
An Introduction to The Theory of Statistics

7. MATHEMATICAL EXPECTATION
GENERATING FUNCTIONS AND
LAW OF LARGE NUMBERS

7.1 Mathematical Expectation

The mathematical expectation of a discrete random variable x having

values x 1, x2 .............................. x 	 with respective	 probabilities P(x1),

P(x2) ........................... P(x0 )	 is defined by

n	 n
E(x)= 1x 1(Px1 ) where P(x1)=1,	 (7.1 a)

provided the series is absolutely convergent. For example the E(x) does not

exist for the following probability function of x,

e1
P(x) =---	 x=O, 1,2 .............

We know, E(x!) = x! P(x) = x!c 1

which is a divergent series. Hence the expected value is not defined.

If x is a Continuous random variable with p. d, 1, 1(x)

cc
then, E(x) = J xf(x)dx,	 (7.1 .b)

-oc

provided the integral is absolutely convergent.

Remarks:

1) E(a)=a, where a is a constant.

2) E(ax)=aE(x)

3) The mathematical expectation of Wk), a function of the variable x
is given by

7.



Mathematical Expectation Generating Functions

n

E(i(x=Wx) 1'(x) ; if x is a discrete arable, and

oc
El1(x)l= JI1J(x) 1(x) dx ; if x is a cononuous variable.

-DC

7.2 Moments
n

If j(X)=Xr, then E(xr)=	 x 1 l'(x)	 (7.2.a)

for discrete random variable x and

DC

E(xr)== .1 xr 1(x) dx
	

(7.2.b)

-DC

for continuous random variable x, - !c x !c

E(x 1) in both the case is called the rth raw moment of the distribution

usually denoted by Vr. Thus

= E(xT ) , in particular,

= E(x) = .t, the mean of the distribution.

= E(x2) and R2 =	 = ((x2 ) - IE(x)12

= var (x) = &, the variance of the distribution.

n

I 41(x) = x_J.tr, then E(x-pY =) (x - ,.t)r 1'(x), for discrete random variable X1\

DC

and E(x .jj)r = (X41)r 1(x) dx, - S x!C DC for continuous random variable x.

-CC

E(x pYin both the cases is called corrected rth moment or the rth moment

about mean and usually derotcd by Ii,

In particular, if r = 1,	 = E(x -j.i) = 0.

and r = 2, i2 = E(x-p)2 = EIx - E(x)1 2 = \',r(X)	 2
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Example 7.1 Find the expected value of the number of points that will be
obtained in a single toss of a fair die.

Solution : Here the variate x is the number of points ona die. Hence the

possible values of x are 1,2,3,4,5 and 6, and each having the probability

Therefore. E(x)=xp(x)-(1+2+3+4+5+6)= 6x 77
0	 nx2	 2

Example 7.2 Find the expectation pf x whose p. d. 1. is f(x) = 3x2 ; 0 5 x !^ 1.

.1	 1
Solution We know, E(x) 

=J 
xflx) dx 

=J 
x.3x2dx

I	 3x1	 3
=13x3dx=--I =-d	 jo '	 -

Theorem 7.1 Additive Law of Expectation : The expectation of the sum of
two random - variables is equal to the sum of their expectations.
Symbolically, if x and y are two random variables, then,

E(x+y)=E(x)+E(y)	 . -	 (7.3)

Proof (For discrete variable)

Let P ij be the probability that x assumes the value x(i=1,2.....m). and y
assumes the value y, (j=1, 2......n). Then

- mn
E(x+y)=

Z Xipj + ZY P11 =x PIj	 YjPij
i i	 ii	 i•J	 ji

r Since	 Pl)PijPj and	 = Pt

L
--	 =iPi + y1 p1 = E(x) + E(y).

(For Continuous variable)

Let f(xy) be the joint p. d. 1. of the random variabiv, N and v, then h\
definition,	 - -
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E(x+y) = 5 J(x + y) f(xy) dxdy

= 5 Jx f(xy) dxdy + 5 f  f(xy) dxdy.

oc	 oc

= jxf(x)dx+ f  f(y)dy = E(x) +E(y).
_oc	 -oc

Remarks:

1) The above theorem can be generalised for several random
variables i, e, if x, y, z...etc. are several random variable then

E(x+y+z+ ...... ) =E(x) +(E(y). + E(z) . .......

2) E(ax+by) = aE(x) + bE(y), where a and bare constants.

3) El 1 (x) + 'V2(Y )I = E(s 1 (x)l + Ek2(y)l where Y j (x) and 2Y) are two
functions of random variables x and y respectively.

Example 7.3 Find the expected value of the number of points that wil be
obtained in a single toss of n fair dice.

Solution: Let x 1 be the number of points obtained from the ith die 6=1, 2
n) and let S=x 1 +x2 + ........

By definition E(s)=E(x 1 + x 2 + .......+ x)= E( 1 ) + E(x2) + .... ..... +E(x).

But for every single die F (x i ) = 1* (i=1,2... ... n) (vide Example 7.1)

7n
Therefore, E(s) =T=

Theorem 7.2 Multiplicative Lawo Expectation : The expectation of the
product of two independent random variables is equal to the product of their
expectations. Symbolically if x and y are two independent random
variables, then

Exy) = E(x) E(y) 	 (7.4)
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f'roof: (for discrete variables)

Let the probability of the discrete random variable x assuming the values x,
0=1, 2...........m) be p 1 and that of y assuming the values Y1 (j=], 2 ....... n) be
pi. Since x and y are independent variables, the probability that tho product
will assume any value x 1y is PiP1•

• m n	 m	 n

	

Hence, E(.xy)	 ;YirM = x1p1 I YlP = E(x). E(y).
i=1 j=1	 i=1	 j=1

(For continuous variables)

Let f(x, y) be the joint p. d. 1. of the joint random variables x and y, then by
definition,

OC CC	 DCCC

E(xy)= 
5	

xy f(xy)dxdy = 5 5 
xy f(x) f(y) dxdy

	

-CC -CC	 -CC -CC

Since f (xy)=f(x). f(y) for independent random variable x and y.)

	

CC	 DC

= x f(x) dx - f y f(y) dy. = E(x) E(y).

Remarks:

1) The above theorem can be generalised for several independent
random variables i, e, if x, y, z ... etc. are several independent
random variables then 	 -

E(xyz ..............) = E(x) E(y) E(z) ..........

2) If Wi(x) and J2(y).are two functions of two independent random
variables x and y respectively, then

EIWI(x) '2(y)i = E[J1(x)] ElI2(y)I.

3) E(ax. .by) = abE(x) E(y). For two independent random variables x
and y; a and bare two constants.

Example 7.4 Find the expected valuef the product of points that will be
obtained in a single throw of n fair dice

Solution We obtained in Example 7.1 that the expected value of x 1 =

where x 1 be the nuniber of points obtained on ith die. Th'refore, the expected
17n

value of product of points obtained is equal to
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7.3 Covariance

If x and y are two random variables, then the covariance between them is

defined as

Coy (x,y) = EItx - E(x)) ty - E(y)}I.

= EIxy - xF(y) -. yE(x) + (EN) E(y)I

= E(xy) - E(x) E(y) - E(y) E(x) + E(x) E(y)

= E(xy) - E(x) E(y) 	 (75)

Remarks:

1) If x and y are independent random variable then E(xy) = E(x) E(y)
and hence

Coy (xy) = E(xy) - E(x) E(y)=O.

Thus the covariance of two independent random variables is equal
to zero. The converse is not necessarily true.

2) Coy (ax.by ) = ab Coy (xy), where a and b are two constants.

3) Coy (x+a,y+b)=Cov (x,y) where a and bare two constants acting as
respective origins.

(xJ5yiv\
4) Cov —	=—Cov(xy).

where lix, p, are the means and CF, (T are the standard deviations
of the random variables x and y respectively.

3)	 Coy (x,x) V(x).

Theorem 7.3 Variance of a Linear Combination of Random Variables:

Let x 1 , x2 .....xbe n random variables (not the values of the variable x) then

n	 n 
V (Z,a 1 x 1) = a 2V(x 1) + 21aa Coy (xx)

i <3

Proof: Let u=a 1 x 1 +a 2 x 2 + .........

we know, E(u)=a 1 E(x 1 ) * aE(x2) + ........-- aE(x).

u - E(u)=a 1 1 1 - E(x 1 )I -s- a7Ix - E(x,)J + ... + alx -

81
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n
Therefore, V(u)= V a 1 x1 = Etu - E(u)12

= a 1 2Etx 1 - E(x 1 )12 + a22 E1x2 - E(x2)1 2 + .....................+ a 2 El x. - E(x)I2

+ 2aa EL N. - E(x1)J 1x 1 - E(x)]
1<j

nn
= a 1 2 V(x 1 ) + a22 V(x2) + .....+ an  Y(x) +2aa Coy (x1x1)

1<)

nfin
= .a 2 V(x1) + 2a1a Coy (x1x,).

1<1

Remarks:

n

	

(1)	 If a=1 ; i=1, 2, ... n ; then a 1x1 reduces to 7-x 1 and

n	 nn
V (x) = V(x) + 27-7, Coy (x1x).

I<J

2) If x's. are independent pairwise. then Coy (xx,)=()
n

and V (a1 x1) = Y.a 1 2 V(x1),

3) V(x 1 +x2)=V(x) + V(x2)+2Cov(x1x2),

If x 1 and x2 are independent,

then V(x 1 + x2) = V(x 1 ) + V(x2).

Example 7.5 Suppose x is a random variable for which E() 10 and
Var (x) = 25. Find the positive values of a and b such that y = ax - b has
expectation 0 and variance 1.

Solution: Given E(x) = 10 ;Var(x) = 25.

According to the problem, we have E(ax - h) = 0 and

V(ax-b)=1,	 or, aZV(x)l ,	.

oia2.2S=1

	

Again	 E(ax-b)=()

or, aE(x) - b = 0	 .	 .	 . .	 .

or, aE(x) = b	 .

b=2, Since E(x)=lO and a=-
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7.4 Conditional Expectation and Conditional Variance

If x and y are.two connected discrete random variables with conditional
distribution function I'(x/y), then the conditional expectation of the random
variable x for given value of y is defined by

n
E(xly) =	 x t P(x/ y)	 .(7.6a)

and the conditional variance of x forgiven v is

V(x/y) = El{x - E(x/y)1 2/yI	 (7.6b)

Similarly conditional expectation and conditional variance of y for given
value of x can also be defined.

Again for continuous random variable x and y

oc	 -
E(x/y) = 5 xf(x/y) dx	 (7.7a)

_oc

and V(x/y) = ElIx-E(x/y) /yl 	 (7.7h)

where 1(x/y) is the conditional p. d. 1. of the random variable x-for given y.

Theorem 7.4 The expected value of x is equal to the expectation of the
conditional expectation of x forgiven y. Symbolically

Ex) = E!E(x/y)	 (7.8)

Proof: (For discrete case)

R. H. S. = ElEx/y)I .	 .

n	 .
=ExlXip(xi/y)I

i=1

r	 (Pxy) 
1 =:: r
	 LL

X1 P(y) J]	 L t 	 P(y) } I P(Y

n	 n
= IF ; Px1y) = I xP(x1y)

Y1=1	 1=1 y

n
= x 1 P(x) =E(x) = L. H. S.
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Hence the theorem is proved.

(For Continuous Case)

R.H. S. = E IE(x/y)] = J E(x/y) f(y) dy.
- oc

oc
= 51 5 x f(x/y)dx] f(y)dy

- oc - oc

1I
= I I I X• f(y)

f(xy)	 Idx f(y)dy.
—ccL-c	 J

= 5 Jxf(xy)dxdy= Jxf(x)dx=E(x)=L.H.S.

Hence the theorem is proved.

Theorem 7.5 The variance of x can be regarded as Consisting 01 two parts, the
expectation of the conditional variance and the variance 01 the conditional
expectation, symbolically

V(x) = E IV(xly)1 + V. !E(x/y)l 	 •(7.9)

Proof: We know, V(x/y) = El lx-E(x/y))2/yl

=E(x2/y) - IE(x/v)12

E IV(x/y)l=E IE(x 2 /v)l - E>IE(x/y)12

=E(x2) - E1E(x/y)l 2 =V(x) + IE(x)1 2 - El(x/y)l2

=V(x) + 1E(x/y)1 2 - ElE(x/y)1 2 = V(x) -VlE(x/y)l

Therefore, V(x) = ElV(x/y)J + ViE(x/y)l.

Example 7.6 Find E(x/y) from the Example 6.4 given in Chapter 6.

Solution: We know, f(x/y) =(I+  y) 2 xc (1 +y) x, y, -> 0,

Therefore, E(x/y) = 
5 

xHx/y ) dx = 5 x (1+y)2 xe' (1dx
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=(1+v)2 Jx2cx(l+Y)dx

[Putting x(1+y) = z or, x = T;dx =iH-J

=	 1t2e'd(1 	 y)

1	 2
= (1 + y)	 (1 + y)

7.5 Moment Generating Function (m. g. 1.)

The moment generating function (m. g. f.) of a random variable x about origin
is defined as

M0(t) = E(e'5) = eP(x), for discrete random
x

variable x and discrete probability distribution.

oc

= J e
' f(x) dx, for continuous

-

random variable x and continuous probability
distribution.

...(7.10)

The rn. g. f. is a function of the real parameter t and it is being assumed that
the right hand side of (7.10)is absolutely convergent. The summation or
integration being extended to the entire range of x.

r
Thus, M,(0 = E( t ') = E I + tx + 22i
	 (txY

2!	 r!
tr

=1 +(E(x) +	 E(x 2 ) i- .........+ _ E(xr)

tr
1 + t	 +	 rJ.t 2 + .........+	 +

where Wr = Exr )	 xrp(x) ; for discrete distribution,
x

DC

J

x r f(x) dx ; for continuous distribution.

-CC
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Thus the Coefficient, of;7, in M0(t) gives J• 'i..

Since M0(t) generates moments, it is known as moment generating function (m.
g. f.).

dTM0(t9
It is easy to varify that, l.tr = dt

	 J t=O.

The moment generating function about the arithmetic mean .I is defined by

M (t) = El c L ( x -	 e -	 E(etx)

=e4ttM0(t).	 (7.11)
It can be easily varified as earlier that

drMi.(t)1
dtr jt=o.

A Property of Moment Generating Function The moment generating function
of the sum of a number of independent random variables is equal to the
product of their respective moment generating functions.

Proof Let x 1 , xZ .. x be n independent random variables (not the values of
the variable x), then the moment generating functions of their sum (x 1 + x-)

+ X ) with respect to origin is

M0(t) = E [e (x
1 + x2 + .... + x) J = EIe1 etx2 ..... .ctxnl

= E(e°')E(et'2) .... .E(e°I

=M,(t)x 1 M(,(0x2 ...... M0(t)x

where M 0U) x i indicates the m. g. f. of random variable x. Hence the
theorem is proved.

7.6 Cumulant

The cumulant generating function k(t) is defined as

k(t) = log M 0 (ft	 ...(7.1 2)

provided that right hand side can be expanded as a convergent series in
power of t. If we expand k(t) in the following form

t2	 tr
k(t)=k 1 t+k7-+ .... ..... +kT .? ..........
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then k, co-efficient of!jis called the rth cumulant.

drk(t)
It is easy to varify that kr 	 dtr t 0.

	

••..-•....	 .	 -

Relation Between Moments and Cumulants

t2	t3
We have k(t)=k1 t+k2 -+k3 - 	 (7.13)

t2	 t3
Again k(t)= log M0(t)=log(1	 i^' r- ..... ......

)

	it2	t3	 t2
=	 it4J12J.t3	 j+........... / -

	 t+.t2+ .....
......

)

+	 t+L2+ ...... .....) -
	

(7.14)

Now equating the identical power oft of (7.13) and (7.14) we have

k2 = 2'-11 = 42	 .	 .	 .	 .

k='-392'91 '+41 13 =93 	. 	 .
- 33.Q - I3 ' 1 ' + 1242'111 12 

p4 3g22.

7.7 Characteristic Function

The characteristic function of a random variable x about origin is defined as -

p0(t)=E(e x) =	 P(x) ; for discrete probability

	

X	 distribution.

..(7.15)

= j ChtX f(x)dx; for continuous probability
distribution.

-0

67
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It can be easily shown that the rth moment about origin is given by

drq)(t)1
T irdtr

The characteristic function about the mean t is given by

p1 (t)= Elc t )J =e	 1tp(t).

The rth central moment, j.4 is given by

[dr(t)1
[ rjr ]t =O

Example 7.7 Find the characteristic function of 1(x) = e, 0 S x S and
hence find mean and variacne of 1(x). 	 -

Solution : We know, f(x) = c , 0 !c x S

f(x) dx _J CC - dx	 0 - X 0 - 10

Putting x(1 _ it) =x or, x=.	
z

(1 -it) :.dx=	
dx

(1-it)

(1 - tj je dx- (1- it)• Sincc1e dz=r1 =1.

Thercforethe characteristic function of f(x) = c - is p0(t) = (1 - it) -

No', d,(t) = -(1 - it) - 2( - i)dt
=i(1 -it) -2	 ,.

, dp,(t)1
Mean

	 jt=0

d2q()(t)
Again d7 = - 2i(1 -it) - 3(-i)

= -21 -it)	 Since i 2 = -I
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=2.

Therefore, variance = P.2 = P.2 i.'2 = 2-1 =1

A property of Characteristic Function : The Characteristic function of the
sum of n independent random variables is equal to the producof their
respective characteristic functions; i. e.

	

+ X2 +	 = o(OxT 9o()x2 .... .... (p,(t).	 . .(7.1 6)

Proof: Let x 1 , x2, ....... xn be n independent random variable (not the values of
the variable x) then the characteristic function of their sum (x1-+-x2
+........+x) with respect to origin is

(p0(0x1 + x2 + .......+ x =EId t (x1 + x2 + .....+ x)1

=E(e' 1) E(eitx2)E(e'0).

=q 0(t)xp0(t)x2 .......cp(,(t)xfl Hence proved.

Remark: The converse of (7.16) is not necessarily true.

Advantages of Characteristic Function Over Moment Generating Function:

1) The characteristic function always exists but moment generating
function may or may not exist.

2) The characteristic function determines the distribution function
uniquely i. c. a necessary and sufficient condition for two distribution
with p. d. Is f(x) and f(y) are identical if their characteristic functions.

p(t) and p(t) are identical.

3) Characteristic function follows the following necessary conditions.

i) (p(t) is continuous in t.

ii) p(t) is defined for every value oft.

iii) p(o)=1.

iv) p(t) and p( -0 areconjugate quantities.

V)	 Icp(t)I:51!5q(o).

Theorem 7.5 Inversion Theorem (without proof) If cp(t) be the
characteristic function and f(x) be the p. d. f. of a random variable x then

	

f(x) = -
22n J 	(p(t)dt
	

7.17k

a
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Example 7.8 Find that p. d.. 1. of the random variable x 	 x <

t22
-for which p(t) = e

Solution: Let 1(x) be the p. d. 1. of the random variable then,

1
f(X) =	

5 
-It' p(t)dt

27t

=— I e c	 dt	 .	 . .
2itJ

1	 -	 -!	 2
=C 2& 5 

c21	
) dt

•	 21t

ix	 dy

toc

• Let us put t	 y .. dt

The. range ofybecomes -° and o .	 •	 ..

22
dv

1(x)	 e - 22e '	 -
2, J

-cc
Cr

j	
xy2

=— e2& Iedy
2it

-cc

X2	 x2

=	 - -- ,,,[ =
	 1	 !^

2ira

which is the p. d. 1. of the random v
a
riable x.	 -

7.8 Law of Large Number

Usually the estimates are made of an unknown quantity (parameter) by
taking the, average of a number of repeated measurements of the quantity,
each of which may contain some error. Therefore, it is of certain interest to
study the properties of the estimates. An initial enquiry is made concerning

its behaviour as the number of measurement increases i. e. —cc. The problem

90
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that the estimates converge in some sense to the true value of the parameter
can be formulated in the following ways:

Let x, n=1, 2 .....be a sequence of observations and x n is the average of n

observations then what are the conditions under which we can say , that

X n 911 (parameter)	 (7.18)

in any one of the following modes of convergence.?

a) Weakly or in probability (written as x,—>c; if, for every given r 0
lim
n —o' .............................(7.19)

b) Strongly or almost surely (written as lim x = c with

- fl—)x

a. S.

probability I or x, —*c

lim
if	 =1.	 ...(7.24))

qm.

C) In quadratic mcan(writtcn as x - c) if,
lim

E(x-c)2=0 (7.21)

We shall generalise the problem further and ask for the condition under
which

....(7.22)

where gn, n=1, 2.....is a sequence of constant sought to be measured by the
sequence of observations x, n=1, 2.....The law of large number holds if the
convergence such as (7.18) or (7.22) takes place1 When the convergence is in
probability given in (7.19) we shall see that the weak law of large number
(W. L. L. N) holds and when it is with probability 1 ,, or 'almost surely
given in (7.20), the strong law of large number (S. L. L. N) holds.

Some of the important theorems of law of large numbers are given below:

1. Chebyshevs Theorem (W. L L N.) : Let E(x 1 ) = .t, V( 1 )= y2 and

coy (xx) <0, i < j. Then .
Jim (y2

n—
— 0implic that 'ç. —M

where x, is the mean of a series of n observations.

91
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Proof : The proof of the above theorem can be done with t'hc help of
Chcbyshev's. inequality.

We consider x as a continuous random variable. Thn by definition,

&=J(x-i)2f(x)dx

= J 
(x	 )2 f(x)dx 

+	 5 
(x - j.t)2 f(x)dx+ 

5 
(x - i)2f(x)dx.

For the first integral, x !^ i - ka => (R-x) ^ ka.

and for the third integral x 	 + k => (x - i.') ^! kc.

Now dropping the middle term and replacing (x - j.t)2 by the value obtained
here, we get,

1-kcT	 oc

& ^kk2 
5 

f(x)dx + k2& 
5 

1(x) dx. ^! k 2 ['I I x - I ^ k)

..P{Ix	 kl!5

With the help of this .result we have in our case,

-	 r
11 I x, - R k')5 —_ >O[ Since, V( x)= -n]k'2n

which implies that ,ç

2. Khinchin's Theorem (W. L. L. N) Let x i,, n = 1, 2 ..... be independent and
identically distributed (i.i.d.) and E (x e) exists. Then,

= j.t 5	 implies that x

3. Kolmogorov Theorem (S. L. L. N) : Let x 1 , X2-.... be a sequence of i. i. d.

variables. Then a necessary and sufficient condition that
as

XD	 p is that E(x 1 ) exists and is eqial to P.

The proof of theorem No. 2 and 3 are be yond the scope of this text.
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8. PROBABILITY DISTRIBUTIONS

8.1 Introduction

In this chapter we ?ave discussed some of the important discrete and
continuous probability distributions which are of special importance in
theory and practice of statistics.

The names of the probability distributions discussed in this text, are as
follows

a) Discrete Distributions	 -
1) Binomial. 2) Piosson. 3) Negative Binomial. 4) Geometric.
5) Hypergeometric. 6) Multinomial. 7) Uniform or Rectangular.

b) Continuous Distributions.
1) Uniform or Rectangular, 2) Normal. 3) Gamma. 4) Beta.
5) Exponential. 6) Cauchy. 7) Laplace.

8.2 Binomial Distribution

Let an experiment be repeated for r independent trials each wiTh one of two
possible outcomes, success or failure. The number of success, x in n trials is
a discrete random variable which can assume values 0, 1, 2.........n, Let p be
the probability of success and q be the probability of failure in a single trial
so that p + q = 1. If the probability of success, p remains same from trial to
trial, then the distribution of x is known as binomial distribution and its
probability function is given by

/n'
p (x) = I,)pxqnx; x=0,1,2,... ..n

The binomial distribution was discovered by James Bernoulli (1654-1705) in
the year 1700.

The following conditions must be statisfied for the binomial distribution.

i) There should be a fixed numer of trials.
ii) The trials are independent.
iii) There are only two outcomes for each trial.
iv) The probability of success and hence the probability of failure

remains same or constant from trial to trial.
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Derivation : Let the first x trials resulted in success (S) and the rest (n-x)
trials resulted in failure (F). Then the seqence of successes and failures be

SS ..... S	 F 	 .....F
X times k	 (n - x) times

Since the trials are independent, the probability of this particular sequence
is pqIX. But we are interest in any x trials being successes and since x trials

can be chosen out of n in ( ) mutually exclusive ways, the probability p(x)

of x successes is given by p(x) 
= () 

pXq; x = 0,1,2 ....... n.

The probability distribution function of the number of success, so attained is
called the biflomial probability distribution for the obvious reasons that
the probabilities of 0, 1, 2.......n successes viz. 	 -

q fl ,	 q.fl I p, (2n) qfl - 2p2 .......pfl are the successive terms of the binomial

expansion (q + p) 	 -

Remarks:	 -

I) The probbility function denoted by (8.1) satisfies the two properties of

density function i.e.

/rl\
a) p(x) = () p1j" - I ^i) for all values fx,

b) p() =	 (n) 
pXqfl X = (q + p)n= 1; Since p + q = 1.

-0	 x=0

2);- The two independent constants n and p of the distribution are known as
the parameters of the distribution.

3) if p = q = , e binomial distribution is symmetric otherwise it is skew.

Exa pie	 Four unbiased coins are tossed simultaniOusly. What is the
proh	 ty of getting

a) exactly two heads!	 b) at least three heads?
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Solution: The probability of getting x heads in a throw of 4 unbiased coins is -

p(x)= () (•) x () 4x; 
x=O, 1,2,3,4.

a) Probability of getting exactly two heads is given by

p(2)=() () 
263

b) Probability of getting at least three heads is given by

Prob(x2:3}=p(3)+p(4)= G) ()3 +

 2	 76 + 5-6 = 76^^

Properties of Binomial Distribution:
n

Mean (4): We know, 4 = p.'= E(x) =	 xp(x)
x 

n

=()
n

=' (X'—]) 
pxlqnx

x=1

=np(q+p) 1 =np. Sincep+q=l.

	

n =2(,)n— . 	ri(n—l) n-2
Also X	 xx-1	 x(x-1) x-2

and soon.

Variance (2)'. We know a2 = 3.12 p.1' 2 = 42

where R2 =E(x2) = Elx (x-1) +x]

Elx(x—j)l+E(x)

Again EIx (x—l)	 x (x1) C)x=O 	
pxqnx

n
n(n-l) n-2

x-2	 pxI)x

(8.Z)

n(n-1)(n-2)In—I N
x(x-1) (x-2) x-3

(8.3)
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X2C2)

=n (n—i) p2(p-) ii-2

=n(n_i)p2	. 	 (8.4)

We have alread y known E(x) = np in (8.2).

Therefore, from (8.3) we get 42 =(n -1) p2+n.

N)w, j12 =j.t2'-j11 '2 	..

=n(n-i)p2 + np - (np)2

=n2p2np2+npn2p2

= p(1 - p) npq, Since I - p =q.	 (8.5)

Third Moment (t3): We know, 9'3=E(x3)=EIx(x - 1) (x -2) + 3x(x - 1) + xl

=EIx(x-1)(x-2) 1+3Ejx(x-1)1+E(x) 	 (8.6)

Now, Elx(x-1)(x-2)J=
x=()

n
n(n-U(n-2)	 n-3

1)(x2).xx -1) (x -2) P3	x 3

-
=P(n-1)(n-2)p3 nE	 x-3	 PX1IX

X = 3 

In--3

n(n-1)(n-2)p3(q+pY 3

=n(n-1)(n-2)p3

Form (8.2). (8.4) and (8.7), we get

= n(n-1)(n-2)p3 +3n(n-flp2 + np

Therefore, the third moment is

:1) (n -2)p3 + 3n(n - 1)p2 + np -3{n( - 1)p2 - no) np± 2n3p3.

n'o'- 3n2p3 + 2np3 ± 3n2p2 - 3np2 ± np - 3n3p3 + 3n2p - 3n2p2 + 2n-p'
=2np3 - 3np2 + np

=np!2p2-3p-11

=np(i - p) 0 - 2p)

=npI(q_p)	 -,	 (8.8)

(8.7)
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Fourth Moment (p t): We know,
j.X4'=E(x4)=EjX(x-1)(x-2)(x-3) + 6x(x-1)(x-2) + 7x(x-1) + xl
=EIx(x-1)(x-2)(x-3)l + 6EIx(x-1)(x-2)1 +7EIx(x-1) 1 + E(x) .....(8.9)

Now, Elx(x-1)(x-2)(x-3)l=Zx(x-1)(x-2)(X-3) ()

n(n - 1) (n - 2) (n - 3) (n4\
=x(x-1)(x-2)(x-3)	 )pxclnxx(x-1)(x-2)(x-3)	 x-4

x=0
n

I fl-4=n(n - 1) (n - 2) (n - 3)p4 ! 'x-4x=4
=n(n-i)(n-2)(n-3)p4(p+q) -4
=n(n - 1) (n - 1) (n - 3)p 4	(8.10)
From (8.2), (8.4), (8.7) and (8.10), we have,
).t4'=n(n-1)(n-2)(n-3)p4 + 6n(n - 1) (n - 2)p3 + 7n(n-1)p2 + np.
Therefore the fourth moment (p4) is,

- 441
pi1 ' + 61121.112 -

=3n2p2q2 + npq (1 - 6pq) ton simplification]	 (8.11)

npq

}
J14	 1-6pgand 2 =—=3+ 
1.12	

npq

Remarks: 1) The mean is alwav greater than the variance as q < 1.
2) As the number of trials ii increases infinitely,

and

Moment Generating Function of Binomial Distribution: The m. g. 1. about
origin of the binomial variate x is

M(t) E(eLx) =
	

etx (n) VqflX

n

=x	 C) (pe1Yq'

=(q4pet)

Differentiating (8.13) with respect to t; we get,

(8.12)

(8.13)
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d3M(t)1
••'= d3 Jt_o=n(nU(n-2)p3+3n(n1)p2+np

It can be easily shown that, j.t3 = npq (q-p). (after simplification).

.-gain differentiating (8.16) with respect to t We get,

d4M(t)
dt4 =n(n 1)(n2)(n3)p4(q+pct)4c4t

+ 6n(n -1) (n -2)p3 (q+ pet) 3t + n(n - Up2 (q + pet)2e2t

-s-np(q +pct )n - 1et.

d4M(t)
=	 = . = n(n-1) 6-2) (n-3)p4 +6n(n-1) (n-2)p3+7n(n-i )p2+np

Therefore, it can be easily shown that the fourth moment,

= 3n 2p2q2 + npq(1-6pq) (after simplification).
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d(t)=fl(q+pet)n1pet

dt dM(t)
dt	 tzO =n(q+p) 1 p=np

Again differentiating (8.14) with respect to t, we get,

d2M(t)
dt2 = n(n -1) (q+ pe t ) n2 (pet ) 2 + nq +pet)n I

=n(n -1)p2(q + pet)2e2t + np(q +pet) let.

d2M(t)1
= dt2 Jt = 0 ° (n- i )p2 + np

Again differentiating-K.15) with respect to t, we get,

d3M(t)
d	

= n(n1)(n2)p2 (q+pet) 3 pete2t + n(n.-1)p2

(q+pet)22e2t + (n1)p(q+pet ) 2pet e t + np(q+pet)let.

—n (n 1)(n 2)3(q.pet))e3t + 3n(n1)p2 (+ pet ) n.k2t

- np (q -t pet) t....................(8.16)

(8.14)

..(8.15)
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Characteristic Function of Binomial Distribution : The characteristic

function about origin of a binomial variate x is

(n).(t)flx = (q +	 t)n	 (8.17)

Differentiating p(t), once, twice etc. with respect to it and putting t= 0, we

get the same results of 42 3 and p.4.

Recurrence Relation for the Probabilities of Binomial Distribution:

We know, P(x)=() pxqnx and P(x+1)=(.1)p1qx1

n\ n-x-1/

	

P(x+1)	 x+1	 r
	 •q

Now,	 =	 =-.

	

P(x)	

() 
pX qfl	

x+1 q

Hence P(x+1) = p(x), x = 0, 1,2 .... ...... n.-	 x+lq

which is the required recurrence relation. This relation is helpful for

calculating probabilities for different values of the binomial variate. The

only probability, we need to calculate is p(o) which is equal to qr. If p is not

	

A x	 -
known, it can be estimated byp= --, where x is the sample mean of the-

distribution.

Example 8.2 Seven coins are tossed at a time and the number of head are

noted. The experiment is repeated 128 times and the distribution is obtained
on the next page.

	

No of heads	 (1	 1	 2	 3	 4	 5	 6	 7

	

Frequencies:	 7	 6	 19	 33	 30	 23	 7	 1
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Fit a binomial distribution , to the above data assuming that,

1
i) the coin is unbiased i.e.p=q=

ii) the nature of the coin in not known i.e. p is unknown.

Solution: (1) Sinccp=q= q =land P(o)=	
1 - ) 7_ 1

T2-8

From the recurrence relation 1'(1), P(2).........can be obtained as follows

Table-8.1

x	 P(x)	 E= N X P(x)

0	 7	 Ts	 1

	

3	 ..	 7

	

5	 21

	

-	 .	 -	 21

	

3	 128

3	 1	 2-5—	 35

	

3	 35
4	 .	 35

128

	

1	 21
5	 21

	

3	 128

	

1	 7

	

7	 128

7	 -	 8	
1

Total	 1	 128

(ii) Since pis not known, it can be estimated as follows

-	 1	 433
We know,. x = np =-fx1 =j--= 3.3828 (app)

p = (1.48326 and q = 0.51674

And	 0.93521.	 (0.51674)' = 0004

1(X)
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Table-8.2

x	 .L.....E.	 P(x)	 *E_NXp(X)

0	 6.54647	 0.00984	 1.25952-1.

1	 2.80563	 0.0644()	 8.2432 8

2	 1.55868	 0.18069	 23.1283223

3	 0.93521	 0.28164	 36.04992 36

4	 0.56113	 0.26339	 33.71 392 34

5	 0.31174	 0.14779	 18.9171	 19

6	 0.13360	 0.04607	 5.896 = 6

7	 -	 0.00618	 0.791 1
1	 1	 128

* Since the number of trials cannot be fraction, we converted the expected
values into nearest integers.

83 Poisson Distribution

The poisson distribution was discovered by S. Devis Poisson (1781-1840) in
the year 1837.

Poisson distribution can be defined as the limiting case of the binomial
distribution under the following conditions:

i) the number of trials are very large i. e. n

ii) the probability of success, p is very small i. c. p—* 0 and

iii) the mean of the binomiaf distribution np = m, a finite and positive
constant.

The probability function of poisson distribution is given by

emmx

x!	 x=0,1	 $18)

Derivation of Poisson Distribution from Binomial Distribution r The
probability of x. success in a series of n independent trail given in (8.1) is

given by, p(x) = () pXqfl - ; 0, 1,2........n.

W \ant the limiting form of p(x) under the above three condition.
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We have, p(x)	 px(1p)nX

n!	 /m\.x/ m\fl-X
.x!(n -x)!n	 Since, n p=m.

n-fl(n-	 :x+1)() x (i.) n-X

I m\
(n	 1) (1 -.;;-)mx

n' (I rn\X
\ nJ

I 1\ I	 2\	 I x-1\
n	 n	

I 
In)1--n 

mx
=;r
 En)

1 2 -	m x 	m

	

As n—>-,; - -etc. tend to xcro, 1 - -	 tends to I and 1 -r( n	 -	 n	 n

tends to -m	 -
U	 .	 -

Therefore, n--->-p(x) = X
—

.
— e' for fixed x and x=0, 1, 2, ..... o which is the

required probability function of the poisson distribution.
Remarks:

-	 -	 -	 -
I) It should be noted that ! p(x) =- °'

	
_emem_ 1.

x0	 x	 -

2) m is the only parameter 'of the distribution and m > 0.
3) Following are some examples of poisson variates.

i) Number of suicides lcportcd in-a particular city within 10 years
(say).	 .	 .

ii) Number of air accidents in some unit of time.
iii) Number ol telephone calls received at 	 particular telcphoni

exchange in come unit 01 time. -
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Example 8.3 A manufacturer of pins knows that 5% Qf his product is
defective. If he sells pins in boxes of 100 and güarentees that not more than
10 pins will be defective. What is the approximate probability that a box

will fail to meet the guaranteed quality?

Solution: We have given n=10, Probability of getting defective pins, p .05.

Therefore, m = mean number of.defectivc pins; np = 100 x .05 = 5.

Since p is very small, we may use poisson distribution. Probability of x

defective pins in a box of 100 pins is

e mmx e55x
p(x)=

	

	 = x!	
x=O,1,2;.....

x! 
Probability that a box will fail to meet the guaranteed quality is

10
e55X

p(x>10)=1P(x!510)=1-
x=0 X.

10

=1-e5	 -r

Properties of Poisson Distribution:

oc
Mean (t):J.i=j.t1"iE(x)= I xp(x).

X =0

e mm(	 m"
=	 X X!, —me.	

(x - 1)'
x=0	 x=1

=memcm=m.

Hence the mean of poisson distribution is rn.

Variance (&):

.L2'=E(x2)= Ejx(x-1) +x]

=E[x(x-1)J+E(x)

OC	 enmx
Now, EIx (x-1)]	 I x(x-1)

x=0

mx2
=m2em	

(x-2)'
x=2

=m2emem=m2

G

(8.19)

(8.20)

(8.21)
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From (8.19), (8.20) and (8.21) we have

1.12 =m2+m

Therefore, the variance, (32= 2 421.11 '2 =m2 +m	 m. -

Third moment (43):
We know, 91'=E(x3) = Ex(x-j) (x-2) + 3x(x -1) +xj

=EIx(x-l)(x-2)+3E(x(x_1)l+E(x)	 ....(8.22)

Now, Eix(x_1)(x_2)] =IX (x_l)(x2)e-mm'
x=0

=m3em3m3emeknm3	 ...(8.23)

From (8.19), (8.21), (8.22) and (8.23) we have

'=m3+3m2+m

Therefore the third moment is, j.t3 = JL 3' -3J.12 'J.t 1 ' + 24
=n +3m2 +m3(m2 +m)m+2m3	-
=r& -+- 3n + A-i -3m3 -3m2 -,- 2m3=m

Fourth moment (jj):

We know,	 = E(x4) = EI(x -1) (x-2) (x -3) + 6x(x -1) (x-2) + 7x(x -1) + xl

=Elx(x-1)(x-2)(x-3) J + 6EI x (x - 1) (x - 2) 1+7Elx(x-1J+ E(x).....(8.24)

Now, Elx(x-1)(x-2)(x-3)j =x (x - 1) (x - 2) (x - 3) e-
mmx

x=0

=4c m =m40=m	 (8.25)

From (8.19), (8.21), (8.23), (8.24) and (8.25) we have
= m4+6m3+7m2,m.

Therefore the fourth moment is, J. 4 =R4 - 4J.13' J.t 1 ' + 6t2' l.t1'2 - 3jj'4.
=m4 + 6m3 + 7m2 + m4m(m3 + 3m2 + m) + 6m2 (m2+m) -3m4.
=3m2 + 

M.

Hence [31 =
42 
3 m

l .t	 1	 -	
(8.26)

and f32 =i—=3^-
m
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Remarks:

1) Mean and variance of poisson distribution are each equal to m. This is

an important characteristic of this distribution.

2) Asm-oc; 1-*0and-43.

Moment Generating Functiouof Poisson Distribution:
The m. g. 1. about origin of a poisson.variatc x is

	

e mmx -	 (mct)
M(t) = E(e) = I e 

	

x!	 x
X=0	 x=0

= e - memet em(et - 1)
	

(8.27)

Now differentiating M(t) with respect to, t, we get

dM(t)

	

dt 
= e0- met = me t flet	(8.28)

• dM(t)1
d(t) 10=m.

Again differentiating (8.28) with respect to t, we get

d2M(t)

	

_.. em(e )(met)2 +em	 !)met.
dt7—

=mZeet - 1x 21	 (et l )et	 (8.29)

d2M(tY'
P2 

d7
jto=m+m.

Therefore, 02 =J.L2 	 21'm2+mm2_m

Again differentiating (8.29) with respect to t we get,

d3M(t) = mZemt - 1) 	 (et -1) 2e2l +me et - (met)e'+ me t - 1)'t

...... . (8.30)
= mcm(et - 1) c + 2m2cm(c - c2t± m2ct (Ct - 1)C2, + mem(et - 1) et.

d3M(t)1
= dt3 Jt.o=m+2m2+m2+m=m3+3m2+m.

R can be easily shown that 13 = m.
Once again differentiating (8.30) with respect to t we get,
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d4M(t) = m

3em(et - mee + m3e1(et 1) 30t + 3m2em(et - 1)mc te2 tdtT

+ 3m2e1at ; fl 2e2 + mem t 1) metet + mem - flet.

, d4M(t)
l.I	

1	 -
4 dt4 Jt=0=m4+6m3I7m2+m

Therefore, 44 = 3m2 + m. On simplification.

Characteristic Function of Poisson Distribution;
The characteristic function of a poisson variate x is,

cc

p(t) = E (e°) =	 &txp(x)	 5
x=0

oc	 -	 cce m	 (mcI)x_ltX	 =em
X!	 x!x=0	 x=0

=ememt=ce't)	 S	 (8.30)

Differentiating	 t) once; twice etc with respect to it and putting t0 we get
the same value of 112, j1- and .t4 .	 -

Additive Property of Independent Poison Vanaies:

If two independent poisson varaites x 1 and x2 have mean m 1 'and m2
respectively, then their sum y = x1 + x-, is also a poisson variate with mean
m1+m2.

Proof Let M 1 (t) and M2(t) be the moment 'generating functions of poisson
variates x; and x 2 respectivel y and MU) be the moment genetating funticrn of
their sum, then -

M(t) =	 and M2(0 = e2 (et

Since x 1 and x2 are independcht,

MU) = EICt1 + x2  j =. EIetxictx2I

=E(et < 1 ) E(ctx2) = M 1 (t) M2(0

(eL 1)en12(et1) =	 * rn (et -

which is the moment generating function of y indicating a poisson variate
with mean (rn!-t-m,). Hence proved.
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Recurrence Relation for the Probabilities of Poisson Distribution

e.mm
We know, p(x) = x! andp(x+l)= (x+1)!

Now,
p(x+1) e mmCc f i) 	 x!	 m

=p(x)	 (x+l)!	 e rnmx x+1

Hence, p(x + 1) = — j-p(x). x = 0, 1,2 ........

which is the required recurrence relation. This relation is helpful for
calculating probabilities for different values of poisson variate. The only
probability, we need to calculate is p(o), which is equal to C-rn, where m is
the mean of the distribution, if m is not known it can be estimated from the
given data.

Example 8.4 The following data show the suicides of 1096 women in 8, cities
in a country during 14 years.

	

No. of	 0	 1	 2	 3	 4	 5	 6	 7
suicides
Frequehcy 1 364	 376	 218	 89	 33	 13	 2

Fit a poisson distribution to the'above data.

Solution: Since in is not known, it can be estimated as follows:

A_j	 1295M = x =	 fj; == 1.18 Therefore, p(o) = e m = e 118 = .30728 (app).

Table-8.3

	

x	 P(x)	 F = N x P(x).

	

0	 1.1800	 0.30728	 3368337

	

1	 0.5900	 0.36259	 -	 397.5= 398

	

2	 0.3933	 0.21393	 234.5 235

	

3	 0.2950	 0.08414	 92.2=92

	

4	 0.2360	 0.02482	 27.2 27

	

5	 0.1967	 0.00585	 6.4 
6

	6	 0.1686	 0.00115	 1.3=1

-	 0.00023	 0.3 0

	

1	 1096
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Since the number of suicides cannot be traction we converted the expected
values into nearest integers.

8.4 Negative Binomial Distribution

The equality of the mean and variance is an important characteristic of the
poisson distribution whcrea for the binomial distribution the mean is
always greater than the variance. But its opposite feature that the
variance is greater than the mean is seen in negative binomial distribution.
The negative binomial distribution has been found to occur in many
biological situations and can come about as a result of clustering (or
contagian) among the successes of an otherwise binomial population e. g.
death of insects, number of insect bites per apple etc.

A random variable x is said to follow a negative binomial distribution if its
probability function is given by.

p(x) =	 r-1	 prqx. x=0,1,2. ..... and r>0,	 (8.31)

where p is the probability of success and p+q = 1.

Derivation of Negative Binomial Distribution:

Let p (x) be the probability that there are x failure, préceeding the rth
success in (x+r) trials. Here the trials are independent and the probability
of success p in a trial remains constant from trial to trial. Clearly the last
trial must be a success whose probability is p. In the remaining (x+r-l)
trials, we must have (r-1) successes whose probability is given by

( x + r- 1	 (8.32)

Hence multiplying the two probabilities we get,

x+r-1
P(X) =	 r-i	 prqx; x=0,1 ......... and r > 0

(x+r-1\ fx+r-1\ I	 /n\ 	 n
We know,	 r - 1 ) =	

[x ) Since r) =(n-r)]

(x-i-r-fl(x+r-2) .... (r+1)r
X!

r)(-r-1)	 (-r-x+2)(-r-x+1)
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Therefore (8.3) reduces to p(x) = (:) pr(- q)x; x = 0, 1, 2. (8.33

which is the (x + 1)th term in the expension of pr(l - q) - r, a binomial
expansion with a negative index. Hence the distribution is known as

negative binomial distribution.

Remarks:
1. The assignment of probability is permissible since,

P(x) =() (q)X =(1 q)r= 1.

2. The distribution contains two parameters p and r.

Properties of Negative Binomial Distribution:

Mean (t):i=i1'=E(x)=x () p(q)X

(q)1

=p'(- q) ( r)	 (rl) - qX I

(8.34)

Variance (g2):	 -

We know 42' = E(x2)= Elx(x-1) + xl

=EIx (x-1) I + E(x)	 (835)

cc

Now, E[(x-1)x j : x(x -1)p(x)
x=o

= X x(x-1) .,:x	 pr(- q)X

x =0

=
x	

x(x -	
rn	 (r2) q) -2

09



An Introduction to The Theory of Statistics

= prq2(r)(1)	
-) 

(q)*2

= r(r + 1 )prq2(l - q) - r -2.

r(r+1)prg2r(r+1)2
— pr+2	 —	 P2

From (8.34), (8.35) and (8.36) we have,

r(r+1)g2 rq

2 - 12 r(r+1)g2

+

	r2q2 = r7

	

2	 - 

Remark;  In this case, mean is less than variance which is a distinguishing
feature of this distribution.

