ v/ 1+ x%), then (1 +x2) ¥y +xy,=0
13. If y=cos (m sin~! x), show that (1 —x?) y,+m? =xy,
d2
14. (a) Find < when x=at? and y=2at

2

d
(b) Given that x=a cos® 0, y =b sin® 0, find 3}‘%

(¢) If x=a(g 4-sin 0), y==a(l—cos 0), find f;y
15. If x=e" (cos f+sin t), y=e' (cos I —sin ), show that
dy _ ey | s
o —1an ¢; T sec’t e
1t 2t dy
16. I x=ygp r=i5p fnd 75,
ANSWERS
1. (a) y,= Z+2x,),”x?,(b)y m(mfﬁ[)x’""e"‘+2mr:xrn"le"‘+n2x"e"'
2x(24 x?) i 1 b B
() »,= 1+ ) +2tan"' x 14, (a) T ) g
() =
' g O 16. 0.
4a cos 3

17'16. MACLAURIN'S SERIES
I. Suppose f(x)=atbx (1)

and we wish to investigate whether the constants @ and & can be represented
in terms of the special values of f(x) at say x=0.

If we put x=0 in (1), we obtain
f(0)=a
Now differentiate (1) ; f (x)=b

To correspond with the above we will again put x=0 in this and
obtain S(0)=>~

o a+bx=1(0)+x/"(0)
II. Suppose S(x)=a+bx+ cx? ...(2)
Again f(0)=a
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Differentiate (2), f (X)=b-}2cx (3

e S b
Differentiate (3), J (¥)=2¢
¥ S (0)=2¢ or c= 1/7(0)

2
@ +bxtext=0)+370) + 2. f7(0)
where f7(0) means that we hav
twice and then place x=0

III. The
that m this case

¢ differentiated the given function @+ bx+ cxa

student should assume f{x)==a-+ bx+cx*+dx* and show
2 3

) SO+ 2O+ 55 SO+ 55 1 (0),

IV. we may now prove the general theorem. Assuming that f{x) is a
function that can be expanded in ascending powers of x. let

N a, a, a? . a, .
ﬂe\)-—-—ﬂ'o-!—l'—!- x—‘-i-i.‘(z'-'-é-—!-AS-}-...-*{- nm!—.x + (4)
We wish to find the unknown co-efficients G, @y, @, a, ... in

terms of the value of fIx) amd its differential co-cflicients at x =),
Put x=0 in (4), we have )

f(U):au
Now differentiate (4) and note that
n H
nl = 1)}
We have
i = .EE ai' 2 __L_.a_".._ n
f(x)-a,+] : x+2] x4 "+(n---1)!x 1y .53:68)
Put x= 0in this :
f'(O)'-‘-" a,
Differentiating (5), we have
a a, ¥
[ (x)=a,+ rixt "'+W! X ...(6)

Put x=0 in this :
S (0)=q,

Differentiate (6), we have

f“(x);a,+.__+(-"—"_:'=§)-! xSy 7
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Put X=0 in this :
S (0)=a,
Proceeding in this way, we will find that
[ (0)=a,
form=1, 2; ¥ ...
We have now obtained Maclaurin's series which statwes that if f{x)
can be expanded in ascending powcrs of x, then

)= 101+ f(0)+ ft0)+ FAO) 4 w2 o(O)

3
Example 40. By Maclaurin series expand ¢* and prove that
1 I I
e=2. f +3 3+

Salution. Here ﬂx)zt", J0)y=er=]
['(x)y=e*,  [(0)=1
fxy=e,  f1(0)=1
["(x)=¢€*, ["{0)=1 and so on.

By Maclaurin’s series we know

S()=0)+xf" (0)+ Q) : SO+

. x x? '-.‘-f'l xn
g == —- — S S
H—l‘!.lJr2 !.1+3 | I—}._.—}-” P - I+
x2 x3
=ltwk gy
Putting x=1, we et
1 ko
87-2-}—2—!.}.3—-!—1_ ............... d

Example 41. Find the coefficient of x» in the expansion of
(I +ax4bx3) e~

Solution. We know that e*=]—x-+ ;31_;—1 4

(=)

{H 2)1 =1 (n— ])'+{_”
(l+ax+bx*) e*=(l+4ax+ bx?) gl-—.‘c{-%i!_;i_!

n— — 1\n=1 sl xn
L = 2): H=I e E - )n’!}
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The term in the given expression involving the nth power of x is
given by

n—2

LT ) 4 X n-1 xn—l n X"
GRS g I, o= T
n( b a l n
=t -l z(n—_z}—ra‘—_m'*ﬁ} &

Hence the required coefficient is

(_])n{L a b I

n 1T E= it E=a)

Example 42. Expand sin x in ascending powers of x applying
Maclaurin's expansion. Hence obtain the expansion of cos x,

Solution. J(x)=sin x, S10)=sin 0=0
J(x)=cos x, S (0)=cos 0=
S (x)= —sin x, S7(0)=sin 0=0
S"(x)=—cos x, S"(0)=—cos 0=—1]
SU(x)=sinx, S"(0)=sin 0=0

Evidently f™(0) is zero whenever » is an even integer and -+ 1 and
— 1 alternately when » is an odd integer.

