
1. INTRODUCTION

1.1 Historical Development of Statistics

The word —Statistics" seems to have obtained from the Latin word "Status"
or the Italian word "Statista" or the German word "Statistik" each of
which means "Political State". In ancient time, the government used to
collect informations about total population, land, wealth, total number of
employees, soldiers etc. to have the idea of the manpower of the country for
formulation of administrative set-up, fiscal, new taxes, levies and military
policies of the government.

More than 2000 years ago, Chandra Gupta Maurya (324-300 B. C.) made
arrangement of collecting official-and administrative statistics and a good
collection of vital statistics and registration of births and deaths were
mentioned in Kautilya's Arthashastra which was published even before
300 B. C. During Akbar's reign, Abul Fazal wrote 'Ain-i-Akba ri in which a
good account of population and statistical survey was given.

In mid-seventeenth century, the theoretical development in modern
statistics came with the introduction of "Theor y of Probabilit y " and

"Theory of Games and Chances". The Franch mathematician Pascal (1623-
1662) solved the famous 'Problem of Points' which laid the foundation of
the modern theory of probability. In this field other important contributor
is James Bernouli (1654-1705) who wrote the first treatise on the "Theory of
Probability." De Moivre (1667-1754) and Laplace (1749-1820) also worked
on the theory of probability. Gauss (1777-1 853) gave the principles of least
squares and the normal law of etrors. Later on, in eighteenth, nineteenth
and twentieth centuries, Euler, La;range, Bayes, Markov, Khintchine arid
Kolmogorov also developed the theory of probability.

Sir F. Calton (1822-1921) gave thc. concept of regression line. He and his
successor Kerl Pearson (1837-1936) are the pioneer of correlational analysis

and X2-test which play an important role in moUern theory of statistics.
W. S. Cosset discovered the Student's distribution which started a new era
of exact small sample tests,

Sir R. A. Fisher (1890-1962) who is popularl y known as the father of
statistics, made a number of original work which gave a sound footing of the
subject 'Statistics' in the diversified field such as Genetics, Biometry.
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Education, Agriculture etc. He is the pioneer in introducing the concept of
point estimation (efficiency, sufficicn'cy, principle of maximum likelihood
etc.) fiducial inference and exact sampling ditributions. He along with
F. Yates made a remarkable contribution in the field of 'Analysis of
Variance' and 'Design of Experiments'. 0. H. Hartley and 1'. C.
Mahalanabis (1893-1972) contribute significant works in the field of sample
survey. The above contributions placed Statistics in a very significant
position among sciences.

1.2 Definitions of Statistics

Different authors defined statistics in a number of ways. Among those some
of the important definitions are given hclw

Webster defined statistics as "Statistics are classified facts representing
the condition of the people in a state specially those facts which call be
stated in numbers or in tables of numbers or in any tabular or classified
arrangement.'

Dr. A. L. Bowley defined "Statistics are numerical statement of facts in any
department of enquiry placed in relation to each other".

According to Yule and Kendall, "By statistics, we mean quantitative data
affected to a marked extent by a multiplicity of causes."

A. more exhaustive definitions of statistics is given by Prof. H. Secrist as
"By statistics we mean aggregate of facts affected to a marked extent by a
multiplicity of causes numerically expressed, enumerated or estimated
according to reasonable standard of accuracy, collected in a systematic
manner for a pre-determined purpose and placed in relation to each other.

1.3 Uses of Statistics in Different Fields

Now-a-days statistics is not only used for collecting numerical data but also
to develop sound techniques for their handling, analysis ad drawing valid
infcrehce from them. It is now used widely in different spheres of life—
social, political and also in different fields such as Agriculture, Planning,
Biology, Psychology, Education, Economics, Business Management etc. In
short, following are the different important fields where statistics can he
extensively used.

i) Agriculture To have information in regards to total production of a
certain agricultural product, total cultivable land, consumption of different

ty sof crops, different types and levels of irrigations for different types of
agricultural product, different do 	 of fertli,crs and distribution of the
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optimum doses of different fertilizers, livestock resources and their
development etc. are usually obtained by agricultural census which mainly
follow statistical methodology. With the progress of time, different new
varieties are deyeloped. To choose a new variet y which mainly suits our
climatic conditions, with the available resource we can get maximum
production and to determine the optimum does of fertilizers bnd
measurement of irrigated water levels, there is a branch of statistics called
Design of Experiments. This can be apllied to different fields such as Diary,
Poultry, Chemical Industry etc.

For a meaningful and correct decision regarding land reforms, a government
should know the actual distribution of land holdings. In short, Agricultural
Statistics may play a key role in agricultural development.

ii) Planning: At this age of planning, a government has to take help of the
subject Statistic in case of doing any fruitful planning and policy
formulation for building sound economy and economical development.
Statistical tools are applied in knowing the rate of unemployment, cost of
living expenditure, net profit in a cçrtain management, for determining
poverty line, rate of literacy etc. Thus in every successful planning, sound
and correct analysis of complex statistical data are required.

iii) Economics : Number of economic problems such as wages, prices,
analysis of time series data, demand anal ysis, cost and benefit analysis etc.
require statistical data and proper use of statistical techniques. It also
facilitates the development of the economic theory . Wide application of
statistics and mathematics in the theory of economics led to new theories
called, Economic Statistics and Econometrics.

iv) Business : In the domain of risk and uncertainities a successful
businessman has to make proper use of statistics for making business;
decisions. With the help of past records provided by statistics, a business-
man should correctly estimate the demand so that the requirement of total
raw material for a certain business period can be determined without
uncertainity. For an example, an ice-crern manufacturer should have
knowledge of the seasonal fluctuation of demand of his products and to ass. ,s
the number of consumers by having an account of teenagers mainly.

v) Industry : In industry, statistics is widely used to provide quality control.
In a production system, the quality of the product should be checked
frequently so that the specification of the product is maintained. For this
inspection plan, control chart etc. are extremely used. In inspection plan, a
special type of sampling is adopted.
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iv) Biology Biological research specially genetics and plant-breeding
have wide application of statistical methods. R. A. Fisher made extensive
use of statistics in biological research. He also developed a number of new
statistical methods for analysing and interpreting data for generalization
e.g. laws of variation heredity etc. A new branch of statistics named
Biometry which mainly deals with the biological aspects may he
mentioned here. Statistics helps demographic studies which includes the
rates of birth and death, number of inhabitants, emigrants, immigrants,
composition of families, construction of life tables etc.

'ii) Psychology & Education Statistics is widely used in education and
psychology too, e.g. to determine the reliability and validity of a test,
factor analysis etc. so much so that a new subject called Psychometry has
come into existence in recent years.

Viii) Medicine : Statistics is also used for the collection, presentation and
analysis of observed facts relating to the causes of incidence of disease and
the result obtained from the use of various drugs and medicines. The
efficiency of manufactured drug or medicine is tested with the available
drugs or medicines by using statistical methods.
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2. VARIABLES AND FREQUENCY DISTRIBUTION

2.1 Population and Sample

Population means an aggregate of elements possessing certain
characteristics of interest in any particular investigation or enquiry. It is
generally named after the characteristics studied. Population may be finite
or infinite. If we are interested to know the yield of certain crop of the
individual farmer of Bangladesh, the aggregate of all relevant yields of
the crop will constitute'-the population. Since all the elements are countable
this type population is called finite population. Whereas all possible out
comes (Head and Tail) in successive tosses of a coin is an infinite population.
It is evident from the above discussion that the statistical population
differs from human population.

A sample is a representative part of the population. We are generally
interested to know the properties of the population. Sometimes it is
impractical or even impossible to handle the population because of limited
resources. That is why, inferences about the population are usuall y drawn on
the basis of the sample.

- Lable

The measurements of elements of a population having certain characteristic
may vary from element to element either in magnitude or in quality. These
measurable characteristcs are called variables. -

There are 'twofvariables—quahtativ9f and u atat'e
Qualitative	 iables can be categorised in such a ,vay that the categories
must be mutually exclusive, whereas the quantitative variable can be
measured. For example, the out comes of a coin tossing problem gi'cs
qualitative variable with two categories--head or tail, the sex' of persons
had to categories—male or female.The cate gories are sometimes called
attributes. The yield of crops, height of persons, the number of children in a
family etc. may be considered as quantitative variables.

Again quantitative variables may be classified into types namely,
discrete variable and no variable. When the variable can assume
only integral values, is ciJdiwte variable. For example, the number of
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children in a fathily.. A 9riable is said to be continuous if it assumes any
value within certain range. For example, the hight of a person.

-23 Frequency Distribution

Let us consider the marks out of 100 in Statistics obtained by 100-students in a
certain examination of a University.

Table -2.1
Marks of Statistics of 100 Students of a Certain University.

54,	 32, 38,	 44,	 48,	 41,	 30,	 .43,	 46,	 41,

47, 32, 2,	 25,	 41,	 33,	 51,	 43,	 45,	 32,

51,	 50,	 34,	 38,	 14,	 38,	 54,	 32,	 39,	 41,

42,	 38, 41,	 25,	 45,	 36,	 40,	 50,	 52,	 30,

41,	 32, 27,	 30,	 40,	 42,	 52,	 48,	 49,	 37,

48, 39, 26,	 54,	 47,	 49,	 38,	 26,	 27,	 49,

47,	 49, 32,	 51,	 49,	 33,	 47,	 55,	 25,	 28,

37,	 36,	 44,	 53,	 48,	 54,	 29,	 37,	 39,	 40,

50,	 30,	 53,	 48,	 36,	 34,	 27,	 53,	 28,	 52,

47,	 35,	 46,	 48,	 32,	 29,	 54,	 49,	 47,	 53.

The representation of the data in Table-2.1 do not provide us any useful
informatitn and may confuse us because of its large size. To condense these
mass of data we used to prepare a table usually called frequency
distribution which describes the pattern of the observations throughout its
range.	 -	 -.	 -

Let us consider the marks as varialbe x. The above data are called raw data
or ungrouped data. The condensation of the data without losing any
information of interest is given in Table-2.2

Let us arrange the data in ascending or descending order of magnitude which
is commonly termed as array. But this does not reduce the bulk of the data.
• better representation is given in Table -2.2

• notation (I) which is usually called tally mark is put against each vale
of the variate x, when it occurs. Having occured four times, the fifth
•occurancc is represented by putting a cross tally (\) on the first four tallies.
The technique facilities the counting of the tally marks at the end. The
total number of tall y marks is known as frequency corresponding to the value
of the variable.
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Table -2.2
Frequency distribution of Marks of 100 Students.

Marks	 Tally	 Frequency	 Marks	 Tally	 Frequency
Marks	 Marks

25	 /1/	 3	 41	 .	 7W/I	 6
26	 /1/	 3	 42	 II	 2
27	 /1/	 3	 43	 /1	 2
28	 II	 2	 44	 ///	 3
29 II	 2	 43	 II	 .2

, 30	 I//I	 4	 46	 1/.
31	 0	 47	 7.///	 6
32	 7W//	 7	 48	 /W.J/	 6
33	 II	 2	 49	 7/'./,//	 6
34	 II	 2	 30	 /1/
35	 I	 1.	 51	 /1/	 3
36	 /1/	 3	 52	 /1/	 3

37	 III	 3	 53	 III	 3
38	 7hV	 3	 54	 7W	 5
39	 ///	 3	 53	 /7	 2
40	 ///	 3

In the Table -2.2 the frequency of the mark 38 is 3 i.e. 5 students got 38 marks.
This representations, though better than an y arra y does not condense the
data to a great extent. instead of considering the frequencies for each value
of x, we can obtain the frequencies for a certain interval of marks, say,

25 5 x 5 29, 30 5 x !^ 34 and so on. These intervals of the variable x are known
as the class intervals of x. The lowest value ot a class is called lower limit
and the highest value of the same class is called the upper limit of the
class interval. The difference between the upper .and lower limits of the

class is called the length of the class interval. The avcrag of the lower and

upper limits of a class interval is called the mid value of the class interval.

The lower limit, upper limit and the mid-value 01 the	 interval

.25+29
25:5 x 5 29 are 25 29 and 2 = 27 respectively.

