
1 Introduction

1.1 PURPOSE OF THE COURSE

The objectives of a tIrsi-year, one-semester graduate course in electric power
tencratiOI1, operation, and control include the desire to:

1. Acquaint electric power engineering students with power generation
systems, their operation in an economic mode, and their control.

2. Introduce students to the important"termina l " characteristics for thermal

and hydroelectric power generation systems.

3. Introduce mathematical optimization methods and apply them to practical

operating problems.
4. Introduce methods for solving complicated problems involving both

economic anal ysis and network analysis and illustrate these techniques

with relatively simple problems.

5. Introduce methods that are used in modern control systems for power

generation systems
6 Introduce "current topics": pocr system operation areas that are

undergoing significant eoIutionary changes. This includes the discussion
of new techniques for attacking old problems and new problem areas that
are arising from changes in the system development patterns, regulatory

structures, and economics.

1.2 COURSE SCOPE

Topics to be addressed include:

1. Power generation characteristics.

2. Economic dispatch and the general economic dispatch problem.

3. Thermal unit economic dispatch and methods of solution.

4. Optimization with constraints.

5. Using dynamic programming for solving economic dispatch and other

optimization problems.



2	 IN !RODI;CTION

6. Transmission system effects:
a. power flow equations and solutions,
b. transmission losses,

c. effects on scheduling.
7. The unit commitment problem and solution methods:

a. d ynamic programming.

h. the Lagrange relaxation method.

8. Gcneratiori scheduling in systems with limited energ y supplies.
9. The h ydrothermal coordination problem and examples of solution

techniques.

Hi. Production cost models:

a. probabilistic models,

b. generation system reliabilit y concepts.
it. Automatic generation control.
12. interchange of power and energy:

a. interchange pricing,

h. centrally dispatched power pools.
C. transmission effects and wheeling,

d. transactions involving nonutility parties.

13. Power system security techniques.

4. An introduction to least-squares techniques for power system state
estimation.

15. Optimal power flow techniques and illustrative applications.

In many cases, we can only provide an introduction to the topic area. Many
additional problems and topics that represent important, practical problems
would require more time and space than is available. Still others, such as
light-water moderated reactors and cogeneration plants, could each require
several chapters to lay a firm foundation. We can offer only a brief overview
and introduce just enough information to discuss system problems.

1.3 ECONOrI1C IMPORTANCE

The efficient and optimum economic operation and planning of electric power
generation systems have always occupied an important position in the electric
power industry. Prior to 1973 and the oil embargo that signaled the rapid
escalation in fuel prices, electric utilities in the United States spent about 24J,,
of their total revenues on fuel for the production of electrical energy. By 1980,
that figure had risen to more than 4O of total revenues. In the .5 years after
1973, U.S. electric utility fuel costs escalated at a rate that averaged
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compounded on an annual basis, The efficient use of the available fuel is

growing in importance, both monetarily and because most of the fuel used

represents irreplaceable natural resources.
An idea of the magnitude of the aniounts of mone y under consideration can

be obtained by considering the annual operating expenses of a large utilit y for

purchasing fuel. Assume the 1ollos ing parameters fora moderatel y large system.

Annual peak load: 10.000 MW

Annual load factor 60'.,
Average annual heat rate br converting lucI to electre cnerg:

Btu'kWh

Average fuel cost: S0O per uiiHioii But t MRtu), corresponding to oil priced

at IS S/hhl

\r ith these assum ptions, the tutal annual fuel Cost for this s y stem	 as follov's

nnual cncrg" produced 10 kV .: S7ti) h yr . 0.60	 5.256 7. 110110 kWhA 

Annual fuel consaniptiun 0,5U0 Btu kWh 5 256 x 10° kWh

= 55.158 x 10	 BUt

	

Annual fuel cost: 55.1 8 	 . 10' Btu :.. 3 x It)	 S Btu = S6 billion

To put this cost in perpcctie. it represents a direct requirement for revenues

(ruin the	 cuige i-i.isiomer of this s stem of .l 5 cents per kWh just to recovet

c.s pcnsc kr fuel.
A savings in the operation of this system of a small percent represents a

.igniticant reduction in operating cost, as well as in the qua atities ol fuel
consumed. It is no wonder that this arc:- has warranted a great deal oi itteniiun

from engineers through the sears.
Periodic changes in basic fuel price lc\cls scrrc to accentuate the problem

and increase its economic significance Inflation also causes proIcnis
developing and presenting methods. techniques. and examples of the economic

operation of electric power generating s ystems. Recent fuel costs always seem

to he ancient histor y and entire1 inappropriate to current conditions. To avoid

leaving false mpresslons about the actual value of the methods to be diseused.
all the examples and problems that are in the text arc expressed in a nameless.

fictional monetar y unit to he designated a; an

1.4 PROBLEMS: NEW AND OLD

This test represents a progress report in an engineering area that has been and
is still undergoing rapid change. It concerns established engineering problem
areas (i.e., economic dispatch and control of interconnected systems) that have
taken on new importance in recent years. The original problem of economic
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dispatch Ioi iicrii;ul N stenis was solved bs nil merous ITICIhOd.1, years au.
Rccciiilv there has been a rapid gross th in apphcd iiitihcniatjcal methods and
IS availability of e; c mpuiatioi]a! capabilit 1i okirig problems oi this nature
so that more Involved problems has e been suecesJuliy solved.

1 he Classic problem is the economic dispatch ut fossil-bred generation
ymerns to achiese minimum	 ertiting cost IM problem area has taLeii on
it ubti'e twist as the public has hccçim iucrcasiitg	 concerned with crivii-on
iccitUl iriitlers. so that economic dipatch	 nov jnciudc the dispatch	 1
vteuis :o minimtec ;ioliutants and conserse arious form- i inch as well i

to achieve Iflhiiiiuin co*n 	 f it 	 tltete I,, -I 	 to cxpartii the irnid
C0riOnIC ctptini?aton prehien to Incorporate ccn'tiatn on s-stem Operiction
.	 ore the	 ccttrit.	 the	 I !icrchs pre y	the vohtaj.se ct

ls'lcnl due to untorescen eond:tt:ns. ihe hsirotiierniul caerdinutiun picliient
is aniaihei ipiiruiui ccper;iiing orc'hfem area that Ln rcu p ed a ereat deal 1
attentIon. F cci so. there ire clbvith prc s hlcns i nk t	 hdrothcrntai co
ordination that caunot he soIvd in a theoreticilir satislsinn tashion	 a arid
and etheictt c]Ittt1ccnal	 anne:

I hep, , i Vicir cl kkat 11	 SV the !iierc;stfl:' installation sf jtlniped-
to	 :e h'ciccc!c t re plants in the	 nited Stitcs and a ore: deal cl nttcrett in
iter g s toiaec	 R'[c15. I ]iese ic'rjec s teflt5 Incise 

.
aRt iCt dr !TI etilt i

et Qle Splilitil?) cecit s inic ;eratiio pobiciii MetLi'5is are acailahie for sidenig
,,cidciccti.c Fier;nci. and numpcd-ltce electric \stems.

Ilsssesei, eiosel dSsocicteO cs iii his economic clispateli pichicut is the problem
A the pripet ccmniitnient of an :irra\ at units out ci a toRli aruli\ 01 Units 10
wi-tv tile Cs ; c evtC2	 ntcl demands lit an -. ptimai	 nianier.

A great dc,tl ci proeress and chance has occurred In the 19 19,45 decade
lknl: tile unit ecrimitineni and ccpinna] econi c inic claintenanee seneduing
ne'hlerns Wine seen ness mcthodi c logies and computer prc)giaiIs des eloped.
Trarisniisccn Lcsses and constraints are inte grated cs hh sclicd uliig tisiiii
methods based in the nc; ricr,Iticiii c_il lower ito c_ c:iiiccIs Ui the cec_nonhi
irspsIch i n 'ces. I h i , pc Q5 Iiie develepinent of optimal economic dispatch
condruons that do not result in oseric_ciding .vstem elements or voltage
niagnit udes that are intoicrahic I hese c cptmal power iIcv teehrnques arc
applied to schedulinu both real and reactive power sources. as well as
esta bush ing laP posit Ions for tn ansforniers and phase shifters.

In recent y ears the political climate in Thins countries has changed. resulting
in the introduction cci' more pro atl y ccv ned electric PO\!' facilities and a
cductrc5n or elimination of ao.crnrnentchi 	 spcnrmsecrcL1 generation nid ti i!i'

mission organizations ]it 	 coii ii ri	 pr"AmsV iwiti on"Ac ; sells hi v

neen pro. tried in both these countries and in countries such as the rited
States, where electric utilities have been oOricd h a ariets i f bodies co.
connurrwrN, shareholders, as well as gocrnnient ageneiest, there ha' heen a
movement to introduce both privatels oss ned geitci ation eonipaiiiestnd jay,, .!er
co gencration plants that may provide energs to ill ility customers These too
groups are rekrred to as independent power producers hiPPs This trend is



PROBLEMS: NEW AND OLD

coupled with a movement to provide access to the transmission system for these
nonutilitv power generators. as well as to other interconnected utilities. The
growth of an IPP industry brings with it a number of interesting operational
problems. One example is the large cogeneration plant that provides steam to
an industrial plant and electric energy to the power system. The industrial-plant
steam demand schedule sets the operating pattern for the generating plant, and
it ma y be necessary for a utility to modify its economic schedule to facilitate
the industrial generation pattern.

Transmission access for noriutilit y entities (consumers as well as generators)
sets the stage for the Creation of new market structures and patterns for the
interchange of electric energy. Previously, the major participants in the
interchange markets in North America wcre electric utilities. Where nonuttlity.
generation entities or large consumers of power were involved, local electric
utilities acted as their agents in the marketplace. This pattern is changing. With
the growth of nonutility participants and the increasing requirement for access
to transmission has come a desire to introduce a degree of economic competition
into the market for electric energy. SureR this is not a universally shared desire;
many parties prefer the status quo. On the other hand, some electric
utility managements have actively supported the construction, financing, and
operation of new generation plants by nonutility organizations and the
introduction of less-retrictic market practices.

The introduction of nonutility generation can complicate the scheduling-
dispatch problem. With onl y a single, integrated electric utility operating both
the generation and transmission systems, the local utilit y could establish
schedules that niininized its own operating costs while observin g Al of the
necessary ph ysical, reliability, securit y, and economic constraints. With multiple
parties in the hulk power svstenl i.c.. the generation and transmission system).
new arranemcnts arc required. The economic objectives of all of the parties
are not identical, and, in fact. may even he in direct (economic) opposition. As
this situation evolves, different patterns of operation may result in different
regions. Some areas may see a continuation of past patterns where the local
utility is the dominant participant and continues to make arrangements and
schedules on the basis of minimization ol the operating cost that is paid by its
own customers. Centrall y dispatched power pools could evolve that include
nonutilit y,  generators, some of whom may be engaged in direct sales to large
consumers. Other areas may have open market structures that permit and
facilitate competition with local utilities. Both loca and remote nonutility
entities, as well as remote utilities, may compete with the local electric utility
to supply large industrial electric energy consumers or distribution utilities. The
transmission syslein may be combined with a regional control center in a
separate entit y. Transmission networks could have the legal status of "common
carriers." where any qualified party would be allowed access to the transmission
system to deliver energy to its own customers, wherever they might he located.
This very nearly describes the current situation in Great Britain.

What does this have to do with the problems discussed in this text? A q reat
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deal. In the extreme cases mentioned above. many of the dispatch and
scheduling methods we are going to discuss will need to be rethought and
perhaps drastically revised- Current practices in automatic generation control
are based on tacit assumptions that the electric energy market is slow moving
with only a few. more-or-less fixed, interchange contracts that are arranged
between interconnected utilities. Current techniques for establishing optimal
economic generation schedules are really based on the assumption of a single
utilit y serving the electric energy needs of its own customers at minimum cost.
Interconnected operations and energy interchange agreements are presently the
result of interutitity arrangements: all of the parties share common interests In
a world with a transmission-operation entity required to provide access to many
parties, both utility and nonutility organizations, this entity has the task of
dexeloping operating schedules to accomplish the deliveries scheduled in some
as yet to he defined) "optimal" fashion within the physical constraints of the

system. while maintaining system reliabilit y and security. If all (or any) of this
develops, it should be a fascinating time to be active in this field.

FURTHER READING

The books below are coggested as sources of information for the general area covered
by this text- The lirt four are "classics:" the next seven are specialized or else are
collections of articles or chapters on various topics involved in generation operation
and control, Reference 12 has proven particularly helpful in reviewing various thermal
cycles. The last two may be useful supplements in a classroom environment.
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2 Characteristics of Power
Generation Units

2.1 CHARACTERJS1I(S OV STEAM UNITS

In •iiravzing the problems associated with the controlled operation of power
s y stems, there are rnan possihk parameters of interest. Fundamental to thc
ccononuc operating problem is the set of input output characteristics of a

thermal power ceneration unit \ iypical boiler turbine generator unit is
sketched iii Figure 2.1 This unit consist s of a single boiler that generates steam
to drive a single turbine generator set. 1 he electrical output of !hk set is

connected not onl y to the electric pocr s ystem. but also to the auxiliary power
sy ,stcrn in the pocr plant. A i pical steam turbine unit may require 26 of
the cross output of the unit for the auxiliar y power requirements necessar y to
drive boiler feed pumps. fans, condenser circulating water pumps, and so on.
In definin g the unit characteristics, we will talk about qross input versus eel
output That is, gross input to the plant represents the total input. v hether
measured in terms of dollars rr hour or tons of coal per hour or millions of
cubic feci of gas per hour, or ans other units. The net output of the plant is
the electrical poser output available to the electric uuM N S ystem. occasionally
engineers will deselop gross input gross output characteristics. Jr such sill-
iii-lions. the data should be converted to net output to be more useful in scheduling
the geneiation

In defining the characteristics of steam turhi ne units. the tutlowing terms will
he used

If - Btu per hour heat input to the unit or M Bt u

= Fuel cost times H is the R per hour t Rh) input to the unit for fuel

Oceasiona[ y the K per hour operating cost rate of a unit will include
prorated operation and maintenance COSts. That is, the labor cost for the
operating crew will he included as part of the operating cost if this cost can he
expressed directly as a function of the output of the unit. The output of[he
veneration unit will he designated by P. the megawatt net output of the unit

Fi g ure 2.2 shows the input output characteristic of it steam unit in idealized
form. The input to he unit shown on the ordinate ma y be either in term ,, if
heat energy requirements (millions of E3lu per hour M Btuih)j or in terms of
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Steam turbine

Boiler fuel Input 
L_!_JGrMet)

Generator

A/P

Auxiliary power system

FIG. 2.1	 Bo i ler--iurhine generator unit.

Output, P (MW)

FIG. 2.2 Input --output curve of a steam turbine generator.

total cost per hour (F per hour). The output is normally the net electrical output
of the unit. The characteristic shown is idealized in that it is presented as a
smooth, convex curve.

These data ma y he obtained from design calculations or from heat rate tests.
When heat rate test data are used, it will usually be found that the data points
do not fall on a smooth curve. Steam turbine generating units have several
critical operating constraints. Generall y, the minimum load at which a unit can
operate is influenced more by the steam generator and the regeneratie cycle
than by the turbine. The only critical parameters for the turbine are shell and
rotor metal differential temperatures, exhaust hood temperature, and rotor and
shell expansion. Minimum load limitations are generally caused by fuel com-
bustion stability and inherent steam generator design constraints. For example,
most supercritical units cannot operate below 30, of design capability.
A minimum flow of 300,, is required to cool the tubes in the furnace of the
steam generator adequately. Turbines do not have any inherent overload
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capability, so that the data shown on these curves normally do not extend much

beyond 50 of the manufacturer's stated valve-wide-open capability.

The incremental heat rate characteristic for a unit of this type is shown in
Figure 2.3. This incremental heat rate characteristic is the slope (the derivative)

of the input- output characteristic (M1AP or iF'Pl. The data shown on this

curve are in terms of Btu per kilowatt hour (or 9 per kilowatt hour) versus
the net power output of the unit in megawatts This charactciistic is widely

used in economic dispatching of the Unit. It is converted to an incremental

fuel cost characteristic by multiplying the incremental heal rate in Btu per
kilowatt hour by the equivalent fuel cost in terms of 9 per Btu Fre-

quently this characteristic is approximated by a sequence of straight-line

segments.
The last important characteristic of a steam unit is the unit (net) heat rate

characteristic shown in Figure 2.4. This characteristic is H/P versus P. It is

proportional to the reciprocal of the usual efficiency characteristic developed

for machinery. The unit heat rate characteristic shows the heat input per

kilowatt hour of output versus the megawatt output of the unit. Typical

conventional steam turbine units are between 30 and 35,, efficient, so that their

unit heat rates range between approximately I 1.4(X) Btu kWh and 9800

BtukWh. (A kilowatt hour has a thermal equivalent of approximately 3412

Btu Unit heat rate characteristics are a function of unit design parameters

such as initial steam conditions, stages of' reheat and the reheat temperatures,

condenser pressure. and the complexity 01 the regenerati ve feed-water cycle.

These are important considerations in the establishment of the unit's efficiency.

For purposes of estimation, a typical heal rate of 10,500 BtukWh may be used

occasionally to approximate actual unit heat rate characteristics.

Man y different formats are used to represent the input - output characteristic

shown in Figure 2.2. The data obtained from heat rate tests or from the plant
design engineers may be fitted by a polynomial curve. In many cases, quadratic

0

Approximate

11	 r1
g	 I

-	 P	 P
c

Output. P(MW)

Fl(. 2.3 Incremental heat (cost) rate characteristic.
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ir,l.i

Output, P(MW)

FIG. 2.4 Net heat rate characteristic of a steam turbine generator unit.

characteristics have been fit to these data. A series of straight-line segments may
also be used to represent the input-output characteristics. The different
representations will, of course, result in different incremental heat rate charac-
teristics. Figure 2.5 shows two such variations. The solid line shows the
incremental heat rate characteristic that results when the input versus output
characteristic is a quadratic curve or some other continuous, smooth, convex
function. This incremental heat rate characteristic is monotonicall y increasing
as a function of the power output of the Unit. The dashed lines in Figure 2.5
show a stepped incremental characteristic at results when a series of straight-line
segments are used to represent the input-output characteristics of the unit. The
use of these different representations may require that different scheduling
methods be used for establishing the optimum economic operation of a por

Output, P(MW)

FIG. 23 Approximate representations of the incremental heat rate curve.
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system. Both formats are useful, and both ma y be represented by tables of data.
Only the first, the soiid line, may he represented by a continuous analytic
function. and only the first has a derivative that is nonzero. (That is, ddP2

equals zero if dF/dP is constant.)
At this point, it is necessary to take a brief detour to discuss the heating

value of the fossil fuels used in poser generation plants. Fuel healing values for
coal. oil, and gas are expressed in terms of Btu/Ih, or joules per kilogram of
fuel. The determination is made under standard, specified conditions using a
bornh calorimeter. This is tll to the good except that there are two standard

determinations specified.

I. The higher heating value of the fuel (HH\') assumes that the water sapor
in the combustion process products condenses and therefore includes the
latent heat of vaporization in the products.

2 The lower heating value of the fuel (LI-tV) does not include this latent heat

of Vapo r i/aIOfl.

The difference between the HHV and LHV for it depends on the

hydrogen content of the fuel. Coal fuels have a low hydrogen content with the
result that the difference between the HHV and LHV for a fuel is fairly small.
(A typical value of the difference for a bituminous coal would be of the order
of 3". The HHV might be 14,800 Btuilb and the LHV 14.400 Btu , lb.) Gas

and oil fuels have a much higher hydrogen content, with the result that the
relative difference between the HHV and LHV is higher; t y pically in the order

of 10 and 6, respectively. This gives rise to the possibility of some con-
fusion when considering unit efficiencies and cycle energy balances. A rnoie
detailed discussion is contained in the book by El-Wakil: Chapter 1. reference

12.)
A uniform standard must he adopted so that everyone USeS the same heating

alue standard. In the USA. the standaid is to use the HHV except that

&'nqir.eers and manufacturers that ore dealing with combustion turbines (i.e., gas

turbines) nortnaliv use Lift's when quoting heat races or efficiencies. In European

practice. LHVs are used for all specifications of fuel consumption and unit
efficiency. in this text. HFIVs are used throughout the book to develop unit
characteristics. Where combustion turbine data have been converted by the
authors from LI-I Vs to HHVs. a dilTerence of lO, was normally used. When

I
doubt about which standard for the fuel heating',alue has been used to

develop unit characteristics--ask!

2.2 VARIATIONS IN STEAM UNIT CHARACTERISTICS

.\ number of different steam unit characteristics exist. For large steam turbine
generators the input output characteristics shown in Figure 2.2 are not alvas
is onooth as indicated there. Large steam turbine generators will have a number
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of steam admission valves that are opened in sequence to obtain ever-increasing
output of the unit. Figure 2.6 shows both an input-output and an incremental
heat rate characteristic for a unit with four valves. As the unit loading increases,
the input to the unit increases and the incremental heat rate decreases between
the opening points for any two valves. However, when a valve is first opened,
the throttling losses increase rapidl y and the incremental heat rate rises
suddenl y This gives rise to the discontinuous type of incremental heat rate
characicristic shown in Figure 2.6. It is possible to use this type of characteristic
in order to schedule steam units, although it is usually not done. This t y pe of
input-output characteristic is nonconvex; hence, optimization techniques that
require convex characteristics may not be used with impunity.

Another type of steam unit that may be encountered is the t'ornmon-headcr
plan, which contains a number of different boilers connected to a common
,,team line (called a common header). Figure 2.7 is a sketch of a rather complex

Output, P(MW)

FIG. 2.6 Char,ivteritics of a steam turbine generator with four ste-am admission
salves.
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common-header plant. In this plant there are not only a number of boilers and
turbines, each connected to the common header, but also a "topping turbine"
connected to the common header. A topping turbine is one in which steam is
exhausted from the turbine and fed not to a condenser but to the common

steam header.
A common-header plant will have a number of different input-output

characteristics that result from different combinations of boilers and turbines
connected to the header. Steinberg and Smith (Chapter 1, reference 1) treat this
type of plant quite extensively. Common-header plants were constructed
originally not only to provide a large electrical output from a single plant, but
also to provide steam sendout for the heating and cooling of buildings in dense
urban areas. After World War 11, a number of these plants were modernized
by the installation of the type of topping turbine shown in Figure 2.7. For a
period of time during the 1960s, these common-header plants were being
dismantled and replaced by modern, efficient plants. However, as urban areas
began to reconstruct, a number of metropolitan utilities found that their
steam loads were growing and that the common-header plants could not
be dismantled but had to be expected to provide steam supplies to new

buildings.
Combustion turbines (gas turbines) are also used to drive electric generating

units. Some types of power generation units have been derived from aircraft
gas turbine units and others from industrial gas turbines that have been
developed for applications like driving pipeline pumps. In their original
applications, these two types of combustion turbines had dramatically different
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duty cycles. Aircraft engines see relatively short duty cycles where power
requirements vary considerably over a flight profile. Gas turbines in pumping
duty on pipelines would be expected to operate almost continuously throughout
the year. Service in power generation may require both types of duty cycle.

Gas turbines are applied in both a simple cycle and in combined cycles. In
the simple cycle. inlet air is compressed in a rotating compressor (typically by
a factor of 10 to 12 or more) and then mixed and burned with fuel oil or gas
in a combustion chamber. The expansion of the high4vrnperature gaseous
products in the turbine drives the compressor, turbine, and generator. Some
designs use a single shaft for the turbine and compressor, with the generator
being driven through a suitable set of gears. In larger units the generators are
driven directly, without any gears. Exhaust gases are discharged to the atmos-
phere in the simple cycle units. In combined cycles the exhaust gases are used
to make steam in a heat-recovery steam generator before being discharged.

The early utility applications of simple cycle gas turbines for power
generation after World War II through about the 1970s were generally to supply
power for peak load periods. They were fairly low efficiency units that were
intended to be available for emergency needs and to insure adequate generation
reserves in casc of unexpected load peaks or generation outages. Net  full-load
heat rates were typically 13,600 Btu/kWh (HHV). In the 1980s and 1990s. flew,
large, simple cycle units with much improved heat rates were used for power
generation. Figure 2.8 shows the approximate, reported range of heat rates

13000

12000
Net Heat

(BtuAWh)

11000

10000

9000
0	 40	 80	 120	 160

Power Output (MW)

FIG. 2.8 Approximate net heat rates for a range of simple c)cte gas turbine units.
Units are fired by natural gas and represent performance at standard conditions of an
ambient temperature of 15 C at sea level. (HCjt rate data from reference I were adjusted
by 130,'to represent HHVs and auxiliar y power needs.)



Electrical
power

16 CHARACTERISTICS OF POWER GENERATION UNiTS

for simple cycle units. These data were taken from a 1990 publication
(reference 1) and were adjusted to allow for the difference between lower and
higher heating values for natural gas and the power required by plant
auxiliaries. The data illustrate the remarkable improvement in gas turbine
efficiencies achieved by the modern designs.

Combined cycle plants use the high-temperature exhaust gases from one or
more gas turbines to generate steam in hçat-recovery steam generators (HRSGs)
that are then used to drive a steam turbine generator. There are many different
arrangements of combined cycle plants; some may use supplementary boilers
that may he fired to provide additional steam. The advantage of a combined
cycle is its higher efficiency. Plant efficiencies have been reported in the range
between 6600 and 9000 Btu/kWh for the most efficient plants. Both figures are
for HHVs of the fuel (see reference 2). A 50' efficiency would correspond to
a net heat rate of 6825 BtuikWh. Perforrnancc data vary with specific cycle
and plant designs. Reference 2 gives an indication of the many configurations
that have been proposed.

Part-load heat rate data for combined cycle plants are difficult to ascertain

FIG. 2.9 A combined c y cle plant with four gas turbines and a steam turbine generator.
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FiC,. 2.10 (mhined es cle plant heat rate charaLcristie.

from a ailable irihrmation Figure .9 shows the configuration ci a eumbined
L\cIc plant Aith tour gas turbines and HRSCI and a steam turbine generator.
The plant efticienes characteristics depend on the number of gas turbines in
operation. The shape of the net heat rate cure shown in I- Igure 2.10 illustrates
this incremental heat rate characteristics tend to he 11atter than those normally

SCCfl for StC.imfl turbine units.

2.3 COGENERATION' PLANTS

Cogeneruttun plants are similar to the common-header steam plants discussed
previously in that ilie are designed to produce both steam and electricity. The
term cogcneration" has usualiN referred to a plant that produces steam br an
industrial process like an oil refining process. It is also used to refer to district
heating plants. In the United States. district heating' implies the supply of
steam to heat buildings in downtown usually business) areas. In Europe. the
term also includes the supply of heat in the form of hot skater or steam for
residential complexes. usualI large apartments.

For a variet y of economic and political reasons, coeneration is assuming a

larger role in the post. er systems in the United Sates. The economic incentive
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is due to the high cfficicnc y electric puss r gencratien topping cvek\' that Co..

enerotc power at heat rates as 1o' 4044(4 But kwh. I)cpcnding on pc.cit

plant requirement,, for heat and power. an industrial lirm may hai c large

imounts ul c.\ees power as aila F,k for sale at ver y competitive effieiciieiei. The

recent and LaTent political, regulators, and economic climate encourages the

suppl y of electric power to the interconnected svstenls b y nonutihts eiaitic
such .r' laroc industrit lirms. The need for process heat and steam exists in marie
indust res. Refiricric and chemical plants ma y ha%c a need for process steam on
a Continuous basis. lood processing may reqaiie;i stead y upplv M heat.

industrial plant , use cogencration units that ex 	 steam fromstea	 from a simple or

complex (i.e.. combined) c ycle and SIMUlt.111COUSIV podnce electrical energy
Prior World War 11, cuiacnerattoil units scre usuall y small iicd and used

esiractiun sleJil turbines to drixe a zcneuatcir. The lintt s as is piealtx sued to
upplv sullic:ient steam for the process and electric power for the load internal

to the plant. Backup steam mar hac been supplied by .t huiler, and an

interconnection to the local Li litr' pros ided an emergenc\ source of electricity.
ilie largest todustrual plants xs ould usuall y make arrangements to suppli an

excess elect rue energ y to the utilit y Figure 2. I I shows the input output

characteristics 1€' : a 50-MW single extractton unit The data show the heat

Steam
derriand

1k tb/ti rl
370

800
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M

400

LL
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0
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Electrical output (MW)

F IC. 2.11 Fuel input required ftir steam demand md electrical output for a single
extraction steam turbi ic general or.
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input required for given combinations ol process steam demand and electric
output. ihis particular example is For a unit that can suppl y up to 37003

lbs It of ,learn.
Modern caceneration plants are designed around combined c ycles that

maY incorporate separately tired steam boilers. C y cle designs can be comples

and are tatlored to the industi at plants requirements For heat encrg\ (see

refcrencc 2) In areas where there is a n1aret tar clectnc energ y generated h

an it'l l , that is a nonuti!ity-owncd cencrating plant. there ma he strong
economic incentives for the industrial firm to develop a plant that can deliver
energy to the power sstem. This has occurred in the United States aftet ai tous
reeulator bodies began efforts to encourage competition in the piOdUCtR)n of
electric energy. This can. and has. raised interesting and important problems
in the scheduling of gcuertit ton and ii ansmission system use. the industrial hTM

ma y ha e a steam demand cycle that is level, resulting in a more-or-less constant
level of electrical output that must he absorbed. On the other hand. the local

utilit\'s load ma y he cr e clical. With a small component of nonutilit
seneration this ma\ not represent a problem. llovkever, if the IPP total

acencratton supplies ,in ppreciable portion of the utihit\ lai1 demand. the titilit'

ma y hae a coilTplex 5chcdultng situation

2.4 LIGHT-W.1F1R lODI1R.ATLI) NUCLEAR REM-10R I \ITS

P.S. utilities have .tdcptcd the light-water moderated reactor as the 'standard"

t y pe of nuclear steam suppl y svstCtll. These reactors are either pressurized water

reactors i PWRs) or boiling water reactors (I3' Rs) and use shighll enriched

uranium a the haic cncrg suppl y source. The uranium that occurs in nature

fontintis apprO\itflUtel secn-tcnths of I,, b y \cighit of	 5 L This natural

uranium must he enriched a that the content of 	 I.. is I  the rrtge al 2 4..

