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Introduction

1.1 PURPOSE OF THE COURSE

The obijectives of a first-year, one-semester graduate course in electric power
generation, operation, and contral include the desire to:

o

. Acquaint electric power engineering students with power generation

systems, their operation in an economic mode, and their control.
Introduce students to the important “terminal” characteristics for thermal
and hydroelectric power generation Systems.

Introduce mathematical optimization methods and apply them to practical
operating problems.

Introduce methods for solving complicated problems involving both
economic analysis and network analysis and illustrate these techniques
with relatively simple problems.

 Introduce methods that are used in modern control systems for power

generation systems.

_Introduce “current topics™ powver system operation areas that are

undergoing significant, evolutionary changes. This includes the discussion
of new techniques for attacking old problems and new problem areas that
are arising from changes in the system development patterns, regulatory
structures, and economics.

1.2 COURSE SCOPE

Topics to be addressed include:

LU T - VI S

Power generation characteristics.

. Economic dispatch and the general economic dispatch problem.

' Thermal unit economic dispatch and methods of solution.

. Optimization with constraints.

. Using dynamic programming for solving economic dispatch and other

optimization problems.
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6. Transmission system effects:
a. power flow equations and solutions,
b. transmission losses,
c. eifects on scheduling.
7. The unit commitment problem and solution methods:
a. dynamic programming,
b. the Lagrange relaxation method.
8. Generation scheduling in systems with limited energy supplies.

9. The hydrothermal coordination problem and examples of solution
techniques.

10. Production cost models:

a. probabilistic models,

b. generation system reliability concepts.
H1. Automatic generation control
i2. Interchange of power and energy:

a. interchange pricing,

b. centrally dispaiched power pools,

c. transmission effects and wheeling,

d. transactions involving nonutility parties.
13. Power system security techniques.

14, An introduction to least-squares techniques for power system state
estimation.

15. Optimal power flow iechniques and illustrative applications.

In many cases, we can only provide an introduction to the topic area. Many
additional problems and topics that represent important, practical problems
would require more time and space than is available. Still others, such as
light-water moderated reactors and cogeneration plants, could each require
several chapters to lay a firm foundation. We can offer only a brief overview
and introduce just enough information to discuss system problems.

1.3 ECONOMIC IMPORTANCE

The efficient and optimum economic operation and planning of electric power
generation systems have always occupied an important position in the electric
power industry. Prior to 1973 and the oil embargo that signaled the rapid
escalation in fuel prices, electric utilities in the United States spent about 209,
of their total revenues on fuel for the production of electrical energy. By 1980,
that figure had risen to more than 40% of total revenues. In the .5 years after
1973, U.S. electric utility fuel costs escalated at a rate that averaged 257/
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compounded on an annual basis, The efficient use of the available fuel is
growing in importance, both monetarily and because most of the fuel used
represents irreplaceable natural resources.

An idea of the magnitude of the amounts of money under consideration can
be obtained by considering the annual operating expenses of a large utility for
purchasing fuel. Assume the following parameters for a moderately large system.

Annual peak load: 10,000 MW

Annual load factor: 607,

Average annual heat rate for converting fucl to elecinic energy: 10,500
Blu/kWh

Average fuel cost: $3.00 per mullion Btu (MBtu), corresponding to oil priced
at 18 $/bbl

With these assumptions, the total annual fuel cost for this systein is as follows.

Annual energy produced: 107 kW x 8760 h,yr x 0.60 = 5.256 ~ 109 kWh
Annual fuel consumption: 0,500 Btu/kWh = 5256 x i0'% kWh

= 55188 x 10'* Btu
Annual fuel cost: 53.18% = 10" Btu x 3 x 10 ® §/Btu = $1.66 billion

To put this cost in perspective. it reprasents a direct requirement for revenues
from the average customer of this system of 3.15 cents per kWh just to recover
the expense for fuel.

A savings in the operation of this system of a small percent represents a
significant reduction n operating cost, as well as in the quantities of fuel
consumed. [t is no wonder that this area has warranted a great deal of atiention
from engineers through the vears.

Periodic changes in basic fuel price levels serve to accentuate the problem
and incrcase its economic significance. Inflation also causes problems n
developing and presenting methods, technigues. and examples of the economic
aperation of electric power generating systems. Recent fuel costs always seem
to be ancient history and entirely inappropriate to current conditions. To avoid
leaving false impressions about the actual value of the methods to be discussed.
all the examples and problems that are in the text are expressed in o nameless.
fictional monetary unit 1o be designated as an "R.”

1.4 PROBLEMS: NEW AND OLD

This text represents @ progress report in an engineering arca that has been and
is still undergoing rapid change. It concerns established engineering problem
areas (i.e.. economic dispatch and control of interconnected systems) that have
taken on new importance in recent years. The original problem of economic
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dispatch for thermal systems was solved by numerous methods years ago.
Recently there has heen a rapid growth in apphicd mathematical methods and
the availability of computational capability for solving problems of this nature
so that more mvolved problems have been successfully solved.

The classic problem is the economic dispateh ol fossil-fired generation
systems to achieve minimum operating cost. This problem arca has taken on
a subtle twist as the public has become increasingly concerned with environ-
mental matters. so that “economic dispatch”™ now includes the dispatch of
systems to mininuze poliutants and conserve various forms of fuel, as well as
to achieve mimmuin costs In addition, there s a need 1o expand the fimitad
economic optimization problem to incorporate constraints on svstem operation
to ensure the “security™ of the system. thereby preventing the collupse of the
ystem due to unforeseen conditions. The hydrothermal coordination problem
s another optimum operating problem area that has received a great deal of
attention. Even so. there are difficult probiems involving hvdrothermal co-
ordination that cannot be solved in « theoretically satisfying fashion in a rapid
and etlicient computaiional manner.

The post World War 11 period saw the increasing installation of pumped-
storage hvdroelecine plants i the United States and a great dead of interest
energy storage svsiems. Phese storage svstems mvoive another difficult aspect
of the optimum economic operating problem. Methods are available for selving
coordination of hydrocleetric, thermal. and pumped-sterage electric systems.
However. closiely associated with this cconomic dispatch problem is the problem
of the proper commutment of an array of units oul of a totai array of units to
serve the expected joad demands in an “opiimal ™ manner,

A greal deal of progress and change has occurred in the 19835- 19935 decade
Both the unit commutment and oplimal economic maintenance scheduling
problems have seen new methodologies and computer programs developed.
Transmission fusses and constraints are integrated with scheduling using
methods based on the incorpuration of power flow equations in the ceonomic
dispatch process. This permits the development of optimal cconamic dispatch
conditions that do not result 5 overlouding system clements or voltage
magmtudes that are intolerabic. These “optimal power Now™ techniques are
applied to scheduling both real and reactive power sources. as well as
establishing tap positions for transformers and phase shifters.

In recent vears the political climate in many countries has changed. resulting
in the ntroduction of more privately owned eleciric power facilities und 4
reduction or climination of governmentally sponsored generation and trans-
mission organizations. In some countries. previously nationwide systems have
been privatized. In both these countries and in countries such as the United
States. where electric utihities have been owned by a variety of bodies fe.g.
consumers, shareholders. as well as government agencies). there has heen a
movement to introduce both privately owned generation companies and larger
cogeneration plants that may provide energy to utility customers. These 1wo
groups are relerred to as independent power producers (IPPs). This trend is
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coupled with a movement to provide access to the transmission system for these
nonutility power generators, as well as to other interconnected utilities. The
growth of an IPP industry brings with it a number of interesting operational
problems. One example is the large cogeneration plant that provides steam to
an industrial plant and electric energy to the power system. The industrial-plant
steam demand schedule sets the operating pattern for the generating plant, and
it may be necessary for a utility to modify its economic schedule to facilitate
the industrial generation pattern.

Transmission access for nonutility entities (consumers as well as generators)
sets the stage for the creation of new market structures and patteras for the
interchange of electric energy. Previously, the major participants in the
interchange markets in North America were clectric utilities. Where nonutility.
generation entities or large consumers of power were involved. local electric
utilities acted as their agents in the marketplace. This pattern is changing. With
the growth of nonutility participants and the increasing requirement for access
to transmission has come a desire to introduce a degree of economic competition
into the market for electric energy. Surely this is not a universally shared desire;
many parties would prefer the status quo. On the other hand, some electric
utility managements have actively supported the construction, financing, and
operation ol new generation plants by nonutility organizations and the
introduction of less-restrictive market practices.

The introduction of nonutility generation can complicate the scheduling-
dispatch problem. With only a single, integrated electric utility operating both
the generation and transmission systems, the local utility could establish
schedules that minimized 1ts own operating costs while observing all of the
necessary physical, reliability, security. and economic constraints. With multipie
parties in the bulk power system (i.e.. the generation and fransmission system).
new arrangements are required. The economic objectives of all of the parties
are not identical. and. in fact, may even be in direct (economic) opposition. As
this situation evolves. different patterns of operation may result in different
regions. Some arcas may see a continuation of past patterns where the local
utility is the dominant participant and continues to make arrangements and
schedules on the basis of minimization of the operating cost that is paid by 1ts
own customers. Centrally dispatched power pools could evolve that include
nonutility generators, some of whom may be engaged in direct sales to large
consumers. Other areas may have open market structures that permit and
facilitate competition with local utilities. Both loca! and remote nonutility
entities, as well as remote utilities, may compete with the local electric utility
to supply large industrial electric energy consumers or distribution utilities. The
transmission system may be combined with a regional control center in a
separate entity. Transmission networks could have the legal status of “common
carriers,” where any qualified party would be allowed access to the transmission
system to deliver cnergy to its own customers, wherever they might be located.
This very nearly describes the current situation in Great Britain.

What does this have to do with the problems discussed in this text? A great
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deal. In the extreme cases mentioned above, many of the dispatch and
scheduling methods we are going to discuss will nced to be rethought and
perhaps drastically revised. Current practices in automatic generation control
are based on tacit assumptions that the electric energy market is slow moving
with only a few, more-or-less fixed, interchange contracts that are arranged
between interconnected utilities. Current techniques for establishing optimal
economic generation schedules are really based on the assumption of a single
utility serving the ‘electric energy needs of its own customers at minimum cost.
Interconnected operations and energy interchange agreements are presently the
result of interutility arrangements: all of the parties share common interests. In
a world with a transmission-operation entity required to provide access to many
parties, both utility and nonutility organizations, this entity has the task of
developing operating schedules to accomplish the deliveries scheduled in some
(as yet 1o be defined) “optimal” fashion within the physical constraints of the
system. while maintaining system reliability and security. If all (or any) of this
develops, it should be a fascinating time to be active in this field.
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2 Characteristics of Power
Generation Units

2.1 CHARACTERISTICS OF STEAM UNITS

In analvzing the problems associated with the controlled operation of power
systems. there are many possible parameters of interest. Fundamental to the
cconomic operating problem is the set of input-output characteristics of a
thermal power generation unit. A typical hoiler—turbine generator unit is
sketched in Figure 2.1 This unit consists of a single boiler that generates steam
10 drive a singie turbine- generator set. The electrical output of this set 1s
connected not only to the electric power system. but also to the auxiliary power
system in the power plant. A typical steam turbine unit may require 2-6", of
the gross output of the unit for the auxiliary power requirernents necessary to
drive boiler feed pumps. fans, condenser crculating water pumps, and so on.
in defining the unit characteristics, we will talk about grass input versus rer
output. That is, gross input to the plant represents the total input. whether
measured in terms of dollars per hour or tons of coal per hour or milliens of
cubic feet of gas per hour, or any other units. The net output of the plant s
the electrical power output available to the electric utility system. Occasionaliy
engineers will develop gross input- gross output characteristics. In such situa-
tions, the data should be converted to net output to be more useful in scheduling
the generation

In defining the characteristics of steam turbine unis. the following terms wiil
be used

f1 = Btu per hour heat input to the unit (or MBtu/h)

F = Fuel cost times H is the R per hour (R/h) input to the unit for fuel

Occasionally the R per hour operating cost rate of a unit will include
prorated operation and maintenance costs. That 1s. the labor cost for the
operating crew will be included as part of the operating cost if this cost can be
expressed directly as a function of the output of the unit. The output of the
generation unit will be designated by P. the megawatt net output of the unit.

Figure 2.2 shows the input-output characteristic of a steam unit in idealized
form. The input to the unit shown on the ordinate may be either in terms of
heat energy requirements [millions of Btu per hour (MBtu/h)] or in terms of

8



CHARACTERISTICS OF STEAM UNITS 9
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FI1G. 2.2 Input-output curve of a steam turbine generator.

total cost per hour (R per hour). The output is normally the net electrical output
of the unit. The characteristic shown is idealized in that it is presented as a
smooth, convex curve.

These data may be obtained from design calculations or from heat rate tests.
When heat rate test data are used, it will usually be found that the data points
do not fall on a smooth curve. Steam turbine generating units have several
critical operating constraints. Generally, the minimum load at which a unit can
operate is infiuenced more by the steam generator and the regenerative cycle
than by the turbine. The only critical parameters for the turbine are shell and
rotor metal differential temperatures, exhaust hood temperature, and rotor and
shell expansion. Minimum load limitations are generally caused by fuel com-
bustion stability and inherent steam generator design constraints. For example,
most supercritical units cannot operate below 30% of design capability.
A minimum flow of 30%, is required to cool the tubes in the furnace of the
steam gencrator adequately. Turbines do not have any inherent overload
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capability, so that the data shown on thesc curves normally do not extend much
beyond 5% of the manufacturer’s stated valve-wide-open capability.

The incremental heat rate characteristic for a unit of this type is shown in
Figure 2.3. This incremental heat rate characteristic is the slope (the derivative)
of the input- output characteristic (AH/AP or AF/AP). The data shown on this
curve are in terms of Btu per kilowatt hour (or R per kilowatt hour) versus
the net power output of the unit in megawatts This characteristic 1s widely
used in economic dispatching of the unit. It is converted to an incremental
fuel cost characteristic by multiplying the incremental heat rate in Btu per
kilowatt hour by the equivalent fuel cost in terms of R per Btu. Fre-
quently this characteristic is approximated by a sequence of straight-line
segments.

The last important characteristic of a steam unit is the unit (net) heat rate
characteristic shown in Figurc 2.4. This characteristic is H/P versus P. It is
proportional to the reciprocal of the usual efficiency characteristic developed
for machinery. The unit heat rate characteristic shows the heat input per
kilowatt hour of output versus the megawatt output of the umt. Typical
conventional steam turbine units are between 30 and 359 efficient, so that their
unit heat rates range between approximately 11.400 Btuy/kWh and 9800
Btu/kWh. (A kilowatt hour has a thermal equivalent of approximately 3412
Btu.) Unit heat rate characteristics are a function of unit design parameters
such as initial steam conditions, stages of reheat and the reheat temperatures,
condenser pressure, and the complexity of the regenerative feed-water cycle.
These are important considerations in the establishment of the unit’s efficiency.
For purposes of estimation, a typical heat rate of 10,500 Btu/kWh may be used
occasionally to approximate actual unit heat rate characteristics.

Many different formats are used to represent the input- output characteristic
shown in Figure 2.2. The data obtained from heat rate tests or from the plant
design engineers may be fitted by a polynomial curve. In many cascs, quadratic
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FIG. 2.3 Incremental heat (cost) rate characteristic.
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FIG. 2.4 Net hear rate characteristic of a steam turbine generator unit.

characteristics have been fit to these data. A series of straight-line segments may
also be used to represent the input-output characteristics. The different
representations will, of course, result in different incremental heat rate charac-
teristics. Figure 2.5 shows two such variations. The solid line shows the
incremental heat rate characteristic that results when the input versus output
characteristic is a quadratic curve or some other continuous, smooth, convex
function. This incremental heat rate characteristic is monotonically increasing
as a function of the power output of the unit. The dashed lines in Figure 2.5
show a stepped incremental characteristic at results when a series of straight-line
segments are used 1o represent the input-output characteristics of the unit. The
use of these different representations may require that different scheduling
methods be used for establishing the optimum economic operation of a power
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FIG. 0.5 Approximate representations of the incremental heat rate curve,
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system. Both formats are useful, and both may be represented by tables of data.
Only the first, the solid line. may be represented by a continuous analytic
function. and only the first has a derivative that is nonzero. (That is, d*F/dP?
equals zero if dF/dP 1s constant.)

At this point, it is pecessary to take a brief detour (o discuss the heating
value of the fossil fuels used in power generation plants. Fuel heating values for
coal, oil, and gas are expressed in terms of Btu/Ib, or joules per kilogram of
fuel. The determination is made under standard, specified conditions using a
bomb calorimeter. This is all to the good except that there are two standard
determinations specified.

1. The higher heating value of the fucl (HHV) assumes that the water vapor
in the combustion process products condenses and therefore includes the
latent heat of vaporization in the products.

3. The lower heating value of the fuel (LHV) does not include this latent heat
of vaporization.

The difference between the HHV and LHV for a fuel depends on the
hydrogen content of the fuel. Coal fuels have a low hydrogen content with the
result that the difference between the HHV and LHV for a fuel is fairly small
(A typical value of the difference for a bituminous coal would be of the order
of 3%. The HHV might be 14,800 Btu/lb and the LHV 14,400 Btu,lb.) Gas
and oil fuels have a much higher hydrogen content, with the result that the
relative difference between the HHV and LHYV is higher; typically in the order
of 10 and 6°,, respectively. This gives rise to the possibility of some con-
fusion when considering unit efficiencies and cycle cnergy balances. (A more
detailed discussion is contained in the book by El-Wakil: Chapter 1, reference
12.)

A uniform standard must be adopted so that everyone uses the samc heating
value standard. In the USA, the standard is to use the HHV except that
engineers und manufacturers that are dealing with combustion wurbines (L.e., gas
turbines) normaliy use LH Vs when quoting heat rates or efficiencies. In European
practice. LHVs are used for all specifications of fuel consumption and unit
efficiency. In this text, HHVs are used throughout the book to develop unit
characteristics. Where combustion turbine data have been converted by the
authors from LHVs to HHVs, a difference of 109, was normally used. When
in doubt about which standard for the fuel heating value has been used to
develop unit characteristics—ask!

27 VARIATIONS IN STEAM UNIT CHARACTERISTICS

A number of different steam unit characteristics exist. For large steam turbine
generators the input output characteristics shown in Figure 2.2 are not always
+s smooth as indicated there. Large steam turbine generators will have a number
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of steam admission valves that are opened in sequence to obtain ever-increasing
output of the unit. Figure 2.6 shows both an input-output and an incremental
heat rate characteristic for a umit with four valves. As the unit loading increases,
the input to the unit increases and the incremental heat rate decreases between
the opening points for any two valves. However, when a valve is first opened,
the throttling losses increase rapidly and the incremental heat rate rises
suddenly. This gives rise to the discontinuous type of incremental heat rate
charactenistic shown in Figure 2.6. It is possible to use this type of characteristic
in order to schedule steam units, although it is usvally not done. This type of
input-output characteristic is nonconvex; hence, optimization techniques that
require convex characteristics may not be used with impunity.

Another type of steam unit that may be encountered is the common-header
plant, which contains a number of different boilers connected to a common
steam line (called a common header). Figure 2.7 is a sketch of a rather complex

£
a3
@
=
=
a
=
Min Qutput, P(MW}
o~ ™ -«
L - 2
5L L4 = -
552 > > >
=&
Qi<
S'
8
g |
E 1 I i
£ I
s ‘ | |
E N\ | | i ;
g |
- 1 | 2 i 3 | - |
| B, | |
Output, P(MW)

FIG. 2.6 Characteristics of a steam turbine generator with four steam admission
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FI1G. 2.7 A common-header steam plant.

common-header plant. In this plant there are not only a number of boilers and
turbines, each connected to the common header, but also a “topping turbine”
connected to the common header. A topping turbine is one in which steam is
exhausted from the turbine and fed not to a condenser but to the common
steam header.

A common-header plant will have a number of different input-output
characteristics that result from different combinations of boilers and turbines
connected to the header. Steinberg and Smith (Chapter 1, reference 1) treat this
type of plant quite extensively. Common-header plants were constructed
originally not only to provide a large electrical output from a single plant, but
also to provide steam sendout for the heating and cooling of buildings in dense
urban areas. After World War I1, a number of these plants were modernized
by the installation of the type of topping turbine shown in Figure 2.7. For a
period of time during the 1960s, these common-header plants were being
dismantled and replaced by modern, efficient plants. However, as urban areas
began to reconstruct, a number of metropolitan utilities found that their
steam loads were growing and that the common-header plants could not
be dismantled but had to be expected to provide steam supplies (0 new
buildings.

Combustion turbines (gas turbines) are also used to drive electric generating
units. Some types of power generation units have been derived from aircralft
gas turbine units and others {rom industrial gas turbines that have been
developed for applications like driving pipeline pumps. In their original
applications, these two types of combustion turbines had dramatically different
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duty cycles. Aircraft engines see relatively short duty cycles where power
requirements vary considerably over a flight profile. Gas turbines in pumping
duty on pipelines would be expected to operate almost continuously throughout
the year. Service in power generation may require both types of duty cycle.
Gas turbines are applied in both a simple cycle and in combined cycles. In
the simple cycle, inlet air is compressed in a rotating compressor (typically by
a factor of 10 to 12 or more) and then mixed and burned with fuel oil or gas
in a combustion chamber. The expansion of the high-temperature gaseous
products in the turbine drives the compressor, turbine, and generator. Some
designs use a single shaft for the turbine and compressor, with the generator
being driven through a suitable set of gears. In larger units the generators are
driven directly, without any gears. Exhaust gases are discharged to the atmos-
phere in the simple cycle units. (n combined cycles the exhaust gases are used
to make steam in a heat-recovery steam generator before being discharged.
The early utility applications of simple cycle gas turbines for power
generation after World War 11 through about the 1970s were generally to supply
power for peak load periods. They were fairly low efficiency units that were
intended to be available for emergency needs and to insure adequate generation
reserves in case of unexpected load peaks or generation outages. Net full-load
heat raies were typically 13,600 Btu/kWh (HHYV). In the 1980s and 1990s, new,
large, simple cycle units with much improved heat rates were used for power
generation. Figure 2.8 shows the approximate, reported range of heat rates
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FIG. 28 Approximate nct heat rates for a range of simple cycle gas turbine units.
Units are fired by natural gas and represent performance al standard conditions of an
ambient temperature of 15'C at sea level. (Heat rate data from reference | were adjusted
by 13% to represent HHVs and auxiliary power needs.)
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for simple cycle units. These data were taken from a 1990 publication
(reference 1) and were adjusted to allow for the difference between lower and
higher heating values for natural gas and the power required by plant
auxiliaries. The data illustrate the remarkable improvement in gas turbine
cfficiencies achieved by the modern designs.

Combined cycle plants use the high-temperature exhaust gases from one or
more gas turbines to generate steam in heat-recovery steam generators (HRSGs)
that are then used to drive a steam turbine generator. There are many different
arrangements of combined cycle plants; some may use supplementary boilers
that may be fired to provide additional steam. The advantage of a combined
cycle is its higher efficiency. Plant efficiencies have been reported in the range
between 6600 and 9000 Btu/kWh for the most efficient plants. Both figures are
for HHVs of the fuel (see reference 2). A 50% efficiency would correspond to
a nel heat rate of 6825 Btu/kWh. Performance data vary with specific cycle
and plant designs. Reference 2 gives an indication of the many configurations
that have been proposed.

Pari-load heat rate data for combined cycle plants are difficult to ascertain
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FIG. .9 A combined cycle plant with four gas turbines and a steam turbine generator.
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FIG. 2.10 Combined cycle plant heat rate characterisiic.

from available information. Figure 2.9 shows the configuration ol a combined
cvele plant with four gas turbines and HRSGs and a steam turbine generator.
The plant efficiency characteristics depend on the number of gas turbines in
operation. The shape of the net heat rate curve shown in Figure 2,10 illustrates
this. Incremental heat rate characteristics tend to be flatter than those normally
scen for steam turbine units.

2.3 COGENERATION PLANTS

Cogeneration plants are similar to the common-header steam plants discussed
previously in that they are designed to produce both steam and electricity. The
term “cogeneration™ has usually referred to a plant that produces steam for an
industrial process like an oil refining process. 1t is also used to refer to district
heating plants. in the United States, "district heating” implies the supply of
steam to heat buildings in downtown (usually business) areas. In Europe. the
term also includes the supply of heat in the form of hot water or steam for
residential complexes, usualily large apartments.

For a variety of economic and political reasons. cogeneration is assuming a
Jarger role in the power systems in the United States. The economic incentive
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is due to the high cfiiciency clectric power generation “topping cycles™ that caa
generate power at heat rates as low as 3000 Buu kWh. Depending on specific
plant requirements for heat and power. an industrial firm may have large
amounts of excess power available for sale at very competitive efficiencics. The
recent and current political. regulatory, and economic climate encourages the
supply of electric power to the interconnected systems by nonutility entitics
cuch as laree industrial firms. The need for process heat and steam exists in many
industries. Refineries and chemical plants may have a need for process steam on
a continuous basis, Food processing may require a steadv supply of heat. Many
industrial plants use cogeneration units that extract steam from a simple or
complex (i.c.. combined) cycle and simultancously produce eclectrical energy.

Prior to World War 11, cogencration units were usually small sized and used
extraction steam turbines to drive o generator. The unit was typically sized to
supply sufficient steam for the process and electric power for the load internal
to the plant. Backup steam may have been supplied by a boiler, and an
interconnection to the local utility provided an emergency source of electricity.
The largest industnal plants would usually make arrangements to supply an
excess electric energy to the utlity. Figure 2.11 shows the input output
characteristics for a 50-MW single extraction unit. The data show the heat

Steam
demand
(kib/hr)
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~——-- 300
— 835

800 I~

= §
800 =0

400

Fuel input (MBtuhr)

200

- ! | 1 1
Q 10 20 30 40
Electrical output (MW)

gl

FIG. 2.11  Fucl input required for steam demand and electrical output for a single
extriction steam turbine generator.
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input required for given combinations ol process steam demand and electnic
output. This particular example is for 4 unit that can supply up 10 370,000
Ibs/h of steam.

Modern cogeneration plants are designed around combined cycles that
may incorporate separately fired steam boilers. Cyele designs can be complex
and are tatlored to the industrial plant’s requirements for heat enecrgy (sece
reference 2). In areas where there is a markel for electric energy generated by
an IPP. that is a nonutility-owned generating plant. there may be strong
economic incentives for the industrial firm to develop a plant that can deliver
energy to the power system. This has occurred in the United States alter various
regulatory bodies began efforts to encourage competition in the production of
electric energy. This can. and has, raised interesting and important problems
in the scheduling of generation and transmission system usc. The industrial firm
may have a steam demand cycle that is level. resulting in a morc-or-less constant
level of electrical output that must be absorbed. On the other hand. the local
utility’s toad may be very cyclical. With a small component of nonutility
generation this may not represent a problem. However. if the IPP total
gencration supplies an appreciable portion of the utiiity load demand, the utihty
may have a complex scheduling situation.

24 LIGHT-WATER MODERATED NUCLEAR REACTOR UNITS

LS. utilities have adopied the light-water moderated reactor as the “standard™
tvpe of nuclear steam supply system, These reactors are either pressurized water
reactors ( PWRs) or boiling water reactors (BWRs) and use slightlv enriched
aranium as the basic energy supply source. The ura nium that occurs i nature
contains approximately seven-tenths of 1Y, by weight of ***U. This natural
uranium must be enriched so that the content of **7U is in the runge of 2-47,
for use in either 4 PWR or a BWR. _

The enriched uranium must be fabricated into fuel dssemblies by vanous
manufacturing processes. At the time the fuel assembiies are loaded into the
nuclear reactor core there has been a considerahle nvestment made in this fuck
During the period of time in which fuel is in-the reactor and 1s gencrating heat
and steam. and electrical power is bemg obtained from the generator. the
amount of usable fissionable material 1n the core i decreasing. At some point.
the reactor core is no longer dble to maintain a critical state at a proper power
level. so the core must be removed and new fuei reloaded into the reactor.
Commercial power reactors are normally designed 1o replace one-third 1o
one-fifth of the fuel in the core during reloading.