Moment Generating Function of Negative Binomial Distribution:

The m. g. f. about origin of a negative binomial variate x is

M(t)=E(et') = Yetx (:1) pr(..q)x

=pl	 () (- qet) X pr (1 -qt) - r	 .(8.37)

Differentiating M(t) with respect to. t we get,

dM(t)

	

dt	
=pt(_r)(1_qe)r1(_qct)

=rqpe(I.qet)rl	 (8.38)

,dM(t)1dt. J=0=rqpr(1q)=rqprp1=

Again differentiating (8.38) with respect to t we get,

d2M(t)
dt2 = rqp'(- r - 1) 0 .qe&).2(qe)et+ rqpr(1 -qet) Tlet

=r(r+ 1)pr42fl - qet) -2e2t + rqpr(1 qet)

d 2M(tyT	 -
•.p-2= dt2

110
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r(r^1)g2

=	 p2	 p•	 .,

on simplification.

Third and Fourth Moments: Following the method used in binomial and
poisson distribution for the calculation of third and fourth moments we can
easily show that the third moment, fourth moment, P, and P2 of the
negative binomiJ 'distribution are as follows:

rq(1+q)

	

	 rqlp2+3q(r+2)1
and 94=

•	 p	 (1 + g)2	 j.14 p2 + 3g(r + 2)
and	 rq

Poisson Distribution as a Limiting Case of Negative Binomial Distribution:

Negative binomial distribution tends to poisson distribution as r -3oc and

mean = = m (a finite number).
p

We have, m =	 r, r' =	

m
or,p 1+ — =	 or, p =. Hence q=--

	M) m .	 m+r	 m+r

The probability function of a negative binomial variate x is

p(x).= 	 ) 
pTqX

:..Lt	 p(x)=U	 (x+r-1'\(r\r(rn\x
r-o \ r -1 / \m.r/ \m.r/

(x+r-l)(x+r-2)........(r+1)r Lt	 1	 mx
=	 I

	

X!	 r-ol	 ml
1+_

	

r )
	 i+_)- 

=(i+-) (i+-) .....(i+) (i+)

mx Lt

	

	 (r+x) nfem

	

r	 x!
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Lt	 emm(
p(x)=

r-3	 X.

which is the p(x) of poisson variate with parameter M.

8.5 Geometric Distribution

A random variable x is said to have a geometric distribution if its
probability function is given by

p(x)=pqx ; x=0,1,2	 (8.39)

where p is the probability of SUCCeSS and p + q=1.

Derivation of Geometric Distribution : Let p(x) be the probability that
there are x failures precceding the first success in a series of independent
trials. Let the probability of success in a trial is p which remains same from
trial to trial. Then clearly,

p(x)=q"p; .x=0,1,2

Remarks:

(1) Since the various' probabilities, for x = 0, 1, 2.........are the various
terms of the geometric progression. Hence the name of the distribution
is geometric distribution.

(2) Clearly, assignment of probability is permissible.
cc	 'cc

since p(x)	 ;qxp = p(l - q)
x=0 x=0

(3). It we take r=l in (8.31), the probability function, of the negative
binomial distribution, reduces to, .p(x) = qXp;	 x = 0, 1,2........

which is the probability function of the geometric distribution. Hence
negative binomial distribution may be regarded as the generalisation of the
geometric distribution.

Properties of Geometric Distribution:

cc	 oc
Mean (.t)	 =	 = E(x)=	 xp(x) =	 xqxp. -

x=0	 x=0

xq 1 =(1-q) 
x=1	 p

112
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Variance (a2):

We know, 1L2'=E(x2) =EIx(x - I)I+E(x)	 ....:.:. (8:41)

0C

Now, E[x (x -1) 1= 1. x(x .1)qXp

x=0

°	
x(x-1)	 2r2

-2pq2	 2' qx?=2pq2(1q)3_

x=2

Therefore, from (8:40), (8:41) and (8.42) we have variance,

a? = 112 = W - p1 12 = + 
p- P ^ + -qp = ^-

Moment Generating Function of Geometric Distribution:

Them. g. f. about origin of geometric distribution is,

II eqxp'rp	 (qet)x=p(1 qCt)
x=0	 x=0

dM(t)
dt	 t = o =pq(1 - qet) 2 = 0 =pq(1 - q) 2 =

z
d2M(t)1	 202	 ,

andj.t2=37-1t=o =	 (on simplification).

Therefore,
 2t21±=

Hence the mean and the variance of the geometric distribution arcaand
p

respectively obtained by both the methods.

8.6 Hyper-geometric Distribution

The distribution is so termed as the moment generating function can be
expressed in terms of hyper-geometric function.

When the population is finite and the sampling is done without
replacement, we obtain hyper-geometric distribution.

Suppose r balls are drawn One at a time without replacement from a bag
containing m white and n black balls Then the probability of getting x
white bailsout of r is given by,
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n)

p(x) -	 ; x = 0, 1, 2.r	 .(8.44)(mi-n\	 r^m
\rJ.	 r:5n

Remarks:

1) m, n, and r are known as the three parameters of hyper-geometric
distribution.

2) The assignment of probability is permissible

Since() (r.x) ,m+ n) 
=1.

Comparing the co - efficicnts of xr in 0 + x)m(1 x)'=(1 + x)m *

r /m\/n\ fmi-n
we get,	

.tx)tr -cJ =x=U'' 	 .	 -

Properties of Hyper-geometric Distribution:

Mean () = 1 '=E(x) 
=

xp(x)

=o	
(r x) /(m.H1)

=xo	
(:i1) (rx) ,(m±)

=	
1

(m+n) i	 (r x)

m	 m+n.1	 mr

= m+ fl)	 r - I	 m +	 (8.45)

Variance (&) : We know, 	 = E(x2) =.EIx(x -1) + xJ
=EIx (x -1) I + E(x)	 (8.46)
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r
T' ow,Efx(X_])J= I x(x-1)p(x).

fm\'n

kxl rx=	 x(x-1)	 -
x=O	 (m+rt)

m(m-1) m-2\ / nf
x(x-j)	 x-2)	 r- x

=	 x(x-1)

x=O	
r

r
m(m-1)m-2\ f n

Im+n	 x-2 / (r-x
r. )	

/

X=2

m(m-1) fm+n-2

(m+n\	 r-2

m(m-1)r(r-1)	
(847)(m+n)(m+yt-1)	 r

Therefore, from (8.45), (8.46) and (8.47) we have,

	

mr(m-1)(r-J)	 mr
-,(m+n)(m+fl -1) + (rn+n)

Hence the varnce,y22jf21'2

mr(m-1)(r.1)	 mr	 mr2
7m+n)(m+n-1) + ?m+ n—) —(m—+ n7

mnr(m+n-r)
(on s iniplification).

8.7 Muftjnomjal Distributio

This distribution can be regarded as the generalisation of binomial
distribution.	 -

Let E 1 , E2......Er be r mutually exclusive and exhaustive outcomes of a trial
with respctiwe probabilities p 1 , P2 •••Pr' where Pi + P2 + .......+ Pr

-	 115
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The probability that n trials will result in E 1 occuring x1 times, E2 occuring x2

times.. ..... E occuring xr times in a fixed definite order is
XI	 X2	 X.

Pi	 P2	
x fl=

But we are interested in events occuring in any order. The number of mutually

exclusive ways in which this can happen is x 1 ! x2' ...... x!
Hence the required probability is

x 1	 x2 xr
p(x 1 , x2 ....... Xr)	 x 1 ! X2 1 ........ . Xr!	 Pi	 P2pr	

0!5xi!gn

This distribution is called multinomial probability distribution as the

expression is the general term of the multinornial expansion of

(pi +p2+ ....... +pr).

Moment Generating Function of MultinomialDistribution:

The moment generating function is given by

M(t)	 M(t 1 , t2 ........ . . tr) = E(c t l x i + .2x2 	 tr)

,et l +t2x2 + ...... + t rXr	 n!	 x1	 X2	 Xr
x 1 !x 2' ....... xr!	 P1	 P2

x 1 ! X2 1 ..... . Xr! (
p 1 et i ) X 1 (p2et2)X2(ptr)xr

= (p 1c + p26 + ...... + Pre'r ) .
	 .	 .

Mean (j.11):

dM(t)	 ,.
dt1	ti =t2=	 tr=O	 . .. ki

=np1cti(p1 et i + p2et2 +	 +pretr) I

= Pt•	 ..

Variance (a2) 

d2MWl
We have, 92 = E(x12) = dt1 2 Jt 1 t2 = 	 tr =

116
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We know,

d2M(t)
dt2	

fl ( fl 1)p1 t 1 (piet 1 + p2et2++ Pet, ) i2

+ npje (i pj et + Pet2 +	 .. t......	 2..........rr-r) n -1

d2M(t)t
dt	 I t = t2 = ... = t = o =( - Bp1 2 + np

Variance (2) = R2 = L2- 	 -1 )p 2 +np1 - 1 2P12 = np1 (1 - j) i=1, 2, ;...r.	 -

d2M(t)1
E(x1x1) 

7—i dt I)	
.
 =t2...tr=O.

d2M(t)
dtdt = np

jeti(n - 1)p1etj + ( p 1 et i + p2et2++pretr) n-2

.d2M(t)1J	 =n(n - 1)PiPjdt1dt 
tl = t2 = ... =tr=O.

We know, Coy (x1x) = E(x1x) - E(x1) E(x1)

= (n -1 )pjp1 - fl2 i j = - fl jj ;	 j•

8.8 (a) Discrete Uniform or Rectangular Distribution

Among the discrete distributions, the discrete uniform distribution is the
simplest one. A random variable x is said to have discrete uniform
distribution if it assumes a finite set of values each with an equal
probability of occurence. The probability function is given by

P(x)= L; x=1,2.......n	 (8.48)

If a fair die is tossed the possible out-comes are 1, 2, 3, 4, 5 and 6 each with

probability

Hence in this case P(x) = Thus the probability is uniform for all values of

the random variable x.

8.8 (b) Continuous Uniform or Rectangular Distribution

A random variable is said to have a continuous uniform distribution over the
interval a to b if its probability density function (p. d. 0 is given by,

f(x)= —; a<x<b,
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Remarks

1) a and b are the two parameters of the distribution.
2) The graph of uniform p. d. 1. f(x) is given below:

f(xI

1.

a	 b	 x

Fig. 8.1 Rectangular or uniform distribution.

Properties of Uniform Distribution:

b	 b	 1b2-a2 a+b
Mean 1.L=E(x)=jxf(x)dx =Jx_dx=(b -a)	 2

b
Variance(a2): Wc know, p2'=E(x2)=jx2f(x)dx

b 1	 1 b3-a3 a2 + ab + b2
=1x2—--=j b-adx= 3(b-a)-3

a

'(b-a)2
Now variance, 2 = 1.12 -	 = 12

We can easily show that, E(x r) =
(r+1)(b-a)

(b-a)4
It can be easily calculated that 43 = 0 and 114 =

Therefore, R1 = 0 and (32 =

8.9 Normal Distribution

The most important and useful distribution, in Statistics is the normal
distribution. A random variable is said to have a normal distribution if its
probability density function (p. d. f) is given by,

118
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(x-p.)2

e	 2,12; -oSX^oc
	 ...(8.49)

where t and c52 are the mean and variance of the distribution.

Remarks:

1) .t and & are the two parameters of the distribution.

2) The normal variate is often expressed by N(Ji,&).

3) The assignment of probability is permissible,

since Jf(x)dx= 
J	

e2 	
dx

='e2dz

2 
°	

dt
=e

[
Putting 

z2
[Putting= t.

oc

=Je t 2 dt

JtO

=[=1, since

4) The graph of 1(x) is a famous bell shappcd curve. The top of the bell is

directly above the mean t. For larc values of a, the curve tends to

flaten out and for small values of a, it has a sharp peak

Fig. 8.2 Norimil d i .-trihiiti n
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Derivation of Normal Distribution (limiting form of Poisson Distribution):

Normal distribution is a limiting form of the poisson distribution with the
parameter m—o and x—*

The probability function of the poisson distribution with parameter in
given by

c - mmx
PW	 x!	 x=0,1,2.......

The starlings approximation to x!, for large x is

x! =ex

Therefore, lim p(x) = lim	
e-mmx

m_	 m	 - x *

=lim	 srn (ii)	
7

m—>o

1
-

	

	 limcml_	 -
2imi m—o

or,x-m=-,or,x=m+,.
•	 'yin

+'V mj1

Again let =cm(L1) X+2

=e"(1
t:)(	

2m+z'[+)

Taking logarithm we have,
I	 l\	 ,	 zlog cD r z y m- m +z'J,-m+ 5) logfl --
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y Z2 + factors containing power of m in the denominator

limp	 ,i

m—*"
(x - rn)2

=	 z2= C	 2m	 (Putting the value of z)

- (x-m)2
Honcelim p(x) - 1 	 <X<o.

m—)

x—*o

(x-m)2
f(x)=,_........e	 2m	 -<X<-

72mi

x - m x - .L (since mean and variance of
If weput - = .
	 poisson distribution are same)NFM

We get finally,

1	
e2a);ox!5oc.

This is the p. d. f. of' the normal distribution with mean i and variance &.

Chief Characteristic of the Normal Distribution and Normal Probability

Curve: The normal probability curve with mean j.t and variance & is given
by the equation

e 2 a

and has the following properties.

1. The curve is bell shaped and symmetrical about the ordinate x =

2; As x increases numerically, f(x) decreases rapidl y after thexint N =

3. The maximun ordinate is at x = p and is given b y y 
=
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4. Points of inflexion are equidistant trom ue mean.
5. The curve extends to infinity on either side of the mean.
6. Arithmetic Mean, Median and Mode of the distribution coincide.

7. All odd moments are zero and li = (L I2 = 3.
8. Linear combination of iiidependent normal variates is also a normal

variate.
9. Mean deviation about arithmetic mean is

- -	
(approx).

10.Quartile deviation is equal to—a.

U. Area property

P(jt-a!^x5i+)=0h826.
- 2 15 x i5 j.t + 2) = 0.9544.

l3a!5x5+3)=0.9973.

P( -1.965--< 1.96)= 0.95;
(N

P(- 2.58 5	 < 238) -_ 0 .99.
(N

Mean and Other Moments of Normal Distribution:
Mean (j.t)

1	 1(x-2

p =	 = E(x) = Jx f(x)dx =	 _______ - 21,	 ) d

0	 I

=f(l.+(z)T.c2t di Putting z = -

= 3.t + 0 = II

LSince zc 2 ' 2 is an odd function of z.

Odd order moments about mean:

P+i	 J(xP)2(x)dx= Jp)2r*l 1	 e 2
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=J((z)2T1 e 2 dz 
I Putting z =

02r+1 °	 1.2
or, .L2,1=—= jZ2r•• 

e 2 dz=O.
N2it

Since the integrand is an odd function of z.

Hence all odd order moments about mean are zero.

•	 Even order moments about mean:

1(x-Jf

pr= 
j 

(x - j)f(x)dx	 j(x -	
2

=f(cyz)2re th [putting z =
CY

u]

cy2r 0	 1,2

dz'
4 21E_

Since the integrand is an even function of z, we have,

2(Y21

	

	dt r 	•z2
[Putting -=

2r&r
=—Jdt

'Vito

=	 [(+)

&r/ 1\f 3\f 5\	 311
=

2r
7r) r-) r)

1.3.5 ...... (2r-1) 02rj	 r I	 r=	 ,Sincel	 ='V1t
Nit	 .	 .

I 1.5 ...... (2r1)2 r .	.
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Therefore, when r= I ;92 =	 = Variance,
Again when r = 2; g4 = 1.3a4 = 3&.
and j.t = 0, as we have obtained that odd order momcms are Zero.

Hence f3 i =1= 0 and I3zr:—rr3
P2 

3	
42 2

These two values generall y identify the type of the distribution.

Moment Generating Function of Non-na! Distribution:
The m. g. lola normal variate about orgin is given by,

M(t) 
= J e" 1(x) dx

	

I	 °	
(X-11)2

dx.

r
't(.i + cT/)	 2dz.	

Putting, z =
L

o1

	

dAt	 (z2-2tz)
-	 dz

	

41E	 ° - ((Z-t)2-2t2)
=e 2 dz.

2

= 

dAt^._	
(x-Yt)2 dz.

.t.

(3,t2
 Puttingz-t=u J

&t2
=t4*+.

I he moment generating function (m. g. 0 of normal distribution about mink given by,
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MR( t) = El. et(X - ) J = e -4'E(Lx)

= e4tM(t).

e

Hence,

(t½2 (t2& 3	 (t2(32y

2)	 2)	 2)
t2(32 ____ __

Mp.(t) = 1	
21	 +	 3!	 ++	 rt	 +	

(8.50)

Now the co-efficient of gives p, the rth moment about mean. Since there is

no term with odd power of t, all moments of odd order about mean vanish,

i, e. 12r =O, which follows the earlier result.
t2r

And the even moments g2r = Co-efficient of-- in (8.50) which is equal to

2r(2r)!

2F r!

a2rl2r(2r1)(2r2)5,4,3,2,11

- 	 2r r!

&' 11.3.5........(2r - 1)1 [2.4.6......(2r - 2)2r1
- 2r r!

&r I1.3.5(2r_1)]2n l1.2.3 ...... (r-1)rj
- 27 r!

=	 1.3.5....(2r - 1), which is equivalent to the earlier result.

Standardised Normal Variate;

A variate is said to be a standardised normal variate if it is distributed
normally with mean zero and variance unity.

Thus if, x-N(J.1,2), then z =	 is a standardised normal variate with

E(z) = 0 and var (z) = I and we write z N(0, 1).

1.2

The PA. us f(;) =-2 2'	
(8.51)
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Area Property of Normal Probability Integral:

If x -N(,a2), then the probability for,the interval from the mean J.L to the

value x 1 is given by,

1	 x	 (X-A2

I'(i!^x!5x1)=L,2 a) dx

11Let 
x-
-=;dx=adx. when x=ji,z=()

a

-t
and when x = x1 , z 

=x1 
-=X, (say)

a

-z1H.2
C	 d/..

21c 0

,z1

Where z is the standardised normal variate. The definite integral J f()dz
0

is known as normal probability integral and the area under standard normal

curve between the ordinate z = 0 and  = z 1 . These areas have been tabulated

for different value of z 1 , at an interval of .01. ISuch a table is providedby

Biometrika Tables for Statistician Vol-i by E. S. Pearson and OH. Hartley

P.11. 104-110.1

Example 8.5 A random variate is normally distributed with mean 12 and
standard deviation 4. Find out the probabilit y of the following

i) x ^ 20	 ii) x:5 20	 iii) 0 ^S x :5 12.

Solution: Here we have i=12 and Cr = 4.

20-12
i) whenx=20,z=--=2

P(x^!20)=P(z^!2)=P(0!^z!c)-P(0 15z!52)

= 0.5 - 0.4772 = 0.022.

ii) P(x!^20)=P(z52)= l'(- o	z!5 0) + P(0!5 z!5 2)

=0.5 + 0.4772 =0.9772.

iii	 Pffl^ x <12 = P1-< ,(0) -P10< '< ) = 0.49865.
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Importance of Normal Distribution in Statistics:

Normal distribution plays a very important role in Statistics because of the

following reasons:

1) Most of the distributions occurring in practice c. g. Binomial, Poisson,
Hyper-geometric distribution etc. can be approximated by the normal
distribution under some assumptions. Moreover, many of the sampling

distributions e. g. student's t, F and x2 tends to normality for large samples.

2) Even if the variable is not normally distributed, it can sometimes he
brought to normal form by simple transformation of variable. For example,

if the distribution of x is skewed, the distribution of might come out to he

normal.

3) The distribution has attractive mathematical properties which are

very useful from theoretical point of view.

4) The proofs of all the tests of significance in sampling are based upon
the fundamental assumption that the population from which the samples

have been drawn is normal.

5) Normal distribution finds large application in statistical quality

control theory.

Log Normal Distribution :The positive random variable  is said to have a

log normal distribution if log x is normally distributed. The p. d. 1. of x is

given by

I	 --x-I.t12
e	

llog	 ;x>O.

Moments: The rth moment about origin is given by
I1' = E(xr) = E(e"Y),	 where y =log x or, x = eY.
= M(r), which is the m.g. F. of y, r being the parameter.

...,ir4rk2, since y= log x N(R,&).

Remarks:

1) For a particular case if we take j1 = log a, a > 0.

then ,t' = e r log a + r22, =ar e

Now taking r =1,	 ji' = a c
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and if, r = 2,	 = a--, 2a2c(2)
l = R -).112=a2e

2) Log normal distribution arises in problem of economics, biology,
geology, and reliability theory. In particular, it arises in the study 'of
dimension of particals under pulverization.

3) If x 1 , x2 ......x '., is a set of independently identically distributed random
variable such that mean of log x i is .i and its variance is &, then the
Product N 1 x2 ...... x is asymptotically distributed according to log normal
distribution with mean j and variance n2.

8.10 Gamma Distribution
A random variable is said to have a -gamma distribution with parameter n
if its probability density function is given by
f(x) = r	 0!5x5—,  n>0.

In
and is denoted by G(n).
Remarks:

I) - The functionje x 1 dx is knwon as gamma function and is denoted by

2) The assignment of probability is permissible, since
0 	 1
ii(x)dx=j'x

(1	 fl	 .

3) A continuous random variable having the fpllowihg p. d. 1. is said to
have a gamma distribution with parameter X and n if

RX)
XncXX1	 0!5x<o.....X.>0............(8.54)

n, 

and is denoted by G(X,n).
4) The cumulative distribution (unction (c.d.f) is called the incomplete

Gamma Function and is denoted by
p

Fp = i
	

1dx; x >0
)onI fl ()	 n>0
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Properties of Gamma Distribution:

oc

Mean (4) = j.t 1 ' =E(x) =JxI(x) dx
•0

1
= - f xe - X xr - dx = - f e - X x dx.

[ne'.	 [n

[(n+1) nm
=

[n	 [n

Variance, (2):

-	 cc

We know, 1.12 =E(x2)=J x2f(x) dx.
0

x 1 dxf x2 e

0

I °	 {(n+2.)	 (n+1) nm

Fn
=_Jexxldx=	 -	 = n(n-i-1).

Fn

Vanarce4Y2 =42 =i2'-4'2 = n(n+I)-n2=n.

Third moment (.1):

We know, 43'= E(x3)=j0f(x)dx

=!1cxn1dx	 1c x2dx
[n J 7n

00

0	 0

[(n+3) - (n+2)(n+1)nrn

Fn	 Fn
= n(n+1) (n+2).

- 12 l.Li + 24.t 1 . =n(n+1) (n+2) - 3n (n + 1) n -+ 2n - 2n

Fourth moment (g4): We know, 1' = E(x4) = Jx4 f(x)d.

= En	
-	 - 1 d = fe - x 3dx

rn 

U
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f(n + 4) (n + 3) (n 2) (n + 1) n[n
=	 =	 =n(n-t1)(n+2)(n 3).

	

[rt	 [n

4	 4	 3-iPi	 'PQ Ii 2 -

=n(n+1)(n+2)(n+3)-4n2(n+1)(n+2)+6n(n+1)n2-3n4

= 3n 2+6n (on simplification)
2()2 4	 P	 3n2 +6n	 6

Therefore, P, = -- =---=- and P-) 	 =3+

The Moment Generating Function of Gamma Distribution:

The m. g. f. about origin of the gamma distribution is given by

oc

M(t) = E(et ) 
= - $ 

e"c X x' dxr0
oc

_$C X (lt )xfll dx
[no

cc

=Je 	 IE'utting z =x(1 - t)l

	1	
cc

=

	

	 1e''1d
[n (1t)r d'

	

1	 1
Fn

	

(1-t)[n	 (1 -t)	 (1 -t)	 (8.56)

Differentiating M(t) OflCe, twice etc. with respect to t and putting t = 0, we

get the same result of the moments.

Remarks:

1) Like poisson distribution, mean and variance of gamma distribution are
same.

2) As n—oc, I3	 0 and P2	 Hence the distribution tends to normal
distribution as n becomes very large

3) For more general gathma distribution,

	

Xc . x 1	 0^x^ccdF(x)=	 dx,
[n	 X,n>0
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The m. g. 1. is given by, M(t) = 1 -	
-n	 (8.57)

Theorem 8.1 The sum of two independent gamma variates with parameters
in 	 n is also a gamma variate with parameter in n.

Proof: Let x and y be two independent gamma variates with parameters m
and n respectively. Them. g. F. of the sum z = (x-i-y) is given by

M1(t) = M + (t) = M(t) M(t).

=(l - t) -	 (1 - t) -	 (1 - t) -

which is the m. g. F. of a gamma variate with paramet .rr m + n. Hence the
result.

Remarks : This result can be generalised for any number of independent
gamma variates.

8.11 Beta Distribution

Beta Distribution (First Kind) : A random variate is said to have a beta
distribution of first kind if its probability density function is given by,

Ix) -	 xm-lUx)n-1, 05x51	 88>
- B(m,n)	 m,n >0

and is denoted by B1(m,n).

Remarks:
1) in 	 a are two parameters of the distribution.
2) The assignment of probability is permissible since,

JB(m,n) x(1 -x)1dx

1	 1	 B(m,n)=	 1xml(1x)ldx=	 =1.B(m,n)
0

3) The cumulative distribution function is called the lncomplite Beta
Function and is denoted by,

q	 10!5x!5l
F(q) 

J W(77)
xm-10 -x) 1 dx;	 m,n >0

0
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%lbillent, I Rtj Distribution
Ih, oh 7 , ,mcitt about origin is given by,

I XrXml(1_x)1
Li	 -	 \i LI\ = Idx

j	 B(m,n).

1(1 -x)	 d 
= B(rn,n) B(m+r,n)

1 Cm + n) - km + r) km + n)

I	 - 0 [m rn.	 [(m + n + r) [m

In	 .ir, when r=1,	 -

ML-0 7 1I 	 u1	
r(m + 1)[(m + n)	 m[(m)[(m + n)

	

it	 -	 =
	[(m+n+1)[m	 (in +n)[(m+n)[m

Tfl fl

	r(m+2)[(m+n)	 (m+1)mlm[(m+n)
I'	 r 2 ;	 =	 =

	[(m+n+2)[m	 [(m+n+1)(m+n)[(m+n)Fin
11(111 ,- 1)

'in	 n  (in+ n + 1)
m(rn+1)	 13,12

=	 = 17
,

	-	 --	 (rn+n)(m+ni-1) (m+n)-
Inn-

2	 (on simplification).tm n) (m+n+1)

'-'irntl,ir j v j3 and J4 can he obtained and the values of i and I7 carhc
011 nWILLI.

Beta Distribution (Second Kind) : A random variable is said to have abeta
Jiiribiitiun of second kind if its probability density function is given by

	

I 

	
1m,n.
0.̂x^...........B(m,n) (1±x)m+n 	 >0

and I, denoted hvB',(m,n).

It w- put I + x =	 in the above p. d. 1. we get the beta distribution of the
nrt kind,	 -

i()	 BC m,n),	 II
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If we put x =T 
I

	 the beta distribution of the first kind we get (8.59)

Beta Function :The function  xm - 1 (1 -	 - 1 dx, 0 < x I is called the beta

function and is denoted by B(m,n).

Relationship Between Beta and Gamma Function:

We know, Fm[n =jcxm1 dxjeYy 1dy.

=JJe (XY) x1 yfl	 xdy.

Let u=x+y,	 v=-
x+y

xruv,y=u(1v) and dxdy Ii Idudv

du	 du
where J =

dv	 dv

As x and  range from 0 to o, u ranges from 0 to and v ranges from 0 to •l.
cI

..[rn[n =jfe(uv)m{u(1 - v))ududv.

=je.uum*nlduJvm1(1V)n1dV

= [(m+ n) B(m,n).

B(mn)=.[mfn
[(m+n)

Example 8.6 Find the ''alue of t( - ) and hence[()

Solution: Wc know, [m[nfc-xxm.ldxjeyyn.ldV

= 5 f  - (Y) x -	 1dx dy.
0 0

Let us put, x = rCo 29 ; y = rSjn2().
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dxdy=j Idrd0=2rCosOSiflOdrdO.

As x and  range from. 0 to	 r ranges from 0 t o and 0 ranges from () to'.

It
oc7

Therefore (8.60) becomes, [m [n = 2 5 f  rm+fl - I CAW- 1 O Sin 2n- 1 0 drd8.

0 0

It
.7

- r	 dr 25 Cos	 1 0 Sin'-'- 1 0 dO.

= [(m±n) 25 CO52m 19 Sin2" 1 0 dO.

or, [m [ = 2 ICos2 	O Sin	 9 dO.
[(m+n	 J

It

or, B(m,n) = 2 J coc2m - 1 0 Sin2 'Ode:

It

Now, B (n-) =2JdO=it

Again, B() =	
2	 Since, [1=1

-

or, t I If =It

0
Example 8.7 lix and y.are independent gamma variate with parameters m

n respectivel y then show that the variates u = x + v, N—.i arc
V	 . 	

. 	 x+y
independent and that u is a G(m n) variate and v is a B 1 (m,n) variate.
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o
Solution: We have, F(x) = 1 - e - X xml,	 O^xS

	[m	 m>O

and f(y)= le - Y Y'

	

Fn 	 n>Q.

Since x and y are independently distributed, their joint probability
difterential is given by,

dF(x,y) = 1(x) f(y) dxdy 
=	

ex	 1 y 'dxdy.

Now,u=x+y v=
x+y

x =uv ; y =u(1-v). Then dx d ' =IJ Idu dv =u du dv.

Asxand y range from Otooc ;uranges from Otooc'and v ranges from o to. 1.

Hence the joint distribution of u and v is given by,

dF(u,v) 
=

e - u(uvr l (u(1- v))'- 1 u du dv.m Fn

= —e - Uum*fl - du V' 1 (1 - v) r I dv.
Fm Fn
e .1umI	 Vm-1(1_v)n-1

du.	 dv.
= [(m+n)	 B(m,n)

This shows that u and v are idependently distributed as G(m+n) and 131(m,n)
variate respectively.

Example 8.8 If x and y are independent gamma variate with parameters n

and n respectively; show that

u = x+ yand v = are independent and that u is a G(m+n) variate and visa

B2(m,n) variate.

Solution: As in Example (8.7) we have,

dF(x,y)
= [m[n e - 

(Y) xml y1dxdy.

x	 uv	 U
Sinccu=x+yandv= — we have, x=—,y=—

y	 1+v	 1-4-v

clnddXdy Ii du dv= (1,)2 dudv.

As x and y range from 0 to oc, both u and range from 0 to -. Therefore the
joint probability distribution of u and v corn"
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dF(u,v) =	 U

	

1	

(uv)m-1/ 
u\n-1 u

C - -

	

[m[rt	 14-v	 (1+v)2 dudv

	

c u um1	 1	 vm-1
=	 du

	

[(m+n)	 B(m,rt) (I +V) m,n dv, 0:5 u, v!^ o;

showing that u and v are independently distributed .as G(m+n) and 132(m,n)
variate respectively.

Remarks The above two examples lead to the following impbrtant results.

If  is a G(m) variate and y is an independent G(n) variate, then

1) x±y is a G(m+n) variate i.e. the sum of two independent gamma
variates is also a gamma variate.

2) ! is a 132(m,n) variate i.e. the ratio of two independent gamma variates

is a beta variate of second kind.

x
3) x+y is a 13 1 (m,n) variate.

8.12 Exponential Distribution

A random variable is said to have an exponential distribution with

parameter X > 0 if its p.d. f. is given by

I
1(x) = Xe - X', x^:O.	 (8.61)

The ordinate of the frequency curve is the highest at x = 0 and it decreases as
x increases. The frequency curve of this distribution is shown in Fig 8.3.

Fig. 8.3 iponcntiaI ditrihuten e ith ? = 1	 2.
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Properties of the Distribution:

Mean =i =t ' = E(x) = jxflx)dx =jxAedx

=-xeJ + 1edx

Variance: We know variance a2 = = 42 1j12

It can be easily shown that t'2 = E(x 2) =

Hence standard deviation = -.

The Moment Generating Function of Exponential Distribution:

The m. g. 1. of the distribution is M(t) E(c L ) Xj C1 e -	 dx

=	 'dx.

1

(t) =(	

)(

We know, Rr = E(x T) = Co-efficient Of
tr
 j in M(t), which is equal to

— 'r= 1,2,3...........

1	 2
=—; 12 = and soon.

X	 X2

The third moment and fourth mbment come out to be 43 =-2and I4 = 9
X-1	 T4

Therefore, P, = 4 and 'P2 = 9 which are independent of X.

Remarks:

1) The exponential variate is an special case of C(X,n) variate when n -
2) The mean and standard deviation are equal.
1) The distribution is highly skewed.
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8.13 Cauchy Distribution

A random variable x is said to have a standard cauchy distribution if its

p. d. 1. is given by

1(x) 
=	 1	 (8.62)

•	 g(1^x2)

In this case x is termed as standard cauchy variate.

In general, cauchy distribution with parameters X and j.t has the following

p. d. 1.

X	 I X>o
f(x) =	 (8.63)

itlX2 +(x-li) 2 1	 1-x:5

Characteristic Function of Cauchy Distribution:

The characteristic function of cauchy distribution is given by

x
qt) =— I e	 dx.

ir	 X2^(x.t)2

Lctusput=y :.dx=Xdy.

The range remain unchanged i.e. 	 !C y!5 .

Then, p(t) =!.

I —rdv.
It J	 l+y

From the knowledge of Contour Integration we have,

cc
'JIxv

I ___.rdv =lre t I
1*v-

-cc

Therefore the ch. function of the cachy distribution becomes,

t)=e	 e	 I;	 X>o.

For standard cauchy distribution,

ILL
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Additive Property of Cauchy Distribution : If x 1 and X2 are independent

cauchy variates with parameters (A 1 , ) and (Az, .t2) then x 1 +x 2 is also a

cauchy variate with parameters (A + X2,111 + 92).

Proof:4)x 1 +x2(0=(x1(t) 4x2°

(Since x 1 and x2 are independent,).

I.

From the uniqueness theorem the result follows. This property can be
extended for n independent cauchy variates.

Since (t) in (8.63) does not exist at t = o, the mean of the cauchy distribution
does not exist. Also the higher moments of cauchy distribution do not exist.

The arithmetic mean of a set of observations of cauchy distribution is also a
cauchy distribution. In other words, in a cauchy distribution, the arithmetic
mean of a sample of any size gives exactly as much infOrmation as a single.
variate x.

Moments of Cauchy Distribution:

E(x)= 1xf(x)dx= — I	
X

-'

A _____
= — I	 dx.

-

X	 dx	 A	 (x-I.0=-J+-J	 dx.
iA2 +(x-t)2	1tA2+(x-J.t)2

A
=4.1 +—J —dz.

,t
- oc

The integral - J 3 dz is not completely convergent, its principal value,

urn n
viz. , I —dz exists and is equal to zero.

—°' J X2+z
-n

Therefore, in general sense the mean of cauchv distribution does not exist.
But if we assume that the mean of the cauch y distribution exists (by taking

139



An Introduction to The Theory of Statistics

principal value) then it is located at j.t. Also, obviously, th proi•.ibilit.

.. is symmetrical about the point x i, hence for this distribution th

mean, median and mode coincide at the point x = 1.1.

NO	 2 E(x -	 J(x - )2f(x)dx

(x -.j)2

- I .	 dx, which does not exist since the integral is not convergent.
Ic .1 k2*( - 1.1)2

Thus in general, for the cauchy distribution 	 (r 2! 2) do not exist.

8.14 Laplace Distribution

A continuous random variblé x is said to have laplace distribution if th
p. d. 1. is given by,

.......................(8.64)
Characteristic function of laplace distribution is given by,

cc

(p(t)= .. jltX	 dx.

- oc

iloc

=I jCostxe'i"ldx+i

L-°

42J Cos txcH x dx.

JS*Itxei" ldx]

Since the integrands in the first and second integrals are even and odd
functions of x respectively.

t) = J Cos txc	 dx.

J
e Cos txdx

=1 -t2ç(t)

[ on integation by
parts
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8.15 Pearsonian System of Frequency Curves

A set of frequency curves was developed in the first memoir of Karl Pearson
in 1895 and in two subsequent papers in 1908 by assigning appropriate values
of a, b0, b 1 and b2 in the following first order differential equation
dv	 -y(xi-a)
dx b0+b1x+bx2 (8.65)

For obtaining the equation Karl Pearson considered the following
characteristics

1) A frequency distribution generall y starts at zero, i. c. from a low
frequency, rises to a maximum and again falls to the low frequency. Thus the
frequency curve is generally unimodal. If the curve is represented by

y=f(x), then d 'v-=O when x=-a.dx
2) At the ends of the frequency curves there is a high contact with the

axis of x. i.e.	 = 0 when y = 0.dx
3) The first four moments of the distribution are sufficient to determine
the frequency curve.

DetemnMioH of the ConMaigs of the Equation in Terms of Moments

Multiplying t*ith sides of (8.5) by x 1 and rearranging we get,

(b0x" +b,x 1++j.,(xn+1 + axr)dx

Integrating by parts over the entire range of the variate X.

We have,	 +	 +x2} y	 f{nx +(n + 1)b1x

+(n+2)b2xfl*l)ydx_.J(xfl+1+axn)ydx

Assuming the high contact at the extremities so that,

Ixrf(x) I	 = 0 i.e. xnf(x)__0 as x—* or x—* - o; and also
-cc

cc

we know, 
5 

xrf(xjx = Jl the nth moment.
-cc
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Considering that x is measured from the mean we get,

Putting n=1,2 and 3 using j =1 and =O,weget,
b 1 =a

b0 3b.t2 = P.2 h6)
3b 1 42 + 4b2 .t3 =	 + al-L2

31)412 + 4b 143 + 5b244 = 94 + ap.3	-

Solving (8.66) we get

ho	
- 3 i )	 'jRI32 + 3)

= 2(5 - 6i -	
, b 

=	

-

 2(52 -	
= a

(2-3-6)

2(532-631-9)

	

W3	 P4
where

	

M2	 P.2
Putting the value of a, b 0, b 1 and b2 in (8.65)

we have,

	

-	 - y2( 2 - 6i - 9)x +	 + 3)

dx
(202 - 3p -6)x2+cy

Method of Getting Different Types of Distributions:

The solution of the differential equation (8.65) depends mainl
nature of the roots of the equation b0 + b 1 x+b2x2 = 0. The discrimin	 i the

equation is h 1 24h>h7 . Let us define a quantity k =n which th	 aure of

various distributions will be determined.

Type 1: Roots of b0+b 1 x+b2x2 = 0 are real, unequal and of opposite igns,

that k < 0.

Shifting the brigin to the mode i.e. x = -a we have,
ldv	 x
ydxB(x+a1)(x-a2).

	

ir	 a 1	1	 a2
TB,[.(aj^a2)°(x+ai) + (a1-*-a21(x-a2)

	

MI	 rr'2

a 1 )	 (\•- 112)

	

a 1	a-)
wh . rn	 and m, =

-s- a7)	 -
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I	 +	
'dx.Now we have, dv 

= (x ^ a 1 )	 (x - a2)J

Integrating we get,

log y = m 1 log (x + a1) + m2 log (x - a2) + log C'0

or, y =C'0(x+a1)1(x-a2)°

/	 X\rfl1( x\m2
= c F i + —	 (1--I,	 -ct15x^ct2

t . aj	 a2)

where -= and C0 is a constant.
al a2

Type VI: Roots of b0 + b 1 x + b2x2 = 0, are real, unequal and of same sign i.e.

k > 0. Here also changing the origin to the mode, x = -a

d	 x
we have I -. =

y dx B(x+al)(x+a2)

In this Case, let the toots are be a 1 and a2, SO that,

a 1 = - a1 , a2 = - a2, a1 and a2 > 0

(Vide Type l)
a1 a2

The equation of the curve reduces to

y =ci(I . -.Y(i 
x '-m2

±—I
(x 1 )	 a2)

which can bc written as y=C0 xT 2 (x+p)m 1;	 -p!Cx!^o

Type IV: Roots of the equation b0 + b 1 x -4- b2x 2 = 0 are imaginary,

so that 0!5k5I.

-(x^a)Idy
We have,	 ydx = b0 +b1 x + x2

shifting the origin to x =- - a we have

1	 -x
— dy=	 dx
Y	 b21(x+c)2+d21

(x + c) - c
= 2	 2dx

b7 I(x -s-c) +d I
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• tegrating we get,

'g	 IogC 0 -	 1ogt(x+c)2 +d2 l - 
c	 (x+ c)

tan	 d

1
rc	 (x+cYor, v= C' Rx +c)2 +d 2 l - 2b	 [7tan -	 d J

/	 x2 \,-1	 x
=(. Ii + -)
	

- mOn 1_; 1, m >0

Type III : Onc otofbo+bi x+bx2 =Oisjnfinjte=O b1*0

ko

	

I dy	 (x+a)
%C hive,	 -

	

ydx	 l+bx

shifting the origin we get,

.1	 -xdx	 1	 c-	 =, - - ±	 dxY	 h1(x+c)	 b1	 b1(x+c)

I fltegriting We get,

lug y= log CC) 	 iog(x±c)

or	 Y=Co(1+) P-

Type VII Both the roots of b 0±b 1 x±b 7 x 2 = 0 are infinite i.e.
b2 = 0 = b 1 , so that k = 0 we have,
-1	

x + a

Integrating we have logy =Iog C O -(x + a)2

-	 (x + a)2	- o<y<	 -

This curve is well known normalcjve.js curve can also be obtained from
8.67)
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Type V: Roots of bo + b 1 x + b2x2 = 0 are real, equaland of same sign
k=1.

We have,(x + a)
y dx	 b2(x+d)2

x
= - b2( + c)2	

by proper choice of origin.

_ C.

b2 (x+c) (x-i-c)2

i	 in
or, dy= - Lx -,+C)  - (x + c)2j dxy	 b2

1	 C
Integrating we get,log y = log C

,
0	log (x + c)-	 (x + c)'

or,	 y=Co(x+c) b2 e2(x+c)

-
=C0x e 

X ;05x5 °, p,q>0.

Type H: Roots of b0 + b1 x + b2x2 = 0 are real, equal but of opposite sign so that
k=0.

Wehave,(x+a)
	 (x+a)

ydx b2(x-a1 )(x+a 1 )	 b2(x2-a12)

I	 (x+a)
or,—.dy = b

2(x2 - a12) dx.

Integrating we get,

logy = log C'() +. 	 (x 2 - a12).

1 b2
or,	 y=o(x2-a2) i

/ x2\m
=Co(1 .__7) ,	 -a15x5a1

:TThis curve is symmetnca with the mode at kb*igin. We can Atgt* this
curve by plitting P, =Oavid P2<3in(8.67)

Thus sevenn m1portat	 e,lt types of Vears€*	 CtTs arc obtained
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9. CORRELATION AND REGRESSION

9.1 Bivanate Distribution

In earlier chapters, we mainly concentrate our attention to univariatc

distributions, i.e. the distributions involving one variable only. We may

come across some situations in which each item of a series may have two or

more variables. The distribution in which we-consider two variables

simultaniously for each item of the series is knwon as bivariate

distribution. The distribution of heights and weights of a group of persons,

the ages of husbands and wives of a number of couples etc. are the examples
of bjvarjate distribution.

9.2 Correlation

In a bivariate distribution, there may exists correlation or co-variation

between the variables. If the change in one variable effects a change in the

other variable, the variables are said to be correlated. If the increase

(decrease) in one variable results in the corresponing increase (decrease) in

the others i. e. if the changes are in the same direction, the variables are

positively correlated. For example, the heights and weights of a group of

persons is positively correlated. If the increase (decrease) in one variable

results in the corresponding derease (increase) in the other i. e. in this case

the changes are in the opposite direction the variables are said to he

negatively correlated. For example, the volume and pressure of a perfect gas

is negatively correlated, lithe changes do not depict any of the above two

types., the variables are not correlated.

Scatter Diagram : The diagrammetic way of representing -bivariate data 4s

called scatter diagram. Thus for abivariatc distribution (x 1 , y)i=1, 2,.....n,

the diagram of the dots obtained by the values of the variates x and y along

the x-axis and y-axis respectivel y in the x, v-phinc gives the scatter

diagram. From a scatter diagram it can be cid'ntiv 11CCrtainod whether

there is any correlation exists among the variate'. 	 not
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Correlation Co-efficient We have already discussed that

var (x) =	 (x1- x )2, where x = mean of x i gives the idea of variation

among the values of the variable x, similarly

var (y)	 - y)2 , where y = mean of v gives the variance of y. And

Coy (x, y)-)	 (xrx) (y 1 -y) gives the co-variance between the variables

x and V. I. e. the simultanious variation of x and y. But co-variance is not
independent ofunits of x and y. To make it a unit free measure Karl Pearson
in 1890 defined correlation co-efficient between x and y as,

Coy (x, v)	 S. P. (x, y)
TY=var(x) var(y)	 S. S.(x). S.S.(y) =Nsy

— (x 1 -x) (j	 Y )	
(9.1)

= -I)2} {J(y-—)2}

Algebrically (9.1) reduces to

Yxv (Xj)(j)

r=	 ______________________________
	

2)r,

\,. " I{	 (x)2}{fl(v)2}

9.2) is usually considered as the working formula for calculatin ,4 t1c

correlation co-efficient between x and y. r, y is sometimes called the product
moment correlation co-efficient or total correlation co-efficient or Co-

efficient of correlation.

By symmetry it can be easily shown that 	 =	 is denoted sometimes
simpl y by r.

