An Introduction to The Theory of Statistics

MATHEMATICAL EXPECTATION
GENERATING FUNCTIONS AND
LAW OF LARGE NUMBERS

7.1 Mathematical Expectation .

The mathematical expectation of adiscrete random variable x having

values X1, X2,.eccccceericnenn ..Xn With respective  probabilitics  P(x;),
PiRs) i P(xn) is deﬁned by

n ' n "
E(X)= le(l')xi) Where ZP(xi)=11 ° ERRsmba (71 a)

provided the series is absolutely convergent. For example the E(x;) does not
exist for the following probability function of x,

e-! ' ,
- Px) i x=l): 1.2 sivein sbiiny, €

oc . -1 &

We know, E(x!) = Ex! P(x) = Xx! CTh Se-!

which is a divergent series. Henge the expected value is not defined.

If x is a continuous random variable with p.d, f, f(x)

]

oC

then, EGO = - | xf00dx, AT @.1.b)

provided the integral is absolut;ely convergent.

-0

Remarks:
1) E(a)=a, where a is a constant. '
2) E(ax)=aE(x)
3) The mathematical expectation of y(x), a fur.nction of the variable x

. is given by
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Mathematical Expectation Generating - Functions

n .
E(y(x)=Zwy(x) P(x) ; if x is a discrete variable, and

oC
Ely(x)]l= J\v(x) f(x) dx ; if x is a conlinuous variable.

7.2 Moments
n
If W(x)=xT, then E(x")= 2 xf P(x;) ‘ fesiovvsrens (dpedeR)

for discrete random variable x; and
E(xN== I x' f(x) dx A T (7.2.b)

-oc

for continuous random variable x, - &« < x < o<,

E(x") in both the case is called the rth raw moment of the distribution
usually denoted by p'r. Thus , l

Ww'r=ExD, in particu]'ar,
W’y = E(x) = Y, the mean of the distribution.
- W= E6d) and pp = oty = E6O) - [E02
= var (x) = 02, the variance of the distribution.

n
Fy(x) = x-lT, then E(x)" =) T(x; - W P(xy), for discrete random variable x;\

&« | ;
and E(x )" = J’ (x-p)F f(x) dx, -o< < x'< o, for continuous random variable x.

-

E(x -p.)"ih both the cases is called corrected rth moment or the rth niomem
about mean and usually denoted by L. '

In particular, ifr=1, u; = E(x -p) = 0.

2

and r =2, i = E(x-0)? = E|x - E))2 = var(x)= 62
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An Introduction to The Theory of Statistics.

Example 7.1 Find the expected value of the number of points that will be .
obtained in a single toss of a fair die.

Solution : Here the variate x is the number of points-on a die. Hence thc

possible values of x are 1, 2, 3 4,5 and 6, and each having the probab:hty 2

n ! .
1
Thgrefore, E(x) = Ixp(x;) = 3-(1 +2+3+4+5+6)= i :( 27 = %; 35
Example 7.2 Find the expectation pf x whose p.d. f.is f(x) =3x%; 0<x<1

, 1 1
Solution : We know, E(x) = OI xf(x) dx = J x.3x2dx

1 a1
o]
0

B

Theorem 7.1 Additive Law of Expectation : The expectation of the sum of
two random variables is equal to the sum .of their expectations.
Symbolically, if x and y are two random variables, then,

"~ E(x+y) = E(x) + E(y) n T R, (7.3
Proof : (For discrete variable) : -

Let Pj be the probablhty that x assumes the value x;(i=1,2,...m). and y
assumes the value y; (=120 n) Then

- mn

E(x+y) = L Z (x;+y) pij-

zf. XiPi ]"'Z Zy, Pll —2}1 ZPll +Zy1 EP.,
i Lj -

[ Si_nce L pj=pj and Zpji= P:]
, i i '

(For Continuous variable)

Let f(xy) be the joint p. d. f. of the randnm variables X and v, then by
definition,

s



Mathematical Expectation Generating Functions

o o :

E(x+y) = I I(x +y) f(xy) dxdy
-0C -0C ’
= J‘ J‘x f(xy) dxdy + J fy f(xy) dxay.
=0C =0C -OC =OC )
= Jx f(x) dx + ]y f(y) dy = E(x) + E(y).
Remarks : .

1)  The above thcorem can be genceralised for several random:
variables i, ¢, if X, y, z....ctc. are scveral random variable then

E(x+y+2z+......) =E() +(E(y).+ E@) + oo

2)  E(ax+by) = aE(x) + bE(y), where a and b are constants.

- 3) - Ely; () + yaly)l = E(yy ()] + Elys(y)] th;rL‘ W, (x) and Yo(y) are two
functions of random variables x and y respectively.

Example 7.3 Find the expected value of the number of points that wil be
obtained in a single toss of n fair dice.

Solution : Let x; be the number of pdints obtained from the ith die (i=1, 2, -...
n) and let S=xq 4 Xz + ... oo + Xy '

By definition E(s):E(xl] + X9+ v eons +Xp)= E(xp) + E(x9) + ..o oo +EOK).

; 7
- But for every single die E (x;) =3 (i=1,2... ... n) (vide Example 7.1¥

‘ _' n
Therefore, E(s) == 35n.

. Theorem 7.2 Multiplicative Lawo,Expectalion : The expectation of the
* product of two independent random variables is equal to the product of their

cxpectations. Symbolically if, x and y are two independent random
- variables, then :

Etxy) = Ex) E(y) SR ' . . 7.4



An Introduction to The Theory of Statistics

Proof : (For discrete variables)

Let the probability of the discrete random variable x assuming the values x;,
=12, s m) be p; and that of y assuming the values ¥j (=1, 2,......n) be
* Pj- Since x and y are independent variables, the probability that the product -
will assume any value Xiyjis pipj  ~ ; i

. m n m n
Hence, Etxy) 30 ¥ xiyipp - Zxpi"Z yipi = E(0. E(y).
_ i=1 =1 =1 1

~ (For continuous variables)

Let f(x, y) be the joint p. d. f. of the joint random variables x and y, then by
definition, ) ,

E(xy) = J ']’xy f(xy);dxdy = J’ J’ xy f(x) f(y) dxdy

[Since f (xy)=f(x). f(y) for independent random variable x and y.]

.

= [x f(x) dx [y f(y) dy. = E(x) E(y).
-OC. - - o<

-Remarks:

1) The above theorem can be gencralised for sceveral independent
random variables i, e, if x, y, z ... etc. are several independent
random variables then ’

E(XYZ coovvrrien. ). = EG) EQ) E@) ..oy -

2)  Ify1(x) and yaly).are two functions of two independent random
variables x and y respectively, then
Ely 1) )] = Ely; 0] Elyia(y)].

3) : E(ax. .-by) = abE(x) E(y). For two independent random variables x
and y ; a and b are two constants. ‘ : :

Example 7.4 Find the expected valuegf the product of points that will be
obtained in a single throw of n fair di; .

; e x : 7
. Solution :  We obtained in Example 7.1 that the expected value of Xp=3

where x; be the hiiniber of points obtained on ith die. Thercfore, the expected

. 5 A"
value of product of points obtained is equal-to (5)

&)



Mathematical Eipcctarion Gencrating Functions

7.3 Covariance

If x and y arc two random variables, then the covariance between them is
defined as ]

Cov (xy) =Elix-Ex) ly - Eyll.

= Elxy - xE(y) - YE(X) + (E(x) E(y)]
= E(xy) - E(x) E(y) - E(y) E(x) + E(x) E(y)
= Etxy) - Ex) E(y) : e e ol 73)

Remarks :

1)

2)
3)

4)

5)

If x and y are independent random variable then E(xy) = E(x) E(y)
and hence EETY: :

Cov (xy) = E(xy) - E(x) E(y)=0. ~

" Thus the covariance of two independent random variables is equal

to zero. The converse is not necessarily true.

"Cov (ax.by) = ab Cov (xy), where a and b are two constants.

Cov (x+a,y+b)=Cov (x,y) where a and bare two constants acting as
respective origins.

o = 3 1 '
Cov (x llx‘ Y- Hy )— -Cov (xy).
o' o ) o

where W, Hy are the means and Gy, Oy are the standard deviations

of the random variables x and y respectively.

Cov (x,x) 5 Vix).

Theorem 7.3 Variance of a Linear Combination of Random Variables: |

Let x1, X3 ....xp ben random variables (not the values of the variable x) then

n

n nn

V (Zajx) = Ta2V(xy + 2LYaza; Coy (x;x)

i<j

Proof : Let u=a;x; + apXg + v woue + pXp

we know, E(w)=a;E(x)) '+ asE(x)) + ........ +a E(x;).

- u-E@)=a;lx; - E(xp) + a:z[xz -EGx)] + o+ aglxy - E(xp)]

81



An tatroduction to The Theory of Statistics

»n
Therefore, V(u)= V-X a;x; = Elu - E(u)?

= a2Elx; - 6P + 22 Elxy - EOQ 2 + o oo s + 2,2 El X, - E(x)12
nn - .

+ 22 Xaj; Elx; - E(x,)]lx E(x)]

i<j

e TV, ° ‘
=aP? Vix)) +a2 Vixp) + ... + a2 V(xy) +2£Zala, Cov (x,x,)
l(]
nn v
’“Eal V(Xl * 2223131 Cov (Xl ‘)
, : ig.) -

Remarks :

- n
1)  Ifa=1 ;i=1, 2, ... n ; then Xa;x; reduces to Ix; and

e " nn -
V (Zx) = ZV(x) + 25F Cov (x.x,)
' i<j

2)-  Ifx'sare mdependent pairwise thcn Cov (x,x,) =0
©on
and V (Za;x) = Z,a1 V(x,

3)  Vx; + xz)=V(x1) + V(xp) +2Cov (x1xp).
If x; and x; are independent, o
then V(x; + xp) = Vixp) + V(xo).

Example 7.5 Suppose x is a random variable for which E(0) = 10 and
Var (x) = 25. Find the positive values of a and b such that y = - ax - b has
expectation 0 and variance 1. .

¥

Solution : Given E(x) =10 ;Var (x) =25

According to the problem, we have E(ax - b) =0and
Viax-b) =1, or, a?V(x) = 1. :

or,al25=1 ..a =:]:>
Again Eax-b)=0
" or,aEx)-b=0
or, aE(x) =

: ]
S b=2,Since E(x) = 10and a =z
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Mathematical Expectation Generating Fundinns

74 Condlhonal Expectation and Conditional Variance

If x and y are.two connected discrete random variables with conditional
distribution function P(x/y), then the conditional expectation of the random
variable x for gwm valuc of y is defined by

n
E(x/y) = X x; P(xi/y) S O - (7.6a)

and the conditional variance of x f(_)r‘gi'von yis
Vix/y) = Eftx - E(x/y)PR/yl. ' L R —— (7.6b)

Similarly conditional expectation and conditional variance of y for given
value of x can also bc defined.

~ Again for continuous random variable x and y

o ’ )
Ex/y) = J’xf(x/y) dx R (7.7a)
and V(x/y) = El{x-E(x/y) /y] : T el 7.7

where f(x/y) is the conditional p- d. f.of the random variable x-for given y.

Fheorem 7.4 The expcctud value of x is equal to- th cxpectatlon of the
conditional expectation of x for given y. Symbolically

E(x) = E/[E(x/y)] . ' S il (7.8)
Proof : (For discrete case) - 7 '
RH.S. = E}IEx/y)]

n

=& 1 x; pxi/y)
Ci=1

(PX )
' _E'[Z{ X1 P(y) ‘ :l

R n
=21Y X Pxiy) = X x; ZP(x;y)

yi=1 i=1 y

n %
5 [2{ Xi Fey) } ]P‘y’

n
=¥ x Ptx) =Ex) = L. H.S.



An Introduction to The Theory of Statistics

Hence the ,the(-)rem is proved.

(For Continuous Case)
RH.S.=Ey [Ex/y)l = [E(x/y) fiy) dy.
= {1 'j x f(x/y)dx] fy)dy
o fxy) o
| f Ty) d)f fy)dy.
- oC -0oC
oc oc o )
= [ [xfoxy)dxdy= [xf(0dx=E(X) =LH.S.
- OG- OC -

Hence the theorem is proved.

Theorem 7.5 The variance of x can be regarded as consisting of two parts, the
. expectation of the conditional variance and the variance of the conditional
expectation, symbolically

© VIx) = Ey [Vx/y)] + Vy [Ecx/y)]. | | AL I E 7.9)
Proof : We know, V(x/y) = E| tx-E(x/y)}Z/vl

=E(x2/y) - E(x /)2

= Ey IVOx/yI=E, [Ex2/y)] - EryIE(x/y)Iz

=EOA) - EJ[Ex/pI V) + [EP - Eyl(x/y)P

C=V(X) + lEy(x/y)lz E,IE(x/y)Iz V() -V lE(x/y)l

Therefore, V(x) = E/[Vix/y)] +V !E(x/y)l ;
' Example 7.6 Find E(x/y) from the Example 6.4 given in Chapter 6.
Solution : We know, f(x/y) = (1 + y)2 xe * 1+¥): _x,vy, >0,

< ; oc
Therefore, E(x/y) = xFOi/vidx = [ x(1+y)2 xe™ (1HV9dx
y ) %)
0 7 0

81 -



Mathematical Expectation Generating Functions
2 .

=(1 +y)2 j xZe-x(1+y)dx
0

s P d.
[Puttingx(]+y)=z 0r,x=L;dx = ]

1+y (1+y)
DL i
STy { # A
1 2-,
T+y) E Tty

7.5 Moment Generating Function (m. g. f.)

The moment generating function (m. g £.) of a random vanablc x about origin
is defined as

M,(t) = E(e®) = ¥ e™P(x), for discrete random
: E X

variable x and discrete probability distribution.
o< 2 V
= Jc"‘ f(x) dx, for continuous | ... t7-10)
L 4 ;
random variable x and continuous pmbabxhtv
distribution.

The m. g. f.is a function of the real parameter t and it is being assumed that
the right hand side of (7.10) is absolutelv convergent. Tho summation or
integration being extended  to the entire range of x.

& (tx)F .
Thus, My(t) = E(e'®) = E[ 1 +tx + )2 + + . + ]

2! Tt e
2 N tl’
=1 +tE(x) + —E(xz) oo -';,-E(x")
. t:‘ i
=1+t +§-!-|.1'2+ ......... - r—!u',+

where P, = E(x") = ZX'p(x) ; for discrete distribution,
X

; o

= [x' f(x) dx ; for continuous distribution.

-oC

8



An Introduction to The Theory of Statistics -

Thus the Co efficient of — in My(t) gives 11 *,.

Smce M,(t) generafa moments, it is known as moment gcncratmg function (m.
g f).

: - d™™(t
It is easy to varify that, u', = ?9(—2 t=0.

The moment generating function about the arithmetic mean p is defined by

My () =E[c'®- W e - HEE(e)

=e-HtM, (t) L T Ay e (7.11)
It can be easily varified as earlier that
= d'M"(t)] _
e jt=0

A Property of Moment Generating Function : The moment generating function
of the sum of a number of independent random variables is equal to the
. product of their respective moment generating functions. -

Proof : Let x4, x5 ... X, be n independent random variables ( not the valuu: of
the variable x), then the moment generating functions of their sum (X)+ X3 +
-+ Xp) with respect to origin is

Mo(t) i [et (X_1 + X2+ .. + Xp) ] =, E[e'xﬂ!lxz _______ ctxlnl

= E(e™E(e™)) ... E(e%,]

=My(t)x1 My(D)x) ... Mo(Bx,
where M(t) x; indicates the m. g. f. of random variable x;. Honcc tho
thcorem is proved.
75 Cumulam
The cumulant generating function k(t) is dcf:nod as g
KO=logM,®. o od ' A7)

provided that right hand side can be expanded as a cunve'rge’ht'scries in
“power of t. If we expand k(t) in the following form .
2 tr

k(t),= k1t+k22, # sl sl I T e k-



X
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Mathematical Expcdation Generating Functions
then k; = co-efficient of 7 is called the rth cumulant.

" dk(t
It is easy to varify that k; f“d-?,(.—) t=0.

Relation Between Moments and Cumulants

; " N '
We have k(t) =k1t+k22—,+.k33—,+..‘ .................... (7.13)
Again k(t) = log My(t) = Iog(l + 't + |.12'2—,+ IRy Jr e e )
R T ot W O SR 2
= Yy t+uzf!'+ Ha i-& ........... - '2' iy t+u2'2—!+..... :
(8 3 ' : '
+3 LhHlizﬁt-----;----) oy = ot Baaseaenn] (7.14)

- Now equating the id;:ntical power of t of (7.13) and (7.14) we have
ky= " | !
o=t Z=y |
ka=}g" -3 Iy + 24P = g
ko=’ - 352 - gy + 12072 - 6™
=My - 3. w s

7.7 Characteristic Function

.

The characteristic. function of a random variable x about origin is defined as

Po(t)=E(el™) = Te'™ P(x) ; for discrete probability
X ) distribution.

Sl 1)
- Icitx f(x)dx ; -for continuous probability

distribution.
see : \




~ Anntroduction to The Theory of Statistics
It can be easily shown that the rth moment about origin is given by

, d'eo) |
Faw Jt-0

The characteristic function about the mean L is givé:n by
Pu(t) = E[e"*- W) = ¢ - H g(t).

The rth central moment, W, is given by

[d'q)“(t) .
Sirde - jt=0

Example 7.7 Find the characteristic function of f(x) = X, 0 < x <ec and
hence find mean and variacne of f(x)

Solution : We know, f(x) =e X, 0< x < oc:

o it T - oc
CPit) = {e“”' f(x) dx = J’c“"e"‘dx ={ e x{-i gy
' ( U ( E
7 v dz
=00 =

Putting x(1-it) =z or, x =

o< oc

1 : 1 _ e _
R R(Y) =_m{{e “dz= T Smcco[e dz=[1=1.

»Thcrefore'thc‘ characteristic function (Sf f(x) =e Xis @Q,(t) = (1 - if) =
K

Now ‘p" = (-t - 2(-i)

=i(1 - lt) 2 g
’ , doum]
- Mean =, ='—i‘%]t -0 =1.

Again %—_ = 2i(1-it) - -i)

=201 -iv) 3 Sinceil= -1



Mathematical Expectation Generating  Functions

, dfQqt)

Therefore, variance = [y = by - 11,2 =2-1=1.

A property of Characteristic Function : The Characteristic function of the
sum of n independent random variables is equal to the product of their
respective characteristic functions, i. e.- —

Polxq 4 x4 457 = PoBrp. PolBxy i oo Poltly . ' . (7.16)

Proof : Let X1, Xp, ... Xp be n independent random variable (not the 'values of .
the variable x) then the characteristic function of their sum (x;+x3
+.eeenntXp) With respect to origin is '

Qo(VX] + X9+ wevves + Xpy =E[€t (X7 + X + vuvee + X
=E(e'™)) E(e'™)) ... ... E(e™py).
=@, X1P,()X3 ....... Po(t)xn Hence proved.

Remark : The converse of (7.16) is not necessarily truc.

Advantages of Characteristic Function Over Moment Generating Function :

1) The characteristic function always exists ‘but moment generating
function may or may not exist,

-

2) The characteristic function determines the distribution function
‘uniquely i. e. a necessary and sufficient condition for two distribution
with p. d. f's f(x) and f(y) are identical if their characteristic functions.

@(t); and @(t), are identical.
3) Characteristic function follows the fol lowmg necessary conditions.
i) @(t)is continuousint. .
ii)  @(t) is defined for every valueof t.-
i) Qo =1. |
iv) @(t) and @( -t) are conjugate quantmes
v ool

Theorem 7.5 Inversion Theorem (without proof) : If @(t) be the
characteristic function and f(x) be the p. d. f. of a random variable x then
G ] i

1 :
f(x) = — Ie-ﬂ* Qdt ; : T T g (7.17y
2n . : '

-OC
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Example 7.5 Find thét p. d. f; of the random variable x -'; - € XS e

L
for which @) =e”

Solution : Let f(x) be the p. d. f. of the random variable then,

oc

1 —
f(x) = — ™ pt)dt
| X) o J'c ol
-oC
o t2g? s

—_ je‘“" e T dt

wcind Sards %(tmﬁ-)z dt
"_2 202 j G

' d
Let us putt0'+§*‘=y dt=—L.
: (9 . c

The range of y becomes -o< and o<. .

& f(X):—Q 202 jcf—x ) ™ ;
i- ’_X‘z o y2
=—ec2? J'c-z dy -

2nc

S— 202\/_
= o

which s the p- d. f. of the rand.orri variable x

202 -oc<x<o<

*7.8 Law of Large Number

Usually the estimates are made of an unknown quantity (parameter) by
taking the average of a number of repeated measurements of the quantity,
cach of which may contain some error. Therefore, it.is of certain interest to -
study the properties of the estimates. An dnitial cnquiry is made concerning
its bechaviour as the number of measurement increases i, ¢, —oc, Thd problem

D0
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that the estimates converge in some sense to the true value of the parametcr
can be formulatcd in the following ways :

Letx,, n=1,2...bea sequence of observations and x , is the’ average of n

‘observanons then what are the conditions under which we can say that

X n—{L (parameter) I . T e (7.18)
in any one of the following modes of convergcncc 7

a) -Weakly or in probability (written as xn-)c) if, for evu'y given € >0

lim

n_wpllx,. -cl>e}=0 - s (7:19)

b) Strongly or almost surely (written as lim Xp = ¢ with

+ n—doc
a.s. ;
probability Tor x ¢ |
[ lim -} o : '
if P o o Xp=er=1; LA7.20)
n— o< :
, -
o In quadrat:c mcan(wntten as X, — o if, )
lim ; g ’
ks E(xn-c)2=0 L SR IRT T .oy (721 -
-We shall generalise the problem further and ask for the COl’ldlthn undcr
: whlch . . )
iy —0 ‘ g wp B o e (7.22)

. where |, n=1, 2... .is a sequence of constant sought to be measured by the

sequence of observations x,, n=1,2..... The law of large number holds if the
convergence such as (7.18) or (7.22) takes place. When the convergence is “in .
probability” given in (7.19) we shall see that the weak law of large number
(W. L. L. N) holds and when it is “with probability 1" or "almost surely”
given in (7.20), the strong law of large number (S. L. L. N) holds.

Some of the important theorems of law of large nimbers are given below

1. Chebyshev's Theorém (w L.L.N.):Let E(x,) =K V(x)_cs2 and

- cov (x;x) <0,i <j. Then .

Tl M

lim @ p
"5 = 0implies that xn -

Y

where X, is the mean.of a serics of n observations.

91
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Proof : The proof of the above thcorem can be done with the help of
Chebyshev's inequality. '

We consider x as a continuous random variable. Then by definition,

P= [ (x- w200 dx
u?kc ' u+ko o
I (x - w2 f(x)dx + J’(x }1)2 fx)dx+ J’(x u)zf(x)dx
Joc ¢ u- ko w+ko

For the first integral x<U-ko => (U-x) 2 ko.
and for the thxrd integral x2 [ + ko => (x - 1) 2 ko.
Now droppmg the middle term and replacing (x - p)? by the value obtamed
“here, we get,
u-kc
o2 2k%o? J‘f(x)dx+k20'2 If(x)dx 2k262P{ | x-p | >ko)
o< U+ ko

3 1
.:Pllx-ulzkc}siz

With the help of fhi&rcsult we have in our case,
- @ - &
Pil x, -u|2k ]s-,z——‘-)() Since, V (- x ) = =

which 1mphcs that x,, —H.

2. Khinchin's Theorem (W. L. L. N) : Let x, n = 1, 2....be mdcpendcnt and
identically distributed (i.i.d.) and E (x,) exists. Then,

o

 E(xp) = L < o< implies that x —|L

3. Kolmogorov Theorem (S. L. i ‘N) .Let xq, x7..... be a sequence ()fl i
vanabies Then a necessary and sufficient condition that
‘as

X, —> W is that E(x;) exists and is cqﬁa] to L.
The proof of theorem No. 2 and 3 are bevond the scope of this text.

g



8. PROBABILITY DISTRIBUTIONS

8.1 Introduction

In this chapter we have discussed some of the important discrete and
continuous probability distributions which are of special importance in
theory and practice of statistics.

The names of the probablhty distributions discussed in this text, are as
follows : .

a) Discrete Distributions .
1) Binomial. 2) Piosson. 3) Negative Binomial. 4) Geometric.
5) Hypergeometnc 6) Multinomial. 7) Uniform or Rcctangular

b) Continuous Dlstnbuhons
1) Uniform or Rectangular, 2) Normal. 3) Gamma. 4) Beta.
5) Exponential. 6) Cauchy. 7) Laplace.

8.2 Binomial Distribution

Let an experiment be repeated for n independent trials each with one of two
possible outcomes, 'success' or ‘failure’. The number of success, x in n trials is
a discrete random variable which can assume values 0, 1, 2,........ n. Let p be
the probability of success and q be the probability of failure in a single trial
- so that p + q = 1. If the probability of success, p remains same from trial to
trial, then the distribution of x is known as binomial distribution and its -.
probability funcﬁoh is given by

P00 = (:) PR =012, - s a n(8.1)

The binomial distribution was discovered by James Bernoulli (1654-1705) in
the year 1700.

The following conditions must be statisfied for the binomial distribution.

i) There should be a fixed number of trials.

ii) "The trials are independent.

iii) - Thereare only two outcomes for cach trial.

iv) The probability of success and hence the probablhtv of falluru
remains same or constant from trial to trial.
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An tnlrodumon to The Theory of Statlshcs .

Derivation : Let the flrst X tnals resultcd in success (S) and the rest (n-x)
trials resulted in failure (F). Then the sequence of successes and failures be

55...:.8 F F...F
X times (n-x) times :

v

Since the trials are mdependent the probablhty of this pamcular sequence
is p*g™*. But we are interestin any x trials being successes and since x trials

cahbcchoscn out of nin (x) mu,tually exclusive ways, the proba,bility p(x)
of x successes is’gi\_ren by p(x) = (:) pq™; x= 01,2,
The probability distribution function of the number of success, o attained is

called the binomial probablhty distribution for the obvxous reasons that
tﬁc probabrhhes of 0, 1, 2,......n successes Viz. ;

n f\ . - ‘ 5, g §
gy (]) q"p, (2) q" " 2p?......, p" are the successive terms of the binomial
expansion (q + p)™ ' '

Remarks :

I)' The prubﬁbihty functmn denoted by (8 1) satisfies the two propertics of
" density function i. e.

' n Swr o G
a) px) = (x) p*q" * 2 0 for all values (gf X,
x=() x=(

, : ) ) e
'b), I px=%X (:) p"q“"‘=-(q+p)“=1; Sincep+q=1.

"2 The two mdt.pcndc,nt constants n and p of the dmtnbut]on are known as
- the parameters of the dlstnbutmn : L _ K

]

a) exactlx two heads?  b)  at least three heads?

Y4
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Solution : The prqbability of getting x heads in a throw of 4 unbiased coins is -
AN Y x f L4
P(x)=(x) (5) 5 (-2') x.; x=0,1,23,4.

a) Pi'obability of getting exactly two heads is given by

P(2)_(2) ( ) ( )f%:_%/

Yox Lx _Cf
b) Probability of gettmg at least three heads is gwcn by

Prob{x>3}—p(3)+p(4) (4) (2) @ +1% 13? .

Wt \

Properties of Binomial Distribution :

n
Mean (1) : Weknow, L = 1= Ex) = £ xp(x)
1 % x=0 .

n n

=Zx(x) g

x=0 _

¥ n—I ‘_1 _‘x

=an_ =} p?‘ qn
. x=1 £
=np(q+p)“'1'=np. Sinoep+q=1. A AT (8.2)

Al ( ) ) (n—'l) n(n—1) (n—2)
e x—1 x(x——l) X—Z) x(x—T1) (x—2) X—3
~andsoon.
Variance (62): We know 62 = 1, -uf’ 2 1y
where jy” <E(x2) = E[x (x—1) +x]
=Elx (x—1) ] + E(x)

Again E[x (x-_l)]-— Z X (x+1) ( ) p"q“ X

‘n(n-1)

=3 x(x—1) x(x 5 )P:gqnx

x=0
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o g (1) e

=n (n—1) pXp+q) "2

=n (n—1y p? . : e (8.4)

We have alrcady known E(x) = npin (8.2).
Therefore, from (8.3) we get " =(n- 1) pé+np.
Now, 12 =" - ;2 ' ; ‘ S . !
=n(n-1p? + np - (np)? ;
| =n?p? -np? + np- n?p?
= np(1 - p) = npq, Since 1 - pP=q. ‘ .........
| Third Moment (113) : We knov;i, W3=E(3)=Elx(x - 1) (x - 2) + 3x(x - 1) + x|
“Elx(x- 1) x-2 1+3Exx-D]+Ex
Now, Elxtx 1) (x-2) | = ;0 X0 -1) (x - 2) (:) P
x =

¢ Y on(n-1)(n-2) n-3
.- "“""’5"‘~2’mp’ -

—-n(n 1 (n- 2)p3 Z ( )p"'%f“"

e n(n-1)<n-2)p“(q+p)" -3 ,
=n(n-Dn-2p> ot
‘Form (8.2). (8. 4) and (8.7), we get '
K3 = n(n-1)(n-2)p? +3n(n - 1)p2 + np
Therefore, the third moment is
Ha=g'-3y " + 21 S
=n(n-1)(n- 2)p3+3n(n Dp%+np- 3{n(n ])p2+np] np+2’n"p3

n'p?- 3n2p?+ 2np® + 3n2p? - 3np? + np - 3n° 3p? + 3n2p? 3n2p2+2n’; 3
Zonp3- 3np? +np ’
=np2p2-3p +1] '
=np(T - p) (1 - 2p)
=npq(q-p) ) ; A T}
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- Fourth Moment (g : We know, '
My =E(xH = Elx (x -1 (x-2) (x-3) + 6x(x-1 (x-2) + 7x(x 1+ x]
=Elx (x-1) (x-2(x-3) | + 6Elx (x-D(x-D] +7Elx(x-1D ] + EX) .....(8.9)
X . = . :
Now, Elx (x-1) (x-2) (x-3)]= L  x(x-1)(x-2)(x-3) (:) o
. ) = X =0
n

nn-1D(-2)(n-3) /n-4Y P
_§0x(x 1)()( 2)()( 3) X(X - -l)(x 2)(x 3) (x-4)pan

n
-4
=n(n-1)(n-2) (n-3)p* X (:_4)97‘“q""‘
’ x=4 )

=n(n-1(n-2) (n-Ipip+q -4 .

=m-DMO-D@-3p* (8.10)
From (8.2), (8.4), (8.7) and (8.10), we have,
Ky =nn-1) -2 (n-3)p* + én(n-1)(n-2p> + 7n(n-1p? + np
Therefore the fourth moment (ly) is,
FUPE TP T TR TPy T Thad
=3n2p2q? + npq (1 - 6pq) lon simplification] LT e e 8.11)
TP LN ‘
Hence B = Pa M
;123 - npq
P L L U (8.12)
ande ====3+ T=6pa.
npq

Remarks: 1) The mean is alway greater than the variance as q < 1.
"2) As the number of trials n-increases infinitely,

-B1—0 and. Br—3.

Moment Generating Function of Binomial Dlslnbuhon The m. g. f. about
origin of the bmomlal variate x is

M) = E(e“‘) et" ( ) pgrx
5

n
= 2 (:) (pet)an-x
_(q+pe‘)“ “ v b L e (8.13)

Differentiating (8.13) with respect ta t, we get,

97



An Introduction to The Theory of Statistics _

dM(D) ! pe ‘ ' T
at —n(q+pc')n ‘ LT e (8.14)

dM() ]
=l 0 —n(q+p)“ Tp‘=np

Again differentiating (8.14) w:th respect to t, we get, '

d’M(t) o L
-—a?——n(n-l)(q+pe‘)“'-(pe‘) o+ g+ pehn- pet.
=n(n-1)p2(q+pc')"'292‘+ np(q+p‘c‘)“"e,‘.’ : C.(8.13)

,  d2M() o
e =~ t:0=n(n_-1)p2_+np;
=y -y =n(@-Dp? + np - n’p? = npq.
- Again diffg:rentiating-(S.]S) with respect to t, we get,’

d*Ma)
—33 =n(n-1)n- 2)p2(q+pct)" 3 pele?t + n(n-l)p2

(+peh"-22e? + (n-1)p (q+pe‘)“'2[:>e‘et + np(q+ pet) n-Tet,
=n(n-1)(n-2)p>(q+pe) "M + 3n(n-1p2(q + peh) n- 22
+np(q+pehn-tet ‘ : | eeenn(8.16)

d3M(t
"T»Q t_)*n(n 1in - 2)p? +3n(n- l)p2+np .
It can be easily shown that, l~l3 = npq (q-p). (after simplification).

- Again differentiating (8 16) with respect to t we gc

dM()
—3&=n(n- 1)(n 2)(n- 3)p4(q+pe)“ 44‘

- 6n(n 1) (n- 2)p3 (q+ pe‘)n 33+ n(n 1)p2 (q+ pC‘)“ 22t
+ np(q +pel)n- ‘e‘ »

o, dAMKG
1 -‘d—tdgu] —0= n(n 1) (h-2) (n-3)p +6n(n-1) (n-2)p> +7n(n-1 )p2+np

Therefore, it can be easily shown that the fourth moment,

U4 = 3n2p2q? + npq(1-6pq) (after simplification).
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Characteristic Function of Binomial Distribution : The characteristic
function about origin of a binomial variate x is

o e
@) = E () = Zoei“(x)p*qn-*

wx =
n ok s ' : ‘ o
= X (x)'(pe“)"q“ “X=(q+ pe“)n ........... (8.17)
x=0" . ‘

Differentiating @(t), once, twice etc. with respect to it and putting t = 0, we
get the same results of 1y, M3 and M.

Recurrence Relation for the Probabilities of Binorﬂial Distribution:

We know, P(x5=(:) p*q"-* and P(X+1)=(x2])p‘*1q“‘*“ {

( n )erf.lqn-x-l -
Pix+1) \X*1 s n-x p

N P - X g
(X) Px qn—x " :
, n-x ' ;
Hence, P(x+1) = P I g p(x), _ =0, 1 2.4, n.

which is the required recurrence relation. This relation is helpful for
. calculating probabilities for different valucs of the binomial variate. The
only probability, we need to calculate is p(o) which is equal to g™ If p is-not
known, it can be estimated by p= v where x is the sample mean of the:
distribution. :
Example 8.2 Seven coins are tossed at a time and the number of head are
noted. The experiment is repeated 128 times and the distribution is obtained
on the next page. '

No: of heads : 0 1 7] 3 4

o
o
~

- |Frequencies : 7 6 19 5 30 23 7 .1
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Fit a binomial distribution to the above data assuming that,

. 1
i) the coin is unbiased i.e.p=q = 3

ii) . the nature of the coin in not known i. €. p is unknown.

1
Solution: (i) Since p =q=5; 2 q E— 1 and P(o) = ( 2) =138

From the recurrence relation P(1), P(Z) ......... can be obtained as follows :
. Table-8.1
x b P(x) E =N X P
x+1 q
0 7 8 1
7
/1 3 Eg Z
: L1 0
- 3 128
‘ 35 .
3 1 128 35
3 35 -
4 '3 8 o
1 21
5 3 8 21
1 7
6 7 o8 7
' 1
7 — 8 1
Total 1 1 © 128 '

(ii) Since p is not known, it can be estimated as follows :
-~ 2 T - a3

Weknow, x =np :N-thq =T3g = 33828 (app)r
s p=048326 and q= 051674

And %: 0.93521. P(0) = (0.51674)7 = 00984,
8
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Table-8.2
. n-xp ' :
X T q : P(x) *“E =N X P(x).
0 6.54647 10.00984 125952 =1
1 2.80563 0.06440 82432 =8
¥ 155868 0.18069 2312832~ 23
3 0.93521 028164 36.04992 = 36
4 0.56113 0.26339 33.71392 = 34
5 031174 0.14779 189171 = 19
6 0.13360 0.04607 5.89 =6
7 _ ©0.00618 : S 0791 =1
1 : 128

" Since the number of trials cannot be fraction, we converted the expected
values into nearest integers.
8.3 Poisson Distribution

- The poisson distribution was discovered by S. Devis Poisson (1781-1840) in
the year 1837.

Poisson distribution can be defined as the limiting case of the binomial
_ distribution under the following conditions :

i) the number of trials are very large i. e. n = o<,

ii)  the probability of success, p is very small i. ¢: p— 0 and

iii) the mean of the binomiaf distribution np = m, a finite and positive
constant.

The probability_function of poisson distribution is given by

-mx

m
PO = =—=—; X =0, 1,0irrce, : A S < T (818)

Derivatio_n of Poisson Distribution from Binomial Distribution : The
probability of x success in a series of n independent trail given in (8.1) is

. ¢ i
given by, p(x) = (x) Pl 00142, n.

Wi want the limiting form of p(x) under the above three conditions:
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We have, p(x) r(:) pXa-py™> .

m n'x » ) ”
'(n x)‘ ( ) (1 - ) Since, n p=m. . ,
n(n Dn-2)....n-x+ 1)(m) ( ___)
: X!

- ' i m
n(n-1) (n-2) ..(n-x+1) {1 nl

SR )
DD D

.m. X — -
(-3) |
n . 5

]’ 2 " . m X l ' - mY\ n
As n—ec ; = ‘—ctc. tend t() ICT() 1-=— tendstoland { 1-—) -
M n n : n

tends to ¢ M

T'herctore, Lt p(x) = mx-c m.for hxed X and x-O l 2, ...o< which is the
n—e< .
required probability function of the pm%on dﬁtrlbunon
Remarks: - . z
oc - 4

‘ : s N e L% ammpx - .
1) It should be noted that ¥ px)= ¥ - = MelP=1.
‘ x=0) %0 " :

2) misthe only parameter of the distribution and m > 0.
3) Following arc some examples of poisson variates.
i) Number of suicides Y'eportcd in-a particular city w1thm 10 years
(say).
i) Number of air accidents in some unit of time. e
iii)  Number of telephone calls received at & particular telephone
exchange in some unit of time.
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 Probability Distributions

Example 8.3 A manufacturer of pins knows that 5% Qf his product is
defective. If he sells pins in boxes of 100 and guarentees that not more than
10 pins will be defective. What is the approximate probab:hty that a box
will fail to meet the guaranteed quality?

Soluhon We have gwen n=10, Probability of getting defective pins, p = 05.
Therefore m = mean number of defective pins ; np = 100 x .05 = 5.

Since p is very small, we may use poisson distribution. Probablhty of x
defective pins in a box of 100 pins is

emmx -55x
--b— x=0,1,2:

p(x)
Probablhty that a box will fail to meet the guaranteed quallty is
10 :

e
p(x>10)=1=l"(x£10).=1- EOT
:]-e's z —
7 x=0X

Properties of Poisson Distribution :

Mean (1) : n= u; ‘sEX)= }: xp(x)
x=0

=me ™ J
0 ' x=

mx—l
1 (x-1)!

‘=mé"’f‘c‘“=m. : RERMY: ol )]

Hence the mean of poisson distribution is m.

Variance (02)
Hy ' SE6) = Elx(x N+x]

 =Elx(x-1)]+E®)

............. (8.20)
o< mmx
Now,E[x (x-)]= I x(x-l)—"—'
x=0 #
o mx 2
-mze. 5 (x-2)!
:mzciﬂlcn‘:mz 3 ‘ - . L e " essemepes (821)
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From (8.19), (8.20) and (8.21) we have
W' =m2+m n k
Therefore, the variance, 62 = pp = Py’ - W2 =m?+m-m?=
" Third moment (l13) : oy
Weknow, 13" = E(®) = E[X (x - 1) (x - 2) + 3x(x -D+x]
<Elx(x- 1) (x-2) + 38 Ix(x-1) 1+ EG0) ~ (8.22)

o<

Now Elx(x D(x-2)]=¥x(x- 1)(x 2)
x=0

mmx

N . : (xxa; Gog=me Tenamd , Yoo Lem)
~ From (8.19), (8.21), (8.22) and (8.23) we have
Mg =m3+3m2+m

Therefore the third moment is, Ha= M3 -3y H; +2|.11

=m®+3m2+m-3(m2 + m) m +2m?3

=m?+3m? + m -3m3-3m2+ 2mP=m

Fourth moment (L14) :

We know, p, = E(x4) = Elx(x - 1) (x-2) (x - 3) + 6x(X - 1) (x-2) + 7x(x - 1 +x|

=E [x(x _,-1,) (x -2) (x-3)] +6E[x (x-1) (x =) |+ 7EIx (x-1] + EC). . ...(8.29)
e m x
Now E[x(x (x- 2)(x 3)] —Zx (x-1)(x- 2)(x ’%)
; x=0
. o x-4 !
=mie-m %'4 epr-mte MeMe=mpd 0 L e (8.25)

From (8.19), (8.21), (8.23), (8.24) and (8.25) we have

Wy = m4+6m"+7m2+m ’ '

Therefore the fourth moment is, Ly -p,4 4y ul + 6" 1,2 -3,
Comt s+ 6m? + 7m2 + m-4m(m3 + 3m+ m) +6m?2 (m2+m) —3m4

—3m2 +m.
Hence By = &=—
: u23 m
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Remarks :

1) Mean and variance of poisson distribution are each equal to m. THis is
an important characteristic of this distribution.

2) Asm—oc; B;—0and fr— 3.

_Moment Generating Functior of Poisson Distribution :
The m. g. f. about origin of a poisson. variate x is

e " MmX < (meh)*
M(t) = E(e™) = Z e KL PO
2 X=O x:o .

mormgie gD, T .(8.27)
Now differentiating M(t) with respect to, t, we get

dM(t ‘
dt( ) — emlet- 1 et = m eme- Dt : 2 e 2t (8.28)
e dM(t) s
=0 =™

Again differentiating (8.28) with respect to t, we get

2
%(t_).= em(et -1 (me:)z . em(eg - met.

=m2eme - ety pamiet- Dot SR L & N (8.29)
CdME 2
ST ‘=°v=nt‘ +m.

Therefore, 62 = |1y =§l’2-u1'2'=fnzl+m-m2=m.

Again differentiating (8.29) with respect to t we get,

MO 2emiet - 1) t’.. t €' -1 g2t -1 (mehet et Dot
55 =m (met)e?'+mZe™ 2e2 +me™€ - D (mehet + me™© - Ve

=m3eM(ct - 1) et + 2mZeM(e! - 1) ¢ + m%e™ (et - et + me™et - 1) et
i dM®)
B Jieo=m?+2m?2+m?2+m= m+3m +m.

It can be eas:ly shown that M3 =
Once again dnfferenuatmg (8. 30) w1th respoct to t we get,
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4 : - .
%‘-‘L mPeme' - D mete¥ 4 mlemie' - 1 3¢t 4 3m2eme! - Dme'e?
+3mPemie’ D 9e2 , momie'- 1 matet - memie! - D gt

o, d“M(t) ot | k.
CHE TG Jep=mt46mP + Tm2 4+ m '

An lntmductifin to The Theory of Statistics

Therefore, Mq= 3m2+ m.On s:mphﬁcahon

Charactenshc Function of Poisson Distribution : ‘
‘ The characteristic function of a poisson variate x is, W

QW =E@= T epx)

x=0
B - M oc cnx i P s s .
=Ze“"e Mm cem Y (m )
x=0 ’ x=0f
=e-memc'-“=em(e“—‘l) ) . R G | .4 30)

leferentlatmg @(t) once, twice etc with respect to it and puttmg t=0 we get
the same value of |, i3 and [P - #

-

Additive Property of lndependem Poisgon Variates:

If two independent poisson varaltes Xy and X, have mean m, and mz
respectively, then their sum y=X1+ X; is also'a porsson variate with mean
my+my. .

Proof : Let Mlﬂ) and My(t) be the momcnt-géf\eratihg functions of pmqqo-n
variates x; and x; rcspectwc]v and M(t) be the moment generating funtion of
their sum, then ) . 2

My(® = ™1 D and My(t) = o, ' - D

Since x; and x; are independent, -

M) = Elet(xl +x) ] = Ele;e'%,)- _
=E(e™}) E(e™;) = My(t) Ma(t) ,'

: oL - L
=(;n](( I)sz(t 1)=C(ml+m2)(v. Y

which is the moment gencgating function of y md1catmg a poisson vanatu
with mean (m;+m5»). chcu proved. :

-
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Recurrence Relation for the Probabsilities of Poisson Distribution :

LY
-mmx+]-

and p(x+1) =GED

v e™mX
- Weknow, p(x) = o)

px+1) e™m(**H x!  m
P D! e PmX T x+1

Now,

Hence, p(x+1) =£1-p(x), xul 2.0

~ which is the required recurrénce relation. This relation is helpful for
calculating probabilities for different values of poisson variate. The only
probability, we need to calculate is p(0), which is equal to e™, where m is
the mean of the distribution, if m is not known it can be estimated from the
-~ given data.

Example 8.4 The following data show the suicides of 1096 women in 8, cities
in a country during 14 years:

No. of 0 1 2 3 4 5 6 7
suicides ) .
Frequency - | 364 376 218 89 33 13 2 1 -

Fit a poisson distribution to the‘above data.

Solution : Sincem is not known, it can be estimated as follows :

P e 1 1295 ‘ - 1.18 -
m= X =-N-Z i% = ———1 18 Therefore, p(0) =e™ = e:!18= 30728 (app).

109%
Table-8.3

X % . ' P) |- *E=NxPw.
0 1.1800 - . 030728 336.8 =337
1 0.5900 | 036259 1397.5= 398
2 0.3933 021393  '2345~235
3 0.2950 008414 922=~9
4 02360 00482 | . 27222
5 019%7 ° |- 000585 - 64~6
6 0.1686 A ; 0.00115 : 1.3 =1
7 i 5 0.00023 - 03=0

. , 1 ¢ 109%
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" Since the number of sulcxdes cannot be f'racnon we converted the expected -

values into nearest mtegers ‘

8.4 Negative Binomial Distribution

The equality of the mean and variance is an important characteristic of the
poisson distribution whereas for the binomial distribution the mecan is
always greater than the variance. But its opposite feature that the
variance is greater than the mean is seer in negative binomial distribution.
The negative binomial distribution has been found to occur in many

blologlcal situatibns and can come about as a result ‘of clustering (or'

contagian) among the successes of an otherwise binomial population e. 8
death of insects, number of msect bites per apple etc

A random variable x is said to follow a negative bmomlal distribution if its
probablhty function is given by.

-

“where p is the probability of successand p+q=1.

Derivation of Negative Binomial Distribution :

Let p (x) be the probability that there are x failure, ‘précecding the rth
success in (x+r) trials. Here the trials are independent and the probability
of success p in a trial remains constant from trial to trial. Clearly the last
trial must be a success whose probability is p. In the remaining (x+r-})
trials, we must have (r-1) successes whose probability is given by

1 ren ' :
("” )prq : H T e 832

'Hence multiplying the two probabilities we get,

+r-1
pix) = (x :_!:] ) pP'q*; x=01,....andr>0

e, (117 (1) [ (2)-(2) ]

(x+r-1)(x+r 2) ...r+Dr
x!

__(-1)".(fr)(-r-1) ......... Grex w2 «ban+1)
- oAl : -
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-r .--'
an() A

Therefore (8.31) reduces to p(x) = (-:) P x=0,1, 2 (8.33)

which is the (x + 1)tk term in the expension of p’(1 - q) ", a binomial

expansion with a negative index. Hence the distribution is known as
.

negative binomial distribution.