At this point, the nuclear fuel assemblics that have been removed are highly
radivactive and must be treated in some fashion. Originally. it was intended
that these assemblies would be reprocessed in commercial plants and that
valuable materials would be obtained from the reprocessed core assemblies It
is questionable if the U.S. reactor industry will develop an economically viable
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reprocessing system that is acceptable (o the public in general. If this is not
done. cither these radioactive cores will need to be stored for some indetermimate
period of time or the US. government will have to take over these fuel
assemblies for storage and eventual reprocessing. In any case. an additional
amount of money will need to be invested, either in reprocessing the fuel or in
storing it for some period of time.

The calculation of “fuel cost™ in a situation such as this involves economic
and accounting considerations and is really an investment analysis. Simply
speaking, there will be a total dollar investment in a given core assembly This
dollar investment includes the cost of mining the uranium. milling the uranium
core. converting It into a gaseous product that may be enriched, fabricating
fuel assemblies, and delivering them to the reactor, plus the cost of removing
the fuel assemblies after they have been irradiated and either reprocessing them
or storing them. Each of these fuel assemblies will have generated a given
amount of electrical energy. A pseudo-fuel cost may be obtained by dividing
the total net investment in dollars by the total amount of electrical energy
generated by the assembly. Of course, there are refinements that may be made
in this simple computation. For example, it is possible by using nuclear physics
calculations to compute more precisely the amount of energy generated by a
specific fuel assembly in the core in a given stage of operation of a reactor.

In the remainder of this text, nuclear units will be treated as if they are
ordinary thermal-generating units fueled by a fossil fuel The considerations
and computations of exact fuel reloading schedules and enrichment levels in
the vanous fuel assemblies are beyond the scope of a onc-semester graduate
course because they require a background in nuciear engineering, as well as
detailed understanding of the fuel cycle and its economic aspects (see Chapter
I. reference 10).

25 HYDROELECTRIC UNITS

Hydroelectric units have input-output characteristics similar to steam turbine
units. The input is in terms of volume of water per unit time; the output is in
terms of electrical power. Figure 2.12 shows a typical input-output curve for
hydroclectric plant where the net hydraulic head is constant. This characteristic
shows an almost Linear curve of input water volume requirements per unit time
as a function of power output as the power output increases from minimuam to
rated load. Above this point. the volume requirements increase as the efficiency
of the umt falls off. The incremental water rate characteristics are shown in
Figure 2.13. The units shown on both these curves are English units. That is,
volume is shown as acre-feet (an acre of water a foot deep). If necessary. net
hydraulic heads are shown in feet. Metric units are also used, as are thousands
of cubic feet per second (kft*/sec) for the water rate.

Figure 2.14 shows the input-output characteristics of a hydroelectric plant
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FIG. 212 Hydroelectric unit input-output curve.

with variable head. This type of charactenistic occurs whenever the variation
in the storage pond (ie., forebay) and/or afterbayv elevations is a [fairly large
percentage of the overall net hydraulic head. Scheduling hydroelectric plants
with variable head characteristics is more difficult than scheduling hydroelectric
plants with fixed heads. This is true not only because of the multiplicity of
input-output curves that must be considered. but also because the maximum
capability of the plant will also tend to vary with the hydraulic head. In Figure
2.14. the volume of water required for a given power output decreases as the
head increases. (That is. ¢Q/chead or 2Q/¢volume arc negative for a fixed
power.) In a later section, methods are discussed that have been proposed
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FIG. 213 Incremental water raie curve for hydroelectric plant
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for the optimum scheduling of hydrothermal power systems where the hvdro-
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Inpat-output curves for hydroelectric plant with a variable head.

clectric systems exhibit variable head characteristics.

Figure 2.15 shows the type ol characteristics exhibited by pumped-storage
hydroelectric plants. These plants are designed so that water may be stored by
pumping it agaimst-a net hydraulic head for discharge at a more propitious
time This type of plant was originally installed with separate hydraulic turbines
and electric-motor-driven pumps. In recent years, reversible, hydraulic pump
turbines have been utilized. These reversible pump turbines exhibit normal
input--output characteristics when utilized as turbines. In the pumping mode,
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FIG. .15 Input-output characteristics for a pumped storage hydroplant with a fixed,
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however, the efficiency of operation tends to fall off when the pump is operated
away from the rating of the unit. For this reason, most plant operators will
only operate these units in the pumping mode at a fixed pumping load. The
incremental water characteristics when operating as a turbine are, of course,
similar to the conventional units illustrated previously.

The scheduling of pumped-storage hydroelectric plants may also be com-
plicated by the necessity of recognizing the variable-head effects. These effects
may be most pronounced in the variation of the maximum capability of the
plant rather than in-the presence of multiple input-output curves. This variable
maximum capability may have a significant cffect on the requirements for
selecting capacity to run on the system, since these pumped-storage hydroplants
may usually be considered as spinning-rescrve capability. That is, they will be
used only during periods of highest cost generation on the thermal units; at
other times they may be considered as readily available (“spinning reserve’).
That is, during periods when they would normally be pumping, they may be
shut off to reduce the demand When idle, they may be started rapidly. In this
case. the maximum capacity available will have a significant 1mpact on the
requirements for having other units available to meet the system’s total
spinning-reserve requirements.

These hydroelectric plants and their characteristics (both the characterisiics
for the pumped-storage and the conventional-storage hydroelectric plants) are
affected greatly by the hydraulic configuration that exists where the plant is
installed and by the requirements for water flows that may have nothing to do
with power production. The characteristics just illustrated are for single.
isolated plants. In many river systems, plants are connected in both series and
in parallel (hydraulically speaking). In this casc, the relcase of an upstream
plant contributes to the inflow of downstream plants. There may be tributaries
between plants that contribute to the water stored behind a downstream dam.
The situation becomes even more complex when pumped-storage plants are
constructed in conjunction with conventional hydroelectric plants. The problem
of the optimum utilization of these resources involves the complicated problems
associated with the scheduling of water, as well as the optimum operation of
the electric power system to minimize production cost. We can only touch on
these matters in this text and introduce the subject. Because of the importance
of the hydraulic coupling between plants, it is safe to assert thal no two
hydroelectric systems are exactly the same.

APPENDIX
Typical Generation Data

Up until the carly 1950s, most U.S. utilities installed units of less than 100 MW,
These units were relatively inefticient (about 950 psi steam and no reheat cveles).
During the early 1950s, the economics of reheat cycles and advances in matenals
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TABLE 2.1 Typical Fossil Generation Unit Heat Rates

Unit 1007, 807 60° a0, 25n:

Fossil Rating Qutput Output Output Output Output
Unit- ~Description (MW) (Btu/kWh) (Btu/kWh) (Btu/k Wh) (Btu/kWh) (Btu/kWh)
Steam-- coal 50 11000 11088 11429 12166 13409°
Steam— o1l 50 11500 11592 11940 12719 14019
Steam—-gas 50 11700 11794 12156 12940 14262¢
Steam— coal 200 93500 9576 9871 10507 11581
Steam---oil 200 9900 9979 10286 10949 120681
Steam—gas 200 10050 10130 10442 115 12251
Steam—coal 400 9000 5045 9252 9783 10674
Steam —oil 400 9400 9447 9663 10218 11143¢
Steam-—gas 400 9500 9548 9766 10327 11267¢
Steam—coil 600 8900 8989 9265 9843 10814°
Steam-- o1l 600 9300 9393 9681 10286 11300¢
Steam-—gas 600 9400 9494 9785 10396 11421°
Steain—coal 800-1200 8750 8RO3 90438 9625¢

Steam——oil 800- 1200 9100 9155 9409 10010

Steam-—gas 800--1200 9200 9255 9513 101202

* For siudy purposes, units should not be loaded below the points shown,
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TABLE 2.2 Approximate Unit Heat Rate locrease Over
Valve-Best-Point Turbine Heat Rate

Unit Size Coal AR S | Gas
(MW) %) %) (%)
50 22 28 30
200 20 25 oo 27
400 16 2 22
600 16 21 22
8001200 16 21 22

technology encouraged the installation of reheat units having steam tempera-
tures of 1000°F and pressures in the range of 1450 to 2150 psi. Unit
sizes for the new design rcheat units ranged up to 225-MW. In the late
1950s and early 1960s, U.S. utilities began “installing larger units ranging
up to 300 MW in size. In the late 1960s, U.S  utilities began installing even
larger, more efficient units (about 2400 psi with single reheat) ranging in size
up to 700 MW. In addition, in the Jate 1960s, some U S. utilities began instailing
more efficient supercritical units (about 3500 psi, some with double reheat)
ranging in size up to 1300 MW. The bulk of these supercritical units ranged
in size from 500 to 900 MW. However, many of the newest supercritical
units range in size from 1150 to 1300 MW. Maximum unit sizes have remained
in this range because of economic, financial. and system reliability con-
siderations.

Typical heat rate data for these classes of fossil generation are shown in
Table 2.1. These data are based on U.S. federal government reports and
other design data for U.S. utilities (see Heat Rates for General Electric Steam
Turbine-Generctors 100.000 kW and Larger, Large Steam Turbine Generator
Department, G.E.}.

The shape of the heat rate curves is based on the locus of design “valve-
best-points” for the various sizes of turbines. The magnitude of the turbine heat
rate curve has been increased to obtain the unit heat rate, adjusting for the
mean of the valve loops, boiler efficiency, and auxiliary power requirements.
The resulting approximate increase from design turbine heat rate to obtain the
gencration heat rate in Table 2.1 is summarized in Table 2.2 for the various
types and sizes of fossil units.

Typical heat rate data for light- -water moderated nuclear units are:

Output (%) Net Heat Rate (Btu/kWh)
100 10400
75 10442

.50 10951
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These typical values for both PWR and BWR units were estimated using design
valve-best-point data that were increased by &% to obtain the net heat rates.
The 8%, accounts for auxiliary power requirements and heat lesses in the
auxiharies.

Typical heat rate data for. newer and larger gas turbines are discussed
above. Older units based on industnal gas turbine designs had heat rates of
about 13,600 Btu/kWh. Qlder units based on aircraft jet engines were less
cfficient, with typical valucs of full-load nect heat rates being about 16,000
Btu/kWh.

Uinit Statistics

In North America, the utilities participate in an organization known as the
North American Electric Reliability Council (NERC) with its headquarters in
Princeton, New Jersey. NERC undertakes the task of supporting the interutility
operating organization which publishes an operating guide and coliects,
processes, and publishes statistics on generating units. NERC maintains the
Generating Availability Data System (GADS) that contains over 25 years of
data on the historical performance of generating units and related equipments.
This information is made available to the industry through special reports done
by the NERC staff for specific organizations and is also issued in an annual
report. the Generating Availability Report. These data are extremely useful in
tracking unit performance, detecting trends in maintenance needs, and in

TABLE 2.3 Typical Mainténance and Forced Outage Data

Scheduled Equivalent
Maintenance Forced Availability
Requirement Rate Factor
Unit Type Size Range (MW) (days/yr) Ay (%)
Nuclear All 67 18.3 72
Gas wurbines All 22 e 91
Fossil-fueled 1-99 31 T 88
steam
100-199 42 8.0 85
200-299 43, %2 85
300--399 52 9.5 82
400-599 47 8.8 82
600-799 45 7.6 84
800999 - 40 58 88
> 1000 44 9.0 82

From Generating Unit Statistics 1988-1992 issued by NERC, Princeton, N1
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planning capacity additions to maintain adequate system gencralion reserves.
The GADS structure provides standard definitions that are used by the industry
in recording unit performance. This is of vital importance if collected statistics
are 1o be used in reliability and adequacy analyses. Any useful reliability analysis
and prediction structure requires three essential elements

1. Analytical (statistical and probability) methods and models,

2. Performance measures and acceptable standards,

3. Statistical data in a form that is useful in the analysis and prediction of
performance measures.

In the generation ficld, GADS performs the last two in an excellent fashion.
Its reputation is such that similar schemes have been established in other
countries based on GADS.

Table 2.3 contains typical generatng unit data on scheduled maintenance
requirements. the “equivalent forced outage rate” and the “availability factor™
that were taken from a NERC summary of generating unit statistics for the
period 19881992, For any given. specified interval (say a year), the NERC
definitions of the data are:

Equivalent forced outage rate = (forced outage hours + equivalent forced
derated hours = (forced outage hours +hours
in service + equivalent forced derated hours
during reserve shutdown)

Availability factor (AF) = available hours + period hours

Scheduled maintenance requirements were estimated from the NERC data
using the reported “scheduled outage factor,” the portion of the period
representing scheduled outages.

The reported, standard equivalent forced outage rate for gas turbines has
been omitted since the low duty cycle of gas turbines in peaking service biases
the value of effective forced outage rate (EFQR). Using the standard definition
above, the reported EFOR for all sizes of gas turbine units was 58.9%,. This
compares with 847, for all fossil-fired units. Instead of the above definition of
EFOR. let us use a different rate (call it the EFOR") that includes reserve
shutdown hours and neglects all derated hours to simplify the comparison with
the standard definition:

EFOR = forced outage hours + iforced outage hours + hours in service)

or

EFOR’ = forced outage hours - (forced outage hours -+ available hours)

where the available hours are the sum of the reserve shutdown and service
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hours. The effcct of the short duty cycle may be illustrated using the NERC data:

Effective OQutage

Rates (°,)
- Service Factor = (service hours)
EFOR EFOR’ — (pertod hours) (%)
All fossil units 5.7 4.1 60.5
All gas turhines 55.5 34 2.6

The significance is not that the NERC definition is “wrong:” for some anaivtical
models it may not be suitable for the purpose at hand Further, and much more
important, the NERC reports provide sufficient data and detail to adjust the
historical statstics for use in many different analytical models.
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3 Economic Dispatch of Thermal
Units and Methods of Solution

This chapter introduces techniques of power system optimization. For a
complete understanding of how optimization problems are carried out. first
read the appendix to this chapter where the concepts of the Lagrange multiplier
and the Kuhn Tucker conditions are introdaced.

31 THE ECONOMIC DISPATCH PROBLEM

Figure 3.1 shows the configuration that will be studied in this section. This
system consists of N thermal-generating units connected to a single bus-bar
serving a recetved electrical load F_ 4. The input to each unit, shown as F,
represents the cost rate* of the unit. The output of each unit, P, is the electrical
power generated by that particular unit. The total cost rate of this system is,
of course, the sum of the costs of cach of the individual units. The essential
constraint on the operation of this system is that the sum of the output powers
must equal the load demand.

Mathematically speaking, the problem may be stated very concisely. That
is. ain objective function, Fy, is equal to the total cost for supplying the indicated
ioad. The problem is to minimize Fr subject to the constraint that the sum of
the powers generated must equal the received load. Note that any transmission
losses arc neglected and any operating limits are not explicitly stated when
formulating this problem. That is,

Fr=F,+F;,+F +---+F

N
= ¥ R (3.1)

i=1

.
¢ =0=Pua— XL P (32)
i=i

* Generaling units consume fuel at a specific rate (e.g. MBtu'h). which as noted in Chapter 2 can
be converted to R/h. which represents a cost rafe. Starting in this chapter and throughout the
remainder of the text. we will simply use the term generating unit “cost” Lo refer to R/h.

29
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This is a constrained optimization problem that may be attacked [ormally using
advanced calculus methods that involve the Lagrange function.

In order to establish the necessary conditions for an extreme value of the
objective function. add the, constraint function to the objective function alter
the constraint function has been multiplied by an undetermined multiplier. This
is known as the Lagrange function and is shown in Eq. 3.3.

P =Fr+ i (3.3)
The necessary conditions for an exireme value of the objective function result
when we take the first derivative of the Lagrange function with respect,t.sach
of the independent variables and set the derivatives equal to zero. In this case,
there are N + 1 variables. the N values of power output. F. plus the
undetermined Lagrange multiplier, A. The derivative of the Lagrange function
with respect to the undetermined multiplier merely gives back the constraint
equation. On the other hand, the N equations that result. when we take the
partial derivative of the Lagrange funcuon with respect to the power output
values one at a time give the set of equations shown as Eq. 3.4.

c¥  dE(P) .
A Y
cP, dp,
or (3.4)
o= _,
dP,

That is, the necessary condition for the existence of a minimum cost-
operating condition for the thermal power system is that the incremental cost
rates of all the units be equal to some undetermined value, 4. Of course. to this
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necessary condition we must add the constraint equation that the sum of the
power outputs must be equal to the power demanded by the load. In addition,
there are two inequalities that must be satisfied for cach of the units. That is,
the power output of each unit must be greater than or equal to the minimum
power permitied and must also be less than or equal to the maximum power
permitted on that particular unit.

These conditions and inequalities may be summarized as shown in the set
of equations making up Eqg. 3.5.

dF, . .
=4 N equations
dp,
B B R ) 2N inequalities (3.5)
X
3 B= Poui | constraint
=1

When we recognize the inequality constraints, then the necessary conditions
mayv be expanded slightly as shown in the set of equations making up Eq. 3.6.

dF,

dPl =, for P min < P < P pax

dF, '
<4 for P= P ()
dp,

dF,

—_— A for Pt P Pi,m:n

[

Several of the examples in this chapter use the following three generator units.

Unit 1: Coal-fired steam unit: Max output = 600 MW
Min output = 150 MW

[nput-output curve:

Hl( .“ill:i‘l) — 5100 + 7.2P, + 0.00142P3

Unit 2: Qil-fired steam unit: Max output = 400 MW
Min output = [0 MW

Input- output curve:
H (M-:ﬂ = 310.0 + 7.85P;, + 0.00194P3

s

=
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Unit 3: Oil-fired steam unit: Max output = 200 MW
Min output = 50 MW

Input-output curve:

'MB
”3( — E‘_’) = 78.0 + 7.97P, + 0.00482P3

e b

EXAMPLE 3A

Suppose that we wish to determine the economic operating point f{or these three
units when delivering a total of 850 MW. Before this problem can be solved,
the fuel cost of each unit must be specified. Let the following fuel costs be in
effect.

Unit 1: fuel cost = 1.1 R/MBtu
Unit 2: fuel cost = 1.0 R/MB1tu
Unit 3: fuel cost = 1.0 R/MBtu
Then

F (P = H(P) x 1.1 =561 + 792P, + 0.001562P% R/h
Fy(Py) = Hy(P2) x 1.0 = 310 + 7.85P, + 0.00194P3 R/h
Fy(Py) = Hy(Py) x 1.0 = 78 + 7.97P, + 0.00482P; R/h

Using Eq. 3.5, the conditions for an optimum dispatch are

dF,

—1=792 + 0.003124P, =
dP,

i JUPP O 0.00388P, = /
s _ 297 + 0.00964P, = 4
dpP

3
and
P, + P, + Py = 850 MW

Solving for 4, one obtains

j = 9.148 R/MWh
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and then solving for P, P,, and P,

P, = 3932 MW
P, = 3346 MW
Py = 1222 MW

Note that all constraints are met; that is, each unit is within its high and low
limit and the total output when summed over all three units meets the desired
850 MW total.

EXAMPLE 3B
Suppose the price of coal decreased to 0.9 R/MBtu. The fuel cost function for
upit 1 becomes

F,(P,) = 459 + 6.48P, + 0.00128P}

if one goes about the solution exactly as done here, the results are

J = 8284 R/MWh

and
P, = 7046 MW
P =1118 MW
P, =326 MW

This solution meets the constraint requiring total generation to equal 850 MW,
but units 1 and 3 are not within limit. To solve for the most economic dispatch
while meeting unit limits, use Eq. 3.6.

Suppose unit 1 is set to its maximum output and unit 3 to its minimum
output. The dispatch becomes

P, = 600 MW
P, = 200 MW
P,= SOMW

From Eq. 3.6, we see that i must equal the incremental cost of unit 2 since it
is not at either limit. Then

= 8.626 R/MWh
dP] P2=200
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Nexl. calculate the incremental cost for units 1 and 3 to see if they meet the
conditions of £q. 3.6,

dfl = 8016 R/MWh
dF, P =600

qp |

f.“i'l ~ 8.452 R MWh
dPJ Pa=50

Note that the incremental cost for unit [ 1s less than 4, so unit 1 should be at
its maximum. However, the mcremental cost for unit 3 is not greater than 4,
so unit 3 should not be forced to its muimmum. This, to find the optimal
dispatch. allow the incremental cost at uruts 2 and 3 to equal 2 as follows.

P, = 600 MW

9 985+ 0.00388P, =
dp,

4Fs _ 797 + 0.00964P, =
dp, 3

P, + P, =850 — P, = 250 MW

which results in

i =8.576 R/MWh
and
187.1 MW
629 MW

P,
P

Note that this dispatch meets the conditions of Eq. 3.6 since

dF
=8 = 8.016 R/MWh
dPI P, =600 MW
which is less than /4, while
dF. d
2% and ca
dp, dP,

both equal i.
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3.2 THERMAL SYSTEM DISPATCHING WITH NETWORK
LOSSES CONSIDERED

Figure 3.2 shows symbolically an all-thermal power generation system connected
to an equivalent load bus through a transmission network. The economic-
dispatching problem associated with this particular configuration is slightly
more complicated to set up than the previous case. This is because the constraint
equation is now one that must include the network losses. The objective
function, Fy, is the same as that defined for Eq. 3.1. However. the constraint
equation previously shown in Eq. 3.2 must now be expanded to the one shown
inEg.3.7.

N
Poss + Pose — 3. P=¢=0 3.7

The same procedure is followed in the formal sense to establish the necessary
conditions for a minimum-cost operating solution, The Lagrange function is
shown in Eq. 3.8. In taking the derivative of the Lagrange function with respect
to each of the individual power outputs, F. it must be recognized that
the loss in the transmission network, P, i1s a function of the network
impedances and the currents flowing in the network. For our purposes, the
currents will be considered only as a function of the independent variables F;
and the load P,,,. Taking the derivative of the Lagrange function with respect
to any one of the N values of P, results in Eq. 3.9. There are N equations of
this type to be satisfied along with the constraint equation shown in Eg. 3.7.
This collection, Eq. 3.9 plus Eq. 3.7, is known collectively as the coordinarion
equations. i '

P = Fp.+ ¢ (3.8)
&z - dF, _ ;_(1 = @P',ﬁ) = { (3.9)
cP. dPp, AP,
ar '
dF, . 0R,,
dP. "~ aP
N

It is much more difficult to solve this set of equations than the previous set
with no losses since this second set involves the computation of the network
loss in order to establish the validity of the solution in satisfying the constraint
equation. There have been two general approaches to the solution of this
problem. The first is the development of a mathematical expression for the
losses in the network solely as a function of the power output of cach of the
units. This is the loss-formula method discussed at some length in Kirchmayer’s
Economic Operation of Power Systems (see Chapter 1, reference 2). The other
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FIG. 3.2 & thermal units serving load through transmission network.

basic approach to the solution of this problem s to incorporaie the power flow
equanons as essential constraints in the formal establishment of the optimiza-
tion problem. This general approach is known as the optimal power Slow.

EXAMPLE 3C

Starting with the same units and fuel costs as in Example 3A, we will mclude
a simplified loss expression.

P... = 0.00003P7 + D.00009P3 + 0.00012P3

This simplified loss formula will suffice to show the difficuitics in calculating a
dispatch for which losses are accounted. Note that real-world loss formulas are
more complicated than the one used in this example.

Applying Eqgs. 3.8 and 3.9, -

ﬁ& =A;_(1 = 51.})11*)
dPl aIJI ¥
becomes

7.92 + 0.003124P, = A[1 — 2(0.00003)P,]
Similarly for P, and Py,

7.85 +0.00388P, = A[1 ~ 2(0.00009)P, ]

797 + 000964, = A[1 — 2(000012)P,}
and ‘ )
P|I+P2+P3—850—P|M,=O
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We no longer have a set of linear equations as in Example 3A. This
necessitates a more complex solution procedure as follows.

Step 1 Pick a set of starting values for P, P, and P, that sum to the load.

Step 2 Calculate the incremental losses dF,../¢P; as well as the total losses
P,...- The incremental losses and total losses will be considered constant
until we return to step 2.

Step 3 Calculate the value of 4 that causes P,. P, and P to sum (o the total
load plus losses. This is now as simple as the calculations in Example
3A since the equations are again linear.

Step 4 Compare the P, P,, and P, [rom step 3 to the values used at the start
of step 2. If there is no significant change in any one of the values, go
1o step 5. otherwise go back to step 2.

Step 5 Done.

Using this procedure, we obtain

Step 1 Pick the P,. P,, and F; starting values as

P, = 400.0 MW
P, = 3000 MW
Py = 1500 MW

Step 2 Incremental losses are

P,
ol 2(0.00003)400 = 0.0240
P,

‘ifﬂ = 2(0.00009)300 = 0.0540
0P,

"

Poss _ 20.00012)150 = 0.0360
APy

Total losses are 15.6 MW.
Step 3 We can now solve for 4 using the following:
7.92 + 0.003124P, = (1 — 0.0240) = A(0.9760)
7.85 + 0.00388P, = A(1 — 0.0540) = 1(0.9460)

797 + 0.00964P; = A(1 — 0.0360) = i(0.9640)
and

P+ P,+P,—850—156=P, + P, + P, — 8656 =0
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These equations are now linear, so we can soive for A directly. The
results are

A= 95252 R/MWh

and the resulting gencrator outputs arc

P, = 440.68
P, = 299.12
P, = 12577

Step 4 Since these values for Py, P.. and P, are quite different from the starting
values. we will return to step 2.
Step 2 The incremental losses are recalcelated with the new generation values.

>

“lass _ 9(0,00003)440.68 = 0.0264

P,

fP.. N
= 20000091299.12 = 00538

ijqn“ = 2000012312577 = 0.0301
P,

3

Total losses are 15.78 MW,
Step 3 The new meremental losses and total losses are incorporated into the
equations, and a new value of 2 and P,, P,, and P; are solved for

If

A1 — 00264) = A(0.9736)
7.85 + 0.00388P, = A(1 — 0.0538) = A(0.9462)
7.97 + 0.00964F, = 41 — 0.0301) = £(0.9699)
P+ P, —80—1578 =P + P, + P, - 86578 =0

7.92 + 0.003124P,

P

resuiting in 4 = 9.3275 R/MWh and

P, = 43394 MW
P, = 300.11 MW
Py = 13174 MW

Table 3.1 summarizes the ilerative process used to solve this problem.
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TABLE 21 lerative Process Used to Solve Example 3

P, P, P Losses A
Iteration (MW) (MW) (MW) (MW) (R'MWh)
Start 400.00 300,00 150.00 15.60 9.5252
1 440.68 299.12 12577 15.78 9.5275
2 43394 300.11 131.74 15.84 9.5285
3 435.87 29994 13042 1583 9.5283
4 434.13 29999 130.71 1583 G.5284

33 THE LAMBDA-ITERATION METHOD

Figure 3.3 is a block diagram of the lambda-iteration method of solution for
the all-thermal, dispatching problem-neglecting losses. We can approach the
solution to this problem by considering a graphical technique for solving the
problem and then extending this into the area of computer algorithms.
Suppose we have a three-machine system and wish to find the optimum

START

CALCULATE P,
FOR i=1...N

{

CALCULATE

N
€=PLM‘ z P;

i=1
FIRST ITERATION?
< STITE P
”
Y
<Iel < TOLEHANCE>L'

‘ND PRINT SCHEDULE

PROJECT A

END
FIG. 33 Economic dispatch by the lambda-iteration method.
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FIG. 34 Graphical solution to economic dispatch.

economic operating point. One approach would be to plot the incremental cost
characteristics for each of these three units on the same graph, such as sketched
in Figure 3.4. In order to establish the operating points of each of these three
units such that we have minimum cost and at the same time satisfy the specified
demand, we could use this sketch and a ruler to find the solution. That is, we
could assume an incremental cost rate (4) and find the power outputs of each
of the three units for this value of incremental cost.

Of course. our first estimate will be incorrect. If we have assumed the value
of incremental cost such that the total power output is too low, we must increase
the /. value and try another solution. With twe solutions. we can extrapolate
{or interpolate) the two solutions to get closer to the desired value of total
received power (see Figure 3.5).

By keeping track of the total demand versus the incremental cost we can
rapidly find the desired operating point. If we wished, we could manufacture a
whole series of tables that would show the total power supplied for different
incremental cost levels and combinations of units.

