
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Comparison between Fast Evolutionary

Programming and Artificial Bee Colony Algorithm

on Numeric Function Optimization Problems

Mohammad Shafiul Alam
1
, Syed Mustafizur Rahman Chowdhury

2
, Farhan Al Haque

3
, Ridma Hasin

4

1, 3, 4Ahsanullah University of Science and Technology, 141 & 142 Love Road,Tejgaon Industrial Area, Dhaka-1208, Bangladesh

 2Northern University Bangladesh, House 54, Road 4/A, Dhanmondi, Satmasjid Road, Dhaka-1209, Bangladesh

Abstract: The Evolutionary and Swarm Intelligence algorithms are two recently introduced population based meta-heuristic

algorithms that have been successfully employed to numerous scientific and engineering problems. In this paper, we have selected two

recent and representative algorithms — one from the evolutionary algorithm family, the other from the swarm intelligence family and

compared their performance on high dimensional function optimization problems. The evolutionary algorithm that isselected in this

paper is the Fast Evolutionary Programming (FEP) which uses Cauchy mutation to improve over the basic Gaussian mutation scheme.

The swarm intelligence algorithm that is selected is the Artificial Bee Colony (ABC) algorithm which has been introduced recently and

found to be very effective on many continuous optimization problems. This paper compares the performance of these two algorithms on

a common set of benchmark problems in order to achieve a better understanding of their algorithmic nature and characteristics. The

experimental results show that the performance of ABC is usually better than FEP, especially on complex multimodal functions,

because ABC can deal with the problems of premature convergence and fitness stagnation more effectively than FEP.

Keywords: Evolutionary algorithm, swarm intelligence, fast evolutionary programming, artificial bee colony algorithm,numeric function

optimization

1. Introduction

Both the evolutionary algorithms (EAs) and swarm

intelligence based algorithms (SIAs) are recently introduced

bio-inspired meta-heuristic algorithms that are based on

Darwinian theory of evolution and behavior of intelligent

swarms found in nature, such as ant colony, bee hive, bird

flock, fish school and so on. Since their advent, they have

been widely and successfully employed to complex and

diverse problems from the fields of science and engineering,

such as numeric function optimization [1]–[3], discrete

optimization [4], multi-objective optimization [5], industrial

process control [6], structural design [7], design of digital

IIR filters [8], PID controller [9], machine learning [10] and

so on [11]. In comparison to other greedy and local search

based algorithms, both EAs and SIAs are more resilient

against premature convergence and fitness stagnation,

because the population/swarm of candidate solutions can

maintain some amount of diversity that is necessary to

continue search space explorations avoiding the locally

optimal points. However, it is still possible (e.g., [12] – [14])

that the evolving population/swarm of candidate solutions

loses its diversity and explorative search capability too soon.

This leads the candidate solutions to prematurely get trapped

around the local optima of the search space. Aside from

premature convergence, another problem faced by both EAs

and SIAs is the fitness stagnation, where all the candidate

solutions fail to improve their fitness values for indefinitely

prolonged iterations, for no apparent reason and even

without any premature convergence around the locally

optimal points. The risk of premature convergence and

fitness stagnation usually rises with reduced explorations and

increased exploitations. But, increasing the explorations may

lead to unacceptably slow convergence speed. So an adaptive

and balanced mix of explorations and exploitations is often

necessary for good results and sufficient convergence speed

of the algorithm, especially for complex, high dimensional,

multimodal objective functions with exponentially many

locally optimal points.