Remarks : _
1. The assignment of probability is permissible since,

o< o< :
: I
T p=p" X (x) Cq* =p1-9 =1
x=0 x=0 i
2. The distribution contains two parametérs pandr.
Properties of Negative Binomial Distribution :

Mean (W) : p=pl; =Ex) = T x (—xr) p-g*
x=0

| = ey ferd ‘
=pq 2 x.-xl.(xi} ) (-g*1
: x=0 ‘
) ; ‘e -7-1 v
PCqEn X (xr-l ) -q¢!
. x=1

=rqp - "‘=rqp’p”‘1_:-§- ' | ! asbinea (B34
Variance (02) . : '
Weknow iy’ = E6)= EIx(x-1) + x]

=Elx(x-D]1+Ex) -~ (8.35)

Now, E[(x-1)x] T x(x -1)p(x)
. =0

X=

s -r -r-14f-r-2
= P92, on(x-])-x—.-;—_T( xr-2 ) (-q?x-z
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o

=p qz(-r) (-r-l) Z ( x2 ) (’q)"‘z

= r(r+‘l)prq2(1 -q)"'*z-

: 1)42 ; ; ‘
r_(r;rrl);"q g r(r ;z ) R G (8.36)

- From (8.34), (8.35) and (8.36) we have,

L Hr + D2
Ha = +3

S =y g2 ;rﬁﬁﬂ*ﬂ'?ﬁ:a'

‘Remark : In this case, mean is less than variance whlch is a dlstmguishmg

feature of this distribution, «
. Moment'Generating Function of N egative Binomial Distribution :

The m. g. f. about origin of a neganve binomial variate x is.

M(t)=E(e%) = thx ( )p’(-q)"

. prz‘ (xr) (-qeh X = pF (1 e " | 3 (8:37)
Dxfferenhatmg M(t) with respect to. t we get 7
dM
()—p"(-r)(l -q ) T-1(-qe')
_~rqpre'(1 gty r - : ' AR = (8.38)
, dM(b) N 4
M =gt Je=0=rep" (-9 =rqp7p-r-1 =§,

Again differentiating (8.38) with respect to t we get,

d?M() i
Gz =r9PGr-1(1-geh) T2 ‘)e‘+rqp’(1 -qet) T let

=r(r + Dp*q’(l - qe') r-262t 4 rqp(l - qe) Fodgh

dzM(t)
' =gz Je=0=rr+ D (1 - e rap - g7
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rr + g2
= vl
. 'P
A =?, on simplification.
Third and Fourth Moments : Following the method used in binomial and
poisson distribution for the calculation of third and fourth moments we can

easily show that the third moment, fourth moment, B1 and B, of the
negative binomial-distribution are as follows :

(1+4q) + (+2)]
T

&__pa_ 1+S andﬁvl—ﬂ'B Eﬂ:r+2

~ Poisson Dnstnbuhon asa Lmuhng Case of Negahve Binomial Dlsmbuhon
Negative binomial distribution tends to poisson distribution as r o< and

mean -—-?‘. = m (a finite number).

o r_cl r r :
We have, m = pr,p e e 0 )

Py T om
-or,p(1+— Se OGP =o Henceq:;;.

The probability function of a negative binomial variate x is

‘P(")f (x +r- 1) P

& Et (x) = 1
o< e r—)x(x+r )(m”‘ ("‘

(x+r Dx+r-2).....(r+Dr Lt ( T

r
o x! r—oc m
1+—) (]_,_.—)
m"Lt x] x 2 1
" i - ) ..... 1+ )(1+—) T +x

S mx Lt Lrex) m
m— e x'e“"

X ‘p—yoc r
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Lt e - MmX

& v plx) =

which is the p(x) of poisson variate with parameter m.

8.5 Geometric Distribution

* A random variable x is said to have a geomcfﬁc distribution if its
probability function is given by ,
pP&I=pa¥ ; x=0,1,2: ... o £ R (8.39)
where p is the‘probability of success ;and p+g=1 |

Derivation of Geometric Distribution : Let p(x) be the probability that -
there are x failurespreceeding the first success in a series of independent
trials. Let the probability of success in a tnal is p which remains same from
trial to trial. Then clearly, ’ ’

px)=q*p; ~%=0,1,2.....

\ ' 3 4
Remarks :

*- '
(1) Since the various probabilities for x = 0, 1, 2......%are the various
~ terms of the geometric pmgressnon Hence the name of the distribution
is geometric dlstnbutlon

(2) Clearly, a551gnmem of probability is permissible.

since Tp(x) }:qp p(l - q) b=,
x=0 x=0

(3). If we take r=1in (8. 31), the probability function_of the negative
binomial distribution, reduces to, . p(x)-—q p; x=0,12...

whxch is the probability. function of the geometric distribution. Hence
negative binomial distribution may be regarded as the generalisation of the
geometric distribution.

Properhes of Geometric Distribution :

Mean (j.l.) HL=H"=Ex)= T xp(x)= Z xq"p.
- x=0 x=0
- ' @ . S- . . /,l
=pqZ xq* 1 =pq(1-q)-2= - \ Lk — L) P

x=1
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Variance (02) :
Weknow, Jy’ =EGD) =Elxx-D]+Ex e (8.41)
Now, E[x (x-1) ]= X x(x-1)q*p

x=0

oc

_2pq2 : {E) *‘2=2Pq2(1-q)’3=g'- | e (842)

_Therefore, from (8.40), (8.41) and (8.42) we have variance,

il e 93 g.49 -
=tk ”’Q’gwp 5 §.+P &

Moment Generating Function of Geometric Distribution :

The m. g. f. about origin of geometric distribution is,

o< o<

M) =E(e®= ¥ e*gp=p X (geP=p(-geh ! .. (8.43)

x=0 x=0

., dM(®) '

dzM [ - '
a"dl-lz"_tz(L) § =Z$-+ %(on simplification).

=
Mferllz=ﬂ'2'u1'z=§‘+a-§z='§

Hence the mean and the variance of the geometric dmnbutlon arcg'and %

respectlvely obtained by both the ‘methods.

8.6 Hyper—geometric Distribution

The distribution is so termed as the moment gencratmg function can be
expressed in terms of hyper-geometric function. -

W‘hen the population is finite and the sampling is done without
replacement, we obtain hyper-geometric distribution.

Suppose r balls arc drawn one at a time without replacement from a bag
containing m white and n black balls. Then the prnbabllnv of getting x
white balls.out of r is given by,

113



< An Inuoduchon to'l'he Thcory of Shtishcg

(“)(rx) ‘

POX) s =0, L, R © T e a (8.44)
‘ m+“) "r<m .
r .

Remarks :

1) m, n, and r are known as the three parameters of hyper-gcometric
- distribution. k ;

'2) The assngnment of probab:hty is permissible-

e 8 () /€Y

Cémparing the co - efficients of XTin (14 )M(1 + x)M=(1 +x)y™ *+ n

mwXJﬂCX)C”)

Properties of Hyper-geometric Dlstnbuﬁon ; , y ~

: N ' r . .
Mean () : p=p,"=E(x) = £ Xp(x) o

. x=0

(i“) (") /7).
CEEEDE) )
(m)x;m)(r» L
(G oty T

" Variance (02) : We know, " My <E6D) =Elx(x-1).+ x|

=Elx (x - 1) | + E(x) RS P
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Now, E[x (x - 1)1— Z x(x - 1) p(x)-
=0

& e (DR

= T XK ) ——i

x=0 (m+n)
- m(-m 1) m- 2
r Sy Y

_ Z e xr -1
*fo (M)
(m+n) ( ) (1‘ x)

_ m(m-1) m+n-2 ;

" fm+n -2 . s
. r N 5

_m(m-1)r(r-1)
“(m+n)m+n-1)

Therefore, from (8.45), (8.46) and (8.47) we have,

, _mrim-1)r-1) mr,
2 “(m+n)(m+n-1) T (m+n)

Hence the variance, 62 = 1, = ', - 1,2

_mrm-1Dr-1)  mr y
“(m+n)(m+n-1) T (m+n) (men?

mnrim+n -r)°

“minZmn-1 ©N sfmgliﬁca’tion).

8.7 ‘Mu Itinomial Distribution

Th:s distribution can be regarded as the generalisation of bmomlal

: dlsmbutnon

¥

Let E;, Ez ...... E.ber mutually exc]us:ve and exhaustive outcomes of a trial

with respective probabilitics P pz ...... Pr. wherepr+ pp+ ...

115
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The probability that n trials will result in E; occunng xq times, E5 occuring x3°
times.......E; occuring x, times in a fixed definite order is
X1 X2 Xy

p] P2 s ekaemia Pr - Z)q:l’\.

But we are interested in events occuring in any order. The number of mutually

exclusive ways in which this can happen is

Hénce the required probability 'is

This distribution is called multinomial probability disti-ibution as the
expressnon is the general term of the multmom1al expanswn of
(PPt tp)™.

Moment GenerahngFunchon of Multmormal Dwtnbuhon _ )

"

The moment generating function is given.by

MU = Mty, g ) = B4 224 s tXey

ZEQHX] + taXp + e + te Xy n! _ x; Xp | -
X'Xol.oxr!  pP1 P2 TV Pe

n! ] X ‘ st
=Z m‘*(ple n* (pzelz) 2 Pre r)xt'.

Mean (1) :

Bf

(t) :
u' u']l_E(xl)_ dt t.l_tz_ :tr=0

=np;eli(prel] + pres + it p,c‘r) Ard,
=np;: ‘
Variance (62).

d?M()
We have, },lz =E(x) = T
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We know, :

M) t s 4 t n-2
T:n(n-])pizez‘i(ple1+p2ez+ ........ +pet; )

+npieli (pret] + poely + ...pety) M-l
L d2M 5
“TaZ Ju=ty=..=t,=0 =n@-Dp?+op

. Variance (0?) =y, _'= H2'- 112 =n(n -1 )pl2‘+npi -n?pZ =np(1-py);i=1,2, ...r.

.E( )= M () i
T dedy t1] ty=..=t;=0
-_— - aee == T bl .
dZM()
5, drdt, *hnpie‘n(n l)pjet|+ (p e‘1+p2e'2+ AP r) n-2
dZM(t)]. . :
T |# =n(n-Dpip;
gy t1=th=..=t,=0.

We know, Cov (x,x) = E(x;x xj) - E(x;) E(x;)
=n(n- 1)p,pJ - n2 PiPj =-npipj ; i#.
8.8 (a) Discrete Uniform or Rectangular Distrib'ution

Among the discrete distributions, the discrete uniform distribution is the
simplest one. A random variable x is said to have discrete uniform
distribution if it assumes a finite set of values each with an equal
probablhty of occurence. The probablhty function is given by

P)=—; x=12...n } L T SO (8.48)

If a fair die i 1s tossed the poss:ble out-comes are 1,2, 3,4, 5and 6 each w1th

probabi hty g

1 ~
Hence in this case P(x) =g Thus the probability is uniform for all values of

the random variable'x.

8.8 (b) Continuous Uniform or Rectangular Distribution

A random variable is said to have a continuous uniform distribution over the
interval a to b if its. probability density function (p. d. f) is given by,

,f(X)=F-_a-; as<x<h,
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Remarks »

v

1) aandb are the two parameters of the distribution.
"2) The graph of uniform p. d. f. f(x) is given below : -

f(x’, e -

I
i _
: . b, X
Fig. 8.1 Rectangular or uniform distribution.

Properties of Uniform Distribution :

b b1 . 1b2-a? asb
Mean(p) H=Ex= [xf(x)dx- J‘xbadx A E
_ | L
Variance (02) : We know, " = E(x) = szf(x)dx ) -
1 1. 6% als.ab+b? .
J' b2 =3 (ba) - 3
a -
_a)2
Now vanance 02 o= 1,y =_(b_2a_)
ty 5_r+'l‘ar+] B
We can easily shf)w that, E(x") =(T;m . _‘ >
(b-a)

It- can be easily calculated that‘p.g -0 and |.|.4 A —
nerefqrg, By=0and By =§.
. 89 Normal Dlstﬂbuhon

The most tmpnrtant and useful distribution. in Stanshcs is the normal
distribution. A random variable is said to have a normal distribution if its
probability density function (p. d. f) is given by,
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Cx 2
e 27 ; ~e<XSoc IR e (8.49)

f(x) =
' 2n

where |t and g2are the mean and variance of the distribution.
Remarks : ‘
1) jand o2 arc the two parameters of the distribution.

2) The normal variate is often expressed by N(i, od.
3) The assigriment of probability is permissible,

o< < 1 L X - W\ 2
since If(x)dx: j\/_ e'z(c)
dx
e V2T ©

i j -ktzl-'ldt

1 1
T_F 53=1, since l-—= \j;
T

4) The graph of f(x) is a famous bell shappgd curve. The top of the bell is

directly above the mean p. For large values of G, the curve tends to
flaten out and for small values of G, it has a sharp peak )

-

Fig. 8.2 Normal distribution’

1Y
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Derivation of Normal Dlstnbutlon (Ilmmng form of Poisson Distribution) :
Normal distribution is a limiting form of the poisson distribution with the
- parameter m—e< and x—oc

The probability function of the poisson distribution with parameter. m s
given by *
e M X

p(x) = x,m, x=01,2...0¢

The starling’s approximation to x!, for large xis = _
=R X‘-] | :
2Zre X x Yy
5
' ' ) ¢”MmX
Therefore, lim p(x) = lim '—_'r
: m—yec  m—sec V2me *-x 2
X—poc
xX-m
=lim - -8 (
m-—-oc \j
X+
‘ o S
=_]_ lim eX'm (E) o
—, "
Vznm‘ m-—oc © .
LLt-——z or,x m=7vVm or,X= m+/\] 55 R .

'\Jm
> 3 7 m 2

B g -1
O, =1+ or; =[] ==
" ()
, "
, X+ 3
a0 mfMm 2
Again let @ = o "‘(x) -
=y T : 1
g VM o N (m+;7.\/m+-2-
Taking logarithm we have,

/
log' O = /\lm (m+/\!m+ )h ] + —
o 3) 0 =)

- o
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ol (2 ¥me3) (7 —m ....... ).

2 : SO
=z\}m - zNm+ ik #2 + factors containing power of m in the denominator.

lim log & =- 17?
m—ec 5
1 C(x-m)? _
SP=e ) 2=¢ 2m . (Putting the valuc of 7)

(x-m)2
Hence lim p(x) 1 i

= "2n —e<x<ox
m-—e< '\fzm

X—)o<

_(x-m)?

: 1 , j
L of(x) = : 2m << x<ox , ‘
\ 27tm

x-m x-H (since mean and variance of
(5 ‘@ poisson distribution are same)

)

We get finally,

If we put

. x-1
1 3 e
f(x) = e (o] ; me< x< ox,

This is the p. d. . of the normal distribution with mean p and variance 62. '

Chief Characteristic of the Normal Distribution and Normal Probability

Curve: The normal probabxhty curve with mean g and variance 6 is given
by the equation

e 5 LA
f(x) = ] ez(o)z;-

and has the fn]lowmg propertles A
1. Thecurveis be]] shaped and symmetrical about the ordinate x = L.

2. Asxincreases numerically, f(x) decreases rapidly after the'point x = .
1

3. The maximum ordinate is at x = pand is given by y =
2

3,
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Points of inflexion are equidistant trom the mean.
The curve extends to infinity on cither side of the mean.
Arithmetic Mean, Median and Mode of the distribution coincide.
Allodd moments are zeroand By =0, =3.

" Lincar combination of ipdependent normal variates is also a normal
variate. - fw
9. Mecan deviation about arithmetic mean is

2 4
— G =17 O (approx).
T '

2
10. Quartile deviation is equal t()';G.

% NG O

11. Arca property :

Pu-c<x<spu+0)=06826.

P -20 <x <P +20)=09544.

P - 30 < x< [+ 30) = 0.9973,
P(-196 < H<196) =095
c ,

X -
o

P(- 258 <

Mean and Other Moments of Normal Distribution :

Mean () :
oc L3 ]_ ‘X =Ll 2

U= u]’ =Ex)= (x f(‘()d)( =[x e 2 el )

g 1 ’1-'72 . .\-p.
= [(Q+02)r 8 27 [I’utting z ='—-:| ;
- Jwoat= T, -
=p+0=p

1

Since ze” 7 7% is an odd function of 7.
Odd order moments about mean : ]

a o oc 1 .'l X.-}l ? -
B 1= I'(x-u)z“ Fixdx = I(x-u)z“‘-—-“-c 2( o )3'\'

-oC . 3 ‘ - o< 2m2
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oc 2 '
L I(cz)z'*’ s [Puttlngz = —-LL-]
Var i) b, ‘ -
+1 ©=

vyl
or, Moy 4 1= BT a
: N 21 I

-oc

Since the integrand is an odd function of z.
Hence all odd order moments about mean are zcro.

Even order moments about mean :

o X u
= 1
or = J'(x-u)”f(x)dx-“ j(x u)zfe ( X

! \}21!:(52
sads “&c al 21’2 I:P tting z = x'”]
\/;J‘ Z)-"e utting z = o

@ = L
s 7¢lg s
\En:,{ dz

Since the integrand is an even function of z, we have,

202f 2
J'(2t)’e e [Puttmg 5= t]
no - \/—_

S |
:ﬁoje l(T+2)'] dt.

1
[k

(Y (D) (D HE

2 1.35.....(2r-1) 0'2"\] rr' Sincel. 15= \j;
PR S L

135.....2r- Do,
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Therefore, when r=1; Py = 62 = Variance.
" Again whenr=2; qu—1~304 =364
and 3 =0, as we have obtained that odd ordcr momefits are /cro.

Hence B4 —-'——Oa nd B, =—-3
H? w2 i
These two values generally identify the type of the distribution.

Moment Generaﬁ'ng Function of Normal Distribution :
The m. g. f of a normal variate about orgin is glvon by,
o<

M) = J‘c"‘ f(x)dx

-0<

. oc ’ —y 2 - i
1 , ML SN 2
i J.et(u+cs’/.) & dz. [Putting,z:x H] )
’ ‘ » .G :

ettt

g T,
je 2 dz

=0

2

o 1 “
°3 ((z-ot)%-02t2)
e “dz.

The moment gcncranng function (m. g. £.) of nnrmal d:stnbutmn

about mean
is gwcn by,
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Mu(t) =Elet*-M) |=e" F“E(e“‘)

= e HM(t).
22
-JLt it + G"t? 4
—e ].1 T e 2
Hence,

sallGil

. t26? _
Mpd(t) =1 AT ST et kb + :(850)

T
tr 3 e 1S
Now the co-efficient of ;_Tgives M. the rth moment about mean. Since there is

noterm with odd power of t, all moments of odd order about mean vanish,

i, €. u2r,1=0, which follows the earlier resultzr

And the even moments W, = Co-efficient of 57 oo in (8.50) which is equal to

G2 (2r)! !
2l ¢

o [2r 2r-1) 2r -2).....5,4, 3,2, 1]
“2nr!

0¥ [1.3.5........ (2r- 1] [2.4.6.....(2r - 2)2r]
= g zrr' =

02'[135 ........ 2= DI 2 [1.23....(r- Dr)
28 ¢ :
"= 0¥ 1.35...(2r - 1), which is equivalent to the carlier result.

Standardised Normal Variate :

A variate is said to be a standardised normal variate if it is distributed
normally with mean zero and variance unity. :

-

" X- . . 5
Thus if, x~N(U,62), then z = H.-3 is a standardised normal variate with
: g

E(z) =0and var (z) = 1 and we write z ~ N, 1). ‘

-

The pd. fis f(z) = \[—_L gL ‘ e (8.51)
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- Area Property of Normal Probability Integral :

If x ~N(l1,09), then the probability for the interval from the mean i to the
value x; is given by,

]
l’(quSx1)=\/_j ) dx

X- U
(o]

Let =7 ,;dx =0dz. urhcnxzu,:ﬁ:()

. _ o2 i
and when x =x4, 2 =1—E= 71 (say)
G

ol =i
1 }To. E‘z-dz.' '

2n 0

APUSxSx)=PO<z<z) =

Vi

Where 7 is the standardised normal variate. The definite integral j‘lf(l)d/

Te
is known as normal prnbablhty integral and the arca under standard normal
curve between the ordinate 2 = 0 and 7 = 2. These areas have been tabulated
for different value of z;, at an interval of .01. [Such a table is provided by
Biometrika Tables for Statistician Vol-1 by E: S. Pearson and O.H. Hartley
P.P.104-110.]

Example 8.5 A rand_om variate X is normally distributed with mean 12 and
standard deviation 4. Find out the probability of the following :

“1) x =220 i) x<20 i) 0sx<12

Solution : Here we have p=12and 0 = 4.

20-12
4

i) whenx =20, z= =2

" Px220) = Pz22) = PO < z<)-PO <2<2)
=0.5-04772 = 0.0225.

i) Px<20)=P(z<2)=Pl-ocg 2<0)+P0<2<2)
=0.5+ 04772 = ().9772.
i) PO<x212) =P3<7 <0 = P0< 7 < 3) = 0.49865.

!%
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Importance of Normal Distribution in Statistics :

Normal distribution plays a very important role in Statistics because of the
following reasons : 2

1) Most of the distributions occurring in practice ¢. g. Binomial, Poisson,
Hyper-geometric distribution etc. can be approximated by the normal
distribution under some assumptions. Morcover, many of the sampling
distributions e. g. student's t, F and x2 tends to normality for large samples.

2) Even if the variable is not normally' distributed, it can sometimes be
brought to normal form by simple transformation of variable. For example,

if the distribution of x is skewed, the distribution of Vx might come out to be
normal.

3)  The distribution has attractive mathematical properties which are
very useful from theoretical point of view. '

4)  The proofs of all the tests of significance in sampling are based upon
the fundamental assumption that the population from which the samples
have been drawn is normal.

5) Normal distribution finds large application in statistical quality
control theory. ' ;
‘Log Normal Distribution : The positive random variable X is said to have a
log normal distribution if log x is normally distributed. The p. d. f. of x is
given by : -

i ;
1 - —llogx-puP - '

5 20 e 2 ogx-W" . 50, : ..(8.52)

© x\2no? ‘ E

Moments : The rth moment about origin is given by

}_11.’ = E(x") = E(e"), where y =log x or, x = ¢.

= My(r),] which is the m.g. f. of y, r being the parameter.

=eMr +Er202, since y = log x ~ N(u,0?).

Remarks :

1) For a particular case if we take lL = log a, a > 0.

1 1
then 1’ = e r log;a + Erzc% =aF & 5!202.

o2
Now taking r =1, u1'=aeT
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262
e

[}

and if,r =2, My =a

ey ea® €70

2) Log normal dlsmbutmn arises in problcm of economics, biology,
gwlogy, and reliability theory. In particular, it arises in the study of
dimension of particals.under pulverization. :

3) Ifxy, xp...x,isa set.of indcpcndéntly idinticall)} distributed random'
,varlab]c such that mLan of log x; is W and its variance is o2, th(.n tht.
pmduct X1 2. Xp 1S asymptuhcally distributed accordmg to log norma]
distribution with mean. and variance no?,

8.10 Gamma Dlst-nbuhon

A random variable is said to havc a-gamma distribution wath parameter n
if its.probability density function is given by :
Xy -1

T

and is denoted by G(n).

f(x) = 0<x<ec, n>0. ‘ ) ©.(8.53)

Remarks :
.
o5 E b
1) The function J‘ e*x"! dx is knwon as gamma function and is denoted by
[n. Sy ‘

2) The assignment of probability is permissible, since
oc ] o<
{t(x)dx ~r~J e ’d\—-—r"zt
( o - B .. o
3) A continuous random variable having the following p. d. f. is said to
have a gamma distribution with parameter X and n if

AMe - Axn-T () <x<o:

" fke , :
G n " nAs0

and is denoted by G(A,n).

4) The cumulative distribution function (c.d.f is called the lncomplcto
Camma Functlon and is denoted by

ﬂp>=—j’c=~x"-'dx; x>0 ‘ B 58)
[ n>0

I
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Properties of Gamma Distribution :
N .

Mean (W) = p;” =E(x) = Xt dx
0

oc o o<

==—(xe Xx"" 1dx=— e X x"dx.
h |
r(n+i) nrn
[n |-n
Variance, (0‘2)-:
o<
Weknow, pp" =E6?)=[ x2f(x) dx.
. 5
e
:I_—Ixze'xx“'ldx
n
R 1
LA kgt 2) et 1) "r"=nm+1).
T B P 3

. Variance0% = 1y = 1" - ;2= n(n +1)- n? =n.

Third moment (13) :

Weknow, i3’ = ) = | x> f(x) dx
: 0

o o

. .
l.nfxg e Xx"-1dx Tl Ie"x’”zdx
n

_l—(n+3)_ (n+2)(n+l‘)nf—n
[n [n

m n(n+1) (n+2).

SoMy =Ha -3 U+ 2142 =n(n+ 1) (n+2)-3n (n+1)n + 2n’ -

o<

Fourth moment (1) : We know, u_4' =E(x% =j‘ x4 foodx:
s 0

1 x e
-:I,.—j s ‘dx——J‘c * ¥ 3 dx
2 :

129
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r(n+4) (n+3)(n+2)(n+])nfn
[n [n
7 M = Ha -+ o2 - 3y
=n(n+1)(n+2)(n+3)-n- (n+1)(n+2)+f:'n(n+l)n2 3n4

=nn+1)(n+2) (n'+‘3)‘

= 3n2+6n (on simplification) _

(n? 4 3n?+6 6
Thcrcfore B1 -u—zz = =} and B> =ﬁ2= %—__9_:3_’_;.
K Ha

The Moment Generating Function of Gamma Distribution :

Them. g. f. about origin of the gamma distribution is given by

oC

'3
M(t) = E(e™) =—-"c‘xc'»"x“"dx
[n

o<

1
=—jc"‘(]")x“'1d)<‘

o< - .
i S LT R
—{nojc i — l‘uttmgz—vx( -tl_

oc .
= — ~zyn-14,
Mna-on JE% '

1
= n=
(1-v"[n {11

= (1-p™ . cereenee(8.56)

Differentiating M(t) once, twice ctc. with ret;pcct to t and pumng t=0, we
got the same result of the moments.

Remarks :

1) Like poisson distribution, mean and variance of gamma distribution are
same. '

2) As n—, By =0and By= 3. Hence the distribution tends to normal
distribution as n becomes very large: '
3) For more general gamma distribution,

l“'c'k".x“'ld 0<x<

d F(x) = X,
[n An>0
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. - Ctyn ' N
The m. g.f. is given by, M(t) = (1 - -7:) ......... (8.37)
Theorem 8.1 The sum of two independent gamma variates with parameters

m and n is also a gamma variate with paramecter m + n.

Proof: Let x and y be two independent gamma variates with parameters m
and n respectively. The m. g. f. of the sum z = (x+y) is given by

M, (1) = Myyy(8) = My(®) My (®). ’

(T R R R PR G

whlch is the m. . g f. of a gamma variate with parametrr m + n. chce the
result. ’

Remarks : This result can be generalised for any number of mdcpendcnt
gamma variates.
8.11 Beta Distribution

Beta Distribution (First Kind) : A random variate is said to have a beta
distribution of first kind if its probability density function is given by,

xm-l(-l_‘x)n-l’ 0<x<1- -
B(m,n) " mn>0

f(x) =
and is denoted by B;(m,n).
Remarks :

1)" mand n are two parameters of the distribution.
2) - The assignment of probability is permissiblc since,

i 1 1 1
jB(m = x™- 11 -x) "t dx g
0 !
S |
1 B(m,n)
= 1 1 =
B n)ﬁ[ xm-I(1-x)n- dx =Bn,n) = 1.

3) The cumulative distribution function is call-.d the Incomplete Beta
~ Function and is denoted by, g

0<x<1

m-1 n-1 .
x™ (1 -x)"Tdx; >0,

1
HQ:Immm
0
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Moments of Beta Distribution :
Fhe rth moment about origin is given by,

‘ | Ixrxm-i(]_x)n-l;

1 "\'u\‘)dxzj B . X
o | T .

|

1
i VT oy n-T gy :mB(mH,n).

IR

o nm+n) [m+olm+n

tn - n - r)irmrn. N |—(m+n+r)[m

In-partienlar, when r=1, )

o8 |—(m+1)f(m+n)_ ml (m)[(m + n)
f(m+n+1)|—m ‘(m+h)‘r(m+n)|_m .

SNean” uog

m
m-n
L Tm+)[ma+n) m+Dmlmlm+n)
whenr-2;ly'= L - —
. [tm+n+2)[m vr(m+‘n+1)(m+h)r(m+n)fm
mun + 1) ‘ ‘

- mim+n+1) : .k
: m(m + 1) m
m+n)(m+n+1)" (m+n)

SoVananee, 62 =g = Py’ - 1y 2

; mn ; 3 ek
il or- e e (on simplification). )

Hnmlarliv [V and My can be obtained and the values of B and Py canebe
- \ul\.lli‘ll‘L‘\.L = - ) .

Beta Distribution (Second Kind) : A random variable is said to have a-bota
+ distnbution of second kind if its probability density function‘is given by

g (8.39)

g | xm - 1 s
R B(m,n) '(]+x) m+n m,n >0

- and 1< denoted by By(m,n).

- ..
Ibwe put 1l +x = ‘)'; in the above p. d. f. we get the beta distribution of the

sirst kind, : . ' =

o Hv) = Sl 1-v n-1
¥ = Bma, Y Y
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1 )
If we put x ='1-Win the beta distribution of the first kind we get (8.59)
. ] ; *

Beta Function : Thefunchonf XM= Y1 -x)n- ‘;*lx, 0 <x<1is called the beta

funcnon and is denoted by B(m n).

Relahonshlp Between Beta and Gamma Function :
- 3 ) ' oc l o< 1
Weknow, [m[n= Je"‘xm‘1 dxfe-yyn- Idy.
§ i 0 @

o oC

_I je (x+y)xm 1 n ldxdy

. X
Let u=x+ e e
& Xty

<. X=uv,y=u(l-v)and dxdy = I ]‘ I dudv

o
du du - g
where IJ [ - dx =u .
| . g -
dv " dv

Asx and y range from 0 to =<, u ranges from 0 to e and v ranges from 0 to 1.

» [mln=f fe @vm Tu(t - vir-1 ududv.
00 - g
o 1

:J’e'“um*""dujvﬁ‘"(] -V ldy.

=[(m+ n) B(n; n).

[mln

*. B(m,n) =
[(m+n)

Ly 11
Example 8.6 Find the value of l(i; 3 ) and hence l_ (%) :

. o o
Solution : chnow,fm rn=Je‘xx’*T"de'0'yY"' 'dy.
0 0

o o
=] Jeiemy 1yn “Tdx dy.
0 0
Letus put, x=rCos28 ;v = r Sin20.

..... (8.61))
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- dxdy =] ] | drd0=2r Cos8 Sin® drd6.

. T
As x and y range from 0 to o< ; r ranges from 0 to o< and 6 ranges from 0 toz.

-7
Therefore (8.60) becomes, rm [n= 2] Ic rpm+n -1 Cps2m-19 sz“ 19 drd6.
00
s
o< = 1%

— (e Trm*n-14r2( Cos?™- 10 Sin2" " 10 d0.
J :

T .
=l_(m+n)2j Cos2m-19 Sin2n- 10 d6.

Cos2m- 19 Sin2n-19 d6.

or, Bum,n) =2 J‘ Cos2™- 19 Sin?* - 10 d6.

NuwB( -ZJdQ rt,

r1|_1

Aga:n B ( =n, Since, [1=1

| T
24 ()-V=

-Example 8.7 If x and y are independent gamma variate with parameters m

’- . ; ‘ . B X
and n respectively then show that the variates 'u = x + vy, v === arc
. : - +V

¢ -
independent and that u is a'Gm+n) variate anid v is a By(m,n) variate.
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Solution : We have, f(x) = I:— e Xxm-1 {0 ; x>s( )oc
m
1 ot
e R
; " _ 1

Since x and y are independently distributed, their joint probability
differential is given by, '

dF(x,y) = f(x) f(y) dxdy = e (V) xm-1yn- Taxdy,

1
[m[n

Now,u=x+y; v=o—"
X+y

XV} y=u(1-\:r). Thendxdy=|] | du dv =u du dv.

As x and y range from 0 to o< ; u ranges from 0 to o@ and v rangcé from 0 to. 1.
Hence the joint distribution of u and v is given by,

1
dF(u,v) = e Yuvy™ ! fu(d-v)}™ lududv.
[mln

e-uumen-1quvn-1(1-v)n-1dy,

1
[mln
e-uym+n-1 Vm-IA“ _v)n-]

du,
[(m+n) i B(m,n)

dv.

This shows that u and v are idependently dlstnbutcd as G(m+n) and By(m, n)
variate respectwely

Example 8.8 If x and y are independent bamma variate with parameters m
and n respectively ; show that

X

u=x+yandv=r areindependent and that u is a G(m+n) variate and v is a
Bo(m,n) variate. .

Soiution : As in Example (8.7) we have,

1
dF(x,y)=|- i e () x™-1y"-1dxdy.
mi|n

X
Sinceu = x+yandv—; we have, x=

_u
]+v’y T+v

anddxdy = |] |dudv =.(]Tuv)7 dudv.

As xand y range from 0'to o<, both u and v rangce from 0 to =. Therefore the
joint probability distribution of u and v brcomes

cel
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m-1
U
AP = [m['n Fealn (]+v) (1+v) -H_V)T dudv

e-uum+n-'[ 1 Vm-]

[(m+n) duB(m,n) (ryymemdv O0<u vees;

showing that u and v are independently distributed as G(m+n) and Ba(m,n)
variate respectively.

Remarks : The above two examples lead tp the following important results.
. If x is a G(m) variate and y is an independent G(n) variate, then
1) x+yis a G(m+n) variate i.e. the sum of two mdcpendcnt gamma

variates is also a gamma vanate

-x 4 : .
2) ;;is a By(m,n) variate i.e. the ratio of two independent gamma variates

is a beta variate of second kind.

x . . i
3) ;}-;15 a Bi(m,n) variate.

8.12 Exponential Distribution

A random variable is said to have an cxpcmcnnal distribution with
parameter A > 0 if its p.d. f. is given by

_ -M XE.O. » .
f(x)—?ue : {;\20 . i sl

The ordinate of the, frequency curve is the highest at'x = 0 and it decreases as
x increases. The frequency curve of this distribution is shown in Fig 8.3. -

A=t

R

Fig. 8.3 Fxponential distribution with A =1, & - 2.
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Properties of the Distribution :
Mean =p=p"=Ex = [xflx) dx = ."xﬁe Ax dx
0 0 .

ec < 1
=—xe';°‘] +je‘7°‘dx-—-—.
o A
Variance : We know variance 62 = 1y = 1~ 1,2

2
It can be easily shown that u', = E(x?) =—

A
2 1 1
Gz#bﬂﬁ 2R

: Y
Hence standard deviation = x
The Moment Generating Function of Exponential Distribution : _

- oc
The m. g. f. of the distribution is M(t) = E(e®) = lJ‘ ee- M dx

< .

= )\J'evx(l- t)d)(.
oc

(2

r=0

tF '
We know,’ p,’r = E(x") = Co—cfﬁcigﬂ of T in M(t), which is cqual to

o=t o "2
=, L2=—Tand soon.

A A2

The thxrd moment and fourth moment come out to be U3 ==

u’1 =

L
23 s g = Ay
Therefore, B; = 4and $, =9 which are independent of A.

Remarks :
1)+ The exponential variate is an special case of G(A, n) variate whenn = 1.

2) The mean and standard deviation are cqual.
3) The distribution is highly skewed.
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8.13 Cauchy Distribution

A random variable x is said to have a standard cauchy distribution 1f its
p-d.f.is given by ‘

f(x) = - jmoc<x<ec ‘ L Pewmead (862)
(1 + x2) :

In this case x is termed as standard cauchy variate.

In general, cauchy distribution with parameters A and [ has the following
p-d.f. )

) = A { 2l (863

A2+ (x -2l

LX<

Characteristic Function of Cauchy Distribution :

The charactcristic function of cauchy distribution is givén by

l) — - clh( B
i f AZ +(x - wz

Let us put%: y ~.dx=2Ady.

The range remain unchanged i. . -oc Sy < oc

e d
~ - WPL+Ay) -
Tth,‘(p(_t) == .J‘el KAy _Lzhy

-
g | cn;k\
= M -
= —rd
. T 1+v< y:
- o<

From the knowledge of Contour Integration we have,

~

=<
L.:tl\-

]—+;-_rdv e

% |

-oC

Therefore the ch. function of the cauchy distribution becomes,

& :
Q(Oéci‘pc'll‘l; A>0.
For standard cauchy distribution, 4y ] v

(p(l)‘—L"“p e | lI b '
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Additive '.Property of Cauchy Distribution If x; and xpare independent
cauchy variates with parameters (A, J11) and (A3, [p) then x;+x; is also a
cauchy variate with parameters (A1 + Ay, [y + M).

Proof : Ox + xp © = Ox;© dx,©
(Since x; and x; are independent).
—e it +u2>-(1 +A )l‘ |

From the uniqueness theorem the result follows. This property can be
extended for n independent cauchy variates.

Since (t) in (8.63) does not exist at t = o, the mean of the cauchy distribution
does not exist. Also the higher moments of cauchy distribution do -not exist.

The arithmetic mean of a set of observations of cauchy distribution is also a
cauchy distribution. In other words in a cauchy distribution, the arithmetic
mean of a sample of any size glves exactly as much information as a single
variate x

Moments of Cauchy Distribution : - : ,

o i
X

A .
E(x)= f(x) dx == [———d

X Ix x) dx It J‘ 12+(X11)2 X
X e

T 4 A2+ (xp)?
A T dx A (x4 ‘.
:“_n Ilz+(x—|.1)2 n -[12+(x pl)2

1}\“Zdz
=1 +-
"‘l.n[)@_,_zz

;O

The integra.I J’

2 .
dz is not completely convergent, its principal value,

N2 P y g P Pa

- oC

lim n .

V2 e I;@g

dz exists and is equa] to zero.

Therefore, in general sense the mean of cauchy distribution does not exist..
But if we assume that the mean of the cauchy distribution exists (by taking
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shie principal value) then it is located at . Also, obviously, the probuability
urve is symmetrical about the point x =l1, hence for this distribution the
mcan, median and mode coincide at the point x = 1.

o
Now. tp = E(x - )2 = I(x-u)z fox)dx
- 0o '
AT s i3 . .
j o dx, which does not exist since the integral is not convergent.
A2+4(x - H.)Z 4

Thus in general, for the cauchy distribution W, (r 2 2) do not exist.

8.14 Laplace Distribution ; # :

A continuous random varible x is sald to have Iaplace dmtnbunon if the
p.d. f.is given by,

v

] "y
f(x)——ell moe<x<oc, (8.64)

Characteristic function of laplace dlstnbuhon is given by,

-I o<
o) =5 J’e“"e'l X |dx.

-

' jCostxe [ x| dxai jﬁmtxe|"|dx

N -

- oC i L=
5 o

o

1
— — 3 | X
_ZAZJ‘C()stxx, | _ Id_x.
0
Since the integrands in the first and second integrals are even and odd
functions of x respectively.

: 0
) = J‘Costxc"‘ dx.

-0C

On integation by

parts
=1-¢2 cp(t) '
P a |
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8.15 Pearsonian System of Frequericy Curves

A st of frequency curves was developed in the first memoir of Karl Pearson
in 1895 and in two subsequent papers in 1908 by assigning appropriate values
of a, by, by and by in the following first order differential equation :

X T 8.65
dx b0+b1x+b'2x2 ............. (8.65)
For obtaining the equation Karl Pearson consu;iered the following
characteristics :

1) A frequency distribution genefally starts at zero, i. e. from a low
frequency, rises to a maximum and again falls to the low frequency. Thus the
frequency curve is generally unimodal. If the curve is represented by

d
y = f(x), then -L—Owhenx—-a
2) At the ends of the frequency curves there is a hlgh contact with the
‘axis of x. i. e. l' =0wheny=0.

3) The flrst four moments of the dlstnbutmn are sufﬁc:cnt to determine
the frequency curve.

Determination of the Constants of the Equation in Terms of Moments
Multiplying both sides of (8.65) by x™ and rearranging we get,
(box“+b1x“”+hof”’§¢hn~,£x“” + ax™) dx

Integrating by parts over the entire range of the variate x.

. o< o< Tt
Wehave, box" +bix"*1+byxm+2y| - f {nbox™1 + (n + 1)byxN
i
+(n+2byx" * Bydx=- [t L+ axMy dx.
-0oc
Assuming the high contact at the extremities so that,
[xTf(x) | = 01. e. X"f(x)—0 as x—o< or x—» - o<; and also
-0
e :
we know, I x"f(x)dx Ly, Ihamh moment. : o
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Considering that x is measured from the mean we get,

nbopn,+(n+l)b1un+(n+2)bzlln+1—l-ln+1+aﬂn-
Putting 'n =1,2and 3 using g = 'landu] 0, we get,

b] =a "
by + 3byl; = Wy :
(5.66)
3bjly + 4byll3 = M3 +aly .
3bptz + 4bjla + Sbolly = Hy + ali3
Solving (8.66) we get
b3y oVBiBprd
25B;-6B1-9) 1 25, -6B; - 9)
_ (2B,-3B; - 6)
2(5B, - 6B - 9) :
wheneuz =07, Bf“"" and By = l»l
2
[’uttmg the value of a, by, by and b, in (8.65)
we have, - :
dy -yX5By - 6B -9x + © BBy +3) : _—
dx " (2B, - 3By -6)x2 + & VBi(By + 3) x + 6%AB, - 3B
Method of Getting Different Types of Distributions : ’
The solution of the differential equation (8.65) depends mainly o7 ne
nature of the roots of the equation by + byx+byxZ = 0. The discriminant ot the

2 .
cquation is b;2-4bgb,. Let us define a quantity k =4gbz on which the nature of

various distributions will be determined.

Type 1: Roots of by+byx+byx? = 0 are real, unequal and of opposite signs, O
that k < 0.

Shifting the origin to the mode i.e.x=-a we have,
1.y % '
y-dx ~ B(x+ ajp) (x - ap),

_l[ aq 1 as 1 ]
“B.L(a;+ag) (x+ap) * (a1 +ap)" (x-ap)

= =i e T
(v -ap) . (x-ag)

a an
LSRR Bag +'as) and M2 =B, + as)
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1 m m
Now we havc,y.dy = [(x Tap i a2)] Qx.
Integrating we get,
log y =m; log (x +ay) + mplog(x-ay) + log C’O

or, y=Clolx+ay) M (x-ay) ™

X X . ¢
C=G[1+— o ___mz’ -0 EX=0p
o] 0 '
‘where —l—'"—nandCo isa constant.
o O

Type VI : Roots of by + blx +box? =0, are rcai unequal and of same sign i. e.
k > 0. Here also changing the origin to the mode, x = -a

X

we have, y ‘dx ~ B(x +ap) (x + a3)

In this Case, let the roots are be a; and a,, so that,
a1 =-04,a=-0p 0gand t >0
m -my

so—=—= . (Vide Type 1)
o

The equation of the curve reduces'to

)lzc(x(l - X_) (] +i)-!112
\ (l] (12

which can be writtenas y=Cox " My (x + p)™y . -p<x< e
¥y=4L 2 P P

Type lV Roots of the equation by + blx +byx? = 0 are 1mag1nary,
sothat 0<k<T.
‘1dy -(x + a)
’ = —2
Ve havg ydx  bp+byx + byx
shifting the origin to x =- a we have
1 - X

= ———dx
y & by [(x+ )2 +d?

(x+¢)-c¢
———
T by [(x + 0%+ d”
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\itegrating we get,

1(x+.::)

1 G
logv - log Cy - jb—zlogl(x+c)2+d2l - oI tan”

(X +¢)

1
‘e [-c
or, y=C’yl(x+c)?+d?| Z, [gzagtan'l

2y - 8
X -1 X ¥
4 (I +_2.-a ) c-mun-l_a; 1, m>0
-~ < x<oc,

Type II': One root of by + byx + byx2 = 0 is infinite b2 0 by#0
K —ec
1d (x ) '
we have, —l bg:;l ‘ : »

shifting the orlgin we getq

i .- xdx [ ]
y'm b1(x +0) b[ bl(x +¢c)

Integrating we gety

2 loy y:l()gCO-gl-+ b£},]6g(x+c)
- - #op B
& T y=Cy ]+c— ¢ C -cSx<oc

Type VII : Both the roots of by+b;x+byx2 = 0 are infinite i, .

by =0 = by, so that k = 0 we have,

—d—-
y Y=g &

1 :
Integrating we have log y =-log Co-5—(x+a)?

2y

T yodegeest ecke
~ This curye is well known normal

148.67) by pustiig B, =0 and p, = rfnee

144
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TypeV: Rnuts of b0+b1x +byx? =0 are real, equal’and of same sign ~o ti

“ k=1
1 dy _(x+a)
Wehave, & 3= "Bax+ ar
= 'bz(x):- ey by pi'oper choice of origin.

1
- g[(x+c) x+c)

1 ]_ 1 [ ]d
or,;.dy;-l?l x+0) x+02]¥

% 1 c-: '
Integrating we get,log y = log C’y -Slog x+0)- px+0) =1

C

1 i e———
B (x+0©)

or, y=Chx+c) b € b2 (

-P '_1

=Cy X e X ;0<x< o, pg>0.

‘Type IL: Roots of by + byx + byx? = 0 are real, equal but of opposite sign so that

k=0. g

ll (x +a) (x+a) -
We have, o= Bx-ap (x+ ap ~ by -ard '

-]-d (x + a) dx.
oY = BT e X

Integrating we get,

1
logy =logCly + ,E-log (x?-ad.

1
or,  y=Cph(2-a?) i-bz

¥\ m
-_—C’o(] -a_lr) 3 -a]SXSa]

" This curve is symmetrical with the modéia_ h
curve by putting B, = 0 and B, < 3in (867) *

" Thus seven rmportaﬂlm types of Pea

mitam £ uives arc obtained.
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. 9. CORRELATION AND REGRESSION

9.1 Bivariate Distribution

In earlier chap@ers, we mainly concentrate our attention to univariate -
distributions, i.e. the distributions involving one variable only. We may
come across some situations in which each item of a series may have two or
more variables. The distribution in which we <onsider two variables
simultaniously for each item of the secrics is knwon as - bivariate
distribution. The distribution of heights-and weights of a group of persons,
the ages of husbands and wives of a number of couples etc. are the examples
of bivariate distribution.

