A

Balanced Three-Phase System

A. 1 introduction

This appendix is intended as a brief review of voltage, current, and power relationships in the three-phase system. The student is expected to have a working knowledge of phasors and complex numbers. A very detailed development of phasors, complex numbers, resonance, single-phase and three-phase, balanced and unbalanced threephase circuits, and power measurement is available in power-oriented circuits texts such as those listed in the references.

A. 2 LETTER DESIGNATIONS FOR VOLTAGES AND CURRENTS

Voltages and currents that are functions of time are expressed in terms of the following equations, where $\omega=2 \pi f$.

$$
\begin{gather*}
e=E_{\max } \sin \left(\omega t+\theta_{e}\right) \\
v=V_{\max } \sin \left(\omega t+\theta_{v}\right) \tag{A-1}\\
i=I_{\max } \sin \left(\omega t+\theta_{i}\right)
\end{gather*}
$$

The corresponding root mean square values, also called rms or effective values, are expressed as

$$
\begin{align*}
& E=\frac{E_{\max }}{\sqrt{2}} \\
& V=\frac{V_{\max }}{\sqrt{2}} \tag{A-2}\\
& I=\frac{I_{\max }}{\sqrt{2}}
\end{align*}
$$

The complex number representations of phasors corresponding to the sinusoidal quantities in equation set (A-1) are expressed as

$$
\begin{align*}
& \mathbf{E}=E \angle \theta_{e} \\
& \mathbf{V}=V \angle \theta_{V} \tag{A-3}\\
& \mathbf{I}=I \angle \theta_{i}
\end{align*}
$$

The letters e, E, and \mathbf{E} are generally used to represent voltage sources, and the letters v, V, and \mathbf{V} are generally used to represent voltage drops or potential differences between two points.

A. 3 SERIES-CONNECTED CIRCUIT ELEMENTS

A circuit diagram, phasor diagram, and impedance diagram for the general case of series-connected circuit elements are shown in Figure A.1. The associated voltage, current, and impedance relationships are

$$
\begin{equation*}
\mathbf{Z}_{s}=R+j X_{L}-j X_{C}=Z_{S} \angle \theta_{Z} \tag{A-4}
\end{equation*}
$$

where $X_{L}=2 \pi f L$ and $X_{C}=1 /(2 \pi f C)$.

$$
\begin{align*}
& Z_{S}=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \tag{A-5}\\
& \theta_{Z}=\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right) \tag{A-6}\\
& \mathbf{V}_{T}=\mathbf{V}_{R}+\mathbf{V}_{L}+\mathbf{V}_{C} \\
& \mathbf{V}_{T}=\mathbf{I}_{T} \mathbf{Z}_{S}=\mathbf{I}_{T}\left(R+j X_{L}-j X_{C}\right) \\
& \mathbf{I}_{T}=\frac{\mathbf{V}_{T}}{\mathbf{Z}_{S}}=I_{T} / \theta_{i} \tag{A-7}
\end{align*}
$$

The voltage drop across any one of two or more series-connected impedances may be determined by applying the voltage-divider equation. Referring to Figure A.2,

$$
\mathbf{V}_{k}=\mathbf{V}_{T} \cdot \frac{\mathbf{Z}_{k}}{\mathbf{Z}_{S}}
$$

where $\mathbf{Z}_{S}=\mathbf{Z}_{1}+\mathbf{Z}_{2}+\cdots+\mathbf{Z}_{k}+\cdots+\mathbf{Z}_{n}$.

[^0]

(a)

(b)
(c)

FIGURE A. 1
(a) Series circuit; (b) phasor diagram; (c) impedance diagrâm.

FIGURE A. 2
Circuit for voltage-divider equation.

A. 4 PARALLEL-CONNECTED CIRCUIT ELEMENTS

A circuit diagram and phasor diagram for parallel-connected circuit elements are shown in Figure A.3. The associated voltage, current, and impedance relationships are

$$
\begin{gather*}
\frac{1}{\mathbf{Z}_{P} .}=\frac{1}{R}+\frac{1}{j X_{L}}+\frac{1}{-j X_{C}} \tag{A-9}\\
\mathbf{I}_{T}=\mathbf{I}_{R}+\mathbf{I}_{L}+\mathbf{I}_{C} \\
\mathbf{I}_{T}=\frac{\mathbf{V}_{T}}{\mathbf{Z}_{P}}
\end{gather*}
$$

Problems involving three or more parallel branches are generally solved using the admittance method as shown in Figure A.4, where

$$
\begin{align*}
& \mathbf{Y}_{1}=\frac{1}{\mathbf{Z}_{1}} \quad \mathbf{Y}_{2}=\frac{1}{\mathbf{Z}_{2}}=\quad \mathbf{Y}_{n}=\frac{1}{\mathbf{Z}_{n}} \tag{A-10}\\
& \mathbf{Y}_{P}=\mathbf{Y}_{1}+\mathbf{Y}_{2}+\cdots+\mathbf{Y}_{n} \tag{A-11}\\
& \mathbf{I}_{T}=\mathbf{V}_{T} \cdot \mathbf{Y}_{P}=\frac{\mathbf{V}_{T}}{\mathbf{Z}_{P}} \tag{A-12}
\end{align*}
$$

Expressing the admittance in polar and rectangular components,

$$
\begin{equation*}
\mathbf{Y}=Y \angle \theta_{y}=G+j B \tag{A-13}
\end{equation*}
$$

where: $\quad Y=$ admittance in siemens (S)
$G=$ conductance in siemens (S)
$B=$ susceptance, in siemens (S)
The special case for two impedances in parallel reduces to the following much used and easily calculated formula:

$$
\begin{equation*}
\mathbf{Z}_{P}=\frac{\mathbf{Z}_{1} \cdot \mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \tag{A-14}
\end{equation*}
$$

FIGURE A. 3
(a) Parallel circuit; (b) phasor diagram.

FIGURE A. 4
Impedance-admittance correspondence.

FIGURE A. 5
Circuit for current-divider equation.

The current in any one of two or more parallel-connected admittances may be determined by the current-divider equation. Referring to Figure A.5,

$$
\begin{equation*}
\mathbf{I}_{k}=\mathbf{I}_{T} \cdot \frac{\mathbf{Y}_{k}}{\mathbf{Y}_{P}} \tag{A-15}
\end{equation*}
$$

where $\mathbf{Y}_{P}=\mathbf{Y}_{1}+\mathbf{Y}_{2}+\cdots+\mathbf{Y}_{k}+\cdots+\mathbf{Y}_{n}$.

A. 5 POWER RELATIONSHIPS IN A SINGLE-PHASE SYSTEM

For the single-phase system shown in Figure A.6(a), the unknown circuit may have any combination of circuit elements in series, parallel, or series-parallel combinations. Regardless of the internal configuration, however, if. the line voltage, line current, and corresponding phase angles are known, the active power P, reactive power Q, apparent power S, and power factor F_{P} can be determined from the product of the phasor voltage times the conjugate of the phasor current; this product is called complex power or phasor power. Thus, referring to Figure A.6(a), the complex power drawn by the circuit is

$$
\begin{equation*}
\mathbf{S}_{T}=\mathbf{V}_{T} \cdot \mathbf{I}_{T}^{*} \tag{A-16}
\end{equation*}
$$

From Figure A.6(b),

$$
\begin{align*}
\mathbf{V}_{T} & =V_{T} / \theta_{\nu} \tag{A-17}\\
\mathbf{I}_{T} & =I_{T}\left\langle\theta_{i}\right. \tag{A-18}
\end{align*}
$$

The conjugate of the current phasor is
4-3.

$$
\begin{equation*}
\mathbf{I}_{T}^{*}=I_{T} L-\theta_{i} \tag{A-19}
\end{equation*}
$$

Substituting Eqs. (A-17) and (A-19) into Eq. (A-16),

$$
\mathbf{S}_{T}=V_{T}\left\langle\theta _ { v } \cdot I _ { T } \left\langle-\theta_{i}=V_{T} I_{T}\left\langle\left(\theta_{v}-\theta_{i}\right)\right.\right.\right.
$$

Defining angle $\theta=\left(\theta_{v}-\theta_{i}\right)$ as the power-factor angle,

$$
\begin{equation*}
\mathbf{s}_{T}=V_{T} I_{T} / \theta \tag{A-20}
\end{equation*}
$$

(c)

(b)

FIGURE A. 6
(a) Unknown circuit; (b) phasor diagram; (c) power triangle for lagging power factor;
(d) power triangle for leading power factor.

Expressed in rectangular form,

$$
\mathbf{S}_{T}=V_{T} I_{T} \cos \theta+j V_{T} I_{T} \sin \theta
$$

where:

$$
\begin{aligned}
\text { Active power (watts) } & P_{T}=V_{T} I_{T} \cos \theta \\
\text { Reactive power (vars) } & Q_{T}=V_{T} I_{T} \sin \theta
\end{aligned}
$$

Power Triangle

Equations (A-21) and (A-22) represent two legs of the power triangle shown in Figure A.6(c). The hypotenuse $V_{T} I_{T}$ is the magnitude of the apparent power, and makes an angle θ from the zero-degree line. Thus; the apparent power may be conveniently expressed in terms of the magnitudes of its components:

$$
\begin{equation*}
S_{T}=\sqrt{P_{T}^{2}+Q_{T}^{2}} \tag{A-23}
\end{equation*}
$$

If the unknown circuit is predominantly inductive, \mathbf{I}_{T} lags $\mathbf{V}_{\boldsymbol{T}}$, as shown in Figure A.6(b), angle θ is positive, and the power triangle will be as shown in Figure A.6(c). If the circuit is predominantly capacitive, however, \mathbf{I}_{T} will lead \mathbf{V}_{T}, angle θ will be negative, and the power triangle will be as shown in Figure A.6(d).

Power Factor

The power factor of the circuit is defined as the ratio of active power to apparent power:

$$
\begin{equation*}
F_{P}=\frac{P}{S} \tag{A-24}
\end{equation*}
$$

Substituting Eqs. (A-20) and (A-21) into Eq. (A-24),

$$
\begin{equation*}
F_{P}=\frac{V_{T} I_{T} \cos \theta}{V_{T} I_{T}}=\cos \theta \tag{A-25}
\end{equation*}
$$

As indicated in Eq. (A-25), the power factor is numerically equal to the cosine of the phase angle between the voltage phasor and the current phasor.
$\begin{array}{ll}\text { EXAMPLE Assume the current and voltage supplied to a circuit are } 125 / 30^{\circ} \text { A and } 460 / 20^{\circ} \mathrm{V} \text {, } \\ \text { A. } 1 & \text { respectively. Determine (a) apparent power, active power, and. reactive power; }\end{array}$ respectively. Determine (a) apparent power, active power, and. reactive power; (b) whether the circuit is predominantly inductive or predominantly capacitive; (c) power factor of the load.

Solution

(a)

$$
\begin{aligned}
& \mathbf{S}=\mathbf{V} \cdot \mathbf{I}^{*}=\left(460 \angle 20^{\circ}\right) \cdot\left(125 \angle 30^{\circ}\right)^{*}=460 / 20^{\circ} \cdot 125 \angle-30^{\circ} \\
& \mathbf{S}=57,500 \angle-10^{\circ}=56,626.4-j 9984.8 \mathrm{VA}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& S=57.5 \mathrm{kVA} \\
& P=56.6 \mathrm{~kW} \\
& Q=-9.98 \mathrm{kvar}
\end{aligned}
$$

(b) The negative reactive power indicates that the load is predominantly capacitive. This is also indicated by the given phase angles of current and voltage, which shows the current to be leading the voltage by 10°.
(c)

$$
F_{P}=\cos \left(-10^{\circ}\right)=0.985 \text { or } 98.5 \% \text { leading }
$$

A. 6 DOUBLE-SUBSCRIPT NOTATION

Double-subscript notation is used in conjunction with assigned letter symbols for voltage in order to assist in circuit analysis and problem solving. The subscripts represent two nodes between which a voltage is measured, and the order of the subscripts indicates the direction of voltage measurement,

Thus, referring to Figure A.7, $V_{b c}$ is the voltage at node b measured with respect to the voltage at node c. Voltage $\mathbf{V}_{b c}$ is considered a positive voltage if node b has a higher potential than node c, and will be considered a negative voltage if node b has a lower potential than node c.

Applying Ohm's law to impedance \mathbf{Z}_{2}, and noting the assumed direction of current,

$$
\mathbf{I}_{b c}=\frac{\mathbf{V}_{b c}}{\mathbf{Z}_{2}}
$$

Note: Voltage measurements from node c to node b are indicated as $\mathbf{V}_{c b}$. Since the direction of measurement is opposite to that of $\mathbf{V}_{b c}$,

$$
\mathbf{V}_{c b}=-\mathbf{V}_{b c}
$$

A. 7 VOLTAGES IÑ A WYE-CONNECTED SOURCE

A three-phase, wye-connected system of voltages consists of three AC voltage sources, each equal in magnitude, but displaced from one another by 120 electrical degrees, and connected at a common point as shown in Figure A.8(a). The common point is called the neutral connection. The three voltage waves representing the three phase voltages are shown in Figure A.8(b), and the corresponding phasor diagram is shown in Figure A.8(c).

The voltage at the service entrance from terminal a to terminal b is determined by making a phasor summation of phase voltages while "walking" through the circuit from a to b. Thus,

$$
\mathbf{E}_{a t 0 h}=\mathbf{E}_{a t o a^{\prime}}+\mathbf{E}_{h^{\prime} t o h}
$$

FIGURE A. 7

Example of double-subscript notation.

