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Abstract: The Evolutionary and Swarm Intelligence algorithms are two recently introduced population based meta-heuristic 

algorithms that have been successfully employed to numerous scientific and engineering problems. In this paper, we have selected two 

recent and representative algorithms — one from the evolutionary algorithm family, the other from the swarm intelligence family and 

compared their performance on high dimensional function optimization problems. The evolutionary algorithm that isselected in this 

paper is the Fast Evolutionary Programming (FEP) which uses Cauchy mutation to improve over the basic Gaussian mutation scheme. 

The swarm intelligence algorithm that is selected is the Artificial Bee Colony (ABC) algorithm which has been introduced recently and 

found to be very effective on many continuous optimization problems. This paper compares the performance of these two algorithms on 

a common set of benchmark problems in order to achieve a better understanding of their algorithmic nature and characteristics. The 

experimental results show that the performance of ABC is usually better than FEP, especially on complex multimodal functions, 

because ABC can deal with the problems of premature convergence and fitness stagnation more effectively than FEP.  
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1. Introduction 
 

Both the evolutionary algorithms (EAs) and swarm 

intelligence based algorithms (SIAs) are recently introduced 

bio-inspired meta-heuristic algorithms that are based on 

Darwinian theory of evolution and behavior of intelligent 

swarms found in nature, such as ant colony, bee hive, bird 

flock, fish school and so on. Since their advent, they have 

been widely and successfully employed to complex and 

diverse problems from the fields of science and engineering, 

such as numeric function optimization [1]–[3], discrete 

optimization [4], multi-objective optimization [5], industrial 

process control [6], structural design [7], design of digital 

IIR filters [8], PID controller [9], machine learning [10] and 

so on [11]. In comparison to other greedy and local search 

based algorithms, both EAs and SIAs are more resilient 

against premature convergence and fitness stagnation, 

because the population/swarm of candidate solutions can 

maintain some amount of diversity that is necessary to 

continue search space explorations avoiding the locally 

optimal points. However, it is still possible (e.g., [12] – [14]) 

that the evolving population/swarm of candidate solutions 

loses its diversity and explorative search capability too soon. 

This leads the candidate solutions to prematurely get trapped 

around the local optima of the search space. Aside from 

premature convergence, another problem faced by both EAs 

and SIAs is the fitness stagnation, where all the candidate 

solutions fail to improve their fitness values for indefinitely 

prolonged iterations, for no apparent reason and even 

without any premature convergence around the locally 

optimal points. The risk of premature convergence and 

fitness stagnation usually rises with reduced explorations and 

increased exploitations. But, increasing the explorations may 

lead to unacceptably slow convergence speed. So an adaptive 

and balanced mix of explorations and exploitations is often 

necessary for good results and sufficient convergence speed 

of the algorithm, especially for complex, high dimensional, 

multimodal objective functions with exponentially many 

locally optimal points. 
 

To avoid the problems of premature convergence and fitness 

stagnation, the EA and SIA researchers have developed 

several improved variants of these algorithms. This paper 

studies and compares two such improved EA and SIA 

variants — the Fast Evolutionary Programming (FEP) and 

the Artificial Bee Colony (ABC) algorithm. Both these 

algorithms increase their degree of explorations to avoid 

premature convergence and fitness stagnation. FEP employs 

a more explorative mutation scheme (i.e., Cauchy mutation), 

while ABC divides the swarm of candidate solutions and 

explicitly dedicates some of them (i.e., the ‗employed‘ bees 

and ‗scout‘ bees, as will be explained later in section 5) for 

more search space explorations. Thus, FEP and ABC try to 

achieve similar goal (i.e., increased explorations), but using 

different methodologies (i.e., explorative mutation vs. 

intelligent division of work). As FEP and ABC belong to 

different algorithm families (i.e., EA and SIA), they have 

never been compared side-by-side on the same set of 

problems, as we have observed through significant literature 

review. The contribution of this paper is to present an 

experimental comparison between these two algorithms in 

order to gain insights on the effectiveness of their different 

techniques for avoiding premature convergence and fitness 

stagnation.  
 

