6 Generation with Limited Energy
Supply

6.1 INTRODUCTION

The economic operation of a power system requires that expenditures for fuel
be minimized over a period of time. When there is no limitation on the fuel
supply to any of the plants in the system, the economic dispatch can be carried
out with only the present conditions as data in the economic dispatch
algorithm. In such a case. the fuel costs are simply the incoming price
of fuel with, perhaps, adjustments for fuel handling and maintenance of the
plant.

When the energy resource available to a particular plant (be it coal, oil, gas,
water, or nuclear fuel) is a limiting factor in the operation of the plant, the
catire economic dispatch calculation must be done differently. Each economic
dispatch calculation must account for what happened before and what will
happen in the future.

This chapter begins the development of solutions to the dispatching problem
“over time.” The techniques used are an extension of the familiar Lagrange
formulation. Concepts involving slack variables and penalty functions are
introduced to allow solution under certain conditions.

The example chosen to start with is a fixed fuel cupply that must be paid
for, whether or not it is consumed. We might have started with a limited fuel
supply of natural gas that must be used as boiler fuel because it has been
declared as “surplus.” The take-or-pay fuel supply contract is probably the
simplest of these possibilities.

Alternatively, we might have started directly with the problem of economic
scheduling of hydroelectric plants with their stored supply of water or with
light-water-moderated nuclear reactors supplying steam to drive turbine gener-
ators. Hydroelectric plant scheduling involves the scheduling of water flows,
impoundments (storage), and releases into what usually prove to be a rather
complicated hydraulic network (namely, the watershed). The trcatment of
nuclear unit scheduling requires some understanding of the physics involved in
the reactor core and is really beyond the scope of this current text (the methods
useful for optimizing the unit outputs are, however, quite similar to those used
in scheduling other limited energy systems).
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172 GENERATION WITH LIMITED ENERGY SUPPLY
6.2 TAKE-OR-PAY FUEL SUPPLY CONTRACT

Assume there age. A/ normally fueled thermal plants plps one turbine generator‘l
fucled under a “ruke-or-pa y agreemem We will interpret this type of agreement
as being one in which the utility agrees to use a minimum amount of fuel during
a period (the “take”) or, failing to use this amount, it agrees to pay the minimum
Lharcg This last clause is the “pay™ part of the “take-or-pay” contract.
While this unit’s cumulative fuel consumption is below the minimum, the
system excluding this unit should be scheduled to minimize the total fuel cost,
subject to the constraint that the total fuel consumption for the period for this
particular unit is equal to the specified amount. Once the specified amount of
fuel has been used, the unit should be scheduled normally. Let us consider a
special case where the minimum amount of fuel consumption is also the
maximum. The system is shown in Figure 6.1. We will consider the. operation
of the system over jm, time intervals j where j = 1,... j . so that

(power outputs)

Frgs Fayssn s 4 Fy, (fuel cost rate)
and
9rioYras- - - 4qr; (take-or-pay fuel input)

are the power outputs, fuel costs, and take-or-pay fuel inputs, where

P; £ power from i unit in the j™ time interval

F; 2 R;"H cost for i*" unit during the ;™ time interval
"7, % fuel input for unit T in j* time interval

F. 2

73 = R/h cost for unit T in j time interval

>

Pe.q j & total load in the j™ time interval

n; % Number of hours in the j™ time interval

Mathematically, the problem is as follows:

Jmax [ Jm.u
min ) ( }: )_—F PN Y (6.1)
i=1 j=1

subject to
Jmax i o .
¢ = Z Nidr; = Gror =0 fod (6.2)
J=1 ; d .
and

‘7!’}' - })loadj . z Ri . PT} = O forj =1 L) ‘jmax . (63}
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FIG. 6.1 N + 1 unit system with take-or-pay fuel supply at umt 7.

or, in words,

We wish to determine the minimum production cost for units 1 to N
subject to constraints that ensure that fuel consumption is correct and
also subject to the set of constraints to ensurc that power supplied is
correct each interval.

Note that (for the present) we are ignoring high and low limits on the units
themselves. It should also be noted that the term

Jrmax

2 niF;
4=

is constant because the total fuel to be used in the “ 77" plant is fixed. Therefore.
the total cost of that fuel will be constant and we can drop this term from the
objective function.

The Lagrange function is

Josr N Fosii N ] [ dpae
52 = Z n; Z ru"" Z ’i‘)(‘Ploﬂdj . 2. P'li B PT’) * f( E nidri q}ol) (64)
j=1 Q=1 j=1 i=1 A=

The ndependent variables are the powers P and Py, since f; = F(F;) and
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qr; = 4r(Pr)). For any given time period, j = Kk,

s dF,
L _0=nS"_1  fori=1...N (6.5)
Py dPy
and
;Y ) dg.
RS o i T (6.6)
a1;,'”( Tk

Note that if one analyzes the dimensions of y, it would be R per unit of g
(e.g, R/t>, R/bbl, R/ton). As such, y has the units of a “fuel price” expressed
in volume units rather than MBtu as we have used up to now. Because of this,
7 1s often referred to as a “pseudo-price™ or “shadow price.” In fact, once
it 15 realized what is happening in this analysts, it becomes obvious that we
could solve fuel-limited dispatch probiems by simply adjusting the price of the
limited fuei(s): thus, the terms “pseudo-pricc” and “shadow price™ are quite
meanmngiul.

Since 7 appears unsubscripted in Fq. 6.6, y would be expected to be a
constant value over all the time periods, This is true uniess the fuel-limited
machine 15 constrained by fuel-storage lirnitations. We will encounter such
imitations in hvdroplant scheduling in Chapter 7. The appendix to Chapter 7
shows when (o expect a constant 7 and when to expect a disconunuity
m y.

Figure 6.2a shows how the load pattern may look. The solution to a
fuel-limited dispatching problem will require dividing the load pattern into
time intervals, as in Figure 6.2b. and assuming load to be constant during
cach interval Assuming all units are ou-ine for the period. the optimum
dispatch could be done using a simple search procedure for 7, as is shown
in Figure 6.3. Note that the procedure shown in Figure 6.3 will only work
i the fuel-limited unit does not hit either its high or its low himit in any time
interval,

Load (MW)

! | ! ! ! i l I |

—> Time

F1G. 6.2a Load pattern.



TAKE-OR-PAY FUEL SUPPLY CONTRACT 175

l==—
s
=
g
3 __'—‘ —
| | L L { ! | | | | i
1 2 3 4 5 6 T 8 9 10—
Time

FIG. 62b Discrete load pattern.
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63 COMPOSITE GENERATION PRODUCTION COST FUNCTION

A useful technique to facilitate the take-or-pay fuel supply contruct procedure
is to develop a composite generation production cost curve {or all the non-
fuel-constrained units. For example. suppose there were N non-fuel constrained
units to be scheduled with the fuel-constrained unit as shown in Figure 6.4
Then a composite cost curve for units 1.2, . N can be developed.
F(P) = F (P + ...+ FyFy) (6.7)
where
Fo=P +. ..+ Py

and

df, dF, dEy

dp, dp,  dpy

If ane of the units hits & imat, its output 15 held constant, as in Chapter 3. Eg. 3.6,
A simple procedure (o allow one to generate F(F) consists of adjusting £
from 2™ to 2" in specified mcrements, where

£.3 \
amin min( —foi=1... ’\'}
\dF, /
/dF,
imax:maxk,,,"{:!‘.‘g\')
dP; /

At vach increment, calculate the total fuel consumption and the total power
output for all the units. These points represent points on the F(F) curve. The
points may be used directly by assuming F(P,) consists of straight-hne segments
between the points, or a smooth curve may be fit to the pomts using a
least-squares fitting program. Be aware, however, that such smooth curves may
have undesirable properties such as noncouvexity (e.g., the first derivative is
not monotonically increasing). The procedure tp generate the pomts on F(P)
is shown in Figure 6.5. ' )

O S
C?}l_‘—@ :—“—>G-L®
o~

Load
Ll G
Load

FIG. 6.4 Composite gencrator unit.
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FIG. 65 Procedure for obtaining composite cost curve.

EXAMPLE 6A

The three generating units from Example 3A are to be combined into a
composite generating unit. The fuel costs assigned to these units will be

Fuel cost for unit 1 = 1.1 R/MBtu
Fuel cost for unit 2 = 1.4 R/MBtu *

Fuel cost for unit 3 = 1.5 R/MBtu

Figure 6.6a shows the individual unit incremental costs, which range from
§.3886 to 14847 R- MWh. A program was written based on Figure 6.5, and 4
was stepped from 8.3886 to 14.847.
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FIG. 6.6a Unit incremental costs.
TABLE 6.1 Lambda Steps Used in Constructing a Composite Cost Curve for
Example 6A
Step / B i F, Approx
1 8.3886 300.0 4077.12 4137.69
2 87115 4034 4960.92 492439
3 9.0344 506.7 5878.10 5799.07
4 9.3574 610.1 6828.66 67a1.72
3 9.6803 7135 7812.59 7812.35
6 10.0032 750.0 8168.30 820468
7 11.6178 765.6 8348.58 8375.29
8 11.9407 825.0 9048.83 9044.86
9 12.2636 884.5 9768.28 9743.54
10 12.5866 9439 10506.92 10471.31
i1 12.9095 1019.4 11469.56 11436.96
12 13.2324 108K.4 12369.40 12360.58
13 13.5553 111067 12668.51 12668.05
14 13.8782 1133.00 1297484 12979.63
15 14.2012 1155.34 13288.37 1329530
16 14.5241 1177.67 13609.12 13615.09
17 14.8470 1200.00 13937.00 13938.98
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FIG. 6.6b Eguivalent unit input/output curve.

At each increment, the three units are dispatched to the same 4 and
then outputs and generating costs are added as shown in Figure 6.5. The
results are given in Table 6.1. The result. called F, approx in Table 6.1 and
shown in Figure 6.6b, was calculated by fitting a second-order polynomial
to the P, and F, points using a least-squarcs fitting program. The equivalent
unit function is 4

F, approx(P,) = 2352.65 + 4. 7151 F, + 0.0041 168P?
(R/h) 300 MW < P < 1200 MW

The reader should be aware that when fitting a polynomial to a set of points,
many choices can be made. The preceding function is a good fit to the total
operating cost of the three units, but it is not that good at approximating the
incremental cost. More-advanced fitting methods should be used if one desires
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to match total operating cost as well as incremental cost. See Problem 6.2 for
an alternative procedure.

EXAMPLE 6B
Find the optimal dispatch for a gas-fired steam plant given the following.

Gas-fired plant:
H(Py) = 300 + 6.0P, + 0.0025P} MBtu/'h
Fuel cost for gas = 2.0 R/ccf (where | ccf = 107 ft*)
The gas is rated at 1100 Btu/ft?
50 < Pp < 400
Composite of remaining units:
H(P) = 200 + 8.5P, + 0.002P? MBtu/'h
Equivalent fuel cost = 0.6 R/MBtu
50 < P, < 500

The gas-fired plant must burn 40-10° ft? of gas. The load pattern-is shown
in Table 6.2. If the gas constraints are ignored, the optimum economic schedule
for these two plants appears as is shown in Table 6.3. Operating cost of the
composite unit over the entire 24-h period is 52,128.03 R. The total gas
consumption is 21.8-10° ft. Since the gas-fired plant must burn 40-10° ft* of
gas, the cost will be 2.0 R/1000 ft® x 40-10° ft*. which.is 80,000 R for the gas.
Therefore, the total cost will be 132,128 03 R. The solution method shown in
Figure 6.3 was used with y values ranging from (.500 to 0.875. The final value
for 7 is 0.8742 R/cel with an optimal schedule as shown in Table 6.4. This
schedule has a fuel cost for the composite unit of 34,937.47 R. Note that the
gas unit is run much harder and that it does not hit either limit in the optimal

TABLE 6.2 Load Pauern

Time Peried Load

1. 0000-0400 400 MW
2. 0400-0800 650 MW
3. 0800-1200 800 MW
4. 1200- 1600 500 MW
5. 16002000 200 MW
6. 2000-2400 300 MW

Where: n; =4, j=1...6.
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TABLE 6.3 Optimum Economic Schedule
(Gas Constraints Ignored) '

Time Period e 4 P,
1 T 350 . 50
2 500 150
g 500 300
4 450 50
5 150 50
6 250 S0

TABLE 6.4 Optimal Schedule iGas Constraints Met)

Time Period P, P,

1 197.3 202.6
2 353.2 296.8
3 146.7 353.3
4 2597 2403
s 12:6 127.4
6 135.0 165.0

schedule. Further. note that the total cost is now
34.937.47 R + 80.000 R = 1149374 R

so we have lowered the total fuel expense by properly scheduling the gas plant.

6.4 SOLUTION BY GRADlENT SEARCH TECHNIQUES

An aiternative solution procedure to the one shown in Figure 6.3 makes usc
of Eqgs. 6.5 and 6.6. R
n, (.,j‘F'ZP‘ =7,
dFi

and
P dyri
- 4Py,
then

dF,

2

p=| S (6.8)
dg . .
dPpy

For an optimum dispatch, 7 wiil be constant for all hours j..j = ... Jyae
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We can make use of this fact to obtain an optimal schedule using the
procedures shown in Figure 6.7a or Figure 6.7b. Both these procedures attempt
to adjust fuel-limited generation so that y will be constant over time. The
algorithm shown in Figure 6.7a differs from the algorithm shown in Figure 6.7b
in the way the problem is started and in the way various time intervals are

START

[ COMPUTE F(Pg), dFg /dP,

ASSUME FEASIBLE SCHEDULE
 SUCH THAT
Hless
L MGy =drer
=1
— = X
& dpg !

Jenax
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I
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FIG. 6.7a Gradient method based on relaxation technique.
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FIG. 6.7b Gradient method based on a simple search.

selected for adjustment. The algorithm in Figure 6.7a requires an initial
feasible but not optimal schedule and then finds an optimal schedule by
“pairwise” trade-offs of fuel consumption while maintaining problem feasi-
bility. The algorithm in Figure 6.7b does not require an initial feasible
fuel usage schedule but achieves this while optimizing. These two methods
may be called gradient methods because gy, is treated as a vector and
the 7; values indicate the gradient of the objective function with respect
to gy;. The method of Figure 6.7b should be followed by that of Figure 6.7a
to insure optimality.
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EXAMPLE 6C
Use the method of Figure 6.7b to obtain an optimal schedule for the problem

given in Example 6B. Assume that the starting schedule is the economic dispatch
schedule shown in Example 6B.

Initial Dispatch

Time Period
1 2 3 4 5 6
P 350 S00) ‘ 500 150 150 250
P, 50 150 300 50 50 50
1.0454 1.0266 0.9240 1.0876 0.9610 1.0032

Y, = 21.84-10% 1,

Since we wish to burn 40.0-10° ft* of gas, the error is negative; therefore,
we must increase fuel usage in the time period having maximum 7, that is,

period 4. As a start, increasc Pp to 150 MW and drop P, to 350 MW in
period 4.

Result of Step 1

Time Period

I 2 3 4 5 6
g 350 500 500 350 150 250
P, 50 150 300 150 50 50
1.0454 1.0266 0.9240 0.9680 0.9610 1.0032

Yoy — 242108 ¢
The crror is still negative, so we must increase fuel usage in the period with

maximum y, which is now period 1. Increase P, to ’00 MW and drop P, to
200 MW in penod 1.

Result of Step 2

Time Period
1 2 3 4 5 6
g 200 500 S00 350 150 250
Py 200 150 300 150 50 50
P 0.8769 1.0266 0.9240 0 9680 0.9610 1.0032

Yy =278 10° it*,
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and so on. After 11 steps, the schedule looks like this:

Time Period

| 2 3 P 5 6
P 200 350 450 250 75 140
P 200 300 350 250 125 160
: 08769 08712 0.8772 0.8648 0.8767 0.8794

3 g, = 40002-10° i,

which is beginning to look similar to the optimal schedule generated n
Example 6A.

6.5 HARD LIMITS AND SLACK VARIABLES

This section takes account of hard limits en the take-or-pay generating unit.
The limits are

Py 2 Proue (6.9)
and

Pr < Proa (6.10)

These may be added to the Lagrangian by the use of two constraint functions
and two new variables called slack variables (see Appendix 3A). The constraint
functions are '

1= Pr;— Pros + 53 (6.11)
and

d’zj:PTm‘:n"'PTj+S§_f (6']2)

where §,; and S,; are slack vanables that may take on any real value including
zero.
The new Lagrangian then becomes

I s

” N N N Jman "
7= S n; z F; + .Y_ ;'j(Ploadj - Z P; '“-P'rj) + 'r'( Z nidr; — Qro*r)
i=1 i=1 ) i

j=1 i =1 ' y \Ji=1

Jraan Jmax
+ Y a4 j(Prj— Proa + §3,) + z % A Prmin — Pry+ 53)) (6.13)
= j=1

b

where 2, %,; are Lagrange multiplicrs. Now, the first partial derivatives for



186 GENERATION WITH LIMITED ENERGY SUPPLY

the k'™ period are

0 ah

e =0=n — — A

0Py dF

0F . dgy
_fP__ =0= -4 +ay —ay + a—;{ff
0,\; Tw (6.14)
E_A. =0= 22.*51,&

AT

(P

i;.. =0= ZCXMSM

AP

As we noted in Appendix 3A, when the constrained variable (P, in this case)
is within bounds, the new Lagrange multipliers «,, = 2., = 0 and S, and S,,
are nonzero. When the variable is limited, one of the slack variables, §,, or S.,.
becomes zero and the associated Lagrange multiplier will take on a nonzero
value.

Suppose in some interval k, Py, = P, then §;, = 0 and «;, # 0. Thus.

. d
—'/‘k+ylk+?nk aﬂﬂ:() (6{5)

and if

the value of a,, will take on the value just sufficient to make the equality true.

EXAMPLE 6D

Repeat Example 6B with the maximum generation on P, reduced to 300 MW.
Note that the optimum schedule in Example 6A gave a Pp = 353.3 MW in the
third time period. When the limit is reduced to 300 MW, the gas-fired unit will
have to burn more fuel in other time periods to meet the 40-10°ft* gas
consumption constraint,

TABLE 6.5 Resulting Optimal Schedule with £, = 300 MW

4y

Time Period § P Pr; Aj Taj 2 %y
Py
1 1834 216.6 5.54 5.54 0
2 350.0 200.0 5.94 5.86 0.08
3 500.0 . 3000 6.3 5.86 044
4 2454 254.6 5.69 5.69 0
5 59.5 140.5 524 524 0
6 1214 178.6 5.39 5.39 0
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Table 6.5 showé the resulting optimal schedule where y = 0.8603 and total
cost = 122.984.83 R.

6.6 FUEL SCHEDULING BY LINEAR PROGRAMMING

Figure 6.8 shows the major elements in the chain making up the delivery system
that starts with raw-fuel suppliers and ends up in delivery of electric power to
individual customers. The basic elements of the chain are as follows.

The suppliers: These are the coal, oil, and gas companies with which the
utility must negotiate contracts to acquire fuel. The contracts are usually
written for a long term (10 to 20 yr) and may have stipulations, such as the
minimum and maximum limits on the quantity of fuel delivered over a
specified time period. The time period may be as long as a year, a month,
a week, a day, or even for a period of only a few minutes. Prices may
change, subject to the rencgotiation provisions of the contracts.

Coal pile A
Supplier 1
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. Qil .
i LElectncaI
= . loads
Supplier 2 .
{oil) c
=]
g E
Supplier 3 £ < %J
(gas) Gas pipeline é >
8
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FIG. 6.8 Energy delivery system.
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Transportation: Railroads. unit trains, river barges, gas-pipeline companies,
and such. all present problems in scheduling of deliveries of fuel.

Inventory: Coal piles, oil storage tanks, underground gas storage facilities.
Inventories must be kept at proper levels to forestall fuel shortages when
load levels exceed forecast or suppliers or shippers are unable to deliver.
Price fluctuations also complicate the decisions on when and how much to
add or subtract from inventories.

The remainder of the system— ~generators, transmission, and loads— are covered
in other chapters.

One of the most useful tools for solving large fuel-scheduling problems 1s
linear programming (LP). If the reader is not familiar with LP, an easily
understood algorithm is provided in the appendix of this chapter.

Linear programming ts an optimization procedure that minimizes a linear
objective function with variables that are also subject to linear constraints.
Because of this limitation. any nonlinear functions either in the objective or in
the constraint equations will have to be approximated by linear or piecewise
linear functions.

To solve a fuel-scheduling problem with linear programming, we must break
the total time period involved into discrete time increments, as was done in
Example 6B. The LP solution will then consist of an objective function that is
made up of a sum of hnear or piecewise linear functions, each of which is a
function of one or more variables from only one time step. The constraints will
be linear functions of variables from each time step. Some constraints will be
made up of variables drawn from one time step whereas others will span two
or more time steps. The best way to illustrate how te set up an LP to solve a
fuel-scheduling problem will be to use an example.

EXAMPLE 6E

We are given two coal-burning generating units that must both remain on-line
for a 3-wk period. The combined output from the two units is to supply the
following Joads (loads are assumed constant for 1 wk).

Week Load (MW)
i : 1200
2 1500
3 800

The two units are to be supplied by one coal supplier who is under contract
to supply 40.000 tons of coal per week to the two plants. The plants have
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existing coal inventories at the start of the 3-wk period. We must solve for the
following.

{. How should each plant be operated each week!
2. How should the coal deliverics be made up cach week?

The data for the problem are as follows.
Coal: Heat value = 11,500 Btu/Ib = 23 MBtu/ton (I ton = 2000 1b)

Coal can all be delivered to one plant or the other or it can be split, some
going (o one plant, some to the other, as long as the total delivery in each week
is equal to 40,000 tons. The coal costs 30 R/ton or 1.3 R, MBtu.

Inventories: Plant I has an initial inventory of 70,000 tons; its tinal inventory
is not restricted

Plant 2 has an initial inventory of 70,000 tons; its final inventory
is not restricted

Both plants have a maximum coal storage capacity of 200,000 tons of
coal.

Generating units:

Heat Input Heat Input

Min Max at Min at Max
Unit (MW}  (MW) (MBtu/h) {MBtu/h)
t 150 600 1620 5340
2 400 1000 3850 8750

The input versus output function will be approximated by a linear function
for each unit:
H,(P;) = 380.0 + 8.267P,

Hy(P;) = 383.3 + 8.167P,

The unit cost curves are

F.(P,) = 1.3 R/MBuu » H,(P,) = 49565 + 10.78P, (R/h)
Fy(Py) = 1.3 R/MBtu x Hy(P;) = 7608 + 10.65P; (R/h)
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The coal consumption g(tons/h) for each unit is

7

4,(P) = % (h:’l;‘ts) x Hy(P,) = 16.52 + 0.3594P, tons/h

1 tons
A(P,) = x Hy(Py) = 2536 + 0.3551 P, tons/h
q.(P, 3(MB[U) 2 () 2

(5]

To solve this problem with linear programming, assume that the units are
to be operated at a constant rate during each week and that the coal deliveries
will each take place at the beginning of each week. Therefore, we will set up
the problem with I-wk time periods and the generating unit cost functions and
coal consumption functions will be multiplied by 168 h to put them on a “per
week " basis; then,

Fi(P)) = 83,269.2 + 1811P, R/wk
Fy(P,) = 127.814.4  1789P, R/wk
q:(P) = 27754 + 60.4P, tons; wk
42(Py) = 4260.5 + 59.7P, tons,/wk

(6.16)

We are now ready to set up the objective function and the constraints for our
linear programming solution.

Objective function:  To minimize the operating cost over the 3-wk period. The
objective function is

Minimize Z = F,[P(D)] + F,[PA1)] + F,[(P,(2)] + F,[P.(2)]
+ LRG3 + B[P(2)] (6.17)

where F.(7) is the power output of the i unit during the /*® week, j = | ... 3.
Constraints:  During each time period, the total power delivered from the units
must equal the scheduled load to be supplied; then

Pi(1) + Py(1) = 1200
P,(2) + Py(2) = 1500 (6.18)
F(3) + Py(3) = 300

Similarly, the coal deliveries, D, and D, made to plant 1 and plant 2,
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respectively, during each week must sum to 40,000 tons; then

D,(1) + Dy(1) = 40,000
D,(2) + D,(2) = 40,000 (6.19)
D,(3) + D,(3) = 40,000 '

The volume of coal at each plant at the beginning of each week plus the
delivery of coal to that plant minus the coal burned at the plant will give the
coal remaining at the beginning of the next week. Letting ¥, and V; be the
volume of coal in each coal pile at the beginning of the week, respectively, we
have the following set of equations governing the two coal piles.

V(1) + Dy(1) — q,(1) = W(2)
Vy(1) + Da(1) — go(1) = ¥1(2)
i) + Di(2) — 4:(D = ()
V(2) + Dy(2) — 42(2) = 1(3)
Vi(3) + Dy(3) — ¢,(3) = (4
¥2(3) + Da(3) ~ 45(3) = V2(4)

(6.20)

where V(j) is the volume of coal in the i coal pile at the beginning of the 5%
week.

To set these equations up for the linear-programming solutions, substitute
the g,(P,) and q,(P;) equations from 6.16 into the equations of 6.20. In addition,
all constant terms are placed on the right of the equal sign and all variable
terms on the left; this leaves the constraints in the standard form for inclusion
in the LP. The result is

D, (1) — 60.4P,(1) — ¥,(2) = 27754 — V(1)
Dy(1) — 59.7P,(1) — Va(2) = 4260.5 — V(1)
Vi(2) + Dy(2) — 60.4P,(2) — (3) = 27754 '
Vy(2) + Dy(2) — 59.7P5(2) — V3(3) = 4260.5
V,(3) + D,(3) — 604P,(3) — ¥,(4) = 27754
¥5(3) + Dy(3) — 59.7P,(3) —- V,(4) = 4260.5

621)

Note: V(1) and ¥3(1) are constants that will be set when we start the problem.

The constraints from Egs. 6.18, 6.19, and 6.2 are arranged in a matrix, as
shown in Figure 6.9. Each variable is given an upper and lower bound in
keeping with the “upper bound " solution shown in the appendix of this chapter.
The P,(t) and P,(f) vanables are given the upper and lower bounds corresponding
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FIG. 6.9 Linear-programming constraint matrix for Example 6F.
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to the upper and lower limits on the generating units.. Dy (t) and Dy(r) are given
upper and lower bounds of 40.000 and zero. V,(¢) and ¥;(¢) are given upper
and lower bounds of 200,000 and zero.

Solution: The solution to this problem was carried out with a computer
program written to solve the upper bound LP problem using the algorithm
shown in the Appendix. The first problem solved had coal storage at the
beginning of the first week of

V(1) = 70,000 tons
¥5(1) = 70,000 tons
The solution is: '

Time Period K D, B 1 D, P,

1 70000.0 0 200 70000.0 40000.0 1000
2 55144.6 0 500 46039.5 40000.0 1000
3 22169.2 19013.5 150 22079.0 20986.5 650
4 293473 ‘

Optimum cost = 6,913.450.8 R.

In this case, there are no constraints on the coal deliveries to cither plant
and the system can run in the most economic manner. Since unit 2 has a lower
incremental cost, it is run at its maximum when possible. Furthermore, since
no restrictions were placed on the coal pile levels at the end of the third week,
the coal deliveries could have been shifted a little from unit 2 to unit 1 with no
effect on the generation dispatch.

The next case solved was purposely structured to create a fuel shortage at
unit 2. The beginning inventory at plant 2 was set to 50,000 tons, and a
requirement was imposed that at the end of the third week the coal pile at unit
2 be no less than 8000 tons. The solution was made by changing the right-hand
side of the fourth constraint from —65,739.5 (i.e, 4260.5 — 70,000) to —45739.5
(ie., 4260.5 — 50,000) and placing a lower bound on V,(4) (ie., variable X,;)
of 8000. The solution is:

Time Period v D, P, Vs D, P,

| 70000.0 0 200 50000.0 40000.0 1000

2 55144.6 0 500 26039.5 40000.0 1000

3 22169.2 0 300.5276 2079.0 40000.0 4994724
4 1241.9307 8000.0

Optimum cost = 6,916,762.4 R.
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Note that this solution requires unit 2 to drop off its generation in order to
meet the end-point constraint on its coal pile. In this case, all the coal must be
delivered to plant 2 to minimize the overall cost.

The final case was constructed to show the interaction of the fuel deliveries
and the economic dispatch of the generating units. In this case, the initial coal
piles were set to 10,000 tons and 150,000 tons, respectively. Furthermore, a
restriction of 30,000 tons minimum in the coal pile at unit 1 at the end of the
third week was imposed.

To obtain the most economic operation of the two units over the 3-wk
period. the coal deliveries will have to be adjusted to insure both plants have
sufficient coal. The solution was obtained by setting the right-hand side of the
third and fourth constraint equations to —7224.6 and — 145739.5, respectively,
as well as imposing a lower bound of 30,000 on V,(4) (ie. variable X,,). The
solution 1s:

Time Period Vi D, P v, D, P;

! 10000.0 48554 200 150000.0 35144.6 1000
2 0.0 40000.0 S00 121184.1 0 1000
3 7024.6 40000.0 150 57223.6 0 650
4 35189.2 14158.1

Optimum cost = 6.913,450.8 R.

The LP was able to find a solution that allowed the most economic operation
of the units while still directing enough coal to unit 1 to allow it to meet its
end-point coal pile constraint. Note that, in practice, we would probably not
wish to let the coal pile at unit 1 go to zero. This could be prevented by placing
an appropriate lower bound on all the volume variables (i.e., X5, X3, X115 Xqa
X+, and X,y).

This example has shown how a fuel-management problem can be solved
with linear programming. The important factor in being able to solve very large
fuel-scheduling problems is to have a linear-programming code capable of
solving large problems having perhaps tens of thousands of constraints and as
many, Or more, problem'variables. Using such codes, elaborate fuel-scheduling
problems can be optimized out over several years and play a critical role in
utility fuel-management decisions.

APPENDIX
Linear Programming

Linear programming is perhaps the most widely applied mathematical pro-
gramming technique. Simply stated, linear programming seeks to find the
optimum value of a linear objective function while meeting a set of linear



LINEAR PROGRAMMING 195

constraints. That is, we wish to find the optimum set of x values that minimize
the following objective function:

Z =X+ x5+ ...+ enxy
subject to a set of linear constraints:

QX +@5X + ..+ aynxy < by

Xy + A%, + ...+ a;yxy < b,

In addition, the variables themselves may have specified upper and lower limits.

X P oy g AR i=1...N

There are a variety of solutions to the LP problem. Many of these solutions
are tailored to a particular type of problem. This appendix will not try to
devclop the theory of alternate LP solution methods. Rather, it will present a
simple LP algorithm that can be used (or programmed on a computer) to solve
the applicable power-system sample problems given in this text.

The algorithm is presented in its simplest form. There are alternative
formulations, and these will be indicated when appropriate. If the student has
access to a standard LP program, such a standard program may be used to
solve any of the problems in this book.

The LP technique presented here is properly called an upper-bounding dual
linear programming algorithm. The “upper-bounding™ part of its name refers to
the fact that variable limits are handled implicitly in the algorithm. “Dual”
refers to the theory behind the way in which the algorithm operates. For a
complete explanation of the primal and dual algorithms, refer to the references
cited at the end of this chapter.

In order to proceed in an orderly fashion to solve a dual upper-bound linear
programming problem, we must first add what is called a slack variable to each
constraint. The slack variable is so named because it equals the difference or
slack between a constraint and its limit. By placing a slack variable into an
inequality constraint, we can transform it into an equality constraint. For
example. suppose we are given the following constraint.

2x; +3x, <15 (6A.1)
We can transform this constraint to an equality constraint by adding a slack
variable, x,.

2xy +3x; + x5 =15 (6A.2)

If x, and x, were to be given values such that the sum of the firsi two terms
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in Eq. 6A 2 added up to less than 15, we could still satisfy Eq. 6A.2 by setling
x5 to the difference. For example, if x, =1 and x, = 3, then x; = 4 would
satisfy Eq. 6A.2. We can go even further, however. and restrict the values of x,
so that Eq. 6A.2 still acts as an inequality constraint such as Eq. 6A.1. Note
that when the first two terms of Eq. 6A.2 add to exactly 15, x, must be set to
zero. By restricting x, to always be a positive number, we can force Eq. 6A.2
to vield the same effect as Eq 6A.1. Thus, '

2x, + 3, +xy =150 . , .
5 ) G is equivalent to: 2x, + 3x; < I3
0< Xy < 00

For a “greater than or equal to” constraint, we merely change the bounds on the
slack variable:

Py 4 ¥+ =15 :
: == is equivalent to: 2x; + 3x, 2 15
— L X, 20

Because of the way the dual upper-bounding algorithm is initialized, we will
always require slack variables in cvery constraint. In the case of an equality
constraint, we will add a slack variable and then require its upper and lower
bounds to both equal zero.