When either the lower limit of the first class interval or the upper limit 01

the last class interval or both are not specified, it is called open class

interval. Open class intervals are sometimes seen in the frequencY

distribution of ages.
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The raw data in Table-2.1 may further be condensed in the form of Table-2.3

Table -2.3
Frequency distribution of marks of 100 Students

Class Interval of	 Tally Marks	 Frequency

Marks

25-29	 '//' ///	 13

30-34	 h4J 7J 774/	 IS

35-39	 h'./ h',LI h41	 13

40-44	 m.j /,LJ f/ /	 16

43-49	 hW hW hWI /1	 22

30-54	 hW mi fm II	 17

33-39	 //	 2

The frequccy distribution in Table-2.3 is usually called discrete frequency
distribution.
If we deal with a continuous variable, it is not possible to arrange the data
in the class intervals of the above type. Let us consider the distribution 01

ages. It our intervals are 23-29,30--34, then the person in the ages between
29 and 30 vers can not be taken into consideration in such a case. To avoid
this difficulty we may form the continuous class intervals with
corresponding hypothetical frequencies as given below

Table -2.4
Frequency Distribution of Ages

Class intervals	 Frequency
(Age in years)

25—SI)	 .	 2
30r33	 5
35-40	 .9
40-43	 10
45—SO

3

struction of a Frequency Distribution Following are the steps for the
onstruction of a frequency distribution.

I)	 Find out range by suhtra&ing the lowest value frm the highest value

of the variable x.

2) The number of class intervals should nOt be too large or too small,
usually it lies between 5 and 20, considering the practical situation. Haing
rkcd the number of classes, divide the range by it and the nearest integer to
this value gives the length of class interval. The class intervals should be

exhaustive, mutuall y excltiivc,ind u'.ual-lv of equal length.
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3) The table will have three columns having names—class interval,

tally marks and frequency. The first class interval will start with the

smallest value and continue until the interval with the highest value of the

given series of data is reached.

4) Give tick mark to each of the values of the original table of raw data

and put tally mark against the appropriate class interval. Thus exhaust all

the values one after another. In case of continuous frequency distribution, the

variable, x should follow either lower limit x < upper limit or

lower limit < x	 upper limit. The former of the limits is usually

considered.

3) Count the number of tally marks corresponding to each class interval

and write the result in the respective frequency column. For example see

Table -2.3.

raphical Representation of Frequency Distribution

Graphical representation of a frequenc y dotrihution is more effective than,

tahuler representation, being easil y understandable even to a lay-man.

Diagrams are essential to conve y the statistical information to the general

Public. It also facilitates the comparison of two or more frequency

distributions.

The folk1t es of graphs are generally, used to represent the frequency

distribution

i) Dot frequency diagram.

ii) Histogram.

iii) Frequency polygon.

iv) Cumulative frequency polygon.

v) Cumulative frequency curve or ugive.

if D'ot frequency diagram In thk diagram, we represent variable along

x - axis and a dot alorg y-axis represents an observation. The number of dots

corresponding to a certain value of the Variable the frequenc y of that

value. Dçt frequenc y diagram of frequenc y distribution given in Table-2.2 is

shown in Fig. 2.1

1'1'
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Fig. - 2.1 Dot frequency diagram.
t,A Histogram: In drawing histogram, the variable, expressed, in continuous

class intervals, are represented 'along x-axis and the frequen'ln'
y - axis. On each class interval draw reciangle whose area is proportional
to the frequenc y of the corresponding class intervag For equal class intervals
the height of the rectangle is proportional to the frequency of the
corresponding class interval. For unequal class interval, the height is
proportional to the ratio of the frequency to the length of the class The set
of adjacent rectangles so constructed constitute the histogram. To draw
histogram from an ungrouped distribution we have to-assume the

interval ( x -- to (x +- where h is the jump from one value to the

next.. Similar modification can be carried Out in classes of discrete frequency

distribution. In that case, the class interval, becomes (I -
	

to ( 
^

where I and u indicate lower and upper limit of the class and h is the jump
from one class to the next. The discrete frequency distribution given in
Table- 2.3 can be arranged in continuous frequency distribution as in Table-
2.5

Table-2.5
Continuous frequency distribution of the marks of 100 students

Mid	 Cumulative
Class Iriteh'al of marks 	 values	 Frequenc	 frequency

24.5-29.5	 27	 13
29.3-34.5 • 	 32	 -	 3	

• 'f ".-___28
343-39.5	 37	 15	 I	 43
39.5-44.5	 42	 16	 39
443-49•5	 • -	 -	 47	 22	 81
49.5---34.3	 -	 52	 7

	

•	 57	 2	 •-	 lti
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The histgrah corresponding to Table - 2.5 is shown in Fig. 2.2

y -

20 -

frequency -

10

I) -
x

Fig. 2.2 Histogram

Histogram is a very popular graphical representation of the frequency
distribution and is widely used.

A graph which is almost similar looking like a histogram is known as bar-
diagram which may confuse a beginner. In bar diagram, different time
periods or categories are represented along x - axis and their corresponding
values are represented along y - axis. A bar diagram differs from a
histogram in the following points

a) Histogam is used for continuous frequency distribution whereas bar-
diagram is never used for that.

b) In histogram the area of a rectangle is proportional to* e frequency
whereas in a bar-diagram the height of the bar is proportional to the value
of the corresponding time period or category..

c) The rectangles of a histogram are adjacent whereas the rectangles of a
bar-diagram may or may not be adjacent.

Frequency polygon In frequency polygon the mid-values of the
continuous class intervals are represented along x-axis.and the frequencies
corresponding to the class intervals are represented along the y-axis. The
class frequencies are plotted against the mid -values , of the ri..spict.. class
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intervals. These points are then joint by straight lines one after another.
The first and the last points are then brought down at each end to the x-axis
by joining it to the mid-value of the next Out lying interval of zero frequency.
The polygon thus obtained is called frequency pol ygon. Frequency polygon of
Table- 2.5 is as given in Fig. 2.3.

I
,

I

/
.VFig. 2.3 Frequency polygon

iumulative frequency polygon In cuiulative freqwncv polygon the
ipper limits of the coi)tinuous class intervals are represented in x-axis and

the cumulative frequencies are represented to the v-axis. The cumulative
frequenc y means the cumulative total of the frequencies starting from the
lowest class.

A cumuthtive frequency pol ygon is always non-decreasing but may be
parallel to x-axis.	 -

vI Ogive A tree hand curve to smooth a cumulative frequency pol ygon is

called an ogive.

Fig. 2.4 Cumulati'e frequenc y polygon and ogive.

I-
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If the number of observations are large and the length of class intervals can
be reduced, the frequency polygon will provide a smooth curve usually

called frequency urve.

Following areor differnt types of frequency curves.

I)	 Symmetrical curve.

ii) Moderately asymmetrical or skew curve.

iii) Extremely asymmetrical or)-shaped curve.

iv) U-shaped curve.

/' ymmetrical curve: A frequency curve is said to be symmetrical if
frequency at the mid-position is maximum and the rate of decrease from the

peak of the curve Ts same in both the sides. Evidently it follows that if it
can he folded along a vertical line, the two halves will coincide.

Fig. 2.5 Symmetrical curve.

ii) Moderately asymmetrical or skew curve: A frequency curve is said to he

skew if it lacks in symmetry i.e. the rate of decrease from the peak point of
the curve in both the sides are not equal. If the rate of decreament is rapid

on the left side giving a longer .tail t the right, we get a positivel y skew

curve, For reverse case, the curve is said to he negatively skew.

Distribution of age of marriage follows a positivel y skew type of curve.

i:
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Fig. 2.6 (a) Positively skew curve. Fig. 2.6 (b) Negatively skew curve.

iii) Extremely asymmetrical or J-shaped curve: A frequency curve is. said to
be i-shaped if the maximum frequencyoccurs at one end of the distribution.
If the maximum frequency OCCUrS at the left end, then it gives a positivel y J-
shaped curve. The distribution of wealth is usually represented by
positively J-shaped curve.

Fig. 2.7 (a) Positivel y i-shaped	 Fig. 2.7 (h) Negatively i-shaped
curve.	 Curve.

iv) U-shaped curve; A frequency curve is said to be U-shaped if it looks like
the letter U. In this t ype of curve, the maximum frequency occurs at both end
of the distribution while the minimum at the middh.

The distribution of human death follows a U-shaped curve.

1-1g. L.? L-.haped Curve.

1



'3. MEASURES OF LOCATION

3.1 Introduction

In a representative sample, the value of a series of data have a tendcnc tu
cluster around a certain point usually at the centre ot the ICTJCc. 'I his
tendency of clustering the values around the centre ofthc"eries is usualk-
called central tendency. And its numerical measures are called the measures
of central location.

3.2 Characteristics of an Ideal Measure of Location

•	 1) It should be rigidly defined.

2) It should be readily comprehensible and easy to calculate.

3) It should be based upon all the observations.

4) It should be suitable for further algebric treatments.

5) It should be affected as small as possible by sampling fluctuation.

\,Ø"DifIerent Measures of Central Location

There are five different measures of central location:

i) Arithmetic mean or Mean.

ii) Geometric mean.

iii) Harmonic mean.

iv) Median.

v) Mode.

Arithmetic mean (AM)rithmetic mean of a set of observations is the
su of all observations divided by the number of obscrtions e.g. the

arithmetic mean or mean x of n ungrouped observations x 1 x2, x is given

by x =	 + X2 +........+ X =	
( 3.1)

Example 3.1 Find arithmetic mean of 2, 5, 7, 9, 4 and 3

- 2+3+7+9+4+3	 )
Solution: The arithmetic mean, .x= 	 6	 =	 = 5.

In case of frequency distrihutiort (grouped-data) as given in Table -3.1,
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Table-3.1

Observation	 fri'c1uency

11

X2	 12

X k	 fk I

k	 k
-	 f1x1	 .tXj

-	 + fX+..+fkXk	 1=1	 11
the arithmetic mean, x = _______________ =	 (3.2w

t1+t2++k	 k
jfj

i=1

k
where n =

i1

In case of grouped or continuous frequency distribution x i , are taken to h' the

mid-values of the intervals.

The method of calculation of mean in (3.2) is known as direct method.

Short-cut method: In this method, we can show the effect of change of

scale and origin of the actual data. If x 1 and fj are large the calculation of

X by the formula given in (3.2) is time consuming and tedious. The

calculation can he simplified by taking the deviations of the given values

from any arbitrary value A, origin and dividing by h, scale which is

generally the length of class interva	 cc of grouped frequency

distribution. We define a new variate,

or, x 1 = hu 1 + A
	

(3.3)

with the help of (3.2) we get

- 1(u + A) = h	 .\	 (3.4))
-	 fi

which shows that arithmetic mean is dependent on change of origin and

scale.

is
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Example 3.2indthmctic meanhyi&jJs well asrt -cTiethod
Trom the frequency distribution of wages with class interval of two Taka
each from the following data of daily 'wages received by 35 labourers in a
certain factory.

Class Interval of wages	 Number of labourers
(Taka)	 1

11-13	 3.
13-15	 4
15—I?
1-19	 10
19-21	 6
21-23	 4
23----25	 3

Total	 35

Solution : Calcultionirithetic mean bv both the methods.

Table-3.2

	

Class intrval Number of 	 Mid value of 	 New variate
of wages	 labourers	 class mt. -	 f x	 = Nl8

	

(Taka)	 fj	 x1	 -	 2

	

11--13	 .3	 12	 3	 -3	 -9

	

13—I5	 4	 14	 36	 -2	 -

	

15-17	 3	 16	 )	 -1	 5

	

17-19	 10	 .	 18	 180	 0	 (1

	

19-21	 6	 20	 120	 1	 .	 6

	

21-23	 4	 22	 (I*i 	 2	 8

	

23-25	 3	 24	 72	 \\ 3	 9

	

Total	 35	 632.

method:

-	 ,f1x	 632
Arithmetic mean, X ==	 = 18.06 TK. (app).

I,
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5ort-cut method:Ari th

	 mean x =h u + A, where h=2and A=18

Now we calculate, u =	 0.03.

Therefore, x = 0.03 x 2 + 18 = 18.06 TK. (app)

Hence the mean daily wages = 18.06 1K. (app) is obtained from both
the methods.

.pey 1: The sum of the deviations of set of observations from their

arithmetic mean is zcro i. e.f(x 1 - x)=0

Proof: Let x be the mean of x i withfrquencies f then	 >

k	 k	 k
f(x 1	- n  =0, when, n= !f

i=1

Property 2: The arithmetic mean of a set of N constant observations A is A.

Proof: Let us consider N constant obervations which are A, iv, en...E.

— A NA
x	 A.	 ) yfl —

3: The sum o f hares of the deviations of a set of observations
is mmilpj^ when the-deviations -are taken about the arithmetic mean i,

we are to show, f1 (x-,A)2 >	 (x1 — x ) where A is any arbitrary
constant.