548 I Appendix A

(a)

(c)

(b)

(d)

FIGURE A. 8
(a) Wye-connected source; (b) voltage waves; (c) phasor diagram of component voltages;
(d) graphical addition of voltages.

Or simply,

$$
\begin{equation*}
\mathbf{E}_{a b}=\mathbf{E}_{a a^{\prime}}+\mathbf{E}_{b^{\prime} b} \tag{A-26}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
& \mathbf{E}_{b c}=\mathbf{E}_{b b^{\prime}}+\mathbf{E}_{c^{\prime} c} \tag{A-27}\\
& \mathbf{E}_{c a}=\mathbf{E}_{c c^{\prime}}+\dot{\mathbf{E}}_{a^{\prime} a}
\end{align*}
$$

(A-28)

The voltages between any two line terminals $(\mathrm{a}, \mathrm{b}$, or c$)$ are called line-to-line or line voltages, and the voltages between any line terminal and the neutral terminal are called branch voltages or phase voltages.

A phasor diagram for the graphical addition of voltages in a wye-connected system is shown in Figure A.8(d). From the geometry of the phasor diagram,

$$
\begin{equation*}
E_{\text {line }}=\sqrt{3} E_{\text {phase }} \tag{A-29}
\end{equation*}
$$

A. 8 VOLTAGES IN A DELTA-CONNECTED SOURCE

A three-phase, delta-connected system of voltages, shown in Figure A.9(a), consists of three $A C$ voltage sources $\mathbf{E}_{a a^{\prime}}, \mathbf{E}_{b b^{\prime}}$, and $\mathbf{E}_{c c^{\prime}}$, each equal in magnitude, but displaced from each other by 120 electrical degrees. The three voltages sources, called phases, are connected in series to form a closed loop, and lines from the three nodes connect the sources to the output terminals.

(a)

FIGURE A. 9
(a) Delta-connected source; (b) voltage waves; (c) phasơ" diagram.

The voltage waves for the three phase-voltages are shown in Figure A.9(b), and a phasor diagram for the corresponding phasors is shown in Figure A.9(c). For standardization and convenience in problem solving, phasor \mathbf{E}_{ab} is drawn at zero degrees for both wye and delta sources.

The voltages measured between the output terminals of a generator, or between the service-entrance terminals at a factory, are called line-to-line voltages, or simply line voltages. Note that for a delta connection, the line voltage is equal to the corresponding phase voltage.

No current circulates in the closed circuit formed by the delta connection because the phasor sum of the three phase-voltages around the loop is equal to zero. This can be determined from the phasor diagram in Figure A.9(c), where the phasor summation is

$$
\mathbf{E}_{a a^{\prime}}+\mathbf{E}_{b b^{\prime}}+\mathbf{E}_{c c^{\prime}}=0
$$

Although the resultant voltage around the loop is at all times equal to zero and no current circulates around the closed delta, each of the three phases is still capable of supplying current to external loads. Interchanging the internal connections of any one phase of the delta-connected generator in Figure A.9(a), however, will result in a very high circulating current within the delta; the high current will cause rapid heating of the generator winding, damaging the insulation.

A. 9 CURRENTS IN BALANCED WYE AND BALANCED DELTA LOADS

The relationship between line currents and branch currents for a balanced wye load is evidenced in Figure A.8(a), where the line current and the branch current are one and the same. ${ }^{2}$ That is, $\mathbf{I}_{a^{\prime} a}=\mathbf{I}_{\text {line } A} ; \mathbf{I}_{b^{\prime} b}=\mathbf{I}_{\text {line } B}$; and $\mathbf{I}_{c^{\prime} c}=\mathbf{I}_{\text {line } C}$.

The relationship between line currents and branch currents for a balanced delta load cannot be determined by inspection, but will be demonstrated using an example.

[^1]EXAMPLE A balanced three-phase, delta-connected load of $20.0 / 40^{\circ} \Omega$ per phase is connected to a three-phase, $460-\mathrm{V}, 60-\mathrm{Hz}$ system, as shown in Figure A.10(a). The corresponding phasor diagram of line voltages is shown in Figure A.10(b). Determine the ratio of line current to phase current.

Solution

$$
\begin{aligned}
& \mathbf{I}_{A}=\frac{\mathbf{E}_{a b}}{\mathbf{Z}}+\frac{\mathbf{E}_{a c}}{\mathbf{Z}}=\frac{4 \in, 0 \angle 0^{\circ}}{20.0 \angle 40^{\circ}}+\frac{-460 \angle 120^{\circ}}{20.0 / 40^{\circ}} \\
& \mathbf{I}_{A}=23 \angle-40^{\circ}-23 \angle 30^{\circ}=17.62-j 14.78-(3.99+j 22.65) \\
& \mathbf{I}_{A}=13.63-j 37.43=39.83 \angle-70.0^{\circ}-\mathrm{A}
\end{aligned}
$$

FIGURE A. 10
Circuit and phasor diagram for Example A. 2.

The ratio of the magnitude of the line current to the magnitude of the branch current (also called phase current) is

$$
\frac{I_{\text {line }}}{I_{\text {phase }}}=\frac{39.83}{23}=1.732=\sqrt{3}
$$

The same ratio holds true for all line currents in Figure A.10(a). Thus, for a balanced delta load,

$$
\begin{equation*}
I_{\text {line }}=\sqrt{3} \cdot I_{\text {phase }} \tag{A-30}
\end{equation*}
$$

A. 10 Phase sequence

Phase sequence is the order or sequence in which the three line-voltages of a threephase supply reach their maximum positive values.

Phase sequence may be determined from the voltage waves or from a corresponding phasor diagram, as shown in Figures A.11(a) and (b), respectively, where the indicated phase sequence is

$$
\mathbf{E}_{a b}, \mathbf{E}_{b c}, \mathbf{E}_{c a}, \mathbf{E}_{a b}, \mathbf{E}_{b c}, \mathbf{E}_{c a}, \ldots
$$

For brevity, however, the sequence is generally expressed in terms of only the first subscripts or only the second subscripts:

In terms of the first subscripts, the sequence is [abc]abcabc . . . , or simply $a b c$ sequence.

(a)

(b)
FIGURE A. 11

Phase sequence as indicated by (a) voltage waves; (b) phasor diagram.

In terms of second subscripts, the sequence is $b c[a b c] a b c a \ldots$, , which is also abc sequence.

Phase sequence at the load is indicated by reading the letter markings (or number markings) from top to bottom or from left to right as applicable [1]. Thus, referring to the circuit in Figure A.12(a), the phase sequence at the motor, reading from top to bottom, is $a b c$. Interchanging any two of the three line leads reverses the phase sequence. This is shown in Figures A.12(b), (c), and (d), where interchanging any two line leads
(a)

$a b c a b c a b c$
(b)

bacbacbac
(c)

acbacbacb
(d)

cbacbacba

FIGURE A. 12
Reversing the phase sequence by interchanging any two line leads.
changes the phase sequence from $a b c$ to $c b a$, and reverses the direction of rotation of the motor. Note: There are only two possible phase sequences, $a b c$ and $c b a$.

If the three-phase load has unbalanced impedances, reversing the phase sequence could cause major changes in the magnitudes and phase angles of the three line currents (see Section 21.7 in Reference [2]). If a three-phase generator is paralleled with another of opposite phase sequence, both machines may be severely damaged. It is therefore essential that phase sequence be taken into consideration when connecting three-phase loads or when paralleling three-phase generators (see Section 14.7 in Reference [3]).

A. 11 CALCULATING LINE AND PHASE CURRENTS IN THREE-PHASE CIRCUITS

The procedure for calculating line and phase current in three-phase circuits is the same whether the circuit is wye or delta. Depending on the complexity of the circuit, the current may be determined by using Ohm's law, Kirchhoff's law, and/or loop and node analysis.

Guidelines for Solving Three-Phase Circuit Problems

1. Voltages and currents on the nameplates of electrical apparatus, and in technical literature concerning motors, generators, and other apparatus, are line-to-line rms voltages unless otherwise specified.
2. A universal phasor diagram and a table of load voltages, to be used when solving three-phase circuit problems, are shown in Figure A.13; line and phase voltages apply to wye loads, but only line voltages apply to delta loads. Note also that the voltage between any line and the wye junction (neutral) of a balanced wye load is the corresponding phase voltage, even though the junction is not connected to the source neutral.
3. If a wye load is balanced (identical impedances per leg) and the three-phase source has balanced voltages, there will be no current in a neutral line connecting the wye junction of the load to the source neutral. Hence, a neutral line connecting the source neutral to the wye junction of a balanced load is not necessary and is seldom used. Except for fault conditions (such as opens, shorts, and grounds), three-phase motors are balanced loads, and thus neutral lines are not required nor are they supplied for wye-connected motors.
4. Before starting the solution of problems involving multiple loads, an assumed direction of phasor current should be indicated on the diagram for each line and each phase being solved. For convenience and standardization, the direction of current in each line will be assumed to be from the source to the load. Once assigned, the assumed direction must not be changed during the solution process.

554 I Appendix A

FIGURE A. 13
(a) Universal phasor diagram and table of load voltages; (b) wye load; (c) delta load.

EXAMPLE For the circuit shown in Figure A.14,
A. 3

$$
\mathbf{Z}_{1}=10 \angle 30^{\circ} \Omega \quad \mathbf{Z}_{2}=15 \angle 10^{\circ} \Omega \quad \mathbf{Z}_{3}=20+j 20 \Omega
$$

Determine the ammeter reading.

Solution

Applying Ohm's law and Kirchhoff's current law to line A,

$$
\mathbf{I}_{A}=\frac{\mathbf{E}_{a a^{\prime}}}{\mathbf{Z}_{1}}+\frac{\mathbf{E}_{a b}}{\mathbf{Z}_{2}}+\frac{\mathbf{E}_{a c}}{\mathbf{Z}_{2}}+\frac{\mathbf{E}_{a c}}{\mathbf{Z}_{3}}
$$

FIGURE A. 14
Circuit for Example A.3.

Note that the wye-connected load is balanced. Hence, the wye junction is effectively at potential $a^{\prime} b^{\prime} \dot{c}^{\prime}$. From the source data, the magnitudes of line and phase voltages at the applicable loads are

$$
E_{\text {line }}=460 \mathrm{~V} \quad E_{\text {phase }}=\frac{460}{\sqrt{3}}=265.6 \mathrm{~V}
$$

Using the table of voltages in Figure A.13(a) as a guide,

$$
\begin{aligned}
& \mathbf{E}_{a a^{\prime}}=265.6 /-30^{\circ} \mathrm{V} \\
& \mathbf{E}_{a b}=460 \angle 0^{\circ} \mathrm{V} \\
& \mathbf{E}_{a c}=-\mathbf{E}_{c a}=-460 \angle 120^{\circ} \mathrm{V}
\end{aligned}
$$

Converting \mathbf{Z}_{3} into polar form, and substituting the corresponding voltages and impedances,

$$
\begin{aligned}
& \mathbf{Z}_{3}=20+j 20=28.28 \angle 45^{\circ} \\
& \mathbf{I}_{A}=\frac{265.6 \angle-30^{\circ}}{10 \angle 30^{\circ}}+\frac{460 \angle 0^{\circ}}{15 \angle 10^{\circ}}+\frac{-460 \angle 120^{\circ}}{15 \angle 10^{\circ}}+\frac{-460 \angle 120^{\circ}}{28.28 \angle 45^{\circ}} \\
& \mathbf{I}_{A}=26.56 \angle-60^{\circ} \\
& \mathbf{I}_{A}=(13.28-j 23)+(30.20-j 5.33)+(10.49-j 28.82)+(-4.21-j 15.72) \\
& \mathbf{I}_{A}=49.76-j 72.87=88.23 \angle-55.67^{\circ}
\end{aligned}
$$

The ammeter will read an rms value of 88.2 A .