The rest of this paper is organized as follows. Section 2 

briefly explains the numeric function optimization problem. 

Section 3 describes the classical evolutionary programming 

(CEP) which lays the foundation for the Fast Evolutionary 

Programming (FEP), as explained in the next section. 
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Section 5 introduces the Artificial Bee Colony (ABC) 

algorithm in details. Section 6 presents the experimental 

setup of both FEP and ABC and compares them on seven 

complex, high dimensional multimodal functions. Finally, 

section 7 concludes the paper with a brief discussion on both 

the algorithms and the findings found from their comparison, 

followed by a few suggestions for future research directions.  
 

2. Numeric Function Optimization Problem 
 

Many real world problems can be formulated as function 

optimization problems of the parameters that assume values 

from the continuous domain, i.e., the continuous function 

optimization problems. A continuous function optimization 

problem can be formalized as follows.  

 subject to:  

Here, the goal is to find a vector xmin such that f(xmin ) ≤ f(x) 

for all x inside S, where the search space S is a bounded 

subset of R
n
 and the objective function f(.) is an n 

dimensional real valued function that is to be optimized over 

its parameter x. Each element xi of the vector x is a real 

valued variable: x = [x1, x2, … , xn]
T
 

 

The task of numeric function optimization is generally 

referred with many different names, such as real parameter 

optimization, continuous optimization, or simply, numeric 

optimization. However, all of them actually refer to the 

general task of finding a solution across a real valued, 

(usually) multi-dimensional search space such that the 

solution gives the best value, i.e., minimum or maximum 

value, of an objective function, depending on whether it is a 

minimization or maximization task. This solution should 

have not only the best objective function value around its 

local neighborhood, but also the best objective value over all 

the feasible solutions across the entire search space. In the 

subsequent sections, we will show how the problem of 

function optimization is addressed by evolutionary and 

swarm intelligence algorithms, such as CEP, FEP and ABC.  

 

3. Classical Evolutionary Programming (CEP) 
 

According to the description of Bäck and Schwefel [15], the 

CEP is implemented as follows.  

 Generate an initial population of n individuals. Each 

individual I is represented as a pair of real valued vectors 

(xi, ηi), for i=1, 2, …, n; Here, xi‘s are objective variables 

andηi‘s are standard deviations for Gaussian mutations. 

Each xi (and ηi) has D components, where D is the 

dimensionality of the problem. Each component of xi, for 

i=1, 2, …, n, is generated uniformly at random within its 

search domain. All the components of ηi, for i = 1, 2, …, n, 

are initialized to some moderate value (e.g., 3.0), as is 

done in [15]. 

 Calculate fitness value of each individual (xi, ηi) based on 

objective function value f (xi). 

 Mutation step: Mutate each individual (xi, ηi), for i=1, 2, 

…, n, to create an offspring (xi′, ηi′) — that is, for j=1, 2, 

…, D,  

       0,1
i i i j

x j x j j N  
                        

 (1) 

        exp 0,1 0,1
i i j j

j j N N     
        

 (2) 

Here, xi (j), xi′(j), ηi (j), and ηi′(j) are the j-th component of 

the vectors xi, xi′, ηi
 and η

i
′, respectively. Nj (0, 1) is a 

normally distributed one-dimensional random number with 

mean=0 and standard deviation=1. Subscript j in Nj (0,1) 

indicates the random number is generated anew for each j. 

The factorsτ and τ′ are set to  
1

2 n


and  
1

2 .n


 

 Calculate the fitness of each offspring produced by the 

previous mutation step. 

 Conduct a pair wise tournament based competition over 

the union of 2nparents and offspring. For each individual, 

q opponents are picked uniformly at random from all the 

other parents and offspring. If the individual‘s fitness is 

not less than its opponent in the pair wise competition, it 

receives a ‗win‘. 

 Select the n individuals from the union of 2nparents and 

offspring that have received the highest number of ‗win‘s. 

They become the parents for the next generation. 

 Stop if some stopping criterion (e.g., predefined maximum 

number of generations) is fulfilled. Otherwise, go back to 

the mutation step to start another CEP iteration. 