Proof: Let	 ._	 the ari thm e tic'nt m.tic mean ot .a set oraons\vith
frequencies f2, also let A be an arbitrary v&ue, we have,

—
_2 

k	 --	
.

= fi(xi - x )2 + n ( x - A)+ 2 ( x - A)	 x(xi- 

third term vanishes due to property .1. Hence we get,

- A) 2 = f(x -x)2 + n(xA)2 . As n ( x - A) 2 is a positive quantity

k	 k
f (x 1 - A)2> f(x -x)2. Hence proved.

'..	
()
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Proper^^Mea^ of the compos ite series). U x j (i = 1, 2.k) arche

Leans of k series of sizes n (i = 1, 2...............k) respectively, then the mean
x of the composite series obtained by the formula.

112

Proof: Let x 1 , x 2 	.x 1 n -be nf iiüfiThrs in the first series, 71 22 . x2n2 ben,
numbers in the second series and so on xk, Xk	 .	 -' k numbers in the kth
series. By the fomula given in (3.1 ") we have,	 -

/X fl +X 12 + .....+X1fl1)
x__________n
- X2I+X22+.... +X2fl
X 2=	 '	 and soon

-	 Xk1+ Xk2 ± ..... + XI(flk
Xk=

The arithmetic mean x of the composite series of sue 	 k is give by

- (x	 _ X12 ....... ±Xj fl ) , ( X21 * ___ * ____ 2fl2 ) _______ * (Xk
* 2 + ..... + xkk)

fl 1 +fl 2 + ........ . ±flk

k

_4 -;-
X..1+fl,X,± .................. __ +flk Xki=1

n 1 +n2 + .............. ±flk 	 k

Merits
(1) It is rigidl y defined and eaw to calculate.
(2) It is easy to understand and easy for algebric treatment.

(3) It takes all the observations into account.

(4) It is less affected by sampling fluctuation.

Demerits
(1) It is affected by extreme values

(2) It is impossible to calculate if the extreme classes of the Frequency
distribution are open.

(3) The v,hic of the arithmetic mean maY not occur in the series.
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Geometric mean : The geometric mean of a set of n non-zero positive
oservations is the nth rxt of their product. Let x 1 , x2 ........... X be n non-zero

positive obscrvations  in a series of data.

Thus the geometric mean; G=(x 1 x x2x ........... X xn)n	(3.5)

For example, the geometric mean, C of 2,4 and 8 is.

(21418)	 (64)4.

The calculation may sometime be simplified by taking , logarithm that is,
n

log C =	 llog x 1 + log x2 +........+ log xl	 log Xj	 (3.6)

Thus log C is arithmetic mean of log x i s. The antilog of log C will give the
valuó of G. If the observations are given in frequency distribution (grouped
data) as given in Table 3.1, then the geometric mean is given by,

	

ifi	 2	 ,k

	

C= (x i X X2 	 X X}	 where n=f	 .	 .......(3.7)

Herealso, log C =	 kx	 (18)

Thus the value of C in a frequency distribution can also he obtained by

considering x ) s as the mid values of the class intervals.

imple 3.3 Find geometric mean of the frequency distribution given in
Example 3.2

	

Solution:	 Table-3.3

Class Interval	 Number of	 Mid valu&s of

	

of wages	 Labourers	 clas In t, 	 log x	 1 log x

	

(Taka)	 f1

	

11-13	 3	 12	 1.0792	 3.2376

	

13-15	 4	 14	 1.1461	 4.5844

	

13-17	 5	 16	 1.2041	 6.0205

	

17-19	 10	 18	 1.2553	 12.5330

	

19-21	 6	 20	 1.3010	 •. 7.8060

	

21-23	 4	 22	 1.3424	 3.3696

	

23-23	 3	 24	 l.3()2	 4.1406

Total	 35	 43.7117
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/k	 \\
/	 i lo' x "43.7117

We know, lg C =	 .	 = 1.2489

Therefore, wp`^\ C, V,

Merits:

.-1T It is rigidly defined.

- 2) It takes all the observations into account.

3) It is not affected much by sampling fluctuation.

4) It gives comparatively nore weights to small observations.

Demerits:
_________

1) It is difficult to understand and to calculate for a student with less

mathematical knowledge.

2) It is impossible to calculate if the extreme classes of the frequency
distribution are open..

3) The value of the geometric mean may not occur in the series

Uses: Geometric mean is mainly used-

1) to calculate averages of ratios and percentages

7	 for the construction of index numbers.

i) Harmonic mean: The harmonic mean of a set of n non-zero observations
X2 ......x in a series is the reciprocal of the arithmetic mean of theXj,

reciprocals.'

fhus the harmonic mean, H 
=	

(3.9)

n xi

example, the harmonic men4,5 and 9	 -

H= 1
	 1	 I	 I	 =	

= -9- 0 =D.3 (app)

(_ 	 _)	
(.2500 + .2000 + .1111)

In ease of frquencv distribution given in Table 3.1.

k
H =	 .,where n = ifi
	 (3.10)

i=1
n x

\.s ma y he considered as the mid-values of the class tnter'al
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Exe 3.4 Find the harmonic mean of the frequency distribution given in
Example 3.2.

SnhHon a	 Table-3.4
Class Interval	 Number of	 Mid values of	 1

of wages (Taka) Labourers (f) 	 class mt. (x 1 )	 x,	 .

11-13	 3	 12	 .0833	 .2199
13-15	 4	 14	 .0714	 .2856
15-17	 5	 16	 .0625	 .3123
17-19	 10	 18	 :0556	 .5560
1-2l	 6	 20	 .0500	 .3000
21-23	 4	 22	 .0455	 .2176
23-25	 3	 24	 .0417	 .1251
Total	 35 	 2.0467

The harmonic mean	 67) = 2.0467 = 17.10 Tk. (app)(2 

Merits:
1) It is rigidly defined.
2) It takes all the observations into account.
3) It is not affected much by small observations.

Demerits:

1) It is not easy to understand and difficult to calculate.
2) It is impossible to calculate if the extreme classes of the frequency

distribution are open.
3) The value of the harmonic mean may not occur in the series.

Uses : The harmonic mean is used when the observation are expressed
interms of rates, speds, prices etc.

Relationship Between Arithmetic Mean, Geometric Mean and Harmonic
Mean.

eore	 .1 For two non-zero positive observations AH=G 2 wherc

= rithmetic mean, H =Harmonic mean, and C = Geometric mean.

Proof.Lct the two observations be x 1 and x2

x_________________
thcy% A= 

+X2 
,C=(x 1 x2)7and H=	 =

1(h)

24
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(x 1 + x 2 )	 2x1x2
Therefore, AH -	 2	 ± x2) = x 1 x2 = C2. Hcncepny-TT

ern 3.2 For n non-zero positive observations,

Arithmcti mean ?! Geometric mean Harmonic mean.

Proof: Let x 1 , x, .....x, ben non-zero positive observations. Also let A., H'and
Care as defined in Theorem 3.1 and d 1 x1-A.

wc know, G=(x 1 X X2 X.....X xn)'

Taking logarithm on both sides, we have log C =	 log x

i n	 in	
.1	 d1

=log (A.d)=	 log 	 1 +

/	 d•
= log A 

+ i1 log
	 I +

d\	 'Expanding log I	 d1 +	 in ascending power of - by Taylor's expansion

method and avoiding 3rd or more power we have, 	 -

 d i	 di

log (1	 -	 2	 0<e51

2

\AJ

Therefore, we get, log C=log A+	 A -	 I	 d1 2
2	 1^O)

log A + 0- a positive quantity

log C S log A or A C

S -

(3.11)
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Again we know

1111	 1	 1	 1 
—=— —+—+ ......+ - ^ -x — x ....... . X -L n^—
H n x1 x2	x	 Xl	 'Q	 Xn

combining (3.11) and (3.12) we have, A ^! C ^ H. Hence proved.

(3.12)

The equality holds when all x's are equal. For example, for a set of
observations say, 5_5, 5, 5, the arithmetic mean, the geomtric mean and the

• harmonic mean give the same value equal to 5.

4

ed 	 median is defined as the middle most observation when

e observations are arranged in order of magnitude.

For ungrouped data, when n is odd, the middle most observation i. e. the

th observation will be the median in the series.

Again when n is even, the median will be the arithmetic mean of tli and

(
2 +1 	 th observations in the series.	 •.	 . 	 t

For example, the median of the observations,-5, 1 0, 3,	 . e. l,	 is
Sand the median of 41,-3, 9. 5,7, 11, i.e. 13, 1. 1, 9,7,5,3, i

9+7
--= 8. For grouped frequency distribution the median is given by

n

Me= L +

where, I = the lower limit of the median class (median class is that class

which contains 7 th observalion of the Series)

N = total number of observation;

F=cumulative frequency of thç class just preceeding the median class,

f=frequency of the median class, and

c-length of the medianlass.

2
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Example 3.5 Find median from the frequency distribution given in
Example 3.2.

Solution	 Table-3.5

Class Interval of wages	 Number of labours	 Cumulative
(Taka)
	

f (frequency)
	

frequency

11-137	 3
13-15

15-17

17-39

19-21

21-23

23-25

Here n = 35, (17-19) is the median class i.e. 	 th is 173th

in that class.

175-12
Therefore, Me=17+	

10	 x 2=17+ 1.1=18.1 Tk.

3

28

lies

Merits:
1) Median is rigidly defined
2) It is easily understood and easy to calculate.
3) It is not all affected by extreme values.
4) It can be calculated from frequency distribution with open end.

Demerits:
1) In case of even number of observations, median cannot he defined

exactly.
2) It is not based on all the observations.
3) It is not easy for algebric treatment.
4) It is affected much by sampling fluctuation.

The mode is that observation of the 'variable for which the
frequencvis maximum.

-
For example, the mode of the observations 2, 5, 9, 5, 3,5 is 5.

For gruoped frequency distribution the mode is given by.
A

xc;

-:

q	 •	 ,.
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where, L = the lower limit of the modal class (modal class is that class for
which the frequency jsmaximum).

A =the differences between the frequency of the modal class and pre-mpdal
class.

A 2 = the differences between the frequency, of the modal class and
post-modal class,

and c = the length of the modal class..

Example 3.6 Find mode from the frequency distribution given in Example. 3.2.

Solution i Here the modal class is (17-19) because in that class the
frequenccy is maximum i.e. 10

Therefore, M. = 17+54 X 2 17 + 1.11 = 18.11 Tk. (app)

Merits:

1) Mode is easy to understand and easyto calculate.

2) It is not at all affected by extreme values.

3) It can be calculated from frequency distribution with open class.

Demerits;

1) Mode is not clearly defined in case of bi-modal or multimodal

distribution.	 .	 .	 .

2) It is not based on all the observations.

3) It is difficult for algebric treatments. 	 .

4) . It is affected to a great extent by sampling fluctuation.

1*	 .tI
Other Measures of Location: Qa!tl, Dedles and Percentiles.

Quantiles are those values-in a series which divide the total frequency into
number of equal parts when the series is arranged in order of magnitude.

Some important quantiles are quartiles, deciles and percentiles.

Quartiles are those values which devide the total frequency into four equal
parts. The value of the quartile having the position mid-way between the
lower extreme and the median is the first quartile and is denoted by Qi and

that between the median and the upper extreme is the third quartile and is

denoted by Q . The median is thus one of the quartiles and is denoted by Q2.

Foragrouped frequency distribution.th'e ij !tiles are given h
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ixn	 -

	

• xc;	 i=L2,3.

where,. L = lower limit of the ith quartile class (ith quartile class is that

class which contains thch observation) 	 -

n = total number of observation
F, = Cumulative frequency of the pre-ith quartile class
f, = frequency of the ithquartile class, and
c=lcngth of class interval of tho' ith quarile class.

Deciles and percentiles are those values wI*h devide the total frcqcncy
into 10 and 100 e

q
ual parts. respectively. The median is the 5th docile, Dc

and 50th percentile, P0.

For grouped frequency distribution, the deciles are given by

jXn
-- F
10 

fiD=l.1 ^	 xc;	 2,3	 9_

where,where, L i = lower limit of the jth docile class. (jth docile class contains the
)Xn

t  observation)

n= total number of observation;
F = cumulative frequency of the pre-jth docile class;
f = frequency of the jth 'decile class;
and c = length of class interval of the jth docile class.
F grouped frequency distribution the percentiles are given by

kxn
100 - Fk

Xc;	 k=1,2,3............99,

who re  Lk lower limit of the kth percentile class (kth percentile class is
x

that class which contains the (k n)100 th observation)

n = total number of observation
Fk = cumulative frequency of the pre-kth percentile class,--

= frequency of the kth percentile class, and
c = length of class interval of the kth percentile class..	 5'

Example 3.7 Find a) first and third uuai-tile b) 7th docile and c) 62th
percentile from the frequenc y distribution given in Example 3.