Correlation Table: When the number of pairs of observations are large, it
can be expressed in a tabular form known as correlation table or bivariate
freqpencv distribution in which both the variables are clacsificd One along
the-row and the other along the column. The value in a particular cell is the
frequency of the pair l ying in particular combination of class interval,.
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Table-9.1
Correlation table of ages of husbands and wives of 53 couples.

Age groups of wives (x)

Age gr.of

husbands(y) 15-25	 25-35	 35-45	 45-55	 55-65	 65-75	 Total

15-25	 I	 I	 -	 -	 -	 2

25-35	 .2	 12	 1	 -	 -	 -	 15

35-45	 -	 4	 10	 1	 -.	 --	 IS

45-55	 -	 - . 3	 6	 1	 -	 it)

55-65	 -	 -	 -	 2	 4	 2	 8

65-75	 -	 -	 -	 -	 1 1 2	 3

Total	 3	 1	 17 -	 '14	 1	 9	 6	 1	 4	 53

Effect of change of origin and scale:

Let the origin and scale of x 1 be changed and a new variate u 1 is defined as

- a
u _---- where a = origin and h = scale of the variate x 1 and similarly,

v = - 	 where b = origin arid k = scale of the variate y.

So that we have,

x, S hu1 +a

or, x =h u +a.

and	 y=kv1+b

or,	 y=kv+b.

Putting the values of x 1, x, Yj and y in (9.1) we have,

hk!(u- u)(v1- v
r =
	 h2k2 {(u 1-7)2 1 ((v	 v)}

hk
=

.' k2h2
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If h and k are both positive we have r =ru, which indicates that
correlation co-efficient is independent on clangcs of origin and scale. The
method of this type of calculation is called short-cut method.

Limits of Correlation Co-efficient ' : The correlation co-efficient between x

and y takes values from -1 to+1 Lc.-1 :5 r,> 5 1.

Let us consider-

(Xi- x ) ± (yj-y) 

.1

2

SX

(x i - X )2	 (y	 y )2	 2(x 1 - x )(j y )Or,+	 ±s.. <	 sy

Taking summation over the entire range of x 1 and y1 we have

x )2 7(y, 	 )2 2Y- (x i 	x ) (j y
2	 +	 2	 ±

'.Sy

Or.. 1 ± r 	 0, Since
Y

—1 !^ r.. S 1. Hence proved.

Remark : Negative (Positive) value of r depends on the numerator i. c. the
o-variancc term. Different t y pes of scatter diagramsfor different values of

rare given in Fig-9.1

:r:.::.;:•.--

	

r=O	 x
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V
	

y

..:....

I	 U

	r>0	 X	 r<0	 x

Fig. 9.1 Scatter diagrams for various values of r.

pie 9.1 Calculate the correlation co-efficient between the heights of

er and son from the following data.

Height of father (in inches) : 	 65	 66	 67	 68	 69	 70	 71

Height of son (in inches)

	

	 :	 67	 68	 66	 69	 72	 72 69

Solution : In the table-9.2 both the methods of calculation are shown.

Table-Q.2

Height of

	

Father Son	 x2	 y2	 xy	 u= v= ? v2 uv

- (x)	 _ _ _ x8

65	 67	 4225	 44	 4355	 .3 -2	 9	 4	 6

66	 68	 4356	 4624	 4488	 -2 -1	 4	 1	 2

67	 66	 4489	 4356	 4422	 -1	 -3	 I	 9	 3

68-	 69	 4624	 4761	 4692	 0	 0	 0	 ()	 0

- 69	 72	 4761	 5184	 4968	 1	 3	 1	 9	 3

70	 72	 490)	 5184	 5040	 2	 3	 4.	 9	 6

71	 69	 5041 1 4761 1 4899 1 31 0 1 9	 0	 ()

T476	 483 32396 1 33359 1 32864 1 01 0 1 28	 32 20

From (9.2) we have,

476x 483
32864- 7

f (476)2(483)2'	 )
=	

3239& -	 J f 
33359 - 7 1
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-	 32864 - 32844

- 4(32396 - 32368) (33359 - 33329)

20

= 28x4. 
0.67 (app)

From (9.3) we have,

	

20	 kJV 
r =	 0.67 (app.)

228 =48x3
=

.

Thcrfore it is shown numerically also t at

Example 9:2 Calculate correlation co-efficient between the ages of husbands
and wives given in Table-9.1.

Solution : We arrange the table as given in Table-9.1.

Table-9.3

	

Age of	 Age of wives (x)	 .
r	 U	 It	 &r,husbands	 H c'-;	 If	 ç r.	 .

Ir	 ir	 If.	 If.
(y)

Mid	
A)	 40	 4)	 ()	 ) Total

Points
Age	 Mil.	 U	 -2	 -1	 2	 3	 ,2	 ivf.groups	 Oiiits V	 YF 

- —

	

15-2520	 -2 1	 1———— 2-4 8 6

	

Y33()	 -1 • 2	 12	 1	 - - - 13 -15 15	 16

	

33-45 40	 0 -	 4 10	 1 - - 15	 (1	 ()	 (1

	

43-55 50	 1 -. -	 3	 6	 1	 - 10 1)	 It)	 8

	

53-65 (-A)	 2 - - -	 2	 4	 2	 8 16 32 .32

	

63-75 70	 3 . - - - - 1	 2 3 9 27 24

Total f	 3	 17 14	 9	 6	 4 53 16 92 86

uf,	 -6 -17	 0	 9	 12	 12	 10

ik 12 17	 0	 9 24 36 98

jvf,, 8 14 0 10 24 30) 86 
z zc^

	-3k)	 v-40
here u 

= 
11) and v 

= 10
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uvf, (uf) (vf)
-

	

Now r=	 ____	
(vf)2)

lox 16
8653

I 1

	

98	 92
(10)) .1	 (16)2

\I t --1 t-r-
	83	 .	 83.

'.1(98-1.88) (92-4.83)J96l2 x 88.17

=0.912. (app).

Example 9.3 If x and y are independent, variables. Show that they are
uncorrelated.

Solution Since x and y are independent, we have

Cov(x, y) = El (x - x ) (y - y )]

=E(x- x)E(y-y)=M

T = 0. Hence the result.

The convèrseof the result is not necessarily true i. e. variates may be
uncorrelated but dependent. For this, an example of the following type may
be considered, if x is a, variate with a constant density function

-1 5x:51 andify=x2

then E(x) = Jxf(x)dx = 5 
T xdx = 0. So that E(x) (E(y) = 0.

-1.	 -1	 .

Further more E(xy) = E(x3) = 5 
%dx = 0.	 .

Hence Cov(x, y) = EI(x- x) (y - y)J = E(xy) - E(x) E(y) = 0

r = 0 i. e. x and y are uncorrelated.

However, for each value of x,there is only one possible value of y and Im
each value of •y there are only two possiblevalues of x. Therefore, x and y
art-far from being independ'nt.
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Example 9.4 x and y are two random variables with variances 2 and
* 0; a,2 # Oj respectively and r is the correlation co-efficient between

them. If u = x + ky and v = x + SL y, find the value 01k SO. that u and v are

uncorrclatcd.

Solution We know,

u - E(u) = ((x - E(x)) + k{y - E(y)}.

v - E(v) =	 - E(W+ - ly - E(y)).
cYy

Cov(u,v)= EI{u - E(u)) (v - E(v)}I

=E(I(x - E(x))'+ ky - E(y)}ll(x - E(x)) +(y - E(y))l)
ay

= G;?+ !^L CQv(x, y)+kCov(x,y)+kax 2

=	 + -r	 + krT +
Gy

kcrx cr

=a(1 +r) (d+ko)

u & v Will beuncorrelated if 	 = 0

Cov(u,v)=0.

That is, (1 +r) (Ag ) = 0 .

Y+ka=0	 Since	 ?tQ and r#-1.

a.
or;k=--.

cly

Thus the value of k is determined.

ax+c
Example 9.5 Let  = -	 Prove that correlation co-efficient between x and

y is - 1 if signs of a and b are alike and + 1 if they are different.

ax+c	 - a  +C
Solution: We know, y 

= - b	 or, y = -	 h

- by+c

Thus	 x 
=- a
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X ) (yr Y )
We have, r=

	

'J ((x1-x)}	 (y1 - y )2J

- ±	 - x)2

This means that r = + I if the signs of a and b are different,

and r = - 1 if they have the same sign.

Hence the result.

Example 9.6 If x and y are two correlated variables with the same standard
deviation, say s and the correlation co-efficient, r.

Show that the correlation co-efficient between x and x+y is

Solution: Let u = x + y then u = x-t-y.

v(u) = v(x+y) = v(x) + v(y) + 2 Coy. (x,y).

+ s2 + 2s2r.
_ 2(1 +r).
Coy (u,x) = ERu-u) (x-x)l

= EIKx- x ) + (y- y ))(x- x )I

=E(x- x )2 +E(x- x )(y - y )

= s2 + Coy (xy) = S2 + s2r = s2(l+r).

Therefore, the correlation co-efficient between u and x is

s2(l + r)	 s2(I + r)r) Hence proved.r=	 =
I s2s22(I + r) s2 ,/2(I + r)

Example 9.7 If  and .y are uncorrelated, find the correlation co-efficient
between u = x+yand v= x-y.

Solution: Let u = x + y or, u = x + y

and v= x - v, or, v	 x -
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Now, Coy (u,v) = E1(u - u) (v - v))

= EI0 - x ) + (y - y )) x- x ) - (y -. y )H

- x )2 - (y - y )21

=E(x-x)2-E(y- y )2

where s 2 and 5)7 are the variances of x and y respectively.

Now v(u) v(x-t-y) = v(x) + v(y) + 2 Coy (x, y)

=v(x) + v(y). Since x and y are uncorrelated.

=52x+52y.

similarly v(v) = s2 +

Coy (u, v) s2 -
Hence, r - -= 2	 2

".jv(u)v(v) S x 5 y

93 Regression

Correlation indicates whether there is any relation between the variables
and correlation co-efficient measure ,; the extent of relationship between
them, whereas the regression measures the probable, movement of one
variable in term of the other. Therefore, regression is used for prediction
problem.

The term "regression" was used by a famous Biometrician Sir. F. Galton
(1822-1911) in connection with the inheritance of stature. But now it is
widel y used in Statistics.

Regression Lines Let us consider that there cxiss association between x and
V. In the scatter diagram for a particular value of x represented in the x-
axis, we may consider a large number of observations along y-axis. We get a
regression curve if we draw the x values and the corresponding mean values
of y and the relationship is said to be expressed by means of curvilinear
regression. If the curve is straight, it is called the line of regression and the
regression is said to be linear, otherwise it is called curvilinear.

The line of regression is the straightline which gives the best fit to the
bivariate frequency distribution in the least square sense. If the straight
line be so chosen that the sum of square of the deviations parallel to the y-
axis is minimum, we get a regression line of y on x and it gives th6 best
estimate of y for any given value of x. On the other hand, if the sum of

quarcs of the deviations parallel to the x-axis is minimum, the regres'ion
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line of x on y is obtained and it gives the best estimate of x for any given
value of y.

Let us suppose that (xi, y) i=1, 2........n be  random sample from a bivariate
distribution, y is dependent and x is independent variable. Let the
regression line of y on x be

y=a-t-bx (9.4)

Following the principle of least squares method, the estimates of a and b
can be obtained as below:

The observation yj follows the model

y1 =a+bx1 +ej (9.5)

where a is the intercept and b is the slope usually called the regression co-
efficient of y on x and e1 s are random error comportenets which are

independently and normally distributed with 0 mean and variance 02.

From (9.5) we have,

ej=y1-a-bx1

s = (Yi -a-bx)2-
or,

Now,	 =0=.	 = na + b.x1	(9.6)

and 8 s =0=	 (9.6)

These two equations are known as normal equations.

Considering (9.6) and (9.7) and dividing by n we get

a+bx=y	 (9.8)

ax+ -=

Multiplying (9.8) by x, we get the normal equations as

ax+bx 2=x y

a byL
11	 .
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Subtracting we get,

b(-x2)=T

	

- (x) (y 1 )	 -	 -

A	 nSP(x, v)	 - (x - x ) (yj - y )or, b =
	 ( x)2 	 SSW . =	 (x - x)2	

(9.10)

Putting the value of b in (9.8) we have,
A -SP(x, v) -
a= y - SS(x)
	 (9.11)

Thus the estimated values of a and b in (9.4) are obtained.

Therefore, the least square regression line of y on x in terms of value of a and

bis y SP(xY))	 SP(x,y)
(-y=	 x	 +	 x.(x)	 SS(x)

- SP(x, y) -or, (y-y )- SS(x) (x- x

or, (y -y )=(x- x) (9.12)

Now considering the regression line of x on y as x = a' + b'y and precccding as
above we have,

A - SP(x, y)—	 A SP(xy) T
a'	 - SS(y) Y and b'= SS(y) -•;;-

Thus the least square regression line of x on y is
- SP(x,y) -

(x- X	 SS(y) (y- y) or, (x- x
-, 

)=
rs,	 -

(y- Y)	 (9.13).

Properties of the Regression Co-efficient:

a) Regression co-efficients are independent on change I 
o f origin but not of

scale.
x1-a

Let u = hT' .here a is origin and h is the scale of x

and vi =Z-, where  is origin and k is scale Gfy1
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We have, x = hu 1+a or, x =h u+a,

similarly, y = kv1 +b or,y = k 	 + b.

and let us denote, by /,, as regression c -etticient of y on x and	 r'gresiun
('tIiletlt of V (Hi U.

Now putting the value of x 1, y 1, x and y in (9.10) we have

hk(u- u) (vi - "	
k

h2(u1-u2)	 Wby,u

Proceeding in the above way we get,

h
b,,/y	 bu,v, which shows that the regression co-efficients are independent

on change of Origin but not of scale.

(b) Correlation co-efficient is the geometric mean of the regression co-
efficients.

SP(x,y),
We know, by,x SS(.x

and also b,,, = SP(x, y) rs
 SS(y) =

Now, byIx Xbx,y ' r Therefore, r=±'b,,,	 ............. (9.14)

Hence proved.

Remarks:

1) We have r=
SP(x, y)	 SP(x,y)	 SP(x, y)

'.JSS(x)SS(y) 
by/,,= SS(x) and b,,1 - SS(y)

Therefore, the sign of correlation co-efficient is the same as that of
regression co-efficients because the sign of each of them depends on SP(x, y).
Thus the sign of correlation co-efficient, r in (9.14) depends on regression co-
efficients i. e. if the regression co-efficients are positive r is positive and if
the regression co-efficients are negative r is negative.

2) If one of the regression co-efficients is greater than unity, the other
must be less than unity.

Let us suppose that, one of the regression co-efficients say,	 is greater

than unity i.e.	 >1 which implies that —< 1.Ix
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AI5J	 r2s1

..byixxbvy!51

Hence 
by/ ̂	 Hence proved.

c) Arithmetic mean of the regression co-efficients is greater than the
correlation co-efficient.

We know that, Arithmetic mean ^! Geometric mean

Therefore,	 X b,1.

or,	 +	 ^ r. Hence proved.

Aliter : We have to show that

+	 ^t r

1/rs	 rs\
or, — I --±2s,<	s),

+ s2
or,

or,

or,	 (S Sy)2 > 0

which is always true since the square of real quantity is greater than or
equal to zero.

d) Angle between two lines of regression:

Equations of the lines of regression of y on x and that of x on y are-

—— rs 
y - y = -' (x - x ) and x - x = - (y - y ) respectively.

Sx	 s 

Slopes of the lines are rs
	 S

- and	 - respectively.

1 et u cnncider that e he the anglo bet ween the two regression lines then,

I
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for acute angle,

tan 9 = 
rss

rs S
1+

srs,

s,,, (1 - r2)
rs	 •1-r2(

- r(s2x+s2y) = r	 7x s
rsLx

r \sx+s

for obtuse angle,

J( 
2I r	 \s,-1.s2,

Case (i) r 0	 tan 9 =	 .. 0 =

Thus if two variables are uncorrelated, the lines of regression becomes

perpendicular to each other.

Casc(ii)tr=±l tan9=0 ..0=0or.

In this case, the two regression lines are either coincide or they are parallel

to each other but since the regression lines pass through the points (x , y

they cannot be parallel. Hence for perfect correlation positive or negative,
the two regression lines coincide.

Example 9.8 Obtain the equations of the regression lines from the data

given in Example 9.1 Also estimate of x for y = 70.

Solution; The equation of the regression line of y on x is

-	 -	 SP(x,y)
y - y = by/. (x-  x ); where,- SS(x) =	 = 0.71 (app).	

-:

Thus the regression equation of y on x becomes

y-69=071(x-68) Since x 68 and y =69

or, y = 0.71x + 20.72.	 -
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The regression equation of x on y is x - x =	 (y - y).

SP(xy) 3)
Where,	 = SSy =	 = 0.67 (app).

Therefore the regressitm line is, x - 68 = 0.67(y - 69).

or, x = 0.67y + 21.77.

A

The estimate of x for given y = 70 is given by x = 68.67.

9.4 Rank Correlation

In some situations it is difficult to measure the values of the variables from

bivariate distribution numerically, but they can be ranked. The correlation

co-efficient between these two rank is usually called rank correlation co-
efficient, given by Spearman (1904).

Let (x 1, y) ; i = 1, 2.......n, denote the ranks of the ith individnl of two
characteristic, A and B respectively. Assuming that no two individuals are

awarded the same rank in either classification, each of the variables x and
y takes the values 1, 2.........n.

— — 1	 n(n+1)	 (n+])Hence x = y = —0 + 2 +.......+n) = 	
2

s2 (x 72) -!, 2 -72.

=11 2 +22 + -+-n21- (n1
	 2	 1n(n+1)(2n+1)	 (n1)2

2,	 n	 6	 4

(n+1)n+1 n+1	 (n+1)(n-1)	 n2-1	 2= 2	 3 -	 =	 12	 =	 = S

Let d 1 =xy =(x1 -x)-(y - y).

Squaring and summing over the range of i from I to n we get,

d 2-=jcx -xl - (v 1 - y)
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=E(x1 - x)2 + !(yi - y)2 -2E(xvx) (yv y)

i•	 i

Dividing both sides by n we have

J

s2x+s2Y 2s2x +s2x 2&x .	 Since, s2=s2.

2S2 	r) =

6Edi2
r=1- n(n2-l)	 (9.1)

Remark:

1) If; =yj;i = 1,2......n, all thedi's reduces to zero and r=+ 1.

2) If the ranking areas follows:

x=l,	 2,	 3,	 n

y=n,	 (n-i),	 (n-2) .	 ........ 1 .

Then r = - 1.

Proof: Let us consider one case particularly when n is odd.

Let n=2m+1 then the di'sare
p

2m, 2m - 2, 2m - 4, ..........2, 0........2.....4.......(2m - 2).....2m.

Ed j2 = 21(2m)2 + (2m-2)2 + ......... + 42 + 22)

=8(m2+(m-1)2. ......22+12).

8m(m+i) (2m+i)
-	 6

6Ed2i
We know, for n, r = I -	 2	 Putting n 2m +In(n -1)

-	 8m(m+1)(2m+i)
r-1- (2+1){(2m+17-1)

8m(m+1)	 8m(m + 1)
= '4m2^4m	 4m(m+1)

In the same way it can be easily shown that for n = 2m, the result also
follow s.

164



Correlation and Regression

3) We always have d 1 = (x1 -yj) = n x -n y = 0. This serves asa check

on the calculations.

Example 9.9 The ranks of ten students in Mathematics and Statistics are as
follows. Find the rank correlation co-efficient.

Mathematics:	 • • 3,	 5.	 8,	 4,	 7,	 10,	 2,	 1,	 6,	 9.

Statistics :	 6,	 4,	 9,	 8,	 1,	 2,	 3,	 10,	 5,	 7.

SoIutin:

Table for calculation of rank correlation co-ellkjcnl

Table-9.4
Rank in	 Rank in	 d1 = (x 1 j)	

d 2Math. (x)	 Stat (y)	 differences

3	 6	 -3	 9
5	 4	 1	 1
8	 9.	 -1	 1
4	 8	 -4	 16
7	 1	 6	 36

10	 2	 8	 64
2	 3	 -1	 1
1	 10	 -9	 81

5	 TI	 1
9	 7	 4

Total 	 dO	 214

_____
Rank correlation co - efficient, r=1 - __

	 6x214
2	 = 1-	 = - 0.3 (app).n(n -1)	 10  99

Tied Ranks When there is more than one item with the same value which
are then said to be tied in the series, then the formula for calculating -ank
correlation co-efficient breaks down. Since in this case, each of the variable

x and y does not assume the values 1, 2, 3......n and cosequently x 	 y An

that case, the most common method is to allocate to each member the mean
of the ranks which the tied members would have if they were ordered.
This is called the mid-rank method. As a result of this, following correction
. made in the rank correlation co,'f1jcjent formula.
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In the formula, we add the factor m(m 2-1) to jd i 2 , where in is the number
12

of items an item is repeated or tied. This correction factor is to he added for
each tied value.

Example 9.10 Obtain the rank correlation co-efficient for the following
data.

A: 68,	 64,	 75,	 50,	 64,	 80,	 75,	 40,	 35,	 64
B: 62,	 58,	 68,	 45,	 81,	 60,	 68,	 48,	 50,	 70

Solution:

Table for calculation of rank correlation co-efficient

Table-9.5
Rank ofA	 Rank ofB

	

A	 B	 (x)	 (y)	 d=x-y	 d2

	

68	 62	 4	 3	 -1	 . 1

	

64	 58	 .6	 7.	 -1	 1

	

75	 68	 25	 3.5	 -1

	

50	 45	 9	 10	 -i	 1

	

(4	 81	 6	 1	 5	 25

	

84)	 60	 1	 6	 -5	 25.

	

75	 68	 2.3	 3.5	 .1	 1

	

40	 48	 10	 9	 1	 .	 1

	

55	 50	 .	 8	 8	 0	 .	 4)

	

64	 74)	 6	 2	 4	 16

	

0	 72

In the series A, the correction is to he applied twice, once for the value 75
,which occurs twice(m = 2) and that for the value 64 which occurs thrice

2(22_1) 3021). 5
(m = 3). The total correction for series A is 12 + 12 =

2(221)
Similarly, the correction for series B is 1 	 =	 as the value 68 occurs

tv1Cc'.

rn

	

6	 +	

1
I	 6(72+ 3) = 0.545 aSp).fhus, r = I -	 fI(n-l)
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9.5 Bivariate Normal Distribution

Two normall y correlated continuous variables N and y are said to hae
hivariate normal ditrihution it their joint probability densit y function
given by

I(\, y) 
=	

____ Exp r	
1(x-L1)22 1R-u (v-p) (-p)

27rc1cY'Il j)2 	 L 2(1-1) 2) 	C5,2 	 J

'-ox<o, and - o<v<
	

(9.!h)

Where p 1 and c7 1 2 are the mean and variance of x, P2 and a.) are the mean and

Variance of y, and p is the correlation co-efficient between x and y.

'The frequenc y surface representing a bi'ariate normal distribution is showi,
in Fnure 9.2.

Fig. 9.2 Bivariate Normal Surface.

Moment Generating Function of Bivariate Normal Distribution The moment
generitiIig IUflClIuii ol Liviriie normal d ttIiu1Ifl duut the means

p I and P2 is given by

M(t 1 , t7) = ElExplt 1 (x - Pi) + t2(v P2)il

DC DC

= J
	 j Explt (x - p) + t7(v - U7)U(x,v) d dy.

-PC -CC

which reduces to ,Explt 1 2 1 2 + 2t1t2 PI2 t2'7 )l

\ow p	 co-eUicient t — in the	 panion ut .\lt,t)	 here the tirt

-.1!m\ ( rr'-1'un.h, to \ and '.\'uN1 . iltti\ IITI1'.'Td'.
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Marginal Density : Marginal density of x of the bivariate normal
cc

distribution is given by 5 f(x,y). dy, putting the value of f(x,y) and after

- cc

-	
• (x-I')2

simplification we get, g(x) =	 n_c - 2	 ,2 ; - o !^ x <

similarly, h(y) 
= 

5 f(x,y) dx =	 2	 2	 - cc < y ^

	

-	 fI2ir

Hence it is see  that x is normally distributed with mean L 1 arid variance
y is also normally distributed with mean 112 and variance y22. lip = 0,

f(x,y) = g(x).h(y), which means that x and y are independetly normally
distributed, but the zero correlation does not impl y independence in
general.

Conditional Density The conditional density of x for given value of y is

given by f(x/y) 
=

f(x,v)
My) which alter simplification reduces to

• '1	 2
1	 -) 2	 >1+P(y-,1

	

c -	 1 p') L	 ;	 5x 5-.

1'V2iru-2)

It is as like as univariatc normal distribution with mean u 1 + p (IL(V -

and variance	 2 1 - p2). Similarly we can show that the conditional

distribution of y for given x is normal with mean i2 + p	 (x - p) and

variance a22 (1 - p 2)

9.6 Correlation Ratio

Correlation ratio, is the appropriate -measure of curvilinear relationship
between the-two variables. When the relationship is linear, the extent of
association is measured by correlation co-efficient r. Therefore r measures

the	 'r.ntrition 'of points about the straight line of the best fit and r

mcaure' the	 ncentration of.points about the curve of the het fit. 11 S r i
-. hcrgi-ession is linear otherwise i > r (see equation 9.21).

89L



Correlation and Regression

Let x 1, (i = 1,2.......m) be the values of the variable x and its corresponding
values of the variable y be Yti with respective frequencies f j, (j = 1, 2 ..... ii).

	

I1	 2	 ....	 ....i	 ....	 ....m	 F Total

	

111	 21	 •..fil

12

	

I	 -

	

2j
	 • fi

n
	

11,,	 ....fmn
Total

Y-ni = n

	

nI	 n2

T	 íijYij	 T1	 T2	 ....	 .. . .T,	 ....	 ..
	 T1 =T.

Though all the x's in the ith vertical array have the same value, the ys
are different. The ith pair of values in the array is (x 1, y j ) with frequency fj.
The first uttiX'i indicates the vertical array and the second ufHx
indicates the position of y in the array.

Let	 = n 1 ; Yf =n = N, day.

If y 1 and y denote the means of the ith array Lind the weighted mean of

all the array means, the weight being the frequency respectively, then

	

-' --and	 _LYi - ¶f. -	 -	 y -

The correlation ratio of y on x, usually denoted by. g y , is given by the

	

-	 -

	

formula 11 2 = 1 --v-	 .	 (9.17)

where	 2	 •f>(y1 - y j )2 and 2 y)2

f(v - V)2 can be partitioned into two parts and a convenient expression

can be developed as below:

Nc2 =	 f(y> - y > 2 =	 - y ) + ( v - v

- v.) 2 +	 1, ( v - y)2 +2	 j>Yj	 Yi	 ( y -
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The product term venishcs due to i Yj - y 1 ). = 0

Therefore, Ns2 = i'1ijYij Yi )2 +!n1(y - y)2.

or,	 Ns2 = l's2 + Ns2 ,	 where 52, = -Xf( v - v)2

and 52= ..Ln y -y)2.

	,2	 .2

Now comparing (9.17) we have i2 =	
(9.18)

The calculation of s2 m can be done conveniently as follows:

Ns2m=nj(y)2=niyj2Nv2=_ L
Tn

Remarks:

1) Since s2, and s2 are non negative

1 -i 2 ^()	 il2v, S 1. and it follows that

	

0!5i 2 < 1	 (9.19)

2) Since the sum of squares of the deviations in any array is minimum
when measured from its means we have,

	

Iij (Yij - yi)2 <-	 )2	 (9.20)

A

Where Yij is the estimate of v if for given x = x 1 as given by the line of

A
regression of y on x 1.C.Y jj = a + bx 1 (j = 1,2.....n).

But	 - v)2 = Ns2, = N,2 (1,12").

and	 - v)2 =	 11 (y - a - b)2 = Ns2(i - r2)

Therefore, from the inequalit y given in (9.20) we have

2< i-ia i.e. T1 2 > 1`1

Or, Iqv, ^ 	 r	 ..., (').21

EE

-	 -	 -,- ..-
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Combining (9.19) and (9.21) we have, 0 	 r2 < ii 2	1.

Thus it can he concluded that the absolute value of the correlation ratio can
never be smaller than the correlation co-efficient. When the regression of y
on x is linear, the means of the arra y will he on the line of regression and we
have i2>= P. Thus 11 2 - P gives the departure of linearit y of regression. If

= 1, s.'= (1

- y>2 =0	 •. y = y for all	 = 1, 2.....n	 indicating that

all the points are on the mean of the array. If the array means of y are

closer to the grandrnean, y ,	 approaches to zero.

3) r = r but i

4) Like correlation co-efficient, correlation ratio is independent of change
of scale and origin.

Example 9.11 Find the correlation ratio of y on x from the data given in
Example 9.2.

Solution We are to calculate y , 2,, and s2ms.. -

-	 10x16	 -

	

v = 40 ±	 ,	 = 43.02.

y, \ 2 192 / 16 \ 2
53	 53= I))

= l01.6447= lOx 1.28=12.8 (app).
The Table 9.6 shows the calculation of 2••

Table-9.6
Mean of cols	 -	 -	 -	 -

	

v)	 '	 U'= y -41	 f y u'	 f v

	

26.67	 3	 -14.33	 -42.99	 616.0467

	

31.76	 17	 -9.24	 -157.08	 14-51.4192

	

41.34	 14	 0.43	 6.02	 2.5886

	

51.11	 9	 1011	 90.99	 919.9089

	

60.00	 6	 19.00	 114.00	 2166.0000

	

65.00	 4	 24.00	 96.00	 2304.0000

	

Total	 53	 106.94	 7459.9634

/49.9634 -	 106.94 2 
= I40.75) -4.0713= 136.6827.=	

63	 3 -)
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11.69
Therefore, 5my = 11.69, Nówi5 j	 0.913 (app).

Remark From the same data given in Example 9.2 and Example 9.11 we

have shown that	 In.

9.7 Intracless Correlation

Intraclass correlation means within class correlation. In biological and
agricultural study one may often be interested to know how the members of a.
family or group are correlated among themselves with respect to some one of
the same characteristics. For example, the correlation between the heights
or weights of brothers in one or more families or the between yields of
certain crop of one or more experimental blocks will give intradass
correlation.

Suppose we have k families A 1 , A2 .......Ak vith n 1 , n2 ...... k numbers of each
and the measurements x ij, (i = 1, 2......k ; j = 1, 2.......n1) of the characteristic
can be arranged as below:

X12	 X72	 ....	 XQ....

I	 I	 I	 I	 I
Xlj	 X	 ....	 Xi	 ....	 Xk1

	

I	 I	 F
X.	 ....

\Vc .ha1l have n 1 (n 1 -1) pairs (x 1 x1) j 4^ 1 of observtions in the ith family or
k

group. There will be D j (n - 1) = N say, pairs for all the k families or
i1

groups. if we prepare a correlation table, ther will be n 1 (n - 1) entries for
the ith group. The table will be symmetrical about the principal diagonal,

X, 1 occurs (i -1) times, x 2 occurs (n 1 -1) times and hence for all the k families,

we have (n- 1) Yx ii as the marginal total.

x =	 l(n	 1) x11 } Similarly, 2 = c =- l(n - I) (x - T2
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Further co y (x,v) =	 (x - x ) (Xil

I_i	 I

1	 l	
x

flj 	-	 -	 -.

=	
(x-	 ) (x 1 - x	 -	 (x 11 - x )2)

j	 1=1	 1

7)n, 	 - i i o,',r x)2

(XX)2

Therefore, the intraclass correlation co-efficient is given by

Coy (x,v)	 - x)2 -	 - x)2
r ))= ______________ = .	

-(9.22)
1var (x) va(y)	 (n -1) (x 11 -	 x 2)

If n = n i.e all the families or groups have the equal number of members,

then

n2 (x - x )2'(\

-

- kn(n-1)s2

l	 I
-	 S ----(n-l)(	 S

here q2 indicates the variance of and 2 is the variance of the mean of

the families.

From (9.21) we have, I + (n - 1)r() =

(n-i)	
(9.24)

S2 
msince 7-5 I,	 I + (n - I) r(XV)5 n

r( . )	........ ^ (9.2')

Now comb ining c.2-1 and (9.2) we have the range of r 	 as
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- (	 -	 15
r() 5 1.

Example 9.12 In five families of 3, the heights of brothers are in inches
below

Families

1	 2	 3
Brothers	 1	 69	 70	 71

2	 70	 71	 72

3	 71	 72	 73

Find intraclass correlation co-efficient.

Solution: Here k = 5, n = 3, N = 15.

x =72, x I =70, x 2 =71, x 1 =72, x 4 =73, x=74.

=,--;;- T2

,	 1	 10
S2 =l4 + I + 0 ± 1 + 41

s2 =(x - x2== 2.

	

1	 ins
ThreIore, the intraclass co-efficient, r(X) (n - 1)

l )(3x2	 I
2

4
72	 73

73	 74

74	 75

9.8 Multiple and Partial Correlation and Regression

We have already discussed the correlation between two variables onl y . But
often, it is necessary to obtain the correlatiori between three or more
variables. It one variable is influenced by the combined effect of group of
other variables we get multiple correlation and multiple regression. On the
other hand, if one variable is influenced by another variable eliminating
the linear effect of the other varia-bles we get partial correlation and
partial regression.

For campl, the yield of a crop/acre (x 1 ) m,iv he ifluenced hs oit Iertilit
(\7), amount of rainfall (x i ), types of irrigation, \ 4 ) and so on N v if w ,
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interested to acertain the association between x j and the combined effect of

2' X2, x 4 and so on we et multiple correlation and the degree ot association is
known as multiple correlation co-efficient and is denoted by R1234 ...........

Again if we are interested to ascertain the association between x and x
when the linear effect of x3, X4, .......tc. are eliminated, we get partial
correlation and the degree of association is given b y partial correlation cu-
ci cient dun stud h	 r	 .........

Regression Plane and Determination of Regression Co-efficient For

implicitv sake we consider 3 variables x, x:, and \i univ. The equation of the
regression plane of x 1 on x7 and x 1 is given by

\ I =h 2 . 1x2 + b 13 2\3	 92

assuming that the variables are measured from their respective means, hs
are usuall y called the partial regression co-efficients which can he
estimated b y the least square method. The normal equations can be written
as, L7(xx1 - h 7 . 3x 2 - b,3-2X3) = U

\(Xj -h 17.x7 -_b i3 . 7 X3) = 0.

F\pressing the equations in terms of standard deviations and correlation cu-
etticients we have,

r s I h123s 7 ± h 132 r71s
r, 1 .5 1 =h: 73 rs7 + h 13 2s 3	 (9.27)

where r is the correlation co-efficient between x 1 and x, and c is the -
standard deviation of xc

Solving (9.27) we have,

r7 - r 3 . r1
s	 (I -r21-)	 -
	

(9.28)

similarl y , b13	 (9.29)

where A, is the cu-tactor 01 the element in the ith row and jth columnin the

determinent \ = ,1
	

r12	 ry
1
	in which n j =

r-

Shtjtuijn the \iliie oth	 and bin	 wk' 11,1\

I	 ?
--
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A ll	 Al2	 L\13
or, - x 1 +— X2 + — X1

 =0
51	 '2	 S3

The residual of second order x 121 is defined by

x - b12 .1 x2 - b137 x1.

Remark: In general, the equation of the regression plane of x 1 on

X2, X3, X41 etc. is,

x =h 17	 nx3. ......... . +h71 ...... (n-l)In.

where b 1 , 14	 = - 111-

All

	b13	
S1

24 ....n = -	 and similarly

	

b1,3......	
1	 1n

s, All

where A,j is the co-factor of the elemcft in the ith row and jth column of the

deterniincnt

I	 r12 r11	 .ri
L\	 r7l1	 r,1 .

I	 (9.31)

	

nrn3 	 1

Properties of the Residuals:

1. The sum of product of corresponding values of a \'ariate and a residual
is zero, provided the subscripts 01 the variate occurs among the

secondary subscripts of the residual.

Let the equation of the plane of regression 01 Xj on X2 and x3 be

x 1 = b123 x2 + b 132x3 . The normal equations for determining bs give,

2x111=0=

Similarly from the regression plane of X2 on x 1 and x3 and that of X3 on x 1 and

we have,

I x2.13 = 0 = Ex3x2.13 and	 1 x312 = (I = x2x312.

1 The sum of product of two residuals is unaltered by omitting from one
residual any or all of the secondary subscripts which are common to
both.
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Writting X1.2 = X1 - b 17x, we get,

=	 -b]'-x2) =

and .x 1 ,x 321 = x 1 4x -b1232 -h 1 7x0 = x3x1.

3. The sum of product of two residuals is zero provided all the subscripts
of residual occur among the secondary subscripts of the second.

By virtue of normal equations, we have
= Dx3 - b-x2) x 73 =1)

similarly,	 x 3x 23 = 0.

Variance of residuals: Let us consider the plane of regression of x 1 on x2 and
X3, vu. x 1 = b 121x7 + h 117x3, provided the variables are measured from their
means.

The residual is x 123 = 4XI - b 12 x2 - b12x,).

Now we shall have to obtain the from of the variance of x 123 which we
shall denote by S2 12 in terms of	 and corrclation co-eflicients where s 2 j
the variance of x1.

We have Ns21 23 =	 x,1x1 vide property 2.

=YX 	 - b 123x2 - hi32xn)

- Nb i 3ss7r2 - N132s1s1r13.

or, Sj (i - -23) = b1 .s2r 12 + b132s3r13.

Eliminating 4 1 7 3 and 1)112 from this euatiot1 and normal cuatiun ill 9.26)
we have,

r13	 =0

r31	 r	 1

S2 123	 S2j3	 1
or,	 i- — A11 = 0, or,	 -

All

or, s2 12 =s 2	(932)
1I1

whereA and A, I are defined in (9.29).

177



An Introduction to The Theory of Statistic.

Remark In general, for the distribution of n v4riates,

21z ......n = s2	whre A and A ll are defined in (9.31).
All

Example 9.13 Find the regression equation of x 1 on N2 and x 1 from the
following results.

Variate	 Means	 St. deviation

28.02	 4.42	 r 1 =

-	 4.91	 1.10	 r = - 0.40

594	 83	 r23=-0.36.

Solution We know the following regression equation of x 1 on X2 and x -
s 1 A17

(x 1 - 28.02) = -	 (x - 4.1) -	 (x -594)
SAI -	 sA11

where	 = - I r23
 r73	 = I -	 = 1 - (0 . 56)2 = 0681

A 77 =_ r-, 1 r,1
7	 2where	

-	 r11 !•	 =r 3 r 3 - r21 = - 0.37.

and	 A- 
=1.1 r23 = rpr23 - r13.= - 0.04$.

Therefore, the regression plane is given by

4.42	 0.57	 4.42 -0.048
(x 28.02) = HU 0812 -4.91)- 	 —x u.i k3-9-1)

2.5194	 0.2122
0.7491	

-	 -594)

= 3.36(x 7 -4.9!) + 0.004(x 3 -594)
or, x 3.36x-, - 0.004x3 - 9.15 = 0

Partial Correlation Co-efficient '- When there are more than two variables,.
product moment correlation co-efficient between two variables may give
partial information. In such situation, one may want to know the correlation
co-efficient between two variables x 1 and x2 when the effects of x 3, x4 etc. on

,x 1 and x 2 are eliminated. This correlation is known as partial correlation
and the correlation co-efficient between x 1 and N) when the linear effect of
the other variables on them has been eliminated is called .partial
correlation co-efficient, and is dented b r:? 

4 . .......
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Let us consider threevariables x 1 , , and xI. x 1 - = x I - b 1 \ ma be considered
as that part of the variable x 1 after eliminating the effect of xj, similarly

1 can he defined also.

Therefore, r1 2 = __________________ ( 2 ) (V2 1)

Now Lx 1 12.1	 I x i - h 11x 1 ) ( x,- h-1x)I

= '1'2 -2iLx1x3 - h 1 ,x7x1 + h11b,1,x21

= Ns 1 s2 r 12 -b,1Ns1 s1r-b 11 Ns,s1r,1 + h11hNs21

Putting b 3 =	 rand h11 =	 r11 we get,

= N(r1 2 - r11r73)51s2.

Again,

= 2x2 -b 1 x 1 x 1 = Ns1 2 -Nb 11s 1 s3r 11 = Ns 1 2 (1 -r13 2).

'	 '3	 'Sun ilarl	 X,	 N',7 (1 -r,1-).

Ns 1 s, (r 1 - - r 1 -,r7 1)	 r,7 -
No,,', r,-u -	 _____

', 2(lr i2 )Ns,(lr7 s2) 	 (l - r 11-)(l -r-1

r 1 73 can also be obtained in terms of minors of the determined A as defincd
earlier. h 123 is the regression co-cfficient of x 1 I on x 23 similarl y 1, 21 3 i', the
regression co-efficient of on x, 1 Since we know that the correlation co-
efficient is the geometric mean of the regression co-efficients. then,

r2 1 ,1 =h173Xh711.

Putting the valueol h 171 and h7 31 we have, 3`2p =
	 i2 , Since, A = A.

Al2	 -,
...............

A1

This formula is convenient to get the partial correlation co-el ticjen t of
higher order.

Example 9.14 If all tile correlation cu-etficnet of /ero order in a set of F-
variates are equal to P . Show that every partial correlation co-efficient

P'.th order..
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in, n=1,2 ...... I'
Solution: We are given that	 =	 in ?t n.

We have partial correlation co-efficient of first order.

r1 - r.k rk	 p - 1)2	 p
r k =	 = ___________ =

- r 2 ) (1 - rk2 ).	 (1 - p2) (p 2 )	 1 +

Partial correlation co-efficients of second order are given by,.

P	 (P2

) i+p)
rill - rik_I_r	

lfp

V(l- r- jkl ) 0 - r2 1 )	 - (P2

l.+p)

- p	-
-	 1 + i L	 •l + p )J	 -	 1 + -

	

- (1	 .pl+2p

L	 'p)J[	 1+p)J	 1P

Thus every partial correlation co-elli 1cient of second order is given by,

(p
I,1+2p

Proceeding this wa y i.e. by the method of induction ever y partial

correlation co-efficient of sth order is given by
sp) . 

Hence proved.
(1 ^ 

Example 9.13 From a hy pothetkal data of three related variabk'. x, \2

and x3, it is obtained that rp = 039, r13 = 0.46 and r7- = 0.77

where r 1 is the correlation co-efficient between x 1 and x ; I, j = 1, 2, 3 i j. Find,
partial correlation co-efficient r123

Solution : Partial correlation co-efficient,

-	 ru-r13r73	 - 0.59 - 0.46 X 1)77
r123-1 -
	 13) (1 - p73)	 -	 (1 - ( . 46 2) Ii (772 ) -

0.536	 -	 -
=	 -	 = 0.95.-- pp.

(1 - 0.2116) (1 - 0.5929)-

Example 9.16 Prove the identity, h 3 X h, x h1 2	 3 X r231 X r 1 i.
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Solution:We know h 173 =	 rp3. bi.i =	 1131 and b31 2 =-2 112.

s1s1
h123Xb,31Xh317=r173Xr,'1Xr3	

1xs, 1 X
37	 -

2:3 X S3.1 	 s12

= r ]2,.3 .\, r23 I X r112 . since S3 = 5 12, S 2.3 '23 = s21 and s	 = s2.

I lence the result

Multiple Correlation Co-efficient : Here also we consider tri-viriitc
distribution in which each of the variables x I 2 and x7, has'N observation,.
'23 is the multiple regression of x on x2 and 3.

Then the correlation co-efficient between x and the expected value of the

variatc is called the multiple correlation co-efficient, denoted b y R 23
We know the expected value of x 1 as X 1 which is X 1 = (Xj - X1 23)

Therefore, R173	
(x 1 2 ) (X12)

,Now wehave, x 1 X 1 = X i(XI -X123) = x 2 -
,	

I
- X121 = Ns1-Ns-171.

Ako	 ix2l =	 - x1

= Lx 2 1 -2Lx 1 x 1 +ix 2 Since, Ex 1 X71 =

=x2 1 - x2 j ,' Ns 2 Ns213.

Therefore, R1 21 = 	 22 I:	 =

c2273

r-17+ r13-2rprry1
or, R- 13 = I - '—r =

I -r73

or, I - R2

	

	 (9.35)
Al

wherc \ and L\1 are defined in (9.29). This formula is used for calculating
multiple correlation co-efficient for more than three variates.

Iiamrle 9.17 Multiple correlation co-etticientcan he expressed in terms of
partial corre],ltion w-eick'nt I. L'. I -	 = (l - r2 1 ) ( I - r2.).
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Solution We have, R	
A

2 1 7 3 = I -

1 -r2j7-r2,r2il+2ri2r2i	 - 93)or, I -R2123	 1 -r2,1All

A211	 (r13- r12r'p)2
Also we know, t11 . 2 =	

- r2 ) (1 - r2)

(r13-rpr-p)-
or, I - rll.2 = 1 -

T-71712) (1 -r71)

l-r-12-r-11-12,3+2r1,r,lr'U
-	 (I	 1 2) (1 - r237)

Or, (1 - p12) 1 - p13.2) = 1 - r
2 1 , - 11-1-23+2r,7r71r31

Companing R. H. S'f (9.36) and (9.37) we have,

(1 - R21 71) = 0 - r2 12) 0 - r2 3 7) Hence the result.

Remarks:

A
I)	 In general, for a n variates we have, I - ...... .... n =-

where A and All are defined in (9.31>.

2) R 123 is simple correlation between x 1 and its expected value X 1 , hence

its should lie between -1 and + i. But since jx j X j = x2 1 which cannot he

negative. Hence R 1 73 is necessaril y posjti\'e or zero, that is wh y we

conclude, ()<- R .21

3) If R 173 = 1, the association is perfect and all the residuals are zero, and

as such 52 121 = (), the observed and the expected values of .x (oincides.

Therefore, we can conclude that x 1 is perfectly linear function of x 2 and

4) If R 123 = 0, X 1 is completely uncorrelated vithx 1 and thus the multiple

regression equation fails to throw any light on the value of x 1 when x7

and x1 are known.