This same procedure can be adopted for a computer implementation as
shown in Figure 3.3. That is, we will now establish a set of logical rules that
would enable us to accomplish the same objective as we have just done with
ruler and graph paper. The actual details of how the power output is established
as a function of the incremental cost rate are of very lhittle importance. We
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FIG. 3.5 Lambda projections.

could, for example, store tables of data within the computer and interpolate
between the stored power points to find exact power output for a specified
value of incremental cost rate. Another approach would be to develop an
analytical function for the power output as a function of the incremental cost
rate, store this function (or its coefficients) in the computer, and use this to
establish the output of each of the individual units.

This procedure is an iterative type of computation, and we must establish
stopping rules. Two general forms of stopping rules seem appropriate for
this application. The first is shown in Figure 3.3 and is essentially a rule
based on finding the proper operating point within a specified tolerance. The
other, not shown in Figure 3.3, involves counting the number of times through
the iterative loop and stopping when a maximum number is exceeded.

The lambda-iteration procedure converges very rapidly for this particular
type of optimization problem. The actual computational procedure is slightly
more complex than that indicated in Figure 3.3, since it is necessary to observe
the operating limits on each of the units during the course of the computation.
The well-known Newton-Raphson method may be used to project the incre-
mental cost value to drive the error between the computed and desired
generation to zero.

EXAMPLE 3D

Assume that one wishes to use cubic functions to represent the input-output
characteristics of generating plants as follows.

H (MBtu/h) = A + BP + CP* + DP? (P in MW)
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For the three units, find the optimum schedule using the lambda-iteration
method.

A B C D

Unit 1 749.55 695 968 x107% 127 x 107"
Unit 2 12850 7051 7375 x 107 6453 < 107°
Umt3 15310 6.531 104 x 1073 998 x 1077

Assume the fuel cost to be 1.0 R/MBtu for each unit and unit limits as
follows.

A

IPOMW < P £ 300 MW
300 MW < P, < 1200 MW

275 MW < P, < 1100 MW

wo sample calculations are shown, both using the flowchart in Figure 3.3
In this calculation, the value for 4 on the second iteration is always set at 107
above or below the starting value depending on the sign of the error; for the
remaining iterations, lambda is projected as in Figure 3.5,
The first example shows the advantage of starting 4 near the optimum value.
Pioag = 2500 MW

tagare = 80 R/MWh
The second example shows the oscillatory problems that can be encountered
with a lambda-iteration approach.

Pioss = 2500 MW
;‘sla:: =100 R:'MWh

Total Generation

Iteration £ (MW) P, P, Py

1 8.0000 1731.6 494.3 596.7 640.6
2 8.8000 27950 800.0 1043.0 952.0
3 8.5781 25260 7347 923.4 867.9
i 8.5566 24975 726.1 911.7 859.7

B.5586 2500.0 7269 912.7 860.4
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Total Generation

Iteration A (MW) P, P, Py
1 10.0000 3100.0 800.0 1200.0 1100.0
2 9.0000 2974.8 800.0 1148.3 1026.5
3 5.2068 895.0 320.0 300.0 275.0
4 8.1340 1920.6 551.7 674.5 6944
5 9.7878 3100.0 800.0 1200.0 1100.0
6 8.9465 29270 800.0 11203 1006.7
7 6.8692 895.0 320.0 300.0 2750
8 8.5099 24350 707.3 §86.1 841.7
9 8.5791 25274 735.1 924.0 868.3

10

8.5586 2500.1 726.9 912.8 §60.4

34 GRADIENT METHODS OF ECONOMIC DISPATCH

Note that the lambda search technique always requires that one be able to find
the power output of a generator, given an incremental cost for that generator.
In the case of a quadratic function for the cost function, or in the case where
the incremental cost function is represented by a piecewise linear function, this
is possible. However, it is often the case that the cost function i1s much more
complex, such as the one below:

" F(P)=A+ BP + CP* + Dexp[—-}_;—A

In this case, we shall propose that a more basic method of solution for the
optimum be found.

34.1 Gradient Search

This method works on the principle that the minunum of a function, {{x), can
be found by a series of steps that always take us in a downward direction. From
any starting point, x°, we may find the direction of “steepest descent” by noting
that the gradient of [, ie.,

A% 1 (3.10)

[l

L OX, J
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always points in the direction of maximum ascent. Therefore, if we want to
move in the direction of maximum descent, we ncgale the gradient. Then we
should go from x? to x' using:

x' =x—Vfa (3.11)

Where x is a scalar to allow us to guarantee that the process converges. The
best value of * must be determined by experiment.

34.2 Economic Dispatch by Gradient Search
in the case of power system economic dispaich this becomes:

N
f=Y EF) (3.12)

i=1

and the object is to drive, the function to its minimum. However, we have to
be concerned with the constraint function:

0=(Pui- ¥ P.) G.13)
\ i=1

To solve the economic dispatch problem which involves minimizing the
objective function and keeping the equality constraint, we must apply the
gradient technique directly to the Lagrange function itself.

The Lagrange function is:

N I \
= Z I.I(H) + 'z"(Pload i z P:) (314)
1=1 /

i=1

and the gradient of this function 1s:

- _ -
i) | d F(B) — 2
oP, dp,
o d
st - FAP) =
| | g P
V¥ = - = - (3.15)
TS e -
Py dp,
ol < 4 N
(V:!.’ I’Ioad - y_ P:
L ¢A _] L izl _
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The problem with this formulation is the lack of a guarantee that the new points
generated each step will lie on the surface ®. We shall see that this can be
overcome by a simple variation of the gradient method.

The economic dispatch algorithm requires a starting 4 value and starting
values for Py, P;, and P;. The gradient for % is calculated as above and the
new values of A, P, P;, and P, etc., are found from:

x' =x°% - (V&) (3.16)
where the vector x is:
.
P,
x=| P (3.17)
e ;' .

EXAMPLE 3E

Given the generator cost functions found in Example 3A, solve for the economic
dispatch of generation with a total load of 800 MW.

Using o = 100 and starting from P{ = 300 MW, P2 = 200 MW, and P$ =
300 MW, we set the initial value of % equal to the average of the incremental
costs of the generators at their starting generation values. That is:

0= & \:‘_ [d F(PQ)]
35:1 dP, (AN

This value is 9.4484.
The progress of the gradient search is shown in Table 3.2. The table shows
that the iterations have led to no solution at all. Attempts to use this formulation

TABLE 3.2 Economic Dispatch by Gradient Method

Iteration P, P, Py Psai / Cost
1 300 200 300 800 9.4484 7938.0
2 300.59 200.82 298.59 800 9.4484 7935
3 301.18 201.64 297.19 800.0086 9.4484 7932
4 301.76 20245 2958 800.025 9.4570 79293
5 302.36 203.28 29443 800.077 9.4826 7926.9

10 300.16 211.19 201.65 81199 16.36 8025.6
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will result in difficulty as the gradient cannot guarantee that the adjustment
to the generators will result in a schedule that meets the correct total load of
300 MW,

A simple variation of this technique is to realize that one of the generators
is always a dependent variable and remove it from the problem. In this case,
we pick P, and use the following: '

Py =800 - P, — P,
Then the total cost, which is to be mimimized, is:
Cost = Fi(P,) + F(Py) + Fi(Py) = FL(P) + Fy(Py) + Fy(800 — P, ~ Py)
Nete that this function stands by itself as a function of two variables with no

load-generation balance constraint (and no 7). The cost can be minimized by
a gradient method and in this case the gradient is:

r 4R
¢ ("(,st-i (4R _dh |
dP | dp i

y ap,
V Cost = =
d J df. dF,
e Cost — 5=
dp, dr,  dP, J

Note that this gradient goes to the zero vector when the incrementai cost
generator 3 is equal to that at generators 1 and 2. The gradient steps are
performed in the same manner as previously. where:

x! = x? —~ VCost x 2

[P l
X =
12‘

Each time a gradient step is made. the generation at generator 3 is set to
800 minus the sum of the generation at generators | and 2. This method
is often called the “reduced gradient” because of the smaller number of
variables.

and

EXAMPLE 3F

Reworking example 3E with the reduced gradient we obtain the results shown
in Table 3.3. This solution is much more stable and is converging on the
optimum solution.
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TABILE 3.3 Reduced Gradient Results (@ = 10)

Iteration P, P, P, P Cost
| 300 200 300 800 7938.0
2 320.04 222.36 257.59 800 7858.1
3 13538 239.76 22485 800 7810.4
4 34708 25333 199.58 800 7781.9
5 35597 . 20394 180.07 800 7764.9

10 380.00 304.43 115.56 800 7739.2

35 NEWTON'S METHOD

+
We may wish to go a further step beyond the simple gradicnt method and try
to solve the economic dispatch by observing that the aim is to always drive

VL. =0 {3.18)

Since this is a vector function, we can formulate the problem as one of finding
the correction that exactly drives the gradient to zero {i.e., to a vector. all of
whose elements are zero). We know how to find this. however, since we can
use Newton's method. Newton's method for a function of morc than one
variable is developed as follows.

Suppose we wish to drive the function g(x) to zero. The function g is a vector
and the unknowns, x. are also vectors. Then, to use Newton's method, we
observe:

g(x + Ax) = g(x) + [¢'(x)]Ax =0 (3.19)

If we let the function be defined as:

g1(¥1s X2, X3)
gix) = | ¢x(xy, X21 X3) (3.20)

gs3ix,, X5 X3)
then

%9, 04, 09
. EX‘ (?Xz @‘.‘(3 ’
gx)=1 _ (3.21)
. g
X4

which is the familiar Jacobian matrix. The adjustment at cach step is then:

Ax = —[g'(x)] 'alx) (3.22)
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Now. if we let the g function be the gradient vector V.&, we get:

X

2 -1
Ax = ~|:--« Vfl’x] AZ (3.23)
For our economic dispatch problem this takes the form:

N
=73 F(P)+ A(P.m =) P.~) (3.24)

i=1 i=1

and V.Z is as it was defined before. The Jacobian matrix now becomes one
made up of second derivatives and is called the Hessian matrix:

&g d*# N
dx?  dx,dx,
d*y

[ v:zz}: dedx, (3.25)
ox . .

3

| d/dx,

Generally, Newton’s method will solve for the correction that is much
closer to the minimum generation cost in one step than would the gradient
method.

EXAMPLE 3G
In this example we shall use Newton's method to solve the same economic
dispatch as used in Examples 3E and 3F.

The gradient is the same as in Example 3E. the Hessian matrix is:

(a2,

=l B 0 -1
dpPi
d*F,
B =2 .§. =i
[H] = dpr;
0 ik
dP?
L-1 -1 -1t 0]
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In this example, we shall simply set the imtial / equal to 0, and the initial
generation values will be the same as in Example 3E as well. The gradient of
the Lagrange function 1s:

8.8572
8.6260
7| 108620
0
The Hessian matrix is:
0.0031 0 0o -1
¢ 0.0039 0o -1
[H]=
0 0 0.009% —1
-1 —1 -1 0

Solving for the correction to the x vector and making the correction, we obtain

P, 369.6871

P, 315.6965

*Z1 e | | 114s164
il 9.0749

and a total generation cost of 7738.8. Note that no further steps are necessary
as the Newton's method has solved in one step. When the system of equations
making up the generaiion cost functions are quadratic, and no generation limits.
are reached, the Newton’s method will solve in one step.

We have introduced the gradient, reduced gradient and Newton’s method
here mainly as a way to show the variations of solution of the generation
economic dispatch problem. For many applications, the lambda search technique
is the preferred choice. However, in later chapters, when we introduce the
optimal power flow, the gradient and Newton formulations become necessary.

36 ECONOMIC DISPATCH WITH PIECEWISE LINEAR
COST FUNCTIONS

Many electric utilities prefer to represent their generator cost functions as single
or multiple segment linear cost functions. The curves shown in Figure 3.6 are
representative of such functions. Note that were we to attempt to use the
lambda-iteration search method on the single segment cost function, we would
always land on Ppi, OF Frax unless 4 exactly matched the incremental cost at
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FIG. 3.6  Piccewrse linear cost functions.

which point the value of P would be undetermined. To resolve this problem,
we perform the dispatch differently.

For all units running, we start with all of them at Prins then begin to raise
the output of the unit with the lowest incremental cost segment. If this unit hits
the right-hand end of a segment, or if it hits Praxs we then find the unit with
the next lowest incremental cost segment and raise its output. Eventually, we
will reach a point where a unit’s output is being raised and the total of all unit
outputs equals the total load, or load plus losses. At that point. we assign the
last unit being adjusted to have a generation which is partially loaded for one
segment. Note, that if there are two units with exactly the same incremental
cost, we simply load them equally.

To make this procedure very fast, we can create a table giving each segment of
each unit its MW contribution (the right-hand end MW minus the left-hand
end MW). Then we order this table by ascending order of incremental cost. By
searching from the top down in this table we do not have to go and look for the
next segment each time a new segment is to be chosen. This is an extremely fast
form of economic dispatch.
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37 ECONOMIC DISPATCH USING DYNAMIC PROGRAMMING
As we saw in Chapter 2 when we considered the valve points in the
input-output curve (for example, Figure 2.6), the possibility of nonconvex
curves must be accounted for if extreme accuracy is desired. If nonconvex
input-output curves are 1o be used, we cannot use :  equal incremental cost
methodology since there are multiple values of MW output for any given value
of incremental cost.

Under such circumstances, there is a way to find an optimum dispatch which
uses dynamic programming (DP). If the reader has no background in DP.
Appendix 3B of this chapter should be read at this time.

The dynamic programming solution to economic dispatch is done as an
allocation problem, as given in Appendix 3B. Using this approach, we do not
calculate a single optimum set of generator MW outputs for a specific total
Joad supplied—rather we generate a set of outputs, at discrete points, for an
entire set of load values.

EXAMPLE 3H

There are three units in the system; all are on-line. Their input-output
characteristics are not smooth nor convex. Data are as follows

Costs (R/hour)

Power Levels (MW)

P = Py= Py Fy F, Fy
0 oo 0 e

50 810 750 806

75 1355 1155 1108.5
100 1460 1360 1411
125 17725 1655 11704.5
150 2085 1950 1998
175 2421.5 e o] 2358
200 2760 ®© o0
225 o o0 oG

The total demand is D = 310 MW. This does not fit the data exactly, so that
we need to interpolate between the closest values that are available from the

data, 300 and 325 MW.
Scheduling units 1 and 2, we find the minimum cost for the function

fzzF‘(D_P2)+Fz(P_z)
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over the allowable range of P, and for 100 < D < 350 MW. The search
data are given in the table below. We need to save the cost for serving

each value of D that is minimal and the ioad level on unit 2 for each demand
level.

P=0 50 75 100 125 150 (MW)
Fy(Py) = ¢ 750 1155 1360 1655 1950 (R/h)
D F (D) ' h P3
(MW)  (R/h) (R'h)y  (MW)
0 o0 @ € o0 0 o0 0 oo
50 810 3] o G 'd o o' o
75 1355 ve o oc oo o« s'o} oC
100 1460 w1560 «w 20 o0 ®© 1560 50
125 17725 = 2105 1965 Io's] 0 0 1965 75
150 2085 oo 2210 2510 2170 o o 2170 100
175 24275 31775 2615 2715 2465 X 2465 125
200 2760 2834 29275 2820 3010 2760 27606 150
225 oG o 31775 3240 3125 Q-I_S 3305 3118 125
250 % © 3510 35825 3445 3427 3410 3410 150
275 o 0 o 3915 3787.5 3740 37225 37225 150
300 x 20 s os] 4120 4082.5 4025 4035 150
325 o x x S e 4415 33715 43775 150
350 o0 c& 54 53] s o ¢ 4710 4710 150
This results in:
D 12 P’
50 o
100 15 50
125 1965 75
150 2170 100
175 2465 125
200 2760 150
225 311§ 125
250 3410 150
275 37225 150
300 4035 150
325 43775 150
350 4710 150
375 o

“ Loading of unit 2-at minimal cost level.
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Next we minimize
fi £ fo{D — Py) + F3(Py)

for 50< Py < 175MW and D = 300 and 325 MW. Scheduling the third unit
for the two different demand levels only requires two rows of the next table.

Py=0 50 75 100 125 150 175 (MW)
F(Py=c0 806 11085 1411 17045 1998 2358 (R/h)

D Ia

(MW)  (R/h) f3 P3

300 4035 w4216 42235 4171 41693 4168 4323 4168 150
325 4377.5 45285 45185 4526 4464 4463 4528 4463 150

»
3

The results show:

D Cost 124 P} Pt
300 4168 150 100 50

325 4463 150 125 50

so that between the 300 and 325 MW demand levels, the marginal unit is vt
2. (That is, it is picking up all of the additional demand increase between 300
and 325 MW.) We can, therefore, interpolate to find the cost at a load level of
310 MW. or an output level on uanit 2 of 110 MW. The results for a demand
level of 310 MW are:

P, =50, P, = 110, and P, = 150 for a total cost of 4286 R/h

One problem that is common to economic dispatch with dynamic pro-
gramming is the poor control performance of the generators. We shall deal
with the control of generators in Chapter 9 when we discuss automatic
generation control (AGC). When a generator is under AGC and a small
increment of load is added (o the power system, the AGC must raise the output
of the appropriate units so that the new generation output meets the load and
the generators are at economic dispatch. In addition, the generators must be
able to move to the new generation value within a short period of time.
However, if the generators are large steam generator units, they will not be
allowed to change generation output above a prescribed “maximum rate limit”
of so many megawatils per minute. When this is the case. the AGC must allocate
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the change in generation to many other units, so that the load change can be
accommodated quickly enough.

When the economic dispatch is to be done with dynamic programming and
the cost curves are nonconvex, we encounter a difficult problem whenever a
small increment in load results in a new dispatch that calls for one or more
generators to drop their output a great deal and others to increase a large
amount. The resulting dispatch may be at the most economic values as
determined §y the DP, but the control action is not acceptable and will
probably violate the ramp rates for several of the units.

The only way to produce a dispatch that is acceptable to the control system,
as well as being the optimum -economically, is to add the ramp rate limits to
the economic dispatch formulation itself. This requires a short-range load
forecast to determine the most likely load and load-ramping requirements of
the units. This problem can be stated as follows.

Given a load to be supplied at time increments ¢ = 1| . .. L max> With load levels
of Pl,.4, and N generators on-line to supply the load:

Y Pl=p (3.26)

Each unit must obey a rate limit such that:

Pty = Py AP, (3.27)
and
—APP* < AP, < AP™e* (3.28)

Then we must schedule the units to minimize the cost to deliver power over
the time period as:

Tiin N
F‘lu!ai = }: Z F‘.(P:) (329)
t=} i=1
subject to:
N
Z Pi=Pi.y for t1=1... G (3.30)
i=1
and
Pi*! = P! + AP, (3:31)
with
—AP™ < AP, < APP* (3.32)

This optimization problem can be solved with dynamic programming and the
“control performance™ of the dispatch will be considerably better than that
using dynamic programming and no ramp limit constraints (see Chapter 9,
reference 19). :
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38 BASE POINT AND PARTICIPATION FACTORS

This method assumes that the economic dispatch problem has to be solved
repeatedly by moving the generators from one economically optimum schedule
to another as the load changes by a reasonably small amount. We start from
a given schedule—the base point. Next, the scheduler assumes a load change
and investigates how much each generating unit needs to be moved (e,
“participate” in the load change) in order that the new load be served at the
most economic operating point. :

Assume that both the first and second derivatives in the cost versus power
output function are available (ie, both F;and F{ exist). The incremental cost
curve of the i™ unit is given in Figure 3.7. As the unit load is changed by an
amount AP, the system incremental cost moves from 7210 A° + AL For a small
change in power output on this single unit,

Ak, = Ak = F{(DAP, (3.33)

This is true for each of the N units on the system, so that

5
AP, =~
Fj
Ai
BB, =
F;
Aph,:i}ft
Fy

The total change in generation (=change in total system demand) is, of course,

P; (MW)
&

FIG. 3.7 Relationship of A4 and AP,



56 ECONOMIC DISPATCH OF THERMAL UNITS

the sum of the individual unit changes. Let P, be the total demand on the
generators (where P = P, + P, then

APD=AP1+AP2+"'+APN

S ALY ( F‘) (3.34)

L

The earlier equation, 3.33, can be uscd to find the participation Jactor for each

unit as follows. A
AP, 1/F{
(5}7.) _ (W 1‘_)_ (3.35)
D
riw)

The computer implementation of such a scheme of economic dispatch is
straightforward. It might be done by provision of tables of the values of F{ as
a function of the load levels and devising a simple scheme to take the existing
load plus the projected increasc to look up these data and compute the factors.

A somewhat less elegant scheme to provide participation factors would
mvolve a repeat economic dispatch calculation at PY + AP,. The base-point
economic generation values are then subtracted from the new economic
generation values and the difference divided by AP, to provide the participation
factors. This scheme works well in computer implementations where the
execution time for the economic dispatch is short and will always give consistent
answers when units reach limits. pass through break points on piecewise
lnear incremental cost functions, or have nonconvex cost curves.

EXAMPLE 31

Starting from the optimal cconomic solution found in Example 3A, use the
participation factor method to calculate the dispatch for a total load of
900 MW.

Using Eq. 3.24.

AP 0.003124)" ! 320,10
! L - 0.47

AP, (0.003124) ' + (000388) " + (0.00964) " 68157

Similarly,
AP, (0.00388)7"

e v -= (.38
AP, 68157

Afy AL s,

AP, 68157

AP, = 900 — 850 = S0
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The new value of generation is calculated using

’

AP.
P = Prase, + (--ﬂ)APp fori=123
’ APD

Then for each unit

P, = 3932+ (047)(50) = 416.7
~ 3346 + (0.38)(50) = 353.6
- 1222 + (0.15)(50) = 129.7

Pnewz

newy

39 ECONOMIC DISPATCH VERSUS UNIT COMMITMENT

At this point, it may be as well to emphasize the essential difference between
the unit commitment and economic dispatch problem. The economic dispatch
problem assumes that there are N units already connected to the system. The
purpose of the economic dispatch problem is to find the optimum operating
policy for these N units. This is the problem that we have been investigating
so far in this text.

" On the other hand, the unit commitment problem is more complex. We may
assume that we have N units available to us and that we have a forecast of the

demand to be served. The question that 18 asked in the unit commitment
problem area is approximately as follows.

=, ’ —

| Given that there are a number of subsets of the complete set of N [

't generating units that would satisfy the expected demand. which of these |
subsets should be used in order to provide the minimum operating cost?

| s i gty |

This unit commitment problem may be extended over some period of time,
such as the 24 h of a day or the 168 h of a week. The unit commitment problem
is a much more difficult problem to solve. The solution procedures involve the
economic dispatch problem as a subproblem. That is. for each of the subsets
of the total number of units that are to be tested, for any given set of them
connected to the load, the particular cubset should be operated in optimum
economic fashion. This will permit finding the minimum operating cost for that
subset. but it does not establish which of the subsets is in fact the one that will
give minimum cost over a period of time.

A later chapter will consider the unit commitment problem imn some detail.
The problem is more difficult to solve mathematically since it involves integer
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variables. That is, generating units must be either all on or all off. (How can

you turn a switch half on?)

APPENDIX 3A
Optimization within Constraints

Suppose you are trying to maximize or minimize a function of several variables.
It is relatively straightforward to find the maximum or minimum using rules
of calculus. First, of course, you must find a set of values for the variables where
the first derivative of the function with respect to cach variable is zero. In
addition, the second derivatives should be used to determine whether the
solution found is a maximum, minimum, or a saddle point.

In optimizing a real-life problem, one is usually confronted with a function
to be maximized or minimized. as well as numerous constraints that must be
met. The constraints, sometimes called side conditions, can be other functions
with conditions that must be met or they can be simple conditions such as
limits on the variables themselves. -

Before we begin this discussion on constrained optimization, we will put
down some definitions. Since the objective is to maximize or minimize a
mathematical function, we will call this function the objective function. The
constraint functions and simple variable limits will be lumped under the term
consiraints. The region defined by the constraints is said to be the feasible region
for the independent variables. If the constraints are such that no such region
exists, that is. there are no values for the independent variables that satisfy all
the constraints, then the problem is said to have an infeasible solution. When
an optimum solution to a constrained optimization problem occurs at the
boundary of the feasible region defined by a constraint, we say the constraint
is binding. If the optimum solution lies away from the boundary, the constraint
is nonbinding.

To begin, let us look at a simple elliptical objective function.

(x, x5) =0.25x% + X3 (3A.1)

This is shown in Figure 3.8 for various values of f.

Note that the minimum value f can attain is zero, but that it has no finite
maximum value. The following is an example of a constrained optimization
problem.

Minimize: f(x,, x;) = 0.25x2 + x?
Subject to the constraint: w(xy, x,) =0 (3A.2)
Where: w(x, x,)=5-x, —x,

This optimization problem can be pictured as in Figure 3.9.
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x3

=

FIG. 3.8 Elliptical objective function.

*2

Minfatx, =4
%3=1

*q

E-x,-%x,=0

FIG. 39 Elliptical objective function with equality constraint.

We need to observe that the optimum as pictured, gives the minimum value
for our objective function, {. while also meeting the constraint function, . This
optimum point occurs where the function { is exactly tangent to the function
. Indeed. this observation can be made more rigorous and will form the basis
for our development of Lagrange multipliers.

First, redraw the function f for several values of f around the optimum point.
At the point (x|, x), calculate the gradient vector of f. This 1s pictured in Figure
3.10 as Vi(x}. x3). Note that the gradient at (x), x3) 18 perpendicular to f
but not to @, and therefore has a nonzero component along @. Similarly, at
the point (x}, x3) the gradient of f has a nonzero component along w. The
nonzero component of the gradient along @ tells us that a small move along
@ in the direction of this component will increase the objective function.
Therefore. to minimize { we should go along @ in the opposite direction to the
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Vilx), x5)

(x5 x5)
1= vf(x?m‘x?om)

FIG. 3.10 Gradients near a constrained optimum.

component of the gradient projected onto w. At the optimum point, the gradient
of [ is perpendicular (mathematicians say “normal™) to w and therefore there
can be no improvement in f by moving off this point. We can solve for
this optimum point mathematically by using this “normal” property at the
optimum. To guarantee that the gradient of f (i.e., Vf) is normal to w, we simply
require that Vfand the gradient of w, Ve, be linearly dependent vectors. Vectors
that are linearly dependent must “line up™ with each other (ie., they point in
exactly the same or exactly the opposite direction), although they may be
different in magnitude. Mathematically, we can then set up the following
equation.

Vi+ iV =0 (3A.3)

That is, the two gradients can be added together in such a way that they cancel
each other as long as one of them is scaled. The scaling variable. 4, is called a
Lagrange multiplier, and instead of using the gradients as shown in Eq. 3A.3,
we will restate them as

F(xy, X3, A) = f(xy, x3) + Ao, Xa) (3A4)

This equation is called the Lagrange equation and consists of three variables,
Xy, X3 and A When we solve for the optimum values for x, and b
we will automatically calculate the correct valué for 4. To meet the conditions
set down in Eq. 3A.3. we simply require that the partial derivative of
#£ with respect to each of the unknown variables, x,, X,, and A, be equal to
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zero. That is,

At the optimum:

(3A5)

To show how this works, solve for the optimum point for the sample problem

using Lagrange’s method.

P(x, X0 1) = 0.25x] + x3 + A0 — X, — X2)

0¥

7 "—_—0.5.’[1*‘/{:0

Cx,

8L g, —A=0 (3A.6)
ax, =

a€:5~ '\‘1‘~—x2=0

éA

Note that the last equation in (3A6) is

The solution to Eq. 3A.61s

simply the original constraint equation.

x, =4
Xy =11 (3A.T)
i=2

When there is more than one constraint
point can be found in a similar manner to that just used. Suppose there were
three constraints to be met, then our problem wculd be as follows.

Minimize:

f(x,, x3)

present in the problem. the optimum

Subject to:

The optimum point would possess the pro

@x. x;) =0
walxy, x;) =0

@3(x,, Xz) =0

(3A.8)

perty that the gradient of { and the
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gradients of w;. w,. and w, are linearly dependent. That is,
Vi+ 4, Vo, + 4,Vo, + 1,Vu, =0 (3A.9)
Again, we can sct up a Lagrangian equation as before.
& =1(x, x3) + 4;01(X5. X3) + A20,(Xy, X3) + Aye,(x,, X,) (3A.10)

whose optimum occurs at

Tao Eoyp

cx X

) o » (A11)
Tl Slat Eog

é4, 4, 0y

Up until now, we have assumed that all the constraints in the problem were
equality constraints; that is, »(x,, x,,...) = 0. In general, however, optimization
problems involve inequality constraints; that is, g(xy, x5, ..) <0, as well as
equality constraints. The optimal solution to such problems will not necessarily
require all the inequality constraints to be binding. Those that are binding will
result in g(x,, x,, ...) = 0 at the optimum.

