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. Bringing Research to Life

yra.amved for an analysis meeting with

Jason and found a round, bald littte man

sitting at Jason's desk, studyirg the
screen of a laptop computer, stroking his gray beard
and smiling broadty.

“Myra,” said Jason, “meet my Uncle Jack.”

“Really? At last | meet the fqmous~or should |
say infamous—uncle? | feared you were imaginary.”

“‘Reports of my being imaginary are greally exag-
gerated, ff | may paraphrase Mark Twain.”

it seemed to her he should have been taller. The
ex-biggest painting contractor on Long island ought
to be more ample, she felt. Maybe he had shrunk
upon retiring to Fiorida. Uncle Jack was the kind of
unassuming diminutive old fellow who often proved
to have money, or power, or both, though no one
would have guessed.

Uncle Jack began to rub his laptop computer
and grin even more broadly. ‘I wanted Jascn to see
that | am taking good care of this MindWriter.” Myra
thought it was a great "box,” but what made this one
SO special?

“This little computer,” said Uncle Jack, *has
made me the poiitical kingpin of the Boca Beach
Cendominium Association, Phases One and Two.
Not to mention ali the widows who want 1o meet with
me. Which | had better not mention, as | have only
been widowed for a short while and don't want this
getting back to my boys on Long Island. | gave the
painting business to my tnree boys and—hey, I'm 75
and deserve some fun—! moved to Boca Raton. For
three months | played golf in the moming and sat by
the pool and played cards in the aftemoon. For three
months, seven days, | didthis. Do | have to tell you? |
was going crazy.

“Then my next-door neighbor Marty ‘headed
south,” and his wife gave me his MindWriter.”

Myra tried to imagine what was south of Flonda
and why Marty would go there without his wife. Uncle

Jack saw the confusion and explained, “She ‘planted
him," 's what | mean. Do you follow me? He died, he
met his 'necessary end,” if | may quote from Julius
Caesar. And what was a widow going to do with this
computer?

“So now | had a laptop, and what was | going to
do with it? Jason came through Boca Raton and
copied me a program from his computer, but it was a
statistical program, free from the Intemet. That's all he
had that he could give me without breaking the copy-
right law, a statistical program from the Intemet. And
me the guy who had to take statistics three times at
Brooklyn College in 1948, to get a lousy C+, )

“Something developed pretty soon. We had a
dity guy. Sandy Plover, who had come down from
Leing a big electrical contractor in Jersey and got
himself into condo politics. Sandy had not become
successiul up North without developing a sense of
who holds power, what their weaknesses are. and
how the politicians agitate the electorate. Being a
natural-bom troublemaker, he waited for his chance
to agitate. Well, the shenff had launched a statistics-
reporting program, and the statistical results had
started to come in. Now, it happens there is a creek
that divides our condominium into two halves of
roughly equal population, Oceanside and Gladeside,
the former being slightly tonier. And it further happens
that the incidence of amests resulting from police
calis to Oceanside, where he lives, is higher than in
Gladeside."

Uncle Jack wrote the following:

H:: Gladeside residents get special treatment
when it comes to soiving crimes and thus live in
a safer environment due to their higher incomes
and greater political power.

Hy: Gladeside and Oceanside receive the same
attention from the police.
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In Gladesids:
Police calls without arrest 46
Police calls resulting in arrests 4 50
In Cceanside:

Police calls without amest 40
Police calls resulting in arests 10 50

“I doubt that Sandy would have paid attention,
except that in both sides of the condo association
the total number of police calis happened to be 50,
which made it easy for him to see that in Oceanside
the rate of amests was twice that in Gladeside.”

“Actually,” said Myra, “I'm surprised there would
be any police calls in such a tony condo community.”

“We are old,” said Uncle Jack, “but not dead.

‘n any case, Sandy's finely honed political
instincts told him he was going to go nowhere by try-
ing to tum the condo against the sheriff. it would be
mich, much better, he saw, to try and tum voters of
Oceanside against those in Cladeside. And so he
decided to complain about the disparate impact of
arrests, though being seif-educated, he had never
heard that expression, 'disparate.’ All he knew is that
here was an opporttinity to make trouble and thereby
make a name, because in Oceanside were mostly
folks moved down from Brookiyn, and in Gladeside
folks from the Bronx, and there was an undercurrent,
if you know what | mean.”

“But the ethics . . ."

“. .. meant nothing to Sandy. He told me, ‘i think
I am gonna kick some butt and make a name for
myself down here.’

‘Right away, you can see his strategy. Sandy
thought he would make more mileage by whipping our
side of the asscciaion against the other. This had
sometning to do with his wanting to run in a junsdiction
where elections were not done at large but on a single-
district basis, and something to do with his rabble-
rousing instincts, which had always been impeccable.”

PART IV Analysis and Presentation of Data

Jason interrupted with a minilecture ontthe poli-
tics of statistics. “The trouble with the pofice calls as
an issue ig that sheriffs’ offices nowadays are well
staffed with statistically educated analysts who know
very well how 1o rebut oddbali claims.”

“Personally, | miss the old days, when if you
worked for the cops, you busted bad guys' heads
and never mind statistics. But | understand nowa-
days you don't mess with crime statistics without one
of the pencil-heads rebutting you. So-1 punched the
numbers into this MindWriter here to double-check
the stats. | did the obvious first, just what | supposed
a police analyst would have done. | ran a cross-
tabulation and a chi-square test of the hypothesis
that the arrests in Oceanside were disproportionate
to those in Gladeside.”

‘But,” said Myra, “you only have to look at the
numbers to see they are.”

“Yes, but what you have there is the 'eyeball’ fal-
lacy, as my dear oid professor called it aimost 50
years ago. As | explained to Sandy, 100 police
encounters resulting in a few amests is nothing, nada,
not a large enough sample to trust a quick peek and
a leap to a conclusion. You run it through the com-
puter, and, sure enough, although the ratios seem to
be out of whack, they are not statistically significant.
You cannot support disparate impact. No way.”

Jason said, "Granting that 10 arrests per 50 is
bigger than 4 per 50, Uncle Jack saw that a statisti-
cian would say that it is not significantly bigger,
would say that it is not disproportionate enough to
convince a screntist that the police were acting dif-
ferently in the two sides of town. A statistician would
say, wait and see, let the story unfold, coilect a big-
ger sampie.”

“How did Sandy accept your explanation, Jack?”

‘Like the mad dog he was. To quote my favorite
poet, There are chords in the hearts of the most
reckless which cannot be touched without emotion. "

“Ermerson?” asked Myra.
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“Poe,” said Uncle Jack. "Underrated as a poet,
overrated as a mystery writer. Well, as for Sandy. he
was ready to shoot the messenger, very much both
ered, at first, that | would not support his political
strategy, and he grumbled that i did not understand
such things, that you had to do bad to do good,
which | am not sure | agree with, and that | was
maybe too much overeducated to ever understand
the need just to get on with investigating issues. Me,
overeducated, an English major!,

“But | was not interested in right and wrong, |
said, and he could be pretty sure the sheriff would
come roaring back with a statistical analysis to throw
cold waler over Sandy.”

“Dia you bring him around?”

"“That jerk, come around? Never. He ran to the
papers, they splashed his numbers all over the third
page of the locai section on Monday, and Tuesday
the sherff came back with his experts and made
Sandy look like a fool . . . except that it was & slow
news day on Tuesday and the paper gave the story
plenty of ink, on page one, it you can believe it. So
Sandy was washed up, and | am now the resident
genius. What | do is look at the opponents’ poling
results and deny their validity for the newspapers and

Introduction

TV If the opposing party is ahead by a few poll
points, | scoff at the thirness of the margin. If their
tead is wide, | belittie the size of the sample and int-
mate that any statistician would see through them.”

Jason provided the scholarly footnote. “Uncle
Jack is colorful, amusing, and good-natured N
debunking his opponents’ polls, and the newspaper
writers, who understand less statistics than anyone,
have never challenged him to substantiate his claims.
What he leamed from me is that statistics is s¢ com-
plicated, and scares so many pecpie, that you can
clam or deny anything. And he is usually right to
debunk the polls, since for a preelection political poll
10 be taken serously there has to be a large enough
sample to produce significant results. And there has
to be a big enough spread between winners and
losers to protect against a last-minute shift in voter
sentiment. In the small, clossly contested voting
precincts of condominium politics, hardly any poll
can meet two such stringent criteria.”

“Right, Jason. | sit in the clubhouse and people
come over and want to know what | think about the
Middle East, campalgn reform, everything. When you
have a computer, to paraphrase Tewya, 'they think
you really know."

You might want to review
our discussion of
relational hypotheses in
Chapter 2.