Now Maclaurin’s expansion is
z 8
FR=RO 45700+ 5 1O+ 5 SO+ ...

Substituting the values of fix), f0). /(0), /*(0)...., we get

. X x? x* x4 x5
sin x =0+ 17 - l+5—! 0+3-!- ('-—1)4-&—!(0)1-5 !~(l)+...

xﬂ x5 x'l'

=X Ftsy et
Differentiating both sides, we get

e B2, St
COS X = H-ﬂ"l's—!“

x2 x!
>
Example 43. Apply Maclaurin’s expansion for expanding log (1 -+ x),
4
log (1 —-x), in ascending powers of x and deduce the expansion of log 1_—'5
Solution. Let Six)=log (1+x), 0) =log 1-=0

1 2
ftx)=1 /0=,
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v -ty =] " —
0=/ ©=—1,

e Sl e
S (x)= (Exp ,F7(0)=2
¥y = Lf"l)("‘z)(“"?‘l Ve e
SM(x) a0 o F 7¥(0) 6 and so on.
x X2 2 xt
log(l+1)=0+i"!—i-iﬁ! (“1)+§"!‘ (2)+‘ﬁ' (—6)+-..
xl _xa xl
TP S S (1)
Changing the sign of x in result (1), we have
log (1—x)=—x- % _x_;_-z%___ S s (2)

Subtracting (2) from (1), we get

3 -5
log (14-x)—log (1 —x)=2x+ 2_‘;_ +g‘l‘§ EN

[+ x ® _x
!Og (]*':;)==2 ; X‘*.-“‘B*J——s'“'%.“

The student may note that unfortunately log x cannot be expanded
b;{’ Maclaurin’s theorem, since if f(x) =log x, f(0) is infinite and so is J"(0),
77"(0), f7(0).

EXERCISE (VI)
1. Use Maclaurin’s theorem to expand the following functions :
(@) €, (b) log (1—2x), (¢) sin ax, (d) cos bx, (e) (14-x)"

2. Prove by Maclaurin's series

ex_i_e—x x? xi
x? x4 Xe
3; / X sin X-4cos x= —_— —
Prove that x sin X+4cos x=1+ 3 214+4!6
4. Prove that e*'" ‘=1-l—x-|-é—-x"—{?x4—...
x 2 2z 22
5, Prove that e* cos x=1-+x——X"———=X4 }
. 1 4!
ANSWERS

i (5x)* (5x)°
1. (@) e*=145x+ 71 +-3—!-+
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3
(6) log (1-—2.x)u—1r—2x=—’3;3“-—......
S TR a’x® asx®
sin == ’C——-s—!--]—"g—l e
b2x?  pixs
(d) cos bxz[_z_!. T

(€) (l+x)n=1__:_nx+"("2’;])x:_'_n("'"l;('"““z)xl_}._”

17°17. INCREASING AND DECREASING FUNCTIONS

If y=f(x), then y is said to be an increasing function of x at the
point x=x, if

dy dy
dx ot B>, Le, f—’;)x=x: >.0’
and it is said to be a decreasing function of x at the point x=x, if
dy s dy
= at x  x,<<0, i.e,, t:f-;)xax; <0

Convexity or Concavity of Curves. If a curve is a straight line
then its first derivative or d_; is equal to some value positive or negative

dcpcn_ding on whether it is increasing or decreasing but it is the same at
all points and its second derivative is equal to zero. Its rate of change
does not change and is constant, therefore, acceleration rate is zero,

If the curve is conca:}e upwards or convex downwards its rate of

2
change will accelerate and 3-;‘: will be positive or >>0. If, the curve is
concavge downwards and convex upwards, its rate of change will decelerate

and EE{ will be negative or <<0, These two situations are shown below :

(f) Concave upwards and (7)) Convex upwards and
conyex downwards, concave downwards,

Y4
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17 18. POINTS OF INFLEXION

There can be a situation where the above two positions may be com-
bined as in the following diagrams :

/P/
iy —— —4——’-*—“—‘““‘&

A

Fig. (1) Fig. {1i)
At point P in both the curves % is equal to zero, the tangents
dy

being perpendicular to y-axis. But at all other points is positive in

dx
figure (i) and negative in figure ({i).
2
As is evident gf,’ is first positive and then negative in figure (i) and

the reverse is the case in figure (if).

d
But -
[4

2
7;-): is equal to zero at point P in both. Hence it is the point of

inflexion. The conditions, therefore, are

() ;’; =0, however, this is not a necessary condition.
(if) :—:f-: =0, this is a necessary condition. '
(iii) %;&0, it may be positive or negative
but it is a necessary condition.
g is not equal to zero in the side diagram :
But the other two conditions will hold good T)[__'“—*—‘——f

in this case.

Example 44 Glven the function y=x®-3x*+ 3x, find the point of
inflexion, '

: e
Solution. Now : =3x"—6x+43
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The first condition is 3’1 =0,
X

Le., 3Ix?—6x+3=0
3(x?—2x+1)=0, ie., 3x—1)'=0
X

d
Thus -‘!r:(), when x=1.
dx

i § d dition i d2y~0
he second condition 18 T
=> 6x—06=0, i.e,h 6x=6
x=]
dz
Thus d—}:—=0 when x=1
%
i3
Now ot 2 =6 which is not zero.

dx?