Example 9.18 Calculate multiple correlation co-efficient from the data
given in Example 9.15.

P + r2 11 - 2rpr.1r3
Solution : We know, R- 1 21 =	 -. r2 3 -	 -
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Correlation and Regression

(059)2 + (((.46)2 - 2 X 0.59 X 0.46 X 0.77 	 0.1417=

	

	
I - (077)2	 0.4071 = 03456

23 = 0.584 (app).

Example 9.10 If all the correlation co-efficient of iero order in a set of p
',1riates are equal to p, show that the multiple correlation co-efficient of a

variate with other (p - 1) variate is given by,

I -R=(l -p) [1 + ( p-i)p

Li +(p-2)p

Solution: We know that 1 - R2
All

1	 p	 p .......p
pip........pwhere \ =
	 a determinent of order p.

P p P .........I

1	 p... .... p.
p l. ...... p	 a determinent of orderand	 =

We have,
1	 p	 p ...... p
1	 1 adding C,, c3 ...... cp to c1

II + (p -1 )p}	
'	

where c i indicates ith
column.

I	 p	 i'...... I

1	 I	 P ............P
0 (1 - p) .........o	 on operating R 1 -

=11 + (p - DP)	 0 (1 (1 - p) 0	 where R 1 indicates
I	 I	 ith row.
0 0 0....(1 -p)

"itnilarlv we can get, A 1 = Ii +(p - 2)pl (1 - pIP'2.

	

[1	 (p- )r)1- El rek.', I	 -= (I - p1!	 j Hence	 nA..	 [I - {p 2pJ
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10 EXACT SAMPLING DISTRIBUTION OF

X 2 (CHI-SQUARE), STUDENT'S t, F AND
TEST OF SIGNIFICANCE.

10.1 Random Sampling

In Chapter 2, we have discussed the terms—population and sample. It is
obvious from the discussion that sample is necessary to ascertain the

properties and characteristics of the population. For this purpose random
samples are essential. A random sample is one in-whih each unit ot
population has an equal chance of being included in it and the procedure to

have such a sample is known as random sampling.

Parameter, Statistic and its Sampling Distribution For drawing vhd
inference about the population we, in practice, deal with samples and
obtain the estimates of the population characteristics. The unknown
characteristics of the population are usually called parameters. And the
estimate of a certain parameter is called statistic. A statistic is generall y a

function of a set of sample values. It may be pointed out that there may he a
number of choices of the samples that can he drawn from the population.
I lnce the statistic itself is liable to vary from one sample to another. These
differences in the values of the statistic are called sampling fluctuation. If

the number of samples each of size n sa y , are taken from the same

population and for each sample the value of the statistic can be calculated,

a series of values of the statistic can be obtained. For large number of
samples each of size n, a frequency table can be constructed from the scri '.". of

stati stic 
'

giving us the sampling distribution of the statistic. In case 't

random sampling, the sampling distribution of the statistic can be obtainca
in probabilistic sense if the nature of the parent population is given or
known. Thus the sampling distribution is defined as the probability

'.tribution of a statistic derived from random samples drawn from '.ome•

specified parent population.

like am other distributions, a sampling distribution ma y hje mian

-.iind.,rd deviation and moments of higher order. The standard dcvii:

tic i .tIua fl y cal lcd standard error of t hi' 'tat i"tic,
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Exact Sampling Dktrihution and Test of Significance

We shall derive the sampling distribution of the X2 statistic, t-statistic and
F-statisticand also indicate their properties, uses and applications in the
IR'\t sections.

Degrees of Freedom (d. 1): The number of degrees of freedom (d. 0 is equal
to the number of independent comparisons between the observations of a

sample. If there is a sample of size n, (n -1) independent comperisons can he
made and, therefore the d. 1. is (n - 1). Again if the sample is arranged in k
claes, then the d. 1. is (k -1) as (k -1) frequencies are specified, the other is
determined by the total size n. Thus if b functions of the sample values are
held constant the number of d. f. is reduced by b.

10.2 2-(Chi-square) Distribution

X 2-distribution with n d. f. is the distribution of the sum of squares of n
independent standardised normal variates.

Let x 1 , x2 ...... x 1 be n independent N(O,1) yariates then the statistic X2

	

n	 n
defined by X 2 =	 x1 2 and the distribution of j,.2 is X2- distribution with n

	

i=1	 1=1

d. 1. usually denoted by X2r. If xs are independent N(li2) variates then

(	 {is also a2.
i=1}

Derivation of X2-distribution Let x 1 , x,. ....... x be n independent N(jL,(Y2 1)

variates, we are to find the distribution of

n
2	 - I_L \2	 xi - J.L

X =	 I	 I =	 where u =
i=R ..	 )	 i=i

Since xs are independent, us are al so independent.

Therefore,	 2(t) =	 (t) 

=
u2i (t) = I2 (01

where p indicates the characteristic function.

Now, 'ince we know that, pu'(t) = El 	 I
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An Introduction to The Theory of Statistics

0

= j e' j21(u1)	 =.. 5 
e 1 2 e	 du1

-	 27t0

tU( -2it)	 -	 1
-	 du—

4 27 ,	 (1-2it)2

Sincee 2	 (1-2it)d1.
21t(1-2it)21

Now, q2(t) =

	

	 which is the characteristic function of Gamma
(1-2it)2

n
variate with parameters 

fl	 Hence from the uniqueness theorem of\ 

characteristic function the p.d. f. of %2 is

___	 n_i
=	 e 2 (X2)T
zF

Remarks:

Normal distributution is a particular case of X2-distribution with n = 1.

If x 1 (i = 1, 2.......n) be n independent normal variate with sample mean x
S2

and known population variance (Y2 	 (n -1)
 

(32	
is ax2 variate with (n - 1)

d. f., where S2 =(xj - x )2

iii) xN (1 a2) variate then x—N
(14 n )

[x-12
hence l	 - is ax2 variate with 1. d. 1.

La/'InJ	 .

- Probability Curve: For different values of n, the dcgrc of redon he
different types of curves can be obtained as shown in Fig. 10, I.
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Exact Sampling Distribution and Test of Significance

Fig. 10.1 X2-Probability curves.
Moment generating function of X2-distribution:

MX 2(t) = Etc IX2 I
f

tXj(X2) dX2.

1	 .=	
5	

c 2	 2)2	 dX2.
220

o	 .2
I	 A._(1-2t)	 2=	 JC 2	 ( ) 2

22 ro

-2t)2o2	 (X'2)2	 where X '2 =X2 (1 -20.

I - 2t)	 •	
.	 .........(10.2)

First four moments ofX 2 distribution:

We know, MX 2 (t) = (1 - 2tY

______

	

Expanding we get, MX2 (t) 1 +(2t) +
	 2!	 (2t)2 + ........

()	 (+)	 (+r...i)
+	 2t)r.	 (1. 3
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An Introduction to The Theory of Statistics

As t'r = Co-efficient of tr 	the expansion of MX2(t) In (10.3).

Therefore, 1.11' =

I.12'=n(n+2)

Since,

Again,	 .13 = n(n +2) (n + 4)

Since,	 p3 = p3' -3t2' jti' +2LLi' = 8n.

And again, p.4' = n(n + 2) (n + 4) (n + 6).

Since,	 14= J14'-4JJ.3').1i'+61.t2'I.Ll1-31.L114 = 48n-i-12n2.

Weknow,	
p4
=±

42 3 n	 R2	
ii

Remarks:

As n	 ,	 0 and P2 " 3, hence X2 -distribution tends to normal

distribution if the degrees of freedom n is very large.

Additive property of X2 -variate :If X2n 1 and X2n 2 are two independent K2 -

variates with n 1 and n 2 d. 1. respectively then X 2n 1 + X2n2 is also a X2 - variate

with (n 1 + n2) d. f.
n n2

Proof: We know, MX2n 1 (t) = (1 - 20 T and MX2n2(t) = (1 -20 -

Since X2ni andX2n2 are independent then,
(n 1 +

MX2n 1 + X2n2(t) = (1 -20W 2 10.4)

which is the moment generating function of a)C2- variate with (n 1 + n2) di.

Hence proved.

The result can be extended for any number of independent X2 - variates.

Remarks : The converse of the result is also true i. e. if X21 (i = 1, 2......k) are
k

- variate with n (i = 1, 2.........k) d. f. respectively then	 X2	 aX

variate.' with n 1 d t. th n X 's are independent.
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I act Sampling Distribution and Test of Significance

-\noth useRil version of the converse is as follows If X and Y are two non-

negati\ e variates such that X + V follows X 2. - distribution 'ith (n 1 + n2) d. 1.

and it any one of them, say X is X 2 - variate with n 1 d. 1. then the rest one V

is also a X2 with n2 d.f. The above version is true for any number of suh

variates.

Theorem 10.1 If X2 n 1 and 2n, are two independent X 2 - variates with n 1 and

n d. 1. respectively then 	 is 11 2(	
variate.

Xn2	 - -

Proof Since X2ni and X2n2 arc independent X 2 - variate with n 1 and n 2 d. 1.

respectively then the joint probability differential is given by the
multiplicative law of probability as shown below

dF(X2n iX2n 2) = dF(X2n1)dF(X?n2).

1	 Y2fl1+Y2fle 

= fli-fl2 ni [ t2	
2	 (X2nl)Tl (X2 n2)2 -1 dX2n1dX2n2,

( )< (X2 n 1 , X2n7)

Let us put. 1] =---and V =
Xn

So that uv = 2n 1 and X 2n, = v.

Jacobian of transformation is given by

dX2n 1 	 dX2n1
- - VU

du	 dv =1	 =v.
dX2 dX2	 01

du	 —IT

d 2nd 2 n2 vdu d%.

Then the ii nt distr ,ution at and ' hc inc

1	 \(!u)	 n
d C wv)	 n1-
	

2	 ••fl•• 1 2 1 v du dv.
 1 1	 !

--

0	
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v(1+u)
2	

n	 n1+n2
-	 e

11rfl2	 7 -1 v 2	 dudv' O^(u,V)S°'
2. 12V7

We know that integr.ting .1 G(u,v)with respect to V over range 0 to o• we get

cc

d( (u) =JdG(u,v),lv.

1	 v(li-u)
=	 7-1	 2	 l2

_____	

luJ	 (v) 2 - dv.
2 'T I T	 0

ni n11;n2

(L_L)

^du.
n j

22LLaF n' F T12

ni

= nT 	 du
;0<_u<x.

\2'2) (1+u)

Hence u=	 is  132 (	 ) 
variate.

X2 r12

Theorem 10.2 If X2n1 and X2n2 are independent X2-variates with n 1 and n2 d. f.

respectively, then u 
=	

X2n1

2	 2 
is independently distributed as

Xni+Xn2

fn1 2
PI k2' 2

Proof: As given in theorem 10.1 wehave the joint probability differential.

1	 X2n +X2n2
dP(X2n1 X2n2)=	 e	 2

fl 1 +fl2r fl1r I	 .	 (X2n1)
2 2 171T

(X2h)T 
-1 dX2mdX2n2;	 0- X2n-j, en2 ^

Let us put, t.	 inv x- -+

X2n.+2n2

1(A)

(105)



	

Ixaci ".ipling D.tnhution i	 Tc,t of'Signil r .rnce

I' ) that uvX2n1 and X2 n7 v - X2n j (1 - u)v.

Since X2n 1 and X2 nrangc from 0 tooc, u. ranges from Oto  and v ran 	 ft 1 0
to

Jacobian transformation, J is given by

.11=

Threfore, dX2n 1 d X2n2 = vdudv and

1	 V	 n1
dG(u,v)=

	

	 c(uv)T	 {(1 -u)v) 7-1 vdudv.n 1 +n2 n1 Ti2
2 2	 r-7 [.- -

1-
	 n1+n2

nI	 r2
7-1 (1 -u)	 2 "	 dudv.- n 1 +n2 r fl j fl 1.1

2

F24a) nI	 n2____________________________________________________	 •1

fli[
•' 1 (
	u) 7

-
 1 du 

n l -+n[(n i +n2)

-- nl+n,
X  2 v 2 - ldv.

Since the joint probability differential of u and v is the product of their
re'pectivc probability differential, u and v are independentl y distributed
with.

[(fll+n2)ni

dG(u)=

	rr	
(1 u	 du,0 u5 I	 (11)6)

n. -tn,

+22

and dG2(v	

I	
V

) = ____________________ - 	 2 - -	 0 v(It) 7)
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n1 n 2\.	 .	 2
hat is, u isa	 ) variate and visa X - variate with (n 1 + n)) di.

Theorem 10.3 For large n, the d.f., show that' 	 N.(J,l).

Proof. We know that E(X 2 ) = n. and V(X2n) = 2n. Now let us define

x2n-n
/ =	 . which tends to N(0,1) for large n.

Vin
Let us consider

X2n - n
^Z . =PIX2nsn+zJ

2fl<2n+i

=fl52n+2z2

=P1\2X2n!^ 'f(1 +

I,, 

2X2n!C + :j - •.

=Pt\ X2ns f+zI for large 	 .	 .

\ x2nJ}!5zI for large n

As . -now, For large n,

c conclude that	 - i	 N(0,1) for large n,

hich implies that I 2X2n is asymptotically N('[, 1).

Remark: The above approximation is valid for n ^ 30.. For moderate n,

R. A. Fisher has proved that the approximation is improved by taking

(2n I) instead of'f.

Theorem 10.4 If the variable x 1 , x2 ......x are independentl y distributed in

thc rc.tinguIar form dF = dx, 0 15 x :5 1, then

2 hog (x 1 x2 .....x) is distributed as X2 with 2nd.f.
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Exact Sampling Distribution and Test of Significance

Proof :Lct -2 log (xi , X2.....x ) = Pi + P2+.....

.....n

or, xi =
dx

The probability function of p i is given by, f( j) = 1(x1)

Since dF(x) = dx, 1(x) = for all x within the range 0 to 1.

f(p1)=l	 -	 =e 2'

which is the probability function of X2 - distribution with 2 d. 1.

Therefore, by the additive property of X 2 - distribution,

n

2 log (x 1 x2 ........x) =	 pi distributed as X2 with 2nd. i.

i =1

10.3 Student's t-Distribution

W. S. Gosset (1908) under the. penname of Student defined the t-statlstI

with (ii -1) d. f. by

X -

=

	

	 .	
.(10.?)

S/'q n

where T =	 x 1 /n and S2 x ) 2 and is the population mean

He derived the distribution oft which is known as Student's t-distribution

I isher (1926) defined t-statistic with S d. 1. as the ratio of a standardised

normal variate to the square root of an independent Chi-square varwtc

divided by its d.f. S. That is, he defined t 
=	 U	

with Sd. 1. where u is

IFL58-
NI I) iriate and X2 is'a chi-square variate with S 11. 1.

The.renn 10.5 I he value &,1 Fisher's t is same as Students t.

PrO ld I t x1, x2	
A ll be n independent Nqi,(:;2 ) \'ariates, then
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Nn tntrodutjon to The Theory of Statistics

(n 71)S2
	is a N (ft i)varjatc	 is distributed as X 2 with (n - I) d. 1.

	

where 2 =	
( x - x)2 then the statistic t =-	 (n-i).1	 .

x -t	 knST X -R
=	 /	 =	

(10.9)ai-J	 (n. -1)	 S/\f

which is same as in (10.8).

The d. f. of Fishers t is same as the d. 1. of chi-square variate and this is
more gcnraJ than the Students-t.

Derivation of Fishe?s t-distribution: From (10.8) we have

n(x - R)2 n(X - 4)2

t2 
= sr -= SinceSince ns2 = (n -1 )S2 = (xi - x )2

(n -i)

or,
t2
-I)	 S	

ø2/n

(x - 4)2)2 	 t2	 (x -	

/ ,	=	 or, —=	 - where = (n-1).(n	
o

Since Xj, X2 ......xbe a random sample from a normal population with mean 1.1
-	 ( x

and variance &	 xthen	 N (9,&/n) and	 is a X 2 with I d. f. and

also	 is a X2 with (n - 1) d. f. Further since x and s 2 are independently

distributed then X 2 1 and X2 (n -i are also independently distributed.

Thrcfo, v = Tis the-ratio of two independent X 2 variates with I and

6 =	 - 1) d. f. respectively. The ratio gives P2	 variate given in (10.5)

and its distribution is given by

___	 61dF(v)=	 V 2
(1 6	 (I + v,	 2 d,	 .
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1	
2	 6+1

Therefore, dF(t2) 
=	 (_\ 

2 (i +—'-

	

R(!)	 6)
22)

16+1
=	 (t2)1 +_

)	
()<t2<_.Tdt2, ^t2^o.

6\ 
—I-,)	 1 tz	 6+1

Now,	 dF(t)=	 Ii + )72tdt.

4-8-1(12 T
1	 7	 t2\	 6+1

6
=	 (i+—)

)	
7dt,	 -oCSt5o.

Thus, 1(t) =	 +	 2 dt,	 (10.10)

(10.10) is the required p. d. f. oft with 6 =(ri -1)d. 1.

- Probability Curve: The p. d. 1. oft-distribution with 6 d. f. is

1(t) =	 ;

21)	 8

it is seen that the curve is symmetrical about the line t = 0..Since f(t) = E{ -t)
As t increase 1(t) decreases rapidly and tends to zero at t-3o.
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I'rrperties of f-distribution:

Moments: Since t(t) is symmetrical about t = 0 all odd order moments about
origin vanish, i.e. 112'r + = 0; r = 0, 1, 2.......

In particular, p'= 0 = mean. Hence the central moments coincides with
moments about origin i.e. 1 12r	 = 0; r = 0,1,2........

The moments of even order are giveh by

x'tf(t) dt.

oc2	 t2r
-	

&dt.

	

t2	
+1i(h) (i+.)

oc

f	
t2
	 2t

8 13	
21)	

(i+jL

Let usput	 =y ... t2=y

(;r,	 dt2=6dy.

Since	 0<- t2 !5,	 05y!^oc

2 15 &ryr 

,.[
(1 —+y.)

= _____ r-- I
y	

:1+7++

2')
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6r(7r -1) (2r	 ).	 .3, I	 . I 10.1!

	

(5-2)(5-4).(S-2r)	 2	 -

rrnrn
Since we know, 13(m,n) = r

I m + n

	

5	 52x1x3 
In particular,	 12	 and 04 

= (5 2) (5- 4) (8-2) (5 4)

Hence, Ii i == Oand P2 =
	 (54) =
	

4

=3; As	 I2 —0.

Hence for large n, t-distribution tends to normal distribution, as 8 = ( n -'1)

Theorem 10.6 t-distribution tends to standardised normal distribution when

thc d. f. of t-distribution is large.	 -

Proof We know,-

(6 - I
-I-

t'\(	 2
1-1-- \

()	

,6

The constant term,	
1

1 5
5 (, 2)

rio+i
1

= FIFI
Using Starling's approximation and taking limit 	 we ha

(!	
\.T1\2)
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/	

6Lt
Now,	 1(t) =	

(i

	

^21	 t2

t2.
e	 2;	 - sts	 .(10.12)

(10.12) is identical to (8.48)

Lt	 2	 8	
t2

Since	 (1 + -V 2 -	 2

Lt	 t2 !.
and

I ience it is shown that the distrjbutjo of t is NW, 1.) variate for large &

10.4 F-Distribution

F-distribution with n 1 and n2 d. 1. is the distribution of the ratio of t\vo
independent X 2s divided by their respective n 1 and n2 d. 1. Thus the IF-
statistic may be defined as

F 
= X n	

where X2n and X2n2 are two independent X 2 with.n 1 and n7 U. LL2n2/n2

respectively. The F-distribution is usually called Snedecor's F-distribution.

Derivation of F-Distribution: Let X2n 1 and X2n2 are two independent chi-
squares with n 1 and n2 d. 1. respectively then,'

n1
F=	 .. — F= -. being the ratio of two independent chi-

X2n2

square variates with n 1 and n2 d. 1. respectivel y and is distributed as

given in (10.5). Hence the probabilit y functi: . of Fis qiven by.
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ni
() y-1

n2
1	 mi '

dF(F)=	 ci ( — F )
0( n\ 

i	
)	

2

•1

(!i) 
ni

=	 dF, 05 F5
Qni) (

1+ )'2	 r	 2

Remarks:

(11L13)

n1s2 /—In1
X-n/n1	 &11 

2
F-	 =2

X'-rp/n	
/fl2

Thus the distribution of F may be called the distribution of the variance
ratio given by Snedecor.

Moments of F-distribution : The Ph raw moment is given by

ni
(!i\T

	

\n,) -	 n1+2r

J dF.

	

(n2)	
(1+-F) nl+n2

Lctusput,	 -F=y ..F=-y ,or, dF=-dy ; 0!5y:5-.nj

(n)fh(Th)fl+2r

Then, pr 	 f	 dv
J	 flj+fl flI	 (I	 v)	 2
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.nl
() T(n2)fh+2T

n1	2	 ri1+2r
y 2	

-1
dy.

2'2)	 (1-*-y)	 2

\nJ
(ni+2r n2-2r

-	
\ 2	 2

\2' 2/

(!i\ r I( n i +2r \ 1(2 2r

	

\ni/ '	 2 )'\ 2

=	 rnhrn2
'2' 2

(n2)r(')(n22r)

Tb
=

-

	\2	 /\2

m

	

i'	 \ fr+r-1 j !	 -r-1

	

(n s r_'\ ..	/	 \..

2L	 n2
2	 2

Thus .xi '= — j-. n2 >2. This is independent of n 1 and is always greater than I.

22 (n 1 +2)
n1(n2-2)(n2-4)

	

1122 	 f2(ni+n2-2)
•12=(112)2 't	 (4)

+ 2)(n 1 +4)
Similarly= n

2 1 (n2 -2) (n2 -4) (n 2 -

n24(n1+2)(n1+4)(n1+.6)
n13(n,-2)(n,-4)(n,-6)(n7-
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Exact Sampling Distribution and Test of jJgnificance

The corrotecl j.i and 14 can he calculated by the formulae,

p-	 - 3 ,A i-2	 and	 =4+6l.1j42-34

hus it is seen that moments of F-distribution depends on only n 1 and n 2 . The
curve is 1-shaped if n <2 and positively skew for n 2 > 2. The frequency curve
or n, >2 is shown below:

Fig 10.3 F-probability Curve.

The mode of the ditrihutjon can he obtained at F
n 1 	n7-1-2

Thus moue of F-di.trihution is alwa ys less than 1

Inter-relationship Between X 2, t and F-distribution.

Theo*m 10.7 The ]U1re of t variate with n d. 1. is distributed as F with I
a nd n. d. 1.

Proof: Let us put F = t2 , n 1 = 1 and n 2 = n then the distribution of F with n 1 and
n, d. f. can he written as

() 2 (t2)T

dF(F)=	 d(t2).

(ln)(	

t i -
 -

-
T	 —) 2--

1	 dt

= 7 (1 2.)
^2 (--'---

'	 n,

which is t-d i t ri hti Lion with n d t.

U
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Theorem 10.8 When n 2 tends to infinity. n 1 F. tends to be distributed as a
with n 1 d. f.

Proof: We know,
I.

• 	 [n+n

2

1(F)-
[fll[n2
22

n
F2

' 0<—F<--..
n i + n2

(1+ .. F)	 2
F12 

In the limit as n2—*, we have

r12
2•_________

	r 2	 L

	

n2 2J-	 (n2)2	 22

We can find out the above by using Starlings approximation and taking the

limit 
[n+k

_*flk as n—oc.
In.

Lt (	 !1L \!I Lt/

	

• Also	 I1+nzFI2	 (1+F)2

) 
n2—*c\	 /

	

njF	 X2

2	 T.

	

=e	 =e

Hence in the lithit, the p. d. 1. of n 1 F =X2

	

nj

= n 1	c	 X2)1dX2' O^A. ^°

	2	 2

which jc the required p. d. 1. of chi-square ditrihtition with n ci. f.
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10.5 Test of Significance

Test of significance is a statistical procedure to arrive at a conclusion or
decision on the basis of samples and to test whether the formulated
hypothesis can he accepted or rejected in probability sense. The aim of test
of significance is to reject the null hypothesis (defined later).

Statistical Hypothesis : A h y pothesis concerning the parameters or the
torm of the probability distribution which w try to varitv on the
informations provided by a sample, is called statistical hypothesis.

Parametri and Non-parametric Hypothesis When the hypothesis
concerning the parameters of the distribution, provided the form of the
distribution is known, is called parametric hypothesis. While the
hypothesis regarding the form of the distribution with specified or
unspecified parameters, is called non-parametric hypothesis. For'example,
the hypothesis regarding the population mean and variance of a normal
distribution may be considered as parametric hypothesis 'and the
hypothesis that the sample has been obtained from binomial distribution
with known or unknown probabilit y of success may he considered as non-
parametric hypothesis.

Null Hypothesis and Alternative Hypothesis The .h ypothcsis which we
are going to test for possible rejection under the assumption that it is true is
called the null hypothesis, usually denoted by H,, and each of all possible
h ypothesis other then H, is called alternative hypothesis, denoted by H1.

For example, if H 0 :, P1 = P2

then 01-11: Mi <P2.	 ii) H 1 .t 1 > P2 etc. are alternative hypotheses.

Simple and Composite Hypothesis If the hypothesis specifics all the
parameters of the distribution, is called simple hypothesis otherwise it is
called composite hypothesis. For example, a normal distribution has two

parameters p and a 2 . The h ypothesis H : .t = p,., and a2 = C7 2ois simple
hypothesis while the hypothesis regarding either of these two parameters
is composite hypothesis. There may be number of composite hypotheses of
the above case.

Error of 1st and 2nd Kind We may commit two types of errors for making
any conclusion on H 0 on the basis of sample. The error of rejecting Ho
'accepting H 1 ) when it is true is called the error of 1st Kind or Type I error
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The error of accepting H 0 when it is false (H 1 is true) is called the error of
2nd Kind or Type H error.

Critical Region and Acceptance Region: Let x 1 , x 2, x1 ......x be a sample point

designated by X in an n-dimensional sample space. If X falls in the region

for which we reject H 0 when it is true then the region is called critical

region denoted by	 , say; and if X falls in the rest of the sample space. (I)

we accept H 0, in that case o is called the acceptance region.

Level of significance: The probability of Type I error, denoted by a, is called

the level of significance, i.e. P(X falls in 0)/1-1 0) = a

We usually consider 5% and 1% level of significance for testing hypothesis.

Power of the test: Let the probability of Type II error be P i.e.

P{X falls in 0) /1-1 1 ) = ), then P {X taIls in ()/H 1 ) = 1 - P which is called the

power of the test.

cepnceIegin.::

çrti4 .qgjo

xl

Xr '	
Fig 10.4 Critical and acceptance region.

10.6 Some Important Test of Significance and their Applications

Some of the important tests of significance used mainly in statistics are

1) Normal test.	 2) t-test.	 3) X2-tcst.	 4) F-test.

The description and applications of the above tests are briefl y discussed in

the next page.
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1) Normal test : Let u be the statistic whose expected value is E(u),

specified by the null hypothesis and its standard error, (u) is either known
or can be estimated from large sample (sample sic ^! 30) then

d I 
= u-E(u)	

(10.14)
(u)

which is distributed normally with mean U and variance I i. e. d is N ((L I>
variate. When  is normal then d is exactly N(O, 1) variate and a normal

test can be applied. Again when u is not normally dish-ihutcd and (u) is

estimated from large sample then d is approximated satisfactorily to
normal distribution and in that case also a normal test can be carried out.
That is why it is often called a large sample test.

Normal test is usually two-tail test. From normal probability table we get.
Probt-1.96!cd 151.96I=0.95which

implies that,	 Prob El dl !; 1.961 = 0.95 also

implies that,	 Prob ii dl ^ 1.961 = 1 -0.95 = 0.05.

and similarly we can get, Prob II d ^! 2.581 = 1 - 0.99 = 0.01.

Thus the significant value of I dl at 5% and 1% level of significances are 1.96
and 258 respectively. The conclusion regarding the null hypothesis H 0 can
be made asfollows

i) If  dl < 1.96, the value of I dl is insignificant and
H0 maybe accepted.

ii) If 1.96 :5I d 1 <2.58, the value of I d I is significant and
H0 may be rejected at 5 17, level of ot significance.

iii) If  d I >2.58, the value of  d I is highly significant and
H0 may be rejected.

Uses :This test is used for testing hypothesis regarding means, proportions
and correlation co-efficients.

Applications of Normal Test:

Ma) Test of significance for single mean

Let us suppose that x 1 , x2........x be a random sample of size n from a normal
population with known variance. We want to test the null hypothesis that

the population mean is equal to some assigned value say p i.e. H 0	=
(specified value).

(A)
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The test statistic is

x-Jio
I dl =	 . 0.l4a)

which is distributed 'as N(O, 1) variate.

If (Y2 is not known and the sample size is greater than 30, Cr in (10.14a) is
replaced by its estimate from the sample. This test is also a normal test.

The conclusion can be made following the principle given in (A).

Example 10.1 A sample of 400 items is drawn from a normal population
whose mean is 5 and variance is 4. The sample mean is 4.45, Can the sample
be regarded as true random sample drawn from the population?

Solution: Let the null hypothesis be HO : Ji =5:

The statistic is! d = x -li
	 4.45-5

 =	 2	
=

which is distributed as N(O, 1) variate.

The calculated value of I d I is greater than 2.5, hence it is highly
significant and the hypothesis may be rejected.

(1.b) Test of significance of difference of means

Let x be the mean of a random sample of size n 1 from a normal population

with mean JJ and known variance a 2 and let y he the mean of an

independent random sample of size n 2 from another normal population with
mean j.ty and known variance a 2 . For testing the null hypothesis, H0 : ji =

x - y
the required test statistic is I dl = 	 (10.15)

which is distributed as N(0.1) variate

= a,2 = a2 then the test statistic is,
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dI=	 (lt),Ih)

which is also distributed as N(O, 1) variate.

Even if a 2 and crY 2 are not known but nt > 30 and 0- >31) then a 2 and a 2 are
replaced in (10.15) by their estimates 52,and s2 respectively from the

1	 —2
samples where s 2 = - (x1- x )n7.1

	

nj	 P2

7 =and s2=- y)2;y

And again, if Oin (10.16) is not known and the samples are large, (n 1 , n, >30)
the estimate of a is replaced in (10.16). The estimate of a 2 is given by
A	

2ns + n7s

-:

If the hypothesis to be tested is that the population means are jt and p
(some specified values), we can carry out the test of significance as above

considering the numerator of the test statistic I d I as ( x - y ) - (p. -

The conclusions of the above hypothes can be done following the
principles given in (A).

Example 10.2 The mean yields of two sets oF plots and their variability arc
given below. Test the hypothesis that the difference in the mean yields of
the two set of plots is significant.

Set of 40 plots	 Set of 60 plots

	

Mean yield/plot - 1258	 1243
S. D. per plot -	 34	 28

Solution We set up H0 : j11 = R2 where gi represents the population 'mean of
the ith set.
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1 he test statistic is, I d I =	
1258-1243	 5
	 = 2.3. (app)

/ (34)	 (28)

Since the calculated value oil dl is greater than 1.96, but less than 2.58, it
is significant and the hvphothesis may be rejected at 5% level of
significance. In such case, further investigations are, advised to get exact
conclusion.

(1.0 Test of significance for sample proportion

Let us consider an independent random sample from a binomial population of
size n > 30 of which x is the number of individuals which possess certain
characteristic, then the observed proportion of the individuals possessing

that characteristic is given by p = 	 We are to test'thc null hypothesis,

Ho it = ito (a spocified value) where It is the population proportion.

The required test statistic is

ldi= 
............(10.17)

0

which is distributed as N(,1) variate.

The conclusion can be made following the principles given in (A).

Example 10.3 A random sample of 100 seeds  was taken from a large
consignment for examination and 12 were found to be defective. Can we
accept the sup1ici's claim that the proportion of had seeds in the
consignment is 0.02?

Solution We set up H 0 it = 0.02.

12 /1t0(1 -ito)
We calculate p =m=°•12 and s.e(p) =

/0.02 x 0.98	 .14
100	 == .014

.12-0.2
The required test Statistic, I dl = .014 =	 (app)

The calculated value of . d I is highly significant and therefore the
hypothesis ma y he rejected.
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(1.d) Test of significance for difference of proportions

Let us suppose that we have two independent samples of sizes n 1 and n 2 (n 1 , n2
> 30) obtained from two seperate binomial populations.of which x 1 and x2
are the number of individuals possessing certain characteristic. The
observed proportions of two samples being p1 and P2 respectively. We are to
test the h ypothesis that the two samples have been drawn from came

binomial population. i.e. H 0 it =

We calculate p1 = xl-- and p2= x2nj	 r12

The combined proportion of two samples is, p = n1p1+n2p
+	 - and q = I -p.

The required test Statistic is I d =	 P1 P2	
(10.18)

nj	 r12

1	 1
pq+

\

which is distributed as N(0,) variate.

The conclusion can be made as according to the princples given in (A).

If the hypothesis is to test whether the population proportions are 7t 1 and It2
(some specified values) the test statistic becomes

I dl	 PI - P2) - (71 1 - it2)	
(10.19)

I 7t 1 (1-7t 1 )
+
 7t2(1-7t2)

n

which is also distributed as N(0,1) variate and the conclusion can he made
according to the principle given in (A).

Examples 10.2 In a year there are 956 births in town A of which 52.5% were
males while in towns A and B combined, this proportion in a total of 1406
births was 0.495. Is there any significant difference in the proportion of
male births in the two towns?

Solution : We set up the null hypothesis, H 0 7t 1 = 7T2 i.e. there is no
significant difference in the proportion of male births in the two towns.

We know, n 1 = 956 and n 1 + n2 = 1406	 .. n2 = 450.

p1 = 0.525 and the combined proportion is

96 x 0.525 + 450 X P2
936 - 450	 = 0.496	 •. P2 = 0.432.
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The test statistic I d = 	
0.525 - 0.432

___________________________________

x 0.504

= .

$ 59 3.25 (app)

The calculated value of I d I is greater than 2.58, hence it is highly
significant and the H0 may be rejected i.e. there is evidence that there is
significant difference in the proportions of male births in towns A and B.

(1.0 Test of significance of specified value of population correlation co-
efficient

Let us suppose that we have a random sample of n pairs of values from a
bivariate normal population. The calculated value of the correlation co-
efficient i, r, say. For tsting the null hypothesis that the population
correlation co-efficient is p0, a specified value i.e. H0: p = p0 (a specified
value), we need a transformation known as Fishers z transformatiofl for
correlation co-efficient available in Table No. 14, page-139 ; Vide
Biometrika Tables for Statisticians edited by E. S. Pearson and
0. H. hartley.

I	 1+r
This is 4efined by, z= log. j--. This transformation is useful for the

following reasons namely the distribution of r is far form normal and

changes as p, the population correlation co-efficient changes. But the
distribution of i is approximately normally distributed with mean,

I	 1Po	 1
m = 1g .	 and variance = -.

-	 'i-pd

The test statistic is I dI =	 -_= (z - m) j (n - 3)	 (10.20)

(n-3)

which is distributed as N(0,l) variate. The conclusion can be made
following the principles given in (A).

Example 10.5 In a random sample of 28 pairs of values from a bivariate
normalpopulation, the correlation co-effiient was found 0.7. Is this value
consistent with the assumption that the correlation co-efficient in the
population is 0.5?

Solution : We set up the null h ypothesis, H0 : p = 05

From ,-tran.formation, 'Nt have, r 0.7 1 i - 0.87 p = fl. ; m = 0
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0.87 - 0.55
The test statistic is I d I =	 = 1.6

-	

_________

(28-3)
The calculated value of I d I i less than 1.96, hence it is insignificant and
the hypothesis may he accepted i.e. the population correlation co-efficient
is (1.5. -

(IM Test of significance of the difference of correlation co-efficients

Let r1 and r2 be the sample correlation co-efficients obtained from two
independent random samples of sizes n 1 and n2 respectively obtained from
two seperate bivariate normal populations. We are to test the hypothesis
that the samples are drawn from two different populations with same
correlation co-efficient or from same population.

Let us obtain the values,of z and Z2 froin the Table No. 14, Page 139 ; Vide
Biometrika Tables for Statisticians Edited by E. S. Pearson and

1	 1+r1	 1+r,0. H. Hartley. We know, 
z1- 

r1 and x2 = 
log 9 - r,

Then under H0 : p = P2;	 - z2) is approximatel y normall y distributed with
1

zero mean and variance
171'-1)

 

 + 72 -3)

The required test statistic is dl =	
(z1-z,)

(10.21
I	 1	 1

.. I -+ -y n 1 -3 n,-3

which is distributed as N(0,1) variate.

The conclusion can be drawn as given the principles in (A).

Example 10.6 The correlation co-cfhdents htained trom samples of sizes 2))
and 32 arc 0.47 and 0.68 respectively. Test the significance of the difference
between these co-efficients.

Solution:	 We set upH 0 : p1=p2.
Here, n 1 = 20,	 r1 = 0.47
and n2 = 32,	 r2 = 0.68.

From z-transformation, we have, i= 031, and z, = (1.83.

-
The required test statistic is, 	 d	

0.51 (L3
	 - 0.32(.pp)

I ii---
I:

211



An Introduction to The Theory of Statistics

Since the calculated value of I d I is less than 1.96, it is insignificant and the
hypothesis may be accepted.

2 f-test In normal test, we assume that (u) in (10.14) is either knriwn or can
be estimated from a large sample (n > 30). We may have to face some

situations where the sample sizes are not large enough and also the (u) is

not known. In such case, the estimate of (u) can he obtained and the test

statistic becomes

=	 u - E(u)	
(10.22)

estimated a(u)

which is distributed as Students t with ö d. f. where ö is less than n, the

sample size, mainly depends on the d. f. of the estimated a(u).

When 8 is large, t-test becomes normal test, therefore, f-test is small sample
test and can be considered as a special case of normal tcst. Like normal test,
t-tests are two tail tests. The thoretical or tabulated value of t for

different d. 1. as well as different levels of significance are given in Table
No. Ill, Page-46, Vide Statistical Tables for Biological, Agricultural and
Medical Research.

The conclusion can be made as below

If the calculated value of I t I with 5 d. f. (say),is

smaller than the tabulated value oft with same d. f. at

5 1Z level of significance then the value of I t t is
insignificant and the null hvpoftesis may he

accepted.

ii) If the calculated value of I t I with 6 d. t. (say) is

greater than the tabulated value of t with same d. f. at

3' level of significance but smaller than the value of

with same d. 1. at 1' level of significance then the

value of I t I is significant and the null hypothesis

may be rejected at 5 17, level of significanc.	 U

iii) If the calculated value of I t I with 8d. f. is greater than

the tabulated value of t with same d. f. at I', level of

significance then the value of It I is highl y significant

and the null h\ 1% tb 'ii'iv be reiectcd
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Uses : f-test is used to test the null hypothesis regarding means, correlation
co-efficients and regression co-efficients.

Applications of 1-test	 -

(2.a) Test of significance of single mean

Let us suppose that x 1 , x2. ....... x be a random sample of Si/C n (n <30), drawn
from a normal population with known mean and on known variance. We arc
to test the null hypbthcsis H 3, that the sample has been drawn from a

population with mean J.I (a specified value) i.e. H 0 p p.0 (a specified
value).

Since population variance a2 is not known the unbiased estimate of it is

1	 -
given by, S2z( -1).

	
(x1- x )2

X
The required test statistic is It I =	 10.23)

which is distributed as Students t with (n -1) d .1.

The conclusion can be made following the principles given in (B).

Example 10.2 Ten plots of same area are chosen at random and the y ield of a
Certain paddy variety are recorded i ,n kg., they are 63, 63, 66, 67, 58, 69, 70,
70, 71 and 71. In the light of above data can VOL] suggest that the population
mean production of that paddy variet y is 66 kg. for came area?

Solution: WesetupH0:4=66.

Here x =67.8kg.and s = 	 - x )2 = 3.011 kg.

67.8-66
The test statistic, t =	 ,• = 1.89 (app) with 9 d.f.

3.011/ 'flO
The calculated value of t with 9. d. 1. is seen to he smaller than the
tabulated value of t at 5% level of significance i.e. too,; with 9 d. f.
Hence the calculated Value is insignificant and the h ypothesis ma y be
accepted.

(2.b) Test of significance of difference of means

Let x be the mean of a random sample of size n 1 < 30 from 4 normal

population with known mean p, and unknown variance ançl let v be the

mean of another independent random simple ot "I/C 112< 30 trim a n t her
normal population with known mean u and on known \'aria net's I he
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variance of the two populations are assumed to be equal. For testing H 0 :	 =

).L (some specified mean values)

x - y
The required test statistic is. I t I =	 ________	 ( 10.24)

ji	 1
sI —+ —'n 1 	nr2

which is distributed as t with (n 1 + n2 -2) d.

- vx.and
where x ='

ni	nl

nl	n2

2_.	 !.(x1 - x)2 +(V - v)2	(10.25)
n1+n2-2

When H O : The two population means am, came i.e. I.L, =

x 
t i =	 __________	 ((0.26)

fi	 I
n	 r

which is distributed as t with (n 1 -,- n, - 2) d. 1. and s in defined as in (10.25).

when n 1 = n, = n, the statistic becomes

tI'= __________	 (10.27)

which is t with (2n - 2) d. 1.

The conculusion can he made as given the principles in (B).

Reamrk For testing above hypotheses given in (10.24) and (10.26) it is

desirable to test the equality of population variances by applying F-test

(given latter on). It the variances donot come out to he equal, the following

test is to be performed.

When population variancvs are not equal the required test statistic under F1

i given Lw,

24



Exact Sampling Distribution and Test of Significance

x - y
10.28)

Sx

Nrn2

t' given in (10.28) is not a students t. The tabulated value of tat a% level of
significance can be obtained from the following formula,

t1t2
nj	 U2

t (X =	 2 s2

n1	r

where t 1 and t2 are Students t with (n 1 -1) and (n 2 - 1) d. f. respectively at

a % level of significance.

lfn 1 = n2, then t 1 = t2 = t say, which implies that t' ( = t.

When the null hypothesis indicates the specified value of the population

means, say A. and 1.L,, the test statistic becomes,

(x - y )-(jt,-R)
.. .......... ..l0.2'fl

F1 7E2

n1 U2

The conclusion can be drawn as given the principles in (B).

Example 10.8 The, following data represent the y ield in bushels of corn on
ten subdivisions of equal areas of two agricultural plots in which plot I was
a central plot treated the same as plot-11 except or the amount of
phosphorus applied as a fertiliser

hot-I	 6.2, 3.7, 6.3, 6.0, 6.3, 5.8, 3.7, 6.0, 6.0, 3.
Plot-11 5.6, 3.9, 3.6, 5.7, 5.8, 5.7, 6.0, 3.3, 3.7, 3.3.

Is there significant difference between the yields 0n the two plots, using the
difference between their means as a criterion of judgment?

Solution Let x and y be variable for plot - I and plot - II respectively.

Z, 60	 —v 37
We calculate x = j-= jjj =6.	 .y =	 = j'j= .7.

- 72 = 0.64 and (yj -v)2 = 0.24.

,	 0.64 +0.24	 (1.
Pooled variance,= IO+ U) -2	

=
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The required test statistic for testing H 0	 is

=	 0.3	
- 3.03 (app.) with 18 d. 1.

1^0  ( -+ -

tone the calculated value of t with 1$ d. 1. is greater than the tabulated
value of t with 1$d.1. at 3' level of significance, the value is significant
and the h ypothesis may he rejected at ; level of significance.

(2.0 Test of significance for difference of means from correlated
populations

Let us consider the situation where the sample sizes are same i.e. n 1 = n2 = n.
The two samples are not independent and the samples are paired together.
The situation may arise for the case where for avoiding extraneou
influence we consider a plot of land which is equall y divided and two types
of paddy varlties sa y , lrrj and Boro are sown, thus giving us a pair of
observations of yields of lrri and Boro. Let us consider much 'n pairs of
observation. Now we are to test the null hypothesis hethcr the sample
means differ significantly or not.

Let \ and v (i = I, 2 ....... .. . ii) be the yields on the ith plot and d	 - v. We

set up the null h y pothesis, H0	 = l_I -	 = 0.

It is assumed that d 1 , d ...... .... . dcon stitute a random sample from a normal

population with mean p i arid variance cTd 2 (unknown). The required test
statistic is.

d
t=	 (ltL3O)

which is distributed as t with In -1) d. f., d is the mean of ds & 5 2j is the

sample variance of d"s based on (n -1) d. F.

The conclusion can he made as given the principles in (B).

Example 10.9 The following table shows the mean number of bacterial
colonies per plate obtainable by four slightly different methods from soil
samples taken at 4 P. M. and 8 1'. M. respectively.

Methods	 A	 B	 C	 D
I me	 4 I'At	 2,7	 3i).2	 27 SO

S l'.\l	 20	 10W	 14-20	 12411
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Are there significantly more bacteria at 8 I'. M. than at 4 P.M.?

Solution: Calculations of mean and standard deviation:

Methods 4P.M. (x)	 8 P.M. (y) d =Y-x	 d- T	 (d - d)2

A	 29.75	 39.20	 9A3	 -1.323	 1.756

B	 2750	 40.60	 13.10	 2325	 5.406

C.	 30.25	 36.20	 5.93	 -4.825	 23.281

D	 .	 27.8k)	 42.40	 14.60	 3.825	 14.631.

-	 d- 43.10	 -	 - y—'	
2

We have, d =—= —=10.77D. and S2 j =	 = 1.02

The test statistic for testing H 0 : Rd =	 -. p. = 0 is

=5.56(app) with 4'1 =3d. f.
025/4

Since the calculated value of t with 3 d. t. i r'ater than the tabulated
valueof t- with 3 d. 1. at 3'Z level of significance, the ealculated value is

significant and the h ypothesis may he rejected at 3' kvel of significance.

(24 Test of significance of an observed correlation co-efficient

Let us suppose that r be the correlation co -efficient from a sample of size n
from a bivariate normal population. We are to test the null-hypothesis

that the population correlation co-efficient is zero, i. c. H0 : p = 0.	 -

The required test statistic is

	

r'jn-2	 -
(10 .31)

which is distributed as t with (n -2) d. 1.