In the previous chapter, we emphasized testing hypotheses of difference. However,
management questions in business frequently revolve around the study of relationships
between two or more variables. Then, a relational hypothesis is necessary. In the
research question “Are U.S. kitchen appliances perceived by American consumers to be
of better quality than foreign kitchen appliances?” the nature of the relationship

between the two variables (“country of origin” and “‘perceived quality”) is not specified.
The implication, nonetheless, is that one variable is responsible for the other. A correct
relational hypothesis for this question would state that the variables occur to"géther’in
some specified manner without implying that one causes the other.

Varioys objectives are served with correlation- analysis. The strength, direction,
shape, and other features of the relationship may be discovered. Or tactical and strategic
questions may be answered by predicting the values of ‘one variable from those of
another. Let’s look at some typical management questions:
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* In the mail-order business, excessive catalog costs quickly squeeze margins. Many
mailings fail to reach receptive or active buyers, What is the relationship between
various categories of mailings that delete inactive customers and the improvement
in profit margins?

* Medium-sized companies often have difficulty attracting the cream of the MBA
crop, and when they are successful, they have trouble retaining them. What is the
relationship between the ranking of candidates based on executive interviews and
the ranking obtained from testing and assessment?

Retained cash flow, undistributed profits plus depreciation, is a criti¢al source of
funding for equipment investment. During a period of decline, capital spending
suffers. What is the relationship between retained cash flow and equipment invest-
ment over the last year? Between cash flow and dividend growth?

* Aggressive U.S. high-tech companies have invested heavily in the European chip
market, and their sales have grown 20 percent over the three largest European
firms. Can we predict next year’s sales based on present investment?

All these questions may be evaluated by means of measures of association: And all call
for different techniques based on ibe level at which the variables were measured or the
intent of the question. The first three use nominal, ordinal, and interval data, respec-
tively. The last one is answered through simple bivariate regression.

With correlation, one calculates an index to measure the nature of the relationship
between variables. With regression, an equation is developed to predict the values of a
dependent variable. Both are affected by the assumptions of measurement level and the
distributions that underlie the data.

Exhibit 181 lists some common measures and their uses. The chapter follows the
progression of the exhibit, first covering bivariate linear correlation, then simple regres-
sion, and concluding with nonparametric measures of association. Exploration of data
through visual inspection and diagnostic evaluation of assumptions continues to be
emphasized.

Bivariate Correlation Analysis

Pearson’s
Product Moment
Coefficient r

Bivariate correlation analysis differs from nonparametric measures of association and
regression analysis in two important ways. First, parametric correlation requires two
continuous variables measured on an interval or ratio scale. Second, the coefficient does
not distinguish between independent and dependent variables. It treats the variables
symmetrically since the coefficient r,, has the same interpretation as P

A4

The Pearson (product moment) correlation coefficient varies over a range of +1
through 0 to ~1. The designation r symbolizes the coefficient’s estimate of linear asso-
ciation based on sampling data. The coefficient p represents the population correlation.

Correlation coefficients reveal the magnitude and direction of relationships. The
magnitude is the degree to which variables move in unison or opposition. The size of a
correlation of +.40 is the same as one of —40. The sign says nothing about size. The
degree of comrelation is modest. The coefficient’s sign signifies the direction of the rela-
tionship. Direction tells us whether large values on one variable are associated with
large values on the other (and small values with small values). When the values corre-
spond in this way, the two variables have a positive relationship: As one increases, the
other also increases. Family income, for example, is positively related to household
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EXHIBIT 18-1 Commonly Used Measures of Association

F\fleasurement

Coefficient

Comments and Uses

i

Pearson (product moment)

: correlation coefficient
; Correlation ratio (eta)

*._Biserial

Partial correlation

Multiple correlation

Bivariaic linear regression

For tontinuous linearly related variables.

For nonlinear data or relating a main effectto a
continuous dependent variable. . H
One continuous and one dichotomous variable_
with an underlying normal distribution.
Three variables; relating two with the third’s
effect taken out.

Three variables: relating one variable with

two others. £

Predicting one variable from another’s scores.

Gamma
Kendall’s tau b
Kendall’s tau ¢
Somers’s d

Spearman’s rho

Based on concordant-discordant pairs: (P — Q)
proportional reduction in error (PRE) interpretation.

P — ( based; adjustment for tied ranks.
P — Q based; adjustment for table dimensions.

P —  based; asymmetrical extension of gamma.

Product moment correlation for ranked data.

Phi
Cramer’s V CS based; adjustment when one table
dimension > 2.
Contingency coefficient C CS based; flexible data and distribution assumptions.
Lambda PRE-based interpretation.
Goodman & Kruskal’s tau PRE-based with table marginals emphasis.

Uncertainty coefficient

Kappa

Chi-square (CS) based for 2 x 2 tables.

Useful for multidimensional tables.

Agreement measure.

Scatterplots
for Exploring
Relationships

O S P W e

food expenditures. As income increases, food expenditures increase. Other variables

are inversely related. Large values on the first variable are associated with small values
on the second (and vice versa). The prices of products and services are inversely related
to their scarcity. In general, as products decrease in available quantity, their prices rise.
The absence of a relationship is expressed by a coefficient of approximately zero.

Scatterplots are essential for understanding the relationships between variables. They
provide a means for visual inspection of data that a list of values for two variables can-
not. Both the direction and the shape of a relationship are conveyed in a plot. With a lit-
tle practice, the magnitude of the relationship can be seen.
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EXHIBIT 18-2 - Scatterplots of Correlations between Two Variables

L

FAKI IV Analysis and Fresentation of Lata

~-100: = ;
Perfect negative
relationship

= (R 0 +50
: No relationship

relationship

Exhibit 18-2 contains a series of scatterplots that depict some relationships across
the range r.~Fhe three plots on the left side of the figure have their points.sloping from
the upper left to the lower right of each x—y plot.! They represent different magnitudes
of negative relationships. On the right side of the figure, three plots have opposite pat-
terns and show positive relationships.

When stronger relationships are apparent (for example, the +.90 correlations), the
points cluster close to an imaginary straight line passing through the data. The weaker rela-
tionships (+.40) depict a more diffuse data cloud with points spread farther from the line.

The shape of linear relationships is characterized by a straight line, whereas non-
linear relationships have curvilinear, parabolic, and compound curves representing their
shapes. Pearson's r measures relationships in variables that are linearly related. It can-
not distinguish linear from nonlinear data. Summary statistics alone do not reveal the
appropriateness of the data for the model, as the following example illystrates.

One author constructed four small dara sets possessing identical summary statistics
but displaying strikingly different patterns.” Exhibit 18-3 contains these data and
Exhibit 18— plots thern. In Plot 1 of the figure, the variables are positively related.



EXHIBIT 18-3 Four Data Sets with the Same Summary Statistics

I 10 8.04 10 9.14 10 7.46 8 6.58
2 8 6.95 8 g14 00y 677 8 5.76

3 13 758 13 8.74 13 12.74 8 7.71
4 iF e g 9 8.77 9 7.11 8 8.84
5 1 833 s s 781 8 8.47
6 14 996 PR 7 14 8.84 8 7.04
7 g rn 6 613 6 i 8 5.25
8 4 426 4.7 5107 £ &9 19 12.50
9 12 10.84 THE LTOR saon BT 8 5.56
10 7 482 7 Fo6 G4 o 791
11 5 5.68 5 . 474 5 L ATR aR e R
Pearson’sr | - 81642 81624 < 81629 . 81652

0 66654 66624 s 66632 . 66671
Adjusted 2. 62949 e T TR 62925 . 62967

Standard error - 1.23660 : 123721 - 123631 : 1.23570

EXHIBIT 184 Different Scatterplots for the Same Summary Statistics

Plot 1 ' A e Y

573
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The Assumptions
ofr

Computation
and Testing of r

i

PART IV Analysis and Presentation of Data

’
b

Their points follow a superimposed straight line through the data. This example is well
suited to correlation analysis. In Plot 2, the data are curvilinear in relation to the line, and
r is an inappropriate measure of their relationship. Plot 3 shows the presence of an influ-
ential point that changed a coefficient that would have otherwise been a perfect +1.0. The
last plot displays constant values of x (similar to what you might find in an animal or
quality-control experiment). One leverage point establishes the fitted line for these data.

We will return to these concepts and the process of drawing the line when we dis-
cuss regression. For now, comparing Plots 2 through 4 with Plot 1 suggests the impor-
tance of visually inspecting correlation data for underlying patterns. Careful analysts
make scatterplots an integral part of the inspection and exploration of their data.
Although small samples may be plotted by hand, statistical software packages save time
and offer a variety of plotting procedures. ,

Like other parametric techniques, correlation analysis makes certain assumptions
about the data. Many of these assumptions are necessary to test hypotheses about the
coefficient.

The first requirement for r is linearity. All of the examples in Exhibit 18-2 with the
exception of r = 0 illustrate a relationship between variables that can be described by a
straight line passing through the data cloud. When r = 0, no pattern is evident that could
be described with a single line. Parenthetically, it is also possible to find coefficients of
0 where the variables are highly related but in a nonlinear form. As we have seen, plots
make such findings evident.