Sol'ution a) (15-17) is the first quartile ( Qi ) class because '
	 -

S	 -



10

5

x

An Introduction to The Theory of Statistics

n	 35
th = --th = 8.75th observation lies in that class.

Hence, Q1 = 15 
8.7_-__ 

2=15+0.7=15.71k.

(19-21) is the third quartile (Q class becuse 	 th 26.25th observation

lies in that class.
26.25 - 22

Hence, Q3 = 19 +
	 6	 x 2 = 19 + 1.42= 20.42 Tk. (app)

7n
b) (19-21) is the 7th docile (D 7) class as 1h=24.5 th observation

lies in the class.

Hence,	 = 19+24.5 22 x 2 = 19+ 0.83 = 19.83 1k. (app.)

62Xn
c) (17-19) is the 62th percentile (P62) class as 100 th = 21.7th

observation lies in that class.

21.7-12
Hence, P62 = 17 + 10

	
X2 = 18.94 1k. (app)

3.5 Graphical Detennination of Mode and Quantiles

The value of the mode can be determined graphically from the histogram
with equal length of class intervals since the value of mode lies within the
tallest rectangle of The distribution. The method uses three adjacent
rectangles of the histogram with the tallest in the middle. The mode is the
abscissa of the point P at which AB and CD intersect. (See Fig. 3.1)

11	 13	 15	 17	 19	 21	 23	 25

Fig. 3.1, Detcrminition of rn d' giphicallv
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For finding the values of median and other quantiles graphically, we are to

draw a cumulative frequency polygon or ogive. To determine the value of

the median we mark a point along the y-axis corresponding toFrom this

point we draw a line parallel to the x - axis and mark the point where thh

line intersect the curve. Then a perpendicular is drawn from the point of

intersection to the abscissa. The distance between the origin and the foot of

the perpendicular gives the median.

For finding the value of Qi and Q2, we take points on the y-axis
n	 3n

corresponding toand	 respectively and proceed as above.

Fig. 3.2 Graphical determination of quartile

This method is applied for determining other quantilc values also.

3.6 Emperical Relationship Among Arithmetic Mean, Median and Mode

For moderatel y asymmetrical distribution, the cmperical relationship

among the arithmetic mean, median and mode is,

Arithmetic mean—Mode = 3 (Arithmetic mean—Median)

For a positively skew distribution the relative position of arithmetic mean,

median and mode is shown graphicall y in Fig. 3.3.
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Fig. 3.3 Relative position of mean, median and Mode in a positively skew

distribution.

For negatively skew distribution the relative position of mean, median arid

mode will be reverse. For a symmetrical distribution mean, median and

mode coincide.	 -



4 " EASURES OF DISPERSION

4.1 Introduction

Measures of central location give us an idea of the concentration of the
observations about the central value of the distribution. It is equally
important to know how the observations of the variate cluster around or
dispersed away from the central value of the distribution. Let us consider
two groups each of 6 students with their scores in a particular examination.

Cr—I 48,	 50,	 52, if 51,	 49,	 50
Cr-11 1,	 2,	 100,	 99,	 98,	 0

The arithmetic mean for each group is 50. It is very much apparent from the
data that the first group conS• ists of average or near average intelligent
students and the second group is made up of very bright and very dull
students. Graphically the above phenomenon can be shown as below:

Fig-4.1 Comparison of dispersion of two distributions.

It is evident that the distribution A and B have the same arithmetic mean

x , but they differ in variation from x . Such variation is usually called

dispersion. Measures of dispersion give the degree of scatterness about the
central location and thus giving measure of variability or lack of
homogenicty of the data.

4.2 Characteristics of an Ideal Measure of Dispersion

Following are the characteristics of an ideal measure of dispersion.
I) It should be rigidly defined.
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2) It should be easy to calculate and easy to understand.
3) It should be based on all the observations.
4) It should be amenable to further algcbric treatments.
5) It should be less affected by sampling fluctuation.

43 Measures ofpjD

Following are the measures of dispersion

Absolute measures

I i.	 Range.	 2.
3. Standard deviation. 	 4.

Relative measures
l. Co-efficient of quartile deviation.

13. Co-efficient of mean deviation.

Absolute Measures of Dispersion

Quartile deviation.
Mean deviation.

2. Co-efficient of variation

Dge: Range is the difference of the highest and the lowest
observations of the distribution.

The range is 52-48=4 for group 1 and 10040=100 for group 2 of the students
given above.

It is the simplest measure of dispersion.._-
It is easy to calculate and easy to understand.
It is based on the extreme observations only and no detail

inforn,atio, is required..
It gives us a quick idea of the variabilit y of the observations

involving least amount of time and calculations.

Merits
1)
2>
3)

4)

Demerits
I) It is a crude measure of dispersion as the two extreme observations

ma y he subject to sampling fluctuation.

2) It would he misleading if an y of the two extreme values has \'Cry

high or low magnitude.

3) It cannot he calculated if the extreme classes of the frequency

distribution are open.

Uses of lunge:

I) It is used in mca-urement of share market fluctuation.

2) It is also used in statistical qualit y control work.

3
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uiDeviation or Semi-interquartile Range

xrtiles divide the observations into 4 equal parts when the observations
are arranged in order of magnitude. Median which may be denoted by Q2
the middle most observation and Qi and Q' are the middle most observation
of the lower half and the upper half respectively. :Therefore, Q 7-Q1 and
Q-3-Q2 give us some measures of dispersion. The arithmetic mean of these
two measures gives us the quartile deviation or semi-intcrquartile range,
denoted by Q.

(Q2-Q1)--(Q3-Q2)	 Q3-Q1Thatis,Q=	 2	 =	 2

Example- 4.1 Find out quartile deviation from the following frequency
distribution.

Variable
0—S

5-10
10—iS	 7
15-20	 13
20-25	 21
25-30	 16
30-35	 8
35-40	 3

Solution We can obtain the quartile values easil y as

16.83, Q2 = 223 and Qi = 27.58

Q3 - QI	 10.7.	 -
Therefore, =	 2	 =	 =

Remark : Quartile deviation is definitely a hett&r measure than the range
as it makes us- of 50% of the data. But since it ignores the other 50' of the
data c	 ot b regarded as a reliable mL'asure.

- tandard Deviation	 The arithmetic mean of the squares of the
• deviations of the given ohcervatjonc from their arithmetic mean is known a
\ aria ncc. The poi tive q ua re root tit an an	 i t h	 t and i rd J iation

(4.1)
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If x 1 , x, ... ... ... x ben observations of a variable, then standard deviation is

defined by 
s=
	 (x1 - x)2 	(4.2)

In case of frequency distribution or grouped data

s=!I(x1	 x)2 	. 	 ......(4.3)

k
where n = f1 and x is the arithmetic mean of the distribution.

n
Working formula: The quantity (x 1 - x )2 is called the sum of squares

of X'S.

n	 n
Now, (x1 - x )2 = . (x 2 -2 x x 1 + x 2)

f\2	 .
'j-xil

=x 2 -	 .	 ( 4.4)

The term yx,2 is called raw sum of squares and 	 is called.

correction factor.
Proceeding as above in case of grouped data we get,

/k \
k	 - k	 k

(x_X )2 fx-	 ;where !.11 =n	 (4.)
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Thus the working formula for standard deviation is given by ,

 ^n
=	

-	

for ungrouped data	
-)	

•.•.. (4.6)

and

-	 / fx1	 (2	 k

II ' 
where 	 = f; or grouped data	 ..... (1.7)

\..	 I
Thorem 4.1 Standard deviation is independent on change of origin but not
of scale.

Proof: Let x 1 , x2 ..... .... xk be the mid-values of the classes of a frequency
distribution and let f1, f2,......k he their corresponding frequencies.

- A
Also let, ui 

=	 h

where u 1 , A and h are changed variate, origin and scale respectively.

Now, x=hu 1 +Aor, x =h u i A

Putting the values of x and x in the formula given in (4.3)

we have,

Sx=1f(hu±Ah u-A)2 =	 —t1(7-u)

=	 where s2 is the variance of u variate.

h su I

showing that standard deviation is independent on change of origin but not

of scale.

Note This method of calculation of standard deviation is known as short-

/ut method while the earlier method is known as direct method.

lcuiate standard deviation roin the tre)ucne\ ditrl'ut'n
given in E\an1ple. I by a) direct method and h hort-eut method.
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Solution : Let us prepare a tablt for calculation of standard deviation by
both the methods.

Table -4.1

x i - 22.5	 2

	

Class	 Mid	 Frequency	 fix	 fx2	 q	 fjuj	 f,-' 1

	

Interval values	 f

	

0-5	 2.3	 2	 5.0	 1250	 —4	 —8	 32

	

—10	 7	 S	 37.5	 2811	 —3	 --13	 43

	

10-15	 12.5	 7	 873	 1093.75	 —2	 --14	 28

	

5-20	 17.3	 13	 227.3	 3981.25	 —1	 —13	 13

	

20-25	 215	 21	 4723 10631.23	 0	 0	 0

	

25-30	 27.5	 16	 340.0 12100.00	 1	 16	 16

	

30-35	 32.3	 8	 260.0	 8430.00	 2	 16	 32

	

35-40	 37.3	 3	 112.5	 4218.75	 327

	

Total 	 75	 1642.5 407675 	 —9	 193

a) Direct method: From (4.7) we have,

40768.75	 1642.3 2
75	

- (	 ) ='

J543.58-479.61

= 63.97 = 7.99 (app).
* b) Short-cut method: From (4.8) we have,

5,-NF7-5 (TY
=Sx1.598=7.99(app).

Mean Square Deviation : When the deviations of the observations are
taken from any arbitrary value A other than x , standard deviation
reduces to root mean square deviation which is defined by

f (x 1 - A)2	(4.9)

hcre A is an arbitrar y value and n = It,
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-T1Ieorem 4.2 Standard deviation is the least possible root mean square
deviation i. e. root mean square deviation is the least when the deviations
are taken from the arithmetic mean.

Proof: Let x 1 , x2, ......xk are the values of k observations with corresponding
frequencies f 1 , f2, ..... . 1k• Also let x be the mean of the observations and A be

any arbitrary value.

k	 k
We know, s' 2 =f1 (xi A)2 = ! f ((xi	x) (T - A)}2

	[k	 k	 — —y f, (X,	 x)2 +2(x - A)f(x- x)+ n (T- A)2]

= LZf1 (x - x)2 + 0 + a positive value

= s2 + a positive value

Therefore, 2> s2 i. C. S' > S
	 (4.10)

Hence the theorem is proved.

'eorem 4.3 For two observations, standard deviation is the half of the
range.

- - (x 1 + X2)

-
two observations. Then x	 2

where x is the arithmetic mean. Let s denote the standard deviation.

(x1+x2)}2	
(	 (xl+x2)}2From (4.2) wehaves2 4[{ X1 -

	 2	 + 
X2	 2	 ]

	

ii	 2/x1-x2\  

=	
2 ) + (

X2x1) 2 } = (xl- X2) 2

-Ierefore, S =	
xl x2

2	 . Hence proved.

(n2 1)\eoe4 The standard deviation of firt n naturI numbers is
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Proof The n natural numbers are 1,2,3 ..... . n.-

	

- 1+2+	 +n n(n+1) n+1
Their mean, x 

=	 =	 = -y-

The raw sum oI squares, Zx12= 12+22+	
n (n + 1) (2n + 1)

6

2 -	 n(n+1)(2n+i)	 .(n+1)
We know, 52 ._Lx - x 2 =	 2

n	 6n -	 2

(n-t-1)(2n+1)	 n -sI	 2	 (n+1) f 2n+1 n+1
=	 6	 2	 2	 32

(n+1)(n-1)	 n2-1

-	 2x6	 12

I(n2-1)Therefore, s 
=	 12	 Hence proved.

Theorem 4.5 If x and s be arithmetic mean and standard dci.'jation

respectively of n non-negative observations, thei x 	 1)

Proof: Let us consider x 1 , x2 ... ... x be n non-negative observations.

/n \2
n	 n,	 •':x)

Wc know x = nx and ns2=x2	
_i,	

.

Now 

f fl \2 n	 n.

=1)	 i1	 j#j

Since x 1 s are non-negative, xtxj ^! 0

f \n	 n	 2

Hencc(x )2^ EN:2. Sub..1.1.11.1	
1
	 from both sides
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( )we have,'Exi

(n)2
Y-X__ n

-

fn
xj

n

(1)(fl	 2
or,

n	 1.xJ	

_2.