The fundamental rule that tells when the optimum has been reached is
presented in a famous paper by Kuhn and Tucker (reference 3). The Kuhn-
Tucker conditions, as they are called, are presented here.

Minimize: f(x)
Subject to: wi(x) =0 i=l Zisins Naw

g(X)<0 i=12. . Ng
X = vector of real numbers, dimension = N
Then, forming the Lagrange function,
No

Ng
LxAp)=1fx)+ ¥ Lo+ 3 mg(x)
=1

i=] i

The conditions for an optimum for the point x°, 1%, u° are
;¥
L (%A% p% =0 fori=1..N

l'l

2 wx% =0 fori=1...Nw
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3. (x%) <0 fori=1...Ng
0g(x%) = 0

4 u:)g(‘) } fori=1...Ng
u =0

The first condition is simply the familiar set of partial derivatives of the
Lagrange function that must equal zero at the optimum. The second and third
conditions are simply a restatement of the constraint conditions on the problem.
The fourth condition, often referred to as the complimentary slackness condition,
provides a concise mathematical way to handle the problem of binding and
nonbinding constraints. Since the product x'g,(x°) equals zero, either s
equal to zero or g;(x%) is equal to zero, or both are equal to zero. If { is equal
to zero, g,(x°) is free to be nonbinding; if 4 is positive, then g:x”) must be
zero. Thus, we have a clear indication of whether the constraint is binding or
not by looking at 4.

To illustrate how the Kuhn-Tucker equations are used, we will add an
inequality constraint to the sample problem used earlier in this appendix. The
problem we will solve is as follows.

Migimize: fxy, 35) = 0.25x2 + x2
Subject to: X, X)) =5 — X, —x; = 0

g(xy, ¥} =x; +02x, -3 <0

which can be illustrated as in Figure 3.11.
First, set up the Lagrange equation for the problem.

& = 1(x,, x,) + 2[olxy, x3)] + ple(xy, x2)]

= 0.25x2 + x3 + A5 = x; — x) + p(x; +0.2x; — 3)

%3

X1

\C) /. L

x, *2.(2 ~“3<0

FIG. 3.11 FElliptical objective function with equality and inequality constraints.
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The first condition gives

if =05x, —A+u=0
ox,

0L

e 2x, — A+ 02u=0
x,

The second condition gives
S—x—x;=0
The third condition gives
X, +02x, -3<0
The fourth condition gives

ulx; +02x, =3)=0
=0

At this point, we are confronted with the fact that the Kuhn-Tucker
conditions only give necessary conditions for a minimum, not a precise,
procedure as to how that minimum is to be found. To solve the problem just
presented. we must hiterally experiment with various solutions until we can
verify that one of the solutions meets all four conditions. First, let g = 0, which
implies that g(x,, x,) can be less than or equal to zero. However. if u = 0. we
can see that the first and second conditions give the same solution as we had
previously, without the inequality constraint. But the previous solution violates
our inequality constraint; and therefore the four Kuhn- Tucker conditions do
uot hold with g = 0. In summary.

If 4 = 0. then by conditions i and 2

X, =4
x, =1
A=2

but
|
y(.x],.\:z)]n:‘ =4+021)—-3=124£0

lez=1

Now we will try a solution in which x> 0. In this case, g(x,, x;) must be
exactly zero and our solution can be found by solving for the intersection of
g(x;, x3) and w(x;, x,), which occurs at x; = 2.5, x, = 2.5. Further, condition
1 gives A = 5.9375 and y = 4.6875, and all four of the Kuhn - Tucker conditions
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are met. In summary

If u > 0, then by conditions 2 and 3
x; =25
x; =25

bv condition 1

A =59375

u = 46875
and

90X Xy cyes =25+ 02(25) —~3=0

All conditions are met.

Considerable insight can be gained into the characteristics of optimal solutions
through use of the Kuhn-Tucker conditions. One important insight comes from
formulating the optimization problem so that it reflects our standard power
system economic dispatch problems. Specifically, we will assume that the
objective function consists of a sum of individual cost functions, each of which
is a function of only one variable. For example,

f(x1.x3) = Cy(xq) + Ca(xz)
Further, we will restrict this problem to have one equality constraint of the
form
o(xy, x)=L—x; —x,=0

and a sct of inequality constraints that act to restrict the problem variables
within an upper and lower limit. That is,

g% = Xy — x7 <50
XS ¥y W] ﬂ{y‘( ¥ g 1=
gox)=x; —x, £0
x,)=x; - x1 <0
o < o, e s {93( 2) 2 2
galx3) =x3 —x,<0
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Then the Tagrange function becomes

=[xy, xa) 4+ A0(x,. X3) + gy (X)) + paga(x) + H303(x5) + HagalXz)
= Cy(x,) + Co(xa) + AL — Xy ~ %3) + py(x; ~ X7 + kX — xy)

+ ualx; = X))+ palxy = x3)

.Condition 1 gives
Cixy))=A+py —pp=0
Cx;)— A+ py— =0
Condition 2 gives
L-—-x, —x;,=0
Condition 3 gives
x;, - x; £0
x; —x, <0
x, —x; <0
Xa — X3 < 0
Condition 4 gives
ty(xy = x{)=0 sy 20

Halxy — x;) =0 H2 =0
pyley —x3)=0 3 20

ta(xy —x) =0 1y =0

Case 1

If the optimum solution occurs at values for x, and x, that are not at cither
an upper or a lower limit, then all x values are equal to zero and

(xy) = Cilxy) = 4

That is. the incremental costs associated with each variable are equal and
this value is exactly the A we are interested in.

Case 2
Now suppose that the optimum solution requires that x, be at its upper

limit (ie, x, — x; = 0) and that x, is not at its upper or lower limit. Then,

i, =20
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and p,, p;, and puy will each equal zero. Then, from condition 1,

Cilx)=4—pu, = Ci(x)) <4
Ci(xy) =4
Therefore, the incremental cost associated with the variable that is at its

upper limit will always be less than or equal to A, whereas the incremental
cost associated with the variable that is not at limit will exactly equal A.

Case 3

Now suppose the opposite of Case 2 obtains; that is, let the optimum solution
require x, to be at its lower limit (i€, x; — x, = 0) and again assume that
X, s not at its upper or lower limit. Then

220
and ;. us3. and p, will each equal zero. Then from condition 1
Cilxy)) =4 +u, =Cilx) = 4
Cilxz) =4

Therefore, the incremental cost associated with a variable at its lower limit
will be greater than or equal to 4 whereas, again, the incremental cost
associated with the variable that is not at limit will equal A.

Case 4

If the optimum solution requires that both x,, x, are at limit and the equality
consiraint can be met, then 4 and the nonzero u values are indeterminate.
For example, suppose the optimum required that

and
Then
=0 u; >0 My =p, =0

Condition | would give
Ci(xy) =2—py
Cilxy) =2 — pty
and the specific values for 4, 4, and u; would be undetermined. In summary,
for the general problem of N variables;
Minimize: Ci(xy) + Calxy) + - - + Cylxy)
Subject to: L—xy—x3—--- —xy=0
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: = e <0
o = } fori=1...N

x7 —x;<0

And:

Let the optimum lie at x, = x{® i=1... N and assume that at least one
%, is not at limit. Then,
If x?* < x; and xI™>x7, then C(x{™)=1
If x¥ = x Cixt™) < 4

If x0P == x; Ci(xP) > 4

Slack Variable Formulation

An alternate approach to the optimization problem with inequality constraints
requires that all inequality constramts be made into equality constraints. This
is done by adding slack variables in the following way.

It: g(x,)=x, — x{ <0
Then: gx, 8)=x, —x; +8;=0
We add S? rather than S, so that S, need not be limited in sign.

Making all inequality constraints into equality constraints eliminates the
need for conditions 3 and 4 of the Kuhn-Tucker conditions. However, as we
will see shortly. the result is essentially the same. Let us use our two-varnable
problem again.

Minimize: {(x,. x,;) = C,(x;) + Cy(x))

Subject to:  oix, x,)=L-x; —x,=0

And: Gglx)=x,—x, <0 or 9y (xS =X, — X7 +51=0
ga(xy) =xy —x; =0 da(x,, $)) = x;—x, +83=0
galxa) = x; —x;3 £0 ga(x2, Sy) = Xy —x3 + 8% =
galxy) = X3 —x; <0 ga(x3,Sa) = X3 ~ X, + 83 =0

The resultimyg Lagrange function is

L= 1(xy, X3) + Agw(Xy, X3) + A195(xy, 31)

+ 2282(x, §5) + A3g,(x,5, §3) + AagalX2s S4)

Note that all constraints are now equality constraints, so we have used only #
values as Lagrange multipliers.
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Condition 1 gives: o= = C(x,) = do + 4y — A, =0
X4
o _
== Chfg) —dg 4 By =T =D
0x,
o
8 318, =0
8 a8, =0
as,
0F 318, =0
és,
Kg
S =D
08,
Condition 2 gives: L=x;—x,=0

(x;—xf +8)=0
(x{ —x;, +83)=0
(x, —x; +8H =0

(x5 —x,+83)=0

We can see that the derivatives of the Lagrange function with respect to the
slack variables provide us once again with a complimentary slackness rule. For
example, if 24, S, = 0, then either 1, = 0 and S, is free to be any value or 5, = 0
and 4, is free (or /, and S, can both be zero). Since there are as many problem
variables whether one uses the slack variable form or the inequality constraint
form, there is little advantage to either, other than perhaps a conceptual
advantage to the student.

Dual Variables

Another way to solve an optimization problem is to use a technique that solves
for the Lagrange variables directly and then solves for the problem variables
themselves. This formulation is known as a “dual solution™ and in it the
Lagrange multipliers are called “dual variables.” We shall use the example just
solved to demonstrate this technique.

The presentation up to now has been concerned with the solution of what
is formally cailed the “primal problem,” which was stated in Eq. 3A.2 as:

Minimize: f(x,, x,) = 0.25x% + x?

Subject to: (X, X)) =5 —x; — x,
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and its Lagrangian function 1s:

B3y, xp 4) = 0.25x] + x3 + A5 —x; — X,)
If we define a dual function, g(4). as:

q(4) = min ZF(x. Xy, £) (3A.12)

X1X2
Then the “dual problem™ is to find

g*(4) = max g(4) (3A.13)

A0

The solution, in the case of the dual problem involves two separate
optimization problems. The first requires us to take an initial set of values for
x, and x, and then find the value of 4 which maximizes g(4). We then take
this value of ~ and, holding it constani. we find values of x, and x, which
minimize #(x,. 5. 4). This process 15 repeated or iterated until the solution is
found.

in the case of convex objective functions, such as the example used in this
appendix, this procedure is guaranteed to solve to the same optimum as the
primal problem solution presented earlier.

The reader will note that in the case of the functions presented in Eq. 3JA.2,
we can simplify the procedure above by eliminating x, and x, from the problem
altogether, in which case we can find the maximum of g(4) directly. If we cxpress
the problem variables in terms of the Lagrange multiplier (or dual variable),
we obtain:

%y =2
]

Xy ==
= &

We now eliminate the criginal problem variables from the Lagrangian function:

; SN,a o -
i) = —(Z)). + 54

We can use the dual variable to solve our problem as follows;

é 5
g =d=]o]a=5
8;'_q() 0 (2)

A=2

or
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Therefore, the value of the dual variable is g*(1) = 5. The values of the primal
variables are x, = 4 and x, = I.

In the economic dispatch problem dealt with in this chapter, one cannot
eliminate the problem variables since the generating unit cost functions may
be piecewise linear or other complex functions. In this case, we must use the
dual optimization algorithm described earlier; namely, we first optimize on A
and then on the problem variables, and then go back and update 1. etc. Since
the dual problem requires that we find

q*(4) = max g(4)

iz0

and we do not have an explicit function in 4 (as we did above), we must adopt
a slightly different strategy. In the case of economic dispatch or other problems
where we cannot eliminate the problem variables, we find a way to adjust 4 so
as to move ¢(4) frem its initial value to one which is larger. The simplest way
Lo do this 1s to use a gradient adjustment so that

d
= AV —»(ft]
’ [d&q )|

where « merely causes the gradient to behave well. A more useful way to apply
the gradient technique is to let 4 be adjusted upwards at one rate and downward
at a much slower rate; for example:

«=0.5 when &q q(4) is positive
i
and

a=0.1 when d%. q(4) 1s negative

The closeness to the final solution in the dual optimization method is measured
by noting the relative size of the “gap” between the primal function and the
dual function. The primal optimization problem can be solved directly in the
case of the problem stated in Eq. 3A.2 and the optimal value will be called J*
and it 1s defined as:

J* = min ¥ (3A.14)

This value will be compared to the optimum value of the dual function, g*.

The difference between them is called the “duality gap.” A good measure of the
closeness to the optimal solution is the “relative duality gap,” defined as:

= 2 (3A.15)
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TABLE 3.4 Dual Optimization

B 5 5 J' —_ qt
Tteration ~ X, X w J* q e
q
el 0 0 0 50 50 0 s
2 25. 50 1.25 125 50 46875 00666
3 2375 475 11875  —09375 50 48242 00364
4 55813 45625 11406 —07031 50 49011 0.0202
5 5209 44219 11055 —05273 50 49444 001124
20 20028 40056 10014 —0007 50 50 0

For a convex problem with continuous variables, the duality gap will become
sero at the final solution. When we again take up the dual optimization method
in Chapter 5, we will be dealing with nonconvex problems with noncontinuous
variables and the duality gap wili never actually go to zero.

Using the dual optimization approach on the problem given in Eq. 3A.2 and
starting at 2 = 0, we obtain the results shown in Table 3.4. As can be seen. this
procedure converges to the correct answer.

A special note about lambda search. The reader should note that the dual
technique. when applied o economic dispatch, is the same as the lambda search
technique we introduced earlier n this chapter to solve the economic dispatch
prablem.

APPENDIX 3B
Dynamic-Programming Applications

The application of digital methods to solve a wide variety of control and
dynamics optimization problems in the late 1950s led Dr. Richard Bellman and
his associates to the development of dynamic programming. These techmques
are useful in~solving a variety of problems and can greatly reduce the
computational effort in finding optimal trajectories of control policies.

The theoretical mathematical background, based on the calculus of variations,
is somewhat difficult. The applications are not. however. since they depend on
a willingness to express the particular optimization problem in terms appropriate
for a dynamic-programming (DP) formulation.

" In the scheduling of power generation systems. DP techniques have been
developed for the following.

e The economic dispatch of thermal systems.
¢ The solution of hydrothermal economic-scheduling problems.
e The practical solution of the unit commitment problem.

This text will touch on all three areas.
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FIG. 3.12 Dynamic-programming example.

First, however, it will be as well to introduce some of the notions of DP by
means of some one-dimensional examples. Figure 3.12 represents the cost of
transporting a unit shipment from node A to node N. The values on the arcs
are the costs, or values, of shipping the unit from the originating node to the
terminating node of the arc. The problem is to find the minimum cost route
from A to N. The method to be illustrated 1s that of dynamic programming.
The first two examples are from reference 18 and are used by permission.

Starting at A, the minimum cost path 1o N is ACEILN.

Starting at C, the least cost path to N is CEILN.
Starting at E, the least cost path to N is EILN
Starting at I, the least cost path to N is ILN.
Starting at L, the least cost path to N is LN.

The same type of statements could be made about the maximum cost path
from A to N (ABEHLN). That is, the maximum cost to N, starting from any
node on the original maximal path, is contained in that original path.
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The choice of route is made in sequence. There are various stages traversed.
The optimum sequence IS called the optimal policy; any subsequence s a
subpolicy. From this it may be seen that the optimal policy (i.c., the minimum
cost route) contains only optimal subpolicies. This is the Theorem of optimality.

An optimal policy must contain only optimal subpolicies. l[

In reference 20, Bellman and Dreyfus call it the “Principle of optimality” and
state it as

-

P A policy is optimal if, at a stated stage, whatever the preceding decisions
may have been, the decisions still to be taken constitute an optimal policy
when the result of the previous decisions is included.

|
|
|

We continue with the same example, only now let us find the minimum ¢ost
path. Figure 3.13 identifies the stages (L. 11, I11, 1V, V). At the terminus of each
stage. there is a set of choices of nodes {X,} to be chosen [{X3f = {H, L J, K}}
The symbol V(X X; + 1) represents the “cost™ of traversing stage a(=1,.. ., V)
and depends on the variables selected from the sets | X} and [X; + 1}. That s,
the cost, V,, depends on the starting and terminating nodes. Finally, f,(X;) is
the minimum cost for stages I through a to arrive at some particular node X;
at the end of that stage, starting [rom A. The numbers in the node circles n
Figure 3.13 represent this minimum cost.

{(Xo): A "{XHE F. G X LM
(X, B,C,D {X;}h H LK 1Xs3 N
fi(X): Minimum cost for the first stage is obvious:
f(B) = V(A, B)=5
[(C) = V,(A,C) =2
((D) = V(A.D) =3
f,(X,): Minimum cost for stages 1 and Il as a function of X

f(E) = min [f,(X,) + Wy(X;, E)]

1X3)
=mm[5+11, 2+8 3+w]=10
X =B =C =D X, =C
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|
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FIG. 3.13 Dynamic-programming example showing minimum cost at each node.

The cost is infinite for node D since there is no path from D to E:

fy(F) = min [i(X,) + (X, F)] = min[x, 6,91 =6, X, = C
iXa}

[(G) = min [,(X,) + K(X,, G)] = min[co, 11,9] = 9, X, — D
(X1}

Thus, at each stage we should record the minimum cost and the termination
starting the stage in order to achieve the minimum cost path for each of the
nodes terminating the current stage.

(X,) E F G
fu(X,) 10 6 9
Path X,X, AC AC AD

fin(X3): Minimum cost of stages I. 11, and III as a function of X,:

fiu(H) = min [{(X,) + Vy(X,, H)] = min[13, 14,20} = 13 with X, = E

{X2)
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In general.
fiu(X3) = min [ X5) + Ful Xy, X3
(X2}
Giving,
X, H 1 J K
fin( X3) 13 12 I 13
Path XX, X, ACE ACE ACF ADG

f,y: Minimum cost of stages I through IV as a function of X,:
fiv(X) = min [fn(X;5) + W( X3, ¥a))
X

3)
f(L) =minf13 + 9, 1243 1 +7 13+ 0] =15, Xy =1

X,=H =1 =1 =K
LMy =[I13+0,12+611+813+5]1=18  Xy=1 or K
X,=H =1 =] =K

fy: Minimum cost of 1 through V as a function of X<

[J(N) = min[fiy(X,) + KX, X))
(Xa}
== min[ 15 + 4, 184+3]1=19 X, =L
X,=L =

Tracing back, the path of minimum cost is found as follows:

Stage 1 {X.5 £;

i B. ©-D 5, (2.3

2 E)F.G 19,69

3 L) LK 13, @1
4 ©. M {3 18

5 ® ©

1t would be possible to carry out this procedure in the opposite direction just
as easily.

An Allocation Problem

Table 3.5 lists the profits to be made in each of four ventures as a function of
the investment in the particular venture. Given a limited amount of money to
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TABLE 3.5 Profit Versus Investment

Profit from Venture

Investment

Amount I 1 Hi v
0 0 0 0 0
1 0.28 0.25 0.15 0.20
2 0.45 0.41 0.25 0.33
3 0.65 0.55 0.40 0.42
4 0.78 0.65 0.50 0.48
5 0.90 0.75 0.65 0.53
6 1.02 0.80 0.73 0.56
7 1.13 0.85 0.82 0.58
8 1.23 0.88 0.90 0.60
9 1.32 0.90 0.96 0.60

10 1.38 0.90 1.00 0.60

allocate, the problem is to find the optimal investment allocation. The only
restriction is that investments must be made in integer amounts. For instance,
if one had 10 units to invest and the policy were to put 3in I. 1 in 1I. 5 in III.
and 1 in 1V, then

Profit = 0.65 + 0.25 + 0.65 + 0.20 = 1.75
The problem is to find an allocation policy that yields the maximum profit. Let

X1. X,, X3, X, be investments in I through IV

(X)), V(X,), V(X;), V(X,) be profits

X; + X, + X5 + X, = 10 s the constraint; that is,
10 units must be invested

To transform this into a multistage problem, let the stages be

X, U,U,A4
where
U =X, + X, U, <.

A
U,=U; + X, fA} =0,1,2,3,...,10
U, + X,

A
The total profit 1s

(X, X3, X, X)) = Vi(X)) + Fa(X,) + Fi(Xs) + Vi(Xy)
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which can be written

(X,. Uy, Uy, 4) = V(X)) + VU, X,) + Vy(Uy — Up) + FolA - th)
At the second stage. we can compute

LU) = max  [FX,)+ Wl - X))

X1=0.1; ~th
B Optimal Subpolicies
X, Xy or by Vi(Xy) Vi(X;) L) for 1 & 11
0 0 0 0 0,0
1 0.28 0.25 0.28 1,0
2 0.45 0.41 0.53 1,1
3 0.65 0.55 0.70 2.1
4 0.78 0.63 0.50 3,1
5 0.90 0.75 1.06 3.2
6 1.02 0.80 1.20 3.3
7 1.13 0.85 1.33 4,3
8 1.23 0.88 1.45 5.3
9 1.32 0.90 1.57 6.3
10 1.38 0.90 1.68 H.3
Next. at the third stage,
f(Uy) = max Lf(U) + WU, — Uyl

¢y=0.,1,2..... U2

Optima! Subpolicies

U, Uy, or X; f.(y) V(X (U  Forl&Il  For11L &0
0 0 0 0 0,0 0.0,0

t 0.28 0.15 0.28 1,0 1,0,0

2 0.53 0.25 0.53 1.1 L1,0

3 0.70 0.40 0.70 2,1 2,1,0

4 0.90 0.50 0.90 3.4 3,1,0

5 1.06 0.62 1.06 3,2 3,2,0

6 1.20 013 1.2t 1.3 2.1

7 i33 0.82 135 4,3 331

8 1.45 0.90 1.48 5.3 4,31

9 1.57 0.96 1.60 6,3 5.3 1or3,3.3
10 168 100 1.73 7.3 43,3
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Finally, the last stage is

fo(A) = max [[y(Uy) + V4(4 - U,)]

{Us}

Optimal Subpolicy

Us,Aor Xy 1(U,) F(X,) fA) for I, 11, & HI Optimal Policy
0 0 0 0 0,0,0 00,00

1 0.28 0.20 0.28 1.8, 0 1,0.0,0

2 0.53 0.33 0.53 L 1o 1,LL,0 0

3 0.70 0.42 0.73 2,00 L1L,0O 1

4 0.90 0.48 0.50 3,1,0 3,1.0.00r2,1,0,1
5 1.06 0.53 1.10 3,2,0 3 L0

6 1.21 0.56 1.26 3,21 32,01

7 1.35 0.58 1.41 3. 3:1 3.21,1

8 148 0.60 1.55. 4.3 1 3311

9 1.60 0.60 1.68 5.3, ¥o6r33,3 43 Ller3. 31,2
10 1.73 0.60 1.81 4,33 4,3 1.2

Consider the procedure and solutions:

L.

to

It was not necessary to enumerate all possible solutions. Instead, we used
an orderly, stagewise search, the form of which was the same at each stage.
The solution was obtained not only for 4 = 10, but for the complete set
of Avalues {4} =0, 1, 2,..., 10

The optimal policy contains only optimal subpolicies. For instance,
A =10, (4,3, 1, 2) is the optimal policy. For stages I, II, I11, and U, = 8,
(4, 3, 1) is the optimal subpolicy. For stages I and II, and Uy =7, (4,3)
is the optimal subpolicy. For stage I only, X, = 4 fixes the policy.

. Notice also, that by storing the intermediate results. we could work a

number of different variations of the same problem with the data already
computed.
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Assume that the fuel inputs in MBtu per hour for units 1 and 2, which
are both on-line, are given by

H, =8P, + 0.024P2 + 80
H, = 6P, + 0.04P2 + 120
where :
H, = fuel input to unit n in MBtu per hour (millions of Btu per hour)

P, = unit output in megawatts
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a. Plot the input-output characteristics for each unit expressing input
in MBtu per hour and output in megawat(s. Assume that the minimum
loading of each unit is 20 MW and that the maximum loading is
100 MW.

b. Calculate the net heat rate in Btu per kilowatt-hour, and plot against

output in megawatts.

Assume that the cost of fuel is 1.5 R/MBtu. Calculate the incremental

production cost in R/MWh of each unit, and plot against output in

megawatts.

Dispatch with Three-Segment Piecewise Linear Incremental Heat Rate

Function

Givem: Two gencrating units with incremental heat rate curves (IHR)

specified as three connected line segments (four points as shown in

Figure 3.14).

<

T g,
23
E ; IHR,
[} <
LR

E 1

MW1 MW?2 MW3  MWw4
P, Power (MW}

FIG. 3.14 Piecewise linear incremental heat rate curve for Problem 3.2,

Unit 1:

Point MW IHR (Btu/kWh)
1 100 7000
2 200 8200
3 300 §900
4 400 11000

Fuel cost for unit 1 = 1.60 R/MBtu

Unit 2: )
Point MW IHR (Btu/kWh)
1 150 7500
2 275 7700
3 390 8100
4 450 8500

Fuel cost for unit 2 = 2.10 R/MBtu
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Both units are running. Calculate the optimum schedule (ie., the
unit megawatt output for each unit) for various total megawatt values
to be supplied by the units. Find the schedule for these total megawatt
values:

=

300 MW, 500 MW, 700 MW, 840 MW

Notes: Piecewise linear increment cOst curves are quite common in
digital computer executions of economic dispatch. The problem is best
solved by using a “search” technique. In such a technique, the incre-
mental cost is given a value and: the units are scheduled to meet this
incremental cost. The megawatt outputs for the units are added together
and compared to the desired total. Depending on the difference, and
whether the resulting total is above or below the desired total, a new
value of incremental cost is “tried.” This is repeated until the incremental
cost is found that gives the correct desired value. The trick is to
search in an efficient manmner SO that the number of iterations 15
minimized.

Assume the system load served by the two units of Problem 3.1 varies
from 50 to 200 MW. For the data of Problem 3.1, plot the outputs of
units 1 and 2 as a function of total system load when scheduling
generation by equal incremental production costs. Assume that both
units are operating.

As an exercise, obtain the optimum loading of the two generating units
in Problem 3.1 using the following technique. The two units are to deliver
{00 MW, Assume both units are on-line and delivering power. Plot the
total fuel cost for 100 MW of delivered power as generation 1S shifted
from one unit to the other. Find the minimum cost. The optimum
schedule should check with the schedule obtained by equal incremental
production costs.

This problem demonstrates the complexity involved when we must
commit (turn on) generating units, as well as dispatch them economically.
This problem is known as the unit commitment problem and is the subject
of Chapter 5.

Given the two generating units in Problem 3.1, assume that they are
both ofi-line at the start. Also, assume that load starts at 50 MW and
increases to 200 MW. The most economic schedule to supply this varying
Joad will require committing one unit first, followed by commitment of
the second unit when the load reaches a higher level.

Determine which unit to commit first and at what load the remaining
unit should be committed. Assume no “start-up” costs for either unit.
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3.6  The system to be studied consists of two units as described in Problem
3.1. Assume a daily load cycle as follows.

Time Band Load (MW)
0000-0600 50
0600--1800 150
1800-0000 50

Also, assume that a cost of 180 R is incurred in taking either unit off-line
and returning it to service after 12 h. Consider the 24-h period from 0600
one morning to 0600 the next morning.

a.

Would it be more economical to keep both units in service for this
24-h period or to remove one of the units from service for the 12-h
period from 1800 one evening to 0600 the next morning?

. What is the economic schedule for the period of time from 0600 to

1800 (load = 150 MW}?

. What is the economic schedule for the period of time from 1300 10

0600 (load = 50 MW)?

3.7 Assume that all three of the thermal units described below are running.
Find the economic dispatch schedules as requested in each part. Use the
method and starting conditions given.

a.

b.