The second assumption for correlation is a bivariate normal distribution—that
is, the data are from a random sample of a population where the two variables are nor-
mally distributed in a joint manner.

Often these assumptions or the required measurement level cannot be met. Then
the analyst should select a nonlinear or nonparametric measure of association, many of
which are described later in this chapter.

The formula for calculating Pearson’s 7 is 3

o HX=X)Y-7) )
. - =1l
where -
N=The nuhher of pairs of cases.
Sy 8, = The standard deviations for X and Y.
Alternatively,
Ve @

since

—_— o
Sy = ,’!‘—\:52— S, = '[E:ﬁ
R B VY] VN N

If the numerator of equation (2) is divided by N, we have the covariance, the amount of
deviation that the X and Y distributions have in common. With a positive covariance, the
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EXHIBIT 18-5 Computation of Pearson’s Product Moment Correlation

Deviations from Means

Net Cash
Profits Flow
¥ smi)  (Smil)
Corporation X \4
1 826 ° L1265  -9384  -178.64 16763.58 £805.95 31912.25
2 89.0 1912  -87.44  -113.94 996291 764575 12982.32
3 1760 . 2670 044 = -38.14 1678 0.19 1454.66
4 823 1371 -9414 -168.04 15819.29 .8862.34 28237.44
55 4135 8068  237.06 = 50166 118923.52 56197.44 251602.56
6 18.1 352 15834 -269.94 74230~ 2507156 72867.60
sy 3373 055 16086 12036 | 1936111 2587594 14486.53
8 145.8 1800  -3064 7486 -29371 938.81 5604.02
9 Ve o 13266 . 384 2136 8200 14.75. 456.25
10 2412 3555 7076 5036 3563.47 5006.98 2536.13
X=17644 Y=30514 Tay =224771.23
5,=21659 5,=12400 L B8 =1384197)

Ty =422139.76

variables move in unison; with a negative one, they move in opposition. When the
covariance is 0, there is no relationship. The denominator for equation (2) represents the
maximum potential variation that the two distributions share. Thus, correlation may be
thought of as a ratio.

Exhibit 18-5 contains a random subsample of 10 firms of the Forbes 500 sample.
The variables chosen to illustrate the computation of r are cash flow and net profits.
Beneath each variable is its mean and standard deviation. In columns 4 and 5 we obtain
the deviations of the X and ¥ values from their means, and in column 6 we find the prod-
uct. Columns 7 and 8 are the squared deviation scores.

Substituting into the formula, we get

- 224777.23 -39
"7 \/138419.71 * V422139.76

298

In this subsample, net profits and cash flow are positively related and have a very high
coefficient. As net profits increase, cash flow increases; the opposite is also true. Lin-
earity of the variables may be examined with a scatterplot such as the one shown in
Exhibit 18-6. The data points fall along a straight line.

Common Variance as an Explanation The amount of common variance in X
(net profits) and Y (cash flow) may be summarized by 7, the coefficient of determina-
tion. As Exhibit 18—7 shows, the overlap between the two variables is the proportion of
their common or shared variance.
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EXHIBIT 18-6 Ph%i:bf Forbes 500 Net Profits with Cash Flow

it

. Cash flow:

200 + ™

100 -
3] | | ) I e

0 100 200 300 © 400 500
: Net profits - : :

EXHIBIT 18-7 Diagram of Common Variance

The area of overlap represents the percentage of the total relationship accounted for by
one variable or the other. So 86 percent of the variance in X is explained by Y, and vice versa.

Testing the Significance of r Is the coefficient representing the relationship
between net profits and cash flow real, or does it occur by chance? This question tries to
discover whether our r is a chance deviation from a population p of zero. In other situa-
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tions. the researcher may wish to know if significant differences exist between (wo or
more rs. In cither case. s significance should be checked before r is used in other cal-
culations or comparisons. For this test, we must have independent random samples
from a bivariate normal distribution. Then the Z or r-test may be used for the null
hypothesis, p = 0.

The formula for small samples is

S
- j1-F
¥ pllp
where
r=.93
n=10

Substituting into the equation, we calculate 1:

t= _E:Qﬁ(}; =7.03
i T e .86
v 8
With n - 2 degrees of freedom, the statistical program calculates the value of ¢ (7.03) at
a probability less than .005 for the one-tailed alternative, H,: p > 0. We reject the
hypothesis that there is no linear relationship between net profits and cash flow in the
population. The above statistic is appropriate when the null hypothesis states a correla-
tion of 0. It should be used only for a one-tailed test.” However, it is often difficult to
know in advance whether the variables are positively or negatively related, particularly
when a computer removes our contact with the raw data. Software programs produce
two-tailed tests for this eventuality. The observed significance level for a one-tailed test
is half of the printed two-tailed version in most programs.

Correlation Matrix A correlation matrix is 2 table used to display coefficients for more than two variables.
Exhibit 18-8 shows the intercorrelations among six variables for the full Forbes 500
data set.*

EXHIBIT 18-8 Correlation Matrix for Forbes 500 Sample

Assets Cash Flow Number Employed Market Value Net Profits Sales

($ mil.) (S mil.) (thousands) ($ mil.) {$ mil.) (S mil.)
Assets 10000 : s
Cash flow 3426 : : 1.0000 .
‘Employed - 3898 8161 e mooo : :
Maketvalue 3642 9353 e e T e
Napolts - 20 e e il T oewon s 10000

e L A ey ST T T el o T e S e 7261 1.0000

“e

Notes: All coefficients are statistically significant, p < .0

- - 1NN
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Interpretation
of Correlations

You mighi want to review
. the nature of causation
in Chapter 6.

" ellipse. Th

PART IV Analysis and Presentation of Data

It is conventional for a symmetrical matrix to report findings in the triangle below
the diagonal. The diagonal contains coefficients of 1.00 that signify the relationship of
each variable with itself. Journal articles and management reports often show matrices
with coefficients at different probability levels. A symbol beside the coefficient keys the
description of differences to a legend. The practice of reporting tests of the null hypoth-
esis, r = 0, was followed in Exhibit 18-8.

Correlation matrices have utility beyond bivariate correlation studies. Interdepen-
dence among variables is a common characteristic of most multivariate techniques.
Matrices form the basis for computation and understanding of the nature of relation-
ships in multiple regression, discriminant analysis, factor analysis, and many others.
Such applications call for variations on the standard matrix. Pcoled within-groups
covariance matrices average the separate covariances for several groups and array the
results as coefficients. Total or overall correlation matrices treat coefficients as if they
came from a single sample.

A correlation coefficient of any magnitude or sign. whatever its statistical significance,
does not imply causation. Increased net profits may cause an increase in market value,
or improved satisfaction may cause improved performance in certain situations, but
correlation provides no evidence of cause and effect. Several alternate explanations
may be provided for correlation results:

¢ X causes Y.

* Ycauses X,

* Xand Y are activated by one or more other variables.
¢ Xand ¥ influence each other reciprocally.

Ex post facto studies seldom possess sufficiently powerful designs to demonstrate
which of these conditions could be true. By controiling variables under an experimental
design, we may obtain more rigorous evidence of causality.

Take care to avoid so-called artifact correlations, where distinct groups combine
to give the impression of one. The upper panel of Exhibit 18-9 shows data from two
business sectors. If all the data points for the X and ¥ variables are aggregated and a cor-
relation is computed for a single group, a positive correlation results. Separate calcula-
tions for each sector (note that points for Sector A form a circle, as do points for Sector
B) reveal no relationship between the X and ¥ variables. A second example shown in the
lower panel contains a plot of data on assets and sales. We have enclosed and high-
lighted t ta for the financial sector. This is shown as a narrow band enclosed by an
€ compaies score high on assets and Tow insales—all are banks. When the

data fofﬁanf% removed and treated separately, the correlation is nearly perfect (.99).
“When banks are returned to the sample and the correlation is recalculated, the averall

relationship drops to the mid-.80s. In short, data hidden or nested within an aggregated
set may present a radically different picture. '

Another issue affecting interpretation of coefficients concerns practical signifi-
cance. Even when a coefficient is statistically significant, it must be practically mean-
ingful. In many relationships, other factors combine to make the coefficient’s meaning
misleading. For example, in nature we expect rainfall and the height of reservoirs to be
positively correlated. But in states where water management and flood control mecha-
nisms are complex, an apparently simple relationship may not hold. Techniques like
partial and multiple correlation or multiple regression are helpful in sorting out con-
founding effects.