- (n xo	 )2 > ns2r, n

or, (n -1), x 2 > s2

or, 'I(n -1) T ^! s, Hence proved

Theorem 4.6 (Standard deviati, of combined series) If n 1 and n, be the

number of observatidns, x 1 and x 2 be the means and s 1 and S2 be the

standard deviations of two 'rics, then the standard deviation s of th
combined series is given by,

S	
1 S1 2 + 2 2 n1 n2 - - 21

__	 2= n1
________________ +

+n2	 (fl+n2)2( x j - x)

Proof :Let x 11(i =1, 2...........n1) and x (j = 1 2,...... n2) are two series with

means x 1 and x 2 and variances s 1 2 and s22 respective l y. The mean of the

combined series is

- Ti1 X1+fl2 x 2

n1+n2

Letd j =x l -x and d2=X2-X.	 .

The variance of the combined series is given by

S2 	 y (x 1 - x)2 +	 (x2r x)2]	 (4.1 1 ,

 •fli

Now, (x 11 - x )2 = (x 1 - x i + x 1 - X )2
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ni

-	 (x11 -	 ) 2 i- n i (x 1 - T )2 =n 1 s 1 2 + n 1 d 1 2	..... (4.12)
n,

Similarly we get, Z(x2 	 x)2 = n2 S22 + n2.d 22	... (4.13)

Substituting (4.12) and (4.13) in (4.11), we have

s2 =	 fn1s12+n2s22+d12+n2d22J 	 ... (4.14)

- - nj x1 i-2 X2	 n2 X 1 	 x2
Weknow,d 1 = X1 - x	 x1 -	 =

fl1+fl2	 111+112
- - n1 (x2 -

and d2 = x2 - x =
nl±n2

Putting the values old 1 and d 2 in (4.14) and alter simpljfication, we get,

2 flj	 1- fl2S2 2	n1 n2	-	 2S =	 +	 2(x1 -x2)-n1 n2	(n1+n2)

rn 1 s 1 2 ±n
- s

2	nn	 - - 1S	 +	 -	 C X1 - X2 )2	 ... (4.15)n1+n2	 (n1+n7)-

Remark: We can generalise the result in (4.14)to get the combined standard
deviation of k series as

rk .	-

=Lz	 + d 1 2)]	 -	 (4.16)

where d=-x;i1,2. ... ... k;n=nl+n2+....±nk

-	 1	 +	 X 2 + ........+ nk X k
and x-	 n	 -

Example 4.3 A group of 40 students was selected and measured their heights
which give mean 4.5 ft. and standard deviation 2.1 ft. Another group of 50
students was also selected and measured their heights whose mean is 4.3 ft.
and standard deviation is 1.9 ft Find the mean and standard deviation of
the combined group.	 -

Solution : We have,	 Group No. of sample	 Mean	 Variance
1st	 fl1 =40	 x 1 =4.5	 s2=441

2r'	 '-i.	 3.61

4i.
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+ 180.5 2000 x 0.04
From (4.15) we have, s =[

	 +	
.	 = 2.016 ft.

Example 4.4 A student while calculating mean and standard deviation of 25
observations obtained mean = 56 and standard deviation = 2. At the time of
checking it was fou!id that he has copied 64 instead of 46. What would be
the actual value of mean and standard deviation?

Solution.: We have, n = 25,x =56 and s= 2

n

We know,	 = n x = 25 x 56 = 1400.

Since the observation 64 was wrongly included instead of 46, the
x1 would be 1400-64+46=1382:

- 1382
Therefore, the actual mean, x' = --= 55.2g.

Also we know, s2=q2x2

or,	 = n ( 2 + 72) = 25 (22 + 562) 78500

Which is the sum of squares of the observations considering 64.

Therefore, the actual raw sum of squares would be

x2=78500-642+462=76520.

Therefore, the actual standard deviation

'	 (55.28)2) 2 = (3060.803055 .88)2= 2:2 (app)

Thus the actual mean = 5.28 and the standard deviation = 2.2 (app)

Merits:
1) It is rigidly defined.
2) It takes all the observations into account;
3) It is amenable to algebric treatments.
4) It is less affected by sampling fluctuation.
5) The standard deviation of the combined series can be obtained if

the means, standard deviations and number of observations in each
series are given.	 .

Demerits:
1) It is not readily comprehensible, the calculation requires a good
-. deal of time and knowledge of arithmc'ic.

2) It is affected by the extreme values.

1)

I
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3) It cannot be calculated if the extreme classes of the frequency
distribution are open.

Uses of Standard Deviation: It is the most useful measure of disperion and
has got immense use in advaiccd statistical work such as sampling,
correlation an1ysis, normal curve of errors, comparing variability and
unifortty ofAwd sets of data etc.

.Iean Deviation : It would be useless to take the sum of the deviations of
values from the arithmetic mean as a measure-of dispersion since their

algebric sum is zero.

However, if we take the mean of the absolute values of the deviations we
get a useful measure of dispersion called mean deviation from mean, or mean
absolute deviation or simpl y mean deviation.

Let x 1 , x2 ... x be nobservations of a variable with mean x , then mean
deviation is defined by

M.D(x)= 1 Ix-x	 (4.17)

In case of grouped data, M. D(x) ='f I x1 -x	 .... (4.1$)

If the deviations are taken from median or modc,x has to be replaced from
k

(4.17) and (4.18) and then for grouped data with 	 = n

M. D (Me) =	 I x- Mc I	 (4.19)

nd M. D (Mo) = L	 I x - Mo I	 (4.20)

xample 4.5 Calculate man deviation from	 mean and mean deviation
from the median from the frequency distribution given in Example 4.1.

Solution : We know that arithmetic mean or simply mean of the distribution
is 21.9, and the median is 223. We prepare Table - 4.2 for calculation of

mean deviation from both mean and median. 	 -

42
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I dLUt '*.L

	Class Int. Mid	 Frequency

of	 values	 f1	 Xj- xi fjx1 -x	 x-MeI f] x-Mc

variable	 . 1 -:

	

0-5	 2.5	 2	 19.4	 38.8	 200	 40

	

3-10	 7.3	 5 ..	 14.4	 72.0	 15.0

	

10-15	 12.5	 7	 9.4	 65.8	 10.0	 70

	

15-20	 17.5	 13	 4.4	 57.2	 5.0

20-2	 22.5	 21	 .6	 12.6	 (1	 0

	

25-30	 27.5	 1	 5.6	 89.6	 3	 4)

	

30-35	 32.5	 8	 10.6	 84.8	 10

	

35-40 1 37.5	 3	 15.6	 46.8	 15	 4
	Total 	 75	 467.6	 435

k
- 1	 467.6

-Therefore, M. D( x )=f1 I x1 -x1 = --- = 6.23(app)

k
1	 455

and M. D(Me)=	 f1 Ix- Me I =	 6.07 (app)

Theorem 4.7 Mean deviation is the least when the deviations are measured,
from median.

Proof: Let n = 2p be the number of observations which are arranged inôrdcr
of magnitude as x 1 x2, ... x , x I .... ... x. Hence the median Me lies between
x and	 Let A be an arbitrary value less than Mc, and tics between Xk and
X k+1 (k <

Considering absolute deviations D 1 and D2 from Me and A respectively we
have,

D1 = (Me -x1)+ (Me - x2)+ ..........................+ (Me -xk)

• (Me -xk+)+ (Me -xk,2) + ................... + ( Me -x)

. Me) ....... Me) . .................. +(x-Me)	 ........... (4.21)

.......... ..............................	 +(A-xk)

.............. ......... ............. +(.x-A)
•	 ............... ...................... +(x-A)	 ......... .(4.22)
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+x).+p (Me -A).

=2f(xk+l-A)+(xk+2-A)......

which is a positive quantity. Hence the theorem is proved.

The same proof can be done if we considrM < A and also if the number of
observations are odd.	 -

Remark In some practical situation the theorem may contradict as the
value of median cannot be obtained exactly in grouped frequency
distribution.

Theorem 4.8 For a series of n observations, standard deviation is not less
than the mean deviation from mean.

Proof: Let x 1 , x2, ... xk be a series of observations with corresponding
k

frequencies f1 , f2 fk such that ,f = n. We have to prove that

s ^t M. D( x ) where s = standard deviation, or, s 2 IM. DC x )]2

=> 1 f(x- x)2^	 x-x I

Let us put x x = z i in (4.23) we have

1 k	 (1k2

t\	
fxi)

k
, i Y- fj z j2	 z 2 > O
	 D

f (z- z)2 ^! 0. Hence proved.	 -	 -

xample 4.6 Find the mean deviation from mean and standard deviation of
the observations like a, a + d, a + 2d. ..... a + 2nd. And prove that the latter
is greater than the former. -

Solution :The number of ohcer'ationare 2n + 1.	 -

-	 - a+(a-fd)+	 +(a-+2nd)	 -
The arithmetic 	 x =	 -	 -2n+i
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1(2n.+1)a+d(1+2+	 . -t-2n)}
2n+1

f(2n + 1)a + dn (2n + 1)
=	 =2n+1.	 a+nd

The absolute deviations of the observations from the mean are, nd, (n - I) d,
(n - 2)d, .. (n - 2)d, (n - 1)d, nd. and their sum is equal to

dln+(n-1)+(n-2)+ ... ... +Ii-l+....+(n-2)+(n-l)+ni

= 2d In + (n - I) + (n -2) + ......+ ii since each term occurs twice,

2nd (n+1)
=	 2	 =dn(n+1)	 .

dn(n+I)
Mean deviation from mean =

2n+1

Now, variance = 2 1 1 [n2 d2 +(n-1)2 d2 + ....... +(n-1)2d2+2d2i

............+121

2	 n(n+1)(2n+1) d2n(n+I)
=2nl	

6	 =	 3

Fn
 deviation = d.\4

We are to show that the standard deviation is greater than mean
deviation.

d2n(n+1)	 d2n2(n+1)2
That is, squaring,	

3	 > (211 + 1)2

or, (2n + 1)2 > 3n (n + 1)

or, n2 +n+1 >0 which istrue, Hence the result.

Merits:	 -

1) It is easy to understand.

2) It is relatively easy to calculate. 	 ;.

3) It takes all the obsei'ations into account.

4) It is less affected b y the extreme ,i1ue	 -	 . -
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)emerjts;
1) It is not amenable to further algebric treatments.
2) It cannot be calculated if the extreme classes of the frcqucnc)

distribution are open. 	 -	 -
3) It is less stable than standard deviation.

Remark : Since mean deviation is based on all the observations, it is a better
measure of dispersion than range or quartile deviation. But the step of

ignoring the signs of the deviations as x - I creates artificiality and

renders it useless for further mathematical treatments.

4.4 Emperical Relation Among Quartile Deviation, Standard Deviation
and Mean Deviation

For moderately asy mmetrical distribution the following emperical
relations hold approximately

2
I) Quartile deviation = Standard deviation.

4
2) Mean deviation trorn mean = Standard deviation

Relative Measures of Dispersion

Whenever we want to compare the variability of two series which differ
wide in their measures of central location or which are measured in
different units, the ah'.olufe measures of dispersion donot serve our purpose
properl y . To tackle this Situation WC usually calculate the relative
measures of dispersion which are pure numbers, independent of units of
measurement.

1. Co-efficient of Quartile Deviation :The co-efficient of quartile deviation
isdefined by

C. Q . D =
	 -	 x 1(X)	 '	 .	 ......(4.24)

1	 Qrl-Qi

here Qis the third quartile and Q is the first quartile.

Example 4.7 Find co-efticient of quartile deviation from the frequency
distribution given in Example 4.1.

Solution: We know, Q =27.58 and Q 16.83.

10.75
!h rcfore C. Q. F) = x 100 24.21' (app)
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2. Co-efficient of Variation : The co-efficient of variation is defined by

C.V=.xi(XJ	 (4.25)
x	 -

where s is the standard deviation and x is the mean. Co-efficient of

variation is, however, unreliable if x is near to zero. It can be easily

shown that co-efficient of variation is independent on change of scale but

not of origin.

Example 4.8 Calculate co-efficient of variation from ' the frequency

distribution given in Example 4.1.

Solution: We know that s=7.99 (app) and T = 21.9 (app)

7.99
Therefore, C. V =x 100 = 36.48% (app).

Co-efficient of Mean Deviation: The co-efficient of mean deviation (C. M.
' D.) is the ratio of the mean deviation measured from certian measure of

central location to the corresponding measure of central location and is

expressed as percentage.