To solve our linear programming algorithm, we must arrange the objective
function and constraints in a tabular form as follows.

a, X, + 8%+ .- F Xoack, = b,

Ay Xy + dapXs + ... + Xotacks =bh, (6A.3)

CXy + Xyt ~-Z=0
\______\f____J

Basis variables

Because we have added slack variables to each constraint, we automatically
have arranged the set of equations into what is called canonical form. In
canonical form, there is at least one variable in each constraint whose coeflicient
is zero in all the other constraints. These variables are called the basis
variables. The entire solution procedure for the linear programming algorithm
centers on performing “pivot™ operations that can exchange a nonbasis variable
for a basis variable. A pivot operation may be shown by using our tableau
in Eq. 6A.3. Suppose we wished to exchange variable x,, a nonbasis variable,
fOr X,jacx » @ slack variable. This could be accomplished by “pivoting” on column
1. row 2. To carry out the pivoting operation we execute the following
steps.
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Pivoting on Column 1, Row 2

Step 1 Multiply row 2 by i/a,,. Thatis,cach a,;, j=1... N in row 2 becomes-

., a
L T ]
a,
and
¢ b
b, becomes b, = -
az,

Step 2 For each row i (i # 2), multiply row 2 by a,; and subtract from row
i. That 1s, each coefficient «;; in row i (i # 2) becomes

aj; = d;; — a;,a5; j=1%1...N

and

b, beccmes b, = b, — a;, b}

Step 3 Last of all. we also perform the same operations in step 2 on the cost
row. That is, each coefficient ¢; becomes

¢;=c;— ¢ydy; j= LaaN

The result of carrying out the pivot operation will look like this:

’ . 5 . = b
a3:X; + .o Xaggex, T 152X slacky . b‘

Xy +ahX; + ... + @5, Xgrack; = b}
€aXy + . =+ c;zxslaciz —L=2Z

Notice that the new basis for our tableau is formed by variable x; and x,;, -
Noaex, MO longer has zero coefficients in row | or the cost row.

The dual upper-bounding algorithm proceeds in simple steps wherein
variables that are in the basis are exchanged for variables out of the basis. When
an exchange is made, a pivot operation is carried out at the appropriate row
and column. The nonbasis variables are held equal to either their upper or their
lower value, while the basis variables are allowed to take any value without
respect to their upper or lower bounds. The solution terminates when all the
basis variables are within their respective hmits.

In order to use the dual upper-bound LP algorithm, follow these rules.
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Start:
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1. Each variable that has a nonzero coefficient in the cost row (i.e. the

g

objective function) must be set according to the following rule.

If C; > 0, set x; = x™

IfC; <0, set x; = xj*

If C; =0, x; may be set to any value, but for convenience set it to its
minimum also.

Add a slack variable to each constraint. Using the x; values from steps |
and 2, set the slack variables to make each constraint equal to its
limit,

Variable Exchange:

L.

Find the basis variable with the greatest violation; this determines the
row to be pivoted on. Call this row R. If there are no limit violations
among the basis variables. we are done. The most-violaied variable leaves
the basis and is set equal to the limit that was violated.

Select the variable to enter the basis using one of the following column
selection procedures.

Column Selection Procedure P1 (Most-violated variable below its minimum)

Given constraint row R, whose basis variable is below its minimum and is the
worst violation. Pick column S, so that, ¢s/(— ag ) is minimum for all S that

meet

the following rules:

a. S is not in the current basis.

b. ag g is not equal to zero.

If xg is at its mimmum, then ay ¢ must be negative and ¢y must be

positive or zero. -

d. If xg is at its maximum, then aR s must be positive and ¢y must be
negat:ve or zero.

(]

i

Column Selection Procedure P2 (Most-violated variable above its maximum)

Given constraint row R, whose basis variable is above its maximum and is the
worst violation. Pick column S, so that, cg/ag s is the minimum for all § that

meet

the following rules:
a. Sis not in the current basis.
b. ag g is not already zero.
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¢. If x5 is at its minimum, then ag ¢ must be positive and cs must be
positive or zero. _

d. If xg is at its maximum, then ag ¢ must be negative and cg must be
negative or zero.

3. When a column has been selected, pivot at the selected row R (from
step 1) and column § (from step 2). The pivot column’s variable, S, goes
into the basis.

If no column fits the column selection criteria, we have an infeasible solution.
That is, there are no values for x,...xy that will satisfy all constraints

START
SEARCH AMONG THE BASIS VIOLATIONS:
VARIABLES FOR THE o
VARIABLE WITH THE WORST | Xmin ~Xviar (1F Xyar < Xl
VIOLATION. THIS or
DETERMINES THE ROW Xyar “Xmax IF Xyar > Xpax!
SELECTION, R

NO VIOLATIONS AMONG

BASIS VARIABLE
— DONE

MOST VIOLATED VARIABLE
IS ABOVE ITS MAXIMUM

MOST VIOLATED VARIABLE
IS BELOW ITS MINIMUM

[ \

PICK COLUMN S USING PICK COLUMN S USING
COLUMN SELECTION : COLUMN SELECTION
PROCEDURE P1 ) PROCEDURE P2

FOUND
COLUMN
S?

FOUND
COLUMN
~S?

YES ) YES

NO NO
INFEASIBLE SOLUTION INFEASIBLE SOLUTION
’ -

PIVOT ON SELECTED
ROW AND COLUMN

FIG. 6.10 Dual upper-bound linear programming algorithm.
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simultaneously. In some problems, the cost coefficient ¢ associated with column
S will be zero for several different values of S. In such a case, ¢g/ag s will be
zero for cach such S and none of them will be the minimum. The fact that ¢
is zero means that there will be no increase in cost if any of the § values are
pivoted into the basis; therefore, the algorithm is indifferent to which one 1S
chosen. 3

Setting the Variables after Pivoting.

I. All nonbasis variables. except xg, remain as they were before pivoting.

2. The most violated variable is set to the limit that was violated.

1 Since all nonbasis variables are determined, we can proceed to set each
basis variable to whatever value is required to make the constraints
halance. Note that this last step may move all the basis vanables to new
values. and some may now end up violating their respective limits
(including the v, variable).

Go back to step | of the variable exchange procedure

These steps are shown in flowchart form in Figure 6.10. To help you
understand the procedures involved, a sample problem is solved using the dual
upper-bounding algorithm. The samplie problem, shown in Figure 6.11, consists
of a two-variable objective with one equality constraint and one inequality
constraint.

First, we must put the equations into canonical form by adding stack
variables x5 and x,. These variables are given limits corresponding to the type
of constraint into which they are placed. x, is the slack variable in the equality

A2 { 14x, a2

~ Cost contours | /
g Mwin, N TS
N
\
N

‘\\\ N\ Pt
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x; =16

\
\. 7\ \\ \\ \\\ ;.
\\ N N A A %p=2

a\ \\ N \L ‘\ \\ \

L3}

NN N \ \ :
=2 N N N 3 e >§,=zo
Minimize: Z =2x, + x;
Subject to:  x, + x, = 20 constraint |

~14x, + x;<2  constraint 2

2L %, 512

2<x,<16

FIG. 6.11 Sample linear programming problem.
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constraint, so its hmits are both zero; x, is in an mnmequality constraint, so it is
restricted to be a positive number. To start the problem, the objective function
must be set to the minimum value it can attain, and the algorithm will then
seek the minimum constrained solution by increasing the objective just enough
to reach the constrained solution. Thus. we set both x; and x, at their minimum
values since the cost coefficients are both positive. These conditions are shown
here:

Constraint 1: X, + x5 + X3 =20+ R
Constraint 2:  —1.4x, + x, 4+ Xy =
Cost: 2x, + X, ~Z =
0<x3<0
0= x, < 0
Minimum: 2 0 0
Present value: 2 2 16 2.8 6
Maximum: 12 16 0 5
Basis Basis
variable variable
1 2
T
Worst-
violated
variable

We can see from these conditions that variable x, is the worst-violated
variable and that it presently exceeds its maximum limit of zero. Thus, we must
use column procedure P2 on constraint number 1. This is summarized as
follows:

Using selection procedure P2 on constraint 1:

2
. ¢ 2
i=1 a, >0 Xy = %P ¢ >0 then =<=2
a, |1
. ¢ 1
i=2 a>0 x;=xT  ¢,>0 then ‘= =1

minc a; 15 lati=2

Pivot at column 2. row 1
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To carry out the required pivot operations on column 2, row 1, we need
merely subtract the first constraint from the second constraint and from the
objective function. This results in:

Constraint 1: Xij + Xy + X3 = 20
Constraint 2: — 2.4x, = X3 + X4 = —18« R
Cost: X — X3 -Z=-2
Minimum: 2 2 0 0
Present vaiue: 2 18 0 -132 22

ll Maximum: 12 16 0 5

Basis Basis

i variable  variable
\ 1 2
! =
} Worst-
\ violated
i variable

We can see now that the variable with the worst violation is x, and
that x, is below its minimum. Thus, we must use selection procedure Pl as
follows:

Using selection procedure P1 on constraint 2:
1

i=1 a, <0 x,=x7" ¢;>0 then L-= o — =04166
—-a, —(—24)

3 a, <0 xy=x7"=xTcy<0 then x; is not eligible

il

Pivot at column 1, row 2

After pivoting, this results in.
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Constraint 1: X3+ 0.5833x; + 0.4166x, = J2.5
Constraint 2: Xy + 0.4166x; — 0.4166x, = 7.5
Cost: — 1.4166x, + 04166x, —Z = —275
Minimum: 2 2 0 0
Present value: 7.5 12.5 0 0 =275
Maximum: 12 16 0 20
Basis - Basis
variable variable
1 2

At this point, we have no violations among the basis variables, so the
algorithm can stop at the optimum.

= 7.
% 5} cost = 27.5
12.5

I

X2

See Figure 6.11 to verify that this is the optimum. The dots in Figure 6.11
show the solution points beginning at the starting point x, =2, x; =2,
cost = 6.0, then going to x, =2, x, = 18, cost =220, and finally to the
optimum x, = 7.5, x, = 12.5, cost = 27.5. '

How does this algorithm work? At each step, two decisions are made.

1. Select the most-violated variable.
2. Select a variable to enter the basis.

The first decision will allow the procedure to eliminate, one after the other,
those constraint violations that exist at the start, as well as those that
happen during the variable-exchange steps. The second decision (using the
column selection procedures) guarantees that the rate of increase in cost,
to move the violated variable to its limit, is minimized. Thus, the algorithm
starts from a minimum cost, infeasible solution (constraints viclated), toward
a minimum cost, feasible solution, by minimizing the rate of cost increase at
each step.
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PROBLEMS

6.1 Three units are on-line all 720 h of a 30-day

are as follows:
H,
H,
H,

Il

225 + 847P, + 0.0025P7,
729 + 6.20P, + 0.0081P3.
400 + 7.20P, + 0.0025P2, 50 < Py < 450

GENERATION WITH LIMITED ENERGY SUPPLY

month. Their characteristics

A
(55

50
S0

S0< P =

0 <P

()

<

In these equations, the H; are in MBtu/h and the P, are in MW.

Fuel costs for units

2 and 3 are 0.60 R

MBtu. Unit 1, however. 1s

operated under a take-or-pay fuel contract where 60,000 tons of coal are
to be burned and/or paid for in each 30-day period. This coal costs
12 R ton delivered and has an average heat content of 12,500 Btu/lb

(1 ton = 2000 Ib).

The system monthly load-duration curve may be approximated by three

steps as follows.

Load Duration
{h)

S0
S50
120
720

300
Total

Energy
(MWh)

40000
275000
6000
IS1000

a. Compute the economic schedule for the month assuming all three units
are on-line all the time and that the coal must be consumed. Show the
MW loading for each load period, the M Wh of each unit, and the value

of gamma (the pseudo-fuel cost).

b. What would be the schedule if unit 1 was burning the coal at 12 R ton

with no constraint to use 60,000 tons?!

Assume the coal may be

purchased on the spot market for that price and compute all the data
asked for in part a. In addition. calculate the amount of coal required

for the unit.

Refer to Example 6A, where three generating units are combined into a

single composite generating unit. Repeat the example, except develop an
equivalent incremental cost characteristic using only the incremental
characteristics of the three units. Using this composite incremental
characteristic plus the zero-load intercept costs of the three units, develop
the total cost characteristic of the composite. (Suggestion: Fit the composite

incremental cost data points using a hnear
squares fitting algorithm.)

approximation and a least-
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Refer to Problem 3.8, where three generator units have input-output
curves specified as a series of straight-line segments. Can you develop a
composite input-output curve for the three units” Assume all three units
are on-line and that the composite input-output curve has as many linear
segments as needed.

Refer to Example 6E. The first problem solved in Example 6E left the
end-point restrictions at zero to 200,000 tons for both coal piles at the
end of the 3-wk period. Resolve the first problem [}V(1) = 70,000 and
15(1) = 70.000] with the added restriction that the final volume of coal at
plant 2 at the end of the third week be at feast 20,000 tons.

Refer to Example 6E. In the second case solved with the LP algorithm
(starting volumes equal to 70,000 and 50,000 for plant 1 and plant 2,
respectively), we restricted the final volume of the coal pile at plant 2 to
be 8000 tons. What is the optimum schedule if this final volume restriction
is relaxed (i.c., the final coal pile at plant 2 could go to zero)?

Using the linear programming problem in the text shown in Example 6E,
run a linear program to find the following:

1. The coal unloading machinery at plant 2 is going to be taken out
for maintenance for one week. During the maintenance work. no
coal can be delivered to plant 2. The plant management would like
to know if this should be done in week 2 or week 3. The decision
will be based on the overall three-week total cost for running both
plants.

2. Could the maintenance be done in week 1?7 If not, why not?

Use as initial conditions those found in the beginning of the sample
LP executions found in the text; ie, ¥(1)=70,000 and V5(2)=70,000.

The “Cut and Shred Paper Company ™ of northern Minnesota has two
power plants. One burns coal and the other burns natural gas supplied
by the Texas Gas Company from a pipeline. The paper company has
ample supplies of coal from a mine in North Dakota and it purchases gas
as take-or-pay contracts for fixed periods of time. For the 8-h time period
shown below, the papef company must burn 15-10° ft® of gas.

The fuel costs to the paper company are

Coal: 0.60 $/MBtu

Gas: 2.0 $/ccf (where 1 ccf = 1000 ft?)
the gas is rated at 1100 Btu/ft?



206

6.8

6.9

GENERATION WITH LIMITED ENERGY SUPPLY
Input--output charactcrisiiés of generators:
Unit 1 (coal unit): H,(P,) = 200 + 8.5P, + 0.002P{ MBtu/h
50 < P, < 500

Unit 2 (gas unit): Hy(P,) = 300 + 6.0P, + 0.0025P; MBtu/h
50 < P, < 400

Load (both load perieds are 4 h long):

Period Load (MW)
1 400
2 650

Assume both units are on-line for the entire 8 h..
Find the most economic operation of the paper company power
plants. over the 8 h, which meets the gas consumption requirements.

Repeat the example in the Appendix, replacing the x,; + x, = 20 constraint

. with:

Xy4 X < 20
3

Redraw Figure 6.11 and show the admissible. convex region.

An oil-fired power plant (Figure 6.12) has the following fuel consumption
curve.

P + 0005 100 < P < 500 MW
q(bbl/h;={50+ + 0.005P for <P<

for P=0

The plant is connected to an oil storage tank with a maximum capacity
of 4000 bbl. The tank has an initial volume of oil of 3000 bbl. In addition.
there is a pipeline supplying oil to the plant. The pipeline terminates in
the same storage tank and must be operated by contract at 500 bbi/h.
The oil-fired power plant supplies energy into a system, along with other
units. The other units have an equivalent cost curve of

F., = 300 + 6P, + 0.0025P,
S0<P <700 MW

eq =
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FIG. 6.12 Oil-fired power plant with storage tank for Problem 6.9.

The load to be supplied is given as follows:

Period

Load (MW)

o 1D

400
900
700

Each time period is 2 h in length. Find the oil-fired plant’s schedule using
dynamic programming, such that the operating cost on the equivalent
plant is minimized and the final volume in the storage tank is 2000 bbl at
the end of the third period. When solving, you may use 2000, 3000, and
4000 bbl as the storage volume states for the tank. The g versus P function
values yvou will need are included in the following table.

q(bbl/h)

P(IMW)

0
200
250
500
750

1000
1250
1500
1800

0
100.0
123.6
216.2
2873
347.2
400.0
447.7
500.0

The plant may be shut down for any of the 2-h periods with no start-up

or shut-down costs.

FURTHER READING

There has not been a great deal of research work on fuel scheduling as specifically
applied to power systems. However. the fuel-scheduling problem for power systems 1s
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not really that much different from other “scheduling™ problems. and, for this type of
problem, a great deal of literature exists.

References 1--4 are representative of eflorts in applying scheduling techniques 1o the
power system fue)-scheduling problem. References 3-8 are textbooks on linear program-
ming that the agthors have used. There are many more texts that cover LP and its
variations. The reader is encouraged to study LP independently of this text il a great
deal of use is to be made of LP. Many computing equipment and independent software
companies have excellent LP codes that can be used, rather than writing one’s own
code Reference 8 is the basis for the algorithm in the appendix 1o this chapter. References
911 give recent techniques used.

1. Trefny. F. J., Lee. K Y., “Economic Fuel Dispatch.” IEEE Transactions on Power
Apparatus and Systems, Vol. 100, July 1981, 3468- 3477
. Seymore. G. F., "Fuel Scheduling for Electric Power Systems.” in A. M. Ertsman,
K. W. Noves, M. H. Dwarakanath (eds.), Electric Power Problems: The Mathematical
Challenge. SIAM, Philadelphia, 1980, pp. 378392
3 Lamont J. W. Lesso. W. G. “An Approach to Daily Fossil Fuel Management.” in
A. M. Ersman. K. W. Noves, M. H. Dwarakanath (eds). Electric Power Prohiems:
The Matkematical Challenge. STAM, Philadelphia, 1980, pp. 414-425.
4 Lamont, J. W.. Lesso, W. G., Rantz, M.. *Daily Fossii Fuel Management.” 1979
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9. Rosenberg. L. D., Williams, D. A., Campbell, 1. D., “Fuel Scheduling and Accounting,”
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10: Lee, F. N., “Adaptive Fuel Allocation Approach to Generation Dispatch using
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I1. Sherkat. V. R.. Tkura, Y., “Experience with Interior Point Optimization Software
for a Fuel Planning Application.” 1993 IEEE Power Industry Computer Applications
Conference, pp. 89 -96.



7 Hydrothermal Coordinati.o'n

71 INTRODUCTION

The systematic coordination of the operation of a system of hydroelectric
generation plants is usually more complex than the scheduling of an all-thermal
generation system. The reason is both simple and important. That is, the
hydroelectric piants may very well be coupled both electrically (ie., they all
serve the same load) and hydraulically (1.e., the water outflow from one plant
may be a very significant portion of the inflow to one or more other,
downstream plants).

No two hydroelectric systems in the world are alike. They are all different.
The reasons for the differences are the natural differences in the watersheds,
the differences in the manmade storage and release elements used to control
the water flows, and the very many different types of natural and manmade
constraints imposed on the operation of hydroelectric systems. River systems
may be simple with relatively few tributaries (¢.g., the Connecticut River), with
dams in series (hydraulically) along the river. River systems may encompass
thousands of acres, extend over vast multinational areas, and include many
tributaries and complex arrangements of storage reservoirs (e.g., the Columbia
River basin in the Pacific Northwest).

Reservoirs may be developed with very large storage capacity with a few
high-head plants along the river. Alternatively, the river may have been
developed with a larger number of dams and reservoirs, each with smaller
storage capacity. Water may be intentionaily diverted through long raceways
that tunnel through an entire mountain range (c.g., the Snowy Mountain
scheme in Australia), In Furopean developments, auxiliary reservoirs. control
dams. locks, and even separate systems for pumping water back upstream have
been added to rivers.

However, the one single aspect of hydroelectric plants that differentiates
the coordination of their operation more than any other is the existence
of the many. and highly varied. constraints. In many hydrosystems, the
generation of power is an adjunct to the control of flood waters or the regular,
scheduled release of water for irrigation. Recreation centers may have developed
along the shores of a large reservoir so that only small surface water elevation
changes are possible. Waler release in a river may well have to be controlled
so that the river is navigable at all times. Sudden changes, with high-volume
releases of water, may be prohibited because the release could result in

209
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a large wave traveling downstream with potentially damaging effects. Fish
ladders may be nceded. Water releases may be dictated by international
treaty.

To repeat: all hydrosystems are different.

7.1.1 Long-Range Hydro-Scheduling

The coordination of the operation of hydroelectric plants involves, of course,
the scheduling of water releases. The long-range hydro-scheduling problem
involves the long-range forecasting of water availability and the scheduling of
reservoir water releases (ie., “drawdown™) for an interval of time that depends
on the reservoir capacities.

Typical long-range scheduling goes anywhere from 1 wk to 1 yr or several
vears. For hydro schemes with a capacity of impounding water over several
scasons, the long-range problem involves meteorological and statistical analyses.

Nearer-term water inflow forecasts might be based on snow melt cxpecta-
tions and near-term weather forecasts. For the long-term drawdown schedule,
a basic policy selection must be made. Should the water be used under
the assumption that it will be replaced at a rate based on the statistically
expected (i.e., mean value) rate, or should the water be released using
a “worst-case” prediction. In the first instance, it may well be possible
to save a great deal of electric energy production expense by displacing
thermal generation with hydro-generation. If, on the other hand, a worst-case
policy was selected, the hydroplants would be run so as to minimize the
risk of violating any of the hydrological constraints (e.g., running reservoirs
too low, not having enough water to navigate a river). Conceivably, such
a schedule would hold back water until it became quite likely that cven
worst-case rainfall (runoff, etc) would still give ample water to meet the
constraints.

Long-range scheduling invoives optimizing a policy in the context of
unknowns such as load, hydraulic inflows, and unit availabilities (steam and
hydro). These unknowns are treated statistically, and long-range scheduling
involves optimization of statistical variables. Useful techniques include:

I. Dynamic programming, where the entire long-range operation time
period is simulated (e.g,, | yr) for a given set of conditions.

2. Composite hydraulic simulation models, which can represent several
reSErvoirs.

3. Statistical production cost models.

The problems and techniques of long-range hydro-scheduling are outside
the scope of this text, so we will end the discussion at this point and continue
with short-range hydro-scheduling.
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7.1.2 Short-Range Hydro-Scheduling

Short-range hydro-scheduling (1 day to 1 wk) involves the hour-by-hour
scheduling of all generation on a system to achieve minimum production cost
for the given time period: In such a scheduling problem, the load, hydraulic
inflows, and unit availabilities are assumed known. A set of starting conditions
(c.g., reservoir levels) is given, and the optimal hourly schedule that minimizes
a desired objective, while meeting hydraulic steam, and electric system con-
straints, is sought. Part of the hydraulic constraints may involve meeting
“end-point” conditions at the end of the scheduling interval in order to conform
to a long-range, water-release schedule previously established.

7.2 HYDROELECTRIC PLANT MODELS

To understand the requirements for the operation of hydroelectric plants, one
must appreciate the limitations imposed on operation of hydro-resources by
flood control, navigation, fisheries, recreation, water supply, and other-demands
on the water bodies and streams, as well as the characteristics of energy
conversion from the potential energy of stored water to electric energy. The
amount of energy available in a unit of stored water, say a cubic foot, is equal
to the product of the weight of the water stored (in this case, 62.4 1b) times the
height (in feet) that the water would' fall. One thousand cubic feet of water
falling a distance of 42.5 ft has the energy equivalént to 1 kWh. Correspondingly,
425 ft? of water falling 1000 ft also has the energy equivalent to 1 kWh.
Consider the sketch of a reservoir and hydroelectric plant shown in Figure
71. Let us consider some overall aspects of the falling water as it travels from
the reservoir through the penstock to the inlet gates, through the hydraulic
turbine down the draft tube and out the tailrace at the plant exit. The power
that the water can produce is equal to the rate of water flow in cubic feet per

Forebay D
Trash
racks
and
intake Generator Gross
head
Rassrvor / Turbine
Penstock
Afterbay
Draft
tube

FIG. 7.1 = Hydroplant components.
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second times a conversion coefficient that takes into account the net head (the
distance through which the water falls, less the losses i head caused by the
flow) times the conversion efficiency of the turbine generator. A flow of 1 ft3/
falling 100ft has the power equivalent of approximately 8.5kW. If :he
flow-caused loss in head was 59, or 5 {t, then the power equivalent for a flow
of 1 ft* of water per second with the net drop of 100 — S, or 95 ft, would have
the power equivalent of slightly more than 8 kW (85 x 95%). Conversion
efficiencies of turbine generators are typically in the range of 85 to 90%, at the
best efficiency operating point for the turbine generator, so 1 ft*/sec failing 100 ft
would typically develop about 7kW at most.

Let us return to our description of the hydroelectric plant as illustrated in
Figure 7.1. The hydroelectric project consists of a body of water impounded
by a dam, the hydroplant, and the exit channel or lower water body. The energy
available for conversion to electrical energy of the water impounded by the
dam is a function of the gross head; that is, the elevation of the surface of the
reservoir less the elevation of the afterbay, or downstream water level below
the hydroelectric plant. The head available to the turbine itself is slightly less
than the gross head, due to the friction losses in the intake, penstock, and draft
tube. This 1s usually expressed as the net head and is equal to the gross head
less the flow losses (measured in feet of head). The flow losses can be very
significant for low head (10 to 60 ft) plants and for plants with long penstocks
(several thousand feet). The water level at the afterbay is influenced by the flow
out of the reservoir, including plant release and any spilling of water over the
top of the dam or through bypass raceways. During flooding conditions such
as spring runoff, the rise in afterbay level can have a significant and adverse
effect on the energy and capacity or power capacity of the hydroplant. '

The type of turbine used in a hydroelectric plant depends primarily on the
design head for the plant. By [ar the largest number of hydroelectric projects
use reaction-type turbines. Only two types of reaction turbines are now in
common use. For medium heads (that is. in the range from 60 to 1000 ft), the
Francis turbine is used exclusively. For the low-head plants (that is, for design
heads in the range of 10 to 60 ft), the propeller turbine is used. The more modern
propeller turbines have adjustable pitch blading (called Kaplan turbines) to
improve the operating efficiency over a wide range of plant net head. Typical
turbine performance results in an efficiency at full gate loading of between 85
to 90%. The Francis turbine and the adjustable propeller turbine may operate
at 65 to 1259 of rated net head as compared to 90 to 110% for the fixed
propeller.

Another factor affecting operating efficiency of hydro-units is the MW
loading. At light unit loadings, efficiency may drop below 70%; (these ranges
are often restricted by vibration and cavitation limits) and at full gate may rise
to about 877;. If the best use of the hydro-resource is to be obtained, operation
of the hydro-unit near its best efficiency gate position and near the designed
head is necessary. This means that unit loading and control of reservoir forebay
are necessary to make efficient use of hydro-resources. Unit loading should be
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FIG. 7.2 Incremental water rate versus power output.

near best cfficiency gate position, and water-release schedules must be co-
ordinated with reservoir inflows to maintain as high a head on the turbines as
the limitations on forebay operations will permit.

Typical plant performance for a medium head, four-unit plant in South
America is illustrated in Figure 7.2. The incremental *“water rate” is expressed
in acre-fcet per megawatt hour.* The rise in- incremental water rate with
increasing unit output results primarily from the increased hydraulic losses with
the increased flow. A composite curve for multiple unit operation at the plant
would reflect the mutual effects of hydraulic losses and rise in afterbay with
plant discharge. Very careful attention must be given to the number of units
run for a given required output. One unit run at best efficiency will usually use
less water than two units run at hall that load. )

High-head plants (typically over 1000 ft) use impulse or Pelton turbines. In
such turbines, the water is directed into spoon-shaped buckets on the wheel by
means of one or more water jets located around the outside of the wheel.

In the text that follows, we will assume a characteristic giving the relationship
between water flow through the turbine, g. and power output, P(MW), where
4 is expressed in ft*/sec or acre-ft/h. Furthermore, we will not be concerned
with what type of turbine is being used or the characteristics of the reservoir,
other than such limits as the reservoir head or volume and various flows.

* An gere-fool ts a common umi of water volume. It is the amount of water that will cover 1 acre
to a depth of 1 it (43,560 ft®). 1t also happens to be nearly equai to half a cubic foot per second
flow for a day (43,200 ft’). An acre-foot is equal to 1.2335+10° m*.

i
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7.3 SCHEDULING PROBLEMS

7.3.1 ‘Types of Scheduling Problems

In the operation of a hydroelectric power system, three general categories of
problems arise. These depend on the balance between the hydroelectric
generation. the thermal generation, and the load.

Systems without any thermal generation' are fairly rare. The economic
scheduling of these systems is really a problem in scheduling water reicases to
satisfy all the hydraulic constraints and meet the demand for electrical energy.
Techniques developed for scheduling hydrothermal systems may be used in
some systems by.assigning a pseudo-fuel cost to some hydroelectric plant. Then
the schedule is developed by minimizing the production “cost” as in a
conventional hydrothermal system. In all hydroelectric systems, the scheduling
could be done by simulating the water system and developing a schedule that
leaves the reservoir levels with a maximum amount of stored energy. In
geographically extensive hydroelectric systems, these simulations must recognize
water travel times between plants. -

Hydrothermal systems where the hydroelectric system is by far the largest
component may be scheduled by economically scheduling the system to produce
the minimum cost for the thermal system. These are basically problems in
scheduling energy. A simple example is illustrated in the next section where
the hydroelectric system cannot produce sufficient energy to meet the expected
load.

The largest category of hydrothermal systems include those where there is
a closer balance between the hydroelectric and thermal generation resources
and those where the hydroelectric system is a small fraction of the total capacity.
In these systems, the schedules are usually developed to minimize thermal-
generation production costs, recognizing all the diverse hydraulic constraints
that may exist. The main portion of this chapter is concerncd with systems of

this type.

7.3.2 Scheduling Energy

Suppose, as in Figure 7.3, we have two sources of electrical energy to supply
a load, one hydro and another steam. The hydroplant can supply the load

q Py P F

Hydro Steam

Load

FIG. 7.3 Two-unit hydrothcrmal system.
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by itself for a limited time. That is, for any time period j,
Pmlz‘u‘lud_{ j= l"‘jmu (71)

However, the energy available from-the hydroplant is insufficient to meet the
load.

!-‘l j”‘

Y, Pyjn; < Y Powajmy hi= number of hours in period j

i=1 j=1 A
jl'»ll (7.2)
Y. n; = Tpnae = total interval
j=1

We would like to use up the entire amount of energy from the hydroplant n
such a way that the cost of running the steam plant is minimized. The
steam-plant energy required is

Jmax Jmax
Z Hoadj"j— z Pujn,= E (7.3)
i=1 j=1

Load Hydro- Steam
energy " energy energy

We will not require the steam unit to run for the entire interval of T, hours.
Therefore, '

N .
Y Pn;=E N, = number of periods the steam plant is run  (7.4)
i=1

Then

N
Z nj < Tmu
j= Lk

the scheduling problem becomes

Ny
Min FT’= Z F(PS'))nj (7'5)
j=1
subject to
Ne
Y Pn,—E=0 (7.6)
j=1

and the Lagrange function is

Ne N,
¥ =Y F(Psn; + a(E ~ P,jn,-) (1.0
3 i=1

jm j=
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Then
G .
0L _SRE) o forj=1...N,
8, ” " dp,
or (7.8)
(EF_(_Pi)za forj=1...N,
dP

This means that the steam plant should be run at constant incremental cost
for the entire period it is on. Let this optimum value of steam-generated power
be P¥, which is the same for all time intervals the steam unit is on. This type
of schedule is shown in Figure 7.4.

The total cost over the interval is

Ng Ny
Fr= Z F(P¥)n;, = F(P¥) Z n;=F(P¥T, (7.9)
=1 i=1
where

I =

s

n; = the total run time for the steam plant
3

gk

J

Let the stcam-plant cost be expressed as

F(F)=A+ BP, + CP? (7.10)
then
Fr = (A + BP} + CP*H)T, (7.11)
also note that
Ny Ng
2 Pinj=3 P¥n;=P:T,=E (7.12)
=1 =1
g
2 / Hydrg T ~—
-4
g
p? \Stem\ /
J \ \\\ / Time
T‘ Tmu

FIG. 7.4 Resulting optimal hydrothermal schedule.
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Then
E
and
E
Fr = (A + BP* + CP:Z)(F) A (7.14)
Now we can establish the value of P¥ by minimizing F;:
Ay ZAE s cE=0 (7.15)
dP}  P¥?
or )
Pr = J4/C (7.16)

which means the unit should be operated at its maximum efficiency point long
enough to supply the energy needed, E. Note, if

F(P)= A+ BP, + CP? = f, x H(P) (1.17)

where f, is the fuel cost, then the heat rate is

B _ 1 (f_ LB+ cg) (1.18)
P P

s < s

and the heat rate has a minimum when

e [E@] - ’_FA’ +C (7.19)

giving best efficiency at
P, = .JA/C = Pt (7.20)
EXAMPLE 7A

A hydroplant and a steam plant are to supply a constant load of 90 MW for
I wk (168 h). The unit characteristics are

Hydroplant: ¢ = 300 + 15P, acre-ft/h
0 < Py < 100 MW
Steam plant: H, = 5325+ 11.27P, + 0.0213P}

125 < P, < 50 MW
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Part 1

Let the hydroplant be limited to 10,000 MWh of energy. Solve for T7, the
run time of the steam unit. The load is 90 x 168 = 15,120 MWh, requiring
5120 MWh to be generated by the steam plant.