CHAPTER 18 Measures of Association 579

EXHIBIT 18-9 Artifact Correlations

3

Sector A =
Sector B ©

With large samples, even exceedingly low coefficients can be statistically signifi-
cant. This “significance” only reflects the likelihood of a linear relationship in the pop-
ulation. Should magnitudes less than .30 be reported when they are significant? It all
depends. We might consider the correlations between variables such as cash flow, sales,
market value, or net profits to be interesting revelations of a particular phenomenon
whether they were high, moderate, or low. The nature of the study, the characteristics of
the sample, or other reasons will be determining factors. Buta coefficient is not remark-
able simply because it is statistically significant.

By probing the evidence of direction, magnitude, statistical significance, and com-
mon variance together with the study’s objectives and limitations, we reduce the
chances of reporting trivial findings. Simultaneously, the communication of practical
implications to the reader will be improved.
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Bivariate Linear Regression®

The Basic Model

In the previous section, we focused on relationships between variables. The product
moment correlation was found to represent an index of the magnitude of the relation-
ship, the sign governed the direction, and I explained the common variance. Relation-
ships also serve as a basis for estimation and prediction.

When we take the observed values of X to estimate or predict corresponding Y val-
ues, the process is called simple prediction.® When more than one X variable is used, the
outcome is a function of multiple predictors. Simple and multiple predictions are made
with a technique called regression analysis.

The similarities and differences of regression and correlation are summarized in
Exhibit 18-10. Their relatedness would suggest that beneath many correlation problems is
a regression analysis that could provide further insight about the relationship of ¥ with X.

A straight line is fundamentally the best way to mode] the relationship between wo
continuous variables. The bivariate linear regression may be expressed as

Y=o+ BiX;

EXHIBIT 18-10 Comparison of Bivariate Linear Correlation and Regression

: Correlation Regression
; S
;\g‘c,:;surcmcm 'Interv‘ érval or ratio scale “Interval or ratio scale
?;'.:ﬁ;f S Bod:.conhnnous. : Both continuous;
i - linearly related linearly related
X-v : Y is dependent, X is
selaren * X and ¥ are symmetric; independent; regression of X
P Ty =y ol Y differs from ¥ on X
i mmlaﬁokofx - Correlationof ¥ - X is
Cixrelation and y produces an the same as the correlation
estimate of linear ‘between the predicted values
association based on of Y'and observed values of ¥
- sampling data - 3
) ¢ : Proportion of variability of ¥
g;:ﬁg;‘e”; of Explains common explained by its least-squares
neuan variance of X and ¥ regression on X
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where the value of the dependent variable ¥ is a linear function of the corresponding
vajue of the independent variable X; in the ith observation. The slope, B;, and the Y
intercept, By, are known as regression coefficients! The slope, fi;. is the change in ¥ for
a one-unit change in X. It is sometimes called the “rise over run.” This is defined by the
tormula

' B = %XK
This j;siﬁg.gatin of change (A) in the rise of the line relative to the run or travel along the
X axis. Exhibit 18- 11 shows a few of the many possible slopes you may encounter.
The intercept, B, is the value for the linear function when it crosses the ¥ axis: it
is the estimate of ¥ when X = 0. A formula for the intercept based on the mean scores of
the X and Y variables 1s

Bo = ?‘51)_(

The price of investment-grade red wine 1s influenced in several ways, not the least of
which is tasting. Tasting from the barrel is a major determinant of market en primeur or
futures contracts, which represent about 60 percent of the harvest. After the wine resis
for 18 to 24 months in oak casks, further tasting occurs, and the remaining stock is
released.

Weather is widely regarded as responsible for pronouncements about wine quality.
A Princeton econcinist has elaborated on that notion. He suggested that just a few facts
about local weather conditions may be better predictors of vintage French red wines
than the most refined palates and noses.” The regression model developed predicts an
auction price index for about 80 wines from winter and harvest rainfall amounts and
average growing-season temperatures. Interestingly. the calculations suggested that the
1980 Bordeaux would be one of the best since 1893, The “guardians of tradition”
reacted hysterically to these methods yet agreed with the conclusion.

EXHIBIT 18-11  Examples of Different Slopes

a d
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Our first example will use one predictor with highly simplified data. Let X repre-
sent the average growing-season temperature in degrees Celsius and ¥ the price of a 12-
bottle case in French francs. The data appear below.

X & Y
Average Temperature Celsius Price per Case (FF)

The plotted data in Exhibit 18-12 show a linear relationship between the pairs of points
and a perfect positive correlation, ry, = 1.0. The slope of the line is calculated:
- Y -Y - 4000 - 3000 _ 1000
X=X 20-16 4

=250

where the XY, values are the data points (20, 4000) and X;Y; are points (16, 3000). The
intercept By, is —1000, the point at which X = 0 in this plot. This area is off the graph
and appears in an insert on the figure.

B = ¥ - B.X = 3500 - 250 (18) = -1000
Substituting into the formula, we have the simple regression equation
Y =-1000 + 250 X;

France's Bordeaux Business Schoal offers a master of business administration in the wine sector.
Surprised? Business schoois throughout Europe are increasingly tailoring therr programs with innovative
degrees that respond to the changing environment of business. In addition to wine, MBA specializations
focus on the music industry, koary brands, sports management agribusiness, e-business, consutting,
and public-sector speciaities.

www.iht.com
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EXHIBIT 18-12 Plot of Wine Price by Average Growing Temperature

We could now predict that a warm growing season with 25.5°C temperature would bring
a case price of 5375 French francs. f (called Y-hat) is the predicted value of Y.

V= —1000 + 250(25.5) = 5375

Unfortunately, one rarely comes across a data set composed of four paired values,
a perfect correlation, and an easily drawn line. A model based on such data is deter-
ministic in that for any value of X, there is only one possible corresponding value of ¥.
It is more likely that we will collect data where the values of Y vary for each X value.
" Considering Exhibit 18-13, we should expect a distribution of price values for the
temperature X = 16, another for X = 20, and another for each value of X. The means of
these Y distributions will also vary in some systematic way with X. These variabilities
lead us to construct a probabilistic model that also uses a linear function.® This func-
tion is waritten
Y, =Bo+ BiXi + &

where € symbolizes the deviation of the ith observation from the mean, B, + B, X;.

As shown in Exhibit 18—13, the actual values of ¥ may be found above or below
the regression line represented by the mean value of ¥ (B, + B,X)) for a particular value
of X. These deviations are the error in fitting the line and are often called the error
term.
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EXHIBIT 18~13 Distribution of ¥ for Observations of X

%4 2%
F=Po+BX;+e - “Probability distribution Y=Py+BXi+e -
\ 3
Y / NG
» . . >~ =
Regression line B + B X;

Exhibit 18—14 contains a new data set for the wine price example. Our prediction of ¥
from X must now account for the fact that the X and Y pairs do not fall neatly along the
line. Actually, the relationship could be summarized by several lines. Exhibit 18-15
suggests a few alternative§ based on visual inspection—all of which produce errors, or
vertical distances from the observed values to the line. The method of least squares
allows us to find a regression line, or line of best fit, which will keep these errors to a
minimum. It uses the criterion of minimizing the total squared errors of estimate. When
we predict values of ¥ for each X;, the difference between the actual Y; and the predicted
¥ is the error. This error is squared and then summed. The line of best fit is the one that
minimizes the total squared errors of prediction.”

n
S e? minimized
=1

Regression coefficients Py and B, are used 1o find the least-squares solution. They
are computed as follows:

xy - ()
M e B
n

o= P-BiR
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Substituting data from Exhibit 18-14 into both formulas, we get

7486335 - (196.1)(35988)

10
By = = 216.439

Bo = 3598.8 - (216.439)(1 9,61) = —645.569
The predictive equation is now ¥ = —645.57 + 216.44 X..

Drawing the Regression Line Before drawing the regression line, we select two
values of X to compute. Using values 13 and 24 for X;, the points are

¥=-64557 + 216.44(13) = 2168.15
V= 645.57 + 216.44(24) = 4548.99

Comparing the line drawn in Exhibit 18-16 to the trial lines in Exhibit 18-i5, one can
readily see the success of the least-squares method in minimizing the error of prediction.