A. 12 ACTIVE, REACTIVE, AND APPARENT POWER DRAWN BY BALANCED THREE-PHASE LOADS

The power supplied to a balanced three-phase load (wye or delta) is three times the power drawn by one branch. Expressed as complex power,

$$
\begin{equation*}
\mathbf{S}_{3 \phi, \text { bal }}=3 \mathbf{V}_{\mathrm{br}} \cdot \mathbf{I}_{\mathrm{br}}^{*} \tag{A-31}
\end{equation*}
$$

where: $\quad \mathrm{V}_{\mathrm{br}}=V_{\mathrm{br}} \angle \theta_{k}=$ branch voltage phasor

$$
\mathbf{I}_{\mathrm{br}}=I_{\mathrm{br}}\left\langle\overline{\theta_{i}}=\right.\text { branch current phasor }
$$

$$
I_{\mathrm{br}}^{*}=I_{\mathrm{br}} \angle-\theta_{i}
$$

$V_{\mathrm{br}}=$ magnitude of branch voltage
$I_{\mathrm{br}}=$ magnitude of branch current
$\theta_{v}=$ phase angle of branch voltage $\theta_{i}=$ phase angle of corresponding branch current

Expressing Eq. (A-31) in polar form

$$
\begin{equation*}
\mathbf{S}_{3 \phi, \text { bal }}=3\left(V_{\mathrm{br}} / \dot{\theta}_{v}\right) \cdot\left(I_{\mathrm{br}}\left\langle\theta_{j}\right)^{*}=3 V_{\mathrm{br}} \cdot I_{\mathrm{br}} /\left(\theta_{v}-\theta_{i}\right)\right. \tag{A-32}
\end{equation*}
$$

Defining $\theta=\left(\theta_{v}-\theta_{i}\right)$ as the power-factor angle, and expressing Eq. (A-32) in rectangulàr form,

$$
\begin{equation*}
S_{3 \phi, \text { bal }}=3 V_{\mathrm{br}} \cdot I_{\mathrm{br}} \cos \theta+j 3 V_{\mathrm{br}} \cdot I_{\mathrm{br}} \sin \theta \tag{A-33}
\end{equation*}
$$

where: \quad Active power (watts) $=P_{3 \phi, \text { bal }}=3 V_{\mathrm{br}} \cdot I_{\mathrm{br}} \cos \theta$
Reactive power (vars) $=Q_{3 \phi, \text { bal }}=3 V_{\mathrm{br}} \cdot I_{\mathrm{br}} \sin \theta$

$$
\begin{equation*}
\text { Apparent power }=S_{3 \phi, \text { bal }}=3 V_{\mathrm{br}} \cdot I_{\mathrm{br}} \tag{A-35}
\end{equation*}
$$

Three-phase power may be expressed in terms of line voltage and line current by substituting the delta relationship or the wye relationship into Eqs. (A-34), (A-35), and (A-36). As previously shown,

$$
\begin{array}{llll}
\text { If delta connected: } & E_{\mathrm{br}}=E_{\text {line }} & \text { and } & I_{\mathrm{br}}=\frac{I_{\text {line }}}{\sqrt{3}} \\
\text { If wye connected: } & I_{\mathrm{br}}=I_{\text {line }} & \text { and } & E_{\mathrm{br}}=\frac{E_{\text {line }}}{\sqrt{3}}
\end{array}
$$

Making the substitution and simplifying,

$$
\begin{align*}
& P_{3 \phi, \text { bal }}=\sqrt{3} V_{\text {line }} I_{\text {line }} \cos \theta \tag{A-37}\\
& Q_{3 \phi, \text { bal }}=\sqrt{3} V_{\text {line }} I_{\text {line }} \sin \theta \tag{A-38}\\
& S_{3 \phi . \text { bal }}=\sqrt{3} V_{\text {line }} I_{\text {line }} \tag{A-39}
\end{align*}
$$

Power Triangle

As evidenced in Eqs. (A-37), (A-38), and (A-39), respectively, the active power and reactive power represent two legs of a right triangle whose hypotenuse is the apparent power. Thus,

$$
\begin{equation*}
S_{3 \phi, \text { bal }}=\sqrt{P_{3 \phi, \text { bal }}^{2}+Q_{3 \phi, \text { bal }}^{2}} \tag{A-40}
\end{equation*}
$$

The power factor is

$$
\begin{equation*}
F_{p}=\frac{P_{3 \phi, \text { bal }}}{S_{3 \phi, \text { bal }}}=\cos \theta \tag{A-41}
\end{equation*}
$$

Note: Angle θ is the power-factor angle. It is the angle between the phase voltage and the phase current; it is not the angle between line voltage and line current! Note also that the power factor of a balanced three-phase load is the power factor of one phase. Substituting Eq. (A-41) into Eq. (A-37),

$$
\begin{equation*}
P_{3 \phi, \text { bal }}=\sqrt{3} V_{\text {line }} I_{\text {line }} F_{P} \tag{A-42}
\end{equation*}
$$

Equation $(A-42)$ is the expression generally used for calculating three-phase power.

EXAMPLE The phase voltage and phase current at one branch of a balanced delta load are deterA. 4 mined to be $460 \angle-120^{\circ} \mathrm{V}$ and $10 \angle-160^{\circ} \mathrm{A}$, respectively.
(a) Using the complex power equation, calculate the three-phase apparent power, active power, reactive power, and power factor.
(b) Is the load inductive or capacitive?

Solution

(a)

$$
\begin{aligned}
\mathrm{S}_{\mathrm{br}} & =\mathrm{V}_{\mathrm{br}} \mathrm{I}_{\mathrm{br}}^{*}=460 \angle-120^{\circ} \cdot 10 / 160^{\circ}=4600 / 40^{\circ} \\
\mathrm{S}_{\mathrm{br}} & =3523.80+j 2956.82 \\
P_{3 \phi} & =3 P_{\mathrm{br}}=3 \times 3523.80=10,571.4 \mathrm{~W} \text { or } 10.6 \mathrm{~kW} \\
Q_{3 \phi} & =3 Q_{\mathrm{br}}=3 \times 2956.82=8870.46 \mathrm{var} \text { or } \frac{8.87 \mathrm{kvar}}{} \\
S_{3 \phi} & =3 \mathrm{~S}_{\mathrm{br}}=3 \times 4600=13,800 \mathrm{VA} \text { or } 13.8 \mathrm{kVA} \\
F_{P} & =\frac{P_{3 \phi . \text { bal }}}{S_{3 \phi . b \mathrm{bal}}}=\frac{10,571.4}{13,800}=0.766 \text { or } \quad 76.6 \%
\end{aligned}
$$

(b) The reactive power is positive, indicating a lagging current caused by an inductive load.

A. 13 POWER ANALYSIS AND POWER-FACTOR CORRECTION OF BALANCED THREE-PHASE LOADS IN PARALLEL

When data on balanced three-phase loads are expressed in kilovoltamperes, kilowatts, kilovars, power factor, horsepower, and η (efficiency), it is often more convenient to analyze the system on a power basis, as illustrated in the following example.

EXAMPLE A $440-\mathrm{V}, 60-\mathrm{Hz}$, three-phase source supplies a distribution system containing the following three-phase loads:

Motor 1 Delta-connected induction motor rated at 60 hp and $1775 \mathrm{r} / \mathrm{min}$ operating at three-quarters rated load with an efficiency of 90 percent and a power factor of 94 percent.
Motor 2 Wye-connected induction motor rated at 75 hp and $890 \mathrm{r} / \mathrm{min}$, operating at one-half rated load with an efficiency of 88 . percent and a power factor of 74 percent.
Resistance Heater Delta connected resistor bank drawing 20 kW .
Determinè (a) active power, reactive power, apparent power, and power factor of the system; (b) line current; (c) capacitance and voltage rating of each capacitor of a wye-connected capacitor bank required to correct the system power factor to 1.0 (unity power factor).

Solution

The problem will be solved by constructing a single power diagram that includes the individual power triangles of all loads. Furthermore, since all induction motors operate at a lagging power factor, the power factor angle $\theta=\left(\theta_{v}-\theta_{i}\right)$ is always positive for induction motors.

Motor 1

$$
\begin{aligned}
P_{\text {in }} & =\frac{P_{\text {out }}}{\eta}=\frac{60 \times 3 / 4}{0.90}=50 \mathrm{hp} \\
P_{1} & =50 \times 746=37,300 \mathrm{~W} \\
\theta_{1} & =\cos ^{-1} 0.94=19.95^{\circ}
\end{aligned}
$$

Motor 2

$$
\begin{aligned}
P_{\text {in }} & =\frac{P_{\text {out }}}{\eta}=\frac{75 \times 1 / 2}{0.88}=42.614 \mathrm{hp} \\
P_{2} & =42.614 \times 746=31,790 \mathrm{~W} \\
\theta_{2} & =\cos ^{-1} 0.74=42.27^{\circ}
\end{aligned}
$$

Resistance Heater

$$
P_{3}=20,000 \mathrm{~W} \quad \theta_{3}=0^{\circ}
$$

The branch current and the branch voltage of a resistor are in phase, angle $\theta_{r}=\left(\theta_{\nu}-\right.$ $\left.\boldsymbol{\theta}_{i}\right)=0^{\circ}$, and the reactive power is zero. The individual power triangles are drawn in a common power diagram, as shown in Figure A.15, and the geometry of the individual triangles is used to determine the reactive power drawn by the respective three-phase load. Thus, from Figure A.15,

$$
\begin{aligned}
\tan 19.95^{\circ} & =\frac{Q_{1}}{37,300} \quad \tan 42.27^{\circ}=\frac{Q_{2}}{31,790} \\
Q_{1} & =13,539 \mathrm{var} \quad Q_{2}=28,895 \mathrm{var}
\end{aligned}
$$

(a) The total active power, reactive power, and apparent power drawn by the system are

$$
\begin{aligned}
P_{\text {sys }} & =P_{1}+P_{2}+P_{3}=37,300+31,790+20,000 \\
& =89,090 \mathrm{~W} \quad \Rightarrow \quad 89.1 \mathrm{~kW} \\
Q_{\text {sys }} & =Q_{1}+Q_{2}=13,539+28,895=42,434 \mathrm{var} \quad \Rightarrow \quad 42.4 \mathrm{kvar} \\
S_{\text {sys }} & =\sqrt{P_{\text {sys }}^{2}+Q_{\text {sys }}^{2}}=\sqrt{89,090^{2}+42,434^{2}}=98,679 \mathrm{VA} \quad \Rightarrow \quad 98.7 \mathrm{kVA}
\end{aligned}
$$

$$
F_{P}=\frac{P_{\text {sys }}}{S_{\text {sys }}}=\frac{89,090}{98,679}=0.903
$$

(b) $P_{\text {sys }}=\sqrt{3} V_{\text {line }} I_{\text {line }} F_{P} \quad \Rightarrow \quad 89,090=\sqrt{3} \times 440 \times I_{\text {line }} \times 0.903$ $I_{\text {line }}=\underline{129.5 \mathrm{~A}}$

FIGURE A. 15
Power diagram for Example A.5.

(c) To correct the system power factor to unity requires a three-phase capacitor bank with a var rating equal in magnitude to the lagging vars in the system. Thus, the required var rating of the capacitor bank is

$$
\begin{aligned}
Q_{3 \varnothing} & =42,434 \mathrm{var} \\
Q_{\mathrm{br}} & =\frac{42,434}{3}=14,145 \mathrm{var}
\end{aligned}
$$

The voltage rating of each capacitor for a wye bank is $440 / \sqrt{3}=\underline{254} \mathrm{~V}$.

$$
\begin{aligned}
Q_{\mathrm{br}} & =\frac{V_{\mathrm{br}}^{2}}{X_{C}} \quad \Rightarrow \quad 14,145=\frac{254^{2}}{X_{C}} \\
X_{C} & =4.56 \Omega \\
X_{C} & =\frac{1}{2 \pi f C}=\quad \Rightarrow \quad 4.56=\frac{1}{2 \pi 60 C} \\
C & =\underline{581 \mu F}
\end{aligned}
$$

SPECIFIC REFERENCES KEYED TO TEXT

1. American Society of Mechanical Engineers. USA Standard Drafting Practices, Electrical and Electronic Diagrams. USAS Y14.15-1966.
2. Hubert, C. I. Electric Circuits AC/DC: An Integrated Approach. McGraw-Hill, New York, 1982.
3. Hubert, C. I. Preventive Maintenance of Electrical Equipment. Prentice Hall, Upper Saddle River, NJ 2002.

B

Three-Phase Stator Windings

B. 1 TWO-POLE WINDING

Three-phase-motors have three separate but identical stator windings, each producing its own set of north and south poles. Figure B.1(a) shows the coil layout for a representative two-pole three-phase induction motor. The three sets of north and south poles (A and A^{\prime}), (B and B^{\prime}), and (C and C^{\prime}) are displaced from each other by 120 electrical degrees. The relationship between space degrees and electrical degrees is ${ }^{1}$

$$
\text { Space deg. }=\frac{2 \times \text { elec. deg. }}{P}
$$

Thus, for a two-pole motor, the number of space degrees is equal to the number of electrical degrees; for a four-pole motor the number of space degrees is equal to onehalf the number of electrical degrees, etc.

The stator winding for the two-pole motor in Figure B.1(a) has one coil per pole per phase. Coils A, B, and C contribute, in turn, to one magnetic polarity, whereas coils $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$, and C^{\prime} contribute, in turn, to the opposite magnetic polarity. All coils are wound in the same direction, have one or more turns, and span one-half of the circumference (full pitch). Full pitch is 180 electrical degrees, which is equal to 180 space degrees for a two-pole stator.

The connection diagram for the two-pole stator winding is shown in Figure B.1(b). All coils for a particular phase are connected in series in a manner that will result in alternate north and south poles. Terminal markings b and e indicate the respective beginning and end of each coil. Thus, when the direction of current through coil A is from b to e, the direction of current through coil A^{\prime} will be from e to b, causing opposite polarity in the A^{\prime} coil.

[^2]

FIGURE B. 1
(a) Symmetrically spaced stator coils of a two-pole, three-phase induction motor; (b) connection diagram; (c) current waves; (d) developed view of coils in (a).

For the coils shown in Figure B.1(a), a north pole is formed in the unprimed coils when its respective current is positive, and a south pole is formed in the unprimed coils when its respective current is negative. The primed coils have opposite polarity with respect to the corresponding unprimed coils. Thus, when the current in phase A is positive, coil A will be north and coil A^{\prime} will be south, etc.

The coil span (pitch) for this stator is three slots: slots 1 and 4 for coil A, slots 3 and 6 for coil B, etc. The top of slot 4 contains one side of coil A and the bottom of slot 4 contains one side of coil $\mathrm{A}^{\prime \prime}$, the top of slot 5 contains one side of coil C^{\prime} and the bottom of slot 5 contains one side of coil C, etc. Note that each coil has two sides, and each slot contains two coil sides. Hence, in effect there are the same number of coils as slots.

