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Objectives

After studying this chapter, you should be able to understand :

® natural numbers, integers, rational numbers, irrational numbers, real
numbers, imaginaryfcomplex numbers.

@ properties and operations of these numbers,
41 NUMBER SYSTEM

It is composed of various numbers, symbols or figures representing
numbers and certain rules governing operations on them. The numbers
can be represented i, 2, 3.1 L I, 111, } or {K, K*, K%+ Y

decimal, binary, a good deal of importance is being attached to the pro-
perties of the system. It will at times be explained by symbois only. The
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conceptual clarity or the logic of the system is emphasised more and not
mere familiarity with the numbers. We initiate the number system by
natural numbers and then proceed on to other systems.

42 THE NATURAL NUMBERS (N)

The numbers 1, 2, 3, 4,..., which are used for counting, are natural
numbers. Thus while 618 is a natural number ; 0, —7, 13°2 and } are not
natural numbers.

Italian mathematician Peano has given five postulates (axioms)
called Peano Postulates (P) as the properties of natural numbers. To
speak in the language of modern mathematics, we say let there be a non-
empty set N such that

P I: | is natural number; | € N.

P II: For each n&N, there exists a unique natural number n €N,
called the successor of n, we can write it as (n+1) also.

P III : For cach nE N, we have n* or n4-1541,

PIV: Iifm n& Nand m*=n* then m=n,
Thus we have successors for each number,

P V: Any subset § of N is equal to N if

(i) LES

(ii) meS = m*es

By postulate V. we reach any natural number starting with | and
counting consecutive successive numbers,

4'3. ADDITION ON N
The operation of addition on N can be defined as follows :
(i) n41=n* for every neEN
(if) n4+m*=(n+m)* wherever n+m is defined.

This can be grasped be recollecting that 4+5=(44-4)41=9. The
basic laws of addition composition are :

A,. Closure Law.
For m, nEN, m+neEN
A, Commutative Law.
m+n=n+m¥m neEN
A;. Associative Law. .
m4-(n4p)=(m+n)+p¥m, n,peEN
A,. Cancellation Law.
mip=n+p = m=n ¥m,npEN
4'4, MULTIPLICATION ON N
The operation of multiplication on N is defined as follows :
(iyn.l =nforeveryn EN
(ii) n.m =(n.m)+n whenever n . m is defined.
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This can be grasped if you recollect that 4 . 5=(4.4)+4=20. The
basic laws governing multiplication composition are :

M,. Closure Law. For all m,n € N;m.n € N, ie., the product
of two natural numbers is also a natural number.

M,. Commutative Law. m . n=n . m % m, nEN
M,;. Associative Law.
m.(n.p)=(m.n).px» m, n pEN
M,. Cancellation Law.
Mm.p=n.p=m=n¥% m,n pEN
M,. Existence of Identity. There exists an element 1 €N such that
m.l=m=1.mvy meN
The laws governing multiplication and addition composition are :
D,. Left Distributive Law.
m.(ntp)=m.n+m.p ¥ m,n, pEN
D,. Right Distributive Law.
(n+p) . m=n.m+p.mx~ m npeEN
4'5. ORDER RELATIONS ON N :
There are two types of order relations in N viz., greater than (>)

and less than (<C). The relation’ “a<b” is read as “‘ais less than b.” It
can be stated also as “b>>a" read as “‘b is greater than 4.”

Greater than (*>). A patural number mEN is said to be greater
than a natural number n€ N if and only if there exists PE N such that
m=n+p
Smaller than (<C). A natural number meEN is said to be lesser

than a natural number nEN (symbollically m<Cn) if there exists PEN
such that m+4-p=n.