The point of inflexion is x=1 and y=1 or (2 B
Example 45. Show that the function y=xe~* has a point of inflexion

at x=2, [C.A., November 1991]
Solution. We have
).:Xe‘x
ap s R ey
r-E=e +x (—e ")=e (1—x)
dy . ) .
T (— D+ - x)(—e")
=e* (x—2)
d*
and i O =et ()4 (x=2(=e™)
X
=e~* (3—x)
For point of inflexion we must have
dry _ d’y
e =0 and e #0.
dy s ' )
P > e (x—2)=0 @ x=2
ddy
e

and

Hence x=12 is the point of inflexion.
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Exa m’:le 46. Show that the curve y=x?(3—x) has a point of
inflexion at the point (1, 2), [C.A., May 1991)]
Solution. We have
y=x* (3—x)=3x2—,3

dy

(_f_; -:6x—3x2
dzy
J)—CT‘ =6"‘6A
d3

_}' _.__,6

dx®

For point of inflexion, we must have

d? d?
C}}X, =0 and a;{'-?to.
2
%—“—‘0 = 6—6x=0 => x=|
d3y
and fT-\'?‘_le <0

When x==1, y=3(1)*—13=2.
Hence (1, 2) is the point of inflexion.
1719, MAXIMA AND MINIMA

(a) A function f(x) is 5:id to have attained its maximum value at x=a
if the function ceases to incre e and pegins to decrease ot x—a,

(b) A functicn fix) '« said to have attained its minimum value at
x=b, if the function ceases 1o decrease and begins to increase at x=b,

Suppose that the following figure shows the graph of some function
of x. The points P,, P, are called maximum points of the graph, the points
P, Py are called minimum points. The function has a maximum value

Yl

bl
I
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N, P, when x=0N, ; and a maximum value NP, when x=0¥, Again,
the function has a minimum value N, P, when ¥=ON, and a minimum
value NgP, when x=OMN, Notice that in this case the minimum value
at P, is greater than the maximum value at Py.

It should be noted carefully that according to the definition given
above it is clear that

() the maximum' and ‘minimum’ values of a function at a point
does not mean the ‘greatest’ and the least’ values of the fuaction but only
signifies that it is the greatest and the smallest value of the function in the
immediate neighbourhood of that point,

(ii) the function may have several maximum and minimum values,
(i) maximum and minimum values occur alternately,

(iv) some of the minimum values of the function can be greater than
some of its maximum values.

() maxima are like mountain tops and minima like valley bottoms.

(vi) The maximum and minimum values of a function together are
also called the extreme values of the function,

(viij points at which a function has a minimum or a maximum value
are classed together as furning points, and the maximum and minimum
values are called furning values.

Criteria for Maxima and Minima. (4) When y==/(X) is maxi-
mum at a point say x=4a, by definition, it is an increasing function for
values of X which just precede @ and is a decreasing function for values

of x which just follow g, 1.e, its derivative 7)';‘ is positive  just before
. ; dy .
x=a and negative just after @. Thus at the point x=4d, o changes sign

oy ; d h .
from positive to negative. But FI{E being a continuous function of x can

change sign from positive to negative only by passing through zero value.

; dy
I'hus n =0.
Hence for a maximum value of the function at a point.
d
() a—%:ﬂ and

i) ?‘,-))—: changes sign from + ve to —ve at that point.

(b) When y =/ (x) 1S minimum at X==a, by definition, it is a decreas-
ing function just before x=a and an increasing function just after
x=a, ie, its derivative Is negative just before x =a and is positive just

dy

after x=a, Thus at x=4a, == changes sign from negative to positive
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d . . ’ .
values. But f%: bring a continuous function can change sign from
¢

negative to positive values only by passing through zero value.  Thus
d

D _o
dx

Hence for a minimum value of the function at a point,

(1) 3’{ =0 and

.o d . :
(i) EI){: changes sign from —ve to +4-ve at that point.
-

Modification of Second Condition. For a maximum point, (Tyr- changes

. e dy . . ;
sign from +ve to —ve.  This means that 7{ is a decrcasing function
ax

of x.

dzy

dxa<0

Its difterential coeflicient, ie.
s o . dy .
Similarly, for 4 minimum point, p changes sign from ~ve (0 +ve.
: dy . ) . :
This means that i is an increasing function of x,
-
h 3 s ; ty
Its differential cocfiicient, fe. ——=>0.

dx

Hence, the modified conditions for maximum and minimum  points

can be stated as follows :

For a maxilmum point :

; dy . diy

(i) =0, (i) Fh<o
For a minimum point :

: dy . iy
() o =0, (if) J.i”>0

Working Rule for finding Maximum and Minimum Values
of a function :

First Method
1
Step I Find % for the given function y=f (x)
Step II. Find the value or values of x which makc% zero. Let

these be a, b, ¢,...
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We shall test these values of maxima and minima in turn,

Step III.  To test x=4, study the signs of d—for values of x slightly
<<a and for values of x slightly >a.

dy
If Ex_‘ changes sign from +ve to —ve, then y=/f(x) has maximum

value at x=a and max y =f (a).

d,
If on the other hand, r?il changes sign from -—veto +ve, then it

has a minimum value at x—=a and min y=fla).