 

4. Fast Evolutionary Programming (FEP) 
 

The probability density function (PDF) ft and corresponding 

cumulative distribution functionFtof one dimensional 

Cauchy random variable xis given by  

  2 2

1
,

t

t
f x          x

t x
    


                 (3) 

 
1 1

arctan
2

t

x
F x

t

 
   

                             

 (4) 

Here, t> 0 is the scale parameter. The shape of the PDF ft(x) 

is very similar to the Gaussian PDF, but its function plot 

approaches the x-axis so slowly that the variance of the 

Cauchy distribution is infinite, and its expected value does 

not exist. The Fast Evolutionary Programming (FEP) that 

have been studied for comparison in this paper is exactly the 

same as the CEP described in the previous section, with the 

only exception that it employs Cauchy random variable (RV) 

in eq. (1), instead of the Gaussian RV used by CEP. To be 

more specific, FEP replaces the eq. (1) of CEP by the 

following eq. (5).  

     i i i j
x j x j j                                   (5) 

Since the Cauchy RV has much larger variance (theoretically 

infinite variance), the Cauchy mutation is more likelyto 

generate offspring further away from its parents than 

theGaussian mutations. This ensures higher probability of 

escaping from a local optimumor moving away from flat 

plateausand wide basinsof attraction of the fitness landscape. 

This allows the Cauchy mutation to spend less time in 

exploitations and more time in explorations, which is why 

FEP is usually more effective than CEP, especially on more 

complex multimodal function optimization. 

 

5. Artificial Bee Colony (ABC) Algorithm 
 

Honey bees in a colonyshow remarkable self-organization 

x 
minimizef(x); Sx
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and co-ordination skills in their food foraging behavior. Bees 

have to forage over a vast area in search of good sources of 

food. After an initial exploration stage, more bees are 

employed to collect honey from the more profitable food 

sources whereas fewer bees are assigned to the less worthy 

food sources. Some scout bees are also assigned for 

exploration to find newer food sources. If the quality of a 

food source declines after some exploitation, this information 

is also shared with other bees so that fewer bees are now 

attracted to this source. After the quality of a food source 

falls below some threshold, the bees assigned to it abandon 

it. The foraging process is initiated by scout bees that start 

searching for flower patches suitable as food sources. 

Quality is usually measured as a combination of some 

values, such as quantity and density of sugar, ease of access, 

distance from the colony etc. After they return to the hive, 

those scout bees that found a patch with quality above some 

threshold, deposit their nectar and then go to the ‗dance 

floor‘ to perform a dance known as the ‗waggle dance‘. This 

dance plays the key role to communicate information among 

the bees about the food sources. The waggle dance contains 

three pieces of information: i) the quality of the flower patch 

of this dancing bee, ii) the distance of the flower patch from 

the hive, iii) the direction from the hive that you have to 

travel in order to reach the flower. The ‗onlooker‘ bees, 

waiting around the dance floor, observe the waggle dances of 

these ‗employed‘ bees that have found good food sources 

and pick any one of them to become its ‗follower‘ and 

collect nectar from its flower patch. The better a flower patch 

as a food source, the bigger is the number of follower bees 

along with its employed bee. However, if the patch is no 

longer good enough, it will not be advertised in the next 

waggle dance and the bees recruited for it as employed or 

follower bees will choose either to follow some other 

employed bee or start working as a scout bee to randomly 

explore the search space for finding new food source.  

 

The ABC algorithm mimics the food foraging behavior of 

the honey bees with these three groups of bees: employed 

bees, onlookers and scouts. A bee working to forage a food 

source (i.e. solution) previously visited by itself and 

searching only around its vicinity is called an employed bee. 

Employed bees perform waggle dance to propagate 

information of its food source to other bees. A bee waiting 

around the dance floor to choose any of the employed bees to 

follow is called an onlooker. A bee randomly searching a 

search space for finding a new food source is called a scout. 

For every food source, there is only one employed bee and a 

number of follower bees. The scout bee, after finding a good 

food source also becomes an employed bee. In the basic 

ABC algorithm implementation, half of the colony is 

employed bees and the other half is the onlookers. Number 

of food sources (i.e., solutions) is equal to the number of 

employed bees. An employed bee whose food source is 

exhausted (i.e. solution not improved after several attempts) 

becomes a scout. The detailed pseudo code is given below. 
 