The two-pole, three-phase stator shown in Figure B.1(a) is redrawn as a developed view in Figure B.1(d). The developed view was obtained by imagining the coils in Figure B.1 (a) to have been removed from the stator iron, while maintaining their relative positions and slot numbers, and then spread flat using slot number 4 as a "hinge." ${ }^{2}$ Note: There are only two coils per phase; the shaded sections on the extreme right are the same coils repeated. The table appended to Figure B.1(d) shows the relative magnitudes-and directions of the flux developed by each coil for the specific phase angles of the three current waves shown in Figure B.1(c); the relative magnitudes of the flux are indicated by the size of the letter ($\mathrm{N}, \mathrm{S}, \mathrm{N}, \mathrm{s}$). The broken lines in Figure B.1(d) connect the centerlines of each coil to the corresponding columns. Reading vertically down, each column shows the respective changes in magnetic polarity that occur within each coil as the three-phase current goes through one cycle, from 0 to 360 electrical degrees.

The shifting of the magnetic poles, with the changing current, is shown as a shaded area in the table. Note that the north pole moves from its "starting" position midway between slots 2 and 3 (at zero electrical degrees), returning to its initial position at 360 electrical degrees. Thus, for the two-pole motor in Figure B.1(a), the rotating flux makes one revolution per cycle (360 electrical degrees) of applied three-phase stator voltage.

B. 2 FOUR-POLE WINDING

Figure B.2(a) shows the coil layout for a representative four-pole three-phase induction motor. The three sets of north and south poles are displaced from each other by 120 electrical degrees; in terms of space degrees,

$$
\text { Space deg. }=\frac{2 \times \text { elec. deg. }}{P}=\frac{2 \times 180}{4}=90^{\circ}
$$

Coil sets $\left(A_{1}\right.$ and $\left.A_{2}\right),\left(B_{1}\right.$ and $\left.B_{2}\right)$, and $\left(C_{1}\right.$ and $\left.C_{2}\right)$ contribute in turn to one magnetic polarity, and coil sets $\left(A_{1}{ }^{\prime}\right.$ and $\left.A_{2}{ }^{\prime}\right),\left(B_{1}{ }^{\prime}\right.$ and $\left.B_{2}{ }^{\prime}\right)$, and $\left(C_{1}{ }^{\prime}\right.$ and $\left.C_{2}{ }^{\prime}\right)$ contribute in turn

[^3]

FIGURE B. 2
(a) Symmetrically spaced stator coils of a four-pole, three-phase intluction motor; (b) connection diagram; (c) current waves; (d) developed view of coils in (a).
to the opposite magnetic polarity. Each coil of the four-pole stator spans one-quarter of the circumference (90 space degrees), equivalent to 180 electrical degrees.

To obtain alternate north and south poles, the coils for each phase are connected in series, end to end, and beginning to beginning, as shown in Figure B.2(b). As with the previous example for the two-pole motor, a north pole is formed in an unprimed coil when its respective current is positive, and a south pole is formed when its respective current is negative. The primed coils have opposite polarity with respect to the corresponding unprimed coils. Thus, when the current in phase A is positive, coils A_{1} and A_{2} will be north and coils A_{1}^{\prime}, and $A_{2}{ }^{\prime}$ will be south, etc.

The four-pole three-phase stator shown in Figure B.2(a) is redrawn as a developed view in Figure B.2(d). The developed view was obtained in a manner similar to that used for the two-pole winding, with slot number 7 as the "hinge." Note: There are only four coils per phase; the shaded sections on the extreme right are the same coils repeated. The table appended to Figure B.2(d) shows the relative magnitudes and directions of the flux developed by each coil for the specific phase angles of the three current waves in Figure B.2(c); the relative magnitudes are indicated by the size of the letter ($\mathrm{N}, \mathrm{S}, \mathrm{N}, \mathrm{s}$). The broken lines in Figure B.2(d) connect the centerlines of each coil to the corresponding columns. Reading vertically down, each column shows the changes in magnetic polarity that occur within each coil as the three-phase current goes through two cycles, from 0 to 7.20 electrical degrees. The blank spaces are left as an exercise to be filled in by the student.

The shifting of the magnetic poles, with the changing current, is shown as a shaded area in the table. Note that the north pole moves from its "starting" position midway between slots 2 and 3 at zero electrical degrees to a position midway between slots 8 and 9 at 360 electrical degrees, making only one-half a revolution per cycle of applied voltage. It takes 720 electrical degrees for the rotating flux to make one complete revolution, returning to its starting position midway between slots 2 and 3 . This is twice the number of electrical degrees and, hence, twice the time for the rotating flux to make one revolution. Thus, contrasted with the previously discussed two-pole motor, the rotating flux of a four-pole motor revolves at half the speed of the rotating flux of a two-pole motor.

B. 3 FULL-PITCH WINDING

The coil span for a full-pitch winding is

$$
\begin{equation*}
\delta=\frac{S}{P} \tag{B-1}
\end{equation*}
$$

$$
\text { where: } \quad \begin{aligned}
S & =\text { number of stator slots } \\
P & =\text { number of poles } \\
\delta & =\text { full-pitch slots/pole }
\end{aligned}
$$

The coil slot locations for full pitch coils are 1 and $1+\delta, 2$ and $2+\delta$, etc.

EXAMPLE Determine (a) the coil span for the stator of a six pole, three-phase, 54 -slot induction B. 1 motor; (b) list slot locations for several coils.

Solution

(a)

$$
\delta=\frac{S}{P}=\frac{54}{6}=9
$$

(b) Coil slots locations: 1 and 10,2 and 11, etc.

B. 4 FRACTIONAL-PITCH WINDINGS

If the stator coils have a span less than full pitch (<180 electrical degrees), the winding is called fractional pitch, short pitch, or chorded [1]. The difference between a fullpitch winding and a fractional-pitch winding is shown in Figure B.3. Assuming the stator has 24 slots and is to be wound for three phases with four poles, the coil span for full pitch will be

$$
\delta=\frac{S}{P}=\frac{24}{4}=6 \text { slots }
$$

Thus, the coil sides for a representative full-pitch coil will be in slots 1 and 7 .
The shorter end turns, also called end connections, of a fractional-pitch winding result in a savings in copper, lower resistance, less heat loss in the windings, and higher efficiency than for an equivalent full-pitch winding. Furthermore, the lower leakage reactance of a fractional pitch winding increases the maximum torque that the machine can develop and provides a general overall improvement in machine operation.

FIGURE B. 3
Comparison of coils for a full-pitch winding and a fractional-pitch winding.

B. 5 DISTRIBUTED.WINDINGS

The windings illustrated in Figures B. 1 and B. 2 are called concentrated windings in that all of the turns per pole per phase are concentrated in one coil. A distributed winding [1] distributes the turns into two or more series connected coils in adjacent slots, as shown-in Figure B.4. These are called pole phase groups. To accommodate the additional coils, the stator core for a distributed winding has two or more times the amount of slots that would be required if it were housing a concentrated winding. The number of slots per pole phase group may be determined from:

$$
\begin{equation*}
S^{\prime}=\frac{S}{P \times \text { phases }} \tag{B-2}
\end{equation*}
$$

where: $\quad S^{\prime}=$ number of slots per pole phase group
$S=$ number of slots
$P=$ number of poles
Although the many narrow and shallow slots of the distributed winding cause more flux pulsations per revolution than does the concentrated winding, the pulses are of much lower amplitude and result in a smoother flux distribution. This results in smoother torque, lower amplitudes of vibration, and a better distribution of heat losses in the iron. The voltage produced by a distributed winding is slightly less than that produced by a concentrated winding with the same number of turns. The voltage ratio

FIGURE B. 4
Distributed winding.

of V-distributed to V-concentrated, called the distribution factor, spread factor, breadth factor, or belt factor, can be calculated from:

$$
\begin{align*}
& k_{d}=\frac{\sin \left(S^{\prime} \times(\alpha / 2)\right.}{S^{\prime} \times \sin (\alpha / 2)} \tag{B-3}\\
& \alpha=\frac{P \times 180}{S}
\end{align*}
$$

where: $\quad k_{d}=$ distribution factor
$\alpha=$ number of electrical degrees between the centers of adjacent slots
$S^{\prime}=$ number of slots per pole phase group

EXAMPLE Given a four-pole, three-phase, 48 -slot, full-pitch stator for a $100-\mathrm{hp} 460-\mathrm{V}$ motor,

B. 2

 determine (a) the coil pitch and a representative span for one coil; (b) the number of slots per pole phase group; (c) the electrical degrees between centers of adjacent slots; (d) the distribution factor.
Solution

(a)

$$
\delta=\frac{S}{P}=\frac{48}{4}=12 \text { slots }
$$

Span is from slot 1 to slot 13.
(b)

$$
S^{\prime}=\frac{S}{P \times \text { phases }}=\frac{48}{4 \times 3}=4
$$

(c)

$$
\alpha=\frac{P \times 180}{S}=\frac{4 \times 180}{48}=15^{\circ}
$$

(d)

$$
k_{d}=\frac{\sin \left(S^{\prime} \times \alpha / 2\right)}{S^{\prime} \times \sin (\alpha / 2)}=\frac{\sin (4 \times 15 / 2)}{4 \times \sin (15 / 2)}=0.958
$$

B. 6 CONSEQUENT-POLE MOTORS

A two-speed motor with a speed ratio of $2: 1$ can be obtained from a single winding that is specifically designed for consequent-pole operation. The coil pitch of 90 electrical degrees for a consequent pole winding is one-half that for a standard machine. High and low speeds are obtained by disconnecting and reconnecting the windings or by using a two-pole, double-throw selector switch, as shown in Figure B.5(a). For simplicity, all sketches in Figure B. 5 show only one phase of a three-phase winding. When the switch is in the up position, coils 2 and 4 will have opposite polarity with respect to coils 1 and 3, and the stator will exhibit four poles, as shown in Figure B.5(b). When the switch is in the down position, all four coils will have the same polarity, and the stator will exhibit eight poles, as shown in Figure B.5(c). Making all four coils north poles forces south poles to form between them; the four south

FIGURE B. 5
Consequent-pole windings; (a) winding connections to selector switch; (b) coil polarities for four-pole operation; (c) coil polarities for eight-pole operation.
poles in Figure B.5(c) are called consequent poles because they were formed as a consequence of this connection. Note that with respect to the eight-pole connection in Figure B.5(c), the coils have full pitch; the same coils are half-pitch for the four-pole connection.

A more generalized concept of the consequent pole machine is the PAM (pole amplitude modulation) motor [1],[2]. The PAM motor is a squirrel-cage induction motor whose single winding stator can be connected to provide speed ratios of other than $2: 1$. Selective switching of coil polarities using a switching arrangement similar to that used for consequent-pole machines are used to obtain the desired number of poles. Representative pole arrangements are shown in Figure B.6. Reversing coils 2, 3, and 4 of the six-pole winding in Figure B.6(a) results in a four-pole winding; reversing coils 2, 3, 4, and 5 in the 8 -pole winding in Figure B.6(b) results in a 6-pole winding; reversing coils $2,5,6,8$, and 9 of the 10 -pole winding in Figure B.6(c) results in a 4-pole winding.

FIGURE B. 6
Representative pole arrangements for three representative PAM motors: (a) 6 and. 4 poles; (b) 8 and 6 poles; (c) 10 and 4 poles.

Unlike a conventional stator, the PAM stator uses irregular coil groupings that produce space harmonics in the rotating field. Since space harmonics can cause low starting torque, excessive noise, and sharp dips in torque during acceleration, more consideration must be given to the selection of an appropriate winding arrangement. PAM motors, however, have a slightly higher efficiency than a comparable two-speed, two-winding motor; and are smaller, lighter in weight, and generally less expensive than conventional two-speed two-winding motors.

SPECIFIC REFERENCES KEYED TO TEXT

1. McPherson, G. An Introduction to Electrical Machines and Transformers. Wiley, New York, 1981.
2. Ratcliffe, R. The change-speed PAM motor and its application in the rubber and plastics industries. IEEE Trans. Industry General Applications, Vol. IGA-6, No. 2, Mar./Apr. 1970.

Constant-Horsepower, Constant-Torque, and Variable-Torque Induction Motors

There are three general groups of multispeed squirrel-cage induction motors, each group designed for a specific type of application. They are constant-horsepower, constant-torque, and variable-torque induction motors [1],[2].

C. 1 CONSTANT-HORSEPOWER MOTOR

A constant-horsepower, multispeed motor is designed to deliver approximately the same rated horsepower with every synchronous speed connection. Hence, the rated torque for the different speed connections must vary inversely with the synchronous speed. The mathematical relationship involved is the basic power equation $P=$ $T n / 5252$. Thus, for a constant-horsepower, multispeed induction motor,

$$
\begin{equation*}
\frac{T_{\mathrm{L}} n_{\mathrm{LO}}}{5252}=\frac{T_{\mathrm{H}} n_{\mathrm{HI}}}{5252} \quad \Rightarrow \quad \frac{T_{\mathrm{LO}}}{T_{\mathrm{HI}}}=\frac{n_{\mathrm{HI}}}{n_{\mathrm{LO}}} \tag{C-1}
\end{equation*}
$$

For example, the torque that can be delivered at a $900 \mathrm{r} / \mathrm{min}$ connection would be twice that at an $1800 \mathrm{r} / \mathrm{min}$ connection. Multispeed motors of this type are used for lathes and other machine tools that often'require a constant rate of doing work. It is important to note, however, that the motor will not deliver the same horsepower at all speed connections unless the load demands it.