To avoid the problems of premature convergence and fitness

stagnation, the EA and SIA researchers have developed

several improved variants of these algorithms. This paper

studies and compares two such improved EA and SIA

variants — the Fast Evolutionary Programming (FEP) and

the Artificial Bee Colony (ABC) algorithm. Both these

algorithms increase their degree of explorations to avoid

premature convergence and fitness stagnation. FEP employs

a more explorative mutation scheme (i.e., Cauchy mutation),

while ABC divides the swarm of candidate solutions and

explicitly dedicates some of them (i.e., the ‗employed‘ bees

and ‗scout‘ bees, as will be explained later in section 5) for

more search space explorations. Thus, FEP and ABC try to

achieve similar goal (i.e., increased explorations), but using

different methodologies (i.e., explorative mutation vs.

intelligent division of work). As FEP and ABC belong to

different algorithm families (i.e., EA and SIA), they have

never been compared side-by-side on the same set of

problems, as we have observed through significant literature

review. The contribution of this paper is to present an

experimental comparison between these two algorithms in

order to gain insights on the effectiveness of their different

techniques for avoiding premature convergence and fitness

stagnation.

The rest of this paper is organized as follows. Section 2

briefly explains the numeric function optimization problem.

Section 3 describes the classical evolutionary programming

(CEP) which lays the foundation for the Fast Evolutionary

Programming (FEP), as explained in the next section.

Paper ID: NOV151784 512

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Section 5 introduces the Artificial Bee Colony (ABC)

algorithm in details. Section 6 presents the experimental

setup of both FEP and ABC and compares them on seven

complex, high dimensional multimodal functions. Finally,

section 7 concludes the paper with a brief discussion on both

the algorithms and the findings found from their comparison,

followed by a few suggestions for future research directions.

2. Numeric Function Optimization Problem

Many real world problems can be formulated as function

optimization problems of the parameters that assume values

from the continuous domain, i.e., the continuous function

optimization problems. A continuous function optimization

problem can be formalized as follows.

 subject to:

Here, the goal is to find a vector xmin such that f(xmin) ≤ f(x)

for all x inside S, where the search space S is a bounded

subset of R
n
 and the objective function f(.) is an n

dimensional real valued function that is to be optimized over

its parameter x. Each element xi of the vector x is a real

valued variable: x = [x1, x2, … , xn]
T

The task of numeric function optimization is generally

referred with many different names, such as real parameter

optimization, continuous optimization, or simply, numeric

optimization. However, all of them actually refer to the

general task of finding a solution across a real valued,

(usually) multi-dimensional search space such that the

solution gives the best value, i.e., minimum or maximum

value, of an objective function, depending on whether it is a

minimization or maximization task. This solution should

have not only the best objective function value around its

local neighborhood, but also the best objective value over all

the feasible solutions across the entire search space. In the

subsequent sections, we will show how the problem of

function optimization is addressed by evolutionary and

swarm intelligence algorithms, such as CEP, FEP and ABC.

3. Classical Evolutionary Programming (CEP)

According to the description of Bäck and Schwefel [15], the

CEP is implemented as follows.

 Generate an initial population of n individuals. Each

individual I is represented as a pair of real valued vectors

(xi, ηi), for i=1, 2, …, n; Here, xi‘s are objective variables

andηi‘s are standard deviations for Gaussian mutations.

Each xi (and ηi) has D components, where D is the

dimensionality of the problem. Each component of xi, for

i=1, 2, …, n, is generated uniformly at random within its

search domain. All the components of ηi, for i = 1, 2, …, n,

are initialized to some moderate value (e.g., 3.0), as is

done in [15].

 Calculate fitness value of each individual (xi, ηi) based on

objective function value f (xi).

 Mutation step: Mutate each individual (xi, ηi), for i=1, 2,

…, n, to create an offspring (xi′, ηi′) — that is, for j=1, 2,

…, D,

       0,1
i i i j

x j x j j N  

 (1)

        exp 0,1 0,1
i i j j

j j N N     

 (2)

Here, xi (j), xi′(j), ηi (j), and ηi′(j) are the j-th component of

the vectors xi, xi′, ηi
 and η

i
′, respectively. Nj (0, 1) is a

normally distributed one-dimensional random number with

mean=0 and standard deviation=1. Subscript j in Nj (0,1)

indicates the random number is generated anew for each j.