Minimum  Maximum  Fuel Cost

Unit Data (MW) {(MW) (R/MBtu)
Hy =225 + 8.4P, + 0.0025pP% 45 350 0.80
H, =729 + 6.3P, + 0.0081P3 45 350 1.02
Hy = 400 + 7.5P, + 0.0025P? 47.5 450 0.90

Use the lambda-iteration method (o find the economic dispaich for a
total demand of 450 MW.

Use the base-point and participation factor method to find the
cconomic schedule for a demand of 495 MW. Start from the solution
to part a.

Use a gradient method to find the economic schedule for a total
demand of S00 MW, assuming the initial conditions (i.e., loadings) on
the three units are

P, = P, = 100 MW and 5 = 300 MW
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Give the individual unit loadings and cost per hour, as well as the
total cost per hour 10 supply each load level. (MBtu = millions of
Btu;, H; = heat input m MBtu/h; P = electric. power output in MW,
j=L2%)

Thermal Scheduling with Straight-Line Segments for Input—Qutput
Curves ' ;

The following data apply to three thermal units. Compute and sketch
the input—output characteristics and the incremental heat rate charac-

teristics. Assume the unit input-output curves consist of straight-line
segments between the given power points.

Power Output Net Heat Rate

Unit No. (MW) (Btu/kWh)

1 45 135125
300 9900.0
350 : 2918.0

2 45 22764.5
200 11465.0
300 11060.0
350 i 11117.9

3 475 16039.8
200 10000.0
300 95833
450 9513.9

Fuel costs are:

__________#——’é__f__________‘.__———d

Unit No. Fuel Cost (R/MBtu

1 0.61

2 0.75

3 Q.75

.

Compute the economic schedule for system demands of 300, 460, 500,
and 650 MW, assuming all three units are on-iine. Give unit loadings
and costs per hour as well as total costs in R per hour.

Environmental Dispatch

Recently, there has been concern that optimum economic dispatch was
not the best environmentally. The principles of economic dispatch can
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fairly easily be extended to handle this problem. The following is a
problem based on a real situation that occurred in the midwestern United
States in 1973. Other cases have arisen with “NO,” emission in Los
Angeles.

Two steam units have mput-output curves as follows.

H, <400 + 5P, + 0.01P3,  MBtu/h, 20 < P, < 200 MW
H, =600 + 4P, + 0015P3,  MBtu/h, 20 < P, < 200 MW

The units each burn coal with a heat content of 11,500 Btu/Ib that costs
13.50 R per ton (2000 Ib). The combustion process in each unit results
in 11.75%, of the coal by weight going up the stack as fly ash.

a. Calculate the net heat rates of both units at 200 MW.

b. Calculate the incremental heat rates; schedule each unit for optimum
economy to serve a total load of 250 MW with both units on-line.

¢. Calculate the cost of supplying that load.

d. Calculate the rate of emission of fly ash for that case in pounds (Ib) per
hour, assuming no fly ash removal devices are in service.

e. Unit 1 has a precipitator installed that removes 859 of the fly ash: unit
2's precipitator is 89° efficient. Reschedule the two units for the
minimum total fly ash emission rate with both on-line to serve a 250
MW load.

f. Calculate the rate of emission of ash and the cost for this schedule to
serve the 250 MW load. What is the cost penalty?

2. Where does all that fly ash go?

Take the generation data shown in Example 3A. Ignore the generation
limits and solve for the economic dispatch using the gradient method
and Newton’s method. Solve for a total generation of 900 MW in each
case.

You have been assigned the job of building an oil pipeline from the West
Coast of the United States to the East Coast. You are told that any one
of the three West Coast sites is satisfactory and any of the three East
Coast sites is satisfactory. The numbers in Figure 3.15 represent relative
cost in hundreds of millions R(R-10%). Find the cheapest West Coast to
East Coast pipeline.

The Stagecoach Problem

A mythical salesman who had to travel west by stagecoach, through
unfriendly country, wished to take the safest route. His starting point
and destination were fixed, but he had considerable choice as to which
states he would travel through en route. The possible stagecoach routes
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|
X4 (8 Xy %

FIG. 3.16 Possible stagecoach routes for Problem 3.12.

are shown in Figure 3.16. After some thought, the salesman deduced a
clever way of determining his safest route. Life insurance policies were
offered to passengers, and since the cost of each policy was based on a
careful evaluation of the safety of that run, the safest route should be the
one with the cheapest policy. The cost of the standard policy on the
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FIG. 3.17 Cost to go from state i to state Jin Problem 3.12. Costs not shown are
infinite.

3.13

stagecoach run from state i to state J, denoted as C,,, is given in Figure
3.17. Find the safest path(s) for the salesman to take.

Economic Dispatch Problem

Consider three generating units that do not have convex Input-output
functions. (This is the type of problem one encounters when considering
valve points in the dispatch problem.)

Unit 1:
% (P)_{80+8P, + 0.024 P 20MW < P, < 60 MW
Y1964 4 3P, + 0.075P7  60MW < P, < 100 MW

Generation limits are 20 MW < P, <100 MW.

Unit 2:
5 (P)_‘ 120 + 6P, + 0.04P2 20MW < P, <40 MW
T 157335 + 3.3333P, + 0.08333P2  40MW < P, < 100 MW

Generation limits are 20 MW < P, < 100 MW,

Unit 3:
P, = 100 + 4.6666P, + 0.13333P1 20 MW. < P, < S0MW
T 131666 + 2P, + 0.1P2 SOMW < P, < 100 MW
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Generation limits are 20 MW < P, < 100 MW. Fuel costs = 1.5 R/MBtu

for all units. 5 .

a. Plot the cost function for each unit (see Problem 3.1).

b. Plot the incremental cost function for each unit.

¢. Find the most economical dispatch for the following total demands
assuming all units are on-line:

P, = 100 MW
P, = 140 MW
p, = 180 MW
P, = 220 MW
P, = 260 MW

where
.Pn-_—Pt‘vLPz‘i' P3
Solve using dynarmic programming and discrete load steps of 20 MW,
starting at 20 MW through 100 MW for each umit.
d. Can you solve these dispatch problems without dynamic programiming?
If you think you know how, try solving for P, = 100 MW.
Given: the two generating units below with piecewise linear cost functions
F(P) as shown.

Unit 1: prin ~ 25MW and  PJ* = 200 MW
PI(BJW) Fx(‘ul)(Rh)
25 2890
100 971.5
150 1436.5
200 1906.5
Unit 2 poin = SOMW and PP = 400 MW
P IMW) Fy(P: (RN}
30 3800
100 4230
200 5120 -,
400 6960

Find the optimum generation schedule for a total power delivery of
350 MW (assume both generators are on-hine).
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315 Given: two generator units with piecewise linear incremental cost
functions as shown.

Unit 1: P'l""" = 100 MW and PP = 400 MW
d ’
Py (MW) — Fi(PLXR/MWh)
dp,
100 6.5
200 7.0
300 8.0
400 11.0
Unit 2: P = 120 MW and P3* = 300 MW
d
P (MW) — Fy(P,{R/MWh)
ar,
120 3.0
150 8.3
200 9.0
300 12.5

a. Find the optimum schedule for a total power delivery of 500 MW.

b. Now assume that there are transmission losses in the system and the
incremental losses for the generators are:

dp,

% = _0.05263
dp,
and
Pons _ 0.04762

Find the optimum schedule for a total power delivery of 650 MW;
that is, 650 equals the load plus the losses.

FURTHER READING

Since this chapter introduces several optimization concepts, it would be useful to refer
to some of the gencral works on optimization such as references 1 and 2. The importance
of the Kuhn-Tucker theorem is given in their paper (reference 3). A very thorough
discussion of the Kuhn-Tucker theorem is found in C hapter 1 of reference 4.
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For an overview of recent power system optimization practices see references 5 and
6. Several other applications of optimization have been presented. Reference 7 discusses
the allocation of regulating margin while dispatching generator units. References 8-11
discuss how to formulate the dispatch problem as one that minimizes air pollution
from power plants.

Reference 12 explains how dynamic economic dispatch is developed. Reference 13 is
a good review of recent work in economic dispatch. References 14 and 15 show how
special problems can be incorporated into economic dispaich, while references 16 and
17 show how altogether different, nonconventional algorithms can be applied to
economic dispatch. References 18-21 are an overview of dynamic programming, which
is introduced in one of the appendices of this chapter.
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4 Transmission System Effects

As we-saw in the previous chapter, the transmission network’s incremental
power losses may causc a bias in the optimal economic scheduling of the
generators. The coordination equations include the effects of the incremental
transmission losses and complicate the development of the proper scheduie.
The network elements lead to two other, important effects:

1. The total real power loss in the petwork increases the total generation
demand, and

. The generation schedule may have to be adjusted by shifting generation
(o reduce flows on transmission circuits because they would otherwise
become overloaded. i

[

It is the last effect that is the most difficult to include in optimum dispatching.
In order to include constraints on flows through the network elements, the
flows must be evaluated as an integral part of the scheduling effort. This means
we must solve the power flow equations along with the generation scheduling
equations. (Note that earlier texts, papers, and even the first edition of this
book referred to these cquations as the “load flow™ equations.)

If the constraints on flows in the networks are ignored, then it is feasible to
use what are known as loss formulae that relate the total and incremental, real
power losses in the network to the power generation magnitudes. Development
of loss formulae is an art that requires knowledge of the power flows in the
petwork under numerous “typical” conditions. Thus, there is no escaping the
need to understand the methods involved in formulating and solving the power
flow equations for an AC transmission system.

When the complete transmission system model is included in the development
of generation schedules, the process is usually imbedded in a set of computer
algorithms known as the optimal power flow (or OPF). The complete OPF is
capable of establishing schedules for many controllable quantities in the bulk
power system (ie., the generation and transmission systems), such as transformer
tap positions. VAR generation schedules, etc. We shall defer a detailed
examination of the OPF until Chapter 13.

Another useful set of data that are obtainable when the transmission network
is incorporated in the scheduling process 1s the incremental cost of power at
various points in the network. With no transmission effects considered (that is,
ignoring all incremental losses and any constraints on power tlows), the network

91
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1s assumed to be a single node and the incremental cost of power is equal to
+ everywhere. That is,
dF, .

ae,~ "
Py ¥

Including the effect of incremental losses will cause the incremental cost of real
power to vary throughout the network. Consider the arrangement in Figure
3.2 and assume that the coordination equations have been solved so the values
of dF;/dP; and 4 are known. Let the “penalty factor™ of bus i be defined as

1
Pfi= o
( - af.g)
Gk,
so that the relationship between the incremental costs at any two buses, i and

5 1s
Pf,F;= PfF;

where F, = dF,/dP, is the bus incremental cost. There is no requirement that
bus i is a generator bus. If the network effects are included using a network
model or a loss formula, bus i might be a load bus or a point where power is
delivered to an interconnected system. The incremental cost (or “value”) of
power at bus i is then,

Incremental cost at i = F| = (Pf/Pf)F;

where j is any real generator bus where the incremental cost of production is
known. So if we can develop a network model to be used in optimum generation
scheduling that includes all of the buses, or at least those that are of importance,
and i the incremental losses (¢P./AP,) can be evaluated, the coordination
equations can be used to compute the incremental cost of power at any point
of delivery. -

When the schedule is determined using a complete power flow model by
using an OPF, the flow constraints can be included and they may affect the
value of the incremental cost of power in parts of the network. Rather than
attempt a mathematical demonstration, consider a system in which most of the
low cost generation is in the north, most of the load is in the south along with
some higher cost generating units, and the northern and southern areas are
interconnected by a relatively low capacity transmission network. The network
north-to-south transfer capability limits the power that can be delivered from
the northern area to satisfy the higher load demands. Under a schedule that is
constrained by this transmission flow limitation, the southern area’s generation
would need to be increased above an unconstrained, optimal level in order 1o
satisty some of the load in that region. The constrained economic schedule
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would split the system into two regions with a higher incremental cost in the
southern area. In most actual cases where transmission does constrain the
economic schedule, the effect of the constraints is much’ more significant than
the effects of incremental transmission losses.

This chapter develops the power flow equations and outlines methods of
solution. Operations control centers frequently use a version of the power flow
equations known as the “decoupled power flow.” The power flow equations
form the basis for the development of loss formulae. Scheduling methods
frequently use penalty factors to incorporate the effect of incremental real power
losses in dispatch. These can be developed from the loss formulae or directly
from the power flow relationships. i

Power flow is the name given to a network solution that shows currents,
voltages, and real and reactive power flows at every bus in the system. It is
normally assumed that the system is balanced and the common use of the term
power flow implies a positive sequence solution only. Full three-phase power-
flow solution techniques are available for special-purpose calculations. As used
here, we are only interested in balanced solutions. Power flow 1s not a single
calculation such as E = IR or E = [Z]l involving linear circuit analysis. Such
circuit analysis problems start with a given set of currents or voltages, and one
must solve for the linearly dependent unknowns. In the power-flow problem
we are given a nonlinear relationship between voltage and current at each bus
and we must solve for all voltages and currents such that these nonlinear
relationships are met. The nonlinear relationships involve, for example, the real
and reactive power consumption at a bus, or the generated real power and
scheduled voltage magnitude at a generator bus. As such, the power flow gives
us the electrical response of the transmission system to a particular set of loads
and generator unit outputs. Power flows are an important part of power system
design procedures (system planning). Modern digital computer power-flow
programs are routinely run for systems with up to 5000 or more buses and also
are used widely in power system control centers to study unique operating
problems and to provide accurate calculations of bus penalty factors. Present,
state-or-the-art system control centers use the power flow as a key, central
element in- the scheduling of generation, monitoring of the system, and
development of interchange transactions. OPF programs are used to develop
optimal economic schedules and control settings that will result in flows that
are within the capabilities of the elements of the system, including the
transmission network. and bus voltage magnitudes that are within acceptable
tolerances.

41 THE POWER FLOW PROBLEM AND ITS SOLUTION

The power flow problem consists of a given transmission network where all
lines are represented by a Pi-equivalent circuit and transformers by an ideal
voltage transformer in series with an impedance. Generators and loads represent
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the boundary conditions of the solution. Generator or load real and reactive
power involves products of voltage and current. Mathcmatically, the power flow
requires a solution of a system of simultaneous nonlinear equations.

4.1.1 The Power Flow Problem on a Direct Current Network

The problems involved in solving a power flow can be illustrated by the use of
direct current (DC) circuit examples. The circuit shown in Figure 4.1 has a
resistance of (.25 Q tied to a constant voltage of 1.0 V (called the reference
voltage). We wish to find the voltage at bus 2 that results in a net inflow of
1.2 W. Buses are electrical nodes. Power is said to be “injected” into a network:
therefore, loads are simply negative injections.

The current from bus 2 to bus 1 is

I, =(E, - 1.0) x 4 (4.1)
Power P, 1s
Po=12=E,l,, =E)E, - 1) x 4 (4.2)
or
4E3 —4E, — 12 =0 (4.3)

The solutions to this quadratic equation are £, = 1.24162V and E, =
—0.24162 V. Note that 1.2 W enter bus 2, producing a current of 0.96648 A
(E; = 1.24162), which means that 096648 W enter the reference bus and
0.23352 W are consumed in the 0.25-Q resistor.

_et us complicate the problem by adding a third bus and two more lines
(see Iigure 4.2). The problem is more complicated because we cannot simply
write out the solutions using a quadratic formula. The admittance equations are

I 14 -4 10| E,
IL|=] -4 9 =5{] E; 4.4)
Li, —10 =5 15 LE,]
Bus 1{reference) Bus 2
1y
VWA———= - Py =12W
Ry, =0250Q
E, =10V 4
'*(
Mmmmmmmm

FIG. 41 Two-bus DC network.
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Bus 1(reference)

Ry, =0.25Q
VWA
R,;3=01% Rz =028 sy =14 W
VWA VW™

FI1G. 4.2. Three-bus DC network.

In this case, we know the power injected at buses 2 and 3 and we know the
voltage at bus 1. To solve for the unknowns (E,, E; and F;), we write Egs. 4.5.
4.6, and 4.7. The solution procedure is known as the Gauss—Seidel procedure,
wherein a calculation for a new voltage at each bus is made, based on the most
recently calculated voltages at all neighbouring buses.

P
Bus 2: I=-2=—410)+9E; - 5E;

2
2

o 118 .
Ere = ‘.)(F.M,d + 4 + SE_,“‘) {4.5)

“2
where ES9 and £3 are the initial values for E, and Es, respectively.

Py

Bus 3: I, === —10(1.0) — SE¥™ + 15E;
3 -
1 f—1%
B~ = — | =" 4 10 + SE™ (4.6
¥ 15[ E%4 3 ] " )

where E2¢* is the voltage found in solving Eq. 4.5, and E¢ is the initial value
of E;.

Bus I: P, = E 05 = LOIT™ = 14 — 4EF™ — 10E5™ (4.7

The Gauss-—Seidel method first assumes a set of voltages at buses 2 and 3
and then uses Egs. 4.5 and 4.6 to solve for new voltages. The new voltages are
compared to the voltage’s most recent values, and the process continues until
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START

SELECT INITIAL VOLTAGES
FOR EACH BUS

:' '
SOLVE FOR EN®W DO FORALL
ENEW = f(P. E)j=1---N) i=1--'N
' . (t # ref)
C |
y

SAVE MAXIMUM
VOLTAGE CHANGE

= -1
AEMAX - ;E? - E? IMAX OVER

f

7
AE <e¢ ‘
NO N YES

i

CALCULATE LINE FLOWS,
LOSSES, MISMATCH, ETC

€ =SPECIFIED VOLTAGE
CONVERGENCE
TOLERANCE

PRINT RESULTS

STOP

FIG. 43 Gauss-Seidel power-flow solution.

the change in voltage is very small. This is illustrated in the flowchart in Figure
4.3 and in Egs. 4.8 and 4.9.

First iteration: EP=E®=10

1(1. )
E{M = (‘3 44 4 5) = 1.133
9\1.0
" 5 (4.8)
BW = | = 4 b+ 51.133) | = 0.944
150 10
AE,,, = 0.133 too large
Note: In calculating EY" we used the new value of E, found in the first
correction.
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Second iteration: E® = 1| 12 44, 5(0.944)] — 1.087

911.133
Ep=1=15 6y 5(1.087)] = 0923 (4.9)
15 0.944
AE,,,, = 0.046

And so forth until AE_, < e

4.1.2 The Formulation of the AC Power Flow

AC power flows involve several types of bus specifications, as shown in Figure
4.4.Notethat [P, A],[Q, |E|], and [Q, 6] combinations are generally not used.

The transmission network consists of complex impedances between buses
and from the buses to ground. An example is given in Figure 4.5. The equations
are written in matrix form as

o B RS e N L A L |
1, | Tzl (Y12 + Y20 + ¥23) | —¥33 i 0 E,
o I S I R R s |
L 0 0 | ~V3a | (¥3a + yag) JL E,
(4.10)

(Al I, E™, y* complex)

This matrix is called the network Y matrix, which is written as

1, Yoo Y2 Y Y |[E
{ L L £ Y E,
2| _ ,z 22 ’23 24 4.11)
Iy st B Yy Yo [l Ey
Iy Y, Y, Yo Y.JLE,

The rules for forming a Y matrix are

If a line exists from i to j

Y;’j & -~ }'u
and :
)’-- —3

n

Yij + Yig

-~

J over all lines connected to i.
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I B St L I ==
Bus Type | P Q L |E| 1 G Comments |
Load . ot 1 | Usual load representztion_l
L ________ML__“_#__,_,__‘.___L_;_____—_____M__%
Voltage [ 2 [ v | | Assume |E| is held constant !
Controlled | v | i { | nomatter what @ is
Generator or ! v i !. v “ : Generator or synchronous \\
Synchronous i . when | | condenser (P =0)has |
| Condenser % | g« | | VARdmis |
i -] A — o
i i v v L Q" minimum VAR limit g
! 1 | ! !
! & | when | . Q" maximum VAR limit ‘
I ! =1 ' ! !
I i i g’;g* i | |E| s held as long as Qg 15 |
‘ e 4 | within limit i
| Fixed Z L :’ 1 . Only Z is given l
§ to Ground | ; | L ]
= and | (-
| Reference ’ i “Swing bus” must adjust !
: | ! net power to hold \
] i LV |/ volage constant |
i ! ‘ ! ' t ({essential for 'L
f i ! : | i
R S S S . sehition) o

FIG. 44 Power-flow bus specifications (quantities checked are the bus boundary
conditions).

1 Y1z 1,
E; | Y2 E,
1 5 Y,

1, —> Y3 A

E/ Yag y E
T -/

FIG. 45 Four-bus AC network.
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The equation of net power injection at a bus is usually written as

IO _ = Y YE + YuE, (4.12)
E* o

4.1.2.1 The Gauss—Seidel Method

The voltages at each bus can be solved for by using the Gauss-Seidel method.
The equation in this case is

E@ = 1 (R — ij__l[Z Y E® + 3 X El 1)1 (4.13)

= ‘_1,.'
Yu EF Y Lik ik

Volitage at
iteration «

The Gauss-Seidel method was the first AC power-flow method to be
developed for solution on digital computers. This method is characteristically
long in solving due to its slow convergence and often difficulty is experienced
with unusual network conditions such as negative reactance branchcs The
solution procedure is the same as shown in Figure 4.3.

4.1,2.2 The Newton—Raphson Method

One of the disadvantages of the Gauss-Seidel method lies in the fact that each
bus is treated independently. Each correction to one bus requires subsequent
correction to all the buses to which it is connected. The Newton-Raphson
method is based on the idea of calculating the corrections while taking account
of all the mteractions.

Newton’s method involves the idea of an error in 4 function f(x) being driven
to zero by making adjustments Ax to the independent variable associated with
the function. Suppose we wish to solve

f{x) = K (4.14)

In Newton’s method, we pick a starting value of x and call it x°. The error
is the difference between K and f(x°). Call the error & This is shown in Figure
4.6 and given in Eq. 4.15.

f((xX%)+e=K (4.15)

To drive the error tc zero, we use a Taylor expansion of the function about x°.

f(x% +

.0
d; s v a=K (4.16)



100 TRANSMISSION SYSTEM EFFECTS

fx)

N
b —— M =2

x
x° x!
FIG. 4.6 Newton's method.
Setting the error to zero, we calculate
df(x®\ ! ,
Ax =( r;xw’) [K — f(x)] (4.17)
X

When we wish to solve a load flow, we extend Newton’s method to the
multivariable case (the multivariable case is called the Newton-Raphson
method ). An equation is written for each bus “i.”

P, +jQ; = E;I} (4.18)
where / v

Il = Yn E,
k

=

1

an

then
N \ *
Pi+j0; = Ei(-z y:kEk)

k=1

= |E*Ys + ) YREE!
k=1
k#i

As in the Gauss—Seidel method, a set of starting voltages is used to get things
going. The P + jQ calculated is subtracted from the scheduled P + jQ at the
bus, and the resulting errors are stored in a vector. As shown in the following.
we will assume that the voltages are in polar coordinates and that we are going
to adjust each voltage’s magnitude and phase angle as separate independent
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variables. Note that at this point, two equations are written for each bus: one
for real power and one for reactive power. For each bus,

Y. AP, L)

AP, = — Af, + — AlE,|
; o6, .‘.4:, 2|E,|
N 20, v ag, (4.19)
% i A i
0= 2 50, 2% 2, g B
All the terms are arranged in a matrix (the Jacobian matrix) as follows.
AP, e || A8,
68 ¢|E,|
] d
AQ, 99, 20 A|E,|
=| 06, O|E,| (4.20)
AP, : :
AQ,
= : = - = = =1
A J
v

Jacobian matrix

The Jacobian matrix in Eq. 4.20 starts with the equation for the real and reactive
power at each bus. This equation, Eq. 4.18, is rcpeated below:

N
P +jQi=E; } YLE}
k=1
This can be expanded as:

N
P +jQ, = Z |EE (G _jBik)sj‘ai_ok)

N

z [E{|Ex|[Gi cos (6; — 6,) + By sir (6; — 6,)]

+ JUEN Edl [Gy sin (0; — 8,) — By cos (6; — 6,)11} (4.21)
where
0;, 0, = the phase angles at buses i and k, respectively;
|E;l, | E| = the bus voltage magnitudes, respectively

Gy + jBy = Y, is the ik term in the Y matrix of the power system.
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The general practice in solving power flows by Newton’s method has been

{0 use
BIE
IE

instead of simply A|E;|; this simplifies the equations. The derivatives are:

CP, N . ,
CEG = | EJ| E{[Gy sim (6; — 8,) — By cos (U, - th)]
CHy
P e . : ,
o = |EJNE | [Gy cos (6; — 0i) + By sin (6, — )]
(G50
\HELE
R 4.22)
‘;‘j: — —|ENE[Gy cos (8, — 6,) + By sin (#; ~ )]
70,
Q. EE [y sin (8; — ) — By cos (0, = 6,)]

(D)

il
!

Fori=k
ok Q.— B;E?
ot . ek

( Eim‘)
\ ‘EAI 4
e .,
—— = P, — GE;
(7‘0‘-
CO;

(f5)”
A E

Equation 4.20 now becomes

" A6,
™ AP, 7] AlE,|
AQ, NE| |
AP, | =[J1] A6, . (423)
AQ, | . AlE,|
. L—E{l
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START

{

SET ALL VOLTAGES TO
STARTING VALUE"

*THIS USUALLY MEANS
} 1.0 £0° per unit VOLTAGE.

A PREVIOUS SOLUTION
\ MAY BE USED IF
—~CALCULATE ALL &P,
AND AQ, SAVE THE AVAILABLE
MAX &P AND MAX 4Q
—CALCULATE THE € = SPECIFIED BUS
JACOBIAN MATRIX MISMATCH
TOLERANCE
MAX AP < e CALCULATE LINE
AND - FLOWS, LOSSES,
MAX AQ < e ES MISMATCH, ETC.
NO
i
ik i PRINT RESULT
AIE,| AND 28, SULTS
USING JACOBIAN
INVERSE
sTop

! l

UPDATE BUS VOLTAGE: DO FORALL i
ge =821 +Af, = peseN
PE,l= = 1E,1° " + AIE,l i # ref

l |

FIG. 4.7 Newton-Raphson power-flow solution.

The solution to the Newton-Raphson power flow runs according to the
flowchart in Figure 4.7. Note that solving for A# and A|E| requires the solution
of a set of linear equations whose coefficients make up the Jacobian matrix.
The Jacobian matrix generaily has only a few percent of its entries that are
nonzero. Programs that solve an AC power flow using the Newton dehson
method are successful because they take advantage of the Jacobian's “sparsity.”
The solution procedure uses Gaussian elimination on the Jacobian matrix and
does not calculate J ! explicitly. (See reference 3 for introduction to “sparsity”
techniques.)

EXAMPLE 4A

The six-bus network shown in Figure 4.8 will be used to demonstrate several
aspects of load flows and transmission loss factors. The voltages and flows
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Bus 3
246.1kV (4.3°
Bus 2
241.5kV (-3.7°| — 29 29— | 80.0~—
—-}-12.3 5.7 =4 | 896 <t
— 50.0 —a= 19.1 Bus 6
—+>- 744 —>23.2
—a= 43.8 — 42.8
2.} —+> 807 4> 578
46,1~ - 16
.2 LY ok
+ 124 —> 16.0
— 155 —+>=154
-~ 278 ' l -#
ik 70 70
Bus 1 &
231.0,-59
281 5KV /&° Bues
—> 287 —a 160
—-}— 15.4 —}> 180 .~ 16
( ) — 356 — 345 -t 9.7
—107.8 | —P> 113 —> 135
16.0 -« 18.0
I ’ —> 43.6 — 4.0 ~—— 26.1
—t= 20.1 -+ 2.8 _l
Bus 4 ¢ t
70 70
= 4eb 226.7 153
~— 199
—_— 4.1
—= 316 -~ 49 where . MW
—4ae 451 —+> MVAR
1 (O] genertor
! -
70
227.6kV /-4.2°

FIG. 48 Six-bus network base case AC power flow.
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shown are for the “base ease” of 210 MW total load. The impedance values
and other data for this system may be found in the appendix of this
chapter.

4.1.3 The Decoupled Power Flow

The Newton power flow is the most robust power flow algorithm used in
practice. However, one drawback to its use is the fact that the terms in the
Jacobian matrix must be recalculated each iteration, and then the entire set of
lincar equations in Eq. 4.23 must also be resolved each iteration.