Fur use'.n eithci a P\VR or a [WR.
the enriched M,11-111,111-1 must' tabricated into fuel ascmubhies b y various

inanufact urnu rroccsse .\t the time the fuel asscmhhic' are 1oded into the
nuclear reactor core there has been a ennsidcrahlc inestrneii1 made in this fuel.
During the period of time in which fuel is in the reactor and is generating heat
and steam. and electrical pov er is bemag obtained From the generator, the
amount at ushle fissionable material in the care is decreasing. At sofliC point.

the reactor care is no lunger able to n-uitntuin a critical state at a proper power
leel, so the core must be remoed and nc fuel reloaded injo the reactor.
Commercial power reactors are normally designed to replace one-third to
one-fifth 1 the fuel in the core during reloading.

Al ths palm. the nuclear fuelasseinimhics that have been reurioed are highly
radioactive and must be treated in some fashion. Originally, it was intended

that ihec assemblies  would he repmocescd in eomnicr,mt plants and that
ttluahle nial.eh,ds would be obtained from the reprocessed core .i5seinhltes It

is questionable if the U.S. reactor Industry will develop an econonicall siable



20	 (HAItA( U Risrit S 01 t'OWLR GI 1FRAFIu, tNITS

reprocessing system that is acceptable to the public in general If this is nt
done, either these radioactie cores will need to be stored for some indeterminate
period of time or the t.;.S. government will have to take Over these fuel
assemblies for storage and eventual reprocessing. In an y case, an additional
amount of money will need to be invested, either in reprocessing the fuel or in
storing it for some period of time.

'The calculation of "fuel cost" in a situation such as this involves economic
and accounting considerations and is reall y an investment anaisis. Simply
speaking, there will be a total dollar investment in a given core assembly This
dollar investment includes the cost of mining the uranium, milling the uranium
Core. converting it into a gaseous product that may be enriched, fabricating
fuel assemblies, and delier1n2 them to the reactor, plus the cost of removing
the fuel assemblies alter they have been irradiated and either reprocessing them
or storing them. Each of these fuel assemblies will have generated a gien
amount of electrical ener gy . \ pseudo-fuel cost ma y be obtatned by dividing
the total net investment in dollars by the total amount of electrical energy
generated h the assembl y . Of course, there are refinements that may he made
in this simple computation For example, it is possible by using nuclear phics
calculations to compute more precisely the amount of energy generated by a
specific fuel as-senihk in the core in a gi'en stage of operation of a reactor.

In the remainder of this text, nuclear units will he treated as if thes are
ordinary ihcrnial-gcneratrng units fueled b y a fossil fuel. The considerations
and computations of exac fuel reloading schedules and enrichment lesels in
the various fuel assemblies are be y ond the scope of a one-semester graduate
course because they require a background in nuclear engineering, as well as

dctaikd understanding of the fuel cycle and its economic aspects tscc Chapter
I. reference 10).

2.5 HYDROELECTRIC UNITS

H ydroelectric units have input -output characteristics similar to steam turbine
units. The Input is in terms of volume of water per unit time ,the Output is in
terms of electrical power. Figure 2.12 shows a t ypical input -output curve for
hydroelectric plant where the net hydraulic head is constant. This characteristic
shows an almost linear curve of input water volume requirements per unit time
as a function of power output as the power output increases from minimum to
rated load. Above this point, the volume requirements increase as the efficiency
of the unit falls off. The incremental water rate characteristics are shown in
Figure 2.13. The Units shown on both these curves are English units. That is,
volume is shown as acre-feet tan acre of water a foot deep}. If necessary. net
h ydraulic heads are shown in feet. Metric units are also used, as are thousands
ol cubic feet per second (kft 3 .. sec) for the AaJer rate.

Fioure 2,14 shos the input--output characteristics of a hdroelcctric plant
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Outcut. P(MW)

FIG. 2.12 Hydroelectric unit input output curve.

with variable head. This type of characteristic occurs whenever the anaIton

in the storage pond (i.e., forebay) and/or afterba y elevations is a fairl y large

percentage of the overall net hydraulic head. Scheduling hydroelectric plants
with variable head characteristics is more difficult than scheduling hdrocleCtriC
plants with fixed heads. This is true not only because of the multiplictt of
input-output curves that must be considered, but also because the ma.tnlurn
capability of the plant ill also tend to vary with the h y draulic head. In Figure

2.14, the volume of water required for a given power output decreases as the
head increases. (That is. ?Q/head or Q/voIiime are negative for a fixed
power.) In a later section, methods are discussed that have been nroposed

Output, PIMW1

FIG. 2.13 Incremental atcr Taic curve for hydrocICCiric pLiral
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Ma mum
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f̂t

'NNet head = 40 0 ft—

495 ft

-------- — -
— — —

Output, P MW

FI( . 2.14	 I ipa - uipui c ii rves for h ydroelectric plant with a variable head

for the ptinium scheduling of h ydrothermal pcwcr s ystems where the hvdro-
electric systemS exhibit variable head characteristics.

F igure sho the t)pe of characteristics exhibited by pumped-storage
hydroelectric plants. These plants are designed so that ater may be stored h
pumping it agairt-u net hydraulic head for discharge at a more propitious
li me l his t pe of plant was orlginall} installed with separate hydraulic turbines
and cicctrtc-motor-driven pumps. In recent years. rcersibc. hydraulic pump
turhins hac been utili,ed. These rever-;ihle pump turbines exhibit normal
input -output characteristics then utili7ed as turbines. In the pumping mode.

Input. P (MW)	 Output. Pg (MW)

I LC. 2.15 Input --output characteristics for a pumped storage hvdroplant u ft a flsed.
net h\drauilc head.
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oweer. the efficiencs of operation tends to fall off when the pump is operated
away from the rating of the unit For this reason. most plant operators will
only operate these units in the pumping mode at a fixed pumping load. The
incremental water characteristics when operating as a turbine are, of course.
similar to the conventional units illustrated previously

The scheduling (if pumped-storage hydroelectric plants may also he com-
plicated by the necessity of recognizing the ariable-hcad effects. These effects
may be most pronounced in the variation of the maximum capahlity of the
plant rather than in the presence of multiple input- output curves. This variable
maximum capability may have a significant effect on the requirements for
selecting capacity to run on the system. since these pumped-storage hvdroplants
niav usually be considered as spinning-reserve capability. That is. the y A ill be

used only during periods of highest cost generation on the thermal units: at
other times they may he considered as readily available "spinning reserve').
That is. during periods when they would normally be pumping, they may be
shut off to reduce the demand When idle, they maY be started rapidly. In this
case. the ma\inium capacity available will have a significant impact on 1, he

requirements for having other units available to meet the svsteflis total

spinning-reserve requirements.
These hydroelectric plants and iheir characteristics both the characteristics

for the pumped-storage and the convcntionai'StorLLge hydroelectric plants) are

affected gicatly b y the h ydraulic configuration that exists where the plant is
installed and bv the requirements for water flows that ma', hiuc nothing to do
with power production. The characteiistics just illustiated are for single.
isolated plants in many river systems. plants are connected in both series and
in parallel (hydraulically speaking), in this case. the release of an upstream
plant contributes to the inflow of downstream plants. There may be tributaries
between plants that contribute o the water stored behind it downstream dam.

[he situation becomes even more complex when pumped-storage plants are
constructed in conjunction with conventional hydroelectric plants. The problem
of the optimum utilization of these resources involves the complicated problems
associated with the scheduling of water, as well as the optimum operation of
the electric power system to minimize production cost. We can onl y touch on

these matters in this text and introduce the subject. Because of the importance
of the hydraulic coupling between plants. it is safe to assert that no two

hydroelectric systems are exactly the same.

APPENDIX
Typical Generation Data

Up until the early 1950s, most U.S. utilities installed units of less than 100 MW.
Ihese units were relatively inefficient (about 950 psi stearn and no reheat cycles).

During the earl y 1950s, the economics of reheat cycles and advance s in materials
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lABLE 2.1 T'ppcaI fossil Generation Unit Heat Rates

Unit
Fossil	 Rating	 Output
Unit -. Description	 (MW)	 (Btu;kWh)
Steam coal	 so	 1000
Steam -oil	 50	 11500
Steam- gas	 so	 11700
Steam— coal 	 2(X)	 9500
Steam- oil	 200	 99(X)
Steam- gas	 200	 lts3SO
Steam--coal	 400	 9000
Steam oil	 400	 9400
Steam- - gus	 400	 9500
steam--coil	 60()	 8900
Steam. oil	 600	 9300
Steam- gas	 600	 94(X)
Steam— coal 	 800-1200	 8750
Steam--oil	 800- 1200	 91(X)
Steam--- gas	 800-1200	 9200

For study purposes, units should not be loaded below the points shown,

4-



TYPICAL GENERATION DATA 25

TABLE 12 Approximate Unit Heat Rate Increase Over
Valve-Best-Point Turbine Heat Rate

Unit Size	 Coal	 Oil	 Gas
(MW)	 (,)	 ()

50	 22	 28	 30
200	 20	 25	 27
400	 16	 21	 22
600	 16	 21	 22
800--1200	 16	 21	 22

technology encouraged the installation of reheat units having steam tempera-
tures of 1000°F and pressures in the range of 1450 to 2150 psi. Unit

sizes for the new design reheat units ranged up to 225 MW. In the late
1950s and early 1960s. U.S. utilities began installing larger units ranging
up to 300 MW in size. In the late 1960s, U.S. utilities began installing even
larger, more efficient units (about 2400 psi with single reheat) ranging in sue
up to 700MW. In addition, in the late 1960s. some U.S. utilities began installing
more efficient supercritical units (about 3500 psi, iorric with double reheat)
ranging in size up to 1300 MW. The hulk of these supercritical units ranged
in size from 500 to 900 MW. However, many of the newest supercritical
units range in size from 1150 to 1300 MW, Maximum unit sizes he remained
in this range because of economic, financial, and system reliability con-
siderations.

Typical heal rate data for these classes of fossil generation are shown in
Table 2.1. These data are based on U.S. federal government reports and
other design data For U.S. utilities (see Heat Rates for Genera! Electric Steam
Turbine-Generators 100.000 k14-' and Larger. Large Steam Turbine Generator

Department, G.E.).
The shape of the heat rate curves is based on the locus of design valve-

best-points' for the various sizes of turbines. The magnitude of the turbine heat
rate curse has been increased to obtain the unit heat rate, adjusting for the
mean of the val'c loops, boiler efciency, and auxiliary power requirements.
The resulting approximate increase from design turbine heat rate to obtain the
generation heat rate in Table 2.1 is summariLed in Table 2.2 br thevarious
types and sizes of fossil units.

Typical heat rate data for light-water moderated nuclear units are:

Output ()	 Net Heat Rate (Btu:lWh)

100	 10400
75	 10442
50	 10951
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These t ypical values for both PWR and BWR units ere estimated using design

sale-hest-point data that were increased b y 8° to obtain the net heat rates.

The accounts br auxiliary power requirement ,, and heat losses in 0w

auxiliaries.
lvpical heal rate data for newer and larger gas turbines are discusscd

above. ()kki units based on industrial gas turbine designs had heat rates sf
about 11.600 Btu.kWh. Oider units based oi aircraft Jet engincs were less

efficient, with t y pical values of full-load net heat rates being about WOW

Btu;kWh.

[nit Statistics

In North America. the utilities participate in an organization known as the

North American Electric Reliability Council (NERC) with Its headquarters in
Princeton, New Jersey. NERC undertakes the task of supporting the interutility
operating organization which publishes an operating guide and collects.
processes, and publishes statistics on generating units. NERC maintains the

Guerarinj -i i:ai!ahilitv Data S y stem (GADS) that contains over 25 years ol
data on the historical performance of generating units and related equipments.
This informatwn is made available to the indusir through special reports done

h the NERC staff for specific organizations and is also issued in an annual

report. the Generutiny .4iailahilitv Report. These data are extremely useful in

tracking unit performance. detecting trends in maintenance needs, and in

TABLE 2.3 'typical Maintenance and Forced Outage Data

Scheduled	 Equisalent

	

Maintenance	 Forced	 Availability
Requirement	 Rate	 Factor

Unit T y pe	 SILC Range (MW)	 (daysvr)	 (°)

Nuclear	 All	 67	 1,3	 72

Gas turbines	 Al!	 22	 91

Fossil-fueled	 1 99	 31	 7.2	 88

steam

	

100- 199	 42	 8.0	 85

	

20)- 299	 43	 ,	 7.2	 85

	

300-399	 52	 9.5	 82

	

400-599	 47	 8.8	 82

	

600-799	 45	 7.6	 84

	

800-999	 40	 58	 88

	

2:1000	 44	 9.0	 82

Fri)m (r'PWrWufW Unit Staiiszns 1988-1992 issued by NERC. Princeton, NJ
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planning capacity additions to maintain adequate system generation reserves.
The CADS structure provides standard definitions that are used b y the industry

in recording unit performance. This is of vital importance if collected statistics
are to be used in reliabilitv and adequacy analyses. Any useful reliabilit y analysis

and prediction structure requires three essential elements

Analytical (statistical and probability) methods and models,

2. Performance measures and acceptable standards.

3. Statistical data in a form that is useful in the analysis and prediction of

performance measures.

In the generation field. CADS performs the last two in an excellent fashion.
Its reputation is such that similar schemes have been established in other

countries based on CADS.
Table 23 contains typical generating unit data on scheduled maintenance

requirements. the "cqivaTent breed outage rate" and the--availabi
l
ity factor"

ih.jt veie taken from .i NER(' summar y of generating unit statistics for the
Period l988 1992. For mv gi'cn, specified interval (sa a year).. the NERC

definitions of the data arc:

Equialeni forced outage rate = (forced outage hours + equivalent forced
dcrated hours	 (forced outage hours + hours
III scr',ice - equivalent forced dcrated hours
(luring reserve shutdown;

Availabilit y factor (AF) = available hours	 period hours

Scheduled maintenance requirements were estunated from the NER(' data
using the reported "scheduled outage factor." the portion of the 1wriod

representing scheduled outages.
The reported. standard equi' alcrit forced outage rate for gas turbines has

been omitted since the low duty cycle of gas turbines in peaking ser ice biases
the value of effective forced outage rate (IFOR). Using the standard definition
above, the reported EFOR for all sizes of gas turbine units was 5.9' This
compares with 8.4', for all fossil-tired units. lnstcd of the ahoc definition of
EFOR, let us use a diircnt rate (call it the EFOR') that includes reserve
shutdown hours and neglects all derated hours to simplify the comparison with

the standard definition:

EFOR forced outage hours ± (forced outage hours hours in service)

or

EF OR	 forced outage hours	 (forced outage hours 1- available hours)

where the available hours are the sum of the reserve shutdown and service
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hours. The effect of the short dut y cele may be illustrated usin g the NI' RC data:

Effectue Outage
Rates (°)

Ser cc I- actor = (sersice hours)

	

El' OR	 El OR	 - period hours) t')

All fo'i1 Wilts	 57	 4.1	 605
All gas lorhines	 55.5	 3.4	 2.6

]"he significance is not that the NERC definition is "wrong:" for some analytical
models it ma not he uitahle for the purpose at hand Further, and much more
important. the N ER( iepris provide 'ufficient data and detail to adjust the
historical sjtistics for use in man y different anal y tical models.

REFERENCES

1. 1990 I'crh,rmaiice Specs (i Turbine World. Oc 1990, Vol. II. Pequot Publications-.
In,:. Fairfield, CF
I- oster-Pegg. R. W.. 	 'neratton Interactions of Ga N Turbine.Boiler and Steam
l'urhins', ASMS paper 84-i PUC-GT- 12, 1984 Joint power Generation Conicrence.



3 Economic Dispatch of Thermal
Units and Methods of Solution

This chapter introduces techniques of power system optimization. For a

complete understanding of how optim i zation problems are carried out, first

read the appendix to this chapter where th concepts of the Lagrange multiplier

and the Kuhn -Tucker conditions are introdccd.

3.1 THE ECONOMIC DISPATCH PROBLEM

Figure 3.1 shows the configuration that will be studied in this section. This

system consists of N thermal-generating units connccred to a single bus-bar

serving a received electrical load Pid. The input to each unit, shown as t,

represents the cost rate* of the unit. The output of each unit, P. is the electrical

power generated by that particular unit. The total cost rate of this system is.

01 course, the sum of the costs of each of the individual units. The essential

constraint on the operation of this system is that the sum of the output powers

must equal the load demand.
N?theatically speaking, the problem may be stated very concisel y . That

is—in obcLtic function, TT' is equal to the total cost for supplying the indicated

load. The problem is to minimize Fr subject to the constraint that the sum of

the powers generated must equal the received loud. Note that any transmission

losses are neglected and any operating limits are not explicitly stated when

formulating this problem. That is,

=	
(3.1)

0	 .-.	 132)

• Generating unit, consume fuel at a spccttic rate te.g.. MBtu h). which as noted in Chapter 2 can
be con--cried to Kb. which represents a cost rare. Starting in this chapter and throughout the
remainder of the test, we will simply use the term generating urir "cost' to refer to K h.

29
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FIG. 3A N thi mat units committed to wrvc a load of

ihis is a constrained opliii1i?tIon problem that ma y be attacked formally using
advanced calculus methods that involve the Lagrange function.

In order to establish the necessary conditions for an extreme val'.ie of the
objective function. add ihe , constraint function to the ob1eciivc Function alter
the constraint kinction h is been multiplied b y an undetermined multiplier. This

is knosn as the Lagrange /uriuion and is shown in Eq. 3.3.

-,	 FT	 i4'	 (3.3)

The necessary conditions for an cxi reinc iluc of the objective function result
when we take the first deri hive of the Lagrange function with respectqach
of the independent variables and set the derivatives equal to zero. In this ca.e,
there are N ± I variables, the N values of power output. F. plus the
undetermined Lagrange multiplier. ,. The derivative of the Lagrange function
with respect to the undetermined multiplier merely gives back the constraint
equation. On the other hand, the N equations that result. when we take the
partial derivative of the Lagrange function with respect to the power output
values one at a time give the set of equations shown as Eq 3.4.

[

'P	 dF

or

	

	 (.4)

= d1

d1

That is, the necessary condition for the existence of a miriiniuni cost-
operating condition for the thermal power system is that the incremental cost
rates of all the units be equal to some undetermined value, ,. Of course. to this
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necessary condition we must add the constraint equation that the sum of the

power outputs must be equal to the power demanded by the load, in addition.

there are two inequalities that must he satisfied for each of the units. That is,

the power output of each unit must he greater than or equal to the minimum

power permitted and must also be ks:' thait or equal to the maximum power
permitted on that particular unit.

These conditions and incqui]itles mav be summarized as shown in the set

of equations making up Eq 35

d ],

dP

!^

D—D
oad

When we recognize the inequalit' Lonstraints. then the necessary conditions

ma' he expanded slightly as shown in the set of equations making up Eq. 3.6.

N equations

inequalities
	

(3.5)

constraint

Several of the examples in this chapter use the following three generator units.

Unit I: Coal-fired steam unit: Max output = 600 MW

Min output = 150 MW

Input-output curve:

H,('MB(u) 
= 510.0 + 7.2P1 + 0,00I421,

Unit 2: Oil-fired steam unit: Max output 400 MW

Min output = 100 MW

Input output curve:

11(MBtu) 
310.0 + 7.85P 4 0.00194P
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Unit 3: Oil-tired steam unit: Max Output 2(X) MW

Mm output 50 MW

Input output curve:

wtu) 
= 78 (1 ^ 7.97P3 + 0.00482P

EXAMPLE 3A

Suppose that we wish to determine the economic operating point for these three

units when delivering a total of 850 MW. Before this problem can be so)ed,
the fuel cost of each unit must he specified. Let the following fuel costs be in
efflcI

Unit 1:	 fuel cost	 1.1 ?,:'MBtu

Unit 2:	 fuel cost = 1.0 , MBtu

Unit 3:	 fuel cost = 1.0 R/MBtu

Then

	

= H, (P,) 1.1 .=. 561	 7.92?,	 O.001 562P' Rh

I 2 (P) = 11(P) x 1,0	 310	 7.85P2 +	 0.()194P Rh

F 1 iP 3 ;	 H 1 (P) < 1.0 = 78 - 7.97P, ^	 0.00482P Rh

Using Eq. 3.5. the conditions for an optimum dispatch are

F 
= 7.92 + 0.003124P1 =

dP1

= 7.85 H- 0.00388P =
d P2

= 7 97 + 0.00964P2 =
d P3

and

P1 + P2 + P3 = 850 MW

Solving for L one obtains

= 9.148 /MWh
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and then solving for P1 . P. and P3,

P1 393.2 MW

P2 = 334.6 MW

P3 = 122.2 MW

Note that all constraints are met that is. each unit is within its high and low
limit and the total output when summed over all three units meets the desired
850 MW total.

EXAMPLE 38

Suppose the price of coal decreased to 0.9 R.MBtu. The fuel cost function for
unit 1 becomes

F, (P,) = 459 -- 6.481-'1 ± 0.00128P

If one goes about the solution exactly as done here, the results are

= 8.284 gMWh

and
P1 = 704.6 MINN'

P2 = 111.8MW

= 32.6 MW

This solution meets the constraint requiring total generation to equal 850 MW.
but units I and 3 are not within limit. To solve for the most economic dispatch
white meeting unit limits, use Eq. 3.6.

Suppose unit I is set to its maximum output and unit 3 to its minimum
output. The dispatch becomes

P1 = 600 MW

P2 = 200 MW

P1 = 50 MW

From Eq. 3.6, we see that 2 must equal the incremental cost of unit 2 since it
is not at either limit. Then

dP3 [Pz=200 

=8.626/MWh
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Next. c.ikukie the incremental cost for units I and 3 to see if ihey meet the
conditions 01 tq.

=8.016R.MWh
dP? PJO
dP	

8.452 R, MWh
dP!350

Note that the incremental cost for unit 1 is less than 1. so unit I should he at
ts maximum. Howecr. the incremental cost for unit is not greater than 1,
so muL . should not he forced to its minimum. 1 hm, to find the optimal
dmspatch. allow the incremental cost at units 2 and . to equal I as follows.

P — ôfX)MW

d F7	 7 85 + O.(388P, fl-,.
tiP,

dF

dP	
7.97 + 0.(x)964P, 2

:	 8() - ' 1 250 MW

which results ri

i. = 8.576 R/MWh

and

= 187.1 MW

P3 = 62.9MW

Note that this dispatch meets the conditions of Eq. 3.6 since

= 8.016 LMWh
dP p.

which is less than 2, while

dF,	 dF,
and

dP	 dP3

both equal ;..
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3.2 THERMAL SYSTEM DISPATCHING WITH NETWORK
LOSSES CONSIDERED

Figure 3.2 shows syinboIicall an all-thermal power generation system connected
to an equivalent load bus through a transmission network. The economic-
dispatching problem associated with this particular configuration is slightly
more complicated to set up than the previous case. This is because the constraint
equation is now one that must include the network losses. The objective
function. F1 , is the same as that defined for Eq. 3.1. However, the constraint
equation previously shown in Eq .3.2 must now be expanded to the one shown
in Eq. 3.7.

+	 -	 = 4) = 0	 (3.7)

The same procedure is followed in the formal sense to establish the necessary
conditions for a minimum-cost operating solution. The Lagrange function is
shown in Eq. 3.8. In taking the derivative of the Lagrange function with respect
to each of the individual power outputs. Pi . it must be recognized that
the loss in the transmission network, is a function of the network
impedances and the currents flowing in the network. For our purposes. the
currents will be considered only as a function of the independent variables P
and the load Taking the derivative of the Lagrange function with respect
to an y one of the N alues of P results in Eq. 3.9. There are N equations of
this type to he satisfied along with the constraint equation shown in Eq. 3.7.
This collection. Eq. 3.9 plus Eq. 3.7, is known collectively as the coordination

equations.

	= FT 1- /.4)
	

(3.8)

e y, CIE 	 —!=0	 (3.9)
?P dF	 \	 3PJ

or
dF	 .--+/. ------A
dP	 iP

N

	+ P1.11 —	 Pi=

It is much more difficult to solve this set of equations than the previous set
with no losses since this second set involves the computation of the network
loss in order to establish the validity of the solution in satisfying the constraint
equation. There have been two general approaches to the solution of this
problem. The first is the development of a mathematical expression for the
losses in the network solely as a function of the power output of each of the
units. This is the loss-formula method discussed at some length in Kirchmayer's
Economic Operation of Power Systems (see Chapter I, reference 2). The other
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F1_	 I

Transm ission

	

H

--T	

network with	
P^ld

FIG. 3.2 :V thermal units sering load through tnLnSmaSIoil netkOrk.

basic approach to the solution of this problem is to incorporate the power flow

equations as essential constraints in the formal establishment of the optimiza-

tion problem. This general approach is known as the optima! pver J!os.

EXAMPLE 3(:

Siarting with the same units and fuel COStS as in Example 3A. we will include

a simplified loss expression.

-	 + rj(x)091` 2 + 0.00012P

This simpliticd loss formula will suffice to show the dililcultics in calculating a
dispatch for which losses are accounted. Note that real-world loss formulas are
more complicated than the one used in this example.

Applying Eqs. 3.8 and 3.9.

dF(L _')
dP	 (I

becomes
7.92 + 0.003124P, = ).[l - 2(0.00003)P1]

Similarly for P, and P3.

7.8 -i- 0.00388P = 41 - 2(000009)P2J

7.97 + 000964P3 = )Jl - ,2(0.00012)P3J

and
P1 + P2 + P - 850 -- P, = 0
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We no longer have a set of linear equations as in Example 3A. This
necessitates a more complex solution procedure as follows.

Step I Pick a set of starting values for P 1 . P2 . and P3 that sum to the load.

Step 2 Calculate the incremental losses 	 as well as the total losses
P. The incremental losses and total losses will be considered constant
unti we return to step 2.

Step 3 Calculate the value of that causes P. P2 . and P3 to sum to the total

load plus losses.. This is now as simple as the calculations in Example
3A since the equations are again linear.

Step 4 Compare the P1 . P,. and P3 from step 3 to the values used at the start

of step 2. If there is no significant change in any one of the values, go
10 step 5. otherwise go hack to step 2.

Step S [)one.

Using this procedure, we obtain

Step I Pick the P3 . P,. and P3 starling values as

= 400.0 MW

P2 = 300.0 MW

P = 150.0 MW

Step 2 Incremental losses are

(Pl 
= 2(0.00003)400 = 0.0240

= 2W.00009)300 = 0.0540

ap3 
= 2(0.00012)150 = 0.0360

Total losses are 15.6 MW.
Step 3 We can now solve for ), using the following:

7.92 + 0.003124P1	(I - 0.0240) = (0.9760)

7.85 + 0.00388P2 = ). ( l - 0.0540) = A(0.9460)

7.97 + 0.00964P3 = A(l - 0.0360) = i.(0.9640)

and

P+P2+P3-50--l5.6=P1+P2+P3-865.6-0
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These equation\ are now linear, so we can	 ie for ,c directlY The

UCSU1tS are

9.5252 MWh

and the resulting generator outputs are

	

P	 440.68

	

1',	 299.12

1 3 = 125.77

Step 4 Since these values fur P1 . P. and P ate qwre different from the starting

values.	 cv. II return to step 2.

Step 2 The itieremental los s es are recalculated with the new generation s'a1uc

2W.00440.0 ft 0264
P1

= 0000(YY99 i

	

2W.000l 2l1 25.7	 0(130!

Total Iose are 15.7 MW.