Step 1) Generate an initial population of N individuals. Each 

individual is a food source (i.e. solution) and has D 

attributes, where D is the dimensionality of the problem. 

 

Step 2) Evaluate the fitness of each individual.  

 

Step 3) Each employed beesearches in the neighborhood of 

its current position to find a better food source. For each 

employed bee, generate a new solution, viaround its current 

position, xi using (6). 

 vij = xij + φij (xij – xkj) (6) 

Here, kϵ{1, 2, …, Nemp} and jϵ{1, 2, …, D} are randomly 

chosen indices. Nemp is the number of employed bees. Φij is a 

uniform random number generated from the range [-1, 1]. 

 

Step 4) Compute the fitness of both xi and vi. Apply greedy 

selection scheme to choose the betterone and discard the 

other.  

 

Step 5) Calculate the selection probability, Pi for each 

solution, xiand normalize the probability value by (7).  

 1

N

k

k

i iP fit fit



 
                                 

(7)

 
Step 6) Assign each onlooker bee to a solution, xi at random 

with probability proportional to Pi. 

 

Step 7) Produce new food positions (i.e. solutions), vi for 

each onlooker bee using the employed beexiby using (6).  

 

Step 8) Evaluate the fitness of each employed bee, xiand its 

produced onlooker bee, vi. Apply greedy selection scheme to 

keep the one with better fitness and discard the other.  

 

Step 9) If a particular solution has not been improved over 

the past ‗limit‘ cycles (say, limit = 100 cycles), then select it 

for abandonment. Replace it by placing a scout bee at a food 

source placed uniformly at random over the entire search 

space by using (8), i.e., forj = 1, 2, ...,D 

 xij = minj + rand (0,1) * (maxj– minj) (8) 

 

Step 10) Keep track of the best solution found so far. 

 

Step 11) Check for termination. If the best solution found is 

acceptable or maximum number of iterations has elapsed, 

stop and return the best solution found so far. Otherwise go 

back to step 2 and repeat. 

 

6. Experimental Studies 

 

To compare the performance of FEP and ABC, we have used 

a standard benchmark suite of continuous function 

optimization problems, consisting of sevenhigh dimensional 

functions [1]–[3], [16]. Table 1 presents a brief overview on 

each of these benchmark functions. More details on each 

function can be found in [1]. All these benchmark functions 

are high dimensional multimodal functions. To optimize a 

multimodal function, the search algorithm must possess both 

exploitative and explorative characteristics so that it can 

explore the locally optimal points without being trapped 

around any of them. Some of the multimodal functions can 

have hundreds of local minima, even when the 

dimensionality is just two or three. Their number of local 

optima increases exponentially with the number of their 

dimensions, which makes their optimization extremely 

difficult. For example, the Ackley function f3 has one narrow 

global minimum basin, but with exponentially many minor 

local minima. The Griewank function f4 has a component 

creating linkage among the variables, which complicates the 
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search by perturbing any subset of the variables. Any 

technique that tries to optimize each variable separately 

without considering the others will fail for this function. The 

difficulty for the Schwefel function f1 arises from its deep 

local minima which are far from the single global minimum. 

All these multimodal functions have exponentially many 

local minima and the number of local minima increases 

exponentially with their high dimensionality (i.e., D = 30), 

making them extremely difficult for any algorithm to be 

explored and optimized without being trapped around the 

locally optimal points of the search space. 

  

Table 1: The seven continuous benchmark functions used in our experimental studies. Here, D: dimensionality of the 

function, S: search space, fmin: function value at the global minimum, C: function characteristics with the following values —

M: Multimodal, S: Separable, N: Non-separable 

No Function C D S fmin 

f1 Schwefel MS 30 [–500, 500]D –12569.5 

f2 Rastrigin MS 30 [–5.12, 5.12]D 0 

f3 Ackley MN 30 [–32, 32]D 0 

f4 Griewank MN 30 [–600, 600]D 0 

f5 Rosenbrock MS 30 [–30, 30]D 0 

f6 Penalized MN 30 [–50, 50]D 0 

f7 Penalized2 MN 30 [–50, 50]D 0 

 

Table 2: Performance comparison of FEP and ABC on the benchmark functions. Results are averaged over 50 independent 

runs. Better performance on each function is marked with boldface font.  