[¢ . . - .
If Fi; does not change sign, then x=a is a poiut of inflexion.

Similarly test the other values of X found in step II.

Second Method :

dy
Step 1. Find T for the given function y=f{x).

Step 1I. Find the value or values of x which make gii zero.  Let
these be a, b, c, ...
- d'y
Step 1I1. Find Tew:
oo RV : -
Step 1V. Put x=ain T If the result is —ve, the function is
maximum at x =a and max, y=fa).
d? ; .
If by putting x=a in Eﬂ-{' the result is +ve, the function has

minimum value at X=a and mfn, y—f{a).
Similarly test othcr values b, ,... of x found in step /7.

Step V. When (T-z..o for a particular value x— a (say), then we

ither empl f hod or find 47 4 d -
either employ the first method or fin dyd o gxw -and put x=e succes-
sively in these derivatives.
We tabulate the result as *
Maximum Minimum
d
Necessary condition : f-g:o a'—i =0
. - dy dy dy diy
Sufficient condition : o =0, d_2<0 = =0, i 2>{)
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Example 47. /Investigate the maxima and minima of the function :
2x343x2--36x + 10,

Solution. Let y denote the given function of x.
dy
Then i—i—-- 6x? +-6x—36

= 6(X24x—6)=6(x—2)(x+3)

u

4 : d z
The function has turning values where -d{-( =0, ie., at x=2 and
x=-13.
To find whether these values are maxima or minima, we must exa-

: ; d !
mine the sign of % near these points.

If x>>2, 6(x=2)(x-+3) is -+ ve.
If 2>x>-3, 6(x—2)(x+ 3) is —ve.
If x<<—3, 6(x—2)x-+3)is +ve.

Therefore, when x js just less than 2, 3— is —ive, and when x is just

d
greater than 2,;} is +ve, i.e., x=2 makes ¥ a minimum.
At this point y=16+12—72+410=—34
. dy . T
Again when x is just less than—3, ‘T’i is + e, and when X is just

dy . i .
greater than —3, ‘%‘- is —ve, i.e., Xx=—3 makes ¥ a maximum.

At this point, x=—544274+108410=91.
Example 48. Find the extreme values of the function x3e~*.

Solution. y=x3e-*
dy d P 3_,4 - _‘_d_ 3
=g e =g L Lo e (x%)
=x3e~* (—1)]+e*.3x?
=e~*x[3—x] (N
dy _ o
=0 > emxh(3=x)=0
> e-*=0 or x*=0o0r 3—x=0

= X=—oc0 0rx=0 or x=3
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For x—=0

d
When x is slightly less than 0, J£'=(+) (+) (+)=(+)

d
When x is slightly greater than 0, —x)i =(+) (+) (+)=(4)

4 .
Thus :7;:: does not change sign as X passes through 0.

x=0 gives neither a maximum nor a minimum value.
For x=13;

When x is slightly less than 3, ,,__(,4_) (+) (+)=(+)
o dy
When X is slightly greater than 3, Zx =) () (=)=(--)
So x==3 gives a maximum and the maximum value is
J(3)=3, e-3=27e-2
For x=co,
el dy
When x is slightly less than eo, e =D () (=)=(-)
d
When x is slightly greater than oo, E—i—:(—H () (=)=(—)

k) dy ; ’ ,
Since % does not change sign, hence x= oo does not give maximum

Oor minimum value,

Example 49, Given -547%——1, Prove that Xy has a maximum
1 a b
value 7 9b when X=— and y=— 5 (@>0; b>0) [C.A., May 1991)

Solution. Let F=xy

:x.b(l—l;) ['-‘§+§=I]
:b(x——':-;-—)

F will be maximum lfaf: =0 and g’f<0.
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dF Zx . a
=0 1)(1—7)"0 > x=:

when x 2 ); 1 b
e == = B
g ¥ ’(

& 1
F=xy=— ab
xXy=-3
Hence xy has a maximum value -:-‘- ab when

and y-—-:—g .

Example 50. Find the maximum and minimum values of the
Jfunction

X =

rls

2
3

Solution. Let f{x)= ;— x34 -;— x*—6x+8

f1(X)=2x"+x—6=(x+2)(2x—3)

x4 —15 x2—6x 48,

=0, at Xx=-2, —g——
Sr(x)=4x+1
() at x=—2, f"(x)=4(—2)+1, i.e,, negative.
Hence f{X) has a maximum at X= —2.

(i) at x== % F7(x)=4. —3— +1, Le., positive.

Hence f(x) has a maximum at X= —g— )

Example 51. Find the maximum and minimum values of the

Sunction
x84 2x3—3x'—4x+4.