The steam plant’s maximum efficiency is at \/5.25/0.021 3 = 50 MW. There-
fore, the steam plant will need to run for 5120/50 or 1024 h. The resulting
schedule will require the steam plant to run at 50 MW and the hydroplant at
40 MW for the first 102.4 h of the week and the hydroplant at 90 MW for the
remainder.

Part 2

Instead of specifying the energy limit on the steam plant, let the limit be on the
volume of water that can be drawn from the hydroplants’ reservoir in 1 wk.
Suppose the maximum drawdown is 250,000 acre-ft, how long should the steam
unit run?

To solve this we must account for the plant’s ¢ versus P characteristic. A
different flow will take place when the hydroplant is operated at 40 MW than
when it is operated at 90 MW. In this case,

G, = [300 + 15(40)] x T, acre-ft

g, = [300 + 15(90)] x (168 — T,) acre-ft
and
q, + @, = 250,000 acre-ft

Solving for T, we get 36.27 h.

74 THE SHORT-TERM HYDROTHERMAL SCHEDULING
PROBLEM

A more general and basic short-term hydrothermal scheduling problem requires
that a given amount of water be used in such a way as to minimize the cost of
running the thermal units. We will use Figure 7.5 in setling up this problem.

The problem we wish to set up is the general, short-term hydrothermal
scheduling problem where the thermal system is represented by an equivalent
unit, P,, as was done in Chapter 6. In this case, there is a single hydroelectric
plant, P,. We assume that the hydroplant is not sufficient to supply all the load
demands during the period and that there is 2 maximum total volume of water
that may be discharged throughout the period of 7, hours.

In setting up this problem and the examples that follow, we assume all
spillages, s;, are zero. The only other hydraulic constraint we will impose
initially is that the total volume of water discharged must be exactly as
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7 = interval
r; = inflow during j

V; = volume at end of j

S N gj = discharge during
. sj = spillage discharge
during j

N P

( ) Prj By ( :) Equivalent
* * steam unit

Puj

FIG. 75 Hydrothermal system with hydraulic constraints.

defined. Therefore, the mathematical scheduling problem may be set up as
follows:

Jmas

Problem: Min Fr = ¥ nF; (7.21)
i=1
jmli
Subject to: Y nq;=4gror  total water discharge
i=1
Pioadj— Pyj— P; =0 load balance for j = 1... j.,
where

n; = length of j'* interval

Jmax

Z nj = Tmu
f=1

and the loads are constant in each interval. Other constraints could be imposed,

such as:
Hiljmo=¥, starting volume
Vil 1 g = Vg ending volume

Qemin < 95 < Gmax flow limits for j = 1... jpa,

q;=Q; fixed discharge for a particular hour

Assume constant head operation and assume a g versus P characteristic is
available, as shown in Figure 7.6, so that

q = q(Fy) (7.22)
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Py {MW)

q acre-ft/h

FIG. 7.6 Hydroclectric unit input—output characteristic for constant head.

We now have a similar problem to the take-or-pay fuel problem. The Lagrange
function is

SJevax Jmax
¥ = Z [AF(Pj) + £j(Poaaj — Pyi— Fj)]1 + 7 Z ”;‘Ij(Pu;') == QTOT] (7.23)
=1

i=1 L=
and for a specific interval j = k,

0¥

T )

cP,
gives

df, .
"y ...4;'.( = A’k (724)

sk
and

0¥
il |
Py,
gives
dg .
My e = 1.25
b; dem k ( )

This is solved using the same techniques shown in Chapter 6.
Suppose we add the network losses to the problem. Then at each hour,

Prasaj ¥ Puunj— Pay— Py =10 (7.26)

¢

and the Lagrange function becomes

Jmax
f ==, z [njF(-P:j) + ’.'j(ROIdj *+ P|0$!j - Pﬂj - Ps;)]

j=1

" Juaar ‘ -
+ ?[ Z n;4,(Py;) — QTOT] (7.27)

=1
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with resulting coordination equations (hour k):
d'F ‘Pi( - Aﬁ oss -. .
Ty - _( ‘.._) +% f,}:,, Y=y (7.28)
dFPy Py
daPi) | ) Pewr _ - (7.29)

Phy e R
1% “k
0Py,

APk

This gives rise to a more complex scheduling solution requiring three loops, as
shown in Figure 7.7. In this solution procedure, ¢y and ¢,.are the respective

tolerances on the load balance and water balance relationships.
Note that this problem ignores volume and hourly discharge rate constraints.
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FIG. 77 A /-y iteration scheme for hydrothermal scheduling
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As a result, the value of 7 will be constant over the entire scheduling period as
long as the units remain within their respective scheduling ranges. The value
of 7 would change if a constraint (ie., V] = F,,,, etc.) were encountered. This
would require that the scheduling logic recognize such constraints and take
appropriate steps to adjust y so that the constrained variable does not go
beyond its limit. The appendix to this chapter gives a proof that y is constant
when no storage constraints are encountered. As usual, in any gradient method,
care must be exercised to allow constrained variables to move off their
constraints if the solution so dictates.

EXAMPLE 7B

A load 1s to be supplied from a hydroplant and a steam system whose
characteristics are given here.
Equivalent steam system: H = 500 + 8.0P, + 0.0016P2 (MBtu/h)
Fuel cost = 1.15 R/MBtu
150 MW < P, < 1500 MW
Hydroplant: ¢ = 330 + 4.97P; acre-ft/h
0 < Py < 1000 MW
g = 5300 + 12(P, — 1000) + 0.05(F, — 1000)? acre-ft/h
1000 < P, < 1100 MW
The hydroplant is located a good distance from the load. The electnical losses

are
P, = 0.00008PZ MW

The load to be supplied is connected at the steam plant and has the following
schedule: '
2400--1200 = 1200 MW

12002400 = 1500 MW

The hydro-unit's reservoir is limited to a drawdown of 100,000 acre-ft over the
entire 24-h period. Inflow to the reservoir is to be neglected. The optimal
schedule for this problem was found using a program written using Figure 7.7,

The results are:

Time Period P steam P hydro Hydro-Discharge (acre-ft/h)

2400--1200 567.4 668.3 3651.5
1200-2400 685.7 875.6 4681.7
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g
g

— 56, 180.4 acre-ft

Change in storage volume (acre-ft)

|
0
12 MIDNIGHT 12 NOON 12 MIDNIGHT

F1G. 78 Change in storage volume ( =cumulative discharge) versus time for Example
7B.

The optimal value for 7 is 2.028378 R/acre-ft. The storage in the hydroplant’s
reservoir goes down in lime as shown in Figure 7.8. No natural inflows or
spillage are assumed to occur.

7.5 SHORT-TERM HYDRO-SCHEDULING:
A GRADIENT APPROACH

The following is an outline of a first-order gradient approach, as shown in
Figure 6.7a, to the problem of finding the optimum schedule for a hydrothermal
power system. We assume a single equivalent thermal unit with a convex
input-output curve and a single hydroplant. Let: '

f = the interval = 1, 2, 31w sfais
V, = storage volume at the end of interval j
q; = discharge rate during interval j
r; = inflow rate into the storage reservoir during interval
P,; = steam generation during j™ interval.
s; = spillage discharge rate during interval j
P\, ; = losses, assumed here to be zero
Pyaq ; = received power during the j'™ interval (load)
Py; = hydro-generation during the j* hour

Next, we let the discharge from the hydroplant be a function of the
hydro-power output only. That is, a constant head characteristic is assumed.
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Then.
Qj(PHj) =4
so that to a first order.*
dyg;
Ag; = —2 APy;
q} dPH Hj

The total cost for fuel over the j=1,2,3,... intervals is

’.im.»\
Fr.= Z n;F,(F,;)

This may be expanded in a Taylor series to give the change in fuel cost for a
change in steam-plant schedule.

jmn
AF; = Y, n;[F;AF,; + 4F}(AP;))* + ...}

j=1

To the first order this is
Jman
AF; = Z n; FiAPR;

i=1

In any given interval, the electrical powers must balance:

Ploadj =7 st - PHJ =0
so that,
AP = —APy;
or
APy = — _Aq_
(.“.‘Ef.)
dPy;
Therefore,
"dFj)
Jmax P Jmax
A=~ 3 n (:,P,!_ Z n;7;84;
i=1 -__‘IL =1
()
where

* AP, and AF designate changes in the quantities P, and F.
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The variables y; are the incremental water values in the various intervals and
give an indication of how to make the “moves” in the application of the
first-order technique. That is, the “steepest descent” to reach minimum fuel cost
(or the best period to release a unit of water) is the period with the maximum
value of y. The values of water release, Ag;, must be chosen to stay within the
hydraulic constraints. These may be determined by use of the hydraulic
continuity equation:
Vi=Vit—q,—s)n
to compute the reservoir storage each interval. We must also observe the storage
limits,
mm S S Pmlx

We will assume spillage is prohibited so that all 5; = 0, even though therc may
well be circumstances where allowing s; > 0 for some j might reduce the thermal
system cost.

The discharge low may be constrained both in rate and in total. That is,

qmin < Q_; p-4 qmax
and _
Jmax
Z n;q4; = qror
j=1
The flowchart in Figure 6.7a illustrates the application of this method. Figure
7.9 illustrates a typical trajectory of storage volume versus time and illustrates
the special rules that must be followed when constraints are taken. Whenever
a constraint 1s reached (that is, storage V; is equal to V_, or Vm") one must
choose intervals in a more restricted manner than as shown in Figure 6.7a.
This is summarized here.

1. No Constraints Reached
Select the pair of intervals j~ and j* anywhere from j=1.. j_...

:

Storage volume <

| |

| |

| |

| |

| |

| | |
B T
1 | |
1 1

— =

max

FIG. 7.9 Storage volume trajectory.
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2. A Constraint Is Reached

Option A: Choose the ;- and j* within one of the subintervals. That is,
choose both j~ and j* from periods 1, 2, or 3 in Figure 7.9. This will
guarantee that the constraint is not violated. For example, choosing a
time j* within period 1 to increase release, and choosing j ~ also in period
I to decrease release, will mean no net release change at the end of
subinterval 1, so the ¥V, constraint will not be violated.

Option B: Choose j~ and j© from different subintervals so that the
constraint is no longer reached. For example, choosing j* within period
2 and j~ within period | will mean the ¥, and ¥, ,, limits are no longer
reached at all.

Other than these special rules, one can apply the flowchart of Figure 6.7a
exactly as shown (while understanding that ¢ is water rather than fuel as in
Figure 6.7a). '

EXAMPLE 7C

Find an optimal hydro-schedule using the gradient technique of section 7.5.
The hydroplant and equivalent steam plant are the same as Example 7B, with
the following additions.

Load pattern: First day 2400-1200 = 1200 MW
12002400 = 1500 MW

Second day 24001200 = 1100 MW
1200--2400 = 1800 MW

Third day 24001200 = 950 MW
1200-2400 = 1300 MW

Hydro-reservoir: 1. 100,000 acre-ft at the start.

Must have 60,000 acre-ft at the end of schedule.

1

3. Reservoir volume is limited as follows:
60,000 acre-ft < V' < 120,000 acre-ft

4. There is a constant inflow into the reservoir of 2000
acre-ft/h over the entire 3-day period

The initial schedule has constant discharge: thereafter, each update or “step”
in the gradient calculations was carried out by entering the j*,j” and Aq
into a computer terminal that then recalculated all period y values, flows,
and so forth. The results of running this program are shown in Figure 7.10.



INITIAL SCHMEDULE ( COMSTANT DISCHARGE )

J Ps PH GAMMA YOLUME DISCTHARGE
1 152.20 447.80 2.40807 33333.3 2555.555
2 1052.20 437.80 2.53020 86666.7 2555.555
3 652.20 447.80 2.33402 30000.0 2555.555
) 1352,.20 447.80 2.85233 T3333.% 2555.555
5 502.20 447.80 2.2229%6 656667 2555.555
6 852.20 447.80 2.4%8211 50800.1 25335.55%
TOTAL OPERATING COST FOR ABOVE SCHEDULE = 719725.50 R

ENTER JMAX,JMIN,DELQ

43541000

J Ps PH SAMMA YOLUME DISCHARSE
1 752.20 447.80 2.40807 73333.3 2555.553
2 1052.20 447 .80 2.53020 85666417 25955.555
3 652420 447.80 2.33402 3000040 25554555
L] 1150.99 6549.01 2.70335 61333.4 3555.555
5 703.41 246.57 2,37194 666667 155545595
6 852.20 ~47.80 2.48211 50000.1 2555.5355
TOTAL OPERATING COST FOR ABOVE SCHEDULE = T13960.75 R

ENTER JMAXsJMINy DELG

4,34400-

J Ps PH GAMMA VOLUYE DISCHMARGE
1 752.20 447.80 2.40807 33333.3 2555.55%
2 1052.20 447,80 2.53020 8666647 2555.555
3 732.69 36731 2.39362 BABOD0.0O 2155.555
4 1070.51 72949 2.64376 61333.4 3955.555
S T03.81 286.59 2.37194 5566547 15554335
6 852.20 447.80 2.48211 50000.1 25554555
TOTAL OPERATING COSY FOR ABOVE SCHEDULE = Ti2474,00 R

ENTER JMAX +JMIN,DELQ

435,100

J fs PH GAMMA VILUYE JISCHARGE
1 752.20 447.80 2.40807 333333 25554555
2 1052.20 447.80 2.63020 86666.T 253554555
3 732.69 367.31 2439362 84800.0 21554555
L] 10S50.39 T49.61 2.62886 60133.4 3055355
3 723.53 226447 2. 38684 666667 1855.555
[ 852.20 247,80 2.43211 50000.1 2555-355
TOTAL OPERAYING COST FOR ABOVE SCHEODULE = T12165.75 R

ENTER JMAX ¢JMIN, DELQ

215910

J Ps PH GAMMA VOLUME BISCHARGE
1 752.20 447.80 2.%0807 33333.3 2555.555
2 1050.19 849.81 2.62871 865467 2565+355
3 732469 36T 2.39362 B46R0.0 2155.553%
4 1050.39 749.61 2.62886 60013.4 4055.555
S 725.54 224.45 2.38833 66666+7 1445.555
6 852.20 447.80 2. 48211 50000.1 255%3.953
TOTAL OPERATING COST FOR ABOVE SCHEDULE = 71213675 R

ENTER JMAX «JMIN, DELG

45551111

J Ps PH GANMA YOLUME DISCHARGE
) 152.20 447.80 2.40807 33333.3 2555.5%5
2 1050.19 449.81 2.62871 855467 25654555
3 13269 367.31 2.39362 B4680.0 21 55.533
4 1050.17 T45.83 2.62870 60000.0 4056.666
5 125.77 224.23 2.38849 66666.7 1884.4%4
6 852.20 447.80 2.%8211 60000.0 2555.555
TOTAL OPERATING COST FOR ABOVE SCHEDULE = 712133.50 R

FIG. 7.10 Computer printout for Example 7C. (Continued on next page)
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2520800 .

J Ps PH GAMMA yoLuME DISCHARGE
1 152.20 447.80 2.40807 93333.3 2555.555
2 889.22 610478 2.50953 76945.7 3365.555
3 3893.65 206.35 2.51280 3968040 13554555
N 1050.17 749. 853 2.62870 50000.0 4056.666
5 125,717 224423 2.38849 656657 1448.444
6 852.20 va7.80 2.48211 50000 .0 2555.558
TOTAL OPERATING COST FOR ABOVS SCHEDULE = 711020.75 R

ENTER JMAXyJM INsDELQ

4114750

J Ps PH GAMMA VOLUME 01 SCHARGE
1 993-11 296489 2.51981 102333.3 1805.555
2 889.22 610. 73 2.50953 859467 3365.555
3 893.65 206435 2.51280 936800 1355.555
\ 899.26 900.74 2451696 5000040 4806+665
5 125.77 224.23 2.38849 66665 .1 1844.484
6 852.20 447,90 2.48211 500001 25554555
TITAL OPERATING COST FOR ABOVE SCHEDULE = 710080.75 R

ENTER JMAX ,JHIN,DELQ

6155400

J s PH GAMMA VOLUYE DISCHARGE
1 905.11 296.89 2.51981 102335.3 1805.555
2 889.22 51078 2.50953 35946 .7 3365.555
3 893.65 206435 2.51280 93680.0 1355.555
\ 899.26 900. 74 2.51696 60000 .0 0806.665
5 806.25 14 3. 75 2.%44809 T1465.7 10%48.8494
6 111.72 528,23 2.42252 §0000.1 2955.555
TOTAL OPERATING COST FOR ABOVE SCHEDULE = 109377.38 R

FIG. 7.10 .(Cominued)

Note that the column labeled VOLUME gives the reservoir volume at the end
of each 12-h period. Note that after the fifth step, the volume schedule reaches
its bottom lLiemt at the end of period 4. The subsequent steps require a choice
of j* and j~ from either {1, 2, 3. and 4} ot from {5, 6}. (P,, Py are MW, gamma
is R/acre-ft, volume is in acre-ft, discharge is in acre-ft/h.)

Note that the “optimum” schedule is undoubtedly located between the last
two iterations. If we were to release less water in any of the first four intervals
and. more during 5 or 6, the thermal system cost would increase. We can
theoretically reduce our operating costs a few fractions of an R by leveling the
y values in each of the two subintervals, {1, 2, 3, 4} and {5, 6}, but the effort
is probably not worthwhile. ‘

7.6 HYDRO-UNITS IN SERIES {HYDRlAULICALLY COUPLED)

Consider now, a hydraulically coupled system consisting of three reservoirs in
sertes (see Figure 7.11). The discharge from any upstream reservoir is assumed
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FI1G. 7.11 Hydraulically coupled hydroelectric planis.

to flow directly into the succeeding downstream plant with no time lag. The
hydraulic continuity equations are

Vij=Vijoy + (ry; = 855~ qudn;
Vij=Vajoy + @y + 515 — 535 — da2;)n;

Vaj = Vyjo1 +(qaj+ S35 = 83; = g3

where
r; = inflow
V; = reservoir volume
s; = spill rate over the dam’s spillway

hydrolplant discharge

=
I

n, = numbers of hours in each scheduling period
The object is to minimize

X

"z n;F(P,;) = total cost (7.30)

i=1
subject to the following constraints

Ploadj_ st"'PHIJ_PHZJ'_PHszo
and

Vig— V-1 = (ryy = 3y — g ;=0
Vaj = Vajor — (@i + 81— 82, = @adn; = 0 (7.31)

Vaj = Vsjo1 = (25 + 52 — 83, — @3)m;=0

All cquations in set 7.31 must apply for j = 1 ... jo.,.
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The Lagrange function would then appear as

jﬂld\
P = Z [ F(Py) = Aj(Prgua j — By — Puaj — Pya2j — Prsj)l

j=1
+yy,[N - Vlj—l, —(r;— 5y~ q;;)n;]

+ }'z_j[sz" Vij—1 — (@4 + 51— 25— 42;)n;]
+93;lVsj = Vajo1 — @25 + 525 — $3; — q3;)n;]}

Note that we could have included more constraints to take care of reservoir
volume limits, end-point volume limits, and so forth, which would have
necessitated using the Kuhn-Tucker conditions when limits were reached.

Hydro-scheduling with multiple-coupled plants is a formidable task. Lambda-
gamma iteration techniques or gradient techniques can be used; in either case,
convergence to the optimal solution can be slow. For these reasons, hydro-
scheduling for such systems is often done with dynamic programming (see
Section 7.8} or linear programming (see Section 7.9).

77 PUMPED-STORAGE HYDROPLANTS

Pumped-storage hydroplants are designed to save fuel costs by serving the peak
load (a high fuel-cost load) with hydro-energy and then pumping the water
back up into the reservoir at light load periods (a lower cost load). These plants
may involve scparate pumps and turbines or, more recently, reversible pump
turbines. Their operation is illustrated by the two graphs in Figure 7.12. The

4 }Savings rate
s|= -
. |
= i
=t —— Added cost rate
"{""‘T—I——}
Psearm (MW)
Load (MW)
I
= Generation
.E energy, eg
-
% o
L n= cycle eff. = 2/3
Pump ?
p

FIG. 7.12 Thermal input-output characteristic and typical daily load cycle.
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first is the composite thermal system input-output characteristic and the second
1s the load cycle.

The pumped-storage plant is operated until the added pumping cost exceeds
the savings in thermal costs due to the peak shaving operations. Figure 7.12
illustrates the operation on a daily cycle. If

e, = generation, MWh

) } for the same volume of water
¢, = pumping load, MWh

then the cycle efficiency is

n= % (n is typically about 0.67)
€

P

Storage reservoirs have limited storage capability and typically provide 4 to
8 or 10 h of continuous operation as a generator. Pumped-storage plants may
be operated on a daily or weekly cycle. When operated on a weekly cycle,
pumped-storage plants will start the week (say a Monday morning in the United
States) with a full reservoir. The plant will then be scheduled over a weekly
period to act as a generator during high load hours and to refill the reservoir
partially, or completely, during off-peak periods.

Frequently, special interconnection arrangements may facilitate pumping
operations if arrangements are made to purchase low-cost, off-peak energy. In
some systems, the system operator will require a complete daily refill of the
reservoir when there is any concern over the availability of capacity reserves.
In those instances, economy is secondary to reliability.

7.7.1  Pumped-Storage Hydro-Scheduling with a A—y lteration-

Assume:

1. Constant head hydro-operation.

2. An equivaient steam unit with convex input-cutput curve.

3. A 24-h operating schedule, each time intervals equals 1 h.

4. In any one interval, the plant is either pumping or generating or idle (idle
will be considered as just a limiting case of pumping or generating).
Beginning and ending storage reservoir volumes are specified.

. Pumping can be done continuously over the range of pump capability.
. Pump and generating ratings are the same

. There is a constant cycle efficiency, 7.

G0 =1 N W

The problem is set up ignoring reservoir volume constraints to show that
the same type of equations can result as those that arose in the conventional
hydro-case. Figure 7.13 shows the water flows and equivalent electrical system.
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Pumped hydro Equivalent
plant steam plant

Lower reservoir
or other water
b, SOUTCE

FIG. 7.13 Pumped-storage hydraulic flows and electric system flows.

In some interval, j,

inflow (acre-ft/h)

-
I

V. = volume at end of interval (acre-ft)

= discharge if generating (acre-ft/h)

&
I

or

w; = pumping rate if pumping (acre-ft/h)

Intervals during the day are classified into two sets:

the

{k} = intervals of generation

i

intervals of pumping

The reservoir constraints are to be monitored in the computational procedure.
The initial and final volumes are

Vo=V,
Vie=F,

e

The problem is to minimize the sum of the hourly costs for steam generation
over the day while observing the constraints. This total fuel cost for a day is
(note that we have dropped n; here since n; = 1 h):

24
Fr= ) Fi(P,;)
i=1
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We consider the two sets of time intervals:
I. {k}: Generation intervals: The electrical and hydraulic constraints are

Ploadlt+Plostk-P&t_PHk=0
W- l/k—l_rk+qk=0

These give rise to a Lagrange function during a generation hour
(interval k) of

Ev=F + iPoasi + Prose s — La— Py + nV— 1, —ntaq) (7.32)
2. {i}: Pump intervals: Similarly, for a typical pumping interval, i,

Ploadl' + Plossi—Rsi+PHi=0
V=¥V ,-r-w=0 (7.33)
E; = F + 2i(Poadi + Py ~ P+ P)+ v (V- Vo, -1, - w;)

Therefore, the total Lagrange function is

E=YE+YE+¢&(¥,- V) + e(Vay — V) (7.34)
fk} ]

where the end-point constraints on the storage have been added.

In this formulation, the hours in which no pumped hydro activity takes place
may be considered as pump (or generate) intervals with

PH(‘=PHk=O

To find the minimum of Fr = Z F,, we set the first partial derivatives of E
to zero. i

I. {k}* Generation intervals:

3 3 g
% —0m (10, 98

P, 2P, dp

o iy "d (7.35)
(_b =0= - ,:‘(] e lg:__s) . d

0Pys Py, dPy,
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2. {i}: Pump intervals:

- - ’ A
L. _;_'.(1 = .".F_"zss) 495

oP; AR

GE oP, d (73
‘.j =0 = +'-"i(l L (' loss) - ,‘ﬂ

0Py Py dPy;

For the 6E/dV, we can consider any interval of the entire day—for instance,
the #th interval—which is not the first or 24" hour.

oE
= —=0=79, = Yr+1
. C’ ,
and for £ = 0 and =24
dE 0E
i =0= —7, t & and —01—— =0=7: t & (7.37)
C V() a 24

From Eq. 7.37, it may be seen that 7 1s a constant. Therefore, it is possible to
solve the pumped-storage scheduling problem by means of a /-7 iteration over
the time interval chosen. It is necessary to monitor the calculations to prevent
a violation of the reservoir constraints, or else to incorporate them in the
formulation.

It is also possible to set up the problem of scheduling the pumped-storage
hydroplant in a form that is very similar to the gradient technique used for
scheduling conventional hydroplants.

772 Pumped-Storage Scheduling by a Gradient Mcthod

The interval designations and equivalent electrical system are the same as those
shown previously. This time, losses will be neglected. Take a 24-h period and
start the schedule with no pumped-storage hydro-activity initially. Assume that
the steam system is operated each hour such that

9 s j=t2.3....24
4P,

That is. the single, equivalent steam-plant source is realized by generating an
economic schedule for the load range covered by the daily load cycle.

Next, assume the pumped-storage plant generates a small amount of power,
APy, at the peak period k. These changes are shown in Figure 7.14. The change
in steam-plant cost is

@R dF, _
AF, = ‘?ﬁ AP, = — &7; AP, or AF = —AAPy, (7.38)

Of g sk

which is the savings due to generating APy, .
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Pumped Equivalent Fy - BF;
storage steam
plant plant

N -— P, -08,
APHA,
Proadx

FIG. 7.14 Incremental increase in hydro-generation in hour k.

Next, we assume that the plant will start the day with a given reservoir
volume and we wish to end with the same volume. The volume may be measured
in terms of the MWh of generation of the plant. The overall operating cycle
has an efficiency, #. For instance, if n = 2/3; 3 MWh of pumping are required
to replace 2 MWh of generation water use. Therefore, to replace the water used
in generating the APy, power, we need to pump an amount (APye/n)-

To do this. search for the lowest cost (=lowest load) interval, i, of the day
during which to do the pumping: This changes the steam system cost by an

amount
OF, - (AP, i
Bk 2 g o B0 (’..a&) =% AP, (7.39)
ap, T ar\n ) T

The total cost change over the day is then
AF; = AR, + AF,

= AP,,.,,(f“-‘ . ;.,,) (7.40)
n

Therefore. the decision to generate in k and replace the water in i is economic
if AF; is negative (a decrease in cost); this is true if
s -
Ay > — (7.41)
n

There are practical considerations to be observed, such as making certain
that the generation and pump powers required are less than or equal to the
pump or generation capacity in any interval. The whole cycle may be repeated
until: )

1. It is no longer possible to find periods k and i such that 4, = A,/n.
2. The maximum or minimum storage constraints have been reached.

When implementing this method, it may be necessary also to do pumping
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in more than one interval to avoid power requirements greater than the unit
rating. This can be done: then the criterion would be

Ay > (A + 20)m

Figure 7.15 shows the way in which a single pump-generate step could be
made. In this figure. the maximum capacity is taken as 1500 MW, where the
pumped-storage unit is generating or pumping.

These procedures assume that commitment of units does not change as a
result of the operation of the pumped-storage hydroplant. It does not presume
that the equivalent steam-plant characteristics are identical in the 2 h because
the same techniques can be used when different .thermal characteristics are
present in different hours.

Longer cycles may also be considered. For instance. you could start a
schedule for a week and perhaps find that you were using the water on
the weckday peaks and filling the reservoir on weekends. In the case where
a reservoir constraint was reached, you would split the week into two parts

F{Pg)
16.000 }— - 16,000 R/h
L AF = -5,400 R/h
12,000 f— |
. 10,0001 L — 10,600 R/h
h Gain = 5400 - 3200 = 2200 &/h
8,000 | !
— 7,200 Rih
6.000 {— O F = +3,200 R/h
4,000 R/h
4,000 |— J ]-
< P
MW _I.SBP;J EQDE Resgrvoir
1 \ | i T
| ' | |
- : L
2 | ! i
- L} ‘& a
g 3 . | N K | &
- TS IO T\ 2|18 E
F g e | x
|= ‘ s
o =
N |
o NN | !
6 ' 1

FIG. 7.15 Single step in gradient iteration for a pumped-storage plant. Cycle efficiency
is two-thirds. Storage 1s expressed in equivalent MWh of generation.



PUMPED-STORAGE HYDROPLANTS 237

and see if you could increase the overall savings by increasing the plant use.
Another possibility may be to schedule each day of a week on a daily cycle.
Multiple, uncoupled pumped-storage plants could also be scheduled in this
fashion. The most reasonable-looking schedules would be developed by running
the plants, through the scheduling routines in parallel. (Schedule a little on
pldnt 1, then shift to plant 2, etc.) In this way, the plants will all share
in the peak shaving. Hydraulically coupled pumped-storage plants and/or
pump-back plants combined with conventional hydroplants may be handled
similarly.

EXAMPLE 7D

A pumped-storage plant is to operate so as to minimize the operating cost of
the steam units to which it is connected. The pumped storage plant has the
following characteristics.

Generating: g positive when generating, Py is positive and 0 < Py < + 300 MW
g{Py) = 200 + 2P, acre-ft (P, in MW)
Pumping: ¢ negative when pumping, Pp is negative and — 300 MW < P, <0
q(P,) = —600 acre-ft/h with P, = -300 MW
Operating restriction:  The pumped hydroplant will be allowed {0 operate only
at —300 MW when pumping. Cycle efficiency n = 0.6667 [the efficiency has

already been built into the g(Py) equations].
The equivalent steam system has the cost curve

F(P) = 3877.5 + 3.9795P, + 0.00204P2 R/h (200 MW < P, < 2500 MW)

Find the optimum pump-generate schedule using the gradient method for -
the following load schedule and reservoir constraint.

Load Schedule (Each Period is 4 h Long)
Period Load (MW)

1600

1800

1600
500
500
500

(= N R S B

The reservoir starts at 8000 acre-ft and must be at 8000 acre-ft at the end of
the sixth period.
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Initial Schedule

Hydropump/Gen. Reservoir Volume
Period  Load (MW) B A (+ =gen, — = pump)  at End of Period
! 1600 1600 10.5 0 8000
2 1800 1800 113 0 8000
3 1600 1600 105 0 8000
4 500 500 6.02 0 8000
5 500 500 6.02 0 8000
6 500 500 6.02 0 8000

Starting with k = 2 and i = 4: 4, = 11.3; A, = 6.02; J,/n = 9.03.

Therefore, it will pay to generate as much as possible during the second
period as long as the pump can restore the equivalent acre-ft of water during
the fourth period. Therefore, the first schedule adjustment will look like the

following.
Hydropump, Reservoir Volume
Period [.oad (MW) | 2 A Gen. at End of Period
f 1600 1600 10.5 0 8000
2 1800 1600 10.5 +200 5600
3 1600 - 1600 10.5 0 5600
4 500 800 7.24 - 300 8000
5 500 500 6.02 0 8000
6 500 500 6.02 0 8000

Nexl; we can choose to generate another 200 MW from the hydroplant
during the first period and restore the reservoir during the fifth period.

Hydropump/ Reservoir Volume
Period Load (MW) P, P Gen. at End of Period
1 1600 1400 9.69 +200 5600
2 1800 1600 10.5 + 200 3200
3 1600 1600 10.5 0 3200
4 500 §00 1.24 - 300 5600
5 500 800 7.24 — 300 8000
6 500 500 6.02 0 8000

Finally, we can also generate in the third period and replace the water in
the sixth period. ;
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, Hydropump/ Reservoir Volume
Period Load (MW) E A Gen. at End of Pertod
1 1600 1400 9.69 + 200 5600
2 1800 1600 10.50 +200 3200
3 1600 1400 9.69 +200 800
4 500 800 7.24 C =300 3200
5 500 800 7.24 —-300 5600
6 500 800 7.24 —300 8000

A further savings can be realized by “flattening” the steam generation for the
first three periods. Note that the costs for the first three periods as shown in
the preceding table would be:

Period P, Cost (R) A Hydropump/Gen.

1 1400 53788.80 9.69 +200

2 1600 61868.40 10.50 +200

3 1400 53788.80 9.69 + 200

4,56 800 100400.40 7.24 - 300
269846.40

if we run the hydroplant at full output during the peak (period 2) and then
reduce the amount generated during periods 1 and 3. we will achieve a savings.

Period P, Cost (R) / Hydropump/Gen.