9.2 Correlation

In a bivariate distributi.on, there may exists correlation or co-variation
between the variables. If the change in-one variable cffects a change in the
"other variable, the variables are said to be correlated. If the increase
(decrease) in one variable results in the corresponing increase (decrease) in
the others i. e. if the changes are in the same direction, the variables are
positively correlated. For example, the heights and weights of a group of
persons is positively correlated. If the increase (decrease) in one variable
results in the corresponding derease (increase) in the other i. e. in this case
the changes are in the opposite direction the variables are said to be
negatively correlated. For example, the volume and pressure of a perfect gas
is negatively correlated. If the changes do not depict any of the above two
types., the variables are not correlated. '

Scatter Diagram : The diagrammetic way of representing bivariate data is
called scatter dia‘gram. Thus for a*bivariate distribution (x;, y)i=1, 2,....n,
the diagram of the dots obtained by the values of the variates x and y along
the x-axis and y-axis respectively in the x, v-planc gives the scatter
diagram. From a scatter diagram it can be evidently ascertained whether
there is any correlation exists among the variates or not.
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g @
Correlation Co-efficient : We have already discussed that
n
cvar (x) = ';"2 (x;- x )2, where x = mean of x;gives the idea of variation

among the values of the variable x, similarly
) n i - . :
var (y) = ;Z(y,v -y )2, where y = mean of y; gives the Vvariance of y. And

n
1 e = .
Cov(x,y) = ;Z (xj- x ) (yj- y ) gives the co-variance between the variables

x and y i. e. the simultanious variation of x and y. But co-variance is not
independent of units of x and y. To 'make it a unit free measure Karl Pearson
in 1890 defined correlation co-efficient between x and y as,
g Cov (x, y) _ 5P ix; ) __s_&

Vvar(x) varly) VS.S5.(x). S.S.(y) 5

S S _—
T x)lyi- y)

= I 9.1
1 o] Ye v T
2 (Xi- x) Xy )
- Algebrically (9.1) reduces to
(Ex)) (Zyy)
'ZXiYi'#y—l' 5 “ig
L (012)

. r"y -
1 n n -
: ‘ (Ix:)2 )2
y V lez._ Z:I zy[’_)_ (ZZ )

{9.2) is usually considercd as the working formula for calculating the
correlation co-cfficient between x and y. ryy is sometimes called the product
moment correlation co-cfficient or total correlation co-cfficient or co-
efficient of correlation. '

va symmetry it can be casily shown that r,, =r,,, ryy is denoted sometimes
simply by .

Correlation Table : When the number of pairs of observations are large, it
can be expressed in a tabular form known as corrclation table or bivariate
frequency distribution in which both the variables are classified one along
the‘row and the other along the column. The value in a particular cell is the’
frequency of the pair lying in particular combination of class intervals,
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Table-9.1

Correlation table of ages of husbands and wives of 53 couples.

Age groups of wives (x)

Agegr.of :

husbands (y) | 15-25 | 25-35 | 35-45 | 45-55 | 55-65 | 65-75 | Total
15—25 1 1 = = ] o = 2
B3 | 2 12 1 = = - 15
© 3545 i 4 10° | 1 — —_ 15
$5-55." |- — - 3 6 1 e 10
5—6 | — | — e 2 4 2 8
65—75 o < L i, - 1 2 3
Total 3 17 | 14 9 6 4 53

Effect of change of origin and scale:

Let the origin and scale of x; be changed and-a new variate u; is defined as

Xj-a

u; =

i-b
v =Z"i'("—' , where b = origin and k = scale of the variate y;.

So that we have, ‘
x; = huy; +a
or, x - h‘u_+ a.
and  yj=kv;+b
or, 7='k7+ b.
Putting the values of x;, T, Vi and'_)-/— in (9.1) we have,
hkS(u- u) (vi- v )
\ R (S u P (v v )
hk | B
. T
v kZh?

T =

uv = Tuv

gt where a = origirt and h = scale of the variate x; and similarly,




Corrclation 'and Regression

If h and k are both posmvc we have Txy = Tuy, Which indicates that
correlation co-efficient is independent on changes of origin and scale. The
method of this type of calculanon is called short-cut method.

Limits of Correlation Co-ef_flcient : The correlation co-efficient between x
and y takes values from-1to+1i.e.-1 < 1y < 1.

Let us con sider

-{(x, x) (yi-y) >0 .
Sx * sy 1

. = ’

i-x 2 (yi-y R 2(x,- Xryey) ‘ i

or, v % * vy : 20

Taking summation over the entire range of x; and y; we have

oG- x 2 Xlyi- y 2 25 (- x) (yi-y )

t . >
S S )
2, ns?, 2ns
or, n?_ + Ef' % -g{x;>0
y

: i,
or, 1+ 20 Since == = Tyy.
. SxSy

" —1<ryy <1. Hence proved.

Remark : Negative (Positive) value of r depends on the numerator i. e. the
* co-variance term. Different types of scatter diagrams for different ‘values of

r are given in Fig-9.1
vl .
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y o s i

[§) (&)

r>0 S r<(

Fig. 9.1 Scatter diagrams for various valucs of r.

ple 9.1 Calculate the correlation co-cfficient between the heights of
er and son from the following data.

Height of father (ininches) : 65 =6 67 6 6 7 7
Height of son (in inches) oy 5. OF 68 . 66 69 72 72 69

Solution : In the table-9.2 both the methods of calculation are shown.

Table-9.2
Height of ) .
Father ‘ Son 2 | ¥ Xy u=| v= | |VZ |uv
C O x-68 y-69
6 | 67| 425| 4489 | 4355 |° -3| 2| 9| 4] 6
66 | 68| 4356 | 4624 | 4488 | 2| 1| 4| 1| 2
67 66 4489 4356 H4241 1] 3] 1 91 3
68| 6| 44| ae1| 42| ol of o] 0] 0
| 2| wer| s8] wes| 1| 3] 1] 9| 3
o | 72| 0| ;8| s040| 2| 3] 4 6
| 6| s041| 4761 | 489 ] 3] ol 9] of 0
Total | 476 | 483 32396 | 33359 | 32864 | 0] o] 28] 32| 2
From (9.2) we have, ‘ _ ARk
: Y 476); 483
Iy = : ,
‘ ‘\/ { 32396-&77@-2-} { 33359-(4873)2}
' : 152 e
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y 32864 - 32844
V(32396 - 32368) (33359 - 33329) _
i S : | AL,

= == = (.67 (app) Ry <. ;
V2sx3g. | ARV TP

From (9.3) we have,

= 0.67 (app.) = é__kll/__..—— - _ZL’V

S »
.rw:\]zsmg. wféu'zﬁ (ivL) JENT G

Therefore, it is shown numerically also that Tyxy = Fuy-

Example 9.2 Calculate corrclation co-cfficient between the ages of husbands
and wives given in Table-9.1. -

Solution : We arrange the table as given in Table-9.1.

Table-9.3

Age of © Ageof wives (x)

husbands | S IR 1IN - SR R

y LY R R R

LN T T o

Age id. u 12
groups [Points | v 2 -1 0 1 2 3 _fy vfy i 1 u\ff\,
fBeeds- b T o2 11 2ol o s petinosdal B 1ol B30
B3B3 |1 f2 2 1 — — —fas| | .e]
3B—45 | 4 0 |— 4 10 T — —| 15 0 0
4535 | 30 I i =88 TSRO R
55—65 | &) 2 |- — — 2

63—75 | 70 3 = == —

|
o
N
w
O
s
2

w

Total| f, 17 14

v, 12 17 0 24 ~3%| 8

x-40 x-4()
hqrcu =—]-0—-andv= 0
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R (N
Suvf, - —“ET——L

Now  r=- . - '
, - :
\/{m—r-‘%.‘;’} {zvzfv-(w“ } T
: _ F _
10x16
2 2 :
\/{ 8_(10) { e }
_ g

wl (98-1.88) (92-483) 9612 x 88.17
=0.912. (app). |

Example 9.3 If x and y are mdependent varlables Show that they are
uncorrelated. '

Solution : Since x and y are independent, we have
Cov(x, y) =El(x- x ) (y: ¥ )l
=E(x- x) E(y-y ) =8

r =0. Hence the résult.

The convérse of the result is not necessarily true i. e. variates may be
uncorrelated but dependent. For this, an example of the following type may
be considered, if x is a. variate with a constant density funchon

[

1
fx) =3 -1<x<1and1fy x2

: 1 1 :
1
then E(x) = {xf(x)dx = J"f)&dx =0. So that E(x) (E(v) =

" Further more E(xy) E(x3)' ?(3dx

- Hence Cov‘(x, y) =-E{(x- x-)(y - T)I =E(xy)- E)) E(y) =0
. r=0i.e xand y are uncorre!ated

‘However, for each Valuc of x, thcrc is only one possible value of y and for
each value of y there arc orily two possible values of x. Therefore, x and y
are far from being independent.
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Example 9.4 x and y are two random vanables w1th variances 6,2 and Gy
lo2»0; O'Y # 0] respectlvciy and r s the correlation co-efficient between

them. Ifu=x+kyand v= x+g"- y, find the va]ue of k so.that u and v are
; S '

' ¥
uncorrelated. -
Solution : We know,

u - E() = {(x - E)} + k{y - E(y)}.

v-E(V) = ((x - E(x‘»«ri—w -E(y).
Cov(u,v) = E[{u - E(u)} {v - EW)}]

’ . OX
=E(l{x - E(x)}"+ k{y - E(y)}] {{x - E(x)} +;yﬁ(y - E(y)D
oo ba O
=G2+—Cav (x, y) + k Cov (x, y) +k=0,2 .
Sk 8 Ut o g

=cx2+:'x—r G0y + kro,6, +ko,0,
4

=6‘,‘2 (1+1) + kd?(cy(] +T)

=0,(1+1) (c,+kc,,)'

u & v will be-uncorrelated if ry, = 0

- Cav (u,v) =, : ‘ i
‘Thatis, 6,(1+1) (G,+ko,) =0 .

- Oxtko, =0 | Since 6, #0and r#-1.

or,k=- (i i ' ,

o oy , :
Thus the value of k is. determined.

Example 9.5r Lety=- a_xbﬁ Prove that Eorrelation co-efficient between x and

y is -'1if signs of a and b are alike and + 1 if they are different.

ax +c — ax'+c

Soluuon Weknow 0L o, y'= S yua
L by+c
Thus K
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SO X))y ¥ )
\ (20 2 (Etyi- ¥,

We have; r=

a m——
= ‘_ﬁZ(Xi - X )2

a —

t I x 2

This means that r = + 1 if the signs of a and b are different,
and r = - 1 if they have the same sign,

Hence the result.

Example 9.6 If x and y are two correlated variables with the same standard
deviation, say s and the correlation co-efficient, r.

_ ) 1
Show that the correlation co-efficient between x and x+y is \’ ( 2+ 2

‘Solution: Letu=x+ythenu = x+y .
v(u) = vix+y) = v(x) + v(y) + 2 Cov. (x,y).
=52 + §2 + 257r.

=252(1+71).
Cov (u,x) = El(u-'-l-l-) (x-x )} .

= El{(x- x ) + (y--)T)]'(x--;)l
=E(x- x 2+ E(x- x)(y- y)
=52+ Cov (xy) =52 +s2r =s2(1+1).

Thgrefore, the correlation co-efficient between u and x is

. sH1AT) s2(1 +1) , (A1) o s
ux - = 5 Hence proved.
V s2s22(1 + 9. sN2(1 + 1) iy e d %

Example 9.7 If x and y are uncorrelated, find the éorrelation co-efficient
betweenu=x+yand v=x=y. - '
Solution’: Let u=x+y or,-\.;: X + 7

—_— — —

andv=x-y, or, v = X - V

PAl
P4
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Now, Cov (u,v) = E{(u - —‘T) (v- T))
=El{(x- x )+(y y YO x- %) - (y y D)l
=Ef(x- x)2-(y- y ?
=E(x- x )2-E(y- y 2
=% -5,2
where s,2 and s,? are the variances of x and y respectively.
Now v(u) = vix+y) = v(x) + v(y) + 2 Cov (x, y)
=v(x) + v(y). Since x and y are uncorrelated.
=i+
similarly v(v) = s, + 52y.

' Cov (u, V) ,52 -s2

Hence, r,
" Vv vy S “x+ 8%y

9.3 Regression

Corrclation indicates whether there is any relation between the variables
and correlation co-cfficient measures the extent of relationship between
them, whereas the regression measures the ‘probable, movement of one
variable in term of the other. Therefore, regression is used for prcd:cnon
problem

The term “regression” was used by a famous Biometrician Sir. F. Galton
(1822-1911) in connection with the inheritance of stature. But now it is
widelv used in Statistics.

'Regression Lines : Let us consider that there exists association between x and
y. In the scatter diagram for a particular value of x represented in the x-
axis, we may consider a large number of obscrvations along y-axis. We geta
regression curve if we draw the x values and the corresponding mean values
of y and the relationship is said to be expressed by means of curvilinear
regression. If the curve is straight, it is called the line of regression and the
regression is said to be linear, otherwise it is called curvilinear. -

The line of regression is the straightline which gives the best fit to the
bivariate frequency distribution in the least square sense. If the straight
line be so chosen that the sum of square of the deviations parallel to the y-
axis is minimum, we get a regression line of y on x and it gives the best
cstimate of y for any given value of x. On the other hand, if the sum of
squares of the deviations parallel to the x-axis is minimum, the regression
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line of x on y is obtained and it gives the best estimate of x for any given
value of y- ' :

Let us suppose that (x;, y;) i=1, 2,......n be a random sample from a bivariate
distribution, y is dependent and x is independent vanablc Let the
regression line of y on x be :

y =a+bx . ' o , , R (9.4)

Following the prmmple of least squares method, the cstlmatus of aand b
can be obtained as below :

“The observation y; follows the model : o
yi=a+bxi+e ‘ e R it H9.5)
where a is the intercept and b is the slope usually called the regression co-
efficient of y on x and e;'s are random error componenets which are
independently and normally distributed with 0 mean and variance 2.

: From (9.5) we have, -

e=yi-a-bx :
Tef=5 =3y -a-bx)*
OI',. i i
S Bs ' ' ‘

Now, =—==0=3 IXy;=na+b3x T T . 9.6)
s Ba i i
B : e e T ok
Sb-—O—a leyl =a le +bXx% _ R W (9.6)

These two equations are Kiown 8 normal equations.

Consldermg ©. 6) and ©9.7) and dl\ndmg by n we get

atbx =y : : SR ¥/
Rl bz;‘zi_ - Zx%, ............ (9.9)

Multiplying (9.5) by ?, W¢ get the normal equations as
a X +bx2=x T

a x +bm"'--

o
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Subtracting we get,

(-7 Ty

inyi a (in) (zy,) ) : — ‘ .
L . SPx,y) 7 Xi- X)0i- y) e
or, b = —— T R T Wil 7 T, (9.10)
- inZ_ __nl__ J X). . Fz(xi = ‘ X ) . A
Putting the value of b in (9.8) we have,
N — sp —
a=y - _‘5% I T e P s T 9.11)

Thus the eétimatcd values of a and b in (9.4) are obtained.

Therefore the least square regression line of y on x in terms of value of a-and
— SP(x,y) — SP(x, y)
bl ¥ TSSx X ) tTsso

— SP( . o

or, (y-'y—)=1:-!(x-7) L Phx cniag e CHRaBeEe g b (9.12)

- Now considering the regression line of x on y as x=a'+b’ y and preceodlng as .
above we have,

3 |
i SP(Y ) — _SPxy) s,
AT XSGy Y b =Sy

Thus the least square regression line of x on y is

— SP(X, ) rm— — TS, —
(x- x )=_SW)L(Y' y ) or (x- x):#(y- y) CoriaRarsbaas (9.13).

Properties of the Regression Co-efficient :

a) Reg;cssmn co-efficients are independent on changc of origin but not of
. scale. :

X
Lctu""—"-.-‘.'a'-"’

where a is origin and h is the scale of x;
- W éfc b is origin and k is scale.of y,,
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We have .X; = huj+a or; X =h u +a,
similarly, y; = kv, +b or,y =k v +b.

and let us denote. by /x as regression co-ctficient of y on x and by, as regression
co-ctticient of v on u,
Now putting the value of Xi, Yir x and y in (9.10) we have

hk ¥(y; - _u') (vi- v) ke
h2 z(ui,-:z) = Fby/u.

A

by/x il

~ Proceeding in the abeve way we get,

h
by =1 bu/v, which shows that the regression co-efficients are independent

on change of origin but not of scale.

() Correlation co-efficient is the geometric mean of the regressnon co-

efficients.
SP(x, y)
We know, by/xzmlz 5
SP(x, y) 18,
and also by, = e = ——
x/y = " SS(y) Sy
Now, by/x X bx,y =12 Therefore,r = i\( B BB, = ubsammens 9.19)
Hence proved.
Remarks : ' ’ :
SP(x, SP(x, SP(x,
1) Wehaver = L7% 4] ot et

= b= and ‘b, =
sSC0ss(y) S50 ek L

Therefore, the sign of co:;relation co-efficient is the samc as that of
regression co-efficients because the sign of each of them depends on SP(x, y).
Thus the sign of correlation co-efficient, r in (9.14) depends on regression co-
efficients i. e. if the regression co-efficients are positive r is posmve and if
the regression co-efficients are negative r is negative.

2) 1f one of the regression co-efficients is greater than unity, the other
" must be less than unity.

Let us suppose that, one of the regression co—efﬁcncnts say, by, is groatcr

than umty i.e. by >1which 1mp1|e5 that-b:—< 1.
/x
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Alsd <1
x by/l x bx/yS]

1 -
Hence < =<1,
by{x By > 0 Hence proved.

¢) Arithmetic mean of the regression co-cfficients is greater than the
correlation co-cfficient.

We know that, Arithmetic mean 2 Geometric mean
ey | .
Therefore, -z-(by,, +byy) 2 '\f bm X ,b"Y'

i ¥ 4
or, - f(bY”‘ +by/y) 21. Hence proved.

Aliter : We have to show that

1
5y x+byy) 21
1 (rs TSy
or, rs s Rt
Sx Sy
2 2
sy +S
e, Shlalt <
or, —>2
Sy

*

or, (% + 52y - 25,5) 20
or,  (sx-sy)220

which is always true since the square of real quantity is greater than or
cqual'to zero. ‘

di Angle between two lines of regression :

Equations of the lines of regression of y on x and that of x on y are- a

2ra

Y- —)’_ ==Y (x- x)and x- x =r_ss: (y- -y-) respectively.

Slopes of the lines are% and ;:‘— respectively.
Sy .

Lot us consider that 8 be the angle between the two regression lines then,
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for acute angle,
s A
IS S

'1+—-¥---L
-Sx ISy

tan® =

sy (1 - )

2 .
r(szxrs-z-(szx 11- (@f&l;)

womnt {12 (,&,.)} B

for obtuse angle,

~ 8=tan-! {# (3,%;) }

Case(i)r=0 tanB=c< .0 =

M E

Thus if two variables are uncorrelated, the lines of regression becomes
. perpendicuiilar to each other.

Casc(D1fT=41 tan0=0 .@8=0o0rm.

In this case, the two regression lines are either coincide or they are paralle] -
to each other but since the regression lines pass through the points (x , y )

they cannot be parallel Hence for perfect correlatmn positive or negative,
the two regression lines coincide. - ‘

Example 9.8 Obtain the equations of the regression lines from the data -
given in Example 9.1 Also estimate of x for y = 70.

Solution : The equation of the regmssion line of y onxis

SP(x,y) -20
y- y by/x(x- x- ) where bY/"_S_S-(;)L= R = 0.71 (::xpp):

Thus the regression equation of y on x becomes
y-69 = 0.71(x 68) ; Since x =68and 'y =69;
or, y=071x +20.72.
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The regrtssio.n equation of x on yis x -T = bx/y(y =¥ ).

¥ SP(xy) 20
Where, by/y = -S'E;)L =735 = 067 (app).

Therefore the regressivn line is, x - 68 = 067(y 69).

or, x = 0.67y +21.77.
A
_Thc csﬁmate of x for given y = 70 is given by x = 68.67.

' 9.4 Rank Correlation

In some situations it is dlfﬁcult to measure the values of the vanables from
bivariate distribution numa.ncally, but they can be ranked. The correlation
co-efficient between these two rank is usually called rank correlation co-
cfficient, given by Spcarman (1904). -

Let (x; y)) ;i = 1, 2,.....n, denote the ranks of the ith individual of two
characteristics A and B respectively. Assuming that no two individuals are
awarded the same rank in either classification, cach of the variables x and
y takes the values 1, 2,........ n. _

nn+1) (+1) . .

: — ] .
Hence x = Y= 2l 2_+ ....... +n) = e

(n+1)2_1n-(n+])(2n+]>) (n+1)2
2 Tn 6 R

(n+1) [2n+1 n+l -(n+])(n-]) n2-1 2
: SR - BEca:
Letdi=xi-yi=(xi-T)-(yi-'T)

Squaring and summing over the range of i from 1 to n we get,

2A2=Tl05- X ) - (v;- y ) P2
1 i i
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Sy X P+ Dyi- ¥y 222 ) (- y)
i i e
Dividing both sides by n we have
¥d2 I
( J 8% + 5% - 25 = P, +sz -2, Since, s% =%,

n

—252 (-1 = Rl (1 r

6Zd12 : ”
r=1- m- .........(9.1._3)

Remark :

D Ifx=y;i= 1, 2.....n, all the di's reduces to zero and r = + i

2) If the ranking are as follows :

%=1, *Z 3, " veped n
y=n, (n-1), (n-2), ... 1:
Thenr=-1. .

Proof : Let us consider one case particularly when n is odd.

Let n =2m + 1 then the di's are

?.m, Zm 2,2m -4, i 2 0,.......2..‘...4,......(2rn -2), ...2m.
" Zd?=2(2m)? + 2m-22 + ........ +42+ 22

=8{m2 + (m-1)2 + +....22+12}.

B 8m(m+1) (2m+1)

6 .
6 3d%i L
Weknow, for n, r=1- ——— Putting n=2m+1
n(n<-1)" i
4 ‘ 8m(m+1)(2m+1)
Tl EmE D @m0
8m(m+1) 8m(m + i)

Rl T Y ey T e

In the same way it can be casily shown that for n = 2m, the result also 7\
follows,
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3) Wealways have 3d; = Z(x;-y) =n x -n(? = 0. This serves as a check

on the calculations.

Examj:le 9.9 The ranks of ten students in Mathematics and Statistics are as
follows. Find the rank correlation co-cfficient.

Mathematies : . 3, 5 8 4 . 7. W, - Z 18 6, 9.

Statistics : & 4, .9 8 1, 2 310 5.7

Solution :
i

- Table for calculation of rank correlation co-efficient

a1 , Table-9.4

Rankin Rank in o dy=(x-y) 42
Math. (x) Stat (y) differences i
3 6 -3 9

5 4 1 1

8 9 - -1 1

4 8 -4 16

7 1 6 36

10 2 8 64

2 3 -1 1

1 10 9 81
6 5 1 . 1

9 7 5 4
Total Zd,él:u 214

63d;2 6 X 214

Rank correlation co - cfficient, r=1

- S - 0.3 (app).
n(n®- 1) 10 x 99 e
Tied Ranks : When there is more than one item with the same value whiich
are then said to be tied in the scries, then the formula for calculating rank
correlation co-cfficient breaks down. Since in this case, cach of the variable
x and y does not assume the values 1,2, 3,....n and cosequently x # y .In

that casc, the most common method is to allocate to cach member the mean
of the ranks which the tied members would have if they were ordered.
This is called the mid-rank method. As a result of this, following correction
i« made in the rank correlation co-cfficient formula.
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In the formula, we add the factor m(m2-1)  to $d,2°, where m is the number
' v 12 i
of ittms an item'is repeated or tied. This correction factor is to be added for

cach tied value. ’

Example 9.10 Obtain the rank correlation co-cfficient for the following
data. )

A: 68, 63, 75, 30, 64, 80, 75, 40, 35, 6
B: 62, 38, 68, 45 81, 60. 68 48 50, 70
Solution : '
Table for calculation of rank correlation co-efficient
Table-9.5
e " Rank of Rank of B TH 5
A B (o) - ty)s d=X~y -d*
68 62 4 2 -1 1
64 . 38 .6 7 - -1 T+
75 68 25 3:5 -1 1
30 5 9 10 -1 1-
64 81 "6 1 5 25
- 80 60 | 1 6 -5 23 ;
75 . 68 25 3.5 -1 1
40 8 10 9 1 1
55 &) 8 s & J 0 0-
64 0. 6 2 ) 16
0 B

In the scrics A, the correction is to be applicd twice, once for the value 75
‘which occurs twicé (m = 2) and that for the value 64 which occurs thrice

y : 2(22-1) 3(3%-1)- 5
(m = 3). The total correction for series A is —5—+————= -
. i . 12, 12 2
i . : 2221 -1
Similarly, the correction for series B is - Thl 5 as the value 6& occurs
twice, -
n -
5-.1 ) )
6] Zd2+ 5+ 3'] ] _
i TTdE 6724 3L sp). -
Thus,r=1- =1 = (1.345 (app). _

n(n?-1) ] T 0 x9u
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9,5 Bivariate Normal Distribution

Two normally correlated continuous variables x and y are said to have
bivariate normal distribution it their joint probability density function is
given by

I . 1 (=02 2P0 ) (v-n) (v - Lp)? |
(N, ¥) =—_pr - = el : i = .
21:0,63\)1 -2 20-p7 | o 00, o2 |

o < X< oc, aind T (9.16)

Where {17 and 6,2 arc the mean and variance of x, [y and G52 are the mean and
Variance of y, and p is the correlation co-efficient between x and .

The frequency surface representing a bivariate normal distribution is shown
in Figure 9.2,

Fig. 9.2 Bivariate Normal Surtace.

Moment Generating Function of Bivariate Normal Distribution : The moment
gencerating function g o bivariate normal distribution about the means

Uy and My is given by
M(ty, tp) = EIEXpit;(x - L) + taly - )il

o< o<
= j J Expiti(x - ) + tolv - Ua)jt(x,v) dX dy.

- =X

9L Y
which reduces to ,Expli(t,%c,z +2t1t; PpOIGy + t,265,° )|

T

l:l"

T in the expansion of Mty ta) where the first

Now Uy = co-¢cttcient of .y
s

~uttix corresponds tox and second <uffiv correspords toy vard e
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Marginal Denéity : Marginal dcﬁgity of x of the bivariate normal
o .
distribution is given by J‘ f(x,y). dy, putting the }va!ue of f(x,y) apd after
-oc _
i (x - )2

1 e
simplification we get, glx) = \j_e 2 072' ;- € X <o,
. ° % GI :

o< 1 ]_ Ll';)
similarly, h(y) = I f(x,y) dx = ¢ \]_e "2 0-22 jrecSy<ec,
2= o, \N2r :

N

Hence it is seen that x is normally distributed with mean [, ahd variance

0,% yis also normally distributed with mean 1, and variance 622 Ifp =
f(x,y) = g(x).h(y), which means that x and y are mdcpcndut}y normal]y
distributed, but the zero correlation does not Implv independence in
general.

T Conditional Density The conditional density of x for given value of y is

glven by f(x/y) -IT)')L’ which after 51mphhcatmn reduces to

=~
}

-~ SXx<Sex,

: -;;[X,uﬂ,ﬁ(v_ )|
202u-p | [P g Y TR

oV2n(1-p 2

It is as like as univariate normal distribution with mcan U +p - (y - [1p)
¢ ‘ > ;

and variance 01%(1 - p?). Similarly we can show that the conditional

distribution of y for given x is normal with mean Uy +p 22-(.\' - Uy and

variance 6,2 (1 - p 2).

9.6 Correlation Ratio

Correlation ratio, 1 is the'appropriate measure of curvilinear mlati()nqhip

between the- two variables. When the relationship is lincar, the extent of

association is measured by correlation co-efficient r. Therefore r measures

the concentration” of points about the straight line of the best fit and
‘ rm‘la.'%urs:g the concentration of .points about the curve af the best fit. n = rif
K the regression is lincar otherwise 1 > r (see equation 9.21).
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Let x;, G = 1; Zaaam) berhc values of the variable x and its corresponding
values of the variable y be y; with respective frequencies fj;, (j=1, 2.....n).

y * 1 2 vl ST 1 Total
] f‘” f2] caee ....f” sese ....fml
| [ e S A
2 f1o fn fin frn2
| I | | | |-
] f], le fl] fm]
| S R T A
- fin fan fin fmn
Total ; ’ ) ;
Lf; Znj=n
j ) 1] m N 1 ] PO ¢ P i .
Ti = Thiys o o 1 BR=T
| %"y” L R . LY [

Though all the x's in the ith vertical array have the same value, the - y's
arc different. The ith pair of values in the array is (x;, y;) with frequency F.

" The first sutfix 'i' indicates the vertical array and the second <uffix 'j'
indicates the pmlti(m of y in the array.

Let Zf‘, =n;; XZF,] =¥n; = N, say.

j iy i
If _v—,‘ and T denote the means of the ith array and the weighted mean of -
all the array means, the weight being the frcqucncv recpt,ctwdv then

ST B T= T DA T

DY n n Zz*ii n N
i 1 5

The correlation ratio of y onx, usually denoted by. ny, is glvon by thc

formula n? y,(—l T T . (917

X488 1 —
- where .= ﬁz Thilyi- ¥i Yands? = N‘Z Z filyy- y )2,
I Zfity;- y P canbe partitioned into two parts and a convenient expression
can be developed as below :
Ne? = Sfify;- v 2= T3filtyy- v ) +Cy; - v IR
. - N
v

= Lififvy- W )2+zzf!i( TR & 2 Xhyii- vi Ly -y )
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The product term venishes due to 2fij ¢ ¥ij = ¥i )=0
:

Therefore, Ns? = L3 f(y;; - Vi 2+ Ing Vi -y R

. : 1 .
or, Ns?=Ns?.+Ns2., . : wheres?, = NIy - 2,
: I .
and %, = Eznl( Yi =¥ .
.l _ qzl'_ Szn\
Faar ‘
5 2
- - . §% ¢

Now comparing (9.17) we haven?y, = ?m— ................... (9.18)
The calculation of s2 can be done conveniently as follows :

e — — iy —y TR TP
N?m=In( y; -y P2=3n-y; 2-Ny 2= T

Remarks :
1)  Since $2:and s? are non negative
1-1%20 . m3, < 1. and it follows that
Osny€ 1. ‘ TR 9.19)

2) Since the sum of squares of the deviations in any array is minimum
- when measured from its means we have,

S oA ‘
- ZEfilyi- 2 < ZX ity - ¥ij 2 . FE .t mEl 9.20)

N :
Where Yij is the estimate of 'y for given x = x;as given by the ling ot

A 2 b
regressionof yon x deyj=a+bx;(j=1,2..n).

: But- ):Zfii(y;i & .y_i)z = NSze =Ns? (1 “nzy'x)~

A E 1 K ~
and T¥f(y;; - yﬁ)z = TSfi(v;-a-b2 = NsX(1- 1)
Therefore, from the inequality given in (9.20) we have
g2 e M 2P
or, | n 12 1r] 921
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Combining (9.19) and (9.21) we have, 0 < 12 < T]Z)-x <1.

* Thus it can be concluded that the absolute value of the correlation ratio can
never be smaller than the correlation co-cfficient. When the regression of v
onxis lincar the means of the'array will be on the line of regression and we
havc n o = r2. Thus 12 yx -2 gives the departure of lincarity of robrusmon If
l‘] yx = =1, ““C- 0

VEEflyy- Y i)2=_0 Syg="y (forall =1 2.0; indicating that

all the points arc on the mean of the array. If the array means of y arc

closer to the grand ' mean, 'y nzy; approaches to zcro.

3) Tyy = Tyx DU Ty # Myl

4)  Like correlation co-cfficient, corrdatmn ratio is independent of change
of scale and origin.

Example 9.11° Find the correlation ratio of y on x from the data given in

[Example 9.2.

Solution : We are to calculate vy szy and s,

—_— 10 X 16
y =40 + — 43.02.

. ; sz Fv Sviv
Sy = 1« Trv Efv = 1()

o - 1% S
53 ASB) -

L'}
=10V1.6447 =10 X 1.28 = 12.8 (app).
The Table 9.6 shows the calculation of 7.
Table-9.6
Mecan of cols s — Y —

iy fy u= vy -41 fyu fy u?
26.67 3 i -14.33 -42.99 616.0467
31.76 17 924 -157.08  |' 1451.4192
4134 14 0.43 6.02 2.5886
51.11 9 £10.11 90.99 919.9089
60.00 6 | 1900 11400 | 2166.0000
65.00 4 24.00 96.00 2304.0000
Total 53 106,94 7459.9634

" 74599634 £ 106.94\ 2 ) .

Sy = ( = ) =140.7540 - 40713 =1366827.

t
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o 1169
Therefore, sp,,=11.69, Nown,, =<55= 0.913 (app).
y o e ¥ 5. £

Remark : From the same’data given in Example 9.2 and Example 9.11 we
have shown that fn;.x Iz 1r].-

9.7 Intracless Correlation

Intraclass ‘correlation means within class correlation. In biological and
agricultural study one may often be interested to know how the members of a.
family or group are corrclated among themscelves with respect to some one of
the same characteristics. For cxample, the correlation between the heights
or weights of brothers in one or more families or the between yields of
certain crop of one or more (_xpcnmental blocks will give intraclass.
correlation. A

Suppose we have k families Ay, A .......Ag With ny, ny,....n, numbers of cach
and the measurements X, (i=1,2...k;j=1,2...n) of the characteristic
can be arranged as below : ’

X1 ¥ . T T Xi1 Xi1
Xp  Xp Xi2 X2
XN | I l
Xjj X Xij Xj
l' P § | | |

g X1ny X T "i;\i Xkny.

We shall have nj(n;- ]) palrs (x,;, Xjpj# 1 of observations in the ith family or

group. There will be):.n, (n; - 1) = N say, palrs for all the k families or
i=1
groups. If we prepare a correlation table, there will be nj(n; - 1) entrics for
the ith group. The table will be symmetrical about the principal diagonal,
Xj1 occurs (n; - 1) times, x5 occurs (n; - 1) tirr_ws and hence for all the k familigs,
wehave Z(m-1) Ix;; as the marginal total.
RN .
2 wrlil . s oy B ) 2 I Z( ] . o K2 i
; gy :NIZ(ni-]) 2x;jl Similarly, s%, = YN 2n; - 1) Z0x- X)) b
i
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Further cov (x,y) = L X~ -:) (xj - T)].
il :
j# 1 ;

j=1

1
ZI

LUT 1 ’
E{i Z(“i- X)(‘(ll-\)-z,()li- x)}
j

j=1~1=1

lzn,(_x—i- T)nl(Ti- ) - Y Sxgi- x )2
i)

=)

i
——z;#(';' xR

Therefore, the intraclass correlation co-cfficient is given by
-

" Cov{x.y) g D\z—,(—x-w —x—_)z-zﬂx--- X)
DvAR v ’ ] (9.22)
X 2)

T .)= e
07 Var (x) var(y) TEn; - 1) (x;i-

If nj= ni.c. all the familics or groups have the cqual number of members,

z E(Xii - X )2|

then ;
mRE(x - x 2-TTxi- x )P
Frewy = o
W -y x P
knzszm-knsz !

= “kn(n S1)s2 -

1 {ns"m_l}
"n-DL ¢ ‘

w here s2 indicates the variance of x'and <2 is the variance of the mean of

the familics. -
3

ns
From (9.21) we have, 1+ (n-1ry = =320
: 1 - 3
.. STen S D) e T s, X 5 (9.24)
bed
since ?-Sl, T+M-Drgysn
T T e (9.25)

"(x\)< 1
Nnv\ combining (9.24) and (9.25) we have the range of 1, as
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I S Fan < - '
T(n-n-Tapsth

Exahple 9.12 In five tamilies of 3, the heights of brothers are in inches as
- below :

Families .
1 2 . 3 4 5
Brothers 1 69 70 71 72 73
2 70 . 7 72 73 74
3 71 72 73 | 74 P

Find intraclass correlation co-cfficient.
Solution: Here k=5,n=3, N =15.

X =72, % 1=, X 9=71, X 3272, % 4=73

1 10
Im=s4+1+0+1+4] =—=2. ;
3 5
] —
%2=l?n'22(xii- x2=gm=2

s ‘ 1 N5y
Threfore, the intraclass co-cfficient, Ty =) {T~ 1¢.

&

'jSX’?_ s 0

l :

9.8 Multiple and Partial Correlation and Regression

1) —
A9

1]
iy

il

il

We have already discussed the correlation between two variables only. But
often, it is necessary to obtain the correlation between three or more
variables. It one variable is influenced by the combined cffect of group of
other variables we get multiple correlation and multiple regression. On the
other hand, if one variable is influenced by another variable climinating
the linear effect of the other variables we ¢ get partial correlation and
partial regression.

For example, the yield,of a crop/acre (x;) mav / be ifluenced by soil fertility
(X2), amount of rainfall (x;) , types of irrigations (xg) and <o on. Now if we are
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interested to acertain the association between Xy and the combined effect of
X2, X2, Xg and 50 on we get multiple correlation and the degree of association is
known as multiple correlation co-cfficient and is denoted by Ry gqg.......c.

Again if we are interested to ascertain the association between xpand x5
when the linear effect of X3, Xy ......ctc. dre climinated, we get partial
correlation and the degree of association is given by partial correlation co-
th\hnt denoted by -

Regression Plane and Determination of Regression Co-efficient : For
simplicity sake we consider 3 variables x;, x5 and xy only. The vquatmn of the
regression planc of Xy on X3 and x5 is given by

| -b|2.3)(2 ¥bgoly ¥ . 7w T T D o0 e (9260

assuming that the variables are measured from their respective means, b's

are usually called the partial regression co-cfficients which can be
cstimated by the least square method. The normal equations can be written
as, Ix(xy -bp.3xp - brypx3) =0

Tx30x9 - braaXg ~bign x9) = 0.

Expressing the oquatu)m in terms of standard du\'latmns and correlation co-
cfficients we have,

%1 =brasss + baatys; _ :
r13515b12arnsa+biyass : T e ERGRAR (9.27)

where r;is the correlation co-efficient bctwccn X; and xj and & is the-
standard deviation of X;. i

Solving (9.27) we have,

P Ty s Ap ;
biag== -y )' - J) . (9.28)
% wlo A *
- 51 A3
similarly, bjyy ==—— R (9.29)
- B An = 7
where Ajis the co-factor of the clement in the ith row and jth column-in the
determinent A= 1 m2 ] in whichr=r;
By -4 A
ot 1

Substituting the value of bys 3 and byy4in (9.26) we have

s Ap S1 Ay : -y
N E T N T =3 ' ORI £ e 14 5
>N v Ay ) 2

175

\



55 An Introduction to The Theory of Statistics

Ay Ap  Ap
OF, — X1 +=— Xg+ = X3 =0
% /] s3

The residual of second order xq 23 is defined by

-bpaxa-bpaxy

Remark : In general, the equation of the regression plane of x; on

X2, X3, X4 €tcC. is,

=bypay . n X2+ by3ag i }3+ .......... + bln.l’l ...... (n-1*n.
$1 Ap
where b12_34 ) = -—l -TL"
j 2 Ay
st B L
bi324...n=-7" — and similarly
B An =
' 51 Ay v
Cbingeea(n-1) =-—— :
! n Ap
where Aij is the co-factor of the clemefit in the ith row-and jth column of the
determinent Iy
: 1 mpom T
. ssas  snse ‘l )
=l 1oms ey .
o e 9.31)
) TR #
By, s - Wiy i

S

Properties of the Residuals :

1. The sum of product of corresponding values of a variate and a residual
is zero, provided the subscripts ot the variate occurs among the
secondary subscripts of the residual.

Let the equation of thc‘p]ane of rcgr_cssi()n of xjon x3 and x3 be

" - X1 =by23 X2 + by32x3. The normal equations for determining b's give,
Ixox123=0=3x3x1 23 7

Similarly from the regrcssmn planc of x5 on x7 and x3 and that of x-; on x; and
X2, we have, .

Ixyx213 =0 = Ixaxz 13and Ex1x312 = 0= Txoxz12.

2. The sum of product of two residuals is unaltered by ommmg from one
residual any or all of the secondary subscripts which are common to

both.
176



" Correlation and Regression
Writting Xq 5 = X - byoxs we get,
xy9%12 = Zxy (X - broxa) = xq Xy
and xq 7% 23 = LX123(X1 - braaxg - br3oxa) = Txy mx;.

3. The sum of product of two residuals is zero provided all the subscripts
of residual occur among the secondary subscripts of the second.

By virtue of normal equations, we have
Ix3ox1 3= Lxg - bpXg) X123 =0

similarly, Tx4x;24=0.

Variance of residuals : Let us consider the planc of regression of x; on xp and -
X3, ViZ. X1 =b1aaXs + b3oXs, pr()wdcd the variables are measured from their
means.

The residual is x4 23 = (X7 - by 3% - bi32X3).

Now we shall have to obtain the from of the variance of xq 23 which we
shall denote by 82 5y in terms of 5,2 and correlation co-cfficients where s,2is
the variance of x;.

We have Ns?; o3 = $x2) ;3 = Tx; 03x; vide pmpcrty 2.
=Tx;(x; - braxp - brzaxe)
=N521 - Nbyp 35159112 - Nby398183r13.

s
or, s T =bssarp + bi3osariz.

Eliminating Bj23 and by 5 from this equation and normal equation in (9.26)
we have,

2
S
1- — ™m m =0
1
™ 1 Liva}
] o 1
2 ; 2
s13 S - S
or, A- TA” =0, or, ?-1—— A
1 1
A "
‘“’:'52123:—512 T T e (9';2)

11 ) 4

where A and Aqq are detined in (9.29).

1
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¥
Remark : In general, for the distribution of n variates, <

A
s 0N = 2, =—where A and A” are defined in (9.31).
11

Example 9.13 Find the regression equation of X on X and x3 from the
kw]lomng results.

Variate Mcans St. deviation
X; 2802 442 =080
X - 491 1.10 f13=-0.40
X3 594 & " rp=-056.

Solution : We know the following regression equation of x; on Xy and x5,

sy Ao

(x1 -28.02) = - == (x; - 491) - T’A'3(><3-594)

: 281 1

hore Mn=-11 ™ | _ = 56y2 - .
where rp 1171 -2y =1-(0.56)2 = 0.681.

Ap=-] T Ty =

where 712 ry 1 |=F13 T23-Ty =-057.
and Ap=| ™ 1 =Tty - 13 =- 0,048
: ry 1y | TTD =008,

Therefore, the regression plane is given by

(6 -28.02) = - 44’) i ——(xXy -4.91) - 44‘))(M(\ -394
MEERREEIT0 D681 N2 T 8 70681, 3T
2.5194 .2122

:W(, §?I)+_7&_ (x4 -594)

=3.36(x3 - 4.91) + 0.004(x3 - 594)
Coor, Xp-336Xy-0.004x3-9.15= 0

Partial Correlation Co-efficient When there are more than two variables;.
product moment correlation co-cfficient between two variables may give
partial information. In such situation, one may want to know the correlation
co-cfficient between two variables x; and xo when the offects of X3, X4 Ctc. on
Xy and x; are eliminated. This correlation is known as partial corrclation
and the correlation co-cfficient between x; and X2 when the lincar effoct of
the other variables on them has bccn climinated is called +partial

correlation co-cofficient, and is denoted by ripay.

[
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Let us consider three variables Xq, X2 and X3. X3 = X7 - bjana may be considered
as that part of the variable x; after climinating the effect of x5, similarly
X2 4 can be defined also.

TXp3X
. =N1323
Thercfore, 1oy = —
V(Zx%3) (Ex%7)
Now E,ngxg_j,:z[ X1 -bn\'g)(Xg-ng}” ®

= Ix1%- bynExyxg - balxoxg + by In?y

= Niyor 1 - byyNs 57 13- by Nspsaran + baboyNsty
s s
Putting byy = —2 rpand by = - I3 we get,
2x13%23=N(r12 - rzran)sisa.

Again, ¥x2

13= 2X13%13 = TX1X13 = ENp(X - byakg) e
= T2 2B = Ne2 Rks = N2 2
= Xx%1 -bpa2xxg = Nsy* -Nbyasysarig = Nsy* (1 - ry3°).

Similarly Tx;4% = Nép? (1-r32).

Nsiso (rp-ryarg) T2 - Tiarog
VNg201-r13)Ns2(11952) V(1 = 195D (1 - 1232

Now, ryp3 =

vesel Duid
1123 can also be obtained in termsof minors of the determined A as defined
carlier. bypgis the regression co-cfficient of x; 3 on Xo 5 similarly byy 3 is the
regression co-cfficient of x5 5.0n x;3. Since we know that the correlation co- -
cfficient is the geometric mean of the regression co-efficients. then, |

2
1123 =bp3Xbys.

. ’ S
Putting the valuc of byyz and by 5 we have, 1255 = . Since, Ay =Agy.
Andy

Ap

.. T'l'_;_:; — ——— 5 ) e aesesesheneses
Y Ay, '

This form is i ik ‘
. ula is convenient to get the partial correlation co-efficiont of
higher order.

Example 9.14 If all the correlation co-cfficnet of zero order in

varnates are cqual to p. Show that every partial correl
P

«th orders —E—
1 +sp

a set of P-

ation, co-cfficient of
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Solution: We are given that r,, = P;
We have partial correlation co-cfficient of first order.

Tij - Tk Tik papls - -l

Tijk = : 2 =
VA-r ) A-152. Va-pda-pd 1+p.
Partial mrrc]ati'(m co-cfficients of second order are given by, .
(2 (L)
I +p 14 9.4,
. Tijk - Tik.1 Tjk1
Tkl = =

\/(1-!‘2 i (1 -rzfg_'[) ]'; P
. 1L+p
p [ 1- [ :| - v P o
T+p d+p ). T+p  p
d ik ' v 142
) ()] e
: 1+p ] T+p T+p "y
Thus ch‘.ry partial C();-ruldtinn co-cfficient of second order is given by,

' o ,
1+2p

Procceding this way i.c. by the method of induction every partial

correlation co-efficient of sth order is given by . Hence proved.

p

(1 +sp)
Example 9.15 From a hypothetical data of three related variables N1, X2
and xz, it is obtaincd that rjp =0.39, r3 = 0.46 and 193 = 0.77

where rj;is the correlation w-cfnucnt between X and xj;1,j=1,2,31i#) Find.
partial corrclation co-efficient ryp3, :

Solution : Partial correlation co-cfficient,

L]

ri-Tirn . 0,59 -0.46 X 0.77
s \/(1 P -2 NA-0469(1-0772)
= 0536 = 0.95..-app.
V(1 -0.2116) (1 -0.5929)

Example9.16 Prove the 1dcnt1tv b133X boq X byys = r[')'; X 193 X rap 9.
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+ ™ Corrclation and Regression

T U . T b =2 b $32
olution : We know = . k23 0 =77 Ty and Dypp =S"Ta10.
& R iy Ll T

i ' ' S13XS91 XS
: $1.3 X821 X532
S bpaXbprXbya=r3X 1 X137
) 52:3 X 831 X $12

=r23XT23 1 X 1312 SINCCS13= 812, 523523 =S2 1 and 831 = 530, 4
Hence the result,

Multiple Correlation Co-efficient : Here also we consider tri-variate
distribution in which cach of the variables x3, x» and x5 has'N observations,
X12318 the multiple regression of x; on x5 and x3.

Then the correlation co-cfficient between x1 and the expected value of the
~variate is called the multiple correlation co-cfficient, denoted by Ry a3,

We know the expected value of xq as Xy which is X; = (x; - x793).
E\’] X‘[

3= | .
V(ExD) (5XD) ‘

Now we have, IxX = Zx(xq - X129 = Ix 2 - IX1x1.23

I

Therefore, Ry

=Ix% - Ix? ;= N2 - N?j o3,
Also X% = Yixy-xym)?
=332 - 28X+ X2 . Since, XNy = Exd iy

=z,\'2] 'sz‘[.’_?_’; NS; 2-.N52]__‘)_’;.