The conclusion can be drawn as given the principles in(B).

Remarks:	 -

(1) The same test statistic can be used ii we want to test the null

h y pothesis H 0 : 13 = 0. where 13 is the regression co-efficient of y on x. Here

the usual assumption is that x i an N(R, 2) variate and y is a fixed variate -
for	 0.	 -	 -	 -

(2) The same test statistic is used for tcting the null hypothesis
rtgarding the population rank correlation co-efficient i euaI to zero. In.
this case, in the test statistic r js replaced by R. the ampIe rank crre].O:.fl -
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Example 10.10 A random saupIe of 18 pairs from a bivariate normal
population showed a correlation co-efficient 0.3. Is this value significant of
correlation in the population?

Solution: We set up the null hypothesis, Ho: p = 0.

The test statistic is, I t I 
= 0.3

	 1.26 (app) with 16 d. 1.
1-0.09

The calculated value of t with lb d. f. is seen to be smaller than the
tabulated value of t with same d. 1. at 5% level of significance. Hence the
calculated value oil t I is insignificant and the hypothesis may be accepted.

(2.e) Test of significance of an observed regression co-efficient

Let us suppose that (x1, v 1 ), (i =1, 2........ .n), he a random sample of sue n of
which x1 's are random and ys are fixed. We are to test the null hypothesis
that the regression co-efficient of y on x is	 (a specified value), i.e. Ho: ji=
Io(a specified value).	 —

The line of regression of y on xis y - y =b(x- x )	 (10.32)
SI'. (xv)

where b = S.S.(x). The estimate of y for a given value x, (say) of x as

A - —

givenbv the line (10.32) i5 .y1 = y + b(x1 - x ).

The required test statistic is

r(n - 2)(.i - x
(h -	 I	 10.33)

I	 A

[	
(Vi - y1)2

which is distributed as t with çn- 2,) d.f.

The conclusion can be made as given the principles in (B).

Remark : Sometimes we ma y want to test the hypothesis that a, the
constant term or intercept of the regression equation takes a particular value

sa y, a0 i.e. H 0 : a = (xo(a specified value).

From the regression equation y = a -s b x 1 the value of 'a' can be obtained by

a	 v - h x where h =	 - ; v and \: are the rnean of v and \,S SN)	 -
re'- pec t i el v.
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(a - a) 41n(.- 2)1(.,--. )21

The test statistic is I t I =

	

	 -
l(xj 2)(yv y

which is distributed as t with (n -2) d. 1.

The conclusion can be made as given the principles in (B).

(21) Test of significance of difference of regression co-efficients

(10.34)

Let us suppose that we have b 1 and b2, two estimates of same regression co-
efficient in two different times or samples taken by two investigators. W
are interested to test the null hypothesis H 0 : II I = 112 i. e. the two samples
have been drawn from the same population.

The test statistic is

ti =
	

b1-b2

_.	 j (xi1 - x 02 ZAx2 - X

i=1	 j=1

which is distributed as t with (n 1 4-n2 - 4) d. 1. where

- (n I - 2)s 1 2 + (n 2 - 2)s22	
of which	 2	 (y11 - 1)2

n1+n2-4	
=	

v
 -2

(10.35.)

.,
A

and 522 = L \Y2iY21 . n1 and n 2 arc, the sizes of two different samples.
n2-2

The conclusion can be made as given the principles in (B).

(2.g) Testing significance of an observed partial correlation co-efficient

Let r1234 (.• 2) be the partial correlation co-efficient of order k,
calculated from a sample of size n from a multivariate normal population,
we want to test the null hypothesis that the population partial correlation
co-efficient is zero i. c. H0: P1234	 (k-2) = 0.

The required test statistic is, t = r1234
 V 1 - -r2,, .34.......

which is distributed as t with (n - k - 2) d. f.

The conclusion can be made as given the principh' . in B).

(10.36)
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Example 10.11 Partial correlation co-efficient r 24 = U.S is obtained from a
sample of size 20 from a 4-variate normal population. Test its significance.

Solution We set up the null hypothesis H 0 P12.4 0

Here r 1	=0.3, n = 20, k = 2.

2
The required test statistic, t =	 =	 = 2.31 (app) with 16 d. 1.

Nl-.2-

The calculated value of t is greater than the tabulated value of t at 3Z-
level of significance. Hence the calculated value 01 t is significant and the
null hypothesis may be rejected at 5 17c level of significance.

3 ) X2-test : X2-test is mainly used to test the hypothesis which specifies the
nature of one or more distributions. We know the mathematical form of the
distribution, hypothesis regarding the sample that has•besn drawn from

the distribution is tested by X 2-statistic. We may be interested to test
whether two or more distributions are identical. It also tests the
independence of two or more attributes. For testing the above hypotheses,
we used to compare an observed set of frequencies with a corresponding set of
frequencies that are expected under the null hypothesis. Let O (i = 1,
2.........k> denote the observed frequencies and F 1 (i = 1, 2...........k) denote the

expected frequencies then the test statistic, X 2 is defined as,

(01-E1)2 =i•1

	

2	 .
( 10.37)

k	 k
vhere n	 which is distributed asX 7 t ith (K - p) d. t.

where p is the number of indepedent restrictions imposed for the
calculation of the set of expected frequencies. The d. I. corresponding to each

X 2-tcst will be specified independently in every case. The above test
statistic isan approximation under null hypothesis and -is fairly good when
the expected frequencies are greater than or equal to 5. For values, less than
5, the modifications are given in the appropriate cases.

Uses X2-test is also used for testing significance of variance, proportions and
correlation co-efficients.	 .

The theoretical or tabulated value of X 2 with different d. f. as well as
different level, of significance are given in Table No. IV, Page-47, Vide
tatistical Table tor Biological, Agricultural and Medical Research.
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The conclusion can he drawn as below:

i) If the calculated value of X2 with & d f (say) is smaller than

the tabulated value of X 2 with same d. 1. at 5% level of

significance, then the calculated value of X2 is insignificant

and the null hypothesis may be accepted.

ii) If the calculated value of X 2 with & d. 1. (say) is greater than

the tabulated value of V with same d. f. at 5' level of

significance but smaller than the tabulated value of X2 with
same d. f. at 1% level of significance then the calculated

value of X2 is significant and the hypothesis may be rejected

at 5% level of significance.

iii) If the calculated value of X 2 with & d. 1. (say) is greater than

the tabulated value of X 2 with same d. f. at 1' level of

significance then the calculated value of V is highly

significant and the null hypothesis may he rejected.

Applications of V test

(3.a) X2-test for testing goodness of fit Let us suppose that we are given a
sample and the problem is to test the hypothesis that the samples has been
drawn from a particular population with some specified or unspecified
values of parameters. The sampie can he arranged in the frequency
distribution. Corresponding to every value of the observed frcquencie' we
can have expected frequencies obtained from the knowledge of the
population. Now, if the deviation of the observed frequencies and the
expected frequencies are small, we can easily infer that the deviation , are

due to sampling fluctuation and the sample maybe considered to he dra%n
from that specified population. On the other hand, larger value of the
deviations indicate that the given sample could not have possibly come
from the population mentioned.

1101 (i = 1, 2..........k) be a set of observed frequencies and E 1 be the

	

k	 k

corresponding set of expected frequencies, then for large n, 11 = 01 = E1

X2= 
1	 =	

-	 ( 1(118)
El 
"f
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which follows X2-distribution with (k - ) (for specified set of parameters)
or (k - b - 1) (for b unspecified parameters ) d. 1. This test was given by Karl
Pearson in 100. The conclusion can he drawn as given the principles in (C).

Conditions for the validity of X 2- test for goodness of fit	 -
1) The sample observation should he independent.

	

k	 k

	

2> The constraint on the cell frequencies is E	 =	 F,

	

1=1	 i=1
3) n, the total frequency should be reasonably large, say, greater than 30.
4) No expected frequency should be less then 5. If any expected frequency

is less than 5, then for the application of X 2-test it is to be pooled with
the precçeding or succeeding frequency so that the pooled frequency is
more than Sand finally an adjustment for the loss of d. f. is necessary.

Example 10.12 Test the goodness of fit of the data given in Example 8.2

Solution We have calculated the expected frequencies in the solution of the
Example 8.2. Therefore, we can furnish the required table as follows:
(i)	 lio The sample has been obtained from a binomial distribution with

	

Observed	 Expected
x	 Frequency	 Frequency	 C/E

(0)	 (F)

1	 61 13	 $	 21.123

2	 19	 21	 17.10
3	 -	 35	 35	 33.000
4	 33	 23.714
5	 27	 21	 34.714
6	 7)	 .	 -
7	 118	 1J8	 8

Total	 128	 128	 141.743

Therefore, X 2 = 141.743-128=13.743	 with 6- I = 3d. I.

222



lact Sampling Distribution and Test of Significance

The tabulated value of X2 with 5 d. 1. at 5 17 level of significance is 11.07. Our
calculated value is 13.743 which is greater than the tabulated value. So the
calculated value is significant and the hypothesis may be rejected.

(ii)	 H0 The sample has been obtained from a binomial distribution with
unknown p.

Observed	 Expected
Frequency	 Frequency

(0)	 (E)
o	 7	 1
1	 6 13	 9	 18178

2	 19	 23	 15.696
3	 35	 36	 .34.028
4	 30	 V,4	 26.471
5	 27	 19	 38.368
6	 71	 61
7	 118	 iF	 9.143

Total	 128	 128	 142.484

Therefore, X2 = 142.484 -128 = 14.484 (app) with 6-1 -1 = 4 d. 1.

The tabulated value of X 2 with 4 d. f. at 1% level of significance is 13.277.
Our calculated value is 14.484, which is greater then the tabulated value.
So the calculated value is highly significant and the hypothesis ma y be
rejected.

(3.b) X2-tes1 for testing independence of attributes

We can classify the sample observations according to more than one
attributes. Thus an element of the sample, say student may he classified as
"dull headed" or " Mediocre" or the " best one' according to the
attribute'intclligencc' and then be classified as 'male or 'female' according
to the attribute 'sex'. Data arranged in the form of above classes may be
termed as contingency table. Here again the compatibility of the observed
and the expected frequencies has to be tested in testing the independence of
attributes in the contingency table. In co9tingency table the values of the
variables are generally qualitative whereas in correhition table the
variables are quantitative. The observations in the cells represent the
frequencies in both the cases.
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Contingency table and calculation of X2 for testing independence of attributes

Let the data be classified into t-classes, A 1 , A 2, ...... A 1 according to attribute

A and into r classes B 1 , B2 .........Baccording to attribute B. Let O, j denot6 the

observed frequency of the cell belonging to ith class of A (i = 1, 2...........t)

and j th class of B (j = 1, 2........r). Let O. and 0', denote the totals of all the

frequency belonging to ith class of A and jth class of B respectively. The
data can he depicted in a t x r contingency table as below

0 1	.................

02j.

02..................

A1	 ..................A1	 j Total

Oil	 .................. °L1 	0.1
012	 ..................	 0.,

oil.......... ........	 Otj
	 0

0ir

0

B
	 A1

B1	 011
B2	 °12

B1	 01)

Br	 °lr

Total

I.,

Here we are to test the hypothesis that the attributes A and B from which
the sample of size n has been drawn are independent.

Let P denote the probability that an element be chosen at random will he
the ith class of A and jth class of B. P 1 . and P j are the marginal probabilities
for the ith class of the attribute A and jth class of the attribute B
respectively. Under the null hypothesis i.e. the two attributes A and B are

independent we have, P 1 =P1 x Pj and	 Pi, = Pj 1.

We know that l'. = . and P.j =-and also we know that the expected cell

frequencies E (i = 1, 2........t j = 1. 2.........r) for the ith class of the attribute
A and jth class of the attribute B can be written as,

E 11 = n1l11 = ni'1 x

0 0 01x0=x_xL=	 .1
-n	 n	 fl
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Exact Sampling Disthbution and Test of Significance

Thus the expected cell frequency F 11 is equal to the product of the marginal

totals o1 the jth class of the attribute A and jth class of the attribute B

devided by the total number of the observations in the sample. The test

(0,F, )2

statistic used to test the hypothesis is, X 2 =	 E
i j	

I>

=	 I	
:n	 ((0.39)

which is approximately distributed as X 2 with (t - I) (r - 1) d. f.

Since there are (r - 1) row totals and (t - I) column totals which are

independent in a t X r contingency table. Therefore, the d. 1. in a t X r
contingency table is tr -1- {(r -1) + (t - 1)) = (t -1) (r - 1). The conclusion can
be drawn as given the principles in (C).

Example 10.13 Two investigators draw samples from the same town in order

to estimate the number of persons falling in the income groups - poor,
'middle class, well to-do' (The limits of the group are defined in terms of
money and are the same for both investigators). Their results are given in

Table-10.1.
Table -10.1

Investigators	 Income-group	 Total

Poor	 Middle-class	 Well to-do

A	 140	 100	 15	 255

B	 140	 50	 20	 210

Total	 280	 150	 35	 465

Show that the sampling techniques of the investigators are independent on
the economic conditions of the families.

Solution : We set up the null hypothesis that the two attributes, sampling
techniques of the investigators and economic conditions of the-families are

independent.

We know, under the hypothesis, the expected cell frequencies are
x 0

E11	 Now we prepare a table of expected cell Irequecies.

Tahl -10

Investigators	 Income-group .	 Total

[kxr	 Middle-class	 Well to-do

A	 154	 82	 19	 25

B	 126	 68	 1t	 210

	

Total	 280	 I
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(140- 1 54)2 (100 - 82)2 (15 - 19) 2 (140-126 )2

154	 +	 82	 ^	 19 	 +	 126

(50- 68)2 (20- 16)2
+	 +	 = 13.387 (app) with (3 - 1) (2 - 1) = 2 d. 1.

The tabulated value of X2 with 2 d. 1. at 1% of signifirance is 921, which is
smaller than the calculated value of X 2. Hence the calculated value is
highly singnhficant and the h ypothesis may be rejected.

ExamplelO.14 For the 2 x 2 contingency table whosecell 1reuencies are:

a	 b

C	 d

show that the value o X2 for testing itidependence is given by

n(ad-hc)2X2	 ^ h) (c= 	 wheren = a + b + c + d.(a	 cl) (a ^ c) (b	 d)

Solution The contingency table with marginal totals is as follows

Total

a	 h	 a + b

d	 c+d

Total	 a+c	 h+d	 a+h++d=n

Under the hvputlie'..is of independence of attributes,

E) = 
(a + h) (a + c)

n

(a + c) (c 1:d)
E(c) = n

E(h) 
(a + b) (b + d)

(b + d) Cc + d)
and E(d) =

n

2	 Ia - E(a)12	lb - E(b)l2	 IC - £(c)1 2 Id - Ed)12

	

- F(a)	 +	 E(b)	 +	 E(c)	 +	 E(d)

[
a (a+b)(a+c)}2

- (a ^ b^ c + d)

N	
Ia - E(a)l2

ow,	 =

	

E(j)	 (a + h) (a + c

	

a + 1'i *	 4 ci
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(a 2 +ab+ac+ad - a2 - ac - ab - bc)2
-	 (a+b+c+d)2
-	 (a+b)(a+c)

(a+b+c-4-d)

(ad - bc)2
+ b + c + d)(a + b) (a + c)

lb - E(h)1 2	(ad - bc)2
similarly,	

E(b)	 (a+h+c+d)(a+h)(h+d)'

lc-E(c)12	(ad -bc)2
E(c)	 (a+b+c+d)(a+c)(c+d).

ld-E(d)J2	(ad -bc)2
and	

E(d)	 (a+b+c+d)(b+d)(c+d).

(ad -bc)2	 [1	 1	 1
(a+b+c^d) L (a+b)(a+c) (a+b)(b+d)

+{	 I
(a + c) (c + ii) + (h + d) (c + d)

(ad -bc)2	h+d+a+c
= (a+b+c+d)	 (a+h)(a+c)(b+d) + (a+c)(c+d)(b+d)

(ad - bc)2[	

1
(a +b)(a c)^(b+d) +

 (a+c)(c+d)(b+d)}
= 

(ad -bc)2(a+b+ci-d)-	 (ad-hc)7n
(a	 b) (a	 c).(b + d) (c + d) - (a	 b)(a	 c) (h	 di (c I d)*

Hence proved.

Yates Correcrtion We have already pointed out that the X 2 distribution is

a Continuous distribution and X2 for testing goodness of fit and for testing

independence of attribute is approximated to the y2-distribution when the

expected cell frequencies are greater than 5. For values, less than 5, we use
the method of pooling theoretical cell frequencies. But in case of 2 x 2

contingency table, the d. f. is 1 and the use of pooling method cannot be
applied because it makes the d. 1. zero which is meaningless. F. Yates (1914)
provided a method of correction ucuallv known as Yate correction tor

continuity. This corfsist in adding uS to the observed cell trequencies whh h
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are less than 5 and then adjusting for the remaining cell frequencies so that
the marginal totals remain same.

For a 2 x 2 contingency table with cell frequencies a	
b the

values of X2after Yates correction for continuity 	 c I d

becomes	 -

2
ad - bc L 

nl

(a b)(a+c)(b+d)(c+d) ()

Example 10.15 In an experiment with immunization of goats from anthrox
the following results were obtained. Derive your inference on the efficiency
of the vaccine.

	

Died	 Survived

Inoculated	 2	 11.)

Not Inoculated	 6	 6

Solution After Yates correction the contingenc y table becomes

Table-10.3

Died	 Survived

Inoculation	 2.3	 95	 12

Not Inoculation	 5.3	 6.5	 12

Total	 8	 16	 24

We set up the h ypothesis H 0 The efficiency of vaccine over the disease is

nil.

24163x2.5-9.5x5.51 2	2	 24x36

12 x 12 x 8 x 16	
= 12 x 12 x8 x16 = 1.688 (app) with I d. f.

The same result can he obtained by using ().

The tabulated value of X2 with 1 d. f. at 37, level of significance is 3.81 It is

seen that the calculated value of /2 with same d. I is less than the

tabulated value and hence it is insigniticant and the hpothesis ma y be
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(3.d) Test of significance of single variance

Let us suppose that we have a random sample of size n consisting of x1,

x 2 .......... x drawn from a normal population. We want to test the null

hypothesis that the population variance is 2o, a specified value. i. e.

H0 : CF2 = 02 (a specified value).

We know that the estimate of unknown population varaince a2

n
Xi

512=	
, (x - x )2 where x =

(i) S2	 (x - x)2

The required test statistic is, X2 
=	 2 =	 2	 . ( 10.40)

which is distributed as X 2 with (n -1) d. f.

The conclusion can he drawn as given the principles in (C).

Example 10.16 From a random sample of 21 values we calculate an estimate
4.5 for the variance of the population. Does this result support the
hypothesis that the population variance is 10 ?

Solution: We set up the mill hypothesis, H ft : .& = 10.

The test statistic is, X2
20x4.5

=	 10	
= 9.00, which is distributed as X- with 20

d. f.

The tabulated value of X2 with20. d. f. at 5 level of significance is 31.41,

which is greater than the calculated value of X 2 with 20 d. f. Hence the

calculated value of X 2 is insignificant and the hypothesis may he acceptid.

(3.e) Test of significance of equality of several variances 	 -

Let us SUOSC that we havek independent samples each of size n (i = 1,
2.........k) and they are randomly drawn from normal populations. We are to

test the null hypothesis, Ho : G12= CF 22 = ..........=

Let s 1 2 (i = 1, 2.........k) he the ith sample variance ha-cd on (n - I) degrees of

freedom and alo let us define
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k
vlsi2,

i=l	 k
whercv1=n-1andv=v1.

The required test statistic is,

X2 .. {V log 2 - Zv1 log s2 I
which is approximatc'ly. distributed as X 2 with (k - I).

The value of M is given by, M = 0.43429 [1 + 34k 1

This statistic is due to Bartlett.

The conclusion can be drawn as given the principles in (C).

(10.41)

Example 10.17 The estimated variances obtained from five independent
samples and the corresponding degrees of freedom are given in Table-10.4.

Table-10.4
Samples

1	 2	 3	 4	 5

	

150	 3.20	 5.61	 4.34	 5.83
V,	 7	 6	 3	 1	 8

1og 10s 1 2 	0.39794	 034)515	 0.74896	 0.63749	 0.76567

Test the null hypothesis, Ho	 =	 == 48	 ;2,

Solution : Here, .2_ 
vs,2 = 28

117.53 = 4.20. (app)

Iogfl)s = 0.62325. v 1og 10 s2 = 17.451.

5	 1	 1

	

V1 log S,2 = 16.789.	 —=1.01786	 -= 0.03571.vi	 Vi=1	 i=1

0.921 SNow, M =0.4142o)II +T2— (1.01'8h-t).03571)j =0.43429 1 	 I
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= 0.43429 x 1.08185 = 0.46985.

 Vlog10 S2 -	 loiosi2)	 •.

0.46985 x 0.712 = 1.51 (app) with 4. d. 1.

The tabulated value of X2 with 4 d. f. at 5 level of shnificance is 9.4

Here the calculated value of X2 with same d. 1. is seen to he insignificant and
therefore, the hyp'hesis may be accepted.

(3.0 test of significance of equality of several population proportions

Let us 5UOSC that we have k groups of observations and the proportion for
each group for possessing certain attribute A is obtained from k independent
binomial populations. We are to test the hypothesis that population
proportions are same i.e. H 0	 = 712 =..........= ltk:

where it1 is the ith populations proportions.
The sample from binomial populations may he arranged in Table

Table-10.5
No. otobs.

possessing attribute 	 Not A	 Total
A
r1	n1 -r1	n1
172 	 n)-r7

ni. - r.	 iii.
Total
	

R	 N - R	 N

Let us calculate P = 
R

the required test -ttsti is

1k	 r 2 i2

- 1){.	 (10.42)

which is approximately distributed as X2 with (k - 1) d. f.

The conclusion can be drawn as given the principles in (C).

Example 10.18 Five samples of seeds, selected at random one each From t\'c
lots were sown and thcir .4ermlllation rates were oherved - The results arc
given in Table - 10.6.
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Table-10,6

Samples

1	 2	 3	 4	 3	 Total

	

Germinated	 4k)	 110	 70	 120	 18k)	 320

Not

	

Germinated	 it)	 4k)	 3k)	 30	 2k)	 130

	

'1 " tal	 30	 150	 100	 ISO	 201)	 650

Test the equalit y of the proportions in the populations.

Solution: We set up the null h ypothesis, H0 : )t'.= I12 = 7t1 = 7E4 =

520
Here,	 P=- — =0.t4,	 1.-P=0.2	 .. Ik1l1)=0.16.

	

630

'\'r12 R 2	 402	 1102	1 2	 53)2
650

= 119.7 - 416.0 = 3.7. (app)	 .-

3.7
Therefore, X2 = 016 23.1 (app) with 4 d. t.

The tabulated value of X2 with 4 d, 1. at 1 'Z level of significance is 13.28.

The calculated value of X2 is higl significant and hence the hypothesi

may be rejected.

(3.g) Test of significance of equality of several correlation co-efficients

Let us suppose that rt, r, ............ .r be the sample correlation co-efficients
calculated from k independent random samples of sixes n 1 n2..........
respectivel y from seperate hivariate normal populations. We are to test the
hypothesis that the populations correlation coefficient are same i.e.

H:p=p2= ........... =Pk.

We can obtain the value of x, /2 ............ zk from Table No. 14, Page 139,
Vide Riometrika Tables forStatisticians edited by E. S. Pearson and 0. H.
Hartley . Fishers / transformation is given by,

I+r

	

1 -r	 ;i = 1_2 .......... ., K.
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These ;s are normally distributed about a common mean

1	 1+ P	 1
m = log —and variance

k
-	 -

The estimate of m is z which can he calculated by, / =

S	 -

•11	 Z
Sothat,

	

	 =(- z)V(n 1 -3) ;(i = I, 2 .......... k)irc

(n1-3)

independent standardised normal variates with mean zero and variance I.
k

Hence, X2 	 (;)2(n -	 (10.43)
i1

which is distributed as X 2 with (k - 1) d. 1. This statistic is obtained h :he

additive property of X 2-distribution. I d. f. is lost due to the estimate of m
by z

Conclusion can be made as given the principles in (C').

Example 10.19 The correlation co-efficients between certain diet and rate ol -
growing of fishes of numbers 10, 14, 16, 20, 25 and 28 from six :nds'nd&'nt
ponds were found to be 0.318, 0.106, 0.253 0.340. 0.116 and 0.112. let the
howogenity of the population correlation co-efficients.

Solution: Wesel up the null hypothesis, H 0 : Pt = p' =p = P4 =	 =

From i transformation we have the values 01 ,.'s as

zi = 0.3294,	 /2=0.1063,	 /=0.2586,
1.4 = 0.3541,	 Z5 = 0.1163.	 z, =0.1125.

6
.7 = !i	 " = 0.1919. (app)	 .

(n-3)

6

Now, X2 = (n -3) (z - z )2 = ().1008. (app) with 5. d. 1.	 --

The tabulated value of X2 with 5. d. 1. at 5 level of significance is 11.070.

Our calculated value is 0.1(108, Hence the calculated value of X 2 with same
d. 1. is insignificant and the hypothesis ma y he accepted.
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4) F test This test, given by Fisher and Snedecor, comes from the definition
of F-distribution which reduces to s 1 2 /s22 with (n 1 - 1) and (n2 - 1) d. 1. where

S 1 2 and 522 denote two estimates of population variance &, obtained from two
independent random samples of sizes n 1 and n 2 respectively. Thus briefly,
the statistic F=s1 2 /s,2 wich is distributed as F-distribution with v 1 = (n 1 -1)
and v, = (n2 - I) d. 1. In the above test, greater of the two variances s 1 2 and 52?

is to be taken in the numerator and v 1 corresponds to the greater variance

Uses This test statistic is used mainl y to test the null hypothesis regarding
the equality of two population variances, hotnogeniety of independent
estimates of population means, significance of sample correlation ratio and
also for testing the linearit y of regression.

The theoretical or tabulated value of F with different d. f. as well as
different level of significance arc given in Table No. V, Page - 53 and 35
Vide Statistical Tables for Biological Agricultural and Medical Research.

The conclusion can be rawn as below

i) lithe calculated value of F with v 1 and v2 d. 1. is smaller
than the tahulared value of F with same d. 1. at 5% level of
Sig nificance then the calculated value of F is insignificant
and the null h y pothesis may he accepted.

it ) If the calculated value of F with v and v2 d. f. is greater
than the tabulated value of F with same d. f. at 3% level of
significance but smaller than the tabulated value of F with
same d. f. at I '; level of significance, then the
calculated value of F is significant and the hypothesis
rn^av be rejected a t 3'; level of significance.

iii) If the calculated value of F with v 1 and v2 d. f. is greater
than the tabulated value dI- F with same d. f. at 1"; level of

significance then the calculated value of F is highly
significant and the null hypothesis may be rejected.

N. B. : Significant value of any test statistic (calculated) is denoted hy
and the highly significant value of the same is denoted by.

Applications of F test

(4.a) Test of significance for equality of two population variances

Let US su-pppsc that x 1 , X2 ......... n 1 and y I y ? ......... y7 he two independent

random samples of sue n 1 and n, drawn trom two normal Populations. We

214
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have to test the null hypothesis that the two population variances are
same Le. H0:

The estimates of the population variance are

1	 111	
-	 1	 P22 	 (x1- x )2 ands 2 = —j- (y1 -y )2

ni	•n2

where T =	 and  =
n i	r

The required test statistic is F =-:- 	 (10.44)S'y

which is distributed as F with v 1 = ( n 1 - 1) and v2 = (n2- 1) d. 1. In the above
test, we consider s.2 > s,2.

The conclusion can be made as given the principles in(D).

Exmple 11.20 Two random samples drawn from two normal populations are:

Sample 1:	 20, 16, 26, 27, 23, 22, 18, 24, 25, 19.

Sample 2:	 27, 33, 42, 35, 32, 33, 38, 28, 41, 43, 30, 37.

Obtain estimates of the variances of the population and test whether the
two populations have the same variance.

Solution: We set up H0 :	 = (T22.
- Lx1 220

	

Mean of Sample 1, •	 x	 =	 = 22.

ni

Variance of sample 1, s 2
 = !(x - x1 )2 - 120

•= 13.33.

	

n 1 -1	 - 

Mean of Sample 2,x2=

	

Y-x2 i	 420
 =

n2

-
Variance of sample 2, s 	

(x	 x2)2 314
22 = __________ =	 = 2835.

The required test statistic is, F == 2.14 (app). Since, s,2 > s2.
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ftc tabuland value of F with (U, 9) d. t. at 5 level of significance is '3 L

Our calculated value is 2:14. Hence the 'alculated value of F is insignifiCnt

and the hypothesis may he accepted.

(4.b) Test of significance for homogenity of population means

Let us suppOs that we have k(k>2) independent random samples drawn

from normal populations. We want to test the null hypothesis,

Ho: V, = l2= .... = p wherc I ti is the mean of the ith population (i = 1, 2,., k)

The sample observations are arranged as below.

1st Sample 2nd Sample ..... ............ kth Sample

XII Xkl

	

Xt2	 X22.

	.1	 I	 I

	

I	 I	 .1

	

xtnl	 Xkflk

Total	 T1	 T,

Mean	 XI	 X2	 7k

	

k	 k ni	 . k	 T
Let	 T YT ^	 I xii, N=	 and

i = I i =1 j =1	 i	 1

In the above samples, the total sum of squares. the total sum of squares (Si)

can he partitioned into two componenots namely between sum ot squares (Sp)

and within sum of squares

Sb/(k- I)
The test statistic is, F = Sc/(N - k)	

(10.45)

which is distributed as F-distribution with (k - it and IN - k) d. 1.

The usual-method 01 calculation of different components of sum of squares

are as tols

T 1'Sb =( x-x )2

T2
2l
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The conclusion can be drawn as given the principles in (D).

Remark : The above technique is usually called "Analysis of Variance" for
one-way classification data. An elaborate discussion on it and also for more.
than one-way classification data is given in the next chapter.

Example 10.21 10 varieties f wheat are given in 3 plots each and following
yields in kg. per plot are obtained. Test the homogcnitv of The population
means of different varieties.

Table-10.7

t Plot/Variety	 1	 2	 3	 4	 3	 6	 7	 $	 9	 10

1	 7	 7	 14	 II	 9	 6	 9	 8	 12	 9

2	 8	 9	 13	 10	 9	 7	 13	 13	 11	 12

3	 7	 6	 16	 11	 12	 5	 12	 ii	 11	 il

Total	 22	 22	 43 32	 ?)	 18	 33 32	 34 .31]

Solution We set up H0	 = 112 = .... .......= l . 1() where 4, indicates mean yield

of ith variety, we calculate,	 298 = T. and N = 30
T2

Total S. S. (Si) =	 -	 = 203.87

YF2T2
Between variety S.S. (Sb) =	 .	 .

1 2982	..	 .
=l222 +222 +..........+31 2)	 = 160.54.. .

Within variety S.S. (Sw) = 203.87 - 160.54 = 43., ; ,;	 .

160.53/9
The test statistic is, F = 43.33/20 	 w= 8.22 (	 with (9,20) d. t.

The calculated value of F with (9, 20) d. 1. is greater than the tabulated
vaiue of F with same d. 1. at 1% level of significance. Hence the calculated

value off is highly significant and the hypothesis may be rejected.

(4.c) Test of significance of an observed correlation ratio

Let us suppose that we have a randomsample of si,e N from a hivariate
normal population. The observations are arranged in h arra ys. We are to

test the null hyppothesis that the population correlation ratio is zero, L e.

= 0.
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The required test statistic is F 	 x	
-1h	

. (10.46)

which is distributed as F with (h - 1), (N - h) d. 1.

The conclusion can bedrawn as given the principles in (D).

Example 10.22 A random sample of So pairs of values from a bivariate
normal population grouped in 10 arrays of ys gives a correlation ratio

= 0.2. Is it significant of association between the variates?

Solution : We set up the null hypothesis that the population correlation

ratio is zero i. e. H 0 ii = 0.

Here N = So), h = 10, 	 = 0.2.

0.04	 70 2.So)
The test statistic is F = T - 0.03 x 	 =	 = 0.32 (app) with (, 70) d. 1.

Since •the - calculated value of F with (9,70) dl. is smaller than the
tabulated value of F with same di. at 5 17,; level of significance, the

calculated value is insignificant and therefore, the hypothesis may be
accepted.

(4.d).	 Test of significance of linearity oIregression

Let us suppose that we have a random sample of size N arranged in h
arrays, taken from a hivariate normal population. We are to test the null

hypothesis of linearit y of regression.

	

r1 2 - r2 	 N - h
The required test statistic is F = 1 - 2 X h-2 10.47)

which is distributed as F distribution with (h - 2), (N - h) d. 1.

Here 1 is the correlation ratio and r is the correlation co-efficient.

Example 10.23 A random sample of TX) pair from a 'bivariate normal
population when grouped in 10 array of ys gives r = 0.4 and r = 0.5. Are

these results consistent with the assumption of linearity of regression?

Solution We set up the null hypothesis that the regression is linear.

Here N = 1(X), h = 10, r = 0.4,1 = 0.5

0.25-0.16	 )
The test statistic is, F = 	 -l2	 $
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0.09 x 11.25i .0125_	
=1.35, with (, 90) d. f.

0.75	 - 0.75

The calculated value of F with (8, 90) d.f. is less than tne tabulated value

of F at 5% level of significance. Hence the calculated value is insignificant

and the hypothesis may be accepted.

(4.0 Test of significance of an observed multiple correlation co-efficient

Let us suppose that R he the multiple correlation co-efficient of order k in
random sample of size N from a (k + 1) variate population. We are to test
the null hypothesis that the population multiple correlation co-efficient is

zero i. e. H0	0.
12	 N - k - i

The required test statistic is, F = -	 k 

which is distributed .i. F with k, (N - k - 1) d. 1.

The conclusion can be made as given the principles in (D).

Example 10.24 For a sample of 30 sets of values from a normal population,

R231 is found to be 0.5. Test that the population multiple correlation co-

efficient is zero.

Solution We set up the null hypothesis that the population multiple

correlation co-efficient is zero.

0.25	 30-2-1 	 0.25 27
The test statistic is, F =-(1.25 x 2

	=xT= 43 with (2,27) d. t

The calculated value of F with (2, 27) d. t. is seen to be greater than the
tabulated value of F with same d. f. at 5'3 level of significance. Hence
the calculated value of F is significant and the hypothesis may he rejected

at 5% level of significance.
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11. DESIGN OF EXPERIMENTS

lii Introduction:

By the word experiment we mean a process to have a series of trials or

observationstaken under some condition specified b y the experirenter to

confirm or disprove something doubtful and also to discover some unknown
principles or effects or to test, establish or illustrate some suggested known
truth. The design of experiments mean the logical construction of experiment
to select the pattern of collecting data to suit the above purposes.

Broadly experiment can be divided into two parts, absolute arid
comparative. In absolute experiment, the characteristic is fixed and
observations are collected to make the best estimate of that. Design of
sample survey is an example of absolute experiment. On the other hand,
comparative experiments are designed to compare the effects of two or more
objects on some population characteristics. Thus design of experiments refer

to comparative experiments.

Before going in detail of this chapter we are giving below the explanations
hi the terms used in different places.

Treatments: Different procedures under comparison in an experiment may he
termed as treatments. For example, in agricultural experiments different
varieties of a crop, different levels of fertilizer may be considered as
treatments. In medical experiment different doses of a medicine or diets are

the treatments.

Experimental Unit : It is the experimental meterial to which we apply the
treatments and on which we-make observation on the variable under study
is termed as experimental unit. A plot of .Iand and a batch of seeds are
experimental units in agricultural experiments whereas patients. in a
hospital or a group of pigs may be considered as experimental unit in

medical experiments.

Blocks : In most of the times we divide the whole experimental unit into
homogeneous sub-groups or strata which as a whole may be termed as
blocks. A number of homogeneous plots in a strip constitute a block in an

agricultural experiment where as the . patients of same symptoms having

same age-group, same sex etc. ma y constitute a hI(ck in a medical

experiment.
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Yields : The measurements of the variable under study on different
experimental plots are termed as yields.

Experimental Error: The y ields of an experiment are usually influenced by
some extraneous variations ma y or may not he controlled by the
experimenter. The Uflwfltrolk'd variations are often called the
experimental errors. For a homogeneous experimental unit devided into
different plots of equal sizes and different treatments are applied to these
plots the yields of these plots wil not he same. The difference of the vie) 1,
ma y he due to difference of treatments or due to difference of inherent soil
structure or fertilit y condition of the soil. In field experiment, experience
tells us thateven same treatments are used on all the plots, the yield would
still vary due to these sources of variations. Such variations from plot to
plot are due to random compound and beyond human control, isii'tcred i
experimental error.

[he error includes all types of extraneous variations which are due to the
following factors:

i) inherent variabilit y in The experimental material to which the
treatments are applied.

ii) the lack of uniformit y in the methodolog y of conducting experiment.
iii) lack of. rcpresentativeoe's of the sample to the population under

study.

Replication : The repeated application of treatment under investigation is
known as replication. Detail explanation and uses of replication i's given in
the principles of experimental design.

Precision The reciprocal of the variance of the treatment meami is termed ,i,
precision or the amount of information in the design. In an experiment, if a

treatment is replicated r time', 	 the precision is given b y	where CF2 is

the error variance per unit.

Efficiency of a design : Let D 1 and D, he two designs with error variances per
unit 1 2 and CF2 2 and replications r 1 and r, respectivel y . The variances of the

,o22,2
differences between two treatment means are given b y

	

	andfor Dr1

and D, respectivel y . We define the ratio -of the informations, E =--rl-	 .	
a2

a' the el ficiencv of the design	 in comparison to D 2 if F = 1 ; I) and
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D2 are equally efficient, if, E > 1 ( < 1) D 1 is said to be more (less) efficient
than D2.

Contrast : Let y1, y1 ........... y be the n observations, then the linear function
C = I1y + 12y2+.......+ I 0y is a Contrast of j ' 5 if it's are some numbers such that
n
Yli = 0 . The sum of squares of the contrast c is defined by jT.

Orthogonal Contrasts: Two contrasts c 1 =ly and c, = !in v 1 are said to he

orthogonal if	 = 0. When there are more than two contrasts they are

said to be mutually orthogonal, if they are orthogonal pair wise.

Important steps in Design of Experiments : Following are the important
steps to be considered by an experimenter to have a good design of
experiment.

The statement of the problem should be clearly defined. In that case, he can
understand what to do and how to tackle the problem.

Formulation oI'thc hy pothesis should he done properly and thus the
method of collection of data can he determined. For these two steps we can
think of any previous experience whose reference can be made to throw some
light and adequate information for possibl, results from the point of view of
statistical theory on future experiment may be required.

The experiment should be conducted accordingl y and proper statistical
techniques are to he applied on the data.

Drawing of valid conclusions is the crutial part of design of experiment, so
careful considerations are to be given for the validit y of the conclusions for
the population of objects or events to which they are to apply. Also
evaluationof the whole investigation and comparison of the results can be
done with similar past investigation.

Principles of Design of Experiment According to Prof. R. A. Fisher, the
basic principles of design of experiments are (a) randomisation, (b)
replication and (c) error control. The explanations of the terms are given
below:

(a) Randomisation : At first the treatments and experimental, plots of the
experiment are decided. Randomisation means that for an objective
comparison it is necessary that the treatments he alloted radomlv to
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different experimental plots to avoid any type of personal or subjective error
i. e. without giving higher importance to any of the treatments. It also
ensures ind'pendence of the observations which is necessary for crawing

valid inference by applying statistical techniques.

There are numbers of wa ys of randomisation depending on the nature of the

design of experiment. The individual process of randomisation will he

discribed in appropriate cases.

(h) Replication : The repetition of the tr.itments under investigation to
more than one experimental plots is known as replication. For example, a
treatment is allottd to r plots of an experimental unit then it can he said

that the treatment is replicated r' times. Replication is necessary to

increase the accurac y of the estimates of the treatment effects, it also

provide an estimate of error variance. It is seen that the precision increases
if the replication increases, but it cannot he increased indefinitely due to
limited resources i. e. time, money, skilled personnels etc. The number of
replications, therefore, depend on the expenditure and the degrees of

precision. Sensitivit y of statistical methods for drawing inferences also

depend on the number of replications.

Determination of Number of Replication If Y1 andnv2 be the mean

effects of two treatments replicated r and r7 times respectivel y , then

var ( Yi - y2 ) = var ( y) 4- var ( '' ), since the co-variance term

vanishes due to independence of observations.

--
- v 2)=—+—=—ifr=r - =r and 'is the ustialerror

r1	r	 r 

variance. Therefore, the standard error of I y 1 - Y2 ) is equal to	 .

For testing the equalitvof two means for large sample tinder the usual

Yi	 Y2
assumption	 - is a (N(O, 1) variate.

St. Er(v 1 - y?)

For small sample the estimate of cr2 is done and the test statistic is

distributed as t with di. depending on the di visor of the estimate of &. i.e.

s. 1 hercfore, for a certain level of significance, sa y at U 1 and with d. t., the
critical value of t(L can he obtained from the t -table.
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dl	 2t2(2	 - -
Then; t =
	 _.	

or, r - d2 • whetu I d = Y1 - y

Thus the number of replications, r is obtained.

(C) Error Control: Though every experiment would provide an estimate (it
error variance, it is not desirable to have a large oxperirnental error. The
measure for reducing the error variance are usually called error control or
local control. One such measure is to make experimental units homogeneous.
another method is to form experimental units into several homogeneous
groups usually called blocks, allowing variation among the groups.
Different methods of forming groups of homogeneous plots for allotment of
groups of treatments are used now a days for the estimation of treatment
effect precisely. In short, the aim of error control is to reduce the error by
modifying the allocation of treatments to the experimental units.

Mode!s and Analysis of Variance : A statistical model is generall y a linear
relation of theeffects of a member of factors with different levels in an
experiment and also one or more terms representing error effects. The effects
of any factor may he random or fixed depending on the method of selecting
he levels of the factors. For example, if there are number of variations of a

crop of which one variety is selected at random then the varietal effect
would be random, while the effect of two well defined levels of irrigation
are fixed as each irrigation level can be reasonabl y taken to have a fixed
effect.

The models of experiments are of three types namely (i) fixed effect model
(ii) random effect model and (iii) mixed effect. model.

A model in which each of the factors has fixed effect and only the error
effect is random, is called fixed effects mu The random effect model is
that on, in t, I lich all the effect in a model are random. The, model in
which OrnO factors have fixed effects and some factors have random effects,
k called mixed effect model.

In this text, we shall consider only the fixed effect models whose main
objectives are to estimate the effects, to obtain a measure of variability
among the effects of each of the factors and finally to find the variability
among the error effects.

The data of usual dsign of experiment canhe classified is -follows

When a set a ohs ryations is distributed over the different levels 01

factor, they form t ic-wa y classified data. I .i't ti- con'idcr one factor at k
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levels. Let there he n observations denoted by v(i .= I, 2. k, j = I,
2.......n) against the ith level. Then the observations v ii classified in k
levels of the factor are said to form one-wa y classified data. Similarly, if
we take two factors simultaniously, sa y , A and Bat number of levels k and r
respectively, then there are (k x r) cells, each of which is defined by one
level of A and one level of B. Let there he n observations in the (i, 0th cell
defined by theith level of A and jth level of B. Let y,, j denote the Ith
observation in the (i, j)th cell. Then the data v 	 i = .1. 2..........k, j
2........r and I = 1, 2........n1) arranged in the (k X r) groups are called two-way
classihed data.Similarlv, in general, rn-wa y classified %ata can be defined
by using levels of rn-factors simultaniôusly.

Now considering two factors A and B involving in an experiment without
intraction, the fixed effect model for two-wa y classified data can he written

as, y 1 = i+ a + h 1 + &' ; where y is the observation coming from ith and jth
levels of two factors respectively involved in the experiment, a is the effect
of the ith level of factor A, b 1 is the effect of the jth level of the factor B and

is the error component which is assumed to be independently and

normall y distributed with' zero mean and a'constant variance ci2. These
assumptions regarding the behaviour of e j are necessar y for appropriate
statistical methodolog y fur drawing valid inference. The adopted
methodolog y is the anal y sis of variance technique b y which inference l'
4o-awn by appl y ing F-test.

One further assumption is the additivitv of the effects in the model. This
assumption is generally satisfied except for some less known situation. For
that Tukevs test for additivitv is available.

The models ma y he of ditk'rent t y pes depending on the nattire ot the data
i.e. the number of factors involvelin the experiment. The above model is

at ; ropriate for two-wa y classiliect data without any interaction among
the effects of the factors. For in different factors %vc, can have rn-way
classified data and accordingly the models can he written.

The anal ysis of variance is the systematic procedure of partitioning the
total variation present in a set , of observation, into number of components
associated with the nature of classification of data. For one-wa y classified
data the total variation can he partitioned into two components namely
variation due to the single factor and the other is due to error variation.
This error includes all possible extraneous error components. For two-Wa
classified data involving factors A and B the total variation can he
partitioned into three components ( g. variation due to A, variation due to
B aril error variation. Similarl y I r three-wa y classified data involving
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three factors A, B and C, the total variation can he partitioned into tour
Components C. g. variation due to A, variation due to B, variation due to C
and error variation. The techniques of spliting of total variations are given
in appropriate places. The spliting helps to get mean square due to different
components and thus the re!e"ant tests ca

n
 be performed. For detail

discussions of different t y pes of analysis of-variance Das and Gin (197)) can
he referred.

11.2 Basic Designs

Basic decigns include completely randomised design (C. R. DL randomised
block design (R. B. D), and Latin square design (L. S. I)). Each of these
designs is described one after another with relevant extensions.

Completely Randomised Design (C.R.D) : It is the simplest design whore
only two principles viz, replication and randomisation are used in field

experiment. In this design, the whole experimental material should be

homogeneous in nature and is divided into number of experimental plots

depending on the number of treatments and the number of replications for
each treatment.