The lows governing order relations are :
Q .. Trichotomy Law. Given any two natural numbers and n
then one and only one of the following three possibilities hold.
() m=n, (ii) m>n, (i) m<n
Q .. Transitive Law
m>nand n>p=>m>p¥m, n, pEN
Q 5. Anti-symmetric Law
m>nand n>m = n=mv m, nc N
Q i Monotone Property of Addition,
m>n=m-+p>ntp¥m, n, pEN
Q . Monotone Property of Multiplication,
m>n=mp>>np ¥m,n, pEN
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Therefore the relation *‘less than or equal to” and “‘greater than or
equal to” and denoned as <’ and ““2>” respectively are defined as

() m€nif m=n or m<n
(1) m2nif m=n or m>n

PRQOFS

Example 1. m+(n-+-p)=(m+n)+p ¥m, n,pEN

Solution, Let us treat m and n as fixed natural numbers and put 1
for p which is the first element of natural numbers as per postulate 1.

m+(n+1=(m+n)+1
Let us first take the L.H.S.
m4-(n+1)=m+n* [addition rule (i)]
=(m+n)* {addition rule (if)]
=(m+n) +1

Now, by placing k&€ N for p, we have m+ (n+k)=(m+n)+k which
would mean that

m+(n+k*)=(m+n)+k*
Now m+(n+k*)=m+(n+k)*
=[m+ (n+k)]*
=[(m+n)+k}*
=(m-+n)+k*
Thus the associative property in addition is proved.
Example 2. Prove that m+-n=n+m for all m, n& N.

Solution. Let us treat n as a fixed natural number and take any
k& N such that

k+n=n+k
. k*+n=(k+1)+n=k+(14n)
=k+(n+1)=k+n*
=(k-+n)*
=n+k*
Thus if k*+n=n+k* then k-+-n=n+k

which proves the commutative property of addition.
Example 3. Prove that
(n+p) . m=n.m+p.m, forall m, n, pE N

Solution. Let us take n and p as fixed and substitute 1 and then
k and k* for m so that, we have

(n4+p) . I=n4p=n.14p.1
Nowif (n+p).k=n.k+p %
then (n+p) . k*=n.k*+p . k*.
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Let us take the L.H.S.
(n+p) . k*=(n+p) . k+(n+tp), [rule (if) of multiplication]
=n.k+p.k4n4+p
=n.k+(p.k+n)+p
=n.k+(n+p - k)+p
=(n.k+n+(p.k+p)
=n.k*+p . k*
Hence (n+p) . m=n.m-tp.m. forall m,npEN.

4'6. THE INTEGERS (I)

The integers are whole numbers positive, negative or zero. We can
also define them as ratios of two numbers which do not have a remainder.
On a number line they range between - oo to 0 and 0 to +oo. Thus —15
—207. 0, —9 are all integers but ¥ 7, 0°392, —0°76 and § are not integers.

The set I={x| x=0,xEN or —xEN}
={:., —4, =3, —2,=1,0,1,0, 2, 3, 4,..}
are called the set of integers. You may note
(i) The numbers —1, —2, —3, —4,...are negative integers.
(ii) The numbers +1, +2, +3, 4-4,...are positive integers.
They are generally written without any sign.

(iti) The number 0 is the only integer that has no sign.

Integers thus fulfil a gap of zero and negative numbers in natural
numbers. For example, the natural numbers do not provide answers to

(i) atx=a (i) a+x=y  [when a>y]
for which we need a zero and a negative pumber respectively.

The operations of addition and multiplication on integers thus satisfy
all the properties of natural numbers with a modification in the cancella-
tion law as follows :

Cancellation Law. 1fm . p=n . p and if p#£0€1I then m=n for all

m, nE L
The two additional properties for the opertion of addition are

Ag There exists an identity element 0E/ for the operation of

addition such that }
ﬂ+0=0+ﬂ=n for evefy nEI

A,. There exists an additive inverse ——n& [ such that
n+(—n)=(—n)+-n=0

4'8. PRIME NUMBERS (P)

An integer other than 0 or 1 is a prime pumber if and only if its
only divisors are 1 and the number itself. We can write
p#0, 4+ 1 whose divisors are £ 1 and +p only.
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Properties of prime numbers :

(#) If p is prime and if p is a factor of ab where a, b€ then pisa
" factor of @ or p is a factor b.

(i) It p is a prime and if p is a divisor of the product of a. b. ¢ .....r
of integers then p is a divisor of at ledst one of these.
MODULO (m)

It is a positive integer often indicated by m aund defined by the
following expression '

_ a=b (mod m) where a, ber
and m is a factor of (a—b).
For example :
{a) 25=1 (mod 4) since 4 is a factor of of 24
(b) 89=1 (mod 4) since 4 is a factor of 88
(c) 243=3 (mod 5) since 5 is not a factor of 21
(d) 24=4 (mod 5) since 5 is a factor of 20.