2 2 2 )
55 ST1-5T1:m \J'F“;'-“'.-n
Thcn‘h)rc, R[ M= = -
st . | ) o ] <1
S1 VST -8 :

' 1
2
( - 13) T. ’7
s 1- _:.2._..
s

2
9 b) ) g v
5 $T1m It - 2rprarn
or, Rym=1--3%= v
. & 1-rg
A
or, |-R2 m=" . . ~ N « .(93"—')
s
A ;

-where Aand Ay are defined in (9.29). This formula is used for calculating
multiple corrclation co-cfficient for more than three variates.

I.xa;n[‘lc 9.17 Multiple correlation co-efficient can be expressed in terms of
ot and partial correlation co-cfficient i. o, 1 - R2 3= (1-12p) (1.- 12,45,
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Solution : We have, R% 5= —

11
| R2 1-125 - 12932 1215+ 210000 A o
) -~ == T e
or, 123 1-v
1 X
Ay (rj3- ryory)?

Also we know, 12145 =

or, | - 12]3_2 =1-

1
or, (1-r%19) (1 -12439) =

= 4 )
‘A“.'A:B (1 - T“lz) (1- r—~,-_,)

2
(ry3 - ryor3)”
(1-r712) (1-1%23)

1-1245 - P2y - 205 + 2ryorry;

(1-r12) (1 -r3)

=121 - 123 1255 +2r 10197y
(1- 1‘232)

.{9.37)

Companing R. H. Sof (9.36) and. (9.37) we have,

(1-R?%29) = (1 -12}9) (1 -12}35). Hence the result.

1

‘Remarks :

. 2 L
In general, for a novariates we have, 1-R%az..n=—

Ap

where Aand Aqg are defined in (9.31).

2)

1)

R1 23 is simple correlation between X7 and its expected value Xy, hence
its should lic between -1 and + 1. But since Ix;X; = Ix2, which cannot be
negative. Hence R; 23 is necessarily p()_siti\;c or zero, that is why we
conclude, 0<Ry»<1.

If Ry 23 = 1, the association is perfect and all the residuals are zero, and
as such 531_23 =0, the observed and the expected values of xp coincides,
Therefore, we can conclude that x; is perfectly linear function of x5 and
X3:

If Ri23=0, X;is completely uncorrelated with'x; and thus the multiple
regression equation fails to throw any light on the value of x; when x5
and xjarc known.

Example 9.18 Calculate multiple correlation co-efficient from the data
given in Example 9.15.

Solution: Weknow, R?, 4=

b 2
o190 + 1713 - 2ror 151y
T
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Corrclation and Regression

(0.59)2 + (10.46)2 - 2 X .59 X 0.46 X 0.77 . 0.1417 . _
- T- 07772 By el

- Ry 3= 0384 Gapp). '

. .~
Example 9.19 If all the correlation co-cfficient of zero order in a sct of p
variates are equal to p, show that the multiple correlation co-cfficient of a
variate with other (p 1) variate is given by,

1 -1
']—R2=(]-p) [M]

1+ (p-2p]
o g - ; A
Solution : We know that, 1 - RZ=—
d 11
T .pr P p
where A = T | ‘]) IP a determinent of order p. .
P P Prnenosta 1
| s . p s
! | P 1...p | adeterminent of order
and A” = ! I I (P'l)
(s T o JO | ‘
We have,
’ 1T P pissp :
: ; , 11 pop adding ¢y, ¢3.....cp to ¢
A= {1 +(p-1p) | l' [ where ¢; indicates ith
5 L & " column,
£ ° P Pl i
T p Pt P ;
0(1-p) - 0 on operating R; - Ry,
' ) v ] TE2 3A.L0p '
:“, +(p-Tp) ; 0 0 5g)...f where R;indicates
I . I ‘ - ithrow.
00 0..00-p) -

Lo A=+ (p-Dp)(1-p) P

Similarly weean get, Ay, = 1 +Hp=2p) (1 -p)P2

B A\ 1+(p-1 :
- Theretore, 1 FR® . =—= (7 - p)[M], Henee shown,

- (p-2p

A TN
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10 EXACT SAMPLING DISTRIBUTION OF

X2 (CHI-SQUARE), STUDENT'S t, F AND
TEST OF SIGNIFICANCE.

10.1 Random Sampling

In Chapter 2, we have discussed the terms—population and sample. It is
obvious from the discussion that sample is necessary to ascertain the
properties and characteristics of the population. For this purposc random
samples are essential. ‘A random sample is one in-which cach unit ot
population has an equal chance of being included in it and the procedure to
have such a sample is known as random sampling. ' :

Parameter, Statistic and its Sampling Distribution : For drawing vahd

inference about the population we, in practice, deal with samples and
obtain the estimates of the population characteristics. The unknown
characteristics of the population are usually called paramcters. And the

estimate of a certain parameter is called statistic. A statistic is generally a
function of a set of sample values. It may be pointed out that there maybe a
number of choices of the samples that can be drawn from the population.
FHence the statistic itself is liable to vary from one sample to another. These
differences in the values of the statistic are called sampling fluctuation. If
. the number of samples each of size n sav, arc taken from the same
population and for each sample the valuc of the statistic can be calculated,

a scries of values of the statistic can be obtained. For large number of
samples each of size n, a frequency table can be constructed from the serics of
statistic, giving us the sampling distribution of the ‘statistic. In case of
random sampling, the sampling distribution of the statistic can be obtainc.:

in probabilistic sense if the nature of the parent population is given or
known. Thus the sampling distribution is defined as the probability
“‘i<tribution of a statistic derived from random samples drawn from ~omc:
specified parent population. : '

| ike anv other distributions, a sampling distribution may have mean
~tandard deviation and moments of higher order. The standard deviator
tatistic is usuallv-called standard error of the statistic.
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Exact Sampling Distribution and Test of Significance

We shall derive the sampling distribution of the x? statistic, t-statistic and
F-statistic and also indicate their properties, uses and-applications in the
next sections.

Degrees of Freedom (d. f) : The number of dcgroos of freedom (d. f.)'is equal
to the number of independent comparisons between the observations of a
sample. If there is a sample of size n, (n -1) independent comperisons ¢an be
made and therefore the d. f. is (n - 1). Again if the sample is arranged in k
classes, then the d. f. is (k -1) as (k -1) frequencies are specified, the other is
determined by the total size n. Thus if b functions of the sample values are
held constant the number of d. f. is reduced by b.

10.2 ¥2-(Chi-square) Distribution

xz-distribuli()n'with n d. f. is the distribution of the sum of squarcs of n
independent standardised normal variates.

v

Let xy, Xp,......x5 be n independent N(0,1) variates then the statistic x2 is
) n n '
defined by x2= ¥ x2 and the distribution of Y x?2 is x2- distribution with n
i=1 : 1= : ;
d. f. usually denoted by X, If xi's are independent N(p.,-,o?_i) variates then
n % : )

T | Y
Yy ()‘l b )is also a X2,
1'=1 G

Derivation of y2-distribution : Let x5, X3,.......X,, be n independent N(u;,6%)
variates, we are to find the distribution of :

n ‘.- n - . —_—
xi= X (’L_H"_ = YA \x'hc.rcu-l=ﬁ"—u'—
i=1\e G i=1 G

Since x's are independent, uj's are also independent.

b’ n .
Therefore, (pxz(t) = ‘pZuzi ®=-.n (puzi(t) = I(Puzi(t)l 1l
: | = ] ] =]

where @ indicates the characteristic function.

% 2 i 2
Now, since we know that, @u7,(t) = E[¢!,” |
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oc o< 1
2 o P .
= [e R duy =—== [e"e” 2" du
o< ‘ A ..
1
I e,mz(l -2i0 5, T‘
‘J (-2 2
1 = . 12
Since — T jg' FRat s - T T i
Var -2 7w I
2 | Y : G.E ma® '
Now, Py (t) = — which is the characteristic function of Gamma-
a-2in? '

' 1n | .
variate with parameters (5‘ 5 ) - Hence from the uniqueness theorem of

characteristic function the pd. f. of 2, is
: 2
s X  n. ‘ : :

) =—=—0e"2 AT ; 0<¥gec. ~ .. (10.1), )

=rn 2

21 = G 2

273

Remarks :

Normal distributution is a particular case of y2-distribution with n = 1.

,Afx; (1=1,.2,...:n) ben i-nd‘cpendent normal variate with sample mean x
2

and known population variance 6 then is a x2 variate with (n - 1)

d.f. whereSz— Z(xl- x)

' 2
iii) x,..N (1, 02) variate then X ~N (u, c:‘)

hv [X-ll]2_ ‘2 iat 'hldf
ence 1S a )(© variate wit o B
2 0/‘\]}1 , . e e

«
-

v 3 Probablhty Curve For different valuck of n, the-degrees of trecdom <he
different types of curves can be obtained as shown in Fig. 10:1,

18 -



Exact Sampling Distribution and Test of Significance

Fig. 10.1 xszrobability curves: =
Moment generating function of X*-distribution :
a. o
My2(t) = Ele X = e‘x%(xz) dy2.
£
of , 3n s n
- LS ~ x_ 1
=i Jclx e 9 (‘xz) dxz.
T|IL4 )
27 '3
< Xa-w 1
: (1= 2
=T e @2 o
52 f2_0
1 g s B lea By S m
= T | e e~2—(x,2)2 dx 2 where) 2 =x2(1-2t).
(1-2070 5 7[5 | #..
: | 7
= __T ; TR T e (10.2)
(1-2p) 2 ‘
First four moments of-x'2 distribution ;
. no
We know, Mx2.() =(1-2t)" 7
n¢n
- i
Expanding we get, Mx2(t) =1 +§(2t) el
n/n n :
E(Evi)+(§+3 ...... 'Zﬂfrvl)
...... - (Q0F+,.25. (1.3
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»” . tr :
As W', = Co-efficient of i the expansion of MXZ,(t) in (10.3).

]

Therefore, " =n,

M =nn+2) o
Since, . My =i -Hy 2=
Again, M3" = n(n+2) (n +4)
Si:“:e/ . Ha =4 -3y +2l»l1 3=
And again, Mg = nn+2) (n+4)(n+6).

- Since, g = Mg -4 'y + 61y 2- 3u1’4 = 48n+12n’.

2 My
Weknow, B;=——==and [52-———+3
\ 1-123 n ,,122 n
Remarks: ey -

e

Asn — o, By — 0 and P — 3, hence %2 -“distribution tends to normal
distribution if the dcgreeq of freedom, n is very large.

Additive property of X2 - variate :1f Xn; and inz are two independent X2 -

variates with ny and np d. f. rcspectwcly then xzm +X2nyisalsoa X? - variate
with (n; +np) d. f

5 .. ny
Proof : We know, MX2n () = (1-20 Z and MxZna() = (120772

Since X2n; andX2n; are independent then,

; _ Inp t+ 0y _
MXZn; + X2no(t) = (1-21) 2 ; " il (10.4)

which is the moment generatmg function of a XZ - variate with (n7+ny d.f.
Hence proved.

The result can be extended for any number of independent X,2 variates.

Remarké : The converse of th‘e result is also true i. e. if Xz-,‘ G=12... k) are
%2 - variate with n; (i =1, 2/....... k) d. f. respectively then Y o x%icaX’
¢ i1 ,
variate with Ynyd f.then X7 arc independent.

18K



I xact Sampling Distribution and Test of Significance
Anoth.r useful version of the converse is as follows : If X and Y are two non-
negative variates such that X + Y follows X2 - distribution with (n;+np) d. £.
and if any one of them, say X is X2 - variate with ny d. f. then the rest one Y

“is also a X2 with ny d.f. The above version is true for any number of sugh

variates. '
Theorem 10.1 If inl and XZ“Z are two independent X2 - variates with nj.a nd

. Xy Mmoo
np d. f. rcquctlve]y then —lea By 3,3 ) variate

X

Proof : Since X2n;and X?n; are indcpcndcnt %2 - variate with njand np d. f.

respectively then the joint probability differential is glvcn by the
multiplicative law of probability as shown below :

dF((2n,X2ny) = dF((2ny) dFZny).

12M +y2n, ’
) ¢ 2 F1 5 24
- . ’) - -
TN G2 77 (2?7 dPnyding,
e ¥2r '
0<(ny, X2ny) Soc
2
n
Letus put, u :XTland v= inz.
Xn,
So that uv = 2n; and X2ny = V.
Jacobian of .transf()rmation is given by
dsz d)(zn]
TE du dv | ¥ U
= = =N
'y diry - 01
du dv
. df2nyd)Pmy = vdudv.
Then the joint distrbution ot uand v becomes
! v+ ) n. . Ny
dG v n; - ny e w T 1T Ty duav:
2 5 b N ™
2 4 v aiea <
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1 Ml+w '
SO0 T ;21,__1

n1+ n;—m v 2.

W¢ know that integrating d G(u,v) with respect to v over range 0 to =<, we get ™ -

n +ny

“Tdudv: 0guw s’

¢
o

dG (u) = ]'dG(u_,\') dv.

N o< vl +u)

1 1 5 ng +ny
ST N ——— ’
nlﬂ,z(n]rm @ "‘Bje- wT7 ldv.
L ny+ My
Z1 Sy
5 u
n,+n2(-n1!—nz 158 n +ny
Hrl=r)
.-n’l_"l . .’ V ] v ®
w P TR F R p— (10.3)
!’E L) 0<u<o€
B( 1+u)~ 2 L

Theorem 10.2 If in-l and X2n2 are indcpendcnt X2-variates with n; and ny d. f. '

respectively, then u = is independently distributed as

X+ Xy
n on
B] 'I 2

Proof: As glven in theorem 10.1 we have the joint prnbabllny differential.
b g m;_xi nl' ;
L ‘___ 5

(xz;‘z)-z- 4 dﬁ;dfrm 0 Xn e

Y

Letus put, y - mndv=Xo /,2112 .

X+ xzn-»
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Exact Sampling Distribution a»  Test of Signiticance

So that uv- X2nyand X2ny = v-X2n; = €1 - uv.

Since xzn] and X2n,range from 0 to <, uranges from 0 to 1

to ex,

Jacobian transformation, J is given by

Throfore, dX?n;dX2n; =vdudv and

and vranges frion 0

. iy
dGu,v) = e TwvZ " 1{a-uv) T -1 vdudv.
Np+Npep My :
o e b K 2
‘V _h1+n2
1 L 3 1, 7 -1
ey T (1) T 2 dudv.
2 np 73 I’ 1|'_T
I—(n]+n2
ny
](1_-u)'z-"1
-il[_gz- n]+n2I—(n, +n2)
Y np#n
x ¢ 2 - ! 2-]d_v.

Since the joint probability differential ofu and v is the product ot their

‘with, »
r np+ny
: Y "y
d.('l(\-l)=. I_h'[‘nz uT']’(l u) T-]du,()SuS'l.
' it
. 5 ‘
and dGy(v) = L o ':,"Vn ; N2 | Fo 0" veo

. nl*ngl‘n]tnz

191

respective probability differential, u and- v are independently dlqtnbuted

......... (10.6)
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AL o gt Bl .
| hatis, uisa B, (-2—, T) variate and v is‘a X2 - variate with (ny + no) d.f.

" Theorem 10.3 Forlarge n, the d.f,, show that '\ 2X?n ~ N(V2n,1).

Proof. We know that E(X2)'= n.and V(X?n) = 2n. Now let us define
xzn = n . ¥ .
/= - which tends to N(0,1) for large n.

A

Let us consider

Xn-n
I <z.|=PDn<n+zVnl
{‘5‘3 ] '

=P2X2n<2n+2z \2n)

-1
=PIV 2X2n < @n+22\2n)? |

- 2 =
=PIV .f(zn< \2n(1 + 1‘\} =, %

PN 2XPn - \72—11} < z| for large n.

: xzr\ =1
As wo know, forlargen, H ~N(@©,1).

.o conclude that N 2X2n »\TZFf N(0,1) for large n,
which implies that V 2X2n is asymptotically Ne 2n, 1).
Remark : The above approximation is valid for n 2 30. For moderate n,

R. A. Fisher has proved that the apbroximatioh'is improved by taking
v (2n - 1)instcad of V 2n. '

Theorent 10.4 If ti\e variable x1, X,...... xn are mdopondont]v distributed in
the n\mngular formdF=dx,0<x<1, thon

-2 10g (X1X3 ..... Xp) is distributed as X2 with 2n d.f.
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Exact Sampling Distribution and Test of Significance
Proof : Let - 2 log (X, X2--Xn) = P1+ P2+ ¥Pn
where p; = - 210g X;, i £ W JO.

-5
or,xj=¢
s e [RL |
The probability function of p;is given by, Hp) = f(x;) I,
Since dF(x) = dx, f(x) = 1 for all x within the range 0 to 1.

: 1 1 -ﬂ.
cipr=1 | g 4 | ==

which is the probability function of X2 - distribution with 2.d. f..
Therefore, by the additive property of X2 - distribution,

n g s _

210g (X1 X2uwweriXn) =3 p;distributed as %2 with 2n d. f.
. i=T

10.3 Student's t-Distribution \

W. S. Gossct (1908) under the penname of Student defined the t-statistic
with (n -1) d. f. by

X -l
= . o e (10.8) -
s/vn ;
L n {0 ;
where x = 2 x;/nand $? =t To(x- x X )2 and W is the population mean
. :] L .

=1 . i

He derived the distribution of t which is known as Student's t-distribution

'

Fisher (1926) defined t-statistic with 8 d. f. as the ratio of a standardised
normal variate to the square root of an independent Chi-square variate

divided by its d.f. 8. That is, he defined t = with 8 d. f. where uis o

[ X%
3
N(w,»l) variate,and X2 is'a chi-square variate with & d. f.

Theorem 10.5 The value ot Fisher's tis same as Student's t.

Proot -1 ¢t X3, X2 X, be nindependent N(u,0?) variates, then

193



An Introduction to The Theory of Statistics
X -Hd

c'J_

1 -~ o
where $2 T Z - x )2, then the statistic, t =
Tellen

(n -1)$?
u= isa N(@©,1) variate, ""02—!5 dlstrlbuted as 1_2 with (n- 1) d.f.

XB, JnhsT o x-p 4 \
0/\]; 0'2(n_'-]) _S/‘\/; 2 o s (]09) .

which is sarhe as in (10. 8)

The d. f. of Fisher's t is same as the d. f. of ch:-squarc variate and this is
more genera] than the Student's-t. '

Ijerivation of Fisher's t-distribution : From (10.8) we have

n(x -w? n(x -2 , n _

t2 = i e e} Since_ n52=(n-1)52i=:)i (xi- x)2

' (n-1)

2 (x -p? 42 (X -u)?‘/nsz .
o W= 8 or, Eﬁ:A = :,?T where § = (n -1).
Since xy, Xp,...... xn»be a random sample from a ' normal population with mean p

(x -2 ,
and variance 02 then x ~N(,02/n) andTls a X?with 1 d. f. and
n

; 5 : s , s
ns* —
also ;is a X2with (n - 1) d. f. Further since x and s are independently

distributed.thc,ri X?; and xz(n -1 ) are also indci:;cndumly distributed.”

K t2 . . o 0 .
Threfore, v = Eis the ratio of two independent X2 variates with 1 and

; ;
=(n-1) d. f respcchvely The ratio gives B')( ) variate given in (10.5)

and its distribution is given by

B

o
-
—

V. 2

dF(v) = A+v) 73 dv, Osvs
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Exact Sampling Distribution and Test of Significance

‘ i 3 tz _ l tz o+ 1 ¥
Therefore, dF(t2) = =————— (=] 21 +=—]" T2 .dL ’
| 1 E) : 5 5

1 1 tz 8+1 ' z
= e (t2) ‘2(1 + %-)‘—T" de?, Os_t2 <ex,

2y O0+1

=1 2tdt.
8)—rn

{2 §+1 .
)' TTdt,  -e<St<ec

—k Tl
JaalL 2) ( 8
77

. |— 5 +1 .
‘ 2 2y 81 '
Thvas, = (n;) Tdt, e (10.10)

Vo 3

(10.10) is the required p. d. f. of t with § = (n - 1) d. f.

t - Probability Curve : The p. d. f. of t-distribution with 8 d. f. is

1
2

= : 5 d+1;
W)

it is scon that the curve is symmetrical about the line t = 0.-Since f(t) = f( -b)

As tincrease f(t) decreases rapidly and tends to zoro at t—e<,

3®

Fig. 10.2 t-l’rolmhiﬁly curve.
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I'roperties of t-distribution':

Moments : Since f(t) is symmetrical about t = 0 all odd order moments about

origin vanish,i.e. 't 1=0;r=0,1,2......

In particular, {if = 0 = mecan. Hence the central moments coincides with

moments about origini.e. Uor 41 =0;r=0,1, 2........

The moments of even order are given by

’

Hor = W', = IGACED

-oc
til'

B 18 I 5+1 ke
2
\]8[5(“2' 5)0 (1+t—8),T .

(8]

T S
Wy

2\, 2t
1
=
) :

t .
Let us put E:y t2=§y

. oor, de2=% dy.

Since 0<<ex, O<y<e. %

3 Pl = — j 8yu+ 98+1
J Jﬁic ) b4 —T—J

272

8T = g 1
] ] [ Y 2(1 )é ﬂ+h+ ) d
i3 7)" = i

(20 2

&F 138 .
= Py B(r+5,5-r)
I ?T) ¥



Exact Samp! ng Distribution and Test of Significance

(2r -1) (2r +3).. .3, 1 a

a0

TE-DG-aG-2) (2T “ne §h.e o
[m[n

Since we know, p(m,n) =|—

(10.11

+n
| e g ?x1x3 - ¥
o ¥ A = ———12an = - =
n particular, . =FT A= 6T2 (5-0) (B-D G-
A ) ,
; . (]-'g)
3(6-2 ;
Henee, By =L'l?‘?=()and[.‘>2:l14 ( )=3. =
W2

2 (-9 -
(3)

Hoence for large n, t-distribution tends to normal distribution, as 8 = (n -'1)

=3; As §—0c By 3.

~ Theorem 10.6 t-distribution tends to standardised normal distribution when
the d. f. of t-distribution is large. '

Proof : We know,

o+1
. 2x"172
ft) = (1+—) .
h)

1
w6

The constant term,

\

Using Starling's approximation and taking Timit 8—e wo have

! (3 ) 1
3 (7 T el
§.\ A V2n
2 i

S
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8
( f‘t';-)- b4
N f(t) L .
ow, t) = ;
& A ’21t 6—-)“. 2 l
(1 + —}2
3
T |
e R, wSbGes T, Ty ot e d 0 Be T (10.12)
2'n . >
(10.12) is identical to (8.48) :
2
S M =t 157 0" tT
.lnce : 5_”: ( -+ 8) —e
: ' o _
Lt tz — *
and | 5 (1 + 5) —1. ‘ ;

Hence it is shown that the distribution of t is N(0, 1) variate for large 8.

104 F-Distribution

F-distribution with n; and n; d. f. is the dlstn"butmn of the ratio of twor

mdepondent Xzs divided by their respective ny and nj d. f. Thus the F-
statistic may be defmed as .

Xn g . .
Pt where X2n1 and X?n; are two independent X2 with n; and npd. .
N 7..2n2/n2 ; _ " -
respectively. The F-distribution is usually called Sncdccor’s F-distribution.

" Derivation of F-Dlsmbuhon Let X?n; and X2n2 are two independent chi-
_squarcs with ny and np d. f. rcspechvcly then,”

Xny /g o
2t/ RS LGl-— being the ratip of two independent chi-
Yro/my "

square variates with njand n, d. f. respectively and is distributed as

F=

B, ‘2— 3 ) - given in (10.5). Hence the probability function of F is aiven by,
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() 3
dF(F)‘=. L (“1 )

o (3 ';z) (1+27) "7+ o

(ﬁ)%
"2. = nt
7

1
(mnz) (1+2¢ n1+"2
M

E O0gFso = . % i (10.13)

Remarks:
h]S]z &
B Lo/ & Tog2
Z = e
Lrofm, 25 i s
°2

Thus the distribution of F may be called the distribution of the variance
ratio given by Snedecor.

Moments of F-distribution : The rth raw moment is given by

(") Fm:_?_f_'1

NI

X L,
Let us put, nz--IF=yl J%v or, dF:-r-h-dv Dsy<ex,

v Ty 2 X s
(2) % nzw)-r— ¥
1] - ng- .
The - oy
Then, s n+m m dy
B ( 3 0 s i
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n1+2r
r& n1+2r
2.

n Ny J SR ] i1 ay
B("z_:z) (1+y) 2
)
m
ny+2r n2-2r) Cooe
(n1 ny! » 2 .2
(nz) rl-(n1+2r) (ng Zr)
. B[R
1313 |
(2)’('"_*35-1),(22_‘.21'.-])!
P 2 2
' ’ ™
= T<5

30) G )
mye ) L)
O E e

Thus f‘%' ny > 2. This is independent of ny and is always greater than 1.

L, nh (g +2)
m (ny -2)(ny -4)’

ey “2(nq+ ny <2)
“HERT T -9

np >4

n?)(nq +2) (ng +4)
'ﬂzg (ny ’2) (ng - 4(ny-6

~ Similarly py’ =

) iy > 6.

m4n;+2) (ng+4) (ny+6)
ny(na - 2) (ny - 4) (N - 6) (ny - 8)

andpy’ = iny>8.
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© The corrected M3 and Mg can be calculated by the formulae,

= W3-34b #2070 and My = E- 4uGp7 + BEMT2 - 37,

i § hus it is scen that mofncnts of F-distribution depends on only ny and njp. The
curve is J-shaped if ny < 2 and positively skew for ny > 2. The frequency curve
for ny > 2 is shown below :

P -
‘F
o
Fig 10.3 F-probability Curve.
-2 m - T
The mode of the distribution can be obtained at F =——— : :
ny n'_) +2
Thus moac of F-distribution is always less than 1. : - "

Inter-relationship Between X2, t and F-distribution.

Theosgm 10.7 The square of t \"matc with n d. f. is dmnbutui as F with 1
and n.d. f. , . o

Proof: Let us put F =2, n; = 1 and ny = n then the distribution of F with n; and
ny d. f. can be written as ; .

()-«z%

dF(F) = d(tz).

(39 (1) -
TB(%19) (:

which is t-distribution with n. d. 1.
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Theorem 10.8 thn ny tends to 1nf|ntty nF. tends to be dlstnbutcd asaX?’
with nq d. f. -

Proof : We know,
L ] [
ﬂ n+n n
(¥ M 3
m 2 F2
f(F)= : - 0<F<ec

In the limit as np—<<, we have

N
rnl +'n2 (?) =
2.

Sy 3
- (nz) 2 2?

1

: Wo can find out the above by using Starling's apprcmmatmn and taking the

r(n
Fn .

Ltr L i L T ) 2
- Al (1 ] nzF)T (1 3 2*—F) 2
ny—oc ny—oc m '

—nk as noec,

, limit

mF o x2
=0 2 =02

t

v

. al
Hence in the limit, the p. d. f. of n; F = X2 becomes

1w
= —— <X<
e T ooz e 0K e
21 =
52
. which is thé required p. d. . of chi-square distribution with n. d. f.

] ) »
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10,5 Testof Significance

Test of significance is a statistical procedure to arrive at a conclusion or
_ decision on the basis of samples and to test whether the formulated
hypothesis can be accepted or rejected in probability sense. The aim of test
of significance is to reject the null hypothesis (defined later),

Statistical Hypothesis : A hypothesis concerning the parameters or the
form of the probability distribution which we try to varify on the
. informations provided by a sample, is called statistical hypothesis.

" Parametric and Non-parametric Hypothesis : When the hypothesis
concerning the parameters of the distribution, provided the form of the
distribution is known, is called paramctric hypothesis. While the
hypothesis regarding the form of the distribution ‘with specified or
unspecified parameters, is called non-parametric hypothesis. For example,
the hypothesis regarding the population mean and variance of a normal
distribution may be considered as parametric hypothesis "and the
hypothesis that the sample has been obtained from  binomial distribution
with known or unknown probability of success may be considered as non-
parametric hypothesis.

Null Hypothesis and Allerna!iveHypolhesis : The hypothesis which we
are going to test for possible rejection under the assumption that it is true is:
called the null hypothesis, usually denoted by H, and cach of all possible
hypothesis other then H,, is called alternative hypothesis, denoted by Hj.

Forexample, if Hp:, 1y =15

then. i) Hy: py <ps. i) Hy il > Uy etc. are alternative hypothcécs. .
Simple and Composite. Hypothesis : If the hypothesis specifies all the
parameters of the distribution, is called simple hypothesis otherwise it is
called composite hypothesis. For example, a normal distribution has two
parameters 1 and 6% The hypothesis H : jt = p, and 62 = 6% is simple
hypothesis while the hypothesis regarding cither of these two parameters

is composite hypothesis. There may be number of composite hvpothc&o& of
the above casc:

Error of 1st and 2nd Kind : We may commit two types of crrors for making
any conclusion on Hy on the basis of sample. The error of rejecting Hy
faccepting Hy) when it is true is called the error of 1st Kind or Type | error
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The error of accepting Hp when it is false (H; is true) is called the error of
2nd Kind or Type Il error.

designated by X in an n-dimensional sample space. If X falls in the region
for which we reject Hy when it is true then the region is called critical

region denoted by ®, say; and if X falls in the rest of the sample space, ®

we accept Hy, in that case  is called the acceptance region.

Level of significance : The probability of Type | error, denoted by @, is called
the level of significance, i.e. P(X falls in 0/Hg} = o

We usually consider 5% and 1% level of significance for testing hypothesis.

Power of the test : Let the probability of Type Il error be B i.c.
P{X falls in ® /H;} =B, then P {X talls in ®/H;} = 1 - B which is called the

power of the test.

X2 -
g w
Acceptance Region

X i
3 Fig 10.4 Critical and acceptance region.

10.6 Some Important Test of Significance and their Applications

Some of the important tests of significance used mainly in statistics are

1) Normal test. 2) t-test. . 3) X2-test. 4) F-test.

The description and applications of the above tests are briefly discussed in
the next page. g ¥
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1) Normal test : Lef u be the statistic whose expected value is E(u),

specified by the null hypothesis and its standard error, o(u) is cither known
or can be estimated from large sample (sample size > 30) then

Fd ] S, . : e S ey (10.14)

o(u)

which is distributed normally with mean 0 and variance 1 i.¢. d is N (0,1),
variate. When-u is normal then d is exactly N(0, 1) variate and a normal
test can be applied. Again when u is not normally distributed and o(u) is
estimated from large sample then d is approximated satisfactorily to
normal distribution and in that case also a normal test can be carried out.
That is why it is often called a large samplc test. ;

Normal test is usually two-tail test. From normal pmbabllny table we get.
Prob[-1.96<d <1.96]=0.95 which

implies that,  Prob[| d| £1.96]=095 also
implics that,  Prob[| d| 2196)=1-095=005.
and similarly we can get, Prob || d | 22581 =1 -0.99 = 0.01.

Thus the significant value of | d| at 5% and 1% level of significances are 1.96

and 2.58 respectively. The conclusion regarding the null hypothesis Hycan

be made as follows :

i) Ifl d| <1.96, the value of | d| is insignificant and
Hp may be accepted.

i) 1f1.96<| d| <2.58, the value of | d| is significant and

Hp may be rejected at 5% level of of significance. 0

iii) 1f| d >2.58, the value of | d| is highly significant and
Hy may be rejected.

- Uses : This test is used for testing hypothesis regarding means, proportions
and correlation co-efficients. '

Applications of Normal Test :

(1.a) - Testof s1gmﬁcance for single mean

Let us suppose that x;, Xy,....:..x, be a random sample of size n from a normal
population with known variance. We want to test the null hypothesis that

the population mean is cqual to some assigned value say Py i.c. Hp: L=
(specified value).
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The test statistic is
X -Ho :
ld| ==——, : < i (10.14a)
o/vVn : A : :

which is distributed as N(0, 1) variate.

’ .

If 62 is not kriown and the sample, size is greater than 30, 6 in (10.14a) is
replaced by its estimate from the sample. This test is also a normal test.

*Thc_ conclusion can be made fuliuwingrthc principle given in (A).

Example 10.1 A sample of 400 items’is drawn from a normal population
whose mean is 5 and variance is 4. The sample mean is 4.45. Can the sample
be regarded as true random sample drawn from the population?

Solution : Let the null hypothesis be Hy : W=5

The statisticis| d| =

XA
o/ifn 2

which is distributed as N(0, 1) variate.

The calculated value of| d| is greater than 2.58, hence it is highly
significant and the hypdthesis may be rejected.

(1.b)  Test of significance of difference of means

a

Let x be the mean of a random sample of size n; from a normal population

with mean [, and known variance 0,2 and let 'y be the mean of an
independent random sample of size n, from another normal population with
mcah_ Ky and known variance O'yz, For testing the null hypothesis, Hy : py, = Hy,

- : X ey ‘ _ 7
the required test statisticis | d| = Rl e (10.15)

2 2 ‘
L - o
) LU ]
which is distributed as N(0.1) variate

Ifo2= dyz = 62, then the test statistic is,

" Ik
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X -y ;
| dl = T S TR - R (10.16)
1]
i Ko

Vm .

which is also distributed as N(0, 1) variate.

Evenif 6,2 and C)'y2 are not known but ny > 30 and n; > 30 then o2 and C)'y2 are
replaced in (10.13) by their estimates 2, and s2, respectively from the

1 - —2
samples wheres 2= — ¥ (x- x ) ;
o Mis )
zr?( ! an
—— . 'l 2 — — y
N ey L =g’ Nl 5 |
x =T ands, n2j:](yj Y¥iy ™

And again, if ¢ in (10.16) is not known and the samples are large, (nq, ny > 30)
the estimate of & is replaced in (10.16). The estimate of 62 is given by

A
e ns, 2+ nzsx-2

. Ny+my

If the hypothesis to be tested is that the population means are U, and p,
(some specified values), we can carry out the test of significance as above
considering the numerator of the test statistic| d| as ( x - v -y - 1y

The conclusions of the above hypotheses can be- done ﬂ)l]uu’ing the
principles given in (A).

Example 10.2 The mean yiclds of two sets of plots and their variability arc.
* b . e . . -
given below. Test the hypothesis that the difference in the mean yiclds of
the two sets of plots is significant.
1

Set of 40 plots ~ Set of 60 plots -
Mean yield /plot - 1258 1243
S.D.perplot- 34 .28

Solution : We set up Hy: p; = ;‘12 where [; represents the population mean of
the ith sct. ‘
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The test statistic is, | d| 1258 243 5 2.3. (app)
¢ test statistic is, = = = app .
| o’ oe. V4192
0 e :

Since the calculated value of | d| is greater than 1.96, but less than 2.58, it
is significant and ‘the hyphothesis may be rejected at 5% level of
significance. In such case, further ln\'osn;,,atmnq are, adwch to got exact
conclusion.

(1.c) Test of significance for sample proportion

"Let us consider an independent random sample from a binomial population of
size n > 30 of which x is the number of individuals which possess certain
characteristic, then the observed proportion of the individuals possessing

= X

that characteristic is given by p == We are to test the null hypothesis,
Hy: = my (a spucified valuc) where 1 is the population proportion.

The required test statistic is

-7, ¥
| dl - —Eme— ; _ i
T, (1--T8,) S v (1017

n
which is distributed as N(0,1) variate.

The conclusion can be made following the principles given in (A).

Example 10.3 A random sample of 100 sceds was taken from a large
consignment for examination and 12 were found to be defective. Can wo
accept the suppliers ‘claim that the proportion of bad sceds in the
consignment is (.02 ? ’ ‘

Solution : We sct up Hp: = 0.02.

ig \' ) /1:0(1-::0)

Woe calculate p:mozl).nand s.e(p) = ———

0.02x098 14 '
=N '1( = 04

o 12-0.2
The required test Statistic, | d] =

o1 =71 tapp) -

The calculated value of | d| is highly significant and therefore the
hypothesis may be rejected.
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(1.d) Test of significance for difference of proportions

Let us suppose that we have two independent samples of sizes ny and n, (n;, n,
> 30) obtained from two seperate binomial populations of which x; and x,

- are the number of individuals possessing certain characteristic. The

observed proportions of two samples being p; and p, respectively. We are to

test the hypothesis that the two samples have been drawn from same

binomial population. i.c. Hy: 1 = 7y,

X X2
We calculate p, " and py= E
1

.

nip;+n
The combined proportion of two samples is, p b1 TPy andq=1-p.

%R
The required test Statistic is | d| = L P o110 18)
: 15 ])
\ VPR

~ which is distributed as N(0,1) variate.

The conclusion can be made as according to the princples given in (A).

If the hypothesis is to test whether the population proportions are Ty and 1,
(some specified values) the test statistic becomes .

(p1 - p2) - (T - p)

,\/n1(1-7t1)+1t2(1-1t2)
Ty m

which i$ also distributed as N(0,1) variate and the conclusion can be made
according to the principle given in (A).

ld| ————tet—_= (10.19)

Examples 10.2 In a year there are 956 births in town A of which 52.5% were
males while in towns A and B combined, this proportion in a total of 1406
births was 0.495. Is there any significant difference in the proportion of
male births in the two towns?

Solution : We set up the null hypothesis, Hg: Tty = %, i.c. there is no
significant difference in the proportion of male births in the two towns.

Weknow, n; =956 and n; + n, = 1406 sonp = 450,
P1=0.525and the combined proportion is

956 x 0.525 + 450 X p, :
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0.525 - 0.432

' _ 1. 1
V 0.496 x 0.30-.1 (g+ m)

B ;
=3830 " 3.25 (app) -

The test statistic | d] =

The calculated value of | d| is greater than 2.38, hence it is highly
significant and the Hy may be rejected i.e. there is evidence that there is
significant difference in the proportions of male births in towns A and B.

(1.c) Test of significance of specified value of population correlation co-
efficient

Let us supposc that we have a random sample of n pairs of values from a
bivariate normal population. The calculated value of the correlation co-
cfficient is, r, say. For tésting the null hypothesis that the population
correlation co-efficient is py, a specified value i.e. Hp:p = py (a specified

value), we need a transformation known as Fisher's. z transformation for
correlation co-efficient available in Table No. 14, page-139 ; Vide
Biometrika Tables “for Statisticians cdited by E. S. Pearson and
O. H. hartley. '

1+r
. This is defined by, 7 = ;logl, = This transformation is uscful for the

tollowing rcasons namely the distribution of r is far form normal and
changes as p, the population correlation co-cfficient changes. But the
“distribution of 7 is approximately normally distributed with mean,

1+ 0 )
m=3log ; and variance =

T-po : :
; g (z - m)
The test statistic is | d| = = (7- m)\l(n 3) R

V (n -3)

which is distributed as. N(0,1) variate. The conclusion can bi': made
following the principles given in (A).

n-3°

Example 10.5 In a random sample of 28 pairs of values from a bivariate
normal’population, the correlation co-efficient was found 0.7. Is this value
consistent with the assumption that the correlation co-cfnaent in the
population is 0 5?2

Solution :‘Wc set up the null hypothesis, Hp : p'= 0.5,
From v-transformation, we have, 1=0.7 ;7 =087 p=035;m =0.33
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0.87 - 0.55

The test statisticis | d| = =
b
- 28 -3

The calculated value of | d| i€ less than 1.96, hence it is insignificant and
the hypothesis may be accepted i.c. the population correlation co-cfficient
is 0.5.

(1.f) Testof significance of the difference of correlation co-efficients

" Let ry and ry be the sample correlation co-cfficients obtained from two
independent random samples of sizes nyand ny respectively obtained from
two seperate bivariate normal populations. We are to test the hypothesis
that the sé\mp]es are drawn from two different populations with same
correlation co-efficient or from same population. '

Let us obtain the values.of 71 and 7 from the Table No. 14, Page 139 ; Vide
Biometrika Tables for Statisticians Edited by E. S. Pearson and -

: 1 1+ 1+m
O. H Hartley. We know, #; = z—k)g l.TTand 7= log "I—-r_z—

Then under Hy : py = py ; (71 - ;) is approximately normally distributed with

1

. 1
zero mean and variance [("1 3t m]

‘ (21 - #2) '
The required test statistic is| d | —l 2 . 7 gusiSue (10.21)
. 1 1

4 —
n1-3 ny,-3

which is distributed as N(0,1) variate.
The conclusion can be drawn as given the principles in (A).
Eiample 10.6 The correlation co-cfficients obtained trom samples of sizes 20
and 32 are 0.47 and 0.68 respectively. Test the significance of the difference
between these co-cfficients. i
Solution:  WesctupH,: p, =p,.

Here, n; = 20, r; =047

‘and ny =32, = 0.68:
From z-transformation, we have, #1=0.51, and #; = (.83.

.51 - 0.83 .32 -
=303 = 105 app)

*The required test statisticis, | d| =
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Since the calculated value of | df is less than 1.96, it is insignificant and the

hypothesis may be accepted.

2) t-test : In normal test, we assume that atu) in (10.14) is cither known or can

be estimated/from a large sample (n > 30). We may have to face some

situations where the sample sizes are not large enough and also the o(u) is

not known. In such case, the estimate of g(u) can be obtained and the test

statistic becomes f

' u-Ew ‘

B it e v A G ETRIR L SRR i SRR L 8 P 2 (10.22)
estimated o(u) ;

which is distriblited as Student's t with 8 d. f. where 8 is less than n, the

sample size, mainly depcnds; on the d. f. of the estimated q‘(u)'.

When 8 is large, t-test becomes normal test, therefore, t-test is small sample
test and can be considered as a special case nf normal test. Like normal test, .
t-tests are two tail tests. The thL,n!'ctlcal or tabulated valuc of t for '
different d. f. as well as different levels of significance are given in Table
No. llI, Page-16, Vide Statistical Tables for Biological, Agricultural and
Med it‘_ai Rescarch.

The conclusion can be made as below :

i) If the calculated value of |t with 3 d.f. (say),is
smaller than the tabulated valuc of t with same d. f. at
5% <level of signi'ﬁ‘cancc then the value of| tf
insignificant and  the  null hypothesis may be
acceptod.r - '

i) If the caleulated value of | t] with 3 d. £, (say) is
greater than the tabulated value of t with same d. f. at

5% level of significance but smaller than the value of t

with same d. f.-at 1% level of significance then the

. value of | t] -is significant and the null hypothesis
may be rejected at 3% level of significanc.' (B)

iii)  If the calculated value of | t| with 8d. f. is greater than
' the tabulated value of t with same d. f. at 19 level of
significance then the value of | th is highly significant

and the null hvpothesis mav be relected.

212



Exact Sampling Distribution and Test of Significance

Uses : t-test is used to test the null hypothesis regarding means, correlation
co-cfficients and regression co-cfficients. - .

Applications of t-test

v

(2.a) Test of significance of single mean

Let us sﬁppose that xq, x3,......, X, be a random samplc of size n (n < 30), drawn

from a normal population with known mean and unknown variance. We arc

to test the null hypothesis Hg, that the sample has been drawn from a

'populati()n with mean Y (a spocificd'vdluo) ie. Ho: =y (a specified

value).

Since population variance 62 is not known the unbiased estimate of it is

n. = g
Z (Xi = X )2
=1

given by, s? T i

X -Ho

i .

which is distributed as Student's t with (n -1) d.f.

The required test statistic is [t] = (10.23)

The conclusion can be made following the principles given in (B). -

Example 10.2 Ten plots of same arca are chosen at random and the vield of a
certain paddy variety are recorded in kg, they are 63, 63, 66, 67, 68, 69, 70,
70,71 and 71. In the light of above data can vou suggest that the population
mean production of that paddy variety is 66 kg. for same arca?

Solution: We set up Hy : 1L = 66. s

—— 1 — )
Here x =678kg.and s = gxi- x)? =301l kg.

67.866 . )
1.89 (app) with 9 d.f.

VAL

The calculated value of t with 9. d. f. is scen to be smaller than the
tabulated value of t at 5% level of significance i.c. typs =2.26, with 9 d. f.
Hence the calculated value.is insighificant and the hypothesis may bhe
accepted.

The test statistic, t =

(2b) Test of significance of difference of means

Let 'x be the mean of a random sample of size ny < 30 from a normal

. . . _—
population with known mean y, and unknown variance and let v be the
mean of another independent random sample of size ny < 30 from another
normal population with known mean u,and unknown variances [he
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variance of the two populations are assumed to be equal. For testing Hy : Hy =
Wy (some specified mean values)

(x - ¥)-G-py

The roquired teststatisticis, | tf s =m0 ° L (10.24)
‘ 1...1
s‘\/ —_—4 —
nmom
which is distributed as t.with (ny + ny -2) d. L
n i
—_—  Yx.. =— Sy
where x = ol ¥ = =¥ and
: L m <
R ™
9 1 9 ) -
Roiee | F(xi- x P2+ Xyi- ¥R (10.25)
: np+ng-2| ° i S
i=1 j=1
When Hp : The two populatibn means are same i. ¢, [y = My,
X -y
| t] = ———— R AR S e S P (10.26)
171
s\ ] =+ =
LU

which is distributed as t with (ny+ np- 2) d. f. and sin defined as in (10.25).
when n; = ng = n, the statistic becomes

Y /
| e ) a2

Y J
ﬁ

-

which is t with (2n - 2) d. f. 3

The conculusion can be made as given the principles in (B).

Reamrk : For testing above hypotheses given in (10.24) and (10.26) it is
desirable to test the equality of population variances by applying . F-test

(glvcn latter on) If the variances donot come out to bc equal, the following
 test is to be performed.

When population variancés are not equal the required test statistic under Hy,
Lis given by,

r
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X =y

’

e e e (10.28)
1‘/ X B
MM

t given in (10. 28) is not a student's t. The tabulalcd value of t at % level of
sngmhcanm can be obtained from the following formula,

Sx t] :l:-t
T
where tyand t; are Student’s t with (nq -1) and (n3 - 1) d. f. respectively at
a % lcvcl of significance.

If ny = ny, then t; = t; =t say, which 1mphc'~ that ' = t.

When the null hypothesis indicates the spccificd value of:the population
means, say [, and 1, the test statistic becomcs,

(X - y)-(h-1y)

= B - (10.29)
S S .
e
m m

The conclusion can be drawn as given the principles in (B).

Example 10.8 The following data represent the vield in bushels of corn on
ten subdivisions of equal areas of two agricultural plots in which plot | was
a central plot treated the same as plot-II except for the amount of
phosphorus applied as a fertiliser : : .

Plot-1: 62, 5.7, 65, 60, 63, 58 357, 60, 60, 38
Plot-Il : 56, 59, 56, 57, 58, 37, 60, 33, 37, 35.

Is there significant difference between the vields onthe two plots. using the
difference between their means as a criterion of judgment?

Solution : Let x and y be variable for plot - | and plot - 1 respectively.

Ix 60 — Iy &
We Lalculatc x =0°-10-8 YEIr=n" 3.7.‘

Hm-xﬁ OMmmzw, V=024

P Vli o iy 0.64+0.24 Uﬂh .
. PPooled variance, 8= = 100 = Ib = (L4

N
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The required test statistic for testing Ho @ [y = Py is

.03 i . -
= = 3.03 (app.) with18d.f. . .
1. 1 ‘
V 0.049 ( ot TJ) , i . \

Since the caleulated value of t with 18 d. f. is greater than the tabulated
value of t with 18 d.f. at 3% level of significance, the value is significant
and the hypothesis may be rejected at 5% level of significance. :

(2.c) Test of SIgmflcance for difference of means from correlated
populations

Let us consider the situation where the sample sizes are samei. e n;=ny =n.
The two samples are not independent and the samples are paired together.
The situation may arise for the case where for avoiding  extrancous
influence we consider a plot of land which is equally divided and two types
of paddy varitics say, Irri and Boro are sown, thus giving us a pair of
observations of ylcldk of Irri and Boro. Let us consider such'n pairs of
nbwrvatmn Now we are to test the null hypothesis whether the uamplu
means differ significantly or not.