The factorsτ and τ′ are set to  
1

2 n


and  
1

2 .n


 Calculate the fitness of each offspring produced by the

previous mutation step.

 Conduct a pair wise tournament based competition over

the union of 2nparents and offspring. For each individual,

q opponents are picked uniformly at random from all the

other parents and offspring. If the individual‘s fitness is

not less than its opponent in the pair wise competition, it

receives a ‗win‘.

 Select the n individuals from the union of 2nparents and

offspring that have received the highest number of ‗win‘s.

They become the parents for the next generation.

 Stop if some stopping criterion (e.g., predefined maximum

number of generations) is fulfilled. Otherwise, go back to

the mutation step to start another CEP iteration.

4. Fast Evolutionary Programming (FEP)

The probability density function (PDF) ft and corresponding

cumulative distribution functionFtof one dimensional

Cauchy random variable xis given by

  2 2

1
,

t

t
f x x

t x
    


 (3)

 
1 1

arctan
2

t

x
F x

t

 
   

 

 (4)

Here, t> 0 is the scale parameter. The shape of the PDF ft(x)

is very similar to the Gaussian PDF, but its function plot

approaches the x-axis so slowly that the variance of the

Cauchy distribution is infinite, and its expected value does

not exist. The Fast Evolutionary Programming (FEP) that

have been studied for comparison in this paper is exactly the

same as the CEP described in the previous section, with the

only exception that it employs Cauchy random variable (RV)

in eq. (1), instead of the Gaussian RV used by CEP. To be

more specific, FEP replaces the eq. (1) of CEP by the

following eq. (5).

     i i i j
x j x j j    (5)

Since the Cauchy RV has much larger variance (theoretically

infinite variance), the Cauchy mutation is more likelyto

generate offspring further away from its parents than

theGaussian mutations. This ensures higher probability of

escaping from a local optimumor moving away from flat

plateausand wide basinsof attraction of the fitness landscape.

This allows the Cauchy mutation to spend less time in

exploitations and more time in explorations, which is why

FEP is usually more effective than CEP, especially on more

complex multimodal function optimization.

5. Artificial Bee Colony (ABC) Algorithm

Honey bees in a colonyshow remarkable self-organization

x
minimizef(x); Sx

Paper ID: NOV151784 513

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

and co-ordination skills in their food foraging behavior. Bees

have to forage over a vast area in search of good sources of

food. After an initial exploration stage, more bees are

employed to collect honey from the more profitable food

sources whereas fewer bees are assigned to the less worthy

food sources. Some scout bees are also assigned for

exploration to find newer food sources. If the quality of a

food source declines after some exploitation, this information

is also shared with other bees so that fewer bees are now

attracted to this source. After the quality of a food source

falls below some threshold, the bees assigned to it abandon

it. The foraging process is initiated by scout bees that start

searching for flower patches suitable as food sources.

Quality is usually measured as a combination of some

values, such as quantity and density of sugar, ease of access,

distance from the colony etc. After they return to the hive,

those scout bees that found a patch with quality above some

threshold, deposit their nectar and then go to the ‗dance

floor‘ to perform a dance known as the ‗waggle dance‘. This

dance plays the key role to communicate information among

the bees about the food sources. The waggle dance contains

three pieces of information: i) the quality of the flower patch

of this dancing bee, ii) the distance of the flower patch from

the hive, iii) the direction from the hive that you have to

travel in order to reach the flower. The ‗onlooker‘ bees,

waiting around the dance floor, observe the waggle dances of

these ‗employed‘ bees that have found good food sources

and pick any one of them to become its ‗follower‘ and

collect nectar from its flower patch. The better a flower patch

as a food source, the bigger is the number of follower bees

along with its employed bee. However, if the patch is no

longer good enough, it will not be advertised in the next

waggle dance and the bees recruited for it as employed or

follower bees will choose either to follow some other

employed bee or start working as a scout bee to randomly

explore the search space for finding new food source.