The design is useful mainly for laborator y or green house experiments
whereas its uses in field experiment is limited. Complete flexibilit y is
allowed in this design i. e. any number of treatments may he replicated any

number of times. Missing plot and unequal replicates donot create any

difficulty in analysing the data in this design. The principal objection to

the use of this design is on the ground of accuracy when the plots are
considered to be homogentus wrongly.

Lay-out The lay-out of a design indicates the placement of treatments to

the experimental plots according to the condition of the design.

Let us consider an example to illustrate the layout of a C. R. D with 3
treatments A, JB and C replicated 5, 3 and 2 times respectively. Here the
experimental unit is to be dcvided into it) equal plots and they are to be

numbered. From Random Number Tables ten 3 degits numbers are taken and

ranked. We take additional numbers in case of ties. From the ranked
numbers first 5 numbered plots are considered to allote treatment A.

Similarly treatments B and C can be alloted and thus the la y -out of C. R. D
is obtained. For equally replicated treatments, similar method of
randomisation can he carried out.
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Analysis : The additive model for completely ran( imised design with

urequal obstractions is

	

k;j=L2.........nt)	 -

where y jj is th observations of the ith treat'mcnt in the jth replicate,

= general mean,

= effect due to ith treatment,

= random error components which are assumed to be normally,

independently distributed with 0 mean and variance 2•

Let there be k treatments and the ith treatment be replicàtedn 1 times. Lt yj.

be the total of the observations corresponding to ith treatment and y.. be the

grand total of all the observations i e.

y = y j ; y.. = y,. =Yj and total number of observations, N =.
ii	 .

The least square estimate of .t and t j can he obtained by minimisiIg the error

sum of squares, denoted b y	= S	 (v1 -. -

i i	 ii

The normal equations are,	 = N,t -s- Ln I t i and

Y-y jj = n1 + nt1

Out of these two equations only one is independent because taking

summations over i in the second equation we get the,tirst one. To have unique

solution we have to impose restriction n i t, = 0

Now, we have the solutions as follows

A
=	 y/N = y .. where y .. is the grand mean of all thQ observations.

A
andt. = y1 . - y .. where y . is the mean of the obstrations corresponding

to ith treatment.

To show that the estimates are independent, we have,
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AA

Coy (p.. t1) 
= coy Y-- (yj. - y.M

-
=Cov(y1	 y ..)-var( y

showing that the estimates are independent.

The total sum of squares, in this case, can be partitioned into two components
as follows

(Yij	 y.)2=l(y-	 +( yi.-y..)l 
2

ii

=	 - y, .)2 + n1 . (yj. - y..)2 , the product term vanishes.
ii

Thus we get, Total S.S. = Within S.S. + Between S.S. Within S.S. and.
Between S.S. are usually called Error S.S. and treatment S.S. respecticly.

Now, we are to show that different components of sum of squares follow X2_

distributionwith appropriate degrees of freedom.

We know, .y11=p.+t1+e1

y •.=p.+t1 + e1.

y ..=p.+ t + C

Now, Treatment S. S. =n 1 ( y1 - y

=n1 (J.t+t1 + .ej -)J.- 7- e

=Th 1 (t- I + ej .- e

= xi(t'1 +e1 - e ..)2 ;considering t -t = t'

Th 1 (t'12+.2 + e 2' e.. ^2t'1 e1 -2 e1 . e ..)

Taking expectation on both the sides and assuming t' = 0 under

null hypothesis, H 0 t 1 = t2 = ...... = t, we have,
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E[.Y..)2 ] = E YA e1 2 + E Zrj c 2

lr^!f  N- 2 N k	 .=kO2 +	 - 2& = a2(k-1).

'ç'(y 1 .- y.J2
or, EL	 =k-1

Vi	 y
which implies that	 is distributed as X2 with (k - i) d. I

Similarly Error S.S. 7-7—(y ij 	 YL)2 = Z(j.t+ ti + cj -.t- t1 -	 c1.)2.
ii	 ii

= .X(c11 - e)2

ii
Proceeding as above and taking expectation on-both the sides we have

E	 (y11- yj )2	 TN, (Yij-

	

= N - k which implies that	 is distributed as
(32
	 02

X 2 with (N - k) d. 1.

(Y- y..
From the additive property of X2 it can be said that 	 is also

distributed as X2 with N - k +'k - 1 = N - I d.i. It can be shown independently
also.

Thus it is seen that each of the components of sum of squares is

independently distributed as X 2 with appropriate d. f.
Now, considering H0, we have the test criterion

n 1 (	 - y)2 / (ki)	 M. S. due to Treatment.

	

(Yi. - V1)2 / (N - k)	 M. S. due to Error

which is distributed as F with (k - 1) and (N - k) d. 1..

.2 .19
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Method of calculation of different sum 01 squares:

Total S.S. =	 y 2 - C. F. = T say, where C. F. =
ii	 N

Treatment S.S. =

	

	 C.F. = 1, say.
ni

Error S.S. = Total S.S. - Treatment S.S. =T 0 - T = E, say.

Now the analysis of variance table can he furnished for testing the null
hypothesis H0 : Effect of all the treatments are same.

Table-11.1

ANOVA TABLE

Source of
variation	 d.f.S.S.	 M.S.	 F

Treatment	 k-I	 T=	 C. F,	 T'= T/(k -1)	 T/

Error	 N-k	 T0-T=E	 E'=E/(N-k)

Total	 N-I	 I T0zy12C.F.

If the calculated value of F with (k - 1) and (N - k) d. f. is greater than the

tabulated value of F with same d. f. and at lOOa% level of significance, then
the hypothesis may be rejected i.e. the effects of all the treatments are not
same. Otherwise the hypothesis may be accept'ed.

Note: When the number of replications per treatment is same, say, n, then
the normal'equations become;

Yij	 Nl.t + 1'

1)	 1

yij = n i t -s- "nt, where we take N = nk. and the estimates are as usual.

The partitioning of the total sum of squares is

Total S.S.	 - y..	 = i(yj - y1, )2 + n	 y1. - y.. )2

ii	 ii	 i

The calculations of the treatment sum of squares can he obtained b y the

following w	
1

Treatment S.S. = n 

2)

n
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Example 11.1 A feeding trial with 3 leeds n.imelv I) Pasture (control) ii)
Pasture and Concentrates and iii) Pasture, Concentrate and Minerals was
conducted to a certain variety of ewe lambs with same age, body weight and
sex etc. 37 ewe lambs are selected for the purpsc. The weight records of the
total wool yields (in kg) of first two cliping were obtained. The purpose of
the experiment is to serve whether the feeds have any effect on the wool

yield.
Feed I:	 50.5 53.6k 78.8, 65.4, 80.4, 95.3, 50.5, 52.5, 80.6, 75.2. 68.6, 69.7, 71.2,

73.1, 95.2.
Feed II: 63.9, 52.0, 78.8, 67.0, 80.4, 67.3, 53.6, 59.1, 63.5, 60.9.
Feed Ill : 59.1, 71.3, 69.1, 55.3, 61.9, 63.5, 76.1, 59.5, 62.3, 57.3, 61.5, 68.3.

Solution : We have,	 Total
Feed	 I :	 106.6(15)
Feed	 II:	 946.5(10)
Feed Ill	 765.2(12).

Grand Total : 2472.3(37)

2472.32
Correction factor (C. F. =	

= 165196.41.

The figure in the
bracket indicates
number of items.

Total S.S. = 50.,52 + 5352 + .+68.52 - C. F.

=169756.47 - C. F. = 4560.06.

1060 .62 94652 765.22
S.S. due to feed = 	 .	 + 10 + 12 

-C.F. =165581.97-C.F. =385.56

Error S.S. = Total S.S. - S.S. due to feed. = 4560.06 -385.56 = 4174.5.

We are to test null h'pothcsis H 0 The effect of all the feeds are same.

Table-11.2
Ar.JOVA TARIF

Source of
variation	 dl.	 S.S.	 M.S.	 F	 5%F

Treatment	 2	 385.56	 192.78.	 1.57	 3.284

Error	 34	 4174.5	 122.77

Total	 36

Since the calculated value of F is smaller than the tabulated value at 5%
level of significance, the value is insignificant and the hypothesis may be

accepted.

Randomised Block Design (R.B.D) In many real situatins it may not be
possible to get homogeneous experimental unit as a whole but it is usually
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possible to get homogeneous groups of piots which are termed as blocks. By
this way, we can control the variability in one more direction by assigning
the treatments at random to each plot of the block, giving a design known as
randomised block design. In this design the number of plots per block is the
number of treatments and the number of blocks will determine the number of
replications.

This is a popular design for its simplicit y, flexibility and validity and can
be applied with moderate number of treatments (<10). By means of
grouping, the efficiency of the design can be increased than that of C.R.D.
Any number of treatments and any number of replications can be carried out
in this type of design but the number of replications for each treatment must
be same. The statistical analysis is straight forward even if one or more
observations are missing as given by Glenn and Kramer (1938) and Mitra
(1959).

With the increase in number of treatments the block size increases and thus
the homogeneity of block reduces resulting larger error components.

Lay-out Let there be k treatments each replicated r times in the design.
Therefore, the total number of plots required in this design is kr, which are
arranged into r homogeneous groups called blocks each of size k. The number
of plots per block is equal to the number of treatments and the number of
replications are equal to the number of blocks determined by the available
resources. All the blocks and the plots mustbcof same size. Randomisation
of the treatments is done independdntly in each of these blocks.
Let us consider an example of randomisation (>17 treatments A, B, C, D and E
in a single block. The treatments are numbered in any order, say A is
assigned 1, B is assigned 2 and so on. From Random Number Table we take at
least five 3 digits number and are ranked and their order is say, 3, 1, 4, 2 and
51 Now in the block 3rd treatment C is placed at the first plot, 1st treatment
A is placed in the second plot and so on. Thus the randomisation in theblock
is completed. Seperate randomisation is done for each block.

Analysis For analysis of data in this type of design the linear additive-
model be, yij = ll + tj + bj + eij; 0 = 1, 2 ........ k ; j = 1, 2 ...... r)

where Yij is the observation for the ith treatment in the jth block.
.L is the general mean effect,
t1 is the effect due to ith treatment,
b1 is the effect dire to jth block, and

ejj. random error components which are assumed to be independently and

normally distributed with zero m'ari and constant variance

1	 252



Design of Experiments

Let y. = v; y j = y; y..= y1. =	 =	 and

I	 I	 J.	 I	 j

- v i. - y.•
y .='-; y . 1 =--and y ..

The least square estimate of tj and b i can be obtained by minimising the error
SUM of squares denoted by, He j j2 = S =	 - .t - t - b1)2.

i j	 1

In this case we get three normal equations which can be solved by
imposing two restrictions, 	 t1 =b1 = 0 giving the solutions as below

A	 A
— A — —	 - -

p = v..;t = v1.-y..andh 1 = vi- y

To show that the estimates are independent we have,

AA

COV 4J.,t1)=Co'j y ..( y	 y ..)l

rco2
=Cov( y .. Yi	 var( y ..) = -- r•-=O

Also coy (b1 )= covl( Y,	 y..) (y 1 - y..)

= Coy ( Yi	 y. ) ) - Coy ( y . y ..) - Coy ( y .. y. 1 ) -- var ( y..

= -- --- —+—=0

Similarly the covariance between other combinations of the estimates can

he shown to be zero showing that the estimates are mutually independent.

The total S.S. in this case, can be partitioned into three components as
follows

(y i - Y)2=.(y	 y. + y 1 . - v ^y	 -y)7

233
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=	 l( yj 	 y.. ) + ( Yj - y•• ) +	 Y	 - Y•j + y.. )l 2
ii

=r( y) .- y.. )2+k( Yj y	 y1 	 y •j + y
ii

all other product terms vanish, 	 -

Thus we have, Total S. S = Treatment S.S.+ Block S.S. + Error S.S.

Now, we have to show that different components of sum of squares follows

X2-distribution with appropriate degrees of freedom.

We know, y 11 =J.t+t1 +b+e1 -

y .=j.L+t1+ b +

Yj .L+ t	 e.j

y.. = .L+ t + b + e

Now, r yj Yi	 y )2 r	 - t + ei	e )2

	

-	 -=r(t' + e1 .- e	 2
considering t1-t =t1.

Expanding R.H.S, taking expectation on both the sides and assuming t'i U

under H0 :t 1 = t2= .......= tk we have, E( r( Yi	 y ..)2 1 = (k - I) CF2

- y)2]	 - y)2
or, ¶
	

] = (k-i), which implies that

is distributed as X2 with (k - I) d. f.

Similarly, it can be shown that

(yj . - y..)21	 -

Fl
[ 	

I = (r - I), indicating that
L	 o2/k	 J	 L	 c/k

is distributed as X2 with (r -1) d. 1.

Now the Error S.S. =	 (Yj yi- - y •j + y.J2

ii

-	 e1 . - e. + e.. )2

2,4
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e 2+ e.12-- e . 2 +2c	 c..-2c1 . e ..-2 ej	c..)

ii

-2cii c.1 +2 c1 . C. 1 .-2e11 e1.)

Taking expectation on both the sides k'e have the R. H. S. as follows =

krCT2 krC 2	kr2	2kr 2 2krrQ2
Kr + - +	 +	 + kr - krr

- 2krk& 2kr& 2kr 2 2kixy2
-	 +	 -	 = 2 (kr-k-r+ I) =	 (k- 1) (r- 1)

krk	 k	 kr	 r

Therefore, E(y11 - y. - y + y__ )2/CF2 (k - i) (r -1)

Ii

which implies that	 ( Yij	 Yi - Yj + y •)2/2 is
Ii

distributed as X2 with (k -1) (r -1) d. f.

-	 v)2
From the additive property. of X2 it can be said that 	 is also

distributed as X2 with (kr - 1) d. f. It can be shown independently also.

Thus it is seen that each of the components of sum of squares is

independeptly distributed as X2 with appropriated. f.

Now considering H O : t 1 = t2 =........ = t, we have the test criterion,

r( y1	 - y .. ) 2 /(k -1)
F	 -- -	 which is distributed as F

(Ytj	 y . - y•j + y.. )2/(r-1)(k-l)

ii

with (k - i) and (r -1) (k -1) d. 1.

Again considering H O : b 1 = b2 = ....... = b, we have the test criterion,

r( y•j - y )2/(r -1)
F=	 -	 -	 which is distributed as F

-	 -	 .+ y.. )/(r - 1) (k -1)

i	i	 i
with (r - 1) and (r - 1) (k -1) d. 1.
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Method of calculations of different sum of squares

Correction factor (C. F.) = Y.
rk

Total sum of squares =	 - C.F. = T, soy.

Treatment sum of squares = 'i-- C.F. = 1, say.

Block sum of squares =j- . C.F. = B say.

Error sum of squares is obtained by usual subtraction i.e.

Error S.S. = T0 - T B = E, say.

Now the analysis of variance table for testing null hypothesis,

H0 : The effects of all the treatments are same, is as follows.

Table-11.3
ANOVA TART c

Source of
variation	 d.f.	 S.S.	 M.S.	 F

T'Treatment	 k-1 	 I	 T'= T/ (k -7)	 -= F1

B'Block	 r-1	 B	 B'= B/ (r 1)	 - =
E'

Error	 (k - 1) (r 1)	 E	 E'—
(r
 

E
 

fl( -1)
Total	 rk-1	 T0

If the calculated value of F1 with (k - i) and (k - 1) (r -1) d. 1. is greater than
the tabulated value of F with same d. f. and at 100 a % level of significance,
then the hypothesis may be rejected otherwise the hypothesis may be
accepted.

Similar hypothesis may be considered for block effects and a conclusion can
be drawn with the help of F2 also.

Example 11.2 Six different level of a certain fertiliser were tried in a
randomised block design with 4 blocks at a certain agricultural farm to
study the effects of the levels of fertiliser on cotton crop.

The yield per plot in kg for different levels of fertiliser and blocks are given
systematically below for analysic.

2h
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Table-11.4
Cotton yield Der ulot in

Levels of	 Block

Fcrtiliscr	 1	 2	 3	 4

	

F 1	6.90	 4.60	 4.40	 4.81

	

F2	6.48	 3.37	 4.28	 4.45

	

F3	6.52	 7.60	 3.30	 5.30

	

F4	6.90	 6.65	 6.75	 7.73

	

F3	6.00	 6.18	 5.50	 5.50

	

FA	 7.90	 7.57	 6.80	 6.62

Solution : The block totals, treatment totals, and grand total are as follows
Block totals: y. = 40.70, Y2 = 38.17, y.3 = 33.03, y.4 = 34.43.
Treatment totals
Yi• = 20.71, yz. = 20.78, y. = 24.72, y. = 28.()5, y3 . = 23.18, y. = 28.89.

Grand total = y.. = 146.33, Correction factor C. F. 
=j--= 892.19

Now different sum of squares are as follows
Total S.S. =	 - C. F. = 920.78- 892.19 = 28.59.

Block S.S. =---C.F. = 898.31 -892.19 = 6.12.

Treatment S.S. -a-- C. F. = 907.68-892.19 = 15.44 andr
Error S.S. = 7.03.

H0 : The cffecs of all the treatments are same i.e. the effect of all levels of
fertiliser are sime.	 -

Table-11.5
AT(Y1A TA1

Source of
variations	 di.	 S.S.	 M.S.	 F	 1%F

	

Block	 3	 6.12	 2.040	 4.350	 5.42
Treatment	 3	 13.44	 3.088	 6.584	 4.56

	

Error	 15	 7.03

	

Total	 23	 28.59

The calculated value of F with (5,15) d.f. corresponding to treatment is
greater than the tabulated value of F with same d. f. at 1% level of
significance. Hence it is highly significant and the h y pothesis 'ma y he
rejected.

Missing Observations: For some uncontroled causes the observations in some
of the plots in an experiment may be missing. In agricultural experiment crop
ma y be damaged by animal or by rninse of pct etc. Again in animal
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experiment, so -me of the animals may die during the course of experiment. In
these cases, the number of observations per treatment are not same and thus
the orthogonality is destroyed.

The analysis of these data in this type of design may be carried out by
estimating the missing observations in such a way that the error sum'of
squares is minimum or by the usual method of analysis of non-orthogonal
data. But the latter case is combcrsome and henco we would proceed with
analysis after the estimation of missing observations.

Estimation of Missing Observations and Analysis in R.B.D.:

(i) Single missing observation:
Let us suppose that in a R.B.D. with k treatments in r blocks, one observation
is missing and that is say, x 1 . Let Ti . B and C be the total of the ith
treatment jth block and grand total respectively excluding the missing
observation x which occurs in the ith treatment and jth bloct.

The error sum of squares can be expressed in terms of x 1 considering terms
independent of x 1 as C.

2 (I + x)2 (B + x 1 )2 (C -i- x1)2
	Therefore S = C + x 1 -	 -	 +r	 k	 kr

	

dS	 (T1+x1) 2(B+x1 ) 2(C+x1)

	

Now —=2x1 -2	 -	 +	 =0

	

dx1	r	 .	 k	 kr

	

A	 kT1+rB1-C
Solving we get, 

X1 = ( k - 1) (r -

Thus the single missing observation x 1 is estimated.

(ii) To missing observations.

In the above R.B.D. if two observations x 1 and x2 are missing, following are
the possible cases to be considered.
(a) Two 'observations affecting different blocks and different treatments.
(b) Two observations affecting different blocks but same treatment.
(c) Two observations affecting same block but different treatments.

Case (a) : We assume that x 1 belongs to jth block and ith treatment and x2

belongs to Ith block and mt.h treatment. Let C be the grand total of the
observati6ns excluding x 1 and x2. B and B 1 denote the total of the jth and lth
blocks. T i and T. denote the total of the ith and mth treatments. The error
sum of squares Scan be expressed in terms ofx 1 and x2 and the remaining
terms asC;

	

2	 2 (Ti + x1 )2 (Tr,+ x2 )2 (B1 x 1 ) 2 (B 1 + x7 ) 2	(C ++ x2)2
	S=Ci-x1 +x2 -

	 r	 r	 -	
--
k	 -	 k	 +kr

	

dS	 dS
Now, —=0 and -= 0 reduce to respectively.

	

dx1	 ax	 *
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(T 1 ±x 1 )	 (B 1 +x 1 ) (C-i-xj+x,)
-	 =0

r	 k	 kr
(Tm +x2) (13 1 + x7) (C +x+x2)

and x2 -	 -	 +	 =0.
r	 k	 kr

Solving these equations we have,

A (k- 1)(r - 1)(kT + rB 1 -C) - (kTm + rB 1 G)
(k-1)2(r-1)2-i

A (k.- 1)(r -1)(kT ± rB 1 C) - (kT 1 + rB- C)
and 2=	 1k- I)2(r-1)2-1

Case (b) : In this case, the definition of block totals B and B 1 and grand total

C remain same as in case (a). But here T j is the total of the ith treatment in
which two observations x 1 and x2 ate missing. In this case the error slim of
squares can be written as,

	

2	 2 
(T + x 1 + x7)2 ffl + x1)2 (B 1 + x 2 ) 2 (C + + x2)2

S=C+x 1 	 2 -	 r	 -	 k	 -	 k	 +	 kr

	

dS	 dS
Now,	 =Oand—=0 reduce (k - 1)(r- 1)x 1 - (k -1)x 2 = kT + rBj - C

	

dx 1 	dx2

and -(k - 1)x 1 + (k - 1)(r -1 )x = kT	 rB 1 - C. respectively.

	

''	 kT+(r-1)B+Bj-C.
Solving these two equations we have, X1 

=	 (k - l)(r- 2)

A kT + B+(r-1) B 1 -G
and X2 =

(k - 1)(r -2)

Case (c) In this case the deuipition of treatment totals T j and T., and grand

total C remain same as in case (a). But B ) denotes the total of the jth block in
which both the missing observation x 1 and x2 are lying. In this ca'e the error
sum of sqaures can be written as,

(T 1 ^ x 1 ) 2 (Tm ± x 2 ) 2 (B t + x 1 + x7) 2 (G+ x 1 ± x,)2
S=C+x1-+x2- -	 r	 -	 r	 -	 k	

+	 kr

Now, =0and=0 reduce to (k-1)(r-1)x1 -(r-1)x 2 =kT 1 + rB-C

	

dx1 	dx2

and -(r - 1)x 1 + (k - 1)(r - 1)x 2 = kTm + rB! - C. respectively.

A (k-1)T±T +rB - C.
Solving weget, X1 =	 (r - U (k -2)	

and

A T+(k-1)Tm+rBi-G
= -( r l) (k -2)
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Thus the estimates of two missing observations in all possible cases are
obtained.

There is another method of getting missing observations known as iteration
method" given byYates (1938) which takes a lot of time and is subjected to
contain larger bias. For more than two missing observations, reader is
referred to Glenn and Kramer (1958).

The method of analysis in case of missing observations is as follows

Table-11.6

ANOVA TABLE

	

Source of	 Method of calculating

	

variation	 sum of squares	 d.f.

(i) Total	 Original data	 (kr - i) - p

(ii) Error	 Completed data	 (k - 1)(r -

(iii) Block + treatment 	 (i) - (ii)	 k+ r-2

(iv) Block	 Original data	 (r -1)

(v) Treatment	 (iii) - (iv)	 (k - 1)

p* in the components old. f. indicates number of missing observations.

Example 11.3 A Randomised block design with 4 varieties of paddy
conducted in 5 blocks gave the following yield/acre in which two

observations were missing. Estimate the missing observations and carry out
the analysis of variance and draw conclusion over the effects of treatment
i.e. paddy varieties. 	 -

Table-11.7

Block	 Varieties

A	 B	 C.	 D

1	 44.5	 4.6	 41.3	 34.1

2	 48.0 	 40.3	 34.0

3	 52.1	 44.9	 40.1	 33.3

4	 50.0	 iSA)	 33.1

5	 48.0	 50.2	 46.1	 35.6

2)
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Solution We know,

A	 (r-1)(k-1)(kTj+rBi-G)-(kTm+r131-G)
(k-1)2(r-1)2-1

A	 (r- 1) (k - 1)(kT + rB 1 - C) - (kT 1 + rB 1 - C)
=	 (k - fl 2(r - 1)2i

where the notations have their usual meaning.

Here	 T= 186.7,	 Bj = 122.3

Tm = 137.0,	 B1 = 1,R). 1,

C = 769.2, r = 5, k = 4.

A	
x 3 x 589.1 -429.3 6639.9

X =	 42 x 32 1	 = 143 = 46.43.

A	 x 3 x 429.3 - 589.1 4562.5
andx2 =	 42x32.1	 = 14'

Now different components of sum of squares

769.22
C.F. (original data) = 18 = 32870.38.

847.342
C. F. (completed data) =	 = 35916.2

Total S. S. (original data) = 33525.34 - 32870.48 = 634.86.

Total S. S. (completed data) = 36699.997-35916.2=783.173.

BlockS.S. (completed data) = 35959.86-35916.2 = 43.66.

Treatment S.S. (completed data) = 36629.24 - 35916.20 = 713.04.

Error S.S. (completed data) = 783.17-43.66- 713.04 = 26.47.

	

166 .52	122.82	 17042	 130.12
Block S.S. (original data) =+3+4+3

179.92
+-74- - 32870.48 = 37.89.

WE
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H0 The effects of all the treatments are equal.

Table-I1.8
ANOVA TABLE

	• Source of	 Method of

	

variation	 d.f.	 calculating	 S.S.	 M.S.	 F	 %F

(i) Total	 17	 Original data	 654.86

(ii) Error	 10	 Completed data	 26.46	 2.65

(iii) Block +	 7	 (i) - (iI)	 628.39

treatment

(iv) Block	 4 Original data	 37.89

(v) Treatment	 3 1 (iii) - ( iv)	 590.50 1 196.84 1 74.24 1 6.55

Here the calculated value of F with (3, 10) d. 1. is greater than the
theoretical value of F at 1% level of significance, therefore, the calculated
value of F is highly significant and the hypothesis may be rejected.

R. B.D. with multiple observations made in each plot per block:

We may have to face some situations where s ingle observation in each plot
per block is not desirable where sampling is adopted to choose a sampling
unit to obtain data that can provide necessary information..

For simplicity sake, we consider a constant number of observations, sa y, s
observations made in each plot. There are k treatments each replicated in r
blocks. The model can be written as,

where Yijp is the observations on the pth sample for ith treatment in the jth
block. (j = 1, 2........k ; j = 1, 2 ........ rand p = 1, 2,.......$).

.i. is the general mean,
ti is the ith treatment effect.
bi is the jth block effect.

(tb) 11 is the interaction between treatment and block.

the sampling error which are normally and independently distributed

with 0 mean and variance 2•

The estimation of different parameters and partitioning of the total sum of

squares into different components can be performed as usual.
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The calculation of different sum of squares due to different components of
ANOVA TABLE can be obtained as follows;
Grand total = y...	 YijpCorrection Factor (C. F.) V

1 JP	 .	 .	 .	 rks

'rorl S.S. =	 - C. R = T,, say.

i ip

A two-way table like Treatment x Block is to be prepared for the
calculation of the following components. The cell totals being y.

Total S.S. (from Treatment x Block table) =
	

- C. F. = T, say.

'Treatment S.S.:

	

	 - C. F. =Trs

Block S.S. =ks	 C.F. = B.

Interaction between treatment and mock S.S. = T 1 - T - B = I.

S.S. due to sampling error = T, - T - B - I = E.

To test the null hypothesis 11 a : The treatment effects re equal, the
ANOVA TABLE can be prepared as givenin Table -11.9.

Table-11.9
A NOVA TABLE

Source of

	

d. f.	 S.S.	 M.S.	 F
variation

Treatment	 (k - i)	 T	 ,T	 , ,

	

T	 1/F
Block	 (r - I)	 B	 (k -1)

Block x Treat-	 (k - 1)(r - 1)	 I

	

ment
E'	ESampling error	 rk(s - 1)	 E	 rk(s - 1)

Total	 krs - 1	 T.

The conclusion can be drawn as usual.

Example 11.4 To study the effect of differences in the number of plants per
hill on the growth of Maizo crop, a -randomised block design with 5
randomly selected cobs per plot was laid in 3 replications or blocks. The
treatments arc,

A-one plant/hill ; B - two plants / hi1l

C - there plants / hill ; D - four plants / hill.
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The following table gave data on the length of cobs. Analyse the data and
give your comment on the treatments.

Treatment
Replicatios	 A	 B	 C	 D

1	 9.3	 9.0	 8.6	 6.4
8.8	 9.0	 7.0	 7.2
90	 10.5	 .8.4	 6.8
8.8	 . 8.9	 9.1.	 7i
8.6	 9.2	 8.2	 6.0

2	 10.2	 9.7	 9.0	 6.4
9.0	 .10.0	 8.0	 7.4
9.4	 9.2	 8.1	 6.8
9.6	 10.5	 8.2	 6.8
9.8	 10.3	 7.0	 6.6

3.	 9.9	 8.4	 7.5	 6.3
10.4	 9.4	 7.5	 6.7

-	 11.0	 8.2	 8.5	 6.0
10.8	 9:1	 8.0	 7.0
10.0	 9.8	 8.6	 7.3.

Solution At first-we prepare a two-way table of replication X treatment.

Treatment

Replications . .	 A	 .B	 . C	 D

1	 44.5	 46.6	 41.3	 ..	 34.1

2	 48.0	 49.7	 40.3	 34.0

3	 52.1	 . 449	 40.1

Total	 144.6	 141.2	 121.7	 101.4

508.92
C.F. =	 = 4316.32.

22021.81

	

Total S.S. (of the two-way table) = 	
- C. F. 88.04

86342.41
Replication S. S. = 	 - C. F. = 4317.12- C. F. = 0.80.

65939.45
Treatments S.S. =	

- C.F. = 4395.96- C.F. =79.64.

Rep. x treat. S.S. (per pot error) = 88.04 - 0.80 - 79.64 = 7.6

Total S.S. (from entire data) = 4420.01 - C.F. = 103.69.

S.S.due to sampling error 103.69 -.7.6-79.64-0.80 = 15.65.

Total

166.5
172.0
170.4

308.9
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H0 : The effects of all the treatments are same.

Table-11.11
ANOVA TABLE

Source Of
variation	 d.f.	 S.S.	 M.S.	 F	 l%F

Replication	 2	 0.80	 0.40
Treatment	 3	 79.65	 2655	 80.43	 4.24

Rep x treat.	 6	 7.6	 1.27
(per plot error)
Sampling error 1	48	 15.65	 0.33	 ______

Total	 59	 __

The calculated value of F is highly significant and the hypothesis may be
rejected.

Latin Square Design (L.S.D.):

In randomised block design, the experimental material is divided into
groups of homogeneous units in one direction which increases the efficiency
of the design rather than-çR.D. The latin square design is an improvemen-t
over R.B.D. obtained by classifying the experimental material in two
dir'ections rowwise and columnwise in such a way that the differences
among rows and columns representing major sources of variation and they are
orthogonal to each other. Though it is not necessary that the two factors
should always be called row and column, it may be the levels of two factors
also. Thus in a latin square of size v, the arrangement- of v treatments in v2

positions should be made in such a way that every row and every column
,contain every treatment precisely oncc.and make a perfect replication. Thus
the error variance can be reduced-considerably.

Latin square design is the most efficient design among the basic designs. The
analysis is.available for any member of missing observations.

The chief disad.'antages that the number of rols, columns and treatments
must be same i.e. the experimental unit must be at perfect squares which may
not always be practical. The analysis depends on the assumption that the
interaction between rows and columns is not present.

Layout A standard square of required size is selected at random from the
Tables for Statistician and Biometricians (Fishers and Yates 1948). All the
columns are arranged after randomisation and similar randomisation is done
for alirows except the first one to get the final lay-out of the latin square
design.
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Analysis : Let us consider a latin square of size v. For anal ysis of the data in
this design, we consider the linear additive model,

where y ij, is the observation of the sth treatment in the ith row and jth
column (i = 1,2.........v, j = 1,2..........v : s= 1,2.........v).

l. is the general mean,

-r1 is the effect due to ith row,

c1 is the effect due to jth column,

t5 is the effect due to sth treatment,

and eij,, the error components which are assumed to be independently and

normally distributed with 0 mean and variance G2.

In the latin square v treatments are arranged in v. TOWS and in v columns.

Let y... =

	

	 YijS' grand total of observations.

ii

y1.. =	 ith row total. Yj . 	jth column total.
J	 I

Y"s	 yjj, sth treatment total

The least square estimate of j.t, r. c j and t can be obtained by minimising the
error sLwn of squares denoted by S = 	 vi)-s2	 - .t - r - c - tl2.

	

iJ	 ij

In this case, we get four normal equations which can be solved after

imposing the restrictions Ir j Cj	 = 0 and the estimates are,
I	 J

la = y... where y...= grand mean

ri = 5;;- .. y...where T1.. =

j=	 -v... where y. =. and
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A. —	 —

,= y ..,- y	 where y

To show that the estimates are independent

AA	 -. —
We have, C0V ( r1) = Coy { y ... ( y i.. - y ...))

=Cov(y ... yi..)-Var(y..)

A A

=	 -	 = 0. Hence i and rj are independent.

Now, COv(r) Coy Ry- y...) ( -;:j- -

= Coy ( y,	 Yj. ) - Coy ( y ..	 y ..) - Coy ( y.. y ...) + Var ( y ...)

o2	 2	 01 02	 A	 A
=	 -	 -	 +	 0.'Hcncc ri and 9 are independent.

Similarly it can be shown that the covariances between all possible pairs of
estimates are zero, indicating that the estimates are mutually independent.

The total S.S, in this case, can be partitioned into four components as

follows:
— -

y ... ) 2
11

={(v..-y ... )+(y.-y:.)+(Y-.-Y ... )
i J	 -

( Yjs	 Y i . ' - y . - y . . s + 2 y

=v( y	 V ... )2 +v( y	 y ... )2 +vZ( y ..- y

5

+	 (Yijs y i .. - y.. -	 all other product terms vanish.

ii	 -

Thus we have, Total S.S. = Row S.S. + Col. S.S. + Treat. S.S. + Error S.S.
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Now, we are to show that different compnents of sum of squares follow X 2 -
distribution with appropriate degrees of frdom.

We know,	 -

Yjs1+t5+

y i..=.X+r1+c+t+ e 

y ..=J.t-4- r 19+ t + e

Y .s=Jt	 r + C 4-t+ C	 -

y ...=ji+ r i- C + t + e

Also we know ( y i.. - y ...) = (r1 - r + e i ..- e ...)

+e 1..- e...), Putting r - r =r'1

V I( y	 - y ... )2 V(r'1 + e j .. - e)2

Expanding R.H.S. taking expectation on both the sides and assuming r' =0
under H0 :r1 = r2 = ....... =r,wehave

E[vy.. - y ...)2 1 -=vEe ..2+vE	 c ...2 -2E I e j. e

]	
i

v.vc3 v.v02
 2v2.va2 =va2-y2=cT2(v-1).V +
	

V2V

•
I-	 I = (v - 1) indicating that
L	 oJv	 J

(y j..-y.)2
is distributed as X2 with (v - 1) d.f.

Similarly Column S.S. and Treatment S.S. can be shown to be distributed as
X 2 with (v - i) i ndependently.	 -
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Now, the error S.S. =	 (c- c 1..-c.. - e.. s + 2e...)2

I)

Expanding the R.H.S. and taking expectation on both the sides we have,

E[	
Yi.Y.s+2Y ...

)]2 =(v-1)(v-2)

I (Yis - y j.. - y j. - y . + 2 y
•	 ..E I )	 =(v-I)(V-2).

Which indicates that	 Yijs - Yj..- Y	 - y	 + 2 y
I)

o2

is distributed as X2 with (v -1) (v -2) d.f.

From the additive property of X2 it can be said that the

(Y ii, - y -. is also distributed as %2 with (v2 - 1) df.
Total S.S. =

It can be shown independently also.

Thus it is seen that each of the components of sum of squares is

independently distributed as X 2 with appropriate d.f.

Now considering H 0 r 1 r2 =.... = ri,, vc have the test crerion,

v( y i ..- y .:.)2/(-1Y
F=	 - - - -

(yijs - Y i	 ....- - y	 - y -.5 +2 -y ... )2/(v- 1) (v -2)

ii

which is distributed as F with (v -I) and (v -1) (V -2) d. f.

Again, consid(zring H 0 : c l c2 =......= c; we have the test criterion,.

V(y.y)2/(v1)
U

F=

	

	
y 1 :.- y - j. 	 y..s+2y ..)2/(v-1)(v-2)

ii
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which is distributed as F with (v - 1) and (v - 1) (v -2) d f.

Once again, considering H 0 t1 = t2 = .......= t.,, we have the test criterion,

v('y..s-y ... )2/(v-1)

F=	 -	 - -
- y t .. - y .. - y . . s + 2	 )2/(, - U (v - 2)

ii

which is distributed as F with (v -i) and (V - 1) (v -2) d. f.

Method of calculations of different components of sum , of squares are as
follows

J'otal S.S.	 Y2ijs -C.F. = T, say. where C. F. =

11

Row. S.S. =- C.F. = R, say. Columfl S.S. = 	 - C.F. = C, say.

TreatmentS.S. 4y s2 C . F. =T, say . Error SS.=T,R-C-T=E,say.

Now the analysis of variance table for testing the null hypothesis

H0 The effects of all the treatments are same, can be furnished as given in
Table 11.12.

TABLE-11.12
ANOVA TABLE

Source of
variation	 d.f.	 S.S.'	 M.S.	 F

Treatment	 (v -1)	 T	 I'=--

Row -	 (v -1)R

Column	 (v - I)	 C	
F

Error	 (v-1)(v-2)	 ' E	 E_(vI)(2)

Total •'	 v2-1	 , T. 

For significant value ofF, the hypothesis may be rejected otherwise the H0
may be accepted.
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Design of Experiments

Similar tests can be performed for testing hypóthcsis regarding column and
row effects also.

Example 11.5 An experiment on cotton was conducted to study the effect of
application of urea in combination with insecticidal sprays on the cotton
yields. The lay-out of the latin square plan and yields of cotton per plot are
given in Table 11.13. The rows of the table indicates the six different levels
of moisture contents of soil and columns indicate the six different levels of
spacing and T, T2 ........T6 indicate 6 different treatments obtained by taking
some of the levels of urea and some levels of insecticides.

Table-11.13
Yields of Cotton/Plot

T5 -3.1()	 T65.95	 T1 -1.75	 T5-6.)	 T2-3.85	 T4-3.30

T2 - 4.80	 T -2.70	 T1 -3.30	 T6 - 5.95	 T4 -3.70	 T5 -5.40

T, - UX)	 T7-2.95	 T5 -6.70	 T4-5.95	 T6.7.75 .	 T1-7.10

T5 - 6.4()	 T4 - 5.80	 T2 -3.81)	 T5 -6.55	 T1 - 4.80	 Tf, - 9.40

Tb - 5.20	 T1 - 4.85	 T4 -6.60	 T2 -4.60	 T - 7.00	 T1 - 5.01)

T4 -4.25 .	 T5 -6.63	 T, - 9.30	 T1 -4.95	 T9.30	 T2-8.40

Analyse the data and give your comments.

Solution:

Row Totals:	 y1.. Y2. -	 y3..	 4..

	

26.35	 25.85	 33.45	 36.75

Column Totals: 	 y..	 y•2	 y.3.	 y.4.
	26.75	 28.90	 31.45	 34.40

Treatment Totals : 	 Y•i	 Y2	 Y--3	 y..4

	

22.20	 28.40	 34.20	 31.60

v... 2 198.52
Correction factor (C. F.) =	 = 1094.51

Total S.S. =	 .y2ijs- C.F. = 1222.84- 1094.51 = 128.33

1	 6773.695
Row S.S.=y1..2-C.F.	

6	 -109451 =34.44.

I	 6696555
Column S.S. =	 y2 .j. - C.F. =	 -1094.51 = 2158.
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Treatment S.S. = L :y2 ..s -C.F. = 6850.305 109451 = 47.21

Error S.S. = 128.33-34.44 - 21.58-47.21= 25.10.

H0 The effects of all the treatments areeqtal.

Tab le-11.14
ANOVA TAR!J

Source of
variation	 d.f.	 S.S.	 M.S.	 F	 1%F

Row I •	 5	 34.44	 6.888
Column	 5.	 21.58	 4.316
Treatment	 5	 47.21	 9.442	 7.523	 4.10
Error .	 20	 25.10	 1255
Total	 35	 128.33

The calculated value of F is highly significant and therefore, the
hypothesis may be rejected.

Estimation of Missing Observations and Analysis in Latin Square Design:

(i) Single missing observation : Let there be one missing observation,
denoted by x. Let R 1, C .  T. and G be the total of the ith row, jth column, sth
trëatment . and grand- total respectively obtained from the original data
where one observation is missing. The error S.S. can be expressed in terms of x
and taking other quantities as C,

2 (R1 + x)2 (C1 + x)2	+ x)2	 2(G + x)
Error S.S. = S = C + x -	 -	 -	 2V	 - V	 V	 V

Differentiating S with respect to x and equating to zero \ve have after

A 
v(RI+Ct-ft5)-2G

simplification ; x= (v-1)(v-2)
Thus the single missing observation x is estimated.

(ii)- Two missing observations: Ina latin square design of order v x v if two
observations x 1 and x2 are missing, following are the pQssible cases to be
cosidered according to Shil and Debnath (1986).

(a) Missing observations are in different rows and columns affecting
different treatments.
(b) Missing observations are in different rows and columns affecting same
treatment.

(c) Missing observations are in same row but in different columns affecting
necessarily different treatments.
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(d) Missing observations are indifferent rows but in same column affecting
necessarily different treatments.

Case (a) Let us consider two missing observations x 1 and x2 in a latin square

design with v rows, v columns and v treatments. Let Ts and l's be the total of

the sth and s'th treatments without considering the missing observations x1

and x2 respectively. Similarly R 1 and R'1 the row totals and Ci and C', the
column totals can be defined. Let C be grand total of all the observations
without considering x and x2 . The error sum of squares (S) can be written
below in terms of x 1 and x, and all other terms as C,

2	 + x)2 (l" + X2)2 (R1 + x 1 ) 2 (R', + x2)2
S=C+x1 +x2 -	 -	 -	 -

V	 V	 V	 V

(C + x1)2 (C'1 + x2)2 	)2+ 2(G + x1 + x2

dS 
Now, — =Oarid — =O reduce todx1	dx2

(v - i) (v -2) x i- 2x2 = v(T + Ri + C) - 2G

2x 1 + (v - i) (v - 2)x 2 = v(T'5+R'1 + C') - 2G.

Solving these two equations, the estimates of x 1 and x2 can be obtained as
follows

A
X1 = (k - 3)(k 2 - 3k +	 (k - 1)(k-2) (T+R 1 + C- 2 (T'+R + C') - 2(k - 3)G1

A
X2 = (k - 3)(k2 - 3k + 4) 

1(k-1)(k-2)(T'+ R'1+C')2(T+ R1+C1)-2(k-3)GJ

Case (b) In this case, the error sum oIsquares, can be written as,

(T + x 1 + x2)2 	 (R1 + x1)2 	 (R1 ' + x2)2
S=Ci-x12^x2-	

-	 -

(C1 + x1)2 (C 'j + x2) 2 2(G + x + x2)2
V. -	 v	 V2

Explanations of all the terms here are same as in case (a) except that of Ts,
which-indicates the total of sth treatment in which the observations x 1 and
X2 are missing. Proceeding as in case (a) we have the estimates of x and x 2 as
follow:

A
/
X1(v - 2)2 fvT5 --(v-1)(R +)+ R'1+C'-2GJ

A	 1	
V

and x2 = 7v-=) - 	 IvT + (v-i) (R 1 ' + C'1 ) + R, +C1-2G1
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Case (C): In this case, the error sum of squares can be written as,

(Ts + x1)2 - (T's + x2)2 - (R 1 + x1 + x2)2
S = C + x1 2 + x22

V	 V	 V

(+ x1)2 (C'1+ x2)2	2(G + x1 + x2)2
-	 +

V	 V	 V2

Explanation of all the terms in S are same as in case (a) except that of R1
which indicates the ith row total in which two observations x 1 and x2 are

missing.

Proceeding as in case (a) we have the estimates of x 1 and x 2 as follows.

A	 1
X=

A

= (V _2)2 l(v -1) a's - C1') + yR1 + Ts + - 2Gl

Case (d). The error sum of squares can be written as,

S=C,-x12+x22 (Fs+ 
x1) 2 - (Ts' + x 2) 2 - (R ± x1)2 (R1 ' + x2)2

V	 V	 V	 V

(q+x1 . + x2)2 2(G+x1+x2)2
+

	

V	 V2

The explanation of all the terms here are same as given in case (a) except
that of C3 which indicates the total of the jth column in which both the
observations x 1 and x2 are missing. Proceeding as in case (a) we have the
estimates of	 and x2 as follows:

A	 j

x1 (v-2)2 l(v1)(T5+Rj)+vC1+T'+Rj'-2Gland

A

x2 (v .2)2 Rv71)(F5'+R1')+vCj+T+R1-2Gl

Thus the estimates of two missing observations for all possible cases are
obtained.

When more than two observations are missing the number of possbile cases
increases rapidly and the estimation procedure becoñes combersome. In that
case we suggest Yates (1933) method of iteration.

The method of analysis, in case of missing observations: Corrected error sum
of squares E can be obtained by the usual method after substituting the
estimated missin6 observations but in this way the corrected treatment sum
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of squares cannot he obtained. 10 get the corrected treatment sum of squares
we adopt the method of estimating the missing observations as given in
randomised block deign by considering the rows and columns of latin don
ignoring the treatment classification. The error sum of squares E is
calculated from the completed data thus obtained. Then E - E gives the
corrected treatment sum of squares. The degrees of freedom (d.f.) of the error
sum of squares is reduced by the number of missing observations

A clear-cut method of analysis of variance of the above type of data can be
pointed out as given in Table-ill 5.