The concept of modulo helps in having residue classes in case of
operations on integers I/(4) as follows :

| I
) L 2] 3 x 0{12 3
___4 | el
olo 1 2 3[ oloj{o| o] o
i BEREEEE t o] 1| 2] 13
§|2 3001 | 210|210l 2
| 3 0¢p1l [2 3 o0o¢f3 ! 2 IJ

49. RATIONAL NUMBERS (Q)

The number which can be expressed in the form -‘g where p is any
integer and ¢ is a integer not equal to zero is called a rational number.
To state it formally

The set O={p/g:p, g€l and g0} is called the set of rational
numbers.

Thus 4€ 0, —5€0, ;— €0, ——;—]—l- €0,0€0etc. Itis also clear

that NC 1, IC Q.

If ‘qp x -£ are two rational numbers so thatp, reTand g sEN, we
have
n P _pstar
0] P v

:
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(if)

(iif)
and (iv) ( %;—-)"—_—P‘F. n being a positive integer, g70.

An important characteristic of rational numbers is that when

expressed as decimal fractions they are either terminating or non-
terminating recurring decimals. For example.

2 35

=04 |==2.1875

%—-:0'1666...00 be written as 0°16)

%=0 272127...=027

1'79 —-4'142057, 142057, 142057... =4'142057

Conversely, we may show that any non-terminating recurring decimal
represents a rational number. For example

x=1"344 or x=1'34

As the repeating cycle contains one digit, it should be multiplied by
i0 and then the original quantity be deducted from the new one as shown

below :
10x=13.44...
x= 1.34...
10x —x=12.1
= 9x=12.1
= lez;l—- =14l a rational number
9 90 '

However, if the repeating cycle is of two digits then the original
quantity will be multiplied by 100 in place of 10 above and so on.

410 PROPERTIES OF O

We now indicate the properties of rational numbers, p/g=a and

7/s=b where p,q,r, s€ [ and ¢7#0 and s#0 under various operations as
follows :

I. Addition :

6)) _Clo:yre_. If a and » are rational numbers, then a+-4 is one and
only ong, i.e., it is a unique rational number.

(il) Commutative. a+b=b+a
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(iii) Associative. (a+b)+c=a+(b+c)

(iv) Identity (zero). a+0=a=0+a

(v) Inverse. For every rational number ‘a’ there is a rational
number (-a) such that a+(—a)=0, —a is called the additive inverse
of a.

(vi) Cancellation. If a, b, ¢ are rational numbers such that
atec=b,c then a=b
II. Multiplication.

) (i) Closure If aand b are any rational numbers then ax b or ab
is a unique rational number.

(ii) Cemmutative. ab=ba

(i) Associative. (ab)c=a(hc)

(iv) Identity (1). axl=1xa=a

(v) Inverse. For every rational number a (320) there is a rational

number (I 'a) such that ax( 37 ): 1. Thus, for every rational number a,

the multiplicative inverse is

(vi)  Distributive. Only multiplication distributes over addition, i.e.
a(b4c)=ab+ac

(vii) Cancellation. 1f ac=be, then a=b iff c7#0.
ITI. Order Relation :

If a=plq,  b=r/s

(i) then P T .
gs

We say that a=b or a>>b or a<<b according as ps—gqr=0, >0,
or <Z0, respectively.

Uy If a>bh and b>c then a>c.
(i) If  a>b  then a+c>b+te
If a<lb then atec<b+te.
(v) If  a>b, then  ac>bc (¢>>0) and ac<be (¢<0).
V. Equality with Zero :
If ah=0 then either a is zero or b is zero.
V. Density :

If @ and b are distinct rational numbers then a_—;b_ is a rational

oumber lying between a and b. In other words,

a-++b
2

a> >b
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a-+t+b
2

We can then say that there can be several intermediate rational
numbers between two different rational numbers stated as follows :

a=a,>a, >ay>a > b
A<<a,<<a,<a,<a,<b
4'11 IRRATIONAL NUMBERS (Ry)

We can define an irrational number with the help of a rational
number. Now if there is a rational number & but there no rational
number & such that (h)"=a, then we write it as “‘n root of the equation
b"=a as the irrational number /4",

or a< <b

If " /g is not equal to x, an integer, then it is called irrational number-

Or, the numbers which cannot be expressed in the form p/q. where
g#0 and p, ¢ are both integers, are called irrational numbers and are
denoted by Rj.