The ABC algorithm mimics the food foraging behavior of

the honey bees with these three groups of bees: employed

bees, onlookers and scouts. A bee working to forage a food

source (i.e. solution) previously visited by itself and

searching only around its vicinity is called an employed bee.

Employed bees perform waggle dance to propagate

information of its food source to other bees. A bee waiting

around the dance floor to choose any of the employed bees to

follow is called an onlooker. A bee randomly searching a

search space for finding a new food source is called a scout.

For every food source, there is only one employed bee and a

number of follower bees. The scout bee, after finding a good

food source also becomes an employed bee. In the basic

ABC algorithm implementation, half of the colony is

employed bees and the other half is the onlookers. Number

of food sources (i.e., solutions) is equal to the number of

employed bees. An employed bee whose food source is

exhausted (i.e. solution not improved after several attempts)

becomes a scout. The detailed pseudo code is given below.

Step 1) Generate an initial population of N individuals. Each

individual is a food source (i.e. solution) and has D

attributes, where D is the dimensionality of the problem.

Step 2) Evaluate the fitness of each individual.

Step 3) Each employed beesearches in the neighborhood of

its current position to find a better food source. For each

employed bee, generate a new solution, viaround its current

position, xi using (6).

 vij = xij + φij (xij – xkj) (6)

Here, kϵ{1, 2, …, Nemp} and jϵ{1, 2, …, D} are randomly

chosen indices. Nemp is the number of employed bees. Φij is a

uniform random number generated from the range [-1, 1].

Step 4) Compute the fitness of both xi and vi. Apply greedy

selection scheme to choose the betterone and discard the

other.

Step 5) Calculate the selection probability, Pi for each

solution, xiand normalize the probability value by (7).

 1

N

k

k

i iP fit fit



 

(7)

Step 6) Assign each onlooker bee to a solution, xi at random

with probability proportional to Pi.

Step 7) Produce new food positions (i.e. solutions), vi for

each onlooker bee using the employed beexiby using (6).

Step 8) Evaluate the fitness of each employed bee, xiand its

produced onlooker bee, vi. Apply greedy selection scheme to

keep the one with better fitness and discard the other.

Step 9) If a particular solution has not been improved over

the past ‗limit‘ cycles (say, limit = 100 cycles), then select it

for abandonment. Replace it by placing a scout bee at a food

source placed uniformly at random over the entire search

space by using (8), i.e., forj = 1, 2, ...,D

 xij = minj + rand (0,1) * (maxj– minj) (8)

Step 10) Keep track of the best solution found so far.

Step 11) Check for termination. If the best solution found is

acceptable or maximum number of iterations has elapsed,

stop and return the best solution found so far. Otherwise go

back to step 2 and repeat.

6. Experimental Studies

To compare the performance of FEP and ABC, we have used

a standard benchmark suite of continuous function

optimization problems, consisting of sevenhigh dimensional

functions [1]–[3], [16]. Table 1 presents a brief overview on

each of these benchmark functions. More details on each

function can be found in [1]. All these benchmark functions

are high dimensional multimodal functions. To optimize a

multimodal function, the search algorithm must possess both

exploitative and explorative characteristics so that it can

explore the locally optimal points without being trapped

around any of them. Some of the multimodal functions can

have hundreds of local minima, even when the

dimensionality is just two or three. Their number of local

optima increases exponentially with the number of their

dimensions, which makes their optimization extremely

difficult. For example, the Ackley function f3 has one narrow

global minimum basin, but with exponentially many minor

local minima. The Griewank function f4 has a component

creating linkage among the variables, which complicates the

Paper ID: NOV151784 514

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

search by perturbing any subset of the variables. Any

technique that tries to optimize each variable separately

without considering the others will fail for this function. The

difficulty for the Schwefel function f1 arises from its deep

local minima which are far from the single global minimum.

All these multimodal functions have exponentially many

local minima and the number of local minima increases

exponentially with their high dimensionality (i.e., D = 30),

making them extremely difficult for any algorithm to be

explored and optimized without being trapped around the

locally optimal points of the search space.