C. 2 CONSTANT-TORQUE MOTOR

A constant-torque multispeed motor is designed to deliver approximately the same torque with every synchronous speed connection. Hence, the rated horsepower for the
different speed connections must vary directly with the synchronous speed. From the basic power equation, $T=5252 P / n$. Hence,

$$
\begin{equation*}
\frac{5252 P_{\mathrm{LO}}}{n_{\mathrm{LO}}}=\frac{5252 P_{\mathrm{HI}}}{n_{\mathrm{HI}}} \Rightarrow \frac{P_{\mathrm{LO}}}{P_{\mathrm{HI}}}=\frac{n_{\mathrm{LO}}}{n_{\mathrm{HI}}} \tag{C-2}
\end{equation*}
$$

For example, the horsepower rating for a $900 \mathrm{r} / \mathrm{min}$ connection would be half the horsepower rating at the $1800 \mathrm{r} / \mathrm{min}$ connection. Multispeed motors of this type are used for conveyers, compressors, reciprocating pumps, printing presses, and similar loads. It should be noted, however, that a constant-torque motor will not deliver constant torque unless the load demands it.

C. 3 VARIABLE-TORQUE MOTOR

A variable-torque multispeed motor is designed to have its rated torque vary in direct proportion to the synchronous speed for every speed connection. Hence, its horsepower rating for the different speed connections will be in proportion to the square of the synchronous speed. Expressed mathematically,

$$
\begin{align*}
& \frac{T_{\mathrm{LO}}}{T_{\mathrm{HI}}}=\frac{n_{\mathrm{LO}}}{n_{\mathrm{HI}}} \tag{C-3}\\
& \frac{P_{\mathrm{LO}}}{P_{\mathrm{HI}}}=\frac{n_{\mathrm{LO}}^{2}}{n_{\mathrm{HI}}^{2}} \tag{C-4}
\end{align*}
$$

For example, the torque that can be developed at a $900 \mathrm{r} / \mathrm{min}$ connection would be half that at the $1800 \mathrm{r} / \mathrm{min}$ connection. Hence, the $900 \mathrm{r} / \mathrm{min}$ connection would have onequarter the horsepower rating of the $1800 \mathrm{r} / \mathrm{min}$ connection. Multispeed motors of this type are used for fans, centrifugal pumps, or other loads with similar characteristics. The power requirements for fans and blowers is directly proportional to the cube of the speed. Hence, a lower speed connection requires significantly less power from the motor.

EXAMPLE A $20-\mathrm{hp}, 460-\mathrm{V}, 60-\mathrm{Hz}$, variable-torque induction motor has speeds rated at 1750 and
C. 1 $1150 \mathrm{r} / \mathrm{min}$. What is its horsepower rating at each speed?

Solution

The horsepower rating for the higher speed connection is always the nameplate value. Thus, in this example the horsepower rating for the $1750 \mathrm{r} / \mathrm{min}$ connection is 20 hp . The respective synchronous speeds are $1800 \mathrm{r} / \mathrm{min}$ and $1200 \mathrm{r} / \mathrm{min}$. The horsepower rating for the $1150 \mathrm{r} / \mathrm{min}$ connection is

$$
\begin{aligned}
& \frac{P_{\mathrm{LO}}}{20}=\frac{1200^{2}}{1800^{2}} \\
& P_{\mathrm{LO}}=8.89 \mathrm{hp}
\end{aligned}
$$

Constant-Horsepower, Constant-Torque, and Variable-Torque Induction Motors 1575

SPECIFIC REFERENCES KEYED TO TEXT

1. Heredos, F. P. Selection and application of multi-speed motors. IEEE Trans. Industry Applications, Vol. IA-23, No. 2, Mar./Apr. 1987.
2. National Electrical Manufacturers Association, Motors and Generators. Standards Publication No. MG-1-1998, NEMA, Rosslyn, VA, 1999.

Selected Graphic Symbols Used in Controller
 Diagrams

Full-Load Current in Amperes, Direct-Current Motors

The following values of full-load currents* are for motors running at base speed.

hp	90 V	120 V	180 V	240 V	500 V	550 V
$\frac{1}{4}$	4.0	3.1	2.0	1.6		
1	5.2	4.1	2.6	2.0		\cdot
$\frac{1}{2}$	6.8	5.4	3.4	2.7		
$\frac{3}{4}$	9.6	7.6	4.8	3.8		
,	12.2	9.5	6.1	4.7		
$1 \frac{1}{2}$		13.2	8.3	6.6	e	
2		17	10.8	8.5	e	
3		25	16	12.2		
5		40	27	20		
$7 \frac{1}{2}$		58		29	13.6	12.2
10		76		38	18	16
15				55	27	24
20				72	34	31
25			*	89	43	38
30				106	51	46
40				140	67	61
50.				173	83	75
60				206	99	90
75				255	123	111
100				341	164	148
125				425	205	185
150				506	246	222
200				675	330	294

*These are average direct-current quantities.
Reprinted with permission from NFPA 70, National Electrical Code, Copyright © 1999
National Fire Protection Association, Quincy, MA 02269. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety.
National Electrical Code $®$ and NEC $®$ are trademarks of the National Fire Protection Association, Inc., Quincy, MA.

F

Full-Load Current in Amperes, Single-Phase Alternating-Current Motors

The following values of full-load currents are for motors running at usual speeds and motors with normal torque characteristics. Motors built for especially low speeds or high torques may have higher full-load currents, and multispeed motors will have fullload current varying with speed, in which case the nameplate current ratings shall be used.

To obtain full-load currents of 208- and 200-V motors, increase corresponding $230-\mathrm{V}$ motor full-load currents by 10 and 15 percent, respectively.

The voltages listed are rated motor voltages. The currents listed shall be permitted for system voltage ranges of 110 to 120 and 220 to 240 .

hp	115 V	230 V
$\frac{1}{6}$	4.4	2.2
$\frac{1}{4}$	5.8	2.9
$\frac{1}{3}$	7.2	3.6
$\frac{1}{2}$	9.8	4.9
$\frac{3}{4}$	16	6.9
1	20	8
$1 \frac{1}{2}$	24	10
2	34	12
3	86	28
5	100	40
$7 \frac{1}{2}$		50

[^4]
G

Full-Load Current, Two-Phase AlternatingCurrent Motors (Four-Wire)

The following values of full-load current are for motors running at speeds usual for belted motors and motors with normal torque characteristics. Motors built for especially low speeds or high torques may require more running current, and multispeed motors will have full-load current varying with speed, in which case the nameplate current rating shall be used. Current in the common conductor of a two-phase, threewire system will be 1.41 times the value given.

The voltages listed are rated motor voltages. The currents listed shall be permitted for system voltage ranges of 110 to 120,220 to 240,440 to 480 , ard 550 to 600 V .

[^5] National Fire Protection Association, Quincy, MA 02269, This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety.

H

Full-Load Current, Three-Phase AlternatingCurrent Motors

For full-load currents ${ }^{\prime}$ of 208- and $200-\mathrm{V}$ motors, increase the corresponding $230-\mathrm{V}$ motor full-load current by 10 to 15 percent, respectively.

The voltages listed are rated motor voltages. The currents listed shall be permitted for system voltage ranges of $110-120,220-240,440-480$, and $550-660 \mathrm{~V}$.

Abstract

These values of full-load current are for motors running at speeds usual for belted motors and motors with normal torque characteristics. Motors built for especially low speeds or high torques may require more running current, and multispeed motors will have full-load current varying with speed, in which case the nameplate current rating shall be used.

hp	Induction-Type Squirrel-Cage and Wound-Rotor (A)					Synchronous-Type Unity Power Factor* (A)			
	115 V	230 V	460 V	575 V	2300 V	230 V	460 V	575 V	2300 V
$\frac{1}{2}$	4	2	1	0.8					
$\frac{3}{4}$	5.6	2.8	1.4	1.1					
1	7.2	3.6	1.8	1.4					
$1 \frac{1}{2}$	10.4	5.2	2.6	2.1					
2	13.6	6.8	3.4	2.7					
3		9.6	4.8	3.9					
5		15.2	7.6	6.1					
$7 \frac{1}{2}$		22	11	9					
10		28	14	11					
15		42	21	17					
20		54	27	22					
25		68	34	27		53	26		
30		80	40	32		53 63	36	21 26	
40		104	52	41		63 83	41	26 33	
50		130	65	52		83 104	41 52	33 42	
60		154.	77	62	16	123	61	42	12
75 100		192	96	77	20	155	78	62	15
100		248	124	99	26	202	101	81	20
125		312	156	125	31	253	126	101	25
150		360	180	144	37	302	151	121	30
200		480	240	192	49	400	201	161	40

[^6]
Representative Transformer Impedances for SinglePhase $\mathbf{6 0 - H z}$ Transformers

	Voltage				
Rating (kVA)	2400			7200	
	$\% R$	$\% X$		$\% R$	
10	1.51	1.78	1.60	1.62	
50	1.30	2.25	1.29	2.10	
100	1.20	2.31	1.20	3.53	
250	1.01	4.70	1.00	5.16	
500	1.00	4.75	1.00	5.24	

Unit Conversion Factors

Force: lb $\times 4.448$
Length: $\mathrm{ft} \times 0.3048$
Magnetics: Oersteds $\times 79.577$
$=\mathbf{N}$
$=\mathrm{m}$

- Lines $\times 10^{-8}$
=A-t/m
Lines/in. ${ }^{2} \times 1.55 \times 10^{-5}$
Gausses $\times 10^{4}$
Power: hp $\times 746$
Rotational speed: $\mathrm{r} / \mathrm{min} \times 0.1047$
Torque: lb-ft $\times 0.7376$
$=\mathrm{Wb}$
$=\mathrm{T}$
$=\mathrm{T}$
$=\mathbf{W}$
$=\mathrm{rad} / \mathrm{s}$
$=\mathrm{N}-\mathrm{m}$

Answers To Odd-Numbered Problems

Chapter 1

1. (a) 0.40 Wb , (b) 8Ω
2. 64.18 V
3. 1.013 T
4. (a) $1499.1 \mathrm{~A}-\mathrm{t} / \mathrm{m}$, (b) $1.25 \mathrm{~T}, 0.10 \mathrm{~Wb}$, (c) 663.5 , (d) $22486 \mathrm{~A}-\mathrm{t} / \mathrm{Wb}$
5. (a) $1499.1 \mathrm{~A}-\mathrm{t} / \mathrm{m}$, (b) $0.48 \mathrm{~T}, 0.0384 \mathrm{~Wb}$, (c) 254.8 , (d) $58557.2 \mathrm{~A}-\mathrm{t} / \mathrm{Wb}$
6. -47.1%
7. (a) 7.21 V , (b) 7.96 V
8. $65.89 \mathrm{~m} / \mathrm{s}$
9. $24 \mathrm{~Hz}, 89.5 \mathrm{~V}$
10. (a) 474.87 V , (b) $672 \cos (28 \mathrm{t}) \mathrm{V}$
11. 48.98 W

Chapter 2

1. (a) 121 t , (b) 0.0862 Wb
2. (a) $126 \mathrm{t}, 630 \mathrm{t}$, (b) 3.0 A
3. (a) 2.60 A , (b) 0.460 A , (c) 2.56 A , (d) 220.8 W
4. (a) 15.87 A , (b) 0.173 , (c) 1875 var
5. (a) 6600 V , (b) 45.83 A , (c) 1375 A , (d) $0.160 \angle 46^{\circ} \Omega$, (e) 210.1 kW , $217.6 \mathrm{kvar}, 302.5 \mathrm{kVA}$
6. (a) 124.8 V , (b) 624 V , (c) 3.12 A , (d) $1651.05 \mathrm{~W}, 1031.69 \mathrm{var}, 1946.88 \mathrm{VA}$
7. (a) $8.97 \angle 61.63^{\circ} \Omega$, (b) $0.56 \angle 61.63^{\circ} \Omega$
8. (a) $13.78 \angle 63.21^{\circ} \Omega$, (b) $531.11 \angle 41.95^{\circ} \Omega$, (c) 13.89 A , (d) 7377 V , (e) 0.427 A , (f) $17276.4 \angle-75.5^{\circ} \Omega$
9. (a) $0.0435 \angle 83.5^{\circ} \Omega$, (b) 495.27 V , (c) 3.18 percent.
10. (a) 2387.8 V , (b) -0.51 percent, (c) $51.68 \angle-15.21^{\circ} \Omega$
11. (a) 243 V , (b) 5.68 percent, (c) $1341.1 \angle 48.82^{\circ} \Omega$, (d) $42321 \angle 75.99^{\circ} \Omega$
12. (a) 0.194Ω, (b) 0.012Ω
13. (a) $94,696 \mathrm{~A}$, (b) 3.47 percent
14. 2.84 percent
15. 2.61 percent
16. (a) 3.26 percent, (b) 237.5 V , (c) 464.7 V
17. Plot
18. (a) 345 W , (b) 97.05 percent
19. Plot
20. (a) $R_{\mathrm{eq}}=1.743 \Omega, \mathrm{X}_{\mathrm{eq}}=3.233 \Omega, R_{\mathrm{fe}}=11901 \Omega, X_{M}=2961.9 \Omega$, (b) 2.51 percent, (c) 97.4 percent
21. (a) 6572.6Ω, (b) $R_{\mathrm{PU}}=0.0121, X_{\mathrm{PU}}=0.0384$, (c) 98.8 percent, (d) 2.44 percent, (e) 235.6 V , (f) 4712 V