Since thousands of complete power flows are often run for a planning or
operations study, ways to speed up this process were sought. Reference 11 shows
the development of a technique known as the “fast decoupled power flow™ (it
is often referred to as the “Stott decoupled power flow,” in reference to its first
author).

Starting with the terms in the Jacobian matrix (sec Eq. 4.22), the following
simplications are made:

e Neglect and interaction between P, and any | E,| (it was observed by power
system engineers that real power was little influenced by changes in voltage
magnitude—so this effect was incorporated in the algorithm). Then, all
the derivatives

oF;

2

[Eel
will be considered to be zero.

e Neglect any interaction between Q; and 6, (sce the note above—a similar
observation was made on the insensitivity of reactive power to changes
in phase angie). Then, all the derivatives

00
26,

are also considered to be zero.
® Let cos (6, — 6;) = | which is a good approximation since 0: -8, is
usually small.
® Assume that
Gy sin (0, — 6,) < B,
® Assume that
Q; « Bi-'|E.'|2
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This leaves the derivatives as.

g -

= — | E;[{Ex} By (4.24)
o0,

Qi _ _{E)EB, (4.25
_(5‘151\5) JE B )
[ Exl

If we now write the power flow adjustment cquations as:
¢P;
AR»z(fJ)A& {4.26)
Xel
c0; A\ I::k!
N /‘Q’lhki\)‘ |Elf

(4.27)

then, substituting Eq. 4.24 into Eq. 4.26. and Eq. 425 into Eq. 4.27, we obtain:

AP. = - |EJ||E|By A0, ' (4.28)
ALE, |

20, = ~EIEBL 429
{4kt

Further simplification can then be made:

e Divide Eqgs. 428 and 429 by |E,|.
e Assume |E,| = i in Eq. 4.28.

which results in:

Aﬂ"‘ — B Aty (4.30)
VE
AQ;

=t = —~B,AE 431
E] By AIE (4.31)

We now build Egs 4.30 and 4.31 into two matrix equations:

" AP, ]

E| [ =By —Bu - || Ab

AP, |=| =By, =By --- || A9 (4.32)
{E,| )

j==
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[40,]

|E,| ~By, —By ] A|E,]

AQ, (=| =By, —B,, ...}|A|E, (4.33)
e | I

L

Note that both Eqgs. 4.32 and 4.33 use the same matrix. Further simplification,
however, will make them different.
Simplifying the AP — A# relationship of Eq. 4.32:

® Assume r;, <« x,; this changes — B, to —1/x,.
e Eliminate all shunt reactances to ground.
e Eliminate all shunts to ground which arise from autotransformers.

Simplifying the AQ — AJE| relationship of Eq. 4.33:

e Omit all effects from phase shilt transformers.

The resulting equations are:

AP, ]
|E, | [ a0, _
AP, | = [B]| A8, (4.34)
iE,l :
b
40,7
|E, | AlE, |-
AQ; | = [B"]] AlE,] (4.35)
1E,| ;

where the terms in the matrices are:

1 . . .
By = — - assuming a branch from i to & (zero otherwise)
xlk
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X

By = —Bu=— 3=

=y

bl 2
Fig + Xig

N

B = z — By

k=1

The decoupled power flow has several advantages and disadvantages over
the Newton power flow. (Note: Since the introduction and widespread use of
the decoupled power flow, the Newton power flow is often referred to as the
“full Newton™ power flow.) )

Advantages:

e B and B” are constant, therefore, they can be calculated once and, except
for changes to B” resulting from generation VAR limiting, they are not
updated.

e Since B and B’ are each about one-quarter of the number of terms in
[J7 ithe full Newton power flow Jacobian matrix), there is much less
4rithmetic to solve Egs. 4.34 and 4.35.

{nsadvantages:

e The decoupled power flow algorithm may fail to converge when some of
the underlying assumptions (such as ry « x) do not hold. In such cases,
one must switch to using the full Newton power flow.

Note that Eq. 4.34 is often referred to as the P-0 Eq. and Eq. 435 as the Q-LE
{or 0V} equation.

A fowchart of the algorithm is shown in Figure 4.9. A comparison of the
convergence of the Gauss-Seidel. the full Newton and the decoupled power
flow algorithms is shown in Figure 4.10.

4.1.4 The “DC” Power Flow

A further simplification of the power flow algorithm involves simply dropping
the Q- V equation (Eq. 4.35) altogether. This results in a completely linear,

noniterative, power flow algorithm. To carry this out, we simply assume that
all [E,| = 1.0 per unt. Then Eq. 4.34 becomes:

AP, A8,
AP, | =B A8, (4.36)



THE POWER FLOW PRORLEM AND ITS SOLUTION 109

Begin power flow solution

+

Build B' and B” matrices and
calculate the sparse matrix factors
for each matrix

Solve the equation 4.34 for
the Ag™s

)
07 = 62"+ Ap,

l

Solve the equation 4.35 for the
AlE*
a7 = 1B+ Alg),

No Yes
Converged?

Done

FIG. 49 Decoupled power flow algorithm.

where the terms in B’ are as described previously. The DC power flow is only
good for calculating MW flows on transmission lines and transformers. It gives
no indication of what happens to voltage magnitudes, or MVAR or MVA flows.
The power flowing on each line using the DC power flow is then:

Pa= (08 @37)
Nik
and

P, = Z B,

k = buses
connecled to ¢
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Jog (max AP )

Gauss-Seidel

Decoupled

Newton

ﬁL—r' 1 | I I S R

Iteration

FIG. 410 Comparison of three power flow algorithm convergence characteristics.

EXAMPLE 4B
The megawatt flows on the network in Figure 4.11 will be solved using the DC
power flow. The B’ matrix equation is:

[ 7.5 =50 91]_ Pll
~s0  9olle.l Lr
#,=0
Note that all megawait quantities and network quantities are expressed in pu

(per unit on 100 MVA base). All phase angles will then be in radians.
The solution to the preceding matrix equation is:

‘9,1 B "‘0.2113 0.1177][ 0.65-‘_ 0.02]

8,] 101177 0.1765 ] —1.00. 1

ted using Eq. 4.37.
| megawatt values.

s are shown in Figure 4.12 and calcula

The resulting fow
e 4.12 were converted 10 actua

Note that all flows in Figur
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Bus 1 Bus 2
N Xy, = 0.2 per unit

O_* > 100 MW

————
65 MW
X453 = 0.25 per unit
X3 = 0.4 per unit
Bus 3 (reference)
FIG. 411 Three-bus network.
Bus 1 Bus 2
O‘—‘ 60 MW —— 100 MW
—
65 MW
ls Mw 40 MWT
- 35 MW
Bus 3

FIG. 4.12 Three-bus network showing flows calculated b§ DC power flow. '

EXAMPLE 4C

The network of Example 4A was solved using the DC power flow with resulting
power flows as shown in Figure 4.13. The DC power flow is uselul for rapid
calculations of real power flows, and. as will be shown later. it is very useful in
security analysis studies.

4.2 TRANSMISSION LOSSES

4.2.1 A Two-Generator System

We are given the power system in Figure 4 14. The losses on the transmission
line are proportional to the square of the power flow. The generating units are
identical, and the production cost is modeled using a quadratic equation. If
both units were loaded to 250 MW, we would fall short of the 500 MW load
value by 12.5 MW lost on the transmission line. as shown in Figure 4.15.
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112
Bus 3
-—60.0
Bus 2 |
—~18 18— —16.9
50.0
= : Bus 6
O —>44.9 449 —
325
=248 24.8 —> =
—=16.2
———25.3 '
70.0
Bus 1
R
—>253 i
O_____.. —>16.2
—0.3
100 MW —=33.1 s 331
—>=416 —a-41 - 169
70.0
Bus 4
- 416
—>-4.1
where 5 MW
—32.5 O'_'l generator
| L F—l load

70.0

FIG. 4.13 Six-bus network base casc DC power flow for Example 4C.

Where should the extra 12.5 MW be generated? Solve the Lagrange equation
that was given in Chapter 3.

& = F,(P) + Ey(P,) + 2(500 + Py — P, = P) (4.38)

where
B = 0.0002P3
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o—i
| Losses = 0.0002 P2
P, —>
500 MW

Min= 70 MW % S
Max = 400 MW O

S o

PZ
Min= 70 MW
Max = 400 MW

FIG. 4.14 Two-generator system.

T

l Losses = 12.5 MW
 Spu——
250 MW
£y —>
250 MW

FIG. 4.15 Two-generator system with both generators a

then
oz _dR(P) 1(1 _ P _g
épP, dp, opP,
g A
a-_g: - cfl_(_P;J = ;_(1 = ‘_f"fis) =10
P, dp, P,
=0

P, + P, — 500 — Py,

Substituting into Eq. 4.39,

—

487.5 MW

t 250 MW output.

(4.39)

70 + 0.004P, = A(1 — 0.0004P,) =0
70 +0.004P, — 4 =0
P, + P, — 500 — 0.0002P} =0

Selution: P, = 178.882

P, = 327.496
Production cost: F.(P) + Fi(P,) = 4623.15R/h
Losses: 6.378 MW
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= 13.932 MW
Q I Losses
By l 250 Mw E
263.932 MW : 500 MW
——
250 mw

FIG. 416 Two-generator system with generator | supplying all losses.

Suppose we had decided simply to ignore the economic influence of losses
and ran unit 1 up untl it supplied all the losses. It would need to be run at
263.932 MW, as shown in Figure 4.16. In this case, the total production cost
would be

F(263.932) + F,(250) = 4661.84 R/h

Note that the optimum dispatch tends toward supplying the losses from the
unit close to the load, and it also resulted in a lower value of losses. Also note
that best economics are not necessarily attained al minimum losses, The
minimum loss solution for this case would simply run unit 1 down and unit 2
up as far as possible. The result is unit 2 on high limit.

Py = 102084 MW

P, = 400.00 MW (high limit)
The minimum loss production cost would be

F\(102.084) + F,(400) = 4655.43 R/h
Min losses = 2.084 MW

422 Coordination Equations, Incremental Losses, and Penalty Factors

The classic Lagrange multiplier solution to the economic dispatch problem was

given in Chapter 3. This is repeated here and expanded.

Minimize: F=F +ip
&

Where: Fr=Y F(P)

¢=‘Dload i Plnss(Pl.'PZ"'PN) h

A'M-z
=0

Solution: iadlP® 0 forallp, <P <P

P fmax
ot
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Then

The equations are rearranged

_.A_l__ ‘LF'EL) &= ; (4.40)
o e af!"?.?‘, dp : :
cp,
where
0P
oP

s called the incremental loss for bus i, and

is called the penalty factor for bus i Note that if the losses increase for an
increase in power from bus i, the incremental loss is positive and the penalty
factor is greater than unity.

When we did not take account of transmission losses, the economic dispatch
problem was solved by making the incremental cost at each unit the same. We
can still use this concept by observing that the penalty factor, Pf, will have
the following effect. For Pf; > 1 (positive increase in P, results in increase in
losses)

py, AT

dF,

acts as if
dE(R)
dp;

had been slightly increased (moved up). For Pf, <1 (positive increase in P
results in decrease in losses) :

' dF(P)

Tdp,

i

Pf;
acts as if
aF(P)
dpP,
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had been shightly decreased (moved down). The resulting set of equations look
like

Pfi =Y =1 forall B, <P <P, (4.41).

and are called coordination equations. The FP; values that result when penalty
factors are used will be somewhat different from the dispatch which ignores
the losses (depending on the Pf; and dF,(P)/dP, values). This is illustrated in
Figure 4.17.

4.2.3 The B Matrix Loss Formula

The B matrix loss formula was originally introduced in the early 1950s as a
practical method for loss and incremental loss calculations. At the time,
automatic dispatching was performed by analog computers and the loss formula
was “stored” in the analog compu!ert by setting precision potentiometers. The
equation for the B matrix loss formula is as follows.

P, = PT[BIP + BIP + By, (4.42)
where
P = vector of all generator bus net MW
[B] = square matrix of the same dimension as P
B, = vector of the same length as P
By, = constant
dF, dF, dF,
ar, £f, 4 ar, ar, %
dP, -
\/ (With
gF, / - penalty
dp, / - factors)
’
__.._.?.“‘ ————— ’_._.(——. ______ ..——..i_._. - /—-
- A (No penalty / /’
factors) -~ ~
PPy Py LR ) Py P Py Py
Pf, =105 Pf,=1.10 Pf, =0.90

P; = Dispatch ignoring losses
P! = Dispatch with peralty factors

FIG. 4.17 Econemic dispatch, with and without penalty factors,
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This can be written:
Pross =2 Z PB;F;+ ): BioP: + Boo (4.43)
i~ 1 ;

Before we discuss the calculation of the B coefficients, we will discuss how
the coefficients are used in an economic dispatch calculation. Substitute Eq.
443 into Egs. 3.7, 3.8, and 39. .. .

LN . :
P = X P+ Poua t (ZZE&',‘E‘*‘ZBEOR + Boo) (4.44)
i=1" ) . i - -

Then

;¥ dF(P,
ot AR _ ;—.(x — 27 ByP - B,»O) (4.45)
ap, dp, J

Note that the presence of the incremental losses has coupled the coordination
equations; this makes solution somewhat more difficult. A method of solution
that is often uscd is shown in Figure 4.18.

EXAMPLE 4D

The B matrix loss formuta for the network in Examplc 4A is given here. (Note
that all' P, values must be per unit on 100 MVA base, which results in P 1D
per unit on 100 MVA base.)

00676 000953 —0.00507 | P,
P =[P P, Pl 000953 00521 00090} P
000507 000901 00294 1LPs

Pl
L [-00766 —000342 00189} Py | + 0:040357

P3

From the base case power flow we have

P, = 107.9 MW
P, = 500 MW
P, = 60.0 MW

P = T19MW (as calculated by the power flow)
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START

"—- GIVEN TOTAL LOAD Py

GET STARTING VALUE
OF P, i=1---N

¥
CALCULATE P o5 USING B MATRIX
DEMAND pD = PLOAD + PLOSS

CALCULATE BUS PENALTY FACTORS
= ' S
Pl ass,5 76,
1
FORi=1.--N

PICK STARTING X

SOLVE FOR EACH P,
ADJUST M SUCH THAT pf i’fai%"i; A

A FORi=1-.-'N

!

CHECK DEMAND>E = TOTAL DEMAND

NON I ZP -Pyl<e? TOLERANCE

‘ YES

COMPARE P, TO P, OF
LAST ITERATION
SAVE MAX | P2~ 1P|

f

/ § = SOLUTION
TO\MAX |P*=1-Po|<§ CONVERGENCE

TOLERANCE
{ YES

DONE
FIG. 4.18 Eccnomic dispatch with updated penalty factors.
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With these generation values placed in the B matrix, we see a very close
agreement with the power flow calculation.

00676  0.00953 —0.00507[1.079
B, =[1079 050 060]] 000933 00521 0.00901 | 0.50
000507 000901  0.0294 Lo.so
[ 1079
+[—0.0766 —0.00342 0.0189][0.50 + 0.040357
0.60
= 0.07877 pu (or 7.877 MW) loss

EXAMPLE 4E

Lei the fuel cost curves for the three units in the six-bus network of Example
4A be given as

F,(P) = 2131 + 1L.669P, + 0.00533P% R/h
Fu(Py) = 2000 + 10.333P, + (0.00889P3 R/h
Fy(P,) = 2400 + 10.833P; + 0.00741P3 R/b

with unit dispatch limits

500 MW < P, < 200 MW
375MW < P, < 150 MW

450 MW < Py < 180 MW
A computer program using the method of Figure 4.17 was run using:
P, (total load to be supplied) = 210 MW

The resulting iterations (Table 4.1) show how the program must redispatch
again and again to account for the changes in losses and penalty factors.

Note that the flowchart of Figure 4.18 shows a “two-loop™ procedure. The
“inner” loop adjusts 4 until total demand is met; then the outer loop recalculates
the penalty factors. (Under some circumstances the penalty factors are quite
sensitive to changes in dispatch. If the incremental costs are relatively “flat.”
this procedurc may be unstable and special precautions may need to be
employed to insure convergence.)
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TABLE 4.1 [Iterations for Example 4E

Iteration A Pioss Pp Py Py Py

1 12.8019 17.8 2278 50.00 85.34 92.49
2 12.7929 114 2214 74.59 71.15 75.69
3 12.8098 9.0 2190 73.47 70.14 75.39
4 12.8156 8.8 2188 73.67 6998 75.18
5 12.8189 8.8 2i8.8 73.65 69.98 75.18
6

12.8206 8.8 218.8 73.65 69.98 75.18

¥

4.2.4 Exact Methods of Calculating Penalty Factors

4.2.4.1 A Discussion of Reference Bus Versus Load Center Penalty Factors

The B matrix assumes that all load currents conform to an equivalent total
load current and that the equivalent load current is the negative of the sum of
all generator currents. When incremental losses are calculated, something is
implied.

Total loss = PT[B]P + BJP + By,

Incremental loss at generator bus i = ——

The incremental loss is the change in losses when an increment is made
in generation output. As just derived, the incremental loss for bus i assumed
that all the other generators remained fixed. By the original assumption,
however, the load currents all conform to each other and always balance
with the generation; then the implication in using a B matrix is that an
incremental increase in generator output is matched by an equivalent increment
in load.

An alternative approach to economic dispatch is to use a reference bus that
always moves when an increment in generation is made. Figure 4.19 shows a

: Reference

FIG. 4.19 Power system with reference generator.
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power system with several generator buses and a reference-generator bus.
Suppose we change the generation on bus i by AF,,

Prev = P3S4 AP, | (4.46)

Furthermore, we will assume that load stays constant and that to compensate
for the increase in AP, the reference bus just drops off by AP,,.

::‘w = P‘::? + APref (447)

If nothing else changed, AP, would be the negative of AF,; however, the
flows on the system can change as a result of the two generation adjustments.
The change in flow is apt to cause a change in losses so that AP is not
necessarily equal to AP. That is,

AP = — AP + AR, (4.48)

Next, we can define f, as the ratio of the negative change in the reference-bus
power to the change AF,

—AP,; (AP, — AR,,)
= e = ——————— 4.49
fr=-1g P AP (4.49)

or

B, =4 — e (4.50)

P

We can define economic dispatch as follows.

All generators are in economic dispatch when a shift of AP MW from
any generator to the reference bus results in no change in net production
cost; where AP is arbitrarily small.

That is, if ’
Total production cost =3 Fi(P)

then the change in production cost with a shift AP, from plant i is

AProduction cost = dg(PP‘) AP + ‘_if':.‘fﬂff_)

i ref

AP (4.51)

but
API:[ s ﬁlA[)l
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then
dFlF)

AProduction cost = df'(.ﬂ) i
i dp\'e(

AF - f; AP, (4.52)

i

To satisfy the economic conditions.

AProduction cost = 0
or

AEF) _ g dFelFrer) (4.53)

dP: dF’rcl
which could be written as

U dF(R) _ dF,e(Py)

3 (4.54)
B dP, dF.¢

This is very similar to Eq. 4.40. To obtain an economic dispatch soiution,
pick a value of generation on the reference bus and then set all other generators
according to Eq. 4.54, and check for total demand and readjust reference
generation as needed until a solution is reached.

Note further that this method is exactly the first-order gradient method with
losses.

) dF, dF,,, _
AFy = — — B, TIAP, 4.55
! Z, [dl’.- A ‘df’,ej e

4.2.4.2  Reference-Bus Penalty Factors Direct from the AC Power Flow

The reference-bus penalty factors may be derived using the Newton—Raphson
power flow. What we wish to know is the ratio of change in power on the
reference bus when a change AP, is made.

Where P, is a function of the voltage magnitude and phase angle on the
network, when a change in AP, is made, all phase angles and voltages in the
network will change. Then

_ P oP
AB =Y 2 AG+ Y ¥ NE
! Z 20, EGEEJ o

= ¥ S

aPre!' 5|AE1|
i 66‘ ﬁP,

AR+ ) " __T AP, (4.56)
T O|E;|] éP

To carry out the matrix manipulations, we will also need the following.

2P, ap,
AP =3 " A0, + Y L AIE,
=3 G0, 40t L gE MG

CP. . 60 N E
i O,

L (4.57)
aQ; T OlE;| 0Q;
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The terms &P, /20, and 0P, /|E;] are derived by differentiating Eq. 4.18 for

the reference bus. The terms 20,/¢P; and ¢|E,|/CP; are from the inverse Jacobian

matrix (see Eq. 4.20). We can write Egs. 4.56 and 4.57 for every bus i in the

network. The resulting equation is

0P, 3Q, P, 8Q; TGPy Qw
[apref aPre_{_ @Pnt‘ EPYEI apref F‘B‘_t_f_][‘]-]] (458)

[rygd 8P OPg Pr 0P éﬁd]

30, G|E,| 00, BIE;} @y CIEy]

By transposing we get

i aPnl‘j T lerPr:[ -1

GP, 0P

0, J\E,|

éP.'ef apref

P |=1V 1401 6Py (4.59)
0Pt P |
!?Prel’ aPr:f

L Qx| L31Ex ]

calculating J7 ™' explicitly, we use Gaussian elimina-

In practice, instead of
perate on J in the Newton power tlow

tion on J' in the same way we O
solution.

APPENDIX
Power Flow Input Data for Six-Bus System

Figure 4.20 lists the nput data for the six-bus sample system used in the
cxamples in Chapter 4. The impedances are per unit on a base of 100 MVA.
The generation cost functions are contained in Example 4E.
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Line Data

From bus To bus R(pu) X(pu) BCAP* (pu)
1 2 0.10 0.20 0.02
1 4 0.05 0.20 0.02

1 ) 0.08 0.30 0.03
2 3 0.05 0.25 0.03
2 4 0.05 0.10 0.01
2 5 0.10 0.30 0.02
2 6 0.07 0.20 0.025
2 5 0.12 0.26 0.025
3 6 0.02 0.10 0.01
4 5 0.20 0.40 0.04
5 6 0.10 0.30 0.03

*BCAP = half total line charging suseptance.

Bus Data
Voltage
Bus Bus schedule Prew Pioag Qroad
number type (pu V) (pu MW) (pu MW) (pu MVAR)
1 Swing i.05
2 Gen. 1.05 0.50 0.0 0.0
3 Gen, 1.07 0.60 0.0 0.0
4 Load 0.0 0.7 0.7
= Load ‘ 0.0 0.7 0.7
6 Load 0.0 0.7 0.7
FIG. 4.20 Input data for six-bus sample power system.
PROBLEMS
4.1 The circuit elements in the 138 kV circuit in Figure 4.21 are in per unit

on a 100 MVA base with the nominal 138 kV voltage as base. The P + jQ
load is scheduled to be 170 MW and 50 MVAR.

I Z2=0.01+0.04 pu
L s e T i
Y, =j001 =;0.
Bus 1 I b Yo ’001I Bus 2
E, =100 ~ - =

FIG. 421 Two-bus AC system for Problem 4.1,

a. Write the ¥ matrix for this two-bus system.

b. Assume bus 1 as the reference bus and set up the Gauss—Seidel
correction equation for bus 2. (Use 1.0 £ 0° as the initial voltage on
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bus 2) Carry out two or three iterations and show that you are
converging.

c. Apply the “DC” load flow conventions to this circuit and solve
for the phase angle at bus 2 for the same load real power of 1.7
per unit. ‘

4.2 Given the network in Figure 422 (base = 100 MVA):

Bus 5 Bus 3

Bus 1 Bus 2 -
| x = jo.03] x-j025] =<—Ps x=j006
o

(} ]R=0‘01 R =0.09 _lR*0.0E | Py
——
Py { I
P, : R =0.03
X =j0.05

Bus 4

Y

Py

FIG. 4.22 Five-bus network for Problem 4.2.

a. Develop the [ B'] matrix for this system.

" P, 9,
P, 0,
Pi it MW
p, | =81 6 in pcr}um
¢ in radians (rad)
Py 6,
L Ps ] L 6s_

b. Assume bus 5 as the reference bus. To carry out a “DC™ load flow, we
will set 85 = 0 rad. Row 5 and column 5 will be zeroed.

0]
) 0

Remainder

K= of B’ 0] 6

0

0-
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Solve for the [B']™ ! matrix.

6,7 vin
a, P,
0, |=[B]"| P
b, P,

_05.1 Py

¢. Calculate the phase angles for the set of power injections.

P, = 100 MW generation
Py = 120 MW load
P, = 150 MW generation
Py = 200 MW load

]

d. Calculate Ps according to the “DC” load flow.

e. Calculate all power flows on the system using the phase angles found
n part c.

f. (Optional) Calculate the reference-bus penalty factors for buses 1, 2. 3,
and 4. Assume all bus voltage magnitudes are 1.0 per unit.

4.3 Given the following loss formula (use P values in MW):

1 2 3
1 136255 x 10 1753 x 10~ 1.8394 x 107*

B;=2 1.754 x 1073 1.5448 x 107*  2.82765 x 107*
3 1.8394 x 107*  2.82765 x 107* 1.6147 x 107°

By and By, are neglected. Assume three units are on-line and have the
following characteristics.

Unit 1: Hy =312.5 + 8.25P, + 0.005P%, MBu/h
50 < P <250 MW
Fuel cost = 1.05 R/MBtu
Unit 2: H, = 1125 + 8.25P, + 0.005P%, MBtu/h
5<P, <150 MW
Fuel cost = 1.217 R/MBtu
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Unit 3: H, = 50 + 8.25P, + 0.005P3, MBtu/h
15 < P, < 100 MW
Fuel cost = 1.1831 R/MBtu

a. No Losses Used in Scheduling
i. Calculate the optimum dispatch and total cost neglccting losses for
P, =190 MW *
ii. Using this dispatch and the loss formula, calculate the system losses.
b. Lesses Included in Scheduling
i. Find the optimum dispatch for a total generation of P, = 190 MW*
using the coordination equations and the loss formula.
ii. Calculate the cost rate.
iii. Calculate the total losses using the loss formula.
iv. Calculate the resulting load supplied.

IA

All parts refer to the three-bus system shown in Figure 4.23.

Pl PL1 P2 I PL2
— BUS 1

BUS 2

LINE A

TINEB 1 Buss | LINET™

P3 PL3

F1G. 4.23 Network for Problem 4.4.

Data for this problem 1s as follows:

Unit 1 P, =570 MW
Unit 2: P, = 330 MW
Unit 3: _ Py =200 MW
Loads:
P, =200 MW
P, =400 MW

P, =500 MW

¥ Piwina = B+ B P= By
Plas = power foss
Poua = Py = Py, = net load

ioss
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Transmission line data:

P, in line A = 0.02P% (where P, = P flow from bus | to bus 2)
Pioss In line B = 0.02PF (where Py = P flow from bus 1 to bus 3)
P, in line C = 0.02P2 (where P = P flow from bus 2 to bus 3)

Note: the above data are for P, in per unit when power flows P, or Py,
or P are in per unit.

Line reactances:
X, = 0.2 per unit

X = 0.3333 per unit
X = 0.05 per unit

(assume 100-MVA base when converting to per unit).

a. Find how the power flows distribute using the DC power flow
approximation. Use bus 3 as the reference.

b. Calculate the total losses.

¢. Calculate the incremental losses for bus 1 and bus 2 as follows: assume
that AP, is balanced by an equal change on the reference bus. Use the
DC power flow data from part a and calculate the change in power
flow on all three lines AP,, AP, and AP.. Now calculate the line
incremental loss as:

é .
AP,,,, = (EE\)AP‘ = (0.04P,)AP,

Similarly, calculate for lines B and C.

d. Find the bus penalty factors calculated from the line incremental losses
found in part c.

4.5 The three-bus, two-generator power system shown in Figure 4.24 is to be
dispatched to supply the 500-MW load. Each transmission line has losses

OfF——+F—0

500 MW

FIG. 4.24 Circuit for Problem 4.5
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that are given by the equations below.

Pross,, = 0.0001P?
Pross,, = 0.0002P32
F,(P,) = 500 + 8P, + 0.002P3
50 MW < P, < 500 MW
Fy(Py) = 400 + 7.9P, + 0.0025P2
50 MW < P, < 500 MW

You are to attempt to solve for both the economic dispatch of this system
and the “power flow.” The power flow should show what power enters
and leaves each bus of the network. If you use an iterative solution, show
at least two complete iterations. You may use the following initial
conditions: P, = 250 MW and P, = 250 MW.