Table 1: The seven continuous benchmark functions used in our experimental studies. Here, D: dimensionality of the

function, S: search space, fmin: function value at the global minimum, C: function characteristics with the following values —

M: Multimodal, S: Separable, N: Non-separable

No Function C D S fmin

f1 Schwefel MS 30 [–500, 500]D –12569.5

f2 Rastrigin MS 30 [–5.12, 5.12]D 0

f3 Ackley MN 30 [–32, 32]D 0

f4 Griewank MN 30 [–600, 600]D 0

f5 Rosenbrock MS 30 [–30, 30]D 0

f6 Penalized MN 30 [–50, 50]D 0

f7 Penalized2 MN 30 [–50, 50]D 0

Table 2: Performance comparison of FEP and ABC on the benchmark functions. Results are averaged over 50 independent

runs. Better performance on each function is marked with boldface font.

No fmin Generations
FEP ABC Better

Performance by Mean Error Std. Dev. Mean Error Std. Dev.

f1 –12569.5 9000 14.9 52.6 7.28e–11 1.44e–11 ABC

f2 0 5000 4.6e–02 1.2e–02 6.12e–16 9.30e–17 ABC

f3 0 1500 1.8e–02 2.1e–03 1.22e–11 7.10e–12 ABC

f4 0 2000 1.6e–02 2.2e–02 7.31e–16 1.32e–16 ABC

f5 0 20000 5.06 5.87 2.77e–02 1.88e–02 ABC

f6 0 1500 9.2e–06 3.6e–06 1.22e–11 7.09e–12 ABC

f7 0 1500 1.6e–04 7.3e–05 6.95e–16 6.12e–17 ABC

Table 2 presents the results of FEP and ABC on the seven

benchmark functions. The common parameter of both the

algorithms is the population/swarm size N, which is set to

100. The no. of maximum generations is different for the

different functions, as shown in Table 2. The limit parameter

of ABC is set to 100. All these values are selected after some

initial experiments, and not meant to be optimum. Each

algorithm has made 50 independent runs on each function.

The mean and standard deviation of the error values (i.e., the

difference between the global minimum and the best found

solution at the final generation) found from the different runs

are reported in Table 2. Our observations on the results are

summarized in the following few points.

 Out of the seven functions f1 – f7, ABC performs

consistently better than FEP on all of them. Thus the

overall performance of ABC is undoubtedly better than

FEP.

 For all these functions, ABC reaches very close to the

global minimum value (i.e., mean error ≈ 0), while FEP

fails to reach sufficiently close to the global minimum for

two functions (i.e., f1 and f5). This indicates that FEP fails

to satisfactorily deal with the problems of premature

convergence and/or fitness stagnation for these functions.

 The performance of ABC is very consistent, i.e., ABC

regularly reaches very close to the global minimum, as

demonstrated by the very low standard deviation values of

its errors on the different functions.

In summary, ABC is more effective than FEP on the

complex, multimodal functions. The reason might be that

FEP performs excessive explorations all through its

execution by using the Cauchy mutation scheme. As the

Cauchy distribution has very large (theoretically, infinite)

variance, FEP may not converge and may not provide the

necessary exploitation which is usually required for fine

tuning during the final phase of any optimization. On the

other hand, ABC achieves a good balance between

exploitations and explorations by using equal number of

employed and onlooker bees, as demonstrated by its

excellent results on all the benchmark functions.

7. Conclusion

This paper compares an evolutionary family algorithm (i.e.,

FEP) with a swarm intelligence algorithm (i.e., ABC) using

several benchmark functions. These two algorithms have

never been compared side-by-side on the same problem set,

which is the main contribution of this paper. Results indicate

that ABC can perform better than FEP on most of the

multimodal functions. There might be several possible future

research directions based on FEP and ABC. Firstly, they

should be compared on easier unimodal and low dimensional

functions to gain further insights on their characteristics.