Step 3 The ne incremental losses and total iuscs are incorporated into the

equations, and a new alue of and T-. P. and P are solved for

	

7.92 4 0.003124?	 ft 0264 = (0.9 7 36)

	7.85 + 0.00388P, = )i I	 u.053i =

7,97	 0.00964P	 0.0301 = A(0.9699)

I	 P + P - 850 15.78 = P + J 4	 - 86578 0

resulting in. =- 9.5275 R, MWh and

P1 = 433.94 MW

P2 = 3(W)]! MW

P3 131.74 MW

Fable 3.1 summarizes thc iterative process used to solve this problem
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1ABLT 3.1 lteraiie Process Id 10 Sohe Example 3

cai	 (MW)	 I MW)	 MW)

Start	 40000	 30000	 150.00
440.68	 299.12	 125.77

2	 433.94	 300.11	 131.74
3	 435.87	 299.94	 130.42
4	 43413	 299.99	 130.71

I.OsM

(MW)	 (RMWh)

1560	 9.5252
15.78	 9.5275
15.84	 9.5285
15.83	 9.5283
15.83	 Y.52'4

3.3 THE LAMBDA-ITERATION METHOD

Figure 33 is a block diagram of the lambda-iteration method of solution for
the all-thermal, dispatching problem-neglecting losses- We can approach the
solution to this problem by considering a graphical technique for solving the
problem and then extending this into the area of computer algorithms.

Suppose we have a three-machine system and wish to find the optimum

START

SET

-4
CALCULATE P,
FOR i=1 ... N

CALCULATE
N

c= PLQ -	 P,
1= 1

<FIRST ITERATION >YES

NO

7-

<ITOLERANCE> I PRINT SCHEDULEJ

PROJECT X	
END

FIG. 33 Economic dispatch b y the lambda-iteration method.
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dF
P2	 dP

(R/MWh)	 (VMWh)	 (/MWh)

HC. 3.4 Graphical solution co economic dispatch

economic operat i ng point. one approach would be to plot the incremental cost
characteristics for each of these three units on the same graph, such as sketched
in Figure 34. In order to establish the operating points of each of these three
units such that we have minimum cost and at the same time satisf y the specified
demand, we could use this sketch and a ruler tcl find the solution. That is, we
could assume an incremental cost rate (.) and find the power outputs of each
of the three units for this value of incremental cost.

Of course, our first estimate will be incorrect. If we have assumed the value
of incremental cost such that the total power output is too low, we must increase
the i. value and tr y another solution. With two solutions. we can extrapolate
(or interpolate) the two solutions to get closer to the desired value of total
received power (see Figure 35).

By keeping track of the total demand versus the incremental cost, we can
rapidly find the desired operating point. If we wished, we could manufacture a
whole series of tables that would show the total power supplied for different
incremental cost levels and combinations of units.

This same procedure can be adopted for a computer implementation as
shown in Figure 3.3. That is, we will now establish a set of logical rules that
would enable us to accomplish the same objective as we have just done with
ruler and graph paper. The actual details of how the power output is established
as a function of the incremental cost rate are of very little importance. We
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Error

(2)

FIG. 3.5 Lambda projections

could, for example, store tables of data within the computer and interpolate
between the stored power points to find exact power output for a specified
value of incremental cost rate. Another approach would be to develop an
analytical function for the power output as a function of the incremental cost

rate, store this function (or is coefficients) in the computer, and use this to
establish the output of each of the individual units.

This procedure is an iterative type of computation, and we must establish
stopping rules. Two general forms of stopping rules seem appropriate for
this application. The first is shown in Figure 3.3 and is essentially a rule
based on finding the proper operating point within a specified tolerance. The
other, not shown in Figure 3.3. involves counting the number of times through
the iterative loop and stopping when a maximum number is exceeded.

The lambda-iteration procedure converges very rapidly for this particular
type of optimization Problem. The actual computatioaal procedure is slightly
more complex than that indicated in Figure 3.3, since it is necessary to observe
the operating limits on each of the units during the course of the computation.
The well-known Newton-Raphson method may be used to project the incre-
mental cost value to drive the error between the computed and desired
generation to zero.

EXAMPLE 3D

Assume that one wishes to use cubic functions to represent the input -output
characteristics of generating plants as follows.

H(MBtuh) = A ± BP + CP 2 + VP 3	(P in MW)



'I

74965

1285.0
1.0

B	 C

6Q5	 9.68	 30

7.053	 7.375 >'
533	 1.04	 <IU

D

3.27 x 30
8

< 10 -1

Unit i
I l int 2
Unit 3
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I- or the three units. flnd the optimum schedule using the lambda-iteration

method.

Aume thc mel cost to be 1.0 R MBtu for each unit and unit limits as

1olto

1211 \\' -5 P	 80() MW

300 MW 	 1200 MW

275 MW	 - 3100 MW

Iwo sample calculations are shown, both using the flowehai t in Figure 3.3.
n this caeul:ition. the value for i, on the second iteration is aiwa) s set at 10°;,

jhvc or heloss the starting value depending on the sign of the error: for the
remaining teratlons. lambda is proccted as in Figure 3.5.

The first esample shows the advantage of starting near the optimum value.

= 2500 MW

= t.0 g/Mwh

The second example shows the oscillatory problems that can be encountered

ssuh a lambda-iteration approach.

2500 MW

30.0 .; MWh

Iteration

50001)
2	 S000

8.5781
4	 8.5566

5

Total Generation
(M \V)

1731.6
27950
2526.0
2497.5
2500.0

Pt	 P3

	

494.3	 596.7	 640.6

	

8000	 1043.0	 952.0

	

734.7	 923.4	 867.9

	

726A	 931 7	 859.7

	

726.9	 9327	 860.4



Pt

800.0
800.0
320,0
551.7
800.0
800.0
320.0
707.3
735.1
726.9

112

1200.0
1148.3
300.0
674.5

1200.0
1120.3
300.0
886.1
924.0
912.8

P3

1100.0

1026.5

275.0
694.4

1100.0
1006.7
275.0
841.7
868.3
$60.4
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Iteration

I
I
4

6

8
9

10

10.0000
9.0000
5.2068
8.1340
9.7878
8.9465
6.8692
8.5099
8.579]
8.5586

Total Generation
(MW)

3100.0
2974.8

895.0
19206
3100.0
2927.0

895.0
2435.0
2527,4
2500.1

3.4 GRADIENT METHODS OF ECONOMIC DISPATCH

Note that the lambda search technique always requires that one be able to find
the power output of a generator, given an incremental cost for that generator.
In the case of a quadratic function for the cost function, or in the case where
the incremental Cost function is represented by a piecewise linear function, this
is possible. However, it is often the case that the cost function is much more
complex, such as the one below:

F(P) = A + BP + CP 2 ± D exp[

In this case, we shall propose that a more basic method of solution for the
optimum be found.

3.4.1 Gradient Search

This method works on the principle that the n,initnum of a function. 1(x), can
be found by a series of steps that alwa ys take us in a downward direction. From
any starting point, x 0 , we may find the direction of-steepest descent" by noting
that the gradient off, i.e.,

('f

Vf=	 (3. I ']
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al'.vays points in the direction of maximum ascent. Therefore, if we want to
move in the direction of maximum descent, we negate the gradient. Then we

should go from x 0 to x using;

x' =x° — Vf X	 (3.11)

Where is a scalar to allow us to guarantee that the process converges. The

best value of must he determined b y experiment

3.4.2 Economic Dispatch by Gradient Search

In the case of power system economic dispatch this becomes;

f =
	 (3.12)

and the object is to drive the function to its minimum. Howe'.er, Ae have to

he concerned with the constraint function:

=	
-	 i	

(3.13)

lo solve the economic dispatch problem which nvolves minimizing the
objective function and keeping the equality constraint, we must apply the
gradient technique directly to the Lagrange function itself.

The Lagrange function is:

PAP,) +	 -	 (3.14)

and the gradient of this [unction is:

d

d P

d--
(-'P2	 dP,	

(3.15
Ut	

F(P) -
(P3	 dP

(1,
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The problem with this formulation is the lack of  guarantee that the new points
generated each step will lie on the surface <D. We shall see that this can be
overcome by a simple variation of the gradient method.

The economic dispatch algorithm requires a starting . value and starting
values for P1 . P,, and P3 . The gradient for £" is calculated as above and the
new values of . P1 . P.. and P3, etc., are found from:

- x0 -	 (116)
where the vector x is:

P1

P2

x=P
	

(3.17)

I.

EXAMPLE 3E

Given the generator Cost functions found in Example 3A, solve for the economic
dispatch of generation with a total load of 800 MW.

Using 100 and starting from P = 300 MW, p9 = 200 MW. and P" =

300 MW, we set the initial value of;. equal to the average of the incremental
costs of the generators at their starting generation values. That IS:

=	 [J(P)]

This value is 9.4484.
The progress of the gradient search is shown in Table 3.2. The table shows

that the iterations have led to no solution at all. Attempts to use this formulation

TABLE 3.2 Economic Dispatch by Gradient Method

Iteration	 P1	 P3	 P3

300	 200	 300	 800
300.59	 200.82	 298.59	 800

3	 301.18	 201.64	 297.19	 8000086
4	 301.76	 202.45	 295.8	 800025
5	 302.36	 203.28	 294.43	 800.077

10	 30916	 21.19	 291.65	 81199

Cost

9.4484	 7938.0
9.4484	 7935
94484	 7932
9.4570	 7929.3
9.4826	 7926.9

16.36	 8025.6
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will result in difficult y as the gradient cannot guarantee that the adjustment
to the generators will result in a schedule that meets the correct total load of

800 MW.
A simple variation of this technique is to realize that one of the cenerators

is always a dependent variable and remove it from the problem. In this case,

we pick P and use the Following:

P3 = o0 - P1

Then the total Cost, which N to he minimiLed. is:

= F,i Pt	 ± f(P3 )	 F(PI) ± TtP) ± F3 	 -	 .- P.

Note that this function stands b y itself as a lunction (it two variables with no
load-generation balance constraint (and no ).) l'he cost can he minimized by
a grad lent met hod and in this ease the gradient is:

[ d	 1
	

H. iI1
Cost •' -

	

dP1	

I I'dP,P	

d/

d	 dF.	 dE ;
Costst 	-

dP	 JdP.,

Note that this g radient cues to the zero vector when the incremental cost at
generator 3 is equal to that at generators I and 2 The gradient steps are
Performed in the same manner as previously. here:

5 I
	 5:0 -- V Cost x '.

and

[P.-I

=
P,

Each time a gradient step is made, the generation at generator 3 N set to

800 minus the sum of the generation at generators 1 and 2. This method
is often called the "reduced gradient" because of the smaller number of
variables

EXAMPLE 3F

Reworking example 3b with the reduce] gradient we obtain the results shown
in Table 3.3 This '.obition is much more i.:ihle and i , conversing on the

optimum solution.



TABLE 3.3 Reduced Gradient Results (OE 10)

Iteration	 P

300	 200
2	 32004	 22236
3	 135.38	 239.76
4	 34"018	 253.33
5	 355.97	 26394

Ii)	 380.00	 304,43
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Cost

300	 800	 7938.0
257.59	 800	 7858.1
224.85	 800	 7810.4
199.58	 800	 7781.9
180.07	 800	 7764.9

115.56	 804)	 7739.2

15 NEWTON'S METHOD

We ma y wish to go a further step be yond the simple gradient method and try
to so!e the economic dispatch by observing that the aim is to always drive

= 0	 (3.l)

Since this is a vector function, we can formulate the problem as one of finding
the correction that exactly drives the gradient to zero (i.e., to a vector, all of
whose elements are zero). We knowhow to find this, however, since we can
use Newton's method. Newton's method for a function of more than one
variable is developed as follows.

Suppose we wish to drive the function g(x) to zero. The function g is  vector
and the unknowns, x. are also \ectors. Then, to use Newton's method, we

ohscr Cr

g(x 4 .x) = gx) t [q'(x)Ix = 0
	

(119)

If we let the function be defined as:

q(X 1 . \ 2..\

= 92(x,	 .
	 (3.20)

g 3(x,, x 2, .'c)

then
Og	 9i	 'i

q'(xj =
	 CX	 C., C.3	

(3.21)

which is the familiar Jacobian matrix. The adjustment at each step is then:

AN = -	 )]'g(x)	 i3.22)
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Now, if we let the a function he the gradient vector V" we get:

AX =	 (3.23)1 C	 j

For our economic dispatch problem this takes the form:

N	 /
= 	 Fil + P. Y	 (3.24)

and V( is as It was defined before. The Jacobian matrix now becomes one
made up of second derivatives and is called the Hessian matrix:

	

[d 2 2'	 d1	 1
dx	 dx1 dx,

d2°

S	 1 =	 2.X1	 (125)
L	 i

d22'

d).dx

Generally. Newton's method will solve for the correction that is much
closer to the minimum generation cost in one step than would the gradient
method.

EXAMPLE 3C

In this example we shall use Newtons method to solve the same economic
dispatch as used in Examples 3E and 3F.

The gradient is the same as in Example 3E. the Hessian matrix is:

	

0	 0	 —1
dP

0	 0	 —1
[HJ =	 dt'

0	 0	 —1
d P

'-1	 --1	 —1	 C
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In this example, we shall simply set the initial 2 equal to 0, and the initial

generation values will be the same as in Example 3E as well. The eradient of

the Lagrange function is:

8.8572

8.6260
=

10.8620

0

The Hessian matrix is:

	

0.0031	 0	 0	 -1

	

0	 0.0039	 0	 -.1
[H] =

	

0	 0 0.0096 —1

—I	 —1	 —i	 0

Solving for the correction to the x vector and making the correction, we obtain

P:1	 369.b871

	

P2	 315.6965

	

P3	 114.6164

	

;	 9.0749

and a total generation cost of 7738.8. Note that no further steps are necessary
as the Newton's method has solved in one step. When the system of equations
making up the generation cost functions are quadratic, and no generation limits
are reached, the Newton's method will solve in one step.

We have introduced the gradient, reduced gradient and Newton's method
here mainly as a way to show the variations of solution of the generation
economic dispatch problem. For many applications, the lambda search technique
is the preferred choice. However, in later chapters, when we introduce the
optimal power flow, the gradient and Newton formulations become necessary.

3.6 ECONOMIC DISPATCH WITH PIECEWISE LINEAR
COST FUNCTIONS

Many electric utilities prefer to represent their generator cost functions as single
or multiple segment linear cost functions. The curves shown in Figure 3.6 are
representative of such functions. Note that were we to attempt to use the
lambda-iteration search method on the single segment cost function, we would

always land on Pmin or Pm unless 2. exactly matched the incremental cost at
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P.I.	 P_.x

which point the value of P would he undetermined. To resolve this problem,
we perform the dispatch differently.

For all units runnin g, we start with all of theni at P,,,,,, then begin to raise
the output of the unit with the lowest incremental cost segment. If this unit hits
the right-hand end of a segment, or if it hits I,, we then find the unit with
the next lowest incremental cost segment and raise its output. Eventually, we

will reach a point where a unit's output is being raised and the total of all unit

outputs equals the total load, or load plus tosses. At that point, we assign the
last unit being adjusted to have a generation which is partiall y loaded for one
segment. Note, that if there are two units with exactly the same incremental
cost. we stmplv load them equally.

To make this procedure ver y fast, we can create a table giving each segment of
each unit its MW contribution (the right-hand end MW minus the left-hand

end MW). Then we order this table by ascending order of incremental cost By
searching from the lop down in this table we do not have to go and look for the

next segment each time a new segment is to be chosen. This is an extremely fast
form of economic dispatch.
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3.7 ECONOMIC DISPATCH USING DYNAMIC PROGRAMMING

As we saw in Chapter 2 when we considered the valve points in the
input-output curve (for example, Figure 26), the possibility of nonconvex
curves must be accounted for if extreme accuracy Is desired. If noneonex

input--output curves are to be used, we cannot use equal incremental cost
methodology since there are multiple values of MW output for any given value

of incremental cost.
Under such circumstances, there is a way to find an optimum dispatch hich

uses dynamic programming (DP). If the reader has no background in DP.
Appendix 38 of this chapter should be read at this time.

The dynamic programming solution to economic dispatch is done as an
allocation problem, as given in Appendix 3B Using this approach, we do not
calculate a single optimum set of generator MW outputs for a specific total
load supplied- -rather we generate a set of outputs, at discrete points, for an

entire set of load values.

EXAMPLE 3H

There are three units in the system all are on-line. Their input-output

characteristics are not smooth nor convex. Data are as follows

Costs (.hour)

Power Levels (MW)

F1	 F,	 F

...-

	

0	
cc

	

50	 810	 750	 806

	

75	 1355	 1155	 1108.5

	

100	 1460	 1360	 1411

	

125	 1772.5	 1655	 11704.5

	

150	 2085	 1950	 1998

	

175	 2427.5	 x-	 2358

	

200	 2760	 X cc

	

225	 cc	 cc

The total demand is D = 310 MW. This does not fit Lhe data exactly, so that
we need to interpolate between the closest values that are available from the

data. 300 and 325 MW.
Scheduling units I and 2, we find the minimum cost for the function

= F1 4D -_ P.,) ± F2(P2)



D
(MW)

0
50
75

100
125
150
175
200
225
250
275
300
325
350

-= cc
F1 (D)
(ph)

cc

	810	 cc
	1355	 'D

	1460	 cc
1772.5 cc

	2085	 cc
	2427.5	 CK.

	2760	 •x
cc

	

cc	 cc

	

cc	 cc
i2.

x.
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over the allowable range of P2 and for 100 D < 350 MW. The search
data are given in the table below. We need to save the cost for serving
each value of D that is minimal and the j oad level on Unit 2 for each demand
level.

50	 75	 100	 125	 l50(MW)
750	 1155	 1360	 1655	 1950(R/h)

.12
(,h)

	

cc	 cc	 cc	 cc
cc	 cc	 cc	 cc	 or,	 cc
cc	 cc	 cc	 cc	 cc	 cc

156(1	 cc	 cc	 cc	 cc	 1560
2105	 1965	 cc	 cc	 cc	 1965
2210	 2510	 2170	 cc	 cc	 2170

	

3177.5 2615	 2715	 2465	 cc	 2465
234	 2927,5 2820	 3010	 2760	 2760
31775	 3240	 3125	 3115	 3305	 3115
3510	 3582.5 3445	 3427	 3410	 3410

GO	 3915	 3787.5	 3740	 37225 3722.5
cc	 cc	 4120	 40815 4025	 4035
cc	 cc	 cc	 4415	 4377,5 43775
cc	 cc	 cc	 cc	 4710	 4710

P2.

(MW)

50
75

100
125
150
125
150
ISO
150
150
ISO

This results in:

D	 f2

50	 cc
100	 1560
125	 1965
154)	 2170
175	 2465
200	 2760
225	 3115
250	 3410
275	 3722.5
300	 4035
325	 4377.5
350	 4710
375	 cc

Loading of unit 2 at minimal cost level.

P2.

50
75

100
125
150
125
ISO
150
ISO
150
ISO
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Next we minimize
= f2(D P) + F3(P3)

for 50 f, P3 < 175 MW and D 300 and 325 MW.. Scheduling the third unit
for the two different demand levels only requires two rows of the next table.

	

P3 = 0	 50	 75	 100	 125	 150	 175 (MW)

	

F3(P3)= x	 806	 11085 1411	 17045 1998 2358 JR./h)

D

	

f3	 P
(MW) (./h) 

300	 4035	 cc 4216	 4223.5 4171 4169,5 4168 4323 4168 	 150

325	 4377,5 cc 4528.5 4518.5 4526 4464	 4463 4528 4463	 150

The results show:

Cost	 P	 Pi	 P

	

300	 4168	 150	 100	 50

	

325	 43	 150	 125	 50

so that between the 300 and 325 MW demand levels, the marginal unit is unit

2. 
(That is. it is picking up all of the additional demand increase betwcefl 300

and 325 MW.) We can, therefore, interpolate to find the cost at a load level of
310 MW, or an output level on unit 2 of 110 MW. The results for a demand

level of 310 MW are:

P1 = 50, P, = 110, and P = 150 for a total cost of 4286 K;h

One problem that is common to economic dispatch with dynamic pro-
gramming is the poor control performance of the generators. We shall deal
with the control of generators in Chapter 9 when we discuss automatic

generation control (AUC). When a generator is under AGC and a small
increment of load is added to the power system, the AGC must raise the output
of the appropriate units so that the new generation output meets the load and
the generators are at economic dispatch. In addition, the generators must be
able to move to the new generation value within a short period of time.
However, if the generars are large steam generator units, they will not be
allowed to change generation output above a prescribed "maximum rate limit"
of so many megawatts per minute. When this is the case. the AGC must allocate
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the change in generation to many other units, so that the load change can be
accommodated quickly enough.

When the economic dispatch is to be done with dynamic programming and
the cost curves are nonconvex, we encounter a difficult problem whenever a
small increment in load results in a new dispatch that calls for one or more
generators to drop their output a great deal and others to increase a large
amount. The resulting dispatch may be at the most economic values as
determined y the DP, but the control action is not acceptable and will
probably violate the ramp rates for several of the units.

The only way to produce a dispatch that is acceptable to the control system,
as well as being the optimum economically, is to add the ramp rate limits to
the economic dispatch formulation itself. This requires a short-range load
forecast to determine the most likely load and load-ramping requirements of
the units. This problem can be stated as follows.

	

Given a toad to be supplied at time increments t	 i .. t,,,, with load levels
of	 and N generators on-line to supply the load:

	

=	 (3.26)

Each unit must obe y a rate limit such that:

:'' =P+AP	 (3.27)
and

; (3.28)

Then we must schedule the units to minimize the cost to deliver power over
the time period as:

: 

N
F(P)	 (3.29)

subject to:

=	 d for t = I ..	 (3.30)

and

= P -4- :\I;	 (3.31)
with

—.,:P' !^ AP (3.32)

This optimization problem can be solved with dynamic programming and the
"control performance" of the dispatch will be conkkrably better than that
using dynamic programming and no ramp limit constraints (see Chapter 9,
reference 19).
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3.8 BASE POINT AND PARTICIPATION FACTORS

This method assumes that the economic dispatch problem has to be solved
repeatedly by moving the generators from one economically optimum schedule
to another as the load changes by a reasonably small amount. We start from

a given schedule---the base point. Next, the scheduler assumes a load change

and investigates how much each generating unit needs to be moved (i.e.,
"participate' in the load change) in order that the new load be served at the

most economic operating point.
Assume that both the first and second derivatives in the cost versus power

output function are available (i.e., both F and F' exist). The incremental cost

curve of the	 unit is given in Figure 3.7. As the unit load is changed by an

amount AI. the system incremental cost moves from .° to ° + 	 For a small

change in power output on this single unit.

= Ai. F'(?)AF	 (333)

This is true for each of the N units on the system. so that

A.;.
AP, =

F;

=

A).
AP, =

F N

The total change in generation =change in total system demand) is, of course,

FIC. 3.7 Relationship of 	 and AP
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the sum of the individual unit changes, Let P be the total demand on the
generators (where P =	 -t P). then

= 1P + AP, + . +

=	
(F)	

(3.34)

The earlier equation, 3,33, can be used to find the part ici pation fact or for each
unit as follows.

(A)

	 (l/F')	
(3.35)

Pj

API 	V
-

The computer implementation of such a scheme of economic dispatch is
straightforward. It might be done by provision of tables of the values of F as
a function of the load levels and devising a simple scheme to take the existing
load plus the projected increase to look up these data and compute the factors.

A somewhat less elegant scheme to provide participation factors would
i nvolve a repeat economic dispatch calculation at Pg ± APD . The base-point
economic generation values are then subtracted frora the new economic
generation values and the difference divided by AP, to provide the participation
factors. This scheme works well in computer implementations where the
execution time for the economic dispatch is short and will always give consistent
answers when units reach limits, pass through break points on piecewise
linear incremental cost functions, or have nonconvex cost curves.

EXAMPLE 31

Starting from the optimal economic solution found in Example 3A, use the
participation factor method to calculate the dispatch for a total load of
900 MW.

Using Eq. 3.24.

-	 ..	 320.10047

	

\P0	 (0003124) 1 + (0.00388)	 + (0.00964) '	 681.57

	

Similarly,	
AP, - (0.00388)	

= 0.38
A P,	 681.57

AP, = 103.73 = 0.15

AP, 681.57

PD 900 - 850 = 50
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The new value of generation is calculated using

Pnr, = p	 +- (APD	 for	 I. 2, 3APj))

Then for each unit

P,, = 393.2± (0.47)(50)	 416.7

334.6 - (0.38)(50) = 353.6

= 122.2 i- 0.15X50) = 129.7

3.9 ECONOMIC DISPATCH VERSUS UNIT COMMITMENT

At this point, it may be as well to emphasize th
e essential difference between

the unit commitment and economic dispatch problem. The economic dispatch

problem assumes that there are N units alre.ad connected to the system ftc
purpose of the economic dispatch problem is to find the optimum operating
policy for these N units. [his is the problem that we have been investigating

sO Ear in this text.
On the other hand. the unit commitment problem is more complex. We may

assume that we have N units available to us and that we have a forecast of the
demand to be served. The question that is asked in the unit commitment
problem area is approximately as follows.

Given that there are a number of subsets of the complete set of N
generating units that would satisfN the expected demand. shich of these
subsets should he used in order to provide the minimum operating cost?

................................

This unit commitment problem ma y be extended over some period of tune,

such as the 24 h of a day or the 16 h of a week. The unit commitment problem
is a much more difficult problem to solve. The solution procedures involve the
economic dispatch problem asasuhprohlem. That is. for each of the subsets
of the total number of units that are to he tested, for an y given sct of them

connected to the load, the particular subset should be operated in optimum
economic fashion. This will permit finding the minimum operating cost for that
subset, but it does not establish which of the subsets is in fact the one that will
give minimum cost over a period of time.

A later chapter will consider the unit commitment problem in some detail.

The problem is more difficult to solve mathematical l y since it involves Integer
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ariables. That is, generating units must be either all on or all off. (How can
you turn a switch half on?)

APPENDIX 3A
Optimization within Constraints

Suppose you are trying to maximize or minimize a function of several variables.
It is relatively straightforward to find the maximum or minimum using rules
of calculus. First, of course, you must find a set of values for the variables where
the first derivative of the function with respect to each variable is zero. In
addition, the second derivatives should he used to determine whether the
solution found is a maximum, minimum, or a saddle point

In optimizing a real-life problem, one is usuall y confronted with a function
to he maximized or minimized, as well as numerous constraints that must he
met. The constraints, sometimes called side conditions, can be other functions
with conditions that must be met or they can be simple conditions such as
limits on the variables themselves

Before we begin this discussion on constrained optimization, we will put
down some definitions. Since the objective is to maximize or minimize a
mathematical function, we will call this function the objective function The
constraint functions and simple variable limits will be lumped under the term
constraints. The region defined by the constraints is said to be thefeasih/e region
for the independent variables. If the constraints are such that no such region
exists, that is. there are no values for the independent variables that satisfy all
the constraints then the problem is said to have an infeasible solution. When
an optimum solution to a constrained optimization problem occurs at the
boundary of the feasible region defined by a constraint, we say the constraint
is binding. If the optimum solution lies away from the boundary, the constraint
is nonbinding.

To begin, let us look at a simple elliptical objective function.

f(x 1 . x.) = 0.25x 4.	 (3A. 1)

This is shown in Figure 3.8 for various values of F.
Note that the minimum value I can attain is zero, but that it has no finite

maximum value. The following is an example of a constrained optimization
problem.

Minimize:	 f(x1, x 2) = 0.25x + x

Subject to the constraint:	 w(x 1 , x 2 ) 0	 (3A.2)
Where:	 W(X 1 . v 2 ) = - X i -

This optimization problem can be pictured as in Figure 3.9.



X2

FIG, 3.8 Elliptical objective function-

X7

FIG. 3.9 Elliptical objective junction with equality constraint.

0
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We need to observe that the optimum as pictured, gives the minimum value
for our objective function, f. while also meeting the constraint function. w. This
optimum point occurs where the function I is exactly tangent to the function
w. Indeed, this observation can be made more rigorous and will form the basis
for our development of Lagrange multipliers.

First, redraw the function f for several values off around the optimum point.

At the point (x 1 . x'), calculate the gradient vector off. This is pictured in Figure

110 as Vf(x 1 . v'2 ). Note that the gradient at (x 1 , x) is perpendicular to f

but not to w, and therefore has a nonzero component along w. Similarly, at

the point (x, x') the gradient of f has a nonzero component along w. The

nonzero component of the gradient along (U tells us that a small move along

(0 
in the direction of this component will Increase the objective function.

Therefore, to minimize f we should go along w in the opposite direction to the
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VW

FR;. 3.10 Gradients near a constrained optimum.

component of the gradient projected onto w. At the optimum point, the gradient
of I is perpendicular (mathematicians say "normal") to w and therefore there
can be no mproemcnt in f by moving off this point. We can solve for
this optimum point mathematically by using this "normal" property at the
optimum. To guarantee that the gradient of f(i.e, VI) is normal low, we simply
require that Wand the gradient of (t), Vw, be linearly dependent vectors. Vectors
that are linearl y dependent must "line up" with each other (i.e., they point in
exactl y the same or exactly the opposite direction), although they may be
different in magnitude. Mathematicall y , we can then Set up the following
equation.