1 1450 55747.50 9.90 +150

2 1500 §7747.00 10.10 + 300

3 1450 55747.50 9.90 150

4,56 100400.40 7.24 — 300
209642.40

The final reservoir schedule would be:

Period Reservoir Yolume

6000
2800

800
3200
5600
8000

[« SRV N S
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78 DYNAMIC-PROGRAMMING SOLUTION TO THE
HYDROTHERMAL SCHEDULING PROBLEM

Dynamic programming may be applied to the solution of the hydrothermal
scheduling problem. The multiplant. hydraulically coupled systems offer com-
putational difficulties that make it difficult to use that type of system to illustrate
the benefits of applying DP to this problem. Instead we will illustrate the
application with a single hydroplant operated in conjunction with a thermal
system. Figure 7.16 shows a single, equivalent steam plant, F,, and a hydroplant
with storage. Py, serving a single series of loads, P,. Time intervals are denoted
by j. where j runs between 1 and j ..
Let:

¥

; = net inflow rate during period j

Il

J, = storage volume at the end of period )

flow rate through the turbine during period j

i

qj

Py, = power output during period j

I

s, = spillage rate during period j

]

P, = steam-plant output
P

oau j = load level

F; = fuel cost rate for period j
Both starting and ending storage volumes, ¥, and ¥, . are given, as are the
period loads. The steam plant is assumed to be on for the entire period. Tis
input -output characteristic is g
G =a+bP;+ CP;)- R/h (7.42)
The water use rate characteristic of the hydroelectric plant is
q4; = d + gPy; + hPp;, acre-ft/h for Py; > 0 (7.43)

and
=10 for Py; =0

% N
X o
. | Csﬁﬂ
R

\‘7;' Proas

)

FIG. 7.16  Hydrothermal system model used in dynamic-programmung lustration.
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The coefficients a through h are constants. We will take the units of water flow
rate as acre-ft/h. If each interval, j. is n; hours long, the volume in storage
changes as

Vi= V-1 + ni(r;—q; —5;) (7.44)

Spilling water will not be permitted (ie.. all s, = 0).
If V; and' ¥, denote two different volume states, and
-1 = Vx
v=Y

then the rate of flow through the hydro-unit during interval j is

q}. ) ,(j./.‘__,._l/.k_). -+ rj
n;
where ¢; must be nonnegative and is limited to some maximum flow rate, gpa,,
which corresponds to the maximum power output of the hydro-unit. The
scheduling problem involves finding the minimum cost trajectory (ie., the
volume at each stage). As indicated in Figure 7.17, numerous feasible trajectories
may exist.
The DP algorithm is quite simple. Let:

{i} = the volume states at the start of the period j
{k} = the states at the end of j

TC,(j) = the total cost from the start of the scheduling period
to the end of period j for the reservoir storage state b

PC(i, j — 1: k, j) = production cost of the thermal system in period j to
go from an initial volume of ¥; to an end of period
volume F;.

The forward DP algorithm is then,

TC,(0)=0
and
TC(j) = min [TC,(j — 1) + PC(i. j — Y: k, j)] (7.45)
{i}

We must be given the loads and natural inflows. The discharge rate through
the hydro-unit is, of course, fixed by the initial and ending storage levels and
this. in turn, establishes the values of P, and P,. The computation of the thermal
production cost follows directly.

There may well be volume states in the set ¥, that are unreachable from
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‘FIG. 7.17 Trajectories for hydroplant operation.

some of the initial volume states V; because of the operating limits on the
hydroplants. There are many variations on the hydraulic constraints that may
be incorporated in the DP computation. For example, the discharge rates may
be fixed during certain intervals to allow fish ladders to operate or to provide
water for irrigation.

Using the volume levels as state variables restricts the number of hydro-
power output levels that are considered at each stage, since the discharge rate
fixes the value of power. If a variable-head plant is considered, it complicates
the calculation of the power level as an average head must be used to establish
the value of P,;. This is relatively easy to handle.

EXAMPLE 7E

It is. perhaps, better to use a simple numerical example than to attempt to
discuss the DP application generally. Let us consider the two-plant case just
described with the steam-plant characteristics as shown in Figure 7.18 with
F =700 + 48P, + P 2000, R/h, and dF/dP, = 4.8 + P./1000, R/MWh, for P,
in MW and 200 < P, < 1200. MW. The hydro-unit is a constant-head plant,
shown in Figure 7.19, with

q = 260 + 10P, for Py > 0, g=0for P, =

where Py is in MW, and
S 0 < Py < 200 MW

The discharge rate is in acre-ft/h. There is no spillage, and both initial and final
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dF/dP

R/MWh

| | ] | |
200 400 600 800 1,000 P, (MW)

FIG. 7.18 Steam plant incremental cost function.
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FIG. 7.19 Hydroplant ¢ versus Py function.

volumes are 10000 acre-ft. The storage volume limits are 6000 and 18.000
acre-ft. The natural inflow is 1000 acre-ft/'h.

The scheduling problem to be examined is for a 24-h day with individual
periods taken as 4 h each (n; =4.0h). The loads and natural inflows inte the
storage pond are:

Period Poad j Inflow,Rate r(j)
i (MW) (acre-ft/h)

i 600 1000

2 1000 1000

2] 900 1000

4 SO0 1000

3 400 1000

6 300 1000

Procedure

If this were an actual scheduling problem. we might start the search using a
coarse grid on both the time interval and the volume states. This would
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permit the future refinement of the search for the optimal trajectory after a
crude search had established the general neighborhood. Finer grid steps
bracketing the range of the coarse steps around the initial optimal trajectory
could then be used to establish a better path. The method will work well
for problems with convex (concave) functions. For this example, we will limit
our efforts to 4-h time steps and storage volume steps that are 2000 acre-ft
apart.
During any period, the discharge rate through the hydro-unit is

Vo = )
4= (h- 14__ 24 1000 (7.46)

The discharge rate must be nonnegative and not greater than 2260 acre-ft/h.
For this problem. we may use the equation that relates Py, the plant output,
1o the discharge rate, ¢. In a more general case, we may have to deal with tables
that relate Py, g. and the net hydraulic head.

The DP procedure may be illustrated for the first two intervals as follows.
We take the storage volume steps at 6000, 8000, 10,000, ..., 18,000 acre-ft. The
initial set of volume states is limited to 10,000 acre-it. (In this example, volumes
will be expressed in 1000 acre-ft to save space.) The table here summarizes the
calculations for j = 1: the graph in Figure 7.20 shows the trajectories. We need

18 }— - o L] [ ® o
§ 16 — . L] . . ° ]
g
é - - o L ]
o ® ® ° ®
E
3
<]
4 ° . ® ®
@
g
S
w L] ® L] .
<~
. ] L] *
i ; ! 1 | |
3 4 5 6 7 8
Period §
(4 h each)

FI1G. 7.20 Initial trajectories for DP example.
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not compute the data for greater volume states since it is possibie o do no
more than shut the unit down and allow.the natural inflow to increase the
amount of water stored.

j=1  P()=600MW  li}=10

n q Py P, TG NR)
14 0 0 600 15040
12 500 24 576 14523
10 1000 74 526 13453

8 1500 124 476 12392

6 2000 174 426 11342

The tabulation for the second and succeeding intervals is more complex since
there are a number of initial volume states to consider. A few are shown in the
following table and illustrated in Figure 7.21.

[ ] L] L [ ]

L ] [ ] . L]
®
2 ® . . .
k)
S
8 e L] L .
=
%
E
2 . [ . ]
(<]
>
&
£
g ® L] ] ]
;“u

L ] L] L ] L

¥ o
1 g f o ptectip by cng - o
1 2 3 4 5 6 i 8"
Period j
{4 h each)

FIG. 7.21 Second-stage trajectories for DP example.
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j=2 P, = 1000 MW (i) = [6. 8. 10, 12, 14]
by A 4 Py F, TC(i)R)
18 14 0 0 1000 39040¢
16 14 500 24 976 38484°
16 12 0 0 1000 38523
14 14 1000 74 926 37334¢
14 12 500 24 976 37967
14 10 0 0 1000 17453
12 14 1500 124 876 39194¢
12 12 1000 74 926 39818
12 10 500 24 976 36897
12 8 0 0 1000 36392
6 10 2000 174 826 33477¢
6 8 1500 124 876 33546
6 6 1000 74 926 33636

* Denotes the minimum cost path.

Finally, in the last period, the following combinations:

j=0 Py = 300 MW {1} =6, 8, 10. 12, 14]
Vi 2 g Py A TC)(R)
10 10 1000 7 226 82240.61
10 8 500 24 276 82260.21
10 6 0 0 300 © §1738.46

are the only feasible combinations since the end volume is set at 10 and the
minimum loading for the thermal plant is 200 MW.

The final, minimum cost trajectory for the storage volume is plotted in Figure
7.22. This path is determined to a rather coarse grid of 2000 acre-ft by 4-h steps
in time and could be easily recomputed with finer increments.

7.8.1 Extension to Other Cases

N

The DP method is amenable to application in more complex situations. L.onger
time steps make it useful to compute seasonal rule curves, the long-term storage
plan for a system of reservoirs. Variable-head cases may be treated. A sketch
of the type of characteristics encountered in variable-head plants is shown in
Figure 7.23. In this case, the variation in maximum plant output may be as
important as the variation in water use rate as the net head varies.
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]

V; storage volume {1000’s of acre-ft}

Period j
(4 h each)

FIG. 7.22 Final trajectory for hydrothermal-scheduling example.

)

m?3 /sec or acre-ft/h, etc.

Py (MW)

Variable head plant
q=q Py, V)
V = average volume used to represent
the effect of the hydraulic head

FI1G. 7.23 Input-output characteristic for variable-head hydroelectric plant.



248 HYDROTHERMAL COORDINATION

7.8.2 Dynamic-Programming Solution to Multiple Hydroplant Problem

Suppose we are given the hydrothermal system shown in Figure 7.24. We have
the following hydraulic equations when spilling is constrained to zero

Vlj = th»l + Iy 4y

Vaj= Voo + 415 — 45
and the electrical equation
Pai(quy) + Pualqay) + By — Py ;=0

There are a variety of ways to set up the DP solution to this program.
Perhaps the most obvious would be to again let the reservoir volumes, ¥, and
V,. be the state variables and then run over all feasible combinations. That is,

NN

-~
S-\ SN ® L 2 .
Z.: 'z\v‘ .2 .
3 :
?2: S, Sz e
8 B -
\5, 5, =
1 | ]
1 J ] 2 3 . e e 0w
¥e Vg Time period j

FIG. 7.25 Trajectory combinations for coupled plants.
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let ¥, and ¥, both be divided into N volume steps S, ... §,. Then the DP must
consider N7 steps at each time interval, as shown in Figure 7.25.

“This procedure might be a reasonable way to solve the multiple hydroplant
scheduling problem if the number of volume steps were kept quite small.
However, this is not practical when a realistic schedule is desired. Consider, for
example, a reservoir volume that is divided into 10 steps (N = 10). If there were
only one hydroplant, there would be 10 states at each time period, resulting in
a possible 100 paths to be investigated at each stage. If there were two reservoirs
with 10 volume steps, there would be 100 states at each time interval with a
possibility of 10,000 paths to investigate at each stage.

This dimensionality problem can be overcome through the use of a procedure
known as successive approximation. In this procedure, one reservoir is scheduled
while keeping the other’s schedule fixed. alternating from one reservoir to the
other until the schedules converge. The steps taken in a successive approximation
method appear in Figure 7.26.

START

SET UP FEASIBLE
SCHEDULE FOR PLANT 2

ol

Ty
USING DP: Sy
SOLVE FOR OPTIMAL :
SCHEDULE FOR PLANT 1 .
USING PLANT 2 S
SCHEDULE s,
)
| v,
USING DP: S.“ S
SCLVE FOR OPTIMAL 2 H
SCHEDULE FOR PLANT2 | S,
USING PLANT 1 s
SCHEDULE 4‘ *
| =
%
L 1st ITERATION
lmo ]

x

CONVERGED?
YES
DONE

NO /' HAVE SCHEDULES >

FIG. 7.26 Successive approximation solution.
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7.9 HYDRO-SCHEDULING USING LINEAR PROGRAMMING

One of the more useful ways to solve large hydro-scheduling problems
is through the use of linear programming. Modern LP codes and computers
make this an increasingly useful option. In this section, a simple, single
reservoir hydroplant operating in conjunction with a single steam plant,
as shown in Figure 7.5, will be modeled using linear programming (see
reference 16).

First, we shall show how each of the models needed are expressed as linear
models which can be incorporated in an LP. The notation is as follows:

P.. = the steam plant net output at time period j

P,; = the hydroplant net output at time period j

gq; = the turbine discharge at time period j

s; = the reservoir spill at time period j

V. = the reservoir volume at time period j

the net inflow to the reservoir during time period j

= the slopes of the piecewise linear steam-plant cost function

sh, = the slopes of the piecewise linear hydroturbine electrical output versus
discharge function

sd, = the slopes of the piecewise linear spill function

= the net electrical load at time period j

\
Il

=l
=
!

l)lmad i
The steam plant will be modeled with a piecewise linear cost function, F(F)),
as shown in Figure 7.27. The three segments shown will be represented as P, ,,
P,;,. P,;s where each segment power, P,;. is measured from the start of the k™
segment. Each segment has a slope designated sf}, sf>, sf3; then, the cost function
itself is

E(P;) = F(PP™™) + sfiBy, + P, + sf3F (7.47)

F

PE Py

FiG. 7.27 Steam plant piecewise linear cost function.



HYDRO-SCHEDULING USING LINEAR PROGRAMMING 251

and
0<Pp<Py fork=1,273 (7.48)

and finally
P”- == P;nin ‘t‘ ‘P.ijl + stz + }),13 (749)

The hydroturbine discharge versus the net electrical output function is
designated P,(q;) and is also modeled as a piecewise linear curve. The actual
characteristic is usually quite nonlinear, as shown by the dotted line in Figure
7.28. As explained in reference 16, hydroplants are rarely operated close to the
low end of this curve, rather they are operated close to their maximum efficiency
or full gate flow points. Using the piecewise linear characteristic shown in Figure
7.28, the plant will tend to go to one of these two points.

In this model, the net electrical output is given as a linear sum:

P,; = shq;, + shyq;, (7.50)

The spill out of the reservoir is modeled as a function of the reservoir volume
and it is assumed that the spill is zero if the volume of water in the reservoir
is less than a given limit. This can easily be modeled by the piecewise linear
characteristic in Figure 7.29, where the spill is constrained to be zero if the
volume of water in the reservoir is less than the first volume segment where

s;=sd,V,, + sdyV; + sd3 Vi, (7.53)
and
0 V< Ve fork=1,23 (7.54)
then ‘
Vi= Vi + Vo + Vs (7.55)
Py Maximum
Efficiency

Full Gate Flow

Actual Characteristic

d) . 4 q

FIG. 7.28 Hydroturbine characteristic.
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sd,
\').| V'.2 Vi3 J

FIG. 7.29 Spill characteristic.

The hydro-scheduling linear program then consists of the following; minimize

Jmax

Y FPy)

§=y
subject to

i'fj_!"’i-l'-(rj‘sj—qj):o forjzl“'jmas

where

Phj = F(yg;)

s; = s(V))
and

‘st+Phj~Hcadj=O ror.lr:’!"'.,max

Note that this simple hydro-scheduling problem will generate eight constraints
for each time step:

e Two constraints for the steam-plant characteristic.
® Two constraints for the hydroturbine characteristic.
e Two constraints for the spill characteristic.

e One constraint for the volume continuity equation.
e Onc constraint for the load balance.

In addition, there are 15 variables for each time step. If the lincar program were
to be run with 1-h time periods for 1 week. it would have to accommodate a
model with 1344 constraints and 2520 variables. This may seem quite large,
but is actually well within the capability of modern linear programming codes.
Reference 16 reports on a hydro-scheduling model containing about 10,000
constraints and 35,000 variables.

When multiple reservoir/plant models connected by multiple rivers and
channels are modeled, there are many more additional constraints and variables
needed. Nonetheless, the use of linear programming is common and can be
relied upon to give excellent solutions.
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APPENDIX
Hydro-Scheduling with Storage Limitations

This appendix expands on the 'Lagra'hge equation formulation of the fuel-
limited dispatch problem in Chapter 6 and the reservoir-limited hydro-
dispatch probiem of Chapter 7. The expansion includes generator and reservoir
storage limits and provides a proof that the “fuel cost” or “water cost”
Lagrange multiplier y will be constant unless reservoir storage limitations are
encountered.

To begin, we will assume that we have a hydro-unit and an equivalent steam
unit supplying load as in Figure 7.5. Assume that the scheduling period is
broken down into three equal time intervals with load, generation, reservoir
inflow, and such, constant within each period. In Chapter 6 (Section 6.2, Egs.
6.1-6.6) and Chapter 7 (Section 7.4, Egs. 7.22-7.29) we.assumed that the total
g was to be fixed at gror. that is (see Section 7.4 for definition of variables),

Jman

dror = 3, Mq(Py;) (7A.1)
j=1

In the case of a storage reservoir with an initial volume ¥, this constraint
is equivalent to fixing the final volume in the reservoir. That is,

Vo + mlry —a(Py)] =V, (7A.2)
Vi + mylr: = q(Py2)l = 1, (7TA.3)
Vo # mylry —q(Pya)l = 13 (TA4)

Substituting Eq. 7A.2 into Eq. 7A.3 and then substituting the result into Eq.
TA 4, we get
A Y 3

Vo + Z nir; = Z nq(Py;) = Vi (7TA.5)
=1 i=1
or
3
Vot X nri—dror=Vs (7A.6)
i=L _

Therefore, fixing g;or is equivalent to fixing V3, the final reservoir storage. The
optimization problem will be expressed as:

Minimize total steam plant cost:
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Subject to equality constrainis: P4, — P, — Py; =0 forj=123
Vo + nyry — ng(Pyy) = V,
Vi +npry — naq(Pyy) = 1y
Vit nyry — nyq(Pysy) = 13
And subject to inequality constraints: ¥, > V™"V, < p™
P,>P™e P < Pm™r forj=1 23
Pyj=Pg" Py; < PF*

We can now write a Lagrange equation to solve this problem:

¥ = i MEE) + % hi(Fisa; = By = Puy)
f-l— yi[-- ¥o — nyry + nyq(Pyy) + V1]
+ 72l = Vi = mary + nyq(Pyy) + V3]
+ 73l Vs = nyry + n3q(Pys) + Vil

3 3
+ Y aj(Fmin— V) + Y af (V= V™)

J:I J=1

3 3
+ ¥ ug (PP — P+ Y ul (P~ PP
=i i=1
3 . 3
+ 3 ugi(PR™ = Py) + ¥ p(Py; — PE™) (TA.7)
j=1

i= i=1

where
n;, P, Py;. and q(Py;) are as defined in Section 7.4

Aj Vs @75 X7 Mojs i Hij» Mn; are Lagrange multipliers
V™o and 1™ are limits on reservoir storage
PP", P™* and Py" are limits on the generator output

at the equivalent system and hydroplants, respectively

We can set up the conditions for an optimum using the Kuhn-Tucker
equations as shown in Appendix 3A. The first sct of conditions are

¥ dF,
_A,:n___._s._i_.-— :+ [:. =0 (7A8
&, iR, TN :
¥ . dq(Py;) = ~
———— —f PN . 4 b= O /A9
EP"‘E j Ty df)"j ”HJ uH’) ( )
o
¥
E_. = 'IA—-—-*)IJ.*,l —GJ_ +aj+ =0 (7A10)

LB,
ov,
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The second and third set of conditions are just the original equality and
inequality constraints. The fourth set of conditions are

a (V™ —V)=0  a 20 (TA.11)

af (V= V™) =0 % >0 (7A.12)
py (PP — P =0 pg20 (TA.13)
(B = PP =0 pg;20 (7A.14)
H (PR = Pyj) =0 py; 20 (TA15)
py(Py; = PE) =0 pp; >0 (TA.16)

If we assume that no generation limits are being hit, then j;, u;, pg;, and
g for j =1, 2, 3 are each equal to zero. The solution in Eqgs. 7A 8, 7A.9, and
7A.10 is

df, | -
n’. a_P‘Jz /_J (/A.I'J)
)
o dq(Py;) _ A (7TA.18)
dPy;
Yyl S % (7A.19)

Now suppose the following volume-limiting solution exists:
V1 > Vmin and V; < [/mas
then by Eq. 7A.11 and Eq. 7A.12

a; =0 and af =0
and
V=F=" and I <V
then
a, >0 a3 =0

Then clearly, from Eq. 7A.19,

n-m=ai —af =0
SO
T=T2
and
YVa—v3=0a; —a; >0
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SO
Y2 > 73
Thus, we see that 7; will be constant over time unless a storage volume limit

is hit. Further, note that this is true regardiess of whether or not generator
limits are hit.

PROBLEMS

7.1 Given the following steam-plant and hydroplant characteristics:

Steam plant:

Incremental cost = 2.0 + 0.002P, R/MWh and 100 < P, < 500 MW

Hydroplant:

Incremental water rate = 50 + 0.02P, ft?>/sec/ MW 0 < Py < 500 MW

Load:
Time Period Pioag (MW)
1400 -0900 350
0900-- 1800 700
1800-2400 350
Assume:

e The water input for Py = 0 may also be. assumed to be zero,
that is

q(Py) =0 for Pb=0

e Neglect losses.
e The thermal plant remains on-line for the 24-h period.

Find the optimum schedule of P, and P, over the 24-h period that
meets the restriction that the total water used is 1250 million ft* of



7.2

7.3
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water; that is,
gror = 125 x"10° it

Assume that the incremental water rate in Problem 7.1 is constant at 60
ft3/sec/MW and that the steam unit is not necessarily on all the time.
Further, assume that the thermal cost is

F(P) = 250 + 2P, + P2/1000

Repeat Problem 7.1 with the same water constraint.

Gradient Method for Hydrothermal Scheduling

A thermal-generation system has a composite fuel cost characteristic that
may be approximated by

F = 700 + 4.8P, + P/2000, R/h
for
200 < P, < 1200 MW

The system load may also be supplied by a hydro-unit with the following
characteristics:

q(Py) =0 when P, =0 _

q(Py) = 260 + 10Py,. acre-ft/h for 0 < P, < 200 MW

q(Py) = 2260 + 10(Py — 200) + 0.028(Py — 200)* acrc/h
for 200 < Py < 250 MW

The system load levels in chronological order are as follows:

Period Ploaa (MW)

600
1000
900
500
400
500

[ SRV R N

Each period is 4 h long.
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73.1 Assume the thermal unit is on-line all the time and find the
optimum schedule (the values of P, and Py for each period) such
that the hydroplant uses 23,500 acre-ft of water. There are no other
hydraulic constraints or storage limits, and you may turn the
hydro-unit off when it will he]p ‘

73.2 Now, still assuming the thermal unit 1s on-line Cdbh period, use a
gradient method to find the optimum schedule given the following
conditions on the hydroelectric plant.

a. There is a constant inflow into the storage reservoir of 1000
acre-ft/h.
b. The storage reservoir limits are

V.

max

18,000 acre-ft

I

and
Vi = 6000 acre-fit

¢. The reservoir starts the day with a level of 10,000 acre-ft, and
we wish to end the day with 10,500 acre-ft in storage.

7.4 Hydrothermal Scheduling using Dynamic Programming

Repeat Example 7E except the hydroelectric unit’s water rate characteristic
is now one that reflects a variable head. This characteristic also exhibits a
maximum capability that is related to the net head. That is.

g=0 for P,=0

7
=260 + 10P4{ 1.1 — | acre-ft/h
; ! "( 100,000)
for
5
0<Pys 2000(0.9 + _) MW

100,000

where

V = average reservoir volume
For this problem, assume constant rates during a period so that
=i+ W)

where
¥, = end of period volume

V. = start of period volume

The required data are
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Fossil unit: On-line entire time

F =770 + 5.28P, + 0.55 x 107*P2 R/h
for
200 < P, < 1200 MW

Hydro-storage and inflow:

r = 1000 acre-ft/h inflow
6000 < V' < 18,000 acre-ft storage limits

V = 10,000 acre-ft initially
and
V' = 10,000 acre-ft at end of period

Load for 4-h periods:

J: Period Pross (MW)

1000

500
400
300

[ R R S S S

Find the optimal schedule with storage volumes calculated at least to the
nearest 500 acre-ft.

Pumped-Storage Plant Scheduling Problem

A thermal generation system has a composite fuel-cost characteristic as
follows:
F =250 + 1.5P, + P?/200 R/h
for
200 < P, < 1200 MW

In addition, it has a pumped-storage plant with the following charac-
teristics:

1. Maximum output as a generator = 180 MW (the unit may generate
between 0 and 180 MW),

2. Pumping load = 200 MW (the unit may only pump at loads of 100 or
200 MW). P
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3. The cycle efficiency is 707, (that is, for every 70 MWh generated,
100 MWh of pumping cnergy are required).
4. The reservoir storage capacity is equivalent to 1600 MWh of generation.

The system load level in' chronological order is the same as that In
Problem 7.3.

a. Assume the reservoir is full at the start of the day and must be full at
the end of the day. Schedule the pumped-storage plant to minimize the
thermal system costs.

b. Repeat the solution to part a. assuming that the storage capacity of
the reservoir is unknown and that it should be at the same level at the
end of the day. How large should it be for minimum thermal production
cost?

Note: In solving these problems you may assume that the pumped-storage
plant may operate for partial time periods. That is, it does not have
to stay at a constant output or pumping load for the entire 4-h load
period.

7.6 The ~Light Up Your Life Power Company” operates one hydro-unit and
four thermal-generating units. The on/off schedule of all units, as well as
the MW output of the units, is to be determined for the load schedule
given below.

Thermal unit data (fuel cost = 1.0 $/MBTU):

Min Min

Incremental No-load Up Down

Unit Max Min Heat Rate Energy Input  StartUp  Time  Time
No (MW) (MW)  (Buu/kWh) {MBtu/hr) (MBtu) (h) (h)
1 500 70 9950 300 800 4 4
2 250 40 10200 210 380 4 4
3 150 30 11000 120 110 4 8
4 - 150 30 11000 120 110 4 16

Hydroplant data:
| Q(P,) = 1000 + 25P, acre-ft/h
where
0 < P, <200 MW

min up and down time for the hydroplant is | h.
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Load data (each time period is 4 h):

Time Period Pioaa (MW)
1 600
2 800
3 700
4 1150

The starting conditions are: units 1 and 2 are running and have been up
for 4 h, units 3, 4, and the hydro-unit are down and have been for 16 h.
Find the schedule of the four thermal units and the hydro-unit that
minimizes thermal production cost if the hydro-units starts with a full
reservoir and must use 24,000 acre-ft of water over the 16-h period.

The “Lost Valley Paper Company” of northern Maine operates a very
large paper plant and adjoining facilities. All of the power supplied to the
paper plant must come from its own hydroplant and a group of thermal-
generation facilities that we shall-lump into one equivalent generating
plant. The operation of the hydro-facility is tightly governed by the Maine
Department of Natural Resources.

Hydroplant data:
Q(P,) = 250 + 25P, acre-ft/h
and
0 < P, <500 MW

Equivalent steam-plant data:
F(P) = 600 + SP, + 0.005P% $/h

and
100 < P, < 1000 MW

Load data (each period is 4 h):

Time Period Pioaa (MW)
1 800
2 1000
3 500

The Maine Department of Natural Resources had stated that for the 12-h
period above, the hydroplant starts at a full reservoir containing 20,000
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acre-ft of water and ends with a reservoir that is empty. Assume that there
is no inflow to the reservoir and that both units are on-line for the entire
12 h. ‘

Find the optimum schedule for the hydroplant using dynamic pro-
gramming. Use only three volume states for this schedule: 0, 10,000, and
20,000 acre-ft.

FURTHER READING

The literature relating to hydrothermal scheduling is extensive. For the reader desiring
a more complete guide to these references, we suggest starting with reference 1, which
is a bibliography covering 1959 through 1972, prepared by a working group of the
Power Engineering Society of IEEE. ‘

References 2 and 3 contain examples of simulation methods applied to the scheduling
of large hydroelectric systems. The five-part series of papers by Bernholz and Graham
(reference 4) presents a fairly comprehensive package of techniques for optimization of
short-range hydrothermal schedules applied to the Ontario Hydro system. Reference 5 is
an example of optimal scheduling on the Susquehanna River.

A theoretical development of the hydrethermal scheduling equations is contained in
reference 6. This' 1964 reference should be reviewed by any reader contemplating
undertaking a research project in hydrothermal scheduling methods. It points out clearly
the impact of the constraints and their effects on the pseudomarginal value of
hydroelectric energy.

Reference 7 illustrates an application of gradient-search methods to the coupled
plants in the Ontario system. Reference 8 illustrates the application of dynamic-
programming techniques to this, type of hydrothermal system in a tutorial fashion.
References 9 and 10 contain examples of methods for scheduling pumped-storage
hydroelectric plants in a predominantly thermal system. References 11-16 show many
recent scheduling technigues. ) frare

This short reference list is only a sample. The reader should be aware that a literature
search in hydrothermal-scheduling methods is a major undertaking. We suggest the
serious student of this topic start with reference 1 and its predecessors and successors.

1. “Description and Bibliography of Major Economy-Security Functions. Parts L 11,
and 111" IEEE Working Group Report, [EEE Transactions on Power Apparatus
and Systems, Vol. PAS-100, January 1981. pp. 211-235.

. Bruderell, R. N., Gilbreath, J. H,, “ Economic Complementary Operation of Hydro
Storage and Steam Power in the Integrated TVA System,” AIEE Transactions, Vol.
78, June 1959, pp. 136--150. :

. Hildebrand, C. E., “The Analysis of Hydroelectric Power-Peaking and Poundage
by Computer,” AIEE Transactions, Vol. 79, Part ITI, December 1960, pp. 1023-1029.

4. Bernholz, B., Graham, L. J., “Hydrothermal Economic Scheduling,” a five-part

series:

[

%)

a. “Part I. Solution by Incremental Dynamic Programming,” AJEE Transactions,
Vol. 79, Part 111, December 1960, pp. 921-932.

b. “Part I1. Extension of Basic Theory,” AIEE Transactions, Vol. 81, Part III,
January 1962, pp. 1089-1096. :
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¢. “Part I11. Scheduling the Thermal System using Constrained Steepest Descent,”
AIEE Transactions, Vol. 81, Part 111, February 1962, pp. 1096-1105.

d. “Part IV. A Continuous Procedure for Maximizing the Weighted Output of a
Hydroelectric Generating Station,” AJEE Transactions, Vol. 81, Part I, February
1962, pp. 1105-1107. i b . B

e. “Part V. Scheduling a Hydrothermal System with Interconnections,” AIEE
Transactions, Vol. 82, Part 111, June 1963, pp. 249-2535.

. Anstine, L. T.. Ringlee, R. J., “Susquenhanna River Short-Range Hydrothermal

Coordination.” AIEE Transactions, Vol. 82, Part 111, April 1963, pp. 185-191.

. Kirchmayer, L. K., Ringlee, R. J., “Optimal Control of Thermal Hydro-System

Operation,” [FAC Proceedings, 1964, pp. 430/1-430/6.

. Bainbridge, E. S., McNamee, J. M., Robinson, D. J., Nevison, R. D., “Hydrothermal

Dispatch with Pumped Storage.” IEEE Transactions on Power Apparatus and
Systems, Vol. PAS-85, May 1966, pp. 472-485.

. Engles, L., Larson, R. E., Peschon, J.,, Stanton, K. N., “Dynamic Programming

Applied to Hydro and Thermal Generation Scheduling,” A paper contained in the
IEEE Tutorial Course Text, 76CH1107-2-PWR. IEEE, New. York. 1976.
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8 Production Cost Models

8.1 INTRODUCTION

Production cost models are computational models designed to calculate a
generation system’s production costs, requirements for energy imports, avail-
ability of energy for sales to other systems, and fuel consumption. They are
widely used throughout the electric utility industry as an aid in long-range
system planning, in fuel budgeting, and in system operation. The primary
function of computing future system energy costs is accomplished by using
computer models of expected load patterns and simulating the operation of the
generation system to meet these loads. Since generating units are not perfectly
reliable and future load levels cannot be forecast with certainty, many production
cost programs are based on probabilistic models and are used to compute the
statistically expected need for emergency energy and capacity supplies or the
need for controlled load demand reductions. :

The digital simulation of the generation system involves representation of:

1. Generating unit efficiency characteristics {input-output curves, etc.).

2. Fuel costs per unit of energy supplied.

3. System operating policies with regard to scheduling of unit operation and
the economic dispatching of groups of units that are on-line.

4. Contracts for the purchases and sales of both energy and power capability.

When hydroelectric plants are a part of the power system, the production
cost simulation will involve models of the policies used to operate these plants.
The first production cost models were deterministic, in that the status of all units
and energy resources was assumed to be known and the load is a single estimate.

Production cost programs involve modeling all of the generation charac-
teristics and many of the controls discussed previously, including fuel costs and
supply, economic dispatch, unit commitment and hydrothermal coordination.
They also involve modeling the effects of transactions, a subject to bé considered
in a later chapter. Deterministic programs incorporate the generation scheduling
techniques in some sort of simulation model. In the most detailed of these, the .
on-line unit commitment program might be used in an off-line study mode.
These are used in studying issues that are related to system operations such as
purchase and sale decisions, transmission access issues and near-term decisions
regarding operator-controlled demand management.

264
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Stochastic production cost models are usually used for longer-range studies
that do not involve near-term operational considerations. In these problem
areas, the risk of sudden, random, generating unit failures and random
deviations of the load from the mean forecast are considered as probability
distributions. This chapter describes the basic ideas used in the probabilistic
production cost models.