Letxjand v (i =1, 2,.......,n) be the yields on the ith plotand d; = x; - v, We -
set-up the null hypothesis, Hy - g = Uy - L, = 0.
[t is assumed that dy, do,........ ,dp, mn*-'.titutc a random sample from-a normal

population with mean Ly and varlanco 0d~ (unknm\n) The required test
statistic is.

d o ‘ ’
t=—=—= : - T e (10.30)
Sd/'\]; ] ¢ ) . ¥ &
which is distributed as t with (n -1) d. £, d is the mean of dj's & % is the
sample variance of di'sbased on (n -1) d. f. -

. The conclusion can be made as given the principles in (B).

Example 10.9 The following table shows the mean number of bacterial
colonics per plate obtainable by four slightly different mothods from soil
samplestaken at 4 P M. and 8. M. ru-.pcmvc]v

Mecthods A B . . D
lime ¥ NE 29.75 C2750 30.25 27.80
i 8 PAL - 3920 S (AR O <3R20 12,40
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Are there significantly more bacteria at 8 l". M. than at 4 P.M.?"

Solution : Calculations of mean and standard deviation :

Mcthods 4PM.() 8PM.(y) d=y-x d-d = @-d)?

A 2975 3920 - 945 .35 1756
B 2750 . 4060 13.10 2325 5406 ¢
C 3025 3620 595 4825 23281
D 27.80 42.40 1460 3825 . 14631
2
s 43. 1() . 2d; - a) e
We have, d __Zi_ 1 =10.775. and s?4'= =15.025

* The test statistic_for testing Ho * g =1y - lly =0is
10775 »
=5.56
15.025/4

"Since the calculated value of t with 3 d. . is greater than the tabulated
value of t with 3 d. f. at 5% level of significance, the dalculated value is

app)w1th4 1_3d f.

significant and the hypothcéis may be rejected at 5% level of significance.

(2.d) Test of significance of an observed correlation co-efficient

Let us suppose that r be the correlation co-cfficient from a sample of size n
from a bivariate normal population. We arce to test the null-hypothesis
that the population correlation co-efficient is zero, i. ¢. Ho:p = 0.

The rcquired test statistic is
n-2 '

1-r .
which is distributed as t with. (n -2) d. f.

. ........ (10.31)

b=

4

The conclusion can be drawn as given the principles in(B).

Remarks :

. (1) - The same test statistic can be used if we want to test the null:
hvpothesis Hy : B =0. where B is the regression co-cfficient of y on x. Here

. the usual assumptmn is that x is an Ny, 62 variatc and y is a fixed \larlalc
forB=0.

(2) .- The same test statistic is” used for testinyg the null h\ypﬂthv«is
~ regarding the population rank correlation co-cfficient is equal to vero. In
this case, in the test statistic r i< replaced by R, the sample rank correlation
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Example 10.10 A random sample of 18 pairs from-a bivariate normal
population showed a correlation co-cfficient 0.3. Is this value significant of
correlation in the population?

Solution : We sct up the null hypothesis, Hy: p = 0.
0.3V18-2

The test statistic is, | t| = ——==———=1.26 (app) with 16 d. f.
. V1 -0.09

The calculated value of t with 16 d. f. is scen to be smaller than the
tabulated value of t with same d. f. at 5% level of significance. Hence the
calculated value of | t] is insignificant and the hypothesis may. be accepted.

(2.¢) Test of significance of an observed regression co-efficient '

Let us suppose that (x;, v), (i =1, 2,.......,n), be a random sample of size n of
which x;'s are random and y;'s are fixed. We are to test the null hypothesis
that the regression co-cfficient of y on x is By (a specified value), i.c. Hy: B =
Bp(a specified value). :

The lincof regressionof yonxis v-y =bx- x) . ... (10.32)
S.P. (xv) , i . .
where b = LT The estimate of y for a given value x; (say) of x as

A —_—

givenby the line (10.32) is‘lv. =V +b(x- ).

The r(,qum:d test statistic is
(n-DFAxi- x )2

)=

t! =(b-PBy ..‘.(10.33)‘

A
Syi- y?
which is distributed as t with gn.- 2) d.r.
The conclusion can be made as given the principles in (B).

Remark : Somctimes we may want to test the hypothesis that o, the
constant term or intercept of the regression equation takes a particular value

say, (!()u‘ Hp: o=y la spouflcd valuc)
From the regression equation y; = a + b x; the value of 'a’ can bc obtamod by
— S.P.Ax,v) —
a='y -bx where b= S_G_(T)_; y  and X are the means of v, and ;s
S.5.0x), , :

respectively. .
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’ (a - o) ’\jln(n- 2)E(x,--T)2| '
The test statistic is | t| = —o—mom-—o—o—o——o | (10.34)

* \ﬁ():,xiz) Ay - TZ)I
which is distributed as t with (n-2) d. f.

The conclusion can be made as given the principles in (B).

]

(2.f) Test of significance of difference of regression co-efficients

Let us suppose that we have by and by, two estimates of same regression co--
efficient in two different times or samples taken by two investigators. We
are interested to test the null hypothesis Hy : B; = By i. c. the two samples
have been drawn from the same population. :

The test statistic is .
: by -
| ¢l & 1-b2, - A e (10.33)
T T ==
——— o T——
(ZX“ = X *[)2 Z(XZ] - X 2)2
i=1 =1

which is distributed as t with (ny +'ny - 4) d. f. where
: A

of which _2_ Zlyyi - vii)?

2 (g - 2)5;2 + (n7 - 25,2
T n1+n2—4 _ * 81

n;= 2 s
A .
and sy? = M n1 and nj are the sizes of two different samples.
np-

’ The conclusion can be made as given the principles in (B).

(2.8) Testing significance of an observed partial correlation co-efficient

Let ria35 + 2 be the partial correlation co-cfficient of order k,
calculated from a sample of size n from a multivariate normal population,
we want to test the null hypothcsns that the populatlon partlal corrclatmn
co-efficient is zero i. e. Hy: p1»: M. D) = 0.

r234... n-k-2

........ (10.36)
Vi-1254

The required test.statistic is, t =

which is distributed as t with (n -k - 2) d. £,

The conclusion can be made as given the principles in (B).
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Example 10.11 Partial correlation co-cfficient r5 34 = 0.5 is obtained from a
sample of size 20 from a 4- vanate normal populatlon Test its significance.

Solution : We set up the null hypothc'-ls Hy: P12 = 0.

' Hcrc-ru,;‘; =05, fi=20, k=2,

()1r 2

The rL‘quirod test statistic, t = ——= 2.31(app) with 16 d. f.

‘ : AT=35 A 7 i
The calculated value of t is greater than the tabulated value of t at 3%
level of significance: Hence the calculated value of t is significant and the
null hypothesis may be rejected at 5% level of significance.

3) XA2-test: XZ-test is mainly used to test the hypothesis which specifies the”
nature of one or more distributions. We know the mathematical form of the
distribution, hypothesis regarding the sample that has been drawn’ from
the distribution is tested by XZstatistic. We may be interested-to test -
whether two or more distributions are identical. It also tests the
‘independence of two or more attributes. For testing the above hypotheses,
we used to compare an observed set of frequencies with a cofrcsp(mding set of
‘frcqucnciu'. that are expected under the null hypothcqiq Let Oj(i =1,

2,......, k) denote the observed frequencids and E =1 2 .-k) denote the
_oxpm tLd frequencies then the test statistic, X2is dchned as,
k 5 ' :
o (OB O : : '
i Z lE = X -E—- n A IAAEY (10.37)
i T, iR TR e : ' :
k  k

th‘ﬂ"ﬂ =2 E=1% O w huh is distributed asA? with (k - p)d.f.

whcn. P, is the numer ‘of mdcpcndont restrictions lmpo'-od for the
calculat!on of the set of expected frequiencies, The d. f. corresponding to cach
X2-test ‘will be specified independently in every case. The above test
statistic is'an approximation under null hypothesis and’is fairly good when
the expected frequencies are greater than or equal to 5. For values, less than
5, the modifications are given in the appropriate cases.

Uses : X2-test is also used for testing significance of variance, proportions and
correlation co-efficients. - ’ s

The théorbtical or tabulated value of X2 with different d. f. as well as
different levels of ~1gmf1cance are -given in Table No. 1V, Page-47, Vide
Smnstnal Table tor Biological, Agricultural and Medical Research.
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The conclusion can be drawn as below :

i) If the calculated value of X2 with & d. f (say) is smaller than
the tabulated value of X2 with same d. f. at 5% level of

significance, then.the calculated value of X? is insignificant | _
and the null hypothesis may be accepted. (GF

i) If the calculated valuc of X2 with 3 d. f. (say) is greater than
the tabulated value of X2 with same d. f. at 3% level of

significance but smaller than the tabulated value of ¥2 with
same d. f. at 1% level of significance then the calculated

value of X2 is significant and the hypothesis may be rejected
at 5% level of significance. '

iii) Ifthe calculated value of X2 with & d. f. (say) is greater than-
the tabulated value of X2 with same d. f. at 1% level of

significance then the calculated value of X2 is highly
significant and the null hypothesis may be rejected.

Applications of X? test

(3.a) X?-test for testing gobginess of fit: Lot us suppose that we are given a

sample and the problem is to test the hypothesis that the samples has been
d.rawn from a particular population with some specified or unspecified
values of parameters. The sample can be arranged in the frequency
distribution. Corresponding to every valtie of the observed frequencies we
‘¢can have expcéted frequencies obtained from the knowledge of the
population. Now, if the deviation of the observed frequencies and the
oxpccted' frequencies are small, we can easily infer that the deviations are

- due to sampling fluctuation and the sample may be considered to be drawn

from that specified population. On the other hand, larger value of the
deviations indicate that the given sample could not have possibly come

- from the population mentioned.

IfQ (=1, 2,......, k) be a set of observed frequencies and E; be the

. k k
corresponding set of expected frequencies, then forlargen, n=20i =3 E;
: k i k.
(O;- E)? 0,2
= 1 .‘—l)—= I R N (10 38)
E; P21 E,

i=1;
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which follows X2-distribution with (k - 1) (for specified set of paramcters)
‘or (k - b - 1) tfor b unspecified paramicters) d. f. This test was given by Karl
Pearson in 1900. The conclusion can be drawn as given the principles in (Q).

Conditions for the validity of X2 test for goodness of fit :
1) The sample obscrvation should be independent.
k k
2)  The constraint on the cell frequencies is X O= Z E,
i=1 i=1
3) n, the total frequency should be rcasoﬁably large, say, greater than 50.
4) No expected frequency should be less than 5. If any expected froquc;ncy

is less than 5, then for the application of X2-test it is to be pooled with
the preceeding or succeeding frequency so that the pooled frequency is
more than 5 and finally an adjustment for the loss of d. f. is necessary.

Example 10.12 Test the g()odne;s of fit of the data given in Example 8.2

Solution : We have calculated the expected frequencies in the solution of the *
Example 8.2. Therefore, we can furnish the required table as follows:

(1) Hg : The sample has been obtained from a binomial distribution with

1 :
P=3
Observed’ Expected
b Frequency Frequency . OUE
(0) (B
0 Yo 7 =1 .
1 6} 13 7} 8 21.l23;
2 19 21 17.190
3 - IR % 35.000
4 0 3 25714
5 27 21 34.714
6 . 7 !
7 1} 8 ; ]} 8 8
Total T 128 128 . 141.743

Theretore, X2 = 141.743 - 128 = 13.743 (app) with 6 - 1 = 3.d. f.

]
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The tabulated value of X2 with 5 d. f. at 5% level of significance is 11.07. Our
calculated value is 13.743 which is greater than the tabulated value. So the
calculated value is significant and the hypothesis may be rejected.

(ii) Hp:The sample has been obtained from a binomial distribution with

unknown p.
: Observed Expected
X : Frequency Frequency O’/E
' (O) (E)

0 7 1 !
1. 6f 13 g9 18.778
2 19 o 23 15.6%
3 3% % 34028
4 30 H 4 26.471
5 27 19 38.368
6 7 6 ’

Total ‘ 128 128 142.484

Therefore, X2 = 142.484 - 128 = 14.484 (app) with6-1-1=4d. f.

The tabulated value of X2 with 4 d. f. at 1% level of significance is 13.277.
Our calculated value.js 14.484, which is greater then the tabulated value.

So the calculated value is highly significant and the hypothesis may be
rolectcd

(3.b)  X2-test for testing independence of attributes

We can classify the sample observations according to morc than one
attributes. Thus an element of the sample, say student may be classified as
“dull headed” or " Mediocre” or the " best one" according to the
attribute‘i‘ntelligencc' and then be classified as ‘'male’ or ‘female’ according
to the attribute 'sex’. Data arranged in the form of above classes may be
termed as contingency table. Here again the compatibility of the observed
and the expected frequencies has to be tested in testing the independence of
attributes in the contingency table. In contingency table the values of the
variables are generally qualitative whercas in correldtion table the
variables are quantitative. The observations in the cells represent the
frequencies in both the cases.
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Contingency table and calculation of X* for testing independence of attributes
Let the data be classnfrcd into t-classcs Ay, Ay,......A according to attribute
A andinto r classes By, le........, B, according to attribute B. Let Ojjdenotc the
" obscrved frequency of the cell belonging to ith class of A (i =1, 2, 3,....... t)
and jthclass of B(j=1, 2,....., 7). Let O;. and O denote the totals of all the
~ frequency belonging to ith class of A and jth class of B respectively. The'
data can be depicted in a t x r contingency table as below :

B Ay Ay ebiadieisesis L. TR sy ~ A | Total
By Oy O sehemasmmineass On .................. O” Q.] .
B, “Qy -1 Oy, s Q% s O [oF}
I | l 15 || |
| | | ' N l |
| 1 | ' | 1 |
By Oy O vssmssiesennds 8 T Oy 0'3 '
| | | | | |
| | | I . |
I | I E | |
B; Oy, L 7 Dis= wsseomsivrsiitom Oy 0y
Total .0y 0 smiiisoisiniin O . s o R I

o F
Here we are to test the hypothesis that the attributes A and B from which

the sample of size n has been drawn are 1ndcpcndcnt

Let Py dcnntc the probability that-an clvmont be chosen at random will be
the 1th class of A and jth class of B. P;. and P jare the marginal probabilitics
for the ith class of the attribute A and )th class of the attribute B
respectively. Under the null hypothesis i.c. the two attributés A and B are

:ndepc_ndcnt we have, Pj=Pi xPjand. P = Z.P;=1.
) i j

o e,
‘We know that P;. = T and P -—Land also we know that the cxpcctcd cell

frcqucncms E,] (1 =1 2wt 51 = 1, 2,005, 1) for the |th class of the atmbut(.
A and jth class of the attnbutc B can be written as, '

E,i :nhi =nP, i X PF

O RO

n - n

-
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" Thus the expected cell frequency Ej is equal to the product of the marginal,
P *q Y igsieg P 3
totals of the ith class of the attribute A and jth class of the attribute B
devided by the total number of the observations in the sample. The test
) - . O;: - E;:)2
statistic used to test the hypothesis is, X2= X X —L—1
|] ) . .

(o

2._.E_ .............. (m 19)

Wthh is approximately distributed as X2with (t- D (r-1d.f.

Since there are (r - 1) row totals and (t - 1) column totals which arc .
independentin a t Xr contingency table. Thercfore, the d. f.ina tXr
contingency table is tr-1-{(r-1D+ (-1} =t -1)(r-1.The conclusion can
be drawn as given the principles in (C).

Example 10.13 Two investigators draw samples from the same town in order
to estimate the number of persons falling in the income groups - ‘poor,
'middle class’, ‘well to-do’ (The limits of the group are defined in terms of
money and are the same for both mvcshbator‘-) Their results are given in
Table-10.1.

Table -10.1 ;
InvestigatorS Income-group - Total
Poor . Middle-class. Well to=do
A 140 100 B 235
B 140 30 20 7 210
Total 280 - 150 35 465

Show that the sampling techniques ofthe m\'csngators are mdeondunt on
the economic conditions of the families.

Soluttion : We set up the null hypothesis that the pwo attributes, sampling
techniques of the investigators and economic conditions of the-families are
independent. ’

We know, under the hypothesis, the expectc‘d cell frequencies are

O, xO
Ej ——J Now ‘we preparea table of expected cell frequecies.

Table -10.2
Investigators Income-group | Total
) Poor Middle-class Well to-do
A 154 82 - 19 255
B 126 68 16 210
Total 280 150 35 163
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xz_(un-nn? (100—87)2 (11-19)2 (140 -126)2
154 T & 19 7 1%

(50 - 682 (20 - 16)2 ‘

*T 8 16

387(app)w1th(‘§ NE2-H=2d.t

The tabulated value of X2 with 2 d. f. at 1% of nigniﬁtancc is 9.21, which is
smaller than the caleulated value of X2 Hence the calculated value is
highly singnificant and the hypothesis may bc rejected.

ExamplelO.M For the 2 X 2 contingency table whose cell frequencies are :

a b

¢ « d

show that the value o X2 for testing independence is given by

- n(ad - be)?
e x @+b)(c+d)(a+c)(b+d) whee i a+b+c+d
. Solution : The contingency table with marginal totals is as follows :

Total
a b at+b
¢ d c+d
Total atc .b+d atb+¢+d=n

Under the hypothesis of independence of attributes,

(a +b)(a+c0)

(@+b)(b+d)
E (a) = ————— E(b) =—-"._.
n
. é Y (e +d) (b+d)( d)
E(c) :_(a+_c:(_.'+_' and E(d) —'_"i—-
. n n
[a-E@2 [b-E®P [c-E@P ‘[d-Ed))]?
X2 = + — + -
E(@) Eo * Eo E
(a+b)(a+c)
a-(€l+b,+t:+d)
. la-E(@]? -
Now,: = Ea) ~ (a+b(a+0o)

a+b+cs+d
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(a2 + ab + ac + ad - aZ - ac - ab - bc)?
(a+b+c+d)?
{a+b)(a+c)
(@a+b+c+'d

_ (ad - bc)?
. (a+b+c+d)a+b)(a+c)
[b- E())? (ad -bc)? |
E(b) “(a+b+c+d)(a+b)(b+d)
lc - E(Q? (ad - bc)?
E(c) -(a+b+c+d)(a+c)(c+d). :
, Id-E@P (ad - bc)?
Ed) “(a+b+c+d)(b+d)(c+d).

similarly,

an

~ (ad - be)? { 1 1
“@+b+c+d) (a+b)(a+'c)+(a+b)(b+d)}

1 1
i {(a+c)(c_+d)+(b+d)(c+d)}]

s (ad - be)? [ b+d+a+c b+d+a+c
“@+b+rc+d) (a+b)(a+c)(b+d)+(a+c)(c+d)(b+d)]

1 1 )
=(ad by [(a_+ D@+00b+d @ros Db d)] .

(ad -bc)P(a+b+c+d) ~(ad -be)?n
arb)@a+c)b+d)(c+d) (@+bra+o)(b+d)(c+d)

. Hence proved.

Yate's Correcrtion : We have already pointed out that the X2 distribution is
a continuous distribution and X2 for testing goodness of fit and for testing
independence of attribute is approximated to the X2-distribution when the
expected cell frequencies are greater than 5. For values, less than 5, we use
the method of pooling theoretical cell frequencies. But in case of 2 x 2
contingency table, the d. f. is 1 and the use of pooling method cannot be
applied because it makes the d. f. zero which is meaningless. F. Yates (1934)
provided a method of correction usually known as Yate's correction tor
* continuity. This corfsist in adding (1.3 o the observed coll frequencies which
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arc less than 5 and then adjusting for the remaining cell frequencies so that
the marginal totals remain same.

For a2 x 2 contingency table with cell frc‘qucncus alb

valucs of XZafter Yate's correction for continuity gl 2
bocomcs
T n)2
n[ | ad - be |- i‘]
2 ,

(a1-+b)(ﬁ+c)-(b-¢;d)(C+d) : e

Example 10.15 In an-experiment with immunization of goats from anthrox

the following results were obtained. Derive your inference on the cfficiency
of the vaccine.

Died - ' Survived .
Inoculated 2 ' S0
‘Npt Inoculated- ks 6

Solution : After Yate's correction the contingencey table becomes

Table-10.3
: Dicd Survived
Inoculation 25 9.5 12
Not Inoculation i 6.5 ; 'I';l
Total B | 16 24

We sct up the hypothesis Hy: The cfficiency of vaccine over the discase is
nil. ‘
24|16.5 % 2 97X'Ml2 . 24 x 362

¥ = 22 = 1688 (app) with 1d. .
_12x12x8x16 - 12x12x8x16 C pp Wi

The same result can bl. ubtamcd by using (**).

The tabulatcd value of X2 with 14d. f. at 5% lovd of Glgmflcanco is 3:81. It is
seen that the «calculated valuc of %2 with samc d: 08 Jess than the
tabulated value and hcnw it is m\n,mhmnt and the h\'p(lih(‘\l\ mayv lw

RNV }‘lt‘d

1o
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(3.d) Test of signiﬁcance of single variance

Let us suppose that we have a random sample of size n consisting of x;,
X7 Xy drawn from a normal population. We want to test the null
hypothems that the populatlon variance is-0%), a spccnfxcd value. i. e’
Ho : 62 = 62 (a specified valuo).

We know that the estimate of unknown popu]atl()n varaince G2 is

" n

. Y x

g B o el
P==——=7TI (x;- x)? where x = n

(n-s?  Di- P
=P
&’ o’
which is distributed as X2 with (n - 1) d. f.

The required.tcst statistic is, X2 = sesivnns h— (10.40)

The conclusion canbe drawn as given the principles in (C).

Example 10.16 From a random sample of 21 values we calculate an estimate
4.5 for the variance of the population. Does this result support the
hypothesis that the population variance is 10 ? L

Solntion : We set up the null hypothesis, Hy: 02 = 10.

20 x 4.5 - '-
The tcst statistic is, X2 = =T 9.00, which is distributed as X2 with 20
d.f. . " '

The tabulated value of X2with 20. d. f. at 5% level of signifjcancu is’ 3141,
which is greater than the calculated value of X2 with 20 d. f. Hence the
calculated value of X2 is insignificant and the hypothesis may be accepted.

\ .

~ (3.e) Test of signif'icance of equality of several variances

Let us suppbs‘c that we have k independent samples cach of size n; (i =1,

2,....., k) and they are randomly drawn from normal populations. We are to
test the null hypothow: Hy:62=02=........= G2
Lets2 (=1, 2,...%.., k) be thd ith sample variance based on (n; - 1) degrees of

frecdom and algo l(‘t us dofmo 3 i
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n k
- 2
T o(n-ls? = VSt "
i =1 el = : -
.szz—k'—= v , wherevi=n;-lTandv= X v,
: ' i=]
x (nj-1)
i=l
The required test statistic is,
1 X , 1
X2=-M- viog 8- . Z]Vi g 58 1 T T e (10.41)
[ l = R ‘ ) )

which is approximately distributed as X2 with (k - 1).

k
: o , 1 11
The valuc of M is given by, M = 0.43429 [ 1+ K- {i E.] Vi }:|

v
This statistic is duc to Bartlett.
The conclusion can be drawn as given the principles in (C).

-Example 10.17 The estimated ‘variances obtained from five independent
samples and the corresponding degrees of freedom are given in Table-10.4.

-

Table-10.4
Samples "
o8 2 -3 3 5
52 230 3.20 5.61 434 - 583
L 7 "6 3 4 8
lugmsij 039794 . 0.50515 0.74896 063749  0.76367

Toest the null hypothesis, Hy : 6,2 = 6% = 632 = 0,2.= 052,

20 =
visi©  117.53 :
Solution : Here, 2= z%:#: 4.20. (app)

log, 2 = 062325, v Iogur)s2 = 17.451.

5 5
| 1
L vilogs2=16.789. L —=101786; ==0.03571.
) T v
i=1 i=1 e
. - ) 098215
Now, M =0.43429]1 +-I-7-” D786 -0.03571)] =043429 .4 1 + e
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*=0.43429 x 1.08185 = (.46985.
1 4 '
o ﬁ(" 108, 5% - Zv; logms’in
Tt
: 1
=536985 X 0.712 = 1.51 (app) with 4. d. f.

The tabulated value of X2 with 4 d. f. at 34 level of significance is 9,48~

Here the calculated value of X2 with same d. f. is seen to be insignificant and
therefore, the hyp:-thesis may be accepted.

3.t) Test of'éigniﬁcance of equality of several population proportions

Let us suppose that we have k groups of observations and the proportion for
cach group for possessing certain attribute A is obtained from k indcependent
bionomial populations. We are to test the hypothesis that population

proportions are samei.e. Hy:my =mp=.......... =ity

‘where 1, is the ith populations proportions.
The sample from binomial populations may be arranged in Table -10.5.

Table-10.5
No. of obs:
possessing attribute Not A Total
‘ A

n n-n m

r M=y u

l ' e o

I I I

‘ Ty ' Ny -1y Ny

Total R oo N=R N

R ‘
Let us calculate P = N the required test staustic is
k 2
1 I’iz_ R? : .

o — — — i 42
X P(P-”{i :>:1 N T L (10.4_)_
which is approximately distributed as X2 with (k - 1) d. .

The conclusion can be drawn as given the principles in (C).

Example 10.18 Five samples of seeds, selected at random one cach from five
lots were sown and their cermination rates were observed. The results are
given in Table - 10.6. ¥ v
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Table-10.6

Samples
1 2 - 3 4 .5 | Total
Germinated B VR 1200 180 |50
Ccrl:li(:atu'] 0 40 w0 3 B IR K
Towal ~ | 3% 150 0 100 150 200 650

Test the equality of the proportions in the p()pulalti(ins.

Solution : We set up the null hypntﬁcsis, Ho:A{=My= My=My="n3,.

; 520 . : 5

Here, P= =08, 1-P=02 =~ PA-=P)y=0.6.
r2 RZ 4@ P 1802 5272
n N TR0 50 Tt 00T 650

= 419.7 - 4160 = 3.7. (app)

3.7

e v Y2 &
ThL.I'Ll’()TL,x =078

= 23.1 (app) with 4 d. I.

g

The tabulated value of X2 with 4 d. f. at 1% level of significance is 13.28.
The calculated value of X2 is higly. slgmtuant and hence the hypothesis
may ‘be rejected :

(3.g) Test of rsignificance. of equality of several correlation co-efficients

“Let us suppose that ry, r,... . Tg be the sample correlation Co- bfﬁciunlk‘
calculated from k mdopondcnt random r-amplos of sizes ny np,.l , Ny
respectively from seperate bivariate normal pupulahunt. We are to tcst thv
hypothusis that rho populations correlation co®efficient are same i.o.

H() FPI=P2 = = Pk

" We can obtain  the value of 7y, 7,.........., 7y from Table No. 14, Page 139,
Vide Biometrika Tables for Statisticians edited by E. S. Pearson and O. H.
Hartley. Fisher's # transformation is given by,

1 1+ T
/":-fl(’\"*‘ Fon

Biom T e .k
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These z's are normally distributed about a common mean

1+ P
log ¢ ——and variance =

nj- 3 :
k -
T e : ) . - (ni = 3)7.i
The éstimate of m is z* which can be calculated by, 7 = —
’ : v (nj-3).
Zi = 7
So that, (/, -7 )\/ O 1, D S ]\) are
(I'Ii L 3)
indcpendent standardised normal variates with mean zoro and variance 1.
k ' .
Henee, X2= I (%- 2 P(ny-3) eeneseA10.43)
i=1l * »

which is distributed as X2 with (k - 1) d. f. This statistic is obtained by the
addmve property of Xz-dlstnbutmn 1d.fis lost due to the' vstlm.uc of m
by %. ’

Conclusion can be made as given the principles in (Q).

Example 10.19 The correlation co-cfficients between: certain dict and rate ol .
growing of fishes of numbers 10, 14, 16, 20, 25 and 28 from sixindcpendent
* ponds were found to be 0.318, 0.106, 0.233 0.340. 0.116 and 0.112 Test the
humogemty of the population correlation m—utrlucm-.

Solution : We sct up the null hypnthoan H() p] P2 = p3 =P = P3=Pe

From z transtormanon we have the values of 7;'s as

71=0.3294, 73 =0.1063, 73=02586, | - AL G
74 =0.3541, 75 =10.1165. 726 =0.1125. :
5 1. ‘
T oIn-34 g, Gpp)
~ Xn;-3) :
6

Now, X2 =Z(n-3) (- 7)?=0.1008. (app) with 5. d. f.

The tabulated valiic of X2 with 5. d. f. at 5% level of signiﬁcanco is11.070.

Our calculated valuc i is (.1008, Hence the calculated value of X2 with same
d. f. is‘insignificant and the hypothesis may be accepted.
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4) Ftest: Thm test, given by Fisher and Snedecor, comes from the definition
of F-distribution whichreducesto s;2/s,2 with (n; - 1) and (nz - 1) d. f. where
si12 and 5,2 denote two estimates of population variance 62, obtained from two
independent random samples of sizes np and np rt.spcctlvcly Thu'-'. bnoﬂy,
the statistic F=5,2/55% wich is distributed as F-distribution with vy = (n1 %1}
and vy = (gz 1) d. £. In the above test, greater of the two variances s Zand sy
is to be taken in the numerator and v corresponds to the greater variance.

Uses : This test statistic is used mainly to test the null hypothesis regarding
the equality of two population variances, homogeniety of independent
estimates of population means, significance of sample correlation ratio and’
also for testing the lincarity of regression. '

< ) A
The theoretical or tabulated value of F with different d. f. as well as
different level of eig,niﬁcancc arc given in Table No. V, Page - 53 and 55
Vide Statistical Tables for Biological Agruultuml and Mcdical Rescarch.

The conclu:-non can be drawn as below :

i) If the L'.l](.‘l.lldtcd valuc of F with v; and vad. f. is smallcr
,than the tabulated value of F with same d. [. at 5% level of
significance then the caleulated value of F is insignificant 5
and the null hypnthcéis may be accepted. (D)

ii ) If theycaleulated value of Fowith vy and vy d. £ is greater |
than the tabulated value of F with same d. f. at 5% level of
significance but smaller than the tabulated value of F with
same d. f. at 1% -level of significance, then the #
calculated value of F is significant and the hvpothcsn
may be rejected at 3% level of significance:

iii) If the calculated value of F with vy and v d. f. is greater

than the tabulated value of F with same d. f. at 1% Tevel of

“significance then the calculated value of F is highly
significant and the null hypothesis may be rejected.

N.B.: Significant valuc of any'tcst statistic (calculated) is denoted by*
and the highly significant value of the same is denoted-by*™*

Applications of F test
(4.2) Test of significance for equality, of two population variances

Let us suppopsc.that Xy, xg,...f....xn! and. ¥1, ¥a,.....e Yo be two ihdqpcndom

random samples of size ny and ny drawn from two normal populations. We
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Exact Samplmg Dlstnbuhon and Test of Slgmﬁrancc
have to test the null hypothesis that the two populatmn vatiances are
sameic. Hp:0,2=0y2
The cst_imates of the population variance are

e 1. .1 _

i Z - x)2andsy T 2 (vI VR
e l—

Iy .
whu-e X =ZXandy y = 2.

-0y m

; , o -
The required test statistic is F=;~7 P o e (10.44)
¥ ;

which is distributed as F with v; = (n, . l) and vy = (ny- 1) d. f. In the above
test, we consider s, > 5,2,

The conclusion can be made as given the principles in-(D).
Exmple 11.20 Two random samples drawn from two normal pui)ulations arc:
Sample1: 20, 16, 26, 27, 23, 22, 18, 24, 25, 19. '
Sample 2: 27, 33, 42, 35, 32, 34, 38, 28, 41, 43, 30, 37.

Obtain estimates of the variances of the population and test whether the
two populations have the same variance.

Solution: WesetupH,: 0,2= 0,2

— Iy 20 .
Mean of Samiple 1, % 1:—'\l=-——= 2
) m 0
m b
‘ ' - x 2 120
" Variance of sample 1, 5,2 = B e - 13.33
‘ n} -1 %
2"2
—_ X
Mean of Sample 2, x 2=§L = @= 35

Variance of sample 2, s,2 =

The required test statistic is, F =§g= 214 (app). Since, 2> 5,2 .

’
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Thet abulgt«d valuc of F wnth a1, 9 d. f at 3% level of signiticance i% 3.1.
‘Our calculated value is 2.14. Hence the calculated value of F is insignificant
and.the hypothesis may be accepted.

/

(4.b) Test of significance for homogenity of population means

Lot us suppost that we have k(k>2) independent random samples drawn
from normal populations. We want {0 test the null hypothesis,

* Hg: fy = Ha= .2 = j where ; is the mean of the ith pupulatmn =12,k
The sample obs_crmtkms arc arranged-as below .
1st Sample 2nd Sample o kth Sample
o X1 P
X2 X2 2y : XK
| L ' |
1 I |
‘ l A |
3 X1y Xoh XNy
Total T, T Ty
Mecan -\_t- —vc—z- -\'—k
JET WL T B TETk o
Let R O ) ini: N= ¥n and 'x =f_\l-
' i=1i=1j=1 . 1=

In the above samples, the tma! sum uf squares, the total sum of squarm (S
can be partitioned into two u)mponcncts namely between sum of squares (5,)
- and within sum of’ .squarvs (‘3w 1 :

Sp/tk - 1) . T s
The test statistic is, F --—-*——SWI(N ) T ey (11).4_::);4

which I'~ distributed as F-distribution \nth (k -1 and (N -k d f.

“are as m

-

The u*‘-ual gothod of calculation ()I dlﬂorcnt wmp(mcms of sum of -quarus

" e WD 2
5 =X T0dj~ x P=X Exi~ -LE Sp=In (X - X )2=. L Li
L T L ok R

nmr

WSy = Sli' Sp= zz(x‘ii _Tl)z'
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The conclusion can be drawn as given the principles in (D).
emark : The above technique is usually called Analysis of Variance™ for

() " el - A . .
ne-way classification data. An claborate discussion on it and also for more
than onc-way clakslflcah(m data is given in the next chapter.

Example 10.21 10 varieties of wheat are given in 3 plots cach and following

yields in kg. per plot are obtained. Tcst the homogenity of thc population
means of different varictics.

Table-10.7
Plot/Variety | 1~ 2 3 4 5 b F -8 9. 10
1 7 7 1 n-9 6 9% 8 12.9
2 8 9 13 10 9 7 13 13 1 12
3 7 6 1. 1M _ 12 -5-12 T (Y
Total 7 2 48 .32 N B ¥ RN M 3
Solution : We set up Hp : ly = U2 = woveeeeeee = Hyg Where !-ii indicates mean vield
of ith varicty, we calculate, YT, =298 =T.and N = 30
T2
Total S. 5. (S = LIx; - 37 = 20387
2 "
" Between varicty S.S. (Sp) = ET—"-—
PR 3 N :
1 ' 2982 ! ‘ , X
=—1222+222+ .......... +312)-—.ﬁ-—16034

Within vancty S.S.(S.) = 203.87-160.54 = 43.33

160.54/9

R D e P :
B30 8.22 (api) \\nh (9,200 d. t.

The test statistic is, F=

vThc calculated value of -F with (9, 20) d. t is. \,rcatcr than the tabulated

vaiue of F with same d. f. at 1% level of significance. Hence the calculated
value of Fis hlghly slgmﬁcant and the hypothcsls may be rejected.

(4.c) Test of significance of an observed correlation ratio’

Let us supposc that we have a random sample of size N from a bivariate
rormal population. The obscrvations are arranged in h arravs. We are to
test the null hyppothesis that the population corrclation ratio is zoro, iiC.
Ho:n =0 ‘
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, ' N-h
The required test statistic is F =1_?2;‘T o ey R (H) 46)

which is distributed as Fwith (h-1), (N-h)d.f.
The conclusion can be drawn as given the principles in (D).

Example 10.22 A random sample of 80 pairs of values from a bivariate
normal population grouped in 10 arrays of y's gives a correlation ratio
=02 Isit q!gnmcant of association between the variates? ’

Soluhon Wc set up thc null hypothosn that the population correlation
ratio is zeroi.c. Hp m = .

Horc N =80, h=10,ny,=0.2.

(1 04 70 2.80

The tést statistic is F = 7557 X 5~ = 8_ = 0.32 (app) with (9, 70) d. f.

Sincc the™ calculated Value of F with (9,70 d.f. is smaller than the
tabulated valuce of F with same d.f. at 5% level of significance, the
calculated value is insigniticant and therefore, the hypothesis may be
accepted. '

(4.d).  Test of significance of linearity of regression

Let us supposc that we have a random sample of size N arranged in h
arrays, taken from a bivariate normal population. We are to test the null
hypothesis of lincarity of rcgrcwon

r] = r- N -h v b
The required test k.t.mam ik F= T_rT_x T3 e (10.47)

'whlch_ls distributed as Fdlstnbunon with (h-=2), (N -h)d. f.

Heren is the correlation ratio and r‘is the correlation co-cfficient.

Exafn_ple 10.23 A random sample of T00 pair from a bivariate normal
population when grouped in 10 array of y's gives r = 0.4 and 1 = 0.5. Are
“these results consistent with the assumption of lincarity of regression?
Solution : We sct up the null hypothesis that the regression is linear. -
Here N =100, h = 10,1 = 04,1 = 0.5 '

: 0.25-0.16 %

X—

The test statistic is, F = 33 ¥%
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0.09x11.25 1.0125
075 075

= 1.35, with (3,90) d. f.

The calculated value of F with (8, 90) d.f. is less than the tabulated value
of F at 5% level of significance. Hence the calculated value is insignificant
and the hypothesis may be accepted.

(4.c) Test of significance of an observed multiple correlation co-efficient

Let us suppose that R be the multiple correlation co-efficient of order k in
random sample of size N from a (k + 1) variate population. We are to test
the null hypothesis that the population multiple correlation co-cfficient is
zeroi.e. Hp:R=0. . '

R2. N-k-1

The required test statistic is, F k> e o e (TOLH)

which is distributed as F with k, (N-k-1)d. f.
The conclusion can be made as given the principles in (D).

Example 10.24 For a sample of 30 sets of values from a normal population,
R; 37 is found to be 0.5. Test that the population multiple correlation co-
cfficient is zero. '

Solution : We sct up the null hypothesis that the population multiple
correlation co-efficient is zero. ’ )

025 30-2-1" 0.
10255 -2 = 40,

]
lol N

The test statistic is, F = x== 45 with (2,27) d. f.

|
(511

“
The calculated value of F with (2, 27) d. t. is seen to be greater than the
tabulated value of F with same  d. f. at 5% level of significance. Hence
the calculated value of F is significant and the hypothesis may be rejected
at 5% level of significance.
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1L DESIGN OF EXPERIMENTS

=

11.1 Introduction :

By the word experiment we mean a process to have a series of trials or
observations taken under some cendition specificd by the experimienter to
confirm or disprove something doubtful and also to discover some unknown
principles or effects or to test, establish or illustrate some suggested known
truth. The design of experiments mean the lugicél construction of cxpcrirhg\nt ;
to select the pattern of collecting data to suit the above purposes. ;

Broadly experiment can be divided into.two parts, absolute and
comparative. In absolute cxperiment, the characterictic is fixed ‘and
observations are collected to make the best estimate of that. Design of
sample surv@y is an cxample of absolute experiment. On the other hand,
comparative expcﬁm,énts‘ are designed to compare the offects of two or more
objects on some population characteristics. Thus design of experiments reter
to comparative experiments. ‘ :

Before going in dctail of this chapter-we are giving below the oxplanat’iun?
bf the terms used in different places.

)
Treatments : Different procedures under comparison in an é.xpcrimcnt may be
termed as treatments. For example, in agricultural experiments different
varietics of a crop, different levels of fertilizer may be considered as
treatments. In medical qxpcrimént different doses of a medicine or diets are
the treatments. 7

Ex]ie'ﬁmental Unit : It is the experimental meterial to which we apply the,
treatments and on which we make observation on the variable under study
is termed as experimental unit. A plot of Jand and a batch of sceds are
experimental units in agricultural experiments whercas. patients in a
hospital or a group of pigs may be considered as experimental unit in
medical experiments. » c

Blocks : In most of the times we divide the whole experimental unit into
homogeneous sub-groups or strata which as a whole may be termed as
blocks. A number of homogencous plots in a strip constitute a block in an
agricultural experiment where as the patients of same * symptoms having
same age-group, same sex ctc. ‘may constitute a block in a medical
experiment. o
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Design of Fyperiment-

Yields : The mcasurements of the variable under study on different
-experimental plots are termed as yields.

Experimental Error : The viclds of an experiment are usually influenced by
some extrancous ‘variations mav or may not be controlled by the
experimenter. The uncontrolled  variations are often called  the
experimental errors. For a homogencous experimental unit devided into
different plots of equal sizes and different treatments are applied to these
- plots ; the yiclds of these plots wil not be same. The difference of the yields
may be due to difference of treatments or due to difference of inherent soil
structure or fertility condition of the soil. In field experiment, experience
tells us that’even same treatments are used on all the plu,ts:, the vield would
still vary due to these sources of variations. Such variations from plot to
plot are due to random mmpound and bt.vond human u)ntrul mulurcd o
experimental error.

[he error includes all types of extrancous variations which are due to the
following factors : g :

.
i) inherent variability: in the experimental material to which' the
" trcatments are applied.
1) thelack of uniformity in the methodology of conducting experiment.
iii) " lack of. roproﬂ-cntatncnoaa of the sample to the population under
study.

’

Replication : The repeated application of treatment under investigation is
known as rophmnon Detail explanation and uscs of rcphcanon is given in
the principles of experimental design.

Precision : The reciprocal of the variance of the treatment mean is termed as
precision or the amount of intormation in the design. In an experiment, if a
) + e s T s - - r ‘ .
treatment is replicated r times, then the precision is given by g“’hk‘ﬂ-‘ o2is
the error variance per unit. ' 6

Effmency of a Design : Let Dy and D, be two dcklgn& with crror variances per -
“unit 02 and 0‘2 and replications ry and 1, rcspcctl\folv The vananwe of the

" ]

. _ , . 26,2,

differences between two treatment means are g‘ivcn by —=and == for D 1
. : _ il TR

and D, respectively. We define the ratio of the informations, E ——J—

as the efficiency of the design Dy in comparison to Dy if E = 1; DI and
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D, are equally cfficient, if, E > 1(E < 1) Dy is said to be more (less) efficient
than D2.

Contrast : Lot Y1 Y2, Y DC the nobservations, then the lincar function

(o l]y, + byot......t 1y, is a contrast of y;'s if lj's are some numbers such that
L

ZI] 0. The sum of squares of the contrast ¢ is defined by T

=

Orthogonal Contrasts : Two contrasts ¢; = Z1,v; and ¢, = Ymyy; are said to be
N i ‘ Fio .

orthogonal if 2lim; = 0. Wth there are more than two contrasts thuv are
i
said to be mutually orthogonal, if they are orthogonal pair wisc.

Important steps in Design of Experiments : Folk)wing are the important
steps to be considered by an experimenter to have a good design of
expenment .

The statement of the problem should be clearly defined. In that case, he can
understand what to do and how to tackle the problem.

Formulation of the hypothesis should be done properly and thus the
method of collection of data can be determined. For these two steps we can
think of any previous experience whose reference can be made to throw some
light and adequate information for possublc results from the point of view of
statistical theory on future experiment may be required.

The experiment should be conducted accordingly and proper statistical
techniques are to be applied on the data

Drawing of valid conclusions is the crutial part of design of experiment, so
careful considerations are to be given for the validity of the conclusions for
the population of objects or events to which they are to apply. Also -
evaluation’of the whole investigation and comparlson of the results can be
'donc with similar past investigation.

. Principles of Design of Experiment : According to Prof. R. A. Fisher, the
basic principles of design of experiments are (a) randomisation, (b)
replication and (c) error control. The explanations of the terms are given
below: ° .

(a) Randomisation : At first the treatments and n.‘xpcrimonta];plots of the
experiment are decided. Randomisation theans that for an objective
comparison it is necessary-that the treatments be alloted randomlv to
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different experimental plots to avoid any type of personal or subjective error
i. ¢. without giving higher importance to any of the treatments. It-also
ensures independence of the observations which is necessary for crawing
valid inference by applying statistical techniques.

There are numbers of ways of randomisation depending on the nature of the

design of experiment. The individual process of randomisation will be
- 3 » b3 * =

described in appropriate cases. . .

N
(b) Replication : The repetition of the treatments under investigation to
more than one’experimental plots is known as rcplicatiori. For example, a
treatment is alloted to 'r' plots of an experimental unit then it can be said
that the treatment is replicated v’ times. Replication is necessary: to
increase the accuracy of .the estimates of the treatment coffects, it also
provldm an cstimate of error variance. It is scen that the precision increases
if the replication increascs, but it cannot be inc reased indefinitely due to
limited resources i. ¢. time, money, skilled pgrsonm,ls cte. The number- of
rcpiicatiuns, therefore, depend on the expenditure and the degrees of
precision. Sensitivity of statistical methods for drawing interences also
depend on the number of replications.

Determination of Number of Replication : If y; andn y; be the mean

" cffects of two treatments replicated 1y and ry times respectively, then

’

var (y; - y2) = var ( yp ) + var (yp ), since the co-variance term’

vanishes due to independence of observations.

-

_ — ¢ P
Varr( y1 - Y= ;']—+ E- Tlf r; = rp = r and ¢¢ is the usual crror

variance! Therefore, the standdrd error of (y; - vy )iscequalto ©

i
I

For testing the cquality of two means tor hm.,c sample under the usual

Vi o va

assumption is a (N(, 1) variate.

St. Er(yl i -

For small sample the estimate of o2 is done and the test statistic is
distributed as t with d.f. depending on the divisor of the estimate of 62, i. o
g?-Thcrumrc, for a c_ormi'n level of significance, sayv at 0% and with d. f., the
critical value of t can be obtained from the t -table.
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| d 22l — —
Then; - =-l-—'- or, r%whm ldl= yi - y2 .-

Thus the number of ‘replications, ris ()btainod.

(¢} Error Control : Though every experiment would provide an estimate ot

error variance, it is not desirable to have a la rge u\pcnmcm.xl error.. The
measure for reducing the, error variance are usually called error control or
local control. One such measure is to make experimental units hmnugbnmm-,
another method is to- form experimental units into several homogencous
groups usually called blocks, allowing variation amgng the groups.
Different methods of forming groups of homogencous plots for allotment of
gmupé of treatments are used now a days for the estimation of treatment
cffect precisely. In short, the aim of error control' is to reduce the error by
modifying the allocation of treatments to the experimental units.

Models and Analysis of Variance : A statistical modcl is generally a lincar
-relation of the: effects of a member of factors with dmvrcnt levels in an
experiment and also one or more terms representing crror effects, The effects
of any facter may be random or fixed depending on the method of selecting
the levels of the factors. For example, if there are number of variations of a
crop of which one varicty is selected at random then. the varictal effect

would be random, while the effect of two well defined levels of irrigation
are fixed as each 1rngatmn level can be reasonably taken to have a fixed
cffect. .

The modecls of expcrimchts are of three types namely 6) fixed offect model
(ii) random effect model and (iii) mixed effect. model.