VI + ,.Vw = 0	 (3A.3)

That is, the two gradients can be added together in such a way that they cancel
each other as long as one of them is scaled. The scaling variable, i., is called a
Lagrange multiplier, and instead of using the gradients as shown in Eq. 3A.3.
we will restate them as

X2	 = f(x 11 2) + o(x, x,)	 (3A.4)

This equation is called the Lagrange equation and Consists of three variables.
.x,. and ). When we solve for the optimum values for x 1 and x2.

we will automatically calculate the correct value for ).. To meet the conditions
set down in Eq. 3A.3, we simply require that the partial derivative of

with respect to each of the unknown variables, x 1 , x 2 , and ). be equal to
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At the optimum
	 = 0

(3 A.
GX2

(=o

To show how this works, solve for the optimum point for the sample problem

using Lagrange's method.

(x 1 ,x,, ) = 0- 25-X +X2 +	 -

= O.5x 1 - = 0

(3.	 -= 2,c-, - A. = 1)
CX

	= 5.- x,--	 = 0
( ,..

Note that the last equation in (3A.6) is simply tht,. original constraint equation.

The solution to Eq. 3A.6 is

= 4

	

x 2 = 1
	 (3A.7

= 2

When there is more than one constraint present in the problem. the optimum
point can be found in a similar manner to that just used. Suppose there were
three constraints to be met, then our problem wuld be as follows.

Minimize:
	 fx1. ,)

Subject to:	 ()(X 1 . .X,) =

(j,(X 1 , _\) = 0
	 (3A.8

() 3 X. .\)	 0

(3A.6)

The optimum point would possess the property that the gradient of f and the
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gradients of w, w.. and (U1 are linearly dependent. That is,

Vf + ) Vw 1 + , 2 Vw 2 + i.V 3 = 0
	

(3A.9)

Again, we can set up a Lagrangian equatiot as before.

= f(x. 1 , x 2 ) + A, (0, (x, X 2 ) + .-'") 20x I, x 2 ) -- 3 w 3 (x, x,) (3A.10)

whose optimum occurs at

p=o

=	 ":=oo	 =o
A3

(3A.Il)

Up until now, we have assumed that all the constraints in the problem were
equality constraints; that is, e.(x 1 . x 2 . .) = 0. In general, however, optimization
problems invoke inequality constraints: that is. 9(x 1 , x 2 , ...) <— 0, as well as
equalit y constraints. The optimal solution to such problems will not necessarily
require all the inequality Constraints to be binding. Those that are binding will
result in q(x '2'	 .) = 0 at the optimum.

The fundamental rule that tells when the optimum has been reached is
presented in a famous paper &i Kuhn and Tucker (reference 3). The Kuhn-
Zucker cundiriuns, as they are called, are presented here.

Minimize:	 1(x)

Subject to:	 w(x) = 0	 t= I, 2.....

OX)	 0	 1=1.2.....Ng

x = vector of real numbers, dimension N

Then, forming the Lagrange function,

Ng
2'(x. u) = f() + Y' 41()(X) +	 pg(x)

The conditions for an optimum for the point x 0 ,	 p 0 are

I
cly

 . (x°,°.Jz(')= 0 for i = I ... N

2. w,(x") = 0	 for I = I . . . No,



x1

=0

OPTIMIZA11ON WITHIN CONSTRAINTS 	 63

3. g(x°) < 0	 for i = I .

pq 1 (x 0 ) = 0
4	 for z=l...Nq

b?>0

The first condition is simply the familiar set of partial derivatives of the
Lagrange function that must equal zero at the optimum. The second and third
conditions are simply a restatement of the constraint conditions on the problem.
The fourth condition, often referred to as the complimentary slackness condition,

provides a concise mathematical way to handle the problem of binding and
nonbinding constraints Since the product pq(x°) equals zero, either is

equal to zero or g 1 (x°) is equal to zero, or both are equal to zero. If p is equal
to zero, g(x°) is free to be iionbinding if 149 is positive, then gx°) must be
zero. Thus, we have a clear indication of whether the constraint is binding or
not by looking at .

To illustrate how, the Kuhn Tucker equations are used, we will add an
inequality constraint to the sample problem used earlier in this appendix. The
problem we will solve is as follows.

Minimize:	
fix 1 . x 2 ) = 0.25x -t-

Subject to:	 x2) = 5— .x --	 = 0

2) = X i + 0.2x 2 3 ^_ 0

which can be illustrated as in Figure 311.
First, set up the Lagrange equation for the problem.

= f(x, .x,) + ..[W(x!. x 2 )] 1- p[gIx 1 , ''2)]

= 0.2x + x - ).(5 -	 - x,) + (x 1 + 0.2x 2 - 3)

X2

FIG. 3.11 Elliptical objective function with equably and inequality constraints.
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The first condition gives

= 0.5x 1 - t + p = 0

= 2x 2 --- 2 + 0.2L = 0

The second condition gives

5 - - x 2 = 0

The third condition gives

x 1 + 0.2x 2 -. 3 < 0

The fourth condition gives

(x - 0.2x 2 3) = 0

1 0

At this point, we are confronted with the fact that the Kuhn Tucker
conditions onl y gi v e necessar y conditions for a minimum, not a precise,
procedure as to how that minimum is to he found. To solve the problem just
presented, we must literally experiment with various solutions until we can
verify that one of the solutions meets all four conditions. First, let p = 0, which
implies that q(x 1 . •v,) can be less than or equal to zero. However, if p = 0. we
can see that the first and second conditions give the same solution as we had
previousl y , without the inequality Constraint. But the previous solution violates
our inequality constraint; and therefore the four Kuhn Tucker conditions do
not hold with p = 0. In summary.

If it	 0. then by conditions i and 2

x,-I

2=2
but

4 + 0.2(I) —3 = 1.2	 0

Now we will try a solution in which p > O In this case, y0c 1 , x ..) must be
exactly zero and our solution can be found by solving for the intersection of
e(x 1 , .x 2 ) and w(x 1 . x i). which occurs at x 1 = 2.5. x 2 = 2.5. Further, condition
I gives 2 = 5.9375 and p = 4.6875, and all four of the Kuhn Tucker conditions
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are met. In summary

If /A > 0, then by conditions 2 and 3

x 1 = 2.5

= 2.5

by condition 1

A = 5.9375

p = 4.6875

and

	g(x x 21 I	 25 = 2.5 + 0.2(2.5)	 3 = 0

All conditions are met.

Considerable insight can be gained into the characteristics of optimal solutions
through use of the Kuhn--Tucker conditions. One important insight comes from
formulating the optimization problem so that it reflects our standard power
system economic dispatch problems. Specifically, we will assume that the
objective function consists of a sum of individual cost functions, each of which
is a function of only one variable. For example.

f(x. \2) = (7, (x ) + C-(x.)

Furthcr. we will restrict this problem to have one equality constraint of the
form

(1, x. = L - x 1 - x 2 = 0

and a set of inequality constraints that act to restrict the problem variables
within an upper and lower limit. That is.

0

	

X I S X,	
çq(x1)	 - 
g,(x) =	 - x 1 ^ 0

.v 2 <	
-.	 =x2--	 < 0

1 g4 (. 2 ) =	 X2 < 0
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T'nen the lagrange function becomes

= t( -'L	 2) + .k'. x2) 4- pg(x 1 ) + p2g 2 (x) +	 g(x) -1-

= C I C I ) + C2(x,) f A(L --	 - x) + p(x 1 - x) 4 p2(A1 — x)

4-	 (x 2 -	 -4- p4(x	 2)

Condition I gives

- ). + Pt - P2 = 0

C(x,) --- + P3 - P4

Condition 2 gi'es
L--	 -- x2 =0

Condition 3 gkes
-- .;	 o

- v < U

- X 2 -c0

Condition 4 gives
-	 ) =0	 /i

1'2(•'1	 x 1 ) = 0	 2 > 0

/1 3 ( . 2 —xfl=0	 o

240:1	 x 2 ) = 0 	 0

Case I

If the optimum solution occurs at values for x 1 and x 2 that are not at either
an upper or a lower limit, then all p values are equal to zero and

= C 2-2) =

That is. the incremental costs associated with each variable are equal and
this value is exactly the A we are interested in.

Case 2

Now suppose that the optimum solution requires that x 1 be at its upper
limit (i.e., .	 - xj = 0) and that x 2 is not at its upper or lower limit. Then.

0
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and P2, p. and 04 will each equal zero. Then, from condition 1,

C(x 1 ) = A - p 1 -. C(x 1 ) A

C'2(x 2 ) = A

Therefore, the incremental cost associated with the variable that is at its
upper limit will always be less than or equal to A, whereas the incremental
cost associated with the variable that is not at limit will exactly equal A.

Case 3

Now suppose the opposite of Case 2 obtains; that is, let the optimum solution
require x to be at its lower limit (i.e., - 0) and again assume that
x, is not at its upper or lower limit. Then

)A 2 ^ 0

and / 1 , p3. and p4 will each equal zero. Then from condition I

C'1 (x 1 )	 A + P2	 C(x 1 ) > A

C'-,(x 2 ) = A

Therefore, the incremental cost associated with a variable at its lower limit
will he greater than or equal to A whereas, again, the incremental cost
associated with the variable that is not at limit will equal A.

Case 4

If the optimum solution requires that both x 1 . x 2 are at limit and the equality
coilsLraint can be met, then A and the nonzero p values are indeterminate.
For example, suppose the optimum required that

- x =0
and

X2 -	 = 0
Then

P1—>O	 13^!0	 /-2=P4=0

Condition 1 would give
C(x1) = A -

C(x2) = 1 - L3

and the specific values for A, p. and P3 would be undetermined. In summary,
for the general problem of N variables:

Minimize:	 C1(x1) + C.(x,) + . . + C(x)

Subject to:	 L	 --	 -	 =



68	 LUt)NOMIC DISPATCH OF THERMAL UNITS

^Ol for iixi 
-And:	

--- x -<O.j

Let the optimum lie at x	 x1 11 I =	 N and assume that at least one

X, is not at limit. Then,

If x < x	 and x? > x i". then C,(x) = A

If=	 ;

If x' - 	 C(x01')

Slack Variable Formulation

An alternate approach to the optimization problem with inequality constraints

requires that all inequality constraints be made into equality constraints. This

is done b adding slack variables in the following way.

If:	 q(x =	 - x :!-^ 0

Then:	 j.. S 1 )	 -•- .vj ± S = 0

We add S2 rather than S 1 so that S 1 need not be limited in sign.
Making all inequality constraints into equality constraints eliminates the

nicd [or canditins 3 and 4 of the Kuhn Tucker conditions. However, as we

will see shortl y , the result is essentially the same.. Let us use our two-variable

problem again.

Minimize: flx, x) = C I ( X i) + C,x,l

Subject to:	 {x O-'2)	 L	 x I	 x, 0

And:	 qx=.x-x	 or

q2(.x 1 ) =	 - . ^ 0	 q2(x1. S) = . -x 1 + S = 0

q.)=x 2 -\	 0	 g302,53)_2X2 +1=0

g 4(x.)=x -x 2 ^0	 g4(x,.S3)=x --x, +S=0

The resulting Lagrange function is

= f(x 1 . .v) + t0oi(x. 2) -- Ai9iI, S)

+ ? -, q ,(x. S) + Agdx 2 , S 1 ) ± A 494(x 2 . S4)

Note that all constraints are now equality constraints, so we have used only A

values as Lagrange multipliers.
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ay
Condition I gives: = C(x1) -	 +	 -	 = 0

ey = C(x 2 )	 + t 3 - = 0
ax2

ely
= 2).S 1 = 0

as,

ay 
= 2) 2S2 = 0

= 2A 3 S = 0
as.

=24S4=O
oS4

Condition 2 gives:	 L - x 1 - x 2 = 0

(x 1 - x + S) = 0

(xj - x 1 -- S) = 0

(x, - X 2' + S) = 0

(x—x2+S)=-0

We can see that the derivatives of the Lagrange function with respect to the
slack variables provide us once again with a complimentary slackness rule. For
example, if 22 1 S 1 = 0, then either ). = 0 and 5, is free to be any value or S 1 = 0
and 2 is free (or ). and S1 can both be zero). Since there are as many problem
variables whether one uses the slack variable form or the inequality constraint
form, there is little advantage to either, other than perhaps a conceptul
advantage to the student.

Dual Variables

Another way to solve an optimization problem is to use a technique that solves
for the Lagrange variables directly and then solves for the problem variables
themselves. This formulation is known as a dual solution" and in it the
Lagrange multipliers are called "dual variables." We shall use the example just
solved to demonstrate this technique.

The presentation up to now has been concerned with the solution of what
is formally called the "primal problem." which was stated in Eq. 3A.2 as:

Minimize:	 1(x. x,) = 0.25x +

Subject to:	 ('(X1, x 2 ) = 5 - - -
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and i t q Lagrangiafl function is:

(x 1 . x 2 , ).) = O.25x +	 *	 —	 - x2)

If we define a dual function. q(i), as:

	

q(1) =- nun ,(x 1 . x2,)	 (3A.12)

Then the "dual problem" is to find

= max	 (3A. 13)

The solution, in the ease of the dual problem involves two separate
optimization problems. The first requires us to take an initial set of values for

x and	 and then find the value of ). which maxim i zes q). We then take

this 	 of ). and, holding it constant, we find values ol x 1 and x, which

minimize	 1.x2. 2). This process is repeated or iterated until the solution is

found.
in the case of convex objective functions, such as the example used in this

appendix, this procedure is guaranteed to solve to the 'one optimum as the

primal problem solution presented earlier.
ftc reader will note that in the case of the functions presented in Eq- 3A2.

we can simpiiiy the procedure ahoe by eliminating .\ and from the problem

altogether, in which case we can find the maximum of q) directly. If we express
the problem variables in terms of the Lagrange multiplier (or dual variable),

we obtain:
= 2).

1.

'( 2 =

We now eliminate the original problem variables from the Lagrangian function:

q(2) = (41) )2

 + 5

We can use the dual variable to solve our problem as follows:

eA
.q(A) = 0 =
	

— 5

or
A=2
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Therefore, the value of the dual variable is q*(A) = 5. The values of the primal
variables are .x 1 = 4 and x 2 =

In the economic dispatch problem dealt with in this chapter, one cannot
eliminate the problem variables since the generating unit cost functions may
be piecewIse linear or other complex functions. In this case, we must use the
dual optimization algorithm described earlier; namely, we first optimize on 2
and then on the problem variables, and then go back and update 2. etc. Since
the dual problem requires that we find

q(A) = max q(2)
A>O

and we do not have an explicit function in A (as we did above), we must adopt
a slightly different strategy. In the case of economic dispatch or other problems
where we cannot eliminate the problem variables, we find a way to adjust A so
as to move q(i.) from its initial value to one which is larger. The simplest way
to do this is to use a gradient adjustment so that

[=
	 + L

d(A)j
di,

where or merely causes the gradient to behave well. A more useful way to apply
the gradient technique is to let A be adjusted upwards at one rate and downward
at a much slower rate; for example:

= 0.5 when	 . q(2) is positive
dt

and

= 0.1 when	 q(A) is negative
dA

The closeness to the final solution in the dual optimization method is measured
by noting the relative size of the "gap" between the primal function and the
dual function. The primal optimization problem can be solved directly in the
case of the problem stated in Eq. 3A.2 and the optimal value will be called 3*

and it is defined as:
J*= min ,ff (3A.14)

This value will be compared to the optimum value of the dual function. q*.
The difference between them is called the "duality gap." A good measure of the
closeness to the optimal solution is the "relative duality gap," defined as:

J -
(3A- 15)
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TABLE 3A DiwI Optimization

Iteration	 A
	

0_i
•,	

q.
q q.

5.0	 0	 -
5.0	 46875	 0.0666

5.0	 48242	 0.03b4

5.0	 4.9011	 0.0202

5.0	 4.9444	 0.01124

5.0	 5.11	 0

0	 0	 0	 5.0

2	 2.5 .	 5.0	 1.25	 ..- 1.25

3	 1375	 4.75	 1.1875	 -0.9375

4	 2.2813	 4.5625	 1.1406	 -47031

5	 2.2109	 4.4219	 11055	 -0.5273

20	 2.0028	 4.0056	 1.0014	 -0.007

For a convex problem with Continuous variables, the duality gap will become
zero at the final solution. When we again take up the dual optimization method
in Chapter 5, we will be dealing with nonconvex problems with noncontinuOUs

variables and the duality gap will never actually go to zero.

Vsin g the dual optimization approach on the problem given in Eq. 3A.2 and

starting
-

 A = 0. we obtain the results shown in Table 3.4. As can he seen, this

procedure converges to the correct answer.
A special note about lambda search. The reader should note that the dual

technique, when applied to economic dispatch. is the same as the lambda search
technique we introduced earlier in this chapter to solve the economic dispatch

problem.

APPENDIX 3B
Dynamic-Programming Applicati011s

The application of digital methods to solve a wide variety of control and

d y namics optimization problems it, the late 1950s led Dr. Richard Bellman and
his associates to the development of dynamic programming. These techniques
are useful insoiving a variety of problems and can greatly reduce the
computational effort in finding optimal trajectories or control policies.

The theoretical mathematical background, based on the calculus of variations,
is somewhat difficult. The applications are not, however, since they depend on
a willingness to express the parttcular optimization problem in terms appropriate
for a dynamicprogramming (DP) formulation.

In the scheduling of power generation systems. DP techniques have been

developed for the following.

• The economic dispatch of thermal systems.
• The solution of hydrothermaleconomic-scheduling problems.
• The practical solution of the unit commitment problem.

This text will touch on all three areas.
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I	 I	 I	 I
I	 I	 I	 I

II

FIG. 3.12 Dynamic-programming example.

First, however. it will be as well to intr-duce some of the notions of DP )y
means of some one-dimensional exampies. Figure 312 represents the cost of
transporting a unit shipment from node A to node N. The values on thc arcs
are the costs, or values, of shipping the unit from the originating node to the
terminating node of the arc. The problem is to find the minimum cost route
from A to N. The method to be illustrated is that of dynamic programming.
The first two examples are from reference 18 and are used by permission.

Starting at A. the minimum cost path to N is ACEILN.
Starting at C, the least cost path to N is 	 CEILN.
Starting at E. the least cost path to N is 	 EILN
Starting at 1, the least cost path to N is 	 ILN.
Starting at L. the least cost path to N is	 IN.

The same type of statements could be made about the maximum cost path
from A to N (ABEHLN). That is, the maximum cost to N, starting from any
node on the original maximal path, is contained in that original path.
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The choice of route is made in sequence. There are various stages traversed.
The optimum sequence is called the optimal polic y; any subsequence is a

.suhpolicy. From this it may be seen that the optimal policy (ic., the minimum
cost route) contains only optimal subpolicies. This is the Theorem of optimaiitv.

-
An optimal policy must contain only optimal suhpoiicies.

In reference 20. Bellman and Dreyfus call It the Principle of optimality' and
tate it as

A policy is optimal if, at a stated stage, whatever the preceding decisions
may have been, the decisions stilt to be taken constitute an optimal policy
when the result of the previous decisions is included.

We continue with the same example., only now let us find the minimum Cost
path. Figure 313 identifies the stages (I. II, 111, IV, V). At the terminus of each
staCe. there is a set of choices of nodes •X to be chosen	 = H, I. J, K}1.

The symbol X1 + 1) represents the "cost" of traversing stage a( = I,..., V)
and depends on the variables selected from the sets XJ and 5t X, + I }. 1 hat is,

the cost, V. depends on the starting and terminating nodes. Finally, f(X 1 ) is

the minimum cost for stages I through a to arrive at some particular node X,
at the end of that stage, starting from A. The numbers in the node circles in
Figure 3.13 represent this minimum Cost.

(X(,: A{X2 }: F, F. G	 : L, MX4 

TX 1 }:B.C.D	 {X3}:H,I,J.K	 X5}:N

f1(X): Minimum cost for the first stage is obvious:

f,(B) = (A. B) = 5

f1(C)= V(A.C)=2

f1(D) = V(A. D) = 3

f11(X,: Minimum cost for stages I and 11 as a function of X2:

F11 (E) = mm [1 1 (X 1 ) + V11 (X 1 . F)]

rrmin[5+11, 2+8, 3+cx1=I0

X 1 =B =C =D	 X1=C
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I	 I	 I	 I	 I
I	 II	 III	 I	 iv	 I	 v

FIG. 3.13 Dynamic-programming example showing minimum cost at each node.

The cost is infinite for node D since there is no path from D to F:

f 1(F) = mm [f1(X 1 ) + fr 1 (X 1 . F)] = min[cc, 6.9] = 6, X 1 = C

f11 (G) = mm [f(X L ) + l' 1 (X 1 . G)] = min[cc, 11,9] = 9. X = D
X,)

Thus, at each stage we should record the minimum cost and the termination
starting the stage in order to achieve the minimum cost path for each of the
nodes terminating the current stage.

(X2 )	 E	 F	 G
f(X2 )	 10	 6	 9

	

Path X0X 1	 AC	 AC	 AD

f111 ( X1 ): Minimum cost of stages 1. 11. and III as a function of X3:

I (H) = min {111(X2 ) + 1 (X 2 . H)] = min[] 3. 14, x] = 13 with X, = F
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In general.

	

fill 	 = mm U 1 X2) + UC 2' X]

tx

Giving,

	

H	 I	 J	 K

	

13	 12	 II	 13

l'athX0 X 1 X 2	ACE	 ACE	 ACF	 ADG

f1 : Minimum cost of stages I through IV as a function of X4:

	= rnui [f 1 (.' ' 3) +	 ( X3, J)]

f.(L) = min[ 13 + 9, 12 + 3, II + 7. 13	 ] = 15.	 X3 = 1

X, = 1-1 =1	 =J	 =K

X3=I or K

X-H =1	 J =K

f Minimum cost of I throu gh V as a function of X:

f( V) = minf1 (X4 ) +	 X4. X4)1
x .

	

minlS + 4, 18 3] = 19	 X4 = L

X4 =L =M

Tracing hack. the path of minimum cost is found as follows:

	

Stage I	 11

2 CF) F,G

	

3	 F1,,J,K	 13. ©.1L13

	

4	 ®,M	 .I8

5

It would be possible to carry out this procedure in the opposite direction just

as easily.

An Allocation Problem
'fable 31 lists the profits to be made in each Of four ventures as a function of
the investment in the particular venture. Given a limited amount of money to
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TABL.E 3.5 Profit Versus Investment

Profit from Venture
Investment
Amount	 FF

	
III
	

IV

0
	

0
	

0
	

0
	

0
0.28
	

0.25
	

0.15
	

0.20
2
	

0.45
	

0,41
	

0.25
	

0.33
I
	

0.65
	

0.55
	

0.40
	

0.42
4
	

0.78
	

0.65
	

0.50
	

0.48
5
	

0.90
	

0.75
	

0.65
	

0.53
6
	

1.02
	

0.80
	

0.73
	

0.56
7
	

1.13
	

0.85
	

0.82
	

0.58
8
	

1.23
	

0.88
	

0.90
	

0.60
9
	

1.32
	

0.90
	

(196
	

0.60
10
	

1.38
	

0.90
	

1.00
	

0.60

allocate, the problem is to find the optimal investment allocation. The only
restriction is that investments must be made in integer amounts. For instance,
if one had 10 Units to Invest and the policy were to put 3 in I. I in 11, 5 in III.
and I in IV, then

Profit = 0.65 4- 0.25 + 0.65 + 0.20 "= 1.75

The problem is to find an allocation policy that yields the maximum profit. Let

X 1 . X,, X3 , X4 be Investments in I through IV

-(XI), V(X,), I'(X3 ). V(X) be profits

X 1 + X, + X3 -+ X4 = 10 is the constraint; that is.
10 units must be invested

To transform this into a multistage problem, - let the stages be

X1. U1 , U, A
where

	

UI = Xi + X2	 U1!^A	 Lc -<A

	

= U 1 + x3	 A=0.1,2,3.....10

.4 = U2 + X4

The total profit is

f(X 1 , X, X3 . X3 )	 k(X 1 ) + t. (X,) + J(X3 ) + L'4(X,)



I)
0.28
0.53
0.70
0.90
106
1.20
1.33
1.45
'.57
1.68

V,(X,)

0
0.25
0.41
0.55
0.65
0.75
0.80
0.85
0.88
0.90
0.90

I ,'• (.K t

I)
0.28

0.05
ii, 78
0.90
1.02
Lii
123
132
138

Optimal Suhpollcies
(or I & II

0.0
1,0

2: 1
3, I
3,2
3,3
4, -
5, 3
0, 3
7. 3

', X..or 1.;

0

1

4

8
9

to
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which can e written

f(XI.
	 V(X 1 + v2 (L• 1

 . XI) +t'(L!2--U1)'	 (.4(72)

At the second stage, we can compute

max	 ft1 ( X 1 )	 IL

Next. at the third stage,

=	 max	 [f2(L'1' 4 1';(t 2 - U1)]
1'	 O.L2 .... . ti,

Optimal Suhpolicies

For l&1I	 For LIL& III

	

0, 0	 0, 0.0

	

1,0	 1,0.0

	

1.1	 1, 1,0

	

2,1	 2, 1,0

	

3,1	 3, 1.0

	

3,2	 3, 2,0

	

3,3	 3.2.1

	

4.3	 3.3,1
	5,3 	 4,3,1

	

6.3	 5.3.1or3,3.3

	

7.3	 4,3,3

	U1, 	 Li1 , or
	

fL'1)
	 V(X3)
	

13((-•1)

	

0
	

0
	

0
	

0

	

0.28
	 0.15
	

0.28

	

7
	

0.53
	

0.25
	

0.53

	

3
	

0,70
	

0.40
	

0.70

	

4
	

0.90
	

0.50
	

0.90

	

5
	

1.06
	

0.62
	

1.06

	

6
	

1.2(3
	

073
	

1,21

	

7
	

133
	

0.82
	

1.35

	

8
	

1,45
	

0.90
	

1.48

	

9
	

1.57
	

0.96
	

(.60

	

10
	

1.68
	

1.00
	

'.73
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Finally, the last stage is

f4(A) = max{1 3 L .7 ) + J1. L4	 U2)]
a

ft U)

0
028
0.53
0.70
0.90
1.06

1.35
149
1.60
.73

f4(A

0
0.28
0.53
0.73
0.90
110
1.26
14!
1.55
1.68
1.8!

(•. .4 or

I,)

n

4
5
6
7

S
Q

10

..( x4)

0
0.20
033
0.42
0.48
0.53
0.56
0.58
0.60
0.60
0.60

Optima! Subpolicy
for 1, II, & III

0,0, 0
1.0.0
1, 1.0
2, I. 0
3. 1,0
3.2.0
3, 2, I
3, 3. I
4. 3, I
5, 3. I or 3, 3, 3
4, 3, 3

Optimal Policy

0,0,0.0
1.0. 0. 0
I. 1,0.0
I, I, 0. 1
3. 1,0,0or 2.1.0,1
3. I. 0, 1
3. 2, 0, I
3. 2, 1, I
3. 3, 1. I
4.3,1. I or3, 3, 1.2
4, 3, I, 4

Consider the procedure and solutions:

I. It was not necessary to enumerate all possible solutions. Instead, we used
an orderly , stagewise search, the form of which was the same at each stage.

2. The solution was obtained not only for .1 = 10. but for the complete set
of 4 values	 = O. I. 2.....10.

3. The optimal policy contains only optimal subpolicies. For instance,
.4 = 10. (4. 3. I, 2) is the optimal policy. For stages I. 1!. III, and U. = 8,
(4, 3. Ills the optimal subpolicy. For stages I and II, and U1 = 7. (4, 3)
is the optimal subpolicy. For stage I only, X 1 = 4 fixes the policy.

4. Notice also, that by storing the intermediate results, we could work a
number of different variations of the same problem with the data already
computed.

PROBLEMS

3.1	 Assume that the fuel inputs in MBtu per hour for units I and 2. which
are both on-line, are given by

H 1 = 8P1 + 0.024P + 80

H = 6P, + 0.04p2 + 120
where

f'J = fuel input to unit n in MBtu per hour (millions of Btu per hour)

P = unit output in megawatts



IHR4

IHR3

IHR2
IHR1

U
C

80	 tCONOMIC DISPATCH OF THERMAL UNITS

a, Plot the input-output characteristics for each unit expressing input
in MBtu per hour and output in megawatts. Assume that the minimum
loading of each unit is 20 MW and that the maximum loading is
100 MW

b. Calculate the net heat rate in Btu per kilowatt-hour. and plot against
output in megawatts.

c. Assume that the cost of fuel is 1.5 .MBtu. Calculate the incremental
production cost in g,,MWh of each unit, and plot against output in
megawatts.

3.2	 Dispatch with Three-Segment Piecewise Linear Incremental Heat Kate
Function
Given: Two generating units with incremental heat rate curves (IHR)
specified as three connected line segments (four points as shown in
Figure 114).