Residuals We now turn our attention to the plot of standardized residuals in Exhibit
18-17. A residual is what remains after the line is fit or (Y, - 7). When standardized,
tesiduals are comparable to Z scores with a mean of 0 and a standard deviation of 1. In
this plot, the standardized residuals should fall between 2 and -2, be randomly distrib-
uted about zero, and show no discernible pattern. All these conditions say the model 1s
applied correctly. ' )

EXHIBIT 18-14 Data for Wine Price Stody

Y Price X Temperature
(FF) (€

a 1813.00 11.80 2139340 3286569.00 139.24
g 2558.00 1570 4016060 654336400 24649
3 2628.00 14.00 36792.00 6906384.00 196,00
4 3217.00 22.90 7366930 10349089.00  524.41
" iEhs 3228.00 20.00 64560.00 1041998400 400.00
s 3629.00 20.10 72904290 © 1316964100  404.01
Y 3886.00 17.90 695359.40 15100996.00 32041
8 4897.00 2340 114589.80 23980609.00 547.56
9 4933.00 24.60 121351.80 24334489.00 605.16
A0 5199.00 25.70 133614.30 27029601.00 660.49
 ; 35088.00 196.10 74863350 14112112600 404377
Méan 3508.80- 19.61
3 e 1135.66 469 :

Sum of squares (85) 11607511.59 198.25 42908.82
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EXHIBIT 18-15 Scatterplot and Possible Regression Lines Based on Visual

Possible
line |

Possible
line 2




V\hatdoHa've:d Yaie UCLA, Cob.nbia mKeﬂogngnd
of Management at Northwestern, - Pernsyvania's Wharton -
Business Schodl, ardBefkeley’si-QassSdndofB‘m“_\
have in common? They are among a growing number of B-
schools where wine clubs have flourished. Some have even
added wine education o the business curicuum. -~ 30s.
While medical research has shown moderate drinking  wine
to reduce the risk of heart disease, that's not the appeal for -
students who believe that It can be an effective tool for - Mogr’dgeismastcmmbamat s
shaping positive business relationships. Brian Scanlon of :tmgsﬂ\eduersonamderangecfkﬁ@% [
Harvard's Wine & Cuisine Society summed it up this way:  shipping, legal issues, branding, and strategy. In an nter- -
“Wine knowledge is an indispensable skill in today's busi-  view with Eric Zelko of Wine Spectatdr; Mogridge said piay- -
ness environment. if you're at a crucial business dinnerand fully, "When | think about it, ezeryhm!bemednbushesa
you want to pick the perfect wine to create the right atmos- '__-sdm,dmﬁdmw-:ne class.” ‘
phere, you need to know the vintages, the regions and the S
best winemakers.” ' www.winespectator.com

EXHIBIT 18-17 Plot of Standardized Residuals: Wine Price Study

et i OMER e e R
L 00 30 pice Procs . Residual

Case SLoe

1 . 1813 19084112 - R95.4112
2 *. 2558 - 27525234 ~1945234
3 . 2628 2384577 - 2434229

4 * 4 3217 43108844 ;4 0938844 -
5 . A 36832112 -dss2ul2
6 . 3629 37048551 - ~758551
7 <3886 32086893 - 6573107
8 . 2897 44191039 4778961
9 :s r 4933 4,678_8307 ; 2541693
10 - 5199 49169137 2820863
AdChe bl

=305y PR 30

In our example, we have one residual at -2.2, a random distribution about zero, and
few indications of a sequential pattern. It is important to apply other diagnostics to ver-
ify that the regression assumptions are met. Various software programs provide plots
and other checks of normality, linearity, equality of variance, and independence of

)
error."

Predictions If we wanted to predict the price of a case of investment-grade red wine for a growing
season that averages 21°C, our prediction would be

Y= -645.57 + 216.44(21) = 3899.67



Testing the
Goodness of Fit
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This is a point prediction of ¥ and should be corrected %r greater precision. As with .
other confidence estimates, we establish the degree of confidence desired and substitute
into the formula

B b e 1, x-X?
Y:tu,g‘/1+10+ S5,

where

to/2 = The two-tailed critical value for ¢ at the desired level (95 percent in this
example). \

s = The standard error of estimate (also the square root of the mean square error
from the analysis of variance of the regression model) (see Exhibit 18-20).

85, = The sum of squares for X (Exhibit 18--14).

2
3899.67 + (2.306)(538.559) / 1 gL 0 (211; ;ig‘

3899.67 + 1308.29

We are 95 percent confident of our prediction that a case of investment-quality French
red wine grown in a particular year at 21°C average temperatures will be initiatly priced
at 3899.67 + 1308.29, or from approximately 2591 to 5208 FF. The comparatively large
band width results from the amount of error in the model (reflected by ). some pecu-
liarities in the ¥ values, and the use of a single predictor.

It is more likely that we would want to predict the average price of «// cases grown
at 21°C. This prediction would use the same basic formula omitting the first digit (the 1)
under the radical. A narrower confidence band is the result since the average of all ¥ val-
ues is being predicted from a given X. In our example, the confidence interval for 95
percent is 3899.67 + 411.42, or from 3488 to 4311 FE.

The predictor we selected, 21°C, was close to the mean of X (19.61). Because the
prediction and confidence bands are shaped like a bow tie, predictors farther from the
mean have larger band widths. For example, X values of 15, 20, and 25 produce confi-
dence bands of 565, +397, and +617, respectively. This is illustrated in Exhibit 18-18.
The farther one’s selected predictor is from X, the wider is the prediction interval.

- With the regression line plotted and a few illustrative predictions, we should now gather

some evidence of goodness of fit—how well the model fits the data. The most impor-
tant test in bivariate linear regression is whether the slope, B, is equal to zero.'' We
have already observed a slope of zero in Exhibit 1811, line b. Zero slopes result from
various conditions:

* Yis completely unrelated to X, and no systematic pattern is evident.
* There are constant values of Y for every value of X.

* The data are related but represented by a nonlinear function.

The t-Test To test whether B, = 0, we use a two-tailed test (since the actual relation:
ship is positive, negative, or zero). The test follows the 1 distribution for n — 2 degrees
of freedom.
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EXHIBIT 18-18 Prediction and Confidence Bands Based on Proximity to X

Y

Y =Bo+BiX;

Confidence band

Prediction band

where
b, was previously defined as the slope By
s(b,) is the standard error of B,."°

We reject the null, B, = 0, because the calculated 1 is greater than any ¢ value for 8
degrees of freedom and & = .01

The F Test Computer printouts generally contain an anaiysis of variance (ANOVA)
table with an F test of the regression model. In bivariate regression, / and F* tests pro-
duce the same results since 1* is equal to £ In multiple regression, the F test has an
overall role for the model, and each of the independent variables is evaluated with a
separate t-test. From the last chapter, recall that ANOVA partitions variance into com-
ponent parts. For regression, it comprises explained deviations, ¥ ¥, and unexplained
deviations. ¥ - . Together they constitute the total deviation, Y - ¥. This is shown
graphically in Exhibit 18-19. These sources of deviation are squared for all observa-
tions and summed across the data peints.

In Exhibit 18-20. we develop this concept sequentially concluding with the F test
of the regression model for the wine data. Based on the results presented in that table.
we find statistical evidence of a linear relationship between variables. The aliernative
hypothesis, 2 #0. is accepted with F = 32.02. d.f.. (1.8). p < .003. The null hypothesis
for the F test had the same effect as B, = 0 since we could select either test.

Coefficient of Determination In predicting the values of ¥ without any knowl-
edge of X, our best estimate would be Y, its mean. Each predicted valuc that does not
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EXHIBIT 18-19 Components of Variation

¥

);=Bo+ﬁ:’(:

. (XJ»T Y_,-) Data point

(X I;j) Regression
prediction

£X;, f) Means of
i X

and Y
distributions ; '
" I Unexplained variation
- Explained variation
B Total variation

fall on ¥ contributes to an error of estimate, (¥ — ¥). The total squared error for several
predictions would be £(¥, - ¥)”. By introducing known values of X into a regression
equation, we attempt to reduce this error even further. Naturally, this is an improvement
over using ¥, and the resuit is (¥ — ¥). The total improvement based on several estimates
is 3(¥, - ¥)2. the amount of variation explained by the relationship between X and ¥ in
the regression. Based on the formula, the coefficient of determination is the ratio of the
line of best fit’s error over that incurred by using ¥. One purpose of testing, then, is to
discover whether the regression equation is a more effective predictive device than the
mean of the dependent variable.

As in correlation, the coefficient of determination is symbolized by 7°."* It has sev-
eral purposes. As an index of fit, it is interpreted as the total proportion of variance in ¥
explained by X. As a measure of linear relationship, it teils us how well the regression
line fits the data, It is also an important indicator of the predictive accuracy of the equa-
tion. Typically, we would like to have an #* that explains 80 percent or more of the vari-
ation. Lower than that, predictive accuracy begins to fall off. The coefficient of
determination, 2, is calculated like this:

e

)”/__2
e s . 88,
(y_V)Z S_SB ssf

~_
[]

ol g o

For the wine price study, 7 was found by using the data from the bottom of Exhibit 18-20.

2. 232036849 _
11607511.60

Eighty percent of the variance in price may be explained by growing-season tempera-
tures. With actual data and multiple predictors, our results would improve.