Table-11.15
Source of	 Method of calculating
variation	 sum of squaress

(i) Total	 Original data	 v2 -1 -
(ii) Error	 Completed data	 (v - 1) (v - 2) -
(iii) Treatment +	 (i) - (ii)	 3v -3

Row ± column
Row ±	 v-I

(iv) Column	 Original data	 - 1

(v) Treatment	 (iii) - (vi)	 I v -1

P* indicates the number of missing observations.

Example 11.6 Six different insecticidal -prays (T i , T2 ........... Th) on the cotton
yields were applied in a latin square experiment in the following type of
lay-out. Two observations were missing in the plan, the data were collected
as follows:

Table-11.16
T3	T6T1	 T	 T2	 T4

3.10	 5.93	 1.75	 6.49	 3.83	 3.30
T7	 T	 T3	 T6	 T4	 T

4.80	 2.70	 3.30	 5.95	 3.70	 5.40
T1	T,	 T	 T4	 T

3.()0	 2.95	 5.95	 7.75	 7.10
Ti T4	 T2	 T3	 T

6.40	 5.80	 3.80	 6.55	 4.80	 9.40
T6 	 T-3	 T4 .	 T,	 T5 -

5.2()	 4.83	 6.60	 4.6(1	 3.01)

-T"(, ),
 T1	 T1

4,25	 6.63	 9.30	 4.95	 9.30	 8.30
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Estimate the missing values and analyse the data.

Solution Since the missing values are in different rows, different columns

but affecting the same treatment 15, we have,

A	 1
X1 = (v - 2)2 I'T5+(' 1)(R, + C1H- R1'+C1' - 2G1 and

A	 j
X2 (v 

-2) [vTs+ (v -1) (R'+C') + R1 +C3-2G1

A	 A

where x1 and x2 are the estimated missing values in third row and third

column and in the fifth row and fifth column respectively. All other

symbols have the usual meaning expressed earlier. -

Here, C = 184.90	 Ri = 26.75	 C1 = 2475)

Is = 24.95	 R'1 = 26.25	 C' = 29.40.

..	 A	 A

Therefore we have, X1 = 5.82. and x2

184.92
Correction factor (C. F.) (Original data) = 	 = 1005.53,

197.572
Correction factor (C.F.) (Completed data) = 	 = 1084.28.

-Total S.S. (Original data) = 1130,64 - 1005.33 = 125.11.

Row S.S. (Original data) = 1040.57 - 1005.53 = 35.04

Col. S.S. (Original data) = 1027.15- 1005.53 = 21.62.

Total S.S. (Completed data) = 1211.43 -1084.28 = 127.15

Row S.S. (Completed data) = 1119.04- 1084.28 = 34.76.

Col. S.S. (Completed data) = 1106.54-1084.28 = 22.26.

Treat.S.S (Completed data) =- 1129.61 - 1084.28 = 45.33

Error S.S. (Completed data) = 24.80.

276

S



Design of Experiments	 -.

H0 : Effects of all types of insicicidal sprays are equal.

Table-11.17
A NC) V A TART

Source of	 Method of calculating
variation	 sum of squares	 d.f	 S.S.	 M.S.	 F

(i) Total	 Original data	 33	 125.11	 1.38

(ii) Error	 Comlcted data	 18	 24.8

(iii) Row + Col.	 (i) - ()	 15	 100.31

+ Treat.

Column	 Original data	 5	 21.62
(iv) Row	 Original data	 5	 35.04

(v) Treatment-	 (iii) - (iv).	 5 1 4165	 8.73 6.33

The tabulated value of F with (5.18) d at 1 17,, level of significance is 4.25
which is smaller than the calculated value of F with same d.f. Therefore,
the calculated value of F is highly significant and the hypothesis may be
rejected..

Replicated Latin Square Design: When the number of treatments are 8 or
more, latin square design should not be used because the number of
replication are large and may not be available. On the other hand, a latin

square design of order 2 x 2 cannot be adopted because in this case error d.f.

cannot be obtained. For latin square of order j x 3, the error dl. is 2 and for

latin square of order 4 x 4, the error d.f. is 6. The error d. f, in both the above
cases are not enough to give an effective analysis of variance. To increase
the d.f. due to error in the above cases we repeat the experiment i.e. instead
of taking one latin square, a number of say, p latin squares may be
considered. The number of treatment in each of the psquarCs should be
same and seperate randomisation is to be carried Out in each case. The row
and column classification should be maintained equal for all the squares.
The design thus obtained is called replicated Jatin . square design.

The analysis of data in this type of experiment is described as bew

Firstly, each of the p latin squares is analysed seperately following the
method given earlier. The corresponding sum of squares are then added.
This gives pooled row, column, treatment and error sum of squares. The
pooled row sum of squares is called between row within squares sum 01

squares and similarl y for the other pooled sum of squares.
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From each of p squares, the v treatment totals are obtained and arranged ir

a square x treatment table of order p x v.

Let T1 donote the totals of all observations of the sth treatment in the tth
square. the square x treatment table is obtained with these T, totals. LeSt Pt
denote the total of all the 'observations in the t th square It = 1. 2.........p)
and Is denoted the total of observations ol the sth treatment from all latin

squares (s = 1, 2........v). Pt and Ts are the ma'rginal totals of the-square x

treatment table.

Next, the following sum of squares are obtained.

(Pt

Correction factor (C. F.) =

	

	 2Pv
pt2

Sum of squares due to squares =	 - C. F.

Sum of squares due to treatment = - - C. F.VP

Sum of squares due to interaction treatment x square = Pooled treatment sum

of squares- t
	

- C. F.

Total sum of squares 	 Yijst2 - C. F.
ii

where Yijst denotes the observation from the t th squares in its ith row, jth

column and under sth treatment.

The partitioning of dl. in the analysis of variance of data in. replicated
latin squares is shown in Table-11.18. The null hypothesis considered
usually is

H0: The treatment effects are same.

Table-11.18

Source of variation	 degrees of freedom (dl)

Squares	 p - i

Row (Pooled)	 .	 p(v -1)

Column (Pooled)	 p(v -1)

Treatment	 (v -3)

Treat. x Sq. Interaction	 (p I) (v -1)

Error (Pooled)	 p(v -1) (V -2)

Total	 .	 r\,2 - 3
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The test of significance regarding the null hypothesis stating the equality
Of all row and column effects are tobe carried ut as usual.

Example 11.7 The following 4 x 4 latin square experiment was conducted to
compare the effect of 4 spacing A, B, C, and D on the yield lb/acre of certain
variety of paddy. The whole experiment was repeated 3 times. The lay-out

were as follows

4 rows indicates = 4 different doses of fertilisers

4 cols indicates = 4 different levels of irrigations.

B	 C	 ,D	 A

215	 310	 280	 280

C	 B	 A	 D

219	 241	 249	 265

P

A

DA B C

 239	 290	 260

 D	 C	 B

210	 245	 275	 271

L. Square-1	 L. Square-2

	

C	 D	 A	 B

	

225	 254	 251	 271

	

D	 C	 B	 A

	

218	 231	 231	 275

	

A	 B	 C	 D

	

231	 249	 263	 295

	

B	 A	 D	 C

	

241	 1	 231	 1	 273	 266

L. Square-3

Analyse data and give your comment on Spacing.
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A	 B IC	 D

231	 280	 285	 289

B	 'A	 D	 C

r

284	 246	 283	 271

C	 D	 A	 B

275	 282	 258	 258

D	 C	 B	 A

259	 271	 289	 275
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• Solution:

Latin Square-1.

Row Totals:	 R1	 R2	 R3
1085	 1084	 1073	 1094

Column Totals:	 C1	 C2	 C3	 C4
1049	 1079	 1115	 1093

Treat. (Spacing) Totals-. T.	 Tb	 'c
1010	 1111	 1102	 1113
(4336)2

Correction factor (C.F.) = 16 = 1175056.

..... ...... +10942
RowS.S.=	 C.P.- 	 = 1175111.5-CF =555

10492++ 10932
Col. S.S. =4
	 - C.F. = 1175629 - C.F. = 573:

10102._+11132
Treat. S.S. =
	 -	 -C.F. =1176898.5-C.F=18475

Total S.S. = 2312 + .......+ 275 2 C.F. = 1179154- C.F. = 4098.

Error S.S. = 1627.

Latin Square-2,

Row Totals	 R1	 R2	 R3
1085	 974.	 969	 1(X)1.

Column Totals	 C1	 C2	 C	 C1
824	 1035	 1()94	 1076

Treat. (Spacing) Totals 	 Ta	 Tb	 Ic
978	 1017	 1064.	 970.
029)2

Correction factor (C.F.) = (4 16
	 = 1014552.6

10852++10012
RowS.S.=	 - C.F. =1016-15.8-C. F. : 21637

8242+.... 4..+ 10762
Column S. S.=	 -C. F. =1026203.3-CF = 11650.7.

9782 +...+ 9702
Treat. S.S.-
	 -C. F. =1015942.8-C. F. = 1389.7.

Total S.S. = 1031805 - C. F. = 17252.4. Error S.S. = 2048.8.

280



i.

Design of Experiments

Latin Square-3.

RowTotals:	 R,	 R2	 R3

1001	 955	 1038.	 1011.

Column Totals:	 C1	 C2	 C3

915.	 965	 1018	 1107.

Treat. (Spacing) Totals:	 T	 Tb	 T(	 T.

988	 992	 985	 1040.

(4005)2
Correction factor (C.F.) = 16

= 1002501.6.

10012++10112
Row S. S. =	 2	

- C. F. = 1(X)3397.8 - C. F. = 896.2

.9152.+11072
Column S. S. =- C. F. = 1007335.8-C. F. = 5054.2.

9882+ ^10402
Treat. S. S. =-C. F. = 1003008.3 -C. F. = 30f.7.

Total S. S. = 1009737 - C. F. = 7235.4. Error S. S. 778.3.

Row S. S. (Pooled) = 3114.9.

	

	 Column S. S. (Pooled) = 17277.9.

Treatment S. S. (Pooled) = 3738.9. Error S. S. (Pooled) = 4454.1

Table-11.19
Square x Treatment Table

Tract—> A	 B.	 C	 D	 Total
Square

1	 1010	 1111	 1102	 1113	 4336

2	 978	 1017	 1064	 970	 4029

3	 988	 1	 992	 1	 985	 1	 1040	 14035

Total	 2976	
1	

3120	 1	 3151	 3123	 1 12370

123652
Correction factor (C. F.) =	 = 3187852.1

S. S. due to square = 43362+.. 16
..+4(X)52- C. F. = 4258

S. S. due to Treatment = 
29762+ ..+31232

 12	
- C. F. = 1556.7.

Int. S. S. due to (Treat. x Square) = Treat. S. S. (Pooled) - S.S. du to

Trt'itment = 3738.9- 1556.7 = 2182.2.
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H0 : Effects of all the treatments are same.

Table-11.20
ANOVA TAR! T

Source of variation	 d.f.	 S.S.	 M.S.	 F

Square	 2	 4258

Row (Pooled)	 9	 3114.9

Column (Pooled) 	 9	 17277.9

Treatment	 3	 1556.7	 518.9	 2.097 -

Int. Treatment x Square 	 6	 2182.2

Error (Pooled)	 18	 4454.1	 247.45

Total	 47

The tabulated value of F with (3, 18) d.f. at 5% level of significance is 3.16
which is greater than the calculated value of F with same d.f. Hence the
calculated value is insignificant and the hypothesis may be accepted:

113 Cross-over Design

In an agricultural experiment if an experimental unit is used for several
treatments in a s9ucnce i.e. if different fertilisers are used on the same
experimental unit or in an animal husbandary experiment if a cow is given
several feeds in a sequence at different periods, say, in different lact'ation
stages, then in all the cases, the effects of the treatments applied in one
period may carry over to the next period. Therefore, the design in which
different treatments are applied to the same experimental unit in different
periods is called cross-over design. It looks like a replicated latin square
and is particularly appropriate when the difference between the rOWS is
almost same in all replicates. Even if the difference between the rows i
assumed to be large, the cross-over design ma be used for small experiment
where few degrees of freedom are available for error.

In this type of design we save to consider two cases, namely,

i) when it is assumed that the residual effect is nil. -
ii) when the residual effect exists.
Case (I) When the residual effect is nil: Let us consider that the number of
treatment be t, each replicated r times and to satisfy the condition of the
experiment each treatment occurs equally often in each period and on each
unit, then the cross over design will have t x r columns. Each column
represents a replicate or block in a randomised block design. The treatments
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are randomised within the replicate in such a way that each treatment

occurs once in the replicate and r times in each row.

The design can be used with any number of treatments subject to the
restriction that the number replicates must be a multiple of the number of

treatments.

The spliting of degrees of freedom in ANOVA is as follows

Table-11.21

Source of variation	 I	 d.f

Replicate (Column)	 tr-1

Row	 t-1

Treatment	 t-1

Error	 '	 (t-1) (tr-2)

Let us consider an animal husbandary experiment to observe the effect of
three feeds A, B and C on milk production applied to 6 cows in 3 different
lactation stages. It is wclknown that the first lactation stage is the best,
second lactation stage is medium and the third lactation stages is the wrost
in connection with the milk production. To satisfy the condition of the
constructions, we consider a cow to represent a replication and 3 rows.
represent 3 lactation stages. The lay-out can be shown as follows

Replications

R1	 R2	 R3
	 Rs	 R6.

ROW 1
	

A	 C
	

A
	

B	 C

Row 2
	

C	 B
	

B	 C
	

A	 A

Row 3
	

B	 A
	

C	 A
	

C	 B

Case (ii) When there exists residual effect : We have seen in the earlier
lay-out that to a same cow, say cow 1 indicated by R 1 is given feed A in the

firt stage i. e. stage 1, feed C in the second stage i.e. stage 2 and B in stage 3
etc. In this case, we have assumed that the residual effects nil. But in some
situation the residual effect is so prominent that the assumption is not
valid. Following are the two methods by which we can eliminate the

residkial effect.

(a) A gap or rest period is maintained so that the effect due to treamtmeflt

will not be carried over to the next.

(b) The residual effect is eliminated by a special technique of analysis of
variance. The first method is not practical because during the rest period we
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are to apply some control treatmetwhich may react with the earlier
treatment. Also we may not have extra time for keeping gap period.

For the second method, the lay-out for the Cross-over design with
treatments, t may be even or odd number, may be described as suggested by
William (1949) as below

(i) For even number of treatments:

(a) The first column is written according to sequence 1, 2, t, 3, (t-1),
4........Thus for t=4, the first column is written as 1, 2, 4, 3, and for t = 6 the
first column would be 1, 2, 6, 3,5, 4. The numbers indicate the treatments.

(b) Next (t - 1) columns are obtained from the first column by successive
addition of 1 but if the number exceeds t, t is to be subtracted from it.

For example; when t = 4, the 4 columns can be writtc as:

1	 2	 3	 4
2	 3	 4	 1
4	 1	 2	 3
3	 4	 1	 2

(ii) For odd number of treatments In this case there will be two squares.
The first column of one square is 1, 2, t, 3, (t - 1 )...and the first column of the
second square is the first column of the first sqt1a bt in reverse order.

Thus for n = 5, two squares are'as follows:

1st square	 2nd square

1	 2

2	 3

5	 1

3	 4

4	 5

3	 4	 5
4	 5	 1
2	 3	 4

5	 1	 2
1	 2	 3

4	 3

3	 4

5	 1

2	 3

2

1	 2	 3
5	 1	 2
2	 3	 4
4	 5	 1
3	 4	 5

Example 11.8 Three feeds A, B and C were given to six cows in three
lactation stages. The plan and milk production in kg/day are given below.
Test the effect of feeds on milk production. (Assuming that there is no
residual effect).

Cow I Cow 2 Cow 3 Cow 4 Cow 5 Cow 6
Stage-]	 A- 10	 C- 16	 A- 12	 B- 11	 B- 14	 C- 10
Stage-2	 C- 9	 B- 7	 B- .11	 C- 10	 A- 12	 A- 13
Stage-3 B- 14	 A- 12	 C- 10	 A- 12	 C- 8	 B- U.
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Solution:

Totals	 Totals

	

Stage -1	 73	 Cow - I	 33

	

Stage -2	 62	 Cow-2	 35

	

Stage -3	 67	 Cow-3	 33

	

Feed - A	 71	 Cow-4	 33

	

Feed - B	 68	 Cow -S	 34

	

Feed - C	 63	 Cow -6	 34

2022
Correction factor (C. F.) == 2266;89.

Total S.S. = 102 + ........± 112 C. F. = 2350 - 2266.89 = 83.11.

S.S. due toStage= 732+622+6726	
-C.F.=2277-2266.89=10.1I

	

71 2 +682 +632	13634

	

S.S. due to Feed =	 -C.F.= 6 -	 F.=2272.33-C. F.=5.44.

332 k	342	 6804
S.S. due to Cow =	 , -C.F. = - --- C.F.=2268-C.F.=L11.

Error S.S. = 83.11 -10.11 -5.44- 1.11 = 66.45.

H0 : The effects of all the feeds are same.

Table-11.22

ANOVA TABLE

Source of	 I
variation	

d	 M.S.	 F	 5%F.f	 S.S. 

Stage	 2	 10.11	 5.06

Feed	 2	 5.44	 2.72	 0.33	 8.65

QW	 5	 1.11	 0.22

Error	 8	 66.45	 8.31

Total	 17

The calculated value of F with (2,8) d.f. is smaller than the tabulated

value of F at 5% level of significance. Therefore, the calculated value is

insignificant and the hypothesis may he accepted.
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11.4 Multiple Comparison Tests

The significant value of F for treatments indicates the rejection of null
hypothesis H 0 The treatment effects are equal. In that case we may be
interested in making comparison between pairs of treatment means and
finally to decide the most effective one.

For the above purpose, following are the usual comparison tests.

Least Significant Difference (I. s. d) Test : It is the oldest method for
making comparison of treatment means to see whether the difference of the
observed means of treatment pairs exceeds the l.s.d. numerically. We
declare the means of pair of treatments to be significantly different if the

difference of treatment means exceeds l.s.d. which is calculated by tax

where ta is the value of Student's t with error d.f. at lOOa% level of
significance. s2 is the M. S. of error and ris the number of replications of the
treatments. For unequal replications ,rl and r2

ri-i
l.s.d = taXS\/ —+—.ri	2

The test criterion is very easy to calculate but restricted in the sense that
treatment pairs should be independent and are to be pre-determined.
Therefore, it cannot be used for all possible pairs of treatment means.

Example 11.9 Apply l.s.d. test for testing the difference of treatment means
of F1 and F6 from the data given in Example 11.2

Solution: We have,

l.s.d.=t001 x	 where, t001 =2.947,s2=0.469;r=4.

Mean of F1 = 5.18 and F6 = 7.22. Therefore, 7.22 -5.18 = 2.04.

12X0.469
Now, l.s.d. = 2.947 x	 = 1.427.

Therefore, the difference between the two means of F1 and F6 is highly
significant indicating that F6 is better than F1.

Tukey's co-Test z . For comparing all possible pairs of treatment means we

arrange the treatment means in ascending order of magnitude as x 	 x

..x . The studentized range statistic is givn by
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(x -x)
q4 

here s 2 is the M.S.'of error with p d. f. and r is the number of replications
of all the treatments. The values of qip are available in Biometrika Tables,
Vol.-'l, Table-29.
For comprison all possible pairs of treatment means Tukey (1953) suggested

the statistic, co = q ç(j)( X 

NFr

For unequal replications, CU = q 	 . [ (	 -) ]

where q> t,p is the value of qtp at upper lOOa% point. lOOa% level of
significance generally depends on the original ANOVA table. Tukeys

(0-test is very important since only one value like l.s.d. is used to compare all
possible pairs of treatment means. o is sometimes called honestly significant
difference (h. s. d.) test.

Example 11.10 Apply Tukeys w- test for testing all possible pairs of means
for significance using the data given' in Example 11.2.

Solution: We have, w = 	 .

where a = 0.01, t = 6, p = 15, r 4, s2 = 0.469.

and q (00 1 ) 6, 13 = 5.80 Vide Biometrika Tables. Vol.-], Table-29.

(1.469
(O ' 5.80X N ---=1.986.

The treatment means corresponding to different treatments arranged in order
of magnitude are

F 1	F	 Fj	 F	 F4
5.178	 5.193	 5.795	 6.180	 7.013	 7.223.

Treatments underscored by a common line donot differ significantly while
the others differ significantly. Thus F6 is significantly better than F1 and F2
at 1% level of significance. And there is no significant difference among F,
F4,F5 and F6.

Newman-Kewls' Sequential Range Test : In Tukey's co-test the number of
ordered steps between the means of the treatment are not considered.
Considering this aspect, Newman-Kewls put forward the following
method by which the most effective treatment can he determined.
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(i) Arrange thetreatment means in asending order of magnitude in a two-
way table as below:

Table-11.23

(ii) (a) The range X t - x 1 is compared with critical difference

q() (t=t-1+1,p).

(b) If the test under (a) is significant, the difference to the right
-	 S
x t -	 2) is compared with q (a) (t-1t-2--1p)

'jr

(c) If the test under (b) is significant, the difference to the further
- -	 5

right ( x j - x 3) is compares with q (U)(1-2=1.1.p)

(d) If the test under (c) is in significant we turn to the second row and

proceed as in the first row and admit only up to the column

where we get significant differences.

xample 11.11 Apply N. K. sequential range test for testing all possible

pairs of means for significance, using the data given in Example 11.2. 	
S

Solution: We prepare the following table for calculating different q

for different, values oft. 	 I
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Table-11.24.
Value of

q	
s

Con t,1 5	 q(o.om.15 X

6	 5.80	 1.986

5	 5.56	 1.904

4	 5.25	 1.798

3	 4.83	 1.654

2	 4.17	 1.429.

Two-way table of differences of treatment means corresponding to different
treatments are as follows

Table-11.25

F6 	F4	 F3	 Fi	 F2	 F1

7.223	 7.013	 6.180	 5.795	 5.195	 5.178

5178	 '2.045	 1.835	 1.002	 0.617	 0.017	 -
5.195	 2.028	 1.818	 0.985	 0.600	 -	 -
5.795	 1.428	 1.218	 0.205	 -	 -	 -

6.180	 1.043	 0.833	 -	 -	 -	 -
7.013	 0.210	 --	 -	 -	 -

7.223	 -	 -	 -	 -	 -

The difference 2.045 is compared with 1.986, the difference 1.835 is
compared with 1.904 and SO Ofl. Thus it is seen that F 6 is significantly better
than F 1 and F2.

Duncan's New Multiple Range Test : In the Newman-Kewls (N,K)
sequential range test we have considered a constant level of significance
irrespective of the number of steps of the means are apart. Duncan (1955)
made ak, the level of significance a variable from test to test by considering

the level of significance as ak = 1 -(1 - k-I where k is the number of order

steps between the ordered means and a is as defined earlier. We defifle q(k)
as the significant studentised range (S.S.R.) The value of S.S.R. is given in
Duncan (1955). The least significant range (L.S.R) is defined by,

L.S.R. = S.S.R x 4.
In case, a pair of means differs by more than its L.S.R, they are declared to
be significantly different.
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Example 11.12 Apply Duncans new multiple range test of testing all
possible pairs of means for significance using data given in Example 11.2.

Solution The values of S.S.R. and L.S.R. for different values of k are as
follows

Table-11.26

Value ofk	 2	 3	 4	 5	 6

S.S.R.	 4:17	 4.37	 4.50	 4.58	 4.64

L.S.R.	 1.428	 1.496	 1.541	 13A)	 1358

Treatment means corresponding to different treatments are arranged as

follows:	 F1	 F2	 F5	 F3	 F4	 F6

5.178	 5.195	 5.795	 6.180	 7.013	 7.223.

which indicates that F6 and F4 is significantly better than F and F2. The
difference between any pair of underscored treatment means being
insignificant.

11.5 Factorial Experiment

A certain character under stud • in ,iv he influen,od b y j number  I factors at

different levels and hence it is necessary to test different  -
of the levels of the factors. An experiment in which a number ot rawr at
different levels are testd for their effects and interactions is called
factorial experiment. There are two types oL factorial experiment,
symmetrical and asymmetrical.

Factorial experiments provides study not only the individual effects of each
factor but also their interactions. In these experiments we require less
resources to get same precision for each factor effect. They give an
exploratory work and hence they are widely used in research work. They
also form the basis of other designs of considerable practical importance.

When the number of factors are large in number, it is difficult to handle
because, blocks of required size may not be availabk!. In that case we can
deal with fractional factorial. For this aspect, the erious readers may be
referred toMontgomery (1976) and Jhon (1971).

Symmetrical Factorial When the factors, each have the same number of
levels, they are called symmetrical factorial experiment. For an example,

let F1 , F2, ....... F be n factors each at s levels, then we have a symmetrical
factorial experiment of the type s'. 	 -
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2" Factorial Experiment Let us consider the factorial design of the type 2
which has n factors each at 2 levels. For more simplicity sake, we consider

n = 2 ic, the most simple factorial experiment of the type 2 2 . Let the two
factors be denoted by A and B each at 2-levels, the low level is denoted by 0

and the high level is denoted by 1. The treatment combination 00 represents

both the factors at the low level and maybe denoted b' (1), 10 represents A

at high level and Bt low level, may be denoted by a, 01 represents A at
low and B at high level, ma y be denoted by b and Ii represents both the
factors at high level, may be denoted by ab. Let us consider r replications.'

Further let the lower case letters (1), a, b and ab represent the total of the
observations in all the r replicates corresponding to different treatment
combinations.

Main-effect and Interaction-effect When two factors A and B are involved
-

in the experiment, the effect of A at the low level of B is la WI
r	 and the

effect of A at the high level of B is lab -bI
r	 Averaging both the quantities

we have the main effect of A, denoted by, A = — l(ab - h) + (a -(1)1.

1	 1
=1ab-4. a-b-(l)l =0-1)(b+1)

Similarly the main effect of B is

B= ,Jab +h-a-(l)l =- (a+ 1)(h -1).

Now the interaction AB is the average difference between the effect of A at

the high level of B and the effect of A at the low level of B. Thus,
1	 1	 1

AB= — Hab - bJ - {a -(1)11 =1ab+(1)-a-bl =--(a -i)(b-1).

The interaction effect BA is seen to give the same expression as above and
hence, Interaction AB = Interaction BA.

It is .seen that the effects are expressed in term of contrasts of treatment

combinations. As the three contrasts are mutually orthogonal, we can split

the treatment sum of square with 3 d.f. into three sum of squares each with 1

d.f. corresponding to three effects. The contrasts representing the effects A,

B and AB are shown below with + and - signs against the treatment
combinations.

.3
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Table-11.27

Treatment	 Factorial effects

Combinations	 A	 B	 AB

(1)	 (Xl	 -	 -	 +

a	 10	 +	 -	 -

b	 01	 -	 +

ab	 11	 +	 +	 +

23 Factorial Experiment Let us consider three factors A, B and C each at 2
levels, designated as earlier. The treatment combinations can be written as
(1), a,b, ab, c, ac, bc, and abc. In terms of 0 and 1 the treatment combinations
can be written as 000, 100, 010 110, 001, 101, 011 and 111 As earlier the lower
case letters indicate the total of observations corresponding to that
particular treatment combination in r replications.

Main-effects and Interaction-effects The effect of A when B and C are at

low level 
15 1a (1)1, the effect of A when B is at high level and C is at low

level is	 r
lab -

 b! the effect of A when B is at low level and C is at high level

(ac-cl
is r	

and finally the effect of A when both B aInd C are at high level is

Iabc - bcl
r	

Thus the main effect of A is the average of these four effects

which is A=	 !a-(1)+ab-b+ac-c+abc-bcl

1	 1
=T-(1)-b-c-bcl =	 (a - 1)(b+ l)(c+ D.

Similarly the main effect of B and C are as follows

B=TIb+ab+bc+abc-a-c-ac-(1)l =(a+1)(b-1)(c+1)

and C=2—lc+ac+bc+abc-a-b-ab-(1)l =(a + fl(b+1)(c-1)
When C is at low level, the interaction effect AB is the average difference

in the effect of A at two levels of B i.e.	 l(ah - b) - Ia - (1)11

	

When C is at high level the interaction effect AB is 	 ((abc - hc) - (ac - c)l
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In case of three factors, A, B and C, the interaction effect of AB is therefore,
the average of these two effects.

Thus AB= tab -b-a(1)+abc-bc-ac+cl

abc+ab+c+W-a-b-ac-bcl	 (a - 1)(h- i)(c + 1), similarly

	

AC=labc+ac+b-i. (i)-a-c-ab-bc]	 - 1)(b + I) (c - i)

1	 1and BC= rlabc + hc + a + (1)-b -c-ah-acj = — (a + 1)(b - I) (c - i)

AB, AC and BC are usually called 2-factor interaction effects. The
interaction effect ABC is the average difference between AB interaction for
two different levels of C.

Thus, ABC =-I ((abc - bc) - (ac - c)} - lab - b - a -(1 )}l

i	 I
= labc+a±b+c-ab -ac -bc-(i)j =-(a-i)(b-1)(c- 1).

ABC is called the 3-factor interaction, It can be shown that,
Int. ABC = Int. BCA = mt. ACB. Therefore, the order of the letters are
imrnctcrial in case of having - interaction effects.

All main effects and interaction effects are expressed in terms of contrasts of
treatment combinations and the contrasts are mutually orthogonal. The sum
of squares due to treatments with 7 d.f. can be split up into different sum of
squares each with I d.f. due to different effect components. The contrasts
representing main effects A, B and C, 2-factor interaction effects AU, AC and
BC and 3-factor interaction effect ABC are shown in Table-11.28 with + and
- signs against the treatment combinations.

Treatment
Combinations

(1)

b
ab
c
ac
ft
abc

Table-11.28	

BC

Table-11.28

Factorial effects
B	 C	 AB AC BC

- - - - +

+	 +	 - -	 +
+	 +	 +	 ±	 +
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The Table-11.28 has several interesting properties

(1) Every column has an equal number oi + and -signs.

(2) The sum of products of co-efficient of signs in any two columns is zero.

(3) The product of signs of any two columns yields a column in the table.

For example, A x B = AB and AB x B = A13 2 = A. We see that the products

are formed modulus 2 (the exponent can only be zero or one if it is greater
than one, it is reduced by multiples of two until it is either zero or one).

In general the main effects and interaction effects of 2n factorial experiments
can be obtained in the above way. The sum of squares of any effect is equal to

(Contrast)2
where n Is the number of factors and r is the number of

2' x r
replications. Thus getting the sum of squares of different components the

ANOVA table can be prepared ,for any experiment of 21 series when it is

conducted in any one of the basic designs.

Yate's Algorithm for the 2" Factorial Experiments:

There is another systcmetic method of getting the estimate of effects and
the sum of squares of different effects usually known as Yates'Algorithm.

The procedures are as follows:

The treatment combinations are written as usual in a column.

2. The total of the responses (yields, measures of observations etc.) are

written columnwisc corresponding to each treatment combipation.

3. The first half of the next column which is denoted by co]-1 is obtained
by adding the responses in adjacent pairs The second half of col-1 is

obtained by taking second value minus - the first value in each pair.

4. Col-2 can be obtained from col-1 just as col-i is obtained from response

column.	 *

The process of pairwise addition and subtraction is continued to get col-n if

it is a 2n factorial experiment.

5. The estimates of the the effects can be obtained dividing the values
(avoiding the first one) of col-n corresponding to treatment combinations

obtained by mentioned above procedure by r X 2r1 where n and r are

described earlier.	 .
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6. Sum of square of the effects can be obtained by squaring the value
(avoiding the first one) of col-n corresponding to treatment 'combinations and
dividing by r x

Thus the sum of squares of different effects are obtained. The replications
and error sum of squares can be obtained as usual and the analysis of data in
a 2n factorial experiment conducted in any one of the bask designs in r
replications can be performed.

Example 11.13 For a factorial experiment with three factors N, P and K
each at two levels conducted in a randomised block design in 4 replications,
the lay-out and yield per plot are given below

Rep—]	 Rep-2

	

(1)	 k	 pk	 p	 p	 nk	 npk	 (1)

	

25	 32	 24	 27	 32	 34	 42	 44

	

nk	 np	 ii	 npk	 n	 np	 k	 pk

	

32	 30	 3k)	 36	 -	 46	 30	 39	 36

Rep-3	 Rep-4

	

k	 rk I	 n	 nk	 np	 n.k	 npk	 k

	

32	 20	 28	 -	 32	 41	 45.	 35

	

npk	 (1)	 p	 np	 ; (1)	 pk	 n	 p

	

30	 24 1 26	 36	 -	 34.	 39	 41	 29

Analyse the data and give your comment.

Solution: Grand Total of the observations=l 059

	

1	 -
Correction Factor (CF) = 0592--= 3046.2833.

[otal S.S. = 36381 - CF = 1334.7167.

Replication S.S. = 35662.1250 - CF =.615.842.

S.5. due to diflereht main-effects and interaction effects can bc obtained
Torn the following Yates' Algorithm
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Table-11.29

Treat-

	

Total	 Mean effect
ment

from all Cot-I Col-2 Col-3	 Col-3	 (Col-312
Combi-
nation replicates	 7.22

  S.S. = 4 x 2

(1)	 127	 272	 514	 1059	 -	 -

n	 145	 242	 545	 3.9373	 1240312

p	 114	 273	 32	 -31	 '-1.9375	 30.0312

np	 128	 272	 31	 33	 2.0625	 34.0312

k	 138	 18	 -30	 31	 1.9375	 -30.0312

	

135	 14	 -1	 -1	 -.0625	 0.0312

pk	 119	 -3	 -4	 29	 1.8125	 26.2812

npk	 153	 34	 37	 41	 23625	 52.5313

H0 : Effects of all the main effects are same and interaction effects are nil.

Table-11.30

ANOVA TABLE.

Source of
variation	 d.f.	 S.S.	 M.S.	 F	 Sc; F

Replication	 3	 615.842	 205.2807	 10.2176

N	 1	 124.0312	 124.0312	 6.1733	 4.32

1'	 1	 30.0312	 30.0312	 1.4948

K	 1	 30.0312	 30.0312	 1.4948

N1'	 1	 34.0312	 34.0312	 1.6939

NK	 1	 0.0312	 0.0312	 0.0016

P1K	 1	 26,2812	 26.2812	 1.3081

NPK	 1	 52.5313	 52.5313	 2.6147.

Error	 21	 421.9062	 20.0908

Total	 31	 1334.71 67

Conclusion : The effect of nitrogen is seen to be significant and all other

	

effects are insignificant. 	 .
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3' Factorial Experiments: When factors each have three levels instead of
two, the scope of the experiment increases. It 8ives more information than
the erIicr because it provides the opportunity to study linear as well as
quadratic effects. But it should be remembered that the treatment

combinations increases rapidly as the number of levels per factor increases.

Here we are consideing n factors each at 3 levels. For simplicity sake, let us
consider, n = 2 i. e. 2 factors each at 3 levels giving a 32 factorial experiment.
Let the two factors be denoted by A and B and 3 levels be coded by 0,1 and 2.
The treatment'combjnatjons can be written in two different ways namely

(1), a 2, a2, b 1 , a 1 b 1 , a2b 1 , b2, ab2 and a2b2 and 00, 10, 20,01,11, 21, 02,12 and 22.

These treatment combinations can be alloted at random tQ plots in any one of
the designs. The main effects and interaction effects can be expressed in the
method given below:

Considering a single factor A, (a 1 - ao) indicates the response at the level 0
and that of (a2 - a 1 ) at the level 1. The sum of these two responses gives the
linear effect (a 2 a0) and their difference gives the quadratic effect
(a2 - 2a 1 + ao). Thus linear and quadratic effects of B can also be defined. The
interaction effect can be split into components of interactions between linear
and quadratic effects of the two factors. Denoting the linear and quadratic
effects of A by A 1 and A respectively and similarly for B the four
interaction components each with I d.f. can be written as, (without the
divisors),

A1 B1 = (a2 - a0) (b2 - b0)

A i Bq = (a2- a& (b2- 2b 1 ±b0)

Aql3 = (a22a1*a0)(b2b0)

AqBq = (a2-2ai+ao)(1>2-2b1+bo)

Thus it is seen that the main effects and interaction effects can be expressed
in terms of contrasts which are mutually orthogonal and therefore the
treatment sum of squares for different components can be obtained from the
sum of squares due to treatments.

Yates' Algorithm for the 3' Factorial Experiments: The estimates and sum
of squares of different components'of effect in 3fl factorial experiment can be
obtained by Yates' Algorithm as follows

(1) The treatment combinations are written in the systematic manner in a
column.
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(2) The total of the responses are written column wise corresponding to
each of treatment combination. The first one third of the next column
denoted by col-1 Consists of the sum of each of the sets of three values in the
response column. The second one third of Col-1 is obtained by the third
value minus the first value in the sets of three values. This operation
computes the linear components 'of the effects. The last one third of the
column is obtained by taking the sum of first and, Third values minus twice
the second value in each set of three values. This computes the quadratic
components.

(3) The process is to be carried out n times to give Col-n giving the
estimates of effects ih 3fl factorial experiment without, considering the
d I visors.	 -

The devisors for sum of squares for different treatment effects are obtained
from 2p3q r wherc p is the number of factors in the effect considered and q is
the number of factors in the experiment minus the number of linear terms in
this effect and r is the number of replications.

In this way, the sum of squares of different effects are computed, the
replication sum of squares and error sum of squares can be computed as usual
and the analysis of the 3 1 factorial experiment can be performed.

Confounding: We usually recommend that the factorial experiments can be
conducted in any one of the basic designs. We have seen that the data in
these experiments are analysed by spliting the treatment components in
main effects and interaction effects.

When the number of factors and/or the number of levels of a factor increases,
it becomes almost difficult to conduct the experiment with suitable size of
the blocks. In this case, the contrast of the treatment combinations of some
interactions effects usually of higher order interactions are divided into
some parts and the treatment combinations are allotcd at random to
seperate blocks giving a replication and tlus the size of the blocks are
reduced to managable number. In such cases, contrasts of the interactions and
contrasts between the block totals give the same function. The contrasts are
therefore mixed up with the block effects and can not be separated. In other
words, the interactions effects have been confounded with blocks. 'This
device of reducing the block size by making one or more interaction contrast
identical with block contrasts, is known as confounding.

Total and Partial Confounding: When there are two or more replications, a
question arises whether the same interaction is confounded in each
replication or different sets of interactions are confounded in different
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replications. Both the procedures are practiced. If the same, et of
interactions is confounded in all the replications, confounding is called
total. In such confounded factorial experiment, the estimate of interaction
effects confounded, cannot be obtained but all other main effects and
interaction effects can be estimated with better precision because of reduced
block size. If again different sets of interactions are confounded in different
replications, confounding is called partial. In such method of c6nfounding
the informations of the confounded interaction effects can be recovered from
those replications in which they are not confounded.

Let us consider an example each from 2n and 3fl series of factorial
experiments.

(i) Let u consider 23 factorial experiment in which the factors are
represented by A, B and C each at 2 levels. One way of writing the
treatment combinations are (1), a, b, ab, c, ac, bc, abc. When the highest
order interaction effect, ABC is confounded, the two block contents can be
obtained by choosing even number of letters common with the effect and the
other by choosing the odd number of letters common with the effect.
Therefore the block contents can be written as,

BI-1	 BI-2
(1)
ab	 b
ac	 c
bc	 abc

If we consider the levels by 0 and 1, the treatment combinations can be
written as 000, 100, 010 110 001 101 , 011 , 111.

Again considering the effect ABC to be confounded, two block contents can be
obtained by solving two equations respectively

X1+X+X3 =01
=1 j mod 2;

BI-1	 BI-2
000	 100
011	 010
110	 001
101	 111

(ii) Let . us consider 33 factorial experiment. Here we cOnsider three
factors, A, B, and C each at 3 level, denoted by 0, 1 and 2, the treatment
combinations can be written as 0(X), 100, 2(X), '010, 110, 210, 020, 120, 001, 101,
201, 011, 111, 211, 021, 121, 002, 102, 202,0U. 112, 212, 022,122,220,221,222.
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Let the interaction effect AB2C be confounded with blocks. In this case we
get 3 blocks in a replication and these can be obtained by solving three
equations namely,

x1+2x2+x3 =0'
=1 . mod 3
=2J

The block contents are as follows

Block—i	 Block-2	 Block-3

000	 001	 (X)2

011	 012	 010

022	 020	 021
110	 Iii	 112
102	 100	 101

121	 122	 120
201	 202	 200

212	 210	 211

220	 221	 222

The block containing 000 is generally called principal block. Once it is
obtained, the second block can be obtained by adding 1 mod 3 to the last
element of the first block contents and the third can be obtained by adding 2
mod 3 to the last element of the first block contents or by adding 1 mod 3 to
the last element of the second block contents.

If AB2C is confundcd in 3 replications, say, the effect AB 2C is totally

confounded and the information due to AB 2C is completely lost. But if AB-)C
is confounded in the first replication. ABC2 is confounded in the second
replication and ABC, is confounded in the third replication then neither of
the effects is totally confounded as the estimate of AB2C can be obtained
from the second and third replications, the estimate of ABC 2 can be
obtained from the first and third replications and lastly the estimate of

AB2C2 can be obtained from the first and second replications. Hence in this
case, the effects namely AB2C, ABC2 and AB2C2 -arc partially confourded.

Confounding more than one effect : With. the increase of the number of
factors, the treatment conbinations increase sharply. In that case, 2 blocks in
case of 2r series and 3 blocks in case of 3fl series may not surve our purpose of
getting blocks of suitable size. That is, if We are to reduce the size of the
blocks more than'that obtained, earlier, we are to confounded more than one
higher-order 'interaction effects.

For 2° series, when we are to get 2k blocks of size 2°,in a replication, 2k -
interaction effects are to he confounded of which k effects are independent
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and the remaining (2k - k - 1) are gencralised effects. For example, in a
factorial experiment if we are to get 2 2 block of size 2 in a replication, 2
interaction effects are to be confounded, say ABC and BCDE, the number of
generalised effect is (22 - 2 - 1) i.e. I which is ABC x BCDE = AB2C2DE =
ALE.

The block contents can be obtained by solving the following two sets of
equations simultaneously.

x+x2+x3=o1

	

=1	 mod 

x2+x3+x4+x5=0 l mod2

i.e. the block contents of 4 blocks can be obtained from the solutions of the
following equations in terms of treatment combinations:

	

x 1 +x2 -i-x3 =0	 1
x2+x3+x4+x5=O j mod2

	

x1 +x2 +x3 =0	 )
modx2+x3+x+x5=1. J 

	x1+x2+x3=1	 1
x2+x3+x4+x5=0 j mod 

	

x 1 + .x2 +x3 =1	 1
x2+x3+x4+x5=1 J mod 

Similar explanation is given in detail for 31 and in general s factorial
experiment in Das and Gin (1979).

When the number of treatment combinations are large in number, traction of
the factorial cxperimnt can be taken into consideration and experiments
with blocks of small size can be handled. This type of design is called
fractional factorial design which is beyond the scope of this text. Reference
on this regard can be made from Das and €iri (1979) and Montgomery (1976).

The sum of squares of all the effects are obtained by Yates Algorithm. The
sum of squares of confounded effects will give us the block sum of squares.
The degree of freedom for block is equal to the number of effects confounded.
All other components can be obtained as usual. The sum of squares due to
those affected interactions will be absent in the analysis of variance table.
In case of analysis of partialy confounded factorial experiment, the sum of
square of the effects which are not affected can he obtained by the usual
Yates Algorithm. The sum of squares of the affected effects can be obtained
by Yates*Algorithm from the replicationc where the concerned effects are
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affected. In such case, there is another cIurce of variation namely 'Blocks
within replicates whose sum of squares can be obtained from the addition
of sum of squares of affected effects from the corresponding replicates where
they are affected.

Example 11. 14 The plan and yield per plot (in a suitable unit) of 23 fjeld
experiments on wheat are given below the treatments being all
combinations of two levels of drug D (0,1), two levels of potash K(0,i ) and
two levels of superphosphate P(0,1). The experiment was conducted in four
replications each having two blocks. Detect the effects confounded in
different replicates andanalysc the data.

R 	 R2	

j

0(X)111011100101000010

Block-i	 (1)	 pkd kd	 p	 pd (1)	 k 	 Block-3

32	 26	 5	 4048	 40 

001
	

010	 101	 110
	

110 100	 011
	

001

Block-2	 d
	

k	 pd	 kp	 pk p	 kd
	

d	 Block-4

43
	

45	 45	 31
	

34 48	 31
	

33

Solution : From the block contents, it is seen that KID is confounded in
Replicate-1, PD is confounded in Replicate-2. PKis confounded in
Replicate-3 and lastly PKD is confounded in Replicate-4.

11952
Grand Total1 195. Correction factor (C. F.) 	 44625.781.

The block totals are B = 131, B2 = 164, B,'= 159, B4 = 146,

E3= 164. B8 = 151, B7 = 133 and 138 = 147.
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Total S.S. = 46041 - C. F. = 1415.219,

(131)2 + .......++ (147)2
Block S.S.	 -C. F. = 44912.25 . C. F. = 286.469.

To obtain the treatment S. S. we prepare the following table:

Table-11.31

(1)	 (2)	 (3)	 (4)	 (5)	 (6)

Treatment	 Total	 Total from Total from Total from Total from

combina-	 from all	 replicates replicates 	 replicates	 replicates

tion	 replicates	 1,2 and 3 1,2 and 4.	 1, 3, and 4,	 2,3, and 4.

(1)	 163	 126	 117	 115	 131

p	 167	 125	 125	 119	 132

k	 147	 118	 114	 107	 102

pk	 133	 109	 89	 99	 102

d	 142	 108	 110.	 109	 99

pd	 172	 132	 125	 132	 .. 127

kd	 118	 86	 89	 87	 92

pkd . .	 153	 111	 111	 1	 122	 1	 115

Main effects due to P, K and D (unaffected cffets) can he obtained from

column (2) of Table 11.31

(P1 = III +1p11kl+1pk) Id] +[pd]1kd]+lPkd)55.

Iki = - Ill -[p] + 1k] + [pkl - [d] - lpdl . + lkdi + lpkdl = -93.