MW1	 MW2	 MW3 MW4

P. Power (MWt

FIG. 3.14 Piecewise linear incremental heat rate curve for Problem 3.2.

Unit I:

Point	 MW	 -	 IHR(BIu/IcWh)

tOO	 7000
2	 200	 8200
3	 300	 8900
4	 400	 11000

Fuel cost for unit 1	 1.60 R. MEtu

Unit 2

Point	 MW	 IHR(Btu/kWh)

150	 7500
2	 275	 7700
3	 390	 8100
4	 450	 8500

Fuel cost for unit 2 2.10 /MBtu
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Both units are running. Calculate the optimum schedule (i.e. the
unit megawatt output for each unit) for various total megawatt values
to be supplied by the units. Find the schedule for these total megawatt

values:

tOOMW. 500MW. 700MW, 4OMW

Notes: Piecewise linear increment cost curves are quite common in
digital computer executions of economic dispatch. The problem is best
solved by using a "search" technique. In such a technique, the incre-
mental cost is given a value and the units arc scheduled to meet this
incremental cost. The megawatt outputs for the units are added together
and compared to the desired total. Depending on the difference, and
whether the resulting total is above or below the desired total, a new
value of incremental cost is "tried." This is repeated until the incremental
cost is found that gives the correct desired value. The trick is to
search in an efficient manner so that the number of iterations is

minimized.

3.3 Assume the system load served by the two units of Problem 3.1 varies
from 50 to 200MW. For the data of Problem 3.1, plot the outputs of
units I and 2 as a function of total system load when scheduling
generation by equal incremental production costs. Assume that both

units are operating.

3.4 As an exercise, obtain the optimum loading of the two generating units
in Problem 3.1 using the following technique. The two units are to deliver
100 MW. Assume both units are on-tine and delivering power. Plot the
total fuel cost for 100 MW of delivered power as generation is shifted
from one unit to the other. Find the minimum cost. The optimum
schedule should check with the schedule obtained by equal incremental

production costs.

3.5 This problem demonstrates the complexity involved when we must
commit (turn on) generating units, as well as dispatch them economically.

This problem is known as the unit commitment problem and is the subject

of Chapter 5.
Given the two generating units in Problem 3.1, assume that they are

both off-tine at the start. Also, assume that load starts at 50 MW and

increases to 200 MW. The most economic schedule to supply this varying
load will require committing one unit first, followed by commitment of
the second unit when the load reaches a higher level.

Determine which unit to commit first and at what load the remaining
unit should be committed. Assume no "start-up" costs for either unit.
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	3.6	 The system to be studied Consists of two units as described in Problem
3.1. Assume a dail y load cycle as follows.

Time Band	 Load (MW)

0000-0600	 50
0600 100	 50
1800-00W	 51)

Also, assume that a cost of 180 P is incurred in taking either unit off-line
and returning it to service after 12 h Consider the 24-h period from 0600
one morning to 0600 the next morning.
a. Would it be more economical to keep both Units in service for this

24-h period or to remove one of the units from service for the 12-h
period from 1800 one evenin g to 0600 the next morning?

b. What is the economic schedule for the period of time from 0600 to
800 (load ISO MW)

c. What IS the economic schedule for the period of time from 18()() to
0600 (load 50 MW)?

3.7 Assume that all three of the thermal units described below are running
Find the economic dispatch schedules as requested in each part. Use the
method and starting conditions gi\cn.

Minimum Maximum Fuel Cost
Unit Data	 (MW)	 (MW)	 (R/MI3tu)

H,	 225	 8 4P	 0 (X)25I'	 45 350	 080
fL = 729 6.3P. + O.Ow p i	 45	 350	 102
H =400 + 7.5p -- 00025p	 47.5	 450	 0.90

a. Use the lambda-iteration method to find the economic dispatch for a
total demand of 450 MW.

b. Use the base-point and participation factor method to find the
ceoiioniic schedule for a demand of 405 MW. Start from the solution
to part a.

c. Use a gradient method to find the economic schedule for a total
demand of 500 MW, assumin g the initial conditions (i.e.. loadings) on
the three units are

P=P1OO1w	 and	 P=3OOMW
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(live the individual unit loadings and cost per hour. as well as the
total cost per hour to supply each load level. (MBtu = millions of

Btu; H1 = heat input in MBtuJh; Pj = electric power output in MW,

= 1, 2, 3.)

3.8 Thermal Scheduling with Straight-Line Segments for Input_OUtPUt

Curves
The following data apply to three thermal units. Compute and sketch
the input-.OUtP characteflstics and the incremental heat rate charac-

rves COnSISt of straight-line
teristics. Assume the unit input-output cu 
segments between the given power points.

Power Output	 Net Heat Rate

Unit No.	 (MW)	 (Btu/kWh)

45	
13512.5

300	 9900.0

350	 .	 9918.0

2	 45	 22764.5

200	 11465.0

300	 110600

150	 11117.9

3	
47 5	 16039.8

200	 10000.0

300	 9583.3

450	 9513.9

Fuel costs are:

Fuel Cost g.MBtu)
unit No.	 -------

0.75
2	 0.75
3

Compute the economic schedule for s ystem demands of 300. 460, 500,

and 650 MW. assuming all three units are on-iine. Give unit loadings
and costs per hour as well as total costs In K per hour.

3.9 Enironmefltl Dispatch
Recently, there has been concern that optimum 

economic dispatch was

not the best environmentally. The principles of economic dispatch can
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fairly easily he extended to handle this problem. The following is a
problem based on a real situation that occurred in the midwestern United
States in 1973. Other cases have arisen with "NO," emission in Los
Angeles.

Two steam Units have input-output curves as follows.

H 1 = 400 + 5P + 0.01 p ,	 MBtu'h, 20 < P1 <_ 200 MW
H, = 600 + 41' 4- 0.015P,	 MBtu/h, 20 < P 200 MW

The units each burn coal with a heat content of 11,500 Btu/lb that costs
13.50 R per ton (2000 lb). The combustion process in each unit results
in I l.75 of the coal by weight going up the stack as fly ash.
a. Calculate the net heat rates of both units at 200 MW.
b. Calculate the incremental heat rates: schedule each unit for optimum

econom y to serve a total load of 250 MW with both units on-line.
c. Calculate the cost of supplying that load.
d. Calculate the rate of emission of fly ash for that case in pounds (]b) per

hour, assuming no fly ash removal devices are in service.
e. Unit I has a precipitator installed that removes 851, . of the fly ash: unit

2's precipitator is 89° efficient Reschedule the two Units for theminimum total liv ash emission rate with both on-line to serve a 250MW load.
f. Calculate the rate of emission of ash and the cost for this schedule to

serve the 250 MW load. What is the cost penalty?
g. Where does all that fly ash go?

3.10 Take the generation data shown in Example 3A. Ignore the generation
limits and sol'e for the economic dispatch using the gradient method
and Newton's method. Solve for a total generation of 900 MW in eachcase.

3.11 You have been assigned the job of building an oil pipeline from the West
Coast of the United States to the East Coast. You are told that any one
of the three West Coast sites is satisfactory and any of the three East
Coast sites is satisfactory. The numbers in Figure 3.15 represent relative
cost in hundreds of millions R(R 108). Find the cheapest West Coast to
East Coast pipeline.

3.12 The Stagecoach Problem

A mythical salesman who had to travel west by stagecoach, through
unfriendly country. wished to take the safest route. His starting point
and destination were fixed, but he had considerable choice as to A hich
states he would travel through en route. The possible stagecoach routes
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FIG. 3.15 Possible oil pipeline routes for Problem 3.11.

X,

FIG. 3.16 Possible stagecoach routes for Problem 3.12

are shown in Figure 3.16. After some thought, the salesman deduced a

clever way of determining his safest route Lite i
nsurance policies were

oUered to passengers, and since the cost of each policy was based on a
careful evaluation of the safety of that run, the safest route should be the
one with the cheapest policy. The cost of the standard 

P( )IiC,N 011 the
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1 3479 tO
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FIG. 3.17 Cost to go from state i to stare I in Problem 3, 2. Cost not shown areinfinite.

stagecoach run from state i to state j, denoted as C,, is given in Figure
3.17. Find the safest path(s) for the salesman to take.

3.13 Economic Dispatch Problem

Consider three generating uiljts that do not have convex input output
functions. (This is the type of problem one encounters when considering
valve points iii the dispatch problem.)

Unit I:

180 + 8P + 0,024P111(P1)	
l96.4 + 3P, + 0.075P

20 MW P f^ 60 MW
60 MW < p1 <:100MW

Generation limits are 20 MW < P1 ^ l0() MW.

Unit 2:

120 + bP, + 0.04p2 20 MW < P, 40MW11,lP2 ) =	 ..	 -	 -	 -
-	 (157.335 + 3.3333 p, -- 0.08333 p	 40MW	 P.,	 100 MW

Generation limits are 20 MW < P. < 100 MW.

Unit 3:

1100-f 4.6666p3 + 0.13333p
H3 (P3) =

316.66 + 2P3 + 0.
20 MW S P3 50 N4
50MW < P3 <4 1()() MW
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Generation limit 	 20MW ^ P < 100 MW. Fuel	 costs = 1.5 LMBtu

for all units.

a. Plot the cost [unction for each unit see Problem 3.1 .

b. Plot the incremental cost function for each unit.

c. Find the most economical dispatch for the following total demands

assuming all units are on-line:

po = tOO MW

P0 = 140 MW

P0 = 180 MW

= 220 MW

P0 = 260 MW

	

where	
=	 .- p2 -- P3

Solve using dynamic programming and discrete load steps of 20 MW,
starting at 20 MW through 1(X) MW For each unit.

d. Can you solve these dispatch problems without dynamic programming?

If you think you knoIA how, try solving for P,) = tOO MW.

3.14 Given' the two generating units below with piecewise linear cost functions

F(P) as shown.

	

Unit I:	 P = 25 MW and P'' = 200 MW

P, (NJ

25	 2890

100	 971.5

150	 1436.5
200	 1905.5

	

unit 2:	 = 50 NI NA' and P' = 4(X) MW

38(X)
100	 4230
200	 5120

400	 6960

Find the optimum generation schedule for a total power delivery of
350 MW (assume both generators are on-line).
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3.15 Given: two generator units with piecewise linear incremental cost
functions as shown.

Unit I:	 P° = 100 MW and P' = 400 MW

P1 (MW)	 F(P1)(R/MWi

100	 6.5
200	 7.0
300
400	 11.0

Unit 2:	 120 MW and PT" = 300MW

dP(MW>	 -- F2(P2)(/MWh)
dP2

120	 8.0
150	 8.3
200	 9.0
300	 12.5

a. Find the optimum schedule for a total power delivery of 500 MW.
b. Now assume that there are transmission losses in the system and the

incremental losses for the generators are:

dP1

d1o1
 = - 0.05263

and
dP1

= 0.04762

Find the optimum schedule for a total power delivery of 650 MW;
that is, 650 equals the load plus the losses.

FURTHER READING

Since this chapter introduces several optimization concepts, it would be useful to refer
to some of the general works on optimization such as references I and 2. The importance
of the Kuhn-Tucker theorem is given in their paper (reference 3). A very thorough
discussion of the Kuhn-Tucker theorem is found in Chapter 1 of reference 4.
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For an overview of recent power system optimization practices see references 5 and
6. Several other applications of optimization have been presented. Reference 7 discusses
the allocation of regulating margin while dispatching generator units. References 8-11
discuss how to formulate the dispatch problem as one that minimizes air pollution
from power plants.

Reference 12 explains how dynamic economic dispatch is developed. Reference 13 is
a good review of recent work in economic dispatch. References 14 and 15 show how
special problems can be incorporated into economic dispatch, while references 16 and
17 show how altogether different, nonconventional algorithms can be applied to
economic dispatch. References 18-21 are an overview of dynamic programming, which
is introduced in one of the appendices of this chapter.
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4 Transmission System Effects

As we sa w
 in the previous chapter, the transmission network's incremental

Power losses may cause a bias in the optimal economic scheduling of the

generators. The coordination equations include the effects of the incremental
transmission losses and complicate the development of the proper schedule.
The network elements lead to two other, important effects:

1. The total real power loss in the network increases the total generation

demand, and

2. The generation schedule may have to be adjusted by shifting generation
to reduce flows on transmission circuits because the would otherwise
become overloaded.	 -

It is the last effect that is the most difficult to include in optimum dispatching.
In order to include constraints on flows through the network elemenm the
flows must be evaluated as an integral part of the scheduling effort. This means
we must solve the power flow equations along with the generation scheduling
equations (Note that earlier texts, papers, and even the first edition of this
book referred to these equations as the "load flow" equations.)

If the constraints on flows in the networks are ignored, then it is feasible to

use what are known as loss formulae that relate the total and incremental, real
power losses in the network to the power generation magnitudes. Development
of loss formulae is an art that requires knowledge of the power flows in the
network under numerous "typical" conditions. Thus, there is no escaping the
need to understand the methods involved in formulating and solving the power
flow equations for an AC transmission system.

When the complete transmission system model is included in the development
of generation schedules, the process is usually imbedded in a set of computer
algorithms known as the optimal power flow (or OPF). The complete OPF is

capable of establishing schedules for many controllable quantities in the bulk
power system (i.e., the generation and transmission systems), such as transformer
tap positions. VAR generation schedules. etc. We shall defer a detailed
examination of the OPF until Chapter 13.

Another useful set of data that are obtainable when the transmission network
is incorporated in the scheduling process is the incremental cost of power at
various points in the network. With no transmission effects considered (that is,
ignoring all incremental losses and any constraints on power flows), the network

91
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IS assumed to be a single node and the incremental cost of power is equal to
. everywhere. That is,

dF.

dPi

Including the effect of incremental losses will cause the incremental cost of real
power to vary throughout the network. Consider the arrangement in Figure
3.2 and assume that the coordination equations have been soved so the values
of dF/d j and are known. Let the "penalty factor" of bus i be defined as

Pt, =

so that the relationship between the incremental Costs at any two buses, i and
I, is

PJ;F; Pf,F

where F = dFk /d pk is the bus incremental cost. There is no requirement that
bus i is a generator bus. If the network effects are included using a network
model or a loss formula, bus i might be a load bus or a point where power is
delivered to an interconnected system. The incremental cost (or "value") of
power at bus i is then,

Incremental cost at i = F = (Pf/Pf)F

where j is any real generator bus where the incremental cost of production is
known. So if we can develop a network model to be used in optimum generation
scheduling that includes all of the buses, or at least those that are of importance,
and if the incremental losses ( 3PL/äPk) can be evaluated, the coordination
equations can be used to compute the incremental Cost of power at any point
of delivery.

When the schedule is determined using a complete power flow model by
using an OPF, the flow constraints can be included and they may affect the
value of the incremental cost of power in parts of the network. Rather than
attempt a mathematical demonstration, consider a system in which most of the
low cost generation is in the north, most of the load is in the south along with
some higher cost generating units, and the northern and southern areas are
interconnected by a relatively low capacity transmission network. The network
north-to-south transfer capability limits the power that can be delivered from
the northern area to satisfy the higher load demands. Under a schedule that is
constrained by this transmission flow limitation, the southern area's generation
would need to be increased above an unconstrained, optimal level in order to
satisfy some of the load in that region. The constrained economic schedule
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would spilt the system into two regions with a higher incremental cost in the
southern area. In most actual cases where transmission does constrain the
economic schedule, the effect of the constraints is much more significant than

the effects of incremental transmission losses.
This chapter develops the power flow equations and outlines methods of

solution. Operations control centers frequently use a version of the power flow
equations known as the "decoupled power flow." The power flow equations
form the basis for the development of loss formulae. Scheduling methods
frequently use penalty factors to incorporate the effect of incremental real power
losses in dispatch. These can be developed from the loss formulae or directly
from the power flow relationships.

Power flow is the name given to a network solution that shows currents,
voltages, and real and reactive power flows at every bus in the system. It is
normally assumed that the system is balanced and the common use of the term
power flow implies a positive sequence solution only. Full three-phase power-
flow solution techniques are available for special-purpose calculations. As used
here, we are only interested in balanced solutions. Power flow is not a single

calculation such as E = IR or E = [Z]l involving linear circuit analysis. Such
circuit analysis problems start with a given set of currents or voltages, and one
must solve for the linearly dependent unknowns. In the power-flow problem
we are given a nonlinear relationship between voltage and current at each bus
and we must solve for all voltages and currents such that these nonlinear
relationships are met. The nonlinear relationships involve, for example, the real
and reactive power consumption at a bus, or the generated real power and
scheduled voltage magnitude at a generator bus. As such, the power flow gives
us the electrical response of the transmission system to a particular set of loads
and generator unit outputs. Power flows are an important part of power system
design procedures (system planning). Modern digital computer power-flow
programs are routinely run for s ystems with up to 5000 or more buses and also
are used widely in power system control centers to study unique operating
problems and to provide accurate calculations of bus penalty factors. Present,
state-or-the-art system control centers use the power flow as a key, central
element in- the scheduling of generation, monitoring of the system, and
development of interchange transactions. OPF programs are used to develop
optimal economic schedules and control settings that will result in flows that
are within the capabilities of the elements of the system, including the
transmission network, and bus voltage magnitudes that are within acceptable

tolerances.

4.1 THE POWER FLOW PROBLEM AND ITS SOLUTION

The power flow problem consists of a given transmission network where all
lines are represented by a Pi-equivalent circuit ana transformers by an ideal
voltage transformer in series with an impedance. Generators and loads represent
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the boundar y conditions of the solution. Generator or load real and reactive
power involves products of voltage and current. Mathematically, the power flow
requires a solution of a system of simultaneous nonlinear equations.

4.1.1 The Power Flow Problem on a Direct Current Network

The problems involved in solving a power flow can be illustrated by the use of
direct current (I)C) circuit examples. The Circuit shown in Figure 4.1 has a
resistance of 0.25 0 tied to a constant voltage of 1.0 V (called the reference

We wish to find the voltage at bus 2 that results in a net inflow of
1.2 W. Buses are electrical nodes. Power is said to be "injected" into a network:
therefore, loads are simply negative injections.

The current from bus 2 to bus I is

1,1=(E2-1.0)x4	 (4.1)
Power P, is

P, - 1.2 = E,121 = E 2(E 2 - I) x 4	 (4.2)
or

	

4E-4E 2 -1.2=0	 (4.3)

	

The solutions to this quadratic equation are E,, 	 1.24162 V and E 2 =
--0.24162 V. Note that 1.2W enter bus 2. producing a current of 0.96648 A

1.24162), which means that 0.96648W enter the reference bus and
023352 W are consumed in the 0.25-0 resistor.

Let us complicate the problem by adding a third bus and two more lines
(see Figure 4.2). The problem is more complicated because we cannot simply
write out the solutions using a quadratic formula. The admittance equations are

	

14 —4 —tO	 E1

I, =	 —4	 9	 —5	 E 2	(4.4)

	

Li3	 —10 —5	 15	 E3

	

Bus I reference)	 Bus 2

FIG. 4.1 Two-bus DC network.

= 1.2W



THE POWER FLOW PROBLEM AND ITS Sot. I .T1ON	 95

Bus 1 (reference)	
0.25

P,	 1.2W

0 

ij

v,A\rA\y:LWTV/1
F((. 4.2 Three-buS DC network.

In this case. we know the power injected at buses 2 and 3 and we know the
voltage at bus 1. To solve for the unknowns (E 2 , F 3 and Pt ), we write Eqs. 4.5.

4.6, and 4.7. The solution procedure is known as the Gauss -Seidelpeedure.

wherein a calculation for a new voltage at each bus is made, based on the most
recently calculated voltages at all neighbouring buses-

Bus I

= (	 + 4 + 5E0i
9\E	 /

where E? and E Id are the initial values for E, and £3. respectively.

Bus 3:	
J__l0l.0)5E13

1 1.5
EOW	 I	 + 10 + 5E	 (4.6)

l5[E

where E"2" is the voltage found in solving Eq. 45. and E is the initial value

of £3.

Bus I:	 p,=	 = l.OJ = 14 - 4E - lOE*	 (47)

The Gauss--Seidel method first assumes a set of voltages at buses 2 and 3

and then uses Eqs. 4.5 and 4.6 to solve for new voltages. The new voltages are
compared to the voltage's most recent values, and the process continues until

(4.5)



96	 TRANSMISSION SYSTEM EFFECTS

START

SELECT INITIAL VOLTAGES
FOR EACH BUS

SOLVE FOR E	 DO FOR ALL
f (P, E) j	 1	 N>	 I	 N

( * ref)

SAVE MAXIMUM
VOLTAGE CHANGE

AEMAX = FE  - E'!MAxovE

NO	
çAEMAxe; YES

CALCULATE LINE FLOWS.
LOSSES, MISMATCH, ETC

-SPECIFIED VOLTAGE
CONVERGENCE
TOLERANCE

PRINT RESULTS

STOP

FIG. 4.3 Gauss -Seidel power-flow solution.

the change in voltage is very small. This is illustrated in the flowchart in Figure
4.3 and in Eqs. 4.8 and 4.9.

First iteration:	 =	 = 1.0

= 1 (1:2 +
	 = 1.133

9\l.0	 I
(48)

151= 	
+ 10 + 5(1.133)] = 0.944

= 0.133 too large

Note: In calculating	 we used the new value of F 2 found in the first
correction.
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Second iteration: E = [J_ + 4 + 5(0.944)1 = 1.087
9 L'' 33	 J

=+ 10 + 5(1.087)1 = 0.923
15 [0.944	 J

AE_ = 0.046

And so forth until AE... <

4.1.2 The Formulation of the AC Power Flow

AC power flows involve several types of bus specifications, as shown in Figure
4.4. Note that [P. 61, [Q. I E], and [Q. 6] combinations are generally not used.

The transmission network consists of complex impedances between buses
and from the buses to ground. An example is given in Figure 4.5. The equations
are written in matrix form as

11	 -0	 l	 0
--------------L1 2	- Yi 2 (112	 Y2g + Y23) I	 Y23	 0	 E2

= IIIiIIt+rII
14	 0	 0	 Y34	 I (. r 34 + y )	 E4

(4.10)
(AU 1', E'. y' complex)

This matrix is called the network Y matrix, which is written as

11	 ut V12 Y13 V14

12 - Y21 Y22	 23 Y24	 E2

13 -	 Ol	 32 }33 Y34	 E3

14	Y42 V43 Y44	 E4

The rules for forming a Y matrix are

If a line exists from i to I

and
 Vi, +

./ over all lines connected to i.
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-	 r
Bus Type	 P	 Q	 El	 0	 Comments

-----1- -	
-
Usual load representation

Load- -	 --	 --- --
Voltage	 I	

Assume	 is held constant

L'	 no matter what
ControlledQ

Generator or synchronous
Generator or 

Synchronous	 I	 when	 condenser (P O has

Condenser	
<	 <	 VAR limits

Q minimum VAR limit

	

when	 -	 Q maximum VAR limit

<	 E is held as long as Q, is

	

> Q ,	 within limit

Fixed Z	 I	
Only Z is given

to Ground	 1
Swing bus" must adjust

Reference net power to hold
voltage constant
(essential for
solution)

•a

FIG. 4.4 power-flow bus specificat i ons (quantities checked are the bus boundary

conditions).

FIG, 45 Four-bus AC network.
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The equation of net power injection at a bus is usually written as

= 	 Ykj + Y*k Ek	 (4.12)

4.7.2.1 The Gauss—Seidel Method
The voltages at each bus can be solved for by using the Gauss Seidelmethod
The equation in this case is

=	 ( Pk 
-
- j 	 - 

--[ ilk
+	 (413)

kk	 k	 kk	 j 	 -

Voltage at
iteration

The Gauss --Seidel method was the first AC power-flow method to be
developed For solution on digital computers. This method is characteristically
long iii solving due to its slow convergence and often difficulty is experienced
with unusual network conditions such as negative reactance branches. The
solution procedure is the same as shown in Figure 4.3.

4.1.2.2 The Newton—Raphon Method
One of the disadvantages of the Gauss- Seidel method lies in the fact that each
bus is treated independently. Each correction to one bus requires subsequent
correction to all the buses to which it is connected. The Newton--Raphson
method is based on the idea of calculating the corrections while taking account
of all the interactions.

Newton's method involves the idea of an error in a function 1(x) being driven
(0 zero b) making adjustments Ax to the independent variable associated with
the function. Suppose we wish to solve

f(x)=K	 (4.14)

In Newton's method, we pick a starting value of x and call it x°. The error
is the difference between K and 1(x°). Call the error E. This is shown in Figure
4.6 and given in Eq. 4.15.

f(x°) + r = K	 (4.15)

To drive the error tc zero, we use a Taylor expansion of the function about x°.

df(-°)
f(X 0) -3- -- --- -- itx + c = K	 (4.16)

dx
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where

then

FIG. 4.6 Newton's method.

Setting the error to zero, we calculate

	

Ax = [K --	 (4.17
dx

When we wish to solve a load flow, we extendNewton's method to the
multivariable case (the multivariahie case is called the Newton -Raphson

method). An equation is written for each bus "L"

	

P+JQ,-EIr	 (4.18)

=
YkE

t ± jQ = E(	 kE:)

= jE 1 j 2 Y + ik

As in the Gauss-- Seidel method, a set of starting voltages is used to get things
going. The P ± fQ calculated is subtracted from the scheduled P + JQ at the
bus, and the resulting errors are stored in a vector. As shown in the following,
we will assume that the voltages are in polar coordinates and that we are going
to adjust each voltage's magnitude and phase angle as separate independent
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variables. Note that at this point, two equations are written for each bus: one
for real power and one for reactive power. For each bus,

APj	'v
=00, k1 alkl

(4.19)
11 0Q1	 N OQ,

= k1
AOk +

All the terms are arranged in a matrix (the Jacobian matrix) as follows.

.	 ±L ...
?IEii

AQ 1	...	 E1I
E1	 (4.20)

A?2

Jacobian matrix

The Jacobian matrix in Eq. 4.20 starts with the equation for the real and reactive
power at each bus. This equation, Eq. 4.18, is repeated below:

N

P1 +jQ1 = E,
k I

This can be expanded as:

' +jQ t

=
EIIE(Glk —jBlk)

EJI E J[G cos (0 — 0) + BIk sir (O — 9)J

+ j[ I Ej I I Ek j[Gjj  sin (0 - Ok ) — B,k cos (6 - Ok)]J}	 (4.21)

where

01, 0 = the phase angles at buses I and k, respectively;

E, 1, 1 E! = the bus voltage magnitudes. respectively

G, + jB = }j is the 1k term in the Y matrix of the power system.
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The general practice in solving power flows by Newton's method has been

to use
AJEJ

inslead of smpIy I; this simplifies the equations- The derivatives are:

= EE[G sin ( -	 - B,, cos W, - k)l

COk

=	 cos (O	 1k) + B14 sin (0

\ tL
	

(4.22)

i.Q	 cos	 00	 8 sin W, -- Ok)]

I I Ej [G k sin Ql i -- tl k. )	 i3i, cos (0,	 Oh)]

For i = k

cOi 
= -Q1---

= +

\ F.

10

= -
Ej

EJ -

Equation 420 now becomes 	
AO

tP

AQ1
	 E1

P2 = [i] AO,
	 (4.23

L4Q 2

lE,
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START

SET ALL VOLTAGES TO
STARTING VALUE

-CALCULATE ALL AP,
AND 80 , SAVE THE
MAX LP AND MAX

-CALCULATE THE
JACOBIAN MATRIX

/ MAX 1PE
K	 AND
" MAX.Q

I NO

SOLVE FOR
E.I AND

USING JACOBIAN
INVERSE

UPDATE BUS VOLTAGE
8?=9 1 *

IE,l	 -	 IE,I

Ti-IIS USUALLY MEANS
1.0 L0° per unit VOLTAGE.
A PREVIOUS SOLUTION
MAY BE USED IF
AVAILABLE

E = SPECIFIED BUS
MISMATCH
TOLERANCE

CALCIJ LATE LINE
FLOWS. LOSSES.

YES	 I MISMATCH. ETC.

PRINT RESULTS

STOP

DO FOR ALL

iref

FIG. 4.7 Newton-Raphson power-flow solution.

The solution to the Newton--Raphson power flow runs according to the
flowchart in Figure 43. Note that solving for Mand A j Ej requires the solution
of a set of linear equations whose coefficients make up the Jacobian matrix.
The Jacobian matrix generally has only a few percent of its entries that are
nonzero. Programs that solve an AC power flow using the Newton-Raphson
method are successful because they take advantage of the Jacobian's sparsity."
The solution procedure uses Gaussian elimination on the Jacobian matrix and
does not calculate J - ' explicitly. (See reference 3 for introduction to 'sparsity"

techniques.)