.80
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EXHIBIT 18-20 Progressive Application of Partitioned Variance Concept

¥-9 ‘

Explained Variation
(the regression relationship
between X and Y)

Y-nm

Unexplained Variation
(cannot be explained by

= (6. R

Total Variation

the regression relationship)

n = -
I (F-n?
i=1
S8,
Sum of Squares Regression

i -~
_zl(yuni

SS¢
Sum of Squares Error

L(r-n?
=
S5
Sum of Squares Total

Source Degrees of Freedom
Regressicn 1
Error n-2
=] Total

Sum of Squares

AR

555

55,

Mean Square F Ratio
M= 5" iy
SS,
MS, = £ e
¢” n-2 MS,

Source Degrees of Freedom
Regression i
Residual (error) 8

Total

Sum of Squares
9,287,143.11
2.320368.49

11,607,511.60

Mean Square

9.287,143.11 32.02

290,046.06

Significance of F = .0005
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Nonparametric Measures of Association™

Measures for
Nominal Data

You may wish to review
our discussion of chi-
square in Chapter 17.

Nominal measures are used to assess the strength of relationships in cross-classification
tables. They are often used with chi-square or may be used separately. In this section,
we provide examples of three statistics based on chi-square and two that follow the pro-
portional reduction in error approach.

There is no fully satisfactory all-purpose measure for categorical data. Some are
adversely affected by table shape and number of cells; others are sensitive to sample
size or marginals. It is perturbing to find similar statistics reporting different coefficients
for the same data. This occurs because of a statistic’s particular sensitivity or the way it
was devised. '

Technically, we would like to find two characteristics with nominal measures:

» When there is no relationship at all, the coefficient should be 0.
« When there is a complete dependency, the coefficient should display unity or 1.

This does not always happen. In addition to the sensitivity probiem, analysts should be
alerted to the need for careful selection of tests.

Chi-Square-Based Measures Exhibit 18-21 reportsa2x2 variation of the Con-
tainers Inc. shipping study on smoking and job-related accidents introduced in Chapter
17. In this example, the observed significance level is less than the testing level (0 =

EXHIBIT 18-21 Chi-Square-Based Measures of Asseciation

On-the-Job Accident
Count Row
Yes No Total
Yes 2 | 10 31
Smoker .
No 13 22 35
Coluran
Total 34 32 66
Chi-Square Value daj Significance
Pearson 6.16257 1 01305
Community correction 499836 1 02537
Minimal expected frequency 15.030
Approximate
Statistic Value Significance
Phi .30557 .01305"
Cramer's V 30557 01305*
Contingency coefficient C 129223 01305*
*Pearson chi-square probability.
e e e
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.05), and the null hypothesis is rejected. A correction to chi-square is provided. We now
turn to measures of association to detect the strength of the relationship. Notice that the
exhibit also provides an approximate significance of the coefficient based on the chi-
square distribution. This is a test of the nuil hypothesis that no relationship exists
between the variables of accidents and smoking.

The first chi-square-based measure is applied to smoking and on-the-job acci-
dents. It is called phi (¢). Phi ranges from 0 to +1.0 and attempts to correct ¥’ propor-
tionately to N. Phi is best employed with 2 x 2 tables like this one since its coefficient
can exceed +1.0 when applied to larger tables. Phi is calculated:

vV N 66

Phi’s coefficient shows a moderate relationship between smoking and job-related acci-
dents. There is no suggestion in this interpretation that one variable causes the other, nor
is there an indication of the direction of the relationship.

Cramer’s V is a modification of phi for larger tables and has a range up to 1.0 for
tables of any shape. It is calculated like this:

/ 6.616257 = 3056
\/ Nk-1) Y 66(1)

where
k = the lesser number of rows or columns.

In Exhibit 18-21, the coefficient is the same as phi.

The contingency coefficient C is reported last. It is not comparable to other mea-
sures and has a different upper limit for various table sizes. The upper limits are deter-
mined as
/f’;‘:_l
vV kK
where

k = the number of columns.

For a 2 X 2 table, the upper limit is .71; for a 3 x 3, .82; and for a 4 x 4, .87. Although
__this statistic operates well with tables having the same number of rows as columns. its
upper-limit restriction is not consistent with a criterion of good association measure-
ment. C is calculated as

| 2

C= |_X& = /6616257 + 66 = .2922
VX +N Y 661625

The chief advantage of C is its ability to accommodate data in almost every form:
skewed or normal. discrete or continuous, and nominal or erdinal.

Proportional Reduction in Error  Proportional reduction in error (PRE) statis-
tics are the second type used with contingency tables. Lambda and tau are the examples
discussed here. The coefficient lambda (1) is based on how well the frequencies of one
nominal variable offer predictive evidence about the frequencies of another. Lambda is
asymmetrical—allowing calculation for the direction of prediction—and symmetrical,
predicting row and column variables equally.
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EXHIBIT 18-22 Proportional Reduction in Error Measures

What is your opinion about capping executives’ salaries?

Count Favor Do not Row
Row Pet. Favor Total
Managerial 90 20 110
82.0 18.0
Occupational ~ White collar 60 80 140
Class 43.0 57.0
Blue collar 30 120 150
20.0 80.0
Column 180 220 400
Total 45.0% 55.0% 100.0%
Chi-Square Value daf Significance
Pearson 98.38646 2 00000
Likelihood ratio 104.96542 2 00000
Minimum expected frequency 49.500
Approximatle
Statistic Value ASEI T Value Significance
Lambida:
symmetric 30233 03955 6.77902
with occupation dependent .24000 03820 5.69495
with opinion dependent .38889 04555 7.08010
Goodman & Kruskal tau:
with occupation dependent 11669 02076 .00000*
with opinion dependent 24597 03979 00000%
*. . . .
Based on chi-square approximation.
s A

The computation of lambda is straightforward. In Exhibit 18-22, we have results
from an opinion survey with a sample of 400 shareholders. Only 180 out of 400
(45 percent) favor capping executives’ salaries; 220 (55 percent) do not favor it. With
this information alone, if asked to predict the opinions of an individual in the sample,
we would achieve the best prediction record by always choosing the modal category.
Here it is “do not favor.” By doing so, however, we would be wrong 180 out of 400
times. The probability estimate for an incorrect classification is .45, P(1) = (1 - .55).

Now suppose we have prior information about the respondents’ occupational status
and are asked to predict opinion. Would it improve predictive ability? Yes, we would
make the predictions by summing the probabilities of all cells that are not the modal
value for their rows (for example, cell [2, 1] is 20/400 or .05):

P(2) = cell (1, 2) .05 + cell (2, 1) .15 + cell (3, 1) .075 = .275
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Lambda is then calculated:

P(1)-P(2) _ .45-.275
P) T 45

Note that the asymmetric lambda in Exhibit 18-22, where opinion is the dependent
variable, reflects this computation. As a result of knowing the respondents’ occupa-
tional classification, we improve our prediction by 39 percent. If we wish to predict
occupational classification from opinion instead of the opposite, a A of .24 would be
secured. This means that 24 percent of the error in predicting occupational class is elim-
inated by knowledge of opinion on the executives’ salary question. Lambda varies
between 0 and 1, corresponding with no ability to eliminate errors to elimination of all
errors of prediction.

Goodman and Kruskal’s tau (1) uses table marginals to reduee prediction errors. In
predicting opinion on executives’ salaries without any knowledge of occupational class,
we would expect a 50.5 percent correct classification and a 49.5 percent probability of
error. These are based on the column marginal percentages in Exhibit 18-22.

= 3889

Column Marginal Column Percent Correct Cases
180 o 15" = 81
220 - * .55 = 121
Total correct classification 202
202

Correct classification of the opinion variable = 505 = 400

Probability of error, P(1) = (1 - .505) = .495
When additional knowledge of occupational class is used, inforuation for correct
classification of the opinion variable is improved to 62.7 percent with a 37.3 percent

probability of error. This is obtained by using the cell counts and marginals for occupa/
tional class (refer to Exhibit 18-22), as shown below:

73.6364 + 3.6364

% 20
Row 1 2 k. = = nn
ow (“0)90+(”0)20 27
Row 2 0 N0+ B0Ve0 . = 2sTMB4sTI2 = 714286
140 /771 140 ' ’ ; . 3
; 30 120 = s
Row 3 (150 )30+( j50)120 - 6.0+96.0 = 102.0000
Total correct classification (with additional information on occupational class) 250.7013

Correct classification of opinion variable = 627 = 0

Probability of error, P(2) = (1 - .627) =.373

Tau is then computed like this:

PO -P@R) _ .495- 373

= 246
P(1) 495
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- Lots of people will be waving wrile Visiting McDonald's in
Chicago. Ard it won't be because they want to attract atten-
tion or be overty frisndly. instead, Chicagoland McDonald's
will be expanding a test of a cashless payment system
first tested by McDonald's franchises in New York and South-
em Calfomia and tested earier in 2001 by nine Cricago
McDonaki's restaurant owners. The cashless payment sys-
tem activates a charge on a credit card for any Big Mac or
Egg McMuftin ordered. The. system. called’ Speedpass, is
sctivated when a customer waves a Spoedpass card at a

card reader iocated in either the drive-thru or nside at the
checkout counter. The Speedpass system Wwas originally
irtroduced by Bxxon Mobi Comp. at its Mobil gas stations.
Similar systems have been tested Dy Taco Bell and KFC.
How should this study be designed to measure the effective-
ress of cashiess payment systerns? What relaﬁor‘wshrps do
you expect to find? Will they reauire parametiic or ponpara-
metric measures of association?

www.speedpass.com’

Exhibit 18-22 shows that the informatidin abotit occupational class has reduced error in
predicting opinion to approximately 25 percent. The table also contains information on
the test of the null hypothesis that tan = 0 with an approximate observed significance
level and asymptotic error (for developing confidence intervals). Based on the siall
observed significance level, we would conclude that tau is significantly different from a
coefficient of 0 and that there is an association between opinion on exccutives’ salaries

and occupational class in the
also establish the confidence 1

mately .25 = .04.