A model in which cach of the factors has fixed effect and only the error
cffect is random, is called fixed effects mo.’ . The random offect model is
that on¢, in which all the effect in a model are random. The model in

" which same factors have fixed effects and some fac tors have random \‘lfcctu
is called, mmcd effect model.

In this tcxt, we shall consider only the fixed effect models whose main
objectives are to estimate the effects, to obtain a measure of variability
among the effects of cach of the factors and finally to find the variability
among the error effects. '

The data of usual design of experiment can'be classificd asfollows :

When a set a obs: rvations is distributed over the different levels of 1
factor, they form « ae-way classified data. Let us consider one factor at b
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levels. Lct thcro be n; observations denoted by v,]n =1, 2000k ) =
2o n;).against thc ith level. Then the observations v”da«snwd in k
levels of the factor are said to form onc-way classified” data. Similarly, if
we take two factors simultaniously, say, A and B at number of levels kand r
respectively, then there are (k x 1) cells, cach of which is defined by one
level of A and one level of B. Let there be n;; observations in the (i, t)th ccl
- defined by the ith level of A and jth level of B, Let vy denote the lth
observation in the (i, j)lh cell. Then the data Vil (i = s e K, )=
2eerand 1 =1, 2,.00.n) arram,od in the (k x 1) groups are called \wo-\mv
classitied dam.‘ﬁimllarly, in general, m-way classified data can be defined
by using levels of m-factors simultaniously.

Now considering two factors A and B involving in an experiment without
intraction, the fixed effect model for two- way classified data can be written
as, vij = H'+ a; + by + ¢ ; where yyis the observation coming from ith and jth
levels of two. huturs respectively involved in the experiment, a; is the effect
of the ith level of factor A, b; is the ctfect of the jth level of the factor B and
¢jj is the ‘error component which is assumed to be independently and’
normally distributed withszero mean and a constant variance 62, These
assumptions regarding the behaviour of ¢ are necesgary for appropriate
statistical methodology tor drawing valid inference. The adopted
methodology is the analysis of variance technique by which interence is
dm\xn by applving F-test.

Onc further assumption is the additivity of thc effects in the model. This
assumption is generally satisfied except for some less known situation. Fur
that Tukev's tost for addltl\'ltv is d\dﬂdbl(‘ : ,

The models mayv be of different tvpes depending on the nature of the dam
i.e. the number of factorsinvolvedin the experiment. The above model is
ar; mpnatc for two- -way classitied data without any interaction among
the effects of the factors. For m different factors we. can have m-way
classified data and accordingly the models can be written.

The analysis of variance is the systematic procedure of partitioning the
_ total variation present in a sct of observation, into number of-componcents
associated with the nature of classification of data.'For one-way classitied
data the total variation can be partitioned into two components namely
variation due to the single factor and the other is due to error variation.
_This error includes all possible extrancous error components. For two-way
classified data involving factors A ‘and B the total variation can be
partitioned into three components ¢ g variation due to A, variation due to
B anQ crror variation. Similarlv 1o r three-way classified data involving
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‘ three factors A, B and C, the total variation can be partirtiuncd into four -
components ¢. g. variation'due to A, variation due to B, variation duc to C

and crror variation. The techniques of spliting of total variations are given

. in appropriate places. The spliting helps to get mean square due to different
components and thus the relevant tests cah be performed. For detail

discussions of different types of analysis of variance Das .md Giri (1979) can

be referred.

11.2 Basic Designs

~ Basic designs include completely randomised design (C. R. D), randomised
block design (R. B. D), and Latin squaro dosign‘(L. S. D). Each of these
designs is described one after another with relevant extensions.
Completely Randomised Design (C.R.D) : It is the simplest design whore
only two principles viz, replication and randomisation are used in field
experiment. In this design, the whole experimental material should be
homogeneous in nature and is divided into number of experimental plots
depending on the number of treatments and the number of rophcalmns for
cach trcatment,

The design is useful mainly for laboratorv or green house experiments
whereas its uses in field experiment is limited. Complete flexibility is
allowed in this design i. e any number of trcatments may be rcplic.u(d any
number of times. Missing plot and uncqual ropluatcs donot create any
: dlfﬁcu]ty in analysing the data in this design. The principal ob}cmcm to
the use of this design is on the ground of accuracy when the plots are
considered to be hmnm,uncouc wrongly.

Lay-out : Thc lay-out of a design indicates the placement of treatments to
the experimental plots according to the condition of the d design.

Let us consider an éxample to illustrate the layout of a C. R.-D with 3
treatments A, B-and C replicated 5, 3 and 2 times respectively. Here the

- experimental unit is to be devided into 10 cqual plots and they are to be
numbered. From Random Number Tables ten 3 degits numbdrs are taken and
ranked. We take' addmonal numbers in case of ties. From the ranked
numbers first 5 numbered plots are considered to allote treatment A.
Similarly trcatments B and C can be alloted and thus the lay-out of C. R, D
is obtained. For_ equally replicated “treatments, similar method of
mndpmisétiun ¢an be carried out,

2
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Anal)}sis : The additive model for completely ranc smised design with
umequal obstractions is

y,l=u+t~l+c{i;(i=1,2, ....... k ;7 =1 2500

where yj; is the observations of the ith treafment in the jth replicate,

u = general mean,

t; = cffcct duc to ith treatment,

‘L,] = random error components which are assumed to be normally,
independently distributed with 0 mean and variance s

Let there be k treatments and the ith treatment be rcphcat(,cl-\n1 times. Lct Vi
be the total of the observations corrésponding to ith treatment and y.. be the
grand total of all the observations i .

yi = Zyjj;y-= Ly =X1y;j and total number of oqu_rvanons N =3n;.
j i i 2 i

The least square estimate of L and t; can be obtained by minimising the error .
sum of squares, donotn.d by ZZ,c,] 4G = Vz(y” -t

, i ij
The normal equations are, X2y;; = NUL + ;Zniti and

.z)'ij =mi+ Nt
’ - ‘F

Out of these two equations only one is independent because taking
summations over i in the second equation we get thesdirst one. To have unique
solution we have to impose restriction Xn;t; =0

Now, we have the solutions as follows : P '

A — —

e ZZyij/N = y ..where y .. is the grand mean of all the c)bscn'atifbns.
A —_— — 3

andg, .= y; .- y .. where y; . is the mean of the obstrations corresponding

to ith trcatment.

To show that the estimates are independent, we have,
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}
A A

VD Cov( T (Gr- Y

R e AL -l
=Cov(y;. y.)-var(y ")".Nni -N=0
showing that the estimates are independent.

The total sum of squares, in this case, can be partitioned into two components
as follows : -

s— — — — )
IXyi- y P =IEly- yi I+ Y-y )
ij _ i,j :

= ZZ(yij - 7.)2 +2n;. (y_i. - T..)z, the product term vanishes.

ij ‘
Thus we get, Total S.S. = Within S.5. + Between S.S. Within S.S. and,
" Between S.S. are usually called Error §.5. and treatment S.5. respectively.

Now, we are to show that different components of sum of squares follow X2-
- distribution with appropriate degrees of freedom.

We know, Y= R+t + g

-)Ti-=u+ti+-;i-

y .=H+ t +e..
Now, Treatment S. S. =%n; ( 7 - _y—..)z
fi:
=Zni(p. +t+ ‘;- [ .f- - ?)2
=Ini(t-t + ¢ .- e.)?
=Tyt +?-, -e )2 considering t; gy t
T2+ & 2+ e 2aie. +2 ¢ -2 . €.,
- Taking expectation on both the sides and assuming t’;= 0 under

null hypothesis, Hy:t; =ty = ...... =tx we have,
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E| =n(yi .-y 2| =ESn o 2+E3n ¢.2-2E%n 6, .

-

=m§f+ N%—z- 2Nk ¢ -ko-’- +0%2-20% = 2 (k-1).
T
or. E T: k-1
. Cyi .=y .02 ’ '
w_hich implics that zTis distributed as %2 with (k - 1) d f;
Gtmtlarly Error $.5. =XX(y;i- yi. ViR = IX(U+ti+e-p-t- o 2
ij i

= I¥(ci- o )2

i
l’rncccdmg as above and taking expectation on.both lhe ‘udcs we have

EYY (¥i- Vi )2 : ):,_(y” YL P )
i —;——— N - k which implics thal TIS distributed as

X2with(N-K d.f.

!

. . at O e
From the additive property of X2 it can be said that ;. ———— is also

1} G‘)

distributed as X2 with N -k +k -1 =N -14d.f. It can be shown mdcpcnd(.ntlv
also

Thus it is ‘seen that cach of the components of sum of squares is

independently distributed as X2 with appropriate d. f.

Now, considering Hy, we have the test criterion

Z“ Cyi .- Y )2/(k 1 _M.s. due to Treatment.
ZZ()’,, y' )2 /(N-K) N M.S.dueto Error
ij

which is distributed as F with (k - 1) and (N-k)d.f.
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Method of calculation of different sum of squares:

Total S.5. = ZZy., -C. F T,, say, where C. F. = Zﬁ—
i]j

' v

Treatment S.S. = zy—r']l-- CF. =T, say.
- i ’ '

Error S.S. = Total S.S. - Treatment $.5. =Ty - T = E, say.

Now the analysis of variance table can-be furnished for testing the null
hypothesis Hy : Effect of all the treatments are same.

Table-11.1 7
‘ ANOVA TABLE
Source of K 9 _ :
variation’ d.f. SS M.S. F

Treatment k-1 T=):r;i-c.F. T'=T/(k-D T/E
= i _

Error N-k T,-T=E E' =E/(N-K)

. Total N-1 T, 33y -C.F.

If the calculated value of F with (k - 1) and (N - k) d. f. is greater than the

tabulated value of F with same d. f. and at 1000% level of significance, then
the hypothesis may be rejected i.e. the effects of all the treatments are not
same. Otherwise the hypothesis may be accepted.

Note : When the number of replicationé per treatment is same,  say, n, then
the normal equations become ;
ZZY., N}l R z‘tl

ij 1 ¢
Tyij=nH +.'nti where we take N = nk. and the estimates are as usual.
j  §
The parhtlonmg of the total sum of squares is
Total S.S. =XX(yj;- y- ) =ZZ(yii Y2 +nZCy - y. 2
i j 1 i
The calculations of the treatment sum of squares can be obmmcd by the
following way .

1 ' ‘
Treatment S.S. = Py F )
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Example 11.1 A feeding trial with 3 feeds namely i) Pasture (¢ontrol) if)
Pasture and Concentrates and iii) Pasture, Concentrate and Minerals was
conducted to a certain variety of ewe lambs with same age, body weight and
sox cte. 37 ewe lambs are selected for the purpose. The weight records of the
total wool yields (in kg) of first two cliping were obtained. The purpose of
the experiment is to serve whether the feeds have any effect on the wool
yield. : . .
Feed I: 5055336, 78.8,65.4, 80.4,953,50.5, 52.5, 80.6, 75.2. 68.6, 69.7, /1.2,

73.1,95.2, '
Feed 11: 63.9,52.0, 78.8, 67.0, 80.4, 67.3, 53.6, 59.1, 63.5, 60.9.
Feed HlI: 59.1,71.3,69.1,55.3, 61.9, 63.5, 76.1, 59.5, 62.3, 57.3, 61.5, 68.3.

Solution : We have, ~ Total .
Feed 1:  106.6(15) The figure in the
Feed I1: 946.5(10) bracket indicates .
Feed 1Il: 765.2(12). number of items.
Grand Total : 2472.3(37)

) 2472.32
Correction factor (C. F.)} == = 165196.41.

Total 5.8. = 50.52 + 53.52 +...2..+68.52 - C. F.
=169756.47 - C. F. = 4560.06.

106062 94652 765.22
BT We 1 12

*S.S. dueto feed = -C.F. =165581.97 - C. F. =385.56

- Error$S. = Total S.S. - S.S.due to feed. = 4560.06 - 385..56 = 41745,

We arc to test null h;/p()thcsis Hy : The cffect of all the feeds are same.

Table-11.2
ANOVA TABLE
Source of : : ol s
RO - difs ' 95.5: M.S. F 5%F
Treatment i 385.56° 192.78. 1.57 3.284
Error X 4174.5 122.77 ‘ '
Total . 36 )

_Since the calculated value of F is smaller than th‘e tabulated value at 5%
level of significance, the value is insignificant and the hypothesis may be
accepted, ' ‘

.

Randomised Block Design (R.B.D) : In many real situations it rﬁay not be
possible to get homogeneous experimental unit as a ‘whole but it is ustially
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possible to get homogencous groups of piots which are termed as blocks. By
this way, we can control the variability in one more direction by assigning
the treatments at random to each plot of the block, giving a design known as
randomised block design. In this design the number of plots per block is the
number of treatments and the number of blocks will determine the number of
replications. '

This is a popular design for its si‘;nplicity, flexibility and validity and can
be applied with moderate number of treatments (<10). By mecans of
grouping, the efficiency of the design can be increased than that of C.R.D.
Any number of treatments and any number of replications can be carried out
in this type of design but the number of replications for cach treatment must
be same. The statistical analysis is straight forward even if one or more
observations are missing as given by Glenn and Kramer (1958) and Mitra
(1959). :

With the increase in number of treatments the block size increases and thus
the homogeneity of block reduces resulting larger error components.

»

Lay-out : Let there be k treatments each replicated r times in the design.
Therefore, the total number of plots required in this dcsign is kr, which are -
- arranged into r homogencous groups called blocks cach of size k. The number
of plots per block is equal to the number of trcatments and the number of
replications are equal to the number of blocks determined by the available
resources. All the blocks and the plots must be of same size. Randomisation .
of the treatments is done independently in cach of these blocks. )
Let us consider an example of randomisation of 5 trcatments A, B, C, D and E
in a single block. The treatments are numbered in any order, say A is
assigned 1, B is assigned 2 and so on. From Random Number Table we take at
least five 3 digits number and are ranked and their order issay, 3,1,4,2and
5. Now in the block 3rd treatment C is placed at the first plot, 1st treatment
A is placed in the second plot and-so on. Thus the randomisation in theblock
is completed. Seperate randomisation is done for each block.

Analysis : For analysis of data in this type of desigh the lincar additive:
model be, Yij= M+t + bj+ gj, (i=12,.. k;j=1; 2.0

where yj; is the observation for the ith treatment in the jth block..

1 is the general mean effect,
t; is the effect due to ith treatment,
b; is the effect due to jth block, and

g;;, random error components which are assumed to be independently and
normally distributed with zero mean and constant variance ¢2. -
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LCt Yi- = vVnr Yi= 2)’13' - _):Yi'=ZY) 53 2yj;. and
) 8 »l ij
T T

T and y

“The lcast square estimate of t; and b; can be obtained by minimising the crror
sum of squares denoted by, Z\'L,l =S = 22()/,, -§ _bi)zv "
i ] gl ] : "

In this case we get three normal cquations which can be solved by
imposing two restrictions, Xt =Xb; =0 giving the solutions as below :
) : j

AN —_— — 7 —_—
t

=Yyi.-y .and bj= y; - y.

To show that the estimates are independent we have,
s .

AA
cov (t)=Cov{ y .(y .- y.Jl
v

—_— o’
=Cov(y .. y;.) -var( kit

8

s ={)

AN s e m Sl T
Alsocov (b )=covi(y; .- y ) (yj-y .}

= Cov (_)'q_ y—.i) -C()V(T. —y—..) - Cov (7.. y—.i) +var(y. )

'02:02ko~202

=t ker ok TR =T

Similarly the covariance between other combinations of the estimates can
be shown to be zero showing that the estimates are mutually independent.

The total S.S. in this case, can be partitioned into three components as
follows :

LIy~ Y '-)2:22(yij- T + T - y_ * ¥y -T):'
i ¥
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v =XZ{(T. - T) + (y_.i- T) + (yij - -)T Sy + oy 2

ij .

=15y .- . )2+kZ( Y Y. P+EZXy- Y- ¥ vy P
i j i J ;

all other product terms vanish,

" ‘Thus we have, Total S. S = Treatment $.5.+ Block S.S. + Error S.5,

Now, we have to show that different components of sum of squarc:s follows

X2-distribution with appropriate degrees of freedom. ‘

Weknow, - 'yj=lt+t+bj+e;

Vi =N+ + b + g .

y_i.=u+ T+bi+?

y =+ t-+ b +e.

+-eT.— e .)?

Now, r Xy Vi o=y ..)2=vr2(ti- T
i : i

=rz(t'i + ?. - _e'-..)z ¢ s = i

. . B consndenn‘g ti- t =t -

i

Expanding R.H.S, takmg expectation on both th(_ sides and assuming =0

under Hp 1 t; = ty= .......= tj we have, Elr3(y; .- y )%= (K- 1) a2
' [-{Z( Yi .- _y_..)z] . LA yio-y 2
or, j ————————| = (k - 1), which implies that ———mm———

- s ?/r P o’/r

is distributed as X? with (k-1)d.f.

Similarly, it can be shown that

E[Z(?--T-ﬁ] et [zq. : -;,_)z]
e e i) e it il
Yy '. (r-1),in lrcatmgt at ‘ P/

is distributed as X2 with (r- 1) d. f.

Now the Error $.5. = X~ Yi-© Yt ¥ 2
ij

.322(%]'- ?,--.— e.i + e.. )2

ij
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=IXel+ o 2+ e 2+ e..2+20-|j Cu-2 By w2 gy B.)
i] 7
_2e-1i C,i +2 g . ‘e.i s Zcii (& %) ’ .

Taking expectation on both the sides we have the R. H. S. as follows :

kR ko? k2 kR kP
K+ =+ 5 Y i

T krr
o Wikl 2 2 2kro? : ‘
21:\:;(6 -mic +21;:r0 ¥ =02(kr-k-r+1)=02(kk-D(-1)

Therefore, E 22Ayi5- _yT - -)-1_] +y. 2/e?=(k-D (-1
i s ) '
‘which implies thatX2(y;;- T - y—l +7..)2/02‘ is
- i j - ) 1
distributed as X2 with (k- 1) (r - 1) d. f.

k ‘ (Yi~ ¥ D2
s ; y &R :
From the additive property of X2 it can be said that i isalso

; S
distributed as X? with (kr- 1) d. f. It can be shown independently also.

Thus it is seen that each of the components of sum of squares is
independently distributed as X2 with appropriate d. f.

Now considering Hy : ty = tp =........ = t, we have the test criterion,

-

3y -y DP/K-1)

= — == which is distributed as F
L= Yi-- Yo+ Yo RAE-1) k1) ‘
i ‘
with (k- 1) and (r - 1) (k -1) d. .
Again considering Hy: by = by = ... = b,, we have the test criterion,

5y - Y)Y
S5 Yio- yq 4+ Yo P/r-1 (kD
with(r-Dand (r-1) (k-1)d. f.

;which is distributed as F
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Method of calculations of different sum of squares :

2
Correction facter (C. F.) =%—
Total sum of squares = £3y;2 - C.F. = T, say.

e i
Treatment sum of squares = Z;L- CF. =T, say.

Block sum of squares =§¥3- CF. = B say. A

Error sum of squares is obtained by usual subtraction i.c.
ErrorSS.=T,-T-B=E, say. -

Now the analysis of variance table for testing null hypothesis,

Hp : The effects of all the treatments arc same, is as follows.

Table-11.3
ANOVA TABLE
Source of
variation d.f. S.S. M.S. F
’ T
Treatment k-1 T T= T/(k 3 E—,: Fl
’ B’
Block ) r-1 B B =B/(r i) _’-= FZ
E
. ’ E
Error k-D(r-1) E E T
Total rk -1 Ty

If the calculated value of Fy with (k - 1) and (k- 1) (r- 1) d. f. is greater than
the tabulated value of F with same d. f. and at 100 o % level of significance,
then the hyiaothesis may be rejected otherwise the hypothesis may be
accepted. :

~

Similar hypothesis may be considered for block effects and a conclusion can
be drawn with the help of F, also.

Example 11.2 Six different level of a certain fertiliser were tried in a
randomised block design with 4 blocks at a certain agricultural farm-to
study the effects of the levels of fertiliser on cotton crop.

The yield per plot in kg for different levels of fertiliser and blocks arc given
svstematically below for analysis. ) '
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Table-11.4
Cotton yield per plotin kg.

Levels of Block

Fertiliser 1 2 3 4
F 690 . 460 4.40 4.81
Fy 6.48 5.57 4.28 4.45
Fa 6.52 7.60 5.30 5.30
Fy4 6.90 6.65 6.75 7.75
F5 6.00 6.18 .5.30 5.50
Fe 7.90 1.57 6.80 6.62

Solution : The block totals, treatment totals, and grand total are as follows :
Block totals : y.; = 40.70, y.» = 38.17, y.3 = 33.03, y.4 = 34.43.

Treatment totals :

y1.=20.71,.y7. = 20.78, y3. = 24.72, y4. = 28.05, y5. = 23.18 Ve = 28.89.

Grand total = y.. = 146. 33, Correction factor C. F. = y ='892.19

Now diffcrent sum of squaru. are as follows :
Total S.S. = X3y f C.F. =920.78 - 892.19 = 28.59.
Block S.S. = Zk -C.F.=89831-892.19 =6.12.

‘ Zvi.z =
Treatment S.S. 5—}—- C.F.=907.68-892.19 = 15.44 and
Error S.S. = 7.03. 8

Hp : The effecs of all the treatments are same i.c. the_effect of all levels of
fertiliser are same. .

Table-11.5
ANOVA TABLE

Source of

varldiioie d.f. S.S. - M.S. F 1%F
Block 3 6.12 2.040 4.350 542
Treatment 5 15.44 3.088 6.584 456
Error . 15 7.03

Total 23 28.59

The calculated value of F with (5,15) d.f. corresponding to trcatment is
greater than the tabulated value of F with same d. f. ‘at 1% level of
‘significance. Hence it is highly significant and the hypothesis may be
rejected.

Missing Observations : For some uncontroled causes the observations in some
“of the plots in an experiment may be missing. In agricultural experiment crop
may be damaged by animal or by misuse of pest ote. Again in animal
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experiment, some of the animals may die during the course of experiment. In
these cases. the number of observations per treatment are not same and thus
the orthogonality is destroyed.

The analysis of these, data in this type of design may be carried out by
estimating the missing observations in such a‘way that the error sum-of
squares is minimum or by the usual method of analysis of non-orthogonal
- data. But the latter case is combersome and hence we would proceed w1th
analysis after the estimation of missing observations.

Estimation of Missing Observations and Analysrs inR.B.D.:

(i) Single missing observation : , _
- Let us suppose that in a R.B.D. with k treatments in r blocks, one observation
is'missing and that is say, x;. Let T;. Bjand G be the total of the ith
treatment jth block and grand total respcctwcly excluding the missing
observation x7 which occurs in the ith treatment and jth block.
~ The error sum of squares can be cxpressed in terms of x; considering terms
independent of x; as C. -
(T; + x1)2 (Bj + x1)? (C+ x1)2

r T T w

Kiow ds _2)(1 -2 (Ti + X]) ) 2(Bl+ X'[)+ Z(C + X1) 3
P k kr

dx
A KT +1B-G-
Solving we get, x; = ﬁ#

Therefore, S = C + xy2-

Thus the smgle missing observatlon x1 is estlmatcd
(ii) Two missing observations.

In the above R.B.D. if two observations x; and x; are missing, following are
the possible cases to be considered. ‘

(a) - Two observations affecting different blocks and different treatments.
(b) Two observations affecting different blocks but same treatment.

(¢} Two observations affecting same block but different treatments.

Case (a) : We __assn'me that x; belongs to jth block and ith trecatment and x;
belongs to Ith block and mth treéatment. Let G be the grand total of the
observations excluding x; and x;. B;jand B, denote the total of the jth and Ith
blocks. T; and Ty, denote the total of the ith and mth treatments. The error

_sum of squares S can be expressed in terms of x; and x and the remaining
termsasC ;

Sl s _(T,+rx1) (Tm+xz)2_ B +x))2 (B +x))? y (C+x1+ x2)2.

T k k kr -
dS ds ) '
Now, dx = 0 and a—z' 0 reduce to respectively.
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(T-[+x1) (By +x1) (G + X1+ X)) 0
r k kr ~
(T + x2) (By+x2) (G+xy+x))
and xp - = : TR + o =
Solving these equations we have,’

A (k- D(r - I(KT; + 1B; - G) - (kKT + rBy - G)
X = , (k- D*(r.- 1)2-1

X1 -

(N Lk D0 DTy + 1By - G) (KT + 1B - G)
andxy = (k- DXAr-DZ

Case (b) : In this case, the definition of block totals Bjand B; and grand total
G remain same as in case (a). But here T; is the total of the ith trecatment in
which two Sbservations x; and xp ate missing. In this case the error sum of .
squares can be written as, 3
(Ty+x; +%2)2 - (Bi+x)2  (By+x)? (G +xq +x0)
- - -
R K K kr

S=C+x2+ %52

ds - ds
Now, G -Oandd =0 reduce (k-1)r-1xq - (k-1x; = KT; + 1Bj- G
and -(k-1)xq + (k-1D(r-1 )x2 =kT;+ rB) -C. respectively.

. < = N kTi+(f'])Bi+Bl-(7.
_Solving these two equations we have, Xy = T 1')(]_ )

kT + B; +(r-1)B[-G
(k=1)r-2)

and X2 =

™~

Case (c) : In this case the defipition of treatment totals Ty and T, and grand
‘total G remain same as in case (a). But B;denotes the total of the jth block in
which both the missing observation x; and \(2 are lving. In this case the error
sum of sqaures can be written as,
(T +x2 (Tp+x22  (Bi+ X3+ X022 (G+Xg +Xp)2

ro . T i k . kr

:C+x1- wcz -

ds . dS
Now, — e =0and— o =0 reduceto (k-1)(r-1)x;-(r-1xp =kT; + rB;-G
and ~(r - )xq + (k - (r - )xg = KTy + B; - G. respectively.

A
. (k-DT; + T +1B;-G.
Solving we get, x; = (r-1)(k-2)

and

\" T+ (k-1)T,+1B -G
g~ r-1(k-2)
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Thus the estimates of two missing obscrvahunc in all possible cases arc
obtained.

There is another method of getting missing observations known as “iteration
method” given by Yates (1938) which takes a lot of time andis subjected to
contain larger bias. For more than two missing observations, reader is
referred to Glennand Kramer (1958). ’

The method of analysis in case of missing observations is as follows :

Table-11.6
ANOVA TABLE
Source of | Method of calculating |
variation ~ sum of squares a.f
(i) Total | Original data (kr-1)-p*
(i)  Error | completed data 1 - e - np
(iii)  Block + treatment (i) - (i) ‘ k+r-2
(iv) Block Original data (r-1
(v) Treatment - (iii) - (iv) (k-1)

p* inthe components of d. f. indicates number of missing obscrvations.

Example 11.3 : A Randomised block design with 4 varicties of paddy
conducted in 5 blocks gave the following yicld/acre in which two
observations were missing. Estimate the missing observations and carry ont
the anélysis of variance and draw conclusion over the effects of treatment
i.e. paddy varieties. ' ‘ :

b J
Table-11.7

Block Varictics
‘ A " B C. D
1 445 466 M3 34.1
2 48 . 403 340
3 52.1 449 401 333
4 50.0 50 33 E
5 48.0 302 . . 461 356
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. Solution : We know,

A (r-1)(k - IKTj+ rB; - G) - (kTpp, + rB; - G)
T TR

A (r-1) (k= (KT, + rBy- G) - (KT; + rB; - G)
2= (k-DAr-1DZ-1

where the notations have their usual mcaniﬁg.
Here  T;=186.7, . Bj=1223
Tmi= 1370, B; =130.1,
G=7692,1=5k=4.

Fal -
4x3x589.1-429.3 66399
C M =TT =Tz = e
AN 4x3x429.3-589.1 43625
andxz = 4TX 3T-1 = 143 =31.91.

Now different components of sum of squares :
769.22
~ CF. (original data) = =g =32870.48.

—'2

847.5
C. F. (completed data) = 0

= 359162
) i o -

Total S. S. (original data) = 33525.34 - 32870.48 = 654.86.

Total S. S. (completed data) = 36699.997-35916.2=783.173.
Block S.S. (completed data) = 35959.86 - 35916.2 = 43.66.
Treatment S.S. (completed data) = 36629.24 - 35916.20 =713.04.

Error S.5. (completed data) = 783.17 - 43.66 - 713.04 = 26.47.

16652 12282 17042 130.12

Block S.S. (original data) = 7 TRk A man dr gt e

179.92
4

+ - 32870.48 = 37.89.
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Hg : The effects of all the trcatments are equal.

’ Table-11.8

ANOVA TABLE
. Sourceof _ Method of
variation * | 9-f] . calculating S.S. M.S. F | wF
(i) Tot:al 17 | Original data 654.86 ‘
(ii) Error 10 | Completed data. | 26.46 2.65
(iii) Block + 7 |G- G ' 628.39
treatment .
(iv) Block | 4 |Original data 37.89
(v) Treatment.’ 3 (111) - (IV) 590.50 | 196.84 | 74.24 | 6.55

Here the calculated value of F with (3, 10) d. f. is greater than the
theoretical value of F at 1% level of significance, therefore, the calculated
value of F is highly significant and the hypothesis may be rejected.

R.B.D. _with multiple observations made in eaqh plot per block : -

We may have to face some situations where single observation in cach plot
per block is not desirable where sampling is adopted to choose a sampling
unit to obtain data that can provide necessary information..

For simplicity sake, we consider a constant number of observations, say, s
observations made in each plot. There are k trcatments cach replicated inr
Blocks. The model can be written as, i

Yijp = K + b+ by + (tb);; + ¢
where yjj; is the observations on the pth sample for ith trcatment in thc jth

block. (i =1, 2,.....k;j=1,2,....rand p =1, 2,.8).

W is the genéra] mean,
t is the ith treatment effect.
bjis the jth block effect.

“

(tb);; is the interaction between treatment and block.

€jjp, the sampling error which are ndrtﬁally and indcpendently distributed
with 0 mean and variance 62.

The estimation of different parameters and partitioning of the total sum of
squares into different components can be performed as usual.
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The calculation of different sum of squares due to different components of
ANOVA TABLE can be obtained as follows :

Crand total ='y... = - 2
s L12yijp , Correction Factor (C. F.) = . (o

Lip - j : : tks

Total $.5. =X ¥¥y% ip-C-F=T, say.
ijp

A two-way table like  Treatment x Blogk is to be prepared for the.

calculation of the following components. The cell totals being y;;.

ZzYij-z

Total ss. (from Treatment x Block table) = 58 C.F.=T, say

zyi.z. .

Block 5. = —-y—l— ChaB
lntcracnon betwcen treatment and Block SS. = Tt T B=].
* S.S. due to sampling error =T, - T - B -l =

To test the null hyp()thuis Hp : The trecatment cffects are oqual the
ANOVA TABLE can be prcparod as given in Table -11.9.

#

Table-11.9
ANOVA TABLE

Source of -

variition d.f. 5.5; M.S. ~F .«
Treatment (k-1) T i r
Block (r-1 B Tk-1) T/E
Block x Treat- (k-1(r-1) - I

v ment E
“Sampling error rk(s - 1) E tk(s - 1)

Total krs - 1 Ts

The conclusion can be drawn as usual.

- Example 114 To study the cffect of differences in the nuniber of plants per
hill on the growth of Maiz¢ crop, a randomised block design with 5
randomly selected cobs per plot was laid in 3 replications or blocks. The

treatments are,
A-one plant/hill ; B - two plants / hill

C -there plants / hill ; D - four plants / hill.
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The fo]lowmg table gave data on the length of cobs. Ana}ysc the data and

give your comment on the treatments.-

_ ; Treatment ;
Replications . A - B , C D
1 _ 9.3 90 8.6 SR
- 88 . 9.0 S 70 7.2
90 105 84 6.8
8.8 . 89 91 . 7
, 8.6 92 . 82 © 6.0
2 : 10.2 97 9.0 .. 64
: 9.0 ~ 100 8.0 7.4
.94 . 92 - -8 - 6.8
9.6 10.5 82 . 6.8
_ 9.8 10.3 7.0 6.6 -
3 . 99 8.4 +75 . 6.3
: ; 104 © 94 " .iPB : 6.7
10 - - 82 8.5 6.0
10.8 91 80 70
10.0 9.8 86 7.3,

Solution : At first'we prepare a two-way table of replication x trcatment.

_ Table-11.10
s . ) Treatment Total
Replications - A N . C = D ;
T 445 466 . 413 . 341 166.5
2 48.0 497 - 403 340 1720
3 521  .449 - 401 33.3 1704
Total 1446 1412 121.7 1014 | 5089
! 508.92 5 ‘ :
CF.=—g—=431632,
2202181 :
Total S.S. (of the two-way table) =———— - C. F.=8804
¥ i 41 ' . ,
Replication S. S. = 8%-— - C.F.=4317.12-C.F.= 0.80.
65939.45

Treatménts §.5; o e L € F'= 439596 - CF. =79.64.

Rep x treat S.S. (per pot error) = 88.04 - 0.80 - 79. 64 = 7 6
“Total S. S. (from entire data) = 4420 01 - C.F. = 103. 69 ‘
5S.dueto sémpling error = 103.697.6-79.64 - 0.80 =15.65.
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Hy: The effects of all the treatments are same.

Table-11.11 -

ANOVA TABLE
Source of ' ) ‘
VASAton d.f. S.S. ‘ MTS. F 1%F
Replication 2 080 | 040
Treatment 3 79.65 26.55 . 80.45 4.284
Rep X treat. 6 7.6 “ 1.27 ‘
(per plot error) ‘ - -
Sampling error 48 | 1565 | 033 ' h 7@
Total . 59

The calculated value of F i highly significant and the hypothesis may be
rejected. / '

'

»

Latin Square Design (L.S.D.):

In randomised block design, the oxpcrimeﬁtal material is divided into
groups of homogencous units in one direction which increases the efficiency
of the design rather than-C.R.D. The latin squarc design is an improvement
over R.B.D. obtained by classifying the experimental material in two
directions rowwise and columnwise in such a way that the differences
among rows and columns répresenting major sources of variation and they are
orthogonal to cach other. Though it is not necessary that the two factors
should always be called row and column, it may be the levels of two factors
also. Thus in a latin square of size v, the arrangement of v treatments in'v2
positions should be made in such a way that every row and every column.
contain every trcatment precisely once.and make a perfect replication, Thus
- the error variance can be reduced. considerably.

Latin squarc design is the most cfficient design among the baslc dC‘?lgl’lS The
analysis is available for any member of missing ()bscrvahons

The chief disadvantages that the number of rows, columns and trcatments
must be same i.c. the experimental unit must be 2 perfect squares which may
not-always be practical. The analysis depends on the assumption that the
intcraction between rows and columns is not present.

Layout : A standard square of required size is sclected at random from the
Tables for Statistician and Biometricians (Fishers and Yates 1948). All the
*columns are arranged after randomisation and similar randomisation is done

for all'rows except the first one to get the final lay-out of the latin square
design.

\~

[e]
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Analysns : Let us consider a latin square of size v. For analysis of the data in
this design, we consider the linear additive model,

Yig =H+Ti G+l +6 ,
where yjj is the observation of the sth Ereatmcnt in the ith row and. jth
column (i=1, Z...mv, j=1, 2. vis=1,2,_....v). :

W is the general mean,

-1j is the effect due to ith row,

Cj 15 the cffect due to jth column,

: ts-is the effect due to sth treatment,

and eyj;, the error components which are assumed to be independently and
normally distributed with 0 mean and variance 62.

In the latin square v treatments are arranged in v rows and in v columns.

Let Yo = ZZyiis, grand total of observations. .
: ij 5 :
= qus, 1th row total. y;. =Yyj,, jth column total.
: T i

s =Zyjjs, sth treatment total .
s

The least square estimate of W T c,and t; can be obtained by minimising the
error sum of squares denoted by S = }:.Eﬂl,s R ») Yijs - M -1y - ¢j- E1&

i ] i )
In this case, we get four normal equations which can be solved after

imposing the restrictions Xr;=3¢j= ¥t = 0 and the estimates are,
3 s -

A e .
L=y . wvhere‘, y .. =grand mean =-v§-.

A e 7 I —— L — foo
= Yi .- Y ..where y i.,=‘vL

A —

= Yi -y .. where —y_] =Z‘;‘- and
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7 G e = Y-s

t,= Y -s- ¥ - where y . e

To show that the estimates are independent '
A ‘A. e .;

We have, Cov (y, rp=Coviy ..Cyi.- y ..

1]

v(y .. yiJ)-Var(y.)

@ o A A o
T 0. Hence 1 and r,are independent.
AA o o
Now, Cov(rq) Cov{(y, Vio- ¥« (g - ¥ b,
=Cov(y;. y;)-Cov(y, 71..).-C0v (y_J 7) + Var (7...)
P v v R A n
S Lt s i 0*Hence rjand g are independent.

Similarly it can be shown that the covariances between all possible pairs of
© estimates are zcro, indicating that the estimates are mutually independent.

The total S.S, in this case, can be partmoncd into four componcnts as
follows:

IX(yijs ¥ y 2= _):_E(yijs' Vit Y Y oty g Yest Youse Yo
; R 5 :

)2

SEEM wos = ad#d e B d ST g ¥ )
ij :
+Yis= Yim Y- Y ..szy ..‘,)}2
ATV - F o Ph vZ(T‘j. - _y-...)2+v2(-y___s- 7)2 ‘
i B s
+ L2(Yijs - 9 g 3 T] - 7..5 + 2_)/_...)2 all other product terms vanish.
13 ! .
Thus we have, Total $.5. = Row 5.5, + Col. SS. + Treat. SS. + Error $.S. -

267"



An Introduction to The Thcory of Statistics

-

Now, we are to show that different compcenents of sum of squares follow x2-
dlstnbuhon with appropriate degrees of frc2dom.

Weknow, 3 Yew

Yijs TH AT+ G+t + ¢

y1-p.+r1+c+t+e1

y =K+ T +ej+t +e.i.'
— o i
Yy sSH+ T + C ++ e

Alsoweknow (y i.- § .)=(ri-  + .- © <)
=+ .e_i.. - @ ads Putting' T - T =r

; VZ(YI P Y "VZ(r + ei ?...)2

i A

Expanding R.H.S. takmg expeéctation on both the sides and assummg =0
’ under Hyity=r=.ui. =ry,, we have

El:v >y y i i) ] ~vEZe e . 2+vE T e.2-2vE X.e—iu-c_..,

i i ;A

“VVE v ?.vzvcr2

Tk . oy —z—-vozczoz(vl)

©E 2(71 -fT...)z . ¢
1 ci‘,,/v = (v - 1) ; indicating that

'
s

Iy oty o2 e ‘
i is distributed as x?- with (v - 1 ) d.f.
'@/v ; ,

Similarly Column S5 and Treatmcnt S. S can be shown to be distributed as
Xz w:th (v-1) mdependently
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Now, the error S.S. = LX(¢j; - ?, —_-‘e_.i. ol e s+ 2.2
- i ]' . . -

-

Expanding the R.H.S. and ia’king expectation on both the sides we have,

S ves yoey wt2y .0k
E[?:za(y"s Fierd f* 3 )i\ =02 (v-1) (v-2)

;z.-‘(yns' -y_l --)_/-] - Ygt 2 y )
W Bl 1) e -| =v-Dw-D.

Yior ¥ g ¥ sty )2

Which indicates that .z'z‘(yﬁs 7
ij— 7

‘is distributed as X2 with (v -1) (v -2) d.f.

From the additive property of X? it can be said that the l

. (Yi= ¥ -2 s also distributed as X2 with (v2- 1) d.f.
ota . = e A : ;

ij &
It can be shorwn indepencicnfly also.
~ Thus it is seen that each of the components of. sum- of s'quaresls is
independently distributed as X2 with appropriate d.f.
“Now considering Hp: 1 = rZ: =1y, WO havc;* the test crigerion,
VECY i - TR -1
e ISgie- YooY - ¥ -8 +v‘2?...)?/(v— 1) (v -2)
2 i : . .

-which is distributed as F with (v-1) and (v -D) (v -2) d. .

CVICy gy WD) s y
s S SN ML, '

I Yi- Y - ¥ -S+2Y DYV-D(v-2)
1§ T :

. -
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which is distributed as F.with (v-1)and (v-1) (v-2)d:f.
Once again, consiéering Hp :t; =t = .....= t,, we have the test criterion,
VICY .s- y .)2/(v-1)
i

T
—

jo Yy es+2y D v-Dv-D 3

IE(Yis- Y b Yy
ij
which is distributed as F with (v =1)and (v - 1) (v-2)d.f.

Method of calculations of dlfferent componcnts of sum of squares are as
follows :

rotalSS "‘ZZY l]S-CF Ty, say. where C.F. = Lz-
ij

‘ ' ; : e
Row.S.S. = ;Zyi..z -CF.=R, say. Column$S. = Zy? . CF.=C,say.

Treatment S.S. =;,-Zy“52 -CF.=T,say. Error$5.=T,-R-C-T=E, “say.

‘Now the analysis of variance table for testing the null hypothesis

Hp : The effects of all the treatments are same, can be furnished as given in
Table 11.12. :

TABLE-11.12

ANOVA TABLE

Source of : )

vaation. d.f. S.S. ol - MLSL F.
-Treatment‘ (v-1) T T'= z 1

) roE v-1 E
Row * -1 R '
Column v-1) €
! " ' : E
Error (v 'D (v-2) E ' E T T
Total & v2 T

For sngmﬁcant value of- F the hypothesls may be rejected otherwise the Hy
may be accepted.
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Similar tests can be performed for testing hypothus:s regardmg column and
row effects also.

Example 11.5 An experiment on cotton was conducted to study the effect of
application of urca in combination with insecticidal sprays on the cotton
yields. The lay-out of the latin square plan and yiclds of cotton per plot are
given in Table 11.13. The rows of thé table indicates the six different levels
of moisture contents of soil and columns indicate the six different levels of
spacing and Ty, Ty ....... T indicate 6 different trcatments obtained by taking
. .some of the levels of urca and seme levels of insecticides.

Table-11.13
" Yields of Cotton/Plot

To-310:] To-588 ) Tiora8-] To-bao ) o1y-385 | T, -530

To-480 | T;-270 | T5-330 | T-595 | T,-370 | T5-540

“Ty-300 | Tp-295 | Ts-670 | T4-595 | Tex775 .| T3-7.10

Ts-640 | T4-58 | T,-380 | T53-635 T;-480 | Te-9.40

T | 15o485 17 Ty-bk0 " 15-4%0. "]  'To'<200 Ty -5.00

Te-425 | T5-665 | Te-930 | T,-495 of T32930 | -840

Analyse the data and give your comments.

Solution :

Row Totals : Y1 ¥2.. y3.. Ya.' ' ¥5- . Y-
) © 2635 2585 3345  36.753* 3325 .. 4285 .
Column Totals : Y1 Y2 Y3 v " Y Y6 .
2675 2890 3145 3440 3640  40.60
Treatment Totals : Yo Y. y.3 V.4 y-5 y.6.
22200 2840 3420 3160 3855 4355
, .2 19852 '
Correction factor (C. F.) = A 1094.51

Total $5. = TXy2 - C.F. = 1222.84-1094.5] = 12833

1 6773.695
Row S8, ==3y;.2-CF. == 109451 = 34.44.
: 1 6696.555
Column 5. = =5y2j - CF. ==—2==_ 10945 = 21 58. -

il
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6850.305
6

Error S.S. = 128.33 - 34.44 - 21.58 - 4721 = 25.10.

- * 1 . %
Treatment SS. ==Fy2.s -C.F. = - 109451 = 47.21

Hy : The effects of all the treatments are'oqual.'

Table-11.14 .

ANOVA TABLE o
Source of '
variation d.f. Lo N M g < F~ 1%F
Row % 5 3444 6.888
Column 5. 21.58 4316 . ‘ :
Treatment 5 4721 - 9.442 7.523 -4.10
Error 20 25.10 1.255 A
Total 35 128. 33 "

The calculated value of F is hlghly significant ‘and thcrefore the

: hypothesxs may be re)ected ‘ %

Estimation_ of Missing Observations and Analysis in'Latin Square Design :

: (i) Single missing observation : Let there be one ‘missing obscrvation,
denoted by x. Let R;, G T and G be the total of the ith row, jth column, sth
tréatment.and grand total respectively obtained from the original data
‘where one observation is missing. The error S.5. can be expressed in terms of x

“and taking other quantities as C, -

Ri+x)?  (C+x% ([T +x?2  2G+x?

v

3
v, v ve

Error$S.=S=C+x2-
Differentiating S with respect to x and ‘equating to zere we have after

: N VR +C+t)-2G
simplification ; x= V((\;t])l:;ts)z) T

1}
Thus the smgle missing observatlon x is estimated. :
(ii) - Two missing observations:. Ina latin square design of order v X v if two
observations x;and x, are missing, following are the possible cases to be
- cos:dered according to Shil and Debnath (1986).

(a) Mlssmg observations are in different rows and oolumns affecting

‘different treatments.
(b) Missmg observations are in different rows and columns affecting same

treatment.
.(¢)-. Missing observations are in same row but in different columns affecting

necessanly different treatments.
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(d) - Missing observaticns are in different rows but in same cnlumn affecting
necessarily different treatments. .
Case (a) : Let us consider two missing observations x; and x; in a latin squarc »
design with v rows, v columns and v treatments. Let Ts and T's be the total ot
the sth and s'th treatments without considcﬁng the missing observations x;
and-x; respectively. Similarly R; and R’; the row totals and Cjand C'i, the
column totals can be defined. Let G be grand total-of all the observations
without considering x; and xz.‘Thc error sum of squares (S) can be written
below in terms of x; and xp and all other terms as C,
5=Crx2exg2 (T :-Xf)? ) (T's : x? R :Xl)z ) ('f'i : x2)2

(Ci+x?  ([Ci+x)?  2G +x1 +x)? '
- v - v + Vz " .

ds - dS
Now, & =0 and =0 reduoc to

- v-2x +2x2—v(‘Ts+ Ri+C)-2G-

2x;+ (V- D (v - 2% = V(T +R"+ C) - 2G. : ¢

Solving these two equations, the estimates of x; and x; can be obtained as -
follows :

. M 1 : P! e
X = HaT 3T D [(k-D(k-2) (Te+R; + Ci)—2(Ts+Ri'+C5)-2(k-3)Q]

A R |
X2 = (k - 3)(kZ- 3k + 4)

[(k-1)k-2) (T + R’ + C'y- 2 (T+ Ri+C) - 2k - 3G}
: s i sT TN

‘ B
Case (b) : In this casc, the crror sum of squares, can be'written as,
Ts+x1+%2  Ri+x)? R +x)?
v v v
G+ ><1)2 (Cj+ ><2)2+ 2G + xq + x)2
v Y RN

S=C+x]2+x22 -

Exp]anations of all the terms here are same as in case (a) except that of Ts,
which-indicates the total of sth'treatment in which the observations X7 and

~ Xgare missing. Procccdmg as in case (a) we have the estimates of X;-and x; as
follows : '

A g SN '
$<1=(7_—2)7!st+(%1)(& +C) + R+ C’j-2G)
andx= =57 IvT +(v-1)(R/ +C)+R.+C 2G]

s '



An Introduction to The Theory of Statistics

Case (¢) : In this case, the error sum of squares can be written as,

(TS 1-")(])2 (T’S i X2)2 (Rl + X1+ X2)2
v v v

S=CH+x2+x2 -

(Ci+x7)? (C,i+ X2 2AG + x; + x9)
R v ¥ V2 :
Explanation of all the terms in S are same as in case (a) except that of R;
which- indicates the ith row total in which two observations x; and x; arc
missing. ;
Proceeding as in case (a) we have the estimates of x; and x; as follows.