EXAMPLE 4A

The six-bus network shown in Figure 4.8 will he used to demonstrate several
aspects of load flows and transmission loss factors. The voltages and flows
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Bus 3

I 24.1kVLr4

Bus 

241.5kVL.3L° -.-2.9	 2.9-a--	 80.0

12.3	 5.7 __	
89.6 --+-

-U--.- 50.0

-f-.- 74.4	 -F-- 23.2
-43.8

-4- 60.7

- 26.2
-+-.- 12.4

- 15.5 -4--15.4

Bus 6

428

tL!J .-
- 25.7

j	 16.0 I

'
r-^ ^f

 

231,0L-

----- 27.8
-1--• 12.8

Bus 1
2415kV.1 

287
..-+--- 15.4

- 35.6
-•- 107.9	 -+•- 11.3

-f.- 16.0	 -.--.- 43.6

-4-.- 20.1

Bus 4

--- 42.5
-.4- 199

-.,.- 4.1

Bus 5

15.0
-+a.. 18.0	 -. 1.6

34.5 l 97

51 8.0
-- 4.0	 26.1

--1- •- 2.8

'U
70 70

226.7 L3

31.6	 4.9	 -• MW
45.1

-•---- . WAR

generator

70 70	 '-i load
227.6kv L4.2..

FIG. 4.8 Six-bus network base case AC power flow.
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shown are for the "base case" of 210 MW total load. The impedance values
and other data for this system may be found in the appendix of this
chapter.

4.13 The Decoupled Power Flow

The Newton power flow is the most robust power flow algorithm used in
practice. However, one drawback to its use is the fact that the terms in the
Jacobian matrix must be recalculated each iteration, and then the entire set of
linear equations in Eq. 4.23 must also be resolved each iteration.

Since thousands of complete power flows are often run for a planning or
operations study, ways to speed up this process were sought. Reference II shows
the development of a technique known as the "fast decoupled power flow" (i
is often referred to as the "Stott decoupled power flow," in reference to its first
author).

Starting with the terms in the Jacobian matrix (see Eq. 4.22), the following
simplications are made:

• Neglect and interaction between P and any J E.1 (it was observed by power
system engineers that real power was little influenced by changes in voltage
magnitude---so this effect was incorporated in the algorithm). Then, all
the derivatives

api

k. IEl

will be considered to be zero.

• Neglect any interaction between Q j and O (see the note above—a similar
observation was made on the insensitivity of reactive power to changes
in phase angle). Then, all the derivatives

are also considered to be zero.
• Let cos (61 —O)	 I

usually small.

• Assume that

which is a good approximation since (6 - O) is

G 5 sin (0, - 0) <

• Assume that

Q1 << BEI2
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This 1eaes the derivatiCS as:

=
/i E'

if we now write the power flow adjustment equations as:

AP,=

+O, 1E1

	

-	 -

	

' iEi\	 Ek

	1 	 1
k

then, subs(ituling Eq 4.24 into Eq. 4.26. and Eq. 4.25 into Eq. 4.27, we obtain:

AP.

AQ	 -- E !EkBk

Further simplitication can then be made:

• Divide Iqs. 4.28 and 429 by

• Assume	 tin Eq. 4.28.

which results ii
AP

--

\Q.
=

We now build Eqs. 4.30 and 4.31 into two matrix equations:

[—B 11 —B 12 -..AO,j

AP, +B21 --B, ... A

(4.24)

4.25)

426)

(427)

(4.28)

(4.29

(4.30)

(4.31)

(4.32)



(4.33)

	

8j2... 

1	
1E1

	

•_j	

'2H
1!	 [
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Note that both Eqs. 4.32 and 4.33 use the same matrix. Further simplification,
however, will make them different.

Simplifying the \P - AO relationship of Eq. 4.32:

• Assume rth < X ik, this changes - 
k to - IXk.

• Eliminate all shunt reactances to ground.

• Eliminate all shunts to ground which arise from autotransformers.

Simplifying the A Q --	 relationship of Eq. 433:

• Omit all effects from phase shift transformers.

The resulting equations are:

A P1

I'Wi

AP, = [81 AO,

Ed

tJE1.

t%Q
	

=[B] .\!E2

1.2	 :J

where the terms in the matrices are:

= -
	

. assuming a branch from I to (zero otherwise)

(4.34)

(4.35)

ixfl.
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B1 = BA - -

	

	 2r ± Xk

The decoupled power flow has several advantages and d i sadvantages over

the Newton power flow. (Note: Since the introduction and widespread use of
the decoupled power how, the Newton power flow is often referred to as the

"full Newton" power flow.

Advantages:

• B and B are constant; therefore, they can be calculated once and. except

for changes to B" resulting from generation VAR h j inning, they are nut

updated

• Since B and B are each about one . quarter of the number of terms in

{J] (the hill Newton power how Jacobian matrix), there is much less

arithmetic to solve Eqs. 4.34 and 4.35.

I )i'.advantages:

• The decoupled power flow algorithm may 1a11 to conerge when Some of
the underlying assumptions (such as r, << x) do not hold. In such cases,

one must switch to using the Full Newton power flow.

Note that Eq. 4.34 is often referred to as the P-U Eq. and Eq. 4.35 as the Q -L

br Q V) equation.
A flowchart of the algorithm is shown in Figure 49. A comparison of the

convergence of the Gauss-Seidel, the full Newton and the decoupled pocr

how algorithms is shown in Figure 410.

4.1.4 The "DC" Power Flow

A further simplification of the power flow algorithm involves simply dropping
the Q- V equation (Eq. 4.35) altogether This results in a completely linear.
noniterative. power how algorithm. To carry this out, we simply assume that

all	 = It) per unit. Then Eq. 4.34 becomes:

[AP1	[Au,

	

2 = LB'1AU	 (3.36)
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J3cgm power flow solution

Build B and B" matrices anti
calculate the sparse matrix factors
for each matrix

Solve the equation 4.34 for
the

	

=	 + o.

Solve the equation 4.35 for the

Alvi

IE w =

No	 Yes
çConverged? >—'--.---+ Done

["IC. 4.9 Decoupled power flow algorithm.

where the terms in B are as described previously. The DC power flow is only
good for calculating MW flows on transmission lines and transformers. It gives
no indication of what happens to voltage magnitudes, or MVAR or MVA flows.
The power flowing on each line using the DC power flow is then:

	

= — 
(O -	 (4.37)

and

=
connected tot
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Iteration

F1(. 4.10 Compar i son of three power how algorithm convergence characteriStics

EXAMPLE 4R

The megawatt flows on the network in Figure 4.1 will he solved using the DC

power flow. The B matrix equation is:

[
-1 0

 ..
9t)]()J

.1 =

Note that all megawatt quantities and network quantities are expressed in pu

(per unit on 100 MVA base). All phase angles wil l then be in radians.

The solution to the preceding matrix equation is:

^

 01	
0.2118 0.1 17711 0.651 - [ 0.02

0.1177 0.17651 — 1.001 L-o.i

The resulting flows are 
shown in Figure 4.12 and calculated using Eq. 4.37.

Note that all flows in Figure 4.12 were converted to actual megawatt values,
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Bus 	 Bus?
X, = 0.2 per unit

100 MW

X13 0.25 per unit

X = 0.4 per unt
Bus 3 (reference)

FIG. 4.11 Three-bus network,

Busi	 Bus 

1 60 -	 L 00 MWMW

MW	
40 MWt

I ----- 35 MW

Bus 3

FIG. 4.12 Three-bus network showing flows calculated h DC power flow.

EXAMPLE 4C

The network of Example 4A was soled using (he DC power flow with resulting
power flows as shown in F i gure 4.13. The DC power flow is useful for rapid
calculations of real power flows, and. as will be shown later. it is ver y useful in
securit y analysis studies.

4.2 TRANSMISSION LOSSES

4.2.1 A Two-Generator System

We are civen the power system in Figure 4.14. The losses on the transmission
line arc proportional to the square of the power flow. The generating units are
identical, and the production cost is modeled using a quadratic equation. If
both units were loaded to 250 MW. we would fall short of the 500 MW load
value by 12.5 MW lost on the trinsmission line, as shown in Figure 4.15.

65 MW

65 MW
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Bus 3

Bus 

1.8	 1.8

—p- 44.9
Bus 6

44.9 .—•- I

-24.8

-16.2

BuS 1

L
-25.3

100MW

—41.6

Bs 4

248-- 

1T1P4
70.0

Bus 
—v.- 16.2

—,-4.1	 ...-169

70.0

.— 41.6
MW

generator

load

70.0
FIG. 4.13 Six-bus network base case DC power flow for Example 4C.

Wherr& should the extra 12. MW be generated? Solve the Lagrange equation

that was given in Chapter 3.

= F1 (P1 ) + F,(P2 ) + ). ( 500 + '	 p2)	 (4.38)

where
= O.00O2P
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Losses 0.0002 P

500MW

M,n 70 MW
Max 400 MW

	- 	 U

Min 70 MIN
Max 400 MW

FIG. 4.14 Two-generator system.

Losses -- 12.5MW

P1

250 MW
	 487.5 MW

250 MW

FIG. 4.15 Two-generator system with both generators at 20 MW output.

dFJP0_A(1 _o\=o

l3Pt	dP1	 \	 ap1 I

äf'2	dP2	 \.	 P2 I

Substituting into Eq. 4.39,

then

(4.39)

7.0 + 0.004P1 - A(1 - 0.0004P) =0

7.0 + 0.004P2 - A = 0

P1 +p2_50o-_O.0002PO

P1 = 178.882

P2 = 327.496

F1 P1 ) + t(P2 ) = 4623.I5h

6.378 MW

Solution:

Production cost:

Loss
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Losses 13.932 MW

P1 -.- 	 250 MW
263932 MW

500 MW

250 MW
HG. 4.16 Two-generator system with generator I supplying all losses.

Suppose we had decided simpl y to ignore the economic influence of losses
and ran unit I up until it supplied all the losses. It would need to he run at
263.932 MW, as shown in Figure 4.16. In this case, the total production costwould be

	

F1(63.932) + F..(250)	 4661.84 R/h

Note that the optimum dispatch tends toward supplying the losses from the
unit close to the load, and it also resulted in a lower value of losses. Also note
that best economics are not necessarily attained at minimum losses. The
minimum loss solution for this case would simply run unit I down and unit 2up as far as possible. The result is unit 2 on high limit

P1 = 102.084 MW

P. = 400.00 MW (high limit)

The minimum loss production cost would be

F1 (102.084) + F(OO) = 4655.43 K/h

Min losses = 2.084 MW

4.2.2 Coordination Equations, Incremental Losses, and Penalty Factors
The classic Lagran ge multiplier solution to the economic dispatch problem was
given in Chapter 3. This is repeated here and expanded.

Minimize:	 2' = F, + ;.

Where:	
FT 

=	
F1(P)

	

lb =	 P10,(P1. P2 ... P)

Solution:	 ,.	 = 0
('P1

for all	 ^;
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Then	
5' dF,	 = 0

\.opi

The equations are rearranged

	

(L\	 )	 (4.40)
dF

\	 Pi//

where

opi

is called the incremental loss for bus i, and

is called the .''riahv factor for bus i. Note that if the losses increase for an
increase in power from bus i.the incremental loss is positive and the penalty

factor is greater than unity.
When we did not take account of transmission losses, the economic dispatch

problem was solved by making the incremental cost at each unit the same. We
can still use this concept by observing that the penalty factor, Pt;, will have

the Following effect. For Pt; > I (positive increase in P results in increase in

losses)
dt(l)

dP

acts as if
df(P)

dP

had been slightly increased (moved up). For PJ < I (positive increase in P

results in decrease in losses)
dFI)

dP

acts as if
dF(P1)

dP



dF1

dP1

—

dF2

dFj dP1

dF3

dP31

I	 (With
penalty

I factors)
-
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had been slightly decreased (moved down). The resulting set of equations look
like

PJ	 = A	 for all	 !^	 .	 (443).
dPj

and are called LoOrd:naf ion equations. The Pi values that result when penalty
factors are used will be somewhat different from the dispatch which ignores
the tosses (depending on the PA and dF(P)/dP. values). This is illustrated in
Figure 4.17.

4.2.3 The B Matrix Loss Formula

The B matrix loss formula was originally introduced in the early. 1950s as a
practical method for loss and incremental loss calculations. At the time,
automatic dispatching was performed by analog computers and the loss formula
was "stored" in the analog coinputers by setting precision potentiometers. The
equation for the B matrix loss formula is as follows.

= pT[Jflp + BP + B()	 (4.42)

where

P = vector of all generator bus net MW

[B] = square Inatrix of the same dimension as P

B0 = vector of the same length as P

B00 = constant

X (No penalty/
factors)

p•l•p l	 PI	 P,	 ;	 p;3

Pf, = 105	 1.10	 pf, =0.90

= Dispatch ignoring losses
P' = Dispatch with penalty factors

FIG. 4.17 Economic dispatch, with and without penalty factors.
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This can be written:

p =	 + B4OP, ± B00	 (4.43)

Before we discuss the calculation of the B coefficientS, we will discuss how

the coefficients are used in an economic dispatch calculation. Substitute Eq.

4.43 into Eqs. 3.7, 3.8, and 3.9.

i=(4.44)

Then

d(P:) - (l —2 V	 - B)	 (4.45)

epi 	 dP,

Note that the presence of the incremental losses has coupled the coordination
equations; this makes solution somewhat more difficult : A. method of solution

that is often used is shown in Figure 4.18.

EXAMPLE 4D

The B matrix loss formula fot the network in Example 4A isgien here. (Note

that all Pj values must be per unit on 100 MVA base, which results in P1 , in

per unit on 100 MVA base.)

0.0676 0.00953 -.0.005071

	

= [P1 P Pl	 0.00953 0.0521	 0.00901 j P2

	—0.00507 0.00901	 0.0294	 P1

± [-00766 —0.00342 0.0189 P, j + 0.04037

P3

From the base case power how we have

= 107.9 MW

P= 50.0 MW

P, = 60.0 MW

= 7.9 MW (as calculated by the power flow)
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START

GIVEN TOTAL LOAD P,

GET STARTING VALUE
OF P, i1N

CALCULATE FLOSS USING B MATRIX
DEMAND P0 = PLOAD + FLOSS

CALCULATE BUS PENALTY FACTORS

PICK STARTING X

SOLVE FOR EACH P

ADJUST? 	 SUCH THAT
dP

I	 FORi=1.N

CHECK DEMAND\ TOTAL DEMAND
TOLERANCE

I YES

COMPARE P TO P OF
LAST ITERATION

SAVE MAX I P 	 -Pj

SOLUTION/	 \ =
--<MAXJP-P.I<&)	 CONVERGENCENO	

/	 TOLERANCE
YES

DONE

FIG. 4.18 Economic dispatch with updated penalty factors.
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With these generation values placed in the B matrix, we see a very dose
agreement with the power flow calculation.

0.0676 0.00953 - 0.00507 [1.079

= [1.079 0.50 0.601	 0.0053 0.0521	 0.00901 0.50

	

--0.00507 0.00901	 0.0294 LO.60 .1
11.079

+ [-0.0766 --0.0)342 o.oiso]l 0.50	 + 0.040357

L 0.60

= 0.07877 pit
	 7.877 MW) loss

EXAMPLE 4E

Eci the fuel cost curves for the three units in the six-bus network of Example
4A he g1en as

	

= 213.1 ± 1 1.669P1 - 0.00533P	 h

jp) = 200.0 + 10.333P2 . + 0.00889P Rh

F3 1 1 ) = 240.0 + 10.8331. + 0.00741P Rh

with unit dispatch limits

50.0 MW <_ P 15; 200 MW

37.5 MW < !' !S: ¶50 MW

45.0 MW 15 P3 180 MW

A computer program using the method of Figure 4.1 7 was run using:

(total load to be supplied) = 210 MW

The resulting iterations (Table 4.1) show how the program must redispatch
again and again to account for the changes in losses and penalty factors.

Note that the flowchart of Figure 4.18 shows a "two-loop" procedure. The
inner" loop adjusts .. until total demand is met: then the outer loop recalculates

the penalty factors. (Under some circumstances the penalty factors are quite
seusitie to changes in dispatch. If the incremental costs are rdatm'el 'flat."
this procedure may be unstable and special precautions may need to be
employed to insure convergence.)
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TABLE 4.1

I [C I dijon

2

4
c

6

Iterations for Example 4E

A

12.8019	 17.8
12.7929	 11.4
118098	 9.0
12.8156	 8.8
12.8189	 8.8
12.8206	 8.8

PD
	 F'	 P,	 P3

227.8
	

50.00
	

85.34
	

92.49
221.4
	

74.59
	

71.15
	

75.69
219.0
	

73.47
	 70.14
	

75.39
218.8
	

73.67
	 (,9.98	 '5.18

218.8
	

73.65
	

69.98
	

75.18
218.8
	

73.65
	 69,98
	

75.18

4.2.4 Exact Methods of Calculating Penalty Factors

4.2.4.1 .4 Discussion of Reference Bus Versus Load Center Penalty Factors

The B matrix assumes that all load currents conform to an equivalent total
load current and that the equivalent load current is the negative of the sum of
all generator currents. When incremental losses are calculated, something is
implied.

Total lOSS = pr[Bjp + BP + B00

Incremental loss at generator bus i =

The incremental loss is the change in losses when an increment is made
in generation output. As just derived, the incremental loss for bus i assumed
that all the other generators remained fixed. By the original assumption,
however, the load currents all conform to each other and always balance
with the generation: then the implication in using a B matrix is that an
uicrernentai increase in qenerator output is matched by an equivalent increment
in load.

An alternative approach to economic dispatch is to use a reference bus that
always moves when an increment in generation is made. Figure 4.19 shows a

/Reference

FIG. 4.19 Power system with reference generator.
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power system with several generator buses and a reference-generator bus.
Suppose we change the generation on bus i by A.

= pd + /'tP	 (4.46)

Furthermore, we will assume that Ioui stays constant and that to compensate

for the increase in A, the reference bus just drops off by

Drew = po + APri	 4.47)' ref	 r

If nothing else changed, EsP t would be the negative of tsP; however, the
flows on the system can change as a result of the two generation adjustments.
The change in flow is apt to cause a change in losses so that is not
necessarily equal to A!. That is.

= - AP + AP	 (4.48)

Next, we can define P i as the ratio of the negative change in the reference-bus

power to the change

=(AP,(4.49)

or(450)
cP

We can define economic dispatch as follow.

All generators are in economic dispatch when a shift of A? MW from
any generator to the reference bus results in no change in net production
cost; where A? is arbitrarily small.

That is, if
Total production cost =

then the change in production cost with a shift M from plant i is

APreduction cost =

	

	
AP, +	 AP	 (4.51)

d

but
- -
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then

\Production Cost =	 fi 
dF	

(452)
dP,	 dP,,1.

To satisfy the economic conditions.

Wroduction cost = 0
or

dF(F)	
( 4.53)

dPj	dP1

which could be written as

I dI.(i) = d	
(4.54)

dI	 dI

This is very similar to Eq. 4.40. To obtain an economic dispatch solution,
pick a value of generation on the reference bus and then set all other generators
according to Eq. 4.54. and check for total demand and readjust reference
generation as needed until a solution is reached.

Note further that th i , method is exactly the first-order gradient method with
loSS C S.

']

AT =	 [dl
. flu	 (4.55)

dP1	 dl'rd

4.2.4.2 Reference-Bus Penalty Factors Direct from the AC Power Flow

The reference-bus penalty factors may be derived using the Newton-Raphson
power flow. What we wish to know is the ratio of change in power on the
reference bus when a change AP, is made.

Where ! is a function of the voltage magnitude and phase angle on the
network, when a change in AP, is made, all phase angles and voltages in the
network will change. Then

Oj +	
apref 

A] uI

= p. + V	 !	 A?	 (4.56)
I 00ilE1 I 0Pj

To carry out the matrix manipulations, we will also need the following.

---' A0, +y ----'a(.f1

=

	

	 AQ1 +	 (4.57)
c01 Q1
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The terms	 and op,,1 JEJ are derived by differentiating Eq. 4.IS for

the reference bus. The terms eOi lePi and jE 1 l,P, are from the inverse Jacobian
matrix (see Eq. 4.20). We can write Eqs. 4.56 and 4.57 for every bus i in the
network. The resulting equation is

[?!	 Pq Ir	 Me' cP,1

L?Pt Q3 3P2 eQ 2 	 c3P•. QN

=[
	

.P	 p	 j	
(4.58)

L(O	 IE 1 I 10, cE2 I 110, ^iE,]

By transposing we get

(.P1

(P2

eiEj

(Jd	
[jTl]	 'ef
	 (4.59)

(Q2

±1Fc

QN

In practice. instead of calculating jT explicitly, we use Gaussian elimina-

tion on i' in the same wa y we operate on J in the Newton power flow

solu t ion.

APPENDIX
Power Flow Input Data for Six-Bus System

Figure 4.20 lists the input data for the six-bus sample system used in the

examples in Chapter 4. The impedances are per unit on a base of l. ) MVA.

The generation cost functions are contained in Example 4E.



(pu MW)	 pu MW)

	

0.50	 0.0

	

0.60	 0.0

	

0.0	 0.7

	

0.0	 0.7

	

0.0	 0.7

Q
(pu MVAR)

0.0
0.0
0.7
0.7
0.7
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Line Data

From bus	 . To bus	 R(pu)

I	 2	 0.10
1	 4	 0.05

5	 0.08
2	 3	 0.05
2	 4	 0.05
2	 5	 0.10
2	 6	 0.07
3	 5	 0.12
3	 6	 0.02
4	 5	 0.20
S	 6	 0.10

BCA P half total line charging suseptance.

X(pu)
	

BCAP (pu)

0.20
	

0.02
0.20
	

0.02
0.30
	

0.03
0.25
	

0.03
0.10
	

0.01
0.30
	

0.02
0.20
	

0.1)25
0.26
	

0.025
0.10
	

0.01
0.44)
	

0.04
0.30
	

0.03

Bus IT)aia

Voltage
Bus	 Bus	 schedule
number	 type	 (pu V)

	Swing	 1.05
2	 Gen.	 1.05
3	 Gen.	 1.07
4	 Load
5	 Load
6	 Load

FIG. 4.20 Input data for six-bus sample power system.

PROBLEMS

4.1 The circuit elements in the 138 kV circuit in Figure 4.21 are in per unit
on a tOO MVA base with the nominal 138 kV voltage as base. The P +jQ
load is scheduled to be 170 MW and 50 MVAR.

	

I	 2=0.01 +jO.O4pu

	

I	 '

	

Bus 1	 =	 I	 J	
Load

Bus 2
E 1 = 1.OLQ°	 --

FIG. 4.21 Two-bus AC system for Problem 4.1.

a. Write the Y matrix for this two-bus system.

b. Assume bus 1 as the reference bus and set up the Gauss-Seidel
correction equation for bus 2. (Use 1.0 t 0° as the initial voltage on
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bus 2.) Carry out two or three iterations and show that you are

converging.
c. Apply the "DC" load flow conventions to this circuit and solve

for the phase angle at bus 2 for the same load real power of 1.7
per unit.

4.2 Given the network in Figure 4.22 (base = 100 MVA):

Bus 5
	 Bus 3

Bus l	 Bus 	 I-. )
X 0.03	 x - 0.25 ----S X

in =0.01	 I R-0.O9	 R0.03
	

"3
-

1=

"0.03

10.05

Bus4

FIG. 422 Five-bus network for Problem 4.2.

a. Develop the [8] matrix for this system.

P1

P2

P3 = [B'] f

P4	
1 04

P5

P in per unit MW

6 in radians (rad)

b. Assume bus 5 as the reference bus. To carry out a "DC" load flow, we
will set 0 = 0 rad. Row 5 and column 5 will be zeroed.

P,	 .	 0O

P2	 0	 °2
Remainder

=	 (if B'	 0	 63

P4	 0	 04

P5	0 0 0 0 01101
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Solve for the [BJ	 matrix.

	

r	 P1

	

02
	 P2

I 
0 3 = [B']-' P3

P4

	

L o.	 P

c. Calculate the phase angles for the set of power injections.

P1 = 100 MW generation

P, = 120 MW load

= 150 MW generation

P3 = 200 MW load

d. Calculate P according to the 'DC" load flow.
e. Calculate all power flows on the system Using the phase angles found

in part c.
1. (Optional) Calculate the reference-bus pcnaltv factors for buses I, 1 3,

and 4. Assume all bus voltage magnitudes are 1.0 per unit.

4.3 Given the following loss formula (use P values in MW):

2	 3

	

I	 1.36255 x 10
	

1.753 x 10	 1.8394 x

	

8 = 2	 1.754 x 10 -
	

1,5448 x IO	 2.82765 x 10

	

3	 1.8394 x 10
	

2.82765 x 10	 1.6147 x 10

B 0 and B00 are neglected. Assume three units are on-line and have the
following characteristics.

Unit I

Unit 2:

H1 = 312.5 + 8.25P1 + 0.005P. MBu/h

50 . P1 250 MW

Fuel cost = 1.05 R/MBtu

H2 = 112.5 . 8.25P2 + 0.005P, MBtu/h

5 P., ^ 150 MW

Fuel cost = 1.217 'MBtu
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Init 3:	 11,= 50 4- 8.25P3 + 0005P. 4Btu,h

15 P, 100 MW

Fuel cost = 11831 RMBtu

a. No Losses Used in Scheduling

i. Calculate the optimum dispatch and total cost neglecting losses for

PD = 190 MW.*

ii. Using this dispatch and the loss formula, calculate the system losses.

b. Losses Included in Scheduling

i. Find the optimum dispatch for a total generation of PL, = 190 MW*

using the coordination equations and the loss formula.
ii. Calculate the cost rate.

iii. Calculate the total losses using the loss formula.
iv. Calculate the resulting load supplied.

4.4 All parts refer to the three-bus system shown in Figure 423.

FIG. 3.23 Network for Problem 44.

Data for this problem is as follows:

Unit I:	 P, = 570 MW

Unit 2:	 A = 330 MW

(nit 3:	 P3 = 200 MW

Loads:
P11 =200MW

PL,=400MW

= 500 MW

• ): , =.s :: P. 4	 P. -
power os'
P, - Pu.,, - net load
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Transmission line data:

P10 in line A = 0.02P (where PA = P flow from bus I to bus 2)

P1 in line B = 0.02P (where P = P flow from bus I to bus 3)

P10 in line C = 0.02P (where P = P flow from bus 2 to bus 3)

Note: the above data are for P in per unit when power flows P. or P.
or P, are in per Unit.

Line reactances

XA = 0.2 per unit

X8 = 0.3333 per unit

0.05 per unit

(assume 100-MVA base when converting to per unit).

a. Find how the power flows distribute using the DC power flow
approximation. Use bus 3 as the reference.

b. Calculate the total losses.
c. Calculate the incremental losses for bus I and bus 2 as follows: assume

that AP, is balanced by an equal change on the reference bus. Use the
DC power flow data from part a and calculate the change in power
flow on all three lines APA ,AP13 ,and AP,-. Now calculate the line
incremental loss as:

= Gp) APA = (0.04PA)L\PA

Similarly, calculate for lines B and C.
d. Find the bus penalty factors calculated from the line incremental osses

found in part c.

4.5 The three-bus, two-generator power system shown in Figure 4.24 is to be
dispatched to supply the 500-MW load. Each transmission line has losses

oil	

2fp

%0 MW

FIG. 4.24 Circuit for Problem 4.5
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that are given by the equations below.

P o = 0.0001P

P,-.,, = 0.0002P

F1 (P1 ) = 500 + 8P1 + 0.002P

50 MW < P <500 MW

F2 (P2) = 400 + 7.9P2 -f 0.0025P

50 MW < P2 <500 MW

You are to attempt to solve for both the economic dispatch of this system
and the "power flow." The power flow should show what power enters
and leaves each bus of the network. If you use an iterative solution, show
at least two complete iterations. You may use the following initial
conditions: P1 = 250 MW and P, = 250 MW.

FURTHER READING

The basic papers or solution of the power flow can be found in references 1-5. The
development of the loss-matrix equations is based on the work of Kron (reference 6).
who developed the reference-frame transformation theor y . Other developments of the
transmission-loss formula are seen in references 7 and 8. Meyer's paper (9) is representa-
lIve of recent adaptation of sparsit y programming methods to calculation of the loss
matrix.

The development of the reference-bus penalty factor method can be seen in
references 10 and II. Reference 12 gives an excellent derivation of the reference-bus
penalt y factors derived from the Newton power-flow equations. Reference 12 provides an
excellent summary of recent developments in power system dispatch.
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3. Tinney, W. F., Hart, C. F., "Power Flow Solution by Newton's Method," IEEE
Transactions on Power Apparatus and Systems, Vol. PAS-86, November 1967, pp.
1449-1460.

4. Stott. B., Alsac, 0., "Fast Decoupled Load Flow," IEEE Transactions on Power
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5 Unit Commitment

5.1 INTRODUCTION

Because human activit y follows cycles, most systems supplying services to a
large population will experience cycles. This includes transportation systems,
communication systems, as well as electric power systems. In the case of an
electric power system, the total load on the system will generally be higher
during the daytime and early evening when industrial loads are high, lights are
on, and so forth, and lower during the late evening and early morning when
most of the population is asleep. In addition, the use of electric power has
a weekly cycle, the load being lower over weekend days than weekdays. But why
is this a problem in the operation of an electric power system? Why not just
simply commit enough units to cover the maximum system load and leave them
running? Note that to "Commit" a generating unit is to "turn it on;" that is,
to bring the unit up to speed, synchronize it to the system, and connect it so
it can deliver power to the network. The problem with "commit enough Units
and leave them on line" is one of economics. As will be shown in Example 5A.
it is quite expensive to run too many generating units. A great deal of money
can be saved by turning units off (decommitting them) when they are not

'eded.