Chapter 3

1. (a) 225 A , (b) $I_{\mathrm{HS}}=44.03 \mathrm{~A}, I_{\mathrm{tr}}=181.1 \mathrm{~A}$
2. (a) 800 V , (b) $6 . \mathrm{A}$, (c) 2 A , (d) 1600 VA , (e) 3200 VA , (f) 0.015 Wb
3. (a) 1.176 , (b) 1.200 , (c) 122.4 V
4. (a) 1.100 , (b) sketch, (c) $750 \mathrm{~A}, 681.8 \mathrm{~A}$
5. 10.07
6. (a) $416.67 \angle-43.95^{\circ} \mathrm{A}$, (b) $I_{A}=234.1 \angle-44.14^{\circ} \mathrm{A}, I_{B}=182.5 \angle-43.70^{\circ} \mathrm{A}$
7. $I_{A}=38.17 \%, I_{B}=34.99 \%, I_{C}=26.94 \%$
8. No, B will overheat.
9. $I_{\mathrm{LS} \text {,phase }}=I_{\mathrm{LS}, \text { line }}=479.2 \mathrm{~A}, I_{\mathrm{HS} \text {, phase }}=69.45 \mathrm{~A}, I_{\mathrm{HS}, \text { line }}=120.3 \mathrm{~A}$
10. 69.28 kVA
11. $10,249 \mathrm{~A}$

Chapter 4

1. (a) $1800 \mathrm{r} / \mathrm{min}$, (b) $50 \mathrm{r} / \mathrm{min}$, (c) 0.278
2. (a) $1800 \mathrm{r} / \mathrm{min}$, (b) 0.01388 , (c) $25 \mathrm{r} / \mathrm{min}$, (d) 0.833 Hz
3. (a) $20 \mathrm{r} / \mathrm{min}$, (b) $1.0 \mathrm{~Hz}, 3.6 \mathrm{~V}$
4. (a) $50 \mathrm{r} / \mathrm{min}$, (b) 2.78% (c) $180 \mathrm{r} / \mathrm{min}$
5. (a) $500 \mathrm{r} / \mathrm{min}$, (b) 0.040 , (c) 63.10 A , (d) $218.83 \mathrm{lb}-\mathrm{ft}$, (e) 2.0 Hz
6. (a) 22030 W , (b) 26.58 hp , (c) 2203 W , (d) $586 \mathrm{r} / \mathrm{min}$, (e) $238.2 \mathrm{lb-ft}$, (f) 506 W
7. (a) $706.9 \mathrm{r} / \mathrm{min}$, (b) $945.4 \mathrm{lb}-\mathrm{ft}$, (c) $928.7 \mathrm{lb}-\mathrm{ft}$, (d) 0.805 , (e) 1683.8 W
8. (a) $1746.2 \mathrm{r} / \mathrm{min}$, (b) $18.8 \mathrm{lb}-\mathrm{ft}$, (c) $1.23 \mathrm{lb}-\mathrm{ft}$
9. (a) $22.0 \mathrm{hp}, 3150.5 \mathrm{r} / \mathrm{min}, 84.3 \%$

Chapter 5

1. (a) $47.89 \mathrm{lb}-\mathrm{ft}$, (b) $73.68 \mathrm{lb}-\mathrm{ft}$, (c) $36.84 \mathrm{lb-ft}$
2. (a) $37.7 \mathrm{lb-ft}$, (b) $29.57 \mathrm{lb}-\mathrm{ft}$, (c) $26.61 \mathrm{lb-ft}$
3. (a) $11.96 \angle 37.58^{\circ} \Omega$, (b) $27.77 \angle-37.58^{\circ} \mathrm{A}$, (c) $21916.6 \mathrm{~W}, 16866.9 \mathrm{var}$, $27655.6 \mathrm{VA}, 0.793$ lagging, (d) 22.8 A , (e) 861.2 W , (f) 608.7 W , (g) 764.2 W , (h) 20291.2 W , (i) 19682.5 W , (j) $119.04 \mathrm{lb-ft}$, (k) 25.92 hp , (l) $116.95 \mathrm{lb}-\mathrm{ft}$, (m) 88.23%, (n) sketch.
4. (a) $7.89 \angle 40.31^{\circ} \Omega$, (b) $33.68 \angle-40.31^{\circ} \mathrm{A}$, (c) $20461.9 \mathrm{~W}, 17356.4 \mathrm{var}$, $26831.6 \mathrm{VA}, 76.26 \%$ lagging, (d) 27.11 A , (e) 643.38 W , (f) 421.38 W , (g) 865.3 W , (h) 18963.8 W , (i) 18542.8 W , (j) 148.47 lb -ft, (k) 2280.1 W , (l) $24.37 \mathrm{hp},(\mathrm{m}) 88.66 \%$, (n) sketch, (o) $\mathrm{LR}=360.54 \mathrm{lb}-\mathrm{ft}, \mathrm{BD}=342.52 \mathrm{lb-ft}$, $\mathrm{PU}=252.38 \mathrm{lb}-\mathrm{ft}$
5. (a) $810.5 \mathrm{r} / \mathrm{min}$, (b) $392.2 \mathrm{lb-ft}$
6. No
7. (a) 0.958%, (b) $1782.8 \mathrm{r} / \mathrm{min}$, (c) 215.7 A , (d) 191.9 hp
8. (a) $1169 \mathrm{r} / \mathrm{min}$, (b) 20.1 A , (c) 17.2 hp
9. 26.8 hp
10. (a) 479.2 V , (b) 104.2 hp , (c) $750 \mathrm{r} / \mathrm{min}$, (d) 734.25 , (e) $745 \mathrm{lb-ft}$
11. $0.135 \Omega /$ phase
12. (a) 71 A , (b) $267.3 \mathrm{~A} \leq I_{\mathrm{lr}}<301.2 \mathrm{~A}$
13. (a) 3.17%, (b) $108^{\circ} \mathrm{C}$, (c) 5.7 years, (d) 52.8 hp
14. $R_{1}=0.2539 \Omega, X_{1}=0.6836 \Omega, R_{2}=0.1872 \Omega, X_{2}=1.0282 \Omega, X_{M}=21.42 \Omega$
15. $\mathrm{PU} R_{1}=0.0333, \mathrm{PUX} X_{1}=0.0562, \mathrm{PU} R_{2}=0.030, \mathrm{PUX} X_{2}=0.084, \mathrm{PUX} X_{M}=1.227$, $\mathrm{PU} R_{\mathrm{fe}}=42.38$
16. $R_{1}=0.1915 \Omega, R_{2}=0.1895 \Omega, X_{1}=0.5745 \Omega, X_{2}=1.3404 \Omega, X_{M}=14.9{ }^{*} \Omega$, fwcor $=405.1 \mathrm{~W} /$ phase
17. 28.8 kW
18. 186.53 kW
19. (a) 135.78 A , (b) $441.34 \mathrm{lb}-\mathrm{ft}$, (c) 168 V , (d) 76.38%, (e) 553.7 A , (f) 422.9 A
20. (a) 248.2 A , (b) 595.46 lb -ft, (c) 318.57 A , (d) 1.444
21. (a) 2.358Ω, (b) 154.4 V , (c) $45.7 \mathrm{lb}-\mathrm{ft}$

Chapter 6

1. (a) 12.34Ω, (b) Auxiliary $5.53 \angle-16.83^{\circ} \mathrm{A}$, Main $20.84 \angle-46.26^{\circ} \mathrm{A}$, (c) $25.78 \angle-40.67^{\circ} \mathrm{A}$
2. (a) 222.7μ F, (b) $25.6 \angle-19.7^{\circ} \mathrm{A}$
3. (a) $11500 \mu \mathrm{~F}$, (b) $1325 \mu \mathrm{~F}$, (c) 33.33 hp .
4. (a) $I_{\text {line }}=22.41 \mathrm{~A}, I_{\text {phase }}=12.94 \mathrm{~A}$, (b) $I_{\text {line }}=3.8 .81 \mathrm{~A}, I_{A}=12.94 \mathrm{~A}$, $I_{B}=25.87 \mathrm{~A}$

Chapter 7

1. 30.54% increase
2. (a) 170%, (b) 170%
3. (a) 200 , (b) $30 \mathrm{r} / \mathrm{s}$, (c) 26
4. (a) 1000 steps/rev, (b) 210
5. 0.20

Chapter 8

1. $150 \mathrm{r} / \mathrm{min}$
2. 80 poles
3. (a) $5835.6 \mathrm{lb}-\mathrm{ft}$, (b) 161 A , (c) 13669.5 V , (d) -29.2°, (e) $12389.6 \mathrm{lb}-\mathrm{ft}$
4. (a) 496.0 V , (b) $-27.8^{\circ}, 1332.5 \mathrm{lb}-\mathrm{ft}$, (c) $666.2 \mathrm{lb}-\mathrm{ft}$
5. Phasor diagrams
6. (a) plot, (b) sketch, (c) rated: $7280 \mathrm{~V} /$ phase, 75% rated: $5500 \mathrm{~V} /$ phase, 50% rated: $3680 \mathrm{~V} /$ phase
7. (a) -18°, (b) $189,666 \mathrm{~W},-26,1053 \mathrm{var}$, (c) 58.8% leading, (d) $742 \mathrm{lb}-\mathrm{ft}$
8. (a) 0.4931 leading, (b) 542.3 V , (c) -15.57°
9. (a) 78.1% lagging, (b) 0.895 lagging
10. (a) $4084.9 \mathrm{lb}-\mathrm{ft}$, (b) $3063.7 \mathrm{lb}-\mathrm{ft}$, (c) $20,424.4 \mathrm{lb-ft}$

Chapter 9

1. $1500 \mathrm{r} / \mathrm{min}$
2. (a) 314.46 V , (b) 64.08 Hz .
3. (a) 67 Q hp, (b) 859.1 V , (c) 580.8 A , (d) $499843 \mathrm{~W}, 338348 \mathrm{var}$,
(e) 82.8% lagging
4. $61.29 \mathrm{~Hz}, P_{1}=75.79 \mathrm{~kW}, P_{2}=74.21 \mathrm{~kW}$
5. (a) 60.15 Hz , (b) $P_{A}=313 \mathrm{~kW}, P_{B}=373 \mathrm{~kW}$
6. (a) 24.77 Hz , (b) $P_{A}=471.68 \mathrm{~kW}, P_{B}=601.87 \mathrm{~kW}, P_{C}=626.45 \mathrm{~kW}$
7. (a) Phasor diagram, (b) $F_{P}=76.6 \%$ leading, $\delta=-17^{\circ}$
8. (a) Sketch, (b) 35°, (c) 27°
9. $P_{A}=347.76 \mathrm{~kW}, P_{B}=115.92 \mathrm{~kW}, Q_{A}=143.92 \mathrm{kvar}, Q_{B}=170.09 \mathrm{kvar}$
10. (a) Sketch, (b) $59.89 \mathrm{~Hz}, P_{A}=690.90 \mathrm{~kW}, P_{B}=595.45 \mathrm{~kW}, P_{C}=563.63 \mathrm{~kW}$,
(c) 73.5% leading
11. 1.449
12. (a) 271.8 V , (b) 65.7°, (c) 274 V , (d) 1.1%, (e) 208 V
13. 7.9\%
14. 483 V
15. (a) 1.32Ω, (b) 1.07
16. (a) 0.5047Ω, (b) 1.52Ω, (c) 1.60Ω

Chapter 10

1. (a) 56.67 Hz , (b) $68 \mathrm{~Hz}, 228 \mathrm{~V}$
2. (a) 200 V , (b) 280 V
3. 3.57%
4. 36.1%
5. $3005.1 \mathrm{r} / \mathrm{min}$
6. $410.4 \mathrm{r} / \mathrm{min}$
7. 270.7 V
8. 248.5 A
9. $3563.4 \mathrm{r} / \mathrm{min}$
10. (a) 466.6 A , (b) $1268.7 \mathrm{r} / \mathrm{min}$
11. (a) 232.1 V , (b) 12314.5 W , (c) 24.8 lb -ft, (d) 22.5 lb -ft
12. (a) 8674.4 W , (b) 8082.1 W , (c) 17.27 lb -ft
13. (a) 1767.2 W , (b) 3208.8 W , (c) 93.8%
14. (a) $137.0 \mathrm{lb}-\mathrm{ft}$, (b) 23655 W , (c) 144.8 lb -ft, (d) 1.24Ω, (e) $253.4 \mathrm{lb-ft}$

Chapter 11

1. (a) 33.2Ω, (b) 119.7 A , (c) 365.9 W
2. (a) 97.4Ω, (b) 335.0 W
3. (a) 49.3%, (b) $969.4 \mathrm{r} / \mathrm{min}$
4. (a) 1329.2 A , (b) 1318.8 A , (c) 323109 W , (d) yes
5. (a) 209.6 A , (b) 3.35 A , (c) 206.2 A , (d) $673.3 \mathrm{lb}-\mathrm{ft}$, (e) $0.5347 . \Omega$, (f) 6 turns, (g) $423.3 \mathrm{r} / \mathrm{min}$
6. $700 \mathrm{r} / \mathrm{min}, 377 \mathrm{r} / \mathrm{min}$
7. (a) $3121 \mathrm{r} / \mathrm{min}$, (b) 5963 W , (c) $13.4 \mathrm{lb-ft}$
8. (a) $319 \mathrm{r} / \mathrm{min}$, (b) 6.3%, (c) $224 \mathrm{lb}-\mathrm{ft}$
9. 77.5 V
10. 0.442Ω