It is not possible to delve into all thie details involved in a typical modern
computer program since these programs may be quite large, with tens of
thousands of lines of code and thousands of items of data. Any such discussion
would be almost instantly out of date since new problems keep arising. For
example, the original purpose of these production cost programs was primarily
computation of future system operating costs. In recent years, these models
have been used to study such diverse areas as the possible effects of load
management, the impact of fuel shortages, issues related to nonutility generation,
and the reliability of future systems.

The “universal” block diagram in Figure 8.1 shows the organization of a
“typical” energy production cost program. The computation simulates the
system operation on a chronological basis with system data input being altered
at the start of each interval. These programs must be able to recognize and
take into account, in some fashion, the need for scheduled maintenance outages.
Logic may be incorporated in this type of program to simulate the maintenance
outage allocation procedure actually used, as well as to process maintenance
schedules that are input to the program.

Expansion planning and fuel budgeting production cost programs require
load models that cover weeks, months, and/or years. The expected load patterns
may be modeled by the use of typical, normalized hourly load curves for the
various types of days expected in each subinterval (i.e., month or week) or else
by the use of load duration or load distribution curves. Load models used in
studying operational issues involve the next few hours, days or weeks and are
usually chronological load cycles.

A load duration curve expresses the period of time (say number of hours) in
a fixed interval (day. week, month, ar year) that the load is expected to equal
or exceed a given megawatt value. It is usually plotted with the load on the
vertical axis and the time period on the horizontal axis.

The scheduling of unit maintenance outages may involve time intervals as
short as a day or as long as a year. The requirements for economic data such
as unit, plant, and system consumption and fuel costs, are usually on a monthly
basis. When these time interval requirements conflict, as they often do, the load
model must be created in the model for the smallest subinterval involved in the
simulation.

Production cost programs may be found in many control centers as part of
the overall “application program” structure. These production cost models are
usually intended to produce shorter-term computations of production costs (i.e.,
a few hours to the entire week) in order to facilitate negotiations for energy (or
power) interchange or to compute cost savings in order to allocate economic
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FIG. 8.1 Block diagram for a typical, single area energy bmduction cost program used
for planning.

benefits among pooled companies. In either application, the production cost
simulation is used to evaluate costs under two or more assumptions. For
example, in interchange negotiations, the system operators can evaluate the
cost of producing the energy on the system versus the costs of purchasing it.
In U.S. power pools where units owned by several different utilities are
dispatched by the control center, it is usually necessary to compute the
production cost “savings” due to pooled operation. That is, each seller of
energy is paid for the cost of producing the energy sold and may be given
one-half the production cost “savings™ of the system receiving the energy. One
way of determining these savings is to simulate the production costs of each
system supplying just its own load. In fact, in at least one U.S. pool this is
called *own-load dispatch.” These computed production costs can be compared
with actual costs to arrive at the charges for transferring energy. The models
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used are deterministic and typically use the actual load patterns that occurred
during the period under study. Scheduling computations frequently are per-
formed with models that are similar to those used for real-time operational
control.

Production cost computations are also needed in fuel budgeting. This
involves making computations to forecast the needs for future fuel supplies at
specific plant sites. Arrangements for fuel supplies vary greatly among utilities.
In some instances, the utility may control the mining of coal or the production
and transportation of natural gas; in others it may contract for fuel to be
delivered to the plant. In many cases, the utility will have made a long-term
arrangement with a fuel supplier for the fuel needed for a specific plant.
(Examples are “mine-mouth™ coal plants or nuclear units.) In still other cases,
the utility may have to obtain fuel supplies on the open (ie., “spot”) market
at whatever prices are prevailing at that time. In any case, it 1s necessary
to make a computation of the expected fuel supply requirements so that proper
arrangements can be made sufficiently in advance of the requirements. This
requires a forecast of specific quantities (and large quantities) of fuel at given
future dates.

Fuel budgeting models are usually very detailed. Deterministic or probabilis-
tic production cost simulations may be used for this application. In some cases,
where the emphasis is on the scheduling of fuel resources, transportation and
fuel storage, the production cost computations might be one part of a large
linear programming model. In these cases, the loads might be modeled by
the expected energy demand in a day, week, month or season. Scheduling
of generation would be done using a linear model of the input-output
characteristics.

The operating center production cost needs may have a 7-day time horizon.
The fuel budgeting time span may encompass | to 3 years and might, in the case
of the mine-mouth plant studies, extend out to the expected life of the plant.
System expansion studies usually encompass a minimum of 10 years and in many
cases extend to 30 years into the future. It is this difference in time horizon that
makes different models and approaches suitable for different problems.

82 USES AND TYPES OF PRODUCTION COST PROGRAMS

Table 8.1 lists the major features that may vary from program to program and
indicates, along the horizontal axis, the major program uses of:

Long-range planning.

Fuel budgeting.
Operations planning.
Weekly schedules.
Allocation of pool savings.

WA el P
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Also indicated are the types of programs that have been found useful, so far,
in each application. The type of load model used will determine, in part, the
suitability of each program type for a given application.

The types of production cost programs shown in Table 8.1, which utilize
chronological load patterns (i.¢., load cycles) and deterministic scheduling
methods, are computer implementations of the economic dispatching techniques
and unit commitment methods explored previously. That is, production costs
and fuel consumption are computed repetitively, assuming that the load cycles
are known for an extended period into the future and that the availability of
every unit can be predicted with 100%, certainty for each subinterval of that
future period.

In models using probabilistic representations of the future loads and
generating unit availabilities, the expected values of production costs and fuel
consumption are computed without the assumption of a perfectly known future.

There are other types of production cost programs that are known by various
names. Some include different ways of categorizing the program, models, or
computational methods that arc used. For example there are “Monte Carlo.”
probabilistic simulations that are detailed, deterministic programs with the
added feature that unit outages and deviations of loads from those forecast are
incorporated by the use of synthetic sampling techniques. Random numbers
are generated at regular time intervals and used to develop sample results from
the appropriate probability distributions. These numbers determine the status
of a unit; operating at full capability. on forced outage, or'coming back into a
state where it is available, if it was previously unavailable. The magnitude of
the load deviation from the magnitude forecast may also be determined by a
random number using a “forecast error” probability density. Other programs
might combine some of the approximate generation scheduling techniques with
Joad models that separate the week into weekdays and weekend days and
consider only 4 wks per year, one for each season. In these (so-called
“quick-and-dirty ") models, the weekly cost and fuel consumption are muitiplied
by appropriate scaling factors to compute total seasonal values. On the other
end of the complexity scale. there are programs which consider the dispatch of
several interconnected areas and utilize power flow constraints caused by the
transmission interconnections to restrict interarea interchange levels. Optimal
power flow programs could be used in the same fashion.

So far, networks have only been represented in production cost programs
by simplified models, such as using penalty factors, using a DC power flow (or
equivalent distribution factors based on a DC model) or using a‘transportation
network. AC power flows are useful for security-constrained economic dispatch.
unit commitment and purchase-sale analyses. Optimal power flows may be
used to study transmission power and VAR flow patterns to develop prices for
the use of transmission systems.

In the complex, deterministic programs. the loads may be represented by
chronologically arranged load cycle patterns. These patterns consist of hourly
(or bi-hourly) loads that might be calculated using typical, daily load cycle
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patterns for workdays, weekend days and holidays throughout the period. The
development of these typical patterns from historical data is an art: using them
to develop forecasts of future load cycles is straightforward once the overall
load forecasi is developed. The earlier load models were load-duration curves

and we shall utilize them to explore the various techniques.

8.2.1 Production Costing Using Load-Duration Curves

In représ'éht'ing'f_uture loads, sometimes it is satisfactory to specify only the total
energy generation for a period. This is satisfactory if only total fuel consumption
and production costs are of interest and neither capacity limitations nor
chronological effects are important.
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Where capacity limitations are of more concern, a load-duration curve might
be used. Figure 8.2 shows an expected load pattern in (a), a histogram of load
for a given time period in (b), and the load-duration curve constructed from it
in (c). In practical developments. the density and distribution functions may be
developed as histograms where each load level, L, denotes a range of loads.
These last two curves are expressed in both hours and per unit probability
versus the megawatts of load. Figure 8.3 shows the more conventional
representation of a load-duration curve where the. probability has been
multiplied by the period length to show the number of hours that the
load equals, or exceeds, a given level, L (MW). It is conventional in deter-
ministic production cost analyses to show this curve with the load on the
vertical axis. In the probabilistic calculations, the form shown on Figure 8.2¢
15 used.

In the simulation of the economic dispatch procedures with this type of load
model, thermal units may be block-loaded. This means the units (or major
segments of a unit) on the system are ordered in some fashion (usually cost)
and are assumed to be fully loaded, or loaded up to the limitations of the
load-duration curve. Figure 8.4 shows this procedure for a system where the
internal peak load is 1700 MW. The units are considered to be loaded in a
sequence determined by their average cost at full load in R/MWh. The
amount of energy generated by each unit is equal to the area under the
load-duration curve between the load levels in megawatts supplied by each
unit.

1.500
z 1,000 —
=
®
o
-
500 —
0
0 T

Hours load equals or
exceeds L MW

FIG. 83 Load-duration curve.
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400 MW capacity)
1,500 RaY

Gas turbines (280 MW out of

{120 MW totai)

’;‘ {200 MW)

2

~ 1,000 —

g Mohawk 1 (300 MW}

S .
500 |—

2-Mite Point (800 MW)

I Rio Bravo #1, #2, and 33

Hours load equals or exceeds L MW

FIG. 8.4 Block-loaded units.

This system consists of three plants plus an array of gas-turbine generating

units. These are:

Unit

Maximum capability (MW)

2-Mile Point

Mohawk 1|

Mohawk 2

Rio Bravo 1

Rio Bravo 2

Rio Bravo 3

Eight gas turbines (each 50 MW)

800

300

200

75

25

20

400
Total 1820

Note that in this system, the gas turbines are not used appreciably since the
peak load is only 1700 MW and each unit is assumed to be available all the

time during the interval.

Besides representing the thermal generating plants, the various production
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cost programs must also simulate the effects of hydroelectric plants with and
without water storage, contracts for energy and capacity purchases and sales,
and pumped-storage hydroelectric plants. The action of all these results in a
modified load to be served by the array of thermal units. The scheduling of the
thermal plants should be simulated to consider the security practices and
policies of the power system as well as to simulate, to some appropriate degree,
the economic dispatch procedures used on the system to control the unit output
levels.

More complex production cost programs used to cover shorter time periods
may duplicate the logic and procedures used in the control of the units. The
most complex involve the procedures discussed in the previous three chapters
on unit commitment and hydrothermal scheduling. These programs will usually
use hourly forecasts of energy (i.c., the “hourly, integrated load™ forecast) and
thermal-generating-unit models that include incremental cost functions, start-
up costs, and various other operating constraints.

EXAMPLE 8A

Let us consider the load-duration curve technique for a system of two units.
Initially, the random forced outages of the generating units will be neglected.
Then, we will incorporate consideration of these outages in order to show their
effects on production costs and the ability of the small sample system to serve
the load pattern expected. The load consists of the following:

-

x-Load Duration Energy

(MW) {h) (MWh)
100 20 2000
80 60 4800
40 AP 800
Total = 100 7600

From these data, we may construct a load-duration curve in tabular and graphic
form. The load-duration curve shows the number of hours that the load equals
or exceeds a given value.

x-Load Exact T P,(k) Hours that
(MW) Duration, Tp(x) Load Equals or Exceeds x
0 0 100
20 0 100
40 20 100
60 0 80
80 60 80
100 . 20 20

100+ 0
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In this table; p(x) is the load density function: the probability that the load is
exactly x MW and P,(x) is the load distribution function; the probability that
the load'is cqual to, or exceeds, x MW.

The tablé has been created for uniform load-level steps of 20 MW each. The
{ab’e also introduces the notation that is useful in regarding the load-duration
curve as a form of probability distribution. The load density and distribution
functions, p(x) and P,(x), respectively, are probabilities. Thus, p(20) = 0.
p(40) = 207100 = 0.2, p(60) = 0, and so forth, and P,(20) = P,(40) = L.0, P,(60) =
0.8. and so forth. The distribution function, P,(x), and the density, p(x), are
related as follows.

P(x)=1 - J‘ ‘p(x) dx (8.1)

For discrete-density functions (or histograms) in tabular form, it is easiest to
construct the distribution by cumulating the probability densities from the
highest to the lowest values of the argument (the load levels).

The load-duration curve is shown in Figure 8.5 in a way that is convenient
to use for the development of the probabilistic scheduling methods.

The two units of the generating system have the following characteristics.

Power Fuel Cost Incremental  Unit Forced

Output  Fuel Input Fuel Cost Rate Fuel Cost  Outage Rate
Unit  (MW)  (10° Btu/h)  (R/10° Btu) (R/h) (R/MWh) (per unit)
I 0 160 1 160 —
80 800 1 800 8 0.05
2 0 80 2 160 —
2 %00 16 0.10

40 400

In this table the fuel cost rate for each unit is a linear function of the power
output, P. That is,

F(P) = fuel cost at zero output + incremental cost rate x P.

In addition to the usual input-output characteristics, forced outage rates are
assumed. This rate represents the fraction of time that the unit is not available,
due to a failure of some sort, out of the total time that the unit should be
available for service. In computing forced outage rates, periods where a unit 1s
on scheduled outage for maintenance are excluded. The unit forced outage rates
are initially neglected. and the two units are assumed to be available 100%, of
the time..

Units are “block-loaded.” with unit | being used first because of its lower
average cost per MWh. The load-duration curve itself may be used to visualize
the unit loadings. Figure 8.6 shows the two units block-loaded.
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Unit 1 is on-line for 100 h and is generating at an output level of 80 MW
for 80 h and 40 MW for 20 h. Therefore, the production costs for unit 1 for this
period:
hours on line x no luad fuel cost rate
+energy generated x incremental fuel cost rate

100 h x 160 R/h + (6400 -+ 800) MWh x 8 R/MWh
~ 16,000 R + 57,600 R = 73,600 R

I

i

Similarly, unit 2 is required only 20 h in the interval and generates 400 MWh
at a constant output level of 20 MW. Therefore, its production costs for this
period:

=20h x 160 R/h + 400 MWh x 16 R/MWh = 9600 R

These data are summarized as follows.

Load Duration Energy Fuel Used Fuel Cost
Unit (MW) (h) {(MWh) (10° Btu) (R)
| 40 20 800 9600 9600
80 80 6400 64000 64000
7200 73600 73600
2 20 20 400 4800 9600
7600 78400 83200

Note that these two units can casily supply the expected loads. If a third unit
were available it would not be used, except as standby reserve.

This same basic approach to compute the production cost of a particular
unit is used in most production cost models thal represent individual unit
characteristics. The simulation will determine the hours that the unit is on-line
and the total duration or each of the unit's MW output Jevels. If the incremental
cost is allowed to vary with loading level, the unit cost can be calculated as:

= hours on line x no load fuel cost

+ Y (power generated x hours at this level x incremental fuel cost rate at
this power level)

summed over the period. When nonzero, minimum loading levels are considered,
this has to be modified to:

= hours on-line x fuel cost rate at minimum load

+ Y [(power level — minimum power) X incremental fuel cost rate x hours
at this level]
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It gets more involved when continuous functions (polynomials, for example)
are used to model input-output cOst curves.

8.2.2 Outages Considered

Next, let us consider the effects of the random forced outages of these units
and compute the expected production costs. This is a situation that contains
relatively few possible events so that the expected operation of each unit may
be determined by enumeration of all the possible outcomes. For this procedure,
it is easiest at this point to utilize the load density rather than the load-
distribution function.

EXAMPLE 8B

Load level by load level, the operation and generation of the two units are as
follows.

1. Load = 40 MW; duration 20 h

Unit 1 On-line 20 h
Qperates 095 x20=19h
Output 40 MW
Energy 19 x 40 = 760 MWh
Unit 2: On-line lh
Operates 09x1=0%h
Output 40 MW
Energy 0.9 x 40 = 36 MWh
Load energy = 800 MWh
Generation =796 MWh
Unserved energy =4 MWh
Shortages 40 MW for 0.1 h

2. Load = 80 MW:; duration 60 h

Unit 1: On-line 60 h
Operates 095 x 60 =757h
Output 80 MW
Energy 57 x 80 = 4560 MWh
Unit 2: On-line 60 h total
Operates 09x3=27h
Qutput 40 MW

Energy 2.7 x 40 = 108 MWh
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Load energy = 4800 MWh
Generation = 4668 MWh
Unserved energy = 132 MWh
Shortages 30 MW for 0.3 h = 24 MWh
40 MW for 2.7 h = 108 MWh
132 MWh
3. Load = 100 MW; duration 20 h
Unit 1: On-line 20 h
Operates 095 x20=19h
Output 80 MW
Energy 19 x 80 = 1520 MWh
Unit 2:
On-line 20 h
Operates as follows:

a. Unit | on-line and operating 19 h
Unit 2 operates 0.9 x 19 =17.1 h
Output 20 MW
Energy 17.1 x 20 = 342 MWh
Shortage 20 MW for 1.9 h

b. Unit | supposedly on-line, but not operating 1 h
Unit 2 operates 0.9 x | = 0.9 h,
Output 40 MW
Energy 0.9 x 40 = 36 MWh
Shortages 100 MW for 0.1 h
60 MW for 0.9 h

Load energy = 2000 MWh
Generation = 1898 MWh
Unserved energy = 102 MWh
Shortages 100 MW for 0.1 h = 10 MWh

60 MW for 09 h = 54 MWh
20 MW for 19 h = 38 MWh
102 MWh

Because this example is so small, it has been necessary to make an
arbitrary assumption concerning the commitment of the second unit. The
assumption made is that the second unit will be on-line for any load level
that equals or exceeds the capacity of the first unit. Thus, the second unit is
on-line for the 60-h duration of the 80 MW load. This assumption agrees
with the algorithm developed later in the chapter.

The enumeration of the possible states is not quite complete. We have
accounted for the periods when the load is satisfied and the times when there
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will be a real shortage of capacity. In addition, we need to separate the periods
when the load is satisfied into periods where there is excess capability (more
generation than load) and periods when the available capacity exactly matches
the load (generation equals load). The latter periods are called zero MW
shortage because there is no reserve capacity in that period. This information
is needed in case an additional unit becomes available or emergency capacity
needs to be purchased. This additional capacity would need to be operated
during the entire period of a zero MW shortage because the occurrence of a
real shortage is a random event depending on the failure of an operating
generator.

For this example there are two such periods, one during the 40-MW load
period and the other during the 80-MW load period. That is, the additional
“zero MW shortage” conditions occur during those periods when the load is
supplied precisely with no additional available capacity. Therefore, to the
shortage events presented previously, we add the following.

Zero Reserve

Load (MW) Duration (h) Unit 1 Unit 2 Expected Duration

1. 40 20 Qut In 005 x 0.9 x 20 =09

2. 80 60 In Out 095 x 0.1 x 60 = 5.7
6.6 h

These “zero MW shortage™ cvents are of significance, since their total expected
duration determines the number of hours that any additional units will be
required.

All these events may be presented in an orderly fashion. Since each unit may
be cither on or off and there are three loads, the total number of possible events
is 3 x 2 x 2 = 12. These are summarized along with the consequence of cach
event in Table 8.2. ’

Now, having enumerated ali the possible operating events, it is possible to
compute the expected production costs and shortages. Recall from Example
8A that the operating cost characteristics of the two units are

F, = 160 + 8Py, R/h
and

E, = 160 + 16P,, R/h

and the fuel costs are 1 and 2 R/10° Btu. respectively. The calculated operating
costs considering forced ourages are computed using the data from Table 8.2.
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TABLE 8.2 Summary of All Possible States

Combined Event

Load Duration Event Power Power Duration
(MW) (h) No. Status® (MW) Status® (MW) (h) Consequence
40 20 i 1 40 | 0 17.1 Load satisfied;
- unit 2 not required
2 1 40 0 0 19 Same as event no. 1
3 0 0 1 40 0.9 Load satisfied;
0 MW shortage 0.9 h
4 0 0 0 0 Q1 40 MW shortage 0.1 h
80 60 S 1. 80 1 0 51.3 Load satisfied;
unit 2 not required
6 | 80 0 0 5.7 Load satisfied;
0 MW shortage 5.7h
7 0 0 1 40 27 40 MW shortage 2.7 h
8 . 0 0 V] 0 0.3 80 MW shortage 0.3 h
100 20 =9 1 80 1 20 17.1 Load satisfied
10 1 80 0 -0 19 20 MW shortage 1.9 h
11 0 0 1 40 0.9 60 MW shortage 0.9 h
| 12 0 0 0 0 0.1 100 MW shortage 0.1 h

a1 denotes available and 0 denotes unavailable.
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These are:
Total Expected Expected Expected
Hours Expected Energy Generation  Fuel Use Production
Unit  On-line  Operating Hours (MWh) (106 Btu) Cost (R)
i 100 95.0 6840 69920 69920
2 81 729 522 10008 20016
Totals 7362 79928 89936

The expected energy generated by unit 1 is the summation over the load levels
of the product of the probability that the unit is available, p = 0.95, times the
load level in MW, times the hours duration of the load level. The expected
production costs for unit !

=95 h x 160 R/h + 6840 MWh x 8 R/MWh
and for umt 2

=729h x 160 R/h + 522 MWh x 16 R/MWh

Compared to the resuits of Example 8A, the fuel consumption has increased
1.95% over that found neglecting random forced outages, and the total cost has
increased 8.1%. This cost would be increased even more if the unserved energy,
238 MWh. were to be supplied by some high-cost emergency source.

The expected unserved demands and energy may be summarized from the
preceding data as shown in Table 8.3. The last column is the distribution of
the need for additional capacity, TP,(x), referred to previously, computed after
the two units have been scheduled. Data such as these are computed in
probabilistic production cost programs to provide probabilistic measures of the
generation system adequacy (ie., reliability). If costs are assigned to the
unsupplied demand and energy (representing replacement costs for emergency
purchases of capacity and energy or the economic loss to society as a whole),

TABLE 8.3 Unserved Load

Unserved Duration Unserved Duration of
Demand of Shortage Energy Given Shortages
(MW) (h) (MWh) or More (h)
0 6.6 0 12.6
20 1.9 38 6.0
40 28 112 4.1
60 0.9 54 13
80 03 24 04
100 0.1 10 0.1

238

=N

Totals
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these data will provide an additional economic measure of the generation
system.

This relatively simple example leads to a lengthy series of computations.
The results point out the importance of considering random forced outages
of generating units when production costs are being computed for prolonged
future periods. The small size of this example tends to magnify the expected
unserved demand distribution. In order to supply, reliably, a peak demand of
100 MW with a small number of units, the total capacity would be somewhere
in the neighborhood of 200 MW. On the other hand. the relatively low
forced outage rates of the units used in Example 8B tend to minimize the
effects of outages on fuel consumption. Large steam turbine gencrators
of 600 MW capacity, or more, frequently exhibit forced outage rates in excess
of 10%.

It should also be fairly obvious at this point that the process of enumerating
cach possible state in order to compute expected operation, energy generation,
and unserved demands, cannot be carried much further without an organized
and efficicnt scheduling method. For N, load levels and N units, each of which
may be on or off, there are N; x 2% possible events to enumerate. The next
section will develop the types of procedures that are found in many probabilistic
production cost programs. :

$3 PROBABILISTIC PRODUCTION COST PROGRAMS

Until the 1970s, production cost estimates were usually computed on the basis
that the total generating capacity is always available, except for scheduied
maintenance outages. Operating experience indicates that' the forced outage
rate of thermal-generating units tends to increase with the unit size. Power
system energy production costs are adversely affected by this phenomenon. The
frequent long-duration outages of the more efficient base-load units require
running the less efficient, more expensive plants at higher than expected capacity
factors* and the importation of emergency energy. Some utility systems report
the operation of peaking units for more than 150 h each month, when these
same units were originally justified under the assumption that they would be
run over a few hours per month, if at all.

Two measures of system unreliability (i.c., generation system inadequacy to
serve the expected demands) due to random, forced generator failures are:

* Capacity factor is defined as follows.

MWh generated by the unit

(Number of hours in the period of intcrest)unit full-load MW capacity)

Thus, a higher value (close to unily) indicates that a unit was run most of the ime at full load.
A lower value indicates the unit was loaded below full capacity most of the time or was shut
down part of the time.
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1. The period of time when the load is greater than available generation
capacity.

2. The expected levels of power and energy that must be imported to satisfy
the load.

The maximum emergency import power and total energy imported are different
dimensions of the same measurc. These quantities and the expected shortage
duration are useful as sensitive indicators of the need for additional capacity
or interconnection capability. Some of these ideas are discussed further in the
Appendix.

83.1 Probabilistic Production Cost Computations

Production cost programs that recognize unit forced outages and compute the
statistically expected energy production cost have been developed and used
widely. Mathematical methods based on probability methods make use of
probabilistic models of both the load to be served and the energy and capacity
resources. The models of the generation need to represent the unavailability of
basic energy resources (i.e., hydro-availability), the random forced outages of
units, and the effects of contracts for energy sales and/or purchases. The
computation may also include the expected cost of emergency energy over the
tie'lines, which is sometimes referred to as the cost of unsupplied energy.

The basic difficulties that were noted when using deterministic approaches
to the calculation of systems production cost were:

1. The base-load units of a system are loaded in the models for nearly 1007
of an interval. ’ : :

2. The midrange, or “cycling,” units are loaded for periods that depend on
their priority rank and the shape of the load-duration curve.

3, For any system with reasonably adequate reserve lével, the peaking units
have nearly zero capacity factors.

These conditions are, in fact, all violated to a greater or lesser extent whenever
random-unit forced outages occur on a real system. The unavailability of
.thermal-generating units due to unexpected, randomly occurring outages is
fairly high for large-sized units. Values of 10% are common for full forced
outages. That is, for a full forced outage rate of g, per unit, the particular
generating unit is completely unavailable for 1004%, of the time it is supposed
to be available. Generating units atso suffer partial outages where the units
must be derated (ie., run at less than full capacity) for some period of time,
due to the forced outage of some system component (e.g.. a boiler feed pump
or a fan motor). These partial forced outages may reach very significant levels.
It is not uncommon to see data reflecting a 25% forced reduction in maximum
generating unit capability for 20% of the time it is supposed to be available.

Data on unit outage rates are collected and processed in the United States
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by the National FElectric Reliability Council (NERC). The collection and
processing of these data arc important and difficult tasks. Performance data
of this nature are essential if rational projections of component and system
unavailability are to be made.

There are two techniques that have been used to handle the convolution of
the load distributions with the capacity-probability density functions of the
units: numerical convoiutions where discrete values are used to model all of
the distributions, and analytical methods that use continuous functional
representations. Both techniques may be further divided into approaches that
perform the convolutions in different orders. In what will be referred to here
15 the unserved toad distribution method, the individual unit probability -capacity
densities are conyvolved with the load distribution in a sequence determined by
a4 iixed economic loading criterion to develop a series of unscrved load
distributions. Unit energy production is the differcnce between the unserved
load cnergy before the unit is scheduled (e, convolved with the previous
unserved load distribution) and after it has been scheduled. The load forecast
is the initial unserved load distribution In the expected cost method, the unit
probability capacity densities are first convolved with cach other in sequence
to develop distributions of available capacity and the expected cost curve as a
function of the total power generated. This expected cost curve may then be
used with the load distribution to produce the expected value of the production
cost to serve the given load forecast distribution. We shall explore the numerical
convolution techniques.

The analytical methods use orthogonal functions to represent both the load
and capaciiy- probability densities of the units. These arc the methods based
-1 the use of cumulants. The merit of this analytical method is that it is usually
a much more rapid computation. The drawback appears to be the concern over
accuracy (as compared with numerical convolution results). The references at
the end of this chapter provide a convenient starting point for a further
exploration of this approach. The discussions of the numerical convolution
techniques which follow should provide a sufficient basis for appreciating the
approach, its utility, and its difficulties.

832 Simulating Economic Scheduling with the Unserved Load Method

In the developments that follow, it is assumed that data are available that
describe generating units in the following format.

Probability UnitIs _ Cost of G‘cnera'ting
Maximum Power Available to Load to Maximum Available
Qutput Available (MW) this Power (per unit) {(R/h)
C(h=10 p(l) F(1) = minimum cost
C(2) p(2) F(2)

ce3) p(3) FO)

C(n) = maximum p(:}) F(n)
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FIG. 8.7 Unit characteristics.

Pictorially, the unit characteristics needed are shown 1n Figure 8.7.

The probabilistic production cost procedure uses thermal-unit heat rate
characteristics (i.¢.. heat input rate versus electric power output) that are linear
segments. This type of heat rate characteristic is essential to the development
of an efficient probabilistic computational aigorithm since it resulis in stepped
incremental cost curves. This simplies the economic scheduling algorithm since
any segment is fully loaded before the next is required. These unit input-output
characteristics may have any number -of segments so that a unit may be
represented with as much detail as is desired. Unit thermal data are converted
to cost per hour using fuel costs and other operating costs, as is the case with
any economic dispatching technique. B

The probabilistic production cost model simulates economic loading. pro-
cedures and constraints. Fuel budgeting and planning studies utilize suitable
approximations in‘order to permit the probabilistic computation of expected
future costs. For instance, unit commitment will usually be approximated using
a priority order. The priority list might be computed on the basis of average
cost per megawatt-hour at full load with units grouped in blocks by minimum
downtime requirements. Within each block of units with similar downtimes,
units could be ordered economically by average cost per megawatt-hour at full

_load.
With unit commitment order established, the various available loading
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segments can be placed in sequence, in order of increasing incremental costs.
The loading of units in this fashion is identical to using equal incremental cost
scheduling where input—output curves arc made up of straight-line scgments.
Finally, emergency sources (i.c., tic lines or pseudo tic lines) are placed last on
the loading order list. The essential difference between the results of the
probabilistic procedure and the usual economic dispatch computations is that
all the units will be required if generator forced outages are considered.

“Must-run” units are usually designated in these computations by requiring
minimum downtimes equal to or greater than a week (ie., 7 x 24 = 168 h). or
more. These base-load units are committed first. After the must-run units are
committed. they must supply their minimum power. The next lowest-cost block
of capacity may be either a subsequent loading segment on a committed unit
or a new unil to be committed. (Remember that units must be committed before
they are loaded further.) Following this or a similar procedure results in a list
of unit loading segments, arranged in economic loading order, which is then
convenient and efficient to use in the probabilistic production cost calculations
and to modify for each scheduling interval.

Storage hydro-units and system sales/purchase contracts for interconnected
systems must also be simulated in production cost programs. The exact
treatment of each depends on the constraints and costs involved. For example,
a monthly load model might be modified to account for storage hydro by peak
shaving. In the peak-shaving approach, the hydro-unit production is scheduled
to serve the peak load levels, ignoring hydraulic constraints (but not the
capacity limit) and assuming a single incremental cost curve for the thermal
system for the entire scheduling interval. This can be done taking into account
both hydro-unit forced outages and hydro-energy availability (i.e., amount of
interval energy available versus the probability of its being available). System
purchases and sales are often simulated as if they were stored energy systems.
Sales (or purchases) from specific units are more difficult to model, and the
modeling depends on the details of the contract. For instance, a “pure” unit
transaction is rnade only when the unit is available. Other “less pure” contracts
might be¢ made where the transaction might still take placc using cnergy
produced by other units under specified conditions.

In the probabilistic production cost approach, the load is modeled in the
same way as it was in the previously illustrated load-duration curve approach;
as a probability distribution expressed in terms of hours that the load is
expected to equal or exceed the value on the horizontal axis. This is a
monotonically decreasing function with increasing load and could be converted
to a “pure” probability distribution by dividing by the number of hours in the
load interval being modeled. This model is illustrated in Figures 8.2, 8.3, 8.5,
and 8.6. Therefore, each load-duration curve is treated either as a cumulative
probability distribution,

P,(x) versus x

where P, = probability of needing x MW, or more; or when expressed in hours,
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it is TP,(x), where T is the duration of the particular time interval. Also,
P(x)=1 forx<0

The load distribution is usually cxpressed in a table, 7 P,(x), which may be
fairly short. The table needs to be only as long as the maximum load divided
by the uniform MW interval size used in constructing the table. In applying
this approach to a digital computer, 1t is both convenient and computationally
efficient to think in terms of regular discrete steps and recursive algorithms.
Various load-duration curves for the entire interval to be studied are arranged
in the sequence to be used in the scheduling logic. There is no requirement that
a single distribution P,(x) be used for all time periods. In developing the unit
commitment schedule, it is necessary to verify not only that the maximum load
plus spinning reserve is equal to or less than the sum of the capacities of the
committed units, but also that the sum of the minimum loading levels of the
committed units is not greater than the minimum load to be served.

A number of different descriptions have been used in the hiterature to explain
this probabilistic procedure of thermal unit scheduling. The following has been
found to be the casiest to grasp by someone unfamiliar with this procedure,
and is theoretically sound. If there is a segment of capacity with a total of C
MW available for scheduling. and if we denote:

g = the probability that C MW are unavailable (i.e., its unavailability)

and
p=1-—-q
= the probability or “availability” of this segment

then after this segment has been scheduled. the probability of needing x MW
or more is now P/(x). Since the occurrence of loads and unexpected unit outages
are statistically independent events, the new probability distribution is a
combination of mutually exclusive events with the same measure of need for
additional capacity. That is, y

P,(x) = qP,(x) + pP,(x + C) . (8.2)

In words, qP,(x) is the probability that new capacity C is unavailable times the
probability of needing x, or more, MW, and pP,(x + C) is the probability C
is available times the probability (x + C), or more, is needed. These two terms
represent two mutually exclusive events, each representing combined events
where x MW, or more, remain to be served by the generation system.