FURTHER READING

The basic papers on solution of the power flow can be found in references 1-5. The
development of the loss-matrix equations is based on the work of Kron (reference 6),
who developed the reference-frame transformation theory. Other developments of the
transmission-loss formula are seen in references 7 and 8. Meyer's paper (9) is representa-
tive of recent adaptation of sparsity programming methods to calculation of the loss
matrix.

The development of the reference-bus penalty factor method can be seen in
references 10 and 11. Reference 12 gives an cxcellent derivation of the reference-bus
penalty factors derived from the Newton power-flow equations. Reference 12 provides an
excellent summary of recent developments in power system dispatch.
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5 Unit Commitment

51 INTRODUCTION

Because human activity follows cycles, most systems supplying services to a
large population will experience cycles. This includes transportation systems,
communication systems, as well as electric power systems. In the case of an
electric power system, the total load on the system will generally be higher
during the daytime and early evening when industrial loads are high, lights are
on, and so forth, and lower during the late evening and early morning when
most of the population is asleep. In addition, the use of electric power has
a weekly cycle, the load being lower over weekend days than weekdays. But why
is this a problem in the operation of an electric power system? Why not just
simply commit enough units to cover the maximum system load and leave them
running? Note that to “commit™ a generating unit is to “turn it on;” that is,
to bring the unit up to speed, synchronize it to the system, and connect it so
it can deliver power to the network. The problem with “commit enough units
and leave them on line™ is one of economics. As will be shown in Example 5A,
it is quite expensive to run too many generating units. A great deal of money
can be saved by turning units off (decommitting them) when they are not
~eded.

EXAMPLE 5A

Suppose one had the three units given here:

Unit 1: Min = 150 MW
Max = 600 MW
H, = 510.0 + 7.2P, + 0.00142P{ MBtu/h
Unit 2: Min = 100 MW
Max = 400 MW
H, = 310.0 + 7.85P, + 0.00194P3 MBtu/h
Unit 3: Min = 50 MW

Max = 200 MW
H, = 78.0 + 7.97P; + 0.00482P3 MBtu/h
131
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with fuel costs:
Fuel cost; = 1.1 R/MBtu
Fuel cosil =10 R/MBtu
Fuel costy = 1.2 R/MBtu

If we are to supply a load of 550 MW, what unit or combination of units should
be used to supply this load most economically? To solve this problem, simply
try all combinations of the three units. Some combinations will be infeasible if
the sum of all maximum MW for the units committed is less than the load or
if the sum of all minimum MW for the units committed is greater than the
load. For each feasible combination, the units will be dispatched using the
techniques of Chapter 3. The results are presented in Table 5.1

Note that the least expensive way to supply the generation is not with all
three units Tunning, or even any combination involving two units. Rather, the
optimum commitment is to only run unit 1, the most economic unit. By only
running the most economic unit, the load can be supplied by that unit operating
closer to its best efficiency. If another unit is committed, both unit | and the
other unit will be loaded further from their best efficiency points such that the
net cost is greater than unit 1 alone.

Suppose the load follows a simple “peak-valley™ pattern as shown in Figure
5.1a. I the operation of the system is to be optimized, units must be shut down
as the load goes down and then recommitted as it goes back up. We would
like to know which units to drop and when. As we will show later, this problem
is far from trivial when real generating units are considered. One approach to
this solution is demonstrated in Example 5B, where a simple priority list scheme
is developed.

TABLE 5.1 Unit Combinations and Dispatch for 550-MW Load of Example S5A

& £ 5 3
— (] x5 ] g :E) = g f
E = &= ; c 5 = 8 e %
5 5 5 26 88 & & v w @ & 2d0«
Ooff Off Off 0 0 Infeasible
Ooff Off On 200 50 Infeasible
Off On Off 400 100 Infeasible
Off On On 600 150 0 150 0 3760 1658 5413
On Off Of 600 150 350 0 0 5389 0 0 5389
On Off On 800 200 500 0 50 491) 0 586 3497
On On Of 1000 250 295 255 ° 0 3030 2440 0 5471
On On On 1200 300 267 233 S0 2787 2244 586 5617
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1200 |
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Time of day

FIG. 5.1a Simple “peak-valley” load pattern.

1200 :
MW Unit 3 %""

Total

load / Unit 2
600

4PM 4 AM M
Time of day

FIG. 5.1b Unit commitment schedule using shut-down rule.

EXAMPLE 5B

Suppose we wish to know which units to drop as a function of system load.
Let the units and fuel costs be the same as in Example SA, with the load varying
from a peak of 1200 MW to a valley of SO0 MW. To obtain a “shut-down rule,”
simply use a brute-force technique wherein all combinations of units will be
tried (as in Example 5A) for each load value taken in steps of 50 MW from
1200 to 500. The results of applying this brute-force technique are given in
Table 5.2. Our shut-down rule is quite simple.

When load is above 1000 MW, run all three units; between 1000 MW
and 600 MW, run units |1 and 2; below 600 MW, run only unit L.




"134  UNIT COMMITMENT

TABLE 5.2 “Shut-down Rule” Derivation for Example 5B

Optimum Combination

Load Unit 1 Unit 2 Unit 3
1200 On On On
1150 On On On
1100 On On On
1050 On On On
1000 On On Off
950 On On Off
900 On On Off
850 On On Off
800 On On Off
750 On On Off
700 On On Off
650 On On Off
600 On Off v Off
350 On -Off off
300 On - Off Off

Figure 5.1b shows the unit commitment schedule derived from this shut-down
rule as applicd to the load curve of Figure 5.1a.

So far, we have only obeyed one simple constraint: Enough units will be
committed 1o supply the load. 1f this were ‘all that was involved in the unit
commitment problem-—that is, just meeting the load—we could stop here and
state that the problem was “solved.” Unfortunately. other constraints and other
phenomena must be taken into account in order to claim an optimum solution.
These constraints will be discussed in the next section, followed by a description
of some of the presently used methods of solution.

51.1 Censtraints in Unit Commitment

Many constraints can be placed on the unit commitment problem. The list
presented here is by no means exhaustive. Each individual power system, power
pool, reliability council, and so forth, may impose different rules on the
scheduling of units, depending on the generation makeup, load-curve charac-
teristics,-and such. o

5.1.2 Spinning Reserve

Spinning reserve is the term used to describe the total amount of generation
available from all units synchronized (i.c.. spinning) on the system, minus the
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present load and losses being supplied. Spinning reserve must be carried so that
the Joss of one or more units does not cause too far a drop in system frequency
(see Chapter 9). Quite simply, if one unit is lost, there must be ample reserve
on the other units to make up for the loss in a specified time period.

Spinning reserve must be allocated to obey certain rules, usually set by
regional reliability councils (in the United States) that specily how the reserve
is 1o be allocated to various units. Typical rules specify that reserve must be a
given percentage of forecasted peak demand, or that reserve must be capable
of making up the loss of the most heavily loaded unit in a given period of time.
Others calculate reserve requirements as a function of the probability of not
having sufficient generation to meet the load.

Not only must the reserve be suflicient to make up for a generation-unit
failure, but the reserves must be allocated among fast-responding units and
slow-responding units. This allows the automatic generation control system
(see Chapter 9) to restore frequency and interchange quickly in the event of a
generating-unit outage.

Beyond spinning reserve. the unit commitment problem may involve various
classes of “scheduled reserves” or “off-line™ reserves. These include quick-start
diesel or gas-turbine units as well as most hydro-units and pumped-storage
hydro-units that can be brought on-line. synchronized, and brought up to full
capacity quickly. As such, these units can be “counted” in the overall reserve
assessment, as long as their time to come up to full capacity is taken into
account.

Reserves, finally, must be spread around the power system to avoid
transmission system limitations (often called “bottling™ of reserves) and to
allow various parts of the system to run as “islands,” should they become
electrically disconnected.

EXAMPLE 5C

Suppose a power system consisted of two isolated regions: a western région
and an eastern region. Five units, as shown in Figure 5.2, have been committed
to supply 3090 MW. The two regions are separated by transmission tie lines
that can together transfer a maximum of 550 MW in either direction. This is
also shown in Figure 5.2. What can we say about the allocation of spinning
reserve in this system?

The data for the system in Figure 5.2 are given in Table 5.3. With the
exception of unit 4, the loss of any unit on this system can be covered by the
spinning reserve on the remaining units. Unit 4 presents a problem, however.
If unit 4 were to be lost and, unit 5 were to be run to its maximum of 600 MW,
the eastern region would still need 590 MW to cover the load in that region.
The 590 MW would have to be transmitted over the tie lines from the western
region, which can easily supply 590 MW from its rescrves. However, the tic
capacity of only 550 MW limits the transfer. Therefore, the loss of unit 4 cannot
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——

Units
1,2, and 3

550 MW
maximum

——d

5 8

Units
4and B

i
s

Western region

TABLE 53 Data for the System in Figure 5.2

e

Eastern region

FIG. 5.2 Two-region system.

Regional

Unit Unit Genera- Regional Inter-
Capacity  Output tion Spinning Load change
Region Unit (MW) (MW) (MW) Reserve (MW) (MW)

Western 1 1000 900 100
2 %00 420 1740 380 1900 160 10

3 800 420 380

Eastern 4 1200 1040 ‘ 160
: it ol | 13% 185 1190 160 out

Tortal 1=5 4400 3090 3090 1310 3090

be covered even though the entire system has ample reserves. The only solution
to this problem is to commit more units to operate in the eastern region.

5.1.3 Thermal Unit Constraints

Thermal units usually require a crew to operate them, especially when turned
on and turned off. A thermal unit can undergo only gradual temperature
changes, and this translates into a time period of some hours required to bring
the unit on-line. As a result of such restrictions in the operation of a thermal
plant, various constraints arise, such as:

e Minimum up time: once the unit is running, it should not be turned off
immediately. -
e Minimum down time: once the unit is decommitted, there is a minimum
time before it can be recommitted.
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e Crew constraints: il a plant consists of two or more units, they cannot
both be turned on at the same time since there are not enough crew
members to attend both units while starting up.

In addition, because the temperature and pressure of the thermal unit must
be moved slowly, a certain amount of energy must be expended to bring the
unit on-line. This energy does not result in any MW generation from the unit
and is brought into the unit commitment problem as a start-up cost.

The start-up cost can vary from a maximum “cold-start” value to a much
smaller value if the unit was only turned off recently and is still relatively close
to operating temperature. There are two approaches to treating a thermal unit
during its down period. The first allows the unit’s boiler to cool down and then
heat back up to operating temperature in time for a scheduled turn on. The
second (called hanking) requires that sufficient energy be input to the boiler to
just maintain operating temperature. The costs for the two can be compared
so that, if possible, the best approach (cooling or banking) can be chosen.

Start-up cost when cooling = C.(1 —¢™ %) x F + (,

where
€. = cold-start cost (MBtu)
F = fuel cost
C, = fixed cost (includes crew expense, maintenance expenses) (in R)
o = thermal time constant for the unit
t = time (h) the unit was cooled
Start-up cost when banking = C, x t x F + C,
where

¢, = cost (MBtu/h) of maintaining unit at operating temperature

Up to a certain number of hours, the cost of banking will be less than the cost
of cooling. as is illustrated in Figure 5.3.

Finally. the capacity limits of thermal units may change frequently. due to
maintenance or unscheduled outages of various equipment in the plant: this
must also be taken into account in unit commitment.

5.1.4 Other Constraints

5.1.4.1 Hydro-Constraints

Unit commitment cannot be completely separated from the scheduling of
hydro-units. In this text, we will assume that the hydrothermal scheduling (or
“coordination™) problem can be separated from the unit commitment problem.
We, of course, cannot assert flatly that our treatment in this fashion will always
result in an optimal solution.
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FIG. 5.3 Time-dependent start-up Costs.

5.1.4.2  Maust Run

Some units are given a must-run status during certain times of the vear for
reason of voltage support on the transmission network or for such purposes
as supply of stcam for uses outside the steam plant itself

5.1.4.3 Fuel Constraints

We will treat the “fuel scheduling” problem briefly in Chapter 6. A system in
which some units have limited fuel, or else have constraints that require them
to burn a specified amount of fuel in a given time, presents a most challenging
unit commitment probiem.

2.2 UNIT COMMITMENT SOLUTHON METHODS

The commitment problem can be very difficult. As a theoretical exercise, let us
postulate the following situation.

e We must establish a loading pattern for M periods.

e We hiave N units to commit and dispatch.

e The M load levels and operating limits on the N units are such that any
one unit can supply the individual loads and that any combination of
units can also supply the loads.

Next: assume' we are going to establish the commitment by enumeration
(brute force). The total number of combinations we need to try each hour is.

CINNDY+ CN.D)+ ...+ CINN -1+ CN,N)=2" -1
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where C(N, j) is the combination of N items taken j at a time. That s,

[ b J
BN, f) = | o
D=L i

F=1x2x3x%x...x]

For the total period of M intervals, the maximum number of possible
combinations is (2% — 1), which can become a horrid number to think
about.

For example, take a 24-h period (e.g., 24 one-hour intervals) and consider
systems with 5, 10, 20, and 40 units. The value of (2¥ — 1)** becomes the
following.

N (2¥ — 1)+
5 62 x 10%3
10 1.73 x 1072
20 342 20 10748
40 (Too big)

These very large numbers are the upper bounds for the number of enumera-
tions required. Fortunately, the constraints on the units and the load-capacity
relationships of typical utility systems are such that we do not approach these
large numbers. Nevertheless, the real practical barrier in the optimized unit
commitment problem is the high dimensionality of the possible solution
space.

The most talked-about techniques for the solution of the unit commitment
problem are:

e Priority-list schemes,
e Dynamic programming (DP),
e Lagrange relation (LR).

5.2.1 Priority-List Methods

The simplest unit commitment solution method consists of creating a priority
list of units. As we saw in Example 5B, a simple shut-down rule or priority-list
scheme could be obtained after an exhaustive enumeration of all unit combina-
tions at cach load level. The priority list of Example 5B could be obtained in
a much simpler manner by noting the full-load average production cost of each
unit, where the full-load average production cost is simply the net heat rate at
full load multiplied by the fuel cost.
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EXAMPLE 5D
Construct a priority list for the units of Example 5A. (Usc the same fucl costs

as in Fxample 5A.) First, the full-load average production cost will be
calculated:

Full Load
Unit Average Production Cost (R/MWh)
1 9.79
2 9.48
3 11.188

A strict priority order for these units. based on the average production cost,
would order them as foliows:

Unit R/ MWh Min MW Max MW
2 948 100 400
i 9.79 150 600
3 11,188 50 200

and the commitment scheme would (ignoring min up/down time, start-up costs,
etc.) simply use only the following combinations.

Min MW from Max MW from

Combination Combination Combination
24143 300 : 1200
241 250 1000
2 100 400

Note that such a scheme would not completely paraliel the shut-down sequence
described in Example 5B, where unit 2 was shut down at 600 MW leaving
unit 1. With the priority-list scheme, both units would be held on until load
reached 400 MW, then unit | would be dropped.

Most priority-list schemes are built around a simple shut-down algorithm
that might operate as follows.
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e At each hour when load is dropping, determine whether dropping the next
unit on the priority list will leave sufficient generation to supply the load
plus spinning-reserve requirements. If not, continue operating as is; if yes,
g0 on to the next step. ‘

e Determine the number of hours, H, before the unit will be needed again.
That is, assuming that the load is dropping and will then go back up some
hours later.

e If H is less than the minimum shut-down time for the unit, keep
commitment as is and go to last step; if not, go to next step.

e Calculate two costs. The first is the sum of the hourly production costs
for the next H hours with the unit up. Then recalculate the same sum for
the unit down and add in the start-up cost for either cooling the unit or
banking it, whichever is less expensive. If there is sufficient savings
from shutting down the unit, it should be shut down, otherwise keep
it on.

e Repeat this entire procedure for the next unit on the priority list. If it is
also dropped, go to the next and so forth.

Various enhancements to the priority-list scheme can be made by grouping
of units to ensure that various constraints are met. We will note later that
dynamic-programming methods usually create the same type of priority list for
use in the DP search.

5.2.2 Dynamic-Programming Solution

5.2.2.1 Introduction

Dynamic programming has many advantages over the enumeration scheme,
the chief advantage being a reduction in the dimensionality of the problem.
Suppose we have found units in a system and any combination of them could
serve the (single)load. There would be a maximum of 2* — 1 = 15 combinations
to test. However, if a strict priority order is imposed, there are cnly four
combinations to try:

Priority ! unit

Priority 1 unit + Priority 2 unit

Priority 1 unit + Priority 2 unit + Priority 3 unit

Priority 1 unit + Priority 2 unit + Priority 3 unit + Priority 4 unit

The imposition of a priority list arranged in order of the full-load average-
cost rate would result in a theoretically correct dispaich and commitment
only if:
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1. No load costs are zero.

Unit input -output characteristics are linear between zero output and full
load.

I~

3. There are no other restrictions.
4. Start-up costs are a fixed amount.

In the dynamic-programming approach that follows, we assume that:

1 A state consists of an array of units with specificd units operating and

the rest off-line. .

2. The start-up cost of a unit is independent of the time it has been off-line
(i.e., it is a fixed amount).

3. There are no costs for shutting down a unit.
4. There is a strict priority_order, and in each interval a specified minimum
amount of capacity must be operating.

A feasible state is one in which the committed units can supply the required
load and that meets the minimum amount of capacity each period.

5.2.2.2 Forward DP Approach
One could sct up a dynamic-programming algorithm to run backward in time
starting from the final hour to be studied, back to the initial hour. Conversely,
one could set up the algorithm to run forward in time from the initial hour to
the final hour. The forward approach has distinct advantages in solving
generator unit commitment. For example, if the start-up cost of a unit 15 a
function of the ume it has been off-line (i.. its temperature), then a forward
dynamic-program approach is more suitable since the previous history of the
unit can be computed at cach stage. There are other practical reasons for going
jorward. The initial conditions are easily specified and the computations can
go forward in time as long as required. A forward dynamic-programming
algorithm is shown by the flowchart in Figure 54.

The recursive algorithm to compute the mimmum cost in hour K with
combination [ 1s,

FoK, 1) = min [P (K, 1) + Sl K — L LUK, D+ F o (K—1L] (5.1
where N
F...(K.I) = least total cost to arrive at state (K, I)
P..(K, 1) = production cost for state (K. 1)

S.lK - LL K IF transition cost from state (K — 1, L) to state (K, I)
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START

{

FCOST (K, I} = MIN [PCOST (K, I) + SCOST (K - 1, L: K, 1]
(L}

l DO FOR
X = ALL STATES | IN ——
{ PERIOD K

K=K+1

f

{L}= "N" FEASIBLE STATES IN
INTERVAL K -1

! t

FCOST (K, 1) = MIN {PCOST (K, I} +
{L}
SCOST(K -1, L: K, i) + FCOST (K - 1, L)}

DO FOR ALL X =
STATES I iN PERIOD K

)

SAVE N LOWEST
COST STRATEGIES

NO S J

\K =M, LAST HOUR ?

JYES

TRACE OPTIMAL SCHEDULE

l

STCP
FIG. 54 Unit commitment via forward dynamic programming.

State (K, T) is the I'® combination in hour K. For the forward dynamic-
programming approach, we define a strategy as the transition, or path, from
one state al a given hour to a state at the next hour.

Note that two new variables, X and N, have been introduced in Figure 5.4.

X = number of states to search each period
N

number of strategies, or paths, to save at each step
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FIG. 55 Restricted search paths in DP algorithm with N = Jand X =5.

These variables allow control of the computational effort {sce Figure 5.5).
For complete enumeration, the maximum number of the value of X or N is
2" — L.

For example, with a simple priority-list ordering, the upper bound on X is n,
the number of units. Reducing the number N means that we are discarding the
highest cost schedules at each time interval and saving only the lowest N paths
or strategies. There is no assurance that the theoretical optimal schedule will
be found using a reduced number of strategies and search range (the X value);
only experimentation with a particular program will indicate the potential error
associated with limiting the values of X and N below their upper bounds.

EXAMPLE SE

For this example, the complete search range will be used and three cases will
be studied. The first is a priority-list schedule; the second is the same example
with complete enumeration. Both of the first two cases ignore hot-start costs
and minimum up and down times. The third case includes the hot-start costs,
as well as the minimum up and down times. Four units are to be commutted
to serve an 8-h load pattern. Data on the units and the load pattern are
contained in Table 5.4.
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TABLE 5.4 Unit Characteristics, Load Pattern, and Initial Status for the Cases in

Example 5E

Minimum
Incremental  No-lLoad Full-Load . Times (h)
Max Min Heat Rate Cost Ave. Cost ———=
Unit (MW) (MW} (Btu/kWh) (R h) (R'mWh) Up Down
T 50 25 10440 213.00 23.54 4 2
2 250 60 9000 585.62 20.34 5 3
3 300 75 8730 684.74 19.74 5 4
4 60 20 11900 252.00 25.00 L i
' Initial Conditions Start-Up Costs
Hours OfF-Line {--) Hot Cold Cold Start
Unit or On-Line (+) {R) (R) (h}
1 -5 150 350 4
2 & {70 400 3,
3 8 SO0 1100 5
4 -6 0 0.02 0
Load Paitern
Hour Load (MW)
| 450
2 S30
3 600
4 540
5 400
6 280
7 290
8 500

In order to make the required computations macie efficiently, a simplified
model of the unit characteristics is used. In practical applications, two- or
three-section stepped incremental curves might be used, as shown in Figure 5.6.
For our example, only a single step between minimum and the maximum power
points is used. The units in this example have linear F(P) functions:

it
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FIG. 5.6  (a) Single-step incremental cost curve and (b) multiple-step incremental cost
curve.

The F(P) function is:

F(P) = No-load cost + Inc cost x P

Note, however, that the unit must operate within its limits. Start-up costs for
the first two cases are taken as the cold-start costs. The priority order for the
four units in the example is: unit 3, unit 2, unit !, unit 4. For the first two cases,
the minimum up and down times are taken as 1 h for all units.

In all three cases we will refer to the capacity ordering of the units. This is
shown in Table 5.5, where the unit combinations or states are ordered by
maximum net capacity for each combination.

Case 1

In Case 1, the units are scheduled according to a strict priority order. That
1. units are committed in order until the load is satisfied. The total cost for
the interval is the sum of the eight dispatch costs plus the transitional costs
for starting any units. In this first case, a maximum of 24 dispatches must
be considered.
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TABLE 55 Capacity Ordering of the Units

State Unit Combination® Maximum Net Capacity for Combination
15 ERE 690
14 1110 630
13 0111t 610
12 0110 550
11 1ot i 440
10 1101 390
9 1010 380
8 0011 360
7 1100 330
6 0101 310
S 0010 300
4 0100 250
3 1001 140
2 1000 80
i 00061 60
1] 0000 0
Unit 1234

“1 = Comnutted (uni operating).
¢ = Uncommitied (unit shut down).

For Case 1. the only states examined each hour consist of:

State No. Unit Status Capacity (M\Ni
5 0010 300
12 01 to 550
i4 1t1to 030
15 1111 690

'\Jntu that this is the priority order that is. state § = unit 3, state 12 = units

342 state 14 =unit 3+ 2 + l,andstate [5=units 3+ 2 + 1 + 4 For the
ﬁrs! 4 h. only the last three staies arc of interest. The sample calculations
illustrate the technigue. All possible commitments start from state 12 since
this was given as the initial condition. For hour 1, the minimum cost Is state
12, and so on. The results for the priority- -ordered case are as follows.

State with Pointer for
Hour Min Total Cost Previous Hour
1 12 (9208) 12
2 12 (19857) 12
3 14 (32472) 12
4

2 (43300) 14

Note that state 13 is not reachable in this strict priority ordering.
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Sample Calculations for Case ]

FooulJ.K)=min[P, (J.K) +
(L}

— 1, B2 k. Ky B (F — 1,150

I.O(l

Allowable states are
{ } =1{0010, 0110, 1110, 1111} = {5, 12, 14, 15}
In hour 0{L} = {12}. initial condition.

J=1: 1st hour

P

Feou(1,19) = Pe(1,15) + Seqei(0. 12: 1, 15)
= 9861 + 350 = 10211

14 F.. (1. 14) = 9493 + 350 = 9843

12 Fou(1,12) = 9208 + 0 = 9208

ok
wn !

J=2: 2nd hour
Feasible states are {12, 14, 15} = [K}, so X = 3. Suppose two strategies
are saved at each stage, so N = 2, and {L} = {12, 14},
K . .
- Fooal2,15) = min [P, (2. 15) + S.oa (1. L: 2, 15) + F, (1, L)]

I 112,143

9208
=n301+min[(350+ 208)

} = 20859
{0 + 9843)

and so on.

Case 2

In Case 2, complete enumeration is tried with a limit of (2* — 1) = 15
dispatches each of the eight hours, so that there is a theoretical maximum
of 15% = 2.56-10° possibilities. Fortunately, most of these are not feasible
because they do not supply sufficient capacity, and can be discarded with
little analysis required.

Figure 5.7 illustrates the computational process for the first 4 h for Case
2. On the figure itself, the circles denote states each hour. The numbers within
the circles are the “pointers.” That is, they denote the state number in the
previous hour that provides the path tc that particular state in the current
hour. For example, in hour 2, the minimum costs for states 12, 13, 14, and
15, all result from transitions from state 12 in hour 1. Costs shown on the
connections are the start-up costs. At each state. the figures shown are the
hourly cost/total cost.
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F1G. 57 Example 5E, Cases | and 2 (first 4 h).

In Case 2, the true optimal commitment is.found. That is, it is less
expensive to turn on the less efficient peaking unit, number 4, for hour 3,
than to start up the more efficient unit 1 for that period. By hour 3, the
difference in total cost is R165, or R0.104/MWh. This is not an insignificant
amount when compared with the fuel cost per MWh for an average thermal
unit with a net heat rate of 10,000 Btu/kWh and a fuel cost of R2.00 MBtu.
A savings of R165 every 3 h is equivalent to R481,800/yr.

The total 8-h trajectories for Cases | and 2 are shown in Figure S8 The
neglecting of start-up and shut-down restrictions in these two cases permits
the shutting down of all but unit 3 in hours 6 and 7. The only difference in
the two trajectories occurs in hour 3, as discussed in the previous paragraph.

Case 3

In case 3, the original unit data are used so that the minimum shut-down
and operating times are observed. The forward dynamic-programming
algorithm was repeated for the same 8-h period. Complete enumeration was
used. That is, the upper bound on X shown in the flowchart was 15. Three
different values for N, the number of strategies saved at each stage, were
taken as 4, 8, and 10. The same trajectory was found for values of 8 and 10.
This trajectory is shown in Figure 5.9. However, when only four strategies
were saved, the procedure flounders (i.e., fails to find a feasible path) in
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Hour

State Unit Tetat

aumper  status  capacity LNE TN LEE SR S IR AT
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" w1 440 . . . . . . . .
10 1101 390 . . . . . o . .
9 1010 380 . . . . . . . .

1 ]
1 1

1 1
FIG. 59 Example SE, Case 3.

hour 8, because the lowest cost strategies in hour 7 have shut down
units that cannot be restarted in hour 8 because of minimum unit downtime
rules.

The practical remedy for this deficiency in the method shown in
Figure 54 is to return to a period prior to the low-load hours and
temporarily keep more (i€, higher cost) strategies. This will permit keeping
a nominal number of strategies at cach stage. The other alternative is, of
course. the method used here: run the entire period with more strategies

saved.

These cases can be summarized in terms of the total costs found for the
8-h period, as shown in Table 5.6. These cases illustrate the forward dynamic-

- programming method and also point out the problems involved in the

practical application of the method.

TABLE 56 Summary of Cases 1-3

Case Conditions Total Cost (R)
1 Priority order. Up ‘and down times neglected . - 73439
2 Enumeration (X < 15) with 4 strategies (N) saved, Up . 73274

3

and down times neglected
X < 15. Up and down times observed
N = 4 strategies No solution
B = § strategies 74110
N = 10 strategies 74110
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5.2.3 Lagrange Relaxation Solution

The dynamic-programming method of solution of the unit commitment problem
has many disadvantages for large power systems with many generating units.
This 1s because of the necessity of forcing the dynamic-programming solution
to secarch over a small number of commitment states to reduce the number of
combinations that must be tested in each time period.