No fmin Generations 
FEP ABC Better  

Performance by Mean Error Std. Dev. Mean Error Std. Dev. 

f1 –12569.5 9000 14.9 52.6 7.28e–11 1.44e–11 ABC 

f2 0 5000 4.6e–02 1.2e–02 6.12e–16 9.30e–17 ABC 

f3 0 1500 1.8e–02 2.1e–03 1.22e–11 7.10e–12 ABC 

f4 0 2000 1.6e–02 2.2e–02 7.31e–16 1.32e–16 ABC 

f5 0 20000 5.06 5.87 2.77e–02 1.88e–02 ABC 

f6 0 1500 9.2e–06 3.6e–06 1.22e–11 7.09e–12 ABC 

f7 0 1500 1.6e–04 7.3e–05 6.95e–16 6.12e–17 ABC 
 

Table 2 presents the results of FEP and ABC on the seven 

benchmark functions. The common parameter of both the 

algorithms is the population/swarm size N, which is set to 

100. The no. of maximum generations is different for the 

different functions, as shown in Table 2. The limit parameter 

of ABC is set to 100. All these values are selected after some 

initial experiments, and not meant to be optimum. Each 

algorithm has made 50 independent runs on each function. 

The mean and standard deviation of the error values (i.e., the 

difference between the global minimum and the best found 

solution at the final generation) found from the different runs 

are reported in Table 2. Our observations on the results are 

summarized in the following few points.  

 

 Out of the seven functions f1 – f7, ABC performs 

consistently better than FEP on all of them. Thus the 

overall performance of ABC is undoubtedly better than 

FEP. 

 For all these functions, ABC reaches very close to the 

global minimum value (i.e., mean error ≈ 0), while FEP 

fails to reach sufficiently close to the global minimum for 

two functions (i.e., f1 and f5). This indicates that FEP fails 

to satisfactorily deal with the problems of premature 

convergence and/or fitness stagnation for these functions.  

 The performance of ABC is very consistent, i.e., ABC 

regularly reaches very close to the global minimum, as 

demonstrated by the very low standard deviation values of 

its errors on the different functions. 

 

In summary, ABC is more effective than FEP on the 

complex, multimodal functions. The reason might be that 

FEP performs excessive explorations all through its 

execution by using the Cauchy mutation scheme. As the 

Cauchy distribution has very large (theoretically, infinite) 

variance, FEP may not converge and may not provide the 

necessary exploitation which is usually required for fine 

tuning during the final phase of any optimization. On the 

other hand, ABC achieves a good balance between 

exploitations and explorations by using equal number of 

employed and onlooker bees, as demonstrated by its 

excellent results on all the benchmark functions.  

 

7. Conclusion 
 

This paper compares an evolutionary family algorithm (i.e., 

FEP) with a swarm intelligence algorithm (i.e., ABC) using 

several benchmark functions. These two algorithms have 

never been compared side-by-side on the same problem set, 

which is the main contribution of this paper. Results indicate 

that ABC can perform better than FEP on most of the 

multimodal functions. There might be several possible future 

research directions based on FEP and ABC. Firstly, they 

should be compared on easier unimodal and low dimensional 

functions to gain further insights on their characteristics. 

Secondly, since FEP is more explorative than ABC, it might 

be possible to hybridize them together into a new, single 

algorithm. This new algorithm may deploy FEP during the 

early generations when more explorations are desired, but 

later may switch to more exploitations by employing 

ABC.Thirdly, the possibility of improving the final solution 

quality might be investigated by using an efficient local 

searcher after the execution of both FEP and ABC is over. 
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This may make their performance closer. Finally, both FEP 

and ABC are applied only on the benchmark functions. It 

would be interesting to study how well they can perform on 

many other existing problems, especially the discrete and 

real world ones. 
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