Examples of such numbers are ¥'5, v/8, 2-+./5 etc. which are repre-
sented by non-terminating, non-recurring decimals as shown below :

v2=1.1414...
n=13.14159 ..
V' T=2.645751...

4/15=:3.872983...
Example 8. Prove that ¥ 2 is an irrational number.

Solution. If possible, let /2, be a rational number so that
va=-=L, 450

und p and g are integers. Further suppose that p and g have no common
factors.

4
Now V2= £ >2== lq%-—
ie. pi=2q4"
" p? is even so that p is also even. wsl )
Let p=2m
.. pr=4m?
et 4m?=2q*
iy q"‘=2m3

o g*® is even, e g is also even w(2)
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From (1) and (2), we find that p and g are both even, i.e., they have
a common factor 2 which contradicts our assumption that p and ¢ have no
common factors.

Hence it follows that v/2 is not a rational number, i.e., ¥2 is an
irratjonal number.

4.12 THE REAL NUMBERS (R)

It comprises a set of all rational and irrational numbers. We gene-
rally denote this by R which will have cither the rational numbers (Q) or
irrational numbers (R;) formally.

R={x:x& QUxXER:}
Now, in relation to natural numbers etc., we have
NCICQCR
Thus. natural numbers constitute a proper subset of integers and

the infegers constitute a proper subset of rational numbers and the latter
constitutes a proper subset of real numbers.

The positive and negative real numbers are shown by Rt and R”
;cspectwe!y and the non-negative real numbers by R, as in the case of
integers and rational numbers given earlier.

A real number system is a complete order field with zero, minus
infinity, and plus infinity including their infinitesimal parts, with the excep-
tion of imaginary numbers singly or along with real numbers called
the complex numbers. However, the real numbers are not divisible by
zero.

We can represent the order field of real numbers by the following
real line axis : .

The real numbers have been represented on X'OX, called the real
number line. Any point on the left or right of the O axis represents real
numbers negative or positive respectively. It may be noted that distance
OP=+./2is more tﬁan 1 and less than 2 and OP’ on the left of O axis is
equal to—-v2is in between —1 and —2. Thus, a real number line can
accommodate both rational and irrational numbers.

4'13. PROPERTIES OF R

We summarise below the fundamental properties of the real numbers
to emphasize their basic importance which the students should remember.
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Let us take the set R of real numbers with @, b, cER and then define the
two algebraic operations of addition and multiplication, ie., *+’ and *.
through the following properties.

I. Addition Operaiion :

A,. Closure Law. Ifa and b are any two real num'qers. their sum
(a+b) is also a real number. This can be expressed symbolically as

at+bER~a, be R
A,. Comrudarive Law. If a and b are two real numbers, then
a+b==~b+a, va, bER
A,. Associative Law. If a, b, c are any there real numbers, then
(a4b)+c=a+(b+c)va, b, cER

A, Ervistence of Identity. There exists a real number 0 (zero) such
that

a+0=a=0+avaER

This real number ‘0’ is known as additive identity and the property is
known as property of zero.

A;.  Existence of Inverse. For every real number a there exists
another real number 4 such that

a+b=0=b+a
The real number & is called additive inverse of a and is usuvally written
as —a.
II. Multiplication Operation :
M,. Closure Law. 1f a and b are any two real numbers, their pro-
duct ab is also a real number. This can be expressed symbolically as
a.bER~a, bER
M,. Commutative Law.
a.b=b.a %a, bER
M,. Associative Law.
(@a.b).c=a.(.c)¥a, b, cER
M,. Existence of Identity. There exists a real number 1 such that
a.l=a=1.avacR

. The real number ‘1’ is called multiplicative identity and the property
is called the property of 1.