Solution. Let f{x)=x*42x3—3x*—dx+4

f(X)=4x3+6x*—6x—4
=2(x+2)(2x+1)(x—1)
Now f'(x)=0 = x=-—2,—},1

To find the maximum and minimum values we have to test these
values in the second derivative of the function which is

f(x)=12x2412x—6
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(!) When x=—2, f"(x) is >0 or positive.
J(x) attains minimum at x=—2
(i) When x=—1}, f"(x) is <0 or negative.
J(x) attains a maximum at x=—{,

dzy .
When x=1, JF>0 or positive

J(x) attains a minimum at x=1,
Hence the minimum values of the function are
J(—2)=( ~2Y4+2(—2)*—3(—2)*—4(—2)+4=0
A =142-3-444=0

and the maximum value is

S= B =( ) +2(— 4y —3(-—;)2—4(—;)4.4:%

Example 52. A company has examined its cost structure and revenue

Structure and has determined that C the total cost, R total revenue, and x the
rumber of units produced are related as -

C=100+0015x* and R—3x

Find the production rate x that will maximise profits of the company,

Find that profit. Find also the profit when x— 120,

Solution. Let P denote the profit of the company, then
P=Revenue—cost=R—C
1S

= ) -0 2y - s S
=3 (10040015 =3x — 100~ =
P . 30x
dx . 1000

P
For max. min. values %—=0
A

30x 593 7 ;
> 3— I-(-JFO—-O, Le. x==100 units.

d2p 3 ol
also & = =o' which is —ve when x=100.

i Profit is maximum when x =100,
Maximum profit=3x 100—0'015 x (100)2— 100
=300 - 100~—150=50 rupees.
Profit when x==120is
P=3x120—100—0015 x (120)®
==360—100 —216=44 rupees.
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Example 53. By an ‘Economic Urder Quantity’ we mean a quantity
Q, which when purchased in each order, minimizes the total cost T incurred
in obtaining and storing material for a certain time period to fulfil a given
rate of demand for the material during the time period,

The material demanded is 10,000 units per year : the cost price of
material Re. | per unit, the cost of replenishing the stock of material per
order regardless of the size Q of the order is Rs. 25 ; and the cost of storing

the material is 12} per cent per year on the rupee value of average quant ity
Q/2 on hand.

(i) Show that T=10,000+

“tis

(i) Find the Economic Order Quantity and the cost T corresponding 10
that,

2,50,000 Q
)

(ifi) Find the total cost when each order is placed for 2700 units,

Solution. Let x be the number of units made in «ach production
run. We shall assume that after a batch has been made, the ¢ units 1n
batch are placed in inventory and then used up (withdrawn {.om inventory
at a uniform rate such that inventory is zeco when the next batch appears.
This last assuraption permits us to use the average /2 to formulate
inventory cost.

The cost structure is the cost of obtaining (purchasing) 10,000 articles

at Re. | each = Rs. 10,000
© number of articles being the lot size, the number of production
10,000
runs (batches) per year :._'_Q__-

The cost of replenishing the stock of material, f.e, cost to make the
factory ready for production
10,000 2,50,000
=25 x —=— =Rs., ————
Q Q

The average inventory == %, number and its cost

g . O
—rlxj—--Rs.—?-’-

The cost of storing material at 12} per cent on the rupee value per

— 1 12 e rupees
Y=g X s v

50,000
Hence total cost T== t0,000+~2l-qu-9— +?€
dr * 2,50,000 1

i @ o tig
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: dr
But for max. or min. value J‘Q"*“O
2,50,00 ) s
i ~ g g T 0, Le. Q= -42000

Q being quantity purchased cannot be negative, rcjecting  the
negative value, we get @==2000 units.
d*T 500,000 . 3 S
Also JOF = T - 18 positive, when Q=2000

Hence T is minimum when Q =2000 units.
250,00 ; 2000
2000 16
(by putting @ - 2000)

Total minimum cost . T:= 10,000+

= 10,000+ 1254125
== 10,250 rupces
(iff) Now cost when each order is placed by 2500 units is given as
follows :
250,000 2500

+——=Rs. 1026525

ﬁ“‘“’*w 6

Example 54. - The demand function for a particular commodity is
= 15e=*13 for 0 x< 8, where v is the price per unit and x is the number of
units demanded.  Determine the price and the quantity for which the revenue
is maximum.

(Hint. Revenue ; R=y  x)

Sclution. Demand.y—15. ¢*? for 0<x<8
Ravenue, R=xy=15x , e-x13

For maximisation of revenue, we have
dR A
b _— -xf3 P -X 13
5 | Se +( 3 .} xe
== | 5e-"P4 Sxe-*I3
dR
b =0 = Je'l—xe-*3 =()

. Either x=3 ore=*? (. ie. x- oo(absurd)

d*R
Also Jx?

<Z0 or negative when x=3.

Hence the maximum profit is. yielded by substituting x=3 in the
revenue equation,
45
Rﬁlj. .8'1’3.':4 e_1=—-—---_"- % 5
x 5 573 1654
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EXERCISE (VI)
Find the maximum and minimum values of the following functions :
1. x3—2x2—4x—1

2. 2xX3—15x2436x+412

x3
3 T +x%a— 3xa2

4. (x—2¥Cx—3P

5. (a) Show that x5--5x'4 5x7—1, has maximum value when x==1
and ¥=10, a minimum value when x==3,

(b) Show that x*—3x243x47 has neither @ maximum nor d
minimum value,

6. Prove that the curve given by 3y—x*—3x2—0x-+ 11 has a maxi-
mum at x=-—1, minimum at x=3 and a point of inflexion at x—1.

a

V7. If y=x?=3x343x315x 41, prove that cd-}—)