S 1
% = W[(y-l)(Ts+C]~)+vRi+Ts'+Cj'-2C] and

N 1
X2 (—r[(v 1)(1J5+C )+vR +Ts+Cl 2G]

Case (d). The error sum of squares can be written as,

» 2 B 2 R )2 R 2
S=C+x2+x? (FS:XT) (5:"2) ( *V"l ( :Xa)

(G + X7+ X9)? G + Xq + X9)2
. v & V2 i .
The explanation of all the terms here are same as given in case (a) except
that of C;which indicates the total of the jth column in which both the
observahons xjand x; are missing. Proceedmg as in case (a) we have the -
-estimates of x; and x; as follows : ' . ’

A

1 : ’ ‘
X1 v -2 (v -D(Tg+R) + v+ T + Ry -2(3]an§

A 1 S e 7
X =y )2 (V- DT+ R+ vG+Ts + R; -2G]

Thus the estimates of two missing observations for all possible cases are
obtained.

When more than two observations are missing the number of possbile cases
increases rapidly and the estimation procedure becornes combersome. In that
- case we suggest Yates (1933) method of iteration.

The method of analysis, in case of missing observations : Corrected error sum
of squares E can be obtained by the usual method after substituting the
cqhmatcd mtssmg observations but in this way thc corrcctod treatment sum
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of squares cannot be obtained. To get the corrected treatment sum of squares
we adopt the method of estimating the missing observations as given in
randomised block design by considering the rows and columns of latin design
ignoring the treatment classification. The error sum of squares E; is
calculated from the completed data thus obtained. Then E - E; gives the
corrected treatment sum of squares. The degrees of freedom (d.f.) of the error
sum of ‘squares is reduced by the number of missing obsorvatlons

A clear-cut method of analysis of variance of the above type of data can be

pointed out as given in Tablc~]1 15, ~ »
Table-ll 15
Source of ) Mcthod of alculating
variation sum of squaress d.f
(i) Total = Original data vZio1-p*
(ii)  Error Completed data (v-1Dv-2)-P
(iii) Treatment + (i) - (i) : 3v-3
Row + Column .
7 "Row + o o v-1)
0¥ Colurin Original data i ]
(v) Trecatment (iii) - (vi) | v-1
I* indicates the humber of missing obscrvations.
Example 11.6 Six different insecticidal sprays (Tq, Ty.........Tg) on the cotton

yiclds were applied in a latin square experiment in the following type of
lay-out. Two observations were missing in the plan, the data were collected
as follows : . !

Table-11.16

Ty Te T Ts T; Ty

3.10 5.95 1.75 6.49 3.85 5.30
T, T Ty 3 ;) T;
4.80 2.70 3.30 5.95 3.70 5.40
T T; Ts . Ty Te LK
3.00 2.95 * 5.95 7.75 Z10
T; Ty T, 13 T Te
6.40 5.80 3.80 6.35 4.80 9.40

3 T3 ‘ Ti « T> Ts Ty
5.20 485 6.60) 4.60 X 5.00
T Ts Ts Ty Ty T
4.25 6.65 9.30 4.95 9.30 8.50
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Estimate the missing values and analyse the data..

Solution : Since the missing values are in different rows, different columns
but affecting the same treatment Ts, we have,

A 1 ) &l ¥
=52 [VTs+(v-1) (R; +Ci)fR}'+Cj'-ZCI and -

X T ( [st+(v 1)(R +C)+R1+Cl 2G]

A A

where X and X are the estimated missing values in third row and third

column ‘and in the fifth row and fifth column rcspcchvcly All other
symbols have the usual meaning expressed carlier. )

- Here, G= 18490 R1=2673 ! C] 2-1.73'
To=u95  R4=2%25 =240
3 A

, A e
Therefore we have, X1 =5.82.and xp =6.85.

& o o 184.92 o
Correction factor (C. F.) (Original data) ==—=r—= 100553,

2

% 1084.28.

CE(?{_r.L‘ctioh factor .(C.F.)‘ (é()mplctcd data) = L
~Total $.5. (Original data) = 1130,64 - 100553 = 125.11.
‘Row $.5. (Original data) = 1040.57 - 1005.53 = 35.04
' Col. S, (Original datay = 1027.15 - 1005.53 2162
Total S.5. (Completed data) =1211.43 - 1084.28 = 127.15
Row S.S. (Completed data) =1119.04 - 1084.28 = 34.76.
Col. S.S. (Completed data) = 1106.54 - 1084.28 = 22.26.
Treat.S.S (Completed data) = 112961 - 1084.28 = 45.33

Errnr SS. (Comp]eted data) = 24.80.
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Hp: Effects of all types of insicticidal sprays are equal.

Table-11.17
> ANOVA TABLE.
Source of * ‘Method of calculating -
variation sum of squarcs df | 85 " IMS. T F
(i) Total Original data | ® |25 | 138
(ii) = Error Completed data k. 18 248
(iii) Row+ Col. | (1) - (ii) 415 1 100.31
+ Treat. . . )
) Column Original data 5 2162
(V) Row Original data 5 | 3504
(v) Treatment: | (ii) - (iv). - . 5 | 4365 | 873 | 6.33

The tabulated value of F with (5.18) d.f# at 1% level of significance is 4.25
which is smaller than the calculated value of F with same d.f. Thercfore,
the calculated value of F is highly significant and the hyp()thcsis may be
rejected - '

' Replicatéd Latin Squar_e- Design: When the number of treatments are 8 or
more, latin square design should not be used because the number of
replication are large and may not be available. On the other hand, a latin
square design of order 2 x 2 cannot be adopted because in this case error d.f.
cannot be obtained. For latin square of order 3 x 3 thc crror d.f. is 2 and for’
latin squarc of order 4 x 4, the error d.f. is 6. The error d. f. in both the above
cases are not enough to give an efchnve ahalysis of variance. To increase
the d.f. due to error in the above cases we repeat the experiment i.e. instead
of taking one latin square, a number of say,. p-latin squares may' be
considered. The number of treatment in  each of the psquares should be
same and scperate randomisation is to be carried out in cach case. The row
and column classification should be maintained equal for all the squarcs.
~ The design thus obtained is called replicated Jatin square-design. -

The analysis of data in this type of experiment is described as below :
Firstly, each of the p latin squares is analysed seperately following the
.method given carlier. The corresponding sum of squares are then added.
This gives pooled row, column, treatment and error sum of squares. The

pooled row sum of squares is called between row within squares sum of
squares and similarly for the other pooled sum of squares.
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From each of p squares, the v treatment totals are obtained and arranged ir
a square X treatment table of order p.x v. '

Let T, donote the totals of all observations of the sth treatment in the tth
square. the square x treatment table is obtained-with these Ty totals. Let py
denote the total of all the observations in the t th square (t = 1. 2........ p)
and Ts denoted the total of observations of the sth treatment from all latin
squares (s = 1, 2......v). py and Ts are the marginal totals of the.square x
treatment table. o ' ;

Next, the following sum of squares are obtained.
@)

Sum of squares dueto squares = :E;i C E

' ‘Correctlon factor (C. F) =.

Sum of squares due to treatment = -C.F.

Sum of squares due to interaction treatment x squarc Pooled treatment sum

of squares - (—'-C F. )

Total sum of squares = Z,Z,y,)_c,t -C.F,
ij '

where Yijst denotes the observation from the t th squares in its ith row, jth
column and under sth treatment. .

The partitioning of d.f. in the analysis of variance of data in n,pluatcd
latin squares is shown in Tab]c—ﬂ 18. The null hypothesis considered
usual]y is ,

\

Hg: The treatment effects are same.

-

i Tab|e~11.18

Source of variation ‘ ~.degrecs of frecdom (d.f)
Squares . p-1-" "
Row (Pooled) T v D)
Column (Pooled) ‘ plv -1)

- Treatment. | e : (v-1)

- Treat. x Sq. Interaction r (p D (v-1)
Error (Pooled) g plv -1) (v -2) ‘
Total b p.v2 -1 i
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The test of significance regarding the null hypothesis stating the equa]ity
of all row and column effects are to be carried (')u‘t asusual. »

Example 11.7 The following 4 x 4 latin square experiment was conducted to
compare the cffect of 4 spacing A, B, C, and D on the yield Ib/acre of certain
varicty of paddy. The whole experiment was repeated 3 times. The lay-out
were as follows : ‘

4 rows indicates = 4 different doses of fertilisers

4 cols indicates = 4 different levels of irrigations.

A | B C D B ¢ | o A
231 280 285 289 215 310 280 280
B | a D C c |3 Fa | oD
284 | 226 | 283 | 27 219 | 241 249 | 265
¢ D A B D A | B C
275 | 282 | 258 | 258 180 | 239 | 290 | 260
D C B A A D C B
o5 | o 289 | 275 V20 | 245 | 25 | 2m
L. Séuare—] L. Square—2

C D A B

225 254 251 271

D C B A

LA ns | 23 2y 275

A B C D

231 249 263 295

B A D e

241 231 - 73 266

L. Square—3

Y \
’ Analyse data and give your comment on spacing.
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' Solution :
Latin Sq‘uare—i. _ )
Row Totals : R, R, R3 Ry
, 1085 1084 1073 1094
Column Totals : G G G ' €4
' 1049 1079 1115 1093
Treat. (Spacing) Totals: T, v Ty T T
1010 - 1111 1102 1113
8 L 4336)2 3
Correction factor (C.F.) =(—‘i6—)= 1175056.
C10852+...... +10942
Row §.5. = ——— e CF =11751115-CF. =555
' 10492+ 10932 '
Gl BiSi e e e CF. = 1175629-CF. = 573,
10102+ -.....+ 11132
Treat. S.S. = = = +_ 1 -CF. =11768985 - C.F. = 1842.5.

Total S.S. = 2312 + ...+ 2752 - C.F. = 1179154 - C.F. = 4098,
Error S.S. = 1627. N

Latin Square-2,

Row Totals ) R, R, - Ry Ry
1085 974. 969 1001.
Column Totals G G G . G
' ‘ 824 1035 1094 1076
Treat. (Spacing) Totals Ta Ty - T ) Tg .
" 978 . 1017 1064. 970.
(4029)2 :
Correction factor (C.F.) = . T3 ) =1014552.6
- 10852 +.,..... 10012
Row S.S. = e C.F.=1016-158-C. F. = 2163.2

2 b 10762
EEF e WG L =10262033 - C. F. = 11650.7.

Treat. S.S. = -C.F.'=1015942.8 - C. F. = 1389.7,
_Total $.. = 1031805 - C. F. = 17252.4. Error S.5. = 2048 8.
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Latin Square-3.

Row Totals: Ry Rs Ry’
1001 955 1038. 1011.

Column Totals: G G G Cy
915. 965 1018 1107.

Treat. (Spacing) Totals: T Ty Ts T4-
988 992 985 1040.

_ _ (4003)2 -
Correction factor (C.F.) = % - 1002501.6.
10012 +....+ 10112 n
RowS.S. = 5 - C.F.=1003397.8-C.F. =8%.2
9152+....411072 s 5
ColumnS. S. —— ™ C.F. =1007555.8 - C. F. =5054.2.

Treat.S. S, = —————— -C.F.=1003008.3 - C.F. = 506.7.

4
Total S. S. = 1009737 - C. F. = 7235.4. ErrorS.S.=7783.
Row S. S. (Pooled) = 3114.9. Column S. S. (Pooled) = 17277.9,
Treatment S. S. (Pooled) = 37389. Error S.S. (Pooled) = 4454.1
Table-11.19
Square X Treatment Table
g A B. C D Total
Square v
1 1010 111 1102 1113 4336
2 978 1017 1064 970 4029
3 988 992 985 1040 4035
Total 2976 3120 . .+ 315} 3123 © 12370
123652

Correction factor (C. F.) = N 3187852.1
43362+..... + 40052
16

29762+......+31232
12

S.S. due to square = - C.F.=4258

S.S.due to Treatment = = C.F.=1556.7.

Int.’S. S. duc to (Treat. x Square) = Treat. S. S. (Pooled) - S.S. duc to
Treatment = 3738.9 - 1556.7 = 2182.2.
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Hy : Effects of all the treatments are same.

Table-11.20
ANOVA TABLE
Source of variation - S.S. M.S. F
Square . . : 2. 4258
Row (Pooled) 9 31149 ﬁ
Column (Pooled) H B 172779
Treatment 3 1556.7 5189 2097 °
Int. Treatment x Square | 6 2182.2
 Error (Pooled) 18 44541 | 24745
 Total 4 47

VTh'e tabulated valué of F with (3, 18) d.f. at 5% level of signiﬁcr;ncc is 3.16
which is greater than the calculated value of F with same d.f. Hence the ,
calculated value is insignificant and the hypothesis may be accepted:

113 Cross-over Design

In an agricultural experiment if an experimental unit is used for several
treatments in a squence i.e. if different fertilisers are used on the same
experimental unit or in an animal husbandary experiment if a cow is given
several feeds in a sequence at different periods, say, in different lactation
stages, then in all the cases, the effects of the treatments applied in one
period may carry over to the next period. Therefore, the design in which
different treatments are applied to the same experimental unit in different
periods is called cross-over design. It looks like a replicated latin square
,and is particularly appropriate when the difference between the rows is
" almost same in all replicates. Even if the difference between the rows is.
assumed to be large, the cross-over design may be used for small experiment,
~where few degrees of freedom are available for error.

In this type of design we have to consider two cases, namely,

i) when it is assumed that the residual effect is nil. -

ii)  when the residual cffect exists. ) ;
Case (i) When the residual effect is nil : Let us consider that the number of -

treatment be t, each replicated r times and ta satisfy the condition of the
experiment each treatment occurs equally often in each period and on cach
unit, then the cross over design will have t x r columns. Each column
‘represents a replicate or block in-a randomised block design. The treatments
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. are randomised within the replicate in such a way that cach treatment
occurs once in the replicate and r times in each row.

The design can be used with any number of treatments subject to the
restrictiorr that the number replicates must be a multiple of the number of
treatments. )

. The spliting of degrees of freedom in ANOVA is as follows :
Table-11.21

Source of variation . d.r...
Replicate (Column) tr-1
Row ‘ t-1
Treatment 7 t-1
Error i (t-1) (tr-2)

Let us consider an animal husbandary experiment to observe the effect of
three feeds A, B and C on milk production applied to 6 cows in 3 different
lactation stages. It is welknown that the first lactation stage is the best,
_ second lactation stage is medium and the third lactation stages is the wrost
in connection with the milk production. To satisfy the condition of the
constructions, we consider a cow to represent a replication and 3 rows.

represent 3 lactation stages. The lay-out can be shown as follows :
¢ 5

.Replications
' R R, R, Ry R Rg,
Row = 1 A C A - B B [
Row 2 c B B C A A
Row 3 B A C A C B

Case (ii) When there exists residual effect : We have scen in the carlier
lay-out that to a same cow, say cow 1 indicated by R, is given feed A in the
first stage i. e. stage 1, feed C in the second stage i.e. stage 2 and Bin stage 3
cte. In this case, we have assumed that the residual effects nil. But in some
situation the residual effect is so prominent that the assumption is not.
valid. Following are the two methods by which we can eliminate the
residual effect.

(a) A gap or rest period is maintained so that the effect due to treamtment.
will not be carried over to the next. ’

() The residual effect is eliminated by a special technique of analysis of
variance. The first method is not practical because during the rest period we
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are to apply some control treatmentwhich may rcact with the carlier

>

treatment. Also we may not have extra time for keeping gap period.

For the second ‘method, the lay-out for the cross-over design with
treatments, t may be even or odd number, may be described as suggested by
William (1949) as below : - ' ‘

(i)  For even number of treatments:

(a) The first column is written accordiﬁg to sequence 1, 2, t, 3, (t-1),
4.......Thus for t=4, the first column is written as 1, 2, 4,3, and fort = 6 the
first column would be 1, 2, 6, 3, 5, 4. The numbers indicate the treatments.

(b) ~Next (t - 1) columns are obtained from the first column by successive
addition of 1 but if the number exceeds t, t is to be subtracted from it.

For example; when t = 4, the 4 columns can be written as :

1 2 3 4

2 3 4 1

. 4 1 2 3
- 3 4 1 2

(ii) For odd number of treatments : In this case there will be two squarcs.
~ The first column of one squareis 1,2,t, 3, (t-1)....and the first column of the
‘second square is the first column of the first squgz/c, %t in reverse order.

. i

Thus for n =5, two squares are’as follows :

1st square b 2nd square
1 2 3 4 5 4 5 1 2 3
2 3 4 5 1 3 4 5 1 2
5 1 2. 3 4 5 1 2 3 4
3 4 5y 9 2 3 4 5
4 5 1 2 3 : i 2 3 4 5

‘Example 11.8 Three feeds A, B._and C were given to six cows in three
Jlactation stages. The plan and milk production in kg/day are given below.
Test the effect of feeds on milk production. (Assuming that there is no
A.rvesidual effect).

Cowl Cow2 Cow3 Cowd GCow5 Cow &
Stage-1 A-10 C-16 A-12 B-1 B-14 C- 10
Stage-2 C- 9 . B-.7. B--11 C-10 -A-12 A: 13
Stage-3 B- 14 A-12 C-10 A-12 C- 8 B. 1.

24
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Solution :
Totals Totals
Stage - 1 73 Cow-1 3
Stage - 2 62 . Cow-2 35
Stage - 3 67 Cow-3 33
Feed - A 71 Cow-4 3B
Feed - B 8 - Cow-5 3
Feed - C 63 .. Cow-6 34

2022
' Correction facto_r (C.F) T 2266.89.

Total 5. = 102 4 wroron: +112-C.F. = 2350 - 2266.89 = 83.11.

i 732 +622+672
| S.S.duetoStage == C.F.=2277 - 2266.89 = 10.11
\ | 712+ 682 + 632 13634
| S.5. due to Feed = N8 28 Rt CER=27233-CF=54
! 3324 ... 342 6804 -
5.S. due to Cow = +3 = CF == - C.F=2268-C.F.=111.

Error §.5. = 83.11-10.11-544 - 1.11 = 66.45.
Ho : The cffects of all the feeds are same.

i . , Table-11.22

ANOVA TABLE
\?:;Jiracfigi d.f 5.8. M.S. 2B - 5%F
Stage 2 10.11 5.06
Feed 2 | 544 2.72 033 8.65 -
Cow 5 11 0.22
Error 8 66.45 831 -
Y Total 17 83.11

The calculated” value of F with (2,8) d.f. is smaller than the tabulated
value of F at 5% level of significance. Therefore, the calculated value is -

«»_insignificant and the hypothesis may be accepted. S
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114 Multiple Comparison Tests

The significant value of F for treatments, indicates the rejection of null
hypothesis Hy : The treatment effects are equal. In that case we may be
interested. in making comparison between baii’s of treatment means and
finally to decide the most effective one.

For the above purpose, following are the usual comparison tests.

Least Significant Difference (L. s. d) Test : It is the oldest method for
making comparison of treatment means to sce whether the difference of the
observed means of treatment pairs exceeds the l.s.d. numerically. We
declare the means of pair of treatments “to be significantly different if the

: P ( 2
difference of treatment means exceeds L.s.d. which is calculated by tg x .

where tq is the value of Student's t with error d.f. at 1000.% level of
significance. s? is the M. S. of error and r'is the number of replications of the
treatments. For unequal replications ,r; and )

l.s.d= S\/] L
. 8. —tax r1+12.

The test criterion is very ealsy to calculate but restricted in the sense that

treatment pairs should be independent and are to be pre-determined.
: : :

Therefore, it cannot be used for all possible pairs of treatment means.

Example 11.9 ' Apply 1.s.d. test for testing the difference of treatment‘mean‘s
of Fyand Fg from the data given in Example 11.2 :

Solution : We have,

Lsd. =tgp, x‘\’ T Where, to = 2.947,s2 = 0.469 si=4,

Mean of F; =5.18 and Fg = 7.22. Therefore, 7.22 - 5.18 = 2.04.

, ‘ 2x0.469
Now, ls.d.=2947 x '\/ += 1.427.

‘ Theréfore, the difference between the two means of F; and Fg is highly
- significant indicating that F is better than F;..

Tukey's @-Test : For comparing all possible pairs of treatment means wo
arrange the treatment means in ascending order of magnitude as x ,, Tz.

yesnataisasses x . The studentized range statistic is given by,
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(x - xr

‘qLP= S

wihere s? is the M.S.of error with p d. f. and r is the number of replications
of all the treatments. The values of q, ;, are available in Biometrika Tables,
Vol.-1, Table-29. :

For comprison all possible palrﬁ of trcatment mcars Tukey (1953) sugbcstcd

the statistic, w=q —. i
‘ P [
p T

. 1
For uncqual replications, @ = q((x)hp x-s[ ]5 ( 37,,_ 1_2 ] =
where qqg) p is the value of qy,p at upper 1000% point. 1000% level of
significance gencerally depends on the original ANOVA  table. Tukey's
o-test is very important since only one value like 1.s.d. is used to compare all
possible pairs of treatment means. ® is sometimes called honestly significant
difference (h. s. d.) test.

Example 11.10 Apply Tukey's - test for testing all possible pairs of means
for\sngmflcanfc using thg data gl\;cn in Example 11.2.

Solution: Wehave, ® = qq) ,p X 7=
’ Vr
where o =0.01,t =6, p=15,r =4, s? = 0.469.
and 901) 6, 15 = 5.80 -Vide Biometrika Tables. Vol.-1, Table—29.

L
. = 0.469
. w=580x =
4
The treatment means corresponding to different treatments arranged in order

of magnitude are :

- [ )
) F] FZ ' F‘ F’; F4 . F{,
5.178 5.195 - 5.795 6.180 7.013 7.223.

" Treatments underscored by a common line donot differ significantly while
the others differ significantly. Thus Fg is significantly better than F; and F,
at 1% level of significance. And there is no ﬂgmflcant difference among Fs,
Fy, F5and F.

Newman-Kewls' Sequential Range Test : In Tukey's o-test the number of
ordered steps between the means of the treatment are not considered.
Considering this aspect, Newman-Kewls' put forward the following
method py which the most effective treatment can be determined.

~
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(i)  Arrange theitreatment means in ascondmgv order of magnitude in a two-
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way table as below :

Table-11.23

A= -

—

—~
—
—

'

(a)

(b)

(c)

(d)

xample 11.11 Apply N K. sequential range test for testing all possible

Therange x (- X 1is compared with critical difference

. S
(o) (t=t-1+1,p) :[";

If the test under (a) is significant, the difference to the right
c— s

( X (- X ) iscompared with q () ("1="2H'P)T'
\ r

If the test under (b) is sxgmflcant the difference to the further

s
right ( x i X 3) is compares with q (-2=1:3+1.p) \/._

If the test under (c) is in significant we turn to the second row and
proceed as in the first row and admit only up to the column
where we get significant differences.

/pairs of means for significance, using the data given in Example 11.2.

Soluhou Wc prepare the fo]lowmg table for calculating different q y,p T \/—

for different values of t. _ )

288

{



Design of Experiments

Table-11.24.

vah:C of Jeont15 -q.01,15 X -
A

6 5.80 1.986

5 5.56 1.904

4 5.25 1.798

3 4.83 1.654

2 417 1.429.

Two-way table of differences of treatment means corresponding to different
trcatments are as follows :

Table-11.25 : :

Fe Fy F,  Fs Fy. Fp

7223 - 7013 6.180 . 5795 5195 5178
5178 | -2045% 1835 1002 0617 0017 — .
5.195 2.028*+ 1.818 0985  0.600 _ =2 =
5.795 1.428 1218 0205  — . —
6.180 1.043 0.833 - = o =
7013 | 0210 - = I =
7293 s - £ - - =

The - difference 2.045 is compared with 1.986, the difference 1.835 is
compared with 1.904 and so on. Thus it is scen that Fg is significantly better
than Fy and Fs.

Duncan's New Multiple Range Test : In the Newman-Kewls' (N,K)
suquonna} range test we have considered a constant level of significance
© irrespective of the number of steps of the means are apart. Duncan (1955)

made @y, the level of significance a variable from test to test by considering

the level of significance as oy = 1-(1 - &) ¥ where k is the number of order
steps between the ordered means and @ is as defined earlier. We define Jao

as the significant studentised range (S.S.R.) The value of SS.R. is given in

Duncan (1955). The least significant range (L.S.R) is defined by,

LSR. =SSR x—

Vr

In case, a pair of means differs by more than its L.S.R, they are declared to
be significantly different.
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]
Example 11.12 Apply Duncan's new multiple range test of testing all
possible pairs of means for significance using data given in Example 11.2.

Solution : The values of SS.R. and L.S.R. fur different values of k arc as
follows :

Table-11.26

Value of k , 2 | 3 g 5 6
SSR. 417 437 4.50- 458 4.64
L.S.R. 1.428 1.49 1.541 1.580 1.558

Treatment means corresponding to different treatments are arranged as
follows : Fq Fz_ Fs F3 Fy Fe
- 5.178 5.195 5.795 6.180 7.013 7.223.

which indicates that Fg and Fy is significantly better than F; and F. The
difference between any pair of underscored treatment means being
: 1n51gm.f1cant

11.5 Factorial Experiment
" A certain character under study may be influcnced by o number of factors at

-.dlff(.‘l‘(‘nt levels and hence 1t is. ‘necessary to test different ¢ mbinat; s
of the levels of the factors. An experiment in which a number of PA1985s at
different levels are tested for their effects and interactions is called

| factorial experiment. There are two tvpes of . factorial experiment,

. symmetrical and asymmetrical.

Factorial experiments provides study not only the individual effects of each
factor but also their interactions. In these experiments we require less
resources to get. same precision for each factor effect. They give an
_exploratory work and hence they are widcly used in .research work. They
also form thebasis of other designs of considerable practical importance.

When the number of factors are large in number, it is difficult to handle
because, blocks of required size may'not be availabld. In that case we can
deal with fractional factorial. For this aspect, the serious readers may be
referred to' Montgomery (1976) and Jhon (1971).

Symmetrical Factorial : When the factors, each have the same number of
.levels, they are called symmetrical factorial experiment. For an example,
let Fy, Fy,......F, be n factors each at s levcls, then we have a symmetrical
factorial éxpcrimcnt of the type s™. '
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12" Factorial Experiment : Lct us consider the factorial design of the type 20
which has n factors cach at 2 levels. For more simplicity sake, we consider

=2 i.e, the most simple factorial experiment of the type 22, Let the two
'factors be denoted by A and B cach at 2- ]LVL]S the low level is denoted by 0
and the high level is denoted by 1. The troatmont combination 00 represents
both the factors at the low level and may be denoted by (1), 10 represents A
at high level and B'at low level, may be denoted by a, 01 represents A at
- low and B at high level, may be denoted by b and 11 represents both the
factors at high level, may be denoted by ab. Let us consider r replications.”
Further let the lower case letters (1), a, b and ab represent the total of the
observations in all the r replicates corresponding. to different treatment |
combinations. . '

Main-effect-and Interaction-effect : When two factors A and B are involved
la-(1)]

in the experiment, the cffect of A at the low level of B is - and the

ab -b . .
cffect of A at the high level of B is l l. Averaging both the quantities

il 1
we have the main effect of A, denoted by, A =§I(ab -b) +(a -(1)].

1
=Ela.b+a -b-(M)] = (a-])(b+1)

Similarly the main cffect of B is
B % b+b 1 i 7 b-1)
=5.lab + -a-Ml =5 @+ D -1).

Now the jntcractioﬁ AB is the average difference between the effect of A at
the high level of B and the effect of A at the ]ow level of B. Thus,

1 1
AB=73rllab-b} - {a - (1)) =5Hab+(1)-a-b] = (a 1D (b-1).

The interaction effect BA is scen to give the same exprcssmn as above and
. hence, Intcrach()n AB = Interaction BA.

It is scen that the effccts are expressed in term of contrasts of trcatment
‘combinations. As the three contrasts are mutually orthogonal, we can split
the treatment sum of square with 3 d.f. into three sum of squarés each with 1.
d.f. corresponding to three effects. The contrasts representing the effects A,
B and AB arc shown below with + and - signs against the treatment
combinations.
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. Table-11.27

Treatment Factorial cffects
Combinations A B AB-
1) 00 —_ ‘ s +

d -
a 10 o + L — _—
b 01 — + ‘ —_
ab 11 .+ ” s 5

23 Factorial Experiment : Let us consider three factors A, B and C cach at 2
levels, designated as earlier. The treatment combinations can be written as
(1), ab, ab, ¢, ac, be, and abc. In terms of 0 and 1 the treatment combinations
can be written as 000, 100, 010 110, 001, 101, 011 and 111. As carlier the lower
case letters indicate the total of observations corresponding to that -
particular treatment combination in r replications. '

Main-effects and Interaction-effects : The cffect of A when B and C are at
a=-(1 .
low level isI—rSL], the effect of A when B is at high level and Cis at low

b]

ab -
level is [ T the effect of A when B is at low level and C is at high level

. lac-cl]
is

[abc - be] : :
—— Thus the main effect of A is the average of these four cffects

and finally the effect of A when both B and C are at high level is

1
whichis A = Fla—(])+ab-b+ac-crabcfbcl

T . : 1
:E[a+ab+ac+abC-(1)-b-c-bcl =% (@a-1xb+ 1) c+1).

Similarly the main effect of B and C are as follows :

1. 1 ‘
~B=Elb+ab+bc+abc-a-c-a¢-(l)l‘=4—r(a+])(b-])(c+1)

1 i 1
andC:E[c+ac+bc+abc-a-b-ab-('l)l =E(a +DMd+DE-1
When C is at low level, the interaction effect AB is the average difference

‘ 1
in the effect of A at two levels of Bi.e. 371(ab-b) - fa - (M}

1 :
When C is at high level the interaction cffect AB is ;;I(abc -be) - tac - Ol
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Design of Experiments :
In case of three factors, A, B and C, the interaction cffect of AB is therefore,
the average of these two effects.

Thus AB=Z];Iab-b-a+(1)+ébc-bc-ac+cl

éll abc+a'b+c+‘(1)-a-b—ac-bc] =i(a-1)(b-1)(c+l) similarly
——[abc+ac+b+(1) a-c-ab-bc —(a Db+ (-1

andBC:E-1abc+bc+a+('l)-b-c—ab-ac] =-;T(a+])(b-1)(c-1)

AB, AC and BC are usually called 2-factor intcraction effects. The
interaction cffect ABC is the average dlffcroncc between AB interaction for
two different levels of C.

1
Thus, ABC =E_'[{(abc -bc)-(ac-¢)}-{ab-b-a-(1)}]

I 1
:E[abc+a+b+c-ab-ac-bc-(])] :Z;(a- Db -1)c-1).

ABC is called the 3-factor interaction. It can be shown that,
Int. ABC = Int. BCA = Int. ACB. Therefore, the order of the letters are
immeterial in case of having interaction effects.

All main effects and interaction effects are expressed in terms of corl{trasts of
treatment combination's and the contrasts are mutually orthogonal. The sum
of squares due to treatments with 7 d.f. can be split up into different sum of
squares cach with 1 d.f. due to different cffect components. The contrasts
representing main-cffects A, B and C, 2-factor interaction offects AB, AC and
BC and 3-factor interaction cffect ABC are shown in Table-11. 28 with + and
- signs against the treatment coOmbinations.

Table-11.28

Treatment - Factorial cffects

Combinations A B C AB AC BC  ABC-
(1) - — — - + + —
a + — — — — - +
b - + — — + — +
ab o+ - — + — — —
¢ —_ " — + + —_ — +
ac + == + - + — -
be — + + — — + —
abc - + K + - - +

[
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The Table-11.28 has several interesting properties :

(1) Every colu;nn has an equal number of + and — signs.

(2) Thesum of prdducts of co-efficient of signs in any two columns is zcro.
© (3) The préduét of signs of any two columns yiclds a column in the table.

For cxample, A X B = AB and AB x B = AB?= A. We sce that the products
are formed modulus 2 (the exponent can only be zero or one if it is greater
than one, it is reduced by multiples of two until it is cither zero or one).

.In gencral the main effects and interaction cffocts of 27 factorial experiments
can be obtained in the above way. The sum of squares of any cffect is equal to

(Contrast)? . : ) :
—2"-——' where n is the number of factors and r is the number of
X : : : »
replications. Thus getting the sum of squares of different components, the
ANOVA table can be prepared for any experiment of 2" series when it 1s
conducted in any one of the basic designs.

Yate's Algorithm for the 2 Factorial Experiments :

There is another systemetic method of getting the estimate of cffects and
the sum of squares of different effects usually known as Yates' Algorithm.

The procedures are as follows :
1.  The treatment combinations are wﬁttcri_ asusual in a column.

2. The total of the responses (yiclds, mcasurcs of observations ctc.) are
written columnwise corrcspohding to cach trecatment combination.
"~

3.  The first half of the next column which is denoted by col-1 is obtained
by adding the responses in adjacent pairs: The second half of col-1 is
obtained by taking second value minus the first value in each pair.

4. Col-2 can be obtained from col-1 just as col-1 is obtained from response
column. . : ; “*

The process of pairwise addition and subtraction is continued to get col-n if
it is'a 2N factorial experiment. :

5. The estimates of the the effects can be obtained dividing the values

(avoiding the first one) of col-n corresponding to treatment combinations
obtained by mentioned above procedure by rx "1 where nand rare
described earlier. : : :
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6.  Sum of square of the cffects can be obtained by squaring the value
(avoiding the first one) of col-n corresponding to trecatment combinations and
dividing by rx 21 :
Thus the sum of squares of differem cffects are obtained. The replications
and error sum of squares can be obtained as usual and the analysis of data in
‘a 2" factorial experiment conducted in any onc of the basic designs in r
replications can be performed.
.

Example 11.13 For a factorial experiment with three factors N, P and K
" cach at'two levels conducted in a randomised block design.in 4 replications,
“the lay-out and yicld per plot are given below : '

¢

*  Rep—1 Rep—2
) kK | pk p 7] p nk | npk | M "
5 | n | 2 7 12 22t e 14
nk np n np‘l; n np k pk
32 .| 3% 46 30 9 | 3

Rep—3 ; Rep—4

k | ek n nk np ﬁk npk k
» 20 25 28 2 | # 5| s
npk (M p np Sy pk ‘| n P :
0| 2% 3% 3. | 39 n |

Analyse the data and give your comment.

Solution : Grand Total of the observations=1039

-~

k . &
Correction Factor (CF) =%= 35046.2833.

- Total S.S. =.36381 - CF = 1334.7167.
Replication $.5. = 35662.1250 - CF = 615.842.

S.5. due to different main-effects and interaction cffects can be obtained
from the following Yates' Algorithm : o
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Table-11.29
Trca:- Total * Mcan effect
men 2
.| fromall | Col-1{ Col-2| Col-3 Col-3 [Col-3]
Combi- Rk L e
3 2 X
néion replicates 4x2 dx2
m | 127 | 272 | 514 0% s =
n 145 242 | 545 | 63 393757 | . 124.0312
p 114 | 2 B 19375 30,0312
np 128 . a7 | 3 kX) 20625 340312
"k 138 T O 19375 -30.0312
135 | 1 -1 0625 0.0312
pk 119 4 A1 By 18125 26,2812
npk 153 U | 7| a4 25625 525313 |

Hy : Effects of all the main effects are same and interaction effects are nil.

.Table-11.30

ANOVA TABLE.

Source of -

Pt d.f. S.S. M. 5%F
- Replication <3 615.842 ,205.2807 10.2176

N 1 1240312 | 1240312 | 61735 | 4.32

P 1 30.0312 300312 | 1.4948

K 1 30.0312 30.0312 1.4948

NP g, 34.0312 340312 | 1.6939

NK 1 0.0312 0.0312 0.0016

PK 1 26,2812 262812 | 1.3081

NPK 1 52.5313 525313 | 26147.

Error 2 421.9062 20.0908

Total 31 1334.7167 .

Conclusion : The c¢ffect of mtrogcn is scen to be significant and all other
cffects are insignificant.
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3" Factorial Experiments : When factors cach have three levels instcad of
two, the scope of the experiment increascs. It gives more information than
the earlier because it provides the gpportunity to study linear as well as
quadratic effects. But it should be remembered that the treatment
combinations increases rapidly as the number of levels per factor increases.

Here we are considering n factors cach at 3 levels. For simplicity sake, let us
consider n = 2 i. e. 2 factors cach at 3 levels giving a 32 factorial experiment.
Let the two factors be denoted by A and Band 3 levels be coded by 0,.1 and 2.
The treatment'combinations can be written in two different ways namely :

“) ay, az by, a1b1, apby, by, ajbp and asb, and U() 10 20, 01 11,21, 02,12 and 22.

These tmatment combinations can be alloted at randum to, plots in any one of
the designs. The main effects and interaction effects can be expressed in the
method given below :

Considering a single factor A, (aj - ag) indicates the response at the level 0
and that of (az - aj) at the level 1. The sum of these two responses gives the
linear effect (a; - ag) and their difference gives the quadratic cffect
(ag - 2ay +ap). Thus linear and quadratic effects of B can also bé defined. The
interaction effect can be split into components of interactions between lincar
and quadratic effects of the two factors. Denoting the lincar and quadratic
effects of A by A and Agrespectively and similarly for B the four
interaction components each with 1 d.f. can be wntton as, (w1thout the
divisors),

A1By = (a3 - ag) (b2 - by)

ABg = (az-ap) (by - 2b; + by)

AgBy = (ap - 2a; + ag) (b; - by) _

AgBq = (az-2a; +ag) (by - 2b; + by)

Thus it is seen that the main effects and interaction effects can be‘expresecd
_in terms of contrasts which are mutually orthogonal and therefore the -

treatment sum of squares for different components can be obtained from the
sum of squares due to treatments. -

Yates' Algorithm for the 3" Factorial Experiments : The estimates and sum
of squares of different components’of effect in 3" factorial experiment can be
obtained by Yates' Algorithm as follows ;

(1) The treatment combinations arc written in the systematic manner in a
. column.
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(2) The total of the responses are written column wise corrésponding to
cach of treatment combination. The first one third of the next.column
denoted by col-1 consists of the sum ‘of cach of the sets of three values in the
response column. The second one third of Col-1 is obtained by the third
value  minus the first value in the sets of three values. This operation
computes the linear components of the effects. The last one third of the
column is obtained by taking the sum of first-and third values minus twice
the second value in cach sct-of three valucs. This Lomputcs the quadrahc
components. :

(3) The process is to be carricd out n times to give Col-n giving the
cstimates of effects ih 3" factorial experiment without_ considering the
divisors.

. . v Shoi
P A} il

The devisors for sum of squares for different treatment effects are obtained

from 2P3% r where p is the number of factotrs in the effect considered and q is

the number of factors in the experiment minus the number of lincar terms in

this effcct and r is the number of rophcatmns

In this way, the sum of squares of dlffcront cffects are computed, the
rcphcatlon sum of squarcs and error sum of squares can be computed as usual
and the analysis of the 3" factorial experiment can be performed.

Confounding : We usually recommend that the factorial experiments can be
conducted in any one of the basic designs. We have scen that the data in
these experiments are analysed by sphtmg the treatment comp(nents in
main cffects and interaction effects

When the number of factors and /or the number of levels of a factor incrcasos,
it bocomes almost difficult to conduct the experiment with suitable size of
the blocks. In this case, the contrast of the treatment combinations of some
interactions effects usually. of higher order interactions are divided into
some parts and the treatment combinations arc alloted at random to .
scperate blocks giving a replication and tHus the size of the blocks are
reduced to managable number. In such cases, contrasts of the interactions and
contrasts between the block totals give the same function. The contrasts are
therefore mixed up with the block effects and can not be séparated. In other
words, the interactions effects have been confounded with. blocks. This
device of reducing the block size by making one or more interaction contrasts
identical with block contrasts, is known as confounding.

Total and Partial Confounding : When there are two or more feplications, a
question arises whether the same interaction is confounded in cach
replication or different sets of interactions are confounded in different
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replications. Both the procedures are practiced. If the same. Set of

'lnteractlons is confounded in all the replications, confoundmg is called
total. In such confounded factorial experiment, the estimate of interaction
effects confounded, cannot be obtained but all other main cffects and
interaction effects can be estimated with better precision because of reduced
 block size. If again different sets of interactions are confounded in different
replications, confounding is called partial. In such method of confoundmg
the informations of the confounded interaction effects can be recovered from
those rephcatlons in which they are not confounded.

Let us consider an example each from 2“ and 3" series of factonal
-expenments

(i) Let us consider 23 factorial experiment in-whlch the factors are
represented by A, B and C each at 2 levels. One way. of .writing the
treatment combinations are (1), a, b, ab, ¢, ac, bc, abc. When the highest
- order interaction effect, ABC is confounded, the two block contents can be
obtained by choosing even number of letters common with the effect and' the
other by choosing the odd number of Jetters common with the cffect
Therefore the block contents can be written as,

Bl-1 - Bl-2
(D) a
ab b
ac ' ¢
be abc

If we consider the levels by 0 and 1, the treatment combinations can be
written as 000 100, 010, 110, 001, 101,011, 111.

Again conSIderlng the effect ABC to be confounded, two block contents can bc
obtained by solving two equations respectively

=0
; x]+x2+X3 }modZ

.

BI-1 Bl-2

000 - 100

011 010 e | CrE
110 . 001 2

101 111

(ii) Let us consider 3 factorial experiment. Here we- considor three -
factors, A, B, and C each at 3 level, denoted by 0, 1 and 2, the treatment
combinations can be written as 000, 100, 200, 010, 110, 210, 020, 120, 001, 101,
201, 011, 111, 211, 021,121, 002, 102, 202, 012 112, 212, 022, 122, 220, 271,222.
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Let the interaction effect AB,C be confounded with blocks. In thi; case we
get 3 blocks in a replication and these can be obtained by so]vmg three

cquations namely, _
X1+ 2xy + x3 = 0 -
: mod 3

The block contents are as follows :

Block—1 . Block—2 Block—3
000 E 001 002
011- ’ 012 010
022 ° ‘ 020 021
110 5. . 311 12
102 100 o101
121 122 120
201 . 202 . 200
212 o000 211
220 21 ! 222

The block containing 000-is generally called principal block. Once it is
obtained, the sccond block can be obtained by adding 1 mod 3 to the last
clement of the first block contents and the third can be obtained by adding 2
mod 3 to the last element of the first block contents or by adding 1 mod 3 to
‘the last element of the second block contents.

If AB,C is confunded in 3 replications, say, the cffeet AB,C is totally
confounded and the information due to AB,C is completely lost. But if AB;C
is confounded in the first replication. ABC, is confounded in the sccond
replication and AB,C; is confounded in the third replication then neither of
. the effects is totally confounded as the estimate of AB,C can be obtained
from the second and third replications, the estimate of ABC, can be
obtained from the first and third replications and lastly the estimate of
AB,C; can be obtained from the first and second replications. Hence in this |
case, the effects namely AB,C, ABCZ and AB,C; are partially- confour\dcd

Confoundmg more than one effect : With, the increase of the number of
factors, the treatment conbmatlons increase sharply. In that case, 2 blocks in
case of 2r serics and 3 blocks in case of 3" series may not surve our purposc of
getting blocks of suitable size. That is, if we are to reduce the size of the
blocks more than that obtained earlier, we are to confounded more than one
higher-order interaction effects.  ~ - . C y o

For 2" serics, when we are to- get 2% blocks of size 2™ kina replication, 2%- 1
interaction effects are to be confounded of’ which k effects are independent -

300+



Design of Expcrir.nems

and the remaining (2% - k - 1) are generalised effects. For example, in a 23
factorial experiment if we are to get 22 block of size 23 in a replication, 2
interaction effects are to be confounded, say ABC and BCDE, the number of
generalised effect is (22- 2 - 1) i.e. 1 which is ABC x BCDE = AB2C2DE -
ADE. ' :

The block contents can be obtained by solving the following two scts of
cquations simultancously, :

X1+ X2+ x3=0
et} s

X + X3+ Xg + X5= 0

} mod 2

i.e. the block contents of 4 blocks can be obtained from the solutions of the
following equations in terms of treatment combinations :

Xp+ Xy +x3=0 od?2
Xg+ X3+ X4+ X5=0 o
X1+ Xp+x3=0 -
Xp+X3+Xg+X5=1 m ‘
S X1+ X +x3=1

Xp+ X3+ Xg+x5=0 mod 2
X1 +X2+%X3=1
Xo+X3+Xg+X5=1 mod 2

Similar explanation is ‘given in detail for 3" and in general s" factorial
experiment in Das and Giri (1979).

When the number of treatment combinations are large in number, fraction of
the factorial experiment can be taken into consideration and experiments
with blocks of small size can be handled. This type of design is called
fractional factorial design which is beyond the scope of this text. Reference
on this regard-can be made from Das and Giri (1979) and Montgomery (1976).

The sum of squares of all the effects are obtaincd by 'Yates' Algorithm. The -
sum of squares of confounded effects will give us the block sum of squares.
The degree of freedom for block is equal to the number of effects confounded.

- All other components can be obtained as usual. The sum of sqhares due to
those affected interactions will be absent in the analysis of variance table.
In case of analysis of partialy confounded factorial experiment, the sum of
square of the effects which are not affected can be obtained by the usual
Yates' Algorithm. The sum of squares of the affected effects can be obtained
by Yates' Algorithm from the replications where the concerned tffects are
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affected. In such casc, there is another source of variation namely ‘Blocks
within replicates’ whose sum of squares can be obtained from the addition
of sum of squares of affected effects from the correspondmg rcphcat(,s where
they are affected.

Example 11. 14 The plan and yleld per plot (in a smtable umt) of 2" ficld
experiments on wheat are given below : the treatments bclng all
combinations of two levels ‘of drug D (0,1), two levels of potash K(0,1) and
two levels of superphosphate P(0,1). The 'éxperiment was conducted in four
replications each having two blocks. *Détect the effects confounded  in
different replicates and analyse the data. - '

.

Rep—1 Rep—2 :
000 | 111 | 011 { 100| | 101] 000 | 010 | 111
Block-1 | (1) | pkd | kd P pd| (1) | k | pkd | Block-3
2|l x| 22]|s w4 | w0 |
oot | mo | 101 | 110] |10 100 | 011 [ 001 |
Block-2 | d k pd kp | - pk| p .| kd d i Block-4
B s |e ]| o I
Rep—3 Rep—4
» i11 [ 110 | oo1 [ oo0| " {ooo| 110 |01 | 10|
Block-5 |pkd | pk | d | @ M| pk | kd | pd| Block7
a2 ]u|xn]|s AR ERE) -
010 | 101 | 100 fo11| | 100| 1M1 010 | oo | )
Block-6 | k.| pd | p | kd| | p|pkd| k.| .d| Blocks8
Bl |a2]|» plo|»n|xn |

Solution : From the block conteﬁts it is seen that KD is C()nf()‘undcd in
Replicate-1, PD is confounded in Repl:cate—Z PK is confounded in
‘Replicatée-3 and lastly PKD is confounded in Rephcate-4

; 1195
Grand Total‘]195 Correction factor (C. F.) Sl =44625.781.
‘l'hc block totals arc: B; = 18, Bz_ 164, B'; = 1:;9 B4 =146,

Be=164. B = 151, By= 133 and B, = 147.
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TotalSS 46041 C. F = 1415.219,

Block 5. = (13])2+""';1" 2 DT E 4491225 C. . = 286.469.
To obtain the treatment S. S. we prepare the following table :
' Table-11.31 |
(1) 2) 3) 4) ) . (6)
Treatment Total | Total from| Total from | Total from | Total from |’
‘combina- from all | replicates replicates | replicates | replicates
tion replicates | 1, 2and3| 1,2and4. | 1,3,and 4, | 2,3, and 4.
M 163 1% . ¢ 17 15 131
p 167 125 125 119 132
k| w 118 114 107 102
pk 133 109 89 ER 102
d 142 108 110. 109 - 9
pd 172 132 125 132 197
K 118 % ® g | e -
pkd - 153 111 111 122 115

Main effects due to P K and D (unaffectod effects) can be obtained from
column (2) of Table 11.31

[P]=-[1]+ [p] - (k] + [pk] - [d] + [pd-],- [kd] + [pkd] = 55.