Chapter 12

1. (a) 268 V , (b) 7.2%, (c) 7.3Ω
2. 227.8 V
3. (a) 265 V , (b) 290 V , (c) 16.0%, (d) 73.1Ω, (e) 315 V
4. (a) 500 A , (b) 5.49 A , (c) 505.49 A , (d) 270 V , (e) 257 V , (f) 2.8%, (g) under, (h) yes
5. (a) 0.001951Ω, (b) 377.4 W
6. (a) 123.5 V , (b) $I_{A}=820 \mathrm{~A}, I_{B}=980 \mathrm{~A}$
7. (a) 562.1 V , (b) $!_{A}=483.6 \mathrm{~A}, I_{B}=516.4 \mathrm{~A}$
8. (a) 241.9 V , (b) $I_{A}=351.35 \mathrm{~A}, I_{B}=756.76 \mathrm{~A}, I_{C}=891.89 \mathrm{~A}$

Index

Acyclic machine, $24 n$
Additive polarity, 93
Admittance, 542
Airgap
fringing at; 9,7
induction motor, 137
Airgap power, 148
Altemator. See Synchronous generator
Amortisseur winding, 306
Arcing horn, 514
Armature
DC machine, 389
synchronous machine, 305
Armature coil, 354, 389
Armature reaction
and compensating windings, 415
and interpoles, 413
in a DC generator, 413,488
in a DC motor, 413
in a synchronous machine, 312
Askarels, 40
Autotransformers, 95
for motor starting, 230
B-H curve, 6
Balanced three phase system, 539
Base impedance, 65
Base speed, 420
Base voltage and current, 65
Basic impulse level (BIL), 95
Bimetal element, 516
Blow-out coil, 513
BLV rule, 22
Braking
dynamic, 461, 528
mechanical, 462
regenerative, 462
resistive, 461
Branch voltage, 549
Brush contact drop, 418, 430
Brushes, 394
Buck-boost transformer, 101
Burden, instrument transformer, 125

Central processing unit, 536
Characteristic triangle DC generator, 496 synchronous generator, 357
Chorded winding, 527
Circle diagram of induction motor rotor, 148,149
Circulating currents in paralleled transformers, 107, 119
transformer iron, 28
Code letter, 205, 206
Coercive force, 16
Cogeneration, 220
Coil face, 28
Coil pitch, 137
Coil side, 20
Coil window, 20, 25
Commutating poles, 410
Commutating zone, 408.
Commutation, 408, 410
Commutation period, 408
Commutator, 394, 395
Compensating winding, 415
Compensator, 230
Complex numbers, 540
Complex power, 544
Conductance, 542
Conjugate phasor, 544
Consequent-pole motor, 141, 568
Constant-hp motor, 573
Constant-torque motor, 573
Control of electric motors, 513
Controllers. See Starters, Drives
Copperjacket timing relay, 518
Core loss
DC machine, 428
induction motor, 158
synchronous machine, 377
transformer, 71
Core material, transformers, 38
Counter-emf (cemf), 27
in a DC motor, 403
in a synchronous motor, 312,313
in a transformer, 41

Counter-force, 22
Counter-torque, 22, 221
Couple, 21
Crawling, 137, 156,
Current divider equation, 549
Current transformer (CT), 125
burden, 125
Cycloconverter, 534
Damper winding, 306
DC generator. See also DC machines applications, 492
characteristic triangle, 496
compound, 490
cumulative, long and short shunt, 490
differential, 491
flat, over, under, 491
compounding effect of speed, 495
critical resistance, 478
demagnetizing mmf, 413,487
diverter resistor, 403
equalizer connection, 504
equivalent circuit, 416
field flashing, 482
field resistance line, 475, 480
interpole saturation, effect of, 482, 483
load-voltage characteristic, 485
long shunt, 490
magnetization curve, 480, 489
motoring of, 504°
parallel operation of, 495
theory of load transfer, 502
polarity
reversed, 482-485, 496, 505
short-circuit, effect on, 482
self-excited, 475
basic design, 478
separately excited, 486, 487
short shunt, 452
shunt generator, 416
voltage breakdown, 485
voltage buildup, 477

DC generator (continued)
voltage buildup, factors affecting armature reaction, 487
field circuit resistance, 478
reversed field connections, 482
reversed residual magnetism, 482
reversed rotation, 482 speed, 479
voltage regulation, 400,486
DC machines, general. See also DC motor, DC generator
armature inductance and commutation, 408
armature reaction, 412,413
armature winding, 396
basic DC generator, 398
brush contact drop, 418, 430
brush position, 398
brush shifting, an emergency measure, 414
commutating zone, 408
commutation, 394, 408
commutation period, 408
commutator, 394,395
compensating windings, 415
construction, 394
efficiency, 450
end-connections, 393
end-turns, 993
Faraday-Lenz relationship, 390
flashover, 415
flux in air gap, 389, 412-414
interpoles, 410
and armature reaction, 413
and armature inductance, 408
effect of incorrect connections, 411
effect of magnetic saturation, 411
lap winding, 396
leading edge of a pole, 412
losses and efficiency, 428
magnetization curve, 400,489
neutral plane, $390,395,409$
pole-face winding, 415
power flow diagram, 429
series and shunt field coils, 394. 444
sparking and arcing at brushes, 409
trailing edge of pole, 412
voltage regulation, 400
DC motor
applications, 459
basic DC motor, 403
base speed, 420
braking, 461
compound, 443,459
cumulative, 443 n
differential, 445, 465
counter-emf (cemf), 403
current
locked rotor, 431
rated (table), 579
dynamic behavior
during speed adjustment, 422-425
when loading and unloading, 406, 407
equivalent circuit, 405,418
efficiency, 430
flux density in air gap, 403
field
break (open) in field circuit, 420
function of, 404
generator-to-motor transition and vice versa, 401
jogging, 464
magnetic saturation, effect of, 446
magnetization curve, 447, 449 . 451,454
manual starter, 432
mechanical power, 426
nameplates and NEMA, 427
overhauling load, 461
plugging, 461, 464, 528
regenerative braking, 462
reversing rotation, 403, 445
series, 446, 455, 459
shunt, 303,458
speed adjustment
emergency overspeed, 424
precautions in, 424
through armature control, 422
through shunt-field control, 424
speed equation, 419
linear approximation of, 455
speed regulation, 406
stabilized shunt, 444
starting, 431
steady-state characteristics, 458
steady-state speed, 458
straight shunt, 398,443
terminal markings, 465
torque, 403, 426
linear approximation of, 455
Delta connection, 549

Derating curve, insulation, 211
Design letter, induction motor, 169, 204, 216
Distributed winding, 567
Distribution factor, 568
Diverter, series field, 493
Double-subscript notation, 547
Drives. See also Starters
adjustable voltage, 459, 532
cycloconverter, 534
solid-state, 532
Ward-Leonard, 459
Droop rate, 351
Dynamic braking
DC motors, 461, 528, 530
induction motors, 227
synchronous motors, 331
Eddy current, 28
Eddy current loss, 28
in transformers, 71
Eddy voltages, 28
Efficiency
DC machines, 428
induction motors, 157, 159
nominal, 203
synchronous generators, 377
synchronous motors, 323
transformers, 71, 74
Electric/magnetic analogy, 12
Electrical degrees, 29
Electromagnetism, I
Electron spins, I
End-connections, 20, 393
End-turns, 20, 393
Energy conversion in rotating machines, 27
Equalizer connection, 504
Equivalent magnetic circuit, 12
Error angle, 347, 348
Exciter, 308
Exciting current induction motor. 156, 179
transformer, 43, 112
Faraday's law; 21
Faraday-Lenz relationship, 390
Ferromagnetic materials, 5
B-H curves, 6,8
Field flashing, 482
Flashover of a DC machine, 415
Fluorocarbon gas C2F6, 38
Flux
bunching, 17,135
cutting, 22, 24
fringing at airgaps, 7, 9
Forces
on adjacent conductors, 17
short-circuit, 18
Fourier series expansion, 112
Fractional pitch winding, 137, 566
Frequencies, standard, 27
Friction losses, 157

Gap power, 148
Generator action, elementary, 21, 25
Governor characteristic, 350
Governor droop, 351
Graphic symbols for control diagrams, 577

Harmonic currents
in power lines, 112
in single-phase transformers, 110
in three-phase transformers, 121
Harmonic suppiession, 123
Harmonics, space, 156, 570
Horsepower equation, 427^{*}
Homopolar machine, 24n
Hunting of synchronous motòrs, 306
Hysteresis, 14
Hysteresis loop, 15, 111
in magnetization curves, 475
Hysteresis loss, 15, 16
in induction motors, 157
in transformers, 71
Hysteresis motor, 282
unique features of, 286
Hysteresis torque, 284.
Hysteresis-reluctance motor, 286
Ideal transformer, 49, 178
Impedance angle, induction motor, 191
Impedance diagram, general case, 505
Impedance matching transformer, 51
Impedance multiplier, 51
Impedance voltage, per unit, 64
Induction generator, 209, 219, 367
capacitance line, 225
counter-torque, 22.1
critical capacitance, 227
equivalent circuit, 224
emergency overspeed (table), 223
failure to build up voltage, 225 n
isolated operation, 224
loss of résidual magnetism, 225n
motor to generator transition, 220
power, torque, current, 222
pushover torque, 221
self-excited, 225
disadvantages of, 227
single-generator operation, 224
starting, 221
voltage buildup, 227
Induction motors, single phase
locked-rotor torque, 256
quadrature field theory, 254
NEMA standard ratings, 270
phase splitting, 256
locked rotor torque, 256
rated current (table), 581
reversing, 269
shaded pole, 269
split-phase, 256
capacitor-start, 262
permanent-split capacitor, 265
resistance-start, 256-261
two-value capacitor, 265
standard power ratings, 270
Induction motor, three phase ${ }_{r} 133$
acceleration of, 155
airgap, 137
airgap power, 148
applications, 170
behavior during loading and breakdown, 155
blocked rotor test, 214
braking
dynamic, 22.7
with DC injection, 228
with capacitors, 228
branch circuits, 238
breakdown, 150
bumps and dips in characteristic, 156
circle diagram of rotor, 148, 149
classification and performance characteristics, 168
code letter, 205, 206
consequent pole, 140, 568
constant hp, 573
constant torque, 573
construction, 136
core loss, 157
crawling of, 137,156
DC test, 213
derating curve, 211
design letter, NEMA, 169, 204. 216, 181
upgrading probiem, 176
distributed winding, 567
efficiency, 157, 159
guaranteed, 204
nominal, 203
emergency overspeed, 223
energy policy act (EPACT), 168 n
equivalent circuit, 143, 178
approximate, 183
rotor, 143
exciting current
magnitude of, 158, 219
frame number, 204
friction and windage, 157
frequency
constraints (NEMA), 189
effect on locked-rotor current, 192
effect on locked-rotor torque, 192
effect on running torque, 190
off-rated, 189
60 Hz motor on $50 \mathrm{~Hz}, 194$
volts/hertz ratio, 194
harmonic torques, 156
high inertia loads, 208
hysteresis loss, 157
impedance, input, 179
angle at locked rotor, 191, 237n
inrush current, 206
insulation class, 204
insulation life, 210
and number of starts, 208
and temperature, 210
and unbalanced line voltages, 209
locked rotor, 141
inrush current, 206
phase angle of, 237 n
locus of rotor current, 146
losses, 157
in percent of total loss, 158
magnetizing reactance
determination of, 178
mechanical power, 150
multi-speed pole-changing, 141
constant horsepower, 573
constant torque, 573
variable torque, 574
nameplate data, 202
NEMA-design, 168, 170
no-load conditions, 156
no-load current in percent of rated, 219
no-load test, 216

Induction motor, three phase,
(continued)
normal running conditions
squirrel cage, 186
wound rotor, 137, 195-202
open-wye motor, 271
operation from a single-phase line, 270
overload conditions, 186
PAM winding, 569
parameter determination, 213
parasitic torques, 156
per-unit parameters, 212
determination of, 213
plugging, 196, 464
power factor, 159
power, torque, and speed calculations, 179
power-flow diagram, 158, 182
reactive power, 148
reclosing out-of-phase, 209
reversal of rotation, 135
rotating field, 135
rotor impedance diagram, 144
rotor leakage reactance, 145
service factor, 204
shaft-power out, 159
shaping the torque-speed curve, 182
single-phasing (fault), 272
slip, 141
at maximum torque, 183
effect on rotor frequency, 142
effect on rotor voltage, 143
space harmonics, 156, 570
speed
constraints, 221, 223
subsynchronous, 137, 156
synchronous, 137
squirrel cage rotor, 137
starting, 229
autotransformer, 230
full voltage, 229
part winding, 238
reclosing out of phase, 209
series impedance, 234
solid state, 238
wye-delta, 232
stator windings, 561
Steinmetz equivalent circuit, 151
stray power losses, 158
temperature rise, 205
torque
breakdown (maximum), 150, $155,156,183,184$
breakdown, minimum (NEMA tables), 173, 174
developed, 151
harmonic, 156
locked-rotor, 153
locked-rotor, minimum (NEMA tables), 171, 172
parasitic, 156
pull-up, 156, 157,
pull-up, minimum (NEMA tables), 175, 176
torque-speed characteristic, 153
turns ratio, stator/rotor, 178, 197
upgrading problem, 176
variable torque, 574
voltage
constraints (NEMA), 189
off-rated, effect of, 189
unbalanced, effect of, 209
wound rotor, 137, 195
applications, 198
behavior during rheostat adjustment, 198
normal running and overload conditions, 200
rheostat, 137, 198
Infinite bus, 305
Input impedance
of an induction motor, 179, 191
of a transformer, 50, 55
Inrush current
induction motor, 183
transformer, 101
Instrument transformer, 125
accuracy, 126
phase angle error, 126
polarity, 126
polarity test, 126
Insulating liquid, 40
Insulation
class, 204
derating curve, 211
life, 210
relative life, 210
Interaction of magnetic fields, 17
Interpole, 410, 413
saturation, effect of, 411, 482
Isochronous machine, 353
paralleling with, 355