Jxt IS negaltive when x lies

1
between 5 and 1. What happens if x =-—; or X=

8. Find the maximum and the minimum values of the function
x®—5x145x%~ | Discuss its nature at x=0.

9. The difference of two numbers is 100.  The square of the larger
one exceeds five times the square of the smaller one by an amount
which is maximum. Find the numbers. [C.A4., November [988]

[Hint. Lect the numbers be x and y(x>y), then x-=y=100 and
x*=5y=h or h=x*—-5 (x—100)2.

dh _ dzh ah
-(-2,;-—2,\- 10{x—100) and s == 8 0 (F:O 2 x==125,

y=25)

10. State whether y=x?—6x413 has maximum or a minimum
value. Find the value.

1l The cost C of manufacturing a certain article is given by the
formula

C:S—#--—is—-}- 3x?

w?e&exis the number of articles manufactured. Find minimum value
0
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12. A company finds that it can sell out a certain product that 1t
produces, at the rate of Rs. 2 per unit. It estimates the cost function

1 b 2
of the product to be Rs. [1000 T 3 - 5% ) ]Eor ¢ units produced.

(i) Find the expression for the total profit, if ¢ units are produced
and sold.
(#) Find the number of units produced that will maximize profit.
(fi)) What is the amount of this maximum profit ?
() What would be the profit if €000 units are produced ?
13. By an economic lotsize’, we mean a lot size (x) which mini-
mizes the total cost (') incurred in obtaining and storing material

for a certain period to fulfil a given rate of demand for the material during
the time period.

The materjal demanded is 10,000 units per year, the cost of materiaj
is Rs. 2 per unit, the cost of replenishing the stock of material per order,
regardless of the size order (), is Rs! 40 per order, and the cost of storing
material is 10 per cent per year on the rupee value of the average

inventory (—; ) on hand.

() Show that T=20,000+ ﬂi\oﬂ)&%

(¢) Find the cconomic lot size.

14. A firm has to produce 144,000 units of an item per year. It
costs Rs. 60 to make the factory ready for a product run of the item
regardless of units x produced in a run. The cost of material is Rs. 5
per unit and the cost of storing the material is 50 paise per item per year on

the average inventory (g ) m hand. Show that the total cost C is

given by
23,040,000  x

C=720,000+ =200 4 2

__ Find also thc economic lot size, i.e., value of X for which Cis
minimum.

15. A company has to manufacture 36,000 units of an item per year.
It costs Rs. 250 to make the factory ready for production run of the
item rcgardless of units X produced in arun. The cost of material
per unit made is Rs. 5 and it costs 50 paise per year for each unit for

A ; X :
storing on an average inventory 5 in hand. Show that total cost C is
given by

g
G 2302360001 o161 £
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Find also the economic lot size, fLe., value of x for which C is
minimum.

16. A company notices that higher sales of a particular item which
it produces are achieved by lowering the price charged. As a result the
total revenue from the sales at first rises as the number of units soldr
increases, reaches the highest point and then falls off. This pattern ©
total revenue is described by the relation

¥=40,00,000— (x —2000)*
where p is the total revenue and X the number of units sold,
(/) Find, what number of units sold maximizcs total revenue ?

(fi) What is the amount of this maximum revenue ?

(fif) What would be the total revenue if 2500 units were sold ?

17. A sitar manufacturer notices that he can sell x sitars per wcc}c
at p rupees each where 5x=375—3p. The cost of production is
(500 4 13x +4x2) rupces.  Show that the maximum protit is obtained when
the production is 30 sitars per week.

18. If the demand function of the monopolist is 3g =98 4p and
average cost is 3¢ +-2 where ¢ is output and p is the price, tind maximum
profit of the monopolist.

ANSWERS
1. Max. value ,lg% and Min. value —9,
2. Max. value 40 at x=2 and min. value 39 at x==3.

13

3. Max. value 9a® at x-==—3a, min. value at x=a

. — £S5 28 g ax
4. Max. value 0 at x=2, min. value T at T Neither max.
nor min. value at x=3. It is a point of inflexion.
10. Min. value of y=4 at x=3,

1. 2 12. (i) Rs. [2q-5—g;—0—1000} (if) 50000 (iii) Rs. 4000

() Rs. 3800 13. (i) 2000 14. 4000 15. 6000 16. (i) 2000,
(i) Rs. 4,000,000, (iif) Rs. 3,750,000 18. Rs. 33°75.

17°20. PARTIAL DIFFERENTIATION

In earlier sections, we considered a function in the form,

¥=£x)
There y was a function of the single indcpendent variable x. However in
Pl‘actlc§. very rarely we come across such a situation where a variable is
a function of a single independent variable. Generally it is found to be
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a function of several variables. For example production may be treated
as a function of labour and capital, price may be a function of supply and
price of the substitutes, ctc.

Consider the following example :

If ¥is the volume of a right circular cylinder of radius r and height
h, we know
V— u!’efl

Now suppose that the height h remains constant while the radius r
changes. Since h is constant it may be considered as another constant
fike 7 and on differentiating w.r.t. 7, we have

(dV

\dr / constant,

=(wh) . 2r,

giving the rate of change in ¥ with respect to r when / remains constant.
Similarly, if 7 is a constant while 4 varies

dV

(—— :(TH’E) . 1

dh / ; constant.