EXAMPLE SA

Suppose one had the three units given here:

Unit I:	 Min= 150 MW

Max = 600 MW

H 1 = 510.0 i 7.2P + 0.00142P MBtu1h

Unit 2:	 Min= 100 MW

Max = 400 MW

H2 = 310.0 + 7.85P. + 0.00194P MBtuh

Unit 3:	 Mm = 50 MW

Max = 200 MW

11 3 = 78.0 + 7.97P3 + 0.00482P MBtuh

131
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with fuel costs:

Fuel cost 1 = 1.1 VMBtu

Fuel costa = ' l.O /MBtu

Fuel cost 3 = 1.2 R/MBtu

If we are to suppl y a load of 550 MW, what unit or combination of units should
he used to supply this load most economically? To solve this problem, simply
tr y all combinations of the three units. Some combinations will be infeasible if
the sum of all maximum MW for the units committed is less than the load or
if the sum of all minimum MW for the units committed is greater than the
load. For each feasible combination, the units will he dispatched using the
techniques of Chapter 3. The results are presented in Table 5.1.

Note that the least expensive way to supply the generation is not with all
three units running, or even any combination involving two units. Rather, the
optimum commitment is to only run unit I, the most economic unit. By only
running the most economic unit, the load can be supplied by that unit operating
closer to its best efficiency. If another unit is committed, both unit I and the
other unit will be loaded further from their best efficienc y points such that the
net cost is greater than unit I alone.

Suppose the load follows it simple "peak-valley" pattern as shown in Figure
5-la. if the operation of the system is to be optimized, units must he shut down
as the load goes down and then recommitted as it goes back up. We would
like to know which units to drop and when. As we will show later, this problem
is far from trivial when real generating units are considered. One approach to
this solution is demonstrated in Example SB, where a simple priority list scheme
is developed.

TABLE 5.1 Unit Combinations and Dispatch for 550-MW Load of Example 5A

-	 f-I	 rfl

C	 C

Ott Ott Off
Off Off On
Off On Oft
Off On On
On Off Off
On Off On
On On Off
On On On

	

I) 400	 ISO
550	 0	 0
500	 0	 50

	

295 255	 0

	

267 233	 50

-

Infeasible
Infeasible
Infeasible
0 3760 1658

5389	 0	 0
4911	 0	 586
3030 2440	 0
2787 2244	 586

C
.2	 •

0 0 C

5418
5389
5497
5471
5617



1200
MW

Total
load

500
MW

1200
MW

Total
load

600
MW

INTRODUCTION 133

4 P	 4AM	 4 P
Time of day

FIG. 5.Ia Simple peak-valley" toad pattern.

4 P	 4AM	 4 P
Time of day

FIG. 5.1b Unit commitment schedule using shut-down rule.

EXAMPLE 5B

Suppose we wish to know which units to drop as a function of system load.
Let the units and fuel costs be the same as in Example 5A, with the load varying
from a peak of 1200 MW to a valley of 500 MW. To obtain a 'shut-down rule,"
simply use a brute-force technique wherein. all combinations of units will be
tried (as in Example 5A) for each load value taken in steps of 50 MW from
1200 to 500. The results of applying this brute-force technique are given in
Table 52. Our shut-down rule is quite simple.

When load is above 1000 MW. run all three units; between 1000 MW
and 600 MW, run Units I and 2; below 600 MW, run only unit I.
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TABLE 5.2 "Shut-down Rule" Derivation for Example SB

Optimum Combination

	

Load
	

Unit	 I
	

Unit 2
	

Unit 3

1200
	 On

	 On

1150
	

On
	 On

	 On

I t 0
	

On
	 On

	 On

1050
	

On
	 On

	 On

woo
	

On
	 On

	 Oft

	

050
	

On
	 On

	 Off

	

000
	

On
	 On

	 Off

	

850
	

On
	 On

	 Off

	

00
	

On
	

On
	 Oft

	

750
	

On
	 On

	 Off

	

700
	

On
	 On

	 Off

	

650
	

On
	 On

	 Off

	

61)0
	

On
	 Off

	
Oft

	

550
	

On
	 Off

	
Off

	

500
	

On
	 Off

	
Off

Figure 5. 1 h shows the unit commitment schedule derived from this shut-down
rule as applied to the load curve of Figure 5.1a.

So far, we have onl y obeyed one simple constraint: Enough units will he

connnitted to supply the load. If this were all that was involved in the unit
commitment problem—that is, just meeting the load—we could stop here and
state that the problem was "solved." Unfortunately. other constraints and other
phenomena must be taken into account in order to claim an optimum solution.
These constraints will be discussed in the next Section. followed by a description
of some of the presently used methods of solution

5.1.1 Constraints in Unit Commitment

Many constraints can be placed on the unit commitment problem. The list
presented here is by no means exhaustive. Each individual power system. power
pool. reliability council, and so forth. may impose different rules on the
scheduling of units, depending on the generation makeup, load-curve charac-

teristics, and such.

5.1.2 Spinning Reserve

Spinning reserve is the term used to describe the total amount of generation

available from all units s y nchronized (i.e.. spinning) on the system, minus the
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present load and losses being supplied. Spinning reserve must be carried so that
the loss of one or more units does not cause too far a drop in system frequency
(see Chapter 9). Quite simpl y, if one unit is lost, there must be ample reserve
on the other units to make up for the loss in a specified time period.

Spinning reserve must be allocated to obeN certain rules, usually set by
regional reliability councils (in the United States), that specify how the reserve
is to be allocated to various units. Typical rules specify that reserve niust be a
given percentage of' forecasted peak demand, or that reserve must be capable
of makng up the loss of the most heavily loaded unit in a given period of time.
Others calculate reserve requirements as a function of the probabilit y of not
having sufficient generation to meet the load.

Not only must the reserve be sufficient to make up for a generation-unit
failure, but the reserves must be allocated among fast-responding units and
slow-responding units. This allows the automatic generation control system
(see Chapter 9) to restore frequency and interchange quickly in the event of a
generating-unit outage.

Beyond spinning reserve, the unit commitment problem may involve various
classes of "scheduled reserves" or "off-line" reserves. These include quick-start
diesel or gas-turbine units as well as most hydro-units and pumped-storage
h ydro-units that can be brought on-line. synchronized, and brought up to full
capacity quickly. As such, these units can be "counted" in the overall reserve
assessment, as long as their time to come up to full capacity is taken into
account.

Rcseres, finally, must be spread around the power system to avoid
transmission system limitations (often called bottling" of reserves) and to
allow various parts of the system to run as "islands." should they become
electrically disconnected.

EXAMPLE SC

Suppose a power system consisted of two isolated regions: a western region
and an eastern region. Five units, as shown in Figure 5.2, have been committed
to supply 3090 MW. The two regions are separated by transmission tie lines
that can together transfer a maximum of 550 MW in either direction. This is
also shown in Figure 5.2. What can we say about the allocation of spinning
reserve in this system?

The data for the system in Figure 5.2 are given in Table 5.3. With the
exception of unit 4, the loss of any unit on this system can be covered by the
spinning reserve on the remaining units. Unit 4 presents a problem, however.
If unit 4 were to be lost and. unit 5 were to be run to its maximum of 600 MW,
the eastern region would still need 590 MW to cover the load in that region.
The 590 MW would have to be transmitted over the tie lines from the western
region. which can easily supply 590 MW from its reserves. Howe v er, the tie
capacit y of only 550 MW limits the transfer. Therefore, the loss of unit 4 cannot
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Units
	 550 MW

	 Units
1, 2. and 3
	 maximum	 4 and 5

Westerr, region
	 Eastern region

FIG. 5.2 Two-region system.

TABLE 5.3 Data for the System in Figure 5.2

Regional

	

Unit	 Unit	 Genera-
Capacity	 Output	 tion

Region	 Unit	 (MW)	 (MW)	 (MW)

Western	 I	 1000
2	 00	 420(	 1740
3	 0O	 420)

Eastern	 4	 1200	 1040
5	 6()0	 3l0

Total	 L5	 4400	 3090	 3090

I

Regional	 Inter-
Spinning	 Load	 change
Reserve	 (MW)	 MW)

100
380	 1900	 160 in
38(1

1190	 160 out

1310	 3090

be covered even though the entire s y stem has ample reserves. The only solution
to this problem is to commit more units to operate in the eastern region.

5.13 Thermal Unit Constraints

Thermal units usually require a crew to operate them, especially when turned
on and turned off. A thermal unit can undergo only gradual temperature
changes, and this translates into a time period of some hours required to bring
the unit on-line. As a result of such restrictions in the operation of a thermal
plant, various constraints arise, such as:

• Minimum up time: once the unit is running, it should not be turned off

immediately.

• Minimum down time: once the unit is decommitted, there is a minimum

time before it can be recommitted.
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• Crew constraints: if a plant consists of two or more units, they cannot
both he turned on at the same time since there are not enough crew
members to attend both units while starting up.

In addition, because the temperature and pressure of the thermal unit must
be moved slowly, a certain amount of energy must be expended to bring the
unit on-line. This energy does not result in any MW generation from the unit
and is brought into the unit commitment problem as a start-up cost.

The start-up cost can vary from a maximum "cold-start" value to a much
smaller value if the unit was only turned off recently and is still relativel y close
to operating temperature. There are two approaches to treating a thermal unit
during its down period. The first allows the unit's boiler to cool down and then
heat back up to operating temperature in time for a scheduled turn on. The
second (called banking) requires that sufficient energy be input to the boiler to
just maintain operating temperature. The costs for the two can be compared
so that, if possible, the best approach (cooling or banking) can be chosen.

Start-up cost when cooling = CJ1	 x F + C1.

C. = cold-start cost (MBtu)

F = fuel cost

Cf = fixed cost (includes crew expense, maintenance expenses) (in )

thermal time constant for the unit

= time (h) the unit was cooled

Start-up Cost when banking = C, x t x F ± C

Cost (MBtu./h) of maintaining unit at operating temperature

Up to a certain number of hours, the cost of banking will be less than the cost
of cooling, as is illustrated in Figure 5.3.

Finall y , the capacity limits of thermal units may change frequently. due to
maintenance or unscheduled outages of various equipment in the plant this
must also be taken into account in unit commitment.

5.1.4 Other Constraints

5.1.4.1 Hi dro-Constrwnts
Unit commitment cannot be completely separated from the scheduling of
hydro-units. In this text, we will assume that the hydrothermal scheduling (or
"coordination") problem can be separated from the unit commitment problem.
We. of course, cannot assert flatly that our treatment in this fashion will always
result in an optimal solution.

where

where
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FIG. 5.3 Time-dependent tart-up costs.

5.1.1.2	 %1ast RtI?i

some unit, are given a must-run status during Celtutri times of the y ear for

ratson of vol tac suppor I on the I ransIiiisiOri net ' ' rh or for suCh purposes

as iipplv of	 ant [um uses outside th	 tcam plumit itself

5.1.4.3 Fuel Constraints

We will treat the" fuel scheduling" problem briefl y in Chapter 6 A system in

which some units have limited fuel, or else have constraints that require them
to burn a spec i fied amount of fuel in a given time, presents a most challenging
unit commitment problem.

5.2 UNIT COMMITMENT SOLUTION ME'JUODS

The Commitment problem can be very difficult. As a theoretical exercise, let us
postulate the following situation.

• We must establish a loading pattern for M periods.

• We have N units to commit and dispatch.

• The Al load levels and operating lmniits on the N units are such that any

one unit can suppl y the individual loads and that any combination of
units cart also supply the loads.

Next, assume we are going to establish the commitment by enumeration
(brute force). The total number of combinations we need to try each hour is,

C(N. I) ± ('(N. 2) +	 . ('(s N -- I) ((N, N) = 2' -
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where ON, j) is the combination of N items taken j at a time. That is,

I('(N,j) 
=

	N! "d
j T =l x2x3x ... x;

For the total period of M inters'als, the maximum number of possible
combinations is (2N - 1) '. which can become a horrid number to think
about.

For example. take a 24-h period (e.g., 24 one-hour intervals) and consider
systems with 5, 10, 20, and 40 units. The value of (2N 1)24 becomes the
following.

N	 (2	 I)24

5	 62	 lO'
10	 i73x 10'2
20	 112 x
40	 (Too big)

These very large numbers are the upper bounds for the number of enumera-
tions required. Fortunately, the constraints on the units and the load-capacity
relationships of typical utilit y systems are such that we do not approach these
large numbers. Nevertheless, the real practical harrier in the optimized unit
commitment problem is the high dimensionality of the possible solution
space.

The most talked-about techniques for the solution of the unit commitment
problem are:

• Priority-list schemes,
• Dynamic programming (DP),
• Lagrange relation (LR).

5.2.1 Priority-List Methods

The simplest unit commitment solution method consists of creating a priority
list of units. As we saw in Example SB, a simple shut-down rule or priority-list
scheme could be obtained after an exhaustive enumeration of all unit combina-
tions at each load level. The priority list of Example SB could be obtained in
a much simpler manner by noting the full-load average production cost of each
unit, where the full-load average production cost is simpl y the net heat rate at
full load multiplied by the fuel Cost.
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EXAMPLE SD

(onstrUCt a priority list for the units of Example 5A. (Use the same fuel costs

as	
-load average production cost will be

in Exam ple 5A.) First, the lull 

calculated:

Full Load

Unit	 Average Production Cost (g;MWh)

1	 979

2	 9.48

3	 11188

A strict priority order for these units, based on the average production cost,

ould order them as follows:

Unit	 g MWh	 Mm MW	 Max MW

2 948	 too	 400

979	 ISO	 600

3	 11.188	 50	 200

and the commitment scheme would (ignoring mm up/down time, start-up costs.

etc.) simply use only the following combinations.

	

min MW from	 Max MW from

Combination	 Combination	 Combination

2-1-3	 300	 1200

24-!	 250	 1000

2	 100	 400

Note that such a scheme would not completely parallel the shut-own sequence
described in Example 5B, where unit 2 was shut down at 600 MW ieaiflg
unit 1. With the priority-list scheme, both units would be held on until load
reached 400 MW, then unit I would be dropped.

Most priority-list schemes are built around a simple shut-down algorithm

that might operate as follows.
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• At each hour when load is dropping, determine whether dropping the next
unit on the priority list will leave sufficient generation to supply the load
plus spinning-reserve requirements. If not, Continue operating as is; if yes,
go on to the next step.

• Determine the number of hours. H, before the unit will be needed again.
That is, assuming that the load is dropping and will then go back up some
hours later.

• If H is less than the minimum shut-down time for the Unit, keep
commitment as is and go to last step; if not, go to next step.

• Calculate two costs. The first is the sum of the hourly production costs
for the next H hours with the unit up. Then recalculate the same sum for
the unit down and add in the start-up cost for either cooling the unit or
banking it, whichever is less expensive. If there is sufficient savings
from shutting down the unit, it should be shut down, otherwise keep
it on.

• Repeat this entire procedure for the next unit on the priority list. If it is
also dropped, go to the next and so forth.

Various enhancements to the priority-list scheme can be made by grouping
of Units to ensure that various constraints are met. We will note later that
dynamic-programming methods usually create the same type of priority list for
USC in the DP search.

5.2.2 Dynamic-Programming Solution

5.2.2.1 Introduction
Dynamic programming has many advantages over the enumeration scheme,
the chief advantage being a reduction in the dimensionality of the problem.
Suppose we have found units in a system and any combination of them could
serve the (single)load. There would be a maximum of 2 - I = 15 combinations
to test. However, if a strict priority order is imposed, there are only four
combinations to try:

Priority I unit

Priority I unit + Priority 2 unit

Priorit y I unit + Priorit y 2 unit + Priority 3 unit

Priority I unit + Priority 2 unit ± Priority 3 unit + Priority 4 unit

The imposition of a priority list arran ged in order of the full-load average-
cost rate would result in a theoreticall y correct dispatch and commitment
only if:
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I. No load costs are zero.

2. Unit input output characteristics are linear between zero output and full

load.

3. There are no other restrictiofls.

4. Start-up costs are a fixed amount.

In the dynamic-programmin g approach that follows, we assume that:

I. A sta te consists of an array of units with specified units operating and

the rest off-line.

2. '[he start-up cost of a unit is independent of the time it has been off-line

(i.e.. it is a fixed amount).

3. [here are no costs for shutting down a unit.

4. There is a strict priority: order, and in each intel val a specified minimum

amount of capacity must he operating.

A feasible statc is one in which the committed unit' can supply the required
toad and that meets the minimum amount of capacity each period

5.2.2.2 tor'ard DP 4ppoach

One could set up a d y namic-programm ing algorithm to run backward in time

starting from the final hour to he studied, back to the initial hour. Conversely,

one could set up the algorithm to run forward in time from the initial hour to
the final hour. The forward approach has distinct adsantages in solving
generator unit commitment. For example, if the start-up cost of a unit is a

function of the time it has been otT-line (i.e.. its temperature). then a forward
dynamic-program approach is more suitable since the previous historY of the
unit can be computed at each stage. There are other practical reasons for going
forward. The initial conditions are easily specified and the computations can
go forward in time as long as required. A forward dynamic-programming

algorithm is shoA n by the (low chart in Figure 5 .4.
The recursive algorithm to compute the minimum cost in hour K with

combination I is,

L0,(K, I)	 mm [P,(K,J) + S 01(K - I, L: K. 1) 4- F(K - 1, Lfl	 (5.1)
Li

where

F0,( K. I) = least total Cost to arrive at state (K, I)

1) = production cost for state (K. 1)

I, L. K. I= transition Cost from state (K -- I. I.) to state (K, Li
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START

K= I

FCOST (K. I) MIN [PCOST (K. U + SCOST (K - L L: K,
(L

DO FOR
X ALL STATES uN

PERIOD K

K=K+1

4 L = N' FEASIBLE STATES IN
INTERVAL K - I

3
FCOST (K. U = MIN PCOST (K. I) +

SCOST(K - I L: K.) * FCOST (K - I, L)

DO FOR ALL X
STATES I IN PERIOD K

SAVE N LOWEST
COST STRATEGIES

NO	
M, LAST HOUR

4 
YES

[±RACE OPTIMAL SCHEDULE

STOP
FIG. 5.4 Unit commitment via forward dynamic programming.

State (K,!) is the jth combination in hour K. For the forward dynamic-
programming approach, we define a strategy as the transition, or path, from
one state at a given hour to a state at the next hour.

Note that two new variables, X and N. have been introduced in Figure 5.4.

X = number of states to search each period

'V = number of strategies, or paths, to save at each step
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X •	 N

I	 •	 I

tterva Intervai	 interval

K	 K+1

FIG. 53 Restricted search paths in DP algorithm with N 3 and X = 5.

These variables allow control of the computational effort (see Figure 5.5).
For complete enumeration, the maximum number of the value of X or N is

-- 1.
For example, with a simple priority-list ordering, the upper bound on X is n,

the number of units. Reducing the number N means that we are discarding the
highest cost schedules at each time interval and saving only the lowest N paths

01 strategies. There is no assurance that the theoretical optima' schedule will
be found using a reduced number of strategies and search range (the X value);
only experimentation with a particular program will indicate the potential error
associated with limiting the values of X and N below their upper bounds.

EXAMPLE 5E

For this example, the complete search range will be used and three cases will
be studied. The first is a priority-list schedule, the second is the same example
with complete enumeration. Both of the first two cases Ignore hot-start costs
and minimum up and down times. The third case includes the hot-start costs,
as well as the minimum up and down times. Four units are to be committed
to serve an 8-h load pattern. Data on the units and the load pattern are
contained in Table 5.4.
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TABLE 5.4 t nil (haracteris(ic-. Load Pattern. and Initial 'ta'us for the Cases i n

Example 5E

No-Load	 F ufl-Load
Cost	 Ac. Cost

' hi	 t.R mWh

21300	 23.54
585.62	 20U4

1'.74
?52.00	 28.00

Start Up Cost

	

Hiio '011 I ne	 Hot	 Cold

Unit	 om On-Lint t

I	 5	 15U	 350

	

8	 170	 400

3	 8	 500	 1100

4	 -o	 0	 0.02

Load Pajern

\1 imumnum
times (h)

Up Down

4	 2
5	 3
5	 4
1	 I

Cold Start
(h)

.4

0

I nremental
M.	 'M lo	 Ikat Rite

(r'it	 (vl\W)	 NtVf)	 Btu k"3h)

	

80	 10440

2	 250	 (0	 '400)

3	 .100	 7	 S73!

4	 60	 10	 11000

Irlitlilt (ind'tmnns

Hour

4

Load (MW)

4s0

530
Oo

MO
4(s)
280
291)
500

In oidc: to make the required .omputatmons mci efficiently, a simplified

model oft he unit characteristics is used. In practical applications. two- or

three-section stepped incremental curves mi ght be used, as shown in Figure 5.6.

For our exam ple, only a single step between minimum and the maximum power
points is used The units in this example have linear F(P) functions:
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MW
	

MW
Min	 Max	 Mm	 Max

UI	 b)

]PIG. 5.6 (i) Single-step incremental cost curve and (h) multiple-step incremental cost
curve.

The El P) function is:

F(P) = No-load Cost ± Inc cost x P

Note, however, that the unit must operate within its limits. Start-up costs for
the first two cases are taken as the cold-start costs. The priority order for the
four units in the example is: unit 3, unit 2, unit I. Unit 4. For the first two cases,
the minimum up and down times are taken as I It for all units.

In all three cases we will refer to the capacity ordering of the units. This is
shown in fable 5.5, where the Unit combinations or states are ordered by
maximum net capacit y for each combination.

Case 1

In Case I, the units are scheduled according to a Strict priority order. That
is. Units are committed in order until the load is satisfied. The total cost for
the interval is the sum of the eight dispatch costs plus the transitional Costs
for starting any units, In this first Case, it maximum of 24 dispatches must
be considered.
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TABLE 5.5 Capacit y Ordering of the Units

State	 Unit Cornhinatiofl

	

15	 I I I I

	

14	 1110

	

13	 0111

	

12	 0110

	

II	 Loll

	

to	 1101

	

9	 1010

	

S	 001!

	

7	 1100

	

6	 0101

	

5	 0010

	

4	 0100

	

3	 1Q01

	

2	 1000
000!

	

0	 0000
Unit 1 2 1 4

I iunnittted Unitoperating).
(I - I iiC0iflUtIitd (unit hut do n).

Maximum Net Capacity for Combination

(.90
630
610
550
440
390
380
360
330
310
300
250
140
80
60

1)

1..

For Case I. the only slates examined each hour consist of-

State \o.	 Unit Status	 ( ttpdcit (MW)

5	 0010	 100

12	 0 I I 0	 550

4	 I I I U	 00

IS	 I I 1 I	 690

Note that this is the priority order, that 	 is. state	 unit 3,	 state 12 = unit.

3.staieI4=utlit3+ 1, zi p, d state l5= units 3+2±i aForthc

first 4 It. mR the last three states are of interest The sample calculations

:I llustrate the technique. All possible commitments start from state 12 since

this was given as the initial condition. For hour 1. the minimum cost Is state

U. and so (,n. 1 he results for the priority-ordered case are as follows.

	

State ith	 Pointer for

HouF
	 Min Total Cost	 Previous	 Hour

	

12 (9208)	 12

2
	

12t19857)	 12

	

14 (32472)	 12

4
	

12 (433()0)	 14

Note that state 13 is not reachable in this strict priority ordering.
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Sample Calculations for Case I

! or(f. K) = mm [P,., (J, K) + .5,_(J - I, L: J. K) + FJ - 1, Lfl

Allowable states are

{00t0. 0110, 1110. 1111 = 5, 12, 14, 15

In hour 0{L = { 12. initial condition.

J = 1: 1st hour

K
f0(l, 15) = P 0 (1.15) + S,(0, 12: I. 15)

=9861+350=10211

14	 141=9493+350=9843

12	 12) 9208 + 0 = 9208

J = 2: 2nd hour
Feasible states are 1, 11 14, I 5}	 { K , so X = 3. Suppose two strategies

are saved at each stage. so N - 2, and {L} = 12, 14,

K	
J(2 15) = mm [P 0 (2, IS) + S ,_(1, L: 2, 15) + F( I, L)]

15	 12.14,

= 11301 + mini (350 + 9208) I 208591	 1
L (0 + 9843) J

and so on.

Case 2

In Case 2, complete enumeration is tried with a limit of (2 - I) = IS
dispatches each of the eight hours, so that there is a theoretical maximum
of 15 8 = 2.56- 10 9 possibilities. Fortunatel y, most of these are not feasible
because they do not supply sufficient capacity, and can be discarded with
little analysis required.

Figure 5.7 illustrates the computational process for the first 4 h for Case
1 On the figure itself, the circles denote states each hour. The numbers within
the circles are the "pointers." That is, they denote the state number in the
previous hour that provides the path to that particular state in the current
hour. For example, in hour 2, the minimum costs for states 12, 13. 14, and
15, all result from transitions from state 12 in hour I. Costs shown on the
connections are the start-up costs At each state, the figures shown are the
hourl) cost/ total cost.
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Total	 ________ lime siState	 lint	 capacly
n,r'lbet	 aue.,	 0	 1	 2	 3	 4	 50/ 9661	 /11301	 / ,266	 / naa,

I 1(7711	 / 20860 	 33782 / 93953

250

0

4	 1110	 630

Stastup
cost

13	 0113	 SIC

12	 0110	 550	 (

Ii	 1011	 440

'ill

'ccc

@ 7472
 -

®	 0---
/ 0933 /

J 	 43585
:1016/ 	 11196

12	 J3 0---
S®	 l*a.asy oo.nt,ng .011

cast
0648	 43135

16657	 Q 13

540 HOurly

0

FIC. 5.7 Example SE,, Cases I and 2 (first 4 h).

In Case 2. the true optimal commitment is found. That is, it is less
expensive to turn on the less efficient peaking unit, number 4, for hour 3,
than to start up the more efficient unit I for that period. By hour 3, the
difference in total cost is R165, or JkO.l04.MWh. This is not an insignificant
amount when compared with the fuel cost per MWh for an average thermal
unit with a net heat rate of 10.000 Btu/kWh and a fuel cost of R2.00 MBtu.
A savings of it 165 every 3 h is equivalent to 41,800jvr.

The total 8-h trajectories for Cases I and 2 are shown in Figure 5 8 The
neglecting of start-up and shut-down restrictions in these two cases permits
the shutting down of all but unit 3 in hours 6 and 7 The only difference in
the two trajectories occurs in hour ', as discussed in the previous paragraph.

Case 3

In case 3, the original unit data are used so that the minimum shut-down
and operating times are observed. The forward dynamic-programming
algorithm was repeated for the same 8-h period. Complete enumeration was
used. That is 2 the upper bound on X shown in the flowchart was IS. Three
different values for N. the number of strategies saved at each stage, were
taken ds 4. 8. and 10. The same trajector y was found for values of S and 10.
Thic trajectory is shown in Figure 5.9. Hosever. when only [our strategies
were saved, the procedure flounders (i.e.. fails to find a feasible path) in
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Ho

	

State	 Unit	 Tcat
±	

3	 5	 6	 7	 8

	

numb

15 	 liii	 590	 •	 .	 •	 •	 •	 •

	

14	 1110	 630	 •	 .	 •	 •	 .

	

:	 :	 :::	
__...i.:

I 	 IOn	 440	 •	 •	 •	 •	 •	 •	 •	 •

	

tO	 1101	 390	 •	 .	 .	 .	 .	 .	 .

	

9	 1010	 380	 •	 .	 .	 •	 ,	 •

	

1	 I

	

1	 1

FIG, 5.9 Example SE, Case 3.

hour 8, because the lowest cost strategies in hour 7 have shut down
units that cannot be restarted in hour 8 because of minimum unit downtime

rules
The practical remedy for this deficiency in the method shown in

Figure 5.4 is to return to a period prior to the low-load hours and
temporarily keep more (i.e., higher cost) strategies. This will permit keeping
a nominal number of strategies at each stage. The other alternative is, Of
course, the method used here: run the entire period with more strategies

saved.
These cases can be summarized in terms of the total costs found for the

8-h period, as shown in Table 5.6. These cases illustrate the forward dynamic-
programming method and also point out the problems involved in the
practical application of the method.

TABLE 5.6 Siimmry of Cases 1-3

Case	 Conditions

Priority order. Up and down times neglected
2	 Enumeration (X !:,: 15) with 4 strategies (N) saved. Up

and down times neglected
3	 X :5 15. Up and down times observed

N 4 strategies
B = 8 strategies
N - 10 strategies

Total Cost ()

73439

73274

No solution
74110
74110
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5.2.3 Lagrange Relaxation Solution

The dynamic-programming method of solution of the unit commitment problem
has many disadvantages for large power systems with many generating units.
This is because of the necessit y of forcing the dynamic-pro gramming solution
to search over a small number of commitment states to reduce the number of
combinations that must be tested in each time period.