M.D(x)
That is,	 a) C. M. D. ( x ) =	 -	 x 100

x

	

M. D. (Me)	 .. (4.26).
b) C. M. D.(Me) = Me x 100

C) C.M.D.(Mo) M.D. (Mo)=	 x 10
Mo

Example 4.9 Calculate co-efficient of mean deviation from median from the

frequency distribution given in Example 4.1.

Solution We know M. D. (Me) = 6.07 and Me = 22.5

6.07
Therefore, C. M. D. (Me) =x 100 = 26.98% (app)

4.5 Moments

If x:, x 2  -- ----Xn be n observations of a variate then the rth raw moment is
defined by

'r	 (x -A)', where A is any arbitrary value 	 (1
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The rth corrected moment isdcifned by

=	 - X)r where x is arithmetic mean	 ... (4.28)

If x 1 , x2 ... X k occur with frequencies fl, 2•• 1k respectively then the rth raw
moment is

Vr	 (x1 - AY ; whcr n =	 f1 and A is as carlir	 ... (4.29)

The rth corrected moment is defined by

k	 k
(x - X ) r where n = f and x = arjthmctic mean. 	 (4.30)

4;Reliation Between Raw Moments and Corrected Mómènts:

• k	 -.
We have, r =fj (x	 x

-
)r= L f1I(xA)( x

•	 k	 k
;• -f, (xi

/r\ 
d f 1 (x 1 - A) ri +

() d 2 I f(x - A) r2 -+ (1)rdr ]
	

( 4.31)

whered =x - A. Now according to the definitions given earlier we have,

i-ri.L'r 	 d3I.t'r.+ ......+(lydr	 ... (4.32)'

wc know, ',= !f1 (xA)	 x -A=d.

\ow putting r 2, 3, 4 ..... . etc and d p'l in (4.32) we have,

'S.	

'S
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=	 - 2g', g', v1 2 =	 - i2

=g3- 3'	 2 + 312	 - 
'3 =	 - 3t' 1 i'2 + 2t'

=	 - 4'1	 + 6'2 W2 -	 +

= W4 - 13 6 C 1 2 W2 - 3'4

Using the method given in Theorem 4.1, it can be easily shown that the
moments are independent on change of origin but not of scale.

Sheppard's Correction for Grouping it is generally assumed that the
frequencies in a group are concentrated at the mid point of the class-
interval. This is surly an approximation. W. F. Sheppard observed that if

a) the frequency distributipn is continuous and

b) the frequency tappers off to zero in both directions of the frequency
distribution,

then the correction for different moments due to grouping at the mid point of
the class interval are done by the following formula: This is known as
Sheppard's correction.

C2
R2 (corrected) = R2 -

.t3 (Corrected)=.t3

.t4 (Coreected)=p. - 1
	

+ 
7	

where c is the length of class interval. C2 It

Pearson's 3 and y Co-efficients:

Karl Pearson defined the following co-efficients, based on the first four
corrected moments:

=; y1=
A2 

3

2 =—; Y2=2-•
92 2

The above co-efficients are pure numbers and independent of units of
measurement. Practical utility of these co-efficients is discuss ed in secti on
4.6.

Theorem 4.8 Pearson's j3 co-efficients satisfy the following inequalities

i)^I3i +1, ii)2^!1.
n

"roof : Let x, x 2 ......x, be a set of n observations with moon (t i. e.	 ()
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We know, Y (ax 2 + bx 1 + c) 2 >0; where a, b and c are arbitrary constants.

Expanding the left hand side we have,

+ b2x2 + c2 + 2abx3 1 + 2acx2 + 2bcx) ^t 0

n
or, a2 y,4i + b2 JX2, + nc2 + 2ab x 7 + 2ac yX2 ^ 0

Dividing by n we have,

+	 + c + 2a413 + 2aq ^ 0, since x =0.

Putting a =1, b = :L3-	 and c = - 
I-L2 and dividing by 1122 we have,

112

-+E-+1- 2 l`02 -2^0.
1122 P12	 lt2

or, 132 + 13 + 1 -2l3 i - 2 ^ 0 or, 132- 13 -1 ^! 0 or, 132^! 13 + 1

Since	 0; we get 132 ^! 1. Hence -proved.

V ewness and Kurtosis

kewnss Skewness means "lack of symmetry" I. e. departure from
/rnthctry of a distribution. A distribution is said to be skewed if

1) Mean, Median and Mode give different values.
2) Q1 and Q1 are not equidistant from median	 -
3) The curve- drawn with the help of the given data is not

symmetrical but turned nose to one side than the other. If the curve
has a longer tail to the right side, then the distribution is said to
be positively skewed and in the reverse cae it is negatively skew.

Fig. 4.2 (, 	 0 'K('',' cur'
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.—Fig 4.2 ( b) Negative skew curve.

Mures of Skewness: Different abcoliite 1m'l"nres of skewness are

1) S. K. =3(Mean	 Median). 2)S. K. = .	 Mode

3) S.K.=(Q—Q,)—(Q2—Q1)=Q-+Q1-2Q2

,vhere Q1, Q2 anu	 are the tirst, second and third quartiles respectively.

Different relative measures of skewness are called co-efficient of skewness
which are pure numbers and iTidependenton units of measurement. The
following are the co-efficients of skewness.

1) Prof. Karl Pearson's co-efficient of skewness is given by

Mean—Mode	 3(Mean—Median)
C.S.K.= . . 	 and C.S.K.=

st. deviation	 st. deviation.

2) Prof. Bowlays Co-efficient of skewness is given by

(Q3-Q2)_-(Q2---Q1) - Q3 + Q1-2Q

(Q3—Q2)(Q2--Ql ) - Q3—Q1

3) Co-efficient of Skewness based on moments is given by

"here P, = and	
41

2(52-6I-9)

We know that, ..L2, .L3 and 1.14 are the second, third and fourth corrected
moments respectively.	 .	 L
Kurtosis : The degree of peakness or flatness o(a distribution relative to a
normal distribution discussed in chapter 8 ) is called kurtosis.

The measure of kurtosis is given by

13, =- . y2 =	 -3 is called the excess of kurtosis or simpl y exces'
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For normal distribution, 12 = 3 i. e. = 0 the curve is called mesokurtic. When

132 > 3 i.e. Y2 > 0, the curve is called leptokurtic and when P2 <3 i. e. Y <0, the
curve is called platykurtic...

-eptokutic

Fig. 4.3 Diterent types of kurtosis

52
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5.1 Introduction

In our everyday life, we used to comment on so many occations like; there is
60% chance of raining to-morrow, the chance of winning of a particular team
in a football match is very high, the chance of success of a particular
student is very little etc. In all these statements we have an idea of
probability in our mind.

Usually we draw conclusion of a certain characteristics about the
population on the basis of sample. The conclusion is bound to be uncertain to
a greater or lesser extent. The notion of uncertainity plays a vital role in
statistics and the measurement of the degree of uncertainity in a decision or
conclusion is naturally of prime importance. The theory of probability
mainly deals in this measurement. The mathematical theory of probability
was laid in the mid-seventeenth century based on the problem of game
theory.

' nitions of Various Terms

eriment: An experiment is an act that can be repeated under given
conditions.

Y' iaI and Event : If an experiment be repeatd under essentially the
same Condition giving several possible outcomes then the experiment i
called a trial and the possible Outcomes areknown as events or cases.

For example, tossing of acoin is a trial and getting Head (H) or Tail (T) is
an event. The trial which contains no possible event is called impossible
event. The probability of an impossible event is 0. The trial which contains
all the possible cases or events is called a sure event. The probability of a
sure event is 1.

Acr Exhaustive Cases The total number of possible outcomes of any riaJ'
are exhaustiVe cases. For example, in tossing a coin there are two
exhaustive cases namely occurence of head and of tail.

\{Equally Likely Cases Cases are said to be equally likely when none of
them is expected to pccur more frequently than the other. For example, from
on unbiased coin, the case of appearing head or tail is equall y lik'lv.

53
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Mutually Exclusive Cases : Cases are said to he mutually exclusive if
the occurence of one of them excludes the occurence of all the 'others. For
example, in tossing an unbiased coin, the cases of appearing head and tail
are mutually exclusive.

v/ 	 Cases The number of out comes which entail the
happening of the event in a trial is called- the favourable cases. Foi
example, the number of favourable cases for getting even numbers in tossing a
die is 3.	 -

.53"Definitions of Probability	 -

There are mainly two definitions of probability, namely

(i) Mathematical or classical or a-priori definition of probability.

(ii) Statistical or emperical or a-posteriori definition of probability.

Mathematical or Classical or a-priori definition of Probability : If a trial
results in n exhaustive, mutually exclusive and	 ually likely cases and rn
them are favourable to an event A, then the probability p of the happening
of -A is given by

- Favourable number of cases - rn	 - - --	 -

- Total number of cases - - -

This gives the numerical measure of probability. Obviousl y p-be a positive
number not greater than unity, so that 0< p <1.

Since the number of cases in which the event A will not happen is (n - m),
- -	 n-rn	 m

ithe probabilit y q that the event will not happen s given by q = 	 = 1 -

=1 - p. So that p±=1.	 -	 -

Remarks : 1. The probability of the happening of an event is known as
probability of success and the probability of the non-happening of the event

is the probability of failure.	 -	 -

2. If P(A)=i, A is called certain even and if P(A)=0, A is -called impossible
event.	 -

Limitations of classical definition of probability:

We cannot define this kind of probability if

i) the outcomes are not equally likely and

ii) the number of outcome. are infinite.
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Ie 5.1 A bag contains 13 identical balls of which 5 are white and the
st are black. Two balls are drawn at random from the bag. What is the

probability that both balls are white?

Solution Lets A be the event that both the balls are white. The total

number of cases of getting 2 white bails from l 	
-

halls is 
C2 ='14X15

 2 	= Rb.

The favourable number of casesof getting 2 white balls from 5 white balls
-	 4x5

is 'c2 =	 = 10.

11)	 2
Therefore, the required probability is P(A) = 105	 21=

Statistical or Emperical or a-posteriori definition of probability: If a trial
is repeated a number of times essentially under the same condition then the
limit of the ratio of the number of times that an event happens to the total
number of trials as the number of trials increase in is called the
probability of the happening of that event. It is assumed that the limit is
finite and unique.

Symbolically, if nbc the number of cases of a trial A and m be the number of
cases that the trial A can happen then the probability p of the happening
of the trial A is givv

p=Lt-	 .

n-3°'

For example, if an unbiased coin is tossed in the following number of times
and the number of times of getting hcad upward are recorded against each
experiment, then we can see that as the number of tosses increase the
probability of getting head upward approaches to the true porhahilitv

Table -5.1

Number of tosses	 Number of heads	 Probability of

obtained	 getting head

	

10	 4	 .4k)

	

20	 9	 .43

	

50	 21,	 .52

100

	

1)	 3(k)	 3(1
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5.4 Elementary Set Theory (Notations, Operations and Algebra)

Set A set is any well defined list, collection or class of objects having
common quality or feature. The objects in a set is called the elements or
members of the set.

Following are the examples of set

i)	 The numbers 2,4,6 and 8.	 ii) The days of the week
iii) The solutions of the equation. x2-3x+2=0.

Sets are usually denoted by capital letters A, B, C, X, Y etc., if x is an

element of the set A, we write symbolically x E A (x belongs to A). l x is not

a member of A, then we write x 4 A (x does not belong to A). A set is written
by the elements which are seperated by commas enclosed in brackets ( I.

Finite and infinite Set : A set is finite if it consists of specifk number of
different vlements, otherwise the set is ininitc. Let M be the set of the days
in a week then it is finite. Again let N=12, 4, 6.........} then it is an infinite
'et.

Equality of sets : St A is euqal to set B if they both have the same.
elements, i. e. if every element which belongs to A also belongs to B and it
every element which belongs to B also belongs tq A. We denote the equality
of sets A and 13 by A=B.

Null Set: A set which contains no clement is called null set. We denote it by

the symbol .

Sub Set : If every element in a set A is also a member of a set B then A is

called a sub set of B. We denote the relationship by writing A C B, which
can also he read A is contained in B.

Disjoint Set: If set A and B have no elements in common i.e. if no clement of
A is in B and no clement of B is in A, then we say that A and B are disjoint

For example, if A=I1, 3, 31 and B=12, 5, 71, then A and B are disjoint.

Comparability : Two sets are said to be comparable if A C B or B C A . i.e.
if one of the sets is a subset of the other. Moreover, two sets A and B are said

to he not comparable if A	 B or B	 A.