This notation, which shows precisely what has been done, is rather clumsy,
therefore a special notation is introduced. We write

¥ -

_af =xh, B 2r
¥ a s e 2
and 55..1?’ . |

The ‘curly’ d is used to show that the expression to be differentiated
contains more than one variable, and that we regard as constant all but
the one used in the denominator on the left-hand side. We differentiate
in the usval way with respect to this stated variable, treating all the
others as constant.

Let 1 be a function of two independent variables x and y, we write
this symbolically as
u==f(x, )
Now we may consider a change in u corresponding to a change in x,

keeping 3 as constant. -Or, we may consider change in u corresponding
to a change in p, x being kept fixed. Under these assumptions

[f(x-l- 8%, ) —S(x, )

[ or g—{f = lim

X 3xa0 5%
is known as partial derivative of ¥ w.r.t, x,
o £y or L lim [f("-y+5yJ—ﬂx, )
W 3y sy

is known as partial derivative of ¥ w.r.t, ¥,
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Ilustrations. 1. Find the first order partial derivatives of
X2 6xy4-y2=:0)
Solution. Let z==f(x, ) - x?}-6xy+-y?

Treating ¥ as constant and differentiating partially with respect to x, we
have

02 'R o g
3% "ax (e*F6xy 42
9 8 LY
=i (x H—ax (61})-*5;(}'2)
A j— @
=y (X 6y 5= (x)4-0
=2x-|6y
1 (4 - ’_? 2y 2
Again g (x4 6xp+y%)
T ena O aeny e 9 gy
g5 OV 5 6042 (%)
O-LG\'-@-—( ){..(.j_ (r?) {* : et
toxsy Y 3y } . X 1s constant]

=6x-1-2y.

[ If:e‘r‘ n{a{‘ ]n[ Q]f._
L find o and 3y

H EH_—@-. iY== pT¥ B__ -
Solution. iy (e*¥)y=0¢e "B (xp)

=e'r ;;;C(x) =@ %¥

du d fry—prr O
a7 oy &I gy ().

u pu pu
3. fu=x®y3zd46x+47y+Y2, find*— ¢~ <
'f Y3z 6x 4 7y + ﬁ(ax'ay'az'

W i

Solution. = =328 dx-} 6
g_:':"’z‘ﬁy'w
Ju

—=x¥34231.9

9z
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Given below is a function of profit with two variables Q, and Q,
S(P)=—6041400,+100Q,—-100,2—80,*—60,0,

Determine the optimum values of Q, and Q,.

Treating Q, as a constant and differentiating w.r.t. @,

4.

Solution.
we have
P
IAP)_ 4 14040—200,—0—60,
a0,
—140—20Q,— 60,
P
Also —-—-asffq ) —0404+100—0—16Q,—60,

=100—16Q,—60,

Now taking the two partial derivatives equal to zero, i.e.,
140—200,—6Q,=0 sk
100—60Q,—16Q,=0 «..(2)

Solving (1) and (2) for @, and Q,, we will have the optimum

quantities assuring maximum profit as
Q,==577 and Q,=408.

PARTIAL DERIVATIVES OF HIGHER ORDER
Higher partial derivatives are obtained in the same manner as

higher derivatives.
For the function u=f{x, ») we have four second order partial deri-

vatives.
The direct partial derivatives are defined as:

o’u B 2 (Qﬂ_)=f
ax o

) X ax

4 Pu D (oM
() o =5 )~
Apart from these two second-order partial derivatives, there are also

the mixed (or cross) partial derivatives defined as:
'u @ fau

i —_—— | — = [y

¢ axay ox ay) J

i _aﬂ'.‘_ _a..— QE- =

(if) arox oY (ax) e

Find second order partial derivatives of
u=4x34 9xy.— 5y,
Let u=4x"49xy—5y*

Illustration 1.

Solution.
a_ﬂ_ = ._..a 2 —Sy2
3% =3 (4x*+49xy 5»2)
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2
= s 0w - L (s

s g (t“)+9y — (X)=—=4. (Jf"")

=4.2x49».1 —5.0=8x+9y

oM 2B 4 :
o T (4x24-9xy—5y?)

oy 2 -~ 2

_-ay (d4x )+a (9xy) (5}’)
3

=4 — (x)4+9x — Y (et
iy (x*)+ \'ay (» Say (»H

=4.049x.1 -5.2y=9x—10y

o ou
e ax( = ):-— (8x-9))

-=8 — (x)+9 = (}’)=8.1 +9.0 =8

azu 9 {au \
vt a}"ay}

]
=9 % rwyvip o _ -
ay (x)—10 57 (=9.0—10.1=— 10

%u
——=i("1’i):% (9x—10y)

= = (91—10}’)

axdy gx \gy

ol a_ ryye

“937 (0)—10 2= (#)=9.1-10.0=9
oW B uy 3
o --r(3£)=_ (8x+9)

»8—— (x)+9 — (y) 8.049.1=9

d’u *u
dx3y ~ Oyax

2. Find first and second order partial derivatives of log (x* } »?)
Solution. Let  u=log (x2+y?)

au a 1 2
TR log (X’+F’)=m—{‘§ (x24-y2)