This is a recursive computational algorithm, similar to the one used to
develop the capacity outage distribution in the Appendix, and will be used in
sequence to convolve each unit or loading segment with the distribution of toad
not served. It should be recognized that the argument of the probability
distribution can be negative after load has been supplied and that P,(x) is zero
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for x greater than the peak load. Initially, when only the load distribution is
used to develop TP (x), P(x) =1 for all x <0.

Example 8B provides an introduction to the complexities involved in an
enumerative approach to the problem at hand. By extending some of the ideas
presented briefly in the Appendix to this chapter, a recursive technique (i.e.,
algorithm) may be developed to organize the probabilistic production cost
calculations.

First, we note that the generation requirements for any generating segment
are determined by the knowledge of the distribution 7 P,(x) that exists prior
to the dispatch (i.c.. scheduling) of the particular generating segment. That is,
the value of T P,(0) determines the required hours of operation of a new unit.
The area under the distribution 7P,(x) for x between cero and the rating of
the unit loading segment determines the requirements for energy production.
Assuming the particular generation segment being dispatched is not perfectly
reliable (i.e., that it is unavailable for some fraction of the time it is required),
there will be a residual distribution of demands that cannot be served by this
particular segment because of its forced outage.

Let us represent the forced outage (i.e. unavailability) rate for a generation
segment of C MW, and 7P,(x), the distribution of unserved load prior to
scheduling the unit. Assume the unit segment to be scheduled is « complete
generating unit with an input- cutput cost characteristic

F=F; + FP, R/h

for 0 = P < C MW. The unit will be required 7 P,(0) hours, but on average it
will be available only (I — q)7TP,(0) hours. The energy required by the load
distribution that could be served by the unit is

x=C
E= Tj P,(x) dx
x=0

or
x=C

=T 3 Pix)Ax
=0+
for discrete distributions. The unit can only generate (1 — )£ because of its
expected unavailability. _
These data are sufficient to compute the expected production costs. These
costs for this period

=Fx(1=-qT7TP,0)+(1 —qEF,, R

Having scheduled the unit, there is a residual of unserved demands due to the
forced outages of the unit. The recursive algorithm for the distribution of the
probabilities of unserved load may be used to develop the new distribution of
unserved load after the unit is scheduled. That is,

TP(x)=q TP x) + (1 - qTP(x +C) (8.3)
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The process may be repeated until all units have been scheduled and a residual
distribution remains that gives the final distribution of unserved demand.

Refer to the unit data described in Figure 8.7 and the accompanying text.
The minimum load cost, F(1), shown on this figure is associated only with the
first loading segment, C(2) to C(3), since the demands of this portion of the
umit will determine the maximum hours of operation of the unit.

A general scheduling algorithm may be developed based on these conditions.
In this development, we temporarily put aside until the next section some of
the practical and theoretical problems associated with scheduling units with
multiple steps and nonzero minimum load restrictions. The procedure shown
in flowchart form on Figure 8.8 is a method for computing the expected
production costs for a single time period, 7 hours in duration.

1
Normaiize x and capacity segments
X = x/MW,,, and all c = c/MW,,_
Calculate load distributions. P, (x), and
unserved energy £,,, = 7L, P, (x)
Total production cost = 0
Order and schedule generator loading segments, /

i
START

New unserved energy, £,,, = 0
PRCOST() =0
1 l
PL(x) = a{i)P,(x) + p(AP,(x + ¢)
Egoi = Eogiy + PL(X)
for x =0 10 X,y
e i
fﬂew i TEnnw
PRCOST(i) = PRCOST(J) + (Egia — Epnaw) OF () [MW, .ol

¢Initial segment of unit?>--No—TEST 2
‘{;s
Add minimun; loading cost
PRCOST(/) = PRCOST(/) + P,(0) Tp(/) FO(/)
Total production cost = total production cost + PRCOST(/)

I
TEST 2
(Last segment of all generators?>—Yes — END
|
No
i
=41
Eold . Enew
l:?n(x) = PL(x)
for x = O Io xmax
!
Return to START

FIG. 88 Unserved load method for computing probabilistic production costs.
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Besides the terms defined on Figure 8.7 we require the following nomenclature
and definitions:
i=1,2,..., i, ordered capacity segments to be scheduled
¢(:y = C(i + 1) — C(i), capacity of the i™ segment (MW)

dF(i) = ,[.F(i ¥ l_,),_,ff Fi‘)]
©oeli)

(R/MWh)

F0(i) = minimum load cost rate for i segment of unit (R/h)

incremental cost rate for the i'*" segment

p(i} = availability of segment i (per unit)
q(i)

X

Ii

1 — p(i), unavailability of segment i (per unit)

I

0, 1, 2, .., Xeur> €qually spdced load levels

i

MW, = uniform interval for representing load distribution (MW)
PRCOST(i) = production costs for i segment (R)

E.E' E" ... = remaining unserved load energy

In this algorithm, the energy generated by any particular loading segment
of a generator is computed as the difference in unscrved energy before and
after the segment is scheduled. Since the incremental cost [dF(i)] of any
segment is constant, this is sufficient to determine the added costs due to loading
of the unit above its minimum. For initial portions of a unit, T P,(0) determines
the number of hours of operation required of the unit and is used to add the
minimum load operating costs. We will illustrate the application of this
procedure to the system described in Examples 8A and 8B.

EXAMPLE 8C

The computation of the expected production costs using the method shown
in Figure 8.8 and the procedures involved can be illustrated with the data
in Example 8A. Initially, we will ignore the forced outage of the two units
and then follow this with an extension to incorporate the inclusion of forced
outages.

With zero forced outage rates, the analysis of Example 8A is merely repeated
in a different format where the load-duration curve is treated as a probability
distribution. Figure 8.9 shows the initial load-duration curve in part (a); the
modified curve after unit 1 is loaded is shown in part (b), and the final curve
after both units are loaded is shown in part (c). Negative values of x represent
load that has been served.

The computations involved in the convolutions may be illustrated in tabular
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TP, (x) (h)
100
i (a) Original load duration
i (distribution) curve
m.—-
Ll Lk bl f 160 P EL] T3 L x Unsupplied
-100 -50 0 . 50 100  load (MW)
TP, (x) (h)
100 |-
—
P, (x) 2
iy (&) After first unit is dispatched
w_
ALt bt bbb b1l L ] xUnsupplied
-100 -50 0 50 100 load (MW)
TP, (x) (h)
[ 100 |-
== (¢) Final load distribution curve
. 50 +—
P, (x) |
Lrjprrtr b - | | x Unsupplied
-100 -50 0 50 100  load (MW)

FIG. 8.9 Load-distribution curves redrawn as load probability distributions.

format. In general, in going from the j** distribution to the (j + 1)*,

Pi*1(x) = qPi(x) + pPi(x + ¢)
where

p =1 — g = “innage rate” of unit or segment being loaded
x + ¢, x = unsupplied load variables (MW)
¢ = capacity of unit (MW)
Pi(x) = probability of needing to supply x or more MW at j'® stage
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Both sides of the recursive relationship above may be multiplied by the interval
duration. 7, ta convert it to the format illustrated in Figure 8.9. Recall that
unit | was rated at 80 MW and unit 2 at 40 MW._ and for Example 8A all g = 0
and all p = L.

Table 8.4 shows the load probability for unserved loads of 0 to 100+ MW,
The range of valid MW values need not extend beyond the maximum load nor
be less than zero. If vou wish to consider the distribution extended to show the
served load, TP,(x) may be extended to negative values. Only the energy for
the positive x portion of this distribution represents real Joad cnergy. A negative
unsupplied energy is, of course. an energy that has been supplied.

The remaining unsupplied energy levels at each step are denoted on the
bottom of each column in Table 8.4 and are computed as follows.

E = 100 % 20 + 80(80 - 20) + 40 x (100 -- R0) MWh
=20h x (100 + 100 +-80 + 80 + 20) MW

= 7600 MWh
ES =20 x (20) = 400 MWh
£" =0

Unit 1 was on-line for 100 h and generated 7600 — 400 = 7200 MWh. Unit 2
was on-line for 80 h and generated 400 MWh. The umt loadings, loadmg levels.
durations at those levels. fuel consumption. and preduction costs can easily be
determined using these data. The numerical results are the same as shown
Example 8A. You should be able to duplicate those results using the distributions
P,(x). Pi{x)and P.(x).

Next let us consider forced outage rates for each unit. Let

q; = 0.05 per unit

TABLE 8.4 lLoad Probability for Unserved Loads after Scheduliﬁg Two Units

¥ TP,x) TP.x) = TP,(x + 80) TPIx) = TPy(x + 40)

(MW) (h) th) (h)
0 100 80 0

20 100 20

40 100 0

60 80

80 80

100 20

100 + | 0 i
Energy (forx =z 0) = E =E = E"
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and
g, = 0.10 per unit

be the forced outage rates of units 1 and 2, respectively. The recursive equation
to obtain P/(x) from the original load distribution, omitting the common factor
T, is now

“P(x) = 0.05P,(x) + 0.95P,(x + 80)

The original and resultant unserved load distributions are now as follows
(Figure 8.10 shows these distributions).

x TP(x) TP, (x)
(MW) (h) (h)

(V] 100 76 ¥ 5 =81
20 100 19+5=24
40 100 0%5= 5
60 80 0+4= 4
80 80 : 0+4= 4

100 20 0+1= 1
100 + 0 0
Energy 7600 MWh 760 MWh

These data may be used to compute the loadings, durations, energy
produced, fuel consumption, and production cost for unit 1. Unit | may be
loaded to 80 MW for 80 h and 40 MW for a maximum of 20 h according to
the distribution 7 P,(x) shown in Figure 8.10. The unit is available only 95%,
of the time on the average. The loadings, generation, fuel consumption, and

TP, (x) (h)

e I
4 TP, Ix)
P77 //ﬁ;__
7]
ﬁ\-—
50 4—
A
q_
:L”g T?, (x)
—
G O | 4 | x unsupplied
-100 -50 : Q +50 +100 load (MW)

FIG. 8.10 Original and convolved load probabihity distributions.
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fuel cost data for unit 1 are as follows and are identical with those from Example
8A.

Unit | Load Duration Energy Fuel Used Fuel Cost
(MW) (h) (MWh) (10° Btu) (R)
40 095 x20=19 760 9120 9120
80 0.95 x 80 =176 6080 60800 60800
6840 69920 69920

If only production cost and/or fuel consumption are required, without
detailed loading profiles, the production costs may be computed using the
algorithm developed. That is, the production cost of unit 1:

= 160 R/h x 095 x 100 h + 8 R/MWh x (7600 — 760) MWh
= 69,920 R

The detailed loadings and durations for unit 2 may also be computed using
the distribution of unserved energy after the unit has been scheduled, TP (x).
The unit is required 81 h, is required at zero load for 81 — 24 = 57 h, may
generate 40 MW for 5 h and 20 MW for 24 — 5 = 19 h. The resulting generation
and fuel costs are as follows. '

Unit 2 Load Duration Energy Fuel Used Fuel Cost
(MW) ' (h)y (MWh) (10° Btu) (R)

0 51.3 0 4104 8208
20 17.1 342 4104 - 8208
40 45 180 1800 3600

729 522 10008 20016

However, the fuel consumption and production costs may be easily computed
using the scheduling algorithm developed. The convolution of the second unit
is done 1n accord with

P(x) = 0.1 Pi(x) + 0.9 P\(x + 40)

where the factor T has again been omitted.
The results are shown in Table 8.5. With these data, the production costs
for unit 2 are simply

= 160 R/h x 0.90 x 81 h + 16 R/MWh x (760 — 238) MWh
= 20016 R



PROBABILISTIC PRODUCTION COST PROGRAMS 295

TABLE 85 Load Probability for Unserved Loads after
Scheduling Unit 1 and Unit 2

X TR.i(x) 50 6.9
(MW) (h) (h)

0 81 126
20 24 6.0
40 5 4.1
60 4 1.3
80 4 0.4

100 1 0.1
100 + 0 0
Energy 760 MWh 238 MWh

The final, unserved energy distribution is shown in Figure 8.11. Note that
there is still an expected requirement to supply 100 MW. The probability
of needing this much capac:ly is 0.001 per unit (or 0.1%). which isnot
insignificant.

In order to complete the example, we may compute the cost of supplying
the remaining 238 MWh of unsupplied load encrgy. This must be based on an
estimate of the cost of emergency energy supply or the value of unsupplied
energy. For this example, let us assume that emergency energy may be
purchased (or generated) from a unit with a net heat rate of 12,000 Btu/KWh
and a fuel cost of 2 R/MBtu. These are equal to the heat rate and cost associated
with unit 2 and are not too far out of line with the costs for energy from the
two units previously scheduled. The cost of supplying this 238 MWh is then

238 MWh x 12 MBtu/MWh x 2 R/MBtu = 5712 R

TP, (x) (h}
777, © 100 — -
) Y TP, Ix) [
777777 -
4 TPy (x) |
¥ -
1 =
4 : —
7 =R
N O 15 O ﬂ‘?/y/, x unsupplied
-100 -50 0 450 +100 load (MW)

FIG. 8.11 Final distribution of unserved load.
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TABLE 8.6 Results of Examples 8A and 8C Compared

Cost of
Fuel Used  Fuel Cost Unsupplied Emergency Total
(10% Btu) (R) Energy (MWh)  Energy(R)  Cost(R)
Example 8A 78400 83200 0 0 83200
Example 8D 79928 89936 238 5712 95648
Difference 1528 6736 — — 12448
o/ Difference 1.95% 8.1% - s 15%

In summary, we may compare the results of Example 8A (computed with
forced outages neglected) with the results from Example 8C, where they have
been included and an allowance has been made for purchasing emergency
energy (see Table 8.6). Ignoring forced outages results in a 1.95% underestimate
of fuel consumption, a complete neglect of the need for and costs of emergency
energy supplies, and an 8.1% underestimate of the total production costs.

The final unsupplied energy distribution may also be used to provide indexes
for the need for additional transmission and/or generation capacity. This is an
entire new area, however, and will not be explored here since the primary
concern of this text is the operation, scheduling, and cost for power generation.

8.3.3 The Expected Cost Method

The expected cost technique is both an extension of an idea explored earlier in
the discussion of hydrothermal scheduling, the system composite cost charac-
teristic, and a variation in the convolution process used in the probabilistic
approach. Using a composite system cost characteristic simplifies the computa-
tion of the total system production cost 10 serve a given load pattern. The
expected cost per hour is given by the composite cost characteristic as a function
of the power level. Calculating the production cost merely involves looking up
the cost rates determined by the various load levels in the load model.

The unserved load technique of the previous section starts the convolution
procedure with the probability distribution of the load pattern, and successively
convolves the generation segments in an order determined by economics in
order to compute successive distributions of unserved loads. Energy generation
and costs of each segment were determined as a step in the procedure. In the
expected cost method, the order of convolution is reversed; we start by
convolving the generation probability densities and calculating expected costs
to serve various levels of power generated by the system. Total costs are then
computed by summing the costs to serve each load level in the forecast load
model.

The expected cost method develops two functions in tabular form:

1. The probability density function of a capacity outage of x MW, P,(x).
2. The expected cost for serving a load of k (MW).
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In this method, the function P,(x) represents the probability that the on-line
generating units have an outage of exactly x MW. Keep in mind that the
variables x and k. defined above, refer to the outage and load magnitudes,
respectively. The expected cost rate for serving k MW of load demand is
identical in its nature to the composite cost characteristic discussed in an earlier
chapter, except that it is a statistical expectation that is computed in a fashion
that recognizes the probability of random outages of the generation capacity.
Thus, any generation being scheduled must serve the load demand, including
any capacity shortages due to both random outages of previously scheduled
capacity and demand levels in excess of the previously scheduled capacity.
Therefore, we require the probability density function of the generation
capacity. This function may be computed in a recursive manner, similar to those
explored in the appendix of this chapter.

The recursive algorithm for developing a new capacity outage density. PL(x),
when adding a unit of “c” (MW) is:

P.(x) = qP,(x — ¢) + pP.(x) (8.4)
where
P,{x) = prior probability of a capacity outage of x MW

¢ = capacity of generation segment
q = forced outage rate

p=1-gq

and x ranges from zero to the total capacity, s, previously convolved. We need
the initial values of this density function (ie., for s = 0) in order to start the
recursive computations. With no capacity scheduled these are:

P(x)=10 forx=0
and
P,(x) =0 for all nonzero values of x

We may develop the algorithm for recursive computation of the expected
cost function by considering a simplified case where generators are represented
by a single straight-line cost characie. 1.~ "where minimum power level is zero
and maximum is given by ¢(i) MW. The index “i” represents the i*" unit, as
previously. Let p(i) = | — q(i) represent the availability of this unit and F(L)
the cost rate (R/h) when the unit is generating a power of L MW. When all
units have been scheduled, the maximum generation is the value S = ¥ e,
the sum of all generator capacities. The load that may be supplied is denoted
by k MW, and ranges from zero to S. (Note that there is a significant difference
between s, the capacity scheduled previously as part of this computational
process, and S, the total capacity of the system.)
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Assume that we are in the midst of computing of the expected cost function,
EC(k). The capacity scheduled to this point is s MW. The new unit to be
scheduled, unit “i,”" has a capacity of (i) MW. For any load level below the
total capacity previously scheduled, s; that is for,

k<s

the new segment will supply the loads that were not served because of
the outages of the previously scheduled segments within the range of its
capabilities. The generation to be scheduled can only be loaded between
zero and the maximum, ¢. For a given load level, k, the loading of the new
segment is:
L=k—(s—x), for0<[k—(s—x)1<c
=0 for[k—(s—x)]<0 (8.5)
=¢ fork—(—=x)]>c

There will be a feasible set of outages {x} that must be considered. The
increase in the expected cost to serve load level, k, is then,

AEC(k) = p(i) ¥ g PAx)F(L) forO<k<s (8.6)

When the load level k exceeds s,

EC(k) = EC(s)

EXAMPLE 8D

The previous 2-unit case of Examples 8A, 8B, and 8C can be used to illustrate
the procedure. Load levels and capacity steps wiil be taken at 20-MW intervals
5o that the initial capacity—probability density is:

x (MW) P(x)
0 1.0
Nonzero 0

The first unit is an 80-MW unit with p(1) = 0.95 and F, = 160 + 8P,. The unit
loading is
L=k—(s—x)=k+x, sinces=0
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The first expected cost table is then:

k (MW) AEC(k)(R/h) EC(k)XR/h)
0 0.95[P,(0)F,(0)] = 152 152
20 0.95[P,(0)F,(20)] = 304 304
40 0.95[P,(0)F,(40)] = 456 456
60 0.95[P,(0)F,(60)] = 608 608
80 0.95[P,(0)F,(80)] = 760 760

100 760

The new value of the dispatched capacity is s =80 and the new outage-
probability table is:

x (MW) P.(x)
0 0.95
20 0
40 0
60 0
80 0.05
100 0
1.00

The second unit’s data are:
c=40 MW, q = 0.10, p = 0.90, and F, =160 + 16P,

Therefore, L = k — (s — x) = k + x — 80, and the second expected cost table is:

k(MW) AEC(k)(R/h) EC(k)(R/h)
0 0.9[0.5F,(0)] = 72 152 + 7.2 = 159.2

20 0.9[0.05F,(20)] = 216 325.6

40 0.9[0.05F,(40)] = 36 492

60 0.5[0.05F,(40)] = 36 644

80 0.9[0.05F;(40) + 0.95F,(0)] = 172.8 932.8

100 0.9[0.05F,(40) + 0.95F,(20)] = 4464 1206.4

120 0.9[F;(40)] =720 1480

140 1480

160
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The new value of s is 120 MW and the new outage-probability table is:

x (MW) P.(x)
0 0.855
20 0
40 0.095
60 0
80 0.045
100 0
120 0.005
140 0
1.000

We could stop at this point. Instead let’s add an emergency source (an
interconnection, perhaps) that will supply emergency power at a rate of
24 R/MW or energy at 24 R/MWh. We assume the source to be perfectly
reliable, so that we may represent this source by a large unit with

e> 120 MW, q=0, p= 10, and "= 24(L)
where L represents the emergency load. Then
L=k+x-S=k+x—120

The final expected cost function computations are:

k (MW) AEC(k)(R/h) EC(k)(R/h)
0 0.005[24(0)] = 0 159.2
20 0.005[24(20)] - 24 328
40 0.005[ 24(40)] + 0.045[24(0)] = 43 496.8
60 0,005 24(60)] + 0.045[24(20)] = 288 672.8
80 0.005[24(80)] + 0.045[24(40)] + 0.095[24(®)] = 528 9856
100 0.005[24(100)] + 0.045[24(60)] + 0.095(24(20)] = 1224 13288
120 0.005[24(120)] + 0.045[24(80)] + 0.095[24(40)]
+ 0.855[24(0)] = 192 1672
140 = 672 2152

160 1152 2632
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FIG. 8.12 Expected cost versus load level for Example 8D.

Figure 8.12 illustrates the expected cost versus the load level for this simple
example,

The calculation of the production cost involves the determination of the
expected cost at each load level in R/h and the duration of that load level. This
duration is the probability density function of the load multiplied by the period
length in hours, so that we are, in effect, performing the final step in convolving
the load and capacity-cost distributions. For Example 8D we may develop the
following table. This value agrees with that obtained in Example 8B when the
cost of the 238 MWh of emergency energy required is included.

Load Duration Expected Cost Rate Expected Cost
(MW) (h) (R/h) (R)

40 20 496.8 9936

80 60 985.6 59136
100 20 1328.8 : 26576

Total production cost = 95648

A computational flow chart similar to Figure 8.9 could be developed. (We
leave this as a potential exercise.) The expected cost method has the merit that
the cost rate data remain fixed with a fixed generation system and may be used
to compute thermal-unit costs for different load patterns and energy purchases
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or sales without recomputation. As presented here, the expected cost method
suffers from the lack of readily available data concerning the costs and fuel
consumption of individual units. These data may be obtained when care is
taken in the computational process to save the appropriate information. This
involves more sophisticated programming techniques rather than new engineer-
ing applications. The same comment applies to the utilization of more realistic
generation models with nonzero minimum loads and with partial outage states.
All these complications can be, and have been, incorporated in various
computer models that implement the expected cost method.

Similar comments apply to the unserved load method presented previously.
The flowchart in Figure 8.9 offers clues to a number of programming techniques
that have been applied in various instances to create more efficient computa-
tional procedures. For instance, one could replace the unserved load distribution
by an unserved energy distribution as a function of the load level. This saves a
step or two in the computation and would speed things up quite a bit. But
these “tricks of the trade” have a way of becoming less important with the
availability of ever-more-rapid small computers.

83.4 A Discassion of Some Practical Problems

The examples illustrate the simplicity of the basic computation of the scheduling
technique used in this type of probabilistic production cost program where the
load is modeled using a discrete tabular format. There are detailed complica-
tions, extensions, and exceptions that arise in the practical implementation of
any production cost technique. This section reviews the procedures used
previously, in the unserved load method, to point out some of these considera-
tions. No attempt is made to describe a complete, detailed program. The intent
is to point out some of the practical considerations and discuss some of the
approaches that may be used.

First, consider Figure 8.13, which shows the cumulative load distribution (i.e.,

TP, (x}

s T(R)

Probability of needing
x MW or more (in hours)

x MW ' X max

FIG. 8.13 Load probability distribution.
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TABLE 8.7 Sample Subinterval Loading Data: Segment Data

Unit Innage or
Number No. P B Outage Rate Availability
(i) ) (MW) (MW) Cost (q;;) per Unit Rate

3 1 0 20 R/h 0.05 0.95

1 i 0 20 R/h 0.02 0.98

4 1 0 40 R/h 0.02 0.98

{ 2 20+ 60 R/MHh 0.05 0.95

3 2 20 + 50 R/MWh 0.05 0.95

a load-duration curve treated as a cumulative probability distribution) for an
interval of T hours. Next, assume an ordered list of loading segments as shown
in Table 8.7. Units 3, 1, and 4 are to be committed initially, so that the sum of
their capacities at full output equals or exceeds the peak load plus capacity
required for spinning reserves. If we assume that two segments for each of these
three units, this commitment totals 160 MW. Assume such a table includes all
the units available in that subinterval. The cost data for the first three loading
segments are the total costs per hour at the minimum loading levels of 20, 20,
and 40 MW, respectively, and the remaining cost data are the incremental costs
in R per MWh for the particular segment. Table 8.7 is the ordered list of
loading segments where each segment is loaded, generation and cost are
computed, and the cumulative load distribution function is convolved with the
segment.

There are two problems presented by these data that have not been
discussed previously. First, the minimum loading sections of the initially
committed units must be loaded at their minimum load points. For instance,
the minimum load for unit 4 is 40 MW, which means it cannot satisfy loads
less than 40 MW. Second, each unit has more than one loading segment. The
loading of a unit’s second loading segment, by considering the probability
distribution of unserved load after the first segment of a unit has been scheduled,
would violate the combinatorial probability rules that have been used to
develop the scheduling algorithm, since the unserved load distribution includes
events where the first unit was out of service. That is, the loading of a second
or later section is not statistically independent of the availability of the
previously scheduled sections of the particular unit. Both these concerns require
further exploration in order to avoid the commitment of known errors in the
procedure.

The situation with block-loaded units (or a nonzero minimum loading limit)
is easily handled. Suppose the unserved load distribution prior to loading such
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a block-loaded segment is T P,(x) and the unit data arc

q = unavailability rate, per unit

p=l-gq

¢ = capacity of segment
By block-loading it is meant that the output of this particular segment is limited
to exactly ¢ MW. The nonzero minimum loading limit may be handled in a
similar fashion.

The convolution of this segment with T P,(x) now must be handled in parts.
For load demands below the minimum output, ¢, the unit is completely
unavailable. For x > ¢, the unit may be loaded to ¢ MW output. The algorithm
for combining the mutually exclusive events where x, or more, MW of load

remain unserved must now be performed in segments, depending on the load.
For load levels, x, such that

X =€

the new unserved load distribution is
Pi(x) = qP,(x) + pPy(x + ©) 8.7)
where the period length, T, has been omitted. For some loads, x < ¢, the unit
cannot operate to supply the load. Let p,(x) denote the probability density of
load x, In discrete form,
pu(x) = Pn(-x) - Pu(x # Mwslep) (8'8)
where MW, = uniform interval in tabulation of P,(x). For loads equal
to or greater than c, the probability of exactly x MW after the unit has bgen

scheduled is
pu(x) = qp.(x) + pp.x +¢) (8.9)

For loads less than ¢ (i€, 0 < x < ¢),
Pa(x) = py(x) + PPux +©) (8.10)
For convenience in computation, let
Palx) = (q + P)PA(X) (8.11)

for 0 € x < ¢. Then for this same load range,

Pa(X) = qp(x) + P Pa(x + €) + P Pa(X) (8.12)
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Next, the new unserved load energy distribution may be found by integration
of the density function from the maximum load to the load in question. For
discrete representations and for x > ¢,

Py(x) = qP,(x) + pP(x + ¢) (8.13)
For loads less than ¢; thatis, 0 < x < ¢,
P.(x) = qP,(x) + pP.(x + ) + p[P,(x) — P,(c)] (8.14)

The last term represents those events for loads between x and ¢, wherein the
unit cannot operate. The term [P,(x) — P,(c)] is the probability density of those
loads taken as a whole. The first term, g P,(x), resulted from assuming that the
unit could supply any load below its maximum.

This format for the block-loaded unit makes it easy to modify the unserved
load scheduling algorithm presented previously. The effects of restriction to
block-loading a unit may be illustrated using the data from Example 8C.

EXAMPLE BE

The two-unit system and load distribution of Example 8C will be used with
one modification. Instead of allowing the second unit to operate anywhere
between 0 and 40 MW output, we will assume its operation is restricted to
40 MW only. The cost of this unit was

F, =160+ 16P,, R/h

so that for P, = 40 MW, F, = 800 R/h.
Recall (see Table 8.5) that after the first 80 MW unit was scheduled, the
unserved load distribution was

x TP, (x)
(MW) (h)

0 81
20 24
40 5
60 4
80 4

100 !
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With an unserved load energy of 760 MWh. With a restriction to block-loading,
the unit is on-line only 5 h. The energy it generates is therefore 5 x 40 x 09 =
180 MWh. The new distribution of unserved load after the unit is scheduled is
as follows.

x TP, (x) TP,(x)
(MW) (h) qTP(x)+pTP(x+¢) p TP, (x)—P,c)] (h)

0 81 12.6 0.9[81 — 5] 81.0
20 24 6.0 0.9[24 — 5] 23.1
40 5 4.1 — 4.1
60 4 1.3 o 1.3
80 4 0.4 - Sl 04

100 1 0.1 ' e 0.1

The unserved load cnergy is now 580 MWh.

The quantitative significance of the precise treatment of block-loaded units
has been magnified by the smallness of this example. In studies of practical-sized
systems, block-loading restrictions are frequently ignored by removing the
restriction on minimum loadings or arc treated in some satisfactory, approximate
fashion. For long-range studies, these restrictions usually have minor impact
on overall production costs. i

The analysis of the effects of the statistical dependence of the multiple-loading
segiments of a unit is somewhat more complicated. The distribution of unserved
load probabilities, T'P,{(x), at any point in the scheduling algorithm is inde-
pendent of the order in which various units are scheduled. Only the generation
and hours of operation are dependent on the scheduling order. This may easily
be verified by a simple numerical example, or it may be deduced from the
recursive relationship presented for TP (x). )

Suppose we have a second section to, be incrementaily loaded for some
machine at a point in the computations where the distribution of unserved Joad
is TP,(x). The outage of this second incremental loading section is obviously
not statistically independent of the outage of the unit as a whole. Therefore,
the effect of the first section must be removed from 7 P,(x), prior to determining
the loading of the second segment. This is known as deconvolution.

For this illustration of one method for handling mulitiple segments, we will
assume: = ot

1. The capacity of the segment extends from C, to C, where C, > C,.
2. The first segment had a capacity of C,.
3. The outage rates of both segments are equal to q per unit.

In the process of arriving at the distribution T P,(x), the initial segment of
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C, MW was convolved in the usual fashion. That is,
TP(x)=qTPy(x)+pTP,(x+ C,) (8.15)

The distribution T'P,(x) is independent of the order in which segments are
convolved. Only the loading of each segment depends on this order.

Therefore, we may consider that 7P, (x) represents an artificial distribution
of load probabilities with the initial segment of the unit removed. This
pseudo-distribution, TP,(x), must be determined in order to evaluate the
loading on the segment between C; and C,. Several techniques may be used to
recover T P’(x) from T P,(x). The convolution equation may be solved for either
TP,(x) or TP,(x + ¢). The deconvolution process is started at the maximum
load if the equation is solved for T"P,(x). That is,

TP () = L TP(x) = P TPyx + o)
q q

and (8.16)
TP,)x) =0 for x > maximum load

We will use this procedure to illustrate the method because the procedures and
algorithms discussed have not preserved the distributions for negative values
of unserved load (ie., already-served loads). As a practical computational
matter, it would be better practice to preserve the entire distribution TP,(x)
and solve the convolution equation for 7 P,(x + ¢). That is,

1
TP(x + ¢) = - TP,(x) - S TPy(x) (8.17)
P p
or shifting arguments, by letting y = x + c,
TR() = TP -0 -3TPy—0) (8.18)
p p

In this case, the deconvolution is started at the point at which

—y = sum of dispatched generation
since

TP (y)=T

for all y < —sum of dispatched generation

Even though we will use the first deconvolution equation for illustration, the
second should be used in any computer implementation where repeated
deconvolutions are to take place. Since q « p, the factors 1/q and p/q in the
first formulation will amplify any numerical errors that occur in computing the
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successive distributions. We use this potentially, numerically treacherous
formulation here only as a convenience in illustration.

To return, we obtain the deconvolved distribution 7P (x) by removing the
effects of the first loading segment. Then the loading of the second segment
from C, to C, is determined using T P,(x), and the new, remaining distribution
of unserved load is obtained by adding the total unit of C, MW to the
distribution so that

TP(x) = q TPYx) + p TPux + C3) (8.19)

EXAMPLE 8F

Assume that in our previous examples, the first unit had a total capacity of
100 MW instead of 80. This last segment might have an incremental cost rate
of 20 R/MWh so that it would not be dispatched until after the second unit
had been used. Assume the outage rate of 0.05 per unit applies to the entire
unit. Let us determine the loading on this second section and the final
distribution of unserved load.