Venn Diagram : A simple and instructive wa y of representing the
rL lationship hetwen sets is given in \nn diagrams. kN e an rcrrec.t

a simple plane area usually hounded by a circle.
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Let us suppose that the sets A and B are such that A C B and A B, then A
and B can be represented by either of the following diagram.

Again let us suppose that Aand B are not comparable. Then A and B are,
disjoint when they follow the left diagram and are not disjoint when they
follow the right diagram.

00 (ID
Basic Set Operations;

Union : The union of sets A and B is the set of all elements which belongs to

A or to B or-both. We donote the union of A and B by A U B, which is
usually read "A union B'. It follows directly from the definition of the union

of two sets that A Li B and B L.JA are the sanc set i.e. A U B=B U A.

In the Venn diagram we have shaded A Li B

V
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For example; Let Al2, 3,5) and B=tZ 3, 4, 6), then AU B=12, 3,4,5,6)

Intersection : The intersection of sets A and B is the set of elements which
are common to A and B, that is, those elements which belong to A also

belong to B. We denote the intersection of A and B by A r B, which is read

"A intersection of B." in the Venn-diagram we have shaded the

intercectioniI area.

For example: Let A = (2,3, 5) and B=12,3,4, 6), then An 13= (2, 31.

Remark For two disjoint sets A and B; A n B=.

Basic Algebra of Sets

In the theory'oI sets, all the sets under investigation will likely he sub-sets
of a fixed set. We shall call this set a universal set.

Let A, B and C are the sub'-sets of a universal set, then the following laws
hold:

0	 Commutative law:

AuB=BuA;AnB=BflA.

ii) Associative law:

(AB)u C=A U(BUC).

(AnB)nC=An(BnC)

iii) Distributive law:

An(BuC)=(AnB)u(AnC)

Au(BnQ=(AUB)n(AUC).

5.5 Laws of Probability 	 .

There are two laws of probability, namely

a) Additive law ot probability or theorem of total probability.

58
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b) Multiplicative law of probability or theorem of compound
probability.	 .	 -

Zti v awof probability (for mutually exclusive events) The

	

 ility	 neof o of the several mutually exclusive events A 1 , A 2 .....Ak will
happen is the sum of the individual probabilities of the seperatc events.

Symbolically	 . .

P(A 1 + A2 - ..........+ Ak) = P(Al) + P(A2) -i- .. ..... +P(Ak).

be the total number of exhaustive, equally likely and mutually

exclusive cases of which m 1, m2 ......... m are respectively the favourable
number of cases to the events A 1 , A2 ......Ak. Since the events are disjoint i. C.

non-over lapping then the total number of cases favourable to the events
either A 1 or A2 or or Ak is ml+m2+..+mk.

Therefore, P(A 1 + A2 + .......+ A) = M1 + m2 +	 + Mk

	

m1 m2	 Mk=-+ -+ ........ +—=P(A1)+P(A2)+ .......+ P(Ak)	 (5.1)

Hence the theorem is proved. 	 .	 .

In set notation, the law can be written as

P(A1 u A2 U  Ak)=P(Al) + P(A 2) + ........+ (Ak)

Additive Law of Probability (for not mutually exclusive events) : The
probability of one of the several not m 	 alTvexcusi'eeventsA 1 , A ........ Ak

is given by	 -

k	 k
..+Aj=	 P(A)P(A1 A)+ .............. .+(-1) k- 1P(A1A2 ...... Ak).

i=l	 .	 .

Proof: Let us consider two not mutually exclusive events A 1 and A2 initially.
Since the event A 1 can occur either by two exhaustive mutually exclusive
lorms A, A 2 and A 1 A2 , where A 2 indicates not Jiappending of A 2 . Then

lA)=t'(A1A,) + P(A1A2)

Similarl y F'(A,)=P(A 1 A 2 ) + P( A, A,) -

.-
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A1A2

Al

Adding (5.3) and (5.4) we get
P(A 1 ) + 1)(A)=1'(A1A2) + IP(A 1 ) + P(A 1 A2) + I7A2)I

=P(A 1 A2) + P(A 1 + A2)
P(A 1 + A2) = P(A 1 ) + ['( A2) - P(A 1 A2 )	 (53)

In set notation (5.5) can he written as
1'(A I u A2)=P(A 1 ) + P(A2) - ['(A 1 r A2)	 (5.6)

Again let us consider two events A 1 and (A2 + A 3) we have by (5.5)

(IA 1 +(A2 + A3))=1'(A1) + P(A2 + A) - PIA 1 (A2 + A3)).

=P(A 1 ) + P(A 2) + PA3) - E'(A2A3) - P1 A 1 A2 + A1A31

=!'A1) + 1'(A2) + ['(A3) - 1'(A2A3) - 1'(A 1 A7) - 1'(AA 3) + 1)(A1A,ATAI).

Since the event A 1 A2A 1 A 3=A 1 A7A 3 then 1'(A 1 A 2 A A3)=P(A1A,A3).

Therefore, P(A 1 + A, + A3)=t'(A 1 ) + ('( A2) + ('(A 3 ) - (A,A3) . 1'(A 1 A 1) -
Pi A A,) + P(A1A,A3). 	 (5.7)

n ahovc result can be generalised as

	k	 k
=	 I'(A 1 ) -	 P(AA)i-....+( -I) k - P(AIA ...... A k ) ...... (5.8)

i=1

In set notation we have,

k	 k
A2 u.....uAk) =1'(A 1 ) - 11)(AA1)

i=1	 i,j=1

+( 	 1 P(A 1	A2 ..... flAk)

;ExarnPl e
 5.2 An urn ontaiflS 3 red, 3 Hack and 6 white identkal halls Three

are drawn at random. What is the 1,r hahlit' that all the ball, art,

caffic colour?
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Solution Set A 1 be the event th, three balls will be red, A 2 be the event

that three balls will be black and A 3 be the event that three balls will be

white. Here the events are mutually exclusive, and we know

P(A 1 + A2 + A3)=(A) + INA2) + P(A3)

	

3c3 1	 k3
HereP(A 1 )	 P(A2)-=andP(Ai)=1=

1	 1	 20	 22.1
Hence the required probability is ffO-+	 +	 =	 =

A mple 5.3 Two unbiased dice are tossed simultaniously. What is the

probability of getting a total of point 8 or even numbers from both the dice?

Solution : Let A 1 be the event of getting a total of point 8 and A2 be the event

of getting even numbers from both the dice. Here the events A 1 and A 2 are not

mutually exclusive because a total of & points can be had from some of the
even numbers from both the dice and is shown in the following Venn

diagram.

- -- '	 (2,
4)(2,

(5,3) (6,2)(4,2)
 (6,4)

There are 6 x 6=36 points in the universal set when 2 dice are tossed.

	

5	 .9	 3
We have, P(A 1 ) = , P(A) =-, and P(A 1 n A2 ) =.

5	 9	 3	 11
Hence, P(A 1 u A2)=P(A 1 ) + P(A2) - P(A 1 n A 2 ) =	 +	 -	 =

Therefore the required probability is	 . L.

Compound Event: Two events A and B are sai1 to be compound event AB if
they are connected and may occur simultaniouslv. Similarl y the compound
event ABC ......etc. can be defined. And the probabilit y of the compound
event AB is denoted by P(AB). similarl y P(ARC) etc,. can also he defined.
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Marginal Probability and Condition-31 Probability: Let us consider an
experiment which can give result in the occurence of events A and 7 and
also result in the occurenc of B and B. The number of cases favourable to
the event AB,- AB, A 7 and A T are n 11 , n21 , n 12 and n 22 respectively.
Andn=(n 1 1 +n21 +n 12+n22 ) be the total number of cases are shown as in Table -5.2

Table-5.2

A	 7	 Total

njj	 n21	 n.1
B	 n12	 n72	 fl.2

Total	 n1.	 n2.	 n

In the Table 5.2n 1 ., n2 ., n. 1 and n. 2 ar&called the marginal totals.

The probability of happening of the event A, denoted by P(A) =-

Similarly

-) 	 n.	 - n.,P( A ) = 11 - P(B) = —and P( B ) =.n	 n	 n

Th ese probabilities are called marginal probabilities.

Total number of cases for the event B is n. 1 and the number of favourable
cases to the event A when B has already occured is n 11 . Therefore, the

probability of A given that B has already occured isp. This probability Ii,

called the conditional probability of A given that B has already occured
and is denoted by 1 )(A/B). Similarly other conditional probabilities from
Tab52ca be defined.

...Jic 'ependent and Dependent Events: Events are said to be independent if the
happening or non-happening of an event is not affected by the happening of
any number of remaining events. Otherwise the events are said to be
dependent.
i-or example, in case of drawing of a card from a well shuffled pack of cards
and rcpidces it before drawing the second card, the result of the second draw
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is independent of the first draw. If the first , card drawn is not repleced then

the second draw is dependent on the first draw.

Two events A and B are said to be independent if any one of the following

conditions is satisfied.

i) P(AB) = P(A) P(B).

ii) P(A/B) = P(A).

iii) P(B/A) = P(B).

Multiplicative Law of Probability (for dependent events) The probability
of the simultanious occurence of two dependent events A and B is equal to the
probability of A multiplied by the conditional probability of B given that
A has already occured (or it is equal to the probability of B multiplied by
the conditional probability of A given that B has already occured).
Symbolically, P(AB) P(A)P(B/.) = P(B) l'(A/B).

Proof Let n denote the total number of mutually exclusive and equally

likely cases of which n 1 . cases are favourable to the event A. The cases

favourable to both A and B is n 11 which is included in n 1 .. Then the
probability of happening both the events A and B, denoted by P(AB) is

given by

nil ,nl. fl
P(AB)= — = — x —

n	 n	 n1 .	 -

The ratio IL'— is the probability of the event A, denoted by I'(A), and the

ratio n-11 isthe conditional probability of B given that A hasalready

occured, denoted by P(B/A).

Hence P(AB) = P(A) P(B/A)	 (5.10)

In the compound event AB, the order of the letters are immeterial.

Hence we may write, P(AB) = P(B) P(A/B).

Remarks:

1) P(A/B)= P(AB)P(B) ifP(B)>0

2) For three events A, B and C,

P(ABC) = P(A) P(B/A) P(C/AB).

Thus the theorem can be gencralised.

3) If A and B are independent events then from the condition ot
independence we know, ['(B/A) = I'(B).

4
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V

Hence P(AB) = P(A) l'(B).	 (5.12)

For three independent events A, 13 and C,

P(ABC) = P(A).P(B).P(C).	 ...(5.13)

Thus t e theorem can be generalised.'

x pie 5.4 A hag contains 4 white and 5 red halls. Two halls are drawn

successively at random from the bag. What is the probability that both the

balls are, white when the drawings are made,

it with replacement,	 ii) without replacement.

Solution: Let A be the event that the first ball is white and B be the event

that the second ball is also white.

I) Since the drawings are made with replacement, the two events
become independent.

4 4	 16
Hence P(AB) = P(A) P(B) =	 =

ii) Since the drawings are made withott replacement the events
become dependent.

43 121
Hence P(AB) = P(A) P(B/A) =-. =	 =

Example 5.5 Three groups of children contains respectively 3 girls and 1 boy,

2 girls and 2 boys, 1 girl and 3 boys. One child is selected at random from
each group. Find the probability that the three selected children consists Of

I girl and 2 boys.

Solution: Let C represent girl, B represent boy, also let the sequence CBB

indicate the group of children having girl from first group, boy from second
and third groups respectively, similarly BCB and BBG can also be defined.

P(CBB) indicates the probability of selecting a group with one girl from
first group and 2 boys each from second and third groups. The event of

selecting a group consisting I girls and 2 boys may happen either by GBB or

BGB or BBG.

Since the event of selecting one girl from first group is independent of the

event of selecting one bo y from second group and also the event of selecting

one boy from third group, we have, R(-;BB) P(G) P(B) PB).

64
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Again since the groups CBB, BCB and BB(. are mutually exclusive, the

probability of selecting a group consisting I girl and 2 boys is the sum of the

probabilities of the above three groups.

32318	 1236	 121	 2
Now, P(CBB) = x TXT= P(BGB)=XTX= 7 and P(BBG) = xTxT=

18 6	 2 2f, j3
Hence the required probability is+ -+ - =	 =

^Y 
s' Theorem If B 1 , B2 ..... B are n mutually exclusive events with

P(B) * 0, (i = 1, 2.....n) then for an cent A that occurs when the experiment

is performed, such that P(A) > 0, we have

P(13 1 / A) 
= P(B 1 ) P(A/131)	

(5.14)

,1)(B) P(A/B1)
1=1

Proof : Let us suppose that the probabilities 1'(13 1 ), P(132 ) ... 1'(B) and the

conditional probability 1'(A/B 1 ) are known.