Secondly, since FEP is more explorative than ABC, it might

be possible to hybridize them together into a new, single

algorithm. This new algorithm may deploy FEP during the

early generations when more explorations are desired, but

later may switch to more exploitations by employing

ABC.Thirdly, the possibility of improving the final solution

quality might be investigated by using an efficient local

searcher after the execution of both FEP and ABC is over.

Paper ID: NOV151784 515

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

This may make their performance closer. Finally, both FEP

and ABC are applied only on the benchmark functions. It

would be interesting to study how well they can perform on

many other existing problems, especially the discrete and

real world ones.

References

[1] D. Karaboga and B. Basturk, On the performance of

artificial bee colony (ABC) algorithm, Applied Soft

Computing8 (1) (2008) 687–697.

[2] D. Karaboga, An idea based on honey bee swarm for

numerical optimization, Erciyes University, Kayseri,

Turkey, Technical Report-TR06, 2005.

[3] X. Yao, Y. Liu and G. Lin, ―Evolutionary programming

made faster‖, IEEE Transactions on Evolutionary

Computation3 (2) (1999) 82–102.

[4] S. Sobti and P. Singla, Solving travelling salesman

problem using bee colony based approach, International

Journal of Engineering Research and Technology2 (6)

(2013) 186–189.

[5] K. Naidu, H. Mokhlis and A.H.A. Bakar, Multiobjective

optimization using weighted sum Artificial Bee Colony

algorithm for Load Frequency Control, International

Journal of Electrical Power and Energy Systems55 (2)

(2014) 657–667.

[6] R. Mukherjee, D. Goswami and S. Chakraborty,

Parametric optimization of Nd:YAG laser beam

machining process using artificial bee colony algorithm,

Journal of Industrial Engineering, vol. 2013, Article ID

570250, 15 pages, 2013. DOI: 10.1155/2013/570250.

[7] H. Garg, Solving structural engineering design

optimization problems using an artificial bee colony

algorithm, Journal of Industrial and Management

Optimization,10 (3) (2014) 777–794.

[8] Z. Zhao, D. Yin and Y. Jiang, Improved bee colony

algorithm based on knowledge strategy for digital filter

design, International Journal of Computer

Applications,47 (2) (2013) 241–248.

[9] A. Mishra, A. Khanna, N. Singh and V. Mishra, Speed

control of DC motor using bee colony optimization,

Universal Journal of Electrical and Electronic

Engineering 1 (3) (2013) 68–75.

[10] A. Karegowda and M. Darshan, Optimizing feed

forward neural network connection weights using

artificial bee colony algorithm, International Journal of

Advanced Research in Computer Science and Software

Engineering 3 (7) (2013) 452–454.

[11] A. Bolaji, A. Khader, M. Betar and M. Awadallah, Bee

colony algorithm, its variants and applications: A

survey, Journal of Theoretical and Applied Technology

47 (2)(2013) 434–459.

[12] T. Park and K. R. Ryu, A Dual population genetic

algorithm for adaptive diversity control, IEEE Trans.

Evolutionary Computation 14 (6) (2010) 865–884.

[13] R. K. Ursem, Diversity guided evolutionary algorithms,

in Proc. 7th Int. Conf. Parallel Problem Solving from

Nature (PPSN), 2002, pp. 462–474.

[14] J. Lampinen and I. Zelinka, On stagnation of the

differential evolution algorithm, in Proc. 6th Int. Mendel

Conf. Soft Computing, Brno, Czech Republic, 2000, pp.

76–83.

[15] T. Bäck and H.–P.Schwefel, ―An overview of

evolutionary algorithms for parameter optimization‖,

Evolutionary Computation 1 (1) (1993) 1–23.

[16] W. Lee and W. Cai, A novel artificial bee colony

algorithm with diversity strategy, in Proc. 7th Int. Conf.

Natural Computation, 2011, pp. 1441–1444.

Paper ID: NOV151784 516