M. Existence of Inverse. Corresponding to each real number ‘@’
(a5£0), there exists a real number ‘4’ such that

a.b=b.a=1
b is called the reciprocal or multiplicative inverse of a and is usually

written as L ora!
a
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I1I. Relation between the two Algebraic Operations :

Distributive Laws. Multiplication is distributive over addition
For any three real numbers a, b, c€ R we have

a.b+ecy=a.bta.c
(b+c).a=bh.atc.a

These are known as Right Distributive and Left Distributive laws
respectively.

IV. Order Relation :

O,. Trichotomy Law. If we are given two real numbers a, bER.
then one and only one of the following three holds good :

(iYy a=b, (i) a=>bh, (i) a<<b

Q,. Transitivity.
a>b and b>¢ = a>c~a, b, cER

0,. Anti-symmetry.
a>band b>a = a=bwa, bER

Q.. Order relation is compatible with addition.
a>bh = a+c>b+cva, b, cER

O,. Order relation is compatible with multiplication.
a>b =a.c>b.cva, b, cER

V. Density Property. Between two real numbers there lie infinite
number of real numbers. For any two distinct numbers a, hE R, there

a-+b

s — such that
a<_ {%-é =h
or b> aiz-é >a

We can also state this property as
a>a,>ay>ay...as=>b
b<<a,<<{a,<as...an<<a
Some theorems based on above axioms
Theorem ). (Uniqueness of additive Identity), There exists one and
only one real number ‘0" such that
a+0=a=04+avaER
Proof. Let there be two additive identities of R say O and 0’,
a+0=qg and a+0 =a¥aER
We shall show that 0=0'
Since a+0=a¥aE R, in particular for a=0" also, so that
0 -0=0 (D)
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Again as a+0"= a¥a€R, so it is true for a=0 also.

0+4+0'=0 wi(2)
Thus 0'=040
=040 (Commutative Law)
=0

There is thus a unique additive identity 0 satisfying
a+0=a=0+avaER
Theorem 2. (Uriqueness of the additive inverse). For every real
number aE R there exists one and only one real number b such that
a+t b=0=b+a

Proof. Let us suppose that there exists two real numbers 4 and &'
for every real number a such that

a+h=0 .

and a+b'=0 el 2)
We shall show that p=5"

Now Cb'=b'1+0 (Property of ‘0")

=b"+(a+b)

=(b"4a)+b (Asso, of +)

=(a+bV+ b {(Comm, of )

=0+b (Property of ‘0%)
=h

Hence, there exists a unique additive inverse for every number.

Theorem 3. (Cancellation laws for Addition). If a, b and ¢ are real
tnumbers then

at+h=a+e¢ = b=c

Proof. a+b=a+c (given)

By adding —a on both sides, we have
(=a)+(@+b)=(—a)4-{a+c)

= [(—a)+al+b=[(—a)+al+c (Asso. of +)
= 0+b=0+c
= b=¢ (Property of 0)

Theorem 4. (Uniqueness of multiplicative identity). There exists
one and only one real number | such that

a.l=1.avaER

proof. Let us suppose that there exists two real numbers, say, |
and 1 such that -

a,l=a=1.a asL)
s a . lt=n=1. s:i(2)
Then we have to show that 1=1",
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Since g . 1=avaER, so in particular for a=1" also, f.e.,
1’ . 1=1'

Again, as a . |'=a%aE R so in particular it is true for ¢=1 also,

ie.;
I.ol'=1
Thus Pt , 1=l .. 1%=1
This shows that there is a unique multiplicative identity 1 satisfying
a.l=a=1.avaER

Theorem 5. (Uniqueness of multiplicative inverse). There exists one
and only one real number b such that

a.b=l=b.a

Proof. Let there be two multiplicative inverses » and &, for a non
zero real number a, satistying

a.bh=1=b.a (l)
and a,b=1=b.a ()
we shall show that bh="b'

Now ht=h: 1 (Properiy of *1.7)
=b" . (a.b) (using 1)
=(b" @) . b (Assoc. of x)
=(a.b).b (Comm, of %)
=1 .ib
=h

Hence there is a unique multiplicative inverse for every non-zero real
number.