In the Lagrange relaxation technique these disadvantages disappear (although
other technical problems arise and must be addressed, as we shall see). This
method is based on a dual optimization approach as introduced in Appendix
3A and further expanded in the appendix to this chapter. (The reader should
be familiar with both of these appendices before proceeding further.)

We start by defining the variable U as:

U} =01if unit i is off-line during period ¢

Ui = 1if unit i is on-line during period t

We shall now define several constraints and the objective function of the unit
commitment problem:

. Loading constraints:

Bl — ZPU'—O fort=1...T (5.2)

i=1

b2

Unit limits;
ULPP® ¢ Pl.< [} prasx [0_ri=l..<N and t=1...7T (53)

3. Unit mumimum up- and down-time constraints. Note that other constraints
can easily be formulated and added to the unit commitment problem.
These include transmission security constraints (see Chapter 11), generator-
fuel limit constraints, and system air quality constraints in the form of
limits on emissions from fossil-fired plants, spinning reserve constraints,
etc.

4. The objective function is:

[F(P ) + Start up cost; JU! = F(P!, UD) (5.4)

Uagb

-

"MZ

I i

We can then form the Lagrange function similar to the way we did in the
economic dispatch problem:

T ) N
L(PU )= F(PP,UY+ ¥ /( AP Pguz) (5.5)
t=1

i=1

The unit commitment problem requires that we minimize the Lagrange function
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above, subject to the local unit constraints 2 and 3, whig:h can be applied 10
each unit separately. Note: '

1. The cost function, F(P, UY), together with constraints 2 and 3 are each
separable over units. That is. what is done with one unit does not affect
the cost of running another unit. as far as the cost function and the unit
Jimits (comstraint 2) and the unit up- and down-time (constramt 3) are
concerned. E :

3. Constraints | are coupling constrainis across the units so that what we
do to one unit affects what will happen on other 'units 1f the coupling
constraints are to be met.

The Lagrange rélaxation procedure solves the unit commitment probiem by’
“relaxing” or temporarily ignoring the coupling constraints and solving the
problem as if they did not exist. This is done through the dual optimization
procedure as explained in the appendix of this chapter. The dual procedure
attempts to reach the constrained optimum by maximizing the Lagrangian with
respect to the Lagrange multipliers, while minimizing with respect to the other
variables in the problem; that is:

g*(4) = max q(4) ‘ (5.6)
where ;
’ g(4) = min #(P. U, 4) ' (5.7

P UL ¢ gl »

This is done in two basic steps: ©

Step 1 Find a value for cach + which moves g{.) toward a larger value.
Step 2 Assuming that the /' found in step 1 are now fixed, find the minimum
of & by adjusting the values of Ptand U’ ‘

The adjustment of the /' values will be dealt with at a later time in this section;

assume then that a value has been chosen for.all the 4"and that they are now

to be treated as fixed numbers. We shall minimize the Lagrangian as follows.
First, we rewrite the Lagrangian as:

N\

Pt} (58)

1 J

T N 7
#=7Y Y [F(PY)+ Startup cost, JUI+ Y ;}( ¢

1=1i=1 =1

il [‘\/] =

This is now rewritten as:

N ' B .T‘ ' r .\'_

S [E(P") + Startup cost, JUt + ¥ FPla~ L Y APIUL (59)
=li=1

1 =1

Z=

TP
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The second term above is constant and can be dropped (since the A' are fixed).
Finally, we write the Lagrange function as:

¥ ='i (ZT: {LF(P) + Start up cost, ,JU} — }.'P:U:}) (5.10)
i=1

r=1

Here, we have achieved our goal of separating the units from one another. The
term inside the outer brackets; that is:

8
X {[F(P}) + Start up cost; JU’ — A'P}U}

t=]

can be solved separately for each generating unit, without regard for what is
happening on the other generating units. The minimum of the Lagrangian is
found by solving for the minimum for each generating unit over all time periods;
that is:

N T
min §(4) = } min ¥ {[F(P}) + Start up cost, JU! — XPUY} (5.11)
i r=1

i=1

Subject to
VPP < PL<UPP™ fort=1...T

and the up- and down-time constraints. This is easily solved as a dynamic-
programming problem in one variable. This can be visualized in the figure
below, which shows the only two possible states for unit i (e, Ui=0or 1)

U, =1

t=1 t=2 1=3 t=4

where S; is the start-up cost for unit i.

At the U} = 0 state, the value of the function to minimized is trivial (i.e., it
equals zero); at the state where U! = 1, the function to be minimized is (the
start-up cost is dropped here since the minimization is with respect to Pl):

min [F(P) — A'P{] (5.12)
The minimum of this function is found by taking the first derivative:

d d
F(P)— APl = __—_ F(Py — }' — !
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The solution to this equation is

d
ety E(P?m = 7 5.14
dP! ’ 648

There are three cases to be concerned with depending on the relation of P{*
and the unit limits:

1. If P® < P™® then:

min [F(P) — A'P}] = F(P™®) — A'PP" (5.15a)

2

2. If pris < PPt < PP, then:

' min [F(B) — #P{) = FP{™) — KPP (5.15b)
3. B P = PP, then:

win [F(P) — #P'] = E(P™) — PP (5.150)

The solution of the two-state dynamic program for each unit proceeds in the
normal manner as was done for the forward dynamic-programming solution
of the unit commitment problem itself. Note that since we seek to minimize
[E(P) — A'P}) at each stage and that when U/ = 0 this value goes to zero, then
the only way to get a value lower is to have

[F(P)~ A'P{] <0

The dynamic program should take into account all the start-up costs, S;, for
cach unit. as well as the minimum up and down time for the generator. Since
we are solving for each generator independently, bowever, we have avoided the
dimensionality problems that affect the dynainic-programming solution.

5.2.3.1 Adjusting A

So far, we have shown how to schedule generating units with fixed values of
J for each time period. As shown in the appendix to this chapter, the adjustment
of A must be done carefully so as to maximize g(4). Most references to work
on the Lagrange relaxation procedure use a combination of gradient search
and various heuristics to achieve a rapid solution. Note that unlike in the
appendix, the 4 here is a vector of values, each of which must be adjusted. Much
research in recent years has been aimed at ways to speed the search for the
correct values of A for each hour. In Example 5D, we shall use the same
technique of adjusting 4 for each hour that is used in the appendix. For the
unit commitment problem solved in Example 5D, however, the 4 adjustment
factors are different:

d
2=a | S g 1
i +[d'{ q(l)]a (5.16)
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where
d .. s .
= 0.01 when i g(+) is positive (5.17)
A

and

x = 0.002 when di q(A) is negative (5.18)
A

Each 4% is treated separately. The reader should consult the references listed at
the end of this chapter for more efficient methods of adjusting the 4 values. The
overall Lagrange relaxation unit commitment algorithm is shown in Figure
5.10.

Reference 15 introduces the use of what this text called the “relative duality
gap” or (J* — ¢*)/q*. The relative duality gap is used in Example 5D as a
measure of the closeness to the solution. Reference 15 points out several useful
things about dual optimization applied to the unit commitment problem.

|. For large. real-sized, power-system unit commitment calcuiations, the
duality gap does become quite small as the dual oplimization proceeds,
and its size can be used as a stopping criterion. The larger the problem
(larger number of generating units). the smaller the gap.

The convergence is unstable at the end, meaning that some units are being
switched in and out, and the process never comes to a definite end.

b2

3. There is no guarantce that when the dual solution is stopped. it will
be at a {easible solution.

All of the above are demonstrated in Example 5D. The duality gap is large at
the beginning and becomes progressively smaller as the iterations progress. The
solution reaches a commitment schedule when at least enough generation is
committed so that an economic dispatch can be run, and further iterations only
result in switching marginal units on and off. Finally, the loading constraints
are not met by the dual solution when the iterations are stopped.

Many of the Lagrange relaxation unit commitment programs use a few
iterations of a dynamic-programming algorithm to get a good starting point,
then run the dual optimization iterations, and finally, -at the end, they use
heuristic. logic or restricted dynamic programming to get to a final solution.
The result is a solution that is not limited to search windows, such as had to
be done in strict application of dynamic programming.

EXAMPLE 5D

In this example, a three-generator, four-hour unit commitment problem will be
solved. The data for this problem are as follows. Given the three generating
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Pick starting X' for t=1..T
k=0

g
1

_________,.[ for cach unit i J

A
Build dynamic program having
two states, and T stages and
solve for:

Pland Uf forallt=1.T

'

wl ‘. No 1
L____—-—-—Clrs_t_unil done

Yes

3

Solve for the dual value (A"

¥
Using the U’ calculate the primal value J,
‘that 15, solve an economic dispatch for each hour
using the units that have been commitied for that hour

'

relauve duality gap sufficiently small
calculate the relative duality gap
o il

l-q
=

: 47 ‘
Make Enal adjusiments 10 unit

\ comnitment schedule to achieve
feasibility

done

update Af foralit

F1G. 5.10 Lagrange relaxation procedure for unit commitment.

units below:
F, (P} = 500 + 10P, + 0002P; and 100 < P, < 600
o FaP) = 300 + 8P, 4+ 0.0025P; and 100 < P, <400
" Fy(Py) = 100 + 6P, + 0.005P3 *and 50 < Py < 200
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Load:
t P} a(MW)
i 170
2 520
3 1100
4 330

No start-up costs, no minimum up- or down-time constraints.

This example is solved using the Lagrange relaxation technique. Shown
below are the results of several iterations, starting from an initial condition
where all the A' values are set to zero. An economic dispatch is run for each
hour, provided there is sufficient generation committed that hour. If there is
not enough generation committed, the total cost for that hour is set arbitrarily
to 10,000. Once each hour has enough generation committed, the primal value
J* simply represents the total generation cost summed over all hours as
calculated by the economic dispatch.

The dynamic program for each unit with a 2* = 0 for each hour will always
result in all generating units off-line.

Iteration 1

N
Hour 4w, wuy w3 P P Py Plg- Z P Pie  Pi¥ P

i=1

i 0 0 0 0 0 0 0 170 0 0 0
2 0o 0 0 0 0 0 0 520 0 0 0
3 0 0 0 0 0 0 0 1100 0 0 0
4 0 0 0 0 0 0 0 330 0 0 0

*

*
q(4) = 0.0, J* = 40,000, and jr-r;—qf = undefined
q

In the next iteration, the A’ values have been increased. To illustrate the use
of dynamic programming to schedule each generator, we will detail the DP
steps for unit 3:

A= 1.7 52 11.0 33

F(P)-AP = 3275 152.5 -700.0 2475
Plappe  Rl=pp*  A=P= Aepp

U3 = ] ' . .

min
cost=
=1 =2 t=3 =4 100
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The result is to schedule unit 3 off during hours 1, 2, and 4 and on during
hour 3. Further, unit 3 is scheduled to be at its maximum of 200 MW during
hour 3. The results, after all the units have been scheduled by DP, are as
follows.

Iteration 2

N
Hour 1 %, Mz % B B P Pa- Y Py Py PY P

E=1

i 17 0 0 0 0 0 0 170 0o o0 o0
) 520 0 0 0 0 520 0 0 0
3 110 0 1 1 0 400 200 500 o 0 0
4 3130 0 0 0 0o 0 330 o 0 0
J* —g*
g() = 14982,  J* = 40000, and — - = 167
q
Iteration 3
3
Hour i u, uw u, P P P Pug— Y PU] P PF P
i=1
1 4 0 0 0 0 0 0 170 0o 0 o
2 04 0 1 1 0 400 200 —80 0 320 200
3 160 1 1 1 600 400 200 ~100 500 400 200
4 66 0 0 0 ©0 O O 330 o 0 0
. J*_q#
qU) = 18344,  J* =36024, and “— " = 0965
4
fteration 4

N
Hour 4 w, w u P P P Paa— X PUL P PETOPE
i=1

1 5.1 0 0 0 0 0 0 170 0 0 0

2 1024 0 1 I 0 400 200 —80 0 320 200

3 15.8 1 1 1 600 400 200 —-100 o0 400 200

4 99 0 1 1 0 380 200 -250 0 130 200
J* qt

g(4) = 19,214, J* = 28906, apd —0—= 0.502
9
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Iteration 5

p
Hour i wico uy P Py By Plaes 2P P OPYE PYF
LR |

1 68 0 0 0O o 0 0 170 o 0 0
2 1008 0 1 i 0 400 200 —30 0 320 200
3 156 L 1 1 600 400 200 — 100 SO0 400 200
) 94 0 0 1 0 0 2 136 I
Jr - g*
g(A) = 19.532, J* = 36024, and T e 8 ().844
q
Iteration 6
N
Hour 2wy wy wy P Py B Py Y PIUY P PR P
T 85 0 0 1 0 0 2m 30 o0 0
> 992 0 1 1 0 384 200 — 64 0 320 200
1S4 1 1 1 600 400 200 - 100 500 400 200
4 07 0 1 1 0400 200 —27C H 130 200
A B J* == Lf*
iy = 19442, J*=20170, and ~ 7 =003
q

The commitment schedule does net change significantly with further itera-
tions, although it is not by any means stable. Further iterations do reduce the
duality gap somewhat. but these iterations are unstabie in that unit 2 is on the
borderline between being committed and not being committed, and is switched
in and out with no final convergence. After 10 iterations, g(4) = 19,485,
J*=20017, and (J* — ¢g*)'q* = 0.027. This latter value will not go to zero,
nor will the solution settle down to a final value; therefore, the algorithm must
stop when (J* — ¢*)/g* is sufficiently small (e.g., less than 0.05 in this case).

APPENDIX
Dual Optimization on a2 Nonconvex Problem

We introduced the concept of dual optimization in Appendix 3A and pointed
out that when the function to be optimized is convex, and the variables are
continuous, then the maximization of the dual function gives the identical result
as minimizing the primal function. Dual optimization is also used in solving the
unit commitment problem. However, in the upit commitment problem there
are variables that must be restricted to two values: | or 0. These 1-0 variables
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cause a great deal of trouble and are the reason for the difficulty in solving the
unit commitment problem.
The application of the dual opumlzanon technique to the unit commitment
problem has been given the name * Lagrange relaxation” and the formulation
of the unit commitment problem using this method is shown in the text in
Section 5.2.3. In this appendix, we illustrate this technique with a simple
geometric problem. The problem is structured with 1-0 variables which makes
it clearly nonconvex. Its form is generally similar to the form ‘of the unit
commitment problems, but that is incidental for now.
The sample problem to be solved is given below. It illustrates the ability of
the dual optimization technique to solve the unit commitment problem. Given:

J(xo. X, g, =) = (0.25x% + 15)u, + (0.255x% + 15)u, (5A.1)
subject to: ;
m =5 = XU, — Xyl (3A.2)
and
<x, <10 (5A.3)

0<x,<10 (5A.4)
where x, and x, are continuous real numbers, and:

uy=1 »or 0

u;=1 or 0

Noie that in this problem we have two functions, one in x, and the othcr in
x, The functions were chosen to demonstrate certain phenomena in a dual
optimization. Nete that the functions are numerically close and only differ by
a small, constant amount. Each of these functions is multiplied by a 1-0 variable
and combined into the overall objective function. There is also a constraint
that combines the x; and x, vanables again with the 1-0 variables. There are
four possible soluuons

1. If u; and u, are both zero, the problem cannot have a solution since the
equality constraint cannot be satisfied.

M u, = 1 and u, = 0, we have the trivial solution that x; = 5 and x, does
not enter into the problem anymore. The objective function is 21.25.

)

(%]

I u, =0 and u, = 1, then we have the trivial result that x, = 5 and x,
does not enter into the problem. The objective function is 21.375.
4 1fu, =1 and u, = 1, we have a simple Lagrange function of.

Lx,, x5, 1) = (0.25x2 + 15) + (0.255x2 + 15) + A5 — x, — x5) (5A.5)
1 2

‘The resulting optimum is at x, = 2.5248, x, = 2.4752. and 2 = 1.2642, with an



162 UNIT COMMITMENT

objective function value of 33.1559. Therefore, we know the optimum value for
this problem; namely, u; = 1, u, =0, and x, = 5.

What we have done, of course, is to enumerate all possible combinations of
the 1-0 variabies and then optimize over the continuous variables. When there
are more than a few 1-0 variables, this cannot be done because of the large
number of possible combinations. However, there 1s a systematic way to solve
this problem using the dual formulation.

The Lagrange relaxation method solves problems such as the one above, as
follows. Define the Lagrange function as:

L(Xy, X0 Uy, Up, A) = (0.25x2 + 15)uy + (0.255x3 + 15)u,
+ A(S — xquy — Xaliy) (5A.6)

As shown in Appendix 3A, we define g(4) as:

)= min ¥ (5A.7)

X[, K2.U) .82

b=

7l

where x,, X,, u,, u, obey the limits and the 1-0 conditions as before. The dual
problem 1s then to find

g*(A) = max g(4) (SA.8)

Az=0

This is different from the dual optimization approach used in the Appendix
3A because of the presence of the 1-0 variables. Because of the presence of the
| -0 variables we cannot eliminate variables; therefore. we keep all the variables
in the problem and proceed in alternating steps as shown in the Appendix 3A.

Step1 Pick a value for 4* and consider it fixed Now the Lagrangian
function can be minimized. This is much simpler than the situation
we had before since we are trying to minimize

(0.25x2 + 15)u; + (0.255x3 + 15)u, + M5 — xquy — Xxyuy)

where the value of 4* is fixed.
We can then rearrange the equation above as:

(0.25x% + 15 — x, 2%u, + (0.255x3 + 15 — x,4%u, + 4*$

The last term above is fixed and we can ignore it. The other terms
are now given in such a way that the minimization of this function
is relatively easy. Note that the minimization is now over two terms,
cach being multiplied by a 1-0 variable. Since these two terms are
summed in the Lagrangian, we can minimize the entire function by
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minimizing each term separately. Since each term is the product of
a function in x and 4 (which is fixed), and these are all multiplied
by the 1-0 variable u, then the minimum will be zero (that is with
u = 0) or it will be negative, with u =1 and the value of x set so
that the term inside the parentheses is negative. Looking at the first
term, the optimum value of x, is found by (ignore u, for a2 moment):

d
— (0.25x} + 15— x,A) =0 (5A.9)

dx,

If the value of x, which satisfies the above falls outside the limits
of 0 and 10 for x,, we force x,; to the limit violated. If the term in
the first brackets

(0.25x3 + 15 — x,;4%

is positive, then we can minimize the Lagrangian by merely setting
u, = 0; otherwise u, = 1.

Looking at the second term, the optimum value of x, is found
by (again, ignore u,):

d
L (0255x% 4 15 — x,i%) = 0 (5A.10)
dX2

and if the value of x, which satisfies the above value falls outside
the O to 10 limits on x,, we set it to the violated limit. Similarly, the
term in the second brackets

(0.255x2 + 15 — x,4%)

is evaluated. If it is positive, then we minimize the Lagrangian by
making u, = 0; otherwise u, = 1. We have now found the minimum
value of % with a specified fixed value of *.

Assume that the variables x,, x5, u}, 4, found in step | are fixed and
find a value for 4 that maximizes the dual function. In this case, we
cannot solve for the maximum since ¢(4) is unbounded with respect
to A. Instead, we form the gradient of g(4) with respect to A and we
adjust 4 so as to move in the direction of increasing g(4). That is, given

o= (5A.11)
di
which for our problem is
d
e SVT TS X Uy — XUy (5A.12)

di
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we adjust/'; according to

A**‘:).*+§‘_7a (5A.13)
A

where « is a multiplier chosen to move 4 only a short distance. (This
is simply a gradient search method as was introduced in Chapter 3).
Note also. that if both u, and u, are zcro, the gradient will be 5,
indicating a positive value telling us to increase 4. Eventually, increasing
7 will result in a negative value for

(0.25x% + 15 — x,4%)
or for
(0.255x% + 15 — x,4%)

or for both. and this will cause u, or u,, or both, to be set to 1. Once
the value of 4 is increased, we go back to step 1 and find the new values
for x,, x,. i, u, agam.

The real difficuity here is in not increasing 4 by too much. In the example
presented above, the following scheme was imposed on the adjustment of A

dg
e If ~—‘ is positive, then use x = 0.2,
/.

d
e If d‘f 15 negative, then use a = 0.005.
A

This lets 4 approach the solution stowly, and if it overshoots, it backs up very
slowly. This is a common technique to make a gradient “behave.”

We must also note that, given the few variables we have, and given the fact
that two of them are 1-0 variables, the value of £ wiil not converge to the value
needed to minimize the Lagrangian. In fact, it is seldom possible to find a i
that will make the problem feasible with respect to the equality constraint.
However, when we have found the values for 1, and u, at any iteration,

“we can then calculate the. minimum of J(x;i x,, u,, u,) by solving for the
minimum’ of

pal

[(0.25x2 + 15)u; + (0.255x% + 153u, + A(5 — x,u, — x;u;)]

using the techniques in Appendix 3A (since the u, and u, variables arc now
known).

The solution to this minimum will be at x, =X, x, =X; and A= i
'For the case where u, and u, are both zero, we shall arbitrarily set this
value to a large value (here we set it to 50). We shall call this minimum value
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TABLE 5.7 Dual Optimization on a Sample Problem

; 4 - J*—q*
Iteration A U, U, Xy X, q* 10} A Xy X3 J* —qT—
1 0 0 0 0 0 0 5.0 - — - 50.0 —

2 1.0 0 0 207 1.9608 50 5.0 - — -— 50.0 9.0

3 20 0 0 40 39216 10.0 50 — st - 50.0 40

4 30 0 0 6.0 5.8824 150 50 — — — 50.0 233

5 40 1 I 8.0 7.8431 18.3137 —10.8431 12624 2.5248 24752 33.1559 0.8104
6 39458 1 1 78916  7.7368 18.8958 --10.6284 1.2624  2.5248 24752 33.1559 0.7546
7 3.8926 | 0 7.7853 7.6326 19.3105 —~2.7853 2.5 5.0 — 21.25 0.1004
8 3.8787 1 0 7.7574 7.6053 19.3491 —2.7574 25 50 - 21.25 0.0982
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J*(X7, X3, u,. u,) and we shall observe that it starts out with a large value, and
decreases, while the dual value ¢*(1) starts out with a value of zero. and
increases. Since there are 1-0 variables in this problem, the primal values and
the dual values never become equal. The value J* — ¢* is called the duality
gap and we shall call the value

= qs
T
the relative duality gap. :

The presence of the 1-0 variables causes the algorithm to oscillate around
a solution with one or more of the 1-0 variables jumping from | to 0 to 1, etc.
In such cases, the user of the Lagrange relaxation algorithm must stop the
algorithm, based on the value of the relative duality gap.

The iterations starting from A = 0 are shown in Table 5.7. The table shows
cight iterations and illustrates the slow approach of 4 toward the threshold
when both of the 1-0 variables flip from 0 to !. Also note that w became
negative and the value of 4 must now be decreased. Eventually, the optimal
solution is reached and the relative duality gap becomes small. However, as is
typical with the dual optimization on a problem with 1-0 variables, the solution
is not stable and if iterated further it exhibits further changes in the 1-0 vaniables
as A4 is adjusted. Both the g* and J* values and the relative duality gap are

shown in Table 5.7.

PROBLEMS

5.1 Given the unit data in Tables 58 and 5.9, use forward dynamic-
programming to find the optimum unit commitment schedules covering
the 8-h period. Table 5.9 gives all the combinations you nced, as well as
the operating cost for each at the loads in the load data. A *x 7 indicates
that a combination cannot supply the load. The starting conditions are:
at the beginning of the first period units 1 and 2 are up, units 3 and 4 are
down and have been down for § h.

5.2 Table 5.10 presents the unit characteristics and load pattern for a five-unit,
four-time-period problem. Each time period is 2 h long. The input—output
characteristics are approximated by a straight line from min to max
generation, so that the incremental heat rate is constant. Unit no-load and
start-up costs are given in terms of heat energy requirements.

a. Develop the priority list for these units and solve for the optimum unit
commitment. Use a strict priority list with a search range of three
(X = 3) and save no more than three strategies (N = 3). Ignore min
up-/min down-times for units.

b. Solve the same commitment problem using the strict-priority list with
X = 3and N = 3 asin part a, but obey the min up/min down time rules.
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TABLE 58 Unit Commitmeat Data for Problem 5.1
Incremental No-Load Start-Up
Max Min Heat Rate Energy Input Energy
Unit {(MW) (MW) (Btu/kWh) (MBtu/h) (MBtu)
1 500 70 9950 300 800
2 250 40 10200 210 380
3 150 30 11000 120 110
4 150 30 11000 120 110
Load data (all time periods = 2 h);
Time Period Load (MW)
1 600
2 800
3 700
- 950

Start-up and shut-down rules:

Minimum Up Time (h)

Minimum Down Time (h)

1 2
2 2
L 2
+ 2

2
2
4
4

Fuel cost = 1.00 R/MBtu.

TABLE 5.9 Unit Combinations and Operating Cost for Problem 5.1

Operating Cost (R/h)

Unit Unit Unit Unit Load Load Load Load
Combination 1 2 3 4 600MW 700 MW 800 MW 950 MW
A 1 1 0 0 6505 7525 X x
B 1 1 1 0 6649 7669 8705. x
c 1 1 1 1 6793 7813 8833 10475
= up; 0 = down.

¢. (Optional) Find the optimum unit commitment without use of a strict
priority list (i.e., all 32 unit on/off combinations are valid). Restrict the
search range to decrease your effort. Obey the min up-/min down-time

rules.

When using a dynamic-programming method to solve a unit commit-
ment problem with minimum up- and down-time rules, one must save an
additional piece of information at each state, each hour. This information
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TABLE 510 The Unit Characteristic-and Load Pattern for Problem 5.2

Net:
Full-Load
Max Heat Rate
Unit (MW) (Btu/kWh)

Incremental No-Load Start-Up Min

i 206 11000
2 60 11433
3 S0 12000
4 40 12900
5 25 13500

Heat Rate-  Min Cost Cost Up/Down
(Btu/kWH) (MW) (MBtu/h) (MBm)  Time (h)
9900 50 220 400 8
10100 15 80 150 8
10800 15 60 105 4
11900 5 40 : 0 4
12140 5 34 0 4

Load Patiern

Hours Load (MW)

Conditions

{2 250
3-4 '!20
5-6 110
7-8 75

. Initially (prior to hour 1). only unit L 15 on cmd has been

on for 4 h.

. 1znore fosses. spinning reserve, eic. The only requirement

is that the generation be able to supply the load.

. Fuel costs for all units may be taken as 1.40 R/MBtu

simply tells us whether any units are ineligible to be shut down or started
up at that state’ If such units exist at a particular state, the transition cost,

SQ(?S'.
a value of infinity.

10 a state that violates the start-up/shut-down rules should be given

5.3 Lagrange Relaxation Problem

Given the three generating units below:

Fi(P,) =30 4 10P, +0.002P? and 100 < P, < 600
Fy(P,) = 20 + 8P, + 00025P and 100 < P, < 400
Fy(P,) = 10 + 6P, + 0005P2 and 50 < Py < 200

Load:

B Lot ==

No start-up costs, no minimum up- or down-time constraints.
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a. Solve for the unit commitment by conventional dynamic programming.

b. Set up and carry out four iterations of the Lagrange relaxation method.
Let the initial values of A' be zerofort=1... 4.

¢. Resolve with the added condition that the third generator has a
minimum up time of 2 h.

FURTHER READING

Some good introductory references to the unit commitment problem are found in
references 1-3. A survey of the state-of-the-art (as of 1975) of unit commitment solutions
is found in reference 4. References 5 and 6 provide a good look at two commercial unit
commitment programs in present use.

References 711 deal with unit commitment as an integer-programming problem.
Much of the pioneering work in this area was done by Garver (reference 7), who also
sounded a note of pessimism in a discussion of reference 8, written together with Happ
in 1968. Further research (references 9-11) has refined the unit commitment solution
by integer programming but has never really overcome the Garver—Happ limitations
presented in the 1968 discussion, thus leaving dynamic programming and Lagrange
relaxation as the only viable solution techniques to large-scale unit commitment
problems.

The reader should see references 12 and 13 for a discussion of valve-point loading
and for a thorough development of economic dispatch via dynamic programming.

Reference 14 provides the reader with a good overview of unit commitment
scheduling. References 15, 16, and 17 are recommended for an understanding of the
Lagrange relaxation method, while references 18-21 cover some of the special problems
encountered in unit commitment scheduling.
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