The distribution of unserved load from the previous examples 1s

x TP,
(MW) (h)

0 12.6
20 6.0
40 4.1
60 1.3
80 0.4

100 0.1

The deconvolved distribution may be computed starting at x = 100 MW using
Eq. 8.16 and working up the table. The table was constructed with ¢.= 80 MW
for the capacity of this unit. The deconvolved distribution is

TP(100) = A1 g
0.05

4

The new distribution, adding the entire 100 MW unit, is determined using
¢ =100 MW and is ;

TP(x) = 0.05 TP(x) + 0.95 TP,(x + 100)

1
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The results are as follows.

x TP, (x) TPY(x) TP(x)
(MW) (h) (h) (h)
0 12.6 100 6.9
20 6.0 82 4.1
40 4.1 82 4.1
60 1.3 26 1.3
80 04 8 04
100 0.1 2 0.1
Energy 238 MWh 200 MWh

Thus, the second section of the first unit generates 38 MHh.

This computation may be verified by examining the detailed results of
Example 8B, where the various load and outage combination events were
enumerated. At a load of 100 MW, the second segment of unit 2 would have
been loaded to the extent shown by this example. You should be able to identify
two periods where the second section would have reduced previous shortages
of 0 and 20 MW. This procedure and the example are theoretically correct but
computationally tedious. Furthermore, the repeated deconvolution process may
lead to numerical round-off errors unless care is taken in any practical
implementation.

Approximations are frequently made in treating sequential loading segments.
These are usually based on the assumption that the subsequent loading sections
are independent of the previously loaded segments. That is, that they are
equivalent to new, independent units with ratings that are equal to the capacity
increment of the segment. When these types of approximations are made, they
are justified on the basis of numerical tests. They generally perform more than
adequately for larger systems but should be avoided for small systems.

The two extensions discussed here are only examples of the many extensions
and modifications that may be made. When the computations of expected
production costs are made as a function of the load to be served, these
characteristics may be used as pseudogenerators in scheduling hydroelectric
plants, pumped-storage units, or units with limited fuel supplies.

There have been further extensions in the theoretical development as well.
It is quite feasible to represent the distribution of available capacity by the use
of suitable orthogonal polynomials. Gram-—Charlier series are frequently used
to model probabilistic phenomena. They are most useful with a reasonably
uniform set of generator capacities and outage rates. By representing the
expected load distribution also 4. an analytic function it is possible to develop
analytical expressions for unserved energy distributions and expected production
costs. Care must be exercised in using these approximations when one or two
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very large generators are added to systems previously composed of a uniform
array of capacities. We will not delve further into this area in this text. The
remainder of this chapter is devoted to a further example and problems.

84 SAMPLE COMPUTATION AND EXERCISE

The discussion of the probabilistic techniques is more difficult than their
performance. We will illustrate the unserved load method further using a
three-unit system. The three generating units each may be loaded from 0 MW
to their respective ratings. For ease of computation, we assume linear input-
output cost curves and only full-forced outage rates (that is, the unil is cither
completely available or completely unavailable). The unit data are as follows.

‘input-Output Cost Full-Forced Outage

Unit No. Maximum Rating (MW) Curve (R/h) Rate (per unit)
1 60 60 + 3P, 0.2

50 70 + 3.5P, 0.1
3 2 80 + 4P, 0.1

In these cost curves P, are in MW. In addition, the system is served over a tie
line, Emergency energy is available without limit (MW or MWh) at a cost rate
of 5 R/MWh.

The load model is a distribution curve for a 4-week interval (a 672-h period).
That is, the expected load is as shown in Table 8.8. The total load cnergy is
43,680 MWh.

- 8.4.1 No Forced Outages

The economic dispatch of these units for each load level is straightforward. The
units are to be loaded in the order shown. The sum of the peak load demand

TABLE 88 Load Distribution

. Probability of

Load Level  Hours of ' Hours Load Needing Load or
- (MW) Existence: - Probability  Equals or Exceeds More (pu)
30 134.4 0.2 ! 672.0 1.00
50 1344 0.2 i 537.6 _ 0.80
70 1344 0.2 4032 0.60
80 168.0 0.25 . 268.8 0.40

100 100.8 0.15 100.8 0.15
¥ 20 6720 .
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(100 MW) and the total capability (130 MW) is 230 MW. Therefore, the
probability table of needing capacity will extend eventually from — 130 MW
to + 100 MW. It is convenient in digital computer implementation to work in
uniform MW steps. For this example, we will use 10 MW.

As each unit is dispatched, the probability distribution of needing x or more
MW [ie., P,(x)] is modified (i.c., convolved) using the following:

TP(x)=TP(x +¢)
where
P,(x) and P,(x) = new and old distributions. respectively
T = time period, 672 h in this instance
¢ = capability of unit or segment when it is in state j

Table 8.9 shows initial distribution in the second column. The load energy

to be served is
100

E=672 Y P,(x)Ax = 43,680 MWh
=0

X

With zero-forced outage rate, the 60-MW unit loading results in the P(x)
distribution shown in the third column. The resultant load energy to be served
1S now:

E' = (0.15 x 20 + 0.4 x 10 + 0.6 x 10) x 672 = 8736 MWh
which means unit | generated
43,680 — 8736 = 34,944 MWh

The unit was on-line for 672h, and the incremental cost rate was 3 R/h.
Therefore, the cost for unit 1 is

Total cost = ¥ F(P) x At =Y. (60 + 3R) At = }_ (60 At + 3P, A1)
T T

T
— 607 + 3 (MWh generated), since MWh =} P, Ar
T
=60 R/h x 672h + 34944 MWh x 3 R/MWh = 145,152 R

Unit 2 serves the remaining load distribution (third column) and results in
the distribution shown in the fourth column. This unit is only on-line for 60%,
of the interval, so that its cost is

0.6 x 70 R/h x 672 h + 8736 MWh x 3.5 R/MWh = 58,800 R

The total system cost is 203,952 R, and unit 3 is not used at all. These results
are summarized in Table 3.10. '
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TABLE 8.9 Three-Unit Example: Zero-Forced Outage Rates

E P

x P,(x) ' ' Py(x) Po(x)
(MW) (pu) ' (pu) (pu)
—-130 '
—-12C
—110
- 100
—-90 '
—30 1.0
-10 0.8
—60 0.8
—50 0.6
40 0.6
-30 1.0 0.4
-20 0.8 0.15
—10 0.8 0.15
0 o 0.6 0
10 0.6
20 04
30 1.0 0.15
40 0.8 ) 0.15
50 0.8 0
60 0.6 |
70 ’ 0.6
80 0.4
20 0.15
100 0.15
{10 3
E/672 65 13 0
MWh 43680 8736 0
TABLE 8.10 Summary of Results: Zero-Forced Outage Rates
Energy
Unit Capacity ' Outage Rate Hours . Generated Cost
Number (MW) (pu)> | On-Line - (MWh) (R)
60 0.000 6720 - 349440 145152.0
50 0.000 403.0 8736.0 58800.0
20 0.000 ) 0 0 0
. 100 0.000 0 0 0
Total 230 ' ’ 43680.0

°203952.0

Average system cost = 4.6692 R/MWh.
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8.4.2 Forced Outages Included

When the forced outage is included, the convolution of the probability
distribution is accomplished by

p;:(x) =q Pn(x) +* an(x + C)
where
q = forced outage rate (pu)

p=1—q="innage” rate

Table 8.11 shows the computations for the first unit in the third and fourth

columns.
The first unit is on-line 0.8 x 672 = 537.6 h and generates 27,9552 MWh.

(The initial load demand contains 43,680 MWh; the modified distribution in

TABLE 8.11 Three-Unit Example Including Forced Qutage Rates

x P.(x) P,(x + 60) Pi(x) Pi(x + 50) P/(x) Pr(x)
(MW) (pu) (pu) (pu) (pu) (pw) (pu)
—~130 1
-120
-110
—-90
—80 1.00
—70 0.84
—60 4 0.84
. 0.68
—40 0.68
—30 1.0 1.0 0.52
-20 0.8 0.84 0.32
-10 0.8 0.84 0.28
0 0.6 0.68 0.16 0.212
10 0.6 0.68 0.12 0.176
20 04 0.52 0.12 0.160
30 1.0 0.15 0.32 0.08 0.104
40 0.8 0.15 0.28 0.03 0.055
50 0.8 0 0.16 0.03 0.043
60 0.6 0.12 0 0.012
70 0.6 0.12 0.012
80 0.4 0.08 0.008
90 0.15 0.03 0.003
1 0.15 0.03 0.003
ot 0 0 0
E/672 65 23.4 5.76

MWh 43680 15724.3 3870.72
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column 4 contains 15,724.8 MWh.) Therefore, thc_ first unit’s cost 1s
60 R/h x 537.6 h + 3 R/MWh x 27,955.2 MWh = 116,121.6 R

The distribution of needed capacity is shown partially in the sixth column
of Table 8.11. Sufficient data are shown to compute the load energy remaining.
(Load energy is the portion of the distribution, Pi(x), for x = 0). The unserved
load energy after scheduling unit 2 is

0.576 x 10 x 672 = 3870.72 MWh

This means unit 2 generated an energy of 15,724.8 — 3870.72 = 11,854.08 MWh
at an incremental cost of 3.5 R/MWh; or 41,489.28 R. The unit was on-line for
411.264 h at a cost rate of 70 R/h. This brings the total cost to 70,277.76 R for
unit 2. Note that the operating time (i.e., the “hours on-line™) is 0.9 x (.68 x
672 h. The first factor represents the probability that the unit is available, the
second the fraction of the time interval that the load requires unit 2, and the
672-h factor is the length of the interval.

Table 8.12 shows a summary of the results for this three-unit plus tie-line
sample exercise when outage rates are included. The third unit and tie line are
utilized a substantial amount compared with ignoring forced outages. The total
cost for the 4-wk interval increased by almost 57.

The resulting successive convolutions are shown in Figure 8.14. After the
entire 130 MW of generating capacity has been dispatched, the distribution of
unserved load is represented by the portion of the lowest curve to the right of
the zero MW point (it is shaded). )

Table 8.13 shows the distribution of emergency energy delivery over the tie
line.

This chapter has only provided an introduction to this area. Practical
schemes exist to handle much more complex unit and load models, to
incorporate limited cnergy and pumped-storage units, and to compute genera-
tion reliability indices. They are all based on techniques similar to those
introduced here.

TABLE 8.12 Results

Energy
Unit Capacity Outage Rate Hours Generated Cost
No. (MW) (pu) On-Line (MWh) R)
1 60 0.200 538.0 27955.0 1161220
2 50 0.100 411.0 11854.0 70278.0
3 20 0.100 128.0 20320 18386.0
4 100 0.000 111.0 1839.0 9193.0
Total 230 43680 213979.0

Average system cost = 4.8589 R/MWh.
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FIG. 8.14 Successive convolutions.

TABLE 8.13 Emergency Energy

Level No. Loading (MW) Hours
1 10.0 30.71
2 20.0 11.02
3 30.0 22.04
4 40.0 0.81
5 50.0 4.50
6 60.0 i 3.02
7 70.0 0.27
8 80.0 2.15
9 100.0 0.20

Total 74.72
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APPENDIX
Probability Methods and Uses in Generation Planning

The major application of probability methods in power systems has been in
the urea of planning generating capacity requirements. This application, no
matter what particular technique is used, assigns a probability to the generating
capacity available, describes the load demands in some manner, and provides
a numerical measure of the probability of failing to supply the expected power
or energy demands. By defining a standard risk level (ie., a standard or
maximum probability of failure) and allowing system load demands to grow
as a function of time, these probablhty methods may be utnlxzud to calculate
the time when new generating capacity will be required.

Three general categories of probability methods and ‘measures have been
developed and applied to the generation planning problem. These are:

1. The loss-of-load method.
2. The loss-of-energy method.
3. The frequency and duration method.

The first measures reliability as the probability of meeting peak loads (or its
converse, the lailure probability). The second uses the expected loss of energy
as a reliability measure. The frequency and duration method is based on a
somewhat different approach. It calculates the expected frequencies of outages
of various amounts of capacity and their corresponding expected durations.
These calculated values are then used with appropriate, forecasted loads and
reliability standards to establish capacity reserve margins.

The mathematical techniques used are straightforward applications of
probability methods. First, to review combined probabilities, let

P(A) = probability that event A occurs
P(B) = probability that event B occurs
P(A ~ B) = joint probability that A and B occur together
P(A U B) = probability that either A occurs by iiself,_or B occurs by

itself, or A and B occur together..

Conditional probabilitics wiil be omitted from this discussion. [A conditional
probability is the probability that A will occur if B already has occurred and
may be expressed P(A/B)].

A few needed rules from combinatorial probabilities are:

I. If A and B are independent events (i.e., whether A occurs or not has no
bearing on B), then the joint probability that A and B occur together is
P(AnB) = P(A)P(B)
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[ S]

. 1f the favorable result of an event is for A or B or both to occur, then the
probability of this favorable result is P(A U B) = P(A) + P(B) — P(A n B).
3. If.in rule 2, A and B are “mutually exclusive” events (i.e., if one occurs,
the other cannot), then P(A n B) = 0 and P(A u B) = P(A) + P(B).
4. The number of combinations of n things taken r at a time is given by the
formula
n!
.G = (8A.1)
rt(n—-n)!
5. In general, the probability of exactly r occurrences in n trials of an event
that has a constant probability of occurrence p is
n!

P =,Cpq" " = F'_(FF:"E Pq’ (8A.2)

where @ = 1 — p.

Rule 5 is a generalized form of the binomial expansion, applying to all terms
of the binomial (p + q)" This distribution has had widespread use in generating-
system probability studies. For example, assume that a generation system is
composed of four identical units and that each of these units has a probability
p of being in service at any randomly chosen time. The probability of being
out of service is ¢ = | — p. Assume that each machine’s behavior is independent
of the others. Then, a table may be constructed showing the probability of
having 4, 3, 2, 1, and none in service.

Number in Service Probability of Occurrence
4
4 Pd) = ,Cyp*q* 4= - p*=p*
(4) = .Cap'q e L
3 P(3):= & p]q‘_] =._._If|;—p3q =4P3q
i 314 — 3)!
2 P(2) = .C,p¥g* % = L p*q? = 6piq?
(2) = .C,p"q 2!(4‘_‘2)!13'4 P°q
1 P(l) C Tafind 4! 3,_4 3
4P q -l—!'(_zt_——_].ﬁpq =4pq
0 P(0) = ,C, poq"‘o -_:.—Id!._q‘ _—,q‘
e 0!'(4 — 0)!

In this table, each of the probabilities is a term of the binomial expansion
of the form:
ACH p"q“‘_.'lt

where 1 is the number of units in service.
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FIG. 815 Average availability cycle for a unit with two states.

These relationships assume a long-term average availability cycle, as shown
in Figure 8.15 for a given unit. In this long-term average cycle,

m = average time available before failures
r

T

Il

average repair time

i

m + r = mean time between failures

Using these definitions for the generator taken as a binary state device,

p= ’;—l_ = “innage rate” (per unit)
r
qg=l—-p= 7_= “outage rate” (per unit)

Generating units may also be considered to be multistate devices when each
state is characterized by the maximum available capacity and the probability
of existence of that particular state. For instance, a large unit may have a forced
" reduction in output of, say, 20%, of its rating when one boiler feed pump is out
of service. This may happen 25% of the total time the unit is supposed to be
available. In this case, each unit state (j) can be characterized by

C(j) = maximum capacity available in state ()

p(j) = probability that the unit is in state (j)
where

¥ p(j) =10
i=1
C(1) = 0 (unit down)
C(n) = 100%, capability (unit at full capacity)
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In the probabilistic production cost calculations we attach other parameters to
a state, such as the incremental cost for loading the unit between C(j — 1) and
C(j) MW,

The use of reliability techniques based on probability mathematics for
generation planning frequently involves the construction of tables that show
capacity on outage and the corresponding probability of that much, or more,
capacity being on outage. The binomial probability distribution is cumbersome
to use in practical computations. We will illustrate the simple numerical
convolution using recursive techniques that are useful and efficient in handling
units of various capacities and outage rates. The model of the generating
capacity to be developed in this case 1s a table such as the following.

0, Generating Probability of Occurrence
k Capacity Outage (MW) of O or greater = Py(0y)
1 0 1.000000
2 15 0.950000
3 25 0.813000
4

35 0.095261

On this table

k = index showing the entry number
0, = generating capacity outage (MW)

P,(0,) = cumulative probability = probability of the occurrence
of an outage of Oy, or larger

This probability is a distribution rather than the density described with the
binomial probability. It is a cumulative value rather than an exact probability
(i.e., “exact™ means probability density function).

Let each machine of the previously discussed hypothetical four-machine
system be rated 10 MW, and let p(k) be the exact probability of occurrence of
a particular event characterized by a given outage value. The table started
previously may be expanded into Table 8.14. The function P(0,) is monotomic,
and it should be obvious that the probability of having a zero or larger capacity
outage is 1.0.

Since all generators do not have the same capacity or outage rate, the simple
relationship for the binomial distribution in Table 8.14 does not hold in the
general case. Beside the unit capability, the only other parameter associated
with a generator in this technique is the average outage existence rate, q.

A simple recursive algorithm exists to add a unit to an existing outage
probability table. Suppose an outage probability table exists that gives

Po(x) versus x
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TABLE 8.14 OQutage Probabilities

No. of MW p(k) = Exact

Machines  Outage Probability of P(0,) = Probability of Outage
k  in Service O, Outage O, 0,, or Larger
1 4 0 p* p* +4pq + 6p’q® + 4pq® +q* = 1.0
2 3 10 4pq 4pq + 6p’q® +4pq’ + q*
3 2 20 6p*q? 6p%q® + pq’ + q*
4 1 30 4pq’ 4pq® + q*
5 0 40 q* q*

Installed capacity = 40 MW.

where
P,(x) = probability of x MW or morc on outage

x = MW outage state
Now suppose vou wish to add an “n-state” unit to the table that is described by

p(j) = probability unit is in state j
C(j) = maximum capacity of state j
C(n) = capacity of unit

0

J

C(n) — C(j) = MW outage for state j

Then the new table of outage probabilities may be found by a numerical
convolution:

Po(x) = ¥ P(/)Po(x — 0)) (8A.3)
i=1

where
P(<0)=10

This algorithm is an application of the combinational rules for independent,
mutually exclusive “events.” Each term of the algorithm is made up of (1) the
event that the new unit is in state j with an outage O; MW, and (2) the event
that the “old” system has an outage of (x — 0,) MW. The combined event,
therefore, has an outage of x MW, or'more.

EXAMPLE 8G

Assume we have a generating system consisting of the following machines with
their associated outage rate.
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MW Outage Rate
MW 0.02
10 0.02
10 0.02
10 0.02
10 0.02
5 0.02

The exact probability outage table for the first four units could be calculated
using the binomial distribution directly and would result in the following table.

MW OQutage Exact Probability Cumulative Probability
X p(x) T Po(x)
0 0.922368 1.000000
10 0.075295 0.077632
20 0.002305 0.002337
30 0.000032 0.000032
40 0 0

Now, the fifth machine can exist in either of two states: (1) it is in service with
a probability of p = 1 — q = 0.98 and no additional system capacity is out, or
(2) it is out of service with a probability of being in that state of q = 0.02, and
5 MW additional capacity is out of service.

The resulting outage-protability table will have additional outages because
of the new combinations that have been added. This can be easily overcome
by expanding the table developed for four machines to include these new
outages. This is shown in Table 8.15, along with an example where the fifth,
5 MW, unit is added to the table.

TABLE 815 Adding Fifth Unit

X

(MW) Po(x) 0.98 Py(x) 0.02Py(x — 5) Po(x)
0 1:000000 0.980000 0.020000 1.000000
5 0.077632 0.076079 0.020000 0.096079

10 0.077632 0.076079 0.001553 0.077632

15 0.002337 0.002290 0.001553 0.003843

20 0.002337 0.002290 0.000047 0.002337

25 0.000032 0.000031 0.000047 0.000078

30 0.000032 0.000031 0 0.000031

35 0 0 0 0"

40 0 D 0 0

45 0 0 0 0
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The correctness of this approach and the resulting table may be seen by

calculating the exact state probabilities for all possible combinations. That is,

MW Out x Exact Probability p(x)
New machine in service

040 0.922368 x 0.98 = 0.903921
10 + 0 0.075295 x 0.98 = 0.073789
20+ 0 0.002305 x 0.98 = 0.002258
304+0 0.000032 x 0.98 = 0.000031
40 + 0 0x098=0

New machine out of service

0+5= 5 0.922368 x 0.02 = 0.018447
10+5=15 0.075295 x 0.02 = 0.001506
204 5=25 0.002305 x 0.02 = 0.000047
30+ 5=35 0.000032 x 0.02 =0
40 + 5 =45 0x002=0

The exact state probabilities are combined by adding the probabilities for the
mutually exclusive events that have identical outages; the results are shown in
Table 8.16. Table 8.16 is the capacity model for the five-unit system and is
usually assumed to be fixed until new machines are added or a machine is
retired, or the model is altered to reflect scheduled maintenance outage.

This model was constructed using maximum capacities and calculating
capacity outage probability distributions. Similar techniques may be used to
construct available capacity distributions. A similar convolution is used in the
probabilistic production cost computations. The form of the distribution is
different because we are dealing with a scheduling problem rather than with

TABLE 8.16 Table of Combined Probabilities

MW Outage Exact Probability Cumulative Probability
x p(x) Pi(x)
0 0.903921 1.000000
5 0.018447 0.096079
10 0.073789 0077632
15 0.001506 0.003843
20 0.002259 0.002337
25 0.000047 0.000078
30 0.000031 0.000031
35 0 0
40 0 0

45 : 0 0
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the static, long-range planning problem. In the present case, we are interested
in a distribution of capacity outage probabilities; in the scheduling problem,
we require a distribution of unserved load probabilities.

PROBLEMS

8.1

8.2

83

84

Add another unit to Example 8G (in the Appendix). The new unit shoula
have a capacity of 10 MW and an availability of 90%. That is, its outage
rate is 0.10 per umit. Use the recursive algorithm illustrated in the
Appendix. How far must the MW outage table be extended?

If the probability density function of unsupplied load power for a 1-h
interval is p,(x) and the cumulative distribution is

Pn(x) =1- J‘ pn(.V) dy

1}

demonstrate, using ordinary caiculus, that the unsupplied energy is

f Py dy

0

where

x = maximum load in the 1-h interval

“Tmax

y = dummy variable used to represent the load

Hint: p,(x) is the probability, or normaiized duration, that a load of x
MW exists. The energy represented by this load is then xp,(x). Find the
total energy represented by the entire load distribution.

Complete Table 8.11 for the second unit (i.e., compiete the sixth column).
Convolve the third unit and determine the data for column 7 [P,'(x)] and
the energy generation of the third .unit and its total cost. Find the
distribution of energy to be served over the tie line. If this energy costs
5 R/MWh, what is the cost of this emergency supply and the total cost of
production for this 4-wk interval?

Repeat Example 8C to find the minimum cost dispatch assuming that the
fuel for unit 2 has been obtained under a take-or-pay contract and is
limited to 4500 MBtu. Emergency energy will be purchased at 50 R/MWh.
Find the minimum expected system cost including the cost of emergency
energy.
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8.5 Repeat the calculation of the system in Section 8.4 using the expected cost
method. Show the development of the characteristic as each unit is
scheduled. Plot the expected cost versus the power output. Check the total
cost against the results in Section 8.4.

8.6 Rcpeat the sample computation of Section 8.4, except assume the input-
output characteristic of unit 2 with its ratings have changed to the

following.
Input-QOutput
: Cost Curve
Output (MW) (R/h) Forced Outage Rate
Section | 0-50 70 + 3.5P, 0.1
Section 2 50-60 245 + 4.5(P,-50) 0.1

Schedule section 2 of unit 2 after unit 3 and before the emergency energy.
Use the techniques of Example 8F and deconvolve section 1 of unit 2 prior
to determining the loading on section 2. Repeat the analysis, ignoring the
statistical dependence of section 2 on section 1. (That is, schedule a 10-MW
“unit™ to represent section 2 without deconvolving section 1.)

FURTHER READING

The literature concerning production cost simulations is profuse. A survey of various
types of model is contained in reference 1. References 2-4 describe deterministic models
designed for long-range planning. Reference 5 provides an entry into the literature of
Monte Carlo simulation methods applied to generation planning and production cost
computations.

The two texts referred to in references 6 and 7 provide an introduction to the use of
probabilistic models and methods for power-generation planning. Reference 8 illustrates
the application to a single area. These methods have been extended to consider the
effects of transmission interconnections on generation system reliability in references
9-12.

The original probabilistic production cost technique was presented by E. Jamoulle
and his associates in a difficult-to-locate Belgian publication (reference 13). The basic
methodology has been discussed and illustrated in a number of IEEE papers; references
14-16 are examples.

In many of these articles, the presentation of the probabilistic methodology is couched
in a sometimes confusing manner. Where authors such as R. R. Booth and others discuss
an “equivalent load distribution,” they are referring to the same distribution, T'P,(x),
discussed in this chapter. These authors allow the distribution to grow from zero load
to some maximum value equal to the sum of the maximum load plus the sum of the
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capacity on forced outage. We have found this concept difficult to tmpart and prefer
the present presentation. The practical results are identical to those found more
commonly in the literature.

The models of approximation using orthogonal expansions to represent capacity
distributions have been presented by Stremel and his associates. Refercme 17 provides’
an entry into this literature.

References 15 and 18 lead into the development of the expected production cost
method.

References 19-26 contain examples of different approaches to computing probabilistic
data and the extension of the methods to different problem areas and generation plant
configurations. The last two references are extensions of these techniques to incorporate
transmission network. Reference 28 is concerned with unit commitment, but it represents
the type of technique that would be useful in shorter-term production cost applications
involving transmission-constrained scheduling.
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9 Control of Generation

9.1 INTRODUCTION

S0 far, this text has concentrated on methods of establishing optimum dispatch
and scheduling of generating units. It is important to realize, however, that such
optimized dispatching would be useless without a method of control over the
generator units. Indeed, the control of generator units was the first problem
faced in early power-system design. The methods developed for control of
individual generators and eventually control of large interconnections play a
vital role in modern energy control centers.

A generator driven by a steam turbine can be represented as a large rotating
mass with two opposing torques acting on the rotation. As shown in Figure
9.1, Ty the mechanical torque, acts to increase rotational speed whereas
T..... the electrical torque, acts to slow it down. When T,.., and T, are equal
in magnitude, the rotational speed, w, will be constant. If the electrical load is
increased so that 7., is larger than T, the entire rotating system will begin
to slow down. Since it would be damaging to let the equipment slow down too
far, something must be done to increase the mechanical torque T, to restore
equilibrium; that is, to bring the rotational speed back to an acceptable value
and the torques to equality so that the speed is again held constant.

This process must be repeated constantly on a power system because the
loads change constantly. Furthermore, because there are many generators
supplying power into the transmission system, some means must be provided
to allocate the load changes to the gnerators. To accomplish this, a series of
control systems are connected to the generator units. A governor on each unit
maintains its speed while supplementary control, usually originating at a remote
control center, acts to allocate generation. Figure 9.2 shows an overview of the
generation control problem.

9.2. GENERATOR MODEL

Before starting, it will be useful for us to define our terms.

= rotational speed (rad/sec)
o = rotational acceleration
é = phase angle of a rotating machine

328
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FIG. 9.1 Mechanical and electrical torques in a generating unit.
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FIG. 9.2 Overview of generation control problem.

T... = net accelerating torque in a machine

T,.... = mechanical torque exerted on the machine by the turbine

T.,.. = electrical torque exerted on the machine by the generator
P, = net accelerating power
P,...n = mechanical power input
P.... = electrical power output
I = moment of inertia for the machine

M = angular momentum of the machine

where all quantities (except phase angle) will be in per unit on the machine
base, or, in the case of w, on the standard system frequency base. Thus, for
example, M is in per unit power/per unit frcqucncy/scc

In the development to follow, we are interested in deviations of quantities
about steady-state values. All steady-state or nominal values will have a “0”
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subscript (e.2., W, Thei,) and all deviations from nominal will be designated by
a“A” (e.g., Aw, AT,,,). Some basic relationships are

lo =T o 9.1)
M = ol 9.2)
P, = 0T, = o(la) = Ma (9.3)

To start. we will focus our attention on a single rotating machine. Assume
that the machine has a steady speed of w, and phase angle d,. Due to various
electrical or mechanical disturbances, the machine will be subjected to differences
in mechanical and electrical torque, causing it to accelerate or decelerate. We
are chiefly interested in the deviations of speed. Aw. and deviations in phase
angle, Ad, from nominal.

The phase angle deviation, Ad, is equal to the difference in phase angle
between the machine as subjected to an acceleration of « and a reference axis
rotating at exactly w,. If the speed of the machine under acceleration is

W=y t+ ol 9.4)
then

Ad = J(wo+ar)dt - j.u)odt

N
Machine absolute Phase angle of
phase angle reference axis

= wot + St — wgt
= dar? 9.5)

The deviation from nominal speed, Aw, may then be expressed as

Aw=at = S (AD) (9.6)
dr

The relationship between phase angle deviation, speed deviation, and net
accelerating torque is

b = fwed e = 1L B9 ©.7)
e e '

Next, we will relate the deviations in mechanical and electrical power to the
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" deviations in rotating speed and mechanical torques. The relationship between
net accelerating power and the electrical and mechanical powers is

Pne: = Fmech — PeJec (98)

which is written as the sum of the steady-state value and the deviation term,

P = Pn:lo + AF,, 9.9
where
Pnelu = Pm:chn ™ Pclcco
APnel = APme-:h = APcler
Then
nel ( mecho Pclcco) + (APmech - APelec) (910)
Similarly for torques,
I R (Tme;ho =, T:Ieco) + (ATmech . ATelec) (91 ’)

Using Eq. 9.3, we can see that
‘Pnn ™ Pn:m + APnel L ((1)0 - Aw)( Tnclo . AT el) (912)
Substituting Eqs. 9.10 and 9.1 l; we obtain

(Pmrchg - elrco) + (A mech — cicc) - (wO + A(D)[( Tmechu Telecu.)
+ (ATmech i =i=c)] (913)

Assume that the steady-state quantities can be factored out since

Pmccho b P:Ie(:o
and

Tmécho = Teiecc. P

and further assume that the second-order terms involving products of Aw
with AT, and AT, can be neglected. Then

APocin — APae = (AT ey — AToice) (9.14)

As shown in Eq. 9.7, the net torque is related to the speed change as follows:

(Tmcchu = Tcltcu ) 1 (ATmrch =l:c) = ! (A(U) (9]5)
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FIG. 9.3 Relationship between mechanical and electrical power and speed change.

then since Tpeene = Tetecy WE C2N combine Egs. 9.14 and 9.15 to get
d
APm:ch - APelec = wol a’r (Aw)

d
=M — 9
M - (8e) (9.16)

This can be expressed in Laplace transform operator notation as
APmech - APcltc = Ms Aw (917)

This is shown in block diagram form in Figure 9.3.

The units for M are watts per radian per second per second. We will
always use per unil power over per unit speed per second where the per umit
refers to the machine rating as the base (see Example 9A).

93 LOAD MODEL

The loads on a power system consist of a variety of electrical devices. Some
of them are purely resistive, some are motor loads with variable power—
frequency characteristics, and others exhibit quite different characteristics. Since
motor loads are a dominant part of the electrical load, there is a need to model
the effect of a change in frequency on the net load drawn by the system. The re-
lationship between the change in load due to the change in frequency is given by

. i
APpyreqy = D A OF D= ___Ax:((_rvr_q.)

where D is expressed as percent change in load divided by percent change in
frequency. For example, if load changed by 1.5% for a 1% change in frequency,
then D would equal 1.5. However, the value of D used in solving for system
dynamic response must be changed if the system base MVA is different from
the nominal value of load. Suppose the D referred to here was for a net
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FIG. 9.4 Block diagram of rotating mass and load as seen by prime-mover output.

connected load of 1200 MVA and the entire dynamics problem were to be set
up for a 1000-MVA system base. Note that D = 1.5 tells us that the load would
change by 1.5 pu for 1 pu change in frequency. That is, the load would change
by 1.5 x 1200 MVA or 1800 MVA for a 1 pu change in frequency. When
expressed on a 1000-MVA base, D becomes

D e = 13 % [ == =18
1000-MVA bas (1000)

The net change in P, in Figure 9.3 (Eq. 9.15) is

AP,.. = AP, + D Aw (9.18)
Moy LS
Nonfrequency- Frequency-sensitive
sensitive load load change
change

Including this in the block diagram results in the new block diagram shown in
Figure 9.4. '

EXAMPLE %A

We are given an isolated power system with a 600-M VA generating unit having
an M of 7.6 pu MW/pu {requency/sec on a machine base. The unit is supplying
a load of 400 MVA. The load changes by 27; for a 1%, change in frequency.



334 CONTROL OF GENERATION

+ 1
IV p—— g -
iBacD 456¢+08 e

AP

FIG. 9.5 Block diagram for system in Example 9A.

First, we will set up the block diagram of the equivalent generator load system.
Everything will be referenced to a 100 MVA base.

M =176 % @— = 4.56 on a 1000-MVA base
1000

D=2x i@ = 0.8 on a 1000-MVA base
1000

Then the block diagram is as shown in Figure 9.5,
Suppose the load suddenly increases by 10 MVA (or 0.01 pu); that is,

0.01
AP, (s) = —
S

then
A(U(S) = —_— 9_-91_ (_. ..._l__m,)
s \4.56s+ 08

or taking the inverse Laplace transform,
Ao(t) = (0.01/0.8)c ~(0-8r4-36) _ (0,01/0.8)
= 0.0125¢ %175 — 0.0125

The final value of Aw is —0.0125 pu, which is a drop of 0.75 Hz on a 60-Hz
system.