[kl =-{1)-p} + [k + [pki - [d] - [pd}+ [kd] + [pkd] = - 93.

[D] =-[11-[p] - [kl - [pk] + [d] + [pd] + [kd] + [pkdl=-25

The interaction effect PK is obtained from column (4) of Table 11 31
{PK] = [1] - [p] - [K] + [pkl + [d] - [pd] - [kd ] + [pkd] = - 26.

The interaction effects PD is obtained from column (a) of Table 11.31
[PD] = [1] - [p] + [K] - [pkl - [d] + [pd] - [kd ] + [pkd] = 62.

The interaction effect KD'is obtained from Column (6) of Table 11.31
IKDI ={1] + [p] - [kl - [pk] - [d] - [pd] + [kd] + |pkd] = 5

_ The interaction effect PKD is obtained from Column (3) of Tablc 11.31
[PKD] =- (1] + [pl + [K] - [pk] + [d] - [pd] - [kd] + [pkd] =

All these cffects are obtained without considering the divisors. .
Now we compute sum of squares due to different main cffeéts and affected .

interaction cffects as usual.

303



An Introduction to The Theory of Statistics

212

. |
SS.ductoP = 132—I= 94.531.

K2
S.S.dueto’K =-[-2L= 270.281.
2

D
SS.ductoD =%= 19.531.

PKJ?
SS.ducto PK = 12—4l= 28.167.
' PDP2
S.S. ductoPD = !—ZZI_L= 160.167.
8 [KDJ2
S.S. due to KD === 66.667.
[PKD)?
_ 24
Ho : There are significant main effects and the interaction effects are nil.

and S.S. due to PKD = =3.375

Table-11.32
ANOVA TABLE

‘Source of

it 55, MS. E. 5%F 1%F
Blocks | 7 | 286469 | 40924 1.431

P 1 94531 | 94331 3306 i
B 1| 270281 | 270281 | 9434 | 8.40
D 1 19531 | 19531 0.683

PK 1| 28167 | 28167 | 00985

KD o1 | eess7 | eese7 | 233

PD 1| 160167 | 160167 | 5602 | 445

PKD* | 1 33755 3375|0118

Error 17 | 486031 | 28590 ‘

Total 31 | 1415219

* From the above table it is seen that the main effect K is highly significant
and the interaction effect PD is significant at 5% level of significance. All
other main-effects are insigﬁificant and other interaction effects are nil.

Analysis of 2" Factorial Experiment in a Single Replication : When the
number of factors is large the treatment combinations become very large. For

»
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example, a 25 has 32 treatment combinations, a 26 has 64 trcatment
combinations and so on. Since resources are usually limited, the number of
replicates that the experimenter can employ may be restricted. Frequently
available resources may only allow a single replicate of the design unless
the experimenter is willing to omit some of the original factors.

With only a single replicate in a 2" factorial experiment.it is imposible to
compute the mean si:luare due to crror. Thus it scems that hypothesis
regarding main effects and interaction effects can not be tested. However,
the usual‘approach to the analysis of a single replicate of the 2 experiment
is to assume that some of the higher order intcractions to be negligible and
the total of their sum of squares will give the estimate of sum of squares due
to error. Thus the analysis can be performed. The degrees of freedom for
error will be equal to the number of effects considered to be negligible.

But the practice of combining higher order interaction sum of squares should
be done after proper varification becaue if some of these interactions are
significant then the estimate of -error will be inflated. Therefore, the
experimenter must use both his knowledge of the phenomena under study
and common sense in the analysis of such a design. A scientific method of
detecting the insignificant effects was given by Daniel (1939). Assuming the
data are normally and independently distributed, the 2" - 1 estimate of 27
design are normally distributed. The method is to arrange the estimates of
the effects in ascendmg order and plot the jth of these ordered values

agamst P;= :,2!;,—1 j= 15 Daeideny 28 = 1;0n nurma] probability paper. The

effects, which are negligible, will tend to fall along a straight line on this
graph, while significant effects will be far from the line. The ncghmb]c
effects can thus be combined to form an estimate of error and the analvsm of
the data can be carned out. -

Asymmetrical Factorial Experiment : When the number of levels of the

factors are not same we get an asymmetrical factorial experiment. For
example, the first factor, F; may have s, levels, second factor F; may have s,

levels and so on the nth factor F, may have s, levels then the experiment of

the type s; X S7 X X s, is called asymmetrical factorial experiment.

Again if m factors each has s; level, n factors each has s, level, and so-on, p
factors each has sy levels then the experiment denoted by 5™ X 537 X ....X siP

is also called asymmetrical factorial experiment.

Symmetrical: factorial experiment is some.what inflexible because here all
the factors have to be at the same number of levels. This may sometimes
contradict the requirements of a practical experimenter. It may even be
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unrealistic in some situations to take all factors under investigation at the
same number of levels. The above drawback c¢an casily be overcome by
adopting asymmetrical factorial experiment which is more flexible to meot
the requirements of the experimenter. - -

Analysis of 3 x 2 Asymmetrical Factorial Experiment : 3 X 2 asymmetrical
factorial experiment is the most sir'npl'cst one, for which the procedure
“of analysis is given below : : o

“Let there be two factors A at 3 levels and B at 2 levels. Denoting the levels
of A by ap, a; and a, and those of B by by and b; the six treatment

_ combinations of ;hc factorial arc ag by, apby, a1by, a1by, azby and asb;. These six
treatment combinations can be accomodated in a block so that a randomised
_block design with r blocks can be constructed casily. The total degrees of

freedom can be partitioned as follows :

Table-11.33

Source of variation eif. ;
" Block' ' =1,
Treatment ] ' 5
A 2
B 1
AB 2
Error - . 5(r -4])
Total : ' ér-1

The sum of squares of different components such as block, treatment and crror
can be obtained exactly in the same way as in the analysis of randomised
block designs. The sum of squares duc to main cffects A and B and their -
interaction AB can be obtained by forming the following (A x B) table with
©six treatment totals, Ty;, i=0,1,2,and j=0, 1 :

Table-11.34

Levels of A
‘ag a;y - ay Total
' Levels of B - . To - Ty - Ty Bo
b, Ty L Ty B,
Total Hap A A | o
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i A2+ A2+ A2 2
* Sum of squares duc to A = LZI-—L_Z—" C.F.where CF. = % .
V4 . 2
an 5 B12

- Sum of squares dueto B= 3 -C.F.

' Sum of squafcs due to AB =Total S.S. due to (A x B) table
- 5.5.ducto A-SSduetoB, ‘

where Total SS. due to (A x B) Table = L) o i

Thus the proccdurc of analysxs of simple asymmctrical factorial dcslgn
with number of treatment combinations those can be accomodated in a block
is shown. For large number of treatment combinations, the procedure of
confounding is also applicable here. Das and Giri (1979) can be referred on
this regard. : '

11.6 Split—[’lol Design w §s e

This is an special type of a symmetrical factorial design in which one factor
requires bigger plots than the others for the convenniences of the
experimenter. For example, if we have two factors namely irrigation and
nitrogen fertiliser, it is convenient to apply irrigation to bigger plots and
nitrogen to smaller plots, may be obtained by spliting the bigger plots into
number equal to the levels of nitrogen tertiliser. Thus a replication is
obtained with different sizes of experimental units for different treatments
in the same experiment. We may have more than one replications and th]s
type of design may be called split-plot design.

For this type of design first a randomised block design with bigger plots is
taken to accomodate the factors which require bigger plots: Next cach of
the biggcr plots is split into as many plots as the numberof treatment coming
from the other factor. The bigger plots are called main-plots and the
trcatments given to these arc m'ain-plut treatments or simply main
trcatments. The constituent parts'of the main plots‘arc called sub-plots and
_the treatments given to them are called sub-plot treatments. It is' to be
remembered that the different types of treatments are alloted at random to
these respective plots. Therefore, split-plot design may be called the
" combination of two or more randomised block designs. ;

The analysis of the design is‘a bit complicated due to presence of two error
components. The first error component is used to calculate  F for main

treatments and second error component is used to Calculate  F tor.cub-plot
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trcatments and interaction effect of rh_ain plot*and sub-plot trcatmefits, thus

giving an efficient test for latter case conducted, for that important

‘treatments are confounded in the sub-plots. Due to the method of )
construction, the main trcatments are usually confounded.

Analysis : Let there be p levels of main treatment A, q levels of sub-plot
trecatment B and there are r rophcahun'% Let g be the obsuvahon for the
jth level of A, kth level of B and in the ith replication.

A= L QnaE  jeEt 2.0n0p yand k= L Qumlg oo

At the first' step we preparc a two-way tablc_ like Main-trcatment x
chhcatmn - '

from which the totals, y;.=EZyy ; Yj =2k Vi =E)’ill'<
jk ik "

and G = Grand total of all the observations can be obtained.

(_,:2

- Now we calculate, Total SS. “FFy? ik - C.F. where C F.= ﬁ
. i ,
S yi. , Ty
Replications S. S. = ;-*'1— - CF. 5SS ducto A :?_‘YLT €. F
‘ s )..rq
5y vlz E :
Error (1)S.5. = j qu- C. F. - Replications 5. 5.~ S. S. due to A.

In the next step, we again prepare a two-way table like
Main-treatment x Sub-plot treatment.

The totals y g = Z}Zv”k and y.y= Zv,,k cte. can be obtained.
i . il :

- k2
Now we calculate, S.S. ducto B =5Lr— { Gk F.

S.S. dULtoAB--ET—J- C.F.-5. SduotoA S.S. due to B.

Error (2) S.S. can be obtaiﬁcd as usual by subtracti'on.
The analwqh of variance table can be furnnhcd as given in Tablo-]] 35.

In thl‘- case we test the hvpulhuﬂk of cquality of effects in sub-plot
treatment and interaction offect to be il :
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Table-11.35
ANOVA TABLE
Source of variation _ dif: .+ Sumof squarcs
Al & t - e ————
cplication r e
Mai 1 Yv.2 @
ain trecatment s Sy
Main trcatmen pel, e -
Zv Z LD F.V ;. 2 GZ
Error (1) . (r-Dp-1 | Ty B L
liiq qP q ™Pq
Subitaidt irstment 1 2yl & -
Sub-plot treatmen q-1 pr .
: i ph ) v P Vy.j.z Ty.42 i
Interaction (AB) (p-Ig-1) ik e qpr + =
- Error (2) ' p(q-1)r-1) | By subtraction
-
‘ £y ]k X G
Total - pqr-1 1 Pq

Extension of the split - plot design : Split - plot design.can be extended

- further by again spliting the sub-plots called second order sub-plots to assign
at random to a further set of treatments. This type ot design is _c.sll-:d_ ~pht-
split-plot design. The analysis can be carried out in the same line.as betore!
with additional estimation of error compo’no_nt, called error (3) for the
second - order sub-plots. This error (3) mean square is used for testing the
cffect of the second order sub-plot treatments and interactions with all
other factors. The last mentioned effects would be estimated with the
gl“LatLSt precision-as a result of the most efficient local control.”

Example 11.15'In a varietal cum-manurial experiment on Soybeen, four
levels of nitrogen 0, 0.1, 0.3 and 0.5 (kg) per plot, designated as ng, r’];, ny and
nj respectively were applied to each of three varicties Vq, Vo, Vj, The
different levels of the manure for cach variety were applied by spliting the
plot into four sub-plots. The viclds (in Ibs) are given below in a systemetic
pattern. Analyse the data.
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Yield of the Splii-plol experiment

Rep-I Rep-11 ‘Rep-111 Rep-1V
™ m ) ny g om oo
104 105 117 7129 123 123 105135
Vi : v, Vi Y
™ om ™ m m.oom mm
112 146 133 139 . 151 164 129 143
Lon o N oo Ty om
R VA (1) 1 123 17 109 124 129
Va Y . Va . Vs, '
% <. .7 m.oom M om moom
125 161 134 14 159 157 133 139
AL . Ny M - m Ty Oy
116 19 19 132 102 16 - 135 143
E VJ . V3 V_'; V3 o : .
m B m Mmoo Mmoo Mmoo om
121159 148 149 167 161 142 138,
Solution : We know, C. F = 838729.69
| Total SS. = 851631 - 838729.69 = 15901 31, 5
' Table-11.36 _
Main-Plot x Replication Table
Rep | Rep 11 Rep | .RepIV | Total
v, 167 338 P 513 2080
Vs -,()7‘ ' 509 542 . 525 2083
Vs 515 543 546 - 578 2182
Total 1489 1590 1649 1617 6345
; 14892 + ... + 16172 o : ;
S.S. due to Rep. = ———2 - C.F.=83992592-C.F. ='119%.23
- 08024, +2182 ‘
S.S. due to Main-Plot treatment (varicty) = T = GF.
= 839130.81 - C. F. = 421.12. A
4672 #..... +5782 .
Tntal S.S. from Rvp X Main-plot Table = 1 - C.F,
= 84106075 - C. F. = 2331 6. ' '
“(Rep. \'Mdin-plnl\ InLSSAED = 233106 - 421,12 - 1196.23 = 7137}
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Table-11.37
Main-Plot X Sub-plot treatment Table
V; TV, Vs, Total
no 449 464 427 1385
m 494 470 510 1474
™ 545 551 573 1669
m 592 598 627 1817
Total 2080 ‘ 2083 2182 6345
Total S. S. from Main-plot x sub-plot treatment Table ‘
:M- C.F.=848717.25-C.F. = 9987.36

13852 +...... + 18172
S

S.S. d'ue to sub-plot treatment = m

, =848162.58 - C. F. = 9432.89
Main-plot x Sub-plot treatment Int. S.S. = 9987.56 - 421.12 - 9432.89 = 133.55
Error (Ep) S.S. = 15901.31 - 1196.23 - 421.12 - 713.71 - 9432.89 - 133.55 = 4003.83

Hy: (i) Effects of all the four levels of nitrogen are equal.

(ii) There is no interaction effect between main-plot-and sub-plot’

treatment.
Table-11.38
ANOVA TABLE

Source of ; : 1 - .
variation d.f. S.S. - MS. - F 5%F |1%F
Replication (R) 1196.23

Main-plot treat. (V) 42112

Int. (V xR) E4 71371 s

N ow oo w

Sub-plot (N) 943289 |3144293 | 212 | — |460
Int. (NV) 13355 | 22258 | 015 | 246 | —
Error (E,) 4003.83 | 148289

Total “47 15901.33

Since the calculated value of F with 3 and 27 d.f. corfesponding to sub-plot

treatment i.e. nitrogen is highly significant and therefore the hypothesis

(i) may be rejected. But the calculated value of F corresponding to

interaction between main-plot and sub-plot treatment is insigniticant and
* hence the hypothesis (ii) may be accepted.
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117 Strip-Plot Design
There are situations when both the factors require large plots with one sot of
plots superposed over the other sets at right angles, we get a strip-élot
design. _bet.qs consider an example having two factors l‘ikcgpacing and
ploughing where the use of small plots by spliting bigger iplots is not
convenient. A block may be divided into strip in one direction to allocate one -
sct of treatments called first factor, say, different spacing and into another
sct of strips ina direction at right angle to the first, to be alloted to the
:f-ccuna set of treatments called second factor, say, ploughing. Any of the sct
of strips may further be divided into narrower strips for accomoda;ting anew
sct of treatments called third factor. The allotment of the treatments to the
strips are done at random at cach stage. When we consider threg factor, we
get strip-strip-plot design.
-

Analysis : Like split-plot design we have to estimate error variance
corresponding to cach plot size in strip-plot design. In the above example,
let three different plot sizes are involved ; different types of: spacing’
constitute treatments, those have been alloted to plots of one size viz, the
" column strips, the ploughing trecatments have been assigned to plots
§ec_ond size namcly, the ‘row strips and lastly the co_mp:ilrisuns of th:
different ‘combinations of the two treatments or the interaction coripa: sorn
have to be made from plots of third size formed by the interactio” o the
two sets of strips.

For the purpose of analysis of data in the above strip-plot expcrinen: w
have to prepare three two-way tables - namely : ‘

replication x first factor ; replication x second factor and first fa tor X -ocon
factor. ° : no ke . T

Let v be the observation for the jth level of first factor, kth level of ~econd
factor in the ith replication. il :

i = Tl ) T e - T - T Y

From the first two-way table replication x first factor; we get the following -
totals, ‘ : Y
yi.. = ZZyiik S Y= bIb3, 0 s yii ;zyu’k.
jk ik PS5 s
- § - s

- .

3 Gz )
Fhe correction factor (C.F) = P where G is grand total of all the
sservations 1.0, G =Xy = Xy
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: "2
S S. due to first factor = ’2% CF

- C.F

Interaction effect between first factor and replication is considered as
Error (1).
ZZ

Thus Error (1)55 = q el @ F SS due to Flrst factor - Rephcanon 5.5

Iyl EL Ex__
i) g 1M : ;
Next, from second two-way table of Rephcatlon X Second factor we get the
following totals. : !
Y-x= ZZY!)kand Yik= Zde .
i j .

Zyi--z
Replicat 8.S. =
eplica ions q

o s

S.S. due to second factor = ZX— C F.

Interaction effect between second factor and replications is consndercd to be
Error2). y

Z_ v s s 5 T
pARY o CES. 8. due to the second factor

Neplication S.S. = ZE M_ z'-y—-- ZY— +C. L
: P P i pq
From the third two-way table of Flrst factor x Second factor, we get

the following new total y.j = Zyiji .
: i

Error (2) 5 S,

% .
" The interaction effect between Frrst factor and Second factor can be
computed as follows : i

Intcractmn of Flrsthecond factor S. S ] ké——-c F.-S.S. due to Flrst Ko

2 i
factor—S S.dueto Second factor =ZE'L—— ZLL- E& C.F. ‘
lk r ) P

Total S.5. =Y3% Yajk2 C.F.
ijk ,
Error (3) is obtained by usual subtraction.

The an.\]vuw of variance table can be furnished as given in Table-11.39 for
testing hypothesis regarding the equality of effect of levels of Flrc-t factor
and Second tactor and the interaction effects'to be nil. '
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Table-11.39
ANOVA TABLE
Source of variation df Sum of squares
g 3yt G
Replication (r-1 : R
Replicatio r-1) i Tpq TPq
) : : sz.i.z G
First factor (p-1 i —rq £=
o > S ETTEL
Error (1) . -Dp-1 =i &¥ic Vi, —
rror (1) (f' )(p J. iiq P rq ' rop
. I5y.l @
" Second fact q-1 =y
T : kTR
" Error (@ Tty | R Byl Tyal O
e AT ikep i pg Tk g
Interaction First | - ’ Iyl Zx,l-.z Zx.kz 2
X Second factor (p-Mig-D jkor rq  pr +E
Error (3) (r-D(p-INg-1) By'subtraction
: : p
. e
Total - rpq-1 i):%y"k Pq

Hints of extension of strip-plot design is given carlier and the procedure of
analysis can be carried out in the same line as before with the additional

estimation of error (4) component and interaction with all other factors.

Example 11.16 With a view to formulate optimum spacing schedule for Rabi
Crop of different duration, ap experiment was conducted in strip-plot design

at a certain research station dunng the year.1981,

The trcatmcnts were :
Spacmg @ .
$;=10Cmx10Cm
S,=10Cmx5Cm
S3=53Cmx5Cm

Sy

=10 Cm.-.q"h'd TOWS.

Varieties (5)
V;=PR 202
=V,M-2
=CR-652
. Vy4=VR/Fa-1
Vs =AKP-2.
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& and the yield in kg/plot is given below

Rep—1 - Rep—2
S S S4° S ‘ S S S 81
420 180 332 294 V, 1507 245 270 345
375 329 138 329 V, 390 284 377 - 284
Coo1M 348 3100 424 " Vs 3205350 1797 345
V.o 175 482 467 414 V, 345 180 . 320 3.00

% %l . 334 - 395 -154¢ “Vy 220 383 259 195

Sq 177 5 S3
V, 305 425 2539 149
V, 330 281 270 350
Vs 189 329, 327 330
v, 345 109 329 305
V, 284 240 - 118 250

Solution : Here, C. F. =530.6211 and Total 5. S. = 578.027 5 - CF.= 47.4()(%*

Table-11.40°
Variety x Replication Table
Variety Rep—+1 Rep—2 : ) Rep—3 Total
v, 1788 . 133 892 39.65
Vv, 12:26 1.45 ‘ 11.38 35.09
Vy 197 © . 1057 10.88 33.42
Vs - 1248 . 1010 1234 7| -34.87
Vs 11.71 1194 11754 35.40
Total | 65.75 . 5741 55.27 .. 178.43
.
Total S 5. (V.ariu'ty x Rep. Table) = LI +4 M .] ]_'752_ - C.k
= 5426722 - 3316211 = 12.0511. 7
S.S. due to»Va'.rict_v = G-k l“ ok SCIF=5324303-C.F 01 \
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~ $.S. due tv Replication =
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~

65.75% .4 55,272

20

- C.F.=533.6872 - C. F.=3.0661.

" (Var x Rep) lnteractlon S S =12.0511 - 1.8292 - 3 0661 = 7.1558 (E;).

Table-11.41
; Spafcing x Replication Table
Spacing |. Rep1. -~ '.-Rep—2 ' Rep—3 | Total
s, | 167 14.43 13.87 45.02
55 16.44 1469 | 1384 44.97
S 16.16 s 13.03 43.44
s, - | 164 14.05 14.33. 45.00
Total 6575 57.41 5527 | 17843

Total 5.8. (Spacmg X Rep Table) <

- 533.9900 - C. F. = 3.3690.

S.S. due to Spacing =

16.732 +,....+ 14.532

45022 +..... + 45.002

(Spacing x Rep) Interaction S. S. =.3.3690 - 3.0661 - 0.1212 =

-CFE

- C.F.=530.7423 - C.F. = 0.1212.

0.1817 =(Ep).

(Varox 9p1 ) Inh‘rachon 9.5 =M 3977 -0:.1212-1. 8797 = H 947'1
ErrorS.S. (Ep). -

SV RET

114091

47 -3()69 1.8292 - 'H)66I

"l’l 10564

7A538-0.1212
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; ' Table-11.42
Variety x Spacing Table

Naricty % & g L. Total

Ly 1006 | 909 9.22 11.28 39.65

Vs 785 . 869 898 957 35.09

Vs 8.40 Ce1s | 9m |\oom | ma2

Ny 863 1055 574 11 995 187

Ve 10.08 ]0:_50 976 \ 5.06 35.40
Towal | 4502 |- a7 s34 | aso0 | i7say

¥ Total 5.S. (Var X Spa Table) = L +_{ """ 506 £ | |




Design of Expcn’mcn‘ls

Hp: The effect of all the spacing are cqual.

Tabl’e-li.43 '

ANOVA TABLE \
e af. | ss. | ms. | F | s%F
‘Replication 2 3.066'1 1.5331

Variety | 4 1.8282. 0.4573 .

Rep. x Var. ‘(EI) 8 ‘ 7.1558 0.8945
Spacing 3 01212 00404 13 | a7
Rep. x Spa. () 6 | 01817 | 00303
Var. x Spa. 12 | 149473 | 12456
E;rér (Ey) ! 201056 | 0.8377 . )
Total 59- | 47.4059

Since the calculated value of F corresponding to spacing with 3 and'6 d.f.is
smaller than the tabulated value of F with same d.f. at 5% level of
signiﬁcan&:_e, the célculatéd value of F is insignificant and the hypothesis
may be accepted. ' ;

11.8 Nested or Heirarchial Design

In multifactorial éxpeﬁmentS'there'may be situation like that the number
of levels of one faetor-are same to the other factor but the level may not be
indentical to the other. Such an arrangement with two and more-factors
gives us nested or heirarchial design.

Let us consider an example that an industry purchases raw material from
three different suppliers. The industry wishes to determine whether the
genuinity of the raw material is the same from cach supplicr. There are four
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hatches of raw material available from cach suppllier and three
observations are considered in each batch.

The physical condition of the design is given below :

Supplicr 1 2 3

Batches 1 2. 3 4 1 2«3 4.1 2 3 4
Yinn Y2z Y31 Yo Yaun Y21 Yz Yz Yan Y Yam Y3ar

Yiz Y122 Y32 Y2 Y212 Y222 Y22 Ya Yan2 Ya2 Yan Y2

)'m Y123 Y133 Y43 Y213 Y223 Y73 Yu Y313°Y323 )’m Y343

This is a twn~<tage nested design with batches nested within supphers It
shou]d be remembered that batch 1 or 2 etc. is not crossed with other factors
1. e. batch 1 of suppliers 1 etc. is not same of batch 1of supplier 2 and so on.
Thcrefore‘the batches may be renumbered as 1, 2, 3, 4, for supplier 1; 5, 6, 7
and 8 for supplier 2 ; 9, 10, 11 and 12 for supplier 3, This isa_ balanccd nested
design, since there are an equal number of levels of one factor with in cach
level of the other factor and equal number of replicates. Since every level of
- one factor does not appear with every level of the other factors there can be
no interaction between the two factors.

Analysis : Let yj be the kth observation corresponding to the jth level of
one factor B-within ith level of the other factor A,

1= 2000 Pri=l Zqgand k=T, 2.
We calculate y;.. VZy,}k vu = Yyjkand y.. _Zy, —Z):,Ey,}k
ik k i- ijk
y.2
T()tal 5.S. -z):zy”k =

B8 s to L .2’
qr.  par
: ' 2 )
>3 ¥ii. Vi..
S.S.duc to B within A = LL-Z‘——
I qr
S. dueto error can be obtained by usual subtraction and gives results

7 —~ al
= L13yii - Xy,
1 |]\ L'

.
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‘The analysis of variance table for the two-stage nested design for testing
the null hypothesis, Hp : The effects of all the levels of first factor arc
same, is given in Table-11.44. ' '

Table-11.44
ANOVA TABLE
Source of -
variation d.f. Sum of square
‘ Z&i y.2
: o i qr par
— STyg? Tyi.2
awia el | AT
Error pq(r-1) " By subtractions
=¥¥¥va’ Xyt
ijk Wi r
Total ! qu-] F‘]Eyi]k & par

The conclusion can be drawn as usual.

Example 11.17 A company which buys raw material in batches from three
different suppliers. We wish to determine that all the suppliers provide
material of same purity. Four batches ot row matcrial are selected at
random from each supplicr and the determination of purity is made on cach
batch. The data in a two-stage nested design are given below. Analyse the
data.

Supplicr 1 . . 2 7 3

Batches | 1 2 3. 4| 1 2 3 4 1 8 "8 .4
94 91 91 94 | 94 9B 92 9B | %5 9 U %
® % 93 97 | 9 97 93 9% | 9 93 9 %
T R R B
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Solution : Correction Factor (C. F.) =—9§-65-?—)i = 3 341336

Total S. $. = 313559 - 313413.36 = 145.64.

Batch totals within supplicr

Supp]i.m_' (A). - 2 » 3
* Batch 1 -2 3 -4 " = hs2 3.4 K., 2708, @
Total 279270 278 284 .275 285 276 284 285 277 281 285

Total o 1120 s
| s.s.duemA'=”“2”502”!282 - C.F.=313425.42-C.F. = 1206,

9792 4 ...+ 2852 '

AS. S. due to B (within A) = -313425.42

=313501.00 - 313425.42 = 75.58
5.5, duc to Error = 145.64 - 12.06 - 75,58 = 58
Hp : All suppliers provide material of §am0 purity.

" Table-11.45
" ANOVA TABLE

e ol Y LR 5.5. M.S. - F oo | 5%EF"
Ao |2 ] 1206 603 25 3.40
BA) | 9 7558 .| 840 :
Error 24 58.00 - . * 2.42
. Total " 35 .

The calculated value of F with (2,24) d.f. is 2.5 which is smaller than the
tabulated value of F with.same d.f. at 5% level of signiticanc Hence the
calculated value of F is insignificant and ‘the hypothesis may = ‘\1cn»pu‘dﬁ_
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12. INDEX NUMBER

*12.1 Introduction

[
Index numbers are statistical devices designed to measure the rcla'ti\"c
change in the level of a phenomenon (variable or a group of variables) with
respect to time, geographical location or other characteristics, such as
income, production, expenditure, export, import, ctc. In other words, index
numbers are the numbers which indicate the value of a variable at any
given date called the ‘current period' as percentage of the value of that
variable at some standard date called the ‘basc period’. The variable may
be: ’

i) the prices of a particular set or commoditie%

ii)  the volume of trade, oxports and lmportq agricultural or tndmtrlal
pmductlons

iii) the national income of a country or cost of living of persons bol(ms,ms; to
 aparticular income 5ruup or pmfcsql()n

122 Problem of Construction of Index Numbers

The constru;:tion of'index number involves the following problems :
a)  The purpose of index number. '
b)  Selection of commodities.

¢)  Selection of base.

d)  Type of average to be used.

c; Selection ';)f appropriate weight.

a) The Purpose of Index Number : If it is desired to construct an index of
cons"rner's pricesywe must know the class of consumers whose cost of living,
we intend ) measure and whether it is the cost of living of the middle class
people, agriculturists or industrial workers. Such definiteness is necessary
for the importance Ot";"arious items consumed by the different categories of -
people may be very mucr different. It is always advisable as well as
desirable to pru‘cisc}y know wha! we are going to measure as well as what
. pnrposv the measure is meant for.
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b)  Selection of Commodities : |f the purpose of an index 1s to measure the
cost of living of poor familics we should select those commodities or items
which are consumed by persons belonging to this group and due care should
be taken not to include the goods which are not ordman]y consumed by the
individuals of the selected famfilics.

c)  Selction of Base : The period with which the level of phenomena are

" madc is termed as base period and the index for this period is always taken
as 100, There are two types of base namely i) Fixed base and ii) Chain
basc. '

i) Fixed Base : In fixed base method, the base period should be normal
i. e. a period free from all sorts of abnormalitics, such as economic
depression, labour strikes, war, floods, carth-quake, ctc.

The base period should not be too distant from the current period. Since
index numbers arc essential tools in business, planning and in formulation of
executive decisions and hence the base-pcrind should not be too far back
relative to current period. But the base period should be entirely different
- from the current period. Again the pattern of consumption of commoditics
may change appreciably if the base poriud' is very far away from the
current period. :

ii) Chain Base :'In the chain base method, the whblc series of index
number is not derived to any one base period, but the indices for different
vears are derived by relating cach year's value to that of the imrﬁudiatoly
preceeding year, the indices so obtained are called link relative index
numbers. Frcquuntlv these link relatives are cham together to .a common
base. Such indices are known as chain indices. The chain base method
provides for the inclusion of new items and ddctlon of old onces in order to
.make the index more representative.

d) Type of Average to be Used : Since index numbers are specialised
averages, a judicious choice of average to be used in their construction is of
great importance. Usually the averages namely i) Arithmetic mean, ii)
Geometric mean and iii) Median are used. ' '

Median, thm‘lgh casicst to calculate of all the three, completely ignores the

" oxtreme observations while arithmetic mean, though casy +o calculate, is
unduly affected by extreme observations. Morcover, neither arithmetic
mean nor median are reversible. Geometric mum z-,l\'l"' equal weights to
cqual ratios of change.
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It does not give undue weightage to extreme observations. Geometric moas
based indices are reversible. Hence geometric mean is the most appropriate
average to be used.

e) Selection of Appropnale Weights : Genearally, for the construction of
cost of living indices, various commodities such as wheat, rice, fucl,
clothing etc. included in the index are not of equal importance, proper
weights should therefore be attached to them to take into account for their
relative importance.

123 Calculation of Index Numbers
Some simple but useful ways of calculating index numbers are given below
A) ' Simple Aggregale Method : This method consists in ex prcskmg
aggregate of prices in any year as a percentage of their aggregate in the base

year. This price (or quantity) index for the ith year (i = 1, 2, M) @S
compared to the base year (i = 0) is given by

where, P,; = Price index of the ith (i =1, 2 n) year with respect-to base
year, ’
P;; = Price of the ith year of the jth (j =1, 2,......., 1) commodity,

and P = Price of the base year of the jth commodity.
r

- ql)
=1
And, Q,; = ’r—— X400 T . e T T sl (12.2)
T
=1
where, Q,; = Quantity index of the ith year with respett to the basce year,
= Quantity of the jth commodity in the ith year,
Qo = Quantity of the jth commodity in the basc ycar.
* Defects of this method are :

i) The prices of the various commeditics may be in different.units, ¢. g.
per litre, per metre, per quintal ete. ‘

i) The relative importance of various commodities are neglected.

1
’7)
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Example 12.1° Construct index number of prices of 1990 taking 1985 as the
basé trom the following data using simple aggregate method.

Commodity - Price in 1985 in Taka Price in 1990 in Taka
Rice S| w05 perkg 155 perkg.
W};oat ' 5.5 perkg. ' '6.'5_ pcr.kg..
Cloth 53 pér metre. 7.0, permetre
Sugar 2()..5. per kg. 275 perkg.
Milk 8.0  perkg. 145 per l\g

Solution :

-Commodity . Price in 1985 Price in 1990
in Taka. in- Taka
P, P,

* Rice 10.5 15.5°
Wheat 35 6.5
Cloth H] 7.0
Sugar . 3015 275
Milk : 80 145
Tatal IR 710

I hierefore, price index number of 1990 using 1985 as bascis
. T P - . *

Y i o b 2

M —-‘z‘m X 100 = 55 X mn[ 1420

B) Weighted Aggregate Method : This method provides for the different .
commoditics to oxert their influence in the index number by assigning
appmpﬁato weights to cach. Usually the quantity consumed, sold or
marketed in the base vear arce | used as weights, If wiis the weight associated
with the ]th commodity then the wmghtod aggrcgatc pncc index is given
by,

where, P, i and P are as U\prou-ud in(12.1)
Bv the use of different types of weights, a number of turmulao have emerged
tor the construction of 1ndcx number, i :

-
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12.3.1 ‘Lasﬁeyre‘s Price Index : If we take Wj = qujin (12.3) i.e. if the base
vear quantities used as weights, the method is called Laspeyre's method
and the formula is,

r

2 Pr) s

P, (La) = X100 _ L I (12.4)

,Z Poj Qi
j=1
where, the notations are expressed earlier.

12.3.2 . Paasche's Price Index : By taking current year quantities as weights,

ie. w, qgij in (12.3) the method is known as Paasche's muhnd and the
-formula is,
r

| L Pyg; AN i

P (Pa) = E—xwo - " (12.5)

-

2 P°] i
, =
1233 Drobish -Bowley Price Index : This method is the arithmetic mean
of the Laspeyre's and Paasche’s price indices and is'given by,

Ipiq,;  IP ] PR, & .
DBy = =i ZPiqy | L W s T § (12,6)
” ( ) 2 [ m’]q’l ﬂ’()} qll X . 4

12.3.4 Marshall -Edgeworth Price Index : If wj = (q“l +q;) in (12.3) i i if

weights are the arithmetic mean of the base year quantities and the current
year quantities, the method s known as Marshall-Edgeworth method and
the formula is given by,

Z ii(CIuj + Gij)
2Poj (Qo) + 9ij) .

123 5 Walsch Price Index : If the weights are the geometric mean of the

Base year quantities and the current year quantitics, the method is known as
Walsch method and- the tormula is given by

or, Py; (ME> X100 (12.7)
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Py, (Wa) = =—‘l—3ﬂ" X100
2PV 949
12.3.6 Irving Fisher's Ideal Price Index: The geometric mean of Laspeyre's
and Paasche's formula is known as Fisher's ideal price index and is given,
1 ,

PP = [Py (L) x Po(P]’

5P >
[—]—-Iﬂ-L Z—')L‘l'- % x 100
Tots * Fei i

12.3.7 Kellys Price Index : If in (12.3) the weights wjare not the quanmwa
which refer to some period  (not necessarily the bako Jyear or current year)
and are kept constant for all periods, the:method is known as Kelly's
mcthod.

Note: 1) Quantity Index Number: In thx_ above formula (12.4) to (12.9)
" we concentrated ourselves on price index numbers. By interchanging the
prices () and quiantities (g;) in the above formulae, we get corresponding
formulac for the calculation of ‘quantity index numbers, which reflect the -
change in the volume of quantity or production.

2)  Value Index.Number : Valuc index numbers are given by the aggregate
expenditure for any given year expressed as a percentage of the same in the
_ZPigi

.......... (12.10)
B2 [

where Vi is the value index and the other notations are as usual.

basc year. Thus V., 100

Example 12.2 Construct index number of prices from the following data by .
b) Paasche’s method

using: a) Laspeyre's method .
¢) Marshall-Edgeworth’s method  d) Fisher's method
1985 1(,;90
Commodity Price " Quantity ‘Price Quantit:s'
(.Taka) ’ 7 (Taka)
Rice 105 8 155 4
Wheat 55 2 6.5 3
Cloth 55 5 70 7
Sugark 20.5 1 27.5. - 2
Milk RO | 145 | 2
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Solution :

W
wm

L Pjq+ X Piqy
=1

=1 " 5
36.5 + 214.:
= = x 100, e————] = 3x]00

5 3 0% = - 154
= P«f,q(.j+"21 Py

¢ 1985 1990
Comodity |Price | Quan.| Price | Quan| Pg, | P | Pigo Piq
Po Gy l)'l Q1
Rice 105). 3 155 | o4 1.5 42.0 465 | 620
Wheat 55 2 6.5 3 11.0 16.5 13.0 | 195
Cloth 5.5 5 7.0 7 275 :] 383 35.0 | 49.0
Sugar 205 1 275 2 2005 | 410 275 | 550
‘Milk 80| 1 14.5 2 8.0 16.0 145 | 290
Total _ 985 |1540| 1365 |2145
Index number for 1990 with base 1985 by using :
- 5
Y Poas
- fa % 136.5 k
‘@) Laspeyre's method, 'y~ =3 x 100 T 100 =138.58
Z o
j=1
~5
L Pyjq; p
R , ] =1 ; 2] 4.5 ) _;9 ,)9
(b) Paasche's method, P, = —'—E-Pujqii x100 = 51 x 100 = 139.2
5
Z Pii (q()j+qij)
. ” . s 1
(c) Marshall-Edgeworth’'s method, P0i=] 5 % }0()
L Pojlqg+ ai)
=1
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I
%]
91
-

5}

T X 100 =139.01

oY)

. 5 . 5 ;
s Pijdoj s Pij qij
(d)  Fisher's method, P = 121 X ]21 X 100
X oﬂol ‘ Z] Poaij
j=1 )=

2 5 100 =138.93

12.4 Simple Average of Price Relative Method

As the name implics, this method consists of finding price relatives and

averaging them expressed in percentage. A price felative is the ratio ot

price of the commodity in the current year divided by the price of the same

o ‘ Py

commodity in the base year. Symbolically price relative isl—,u-.
: b

The next step is to average this price relatives of cach current year and then

express in percentage to obtain the index number.

For the purpose of the averages any one measure of central location, such as
mean, median, geometric mean may be used. Therefore, the simple average

s

of price relative index number is

Py (A. M) = ——— x 100 - et 2.1

When arithmetic mean is taken, N is the number of commodities and

.

D,

e ‘

Pi) i

PiG.M)=| T =" x100 (12.12)
\i=1 9

When geometric mean is taken, N is the number of commoditics.

12.4.1 Weighted Average of Price Relatives : For the obvious short coming
of the simple average of relatives is that cach relative irrespective of the
importance of the commodity it presents, influence the index number tor a
given year. If w; is the weight given to jth commodity, then the general
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formulae of index numbers obtained on taking the wcightéd average of price
relatives become : '

r .
P..
. l] .
- ”’(n- ‘

a 3 .
PyAM)sl——xw00 ~ (12.13)

g P\ wi| s
P (G.M)=| N (F‘L)' P ;
21 X100 . o L U e (12.14)

If the base year values are taken as welghts i.e., wi=Pyqop
we get from (12.13)
P(,i(A.,M)_i—ﬂ-'- ............ (12.15)

which is nothing but Laspeyre's formula as obtained in (12.4)

If we take the values obtained by multiplying the current year quantities
and the base year prices as weight i.e. we take wj = Pq;;, we get from (12.13)

3P,
Poi (AM.) = == x 100
o

which is Paasche's formula as obtained in (12.5).
Example 12.3 The price of four different commoditics for 1986 and 1990 are
given below. Calculate the index number for 1990 with 1986 as base using (i)

the simple average of price relative method (ii) the weight average of
price relative method.

Commodity Weight Prices in Taka
1986 1990
Rice 3 11.0 pér kg. 135 perkg. 1
Wheat ' 3 50 perks. 6.5 perkg.
Cloth 4 5.5 per metre 7.0 permetre
Sugar 1 225  porky. - 275 perkg.
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Solution : - ; : :
Commodity | Weight | Base ycar - | Current ycar Price
w Price (1986) | Price (1990) Relative
’ Py P
Fo Py Po - YPo
Rice. 3 110 155 | 1409 | 4227
" Wheat 3 50 6.5 1300 | 3.900
Cloth 4 35 7.0 1.273 5.092
Sugar 1 225" 27.5 1.222 1.222
11 : 3 5204 | 14.441

i) Simplehavcrage of price relative index is given by,

7
Py = N x 100 =

).
i( 4X 100=130.1 -

‘ii) . Weighted average of price relative index is given by,

7, O . . g ¥ e .
: Py -
'z "’w 14.441 ;
Ry =4 = 100 = 131,28
z \'V
]—1

12.5 . Tests of Index Numbers,

The following are the tests commonly used for the test of index numbers.
A)  Time Revershl Test. .

B)  Factor Reversal Test. ] i

C) Circular Toest.

-

A) Tlme Reversal Test : The test is that the index numbors of curront year

to the basc year should be the reciprocal of the index number of base year to
the.current year. Symbnhcally, :

g g
0i =
io

or, P P =1
For example, if we takc the Laspovrcs formula

P P,
Pl )"T,E'J Also we get, Iy, (L,) = ;,—,ﬁl"
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Pigo ZPogi

ooy ZP,,q.,

Hence Laspeyre's formula does not satisfy time reversal test. Similarly it
can be shown that Paasche's formula does not satisfy this test. For Fisher's
Ideal Formula, '

1
P, (F) = Py ‘] and P,, (P = |2] " ] 2
uﬂq Zpoiq:] Pijqij° 'Iq"]

= Poi (F). Pm F)=1.

Poi-(La) Pio (La)

Hence Fisher's ideal index satifies time reversal test. ]t can be easily shown

that simple aggregate index and Marshall- Edgcworth index (with out the
factor 100) also satisfy this test.

" B) _ Factor Reversal Test : The factor reversal test requires that the

: product of a price index and the corresponding quantity index should be

equal to value index, the indices being cxprcsscd in ratio: Symbohcallv

2vi  XPygy
Poi - Qui = Xv )I’;q;

For example,

. P B P &
Py; [ Pi l] dO. (F) = E‘.L_)‘ﬂ.ﬁ‘.l_‘l. 2
R mﬂa quqnl and Qo B = | $0,y " Tyl

. SPiq;

Pg,,-.(F) Qoi (F)= -ﬁfgj (on simp‘lification) a
Hence Fisher's ideal index satisfies factor reversal test and none of other
formulae satisfies the factor reversal test.

Remarks

(1) In varification of these tests various formulae are taken without the
factor 100.

(2) Since Fisher's index satisfies both time reversal test and factor
reversal tests, it is termed as ideal index number. '

©)  Circular Test : This test is based on the Shift-ability of the base and is
an extention of the time reversal test. The test is that

p(npllp =1, i;tj#O.
or, Puyp:Py.Po=1azbzc

This test is satisfied only by the indices based on *
i) - Simple geometric mean of price relative.
ii) Kelly's fixed weight method.
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12.6 Cost of Living Index or Consumer's Price Index

Cost of living index numbers are constructed to study the effects of changes in
the prices of a basket of goc»ds and servites on the purchasing power pf a
particular class of people during current period as compared with some base
period. Change in the cost of living of an’individual between two periods
means the change in his money income which will be necessary for him to
maintain the same standard of, living in both periods. The consumption
habits of people differ widely from class to class and even within the same
class from region to region, the changes in the level of prices affect different
classes differently and consequently the gencral price index number usually
fail to reflect the effects of changes in the general prices level on the cost-of
living of different classes of people. Cost of living index numbers ar
therefore, compiled to get a measure of the gcn.cral price movement of the
_ commoditics consumed by different classes of people.

For changc in the cost of living may also arise from reasons other than price
change and the cost of living does not measure such kind of change. From
this point of view the cost of living index number should be called

“Consumer’s price index number.” ‘
.

12.6.1 Construction of Cost of Living Index Number : Cost of living nun- i
is constructed by the following formulae

a) = Aggregate Expenditure Method or Weighted Aggregate Method.

b)  Family Budget Method or Method of Weighted Relatives.

a)  Aggregate Expenditure Method : In this method weights to be assigned
to various commoditics are provided by the quantities consumed in the basc
year. Thus in the usual notation cost of living“index is given by,

SP.a .
P\,izg,-‘ﬂ‘-'k x 100
oy

Note : This is nothing but Laspeyre's index.
b)  Family Budget Method : In this method cost of living index is given by
weighted average of price relatives, the weight being the values of

quantities consumed in the base ycar. Thus in the usual notation cost of
living index is given by ;

P.
w5

n :
[)m :-—ET— x 100, where wi = Puqulj'
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Itis to be nmed that cost of living. index numbers by both the methods agree,

Pi'
Z w Zpu'q i 3
P 0] Py 2P
L Y 4y 100 = =8y 100
since T, X100 = I 100 o x 10(

Example 124 Construct the cost of living index for the ycar 1988
(Base 1984 = 100)

Commaodity Price in Taka
Unit 1984 1988 Weight
Rice kg. - 9.00 1050 - 35%
Wheat kg. 5.50 6.00 '2‘3‘7..
© Vegetablos kg 250 350 209
© Meat kg. 45.00 6‘0.()()_ 10%
Eggs Dozon 5.50 7.50 109

Solution : We prepare the folllowing table for calcu;lating cost of living

index.
P’rice in Taka Price Weight
Commaodity 1984 1988 | Relative w w%
P, P, Py/P,
Rice 9.00 | <1050 1.667 3 38343
-Wheat 5.50 6.00 1.091 25 27.275
Vegetables 2.50 3.50 1 .4Dl) 20 28.000
Meat 45.00 6000 | 1333 10 13.330
Eggs 5.00 7.50 1.364 10 13.640
Total L " 100 140.590
ZW 140.590

Cost of Living Index, P,y = ZW = x 100 =140.59

100

Therefore, cost of living index for the year 1988 is 140.59 considering the
base year 1984 = 100. *

-
‘»d
(9%