The interaction effect PK is obtained from column (4) of Table 11 .31

[PKI= 111-lpl-lkl+ lpkl+ [dl- Ipdl - lkd 1+ lpkd 1= - 26.

The interaction effects PD is obtained from column (5) of Table 11.31

[PD]=j1]lp1+[k11pk][d1+lpdl-!kd1+[Pkdl=62.

The interaction effect KID is obtained from Column (6) of Table 11.31

The interaction effect PKD is obtained from Column (3) of Table 11.31

IPKDI = - II] + Ip] + 1k] - lpkl + [d] - IpdI - [kdl + lpkdl =9.

All these effects are obtained without considering the divisors.

Now we compute sum of squares duo to different main effects and affected
interaction effects as usual.
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S.S. due to P =	 94.531.

S.S. duc to K I K12 270.281.

S.S.due to D = lDl2---= 19.531.

IPKI2
S.S. due to I'K = ---= 28.167.

IPDI2
S.S. due to PD = ---= 160.167.

IKDJ2
S.S. due to KD =24= 66.667.

and S.S. due to l'KD IPKDI2
24 =

Ho : There are significant main effects and the interaction effects are nil.

Table-11.32
Ar.JnvA TARYt?

Source of
variation	 di	 S.S.	 M.S.	 I	 F.	 5%F	 1r7,;F

Blocks	 7	 286.469	 40.924	 1.431

P	 1	 94.531	 94.531	 3.306

K	 1	 270.281	 270.281	 9.454	 8.40
D	 1	 19.531	 19.531	 0.683

PK	 1	 28.167	 28.167	 0.985

KID	 1	 66.667	 66.667	 2.332

PD	 1	 160.167	 160.167	 5.602	 4.45

PKD	 1	 3.375	 3.375	 0.118

Error	 17	 486.031	 28.590

Total	 31	 1415.219

From the above table it is seen that the main effect K is highly significant
and the interaction effect PD is significant at 5% level of significance. All
other main-effects are insignificant and other interaction effects are nil.

Analysis of 20 Factorial Experiment in a Single Replication When the
niiniher of factorc i Tare the treatment combinations become ver y larg e. For
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example, a 2 5 has 32 treatment combinations. a has 64 treatment
combinations and so on. Since resources are usually limited, the number of

replicates that the experimenter can employ may be restricted. Frequently
available resources may only allow a single replicate of the design unless
the experimenter is willing to omit some of the original factors.

With only a single replicate in a 21 factorial experiment it is imposible to
compute the mean square due to error. Thus it seems that hypothesis
regarding main effects and interaction effects can not be tested. However,
the usual approach to the analysis of a single replicate of the 2n experiment
is to assume that some of the higher order interactions to be negligible and
the total of their sum of squares will give the estimate of sum of squares due
to error. Thus the analysis can be performed. The degrees of freedom for
error will be equal to the number of effects considered td be negligible.

But the practice of combining higher order interaction sum of squares should
be done after proper varification becaue if some of these interactions are
significant then the estimate of error will be inflated. Therefore, the
experimenter must use both his knowledge of the phenomena under study
and common sense in the analysis of such a design. A scientific method of
detecting the insignificant effects was given by Daniel (1959). Assuming the
data are normally and independently distributed, the 2' - 1 estimate of 2'
design are normally distributed. The method is to arrange the estimates of
the ,effects in ascending order and plot the jth of these ordered values

against P= j-.5 —j-, j = 1, 2 ............ 2'' - 1, on normal probability paper. The
2n -

effects, which are negligible, will tend to fall along a straight line on this
graph, while significant effects will be far from the line. The negligible
effects can thus be combined to form an estimate of error and the anal ysis of
the data can be carried out.

Asymmetrical Factorial Experiment : When the number of levels of the
factors are not same we get an asymmetrical factorial experiment. For
example, the first factor, F may have s 1 levels, second factor F2 may have s2

levels and so on the nth factor F may have s levels then the experiment of

the type s 1 x S2 X.. ....... X s, is called asymmetrical factorial experiment.
Again if m factors each has s 1 level, n factors each has S2 level, and so 00, p

factors each has Sk levels then the experiment denoted by s''' X sf X .... . X SP

is also called asymmetrical factorial experiment.

Symmetrical factorial experiment is somewhat inflexible because here all
the factors have to be at the same number of levels. This may sometimes
contradict the requirements of a practical experimenter. It may even be
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unrealistic in some situations to take all factors under investigation at the
same number of levels. The above drawback can easily be overcome by
adopting asymmetrical factorial experiment which is more flexible to meet
the requirements of the experimenter

Analysis of 3 x 2 Asymmetrical Factorial Experiment :3 x 2 asymmetrical
factorial experiment is the most siinplest one, for which the procedure
of analysis is given below

Let there be two factors A at 3 levels and B at 2 levels. Denoting the levels
of A by a0 , a and a2 and those of B by b0 and b 1 the six treatment
combinations of the factorial are a 0 b0, a0b 1 , a 1 b0, a 1 b 1 , a2b0 and a 2b 1 . These six
treatment combinations can be accomodated in a block so that a randomised
block design with r blocks can be constructed easily. The total degrees of
freedom can be partitioned as follows

Table-1t

Source of variation	 d.f.

Block	 r - 1
Treatment	 5

A	 2

B	 1

AB	 2

Error	 (r- 1)

Total	 6r-1

The sum of squares of different components such as block, treatment and error
can he obtained exactly in the same way as in the analysis of randomised
block designs The sum of squares due to main effects A and B and their
interaction AB can be obtained by forming the following (A x B) table with
six treatment totals, T 1 , i = 0, 1, 2, and j = 0, 1

Table-11.34

Levels of B

Levels of A

a0	a1	 a2	 Total

TOO	 T10	 T20	 130
b1	T,1	 T1	 T21

Total	 A1	 A2	 C
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C2
Sum of squares due to A = 	 2rA02i-Al2+A22 C. F. where C.F. =

/	 B02+B12
Sum of squares due to B = 3r 	 - C.F.

Sum of squares due to AB = Total S.S. due to (A x B) table

- S.S. due toA-SS due toB,

Too2+To?+.......
where Total S.S. due to (A x B) Table =	 r	 - --C.F.-

Thus the procedure of analysis of simple asymmetrical factorial design
with number of treatment combinations those can be accomodatcd in a block

is shown. Forlarge number of treatment combinations, the procedure of
confounding is also applicable here. Das and Gin (1979)  can he referred on

this regard.

11.6 Split-Plot Design

This is an special type of a symmetrical factorial design in which one fctor
requires bigger plots than the others for the convenniences of the
experimenter. For example, if we have two factors namely irrigation and
nitrogen fertiliser, it is convenient to apply irrigation to bigger plots and
nitrogen to smaller plots, may be obtained by splitinig the bigger plots into

number equal to the levels of nitrogen tertiliser .. Thus a replication is

obtained with different sizes of experimental units for different treatments
in the same experiment. We may have more than one replications and this

type of design may be called split-plot design.

For this type of design. first a randomised block design with bigger plots is

taken to accomodatc the factors which require bigger plots Next each OF

the bigger plots is split into as many plots as the numberof treatment coming
from the other factor. The bigger plots are called main-plots and the

treatments given to these are main-plot treatments or simply main
treatments. The constituent parts of the main plots are called sub-plots and

the treat.ments given to them are called sub-plot treatments. It is to he

remembered that the different types of treatments are afloted at random to

these respective plots. Therefore, split-plot design may be called the

combination of two or more randomised block designs. 	 -

The analysis of the design is a hit complicated due to presence of two error

components. The first error component is used to calculate F for main

treatment s and second error component il oel to alciilatt F tor.ib_plt
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treatments and interaction effect of main plotand sub-plot treatments, thus
giving an efficient test for latter case conducted, for that important
treatments are confounded in the sub-plots. Due to the method of
construction, the main treatments are usually confounded.

Analysis : Let there be p levels of main treatment A, q levels of sub-plot
treatment B and there are r replications. Let Vijk he the observation for the
th level of A, kth level ot B and in the ith replication.

1=1,2 ........ r;j=1,2 ........ p; and k=1,2 ........ q..

At the first step we prepare a two-way table like Main-treatment x
Replication

from which the totals, y.. =	 y jk; y =	 Yjk	 yir	 Ytjk
jk	 ik	 '	 k

and C = Grand total'of all the observations can be obtained.

Now we calculate, Total S.S . = ! V2 k - C. F. where C'. F. = -.
ii	 N

.i.2Replications S. S. =	 '-- C.F. S.S.duetoA- '—'-C'. F.I rq

Error(1)S. S. =
	

C. F. - Replications S. S. - S. S. due to A.

In the fle),t step, we again prepe a two-way table like

Main-treauncnt x Sub-plot treatment.

The totals Y..k =	 Yijk and Yjk = Yijk etc. can be obtained.

v k2Now we calculate, S. S. due to B = I ' pr - C. F.

v 2
S.S. due toAB-C.F.-S.S. due toA- S.S. due toB.jl.	 r

Error (2) S. S. can be obtained as usual by subtraction.

The anal ysis of variance table can he furnished as given in Table-il .35.

In this case we test the h y pothesis of equality of eftects in sub-plot
treatment and inter,i tiOn 	 Ie t to be r1

( Il
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Table-11.35

ANOVA TABLE

Source of variation 	 d .f.	 Sum of squares

Y,
2 c?

Replication	 r -1	 --
P1	 rI.N

'2 ç?
Main treatment	 p - i rq rpq

LL •V2C2

'
Error (1)	 (r-1)(p-1)	 .	 . 1

I q	 qp	 rq	 rpq

V.. k2 	 C2
Sub-plot treatment 	 q -1	 - -

F7 rpq

Interaction (AB)	 (p - 1)(q -1)	
-	 -	 'k2 +

	r 	 rq	 pr	 rpq

Error (2)	 p(q -1 )(r - 1)	 By subtraction

	

yyv	
-2

rpqTotal	 pqr -

Extension of the split - plot design : Split - plot design can he extended

further by again spliting the sub-plots called second order sub-plots to assign

at random to a further set of treatments. This t y pe ot Ue ' in is called s p lit

-split-plot design. The analysis can be carried out in the same line as betore

with additional estimation of error component, called error (3) for the

second - order sub-plots. This error (3) mean square is uscd for testing the

effect of the second order sub-plot treatments and interactions with all

other factors. The last mentioned effects would be estimated with the

greatest precision as a result of the most efficient local control.

Example 11.15 In a varietal cum-manurial experiment on Soybeen, four

levels of nitrogen 0, 0.1, 0.3 and 0.5 (kg) per plot, designated as n 0, A 1 , n2 and
n 3 respectively were applied to each of three varieties V 1 . V2, V 1. The

different keels of the manure for each variety were applied b y spliting the

plot into four sub-plots. The yields (in Ibs) re given below in a 1Y stemetic

pattern. Analyse the data.



An Introduction to I hc I Iieor (it Statistics

Yield of the Split-plot experiment

	

Rep-I	 Rep-Il	 Rep-Ill	 Rep-IV
'rk)	 fi	 rb	 n,	 rb,	 N	 b
104	 105	 117	 129	 123	 123	 105	 135

	

V I 	VI	 VI	 VI
n2	 rh	 T12	 n3	 2	 n 3	 n2

112	 146	 133	 139	 131	 164	 129	 143

rk)	 n1	 k)	 n1	 r	 n1	 ik
112	 109	 111	 123	 117	 109	 124	 129

	

V2	 V2	 V2	 V2
lb	 rq	 r12	 n3	 r	 rq	 1`12	 r

123	 161	 134	 141	 159	 157	 133	 139
rt	 fl1,	 rk)	 n1	 r1

116	 1114	 119	 132	 102	 116	 133	 143

	

V3	 V3	 V3	 V3•
r	 fl2	 n2	 T1.3	 lb

121	 159	 14	 149	 167	 161	 142	 158.

Solution: We know, C. F. = 83872909

TotalS.S. = 84631 - 838729.69 = 15901.31.

table-1 1.36
Main-Plot x Replication Table

	

Rep I	 Rep II	 Rep Ill	 Rep IV	 Total

V 1	467	 338	 Stl	 314	 2080
V2	307	 309	 542	 325	 2083
V	 313	 43	 346	 578	 2182

	

Total	 1489	 1590	 1649	 1617	 6343
1389 2 +	 +16172

S.S.ductoRep.=	
12	 - - C'.F.=839925.92-C.F = 1196.23

S. S. due to Main-Plot treatment (variety) = 20802+
	 +,)182

 16
=839350.81 -C. F. = 421.12.

4672*+5782

	

Total S. S. Iroin Rep. x Main-plot Table =
	 - C. F.

= $4I0t0.7-C. F. = 2331.0b.

	

\ \Iain-ploO mt	 .S (F.)	 233!.O6- 121 12- 11% 2 = T13 7)
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Table-11.37

Main-Plot x Sub-plot treatment Table

V 1	V2	 V3	 Total

rIO	 449	 464	 427	 1385

nI 	 494	 470	 510	 1474

545	 551.	 573	 1669

T13 	 1	 592	 598	 627	 1817

Total	 1	 2080	 2083	 2182	 6345

Total S. S. from Main-plot x sub-plot treatment Table

4492k+6272
=	 - C. F. = 848717.25-C. F. = 9987.56

13852.......+18172
S. S. due to sub-plot treatment =	 12	

- C. F.

=848162.58 - C. F. = 9432.89

Main-plot x Sub-plot treatment Int. S.S. = 9987.56-421.12-9432.89 = 1335

Error (E2) S.S. 15901.31 - 1196.23 -421.12- 713.71 -9432.89- 133.55 = 4003.83

H0 : ( i) Effects of all the four levels of nitrogen are equal.

(ii) There is no interaction effect between main-plot and sub.plot
treatment.

Table-11.38
ANOVA TABLE

Source of
variation	 d.f.	 5S.S.	 M.S.	 F	 :F 1F

Replication (R)	 3	 1196.23

Main-plot treat. (V)	 2	 421.12

Int. (V x R) E 1	6	 711.71

Sub-plot (N)	 3	 9432.89 1144.293	 21.2	 -	 4.60

Int. (NV)	 6	 133.55	 22.258	 0.15	 2.46	 -

Error (E2)	 27	 4001.83	 148.289

Total	 47 1 15901.33 1

Since the calculated value of F with 3 and 27 d.f. corresponding to sub-plot
treatment i.e. nitrogen is highly significant and therefore the hypothesis
(i) ma y be rejected. But the calculated ' aluc ol F orre ..pond ng to
interaction between main-plot and sub-plot treatment is inigniticant and
hence the h ypothesis (ii) may he accepted.
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11.7 Strip-PIót.Design

There are situations when both the factors require largó plots with one set of
plots superposed over the other sets at right angles, we get a strip-plot
design. Let us consider an example having two factors like spacing and
ploughing where the use of small plots by spliting bigger piots is not
convenient. A block may be divided into strip in one direction to allocate one
set of treatments called first factor, say, different spacing and into another
set of strips in a direction at right angle to the first, to be alloted 'to the
SCCOnZI Set of treatments called second factor, say, ploughing. Any of the set
of strips may further be divided into narrower strips for accomodating a new
set of treatments called third factor. The allotment of the treatments to the
strips are done at random at each stage. When we consider three factOr, we
get strip-strip-plot design.	 .

Analysis Like split-plot design we have to estimate error variance
corresponding to each plot size in strip-plot design. In the above example,
let three different plot sizes are involved ; different types of' spacing
constitute treatments, those have been alloted to plots of one size vi,, the
column strips, the ploughing treatments have been assigned to plots
second size namely,therow strips and lastl y the comparisons .f t
different combinations of the two treatments or the interaction coi' ra cOi

have to be made from plots of third size formed by the intr,:.'ti	 0:

two Sets of strips. 	 -

For the purpose of analysis of data in the above strip-plot \p ri.Cfl \\

have to prepare three two-way tables namely
replication x firsf factor ; replication x second factor and fir fa tot \ 0(01

factor.

Let VIkbe the observation for the ith level of first factor, kth levi Of 	 rnd
factor in the ith replication.

i=1,2 ........... r,;j=1,2 .......... p and k=1,2

From the first two-way table replication x first factory we get the following
totals,	 .

yi.. =	 vii; y1 .	 Ly	 and vik	 i k	 '

['he orrection factor C. F.) = G2- where C is grand total of all the
pqr

'.er\ ,.tion'. i.e. C =	 =

312



- Design of £xperimeflS

S. S. due to first factor = fl-- C. F.
rq	 •...	 .

V.2
Replications S. S. =	 - C. F.

pq
Interaction effect between first factor and replication is considered as

Error (1).

Thus Error (1)S.S. =
	

C. F. - SS due to First factor - Replication S. S.

a	 C. 	 -.
ii q Jrq 'p1

Next, from second two-way table of Replication x Second factor we get the

following totals.

y. = LyLkand y k = Yijk
ii	 I

S. S. due to second factor =	 - C. F.

Interaction effect between second factor and replications is considered to be
Error (2).

Error (2) S. S. = i k	 C. F. -S. S. due to the second factor

Yik
iication S. S. =C. F.ik p k rp i p1

From th	 - . d two-way table of First factor x Second factor, we get
the following new total Y .jk = !Yijk

a
The interaction effect between First factor and Second factor can be
computed as follows:

Interaction of First x Second factor S. S. = 	 - - C. F. - S. S. due to First
-	 jkr

factor-S. S. due to Second factor -
	 -	 , 2 -	 k2 C. F.

-I	 r	 irq	 rp

Total S. S. =Dy12-C.F.
ijk

Error (3) is obtained by usual subtraction.

I he analvsis of variance table can be furnished as given in Table-il 39 for

testing hypothc . i ' regarding the equality of effect of levels of First factor

itid Second Lic tot and the interaction effect' to he nil.	 -
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Table-11.39
ANOVA TABLE

Source of variation	 d.f	 Sum of squares

yi..2.G2
Replication	 (r -1)	 -

G2
First factor	 (p-i)	 rq

Error (1)	 (r-i)(p-i)

IY-k2 C2
Second factor	 (q -1)	 k pr rpq

'Error (2)	 (r - 1)(q - )	 ik p -	 k

Interaction First	 2

•x Second factor 	 (p - 1 )(q  - 1)	 k r - rq	 pr	 rpq

Error (3)	 (r - 1) (p - fl(q - 1)	 By subtraction

Total	 rpq -1	 - rpq

Hints of extension of strip-plot design is given earlier and the procedure of
analysis can be carried out in the same line as before with the additional
estimation of error (4) component and interaction with all other factors.

Example 11.16 With a view to formulate optimum spacing schedule for Rabi
Crop of different duration, ai experiment was conducted in strip-plot design
at a certain research station during the year 1981,

The treatments were:

Spacing (4)	 Varieties (5)	 No. of replications = 3

S 1 = 10 Cm x 10 CM	 V1 =PR 202	 Plot size 3.3m x 2.4m

52 =lOCmx5Cm	 V2=V2M-2

S=(m5Cm	 V1=CR-652

S4 tO Cm. Solid rows. 	 • V4 = VR/Fa -1
V=AKP-2.
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the yield in kg/plot is given below:

Rep-I	 Rep-2

52	 Si	 S4	 53	 53	 S1	 S4

4,20	 t.$0	 3.32 2.94	 V4	 1.50 2.45	 2.70	 3.45

3.75	 129	 1.38 3.29	 VI	 3.90 2.84	 3.77	 2.84

1.14	 3.48	 3.10 4.24	 Y5	 3.20 3.50	 1.79	 3.45

73	 4.82	 4.67 4.14.	 V2	 3.45 1.80	 3.20	 3.00

0	 3.34	 3.95 1.54	 V3	 2.20 3.83	 2.59	 1.95

Rep-3

S4	 Si-. S2	S3

	

V 2	3.05	 4.25	 2.59	 1.49

	

V4	3.30	 2.84	 2.70	 3.50

	

V 5	1.89	 3.29	 3.27	 3.30

	

V3 	 3.45	 1.09	 3.29	 3.05

	

V	 2.84	 2.40	 1.18	 250

Solution: Here, C. F. 530.6211 and Total S. S. 578.0275 - C. F. = 47.40'

Table-11.40
Variety _x_ Replication _Table

Variety	 Rep-i	 Rep-2	 Rep-3	 Total

V	 1738	 13.35	 8.92	 3'.e	 -

V 2	12.26	 11.45	 11.38	 35.9

V 1	11.97	 1057	 10.88	 33.42

V 4	12.48	 10.10	 12.34	 34.87

V 5	11.71	 11.94	 11.75	 33.-R

Total	 65.75	 57.41	 55.27	 178.-1

17 . 382 ++ 11.752
Total S. S. (Variety x Rep. Table) = 

=542.6722-33u.6211 = 12.0511.

+	 +

	

S.S.duetoVarictv	 .,	
-C.F.=332.15()3-(.F. 	 I
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S. S. due to Replication = 65
. 752 +	 + 55 . 272

 - C. F.=533.6872 - C. F. =3.0661.

(Var x Rep) interaction S. S. = 12.0511 - 1.8292 - 3.0661 = 7.1558 (E1).

Table-11.41

Spacing x Replication Table

Spacing	 Rep-1	 Rep-2.	 Rep-3	 Total

16.73	 14.43	 13.87	 45.02

52	16.44	 14.69	 13.84	 44.97

16.16	 .	 14.25	 13.03	 43.44

S4	16.42	 14.05	 1453	 45.00

Total	 65.75	 57.41	 55.27	 178.43

}6 . 732 + ......+14.532
Total S.S. (Spacing x Rep. Table) = 	 - C. F.

= 533.9900 - C. F. = 3.3690.

45 .022 +	 .+ 45.002
S. S. due to Spacing =	 15	

- C. F. = 530.7423 - C. F. - 0.1212.

pacing x Rep) Interaction S. S. = 3.3690 - 3.0661 - 0.1212 = 0.1817 = (E2).

Table-11.42

Variety x.Spacing Table

Total

39.65

35.9

33.42

34.87

35.40

•178.43

Variety	 S1 .52	 S3	 S4	 -

.V 1	10.06	 9.09	 9.22	 11.28

V2	7.85	 8.69	 8.98	 9.57

V3	8.30	 6.14	 9.74	 9.14

V4	8.63	 10.55	 5.74	 9.95

•	 V5	 10.08	 10.50	 9.76	 5.06	 1-

Total	 45.02	 43.97	 43.44	 45.00	 -

10062 ++ 5.062
• Total S. S. (Var. x Spa. Table) = 

(\,ir. Spa.) Inb.'raction S. S. = 16.8977 - 0.1212 1.8292 - 11.9473

	

Errir ' S. (E3 )	 1.4069 - 1.8292 -3.0661 - 7.155 - 0. 1212
It TI	 14 0 1	 '2
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H O : The effect of all the spacing are equal.

Table-11.43

ANOVA TABLE

Source of
variation	

d.f.	 S.S.	 MS.	 F	 5% F

Replication	 2	 3.0661	 1.5331

Variety	 4	 1.8282	 0.4573

Rep. x Var. (E 1 )	 8	 7.1558	 0.8945

Spacing	 3	 0.1212	 0.0404	 1.333	 4.75

Rep. x Spa. (E2)	 6	 0.1817	 0.0303

Var. x Spa.	 12	 14.9473	 1.2456

Error (E3)	 24	 20.1056	 0.8377

Total	 1	 59	 47.4059 1 

Since the calculated value of F corresponding to spacing with 3 and'6 d.f. is

smaller than the tabulated value of F with same d.f. at 5% level of

significane, the calculated value of F is insignificant and the hypothesis

may be accepted.

11.8 Nested or Heirarchial Design

In multifactorial experiments there may be situation like that the number

of levels of one fatorare same to the other factor but the level may not be

indentical to the other. Such an arrangement with two and more factors

gives us nested or heirarchial design.

Let us consider an example that an industry purchases raw material from

three different suppliers. The industry wishes to determine whether the

genuinitV of the raw material is the same trorn each supplier. There are four
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itches of raw material available from each suppilier and thri't'
observations are considered in each batch.

The physical condition of the design is given below:

Supplier	 1	 2	 3

Batches!	 2,
I 	 I	 I	 I	 12	 13	 J	 11	

j

	

Yni Y121 Y1.31 Y141	 Y211 Y221 YZ3I Y24 Y311 Y321 	 Y331 Y34T

Y112 YIn Y132 Y142 Y212 Y222 Y12 Y24 Y312 Y322 Y332 Y342

Yin Y123 Y133 Y143 Y213 Y223 Y23 Y24 Y313 Y323 Y333 Y343

This is a two-stage nested design with batches nested within suppliers. It
should be remembered that batch 1 or 2 etc. is not crossed with other factors
i. e. batch 1 of suppliers 1 etc. is not same of batch 1 of supplier 2 and so on.
ThereforeThe batches may be renumbered as 1, 2, 3, 4, for supplier 1; 5, 6. 7
and 8 for supplier 2; 9, 10, 11 and 12 for supplier 3, This is a balanced nested
design, since there are an equal number of levels of one factor with in each
level of the other factor and equal number of replicates. Since every level of
one factor does not appear with every level of the other factors there can be
no interaction between the two factors.

Analysis Let Yijk be the kth observation corresponding to the jth level of
one factor B within jth level of the other factor A,

i=1,2 ......... p;j=L2 ....... q and k=1,2 ........ r.

We calculate y.. 	 Yjk ; yij. = Yjk and y... =	 =	 Yijk
jk	 k	 i	 i j k

Total S.S. Yijk2 -pqr

S. S. due to A = 
yi..2 y....
qr pqr

S. S. due to B within A =..
	 vi..2

'Jr	 qr

S. S. due to error can he obtained b y usual subtraction and givec results

k
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The analysis of variance table for the two-stage nested design for testing

the null hypothesis. H 0 : The effects of all the levels of first fator arc

same, sgiven in Table-11.44.

Table-11.44

ANOVA TABLE

Source of
dl.	 Sum of square

variation 

y1..2 v...2
	A	 p—i i qr pqr

2 v	 2

B within A	 p(q - l)	 .
I J r	 I qr

Er	 pq (r - 1)	 By subtractions

= IIIVI)k
2
 -

.1	 j 	 ij	 r

Total	 pqr - i	
ZYjk2 -

The conclusion can be drawn as usual.

Example 11.17 A company which buys raw material in batches from three

different suppliers. We wish to determine that all the suppliers provide

material of same purity. Four batches ol row material are selected at

random from each supplier and the determination of purity is made on each

batch. The data in a two-stage nested design are given below. Analy( , th

data.

	

Supplier	 1	 2	 3

	

Batches	 1	 2 3 4	 1	 2 3 4	 1	 2	 3	 4

94 91 91 94	 94 93 92 93	 95 91	 94 %

92 4) 93 97	 91	 47 93 41	 97 93	 92 9

93 89 94 93	 ) 9; 91 9	 93 9	 9

1
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(3359)2
Solution CorrQction Factor (C. F.)=	 = 313413.36

Total S. S. = 313559 -31341136 = 145.64.

Batch totals within supplier

Supplier (A)	 1	 2	 3

Batch	 1	 2	 3	 4	 1	 2	 3	 4	 1	 234

Total	 279 270 278 284	 .275 285 276 284	 285 277 281 285

Total	 1111	 .1120	 1128

11112+11202+11282
S. S. due to A =
	 12	 -C. F. 313425.42 - C.F. = 12.06.

2792+	 .±2852
S. S. due to B (within A) =

	
- 313425.42

= 313501.00 - 313425.42 = 75.58

S. S. due to Error = 145.64 12.0f - 75.38 = 58

H Oj : All suppliers provide material of same purity.

.Table-11.45

A NO VA TABLE

Source of
variation 	 F	 .3';. F

	

A .	 2	 12.06	 6.03	 2.3	 3.40

	

B(A)	 9	 75.38 . .	 8.40

	

Error	 24	 58.00 -	 2.42

Total

The calculated value of F with (2,24) df. is 2.3 which is smaller than the

tabulated value of F withsamc d .f. at 3% level of si	 rica' Hence the

calculated value of F is insignificant and the h 	 ma	 accerted.

320



E

12. INDEX NUMBER

12.1 Introduction

Index numbers are statistical devices designed to measure the relative

change in the level of a phenomenon (variable or a group of variables) with
respect to time, geographical location or other characteristics, such as

income, production, expenditure, export, import, etc. In other words, index

numbers are the numbers which indicate the value of a variable at any
given date called the 'current period as percentage of the value of that

variable at some standard date called the 'base period'. The variable may
be:

i) the prices of a particular set oi commodities,

ii) the volume of trade, exports and imports, agricultural or industrial
productions.

iii) the national income of a country or Cost of living of persons helorging to
a particular income group or profession.

12.2 Problem of Construction of Index Numbers

The construction of index number involves the following problems:

a) The purpose of index number. 	 -

h)	 Selection of commodities.

C)	 Selection of base.

d) Type of average to be used.

e) Selection of appropriate weight.

a)	 The Purpose of Index Number: If it is desired to construct an index of

consumer's prices,wc must know the class of consumers whose cost of living,
we intend measure and whether it is the cost of living of the middle class
people, agrult iStS or industrial workers. Such definiteness is necessary

for the importance 0 fçarious items consumed by the different categoric, of
people may be vcr muc, different. It is alwa y s advisable as well as
deirable to precisely know what' we are going to measure as well as what

irpost' the measure is meant for,
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h) Selection of Commodities: If the purpose Of an index is to measure the

cost of living of poor families we should select those commodities or items
which are consumed by persons belonging to this group and due care should
he taken not to include the goods which are not ordinarily consumed by the

individuals of the selected families.

c) Sektion of Base The period with which the level of phenomena are
made is termed as base period and the index for this period is always taken
,is IOU. There are two types of base namely i) Fixed base and ii) Chain

base.

i)	 Fixed Base : In fixed base method, the base period should he n'"
i. e. a period free from all sorts of abnormalities, such as economiL
depression, labour strikes, war, floods, earth-quake, etc.

The base period should not be too distant from the current period. Since
index numbers are essential tools in business, planning and in formulation of
executive decisions and hence the base period should not be too far back
relative to current period. But the base period should be entirely different
from the current period. Again the pattern of consumption of commodities
ma y change appreciably if the base period is vcry far away from the
current period.

ii) Chain Base :'In the chain base method, the whole series of index

number is not derived to an y one base period, but the indices for different

years are derived by relating each years value to that of the immediately
preceeding year, the indices so obtained are called link relative index

numbers. Frequentl y , these link relatives are chain together to a common

base. Such indices are known as chain indices. l he chain base method

provides for the inclusion Of new items and deletion of old ones in order to

make the index more representative.

d) Type of Average to be Used : Since index numbers are specialised

averages, a judicious choice of average to be used in their construction is of

great importance. Usually the averages namely i) Arithmetic mean, iO

Geometric mean and iii) Median are used.

Median, though easiest to calculate of all the three, completely igureS the

extreme observations while arithmetic mean, though easy hi calculate, is

undul y affected b y extreme observations. Moreov, neither arithmetic
mean nor median are reversible. Geometric mi-an gives equal weights to

equal ratios of change.
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It does not give undue weightage to extreme observations. Geometric nit
based indices are reversible. Hence geometric mean is the most appropriate

average to be used

e) Selection of Appropriate Weights: Genearally, for the construction of

cost of living indices, various commodities such as wheat, rice, fuel,
clothing etc. included in the index are not of equal importance, proper
weights should therefore be attached to them to. take into account for their

relative importance.

123 Calculation of Index Numbers

Some simple but useful ways of calculating index number; are given below:

A) Simple Aggregate Method : This method consists in expressing
aggregate of prices in any year as a percentage of their aggregate in the base
year. This price (or quantity) index for the ith year (i = 1, 2.........n) as

compared to the base year (i = 0) is given by
r

P	 x 10	 (12.1)

:
j=l

where, P 1 = Price index of the ith (i = 1, 2.........n) year with respect to base

year,

Pij = Price of the ith year of the jth (j = 1, 2.........r) commodity,

and P = Price of the base year of the jth commodity.

r
S.

And, Qj='	 x 10	 (12.2)

J=1
where, Q1 = Quantity index of the ith year with respect to the base year,

qij = Quantity of the jth commodity in the ith year,

q,ii = (2untity of the jth. commodity in the base year.

Defects of this method are:

i) The prices of the various commodities may he in different units, c. g.

per litre, per metre, per quintal etc.

ii) The relative importance ot various commodities are neglected.
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Example 12;1 Construct index number of prices of 1990 taking 1985as the
has(' From the following data using simple aggregate method.

	

Commodit y	Price in 1985 in Taka -	 Price in 1990 in Taka

Rice	 10.3 per kg.	 15.5 per kg.

Wheat	 5.3 perkg.	 63 per kg.

Cloth	 5.5 per metre	 7.0. per metre

Sugar	 20.5 per kg.	 27.5 per kgi

Milk	 ftt) per kg.	 14.5 per kg.

Solution
(.ommoditv	 Price in 1983	 Price in 1990

	

in Taka.	 in Taka
P	 . p

Rice .	 10.3	 133

Wheat	 5.3	 6.5

Cloth	 7.0

Sugar	 20.5	 27.3

Milk	 .	 8.0	 .	 14.5

Tutal	 3W1	 71.t)

I h&'rt'Rre, price index number of 1991) using 983 as base is

l'=	 x IOU -	 x IOU = 142.0

B) Weighted Aggregate Method This method provides for the different
1ommod t ic'- to c\t'rt their in tli.encc in the index number by assigning
appropiiate weights to each. Usually the quantity consumed, sold or
marketed in the base year are used as weights. If w is the weight associated
with the jth commodit y then the weighted aggregate price index is given
by,

r

P.	

.	 -
=	 I	

x 100	 (12.3)

:
1=1

where, Pi , and P,, j areas expressed in (12.1)

Rv the use o  diFferent t ypes o  weights, a number of formulae h ' ernergl d
For the construction oF index number.
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12.3.1 Laspeyre's Price Index: If we take .w 1 = qin (12.3) i.e. if the base

Year quantities used as weights, the method is called Laspcyres method

and the formula is,
r

P (La) 
=	 x 100	 (1 2.4)

	

L	 q01
j=1

where, the notations are expressed earlier.

12.3.2. Paasche's Price Index : By taking current year quantities as weights,

i.e. wi = qjj in (12.3) the method is known as Paaschc's method and the

formula is,

j=1
P01(Pa)= r	 x 1	 (12.5)

1=1

12.3.3 Drobish -Bowley Price Index This method is the acithmctic mean
of the Laspcyres and I'aasche's price indices and is given by,

i
l',, (DB) = 11	

^ • 	

21 Ix 1(X)	 (1 2.h	2 L	 'j'	 J,q11

12.3.4 Marshall-Edgeworth Price Index: If xv, = (q + qj1) in (12.3) i.e. if

weights are the arithmetic mean of the base year quantities and the current
yeai quantities, the method is known as Marshall-Edgeworth method and
the formula is given by,

( qov qn) .

P(ME)=	 x 10
(qLq

03\	 2	 .

(q ,
or, P01 (ME) =	 10........(q... . .... . x	 )	 (12.7)

+

12.3.5 Walsch Price Index : If the weights are the geometric mean (it the
base year quantities and the current year quantitic, thc rncthod is knoo 1

\\ akch method and the'  ormu1a is given by

I
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I ' (Wa) = —	 X 1 W	 . (1 2 .S

12.3.6 Irving Fisher's Ideal Price Index: The geometric mean ot Laspeyres
and i'aasche's formula is known as Fishers ideal price index and is given,

P,,( F) = [1)0 (L) x l'( P)12

= 
FL l' q ,,i	 l 'jj gij	 x 100

	 (12.9)

12.3.7 Kelly's Price Index : If in (12.3) the weights w 1 are not the quantities

which refer to some period (not necessarily the base year or current year)
and are kept constant for all periods, the method is known as Kcllys

method.

Note: 1) Qiantity Index Number: In the above formula (12.4) to (12.9)
we concentrated ourselves on price index numbers. By inti'rchanging the

prices (I') and quiantities (q 1 ,) in the above formulae, we get corresponding
formulae for the calculation of quantity index numbers, which reflect the

change in the volume of quantit y or production.

2)	 Value Index Number: Value index numbersaregiven by the aggregate

expcnditiirefor any given year expressed as a percentage of the same in the

base year. Thus V, =x 100	 (12.10)

where V01 is the value index and the other notations are as usual.

Example 12.2 Construct index number of prices from the following data by

using: a) Laspeyres method 	 h) Paasches method

c) Marshall-Edgeworths method d) Fishers method

	

I	 1985	 I	 ];go
	Price	 Quantity	 Price

	

(Taka) 	 (Taka)

	

103	 3	 15.5

	

5.5	 2	 6.5

	

55	 5	 7.0

	

20.5	 1	 275

I	 14.5

32h

Commodity

Rice

Wheat

Cloth

Sugar

Milk

Quantity

4

3

7

1
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Solution:

1985	 1990

Comodity Price	 Quan. Price Quan. P,	 1 1 41	P1q,	 P1q

P.	 3L_ Pi	g ______

Rice	 10.5	 3	 15.5	 • 4	 315	 42.0	 46.5	 62.0

Wheat	 55	 2	 6.5	 3	 11.0	 16.5	 13.0	 193

Cloth	 5.5	 5	 7.0	 7	 27.5	 38.5	 35.0	 49.0

Sugar	 205	 1	 27.5	 2	 20.5	 41.0	 27.5	 55.0

Milk	 1	 8.01	 1	 1 14.5 1	 2	 1	 8.0 1 16.0 1	 14.5 1 29.0

Total	 I	 I	 I	 1	 1 98.3 1 154.0 1 136.5 1 214.3

Index number for 1990 with base 1985 by using:

(a) Laspeyre's method, I 	

.	 Pii	
1365

x 100 =--x 100 =

oj1oj
J=1

.5

	

j=1	 214.3
(b) Paasche's method, P,1 =	 x 100 =	 x 1(X) = 139.29

b4

1' (q, 1 + q11)

(c) Marshall-Edgeworth's method, P01 
=

	

	 x 10()

I 0J (qoj + qij)

P q1 +	 q1	

136.5 + 214.5 x 100
= 1	

x I(	 154C,
- .	

+1 = 1	 1=
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351
252.5 x Uk) = 139.01

(LI) Fishers method, 1),1

• 1136.5 214.5
= -'I	 x 1(X) = 138.93

a

	1'ij1Oj	 l'ij q,

L	 xHX)

	

E "ojqoj	 •	
ui'lij

j=1	 j=1

12.4 Simple Average of Price Relative Method

As the name implies, this method consists of finding price relatives and
averaging them expressed in percentage. A price felative is the ratio ot
price of the commodity in the current year divided by the price of the samt

commodity in the base year. Symbolically price relative is

The next step is to average this price relatives of each current year and thi.n
express irt percentage to obtain the index number.

For the purpose of the averages any one measure of central location, such a
mean, median, geometric mean may he used. Therefore, the simple average
of price relative index number is

r P

_j = 1 x)0()P - N''I (A. M) (12.11)

When arithmetic mean is taken, N is the number of commodities and

(r

P (C. M.) =

	

	 x 100	 ............ (12.12)
J=i 01)

When geometric mean is taken, Nis the number of commodities.

12.4.1 Weighted Average of Price Relatives: For the obvious shortcoming
of the simple average of relatives is that each relative irrespective of the
impirtance of the commodity it presents, influence the index number tor a
given year. If	 is the weight given to jth commodity, then the general
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formulae of index numbers obtained on taking the weighted average of price
relatives become:

wj()

r	 x 10)	 (12.13)

j=1

1), (C. M.) = 1`1()
= i

P. 	 x 100	 (12.14)

If the base year values are taken as weights, i.e., w =

we get from (12.13)

262LP,1 (A. 	 x 100
	

(12.15)

which is nothing but Laspeyres formula as obtained in (12.4)

If we take the values obtained by multipl ying the current y ear quantitie,

and the base year prices as weight i.e. we take w 1 = I'.jqij, we get from (12.13)

X100

which is Paaschcs formula as obtained in (123).

Example 123 The price of four different commodities for 1986 and 1990 are
given below. Calculate the index number for 1990 with 1986 as base using (i)
the simple average of price relative method (ii) the weight average of

price relative method.

Commodity	 Weight	 Prices in Taka

1986	 1990

Rice	 3	 11.0 per kg.	 15.5 per kg.

Wheat	 3	 5.0 per kg.	 6.5 per kg.

Cloth	 4	 5.3 per metre	 TO per metre

Sugar	 1	 22.5 per kg.	 23 per kg.

29
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Solution:

Commodity Weight Base year	 Current year	 Price
w	 Price (1986)	 Price (1990)	 Relative

)p1	
P1	 P1
130. 	 w.jPo

Rice,	 3	 11.0	 15.5	 1.409	 4.227

Wheat	 3	 5.0	 63	 1.300	 3.900

Cloth	 4	 3.3	 7.0	 1:273	 5.092

Sugar	 1	 22.3	 1	 273	 1	 1.222	 1.222

11	 1	 5.204	 14.441

I)	 Simple average of price relative index is given by,

f)

—'04
P01 =- 1- xlOO=4--xlOO=130.1

ii)	 Weighted average Of price relative index is given by,

4	 Pw)p!L
=1	 14.441

121,1 =	 4	 =11x lOt) = 131.28

w 

12.5 Tests of Index Numbers.

The following are the tests commonly used for the test of index numbers.
A) TimcRe'ersl Test.
B) Factor Revers Test. 	 -
C) Circular Test

A) Time Reversal Test : The test is that the index numbers of current year
to the base year should he the reciprocal of the index number of bas e year to
thecurrent year. Symbolically,

I, --01 P11)

or, P01 . P 0 =
For example,example, if we take the Laspevres formula -

Vp:

=	
Also we get, I RI (La)

3t)
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• P	 P L	 I

	

oi' (L a)	 jo ( a) =	 . P11q1

Hence Laspeyre's formula does not satisfy time reversal test. Similarly It
can be shown that Paasche's formula does not satisfy this test. For Fisher's

Ideal Formula,

P(" 
(F)	

!P	

P11q	
2 and P (F)
I

	

[	 F.Po?lI Pojc=	 j(,	
= LI'q 1 	 Iqoj

(F) . P10 (F) = 1..

Hence Fisher's ideal index satifies time reversal test. It can be easily shown
that simple aggregate index and Marshall-Edgeworth index (with out the

factor 100) also satisfy this test.

B) , Factor Reversal Test : The factor reversal test requires that the
product of a price index and the corresponding quantity index should be
equal to value index, the indices being expressed in ratio Symbolically

_____
Poi Qoivcycq

For example,

P, I (F) = 
P1q1	

2 and Q01 (F) =

	

P01 .(F) Q	 (on simplification)0 (F) =

Hence Fisher's ideal index satisfies factor reversal test and none of other
formulae satisfies the factor reversal test.

Remarks:
(1) In varification of these tests various formulae are taken without the

factor 100.
(2) Since Fisher's index satisfies both time reversal test and factor

reversal tests, it is termed as ideal index number.

C) Circular Test This test is based on the shift-ability of the base and is
an extention of the time reversal test. The test is that

1'ol P 1 .	 = I, i# j# 0.

or,	 Viii, . Pbc . Pea	 l,aitb;tc.

This test is satisfied only by the indices based on
i) Simple geometric 'mean of price relative.	 .
ii) Kelly's fixed weight method.
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12.6 Cost of Living Index or Consumer's Price Index

Cost of living index numbers are constructed to study the effects of changes in

the prices of a basket of goods and servkcs on the purchasing power )f a
particular class of people during current period as compared with some base
period. Change in the cost of living of an individual between two periods

means the change in his money income which will he necessary for him to
maintain the same standard of living in both periods. The consumption

habits of people differ widely from class to class and even within the same
class from region to region, the changes in the level of prices affect different
classes differently and consequently the general price index number usually
trail to reflect the effects of changes in the general prices level on the cost-of
living of different classes of people. Cost of living index numbers ar,
therefore, compiled to get a measure of the general price movement of the

commodities consumed by different classes of people.

For change in the cost of living may also arise from reasons other than price
change and the cost of living does not measure such kird of change. From
this point of view the cost of living index number should be called
"Consumer's price index number."

12.6.1 Construction of Cost of Living Index Number: Cost of living nu
is constructed b y the following formulae

a) Aggregate Expenditure Method or Weighted Aggregate Method.

h) Family Budget Method or Method of Weighted Relatives.

a) Aggregate Expesditure Method: In this method weights to be assigned
to various commodities are provided by the quantities consumed in the base
year. Thus in the usual flotation cost of living index s given by,

F) -

Note: This is nothing but Laspeyre's index.

b) Family Budget Method : In this method cost of living index is given by
weighted average of price relatives, the weight being the values of
quantities consumed in the base year. Thus in the usual notation cost of
living index is given by;

Wi

=	 x ii )O, where wj =
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It is tube noted that cost of living index numbers by both the methods agree.
I,.

1(X)	 l(X)= 00c	 JSflCC	 X	 -—	 )	 X	 x 1

Example 12.4	 Construct the cost of living index for the year 1988
(Base 1984 = 100)

Commodity 	 Price in Taka

	

Unit	 1984	 1988	 Weight

Rice	 kg..	 9.00	 1050	 35%

Wheat	 kg.	 5.50	 6.00	 25%

VegetaH	 kg.	 2.50	 350	 20%

Meat	 kg.	 45.00	 60.00 .	 10%

Es	 Dozon	 5.50	 750	 10%

Solution : We prepare the fofliowing table for calcu;lating cost of living
index.

Price in I aKa	 Price	 Weight

Commodity	 14	 1988 Relative	 w

l'o	 '1

Rice	 9.0)	 10.50	 1.667	 35	 58.345

Wheat	 550	 6.00	 1.091	 .25	 27.275

Vegetables	 2.50	 3.50	 1.400	 20	 28.00)

Meat	 45.00	 60.00	 1.333	 10	 13.330

Es	 5.00	 730	 1.364	 10	 13.630

Total	 I	 I	 I	 I	 100	 140590

140.590

	

_____ -Yw,Cost of Living Index, P = 	 --T7,—
00 x 100 = 140.59
1 

Therefore, cost of living index for the year 1988 is 1 .10.59 considering the

base year 1984 = 1(X).