In the Lagrange relaxation technique these disadvantages disappear (although
other technical problems arise and must be addressed, as we shall see). This
method is based on a dual optimization approach as introduced in Appendix
3A and further expanded in the appendix to this chapter. (The reader should
he familiar with both of these appendices before proceeding further.)

We start by defining the variable U as

= 0 if unit i is off-line during period t

= I if unit i is on-line during period

We shall now define several constraints and the objective function of the unit
ornInicment problem:

1. Loading constraints;

	

P i U I = 0 for, = I ... T	 (5.2)

2. Unit limits:

	

!!^ P <_ UPr' for i = I ... N and t	 I ... T (5.3)

3. Unit minimum up- and down-time constraints. Noe that other constraints
can easily be formulated and added to the unit commitment problem.
These include transmission security constraints (see Chapter 11), generator.
fuel limit constraints, and system air quality constraints in the form of
limits on emissions from fossil-fired plants, spinning reserve constraints,
etc.

4. The objective function is:

	

[(P) + Start up costs r] U = F(P,	 U)	 (5.4)

We can then form the Lagrange function similar to the way we did in the
economic dispatch problem:

.(P, U, ))	 F(P, U) +	 ).(POd -	 u)	 (5.5)
The unit commitment problem requires that we minimize the Lagrange function
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above, subject to the local unit con
straints 2 and 3, which can be applied to

each unit separately Note:

1. The cost function. F(P, U9, together with constraints 2 and 3 are each

separable over units. That is, .shat is done with one unit does not affect
the cost of running another unit, as far as the cost function and the unit
limits (constraint 2) and the unit up- and down-time (constraint 3') are

concerned.
2. Constraints I are coupling contraiflLc across the units so that hat we

do to one unit affects what will happen on other units if the couphng
constraints are to he met.

The Lagrange relaxation procedure solves the unit commitment problem by
"relaxing" or temporarily ignoring the c

o upling constraints and oiving the
problem as if they did not exist. This is done through the dual optimization
procedure as explained in the appendix of this chapter- The dual procedure
attempts to reach the constrained optimum b y maximizing the Lagrangian with
respect to the Lagrange multipliers, while minimizing with respect to the other
variables in the problem: that is:

q*)rr max q(i)	 (56)

where
mm	 °(P. U. ).)	 (5.7)

This is done in two basic steps:

Step I Find a value for each .' which moves q().) toward a Larger value.

Step 2 Assuming that the)! found in step I are now fixed, find the minhlnun'
of ?F' ,by adjusting the values of P and U'

The adlusiment of the )' values will be dealt with at a later time in this section:
assume then that a value has been chosen for all the A' and that they are now
to be treated as fixed numbers. We snail minimize the Lagrangian a follows.

First, we rewrite the Lagrangian as:

=	 [F(P9 + Start up cost ][r +	 —	 (.8)

This is now rewritten as:

4.1 [(Pa + Start up coSt,	
r'i	 1 i - i
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The second terni above is constant and can be dropped (since the )' are fixed).
Finally, we write the Lagrange function as:

N	 T

2 E (	 { [F(P) + Start up cost ]U - 2'PuJ)	 (5.10)

Here, we have achieved our goal of separating the units from one another. The
term inside the outer brackets; that is:

T

{F(P) + Start up cost,,,] Ul A'PU}

can be solved separately for each generating unit, without regard for what is
happening on the other generating units. The minimum of the Lagrangian is
found by solving for the minimum for each generating unit over all time periods;
that is:

min q0.) =
	

mint 
{ [FE(P ) + Start up cost JU - A1PU} (5.11)

Subject to

for r=l ... T

and the up- and down-time constraints. This is easily solved as a dynamic-
programming problem in one variable. This can be visualized in the figure
below, which shows the only two possible states for Unit i (i.e., U = 0 or I):

::	

/V:2 S 

i3 S.

where Si is the start-up cost for unit i,
At the U = 0 state, the value of the function to minimized is trivial (i.e., it

equals zero); at the state where U = I, the function to be minimized is (the
start-up cost is dropped here since the minimization is with respect to P):

min[F(F) -	 (5.12)

The minimum of this function is found by taking the first derivative:

--	 =	 - =0	 (5.13)
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The solution to this equation is

d 
F(P) =	 (514)

dP

There are three cases to be concerned with depending on the relation of P

and the unit limits:

i. if P1pl 
<	 then;

mm [F(F)	 = (P"")	 AP7i"`	 (5.15a)

2. If P ill"	 P	 Pr". then:

mm [F(P) - A'P] = F(P)	 (5-15b)

3 If pp	 prna then:

mm [I(I) - i.'P] = OPT-) -	 (5.15c)

The solution of the two-state dynamic program for each unit proceeds in the
normal manner as was done for the forward dynamic-programming solution
of the unit commitment problem itself. Note that since we seek to minimize

-- APJ at each stage and that when U: = 0 this value goes to zero, then

the only way to get a value lower is to have

[F(P) - ).P] <0

The dynamic program should take into account all the start-up costs, S, for
each unit, as well as the minimum up and down time for the generator. Since
we are solving for each generator independently, however, we have avoided the
dimensionality problems that affect the dynamic-programming solution.

5.2.3.1 Adjusting A

So far, we have shown how to schedule generating units with fixed values of
2! for each time period. As shown in the appendix to this chapter, the adjustment
of 2! must be done carefully so as to maximize q(A). Most references to work
on the Lagrange relaxation procedure use a combination of gradient search
and various heuristics to achieve a rapid solution. Note that unlike in the
appendix, the & here is a vector of values, each of which must be adjusted. Much
research in recent years has been aimed at ways to speed the search for the
correct values of A for each hour. In Example 50, we shall use the same
technique of adjusting A for each hour that is used in the appendix. For the
Unit commitment problem solved in Example 513, however, the 2 adjustment

factors are different;

= ' +	 (5.16)
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where

= 0.01 when
d
 q() is positive	 (5.17)

and

= 0.002 when -* q(1) is negative	 (5.18)
d.

Each ,' is treated separately. The reader should consult the references listed at
the end of this chapter for more efficient methods of adjusting the . values. The
overall Lagrange relaxation unit commitment algorithm is shown in Figure
5.10.

Reference IS introduces the use of what this text called the "relative duality
gap" or (i -. q*);q*. The relative dualit y gap is used in Example SD as a
measure of the closeness to the solution. Reference IS points out several useful
things about dual optimization applied to the unit commitment problem.

I. For large. real-sized, power-s y stem unit commitment calculations, the
duality gap does become quite small as the dual optimization proceeds,
and its size can be used as a stopping criterion. The larger the problem
(larger number of generating units), the smaller the gap.

2. The convergence is unstable at the end, meaning that some units are being
switched in and out. and the process never comes to 'a definite end.

I There is no guarantee that when the dual solution is stopped. it will
he at a feasible solution.

All of the above are demonstrated in Example SD. The duality gap is large at
the beginning and becomes progressively smaller as the iterations progress. The
solution reaches a commitment schedule when at least enough generation is
committed so that an economic dispatch can be run, and further iterations only
result in switching marginal units on and oil. Finally, the loading constraints
are not met by the dual solution when the iterations are stopped.

Many of the Lagrange relaxation unit commitment programs use a few
iterations of a dynamic-programming algorithm to get a good starting point,
then run the dual optimization iterations, and finally, at the end, they use
heuristic lo gic or restricted dynamic programming to get to a final solution.
The result is a solution that is not limited to search windows, such as had to
be done in Strict application of dynamic programming.

EXAMPLE 5D

In this example, a thrce-generator, four-hour unit commitment problem will he
solved. The data for this problem are as follows. Given the three generating
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Pick starting A fo tl.. T

kaO

-

for each unit

Build dynarnic prograin having
two states, and T slartits and
solve for:

No
astundone

Sci'e fr the dual ealu qJ)

Using the LI' cakuate the palms1 value
that is. solve an economic dispatch for each hour
using the units that have been committed for that hour

reiaUri driaIy gap sufficiently small
raic aisle Lt relative driSirly gap

Make trial aljustrneni(S to un;;
commitment schcdute to achieve
casabulnLy

update ! for all I

done

FIG. SlO Lagrange relaxation procedure for urn) commitmelit

units belost

F1 P1 ) = 51)0 + LOP, + 0002P-I' and 100 <	 < 600

= O0 igp - 0.0025P-' and lOt)	 P <.400

1 3 P3 ) = tOO ± 6f'	 0A)5 P2 and	 50 < P < 200
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Load:

t	 PL.4(MW)

170
2	 520
3	 1100
4	 330

No start-up costs, no minimum up .. or down-time Constraints.
This example is solved using the Lagrange relaxation technique. Shown

below are the results of several iterations, starting from an initial condition
where all the A values are set to zero. An economic dispatch is run for each
hour. provided there is sufficient generation committed that hour. If there is
not enough generation committed, the total Cost for that hour is set arbitrarily
to 10.000. Once each hour has enough generation committed, the primal value
J* simply represents the total generation cost summed over all hours as
calculated by the economic dispatch.

The dynamic program for each unit with a A' = 0 for each hour will always
result in all generating units off-line.

Iteration I

Hour	 .	 ,	 2	 3	 p,	 ?,	 P3	 "lo.d	 Pu	 p..d	 pd	 p.3d

0	 0	 0	 0	 ()	 0	 0	 170	 0	 0	 0
2	 0	 0	 0	 0	 0	 0	 0	 520	 0	 0	 0
3	 0	 0	 0	 0	 0	 0	 0	 1100	 0	 0	 0
4	 0	 0	 0	 0	 0	 0	 0	 330	 0	 0	 0

J* _ *
q() =0.0,	 P = 40,000. and	 — ----- = undefined

In the next iteration, the A' values have been increased. To illustrate the use
of dynamic programming to schedule each generator, we will detail the DP
steps for unit 3:

	

=	 1.7	 5.2	 11.0	 3.3

	

F(P) —X.P =	 327.5	 152.5	 -700.0	 247.5

	

3 P3	 P43 = P3

rain

t=3	 t=4
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The result is to schedule unit 3 off during hours I, 2, and 4 and on during

hour 3. Further, unit 3 is scheduled to be at its maximum of 200 MW during
hour 3. The results, after all the units hae been scheduled by DP, are as

follows.

Iteration 2

Hour	 u1 U2 U3 P	 P2	 P3	 P O4 -	 PU	 P"" P	 P'

1.7 0	 0	 0	 0	 0	 0	 170	 0	 0	 0

2	 520	 00	 0	 0	 520	 0	 0	 0

3	 ILO 0	 I	 I	 0	 400 200	 500	 0	 0	 0

4	 33 0	 0	 0	 0	 0	 0	 330	 0	 0	 0

*

	

q(A) = 14.982,	 3* = 40,000. and	 -- = 1-67
q

Iteration 3

Hour	 , 	 U1 U2 U3 P1 	 P2	 P1	 p'-'
	 PV	

p& P'	
f

1	 3.40	 0	 0	 0	 0	 0	 170	 0	 0	 0

2	 10.4 0	 1	 1	 0 400 200	 —80	 0 320 200

3	 16.0 1	 1	 1	 600 400 200	 00	 500 400 200

4	 6.60	 0	 0	 0	 0	 0	 330	 0	 0	 0

J * ._ *

	

= 18.344,	 J = 36,024. and	 --- --- 0.965
q.

Iteration 4

Hour	 u	 u 2 u3 P,	 P2	 P3	 Po.a	 pj	 p	 pd	 pd'

—
I	 5.!	 0	 0	 0	 0	 0	 0	 170	 0	 0	 0

2	 10.24 0	 1	 I	 0 400 200	 —80	 0 320 200

3	 158	 I	 1	 1	 600 400 200	 —100	 500 400 200

4	 9.9 0	 1	 1	 0 380 200	 —250	 0 130 200

Ji *
19,214,	 3*	 28,906, and ---- q

	
0.502
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Iteration 5

Hour	 A	 u, u 2 U, P	 P,	 P3	 pi- -	 PL	 P' P' P

U	 U	 (I	 0	 I)	 0	 170	 0	 0	 0
2	 !008 0	 I	 1	 0 400 200	 --80	 0 320 200
3	 I -S 6	 I	 I	 I	 600 400 200	 --- 100	 500 400 200
4	 94 0	 0	 1	 0	 0 200	 130	 0	 0	 0

- 0
= 19532.	 i	 36,024, and -..- - - -	 = 0844

Iteration 6

I hur	 i.	 a	 It,

0	 0	 1	 0	 0 200

	

9.92	 (3	 I	 1	 0	 34	 200
3	 5.4	 I	 I	 600 400 200
4	 10.7	 0	 I	 0 400 200

PL	 p	 p

	

-30	 0	 0 170

	

- n4	 U 1 10 200

	

- 00	 500 400 200
-0 0 130 20)

19.442.	 J = 2(1170, and	 '- = 0.037

The commitment schedule does not change significantl y with further itera-
tion ', although it is not by any means stable. Further iterations do reduce the
dualit y gal) somewhat, but these iterations are unstable in that unit 2 is on the
borderline between being committed and not being committed, and is switched
in and out with no final convergence. After 10 iterations. q().) - 19,485.

= 20.01 7 . and (J* - q*) q* = 0.027. This latter value will not go to zero.
nor will the solution settle down to a final value therefore, the algorithm must
Stop	 j+	 is sufficiently small (e.g.. less than 0.05 in this Case).

APPENDIX
Dual Optimization on a Nonconvex Problem

We introduced the concept of dual optimization in Appendix 3A and pointed
out that when the function to be optimized is convex, and the variables are
continuous, then the maximization of the dual [unction gives the identical result
as minimizing the primal function. Dual optimization is also used in solving the
unit commitment problem. However, in the unit commitment problem there
are variaDics that must he restricted to two values: I or 0. These 1--U variables
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cause a great deal of trouble and are the reason for the difficulty in solving the
unit commitment problem.

The application of the dual optimization technique to the unit commitment
problem has been given the name Lagrange relaxation" and the formulation
of the unit commitment problem using this method is shown in the text in
Section 5.2.3. In this appendix. we illustrate this technique with a simple
geometric problem. The problem is structured with 1-0 variables which makes
it clearly nonconvex. Its form is generally similar to the form of the unit
commitment problems. but that is incidental for now.

The sample problem to be solved is given below. It illustrates the ability of
the dual optimization technique to solve the unit commitment problem. Given:

J(x. x, u 1 , u2) = (0.25x + 15)u 1 -f (D.255v, ± l)u,	 (SAl)

subject ti':
() = 5 -- x 1 u 1 - x,u,	 (5A.2)

and
0 X	 10	 (5A.3)

o X2	 to	 (5A.4)

where x 1 and x are continuous real numbers, and:

u 1 l or 0

u2 =l or 0

Note that in this problem we have two functions, one in x 1 and the other in
x 2 . The functions were chosen to demonstrate certain phenomena in a dual
optimization. Note that the functions are numerically close and only differ by
a small, constant amount. Each of these functions is multiplied by a 1-0 variable
and combined into the overall objective function. There is also a constraint
that combines the x, and x-, variables again with the I 4) variables. There are
four possible solutions.

1. If u 1 and u, are both zero, the problem cannot have a solution since the
equalit y constraint cannot he satisfied.

2. 11 u 1 = I and u,	 0. we have the trivial solution that x 1 = Sand x 2 does
not enter into the problem an y more. The objective function is 21.25.

3. If u 1 = 0 and u 2 = I. then we have the trivial result that x, = 5 and x
does not enter into the problem. The objective function is 21.375.

4. If u = I and u = 1, we have a simple Lagrange function of

A) = (O.25x + 15) ± t0.255x + 15) + A(5 -	 - x 2) ( 5A.5)

The resulting optimum is at x, = 2.5248. x ., = 2.4752. and A = 1.2642, with an
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objective function value of 33.1559. Therefore, we know the optimum value for
this problem, namely, u 1	 I, u 2 = 0, and x 1 = 5.

What we have done, of course, is to enumerate all possible combinations of
the 1 --0 variables and then optimize over the continuous variables. When there
are more than a few 1-0 variables, this cannot be done because of the large
number of possible combinations. However, there is a systematic way to solve
this problem using the dual formulation.

The Lagrange relaxation method solves problems such as the one above, as
follows. Define the Lagrange function as:

2'(x, x 2 , u 1 , u 21 A) = (0.25)C + 15)14 1 + (0.255x + 15)u2

+ 2(5 - .x 1 u 1	X214,)	 5A.6)

As shown in Appendix 3A. we define q(A) as:

q(A) =	 ./'	 ( 5A.7)

where x 1 , .x 2 , u, u, obey the limits and the 1-0 conditions as before. The dual
problem is then to find

	

= max q(.)	 5A.8)

This is different from the dual optimization approach used in the Appendix
3A because of the presence of the 1-0 variables. Because of the presence of the
I -O variables we cannot eliminate variables, therefore, we keep all the variables
in the problem and proceed in alternating steps as shown in the Appendix 3A.

Step I Pick a value for Ak and consider it fixed. Now the Lagrangian
function can be minimized. This is much simpler than the situation
we had before since we are trying to minimize

(0.25x -f 15)u 1 + (0.255x ± 15)u 2 + 
2k(5 - x 1 u 1 - x21'2)

where the value of Ak is fixed.
We can then rearrange the equation above as:

(O.25x -i' 15- x i A k)u i + (O.255x + 15 - x 2 1& )u 2 + Ak5

The last term above is fixed and we can ignore it. The other terms
are now given in such a way that the minimization of this function
is relatively easy. Note that the minimization is now over two terms,
each being multiplied by a 1-0 variable. Since these two terms are
summed in the Lagrangian, we can minimize the entire function by
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minimizing each term separately. Since each term is the product of
a function in x and A (which is fixed), and these are all multiplied
by the 1-0 variable u, then the minimum will be zero (that is with
u 0) or it will be negative, with u = I and the value of x set so
that the term inside the parentheses is negative. Looking at the first
term, the optimum value of x is found by (ignore u for a moment):

(0.25x-,+ 15 - x t A*) 0	 (5A.9)
dx1

If the value of x 1 which satisfies the above falls outside the limits
of 0 and 10 for x 1 , we force x 1 to the limit violated. If the term in
the first brackets

(0.25x + .15—

is positive, then we can minimize the Lagrangian by merely setting
u 1	 0; otherwise u 1 = 1.

Looking at the second term, the optimum value of x 2 is found
by (again, ignore u2):

(0.255x + IS - x 2 Ak) = 0	 (5A.10)
dx2

and if the value of x 2 which satisfies the above value falls outside
the 0 to 10 limits on x 21 we set it to the violated limit. Similarly, the
term in the second brackets

(0.255x + 15 - x2A)

is evaluated. If it is positive, then we minimize the Lagrangian by
making u 2 = 0; otherwise u2 = 1. We have now found the minimum
value of .' with a specified fixed value of 2k

Step 2 Assume that the variables x 1 , x 1, u t , u 2 found in step I are fixed and
find a value for A that maximizes the dual function. In this case, we
cannot solve for the maximum since q(A) is unbounded with respect
to A. Instead, we form the gradient of q(A) with respect to A and we
adjust A so as to move in the direction of increasing q(A). That is, given

(5A.1 1)
dA

which for our problem is

dq
= 5	 x 1 u 1	x2 u 2	 (5A.12)

dA
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e adjust). according to

dq (5A.13)
d).

where is a multiplier chosen to move ). only a short distance. (This
is simply a gradient search method as was introduced in Chapter 3).
Note also, that if both u, and u are zero, the gradient will be 5,
indicating a positive value telling its to increase ).. Esentually. increasing
). will result in a negative value for

(0.25x + IS "-

or for
(O.255x + IS --

or for both, and this will cause u, or u,, or both, to be Set to I. Once
he value of), is increased, we go back to step 1 and find the new values

for x 1 1 'c,. u 1 , u, again.

IThe real difficult y here is in not increasing ). by too touch. In the example
c)resentcd above, the follow ing scheme was imposed oil 	 adjustment of ).:

• If
dq

 IS rositIve. then use X	 0.1.
d/-

• If 
dq 

i, OcCative. then use x	 0005
d.

This lets ) approach the solution slowly, and if it overshoots, it hacks up very
slowly. This is a common technique to make a gradient "behave."

We must also note that, given the few variables we have, and given the fact
that two of them are I 0 variables, the value of;, will not converge to the value
needed to minimize the Lagrangian. In fact, It IS seldom possible to find a
that will make the problem feasible with respect to the equality constraint.
However, when we have found the values for u 1 and u, at any iteration-
we can then calculate (he minimum of i(x 1 . x, u 1 , 0 2) by solving for the
minimum of

[(0.25X 2 ± 15)ii -- (0.255x -t-15++ ,(5	 .. xu2)]

using the techniques in Appendix 3A usince the u and u 2 variables are now
known).

The solution to this minimum will be at v 1 =	 . x 2 = R, and ). =
For the case where u 1 and 02 are both zero, we shall arbitrarily set this
value to a large value (here we set it to 50. We shall call this minimum value



()	 J.

	

5.0	 --	 ..-	 -	 50.0

50	 .-	 -	 ...-	 50.0

	

5.0	 --	 -	 -	 50.0

	

5 .0	 -	 .-.	 ---	 50.0

	

-10.8431	 1.2624	 2.5248	 2.4752	 33.1559

	

--10.6284	 1.2624	 2.5248	 2.4752	 33.1559

	

-2.7853	 2.5	 5.0	 21.25

	

-2.7574	 2.5	 5.0	 -.	 21.25

- q.

9.0
4.0

2.33
0.8104
0.7546
0.1004
0.0982

TABLE 5.7 Dual Optimization on  Sample Problem

Iteration	 u	 U2	 X	 X1

0	 0	 0	 0	 0	 0

2	 1,0	 0	 0	 20	 1.9608	 5.0

3	 2.0	 0	 0	 4.0	 3.9216	 10.0

4	 30	 0	 0	 6.0	 5.8824	 15.0

5	 4.0	 I	 I	 8.0	 7.8431	 18.3137

6	 3.9458	 I	 I	 7.8916	 7.7368	 18.8958

7	 3.8926	 I	 0	 77853	 7.6326	 19.3105

8	 3.8787	 1	 0	 7.7574	 7.6053	 19.3491
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J* , u. U,) and we shall observe that it starts out with a large value, and
decreases, while the dual value q(),) starts out with a value of zero. and
increases. Since there are I -o variables in this problem. the primal values and
the dual values never become equal. The value J*	 q* is called the duality
gap and we shall call the value

J*

the relative duality gap.
The presence of the 1 --0 variables causes the algorithm to oscillate around

a solution with one or more of the 1-0 variables jumping from I to 0 to I, etc.
In such cases, the user of the Lagrange relaxation algorithm must stop the
algorithm. based on the value of the relative duality gap.

The iterations starting from A = 0 are shown in Table 57. The table shows
eight iterations and illustrates the slow approach of A toward the threshold
when both of the I 0 variables flip from 0 to I Also note that w became
negative and the value of i. must now be decreased. Eventually, the optimal
solution is reached and the relative duality gap becomes small. However, as is
typical with the dual optimization on a problem with 1 --0 variables, the solution
is not stable and if iterated further it exhibits further changes in the I --0 variables
as A is adjusted. Both the q* and J* %alucs and the relative duality gap are
shown in Table 5.7.

PROBLEMS

5.1 Given the unit data in Tables 5.8 and 5.9, use forward dynamic-
programming to find the optimum unit commitment schedules covering
the 8-h period. Table 5.9 gives all the combinations you need, as well as
the operating cost for each at the loads in the load data A" x" indicates
that a combination cannot supply the load. The starting conditions are:
at the beginning of the first period units I and 2 are up, units 3 and 4 are
down and have been down for 8 h.

5.2 Table 5.10 presents the unit characteristics and load pattern for a five-unit.
four-time-period problem. Each time period is 2 It long. The input--output
characteristics are approximated by a straight line from min to max
generation, so that the incremental heat rate is constant. Unit no-toad and
start-up Costs are given in terms of heat energy requirements.

a. Develop the priority list for these units and solve for the optimum unit
commitment. Use a strict priority list with a search range of three
(X = 3) and save no more than three strategies (N = 3). Ignore mm
up-/mm down-times for units.

b. Solve the same commitment problem using the strict-priority list with
X = 3 and N = 3 as in part a, but obey the min up/min down time rules.



No-Load
Energy Input

(MB(u,/h)

300
210
120
120

Start-Up
Energy
(MBtu)

800
380
110
110
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TABLE 5.8 Unit Commitment Data for Problem 5.1

Incremental
Max	 Min	 Heat Rate

Unit	 (MW)	 (MW)	 (Btu/kWh)

500	 70	 9950
2	 250	 40	 10200
3	 150	 30	 11000
4	 150	 30	 11000

Load data (all time periods = 2 h);

Time Period	 Load (MW)

I	 600
2	 800
3	 700
4	 950

Start-up and shut-down rules:

Unit	 Minimum Up Time (h)

1	 2
2	 2
3	 2
4	 2

Fuel cost 1.00 /MBtu.

Minimum Down Time (h)

2
4
4

TABLE 5.9 Unit Combinations and Operating Cost for Problem 5.1

Operating Cost (g/h)

Unit Unit Unit Unit	 Load	 Load	 Load
Combination 1	 2	 3	 4 600 MW 700MW 800 MW

A	 I	 1	 0	 01	 6505	 7525	 x
B	 1	 1	 1	 0	 6649	 7669	 8705.
C	 I	 1	 1	 I	 6793	 7813	 8833

= up: 0 = down.

Load
950 MW

x
10475

c. (Optional) Find the optimum unit commitment without use of a strict
priority list (i.e., all 32 unit on/off combinations are valid). Restrict the
search range to decrease your effort. Obey the min Up-/nun down-rime
rules.

When using a dynamic-programming method to solve a unit commit-
ment problem with minimum up- and down-time rules, one must save an
additional piece of information at each state, each hour. This information
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TABLE 5.10 The Unit Characteristk and Load Pattern for Problem 5.2

Net
Full-Load Incremental	 No-Load Start-Up

	 Mm

Max Heat Rate Heat Rate 	 Mm	 Cost	 Cost
	

Up/Down

Unit (MW) (l3tu"kWh) tRlu!kWh) (MW) MBtu/h) (M Btu)
	

Time (h)

	

20,:	 11000	 9900	 50	 220	 400
	

8

	

60	 11433	 10100	 15	 SO	 150
	

8

3	 50	 12000	 IOSOO	 15	 60	 105
	

4

	

40	 12900	 fl 900	 5	 40	 0
	

4

5	 25	 13500	 12140	 5	 34	 0
	

4

Load Pattern

H,ur'	 load (MW)

2	 150
3-4	 320
,c.o	 10

75

Condihons

1, Initially (prior to hour 1). on unit I it on and has been
on for 4 h.

2. Ignore iosses, spinning reserve, etc. The only requirement
is that the generation be able to supply the toad.

3. tue! costs for all units ma y be taken as 1.40 K,MB1u

simply tells its whether any units are ineligible to he shut down or started
up at that state If such units exist at a particular state, the transition cost,

to a state that violates the start- up/shut-doWn ruIcs should be given

a value of infinity.

5.3 Lagrange Relaxation Problem

Given the three generating units below:

F, (P) = 30 4 1OP1 ± 0.002P and 100< P1 <600

.F,(P) = 20 + 81'2 + 0.0025P and 100 < 1 2 <400

F3(113 ) 10 4- 6P + 0.005P and 50 < ! < 200

POd(MW)

300
500

1100
400

No start-up costs, no minimum up- or down-time constraints.

Load

'•i

3
4
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a. Solve for the Unit commitment by conventional dynamic programming.

b. Set up and carry out four iterations of the Lagrange relaxation method.
Let the initial values of A.' be zero for i = I	 4.

c. Resolve with the added condition that the third generator has a
minimum up time of 2 h.

FURTHER READING

Some good introductory references to the unit commitment problem are found in
references 1-3. A survey of the state-of-the-art (as of 1975) of unit commitment solutions
is found in reference 4. References 5 and 6 provide a good look at two commercial unit
Commitment programs in present use.

References 7-il deal with unit commitment as an integer-programming problem.
Much of the pioneering work in this area was done by Garver (reference 7), who also
sounded a note of pessimism in a discussion of reference 8, written together with Happ
in 1968- Further research (references 9-11) has refined the Unit commitment solution
by integer programming but has never really overcome the Garver- .Happ limitations
presented in the 1968 discussion, thus leaving dynamic programming and Lagrange
relaxation as the only viable solution techniques to large-scale unit commitment
problems.

The reader should see references 12 and 13 for a discussion of valve-point loading
and for a thorough development of economic dispatch via dynamic programming.

Reference 14 provides the reader with a good overview of unit commitment
scheduling. References 15, 16, and 17 are recommended for an understanding of the
Lagrange relaxation method, while references 18-21 cover some of the special pioblems
encountered in unit commitment scheduling.
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