Theorem 6. (Cancellation Laws of multiplication). If a, b, ¢ be any
three real numbers, then

. bea . 6= hsg

Prcof. Now a.b=a.c
= al.(g. b)y=a1.(a.c) (Closure Law)
> (@*.a). b=(@'.a).c (by M)
= 1: B=1.¢ (by M)
= b=c (by My)
Theorem 7. For any real number a,

a.0=0,a=0,
Proof. a.0=a.(040) (Property of zero)

=q.04a.0 (Distributive law)

= a. 0+a.0=a.0+40
= —(@.0)+a.04a.0=—(a.0)+(a.04+0)

(adding—(a . 0) to both sides]
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= [—(a.0)+a.0]4+a.0=[—(a.0)+(a. 0]40
= 0+a.0=0+40
a.0=0
Theorem 8. [faand b are any two real numbers then
a.b=0 = a=0or b=0
Proof. We shall prove that for ab=0 at least one of them must be

Two cases may arise

(i) a=0, (ii) a0

Case (i), If a=0 then a . b=0 is obvious.
Case (ii), If a0, we shall show that h=0

Now ab=0
= al.(ab)=a™1.0
= (at.a)b=0
> 1.5=0
b=0
Hence ab=0 = a=0 or b=0
Theorem 9. For any two real numbers a and b
(i) a.(—b)=(—ua).b=—a.bd
(i) (—a)(—b)=ab

Proof. (i) We have

O=a.0=a.(—b+b)=a.(—=b)+a.b
04(—ab)=a . (—b)+4a . b+4(—ab)
—a.b=a . (—=b)+[a.b+(—a.b)]
=a.(=b)+0=a . (—b)

LA —a.b=a.(—b) wisl(1)
Again 0=0.b=(—a+a).b
=(—a).b+a.b

O04+(—a.h)=(—a).b+a.b+(—a.b)
—a.b=(-a).b+[a.b+(~-a. b))
=(—a).b+0=(~a).b
id —a.b=(—a).b . .
From (1) and (2), we have
a.(=b)=(—a).b=—qg.b
(i) (—a) . (=b)=(~a).(=b)+(~a). b—(~a) . b
=(-a).[-b+b]—(—a).b
=(-a).0—(—a).b
=0—(—a) . b
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=—(—a).b
=—(—a).b—a.bta.b
=—[—a+al.bta.b
=—0.b-}a. b
=d . b
e (-a).(—=b)y=a.b
4'14. Modulus of real number (i.e., the absolute numerical
value).

The modulus of a real number @ is defined as the real number a,
—a, or 0 according as a is positive, negative or zero. We denote the
modulus of a real number a by the symbol | @ | and define it by
[ a, if ais positive
| @ | =< —a, if ais negative
L 0,ifais zero
Following five results are evident from the definition which are found
to be very useful.

1. The modulus of a real number is never negative, i.e.,

al 20

2. For every real number a,
a< |la] and —a< | a |
3. la| =1—a]|
4. | a| denotes the greater of the two numbers a and —a, i.e.,
| @ | =max. {a, —a}

5. We may also define |a|bya single equation. Since the
positive root of a positive number is a positive number, it follows that we
may define |a | by

| al =(a?)1"
Theorem 10. If a and b are any real numbers, then
(a) labl=lal.|lb|

al lal

'—*2"'—', b 0
®) =TT ¢#0)

11 |

() J?]z |a|
(d) latbl <lal+|b}
(e) la=-bl 2 la|l—|6]
Proof. We shall use the definition in the form

| al| ="
(@) | ab | =[(aby|tr=(a*?)r=(a?)'"2 . (b*)1 2= |a|.| b |
Remark. Putting a=—1, we obtain
f=bl=1-=1]1b61= 5|
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a a \2e & \1/2 a?)l/3 a
®) ’b—IE[(F) ] 2(?;7') = {bzguz= i"—‘{_
(¢) In (5), put a=1 and b=a, we get
a 1
151
() | a+b | =[(a+b)/2=(a+2ab+ b2)1 *
Since lal®=a% | b|%=b andab [a| 1b |, the above

equation yields
lat+b | <[lai®*+2|al 1b]+|b]|2ni2
=[(lal +1b1)P2=[a| 4+ !bj|

Thus latd | <lal +]b)

(e) We have a=(a—0)+b

lal = |(a=b+bl < la=b) + 1 b|
> la=b| =2 |al — |5

Example 5. State if the statement x>>1<>x2>] is true where x isa
real number.