By the theorem of compound probability, we have,

PAB 1 )=P(A) (B 1 /A)=(B) P(A/B1)

1)(B1'(A/B1)
P(B/A) 

= P(A) (515)

Here the event A can happen in any of the mutuall y exclusive cases AB1,

AB2 . ....... AB. By the theorem ot total probability we have,

1)(A)=(AB1) + P(AB2)+	 + P(AB)

=P(B 1 ) i'(A/B) + 1)(132) ['(A /13,) ±....+ P(Bn ) ['(A /B)

n
•P(B1 ) P(A/B1)
	

(3.16)

Fheretore, (rum (315) and (3.16) we have

P(B) ['(A/B1)
1' ( 1 3, / A) =

	

	 Hence proved.n
IB l'(A/B,)

i=1

65
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Remark:

I) P(l3), 0=1, 2.....n) are knwon as a-priori probabilities.

2) P(B1 /A) is called a-posteriori probability.

ample 5.6 There are two identical boxes containing respectively 4 white

and 3 red balls, 3 white and 7 red halls. A box is chosen at random and a hail

is drawn at random from it. lithe ball is white, what is the probability

that it is from the first box?

Solution: Let B1 be the event that the first box is chosen and B2 be the event

that the second box is chosen and A be the CVflt of getting a white ball. As

the boxes are identical and are chosen at random,

4	 3
P(BI ) = P(132) =; P(A/131)= y and P(A/132)=j

Hence the required probability,

P(B 1 ) P(A/B 1 )	 .
P (131/A) P(B) P(A/13 1 ) + PB) P(A/B2)

YXT
1.41	 3
T x T + Y x To-

40
61	 .



4.

6. RANDOM VARIABLES AND PROBABILITY
DISTRIBUTION FUNCTIONS

6.1 Random Variables

We have discussed the concept of variables in chapter 2. A random variable

or simply a variable must have a range or set of possible values associated

with a definite probability with each value.

Let us consider an example of four possible points obtained by tossing 2

unbias coins simultaniously as shown below

HH, HT, TH, IT where H indicates that the coin shows head upward and T

indicates tail upward. Here the number of heads, x, are 0, 1 and 2 with

	

11	 1
corresponding probahilitiesT,and T which constitute a random variable.

Random variable are usually denoted b y capital letters e. g. X, Y, Z ..... e tc.

and the values of these variables are denoted by- small letters x, y, , ....etc.

but in this text we use small letters to represent random variables and their

values as well..

A random variable is called discrete if it assumes onl y afinitc number and a

random variable is continuous if it takes all possible values between certain

limits.	 . -

6.2 Probability Functions -

The probabilit y p(x 1 ) associated with values of discrete random variable x1

is called probability function. Thus the probabilit y function of the above

example is	 -	 -

Ptx)= 2C (;= x=0, 1,2.

The probabilit y function is usually denoted by a formula rather than giving

'ome numerical valuec A probabilit y function l(x) should satstv the

tollowing conditions. 	 -

ii	 Pl)	 i,	 ..1 .i ..	 -
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r
f'(x 1 ) = 1, where the random variable assumes n values

i=1
like x 1 , x2 ......... x.

6.3 Probability Density Function

For continuous random variable x, the probability that it will be within the

dxj
small interval [ -	 x +	 of length dx round the point of x and is

2 L 
denoted by f(x)dx. The function f(x) is usually known as probability density
function (p. d. f) which satisfies the following conditions

I)	 f(x) ^ 0 for all x within the range,

ii)
ff(x)dx = 1,

iii) The probability that the continuous varijbk x with p. d. 11(x) fall

in any interval (a, b) is given by

b
l'rob (a :5 x 15 bI =j f(x) dx.

Example 6.1 A random va'riable x has the following probability denit
function, f(x)=cx(2 - x), 0:5 x is 2

I)	 determine c, ii) find the probability that  S x  I.

2
Solution: I) Since we knowf(x) dx=1, the value of c can be obtained

as, cJ (2x-x 2) dx=1.

2r 2 ?1	 r 81
Or, C jr - Ti	 =1 qr, c [4.. J 

=1

4	 3
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-	 31
	ii) Prob. K) S	 (2x-x2)dx

	

3 f2.x2 x11	 3 r	 1 1 3 2 1
d2d () =T[1

6.4 Different Measures of Central Location for Continuous Probability
Distribution

Let 1(x) be the probability density function, (p.d.f) of a random variable x,

a s x Sb then

b
1) Arithmetic Mean = j x f(x)dx

b.1
2) Harmonic Mean (H) -- = j - 1(x) dx.

b
3) Geometric Mean (C) log G=J log xf(x)dx.

4) Median (M t.) Since medain (Mi devides the entire distribution
into two equal parts then

M.	 b
5 f(x)dx = 5 t(x)dx =
a	 N1	 -

Thus solving any one of the above two integrals we get the value of Mi..

5) Mode (M i,) : Mode is that value of x for which f(x) is mxirnum
Thus M, is given by

*	 -

f(x)<()
Provided that the sol ution of t) =0 lies within the permissihk' range of
the varioble.
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b
6. Moments: The rth raw moment, r =J 

xni(x)dx,

arid the rth corrected moment, 1= j (x - I.t) I f(x)dx, where .t is the arithmetic

mean of the distribution.

Example 6-2 Find harmonic mean, mode and median from the probability
density function given in Example 6.1

Solution: We know that p. d. 1,1(x) =x (2-x).

Harmonic mean H is given by,

1 3 2	 3.2
=-J_x(2-x)dx=J(2-x)dx

	

3 2x1 2 3	 3	 2

3
If Me is the median then, zJ x (2-x) dx

3 
or,	 (2x - x2)dx =

3r2x2	 '3-M.
or, [:7- 31 0 —2

f2e\2
OT, kM e 5) 5

or, M3e3M2e+20

or, (M1) (M 2c 2Me 2) = 0.

The only value of M lying within the range 10, 21 is M(.= I

Hence median=1.

Mode: We know, 1' (x)=()

711	 -
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f"(x) <0 will give the solution for mode within the admissible range, hence,

r(x)=2-2x=o or, 2(1-x)=0

or, x=1

and f'' (x) = -2, Therefore, mode =1.

6.5 Distribution Function

Let x be a random variable, discrete or continuous and F(x) be the
probability that the random variable x.takes values less than or equal to x

then F(x) is called the cumulative distribution function (C. d. 0 or simply
distribution function (d. 1) of x.

Probability function and distributioi dunction of the random variable x = 0,
1, 2 obtained by tossing 2 unbias coins simultaniously can be shown in
Table -6.1.

Table -6.1

x	 0	 1	 .	 2
1	 1	 1

P(x)

1
F(x)	

3

For discrete random variable x 1 having values x 1, x2; .....

F(xk) = l'rob (X i 5 Xkl = P(x 1 ) + P(x2) + ...... . +l'(xk), (k < n). and for continuous
random variable x, - s x s o,

Xk

F(xk) = ['rob lx x1J 
= 5 

f(x)dx.

- oc

Properties of Distribution Functions Following are the properties of
distribution function	 -

i) F(x) = f(x) ^ 0, so that F(x) is a non-decreasing function.

ii) F(-oc)=()

iii) F(oc)=1

iv) ['rob I  5 x b  = F(b) - F(a).

Remark : Properties (ii) and (iii) imply that 0 5 F(x) :5 1.
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6.6 Joint Probability Function

Discrete random variables x, y etc. are said to be jointly distributed if they
are defined on a same probability space. In particular, if we consider only
two discrete random variables x and y, we have a joint probability function
P(x1, Y' called bivariate probability function which follows the following
conditions

i) P(x, yj) ^ 0, for all admissible i and j.

ii) =1.
ii

Marginal Probability Function : Let P(x, y,) be the probability function of
the discrete random variables x and y, then the marginal probability
function of x, P(x1 ) is given by

P(x1) = P(x 1y3), for all i.

Similarly the marginal probability function of y, F(y) is given by

P(y) =17(x1,y,), for all j.

Conditional Probability Function : The co nditiobal probability function ot
the discrete random variable x for a given value of y. 1'(x 1 /y) is given by

P(x•	 ).
E'(x1/y) 

= P(;)

Similarly conditional probability of y for given x,

P(x, y)
P(x1)

Remark: Two discrete random variates x and y are said to be independent if
any one of the following conditions is satisfied

a)P(x1 ) P(y1)

b) P(x/y) = P(x1)

c) P(y/x1)=P(y,).

Example 63 The joint probability function of x and y is

P(x,y)=c(x+y); x=1,2,3,y=1,2

Find i) the value of c,
ii) the marginal probability function of x and v,

72
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iii) conditional probability function of x for given y and that of y for
given x.

3	 2
Solution: i) We know,	 c (x + y)=l

X=I y=l

or, c(1+±1+2+1+3+2+1--2+2+2+3)=1

or, 21c.=1	 ..

^
Hence, P(x,y) 

= 

(x	 )

- v

ii)	 The marginal probabilit y functions are

2 (x+v) x+1+x+2 2x+3l(x)= I	 21	 =	 21	 21	 x=1,2,3
y=1

3 x+v v+1+y+2+v+3 3v	 y+2
and P(y)	

21	 21	 =ii-=	 ;
X=I

iii)	 The conditional probabilit y functions are
x + y

x+y
P(y) - y+2 - 3 (y + 2).

.7
x + y

	

P(x,v)	 21	 x+y
and P(y/x) 

= P(x) = 2x +3 - 2x +3
21

6.7 Joint Probability Density Function

For continuous random variables x, y, ... etc. the joint prohahiliv density
function usuall y denoted by f(x, y......) which is the probabilit y that they
will he within the small interval dx, dv ..... etc. round the point x, y etc. In
particular if we consider two variables x and y, the joint probabilit y density
function 1(xy) dx dy represent the probability that a random point (x', y')

will fall within an infinitesimal region such that x < x '< x + dx and
y < y' y +dy.

The function Rx y ) is called hivariate probabilit y density function.

The function f(xv) must follow the following conditions
i)	 f(xv) ^O

73
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oc oc

ii)	 5 5 ftx,y)dx dy=1.

Marginal Probability Density Function : The marginal probability density
function of x and y are

oc

f(x) = .5f(x,y)dy;-oc5x<
—oc

oc

and f(y) = Jf(xy)dx;-oc !5y:5 oc.

—oc

Conditional Probability Density Function : The conditional probability

density function of x for given y which is denoted by f(x/y) and that of y for
given x, denoted by f(y/x) are

f(x y)
(x Y) = f(y)

and f(y/x) =ILL

Remark Two continuous random variables x, y are said to be independent if
any one of the following conditions is satisfied.

i) f(x,y) = f(x) f(y).

ii) f(x/y) = f(x).

iii) f(y/x) = f(y).

Example 6.4 If the joint p. d. f. f(xy) = xc x ^ 0, y ^! 0; find marginal
and conditional density functions and also show that x and y are dependent.

Solution: Marginal p. d. fofx is given by

f(x) =JxeY"dy

ex(y*l)	 CC

x
110

=cx;x^0.

Marginal p, d. f of y is given by
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f(y)=Jxe(Y)dx	 -

Putting x(y + 1)=z, or  =- and dx =	 , z^O
71-1y+1

oc	 ccz	 dz	 1=1	 )e' =	 2 Iezzdz
j(v+1) (v+1)	 (v+1) j

+ 1)2 [2 (y + 1)2 ;y>O;si:e2=1.

Conditional . d.f of x for given y, f(x/y) is given by

f(x/y) 
=	 1	 = 0 + y)2xe X(Y + 1); x, y 0.

(1+y)2

Conditional p. d. I of y for given x, f(y/x) is given by

f(y/x)=	 X =xexY;	 x,y^!O

Since 1(x) * f(x/y) or 1( y ) * f(y/x), x and y are dependent variate.

Example 6.5 The joint probability density funtion of two random variables
x and yis given bv

f(x. y) = 4xy;	 Os x,y!^ 1.

Find 1(x), f(y), f(x/y), f(ylx) and check whether x and y are independent
variables,	 -

Solution: We know,

I	 1

fx)=j4xYdv=4x_]2x. 	 -

=J 4xy dx = 4y	 =

4xv	 -	 4xvf(x/ y ) =	 2x and t(y/x) --= 2y

Two variates x and v are independent as 1(x y ) = 1(x). 1(v).

and also f(x/y) = t(x) and t(v/'d =