When two or more generators arc connected to a transmission system
network , we must take account of the phase angle difference across the network
in analyzing frequency changes. However, for the sake of governor analysis,
which we are interested in here, we can assume that frequency will be constant
over those parts of the network that are tightly interconnected. When making
such an assumption, we can then lump the rotating mass of the turbine
generators together into an equivalent that is driven by the sum of the individual
turbine mechanical outputs. This is illustrated in Figure 9.6 where all turbine
generators were lumped into a single equivalent rotating mass, M,
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FIG. 9.6 Multi-turbine-generator system equivaient.

Similarly, all individual system loads were fumped into an equivalent load with
damping coefficient, Dequiy-

9.4 PRIME-MOVER MODEL

The prime mover driving a generator unit may be a steam turbine or a
hydroturbine. The models for the prime mover must take account of the steam
supply and beiler control system characteristics in the case of a steam turbine,
or the penstock characteristics for a hydro turbine. Throughout the remainder
of this chapter, only the simplest prime-mover model, the nonreheat turbine,
will be used. The models for other more complex prime movers, including
hydro turbines, are developed in the references (see Further Reading).

The model for a nonreheat turbine, shown in Figure 9.7, relates the position
of the valve that controls emission of steam into the turbine to the power output
of the' turbine, where v

T,, = “charging time" time constant

AP,,,,. = per unit change in valve position from nominai

The combined prime-movcr-~generamr-Ioad'modcl for a single generating unit
can be built by combining Figure 9.4 and 9.7, as shown in Figure 9.8.

1
EPaive 1+5Tey >~ 8P e
FIG. 9.7 Prime-mover model.
AP,
1 mech m 1 )
AP.,:J\'Q 1 *’TCH > Yﬁ Zisb g 2 (2

apy

FIG. 98 Prime-mover—generator-load model.
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9.5 GOVERNOR MODEL

Suppose a generating unit is operated with fixed mechanical power output
from the turbine. The result of any load change would be a speed change
sufficient to cause the frequency-sensitive load to exactly compensate for the
load change (as in Example 9A). This condition would allow system [requency
to drift far outside acceptable limits. This is overcome by adding a governing
mechanism that senses the machine speed, and adjusts the input valve to change
the mechanical power output to compensate for load changes and- to restore
frequency to nominal value. The earliest such mechanism used rotating
“flyballs” to sense speed and to provide mechanical motion in response to speed
changes. Modern governors use electronic means to sense speed changes and
often use a combination of electronic, mechanical, and hydraulic means to effect
the required valve position changes. The simplest governor, called the iso-
chronous governor, adjusts the input valve to a point that brings frequency back
to nominal value. If we simply connect the output of the speed-sensing
mechanism to the valve through a direct linkage, it would never bring the
frequency to nominal. To force the frequency error to zero, one must provide
what control engineers call reset action. Reset action is accomplished by
integrating the frequency (or speed) error, which is the difference between actual
speed and desired or reference speed.

We will illustrate such a speed-governing mechanism with the diagram
shown in Figure 9.9. The speed-measurement device’s output, w, is compared
with a reference, w,,, to produce an error signal, Aw. The error, Aw, is negated
and then amplified by a gain K and integrated to produce a control signal,
AP,..... which causes the main steam supply valve to open (AP, position)
when Aw is negative. If, for example, the machine is running at reference speed
and the electrical load increases, w will fall below w,.; and Aw will be negative.
The action of the gain and integrator will be to open the steam valve, causing
the turbine to increase its mechanical output, thereby increasing the electrical

Speed
. measurement
R::‘:z"g device
s — e
Steam —| SteAM 0 Prime mover !
valve | —
A
w
+
Aw
K pat—d -1 w
A pm" f G 2 ref

+ = ppen valve
- = close valve

FIG. 99 Isochronous governor.
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FIG. 9.10 Governor with speed-droop feedback loop.

output of the generator and increasing the speed . When w exactly equals
W, the steam valve stays at the new position (further opened) to allow the
turbine generator to meet the increased electrical load.

The isochronous (constant speed) governor of Figure 9.9 cannot be used if
two or more generators are electrically connected to the same system since each
generator would have to have precisely the same speed setting or they would
“fight" cach other, each trying to pull the system’s speed (or frequency) to its
own setting. To be able to run two or more generating units in parallel on a
generating system, the governors are provided with a feedback signal that causes
the speed error to go to zero at different values of generator output.

This can be accomplished by adding a feedback loop around the integrator as
shown in Figure 9.10. Note that we have also inserted a new input, called the
load reference, that we will discuss shortly. The block diagram for this
governor is shown in Figure 9.11, where the governor now has a net gain of
1/R and a time constant 7.

The result of adding the feedback loop with gain R is a governor characteristic
as shown in Fig. 9.12. The value of R determines the slope of the characteristic.
That is, R determines the change on the unit's output for a given change in
frequency. Common practice is to set R on each generating unit so that a change
from 0 to 100% (i.e., rated) output wili result in the same frequency change for
each unit. As a result, a change in electrical load on a system will be
compensated by generator unit output changes proportional to each unit’s rated
output.

If two generators with drooping governor characteristics are connected to a
power system, there will always be a unique frequency, at which they will share
a load change between them. This is illustrated in Figure 9.13, showing two
units with drooping characteristics connected to a common load.
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FIG. 9.11 Block diagram of governor with droop.
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FIG. 9.12  Speed-droop characteristic.
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FIG. 9.13 Allocation of unit outputs with governor droop.
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FIG. 9.14 Speed-changer settings.

As shown in Figure 9.13, the two units start at a nominal frequency of f,.
When a load increase, AP, causes the units to slow down, the governors
increase output until the units seek a new, common operating frequency, . The
amount of load pickup on each unit is proportional to the slope of its droop
characteristic. Unit 1 increases its output from P, to Pj, unit 2 increases its
output from P, to P; such that the net generation increase, Py — P, + P, — P,
is equal to AP,. Note that the actual frequency sought also depends on the
load’s frequency characteristic as well.

Figure 9.10 shows an input labeled “load reference set point.” By changing
the load reference. the generator’s governor characteristic can be set to give
reference frequency at any desired unit output. This is llustrated in Figure 9.14.
The basic conirol input to a generating unit as far as generation control is
concerned is the load reference set point. By adjusting this set point on each
unit, a desired unit dispatch can be maintained while holding system frequency
close to the desired nominal value.

Note that a steady-state change in AP, of 1.0 pu requires a value of R
pu change in frequency. Aw. One often hears unit regulation referred to in
percent. For instance, a 39, regulation for a unit would indicate that a 1009,
(1.0 pu) change in valve position (or equivalently a 100% change in unit output)
requies a 3% change in frequency. Therefore, R is equal to pu change in
frequency divided by pu change in unit output. That is,

R = u
APp

At this point, we can construct a block diagram of a governor—prime-mover-
rotating mass/load model as shown in Figure 9.15. Suppose that this generator
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FIG. 9.15 Block diagram of governor, prime mover, and rotating mass.

cxperiences a step increase in load,
AP
AP(s) = -— (9.19)
s
The transfer function relating the load change. AP.. to the frequency change,
Aw, 18
-1

My D
Ms+D (9.20)

Aaxs) = AP ()| ———7—
w(s) 1. (5) '1( | )( i )( ] )
E AL PR, 2

L R\1 + sTg/\1 + sTeu/\Ms + D/ |

The steady-state value of Aw(s) may be found by

Ao steady state = lim [s Aexs)]

50
1
»;APL(b) AP,
P (9-21)

UG

\

Note that if D were zero, the change in speed would simply be

Aw = =R AP, (9.22)

each having its own governor and prime mover) were

If several generators (
he frequency change would be

connected to the system, t
— AP
el S = (9.23)
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9.6 TIE-LINE MODEL

The power flowing across a transmission line can be modeled using the DC
load flow method shown in Chapter 4.

1
P!ie”ow oz (91 - 03) (9.24)
‘!(lie

This tie flow is a steady-state quantity. For purposes of analysis here, we will
perturb Eq. 9.24 to obtain deviations from nominal.flow as a function of
deviations in phase angie from nominal.

1
Ptic flow * APuc flow = [(91 + Ael) - (82 + AQ}.)]
tie
1 1
=— (0, -6, + Y

(A8, — AB,) (9.25)

tic tie

Then

APicoow = | (86, - AB) (9.26)

“Mie

where A8, and A, are equivalent to Ad, and Aé, as defined in Eq. 9.6. Then,
using the relationship of Eq. 9.6,

AP,

tlie flow

j
= - (Aw, — Aw,) (9.27)
s

where T = 377 x 1/X,,. (for a 60-Hz system).

Note that A@ must be in radians for AP, to be in per unit megawatts, but
A is in per unit speed change. Therefore, we must multiply Aew by 377 rad/sec
(the base frequency in rad/sec at 60 Hz). T may be thought of as the “tie-line
stiffness™ coefficient.

Suppose now that we have an interconnected power system broken into two
areas each having one generator. The arcas are connected by a single
transmission line. The power flow over the transmission line will appear as a
a positive load to one area and an equal but negative load to the other, or vice
versa, depending on the direction of flow. The direction of flow will be dictated
by the relative phase angle between the areas, which is determined by the
relative speed deviations in the areas. A block diagram representing this
interconnection can be drawn as in Figure 9.16. Note that the tie power flow
was defined as going from area | to area 2; therefore, the flow appears as a
load to area 1 and a power source (negative load) to area 2. If one assumes
that mechanical powers are constant, the rotating masscs and tie line exhibit
damped oscillatory characteristics known as synchronizing oscillations. (See
problem 9.3 at the end of this chapter.)
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/R,
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FIG. 9.16 Block diagram of interconnected areas.

It is quite important to analyze the steady-state frequency deviation, tie-flow
deviation, and generator outputs for an interconnected area after a load change
occurs. Let there be a load change AP, in area 1. In the steady state, after all
synchronizing oscillations have damped out, the frequency will be constant and
equal to the same value on both areas. Then

A d
Ao, = Aw, = Aw  and difion) 400, (9.28)
dt de

and
AP, n, — AP — AP, = AwD,

APios; + 0Py = AwD,
—A
BPsini =~ = (9.29)
) 1
—A
APmechz = "_0)'
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By making appropriate substitutions in Eq. 9.29,

1
— AR, - AP, = Am(— + D,)
R,

l (9.30)
+APR,, = Aa}(— + Dz)
R,
or, finally

Ao = ——— (9:31)

from which we can derive the change in tie flow:

1
_.APL,(E~ + D;)

AP, = 2 (9.32)

Note that the conditions described in Eqs. 9.28 through 9.32 are for the new
steady-state conditions after the load change. The new tie flow is determined
by the net change in load and generation in each area. We do not need to know
the tie stiffness to determine this new tie flow, although the tic stiffness will
determine how much difference in phase angle across the tie will result from
the new tie flow.

EXAMPLE 9B

You are given two system areas connected by a tie line with the following
characteristics.

Area | Area 2
R =001 pu R =002 pu
D =08 pu D=10pu
Base MVA = 500 Base MVA = 500

A load change of 100 MW (0.2 pu) occurs in area 1. What is the new
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steady-state frequency and what is the change in tie flow? Assume both areas
were at nominal frequency (60 Hz) to begin.

-0.2

Ag = = I'J?‘PP'—‘,,: — S = 000131752 pu

e e e Dy Dy + 0.8 + 1
R, R, 0.01 002

frew = 60 — 0.00132(60) = 59.92 Hz

Il

( i
AP,, = Am(}l— i u,) . i 0.00131752(-.- 4 1)

—0.06719368 pu
3 y 0.02

—33.6 MW

i

The change in prime-mover power would be

-Ac (000131752}
BBy = o ( ____‘,L,_Q,) = (.13175231 pu = 65.876 MW
’ R, 0.01
—Ae —~0.00131752
. ,_( ro il ) ~ 0.06587615 pu = 32.938 MW
, - 002

= 08814 MW

The total changes in generation is 98.814 MA, which is -1.186 MW short
of the 100 MW load change. The change in total arca load due to frequency
drop would be

For area 1 = AwD, = —0.0010540 pu = —0.527 MW

For area 2 = AwD, = —0.00131752 pu = —0.6588 MW

Therefore. the total load change is =1.186 MW, which accounts for the
difference in total generation change and total load change. (See Problem 9.2
for further variations on this problem.)

If we were to analyze the dynamics of the two-area systems, we would find
that a step change in load would always result in a frequency error. This is
illustrated in Figure 9.17, which shows the frequency response of the system
(o a step-load change. Note that Figure 9.17 only shows the average frequency
(omitting any high-frequency oscillations).
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Load
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Response with no governor action f
Frequency

error
#

‘_' 3
M

AP,

Aw =

11

— +—+D, +D
1

R, Ry 4

Response with governor action

FIG. 9.17 Frequency response to load change.

9.7 GENERATION CONTROL

Automatic generation control (AGC) is the name given to a control system
having three major objectives:

1. To hold system frequency at or very close to a specified nominal value
(e.g., 60 Hz).

2. To maintain the correct value of interchange power between control
areas.

3. To maintain each unit’s generation at the most economic value.
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FIG. 9.18 Supplementary control added to generating init.

9.7.1 Supplementary Control Action .

To understand each of the three objectives just listed, we may start out assuming
that we are studving a single generating unit supplying load to an isolated
power system. As shown in Section 9.5, a load change will produce a frequency
change with a magnitude that depends on the droop characteristics of the
gavernor and the frequency characteristics of tife system load. Once a load
change has occurred, a supplementary control must act to restore the frequency
to nominal value. This can be accomplished by adding a reset (integral) control
to the governor, as shown in Figure 9.18.

The reset control action of the supplementary c@ntrol will force the frequency
crror to zero by adjustment of the speed referendg set point. For example, the
error shown in the bottom diagram of Figure 9. ’ would be forced to zero.

6,72 Tie-Line Control

When two utilities interconnect their systems, they do so for several reasons.
One is to be able to buy and sell power with neighboring systems whose
operating costs make such iransactions profitable. Further, even if no power is
being transmitted over ties to neighboring systents, if one system has a sudden
loss of a generating unit, the units throughout all the interconnection will
experience a frequency change and can heip in restoring frequency.
Interconnections present a very interesting control problem with respect to
allocation of generation to meet load. The hypothetical situation in Figure 9.19
will be used to illustrate this problem. Assume both systems in Figure 9.19 have
equal generation and load characteristics (R, = R,, D, = D,) and, further,
assume system 1 was sending 100 MW to system 2 under an interchange
agreement made between the operators of each system. Now, let system 2
experience a sudden load increase of 30 MW. Since both units have equal
generation characteristics, they will both experience a 15 MW increase, and the
tie line will experience an increase in flow from 100 MW to 115 MW. Thus, the
30 MW load increase in system 2 will have been satisfied by a 15 MW increase
in generation in system 2, plus a 15 MW increase in tie flow into system 2. This
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System 1 System 2
FIG. 9.19 Two-area system.

would be fine, except that system 1 contracted to sell only 100 MW, not {5
MW, and its generating costs have just gone up without anyone to bill the
extra cost to. What is needed at this point is a control scheme that recognizes
the fact that the 30 MW load increase occurred in system 2 and, therefore,
would increase generation in system 2 by 30 MW while restoring frequency to
nominal value. It would also restore generation in system 1 to its output before
the load increase occurred.

Such a control system must use two pieces of information: the system
frequency and the net power flowing in or out over the tie lines. Such a control
scheme would, of necessity, have to recognize the following.

1. If frequency decreased and net interchange power leaving the system
increased, a load increase has occurred outside the system.

2. If frequency decreased and net interchange power leaving the system
decreased, a load increase has occurred inside the system.

This can be extended to cases where frequency increases. We will make the
following definitions.

P, i = total actual net interchange
(+ for power leaving the system; — for power entering)

P = scheduled or desired value of interchange (9.33)

net int sched

AP,

netint — Poevint — Pncl int sched

Then, a summary of the tie-line frequency control scheme can be given as
in the table in Figure 9.20.
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Aw AP, in Load change Resulting control action

- = AP+ Increase Py, in system 1
AP, O J

- + AP, = Decrease P, In system 1
AP, O

- - AP, O Inicrease P, in system 2
APy F

+ - ap,, 0 qt?crcasc P,., in system 2
AP, -

!
5
|

]

1
U
—— e
P

net int

\\_/

APy = Load change in area 1

.M»’,_2 = Load change in area 2

FIG. 920 Tie-line frequency control actions for two-area system.

We define a control area to be a part of an interconnected system within
which the load and generation will be controlled as per the rules in Figure 9.20.
The control area’s boundary is simply the tie-line points where power flow is

metered. All tie lines crossing the bou
control area net interchange power can

ndary must be metered so thal total
be calculated.

The rules set forth in Figure 9.20 can be implemented by a control mechanism

that weighs frequency deviation, Aw, an
frequency response and tie flows result
" two-area system of Figure 9.16 are der
results are repeated here.

d net interchange power. AP, in The
ing from a load change, AP, in the
ived in Egs. 9.28 through 9.32. These

Change in Net

Load Change Frequency Change Interchange
4!
AP _AP"’(_I{ + Dz)
AP, PR, M SR
! 1 r (9.34)
i —— + Dy + Dy —+ -+ D+ D
R, 2 R R,
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This corresponds to the first row of the table in Figure 9.20; we would therefore
require that

AR, = AP,

AP..,=0

genz

The required change in generation, historically called the area control error
or ACE, represents the shift in the area’s generation required to restore
frequency and net interchange to their desired values. The equaions for ACE
for each area are

ACE, = — AP, in, — B, Aw
(9.35)
ACE; = —AF, iny B, Aw

where B, and B, are called frequency bias factors. We can see from Eq. 9.34
that setting bias factors as follows:

B = (Rl + D.)
. (9.36)

results in
+AF, ( ! + D)
Ll = 5
: ’ 2 1 - AP,
R LT b — Fe 4 B + B
Ry R; R, R,
—APL]( + D«) { AP
ACE, = % L2 - _(R +D,) e L =0
—+—+D +D, e —+ — 4D, + D,
1 2 Rl 2

This control can be carried out using the scheme outlined in Figure 9.21. Note
that the values of B, and B, would have to change each time a unit was
committed or decommitted, in order to have the exact values as given in Eq.
9.36. Actually, the integral action of the supplementary controller will guarantee
a reset of ACE to zero even when B, and B, are in error.
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F1G. 9.21 Tie-line bias supplementary control for two areas.

973 Generation Allocation

If each control area in an interconnected system had a single generating unit,
the control system of Figure 9.21 would suffice to provide stable frequency
and tie-line interchange. However, power systems consist of control areas with
many generating units with outputs that must be sct according to economics.
That is. we must couple an economic dispatch calculation to the control
mechanism so it will know how much of each area’s total generation is required
from each individual unit.

One must remember that a particular total generation value will not usually
exist for a very long time, since the Joad on a power system varies continually
as people and industries use individual electric loads. Therefore, it is impossible
to simply specify a total generation, calculate the economic dispatch for each
unit, and then give the control mechanism the values of megawatt output
for each unit—unless such a calculation can be made very quickly. Until the
widespread use of digital computer-based control systems, it was common
practice to construct control mechanisms such as we have been describing using
analog computers. Although analog computers are not generally proposed for
new control-center installations today, there are some in active use. An analog
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computer can provide the economic dispatch and allocation of generation in
an area on an instantaneous basis through the use of function generators set
to equal the units’ incremental heat rate curves. B matrix loss formulas were
also incorporated into analog schemes by setting the matrix coefficients on
precision potentiometers.

When using digital computers, it is desirable to be able to carry out the
economic-dispatch calculations at intervals of one to several minutes. Either
the output of the economic dispatch calculation is fed to an analog computer
(e, a “digitally directed analog” control system) or the output is fed to another
program in the computer that executes the control functions (ie., a “direct
digital™ control system). Whether the control is analog or digital, the allocation
of generation must be made instantly when the required area total generation
changes. Since the economic-dispatch calculation is to be executed every few
minutes, a means must be provided to indicate how the generation is to be
allocated for values of total generation other than that used in the economic-
dispatch calculation.

The allocation of individual generator output over a range of total generation
values is accomplished using base points and participation factors. The
ecdnomic-dispatch calculation is executed with a total generation equal to the
sum of the present values of unit generation as measured. The result of this
calculation is a set of base-point generations, P, , which is equal to the most
economic output for each generator unit. The rate of change of each unit’s
output with respect to a change in total generation is called the unit’s
participation factor, pf (see Section 3.8 and Example 31 in Chapter 3). The base
point and participation factors are used as follows

Po.= Py + Pix AP, (9.37)
where
ARy = Prewotar — Z P (9.38)
all
gen
and

= new desired output from unit i

ides

P. = base-point generation for unit i

ibuse
pf; = participation factor for unit i

AP, = change in total generation

P

 ew ol = NEW total generation

Note that by definition (e.g., see Eg. 3.35) the participation factors must sum
to unity. In a direct digital control scheme, the generation allocation would be
made by running a computer code that was programmed to execute according
to Eqgs. 9.37 and 9.38.
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974 Automatic Generation Control (AGC) Implementation

Modern implementation of automatic generation control (AGC) schemes
usually consists of a central location where information pertaining to the system
is telemetered. Control actions are determined in a digital computer and then
transtiitted to the generation units via the same telemetry channels. To
implement an AGC system, one would require the following information at the
control center.

1. Unit megawatt output for each committed unit.
2. Megawatt flow over cach tie line to neighboring systems.
3. System frequency.

The output of the execution of an AGC program must be transmitted to
cach of the generating units. Present practice is to transmit raised or lower
pulses of varying lengths to the unit. Control equipment then changes the unit’s
load reference sct point up 0f down in proportion to the pulse length. The
“length” of the control pulse may be encoded in the bits of a digital word that
is transmitted over a digital telemetry channel. The use of digital telemetry
is becoming commonplace in modern systems wherein supervisory control
(opening and closing substation breakers), telemetry information (measure-
ments of MW, MVAR, MVA voltage, etc.) and control information (unit
raise/lower) is all sent via the same channels.

The basic reset control loop for a unit consists of an integrator with gain
K as shown in Figure 9.22. The control loop is implemented as shown in Figure
9.23. The P, control input used in Figures 9.22and 923 is a function of system
frequency deviation, net interchange error, and each unit’s deviation from its
scheduled economic output.

The overall control scheme we are going to develop starts with ACE, which
is a measure of the error in total generation from total desired generation. ACE
is calculated according to Figure 9.24. ACE serves to indicate when (otal
generation must be raised or lowered in a control area. However, ACE is not
the only error signal that must “drive” our controller. The individual units

P

gen
Governor Qutput

Kis prime mover

Load ref
set point

FIG. 9.22 Basic generation control loop.
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FIG. 9.23 Basic generation control loop via telemetry.
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FIG. 924 ACE calculation.

may deviate from the economic output as determined by the base point and
participation-factor calculation.

The AGC control logic must also be driven by the errors in unit output so
as 1o force the units to obey the economic dispatch. To do this, the sum of the
unit output errors is added to ACE to form a composite error signal that drives
the entire control system. Such a control system is shown schematically in
Figure 9.25. where we have combined the ACE calculation, the generation
allocation calculation, and the unit control loop.
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Investigation of Figure 9.25 shows an overall control system that will try to
drive ACE to zero as well as driving each unit’s output to its required economic
value. Readers are cautioned that there are many variations to the control
execution shown in Figure 9.25. This is especially true of digital implementa-
tions of AGC where great sophistication can be programmed into an AGC
computer code. :

Often the question is asked as to what constitutes “good™ AGC design. This
is difficult to answer, other than in a general way, since what is “good” for one
system may be different in another. Three general criteria can be given.

1. The ACE signal should ideally be kept from becoming too large. Since
- ACE is directly influenced by random load variations, this criterion can
be treated statistically by saying that the standard deviation of ACE
should be small. -

2 ACE should not be allowed to “drift.” This means that the integral of
ACE over an appropriatc time should be small. “Drift” in ACE has the
effect of creating system time errors or what are termed inadvertent
interchange errors. a

3. The amount of control action called for by the AGC should be kept to
a minimum. Many of the errors in ACE, for example, are simply random
load changes that need not cause control action. Trying to “chase™ these
random load variations, will_only wear out the unit speed-changing
hardware.

To achieve the objectives of good AGC, many features are added, as described
briefly in the next section. i

9.7.5 AGC Features

This section will serve as a simple catalog of some of the features that can be
found in most AGC systems.

Assist action: Often the incremental heat rate curves for generating units
will give trouble to an AGC when an excessive ACE occurs. If one unit’s
participation factor is dominant, it will take most of the control action and
the other units will remain relatively fixed. Although it is the proper thing
1o do as far as economics are concerned, the one unit that is taking all the
action will not be able to change its output fast enough when a large ACE
calls for a large change in generation. The assist logic then comes into
action by moving more of the units to correct ACE. When the ACE is
corrected, the AGC then restores the units back to gconomic output.

Fiitering of ACE: As indicated carlier, much of the change in ACE may be
random noise that need not be “chased” by the generating units. Most
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AGC programs use elaborate, adaptive nonlinear filtering schemes to try to
filter out random noise from true ACE deviations that need control action.

Telemetry failure logic: Logic must be provided to insure that the AGC
will not take wrong action when a telemetered value it is using fails. The
usual design is to suspend all AGC action when this condition happens.

Unit control detection: Sometimes a generating unit will not respond to
raised lower pulses. For the sake of overall control, the AGC ought to
take this into account. Such logic will detect a unit that is not following
raised/lower pulses and suspend control to it, thereby causing the AGC
to reallocate control action among the other units on control.

Ramp control:  Special logic allows the AGC to ramp a unit form one output
to another at a specified rate of change in output. This is most useful in
bringing units on-line and up to full output.

Rate limiting: All AGC designs must account for the fact that units cannot
change their output too rapidly. This is especially true of thermal units
where mechanical and thermal stresses are limiting. The AGC must limit
the rate of change such units will be called on to undergo during fast load
changes.

Unit control modes: Many units in power systems are not under full AGC
control. Various special control modes must be provided such as manual,
base load, and base load and regulating. For example, base load and
regulating units are held at their base load value-—but are allowed to
move as assist action dictates, and are then restored to base-load value.

PROBLEMS

9.1 Suppose that you are given a single area with three generating units as
shown in Figure 9.26.

o 9 %

Load (Load base = 1000 MVA)

FIG. 926 Three-generator system for Problem 9.1.

Speed Droop R
Unit Rating (MVA) (per unit on unit base)
1 100 0.01
2 500 0.015

3 500 0.015
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The units are initially loaded as follows:

P, = 80 MW
P, = 400 MW

Assume D = 0: what is the new generation on each unit for a 50-MW load
increase? Repeat with D = 1.0 pu (ic., 1.0 pu on load base). Be careful to
convert all quantities to a common base when solving.

Using the values of R and D in eéch arca, for Example 9B, resolve for the
100-MW load change 1§1 area | under the following conditions:

Area 1: base MVA = 2000 MVA
Area 2. base MVA = 500 MVA

Then solve for a load change of 100 MW occurring in area 2 with R values
and D values as in Example 9B and base MVA for each area as before.

Given the block diagram of two interconnected areas shown in Figure
9.27 (consider the prime-mover output to be constant, fe,a “blocked”
governor):

B g N 1
APmech'Z ro i . o A“H
AP,
APna T/ (—-———(j
s
f + ‘
; ol -5 . 1 Aw,y
APpgeny = 0 NS Mys + D ' i

FIG. 927 Two-area system for Problem 9.3

a. Derive the transfer functions that relate Aw,(s) and Aw,(s) to a load
change AP, (s).
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b. For the following data (all quantities refer to a 1000-M VA base),

M, =35pu D, =100
AMZ = 4.0 pu D2 = 0.75
T = 1377 x 0.02 pu = 7.54 pu

calculate the final frequency for load-step change in area 1 of 0.2 pu
(i.e., 200 MW). Assume frequency was at nominal and tie flow was 0 pu.

¢. Derive the transfer function relating tie flow, AP, (s) to AP.(s). For
the data of part b calculate the frequency of oscillation of the tie power
flow. What happens to this frequency as tie stiffness increases (i.€.
T—- OC))?

9.4 Given two generating units with data as follows.

Unit I: Fuelcost: F, = 1.0 R/MBtu
" H,(P,) = 500 + 7P, + 0.002P} MBtu/h
150 < P, < 600 Rate limit = 2 MW/min
Unit 2: Fuel cost: F, = 0.98 R/MBtu
H,(P,) = 200 + 8P, + 0.0025P; MBtu/h
125 < P, < 500 MW  Rate limit = 2 MW/min

a, Calculate the economic base points and participation factors for these
two units supplying 500 MW total. Use Eq. 3.35 to calculate participa-
tion factors.

b. Assume a load change of 10 MW occurs and that we wish to clear the
ACE to 0 in 5 min. Is this possible if the units are to be allocated by
base points and participation factors?

. Assume the same load change as in part b, but assume that the
rate limit on unit } is now 0.5 MW/min.

This problem demonstrates the flaw in using Eq. 3.35 to calculate the
participation factors. An alternate procedure would generate participation
factors as follows.

Let ¢ be the time in minutes between economic-dispatch calculation
executions. Each unit will be assigned a range that must be obcyed in
performing the economic dispatch.

PP = P? + ¢t x rate limit;
(9.39)

PP = PP — ¢t x rate limit;
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The range thus defined is simply the maximum and minimum excursion
the unit could underge within ¢ minutes. If one of the limits described: is
outside the unit's normal economic limits, the ‘economic limit would be
used. Participation factors can then be calculated by ‘resolving the
economic dispatch ata higher value and enforcing the new limits described
previously. ' xR :

d. Assume 7 = 5 min and that the perturbed economiic dispatch is to be

resolved for 510 MW. Calculate the new participation factors as

P f.":“ {)?_;I)‘Pﬂcy!
Amea}
where i ; :
P = base economic solution

base pt

th.,‘- + Pll,_,)z = 500 MW
P# = perturbed solution
P} + P4 =510 MW

with limits as calculated in Eq. 9.35. ,

Assume the initial unit generations P? were the same as the base
points found in part a. Akd assume the rate limits were as in part ¢ (i.e., unit
| rate lim = 0.5 MW/ nﬁn, wnit 2 rate lim = 2 MW/min). Now check to
see if 1part c gives a different result.

The intercennected systems in the eastern United States and Canada have
a total capacity of about 5 x 10> MW. The equivalent inertia and damping
constants are approximately ‘ ,

M = 8 pu MW/pu frequency/sec
and -
D =15

both on the system capacity base. It is necessary to correct for time errors

evéry so often. The clectrical energy involved is not insignificant,

a. Assume that a time érror of 1 sec is to be corrected by deliberately
supplying a power unbalance of a constant amount for a period of 1 h.
Find the power unbalance required. Express'the"amount in MWH.

b. Is this energy requirement a function of the power unbalance? Assume
a power unbalance is applied to the system of a duration “delta 77"
During this period, the unbalance ‘of power is constant;-after the period
it is zero. Does it make any difference if the length of time is long or
short? Show the response of the system. The time deviation is the
integral of the fréquency deviation.
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9.6 In Fig. 9.16 assume that system 2 represents a system so large that it is
effectively an “infinite bus.” M, is much greater than M, and the frequency
deviation in system 2 is zero.

a. Draw the block diagram including the tie line between areas 1 and 2.
What is the transfer function for a load change in area 1 and the
tie flow?

b. The reactance of the tie is 1 pu on a 1000-MW base. Initiaily, the tie
flow is zero. System 1 has an inertia constant (M,) of 10 on the same
base. Load damping and governor action are neglected. Determine
the equation for the tie-line power flow swings for a sudden short in
area | that causes an instantancous power drop of 0.02 pu (2%,), which is
restored instantly. Assume that AP, (s) = —0.02, and find the fre-
quency of oscillation and maximum angular deviation between areas 1
and 2.

FURTHER READING

The reader should be familiar with the basics of control theory before attempting to
read many of the references cited here. A good introduction to automatic generation
control is the book Control of Generation and Power Flow on Interconnected Systems,
by Nathan Cohn (reference 4 in Chapter 1). Other sources of introductory material are
contained in references 1-3.

Descriptions of how steam turbine generators are modeled are found in references 4
and 5; reference 6 shows how hydro-units can be modeled. Reference 7 shows the effects
1o be expected from various prime-mover and governing systems. References 8-10 are
representative of advances made in AGC techniques through the late 1960s and early
1970s. Other special interests in AGC design include special-purpose optimal filters (see
references 10 and 11), direct digital control schemes (see references 12-15), and control
of jointly owned generating units (see reference 16).

Research in control theory toward “optimal control” techniques was used in several
papers presented in the late 1960s and early 1970s. As far as is known to the authors,
optimal control techniques have not, as of the writing of this text, been utilized
successfully in a working AGC system. Reference 17 is representative of the papers using
optimal control theory.

Recent research has included an approach that takes the short-term load forecast,
economic dispatch, and AGC problems, and approaches them as one overall control
probiem. References 18 and 19 illustrate this approach. References 20-22 are excellent
overviews of more recent work in AGC.
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