Solution. No, the statement is not true x2>>] implies x>1 or
Xl

4.15. IMAGINARY NUMBERS (i)

Square roots of negative numbers are called imaginary numbers
because. the square of any number is positive only, This occurs in some
quadratic equations and therefore has to be taken into account and
properly defined. For example )

(i) if x3—9=0 then x=43 but
(f) if x24+4=0 then x=+/-4
The (ii) above shows that x is equal to an imaginary number.
Further
x2—4x+13=0
= X2 —4x+44-9=0
> (x—2)24+9=0
= x—2=414/-9 "
> x=24v-9=243

Now, the number of the form 4/ is an imaginary number where
i=4/—1 or i2= vV —1x V/—1= =1. Sothat we can indicate an ima-
ginary number in real form as

vV 9=+/=1.49=i.30r3i
_ V- 12I=v=1.4/121=i.11 or 1 1i
In general

Vgt A AR A=/ 700
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4'16. COMPLEX NUMBERS (a+ib)
If @ and b are real numbers then «--ib is known as a complex
number which has ‘@’ the real part and ‘4’ the imaginary part. Now

(i) If in the complex number a +ib, a=0, the number 0--ib is an
imaginary number only.

(i) If in the above a+-ib, 5=0 then the complex number reduces to
a purely real number a.-

) (iii) The two complex numbers a+4-ib and «—ib are called the

conjugates, e.g.,

243§ and 2—3i
(—v3)+5i and (—v/3)—5i
Addition and Subtraction. In these operations we add or subtract
real part and imaginary part separately, e.g.
(a+ib) £(c +id) =(at-c)+i(h +d)
Multiplication. - This opertion is done in a normal way taking
i= v 1
Such that
(a--ib) (¢ Fid)=(ac—bd)+-i(ad + be)
Let us elaborate
(a+ibh) (c +id) =alc4-id) +-ib(c+id)
=qc {aid+cib-+ibid
=(ac+ibid) +(aid+cib)
=(ac—bd)--i(ad + bc) B it=-—1]
a+ibh  a+ib c—id
ctid ~ ctid * c—id
- (ac4-bdY+i(he —ad)
= C‘!_l‘zd2
_ac kbd——l-i be—ad
ct+d? ct+d?

(i) Complex numbers obey the laws of algebra :
P=ixi=V—lx4—1=-1
B=itxi=(-1)i=~i
H=(®) () =(—1)x(—1D=1
=39 ()=01) i=i

(ii) If a+ib=0, where a , 2ER then a=0 and £=0. This we can

prove as follow :
if a-tib=0 then a=—ib

Squaring both sides, we have
at=+ih?=—45?
a*+ b*=0

Division :

[ t=—1]
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But a®+b* cannot be equal to zero unless @ and b both are equal to
zero.

(éii) Sur - 7 product of two conjugate numbers are real
(a-+ib)+{a—ib)=2a
(a+ib) X iu— ib)=a*—itht=a%4-b?

(iv) If a+ib= c+ id then a=c¢ and b=d.

We can prove this as follows :

a+ib=c+id
(a4 ib)—(c+id)=0
(a—c)+i(b—d)=0 (See rule of subtraction)
a—c=0 and b—d=0 [See property (i7) above]
: a=c and b=d

However, we cannot say in complex numbers that a given complex
number is greater than or lesser than any other complex number.