1 ) 2x
TweT P

a2 g iy
T = log (x4 y2)=

1
x11yr aJ )
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720
____l L2y
ST EET R S
o T LS J 2x
axt  px\gx ) '=5§(x2+y‘ )
2 )
2 iR l L (242
__(f +y)ax (2x) ~2% == (x*+7)
e (22 4-y%)*
(x4 ¥¥) . 2—2x(2x) __2(y’—x3)
- L sy

¢ 9 oMy 9_(“2}’__
oy \ey/i gy x’+y')

: 3 2
2 - L3 Pl — 57 2. 2
(x2 4 ¥7) 3y (2y)—2y W (x2-Fy%)

= (x2+y2)2
" (x4y%) . 2—2y .2y _2(-"2—,Vj)__
= — (x2 _t_yﬂ)Q == (Xz-l—y')f
B Gu o auN D 2 \_5, 8 ay,myo
axay*a_x (a}’ )—- Bx xz‘}-)ﬂ )_2}, ax ("' ‘_.} )
G RO i
== - 2 2y-9 9 2y 42
=2(— DN +2*) s (4
. BT .
’:(x’-i-y’)‘ * ) (x2+).2):
otu B Q_ Qu _.l 2x ! 3 )
ayex oy 6}")‘* 3y (X_—’+y2 )—72.': 55 (x24-yH)?
0
=-2" —l -2 i y-2 %, “.: 9
x (—=1) (xM-57) ay( )
—2x —4xy
mr————— | QY
(x%4-y7)2 Y (xT4 3
'
Oxgy  yox

17°21. TOTAL DIFFERENTIAL

From a practical point of view, the partial derivatives gave us a
small change in =/ (X, ») when there is a small change in either X or ).
The total differential will give us a linear approximation of the small
change in 4 =f (x, y) when there is a small change in both x and ».

If 5x and 5y be the increments of X and y respectively and let 34 be
the corresponding increment of w.

Then utdu=f (x+38x, y+38y)

du=f(x+8x, y4+3y)—fx, ¥) (1
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Adding and subtracting f(x, y--8y) on the R.HLS. of (1), we have

Su=flx+5x, y+oy)—fix,»y 15p) +/(x, ¥ +5) —f(x, )
> 8!;:[1 f(\"i-&-"-’.y—i—ﬁg') X, Y E8Y) ]xﬁ_r
« X
PI'(X. y+8y) - Slx, »)
+ ; i

}x&y

721

~i(2)

Let dx, dy and du be the limiting valucs of 8x, 5y and du, Then

from (2), we have

o o )
du 5? Cdx == . dy

(ny
where dt is known as the total differential of

Hlustration. Find the total differentials of the following functions ;

() w=x%4 x2Ypxyd, (i) W =x sin y -y sin x
du

Solation. ({) ‘rha a-ci—- (x3y - x?yr4 xp?)
= 3xy - 2xp% - y°
a“ a By FETES -3
e (XYt
57 =9y (xPp b2 4 x3°)

= x3p2xty - 30
The total dilTerential is

du u
U = — dx-}-— dy
d % dx-| 5 dy
— (3x2p +2xp% 4 p?) dx 4 (X34 2x2p - 3xy*)dy
s ‘
(”) % =5in P—ycos X
U _
ay =X €O0§ }-—sin X

The total differential is

du=(sin y—y cos x) dx-+ (X cos y—sin X) dy

EXERCISE (VIII)
1. 1In each of the following functions, find o , ol .
dx oy
(@) u=3x242xp+4y7, (b) u“%,

(© u=22 ) uman ()

/

2. Show that il

(@) u=/ (ry), then o = 2
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(D) u=f(x--), then -—--} au

(c) u=f(;-), then x@y_+ B =0

ox oy
au au

=yt 2L 22 —_— =

(d) u=x*4y?.1z2 thenx +y By T o=
2 2 2 n

Find -g;{; aat%' 8{3&'—;}‘ %‘ for the functions
(a) u=x®y3, (b) t=ax?®-|-hx%y 4-by3,
(€) u=xcos y~y cos x

b

If u=log (x?+¥2), prove that Py + e =0
o L fu e vl e 0, o B
If w= =~ log x, verify that X3y —ayax ’
If w=xy+ p?z 4 22x show that
8_”_ a atr i3 2
e =(x+y+2)%
I[f u=xlog y(y> 0y show that
o'u 3
3xX¥ dvax
If u.—_f[(z~r) (x‘—y), (y—2)]. prove that
U M
3 a-h+a’ =0,

[Hint. u=/(a, b, ¢) where a=z—x, b=Xx—p, c=y—z]
s
9. Ifz=| ('f_-q_) the
og g prove that

10.

az oz
— by —=2,
at 2 oy
If w=log (x24-y24-27), prove that
ot o2u ?'u

oz Y dzax - axay -
ANSWERS

—3x

. 1
(a) 6x+2y, 2x+8y, (b) i (H () " (x+y)¥

y*’()

. -y X

D e w

(@) 2y%, 6xy2, 6xy2, 6x2y

(b) 6ax-2hy, 2hx, 2hx, Gby

(¢) y cos x, —sin y+sin X, —sin ¥+sin x, —x cos .