Measures
for Ordinal Data

section we will illustrate:

 (Gamma.

e Kendall’s tau b and tau c.

« Somers’s d.

e Spearman’s rho.

population from which the sample was selected. We can
evel for the coefficient at the 95 percent level as approxi

When data require ordinal measures, there are several statistical alternatives. In this

All but Spearman’s rank-order correlation are based on the concept of concordant and
discordant pairs. None of these statistics require the assumption of a bivariate normal
distribution, yet by incorporating order, most produce & range from —1.0 (a perfect neg-
ative relationship) to +1.0 (a perfect positive one). Within this range, a coefficient with
a larger magnitude (absolute value of the measure) is interpreted as having a stronget
relationship. These characteristics allow the analyst to interpret both the direction and

the strength of the relationship.

Exhibit 18-23 presents data for 70 managerial employees of KeyDesign, a large
industrial design firm. All 70 employees have been evaluated for coronary risk by the
firm’s health insurer. The management levels are ranked, as are the fitness assessments

by the physicians. If we were

to use a nominal measure of association with this data

(such as Cramer’s V), the computed value of the statistic would be positive since order

is not present in nominal data.

But using ordinal measures of association reveals the

actual nature of the relationship. In this example, all coefficients have negative signs.
The information in the exhibit has been arranged so the number of concordant and
discordant pairs of individual observations may be calculated. When a subject that
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EXHIBIT 18-23 Tabled Ranks for Management and Fitness Levels at Key Design

Management Level
Count Lower Middle Upper
High 14 4 2 20
Fitness Moderate 8 6 2 26
Low 2 6 16 24
34 16 20 70
Staristic Value™
Gamma é -.70242
Kendall’s tau b 5 -.51279
Kendall's tau ¢ -49714
Soemers’s d .
Symmetric -.51263
With fitness dependent -.52591
With management-level dependent -.50000
*The 1 value for each cocfficient is -5.86451.

‘ranks higher on one variable also ranks higher on the other variable, the pairs of obser-
vations are said to be concordant. If a higher ranking on one variable is accompanied
by a lower ranking on the other variable, the pairs of observations are discordant. Let
P stand for concordant pairs and ( stand for discordant. When concordant pairs exceed
discordant pairs in a P ~ Q relationship, the statistic reports a positive association
between the variables under study. As discordant pairs increase over concordant pairs,
the association becomes negative. A balance indicates no relatic_bnshiﬁ between the vari-
ables. Exhibit 18-24 summarizes the procedure for calculating the summary terms
needed in all the statistics we are about to discuss.'” L4

Goodman and Kruskal’s gamma (y) is a statistic that compares concordant and dis-
cordant pairs and then standardizes the outcome by maximizing the value of the denom-
inator. It has a proportional reduction in error (PRE) interpretation that connects nicely
with what we already know about PRE nominal measures. Gamma is defined as

_P-Q 172-984 -812 _
T P+Q  172+984 1156

For the fitness data, we conclude that as management level increases, fitness
decreases. This is immediately apparent from the larger number of discordant pairs. A
more precise explanation for gamma takes its absolute value (ignoring the sign) and
relates it to PRE. Hypothetically. if one was trying to predict whether the pairs were
concordant or discordant. one might fiip a coin and classify the outcome. A better way
is to make the prediction based on the preponderance of concordance or discordance;

Y -.7024
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EXHIBIT 18-24 Calculation of Concordant (P), Discordant (Q), Tied (T,,T,), and Total Paired
Observations: KeyDesign Example

Management

Lower Middie Upper

H
Total % M
pairs ué_ nin - 1)/2=70(69)2= 2415
L
7C0ncordam
pairs
206+18+2) + 418 +2) + 2A6+2) +
Discordant
g
14(6+2¥6+16) + 42 +16) * 18(6 +:16) * 6(16) = 934
Tied A i O ,ZE(_Z?_S_)= 24029 o
pairs gt L 2 2 2 g
- : Total tied
fitness

R e e e, 1oy =5 8 o & W)
Total tied
management

where T is the total pairs of ties on the column vanable
T, is the total pairs of ties on the row variable

m,; are the marginals
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the absolute value of gamma is the proportional reduction in error when prediction is
done the second way. For example, you would get a 50 percent hit ratio using the coin.
A PRE of .70 improves your hit ratio to 85 percent (.50 x 70) + (.50) = .85.

With a y of -.70, 85 percent of the pairs are discordant and .15 percent are concor-
dant.'® There are almost six times as many discordant pairs as concordant pairs. In situ-
ations where the data call for a 2 x 2 table, the appropriate modification of gamma is
Yule's Q.7

Kendall’s tau b (1) is a refinement of gamma that considers tied pairs. A tied pair
occurs when subjects have the same value on the X variable, on the Y variable, or on
both. For a given sample size, there are n(n — 1)/2 pairs of observations.'® After concor-
dant pairs and discordant pairs are removed, the remainder are tied. Tau b does not have
a PRE interpretation but does provide a range of -1.0 to +1.0 for square tables. Its com-
pensation for ties uses the information found in Exhibit 18-24. It may be calculated as

P-Q

)

/

- 172 - 964 ~-5128
V(2415 - 871)(2415 - 791)

Kendall’s tau ¢ (1) is another adjustment to the basic P — Q relationship of gamma.
This approach to ordinal association is suitable for tables of any size. Althou gh we illus-
trate tau ¢, we would select tau b since the cross-classification table for the fitness data
is square. The adjustment for table shape is seen in the formula

.- 2mP-Q) _ 2(3)(172 -984)
*T Nm-1) = (70P@-1)

where m is the smaller number of rows or columns.

Somers’s d rounds out our coverage of statistics employing the concept of concor-
dant-discordant pairs. This statistic’s utility comes from its ability to compensate for
tied ranks and adjust for the direction of the dependent variable. Again, we refer to the
preliminary calculations provided in Exhibit 18-24 to compute the symmetric and
asymmetric ds. As before, the symmetric coefficient (equation 3) takes the row and col-
umn variables into account equally. The second and third calculations show fiiness as
the dependent and management level as the dependent, respectively.

e P=Q _ =812

Tp =

-.4971

ey = nin-1)-T,7/2 ~ 1584 ==hias ©
__P-Q 812
i -1 5 - 2a15-871 - 02 “
2 X
__(P-@ 812
d"‘y"' nin - 1) = =-5000 5)

=T, 2416 -791
2 y
The Spearman’s rho (p) correlation is a popular ordinal measure. Along with
Kendall’s tau, it is among the most widely used of ordinal techniques. Rho correlates
ranks between two ordered variables. Occasionally. researchers find continuous vari-
ables with too many abnormalities to correct. Then scores may be reduced to ranks and

calculated with Spearman’s rho.
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As a special form of Pearson’s product moment correlation, rho’s strengths out-
weigh its weaknesses. When data are transformed by logs or squaring, tho remains
unaffected. Second, outliers or extreme scores that were troublesome before ranking no
longer pose a threat since the largest number in the distribution is equal to the sample
size. Third, it is an easy statistic to compute. The major deficiency is 1ts sensitivity *o
tied ranks. Too many ties distort the coefficient’s size. However, there are rarely too
many ties to justify the correction formulas available.

To illustrate the use of rho, consider a situation where Dean Merrill, a brokerage
¢ firm, is recruiting account executive trainees. Assume the field has been narrowed to 10
applicants for final evaluation. They arrive at the company headquarters, go through a
battery of tests, and are interviewed by a panel of three executives. The test results are
evaluated by an industrial psychologist who then ranks the 10 candidates. The execu-
tives produce a composite ranking based on the interviews. Your task is to decide how
well these two sets of ranking agree. Exhibit 18-25 contains the data and preliminary
calculations. Substituting into the equation, we get

2
BEf _ 86T _ o

n-n (10°-10
where n is the number of subjects being ranked.