Example 6. %‘%
Solution, 342 i?_'_’ 2i) (5+-3i)

5—3i T (5—=3i) (5430
_ US5-—6)+i (9+10)
‘25—9;*
1S 9 19

=519 — st b

Example 7. Find the square root of 6-+8 \/-_—T
Solution. Let

V648 i=a+ib
b 648 i=(a*—b3)+2 jab
= a?—bt=6 ()
ab=4 . (i)
1
and bi=— ... (i)
Now substituting (iii) in (i), we have
16
a’—;2-=6
at—6 a®—16=0
or (a*—8) (a?-+-2)=0
¥ a*=8§ or a*=—2

Since a*=-—2 is inadmissible, a*=8. By substituti is in (iii
Sl e B Y ituting this in (i)

V6418 i=4(v8+iy2)
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Now, the square of any complex number is in the form of a complex

number.
We now present the various number systems in the form of a chart :

Number System
|

¥ ¥
Real Imaginary (i)
(R) i=¢ 5
| em - 1
L . e o
[ +
| (Complex)
i C
I (real and imaginary)
|
+
Rational Irrational
(R) : . (Ri) )
| Non-repeating, non-terminating, rational numbers |
[ eg. 2
| n=3.14159. .. .
|
} 1
Integers Fractions
i1 (F)
[ratios which do (ratios which lcave a
not leave a remainder) !
reminder)
+ [
v + +
Non-ncgative Negative Decimals Fractional
(1) | () | [terminating or
| = | repeating |
+ + d L +
Positive Zero Terminating Non-terminating
) (0) or infinite and
¥ non-repeating
Natural (N)
+
Prime (P)
EXCERCISES
1. (a) State which of the following statements are true and which
ire false :

(i) Every real number is a rational number,
(i) Every irrational number is a real number.
(ifi) A real number is either rational or irrational,
(iv) There can be a real number which is both rational
irrational.
(b) State the following in fractional form

(i) 12 (recurring decimal 1'2222...

and
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(if) 1" 6 (recurring decimal 1°'666... ... )
(c) State the following in decimal form or fractional form
(i) /5
(if) 5, 23
(i) 1/7
2. Statc whether the following statements are true or false. [t the
statement is true, prove it; if you consider a statemnt to be false, give an
example in support of your answer :
(1) The product of two rational numbers is rational.
(/1) The sum of two irrational numbers is irrational.
-(#ii) The product of two odd integers is an odd integer.
(iv) x<y <= x*<y.
(v) For any real number x, we can find a real number y such that
xy=1
(vi) If x isrational and y is irrational then xy is irrational.
(vii) If x>0 then x2>x.
3. (i) Show that the sum of two rational numbers is a rational

number.
(ii) Give an example to show that the quotient of natural numbers

need not be a natural number.
(i) Give two integers whose quotient is not a rational number

(iv) Show that there is no rational number whose square is 2.

4. Define a rational number.
Show that /3 and /7 are not rational numbers.

5. State if the following statements are true :

(i) a=b and ¢>>0 then acz>be
(i) asb and b<qg then a=b
(iii) a=b then a=b-+cif ¢ is some possible number,

(iv) IF a<<b then a<< 4 gb <b

(v) If ¢=-0and b>>0 then a*>4* in all cases.
(vi) =g ad<bc
6. Prove that

¥ x.y € @, —(x+y)=(—=x)+(-y)

7. Show that g =%, (y#£0)
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8. Show that f

- -{—(z;ﬁO) => Xx=y

a b (ay+bx) . i
9. Show that 3 + - m—-—-xy , if x750, y2£0

10. (i) Multiply 4-—3iby 5+ 71
(i) Simplify and show if

320 . 3=2
= 5'. + T8 is a rational number

(iii) Simplify ‘:‘Fﬁ

ANSWERS

1. (a) (i) False, (ii) True, (iii) True, (iv) False.
ICE NN

(c) (1) 2.23607.. (n) (;h) 0.142857

2. (:)Ttue g —S-=q—s

(i) False, (p+ \/q)+ (p— \/q) 2p, rational number
(#ii1) True, (n-1). (m4+1)=mn+-m-+tn-t+1 (n, m being even numbers)
(iv) False, —1<Tl but (—1)% £(1)?
(v) False, if y=0 then xy71
(vi) True, ¥2 ¥4= /8 which is irrational.
(vii) False, >0 but (3)? * 3
3. (i) Closure property

(if) [n is a natural number]
(ii) —‘;- [g=0) (V) 1</ 22
4. See text.

5. (i) to (iii) are true, (iv) is true if a>>5,
(v) s true if a>b, (vi)is true.

10. (i) 414134, (if) — 285, (ili) 3 +1.