Jogging, 464
Ladder diagram, 519
Laminated cores, 28
Lap winding, 396

Leading and lagging edge of a pole, 413
Leakage flux of a transformer, 48
Leakage reactance
induction motor, 145, 178
transformer, 51
Lenz's law, 22
and commutation, 408
and copper-jacket time-delay relays, 527
and DC machines, 390, 402
and dynamic braking, 461
and generators, 25, 401
and induction motor action, 135
and shaded pole motors, 269
and shading coils, 515
and single-phase motors, 254
and transformer action, 41
Line voltage
delta, 549
wye, 547
Linear induction motor (LIM), 295
applications of, 299
Load angle, 311
Locked rotor current, 192
Locked rotor torque, 153, 155
Logic circuits, 519
Magnet torque, 284, 311
Magnetic
circuit, 2, 4
domains, 1, 16
drop, 4
field, 1
intensity, 3
flux density, 4
flux lines, 2
hysteresis, 15
materials, 5
mmf and mmf gradient, 3
permeability, 5
potential difference, 4
reluctance, 4
saturation, 5
Magnetic/electric analogy, 12
Magnetization curve, 5, 8
induction generator, 225
knee, linear, and saturation regions, 5,7
self-excited DC generator, 475
separately excited DC generator, 400
synchronous generator, 370
Magnetomotive force, 3
Mechánical degrees, 29

Mechanical force on a conductor, 19
Moment arm, 20
Moment of inertia, 330
Montsinger, A. M., 210
Motor action, 18
Motor control
arcing horn, 513
blow-out coil, 513
diagram.
connection, 520
elementary, 521
ladder, 519
logic, 519
magnetic contactors, 513
manual starter, 432
operating coil, 513
overload protection, 515
pole shader, 515
relays, 515
shading coil, 515
undervoltage protection, 522
undervoltage release, 519
Motor controller. See Starters
Motor types. See Consequent pole motor, Constant hp motor, Constant-torque motor, DC motor, Hysteresis motor, Induction motor, Linearinduction motor, Multispeed motor, PAM motor, Reluctance motor, Shaded pole motor, Stepper motor, Synchronous motor, Universal motor, Variabletorque motor
Multi-polar machines, 29
Multi-speed induction motor, 141, 568,573
Mutual flux, 41
Nameplate
DC motors, 427
induction motors, 202
transformers, 94
National Electrical Code (NEC), 239
branch circuit protection, 238
full load motor current
DC. 579
single phase, 581
three phase, 585
two phase. 583
National Electrical Manufacturers Association (NEMA), 151, 167

NEMA standards
for DC motors emergency overspeed, 424
nameplates, 427
terminal markings, 465
for single phase motors, 270
for three phase induction motors constraints on unbalanced voltage, 211
constraints on voltage and frequency, 189
designs, 168-177
efficiency, $168 \mathrm{n}, 203$
emergency overspeed, 223
insulation class, 204
locked rotor $\mathrm{kVA} / \mathrm{hp}, 205$
nameplate interpretation, 202
torque, 168-177
for synchronous motors, 330°
for transformers, 92,94
Neutral connection, 547
Oersted, 6
One-line diagram, 345
Overhauling load, 461, 462
Overload protection of motors, 515

PAM motor, 569
Parallel circuit relationships, 542
Parallel operation
of DC generators, 495
of single phase transformers, 104
of synchronous generators, 345
of three phase transformers, 119
effect of 30° phase shift, 119
Parasitic torques, 156
PCBs, 40
Per-unit
efficiency, 74, 159
impedance, transformers, 64
impedance voltage, 64
parameters, induction motor, 212, 213
regulation, 67
Permeability, 5
of free space, 5
relative, 5
Phase sequence, 348,551
Phase splitting circuit, 256
Phase voltage, 549
Phasor power, 544
Pigtail, 395
Plugging, 196, 464, 528

Polarity
additive and subtractive, 93
reversed, $482-485,496,505$ test, 126
Pole-amplitude modulation, 569
Pole face winding, 415
Pole phase group, 528
Pole pitch, induction motor, 137, 561
linear induction motor, 298
Pole shader, 515
Pole slipping, 309, 329
Polychlorinated biphenyls, 40
Potential transformer, (PT), 125
Power angle, 311
Power factor, 546
angle, 544
improvement with capacitors, 558
improvement with synchronous motors, 324
induction motor, 159
Power
active, reactive, apparent, 544
complex, 544
diagram, 504, 522
phasor, 504
single phase, 544
three phase, 556
triangle, 545,557
Power-directional relay, 356
Power-flow diagram
DC machine, 429
induction motor, 158, 182
synchronous generator, 378
synchronous motor, 323
Prime mover, 25, 344
characteristics of, 350
Pull-out power, 343
Pumped storage, 337
Pythagorean theorem, 45, 67
Quadratic formula, 195, 452
Quadrature field theory, 253
Reclosing out-of-phase, 209
Reflected impedance, 56
Relative permeability, 5
Relays, 515
accelerating, 530
full-field, 530
overload, 515
timing, 528
Reluctance, 4
in parallel, 12
in series, 12
transformer core, 46

Reluctance motor, 279
Reluctance torque, 279, 281
Reluctance-synchronous motor, 142 , 327
Residual magnetism, 15
in DC generators, 477
in induction generators, 225
in transformers, 110^{-}
Residual voltage, 209
Resonance
effect on transformers, 64, 123,
Reverse-current trip, 505
Rheostat, three phase, 137, 139
Right hand rule, 1, 25
Rotating flux, 135, 563
Rotor core, 29
Salient-pole generator, 343

- Saturation curves. See Magnetization curve
Series circuit relationship, 540
Series field, 444
Series motor
AC, 299
DC. 299,446

Service factor, 204
Shaded-pole motor, 269
Shading coil, 515 in a motor, 269
Short-circuit forces, 18 ratio (SCR), 376
Shunt generator, 363
Siemens, 542.
Single phase circuit
parallel, 542
power, 544
power factor, 546
series, 540
Single-phasing (a fault condition), 272
Sinusoidal emfs, 25
Skewed rotor slots, 137
Skewing angle, 19
Skin effect, 73, 215
Slip, 141
negative, 221
Slip rings, 172
Slip speed, 141
Space degrees, 31
Space harmonics, 156, 570
Speed regulation, governor, 350
Speed voltage, 22
Spider, 307

Split-phase motor, 256
Squirrel cage rotor, 133, 138
NEMA design, 168
Stability limit, 321
Starters, See also Drives
AC, reduced voltage, 524
AC, reversing, 523
AC, two-speed, 523
diagrams
connection, 520
elementary, 521
components, 513-515
DC, cemf, 528
DC, definite time, 526
DC, flux decay time delay, 526
DC, manual, 432
DC, reversing, 528
overload protection, 515
programmable, 535
Static torque, 153
Stator, 18
Steinmetz équivalent circuit, 151
Steinmetz exponent, 16n
Stepper motors, 286
drive circuits, 292
half-step operation, 289
holding torque, 290
microstepping, 289
permanent-magnet stepper, 291, 293
resolution, 287
static-torque curve, 292
step accuracy, 291
step angle, 287
stepping frequency, 287
variable reluctance stepper, 287
Stray-power losses, 158
Subsynchronous speed, 137, 156
Subtractive and additive polarity, 93
Sulfurhexafloride gas SF6, 38
Superconducting generators, 378
Susceptance, 542
Symbols for controller diagrams, 578
Synchronizing AC generators, 346
Synchronizing lamps, 348
Synchronous condenser, 305, 324
Synchronous generator,
armature reaction, 312
construction, 337
cooling, 378
counter torque, 344
determination of parameters, 373
load, power factor and the prime mover, 344
losses and efficiency, 377
magnetization curve, 370
motor-to-generator transition, 338, 344
motoring, 356
parallel operation, 345
characteristic triangle, 357
division of active power, 351
division of reactive power, 363
error angle when paralleling, 347, 348
governor characteristics, 350
droop, 316
speed regulation, 350
isochronous, 353,355
loss of field excitation, 367
procedure for paralleling, 346
procedure for safe shut-down, 356
synchronizing, 346
per-unit parameters, 367
phasor diagram, 339, 340
power
angle, 339
equation, 342
power-flow diagram, 378
pull-out power, 343
salient pole, 343
short circuit ratio (SCR), 376
superconducting, 378.
voltage regulation, 368
Synchronous motor, 305
airgap flux, 312
amortisseur winding, 306
armature reaction, 312
flux, 312
reactance, 315
voltage, 314
braking, 331
brushless excitation, 309, 310
construction, 305
counter-emf, 312, 313
cylindrical rotor, 306
damper winding, 306
efficiency, 323
equivalent circuit, 315
excitation
effect on current, pf and power angle, 320
normal, under, and over, 321
excitation voltage, 313
from graph, 322
exciter, 307
field winding, 306
hunting, 306
loading, effect on current, pf and load angle, 311, 318
lesses, 323
phasor diagram, 315
pole face winding, 306
pole slipping, 309, 329
power
angle, 311
magnet, 311,328
reluctance, 311, 327
power equation, 316, 327
power factor improvement with, 324
power-flow diagram, 323
reactance, direct and quadrature, 327
reversing, 311
round rotor, 306
salient pole, 307, 326
normal operation, 327
speed control, 330
speed voltage, 313
stability limit, 321
starting, 309
synchronism, loss of, 311, 319
synchronizing, 309
lamps, 348
synchronous impedance, 316
synchronous reactance, 316
torque
angle, 311
blocked rotor, 330
magnet, 311, 328
pull-in and moment of inertia, 329
pull-out, 317, 319, 328
reluctance, 311, 327
V-curves, 321
Synchronous speed, 135, 137
Synchroscope, 346
Temperature rise, 205
Ten-degree rule, 210
Tertiary coil, 123
Three-phase system
active, reactive, and apparent power, 544
balanced wye and delta loads, 550
calculating line and phase currents in three-phase loads, 553
delta connection, 549
phase sequence, 551
power factor correction, 558,560
power triangle, $545,557,559$
universal phasor diagram, 554
wye connection, 547
Thyristor, 531
Time degrees, 31
Torque
angle, 311
blocked rotor, 153, 330
breakdown (maximum), 155, 183, 184
developed, 20, 150
eddy current, 306n
hysteresis, 284, 306n
locked rotor, 153, 330
magnet, 311, 328
reluctance, 279, 31.1
pull-in and moment of inertia, 329
pull-out, 317, 319, 328
pull-up, 157, 1.75, 176
pushover, 221
Trailing and leading edge of a pole, 412
Transformer
action, 21, 40
auto, 95
bank, circulating current in, 104 , 119
single phase, 104
three phase, 119,113
BIL, basic impulse level, 95
buck-boost, 101
available ratios, 103
connections, three phase
delta-delta, 115
open-delta (V-V), 115
wye-wye-delta, 123
construction, 37
core material, 37
core type, 37, 118
shell type, 37,118
efficiency, 71, 74
from per-unit values, 74
equivalent circuit models, 43,51 , $52,54,55,56,57,58,59$
equivalent core-loss, resistance, 43
equivalent impedance, 55
equivalent magnetizing reactance, 44
exciting current, 43
core-loss component of, 43
harmonics in, 110
magnetizing component of, 44
phase angle of, 44
fault current, 49, 66
gas-filled dry type, 38
harmonics, 110,121
triplen, 123
high-side low-side, 57
ideal, 49, 178
impedance matching, 51
impedance
input, 50, 60
multiplier, 51
per-unit, 64
phase angle, values of, 66 n
reflected, 56
table of, 587
inrush current, 109
instrument, 125
leading pf, effect on, 48
leakage flux, effect on, 48
leakage reactance, 51
leakage reactance drop, 54
liquid immersed, 39
loading and unloading, 46
losses and efficiency, 71
magnetizing
ampere-turns, 46
current, 43, 171
reactance, 44,55
mutual flux, 41
nameplate, 94
nameplate ratio, 50
no-load conditions, 43,46
mmf and components, 45
parameter determination, 75
parallel operation of single phase, 104
three phase, 119
per-unit and percent impedance of, 64
phase angle of exciting current, 43, 44
polarity, 92
additive and subtractive, 93
instrument, 126
power factor, 44
principles. 47
reflected (referred) impedance,

56

rerating for open delta connections, 117
resonance, 64,123
shell type, 38,118
sinusoidal voltage, 41
specialty, 91
terminal markings, 92
tertiary winding, 123

[^0]: ${ }^{1}$ Boldfaced type is used to indicate complex quantities such as phasor current, phasor voltage, impedance, admittance, and complex power.

[^1]: ${ }^{2}$ Each phase of a balanced three-phase load has the same impedance.

[^2]: ${ }^{1}$ For more information on the relationship between electrical degrees and space degrees, see Section 1.15, Chapter 1.

[^3]: ${ }^{2}$ This flat layout of stator coils represents a linear motor. (See Section 7.8. Chapter 7.)

[^4]: Reprinted with permission from NFPA 70, National Electrical Code, Copyright © 1999, National Fire Protection Association, Quincy, MA 02269. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard inf its entirety.

[^5]: Reprinted with permission from NFPA 70, National Electrical Code, Copyright © 1999,

[^6]: *For 90 and 80 percent power factor the preceding figures shall be multiplied by 1.1 and 1.25 , respectively. Reprinted with permission from NFPA 70, National Electrical Code, Copyright © 1999, National Fire Protection Association, Quincy, MA 02269. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety.