The relationship between the panel’s and the psychologist’s ranking is moderately
high, suggesting agreement between the two measures. The test of the null hypothesis
that there is no relationship between the measures (r, = 0) is rejected at the .05 level
with n - 2 degrees of freedom.

re=1-

t=r5/”'22..: 8 =245
v 1-rs 1-.4277

Rank by

Psycholagist y

Applicant Panel x

35 ' & i5g il g75

1
2 10 5 5 25.00
3 65 8 -15 225
4 2 L5 0% a8
5 1 3 ) 4.00
6 9 7 2 4.00
7 35 LS 2 4.00
8 65 40 9 35 6.25
9 8 10 x 4.00
10 5 4 1 _1.00
57.00

Note: Tied ranks were assigned the average (of ranks) as if no ties had occurred.
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3 OSHMRARY .l S

Management questions frequently invoive relationships between two or more variables.
Correlation analysis may be applied to study such relationships. A correct correlational
hypothesis states that the variables occur together in some specified manner wirhout
implying that one causes the other.

Parametric correlation requires two continuous variables measured on an interval or
ratio scale! The product moment correlation coefficient represents an index of the mag-
nitude of the relationship: Its sign governs the direction and its square explains the com-

.. mon variance, Bivariate correlation treats X and-Y variables symmetrically and 18
W e SR

intended for use with variables that afe linearly relatéd. :

Scatterplots allow the researcher to visually inspect relationship data for appropri-
ateness of the selected statistic. The direction, magnitude, and shape of a relationship
are conveyed in a plot. The shape of linear relationships is characterized by a straight
line. whereas nonlinear relationships are curvilinear or parabolic or have other curva-
ture. The assumptions of linearity and bivariate normal distribution may be checked
through plots and diagnostic tests.

A correlation matrix is.a table used to display coefficients for more than two vari-
ables. Matrices form the basis for computation and understanding of the nature of rela-
tionships in multiple regression, discriminant analysis, factor analysis, and many
multivariate techniques. :

A correlation coefficient of any magnitude or sign, regardless of statistical signifi-
cance, does not imply causation. Similarly, a coefficient is not remarkable simply
because it is statistically significant. Practical significance should be considered in
interpreting and reporting findings.> P ksl

y

Regression analysis is used to further our insight into the relationship of ¥ with X. When
we take the observed values of X to estimate or predict corresponding Y values, the
process is called simple prediction. When more than one X variable is used, the out-
come is a function of multiple predictors. Simple and multiple predictions are made
with regression analysis.

A straight line is fundamentally the best way to model the relationship between two
continuous variables. The method of least squares allows us to find a regression line, or
line of best fit, that minimizes errors in drawing the line. 1t uses the criterion of mini-
mizing the total squared errors of estimate. Point predictions made from well-fitted data
are subject to error. Prediction and confidence bands may be used to find a range of
probable values for Y based on the chosen predictor. The bands are shaped in such a
way that predictors farther from the mean have larger band widths.

We test regression models for linearity and to discover whether the equation is effective
in fitting the data. An important test in bivariate linear regression is whether the slope is
equal to zero. In bivariate regression, I-tests and F tests of the regression produce the
same result since £ is equal to F.

Often the assumptions or the required measurement level for parametric techniques
cannot be me}. Nonparametric measures of association offer alternatives. Nominal mea-
sures of association are used to assess the strength of relationships in cross-classifica-
tion tables. They are often used in conjunction with chi-square or may be based on the
proportional reduction in error (PRE) approach.
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Phi ranges from 0 to +1.0 and attempts to correct chi-square proportionately to N.
Phi is best employed with 2 x 2 tables. Cramer’s V is a modification of phi for larger
tables and has a range up to 1.0 for tables of any configuration. Lambda, a PRE statis-
tic, is based on how well the frequencies of one nominal variable offer predictive evi-
dence about the frequencies of another. Goodman and Kruskal's tau uses table
marginals to reduce prediction errors.

Measures for ordinal data include gamma, Kendall's tau b and tau ¢, Somers’s d, and
Spearman’s rho. All but Spearman’s rank-order correlation are based on the concept of
concordant and discordant pairs. None of these statistics require the assumption of a bivari-
ate normal distribution, yet by incorporating order, most produce a range from -1 to +1.

_error term. . 583

~ goodness of fit 588
lambda (A) 593
 linearity - 574
method of least squares

“oo 0 ordinal measures: 596

gamma (y) 597
‘Somers'sd 599

Spearman’s tho (p) 599
tau b (1[,). 599
tau ¢ (1) - 599.

Company
Containers Inc.”
Dean Merrill®
Européan MBA—
programs - ;
Forbes 500 data

. KeyDesign”

McDonald’s

Mobil Gil Corp.
(Speedpass)
UCLA, Uof PA,

UC-Berkeley, Columbia,

Harvard, Yale, and

Northwestern universities

Scenario

584

Pearson correlation coefficient - 570
prediction and confidence bands - 588
proportional reduction in error
(PRE) 593 .
regression analysis 580
regression coefficients 581
intercept 581 :
slope 581
residoal 586
scatterplots 571
tau (). 595

Page

Implementing a smoke-free workplace policy by evaluating 592

the relationship between accidents and smoking:

- Abrokerage firm uses an ordinal measure of association 600
. in'recruiting account executive trainees.

Specialty programs in business admnistration reflect Liisgy
emerging market niches, i :
The relationship between cash flow and net profits in-- 575
10 companies. ; : :
Managerial crgplayees' at a Jarge industrial design 596
.-are evaluated for coronary risk. : '
Evaluating the effectiveness of a cashless payment system. 596
Originator of the Speedpass system now being tested by 596

select McDonald’s restauvrants irf the Chicagoland area.

Busincss schools with wine clubs. _ ' 587

*Due to the confidential and proprietary nature of most research, the names of some companies have been

changed.
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DISCUSSION QUESTIONS

Terms in Review . 1. Distinguish between the following:
: : % a. chmssion coefficient and comlaﬁon coefficient.
b r=0andp=0.
Yo The test of the true slope the test of the mtercept, and P =0.
2 A shope of 0.
f Fand P
2. Describe the relationship between the two variables in the four plots.

mgwh 3.Ataxun(heumrkntvalueofstockandboudtmnstcmnshasbeenpmpos'edis'onemniedy
R SO fcnhebudgetdcﬁcm'l'hcfo!lowmgdﬂ“‘m,,.‘M I _°Mmpl°°f6‘“‘93‘m“ Yoters

byapnnmgorgammhon. s

Education
Opinion About Market Tax H.S. College Grad.
Favorable : 2
Undecided : : “10
Unfayorable 0

[
—
oo

% g Compute gamma for the table.
b Compute tau b or tau ¢ for the same data.
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¢, What accounts for the differences?
d Decide which.is maore suitable for this data..

4. Using the table data in question 3; compute Somers’s 4 symmetric and then use opinion as
the dependent variable. Decide which approach is best for reporting the decision.

5. A research team conducted a study of voting preferences among 130 registered Democrats
and 130 registered Republicans before an election on a specific tax proposal. They secured

the following results:
Democrats 50 80
Republicans 90 40

Calculate an appropriate measure of association and decide how to present your results.

From Concept 6. Using this data,
to Practlpe : ‘
i
= 3 6
6 10
9 15
12+ 24
15 21
18 20

a. Create a scatterplot,

9
b. Find the least-squares line.
¢. Plot the liné on the diagram.

d. Predict: Yif X is 10.
YifXis17..

7.'A home pregnancy test claims 16 be 97 percent accurate when consumers obtain a positive
result. To what extent are the variables of “actual clinical condition™ and “test readings”
related? ;

a. Compute phi, Cramet’s ¥and the contin gency coefficient for the table below. What can
You say about the strength.of the relationship between the two variahles?

b Co_mp.nte lambda for this data What does this su;tisl;ic teil you?
S T e A T it

Actual Clinical Condition * Test Readings of in-Vitro Diagnostic Cross-Tabulaion

Test Readings of

In-Vitro Diagnostic

Paositive Negative
Actual clinical condition Pregnant 451 accurate 36 innacurate 487
Not pregnant 15 innacurate 183 accurate 198

Total 466 219 685
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ANOVA Summary Table

Sum of Squares

Regression 1 11116995.47
Error =] 1
Total 9 12045832.50

Sales

1034.00 ~ 1510.00
95600  785.00
1890.00  2533.00

S 300 53200
1168200  3790.00
6080.00  635.00
3104400  3296.00
587800  3204.00
172100 981.00
213500  2268.00

What does tbe F tel! yw'*{a D5).

Market
Value
697.00
1271.00
1783.00
752.00
4149.00
291.00
2705.00
2100.00
1573.00
2634.00

Net
Profit

Mean Square

.I . E =
116104.63

Number of Employees
{thousands)
16.60
5.00
44,00
2.10
11.90°
3.70
20.10
10.80
1.90
21.20
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